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ABSTRACT 

Low affinity Fcγ receptors (FcγR) mediate key immune effector mechanisms through the 

engagement of the Fc portion of immunoglobulin G (IgG). These receptors are involved in 

multiple biological processes, including clearance of antigen/antibody immune complexes, 

enhancement of antigen presentation, antibody-dependent cell-mediated cytotoxicity 

(ADCC), phagocytosis, regulation of antibody production, and activation of inflammatory 

cells. FcγR phenotypic variability modulates these processes through altering receptor IgG 

subclass binding affinity (FcγRIIa-H131R and FcγRIIIa-F158V), subcellular localization 

(FcγRIIb-I232T), post-translational modification (FcγRIIIb-HNA1a/b/c), expression of an 

otherwise pseudogene (FcγRIIc), and receptor surface density (gene copy number 

variability and promoter haplotypes). Accumulating data suggest that FcγR-mediated 

effector functions play a significant role in HIV-1 protective immunity, which is 

substantiated by the association of FcγR phenotypic variants with HIV-1 disease outcome. 

This study set out to characterize FcγR functional variability in the South African 

population, and to investigate the potential role thereof in HIV-1 transmission and disease 

progression in South African Black individuals. 

Since the only known determinant of FcγRIIIa surface density – FCGR3A gene copy 

number – is rare, this study investigated novel genetic determinants of FcγRIIIa expression 

by flow cytometry and nucleotide sequencing. FcγRIIIa expression on peripheral blood 

mononuclear cells was characterized for 32 South African Caucasian individuals and 22 

South African Black individuals (Chapter 3). Significant differences in the proportion of 

FcγRIIIa-positive monocytes and FcγRIIIa expression levels on natural killer (NK) cells 

were observed between the population groups. A novel four-variant FCGR3A intragenic 

haplotype that associated with increased surface expression of FcγRIIIa on NK cells was 

detectable in Caucasian individuals, but not Black individuals and may account for the 

observed population differences. 

Further exploration of genetic diversity at the low affinity FCGR gene locus was extended 

to include all currently known functional variants of FcγRIIa, FcγRIIb, FcγRIIc, FcγRIIIa, and 

FcγRIIIb using a commercial multiplex ligation-dependent probe amplification assay 

(Chapter 4). Thirty-two South African Caucasian individuals and 131 South African Black 
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individuals were genotyped for all known functional FCGR nucleotide variants and gene 

copy number variability. The data from South African individuals were compared to that of 

published works and the 1000 Genome Project for European Caucasian individuals and 

Black individuals from Nigeria and Kenya. The findings corroborated known ethnic 

diversity at the low affinity FCGR gene locus and also describe newly identified differences 

not only between Caucasian and Black individuals, but also among populations from 

different geographic regions in Africa. South African Black individuals do not possess the 

FCGR2B 2B.4 promoter haplotype associated with increased FcγRIIb expression and 

inhibitory function or the recently identified FCGR2C haplotype associated with vaccine 

efficacy of the HIV-specific prime-boost regimen that showed modest efficacy in Thai 

individuals (RV144 trial). Moreover, South African Black individuals were not predicted to 

express functional FcγRIIc compared to ~32% of Caucasian individuals. However, the 

presence of this additional activating FcγR on NK cells from select Caucasian individuals 

did not potentiate in vitro NK cell-mediated ADCC capacity, suggesting a lesser role for 

FcγRIIc in this response. Caucasian individuals exhibited moderate to strong linkage 

disequilibrium between FcγR variants that confer enhanced effector functions for the 

activating FcγRIIa, FcγRIIc, and FcγRIIIa, but also enhanced inhibitory function of FcγRIIb. 

Conversely, Black individuals did not display significant linkage disequilibrium and 

possessed FcγRIIb profiles representative of reduced inhibitory function. This study 

highlighted (i) the extensive ethnic diversity at the low affinity FCGR gene locus, (ii) 

potential differences between population groups in maintaining the activation/inhibition 

balance conferred by FcγR variants, and (iii) that variation among African populations 

precludes the use of any one African population as proxy for FcγR diversity in Africans.  

The significance of FcγR variability, and by inference FcγR-mediated effector functions, 

in modulating HIV-1 infection risk was assessed in the context of mother-to-child 

transmission, studying both the transmitter (mother) and recipient (infant). The study 

cohort comprised 217 HIV-1 infected, antiretroviral treatment naïve Black mothers and 

their infants. Here it was demonstrated that, following adjustment for confounding factors, 

the maternal FcγRIIa-131R and FcγRIIIa-158F variants that exhibits reduced antibody 

binding affinity and effector capacity associated with a 3 to 4 times higher odds of HIV-1 
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transmission to the infant, whereas the alternative alleles associated with >50% reduction 

in the odds of HIV-1 transmission. Moreover, we demonstrate through an allele scoring 

system that the combined effect of multilocus FcγR variants modulates HIV-1 transmission 

risk such that mothers bearing an overrepresentation of low responder FcγR alleles had a 

~4 times higher odds of transmitting HIV-1 to their infants compared to mothers with an 

overrepresentation of high responder FcγR alleles. Protection from HIV-1 acquisition in the 

infant associated with homozygosity for the high responder FcγRIIIb-HNA1a allele that 

exhibits enhanced phagocytosis and respiratory burst capacity. The conclusion of this 

study is that FcγR variants modulate the infectiousness of an HIV-1 infected mother and the 

susceptibility of an exposed foetus/infant, and thus provide indirect evidence for a role of 

FcγR-mediated effector functions in modulating the risk of perinatal HIV-1 transmission. 

The association between FcγR variants and cross-sectional markers of HIV-1 disease 

progression were determined in treatment naïve, Black South African women that formed 

part of the aforementioned perinatal HIV-1 transmission cohort (Chapter 6). In contrast to 

that observed for protection from HIV-1 acquisition in the infant, homozygosity for the low 

responder FcγRIIIb-HNA1b allotype associated with lower viral loads and higher CD4+ T 

cell counts compared to all other allotype combinations. Furthermore, HIV-1 infected 

women with an overrepresentation of either high or low responder FcγR alleles had higher 

viral loads compared to women bearing a ‘neutral’ FcγR variability profile. This study thus 

demonstrates a role for FcγRIIIb allotypes in modulating HIV-1 disease course and that 

perturbation of the balance between high and low responder FcγR variants associates with 

higher viral loads. 

Overall, our data highlights the extensive ethnic diversity at the FCGR locus and provide 

further support for a role of FcγR-mediated effector functions in HIV-1 transmission and 

disease progression. 
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1.1. FC GAMMA RECEPTORS 

1.1.1. Overview 

Receptors for the crystallisable fragment (Fc) of immunoglobulin (Ig) G, Fcγ receptors 

(FcγRs), link the humoral and cellular arms of the immune response. They are widely 

expressed on haematopoietic cells where upon engagement with IgG they initiate a variety 

of pro- and anti-inflammatory responses. Three classes of FcγRs exist, each with different 

isoforms: FcγRIa/b/c, FcγRIIa/b/c, and FcγRIIIa/b (Figure 1.1). All FcγRs are glycoproteins 

belonging to the Ig superfamily and consists of a ligand-binding α-chain with two (FcγRII 

and FcγRIII) or three (FcγRI) extracellular Ig-like domains, a transmembrane domain, and 

intracytoplasmic domain. The activating or inhibitory signalling motifs are located either 

within the α-chain (FcγRII) or associated signalling subunits (FcγRI and FcγRIIIa) (Lanier 

et al 1991). 

Overall, FcγRI exhibits a high affinity for monomeric IgG (KA: ~1×107), while FcγRII and 

FcγRIII bind IgG through low affinity (KA: ~1×106), high avidity interactions. Cross-linking 

of FcγRs on the cell surface through multivalent interactions with immune complexes 

initiates a plethora of responses that include antibody-dependent cellular cytotoxicity 

(ADCC), antibody-dependent cellular phagocytosis (ADCP), respiratory burst, release of 

inflammatory mediators, and regulation of antibody production. The capacity of FcγRs to 

mediate these effector functions is affected by genotypic variants that alter receptor 

surface density, antibody binding affinity, cellular distribution, or subcellular localization. 

The impact of these variants on immune homeostasis is validated by their association with 

autoimmune diseases (Takai 2002), infectious diseases (Adu et al 2012, Zhao et al 2014), 

and response to immunotherapy (Cartron et al 2002). This review will focus on the low 

affinity FcγRs (FcγRII and FcγRIII) and the variants that modulate their function. 
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Figure 1.1. Summary of FcγR characteristics. ITAM, immunoreceptor tyrosine-based 
activation motif; ITIM, immunoreceptor tyrosine-based inhibitory motif; GPI, glycosyl-
phosphatidylinositol; Binding affinities for the different IgG subclasses: given as M-1; - , no 
binding; ND, not determined. Expression patterns: +, indicates expression; -, no expression; 
(+), inducible expression; +/-, very low expression or expressed by rare subsets; #, in 
individuals bearing the FCGR2C expression variants (van der Heijden et al 2012); *, 
expressed in individuals bearing a FCGR2C-FCGR3B gene deletion. Redrawn and modified 
from (Gillis et al 2014). 

 

1.1.2. IgG 

IgG occurs as four subclasses, named in order of abundance in serum IgG1, IgG2, IgG3 

and IgG4. The subclasses have different effector functions and present with a general 

activating capacity order of IgG3 > IgG1 >> IgG2 > IgG4, and are differentially induced upon 
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antigenic challenge (Ferrante et al 1990, Horton & Vidarsson 2013, Siber et al 1980). 

Protein antigens primarily induce IgG1, accompanied by low levels of mostly IgG3 and 

IgG4. Antibody responses to bacterial capsular polysaccharides are dominated by, and 

sometimes restricted to, IgG2. IgG3 is a potent inducer of effector functions. It has a short 

half-life and, together with IgG1, predominates in the early antibody responses to antigen. 

As in the case of viral infections, IgG3 is found only in association with early infection. In 

contrast, IgG4 antibodies are generally not associated with a primary response to antigen 

but are usually formed following repeat exposure to antigen. 

1.1.3. IgG-Fc/FcγR interaction 

X-ray crystallographic studies of the IgG-FcγR complex show that the membrane-

proximal Ig-like domain of FcγR contact the horseshoe Fc fragment at both tips of the 

constant heavy (CH)-2 domain, at the residues most proximal to the hinge region (Figure 

1.2A and B) (Maxwell et al 1999, Ramsland et al 2011, Sondermann et al 2000). 

Engagement of an FcγR with IgG introduces an asymmetry within the Fc and rearranges 

the hinge that ensures a 1:1 stoichiometry of the resulting complex. 

FcγRs do not bind the four IgG subclasses equally. Most bind IgG1 and IgG3 with a higher 

affinity than IgG2 and IgG4 (Bruhns et al 2009). While the IgG subclasses are highly 

homologous they exhibit notable differences in hinge length and flexibility (Figure 1.2C). 

Overall, the flexibility of the Fab arms with respect to the Fc portion ranks as IgG3 > IgG1 > 

IgG4 > IgG2, which reflects their relative binding to FcγRs. Due to the close proximity of the 

hinge region to the FcγR binding site, its flexibility may, in part explain the varying affinity 

for the different IgG subclasses. 

The N-linked glycan found at Asn297 in both of the CH2 domains is essential for binding 

to all FcγRs by maintaining the quaternary structure and thermostability of the Fc. The 

glycan consists of a core sugar structure with variable additions of sugar residues such as 

N-acetylglucosamine, fucose, sialic acid, and galactose. The individual components of the 

sugar moiety have been demonstrated to differentially affect FcγR-mediated antibody 

activity. Galactosylation and fucosylation modulate FcγRIIIa binding and ADCC 

(Nimmerjahn et al 2007, Shields et al 2002, Shinkawa et al 2003), while increased 
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sialylation of the glycan can switch IgG from a pro-inflammatory to an anti-inflammatory 

species by inducing expression of the inhibitory FcγRIIb (Kaneko et al 2006). IgG alters its 

Fc glycosylation pattern during the course of an antibody response (Vestrheim et al 2014). 

In the steady state, however, it appears that IgG assumes an anti-inflammatory role as is 

validated by the use of pooled serum from healthy donors – IVIG (intravenous IgG) – to 

treat inflammatory diseases (Nimmerjahn & Ravetch 2008a). 

 

 

 

Figure 1.2. IgG structure and FcγR binding. A) IgG structure with heavy chains (blue), 
light chains (red), and the position of the Asn297 N-linked glycan position. B) The FcγR 
binds the Fc portion of IgG at both tips of the constant heavy (CH)-2 domain, at the residues 
most proximal to the hinge region. C) The different IgG subclasses differ with respect to 
hinge length and flexibility. The IgG1 hinge region comprises 15 amino acids and is very 
flexible. IgG2 has the shortest hinge comprised of 12 amino acids. Its flexibility is restricted 
by the presence of a poly-proline helix, stabilized by up to four extra inter-heavy chain 
disulfide bridges. The hinge region of IgG4 also contains 12 amino acids with an 
intermediate flexibility between that of IgG1 and IgG2. IgG3 has the longest hinge region, 
containing up to 62 amino acids and limited flexibility. Reproduced from (Collin et al 2008, 
Sondermann et al 2000, Vidarsson et al 2014). 
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1.1.4. FcγR-mediated cell activation and inhibition 

Initiation of FcγR-mediated signal transduction requires cross-linking and aggregation 

of FcγRs through multivalent interactions with IgG immune complexes (Daeron 1997). 

Upon engagement with immune complexes, FcγRs translocate to (if not constitutively 

reside in) lipid rafts – detergent resistant, cholesterol- and sphingolipid-enriched signalling 

microdomains – where they co-localize with other signalling molecules (Aman et al 2001, 

Barabe et al 2002, Fernandes et al 2006, Galandrini et al 2002, Kondadasula et al 2008). 

This FcγR-lipid raft association modulate immune complex binding and is required for 

signal transduction events (Bournazos et al 2009a). 

FcγRs are divided according to their ability to induce or inhibit cell activation through 

transmitting their signals via immunoreceptor tyrosine-based activation (ITAM) or 

inhibitory motifs (ITIM), respectively. FcγRIIa and FcγRIIc are single chain receptors that 

each bears an ITAM in their cytoplasmic domain, while the ligand binding α-chain of 

FcγRIIIa associates with the ITAM-bearing FcRγ-chain or TCRζ-chain for signal 

transduction (Lanier et al 1991). Figure 1.3 summarizes FcγR-mediated cell activation. 

Cross-linking of activating FcγRs triggers a signalling cascade initiated by tyrosine 

phosphorylation of the ITAMs themselves by the Src family kinases, in turn creating SH2 

sites for docking and activation of Syk kinases. This leads to the recruitment and 

phosphorylation of a variety of intracellular substrates including phospholipid kinases and 

phospholipases (PLCγ), adaptor molecules (SLP-76 and BLNK), and proteins associated 

with the cytoskeleton (Falasca et al 1998, Ferguson et al 1995). 

FcγRIIb represents the sole inhibitory FcγR, bearing an ITIM in its cytoplasmic domain. 

Inhibitory signalling events resulting from crosslinking of FcγRIIb include phosphorylation 

of its ITIM by Lyn (Muta et al 1994), followed by the recruitment and activation of inositol 

5’ phosphatase (SHIP) (Ono et al 1996).  The latter hydrolyses key intermediates in the 

ITAM signalling pathway and thereby dampening downstream effector functions and cell 

proliferation (Van den Herik-Oudijk et al 1995). Engagement of both activating and 

inhibitory FcγRs co-expressed on the same cell will trigger activating and inhibitory 

signalling pathways and, thus, set a threshold for cell activation and regulate responses 

such as ADCC, ADCP, degranulation, and antigen presentation (Ravetch & Bolland 2001). 
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Figure 1.3. FcγR-mediated signal transduction. A) Ligation of activating and inhibitory 
FcγRs co-expressed by monocytes, granulocytes, and macrophages will simultaneously 
trigger both activating and inhibitory signalling pathways. Red lines indicate the inhibitory 
signalling pathway interfere with the activating pathway. Redrawn and modified from 
(Nimmerjahn & Ravetch 2007). B) Signalling of FcγRIIIb likely occurs through FcγRIIa and 
complement receptor 3 (CR3). However, independent cross-linking of FcγRIIIb triggers cell 
activation in the form of calcium transients, actin polymerization, and activation of nuclear 
factors (illustration in Figure 1.3B by Ria Lassaunière). 
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FcγRIIIb is unique among the family of FcγR in that it is linked to the outer plasma 

membrane layer by a glycosylphosphatidylinositol anchor. It lacks intrinsic signalling 

domains and does not associate with FcRγ-chain. The mechanism by which it transduces a 

signal is not clear. However, despite lacking an intrinsic cytoplasmic signalling domain 

FcγRIIIb is capable of inducing several cell responses, including calcium transients (Rosales 

& Brown 1992), actin filament assembly (Salmon et al 1991), and activation of nuclear 

factors (Garcia-Garcia et al 2009). It has been demonstrated that FcγRIIIb constitutively 

resides in lipid rafts where it is thought to co-localize and signal through association with 

adaptor molecules and transmembrane receptors (Figure 1.3B), such as FcγRIIa and the 

complement receptor 3 (CR3, mac-1, αMβ2, CD11b/CD18) (Chuang et al 2000, Fernandes et 

al 2006, Zhou et al 1993). 

1.1.5. FcγR-mediated effector functions 

Effector responses mediated by FcγRs include ADCC, ADCP, respiratory burst, release of 

pro-inflammatory mediators, and regulation of B cell activation and antibody production 

(Figure 1.4). The biological responses triggered by FcγRs appear to be dependent on the 

cell type more than the FcγR isoform. Cell populations often co-express different FcγRs 

with overlapping ligand affinities and will likely be simultaneously engaged and activated 

under patho-physiological conditions (immune complexes). 

In brief, ADCC is induced when IgG forms a bridge between a foreign antigen on a cell 

surface and an FcγR-bearing cytotoxic effector cell. Ligation and cross-linking of activating 

FcγRs subsequently initiate cell activation and a lytic attack on the antibody-coated target 

cell. ADCP involves the engulfing of pathogens and cell debris, internalization into 

phagosomes (acidified cytoplasmic vesicles) and their subsequent fusion with lysosomes, 

where lysosomal enzymes destroy the ingested matter. This process contributes to antigen 

presentation. During ADCP, professional phagocytes increase their oxygen uptake and 

generate superoxide anion (O2-) and hydrogen peroxide (H2O2) through a process called 

the respiratory burst. These oxygen metabolites give rise to other reactive oxygen species 

with potent antimicrobial activity (Babior 1984). In addition to the production of reactive 

oxygen species, FcγR-mediated cell activation induces the production of pro-inflammatory 

mediators that modulates the function of other immune cells (Hogarth 2002). Effector 
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processes mediated by activating FcγRs are regulated by the inhibitory FcγRIIb. On B 

lymphocytes, FcγRIIb regulates antibody production through inhibiting B cell receptor-

mediated signalling or inducing apoptosis (Amigorena et al 1992, Muta et al 1994, Tzeng et 

al 2005). 

1.1.6. FcγR biology and variability 

The genes that encode the three FcγRII molecules (FCGR2A, FCGR2B, and FCGR2C) and 

two FcγRIII molecules (FCGR3A, FCGR3B) are clustered on chromosome 1 band 1q23.3. The 

diversity at this locus is thought to be the result of segmental duplication and 

recombination events, and thus the genes are highly homologous (Qiu et al 1990). They 

encode, however, structurally and biochemically distinct molecules with different cellular 

distributions and affinities for IgG subclasses. Variants with functional significance have 

been described for all low affinity FcγRs. 

1.1.6.1. FcγRII 

The 40 kDa FcγRII molecules are the most widely expressed FcγR (Cassel et al 1993). 

The three isoforms are encoded by FCGR2A (FcγRIIa), FCGR2B (FcγRIIb), and FCGR2C 

(FcγRIIc). Each gene spans 15-19 kilobases (kb) and consists of eight exons that encode the 

signal peptide (S1 and S2), extracellular region (EC1 and EC2), transmembrane domain 

(TM), and intracytoplasmic region (C1, C2, and C3). FCGR2A and FCGR2B likely originated 

from duplication and divergence of a common ancestral gene (Qiu et al 1990). The 

molecules they encode are highly homologous in their extracellular and transmembrane 

domains (>90% amino acid identity), but differ significantly in the cytoplasmic region (8% 

amino acid identity). FCGR2C is the product of an unequal cross-over event between 

FCGR2A and FCGR2B, with the putative recombination site ~300 nucleotides downstream 

of the C1 exon (Warmerdam et al 1993). As a result the signal peptide, extracellular region, 

and transmembrane domain of FcγRIIc are identical to FcγRIIb, while its intracellular 

domain shares a 98% amino acid sequence identity with that of FcγRIIa. Despite a high 

degree of similarity the three FcγRII molecules have distinct cellular distributions, 

functions and allelic variability. 
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Figure 1.4. FcγR isoform expression and responses mediated by FcγR-bearing 
leukocytes (illustration by Ria Lassaunière). 
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1.1.6.1.1.   FcγRIIa 

Characteristics. FCGR2A yield two transcripts, FcγRIIa1 and FcγRIIa2, of which the 

former predominates in myeloid cells. FcγRIIa2 lacks the transmembrane coding region 

(TM exon) and is thought to produce a soluble FcγRIIa molecule (Cassel et al 1993, 

Rappaport et al 1993). The mature membrane-bound FcγRIIa protein of 282 amino acids 

comprises an extracellular region of two Ig-like domains, each bearing an N-linked 

glycosylation site, followed by a 28 amino acid hydrophobic transmembrane domain and a 

76 amino acid intracellular region bearing an intrinsic ITAM (Brooks et al 1989, Van den 

Herik-Oudijk et al 1995). The FcγRIIa molecule forms a dimer on the cell surface, a 

configuration that juxtaposes the ITAM motifs and contributes to FcγRIIa aggregation and 

initiation of signal transduction (Maxwell et al 1999, Powell et al 2006). This activating 

FcγR is expressed on monocytes, macrophages, dendritic cells, neutrophils, basophils, mast 

cells, eosinophils, megakaryocytes and platelets (Gillis et al 2014). The wide cellular 

distribution reflects the diversity of immunological functions attributed to FcγRIIa, 

including phagocytosis, ADCC, production of reactive oxygen species, cytokine release, 

platelet activation, and dendritic cell maturation (Anderson et al 1990, Antczak et al 2011, 

Boruchov et al 2005, Löfgren et al 1999, van de Winkel et al 1989). Compared to other 

FcγRs, FcγRIIa exhibits the highest affinity IgG2 (KA: >1 × 105 M-1 versus ~2 × 104 M-1) 

(Bruhns et al 2009), a major component in antibody responses against bacterial capsular 

polysaccharide, and is thus a significant contributor to FcγR-mediated effector functions in 

responses against bacterial pathogens. FcγRIIa has the highest affinity for IgG1 (KA: ~4 × 

106 M-1) followed by IgG2 (KA: 1-5 × 106 M-1), IgG3 (KA: 9 × 105 M-1), and IgG4 (KA: 2 × 105 M-

1) (Bruhns et al 2009). 

Variability. An arginine to histidine substitution at amino acid 131 in the membrane-

proximal Ig-like domain alters the affinity of FcγRIIa for IgG2 (Clark et al 1989, 

Warmerdam et al 1990). This polymorphic position is directly involved in Fc binding where 

the different residues potentially affect ligand contact (Maxwell et al 1999). Moreover, the 

allelic variants alter FcγRIIa dimerization and consequently the availability of the ligand 

binding surfaces, which may affect the number of IgG ligands bound by the dimer (Maxwell 

et al 1999, Ramsland et al 2011). As a result leukocytes that express FcγRIIa-131H bind 
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IgG2 efficiently, whereas those that express FcγRIIa-131R do not. At high IgG 

concentrations (30 µg/ml), however, it has been demonstrated that FcγRIIa-131R binds 

IgG2 immune complexes, but at a ~4-fold lower affinity than FcγRIIa-131H (KA: 1 × 105 M-1 

versus 4 × 105 M-1) (Bruhns et al 2009). Functionally, phagocytes from FcγRIIa-131RR 

donors exhibit reduced binding and internalization of IgG2-containing immune complexes 

compared to phagocytes from FcγRIIa-131HH donors (Bredius et al 1994b, Salmon et al 

1992). Furthermore, monocyte derived dendritic cells from FcγRIIa-131RR donors display 

decreased levels of maturation upon stimulation with IgG compared to FcγRIIa-131HH/HR 

donors (Boruchov et al 2005). 

Clinical significance of variability. The FcγRIIa-H131R variant has been associated 

with inflammatory diseases, autoimmune diseases and susceptibility to infections. In 

particular, the high responder FcγRIIa-131H allele is a potential risk factor for Kawasaki 

disease – systemic vasculitis of unknown aetiology (Onouchi et al 2012, Shrestha et al 

2012). The low responder FcγRIIa-131R allele is associated with increased risk for lupus 

nephritis and systemic lupus erythematosus (SLE) – the prototype systemic autoimmune 

disease that is characterized by circulating immune complexes and inflammatory 

pathologies in multiple organs (Karassa et al 2002). 

The FcγRIIa-131R allele has also been linked to susceptibility and disease course of 

bacterial infections where the antibody response is dominated by IgG2, such as 

Streptococcus pneumoniae (Sanders et al 1995, Yee et al 2000) and Neisseria meningitides 

infection (Bredius et al 1994a, Domingo et al 2002, Platonov et al 1998). Conversely, the 

FcγRIIa-131H allele have been identified as a potential protective factor against blood-

stages of malaria infection (Zhao et al 2014).  

1.1.6.1.2.   FcγRIIb 

Characteristics. Alternative splicing of FCGR2B transcripts produce three isoforms. 

FcγRIIb1 and FcγRIIb2 are identical with the exception of a 19 amino acid in-frame insert 

(encoded by exon C1) in the cytoplasmic domain of FcγRIIb1. FcγRIIb3 differs from 

FcγRIIb2 by lacking the last seven amino acids of the signal peptide (encoded by exon S2) 

(Brooks et al 1989).  Expression of isoform FcγRIIb1 is restricted to B lymphocytes, while 
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both FcγRIIb1 and FcγRIIb2 isoforms are expressed on monocytes, macrophages, activated 

neutrophils, and under specific conditions on natural killer cells (discussed in Section 

1.6.3.). The extracellular domain of FcγRIIb shares a 96% amino acid homology with 

FcγRIIa, predicts three N-linked glycosylation sites, is followed by a transmembrane 

domain and an intracellular region unrelated to FcγRIIa. In contrast to FcγRIIa, FcγRIIb 

bears the conserved 13-amino-acid ITIM in its cytoplasmic domain (Van den Herik-Oudijk 

et al 1995). Co-aggregation of FcγRIIb with ITAM-bearing receptors sets a threshold for 

pro-inflammatory processes initiated by activating FcγRs (Muta et al 1994, Nimmerjahn & 

Ravetch 2007). In addition, FcγRIIb regulates B lymphocyte activation and antibody 

production by two mechanisms: 1) Co-ligation of FcγRIIb and the B cell antigen receptor 

(BCR) by immune complexes inhibit BCR signalling (Amigorena et al 1992, Muta et al 

1994); and 2) In the absence of BCR ligation, cross-linking of FcγRIIb can induce apoptosis 

of mature B cells (Tzeng et al 2005). Compared to other FcγRs, FcγRIIb has the lowest 

affinity for IgG, binding IgG1, IgG3, and IgG4 with near equivalent affinities at KA: 1-2 × 105 

M-1 and IgG2 with a lower affinity of KA: 2 × 104 M-1 (Bruhns et al 2009). 

Variability. The ability of FcγRIIb to translocate to lipid rafts is affected by an amino 

acid substitution (isoleucine to threonine) at residue 232 within the transmembrane region 

(Floto et al 2005, Kono et al 2005). Exclusion of the FcγRIIb-232T variant from lipid rafts 

impairs the receptor’s inhibitory potential (Floto et al 2005). This is likely due to decreased 

quantitative participation of FcγRIIb in lipid raft-based signalling complexes. Compared to 

FcγRIIb-232II and FcγRIIb-232IT donors, B lymphocytes from FcγRIIb-232TT donors show 

reduced inhibition of B cell receptor-triggered proliferation and enhanced macrophage 

phagocytic capacity (Floto et al 2005, Kono et al 2005). 

An additional variant modulating FcγRIIb function is located in the FCGR2B promoter 

region. The less common FCGR2B promoter haplotype (-386C/-120A, designated 2B.4) 

exhibit increased binding of transcription factors and higher receptor expression levels 

compare to the more frequent haplotype (-386G/-120T, designated 2B.1) (Su et al 2004a, 

Su et al 2004b). Increased expression of FcγRIIb confers a greater inhibitory function, likely 

due to enhanced efficiency of receptor cross-linking (Su et al 2004a). 

Clinical significance of variability. The variants modulating the inhibitory effect of 
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FcγRIIb have been linked to infectious disease and autoimmune conditions. In particular, 

the FcγRIIb-232T allele is associated with aggressive periodontitis and susceptibility to SLE 

(Chu et al 2004, Lee et al 2009, Siriboonrit et al 2003, Yasuda et al 2003). In addition, the 

2B.4 promoter haplotype has been found to be overrepresented in SLE patients compared 

to controls (Su et al 2004b). 

1.1.6.1.3.   FcγRIIc 

Characteristics. The FCGR2C gene is composed of 5’ exons >99% identical to that of 

FCGR2B (5’ untranslated, signal, extracellular, and transmembrane), and 3’ exons >95% 

identical to FCGR2A (cytoplasmic and 3’ untranslated) (Brooks et al 1989). Four different 

alternatively spliced transcripts have been identified (Metes et al 1998). Of these, 

transcript FcγRIIc1 expresses a functional molecule, FcγRIIc2 has a 14-nucleotide insertion 

between the intracytoplasmic exons C2 and C3, FcγRIIc3 has a spliced out C2 exon, and 

FcγRIIc4 possesses an 85-nucleotide insertion between the second extracellular exon 

(EC2) and transmembrane exon (TM). FCGR2C is considered a pseudogene (a gene that 

lacks essential DNA sequences required for function) as the functional receptor is only 

expressed in approximately 30% of individuals where it is then detectable on B 

lymphocytes, NK cells, neutrophils, and monocytes (Metes et al 1998, van der Heijden et al 

2012). When expressed, FcγRIIc adds to the repertoire of activating receptors that 

mediates innate immune effector functions such as ADCC (van der Heijden et al 2012). On B 

cells it counterbalances the negative feedback of FcγRIIb and enhances humoral responses 

to immunization as demonstrated in a human anthrax vaccine trial (Li et al 2013).With its 

extracellular domain identical to that of FcγRIIb, it binds the IgG subclasses with equal 

affinity to FcγRIIb (Bruhns et al 2009, Metes et al 1999). In contrast to FcγRIIb, however, it 

initiates cell activation through an intrinsic ITAM (Metes et al 1999). On NK cells it is 

capable of mediating ADCC, while on B lymphocytes it counterbalances the negative 

feedback of FcγRIIb (Li et al 2013, Metes et al 1998, van der Heijden et al 2012). 

Variability. Functional variability of FcγRIIc largely pertains to sequence variants that 

predict the expression of a functional FcγRIIc molecule. A nonsynonymous variant located 

in the EC1 extracellular exon (c.169C>T; p.Q57*), changes the common allele (c.169T), 

which encodes a translation termination codon at residue 57, to c.169C, which encodes an 
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open reading frame for glutamine (Metes et al 1998). However, not all individuals bearing 

the p.Q57 allele express functional FcγRIIc. Two intronic sequence variants each located 

within a splice site further define FcγRIIc expression through alternative splicing of the 

FcγRIIc transcript. These variants are c.798+1G>A at the donor and c.799-1G>C at the 

acceptor splice site located in the intron linking exons C2 and C3 (Ernst et al 2002, van der 

Heijden et al 2012). For individuals bearing the c.798+1A/c.799-1G combination, the 

intracytoplasmic exon C2 is spliced from the transcript and a premature stop codon 

inserted in exon C3. Similarly, the c.798+1A/c.199-1G combination causes splicing of the C2 

exon from the transcript, but inserts an additional 62 nucleotides. As a result, only the 

c.169C/c.798+1G/c.799-1G genotype yields a functional FcγRIIc molecule, while the 

c.169C/c.798+1A/c.799-1G and c.169C/c.798+1A/c.799-1C genotypes do not. 

One constituent of the FCGR2B 2B.4 promoter haplotype, c.-386G>C, is detectable in the 

promoter region of FCGR2C (Breunis et al 2008). It is thought to also modify FcγRIIc 

expression levels, but this has not been formally demonstrated. A variant that does affect 

FcγRIIc expression levels is FCGR2C gene copy number variation (discussed in Section 

1.6.3.) 

Clinical significance of variability. The FcγRIIc-mediated enhancement of B 

lymphocyte activation likely predisposes to humoral autoimmunity as suggested by the 

association of functional FcγRIIc with SLE (Li et al 2013). Furthermore, expression of this 

activating FcγR has been associated with pathologies characterized by excessive or 

inappropriate leukocyte activation. In particular, expression of the functional receptor has 

been associated with idiopathic thrombocytopenic purpura and disease severity in 

rheumatoid arthritis (Breunis et al 2008, Stewart-Akers et al 2004). 

1.1.6.2. FcγRIII 

The FcγRIII molecules are extensively glycosylated with an apparent molecular weight 

of 50-80 kDa (Ravetch & Perussia 1989). The two FcγRIII isoforms are encoded by distinct 

genes, FCGR3A (FcγRIIIa) and FCGR3B (FcγRIIIb), each comprising five exons: two encode 

the signal peptide (S1 and S2), two encode the extracellular region (EC1 and EC2), and one 

encodes the transmembrane region (TM/C). Nucleotide differences in the promoter and 
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intronic enhancer regions of FCGR3A and FCGR3B confer tissue-specific transcriptional 

activities (Gessner et al 1995b). FCGR3A and FCGR3B share a ~97% sequence identity in 

both the coding and flanking regions, and encode molecules that are almost identical 

(Gessner et al 1995a, Ravetch & Perussia 1989). The amino acid differences between the 

isoforms yield different N-linked glycosylation patterns and membrane expression 

(Ravetch & Perussia 1989). In particular, a C to T substitution at nucleotide 733 introduces 

a translation termination codon at amino acid 233 in FcγRIIIb, yielding a 25 amino acid 

shorter molecule (Ravetch & Perussia 1989). As a result, FcγRIIIb lacks a transmembrane 

domain and is linked to the surface via a glycosylphosphatidylinositol anchor, whereas 

FcγRIIIa is a transmembrane protein possessing an intracytoplasmic domain. 

1.1.6.2.1.   FcγRIIIa 

Characteristics. Alternative splicing and usage of alternate transcriptional start sites in 

two discrete 5’ terminal exons yield four different FcγRIIIa transcripts (FcγRIIIa1-4). Of 

these, FcγRIIIa1 translates a functional membrane protein (Gessner et al 1995b). Efficient 

surface expression of the ligand-binding FcγRIIIa α-chain requires the presence of the 

FcRγ-chain and/or the CD3ζ-chain for protection from degradation in the endoplasmic 

reticulum (Hulett & Hogarth 1994, Kurosaki & Ravetch 1989, Ra et al 1989). FcγRIIIa is 

constitutively expressed on NK cells, macrophages, γδ T-cell receptor (TCR) T lymphocytes, 

and a subset of monocytes. It is also present on pre-B lymphocytes and small subsets of 

CD4+ and CD8+ T lymphocytes (Chauhan & Moore 2012, Clemenceau et al 2008, de Andres 

et al 1999, Gessner et al 1995b). FcγRIIIa mediates ADCC, phagocytosis, and cytokine 

release (Anderson et al 1990, Wu et al 1997). Compared to other low affinity FcγRs, 

FcγRIIIa has the highest affinity for IgG3 (KA: ~9 × 106 versus ≤1 × 106 M-1). It binds IgG1 

with an affinity of KA: 1-2 × 106 M-1, IgG4 with KA: 2 × 105 M-1 and IgG2 with KA: 5 × 106 M-1 

(Bruhns et al 2009). 

Variability. The affinity of FcγRIIIa for IgG and the efficiency by which it initiates 

effector mechanisms is affected by a polymorphism that predicts a phenylalanine (F) to 

valine (V) at amino acid residue position 158 (Breunis et al 2009, Koene et al 1997, Wu et 

al 1997). Compared to the FcγRIIIa-158F allele, the FcγRIIIa-158V allele displays a higher 

affinity for IgG1 and IgG3 as well as a capacity to bind IgG4 (Wu et al 1997). Consequently, 
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NK cells bearing the FcγRIIIa-258V allele exhibit enhanced IgG-induced NK cell activation 

and ADCC capacity (Vance et al 1993, Wu et al 1997). In addition, FCGR3A is subject to gene 

copy number variability (discussed in Section 1.6.3.). 

Clinical significance of variability. The low-binding FcγRIIIa-158F allele has been 

identified as a risk factor for SLE, although the association appears to be ethnically confined 

(Li et al 2010), while the FcγRIIIa-158V allele has been associated with rheumatoid 

arthritis susceptibility and severity, and idiopathic inflammatory myopathies (Bronner et al 

2009, Lee et al 2008, Morgan et al 2000). FcγRIIIa-mediated ADCC has been demonstrated 

to contribute substantially to the therapeutic action of rituximab – a chimeric anti-CD20 

IgG1 monoclonal antibody used for treatment of non-Hodgkin’s lymphoma (Clynes et al 

2000). Individuals homozygous for the FcγRIIIa-158V allele had an enhanced clinical and 

molecular response to rituximab compared to individuals bearing an FcγRIIIa-158F allele 

(Cartron et al 2002). 

1.1.6.2.2.   FcγRIIIb 

Characteristics. FcγRIIIb is unique among the family of FcγR in that it lacks a 

transmembrane region and is linked to the outer plasma membrane layer by a 

glycosylphosphatidylinositol anchor. FcγRIIIb is encoded by a single transcript (Gessner et 

al 1995a). Its expression is restricted to neutrophils and basophils (low levels) (Meknache 

et al 2009). At present, the biological function of FcγRIIIb on basophils is unknown. On 

neutrophils, however, it is involved in phagocytosis, degranulation, respiratory burst, and 

the formation of neutrophil extracellular traps (NETs) (Behnen et al 2014). FcγRIIa and 

FcγRIIIb are both constitutively expressed by neutrophils with overlapping ligand 

specificity (Bruhns et al 2009). These receptors appear to have a complementary and 

synergistic relationship for mediating phagocytosis, respiratory burst, and ADCC (Hunt et 

al 2003, Kushner & Cheung 1992, Marois et al 2011, Nagarajan et al 2000, Salmon et al 

1991, Salmon et al 1995). Evidence suggests a preponderant role for FcγRIIIb in mediating 

a respiratory burst response compared to phagocytosis (Hundt & Schmidt 1992, Marois et 

al 2011). FcγRIIIb binds IgG3 with a greater affinity than IgG1 (KA: 1 × 106 M-1 versus 2 × 

105 M-1) and has no detectable affinity for IgG2 and IgG4 (Bruhns et al 2009). 
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Variability. FcγRIIIb bears the human neutrophil antigens (HNA)-1a, -1b, and -1c 

(formerly neutrophil antigen [NA] 1, NA2, and SH, respectively) (Bux et al 1997, Ory et al 

1989b). Auto- and allo-immunization against these antigens result in autoimmune 

neutropaenia, neonatal immune neutropaenia and transfusion acute lung injury (Youinou 

et al 2002). Several lines of evidence suggest that these allotypes are not only significant 

antigenically, but also functionally (Bredius et al 1994b, Salmon et al 1990, van der Heijden 

et al 2014). 

HNA1a and HNA1b differ at five nucleotides and four amino acid residues – p.36Ra>Sb, 

p.65Na>Sb, p.82Da>Nb, and p.106Va>Ib (Ory et al 1989a, Ravetch & Perussia 1989). HNA1b 

and HNA1c differ at one additional position, p.78Ab>Dc (Bux et al 1997). The differences 

between HNA1a and HNA1b potentially alter the N-linked glycosylation pattern and 

primary protein structure, while the amino acid change in HNA1c is believed to affect the 

receptor’s tertiary structure (Bux et al 1997, Ory et al 1989a, Ravetch & Perussia 1989). 

