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Chapter 1

Introduction

1.1 Introduction

In audio signal processing there is an unwanted phenomena known as noise. It is detri-

mental to the intelligibility of speech and can often mask important information within

a signal. Noise removal is used in various situations in industry, such as in hearing aids,

in music recording studios and many other commercial industries, in many cases it is

required to remove echo or a humming sound in the background. However in this work

we will mainly be dealing with additive noise, which, mathematically, can be displayed

via the following equation:

X(t) = S(t) +N(t), (1.1)

where X(t) is the observed signal, comprised of the true signal, S(t), and the noise

process, N(t).

There are a number of noise categories in which N(t) can fall into. In this work we

will be using additive noise and explain a few forms in which additive noise can be

found. White or Gaussian noise is completely random and features equal amplitude

noise at each frequency band, that is its spectral density has the same power in any

given bandwidth. This is the most common type of noise referred to in literature. It

is completely uncorrelated and thus unpredictable. Pink noise is similar except it has

a spectral density inversely proportional to its frequency, that is a density proportional

to 1/f , where f is the frequency. Brown or Brownian noise is produced by Brownian

motion. Its spectral density is inversely proportional to the square of its frequency,

that is a density proportional to 1/f2. Blue noise is similar to Pink noise except its

spectral density is proportional to its frequency, that is a density proportional to f .

Violet noise is similar to Brown noise in the same way Blue is to Pink. Its spectral

1
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density is proportional to the square of its frequency that is a density proportional to

f2. Grey noise is White noise with some sort of weighting applied to it, eg. an inverse

A-weighting curve. The A-weighting curve was designed to reflect the response of the

human ear to each frequency, that is, the human ear is less sensitive to frequencies not

in the range of 500 Hz and 6 kHz and this curve reflects such a response by the human

ear. The A-weighting curve covers the range of 20 Hz to 20 kHz as noted by Moller and

Pedersen as well as various other authors in [1, 2, 3].

However, in literature White noise is typically the noise type of choice when simulating

noise since it is similar to a large number of background noises such as wind, thermal

noise in electronic components and machine hum. Thus this work will focus on the

removal of such noise. Various methods for the removal of this specific additive noise

exist and are used in music and speech enhancement. A number of these methods will

be reviewed.

A number of methods for noise removal in audio signal processing exist which use statis-

tical methods to estimate the noise profile and then use spectral subtraction, the process

of subtracting from the short-time power spectrum (the square of the magnitude of the

short-time Fourier transform) of the contaminated audio, Py, an estimate of the noise

short-time power spectrum, Pn, resulting in a “clean” audio short-time power spectrum,

Px. The basic process is describe by the following equation:

Px = Py − αPn, (1.2)

where α is a scaling factor for the noise. These are then transformed back to the time

domain using the noisy phase since the phase is deemed perceptually unimportant.

Ephraim and Malah developed a method based on a minimum mean-square error (MMSE)

short-time spectral amplitude estimator in [4]. This work was later expanded in [5] re-

sulting in minimum mean-square error log-spectral amplitude estimator as described in

the paper.

Wolfe and Godsill, as seen in [6], propose alternatives to Ephraim and Malah by using

a Bayesian estimation model while extensive expansions on this approach for removing

noise from audio data is covered by Godsill and Rayner [7] where they ultimately lead to

a fully Bayesian restoration method using expectation-maximisation (EM) algorithms

and Markov Chain Monte Carlo (MCMC) methods. Godsill and Rayner further discuss

the EM methods in [8, 9] while MCMC methods and their various applications to audio

signal processing are discussed by Carlin, Polson and Stoffer and McCulloch and Tsay

in [10, 11, 12], where they explain how to make predictions for the mean and variance

shifts in autoregressive time series data such as noise. Ruanaidh and Fitzgerald discuss
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using interpolation of missing samples in [13], which can also be useful in the estimation

of a noise profile, as well as solving the problem of missing samples in audio.

There are a number of various other approaches which all use a form of the MMSE

spectral amplitude estimator technique. Specifically Martin and Lotter and Vary use

supergaussian priors to estimate the noise profile in [14, 15]. Andrianakis and White use

spectral amplitude estimators with chi and gamma priors in [16]. Chen and Loizou use

a laplacian based spectral amplitude estimator in [17]. Erkelens, Hendriks and Jensen

get MMSE estimation of the discrete fourier coefficients using gamma priors in [18].

These statistical methods all have strengths in the fact that they are unsupervised and

have relatively low computational complexity compared to other noise removal algo-

rithms. Generally the only required knowledge is that of the speech and noise variance,

which can be estimated from the noisy recordings. The weaknesses in these methods

are in the nature of the noise profile being non-static in time while the estimation pa-

rameters are. This implies that over time the noise profile changes and the estimation

parameters do not which impairs the audio and speech enhancement.

Methods using complex wavelets for noise reduction which work in the time-scale rep-

resentations of audio have shown to be excellent noise reduction techniques. These

methods are described by Wolfe and Godsill in [19] and were later expanded on by Yu,

Bacry and Mallat in [20] where they create an adaptive block attenuation technique

based on the dyadic classification and regression trees (CART) algorithm. The dyadic

CART algorithm is discussed by Breiman et al. in [21].

Another approach for speech enhancement, or audio separation (when there are multiple

signal sources and we require a specific signal and regard the others as the “noise”, thus

separate the signal from the “noise”), is using non-negative matrix factorization (NMF).

This approach tackles the problem in the Bayesian approaches of not being able to deal

with non-stationary noise profiles. The idea of the algorithm is discussed by Lee and

Sebastian as well as Févotte, Bertin and Durrieu in [22, 23]. More specific applications of

this approach are discussed by various authors, notably Schmidt and Larsen in [24, 25]

where they with wind noise reduction using non-negative sparse coding. Duan et al.

achieve enhancement of speech from non-stationary noise environments by using non-

negative spectrogram decomposition in [26]. Mohammadiha et al. use prediction based

filtering based on temporal dependencies in NMF as described in [27]. Scmidt and Olsson

and Virtanen achieve audio separation in [28, 29] via NMF. While Mysore and Smaragdis

use a NMF semi-supervised separation process in [30]. As noted above this approach

better deals with non-stationary noise profiles and it does enhancements across frequency

bins jointly unlike the Bayesian approaches. It however has a worse computational

complexity in comparison and has poor statistical estimation criteria for the profiles.
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The next, and more recent approach for speech enhancement is that of ideal masking

(IM). This approach uses the time-frequency representation and is particularly effective

audio separation. Han and Wang describe a support vector machine (SVM) based

classification approach to speech separation us IM in [31]. Y. Wang and D. Wang

improve this by employing pre-trained deep neural networks in [32]. Chen, Y. Wang,

and D. Wang expand further by doing speech separation at low signal to noise ratios

in [33] while Y. Wang, Narayanan and D. Wang, describe supervised speech separation

in [34]. IM follows a feature extraction process, generally this is determining whether

a specific segment of the data is noise dominant or speech dominant, then a mask

estimation process and it uses this for the re-synthesis of the signal. For the feature

extraction process this method requires a Deep Neural Network which is a form of

machine learning and thus requires a training process (which takes a large amount of

time and resources) and database which is a clear weakness. It does however have huge

improvements in intelligibility over the NMF and Bayesian approaches.

The next approach is to observe what is being done in fields outside of strictly audio

signal processing and expand to that of image processing. Image processing and audio

signal processing are both sub-fields of the same field of work, signal processing, with

image processing being done mostly in two dimensions and audio signal processing done

mostly in one dimension. However we can justify using two dimensional processing on

audio since the spectrogram of an audio signal can be seen as an image. A distinct

difference between images and that of a spectrogram can be seen however. In images we

desire to preserve what is known as the edges and in the spectrogram we want to keep

the fundamental frequencies of the signal.

In image processing Gaussian noise is often removed using spatial filters such as the

Median or Gaussian filters as described by Jain et al. in [35]. Whilst this does prove

useful, it does come with the cost of blurring the images at edges, which are points

in the image with high gradients. A novel approach that has been used for noise re-

moval in image processing is that of using the diffusion equation to remove noise as

suggested by Perona and Malik in [36]. In this paper, it is suggested that using a cor-

rectly chosen diffusion coefficient (which in this case is a non-negative monotonically

decreasing function of the gradient of the image’s intensity) makes it possible to remove

noise from smooth areas in the image whilst still maintaining the edges. Weaknesses

occur when the magnitude of the noise that is present in the image is comparable to

the magnitude of the features of the image which creates the illusion of an edge being

present, as described by Perona and Malik and Yu et al. in [36, 37]. An extension of

this thought process has already been demonstrated by Dugnol et al. where they use

a partial differential equation model which is based on processing the spectrogram of

the signal using a smoothing and edge detecting nonlinear diffusion equation in [38].
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The partial differential equation is originally attributed to Alvarez, Lions and Morel

and described in [39]. Jacobs and Momoniat use a partial differential equation for text

binarization in [40] which uses diffusion with a sink/source term in order to push any

pixel in an image to either its maximum or minimum value based on a threshold value

that is between the two and considered to be above the noise threshold, thus removing

noise from a text image. This is a useful basis for an approach to remove any frequencies

below a certain threshold in a spectrogram however it would not maintain power any of

the frequencies above that threshold, it would also cause “blurring” of the frequencies,

that is, it would add to unwanted frequencies and remove power from frequencies that

we want to preserve.

1.1.1 Outline of work

In this section I will give an outline of each chapter in this thesis. In Chapter 2, I will

highlight a number of important methods and concepts that will be used throughout

the work. A brief outline of each method and a number of reasons why other methods

were not used in their place.

In Chapter 3 I will examine a non-linear diffusion equation applied to the magnitude

of the Fourier transform of a signal at different time windows in order to approximate

the noise profile so as to use spectral subtraction to remove the noise. The magnitude

of the Fourier transform is again a reasonable representation of the signal since it is a

representation of the magnitude of the frequencies present in the signal and if we take

its squared value we obtain the power spectrum, which is what is used in the process of

spectral subtraction.

In Chapter 4 I will examine a non-linear partial differential equation and explain how it

is applied to the spectrogram of the audio signal in order remove noise. The spectrogram

is a reasonable representation of the audio signal since it is a representation of the power

of the different frequencies present in the signal at different time frames. This gives us

the ability to reduce the power of the noise at each frequency.

In Chapter 5 I compare the results of the models discussed in Chapters 4 and 3 with

that of the results of the noise removal process used in Audacity(R), for this work I

used version 2.1.3 of Audacity(R) recording and editing software [41], a free audio signal

processing software, and reformatted any results using mathematica. This will be to

show that the results are comparable to that of a method being used in industry.

In Chapter 6 I summarise and highlight the work done though out this thesis.



Chapter 2

Methodology

2.1 Introduction

In this chapter I will introduce some of the concepts, methodologies and notation that

are used throughout the work. It should serve as a starting point or reference for anyone

who is not familiar with the concepts, terms or notation used.

2.2 Diffusion Equation

The standard diffusion equation is of the following form

∂u(t,X)

∂t
= ∇ · [D(u, t,X) ∇u(t,X)], (2.1)

where u(t,X) is the density, D is the diffusivity coefficient, with the diffusion being

isotropic, X is the position variable and t is the time variable.

