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Abstract

This thesis presents research conducted for the security aspects of correlated sources

across a wiretap network. Correlated sources are present in communication systems

where protocols ensure that there is some predetermined information for sources to

transmit. Systems that contain correlated sources are for example broadcast channels,

smart grid systems, wireless sensor networks and social media networks. In these systems

there exist common information between the nodes in a network, which gives rise to

security risks as common information can be determined about more than one source.

In this work the security aspects of correlated sources are investigated. Correlated source

coding in terms of the Slepian-Wolf theorem is investigated to determine the amount of

information leakage for various correlated source models. The perfect secrecy approach

developed by Shannon has also been incorporated as a security approach. In order to

explore these security aspects the techniques employed range from typical sequences used

to prove Slepian-Wolf’s theorem to coding methods incorporating matrix partitions for

correlated sources.

A generalized correlated source model is presented and the procedure to determine the

information leakage is initially illustrated using this model. A novel scenario for two

correlated sources across a channel with eavesdroppers is also investigated. It is a ba-

sic model catering for the correlated source applications that have been detailed. The

information leakage quantification is provided, where bounds specify the quantity of in-

formation leaked for various cases of eavesdropped channel information. The required

transmission rates for perfect secrecy when some channel information has been wire-

tapped is further determined, followed by a method to reduce the key length required

for perfect secrecy. The implementation thereafter provided shows how the informa-

tion leakage is determined practically. In the same way using the information leakage

quantification, Shannon’s cipher system approach and practical implementation a novel

two correlated source model where channel information and some source data symbols

(predetermined information) are wiretapped is investigated. The adversary in this sit-

uation has access to more information than if a link is wiretapped only and can thus

determine more about a particular source. This scenario caters for an application where

the eavesdropper has access to some predetermined information. The security aspects

and coding implementation have further been developed for a novel correlated source

model with a heterogeneous encoding method. The model caters for situations where a

wiretapper is able to easily access a particular source.
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The interesting link between information theory and coding theory is explored for the

novel models presented in this research. A matrix partition method is utilized and the

information leakage for various cases of wiretapped syndromes are presented.

The research explores the security for correlated sources in the presence of wiretappers.

Both the information leakage and Shannon’s cipher system approach are used to achieve

these security aspects. The implementation shows the practicality of using these security

aspects in communications systems. The research contained herein is significant as

evident from the various applications it may be used for and to the author’s knowledge

is novel.
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Chapter 1

Introduction

The introduction addresses the field of security in communication networks, gives an

overview of the objective of the thesis, includes an outline of the thesis and provides a

list of publications for this research project. The field of research is broadly introduced

here to provide a holistic view of the importance and significance of this research as

there are many applications for which it can be used. The thesis objectives cover the

aim of the thesis and hypothesis, and the thesis outline describes the chapters that lie

ahead. The list of publications lists the papers published, submitted and that are to be

submitted for this research project, which also provides an indication that this research

is indeed significant.

This document is a PhD thesis for research in the field of telecommunications. The

research focuses on the security aspects of correlated sources across a wiretap network.

The field is largely information theory based, however in the latter part of this work

there is an interesting link highlighted between information theory and coding theory.

The problem statement, concepts, methodologies and solutions that the research has

focused on is provided herein.

Practical communication systems make use of correlated sources. The communication

nodes adhere to certain protocols and this means that certain information (e.g. date,

area, etc.) in the header files will be the same for various nodes. From the receiver’s (or

an eavesdropper’s) perspective, it appears as common information shared between the

nodes. This is therefore pre-existing or known information for an eavesdropper. Thus,

correlated sources are common in systems transmitting information, e.g. smart grid

1



Chapter 1. Introduction 2

meter systems, wireless sensor networks and broadcast channels. This implies that the

theory used for correlated sources may also be applied to this type of system. These

networks can use the methodologies described in this research to secure the system or

to determine the information leakage.

The research focuses on two and more correlated sources that transmit information

to a receiver. This system is useful for wireless architectures. In wireless networks,

physical links connecting nodes to one another are not present and the transmission

medium is air. These networks have a security risk as the transmitted information

may easily be intercepted. Wireless networks have thus in recent decades gained much

exposure. Mobility, a result of wireless communications, supports productivity in a

workplace because users are able to access information wherever wireless communication

is available and can thus work while moving around [8]. Working while traveling increases

worker productivity [8], which is favourable for businesses. Wireless communication has

applications in many systems for example mobile cellular phones, WLANs (Wireless

local access networks), satellite systems and wireless ad hoc networks. Hoebekeet et al.

[9] maintain that the cellular phone is the strongest motivator for the increase in wireless

communications. WLANs host a local access network, which support high speed data

transmission [10]. Satellite communication makes it possible to have voice transmission

from remote areas (for example journalists reporting live from a remote war zone) [10].

In wireless ad hoc networks wireless mobile nodes self-configure and form a network

without any established infrastructure [10].

Wireless technology has been chosen for the research; this well-established technology

has been chosen because of the vast range of applications for which it may be used. It is

noted that each of these applications mentioned may have correlated sources depending

on the communication protocols. Further applications for wirelesss communications

are in embedded computing applications (where embedded devices communicate in a

wireless manner with one another) and emergency services (informing authorities of

an emergency so the necessary aid can be dispatched). If the protocol has common

information (e.g. the date, time or location in a header file) then the transmitter will

receive information correlated with other nodes/sources. It is also important to note

that correlation is generalized in the sense that no correlation means zero correlation,

hence this research also caters for many other communication scenarios.
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An interesting wireless application is smart grids. The application is mentioned to show

the potential of the research topic, however the scope of the research project is not lim-

ited to this single application. It is a type of electrical grid that functions to predict

and intelligently respond to the behaviour of the users connected to it [11]. It is capa-

ble of making the conventional grid work more efficiently, securely and reliably through

bidirectional flows of power and communication [12]. The two-way communication may

be implemented using AMR (automatic meter reading), where the smart meter is an

important component. Xia and Wang [12] define a smart meter as a device that usually

has a processing chip and a non-volatile storage so that it can perform smart functions;

for example being able to report periodic usage updates to the end-users and the gen-

eration facilities at the power company, and interact directly with smart appliances at

home to control them. The information received by the end users may have correlated

information depending on where the meters are located or what time the information

was sent. It could also be related to the communication protocols to which the meters

adhere.

Other applications for this work are broadcast channels and social media networks. In

broadcast channels there is one sender and multiple receivers, for example satellite sys-

tems. Social media networks transmit information internationally in the form of images,

video, voice and text. For both these applications there may be common information

transmitted via the network. With the existence of common information, the sources

are thus correlated and the principles that apply to correlated sources can also apply to

these systems.

Correlated sources have the ability to decrease the bandwidth required to transmit and

receive messages. A syndrome (compressed form of the original message) is transmitted

instead of the original message. It is also interesting that this correlated source approach

has the ability to provide a more secure communication system. The research focuses

on the security aspect in an eavesdropped network that makes use of correlated sources.

Correlated sources possess a security risk as common information provides information

about more than one source. Correlated source coding is the method that has come

about to reduce this security issue. A compressed message has more information per

bit, and therefore has a higher entropy because the transmitted information is more
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unpredictable. The unpredictability of the compressed message is also beneficial for the

information security.

One of the security aspects focused on is the amount of information leakaed to an

eavesdropper. The information leakage that has been considered is not that associated

with cryptography, as discussed by Sun and Rane [13] but rather that associated with

information theory. The scheme incorporating information leakage by Sun and Rane

[13] deals with allowing for some information to be leaked such that the receiver is able

to retrieve the original message even if it has been corrupted. The leaked information

(which satisfies a lower bound so that it does not compromise the system) serves the

purpose of making the system more secure, and it is related to the field of cryptography.

Thus, one aspect of the information leakage that this research deals with is that where

certain transmitted bits are analysed to determine how much of information about the

source message has been retrieved.

The other security aspect investigated is providing perfect secrecy through the use of

the Shannon cipher system approach. Shannon’s secrecy model is an interesting avenue

for this work. Merhav [14] investigated similarly, for a model using the additional pa-

rameters of the distortion of the source reconstruction at the legitimate receiver, the

bandwidth expansion factor of the coded channels, and the average transmission cost.

In this research, Shannon’s cipher system approach is used to indicate bounds for trans-

mission and key rates to achieve perfect secrecy.

Considering the applications that have been put forth, these correlated sources may be

prone to information leakage in the presence of an eavesdropper. In order to practically

determine the amount of information that an eavesdropper has access to an analysis of

the information leakage for various encoding methods is presented herein. The practical

analysis makes use of coding theory techniques to show how the information leakage is

quantified.

A source message is passed through an encoder before it is transmitted across a channel.

There are various encoding methods that exist; for example encryption, error correction,

compression, message transmission in plaintext. In this work, the encoding method that

has been explored is compression and transmitting messages in plaintext. The network

compression is achieved through use of the Slepian-Wolf coding method. Chapters 4 and

5 employ this encoding scheme for use in systems where an eavesdropper has access to
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channel information only and where the eavesdropper has access to channel information

and some source data symbols (i.e. some predetermined information) respectively. Since

there is a single encoding method this can be described as homogeneous. In Chapter

6, network compression and the plaintext transmission of messages are used to cater

for a scenario where an eavesdropper has easy access to a source. Since there are two

encoding methods used, it can be described as a heterogeneous method.

This research incorporates these encoding methods for correlated sources across wire-

tapped links in order to determine and minimize the information leakage for such a

scenario and to provide a Shannon cipher approach for perfect secrecy. Initially, a gen-

eralized case for multiple correlated sources is considered followed by specialized cases,

which employ the concept of a multiple-access channel. These are networks that consist

of one receiver and two or more sources (as defined by Cover and Thomas [4]). The

wiretap network is characterized when an eavesdropper is present in this multiple-access

channel, with noiseless conditions.

1.1 Objective of Research

The hypothesis for this research is as follows: A generalized model for correlated sources

and a wiretap network will be developed. The purpose of the generalized model is

to quantify the information leakage for this communication scenario. Furthermore, a

masking method will be proposed to minimize/reduce the information leakage of the

proposed model. Therefore, the major contribution is to develop the generalized model

for this specific communication scenario and the minor contribution is to develop a

method to minimize the information leakage for the generalized model.

In this work, the novel aspect covers a generalized model for multiple correlated sources

that transmit messages to a single receiver followed by three specific novel scenarios in

which the information leakage is quantified. Further, the Shannon cipher approach has

been presented for the specific scenarios, which explores the security aspect further. The

research is indeed significant and this can be gathered from the applications for which

this research may be used.
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1.2 Outline of Thesis

The thesis begins with a view of the methodologies and tools used and thereafter the

various models that have been developed are considered. The first chapter is an intro-

duction that introduces the research field, topic and the thesis structure. The list of

publications pertaining to this research are thereafter presented.

In Chapter 2, the background of this research project and where this research fits into

the sphere of information theory and coding theory is described. Related work and

examples are described to give a further understanding of the significance of the re-

search. The literature survey is comprehensive in detailing similar work that has been

done. Investigations conducted in security for correlated sources, Slepian-Wolf coding

and wiretap channels have been detailed. Coding schemes that relate to the field of

information theory are introduced in this chapter.

In Chapter 3, the various methodologies and techniques that have been used in this

research are described. These techniques include Slepian-Wolf’s theorem, typical se-

quences, wiretap channels, Hamming weights, Shannon’s cipher system approach and a

matrix partition method for coding implementation. The fundamental aspects that are

used to prove the Slepain-Wolf theorem are discussed to present this important theorem.

Methods used to determine the equivocation of a source are also presented here. The

coding implementation aspect describes the methodology used to provide a link between

the fields of information theory and coding theory.

In Chapter 4, the multiple correlated source model and a two correlated source model

are developed. Here, multiple correlated sources across a wiretap network is initially

described in terms of the information leakage and thereafter in terms of Shannon’s cipher

system where transmission rates for perfect secrecy are developed. The information

leakage is quantified using traditional information theory concepts of entropy and mutual

information. The two correlated source model is also analyzed in the same way. In order

to show the link with coding theory an implementation to determine the equivocation

is done using a matrix partition method.

In Chapter 5, the focus is on a more specific two correlated source scenario to quantify

the information leakage and to provide the Shannon cipher system approach. Here,

the sources are split into two partitions and certain source symbols and syndromes are
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wiretapped. The information leakage is quantified for this model and Shannon’s cipher

system used to determine the transmission rates for perfect secrecy. As with the previous

chapter this chapter ends with the matrix partition implementation for the model.

In Chapter 6, the information leakage for a correlated source model with heterogeneous

encoding in which an eavesdropper has easy access to one source is considered. As before

the information leakage is quantified and the model is thereafter analyzed in terms of

Shannon’s cipher system, followed by the coding implementation.

To the best of the author’s knowledge these models described in Chapter 4-6 are novel

and their information leakage characterization unique.

Chapter 7 concludes the thesis. The future work for this research and a list of contribu-

tions have also been provided.

1.3 List of Publications

This section lists the publications for this research project, the submitted research papers

and the papers to be submitted based on this research. The sections or chapters of the

thesis that contain the content of these papers have been indicated.

The following is a list of publications for this research project:

1) R Balmahoon and L Cheng, “Bandwidth Reduction using Correlated Source Compres-

sion for Smart Grid Meters with Feedback” in Proceedings of Southern Africa Telecom-

munication Networks and Applications Conference, Port Elizabeth, South Africa, Au-

gust 30 – September 3, 2014.

2) R Balmahoon, H Vinck and L Cheng, “Information Leakage for Correlated Sources

with Compromised Source Symbols over Wiretap Channel II” in 52nd Annual Allerton

Conference on Communication, Control and Computing, Monticello, USA, October 1 –

October 3, 2014. (Detailed in Section 5.1)

3) R Balmahoon and L Cheng, “Information Leakage of Heterogeneous Encoded Cor-

related Sequences over an Eavesdropped Channel” IEEE International Symposium on
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Information Theory, Hong Kong, China, 14-19 June, 2015. (Detailed in Section 6.1 and

Section 6.3)

The following is a list of journal papers to be submitted for this research project:

1) R Balmahoon and L Cheng, “Information Leakage of Correlated Source Coded Se-

quences over a Channel with an Eavesdropper” to submit to IEEE Transactions on

Information Theory. (revised version for re-submission) (Detailed in Chapter 4)

2) R Balmahoon and L Cheng, “Information Leakage for Two Correlated Sources with

Partially Predetermined Information” to submit to IEEE Transactions on Information

Theory. (Detailed in Chapter 5)

This chapter has introduced the research project field and identified the importance of

such a project. The hypothesis and aim of the research has been provided to clarify

the research project goal. The thesis has been outlined to give an indication of the

arrangement of the presentation for this research project. The publications have also

been listed here.



Chapter 2

Background

The literature survey or background related to the research project is presented in this

chapter. Initially the significant and novel work documented by Shannon that led to the

introduction of the field of information theory is detailed. This forms the basis for the

information theory aspects discussed further into the thesis. The concept of correlated

sources forms an important aspect as all the novel models developed in this research

consist of correlated sources. One of the security aspects analyzed is the Shannon cipher

system approach; related literature is detailed in this chapter. The models also contain a

wiretapper, and this chapter incorporates the research conducted in wiretapped networks

to compare the similarity to the models developed during this research project. The

coding implementation for wiretap networks has been researched and the related work

is presented here. This forms a basis for bridging the gap between coding theory and

information theory.

Communication systems enable us to transmit information from a source to a receiver.

Here, a general communication system that is depicted in Figure 2.1, which laid the

foundation for information theory and was introduced by Shannon [15] is shown.

This model by Shannon introduced the components involved in communication when

transmitting digital information (i.e. the information is transmitted as a stream of 0’s

and 1’s) from a source to a receiver. The transmitter is responsible for converting the

message into a suitable form for the particular communication architecture. Thereafter,

the receiver estimates the correct message and sends the information to the destination.

9



Chapter 2. Background 10

Information source

Transmitter

Noise source

signal received signal

Receiver

Destination

Figure 2.1: Diagram showing general point-to-point communication system [1]

While the information is transmitted it could encounter noise, which results in the

received signal looking different to the transmitted signal.

To provide an analogy for transmitting and receiving information, an example described

by Yeung [1] of a secretary sending a fax (i.e. trying to convey information from one

point to another by fitting as much information as possible on a sheet of paper) is used.

The page could have large fonts or smaller fonts to try to squeeze more characters on

the page, however the page has a finite resolution so if the font is made too small it

may not be readable by the receiver and also there may be noise through transmission

resulting in incorrect characters appearing at the receiver. Even though some characters

are not recognizable the receiver may still be able to determine the information on the

page based on the context. This brings on the idea of finding the maximum amount

of information that can fit on one page while the receiver can accurately determine

the information at the receiver. The concept described here illustrates a fundamental

question about communication systems.

The channel coding theorem was also presented in the work by Shannon [15], which

formed the basis for correlated source coding. Here the entropy is used to characterize

the minimum rate such that the source produces messages that are error free, hence the

entropy has been termed by Cover and Thomas [4] as the ultimate data compression.

The channel coding theorem was another result from this important paper by Shannon

[15].

The important concept of uncertainty (known as the entropy) was introduced in the

paper by Shannon [15] as pointed out by Yeung [1]; it shows that information is naturally

random and probability distributions are used to develop the theory of information.

There are various information measures that are developed from the entropy (and are

explained in greater detail in Chapter 3) for two sources.
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2.1 Correlated Sources

2.1.1 Correlated Source Compression

The Slepian-Wolf code has been defined by Lu et al. [16] as a code that uses incremental

transmission of coded bits to achieve multiple coding rates. It is built on using typical

set encoding and decoding, which has been described in Chapter 3. Slepian-Wolf [17], in

1973 initially described coding for correlated sources such that the Slepain-Wolf bound is

achieved, which ahowed the use of Slepian-Wolf codes for correlated sources. Thereafter,

there have been many applications of Slepain-Wolf codes. Two such examples are the

use of streaming codes, where the Slepian-Wolf bound is met for streaming data that

incorporates a random binning procedure [18] and the use of Slepian-Wolf codes for

storing fingerprint biometrics [19].

In work by Prabhakaran et al. [20] the rate regions for Slepian-Wolf have been analyzed

for a secrecy model where there is an eavesdropper present. For the models presented

herein the Slepian-Wolf theorem is employed to ensure accurate reconstruction of the

transmitted message at the receiver.

According to Wolf and Kurkoski [21], an important aspect of the Slepian-Wolf theorem

is that the encoders can achieve better compression rates by exploiting the correlation

in the transmitted data streams. The result is that Slepian-Wolf coding can achieve the

same compression rate as an optimal single encoder that has all correlated data streams

as inputs [21]. Thereafter, Slepian-Wolf coding has also been used in applications for

security [22][16], showing that security is indeed a concern. In the research contained

herein, security aspects are also explored, different to that already done as the informa-

tion leakage across links is quantified and minimized. The correlated source approach

contributes to information leakage as a source is able to provide common information

for every other source with which it is correlated. Correlated source coding, which in-

corporates the Slepian-Wolf theorem is a method to alleviate this issue as compressed

forms of the original messages are transmitted.
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2.1.2 Side Information and Multiple Correlated Sources

Any extra information that the eavesdropper has access to can be considered as side

information to assist with decoding. This side information can be viewed as a separate

source and when the side information is correlated then it can be generalized to represent

a correlated source. Villard et al. [23] have explored this side information concept further

where security using side information at the receiver and eavesdropper is investigated.

Side information is generally used to assist the decoder to determine the transmitted

message. An earlier work involving side information was done by Yang et al. [2]. In

Chapter 5, a specific model is introduced where there are data symbols transmitted

directly to the receiver; this is considered as correlated side information.

The common side information concept is extended when there are common random keys

available at the sender and the receiver. This is correlated side information available at

the terminals and has been investigated by Ahlswede and Csiszar [24].

In work done by Johnson et al. [25] the field of side information and compressed in-

formation was investigated. Side information was thereafter looked at by Villard and

Piantanida [26]: A source sends information to the receiver and an eavesdropper has

access to information correlated to the source, which is used as side information. There

is a second encoder that sends a compressed version of its own correlation observation of

the source privately to the receiver. Here, the authors show that the use of correlation

decreases the required communication rate and increases secrecy.

There has been work done by Maurer [27] that describes security aspects for common

information between multiple sources. This work entails building a cryptographic system

that satisfies perfect secrecy conditions with a key that has an entropy less than the

message entropy.

2.1.3 Feedback Applications

To show that correlated sources exist in a range of models, it is noted that correlated

sources have been implemented with feedback. Correlated sources with feedback are

investigated by Yang et al. [2] for the case of one and two encoders, as depicted in

Figure 2.2 and 2.3.
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The scheme proposes a block coding algorithm for the case in Figure 2.2. It is proven

that:

c→ H(X|Y ) (2.1)

X0X1X2X3.... X0X1X2X3....

Y0Y1Y2Y3....

Encoder Decoder

Figure 2.2: Feedback source network with one encoder [2]

X0X1X2X3.....

Y0Y1Y2Y3.....

(X0Y0)(X1Y1)(X2Y2)(X3Y3).....

Encoder 1

Encoder 2

Decoder

Figure 2.3: Feedback source network with two encoders [2]

where c is the compression rate (i.e the number of bits transmitted from the encoder to

the decoder) and H(X|Y ) is the conditional entropy of the source X given Y , both of

which are correlated. The authors also prove that the feedback rate approaches zero as

the number of transmissions become very large. For Figure 2.3 the same analysis results

are extended and the authors present a universal decoding algorithm for a feedback

scenario. More recently, Yang et al. [2] also considered feedback and presented a model

that uses typical set encoding and decoding to achieve the Slepian-Wolf bound for a

feedback scenario.

2.1.4 Security and Other Applications

The use of correlated sources has various applications, for example the field of network

coding (which is the use of coded data blocks during communication). Ho et al. [28] in-

troduced network coding for correlated sources. Thereafter, the flow of information that

incorporated multiple correlated sources was investigated by Barros and Servetto [29].

Other interesting work then dealt with the extraction of correlations between sources,

such that the joint distributions may be determined [30]. A few years later, building on
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the extraction of correlation was work by Bogdanov and Mossel [31], where common bits

are extracted without communication occurring. Thereafter some importance is placed

on the work conducted by Prasad et al. [32] where the use of correlated sources is made

for security needs. Here, the compression ability for correlated sources is exploited.

This research contained herein also used the compression ability for correlated sources

to provide security.

Dai et al. [33] point out that their correlated source approach can be used as an ap-

plication in broadcast channels. Since we present fundamental research for correlated

sources, it may be used with these applications as well. Research prior to Dai et al.

[33] that incorporate Slepian-Wolf coding and broadcast channels as an application are

those by Ahlswede and Korner [34] and Grokop et al. [35]. A network incorporating

wiretappers that access noisy information can be called a wiretap channel. A detailed

explanation of these channels is contained in Chapter 3. Villard and Piantanida [26]

have looked at correlated sources and wiretap networks. In their work, there is a second

encoder that sends a compressed version of its own correlated observation of the source

privately to the receiver. Here, the authors show that the use of correlation decreases

the required communication rate and increases secrecy.

Villard et al. [23] explore this side information concept further where security using

side information at the receiver and eavesdropper is investigated. Side information is

generally used to assist the decoder to determine the transmitted message. An earlier

work involving side information is that by Yang et al. [2]. The concept can be consid-

ered to be generalised in that the side information could represent a source. It is an

interesting problem when one source is more important and Hayashi and Yamamoto [36]

consider it in another scheme, where only X is secure against wiretappers and Y must

be transmitted to a legitimate receiver. They develop a security criterion based on the

number of correct guesses of a wiretapper to retrieve a message. In an extension of the

Shannon cipher system, Yamamoto [37] investigated the secret sharing communication

system.
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2.2 Shannon’s Cipher System and Wiretap Channels

2.2.1 Shannon’s Cipher System

Keeping information secure has become a major concern with the advancement in tech-

nology. This research incorporates some traditional ideas surrounding cryptography,

namely Shannon’s cipher system and adversarial attackers in the form of eavesdroppers.

In cryptographic systems, there is usually a message in plaintext that needs to be sent

to a receiver. In order to secure it, the plaintext is encrypted so as to prevent eavesdrop-

pers from reading its contents, and is termed the ciphertext. Shannon’s cipher system

(mentioned by Yamamoto [5]) incorporates this idea. Apart from the Shannon cipher

system, there is another well known cipher model i.e. the secret sharing communication

system described by Yamamoto [38], which is an extension of Shannon’s cipher system.

The definition of Shannon’s cipher system has been discussed by Hanawal and Sundare-

san [39]. In Yamamoto’s [5] development on this model, a correlated source approach

is introduced. This gives an interesting view of the problem, and is depicted in Fig-

ure 2.4. Correlated source coding incorporates the lossless compression of two or more

correlated data streams. Correlated sources have the ability to decrease the bandwidth

required to transmit and receive messages because a syndrome (compressed form of the

original message) is sent across the communication links instead of the original message.

A compressed message has more information per bit, and therefore has a higher entropy

because the transmitted information is more unpredictable. The unpredictability of the

compressed message is also beneficial in terms of securing the information.

Encoder Decoder

X,Y W

Wiretapper

Wk

Key Generator

Source
X̂, Ŷ

Figure 2.4: Yamamoto’s development of the Shannon Cipher System

With reference to Figure 2.4, the source sends information for the correlated sources, X

and Y along the main transmission channel. A key Wk, is produced and used by the

encoder when producing the ciphertext. The wiretapper has access to the transmitted
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codeword, W . The decoded codewords are represented by X̂ and Ŷ . In Yamamoto’s

scheme the security level was also focused on and found to be 1
KH(XK , Y K |W ) (i.e. the

joint entropy of X and Y given W , where K is the length of X and Y ) when X and Y

have equal importance. This is in accordance with traditional Shannon systems where

the security is measured by the equivocation. When one source is more important than

the other then the security level is measured by the pair of the individual uncertainties

( 1
KH(XK |W ), 1

KH(Y K |W )). An investigation into the rate distortion theory has been

conducted in more recent research by Yamamoto [40]. This research project also incor-

porates Shannon’s cipher system to determine the transmission rate for perfect secrecy

for two or more correlated sources that transmit information to a receiver via separate

links.

2.2.2 Wiretap Channels and Wiretap Channel II

Whether many links are considered or a single link as Yamamoto [5] had, there may

be a wiretapper present that can access information across the link/s. The signals are

more susceptible to eavesdropping in wireless networks compared to the traditional wired

networks, as it is easier to attack the former. Other concerns in wireless communication

are path loss, interference and fading. Being able to keep messages secure and user

identities private thus becomes a concern. Furthermore, since eavesdropping is a major

security risk in wireless networks, it is in the interest of producing a secure system to

ensure that there is as less information as possible leaked to an eavesdropper. In work by

Aggarwal et al. [41] active eavesdroppers are described. These eavesdroppers are able to

erase/modify wiretapped bits. They develop a perfect secrecy model for this scenario.

The eavesdropper investigated in the work contained herein is a passive wiretapper, who

cannot modify information.

Since AMR (automatic meter reading) is an application of wireless networks, it has

the same concerns as that mentioned for wireless networks, namely eavesdropping. A

wiretap network is generally one that allows for eavesdropping across a noisy channel.

Wiretap networks have been presented by Cai and Yeung [42] and incorporate network

coding and information security. Bloch et al. [43] also develop research on wiretap

networks further. They show how the wiretap network is related to the client-server

architecture and thereafter implement wiretap codes on the network scenario. Wiretap
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networks have also been studied by Grokop et al. [35], where they incorporate source

coding, using the Slepian-Wolf rate on a broadcast channel that is wiretapped. It has

later been looked at via rank-metric codes for security [44]. Thereafter security of the

wiretap channel was investigated by Cai et al. [42].

