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Abstract

Turbulent Convection in Stars

S.L. Moonsamy

School of Physics,

University of the Witwatersrand,

PO Box Wits, Johannesburg, 2050, South Africa

Thesis: PhD (Physics)

May 2017

This thesis investigates in detail the structure of models of turbulent convec-

tion with phenomenological closures for the eddy-viscosity. It explores the

merits of replacing the canonical Mixing Length Theory of stellar convection

with more realistic models of fluid turbulence that take into account the full

spectrum of eddy sizes. The author provides a detailed exposition of the fun-

damental assumptions and the modus operandi of various approaches to the

treatment of convective energy-transfer in stars. He focuses in particular on

spectral descriptions of the convective process. The structure of several clo-

sure models developed by various authors are investigated, and he identifies

and elucidates those aspects of these closures that lead to an improved descrip-

tion of convective turbulence in the stellar interior. The author also develops

an implementation within the public-domain code, called Modules for Experi-

ments in Stellar Astrophysics, of two of these models and reports and discusses

the results of his numerical experiments.
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Chapter 1

Introduction

“It remains to call attention to the chief outstanding difficulty of

our subject.”

- H. Lamb [76]

Convection in stars is intrinsically a turbulent process. It is characterized by

a wide spectrum of eddies whose interactions redistribute energy across the

stellar interior in a highly non-linear way. Description of this phenomenon is

complex both physically and mathematically. A theory of convection that can

completely account for the turbulent dynamics of the stellar fluid, does not

yet exist [131]. Lack of progress in this field is attributable to a lack of empir-

ical data and to our inability to solve analytically the equations that describe

turbulent flow.

The most commonly used model of convection in stars is Mixing Length The-

ory (MLT) [8; 47; 132]. The origins of the MLT can be traced back to the

work of Prandtl [109] who, in the early 1900’s, developed MLT to describe

convection in incompressible terrestrial fluids. Prandtl’s work was motivated

by challenges in engineering at that time. The problem of channel flow was of

considerable technological importance and the original form of the MLT was

designed to model engineering problems of this type [10; 11; 109].

1
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MLT was later adapted to the description of stellar convection first in the

1940’s by Biermann [7], and later by Böhm-Vitense [8] in the mid to late

1950’s. It has since undergone numerous modifications in an attempt to rec-

tify its failures when applied to stellar interiors [49].

MLT is a primitive semi-empirical theory. It is based on a number of severe ap-

proximations which, depending on the efficiency of the convective process, can

result in gross misrepresentations of the rate of energy transport through the

stellar fluid [22; 23]. The inability of MLT to predict accurately the energetics

of the convection zone may have severe consequences for our understanding of

the structure and evolution of stars, and hence also of the evolution of galaxies

and of the cosmos.

A major obstacle in developing more realistic models of stellar convection has

been the lack of the computing power needed to perform realistic simulations of

the stellar fluid. For example, there are two types of detailed three dimensional

simulations that might be used. They are Direct Numerical Simulations (DNS)

[46; 97; 110; 134] and Large Eddy Simulations (LES) [43; 51; 93]. These have

the potential to provide significant inroads into our understanding of convec-

tive turbulence and its coupling to other physical phenomena in stars. While

recent advances in technology have resulted in remarkable progress of compu-

tational speed and data storage capacity, simulations of the above types are

still incapable of the resolution of scales needed for complete DNS and LES

of turbulent convection, and are largely limited to the treatment of surface

convection zones and stellar atmospheres [104]. Complete three-dimensional

simulations of the stellar interior appear to be unattainable in the foresee-

able future [73]. To avoid these difficulties, simulations of stellar structure

and evolution are typically forced to rely on one-dimensional stellar evolution

codes which use parametric representations of the stellar interior to bypass the
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computational complexities associated with a full numerical treatment. The

current generation of 1-D stellar evolution codes still rely in large part on the

MLT for the calculation of the convective heat flux in the stellar interior [99].

The longevity of the MLT is especially surprising considering that, in fields

other than stellar astrophysics, MLT has been replaced by more predictive

models of turbulent convection which, unlike the MLT, are derived directly

from the turbulence equations that govern the fluid [92; 127]. My purpose in

this thesis is to investigate the structure of some of these models, to evaluate

their merits, and to comment on their potential usefulness to models of stellar

structure and evolution.

1.1 The origins of MLT

The pervasiveness of turbulence in astrophysical systems is a key obstacle to

accurate description and prediction of the behaviour of systems such as stars.

This is due the non-linear nature of the Navier-Stokes Equations (NSE) which

present a major obstruction to the development of a complete, analytical model

of fluid turbulence. A Reynolds averaging the NSE leads to an infinite sequence

of equations for the velocity correlation terms. The equations that determine

the n-th order correlation terms require knowledge of the corresponding terms

of order n + 1. This leads to an infinite hierarchy of coupled equations. This

is known as the closure problem. The closure problem appears, in principle,

to be insoluble. Our only option, if we are to make progress requires us to cut

the “Gordian knot” by appeal to semi-empirical models that develop a closure

for the moment equations at a given order.

The first such models date back to the work of Boussinesq [10; 115]. In 1877,

he introduced the concept of an eddy viscosity, νT , as a means of determining
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the form of the Reynolds stress tensor in shear flows. According to Boussi-

nesq’s hypothesis, turbulence has the effect of renormalizing or “enhancing”

the molecular viscosity by an amount that corresponds to νT . However, apart

from stating that νT is an intrinsic property of the turbulence itself, Boussi-

nesq’s model did not provide any meaningful insight into the physical nature

of the eddy viscosity which it proposed.

It was not until the development of Prandtl’s mixing length model [109] that

an explicit expression for νT was suggested. The theory was developed in

analogy with similar processes in the kinetic theory of gases and was the first

to relate the eddy viscosity to the turbulent kinetic energy of the fluid. The

relation obtained came at the cost of a free parameter, the mixing length, l,

which is a measure of the average distance travelled by a turbulent eddy before

it dissipates its energy into the surrounding fluid. In the absence of a method

for determining the mixing length, Prandtl’s model effectively changed the

problem from one of determining νT , to one of determining l. Prandtl himself

appears to have had severe doubts concerning the validity of the model, de-

scribing it as “only a rough approximation” [11].

Despite its shortcomings, the mixing length model proved to be a useful “engi-

neering” approach to problems in terrestrial fluid turbulence. For these, there

is a wealth of experimental data on the time evolution of the turbulent velocity

field, from which the form of νT can be inferred.

This type of data for astrophysical turbulence is currently unobtainable. In as-

trophysical systems, therefore, prediction rather than description of turbulent

flow properties is of interest. The turbulent velocity and temperature fields,

and the bulk quantities associated with them, should ideally be calculable from

an astrophysical model of fluid turbulence, rather than being determined from

data and supplied as inputs.
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In the absence of a better alternative, Biermann and Böhm-Vitense adapted

Prandtl’s mixing length concept to the process of convective energy transport

in stellar interiors. Their work laid the foundation for what later came to be

known in stellar astrophysics as, the Mixing Length Theory (MLT).

As was the case with Prandtl’s original model, the MLT suffers from a lack

of predictive power with regard to the turbulence which it claims to describe.

This lack of predictive power is “plastered over” in the model by the mixing-

length parameter, α which needs to be fitted to the astrophysical data in order

to be determined. No detailed model has yet been able to predict the value

of α. Furthermore, fitted values of α have no universality even for restricted

classes of stars. MLT is also devoid of any details regarding the structure and

distribution of turbulent energy across the spectrum of eddies which carry the

heat flux through the stellar convection zone. This is due to the fact that the

original iteration of the model was not derived from the NSE, but rather from

a purely phenomenological consideration of the kinematics of a putative fluid

element subjected to a perturbation of its thermodynamic state [132].

Moreover, MLT is ignorant of the fundamental fluid equations. This makes

the inclusion of new physical effects difficult and speculative. It was not until

the work of Canuto and Goldman (CG) [17], nearly thirty years after Böhm-

Vitense’s original publication of the MLT’s adaptation to stars, that a deriva-

tion of its flux formula from the general equations of turbulent flow was pro-

vided.
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1.2 Eddy-viscosity models

Interestingly, at the same time that MLT was beginning to take shape, there

was a renewed interest in turbulence modelling from a fundamental perspec-

tive. This renaissance was sparked by the work of G.I Taylor [125] who, in the

late 1930’s, began to develop the foundations of the spectral theory of homo-

geneous, isotropic turbulence. This introduced a new level of mathematical

rigour into the description of turbulent flows which culminated a decade later

in the work of Kolmogorov and Heisenberg, who produced an analytical theory

of the inertial subrange [41; 55; 66].

The Kolmogorov-Heisenberg (KH) model was the first to provide a universal

closure for the turbulent energy spectrum. The KH model has received exten-

sive experimental verification [3; 63; 50; 98; 137] and is now widely regarded as

one of the great milestones in the history of turbulence modelling. However,

due the assumptions inherent in its construction, the KH model is necessarily

valid only in a limited range of the energy spectrum of the flow known as the

inertial subrange. This region is characterized by eddies that evolve freely and

are thus insensitive to the detailed physical mechanisms that generate the tur-

bulence and also to the processes that ultimately dissipate the energy of the

eddies. It also does not take into account the backscattering of energy from

smaller to larger scales. Its inability to describe the generation of the large

eddies renders the KH model incapable of capturing fully the dynamics of the

bulk flow which determines large-scale properties such as the convective heat

flux.

To describe accurately the behaviour of astrophysical fluids, in which the ef-

fects of large-scale turbulence (LST) are most important, one needs a model

of turbulence that incorporates a more complete description of the large eddy

spectrum than is given by the KH model.
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There are several ways in which one can attempt to construct LST models.

For example, there is the formal, first principles approach, which attempts to

treat analytically the non-linear nature of the NSE. Perhaps the most signifi-

cant example of such a model is, the Direct Interaction Approximation (DIA)

[67; 68; 69; 72], introduced by Kraichnan in the early 1960’s. The DIA is

arguably the most sophisticated model of fluid turbulence to have been devel-

oped using the eddy viscosity concept. It was formulated using the language of

quantum field theory, and provides an advanced theoretical framework, free of

ad hoc parameters, within which the properties of inhomogeneous anisotropic

turbulence can be studied. This model is directly applicable to LST and also

provides a method for treating the effects of non-local interactions in the fluid

[71].

The DIA has given rise to a host of related models which are similar to it

in structure. The most well known examples of such models are the Eddy

Damped Quasi-Normal Markovian (EDQNM) model [81; 102] and the Test

Field Model (TFM) [70], both of which simplify the full DIA theory with a

view to obtaining a more tractable treatment of the turbulence problem.

The above models are categorized in the field of turbulence modelling as, two-

point closure models. The term two-point closure refers to the fact that they

deal with the correlation of fluid elements at two points in space (or two

wavenumbers in Fourier-space). Due to the strong theoretical framework on

which these models are based, they are capable of providing significant insights

into the nature of turbulence and its interaction with the surrounding medium.

However, these theories are often difficult to implement numerically. They are

also computationally intensive. Depending on the strength of the turbulence

of a given flow, the time required to generate a numerical solution of the model

equations may be impractical. In fact, it was not until the work of Canuto and

Mazzitelli [22] that the DIA/EDQNM model, was applied to the computation
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of convective turbulence in stars.

To find middle ground between the theoretical sophistication of two-point clo-

sure models and the numerical limitations of one-dimensional stellar evolution

codes, there is a second approach that can be taken. This approach involves

providing a closure to the fluid equations by using phenomenological argu-

ments that relate the eddy viscosity to other known or calculable quantities

of the fluid. Models of this type typically rely on spectral descriptions of the

turbulent flow field, and thus provide a natural framework for extracting in-

formation about the energetics of the flow. Furthermore, these models are

significantly simpler to use and to implement numerically than are the DIA

and its derivatives. This makes them ideal candidates for the description of

stellar convection.

Analysis and evaluation of these types of models are the principal concern of

this thesis, and I will discuss the benefits of using them in studies of stellar

structure and evolution. It will be shown that, when applied to the description

of convective turbulence, this class of models represents a significant improve-

ment over the MLT, which fails to capture in a realistic way the dynamics of

the eddy interactions that are known to occur in a turbulent fluid.

1.3 Outline of thesis

In addition to MLT, I will discuss in detail the following models of convection:

1. The Canuto and Goldman (CG) model [17].

2. The Canuto, Goldman and Chasnov (CGC) model [21].
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3. The Canuto, Goldman and Mazzitelli (CGM) model [23].

I will present a thorough theoretical analysis of each of the above models, de-

riving and interpreting all of the major results and identifying the key elements

required for an understanding of their predictions. I will then compare these

models to one another, and to the MLT, in the context of convective turbulence

in stars. This comparison will show that the predictions of the MLT are in

severe disagreement with those made by more advanced models of convective

turbulence. I will then report on my implementation of these models in the

MESA code [106; 107; 108], and on the results of the numerical experiments

that I have run. These results confirm quantitatively the disagreements in-

ferred from the theoretical comparison.

The material in this thesis is structured as follows. In Chapter 2, I develop

the theoretical framework required for a complete understanding of the mod-

els listed above. The fundamental aspects of spectral closure modelling for

turbulent flows will be developed and discussed in detail in this chapter.

In Chapter 3, I provide a comprehensive discussion of the CG model of large-

scale turbulence and show how this model improves in several ways on the

shortcomings of the KH model. It will also be shown in this chapter that the

MLT can be derived from the general equations of the CG model, when certain

assumptions about the nature of the fluid are made.

Chapter 4 consists of a detailed theoretical analysis of the CGC model, which

is in many ways an advanced extension of the CG model. I discuss the form

of the CGC closure and show how this closure enables the model to naturally

treat the physics of the entire eddy spectrum, including the region character-

ized by small-scale turbulence (SST). The CGC model also provides a unique

method for determining the growth rates of the turbulence generating insta-
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bilities from within the model itself. This remarkable aspect of the model is

discussed in significant detail.

In Chapter 5, I consider the shortcomings of the MLT when applied to the

description of stellar convection. I compare and contrast the flux predictions

of the MLT with those of the models previously discussed, and show that

the MLT makes an unphysical assumption about the nature of the turbulent

energy spectrum. It will be shown in this chapter that, depending on the effi-

ciency of the convective process, the MLT provides an extremely poor estimate

of the convective heat flux.

Chapter 6 considers the CGM model of stellar convection. It will be shown

that this model utilizes the framework of the CGC model to produce a flux

equation that accounts for the full spectrum of fluid turbulence. This chapter

also considers briefly the Canuto and Mazzitelli (CM) [22] model of stellar

convection which, unlike the CG, CGC and CGM models, is based on the

DIA/EDQNM treatment of the turbulence problem. The flux predictions of

the CGM and CM models are also compared against those of the MLT.

In Chapter 7, I discuss the application of the CM and CGM models to sim-

ulations of stellar structure and evolution. As part of this work, numerical

implementations of the above models were developed within the context of the

Modules for Experiments in Stellar Astrophysics (MESA) code [106; 107; 108].

The results of a set of numerical experiments performed using this imple-

mentation are reported. It will be shown in this chapter that the previously

discussed shortcomings of the MLT have important consequences on the pre-

dictions made by numerical simulations of stars. Several differences between

the MLT, CM and CGM models are illustrated in this chapter via a set of

evolutionary diagrams that were produced using the MESA code.
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Finally, in Chapter 8 I conclude with a discussion of the implications of the

analyses presented in this thesis, and discuss how the work detailed in it can

be developed in future work.



Chapter 2

Theoretical Framework

“The smallest eddies are almost numberless, and large things are

rotated only by large eddies and not by small ones, and small

things are turned by small eddies and large.”