For the purpose of this thesis we will be using subscript notation. This is an alternative

way to display the different differentials in a given equation. For example:

∂u(t,X)

∂t
= ut, (2.2)

would be one way to display the first derivative with respect to time,

∂2u(t,X)

∂x2
= uxx, (2.3)

would be the second derivative with respect to the variable x. From this point on in this

work we will default to using u as the variable for our partial differential equations. To

6



Methodology 7

demonstrate an example of this notation I will use the diffusion equation in one spatial

variable with a constant diffusivity coefficient. It would be of the following form:

ut = k uxx, (2.4)

where ut is the first order time derivative, uxx is second order spatial derivative and k

is the constant diffusivity coefficient.

The reason the diffusion equation is the equation of interest in this work is the nature

in which it “smooths” out a given initial condition. If we were to use equation (2.4),

with k = 1, an initial condition of u = sin(x), where x ∈ [0, 2π], and simple boundary

conditions of u(t, 0) = u(t, 2π) = 0 (this concept is expanded upon in sections 2.3), we

would find that as the time evolution of the solution went on, as t grows larger, that the

solution would slowly evolve to be a straight line with u = 0 when it eventually reaches

it’s steady state. Another important property to note is that it deals with discontinuities

in the initial condition as soon as t > t0. In other words, if we instead had our initial

condition as

u =

1, if 0 ≤ x ≤ 0.5

−1, if 0.5 < x ≤ 1
, (2.5)

where x ∈ [0, 1] and boundary conditions of u(t, 0) = u(t, 1) = 0, we would find that u

would very quickly become smooth and approach the steady state, which is again u = 0.

The properties described above are incredibly useful when we are thinking about using

them for the removal of noise, which essentially manifests itself as random fluctuations

in the initial condition, which can create steps such as those described by equation (2.5),

which we wish to “smooth” out.

In this section I have presented what we would expect of a simple linear diffusion process

and why these solutions have desirable qualities in noise removal, however the steady

state of such an equation is not entirely the desired result when we are removing noise

from a signal, since it would remove the signal in its entirety. Thus, we will want to find

a way for the steady state to be reach, such that it still contains the signal. Essentially

we only wish to remove what is regarded as the random fluctuations from the noise. I

will discuss, in Chapters 3 and 4, non-linear variations of the diffusion equation and how

they will be used, in conjunction with the various transformations, which are introduced

in sections 2.5 and 2.6, to remove this noise.
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2.3 Boundary Conditions

The boundary conditions for any chosen partial differential equation have to make sense

to its real world application. As it is noted by various authors in [1, 2, 3], the human

hearing range is 20hz to 20khz. This leads to the belief that any frequency below

20hz and any frequency above 20khz is not important to human hearing and can be

disregarded in our analysis of audio signals. Thus if our non-linear diffusion model was

to be used on any data containing the frequencies (such as the fourier transform of the

data) we could make our boundary conditions for u such that there are zeros at either

end, under the assumption that the lowest frequency is below 20hz and the highest is

above 20khz, in cases where this is not true we will keep this as a simplifying assumption

since it would only affect the last measurable frequency. If we were to use the actual

signal as our data, we could assume that the audio signal has no sound at the start,

nor at the end of the clip. This is a reasonable assumption since one would not usually

record an audio signal when the sound has already started and would usually record the

sound up to its completion. While arguments can be made that this wouldn’t always

be the case, it is mostly a simplifying assumption. This would again leave us with the

boundary conditions of u being zero at either end of the data. We would also have

to note that in the Fourier transform of the signal the size of our domain would be

prescribed to us by the sampling rate of the signal.

This leaves us with the notion that Dirichlet boundary conditions are the best to be

used to describe the real world scenario in this work, under the assumptions made

above. They will be of the form,

u(t,−1, y) = 0,

u(t, 1, y) = 0,

u(t, x,−1) = 0,

u(t, x, 1) = 0.

(2.6)

2.4 Solution approximation schemes

It is important to note that throughout the work the partial differential equations to be

used are non-linear, and thus, in general are not representable as elementary equations.

As such, there are a number of different approximations for finding solutions of partial

differential equations that can be used. Each of them have reasons for why they should

be used and when they should be used. I will describe a few of these and then explain

why they would, or would not be suitable, and why I chose the scheme used in this work.
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2.4.1 Finite Element Method

Finite element methods are used to approximate the solutions of partial differential

equations.

To examine how these methods work let us define a parabolic partial differential equa-

tion, such as the diffusion equation, as follows,

∂u

∂t
=
∂2u

∂x2
+ f(x, t), (2.7)

where x ∈ (0, 1) and t ∈ (0, T ]. The boundary conditions are u(0, t) = 0 and u(1, t) = 0

and the initial condition is u(x, 0) = U0 In order to solve this with the finite element

method we would need to begin by defining a mesh, Q = [0, 1] × [0, T ]. We would

define the mesh-size in the x direction as h=1/N and the mesh-size in the t direction as

∆t = T/M where N ≥ 2 and M ≥ 1. Thus we will have have the uniform mesh

Q∆t
h = {(xj , ti) : xj = jh, 0 ≤ j ≤ N ; ti = i ∆t, 0 ≤ i ≤M}. (2.8)

Next we have to define the set φh ∈ Vh to be a set of continuous piecewise linear functions

on the x mesh, that is 0 = x0 < ... < xN = 1, which all vanish at the end points.

From here I will present how the forward Euler scheme works for solving this problem.

From here it is important to note that the inner product 〈u , v〉 in this problem is defined

by

〈u , v〉 =

∫ 1

0
v(x)w(x)dx. (2.9)

We will have to find uih ∈ Vh such that

〈
um+1
h − umh

∆t
, vh

〉
+ a(umh , vh) = 〈(f(x, ti), vh〉 ∀vh ∈ Vh

(u0
h − U0, vh) = 0 ∀vh ∈ Vh,

(2.10)

where uih is the approximation of u(x, ti) and

a(w, v) =

∫ 1

0
w′(x)v′(x)dx (2.11)

Thus given uih we can find ui+1
h by solving the system of linear equations with the positive

definite matrix M of size (N − 1) × (N − 1), with the entries 〈φk, φq〉 where φk is the

piecewise linear finite element function associated with the point xk.
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The advantages of this method is that the mesh can be designed to work with a problem

with a boundary of any shape quite easily, however, it is not very amendable to the use

of discontinuous data such as that of the audio sound clips and their discrete Fourier

transform which we will be using in this work.

2.4.2 Collocation Methods

Collocation methods are another type of solution approximation scheme that can be

used. To demonstrate the idea of these I will explain using Chebyshev collocation. The

basic idea is to of this method is divide the domain we are working on into a a non-

uniform grid over the basis of the Chebyshev polynomials, which is on [-1,1]. This might

require a mapping of our domain to be in the domain [-1,1]. When we create our mesh

we use Chebyshev-Gauss-Labatto points, that is

xj = cos

(
jπ

N

)
, j = 0, 1, ..., N, (2.12)

The differentiation matrix in this method is defined as

dj,k =



ci(−1)j+k

ck(xj − xk)
, j 6= k

− xj
2(1− xj2)

, j = k

1

6
(2N2

x + 1), j = k = 0

− 1

6
(2N2

x + 1), j = k = N,

(2.13)

where

cj =

2, j = 0, N

1, j = 1, ..., N − 1.
(2.14)

A useful feature of this differentiation matrix is that if we wish to get the second order

differentiation matrix it is as simple D(2) = D(1).D(1) where D(1) = dj,k. We can then

use these to solve the diffusion equation as done by Golbabai in [42].

However we won’t use collocation methods for our work since we have fixed grid spacing

within our data and the for collocation methods to be the most effective they can be,

they require the points for their grid to correspond to quadrature formulas, and we

cannot change the grid spacing of this work since the Fourier transform is given in a

specific form.
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2.4.3 Finite-Difference Method

Finite-difference methods are used to approximate the values of the derivatives of func-

tions. There are a number of different finite-difference schemes which can be imple-

mented. Among these are various explicit, eg. FTCS (Foward in time and central in

space), and implicit, eg. Crank-Nicolson, schemes. While there are benefits to using

implicit schemes, such as their unconditional stability, they can be cumbersome to set

up. The FTCS method, while having the issue of stability conditions imposed by the

scheme, especially in higher dimensions, and for non-linear equations, being explicit, is

easy to set up for various different equations. Since this research is mainly focused on

the design of partial differential equations to be applied in audio signal processing and

many different iterations of the variations of the equations presented in this paper were

applied to the processes before arriving at the final resultant equations I have chosen

to use the method which is easier to set up. With this being said I acknowledge there

may be some benefit to using an implicit method to take advantage of the unconditional

stability criteria, however, the FTCS method demonstrates the ability of the partial

differential equations, applied in the methods described in this work, to remove noise

reasonably adequately.

Thus I will only cover the approximations that will be used in the explicit finite-difference

scheme known as FTCS. This scheme allows us to work with discrete data that has

discontinuities, such as that used in digitally recorded audio. However it does imply

conditions onto certain parameters in order to maintain stability. These conditions will

be calculated when the finite-difference scheme is applied to a specific equation.

The first of these approximations is the forward finite-difference approximation for the

first derivative. For this we will demonstrate using the first derivative in time for a

function u(t). The derivative approximation is

du

dt
=
u(t+ ∆t)− u(t)

∆t
+O(∆t) =

ui+1 − ui
∆t

+O(∆t), (2.15)

where a ∆t change time is equivalent to a unit change in i.

Next I will describe the central finite-difference approximation using spatial derivatives.

I will cover both the first order and second order derivatives. For this we will be using

the multivariate function u(x, y, t). The first derivatives in the x and y directions are

∂u

∂x
=
u(t, x−∆x, y)− u(t, x+ ∆x, y)

2∆x
+O(∆x2) =

uij−1,k − uij+1,k

2∆x
+O(∆x2), (2.16)
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and

∂u

∂y
=
u(t, x, y −∆y)− u(t, x, y + ∆y)

2∆y
+O(∆y2) =

uij,k−1 − uij,k+1

2∆y
+O(∆y2), (2.17)

respectively where a ∆x change in x is equivalent to a unit change in j and a ∆y change

in y is equivalent to a unit change in k. The second order approximations will use the

same notation and are

∂2u

∂x2
=
u(t, x−∆x, y)− 2u(t, x, y) + u(t, x+ ∆x, y)

∆x2
+O(∆x2)

=
uij−1,k − 2uij,k + uij+1,k

∆x2
+O(∆x2)

(2.18)

and
∂2u

∂y2
=
u(t, x, y −∆y)− 2u(t, x, y) + u(t, x, y + ∆y)

∆y2
+O(∆y2)

=
uij−1,k − 2uij,k + uij+1,k

∆y2
+O(∆y2)

(2.19)

respectively. Since it is available here, in future chapters the order of error notation will

be omitted for ease of reading.

The boundary conditions listed in section 2.3 can be discretized to,

ui0,k = 0,

uiN,k = 0,

uij,0 = 0,

uij,M = 0,

(2.20)

where N and M are the last values for x and y respectively.

2.5 DFT

In order to perform a Fourier transform for discrete data it is important to understand

the discrete Fourier transform (DFT). Given a list of data f(r) we can perform a DFT

to get the Fourier transform f̂(s) by using the following equation

f̂(s) =
1√
n

n∑
r=1

f(r)e2πi(r−1)(s−1)/n, (2.21)
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where n is the total number of data points are r and s are the positions of the data

points in f(r) and f̂(s) respectively. The inverse DFT is done via the following equation

f(r) =
1√
n

n∑
r=1

f̂(s)e−2πi(r−1)(s−1)/n, (2.22)

where n is the total number of data points and r and s are the positions of the data

points in f(r) and f̂(s) respectively.

