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Synopsis

Cokriging uses a sparsely sampled, but accurate and precise primary data-
set, together with a more abundant secondary data-set, for example grades
in a polymetallic orebody, containing both error and bias, to provide
improved results compared to estimation with the primary data alone, as
well as filtering the error and mitigating the effects of conditional bias. The
method described here may also be applied in polymetallic orebodies and in
other cases where the primary and secondary data could be collocated, and
one of the data-sets need not be biased, unreliable, etc. An artificially
created reference data-set of 512 lognormally distributed precious metal
grades sampled at 25x25 m intervals constitutes the primary data-set. A
secondary data-set on a 10x10 m grid comprising 3200 samples drawn from
the reference data-set includes 30 per cent error and 1.5 multiplicative bias
on each measurement. The primary and secondary non-collocated data-sets
are statistically described and compared to the reference data-set.
Variograms based on the primary data-set are modelled and used in the
kriging of 10x10 m blocks using the 25x25 m and 50x50 m data grids for
comparison against the results of the cokriged estimation. A linear model
of coregionalization (LMC) is established using the primary and secondary
data-sets and cokriging using both data-sets is shown to be a significant
improvement over kriging with the primary data-set alone. The effects of
the error and bias are filtered and removed during the cokriging estimation
procedure. Thus cokriging using the more abundant secondary data, even
though it contains error and bias, significantly improves the estimation of
recoverable reserves.

Keywords
Cokriging, primary data-set, secondary data-set, linear model of coregion-
alization (LMC), ordinary kriging, optimal resource estimates.

Introduction

Cokriging is a widely proclaimed, but
infrequently applied estimation technique
using two or more sets of collocated or non-
collocated data of quite different type and
support, over the same domain. The method is
applicable in polymetallic orebodies where one
metal is well-sampled and the other less so,
but may also be applied in orebodies where the
primary and secondary data could be
collocated, and one of the data-sets need not
be biased, unreliable, etc. The method
produces better estimates of recoverable
reserves than ordinary kriging of either of the
two data-sets individually. The application of
cokriging demonstrated in this paper involves
a primary random function {Z(u), ued} of
sparsely sampled, good quality measurements
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z(ug), with mean m(ug), o=1,..., n evenly
distributed across a domain of interest for
which grade and recoverable reserves are to be
estimated. Over the same domain an often
more densely distributed, but poorer quality,
non-collocated secondary random function
{¥(u), ued} whose measurements y(ug), with
mean /m(ug), =1,...,r include sampling errors
and bias, is also available for use in the
estimation procedure. Secondary data is often
easier, quicker, or cheaper to collect than
primary data, but its information content is
suspect because of the concern that including
poorer quality data with sampling error and
bias would compromise the estimate.
Examples include open pit mining operations
where reverse circulation drilling is augmented
by blast-hole sampling data, projects where
both RC and diamond drill-hole data are
available, tabular orebodies where regional
exploration diamond drilling is supported by
numerous face or chip samples in adjacent
underground workings, or in exploration
targets where a primary set of gold grades
from diamond drilling is augmented by an
abundance of secondary geochemical or
geophysical information such as ground
magnetic readings. Examples of cokriging two
highly correlated variables sampled at different
locations within a domain have been described
in various applications by Meyers (1982),
Wackernagel (2010), Goovaerts (1997), Chiles
and Delfiner (2012), and Isaaks and
Srivastava (1989).

Cokriging

Generally, data-sets will contain more than
one variable of interest, and these are usually
spatially cross-correlated as expressed in the
cross-variogram. Cokriging is a method that
takes advantage of the information embedded
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in the cross-correlation of a second variable in order to
minimize the variance of the estimation error (David, 1977;
Journel and Huijbregts, 1978). In this paper cokriging is
considered in the context of simulated gold grades that have
been sampled in two different campaigns, which are then
used to estimate the recoverable reserves. Cokriging is the
preferred method of estimation where there is an
undersampled primary data-set and a closely sampled
secondary data-set containing sampling error and bias. The
advantage of cokriging with equally sampled data is unclear,
but will be investigated in the future.

Isaaks and Srivastava (1989) indicate that in some
situations cokriging will not improve an ordinary kriging
estimate. Such situations arise when the primary and
secondary variables are collocated, meaning that there is not
one variable that is undersampled with respect to another,
and that the auto- and the cross-variograms are proportional
to the same basic model. In such cases the cokriging
estimates will be identical to the ordinary kriging estimates.
Isaaks and Srivastava conclude that, ‘Thus if all the
variogram models are “quite similar” in shape and the
primary variable is not noticeably undersampled, cokriging
will not improve things very much’ (p. 405). Cokriging
therefore is meant specifically for different, but correlated,
non-collocated variables of different quality that are sampled
at different densities across a domain. Deutsch and Journel
(1998) note that variograms and cross-variograms can be
used in the cokriging systems only provided that the requisite
constraints on cokriging weights are met. Provided this is so,
sample cross-variograms can be transformed into a
corresponding cross-covariance Czy(h). The cross-covariance
can then be modelled with a linear model of coregionalization
to be used in the cokriging system. Where a single secondary
variable (¥) is considered, the ordinary cokriging (OCK)
estimator of a primary variable is:

Zoo (W)=Y 2, 0)Z(w,)+Y X, @Y(W,) )
a=1 B=1

where A represents weights applied to the 7 primary data (2),
Xgrepresents weights applied to the 7 secondary data (y), and
the bold u identifies a vector.

Deutsch and Journel (1998) show that while kriging
requires a model for the Z covariance, cokriging requires a
_Joint model for the matrix of covariance functions including
the Z covariance Cz(h), the ¥ covariance Cy(h), and the cross
Z-Y covariance Czyp(h) = Cop{Z(u), Y(u+h)}. In traditional
ordinary kriging the sum of the weights applied to the
primary variable is unity, while the sum of weights applied to
the secondary variable is zero. Provided these constraints are
met (Equation [2]) the estimator is unbiased:

Z::/ta(u)=1, and gi’ﬁ(u)=0 2]

The second constraint is that the sum of the secondary
weights must be zero, which implies that the secondary data
makes no net contribution to the estimate, a severe constraint
on ordinary cokriging according to Deutsch and Journel
(1998). The error variance is minimized under the
constraints in Equation [1] as follows:

» 190 MARCH 2014 VOLUME 114

D A(u)Cyp(u, —u )+ A (u)Cyp (1, —u'y)
1 =

+u,(u)=C,1u,—u) a=1..,n,(u,)

D 2, (u)Cyy(u, —w )+ A (u)Cpp (0, — ')
p=1 p=1

+uy(u)=Cp(u', —u)) a=L..ru)

> A (w)=1, and Y Ay(u,)=0
a=1 p=1

where the Lagrangian multipliers xand gz account for the two
unbiasedness constraints. The covariances are classically
obtained from variograms as follows:

Cpy (M) =CL(0) =y, (h)
Cpy (h)=Cp(0) =y, (h)
Cyy(h) = Cyy (0) = yyy (h)

Cz7(0) and Cyy(0) are the variances of the Z and ¥
variables, respectively. Czy(0) is the estimated cross-
covariance of collocated Z and ¥ data. The direct and cross-
variograms are fitted with the well-known linear model of
coregionalization (LMC).

nst

7zz(h) = ZC[ZZFI(h)
1=0

nst

Yoy () = Z C[zyrz(h)

[3]

nst

Yy (h)= ZC;},F](}Z)
1=0

where nst is the number of structures and Iy(h), /=0, ....; [ is
the / th nested structure defined by a shape, three angles, and
three ranges; and (! is the contribution of the / th structure to
the variogram model, ZZ, Z¥, or YY as appropriate.