The different allotypes do not display detectable differences in antibody binding affinity or 

IgG subclass specificity, likely due to all the variants occurring distal to the ligand contact 

regions (Bruhns et al 2009, Sondermann et al 2000). Nevertheless, independent of FcγRIIa 

phenotype, neutrophils from HNA1b homozygous individuals display an approximately 

20% lower phagocytic capacity compared to those of HNA1a homozygous individuals 

(Bredius et al 1994b, Salmon et al 1990). Furthermore, neutrophils from HNA1a 

homozygous individuals exhibit a greater respiratory burst response compared to 

neutrophils from HNA1b homozygous individuals (Urbaczek et al 2014). A recent study 

demonstrated that IgG-induced production of reactive oxygen species by resting 

neutrophils is determined by the FcγRIIa/FcγRIIIb haplotype, such that production levels 

are in the rank order of 131HH-HNA1b|1b > 131RR-HNA1a|1a > 131HH-HNA1a|1a > 

131RR-HNA1b|1b (van der Heijden et al 2014). These differences, however, are not 

apparent for pre-activated neutrophils. Interestingly, pre-activated neutrophils display 

allotype-specific differences in FcγRIIIb surface shedding and induced expression of the 

inhibitory FcγRIIb (van der Heijden et al 2014). Sloughing of FcγRIIIb molecules from the 

cell surface is reportedly greater for HNA1a homozygous and heterozygous individuals 

compared to HNA1b homozygous individuals. Furthermore, activated neutrophils from 
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HNA1a individuals express the highest levels of the inhibitory FcγRIIb, followed by 

heterozygous individuals, and HNA1b homozygous individuals with near undetectable 

levels. At present, the functional significance of HNA1c is unknown. 

Clinical significance of variability. In adult periodontitis, a disease caused by 

periodontopathic bacteria and concomitant host inflammatory responses, homozygosity 

for the low responder FcγRIIIb-HNA1b allotype is a risk factor for disease recurrence and 

severity (Dimou et al 2010, Kobayashi et al 1997). In addition, homozygosity for the 

FcγRIIIb-HNA1b allotype has been associated with severe Guillain–Barrè syndrome (van 

Sorge et al 2005). 

1.1.3.6. Copy number variability 

Gene copy number variability (CNV) is a recognized contributor to inter-individual 

differences with CNV regions accounting for ~5% of the human genome (McCarroll et al 

2008). FCGR2C, FCGR3A, and FCGR3B, but not FCGR2A and FCGR2B have been detected at 

variable copy number (Breunis et al 2008). Distinct overlapping segments within the 

FCGR3A-FCGR2C-FCGR3B genomic region are duplicated and deleted (Figure 1.5). The 

most common of these encompasses FCGR2C and FCGR3B, previously designated CNV 

Variant I and copy number region 1 (CNR1) (Breunis et al 2009, Niederer et al 2010). 

Deletion of this section juxtaposes the 5’-regulatory sequences of FCGR2C with the coding 

sequence of FCGR2B, creating a chimeric gene, FCGR2B’ (Mueller et al 2013). The result is 

that FcγRIIb, which is otherwise absent from cytotoxic NK cells, is expressed on this cell 

subset where it inhibits cell activation and ADCC, possibly due to co-engagement of 

FcγRIIIa and FcγRIIb (Mueller et al 2013, van der Heijden et al 2012). In addition to 

modifying the cellular distribution of FcγRIIb, CNV at the FCGR locus contributes to inter-

individual FcγR phenotypic and functional differences through a gene-dosage effect. 

FcγRIIIa gene copy number has been found to correlate with FcγRIIIa expression levels 

on NK cells as well as antibody-dependent cytotoxic capacity (Breunis et al 2009). 

Similarly, CNV of FCGR3B directly correlates with protein expression, neutrophil uptake 

of and adherence to immune complexes (Breunis et al 2009, Huizinga et al 1990b, 

Willcocks et al 2008). 
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Clinical relevance of variability. FCGR3A variability is associated with anti-

glomerular basement membrane antibody disease (Zhou et al 2010), while low FCGR3B 

copy number is a risk factor for lupus nephritis and SLE (Aitman et al 2006, Niederer et al 

2010), rheumatoid arthritis (Graf et al 2012), and systemic sclerosis (McKinney et al 

2012). 

 

1.2. HUMAN IMMUNODEFICIENCY VIRUS 

Human immunodeficiency virus (HIV) is a member of the genus Lentivirus, in the family 

Retroviridae, subfamily Orthoretrovirinae. Phylogenetic analysis indicates that multiple 

transmission events from simian species have introduced two genetically diverse types of 

HIV into the human population: HIV-1, which is closely related to simian immunodeficiency 

virus (SIV) from chimpanzees (SIVcpz), and HIV-2, which is closely related to SIV from sooty 

mangabeys (SIVsm). HIV-2 is characterised by reduced transmissibility and virulence 

(Gilbert et al 2003). Epidemiologically, HIV-2 infections are largely confined to West Africa, 

while HIV-1 extends worldwide. Further discussion in this review will focus on HIV-1. 

1.2.1. Epidemiology 

Using the earliest HIV-1 archival sample obtained from a 1959 Kinshasa resident, a 

recent study has traced the origins of the human immunodeficiency virus type 1 (HIV-1) 

pandemic to 1920’s Kinshasa, Democratic Republic of Congo (Faria et al 2014, Zhu et al 

1998). It is believed that rapid population growth, the sex trade, and railways allowed HIV-

1 to spread in the community and to other regions of the world. Since the start of the 

pandemic, more than 78 million people have been infected with HIV-1 and 39 million 

people have died (UNAIDS 2014a). While prevention and treatment programmes have seen 

to a decline in new infections, HIV/AIDS remains a significant global burden. At the end of 

2013, an estimated 35 million people were living with HIV-1 with 2.1 million new 

infections and 1.5 million AIDS-related deaths (UNAIDS 2014b). Sub-Saharan Africa 

remains the region hardest hit by the epidemic, with an estimated 24.7 million HIV-1 

infected individuals. Of all affected countries, South Africa bears the greatest burden with 

6.3 million people living with HIV-1, 18% of the global total (UNAIDS 2014b). 



 

 

 

 

 

 
Figure 1.5. FCGR gene copy number variability. The gene cluster that encompasses HSP6, FCGR3A, FCGR2C, HSP7 and 
FCGR3B is subject to copy number variation which results from duplication or deletion of large genomic segments (45,000 – 
68,000 base pairs). These copy number regions (CNR) were previously designated Variant I-IV and CNR1-3 (Breunis et al 
2009, Niederer et al 2010). The FCGR genes are arranged according to their position on chromosome 1. The black arrows 
indicate the orientation of the gene. Distances between genes are shown. Illustration by Ria Lassaunière. 
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1.2.2. The virus 

HIV-1 is a 100 to 120 µm enveloped virus containing a cone-shaped, cylindrical capsid 

(Gonda et al 1985). Each virion bears two copies of a ~9.7 kilobase positive-sense, single-

stranded RNA which encodes 15 proteins: structural proteins that include matrix (MA), 

nucleocapsid (CA), and envelope proteins gp120 and gp41; viral enzymes that include 

reverse transcriptase (RT), integrase (IN), and protease (PR); accessory proteins that 

include viral protein u (Vpu), viral infectivity factor (Vif), viral protein r (Vpr), negative 

regulatory factor (Nef), regulator of virion (Rev), trans-activator of transcription (Tat), and 

P6 . The structural proteins and enzymes are initially synthesized as polyproteins: Gag, 

comprising the viral capsid proteins; Pol, comprising the viral enzymes; and Env, 

comprising the envelope associated proteins. The polyprotein precursors are processed by 

viral or cellular proteases into mature, particle-associated proteins. The accessory proteins 

are the primary translation products of spliced mRNA (Freed & Martin 2013). 

1.2.3. HIV-1 life cycle 

The primary target of HIV-1 is activated CD4+ T lymphocytes. Other cells bearing CD4 

and chemokine receptors are also susceptible to infection, including resting CD4+ T 

lymphocytes, monocytes and macrophages, and dendritic cells. Efficient infection of a 

target cell begins with the adsorption of cell-free virions to the cell surface and the 

sequential interaction of the gp120 envelope glycoprotein with CD4 and chemokine co-

receptors (Figure 1.5) (Maddon et al 1986). This is followed by fusion of the viral and 

cellular membranes and the partial uncoating of incoming virions (Didigu & Doms 2012). 

The viral core undergoes rearrangement to become the reverse transcription complex 

which comprises the viral capsid and nucleocapsid, viral genome, reverse transcriptase, 

integrase, protease, and the viral accessory proteins Vif, Nef, and Vpr. Reverse transcription 

of the viral genome occurs in the cytoplasm, and the double-stranded DNA product within a 

pre-integration complex is transported to the nucleus where integration into host 

chromosomal DNA is mediated by the virus encoded integrase (Bowerman et al 1989). 

Integrated viral DNA, also known as the provirus, serves as a template for transcription and 

translation of viral proteins. Envelope and Gag plus Gag-Pol polyproteins are transported 



Chapter 1 – Introduction 

 

 Page 23 
 

to the plasma membrane, where progeny virus buds from cells and are released as 

immature particles. Maturation of virions is completed following proteolysis by virion-

encoded protease (Freed & Martin 2013). 

1.2.4. Transmission 

The majority of HIV-1 infections occur through sexual exposure when HIV-1 containing 

fluids (semen, vaginal secretions, and anal secretions) cross mucosal surfaces in the genital 

tract and rectum. Virus likely crosses mucosal epithelium by transcytosis, through direct 

contact with dendrites of intraepithelial dendritic cells, or cell-to-cell contact of infected T 

lymphocytes in seminal, vaginal, or anal fluids (Anderson et al 2010, Cunningham et al 

2013, Gupta et al 2013). HIV-1 transmission also occurs through blood transfusions, 

needle-sharing injection drug-use, percutaneous needle stick, and vertically from an HIV-1 

infected mother to her foetus/infant (Smith et al 2005). 

 

 

Figure 1.6. HIV-1 life cycle. Reproduced from (Rambaut et al 2004). 
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1.2.5. HIV-1 infection and disease progression 

The clinical course of an HIV-1 infection generally includes three phases: 1) primary 

infection, 2) clinical latency, and 3) AIDS-defining illness. In ~80% of individuals, 

productive clinical HIV-1 infection is caused by a single transmitted/founder virus 

(Abrahams et al 2009, Keele et al 2008, Salazar-Gonzalez et al 2009). It is still unclear 

whether HIV-1 is transmitted as cell-free or cell-associated virus, but simian 

immunodeficiency virus (SIV) can be transmitted in either form (Sodora et al 1998). 

Following transmission, infection is likely established in local tissue(s) at the site of 

exposure as demonstrated for SIV in rhesus macaques (Whitney et al 2014). Virus in the 

systemic circulation remains undetectable for approximately 10 days. At the end of this 

eclipse phase, cell-free and/or cell-associated virus reaches the draining lymph node where 

infection of activated CD4+ T lymphocytes occurs. HIV-1 replication increases rapidly and 

the virus is efficiently disseminated throughout the body to other lymph nodes. Plasma 

viraemia increases exponentially to reach a peak after ~4 weeks, which is followed by a 

decrease in viral load over 12-20 weeks to reach a more stable level, known as the viral set 

point (Fiebig et al 2003). During the exponential phase of viral replication, CD4+ T 

lymphocytes are progressively depleted, but rebound to near normal levels when the viral 

set point is reached and the virus is under immunological control. Through a balance 

between virus turnover and the immune response, this set point is maintained for a 

number of years and is known as the clinical latency phase. During this period, circulating 

CD4+ T lymphocytes slowly decline (Embretson et al 1993, Pantaleo et al 1993). Eventually 

control of the virus is lost leading to increasing viraemia, a rapid loss of CD4+ T 

lymphocytes, and AIDS defining symptoms. 

In the absence of treatment, HIV-1 infected individuals show variable rates of disease 

progression and virus control (Mellors et al 1996). The majority (70-80%) of HIV-1 

infected individuals experience a period of clinical latency for 6-8 years and are referred to 

as typical progressors (Pantaleo & Fauci 1996). Ten to 15% of HIV-1 infected individuals 

display unusually rapid immunological and clinical progression, with two to three years 

from primary infection to AIDS. In contrast, a small percentage (>5%) maintain good 

control of infection and remain asymptomatic for several years (slow progressors or viral 
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controllers). The determinants are likely multifactorial and include a complex interplay 

between the virulence of the infecting virus and the immune capability of the infected 

individual as determined, in part, by host genetic factors (O'Brien & Hendrickson 2013). 

Generally, the immunological control following peak viraemia during acute HIV-1 infection 

associates with the rate of disease progression. A higher viral set point associates with 

rapid disease progression, whereas a low viral set point is observed in cases of slow 

progression to AIDS (Mellors et al 1996). Viral elite controllers suppress plasma HIV-1 RNA 

levels to undetectable limits (<50 RNA copies/ml) in the absence of antiretroviral 

treatment. 

 

 

 

Figure 1.7. Typical disease course in an HIV-1 infected individual. Reproduced from 
(O'Brien & Hendrickson 2013). 
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1.2.6. Antibody response to HIV 

Overview. The first B cell responses occur within one week of detectable viraemia (~18 

days after transmission) and are detected as IgM and IgG containing immune complexes 

(Tomaras et al 2008). Free antibody against env-gp41 occurs a few days later, with anti-

gp120 antibodies delayed an additional few weeks (Tomaras et al 2008). Initial anti-HIV-1 

antibodies are of the IgM class and are followed by a class switch to IgG and IgA (Tomaras 

et al 2008). Mathematical modelling indicate that these early HIV-1-specific responses are 

ineffective against HIV-1 and do not contribute to the initial decline in plasma viral load 

(Tomaras et al 2008). Autologous neutralising antibody responses develop slowly and do 

not occur until months after HIV-1 transmission (Gray et al 2007, Richman et al 2003, Wei 

et al 2003). While these antibody responses can control the virus quasispecies present at 

the time of their appearance, the narrow neutralization capacity allows for rapid viral 

escape (Richman et al 2003, Wei et al 2003). Broadly neutralizing anti-HIV-1 antibodies 

eventually develop in ~20% of patients, many years after transmission has occurred (Gray 

et al 2009, Stamatatos et al 2009). 

IgG subclasses. The IgG subclasses are differentially induced during an HIV-1 infection. 

IgG1 is the dominant subclass in anti-HIV-1 responses and remain stable during acute and 

chronic HIV-1 infection, but decline in progressing patients (Broliden et al 1989, Klasse & 

Blomberg 1987, Mergener et al 1987, Sundqvist et al 1986, Yates et al 2011). Anti-gp120 

IgG2 occurs during various stages of HIV-1 infection and is detectable in the majority of 

patients, albeit at lower levels compared to IgG1 (Forthal et al 2007b, Klasse & Blomberg 

1987, McDougal et al 1987). Anti-HIV-1 IgG3 antibodies peak during acute infection and 

decline thereafter. Anti-HIV-1 IgG4 occurs through all stages of HIV-1 infection, but at 

lower levels and is not detectable in all individuals (Ljunggren et al 1988, McDougal et al 

1987). 

HIV-1-specific IgG1 efficiently mediate ADCC of infected cells, whereas IgG3 isolated 

from chronically infected individuals does not (Ljunggren et al 1988). This is likely 

attributable to differences in subclass protein specificity and half-life. The response to Env 

proteins is nearly restricted to IgG1 (Ngo-Giang-Huong et al 2001), whereas anti-HIV-1 

IgG3 is primarily directed against Gag (peak: 4.67 µg/ml) and gp41-specific IgG3 (1.49 



Chapter 1 – Introduction 

 

 Page 27 
 

µg/ml), with low peak titres (<0.1 µg/ml) for IgG3 against p31 (integrase), p66 (reverse 

transcriptase), and gp120 (Broliden et al 1989, Yates et al 2011). Moreover, the half-life of 

gag-specific IgG3 is much longer compared to Env-specific IgG3 (Yates et al 2011). 

Interestingly, enhanced levels of HIV-1-specific IgG2 have been associated with long-

term viral control (Ngo-Giang-Huong et al 2001). These IgG2 responses did not exhibit 

neutralizing activity and is thought to rather be the consequence or marker of the 

beneficial Th1 anti-HIV-1 cellular response (Ngo-Giang-Huong et al 2001). The association 

of these IgG2 responses with effector functions have not been explored. 

Immune complexes. As a result of the high level of HIV-1-specific IgG, a proportion of 

circulating virus occurs as immune complexes. During the acute phase of infections 

approximately 22% of circulating plasma virions occur as immune complexes, whereas 

IgG-HIV-1 immune complexes comprise 17-67% of circulating virus during chronic HIV-1 

infection (Liu et al 2011). Insufficiently neutralized IgG-HIV-1 immune complexes remain 

infectious in vitro (Liu et al 2011). In addition, cell-bound IgG-HIV-1 has been 

demonstrated to be highly infectious for T lymphocytes (Jakubik et al 2000). Thus, despite 

being coated by IgG, HIV-1 likely retains its infectivity. 

1.2.7. FcγR in HIV-1 infection 

Beyond neutralization, HIV-1-specific IgG has the capacity to recruit potent innate 

immune effector functions through engagement of its Fc portion with FcγRs. The 

significance of FcγR-mediated effector functions have been demonstrated in murine and 

non-human primate models where these mechanisms augment the in vivo ability of broadly 

neutralizing antibodies to block viral entry, suppress viraemia, and confer therapeutic 

activity (Bournazos et al 2014, Hessell et al 2007). Accumulating data suggest that FcγR-

mediated effector functions play a significant role in HIV-1 protective immunity, for both 

blocking acquisition of HIV-1 and post-infection control of viraemia (Lewis 2014).  

Blocking acquisition. Investigating the capacity of FcγR-mediated effector functions in 

blocking HIV-1 acquisition in vivo is limited to animal models and human vaccine 

candidates that showed efficacy. In a recent study, two non-neutralizing monoclonal 

antibodies (mAbs; 246-D and 4B3) with potent ADCC and Fc-mediated inhibitory activities 
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were tested for their ability to protect macaques from vaginal challenge with SHIVSF162P3 

(Moog et al 2014). Topical vaginal application of this antibody combination did not prevent 

infection, but reduced plasma viral load. These findings suggest that non-neutralizing 

antibodies affected subsequent viral replication and dissemination through other effector 

functions. Moreover, they potentially protected components of the immune system in early 

infection, allowing maturation of responses and effective post-infection control of viraemia. 

Similarly, FcγR-mediated effector functions correlated with post-infection control of 

viraemia in vaccinated non-human primates (Barouch et al 2012, Demberg et al 2013, 

Florese et al 2009, Gomez-Roman et al 2005, Xiao et al 2010). 

In humans, two vaccines have shown a correlation between antibody-dependent cellular 

virus inhibition (ADCVI) and ADCC antibody titres. In the VAX004 trial, vaccine-induced 

ADCVI activity correlated inversely with HIV-1 infection risk, although no overall 

protection was observed (Forthal et al 2007a). Similarly, in the RV144 trial where a modest 

overall efficacy of 31% was observed, HIV-1 infection risk inversely correlated with ADCC 

responses in vaccinees (Haynes et al 2012, Rerks-Ngarm et al 2009). The target for these 

responses was similar in the majority of vaccinees and involved the epitope recognized by 

A32 mAb, since A32 Fab fragment blocked ADCC activity in 96% of vaccinees with ADCC 

responses (Bonsignori et al 2012). The A32 mAb was isolated from a chronically HIV-1 

infected person and is a potent mediator of ADCC (Ferrari et al 2011). Further support for a 

role of FcγR-mediated effector functions in blocking acquisition comes from the inverse 

correlation of breast milk ADCC titres and HIV-1 transmission to exposed infants (Mabuka 

et al 2012). 

Post-infection control of viraemia. FcγR-mediated effector functions have also been 

associated with a favourable outcome of HIV-1 disease in natural infection cohorts and 

non-human primates. Particularly, ADCC appears to contribute to post-infection control of 

viraemia (Ahmad et al 1994, Ahmad et al 2001, Broliden et al 1993, Forthal et al 2001, 

Lambotte et al 2013, Ljunggren et al 1987, Sawyer et al 1990). At present, data on the 

involvement of other FcγR-mediated mechanisms in HIV-1 acquisition and disease 

progression are limited. A role for phagocytosis is suggested by the FcγRIIa-dependent 

inhibition of HIV-1 replication in immature monocyte-derived dendritic cells in the 



Chapter 1 – Introduction 

 

 Page 29 
 

presence of HIV-1-specific IgG (Holl et al 2006a, Holl et al 2006b). It is unclear when 

phagocytosis first occurs in an HIV-1 infection. The increased expression of FcγRIIa and 

FcγRIIIa on monocytes and dendritic cells, and the concomitant enhanced phagocytic 

capacity, during acute infection suggests a role for phagocytosis early in infection (Dugast 

et al 2011). However, phagocytosis is impaired during chronic infection and is associated 

with the downregulation of FcγRIIa and FcγRIIIa on monocytes and dendritic cells (Dugast 

et al 2011). Further studies are needed to define the contribution of antibody-dependent 

phagocytosis to HIV-1 protective immunity. 

1.2.8. Mother-to-child transmission of HIV-1 

Mother-to-child transmission (MTCT), or vertical transmission, is the leading cause of 

HIV-1 infection in children under 10 years of age. In the absence of any interventions, 25-

40% of infants acquire HIV-1 perinatally (Connor et al 1994, Forbes et al 2012). The 

determinants of MTCT risk are multi-factorial and include viral, host, and obstetric factors. 

Through effective antiretroviral therapy, elective caesarean section and avoidance of 

breastfeeding, MTCT rates have been reduced to 1-3% in Northern America and Europe 

(Forbes et al 2012, Townsend et al 2008). In 2011, MTCT rates were 2.8% in South Africa 

(Barron et al 2013). However, in resource-limited countries MTCT rates remain high. 

Timing. Perinatal transmission of HIV-1 can occur while the child is in utero, during 

labour and delivery (intrapartum), or through breastfeeding. In utero transmission is 

distinguished from intrapartum transmission based on virologic detection in the first two 

days of life versus after the first week. In utero transmission is the least common form of 

MTCT with transmission rates ranging from 5-10% (Lehman & Farquhar 2007). It is 

thought to occur primarily in the last few weeks before delivery and result from 

transplacental transfer of the virus or HIV-1 infected amniotic fluid crossing foetal mucous 

surfaces (Rouzioux et al 1995). Intrapartum transmission rates are approximately 10-20% 

and account for approximately two-thirds of MTCT (Lehman & Farquhar 2007). Exposure 

to the virus occurs through contact with maternal blood and cervicovaginal secretions as 

the neonate passes through the birth canal. While HIV-1 levels in breast milk are 

significantly lower than those in circulation, breast feeding remains a major risk for MTCT 

of HIV-1 (Rousseau et al 2004). Postnatal transmission rates of 5-15% are reported for 
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mothers who breastfeed (Lehman & Farquhar 2007). It should be noted that the timing of 

initial exposure of the foetus/infant to HIV-1 may not necessarily be when infection is 

established, as was suggested by a study that detected unintegrated, biologically active 

virus in the peripheral blood mononuclear cells of approximately 18% of exposed-

uninfected infants (Lee et al 2004). 

Mechanism. The exact biological mechanisms of perinatal HIV-1 transmission are 

unclear. Several lines of evidence suggest that cell-free and cell-associated viruses are 

transmitted to the infant (Milligan & Overbaugh 2014). Both infectious components have 

been detected in maternal peripheral blood, genital secretions, and breast milk, with virus 

levels in all these fluids correlating with MTCT (Garcia et al 1999, John et al 2001, Rousseau 

et al 2004). Transmission of cell-free virus through amniotic fluid during pregnancy is 

unclear and controversial. As such, it is hypothesized that in utero infection occurs across 

the placenta with a preponderant role for cell-associated virus. In vitro studies have 

demonstrated that placental trophoblasts are not very permissive to infection by cell-free 

virus, while cell-associated virus is able to cross the placenta and cause productive 

infection in target cells (Ayouba et al 2008). However, recent findings suggest a role for the 

neonatal Fc receptor (FcRn) in mediating transcytosis of infectious HIV-IgG complexes 

across epithelial cells (Gupta et al 2013). FcRn is expressed on syncytiotrophoblasts where 

it facilitates transplacental transfer of maternal IgG to the foetus (Simister 2003). It 

remains to be determined if FcRn provides a potential route for placental transfer of HIV-1. 

Intrapartum transmission is thought to occur across infant mucosal surfaces when exposed 

to maternal blood and cervicovaginal secretions. HIV-1 RNA (cell-free) and DNA (cell-

associated) levels correlate with intrapartum transmission (Chuachoowong et al 2000, 

John et al 2001, Montano et al 2003, Panther et al 2000, Tuomala et al 2003). However, 

studies that examined both HIV-1 DNA and RNA levels in cervicovaginal secretions 

reported a stronger correlation between HIV-1 DNA levels and intrapartum transmission, 

compared to HIV-1 RNA levels (John et al 2001, Tuomala et al 2003). 

Risk factors. Risk factors for perinatal transmission of HIV-1 are well defined (Kourtis & 

Bulterys 2010). Maternal virologic and immunologic factors that include high plasma viral 

load, low CD4+ T cell count, and advanced disease increase the risk of MTCT. While 
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transmission risk directly correlates with maternal plasma viral load, there is no threshold 

above which transmission is an absolute certainty or a threshold below which there is no 

risk of transmission (Garcia et al 1999). Additional risk factors include inflammation of the 

placenta, maternal genitourinary lesions, breast pathology, vaginal birth, invasive 

obstetrical procedures, and duration of membrane rupture (Kourtis & Bulterys 2010). 

Genetic polymorphisms that associate with maternal infectiousness and infant 

susceptibility have been described for a variety of immunologically relevant molecules 

[reviewed by (De Souza et al 2012)]. 

Interventions. Highly active antiretroviral therapy, obstetric interventions, and 

alternatives to breastfeeding effectively reduce MTCT (Forbes et al 2012, Townsend et al 

2008). Initiation of antiretroviral therapy before conception or early in pregnancy is able to 

reduce maternal plasma viral load to very low or undetectable limits. Short-course 

zidovudine (AZT) given daily during late gestation acts to reduce maternal viral load by 

delivery in both plasma and genital secretions. Single dose nevirapine given at the onset of 

labour cannot reduce maternal viral load by delivery. However, it is rapidly absorbed and 

crosses the placenta where it is thought to act as pre- and/or post-exposure prophylaxis to 

the infant. It has a long half-life (45 hours in neonates), and thus provide protection during 

the first few days of life. Additional interventions that further reduce the risk of MTCT 

include caesarean section before labour and before rupture of membranes and avoidance 

of breastfeeding (Read & Newell 2005). 

MTCT as a model for protective immunity. The majority of persons exposed to HIV-1 

do not become infected. HIV-1 transmission per coital act is less than 1% in heterosexual 

couples, while 65-85% of infants born to HIV-1 infected mothers escape infection (Boily et 

al 2009). Understanding the mechanisms that confer this natural resistance to HIV-1 

infection will complement rational vaccine design and the development of novel 

preventative and therapeutic anti-HIV-1 strategies. Investigating correlates of protection 

for sexual transmission is hindered by the difficulty of quantitating HIV-1 exposure and 

collecting relevant biological samples and accurate behavioural data at the time of 

exposure. Conversely, mother-to-child transmission is an attractive model in which to 

study immune correlates of protection since both members of the transmitting dyad are 
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known, timing of transmission can be ascertained with reasonable precision, and it affords 

the opportunity to assess factors contributing to both the infectiousness of the transmitter 

(mother) and susceptibility of the recipient (infant) (Aldrovandi & Kuhn 2010, Braibant & 

Barin 2013). Limitations of this model are that transmission occurs between genetically 

similar individuals, exposure to the HIV-1 occurs at a time of early immune development, 

and immune circumstances during pregnancy that are associated with tolerance of the 

foetal allograft (Tiemessen & Kuhn 2006). Nevertheless, it provides a unique opportunity 

to investigate the role of FcγR-mediated effector functions, since the individual 

(foetus/infant) at risk is passively immunized with HIV-1-specific antibodies through 

transplacental transfer of IgG from the HIV-1 infected mother and the model is not 

confounded by interspecies differences as observed for non-human primate studies (Trist 

et al 2014). 

 

1.3. OBJECTIVES OF THIS STUDY 

The overall aim of this work was to characterize FCGR/FcγR variability in the South 

African population and to indirectly assess the contribution of FcγR-mediated effector 

functions in HIV-1 protective immunity by evaluating FcγR functional variants in the 

context of HIV-1 transmission and disease progression. 

 FCGR gene copy number is a determinant of FcγR surface density and 

functionality. However, FCGR3A gene copy number variability is rare, and thus 

the first objective of this study was to identify novel determinants of FcγRIIIa 

expression. 

 The second objective was to characterize, in two divergent South African 

population groups, all known functional FCGR variants as well as recently 

identified FCGR variants that associated with vaccine efficacy in a human HIV-1 

vaccine trial. 

  The third objective was to assess the significance of FCGR variability in 

modulating HIV-1 infection risk in the context of mother-to-child transmission, 

studying both the transmitter (mother) and recipient (infant). 
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 The last objective was to determine if functional FCGR variants impacted on HIV-

1 disease progression in a cohort of treatment naïve, HIV-1 infected women. 
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2.1. Study participants 

Ethical clearance was obtained from the University of the Witwatersrand Ethics 

Committee (Appendix A.1) and written informed consent was obtained from all 

participants. Participant ethnicity was self-reported. 

Healthy participants. FCGR variability is well characterized in Dutch, British and 

European Caucasian individuals of which South African Caucasian individuals are 

descendants, whereas there is a paucity of data for South African Black individuals. Thus, a 

larger cohort of 137 South African Black individuals and a smaller cohort of 32 South 

African Caucasian individuals were recruited for the characterization of FCGR variability in 

South Africans. Fresh ethylenediaminetetraacetic acid (EDTA) anticoagulated blood was 

available for 22 South African Black individuals and 32 South African Caucasian individuals 

for the characterization FcγRIII surface expression. Based on specific genotypic 

characteristics, select individuals were included in further phenotyping and functional 

assays. 

Other population groups. To investigate population differences for FCGR genetic 

variants, genotypic data were obtained from published works as well as the 1000 Genomes 

Project for 379 Caucasian individuals (EUR super population: Tuscani, British, Finnish, and 

Spanish), 286 East Asians (ASN super population: Han Chinese in Beijing, Southern Han 

Chinese, and Japanese), 181 admixed Americans (AMR super population: Colombians, 

Mexicans, and Puerto Ricans), 88 Yoruba Nigerians (YRI), and 97 Luhya Kenyans (LWK). 

Published data were used to compare FCGR3A gene copy number between South African 

Black individuals and Kenyans (Niederer et al 2010), British Caucasian individuals 

(Niederer et al 2010), or Dutch Caucasian individuals (Breunis et al 2009). 

Perinatal HIV-1 transmission cohort. A nested case-control study was undertaken to 

investigate low affinity FCGR variability in mothers and infants recruited as part of four 

perinatal cohorts at two hospitals in Johannesburg, South Africa. Genotypic data from HIV-

1 infected mothers with HIV-1 infected infants (transmitting cases) were compared with 

HIV-1 infected mothers with uninfected infants (non-transmitting controls). All study 

participants were South African Black individuals. The four perinatal cohorts are described 

in detail in Appendix A.2. Cohort 1 comprised mothers and infants who both received one 
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of three short courses of zidovudine and lamivudine combination therapy or placebo. 

Treatment of the mothers started after 34 weeks gestation (Petra Study 2002). Cohort 2 

comprised treatment-naïve HIV-1 infected mothers whose infants received either 

zidovudine or nevirapine as postexposure prophylaxis, and HIV-1 infected mothers and 

their infants that both received single dose nevirapine as part of a demonstration of 

antiretroviral therapy initiative (Gray et al 2005, Schramm et al 2006). Cohort 3 included 

HIV-1 infected mothers who were either treatment-naïve or received single dose 

nevirapine. All infants received nevirapine as postexposure prophylaxis. Cohort 4 included 

HIV-1 infected mothers that received either single dose nevirapine or triple drug 

combination therapy. All infants received nevirapine as postexposure prophylaxis. Over the 

four cohorts, 83 out of 849 (10%) mothers transmitted HIV-1 to their infants. FCGR 

variability was determined for 73 out of the 83 of the transmitting pairs, the remaining 10 

transmitting pairs were excluded due to poor sample quality. For comparison, 

approximately two non-transmitting (NT) pairs matched by cohort were randomly selected 

for each transmitting (TR) pair: Cohort 1 – 6 TR and 12 NT; Cohort 2 – 22 TR and 40 NT; 

Cohort 3 – 25 TR and 51 NT; and Cohort 4 – 20 TR and 41 NT. 

2.2. HIV-1 infection status of infants born to HIV-1 infected mothers 

Maternal HIV-1 RNA levels were determined using the Roche Amplicor RNA Monitor 

assay version 1.5 (Roche Diagnostic Systems, Inc., Branchburg, New Jersey, USA) with a 

lower detection limit of 400 HIV-1 RNA copies/ml. CD4 T-cell counts were determined 

using the FACSCount System from Becton Dickinson (San Jose, CA, USA). 

Infant samples were tested for HIV-1 DNA using the Roche Amplicor Monitor version 1.5 

qualitative PCR assay (Roche Diagnostic Systems). Infants that tested HIV-1 positive at 6 

weeks of age but negative at birth were considered to be infected intrapartum, while 

infants that tested HIV-1 positive at birth were considered infected in utero. Infants that 

were HIV-1 positive at 6 weeks but had no birth sample were categorized as 

‘undetermined’. For transmitting pairs with undetermined mode of transmission, 19/24 

(79.2%) mothers received single dose nevirapine and 2/24 (8.3%) received triple drug 

combination therapy. Since it is known that these interventions reduce intrapartum 

transmission (Forbes et al 2012, Guay et al 1999, Townsend et al 2008), it can be concluded 
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that the majority of infants in that group were likely infected in utero. Thus, in the present 

study, non-transmitting pairs were compared to in utero and intrapartum pairs but also to 

a third group where the in utero and undetermined mode of transmission groups were 

combined, hereafter referred to as the in utero enriched group. 

2.3.  DNA extraction 

Genomic DNA was extracted from EDTA anticoagulated blood samples using the QIAamp 

DNA Mini Kit (Qiagen, Dusseldorf, Germany). 

2.4. Identification of FCGR3A nucleotide variants 

The 9.4 kilobase region that encompasses all elements of the FCGR3A gene were PCR 

amplified using the Expand High Fidelity PCR System (Roche, Mannheim, Germany).  

Sequence-specific primer (SSP)-PCR was used to distinguish between the highly 

homologous FCGR3A and FCGR3B. All PCR reactions were performed using the same 

reaction conditions. In brief, the PCR reaction consisted of ~20 ng genomic DNA as 

template, 2.6 U Expand High Fidelity enzyme mix, 5 l 10× PCR buffer (1.5 mM MgCl2), 200 

M of each deoxynucleotide, 0.4 M of each oligonucleotide primer (Appendix A.3), and 

molecular grade water to a final volume of 50 l.  PCR cycling conditions were 94C for 2 

min, followed by 10 cycles of 94C for 30 seconds, 56C for 30 seconds, and 72C for 1.5 

minutes, followed by a further 25 cycles of 94C for 30 seconds, 56C for 30 seconds, and 

72C for 1.5 minutes + 5 seconds/cycle increment, and finally 72C for 7 min. PCR 

amplicons were sequenced bidirectionally (primer sequences are listed in Appendix 2.4). 

The FCGR3A sequences were aligned with the Genbank FCGR3A reference sequence 

(RefSeqGene NG_0009066). 

2.5. FCGR gene copy number variability and nucleotide variant detection 

Gene copy number and nucleotide variants within the low-affinity FCGR genes were 

determined using the FCGR-specific multiplex ligation-dependent probe amplification 

(MLPA) assay (MRC Holland, Amsterdam, The Netherlands). The principle of the assay is 

illustrated in Figure 2.1. In two multiplex reactions, this assay detects copy number 

variation of the FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B genes as well as functional 

allelic variants: FcγRIIa-H131R (rs1801274); FcγRIIb-I232T (rs1050501), FcγRIIIa-F158V 



Chapter 2 – Materials and Methods 

 

 Page 38 
 

(rs396991), FcγRIIIb-HNA1a/b/c, and promoter variants within FcγRIIb/c (g.-386G>C 

[rs3219018] and g.-120T>A [rs34701572]). Furthermore, the assay detects two FCGR2C 

gene expression variants i.e. c.169T>C in exon 3 and c.798+1A>G (rs76277413). 

The assays were performed according to manufacturer’s instructions using the One-

Tube protocol (Breunis et al 2008, Schouten et al 2002). Genomic DNA was diluted to a 

concentration of 20 ng/ μl in TE (10 mM Tris-HCl, pH 8.2 + 0.1 mM EDTA), of which 5 μl 

was denatured at 98 °C for 5 minutes and cooled to 25 °C; 1.5 μl  MLPA buffer and 1.5 μl 

probemix were added to each sample and incubated for 1 minute at 95 °C followed by an 

18 hour incubation at 60 °C to allow probe hybridization. Adjacently hybridized probes 

were ligated by adding 32 μl Ligase-65 reaction mix (25 μl dH20 + 3 μl Ligase buffer A + 3 

μl Ligase buffer B + 1 μl Ligase-65 enzyme to each sample while at 54 °C, followed by 15 

minutes at 54 °C and 5 minutes at 98 °C. Following ligation, samples were cooled to 20 °C 

and the 10 μl polymerase master mix (7.5 μl dH2O + 2 μl SALSA PCR primer mix + 0.5 μl 

SALSA polymerase) was added. PCR amplification was started directly after addition of the 

polymerase mix with 35 cycles of 95 °C for 30 seconds, 60 °C for 30 seconds and 72 °C for 1 

minute, followed by 20 minutes at 72 °C. 

One μl PCR product diluted in 9.2 μl Hi-Di Formamide with 0.2 μl LIZ size standard were 

separated by capillary electrophoresis on an ABI Genetic Analyzer 3130. Capillary 

electrophoresis reagents and the instrument were from Applied Biosystems. Peak height of 

the amplicons was used as a measure of gene copy number and was analyzed with 

Coffalyzer.NET software (MRC Holland). 

2.6. FCGR2B/C promoter variant discrimination 

Due to the high sequence homology between the promoters of the FCGR2B gene and 

FCGR2C gene the MLPA assay does not discriminate between these genes at positions g.-

386G>C and g.-120T>A. In the event that the minor allele at either position was detected, a 

long-range SSP-PCR and sequencing of the promoter region was performed as previously 

described with modifications (Breunis et al 2008). 

The 15 kilobase region was PCR amplified with the Expand Long Template PCR System 

using Buffer 3 (Roche). Two PCR reactions were performed per sample using a common 
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nonspecific FCGR2B/C sense primer (5’-GCCATCCTGACATACCTCCT-3’), and an FCGR2B-

specific antisense primer (5’-CCCAACTTTGTCAGCCTCATC-3’) or the FCGR2C-specific 

antisense primer (5’-CTCAAATTGGGCAGCCTTCAC-3’). In brief, the PCR reaction consisted 

of ~20 ng genomic DNA as template, 3.75 U Expand Long Template enzyme mix, 5 l 10× 

PCR buffer 3 (2.75 mM MgCl2), 500 M of each deoxynucleotide, 0.3 M of each 

oligonucleotide primer, and molecular grade water to a final volume of 50 l.  The PCR 

conditions were 94°C for 2 minutes, 10 cycles of 94°C for 10 seconds, 60°C for 15 seconds, 

68°C for 12 seconds, followed by 25 cycles of 94°C for 15 seconds, 60 °C for 15 seconds, 

68°C for 12 seconds, with an elongation of each cycle with 20 seconds at 68°C, and finally 

72C for 7 min. 

 

 

Figure 2.1. Multiplex ligation-dependent probe amplification assay principle. 
Genomic DNA is denatured and two sequence specific oligonucleotide probes anneal to 
adjacent DNA target sequences. The two probes are ligated, generating a single DNA 
molecule that is amplified exponentially during a PCR reaction. The presence of a stuffer 
sequence in each probe determines the length of the PCR fragment and is specific for each 
target region on the genome. The variable length fragments are separated and quantified 
by capillary electrophoresis. Differences between DNA samples are detected by comparing 
the resulting MLPA peak patterns. Adapted from (Schouten et al 2002). 
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2.7. FCGR3A intragenic haplotype detection 

A tag variant (g.-1405G>A, rs56199187) was targeted as representative of the 

haplotype. Two separate real-time SSP-PCR reactions were performed per donor using the 

Maxima SYBR Green qPCR Master Mix (Thermo Scientific), with a common antisense 

primer (5’-CAGGAAGTGGGAGGGTTGTT-3’) and two sequence-specific sense primers:  5’-

AGAACTGGAATGGCTGCCTA-3’ for the minor allele and 5’-AACTGGAATGGCTGCCTG-3’ for 

the major allele. Genotypes were assigned following crossing threshold (Ct) shift analysis. 