Throughout this work I will be scaling this data to fit any assumptions made in either

of the models in Chapters 3 and 4, later rescaling when the inverse transform is taken in

order to keep the correct amplitude levels. The reasoning for the scaling will explained

in the various PDE models.

2.6 Windowing Algorithm and Short Time Fourier Trans-

form

2.6.1 Windowing

When working with a signal and its DFT it is important to note that the amount of

data we transform gives different resolutions of the frequencies present in the section

of data we transform. That is, the more data we use from the signal in the temporal

domain, the higher the frequency resolution in the Fourier domain However, if we use

all the data from our signal in our DFT we can end up losing a lot of information in

the temporal domain if we change that data too much. This introduces the idea of

windowing the data so that changes in the Fourier domain only affect small sections of

the signal, with smaller windows affecting the integrity of the signal less than bigger

windows. This introduces a trade off between the resolution of the frequencies and the

integrity of the signal in the temporal domain. Thus, it is required to pick a window

small enough to keep the signal intact, but large enough to obtain enough information

about the frequencies. Another factor to consider is that if these windows are simply

adjacent to one another discontinuities will again be created in the data when each

window is transformed back to the temporal domain, thus there needs to be a level of

overlap in order to maintain continuity.

Another type of problem is spectral leakage. This is a phenomenon that is present

due to the nature of the DFT. The DFT assumes that the signal it relates to can

be looped infinitely without discontinuities forming, which is often not the case for

a signal which is evolving in time, especially when a window of the signal is taken.
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When the signal can’t be looped infinitely the frequencies around the actual frequency

of interest are represented as having an amplitude higher than they should. This is

clearly an undesirable situation since it means our DFT is not necessarily an accurate

representation of the data.

This leads to the discussion of the different types of window functions and the windows

desirable size. I will only discuss a few to introduce the ideas behind them, and then

explain the reasoning as to why the window we used was chosen. To start this discussion

off it is important to make it clear that the values of the DFT when window functions

are applied are the result of each window of data being multiplied by the function that

describes the window type and then only taking the DFT. That is we take the DFT of

f̄(n) = ξ(n)f(n), (2.23)

where f̄(n) is the signal window with the windowing function applied to it, ξ(n) is the

windowing function, f(n) is the signal window and n is the data point position, starting

at 0 and ending at N .

2.6.1.1 Rectangular window

The rectangular window effectively takes the values of the data in the window and

doesn’t scale them at all. That is

ξ(n) =


0, n < 0

1, 0 ≤ n ≤ N − 1

0, n ≥ N

. (2.24)

This windowing function leaves most of the spectral leakage in the DFT but it has

minimal effect on the noise profile.

2.6.1.2 Sine window

This is the window that best describes the reasoning as to why different window types

were designed. Since the DFT assumes that the signal repeats infinitely if the signal

starts at zero and ends at zero there would be no discontinuity if we looped it. Thus a

window function that is of the form

ξ(n) = sin

(
2πn

N − 1

)
(2.25)
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would create a situation where the signal appears to be able to be looped infinitely,

fitting the Fourier transforms model. This reduces the spectral leakage, however, this

would change the noise profile since we lose information at the edges of the windows.

2.6.1.3 Gaussian window

The Gaussian window can be described as follows,

ξ(n) = e
− 1

2

(
n−(N−1)/2
σ(N−1)−2

)2

, (2.26)

where σ ≤ 0.5. The Gaussian window also has the ability to successfully reduce spectral

leakage with an appropriately chosen value of σ but still losing too much information to

do with the noise profile which the models in this research need.

2.6.1.4 Hamming window

The Hamming window can be describe as follows,

ξ(n) = α− β cos

(
2πn

N − 1

)
, (2.27)

where α = 25/46 and β = 1−α. This window doesn’t make the start and end points of

the window identically equal to zero, given that they aren’t in fact zero, but rather scales

them to a value in a range between −α × f(n) and α × f(n). This brings us closer to

the assumption that the windows signal can be looped infinitely without a discontinuity

forming, but not exactly. This window type also reduces the spectral leakage (less so

than the sine), but has less of an effect on the noise profile than the Sine window.

While spectral leakage is a problem, for our models to have an assumption about the

noise profile which we can work with, we chose to work with the Hamming window.

Since spectral leakage manifests itself as a form of noise and our model is designed to

remove noise we would essentially be removing the spectral leakage in our processing.

Thus we can justify keeping the some spectral leakage in order to keep more knowledge

about the noise profile.

As for the window size and percentage of overlap for each window, these were left as

another parameter to optimize in the models, as they can affect the different models

results.
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2.6.2 The windowing algorithm

In order to produce each of the windows with the chosen window size and level of overlap

and then undo the process the following two algorithms, algorithm 1 and 2, were used.

These algorithms keep track of the maximum value for two reasons, the first being for

any scaling and rescaling we might have assumed in our models, and secondly, if we use

a part of the signal that is deemed to be only noise we can get a good estimate of the

noise profile. It is important to note that in the algorithms that WF is the windowing

function, which is a hamming window function as stated.

Algorithm 1 Windowing

1: procedure Windowing
2: i← 0
3: Position← 0
4: while i×WindowSize ≤ ClipLen do
5: Window←WF × SoundClip(Position : Position + WindowSize)
6: FourierWindow← Fourier[Window]
7: RePart[i]← Real[FourierWindow ]
8: ImPart[i]← Imaginary[FourierWindow ]
9: Max← Max[Abs[FourierWindow ]]

10: if Max > MaxValue then
11: MaxValue ← Max
12: i← i+ 1
13: Position← Position + WindowSize×Overlap

14: return [RePart, ImPart, MaxValue]

Algorithm 2 UnWindow

1: procedure UnWindow
2: Position← 0
3: for i in RePart, ImPart do
4: TempClip ←InverseFourier[MaxValue×RePart [i]+MaxValue×ImPart [i]×j]
5: Ave← Average[Clip(Position:Position+WindowSize×Overlap),TempClip(0 :

WindowSize×Overlap)]
6: NonOverlapSec← TempClip(WindowSize×Overlap : end)
7: Clip(Position:Position+WindowSize)← Ave+NonOverlapSec
8: Position← Position + WindowSize×Overlap

9: return Clip

Once we have the fourier windows in their real and imaginary parts, RePart and ImPart

respectively as the algorithm state it or Re(STFT ) and Im(STFT ) as seen in equation

(2.28), which algorithm 1 outputs, it is a simple process to obtain the spectrogram at

this point. The modulus of the STFT (short-time fourier transform) is described by the

following equation,

|STFT | = (Re(STFT )2 + Im(STFT )2)
1
2 (2.28)
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and the spectrogram is simply |STFT |2.

2.7 SNR

Before we can define the SNR (signal to noise ratio), which has been briefly mentioned

before, we need to define what we mean by the average power of the signal. To get

the average power of a signal we take its Fourier transform, take the absolute value

of each data point (this is to obtain the the magnitude/amplitude), square the values

(converting it from magnitude/amplitude to power) and then take the average of the

values in the bandwidth of frequencies we are interested. For this work we will use the

entire available bandwidth.

The signal to noise ratio is the ratio of the average power of the signal to that of the

average power of the noise, where this average is over the same bandwidth of frequencies.

This can be measured by measuring the average power of the signal in a “silent” section

and comparing it to the average power of the signal in a non-silent section with the

following equation,

SNR =
Psignal
Pnoise

, (2.29)

where Psignal and Pnoise are the average power of the signal and noise respectively. To

convert this to decibels however we would have to covert this to a logarithmic scale as

follows,

SNRdB = 10 log10(Psignal)− 10 log10(Pnoise). (2.30)

This is the measure of the SNR I will be using throughout this work.

2.8 Conclusion

In this chapter I have presented various methods I will be using throughout this work.

I have explained how they work and given reasoning, where a choice could be made, as

to why each methods were chosen. As such, this chapter should be used as a reference

point for the methodology used in this work.



Chapter 3

PDE Spectral Subtraction Model

3.1 Introduction

To adequately describe this method we are required to refer to equation (1.2). This was

an equation used to describe a concept known as spectral subtraction. As a reminder,

that is

Px = Py − αPn,

where Px is the power spectrum of the a signal which has had noise removed from it, Py

is the power spectrum of the signal with noise, Pn, is an estimate of the power spectrum

of the noise and α is simply a scaling factor for the noise estimate.

In order to use this concept we would be required to find a reasonable estimate of the

noise profile. That is, we would have to find as accurate a representation as possible of

the power spectrum of the noise as we can. In order to do this our approach we will be

taking knowledge of the noise profile in order to diffuse the short-time Fourier transform

in such a manner as to get rid of the signal and be left with an accurate prediction of

the noise profile. Thus for this model we will be designing a partial differential equation

which will remove the signal and leave us with an estimate of the noise profile.

3.2 Non-linear Diffusion Equation

The non-linear diffusion equation chosen and designed for the process of removing the

signal is,

ut = qω C(u) uωω, (3.1)

18
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where

C(u) =
1

1 + e−k(u−η)
, (3.2)

qω is the scaling factor for the diffusive term uωω, and η is an estimate the maximum

value of the noise in the frequency domain. For this model, since we are trying to obtain

an estimate of the noise’s power spectrum, we have chosen u to represent the data in

the power spectrum of our signal.

The boundary conditions are,

u(t, 0, τ) = 0,

u(t,N, τ) = 0,

u(t, ω, 0) = 0,

u(t, ω,M) = 0,

(3.3)

where,

ω ∈ [0, N ],

τ ∈ [0,M ].
(3.4)

This is assuming that the signal starts and ends in silence and that frequencies at the

start and end of each Fourier window are inaudible and thus are negligible, thus all the

boundary conditions can be set to zero.

This partial differential equation is ultimately a non-linear diffusion equation without

a sink/source term, the only part of this that is out of the ordinary is the equation is

making use of C, as described in equation (3.2) and known as, or rather a variation of,

the logistics function, in its diffusion term coefficient. This equation has a number of

interesting features. It, in this variation, has a minimum of 0 and a maximum of 1, and

its shape is that of an “S” (sigmoid curve). In order to understand its significance we

need to discuss the parameters in this function, η dictates where the sigmoid’s midpoint,

or the point of inflection, the value of k will dictate the steepness of the curve and if set

high enough will let this function be an estimate of a step function where the step is at

η. That is it behaves, with a high enough value for k (eg. k = 105), like

F (u) =

 1, u ≥ η

0, u < η.
(3.5)

Ultimately this function takes advantage of the fact that this variation of the diffusion

equation acts in a desirable way on data that is in a certain scaling, this scaling is

between 0 and 1, and thus our data will be scaled to fit this model. That is the the

logistic function in the coefficient will only allow diffusion of values of u between η and 1,

if k is sufficiently large. If k is small enough then it will allow for some diffusion between

0 and η. This is where it becomes clear that we could avoid this scaling process but
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this leads to the issue of having to use the maximum value of the data in the logistics

function instead of a 1 in the numerator. The main point of the scaling is to simplify the

process because it is easier to scale the data that to constantly recheck certain values.