In order for the model to be positive definite the following
determinant must also be positive definite for all values of /
and the cross-product of these coefficients must be greater
than zero.

9]
CYZ CYY
and C,C,—C.C,, >0

where the 0 identifies a scalar. Deutsch and Journel (1998)
suggest that cokriging has not been extensively used in
practice firstly because of the tedious joint modelling required
by K* variograms when K variables are used, and secondly
because of the screen effect of the better correlation among
Z(uy) data compared with the weaker correlation between the
Z(ug) and y(ug) data. Furthermore, they describe two other
cokriging techniques that are applied, namely simple
cokriging and standardized ordinary cokriging.

Simple cokriging (SCK) with the prior assumption of a
known mean is mathematically the best estimation method in
that there are no constraints on the weights, it minimizes the
estimation variance, and it produces estimates that are
unbiased. The simple cokriging estimator at location (up) of a
primary variable z using a secondary variable y is:

det >0 V/ that is C,,, Cy, >0
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Ziex () -m, =3 2,[Z(u,)

a=]

—m,] +Zr:l’ﬂ [Y(u'y)-m,]
=

where A and Xg are the weights attributed to the primary and
secondary data, and m, and my, are the primary and
secondary means in a stationary environment. The error
variance at (u) is given by:

Gi(uo) =Var{Z(u,)—Z*(u,)}

This is minimized by solving the following system of
linear equations:

zﬂp(uo)czz(“a - uﬁ) +
p=1

Z ;L’ﬁ(uo)czy (“a - u,ﬁ) =
B=1

C,(u,-uy) a=1l..n
y A,(u)C, (0", —u,) +
; 0 Yz Vil [4]

Z ﬂ“'ﬂ(uo)cw (u'a - u’ﬂ) =
B=1

C,,(u',-u)) a=1..,r

As with simple kriging, this version of cokriging employs
the residuals from the data, or requires the standardization of
the means such that they are zero. Although it is free of
major constraints affecting other methods, the major concern
in regard to application of this technique is the strong
assumption of stationarity across the domain.

The standardized ordinary cokriging estimator (SOCK)
uses a secondary variable that has been standardized such
that the means for the primary and secondary variables are
the same, and all the weights are constrained to add up to
one. In this case Equation [1] can be written:

Ziex (W) =m. _$- la(uo){Z(ua)—mz}
a=1 o

o

z

, 5]
L[y -m,
;z,;(uo){ — }

y

z

where Aand % are cokriging weights obtained by solving the
ordinary cokriging system of equations (Equation [3])
expressed in terms of correlograms (Goovaerts, 1998), with
the single condition that:

Zﬂ’a(ua) +Z]"ﬂ (“'/3 )=1
a=1 p=1

where m,=E{Z(u)} and m,=E{Y(u)} are the stationary means
of Z and Y (Deutsch and Journel, 1998).

In this case both the SOCK and SCK weights are linearly
related. Goovaerts (1998) has shown that estimation with
standardized or non-standardized data results in the same
cokriging estimate. The non-standardized estimate is a
rearrangement of Equation [4]:

The Journal of The Southern African Institute of Mining and Metallurgy

Zy=Z,x0,+m,

With these constraints in mind, the use of cokriging and
the necessity of a linear model of coregionalization (LMC) are
now examined.

Linear model of coregionalization (LMC)

The linear model of coregionalization (LMC) informs the
cokriging process as to how much of the secondary data to
use. The cross-variogram carries the information content for
the calibration that filters the error from the secondary data.
The cross-variogram is constructed using the cross-
covariance since the cross-variogram requires collocated data,
but the cross-covariance does not; unequally sampled data is
used directly. For a cross-covariance that is flat at zero
distance it is possible to model an LMC, but all the secondary
data would be assigned a weight of zero during the cokriging
procedure. If the cross-covariance looks exactly like the direct
variogram, it is again possible to model the LMC, but the
primary and secondary data would be treated in exactly the
same way, i.e. they would be assigned equal weights during
the cokriging procedure.

The covariance matrix for jointly distributed primary and
secondary variables must be positive definite. A simple way
of constructing a valid cross-covariance is through the use of
an LMC. While each variable has its own direct variogram
and each pair of variables have their own cross-variogram,
the LMC uses the same variogram structures and the same
ranges for the direct variograms of Z and ¥ (although the
contributions can vary), and for the cross-variograms of Z
with ¥ (see Equation [3]). This ensures that the variance of
any possible linear combination of these variables is always
positive (Isaaks and Srivastava, 1989).

The model for each of the single variograms may consist
of one or more components of the basic models, giving rise to
so-called nested structures, which is acceptable since ‘any
linear combination of positive definite variogram models with
positive cogfficients is also a positive definite model’ (Isaaks
and Srivastava, 1989, p. 375). These matrices must be
positive definite, therefore the following relations must be
true:

C%,.Cy 20
1 —
det]b | >0t VI=0,.,nst [g]
C[ZZC[YY_(C[ZY)Z 20

where / refers to the number of structures (ns¢), the 0
identifies a scalar, and ¢ is the contribution of the / th
structure to the variogram model ZZ, Z¥, or YY as
appropriate.

Isaaks and Srivastava (1989) state it is sufficient that all
the eigenvalues of the matrices of b coefficients are positive,
but generally the conditions shown in Equation [5] are more
widely applied. They also warn that these constraints make
the modelling of coregionalization difficult and that one of
the single or cross-variograms may not fit the sample
variogram well. They suggest that each individual model can
be considered as being a small part of a total model and the
overall fit judged accordingly. They also provide the helpful
suggestion that when compiling a model of coregionalization,
a basic model in the single variogram does not necessarily
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have to appear in the cross-variogram model. However, any
basic model in the cross-variogram must be included in all
the single variogram models.