- Leonardo Da Vinci [91]

2.1 Introduction

In this chapter I consider the theoretical framework within which phenomeno-

logical closures of the turbulent energy spectrum are developed.

I begin with a discussion of the factors which determine the dynamics of the

eddies in key sectors of the turbulent energy cascade, and focus in particular

on the differences between the large-scale and dissipation regions of the flow.

In sections 2.2.1 and 2.2.2, I relate the non-linear transfer of energy in the

cascade to the action of the eddy viscosity, and define the closure problem as

being equivalent to one of determining the form of the eddy correlation rate,

nc(k).

12
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In section 2.3, I discuss the physics underlying the KH model of the inertial

subrange, and consider the limitations of this model in the context of large-

scale turbulence.

A discussion of the generalized form of the energy equation is provided in sec-

tion 2.4, where it is noted that its formulation in terms of the source growth

rate allows for the incorporation of different physical processes in models of

turbulence which aim to treat the LST sector of the spectrum.

I then derive, in section 2.5, the general expression for νt(k) in terms of nc(k),

and then use this expression to comment on the balance of rates in a turbulent

fluid.

Finally, section 2.6 contains a summary of the general procedure for determin-

ing the form of the turbulent energy spectrum. This procedure will be used in

subsequent chapters within the context of several models of turbulence that

provide better descriptions of convection than the MLT.

2.2 The turbulent energy spectrum

The largest eddies in a turbulent fluid are in general created as a result of an

instability in the system which generates and maintains the turbulent state.

The dynamics of these eddies is sensitive to the details of the physical process

that causes the instability. Since there are an infinite number of ways in which

a fluid instability can be created, spectral descriptions of these kinds of eddies

do not in general exhibit any significant degree of universality.

The energy fed into the large eddies by the instability that generates them,

(hereafter referred to as the source instability), is “cascaded” across a distri-
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bution of eddy sizes until the Kolmogorov scale is reached. Eddies evolving at

this length scale are the smallest ones present in the system. The dynamics

of this region of the flow is almost entirely determined by the action of the

molecular viscosity in the fluid, which causes the turbulent energy that was

once fed into the system at the largest scales to be dissipated.

In order to study how the input energy is distributed across the various eddies

in the cascade, one defines a spectral function for the turbulent energy, F (k),

by the equation,

〈u2〉 =

∫ ∞
k0

F (k)dk (2.2.1)

where u is the turbulent velocity, k is the wavenumber, and the angular brack-

ets, 〈·〉, denote an ensemble average. The eddy size, lk, is related to k via the

formula lk = π/k. The wavenumber, k0, is therefore defined as the minimum

value of k (and hence the maximum value of lk) permitted by the system ge-

ometry.

The calculation of F (k) is one of the primary objectives of any model of fluid

turbulence. Its determination enables the calculation of several important

properties of the flow which are of interest in stellar modelling. In this thesis,

we will focus on the use of F (k) to determine the convective heat flux in the

stellar interior.

2.2.1 The energy equation

For the second order moment of the fluctuating velocity field, it has been shown

that1 [3],

1By an abuse of notation we have not distinguished the variable of integration from its
value in the upper limit, this appears to be standard in the literature on the subject and is
a convention which I have adopted in the rest of this thesis.
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Figure 2.1: Plot of logF (k) vs log k. [77]

ε(k) =
[
ν + νt(k)

] ∫ k

k0

k2F (k)dk (2.2.2)

where ε(k) is the energy (per unit time, per unit mass) delivered to the fluid at

wavenumber k, ν is the molecular viscosity, and νt(k) is the turbulent viscosity.

According to this equation, part of the turbulent kinetic energy fed into the

system at wavenumber k, is converted into heat energy by the molecular vis-

cosity, ν, and the remaining part is redistributed to eddies at wavenumbers

larger than k, via non-linear interactions in the fluid.

In his seminal work on turbulent flows, Heisenberg proposed that the non-

linear transfer be considered as a process consisting of two parts [55]: (1) the

extraction of energy from the interval (k0, k), and (2) the redistribution of this

extracted energy into the interval (k,∞). Heisenberg viewed process (2) as

being the result of a turbulent viscosity, νt(k), exerted by the (k,∞) eddies on

the (k0, k) eddies.



CHAPTER 2. THEORETICAL FRAMEWORK 16

The non-linear transfer of energy inherent in equation (2.2.2) is thus described

by the product of two terms which correspond to processes (1) and (2) respec-

tively, ie.

(∫ k

k0

k2F (k)dk

)
νt(k) (2.2.3)

where νt(k) must be of the form

νt(k) =

∫ ∞
k

Ψ(k)dk (2.2.4)

This suggests that the turbulent viscosity exerted on eddies in the interval

(k0, k) must be built up from contributions made by all eddies with wavenum-

bers larger than k.

It is important to note that the turbulent viscosity transfers energy from low to

high wave numbers in a non-dissipative manner. Unlike the molecular viscosity,

it does not convert any of the turbulent kinetic energy present in the system

into heat energy. This can be seen by integrating equation (2.2.2) from k0 to

∞ to get,

ε = ν

∫ ∞
k0

k2F (k)dk (2.2.5)

Note that the turbulent viscosity is no longer present in this equation. This

is consistent with the notion that the non-linear interactions describe a non-

dissipative process.

Equation (2.2.5) states that, globally, energy in the fluid is conserved, ie. the

energy fed into the fluctuating velocity field by the source instability is com-

pletely dissipated by the action of viscous forces at a molecular level.
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2.2.2 The closure problem

To solve for F (k) in equation (2.2.1), one needs first to specify the function

Ψ(k). Therefore, the closure problem described in section 1.1 is, in k-space,

equivalent to providing an analytic expression for Ψ(k). Accordingly, this is

known as a “closure” relation.

It will be shown in section 2.5, that in general,

Ψ = Ψ(k, F (k), nc(k)) (2.2.6)

where nc(k) (which has the dimensions of inverse time) is the eddy correlation

rate. The determination of nc(k) is the chief difficulty in the development of

a closure model for the turbulent energy spectrum. The reason for this lies

in the fact that the non-linear transfer, which is characterized by nc(k), does

not appear to arise from a universal law which is valid throughout the entire

k-space.

2.3 The Kolmogorov-Heisenberg (KH) model

2.3.1 The KH closure

Early attempts at providing a closure relation for Ψ(k) were restricted to a

specific region in k-space known as the inertial subrange. Eddies propogating

in this wavenumber region have been formed as a result of several cascades

of energy, and are sufficiently detached from the k0 part of the spectrum that

their evolution is independent of the precise details of the source instability.

The only remnant of the stirring mechanism still felt by these eddies is the

total input energy, ε. They are also sufficiently distant from the Kolmogorov

microscale that the molecular viscosity does not affect their dynamics. Eddies

in the inertial subrange are therefore freely evolving due to their distance (in
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k-space) from both the input and dissipation length scales.

The only dimensionally correct expression for nc(k) that conforms to the above

restrictions on the eddy type is,

nc(k) ≈ k3/2F 1/2. (2.3.1)

This is sufficient to fix the form of Ψ(k) in the inertial region as,

Ψ(k) = γF 1/2(k)k−3/2 (2.3.2)

where γ is a coupling constant which can either be determined experimen-

tally, or theoretically via the normalization of the mean-square vorticity (as

discussed in section 4.2.1).

Under these assumptions, equation (2.2.1) can be solved for F (k) to get [3],

F (k) =

(
8ε

9γ

)2/3

k−5/3

= (Ko) ε2/3k−5/3 (2.3.3)

and

νt(k) = ξνlll (2.3.4)

where ξ = γ
√

3 /4π, and Ko in equation (2.3.3) is the Kolmogorov number.

An important feature of the above expression for the energy spectrum is that

its slope is independent of details of the turbulence generating mechanism.

This lack of dependence on ns(k) gives the closure a universal characteristic.

It is important to note, however, that this universality is a direct consequence

of the assumptions inherent in its construction.
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This phenomenological model of fluid turbulence is due to the work of both

Kolmogorov [66] and Heisenberg [55] (KH), who developed the theory indepen-

dently of each other in the mid to late 1940’s. It is considered to be one of the

great milestones in the history of turbulence modelling due to its experimental

verification in laboratory studies of high wavenumber turbulence [3; 63; 137].

2.3.2 Limitations of the KH model

For several decades since its inception, the KH model was the only predictive

theory of turbulence available to researchers. For lack of a better alternative,

ad hoc adaptations of this model have often been used in the analysis of as-

trophysical systems [85; 135]. However, the assumptions used to construct the

KH model limit its range of validity to a region of the k-space which is not pop-

ulated by the large-scale eddies of interest in astrophysics. In particular, the

absence of the source details from the KH closure make it unsuitable for stud-

ies of LST where source driven effects, such as buoyancy, are of key importance.

However, the experimental verification of the KH spectrum for the inertial

subrange [50; 98] suggests that any proposed closure relation for nc(k) must

be capable of reproducing the form of (2.3.1) in that region of the cascade.

2.4 Generalized form of the energy equation

In order to develop a turbulence model capable of treating the entire spectrum,

one needs to establish an expression for ε(k) that incorporates the effects of

different instabilities on the energetics of the flow. Such an expression has been

derived by Ledoux, Schwarzschild and Spiegel [85], who have shown that,

ε(k) =

∫ k

k0

[
ns(k) + νk2

]
F (k)dk (2.4.1)

where ns(k) is the growth rate of the source instability. The dependence of
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this equation on ns(k) allows it to encapsulate the net effect of buoyancy, vis-

cosity, conduction, rotation, and magnetic fields on the energetics of the flow.

Unlike the eddy correlation rate, ns(k) can be resolved using the linear theory

[29][112], and is a direct measure of the energy per unit time which must be

supplied to the system in order to sustain the turbulence.

Combining equations (2.2.2), (2.2.4) and (2.4.1) results in the following equa-

tion for F (k),2

∫ k

k0

ns(k)F (k)dk =

∫ ∞
k

Ψ(k)dk

∫ k

k0

k2F (k)dk (2.4.2)

The left hand side of equation (2.4.2) represents the net energy delivered to

the fluid, in the interval (k0, k), by the instability described by ns(k).3

The right hand side of (2.4.2) represents the net loss of source energy from the

interval (k0, k) and its redeposition into the the interval (k,∞) as a result of

the non-linear interactions in the fluid.

2.5 The turbulent viscosity

The physical interpretion of the non-linear transfer as a two part process,

implies that

νt(k) =

∫ ∞
k

Ψ(k)dk =

∫ ∞
k

ν
(k)
t

k
dk (2.5.1)

where ν
(k)
t is the turbulent viscosity imposed on the unit interval (k−dk, k+dk).

2A complete derivation of this equation starting from the NSE can be found in [85].
3Note that the molecular viscosity in equation (2.4.1) has been absorbed into ns(k) in

equation (2.4.2).
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Providing a closure relation for Ψ(k) is therefore equivalent to determining the

form of ν
(k)
t , which is a priori unknown.

Studies of large scale turbulence in astrophysical systems require knowledge

of ν
(k)
t in the interval (k0,∞) ie. throughout the entire k-space. This makes

the determination of ν
(k)
t a formidable task compared to, say, studies of the

inertial subrange, where one only needs knowledge of ν
(k)
t in a limited region of

the spectrum. However, a guiding principle here lies in the fact that regardless

of the exact form of νt(k), we must have from equation (2.4.2) that,

νt(k0) =
ns(k0)

k2
0

(2.5.2)

Equation (2.5.1) may therefore be written as

νt(k) = νt(k0)−
∫ k

k0

ν
(k)
t

k
dk (2.5.3)

This simplifies matters considerably since we now only require the form of

ν
(k)
t in the interval (k0, k). Furthermore, equation (2.5.3) provides one with

a unique means of checking the proposed form of ν
(k)
t , since equation (2.5.2)

must be satisfied by any expression for ν
(k)
t that is to be valid in the range

(k,∞).

Turning now to the issue of constructing an expression for ν
(k)
t , we begin by

noting that in general,

ν
(k)
t = dkuk =

[
n−1
c (k)

]
u2
k =

kF (k)

nc(k)
(2.5.4)

where dk is the mean free path of the eddy at k, and n−1
c (k) is the eddy cor-

relation time.
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Substituting equation (2.5.4) into equation (2.5.1) gives us the general expres-

sion for νt(k) in terms of nc(k),

νt(k) =

∫ ∞
k

F (k)

nc(k)
dk (2.5.5)

Thus, as alluded to in section 2.2.2, in order to calculate νt and hence F (k)

via equation (2.4.2), we need to specify the rate nc(k), which governs the non-

linear energy transfer in the cascade.

As an illustrative example, consider the inertial subrange. Since eddies in this

region evolve freely, we have that dk = lk ≈ k−1. Equation (2.5.4) then gives

nc(k) ≈ (k3F )1/2. Solving for F (k) with this choice of nc(k) results in the

famous KH spectrum, FKH ≈ k−5/3.

The form of nc(k) used to calculate the energy spectrum in the KH model,

will of course need to be adjusted for studies of LST. In the k ≈ k0 region,

where the nature of the source dominates the evolution of the large eddies,

the eddy correlation rate must in some way depend on the growth rate of the

source instability. It will be shown that closure relations which can account

for this dependency, allow for the natural inclusion of compressiblity effects

such as buoyancy within the model. The adaptation of these types of models

to astrophysical systems is one of the primary concerns of this thesis, and will

be elaborated in subsequent chapters.

2.5.1 The balance of rates

Differentiating equation (2.4.2) and substituting equation (2.5.5) into the result

gives,

ns(k) + y(k)n−1
c (k) = k2νt(k) (2.5.6)
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where

y(k) ≡
∫ k

k0

F (k)k2dk (2.5.7)

is the mean-square vorticity.

Equation (2.5.6) has the following physical interpretation: The rate at which

energy is delivered to k (via the source and cascade) must be equal to the rate

at which it is transferred out of k (via non-linear interactions in the fluid).

This equation therefore describes the balance between the rates which govern

the dynamics of the turbulent energy cascade. It is one of the basic equations

of the closure models discussed in this thesis.

Taking the derivative of equation (2.5.6) and substituting the definitions of

νt(k) and y(k) given by equations (2.5.5) and (2.5.7) respectively, results in

the following differential equation for the mean-square vorticity,

(
2

nc(k)k2

)
d

dk

[
y(k)

]
+ y(k)

d

dk

[
1

nc(k)k2

]
+

d

dk

[
ns(k)

k2

]
= 0 (2.5.8)

Since y(k) and F (k) are directly related to each other (via equation (2.5.7)),

the above equation, in principle, provides one with a means of determining the

structure of the turbulent energy spectrum if one has knowledge of both the

eddy correlation and source growth rates. However, since ns(k) is assumed to

be a known or calculable quantity, the only ingredient required for the solution

of F (k) from equation (2.5.8), is nc(k). This equation therefore serves to em-

phasise the fact that the calculation of the turbulent energy spectrum depends

entirely on the determination of the eddy correlation rate, which defines the

closure problem in k-space.
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Assuming that a satisfactory closure model for nc(k) has been developed, one

of course still needs to specify boundary conditions for equation (2.5.8) in order

to solve for y(k), and hence F (k). It will be shown in sections 4.3.1 and 4.4

that the specification of these boundary conditions requires knowledge of the

structure of the eddy anisotropies expected to occur in the LST sector of the

spectrum.