Thus we have a diffusion equation which leaves the data unchanged if the value of u is

less than that of η, which leaves an accurate estimate of the noise. However, we will not

always chose the value of k to be so high that it behaves like the step function described

in equation (3.5), leaving some leniency for u to be affected in a small range around η

unlike a pure threshold take at η. This is where the process gains an advantage over

other methods which use a pure threshold taken at η, which only keeps data that is of

a value below this level and sets any data higher than this level to be equal to the the

threshold value, that is,

T (u) =

 η, u ≥ η

u, u < η.
(3.6)

This hard threshold function would cause extra loss of signal in many positions in the

data where u ≥ η since it is common for the magnitude of the noise level at a particular

frequency to not reach the maximum value we have estimated from the noise profile

taken in a “silent” section of the signal. The best way to demonstrate this concept

would be to show a comparison of the actual noise that is added, an estimate of the

noise profile obtained via a hard threshold function, and the estimate of this profile

obtained by applying equation (3.1) to a single window of the Fourier domain. This can

be seen in figure 3.1 where, the green function shown in the graph represents a much

better estimate of the actual noise profile, which is shown by the blue function, than that

of the threshold function, shown by the yellow function in the graph. The reason for

some of the values being lower than a simple threshold is because of the diffusion process,

if the signal frequency is surrounded by frequencies which have little to no magnitude,

then these will cause a reduction in the energy (magnitude) of that particular frequency,

if the value of k is low enough so that the logistics function doesn’t behave exactly like

a step function.

In this model there are three parameters which require optimization, namely qω, η and

k. This search space can be greatly reduced since in reality the only parameter which

needs optimizing is k. This is because the scaling factor, qω, should be chosen in such

a way that is the largest value it can be which will still satisfy the stability conditions

of this model, which are to be shown in section 3.4. That is, if we pick a value for qω

which is as high as possible, to speed up the process, we will get the solution required

as long as k is at a value that is desirable. If we pick k to be too high we will simply

be doing a hard threshold process with the threshold being η. The value of η, which is

essentially the maximum value of the noise profile, is obtained from a “silent” section,
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Figure 3.1: Actual noise profile (Blue) compared to the estimates of the noise profile
produced by the threshold function noise profile (yellow) and the noise profile produced

by the non-linear diffusion equation (green).

a section of the signal with only noise and seemingly no signal. Thus the optimisation

process only requires that we increase k from 1 until we find a solution that is desirable

and better than that of a hard threshold process. If have a situation where we have a

noisy signal with no “silent” section and we have access to a signal which has no noise,

we can simulate a noise profile which behaves in a similar fashion to the noise which

is being observed. This will give us an estimate of a signal we can then use to run a

process to find an optimal value of k, which is extremely easy to do due to a very small

parameter.

3.3 Implementation

We will be using an explicit finite difference scheme, FTCS, in order to approximate a

solution for our equation, (3.1). This will imply that a first order time derivative, where

we will be using ū as the actual value for our data and u for approximations, will be the

following approximation form:

∂ū

∂t
≈ u(t+ ∆t, ω, τ)− u(t, ω, τ)

∆t
=
ui+1
j,k − u

i
j,k

∆t
, (3.7)

where i will be used as the time index (a 1 unit change in i will equate to a ∆t change

in time) and j and k will be used as the spatial indices (a 1 unit change in j and

k will equate to a ∆ω and ∆τ change in space respectively). The central difference

approximation for the second order spatial derivative with respect to ω will have the
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same indexing and will have the form as follows:

∂2ū

∂ω2
≈ u(t, ω −∆, τω, τ)− 2u(t, ω, τ) + u(t, ω + ∆ω, τ)

∆ω2
=
uij−1,k − 2uij,k + uij+1,k

∆ω2
.

(3.8)

Since there is no second order derivative in the direction of τ I will not show it’s approx-

imation.

While this equation can be done as a one dimensional diffusion process over multiple

windows I have chosen to keep it over the short-time Fourier transform and thus have

to account for the temporal direction, that is the time of the signal and not the time

evolution of the diffusion equation.

If we replace the relative terms in equation (3.1) with the relative approximations above,

while rearranging to keep the terms from each time period on the same side of the

equation, we get the following:

ui+1
j,k =

qω∆t

∆ω2
C(uij,k) (uij−1,k − 2uij,k + uij+1,k)

,

(3.9)

which approximates the value of the equation 3.1 function at each time step.

The initial values for u will be the short-time Fourier transform of the noisy audio sound

clip. That is,

u(0, ω, τ) = |STFT |2, (3.10)

where STFT is the short-time Fourier transform of the audio sound clip.

The boundary conditions are stated in equation (3.3) and these are discretized to

ui0,k = 0,

uiN,k = 0,

uij,0 = 0,

uij,M = 0.

(3.11)

Using this as the FTCS approximation of we will apply algorithm 3 in section 3.3.1

3.3.1 Algorithm

The basic idea of the noise removal algorithm is shown in algorithm 3 where PDESignal-

Removal is simply the FTCS approximation of equation (3.1) as described in section 3.3,
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specifically equation (3.9) with equation (3.10) as the initial condition and the boundary

conditions as in equation (3.11), run to a desired steady state.

Algorithm 3 Main

1: procedure Main:Spectral Subtraction
2: SoundClip← import the sound clip
3: ClipLen← length of SoundClip
4: WindowSize← Desired window size
5: Overlap← 1− desired overlap percentage
6: [RePart, ImPart, MaxValue]←
7: Windowing(SoundClip ,WindowSize, ClipLen, Overlap)

8: STFT← (RePart2 + ImPart2)
1
2

9: Phase← Arg[RePart + i ImPart]
10: STFT2← PDESignalRemoval[STFT/MaxValue]
11: STFT← STFT - STFT2
12: RePart← STFT × cos(Phase)
13: ImPart← STFT × sin(Phase)
14: SoundClip← Unwindow[RePart,ImPart,MaxValue]

3.4 Boundedness conditions

We have a partial differential equation which takes advantage of a scaling of its data.

That is, all the values of u are scaled between 0 and 1. In order to maintain this scaling

we need to find conditions on the parameters to keep the solution in the bounds at

each time step. If we were to prove that it stays in the bounds for one time we would

inductively prove that it would stay within the bound for all of time. This doubles as

our stability conditions since if we prove that the solution is bounded for all of time

then the solution is stable. Thus if we take the implementation of the FTCS method

on this equation and we bound the solution by the assumed bounds we can find a set of

constraints on the parameters that for each time step the solution would be bounded,

0 ≤ ui+1
j,k =

qω∆t

∆ω2
C(uij,k) (uij−1,k − 2uij,k + uij+1,k) ≤ 1. (3.12)

With these bounds implemented, we will drop the ui+1
j,k term since it has an equation

that is its equivalent, which is ultimately what we will be using to prove that ui+1
j,k is

bounded under a set of constraints. From this point we will consider the different cases

for which this equation may be faced. That is, when uij,k = 1 and uij,k = 0. Each of

these cases will give us and/or confirm the constraints, given ∆t and ∆ω, qω.

Let us however, before these cases are considered, discuss the logistics function in our

equation. That is, let us discuss C(uij,k) and its extreme values. We know that this
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function is bounded above by 1 and below by 0, that is, it is bounded by its maximum

and minimum values as discussed in section 3.2. We can with this knowledge simplify

our problem. Since C(u) is bounded below by 0 and above by 1 we know that it will

scale any number it is multiplied with between 0 and itself, and since this is the case

we can leave it out of this analysis since it would keep the bounds we have assumed are

needed for the equation as long as the rest of the equation obeyed those bounds. This

leaves us with the equation in the following form,

0 ≤ qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) ≤ 1. (3.13)

Let us first consider uij,k = 0. In this case the problem becomes a rather trivial one.

That is it simplifies to,

0 ≤ qω∆t

∆ω2
(uij−1,k + uij+1,k) ≤ 1. (3.14)

From here we are simply left with the problem of the possible values of (uij−1,k+uij+1,k),

that is, it can either be at a maximum of 2 or a minimum of 0 with both terms equal to

1 or 0 respectively. Since the solution for this term being zero is trivial and doesn’t give

any information we will only consider when it is equal to its maximum since this will

give us the most extreme constraint possible. Thus, we have found the first constraint

on qω.

0 ≤ qω ≤ ∆ω2

2∆t
. (3.15)

We however only care about the upper bound on the constraint since making qω negative

would change the nature of the partial differential equation.

For the case of uij,k = 1 we find that it provides the same constraint as in equation (3.15)

through similar reasoning. When we use this case value we find the equation simplifies

to,

0 ≤ qω∆t

∆ω2
(uij−1,k − 2 + uij+1,k) + 1 ≤ 1. (3.16)

We find that (uij−1,k−2+uij+1,k) has a strictly negative value, between its maximum of 0

and minimum of -2, when both of the unknown terms are 1 or 0 respectively. Substituting

this in and rearranging leaves us with the exact same constraint as in equation (3.15).

3.5 Conclusion

In this chapter I have presented a partial differential equation which, when using a

audio signal’s short-time Fourier transform, can obtain an estimate of the noise profile
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of noisy signal in order to perform a spectral subtraction process to rid the originally

observed noisy signal of noise. A discussion on how and why this method works as well

as a method of how to implement this process using a finite difference scheme, FTCS,

and the corresponding stability criteria for this method have been shown. This method

is easy to implement and requires very little work to find the optimal values for the

parameters. Besides the value of the parameter which is to be optimized, k, the only

required knowledge of the noisy signal is a value, η, which is approximately equal to the

maximum power of the noise in the short-time Fourier transform.

Ultimately a viable method, using partial differential equations, to obtain an estimate of

the noise profile in order to perform a spectral subtraction process has been presented.



Chapter 4

Diffusion of the Spectrogram

Model

4.1 Introduction

When we move back to the notion of audio signals in mathematical notation, a function

as seen in equation (1.1), we see that noise manifests itself as random fluctuations in

X(t). This begs the question of what is the best way to deal with a function that should

be seemingly smooth without these fluctuations, a function that looks more like S(t). In

section 2.2 I discussed two useful properties of the diffusion equation, namely its ability

to remove these random fluctuations and discontinuities. The problem with the linear

diffusion equation was that its steady state, given the implied boundary conditions from

section 2.3, removed the signal in its entirety. However, there exists an optimal time,

top, in the evolution of the diffusion equation at a point between the initial starting time,

when t = 0, and the final time of the steady state, that is limt→∞ u(t, ω, τ). This leads

to the hypothesis that either at some given top or the use of some non-linear variation of

the diffusion equation which would keep the integrity of the signal intact at its steady

state, we would be able to obtain a smoothed out version of the initial condition, the

signal without the noise.

A simple test of using the linear diffusion equation with the initial condition being

the signal, with the noise already added in, and attempting to find top yields that the

diffusion equation applied in this manner would simply act as a low pass filter. The

reason for this is as the time evolution of the diffusion equation happens we find that the

smaller fluctuations in the data are removed first. These fluctuations directly correspond

to the higher frequencies. If we let the process run for too long we find that the signal is

26
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removed, which is undesirable. Thus the best result we can find from the linear diffusion

in the temporal domain is, as stated before, a low pass filter.

Since these were such poor results, in the sense that low pass filters exist and do the

job better, we decided to move to the Fourier domain. When using the simple diffu-

sion equation with one window of the Fourier domain as the initial condition it causes

“blurring” between frequencies, adding to unwanted frequencies and subtracting from

wanted ones due to the transfer of energy from one frequency to another. All of these

being undesired situations.

However, this lead to the hypothesis which suggests it is possible to design a variation

of the non-linear diffusion equation with a sink/source term, the non-linearity is to

preserve the frequencies above a certain power level and the sink/source term is to

remove signals below a certain threshold. This would be able to take advantage of the

diffusion equation’s smoothing nature while keeping the signal’s frequencies if we were

to work in the with the short time Fourier transform.

Thus with the correct form variation of the non-linear diffusion equation we could remove

unwanted frequencies using the spectrogram of the audio clip as the initial condition.