Practical application of cokriging

In the progressing of a mineral prospect to a going mining
concern it is common to accumulate primary data such as
metal grade, as well as other types of data from a variety of
studies. The latter may have different support and are termed
secondary data. Directly or indirectly, the goal of such studies
would be related to efforts to derive the best estimate of
grades and their distribution across the orebody, the primary
data source for such estimates being a limited number of
carefully drilled diamond drill-holes. Although generally
abundant, secondary data may be suspected of being in error
or biased. Rather than applying ad-hoc calibration or
correction factors to improve the quality of the secondary
data, or simply rejecting secondary data as not usable,
cokriging is an attractive alternative that allows secondary
data to be used in a theoretically acceptable manner.
However, the challenges with respect to the practical
implementation of cokriging can be formidable, and it is the
aim of this study to provide an understanding of and to
document these challenges through a study of synthetic
primary and secondary data-sets.

In a real-life mining situation it is essential to assemble
the required modelling parameters for the primary data alone,
considering issues such as stationarity, managing outliers,
declustering, and variography. Attention to such details
ensures that the appropriate parameters are available for
investigating volume-variance relationships and the kriging
of the data. Considerations about stationarity would answer
questions such as whether the data belongs together, or does
it need an adjustment to account for a trend. The way in
which outliers are dealt with is always a contentious point,
but where it is clear that outliers need attention, ‘following
local practice’ or conforming to the mining personnel
standard is a prudent position to take. When required,
declustering would also be considered in order to produce an
appropriately weighted distribution that, having taken
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account of sample redundancy and clustering, is summarized
by a mean and a variance. Understanding and extracting the
underlying variogram is essential to testing the sensitivity of
the deposit to SMU size and volume-variance relationships,
and in this case the kriging will require a variogram in
original units. One might use normal scores, median
indicators, correlograms, relative variograms, or any other
tools available to extract information about the underlying
spatial structures and to overcome the challenge of limited or
skewed data.

In this particular exercise, the use of a simulated data-set
and regularly spaced data means that none of the issues
described has to be considered. The primary data is therefore
suitable for incorporation, can be considered to be stationary,
with no outliers, and the distribution within a regular grid
obviates the issues that would normally have to be addressed
in regard to declustering.

Reference data-set

A 400 m x 800 m Gaussian point data-set was simulated at a
1x1 m resolution to give 320 000 points. A lognormal distri-
bution of fictitious metal grades with a mean of 0.70 g/t and
a standard deviation of 1.08 g/t was created by transforming
the normal scores data. The simulated lognormal reference
data-set was sampled such that three highly correlated, non-
collocated data-sets all having units of grams per ton (g/t)
were created on regular square grids at 10x10 m, 25x25 m
and 50x50 m, hereafter referred to as 10 m, 25 m, and 50 m
grids. The relative position of these three grids in the first
100x100 m block is shown in Figure 1a

At a point scale (1x1x1 m), assuming a reef thickness of
1 m and a density of 3 t/m3, the project area contains
960 000 t at a grade of 0.70 g/t with a total metal content of
672 kg. True values for tons, grade, and contained metal
were averaged for panels at 10x10 m, 25x25 m, and 50x
50 m grid size from the simulation reference data-set.
Recoverable reserves were calculated at a cut-off of 1 g/t. The
tons, average grade, and recoverable metal at point support,
10 m, 25 m, and 50 m panels are listed in Table I.

s Secondary data
@ Primary data

d B ¢ % ¢

@ & @ o @

0 X-Axis 100

Figure 1—(a) Layout of the samples on 10x10 m (3200 data), 25x25 m (512 data), and 50x50 m (128 data) grids, ( b) location of non-collocated primary and

secondary data within a 10 m radius of one another
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In proceeding from 1 m points to 50 m panels the grade
of the recoverable reserves above 1 g/t decreases rapidly with
a marginal increase in tons, due to the inclusion of increasing
amounts of waste dilution in the SMUs. As a consequence the
recoverable metal decreases from 418 kg to 324 kg as the
size of the SMUs increases, the balance of the total metal in
the deposit being lost in ore sent to waste and waste rock
itself.

Sampling the reference data-set

Two primary data-sets (Z) sampled on 25x25 m and 50x50
m square grid spacings represent the 512 and 128 good
quality drill intersections of a flat tabular orebody, carefully
drilled, logged, and assayed diamond borehole cores, respec-
tively. The more abundant secondary data (¥) was sampled
at much closer 10x10 m square grid spacing representing
3200 measurements of more easily collected and probably
cheaper geochemical or geophysical data. A 30 per cent
random error and multiplicative bias of 1.5 were introduced
to this secondary data during the sampling procedure.
Descriptive statistics for each data-set as well as experi-
mental, direct, and cross-variograms were calculated and
modelled (Table II). Data on the 25 m and 50 m grids are
cokriged independently with data from the 10 m grid for
comparison with the true recoverable reserves.

The effect of introducing sampling errors and bias,
compared to the true grades for the10 m grid data is shown
in a scattergram in Figure 2. The material lying below the 1
g/t cut-off in the 3rd and 4th quadrants represents 10.9 per
cent dilution (waste sent to the mill) and 3.1 per cent lost ore
(ore sent to the waste dump), a total of 14.0 per cent.

The recoverable reserves in the true tons, grade, and
recoverable metal for different panel sizes listed in Table I are

Table |

True recoverable reserves above 1 g/t for points,
and for 10 m, 25 m, and 50 m panels averaged from

compared with those of the sampled values listed in Table IIL.

Recoverable reserves of the sampled 10 m data are
estimated to contain nearly 1.4 times more tonnage, and 1.85
times more contained metal, than the true block values. The
reason for this is the sampled 10 m panels with introduced
error and bias have 35 per cent higher grade, and 36 per cent
higher tonnage, than the true values. For the 25 m panels
(Table II1), the tonnage is lower, but the higher grade means
a 16 per cent higher metal content relative to the true values.
For 50 m panels the much lower sampled ton is compensated
by a much higher sampled grade to give equivalent amounts
of metal.