An interesting development for the conventional wiretap network is the Wiretap Channel

II, introduced by Ozarow and Wyner [45] with a coset coding scheme. A characteristic

that makes the Wiretap Channel II different from the original wiretap channel is that

the former is error-free, which is why it can be incorporated into the network layer in

the 7 layer ISO model. The mathematical model for this wiretap channel II has been

given by Rouayheb et al. [6], and can be explained as follows: the channel between

a transmitter and receiver is error-free and can transmit n symbols of which µ can be

observed by the eavesdropper and the maximum secure rate can be shown to equal n−µ
symbols. This wiretap channel can also be looked at from a Gaussian approach and a

variation of this Gaussian wiretap channel has been investigated by Mitrpant et al. [46].

Security for the wiretap channel II has been spurred on by research by Luo et al. [47],

where the equivocation for a wiretap channel II that leaks certain source data symbols to

an eavesdropper was investigated. There has also been some work done on the Wiretap

Channel II that focuses on network coding, by Cai and Yeung [42] and Rouayheb et al.

[6]. Zhang [48] quantified the uncertainty of obtaining a source message after wiretapping

certain bits on a link in a Wiretap Channel II. Secrecy in the Wiretap Channel II was

looked at by Cheng et al. [49], where messages are encoded with some random key.

In an interesting application of the wiretap channel and wiretap channel of type II, Dai et

al. [50] presented a model that incorporates compromised encoded bits and wiretapped

bits from a noisy channel. The concept of a noiseless transmission gives rise to an ideal

situation in terms of noise when analyzing the model. In chapter 5, a scenario where

an eavesdropper has access to more than just the bits from the communication links is

considered.

Luo et al. [47], in some previous work, have described this sort of adversary as more

powerful because in addition to the eavesdropped bits from the communication links,

the eavesdropper also has access to some data symbols from the source. In other pre-

vious work [51], the information leakage for two correlated sources when some channel
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information from the communication links had been wiretapped was investigated. In-

tuitively from this work, it is seen that there is indeed more information gained by

the more powerful eavesdropper, not just in terms of the data symbols but in terms of

the alternate source, which results from the fact that the sources are correlated. This

concept is similar to that employed in the correlated source model developed Chapter

5. This makes it easier for the eavesdropper to determine the transmitted message and

information about another correlated source. Recently, security aspects of the wiretap

channel II has been researched by Rouayheb et al. [6], emphasizing that this area of

security for the wiretap channel II has room for growth.

2.3 Coding and Security Aspects for Correlated Sources

In this research project information theory is primarily used, however the interesting

relation between information theory and coding theory has also been explored. There

has been work done on wiretap channels for a coding approach. The first was done

by Wei [7] who presented the generalized Hamming weight to describe the minimum

uncertainty that an eavesdropper has access to. This uncertainty has been termed the

equivocation. The generalized Hamming weight uses the parity matrix rank to determine

the equivocation when various transmitted bits are eavesdropped. An extension of this

work was performed by Ngai et al. [52] to describe generalized Hamming weights for a

network scenario. Thereafter characteristics on this channel were introduced by Luo et

al. [47]. The characteristics focused on were those pertaining to Hamming weights and

Hamming distances in order to determine the equivocation of a wiretapper. Thereafter,

the security aspect of wiretap networks has been looked at in various ways by Cheng et

al. [49], and Cai and Yeung [42], emphasizing that it is of concern to secure this type of

channel.

The concern in this research in terms of coding theory is to find a link to information

theory so as to quantify the information leakage across links in a practical manner. The

work by Luo et al. [47] assists in achieving this goal.
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message codeword

error vector

biometric

codeword ⊕ error vector

codeword ⊕ biometric

Figure 2.5: Vinck’s [3] equivalent wiretap model

2.3.1 Matrix Partitions

The transmission of messages needs to satisfy the Slepian-Wolf bound in order for correct

decoding to occur at the receiver. Slepian-Wolf coding enables the transmission of

separately encoded messages and the joint decoding of them. The coset codes that have

been used by Wyner (used in many applications, e.g. by Wei [7] and Luo et al. [47]) have

been used by Pradhan and Ramachandran [53]. In this research project, the analogy

for a generator matrix to represent the equivocation presented by Luo et al. [47] to

determine the amount of leaked information is used. There have been many practical

syndrome based schemes (Yang et al. [54], Pradhan and Ramchandran [55] and Liveris

et al. [56]), one such example is that by Ma and Cheng [57], where partitions of the

generator matrix is also employed. We use the method supplied by Stankovic et al. [58]

in order to partition the matrices to make use of the matrix partition method, which is

optimal for Slepian-Wolf coding.

2.3.2 Coding for Wiretap Channels

Wiretap networks/representations have been looked at by Ozarow and Wyner [45] where

a coset coding scheme is employed with a wiretap channel of type II. There has also

been work for coding along wiretap channels in other instances, for example by Vinck

[3]. Here, the connection between biometrics, information theory and coding techniques

is explored. A wiretap representation is used to consider two new situations for the

wiretap channel.

In Figure 2.5, the message is a random vector satisfying a fixed length that is generated

at enrollment, to construct the codeword. The fingerprint biometric study has also been

done by Draper et al. [19] where Slepian-Wolf codes are incorporated, which relates very

closely to Vinck’s [3]. A similar link between information theory and coding theory has

been provided by Luo et al. [47], which is also explored in this research.
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This chapter gives a background of the field that has been researched. The novel work

documented by Shannon starts the chapter and thereafter the concept of correlated

sources, Shannon’s cipher system and wiretapped networks are broadly focused on.

These are important aspects of this research project as the models developed incorporate

correlated sources and wiretappers, and one security aspect focused on is the Shannon’s

cipher system. The implementation based on coding techniques and the related research

have also been mentioned as it forms an aspect of this research project.



Chapter 3

Techniques

This chapter includes a description of the methodologies and techniques used for the

research project. The technical aspects of these techniques are contained here to show

how the models in the chapters that follow have been developed and analyzed. The

various techniques are also required to quantify the information leakage and incorporate

the Shannon cipher approach for the models. Techniques such as the Slepian-Wolf

theorem that describes transmission rates for correlated sources and typical set encoding

and decoding, which is used to prove the Slepian-Wolf theorem and gives a method to

encode and decode messages using very small typical subsets are among the necessary

techniques for this work. Wiretap networks and the associated method used to analyze

the wiretapped links are thereafter included. The coding approaches used that make use

of generalized Hamming weights and a matrix partition method are described towards

the end of the chapter, as these techniques are used to form the link between information

theory and coding theory. These techniques and various others are described in this

chapter.

For the alphabets X and Y we define the discrete random variables X and Y having

length k each, where the symbols that belong to X and Y are represented by x and y

respectively. The probability distribution is given by p(x) for X and p(y) for Y . For

a collective set of these random variables, we can represent them as X1, X2, . . . , Xk,

having probability distributions p(x1, x2, . . . , xk), and Y1, Y2, . . . , Yk, having probability

distributions p(y1, y2, . . . , yk).

21
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3.1 Shannon’s Information Measures

As mentioned in Chapter 2, the concept of entropy was introduced by Shannon [15].

Here, an explanation of the various Shannon information measures developed as a result

of Shannon’s work are provided.

Entropy: For a random variable X, the entropy is defined as

H(X) = −
∑
x

p(x) log p(x) (3.1)

where p(x) is the probability distribution of X.

The base of the logarithm can be chosen to be any convenient real number greater than

one [1]. The entropy represents the level of uncertainty in a message as it is a function of

the probability distribution of X, which is the average amount of uncertainty removed

when the outcome of X is revealed [1].

For pairs of random variables, there are information measures in terms of the joint and

conditional entropies.

Joint entropy: For a pair of random variables X and Y , the joint entropy is defined as

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) (3.2)

where p(x, y) is the joint probability distribution of X and Y .

Similarly, using the conditional probability distribution for two random variables X and

Y , i.e. p(x, y) the conditional entropy definition follows.

Conditional entropy: For a pair of random variables X and Y , the conditional entropy

is defined as

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y) (3.3)

An important relation between these information measures can be considered as follows:

H(X,Y ) = H(Y ) +H(X|Y ) or H(X,Y ) = H(X) +H(Y |X).
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The mutual information between sources is also of interest in determining the dependence

of sources and has been described in fundamental information theory literature [1][4].

Mutual information: For a pair of random variables X and Y , the mutual information

between X and Y is defined as

I(X;Y ) =
∑
x,y

p(x, y) log
p(x|y)

p(x)p(y)
(3.4)

The relations between the joint entropies, conditional entropies and mutual information

is given as follows: I(X;Y ) = H(X)+H(Y )−H(X,Y ). Yeung [1] showed that all these

Shannon information measures are special cases of the conditional mutual information.

The Venn diagram in Figure 3.1 shows the visual representation of these information

measures.

H(X,Y )

H(X) H(Y )

I(X;Y ) H(Y |X)H(X|Y )

Figure 3.1: Venn diagram illustrating Shannon’s information measures

After Shannon’s work, there has been research to find the transmission rates for various

other models. These techniques mentioned below and the information leakage bounds

result from the Slepian-Wolf coding scenario, which is a method of coding that utilizes

two compressed correlated sources.

3.1.1 I -Measure

The I -measure has been developed to assist in establishing a one-to-one correspondence

between Shannon’s information measures and set theory in full generality [1]. This allows
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for set operations to be used with certain forms of Shannon information measures, which

brings in some more diversity to the operations used in information theory.

Let X1 and X2 be random variables and X̃1 and X̃2 be sets corresponding to X1 and X2,

respectively. An information diagram is used to represent these sets, which is actually

a conventional Venn diagram. The universal set, which is the union of X̃1 and X̃2, does

not need to be shown explicitly just as in a usual Venn diagram [1]. Writing A ∩ Bc

(i.e. the complement of B) as A − B, Yeung [1] has defined a signed measure µ∗ (the

I -measure) by

µ∗(X̃1 − X̃2) = H(X1|X2)

µ∗(X̃2 − X̃1) = H(X2|X1)

and µ∗(X̃1 ∩ X̃2) = I(X1;X2) (3.5)

The entropies of X and Y are given by µ∗(X̃1) = H(X1) and µ∗(X̃2) = H(X2) respec-

tively.

The remaining set can be obtained via set-additivity, in order to achieve the Shannon

information measure of H(X,Y ). This is done as follows:

µ∗(X̃1 ∪ X̃2)

= µ∗(X̃1 − X̃2) + µ∗(X̃2 − X̃1) + µ∗(X̃1 ∩ X̃2)

= H(X1|X2) +H(X2|X1) + I(X1;X2)

= H(X1, X2) (3.6)

Hence, all Shannon information measures for this scenario for 2 sources can be repre-

sented by the I -measure. Upon realizing this I-measure the set operations may be used

in information theory.

3.1.2 Markov Model

The properties and concepts from Section 3.2 onward deal with i.i.d processes, however

when the processes are dependent then the Markov model concept may be used. More

specifically the Markov model focuses on processes that are stochastic where the random
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variables only depend on the variable preceding it and is conditionally independent of

all the other preceding random variables [4].

Markov Chain: A markov chain is one where, for the stochastic processes X1, X2, . . . , Xn

for n = 1, 2, . . . ,:

Pr(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1)

= Pr(Xn+1 = xn+1|Xn = xn) (3.7)

for all x1, x2, . . . , xn, xn+1 ∈ X .

This means that if X → Y → Z form a Markov chain (as depicted in Figure 3.2) then

X and Y are dependent, and so are Y and Z, but there is no dependence between X

and Z.

X Y Z

Figure 3.2: Markov model for X,Y and Z

This technique is used to prove certain information theory relations: e.g. the data

processing theorem, the relation I(X;Y ;Z) ≥ I(X;Y ) [1] and Markov fields [4].

3.2 Correlated Source Coding

The messages from correlated sources have some similarity (measure of correlation)

between them. Correlated source coding incorporates the lossless compression of two

or more correlated data streams. Each of the correlated streams is encoded separately

and the compressed data from each of the encoders are jointly decoded by a single

decoder as shown in Figure 3.3, for two correlated streams. The work described in

this research project incorporates multiple correlated sources, however two sources are

illustrated here to show the concept. This idea of transmitting compressed information

came about as a result of the threat posed by correlated sources. Correlated sources
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are a security risk when the correlated bits are known as an eavesdropper is able to

gain additional information about the source. The correlated bits that have not been

transmitted become additional information that the eavesdropper has access to. Hence,

the need for correlated source coding.

Encoder

Encoder

Decoder

t1

t2

X

Y

Figure 3.3: Correlated data streams

Here, X and Y are the correlated sources and t1 and t2 are the syndromes (compressed

form of the original message) transmitted by X and Y respectively. The correlation is an

advantage because less information needs to be transmitted across the channel (i.e. t1

and t2 are shorter in length than the messages at X and Y respectively), as it is not nec-

essary to transmit the correlated information. Correlated sources thus have the ability to

decrease the bandwidth required to transmit and receive messages because a syndrome

is sent across the communication links instead of the original message. As mentioned

in Chapter 1, the compressed message has more information per bit and therefore has

a higher entropy. This is because the transmitted information is more unpredictable as

there is no redundancy in this case. The unpredictability of the compressed message is

also beneficial in terms of securing the information.

In order to encode correlated sources symbols, we need to ensure that the transmission

rates satisfy certain transmission bounds. This is done through the use of Slepian-Wolf

coding. In order to understand the Slepian-Wolf theorem the asymptotic equipartition

property through the concept of typical sequences needs to be described as the Slepian-

Wolf theorem uses it as a fundamental building block.

3.2.1 Typical Sequences

An ε-typical set of X, A
(n)
ε (X) is a small subset of the set X having certain properties

that will be described in this section. It is seen that the size of the typical set when
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compared to the entire set approaches zero for large n [1]. The typical sequence is

important because even though it is insignificant in terms of size when compared to the

entire set it contains almost all the probability.

Typical sequences can either be strongly typical (difference between frequency of possi-

ble outcomes and corresponding probability is very small) or weakly typical (difference

between empirical entropy and true entropy is very small). Strong typicality can be used

for proving memoryless theorems, shown by Yeung [1] and is built on from the strong

AEP (asymptotic equipartition property). The limitation for strong typicality is that

it can only be used for random variables with finite alphabets, however there has been

recent work on making strong typicality work for instances of infinite alphabets [59].

When a sequence or set is strongly typical then it implies weak typicality [1]. Weak typ-

icality is commonly used in relation to the source coding theorem and is related to the

Shannon-McMillan-Breiman Theorem by Yeung [1]. The weak AEP is used to interpret

weakly typical sequences.

The weak AEP law specifies that the probability for a symbol x as it approaches H(X)

when n is large. This law is an application of the weak law of large numbers.

Weak AEP Law :

Pr{| − 1

n
log p(x)−H(X)| ≤ ε} > 1− ε (3.8)

The quantity − 1
n log p(x) is the empirical entropy of X, which is close to the true entropy

for a weakly typical sequence. If a sequence X = {x1, x2, . . . xn} is drawn the weak AEP

specifies that the probability of the sequence drawn is 2−nH(X) with a high probability,

i.e. a weakly typical sequence has probability 2−nH(X). For large n we can therefore

imagine x as been obtained directly from the weakly typical set.

Here, we use weakly typical sequences that are jointly typical. The concept of jointly

typical sequences extends from the joint AEP (proved by Cover and Thomas [4]). For

joint AEP we consider two variables (Xn, Y n) ∈ X and Y respectively, having probabil-

ities (p(x), p(y)). The following properties exist:

• The probability that (Xn, Y n) belong to the a typical set approaches one as n

becomes large
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• The size of the typicality set is 2n(H(X,Y )+ε)

• If there exists two independent variables (X ′, Y ′) that have the same probability

distribution as (p(x), p(y)), then the probability that (X ′, Y ′) are part of the typical

set is upper bounded by 2n(I(X;Y )−3ε).

The first property is proven using the weak law of large numbers. For the second

property the probability is summed over the entire typical set, which has a probability of

2−n(H(X,Y )+ε) by definition, resulting in a size of 2n(H(X,Y )+ε). The third property results

from the fact that the probability distributions (p(x), p(y)) summed over the typical

sequence is upper bounded by 2-nH(X) and 2-nH(Y ) subtracted from 2-nH(X,Y ). Using

the Shannon’s information theoretic relation here, H(X,Y )−H(X)−H(Y ) = I(X;Y )

and collection of the ε, we obtain the result for the third property.

It is seen that in the jointly typical set there are 2nH(X) and 2nH(Y ) typical sequences

for X and Y respectively. However as pointed out by Cover and Thomas [4] there are

only 2nH(X,Y ) jointly typical sequences so not all pairs of typical Xn and typical Y n are

also jointly typical; in fact there is a probability of 2−nI(X;Y ) that any randomly chosen

pair is jointly typical.

For typical sequences, there are three important properties:

• the probability that a typical sequence belongs to the typical set approaches one

when n is large

• the probability distribution for a typical sequence is given by 2n(H(S)±ε)

• the size of the typical sequence is 2n(H(S)±2ε)

Here the set of S, A
(n)
ε (S), which is a small subset of the set S is used. The first property

is a result of the law of large numbers. The second property follows from the definition

of a typical sequence, as we know the following:

− 1

n
log p(s) < H(S)− ε (3.9)
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The third property follows from this second property where the probability distribution

is summed over all s ∈ A(n)
ε , which has a result of 1. When we assume n is sufficiently

large we are able to use the probability distribution 2−n(H(S)−ε) for the probability of

1− ε, thus providing both bounds.

For jointly typical sequences, there exists a set that is jointly typical to variables in X ,

denoted by A
(n)
ε (S) where S = (X1, X2). The joint probability distribution for (x1, x2)

can be approximated by H(X1, X2) when n is very large. Thus, the following property

for the conditional probability distribution for jointly typical sequences is developed:

p(s1|s2) = 2n(H(S1|S2)±2ε) (3.10)

for (S1, S2) ∈ {X1, X2, . . . , Xk} where (s1, s2) ∈ A
(n)
ε (S1, S2). To prove this property

the following relation is used:

p(s2|s1) =
p(s1, s2)

p(s1)
(3.11)

where p(s1, s2) = 2−n(H(S1,S2)±ε) and p(s1) = 2−n(H(S1)±ε). Substituting these into

equation (3.11) and using the relation H(S1, S2) − H(S1) = H(S2|S1) we obtain the

desired result as shown in (3.10).

Just as joint typicality can be defined for typical sequences, so can conditional typicality.

This concept is not used for this work, however descriptions of such sequences can be

found in Cover and Thomas [4].

3.2.2 Slepian-Wolf Coding

The Slepian-Wolf theorem gives a bound on the minimum number of bits per character

required for the encoded message streams in order to ensure accurate reconstruction

(with an arbitrarily small error probability) at the decoder. The system efficiency is

measured by the rates that the encoder outputs the encoded bits per character. Slepian

and Wolf [17] produced the following result:

Slepian-Wolf Theorem: For two correlated sources X and Y transmitting messages to
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a destination node T (depicted in Figure 3.4), the transmission rates (RX , RY ) satisfy

the following inequalities:

RX ≥ H(X|Y )

RY ≥ H(Y |X)

RX +RY ≥ H(X,Y ) (3.12)

where RX and RY represent the rate allocation for the correlated sources X and Y

respectively. This means that X and Y need to have a rate allocation of H(X,Y ) to

ensure that the received messages can be decoded correctly.

X Y

T

Rx ≥ H(X|Y ) Ry ≥ H(Y |X)

Figure 3.4: Diagram showing rate allocation for correlated sources X and Y

The Slepian-Wolf theorem is described using the concept of typical sequences and bin-

ning. Here, X is partitioned into 2nR1 bins and Y is partitioned into 2nR2 bins. The

idea of random bins is that we choose a large random index for each source sequence and

since the typical sequence is small, there is a different index for different source sequences

with high probability. The code is generated by assigning all x ∈ X and y ∈ Y into one

of 2nR1 bins for X and 2nR2 bins for Y . For X and Y the assignment to bins is inde-

pendent according to the uniform distribution on {1, 2, . . . , 2nR1} and {1, 2, . . . , 2nR2}
respectively.

The encoding and decoding is done as follows:

Encoding: For X, the index of the bin where X belongs is transmitted. For Y , the index

of the bin where Y belongs is transmitted.

Decoding: There are one of two options. Firstly, if there is only one typical sequence
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belonging to the bin then declare the typical sequence to be the result of X and Y , i.e.

if there is only one pair (x, y) such that f1(x) = i0, f2(y) = j0 and (x, y) ∈ A(n)
ε . Here,

f1 and f2 are the assignments to the bins for X and Y respectively. Otherwise, declare

an error. During decoding, the pair of indices that have been transmitted specifies a

product bin, as depicted in Figure 3.5. Here, we note that the binning scheme need

not be characterized at the transmitter, just at the receiver. According to Cover and

Thomas [4] it is this property that allows this code to function for distributed sources.

x
y 2nR1 bins

2nR2 bins

2nH(X,Y ) jointly typical pairs (x, y)

Figure 3.5: Slepian-Wolf encoding: the jointly typical pairs are described by the
product bins [4]

Proof of Slepian-Wolf theorem. In order to prove that the Slepian-Wolf theorem is achiev-

able, it is shown that the error probability is calculated to be bounded by 4ε. Four error

events are defined:

• Pe0: the received sequence does not belong to the typical set

• Pe1: there exists another x, i.e. x′ in the bin that is jointly typical with Y

• Pe2: there exists another y, i.e. y′ in the bin that is jointly typical with X

• Pe3: there exists another (x, y) in the bin that belongs to the jointly typical set.

where (Pe0, Pe1, Pe2, Pe3) indicate the probabilities of the error events described above.

The union of these error event probabilities provide the upper bound for the error

probability.
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From the joint AEP, we know that the probability the sequence does not belong to the

jointly typical sequence is small, and as n becomes large this error is bounded by ε.

Therefore Pe0 ≤ ε.

For Pe1, we use the fact that the error probability is upper bounded by the joint prob-

ability distribution summed over all (x, y) (which is 1) and the probability that there

exists an x′ in the same bin summed over the typical sequence (which is the size of the

typical sequence times 2nR1). This is shown in equation form below:

∑
(x,y)

p(x, y)
∑
(x′,y)

∈ A(n)
ε P (f1(x

′) = f1(x))

=
∑
(x′,y)

|Aε(X|y)|2−nR1

≤ 2n(H(X|Y )+ε)2−nR1 (3.13)

We can see that if R1 > H(X|Y ) then for sufficiently large n (3.13) tends to 0, hence

the error probability is upper bounded by ε. This means Pe1 ≤ ε. Similarly the third

and fourth events can be shown to be upper bounded by ε each when R2 > H(Y |X)

and R1 + R2 > H(X,Y ). The combination of these upper bounds results in an error

probability of 4ε. This is shown by equations (3.14) and as follows.

∑
(x,y)

p(x, y)
∑
(x,y′)

∈ A(n)
ε P (f2(y) = f2(y

′))

=
∑
(x,y′)

|Aε(x|Y )|2−nR1

≤ 2n(H(Y |X)+ε)2−nR2 (3.14)

For Pe2, the fact that the error probability is upper bounded by the joint probability

distribution summed over all (x, y) (which is 1) and the probability that there exists an

y′ in the same bin summed over the typical sequence (which is the size of the typical

sequence times 2nR2 is used to determine the probability. It is seen that as R2 >

H(Y |X) then for sufficiently large n (3.14) tends to 0, hence the error probability is

upper bounded by ε. This implies that Pe2 ≤ ε.
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For the remaining probability Pe3 we use the following as a result for there existence of

another typical sequence in the same bin.

∑
(x,y)

p(x, y)
∑
(x,y)

∈ A(n)
ε P (f2(y) = f2(y

′))

=
∑
(x,y)

|Aε(X|Y )|2−nR12−nR2

≤ 2n(H(X,Y )+ε)2−nR12−nR2 (3.15)

From the result of (3.15) it is seen that as R1 + R2 > H(X,Y ) then for sufficiently

large n, (3.15) tends to 0, hence the error probability is also upper bounded by ε. This

implies that Pe3 ≤ ε. The combination of probabilities for these four error events,

(Pe0 , Pe1 , Pe2 , Pe3) is therefore upper bounded by 4ε. This proof shows the achievability

of the Slepain-Wolf theorem, which has a major impact for correlated sources.

There has been important work that makes use of the Slepian-Wolf theorem, for exam-

ple that by Yamamoto [5] and Villard et al. [60]. These schemes use the Slepian-Wolf

theorem to provide models for applications on broadcast channels, linking digital and

analogue schemes [61] and binary erasure channels [60]. These therefore form the build-

ing blocks for systems of such applications. This points out that the research presented

herein may also be used for these applications and in these ways to better the security

of the system.

Optimizing the transmission rate regions is an aspect of Slepian-Wolf coding. As the rate

increases the security decreases, which comes from the deduction that the error entropy

is proportional to the information rate. Thus, in order to achieve optimal security, the

rate should decrease.

Yang et al. [2] incorporate the Slepian-Wolf theorem into their study and give an indi-

cation of the achievable region for Slepian-Wolf codes (Figure 3.6).

The shaded region indicated in Figure 3.6 is that where the decoder can recover X and

Y with arbitrarily small error (i.e the achievable region). The compression rate in bits

is given by RX and RY to encode X and Y respectively. When transmission occurs in

this region then decoding can occur correctly.
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RY

RX

H(X,Y )

H(Y )

H(Y |X)

H(X|Y ) H(X) H(X,Y )

Figure 3.6: Diagram showing achievable region for the Slepian-Wolf theorem [2]

3.2.3 Shannon’s Cipher System

The Shannon cipher system was the first information-theoretically secure communication

system [42], and operates based on the following protocol:

For sources X and Y , sending a message m to the destination T :

• Generate e (secret key)

• Send m+ e (mod p) over the public channel, where m is the message intended for

the receiver

• Send e over the private channel

After transmission, the receiver has access to both m+e and e and can therefore retrieve

m. The main idea is that the sender must randomize the message to protect it from the

wiretapper. However, it is important to note that randomization decreases throughput

as more bandwidth is necessary to transmit the various randomized versions of the source

message.

Yamamoto [5] used Shannon’s cipher system for correlated sources that transmit infor-

mation across a common link (depicted in Figure 3.7). A key is used at the encoder to

encode the messages and the same key is provided at the decoder in order to decode the

messages. The encoding and decoding functions therefore include a key. The security

of the system largely depends on the key security. The security levels are defined and

described by Yamamoto [5] to characterize the security for each source X and Y by
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(hX , hY ) and their combined security hXY . Later in this work the same notation is

used for describing the security levels. The purpose of incorporating Shannon’s cipher

system for Yamamoto [5] was to determine the transmission and key rates necessary for

obtaining perfect secrecy.

X,Y X, Y

Encoder DecoderSource

Key Generator

S = (X,Y )
W

Wk

Wiretapper

Figure 3.7: Shannon cipher system [5]

In Figure 3.7, the correlated sources are represented by X and Y , W is the cryptogram

and Wk is the key. In Yamamoto’s study in [5], the correlated sources are focused on

and the key rate for a certain level is defined. In the study in [40], certain parameters

(admissible region of cryptogram rate, key rate, legitimate receiver’s distortion, wiretap-

per’s uncertainty) for the Shannon cipher system with a noisy channel are determined.

In an extension of the Shannon cipher system, Yamamoto [37] investigated the secret

sharing communication system.