In this domain we have more variables to work with, thus we can diffuse the frequencies

in the temporal direction. In other words, with a few modifications to the diffusion

equation in two dimensions it is potentially possible to find coefficients of diffusion for

each direction, time and frequency, and use a sink/source term to remove a large number

of unwanted frequencies in this domain. After this removal process we then transform

the data back to the temporal domain we would have a signal either completely devoid

of, or with far less, noise.

4.2 Phase issues

In industry the general procedure for any processing done to the Fourier transform of an

audio clip involves working with the phase and magnitude components. The processing,

if any is done, is only to the magnitude component and the phase is generally considered

unimportant, since perceptually it is deemed not noticeable by the majority of the signal

processing community as suggested by Kim in [43] where he discusses the community’s

perception and his contrary results that results can be improved with better phase

reconstruction. I have found similar results to Kim. If we are to take the Fourier

transform of a test signal with and without additive Gaussian noise we can show that

noise can be reduced in a simple process of taking the Fourier transform of the noisy

signal, replacing its phase with the noiseless phase of the original signal and then taking
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the inverse Fourier transform of the noisy signal’s magnitude and the original signal’s

phase. This is shown in figures 4.1, 4.2 and 4.3, which are the spectrograms of the

noiseless signal, the noisy signal and the noisy signal with a replaced phase, that is,

it has been transformed to the Fourier domain and then we replaced its noisy phase

with the phase of the noiseless signal, respectively. It can be clearly seen that certain

sections of the noise are lower than others when the noiseless phase is used instead of

the noisy phase. It is however very difficult to process the phase, and thus we have clear

motivation as to why it is important to use a method which does not need to use the

phase.

0. 0.17 0.33 0.5 0.66

22 050.

16 537.5

11 025.

5512.5

0.

Time HsL

F
r
e
q

u
e
n

c
y

HH
z

L

Figure 4.1: Spectrogram of noiseless signal.
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Figure 4.2: Spectrogram of the noisy signal.
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Figure 4.3: Spectrogram when the noiseless phase was used to recreate the sound
from the noisy signal.

Since it becomes near impossible to process the phase while keeping valuable information,

we will instead show the relation of the magnitude and phase to that of the real and

imaginary components. The phase and magnitude can be represented by the following

two equations,

P = arccos

(
Re

Im

)
, (4.1)

M = |Re+ Im|, (4.2)
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where P is the phase, M is the magnitude, Re is the real component of the Fourier

transform and Im is the imaginary component of the Fourier transform. The inverse of

this relation is given by:

Re+ Im = M cos(P ) +M i sin(P ). (4.3)

Now that we have a relation between the magnitude and phase and the real and imagi-

nary components we can ignore working with the magnitude and phase. Instead we will

just use the imaginary and real components of the Fourier transform in our spectrogram

since it gives us something that is manageable to process, unlike the phase itself.

We will use a different type of spectrogram for the sake of this work. Instead of the

spectrograms representing the actual frequency magnitudes it will use the two differ-

ent representations, using the real part and imaginary parts of the Fourier transforms

respectively. I will typically refer to both of these representations of the spectrograms

as the Im(STFT ) and Re(STFT ) spectrograms. These two representations will have

both positive and negative values unlike a normal spectrogram. However the magnitude

is still the most intuitive representation of the data and is used to display the results.

The Im(STFT ) and Re(STFT ) will be used as initial conditions in our processing via

the diffusion equation discussed in Section 4.3. In other words we will process two sets

of data with the equation, the imaginary spectrogram and the real spectrogram. Our

initial condition will be

u1(0, ω, τ) = Re(STFT ), (4.4)

and

u2(0, ω, τ) = Im(STFT ), (4.5)

where u1 is used when processing Re(STFT ) and u2 is when Im(STFT ). Both of

these are a t = 0 and ω and τ are the directional variables, relating to frequency and

temporal directions respectively. However, since the same process is taken on both we

will collectively state that u is our data, meaning that it is being done to both the real

and imaginary spectrograms in parallel. Taking this approach will remove the issue of

not being able to obtain the correct noiseless phase of the Fourier transform since we

can obtain the inverse fourier transform with just this information.

4.3 Non-linear Diffusion Equation

The non-linear diffusion equation chosen and designed to be used in the procedure to

remove the noise is,
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ut = qω(1− |u|)uωω + qτ (1− |u|)uττ + qsΓ(u)u(1− u)(1 + u)(u− η)(u+ η), (4.6)

where

Γ(u) = e−β|u|exp(−γ η), (4.7)

ut is the first derivative of u with respect to t (time evolution of the non-linear diffusion

equation), uωω is the second derivative with respect to ω (frequency), uττ is the second

derivative with respect to τ (time evolution of the audio signal’s frequencies, or temporal

direction), qω is the scaling factor in the diffusion coefficient of the uωω term, qτ is the

scaling factor in the diffusion coefficient of the uττ term, qs is the scaling factor in

coefficient of the sink term, and η is an estimate the maximum value of the noise in the

frequency domain. The boundary conditions are,

u(t, 0, τ) = 0,

u(t,N, τ) = 0,

u(t, ω, 0) = 0,

u(t, ω,M) = 0,

(4.8)

where,

ω ∈ [0, N ],

τ ∈ [0,M ].
(4.9)

Each term will be discussed in detail and the purpose of each variable made clear. It

is important to note that all the data that will be processed via equation (4.6) is to

be scaled between -1 and 1, which is fundamentally important to this model. The first

term in equation (4.6) captures the diffusion in the ω (frequency) direction and has

three components: the scaling factor qω, the non-linearity (1 − |u|) and the diffusion

itself uωω. The scaling factor is simply a parameter which is chosen according to the

given information about the noise levels, specifically the SNR. The higher the SNR the

higher the value of the coefficient. In general this parameter’s value will be close to or

in fact zero as this would cause ’blurring’ of energy between the different frequencies

that should not be there as described in Section 4.1. The diffusion component has been

chosen due to its smoothing nature which is ultimately what is removing the noise. This

is because it smooths out the function by removing the random fluctuations in the data,

this alone however cannot solve the issue and thus there is a sink/source term in the

diffusion equation.

The most interesting part of this term is (1−|u|). It has the purpose of further controlling
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the level of diffusion based on what is effectively a value proportional to that of the SNR

for a particular frequency. I say effectively, but it is not completely proportional to the

SNR. Due to the scaling of the data to be between -1 and 1 this is essentially a scaling

factor which lowers the value of the term when the absolute vale of u is close to 1. That

is, if the value of u is close to the maximum value of the data, this implies there is a

large amount of signal at that frequency and it is less likely to be noise. The closer it is

to that maximum value the more likely it is to be signal and less likely to be noise, thus

closely related to a high SNR, thus, it is desirable for there to be less diffusion in that

particular frequency. In other frequencies where the value of u is closer to zero there

is a higher likelihood of it being noise, thus more diffusion is desired, and thus far less

scaling down of the term.

The second term in equation (4.6) is designed in a similar fashion to that of the first

term, however this term captures the diffusion in the τ (time evolution of the audio

signal’s frequencies, or temporal direction) direction. It has similar components to the

first term: the the scaling factor qτ , the non-linearity (1 − |u|) and the diffusion itself

uττ . The difference here is that blurring, or smoothing, of the frequency in its temporal

direction is desired and thus having a higher value for the scaling factor is desirable. It

is however still chosen according to the SNR as less diffusion is desired when there is less

noise. The rest of the term behaves the same as the first term, except that its direction

is different.

The sink/source term is designed to work so as to add or subtract energy depending on

the energy level of u. If its energy level is considered to be in the noisy band, −η ≤ u ≤ η,

as to get this level to zero. If its energy level is outside of that band, −1 ≤ u ≤ −η or

η ≤ u ≤ 1, then it will subtract or add energy, respectively, as to drop or raise these

energy levels to 1 or -1 respectively. A better grasp of this can be taken from figure 4.4

which shows the direction of the energy flow, f(u), for the different values of u when the

the parameters in the sink/source term are γ = 6, β = 100, η = 0.5 and the product of

qs and ∆t is equal to 10, that is qs ×∆t = 10.

This term requires the careful picking of values for 3 variables, namely β, γ and qs. When

correctly chosen the coefficient of this term, Γ(u), coupled with qs, will be extremely

small or zero when the energy levels of u are greater, in absolute value, than η and has

a significant value when the energy level of u is smaller, in absolute value, than η. The

reasoning behind this is to keep signal unaffected when the signal is considered to have

more energy than that of the noise.

Since this sink/source term was designed specifically for the Ir-Re model that was men-

tioned in Section 4.2 it might be useful to note that with a slight adaptation, since it

would no longer be required to deal with negative values, one could use another form
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Figure 4.4: Phase of sink term.

of the sink/source term to be used with the ordinary spectrogram. This would however

require that we would have to use the noisy signals phase. This was found to have

inferior results and has the same pitfalls as described in Section 4.2, thus it has been

omitted in favour of this model.

A few assumptions are made on the audio clip to handle the boundary conditions. The

human ear typically only hears sounds between the frequency range of 20hz to 20 000hz.

This leads to the assumption that the frequencies outside of this range can be set to

0 with little to no repercussions. Not all the windows used in processing will have

the resolution of the 20 000hz frequency and thus a simplification of assuming the last

frequency available in the window’s resolution will be outside of this range. Taking these

assumptions into account we can impose the Dirichlet boundary condition of u = 0 when

ω = 0 or ω = N , where N is the last available frequency in the window’s resolution.

Assuming the audio clip starts off with silence and ends with silence we can impose the

Dirichlet boundary condition of u = 0 when τ = 0 and τ = M , where M is the last

available time window. This choice of boundary condition also helps with the attenuation

of edges of the different windows, which is the reason for the rectangular window, as

previously discussed in Section 2.6.

4.3.1 Implementation

Since we will be doing an explicit scheme, forward difference in time and central difference

in space scheme (FTCS), we would have to convert the problem into its approximation

form. This will imply that a first order time derivative, where we will be using ū as the
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actual value for our data and u for approximations, will have the following approximation

form:
∂ū

∂t
≈ u(t+ ∆t, ω, τ)− u(t, ω, τ)

∆t
=
ui+1
j,k − u

i
j,k

∆t
, (4.10)

where i will be used as the time index (a 1 unit change in i will equate to a ∆t change

in time) and j and k will be used as the spatial indices (a 1 unit change in j and

k will equate to a ∆ω and ∆τ change in space respectively). The central difference

approximation for the second order spatial derivative with respect to ω will have the

same indexing and will have the form as follows:

∂2ū

∂ω2
≈ u(t, ω −∆ω, τ)− 2u(t, ω, τ) + u(t, ω + ∆ω, τ)

∆ω2
=
uij−1,k − 2uij,k + uij+1,k

∆ω2
.

(4.11)

The central difference approximation for the second order spatial derivative with respect

to τ will have the same indexing and will have the form as follows:

∂2ū

∂τ2
≈ u(t, ω, τ −∆τ)− 2u(t, ω, τ) + u(t, ω, τ + ∆τ)

∆τ2
=
uij,k−1 − 2uij,k + uij,k+1

∆τ2
. (4.12)

If we replace the relative terms in equation (4.6) with the relative approximations above,

while rearranging to keep the terms from each time period on the same side of the

equation, we get the following:

ui+1
j,k =

qω∆t

∆ω2
(1− |uij,k|) (uij−1,k − 2uij,k + uij+1,k)

+
qτ∆t

∆τ2
(1− |uij,k|) (uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1− uij,k)(1 + uij,k)(u

i
j,k − η)(uij,k + η)

+ uij,k,

(4.13)

which approximates the value of the non-linear diffusion function at each time step.