Statistics and suitability of the secondary data

Assessing the suitability of the secondary data relative to the
primary data for use in cokriging is essential. Cokriging
depends heavily on two assumptions about the primary and
secondary data: firstly, that data within the domain is
stationary, and secondly, that it is sufficiently correlated for
the data to be used together. Valid application of cokriging
means there should also be a relationship between pairs of
the primary and nearby secondary data, as reflected in their
correlation coefficient. Where secondary data displays no

12.0_True vs EJ’I‘?J’-BI&S Data

. umber of data 3200
a . Number plotted 3195
-
X Variable: mean 0.700
sid. dev. 0.794
H Y Variable: mean 1.019
1
o 8.0_ 5 sid. dev. 1.482
- L1
" 18 correlation 0.765
B H rank correlation 0.860
£ 1e
s |3
& .
g 40] 2
(7]

Correctly classified
ore: 18.4%

the point reference data-set ¢~
i ' Dilution: 10.9%
Scale Tons (t) Grade (Z, g/t) Metal (Q, kg) A e "~ Egav T ooopky
Correctly classified
Point (1x1 m) 189 000 2.22 418 waste: 67.6% True value
10x10 m 206 000 1.88 388
25x25 m 219 000 1.69 371 Figure 2—Scatterplot of the true 10x10 m panel values versus the data
50x50 m 218 000 1.49 324 with the 30% error and 1.5 times bias introduced; the 1 g/t cut-off lines
define areas of waste, dilution, ore, and lost ore
Table Il

The characteristics, grid spacing, and statistics of the three data-sets sampled from the simulation data-set

Data-set Secondary 10x10 m: Primary 25x25 m: Primary 50x50 m:

poorer quality, abundant data good quality, limited borehole data good quality, limited borehole data
Grid size 10x10m 25x25 m 50x50 m
Number of samples 3200 512 128

30% error and 1.5 times
multiplicative bias introduced

Error and bias

No error or bias No error or bias

Mean 1.02 (1.46 times bias) 0.706 0.695
Variance 1.48 (26.6%error) 1.377 1.019
Standard deviation 1.321 1.175 1.009
Min. 0.01 0.011 0.102
Max. 21.91 11.867 9.643
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evidence of correlation with the primary data, it is unlikely to
contain suitable information and would have to be excluded
from the analysis.

Cokriging also depends on primary and secondary data
being near to, but not collocated with, one another. Although
there are 3200 points on the 10 m grid with error and bias,
only 512 secondary paired data lying within a 10 m radius of
the primary data were extracted as shown in Figure 1b. The
descriptive statistics for these two sets of data are shown in
Table IV.

The paired data were plotted in a scattergram (Figure 3)
to determine the correlation coefficient, examining the effect
of the error and bias on the relationship between the data.
The higher mean and variance of the secondary data relative
to the primary data indicate a 30.6 per cent error in the mean,
and 1.27 times bias in the variance. The scatterplot of the
primary and secondary data is shown in Figure 3 and
indicates a correlation coefficient of 0.689, which is
considered significant at the 95 per cent level of confidence
(we would reject the null hypothesis that there is no
correlation between the primary and secondary data at r(Pse)
=0.1449, since r = 0.689, and accept the alternative
hypothesis: there is a correlation between the variables at 95
per cent significance).

In this case the difference in the mean of the primary and
secondary data will give the bias associated with the secondary
data, while the difference in variances provides an indication of
the error associated with the secondary data which is due to
the sampling error. The significant correlation (0.7) suggests
that the secondary data is indeed suitable for incorporation in
the estimation of recoverable reserves as part of a cokriging
exercise. Permissible limits on the correlation coefficient are
unclear, except to say that at or above 0.7 the method
suggested here works very well, below 0.2 it does not work at
all, and between 0.2 and 0.7 the results may be questionable.
MARCH 2014

> 194 VOLUME 114

Table Il
Recoverable reserves in the true and sampled primary (25 m and 50 m) and secondary (10 m) datasets
Tons (t) Grade (Z, g/t) Metal (Q, kg)
Scale True Sampled True Sampled True Sampled
Point (1x1 m) 189 000 222 418
10x10 m 206 000 281 000 1.88 2.55 388 716
25x25 m 219 000 184 000 1.69 2.34 371 430
50x50 m 218 000 143 000 1.49 2.27 324 324
5 oo _Primary vs Secondary dala
Table IV 4 . umber of data 512
.. . . . - . Number plotted 486
Descriptive statistics for the paired primary and
4.00_] X Variable: mean 0.706
secondary data-sets std. dev, 1173
Y Variable: mean 1.018
- . © std. dev. 1.320
Statistic Primary data Secondary data § s00] okt &80
rank correlation 0.728
Grid spacing 25x25 m 10x10 m § .
Error (%) Nil 30 ] 4
Bias (multiplicative) Nil 15 3 ="
Mean 0.707 1.019
Variance 1.377 2.19
Std deviation 1.175 1.48 1.00_]

L e e e |

T T T
0.00 1.00 2.00 3.00 4.00 5.00

Primary Data

Figure 3—Scatterplot of paired primary and secondary data indicating a
correlation coefficient of 0.689, significant at the 95% level of
confidence

Ordinary kriging with the primary data (25 m and
50 m)

Compiling an ordinary kriging model of the primary data-
sets, i.e. the drill-hole data on the 25 m and the 50 m grids,
is the best evaluation available to miners and mine planners
if the benefits of cokriging are not applied. A model produced
from ordinary kriging of the primary 25 m and 50 m data to
be compared with the results from the cokriging is the only
way in which the results of this exercise and purpose of this
paper can be demonstrated. The basis of this comparison is to
confirm that cokriging using the secondary data results not
only in a meaningful improvement in the estimation of
recoverable reserves, but also removes the bias and reduces
the error in the final estimates. In a real-life analysis using
cokriging, the number of samples, 7, would be reasonably
large, and should be subject to all stationarity considerations.

The variograms shown in Figure 4a and 4b for use in the
ordinary kriging estimation were modelled on the experi-
mental variogram of the sampled 25 m and 50 m grid data
respectively (see Figure 1a), the best option in a real-life
situation where the only data available is what has been
sampled. A nugget effect of 0.4 is used in both variograms
following the Co value of 0.4 in the point support simulation
model. The variogram for the true regularized 25 m data and
50 m data does not provide any information at distances
shorter than 25 m and 50 m respectively, but this data must
be used since it is the only information available for these
data-sets.
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Figure 4—(a) Omnidirectional variogram with a model for the primary data at 25x25 m spacing, (b) omnidirectional variogram with a model for the primary

data at 50x50 m spacing
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Figure 5—10 m recoverable reserves for (a) the true 10 m panels derived from the simulation data-set,( b) ordinary kriging of 25 m data using the 25 m
sample variogram (Figure 4a), and (c) ordinary kriging of the 50 m data using the 50 m sample variogram (Figure 4b)

The distribution of recoverable reserves shown in Figures
5a and 5b is the complete kriged model for the project area
using 25 m and 50 m data kriged into 10 m blocks, respec-
tively. The grade, tons, and metal content of the true, sampled,
and kriged models are listed for comparison in Table V.