3.3 Wiretap Networks

The wiretapped network concept comes from the need to model a scenario where there

is an eavesdropper present. The concept of wiretap network is best explained as a com-

munication network and a collection of subsets of wiretap channels, where a wiretapper

can eavesdrop on the packets on a limited number of network edges of its choice. There

are models developed for the wiretap channel of type I and type II. The wiretap channel

type II is an error-free version of the type I channel.

The mathematical model for Wiretap Channel II is given by Rouayheb et al. [6], and

can be explained as follows: the channel between a transmitter and receiver is error-free
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and can transmit n symbols Y = (y1, . . . , yn) from which µ bits can be observed by the

eavesdropper and the maximum secure rate can be shown to equal n− µ bits.

Here, µ is therefore the upper bound of information that can be leaked. This Wiretap

Channel II concept is depicted diagrammatically in Figure 3.8.

Encoder Decoder

m

Eavesdropper

Transmitter Receiver
Y = (y1, . . . , yn)

µ bits

Figure 3.8: Wiretap Channel II concept [6]

In Figure 3.8, m is the source output, Y = (y1, . . . , yn) are the transmitted codewords

and µ is the wiretapped information. The components of a wiretap network are as

follows:

• Directed multigraph G = (V,E), where G is acyclic, V is a node set and E is the

edge set for the directed multigraph

• Source node, S

• Collection of a set of wiretapped edges (A), which is a collection of the subsets

of edges, E (i.e. A ⊆ E). More than one element of A may be accessed by a

wiretapper

• Set of user nodes, U (i.e. the users that are meant to receive the message m)

The quadruple (G,S,U,A) is referred to as a wiretap network [42]. In terms of the

wiretap network, it is of concern to transmit messages across the network, while a

wiretapper can access any set of the edges in A.

The wiretapped concept is also used in the Shannon cipher system, which has been

investigated by Yamamoto [5] [40].
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3.3.1 Ozarow and Wyner’s Method

The method for information hiding across a wiretap channel was introduced by Ozarow

and Wyner [45], which hereafter is referred to as Ozarow’s and Wyner’s method. The

linear code is represented as a (n, n −K) code, where n > K. The wiretapper is able

to access their choice of µ < n bits. The scheme involves coset coding.

Ozarow and Wyner [45] define the Wiretap Channel II as follows:

Encoder

XK Xn

Wiretapped information is part of Xn

Figure 3.9: Diagram showing the set-up of the Wire-tap Channel II

where XK is the source output and Xn is the n bit binary transmitted sequence across

an error-free channel.

The uniqueness in this method lies in two considerations:

• a one to one relationship between the error patterns of length n and message of

length K, that is to be received by the decoder, and

• the difficulty in determining the required error pattern if only one link is wire-

tapped.

This scheme is able to transmit K bits of information, using n bits, and is defined for

a peer to peer scenario. Each message m is uniquely mapped to an error pattern e(m),

and the receiver is required to determine this e(m) in order to find m.

Here, x has length n and is randomly chosen from the generated codebook, based on the

codeword, and the transmitted sequence also has a length n. This sequence is a linear

representation of x and an error pattern as indicated in (3.16).
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x⊕ e(m) (3.16)

where e(m) is the error pattern corresponding to the information. This is illustrated

diagrammatically in Figure 3.10.

S T

x⊕ e(m)

Figure 3.10: General representation of Ozarow’s method

There is a unique mapping between the 2K error patterns and messages that are to

be transmitted. The decoder, T in Figure 3.10 receives x ⊕ e(m) and at a later time

obtains/receives x. Thereafter, the exclusive-or of x ⊕ e(m) and x is performed, which

results in the error message, e(m) and due to the one to one mapping of the message

with the error patterns, the original message m can easily be obtained. Here, the value

of x acts as a mask in order to hide the error pattern that is being transmitted.

The advantage of this method in terms of secrecy is that if the link in Figure 3.10 is

wiretapped then it is not possible to determine the error pattern that corresponds to

the information being transmitted, hence the information remains secure.

This method is extended by Silva and Kschischang [44] where a proposed coset coding

scheme is defined over an extension field.

3.3.2 Generalized Hamming Weight

The generalized Hamming weight concept is illustrated initially using the Ozarow and

Wyner coding scheme presented above, by Wei [7]. Here, the generalized Hamming

weight concept is presented for linear codes that completely characterize the performance

of a linear code when it is used in a Wiretap Channel II. Based on using the minimum

Hamming weight as a certain minimum property of one-dimensional sub codes, the au-

thors obtain a generalized concept of higher-dimensional Hamming weights. A ‘security
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curve’ depicting the level of security for a (15,11) Hamming code is developed [7], and

this shows the variation in the amount of information a wiretapper gains when having

access to µ = {0, 1, . . . , 15} bits of the message. The ‘security curve’ is shown below:

8 12 14

Equivocation

4 bits

s

Figure 3.11: Security curve as developed by Wei [7]

The wiretapper is able to listen to any s bits, and the corresponding equivocation (i.e.

the wiretapper’s uncertainty in the message) is depicted in Figure 3.11. The equivocation

is calculated based on equation (3.17) as follows:

min|I|=n−srank(< Hi : i ∈ I >) (3.17)

where n is the number of bits of the source message, s is the number of bits that are

wiretapped and H is the parity-check matrix for the codewords.

In order to determine the level of security, the minimum rank of the parity-check matrix

H (using the column vectors) is calculated for each possibility of the number of leaked

bits. This gives an indication of how much of uncertainty the wiretapper has in recon-

structing the source message; the more the uncertainty, the more secure the system. The

information leakage is therefore determined by the number of independent columns in

H, i.e. the rank of the parity-check matrix. The drops for the curve depicted in Figure

3.11 occur at the generalized Hamming weights of the codeword matrix [7].

An interesting study based on the equivocation of data symbols is done by Luo et

al. [47], where the user is split into multiple parties who are coordinated in coding

their data symbols by using the same encoder. The wiretapper is able to tap partial

transmitted symbols (i.e. Zµ) and partial data symbols (i.e. S2, as the source S is divided
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into two portions, S1 and S2). The generalized Hamming weight concept explained

above is extended in the study, and shown to be useful for designing a perfect secrecy

coding scheme for many parties. Here, the equivocation is investigated by analysing the

difference between the ranks of a matrix (one that is constructed such that it can be

used to calculate the received data bits) and a sub matrix of it.

The idea of equivocation and matrix partitions are used to determine how much of

information the eavesdropper has access to. The generator matrix is split to represent

the data symbols and a sub matrix is subtracted from the generator matrix in order to

determine the equivocation. Luo et al. [47] proved the following:

rank G− rank G2 = min[H(S1, S2|Zµ)−H(S2|Zµ)] (3.18)

where G2 is the sub matrix of G, the generator matrix corresponding to the eavesdropped

data symbols. For Luo et al. [47] the G matrix is divided into two portions, G1 and G2.

Equation (3.18) shows that these ranks may be used to determine certain equivocations.

The overall result is the equivocation on S1, given Zµ and S2. This result is essential

in providing the link between coding theory and information theory and has been used

accordingly for this research project.

3.4 Coding Techniques for Correlated Sources

The coding technique that this research uses to show the link between information theory

and coding theory is termed the matrix partition method and is described in this section.

This concept of matrix partition has been used to show practical implementation of

certain techniques or coding theories. Here, a method that incorporates a partitioned

generator matrix is described, and as mentioned in Chapter II there have been other

such techniques that partition generator matrices; namely those developed by Yang et

al. [54], Pradhan and Ramchandran [55], Liveris et al. [56] and Ma and Cheng [57].

Stankovic et al. [58] mention one of the basic techniques used for source correlation;

a matrix partition approach is adopted. The general Slepian-Wolf code pair (C,m) is

defined in [17], where C is an (n, k) linear code, which has a generator matrix Gk×n and

m is a set of integers {m1,m2, . . . ,mL}. Here, L is the number of partitions of the G
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matrix. The codebook C, which is the product of the message, m (of length k bits) and

the generator matrix is represented below:

c = m×G (3.19)

The two correlated sources are X and Y and can produce codewords c (where c ∈ C) of

length n; x and y are the source messages. The correlated sources satisfy the Slepian-

Wolf theorem given in equation (3.19). Sub matrices for the generator and parity-check

matrices, G and H respectively, are initially constructed. Thereafter the syndromes

si = (s1, . . . , sL) (where L is the number of partitions of the G matrix) are constructed

and transmitted. The decoder is then responsible for reconstructing the source messages

from the transmitted syndrome.

The partition of G and resultant partitions in H are calculated as per the partitions

specified by the matrix partition method [58]:

G =
[
Ik Pk×(n−k)

]
(3.20)

Gi =
[
Omi×mi− Imi Omi×mi+ Pimi×(n−k)

]
(3.21)

Hi =


Imi− Omi−×mi Omi−×mi+ Omi−×(n−k)

Omi+×mi− Omi+×mi Imi+ Omi+×(n−k)

O(n−k)×mi+ P Tmi O(n−k)×mi+ In−k

 (3.22)

Where Oi is a zero matrix, of size defined by the subscript i and Ij is an identity matrix,

of size defined by the subscript j. Here, Pk and Pi make up the Pk×(n−k) component of

a particular G matrix, as defined in equation (3.20).
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After these partitions are formed the syndromes are calculated by multiplying the source

message xi =
[
ui ai vi qi

]
, (which has length mi−, mi, mi+ and n− k respectively)

with the parity-check matrix H to result in:

si =


uTi

vTi

qTi ⊕ P Ti aTi

 (3.23)

The source messages are compressed into syndromes of length n−mi bits in this step.

At the decoder, the first step is to decompress the syndromes. This is done as indicated

below:

ti =


uTi

Omi×1

vTi

qTi ⊕ P Ti aTi

 (3.24)

The results of t1 ⊕ t2, . . . ,⊕tL are calculated. The codeword satisfying the following is

found:

dmin(t1 ⊕ t2, c) (3.25)

where dmin is the minimum Hamming distance and c ∈ C, where C is the codebook.

For example, for a (7, 4) Hamming code where two rows of G are used to calculate the

subcode for each encoder, the G and H matrices take the following form (this also gives

an indication of matrix dimensions):

G1 =
[
O2×2 I2 O2×2 P12×3

]
(3.26)
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G2 =
[
O2×2 I2 O2×2 P22×3

]
(3.27)

H1 =


I2 O2×2 O2×2 O2×3

O2×2 O2×2 I2 O2×3

O3×2 P T1 O3×2 I3

 (3.28)

H2 =


I2 O2×2 O2×2 O2×3

O2×2 O2×2 I2 O2×3

O3×2 P T2 O3×2 I3

 (3.29)

In order to encode, the n length (in this case n = 7) vector xi =
[
ui ai vi qi

]
is

multiplied by the parity-check matrix, H. In this way the syndromes are formed as

follows:

s1 =

 vT1

qT1 ⊕ P T1 aT1

 (3.30)

s2 =

 uT2

qT2 ⊕ P T2 aT2

 (3.31)

In order to assist with decoding, n-length row vectors t1 and t2 are defined as:

t1 =


O2×1

vT1

qT1 ⊕ P T1 aT1

 (3.32)
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t2 =


uT2

O2×1

qT2 ⊕ P T2 aT2

 (3.33)

Stankovic et al. [58] make the conclusion that xi ⊕ ti = aiGi is a valid codeword of Ci
(the codeword sub matrix) and thus C (the codeword matrix). At the decoder, both

syndromes are collected and t1 ⊕ t2 is calculated. The decoder is then tasked with

finding a codeword that is closest (in Hamming distance) to the result of t1 ⊕ t2, as per

the representation in (3.25). The sources are recovered as:

x1 = a1G1 ⊕ t1 (3.34)

and

x2 = a2G2 ⊕ t2 (3.35)

where a1 and a2 are the decoded systematic parts of the codeword. It is thus possible

to retrieve X and Y using the systematic part of the codeword, the generator matrix

and the received syndrome.

This method is one of the methods that partition the generator matrix in order to

transmit information effectively for correlated sources. In work by Ma and Cheng [57],

the generator matrix is also similarly split so that each portion can be used to determine

the resultant message for a particular source. There has also been similar partition

methods provided by Yang et al. [54], Pradhan and Ramchandran [55] and Liveris et

al. [56], where each examines a particular coding method for these partitions.

This chapter contained the descriptions of the techniques that have been used in this

research project. The techniques used to analyze the security aspects have been pre-

sented; namely Slepian-Wolf theorem and Shannon’s cipher system, together with the
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associated methodologies involved in proving these theorems or methods. Wiretap net-

works have also been explored followed by descriptions of the coding techniques involved

in analyzing the models that have been developed.



Chapter 4

Information Leakage for Multiple

Correlated Sources using

Slepian-Wolf Coding

This chapter initially details a generalized correlated source model, which is an extension

of the novel two correlated source model described later in this chapter and the corre-

lated source models described in the following chapters. One of the main contributions

is the development of the two correlated source model (there is reference made during

the chapter to the difference between this model and the others from the literature re-

viewed, emphasizing the novelty). There are initially two avenues explored to investigate

the information leakage in this chapter; one quantifying the information leakage for the

Slepian-Wolf scenario and the other incorporating Shannon’s cipher system where key

lengths are minimized and a masking method to save on keys is presented. The security

aspects of the two correlated source model is also a contribution. An important contri-

bution thereafter is the coding approach for the two correlated source model. There are

details describing the coding approach contained in this chapter, which show practical

implementation for the novel model developed and provides an important link between

the information theory and coding theory fields.

46



Chapter 4. Information Leakage for Multiple Correlated Sources using Slepian-Wolf
Coding 47

4.1 A Generalized Model for Multiple Correlated Sources

Consider multiple correlated sources transmitting information to a single receiver. There

is common and private information transmitted along the links, which in the presence

of a wiretapper may be compromised. Here, the multiple correlated sources transmit

compressed information across multiple links, which are wiretapped. Figure 4.1 gives a

pictorial view of the model for multiple correlated sources. The notation used in this

figure is explained below.

Receiver

S1 S2 Sn

TS1
TS2

TSn

Figure 4.1: Extended generalized model

Consider a situation where there are many sources, which are part of the set S :

S = {S1, S2, . . . , Sn}

where i represents the ith source (i = 1, . . . , n) and there are n sources in total. Each

source may have some correlation with another source and all sources are part of a

binary alphabet. There is one receiver that is responsible for performing decoding. The

syndrome for a source Si is represented by TSi , which is part of the same alphabet as

the sources. The entropy of a source is given by a combination of a specific conditional

entropy and mutual information. In order to present the entropy we first define the

following sets:

- The set, S that contains all sources: S = {S1, S2, . . . , Sn}.
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- The set, St that contains t unique elements from S and St ⊆ S, Si ∈ St, St ∪ Sct

= S and |St| = t

Here, H(Si) is obtained as follows:

H(Si) = H(Si|S\Si) +
n∑
t=2

(−1)t−1
∑

all possible St

I(St|Sct) (4.1)

where n is the number of sources, H(Si|S\Si) denotes the conditional entropy of the

source Si given Si subtracted from the set S and I(St|Sct) denotes the mutual information

between all sources in the subset St given the complement of St. It is possible to decode

the source message for source Si by receiving all components related to Si. This gives

rise to the following inequality for H(Si) in terms of the sources:

H(Si|S\Si) +
n∑
t=2

(−1)t−1
∑

all possible St

I(St|Sct)

≤ H(Si) + δ (4.2)

In this type of model information from multiple links may need to be gathered in order

to determine the transmitted information for one source because common information

may be transmitted by other links. Here, the common information between sources is

represented by the I(St|Sct) term. The portions of common information sent by each

source can be determined upfront and is arbitrarily allocated.

The information leakage for this multiple source model is indicated in (4.3) and (4.4).

Remark 1: The leaked information for a source Si given the transmitted codewords TSi ,

is given by:

LSiTSi
= I(Si;TSi) (4.3)

Since the notion that the information leakage is the conditional entropy of the source

given the transmitted information subtracted from the source’s uncertainty (i.e H(Si)−
H(Si|TSi)), the proof for (4.3) is trivial. Here, the common information is the minimum



Chapter 4. Information Leakage for Multiple Correlated Sources using Slepian-Wolf
Coding 49

amount of information leaked. Each source is responsible for transmitting its own private

information and there is a possibility that this private information may also be leaked.

The maximum leakage for this case is thus the uncertainty of the source itself, H(Si).

We also consider the information leakage for a source Si when another source Sj(j 6=i) has

transmitted information. This gives rise to Remark 2.

Remark 2: The leaked information for a source Si given the transmitted codewords

TSj , where i 6= j is:

LSiTSj
= H(Si)−H(Si|TSj )

= H(Si)− [H(Si)− I(Si;TSj )]

= I(Si;TSj ) (4.4)

The information leakage for a source is determined based on the information transmitted

from any other channel using the common information between them. The private

information is not considered as it is transmitted by each source itself and can therefore

not be obtained from an alternate channel. Remark 2 therefore gives an indication of the

maximum amount of information leaked for source Si, with knowledge of the syndrome

TSj .

The common information provides information for more than one source and is therefore

important to secure as it leaks information about more than one source. This section

gives an indication of the information leakage for the multiple correlated sources model.

4.2 Two Correlated Source Model

A special case of multiple correlated sources is now investigated. The independent,

identically distributed (i.i.d.) sourcesX and Y are mutually correlated random variables,

depicted in Figure 4.2. The alphabet sets for sources X and Y are represented by X
and Y respectively. Assume that (XK , Y K) are encoded into two syndromes (TX and

TY ). The compressed representation is as follows: TX = (VX , VCX) and TY = (VY , VCY )

where TX and TY are the syndromes of X and Y . Here, TX and TY are characterized by

(VX , VCX) and (VY , VCY ) respectively. The Venn diagram in Figure 4.3 easily illustrates
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this idea where it is shown that VX and VY represent the private information of sources

XK and Y K respectively and VCX and VCY represent the common information between

XK and Y K generated by XK and Y K respectively.

XK Y K

TYTX

X̂K , Ŷ K

Encoder Encoder

Decoder

Figure 4.2: Correlated source coding for two sources

VX VY

VCX VCY

X Y

TX = (VX , VCX) TY = (VY , VCY )

Figure 4.3: The relation between private and common information

The correlated sources X and Y transmit messages (in the form of syndromes) to the

receiver along wiretapped links. The decoder determines X and Y only after receiving all

of TX and TY . The common information between the sources are transmitted through

the portions VCX and VCY . In order to determine a transmitted message, a source’s

private information and a common information portion are necessary.

Here, the Slepian-Wolf bound is reached. The lengths of TX and TY are not fixed as

it depends on the encoding process and nature of the Slepian-Wolf codes. The process

is therefore not ideally one-to-one and reversible and is another difference between this

model and Yamamoto’s [5] model.
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The code described in this section satisfies the following inequalities for δ > 0 and

sufficiently large K.

Pr{XK 6= G(VX , VCX , VCY )} ≤ δ (4.5)

Pr{Y K 6= G(VY , VCX , VCY )} ≤ δ (4.6)

H(VX , VCX) ≤ H(XK) + δ (4.7)

H(VY , VCY ) ≤ H(Y K) + δ (4.8)

H(VX , VY , VCY ) ≤ H(XK , Y K) + δ (4.9)

H(XK |VX , VY ) ≥ H(VCX)− δ (4.10)

H(XK |VCX , VCY ) ≥ H(VX)− δ (4.11)

H(XK |VCX , VCY , VY ) ≥ H(VX)− δ (4.12)
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H(VCX) +H(VX)− δ ≤ H(XK |VCY , VY )

≤ H(XK)−H(VCY ) + δ (4.13)

where G is a function to define the decoding process at the receiver. It can intuitively

be seen from (4.7) and (4.8) that X and Y are recovered from the corresponding private

information and the common information produced by XK and Y K . Equations (4.7)

- (4.9) show that the private information and common information produced by each

source should contain no redundancy. It is also seen from (4.11) and (4.12) that VY is

independent of XK asymptotically. Here, (VX , VY ) and VCX or VCY are asymptotically

disjoint, which ensures that no redundant information is sent to the decoder.

Yamamoto [5] proved that a common information between XK and Y K is represented

by the mutual information I(X;Y ). Yamamoto [5] also defined two kinds of common

information. The first common information is defined as the rate of the attainable

minimum core by removing each private information, which is independent of the other

information, from (XK , Y K) as much as possible. The second common information is

defined as the rate of the attainable maximum core such that if we lose this quantity then

the uncertainty of X and Y becomes the entropy of the common information between

the sources. Here, the common information that VCX and VCY represent is considered.

The relationship between the common information portions is now demonstrated by

constructing the prototype code (WX , WY , WCX , WCY ) as per Lemma 1.

Lemma 1: For any ε0 ≥ 0 and sufficiently large K, there exits a code WX = FX(XK),

WY = FY (Y K), WCX = FCX(XK), WCY = FCY (Y K), X̂K , Ŷ K = G(WX ,WY ,WCX ,WCY ),

where WX ∈ IMX
, WY ∈ IMY

, WCX ∈ IMCX
, WCY ∈ IMCY

for IMα, which is defined

as {0, 1, . . . ,Mα − 1}, that satisfies,

Pr{X̂K , Ŷ K 6= XK , Y K} ≤ ε (4.14)
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H(X|Y )− ε0 ≤
1

K
H(WX) ≤ 1

K
logMX ≤ H(X|Y ) + ε0 (4.15)

H(Y |X)− ε0 ≤
1

K
H(WY ) ≤ 1

K
logMY ≤ H(Y |X) + ε0 (4.16)

I(X;Y )− ε0 ≤
1

K
(H(WCX) +H(WCY ))

≤ 1

K
(logMCX + logMCY ) ≤ I(X;Y ) + ε0 (4.17)

1

K
H(XK |WY ) ≥ H(X)− ε0 (4.18)

1

K
H(Y K |WX) ≥ H(Y )− ε0 (4.19)

We can see that (4.15) - (4.17) mean

H(X,Y )− 3ε0 ≤
1

K
(H(WX) +H(WY ) +H(WCX)

+ H(WCY ))

≤ H(X,Y ) + 3ε0 (4.20)

Hence from (4.14), (4.20) and the ordinary source coding theorem, (WX , WY , WCX ,

WCY ) have no redundancy for sufficiently small ε0 ≥ 0. It can also be seen that WX

and WY are independent of Y K and XK respectively.

Proof of Lemma 1. As seen by Slepian and Wolf, mentioned by Yamamoto [5] there

exist MX codes for the PY |X(y|x) DMC (discrete memoryless channel) and MY codes
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for the PX|Y (x|y) DMC. The codeword sets exist as CXi and CYj , where CXi is a subset

of the typical sequence of XK and CYj is a subset of the typical sequence of Y K . The

encoding functions are similar, and here one decoding function has been created as there

is one decoder at the receiver:

fXi : IMCX
→ CXi (4.21)

fY j : IMCY
→ CYj (4.22)

g : XK , Y K → IMCX
× IMCY

(4.23)

The relations for (MX , MY ) and the common information remains the same as per

Yamamoto’s and will therefore not be proven here.

In this scheme, the average (VCX , VCY ) transmitted is used for many codewords from X

and Y . Thus, at any time either VCX or VCY is transmitted. Over time, the split between

which common information portion is transmitted is determined and the protocol is

prearranged accordingly. Therefore all the common information is either transmitted as

l or m, and as such Yamamoto’s encoding and decoding method may be used.

As per Yamamoto’s method the code does exist and WX and WY are asymptotically

independent of Y and X respectively, as shown by Yamamoto [5].

The common information is important in this model as the sum of VCX and VCY repre-

sent a common information between the sources. The following theorem holds for this

common information:

Theorem 1:

1

K
[H(VCX) +H(VCY )] = I(X;Y ) (4.24)
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where VCX is the common portion between XK and Y K produced by XK and VCY is

the common portion between XK and Y K produced by Y K . It is noted that the (4.24)

holds asymptotically, and does not hold with equality when K is finite. Here, we show

the approximation when K is infinitely large. The private portions for XK and Y K

are represented as VX and VY respectively. As explained in Yamamoto’s [5] Theorem

1, two types of common information exist (the first is represented by I(X;Y ) and the

second by min(H(XK), H(Y K)). Here part of this idea is developed to show that the

sum of the common information portions produced by XK and Y K in this new model

is represented by the mutual information between the sources.

Proof of Theorem 1. The first part is to prove that H(VCX) +H(VCY ) ≥ I(X;Y ). The

conditions (4.5) and (4.6) are weakened to the following:

Pr {XK , Y K 6= GXY (VX , VY , VCX , VCY }) ≤ δ1 (4.25)

For any (VX ,VY , VCX , VCY ) ∈ C(3ε0) (which can be seen from (4.20)), from (4.25) and

the ordinary source coding theorem that the following results:

H(XK , Y K)− δ1 ≤ 1

K
H(VX , VY , VCX , VCY )

≤ 1

K
[H(VX) +H(VY ) +H(VCX)

+ H(VCY )] (4.26)

where δ1 → 0 as δ → 0. From Lemma 1,

1

K
H(VY |XK) ≥ 1

K
H(VY )− δ (4.27)

1

K
H(VX |Y K) ≥ 1

K
H(VX)− δ (4.28)
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From (4.26) - (4.28),

1

K
[H(VCX) +H(VCY )] ≥ H(X,Y )− 1

K
H(VX)

− 1

K
H(VY )− δ1

≥ H(X,Y )− 1

K
H(VX |Y K)

− 1

K
H(VY |XK)− δ1 − 2δ (4.29)

On the other hand, we can see that

1

K
H(XK , VY ) ≤ H(X,Y ) + δ (4.30)

This implies that

1

K
H(VY |XK) ≤ H(Y |X) + δ (4.31)

and

1

K
H(VX |Y K) ≤ H(X|Y ) + δ (4.32)

From (4.29), (4.31) and (4.32) we get

1

K
[H(VCX) +H(VCY )] ≥ H(X,Y )−H(X|Y )−H(Y |X)

− δ1 − 4δ

= I(X;Y )− δ1 − 4δ (4.33)

It is possible to see from (4.17) that H(VCX) + H(VCY ) ≤ I(X;Y ). From this result,

(4.23) and (4.33), and as δ1 → 0 and δ → 0 it can be seen that

1

K
[H(VCX +H(VCY )] = I(X;Y ) (4.34)
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This model can cater for a scenario where a particular source, say X needs to be more

secure than Y (possibly because of eavesdropping on the X channel). In such a case,

the 1
KH(VCX) term in (4.33) needs to be as high as possible. When this uncertainty is

increased then the security of X increases.

In order to determine the security of the system, a measure for the amount of information

leaked has been developed. This is a new notation and quantification, which contributes

to the novelty of this work. The obtained information and total uncertainty are used

to determine the leaked information. Information leakage is indicated by LPQ, where P
indicates the source/s for which information leakage is being quantified and Q indicates

the sequence that has been wiretapped.

The information leakage bounds for the following cases are indicated in (4.35) - (4.38):

• Leakage on X when (VX , VY ) is wiretapped

• Leakage on X when (VCX , VCY ) is wiretapped

• Leakage on X when (VCX , VCY , VY ) is wiretapped

LX
K

VX ,VY
≤ H(XK)−H(VCX)−H(VCY ) + δ (4.35)

LX
K

VCX ,VCY
≤ H(XK)−H(VX)−H(VCY ) + δ (4.36)

LX
K

VCX ,VCY ,VY
≤ H(XK)−H(VX)−H(VCY ) + δ (4.37)

H(VCY )− δ ≤ LXK

VY ,VCY

≤ H(XK)−H(VCX)−H(VX) + δ (4.38)
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Here, VY is private information of source Y K and is independent of XK and therefore

does not leak any information about XK , shown in (4.36) and (4.37). Equation (4.38)

gives an indication of the minimum and maximum amount of leaked information for

the interesting case where a syndrome has been wiretapped and the information leakage

quantification on the alternate source is considered. The outstanding common infor-

mation component is the maximum information that can be leaked. For this case, the

common information VCX and VCY can thus consist of added protection to reduce the

amount of information leaked. These bounds developed in (4.35) - (4.38) are proven in

the next section.