2.6 Calculating the turbulent energy

spectrum

With the aid of equation (2.5.5), equation (2.4.2) can now be rewritten in

terms of nc(k) as,

∫ k

k0

ns(k)F (k)dk =

∫ ∞
k

F (k)

nc(k)
dk

∫ k

k0

k2F (k)dk (2.6.1)

This is the general form of the non-linear energy equation from which the

turbulence spectrum can be calculated. It is important to note that, as with

equation (2.5.8), F (k) is completely determined by the above equation once

the rates ns(k) and nc(k) have been specified.

To summarize, the general procedure for calculating the turbulent energy spec-

trum, F (k), is as follows:

1. Construct a closure model for turbulent viscosity, νt(k).

This amounts to prescribing a method for relating the eddy correlation

rate, nc(k), to other known or calculable quantities in the problem of

interest. The phenomenology used to construct the closure model deter-

mines the regions of the energy spectrum which it is capable of treating,
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and hence its applicability to different fluid systems.

For example, in the CG model turbulence [17], it is assumed that n−1
c (k) ∝

n−1
s (k). The form of this closure makes the CG model ideal for studies

of large-scale turbulence but unsuitable for studies of the dissipation re-

gion where the eddy dynamics are insensitive to the precise details of the

source instability.

2. Determine the form of ns(k) relevant to the problem of interest.

Different physical processes will in general give rise to different types

of fluid instabilities. This makes the form of ns(k) problem dependent.

Once these processes have been identified for a given problem, ns(k)

can, for example, be approximated via a linear mode analysis of the

fluid equations.

According to this analysis, the general form of the dispersion equation

satisfied by ns(k) for a rotating fluid undergoing thermal convection in

the presence of a magnetic field is [29],

[(
ns + χk2

) (
ns + νk2

) (
ns + ηk2

)
+

µ

4πρ

(
ns + χk2

)
(k ·B)2−

gαβ

(
k2
x + k2

y

k2

)(
ns + ηk2

)][(
ns + ηk2

) (
ns + νk2

)
+

µ

4πρ
(k ·B)2

]

+4
(
ns + χk2

) (
ns + ηk2

) (k · Ω)2

k2
= 0

(2.6.2)
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where χ is the thermometric conductivity, η is the magnetic diffusivity,

µ is the permeability, ρ is the average density of the fluid, k = (kx, ky, kz)

is the wavevector, B is the magnetic field, g is the acceleration due to

gravity, α is the coefficient of thermal expansion, β is the superadiabatic

temperature gradient, and Ω is the angular velocity. Note that the ar-

gument of ns(k) has been dropped in the above formula for the sake of

readability.

For the specific case in which Ω = 0 and B = 0, equation (2.6.2) reduces

to,

ns(k) = −1

2
(ν + χ) k2 +

1

2

[
(ν − χ)2 k4 + 4gαβ

(
k2
x + k2

y

)
k2

]1/2

(2.6.3)

In this case, ns(k) corresponds entirely to the buoyancy forces present in

the fluid. We will return to this equation when calculating the convective

heat flux in section 3.5.

It is worth noting here that several closure dependent alternatives to

the linear theory exist [18; 21]. For example, Canuto and Battaglia

[18] have proposed an inversion method, for the CG model of turbulence

[17], which allows one to extract information about the structure of ns(k)

from observational data. Their method has been successfully applied to

the description of source instabilities in molecular clouds [18], and can

be generalized to any fluid system where one can obtain velocity data

of a specific type. The details of this method are discussed in section 3.6.

Furthermore, CGC [21] have also developed a self-consistent method for

determining the form of ns(k) from within the turbulence model itself.
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This approach, which forms the basis of the CGM model of stellar tur-

bulence [23], will be discussed in detail in section 4.4.

3. Substitute the chosen expression for ns(k) and the closure rela-

tion constructed for nc(k) into either equation (2.6.1) or equation

(2.5.8), and solve for F (k).

This will result in an expression for F (k) from which several quantities

of interest can be calculated. For example, assuming that one has been

able to construct a closure model capable of probing the LST region of

the spectrum, bulk properties of the flow can be directly calculated from

the model once the form of the spectrum has been obtained using the

above procedure.

An example of a bulk quantity that is important in stellar astrophysics,

and to which we will devote several chapters, is the convective heat flux,

Hc. The general expression for Hc is given by,

Hc = cpρβχΦ (2.6.4)

where where cp is the specific heat at constant pressure, and

Φ =
1

gαβχ

∫ ∞
k0

[
ns(k) + νk2

]
F (k)dk (2.6.5)

=
ε

gαβχ
(2.6.6)

Since the above expression for Φ depends only on F (k) and ns(k) for its

determination (g, α, β, χ, and ν are assumed to be known), Hc can be
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directly calculated via the aforementioned procedure. A detailed deriva-

tion of equations (2.6.5) and (2.6.6) is provided in Appendix A.

Prior to the publication of the CGM model of convective turbulence

[23], calculations of Φ, and hence of Hc, in stellar interiors, relied almost

exclusively on (i) the linear theory for the specification of ns(k), via equa-

tion (2.6.3), and implicitly on (ii) the MLT for the specification of F (k).

These two aspects of the canonical convective flux calculation in stellar

astrophysics will be discussed in detail in this thesis. In particular, I

will provide a thorough theoretical analysis of the shortcomings of the

current treatment of convection in stellar interiors within the context of

these two points. I will also discuss more advanced models of turbulence

than the MLT which are capable of circumventing these shortcomings.



Chapter 3

The CG Model

3.1 Introduction

In studies of astrophysical turbulence, one is typically interested in the calcula-

tion of the bulk properties of the flow [37; 40]. Examples of such properties are:

the energy fluxes associated with different heat transfer mechanisms, velocity

and temperature fluctuations, and the turbulent transport coefficients. These

quantities are determined by the large-scale eddies which carry a significant

portion of the energy present in the system. Since these eddies depend on the

nature of the instability generating the turbulence, one can no longer use the

KH model to study their dynamics [16; 120]. This is due the fact that the KH

model is limited to the inertial region of the spectrum, and is insensitive to

the details of the stirring mechanism.

In order to develop a model of turbulence which is capable of describing the

LST region of the spectrum, one has to abandon the KH restrictions on the

eddy type and construct a new closure relation for the nonlinear interactions.

This closure must allow for the probing of the k ≈ k0 part of the k-space if it

is to be applicable to fluids where LST is important. Such a model has been

proposed by Canuto and Goldman (CG) [17].

29
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The nature of the closure used in the CG model of turbulence allows for

F (k) to be calculated analytically in terms of ns(k). Since, in the CG model,

F = F (ns(k), k) (as opposed to F = F (k) in the KH model), all of the phys-

ical effects associated with the source instability are naturally incorporated,

making it ideal for studies of the large-scale properties of astrophysical fluids.

The CG model is phenomenological in nature, however, it is important to

note that Hartke et al. [53; 54] were also able to derive the CG closure from

Kraichnan’s DIA [67; 68; 69]. The fact that the CG closure can be recovered

from a fully predictive, theoretical model such as the DIA, serves as a strong

justification of the phenomenology used in its the construction.

The CG model compares well with data from both laboratory and astrophysi-

cal studies of turbulent convection [17; 87; 95; 100]. A brief summary of these

tests and applications is contained in section 3.7. It will also be shown in

section 3.5 that the model predicts the exact form of the MLT expression for

the convective heat flux. This is remarkable in and of itself since, prior to the

publication of the CG model, no record existed in the literature of a derivation

of the MLT flux equation from a general model of fluid turbulence.

Lastly, Canuto and Battaglia [18] have also provided a “retrieval method”

whereby the form of ns(k) can be recovered from within the CG model, if one

has knowledge of the structure of F (k) at the start of a given problem. This

is of particular importance in several types of astrophysical problems, such as

molecular clouds, where one is often uncertain of the precise nature of the in-

stability responsible for the turbulence. An outline of the method is discussed

in section 3.6.
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3.2 The KH model and LST

We begin by motivating the need for a replacement of the KH model with an

improved model of turbulence that is tailored to LST and hence by implica-

tion to astrophysical fluid turbulence. To illustrate the shortcomings of the

KH model in studies of LST, we consider here two examples of astrophysical

systems where large-scale turbulence is known to occur. These are, molecular

clouds, and stellar interiors. It will be shown that, when applied to the de-

scription of molecular clouds, the KH model leads to unphysical results, and,

when applied to stellar convection, the KH model produces results that are in

severe disagreement with the canonical MLT.

3.2.1 Turbulence in molecular clouds

Molecular clouds (MCs) are known to be regions of pronounced star formation

that exhibit a high degree of fluid turbulence during a significant portion of

their evolution [75; 88]. The determination of the distribution of turbulent

kinetic in these systems has been the principal concern of several research en-

deavours [35; 36; 56]. However, early studies of the turbulence in these systems

depended primarily on SST models which were in some way based on the KH

model. As a result, these early models failed to capture several important

large-scale effects, such as the cloud core formation. In this section I show

how the KH model, when applied to the description of MCs, fails to predict

correctly the form of the source instabilities that dictate their evolution.

Studies of the velocity-size relationship of MCs [59; 86] have in the past pre-

dicted that,

u(lc) = u0

√
lc/l0 (3.2.1)

where u0 ≈ 1km.s−1 and l0 ≈ 1pc. The use of equation (3.2.1) in equation
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(2.2.1) results in the following power law for the turbulent energy spectrum,

F (k) ≈ k−2 (3.2.2)

Substituting equations (3.2.2) and (2.3.4) into equation (2.4.2) results in the

following prediction of the form of ns(k) for this type of system,

ns(q) ≈ q−1/2(1− q/3) (3.2.3)

where q = k/k0.

However, detailed studies of the instabilities believed to be present in molecular

clouds have shown that the growth rate represented by equation (3.2.3) is

inapplicable to MCs [34]. As an example of one such instability, consider the

Rayleigh-Taylor (R-T) instability. A detailed calculation of the growth rate

associated with this type of instability can be found in [29]. Figure (3.1) shows

the behaviour of the growth rates associated with the R-T instability for two

cases of interest in studies of molecular clouds (B ‖ g and B = 0), versus the

behaviour of the instability predicted by the KH model. This figure illustrates

the fact that the growth rate predicted by KH model is a crude and inaccurate

representation of the actual turbulence generating mechanisms expected to be

present in molecular clouds.

3.2.2 Turbulence in stellar interiors

In this section, we will consider the differences in the energy fluxes predicted

by the MLT and KH models when applied to stellar convection.

Stellar interiors are known to be highly turbulent [128]. The Sun, for example,

is predicted to have a Reynolds number (Re) of approximately 1013 at the base

of the solar convection zone [103], which is several orders of magnitude higher
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Figure 3.1: Plot of ns(k) vs k. The curve labelled KH corresponds to the
growth rate predicted by the Kolmogorov-Heisenberg model. The curves la-
belled R-T (B = 0) and R-T (B ‖ g) correspond to the growth rate of a
Rayleigh-Taylor type instability in the absence of a magnetic field, and where
the magnetic field is parallel to the direction of the gravitational acceleration,
respectively. (Adapted from [16]).

than the most turbulent terrestrial fluids [136].

In the absence of a detailed model of stellar turbulence, studies of energy trans-

port in the stellar interior have typically relied on the MLT for the calculation

of the convective heat flux. According to this theory, the (dimensionless) con-

vective heat flux, Φ, depends on the efficiency of convection, S, in the following

way [132] ,

ΦMLT = AS2, (S � 1) (3.2.4)

ΦMLT = B
√
S , (S � 1) (3.2.5)

where A and B are constants which can be determined via a calibration of the

MLT in a stellar model. The efficiency parameter, S, is defined by,

S = gαβl4χ−2 = σR (3.2.6)
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where l is the mixing length, σ = ν/χ is the Prandtl number, and R =

gαβl4 (νχ)−1 is the Rayleigh number.

Using a solar model, Gough and Weiss [47] performed a calibration of the mix-

ing length, and calculated that A = 1.84× 10−4 and B = 0.214. (See Table I

of [47])

Predictions of the convective flux using the KH model have also been per-

formed by Ledoux, Schwarzschild and Spiegel [85] and Yamaguchi [135].

For S � 1, it was shown in [85] that,

ΦLSS =

(
δ8

16π10γ2

)
S2, (S � 1) (3.2.7)

While for S � 1, it was shown in [135] that,

ΦY =

(
3.2δ2

4γ2

)
S1/2, (S � 1) (3.2.8)

where δ = 8π4/R, and the coupling constant, γ, was determined from experi-

mental data to be approximately equal to 1
3
.

If one now matches the KH results in equations (3.2.7) and (3.2.8) to the MLT

in the low efficiency regime (ie. S � 1), it is found that δ = 1.53. Equation

(3.2.7) then implies that A ≈ 17, which is an order of magnitude higher than

the result in [47].

Similarly, if one matches the KH results to the MLT in the high efficiency

regime (ie. S � 1), it is found that δ = 0.17. Equation (3.2.8) then implies

that B ≈ 4×10−11, which is several orders of magnitude lower than the result
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in [47].

A comparison of the aforementioned flux calculations is shown in figures 3.2

below, where it can be seen that the KH model is incapable of consistently

reproducing the form of the MLT flux throughout the entire efficiency space.

(a) (b)

Figure 3.2: Plots of (Φ/A) vs S for (a) S � 1 and (b) S � 1. The curves la-
belled MLT correspond to the results of [47], while the curves labelled LSS and
Yamaguchi, correspond to the results of [85] and [135] respectively. (Adapted
from [16]).

One evidently has the option of either accepting the MLT results as being the

correct representation of convective flux and discarding the KH model as being

inapplicable to stellar interiors, or calling into question the MLT itself. This

is a difficult assessment to make since, owing to its purely phenomenological

derivation, the MLT does not provide any physical insight into the nature of

the turbulence spectrum which it implicitly assumes. Furthermore, since the

KH model is not directly reducible to the MLT, a comparison of the two con-
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vection treatments is a non-trivial task. One would first need to deduce the

form of F (k) within the MLT treatment of convection and then compare the

result against equation (2.3.3) for the KH spectrum, in the σ � 1 limit, in

order to determine which of the two models provides a more accurate repre-

sentation of the convective heat flux in the stellar interior. This analysis will

be performed in section 5.2. For now, we will simply note that the fact that

the canonical MLT flux equation cannot be directly recovered from the KH

model is likely to be the reason why the KH model has been almost entirely

ignored in studies of stellar structure and evolution.

In summary, the KH model has been shown to be unsuitable for description of

large-scale turbulence in molecular clouds, and incapable of reproducing the

predictions of MLT in stellar interiors. The inadequacy of the KH model when

applied to astrophysical systems and LST in general, can be understood in

terms of the fact that it was originally designed to treat only a limited region

of the turbulence spectrum. In the absence of an extended inertial subrange,

which is typical only of low viscosity systems, the KH model is bound to make

predictions regarding the properties of the bulk flow which are in disagreement

with observational data. One therefore needs a new model of turbulence which

is capable of adequately describing the LST region of the spectrum. The CG

model is one such example.

3.3 The CG closure

To provide a closure for νt(k), CG began by noting that the formation of

eddies in the k ≈ k0 region of the spectrum is due almost entirely to the

growth of the source instability. Once formed, nonlinear interactions in the

fluid result in the fragmentation of these eddies into progressively smaller ones.

Since these interactions are non-dissipative in nature, the generation of eddies

in this region of the k-space should be at an optimum when the timescale
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describing the input energy from the source matches the timescale describing

their fragmentation ie. when ns(k0) ∝ nc(k0). CG applied this hypothesis to

the entire LST region to derive the following expression for nc(k),

nc(k) =
ns(k)

ns(k0)
nc(k0) ≡ γ−1ns(k) (3.3.1)

It is important to note that this expression is, by virtue of its construction,

only valid in the LST portion of the energy spectrum where ns(k) is by defi-

nition positive. We therefore expect the form of F (k) predicted by this model

to also only be valid in the LST region. This will be shown in section 3.4.