The recoverable reserves estimated by ordinary kriging in
the 10 m panels shown in Figure 5b and 5c are only grades
above 1 g/t cut-off. The recoverable reserves for the true 10
m panels shown in Figure 5a are quite erratic, but there is a
reasonable correspondence in the location of highs and lows
in the true and kriged recoverable reserves for the 25 m data.
The differences between the 10 m true and 50 m kriged data
are quite marked (Figure 5a and c).

As the size of the panels increases from 10 m to 50 m the
effect of smoothing due to the kriging procedure is more
evident; the tonnage and grade estimates change predictably
given the cut-off grade and distribution.

LMC for the case study
The aim of this study is to compare the benefits of cokriging
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against ordinary kriging using models of coregionalization at
different data spacing. The first LMC is for a combination of
3200 secondary data on a 10 m grid with the 512 primary
data on the 25 m grid. The second LMC uses a combination
of the 3200 secondary data on the 10 m grid with the 128
primary data on the 50 m grid, as shown in Table VL.

The variograms for the primary (25 m and 50 m) and
secondary (10 m) data are required. The variogram for the
primary data is not very informative because there are only
512 data for the 25 m grid, and only 128 for the 50 m grid,
but especially because at short distances there are no pairs
closer than 25 m or 50 m (Figures 8a and 9a). The
variograms of the secondary data for the 25 m LMC and the
50 m LMC are identical (Figures 8c and 9c), and have better
continuity because of the abundance of data at distances of
10 m. Although the direct variograms do not appear very
informative, we know that any structure in the cross-
variogram must also be present in the direct variograms. This
means that the structure seen in the cross-variogram is also
present in the direct variograms, but this was not revealed
195 4
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Table V

Recoverable reserves in the true, sampled, and ordinary kriged (OK) (25 m and 50 m) data-sets

Tons (t) Grade (Z, g/t) Metal (Q, kg)
Scale True Sampled OK True Sampled OK True Sampled OK
10x10m 206 000 281 000 1.88 2.55 388 716
25x25 m 219 000 184 000 195 000 1.69 2.34 1.61 371 430 315
50x50 m 218 000 143 000 155 000 1.49 2.27 1.64 324 324 255
Cross-Covariance: Primary & Secondary Data 25x25m 15 —sill * Cross-Covariance s Flip Cross-covariance
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Figure 6—Compilation of LMC for 25xx25 m data. (a) Extrapolation of the covariance back to the y-axis (1.25) gives the axis of rotation for the variogram,

and (b) the method used in Excel to invert the covariance

Table VI

Combinations of primary and secondary data for
two separate models of coregionalization

Models of
coregionalization

First model Second model

Primary data
Secondary data

512 on 25x25 m grid
3200 on 10x10 m grid

128 on 50x50 m grid
3200 on 10x10 m grid

before the cross-variogram was compiled; thus, the secondary
data improves estimation of the variograms as well as local
estimates.

Plotting the direct variograms for the primary and
secondary data and the covariance for the combined primary-
secondary data provides a route to the LMCs. The cross-
covariance between the primary and secondary variables is
plotted as red dots in Figure 6a and 7a. At short lag distances
the cross-covariance is positive and decreases to zero with
increasing lag distance. Once this structure is inverted
(flipped over) using an Excel® spreadsheet to manipulate the
data, it takes on the form of a variogram. The nugget effect
on the cross-covariance does not appear because there is no
collocated data. The intersection point on the y-axis acts as
the pivotal horizontal axis around which the covariance is
inverted. However, there is no way that the value of the
intersection point on the y-axis can be calculated; it can be
obtained only by extrapolating the trend of the covariance
back to the y-axis. It is then necessary to subtract the values
> 19
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of 1.25 (25 m grid) and 0.93 (50 m grid) so that the nugget
effect for the cross-variogram becomes zero as shown in
Figures 6b and 7b. The nugget effect on the cross-variogram
is not needed since there are no collocated Z-¥ values.

It is necessary to fit an LMC which provides the quanti-
tative calibration of the primary to the secondary data and
permits the filtering of the error during the cokriging. Fitting
of the LMC is done manually, although it is possible to fit the
LMC automatically using the appropriate software, but this is
usually done only if the LMC is fitted to more than two
variables. The first step is to fit the cross-variogram as simply
as possible in all directions. The sill is equal to the constant
used to invert the covariance, and the nugget effect is zero.
By applying the structure used in the cross-variogram it is
now necessary to fit the direct primary and direct secondary
variograms. There may be nested structures or completely
different models in each of the direct primary and direct
secondary variograms that do not appear in the cross-
variogram. However, the constraint for the method is that
any structures that appear in the cross-variogram must also
appear in the direct primary and secondary variograms. This
is the reason for starting with the cross-variogram, followed
by the direct variograms.

Examples of this procedure for compiling the LMCs for the
25 m and the 50 m data are illustrated in Figures 6 and 7. In
these figures the experimental points of the covariance are
extrapolated back to intersect the y-axis at 1.25 for the 25 m
data, and 0.93 for the 50 m data, when the distance is zero.
These then become the points about which the rest of the
covariances are rotated to give lines that look like variograms
(Figures 8 and 9).
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Figure 8—Non-standardized direct variograms for 25 m grids of (a) the primary data 25 m, (b) the cross-variogram of the primary and secondary

variograms, and (c) the secondary data (10x10 m)

First LMC: The first model, using the 25 m primary data
and the 10 m secondary data, requires the variograms for the
primary and secondary data, and the covariance for the
primary-secondary combination. The model variogram is
used to identify the nugget effect and the sill for the direct
primary and secondary data, as well as for the cross-
variogram between primary and secondary data.

The equations for the variogram models shown in Figure
8 are as follows:

Z: y,(h)=0.4Nug (h) +1.08Sph g (h)
Y: y,(h)=0.75Nug (h)+1.45Sph , (h)
ZY ¢y, (h)=0.0Nug (h) +1.258ph , (h)

Nug (h) 0,at h=20
U =
& 1, otherwise
3h 1(hY
———| —|,for h <
Sph ,(h) =1 24 z[aj ¢

1, otherwise

For a valid LMC it is also essential that the matrix be
positive definite, meaning that the difference between the
products of the primary and secondary direct variograms and
cross-variogram (Equation [6]) must be positive (Goulard,
1989). This implies that all the direct variograms must be
positive. Also, if there is some spatial structure in the cross-
variogram between two variables it must be evident in the
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corresponding direct variograms as well, which implies that
there is correlation between the two variables. On the
diagonal of the kriging matrix the nugget of the primary and
the nugget of the secondary are used, but the nugget effect of
the cross-variogram is never used. The cross-variogram is
also positive definite because there could be nugget effects on
both direct variograms, but there is no nugget effect on the
cross-variogram; only the structured portion of the
covariance has a nugget effect. The positive definiteness
condition for the first LMC is satisfied as:

w.o—| Wzo Waro |2 0.4 0
0 Wyzo  Wryo 0 0.75
has 0.4>0, 0.75 >0, 0.4x0.75 >0.0°
Wy || 1.08 1.25
wy, | [1.25 1.45

has 1.08 >0,1.45 >0,1.08 x1.45 >1.25>

W, = |:W21

Wyz1

The important implication here is that the cross-
variogram will usually lie between the two direct variograms,
so that in actually fitting the variograms it is convenient to fit
the cross-variogram first so that the cross-variogram
structures are defined, and then fit the direct variograms,
because evidence of spatial structure in the cross-variograms
197 4
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Figure 9—Non-standardized direct variograms for 50 m grids of (a) the primary data 50 m, (b) the cross-variogram of the primary (50 m) and secondary