The proofs for the above mentioned information leakage inequalities are now detailed.

First, the inequalities in (4.10) - (4.13) will be proven, so as to prove that the informa-

tion leakage equations hold.

Proof for (4.10):

1

K
H(XK |VX , VY )

=
1

K
[H(XK , VX , VY )−H(VX , VY )]

=
1

K
[H(XK , VY )−H(VX , VY )] (4.39)

=
1

K
[H(XK |VY ) + I(XK ;VY ) +H(VY |XK)]

− 1

K
[H(VX |VY ) + I(VX ;VY ) +H(VY |VX)]

=
1

K
[H(XK |VY ) +H(VY |XK)−H(VX |VY )

−H(VY |VX)]

=
1

K
[H(XK) +H(VY )−H(VX)−H(VY )] (4.40)

=
1

K
[H(XK)−H(VX)]

≥ 1

K
[H(VX) +H(VCX) +H(VCY )−H(VX)]− δ

=
1

K
[H(VCX) +H(VCY )]− δ (4.41)

where (4.39) holds because VX is a function of X and (4.40) holds because X is inde-

pendent of VY asymptotically and VX is independent of VY asymptotically.
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For the proofs of (4.11) and (4.12), the following simplification for H(X|VCY ) is used:

H(XK |VCY ) = H(XK , Y K)−H(VCY )

= H(XK) +H(VCY )− I(X;VCY )−H(VCY )

= H(XK) +H(VCY )−H(VCY )−H(VCY )

+ δ1 (4.42)

= H(XK)−H(VCY ) + δ1 (4.43)

where I(X;VCY ) approximately equal to H(VCY ) in (4.42) can be seen intuitively from

the Venn diagram in Figure 4.3. Since it is an approximation, δ1, which is smaller than

δ in the proofs below has been added to cater for the tolerance.

Proof for (4.11):

1

K
H(XK |VCX , VCY )

=
1

K
[H(XK , VCX , VCY )−H(VCX , VCY )]

=
1

K
[H(XK , VCY )−H(VCX , VCY )] (4.44)

=
1

K
[H(XK)−H(VCY ) + I(X;VCY )

+ H(VCY |XK)]− 1

K
[H(VCX |VCY )

+ I(VCX ;VCY ) +H(VCY |VCX)] + δ1

=
1

K
[H(XK)−H(VCY ) +H(VCY )−H(VCX)

− H(VCY )] + δ1 (4.45)

=
1

K
[H(XK)−H(VCY )−H(VCX)] + δ1

≥ 1

K
[H(VX) +H(VCX) +H(VCY )−H(VCY )

− H(VCX)]− δ

=
1

K
H(VX) + δ1 − δ (4.46)

where (4.44) holds because VCX is a function of XK and (4.45) holds because X is

independent of VCY asymptotically and VCX is independent of VCY asymptotically.
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The proof for H(X|VCX , VCY , VY ) is similar to that for H(X|VCX , VCY ), because VY is

independent of X.

Proof for (4.12):

1

K
H(XK |VCX , VCY , VY )

=
1

K
H(XK |VCX , VCY ) (4.47)

=
1

K
[H(XK , VCX , VCY )−H(VCX , VCY )]

=
1

K
[H(XK , VCY )−H(VCX , VCY )] (4.48)

=
1

K
[H(XK)−H(VCY ) + I(X;VCY ) +H(VCY |XK)]

− 1

K
[H(VCX |VCY ) + I(VCX ;VCY ) +H(VCY |VCX)]

+ δ1

=
1

K
[H(XK)−H(VCY ) +H(VCY )−H(VCX)

− H(VCY )] + δ1 (4.49)

=
1

K
[H(XK)−H(VCY )−H(VCX)] + δ1

≥ 1

K
[H(VX) +H(VCX) +H(VCY )−H(VCY )

− −H(VCX)]− δ + δ1

=
1

K
H(VX)− δ + δ1 (4.50)

where (4.48) holds because VCX is a function of XK and (4.49) holds because XK is

independent of VCY asymptotically and VCX is independent of VCY asymptotically.

For the proof of (4.13), the following probabilities are considered:

Pr{VX , VCX 6= G(TX)} ≤ δ (4.51)

Pr{VY , VCY 6= G(TY )} ≤ δ (4.52)
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1

K
H(XK |TY )

≤ 1

K
H(XK , VCY , VY )] + δ (4.53)

=
1

K
[H(XK , VCY , VY )−H(VCY , VY )] + δ

=
1

K
[H(XK , VY )−H(VCY , VY )] + δ (4.54)

=
1

K
[H(XK |VY ) + I(XK ;VY ) +H(VY |XK)]

− 1

K
[H(VCY |VY ) + I(VCY ;VY ) +H(VY |VCY )] + δ

=
1

K
[H(XK) +H(VY )−H(VCY )−H(VY )] + δ (4.55)

=
1

K
[H(XK)−H(VCY )] + δ (4.56)

where (4.53) holds from (4.52), (4.54) holds because VCY and VY are asymptotically

independent. Furthermore, (4.55) holds because VCY and VY are asymptotically inde-

pendent and XK and VY are asymptotically independent.

Following a similar proof to those done above in this section, another bound forH(XK |VCY , VY )

can be found as follows:

1

K
H(XK |VCY , VY )

=
1

K
[H(XK , VCY , VY )−H(VCY , VY )]

=
1

K
[H(XK , VY )−H(VCY , VY )] (4.57)

=
1

K
[H(XK |VY ) + I(XK ;VY ) +H(VY |XK)]

− 1

K
[H(VCY |VY ) + I(VCY ;VY ) +H(VY |VCY )]

=
1

K
[H(XK) +H(VY )−H(VCY )−H(VY )] (4.58)

=
1

K
[H(XK)−H(VCY )]

≥ 1

K
[H(VX) +H(VCX) +H(VCY )−H(VCY )]− δ

=
1

K
[H(VX) +H(VCX)]− δ (4.59)

where (4.57) holds because VCY and VY are asymptotically independent and (4.58) holds

because VCY and VY are asymptotically independent.
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Since the information leakage is considered as the total information obtained subtracted

from the total uncertainty, the following holds for the four cases considered in this

section:

LX
K

VX ,VY
= H(XK)−H(XK |VX , VY )

≤ H(XK)−H(VCX)−H(VCY ) + δ (4.60)

which proves (4.35).

LX
K

VCX ,VCY
= H(XK)−H(XK |VCX , VCY )

≤ H(XK)−H(VX) + δ (4.61)

which proves (4.36).

LX
K

VCX ,VCY ,VY
= H(XK)−H(XK |VCX , VCY , VY )

≤ H(XK)−H(VX) + δ (4.62)

which proves (4.37).

The two bounds for H(VCY , VY ) are given by (4.56) and (4.59). From (4.56):

LX
K

VY ,VCY
≥ H(XK)− [H(X)−H(VCY ) + δ]

≥ H(VCY )− δ (4.63)

and from (4.59):

LX
K

VY ,VCY
≤ H(XK)− (H(VX) +H(VCX)− δ)

≤ H(XK)−H(VX)−H(VCX) + δ (4.64)
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Combining these results from (4.63) and (4.64) gives (4.38).

This section details one method for analyzing the security of the system. The Shannon

cipher system, which is used to determine transmission and key rate bounds for perfect

secrecy is another avenue explored and the approach follows in the next section.

4.3 Shannon’s Cipher System Approach For Multiple Cor-

related Sources

This section details a novel masking method to minimize the key length and thereafter

incorporates Shannon’s cipher system with the multiple correlated source model.

The masking method encompasses masking the conditional entropy portion with a mu-

tual information portion. By masking, certain information is hidden and it becomes

more difficult to obtain the information that has been masked. Masking can typically

be done using random numbers, however the need for random numbers that represent

keys is eliminated. Here a common information is used to mask with.

The following assumptions are made:

• The capacity of each link cannot be exhausted using this method.

• A common information is used to mask certain private information. Further,

private information that needs to be masked always exists in this method.

The allocation of common information for transmission is done on an arbitrary basis.

The objective of this subsection is to minimize the key lengths while achieving perfect

secrecy.

The private information for source i is given by H(Si|S\Si) according to (4.1), which

is called WSi and the common information associated with source Si is given by WCSi .

First, choose a common information with which to mask. Then take a part of WSi , i.e.

WSi

′
, that has entropy equal to H(WCSi) and mask as follows:

W
′
Si ⊕WCSi (4.65)
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When the exclusive-or of the two sequences is performed the result is a single sequence

that may look different to the original sequences. Thereafter the masked portion is

transmitted instead of the W
′
Si

portion when transmitting WSi thus providing added

security. If Y is secure then this common information can be transmitted along Y ’s

channel, which ensures the information is kept secure. The ability to mask using the

common information is a unique and interesting feature of this new model for multiple

correlated sources. The underlying principle is that the secure link should transmit more

common information after transmitting the private information.

The lower bound for the channel rate when the masking approach is used is given by:

RMi ≥ H(S1, . . . , Sn)−
n∑
t=2

∑
all possible St

(t− 1)I(St|Sct) (4.66)

where RMi is the ith channel rate when masking is used.

The method works theoretically but may result in some concern practically as there

may be a security compromise when common information is sent across non secure

links. If the WCSi component used for masking has been compromised then the private

portion it masked will also be compromised. A method to overcome this involves using

two common information parts for masking. Equation (4.65) representing the masking

would become:

W
′
Si ⊕WCSi ⊕WCSj (4.67)

where i 6= j and both WCSi and WCSj are common information associated with source

Si. This way, if only WCSj is compromised then WSi is not compromised as it is still

protected by WCSi . Here, combinations of common information are used to increase the

security.

The Shannon’s cipher system for this multiple source model is now presented in order

to determine the rate regions for perfect secrecy. The multiple sources each have their

own encoder and there is a universal decoder. Each source has an encoder represented
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by:

Ei : S × IWSi
→ IWCSi

= {0, 1, . . . ,WSi − 1}

IWCSi
= {0, 1, . . . ,WCSi − 1} (4.68)

where IWSi
is the alphabet representing the private portion for source Si and IWCSi

is

the alphabet representing the common information for source Si. The decoder at the

receiver is defined as:

D : (IWSi
, IWCSi

) × IMk → S (4.69)

The encoder and decoder mappings are below:

Wi = FEi(Si,Wki) (4.70)

Ŝi = FDi(Wi,Wki,W{kp}) (4.71)

where p = 1, . . . , n, p 6= i and W{kp} represents the set of common information required

to determine Si, and Ŝi is the decoded output.

The following conditions should be satisfied for the general cases:

1

K
logWSi ≤ Ri + ε (4.72)

1

K
logMki ≤ Rki + ε (4.73)

Pr{Ŝi 6= Si} ≤ ε (4.74)
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1

K
H(Si|Wi) ≤ hi − ε (4.75)

1

K
H(Sj |Wi) ≤ hj − ε (4.76)

where Ri is the the rate of source Si’s channel and Rki is the key rate of Si. The

security levels, for source i and any other source j are measured uncertainties hi and hj

respectively.

The general cases considered are:

Case 1: When TSi is leaked and Si needs to be kept secret.

Case 2: When TSi is leaked and Sj needs to be kept secret.

The admissible rate region for each case is defined as follows:

Definition 1a: (Ri, Rki, hi) is admissible for case 1 if there exists a code (FEi , FD) such

that (4.72) - (4.75) hold for any ε→ 0 and sufficiently large K.

Definition 1b: (Ri, Rki, Rj , Rkj , hi, hj) is admissible for case 2 if there exists a code

(FEi , FD) such that (4.72) - (4.74) and (4.76) hold for any ε→ 0 and sufficiently large K.

Definition 2: The admissible rate regions are defined as:

R(hi) = {(Ri, Rki) :

(Ri, Rki, hi) is admissible for case 1} (4.77)

R(hi, hj) = {(Ri, Rki, Rj , Rkj) :

(Ri, Rki, Rj , Rkj , hj) is admissible for case 2} (4.78)
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The admissible regions give an indication of the rate regions for this scenario. The regions

are derived for the more specific cases in Chapters 5-6, which are developed using this

method. The information leakage described in the Slepian-Wolf aspect indicates the

common information that should be secured to ensure less information leakage.

4.4 Shannon’s Cipher System Approach for Two Corre-

lated Sources

The Shannon’s cipher system approach for two independent correlated sources (depicted

in Figure 4.4) is detailed in this section. The source outputs are i.i.d random variables

X and Y , taking on values in the finite sets X and Y. Both the transmitter and receiver

have access to the key, a random variable, independent of XK and Y K and taking values

in IMk
= {0, 1, 2, . . . ,Mk − 1}. The sources XK and Y K compute the ciphertexts W1

and W2, which are the result of specific encryption functions on the plaintext from X

and Y respectively. The encryption functions are invertible, thus knowing W1 and the

corresponding key kX , X can be retrieved. The key for Y is represented as kY .

The mutual information between the plaintext and ciphertext should be small so that

the wiretapper cannot gain much information about the plaintext. For perfect secrecy,

this mutual information should be zero, then the length of the key should be at least

the length of the plaintext.

The encoder functions for X and Y , (EX and EY respectively) are given as:

EX : XK × IMkX
→ IM ′X = {0, 1, . . . ,M ′X − 1}

IM ′CX = {0, 1, . . . ,M ′CX − 1} (4.79)

EY : YK × IMkY
→ IM ′Y = {0, 1, . . . ,M ′Y − 1}

IM ′CY = {0, 1, . . . ,M ′CY − 1} (4.80)
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XK Y K

kX , kY

W2W1

kX , kY

X̂K , Ŷ K

Encoder Encoder

Decoder

Figure 4.4: Shannon cipher system for two correlated sources

The decoder is defined as:

DXY : (IM ′X , IM
′
Y
, IM ′CX , IM

′
CY

) × IMkX
, IMkY

→ XK × YK (4.81)

The encoder and decoder mappings are below:

W1 = FEX (XK ,WkX) (4.82)

W2 = FEY (Y K ,WkY ) (4.83)

X̂K = FDX (W1,W2,WkX) (4.84)
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Ŷ K = FDY (W1,W2,WkY ) (4.85)

or

(X̂K , Ŷ K) = FDXY (W1,W2,WkX ,WkY ) (4.86)

The following conditions should be satisfied for cases 1- 4:

1

K
logMX ≤ RX + ε (4.87)

1

K
logMY ≤ RY + ε (4.88)

1

K
logMkX ≤ RkX + ε (4.89)

1

K
logMkY ≤ RkY + ε (4.90)

Pr{X̂K 6= XK} ≤ ε (4.91)

Pr{Ŷ K 6= Y K} ≤ ε (4.92)
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1

K
H(XK |W1) ≤ hX + ε (4.93)

1

K
H(Y K |W2) ≤ hY + ε (4.94)

1

K
H(XK , Y K |W1,W2) ≤ hXY + ε (4.95)

where RX is the rate of source X’s channel and RY is the rate of source Y ’s channel.

Here, (RkX , RkY ) is the rate of the key channel when allocating a key to X and Y . The

security level for X and Y are measured by the total and individual uncertainties, hXY

and (hX , hY ) respectively.

The cases 1 - 3 that are considered are as follows:

Case 1: When (W1,W2) is leaked and (XK , Y K) needs to be kept secret. The security

level of concern is represented by 1
KH(XK , Y K |W1,W2).

Case 2: When (W1,W2) is leaked and (XK , Y K) needs to be kept secret. The security

level of concern is represented by ( 1
KH(XK |W1,W2),

1
KH(Y K |W1,W2)).

Case 3: When (W1,W2) is leaked and Y K needs to be kept secret.The security level of

concern is represented by 1
KH(Y K |W1,W2).

The admissible rate region for each case is defined as follows:

Definition 1a: (RX , RY , RkX , RkY , hXY ) is admissible for case 1 if there exists a code

(FEX , FDXY ) and (FEY , FDXY ) such that (4.87) - (4.92) and (4.95) hold for any ε→ 0

and sufficiently large K.

Definition 1b: (RX , RY , RkX , RkY , hX , hY ) is admissible for case 2 if there exists a

code (FEX , FDXY ) and (FEY , FDXY ) such that (4.87) - (4.94) hold for any ε → 0 and

sufficiently large K.

Definition 1c: (RX , RY , RkX , RkY , hY ) is admissible for case 3 if there exists a code
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(FEY , FDXY ) such that (4.87) - (4.92) and (4.94) hold for any ε → 0 and sufficiently

large K.

Definition 2: The admissible rate regions of Rj for case j are defined as:

R1(hXY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hXY ) is admissible for case 1} (4.96)

R2(hX , hY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hX , hY ) is admissible for case 2} (4.97)

R3(hY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hY ) is admissible for case 3} (4.98)

Theorems for these regions have been developed:

Theorem 2: For 0 ≤ hXY ≤ H(X,Y ),

R1(hXY ) = {(RX , RY , RkX , RkY ) :

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X,Y )

RkX +RkY ≥ hXY } (4.99)
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Theorem 3: For 0 ≤ hX ≤ H(X) and 0 ≤ hY ≤ H(Y ),

R2(hY ) = {(RX , RY , RkX , RkY ) :

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X,Y )

RkX +RkY ≥ max(hX , hY )} (4.100)

When hX = 0 then case 3 can be reduced to that depicted in (4.100). Hence, Corollary

1 follows:

Corollary 1: For 0 ≤ hY ≤ H(Y ), R3(hY ) = R2(0, hY )

The direct and converse parts of the proofs for (4.99) and (4.100) are contained in

Appendix A.

4.5 Information Leakage for the System using Matrix Par-

titions

In this section the aim is to determine the equivocation (uncertainty) in retrieving a

message from the transmitted channel information. The convention used by Stankovic

et al. [58] is followed to present an example together with a method incorporating

generator matrix ranks put forth by Luo et al. [47] to determine the equivocation. The

Hamming distance is represented as follows: dH(XK , Y K) ≤ 1.

The following generator matrix G is used:

G =


1 0 0 0 1 0 1

0 1 0 0 1 1 0

0 0 1 0 1 1 1

0 0 0 1 0 1 1



The matrix takes the form: G = [IkP
T ] and here Ik is the identity matrix of order k

and P T is made up of two 2× 3 matrices in this case.
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Suppose the messages to send across the channels for X and Y are given by: x =

[a1 v1 q1] = [10 11 001] and y = [u2 a2 q2] = [10 11 011].

There is compression along X’s and Y ’s channel. As per the matrix partition method

the syndrome for X and Y is comprised of:

TX =

 vT1

P T1 a
T
1 ⊕ qT1



TY =

 uT2

P T2 a
T
2 ⊕ qT2


where P T1 is the G matrix transpose of rows 1-2 and columns 5-7 and P T2 is the G matrix

transpose of rows 3-4 and columns 5-7. The generator matrices used by X and Y to

achieve these syndromes are GX and GY respectively.

GX =



0 0 1 0 1

0 0 1 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



GY =



1 0 0 0 0

0 1 0 0 0

0 0 1 1 1

0 0 0 1 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


This results in syndromes of [1 1 1 0 0] for X and [1 0 1 1 1] for Y .
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Here, the equivocation for these cases can be found using the G matrix specified above

and a sub matrix of G. This follows from Luo et al. [47], where the equivocation is given

by: 4Y |TY = rank(G)− rank(GY ). Here, 4Y |TY is the equivocation on Y given TY .

Next, the information leakage for each of the following cases is analyzed:

• The equivocation on (XK , Y K) when (TX , TY ) is leaked

• The equivocation on (XK , Y K) when TX is leaked

• The equivocation on (XK , Y K) when TY is leaked

In order to show the most representative results for each of the cases the scenarios

contributing to the minimum and maximum information leakage have been considered.

Before the information leakage method is described certain variables are introduced.

Here, µTX and µTY represent the number of wiretapped bits from TX and TY respectively.

The length of the information bits from each syndrome is represented as lXi and lYi for

XK and Y K respectively. The length of parity bits with respect to XK or Y K is denoted

as lp, and the following can be developed: lXi + lYi + 2lp is the overall length of TX and

TY . Hence we have: 0 ≤ µTX ≤ lXi + lp and 0 ≤ µTY ≤ lYi + lp.

Note that the leakage is determined using a combination of the information bits, parity

bits and the parity matrix H rank. The H matrix rank is used to determine how much of

information is leaked from the wiretapped bits when the columns corresponding to the

wiretapped bits have been removed. Let H ′ denote the H matrix with the wiretapped

columns removed.

The case for the leakage on (XK , Y K) when (TX , TY ) is leaked is now considered. Ini-

tially the maximum leakage is described. When µTX ≤ lXi and µTY ≤ lYi , the maximum

leakage is µTX + µTY + rank(H) − rank(H ′). This considers when the information bits

(namely v1 and u2) have been leaked only.

For this example the syndromes can leak a maximum of two information bits each, and

a combined leakage of four bits. For each information bit wiretapped there is one bit

of information leaked about XK and Y K . Since the rank of H ′ remains as three for

when each of these bits are wiretapped, the information leakage is determined by the
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information bits entirely. This can be seen in the maximum case in Figure 4.6 for the

first four wiretapped bits.

Next, µTX > lXi and µTY > lYi is considered. This case considers when more than the

information bits are wiretapped. For this case min(µTX−lXi , µTY −lYi ) parity bits can be

from the corresponding positions in P T1 a
T
1 ⊕qT1 and P T2 a

T
2 ⊕qT2 . Therefore, the maximum

leakage is as indicated in (4.101).

lXi + lYi + µTX + min(µTX − lXi , µTY − lYi ) + rank(H)− rank(H ′) (4.101)

If µTX > lXi and µTY ≤ lYi the maximum leakage is µTY + lXi + rank(H)− rank(H ′); if

µTX ≤ lXi and µTY > lYi , the maximum leakage is µTX + lYi + rank(H)− rank(H ′).

The parity bits only leak information about XK and Y K when the positions wiretapped

correspond. If the last parity bit in TX is wiretapped and the last parity bit in TY is

wiretapped then since these wiretapped bits are in corresponding positions there will be

one bit leaked about XK and Y K . As such, for the maximum leakage the parity bits

should be placed in corresponding positions, as indicated by the ’x’ positions in Figure

4.5. For this example the information leakage between 5 - 10 wiretapped bits increases

by one bit for every two bits wiretapped. This is because these are the parity bits of

concern and there is one bit of information leaked for every pair of corresponding parity

bits wiretapped. The rank of H ′ also increases by one for every two bits wiretapped for

these 5 - 10 wiretapped bits. Thus the information leakage increases by one for every

pair of parity bits and by a further one for every pair of parities as there is a change at

these points in the H ′ matrix rank.

Now the minimum leakage is considered. When µTX ≤ lp and µTY ≤ lp, the minimum

leakage is max(0, µTX +µTY − lp) + rank(H)− rank(H ′). This considers when the parity

bits (namely P T1 a
T
1 ⊕qT1 and P T2 a

T
2 ⊕qT2 ) have been leaked only. Otherwise, the minimum

leakage is µTX + µTY − lp + rank(H)− rank(H ′).

To achieve the minimum information leakage the wiretapped parity bits should not

correspond, which is shown by the ’o’ positions in Figure 4.5. This means that three

bits may be wiretapped (all parity and not corresponding bits, for example all of TX ’s
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TX

TY

v1

u2 PT
2 aT2 ⊕ qT2

PT
1 aT1 ⊕ qT1

Information bits Parity bits

Figure 4.5: Wiretapped parity bits for maximum and minimum information leakage

parity bits) before the information leakage starts. The fourth wiretapped bit could

match a corresponding parity bit or be an information bit; both of which will result in

one bit of information leakage. The same follows for the fifth to seventh wiretapped

bits. When the eighth bit is wiretapped the minimum case is where all the parity bits

correspond (i.e. 6 bits) and there are two information bits wiretapped; at this point

the information leakage rises by two bits. Until this point the rank of H ′ was three,

hence it would not affect the information leakage. An additional one bit of information

leakage when this eighth bit is wiretapped comes from the rank of H ′ changing by one.

Thereafter there are two bits of information leakage for each wiretapped bit. This comes

from the one information bit leaked and the rank of H ′ increasing by one for each of the

ninth and tenth wiretapped bits. This is depicted as the minimum case in Figure 4.6.

Next the information leakage for the second and third cases are determined. The leakage

for these cases reach the same limit for the minimum and maximum cases of information

leakage, however the information leakage peak occurs at different points depending on

which bits (information or parity) are leaked first. The leakage for the second and third

cases respectively are as follows: LX
K ,Y K

TX
= lXi and LX

K ,Y K

TY
= lYi . Using the numerical

example for this section, the graphical representation is in Figure 4.7. If the parity bits

of either TX or TY are wiretapped, then there is no information leakage as there are no

corresponding parity bits to match with and to allow for information leakage. This is

shown in Figure 4.7 as the wiretapped bits 3-5 for the maximum case and the wiretapped

bits 1-3 for the minimum case. When the information bits are wiretapped there is one

bit of leakage for each information bit, thus resulting in two bits of leakage when both

information bits from TX or TY have been wiretapped. This is shown in Figure 4.7
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Figure 4.6: The information leakage on (XK , Y K) when (TX , TY ) has been wire-
tapped

as the wiretapped bits 1-2 for the maximum case and the wiretapped bits 4-5 for the

minimum case. The maximum case depicted is when the information bits are initially

wiretapped and the minimum case is where the parity bits are initially wiretapped.

In this example certain bits have more equivocation than others and as such which bits

are wiretapped plays a role in making the system vulnerable at different times. For

instance, following from the third case if only TY is wiretapped from the parity bits

then for the first 3 bits there is no information leakage due to TY as the wiretapper

would have encountered the masked bits. The information leakage occurs after the third

bit, when u2 is wiretapped. This therefore shows an upper and lower bound on the

uncertainty, where the upper bound is given when bits u2 is leaked first and the lower

bound is given when the masked portion is first leaked. The parity bits are masked and

are thus more difficult to be leaked to an adversary. Parity bits from both sources need

to be wiretapped and in the same positions in order to leak information.

In general, for a systematic code the columns that have a weight of one would contribute
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Figure 4.7: The information leakage on (XK , Y K) when TX or TY has been wire-
tapped

one bit to the information leakage entirely. With use of the matrix partition approach,

if the parity bits of both TX and TY are wiretapped (and these bits are from the same

columns in each generator matrix) then for every two parity bits wiretapped there is one

bit of information leaked. The parity bits and the information bits can also be used to

solve the parity matrix to determine the information leakage. If the wiretapped parity

bits do not belong to the same columns then there is no information leakage at that

point.

This chapter introduces a multiple correlated source model followed by a novel two

correlated source model. The security aspects of the two correlated source model has

been analyzed and a masking method to reduce on the length of keys required has been

presented. The security aspects make use of existing techniques using the Slepian-Wolf

scenario and Shannon’s cipher system approach to show the information leakage bounds

for the novel model and rate regions required to achieve perfect secrecy respectively. The

chapter ends with an aspect showing the coding approach that demonstrates practical

implementation for such a model.