With the aid of equations (2.5.4) and (3.3.1), equation (2.5.3) can now be

rewritten as,

νt(k) = νt(k0)− γ
∫ k

k0

F (k)

ns(k)
dk (3.3.2)

where νt(k0) = n(k0)/k2
0

In order to complete the expression for νt(k), one needs to specify the coupling

constant γ. It can be seen from equations (2.5.4) and (3.3.1), that this is

equivalent to providing an expression for d(k0). CG noted that, for LST, a

natural first choice is to equate d(k0) to the longitudinal integral length scale,

Lp, where [102]

Lp =
3π

4

(∫ ∞
k0

F (k)k−1dk

)(∫ ∞
k0

F (k)dk

)−1

(3.3.3)

This results in the following expression for γ,

−2ns(k0) =
γk0

L2
p

d

dk

(
ns(k)

k2

) ∣∣∣∣
k=k0

(3.3.4)
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which is sufficient to complete the closure and allow us to rewrite (2.6.1) as

∫ k

k0

ns(k)F (k)dk =

(
νt(k0)− γ

∫ k

k0

F (k)

ns(k)
dk

)∫ k

k0

k2F (k)dk (3.3.5)

Equation (3.3.5) is the closed form of equation (2.6.1) in the CG model of tur-

bulence. It has the remarkable feature that it’s solution depends only on the

growth rate of the instability generating the turbulence. Since this growth rate

is assumed to be a known quantity, one can use equation (3.3.5) to generate

an analytic solution for the turbulent energy spectrum, F (k).

3.4 Solving for F(k)

This section demonstrates the procedure for calculating the analytical solution

of F (k) using the above closure model for nc(k).

Start by differentiating equation (3.3.5) and dividing by k2F (k) to get,

ns(k)

k2
= νt(k0)− γ

∫ k

k0

(
d

dk
y(k)

)(
1

k2ns(k)

)
dk − γ y(k)

k2ns(k)
(3.4.1)

An integration of the above equation results in,

ns(k)

k2
= νt(k0)− 2γ

y(k)

k2ns(k)
+ γ

∫ k

k0

y(k)
d

dk

(
1

k2ns(k)

)
dk (3.4.2)

In order to simplify the ensuing algebra we define the following functions,

I(k) ≡ γ

∫ k

k0

y(k)
d

dk

(
1

k2ns(k)

)
dk (3.4.3)
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a(k) ≡ k2ns(k) (3.4.4)

b(k) ≡ νt(k0)− ns(k)

k2
(3.4.5)

Equation (3.4.2) can now be rewritten as,

d

dk
I(k) +

1

2a(k)

[
I(k) + b(k)

]
d

dk
a(k) = 0 (3.4.6)

Solving the above equation for I(k) then gives,

I(k) = −

√
1

a(k)

∫ k

k0

(
d

dk

√
a(k)

)
b(k) dk (3.4.7)

Taking the derivative of the above equation yields,

2γy(k) = −
√
ns(k)k2

∫ k

k0

√
ns(k)k2

d

dk

(
ns(k)

k2

)
dk (3.4.8)

Finally, substituting the definition of y(k) into equation (3.4.8) results in the

following expression for F (k) in terms of ns(k),

F (k) = − 1

2γk2

d

dk

[
k
√
ns(k)

∫ k

k0

k
√
ns(k)

d

dk

(
ns(k)

k2

)
dk

]
(3.4.9)

Equation (3.4.9) is the CG expression for F (k). It completely determines the

energy spectrum in the LST region once the form of ns(k) has been specified.

The dependence of this equation on the growth rate of the source instability

ensures that the resulting expression for F (k) embodies in a natural way the

detailed nature of the turbulence generating mechanism. This makes the form
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of F (k) predicted by equation (3.4.9) well suited to the determination of bulk

properties of the flow, such as the convective heat flux.

3.5 The convective heat flux

In this section, I apply the CG model to the calculation of the convective heat

flux in a thermally driven fluid which exists in the absence of rotation and

magnetic fields. It will be shown that the CG model predicts an expression

for Φ which is identical in form to that of the MLT.

The linear growth rate relevant to this problem is given by equation (2.6.3).

However, an equivalent form of this equation which simplifies considerably the

algebra associated with the calculation of F (k) via equation (3.4.9) is,

ns(k) = n0

[(
1 + (1− µ) Λ2q4

)1/2 − Λq2
]

(3.5.1)

where n0 = [gαβτ(k)]1/2, τ(k) = x(k)[1 + x(k)]−1, µ = 4σ(1 + σ)−2, q = k/k0,

and

Λ = π2

([
1 + x(k)

]3
x(k)µR

)1/2

(3.5.2)

Note that, x(k), is an eddy anisotropy factor which is defined such that,

x(k) = kh/kv, where kh and kv are the horizontal and vertical wavenumbers,

respectively. Throughout this thesis we will follow the suggestion of Spiegel

[120] and adopt the following expression for x(k),

x(k) =

(
kD

π

)2

− 1 (3.5.3)

where D is the depth of the convective layer. This equation fixes the value of
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k0 at,

k0 =
π

D

[
x(k0) + 1

]1/2

(3.5.4)

Note that for µ � 1 (ie. σ � 1 or σ � 1) equation (3.5.1) implies that

ns(k) > 0, ∀k. This choice of µ allows equation (3.4.9) to be solved analytically

for F (k). It is also physically consistent with the notion that the closure model

inherent in equation (3.4.9) is only applicable to the LST region of the k-space,

where ns(k) is by definition positive. With these considerations in mind, one

can now solve equation (3.4.9) for F (k) to get,

F (k) = F0

[
h3/2

q2(1 + Λ2q4)1/2

]
(3.5.5)

where F0 = CΛn
2
0(k3

0γ)−1, CΛ =
[
(1 + Λ2)1/2 + Λ

]1/2
and h = ns(k)/n0.

Equation (2.6.5) can in turn be solved for the dimensionless convective flux,

Φ, using the above determination of F (k). The result is,

Φ =
τ(k)

2γΛ

[
CΛ −

√
2Λ

]2

(3.5.6)

To determine the coupling constant, γ, in the above equation we substitute

equations (3.5.1) and (3.5.5) into equation (3.3.4) to get,

γ =

(
3πl

4

)2(
1− Λ

C2
Λ

)
(3.5.7)

where

l =
1− 3ΛCΛ

(
tanh−1C−1

Λ − tan−1C−1
Λ

)
2 (1− p tan−1 p−1)

(3.5.8)
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and p = CΛ

√
2Λ .

Finally, equation (3.5.6) can be rewritten in notation which is common in the

field of stellar astrophysics as,

Φ = aS−1
[
(1 + bS)1/2 − 1

]3

(3.5.9)

where a = π4[8γ]−1 [1 + x(k)]2A2(Λ), A(Λ) =
[
1 + (2Λ)1/2C−1

Λ

]−1
, and b =

4π−4[1 + x(k)]−3x(k).

The above equation is identical in structure to the expression for Φ predicted by

the MLT model of stellar convection [132]. The associated expressions for the

convective velocity are also identical. However in the case of the MLT, equa-

tion (3.5.9) was not explicitly derived from a model of fluid turbulence, but

rather from a purely phenomenological consideration of the motion of a fluid

element subjected to a perturbation of its initial state. It is also important to

note that while the CG model recovers the MLT result for the convective heat

flux in the LST region, it is certainly a much richer model than the MLT due

to its direct dependence on ns(k), and its ability to determine the distribution

of turbulent kinetic energy across the eddy spectrum. The CG model there-

fore represents a significant improvement over the MLT which neither provides

information regarding the structure of the spectral function F (k), nor allows

for the direct inclusion of new physics via the presence of a turbulent growth

rate.

3.5.1 Other important bulk quantities

In an analogy with the calculation of the convective heat flux, several other

important bulk quantities can also be determined once the form of F (k) is
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known. For example, the equations for the mean-square temperature and ve-

locity fluctuations (〈θ2〉 and 〈u2〉, respectively) can also be solved analytically

for µ� 1 to get,

〈u2〉
(gαβχ2)1/2

=

√
S

π2γ [1 + x(k)]2

[
1− p tan−1 1

p

]
(3.5.10)

and

〈θ2〉
β2d2

=
pτ(k)

2π2γ

[
2

p
− 3 + 4σ

(1 + σ)2 tan−1 1

p
+

p

(σ + 1)2 (1 + p)2

]
(3.5.11)

The ability to calculate these quantities for a given system provides one with

deep insight into the physical effects of the turbulence on the structure and

evolution of the bulk flow. They enable the probing of the phenomenology

used to construct the closure model itself, and the validity of the use of the

linear approximation to ns(k) for the flow in question. Furthermore, knowledge

of 〈u2〉 and 〈θ2〉 also allow for the determination of the coupling between

the turbulent temperature and velocity fields. These considerations will be

discussed in detail in section 4.4.

3.6 The retrieval method

In many types of astrophysical systems the precise nature of the source insta-

bility described by ns(k) is either unknown or difficult to predict. One often

has data about the effects of the instability but not of the instability itself.

For example, in studies of molecular clouds, one typically has data about the

velocity-size relationship of the cloud, but not of the instability responsible for

the relationship.

Since knowledge of ns(k) is vital to any theoretical study of fluid turbulence,

one needs a method of inferring its form from the data at hand. Such a method
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was provided, in the context of the CG model, by Canuto and Battaglia (CB)

[18].

The method depends on one being able to extract information about F (k)

from the observed data. If this is possible, a simple inversion of the energy

equation can be used to determine the structure of ns(k).

3.6.1 An illustrative example:

I illustrate here the general procedure for determining ns(k) from molecular

cloud data. It is however important to note that this method can also be

applied to other fluid systems where one has knowledge of the form of F (k).

In the case of molecular clouds, knowing the velocity-size relation is equivalent

to knowing F (k), due to equation (2.2.1). Suppose that a u(l) vs l relationship

has been derived from the data. One can then determine an equation for ns(k)

via the elimination of F (k) from equations (3.4.9) and (2.2.1). The equation

obtained for ns(k) will have the following structure

ns(k) = n0f(q) (3.6.1)

where, n0 = γ1/2k0u0, u(k) = u0U(q). Note that the form of U(q) is assumed

to be known from the data. In this notation the expression for f(q) is,[
g(q)f 2(q)− q2g2(q)

][
d

dq
f(q)

]
− A(q)f 3(q) +B(q)f(q) = 0 (3.6.2)

where

g(q) = − 2

q2

∫ q

1

q2U(q)

[
d

dq
U(q)

]
dq (3.6.3)

A(q) =
2g(q)

q
(3.6.4)
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Figure 3.1: Plot of ns(k)/k0 vs k/k0. The growth rate in this figure was
determined via the retrieval method discussed in [18]. The u(l) vs l relationship
used to determine ns(k) was inferred from molecular cloud data. The three
curves correspond to the three choices of m, as denoted in the graph. (Adapted
from [18]).

and

B(q) = 2q g(q)

[
d

dq

(
q g(q)

)]
(3.6.5)

The above procedure was applied by CB [18] to MCs where U(q) is expected

to be of the form,

U(q) = q−m, 0.45 ≤ m ≤ 0.70 (3.6.6)

Equation (3.6.2) was solved numerically using the above expression for U(q),

and the behaviour of ns(k) was subsequently determined via equation (3.6.1).

The growth rate obtained via this method is shown in figure (3.1) for three

values of m corresponding to m = 0.45, m = 0.5 and m = 0.70 respectively.

Since this method determines ns(k) directly from the data, one may consider

the above procedure as a diagnostic tool for determining the nature of the

turbulence generating mechanism in a fluid.
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It is also worth noting here that CGC [21] have developed a self-consistent

method for determining the growth rate in situations where one does not have

the type of data from which the general form of F (k) can be deduced. This

method is the basis of the CGM model of convective turbulence and will be

explained in detail in section 4.4.

3.7 Tests and applications of the CG Model

The CG model has been successfully applied to several problems in both astro-

physical and terrestrial fluid turbulence (which differ by more than 12 orders

of magnitude in σ). Some of the key studies that have been performed using

the model are listed below:

Laboratory turbulence

The CG model was shown to predict the general form of the Nusselt vs Rayleigh

number relationship [61], which is of significant importance in both theoreti-

cal and experimental studies of turbulent heat transfer. The experimentally

deduced form of this relationship for water [45], has been the subject of much

debate in the literature, and was explained for the first time from a model of

turbulence by CG [17].

Rotation and magnetic fields

The CG model can also be extended to include the effects of both rotation

and magnetic fields via equation (2.6.2) [19]. Such an extension has been

used to study the propogation of electromagnetic signals through a turbulent

fluid, with the theoretical predictions of the model in good agreement with

experimental data [20].
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Fluid instabilities

The model has also been tested extensively in studies of Richtmyer-Meshkov

and Rayleigh-Taylor type instabilities [44; 95], where it was was shown to

correctly predict the velocity-size relations of eddies associated with these types

of flows [95].

The early solar nebula

The CG model has been utilized in studies of accretion disks and the early

solar nebula [14; 15]. Studies of this type have in the past relied on a free pa-

rameter, known as the Shakura-Sunyaev parameter, for the calculation of νt(k)

[111][118]. The CG model was used to develop a parameter free expression for

the turbulent viscosity in these systems, resulting in temperature predictions

of the early solar nebula that compared favourably with geophysical data [14].

3.8 Concluding Remarks

Despite its direct applicability to the type of large-scale turbulence encoun-

tered in stars, and its ability to predict the MLT expression for the convective

heat flux, the original iteration of the CG model received little attention in the

stellar astrophysics community. Shortly after its publication, Canuto, Gold-

man and Chasnov [21] began working on an extension of the model that was

capable of treating the entire energy spectrum. It was not until this next

iteration of the model was adapted by Canuto and Mazzitelli [22] and later

Canuto, Goldman and Mazzitelli [23] for use in stellar evolution simulations,

that the model appears to be recognized in the stellar modelling community

as being a viable alternative to the MLT. In the next chapter I will discuss this

extension of the CG model and develop the theory required for its application

to calculations of stellar structure and evolution.



Chapter 4

The CGC Model

4.1 Introduction

The form of the closure relation used in the CG model of turbulence restricts

its applicability to the extreme LST portion of the spectrum only. While this

closure has been shown to be successful in studies of large-scale turbulence, its

physical justification is not self evident.

Furthermore, in the absence of observational data from which the form of ns(k)

can be extracted (via the retrieval method), the CG model depends entirely

on the linear mode analysis for the determination of ns(k). This limits the

predictive power of the model since the linear theory provides only an approx-

imation to the actual form of ns(k).

Shortly after the development of the CG model, Canuto, Goldman and Chas-

nov (CGC) [21] constructed a new model of turbulence which addressed the

above flaws in the CG model. The closure for nc(k) that was used to achieve

this was inferred directly from the turbulence equations themselves, and there-

fore has a stronger phenomenological justification than that of the CG model.

Unlike the CG closure, this new expression for nc(k) is valid across the entire

48
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spectrum making it applicable to studies of both large-scale and small-scale

turbulence. Furthermore it will be shown in section (4.2) that the CGC closure

reduces that of the CG model in the LST sector of the spectrum, ensuring that

the deductions regarding the bulk properties of the flow presented in Chapter

3, are still valid here. The model also compares well with the DIA and has

been shown to be in better agreement with laboratory studies of high Rayleigh

number convection than the CG model [21].