(10 m) variograms, and (c) the secondary data (10x10 m)

constrains the direct variograms and it must also be evident
in the direct variograms (Goulard and Vlotz, 1992). The
fitting process is iterative but it is important to keep the range
of the individual structures constant for all variograms.

Second LMC: The second model, using the 25x25 m
primary data and the 10 m secondary data, also requires the
variograms for the primary and secondary data, and the
covariance for the primary-secondary combination. The
model variogram is used in the same way as the first LMC to
identify the nugget effect and the sill for the direct primary
and secondary data, as well as for the cross-variogram
between primary and secondary data.

The models for the direct variograms for primary and
secondary data, and the cross-variogram for the combined
primary and secondary data shown in Figure 9, are very
acceptable fits of the equally acceptable experimental
variograms. The equations for the variogram models shown
in Figure 9 are as follows:

Z: y,(h)=0.3Nug (h) +0.885ph,, (h)
Y: y,(h)=0.86Nug (h)+1.455ph , (h)
ZY ¢ ¥, (h)=0.0Nug (h) +0.93Sph , (h)

The positive definiteness condition for the second model
is also satisfied as:
_| Wzo Wzmo|_1]0.3 0
Wo_{ wm}-[o 0.86}

Wryzo

has 0.3 >0,0.86 >0,0.3x0.86 >0.0°

Wl{wﬂ wm]g[o.ss 0.93}
Wiz Wy 0.93 1.45

has 0.88 >0,1.45 >0, 0.88 x1.45 > 0.93°

Having established that the cross-variograms are positive
definite, it is now possible to perform the cokriging.

Comparing cokriging and ordinary kriging

The final step in the procedure is to create a block model that
correctly accounts for all of the available data and at the same
time demonstrates improvements in local and global
estimates, by filtering the error and without transferring a
bias. Firstly a single data file containing the primary and
secondary data for use in the cokriging software routine is
compiled. The compilation of the final data file is generally
software-dependent, and many packages simply omit the
cokriging capability because of the difficulties associated with
the user interface to calculate the LMC; a further reason that
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cokriging is not used as often as it might be. Apart from
additional implementation details, the cokriging and kriging
algorithms are the same, and all the parameters for the
cokriging routine are virtually identical to the kriging
parameters. Usually the abundance of secondary over
primary data in the cokriging routine means that a decision
must be made about how much of the secondary data to use
without overwhelming the process and disadvantaging the
primary data. The main reason for limiting the amount of
secondary data used is to avoid smoothing. If the model is
being developed for a long-term resource estimate, over-
smoothing may mean that the recoverable reserves will be
estimated too low. A second reason to limit secondary data is
that secondary data may be closer to the point being
estimated than primary data, but the latter is more relevant
than the secondary data. For this reason the cokriging
software allows one to specify how many of each data type,
usually a maximum of 12 each, will be used in the cokriging
process.

The following analysis of the recoverable reserves above
1 g/t gold, derived from the kriging and cokriging of the 25 m
and 50 m data-sets into 10 m panels, is compared against the
known true data within the project area. The tonnage, grade,
and recoverable metal are compared against the true data for
the 10 m panels, in order to demonstrate that cokriging
improves local and global estimation, that the bias has not
been transferred, and that the error has been filtered out of
the final result. Generally, ordinary kriging with the primary
data will be unbiased, but the different varieties of cokriging
with the primary and secondary data are also going to be
unbiased. The caveat is that the mean of the primary, and
particularly the secondary, data must be known, which is
easy enough through the data.

The bias is dealt with through the means for the primary
and secondary data, whereas the error is managed by
essentially depressing the covariance between the primary
and secondary variables Czp(h).

C,, (h)
CZY (h) S {CYY (h)

The secondary variable has error content, and for this
reason we would not want the variogram of the secondary
data to have too much weight (Figure 10). The control of the
weight attributed to the secondary variable is by reducing the
sill. The amount of error decreases as the sill moves upwards
and increases as the sill moves downwards. At the two
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Figure 10—The adjustments made to the variogram during the calibration of the LMC account for the way in which the error is removed
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Figure 11—Recoverable reserves above 1 g/t cut-off in 10 m panels for (a) known true ore, (b) the ordinary kriged 25 m data, and (c) the cokriged 25 m data

extremes, i.e. when Czp(h) equals the variance of the primary
variable, there is no error at all, and when Czy(h) is flat at
zero lag there is only error and the data is not weighted at all.
In effect this is a continuum that must be calibrated. The
difference of the mean grades, (indicating bias), and the
difference between variances, (indicating error), for the
cokriging results using data on the 25 m and 50 m grid are
closer to the true values than the ordinary kriged results.
Again, these outcomes indicate that the cokriging procedure
is highly efficient at removing the bias and filtering the error
that were shown to be embedded in the secondary data.

Kriging and cokriging data on 25 m grid

Sample data on the 25 m grid has been kriged (OK) and
cokriged into 10 m blocks (Figures 11b and 11c), and is
visually compared with the known true values of 10 m blocks
(Figures 11a).

The tons, grade, and recoverable metal for the 25 m
kriged and cokriged panels are summarized in Table V.

Kriging and cokriging data on 50 m grid

Sampled data on a 50 m grid has been kriged (OK) and co-
kriged into 10 m blocks (Figures 12b and 12c, respectively),
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and compared with the known true distribution of 10 m
blocks (Figures 12a) in the project area.

Again, it is evident that the co-kriging output is visually

more similar to the known true distribution than the ordinary
kriging outcome, shown in Figure 12.

Summary

A summary of the cokriging and ordinary kriging estimates
using the data-sets on 25 m and 50 m grids to give tons,
grade, and recoverable metal in the 25 m and 50 m panels is
presented in Table VIL. The reference data-set for the points
and the 10 m, 25 m, and 50 m panels is the true recoverable
reserves above 1 g/t in the deposit and represents the base
case against which the sampled, ordinary kriged, and
cokriged data is compared. The sampled data-set for the 10 m
grid size is the poorer quality secondary data, while that for
the 25 m, and 50 m grid sizes represents the higher quality
primary data for use in cokriging.