Chapter 5

Information Leakage of

Slepian-Wolf Encoded Sequences

for Two Correlated Sources with

Partially Predetermined

Information

This chapter describes a novel two correlated source model where some source infor-

mation has been leaked to a wiretapper. It caters for applications used in degraded

broadcast channels and scenarios where there is pre-existing information available to an

eavesdropper. This model is a variation of the two correlated source model investigated

in the previous chapter. Here a main contribution is the development of the two corre-

lated source model. The two approaches explored to investigate the information leakage

have been used here; one quantifying the information leakage for the Slepian-Wolf sce-

nario and the other incorporating Shannon’s cipher system. These security aspects of

the two correlated source model is also a contribution. The chapter again ends with a

section showing the coding implementation for this model, which is an important contri-

bution as it shows practical implementation for the novel model developed and provides

an important link between the information theory and coding theory fields.

79
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5.1 Two Correlated Source Model with Partially Prede-

termined Information

The independent, identically distributed (i.i.d.) sources X and Y are mutually correlated

random variables, depicted in Figure 5.1. The alphabet sets for sources X and Y are

represented by X and Y respectively. Assume that (XK , Y K) are encoded into two

syndromes (TX and TY ). The compressed representation is as follows: TX = (VX , VCX)

and TY = (VY , VCY ) where TX and TY are the syndromes of X and Y . Here, TX and TY

are characterized by (VX , VCX) and (VY , VCY ) respectively. The Venn diagram in Figure

4.3 may again be used to illustrate this idea where it is shown that VX and VY represent

the private information of sources X and Y respectively and VCX and VCY represent

the common information between XK and Y K generated by XK and Y K respectively.

Each source is composed of two components; XK1 and XK2 for XK and Y K1 and Y K2

for Y K , of which one component is leaked to the eavesdropper. Here, the lengths K1

and K2 are related to K as follows: K1 +K2 = K. Due to the stationary nature of the

sources, if Y K2 is known by the wiretapper then it corresponds to XK2 known about

XK as the wiretapper has access to certain common information between the sources.

XK Y K

TYTX

X̂K , Ŷ K

Encoder Encoder

Decoder

k

XK1 XK2 Y K1 Y K2

Wiretapper

Figure 5.1: Correlated source coding for two sources with a more powerful adversary

In the same way as was described for the two correlated source model presented in Chap-

ter 4, the correlated sources X and Y transmit messages (in the form of syndromes) to

the receiver along the wiretapped links. The decoder determines X and Y only after
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receiving all of TX and TY . The eavesdropper has access to either the common or private

portion represented by (TX , TY ) and some data symbols from the corresponding source

(Y K2). The effect is that the eavesdropper has access to some compressed information

(that is transmitted across the communication link after encoding) and some uncom-

pressed information (i.e. the source’s data symbols). There is a mapping/function that

describes the relation between the uncompressed information and the compressed in-

formation. This implies that certain source bits correspond to certain compressed bits

transmitted as channel information. It is valuable to determine how much of informa-

tion the eavesdropper has access to when wiretapping the private or common information

portions (this is described in the next section).

Here, typical set encoding and decoding is used. We are able to determine bin indices

for the jointly typical sequence from the indices passed over the communication channel.

When common or private information from a particular link is wiretapped it gives an

indication of which rows/columns in the specific look up table the sequence is contained

within. With additional information the uncertainty of which row/column to look to for

the codeword is reduced as it helps to narrow the number of possible codewords. In this

way, all the codewords having the same sequence as the wiretapped source bits will be

shortlisted codewords.

The code described in this section satisfies the following inequalities for δ > 0 and

sufficiently large K.

Pr{X 6= G(VX , VCX , VCY )} ≤ δ (5.1)

Pr{Y 6= G(VY , VCX , VCY )} ≤ δ (5.2)

H(VX , VCX , VCY ) ≤ H(X) + δ (5.3)
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H(VY , VCX , VCY ) ≤ H(Y ) + δ (5.4)

H(VX , VY , VCX , VCY ) ≤ H(X,Y ) + δ (5.5)

H(XK |VX , VY ) ≥ H(VCX) +H(VCY )− δ (5.6)

H(XK |VCX , VCY ) ≥ H(VX) +H(VCY )− δ (5.7)

H(XK |VCX , VCY , VY ) ≥ H(VX) +H(VCY )− δ (5.8)

H(VCX) +H(VX)− δ ≤ H(XK |VCY , VY )

≤ H(XK)−H(VCY ) + δ (5.9)

where G is a function to define the decoding process at the receiver. It can intuitively

be seen from (5.3) and (5.4) that X and Y are recovered from the corresponding private

information and the common information produced by XK and Y K . Equations (5.3),

(5.4) and (5.5) show that the private information and common information produced by

each source should contain no redundancy.

The prototype code described in Lemma 1 in Section 4.2 and the encoding and decoding

methods are also applied in this section.
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In order to determine the security of the system, the measure introduced in Section 4.2

for the amount of information leaked is used. The obtained information subtracted from

the total uncertainty is used to determine the information leakage.

The information leakage bounds for the following cases are provided in (5.10) - (5.12):

• Leakage on Y when (VY , Y
K2) is wiretapped

• Leakage on Y when (VCY , Y
K2) is wiretapped

• Leakage on X when (VCY , Y
K2) is wiretapped

LY
K

VY ,Y
K2
≤ H(Y K |XK)−H(VY ) + I(VY ;Y K)

+ H(Y K2 |VY ) + δ (5.10)

LY
K

VCY ,Y
K2
≤ H(Y K |XK)−H(VY ) + I(VCY ;Y K)

+ H(Y K2 |VCY ) + δ (5.11)

LX
K

VCY ,Y
K2
≤ H(XK |Y K)−H(VX)

+ I(XK ;Y K2 |VCY ) + I(VCY ;XK)

+ δ (5.12)

As indicated in Figure 5.1, Y K2 is used to represent the source bits that have been

wiretapped. This could be common information that relates to XK or private infor-

mation of XK . Equation (5.12) gives an indication of the minimum and maximum

amount of leaked information for the interesting case where the channel information

and data symbols have been wiretapped and its information leakage on the alternate

source is quantified. This is interesting because intuitively it is known that there is some
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information that may be leaked by an alternate source. For this case, the common infor-

mation VCX and VCY can thus be secured to reduce the amount of information leaked.

The bounds developed in (5.10) - (5.12) are proven below. These are also described in

[62].

The code (VX , VCX , VCY , VY ) that has been defined in Chapter 4 describing the model

exists, and (5.1) - (5.5) satisfy (5.6) - (5.9), which have already been proven in Chapter

4, then the information leakage bounds for this scenario with a more powerful adversary

is given by (5.10) - (5.12).

Proof for (5.10): First, H(Y K |VY , Y K2) is determined.

H(Y K |VY , Y K2)

= H(Y K , VY , Y
K2)−H(VY , Y

K2)

= H(Y K) +H(VY |Y K) +H(Y K2 |Y K , VY )

− H(VY , Y
K2) (5.13)

= H(Y K) +H(VY )− I(VY ;Y K) +H(Y K2)

− I(Y K2 ;Y K |VY )− I(Y K2 ;VY )−H(VY |Y K2)

− I(VY ;Y K2)−H(Y K2 |VY )

= H(Y K) +H(VY )− I(VY ;Y K) +H(Y K2)

− H(Y K2 |VY )− I(Y K2 ;VY )−H(VY )

+ I(VY ;Y K2)− I(VY ;Y K2)−H(Y K2)

+ H(Y K2 |VY )

= H(Y K)− I(VY ;Y K)− I(Y K2 ;Y K |VY )

≥ H(VY ) +H(VCX) +H(VCY )− I(VY ;Y K)

− H(Y K2 |VY )− δ (5.14)

= H(VY ) + I(XK ;Y K)− I(VY ;Y K)−H(Y K2 |VY )

− δ (5.15)

where (5.13) holds from the entropy chain rule, (5.14) holds from (5.4), and (5.15) holds

from Theorem 1.
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The information leakage is thus:

LY
K

VY ,Y
K2

= H(Y K)−H(Y K |VY , Y K2)

≤ H(Y K)−H(VY )− I(XK ;Y K) + I(VY ;Y K)

+ H(Y K2 |VY ) + δ

= H(Y K |XK)−H(VY ) + I(VY ;Y K)

+ H(Y K2 |VY ) + δ (5.16)

which proves (5.10).

Proof for (5.11):

H(Y K |VCY , Y K2)

= H(Y K , VCY , Y
K2)−H(VCY , Y

K2)

= H(Y K) +H(VCY |Y K) +H(Y K2 |Y K , VCY )

− [H(VCY |Y K2) + I(VCY ;Y K2)

+ H(Y K2 |VCY )] (5.17)

= H(Y K) +H(VCY )− I(VCY ;Y K) +H(Y K2)

− I(Y K2 ;Y K |VCY )− I(Y K2 ;VCY )

− H(VCY ) + I(VCY ;Y K2)− I(VCY ;Y K2)

− H(Y K2) + I(VCY ;Y K2)

= H(Y K)− I(VCY ;Y K)−H(Y K2 |VCY )

≥ H(VY ) +H(VCX) +H(VCY )

− I(VCY ;Y K)−H(Y K2 |VCY )− δ (5.18)

= H(VY ) + I(XK ;Y K)− I(VCY ;Y K)

− H(Y K2 |VCY )− δ (5.19)

where (5.17) holds from the entropy chain rule, (5.18) holds from (5.4) and (5.19) holds

from Theorem 1.
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The information leakage is thus:

LY
K

VCY ,Y
K2

= H(Y K)−H(Y K |VCY , Y K2)

≤ H(Y K)−H(VY )− I(XK ;Y K)

+ I(VCY ;Y K) +H(Y K2 |VCY ) + δ

= H(Y K |XK)−H(VY ) + I(VCY ;Y K)

+ H(Y K2 |VCY ) + δ (5.20)

which proves (5.11).

Following a similar proof to those done above in this section, a bound forH(XK |VCY , VY 2)

can be found as follows:

H(XK |VCY , Y K2)

= H(XK , VCY , Y
K2)−H(VCY , Y

K2)

= H(XK) +H(VCY |XK) +H(Y K2 |VCY , XK)

− H(VCY , Y
K2) (5.21)

= H(XK) +H(VCY )− I(VCY ;XK) +H(Y K2)

− I(XK ;Y K2 |VCY )− I(Y K2 ;VCY )

− H(VCY |Y K2)− I(VCY ;Y K2)

− H(Y K2 |VCY ) (5.22)

= H(XK) +H(VCY )− I(VCY ;XK) +H(Y K2)

− I(XK ;Y K2 |VCY )− I(Y K2 ;VCY )−H(VCY )

+ I(VCY ;Y K2)−H(Y K2) + I(VCY ;Y K2)

− I(VCY ;Y K2)

= H(XK)− I(XK ;Y K2 |VCY )− I(VCY ;XK)

≥ H(VX) +H(VCX) +H(VCY )

− I(XK ;Y K2 |VCY )− I(VCY ;XK)− δ (5.23)

= H(VX) + I(XK ;Y K)− I(XK ;Y K2 |VCY )

− I(VCY ;XK)− δ (5.24)
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where (5.21) and (5.22) results from the chain rule, (5.24) holds from Theorem 1, and

(5.23) holds from (5.3).

The information leakage is thus:

LX
K

VCY ,Y
K2

= H(XK)−H(XK |VCY , Y K2)

≤ H(XK)−H(VX)− I(XK ;Y K)

+ I(XK ;Y K2 |VCY ) + I(VCY ;XK) + δ

= H(XK |Y K)−H(VX) + I(XK ;Y K2 |VCY )

+ I(VCY ;XK) + δ (5.25)

which proves (5.12).

This section shows the information leakage when various portions of the channel infor-

mation and some source data symbols are leaked. It is evident that the eavesdropper

has more information about a particular source as shown in (5.20)-(5.25), than if only

the channel information was wiretapped. This can be drawn from a comparison with

the previous chapter. The interesting case explored for (5.12) demonstrates that there

is common information leaked about X from the wiretapped Y ’s source symbols or the

syndrome TY , due to the correlation between the sources.

Equation (5.10) in effect means that the information leakage is upper bounded by

the common information between VY and the eavesdropped source data symbols and

H(Y K2 |VY ). The security level is therefore dependent on these portions. If these are

secured then the information leakage will be less.

For (5.11), the common portion between VCY and the eavesdropped source data symbols

together with H(Y K2 |VCY ) form the upper bound for the information leakage. In the

same way as (5.10), increasing the security for these information portions ensures more

information can remain secure.

Again, in (5.12) VCY and the eavesdropped source data symbols, together withH(XK |VCY )

play a role in leaking information. Since VCY is a common information portion it leaks

at least some information but no more than I(X;Y ) about X.

Equations (5.10) - (5.12) can be verified graphically using Figure 4.3. The wiretapped

information from the link may be redundant information if the source data symbols
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correspond to the same information, which could be less information leaked than if the

source bits and the channel information corresponded to different information.

5.2 Shannon Cipher System Approach for Two Correlated

Sources with Partially Predetermined Information

The independent, identically distributed (i.i.d.) sources X and Y are mutually correlated

random variables, depicted in Figure 5.2. The alphabet sets for sources X and Y are

represented by X and Y respectively. As in the previous section, assume that (XK ,

Y K) are encoded into two syndromes (TX and TY ). The compressed representation is as

follows: TX = (VX , VCX) and TY = (VY , VCY ) where TX and TY are the syndromes of X

and Y . The characterization of the syndromes remains the same as specified above. Both

the transmitter and receiver have access to the key, a random variable, independent of

XK and Y K and taking values in IMK
= {0, 1, 2, . . . ,MK−1}. The sources XK and Y K

compute the ciphertexts X
′

and Y
′
, which are the result of specific encryption functions

on the plaintext from X and Y respectively. As described in Chapter 4, the encryption

functions are invertible, thus knowing X
′

and the key, XK can be retrieved.

The eavesdropper has access to either the common or private portions given by TY

and/or TX and some data symbols from the corresponding source (Y K2). There is a

mapping/function that describes the relation between the uncompressed information and

the compressed information. This implies that certain source bits correspond to certain

compressed bits transmitted as channel information. It is valuable to determine how

much of information to transmit at a time such that the eavesdropper cannot retrieve

the message (this is described in the next section).

The encoder functions for X and Y , (EX and EY respectively) are given as:

EX : (XK1 ,XK2)× IMkX
→ IM ′X = {0, 1, . . . ,M ′X − 1}

IM ′CX = {0, 1, . . . ,

M ′CX − 1} (5.26)
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kX , kY

W2W1

kX , kY

X̂K , Ŷ K

Encoder Encoder

Decoder

XK Y K

XK1 XK2 Y K1 Y K2

Wiretapper

Figure 5.2: Shannon cipher system for two correlated sources with wiretapped source
symbols

EY : (YK1 ,YK2)× IMkY
→ IM ′Y = {0, 1, . . . ,M ′Y − 1}

IM ′CY = {0, 1, . . . , (5.27)

M ′CY − 1} (5.28)

The decoder is defined as:

DXY : (IM ′X , IM
′
Y
, IM ′CX , IM

′
CY

) × IMkX
, IMkY

→ XK × YK (5.29)

The encoder and decoder mappings are below:

W1 = FEX (XK1 , XK2 ,WkX) (5.30)
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W2 = FEY (Y K1 , Y K2 ,WkY ) (5.31)

X̂K = FDX (W1,W2,WkX) (5.32)

Ŷ K = FDY (W1,W2,WkY ) (5.33)

or

(X̂K , Ŷ K) = FDXY (W1,W2,WkX ,WkY ) (5.34)

The following conditions should be satisfied for cases 1- 4:

1

K
logMX ≤ RX + ε (5.35)

1

K
logMY ≤ RY + ε (5.36)

1

K
logMkX ≤ RX + ε (5.37)

1

K
logMkY ≤ RkY + ε (5.38)
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Pr{X̂K 6= XK} ≤ ε (5.39)

Pr{Ŷ K 6= Y K} ≤ ε (5.40)

1

K
H(XK |W1,W2) ≤ hX + ε (5.41)

1

K
H(Y K |W1,W2) ≤ hY + ε (5.42)

1

K
H(XK , Y K |W1,W2) ≤ hXY + ε (5.43)

where RX is the rate of source X’s channel and RY is the rate of source Y ’s channel.

Here, (RkX , RkY ) is the rate of the key channel when allocating a key to X and Y .

The security level for X and Y are measured by the total and individual uncertainties,

(hX , hY ).

The cases 1 - 3 are:

Case 1: When (W1,W2, Y
K2) is leaked and (XK , Y K) needs to be kept secret. The

security level of concern is represented by 1
KH(XK , Y K |W1,W2, Y

K2).

Case 2: When (W1,W2, Y
K2) is leaked and (XK , Y K) needs to be kept secret. The secu-

rity level of concern is represented by ( 1
KH(XK |W1,W2, Y

K2), 1
KH(Y K |W1,W2, Y

K2)).

Case 3: When (W1,W2, Y
K2) is leaked and Y K needs to be kept secret.The security

level of concern is represented by 1
KH(Y K |W1,W2, Y

K2).
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The admissible rate region for each case is defined as follows:

Definition 1a: (RX , RY , RkX , RkY , hXY ) is admissible for case 1 if there exists a code

(FEX , FDXY ) such that (5.35) - (5.40) and (5.43) hold for any ε → 0 and sufficiently

large K.

Definition 1b: (RX , RY , RkX , RkY , hX , hY ) is admissible for case 2 if there exists a

code (FEY , FDXY ) such that (5.35) - (5.42) hold for any ε→ 0 and sufficiently large K.

Definition 1c: (RX , RY , RkX , RkY , hY ) is admissible for case 3 if there exists a code

(FEX , FDXY ) and (FEY , FDXY ) such that (5.35) - (5.40) and (5.42) hold for any ε→ 0

and sufficiently large K.

Definition 2: The admissible rate regions of Rj for case j are defined as:

R1(hXY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hXY ) is admissible for case 1} (5.44)

R2(hX , hY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hX , hY ) is admissible for case 2} (5.45)

R3(hY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hY ) is admissible for case 3} (5.46)

Theorems for these regions have been developed:
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Theorem 4: For 0 ≤ hXY ≤ H(X,Y )− µC − µY and

R1(hXY ) = {(RX , RY , RkX , RkY ) :

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X,Y ) and

RkX +RkY ≥ hXY } (5.47)

Theorem 5: For 0 ≤ hX ≤ H(X)− µC and 0 ≤ hY ≤ H(Y )− µC − µY ,

R2(hX , hY ) = {(RX , RY , RkX , RkY ) :

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X,Y ) and

RkX +RkY ≥ max(hX , hY )} (5.48)

where R1 and R2 are the regions for cases 1 and 2 respectively.

Here, the wiretapped source symbols are indicated by the following entropy: 1
K2H(Y K2) =

µC + µY , where µC and µY are the common and private portions of the i.i.d source Y

that are contained in Y K2 per symbol. Here, YK2 is proportional to K. When hX = 0

then case 3 can be reduced to that in (5.48). Hence Corollary 2 follows:

Corollary 2 : For 0 ≤ hY ≤ H(Y )− µC − µY , R3(hY ) = R2(0, hY )

The code achieving these bounds for case 2 allows for the key length of hY to be achieved

across Y ’s channel in case 3. The security levels, which are measured by the individ-

ual uncertainties (hX , hY ) and total uncertainty hXY give an indication of the level of

uncertainty in knowing certain information. When the uncertainty increases then less

information is known to an eavesdropper and there is a higher level of security. The

direct and converse parts of the proofs for Theorem 4 (5.47) and Theorem 5 (5.48) are

contained within Appendix B.
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5.3 Information Leakage for the System using Matrix Par-

titions

The setup (G matrix, H matrix and syndromes) for this section is the same as that for

the implementation for the two correlated source model presented in Section 4.5. Here

K2 has a length specified as K2 ≤ K. The Hamming distance is represented as follows:

dH(XK , Y K) ≤ 1.

The method specified in Section 4.5 is applied here. The leakage due to (TX , TY ) has been

detailed in Section 4.5 and here the leaked Y K2 portion may be considered separately

thereby forming a solution for the following cases:

• The equivocation on (XK , Y K) when (TX , TY , Y
K2) is leaked

• The equivocation on (XK , Y K) when (TX , Y
K2) is leaked

• The equivocation on (XK , Y K) when (TY , Y
K2) is leaked

The information leakage on (XK , Y K) when K2 bits of source Y is leaked is considered.

First, since dH(XK , Y K) ≤ 1, if there are 0 < K2 ≤ K bits, the number of possible

sequences including repeated sequences is 2K−K2(K + 1). For each K2 bits wiretapped,

there are K2+1 possible combinations that have a Hamming distance of one. Therefore,

the information leakage due to Y K2 with respect to XK is detailed in (5.49).

LX
K

Y K2
= K2 −

K −K2 + 1

K + 1
log2

K −K2 + 1

K + 1
−

K2∑
i=1

1

K + 1
log2

1

K + 1
(5.49)

where K = 7.

The results obtained for this scenario in (5.49) are presented in Figure 5.3. It is seen

that the maximum information leakage of YK2 on XK is the four bits representing the

common information between XK and Y K .

For the leakage of Y K2 with respect to Y K , it is given by K2. This is depicted in Figure

5.4. The combination of this quantity (eliminating the common information) and that in

(5.49) result in the information leakage on (XK , Y K) when Y K2 has been leaked. With
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Figure 5.3: The information leakage on XK when Y K2 has been wiretapped

use of the Venn diagram above it is seen that the information leakage on (XK , Y K)

reduces to Y K2 . This means that for example, if Y K2 is two bits then there are two bits

known about (XK , Y K). Figure 5.5 shows the numerical results.

The information leakage represented here may be used in the cases specified in this

section to separately determine the information leakage of Y K2 on XK and Y K .

The chapter described a novel two correlated source model where some source informa-

tion has been leaked to a wiretapper. The security aspects for this model have been

analyzed in terms of the Slepian-Wolf scenario and Shannon’s cipher system. The infor-

mation leakage bounds and rate regions for perfect secrecy have been provided based on

the analysis of the security aspects. The chapter ends with the coding implementation

for the novel model presented here, which is an important contribution as highlighted

at the beginning of this chapter.
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Figure 5.4: The information leakage on Y K when Y K2 has been wiretapped
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Chapter 6

Information Leakage for

Correlated Sources using

Heterogeneous Encoding Method

This chapter describes a novel correlated source scenario in which two encoding methods

are investigated; the novel model is referred to as a model with a heterogeneous encoded

method. It caters for applications where a source has been leaked to a wiretapper. A

main contribution is the development of the heterogeneous encoding correlated source

model. The two approaches explored to investigate the information leakage have been

used here; one quantifying the information leakage for the Slepian-Wolf scenario and

the other incorporating Shannon’s cipher system. These security aspects of the two

correlated source model is also a contribution. The chapter again ends with a section

showing the coding implementation for this model, which is an important contribution

as it shows practical implementation for the novel model developed and provides an

important link between the information theory and coding theory fields.

6.1 Correlated Source Model for Heterogeneous Encoding

Method

The scenario has also been presented in terms of this model description and the imple-

mentation below [63]. The independent, identically distributed (i.i.d.) sources X, Y and

97
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Z are mutually correlated random variables, depicted in Figure 6.1. The alphabet sets

for sources X, Y and Z are represented by X , Y and Z respectively. Assume that XK

and Y K are encoded into two channel information portions represented by their common

and private information portions. Here, TX = (VCX , VX) and TY = (VCY , VY ) where

TX and TY are the channel information of X and Y respectively. The Venn diagram in

Figure 6.2 illustrates this idea. Each source is composed of K bits, and for source ZK ,

µ of these symbols are considered as the wiretapped information and is leaked to the

wiretapper (µ ≤ K).

XKZK

Zµ

X̂K , Ŷ K

Decoder

k

Wiretapper

Y K

Encoder Encoder

TX TY

Figure 6.1: Correlated source coding for three sources with X and Y transmitting
compressed information

VX VY

X Y

Z

VCX VCY

Figure 6.2: The relation between private and common information

The correlated sources X, Y and Z transmit messages (in the form of some channel

information) to the receiver along the wiretapped links. The eavesdropper has access

to either the common or private portions given by TX and TY and the predetermined

information from the source Z, i.e. Zµ. As with the model in Chapter 5, the effect is

that the eavesdropper has access to some compressed information (that is transmitted
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across the communication link after encoding) and some uncompressed information (i.e.

the data symbols from source Z).

Here, for XK and Y K the typical set encoding and decoding described in Chapter 4 is

used. As a summary, it is possible to determine bin indices for the typical sequence from

the indices passed over the communication channel. When common or private informa-

tion from the syndromes are wiretapped it gives an indication of which row/column in

the specific look up table the sequence is contained within.

The code described in this section satisfies the following inequalities for δ > 0 and

sufficiently large K.

Pr{X 6= G(VX , VCX)} ≤ δ (6.1)

Pr{Y 6= G(VY , VCY )} ≤ δ (6.2)

From the Venn diagram we see the private information and common information pro-

duced by each source should contain almost no redundancy. Here, (VCX , VX , VY , VCY )

are asymptotically disjoint, which ensures that there is almost no redundant information

sent to the decoder.

Here, the nature of codes when there are three correlated sources is explored. The

correlation occurs as follows: dH(XK , Y K) ≤ 1 and dH(Y K , ZK) ≤ 1. This means X

and Y have a Hamming distance of one and Y and Z have a Hamming distance of one.

There is therefore some sort of correlation between X and Z as they are both correlated

to Y .

The prototype code is initially defined: for any ε0 ≥ 0 and sufficiently large K, there exits

a code WCX = FCX(XK), WCY = FCY (Y K), X̂K , Ŷ K , where WX ∈ IMX
, WY ∈ IMY

,

WCX ∈ IMCX
and WCY ∈ IMCY

for IMα , which is defined as {0, 1, . . . ,Mα − 1}, that

satisfies,
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Pr{X̂K , Ŷ K , ẐK 6= XK , Y K , ZK} ≤ ε (6.3)

H(X|Y, Z)− ε0 ≤
1

K
logMX ≤ H(X|Y, Z) + ε0 (6.4)

H(Y |X,Z)− ε0 ≤ 1

K
H(WY ) ≤ 1

K
logMY

≤ H(Y |X) + ε0 (6.5)

H(Z|X,Y )− ε0 ≤
1

K
logMZ ≤ H(Z|X,Y ) + ε0 (6.6)

I(X;Y )− ε0 ≤
1

K
log[H(WCX) +H(WCY )]

≤ I(X;Y ) + ε0 (6.7)

1

K
H(XK |VY , VZ) ≥ H(X)− ε0 (6.8)

1

K
H(Y K |VX , VZ) ≥ H(Y )− ε0 (6.9)

1

K
H(ZK |VZ , VY ) ≥ H(Z)− ε0 (6.10)
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We can see that (6.3) - (6.7) mean

H(X,Y )− 3ε0 ≤
1

K
(H(VX) +H(VCX) +H(WY )

+ H(WCY )) ≤ H(X,Y ) + 3ε0

+ 3ε0 (6.11)

Hence from (6.3), (6.11) and the ordinary source coding theorem, (WX , WY , WCX

and WCY ) have almost no redundancy for sufficiently small ε0 ≥ 0. The encoding and

decoding defined by the existence of the prototype code provided by (6.3) - (6.11) have

been proven in Chapter 4 for two sources.

This model can cater for a scenario where a particular source, say Y needs to be more

secure than X (possibly because of more eavesdropping on the Y channel); we would

need to secure the information that could be compromised. This masking approach is

described in Chapter 4.

In order to determine the security of the system, a measure for the amount of information

leaked has been developed. The obtained information and total uncertainty are used

to determine the leaked information. Information leakage is indicated using the LPQ

notation described in Chapter 4.

The information leakage bound for the following two cases are considered:

Case 1: Leakage on Y when (TX , TY , Z
µ) are wiretapped.