The initial values for u were discussed in section 4.2. Specifically that of equations (4.4)

and (4.5).

The boundary conditions are stated in equation (4.8) and these are discretized to

ui0,k = 0,

uiN,k = 0,

uij,0 = 0,

uij,M = 0.

(4.14)

With all this information we can perform the algorithm described in section 4.3.2.



Diffusion of the spectogram Model 34

4.3.2 Algorithm

The basic idea of the noise removal algorithm is shown in algorithm 4 where PDENois-

eRemoval is simply the FTCS approximation of equation (4.3) given by equations (4.13)

and (4.14) as described in section 4.3.1 run to a desired steady state.

Algorithm 4 Main

1: procedure Main:Spectrogram Model
2: SoundClip← import the sound clip
3: ClipLen← length of SoundClip
4: WindowSize← Desired window size
5: Overlap← 1− desired overlap percentage
6: [RePart, ImPart, MaxValue]←
7: Windowing(SoundClip ,WindowSize, ClipLen, Overlap)
8: [RePart, ImPart] ← PDENoiseRemoval[RePart/MaxValue, ImPart/MaxValue]
9: SoundClip← UnWindow[RePart, ImPart, MaxValue]

4.3.3 Conditions for boundedness

Since equation 4.6 was designed to take advantage of a scaling of the data such that

−1 ≤ u ≤ 1 there is need to provide the conditions for boundedness to any parameters

chosen and a derivation thereof.

If we are to find suitable constraints to apply to each of these terms we will have to do

an in depth analysis of the numerical approximation we will be using to estimate the

values of the data at each time step.

We have the assumption in our model that u needs to be between -1 and 1 and we

are given our changes in time and space (∆t, ∆ω and ∆τ), this leaves one factor to

be obtained, the constraints on the scaling factors qω, qτ and qs. If we were to prove

that with a given constraint on each of these variables that at the next time step would

stay in the given bounds of u we would have an inductive proof that it would stay in

those bounds for each time step. This serves a double purpose of proving both this

boundedness and thus, as a consequence of this boundedness, we have that the stability

of the method is implied. Thus we look to the following inequality to find conditions for

these constraints:

−1 ≤ qω∆t

∆ω2
(1− |uij,k|) (uij−1,k − 2uij,k + uij+1,k)

+
qτ∆t

∆τ2
(1− |uij,k|) (uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1− uij,k)(1 + uij,k)(u

i
j,k − η)(uij,k + η)

+ uij,k ≤ 1.

(4.15)
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From this inequality the necessary constraints on qω, qτ and qs can be found.

From this point second order derivative approximations will be abbreviated with

(uij−1,k − 2uij,k + uij+1,k) = δ2
ω and (uij,k−1 − 2uij,k + uij,k+1) = δ2

τ .

The inequality (4.15) gives rise to a number of extreme situations. In particular when

the various values of uij,k are −1, 0 or 1 respectively.

If uij,k = 1 or uij,k = −1 there is a trivial solution where ui+1
j,k = uij,k. This preserves the

boundedness.

When uij,k = 0 the scaling factor is immediately equal to 1. This leads to the following

relationship the constraint between the two variables qω and qτ .

−∆ω2

∆tδω
− qτ∆ω2

∆τ2δω
δτ ≤ qω ≤ ∆ω2

∆tδω
− qτ∆ω2

∆τ2δω
δτ . (4.16)

−∆τ2

∆tδτ
− qω∆τ2

∆ω2δτ
δω ≤ qτ ≤ ∆τ2

∆tδτ
− qω∆τ2

∆ω2δτ
δω. (4.17)

Taking into account the most limiting extreme case is where both δω and δτ are equal

to 2 and assuming that both the diffusion coefficients must stay positive we find that

the imposed constraints are:

qω ≤
∆ω2

2∆t
− qτ∆ω2

∆τ2
for qτ ∈ [0,

∆τ2

2∆t
]. (4.18)

qτ ≤
∆τ2

2∆t
− qω∆τ2

∆ω2
for qω ∈ [0,

∆ω2

2∆t
]. (4.19)

The last of these cases is when is when uij,k is not necessarily identically equal to any of

−1, 0 or 1. Let us consider the original numerical approximation again:

ui+1
j,k =

qω∆t

∆ω2
(1− |uij,k|) (uij−1,k − 2uij,k + uij+1,k)

+
qτ∆t

∆τ2
(1− |uij,k|) (uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1− uij,k)(1 + uij,k)(u

i
j,k − η)(uij,k + η)

+ uij,k,

(4.20)

In our work we have the implied bounds from the scaling factor and thus it will be

sufficient to find the implied constraints when −1 ≤ ui+1
j,k ≤ 1. We will be splitting this

up into two cases.
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Case 1: uij,k > 0

qω∆t

∆ω2
(1− uij,k) (uij−1,k − 2uij,k + uij+1,k)

+
qτ∆t

∆τ2
(1− uij,k) (uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1− uij,k)(1 + uij,k)(u

i
j,k − η)(uij,k + η)

+ uij,k.

(4.21)

Case 2: uij,k < 0

qω∆t

∆ω2
(1 + uij,k) (uij−1,k − 2uij,k + uij+1,k)

+
qτ∆t

∆τ2
(1 + uij,k) (uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1− uij,k)(1 + uij,k)(u

i
j,k − η)(uij,k + η)

+ uij,k.

(4.22)

From here we will find the constraints. We will show that we have a constraint in the

form of an upper bound for qs in case 1 by showing that ui+1
j,k is bounded above by 1

and that this constraint is reiterated in case 2 by showing ui+1
j,k is bounded from below

by -1. The constraint that qs is bounded below by zero is implied by the assumptions

of the model.

Case 1: We will assume uij,k is bounded, by the assumptions of the model, and show

that ui+1
j,k is bounded as an inductive step. Factorizing the right hand terms of equation

(4.21) we find:

(1− uij,k)(
qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1 + uij,k)(u

i
j,k − η)(uij,k + η)) + uij,k.

(4.23)

For ease of notation we will use the following equation:

(1− uij,k)A+ uij,k, (4.24)

where,

A = (
qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1 + uij,k)(u

i
j,k − η)(uij,k + η)).

(4.25)
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It is sufficient to show that if 0 ≤ A ≤ 1 then 0 ≤ ui+1
j,k ≤ 1. Since we are seeking an

upper bound we are able to consider the triangle inequality,

||a+ b+ c|| ≤ ||a||+ ||b||+ ||c||. (4.26)

The non-linear polynomial, uij,k(1 + uij,k)(u
i
j,k − η)(uij,k + η)), is bounded above by 2

(when u = 1 and η = 0).

qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1 + uij,k)(u

i
j,k − η)(uij,k + η)

≤ qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

+ 2∆t qsΓ(uij,k).

(4.27)

At this point it becomes important to find an upper bound for Γ(u). We know that

Γ(u) = e−β|u|exp(−γ η),

thus if we can prove that the exponent of e is always negative, then we know that Γ(u)

has an upper bound of 1. Since β is always chosen to be positive, the absolute value of

u, by definition, is positive, and exp(−γ η) is always positive, then the exponent will

always be negative. Thus we know that Γ(u) is bounded above by 1, and we can use

this value in our equation,

qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1) + 2∆t qsΓ(uij,k)

≤ qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1) + 2∆t qs.

(4.28)

Since uij,k > 0, we know (uij−1,k − 2uij,k + uij+1,k) ≤ 2 and (uij,k−1 − 2uij,k + uij,k+1) ≤ 2,

hence,

qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1) + 2∆t qs

≤ 2
qω∆t

∆ω2
+ 2

qτ∆t

∆τ2
+ 2∆t qs ≤ 1.

(4.29)

This leaves us with an upper bound of qs which is dependent on the choices of both qω

and qτ .

qs ≤
1

2∆t
− qω

∆ω2
− qτ

∆τ2
. (4.30)

Case 2: We will assume uij,k is bounded, by the assumptions of the model, and show

that ui+1
j,k is bounded as an inductive step. Factorizing the right hand terms of equation
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(4.22) we find:

(1 + uij,k)(
qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1− uij,k)(uij,k − η)(uij,k + η)) + uij,k.

(4.31)

For ease of notation we will use the following equation:

(1 + uij,k)B + uij,k, (4.32)

where,

B = (
qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1− uij,k)(uij,k − η)(uij,k + η)).

(4.33)

By similar logic of that used in Case 1, it is sufficient to show that if −1 ≤ B ≤ 0 then

−1 ≤ ui+1
j,k ≤ 0.

The non-linear polynomial, uij,k(1 − uij,k)(uij,k − η)(uij,k + η)), is bounded below by -2

(when u = −1 and η = 0).

qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

+ ∆t qsΓ(uij,k)u
i
j,k(1 + uij,k)(u

i
j,k − η)(uij,k + η)

≥ qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

− 2∆t qsΓ(uij,k).

(4.34)

We know that Γ(u) is bounded above by 1,

qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)− 2∆t qsΓ(uij,k)

≥ qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)

− 2∆t qs.

(4.35)

Since uij,k < 0, we know (uij−1,k−2uij,k+uij+1,k) ≥ −2 and (uij,k−1−2uij,k+uij,k+1) ≥ −2,

hence,

qω∆t

∆ω2
(uij−1,k − 2uij,k + uij+1,k) +

qτ∆t

∆τ2
(uij,k−1 − 2uij,k + uij,k+1)− 2∆t qs

≥ −2
qω∆t

∆ω2
− 2

qτ∆t

∆τ2
− 2∆t qs ≥ −1.

(4.36)
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This leaves us with the same upper bound for qs as in case 1.

qs ≤
1

2∆t
− qω

∆ω2
− qτ

∆τ2
. (4.37)

Thus in both case 1 and case 2 we have the same constraint implied on qs from above

and the constraint of zero from below from the assumptions of the model.

While this formulation of the constraint on qs is useful and gives us a proof for constraints

which keep the model in the bounds that are required from the assumptions of the model

it is useful to note that this constraint is much more limiting than it should be due to

the nature of γ, β and η being unknown and thus it can be relaxed. That is, when γ, β

and η are known we can create the constraint in the following form,

qs ≤
1

ℵ

(
1

∆t
− 2qω∆t

∆ω2
− 2qτ2∆t

∆τ2

)
, (4.38)

where

ℵ = Max[Γ(uij,k) u
i
j,k(1 + uij,k)(u

i
j,k − η)(uij,k + η))]. (4.39)

It is important to note that γ and β are chosen so that ℵ is generally very large making

the constraint on qs much less stringent. Examples of these values as is used in this

work are γ = 6 and β = 250.

4.4 Method for finding optimal zones for parameters

This model requires that a lot of values for the different parameters are chosen correctly.

This leads us to the problem of picking a value from the correct range for each of these

parameters.

Each of the parameters’ values need to be chosen to match up with the noise profile, to

do this we will need to experimentally explore different values for each of the parameters

in the model, that is, for each threshold value of the noise we need to find an optimal

range for the parameters. We do this by running the process for a sample audio signal,

to which we have added noise, over different ranges of values for each of the parameters.