Differences between the reference and the sampled data-

sets at 10 m, 25 m, and at 50 m are a reflection of random
selection at that grid spacing. It is noteworthy at each grid
size that the sampled data-set marginally overstates the
grade and contained metal.
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Figure 12_Recoverable reserves above 1 g/t cut-off in 10 m panels for (a) known true ore, (b) the ordinary kriged 50 m data, and (c) the cokriged 50 m data

Table VIl

Recoverable reserves above 1 g/t in the true, sampled, ordinary kriged, and cokriged (25 and 50 m) datasets

Tons Grade Metal
1 m points Reference data-set 188 500 2.22 418
10 m grid Reference data-set 206 000 1.88 388
Sampled data-set 281 000 2.55 716
25 m grid Reference data-set 219 000 1.69 371
Sampled data-set 184 000 2.34 430
OK predicted 195 000 1.61 315
SOCK predicted 221 400 1.92 425
5 0m grid Reference data-set 218 000 1.49 324
Sampled dat-aset 143 000 2.27 324
OK predicted 155 000 1.64 255
SOCK predicted 198 300 1.66 329

The results of the kriging and cokriging into 10 m panels
using sample data on the 25 m grid indicate that the tons
predicted from ordinary kriging (195 000 t) are 11.0 per cent
less than the known true tonnage (219 000 t) while cokriging
predicts (221400 t), 1.1 per cent more than the known
tonnage. The metal predicted in the ordinary kriged panels
(315 kg) is 15.1 per cent lower than the true metal content
(371 kg), while that for the cokriged panels (425 kg) is 14.6
per cent higher. The difference between the true known grade
(1.69 g/t) and the ordinary kriged grade (1.61 g/t) is 4.7 per
cent, but for the cokriged grade (1.92 g/t) it is 13.6 per cent
higher. Cokriging provides tonnages and grade that are
increased relative to the true values, representing an increase
over the true metal content of 371 kg, but this is 0.5 per cent
closer to the real content than the result obtained from
ordinary kriging.

The predicted tons and metal for ordinary kriging and
cokriging into 10 m panels using data sampled on the 50 m
grid indicates that the tonnage from ordinary kriging
(155 000 t) is 28.9 per cent lower than the true known
tonnage (218000 t), while for the cokriging (198 300 t) it is
only 9.0 per cent less than the true tonnage. On the 50 m grid
size the amount of recoverable metal for the ordinary kriged
MARCH 2014

» 200 VOLUME 114

panels (255 kg) is 21.3 per cent less than that for the true
panels (324 kg), while for the cokriged panels (329 kg) it is
1.5 per cent more. The mean grade for the ordinary kriged
estimates (1.64 g/t) is 10.1 per cent higher than the true
known grade (1.49 g/t) of 10 m panels, while for the
cokriged estimates (1.69 g/t) the difference between the
means is 11.4 per cent higher.

In tons and recoverable metal the cokriging estimates are
closer, if only marginally in the case of recoverable metal, to
the known true values than the ordinary kriged estimates.
The much better estimate of tonnage using cokriging relative
to ordinary kriging is offset by the higher value for cokriged
grade, but there is an overall marginal improvement in
estimation of contained metal. These benefits due to
cokriging have been further resolved by comparing the tons,
grade, and recoverable metal for designations referred to as
lost ore, dilution, ore, and waste estimated by ordinary and
cokriging, and are given in Table VIII for the 25 m grid
samples and 50 m grid samples. These figures, while useful
in their own right, are better displayed as percentages in the
relevant areas of Figure 13. The benefits of cokriging over
ordinary kriging, provided the underlying assumptions are
valid, are illustrated in the way that mine production will be
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Table Vil

Tons, grade, and contained metal for kriged and cokriged 25 m and 50 m data in terms of lost ore, dilution, and
correctly classified ore and waste

o

Esli.rnatac! grade (g/t)

Lost ore Dilution Ore Waste
Predicted | Tons Grade Metal Tons Grade Metal Tons Grade Metal Tons Grade Metal
25 m grid OK 67 500 0.71 47.8 63 300 1.43 90.2 138 600 2.04 282.2 690 600 0.43 296.9
SOCK 29400 0.79 23.3 44 700 1.28 57.3 176 700 2.08 368.1 709 200 0.32 228.0
50 m grid OK 130 500 1.77 230.8 74 400 1.46 108.7 75 600 1.90 143.9 679 500 0.46 311.3
SOCK 47 100 1.29 61.2 37 500 1.23 46.0 159 000 1.75 277.7 716 400 0.45 319.8
25x25m grid sample data 50x50m grid sample data
2 2
Lost Ore Ore Lost Ore Ore
z Tons Grade Metal Tons Grade Metal = Tons Grade Metal Tons Grade Metal
S Ok 7.0% 071 6.7% OK:  14.4% 2.04 39.4% S oK 13.6% 177 29.0% OoK: 7.9% 190 18.1%
‘? SOCK: 3.1% 0.79 3.4% SOCK: 18.4% 2.08 54.4% ﬁ SOCK: 49% 1.29 B8.7% SOCK: 16.6% 1.75 39.4%
& ®
g, g ,
= =
Waste Dilution Waste Dilution
Tons Grade Metal Tons Grade Metal Tons Grade Metal Tons Grade Metal
OoK:  71.9% 0.43 41.4% OK:  b.6% 143 12.6% oK:  70.8% 0.46 39.2% OoK:  7.8% 146 13.7%
SocK: 73.9% 0.32 33.7% SOCK: 4.7% 1.28 8.5% SOCK: 74.6% 0.45 45.4% SOcK: 3.9% 1.23 6.5%
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Figure 13—Comparison of the percentage improvements in estimation of cokriging over ordinary kriging for the categories lost ore, dilution, ore, and

waste, (a) for the 25 m grid sample data, and (b) for the 50m grid sample data

allocated as lost ore, dilution, ore, and waste rock in a cross-
plot of the kriged and cokriged estimates against the known
true grade of materials in the designated areas shown in
Figure 13.

By inspection of Figure 13 it is evident that for each
classification category (lost ore, dilution, ore, and waste),
standardized cokriging (SOCK) improves the estimation
outcomes over ordinary kriging (OK). There are considerably
fewer tons of lost ore for both the 25 m (29 400 t as against
67 500 t) and 50 m (47 100 t as against 130 500 t) sampled
data, as well as fewer lost kilograms of metal (23.3 kg versus
47.8 kg) in the 25 m grid and in the 50 m grid (61.2 kg
versus 230.8 kg).The same is true for dilution, in that there
is 18 600 t and 36 900 t less dilution, and 32.9 kg and
62.7 kg improved metal recovery in the 25 m and 50 m
sampled grids respectively, due to cokriging. In the case of
ore, cokriging yields more tons, better grade, and more metal
compared to ordinary kriging at the 25 m and 50 m sampling
size. For the 25 m grid size there are more tons, lower grade,
and less metal sent to waste, and the same is true for the
50 m grid size except that 8 kg of metal are lost to waste. The
improvements due to cokriging over ordinary in the four
categories lost ore, dilution, ore, and waste are shown as
percentages in Figure 13.