Real-time PCR cycling was performed on an Applied Biosystems 7500 Real-Time PCR 

System (Applied Biosystems) with the following cycling conditions: 95C for 10 min, 

followed by 40 cycles of 95C for 15 sec, 60C for 5 sec, and 72C for 30 sec. 

2.8. FCGR2C c.134-96C>T (rs114945036) 

Genotyping of the FCGR2C c.134-96C>T variant (rs114945036) and those reported to be 

in complete linkage disequilibrium with it, rs138747765 and rs78603008 (Li et al 2014), 

was done through nucleotide sequencing of the long range SSP-PCR amplicon generated for 

FCGR2B/2C promoter discrimination (described above). 

2.9. Synteny of FCGR2C variants 

The synteny (occurrence on the same chromosome) of nucleotide variants within the 

FCGR2C gene was determined through an SSP-PCR assay targeting a sequence variant 

(c.134-26T) 62-bp upstream and in linkage disequilibrium with the c.169C variant. In brief, 

a ~11-kb fragment was amplified with the Expand Long Template PCR System using Buffer 

3 (Roche). The sequence-specific sense primer (5’-CTGGGCTTCCTCTTCTTCAT-3’) annealed 

in intron 2 and an antisense primer (5’-CAGCATCCCTTCGTCTTCCT-3’) in intron 8. In brief, 

the PCR reaction consisted of ~20 ng genomic DNA as template, 3.75 U Expand Long 

Template enzyme mix, 5 l 10× PCR buffer 3 (2.75 mM MgCl2), 500 M of each 

deoxynucleotide, 0.3 M of each oligonucleotide primer, and molecular grade water to a 

final volume of 50 l. The PCR conditions were 94°C for 2 min, followed by 10 cycles of 

94°C for 10 sec, 60°C for 30 sec, 68°C for 10 min, and 25 cycles of 94°C for 15 sec, 60°C for 

30 sec, 68°C for 10 min, with an elongation of each subsequent cycle with 20 sec, and a final 
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elongation at 72°C for 7 min. Nucleotide variants were identified through nucleotide 

sequencing of the genomic regions encompassing the variants of interest. 

2.10. Nucleotide sequencing 

PCR amplicons were purified with the MSB Spin PCRapace (Stratec, Berlin, Germany) 

and sequenced with BigDye Terminator v3.1 cycle sequencing using the automated 3100 

Genetic Analyzer (Applied Biosystems, Foster City, CA). Sequences were analyzed on 

Sequencher™ version 4.5 (Gene Codes Corporation, Ann Arbor, MI). Multiple sequence 

alignments were performed using MAFFT (Katoh & Standley 2013), and subsequently 

analyzed for the presence of single nucleotide variants in BioEdit version 7.0.0 (Ibis 

Biosciences, Carlsbad, CA). 

2.11. Monoclonal antibodies and reagents 

The following monoclonal antibodies (MAbs) were used to phenotype cell populations: 

anti-CD3 clone UCHT1, anti-CD4 clone SK3, anti-CD8 clone SK1, anti-CD19 clone MΦP9, 

anti-CD14 clone 4G7, anti-CD45 clone 2D1, anti-CD56 clone NCAM16, anti-CD16 clone 3G8 

(aforementioned MAbs were all obtained from BD Biosciences, San Jose, CA, USA), and anti-

CD32b/c clone 2B6 (a gift from MacroGenics, Rockville, MD, USA). For the cytotoxicity 

assays, the anti-HIV-1 A32 MAb (IgG1) was used (NIH AIDS Research and Reference 

Reagent Program). 

2.12.  Quantitation of FcγRIIIa cell surface density 

EDTA anticoagulated blood from participating volunteers was processed within 2 hours 

on the day of collection. FcγRIIIa expression on peripheral blood mononuclear cells in 

whole blood was quantitated by flow cytometry using the Becton Dickinson QuantiBRITE™ 

system. In brief, four tubes containing 50μl of EDTA blood were differentially stained with 

monoclonal antibodies for the identification of CD4+ and CD8+ T lymphocytes, B 

lymphocytes, NK cells, and monocytes. Saturating amounts of a quantifiable FcγRIII/CD16-

PE monoclonal antibody (3G8 clone) with a ≥95% 1:1 PE-to-monoclonal antibody ratio was 

added to each tube and incubated for 15 minutes in the dark at room temperature. Red 

blood cells were lysed with 2 mL FACS lysing solution for 7 minutes in the dark at room 

temperature. Leukocytes were collected by centrifugation at 200×g for 5 minutes, washed 
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and resuspended in 150 μL of 1% paraformaldehyde and stored at 4°C until acquisition on 

a FACSCalibur four-colour flow cytometer (Becton Dickinson Immunocytometry Systems, 

San Jose, CA). Following acquisition, data were analyzed using FlowJo version 7.6.1 

software (Tree Star, San Carlos, CA). To calculate FcγRIIIa surface density as Antibodies 

Bound per Cell (ABC), a Becton Dickinson QuantiBRITE PE sample containing four levels of 

PE was acquired with each experiment. Using the geometric mean and PE molecules per 

bead as provided by the manufacturer for each of the four PE levels, a standard curve was 

calculated on CellQuest software. The slope (m) and intercept (c) was used in the following 

equation: 

 

A PE-labeled mouse IgG1κ isotype control and fluorescence-minus-one (FMO) control 

was used to optimize the identification of FcγRIII-positive cells. All antibodies were 

obtained from BD Biosciences (San Jose, CA). Monocyte subpopulations, 

CD14dimFcγRIIIabright and CD14brightFcγRIIIadim, were defined as previously described 

(Ogonda et al 2010). 

2.13.  Isolation of NK cells 

Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized blood 

using Ficoll-Paque™ PLUS (GE Healthcare, Little Chalfont, Buckinghamshire, United 

Kingdom) and washed three times with phosphate buffered saline (PBS). NK cells were 

negatively selected from PBMCs by magnet-activated cell separation (MACS) using the NK 

Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the 

manufacturer’s instructions. A double-step purification was performed and NK cell purity 

verified by flow cytometry. Viable NK cell numbers were determined by trypan blue 

exclusion through direct counting. The enriched NK cell fragment was immediately used in 

the cytotoxicity assays without resting. 

2.14.  HIV-1 gp120 coated target cells 

The CEM.NKR cell line (NIH AIDS Research and Reference Reagent Program) was used as 

target cells in HIV-1-specific ADCC assays and maintained in RPMI 1640 (Life Technologies, 
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Carlsbad, CA) supplemented with 10% foetal bovine serum (Life Technologies). 

Recombinant gp120 HIV-1 protein representing the subtype B HIV-1 envelope (BaL, NIH 

AIDS Research and Reference Reagent Program) was added to 1 × 106 CEM.NKR target cells 

in a final volume of 1 ml and incubated for 75 minutes at 37°C, mixed gently every 30 min. 

Cells were washed twice and resuspended in culture medium prior to use in cytotoxicity 

assays. 

The optimum amount to coat target cells was determined as previously described 

(Pollara et al 2011). In brief, aliquots of 1 × 106 CEM.NKR target cells were incubated with 

2-fold serial dilutions of recombinant HIVBaL gp120 from 10 µg/ml to 1.25 µg/ml for 75 

minutes at 37°C with gentle mixing every 30 min. Cells were washed twice with PBS and 

incubated in the presence of saturating amounts of a FITC-labelled anti-CD4 clone SK3 

(epitope in gp120 binding site on CD4) for 15 minutes at room temperature, followed by 

centrifugation at 1000 rpm for 5 minutes. Cells were washed with PBS, reconstituted in 

150 µl 1% paraformaldehyde and acquired on the FACS Aria II flow cytometer (Becton 

Dickinson Immunocytometry Systems, San Jose, CA). The concentration of recombinant 

HIVBaL gp120 that resulted in a >50% reduction in anti-CD4 FITC fluorescence relative to an 

unstained control was used to coat target cells in subsequent cytotoxicity assays. 

2.15. Cytotoxicity assays 

ADCC activity was measured as previously described with minor modifications (Pollara 

et al 2011). The principle of the assay is illustrated in Figure 2.2. In brief, 1 × 106 HIV-1 

gp120 coated CEM.NKR target cells were stained with a fluorescent target cell marker 

(TFL4, OncoImmunin, Gaithersburg, MD) and a viability marker (NFL1; OncoImmunin) for 

15 min at 37°C. After two washes with culture medium, viable target cells were counted 

and 1 × 104 cells dispensed to each assay well of a 96-well plate. NK cells were added to 

target cell suspensions at variable effector to target cell ratios (25 μl final volume) followed 

by addition of 75 μl PanCyToxiLux™ Substrate solution (detects both granzyme B and 

upstream caspase activities) and 5 min incubation at room temperature. Twenty-five μl 

anti-HIV-1 A32 (0.5 μg/ml) was added to the effector/target cell suspension. After 

incubation for 15 min at room temperature, the plates were centrifuged for 1 min at 300 × 

g and incubated for 1.5 h at 37°C and 5% CO2. Cells were washed and resuspended in 200 
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μl Wash Buffer, and stored at 4°C until acquisition on the FACS Aria II flow cytometer 

(Becton Dickinson Immunocytometry Systems, San Jose, CA). A minimum of 2.5 × 103 

events representing viable target cells were acquired and data analyzed using FlowJo 

version 7.6.1 software (Tree Star, San Carlos, CA). All assays were performed in triplicate. 

Controls included TFL4 labelled target cells alone to set the proper gate and target and 

effector cells without antibody to determine the baseline granzyme B activity. The gating 

strategy is described in detail by Pollara et al (Pollara et al 2011). 

2.16. Overall FcγR variability profile: Allele scoring system 

To assess the effect of the overall FcγR variability profile, individuals were categorized 

as possessing an overall inhibitory profile, neutral profile, or activatory profile through 

scoring each allele a negative or positive value base on its contribution to the extent of cell 

activation as determined in previously described functional assays. High responder 

variants (FcγRIIa-131H, FcγRIIb-232T, FcγRIIIa-158V, and FcγRIIIb-HNA1a) were assigned 

a positive value of one for each allele. Low responder variants (FcγRIIa-131R, FcγRIIb-232I, 

FcγRIIIa-158F, and FcγRIIIb-HNA1b) were assigned a negative value of one for each allele. 

For gene copy number variability, two copies were considered ‘neutral’, as such one copy 

number was assigned a negative one value, whereas three gene copies were assigned a 

positive value of one, four copies a positive value of two, etc. This approach considers allele 

dose for genes that occur at multiple copies. Once the additive score was determined 

individuals were categorized into profiles of inhibitory (overall negative score), neutral 

(score of zero), and activatory (overall positive score). 

2.17. Computational and statistical analysis 

Comparison of continuous data between two groups was performed by the 

nonparametric Mann-Whitney U test for non-normally distributed data or the t-test for 

data transformed to fit a normal distribution (for example log10 HIV-1 RNA copies/ml). 

Correlation analysis of continuous data between two groups was assessed using the 

nonparametric Spearman rank correlation coefficient. Comparison of categorical data was 

performed with the Fisher’s exact test or the χ2-test. For individuals with two gene copies, 

Hardy Weinberg equilibrium was calculated with the exact test as described by Haldane 
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Figure 2.2. Antibody-dependent cellular cytotoxicity (ADCC) assay principle. During 
the course of a natural HIV-1 infection, HIV-specific IgG will bind to HIV-1 antigens 
expressed on the surface of an infected cell. Engagement of the antigen-bound IgG-Fc with 
an FcγR-bearing effector cell will result in targeted cell death through the release of 
perforin and granzyme by the effector cell. In the in vitro ADCC assay, a human T-
lymphoblastoid cell line is coated with HIV-1 recombinant gp120 and combined with 
gp120-specific IgG1, and natural killer cells as effectors. The cell suspension is incubated in 
the presence of a cell-permeable granzyme B fluorogenic substrate, which generates a 
fluorescent signal when it gets hydrolysed by granzyme B when a target cell receives a 
lethal hit by an effector cell. ADCC activity is measured by determining the percentage of 
granzyme B positive target cells by flow cytometry. Illustration by Ria Lassaunière. 
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(Haldane 1954) for biallelic variants using the Tools for Population Genetic Analysis 

(version 1.3) software. Logistic regression was used to assess the association between the 

outcome (transmission) and the main exposure (genotype). The analysis was adjusted for 

potential confounders as found to be significantly different between groups in the 

univariate analysis. Logistic regression analyses and the t-test were performed in STATA 

version 10.1 (StataCorp LP, College Station, USA). Correlation analysis and the Mann-

Whitney U test were performed with SPSS statistical software (IBM Corporation, Armonk, 

NY). P-values less than 0.05 were considered statistically significant (2-tailed tests). 

For comparison of genotype frequencies, homozygosity for the common allele was 

considered the reference genotype. Where a clear common allele could not be identified as 

in the case of FcγRIIa-H131R and FcγRIIIb allotypes, the chimpanzee ortholog allele was 

considered the reference allele. Due to the large number of possible FcγRIIIb-HNA1a/b/c 

allotype combinations resulting from FCGR3B gene copy number variation, participants 

were categorized according to the presence or absence of each of the three allotypes 

irrespective of gene copy number. The most prevalent combination was selected as 

reference combination. Linkage disequilibrium (LD) of diallelic loci was analyzed in 

Haploview (Barrett et al 2005) where genotypic data for individuals with multiple gene 

copies were considered as homozygous if all copies carried the same allele or heterozygous 

when both alleles were detected. 
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3.1. INTRODUCTION 

Fc-gamma receptor IIIa (FcγRIIIa/CD16a) plays an important role in immunity against 

infection and tumors. It mediates key effector mechanisms through the interaction with the 

Fc portion of IgG, which include antibody-dependent cellular cytotoxicity (ADCC), 

phagocytosis, endocytosis and cytokine release. FcγRIIIa is constitutively expressed on 

natural killer (NK) cells, macrophages, γδ T-cell receptor (TCR) T lymphocytes, and a 

subset of monocytes. FcγRIIIa is also present on pre-B lymphocytes and small subsets of 

CD4+ and CD8+ T lymphocytes (Chauhan & Moore 2012, Clemenceau et al 2008, de Andres 

et al 1999, Gessner et al 1995b). However, the proportion of circulating T and B 

lymphocytes expressing FcγRIIIa in the absence of inflammation, as well as the relative 

expression levels of FcγRIIIa on these and other cell types remain largely undefined. 

FcγRIIIa displays low affinity for monomeric IgG and preferentially bind aggregated IgG 

through multimeric low-affinity, high-avidity interactions which are important in 

recognizing and binding immune complexes. The affinity of FcγRIIIa for IgG and the 

efficiency by which it initiates effector mechanisms is affected by FcγRIIIa variability 

(Breunis et al 2009, Koene et al 1997, Wu et al 1997). The most extensively studied 

FcγRIIIa variant is a polymorphism that predicts a phenylalanine (F) to valine (V) at amino 

acid residue position 158. Compared to the FcγRIIIa-158F allotype, the FcγRIIIa-158V 

allotype displays a higher affinity for IgG1 and IgG3 as well as a capacity to bind IgG4 (Wu 

et al 1997). Furthermore, the FcγRIIIa-158V allotype is associated with significantly higher 

IgG-induced NK cell activity compared to the FcγRIIIa-158F allotype (Vance et al 1993, Wu 

et al 1997). The clinical relevance of this polymorphism is validated by studies in 

lymphoma patients, where possession of the high-affinity allele is associated with better 

clinical responses to the B lymphocyte depleting CD20-specific antibody (Rituximab) 

(Cartron et al 2002). A second polymorphism which is located within the membrane-distal 

Ig-like domain, represents a triallelic variant predicting a leucine (L) to arginine (R) or 

histidine (H) at residue position 48 (de Haas et al 1996). Linkage disequilibrium is 

observed between the FcγRIIIa-L48RH and FcγRIIIa-F158V polymorphism and has thus 

made it difficult to investigate a possible functional role for FcγRIIIa-L48RH (Koene et al 

1997). 
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Variable FcγRIIIa surface densities have also been associated with differences in NK cell 

activation through FcγRIIIa stimulation (Breunis et al 2009, Liu et al 2009). This is likely 

attributed to the activation of FcγRIIIa-bearing cells requiring aggregation of multiple 

FcγRIIIa molecules on their cell surfaces, which primarily results from the cross-linking of 

multiple FcγRIIIa molecules by immune complexes (Daeron 1997). Higher FcγRIIIa surface 

density therefore allows FcγRIIIa-bearing cells to respond more efficiently to target cells 

while lower levels of FcγRIIIa may impair this response. At present little is known about 

the clinical relevance of FcγRIIIa surface density. This is likely attributable to the lack of an 

easily measurable marker for variable FcγRIIIa surface density. One such genetic marker is 

FCGR3A gene copy number. However, variation at this locus is generally low within 

different population groups (2.2% to 9.6%) and is difficult to analyze (Niederer et al 2010). 

To date, there has been no investigation into the possible role of genetic variances within 

the untranslated regions of the FCGR3A gene (promoters, flanking regions and introns) and 

FcγRIIIa surface density. 

While frequencies of the IgG subclass defining FcγRIIIa-F158V alleles are well described 

worldwide, differences in FcγRIIIa cell surface density as well as the proportion of 

circulating leukocytes expressing FcγRIIIa in different ethnic groups is currently undefined. 

With the increasing use of therapeutic antitumor antibodies in oncology (Carter 2006), and 

the possible role of FcγRIIIa-mediated effector mechanisms in protection from HIV-1 

infection and disease progression (Forthal et al 2007a, Lambotte et al 2009), it is becoming 

increasingly important to gain insight into these possible differences. This study therefore 

describes and compares the proportion of circulating FcγRIIIa-positive cell subsets, and 

relative cell-specific FcγRIIIa surface density among healthy individuals from two different 

ethnic groups (South African Caucasian and Black individuals). Our data highlight 

important differences between these population groups. Furthermore, we describe genetic 

variances within the FCGR3A gene, and report the identification of a novel intragenic 

haplotype that is associated with the highest densities of FcγRIIIa expression on NK cells 

and monocytes. 
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3.2. MATERIALS AND METHODS 

3.2.1. Study participants 

Refer to Chapter 2, Materials and Methods section 2.1. In brief, 53 healthy, HIV-1 

uninfected adult volunteers, of whom 22 were Black individuals and 31 Caucasian 

individuals, were recruited for characterization of FcγRIIIa surface density on peripheral 

blood leukocytes. A smaller number of individuals from each population group was 

selected for investigating FCGR3A nucleotide variants associated with FcγRIIIa surface 

density. 

3.2.2. Quantitation of FcγRIIIa cell surface density 

FcγRIIIa expression on peripheral blood mononuclear cells was quantitated using flow 

cytometry as described in Chapter 2, Materials and Methods sections 2.11. and 2.12. In 

brief, whole blood was stained with fluorescently labelled antibodies that allowed 

distinction between CD4+ and CD8+ T lymphocytes; B lymphocytes; NK cells; and 

monocytes. A quantifiable FcγRIII/CD16 monoclonal antibody was used to quantitate 

FcγRIIIa surface expression levels. 

3.2.3. Copy number variation 

FCGR3A gene copy number was determined using the FCGR-specific multiplex ligation-

dependent probe amplification (MLPA) assay as described in Chapter 2, Materials and 

Methods sections 2.3. and 2.5. 

3.2.4. Identification of FCGR3A nucleotide variants 

Polymorphisms within the FCGR3A gene were investigated through nucleotide 

sequencing as described in Chapter 2, Materials and Methods sections 2.4 and 2.10. 

3.2.5. Statistical analysis 

Statistical analysis was performed as described in Chapter 2, Materials and Methods 

section 2.17. In brief, continuous data were compared using the Mann-Whitney U test, 

correlations between groups was performed with the Spearman rank correlation 

coefficient, and categorical data were analysed using the Fisher’s exact test. The 

significance level was set at P < 0.05 (2-tailed tests). 
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3.3. RESULTS 

3.3.1. Cohort 

To control for the potential confounding effect of age and gender on FcγRIIIa surface 

density, individuals between population groups were age and gender matched. 

Demographic characteristics of participants within the two South African ethnic groups are 

described in Table 3.1. 

 

Table 3.1. Demographic characteristics of participants within the two South African 
population groups 

 

 

South African 
Caucasian individuals 

 South African Black 
individuals 

 

P - value 
 

 
n = 31  n = 22  

 Age 

 

 

 

 

  Mean 35 years  39 years  

  Median 32 years  38 years  P = 0.237# 
 Range 22 - 61 years  24 - 66 years  

  
  

 
 

 
 Sex (% males) 40.9%  32.3%  P = 0.559* 

 

 
      

 
#Mann-Whitney test, *Fisher’s exact test 

 

3.3.2. Relative FcγRIIIa cell surface density on leukocytes 

T and B Lymphocytes. FcγRIIIa cell surface expression was detected on a small 

proportion of circulating B lymphocytes (median: 10.1%), CD4+ T lymphocytes (median: 

6.4%), CD8+ T lymphocytes (median: 10.6%), and a larger proportion of CD3+CD4-CD8- T 

lymphocytes which constitutes a combination of γδ and αβ TCR T lymphocytes (median: 

26.0%) (Figure 3.1A). Comparable low FcγRIIIa surface densities were observed for B 

lymphocytes (median: 1319 FcγRIIIa antibodies bound per cell (ABC)), CD4+ T lymphocytes 

(median: 1299 ABC), CD8+ T lymphocytes (median: 1177 ABC), and CD3+CD4-CD8- T 

lymphocytes (median: 1569 ABC) (Figure 3.1B). Black individuals had a smaller median 

proportion of FcγRIIIa+CD8+ T lymphocytes compared to Caucasian individuals (9.6% vs. 

11.7%; P = 0.030). Interestingly, proportions of FcγRIIIa+CD8+ T lymphocyte subset 

appears to increase with age in Black individuals but not Caucasian individuals (R = 0.636, 

P = 0.001; and R = 0.007, P = 0.970, respectively). 
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Innate immune cells. A median of 17.6% of circulating monocytes expressed FcγRIIIa. 

Black individuals had a significantly larger median FcγRIIIa+ monocyte population 

compared to Caucasian individuals (24.2% vs. 16.3%, P < 0.001) (Figure 3.1A). However, 

Black individuals have significantly less FcγRIIIa molecules on the surface of 

CD14dimFcγRIIIabright monocytes (31358 vs. 41268 ABC, P = 0.001) and a trend towards less 

on CD14brightFcγRIIIadim monocytes compared to Caucasian individuals (11139 vs. 13291 

ABC, P = 0.061) (Figure 3.1B). The majority of CD56+ NK cells expressed FcγRIIIa on their 

surfaces (median: 96.5%). Compared to Caucasian individuals, Black individuals had a 

marginally lower median proportion of FcγRIIIa+CD56+ NK cells (95.2% vs. 96.9%, P = 

0.017) and a significantly lower median FcγRIIIa surface density (23835 vs. 36495 ABC, P < 

0.001) (Figure 3.1). 

3.3.3. Correlation between NK cell and monocyte FcγRIIIa cell surface density 

For both population groups a positive correlation was observed for FcγRIIIa cell surface 

density on monocytes and CD56+ NK cells (R = 0.607, P < 0.001; and R = 0.638, P = 0.002, 

respectively) (Figure 3.2A). This correlation was stronger for CD14dimFcγRIIIabright 

monocytes and CD56dimFcγRIIIabright NK cells (Black individuals: R = 0.733, P < 0.001; 

Caucasian individuals: R = 0.808, P < 0.001) (Figure 3.2B) compared to 

CD14brightFcγRIIIadim monocytes and CD56dimFcγRIIIabright NK cells (Black individuals: R = 

0.445, P = 0.043; Caucasian individuals: R = 0.548, P = 0.001) (Figure 3.2C). 

3.3.4. FCGR3A gene copy number 

In this study, a very broad range of FcγRIIIa cell surface density was observed for NK 

cells (10,032-90,142 ABC). Since a gene-dosage effect is observed for the FCGR3A gene and 

FcγRIIIa levels expressed (Breunis et al 2009), the FCGR3A gene copy number was 

determined for all individuals. The contribution of gene copy number to the observed 

variation in FcγRIIIa surface densities appeared to be negligible, since only 2/53 (3.8%) 

individuals had three FCGR3A gene copies, while all other individuals had two copies per 

diploid genome. Both individuals with three copies were Caucasian females and had 

intermediate FcγRIIIa surface densities (23,206 and 36,395 ABC). 
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Figure 3.1. Proportions of FcγRIIIa-positive peripheral mononuclear cells and their 
corresponding FcγRIIIa surface densities observed in two South African population 
groups. (A) Comparison of the proportion of FcγRIIIa/CD16a expressing mononuclear cell 
subsets observed in 22 Black individuals and 31 Caucasian individuals. (B) Comparison of 
FcγRIIIa/CD16a cell surface expression levels (Log10 antibodies bound per cell) between 
Black individuals and Caucasian individuals. The cell subsets analysed are indicated on the 
x-axes. Box-whisker plots depicting the median (horizontal black line), 25th and 75th 
percentile (margins of the box) and the 10th and 90th centiles (whiskers). Outliers are 
indicated with (○). P-values have been indicated. 
 

 

3.3.4. An FCGR3A intragenic haplotype is overrepresented in individuals with 
increased FcγRIIIa surface densities 

To investigate polymorphisms associated with FcγRIIIa surface density, the full-length 

~9.4 kb FCGR3A gene sequence was determined for individuals with the highest and lowest 

FcγRIIIa surface densities observed on CD56dimFcγRIIIabright NK cells. These included 4 

individuals with high (61,153-90,142 ABC), 7 individuals with intermediate (21,331-

50,455 ABC), and 6 individuals with low (10,032-15,304 ABC) FcγRIIIa surface densities. 

Figure 3.3 summarizes the genetic variances identified in these 17 healthy control 

individuals (eight Caucasians and nine Black individuals). 

An FCGR3A intragenic haplotype (IH) comprising three SNPs and an indel was found to 

be overrepresented in individuals with high FcγRIIIa surface densities (4/4 individuals), 

A) B) 
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compared to individuals with intermediate (2/7 individuals) and low surface densities 

(0/6 individuals). The FCGR3A-IH allelic variants include a 5’UTR SNP -1405A 

(rs56199187), an intronic indel +690-691InsC (rs33959719), two alleles of the triallelic 

nonsynonymous SNP +1194A or +1194G (rs10127939, FcγRIIIa-48RH), and a second 

intronic SNP +1842T (rs77825069). Of these, the 5’UTR SNP -1405A and intronic indel 

+690-691InsC are located within putative regulatory regions, a silencer and enhancer 

region, respectively (Figure 3.3). 

 

 

 

 

Figure 3.2.  Spearman’s correlation between FcγRIIIa/CD16a cell surface expression 
levels on monocytes and NK cells for 22 Black individuals and 31 Caucasian 
individuals. (A) A positive correlation for FcγRIIIa/CD16a cell surface densities on 
FcγRIIIa-positive monocytes and CD56+ NK cells. (B) A stronger positive correlation for 
FcγRIIIa/CD16a cell surface densities on the CD14dimFcγRIIIabright monocyte subset and 
CD56dimFcγRIIIabright NK cell subset. (C) A slightly weaker correlation for FcγRIIIa/CD16a 
cell surface densities on the CD14brightFcγRIIIadim monocyte subset and CD56dimFcγRIIIabright 
NK cell subset. Spearman’s correlation coefficient (R) and P-values have been indicated. 
 

 

 

 



 

 

 

Figure 3.3. A schematic representation of genetic variances identified within the FCGR3A gene of 17 healthy adult 
volunteers. (A) The FCGR3A gene with (solid line) newly identified (above solid line) and previously documented (below solid line) 
single nucleotide polymorphisms and insertions/deletions (indels) in dbSNP. The novel 4-variant (3-SNP/1-indel) FCGR3A 
intragenic haplotype is indicated with black arrows (below solid line). (B) Genetic variances relative to gene elements including 
transcriptional regulatory regions, promoter regions, exons, introns, translated regions and untranslated regions. 
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Allelic variants within the FCGR3A-IH were subsequently determined for all individuals 

with two FCGR3A gene copies by sequencing the regions encompassing the four variants 

within the FCGR3A-IH. The FCGR3A-IH was detected in 13/29 (44.8%) Caucasian 

individuals at an allele frequency of 0.22. It was not detected in the present cohort of 22 

Black individuals, neither in a larger cohort of 115 Black individuals (data not shown). 

Complete linkage of all four variants that comprise the FCGR3A-IH was observed in all 

individuals positive for the haplotype. All FCGR3A-IH positive individuals were 

heterozygous at all positions and had significantly higher FcγRIIIa surface densities on 

CD56dimFcγRIIIabright NK cells and CD14dimFcγRIIIabright monocytes compared to FCGR3A-IH 

negative individuals (P < 0.0001, Figure 3.4A). When stratified according to decreasing 

FcγRIIIa surface density on CD56dimFcγRIIIabright NK cells, the haplotype occurred at a 

significantly higher frequency in individuals in the highest quartile (11/13 [84.6%]) 

compared to those in the lowest quartile (2/38 [5.3%]) (Odds Ratio = 99, P < 0.0001). 

To determine the influence of the FCGR3A-IH on the observed population differences, 

FcγRIIIa surface density on CD56dimFcγRIIIabright NK cells were compared between 

Caucasian individuals and Black individuals in the presence and absence of the FCGR3A-IH. 

In the absence of the FCGR3A-IH, the previously observed significant difference between 

the two population groups was no longer significant (P = 0.209 vs. P < 0.001) (Figure 3.1B 

and 3.4B). 

3.3.5. FcγRIIIa-F158V (rs396991) and FcγRIIIa cell surface density 

The FcγRIIIa-158F allele was detected at a frequency of 0.68 in Black individuals and 

0.67 in Caucasian individuals, while the FcγRIIIa-158V allele was detected at a frequency 

0.32 in Black individuals and 0.33 in Caucasian individuals. In Caucasian individuals, a 

genetic linkage was observed between the FCGR3A-IH and the functional FcγRIIIa-F158V. 

All FcγRIIIa-158FF donors were negative for the FCGR3A-IH, while all FCGR3A-IH positive 

donors carried at least one FcγRIIIa-158V allele (Table 3.3). Due to the linkage between the 

FCGR3A-IH and FcγRIIIa-158V variant it was not possible to determine the independent 

role of these variants on FcγRIIIa surface density in Caucasian individuals. 
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In Black individuals, however, the FCGR3A-IH was not detected, thus, allowing for the 

study of the association between the FcγRIIIa-158V variant and FcγRIIIa surface densities. 

In this population group, individuals with at least one FcγRIIIa-158V allele had significantly 

higher FcγRIIIa surface densities compared to FcγRIIIa-158F homozygous carriers (27713 

vs. 17040 ABC, P = 0.011) (Figure 3.4C). 

 

 

 

 
Figure 3.4. FcγRIIIa cell surface densities in relation to genetic variances. (A) FcγRIIIa 
surface densities (FcγRIIIa antibodies bound per cell) on CD56+ NK cells, 
CD14dimFcγRIIIabright monocytes and CD14brightFcγRIIIadim monocytes observed for FCGR3A 
intragenic haplotype positive and negative individuals. (B) The FCGR3A intragenic 
haplotype contributes to the observed significant population differences for FcγRIIIa 
surface densities. (C) An association between the FcγRIIIa-158V allele and FcγRIIIa surface 
densities in individuals negative for the FCGR3A intragenic haplotype. 
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Table 3.3. FcγRIIIa haplotype and 158FV allotype combinations for 22 Black and 29 
Caucasian individuals 

 
   FCGR3A Intragenic Haplotype (IH) Positive or Negative 

FcγRIIIa 
Phenotype 

 
All Individuals  

Black 
Individuals 

 
Caucasian 

individuals 

  n IH - IH+  n IH - IH+  n IH - IH+ 

             
158FF  25 25 -  10 10 -  15 15 - 
158FV  19 11 8  10 10 -  9 1 8 
158VV  7 2 5  2 2 -  5 - 5 
             

 

 

3.4. DISCUSSION 

Fc receptors functionally link the humoral and cellular components of the immune 

system and have a key role in the activation and modulation of the immune response. 

Variations within Fc-gamma receptors have been implicated in autoimmune diseases, 

immunotherapy of cancers and viral infections (Bournazos et al 2009b). It is widely 

accepted that FcγRIIIa binding affinity, as determined by the FcγRIIIa-F158V variant, is a 

strong predictor of its function and is of clinical importance. However, the role of FcγRIIIa 

cell surface density in this regard is less clear and requires further elucidation. The purpose 

of this investigation was therefore to assess variability in proportions of FcγRIIIa-

expressing leukocytes and the relative densities of these molecules, in two ethnically 

divergent South African populations, thereby providing baseline data. 

FcγRIIIa-bearing T lymphocytes have long been recognized (Braakman et al 1992, 

Lanier et al 1985). While FcγRIIIa is constitutively expressed on γδ TCR T lymphocytes, it is 

also detectable at low levels on subsets of CD4+ and CD8+ αβ TCR T lymphocytes 

(Bjorkstrom et al 2008, Chauhan & Moore 2012, Clemenceau et al 2008). In our overall 

study population, 6.4% of CD4+ and 10.6% of CD8+ T lymphocytes expressed FcγRIIIa. Of 

interest, the proportion of FcγRIIIa+CD8+ T lymphocytes reported here was notably higher 

than previously described (3.8%) (Bjorkstrom et al 2008). The discrepancy is likely due to 

variations in assays used to detect surface FcγRIIIa molecules as well as possible 

population differences. While FcγRIIIa+CD4+ T lymphocytes are currently uncharacterized 
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and the function of FcγRIIIa on this cell subset unclear, FcγRIIIa+CD8+ T lymphocytes have 

been characterized as ADCC-mediating terminally differentiated effector memory CD8+ T 

lymphocytes (Clemenceau et al 2008). Together with γδ TCR T lymphocytes, this αβ TCR T 

lymphocyte subset constitute one-fourth of all peripheral lymphocytes capable of FcγRIIIa-

mediated ADCC (Clemenceau et al 2008). In individuals chronically infected with Hepatitis 

C virus, FcγRIIIa+CD8+ T lymphocytes display clonal expansion within peripheral blood and 

infected tissues and may be an underestimated contributor of ADCC (Bjorkstrom et al 

2008). In light of this, it needs to be determined if the observed lower proportion of 

FcγRIIIa+CD8+ T lymphocytes in Black individuals compared to Caucasian individuals is of 

clinical relevance. 

NK cells are the primary mediators of ADCC in peripheral blood and their capacity to 

perform ADCC depends, in part, on FcγRIIIa surface densities (Breunis et al 2009, Liu et al 

2009). While elevated levels of FcγRIIIa surface density potentially allow NK cells to 

respond more efficiently to target cells, lower levels of FcγRIIIa may impair this response. 

The significantly lower FcγRIIIa surface densities on NK cells from Black individuals 

therefore suggest that they may have a lower NK cell-mediated ADCC capacity compared to 

Caucasian individuals. Since NK cell-mediated ADCC responses are increasingly recognized 

as an important component of immune control of HIV-1 (Baum et al 1996, Lambotte et al 

2009), this immune capability becomes particularly important in sub-Saharan African 

populations where the HIV-1 burden is significant. Furthermore, it has been postulated that 

ADCC played a contributory role in the protection against HIV-1 infection in the Thai 

RV144 gp120 vaccine efficacy trial (Karnasuta et al 2005, Rerks-Ngarm et al 2009). These 

population differences in FcγRIIIa surface densities may also have implications for future 

HIV-1 vaccines where mode of protection may involve inducing ADCC-mediating 

antibodies. 

Of interest, FcγRIIIa surface densities on NK cells correlated strongly with that of 

monocytes in both population groups, indicating similar FcγRIIIa expression regulation in 

these cell types. While the significantly lower FcγRIIIa surface densities on 

CD14dimFcγRIIIabright monocytes from Black individuals may indicate reduced FcγRIIIa-

mediated phagocytic capability, the significantly larger proportion of CD14dimFcγRIIIabright 
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monocytes in these individuals may compensate for this. On the other hand, it has been 

demonstrated that FcγRIIIa-positive monocytes are more permissive to productive HIV-1 

infection than the majority of monocytes that do not express FcγRIIIa (Ellery et al 2007). 

While Black individuals may have a larger monocyte population capable of FcγRIIIa-

mediated effector functions, it also presents a larger population of monocytes permissive to 

HIV-1 infection as well as a potential larger HIV-1 reservoir population. 

The number of FCGR3A gene copies per diploid genome directly influences FcγRIIIa 

surface density. In the present study, the contribution of FCGR3A gene copy number 

variation to the observed large variation of FcγRIIIa surface densities was negligible due to 

the low frequency thereof. However, occurring at a higher frequency was a 3-SNP/1-indel 

FCGR3A intragenic haplotype that displayed a strong association with augmented FcγRIIIa 

surface expression. The observed association is likely attributable to two FCGR3A 

intragenic haplotype polymorphisms, -1405G>A SNP (rs56199187) and +690-691InsC 

(rs33959719), that are located within transcriptional regulatory regions. The -1405G>A 

SNP is located within in a ~200 bp putative silencer region (-1579 to -1376 region) 

(Gessner et al 1996). With the use of luciferase reporter assays, it has been demonstrated 

that the deletion of this ~200 bp region results in enhanced luciferase activity (>2-fold) 

(Gessner et al 1996). It is possible that the -1405G>A SNP may disrupt binding of 

repressors to the silencer element, resulting in increased FcγRIIIa expression. Similarly, the 

+690-691InsC indel is located within a regulatory region, a ~700 bp intronic enhancer 

region (+10 to +712 region) that enhances the proximal promoter (Pprox) activity and 

subsequently transcription (Gessner et al 1995b). The presence of the +690-691InsC indel 

in this enhancer region may augment binding of activators and subsequently result in 

upregulation of transcription as has been reported for a polymorphism in a different 

human enhancer region (Alberobello et al 2011). 

Global allele frequencies are available from the 1000 Genomes Project for one FCGR3A 

intragenic haplotype variant located within the putative silencer region (SNP rs56199187) 

(1000_Genomes_Project_Consortium 2010). While complete linkage of all variants within 

the FCGR3A intragenic haplotype in all individuals is not certain, this SNP may serve as an 

approximation of FCGR3A intragenic haplotype frequencies in different population groups. 
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According to data from the 1000 Genomes Project the minor allele of SNP rs56199187 that 

forms part of the FCGR3A intragenic haplotype occurs at a frequency of 0.14 (108/758 

alleles) in Europeans, 0.07 (23/339 alleles) in Americans, 0.01 (5/492 alleles) in Africans 

(East Africans, West Africans and African Americans) and 0.002 (1/572 alleles) in Asians. 

The low detection rate of this SNP in Africans is in agreement with our FCGR3A intragenic 

haplotype findings. However, we were not able to detect the haplotype in an extended total 

of 137 Black individuals, suggesting that frequencies of this allele are possibly even lower 

in Southern African individuals. 

The two alleles of the triallelic polymorphism, FcγRIIIa-48R and -48H, which form part 

of the FCGR3A intragenic haplotype, are of particular interest since this polymorphism has 

been investigated previously. Of interest, notably higher cytophilic IgG (naturally associates 

with FcγRIIIa) has been observed on NK cells from combined FcγRIIIa-48LH and -48LR 

donors compared to FcγRIIIa-48LL donors (FcγRIIIa-F158V was constant between groups) 

(Koene et al 1997). Since cytophilic IgG naturally associates with FcγRIIIa, higher cytophilic 

IgG levels may thus be indicative of high NK cell FcγRIIIa surface density in FcγRIIIa-48LH 

and -48LR donors. In the present study, FcγRIIIa-48LH and -48LR donors (identified as 

FCGR3A intragenic haplotype positive donors) had higher FcγRIIIa surface densities 

compared to FcγRIIIa-48L/L donors (identified as FCGR3A intragenic haplotype negative 

donors), thus supporting our findings of an association between the FCGR3A intragenic 

haplotype and FcγRIIIa increased surface densities. 