Case 2: Leakage on X when (TX , TY , Z
µ) are wiretapped.

The information leakage for these cases is as follows:

LY
K

TX ,TY ,Zµ
≤ I(TY ;Y K) + I(TX ;Y K)

+ I(TY ;TX |Y ) + I(Y K ;Zµ) + I(TY ;Zµ|Y K)

+ I(TX ;Zµ|Y K , TY )− I(TX ;TY )− I(TX ;Zµ)

− I(TY ;Zµ|TX) + 2δ (6.12)
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LY
K

TX ,TY ,Zµ
≤ I(TY ;X) + I(X;TX)

+ I(TY ;TX |X) + I(X;Zµ) + I(TY ;Zµ|X)

+ I(TX ;Zµ|Y, TY )− I(TX ;TY )− I(Zµ;TX)

− I(TY ;Zµ|TX) + 2δ (6.13)

Here, TX and TY are the compressed sequences and in terms of the information quantity

they include either the private or common portion. Thus, we can see the above bound

as a generalized result for wiretapping X’s or Y ’s links, when µ bits of the source Z is

leaked. The portion Zµ could be leaked with respect to source X or Y .

This bound developed in (6.12) is proven below.

Proof for (6.12): First, H(Y K |TY , TX , Zµ) is determined as the information leakage

is found using H(Y )−H(Y |TY , TX , Zµ).
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H(Y |TY , TX , Zµ)

= H(Y, TY , TX , Z
µ)−H(TY , TX , Z

µ)

(a)
= H(Y K) +H(TY |Y ) +H(TX |TY , Y )

+ H(Zµ|Y K , TY , TX)− [H(TY ) +H(TX |TY )

+ H(Zµ|TY , TX)]

(b)
= H(Y K) + [H(TY )− I(TY ;Y )] + [H(TX − I(Y ;TX)

− I(TY ;TX |Y )] + [H(Zµ)− I(Y ;Zµ)

− I(TY ;Zµ|Y )− I(TX ;Zµ|Y, TY )]−H(TY )

− [H(TX)− I(TX ;TY )]− [H(Zµ)

− I(Zµ;TX)− I(TY ;Zµ|TX)]

(c)
= H(Y ) +H(TY )− I(TY ;Y ) +H(TX)− I(Y ;TX))

− I(TY ;TX |Y ) +H(Zµ)− I(Y ;Zµ)

− I(TY ;Zµ|Y )− I(TX ;Zµ|Y, TY )−H(TY )

− H(TX) + I(TX ;TY )−H(Zµ) + I(Zµ;TX)

+ I(TY ;Zµ|TX)

= H(Y K)− I(TY ;Y )− I(Y ;TX)

− I(TY ;TX |Y )− I(Y ;Zµ)− I(TY ;Zµ|Y )

− I(TX ;Zµ|Y, TY ) + I(TX ;TY )

+ I(Zµ;TX) + I(TY ;Zµ|TX) (6.14)

where (a) results from the chain rule expansion for H(Y, TY , TX , Z
µ) and H(TY , TX , Z

µ)

and (b) results from the property that the conditional entropy is the same as the mutual

information subtracted from the total uncertainty, i.e. H(X|Y ) = H(X) − I(X;Y ).

Here, (c) is arithmetic, where the terms H(TY ), H(TX) and H(Zµ) cancel.



Chapter 6. Information Leakage for Correlated Sources using Heterogeneous Encoding
Method 104

The information leakage is thus:

LY
K

TY ,TX ,Zµ
= H(Y )−H(Y K |TY , TX , Zµ)

≤ H(Y K)−H(VY )−H(VCY )−H(VCX)

− H(VCZ)−H(Y K) + I(TY ;Y ) + I(Y ;TX)

+ I(TY ;TX |Y ) + I(Y ;Zµ) + I(TY ;Zµ|Y )

+ I(TX ;Zµ|Y, TY )− [I(TX ;TY )

+ I(Zµ;TX) + I(TY ;Zµ|TX)] + δ (6.15)

= I(TY ;Y ) + I(Y ;TX) + I(TY ;TX |Y )

+ I(Y ;Zµ) + I(TY ;Zµ|Y ) + I(TX ;Zµ|Y, TY )

− I(TX ;TY )− I(Zµ;TX)

− I(TY ;Zµ|TX) + 2δ (6.16)

which proves (6.12). Here, (6.15) results from (6.2).
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Proof for (6.13):

H(X|TY , TX , Zµ)

= H(X,TY , TX , Z
µ)−H(TY , TX , Z

µ)

(d)
= H(X) +H(TY |XK) +H(TX |TY , X)

+ H(Zµ|XK , TY , TX)− [H(TY ) +H(TX |TY )

+ H(Zµ|TY , TX)]

(e)
= H(X) + [H(TY )− I(TY ;X)] + [H(TX − I(X;TX)

− I(TY ;TX |X)] + [H(Zµ)− I(X;Zµ)

− I(TY ;Zµ|X)− I(TX ;Zµ|X,TY )]−H(TY )

− [H(TX)− I(TX ;TY )]− [H(Zµ)

− I(Zµ;TX)− I(TY ;Zµ|TX)]

(f)
= H(X) +H(TY )− I(TY ;X) +H(TX)− I(X;TX))

− I(TY ;TX |X) +H(Zµ)− I(X;Zµ)

− I(TY ;Zµ|X)− I(TX ;Zµ|X,TY )−H(TY )

− H(TX) + I(TX ;TY )−H(Zµ) + I(Zµ;TX)

+ I(TY ;Zµ|TX)

= H(XK)− I(TY ;X)− I(X;TX)

− I(TY ;TX |X)− I(X;Zµ)− I(TY ;Zµ|X)

− I(TX ;Zµ|X,TY ) + I(TX ;TY )

+ I(Zµ;TX) + I(TY ;Zµ|TX) (6.17)

where (d) results from the chain rule expansion for H(X,TY , TX , Z
µ) and H(TY , TX , Z

µ)

and (e) results from the property that the conditional entropy is the same as the mutual

information subtracted from the total uncertainty, i.e. H(X|Y ) = H(X) − I(X;Y ).

Here, (f) is arithmetic, where the terms H(TY ), H(TX) and H(Zµ) cancel.
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The information leakage is thus:

LXTY ,TX ,Zµ = H(X)−H(X|TY , TX , Zµ)

≤ H(X)−H(VX)−H(VCY )−H(VCX)

− H(VCZ)−H(X) + I(TY ;X) + I(X;TX)

+ I(TY ;TX |X) + I(X;Zµ) + I(TY ;Zµ|X)

+ I(TX ;Zµ|X,TY )− [I(TX ;TY )

+ I(Zµ;TX) + I(TY ;Zµ|TX)] + δ (6.18)

= I(TY ;X) + I(X;TX) + I(TY ;TX |X)

+ I(X;Zµ) + I(TY ;Zµ|X) + I(TX ;Zµ|Y, TY )

− I(TX ;TY )− I(Zµ;TX)

− I(TY ;Zµ|TX) + 2δ (6.19)

which proves (6.13). Here, (6.18) results from (6.1).

This section shows the information leakage for when various portions of the channel

information and source data symbols from one source are leaked. The interesting cases

explored for (6.12) and (6.13) demonstrate that the source Z contributes to leakage for

X and Y ; this is due to the common information shared between them.

Equations (6.12) and (6.13) indicate that the information leakage is upper bounded

by the common information portions indicated. The information leakage in (6.12) and

(6.13) can be reduced if the common information portions are secured. Equations (6.12)

and (6.13) can be verified using the Venn diagram in Figure 6.2.

6.2 Shannon Cipher Approach for Correlated Sources us-

ing Heterogeneous Encoding Method

Here, Shannon’s cipher system for the heterogeneous encoding method (depicted in

Figure 6.3) is presented. The two source outputs are i.i.d random variables X and Y ,

taking on values in the finite sets X and Y. Both the transmitter and receiver have

access to the key, a random variable, independent of XK and Y K and taking values in

IMk
= {0, 1, 2, . . . ,Mk−1}. As before, the sources XK and Y K compute the ciphertexts
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W1 and W2, which are the result of specific encryption functions on the plaintext from

X and Y respectively. The encryption functions are invertible, thus knowing W1 and

the key, kX for X then X can be retrieved. The key for Y is represented as kY .

XKZK

Zµ

X̂K , Ŷ K

Decoder

k

Wiretapper

Y K

Encoder Encoder

W1 W2

kX , kY

kX , kY

Figure 6.3: Shannon cipher system for three correlated sources

The encoder functions for X and Y , (EX and EY respectively) are given as:

EX : XK × IMkX
→ IM ′X = {0, 1, . . . ,M ′X − 1}

IM ′CX = {0, 1, . . . ,M ′CX − 1} (6.20)

EY : YK × IMkY
→ IM ′Y = {0, 1, . . . ,M ′Y − 1}

IM ′CY = {0, 1, . . . ,M ′CY − 1} (6.21)

The decoder is defined as:

DXY : (IM ′X , IM
′
Y
, IM ′CX , IM

′
CY

) × IMkX
, IMkY

→ XK × YK (6.22)
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The encoder and decoder mappings are below:

W1 = FEX (XK ,WkX) (6.23)

W2 = FEY (Y K ,WkY ) (6.24)

X̂K = FDX (W1,W2,WkX) (6.25)

Ŷ K = FDY (W1,W2,WkY ) (6.26)

or

(X̂K , Ŷ K) = FDXY (W1,W2,WkX ,WkY ) (6.27)

The following conditions should be satisfied for cases 1- 4:

1

K
logMX ≤ RX + ε (6.28)

1

K
logMY ≤ RY + ε (6.29)

1

K
logMkX ≤ RkX + ε (6.30)
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1

K
logMkY ≤ RkY + ε (6.31)

Pr{X̂K 6= XK} ≤ ε (6.32)

Pr{Ŷ K 6= Y K} ≤ ε (6.33)

1

K
H(XK |W1) ≤ hX + ε (6.34)

1

K
H(Y K |W2) ≤ hY + ε (6.35)

1

K
H(XK , Y K |W1,W2) ≤ hXY + ε (6.36)

where RX is the rate of source X’s channel and RY is the rate of source Y ’s channel.

Here, (RkX , RkY ) is the rate of the key channel when allocating a key to X and Y .

The security level for X and Y are measured by the total and individual uncertainties,

(hX , hY ) and hXY respectively.

The cases 1 - 3 that are considered are as follows:

Case 1: When (W1,W2, Z
µ) is leaked and (XK , Y K) needs to be kept secret. The se-

curity level of concern is represented by 1
KH(XK , Y K |W1,W2, Z

µ).
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Case 2: When (W1,W2, Z
µ) is leaked and (XK , Y K) needs to be kept secret. The se-

curity level of concern is represented by ( 1
KH(XK |W1,W2, Z

µ), 1
KH(Y K |W1,W2, Z

µ)).

Case 3: When (W1,W2, Z
µ) is leaked and Y K needs to be kept secret.The security level

of concern is represented by 1
KH(Y K |W1,W2, Z

µ).

The admissible rate region for each case is defined as follows:

Definition 1a: (RX , RY , RkX , RkY , hXY ) is admissible for case 1 if there exists a code

(FEX , FDXY ) and (FEY , FDXY ) such that (6.28) - (6.33) and (6.36) hold for any ε→ 0

and sufficiently large K.

Definition 1b: (RX , RY , RkX , RkY , hX , hY ) is admissible for case 2 if there exists a

code (FEX , FDXY ) and (FEY , FDXY ) such that (6.28) - (6.35) hold for any ε → 0 and

sufficiently large K.

Definition 1c: (RX , RY , RkX , RkY , hY ) is admissible for case 3 if there exists a code

(FEY , FDXY ) such that (6.28) - (6.33) and (6.35) hold for any ε → 0 and sufficiently

large K.

Definition 2: The admissible rate regions of Rj for case j are defined as:

R1(hXY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hXY ) is admissible for case 1} (6.37)

R2(hX , hY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hX , hY ) is admissible for case 2} (6.38)

R3(hY ) = {(RX , RY , RkX , RkY ) :

(RX , RY , RkX , RkY , hY ) is admissible for case 3} (6.39)

Theorems for these regions have been developed:



Chapter 6. Information Leakage for Correlated Sources using Heterogeneous Encoding
Method 111

Theorem 6: For 0 ≤ hXY ≤ H(X,Y )− αCX − αCY + I(X;Y ;Z),

R1(hXY ) = {(RX , RY , RkX , RkY ) :

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X,Y )

RkX +RkY ≥ hXY } (6.40)

Theorem 7: For 0 ≤ hX ≤ H(X)− αCX and 0 ≤ hY ≤ H(Y )− αCY ,

R2(hY ) = {(RX , RY , RkX , RkY ) :

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X,Y )

RkX +RkY ≥ max(hX , hY )} (6.41)

where R1 and R2 are the regions for cases 1 and 2 respectively. Here, αCX and αCY are

the common portions (i.e. the correlated information) of the i.i.d source Z (for I(X;Z)

and I(Y ;Z) respectively) that are contained in Zµ per symbol.

When hX = 0 then case 3 can be reduced to that depicted in (6.41). Hence, Corollary

3 follows:

Corollary 3: For 0 ≤ hY ≤ H(Y )− αCY , R3(hY ) = R2(0, hY )

The proofs and converses of Theorems 6-7 are contained within Appendix C.

6.3 Information Leakage for the System using Matrix Par-

titions

The same setup (G matrix, H matrix and syndromes) as per the implementation in

Section 4.5 is applied to implement this model. Using the method already specified,

the information leakage for each of the following cases may be found. The leakage due
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to (TX , TY ) has been detailed in Section 4.5 and here the leaked Zµ portion may be

considered separately, thereby forming a solution for the following cases:

• The equivocation on (XK , Y K) when (TX , TY , Z
µ) is leaked

• The equivocation on (XK , Y K) when (TX , Z
µ) is leaked

• The equivocation on (XK , Y K) when (TY , Z
µ) is leaked

The information leakage on (XK , Y K) when µ bits of source Z is leaked is considered,

which is done in two steps. First, since dH(Y K , ZK) ≤ 1, if there are 0 < µ ≤ K bits

(µ = 0 has been considered in Section 4.5), the number of possible sequences including

repeated sequences is 2K−µ(K+1). However, there are 2K−µ different sequences repeated

K − µ+ 1 times and there are µ2K−µ different sequences that possibly occur once.

Second, from every possible Y K , there are eight possible sequences for XK with identical

possibilities. Therefore, the information leakage due to Zµ with respect to XK and Y K

is detailed in (6.42).

LX
K ,Y K

Zµ = H(XK , Y K) + K−µ+1
K+1 log2

K−µ+1
2K−µ(K+1)

+µ2K−µ 1
2K−µ(K+1)

log2
1

2K−µ(K+1)
−H(XK |Y K) (6.42)

where H(XK , Y K) = 10, H(XK |Y K) = 3 and K = 7.

The numerical results retrieved using (6.42) are presented in Figure 6.4. It is seen that

the information leakage on (XK , Y K) increases as more µ bits are wiretapped and this

is because of the correlation between the sources. The maximum information that Zµ

leaks about (XK , Y K) is four bits.

The information leakage represented in (6.42) may be used in the cases explored in this

section to separately determine the information leakage of Zµ on XK and Y K . The Zµ

bits also contribute to the information leakage and the correlation between XK , Y K and

Zµ plays a role in determining the overall leakage.

This section shows the information leakage for the model described in this chapter where

various portions of the channel information and some source data symbols from Z are
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Figure 6.4: The information leakage on (XK , Y K) when Zµ has been wiretapped

leaked. Again it is noted that the message bits given by u1 and v1 also contribute to

information leakage as they are not masked in any way. If these are hidden in some way

then the information leakage will be less. In addition, due to the correlation that exists

between XK , Y K and Zµ there is leakage on XK and Y K when Zµ has been leaked.

The chapter described a novel heterogeneous encoded correlated source model where

some source information has been leaked to a wiretapper. The security aspects for this

model have been analyzed in terms of the Slepian-Wolf scenario and Shannon’s cipher

system. The information leakage bounds and rate regions for perfect secrecy have been

provided based on the analysis of the security aspects. The chapter ends with the coding

implementation for the novel model presented here, which is an important contribution

as highlighted at the beginning of this chapter.



Chapter 7

Conclusion

This chapter concludes the thesis by initially comparing the novel correlated source

models presented in Chapters 4-6 with existing models, and detailing the future work

for this research project. Further, the contributions have been listed followed by a

description of the contents of the thesis.

7.1 Comparison to other Models

The two correlated source model across a channel with an eavesdropper is a more gen-

eralised approach of Yamamoto’s [5] model. If the links were combined into one link,

the same situation as per Yamamoto’s [5] would result. As described in the two cor-

related source model in Chapter 4 this specific model can be implemented for multiple

sources with Shannon’s cipher system. Due to the unique scenario incorporating mul-

tiple sources and multiple links, the models presented above are more secure as private

information and common information from other link/s are required for decoding.

Further, information at the sources may be more secure in the two correlated source

model presented in Chapter 4 because if one source is compromised then only one source’s

information is known. In Yamamoto’s [5] method both source’s information is contained

at one station and when that source is compromised then information about both sources

are known. The information transmitted along the channels (i.e. the syndromes) in

these models presented in Chapters 4-6 do not have a fixed length as per Yamamoto’s

114
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[5] method. Here, the syndrome length may vary depending on the encoding procedure

and nature of Slepian-Wolf codes.

In these novel models, information from more than one link may be required in order

to determine the information for one source. This gives rise to added security as even if

one link is wiretapped it may not be possible to determine the contents of a particular

source. This is attributed to the fact that this model transmits common information

portions from different links, which is different to Yamamoto’s model.

At first glance, Yamamoto’s model may seem to be a generalisation of the Luo et al. [47]

model, however Luo et al. [47] incorporate a wiretapper at the source that has access

to some source data symbols. In this work, Chapter 5 incorporates this concept in that

the information known to the eavesdropper is Y K2 source symbols of source Y K .

Another major feature is that private information can be hidden using common informa-

tion. Here, common information produced by a source may be used to mask its private

codeword thus saving on key length. The key allocation is specified by the general rules

presented in Chapter 4. The multiple correlated sources model presents a combination

masking scheme where more than one common information is used to protect a private

information, which is a practical approach. This is an added feature developed in or-

der to protect the system. This approach has not been considered in the other models

mentioned in this section.

The work by Yang et al. [2] uses the concept of side information to assist the decoder in

determining the transmitted message. The side information could be considered to be

a source and is related to this research when the side information is considered as cor-

related information. Similar work with side information that incorporates wiretappers,

by Villard and Piantanida [26] and Villard et al. [23] may be generalised in the sense

that side information can be considered to be a source, however these models are distin-

guishable as syndromes, which are independent of one another are transmitted across

an error free channel. Further, to the author’s knowledge Shannon’s cipher system has

not been incorporated into these models by Villard and Piantanida [26] and Villard et

al. [23].

It is noted that the models presented in this thesis reduce to Yamamoto’s model. Here,

when the variations in the models presented in Chapters 5 and 6 (two correlated sources
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with some source information wiretapped and the heterogeneous model respectively) are

removed it reduces to the two correlated source model presented in Chapter 4. When the

two correlated sources become one source transmitting information across a single link

then the model further reduces to that of Yamamoto’s. This thesis therefore incorporates

models that build on Yamamoto’s model.

7.2 Future Work

This research project has room future work. It would be interesting to consider the

case where the channel capacity has certain constraints (according to the assumptions

in Chapter 4 the channel capacity is enough at all times). In the two correlated source

models, the channels are either protected by keys or not however this is limited and a

real case scenario where there are varying security levels for the channels is an avenue

for future work.

7.3 Contributions

This thesis contributes the following:

• Information leakage quantification for two correlated source models (Sections 4.2

and 5.1)

• Shannon cipher approach for two correlated source models (Sections 4.4 annd 5.2)

• Information leakage quantification for heterogeneous encoding method correlated

source model (Section 6.1)

• Shannon cipher approach for heterogeneous encoding method correlated source

model (Section 6.2)

• Coding implementation for the various correlated source models developed (Sec-

tions 4.5, 5.3 and 6.3).

The contributions listed above are to the author’s knowledge novel. There has been much

work conducted in this field of security for correlated sources, which has been detailed in
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the literature review. The field of information theory took off with Shannon’s model for a

communication system [15], where the concept of entropy was introduced. The research

after this important paper related to correlated sources and security aspects of wiretap

networks has been described in Chapter 2. The techniques and methodologies presented

in Chapter 3 gave an overview of the concepts, theorems and techniques utilized for

the research. These include those developed for use by the Slepian-Wolf theorem, the

wiretap channel and coding implementation for correlated sources. Initially a generalized

model for correlated sources is presented where the information leakage is described and

thereafter the Shannon cipher system approach is presented. These security aspects are

presented for each of the correlated source models thereafter; In Chapters 4-5, where two

correlated source models are presented and in Chapter 6 where a heterogeneous encoding

method correlated source model is presented. The implementation for these models are

also presented. The implementation uses a matrix partition method and is significant

because it provides a link between information theory and coding theory. The correlated

source models contained herein are for applications where there is existence of common

information in communication networks (two correlated source model), there exists some

predetermined information (two correlated source model with some source data symbols

wiretapped), where a source is more prone to wiretapper access (heterogeneous encoding

method correlated source model).

The use of correlated sources in communication networks is major as can be seen by the

applications detailed in Chapters 1-2. Based on this research significant steps can be

taken to advance in the field of security for correlated sources (in the broader field of

information theory). The literature survey provides evidence that this research has not

been conducted before and to the author’s knowledge the contributions are novel.

This chapter presents a conclusion for the research project. The novel models presented

have been compared to existing models and the future work has been described. This

is followed by a list of the contributions and a summary of the details of the thesis.



Appendix A

Proof of Theorems 2-3

This section proves the direct parts of Theorems 2 - 3 and thereafter the converse

parts. Before the theorems are proved it is necessary to develop the prototype code

(WX ,WY ,WCX ,WCY ). Proofs of Theorems 4-7 covered in Appendix B and C also

make use of this code.

All the channel rates in the theorems above are in accordance with Slepian-Wolf’s the-

orem, hence there is no need to prove them. A code based on the prototype code

(WX ,WY ,WCX ,WCY ) in Lemma 1 is constructed. In order to include a key in the

prototype code, WX is divided into two parts as per the method used by Yamamoto [5]:

WX1 = WX mod MX1 ∈ IMX1
= {0, 1, 2, . . . ,MX1 − 1} (A.1)

WX2 =
WX −WX1

MX1
∈ IMX2

= {0, 1, 2, . . . ,MX2 − 1} (A.2)

where MX1 is a given integer and MX2 is the ceiling of MX/MX1. The MX/MX1 is

considered an integer for simplicity, because the difference between the ceiling value and

the actual value can be ignored when K is sufficiently large. In the same way, WY is

divided:
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WY 1 = WY mod MY 1 ∈ IMY 1
= {0, 1, 2, . . . ,MY 1 − 1} (A.3)

WY 2 =
WY −WY 1

MY 1
∈ IMY 2

= {0, 1, 2, . . . ,MY 2 − 1} (A.4)

The common information components WCX and WCY are already portions and are not

divided further. In this scenario WCX + WCY lie between 0 and I(X;Y ). It can be

represented by X and Y , X only or Y only. It can be shown that when some of the

codewords are wiretapped the uncertainties of XK and Y K are bounded as follows:

1

K
H(XK |WX2,WY ) ≥ I(X;Y ) +

1

K
logMX1 − ε

′
0 (A.5)

1

K
H(Y K |WX ,WY 2) ≥ I(X;Y ) +

1

K
logMY 1 − ε

′
0 (A.6)

1

K
H(XK |WX ,WY 2) ≥ I(X;Y )− ε′0 (A.7)

1

K
H(XK |WX ,WY ,WCY ) ≥ 1

K
logMCX − ε

′
0 (A.8)

1

K
H(Y K |WX ,WY ,WCY ) ≥ 1

K
logMCX − ε

′
0 (A.9)
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1

K
H(XK |WY ,WCY ) ≥ H(X|Y ) +

1

K
logMCX − ε

′
0 (A.10)

1

K
H(Y K |WY ,WCY ) ≥ 1

K
logMCX − ε

′
0 (A.11)

where ε
′
0 → 0 as ε0 → 0. The proofs for (A.5) - (A.11) are the same as per Yamamoto’s [5]

proof in Lemma A1. The difference is that WCX , WCY , MCX and MCY are described

as WC1, WC2, MC1 and MC2 respectively by Yamamoto. Here, WCX and WCY is

considered to be represented by Yamamoto’s WC1 and WC2 respectively. In addition

there are some more inequalities considered here:

1

K
H(Y K |WX ,WCX ,WCY ,WY 2) ≥

1

K
logMY 1

− ε
′
0 (A.12)

1

K
H(Y K |WX ,WCX ,WCY ) ≥ 1

K
logMY 1

+
1

K
logMY 2 − ε

′
0 (A.13)

1

K
H(XK |WX2,WCY ) ≥ 1

K
logMX1

+
1

K
logMCX − ε

′
0 (A.14)

1

K
H(Y K |WX2,WCY ) ≥ 1

K
logMY 1

+
1

K
logMY 2 +

1

K
logMCX

− ε
′
0 (A.15)
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The inequalities (A.12) and (A.13) can be proven in the same way as per Yamamoto’s[5]

Lemma A2, and (A.14) and (A.15) can be proven in the same way as per Yamamoto’s[5]

Lemma A1.

A.1 Direct parts

Proof of Theorem 2. Suppose that (RX , RY , RKX , RKY ) ∈ R1 for hXY ≤ H(X,Y ).

Then, Theorem 2 is as follows:

RX ≥ H(XK |Y K)

RY ≥ H(Y K |XK)

RX +RY ≥ H(XK , Y K) (A.16)

RkX +RkY ≥ hXY (A.17)

Here the keys are uniform random numbers. For the first case, consider the following:

hXY > I(X;Y ).

MX1 = min(2KH(X|Y ), 2K(hXY −I(X;Y ))) (A.18)

MY 1 = 2K(hXY −I(X;Y )) (A.19)

The codewords W1 and W2 and the key WkXand WkY are now defined:

W1 = (WX1 ⊕WkY 1,WX2,WCX ⊕WkCX) (A.20)
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W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (A.21)

WkX = WkCX (A.22)

WkY = (WkY 1,WkCY ) (A.23)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know WX1, WCX WY 1

and WCY as these are protected by keys.

In this case, RX , RY , RkX and RkY satisfy from (4.15) - (4.17) and (A.16) - (A.23),

that

1

K
logMX +

1

K
logMY =

1

K
(logMX1 + logMX2

+ logMCX) +
1

K
(logMY 1

+ logMY 2 + logMCY )

≤ H(X|Y ) +H(Y |X)

+ I(X;Y ) + 3ε0

= H(X,Y ) + 3ε0

≤ RX +RY + 3ε0 (A.24)
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1

K
[logMkX + logMkY ]

=
1

K
[logMCX + logMCY + logMY 1]

≤ I(X;Y ) + hXY − I(X;Y )− ε0 (A.25)

= hXY − ε0

≤ RkX +RkY − ε0 (A.26)

where (A.25) results from (A.19).

The security levels thus result:

1

K
H(XK , Y K |W1,W2)

=
1

K
H(XK , Y K |WX1 ⊕WkY 1,WX2,WCX ⊕WkCX

WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY )

≥ 1

K
H(XK , Y K |WX1,WX2,

WY 1 ⊕WkY 1,WY 2)− ε
′′
0 (A.27)

=
1

K
H(XK , Y K |WX ,WY 2)− ε

′′
0

≥ I(X;Y ) +
1

K
logMY 1 − ε

′
0 − ε

′′
0

= I(X;Y ) + hXY − I(X;Y )− ε′0 − ε
′′
0

= hXY − ε
′
0 − ε

′′
0 (A.28)

where (A.27) holds because WCX and WCY are covered by uniform random keys and

the result of Yamamoto’s Lemma A2.