The benefits of cokriging are particularly noticeable in the
area representing lost ore, where cokriging gives fewer lost

The Journal of The Southern African Institute of Mining and Metallurgy

tons (3.1 per cent and 4.9 per cent) and less recoverable
metal (3.4 per cent and 8.7 per cent) compared to ordinary
kriging (7.0 per cent and 13.6 per cent) for tons (6.7 per cent
and 29.0 per cent) and for metal in the 25 m and 50 m
sampling grids (Figure 13). Lost ore is estimated to be below
the cut-off grade, but it is truly economic in that it could
make a positive contribution to the mining operation.
However the company does incur a lost opportunity cost. This
ore will never be accounted for in the balance sheet, nor will
it add any value to the mine, except perhaps towards the end
of the mine life when plant superintendents attempt to feed
the plant from the low-grade stockpile.

Cokriging also yields less dilution in terms of tons (4.7
per cent versus 6.6 per cent ) and recoverable metal (8.5 per
cent versus 12.6 per cent ) compared to ordinary kriging for
the 25 m grid. The same is true for the 50 m grid, where
tons (3.9 per cent versus 7.8 per cent ) and recovered metal
(6.5 per cent versus 13.7 per cent ) are improved by
cokriging (Figure 12). Dilution is mine production that is
estimated to be above the cut-off, but is truly uneconomic
in that its contribution is far outweighed by the costs
incurred during milling and processing. Such material does
show up in the balance sheet in that it raises milling and
processing costs, and constitutes an opportunity cost in that
it occupies milling capacity that could be better utilized by
truly high-grade ore.

201 4

VOLUME 114 MARCH 2014



Cokriging for optimal mineral resource estimates in mining operations

The work flow in practice

Practical application of cokriging in mining operations would
broadly follow a four-stage work flow involving the making
of assumptions, exploratory data analysis, variography, and
estimation by cokriging. In addition, the underlying
assumptions that must be established before cokriging is
applied are summarized here.

Assumptions

Some of the assumptions would preclude the use of this
technique, but where there are opportunities to apply it the
benefits over ordinary kriging are substantial. The chief
weakness of the cokriging method is non-stationarity, for
example if the bias changes across the domain. The Z
variable may be accompanied by another variable, ¥, that is
biased high and not perfectly correlated, but the method
works well here because the data is strongly correlated, and
in particular the bias is stationary. The bias may be as much
as 30 per cent but provided it has the same average
(uniform) across the whole domain the method is still
applicable. A difficult case occurs if the data is biased in a
non-stationary way. It is possible that data in the domain
may on average have a bias that is close to zero, but if the
bias is non-stationary application of this method will be
flawed. The main assumption therefore is that of stationarity
across the domain under consideration.

Exploratory data analysis

Evaluation of the primary data: this would involve a detailed
evaluation of the primary data in terms of understanding the
distribution of the variables using diagrammatic represen-
tations of the data in histograms, cumulative and probability
distribution functions (cdf and pdf), as well as compiling the
basic descriptive statistics, mean, variance, and coefficient of
variation. The data location and spacing will indicate the
necessity of declustering of the data to ensure that represen-
tative statistics are obtained. Plotting the declustered mean
against the cell size will give an indication of the optimal cell
size to be used in the analysis. Alternatively, the cell size can
be estimated from the drill-hole spacing in sparsely sampled
areas.

Evaluation of the secondary data: secondary data is subject
to the same analysis as primary data except that there should
be an evaluation of the bias and error content of the
secondary data.

Confirmation of the stationarity of the populations: The
strongest and most important assumption underlying the use
of cokriging is that of stationarity within the domain. Where
there is a trend it would need to be modelled. Another
assumption concerns the nature of the data in that there
should be two sets of non-collocated data. This method will
work where the data is collocated. The primary data-set
generally consists of few, high quality data while the
secondary data-set comprises abundant, but poorer quality
data that may contain sampling errors and sampling bias.
The method also assumes that there is sufficient primary data
to give a meaningful variogram, and usually where there is
abundant secondary data there is no restriction on obtaining
a stable variogram.
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Variography

Establishing the experimental variogram for the primary
data: this is usually not as easy to achieve as might be
expected. Generally the primary data will have been drilled on
a widely spaced grid, which means that the first point on the
variogram occurs at a long lag. In addition there is very little
to inform the short-range variability of the data and in
particular the nugget effect is hard to estimate; in reality it is
usually less than might be expected from an inspection of the
experimental variogram.

Establishing the experimental variogram for the secondary
data: this is generally easier than for the primary data,
simply because there is more data and consequently the
experimental variogram for the secondary data is better-
behaved than that for the primary data.

Establishing the experimental variogram_for the cross-
variogram: this is done by firstly calculating the covariance
for the primary and secondary data. This is a decreasing
function with increasing lag, but its importance lies in the
smooth extrapolation through points on the covariance curve
to their point of intersection on the y-axis. This is used to
invert the covariance in order to produce the cross-variogram.

Fiting the linear model of coregionalization: the main
requirement of the LMC is that it be positive definite. This can
be achieved by following the advice presented above.

Kriging estimation

Ordinary kriging: the only reason that ordinary kriging is
performed is to provide a basis for comparison with the
cokriging results. It might even be necessary to cross-validate
the output to confirm that the ordinary kriging produces
acceptable results.

Standardized cokriging: the means for the primary and
secondary data must be used in the cokriging procedure. In
addition it is important that the primary and secondary data
be combined in a specific way (depending on the software)
during the cokriging process. An important step in the
analysis of the output is a comparison between the
efficiencies of ordinary and cokriging. This is probably best
done by comparing the improvements in a scatterplot of the
four categories of production materials: lost ore, dilution, ore,
and waste.

Conclusions

This paper demonstrates a little-used geostatistical technique
that combines different sets of data, from different sources,
with different qualities, in a cokriging procedure. The data
needs only to be weakly correlated and not necessarily be
collocated either. Cokriging provides better estimates of
recoverable resources at local and global scales, compared to
ordinary kriging of the best available data, and is marked by
the highly significant benefit that errors and bias due to poor
sampling in the secondary set of data are not transferred to
the resulting estimates.
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