Perhaps the most interesting feature of the CGC model is its ability to de-

termine self-consistently the form of ns(k) when the coupling of the turbulent

velocity and temperature fields are taken into account in a given problem. This

allows one to abandon the use of the linear theory in favour of a more accurate

representation of the physical mechanism which drives the turbulence. This

approach is discussed in detail in section (4.4).

We will focus in this chapter only on the components of the CGC model that

are relevant to the description of stellar turbulence.1

4.2 The CGC closure

The closure relation used in the CGC model of turbulence differs from that of

the CG model in that it attempts to treat the entire energy spectrum. Unlike

the CG model, which is limited to the LST region, the CGC model is also

capable of describing the high wavenumber part of the spectrum where the

effects of dissipation due to molecular viscosity are important.

The deduction of the CGC closure is based on the following physical argument:

since non-linear interactions are described in terms of an eddy viscosity νt(k),

and since the rate which governs the transfer of energy associated with these

1A discussion of the model’s application to laboratory turbulence can be found in [21].
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interactions is nc(k), these quantities should in some way be proportional to

each other. This is evident from the definition of nc(k) in equations (2.5.4)

and (2.5.5). The CGC model therefore assumes that,

γnc(k) = k2νt(k) (4.2.1)

where, as in sections (2.3) and (3.3), γ is a coupling constant which can either

be fitted using experiment data, or determined via the normalization of y(k)

in the inertial subrange to ensure that the model reproduces the form of the

KH spectrum in that region. The normalization of y(k) in the inertial region

will be discussed in section (4.2.1).

Substituting equation (4.2.1) into equation (2.5.6) results in the following

closed equation for the rates,

ns(k) + y(k)n−1
c (k) = γnc(k) (4.2.2)

from which it can be shown that,

2γnc(k) = ns(k) +
√
n2
s(k) + 4γy(k) (4.2.3)

The above equation defines the eddy correlation rate in terms of both the

source instability and the mean-square vorticity. Unlike its counterpart, equa-

tion (3.3.1), in the CG model, this equation is positive-definite in ns(k) through-

out the entire k-space. This allows one to calculate the form of the energy

spectrum even in the k � k0 region where ns(k) eventually becomes negative.

In the inertial subrange, where ns(k)� y(k), equation (4.2.3) predicts that

nc(k) ≈
√
y(k) (4.2.4)
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Substituting the above result into equation (2.4.1), with ε(k) = ε, shows that

the CGC model predicts a spectrum with the following shape,

F (k) ≈ k−5/3 (4.2.5)

This result, which will be derived in detail in section (4.2.1), is identical in

structure to that of the KH spectrum in equation (2.3.3), implying that the

CGC model exhibits the correct behaviour in the inertial subrange.

Furthermore, in the k ≈ k0 part of the spectrum (where y(k) tends to to zero),

the CGC closure reduces to

nc(k) = γ−1ns(k) (4.2.6)

This implies that the CG model can be recovered from within the CGC model

in the LST sector, ensuring that the results and discussions presented in Chap-

ter 3 regarding CG model’s application to large-scale turbulence are still rele-

vant here.

4.2.1 The normalization of y(k)

Any model of fluid turbulence which claims to treat the entire k-space must

be able to reproduce the experimentally verified shape of the turbulent energy

spectrum in the inertial subrange. In the CGC model, this achieved via the

normalization of y(k).

In order to perform this normalization, one needs to first determine the struc-

ture of the CGC spectrum in the region of the cascade where ε(k) saturates

to ε (i.e., in the inertial subrange where ε(k) approaches its asymptotic value).

Once this has been achieved, a comparison of the predicted spectrum with the

observed spectrum can be used to fix the value of γ. This procedure is outlined

below:
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We begin by noting that, in the inertial subrange, equation (2.5.6) implies

that,

|ns(k)|nc(k)� y(k) (4.2.7)

Using this relation equation (4.2.3) becomes,

nc(k) =

(
y(k)

γ

)1/2

(4.2.8)

We also have from equations (2.4.1) and (2.4.2) that,

ε = νt(k)y(k) (4.2.9)

This shows that the eddy dynamics are unaffected by molecular viscosity in

the KH region.

Substituting equations (4.2.1) and (4.2.8) into equation (4.2.9) gives the form

of y(k) and nc(k) in the inertial region of the spectrum as,

y(k) =

(
ε2k4

γ

)1/3

(4.2.10)

and

nc(k) =

(
εk2

γ2

)1/3

(4.2.11)

Finally, the substitution of equation (2.5.7) into equation (4.2.10) gives the

following expression for the energy spectral function,

F (k) =
4

3
γ−1/3ε2/3k−5/3 (4.2.12)

Comparing equation (4.2.12) with the expression for the KH spectrum given in

section (2.3), shows that the CGC model indeed exhibits the correct behaviour

in the inertial subrange.
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Equations (4.2.12) and (2.3.3) then together determine the value of γ,

γ =

(
2

3Ko

)3

(4.2.13)

4.3 Solving for F(k)

Since the CGC closure specifies nc(k) in terms of both ns(k) and y(k), the

turbulent energy spectrum can be calculated directly from equation (2.5.8),

which is stated here again for the sake of completeness,

(
2

nc(k)k2

)
d

dk

[
y(k)

]
+ y(k)

d

dk

[
1

nc(k)k2

]
+

d

dk

[
ns(k)

k2

]
= 0 (4.3.1)

However, due to the form of the CGC closure, the above equation does not

allow solutions for y(k), and hence also F (k) (via equation (2.5.7)), to be ob-

tained analytically for a given ns(k). Therefore, unlike its analogue in the CG

model (equation (3.3.5)), this equation must in general be solved numerically

for F (k) once the closure for nc(k) has been substituted. Fortunately, given

appropriate boundary conditions, the structure of the above equation permits

a simple numerical treatment of its solution space.

4.3.1 Boundary conditions

The boundary conditions for equation (2.5.8) are determined by first fixing

the value of k0 via equation (3.5.4), and then using the fact that by definition

F (k0) = 0 and y(k0) = 0 in the LST region. Equations (4.2.1) and (4.2.2) then
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imply that,

ns(k0) = γnc(k0) = k2
0νt(k0) (4.3.2)

and

d

dk

(
ns(k)

k2

) ∣∣∣∣
k=k0

=
d

dk

(
γnc(k)

k2

) ∣∣∣∣
k=k0

= 0 (4.3.3)

since from equations (2.5.7) and (2.5.8) we have that,

F (k0) =
1

k2
0

[
d

dk
y(k0)

]
(4.3.4)

= − ns(k0)

2γ

d

dk

(
ns(k)

k2

) ∣∣∣∣
k=k0

(4.3.5)

It should be noted that in order to complete the specification of the above

boundary conditions, one needs to determine the exact value of k0. This

amounts to prescribing the form the eddy anisotropies, represented by τ(k),

since equation (3.5.4) fixes k0 in terms of x(k0). However, since the anisotropic

nature of the flow is governed by the physical mechanisms which generate the

turbulent state, one expects τ(k) (and hence x(k)) to be directly determined

by the structure of ns(k). Thus, in order to specify the value of k0, an equa-

tion for ns(k) must first be provided. This can evidently be achieved using

the linear analysis, as was done in Chapter 3 in the context of the CG model.

However, since we plan to forgo the use of the linear theory in favour of a

more accurate representation of the source instability, we will leave the treat-

ment of the flow anisotropies to section (4.4) where it will be shown that a

self-consistent determination of ns(k) leads to k0 =
√

3/2 πD−1.
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4.3.2 The procedure for determining F (k)

To summarize, the general procedure for calculating the turbulent energy spec-

trum within the CGC model is as follows:

(i) Decide on a method for determining the form of ns(k) and substitute the

resulting expression into equation (4.2.3). This will generate an equation

for the eddy correlation rate, nc(k).

(ii) Next, use the expression for nc(k) in equation (2.5.8) to determine the

mean-square vorticity, y(k).

(iii) Finally, using the above expression for y(k), calculate the turbulent en-

ergy spectrum, F (k), via equation (2.5.7) with boundary conditions spec-

ified by equations (4.3.2) and (4.3.3).

4.4 Self consistent treatment of F (k) and G(k)

We have thus far limited our discussion of fluid turbulence to methods for

determining the distribution of turbulent kinetic energy across the cascade.

We have shown how the analysis of the spectral function, F (k), can be used

to extract information about the bulk properties of the flow and, via equation

(2.2.1), related this function to the turbulent velocity field described by u.

However, in several problems of interest in both astrophysical and laboratory

turbulence, one needs a method of extending the analysis presented thus far

to a description of the fluctuating temperature field. Such a method has been

developed by CGC within the context of their turbulence model.

This aspect of the CGC model hinges on a simultaneous, self-consistent treat-

ment of the spectral equations for the turbulent velocity and temperature

fields. This self-consistent approach to the turbulence spectra, allows one to

forgo the use of the linear analysis in favour of a more robust description of the
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instability growth rates. For example, this method for determining ns(k) over-

comes one of the major shortcomings of the linear analysis when applied to the

case of turbulent convection, that is, the inability of the linear theory to pre-

dict correctly the behaviour of ns(k) in the dissipation region of a viscous fluid.

More precisely, the form of ns(k) predicted by the linear theory for a fluid

undergoing turbulent thermal convection, has the following behaviour in the

dissipation region [85],

ns(k) → −νk2, σ < 1 (4.4.1)

ns(k) → −χk2, σ > 1 (4.4.2)

Equation (4.4.1) is physically consistent with the fact that the molecular vis-

cosity extracts energy from the eddy interactions at large wavenumbers. Thus,

for an inviscid system, the linear theory predicts a source function which ex-

hibits the correct behaviour in the dissipation region. However, in the σ > 1

regime, the behaviour predicted by equation (4.4.2) is clearly unphysical since

it suggests that the damping of the velocity fluctuations is as a result of the

thermometric conductivity. In models of turbulence designed for LST (such as

the CGC model), this physical inconsistency is mitigated by the fact that, in

the dissipation region, the overall contribution of F (k) to the bulk properties

of the flow is negligible. However for a theory of turbulence which aims to treat

the entire k-space, this flaw in the description of ns(k) cannot be overlooked.

The spectral equations

Let G(k) and H(k) be the spectra of the mean-square temperature fluctua-

tions (〈θ2〉) and mean convective heat flux (〈uzθ〉) respectively. For steady

state turbulence in a thermally driven system, the equations satisfied by these

spectra are [135],



CHAPTER 4. THE CGC MODEL 57

νk2F (k)− gαH(k) =
1

2

∫ ∞
k0

Q(k, k′)dk′ (4.4.3)

χk2G(k)− βH(k) =
1

2

∫ ∞
k0

U(k, k
′
)dk

′
(4.4.4)

In analogy with equation (2.5.6), the above equations describe the balance of

rates in turbulent fluid undergoing thermal convection. For example, in equa-

tion (4.4.3), gαH(k) may be identified as the source instability responsible

for the generation and maintenance of the convective turbulence. The energy

fed into the fluid by this source is transferred to higher wavenumbers via the

nonlinear interactions represented by Q(k, k
′
), and dissipated by the action of

molecular viscosity described by νk2F (k). Equation (4.4.4) for the tempera-

ture field can be interpreted in a similar way.

We also note here that in order to perform a complete theoretical analysis

of the convective turbulence in the above system, a third equation describing

the coupling between the turbulent velocity and temperature fields is needed,

namely [135],

−βτ(k)F (k)− gατ(k)G(k) + (ν + χ)k2H(k) =

∫ ∞
k0

Y (k, k′)dk′ (4.4.5)

As has been previously discussed, the nonlinear terms on the right hand side

of the above equations represent the rates of transfer of some quantity per

unit interval in k-space. In equation (4.4.3) this quantity corresponds to u2,

while in equation (4.4.4), the quantity is θ2. In the case of equation (4.4.5), the

quantity associated with the nonlinear transfer does not have a trivial physical

interpretation. However, since the transfer term in this equation corresponds

to the coupled fields, it must in some way be related to the sum of the transfers
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associated with equations (4.4.3) and (4.4.4), which implies that its associated

quantity is comprised of a combination of u and θ.

In order to simplify the algebra associated with the discussion of these nonlin-

ear terms, we define two rates Ns(k) and N∗s (k) such that,

Ns(k) = − 1

2F (k)

∫ ∞
k0

Q(k, k′)dk′ (4.4.6)

and

N∗s (k) = − 1

2G(k)

∫ ∞
k0

U(k, k′)dk′ (4.4.7)

We then assume, based on the previous discussion, that the nonlinear term in

equation (4.4.5) can be approximated as,

∫ ∞
k0

Y (k, k′)dk′ = −
[
Ns(k) +N∗s (k)

]
H(k) (4.4.8)

which is equivalent to assuming that u and θ are in phase, i.e., that

H(k) ∝
[
F (k)G(k)

]1/2

(4.4.9)

This assumption is physically consistent with the notion that in a system un-

dergoing turbulent convection, G(k) behaves as an active scalar which drives u.

The equivalence of equations (4.4.8) and (4.4.9) can easily be shown by sub-

stituting equation (4.4.8) into equation (4.4.5) and eliminating the rates using

equations (4.4.6) and (4.4.7) to get,

−βτ(k)F (k)− gατ(k)G(k) +
[
ν + χ

]
k2H(k) =
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[
νk2F (k)− gαH(k)

]H(k)

F (k)
+
[
χk2G(k)− βH(k)

]H(k)

G(k)
(4.4.10)

From which it follows that,

H(k) =
[
τ(k)F (k)G(k)

]1/2

(4.4.11)

Expressing F(k) in terms of G(k):

Substituting equations (4.4.6) and (4.4.7) into equations (4.4.3) and (4.4.4)

and simplifying allows us to express F (k) in terms of G(k) as follows,

[
Ns(k) + νk2

]
F (k) =

gα

β

[
N∗s (k) + χk2

]
G(k) (4.4.12)

Expressing Ns(k) in terms of N∗s (k):

Substituting equations (4.4.6) - (4.4.8) into equations (4.4.3) - (4.4.5) allows

us to express Ns(k) in terms of N∗s (k) as follows,

[
Ns(k) + νk2

][
N∗s (k) + χk2

]
= gαβτ(k) (4.4.13)

The energy and temperature equations:

Integrating equations (4.4.6) and (4.4.7) from k0 − k and using analogues of

the closure in equation (4.2.1) i.e.,
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∫ k

k0

Q(k, k′)dk′ = −νt(k)y(k) (4.4.14)

and ∫ k

k0

U(k, k′)dk′ = −χt(k)w(k) (4.4.15)

results in the following equations for F (k) and G(k),

∫ k

k0

[
Ns(k) + νk2

]
F (k)dk =

[
ν + νt(k)

]
y(k) (4.4.16)

∫ k

k0

[
N∗s (k) + χk2

]
G(k)dk = [χ+ χt(k)]w(k) (4.4.17)

where

w(k) ≡
∫ k

k0

k2G(k)dk (4.4.18)

is the analogue of y(k) for the turbulent temperature field, and

χt(k) ≡
∫ ∞
k

F (k)

N∗c (k)
dk (4.4.19)

is the turbulent conductivity.

Note that, as previously discussed, equation (4.4.16) can be solved for F (k)

via equation (2.5.8) once the form of Ns(k) has been specified. Alternatively,

if one wishes to solve for G(k) directly from equation (4.4.17), then the form

of N∗s (k) needs instead to be specified.
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Determining Ns(k) and N∗s (k):

The growth rates can be easily determined if one restricts equations (4.4.16)

and (4.4.17) to self-consistent solutions only, i.e., solving either of them pro-

duces the same functions F (k) and G(k). Since Ns(k) and N∗s (k) are related

via equation (4.4.13), only one of them needs to be established in order for

both of F (k) and G(k) to be determined via equations (4.4.16) and (4.4.17).