Therefore (RX , RY , RkX , RkY , hXY ) is admissible from (A.24) - (A.28).

Next the case where: hXY ≤ I(X;Y ) is considered. The codewords and keys are now

defined:

W1 = (WX1,WX2,WCX ⊕WkCX) (A.29)
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W2 = (WY 1,WY 2,WCY ) (A.30)

WkX = (WkCX) (A.31)

MCX = 2KhXY (A.32)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
logMCX

= hXY

≤ RkX +RkY (A.33)

where (A.33) results from (A.32).

The security level thus results:

1

K
H(XK , Y K |W1,W2) =

1

K
H(XK , Y K |WX1,WX2,WCX ⊕WkCX ,

WY 1,WY 2,WCY )

≥ 1

K
logMCX − ε

′
0

= hXY − ε
′
0 (A.34)

≥ hXY − ε
′
0 (A.35)

where (A.34) holds from (A.32).
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Therefore (RX , RY , RkX , RkY , hXY ) is admissible from (A.29) - (A.71).

Theorem 3 proof. In the same way as Theorem 2, suppose that (RX , RY , RkX , RkY )

∈ R2 for hX ≤ H(X) and hY ≤ H(Y ). Without loss of generality, we assume that

hX ≤ hY . Then resulting from Theorem 3,

RX ≥ H(XK |Y K)

RY ≥ H(Y K |XK)

RX +RY ≥ H(XK , Y K) (A.36)

RkX +RkY ≥ max(hX , hY ) (A.37)

Consider the following: hX > I(X;Y ).

MX1 = min(2KH(X|Y ), 2K(hY −I(X;Y ))) (A.38)

MY 1 = 2K(hY −I(X;Y )) (A.39)

The codeword W2 and the key WkY is now defined:

W1 = (WX1 ⊕WkY 1,WX2,WCX ⊕WkCX) (A.40)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (A.41)
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WkX = WkCX (A.42)

WkY = (WkY 1,WkCY ) (A.43)

In this case, RX , RY , RkX and RkY satisfy from (4.15) - (4.17) and (A.38) - (A.43),

that

1

K
logMX +

1

K
logMY =

1

K
(logMX1 + logMX2

+ logMCX) +
1

K
(logMY 1

+ logMY 2 + logMCY )

≤ H(X|Y ) +H(Y |X)

+ I(X;Y ) + 3ε0

= H(X,Y ) + 3ε0

≤ RX +RY + 3ε0 (A.44)

1

K
[logMkX + logMkY ]

=
1

K
[logMCX + logMCY + logMY 1]

≤ I(X;Y ) + hY − I(X;Y )− ε0 (A.45)

= hY − ε0

≤ RkX +RkY − ε0 (A.46)
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The security levels thus result:

1

K
H(XK |W1,W2)

=
1

K
H(XK |WX1 ⊕WkY 1,WX2,WCX ⊕WkCX

WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY )

≥ 1

K
H(XK , Y K |WX1 ⊕WkY 1,WX2,WY 1 ⊕WkY 1 (A.47)

WY 2)− ε
′′
0

=
1

K
H(XK , Y K |WX2,WY 2)− ε

′′
0

≥ I(X;Y ) +
1

K
logMX1 − ε

′′
0

= I(X;Y ) + min(2KH(X|Y ), 2hY −I(X;Y ))− ε′′0
≥ hY − ε

′′
0

≥ hX (A.48)

1

K
H(Y K |W1,W2) =

1

K
H(Y K |WX1 ⊕WkX1,

WX2,WCX ⊕WkCX

WY 1 ⊕WkY 1,WY 2

WCY ⊕WkCY )

≥ 1

K
logMY 1 + I(X;Y )− ε′′0

= I(X;Y ) + min(H(X|Y ),

hY − I(X;Y ))− ε′′0 (A.49)

≥ hY (A.50)

where (A.49) comes from (A.39).

Therefore (RX , RY , RkX , RkY , hX , hY ) is admissible from (A.44) - (A.50).

Next the case where hX ≤ I(X;Y ) is considered. If hY > I(X;Y ) the following results.

The codewords W1 and W2 and their keys WkX and WkY are now defined:
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W1 = (WX1,WX2,WCX ⊕WkCX) (A.51)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (A.52)

WkX = WkCX (A.53)

WkY = (WkY 1,WkCY ) (A.54)

MY 1 = 2K(hY −I(X;Y )) (A.55)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
[logMCX + logMY 1 + logMCY ]

≤ I(X;Y ) +
1

K
logMY 1 − ε0

= I(X;Y ) + hY − I(X;Y )− ε0 (A.56)

= hY − ε0

≤ RkX +RkY + ε0 (A.57)

where (A.56) results from (A.55).
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The security levels thus result:

1

K
H(XK |W1,W2)

=
1

K
H(XK |WX1,WX2

WCX ⊕WkCX ,WY 1 ⊕WkY 1,WY 2,

WCY ⊕WkCY )

≥ I(X;Y )− ε′0 (A.58)

= I(X;Y )− ε′0 (A.59)

≥ hX − ε
′
0 (A.60)

where (A.59) results from (A.55).

1

K
H(Y K |W1,W2)

=
1

K
H(Y K |WX1,WX2

WCX ⊕WkCX ,WY 1 ⊕WkY 1,

WY 2,WCY ⊕WkCY )

≥ I(X;Y ) +
1

K
logMY 1 − ε0 (A.61)

= I(X;Y ) + hY − I(X;Y )− ε′0 (A.62)

≥ hY − ε
′
0 (A.63)

where (A.62) holds from (A.55).

Next the case where hY ≤ I(X;Y ) is considered. The codewords W1 and W2 and their

keys WkX and WkY are now defined:

W1 = (WX1,WX2,WCX ⊕WkCX) (A.64)
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W2 = (WY 1,WY 2,WCY ) (A.65)

WkX = WkCX (A.66)

MCX = 2KhY (A.67)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
logMCX

= hY (A.68)

≤ RkX +RkY (A.69)

where (A.68) results from (A.67).

The security levels thus result:

1

K
H(XK |W1,W2)

=
1

K
H(XK |WX1,WX2

WCX ⊕WkCX ,WY 1,WY 2,WCY )

=
1

K
logMCY

≥ hY (A.70)

≥ hX (A.71)
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where (A.70) results from (A.67).

1

K
H(Y K |W1,W2) =

1

K
H(Y K |WX1,WX2

WCX ⊕WkCX ,WY 1,WY 2,WCY )

=
1

K
logMCY (A.72)

≥ hY (A.73)

where (A.72) holds from (A.67).

Therefore (RX , RY , RkX , RkY , hX , hY ) is admissible for min(hX , hY ) (A.64) - (A.73).

A.2 Converse parts

From Slepian-Wolf’s theorem it is known that the channel rate must satisfy RX ≥
H(X|Y ), RY ≥ H(Y |X) and RX + RY ≥ H(X,Y ) to achieve a low error probability

when decoding. Hence, only the key rates are considered in this subsection.

Converse part of Theorem 2:

RkX ≥ 1

K
logMkX − ε

≥ 1

K
H(WkX)− ε

≥ 1

K
H(WkX|W1

)− ε

=
1

K
[H(WkX)− I(WkX ;W1)]− ε

=
1

K
H(WkX |XK , Y K ,W1) + I(WkX ;W1)

+ I(WkX ;X|Y,W1) + I(X,Y,WkX |W1)

+ I(Y,WkX |X,W1)− I(WkX ;W1)− ε

=
1

K
[H(XK , Y K |W1)−H(XK , Y K |W1,WkX)]− ε

≥ hXY −
1

K
H(X,Y |W1,WkX)− 2ε (A.74)

= hXY −H(VCY )− 2ε

= hXY − 2ε (A.75)
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where (A.74) results from equation 1
KH(XK , Y K |W1,W2) ≤ hXY + ε as described in

Chapter 4. Here, the extremes of H(VCY ) are considered in order to determine the limit

for RkX . When this quantity is minimum then the maximum bound of hXY can be

achieved.

RkY ≥ 1

K
logMkY − ε

≥ 1

K
H(WkY )− ε

≥ 1

K
H(WkY |W2

)− ε

=
1

K
[H(WkY )− I(WkY ;W2)]− ε

=
1

K
H(WkY |XK , Y K ,W2) + I(WkY ;W2)

+ I(WkY ;X|Y,W2) + I(X,Y,WkY |W2)

+ I(Y,WkY |X,W2)− I(WkY ;W2)− ε

=
1

K
[H(XK , Y K |W2)−H(XK , Y K |W2,WkY )]− ε

≥ hXY −
1

K
H(XK , Y K |W2,WkY )− 2ε (A.76)

= hXY −H(VCX)− 2ε

= hXY − 2ε (A.77)

where (A.76) results from equation 1
KH(XK , Y K |W1,W2) ≤ hXY + ε as described in

Chapter 4. Here, the extremes of H(VCX) are considered in order to determine the limit

for RkY . When this quantity is minimum the maximum bound of hXY can be achieved.
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Converse part of Theorem 3:

RkX ≥ 1

K
logMkX − ε

≥ 1

K
H(WkX)− ε

≥ 1

K
H(WkX|W1

)− ε

=
1

K
[H(WkX)− I(WkX ;W1)]− ε

=
1

K
H(WkX |XK ,W1) + I(WkX ;W1)

+ I(X,WkX |W1)− I(WkX ;W1)− ε

≥ 1

K
I(XK ,WkX |W1)− ε

=
1

K
[H(XK |W1)−H(XK |W1,WkX)]− ε

≥ hX −H(VCY )− 2ε (A.78)

= hX − 2ε (A.79)

where (A.78) results from 1
KH(XK |W1) ≤ hX + ε described in Chapter 4. Here, the

extremes of H(VCY ) are considered in order to determine the limit for RkX . When this

quantity is minimum the maximum bound of hX can be achieved.

RkY ≥ 1

K
logMkY − ε

≥ 1

K
H(WkY )− ε

≥ 1

K
H(WkY |W2

)− ε

=
1

K
[H(WkY )− I(WkY ;W2)]− ε

=
1

K
H(WkY |Y K ,W2) + I(WkY ;W2)

+ I(X,WkY |W2)− I(WkY ;W2)− ε

≥ 1

K
I(Y K ,WkY |W2)− ε

=
1

K
[H(Y K |W2)−H(Y K |W2,WkY )]− ε

≥ hY −H(VCX)− 2ε (A.80)

= hY − 2ε (A.81)
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where (A.80) results from 1
KH(Y K |W2) ≤ hY + ε described in Chapter 4. Here, the

extremes of H(VCX) are considered in order to determine the limit for RkY . When this

quantity is minimum then the maximum bound of hY can be achieved.



Appendix B

Proof of Theorems 4-5

B.1 Direct parts

The prototype code (WX ,WY ,WCX ,WCY that has been described in Chapter 4 and

Appendix A is applied here.

Proof of Theorem 4. Suppose that (RX , RY , RkX , RkY ) ∈ R1 for hXY ≤ H(X,Y ) −
µC − µY . Without loss of generality, hXY ≤ RkX +RkY is assumed. Then, from (5.47)

RX ≥ H(XK |Y K)

RY ≥ H(Y K |XK)

RX +RY ≥ H(XK , Y K) (B.1)

RkX +RkY ≥ hXY (B.2)

Here the keys are uniform random numbers. For the first case, consider the following:

hXY > I(X;Y ).

MX1 = min(2KH(X|Y ), 2K(hXY −I(X;Y ))) (B.3)

135



Appendix B. Proof of Theorem 4 - 5 136

MY 1 = 2K(hXY −I(X;Y )) (B.4)

The codewords W1 and W2 and the key WkX and WkY are now defined:

W1 = (WX1 ⊕WkY 1,WX2,WCX ⊕WkCX) (B.5)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (B.6)

WkX = WkCX (B.7)

WkY = (WkY 1,WkCY ) (B.8)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know WX1, WCX , WY 1

and WCY as these are protected by keys.

In this case, RX , RY , RkX and RkY satisfy from (B.1) - (B.8), that
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1

K
logMX +

1

K
logMY =

1

K
(logMX1 + logMX2

+ logMCX) +
1

K
(logMY 1

+ logMY 2 + logMCY )

≤ H(X|Y ) +H(Y |X)

+ I(X;Y ) + 3ε0

= H(X,Y ) + 3ε0

≤ RX +RY + 3ε0 (B.9)

1

K
[logMkX + logMkY ]

=
1

K
[logMCX + logMCY + logMY 1]

≤ I(X;Y ) + hXY − I(X;Y )− ε0 (B.10)

= hXY − ε0

≤ RkX +RkY − ε0 (B.11)

where (B.30) results from (B.4).
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The security levels thus result:

1

K
H(XK , Y K |W1,W2, Y

K2)

=
1

K
H(XK , Y K |WX1 ⊕WkY 1,WX2,WCX ⊕WkCX ,

WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY , Y
K2)

≥ 1

K
H(XK , Y K |WX1,WX2,

WY 1 ⊕WkY 1,WY 2, Y
K2)− ε′′0 (B.12)

=
1

K
H(XK , Y K |WX ,WY 2, Y

K2)− ε′′0

≥ I(X;Y ) +
1

K
logMY 1

− µC − µY − 2ε
′
0 − ε

′′
0

= I(X;Y ) + hXY − I(X;Y )− µC − µY

− 2ε
′
0 − ε

′′
0

= hXY − µC − µY − 2ε
′
0 − ε

′′
0 (B.13)

where (B.12) holds because WCX and WCY are covered by uniform random keys and

the result of Yamamoto’s Lemma A2.

Therefore (RX , RY , RkX , RkY , hXY ) is admissible from (B.9) - (B.13).

Next the case where: hXY ≤ I(X;Y ) is considered. The codewords and keys are now

defined:

W1 = (WX1,WX2,WCX ⊕WkCX) (B.14)

W2 = (WY 1,WY 2,WCY ) (B.15)

WkX = (WkCX) (B.16)
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MCX = 2KhXY (B.17)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
(logMkX + logMkY ) =

1

K
logMCX

= hXY

≤ RkX +RkY (B.18)

where (B.18) results from (B.17).

The security level thus results:

1

K
H(XK , Y K |W1,W2, Y

K2) =
1

K
H(XK , Y K |WX1,WX2,

WCX ⊕WkCX ,

WY 1,WY 2,WCY , Y
K2)

≥ 1

K
logMCX − µC − 2ε

′
0

= hXY − µC − 2ε
′
0 (B.19)

≥ hXY − 2ε
′
0 (B.20)

where (B.44) holds from (B.17).

Therefore (RX , RY , RkX , RkY , hXY ) is admissible from (B.14) - (B.20).

Proof of Theorem 5. In the same way as Theorem 4, suppose that (RX , RY , RkX , RkY )

∈ R2 for hX ≤ H(X) − µC and hY ≤ H(Y ) − µC − µY . Without loss of generality,
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hX ≤ hY and hX + hY ≤ RkX +RkY are assumed. Then, from (5.48)

RX ≥ H(XK |Y K)

RY ≥ H(Y K |XK)

RX +RY ≥ H(XK , Y K) (B.21)

max((hX , hY ) ≤ RkX +RkY (B.22)

Consider the following: hX > I(X;Y ).

MX1 = min(2KH(X|Y ), 2K(hY −I(X;Y ))) (B.23)

MY 1 = 2K(hY −I(X;Y )) (B.24)

The codeword W2 and the key WkY is now defined:

W1 = (WX1 ⊕WkY 1,WX2,WCX ⊕WkCX) (B.25)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (B.26)

WkX = WkCX (B.27)
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WkY = (WkY 1,WkCY ) (B.28)

In this case, RX , RY , RkX and RkY satisfy from (B.23) - (B.28), that

1

K
logMX +

1

K
logMY =

1

K
(logMX1 + logMX2

+ logMCX) +
1

K
(logMY 1

+ logMY 2 + logMCY )

≤ H(X|Y ) +H(Y |X) + I(X;Y ) + 3ε0

= H(X,Y ) + 3ε0

≤ RX +RY + 3ε0 (B.29)

1

K
[logMkX + logMkY ]

=
1

K
[logMCX + logMCY + logMY 1]

≤ I(X;Y ) + hY − I(X;Y )− ε0 (B.30)

= hY − ε0

≤ RkX +RkY − ε0 (B.31)
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The security levels thus result:

1

K
H(XK |W1,W2, Y

K2)

=
1

K
H(XK |WX1 ⊕WkY 1,WX2,WCX ⊕WkCX

WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY , Y
K2)

≥ 1

K
H(XK , Y K |WX1 ⊕WkY 1,WX2,WY 1 ⊕WkY 1 (B.32)

WY 2, Y
K2)− ε′′0

=
1

K
H(XK , Y K |WX2,WY 2, Y

K2)− ε′′0

≥ I(X;Y ) +
1

K
logMX1 − µC − 2ε

′
0 − ε

′′
0

= I(X;Y ) + min(2KH(X|Y ), 2hY −I(X;Y ))

− µC − 2ε
′
0 − ε

′′
0

≥ hY − µC − 2ε
′
0 − ε

′′
0

≥ hX (B.33)

1

K
H(Y K |W1,W2) =

1

K
H(Y K |WX1 ⊕WkX1,

WX2,WCX ⊕WkCX

WY 1 ⊕WkY 1,WY 2

WCY ⊕WkCY , Y
K2)

≥ 1

K
logMY 1 + I(X;Y )− µC − µY − ε

′
0

= I(X;Y ) + min(H(X|Y ), hY − I(X;Y ))

− µC − µY − ε
′
0 (B.34)

≥ hY − ε
′
0 (B.35)

where (B.34) comes from (B.24).

Therefore (RX , RY , RkX , RkY , hX , hY ) is admissible from (B.29) - (B.35).

Next the case where hX ≤ I(X;Y ) is considered. If hY > I(X;Y ) the following results.

The codewords W1 and W2 and their keys WkX and WkY are now defined:



Appendix B. Proof of Theorem 4 - 5 143

W1 = (WX1,WX2,WCX ⊕WkCX) (B.36)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (B.37)

WkX = (WkCX) (B.38)

WkY = (WkY 1,WkCY ) (B.39)

MY 1 = 2K(hY −I(X;Y )) (B.40)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
[logMCX + logMY 1 + logMCY ]

≤ I(X;Y ) +
1

K
logMY 1 − ε0

= I(X;Y ) + hY − I(X;Y )− ε0 (B.41)

= hY − ε0

≤ RkX +RkY + ε0 (B.42)

where (B.41) results from (B.40).
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The security levels thus result:

1

K
H(XK |W1,W2)

=
1

K
H(XK |WX1,WX2

WCX ⊕WkCX ,WY 1 ⊕WkY 1,WY 2,

WCY ⊕WkCY , Y
K2)

≥ I(X;Y )− µC − ε
′
0 (B.43)

= I(X;Y )− µC − ε
′
0 (B.44)

≥ hX − ε
′
0 (B.45)

where (B.44) results from (B.40).

1

K
H(Y K |W1,W2)

=
1

K
H(Y K |WX1,WX2

WCX ⊕WkCX ,WY 1 ⊕WkY 1,

WY 2,WCY ⊕WkCY , Y
K2)

≥ I(X;Y ) +
1

K
logMY 1

− µC − µY − ε0 (B.46)

= I(X;Y ) + hY − I(X;Y )

− µC − µY − ε
′
0 (B.47)

≥ hY − ε
′
0 (B.48)

where (B.47) holds from (B.40).

Next the case where hY ≤ I(X;Y ) is considered. The codewords W1 and W2 and their

keys WkX and WkY are now defined:

W1 = (WX1,WX2,WCX ⊕WkCX) (B.49)
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W2 = (WY 1,WY 2,WCY ) (B.50)

WkX = WkCX (B.51)

MCX = 2KhY (B.52)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
logMCX

= hY (B.53)

≤ RkX +RkY (B.54)

where (B.53) results from (B.52).

The security levels thus result:

1

K
H(XK |W1,W2)

=
1

K
H(XK |WX1,WX2

WCX ⊕WkCX ,WY 1,WY 2,

WCY , Y
K2)

≥ hY − µC − ε
′
0 (B.55)

≥ hX − ε
′
0 (B.56)
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where (B.55) results from (B.52).

1

K
H(Y K |W1,W2) =

1

K
H(Y K |WX1,WX2

WCX ⊕WkCX ,WY 1,WY 2,

WCY , Y
K2)

≥ hY − µC − µY − ε0 (B.57)

≥ hY − ε
′
0 (B.58)

where (B.57) holds from (B.52).

Therefore (RX , RY , RkX , RkY , hX , hY ) is admissible for min(hX , hY ) from (B.49) -

(B.58).

B.2 Converse parts

From Slepian-Wolf’s theorem it is known that the channel rate must satisfy RX ≥
H(X|Y ), RY ≥ H(Y |X) and RX + RY ≥ H(X,Y ) to achieve a low error probability

when decoding. Hence, only the key rates are considered in this subsection.
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Converse part of Theorem 4:

RkX ≥ 1

K
logMkX − ε

≥ 1

K
H(WkX)− ε

≥ 1

K
H(WkX |W )− ε

=
1

K
[H(WkX)− I(WkX ;W )]− ε

=
1

K
H(WkX |XK , Y K ,W ) + I(WkX ;W )

+ I(WkX ;X|Y,W ) + I(X,Y,WkX |W )

+ I(Y,WkX |X,W )− I(WkX ;W )− ε

=
1

K
[H(XK , Y K |W )−H(XK , Y K |W,WkX)]− ε

≥ hXY −
1

K
H(XK , Y K |W,WkX)− ε (B.59)

= hXY −
1

K
H(Y K |XK)− µC − ε− ε

′′
0

≥ hXY − µC − ε− ε
′′
0 (B.60)

where W = (W1,W2, Y
K2) are the wiretapped portions, (B.59) results from equation

(5.43). Here, the extremes of H(Y |X) and H(WY ) are considered in order to determine

the limit for RkX . When this quantity is minimum then the maximum bound of hXY

can be achieved.
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RkY ≥ 1

K
logMkY − ε

≥ 1

K
H(WkY )− ε

≥ 1

K
H(WkY |W )− ε

=
1

K
[H(WkY )− I(WkY ;W )− ε

=
1

K
H(WkY |X,Y,W ) + I(WkY ;W )

+ I(WkY ;X|Y,W ) + I(X,Y,WkY |W )

+ I(Y,WkY |X,W )− I(WkY ;W )]− ε

=
1

K
[H(XK , Y K |W )−H(XK , Y K |W,WkY )]− ε

≥ hXY −
1

K
H(XK , Y K |W,WkY )− ε (B.61)

= hXY −
1

K
H(XK |Y K)− µC − µY − ε− ε

′′
0

≥ hXY − µC − µY − ε− ε
′′
0 (B.62)

where (B.61) results from equation (5.43). Here, the extremes of H(X|Y ) are considered

in order to determine the limit for RkY . When this quantity is minimum then the

maximum bound of hXY can be achieved.

Converse part of Theorem 5:

RkX ≥ 1

K
logMkX − ε

≥ 1

K
H(WkX)− ε

≥ 1

K
H(WkX |W )− ε

=
1

K
[H(WkX)− I(WkX ;W )]− ε

=
1

K
H((WkX |XK ,W ) + I(WkX ;W )

+ I(X,WkX |W )− I(WkX ;W )− ε

≥ 1

K
I(XK ,WkX |W )− ε

=
1

K
[H(XK |W )−H(XK |W,WkX)]− ε

≥ hX −H(WCY )− µC − ε− ε
′′
0 (B.63)

≥ hX − µC − ε− ε
′′
0 (B.64)
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where W = (W1,W2), (B.63) results from (5.41). Here, the extremes of H(WCY ) are

considered in order to determine the limit for RkX . When this quantity is minimum

then the maximum bound of hX can be achieved.

RkY ≥ 1

K
logMkY − ε

≥ 1

K
H(WkY )− ε

≥ 1

K
H(WkY |W )− ε

=
1

K
[H(WkY )− I(WkY ;W )]− ε

=
1

K
H(WkY |Y K ,W ) + I(WkY ;W )

+ I(X,WkY |W )− I(WkY ;W )− ε

≥ 1

K
I(Y K ,WkY |W )− ε

=
1

K
[H(Y K |W )−H(Y K |W,WkY )]− ε

≥ hY −H(WCX)− µC − µY − ε− ε
′′
0 (B.65)

≥ hY − µC − µY − ε− ε
′′
0 (B.66)

where (B.65) results from (5.42). The same consideration as above for H(Y K2) is pre-

sented here. Here, the extremes of H(WCX) are considered in order to determine the

limit for RkY . When this quantity is minimum the maximum bound of hY can be

achieved.



Appendix C

Proof of Theorems 6-7

This section initially proves the direct parts of Theorems 6 - 7 and thereafter the converse

parts.

C.1 Direct parts

The prototype code (WX ,WY ,WCX ,WCY ) described in Chapter 4 and Appendix A is

applied here.

Proof of Theorem 6. Suppose that (RX , RY , RKX , RKY ) ∈ R1 for hXY ≤ H(X,Y ) −
αCX − αCY + I(X;Y ;Z). Then, from (6.40)

RX ≥ H(XK |Y K)

RY ≥ H(Y K |XK)

RX +RY ≥ H(XK , Y K) (C.1)

RkX +RkY ≥ hXY (C.2)

Here the keys are uniform random numbers. For the first case, consider the following:

hXY > I(X;Y ).

150
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MX1 = min(2KH(X|Y ), 2K(hXY −I(X;Y ))) (C.3)

MY 1 = 2K(hXY −I(X;Y )) (C.4)

The codewords W1 and W2 and the key WkXand WkY are now defined:

W1 = (WX1 ⊕WkY 1,WX2,WCX ⊕WkCX) (C.5)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (C.6)

WkX = WkCX (C.7)

WkY = (WkY 1,WkCY ) (C.8)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know WX1, WCX WY 1

and WCY as these are protected by keys.

In this case, RX , RY , RkX and RkY satisfy from (C.1) - (C.8), that
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1

K
logMX +

1

K
logMY =

1

K
(logMX1 + logMX2

+ logMCX) +
1

K
(logMY 1

+ logMY 2 + logMCY )

≤ H(X|Y ) +H(Y |X)

+ I(X;Y ) + 3ε0

= H(X,Y ) + 3ε0

≤ RX +RY + 3ε0 (C.9)

1

K
[logMkX + logMkY ]

=
1

K
[logMCX + logMCY + logMY 1]

≤ I(X;Y ) + hXY − I(X;Y )− ε0 (C.10)

= hXY − ε0

≤ RkX +RkY − ε0 (C.11)

where (C.10) results from (C.4).
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The security levels thus result:

1

K
H(XK , Y K |W1,W2, Z

µ)

=
1

K
H(XK , Y K |WX1 ⊕WkY 1,WX2,WCX ⊕WkCX ,

WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY , Z
µ)

≥ 1

K
H(XK , Y K |WX1,WX2,

WY 1 ⊕WkY 1,WY 2)− ε
′′
0 (C.12)

=
1

K
H(XK , Y K |WX ,WY 2, Z

µ)− ε′′0

≥ I(X;Y ) +
1

K
logMY 1

− αCX − αCY + I(X;Y ;Z)− 2ε
′
0 − ε

′′
0

= I(X;Y ) + hXY − I(X;Y )− αCX − αCY + I(X;Y ;Z)

− 2ε
′
0 − ε

′′
0

= hXY − αCX − αCY + I(X;Y ;Z)− 2ε
′
0 − ε

′′
0 (C.13)

where (C.12) holds because WCX and WCY are covered by uniform random keys and

the result of Yamamoto’s Lemma A2.