We are using a signal which is not contaminated by noise as to have a benchmark to

which we can compare our results to. By doing this we have a error margin which we

can minimize in order to show that there is an optimal range for the parameters for

each different noise threshold. In this work the error margin we chose to minimize was

the l2-norm of the difference between the spectrogram of the original, uncontaminated,

signal and the signal we had processed after adding noise to it.
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To reduce the parameter search space for the parameters optimized we fixed some of less

important parameters to be a scaled version of another, more important and related,

parameter. For example, in equation (4.6) the two diffusion scaling factors are closely

related, however the qω coefficient is far less important than the qτ coefficient and was

set to be scaled as follows: qω = qτ ×10−9, this is because no diffusion in the ω direction

was found to be sub-optimal, however the diffusion in this direction had to be a much

smaller than in the temporal direction since it would cause “blurring” of the frequencies,

which is in direct conflict with the assumptions of the model. Optimal values for the

parameters in the Γ(u) coefficient in equation (4.6) are much easier to find since they

rely completely on the value of η and not the error margin, these were fixed to be γ = 6

and β = 250. This results in the phase portrait of the sink/source term (which assumes

a η value of 0.5) as seen in 4.5. From this figure it can be seen that the only time the

sink/source term, with the give β and γ values, affects the power of u is when the value

of u is between −η and η.

-1.0 -0.5 0.5 1.0
u

-1.0

-0.5

0.5

1.0
f(u)

Figure 4.5: Phase of sink term, with optimal γ and β.

The value of qs was dependent on the error margin was chosen as the second parameter

to find an optimal range for. Thus, the problem has been simplified to only require

an optimization in two of the parameters. The results of one of these optimization

processes, when the noise level in percentage of the signal was approximately 7%, can

be seen in figure 4.6 where it is clearly shown that the value for qτ should be below

0.00213 and the value for qs should be below 6× 108, the exact values being qτ = 0.002

and qs = 3.4× 108, while still keeping inside the constraints discussed in Section 4.3.3.
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Figure 4.6: The Error Margin and ranges for the chosen variables qτ and qs

4.5 Conclusion

In this chapter I have presented a partial differential equation which, when using a audio

signal’s short-time Fourier transform, can diffuse a noisy signal to a point where there

is little to no noise left in the signal. A discussion on how and why this method works

as well as a method of how to implement this process using a finite difference scheme,

FTCS, and the corresponding stability criteria for this method have been shown. This

method requires optimization in a large number of parameters in order to get the desired

result. The only knowledge required, besides the parameters which are to be optimized,

is that of an estimate of the maximum power of the noise in the short-time Fourier

transform.

This chapter ultimately presents a method of noise removal using a partial differential

equation on the short-time Fourier transform. The method is dynamic and robust but

requires a fair amount of processing power for the optimization process.



Chapter 5

Results and Discussion

5.1 A comparison of results

We will compare and contrast the results of filtering an audio clip with different levels

of artificially added white noise via the algorithms presented in Chapters 4 (diffusion

of the spectrogram model) and 3 (spectral subtraction model) and also in a free audio

processing software, Audacity(R), as to compare the results with a method that is used

in industry. The window size and overlap used in the diffusion of the spectrogram model

and spectral subtraction model was 1000 and 95% respectively.

While the measure of the SNR, in decibels, is given, one cannot say they intuitively

understand this unless they know the average power of the section of the signal and

the section of the noise it was measured over. Thus, instead of listing all three values I

will be listing the SNR and the maximum percentage of the signal which is noise, noise

percentage, that is a value that is the maximum noise value measured in a “silent” section

compared to the maximum value of the signal in temporal domain. I find this value is

easier for anyone not familiar with the decibel SNR scale to understand intuitively.

5.1.1 Results Table

Here I have tabulated the results of the above experiments in table 5.1 for easy compar-

ison, these results are discussed in sections 5.1.3, 5.1.4 and 5.1.5. I will list the results

in the form the SNR for each method at each noise percentage level.

The parameters used for each of these methods will be tabulated in table 5.2. Once

again, these are the values which are referred to in sections 5.1.3, 5.1.4 and 5.1.5.

42
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Table 5.1: Results

Noise percentage level 2% 7% 20%

Noisy SNR 6.96dB 3.006dB 1.28dB

Audacity filtered SNR 25.47dB 21.1dB 16.05dB

Diffusion of spectrogram filter SNR 42.21dB 32.3dB 32.03dB

Spectral subtraction filter SNR 36.59dB 58.7dB 23.35dB

A comparison of the resulting SNR of the different methods at different noise levels.

Table 5.2: Parameter values

Noise percentage level 2% 7% 20%

η value 0.0158 0.0514 0.156

Diffusion of spectrogram filter qs 2× 109 3.4× 108 3× 107

Diffusion of spectrogram filter qτ 0.002 0.002 0.002

Diffusion of spectrogram filter qω 2× 10−9 2× 10−9 2× 10−9

Spectral subtraction filter k 1000 800 500

Spectral subtraction filter qτ 0.4 0.4 0.4

A comparison of the parameter values used for each of the different methods at the

different noise levels.

It might be noted that difference between the coefficients in the equations is large which

constrains the time step size, which can be obtained in the analysis of the FTCS scheme

in Chapter 4, specifically given these values of qω, qs and qτ we can calculate the exact

value of the time step we can use, which is extremely small, this dramatically slows down

computation. An implicit finite-difference scheme would improve the speed, making the

time step size less of an obstacle to the computation times.

5.1.2 Noiseless signal

To begin with I will show the signal with no noise in a spectrogram, using the Hamming

window, and the plot of the actual signal as to compare to the filtered signals. These

can be seen in figures 5.1 and 5.2 respectively.

All processing done via the method presented in Chapter 4 use values of γ = 6 and

β = 250 where the other parameters are specified in each of the cases.



Results and Discussion 44

0. 0.5
0.

5000.

10 000.

15 000.

20 000.

Time (s)

F
re
q
u
en
cy

(H
z)

Figure 5.1: Spectrogram of the noise-
less sound clip.
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Figure 5.2: Temporal plot of the
noiseless sound clip.

5.1.3 Comparison at 2% Noise

The first experiment was run over the audio clip containing a SNR of 6.96dB and a

noise percentage of 2%. This was the lowest level of noise I used and can be seen in

figures 5.3 and 5.4. The measured value of η in this method was 0.0158. There are no

truly noticeable differences in the solutions by the different models at this noise level

except the measured SNR after being filtered however the results are still shown to show

that each of the methods for noise removal do work at low noise levels. The SNR was

improved to 25.47dB by Audacity(R), and the results can be seen in figures 5.5 and

5.6. The spectral subtraction model improved the SNR to 36.59dB with k = 1000 and

qt = 0.4. These results can be seen in figures 5.7 and 5.8. The SNR was improved to

42.21dB by the diffusion of the spectrogram model, using qt = 0.002, qω = 2× 10−9 and

qs = 2× 109. These results can be seen in figures 5.9 and 5.10.
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Figure 5.3: Spectrogram of the sound
clip with a 6.96dB SNR.
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Figure 5.4: Temporal plot of the
sound clip with a 6.96dB SNR.
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Figure 5.5: Spectrogram of the sound
clip with a 25.47dB SNR after being

filtered in Audacity(R).
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Figure 5.6: Temporal plot of the
sound clip with a 25.47dB SNR after

being filtered in Audacity(R).
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Figure 5.7: Spectrogram of the sound
clip with a 36.59dB SNR after be-
ing filtered by the spectral subtraction

model.
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Figure 5.8: Temporal plot of the
sound clip with a 36.59dB SNR after
being filtered by the spectral subtrac-

tion model.
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Figure 5.9: Spectrogram of the sound
clip with a 42.21dB SNR after being
filtered by the diffusion of the Ir-Re

model.

0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

-1.0

-0.5

0.5

1.0
Amplitude

Figure 5.10: Temporal plot of the
sound clip with a 42.21dB SNR after
being filtered by the diffusion of the Ir-

Re model.

In figures 5.11, 5.12, 5.13 and 5.14 we can see the spectrograms of the noise itself and

the difference between the different filters and the noisy signals. It is clearly evident that

each of the filtering processes remove parts of the signal itself, but figure 5.12 clearly

shows that less of the signal is removed as described earlier.
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Figure 5.11: The spectrogram of the
noise of the sound clip which initially

had a 2% noise ratio.
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Figure 5.12: The difference of the
spectrogram of the sound clip, which
initially had a 2% noise ratio, after be-
ing filtered by the Audacity(R) and the
spectrogram of the its respective noisy

signal.
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Figure 5.13: The difference of the
spectrogram of the sound clip, which
initially had a 2% noise ratio, after be-
ing filtered by the spectral subtraction
model and the spectrogram of the its

respective noisy signal.
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Figure 5.14: The difference of the
spectrogram of the sound clip, which
initially had a 2% noise ratio, after be-
ing filtered by the diffusion of the Ir-Re
model and the spectrogram of the its

respective noisy signal.

5.1.4 Comparison at 7% Noise

The second experiment was run over the audio clip containing a SNR of 3.006dB and a

noise percentage of 7%. This was the second lowest level of noise I used and can be seen in

figures 5.15 and 5.16. The measured value of η in this method was 0.0514. At this noise

level there were noticeable in the signals filtered by the different processes. The SNR

was improved to 25.47dB by Audacity(R), and the results can be seen in figures 5.17 and

5.18. In figure 5.17 we notice that in the “silent” sections, specifically 0-0.06s and 0.54-

0.66s, that the noise is still visibly present throughout all frequencies when contrasted

to 5.1, in the section with the signal, specifically 0.06-0.54s, the signal in the frequency

band between 6000hz and 8000hz is similar to that of the noiseless spectrogram, with

slightly elevated power levels in some frequencies being the only noticeable difference,

this is an important point to note since when we compare it to the other two methods

we will notice this is an advantage to this method even though the SNR of the method

is worse. The spectral subtraction model improved the SNR to 58.7dB with k = 800

and qt = 0.4. These results can be seen in figures 5.19 and 5.20. This method has a

far better SNR than Audacity(R)’s method, however when we compare the frequencies’

power in the band 6000hz to 8000hz, in the time period 0.06-0.54s, we notice we lose

a fair amount the signal when compared to the noiseless signal, we do however have

the rest of the frequencies are far more comparable, that is they are closer in value,

to the noiseless signal throughout the entire time period. The SNR was improved to

32.3dB by the diffusion of the spectrogram model, using qt = 0.002, qω = 2× 10−9 and

qs = 3.4 × 108. These results can be seen in figures 5.21 and 5.22. This method has

a mixture of the advantages of both the other methods however it does come with a

mixture of both of their disadvantages. It has a good SNR, which is between the others,

it keeps a large amount of the power of the frequencies present in the band 6000hz

to 8000hz, in the time period 0.06-0.54s, but not as much as the Audacity(R) filtered

signal, the power of the frequencies throughout the rest of the spectrogram are close to
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the noiseless spectrogram, but not as close as that of the spectral subtraction model’s

filtered signal. At this noise level it appears that Audacity(R) preserves the signal the

best but leaves the highest level of noise behind. The spectral subtraction model gets

rid of the most noise but loses some information of the signal when the values of the

signal are close to the noise level. The diffusion of the spectrogram model is a mixture

of both of these.
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Figure 5.15: Spectrogram of the
sound clip with a 3.006dB SNR.
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Figure 5.16: Temporal plot of the
sound clip with a 3.006dB SNR.
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Figure 5.17: Spectrogram of the
sound clip with a 21.1dB SNR after be-

ing filtered in Audacity(R).
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Figure 5.18: Temporal plot of the
sound clip with a 21.1dB SNR after be-

ing filtered in Audacity(R).
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Figure 5.19: Spectrogram of the
sound clip with a 58.7dB SNR after be-
ing filtered by the spectral subtraction

model.
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Figure 5.20: Temporal plot of the
sound clip with a 58.7dB SNR after be-
ing filtered by the spectral subtraction

model.
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Figure 5.21: Spectrogram of the
sound clip with a 32.3dB SNR after be-
ing filtered by the diffusion of the Ir-Re

model.
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Figure 5.22: Temporal plot of the
sound clip with a 32.3dB SNR after be-
ing filtered by the diffusion of the Ir-Re

model.