In addition to the association between the FCGR3A intragenic haplotype and surface 

densities, we observed a weaker association for the FcγRIIIa-158V allele. This is in 

agreement with other studies that used the same anti-FcγRIIIa antibody clone (3G8) to 

quantitate FcγRIIIa on NK cell surfaces (Hatjiharissi et al 2007, Vance et al 1993). However, 

the 3G8 epitope includes the FcγRIIIa-F158V polymorphic site and the increased affinity of 

the 3G8 clone for the FcγRIIIa-158V allele may erroneously display an association with 

surface density (Congy-Jolivet et al 2008, Tamm & Schmidt 1996). As demonstrated by 

others, the association between the FcγRIIIa-158V allele and surface densities is no longer 

significant when FcγRIIIa is quantitated by monoclonal antibodies targeting different 

regions in the FcγRIIIa molecule (Congy-Jolivet et al 2008, Wu et al 1997). It is, however, 
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unlikely that the observed association between the FCGR3A intragenic haplotype and 

increased surface density is due to variable binding affinity of 3G8 for its epitope. The 3G8 

epitope is situated within the membrane-proximal Ig-like domain of FcγRIIIa and the only 

nonsynonymous polymorphism included in the FCGR3A intragenic haplotype (triallelic 

FcγRIIIa-L48RH polymorphism) is located within the membrane-distal Ig-like domain. 

In conclusion, our findings show baseline inter-individual and population differences in 

FcγRIIIa surface densities on peripheral blood mononuclear cells and in proportions of 

FcγRIIIa-positive leukocytes. Future studies investigating FcγRIIIa-mediated effector 

mechanisms relating to antitumor antibody therapy, autoimmune diseases and protective 

immunity against pathogens need to consider these differences. Importantly, we have 

identified an FCGR3A intragenic haplotype that displayed a significant association with 

increased FcγRIIIa cell surface densities and accounted for the observed population 

differences. As high densities translate to improved cell function (Breunis et al 2009), this 

haplotype represents an important genetic marker for study in various disease outcomes. 
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4.1. INTRODUCTION 

Low affinity Fcγ receptors (FcγR) mediate key immune effector mechanisms through the 

engagement of the Fc portion of IgG. They are involved in multiple biological processes, 

including clearance of antigen/antibody immune complexes, enhancement of antigen 

presentation, antibody-dependent cellular cytotoxicity (ADCC), phagocytosis, regulation of 

antibody production, and activation of inflammatory cells. Two families of low affinity FcγR 

exist, each with different isoforms – FcγRIIa/b/c and FcγRIIIa/b – that display distinct 

cellular distributions and effector functions. 

Functionally, FcγR are divided into activating or inhibitory receptors depending on the 

presence of an immunoreceptor tyrosine-based activation (ITAM) or inhibitory motif 

(ITIM) either in the receptor itself or associated signaling subunits (Daeron 1997). FcγRIIb 

is the only inhibitory receptor, while all other FcγR are activating receptors. The dual 

signals from co-engaged activating and inhibitory FcγR set a threshold for cell activation, 

regulating responses such as phagocytosis, ADCC, and release of inflammatory mediators 

(Nimmerjahn & Ravetch 2007). FcγR variability may modulate this balance and ultimately 

effector function capacity. 

Functional variability of FcγR has been ascribed to variable surface density that affect 

cross-linking and aggregation of these receptors on the cell surface as well as nonsense 

mutations that affect their antibody binding affinity or subcellular localization. Variable 

density of FcγR on the cell surface affects cell signaling and subsequently effector functions 

(Breunis et al 2009, Willcocks et al 2008). Genetic determinants of FcγR surface density 

have been described and include gene copy number variation of FCGR2C, FCGR3A, and 

FCGR3B, and nucleotide variants in transcriptional regulatory regions of FCGR2B (2B.4 

haplotype [g.-386C/g.-120A]) and FCGR3A (four-variant intragenic haplotype) (Breunis et 

al 2009, Lassauniere et al 2013, Su et al 2004a). Amino acid changes in the ligand binding 

domains of FcγRIIa (p.H131R) and FcγRIIIa (p.F158V) change their affinity for IgG 

subclasses. The FcγRIIa-131H variant displays a higher affinity for IgG2 as well as 

increased phagocytosis of IgG2 opsonin (Bruhns et al 2009, Sanders et al 1995, 

Warmerdam et al 1991), while the increased affinity of the FcγRIIIa-158V variant for IgG1, 

IgG2 and IgG4 has been associated with a greater level of NK cell activation (Bruhns et al 
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2009, Wu et al 1997). Unlike the aforementioned variants, the functional polymorphism in 

FcγRIIb (p.I232T) is located in its transmembrane domain where a threonine severely 

impairs the receptor’s inhibitory function through exclusion of FcγRIIb from lipid rafts 

(Floto et al 2005). The different allotypes of FcγRIIIb – HNA1a, HNA1b, HNA1c – arise from 

a combination of amino acid changes. While they do not display variable affinity or 

specificity for IgG subclasses (Bruhns et al 2009), a higher phagocytic capacity has been 

observed for HNA1a compared to HNA1b (Salmon et al 1990), and increased FcγRIIIb 

surface density associated with HNA1c (Koene et al 1998). 

Unlike other FcγR, FcγRIIc occurs predominantly as a pseudogene with a combination of 

minor alleles determining its expression on NK cells, monocytes, neutrophils and B cells (Li 

et al 2013, van der Heijden et al 2012). These include the c.169T>C (p.*57Q) variant in 

exon 3 and two splice-site mutations in intron 6 i.e. c.798+1A>G and c.799-1G>C. When 

expressed, FcγRIIc adds to the repertoire of activating receptors that mediates innate 

immune effector functions such as ADCC (van der Heijden et al 2012), while on B cells it 

counterbalances the negative feedback of FcγRIIb and enhances humoral responses to 

immunization as demonstrated in a human anthrax vaccine trial (Li et al 2013). These 

findings, together with an intronic FCGR2C tag variant (c.134-96C>T, alias FCGR2C 126C>T) 

recently associated with vaccine efficacy (VE) in the Thai phase III RV144 HIV-1 vaccine 

trial (Li et al 2014, Rerks-Ngarm et al 2009), suggest an important role for FCGR2C 

variability in immunization.  With the immunogenicity of the RV144 vaccine regimen being 

evaluated in South Africa (HVTN097 trial) it is important to investigate FCGR2C variability 

in Africans. 

Overall, a paucity of data exists for Africans at the FCGR locus. While select data are 

available for certain African populations, studying genetic variants in Africans is 

complicated by the significant genetic diversity among different African populations. This 

study therefore comprehensively investigates FcγR variability in South African Black 

individuals and South African Caucasian individuals and assesses differences between 

populations of different geographical regions in Africa. 
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4.2. MATERIALS AND METHODS 

4.2.1. Study participants 

Refer to Chapter 2, Materials and Methods section 2.1. In brief, FCGR variability was 

studied in 137 South African Black individuals and 32 South African Caucasian individuals. 

Data from the South African cohort was compared to those of other global populations 

using data from published works and the 1000 Genomes project. 

4.2.2. FCGR gene copy number variability and nucleotide variant detection 

FCGR gene copy number and nucleotide variants were determined using the FCGR-

specific multiplex ligation-dependent probe amplification (MLPA) assay as described in 

Chapter 2, Materials and Methods sections 2.3. and 2.5. Discrimination of FCGR2B/C 

promoter variants were achieved through gene specific PCR amplification and nucleotide 

sequencing as described in Chapter 2, Materials and Methods section 2.6. and 2.10. 

4.2.3. FCGR3A intragenic haplotype detection 

A tag variant (g.-1405G>A, rs56199187) was targeted as representative of the haplotype 

and detected by sequence-specific primer PCR (SSP-PCR) as described in Chapter 2, 

Materials and Methods section 2.7. 

4.2.4. FCGR2C c.134-96C>T (rs114945036) 

Genotyping of the FCGR2C c.134-96C>T variant (rs114945036) and those reported to be 

in complete linkage disequilibrium with it, rs138747765 and rs78603008 (Li et al 2014), 

was done through nucleotide sequencing as described in Chapter 2, Materials and Methods 

sections 2.6. and 2.8. 

4.2.5. Synteny of FCGR2C variants 

The synteny (occurrence on the same chromosome) of nucleotide variants within the 

FCGR2C gene was determined through a sequence-specific primer PCR assay as described 

in Chapter 2, Materials and Methods sections 2.9. and 2.10. 

4.2.6. Monoclonal antibodies and reagents 

Refer to Chapter 2, Materials and Methods section 2.11. 
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4.2.7. Isolation of NK cells 

NK cells were negatively selected from peripheral blood mononuclear cells as described 

in Chapter 2, Materials and Methods section 2.13. 

4.2.8. HIV-1 gp120 coated target cells 

The target cells used in the HIV-1 specific cytotoxicity assays were coated with 

recombinant HIV-1 gp120 envelope protein as described in Chapter 2, Materials and 

Methods section 2.14. 

4.2.9. Cytotoxicity assays 

ADCC activity was measured by flow cytometry using a previously described method 

(Pollara et al 2011). In brief, HIV-1 gp120 coated cells were incubated with anti-HIV-1 IgG 

and isolated NK cells in the presence of a fluorogenic granzyme B substrate. In target cells 

that received a lethal hit, the substrate will be cleaved by granzyme B and a fluorescent 

signal generated. The percentage target cells killed were determined by flow cytometry. 

4.2.10. Computational and Statistical analysis 

Computational and statistical analysis was performed as described in Chapter 2, 

Materials and Methods section 2.17. In brief, the χ2-test was used to compare demographic 

characteristics, overall genotype distribution and gene copy number distribution between 

the study cohorts. Categorical data were analysed with the Fisher’s exact test. Hardy 

Weinberg equilibrium was calculated with the exact test as described by Haldane (Haldane 

1954) for biallelic variants. 

 

4.3. RESULTS 

4.3.1. Duplication/deletion of genomic regions in the low affinity FCGR locus 

Due to sample quality six out of 137 South African Black individuals could not be 

genotyped. Three distinct duplicated/deleted regions of between 45,000 and 68,000 base 

pairs were identified (Figure 4.1). The most common of these regions, previously 

designated CNR1 (Niederer et al 2010), encompasses the FCGR2C-HSP7-FCGR3B genes and 

occurred in 8/32 (25%) Caucasian individuals and 34/131 (30%) South African Black 
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individuals. CNR1 duplications occurred at almost double the frequency of deletions in 

both Caucasian individuals (62.5% vs. 37.5%) and South African Black individuals (70.6% 

vs. 29.4%). A second region encompassing the HSP6-FCGR3A-FCGR2C genes was detected in 

3/32 (9.4%) Caucasian individuals and 5/131 (3.8%) South African Black individuals. Only 

exons 1 to 6 but not exon 7 of the FCGR2C gene were detected and corresponds to the 

previously described CNR2 (Niederer et al 2010), where the FCGR3A gene was duplicated 

but not the 3’UTR of the FCGR2C gene. One South African Black donor carried a deletion of 

CNR1 and a duplication of CNR2. CNR3 was not detected in our cohorts. However, a novel 

copy number region, CNR4, was identified in an African individual where only the complete 

FCGR2C gene was duplicated. The frequency of duplications/deletions of CNR1, CNR2 or 

CNR4 did not differ significantly between the two population groups (P > 0.05 for all 

comparisons). 

4.3.2. Low affinity FCGR gene copy number variation 

CNV is a significant contributor to FcγR variability. It displays a gene-dosage effect and 

alters the cellular distribution of FcγRIIb (CNRI deletion). In concordance to previous 

studies (Breunis et al 2008, Breunis et al 2009), CNV was observed for the FCGR2C, FCGR3A 

and FCGR3B genes but not the FCGR2A and FCGR2B genes (Table 4.1). Overall, FCGR3A CNV 

was low (8/163 [4.9%]). Conversely, CNV of the FCGR3B gene and FCGR2C gene was much 

more frequent, respectively occurring in 8/32 (25%) and 10/32 (31.3%) Caucasian 

individuals, and 34/131 (26%) and 39/131 (29.8%) South African Black individuals. 

FCGR3A CNV did not differ significantly between South African Black individuals and 

Kenyans, British Caucasian individuals or Netherlands Caucasian individuals (P > 0.05 for 

all comparisons). While a greater proportion of South African Black individuals had more 

than two FCGR3B gene copies compared to Dutch Caucasian individuals (18.4% vs. 10.9%), 

this was not statistically significant (P = 0.085). 

4.3.3. Haplotypes predicting FcγRIIb and FcγRIIIa surface density 

Neither the FCGR2B 2B.4 promoter haplotype, nor the FCGR3A intragenic haplotype (IH) 

previously associated with increased expression of these molecules were detected in 131 

South African Black individuals while occurring in 13/32 (40.6%) and 16/32 (50%) South 



 

 

 

 

 

Figure 4.1. A schematic representation of the FCGR locus and the regions subject to duplication/deletion. The gene 
cluster that encompasses HSP6, FCGR3A, FCGR2C, HSP7 and FCGR3B is subject to copy number variation which results from 
duplication or deletion of large genomic segments (45,000 – 68,000 base pairs). These copy number regions (CNR) were 
previously designated CNR1-3 (Niederer et al 2010). CNR1, CNR2 and a novel region, designated CNR4, were detected in South 
African individuals (grey bars) while the previously described CNR3 was not (white bar). CNR1 and CNR2 correspond to CNV 
regions previously identified by MLPA (Breunis et al 2008). The FCGR genes are arranged according to their position on 
chromosome 1. The black arrows indicate the orientation of the gene. Distances between genes are shown. The vertical dotted 
lines ending in solid horizontal bars indicate the position of MLPA probes used to determine copy number variation and 
sequence variations within the respective genes. The grey bars representing CNR1, 2, and 4 indicate regions as detected by 
consecutive MLPA probes, the true ends of these regions are not known. 
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African Caucasian individuals, respectively (Table 4.2). Similarly, in the 1000 Genomes 

populations, the FCGR3A-IH tag variant was not detected in 88 Yoruba Nigerians (YRI) and 

in only 1/97 (1%) Luhya Kenyans (LWK), while occurring in 102/379 (26.9%) Caucasian 

individuals (EUR super population). 1000 Genomes frequency data was not available for 

the FCGR2B 2B.4 haplotype. However, it has been detected in 66/366 (18%) Caucasian 

controls in the study that originally described the FCGR2B 2B.4 haplotype (Su et al 2004b). 

 
 
 
Table 4.1. Copy number variation in the FCGR2 and FCGR3 genes in the present study and 

other studies 
 

 

 
Present study 

 
Other studies 

 

 
South African 

Black individuals 

South African 
Caucasian 

individuals 
 

Kenyan Black 
individuals† 

United Kingdom 
Caucasian 

individuals† 

Netherlands 
Caucasian 

individuals#* 
 

 
n=131 n=32  n=833† n=1484† n=146#, n=129* 

FCGR2A 
  

     
  

  
 2 gene copy 131 (100%) 32 (100%)  -  - 

 
-  

FCGR2B 
  

     
  

  
 2 gene copy 131 (100%) 32 (100%)  -  - 

 
146# (100%) 

FCGR2C 
  

     
  

  
 1 gene copy 9 (6.9%) 3 (9.4%)  -  - 

 
10# (6.8%) 

 2 gene copies 93a (71%) 21 (65.6%)  -  - 
 

116# (79.5%) 
 3 gene copies 25b (19.1%) 6c (18.8%)  -  - 

 
20# (13.7%) 

 4 gene copies 4 (3.1%) 1 (3.1%)  -  - 
 

0# (0%) 
 5 gene copies 0 (0%) 1 (3.1%)  -  - 

 
0# (0%) 

FCGR3A 
  

     
  

  
 1 gene copy 0 (0%) 0 (0%)  4† (0.4%) 20† (1.3%) 2* (1.6%) 
 2 gene copies 126 (96.2%) 29 (90.6%)  814† (97.7%) 1389† (93.7%) 122* (94.6%) 
 3 gene copies 5 (3.8%) 3 (9.4%)  15† (1.8%) 75† (5.1%) 5* (3.9%) 

FCGR3B 
 

      
  

  
 1 gene copy 10 (7.6%) 3 (9.4%)  -  - 

 
9# (6.2%) 

 2 gene copies 97 (74%) 24 (75%)  -  - 
 

121# (82.9%) 
 3 gene copies 20 (15.3%) 3 (9.4%)  -  - 

 
16# (10.9%) 

 4 gene copies 4 (3.1%) 1 (3.1%)  -  - 
 

0# (0%) 
 5 gene copies 0 (0%) 1 (3.1%)  -  - 

 
0# (0%) 

 

   
     

  
  

aOne,  bFour, and  cThree individuals had a deletion of CNR1 and a duplication of CNR2, thus one FCGR2C copy is 
incomplete 
†(Niederer et al 2010) 
#(van der Heijden et al 2012) 
*(Breunis et al 2009) 
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Table 4.2. Genotype and allele frequencies of the FCGR2B promoter haplotypes 

 

 
South African Black individuals 

South African Caucasian 

individuals 

 
 

n=131 n=32 

Genotype Frequency 

 Homozygous -386G-120T (2B.1) 131 (100) 19 (59.4) 

 Heterozygous 0 (0) 12 (37.5) 

 Homozygous -386C-120A (2B.4) 0 (0) 1 (3.1) 

Haplotype Frequency 
    -386G-120T (2B.1) 262 (100) 50 (78.1) 

 -386C-120A (2B.4) 0 (0) 14 (21.9) 

 

 

 4.3.4. FCGR functional variants in different populations 

Genotype and allele frequencies of the low-affinity FCGR functional variants observed in 

the two South African cohorts together with data from the 1000 Genomes Project and other 

studies are listed in Table 4.3. Due to the small South African Caucasian cohort, population 

differences were investigated using published data from larger cohorts of Dutch, British 

and European Caucasian individuals of which South African Caucasian individuals are 

descendants. 

Significant differences were observed between Caucasian individuals and Africans 

(Appendix B.1). Similar to previous reports, the FcγRIIb-232T allele was overrepresented 

in Africans (20.5 – 30.9%) compared to Caucasian individuals (11.5 – 12.3%), with a higher 

proportion of Africans (38.7 – 56.7%) carrying at least one FcγRIIb-232T allele compared 

to Caucasian individuals (19.0 – 21.9%). At the FcγRIIIa-F158V locus, Kenyans had an 

underrepresentation of the FcγRIIIa-158V allele (13.9%) compared to EUR and Dutch 

Caucasian individuals (26.9 – 30.5%, P < 0.001), while South African Black individuals had 

an overrepresentation of the FcγRIIIa-158V allele (36.7%) compared to EUR Caucasian 

individuals (26.9%, P < 0.01). The FcγRIIIb-HNA1a was the dominant allotype in South 

African Black individuals (50.6%), while the HNA1b allotype dominated in South African 

and Dutch Caucasian individuals (60.9% and 62.3%, respectively; P < 0.01). Carriage of at 

least one HNA1c allotype was significantly higher in South African Black individuals 

compared to South African Caucasian individuals (29.8% vs. 6.3%, P < 0.05). 
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Table 4.3.  Genotype and allele frequencies of functional variants for FcγRIIa, FcγRIIb, 
FcγRIIIa, and FcγRIIIb in healthy individuals from South Africa, Kenya, 
Nigeria and Europe. 

 
  

 

  

Present study  
 Black individual genotype/allele 

frequencies from other studies 

 Caucasian genotype/allele 
frequencies from other studies 

 

    

South African 
Black 

individuals 

South African 
Caucasian 
controls 

 
1000 genomes 
Luhya Kenyans 

LWK group 

1000 genomes 
Yoruba Nigerians 

YRI group 

 1000 genomes 
Caucasian 

individuals, EUR 
supergroup 

Netherlands 
Caucasian 

individuals (ref 
2) 

     n=131 n=32  n=97 n=88  n=379 n=100 
FCGR2A (rs1801274) 

 H131R Genotype Frequency                         
   131RR 41 (31.3) 5 (15.6)  23 (23.7) 23 (26.1)  98 (25.9) 20 (20) 
   131HR 64 (48.9) 13 (40.6)  43 (44.3) 47 (53.4)  183 (48.3) 52 (52) 
   131HH 26 (19.8) 14 (43.8)  31 (32) 18 (20.5)  98 (25.9) 28 (28) 
 

 
Hardy Weinberg EQ P = 0.469 P = 1.000  P = 0.309 P = 0.668  P = 0.538 P = 0.692 

 H131R Allele  Frequency                        
   131R 146 (55.7) 23 (35.9)  89 (45.9) 93 (52.8)  379 (50) 92 (46) 
   131H (ref allele) 116 (44.3) 41 (64.1)  105 (54.1) 83 (47.2)  379 (50) 108 (54) 
FCGR2B (rs1050501) 

 
                

 
  

 I232T Genotype Frequency                        
   232II 61 (46.6) 26 (81.3)  42 (43.3) 54 (61.4)  296 (78.1) 81 (81) 
   232IT 59 (45) 5 (15.6)  50 (51.5) 32 (36.4)  73 (19.3) 15 (15) 
   232TT 11 (8.4) 1 (3.1)  5 (5.2) 2 (2.3)  10 (2.6) 4 (4) 
 

 
Hardy Weinberg EQ P = 0.682 P = 0.307  P = 0.058 P = 0.508  P 0.052 P = 0.022 

 I232T Allele Frequency                        
   232I (ref allele) 181 (69.1) 57 (89.1)  134 (69.1) 140 (79.5)  665 (87.7) 177 (88.5) 
   232T 81 (30.9) 7 (10.9)  60 (30.1) 36 (20.5)  93 (12.3) 23 (11.5) 
FCGR3A (rs396991) 

 
                

 
  

 F158V Genotype Frequency                        
   158FF 50 (38.2) 14 (43.8)  74 (76.3) 46 (52.3)  212 (55.9) 48 (48) 
   158FV 63 (48.1) 8 (25)  19 (19.6) 40 (45.5)  130 (34.3) 41 (41) 
   158VV 13 (9.9) 7 (21.9)  4 (4.1) 2 (2.3)  37 (9.7) 7 (7) 
   158FFF 0 (0) 1 (3.1)  -  -   - 

 
1 (1) 

   158FFV 1 (0.8) 1 (3.1)  -  -   - 
 

0 (0) 
   158FVV 4 (3.1) 1 (3.1)  -  -   - 

 
1 (1) 

 
 

Hardy Weinberg EQ 
(2 gene copies only) 

P = 0.335 P = 0.044  P = 0.081 P = 0.083  P = 0.013 P = 0.805 

 F158V Allele Frequency                        
   158F (ref allele) 169 (63.3) 42 (62.7)  167 (86.1) 132 (75)  554 (73.1) 141 (69.5) 
   158V 98 (36.7) 25 (37.3)  27 (13.9) 44 (25)  204 (26.9) 57 (30.5) 
FCGR3B 

 
            

 Genotype Frequency 
 

               
 

  
   HNA1a+/1b-/1c- 31 (23.7) 7 (21.9)  -  -   - 

 
17 (17) 

   HNA1a-/1b+/1c- 15 (11.4) 14 (43.8)  -  -   -  38 (38) 
   HNA1a-/1b-/1c+ 6 (4.6) 0 (0)  -  -   -  -  
  HNA1a+/1b+/1c- 46 (35.1) 9 (28.1)  -  -   -  45 (45) 
  HNA1a+/1b-/1c+ 21 (16) 1 (3.1)  -  -   -  -  
  HNA1a-/1b+/1c+ 10 (7.6) 0 (0)  -  -   -  -  
  HNA1a+/1b+/1c+ 2 (1.5) 1 (3.1)  -  -   -  -  

 Allele Frequency 
 

           
      HNA1a (ref allele) 137 (50.6) 25 (36.2)  -  -   - 
 

77 (37.7) 
   HNA1b 91 (33.6) 42 (60.9)  -  -   - 

 
127 (62.3) 

   HNA1c 43 (15.9) 2 (2.9)  -  -   - 
 

4 (4) 
 Carriage of at least one allele 

 
           

      ≥1 HNA1a 100 (76.3) 18 (56.3)  -  -   - 
 

- 
    ≥1 HNA1b 73 (55.7) 24 (75)  -  -   - 

 
- 

    ≥1 HNA1c 39 (29.8) 2 (6.3)  -  -   - 
 

- 
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Significant differences were also observed between individuals from different 

geographic regions in Africa (Figure 4.2, Appendix B.1). Yoruba Nigerians had a lower 

frequency of the FcγRIIb-232T allele and individuals carrying at least one FcγRIIb-232T 

allele (20.5% and 38.7%, respectively) compared to Luhya Kenyans (30.1% and 56.7%, 

respectively; P < 0.05) and South African Black individuals (30.9% and 53.4%, respectively; 

P < 0.05). Compared to Luhya Kenyans, South African Black individuals were more likely to 

carry at least one FcγRIIa-131R allele (80.2% vs. 68%, P < 0.05). Luhya Kenyans also had a 

lower frequency of the FcγRIIIa-158V allele and individuals carrying at least one FcγRIIIa-

158V allele (13.9% and 23.7%, respectively) compared to South African Black individuals 

(36.7% and 61.8%, respectively; P < 0.0001) and Yoruba Nigerians (25% and 47.8%, 

respectively; P < 0.01). Compared to Yoruba Nigerians, South African Black individuals had 

a greater frequency of the FcγRIIIa-158V allele (36.7% vs. 25%, P < 0.05) and more 

individuals carrying at least one FcγRIIIa-158V allele (61.8% vs. 47.8%) though not 

statistically significant (P = 0.052). For comparisons at the FcγRIIIa-F158V locus, FCGR3A 

CNV was not taken into account for the Kenyan and Nigerian data, however the influence 

thereof was considered negligible due to its low frequency (3.8% in South African Black 

individuals and 2.2% in Kenyans). 

4.3.5. Africans do not express FcγRIIc 

A combination of three minor alleles in FCGR2C predicts the expression of functional 

FcγRIIc (Figure 4.3A). To accurately predict expression of FcγRIIc, the synteny (occurrence 

on the same chromosome) of expression variants was determined for donors carrying the 

c.169C allele (exon 3 p.57Q allele). In all Caucasian individuals that possessed the c.169C 

allele (53%), it was syntenic with the c.798+1G/c.799-1G splice-site alleles, representing 

the previously designated FCGR2C-ORF genotype that yields functional FcγRIIc (Figure 

4.3B). In all South African Black individuals, however, the c.169C allele was syntenic with 

the c.798+1A/c.799-1G alleles, representing the non-classical FCGR2C-ORF1 genotype that 

does not yield functional FcγRIIc (Figure 4.3B). Thus, while 35/131 (26.7%) South African 

Black individuals carried the c.169C allele (classical marker for FcγRIIc expression) none of 

them were predicted to express FcγRIIc based on the c.798+1A splice variant. As expected, 

FcγRIIc surface expression on CD56dim NK cells from donors with the non-classical FCGR2C-
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ORF1 genotype clustered with those homozygous for the c.169T allele (exon 3 p.57*, Figure 

4.3C). 

Data from the 1000 Genomes Project indicates that the splice variant required for 

expression, c.789+G, is subject to significant ethnic variation (Table 4.4). In Caucasian 

populations 9-32.9% of individuals carried at least one c.798+1G allele, while 6.5-14.2% of 

admixed Americans (AMR) and only 0-1.2% of Africans (YRI+LWK) and 0-1% of East 

Asians (ASN) carried this allele. This suggests that expression of FcγRIIc is rare to absent in 

Africans and East Asians compared to up to 32.9% of Caucasian individuals. 

Interestingly, one South African Caucasian donor with a CNR2 duplication (lacks FCGR2C 

exon 7) carried a FCGR2C gene copy predicted to express FcyRIIc, but had no detectable 

levels of FcyRIIc on his NK cells (data not shown). This suggests that the FCGR2C gene copy 

predicted to express FcyRIIc formed part of CNR2, was likely incomplete, and thus not 

expressed on the cell surface. 

 

 

Figure 4.2. A) Genotype and B) Allele distributions of FcγRIIa-R131H, FcγRIIb-I232T, 
and FcγRIIIa-F158V in African individuals from different geographical regions. Luhya 
Kenyans in East Africa, Yoruba Nigerians in West Africa and South African Black 
individuals. 

 

B) A) 



 

 

 

Figure 4.3. Functional genetic variants within FCGR2C that determine its expression on natural killer cells, monocytes 
and neutrophils (van der Heijden et al 2012). A) FCGR2C gene structure indicating the location of expression variants. B) 
Three genotypes have been identified for individuals with the c.196C allele (previously designated ORF allele) depending on 
the combination of splice variants located in intron 6. The c.169C/c.798+1G/c.799-1G genotype results in expression of a 
functional FcγRIIc (blue bar). The two grey bars represent the exon assembly in the mature mRNA from the 
c.169C/c.798+1A/c.799-1G genotype and c.169C/c.798+1A/c.799-1C genotype. Both result in splicing of exon 6 from the 
mRNA, however, the latter genotype also results in the addition of 62 nucleotides from intron 6. While the latter two 
genotypes contain the c.169C allele, neither yield functional FcγRIIc due to the modifications to the processed mRNA. C) 
FcγRIIc surface expression on CD56dim NK cells from donors with different FCGR2C expression genotypes. 
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Table 4.4.  Genotype and allele frequencies of the FCGR2C c.798+1A>G splice variant in the 
1000 Genomes Project super populations 

 
  

      

Caucasian 
individuals 

(EUR)a  

Admixed 
American 

(AMR)b  

African 
Americans 

(ASW)c 

 
East Asians 

(ASN)d  
Africans 

(YRI+LWK)e 

FCGR2C (rs76277413)  

  Genotype Frequency               

 
  

    c.798+1AA   69.4 – 89.9%   87.3 - 91.7%   95.1%  99 - 100% 
 

100% 

    c.798+1AG   9 – 28.6%   5 - 10.9%   4.9%  0 - 1% 
 

0% 

    c.798+1GG   0 – 4.3%   1.5 - 3.3%   0%  0% 
 

0% 

  Allele  Frequency               
 

  

    c.798+1A   83.7 – 94.4%   92.7 - 94.7%   97.5%  99.5 - 100% 
 

100% 

    c.798+1G   5.6 – 16.3%   5.3 - 7.3%   2.5%  0 - 0.5% 
 

0% 

                    
 

  
aConsisting of: CEU – Utah residents with Northern and Western European ancestry; FIN – Finnish in Finland; GBR – 
British in England and Scotland; IBS – Iberian population in Spain 
bConsisting of: MXL – Mexican Ancestry from Los Angeles USA; PUR – Puerto Ricans from Puerto Rico; CLM – Colombians 
from Medellin; Colombia 
cASW – Americans of African Ancestry in South West USA. As a separate group in table to illustrate the difference between 
African Americans and Africans 
dConsisting of: CHB – Han Chinese in Beijing, China; JPT – Japanese in Tokyo, Japan; CHS – Southern Han Chinese 
eTwo African populations combined: YRI – Yoruba in Ibadan, Nigeria; LWK – Luhya in Webuye, Kenya 

 

4.3.6. The complete FCGR2C Thai haplotype is rare to absent in Africans 

A three variant haplotype, with FCGR2C c.134-96C>T reported as the tag variant, has 

recently been associated with vaccine efficacy (VE) in the RV144 HIV-1 vaccine trial in 

Thailand, with an estimated 91% VE in individuals carrying at least one T allele compared 

15% VE in those that did not (Li et al 2014). In the present study, at least one FCGR2C 

c.134-96T allele was observed in 56/115 (48.7%) South African Black individuals at an 

allele frequency of 24.9%. However, the complete FCGR2C Thai haplotype was not 

observed in any of the South African Black individuals as two loci in the haplotype – 

p.T118I (rs138747765) and c.391+111G>A (rs78603008) – were not polymorphic in this 

population group. This was also the case for Yoruba Nigerians, while Luhya Kenyans had a 

haplotype allele frequency of only 0.5%. 

Of the 23/28 (82.1%) South African Caucasian individuals that carried at least one 

FCGR2C c.134-96T allele, only 12/28 (42.3%) Caucasian individuals possessed the 

complete FCGR2C Thai haplotype. This difference resulted from the FCGR2C c.134-96T tag 

allele occurring at a higher frequency than the other constituents of the haplotype (48.7% 

vs. 30.3%) and was therefore not in complete linkage disequilibrium with p.T118I or 

c.391+111G>A in either South African Caucasian individuals (D’ = 1; r2 = 0.282) or EUR 
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Caucasian individuals (D’ = 0.992, r2 = 0.832). The p.T118I and c.391+111G>A were, 

however, in complete linkage disequilibrium (D’ = 1, r2 = 1), with this haplotype occurring 

at a frequency of 30.3% in South African Caucasian individuals and 25.3% in the 1000 

genomes EUR group. 

Individuals that carried minor alleles of the FCGR2C Thai haplotype would not 

necessarily express FcγRIIc.  The FCGR2C c.134-96T allele occurred in 62.5% of Caucasian 

individuals that did not express FcγRIIc and 86.7% in those that did (p = 0.297). However, 

the minor alleles of FCGR2C p.T118I and FCGR2C c.391+111G>A occurred more frequently 

in Caucasian individuals that do not express FcγRIIc (9/13 [69.2%]) compared to those 

that do express FcγRIIc (3/15 [20%], p = 0.020). For the latter donors, the variants 

predicting FcγRIIc expression was syntenic with the major alleles of the aforementioned 

variants. 

4.3.7. Strong linkage disequilibrium between FCGR genetic variants in Caucasian 
individuals but not Africans 

FcγRIIc-T118I, FCGR2C c.798+1A>G, FCGR2B g.-386G>C and FCGR2B g.-120T>A were not 

polymorphic in South African Black individuals leading to notable differences in linkage 

disequilibrium (LD) between the population groups (Figure 4.4A). These differences were 

reflected in LD for Caucasian individuals (EUR super population) and Africans (combined 

Nigerians [YRI] and Kenyans [LWK]) in the 1000 Genomes Project (Figure 4.4B). 

In Caucasian individuals, LD was strong across variants in FCGR3A and FCGR2C as well 

as the promoter region of FCGR2B. In particular, certain alleles were overrepresented in 

donors that expressed FcγRIIc compared to those that do not (Appendix B.2), including the 

FCGR3A intragenic haplotype (IH) previously associated with increased surface density of 

FcγRIIIa (94.1% vs. 0%; D’ = 0.908, r2 = 0.758), the FcγRIIIa-158V allele (88.2% vs. 13%; D’ 

= 0.786, r2 = 0.420), the FCGR2C g.-386C allele (94.1% vs. 0%; D’ = 0.912, r2 = 0.766), and 

the FCGR2B g.-386C/g.-120A haplotype (70.6% vs. 6.7%; D’ = 0.661, r2 = 0.335). The 

combination of alleles suggest a stronger activation phenotype for FcγRIIIa and FcγRIIc, 

which may be countered by a stronger inhibitory phenotype of FcγRIIb. 
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Figure 4.4. Linkage disquilibrium for FCGR variants in Caucasian individuals and 
Black individuals. Linkage disequilibrium plots of variants studied in the low affinity FcγR 
gene locus in A) South African Caucasian individuals (left) and South African Black 
individuals (right); and B) 1000 Genomes EUR super population (left) and combined YRI 
and LWK populations (right). The FCGR3A-IH tag variant (rs56199187), FCGR2C-p.T118I 
(rs1387477765), FCGR2C c.798+1A>G (rs3219018), FCGR2B c.-386G>C (rs3219018), and 
FCGR2B c.-120T>A (rs34701572) were not polymorphic in the South African Black 
individuals cohort. For variants studied in the South African cohorts, 1000 Genomes data 
were available for those indicated with an asterisk. Values and colours reflect r2 (×100) and 
D’/LOD measures of LD, respectively. The black triangle depicts a haplotype block. 
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As the strong LD between the FCGR3A-IH and FcγRIIc expression variants suggest, 

Caucasian individuals predicted to express functional FcγRIIc had significantly higher 

FcγRIIIa surface densities compared to those that did not express FcγRIIc (49 386 

antibodies bound per cell (ABC) vs 31 313 ABC, P = 0.0005, Figure 5A). A similar LD 

between the FCGR3A-IH tag variant and FcγRIIc c.798+1G expression variant (D’ = 0.864, r2 

= 0.598) in the EUR super population suggest this linkage is maintained across all 

Caucasian individuals. 

4.3.8. FcγRIIc and FcγRIIIa do not act synergistically for NK cell mediated ADCC 

Since FcγRIIc is an activating receptor capable of mediating ADCC, a possible synergy 

may exist between FcγRIIc and FcγRIIIa when co-expressed on NK cells. Moreover, the 

concomitant increased FcγRIIIa surface density on NK cells that express FcγRIIc may 

further enhance ADCC capacity. To test this hypothesis, the ADCC capacity of CD56dim NK 

cells from Caucasian donors that express FcγRIIc and had high FcγRIIIa levels (mean MFI: 

22354; range: 16805 – 27472) were compared to that of Black donors that do not express 

FcγRIIc and had low FcγRIIIa levels (mean MFI: 12604; range: 10984 – 14096). To control 

for the confounding effect of other variants on ADCC capacity, donors across the two 

groups were matched for the FcγRIIIa-F158V genotype and none possessed a CNR1 

deletion previously shown to result in expression of FcγRIIb on NK cells (van der Heijden 

et al 2012, Wu et al 1997). 

The enriched CD56dim NK cell fractions isolated from PBMCs exhibited reduced FcγRIIIa 

surface density, with a greater loss associated with higher in vivo levels (Figure 5B). Due to 

the disproportionate loss of FcγRIIIa surface molecules and a reduction in the mean density 

difference between Caucasian individuals and Black individuals from 43% in vivo to 26% ex 

vivo, the functional contribution of FcγRIIIa density could not be accurately assessed. 

FcγRIIc surface density, however, remained constant (Figure 5C). Co-expression of FcγRIIc 

and FcγRIIIa does not appear to have a synergistic effect on ADCC capacity since the 

cytotoxic capacity of NK cells that expressed FcγRIIc was comparable to that of NK cells 

that did not express FcγRIIc (Figure 5D). NK cell purity was >70% (mean: 84.6%), 

contaminating cells were primarily granulocytes as determined by flow cytometric forward 

and side scatter data. 
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Figure 4.5. Phenotypic and functional analysis of FcγRIIIa and FcγRIIc on NK cells. A) 
Comparison of FcγRIIIa surface density on CD56dim NK cells in whole blood from donors 
that express FcγRIIc compared to those that do not. Four Caucasian donors (FcγRIIc +, high 
FcγRIIIa) and four Black donors (FcγRIIc -, low FcγRIIIa) were selected to investigate the 
functional significance of the different NK cell phenotypes. To determine whether the ex 
vivo NK cell phenotypes were comparable to the in vivo phenotypes, B) FcγRIIIa and C) 
FcγRIIc surface density were measured in whole blood and isolated CD56dim NK cell 
fractions. D) The cytotoxic capacity (% granzyme B activity) of NK cells isolated from 
Caucasian individuals (FcγRIIc +, high FcγRIIIa) and Black donors (FcγRIIc -, low FcγRIIIa) 
as measured in cytotoxicity assays. 
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4.3.9. Summary of variability in activating and inhibitory FcγR in South African Black 
individuals and Caucasian individuals 

Figure 4.6 gives a collective representation of the differences observed for FcγR 

variability in two South African population groups. Overall, Caucasian individuals had 

higher frequencies of FcγRIIc and FcγRIIIa variants that enhance cell activation compared 

to Black individuals. Conversely, Black individuals had higher frequencies of FcγRIIb and 

FcγRIIIb variants that enhance cell activation compared to Caucasian individuals as well as 

the absence of a variant that enhances inhibitory effect of FcγRIIb. 

 

 

 

 

Figure 4.6. Summary of FcγR variants with significantly different distributions 
between South African Black and Caucasian individuals. Below each receptor are the 
variants that displayed significant differences between these population groups as well as 
the frequency of individuals carrying at least one of these variants. The shade of the blocks 
represents the effect of the variant on cell activation. ITAM - immunoreceptor tyrosine-
based activation motif; ITIM - immunoreceptor tyrosine-based inhibitory motif; GPI – 
glycosylphosphatidylinositol. 
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4.4. DISCUSSION 

This study describes the first extensive characterization of variability at the low affinity 

FCGR locus in South African Black individuals and comparison of FcγR variability between 

different African populations. The findings of this study highlighted (i) the extensive ethnic 

diversity at the low affinity FCGR gene locus, (ii) potential differences between population 

groups in maintaining the activation/inhibition balance conferred by FcγR variants, and 

(iii) that variation among African populations precludes the use of any one African 

population as proxy for FcγR diversity in Africans. 

Gene copy number variability and high sequence homology between genes at the FCGR 

locus makes it a complex region to study. Collectively, six regions of genomic 

duplication/deletion have been identified at the FCGR locus to date (Breunis et al 2009, 

Niederer et al 2010), of which not all contain complete FCGR gene copies. Copy number 

region (CNR) 2 lacked FCGR2C exon 7, which together with exon 6 encode the main parts of 

the cytoplasmic domain responsible for signal transduction. An individual predicted to 

express FcγRIIc may not do so should the copy carrying the expression variants form part 

of CNR2 as was observed for a Caucasian donor in the present study. 