Therefore (RX , RY , RkX , RkY , hXY ) is admissible from (C.9) - (C.13).

Next the case where: hXY ≤ I(X;Y ) is considered. The codewords and keys are now

defined:

W1 = (WX1,WX2,WCX ⊕WkCX) (C.14)

W2 = (WY 1,WY 2,WCY ) (C.15)

WkX = (WkCX) (C.16)
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MCX = 2KhXY (C.17)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
logMCX

= hXY

≤ RkX +RkY (C.18)

where (C.18) results from (C.17).

The security level thus results:

1

K
H(XK , Y K |W1,W2, Z

µ) =
1

K
H(XK , Y K |WX1,WX2,

WCX ⊕WkCX ,

WY 1,WY 2,WCY , Z
µ)

≥ 1

K
logMCX − αCX − αCY

+ I(X;Y ;Z)− ε′0
= hXY − αCX − αCY + I(X;Y ;Z)

− ε
′
0 (C.19)

where (C.19) holds from (C.17).

Therefore (RX , RY , RkX , RkY , hXY ) is admissible from (C.14) - (C.19).

Theorem 7 proof. In the same way as Theorem 6, suppose that (RX , RY , RkX , RkY ) ∈
R2 for hX ≤ H(X)−αCX−αCY +I(X;Y ;Z) and hY ≤ H(Y )−αCX−αCY +I(X;Y ;Z).
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Without loss of generality, we assume that hX ≤ hY . Then, from (6.41)

RX ≥ H(XK |Y K)

RY ≥ H(Y K |XK)

RX +RY ≥ H(XK , Y K) (C.20)

RkX +RkY ≥ max(hX , hY ) (C.21)

Consider the following: hX > I(X;Y ).

MX1 = min(2KH(X|Y ), 2K(hY −I(X;Y ))) (C.22)

MY 1 = 2K(hY −I(X;Y )) (C.23)

The codeword W2 and the key WkY is now defined:

W1 = (WX1 ⊕WkY 1,WX2,WCX ⊕WkCX) (C.24)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (C.25)

WkX = WkCX (C.26)
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WkY = (WkY 1,WkCY ) (C.27)

In this case, RX , RY , RkX and RkY satisfy from (C.22) - (C.27), that

1

K
logMX +

1

K
logMY =

1

K
(logMX1 + logMX2

+ logMCX) +
1

K
(logMY 1

+ logMY 2 + logMCY )

≤ H(X|Y ) +H(Y |X)

+ I(X;Y ) + 3ε0

= H(X,Y ) + 3ε0

≤ RX +RY + 3ε0 (C.28)

1

K
[logMkX + logMkY ]

=
1

K
[logMCX + logMCY + logMY 1]

≤ I(X;Y ) + hY − I(X;Y )− ε0 (C.29)

= hY − ε0

≤ RkX +RkY − ε0 (C.30)
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The security levels thus result:

1

K
H(XK |W1,W2, Z

µ)

=
1

K
H(XK |WX1 ⊕WkY 1,WX2,WCX ⊕WkCX ,

WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY , Z
µ)

≥ 1

K
H(XK , Y K |WX1 ⊕WkY 1,WX2,WY 1 ⊕WkY 1 (C.31)

WY 2, Z
µ)− ε′′0

=
1

K
H(XK , Y K |WX2,WY 2, Z

µ)− ε′′0

≥ I(X;Y ) +
1

K
logMX1 − αCX − αCY + I(X;Y ;Z)

(C.32)

− 2ε
′
0 − ε

′′
0

= I(X;Y ) + min(2KH(X|Y ), 2hY −I(X;Y ))

− αCX − αCY + I(X;Y ;Z)− 2ε
′
0 − ε

′′
0

≥ hY − αCX − αCY + I(X;Y ;Z)− 2ε
′
0 − ε

′′
0

≥ hX (C.33)

1

K
H(Y K |W1,W2) =

1

K
H(Y K |WX1 ⊕WkX1,WX2,WCX ⊕WkCX ,

WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY , Z
µ)

≥ 1

K
logMY 1 + I(X;Y )− αCX

− αCY + I(X;Y ;Z)− ε′0
= I(X;Y ) + min(H(X|Y ), hY − I(X;Y ))

− αCX − αCY + I(X;Y ;Z)− ε′0 (C.34)

≥ hY − ε
′
0 (C.35)

where (C.34) comes from (C.23).

Therefore (RX , RY , RkX , RkY , hX , hY ) is admissible from (C.28) - (C.35).

Next the case where hX ≤ I(X;Y ) is considered. If hY > I(X;Y ) the following results.

The codewords W1 and W2 and their keys WkX and WkY are now defined:



Appendix C. Proof of Theorems 6 - 7 158

W1 = (WX1,WX2,WCX ⊕WkCX) (C.36)

W2 = (WY 1 ⊕WkY 1,WY 2,WCY ⊕WkCY ) (C.37)

WkX = (WkCX) (C.38)

WkY = (WkY 1,WkCY ) (C.39)

MY 1 = 2K(hY −I(X;Y )) (C.40)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
[logMCX + logMY 1 + logMCY ]

≤ I(X;Y ) +
1

K
logMY 1 − ε0

= I(X;Y ) + hY − I(X;Y )− ε0 (C.41)

= hY − ε0

≤ RkX +RkY + ε0 (C.42)

where (C.41) results from (C.40).
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The security levels thus result:

1

K
H(XK |W1,W2)

=
1

K
H(XK |WX1,WX2

WCX ⊕WkCX ,WY 1 ⊕WkY 1,WY 2,

WCY ⊕WkCY , Z
µ)

≥ I(X;Y )− αCX − αCY + I(X;Y ;Z)− ε′0 (C.43)

= I(X;Y )− αCX − αCY + I(X;Y ;Z)− ε′0 (C.44)

≥ hX − ε
′
0 (C.45)

where (C.44) results from (C.40).

1

K
H(Y K |W1,W2)

=
1

K
H(Y K |WX1,WX2

WCX ⊕WkCX ,WY 1 ⊕WkY 1,

WY 2,WCY ⊕WkCY , Z
µ)

≥ I(X;Y ) +
1

K
logMY 1

− αCX − αCY + I(X;Y ;Z)− ε0 (C.46)

= I(X;Y ) + hY − I(X;Y )

− αCX − αCY + I(X;Y ;Z)− ε′0 (C.47)

≥ hY − ε
′
0 (C.48)

where (C.47) holds from (C.40).

Next the case where hY ≤ I(X;Y ) is considered. The codewords W1 and W2 and their

keys WkX and WkY are now defined:

W1 = (WX1,WX2,WCX ⊕WkCX) (C.49)
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W2 = (WY 1,WY 2,WCY ) (C.50)

WkX = WkCX (C.51)

MCX = 2KhY (C.52)

where Wα ∈ IMα = {0, 1, . . . ,Mα − 1}. The wiretapper will not know the WX and WY

that are covered with keys.

In this case, RX , RY , RkX and RkY satisfy that

1

K
[logMkX + logMkY ] =

1

K
logMCX

= hY (C.53)

≤ RkX +RkY (C.54)

where (C.53) results from (C.52).

The security levels thus result:

1

K
H(XK |W1,W2, Z

µ)

=
1

K
H(XK |WX1,WX2

WCX ⊕WkCX ,WY 1,WY 2,WCY , Z
µ)

≥ hY − αCX − αCY + I(X;Y ;Z)− ε′0 (C.55)

≥ hX − ε
′
0 (C.56)

where (C.55) results from (C.52).
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1

K
H(Y K |W1,W2, Z

µ) =
1

K
H(Y K |WX1,WX2

WCX ⊕WkCX ,WY 1,WY 2,

WCY , Z
µ)

≥ 1

K
logMCY − αCX − αCY

+ I(X;Y ;Z)− ε′0 (C.57)

≥ hY − αCX − αCY + I(X;Y ;Z) (C.58)

where (C.57) holds from (C.52).

Therefore (RX , RY , RkX , RkY , hX , hY ) is admissible for min(hX , hY ) from (C.49) -

(C.58).

C.2 Converse parts

From Slepian-Wolf’s theorem it is known that the channel rate must satisfy RX ≥
H(X|Y ), RY ≥ H(Y |X) and RX + RY ≥ H(X,Y ) to achieve a low error probability

when decoding. Hence, only the key rates are considered in this subsection.
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Converse part of Theorem 6:

RkX ≥ 1

K
logMkX − ε

≥ 1

K
H(WkX)− ε

≥ 1

K
H(WkX |W )− ε

=
1

K
[H(WkX)− I(WkX ;W )]− ε

=
1

K
H(WkX |XK , Y K ,W ) + I(WkX ;W )

+ I(WkX ;X|Y,W ) + I(X,Y,WkX |W )

+ I(Y,WkX |X,W )− I(WkX ;W )− ε

=
1

K
[H(XK , Y K |W )−H(XK , Y K |W,WkX)]− ε

≥ hXY −
1

K
H(XK , Y K |W,WkX)− ε (C.59)

= hXY −
1

K
H(Y K |XK)− αCX − αCY

+ I(X;Y ;Z)− ε− ε′′0
≥ hXY − αCX − αCY + I(X;Y ;Z)− ε− ε′′0 (C.60)

where W = (W1,W2, Z
µ) are the wiretapped portions, (C.59) results from equation

(6.36). Here, the extremes of H(Y |X) and H(WY ) are considered in order to determine

the limit for RkX . When this quantity is minimum then the maximum bound of hXY

can be achieved.
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RkY ≥ 1

K
logMkY − ε

≥ 1

K
H(WkY )− ε

≥ 1

K
H(WkY |W )− ε

=
1

K
[H(WkY )− I(WkY ;W )− ε

=
1

K
H(WkY |X,Y,W ) + I(WkY ;W )

+ I(WkY ;X|Y,W ) + I(X,Y,WkY |W )

+ I(Y,WkY |X,W )− I(WkY ;W )]− ε

=
1

K
[H(XK , Y K |W )−H(XK , Y K |W,WkY )]− ε

≥ hXY −
1

K
H(XK , Y K |W,WkY )− ε (C.61)

= hXY −
1

K
H(XK |Y K)− αCX − αCY

+ I(X;Y ;Z)− ε− ε′′0
≥ hXY − αCX − αCY + I(X;Y ;Z)− ε− ε′′0 (C.62)

where (C.61) results from equation (6.36). Here, the extremes of H(VCX) are considered

in order to determine the limit for RkY . When this quantity is minimum then the

maximum bound of hXY can be achieved.
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Converse part of Theorem 7:

RkX ≥ 1

K
logMkX − ε

≥ 1

K
H(WkX)− ε

≥ 1

K
H(WkX |W )− ε

=
1

K
[H(WkX)− I(WkX ;W )]− ε

=
1

K
H((WkX |XK ,W ) + I(WkX ;W )

+ I(X,WkX |W )− I(WkX ;W )− ε

≥ 1

K
I(XK ,WkX |W )− ε

=
1

K
[H(XK |W )−H(XK |W,WkX)]− ε

≥ hX −H(WCY )− αCX − αCY + I(X;Y ;Z)

− ε− ε′′0 (C.63)

≥ hX − αCX − αCY + I(X;Y ;Z)− ε− ε′′0 (C.64)

where W = (W1,W2, Z
µ), (C.63) results from (6.34). Here, the extremes of H(WCY )

are considered in order to determine the limit for RkX . When this quantity is minimum

then the maximum bound of hX can be achieved.
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RkY ≥ 1

K
logMkY − ε

≥ 1

K
H(WkY )− ε

≥ 1

K
H(WkY |W )− ε

=
1

K
[H(WkY )− I(WkY ;W )]− ε

=
1

K
H(WkY |Y K ,W ) + I(WkY ;W )

+ I(X,WkY |W )− I(WkY ;W )− ε

≥ 1

K
I(Y K ,WkY |W )− ε

=
1

K
[H(Y K |W )−H(Y K |W,WkY )]− ε

≥ hY −H(WCX)− αCX − αCY + I(X;Y ;Z)

− ε− ε′′0 (C.65)

≥ hY − αCX − αCY + I(X;Y ;Z)− ε− ε′′0 (C.66)

where (C.65) results from (6.35). The same consideration as above for H(Zµ) is pre-

sented here. Here, the extremes of H(WCX) are considered in order to determine the

limit for RkY . When this quantity is minimum then the maximum bound of hY can be

achieved.



Bibliography

[1] R. Yeung, Information Theory and Network Coding. Springer, 2008.

[2] E. Yang, D. He, T. Uyematsu, and R. Yeung, “Universal Multiterminal Source Cod-

ing Algorithms with Asymptotically Zero Feedback: Fixed Database Case,” IEEE

Transactions on Information Theory, vol. 54, no. 12, pp. 5575 – 5590, December

2008.

[3] A. Vinck, “Applications of coding and information theory in biometrics,” in 19th

European Signal Processsing Conference, August 2011, pp. 2254 – 2258.

[4] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. John Wiley

and sons, 2006.

[5] H. Yamamoto, “Coding Theorems for Shannon’s Cipher System with Correlated

Source Ouputs, and Common Information,” IEEE Transactions on Information

Theory, vol. 40, no. 1, pp. 85 – 95, January 1994.

[6] S. Rouayheb, E. Soljanin, and A. Sprintson, “Secure Network Coding for Wiretap

Networks of Type II,” IEEE Transactions on Information Theory, vol. 58, no. 3,

pp. 1361 – 1371, March 2012.

[7] V. Wei, “Generalized Hamming Weights for Linear Codes,” IEEE Transactions on

Information Theory,, vol. 37, no. 5, pp. 1412 – 1418, September 1991.

[8] G. Mark and N. Su, “Making infrastructure visible for nomadic work,” Pervasive

and Mobile Computing, pp. 312 – 323, 2010.

[9] J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester, “An overview of mobile ad

hoc networks: Applications and challenges,” Ghent University, Belgium, Depart-

ment of Information Technology, pp. 60 – 66.

166



Bibliography 167

[10] A. Goldsmith, Wireless Communications, 1st ed. United States of America: Cam-

bridge University Press, 2005.

[11] P. Del and C. Landi, “Real-time smart meter with embedded web server capa-

bility,” in IEEE International Conference on Instrumentation and Measurement

Technology, 2012, pp. 682 – 687.

[12] J. Xia and Y. Wang, “Secure key distribution for the smart grid,” IEEE Transac-

tions on Smart Grid, vol. 3, no. 3, pp. 1437 – 1443, September 2012.

[13] W. Sun and S. Rane, “On information leakage during secure verification of com-

patibility between signals,” in Canadian Workshop on Information Theory, June

2009, pp. 75 – 78.

[14] N. Merhav, “Shannon’s Secrecy System With Informed Receivers and its Appli-

cation to Systematic Coding for Wiretapped Channels,” IEEE Transactions on

Information Theory, vol. 54, no. 6, pp. 2723 – 2734, June 2008.

[15] C. Shannon, “A Mathematical Theory of Communication,” The Bell System Tech-

nical Journal, vol. 27, p. 623–656, October 1984.

[16] D. He, A. Jagmohan, and L. Ligang, “Secure collaboration using Slepian-Wolf

codes,” in 15th IEEE International Conference on Image Processing, 2008, pp.

2216 – 2219.

[17] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” IEEE

Transactions on Information Theory, vol. 19, no. 4, pp. 471 – 480, July 1973.

[18] S. Draper, C. Cheng, and A. Sahai, “Sequential Random Binning for Streaming

Distributed Source Coding,” in International Symposium on Information Theory,

2005, pp. 1396 – 1400.

[19] S. Draper, A. Khisti, E. Martinian, and A. Vetro, “Secure storage of fingerprint

biometrics using Slepian-Wolf codes,” in Information Theory and Apps. Workshop,

UCSD, 2007.

[20] V. Prabhakaran, K. Eswaran, and K. Ramchandran, “Secrecy via Sources and

Channels,” IEEE Transactions on Information Theory, vol. 58, no. 11, pp. 6747 –

6765, November 2012.



Bibliography 168

[21] J. K. Wolf and B. M. Kurkoski, “Slepian-Wolf coding,” Scholarpedia, vol. 3, no. 11,

p. 6789, 2008.

[22] S. Wei and S. Rane, “On Information Leakage During Secure Verification of Com-

patibility between Signals,” in 11th Annual Canadian Conference on Information

Theory, 2009, pp. 75 – 78.

[23] J. Villard, P. Piantanida, and S. Shamai, “Secure Transmission of Sources Over

Noisy Channels With Side Information at the Receivers,” IEEE Transactions of

Information Thory, vol. 60, no. 1, pp. 713 – 739, January 2014.

[24] R. Ahlswede and I. Csiszar, “Common Randomness in Information Theory and

Cryptography - Part 1: Secrect Sharing,” IEEE Transactions on Information The-

ory, vol. 39, no. 4, pp. 1121 – 1132, July 1993.

[25] M. Johnson, P. Ishwar, and V. Prabhakaran, “On Compressing Encrypted Data,”

IEEE Transactions on Signal Processing, vol. 52, no. 10, pp. 2992 – 3006, 2004.

[26] J. Villard and P. Piantanida, “Secure Multiterminal Source Coding With Side Infor-

mation at the Eavesdropper,” IEEE Transactions on Information Theory, vol. 59,

no. 6, pp. 3668 – 3692, June 2013.

[27] U. Maurer, “Secret Key Agreement by Public Discussion from Common Informa-

tion,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 733 – 742, May

1993.

[28] T. Ho, M. Médard, M. Effros, and R. Koetter, “Network coding for correlated

sources,” in Proceedings of Conference for Information Science and Systems, 2004,

pp. 1 – 6.

[29] J. Barros and S. Servetto, “Netowrk Information Flow with Correlated Sources,”

IEEE Transactions on Information Theory, vol. 52, no. 1, pp. 155 – 170, January

2006.

[30] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Extracting Correlations,” in

50th Annual IEEE Symposium on Foundations of Computer Science, 2009, pp. 261

– 270.



Bibliography 169

[31] A. Bogdanov and E. Mossel, “On Extracting Common Random Bits from Cor-

related Sources,” in IEEE Transactions on Informaiton Theory, 2011, pp. 6351 –

6355.

[32] K. Prasad, S. Soni, T. Faruquie, and L. Subramaniam, “Data Consolidation So-

lution for Internal Security Needs,” in IEEE Internation Conference on Service

Operations and Logistics, and Informatics (SOLI), 2012, pp. 84 – 89.

[33] B. Dai, A. Vinck, Y. Luo, and Z. Zhuang, “Capacity Region of Non-degraded

Wiretap Channel with Noiseless Feedback,” in IEEE International Symposium on

Information Theory, 2012, pp. 244 – 248.

[34] R. Ahlswede and J. Korner, “Source coding with side information and a converse for

degraded broadcast channels,” IEEE Transactions on Information Theory, vol. 21,

no. 6, pp. 629 – 637, November 1975.

[35] L. Grokop, A. Sahai, and M. Gastpar, “Discriminatory source coding for a noiseless

broadcast channel,” in International Syposium on Infomation Theory, 2005, pp. 77

– 81.

[36] Y. Hayashi and H. Yamamoto, “Coding Theorems for the Shannon Cipher System

With a Guessing Wiretapper and Correlated Source Outputs,” in IEEE Transac-

tions on Information Theory, June 2008, pp. 2808 – 2817.

[37] H. Yamamoto, “Coding Theorem for Secret Sharing Communication Systems with

Two Noisy Channels,” IEEE Transactions on Information Theory, vol. 35, no. 3,

pp. 572 – 578, May 1989.

[38] ——, “On Secret Sharing Communication Systems with Two or Three Channels,”

IEEE Transactions on Information Theory, vol. 32, no. 3, pp. 387 – 393, May 1986.

[39] M. Hanawal and R. Sundaresan, “The Shannon Cipher System with a Guessing

Wiretapper: General Sources,” in 2009 International Symposium on Information

Theory, Seoul, Korea, July 2009, pp. 1949 – 1953.

[40] H. Yamamoto, “Rate-Distortion Theory for the Shannon Cipher System,” IEEE

Transactions on Information Theory, vol. 43, no. 3, pp. 827 – 835, May 1997.



Bibliography 170

[41] V. Aggarwal, L. Lai, A. Calderbank, and H. Poor, “Wiretap Channel Type II

with an Active Eavesdropper,” in IEEE International Symposium on Information

Theory, June 2008, pp. 1944 – 1948.

[42] N. Cai and R. Yeung, “Secure Network Coding on a Wiretap Network,” IEEE

Transactions on Information Theory,, vol. 57, no. 1, pp. 424 – 435, January 2011.

[43] M. Bloch, R. Narasimha, and S. McLaughlin, “Network security for client-server

architecture using wiretap codes,” IEEE Transactions on Information Forensics

and Security, vol. 3, no. 3, pp. 404 – 413, September 2008.

[44] D. Silva and R. Kschischang, “Security for wiretap networks via rank-metric codes,”

in IEEE International Symposium on Information Theory, July 2008, pp. 176 – 180.

[45] L. Ozarow and A. Wyner, “Wire-Tap Channel II,” in Advances in Cryptology -

EUROCRYPT, 1985, pp. 33 – 50.

[46] C. Mitrpant, A. Vinck, and Y. Luo, “An Achievable Region for the Gaussian Wire-

tap Channel With Side Information,” IEEE Transactions on Information Theory,

vol. 52, no. 5, May 2006.

[47] Y. Luo, C. Mitpant, and A. Vinck, “Some New Characteristics on the Wiretap

Channel of Type II,” IEEE Transactions on Information Theory, vol. 51, no. 3, pp.

1222 – 1229, March 2005.

[48] Z. Zhang, “Wiretap networks ii with partial information leakage,” in Fourth In-

ternational Conference on Communications and Networking (ChinaCOM), August

2009, pp. 1 – 5.

[49] F. Cheng, R. Yeung, and K. Shum, “Imperfect Secrecy in Wiretap Channel II,” in

IEEE International Symposium on Information Theory, 2012, pp. 71 – 75.

[50] A. V. B Dai, Y Luo, “Wiretap Channel with Side Information from Part of En-

coder,” in IFIP International Conference on Network and Parallel Computing, 2008,

pp. 353 – 357.

[51] R. Balmahoon and L. Cheng, “Information Leakage of Correlated Source Coded

Sequences over Wiretap Channel,” in arXiv, no. 1401.6264, 2014, pp. 1 – 20.



Bibliography 171

[52] C. Ngai, R. Yeung, and Z. Zhang, “Network generalized hamming weight,” IEEE

Transactions on Information Theory, vol. 57, no. 2, pp. 1136 – 1143, February 2011.

[53] S. Pradhan and K. Ramchandran, “Distributed Source Coding using Syndromes

(DISCUS): Design and Construction,” in Data Compression Conference, 1999, pp.

158 – 167.

[54] Y. Yang, S. Cheng, Z. Xiong, and Z. Wei, “Wyner-Ziv coding based on TCQ and

LDPC codes,” Asilomar, pp. 825 – 829, 2003.

[55] S. Pradhan and K. Ramchandran, “Generalized Coset Codes for Distributed Bin-

ning,” IEEE Transactions on Information Theory, vol. 51, no. 10, pp. 3457 – 3474,

October 2005.

[56] A. Liveris, Z. Xiong, and C. Georghiades, “Nested Convolutional/Turbo Codes for

the Binary Wyner-Ziv Problem,” in International Conference on Image Processing,

September 2003, pp. 601 – 604.

[57] R. Ma and S. Cheng, “Zero-Error Slepian-Wolf Coding of Confined-Correlated

Sources with Deviation Symmetry,” IEEE Transactions on Information Theory,

vol. 59, no. 12, pp. 8195 – 8209, December 2013.

[58] V. Stankovic, A. Liveris, Z. Xiong, and C. Georghiades, “Design of Slepian Wolf

Codes by Channel Code Partitioning,” in IEEE Data Compression Conference,

2004, pp. 302 – 311.

[59] S. Ho, “Markov Lemma for Countable Alphabets,” in IEEE International Sympo-

sium on Information Theory, 2010, pp. 1448 – 1452.

[60] J. Villard, P. Piantanida, and S. Shamai, “Secure Lossy Source-Channel Wiretap-

ping with Side Information at the Receiving Terminals,” in IEEE International

Symposium on Information Theory, 2011, pp. 1141 – 1145.

[61] ——, “Hybrid Digital/Analog Schemes for Secure Transmission with Side Informa-

tion,” in IEEE Information Theory Workshop, 2011, pp. 678 – 682.

[62] R. Balmahoon, H. Vinck, and L. Cheng, “Information Leakage for Correlated

Sources with Compromised Source Symbols over Wiretap Channel II,” in 52nd

Annual Allerton Conference on Communication, Control and Computing, October

2014.



Bibliography 172

[63] R. Balmahoon and L. Cheng, “Information Leakage of Heterogeneous Encoded Cor-

related Sequences over an Eavesdropped Channel,” in IEEE International Sympo-

sium on Information Theory. Hong Kong, China, June 2015.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Objective of Research
	1.2 Outline of Thesis
	1.3 List of Publications

	2 Background
	2.1 Correlated Sources
	2.1.1 Correlated Source Compression
	2.1.2 Side Information and Multiple Correlated Sources
	2.1.3 Feedback Applications
	2.1.4 Security and Other Applications

	2.2 Shannon's Cipher System and Wiretap Channels
	2.2.1 Shannon's Cipher System
	2.2.2 Wiretap Channels and Wiretap Channel II

	2.3 Coding and Security Aspects for Correlated Sources
	2.3.1 Matrix Partitions
	2.3.2 Coding for Wiretap Channels


	3 Techniques
	3.1 Shannon's Information Measures
	3.1.1 I-Measure
	3.1.2 Markov Model

	3.2 Correlated Source Coding
	3.2.1 Typical Sequences
	3.2.2 Slepian-Wolf Coding
	3.2.3 Shannon's Cipher System

	3.3 Wiretap Networks
	3.3.1 Ozarow and Wyner's Method
	3.3.2 Generalized Hamming Weight

	3.4 Coding Techniques for Correlated Sources

	4 Information Leakage for Multiple Correlated Sources using Slepian-Wolf Coding
	4.1 A Generalized Model for Multiple Correlated Sources
	4.2 Two Correlated Source Model
	4.3 Shannon's Cipher System Approach For Multiple Correlated Sources
	4.4 Shannon's Cipher System Approach for Two Correlated Sources
	4.5 Information Leakage for the System using Matrix Partitions

	5 Information Leakage of Slepian-Wolf Encoded Sequences for Two Correlated Sources with Partially Predetermined Information
	5.1 Two Correlated Source Model with Partially Predetermined Information
	5.2 Shannon Cipher System Approach for Two Correlated Sources with Partially Predetermined Information
	5.3 Information Leakage for the System using Matrix Partitions

	6 Information Leakage for Correlated Sources using Heterogeneous Encoding Method
	6.1 Correlated Source Model for Heterogeneous Encoding Method
	6.2 Shannon Cipher Approach for Correlated Sources using Heterogeneous Encoding Method
	6.3 Information Leakage for the System using Matrix Partitions

	7 Conclusion
	7.1 Comparison to other Models
	7.2 Future Work
	7.3 Contributions

	A Proof of Theorems 2-3
	A.1 Direct parts
	A.2 Converse parts

	B Proof of Theorems 4-5
	B.1 Direct parts
	B.2 Converse parts

	C Proof of Theorems 6-7
	C.1 Direct parts
	C.2 Converse parts

	Bibliography