Integrating equation (4.4.12) and substituting equations (4.4.16) and (4.4.17)

into the result gives,

[
χ+ χt(k)

]
w(k) =

(
β

gα

)[
ν + νt(k)

]
y(k) (4.4.20)

The above equation can be rewritten in terms of a generalized Prandtl number,

Σt(k), which differs from σ in that takes into account the renormalization of ν

and χ in flows which exhibit turbulent behaviour. This can be seen from the

definition of Σt(k), which is,

Σt(k) ≡ ν + νt(k)

χ+ χt(k)
(4.4.21)

Using equation (4.4.21) in equation (4.4.20) results in,

y(k)Σt(k) =

(
gα

β

)
w(k) (4.4.22)

Now, solving for w(k) from equations (4.4.12), (4.4.13) and (4.4.18) gives,

w(k) =
1

(gα)2

∫ k

k0

τ−1(k)
[
Ns(k) + νk2

]2

k2F (k)dk (4.4.23)

Substituting the above expression for w(k) into equation (4.4.20) and differ-

entiating the result then yields the following expression for Ns(k),
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Ns(k) = −νk2 +

[
gαβτ(k)λ(k)

]1/2

(4.4.24)

where

λ(k) ≡
[
d

dk

(
y(k)Σt(k)

)] [ d
dk

y(k)

]−1

(4.4.25)

Finally, from equation (4.4.13) the expression for N∗s (k) is determined to be,

N∗s (k) = −χk2 +

[
gαβτ(k)λ−1(k)

]1/2

(4.4.26)

Equations (4.4.24) and (4.4.26) are the self-consistently determined growth

rates for the case of convective turbulence within the CGC model. Unlike the

linear growth rate for this type turbulence (given by equation (2.6.3)), these

growth rates exhibit the correct limiting behaviour in the dissipation region

for any value of σ. In particular,

lim
k→∞

Ns(k) = −νk2, ∀σ (4.4.27)

This fact alone makes the CGC model a significant improvement over linear

theory in studies of convective growth rates in the σ > 1 regime.

In order to complete the specification of these self-consistent growth rates, one

needs only determine the function Σt(k), which appears via λ(k), in both of

equations (4.4.24) and (4.4.26).
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Calculating Σt(k):

Determining Σt(k) is equivalent to determining the form of νt(k) and χt(k).

This can be achieved as follows:

Start by taking the derivative of equation (4.4.16) to get,

Ns(k) +
y(k)

Nc(k)
= k2νt(k) (4.4.28)

which is equivalent to

Ns(k) +
y(k)

Nc(k)
= γNc(k) (4.4.29)

where the closure for Nc(k) is given by,

k2νt(k) = γNc(k) (4.4.30)

A similar approach can be taken for the temperature field to get, from equation

(4.4.17),

N∗s (k) + χk2 +

[
w(k)

N∗c (k)

][
F (k)

G(k)

]
= ξN∗c (k) (4.4.31)

where the closure for N∗c (k) is written, in analogy with equation (4.4.30), as

k2

[
χ+ χt(k)

]
= ξN∗c (k) (4.4.32)

Note that ξ is the analogue of γ for the turbulent temperature field.

It also important to note that the expression for χt(k) derived from substituting

equation (4.4.32) into equation (4.4.18), i.e.,

χt(k) =

(
χ2 + 2ξ

∫ ∞
k

F (k)

k2
dk

)1/2

− χ (4.4.33)
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is identical to the one derived by Howells [62], who used an independent

method, based on the work of Batchelor et. al [4], to study the interaction

between the turbulent velocity and temperature fields.

Finally, using the definition of νt(k) in equation (4.4.28) results in,

νt(k) =

(
2γ

∫ ∞
k0

F (k)

k2
dk

)1/2

(4.4.34)

A remarkable aspect of the above equation is that it determines νt(k) entirely

in terms of F (k). This result has been confirmed using other phenomenological

models of turbulence [96], as well as fully predictive, theoretical models such

as the DIA [72].

Equations (4.4.33) and (4.4.34) now complete the determination of Σt(k), and

hence Ns(k) and N∗s (k), allowing one to calculate the energy and temperature

spectral functions F (k) and G(k) via equations (4.4.16) and (4.4.17) respec-

tively.

We also note here that the determination of χt(k) and σt(k) allows one to

study the behaviour of the wavenumber-dependent turbulent Prandtl number,

σt(k), where

σt(k) =
νt(k)

χt(k)
(4.4.35)

According to equations (4.4.33) and (4.4.34), σt(k) has the following asymp-

totic behaviour,

Pe� 1 : σt(k) → σt ≡
√
γ/ξ (4.4.36)
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Pe� 1 : σt(k) → 2σ2
tχν

−1
t (k) (4.4.37)

where Pe = uz l χ
−1, is the Péclet number. The limiting behaviour of σt(k)

with Pe is of particular importance in numerical treatments of stellar con-

vection, with the current generation of hydrodynamical simulations unable to

treat accurately the Pe� 1 regime [42].

For example, sub-photospheric convection in A-stars is associated with a signif-

icant amount of convective “overshooting” into the adjacent, stably-stratified

region where decelerations due to the buoyancy force are unable to prevent

the rapid exchanges of heat energy that occur between convective elements

and the ambient fluid. Numerical simulations of the surface convection zone

in these types of stars allow for a simple probing of this phenomenon due to

it being characterized by small Péclet numbers [39; 42]. On the other hand,

the Pe � 1 regime is typically associated with a “penetration” of convective

elements into the adjacent radiative layer. This forces a near adiabatic tem-

perature gradient to occur in the transition region between the two layers, with

very little mixing beyond this transition region. This process is significantly

more difficult to treat due to it being characterized by large Péclet numbers

[80].

The above discussion suggests that the behaviour of σt(k) should in some way

be related to the efficiency of convection, which depends on the ratio of the

radiative and buoyancy time-scales in the fluid. A discussion of these time-

scales will be presented in section 5.3.

The determination of λ(k)

To simplify the calculation of the turbulence spectra, one can rewrite the ex-

pression for λ(k), given in section 4.4, in a form which is easy to solve once
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the basic properties of the flow have been determined for a given problem.

Substituting the definitions of y(k) and νt(k) into the definition of λ(k), equa-

tion (4.4.25), results in,

λ(k) = Σt(k)−
(

y(k)

k2Nc(k)

)[
d

dk
Σt(k)

] [
d

dk
νt(k)

]−1

(4.4.38)

Now from equation (4.4.28) we have that,

y(k)

k2Nc(k)
=

[
ν + νt(k)

]
− 1

k2

[
Ns(k) + νk2

]
(4.4.39)

This equation can be rewritten in terms of λ(k) using the expression for Ns(k)

given in equation (4.4.24). The result is,

y(k)

k2Nc(k)
=

[
ν + νt(k)

]
− 1

k2

[
λ(k)gαβτ(k)

]1/2

(4.4.40)

which when substituted into equation (4.4.38), gives the following general ex-

pression for λ(k),

λ(k) =

[
d

dk
νt(k)

]−1
(

Σ2
t (k)

[
d

dk
χt(k)

]
+

1

k2

[
d

dk
Σt(k)

] [
λ(k)gαβτ(k)

]1/2
)

(4.4.41)

The above equation is quadratic in λ(k) and can be easily solved to get,

λ(k) =
1

2k2

[
d

dk
Σt(k)

] [
d

dk
νt(k)

]−1 [
λ(k)gαβτ(k)

]1/2

×
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1 +

(
1 + Σ2

t (k)

[
4k4

gαβτ(k)

] [
d

dk
Σt(k)

]−2 [
d

dk
χt(k)

] [
d

dk
νt(k)

])1/2

(4.4.42)

where equation (4.4.42) corresponds to the positive solution of equation (4.4.41).

The other solution is unphysical. Σt(k) and χt(k) can now be eliminated from

the above equation via the use of equations (4.4.33) and (4.4.34) to get,

λ(k) =
gαβτ(k)

4χ2k4

[
B(k)

A(k)

]2

(4.4.43)

where

A(k) =

[
1 +

ν2
t (k)

σ2
tχ

2

]3/2

(4.4.44)

and

B(k) = 1− ννt(k)

σ2
tχ

2
+

1

2

[
1− ννt(k)

σ2
tχ

2

]2

+ A(k)
4k4νt(k) [ν + νt(k)]2

gαβχσ2
t τ(k)

(4.4.45)

Finally, substituting equation (4.4.43) into equation (4.4.24) allows us to ex-

press Ns(k) directly in terms of νt(k) as follows,

Ns(k) = −νk2 +
gαβτ(k)

2k2χ

[
B(k)

A(k)

]
(4.4.46)

The determination of x(k0)

We return now to the determination of the flow anisotropies required for the

complete specification of the boundary conditions for equation (2.5.8) within

the CGC model. It should be noted that with the equations for the self con-

sistent growth rates developed, the determination of τ(k0) (and hence x(k0))

is a trivial matter since this quantity features explicitly in the expression for
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Ns(k). The procedure is as follows:

First substitute equation (4.4.46) into equation (4.3.3) to get,

d

dk

(
τ(k)

k4

)∣∣∣∣
k=k0

= 0 (4.4.47)

Now, using equation (3.5.3), the exact value of k0 can be calculated to be,

k0 =

√
3/2 π

D
(4.4.48)

We therefore have that,

τ(q) = 1− 2

3q2
(4.4.49)

from which it follows that,

x(k0) =
1

2
(4.4.50)

With the values of the values of k0 and x(k0) now fixed, the boundary con-

ditions for equation (4.3.1) can be completely specified for a given problem.

In particular, we note that in the σ → 0 limit, which we will consider in this

thesis as being applicable to the highly inviscid stellar interior (see section

5.3.2), equations (4.3.2), (4.3.3) and (4.4.46) fix the value of nc(k0) at,

γnc(k0) =
χ
√
S ψ0(S)

D2
(4.4.51)

where the function ψ0(S) is given by,

ψ0(S) =
√

2S∗ τ(k0)

[
1 +

[
1 + 4S2

∗σ
−2
t τ 2(k0)

]1/2
]−1/2

(4.4.52)

with,

S∗ =
S

π4 [1 + x(k0)]2
(4.4.53)
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As illustrated above, knowledge of k0 and x(k0) has resulted in the determina-

tion nc(k0) which, by way of equation (4.3.2), also completes the specification of

ns(k0) and νt(k0). All of the ingredients required for the solution of F (k) from

equation (4.3.1) have therefore been obtained from within a self-consistent

framework for the rates, thus freeing the calculated form of F (k) from any

physical inconsistencies associated with the linear approximation to ns(k).

4.5 Concluding Remarks

In summary, the CGC model of turbulence should be considered as being the

natural successor to the CG model, which was originally designed to treat only

a limited region of the k-space governed by the largest eddies present in the

system. Since the CGC model is reducible to the CG model in the LST region

of the spectrum, the predictions made by the CG model regarding the nature

of the bulk flow are also true of the CGC model. However, unlike its predeces-

sor, the CGC model is capable of determining the form of F (k) throughout the

entire k-space, including the inertial and dissipation regions. This remarkable

aspect of the new model not only allows for deeper physical insight into the

nature of the eddy dynamics in key regions of the flow, but also provides one

with a means of estimating the extent of the LST, HK and SST sectors of the

spectrum for a given problem.

The central difference between these two models of turbulence lies in their

treatment of the eddy correlation rate, nc(k). In the CG model, this rate

is assumed to depend entirely on the growth rate of the source instability,

whereas in the CGC model nc(k) is assumed to be determined by the eddy

viscosity itself. The form of the CGC closure is therefore obtained by set-

ting γnc(k) = k2νt(k), an idea which is suggested by the turbulence equations

themselves.
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As a consequence of the structure of its closure, the CGC model allows for the

possibility of self-consistently determining the growth rate of the source insta-

bility when both the turbulent temperature and velocity fields are accounted

for in a given problem. This self-consistent treatment of the source ensures

that the expression for its growth rate exhibits the correct limiting behaviour

for any value of σ in the dissipation region. The model therefore represents a

significant improvement over the linear approximation to ns(k) which predicts

a behaviour for this rate which is unphysical in the k � k0 portion of the

spectrum. Therefore, in studies of SST in particular, the CGC model with the

inclusion of its self-consistent determination of the rates, is likely to lead to a

more accurate picture of the dissipation region, and the effects of molecular

viscosity on the small scale eddies.

However, it must be noted that while the linear theory predicts an unphysical

limit for ns(k) in the SST sector of the spectrum, this shortcoming is likely to

be inconsequential in studies of bulk flow properties which are determined by

eddies that reside in the extreme LST region of the k-space. The justification

of this statement lies in the fact that the net contribution to F (k) made by the

SST eddies is negligible when compared to those belonging to LST sector. This

makes the merits of using the self-consistent determination of ns(k) strongly

dependent on the type of turbulence being considered in a given problem. For

situations where details of the turbulent temperature field are required, the

extra effort needed to determine growth rate via the self-consistent approach

is certainly warranted, both due to the fact that the rates are predicted from

within the model itself, and that the form of the spectral function for the

temperature field can be easily deduced. That the latter is true can be seen

by simply taking the derivative of equation (4.4.22) to get,

G(k) =

(
β

gα

)
λ(k)F (k) (4.5.1)
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The self-consistent approach therefore provides one with a natural way of

studying the dynamics of the turbulent temperature field from within the

framework of the model.

Next, we note that an apparent shortcoming of both the CG and CGC models

is that they inherently assume a unidirectional transfer of energy from high

low to wavenumbers only. This neglects the effects of non-local interactions in

the fluid which can result in a reverse transfer or “backscattering” of energy

within the cascade, especially in regions of the k-space where F (k) has not yet

attained its maximum value [102]. This results in a smaller value of k0 and a

shallower gradient for F (k) in the k ≈ k0 region of the spectrum, and is likely

to be the reason for the mismatch between the CGC and DIA spectra [21],

which are depicted in figure 4.1.

Figure 4.1: Plot of F (k) vs k comparing the CGC and DIA models for the
case of convective turbulence for σ = 0.5 and S = 105. (Adapted from [21])
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The inclusion of this feedback mechanism is not however expected to be of

great significance in studies of astrophysical turbulence which focus princi-

pally on the determination of bulk quantities, such as the convective heat flux

[102]. Moreover, the effects of this process can to an extent be accounted for in

a model of turbulent convection via a judicious choice of the eddy correlation

rate. It is this extension of nc(k) that lies at the heart of the CGM model of

stellar convection [23], which will be discussed in Chapter 6.

Furthermore, it should be noted that when directly compared with the MLT,

the CGC model results in significantly different estimates of the heat flux mag-

nitudes depending on the efficiency of the convective process. A discussion of

this comparison is found in Chapter 5, where it is shown that this discrepancy

is a direct consequence of the of the inadequacy of the MLT spectrum when

applied to the description of high Reynolds number turbulence in inviscid sys-

tems.



Chapter 5

Mixing Length Theory

“Little attention is paid to assessing the accuracy of the models,

partly because there is a general feeling that mixing-length theory

is so uncertain that the task would be fruitless, and partly,

perhaps, because of an optimism that the theory will soon be

superseded by something better.”

- D. Gough [48]

5.1 Introduction

For nearly sixty years, the treatment of convective heat transport in the stellar

interior has relied almost exclusively on the MLT. The model was originally

formulated by Prandtl [109], who developed it in the early 1900’s in complete

analogy with the theory of molecular heat transfer in terrestrial fluids. It was

later adapted to the description of stellar convection by Biermann [? ] and

Bohm-Vitense [8] and has since been extended and modified in so many ways

that there now exists several “versions” of the theory.