CNV not only displays a gene-dosage effect but can also affect the cellular distribution of 

FcγRIIb. In the presence of a CNR 1 deletion, the 5’-regulatory sequences of FCGR2C is 

juxtaposed with the coding sequence of FCGR2B, creating a chimeric gene, FCGR2B’ 

(Mueller et al 2013). The result is that FcγRIIb, which is otherwise absent from cytotoxic 

NK cells, is expressed on this cell subset where it inhibits cell activation and ADCC, possibly 

due to co-engagement of FcγRIIIa and FcγRIIb (Mueller et al 2013, van der Heijden et al 

2012). In the present study, 7.6% of South African Black individuals and 9.4% of South 

African Caucasian individuals carried a CNR1 deletion as reflected by carriage of only one 

FCGR3B and FCGR2C gene copy. However, the prevalence of FCGR2B’ may be 

underestimated.  Unless family trios are studied, CNV phase cannot be determined. It is 

therefore plausible that an individual with two copies of CNR1 may carry both a 

duplication and deletion. This hypothesis is supported by a higher detection rate of CNR1 

duplications compared to CNR1 deletions as well as the identification of individuals 

carrying both duplications and deletions of different CNRs in this study and others 
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(Niederer et al 2010). With the potential role of FCGR2B’ in diseases such as systemic lupus 

erythematosus (Mueller et al 2013), an assay that accurately detects this variant may be of 

value in future association studies. 

FCGR copy number and genotypic variability is well described in the South East Kenyan 

population (Niederer et al 2010). However, these data are not representative of all Africans 

as even geographically close African populations display extensive genetic variation 

(Tishkoff et al 2009). This diversity is driven by demographic factors such as fluctuation of 

population size, admixture and migration, as well as region-specific selection pressure 

from living in diverse environments and exposure to infectious diseases (Tishkoff & 

Williams 2002). This African population subdivision is reflected at the FCGR locus. Africans 

carrying at least one FcγRIIb-232T allele ranged from 38.7% in Nigerians to 56.7% in 

Luhya Kenyans, while those carrying at least one FcγRIIIa-158V allele ranged from 23.7% 

in Luhya Kenyans to 61.8% in South African Black individuals. These differences further 

emphasize that a single African population cannot be used as a proxy for diversity across 

Africa. 

The ethnic variation between Caucasian individuals, Africans and Asians at specific sites 

within the FCGR locus is well documented (Adu et al 2012, Bux et al 1997, Chu et al 2004, 

Floto et al 2005, Kaset et al 2013, Li et al 2003, Matsuhashi et al 2012, Nielsen et al 2012, 

Osborne et al 1994, Siriboonrit et al 2003, Tong et al 2003). The FcγRIIa-131H allele occurs 

at a higher frequency in Asians (72-77%) compared to Caucasian individuals (50%), while 

the FcγRIIb-232T allele is overrepresented in both Asians (22%) and African Americans 

(29%) compared to Caucasian individuals (10-13%), and the FcγRIIIb-SH allotype occurs 

more frequently in Africans (20%) compared to Caucasian individuals (2.5%) and Asians 

(0-0.4%). The findings of our study support the aforementioned ethnic variation, but also 

show that the FcγRIIIb-NA1/NA2 allotype distribution differs significantly between South 

African Black individuals and Caucasian individuals. Compared to the NA2 allotype, the 

NA1 allotype increase neutrophil-mediated phagocytosis (Salmon et al 1990). The 

overrepresentation of the NA1 allotype in SA Africans compared to Caucasian individuals 

may translate to variable neutrophil phagocytic capacity between these populations. 
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A significant finding in the present study is the considerable ethnic variation observed 

for FCGR2C variants – Thai haplotype and FcγRIIc expression. The complete FCGR2C Thai 

haplotype was absent from South African Black individuals while detected at an allele 

frequency of 30.3% in South African Caucasian individuals and previously in 13.5% of Thai 

vaccines in the RV144 trial (Li et al 2014). The functional significance of the association 

between the FCGR2C Thai haplotype and vaccine efficacy in the RV144 trial has yet to be 

elucidated. A possible explanation is that the haplotype is a marker for functional variants 

located elsewhere (Li et al 2014).  However, since it is unclear which variant in the 

haplotype is causal (or marker thereof), it is of significance that two of the three variants 

that constitute the haplotype were rare to absent in South African Black individuals, 

Yoruba Nigerians and Luhya Kenyans. With the RV144 regimen scheduled for testing in 

South Africa (HVTN 702 trial), these population differences should be taken into 

consideration. For future studies investigating the FCGR2C Thai haplotype, a different tag 

variant should be used in Africans and Caucasian individuals due to the observed difference 

between detection of the c.134-96C>T variant and possession of the complete haplotype. In 

addition to the latter haplotype, significant population differences were observed for 

FcγRIIc expression. While African individuals are polymorphic at the FCGR2C exon 3 locus 

(c.169T>C; p.*57Q) previously used to predict FcγRIIc expression, none possess the minor 

allele at the donor splice site in intron 7 (c.798+1A>G) that is also required for expression 

of FcγRIIc. Thus, based on Africans (South Africans, Kenyans, and Nigerians) not being 

polymorphic at this locus, none express FcγRIIc compared to up to 33% of Caucasian 

individuals. The minor allele of this splice variant also only occurs in <1% of Asians (Han 

Chinese, Southern Han Chinese, and Japanese) and therefore FcγRIIc expression would be 

expected to be rare to absent. The findings of this study strengthens the importance of not 

only using the FcγRIIc c.169T>C (p.*57Q) variant alone is not sufficient to predict FcγRIIc 

expression in particular for African and East Asian individuals, but also for Caucasian 

individuals (van der Heijden et al 2012). 

When expressed, FcγRIIc adds to the repertoire of activating receptors on B cells, NK 

cells, monocytes, and neutrophils (Li et al 2013, van der Heijden et al 2012). Its presence 

on B cells enhance antibody responses to immunization in transgenic mice as well as in a 
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human Anthrax vaccine trial, where individuals homozygous for the FcγRIIc expression 

variants exhibited a 2.5-fold increase in primary antibody response (Li et al 2013). Since 

FcγRIIc expression is rare to absent in Africans and Asians, this may have implications for 

vaccine efficacy in different population groups. In contrast, the findings of our study 

demonstrate that the presence of FcγRIIc on NK cells does not appear to significantly affect 

ADCC capacity in donors that express FcγRIIc compared to those that do not. While FcγRIIc 

mediate ADCC, it has been demonstrated that its ability to induce ADCC is notably 

decreased compared to FcγRIIIa, a finding consistent in two independent studies that used 

two different anti-FcγRIIc antibody clones (KB61 and AT10) in reverse ADCC assays (Ernst 

et al 2002, van der Heijden et al 2012). FcγRIIc’s effective counterbalancing of FcγRIIb-

mediated inhibition of antibody responses, but lack of synergism with FcγRIIIa on NK cells, 

may be ascribed to antibody affinity. The extracellular region and antibody binding affinity 

of FcγRIIb and FcγRIIc are identical. Thus, FcγRIIc can effectively compete with FcγRIIb for 

ligand binding and counterbalance the inhibitory effect of FcγRIIb. However, compared to 

FcγRIIIa, FcγRIIc has an approximate 10-fold decrease in its affinity for IgG1 (2 × 105 M-1 

vs. 1.5 × 106 M-1) and IgG3 (1.7 × 105 M-1 vs. 5 × 106 M-1) (Bruhns et al 2009). A moderate 

2.5-fold change in FcγRIIIa antibody affinity conferred by the FcγRIIIa-F158V variant 

significantly affects NK cell mediated ADCC capacity (Bruhns et al 2009, Vance et al 1993, 

Wu et al 1997). Therefore, with a 10-fold difference in antibody affinity, FcγRIIc may be 

outcompeted by FcγRIIIa for ligand binding and thus have a nominal contribution to NK 

cell mediated ADCC. However, the contribution of FcγRIIc to ADCC capacity was not 

investigated at variable antibody levels. The high concentrations of the A32 monoclonal 

antibody used in our assays may potentially mask differences between NK cells that are 

FcγRIIc positive and negative and, thus, further studies are needed. Furthermore, the 

functional significance of FcγRIIc needs to be evaluated for other cell types and effector 

functions. 

Although Africans lack expression of this additional activating FcγR, other mechanisms 

may contribute to increased cell activation in this population. Overall, it appears that the 

balance between FcγR-mediated cell activation and inhibition is maintained differently in 

Africans and Caucasian individuals. For activating FcγRs, Caucasian individuals have 
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unique phenotypes, increased FcγRIIIa surface density predicted by FCGR3A-IH and 

FcγRIIc expression, conferring an enhanced activatory phenotype for these receptors 

(Breunis et al 2009, Ernst et al 2002, Lassauniere et al 2013). However, occurring at equal 

frequency was the FcγRIIb 2B.4 promoter haplotype associated with a more inhibitory 

profile for FcγRIIb (Su et al 2004a). Interestingly, all of the aforementioned variants are in 

strong linkage disequilibrium in Caucasian individuals suggesting that these loci may have 

evolved together to maintain a balance between FcγR-mediated cell activation and 

inhibition. In contrast, genetic variants associated with increased surface density of 

FcγRIIIa and expression of FcγRIIc are rare to absent in Africans. However, phenotypes 

that decrease FcγRIIb-mediated inhibition occurs at a higher frequency in Africans 

compared to Caucasian individuals i.e. the FcγRIIb-232T allele and absence of the FcγRIIb 

2B.4 promoter haplotype. It should be noted that, while there appears to be a balance, the 

activating and inhibitory FcγRs are not always expressed on the same cells and the 

differences observed between Africans and Caucasian individuals may lead to an imbalance 

in activation in certain cell subsets. 

Further evidence toward differential evolution of the FCGR locus in Africans and 

Caucasian individuals is that, compared to Caucasian individuals, Africans were not 

polymorphic at loci FCGR2C c.391+111G>A (rs78603008), FCGR2C-T118I (rs1387477765), 

FCGR2C c.798+1G>A (rs3219018) or either of the haplotypes previously associated with 

increased expression of FcγRIIb (haplotype 2B.4) and FcγRIIIa (intragenic haplotype). This 

is unexpected since Africa is the most genetically diverse region in the world and non-

Africans display less genetic variation compared to Africans (Sirugo et al 2008, Tishkoff & 

Williams 2002). The acquisition of these variants in Caucasian individuals, or loss thereof 

in Africans, together with the significant ethnic variation seen for other FcγR variants 

suggest that the FCGR locus is under differential selective pressure in different regions of 

the world. It has been proposed that malaria may be a contributing factor (Clatworthy et al 

2007, Willcocks et al 2010). 

Taken together, the findings of this study demonstrate novel differences for FcγR 

variability between Caucasian individuals and Africans, but also for African populations in 

different geographical regions. This may translate to variable capacities of FcγR-mediated 
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effector functions between population groups and potentially contribute to the observed 

ethnic variation of diseases such as systemic lupus erythematosus and severe lupus 

nephritis that display strong association with FcγR (Bournazos et al 2009b, Korbet et al 

2007, Lau et al 2006). Due to the significant contribution of FcγR-mediated effector 

functions to protective immunity, these population differences may have implications for 

responsiveness to vaccination and immunotherapy, as well as the susceptibility and 

prognosis of infectious diseases. 
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5.1. INTRODUCTION 

In the absence of any interventions, the risk of perinatal HIV-1 transmission is 

approximately 30 - 40% (Lehman & Farquhar 2007). The infant can acquire HIV-1 while in 

utero, during labour and delivery (intrapartum), and through breastfeeding. Despite 

significant advances in the prevention of mother-to-child transmission, a large number of 

infants are still infected every year. Delineating immunological factors that increase the 

risk of perinatal HIV-1 transmission and acquisition may aid in identifying women at risk of 

transmitting HIV-1 to their infants. 

The role of maternal HIV-1-specific antibodies in preventing mother-to-child 

transmission (MTCT) is unclear. Studies have primarily focussed on the involvement of 

neutralizing antibodies and presented conflicting data (Braibant & Barin 2013). 

Investigations into the contribution of effector functions mediated by the crystallisable 

fragment (Fc) of IgG have been largely neglected. The Fc portion of IgG has the capacity to 

recruit potent effector functions of the innate immune system through engagement with 

Fcγ receptors (FcγR), which are widely expressed throughout the haematopoietic system. 

Directly or indirectly FcγRs mediate antiviral processes that include antibody-dependent 

cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), respiratory 

burst, antigen display, antibody production, cell activation, and release of inflammatory 

mediators. 

Accumulating data suggest that FcγR-mediated effector functions are a key component 

in HIV-1 protective immunity (Lewis 2014). In murine and non-human primate models, 

FcγR-mediated mechanisms augment the in vivo ability of broadly neutralizing antibodies 

to block viral entry, suppress viraemia, and confer therapeutic activity (Bournazos et al 

2014, Hessell et al 2007). FcγR-mediated effector functions alone may not be sufficient to 

provide complete protection from HIV-1 infection (Burton et al 2011, Moog et al 2014). 

However, the observed inverse correlation between ADCC responses and HIV-1 infection 

risk in a human vaccine trial with modest efficacy (RV144), suggests that a certain degree 

of protection can be achieved by non-neutralizing antibodies and their effector functions 

(Haynes et al 2012, Rerks-Ngarm et al 2009, Tomaras et al 2013). 
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In vivo FcγR-mediated effector functions are governed by a balance between activating 

and inhibitory FcγRs (Nimmerjahn & Ravetch 2007). This balance is perturbed by 

functionally significant polymorphisms that include amino acid changes that alter the 

binding affinity for antibody subclasses (FcγRIIa-H131R and FcγRIIIa-F158V), subcellular 

localization (FcγRIIb-I232T), glycosylation pattern (FcγRIIIb-HNA1a/b/c), or expression of 

the functional molecule (FcγRIIc-Q57*). In addition, duplication and deletion of the genes 

that encode FcγRIIc, FcγRIIIa, and FcγRIIIb display a gene-dosage effect that correlates 

with effector function (Breunis et al 2009, Willcocks et al 2008). The implications of FcγR 

variability for HIV-1 acquisition has been demonstrated in a human vaccine trial (VAX004) 

and perinatal HIV-1 acquisition where homozygosity for the FcγR alleles that confer 

enhanced antibody binding of FcγRIIIa (p.158V) and FcγRIIa (p.131H), respectively, were 

identified as risk factors for HIV-1 acquisition (Brouwer et al 2004, Forthal et al 2012). To 

date, studies have only focussed on one or two FcγR variants and their association with 

HIV-1 acquisition. However, linkage disequilibrium observed between loci may lead to a 

collective effect of FcγR variants. 

Several lines of evidence suggest that HIV-1 can be transmitted to the infant as cell-free 

and cell-associated virus (Milligan & Overbaugh 2014). Both these infectious components 

have been detected in maternal peripheral blood, genital secretions, and breast milk, with 

virus levels in all these fluids correlating with MTCT (Lehman & Farquhar 2007). Given the 

role of FcγR-mediated effector functions in eliminating cell-free and cell-associated virus, 

these processes may modify the infectiousness of an HIV-1 infected mother. Moreover, 

anti-HIV-1 IgG transferred across the placenta may recruit innate immune effector 

functions in the infant through engaging FcγRs expressed on foetal/infant immune cells, 

and thus modify infant susceptibility. Through investigating the association of all known 

FcγR functional variants in a perinatal HIV-1 transmission cohort, this study indirectly 

assesses the potential role of FcγR-mediated effector functions in mother-to-child 

transmission of HIV-1. 
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5.2. MATERIALS AND METHODS 

5.2.1. Study populations 

Refer to Chapter 2, Materials and Methods section 2.1. In brief, a nested case-control 

study was undertaken to investigate low affinity FcγR variability in mothers and infants 

recruited as part of four perinatal cohorts at two hospitals in Johannesburg, South Africa. 

All study participants were South African Black individuals. Genotypic data from HIV-1 

infected mothers with HIV-1 infected infants (transmitting cases) were compared with 

HIV-1 infected mothers with uninfected infants (non-transmitting controls). FcγR 

variability was determined for 73 of the transmitting pairs. For comparison, approximately 

two non-transmitting pairs matched by cohort were randomly selected for each 

transmitting pair. 

5.2.2. Cohort HIV-1 infection status 

Maternal HIV-1 RNA levels and infant HIV-1 status were determined as described in 

Chapter 2, Materials and Methods section 2.2.  

5.2.3. FCGR gene copy number variability and nucleotide variant detection 

Gene copy number and nucleotide variants within the low-affinity FCGR genes were 

determined using the FCGR-specific multiplex ligation-dependent probe amplification 

(MLPA) assay as described in Chapter 2, Materials and Methods sections 2.3. and 2.5. 

Discrimination of FCGR2B/C promoter variants were achieved through gene specific PCR 

amplification and nucleotide sequencing as described in Chapter 2, Materials and Methods 

section 2.6. and 2.10. 

5.2.4. Overall FcγR variability profile: Allele scoring system 

To assess the effect of the overall FcγR variability profile, individuals were categorized 

as possessing an overall inhibitory profile, neutral profile, or activatory profile. Refer to 

Chapter 2, Materials and Methods section 2.26. In brief, the high responder FcγR variants 

(FcγRIIa-131H, FcγRIIb-232T, FcγRIIIa-158V, FcγRIIIb-HNA1a, and high copy number) 

were each assigned a +1 value, whereas the low responder variants (FcγRIIa-131R, 

FcγRIIb-232I, FcγRIIIa-158F, FcγRIIIb-HNA1b, and low copy number) were each assigned a 
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-1 value. The sum of the allele scores were determined for each individual, which were 

subsequently categorized as possessing an overall inhibitor profile (total score ≤ -1), 

neutral profile (total score = 0), and activatory profile (total score ≥ 1). 

5.2.5. Statistical analysis 

Statistical analysis was performed as described in Chapter 2, Materials and Methods 

section 2.17. In brief, multivariable logistic regression was used to determine the 

association between FcγR functional variants and perinatal HIV-1 transmission. The t-test 

was used to compare normally distributed continuous variables and the Fisher’s exact test 

for categorical data. All analyses were performed in STATA version 10.1 (StataCorp LP, 

College Station, USA) and a p-value of less than 0.05 was considered statistically significant 

(2-tailed tests). 

 

5.3. RESULTS 

5.3.1. Cohort 

Of the 217 mother-infant pairs selected, six infants and three mothers could not be 

genotyped due to poor DNA quality or limited sample availability. Thus, 211 mother-infant 

pairs were analysed with six unmatched mothers and three unmatched infants. The 

characteristics of non-transmitting and transmitting mother-infant pairs in the nested case-

control study are reported in Table 5.1. 

Transmitting mothers had higher viral loads and lower CD4+ T cell counts compared to 

non-transmitting mothers (P < 0.0001 and P = 0.030, respectively). When evaluated 

according to the mode of transmission, viral loads but not CD4+ T cell counts differed 

significantly between non-transmitting mothers and intrapartum transmitting mothers (P 

= 0.0003 and P = 0.092, respectively), in utero transmitting mothers (P = 0.0001 and P = 

0.115, respectively), and in utero enriched transmitting mothers (P = 0.0002 and P = 0.100, 

respectively). Antiretroviral use was similar across non-transmitting mothers, total 

transmitting mothers and in utero transmitting mothers. However, fewer mothers in the 

intrapartum transmission group received single dose nevirapine (sdNVP) compared to 

mothers in the non-transmitting and in utero transmitting groups (P = 0.041 and P = 0.046, 
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respectively). Since maternal sdNVP reduces intrapartum transmission (Guay et al 1999), 

the association between increased intrapartum transmission rates and lower sdNVP use 

was to be expected. Maternal age, parity, reported breast feeding, mode of delivery, and 

infant birth weight did not differ significantly between transmitting mothers (total, 

intrapartum or in utero) and non-transmitting mothers. 

 

 

Table 5.1. Demographic and clinical characteristics of HIV-1 non-transmitting and 
transmitting pairs 

 
Non-Transmitting  Total Transmitting  

Intrapartum 
Transmitting 

 In Utero Transmitting  
In Utero Enriched 

Transmitting 
 N   N   N   N   N  

Maternal viral load 
(log10 copies/ml) 

              

Median (IQR) 132 3.97 (3.18-4.56) 
 

66 4.79 (3.74-5.37)***  26 4.79 (3.85-5.30)***  18 4.89 (4.20-5.47)***  40 4.81 (2.60-5.44)*** 

Maternal CD4+ cell count   
 

           

Mean (std) 131 503 (266) 
 

64 421 (221)*  25 402 (181)  15 409 (276)  39 433 (245) 

Maternal age (years)   
 

           

Mean (std) 142 26.9 (5.3) 
 

72 26.1 (5.2)  28 26.8 (5.1)  20 27.8 (5.7)  44 28.1 (5.1) 

Parity   
 

           

Mean (std) 142 2.1 (1.0) 
 

71 2.2 (1.2)  27 2.3 (1.3)  20 2.2 (1.2)  44 2.2 (1.2) 

Gestation N (%)   
 

           

Preterm <37 weeks 133 16 (12.0) 
 

65 12 (18.5)  24 7 (29.2)  19 4 (21.1)  41 5 (12.2) 

Mode of delivery N (%)   
 

           

Caesarean section 139 15 (10.8) 
 

71 9 (12.7)  27 1 (3.7)  20 3 (15.0)  42 8 (19.0) 

Birth weight (g)   
 

           

Mean (std) 141 2958 (453) 
 

72 2897 (451)  28 2946 (413)  20 2784 (320)*  43 2852 (471) 

Breast fed N (%)   
 

           

> 3 days 143 23 (16.1) 
 

72 7 (9.7)  28 4 (14.3)  20 2 (10.0)  44 3 (6.8) 

Antiretrovirals   
 

           

Nevirapine 144 81 (56.3) 
 

73 42 (57.5)  29 10 (34.5)*  20 13 (65.0)  44 32 (72.7)* 

Triple drug therapy 144 4 (2.8) 
 

73 2 (2.7)  29 0  20 0  44 2 (4.5) 

Other drugs 144 8 (5.6) 
 

73 5 (6.8)  29 1 (3.4)  20 2 (10)  44 4 (9.1) 
 

  

 

  

 

  

 

  

 

  

N – Data were not available for all participants 
For comparisons with Non-Transmitting mothers: *, P < 0.05; ***, P < 0.001 

 

 

5.3.2. Variants not detected in the study cohort 

Similar to what has been found in healthy, HIV-1 uninfected South African Black 
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individuals (refer to Chapter 4), none of the mothers or infants was predicted to express 

functional FcγRIIc or possessed the FcγRIIb 2B.4 promoter haplotype (g.-386C/g.-120A) 

associated with increased surface expression and inhibitory capacity of FcγRIIb. Thus, in 

the present study population, the role of these variants in mother-to-child transmission 

could not be assessed. 

5.3.3. FCGR copy number variability 

FCGR copy number variability (CNV) display a gene dosage effect that correlates with the 

magnitude of FcγR-mediated effector functions and in some instances alter the cellular 

distribution of the inhibitory receptor, FcγRIIb.  Overall, FCGR3A CNV was low, occurring in 

13/217 (6%) of mothers and 9/214 (4.2%) infants. Conversely, FCGR3B CNV was observed 

frequently, occurring in 65/217 (30%) of mothers and 74/214 (34.6%) of infants. Figure 

5.1 represents the distribution of FCGR3A and FCGR3B gene copies relative to mode of 

transmission/acquisition in mothers and infants. 

Maternal FCGR3A and FCGR3B gene copy number did not differ significantly between 

non-transmitting and transmitting mothers (total, intrapartum, in utero, or in utero 

enriched; Figure 5.1A and B, Table 5.2). In the total infant group, however, carriage of a 

single FCGR3B gene copy was significantly associated with reduced odds of infection 

compared to infants with two FCGR3B gene copies as reference (adjusted odds ratio [AOR] 

0.11, 95%CI: 0.01-0.87, P = 0.036; Figure 5.1C and D, Table 5.2). Interestingly, in the 

intrapartum infected group, possession of ≥3 FCGR3B gene copies associated with reduced 

odds of infection compared to two FCGR3B gene copies as reference (AOR 0.10, 95%CI: 

0.01-0.83, P = 0.033). 

5.3.4. FcγR variants and infectiousness of the transmitter/mother 

To determine if FcγR variants associated with the infectiousness of the mother, HIV-1 

transmission rates were assessed across maternal genotypes and allele carriage. Table 5.3 

reports the observed genotype and allele frequencies together with adjusted AOR, 95% CI, 

and P-values for comparisons of transmitting pairs to non-transmitting pairs following 

adjustment for the confounding effect of maternal viral load, CD4+ T cell count, and 

nevirapine use as found to be significantly different in the univariate analysis. 



Chapter 5 – FcγR variability and mother-to-child transmission of HIV-1 

 

 Page 95 
 

 

 

 

Figure 5.1. FCGR copy number variability in HIV-1 infected mothers and their infants. 
The distribution of FCGR3A and FCGR3B gene copy number in mothers (A and B, 
respectively) and infants (C and D, respectively). For comparisons of FCGR3B copy number 
variability, 2 gene copies were considered the reference copy number and compared 
against 1 gene copy and 3 gene copies, respectively. *, P < 0.05; IP, intrapartum; IU, in utero; 
IUe, in utero enriched. 
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Table 5.2. Association of FCGR3A and FCGR3B gene copy number with perinatal 
transmission of HIV-1 

 

 

  Total Infected  Intrapartum Infected  In utero Infected  In utero enriched Infected 

 
 

AOR (95% CI), P value 

Adjusted for mVL+mCD4 
 

AOR (95% CI), P value 

Adjusted for mVL+mNVP 
 

AOR (95% CI), P value 

Adjusted for mVL 
 

AOR (95% CI), P value 

Adjusted for mVL 

Maternal FCGR3A          

2 copies vs 1 copy   Too few values  Too few values  4.20 (0.25-71.32), P=.320  5.90 (0.50-69.85), P=.159 

2 copies vs 3 copies   1.69 (0.40-7.08), P=.472  1.72 (0.28-10.47), P=.555  0.96 (0.09-10.12), P=.973  1.20 (0.21-6.82), P=.839 

Maternal FCGR3B          

2 copies vs 1 copy   0.32 (0.07-1.55), P=.157  0.38 (0.05-3.16), P=.369  Too few values  0.28 (0.04-2.32), P=.241 

2 copies vs ≥3 copies   0.62 (0.26-1.48), P=.283  0.59 (0.17-2.03), P=.404  1.05 (0.31-3.56), P=.937  1.09 (0.46-2.62), P=.845 

          

Infant FCGR3A          

2 copies vs 1 copy   4.35 (0.36-52.55), P=.248  Too few values  2.15 (0.18-25.54), P=.545  2.74 (0.36-20.87), P=.329 

2 copies vs 3 copies   0.71 (0.07-6.99), P=.765  Too few values  Too few values  1.10 (0.11-11.05), P=.936 

Infant FCGR3B          

2 copies vs 1 copy   0.11 (0.01-0.87), P=.036  Too few values  Too few values  0.18 (0.02-1.41), P=.102 

2 copies vs ≥3 copies   0.51 (0.22-1.19), P.=121  0.10 (0.01-0.83), P=.033  0.73 (0.20-2.63), P=.626  0.92 (0.39-2.16), P=.853 

  

In the unadjusted analysis, the FcγRIIIa-F158V and FcγRIIIb-HNA1a/b/c showed 

significant associations with transmission (Appendix C.1-4). For total transmitting pairs 

and the in utero enriched group, mothers homozygous for the FcγRIIIa-158V allele were 

less likely to transmit HIV-1 to their infants compared to mothers homozygous for the 

FcγRIIIa-158F allele (odds ration [OR] 0.35, 95%CI: 0.14-0.88, P = 0.026; and OR 0.32, 

95%CI: 0.11-0.92, P = 0.034, respectively). Similarly, carriage of at least one FcγRIIIa-158V 

allele was significantly associated with reduced odds of transmission in both groups (OR 

0.55, 95%CI: 0.31-0.97, P = 0.039; and OR 0.3, 95%CI: 0.15-0.61, P = 0.001, respectively). In 

the in utero enriched group, heterozygosity was also associated with reduced odds of 

transmission (OR 0.30, 95%CI: 0.14-0.65, P = 0.003). For the FcγRIIIb-HNA1a/b/c 

allotypes, mothers that carried a HNA1b/HNA1c combination were more likely to transmit 

HIV-1 compared to mothers that carried a HNA1a/HNA1b combination (predominant 

combination and thus selected as reference). This comparison was significant for total 

transmitting pairs (OR 2.84, 95%CI: 1.18-6.84, P = 0.020), in utero transmitting pairs (OR 

6.79, 1.44-32.16, P = 0.016), and in utero enriched transmitting pairs (OR 3.45, 95%CI: 

1.26-9.43, P = 0.016). 
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In the adjusted analysis, the association of the FcγRIIIa-F158V variant remained 

significant. For total transmitting pairs, homozygosity for the FcγRIIIa-158V allele was 

associated with a ~75% reduction in the odds of transmitting HIV-1 compared to 

homozygosity for the FcγRIIIa-158F allele (AOR 0.24, 95%CI: 0.08-0.74, P = 0.013), while 

carriage of at least one FcγRIIIa-158F allele was associated with a 3.36 times higher odds of 

HIV-1 transmission (AOR 3.36, 95%CI: 1.16-9.72, P = 0.025). While a similar association 

was observed for intrapartum and in utero transmitting pairs in the adjusted analysis, the 

comparisons were not significant (Table 5.3). For the in utero enriched transmitting pairs 

however, both homozygosity for the FcγRIIIa-158V allele and heterozygosity was 

associated with a >60% reduction in the odds of transmitting HIV-1 (AOR 0.25; 95%CI: 

0.07-0.83, P = 0.023; and AOR 0.37, 95%CI: 0.16-0.85, P = 0.019, respectively), while 

carriage of at least one FcγRIIIa-158V allele was associated with a 67% reduction in the 

odds of transmission (AOR 0.33, 95%CI: 0.15-0.70, P = 0.004). 

Unlike in the unadjusted analysis, the FcγRIIa-H131R variant significantly associated 

with transmission following adjustment for potential confounders. For total transmitting 

pairs, mothers homozygous for the FcγRIIa-131R allele were more likely to transmit HIV-1 

to their infants compared to mothers homozygous for the FcγRIIa-131H allele (AOR 2.99, 

95%CI: 1.09-8.24, P = 0.034), while carriage of at least one FcγRIIa-131H allele was 

associated with a 56% reduction in the odds of transmitting HIV-1 (AOR 0.44, 95%CI: 0.22-

0.91, P = 0.026). This association was also significant for intrapartum transmitting pairs 

and in utero transmitting pairs for both FcγRIIa-131R homozygosity (AOR 4.21, 95%CI: 

1.13-15.72, P = 0.032; and AOR 17.9, 95%CI: 1.86-172.72, P = 0.012, respectively) and 

carriage of at least one FcγRIIa-131H allele (AOR 0.27, 95%CI: 0.10-0.74, P = 0.011; and 

AOR 0.25, 95%CI: 0.08-0.78, P = 0.016, respectively). While not statistically significant, a 

similar association was observed for the in utero enriched transmitting pairs (Table 5.3). 

In summary, the variants that affect the IgG subclass binding affinity of FcγRIIa and 

FcγRIIIa and consequently the effector functions mediated by these receptors were 

associated with the infectiousness of the mother. In particular, the alleles with decreased 

affinity for IgG were associated with an increased odds of HIV-1 transmission (FcγRIIa-

131R and FcγRIIIA-158F).  
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Table 5.3. Genotypes and allele carriage in HIV-1 non-transmitting and transmitting mothers 

 

  
Non-

Transmitting 
 

Total Transmitting 
 

Intrapartum Transmitting 
 

In Utero Transmitting 
 

In Utero Enriched Transmitting 

  N (%) 
 

N (%) 
AOR (95% CI), P value 

Adjusted for VL+CD4 

 
N (%) 

AOR (95% CI), P value 
Adjusted for VL+mNVP 

 
N (%) 

AOR (95% CI), P value 
Adjusted for VL 

 
N (%) 

AOR (95% CI), P value 
Adjusted for VL 

FCGR2A (rs1801274)                   
Genotype                           

 131HH (ref) 38 (26.4)  14 (19.2) 1  6 (20.7) 1  2 (10.0) 1  8 (18.2) 1 
 131HR 67 (46.5)  32 (43.8) 1.48 (0.56-3.82), P=.427  12 (41.4) 1.20 (0.35-4.17), P=.769  9 (45.0) 6.93 (0.75-64.31), P=.890  20 (45.5) 2.37 (0.78-7.18), P=.128 
 131RR 39 (27.1)  27 (37.0) 2.99 (1.09-8.24), P=.034  11 (37.9) 4.21 (1.13-15.72), P=.032  9 (45.0) 17.9 (1.86-172.72), P=.012  16 (36.4) 3.58 (1.13-11.36), P=.031 

Allele carriage                          
 ≥1 131Ha allele 105 (72.9)  46 (63.0) 0.44 (0.22-0.91), P=.026  18 (62.1) 0.27 (0.10-0.74), P=.011  11 (55.0) 0.25 (0.08-0.78), P=.016  28 (63.6) 0.52 (0.24-1.13), P=.098 
 ≥1 131R allele 106 (73.6)  59 (80.8) 1.95 (0.79-4.82), P=.147  23 (79.3) 1.93 (0.62-5.96), P=.255  18 (90.0) 10.21 (1.18-88.48), P=.035  36 (81.8) 2.80 (0.98-8.04), P=.055 

                   

FCGR2B (rs1050501)                    
 

   
Genotype                          

 232II (ref) 68 (47.2)  30 (41.1) 1  11 (37.9) 1  10 (50.0) 1  19 (43.2) 1 
 232IT 61 (42.4)  33 (45.2) 1.29 (0.62-2.65), P=.494  15 (51.7) 1.78 (0.67-4.70), P=.245  6 (30.0) 0.78 (0.24-2.53), P=.677  18 (41.0) 1.14 (0.51-2.54), P=.745 
 232TT 15 (10.4)  10 (13.7) 2.09 (0.73-5.93), P=.168  3 (10.3) 1.77 (0.38-8.19), P=.463  4 (20.0) 2.61 (0.54-12.54), P=.230  7 (15.9) 1.93 (0.61-6.09), P=.262 

Allele carriage                          
 ≥1 232I allele 129 (89.6)  63 (86.3) 0.55 (0.21-1.44), P=.223  26 (89.7) 0.77 (0.19-3.19), P=.716  16 (80.0) 0.34 (0.78-1.52), P=.159  37 (84.1) 0.55 (0.19-1.62), P=.281 
 ≥1 232T allele 76 (52.8)  43 (58.9) 1.43 (0.73-2.84), P=.299  18 (62.1) 1.78 (0.70-4.52), P=.227  10 (50.0) 1.04 (0.36-3.00), P=.943  25 (56.8) 1.29 (0.61-2.71), P=.510 

                   

FCGR3A (rs396991)                   
Genotype                   

 158F/FF/FF (ref) 50 (34.7)  35 (47.9) 1  7 (24.1) 1  11 (55.0) 1  28 (63.6) 1 
 158FV/FFV/FVV 66 (45.8)  31 (42.5) 0.64 (0.31-1.32), P=.224  20 (67.0) 1.22 (0.45-3.34), P=.693  8 (40.0) 0.69 (0.22-2.11), P=.513  11 (25.0) 0.37 (0.16-0.85), P=.019 
 158V/VV 28 (19.4)  7 (9.6) 0.24 (0.08-0.77), P=.016  2 (6.9) 0.15 (0.02-1.33), P=.088  1 (5.0) 0.14 (0.02-1.29), P=.083  5 (11.4) 0.25 (0.07-0.83), P=.023 

Allele carriage                          
 ≥1 158F allele 116 (80.6)  66 (90.4) 3.26 (1.10-9.65), P=.033  27 (93.1) 7.75 (0.96-62.75), P=.055  19 (95.0) 5.85 (0.69-49.97), P=.106  39 (88.6) 2.66 (0.83-8.51), P=.100 
 ≥1 158V allele 94 (65.3)  38 (52.1) 0.50 (0.25-1.00), P=.051  22 (75.9) 0.88 (0.33-2.35), P=.792  9 (45.0) 0.49(0.17-1.44), P=.194  16 (36.4) 0.33 (0.15-0.70), P=.004 

                  

FCGR3B                  
Genotype                   

HNA1a+/1b-/1c- 33 (22.9)  13 (17.8) 0.59 (0.21-1.66), P=.316  4 (13.8) 0.53 (0.13-2.07), P=.361  6 (30.0) 1.70 (0.34-8.55), P=.520  9 (20.5) 0.63 (0.21-1.86), P=.398 
HNA1a-/1b+/1c- 14 (9.7)  7 (9.6) 1.85 (0.55-6.17), P=.317  4 (13.8) 1.81 (0.41-8.05), P=.437  1 (5.0) 2.73 (0.22-33.94), P=.435  3 (6.8) 1.22 (0.28-5.30), P=.788 
HNA1a-/1b-/1c+ 5 (3.5)  0 (0) -  0 (0) -  0 (0) -  0 (0) - 
HNA1a+/1b+/1c- (ref) 49 (34.0)  23 (31.5) 1  10 (34.5) 1  3 (15.0) 1  13 (29.5) 1 
HNA1a+/1b-/1c+ 20 (13.9)  11 (15.1) 0.96 (0.33-2.80), P=.944  5 (17.2) 1.09 (0.26-4.54), P=.908  4 (20.0) 2.33 (0.42-12.81), P=.331  6 (13.6) 0.95 (0.29-3.04), P=.925 
HNA1a-/1b+/1c+ 13 (9.0)  16 (21.9) 1.95 (0.69-5.56), P=.210  5 (17.2) 1.40 (0.34-5.77), P=.641  5 (25.0) 4.53 (0.7925.93), P=.090  11 (25.0) 2.10 (0.69-6.38), P=.189 
HNA1a+/1b+/1c+ 9 (6.3)  3 (4.1) 0.36 (0.21-1.66), P=.316  1 (3.4) 0.31 (0.03-3.12), P=.321  1 (5.0) 0.77 (0.06-9.33), P=.840  1 (2.3) 0.43 (0.08-2.41), P=.336 

Allele carriage                   
 ≥1 HNA1a allotype 111 (77.1)  50 (68.5) 0.61 (0.29-1,27), P=.186  20 (69.0) 0.66 (0.25-1.75), P=.409  14 (70.0) 0.63 (0.16-2.11), P=.454  30 (68.2) 0.65 (0.29-1.49), P=.309 
 ≥1 HNA1b allotype 85 (59.0)  49 (67.1) 1.97 (0.95-4.07), P=.067  20 (69.0) 1.83(0.70-4.81), P=.217  10 (50.0) 1.07 (0.37-3.13), P=.902  29 (65.9) 1.83 (0.82-4.04), P=.135 
 ≥1 HNA1c allotype 47 (32.6)  30 (41.1) 1.02 (0.51-2.06), P=.946  11 (37.9) 0.96 (0.37-2.47), P=.930  10 (50.0) 1.52 (0.53-4.36), P=.441  19 (43.2) 1.18 (0.55-2.51), P=.676 
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5.3.5. Linkage between the FcγRIIa and FcγRIIIa variants in the mothers 

The genes that encode FcγRIIa and FcγRIIIa are contiguous on chromosome 1 and, thus, 

due to their close proximity it is possible that the variants, and their association with HIV-1 

transmission, were linked. Over the entire cohort, the linkage disequilibrium was moderate 

between FcγRIIa-H131R and FcγRIIIa-F158V (D’ = 0.434, r2= 0.143). 

 In particular, the variants that exhibited an association with increased odds of HIV-1 

transmission, FcγRIIa-131RR genotype, FcγRIIIa-158FF genotype and carriage of at least 

one FcγRIIIa-158F allele, were in linkage disequilibrium (Table 5.4). The FcγRIIIa-158FF 

genotype occurred at a higher frequency in mothers bearing the FcγRIIa-131RR genotype  

(63.6%) compared to heterozygous mothers (23.8%) or those carrying the FcγRIIa-131HH 

genotype (28.8%). Moreover, 64/66 (96.9%) mothers bearing the FcγRIIa-131RR genotype 

carried at least one FcγRIIIa-158F allele. The association of the FcγRIIa-131RR/FcγRIIIa-

158FF haplotype with HIV-1 transmission was not significant. However, the association of 

the FcγRIIa-131RR/FcγRIIIa-158FF(FV) haplotype with HIV-1 transmission was slightly 

stronger for the total and in utero transmitting group, but notably stronger for the 

intrapartum transmitting group compared to FcγRIIa-131RR alone (Table 5.5.). 