In figures 5.23, 5.24, 5.25 and 5.26 we can see the spectrograms of the noise itself and

the difference between the different filters and the noisy signals. It is clearly evident that

each of the filtering processes remove parts of the signal itself, but figure 5.24 clearly

shows that less of the signal is removed as described earlier.
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Figure 5.23: The spectrogram of the
noise of the sound clip which initially

had a 7% noise ratio.
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Figure 5.24: The difference of the
spectrogram of the sound clip, which
initially had a 7% noise ratio, after be-
ing filtered by the Audacity(R) and the
spectrogram of the its respective noisy

signal.
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Figure 5.25: The difference of the
spectrogram of the sound clip, which
initially had a 7% noise ratio, after be-
ing filtered by the spectral subtraction
model and the spectrogram of the its

respective noisy signal.
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Figure 5.26: The difference of the
spectrogram of the sound clip, which
initially had a 7% noise ratio, after be-
ing filtered by the diffusion of the Ir-Re
model and the spectrogram of the its

respective noisy signal.

5.1.5 Comparison at 20% Noise

The third and final experiment run over the audio clip containing a SNR of 1.28dB

and a noise percentage of 20%. This was the highest level of noise I used and can be
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seen in figures 5.27 and 5.28. The measured value of η in this method was 0.156. It

can be seen in figure 5.27 in particular that the noise in this example almost entirely

drowns out the signal in majority of the frequencies. At this noise level the advantages

and disadvantages, as discussed in the previous noise level, become quite clear. The

measured improvement in the SNR for Audacity(R)’s filter is 16.05dB and the results

can be seen in figures 5.29 and 5.30. While at this noise level the signal’s power in the

frequency band 6000hz to 8000hz, in the time period 0.06-0.54s, is lost almost entirely

we do however notice the strength of this method in the frequency band 5000hz to

6000hz in the same time period when we contrast this to the other two methods. We

do notice the weakness here is much more visible, that is, the noise throughout the

entire spectrogram is still clearly visible. The spectral subtraction model improved the

SNR to 23.35dB with k = 1000 and qt = 0.4 and the results can be seen in figures

5.31 and 5.32. We do however notice that there is a scattering of noise throughout the

spectrogram which is comparable to that of the actual signal in power. This method

is keeping certain sections of the signal in the frequency band 6000hz to 8000hz, in

the time period 0.06-0.54s, but loses more in the signal in the frequency band 5000hz

to 6000hz in the same time period when we contrast this to the Audacity(R) filtered

signal. Overall the advantage that it removes more noise than the Audacity(R) filter can

be seen so this is still consistent. The SNR was improved to 42.21dB by the diffusion

of the spectrogram model, using qt = 0.002, qω = 2 × 10−9 and qs = 3 × 107. These

results can be seen in figures 5.33 and 5.34. Here we notice that this method has the

best noise removal for this level of noise, not only by the best SNR of the three methods

but it is also clearly visible in its spectrograms when it is compared to the other two and

that of the noiseless spectrogram. It has the same disadvantages as before in the fact

that it has lost the power level required in the frequency band 6000hz to 8000hz, in the

time period 0.06-0.54s, as well as in the frequency band 5000hz to 6000hz in a similar

fashion to that of the spectral subtraction method. When we compare figure 5.34 and

5.30 we can clearly see the difference in the noise removal in the time segments 0-0.06s

and 0.54-0.66s.
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Figure 5.27: Spectrogram of the
sound clip with a 1.28dB SNR.
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Figure 5.28: Temporal plot of the
sound clip with a 1.28dB SNR.



Results and Discussion 50

0. 0.5
0.

5000.

10 000.

15 000.

20 000.

Time (s)

F
re
q
u
en
cy

(H
z)

Figure 5.29: Spectrogram of the
sound clip with a 16.01dB SNR after

being filtered in Audacity(R).
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Figure 5.30: Temporal plot of the
sound clip with a 16.01dB SNR after

being filtered in Audacity(R).
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Figure 5.31: Spectrogram of the
sound clip with a 23.35dB SNR after
being filtered by the spectral subtrac-

tion model.
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Figure 5.32: Temporal plot of the
sound clip with a 23.35dB SNR after
being filtered by the spectral subtrac-

tion model.
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Figure 5.33: Spectrogram of the
sound clip with a 32.03dB SNR after
being filtered by the diffusion of the Ir-

Re model.
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Figure 5.34: Temporal plot of the
sound clip with a 32.03dB SNR after
being filtered by the diffusion of the Ir-

Re model.

In figures 5.35, 5.36, 5.37 and 5.38 we can see the spectrograms of the noise itself and

the difference between the different filters and the noisy signals. It is clearly evident that

each of the filtering processes remove parts of the signal itself, but figure 5.36 clearly

shows that less of the signal is removed as described earlier.
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Figure 5.35: The spectrogram of the
noise of the sound clip which initially

had a 20% noise ratio.
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Figure 5.36: The difference of the
spectrogram of the sound clip, which
initially had a 20% noise ratio, after be-
ing filtered by the Audacity(R) and the
spectrogram of the its respective noisy

signal.
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Figure 5.37: The difference of the
spectrogram of the sound clip, which
initially had a 20% noise ratio, after
being filtered by the spectral subtrac-
tion model and the spectrogram of the

its respective noisy signal.
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Figure 5.38: The difference of the
spectrogram of the sound clip, which
initially had a 20% noise ratio, after
being filtered by the diffusion of the Ir-
Re model and the spectrogram of the

its respective noisy signal.

5.1.6 Conclusion

In this work I have demonstrated two methods, which use partial differential equations.

These two methods obtain results comparable to that of a free audio signal processing

software, Audacity(R), with respect to noise removal. They have been presented using

a finite difference scheme in order to approximate their solutions. These methods have

clear advantages over Audacity(R)’s noise removal method. That is, they both remove

more of the noise from a signal contaminated by noise than Audacity(R), however they

both lose valuable information of the signal in parts of the signal where the power of

the frequencies are comparable to that of the noise’s power at the same point. It can

be argued that the best of the three methods is the diffusion of the spectrogram model

presented in Chapter 4 since it removes more noise than Audacity(R) and preserves

majority of the signal. However cases can be made for all three methods and when they

are best suited for noise removal. If one wishes to keep a certain amount of noise in

order to keep as much of the signal as possible we would find that they would most

likely want to use the method implemented by audacity Audacity(R). The method used

by Audacity(R) does require that its user gives it a “silent” section of the audio signal

where as, while it is preferable to have, the other two methods can work with simple
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estimates of the value of η instead of being required to get an exact measurement. If

one wishes to have fewer parameters to optimize then it would be recommend that

the method of choice, out of the three presented here, would be the spectral subtraction

method. The spectral subtraction method also has the advantage that it can be analysed

window by window which gives a higher viability of being implemented in real time. If

the primary goal is to have a method that removes the most noise, the signal can be

processed after its recording, and there is no constraint on processing power for the

optimization process required then the recommended method would be the diffusion of

the spectrogram model.

Overall, each of these methods has a strength compared to another, and while the

numbers do indicate that the diffusion of the spectrogram model does remove the most

noise, the choice comes down to which of the methods has the best trade-off. That is, if

we want to preserve more of the signal in high noise situations we would most likely use

Audacity(R). If we want to remove more noise but have fewer parameters to optimize

we would use the spectral subtraction method. Finally, if we want to remove the most

noise and have no limitation to processing power for an optimization process we would

use the diffusion of the spectrogram model.



Chapter 6

Conclusion and Further Research

6.1 Concluding remarks

Noise is an unwanted phenomenon in audio signal processing. It decreases the intelligi-

bility of speech and often masks important information in an audio signal. In this thesis

I have explored various concepts and methods required for the removal of noise in audio

signal processing.

In Chapter 2 I presented the various concepts required to proceed with the processing of

audio signals and for the approximation of the solution of a partial differential equation

given a discontinuous initial condition.

In Chapter 3 I presented a model based solely on a non-linear diffusion equation, that

is, there was no sink/source term, designed to filter out the signal in the short-time

Fourier transform of a signal in order to obtain a good estimate of the noise and then

use spectral subtraction in order to remove the noise from the signal. The diffusion

process, with the short-time Fourier transform of a signal used as the initial condition,

was carried out via a finite difference scheme, specifically the FTCS scheme, and run to

a desired steady state, hence obtaining the estimate of the noise after which the spectral

subtraction process was done. This method again required an estimate of the noise

profile for the threshold value η required by the coefficient of the diffusion term. This

value can be obtained via a “silent” section of the audio or by an estimation by the user

of the process. This process was successful in removing noise at extremely low SNR and

high SNR, up to 20% of the signal.

In Chapter 4 I presented a model based on a non-linear diffusion equation with a sink/-

source term designed to filter out noise in the short-time Fourier transform of a signal

and then transform it back to its original form with the noise removed. This model was
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presented using a finite difference scheme, specifically the FTCS scheme, as the selected

method for approximation of the solutions of the non-linear diffusion equation which

used the short-time Fourier transform of a signal as its initial condition and was run to

a desired steady state. The only required information for this model is an estimate of

the noise profile which can be which yields the value of the threshold value, η, required

in the sink/source term, it can be obtained via a “silent” section of the audio signal or

can be estimated by the user of the method. The method proved to be successful in

removing noise at extremely low SNR and high SNR, up to 20% of the signal.

In Chapter 5 I show the results of the methods presented in Chapters 4 and 3 and

compare them to the results of audacity on the same audio corrupted by the same noise.

It is important to remember that in this comparison the optimal values of parameters

for noise removal were used and not parameters tweaked by a user in order to keep

intelligibility of the signal. In this Chapter it can clearly be seen that the method

presented in Chapter 4 is the best at removing noise, however Audacity(R), while not

removing as much noise, does keep slightly more information of the signal in frequency

bands where the signal’s power is comparable to that of the power of the noise. That

being said, it becomes a trade-off of keeping more signal components with a slight bit

more residual noise or remove more of the noise while losing components of the signal

in frequency bands where the noise’s power is comparable to the signal’s. These values

can be tweaked by the user of the method so that they might find a good balance of

residual noise and preservation of all the signal, all three of the compared methods have

the options to do this with correctly chosen parameters.

6.2 Further research

While the results presented in this thesis are the best results I have found there is

definitely room for improvement. Different variations of the coefficients of diffusion can

be designed to improve the quality of the results. The values of the threshold, η, can

be dynamically updated if more knowledge of the noise profile can be obtained with

regards to it updating throughout the time of the signal. Such a method would help

move toward a real time noise reduction technique.

A different method, which is faster and requires less stability criteria, for the approxi-

mation of the solutions of the partial differential equations can be implemented.
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6.3 Conclusion

It is possible to remove noise from corrupted audio signals via the application of partial

differential equations to the Fourier transforms of the audio signals. The methods pre-

sented in this thesis, while only being partially better than that of the method used in

Audacity(R), show that partial differential equations are a useful and valuable tool to

the field of audio signal processing. In particular, partial differential equations provide

a richly dynamic tool that may be engineered to exhibit desirable dynamics and steady

states for the application in noise removal of sound in audio band signals. This is a

fundamental extension to the application of partial differential equations to that of im-

age processing due to the high variation in audio signals. Thus we have provided valid

grounds for further investigation in the applications of partial differential equations in

the field of audio signal processing.
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