The theory is littered with seemingly arbitrary parameters which have been

the source of some disagreement. A major source of uncertainty in the MLT is

73
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the value to be used for the mixing length itself. Uncertainties like this have

given rise to some of the variations of the theory.

In MLT, the convection zone is treated as if it effectively consists of one large,

“average” eddy, which carries the entire heat flux across the convecting layer.

This has the advantage of replacing the conceptually difficult treatment of a

spectrum of eddies of different shapes, sizes, velocities and lifetimes, with one

that is simpler to treat and easier to implement in stellar codes. But while

this feature of the model simplifies the treatment of convection, it also makes

the MLT wholly inadequate for the description of turbulence in stars.

MLT disregards the intrinsically turbulent nature of the convective process.

This is due to the fact that the model was originally derived from a purely

phenomenological consideration of a fluid element which, when subjected to

an instability or perturbation of its initial state, rises under the action of buoy-

ancy forces through a characteristic distance identified with the mixing length.

The physics of the model is based entirely on the results of laboratory stud-

ies of convection centred around the Boussinesq approximation for buoyancy

driven flows [119]. It will be shown in Chapter 7 that, when applied to the

description of stellar convection, the MLT violates one of the basic assump-

tions of the Boussinesq approximation i.e., that the mixing-length should be

less than the pressure scale height of the fluid.

While the MLT has served as a useful phenomenological tool for studies of

convective heat transport, I will demonstrate in this chapter that the MLT is

based on a crude model of turbulence which cannot be expected to generate

results that are quantitatively either accurate or reliable. In particular, I will

show that the form of the turbulent energy spectrum implicitly assumed by the

MLT represents an extreme oversimplification of the true convective processes

that occur in the stellar interior.



CHAPTER 5. MIXING LENGTH THEORY 75

After deducing the form the MLT spectrum in section 5.2, I compare in section

5.3 its flux equation with other models of turbulence that incorporate more

accurate representations of F (k). A key result that emerges from this discus-

sion is that the MLT either underestimates or overestimates the magnitude of

the convective heat flux depending on the efficiency of convection in the fluid.

This result, which was first suggested by the work of Ledoux, Schwarzschild

and Spiegel [85] (and later Yamaguchi [135]), and which was also discussed in

Chapter 3 of this thesis has far reaching consequences for our understanding

of stars since miscalculation of the convective heat flux may have a significant

impact on our ability to match the theoretical predictions of stellar codes with

observational data. The discrepancy in the predictions of the MLT and those

of more advanced models of convective turbulence, when applied to calcula-

tions of stellar structure and evolution, will be illustrated in Chapter 7.

5.2 The MLT energy spectrum

It will be shown in this section that the MLT approximates the turbulent en-

ergy spectrum with a delta function [22]. Physically, this implies that the flow

consists of only a single large eddy that carries the entire convective heat flux.

The stellar interior however, is characterized by a wide variety of eddy sizes

due to its highly inviscid nature, making the single-eddy model a poor approx-

imation. Errors assosciated with this approximation are typically masked by

the uncertainty of the mixing-length itself, and manifest themselves in the lack

of universality in its value for stars of a given class.
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The basic equation for the heat flux Φ in MLT is,1

ΦMLT =
(a0

2

)
Σ−1

[(
1 + Σ)1/2 − 1

)]3
(5.2.1)

where a0 = 9/4, and Σ is defined to be,

Σ =
2

81
S

In what follows, I show that the MLT expression for Φ can be recovered by

using first principles from the general expression for the convective heat flux

(equation (2.6.5)) only if we assume that F (k) is represented by a delta function

peaked about the largest eddy in the fluid (ie. at wavenumber k0) as follows,

F (k) = F0 δ

(
k

k0

− 1

)
(5.2.2)

We begin by substituting the expression for νt(k) in terms of F (k) given by

equation (4.4.34) into the general non-linear equation for F (k) given by (2.6.1)

to get,

∫ k

k0

ns(k)F (k)dk =

(
2γ

∫ ∞
k0

F (k)

k2
dk

)1/2 ∫ k

k0

k2F (k)dk (5.2.3)

Now, using the form of F (k) given by equation (5.2.2), and substituting equa-

tion (2.6.3) for ns(k) into the above equation, results in the following expression

for F0,

F0 =
n2

0

γk3
0

(5.2.4)

With F0 now determined, we can calculate the expression for the convective

1A detailed review of the basic equations of MLT can be found in [132].
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heat flux corresponding to equation (5.2.2). This can be achieved by substi-

tuting equations (5.2.2), (5.2.4) and (2.6.3) into equation (2.6.5) to get,

Φ =

(
τ(k)

γ

)
Σ−1

[
(1 + Σ)1/2 − 1

]3

(5.2.5)

which is identical to equation (5.2.1) up to factors of order unity.

The above analysis allows us to conclude that, when considered in the con-

text of the general turbulence equations, the MLT assumes a delta function

for the turbulent energy spectrum. This result is not evident however from

the standard formulation of the MLT, since the model was never derived by

first principles from the NSE. This assumption is therefore hidden in the MLT

expression for convective heat flux and is never made explicit in its equations.

5.3 The KH spectrum revisited

The delta function representation of the turbulent energy spectrum works well

for highly viscous, low Reynolds number flows, where the separation of scales

is small. However, in the highly inviscid stellar interior, where Re ≈ 1010, this

turns out to be a poor approximation that fails to capture in a detailed way

the energetics of the flow.

In this section, I discuss in detail the above statement and show that the MLT

provides an inaccurate estimate of the convective flux in both the high and low

efficiency regimes.

5.3.1 Turbulence in stellar interiors

In order to understand the physical origins of the MLT’s inability to predict

accurately the convective heat flux, we consider here the general variation in
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the structure of the turbulent eddy spectrum across different viscosity and ef-

ficiency regimes.

Denote by lLST the size of the largest eddy in the LST sector of the spectrum

(defined by wavenumber k0) and by lSST the size of the smallest eddy in the

SST sector of the spectrum (defined by kd, where kd is the wavenumber that

corresponds to the dissipation length scale). Then the ratio of lLST and lSST

can be used to define the width of the eddy spectrum (ie. the range of eddy

sizes expected to occur in the cascade). In the case of the solar interior, this

width can be calculated as follows [6; 84],

lLST
lSST

≈ Re3/4 (5.3.1)

∼
(
1010

)3/4
(5.3.2)

∼ 108 (5.3.3)

The above spectrum, which is typical of stellar interiors, has a size ratio of

roughly 108 between the largest and smallest eddies present in the flow. Such

a spectrum cannot be accurately described in terms of a delta function. Do-

ing so would effectively ignore the contributions to F (k) made by all eddies

smaller than the one described by k0. In the case the case of stellar turbulence,

this would result in a highly inaccurate description of the convective heat flux,

since the width of the eddy spectrum in stars is correlated with a k-space of

large extension. One would therefore expect a model of convection which as-

sumes a spectrum of the form described by equation (5.2.2) to misrepresent

severely the true nature of the energy transport in the stellar fluid.

We will consider this misrepresentation inherent in the MLT within the context

of the two key limits of Σ, which correspond to highly efficient and highly

inefficient convection, ie. Σ � 1 and Σ � 1 respectively. These limits are in

accordance with the following physical scenarios:
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The Σ� 1 regime:

Since, in general, we have that,

S = σR =
gαβl4

χ2
=

(
tχ
tb

)2

=
81

2
Σ (5.3.4)

where tχ and tb are the radiative and buoyancy time-scales respectively, the

Σ � 1 regime may be interpreted as corresponding to a situation where con-

vecting fluid elements transport their heat across the convective layer with

little to no losses due radiation. Such a situation is therefore said to result

in highly efficient convection. It is also interesting to note that in this case

ns(k) ≈ t−1
b .

The Σ� 1 regime:

When Σ � 1, fluid elements traverse the convective layer under the action

of buoyancy forces while losing a significant portion of their heat energy via

radiation into the surroundings. This situation therefore corresponds to a

convective process which is said to be highly inefficient. The growth rate for

such a situation corresponds to ns(k) ≈ tχt
−2
b ≈ gαβ(χk2)−1. Note that even

though tχ is the dominant time-scale in this scenario, ns(k) is still related to

tb here since it is the buoyancy which drives the turbulence and hence causes

the convection to occur in the first instance.

With the above picture of the different convection regimes in mind, we now

proceed calculate the expression for the convective heat flux predicted by KH

model, and compare this expression with its counterpart in the MLT.
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5.3.2 Derivation of the KH flux

Stellar interiors are known to be highly inviscid. For example, the Sun is esti-

mated to have a Prandtl number of approximately 10−9 [6]. Inviscid systems

with values of σ � 1 in general exhibit an extended inertial subrange which

spans a large portion of the total k-space. This warrants the use of the KH

spectrum as a first step in improving the delta function approximation to F (k)

used in the MLT.

In similar manner to the derivation of the MLT flux equation in section (5.2),

we can calculate the expression for Φ predicted by the KH model by substi-

tuting equations (2.3.3) and (3.5.1) into equation (2.6.5) to get,

ΦKH =

(
27

16

)
τ(k) Ko3 Σ−1

[
(1 + Σ)1/2 − 1

]3

φ3 (5.3.5)

The above equation is similar in structure to the MLT expression for Φ, how-

ever, this expression contains an additional function, φ, given by,

φ ≡ 3

2
Σ
[
(1 + Σ)1/2 − 1

]−1
∫ ∞

1

(
1 + Σt−3

)−1/2
t−3dt− 1 (5.3.6)

which causes an offset between the predicted KH and MLT fluxes. This can

be seen by taking the ratio of equations (5.2.1) and (5.3.5) to get,

ΦKH

ΦMLT

=
8

5

(
3

4
Ko

)3

φ3 (5.3.7)

In particular, since φ exhibits the following behaviour in the Σ� 1 and Σ� 1

limits,

Σ� 1 : φ3 → 8 (5.3.8)

Σ� 1 : φ3 → 1

8
(5.3.9)
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we have from equation (5.3.7) that,

Σ� 1 :
ΦKH

ΦMLT

= 18

(
Ko

1.5

)3

(5.3.10)

Σ� 1 :
ΦKH

ΦMLT

= 0.3

(
Ko

1.5

)3

(5.3.11)

The results presented in equations (5.3.10) and (5.3.11) suggest that, due to

its crude assumption about the form of F (k), the MLT provides a severely

inadequate measure of the actual convective fluxes propagating in the stellar

interior. In particular, when a more accurate representation of the turbulence

spectrum is taken into account, it is noticed that,

(i) for Σ� 1: the MLT underestimates Φ, and

(ii) for Σ� 1: the MLT overestimates Φ

This conclusion is verified by models of turbulence more complete that the KH

model, whose description of the spectrum is of course limited to the inertial

subrange only. For example, using the CGC model, a numerical calculation of

the convective heat fluxes (via equations (4.3.1), (2.6.3) and (2.6.5)) for the

above efficiency limits shows that [21],

Σ� 1 :
ΦCGC

ΦMLT

≈ 4, (5.3.12)

Σ� 1 :
ΦCGC

ΦMLT

≈ 1

12
, (5.3.13)

This situation is illustrated in figure 5.1, which shows plots of the Φ vs S re-

lationship exhibited by the MLT and CGC models respectively.
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Figure 5.1: Plot of Φ vs S, comparing the CGC and MLT models for σ = 0
(adapted from [21])

The closeness of the curves in the above figure for small values of S is due to

the fact that radiative losses in the low efficiency regime result in the bulk of

the convective heat flux being carried by the large, energy containing eddies

which reside in the k ≈ k0 region of the spectrum. Since the MLT approxi-

mation to F (k) zones in on this region of the k-space through its preferential

treatment of the dominant k0 eddy, the difference between fluxes predicted

by the models is relatively small. This is also evidenced by the low value of

the offset coefficient in equation (5.3.13). Conversely, the strongly divergent

behaviour of the fluxes in the Σ � 1 limit is a direct consequence of the

fact that the one-eddy MLT model has its entire contribution to Φ given by

k = k0 only, whereas the CGC model accounts for contributions to made to

Φ by eddies across the entire k-space. This “flux tilting in efficiency space”

is a key feature of the CGC, CM and CGM models of convective turbulence,

and is an effect which cannot be achieved through any adjustment of the α
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parameter for the mixing-length (which is the typical approach taken within

the MLT when attempting to circumvent any uncertainties in its treatment of

the turbulence spectrum).

Furthermore, it must be noted that the general trend between the flux curves

depicted in figure 5.1, and stated in points (i) and (ii) above, have also been

confirmed by fully predictive, theoretical models of fluid turbulence such as

the DIA/EDQNM [22]. An example of this type of comparison is shown in

figure 5.2, which illustrates the change in the width of the spectrum predicted

by the EDQNM model, for several values of σ and S, vs that of the MLT.

The figure serves to emphasise the fact that fluids characterized by low values

of σ exhibit extended spectra which encompass a broader k-space, and vice

versa. This behaviour can be also be deduced on dimensional grounds from

the standard relation between the dissipation length scale and the molecular

viscosity given by, lSST ∝ ν3/4 [84].

Of particular importance here is the fact that as the value of ν is increased, the

shape of the actual spectrum converges to that of a delta function peaked about

k0. This implies that the MLT becomes a progressively better approximation

to F (k) in the limit as ν tends to infinity, and conversely a progressively poorer

approximation to F (k) in the limit as ν tends to zero. Since stellar interiors

are characterized by extremely low values of σ, the latter is true in stars, which

calls into question the validity of the MLT in treatments of stellar turbulence.

Finally we note that the failure of the MLT to treat adequately the turbulence

spectrum should be particularly exaggerated in regions of the star which ex-

hibit a pronounced superadiabatic gradient due to the fact that [22],

lLST
lSST

∝ (∇−∇ad)
3/8 (5.3.14)
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where ∇ and ∇ad are the actual and adiabatic temperature gradients respec-

tively. This is indeed suggested by the results of numerical simulations of

stellar convection, which I will discuss further in Chapter 7.

Figure 5.2: Plots of F (k) vs k, calculated numerically using the EDQNM
model for several choices of σ and S. Superimposed on these graphs is the
MLT spectrum, which is represented by a δ-function in each case. (adapted
from [22])
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5.4 Concluding Remarks

In this chapter, it has been shown that the MLT is inadequate for the treat-

ment of convective turbulence in highly inviscid fluids. Since the stellar interior

presents an example of such a fluid, the validity of the MLT in treatments of

stellar convection is called into question. In particular, it has been shown that

ΦMLT can only be recovered from the general equations of turbulence if one

assumes that the turbulent energy spectrum, F (k), is represented by a delta

function. It has also been shown that as a result of its implicit dependence on

the above form of F (k), the MLT is bound to misrepresent the magnitude of

the convective heat flux in key regions of the efficiency space. To elucidate this

fact we have compared the MLT with the KH, CGC and EDQNM models of

turbulence. This comparison leads to the deduction that in the high efficiency

regime the MLT underestimates the true magnitude of Φ, while the opposite

is true in the low efficiency regime [22].

The inability of the MLT to match the predictions of more robust models of

convective turbulence represents a major shortcoming of the theory. In light

of this fact it is certainly remarkable that the vast majority of stellar evolution

codes today still rely on the model for the calculation of the convective heat

flux in the stellar interior, especially since the discrepancy between the flux

predictions of the MLT and the KH model in particular have been known since

the work of Ledoux, Schwarzschild and Spiegel [85] (see section 3.2.2).