The genotypes and alleles that associated with decreased odds of HIV-1 transmission, 

FcγRIIIa-158V homozygosity and carriage of at least one FcγRIIa-131H allele, were in 

linkage disequilibrium. The FcγRIIIa-158VV genotype was overrepresented in mothers 

bearing the FcγRIIa-131HH genotype (34.6%) and heterozygous mothers (28.6%) 

compared to those bearing the FcγRIIa-131RR genotype (3%), with 33/35 (93.5%) 

individuals bearing the FcγRIIIa-158VV genotype carrying at least one FcγRIIa-131H allele 

(Table 5.4). 

 

Table 5.4. Association between the FcγRIIa-H131R and FcγRIIIa-F158V genotypes 

 FcγRIIa genotype 

FcγRIIIa genotype 
131HH 131HR 131RR 

N = 52 N = 99 N = 66 

158F/FF/FFF           15 (28.8)          28 (23.8)          42 (63.6) 

158FV/FFV/FVV           19 (36.5)          56 (47.6)          22 (33.3) 

158V/VV           18 (34.6)          15 (28.6)            2 (3.0) 
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Table 5.5. Associations between HIV-1 perinatal transmission and the maternal FcγRIIa-
131RR/FcγRIIIa-158F haplotype and FcγRIIa-131RR genotype alone 

 

 

Total transmitting  Intrapartum transmitting  In utero transmitting  In utero enriched transmitting 

AOR (95% CI), P value 

Adjusted for VL+CD4 

 AOR (95% CI), P value 

Adjusted for VL+mNVP 

 AOR (95% CI), P value 

Adjusted for VL 

 AOR (95% CI), P value 

Adjusted for VL 

131RR alone 2.99 (1.09-8.24), P=.034  4.21 (1.13-15.72), P=.032  17.9 (1.86-172.72), P=.012  3.58 (1.13-11.36), P=.031 

131RR-158F(*) 

haplotype 2.48  (1.20-5.12), P=.014  4.08 (1.47-11.36), P=.007  4.39 (1.40-13.75), P=.011  2.09 (0.95-4.56), P=.066 

131RR-158FF 

haplotype 1.80 (0.81-3.99), P=.150  1.67 (0.52-5.34), P=.390  3.08 (0.93-10.18), P=.065  2.29 (0.99-5.33), P=.054 

* The haplotype is for carriage of at least one FcγRIIIa-158F allele and thus represents both the 158FF and 158FV genotypes 

 

 

5.3.6. FcγR variants and susceptibility of the recipient/infant 

The role of FcγR variants in infant susceptibility to HIV-1 acquisition was subsequently 

assessed. Table 5.6 reports the observed genotype and allele frequencies together with 

AOR, 95% CI, and P-values for comparisons of infected infants to exposed-uninfected 

infants when controlled for the confounding effect of maternal factors as mentioned in the 

previous section. 

In the unadjusted analysis, the FcγRIIb-I232T variant and FcγRIIIb-HNA1a/b/c allotypes 

associated with infant susceptibility to HIV-1 infection (Appendix C.5-8). For the in utero 

infected group, infants homozygous for the FcγRIIb-232T allele had a 3.42 higher odds of 

acquiring HIV-1 compared to infants that carried the FcγRIIb-232II genotype (OR 3.42, 

95%CI: 1.03-11.39, P = 0.044). For the total infected group and intrapartum infected group, 

infants homozygous for the FcγRIIIb-HNA1a allotype were less likely to acquire HIV-1 

compared to infants that carried the FcγRIIIb-HNA1a/HNA1b reference combination (OR 

0.32, 95%CI: 0.12-0.82, P = 0.018; and OR 0.18, 95%CI: 0.04-0.87, P = 0.032, respectively). 

In the in utero enriched group, carriage of all three FcγRIIIb allotypes (HNA1a/b/c) were 

associated with a 5.63 higher odds of acquiring HIV-1 compared to infants that carried the 

FcγRIIIb-HNA1a/HNA1b reference combination (OR 5.63, 95%CI: 1.36-23.19, P = 0.017). 

In the adjusted analysis, homozygosity for the FcγRIIIb-HNA1a allotype remained 

significantly associated with reduced odds of HIV-1 acquisition in the total infected infant 
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Table 5.6. Genotypes and allele carriage in HIV-1 exposed-uninfected and infected infants 

  
Exposed-

Uninfected 
 

Total Infected 
 

Intrapartum Infected 
 

In Utero Infected 
 

In Utero Enriched Infected 

  N (%) 
 

N (%) 
AOR (95% CI), P value 

Adjusted for mVL+mCD4 

 
N (%) 

AOR (95% CI), P value 
Adjusted for mVL+mNVP 

 
N (%) 

AOR (95% CI), P value 
Adjusted for mVL 

 
N (%) 

AOR (95% CI), P value 
Adjusted for mVL 

FCGR2A (rs1801274)                   
Genotype                           

 131HH (ref) 30 (20.8)  17 (24.3) 1  7 (25.0) 1  4 (22.2) 1  10 (23.8) 1 
 131HR 72 (50.0)  33 (47.1) 0.99 (0.41-2.41), P=.983  13 (46.4) 0.65 (0.20-2.10), P=.474  6 (33.3) 0.66 (0.13-3.19), P=.602  20 (47.6) 0.83 (0.31-2.21), P=.706 
 131RR 42 (29.2)  20 (28.6) 1.12 (0.43-2.95), P=.814  8 (28.6) 1.04 (0.30-3.63), P=.949  8 (44.4) 2.09 (0.45-9.60), P=.344  12 (28.6) 0.96 (0.33-2.80), P=.944 

Allele carriage                          
 ≥1 131Ha allele 102 (70.8)  50 (71.4) 0.88 (0.43-1.84), P=.742  20 (71.4) 0.72 (0.27-1.93), P=.513  10 (55.6) 0.36 (0.12-1.12), P=.077  30 (71.4) 0.91 (0.40-2.05), P=.817 
 ≥1 131R allele 114 (79.2)  53 (75.7) 1.04 (0.45-2.40), P=.929  21 (75.0) 0.78 (0.27-2.30), P=.654  14 (77.8) 1.13 (0.28-4.64), P=.862  32 (76.2) 0.88 (0.35-2.21), P=.779 

                   

FCGR2B (rs1050501)                    
 

   
Genotype                          

 232II (ref) 76 (52.8)  31 (44.3) 1  12 (42.9) 1  7 (38.9) 1  19 (45.2) 1 
 232IT 49 (34.0)  24 (34.3) 1.06 (0.49-2.30), P=.888  11 (39.3) 2.18 (0.78-6.07), P=.135  5 (27.8) 1.07 (0.28-4.16), P=.921  13 (32.0) 1.21 (0.51-2.87), P=.660 
 232TT 19 (13.2)  15 (21.4) 2.18 (0.86-5.50), P=.099  5 (17.9) 2.63 (0.70-9.92), P=.153  6 (33.3) 3.49 (0.87-14.02), P=.078  10 (23.8) 2.29 (0.83-6.32), P=.109 

Allele carriage                          
 ≥1 232I allele 125 (86.8)  55 (78.6) 0.47 (0.20-1.12), P=.089  23 (82.1) 0.55 (0.16-1.83), P=.329  12 (66.7) 0.29 (0.08-1.07), P=.063  32 (76.2) 0.47 (0.18-1.22), P=.120 
 ≥1 232T allele 68 (47.2)  39 (55.7) 1.37 (0.69-2.70), P=.369  16 (57.1) 2.30 (0.89-5.94), P=.085  11 (61.1) 1.74 (0.57-5.33), P=.332  23 (54.8) 1.52 (0.71-3.24), P=.280 

                   

FCGR3A (rs396991)                   
Genotype                   

 158F/FF/FF (ref) 52 (36.1)  29 (41.4) 1  10 (35.7) 1  8 (44.4) 1  19 (45.2) 1 
 158FV/FFV/FVV 69 (47.9)  35 (50.0) 0.81 (0.40-1.65), P=.564  14 (50.0) 0.80 (0.30-2.12), P=.648  8 (44.4) 0.62 (0.18-2.05), P=.430  21 (50.0) 0.69 (0.31-1.53), P=.364 
 158V/VV 23 (16.0)  6 (8.6) 0.27 (0.07-1.06), P=.061  4 (14.3) 0.19 (0.02-1.67), P=.133  2 (11.1) 0.69 (0.12-3.87), P=.670  2 (4.8) 0.26 (0.21-1.24), P=.090 

Allele carriage                          
 ≥1 158F allele 121 (84.0)  64 (91.4) 3.30 (0.89-12.24), P=.074  24 (93.1) 4.67 (0.57-38.47), P=.152  16 (88.9) 1.12 (0.22-5.67), P=.888  40 (95.2) 3.20 (0.70-14.62), P=.133 
 ≥1 158V allele 92 (63.9)  41 (58.6) 0.68 (0.34-1.35), P=.265  18 (75.9) 0.64 (0.25-1.68), P=.368  10 (55.6) 0.63(0.20-1.95), P=.425  23 (54.8) 0.59 (0.27-1.26), P=.170 

                  

FCGR3B                  
Genotype                   

HNA1a+/1b-/1c- 41 (28.5)  7 (10.0) 0.27 (0.08-0.86), P=.027  2 (7.1) 0.13 (0.02-0.69), P=.017  2 (11.1) 0.32 (0.05-2.11), P=.237  5 (11.9) 0.32 (0.09-1.13), P=.076 
HNA1a-/1b+/1c- 15 (10.4)  6 (8.6) 0.80 (0.23-2.85), P=.731  1 (3.6) 0.19 (0.02-1.90), P=.157  1 (5.6) 0.74 (0.07-8.44), P=.812  5 (11.9) 1.25 (0.35-4.47), P=.734 
HNA1a-/1b-/1c+ 6 (4.2)  4 (5.7) 0.98 (0.20-4.94), P=.983  0 (0) -  1 (5.6) 1.03 (0.09-12.23), P=.983  4 (9.5) 1.70 (0.34-8.43), P=.518 
HNA1a+/1b+/1c- (ref) 45 (31.3)  24 (34.3) 1  12 (66.7) 1  5 (27.8) 1  12 (28.6) 1 
HNA1a+/1b-/1c+ 18 (12.5)  10 (14.3) 0.95 (0.33-2.71), P=.922  6 (21.4) 0.77 (0.21-2.80), P=.688  2 (11.1) 0.99 (0.15-6.48), P=.989  4 (9.5) 0.70 (0.19-2.58), P=.589 
HNA1a-/1b+/1c+ 15 (10.4)  13 (18.6) 1.42(0.49-4.06), P=.518  7 (25.0) 1.23 (0.33-4.55), P=.758  5 (27.8) 4.40 (0.78-24.90), P=.094  6 (14.3) 1.43 (0.40-5.11), P=.577 
HNA1a+/1b+/1c+ 4 (2.8)  6 (8.6) 2.12 (0.46-9.63), P=.332  0 (0) -  2 (11.1) 1.97 (0.20-19.10), P=.560  6 (14.3) 3.94 (0.85-18.34), P=.081 

Allele carriage                   
 ≥1 HNA1a allotype 108 (75.0)  47 (67.1) 0.69 (0.33-1.44), P=.322  20 (71.4) 0.92 (0.33-2.53), P=.869  11 (61.1) 0.41 (0.12-1.36), P=.146  27 (64.3) 0.57 (0.25-1.28), P=.173 
 ≥1 HNA1b allotype 79 (54.9)  49 (70.0) 2.08 (1.02-4.24), P=.045  20 (71.4) 2.49(0.93-6.65), P=.068  13 (72.2) 2.65 (0.81-8.71), P=.109  29 (69.0) 2.42 (1.08-5.46), P=.033 
 ≥1 HNA1c allotype 43 (29.9)  33 (47.1) 1.87 (0.94-3.71), P=.072  13 (46.4) 1.59 (0.63-4.03), P=.325  10 (55.6) 2.88 (0.93-8.94), P=.066  20 (47.6) 1.92 (0.90-4.12), P=.093 
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group (AOR 0.27, 95%CI: 0.08-0.86, P = 0.027) and the intrapartum infected infant group 

(AOR 0.13, 95%CI: 0.02-0.69, P = 0.017) compared to the FcγRIIIb-HNA1a/HNA1b 

reference combination. The protective effect of FcγRIIIb-HNA1a homozygosity was 

alsosignificant when compared to other allotype combinations (Table 5.7). When assessing 

allotype carriage, infants bearing at least one FcγRIIIb-HNA1b allotype were more likely to 

become infected compared to infants that did not possess an FcγRIIIb-HNA1b allotype. This 

association was significant for the total infected infant group (AOR 2.08, 95%CI: 1.02-4.24, 

P = 0.045) and the in utero enriched infected group (AOR 2.42, 95%CI: 1.08-5.46, P = 

0.033). 

In summary, following adjustment for the effect of potential confounders, the association 

between the FcγRIIb-I232T variant and HIV-1 acquisition was no longer significant. 

However, homozygosity for the FcγRIIIb-HNA1a allotype that confers enhanced phagocytic 

capacity and reactive oxygen species production by neutrophils remained significantly 

associated with protection from perinatal HIV-1 acquisition. 

 

 

Table 5.7. Association of the FcγRIIIb-HNA1a homozygous genotype with perinatal 
acquisition of HIV-1 when compared to other combinations of FcγRIIIb-HNA 
allotypes 

 

 

HNA1a homozygosity 

compared to:  

Total Infected  Intrapartum Infected  In utero Infected  In utero enriched Infected 

AOR (95% CI), P value 

Adjusted for mVL+mCD4 
 

AOR (95% CI), P value 

Adjusted for mVL+mNVP 
 

AOR (95% CI), P value 

Adjusted for mVL 
 

AOR (95% CI), P value 

Adjusted for mVL 

HNA1a-/1b+/1c- 0.34 (0.08-1.47), P=.147  0.67 (0.05-9.01), P=.764  0.43 (0.03-6.09), P=.534  0.25 (0.06-1.15), P=.075 

HNA1a-/1b-/1c+ 0.27 (0.05-1.64), P=.158  -  0.31 (0.02-4.52), P=.394  0.19 (0.03-1.12), P=.066 

HNA1a+/1b+/1c- (ref) 0.27 (0.08-0.86), P=.027  0.13 (0.02-0.69), P=.017  0.32 (0.05-2.11), P=.237  0.32 (0.09-1.13), P=.076 

HNA1a+/1b-/1c+ 0.28 (0.08-1.05), P=.060  0.17 (0.03-1.01), P=.051  0.33 (0.04-2.85), P=.311  0.46 (0.10-2.10), P=.313 

HNA1a-/1b+/1c+ 0.19 (0.05-0.70), P=.013  0.10 (0.02-0.65), P=.015  0.07 (0.01-0.60), P=.015  0.22 (0.05-1.00), P=.050 

HNA1a+/1b+/1c+ 0.13 (0.02-0.69), P=.017  -  0.16 (0.01-1.88), P=.147  0.08 (0.01-0.45), P=.004 

All other combinations 0.25 (0.09-0.70), P=.009  0.19 (0.04-0.88), P=.034  0.24 (0.05-1.24), P=.089  0.26 (0.08-0.80), P=.019 
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5.3.7. Collective effect of FcγR variants on HIV-1 transmission and acquisition 

Under patho-physiological conditions, immune complexes are likely to engage all FcγR 

isoforms expressed on a particular cell, and thus the collective effect of multilocus FcγR 

variability should be considered. To investigate the overall FcγR variability profile 

association with HIV-1 transmission/acquisition, mothers and infants were categorized 

into inhibitory, neutral and activatory profiles based on an allele scoring system. 

Mothers. Maternal viral loads and CD4+ T cell counts were comparable between mothers 

with inhibitory and activatory profiles (mean VL: 4.134 versus 4.251 log10 RNA copies/ml, 

P = 0.446; and mean CD4+ T cell count: 424 versus 444 cells/mm3, P = 0.605). However, 

HIV-1 transmission rates were notably different across the FcγR variability profiles: 16/63 

(20.6%) mothers with activatory profiles transmitted HIV-1 to their infants, compared to 

12/40 (30%) mothers with neutral profiles, and 48/114 (42%) mothers with inhibitory 

profiles. In the unadjusted analysis, mothers with an overall activatory profile were less 

likely to transmit HIV-1 to their infants compared to mothers with an overall inhibitory 

profile. This association was significant for total transmitting mothers (OR 0.36, 95%CI: 

0.17-0.73, P = 0.005) and the in utero enriched transmitting group (OR 0.32, 95%CI: 0.13-

0.79, P = 0.013). A similar trend was observed for the intrapartum transmitting group (OR 

0.42, 95%CI: 0.16-1.12, P = 0.083). In the adjusted analysis (Table 5.8), the association 

remained significant for the total transmitting group (AOR 0.25, 95%CI: 0.10-0.61, P = 

0.002) and in utero enriched transmitting group (AOR 0.24, 95%CI: 0.09-0.67, P = 0.006), 

but was also significant for the intrapartum transmitting group (AOR 0.25, 95%CI: 0.08-

0.82, P = 0.023). 

Infants. HIV-1 acquisition was comparable for the FcγR variability profiles. HIV-1 

acquisition occurred in 14/44 (31.8%) infants with an overall activatory FcγR profile, 

15/49 (30.6%) infants with a neutral FcγR profile, and 41/121 (33.9%) infants with an 

inhibitory profile. The overall FcγR variability profiles in the infants did not associate with 

acquisition of HIV-1 in neither the unadjusted nor the adjusted analysis (Table 5.8). 
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Table 5.8. The prevalence of the overall inhibitory, activatory, and neutral FcγR variability profiles in non-tranmsitting and 
transmitting mothers and HIV-1 exposed-uninfected and infected infants and the association thereof with HIV-1 
transmission and acquisition. 

 

  

Non-
transmitting/

Exposed-
uninfected 

 

Total Transmitted/Infected 

 
Intrapartum 

Transmitted/Infected 

 

In Utero Transmitted/Infected 

 
In Utero Enriched 

Transmitted/Infected 

Overall FcγR 
variability profile 

N (%) 
 

N (%) 
AOR (95% CI), P value 

Adjusted for mVL+mCD4 

 
N (%) 

AOR (95% CI), P value 
Adjusted for mVL+mNVP 

 
N (%) 

AOR (95% CI), P value 
Adjusted for mVL 

 
N (%) 

AOR (95% CI), P value 
Adjusted for mVL 

                   
Mothers                   
                           

Inhibitory 66 (45.8)  48 (65.7) 4.06 (1.64-10.07)  19 (65.5) 3.97 (1.21-12.97)  13 (65.0) 2.98 (0.81-10.89)  29 (65.9) 4.18 (1.49-11.69) 
Neutral 28 (19.4)  12 (16.4) -  4 (13.8) -  3 (15.0) -  8 (18.2) - 
Activatory 50 (34.7)  13 (17.8) 0.25 (0.10-0.61)  6 (21.4) 0.25 (0.08-0.82)  4 (20.0) 0.34 (0.09-1.23)  7 (15.9) 0.24 (0.09-0.67) 

                   

                   
Infants                    

 
   

                          
Inhibitory 80 (55.6)  41 (58.6) 0.67 (0.25-1.76)  17 (60.7) 0.58 (0.17-2.05)  8 (44.4) 1.82 (0.51-6.57)  24 (57.1) 0.75 (0.26-2.17) 
Neutral 34 (23.6)  15 (21.4) -  4 (14.3) -  4 (22.2) -  11 (26.2) - 
Activatory 30 (20.8)  14 (20.0) 1.50 (0.57-3.99)  7 (25.0) 1.72 (0.49-6.04)  6 (33.3) 0.55 (0.15-1.98)  7 (16.7) 1.33 (0.46-3.84) 
                   

P=.002 P=.023 P=.099 P=.006 

P=.413 P=.399 P=.358 P=.599 
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5.4. DISCUSSION 

The extent to which FcγR-mediated effector mechanisms contribute to the risk of 

HIV-1 transmission and acquisition is currently undefined. Through the study of FcγR 

functional variants we indirectly assessed the role for FcγR-mediated effector functions 

in modulating perinatal HIV-1 transmission and acquisition. Our findings indicate that 

the FcγR variants conferring different antibody binding affinity and functional capacity 

associate with infectiousness of the mother, while an FcγR variant conferring enhanced 

phagocytic capacity associated with reduced risk of HIV-1 acquisition by the infant. 

The significance of FcγR-mediated effector functions in maintaining immune 

homeostasis is validated by the association of functionally significant FcγR variants with 

immune disorders. Low responder FcγR variants (FcγRIIa-131R, FcγRIIIa-158F, 

FcγRIIIb-HNA1b and low FCGR copy number) are associated usually with autoimmune 

pathologies characterized by the presence of circulating IgG complexes, whereas the 

high responder variants (FcγRIIa-131H, FcγRIIIa-158V, FcγRIIIb-HNA1a and high FCGR 

copy number) have been linked to chronic inflammatory conditions characterized by 

excessive or inappropriate leukocyte activation (Gillis et al 2014). Here we describe an 

association between the low responder FcγRIIa and FcγRIIIa alleles and enhanced 

maternal infectiousness in perinatal transmission of HIV-1. In particular, mothers 

bearing the FcγRIIa-131RR genotype had a ~4 times higher odds of transmitting HIV-1 

to their infants compared to  mothers bearing the FcγRIIa-131HH genotype, while 

carriage of at least one FcγRIIa-131H allele associated with a 56% reduction in odds of 

HIV-1 transmission. The FcγRIIa-H131R variant affects the receptor’s affinity for IgG 

subclasses, such that FcγRIIa-131H exhibit enhanced binding of IgG2 over FcγRIIa-131R 

(Forthal et al 2007b, Salmon et al 1992, Warmerdam et al 1991). IgG2 is a component of 

HIV-1-specific immune responses. Since 18-67% (median 48%) of infectious and non-

infectious HIV-1 virions occur as immune complexes in peripheral blood (Liu et al 

2011), the FcγRIIa-H131R variant may modulate clearance of infectious virus from the 

circulation. Indeed, it has been demonstrated that monocytes from FcγRIIa-131RR 

donors exhibit reduced uptake of HIV-IgG immune complexes in vitro (Forthal et al 

2007b). Taken together, the impaired uptake of insufficiently neutralized virions by 

FcγRIIa-131RR leukocytes may enhance the mother’s infectiousness. 
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Similar to that observed for FcγRIIa, carriage of the FcγRIIIa low responder variant 

by the mother was associated with ~3 times higher odds of HIV-1 transmission, 

whereas homozygosity for the high responder allele associated with a >60% reduction 

in the odds of transmission. The significant association thereof in the in utero 

transmission group, but not intrapartum group, suggests that the underlying 

mechanism may be more pronounced at the maternofoetal interface. Importantly, 

FcγRIIIa-bearing leukocytes including natural killer cells, macrophages and γδ T 

lymphocytes are readily recruited to the decidua where they likely contribute to 

eliminating cell-associated HIV-1 through ADCC (Ditzian-Kadanoff et al 1993, Williams 

et al 2009). While decidual NK (dNK) cells are primarily FcγRIIIa negative during a 

healthy pregnancy, they have been demonstrated to upregulate FcγRIIIa expression in 

the presence of a pathogen (Siewiera et al 2013). Since cell-associated HIV-1 is thought 

to be more infectious in utero compared to cell-free virus (Milligan & Overbaugh 2014), 

ADCC-mediated killing of HIV-1 infected cells may contribute to protective immunity at 

the maternofetal interface. Of consequence, the FcγRIIIa-F158V variant impacts on 

ADCC capacity, such that the FcγRIIIa-158V allele exhibits enhanced IgG binding and 

ADCC capacity compared to the FcγRIIIa-158F allele (Bruhns et al 2009, Wu et al 1997). 

The decreased in utero transmission risk associated with homozygosity for the high 

responder FcγRIIIa-158V allele suggests that the enhanced ADCC capacity conferred by 

this variant may potentiate elimination of cell-associated HIV-1 and reduce the odds of 

HIV-1 crossing the placenta through cell-cell interactions. 

The genes that encode the low affinity FcγRs are clustered on the long arm of 

chromosome 1. Due to their close proximity genotypic variants are likely to be co-

inherited and potentially exhibit a combined effect. Indeed, linkage disequilibrium has 

been described for the FcγRIIa-H131R and FcγRIIIa-F158V variants in Caucasian 

individuals and African Americans (Lejeune et al 2008). In concordance, we observed 

moderate linkage disequilibrium between these loci, with the low responder FcγRIIa-

131R and FcγRIIIa-158F alleles often occurring together and the high responder 

variants FcγRIIa-131H and FcγRIIIa-158V frequently occurring together. Since the low 

responder alleles of both FcγRIIa and FcγRIIIa associated with increased odds of HIV-1 

transmission, we investigated their combined effect on HIV-1 transmission. 

Interestingly, the FcγRIIa-131RR/FcγRIIIa-158FF haplotype did not significantly 

associate with HIV-1 transmission, although a trend remained for the in utero 
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transmission groups. This is likely attributable to loss of statistical power. Alternatively, 

these variants do not act synergistically and are independently associated with HIV-1 

transmission. Interestingly, carriage of the FcγRIIa-131RR genotype and at least one 

FcγRIIIa-158F allele strengthened the association of the FcγRIIa-131RR genotype with 

HIV-1 transmission, in particular for the intrapartum transmitting group. Viewed 

differently, removing high responder FcγRIIIa-158VV individuals from the analysis 

strengthened the association of the low responder FcγRIIa-131RR with increased risk of 

HIV-1 transmission. This raises the question as to whether the high responder variants 

at one FcγR locus may compensate for the low FcγR variants at a different locus. To 

assess the collective effect of multilocus FcγR variants, a scoring system was employed 

where the balance of low responder and high responder alleles were calculated. 

Interestingly, HIV-1 transmission rates differed for the maternal FcγR variability 

profiles in the rank order of inhibitory > neutral > activatory, with mothers bearing an 

overall inhibitory profile having a ~4 times higher odds of transmitting HIV-1 to their 

infants compared to mothers with an overall activatory profile. These findings suggest 

that while independent FcγR loci associate with risk of transmission, the collective 

effect of multilocus FcγR variants may also be a contributing factor. 

The variants and overall FcγR variability profile that associated with risk of HIV-1 

transmission in the mother did not associate with HIV-1 acquisition in the infant. Rather 

an association between the infant FcγRIIIb allotypes and HIV-1 acquisition was 

observed. The different FcγRIIIb allotypes arise from multiple amino acid substitutions 

that do not alter antibody binding affinity, but affect the glycosylation and tertiary 

structure of the receptor (Bruhns et al 2009, Bux et al 1997, Ory et al 1989a, Ravetch & 

Perussia 1989). The allotypes are functionally significant. Neutrophils from FcγRIIIb-

HNA1a homozygous donors have an enhanced phagocytic and respiratory burst 

capacity compared to neutrophils from FcγRIIIb-HNA1b homozygous donors (Bredius 

et al 1994b, Salmon et al 1990). In the present study, homozygosity for the FcγRIIIb-

HNA1a allotype in the infant associated with ~75% reduced odds of HIV-1 acquisition 

compared to other allotype combinations, whereas carriage of at least one FcγRIIIb-

HNA1b allotype associated with ~2 times higher odds of HIV-1 acquisition. The 

association of increased FCGR3B copy number with reduced risk of intrapartum 

transmission complements the association of the FcγRIIIb-HNA1a allele as both are high 

responder variants that confer enhanced FcγRIIIb-mediated effector functions 
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(Willcocks et al 2008). Since expression of FcγRIIIb is largely restricted to neutrophils, 

these findings suggest a potential role for neutrophil-mediated FcγR effector functions 

in protection from perinatal HIV-1 acquisition. The underlying mechanism may also 

involve basophils as FcγRIIIb is detected at low levels on a subset of this cell population, 

although its function here is unknown. 

Mother-to-child transmission is an attractive model in which to study the role of 

antibodies and their effector functions in HIV-1 protective immunity. It represents a 

natural situation where the individual at risk is passively immunized with HIV-1-

specific antibodies through transplacental transfer of IgG (Aldrovandi & Kuhn 2010, 

Braibant & Barin 2013). Moreover, it affords the opportunity to study both members of 

the transmitting dyad, thus allowing the assessment of factors contributing to the 

infectiousness of the transmitter (mother) as well as the susceptibility of the recipient 

(infant). Thus, the findings of this study not only highlight additional immunological 

factors associated with risk of MTCT, but further support a role for FcγR-mediated 

effector functions in HIV-1 protective immunity. In particular, it highlights a potential 

involvement of neutrophils in protection from HIV-1 transmission and suggests a 

possible role of FcγR-mediated effector functions in modulating the infectiousness of an 

HIV-1 infected individual. The significance of these findings in the context of sexual 

transmission will need to be determined. 

In conclusion, the findings of this study suggest a role for FcγR-mediated effector 

functions in perinatal HIV-1 transmission. Moreover, we demonstrate through an allele 

scoring system that the combined effect of multilocus FcγR variants modulates HIV-1 

transmission risk. A limitation of the scoring system employed, however, is that it is 

based on the contribution of FcγR variants to cell activation and effector function in 

healthy individuals and may not reflect that of HIV-1 infected individuals. In addition, it 

does not take into account a greater or lesser role of a given variable compared to 

another and does not consider the effect of FcγRIIIb-HNA1c as its functional role has not 

been determined. Another limitation of this study may be that there was reduced 

statistical power for some of the multivariate logistic regression analyses due to the low 

frequencies of some of the genotypes. Further studies are required to elucidate the 

functional capacity of FcγR variants in HIV-1 infected individuals. 
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6.1. INTRODUCTION 

The crystalizable fragment (Fc) of IgG has the capacity to recruit potent effector 

functions through engagement with Fcγ receptors (FcγR), which are widely expressed 

throughout the haematopoietic system. These interactions can contribute to antiviral 

immunity by inhibiting virus replication, clearing virions by antibody-dependent 

cellular phagocytosis (ADCP), orchestrating the homing of effector cells, and killing 

virus-infected cells by antibody-dependent cellular cytotoxicity (ADCC). 

Accumulating data suggest that FcγR-mediated effector functions contribute to HIV-1 

protective immunity and modulate post-infection control of viraemia (Lewis 2014). In 

particular, numerous studies have demonstrated a correlation between ADCC titres and 

disease outcome (Ahmad et al 1994, Ahmad et al 2001, Broliden et al 1993, Forthal et al 

2001, Lambotte et al 2013, Ljunggren et al 1987, Sawyer et al 1990). However, the 

relevance of these studies is limited, since the in vitro ADCC assays employed used 

effector cells from healthy donors, and thus do not fully mimic the natural situation in 

HIV-1 infected individuals. Moreover, only a single FcγR-mediated mechanism is 

measured, while under patho-physiological conditions it is likely an accumulation of 

diverse FcγR-dependent processes, mediated by the full complement of FcγR-bearing 

effector cells, which modulate viral replication. At present, data on the involvement of 

other FcγR-mediated mechanisms in disease progression are limited. While there is 

support for phagocytosis (Dugast et al 2011, Holl et al 2006a, Holl et al 2006b), further 

studies are required to define its contribution to HIV-1 protective immunity. 

The role of FcγR-mediated effector functions in HIV-1 disease progression can be 

indirectly assessed through studying FcγR variants that affect the magnitude of 

responses. These include genotypic variants that alter receptor IgG subclass binding 

affinity (FcγRIIa-H131R and FcγRIIIa-F158V), subcellular localization (FcγRIIb-I232T), 

post-translational modification (FcγRIIIb-HNA1a/b/c), expression of an otherwise 

pseudogene (FcγRIIc), and surface density (gene copy number variability and promoter 

haplotypes). To date, FcγRIIa-H131R has been implicated in HIV-1 disease progression. 

In particular, homozygosity for the FcγRIIa-131R allele and corresponding impaired 

uptake of HIV-1 immune complexes have been associated with a faster rate of CD4+ T 

cell decline in HIV-1 infected adults (Forthal et al 2007b). Conversely, the FcγRIIIa-

F158V variant did not associate with disease course (Forthal et al 2007b). At present, 
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data on FcγRIIb- and FcγRIIIb-mediated effector functions in HIV-1 disease progression 

are limited. Similar to what has been described for FcγRIIa, insights into their role may 

be gained through studying their functional variants in a natural infection cohort. This 

cross-sectional study investigates all known functional FcγR variants in a cohort of 

treatment naïve, HIV-1 infected South African Black women, and thus indirectly 

assesses the association of FcγR-mediated effector functions with markers of disease 

progression, plasma viral load and CD4+ T cell counts (Fahey et al 1990, Mellors et al 

1996). 

 

6.2. MATERIALS AND METHODS 

6.2.1. Study populations 

Drug naïve, HIV-1 infected mothers recruited as part of a perinatal HIV-1 

transmission cohort were selected to investigate the association of FcγR variability with 

cross-sectional markers of HIV-1 disease progression. Refer to Chapter 2, Materials and 

Methods section 2.1 for a detailed description of the cohort. HIV-1 viral loads and CD4+ 

T cell counts were measured after childbirth as described in Chapter 2, Materials and 

Methods section 2.2. 

6.2.2. FCGR gene copy number variability and nucleotide variant detection 

Gene copy number and nucleotide variants within the low-affinity FCGR genes were 

determined using the FCGR-specific multiplex ligation-dependent probe amplification 

(MLPA) assay as described in Chapter 2, Materials and Methods sections 2.3 and 2.5. 

Discrimination of FCGR2B/C promoter variants were achieved through gene specific 

PCR amplification and nucleotide sequencing as described in Chapter 2, Materials and 

Methods section 2.6 and 2.10. 

6.2.3. Overall FcγR variability profile: Allele scoring system 

To assess the effect of the overall FcγR variability profile, individuals were 

categorized as possessing an overall inhibitory profile, neutral profile, or activatory 

profile. Refer to Chapter 2, Materials and Methods section 2.26. In brief, the high 

responder FcγR variants (FcγRIIa-131H, FcγRIIb-232T, FcγRIIIa-158V, FcγRIIIb-HNA1a, 

and high copy number) were each assigned a +1 value, whereas the low responder 

variants (FcγRIIa-131R, FcγRIIb-232I, FcγRIIIa-158F, FcγRIIIb-HNA1b, and low copy 
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number) were each assigned a -1 value. The sum of the allele scores were determined 

for each individual, which were subsequently categorized as possessing an overall 

inhibitor profile (total score ≤ -1), neutral profile (total score = 0), and activatory profile 

(total score ≥ 1). 

6.2.4. Statistical analysis 

Statistical analysis was performed as described in Chapter 2, Materials and Methods 

section 2.17. 

 

6.3. RESULTS 

6.3.1. Cohort 

The goal of this study was to investigate the potential association of FCGR variability 

with markers of HIV-1 disease progression i.e. plasma viral load and CD4+ T cell counts. 

For this purpose, 197 HIV-1 infected, treatment naïve South African Black women part 

of an existing perinatal cohort were selected and genotyped. The mean age of the study 

participants was 27 years (range: 16 – 42 years). 

The study participants had a broad range of plasma viral loads and CD4+ T cell 

counts, which is likely representative of HIV-1 infected women in the clinical latency 

phase and those with more progressive infection and AIDS (Figure 6.1A and B). Plasma 

viral loads were available for 192 women, CD4+ T cell counts for 176 women, and both 

measurements for 171 women. The mean plasma viral load was 4.129 log10 RNA copies 

per ml (range: 2.601 – 5.875) and the mean CD4+ T cell count was 486 cells/mm3 

(range: 16 – 1655 cells/mm3). HIV-1 RNA concentrations were significantly correlated 

(P < 0.0001; Spearman’s R = -0.442) with the corresponding CD4+ T cell counts. 

However, a broad range of plasma viral loads were observed within narrow ranges of 

CD4+ T cell counts (Figure 6.1C), which likely represents differences in the 

immunological control of HIV-1 replication between individuals. To investigate whether 

FcγR variability contributes to this diversity, all study participants were genotyped for 

known FcγR functional variants. 

6.3.2. FCGR copy number variability 

FCGR copy number variability (CNV) display a gene dosage effect that correlates with 
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the magnitude of FcγR-mediated effector functions and in some instances alter the 

cellular distribution of the inhibitory receptor, FcγRIIb.  Figure 6.2 represents the 

distribution of FCGR3A and FCGR3B gene copies relative to plasma viral loads and CD4+ 

T cell counts. Overall, FCGR3A CNV was low, occurring in 12/197 (6.1%) of women, and 

did not show an association with viral load or CD4+ T cell count (Figure 6.2A). 

Conversely, FCGR3B CNV was more prevalent, occurring in 58/197 (29.4%) of women 

and was significantly associated with viral load. Compared to women bearing two 

FCGR3B copies, those that possessed three or more FCGR3B copies had significantly 

higher viral loads (median: 4.143 vs. 4.529 log10 copies/ml; P = 0.028, Figure 6.2B). 

Figure 6.2C illustrates the relative distribution of ≥3 FCGR3B copy number across the 

entire study with respect to paired viral loads and CD4+ T cell counts. Fourteen out of 39 

(35.9%) women possessing ≥3 FCGR3B copies had viral loads below the study mean 

(4.129 log10 RNA copies/ml), and only 13/36 (36.1%) women bearing ≥3 FCGR3B 

copies had CD4+ T cell counts above the study mean (486 cells/mm3). 

 

 

Figure 6.1. Plasma HIV-1 viral load and CD4+ T cell distributions of the study 
participants. The distribution of A) plasma viral load and B) CD4+ T cell counts in the 
cohort of drug naïve, HIV-1 infected South African Black women, and C) Spearman’s 
correlation between plasma viral load and CD4+ T cell counts. 
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Figure 6.2. FCGR gene copy number variation and markers of HIV-1 disease 
progression. Plasma HIV-1 viral loads and CD4+ T cell counts according to FCGR3A (A) 
and FCGR3B (B) gene copy number of treatment-naïve, HIV-1 infected South African 
Black women. (C) represents the distribution of ≥3 FCGR3B gene copies relative to the 
study mean viral load and mean CD4+ T cell count. N - Viral loads and CD4+ T cell counts 
were not available for all participants. *, P < 0.05. 
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6.3.3. FcγR variants and prognostic markers of HIV-1 infection 

To determine if FcγR functional variants associated with prognostic markers of HIV-1 

infection, the cross-sectional viral loads and CD4+ T cell counts were compared across 

FcγR genotypes and alleles. To adjust for the possible confounding effect of FCGR3B 

gene copy number, only women with ≤2 FCGR3B gene copies were considered in the 

HIV-1 viral load analysis. 

HIV-1 viral loads and CD4+ T cell counts did not differ significantly across FcγRIIa, 

FcγRIIb and FcγRIIIa genotypes or alleles (Figure 6.3), but varied considerably across 

FcγRIIIb genotypes (Figure 6.4A and B). Women homozygous for the FcγRIIIb-HNA1b 

allotype had the best clinical presentation, with the lowest mean viral loads (VL) and 

highest mean CD4+ T cell counts. This comparison was significant for HNA1a 

homozygosity (VL: P = 0.036; CD4+: P = 0.013) and HNA1c homozygosity (only CD4+: P = 

0.017) as well as for heterozygous combinations i.e. HNA1a/HNA1b (only CD4+: P = 

0.036), HNA1a/HNA1c (VL: P = 0.039, CD4+: P = 0.001), and HNA1b/HNA1c (VL: P = 

0.007, CD4+: P = 0.030). Figure 6.3C illustrates the relative distribution of the FcγRIIIb-

HNA1b homozygous genotype across the entire study with respect to paired viral loads 

and CD4+ T cell counts. For women that possessed this genotype, 14/20 (70%) had viral 

loads below the study mean (4.129 log10 RNA copies/ml) and 17/20 (85%) had CD4+ T 

cell counts above the study mean (486 cells/mm3). 

For allotype carriage (Figure 6.4D and E), women bearing at least one FcγRIIIb-

HNA1b allotype had significantly lower viral loads compared to women that did not 

possess this allotype (mean: 3.910 versus 4.250 log10 RNA copies/ml; P = 0.025). 

Conversely, women bearing at least one FcγRIIIb-HNA1c allotype had significantly 

higher viral loads and lower CD4+ T cell counts compared to those that did not possess 

this allotype (mean VL: 4.288 versus 3.958 log10 RNA copies/ml; P = 0.043; and mean 

CD4+: 410 versus 514 cells/mm3; P = 0.013). Figure 6.3F illustrates the relative 

distribution of FcγRIIIb-HNA1c allotype carriage across the entire study with respect to 

paired viral loads and CD4+ T cell counts. For women possessing this allotype, only 

16/47 (34%) had viral loads below the study mean (4.129 log10 RNA copies/ml), and 

only 12/42 (28.6%) had CD4+ T cell counts above the study mean (486 cells/mm3). 

In summary, the FcγRIIIb-HNA1b allotype and homozygous genotype associated with 

favourable disease progression markers, whereas the FcγRIIIb-HNA1c allotype 
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associated with poor disease progression markers. 

 

 

 

 

 

Figure 6.3. FcγRIIa, FcγRIIb, and FcγRIIIa allelic variants and markers of HIV-1 
disease progression. Plasma HIV-1 viral loads and CD4+ T cell counts according to 
FcγRIIa-H131R, FcγRIIb-I232T, and FcγRIIIa-F158V genotypes (A - C) and alleles (D - F) 
of treatment-naïve, HIV-1 infected South African Black women. N - Viral loads and CD4+ 
T cell counts were not available for all participants. 
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Figure 6.4. FcγRIIIb allotypes and markers of HIV-1 disease progression. Plasma 
HIV-1 viral loads and CD4+ T cell counts according to FcγRIIIb genotypes (A and B) and 
allotype carriage (D and E) of treatment-naïve, HIV-1 infected South African Black 
women. For women where both viral load and CD4+ T cell count was measured, figures 
C and F represents the distribution of the protective FcγRIIIb-HNA1b/1b genotype (C) 
and deleterious FcγRIIIb-HNA1c allotype (F) relative to the study mean viral load and 
mean CD4+ T cell counts (indicated as grey dashed lines). For the viral load analysis, 
only women with ≤2 FCGR3B gene copies were included to adjust for the possible 
confounding effect of ≥3 FCGR3B gene copies, as it displayed a significant association 
with increased viral loads. N - Viral loads and CD4+ T cell counts were not available for 
all participants. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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6.3.4. Collective effect of FcγR variants on markers of HIV-1 disease progression 

To investigate whether the overall FcγR variability profile of an individual associated 

with markers of HIV-1 disease progression, the participants in this study were 

categorized into inhibitory, activatory and neutral profiles according to the 

overrepresentation of FcγR variants that confer reduced cell activation or low 

responder variants (FcγRIIa-131R, FcγRIIb-232I, FcγRIIIa-158F, FcγRIIIb-HNA1b, and 

low gene copy number), the overrepresentation of variants that enhance cell activation 

or high responder variants (FcγRIIa-131H, FcγRIIb-232T, FcγRIIIa-158V, FcγRIIIb-

HNA1a, and high gene copy number), and a balance between the different variants, 

respectively. 

Study participants with an overall ‘neutral’ or balanced FcγR variability profile had 

lower viral loads and higher CD4+ T cell counts compared to individuals with either an 

overrepresentation of low or high responder variants  (Figure 6.5). While only a trend 

was observed for CD4+ T cell counts, the comparisons were significant for viral loads: 

neutral versus inhibitory (mean: 3.738 versus 4.167 log10 RNA copies/ml; P = 0.017) and 

neutral versus activatory (mean: 3.738 versus 4.313 log10 RNA copies/ml; P = 0.006). 

 
 

 

Figure 6.5. Overall FcγR variability profile and markers of HIV-1 disease 
progression. Plasma viral loads and CD4+ T cell counts of women that had an overall 
inhibitory, neutral or activatory FcγR variability profile. 

 

 

 



Chapter 6 – FcγR variability and HIV-1 disease progression 

 

 Page 119 
 

6.4. DISCUSSION 

Through studying FcγR functional variants in a natural HIV-1 infection cohort, this 

study describes, for the first time, a potential in vivo role for FcγRIIIb-mediated effector 

functions in modulating HIV-1 disease severity. Furthermore, the findings of this study 

indicate that perturbations in the overall balance of FcγR-mediated 

activation/inhibition associate with viral load levels. 

In the present study, homozygosity for the FcγRIIIb-HNA1b allotype associated with 

lower viral loads and higher CD4+ T cell counts compare to all other allotype 

combinations, while carriage of at least one FcγRIIIb-HNA1c allotype associated with 

higher viral loads and lower CD4+ T cell counts. Since FcγRIIIb expression is restricted 

to neutrophils and a subset of basophils, these associations implicate a potential role for 

these cell types in modifying HIV-1 disease severity. The function of FcγRIIIb on 

basophils is unknown. However, on neutrophils – the most abundant leukocyte subset 

in peripheral blood – FcγRIIIb is involved in phagocytosis, respiratory burst, 

degranulation, and ADCC (Hunt et al 2003, Kushner & Cheung 1992, Marois et al 2011, 

Nagarajan et al 2000). The FcγRIIIb-HNA1a/b allotypes differentially affect 

phagocytosis and respiratory burst responses. Their significance for other neutrophil 

functions remains to be investigated. Resting neutrophils from homozygous FcγRIIIb-

HNA1b donors exhibit ~20% reduced phagocytic capacity and a decreased oxidative 

burst response compared to neutrophils from homozygous FcγRIIIb-HNA1a donors 

(Bredius et al 1994b, Salmon et al 1990, Urbaczek et al 2014). Furthermore, neutrophils 

pre-activated with a combination of granulocyte colony stimulating factor (G-CSF) and 

interferon γ (IFNγ) exhibit shedding of surface FcγRIIIb and induced expression of the 

inhibitory FcγRIIb occurs in an allotype-dependent way. In particular, pre-activated 

neutrophils from FcγRIIIb-HNA1b donors shed significantly less FcγRIIIb and have near 

undetectable levels of FcγRIIb compared to pre-activated neutrophils from FcγRIIIb-

HNA1a homozygous and heterozygous donors (van der Heijden et al 2014). Taken 

together, the mechanism underlying the association of FcγRIIIb-HNA1b homozygositiy 

may involve reduced functional capacity of resting neutrophils and/or the distinct FcγR 

phenotypic profile of activated neutrophils. 

The functional consequence of the FcγRIIIb allotypes may differentially impact on 

HIV-1 infection during the initial response to the virus and during chronic infection. IgG-
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HIV-1 immune complexes are present during both acute and chronic HIV-1 infection 

(Liu et al 2011). The initial disappearance of these immune complexes in acute 

infection, ~3 weeks after HIV-1 RNA first become detectable, suggests a role for 

phagocytosis of FcγR-bearing leukocytes (Tomaras et al 2008). Reduced phagocytic 

capacity and concomitant neutrophil activation of FcγRIIIb-HNA1b homozygous 

individuals may decrease the initial pro-inflammatory cytokine production by these 

cells and limit their contribution to immune activation during early HIV-1 infection. 

Since immune activation levels during early HIV-1 infection predicts CD4+ T cell loss 

over time (Deeks et al 2004), the impaired FcγRIIIb-HNA1b-mediated neutrophil 

activation may contribute to a lower immunologic activation set point and subsequent 

favourable disease outcome. 

As HIV-1 disseminates through the body and viral loads rise, systemic immune 

activation occurs. Consequently, neutrophils from HIV-1 infected individuals exhibit 

enhanced activation through all stages of infection (Elbim et al 1994). Thus, the FcγRIIIb 

allotype-specific changes of activated neutrophils may play a role here. In vitro activated 

neutrophils shed FcγRIIIb, which contributes to the pool of soluble FcγRIIIb (sFcγRIIIb) 

(Huizinga et al 1990a). In concordance, neutrophils from HIV-1 infected individuals 

display reduced surface expression of FcγRIIIb and increased sFcγRIIIb levels in vivo 

(Boros et al 1990, Khayat et al 1990). Soluble FcγRIIIb has the ability to potentiate 

immune activation and HIV-1 replication by stimulating production of pro-

inflammatory cytokines IL-6 and IL-8 by neutrophils and monocytes through binding 

complement receptor 3 and 4 (Galon et al 1996, Kedzierska & Crowe 2001). Since 

activated neutrophils from FcγRIIIb-HNA1b homozygous donors exhibit reduced 

FcγRIIIb shedding compared to neutrophils from FcγRIIIb-HNA1a homozygous or 

heterozygous donors (van der Heijden et al 2014), FcγRIIIb-HNA1b homozygous HIV-1 

infected individuals may have lower sFcγRIIIb levels and concomitant reduced 

sFcγRIIIb-mediated cellular activation. This hypothesis is further supported by the 

association of ≥3 FCGR3B gene copies with increased viral load levels, since FCGR3B 

copy number correlates with protein expression and sFcγRIIIb levels (Willcocks et al 

2008). 

While the functional consequences of FcγRIIIb-HNA1a and -HNA1b have been 

described to a limited extent, the functional significance of the FcγRIIIb-HNA1c allotype 
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is unknown. The single amino acid substitution distinguishes FcγRIIIb-HNA1b from -

HNA1c. This residue is reportedly under positive selective pressure of which a potential 

candidate is malaria (Machado et al 2012), since the FcγRIIIa-HNA1c allotype is more 

prevalent in malaria endemic areas than other regions in the world (allotype carriage of 

~30% versus 6%). Due to the minor difference between FcγRIIIb-HNA1b and -HNA1c, it 

is thought that the two allotypes are linked. However, a significant association of 

FcγRIIIb-HNA1c with protection against clinical malaria, but contrasting association of 

FcγRIIIb-HNA1b with susceptibility to clinical malaria, suggests that these allotypes 

may not be that closely related in terms of function (Adu et al 2012). Moreover, the 

present study also describes contrasting associations for FcγRIIIb-HNA1b and FcγRIIIb-

HNA1c with markers of HIV-1 disease progression. Homozygosity for the FcγRIIIb-

HNA1b allotype associated with high CD4+ T cell counts and low viral loads, whereas 

carriage of at least one FcγRIIIb-HNA1c allotype associated with low CD4+ T cell counts 

and high viral loads. Thus, the FcγRIIIb-HNA1c allotype that associates with protection 

against clinical malaria associated a more severe clinical HIV-1 disease, while the 

FcγRIIIb-HNA1b allotype that associates with susceptibility to clinical malaria 

associated with good HIV-1 disease progression markers. 

Our results may appear to be in conflict with an earlier study which did not observe 

an association between HIV-1 viral load and FcγRIIIb allotypes in a Tanzanian and 

Ethiopian cohort (Machado et al 2013). However, the clinical and demographic 

characteristics of study participants as well as FcγRIIIb genotyping were very different 

from the present study. Clinically, participants in the Machado et al. (2013) study were 

more representative of the advanced stages of HIV-1 disease (mean CD4 count of 92 = 

cells/mm3), where FcγRIIIb variability was assessed across viral loads measured at the 

onset of immunological AIDS (CD4+ cell count of <200 cells/mm3). In contrast, the study 

participants in the present study are more representative of different stages of HIV-1 

infection with a broad range of CD4+ T cell counts and viral loads. Moreover, Machado et 

al. (2013) did not distinguish between FcγRIIIb-HNA1b and -HNA1c, the two allotypes 

that showed significant but opposing associations in the present study. 

In addition, our data are not in agreement with a study that observed an association 

between the FcγRIIa-H131R variant and CD4+ T cell count decline (Forthal et al 2007b), 

which is also likely attributable to study design. The study by Forthal et al. (2007) 
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measured the longitudinal CD4+ T cell decline in a cohort of men of which 86% were 

Caucasian individuals, whereas in the present study cross-sectional data from a cohort 

of South African Black women were assessed according to genotypes. Our findings are, 

however, in concordance with a recent study in Kenyan women that did not observe an 

association between this variant and CD4+ T cell decline or HIV-1 disease progression 

(Weis et al 2015). The association between FcγRIIa-H131R and CD4+ T cell decline may 

thus be ethnically confined. 

Since the different FcγR isoforms often have overlapping cellular distributions and 

IgG subclass binding affinities and are likely co-ligated under patho-physiological 

conditions, the combination of FcγR functional variants may have a collective effect. 

Through employing an allele scoring system it was demonstrated that HIV-1 infected 

women with an overrepresentation of either low or high responder FcγR variants had 

higher viral loads compared to HIV-1 infected women with a balance between high and 

low responder variants. In non-communicable pathologies, low responder FcγR variants 

(FcγRIIa-131R, FcγRIIIa-158F, FcγRIIIb-HNA1b and low FCGR copy number) are linked 

to chronic inflammatory conditions characterized by the presence of circulating IgG 

complexes, whereas the high responder variants (FcγRIIa-131H, FcγRIIIa-158V, 

FcγRIIIb-HNA1a and high FCGR copy number) have been associated with chronic 

inflammatory conditions characterized by excessive or inappropriate leukocyte 

activation [reviewed by (Gillis et al 2014)]. Thus, an overrepresentation of both high 

and low FcγR variants and their associated effect on cellular activation appears to 

contribute to enhanced HIV-1 replication in vivo. 

In conclusion, this study describes a novel association of FcγRIIIb allotypes and, by 

inference, a potential role for neutrophils in modifying HIV-1 disease severity. 

Moreover, these findings underscore the need to study the full complement of FcγR-

bearing leukocytes and effector functions in the context of HIV-1 infection. A limitation 

of this study is that the findings are based on cross-sectional analysis, which is much 

less sensitive than a longitudinal study of time-to-AIDS as viral load and CD4+ T cell 

measurements fluctuate and individuals with low viral loads and high CD4+ T cell counts 

are known to progress to AIDS somewhat unpredictably. Future studies on longitudinal 

data are required to investigate the importance of these associations with HIV-1 disease 

progression. However, this study has highlighted important new insights that provide a 
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basis for further investigations into the mechanisms that underlie differential control of 

HIV-1 infection. 
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FcγR-mediated biological responses are potent, complex, and comprise both 

activating and inhibitory effects. These responses are diverse and through several 

mechanisms activate, regulate and modulate immunity (Nimmerjahn & Ravetch 2008b). 

The significance of these receptors in maintaining a well-balanced immune response is 

validated by the association of aberrant FcγR expression or the presence of functional 

allelic FcγR variants with the pathogenesis of a variety of autoimmune diseases. 

While FcγRs and their allelic variants have been extensively studied over the past 25 

years and great advances have been made towards elucidating their function, our 

understanding of these complex molecules are limited and a number of questions 

remain regarding their biological functions. Firstly, the cellular distribution and 

function of each FcγR isoform is not clearly defined. Studies as recent as 2009 and 2013 

have discovered the presence of FcγRIIIb on basophils and FcγRIIc on B lymphocytes (Li 

et al 2013, Meknache et al 2009). While the functionality of the latter has been 

addressed, the role of FcγRIIIb on basophils is unknown. Since the responses induced by 

IgG-FcγR interactions are cell type-specific rather than FcγR isoform-specific, the FcγR-

mediated function on one cell type cannot necessarily be extrapolated to another.  

Defining cell-specific FcγR-mediated effector functions are imperative to 

understanding the role of FcγRs in immune homeostasis and disease, in particular if 

these receptors and their functions are to be targeted for therapeutic interventions 

(Hogarth & Pietersz 2012). Secondly, the functional consequence for all FcγR variants 

has not been investigated, in particular for FcγRIIIb-HNA1c. Based on the findings of 

this thesis and other studies, this variant is of clinical significance, and thus 

understanding its functionality may be of value for future interventions. Thirdly, FcγRs 

are often co-expressed on the same cell, either in the steady-state or induced by 

inflammation. Yet, the collective functional consequence of allelic variants carried by co-

expressed FcγR isoforms is largely undefined. It was recently demonstrated that 

FcγRIIIb functional variants modulate neutrophil function in a manner dependent on 

the FcγRIIa functional variants and that functional differences observed between 

different FcγRIIIb/FcγRIIa haplotypes expressed on resting neutrophils disappeared 

once these neutrophils were pre-activated. This suggests that the in vitro functional 

assays employed to delineate the FcγR-mediated responses using effector cells in the 

steady state are of limited relevance, since they do not speak to the in vivo function 
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where inflammation may modulate FcγR expression and interaction. For these reasons, 

inferences made from association studies investigating FcγR variability are at best 

speculative. Future studies investigating the functionality of FcγR variants expressed on 

leukocytes isolated from individuals with the disease of interest will contribute to our 

understanding of the in vivo significance of these variants. 

Genetic association studies of FcγR functional variability are impeded by the 

complexity of the FCGR locus, which is attributable to high nucleotide sequence identity 

between FCGR genes and gene copy number variation. As for all copy number variable 

regions, nucleotide variants located in FCGR genes subject to copy number variation 

(FCGR2C, FCGR3A, and FCGR3B) has poor coverage in genome-wide association studies 

(GWAS) as they fail Hardy-Weinberg and mendelian inheritance checks (Khor et al 

2011, McCarroll & Altshuler 2007).  As a result, GWAS do not evaluate variants within 

these regions and investigations thereof are limited to candidate gene studies. However, 

candidate gene studies using nucleotide sequencing or sequence-specific primer PCR 

(SSP-PCR) assays often fail to accurately quantitate allele carriage of FCGR2C, FCGR3A, 

and FCGR3B variants. Similarly, in the present study, assessing the prevalence of, and 

linkage disequilibrium between, recently described nucleotide variants (Thai haplotype 

in FCGR2C and FCGR3A intragenic haplotype) through nucleotide sequencing and SSP-

PCR had to be limited to individuals with one or two gene copies due to technical 

limitations of these methods. A technology that overcomes these limitations is multiplex 

ligation-dependent probe amplification (MLPA), which allows the qualitative and 

quantitative assessment of allelic variants. An FCGR-specific MLPA assay has been 

described and is commercially available (Breunis et al 2008). This assay is specific for 

known functional FCGR variants but also allows the addition of new targets, making this 

an important and powerful tool to study FCGR variability. For this reason, this assay was 

employed to characterize known functional FCGR variants in healthy South African 

individuals and assess the association of FCGR variability with HIV-1 transmission and 

disease progression. 

Infectious diseases have, in part, driven the diversity at the FCGR locus (Machado et al 

2012). In Africa, malaria has been the evolutionary driving force behind several human 

phenotypes (Kwiatkowski 2005) and may also have shaped FCGR variability in Africans. 

In particular, the FcγRIIIb-HNA1c that associates with protection against clinical 
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malaria is significantly more prevalent in malaria endemic populations than in non-

endemic populations, while the opposite is observed for the FcγRIIIb-HNA1b allotype 

that associates with susceptibility to clinical malaria. In this thesis, the inverse was 

observed for the association of these variants with HIV-1 disease progression in South 

African Black women. Taken together, these findings suggest that the evolutionary 

driving force (malaria or other), which selected for FcγRIIIb variants that confer 

resistance to malaria in Africans potentially predisposed to more severe HIV-1 disease. 

It also suggests these FcγRIIIb variants may be host genetic risk factors contributing to 

the rapid HIV-1 disease progression observed in South African Black women, where 

~50% of women progress to <350 CD4+ T cells within two years of infection (Mlisana et 

al 2014). Although the associations of FcγRIIIb allotypes with HIV-1 disease progression 

were identified in a cross-sectional study, and therefore lack the statistical power 

afforded to a longitudinal study, the associations were strong enough to stand out and 

warrant further investigation. It should be noted, however, that the FcγRIIIb allotypes 

implicated in modifying HIV-1 disease course is subject to significant ethnic diversity, 

such that the FcγRIIIb-HNA1c allotype is largely absent from populations outside of 

Africa, and thus the observed associations may be ethnically confined. Nevertheless, the 

FcγRIIIb-HNA1a and -HNA1b allotypes, that are both highly prevalent in other regions 

of the world, do still show significant differences in our population and should be 

investigated further. 

The mechanism underlying the association of FcγRIIIb allotypes with HIV-1 disease 

progression is not obvious. We proposed that it may involve modulation of immune 

activation through modifying the levels of soluble FcγRIIIb. However, further studies 

are required to delineate the biological processes involved. Future studies that 

investigate the correlation between the FcγRIIIb allotypes, serum levels of sFcγRIIIb, 

and immune activation in HIV-1 infected individuals may be of value. It is also not clear 

when these FcγRIIIb allotypes impact on HIV-1 disease course, whether it modifies 

infection by reducing peak viraemia and viral set point during acute infection or 

maintain efficient immune homeostasis during chronic infection. This is of consequence 

should these FcγRIIIb-mediated mechanisms ever be harnessed for therapeutic 

interventions. This may potentially be addressed by a longitudinal study that assesses 

FcγRIIIb allotypes in relation to viral load levels and CD4+ T cell counts monitored 
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throughout an HIV-1 infection, from the time when plasma RNA levels are first 

detectable during acute infection to AIDS. 

An unexpected, but relevant finding was the contrasting association of the same 

FcγRIIIb allotype with HIV-1 disease progression and perinatal HIV-1 acquisition. The 

allotype that conferred protection against perinatal HIV-1 acquisition associated with 

that are linked to poor disease outcome (high viral load, low CD4+ T cell counts), while 

those that associated with a favourable disease course were linked to risk of perinatal 

HIV-1 acquisition. These findings suggest that immune correlates of protection for HIV-

1 acquisition in the presence of HIV-1-specific IgG may not necessarily be the same as 

for post-infection control of viraemia and maintenance of immune integrity, and vice 

versa. This brings into question the relevance of elite controller cohorts to identify 

immune correlates of protection to complement vaccine design. However, protective 

mechanisms identified in these cohorts are relevant to the design of a functional cure. It 

is here where the association of the FcγRIIIb-HNA1b allotype with a favourable disease 

course may be of significance. 

Investigating immune correlates of protection against HIV-1 acquisition in the 

mother-to-child transmission model may provide important insights into the antibody 

responses that would be valuable for vaccine development, since it represents a natural 

situation where the person at risk is passively immunized with HIV-1-specific IgG. The 

association of the FcγRIIIb variants with protection from perinatal HIV-1 acquisition 

suggests a role for neutrophils in mediating anti-HIV-1 immunity in immunized 

individuals. Neutrophils are not only efficient at antibody-mediated killing of HIV-1 

infected cells and phagocytosis of opsonized virions (Smalls-Mantey et al 2013), they 

are recognized as instructors of the immune system (Amulic et al 2012, Mantovani et al 

2011). Due to the experimentally intractable nature of neutrophils few studies have 

investigated neutrophil antibody-mediated effector functions in HIV-1 specific 

immunity. However, the findings of this study provide incentive for further 

investigations. Future studies investigating the FcγRIIIb variants according to the risk of 

HIV-1 acquisition in vaccine recipients may provide further insight into the associations 

observed in this study. 

HIV-1 transmission risk is determined by the complex interplay between the 

infectiousness of the transmitter and the susceptibility of the recipient. The 
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infectiousness of an HIV-1 infected individual is largely defined by biological factors that 

influence the levels of HIV-1 in the blood and genital secretions and these involve viral 

factors, host immune factors and host genetic factors. We describe, for the first time, an 

association between FcγR variants and infectiousness of an HIV-1 infected individual, 

after adjustment for the confounding effect of viral load. While the association was 

described in the context of mother to child transmission, it may be of relevance to 

sexual transmission. It has recently been demonstrated that the neonatal Fc receptor 

has the ability to trancytose infectious IgG-HIV-1 immune complexes across epithelial 

cells (Gupta et al 2013). This receptor is expressed at the maternofoetal interface but 

also on genital epithelia where it may provide a route for infection (Gupta et al 2013). 

We proposed that the mechanism underlying the association of low responder FcγR 

variants with increased infectiousness involves poor uptake and clearance of IgG-HIV-1 

immune complexes and inefficient killing of cell-associated virus. Future studies in 

serodiscordant couples that investigate FcγR variability, levels of infectious HIV-1 

(opsonized or cell-associated) in semen and cervicovaginal secretions, relative to the 

likelihood of becoming infected will be of value. 

To conclude, the characterization of FcγR variability in healthy South Africans Black 

individuals and Caucasian individuals emphasized the extent of ethnic diversity at this 

locus and has provided important baseline data for any future association studies. 

Through investigating functionally significant FcγR variants in the context of HIV-1 

transmission and disease progression, we provided indirect support of the role of FcγR-

mediated effector functions in HIV-1 protective immunity in vivo. A caveat of this study, 

however, is that the antibody component was not evaluated. Since FcγR-mediated 

effector functions involve an appropriate antibody and a functional effector cell, these 

components should ideally be investigated together. 
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Appendix A.1. Ethics clearance certificate 
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Appendix A.2. Description of the four perinatal HIV-1 transmission cohorts from which mother-infant pairs were selected for the 
nested-case control study 
 

 
Cohort 1 Cohort 2 Cohort 3 Cohort 4 

Cohort name PETRA PEP/DART Bara-PIPE Coro-PIPE 

References (Kuhn et al 2001, Petra Study 
2002) 

(Gray et al 2005, Schramm et al 
2006) 

(Kuhn et al 2007) (Kuhn et al 2007) 

Site Chris Hani Baragwanath Chris Hani Baragwanath 

Coronation Hospital 

Chris Hani Baragwanath Coronation Hospital 

Description Mothers recruited at 35 weeks' 
gestation. Received one of four 
regimens: 

A) AZT + 3TC @ 36wks, oral 
intrapartum dosing, 7 days 
postpartum dosing of mother 
and infant 

B) As regimen A without 
prepartum component 

C) Intrapartum AZT + 3TC only 

D) Placebo 

Group 1: Maternal HIV status 
was unknown at delivery. Only 
diagnosed after birth. Did not 
receive ARVs before or during 
delivery. 

Group 2: Small number of 
women received sdNVP as part 
of a demonstration of 
antiretroviral therapy initiative. 

Postpartum drug naïve 
women and women that 
received sdNVP as part of 
routine PMTCT services. 

Women already enrolled in 
PMTCT services. Women were 
recruited at 6 weeks postpartum. 

Enrolment period 1996-2000 2000-2002 After 2002 After 2002 

N in complete cohort 31 202 284 332 

Infant HIV testing At birth and 6 weeks of age At birth and 6 weeks of age At birth and 6 weeks of age At 6 weeks of age, no birth sample 

Maternal VL+CD4 
testing time point 

Not available 24 hours after deliver 
Soon after birth, before 
discharge 

6 weeks postpartum 

Maternal drug 
regimen 

As above None or sdNVP (smaller N) sdNVP Either sdNVP or triple-drug 
combination therapy (smaller N) 

Infant drug regimen As above Zidovudine or sdNVP 

Group 1 within 24 h 

Group 2 within 72 h 

sdNVP (all) 

Within 72 h 

sdNVP 

Within 72 h 
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Appendix A.3. Primer pairs used for PCR amplification of the complete ~9.4 kilobase 
FCGR3A gene 
 

Primer Name Sequence 5'-3' 

Fragment 1 
 

FCGR3ASet1-4364F AGG TTT CCC AGA TAA GCA TCC 
FCGR3ASet1-6276R CAC AAG AAA GGG TAG AAA TTG AAA AT 

Fragment 2 
 

First round 
 

FCGR3ASet2-5793F TAG CTG TGG ATT GAG CTC CT 
FCGR3ASet2-9485R CGT GTG TTG GTC ATG ATT CTC TAC 

Nested 
 

FCGR3ASet2-6046F TAG CTG TGG ATT GAG CTC CT 
FCGR3ASet2-8926R GAT CAA GAC CAT CCT GGC TAA C 

Fragment 3 
 

First round 
 

FCGR3ASet3-8157F   GTC CCT ACA ATC TTA CCA CAT AGG 
FCGR3ASet3-12025R AAA ATG ACC AGA ATA GTT TAA TCT CGT 

Nested 
 

FCGR3ASet3-8382F  TTC ACT CTC CAG AGC TAC AAG AAG A 
FCGR3ASet3-11679R TGG GAT CAT AGG ATA TTA GTG CTT G 

Fragment 4 
 

FCGR3ASet4-10763F CAC ATA TTT ACA GAA TGG CAA AGG* 
FCGR3ASet4-13968R ATT TAT ATG AGT TGT GGT GAG ATG GT* 

   

* 3’ Locked nucleic acid (LNA) base used for improved discrimination between 
FCGR3A and FCGR3B genes 
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Appendix B.1. Comparison between genotypes and carriage of at least one allele between different population groups 

 

Overall H131R genotype distribution (Chi-square) 
 

Overall I232T genotype distribution (Chi-square) 
 

Overall F158V genotype distribution (Chi-square) 

 

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc* EUR* 

LWK P = .097 - - - -  LWK P = .482 - - - -  LWK P < .0001  - - - - 
YRI P = .703 P = .202 - - -  YRI P = .039 P = .043 - - -  YRI P = .026 P = .001 - - - 
SA Cauc P = .014 P = .415 P = .036 - -  SA Cauc P = .002 P = .001 P = .094 - -  SA Cauc* P = .056 P = .001 P = .001 - - 
EUR P = .280 P = .483 P = .543 P = .080 -  EUR P < .0001 P < .0001 P = .002 P = .874 -  EUR* P = .001 P = .001 P = .025 P = .102 - 
Dutch Cauc P = .107 P = .557 P = .389 P = .250 P = .482  Dutch Cauc* P < .0001 P < .0001 P = .003 P = .983 P = .505  Dutch 

Cauc 
P = .195 P = .001 P = .303 P = .057 P = .264 

                    HH vs. HR (Fisher's exact) 
 

II vs. IT (Fisher's exact) 
 

FF vs. FV (Fisher's exact) 

 

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc* EUR* 

LWK P = .100 - - - -  LWK P = .490 - - - -  LWK P < .0001 - - - - 
YRI P = 1 P = .109 - - -  YRI P = .117 P = .025 - - -  YRI P = .121 P = .0002 - - - 
SA Cauc P = .037 P = .498 P = .033 - -  SA Cauc P = .0009 P = .0003 P = .042 - -  SA Cauc* P = .125 P = .065 P = .651 - - 
EUR P = .308 P = .279 P = .309 P = .095 -  EUR P < .0001  P < .0001  P = .0008 P = .654 -  EUR* P = .0002 P = .002 P = .175 P = 1 - 
Dutch Cauc P = .414 P = .410 P = .375 P = .171 P = 1  Dutch Cauc* P < .0001  P < .0001  P = .001 P = 1 P = .384  Dutch 

Cauc 
P = .124 P = .0003 P = 1 P = .654 P = .185 

                    HH vs. RR (Fisher's exact) 
 

II vs. TT (Fisher's exact) 
 

FF vs. VV (Fisher's exact) 

 

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc* EUR* 

LWK P = .046 - - - -  LWK P = .587 - - - -  LWK P = .008 - - - - 
YRI P = .688 P = .218 - - -  YRI P = .038 P = .241 - - -  YRI P = .022 P = 1 - - - 
SA Cauc P = .009 P = .277 P = .051 - -  SA Cauc P = .171 P = .406 P = 1 - -  SA Cauc* P = .381 P = .002 P = .003 - - 
EUR P = .121 P = .359 P = .497 P = .056 -  EUR P = .0004 P = .036 P = 1 P = 1 -  EUR* P = .336 P = .030 P = .059 P = .063 - 
Dutch Cauc P = .058 P = 1 P = .205 P = .277 P = .336  Dutch Cauc* P = .030 P = .280 P = 1 P = 1 P = .743  Dutch 

Cauc 
P = .327 P = .200 P = .172 P = .057 P = .684 

                    HH vs. at least one R (Fisher's exact) 
 

II vs. at least one T (Fisher's exact) 
 

FF(F) vs. at least one V (Fisher's exact) 

 

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc EUR 
  

SA Black 
individuals 

LWK YRI SA Cauc* EUR* 

LWK P = .044 - - - -  LWK P = .687 - - - -  LWK P < .0001 - - - - 
YRI P = 1 P = .095 - - -  YRI P = .038 P = .028 - - -  YRI P = .052 P = .0007 - - - 
SA Cauc P = .007 P = .285 P = .018 - -  SA Cauc P = .0006 P = .0002 P = .032 - -  SA Cauc* P = .687 P = .001 P = .536 - - 
EUR P = .194 P = .250 P = .339 P = .038 -  EUR P < .0001 P < .0001 P = .002 P = .825 -  EUR* P = .0005 P = .0003 P = .553 P = .199 - 
Dutch Cauc P = .160 P = .641 P = .240 P = .127 P = .702  Dutch Cauc* P < .0001 P < .0001 P = .003 P = 1 P = .285  Dutch 

Cauc 
P = .108 P = .0001 P = .663 P = .685 P = .255 

                    H vs. R (Fisher's exact) 
 

I vs. T (Fisher's exact) 
 

V vs. F (Fisher's exact) 

 
SA Black 

individuals 
LWK YRI SA Cauc EUR 

  
SA Black 

individuals 
LWK YRI SA Cauc EUR 

  
SA Black 

individuals 
LWK YRI SA Cauc* EUR* 

LWK P = .046 - - - -  LWK P = 1 - - - -  LWK P < .0001 - - - - 
YRI P = .559 P = .211 - - -  YRI P = .016 P = .024 - - -  YRI P = .012 P = .008 - - - 
SA Cauc P = .005 P = .191 P = .028 - -  SA Cauc P = .001 P = .002 P = .127 - -  SA Cauc* P = 1 P < .0001 P = .079 - - 
EUR P = .110 P = .305 P = .497 P = .031 -  EUR P < .0001  P < .0001  P = .005 P = .754 -  EUR* P = .003 P = .0001 P = .605 P = .068 - 
Dutch Cauc P = .039 P = 1 P = .215 P = .193 P = .314  Dutch Cauc* P < .0001  P < .0001  P = .023 P = 1 P = .767  Dutch 

Cauc 
P = .091 P = .0003 P = .417 P = .222 P = .598 

                    

*Population frequencies not in Hardy-Weinberg equilibrium – associations with these populations are shaded in grey 

EUR – European ancestry super group; YRI – Yoruba in Ibadan, Nigeria; LWK – Luhya in Webuye, Kenya; SA – South African; Cauc - Caucasian
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Appendix B.2. Low affinity FCGR genotypes and FcγRIIIa surface density for South African Caucasian participants. 

          
FcγRIIIa surface density 

(antibodies bound per cell) 

Caucasian 
donor ID 

FcγRIIa-
R131H 

FcγRIIIa 
CNV 

FcγRIIIa-
intragenic 

haplotype (IH) 

FcγRIIIa-
F158V 

FcγRIIc 
CNV 

FcγRIIc  
-386G>C/ 
-120T>A 

FcγRIIc 
Express/Pseudogene 
(Pseudo) Genotype 

FcγRIIb  
-386G>C/ 
-120T>A 

FcγRIIb-
I232T 

CD56dim 
NK cells 

CD14dim 
monocytes 

CCR07 HH 2 IH/wt VV 2 CG/TT Express/Pseudo CG/AT II 90142 72873 
CCR60 HR 2 IH/wt FV 2 CG/TT Express/Pseudo GG/TT II 83856 70074 
CCR21 RR 2 IH/wt FV 2 CG/TT Express/Pseudo CG/AT II 68046 74639 
CCR06 HH 3 IH/wt/wt FVV 3* CGG/TTT Express/Pseudo/Pseudo GG/TT II 61372 57590 
CCR01 HR 2 IH/wt FV 3 CGG/TTT Express/Pseudo/Pseudo CG/AT II 61153 73168 
CCR12 HH 2 IH/wt VV 1 C/T Express CG/AT II 57355 69038 
CCR15 HR 2 IH/wt VV 2 CG/TT Express/Pseudo CG/AT II 55477 40392 
CCR13 HH 2 IH/wt FV 2 CC/TT Express/Pseudo CG/AT II 53498 64317 
CCR58 HH 2 IH/wt FV 2 CG/TT Express/Pseudo GG/TT II 49386 65251 
CCR14 RR 3 IH/wt/wt FFF 3* GGG/ATT Express/Pseudo/Pseudo CG/AT II 49375 72380 
CCR59 HR 2 IH/wt FV 2 CG/TT Express/Pseudo CG/AT II 45789 42144 
CCR23 HH 2 IH/wt FV 2 CG/TT Express/Pseudo CG/AT IT 41575 42600 
CCR04 HH 2 IH/wt VV 2 CG/TT Express/Pseudo CG/AT II 40518 39458 
CCR05 HH 2 IH/IH VV 2 CC/TT Express/Express CC/AA II 36395 30443 
CCR57 HH 2 IH/wt VV 2 CG/TT Express/Pseudo GG/TT II 35833 36315 
CCR51 HH 2 IH/IH VV 2 CC/TT Express/Express CC/AT TT 23206 32201 
CCR48 HH 2 wt/wt FV 2 GG/TT Pseudo/Pseudo GG/TT II 85563 54076 
CCR50 HR 3 wt/wt/wt FFV 3* GGG/TTT Pseudo/Pseudo/Pseudo GG/TT II 39733 30160 
CCR11 RR 2 wt/wt FF 5 GGGGG/TTTTT Pseudo(x5) GG/TT II 36595 37236 
CCR02 HR 2 wt/wt FF 2 GG/TT Pseudo/Pseudo GG/TT II 35700 67902 
CCR55 HR 2 wt/wt FF 3 GGG/TTT Pseudo(x3) CG/AT IT 34371 46533 
CCR19 HH 2 wt/wt FF 1 G/T Pseudo GG/TT II 32759 45647 
CCR20 HR 2 wt/wt FF 2 GG/TT Pseudo/Pseudo GG/TT IT 31875 40284 
CCR52 HR 2 wt/wt FF 2 GG/TT Pseudo/Pseudo GG/TT II 31313 38551 
CCR16 RR 2 wt/wt FF 2 CG/TT Express/Pseudo GG/TT IT 26630 37813 
CCR56 HR 2 wt/wt FF 4 GGGG/TTTT Pseudo(x4) GG/TT II 25648 42923 
CCR54 HR 2 wt/wt FF 2 GG/TT Pseudo/Pseudo GG/TT II 23026 28505 
CCR53 RR 2 wt/wt FF 2 GG/TT Pseudo/Pseudo GG/TT IT 18944 34925 
CCR08 HR 2 wt/wt FF 3 GGG/TTT Pseudo(x3) GG/TT II 18868 31008 
CCR17 HR 2 wt/wt FF 1 G/T Pseudo GG/TT II 16724 20549 
CCR10 HH 2 wt/wt FF 2 GG/TT Pseudo/Pseudo GG/TT II 15304 18456 
CCR18 HH 2 wt/wt FF 2 GG/TT Pseudo/Pseudo GG/TT II 13500 22086 

            

N/G – Not Genotyped 
*Duplication of CNR2 region, thus one FCGR2C gene copy lacks exon 7 
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Appendix C.1. Associations from univariate and multivariate analyses of maternal FcγR genotypes and allele carriage with HIV-1 
transmission across the total cohort 

 
   Multivariate analysis - Adjusted for the following: 

Genotype/allele Univariate 

 

Viral Load 
 

CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1 
   

1 
   

1 
   

1 
   

1 
  

131HR 1.30 0.62-2.73 0.494 
 

1.70 0.71-4.09 0.234 
 

1.04 0.46-2.34 0.929 
 

1.30 0.62-2.74 0.488 
 

1.71 0.71-4.10 0.232 

131RR 1.88 0.86-4.12 0.115 
 

3.22 1.28-8.10 0.013 
 

1.69 0.72-3.97 0.232 
 

1.87 0.85-4.10 0.118 
 

3.15 1.25-7.99 0.015 
                    
≥1 131H allele 0.63 0.35-1.15 0.135 

 
0.45 0.23-0.88 0.020 

 
0.61 0.32-1.16 0.132 

 
0.64 0.35-1.16 0.143 

 
0.46 0.23-0.91 0.025 

≥1 131R allele 1.51 0.76-3.013 0.242 
 

2.21 0.97-5.02 0.059 
 

1.27 0.59-2.70 0.54 
 

1.51 0.76-3.02 0.241 
 

2.18 0.96-4.97 0.063 
                    

FcγRIIb 
                   

232II 1 
   

1 
   

1 
   

1 
   

1 
  

232IT 1.23 0.67-2.24 0.508 
 

1.32 0.67-2.59 0.417 
 

1.21 0.63-2.33 0.558 
 

1.23 0.67-2.24 0.509 
 

1.32 0.62-2.59 0.420 

232TT 1.51 0.61-3.75 0.373 
 

1.83 0.67-4.98 0.239 
 

1.62 0.61-4.28 0.328 
 

1.49 0.60-3.72 0.387 
 

1.79 0.66-4.87 0.257 
                    
≥1 232I allele 0.73 0.31-1.72 0.476 

 
0.63 0.25-1.61 0.335 

 
0.68 0.27-1.69 0.407 

 
0.74 0.31-1.75 0.492 

 
0.64 0.25-1.65 0.358 

≥1 232T allele 1.28 0.73-2.27 0.392 
 

1.42 0.75-2.67 0.282 
 

1.29 0.70-2.39 0.413 
 

1.28 0.72-2.26 0.398 
 

1.41 0.75-2.66 0.291 
                    

FcγRIIIa 
                   

158F/FF/FFF (Ref) 1 
   

1 
   

1 
   

1 
   

1 
  

158FV/FFV/FVV 0.63 0.34-1.16 0.138 
 

0.66 0.34-1.29 0.226 
 

0.63 0.33-1.23 0.176 
 

0.63 0.34-1.17 0.143 
 

0.67 0.34-1.34 0.263 

158VV 0.35 0.14-0.88 0.026 
 

0.24 0.08-0.72 0.011 
 

0.40 0.15-1.04 0.061 
 

0.35 0.14-0.89 0.027 
 

0.24 0.08-0.74 0.013 
                    
≥1 158F allele 2.28 0.94-5.50 0.068 

 
3.42 1.19-9.84 0.023 

 
2.00 0.81-4.94 0.135 

 
2.26 0.94-5.47 0.070 

 
3.36 1.16-9.72 0.025 

≥1 158V allele 0.55 0.31-0.97 0.039 
 

0.53 0.28-1.00 0.048 
 

0.56 0.30-1.04 0.067 
 

0.55 0.31-0.98 0.042 
 

0.54 0.28-1.03 0.063 

                    

FcγRIIIIb 
                   

NA1+/NA2-/SH-  0.91 0.41-2.03 0.814 
 

0.65 0.26-1.63 0.354 
 

0.82 0.33-2.02 0.663 
 

0.92 0.41-2.06 0.834 
 

0.66 0.26-1.66 0.374 

NA1-/NA2+/SH- 1.15 0.41-3.23 0.788 
 

1.52 0.50-4.68 0.462 
 

1.62 0.54-4.85 0.387 
 

1.19 0.423.37 0.742 
 

1.66 0.53-5.18 0.382 

NA1-/NA2-/SH+ 
 

- 
   

- 
   

- 
   

- 
   

- 
 

NA1+/NA2+/SH- (ref) 1 
   

1 
   

1 
   

1 
   

1 
  

NA1+/NA2-/SH+ 1.27 0.52-3.07 0.599 
 

1.01 0.38-2.72 0.977 
 

1.20 0.46-.12 0.712 
 

1.24 0.51-3.02 0.632 
 

0.99 0.37-2.64 0.979 

NA1-/NA2+/SH+ 2.84 1.18-6.84 0.020 
 

1.83 0.68-4.88 0.230 
 

2.87 1.11-7.43 0.030 
 

2.87 1.19-6.94 0.019 
 

1.84 0.69-4.93 0.224 

NA1+/NA2+/SH+ 0.77 0.19-3.10 0.711 
 

0.40 0.09-1.74 0.220 
 

0.65 1.16-2.72 0.557 
 

0.78 0.19-3.15 0.727 
 

0.40 0.09-1.75 0.222 
                    
≥1 HNA1a 0.65 0.34-1.21 0.173 

 
0.66 0.33-1.32 0.237 

 
0.58 0.30-1.15 0.120 

 
0.64 0.34-1.20 0.162 

 
0.64 0.32-1.29 0.212 

≥1 HNA1b 1.42 0.79-2.56 0.247 
 

1.73 0.89-3.36 0.104 
 

1.65 0.86-3.16 0.132 
 

1.43 0.79-2.59 0.234 
 

1.76 0.91-3.43 0.096 

≥1 HNA1c 0.65 0.34-1.21 0.173 
 

1.06 0.55-2.03 0.864 
 

1.32 0.70-2.47 0.395 
 

1.43 0.80-2.57 0.228 
 

1.04 0.54-1.99 0.912 
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Appendix C.2. Associations from univariate and multivariate analyses of maternal FcγR genotypes and allele carriage with HIV-1 
transmission across the group of intrapartum transmitting mothers 

 
   Multivariate analysis - Adjusted for the following: 

Genotype/allele Univariate 

 

Viral Load 
 

CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1    1    1    1    1   

131HR 1.13 0.39-3.27 0.815  1.24 0.37-4.19 0.730  0.83 0.25-2.70 0.755  1.17 0.40-3.43 0.769  1.2 0.35-4.17 0.769 

131RR 1.79 0.60-5.32 0.297  3.58 1.00-12.83 0.050  1.75 0.53-5.77 0.357  2.01 0.66-6.11 0.219  4.21 1.13-15.72 0.032 
 

                   

≥1 131H allele 0.61 0.26-1.40 0.243  0.32 0.12-0.85 0.021  0.50 0.20-1.25 0.139  0.55 0.24-1.30 0.174  0.27 0.10-0.74 0.011 

≥1 131R allele 1.37 0.52-3.63 0.521  1.87 .61-5.69 0.272  1.15 0.39-3.36 0.805  1.46 0.55-3.92 0.448  1.93 0.62-5.96 0.255 

 
                   

FcγRIIb                    

232II 1    1    1    1    1   

232IT 1.52 0.65-3.56 0.335  1.80 0.69-4.70 0.227  1.37 0.54-3.48 0.503  1.53 0.65-3.63 0.332  1.78 0.67-4.70 0.245 

232TT 1.24 0.31-4.98 0.765  1.74 0.40-7.67 0.461  1.35 0.32-5.64 0.681  1.39 0.34-5.75 0.645  1.77 0.38-8.19 0.463 
 

                   

≥1 232I allele 1.01 0.27-3.73 0.991  0.79 0.20-3.10 0.733  0.87 0.23-3.32 0.804  0.9 0.24-3.40 0.874  0.77 0.19-3.19 0.716 

≥1 232T allele 1.46 0.65-3.32 0.361  1.79 0.72-4.49 0.213  1.37 0.57-3.31 0.486  1.51 0.66-3.36 0.332  1.78 0.70-4.52 0.227 
 

                   

FcγRIIIa                    

158F/FF/FFF (Ref) 1    1    1    1    1   

158FV/FFV/FVV 1.80 0.73-4.44 0.203  1.35 0.51-3.58 0.551  1.51 0.58-3.9 0.400  1.78 0.71-4.45 0.217  1.22 0.45-3.34 0.693 

158VV 0.45 0.09-2.25 0.328  0.18 0.02-1.57 0.120  0.43 0.08-2.24 0.318  0.39 0.08-2.00 0.259  0.15 0.016-1.33 0.088 
 

                   

≥1 158F allele 3.26 0.73-14.52 0.121  6.87 0.85-55.31 0.070  2.95 0.64-13.57 0.165  3.72 0.82-16.86 0.089  7.75 0.96-62.75 0.055 

≥1 158V allele 1.40 0.58-3.38 0.459  0.99 0.38-2.58 0.983  1.17 0.46-2.95 0.738  1.34 0.55-3.29 0.516  0.88 0.33-2.35 0.792 
 

                   

FcγRIIIIb                    

NA1+/NA2-/SH-  0.64 0.19-2.21 0.484  0.58 0.15-2.25 0.429  0.83 0.22-3.05 0.774  0.54 0.15-1.91 0.342  0.53 0.13-2.07 0.361 

NA1-/NA2+/SH- 1.51 0.41-5.56 0.532  2.22 0.52-9.57 0.283  2.41 0.59-9.90 0.222  1.27 0.34-4.79 0.719  1.81 0.41-8.05 0.437 

NA1-/NA2-/SH+  -    -    -    -    -  

NA1+/NA2+/SH- (ref) 1    1    1    1    1   

NA1+/NA2-/SH+ 1.33 0.40-4.36 0.643  1.01 0.25-4.04 0.984  1.08 0.28-4.14 0.915  1.56 0.46-5.29 0.477  1.09 0.26-4.54 0.908 

NA1-/NA2+/SH+ 2.04 0.59-7.00 0.258  1.59 0.40-6.23 0.510  2.18 0.54-8.77 0.272  1.73 0.49-6.08 0.392  1.4 0.34-5.77 0.641 

NA1+/NA2+/SH+ 0.59 0.07-5.18 0.633  0.37 0.04-3.50 0.386  0.52 0.06-4.85 0.568  0.53 0.06-4.72 0.566  0.31 0.03-3.12 0.321 
 

                   

≥1 HNA1a 0.66 0.27-1.59 0.354  0.61 0.24-1.59 0.317  0.60 0.23-1.55 0.290  0.72 0.30-1.76 0.473  0.66 0.25-175 0.409 

≥1 HNA1b 1.54 0.66-3.62 0.320  1.94 0.75-5.03 0.172  1.68 0.66-4.29 0.275  1.48 0.63-3.52 0.371  1.83 0.70-4.81 0.217 

≥1 HNA1c 1.26 0.55-2.88 0.582  0.94 0.38-2.34 0.900  0.96 0.38-2.40 0.932  1.37 0.59-3.19 0.463  0.96 0.37-2.47 0.930 
                    

 



Appendices 

 

 Page 164 
 

Appendix C.3. Associations from univariate and multivariate analyses of maternal FcγR genotypes and allele carriage with HIV-1 
transmission across the group of in utero transmitting mothers 

 

   Multivariate analysis - Adjusted for the following: 

 

Univariate 

 

Viral Load 
 

CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 

OR 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1 
   

1 
   

1 
   

1 
   

1 
  

131HR 2.55 0.52-12.43 0.246 
 

6.93 0.75-64.31 0.890 
 

3.08 0.36-26.45 0.305 
 

2.56 0.53-12.49 0.244 
 

6.91 0.75-64.00 0.089 

131RR 4.38 0.89-21.63 0.069 
 

17.9 1.86-172.72 0.013 
 

6.08 0.70-52.51 0.101 
 

4.47 0.89-22.30 0.068 
 

18.84 1.88-188.26 0.012 
                    

≥1 131H allele 0.45 0.17-1.18 0.105 
 

0.25 0.08-0.78 0.016 
 

0.40 0.13-1.20 0.102 
 

0.45 0.17-1.18 0.105 
 

0.24 0.07-0.79 0.019 

≥1 131R allele 3.23 0.715-14.56 0.128 
 

10.21 1.18-88.48 0.035 
 

4.12 0.52-32.87 0.181 
 

3.23 0.71-14.63 0.128 
 

10.07 1.16-87.71 0.036 
                    

FcγRIIb 
                   

232II 1 
   

1 
   

1 
   

1 
   

1 
  

232IT 0.67 0.23-1.95 0.461 
 

0.78 0.239-2.53 0.677 
 

0.79 0.23-2.65 0.699 
 

0.67 0.23-1.95 0.461 
 

0.78 0.24-2.55 0.683 

232TT 1.81 0.50-6.57 0.365 
 

2.61 0.54-12.54 0.230 
 

2.27 0.50-10.41 0.290 
 

1.82 0.50-6.63 0.366 
 

2.60 0.54-12.46 0.233 
                    

≥1 232I allele 0.47 0.14-1.57 0.218 
 

0.34 0.78-1.52 0.159 
 

0.40 0.09-1.65 0.203 
 

0.46 0.14-1.58 0.221 
 

0.35 .08-1.53 0.161 

≥1 232T allele 0.89 0.35-2.28 0.816 
 

1.04 0.36-3.00 0.943 
 

1.04 0.35-3.06 0.944 
 

0.89 0.35-2.28 0.813 
 

1.04 0.36-3.01 0.940 
                    

FcγRIIIa                    

158F/FF/FFF (Ref) 1 
   

1 
   

1 
   

1 
   

1 
  

158FV/FFV/FVV 0.55 0.21-1.47 0.234 
 

0.69 0.22-2.11 0.513 
 

0.81 0.26-2.49 0.709 
 

0.55 0.21-1.47 0.231 
 

0.70 0.22-2.19 0.538 

158VV 0.16 0.02-1.32 0.090 
 

0.14 0.02-1.29 0.083 
 

0.24 0.03-2.12 0.200 
 

0.16 0.02-1.31 0.088 
 

0.14 0.02-1.34 0.089 
                    

≥1 158F allele 4.59 0.59-35.72 0.146 
 

5.85 0.69-49.97 0.106 
 

3.67 .46-29.6 0.222 
 

4.65 0.59-36.50 0.144 
 

5.73 0.66-49.42 0.112 

≥1 158V allele 0.44 0.17-1.12 0.085 
 

0.49 0.17-1.44 0.194 
 

0.63 0.21-1.85 0.399 
 

0.43 0.17-1.12 0.085 
 

0.51 0.17-1.52 0.225 
                    

FcγRIIIIb                    

NA1+/NA2-/SH-  3.21 0.75-13.73 0.115 

 

1.70 0.34-8.55 0.520 

 

2.60 0.41-16.87 0.313 

 

3.28 0.76-14.18 0.111 

 

1.65 0.32-8.43 0.544 

NA1-/NA2+/SH- 1.26 0.12-13.08 0.845 

 

2.73 0.22-33.94 0.435 

 

2.38 0.18-30.33 0.505 

 

1.31 0.12-13.87 0.822 

 

3.10 0.24-39.46 0.384 

NA1-/NA2-/SH+ 

 

- 

   

- 

   

- 

   

- 

     NA1+/NA2+/SH- (ref) 1 

   

1 

   

1 

   

1 

   

1 

  NA1+/NA2-/SH+ 3.53 0.73-17.20 0.118 

 

2.33 0.42-12.81 0.331 

 

4.81 0.79-29.10 0.087 

 

3.48 0.71-17.01 0.124 

 

2.21 0.41-12.03 0.359 

NA1-/NA2+/SH+ 6.79 1.44-32.16 0.016 

 

4.53 0.7925.93 0.090 

 

8.22 1.32-51.02 0.024 

 

6.91 1.45-32.94 0.015 

 

4.51 0.79-25.55 0.089 

NA1+/NA2+/SH+ 1.96 0.18-21.02 0.577 

 

0.77 0.06-9.33 0.840 

 

2.21 0.18-27.70 0.537 

 

1.99 0.19-21.35 0.570 

 

0.75 0.06-9.19 0.820 
 

                   ≥1 HNA1a 0.69 0.25-1.95 0.487 
 

0.63 0.19-2.11 0.454 
 

0.57 0.18-1.83 0.348 
 

0.69 0.24-1.94 0.480 
 

0.62 0.18-2.07 0.434 

≥1 HNA1b 0.69 0.27-1.77 0.445 
 

1.07 0.37-3.13 0.902 
 

0.84 0.28-2.48 0.749 
 

0.70 0.27-1.78 0.447 
 

1.10 0.37-3.23 0.869 

≥1 HNA1c 2.06 0.80-5.30 0.132 
 

1.52 0.53-4.36 0.441 
 

2.68 0.87-8.27 0.087 
 

2.07 0.80-5.36 0.133 
 

1.50 0.52-4.33 0.449 
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Appendix C.4. Associations from univariate and multivariate analyses of maternal FcγR genotypes and allele carriage with HIV-1 
transmission across the group of in utero enriched transmitting mothers 

 
   Multivariate analysis - Adjusted for the following: 

 

Univariate 

 

Viral Load 
 

CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 

OR 95% CI P 

 

OR 95% CI P 

 

4.21 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1 
   

1 
   

1 
   

1 
   

1 
  

131HR 1.42 0.57-3.53 0.453 
 

2.37 0.78-7.18 0.128 
 

1.18 0.44-3.16 0.738 
 

1.48 0.59-3.74 0.405 
 

2.46 0.80-7.60 0.117 

131RR 1.95 0.75-5.08 0.173 
 

3.58 1.13-11.36 0.031 
 

1.74 0.62-4.89 0.297 
 

1.84 0.70-4.86 0.219 
 

2.93 0.90-9.52 0.074 
                    

≥1 131H allele 0.65 0.32-1.33 0.238 
 

0.52 0.24-1.13 0.098 
 

0.65 0.30-1.39 0.267 
 

0.71 0.34-1.46 0.352 
 

0.65 0.28-1.45 0.291 

≥1 131R allele 1.61 0.69-3.78 0.271 
 

2.80 .98-8.04 0.055 
 

1.38 0.55-3.45 0.495 
 

1.62 0.68-3.84 0.272 
 

2.65 0.91-7.70 0.074 

                    

FcγRIIb 
                   

232II 1 
   

1 
   

1 
   

1 
   

1 
  

232IT 1.06 0.51-2.19 0.884 
 

1.14 0.51-2.54 0.745 
 

1.14 0.52-2.50 0.734 
 

1.04 0.50-2.18 0.920 
 

1.11 0.49-2.51 0.803 

232TT 1.67 0.60-4.68 0.330 
 

1.93 0.61-6.09 0.262 
 

1.81 0.59-5.56 0.301 
 

1.50 0.52-4.27 0.451 
 

1.69 0.52-5.44 0.380 

                    

≥1 232I allele 0.61 0.23-1.62 0.325 
 

0.55 0.19-1.62 0.281 
 

0.59 0.21-1.69 0.327 
 

0.68 0.25-1.82 0.444 
 

0.62 0.21-1.87 0.399 

≥1 232T allele 1.18 0.60-2.32 0.638 
 

1.29 0.61-2.71 0.510 
 

1.27 0.61-2.63 0.527 
 

1.13 0.57-2.26 0.722 
 

1.22 0.57-2.63 0.605 
                    

FcγRIIIa 
                   

158F/FF/FFF (Ref) 1 
   

1 
   

1 
   

1 
   

1 
  

158FV/FFV/FVV 0.30 0.14-0.65 0.003 
 

0.37 0.16-0.85 0.019 
 

0.34 0.15-0.78 0.011 
 

0.31 0.14-0.68 0.004 
 

0.44 0.19-1.05 0.065 

158VV 0.32 0.11-0.92 0.034 
 

0.25 0.07-0.83 0.023 
 

0.37 0.13-1.20 0.074 
 

0.35 0.12-1.04 0.058 
 

0.30 0.86-1.03 0.056 
                    

≥1 158F allele 1.88 0.68-5.21 0.223 
 

2.66 0.83-8.51 0.100 
 

1.70 0.60-4.82 0.316 
 

1.72 0.61-4.84 0.300 
 

2.38 0.72-7.86 0.156 

≥1 158V allele 0.30 0.15-0.61 0.001 
 

0.33 0.15-0.70 0.004 
 

0.35 0.17-0.73 0.005 
 

0.32 0.16-0.65 0.002 
 

0.40 0.18-0.87 0.021 

                    

FcγRIIIIb 
                   

NA1+/NA2-/SH-  1.11 0.43-2.89 0.828 

 

0.63 0.21-1.86 0.398 

 

0.85 0.28-2.52 0.764 

 

1.23 0.46-3.25 0.681 

 

0.68 0.22-2.13 0.512 

NA1-/NA2+/SH- 0.87 0.22-3.50 0.849 

 

1.22 0.28-5.30 0.788 

 

1.14 0.27-4.88 0.858 

 

1.08 0.26-4.46 0.916 

 

1.89 0.41-8.79 0.417 

NA1-/NA2-/SH+ 

 

- 

   

- 

   

- 

   

- 

   

- 

 NA1+/NA2+/SH- (ref) 1 

   

1 

   

1 

   

1 

   

1 

  NA1+/NA2-/SH+ 1.22 0.41-3.66 0.719 

 

0.95 0.29-3.04 0.925 

 

1.26 0.40-3.94 0.688 

 

1.14 0.37-3.45 0.823 

 

0.91 0.28-2.93 0.871 

NA1-/NA2+/SH+ 3.45 1.26-9.43 0.016 

 

2.10 0.69-6.38 0.189 

 

3.40 1.17-9.85 0.024 

 

3.73 1.33-10.40 0.012 

 

2.20 0.70-6.89 0.177 

NA1+/NA2+/SH+ 0.91 0.17-4.71 0.907 

 

0.43 0.08-2.41 0.336 

 

0.76 0.14-4.05 0.746 

 

1.00 0.19-5.27 0.999 

 

0.42 0.07-2.49 0.337 

 
                   ≥1 HNA1a 0.64 0.30-1.34 0.235 

 
0.65 0.29-1.49 0.309 

 
0.58 0.26-1.29 0.181 

 
0.59 0.28-1.27 0.176 

 
0.59 0.25-1.39 0.227 

≥1 HNA1b 1.34 0.66-2.72 0.414 
 

1.83 0.83-4.04 0.135 
 

1.62 0.75-3.52 0.223 
 

1.39 0.68-2.85 0.365 
 

1.87 0.83-4.20 0.132 

≥1 HNA1c 1.57 0.79-3.13 0.202 
 

1.18 0.55-2.51 0.676 
 

1.58 0.75-3.33 0.228 
 

1.49 0.74-3.00 0.264 
 

1.09 0.50-2.36 0.825 
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Appendix C.5. Associations from univariate and multivariate analyses of infant FcγR genotypes and allele carriage with HIV-1 
acquisition across the total cohort 

 
   Multivariate analysis - Adjusted for the following: 

Genotype/allele Univariate 

 

Maternal Viral Load 
 

Maternal CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1    1    1    1    1   

131HR 0.81 0.39-1.67 0.566  0.81 0.36-1.84 0.623  0.84 0.38-1.85 0.664  0.82 0.39-1.69 0.586  0.82 0.36-1.86 0.636 

131RR 0.84 0.38-1.87 0.669  0.98 0.40-2.38 0.964  0.87 0.37-2.07 0.757  0.85 0.38-1.88 0.682  0.97 0.40-2.37 0.955 
 

                   

≥1 131H allele 1.03 0.55-1.93 0.928  0.88 0.45-1.76 0.726  1.01 0.52-1.99 0.966  1.03 0.55-1.94 0.927  0.89 0.45-1.78 0.750 

≥1 131R allele 0.82 0.42-1.62 0.567  0.87 0.41-1.88 0.730  0.85 0.4-1.79 0.671  0.83 0.42-1.64 0.587  0.88 0.41-1.89 0.735 

 
                   

FcγRIIb                    

232II 1    1    1    1    1   

232IT 1.20 0.63-2.28 0.577  1.50 0.74-3.06 0.263  0.87 0.43-1.75 0.691  1.20 0.63-2.28 0.582  1.49 0.73-3.04 0.274 

232TT 1.94 0.87-4.29 0.104  2.29 0.95-5.54 0.066  1.71 0.73-3.99 0.217  1.92 0.87-4.27 0.108  2.24 0.92-5.45 0.075 

 
                   

≥1 232I allele 0.56 0.26-1.18 0.125  0.52 0.23-1.18 0.119  0.55 0.25-1.24 0.151  0.56 0.26-1.18 0.130  0.53 0.23-1.21 0.133 

≥1 232T allele 1.40 0.79-2.50 0.245  1.73 0.91-3.28 0.096  1.09 0.59-2.02 0.774  1.40 0.79-2.49 0.251  1.70 0.89-3.25 0.106 
 

                   

FcγRIIIa                    

158F/FF/FFF (Ref) 1    1    1    1    1   

158FV/FFV/FVV 0.91 0.49-1.67 0.761  0.82 0.42-1.60 0.558  0.96 0.50-1.85 0.911  0.91 0.50-1.68 0.773  0.84 0.43-1.64 0.604 

158VV 0.47 0.17-1.28 0.139  0.23 0.06-0.89 0.033  0.63 0.22-1.77 0.377  0.47 0.17-1.29 0.143  0.24 0.06-0.92 0.037 
 

                   

≥1 158F allele 2.03 0.79-5.23 0.144  3.82 1.06-13.75 0.040  1.57 0.59-4.18 0.369  2.02 0.78-5.22 0.146  3.75 1.04-13.53 0.043 

≥1 158V allele 0.80 0.45-1.43 0.452  0.67 0.35-1.28 0.225  0.88 0.47-1.65 0.696  0.80 0.45-1.44 0.464  0.69 0.36-1.33 0.264 
 

                   

FcγRIIIIb                    

NA1+/NA2-/SH-  0.32 0.12-0.82 0.018  0.24 0.08-0.69 0.008  0.35 0.13-0.96 0.042  0.32 0.12-0.82 0.018  0.24 0.08-0.69 0.008 

NA1-/NA2+/SH- 0.75 0.26-2.18 0.598  0.73 0.23-2.32 0.592  0.82 0.25-2.64 0.740  0.77 0.26-2.26 0.637  0.73 0.23-2.35 0.600 

NA1-/NA2-/SH+ 1.25 0.32-4.86 0.748  0.86 0.18-4.09 0.852  1.54 0.37-6.47 0.555  1.23 0.32-4.81 0.762  0.85 0.18-4.05 0.839 

NA1+/NA2+/SH- (ref) 1    1    1    1    1   

NA1+/NA2-/SH+ 1.04 0.42-2.61 0.931  0.86 0.32-2.30 0.760  1.05 0.39-2.84 0.922  1.07 0.43-2.71 0.879  0.88 0.33-2.36 0.797 

NA1-/NA2+/SH+ 1.63 0.67-3.97 0.286  1.41 0.52-3.84 0.499  1.58 0.61-4.11 0.346  1.68 0.68-4.13 0.260  1.47 0.53-4.02 0.458 

NA1+/NA2+/SH+ 2.81 0.72-10.94 0.136  1.97 0.44-8.83 0.375  2.87 0.72-11.39 0.134  2.87 0.73-11.19 0.130  1.95 0.44-8.60 0.376 
 

                   

≥1 HNA1a 0.68 0.36-1.27 0.229  0.69 0.34-1.38 0.294  0.66 0.34-1.30 0.232  0.67 0.36-1.26 0.218  0.68 0.34-1.37 0.286 

≥1 HNA1b 1.92 1.04-3.52 0.035  2.28 1.16-2.48 0.016  1.82 0.94-3.49 0.073  1.93 1.05-3.54 0.035  2.29 1.17-4.49 0.016 

≥1 HNA1c 2.09 1.16-3.78 0.014  1.85 0.97-3.53 0.061  2.08 1.11-3.91 0.023  2.13 1.18-3.87 0.012  1.89 0.99-3.60 0.054 
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Appendix C.6. Associations from univariate and multivariate analyses of infant FcγR genotypes and allele carriage with HIV-1 
acquisition across the group of intrapartum infected infants 

 
   Multivariate analysis - Adjusted for the following: 

Genotype/allele Univariate 

 

Maternal Viral Load 
 

Maternal CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P  OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1    1    1    1    1   

131HR 0.77 0.28-2.13 0.620  0.77 0.25-2.38 0.644  0.70 0.23-2.12 0.528  0.66 0.23-1.86 0.430  0.65 0.20-2.10 0.474 

131RR 0.82 0.27-2.50 0.722  1.05 0.31-3.55 0.942  0.70 0.20-2.40 0.571  0.78 0.25-2.42 0.664  1.04 0.30-3.63 0.949 
 

                   

≥1 131H allele 1.03 0.42-2.52 0.949  0.80 0.30-2.09 0.645  1.11 0.42-2.96 0.829  0.97 0.39-2.40 0.942  0.72 0.27-1.93 0.513 

≥1 131R allele 0.79 0.31-2.03 0.624  0.86 0.30-2.47 0.783  0.70 0.25-1.98 0.501  0.70 0.27-1.84 0.471  0.78 0.27-2.30 0.654 

 
                   

FcγRIIb                    

232II 1    1    1    1    1   

232IT 1.42 0.58-3.47 0.440  1.99 0.73-5.39 0.177  0.88 0.33-2.36 0.795  1.48 0.60-3.67 0.397  2.18 0.78-6.07 0.135 

232TT 1.67 0.52-5.31 0.387  2.26 0.64-8.04 0.207  1.31 0.37-4.62 0.678  1.91 0.58-6.25 0.285  2.63 0.70-9.92 0.153 
 

                   

≥1 232I allele 0.70 0.24-2.01 0.516  0.61 0.19-1.93 0.400  0.73 0.22-2.42 0.602  0.62 0.21-1.88 0.400  0.55 0.16-1.83 0.329 

≥1 232T allele 1.49 0.667-3.37 0.338  2.07 0.82-5.19 0.123  0.99 0.41-2.40 0.983  1.60 0.69-3.66 0.273  2.30 0.89-5.94 0.085 
 

                   

FcγRIIIa                    

158F/FF/FFF (Ref) 1    1    1    1    1   

158FV/FFV/FVV 1.06 0.43-2.56 0.906  1.01 0.40-2.58 0.979  1.05 0.40-2.76 0.923  0.96 0.39-2.38 0.932  0.80 0.30-2.12 0.648 

158VV 0.90 0.26-3.18 0.876  0.22 0.03-1.90 0.169  1.31 0.35-4.88 0.690  0.88 0.24-3.14 0.839  0.19 0.02-1.67 0.133 
 

                   

≥1 158F allele 1.14 0.36-3.60 0.822  4.57 0.57-36.87 0.153  0.79 0.24-2.61 0.694  1.12 0.35-3.58 0.854  4.67 0.57-38.47 0.152 

≥1 158V allele 1.02 0.44-2.37 0.968  0.81 0.33-2.03 0.660  1.11 0.44-2.75 0.828  0.94 0.40-2.22 0.889  0.64 0.25-1.68 0.368 
 

                   

FcγRIIIIb                    

NA1+/NA2-/SH-  0.18 0.04-0.87 0.032  0.14 0.03-0.72 0.019  0.22 0.05-1.06 0.059  0.17 0.04-0.83 0.029  0.13 0.02-0.69 0.017 

NA1-/NA2+/SH- 0.25 0.03-2.09 0.200  0.22 0.02-2.04 0.181   -   0.21 0.02-1.80 0.155  0.19 0.02-1.90 0.157 

NA1-/NA2-/SH+  -    -    -    -    -  

NA1+/NA2+/SH- (ref) 1    1    1    1    1   

NA1+/NA2-/SH+ 1.25 0.41-3.84 0.697  0.93 0.27-3.19 0.909  1.12 0.33-3.83 0.858  1.04 0.33-3.28 0.950  0.77 0.21-2.80 0.688 

NA1-/NA2+/SH+ 1.75 0.58-5.26 0.319  1.43 0.40-5.15 0.581  1.56 0.48-5.06 0.456  1.50 0.49-4.64 0.479  1.23 0.33-4.55 0.758 

NA1+/NA2+/SH+  -    -    -    -    -  
 

                   

≥1 HNA1a 0.83 0.34-2.05 0.692  0.90 0.33-2.43 0.831  0.97 0.35-2.69 0.954  0.92 0.37-2.29 0.852  0.92 0.33-2.53 0.869 

≥1 HNA1b 2.09 0.85-4.97 0.109  2.37 0.91-6.2 0.078  1.94 0.75-5.07 0.174  2.12 0.87-5.20 0.099  2.49 0.93-6.65 0.068 

≥1 HNA1c 2.04 0.89-4.64 0.091  1.78 0.72-4.38 0.209  1.80 0.73-4.43 0.200  1.82 0.79-4.22 0.159  1.59 0.63-4.03 0.325 
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Appendix C.7. Associations from univariate and multivariate analyses of infant FcγR genotypes and allele carriage with HIV-1 
acquisition across the group of in utero infected infants 

 

   Multivariate analysis - Adjusted for the following: 

 

Univariate 

 

Maternal Viral Load 
 

Maternal CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 

OR 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1    1    1    1    1   

131HR 0.63 0.16-2.37 0.490  0.66 0.13-3.19 0.602  0.77 0.13-4.52 0.773  0.61 0.16-2.35 0.477  0.66 0.13-3.20 0.602 

131RR 1.43 0.39-5.18 0.587  2.09 0.45-9.60 0.344  2.61 0.51-13.48 0.252  1.43 0.39-5.17 0.589  2.10 0.45-9.73 0.345 

 
                   

≥1 131H allele 0.51 0.19-1.39 0.192  0.36 0.12-1.12 0.077  0.32 0.10-0.99 0.048  0.51 0.19-1.39 0.189  0.36 0.11-1.13 0.079 

≥1 131R allele 0.92 0.28-3.00 0.892  1.13 0.28-4.64 0.862  1.45 0.30-6.96 0.644  0.92 0.28-3.01 0.888  1.13 0.27-4.61 0.870 
                    

FcγRIIb                    

232II 1    1    1    1    1   

232IT 1.11 0.33-3.69 0.867  1.07 0.28-4.16 0.921  0.69 0.16-2.96 0.620  1.12 0.34-3.75 0.851  1.07 0.28-4.17 0.920 

232TT 3.42 1.03-11.39 0.044  3.49 0.87-14.02 0.078  3.98 1.02-15.51 0.046  3.59 1.05-12.25 0.041  3.58 0.86-14.86 0.078 
 

                   

≥1 232I allele 0.30 0.10-0.91 0.033  0.29 0.08-1.07 0.063  0.22 0.06-0.79 0.020  0.29 0.10-0.89 0.031  0.29 0.08-1.08 0.065 

≥1 232T allele 1.76 0.64-4.79 0.271  1.74 0.57-5.33 0.332  1.44 0.47-4.43 0.520  1.77 0.65-4.87 0.266  1.73 0.56-5.33 0.339 

 
                   

FcγRIIIa                    

158F/FF/FFF (Ref) 1    1    1    1    1   

158FV/FFV/FVV 0.08 0.27-2.14 0.595  0.62 0.18-2.05 0.430  0.81 0.24-2.68 0.727  0.75 0.26-2.13 0.592  0.62 0.18-2.12 0.443 

158VV 0.57 0.11-2.87 0.491  0.69 0.12-3.87 0.670  0.86 0.16-4.69 0.863  0.56 0.11-2.87 0.487  0.69 0.12-3.93 0.674 

 
                   

≥1 158F allele 1.52 0.33-7.07 0.593  1.12 0.22-5.67 0.888  1.04 0.21-5.06 0.963  1.53 0.33-7.11 0.590  1.12 0.22-5.65 0.893 

≥1 158V allele 0.71 0.26-1.90 0.492  0.63 0.20-1.95 0.425  0.82 0.27-2.52 0.730  0.70 0.26-1.90 0.488  0.63 0.20-2.01 0.439 
 

                   

FcγRIIIIb                    

NA1+/NA2-/SH-  0.44 0.08-2.39 0.341  0.32 0.05-2.11 0.237  0.42 0.04-4.23 0.459  0.44 0.08-2.42 0.349  0.32 0.05-2.12 0.240 

NA1-/NA2+/SH- 0.60 0.06-5.55 0.653  0.74 0.07-8.44 0.812  1.24 0.12-13.38 0.857  0.63 0.07-5.95 0.683  0.80 0.07-9.24 0.856 

NA1-/NA2-/SH+ 1.50 0.15-15.11 0.731  1.03 0.09-12.23 0.983  2.36 0.20-27.85 0.496  1.53 0.15-15.49 0.719  1.03 0.09-12.32 0.980 

NA1+/NA2+/SH- (ref) 1    1    1    1    1   

NA1+/NA2-/SH+ 1.00 0.18-5.63 1  0.99 0.15-6.48 0.989  1.60 0.24-10.73 0.626  1.03 0.18-5.86 0.977  1.01 0.15-6.61 0.994 

NA1-/NA2+/SH+ 3.00 0.76-11.81 0.116  4.40 0.78-24.90 0.094  4.41 0.84-23.01 0.079  3.10 0.77-12.51 0.112  4.45 0.78-25.35 0.093 

NA1+/NA2+/SH+ 4.50 0.65-31.08 0.127  1.97 0.20-19.10 0.560  6.26 0.79-49.79 0.083  4.69 0.66-33.47 0.123  2.23 0.21-23.86 0.507 
                    

≥1 HNA1a 0.52 0.19-1.45 0.214  0.41 0.12-1.36 0.146  0.40 0.13-1.27 0.121  0.52 0.18-1.46 0.212  0.41 0.12-1.36 0.146 

≥1 HNA1b 2.14 0.72-6.31 0.169  2.65 0.81-8.71 0.109  2.05 0.60-6.94 0.251  2.14 0.72-6.31 0.169  2.68 0.81-8.85 0.106 

≥1 HNA1c 2.94 1.08-7.95 0.034  2.88 0.93-8.94 0.066  3.93 1.22-12.61 0.021  2.99 1.09-8.18 0.033  2.92 0.94-9.10 0.064 
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Appendix C.8. Associations from univariate and multivariate analyses of infant FcγR genotypes and allele carriage with HIV-1 
acquisition across the group of in utero enriched infected infants 

 

   Multivariate analysis - Adjusted for the following: 

 

Univariate 

 

Maternal Viral Load 
 

Maternal CD4 count 
 

Maternal sdNVP 
 

Viral Load + sdNVP 

 

OR 95% CI P 

 

OR 95% CI P 

 

4.21 95% CI P 

 

OR 95% CI P 

 

OR 95% CI P 

FcγRIIa 
                   

131HH (Ref) 1    1    1    1    1   

131HR 0.83 0.35-1.99 0.681  0.83 0.31-2.21 0.706  0.92 0.35-2.38 0.856  0.92 0.37-2.19 0.819  0.82 0.30-2.23 0.698 

131RR 0.86 0.33-2.24 0.753  0.96 0.33-2.80 0.944  1.00 0.36-2.82 0.996  0.90 0.33-2.35 0.806  0.88 0.30-2.61 0.815 
 

                   

≥1 131H allele 1.03 0.48-2.20 0.940  0.91 0.40-2.05 0.817  0.94 0.43-2.067 0.872  1.05 0.49-2.27 0.893  0.99 0.43-2.29 0.983 

≥1 131R allele 0.84 0.37-1.90 0.680  0.88 0.35-2.21 0.779  0.95 0.39-2.32 0.907  0.91 0.39-2.09 0.828  0.84 0.33-2.15 0.719 

 
                   

FcγRIIb                    

232II 1    1    1    1    1   

232IT 1.06 0.48-2.34 0.883  1.21 0.51-2.87 0.660  0.86 0.37-2.01 0.726  1.00 0.45-2.24 0.991  1.13 0.47-2.74 0.783 

232TT 2.11 0.84-5.26 0.111  2.29 0.83-6.32 0.109  2.09 0.79-5.54 0.138  1.90 0.75-4.80 0.174  1.87 0.66-5.32 0.238 

 
                   

≥1 232I allele 0.49 0.21-1.15 0.100  0.47 0.18-1.22 0.120  0.45 0.18-1.14 0.091  0.53 0.22-1.25 0.148  0.56 0.21-1.49 0.245 

≥1 232T allele 1.35 0.68-2.70 0.391  1.52 0.71-3.24 0.280  1.18 0.57-2.44 0.658  1.26 0.63-2.54 0.514  1.35 0.62-2.95 0.447 
                    

FcγRIIIa                    

158F/FF/FFF (Ref) 1    1    1    1    1   

158FV/FFV/FVV 0.83 0.41-1.71 0.618  0.69 0.31-1.53 0.364  0.91 0.43-1.95 0.810  0.86 0.41-1.77 0.675  0.82 0.36-1.85 0.635 

158VV 0.24 0.05-1.11 0.067  0.26 0.21-1.24 0.090  0.30 0.06-1.42 0.128  0.26 0.06-1.22 0.087  0.32 0.06-1.56 0.158 
 

                   

≥1 158F allele 3.80 0.86-16.84 0.079  3.20 0.70-14.62 0.133  3.20 0.71-14.41 0.131  3.55 0.79-15.90 0.097  2.84 0.61-13.27 0.183 

≥1 158V allele 0.68 0.34-1.37 0.285  0.59 0.27-1.26 0.170  0.76 0.36-1.59 0.464  0.71 0.35-1.44 0.344  0.70 0.32-1.54 0.381 

 
                   

FcγRIIIIb                    

NA1+/NA2-/SH-  0.46 0.15-1.41 0.173  0.32 0.09-1.13 0.076  0.49 0.14-1.73 0.270  0.47 0.15-1.49 0.201  0.34 0.09-1.25 0.105 

NA1-/NA2+/SH- 1.25 0.38-4.13 0.715  1.25 0.35-4.47 0.734  1.71 0.49-6.01 0.402  1.64 0.48-5.64 0.435  1.53 0.40-5.79 0.531 

NA1-/NA2-/SH+ 2.50 0.61-10.31 0.205  1.70 0.34-8.43 0.518  3.28 0.73-14.67 0.121  2.62 0.62-11.15 0.193  1.89 0.369.83 0.448 

NA1+/NA2+/SH- (ref) 1    1    1    1    1   

NA1+/NA2-/SH+ 0.83 0.24-2.93 0.776  0.70 0.19-2.58 0.589  0.97 0.26-3.62 0.961  0.97 0.27-3.48 0.957  0.75 0.20-2.85 0.669 

NA1-/NA2+/SH+ 1.50 0.48-4.69 0.486  1.43 0.40-5.11 0.577  1.59 0.46-5.53 0.468  1.95 0.60-6.35 0.270  1.70 0.45-6.49 0.437 

NA1+/NA2+/SH+ 5.63 1.36-23.19 0.017  3.94 0.85-18.34 0.081  6.09 1.43-25.93 0.014  7.29 1.65-32.14 0.009  4.70 1.01-21.75 0.048 

                    

≥1 HNA1a 0.60 0.29-1.25 0.173  0.57 0.25-1.28 0.173  0.53 0.24-1.17 0.115  0.52 0.24-1.11 0.092  0.52 0.22-1.21 0.129 

≥1 HNA1b 1.84 0.88-3.82 0.104  2.42 1.08-5.46 0.033  1.73 0.79-3.75 0.167  1.90 0.91-4.00 0.089  2.45 1.07-5.62 0.035 

≥1 HNA1c 2.14 1.06-4.31 0.034  1.92 0.90-4.12 0.093  2.24 1.06-4.71 0.034  2.38 1.15-4.9 0.019  2.05 0.93-4.50 0.073 
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