In the next chapter I will show that a re-evaluation of the expression for F (k)

within models of convection that account for the full spectrum of turbulence

leads to a new set of expressions for Φ which, due to their structure, are capable

of being implemented in modern day stellar evolution codes. A key feature

of such models is that they naturally exhibit the flux behaviour described in

figure 5.1, and have turbulence spectra that are consistent with the results of

figure 5.2.



Chapter 6

The FST Models of Stellar

Convection

“Despite the great achievements of the stellar evolution theory,

there are many points of disagreement between theory and obser-

vations which are ultimately related to our poor knowledge of the

extension of convectively unstable regions and associated mixing

processes.”

- C. Chiosi [60]

6.1 Introduction

In this chapter, I discuss the application of models which account for the Full

Spectrum of Turbulence (FST) to stellar interiors. The two models which will

be discussed are, the Canuto, Goldman and Mazzitelli (CGM), and Canuto

and Mazzitelli (CM) models of stellar convection. These models are based

on significantly more complete descriptions of fluid turbulence than the MLT

which, in Chapter 5, was shown to be inadequate for the treatment of convec-

tion in stars.

86
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Section 6.2 considers the key ingredients of the CGM model required for the

development of a new FST flux equation. I begin in section 6.2.1, with a

discussion of the phenomenology used to construct the CGM closure. This

closure is then compared to those of previous models discussed in this thesis.

The fundamental equations of the CGM model are then derived in section

(6.2.2), where it is noticed that the construction of this model is analogous to

that of the CGC model, discussed in Chapter 4.

Section 6.3 considers the core aspects of the CM model which unlike the CGM

model, is based directly on the more advanced Eddy Damped Quasi-Normal

Markovian (EDQNM) model of turbulence. It is shown in section 6.3.2 that

the framework of the EDQNM approach also allows for the development of a

FST flux equation which is similar in structure to that of the CGM model.

In section 6.4, I compare the FST and MLT flux predictions across the different

efficiency regimes. It is noticed that, depending on the efficiency of convec-

tion, the FST models predict fluxes that differ by up to an order of magnitude

relative to the MLT.

Finally, in section 6.5, I end with a discussion of the astrophysical implications

of the flux differences between the FST and MLT models of turbulent convec-

tion.

6.2 The CGM model

The Canuto, Goldman and Mazzitelli (CGM) model of stellar convection uti-

lizes the CGC framework for the self-consistent determination of the turbulence

rates, as discussed in Chapter 4. However, the principal difference between the

CGM and CGC models lies in their interpretation of the eddy correlation time.
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In the CGM model, this time-scale is viewed as depending on both the source

and the turbulence itself, thus allowing for the natural inclusion of the feed-

back mechanism discussed in Section 4.5.

It will be shown that the inclusion of this mechanism leads to a new expression

for the convective heat flux which takes into account the full spectrum of fluid

turbulence. Furthermore, the parametrization of this expression in terms of

the convective efficiency allows it to be naturally incorporated into present day

1-D stellar evolution codes, whose numerics typically require the flux model

to be parametrized in this way.

6.2.1 The CGM closure

While the CGM model is based in large part on the CGC model, the key dif-

ference between the two lies in their treatment of the eddy correlation rate.

CGM provided a reinterpretation of this rate that allows for the possibility

of the eddies being “scattered” in the cascade. Doing so causes the effective

energy input from the source to be regulated by the turbulence it creates,

and incorporates into the model an aspect of the reverse feedback mechanism

discussed in Section 4.5. A self consistent treatment of the rates is then used

to develop a new expression for the convective heat flux which can be solved

numerically for Φ.

In what follows, we will refer to CGM’s reinterpretation of the correlation rate

as Ncgm(k). This rate is defined in terms of the eddy viscosity as follows,

νt(k) =

∫ ∞
k0

F (k)

Ncgm(k)
(6.2.1)

In the CGM model, the eddy lifetime, described by N−1
cgm(k), is viewed as

depending on the following set of processes:
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(i) the input of energy from the source, described by Ns(k),

(ii) the removal of energy via the action of the eddy viscosity, described by

k2νt(k).

(iii) the random walks that occur as a result of the interaction between the

above two processes, described by 2[k2νt(k)Ns(k)]1/2. For example during

the time interval between successive scatterings as a result of process (i),

the eddy is assumed to undergo a random walk as a result of process (ii),

and vice-versa.

Taking the sum of the rates associated with the above three processes results

in the CGM expression for the correlation rate, which is given by,

γNCGM
c (k) = k2νt(k) +Ns(k) + 2

√
k2νt(k)Ns(k)

=
[√

k2νt(k) +
√
Ns(k)

]2

(6.2.2)

As in the CGC model, the closure for νt(k) within the self-consistent treatment

of rates is still given by equation (4.4.30) as,

k2νt(k) = γNc(k) (6.2.3)

However, Nc(k) is to be interpreted here as applying only to process (ii).

To draw a comparison between the models discussed thus far, note that in

the CG model we had Ncgm(k) = Ns(k), while in the CGC model we had

Ncgm(k) = Nc(k). The CG model therefore accounted only for process (i) and

neglected process (ii) (and by implication process (iii)), while the CGC model

accounted only for process (ii) while neglecting process (i) (and by implication

process (iii)). In other words, the CG model treated the eddy correlation time
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as depending only on the source instability and ignored the effects of the tur-

bulence itself on the correlation time, while the CGC model did the opposite.

The CGM model may therefore be viewed as an attempt to overcome the

shortcomings of the CG and CGC treatments of the correlation time by allow-

ing it to depend on both the source and the turbulence which it generates.

6.2.2 The model equations

This section considers the ingredients of the CGM model required for the the

determination of the convective heat flux. The method for constructing the

governing equations in this model is analogous to that of the CGC model with

the inclusion of the self-consistent approach to the rates. However, due to

the differences in the description of the correlation time between these two

models, the equations involving Nc(k) in Section 4.4 have to be reinterpreted

via equation (6.2.1) in order to ensure that Ncgm(k) enters the formalism in a

physically consistent manner.

6.2.2.1 The differential equation for Nc(k)

In the CGM model, the differential equation for Nc(k) should be thought of as

being the analogue of equation (4.3.1) which, in the CGC model, determined

the structure of mean-square vorticity, and hence the turbulent energy spec-

trum. It will be shown that in addition to describing the interplay between the

rates that govern the flow, the solution of the differential equation for Nc(k)

enables the calculation of several important quantities which characterize the

turbulence described by the CGM model.

To derive this equation, begin by substituting equation (4.4.30) into equation

(6.2.1) and taking the derivative of the result to get,
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F (k) = −γNcgm(k)

[
d

dk

(
Nc(k)

k2

)]
(6.2.4)

Next, we note that by taking the derivative of equation (4.4.16) we have,

Ns(k)− y(k)

F (k)

[
d

dk
νt(k)

]
= k2νt(k) (6.2.5)

which, with the aid of equations (6.2.1) and (4.4.30), results in

y(k) = Ncgm(k)
[
γNc(k)−Ns(k)

]
(6.2.6)

Finally, substituting the definition of the mean-square vorticity into the above

equation and combining the result with equation (6.2.4) gives the differential

equation obeyed by Nc(k) as,

2Ncgm(k)

[
d

dk
Nc(k)

]
+

[
d

dk
Ncgm(k)

] [
Nc(k)− 1

γ
Ns(k)

]

−1

γ
Ncgm(k)

[
d

dk
Ns(k)

]
−
(

2

k

)[
Nc(k)Ncgm(k)

]
= 0

(6.2.7)

Since Ns(k) and Ncgm(k) are also expressed in terms of Nc(k) via equations

(4.4.46) and (6.2.2) respectively, the solution of equation (6.2.7) completely

determines the rates, and hence the turbulent energy spectrum (via equation

(6.2.4)). Equation (6.2.7) may therefore be viewed as being the fundamental

equation of the CGM model.



CHAPTER 6. THE FST MODELS OF STELLAR CONVECTION 92

6.2.2.2 The energy equation

In order to determine the form of the energy equation obeyed by ε(k) we simply

combine equations (4.4.16), (4.4.30) and (6.2.4) to get,

ε(k) = Ncgm(k)

[
ν +

γNc(k)

k2

][
γNc(k)−Ns(k)

]
(6.2.8)

Again, since the three rates Ns(k), Nc(k) and Ncgm(k) are related to each

other via equations (4.4.46), (6.2.2) and (6.2.7), a solution of equation (6.2.7)

for Nc(k) completely detemines ε(k) via equation (6.2.8) above.

6.2.2.3 The convective heat flux

The convective heat flux is calculated, as usual, from equation (2.6.5) or equiv-

alently from equation (2.6.6),

Φ =
ε

gαβχ
(6.2.9)

In order to determine the asymptotic value of ε(k) required to generate a nu-

merical solution for Φ via the above equation, CGM have taken the usual

approach of following the solution of Nc(k) from k0 into the inertial subrange

where ε(k) saturates to ε.

6.2.2.4 Boundary conditions

In order to solve equation (6.2.7) for Nc(k) one to needs to specify a set of

appropriate boundary conditions. Due to the analogous nature of equations

(6.2.7) and (4.3.1), the procedure for determining these boundary conditions

is identical to the one discussed in sections (4.3.1) and (4.4) within the context
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of the self-consistent framework of CGC model.

For the sake of completeness, we list these conditions again below:

Ns(k0) = γNc(k0) = k2
0νt(k0) (6.2.10)

d

dk

(
Ns(k)

k2

) ∣∣∣∣
k=k0

=
d

dk

(
γNc(k)

k2

) ∣∣∣∣
k=k0

= 0 (6.2.11)

with the form of the eddy anisotropies given, as in the CGC model, by equa-

tions (4.4.47) - (4.4.50).

6.2.3 Numerical solution of the model equations

Due to its non-linear structure, equation (6.2.7) must in general be solved nu-

merically for Nc(k). As is common practice in numerical treatments of the

turbulence equations, CGM chose to normalize the rates in their model in or-

der ensure a sufficient degree of numerical accuracy in the solutions of Ncgm(k)

at both high, and low values of S (or equivalently Σ). The normalizations were

all taken relative to Ns(k0) as follows:

ηs(k) =
Ns(k)

Ns(k0)
(6.2.12)

ηc(k) =
γNc(k)

Ns(k0)
(6.2.13)

ηcgm(k) =
γNcgm(k)

Ns(k0)
(6.2.14)

Notice that for q = k/k0 = 1, equations (6.2.12) - (6.2.14) imply that,
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ηc(q) = ηs(q) = 1 and ηcgm(q) = 1 (6.2.15)

Using equations (6.2.12) - (6.2.14), equations (6.2.7) and (6.2.8) for ncgm(k)

and ε(k) can be rewritten in terms of the normalized rates as,

2ηcgm(q)

[
d

dq
ηc(q)

]
+

[
d

dq
ηcgm(q)

][
ηc(q)− ηs(q)

]

− ηcgm(q)

[
d

dq
ηs(q)

]
− 2ηc(q)ηcgm(q)

q
= 0

(6.2.16)

and,

ε(q) = γ−1S1/2
∗ q−2gαβχ ψ3

0(S) ηc(q)ηcgm(q)
[
ηc(q)− ηs(q)

]
(6.2.17)

respectively. Furthermore, since equation (2.6.6) relates ε directly to Φ, the

expression for the dimensionless convective heat flux can also easily be written

in terms of the normalized rates as,

Φ(S) = γ−1S1/2
∗ q−2

f ψ3
0(S) ηc(qf )ηcgm(qf )

[
ηc(qf )− ηs(qf )

]
(6.2.18)

where qf is defined such that ε(qf ) = ε (i.e., qf is the normalized wavenumber

at which ε(k) saturates in the inertial subrange).

6.2.3.1 The CGM flux

To determine the behaviour of Φ in the different efficiency regimes, CGM

employed an iterative procedure which consisted of the computation of ηc(q)
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from equation (6.2.16) for values of S in the interval [10−4, 1020], with the

initial conditions being specified by equation (6.2.15). For each solution of

ηc(q), ε(q) was determined via equation (6.2.17). The saturation point, qf , and

the associated value of ε(qf ) = ε were noted for each iteration. This procedure

then allowed for the determination of Φ(S) via equation (6.2.18). Using the

data generated from the above procedure CGM produced an analytically fit

formula for Φ(S) which has the following structure,

ΦCGM =

(
Ko

1.5

)3

aSm
[
(1 + bS)n − 1

]p [
1 +

cSq

1 + dSr
+

eSs

1 + fSt

]
(6.2.19)

and a, b, c, d, e, f , k, m, n p, q, r, s and t are constants determined by the

fitting procedure1.

The above expression for the convective heat flux is extremely similar to that

of the MLT (equation (5.2.1)). However unlike ΦMLT , this expression for Φ

takes into account the full spectrum of turbulence associated with the con-

vective process. In section 6.4, I will compare ΦCGM against ΦMLT across

both efficiency regimes in order to determine the relative improvement in the

estimation of the convective flux provided by the CGM model.

6.3 The CM model

It must be noted that prior to the development of the CGM model, Canuto

and Mazzitelli (CM) [22] had already attempted to derive a full spectrum of

turbulence equation for Φ within the framework of the EDQNM model [114],

which may be viewed as a simplification of the full DIA formalism. Unlike the

phenomenological closures discussed in this thesis, the DIA is a fully predic-

tive, theoretical model of fluid turbulence which is derived directly from the

1A list of the numerical values associated with these constants can be found in [23].
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NSE using ideas from quantum field theory [67; 71]. Since a comprehensive

discussion of this class of two-point closure models is beyond the scope of this

thesis, we simply state in this section the model equations used by CM, and

refer the reader to the excellent review of the DIA and its derivatives given by

Leslie [82].

6.3.1 The model equations

Due to the highly complex nature of the DIA equations and the fact that they

must in general be solved using advanced numerical procedures, little progress

has been made in the application of the DIA formalism to problems in the

field of stellar astrophysics. In fact, the CM model appears to be one of the

first attempts at applying a version of the DIA (EDQNM) to the description

of turbulent convection in stars.

The basic equations of the CM model are [22],

[
∂

∂t
− 2ns(k)

]
F (k, t) = T (k, t) (6.3.1)

where T (k, t), which describes the transfer of energy due to the non-linear

interactions, is given by

T (k, t) =

∫ ∫
∆

[k2F (p, t)− p2F (k, t)]k(pq)−1bkpqθkpq(t)F (q, t)dp dq (6.3.2)

where ∆ denotes the fact that the domain of integration is restricted to wave

vectors p and q such that |p−q| ≤ k ≤ |p+q| and bkpq is a geometrical factor

for the eddy anisotropies. Note that θkpq(t) in this notation corresponds to the

eddy correlation time which as usual must be specified in order to complete

the model equations. According to the DIA, the equations obeyed by θ are
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[72],

∂θ (k, t)

∂t
= 1− 2nc(k, t)θ(k, t) (6.3.3)

nc(k, t) = k2 [ν + νt(k, t)] (6.3.4)

νt(k, t) =
1

15

∫ ∞
k

(
5E(p, t) + p

[
d

dp
E(p, t)

])
θ(p, t)dp (6.3.5)

Once ns(k) has been specified, equations (6.3.1) - (6.3.5) can then be used to

determine the form of the turbulent energy spectrum relevant to the problem

being considered.

6.3.2 The CM flux

Using equation (2.6.3) for growth rate of a convective instability, CM solved

the model equations numerically and used the resulting F (k) to generate a

new expression for Φ via equation (2.6.5). The result obtained was,

ΦCM = a1Σm
[
(1 + a2Σ)n − 1

]p
(6.3.6)

where as in the CGM model, the constants a1, a2, m, n and p are determined

from the fitting procedure 2.

As with equation (6.2.19), equation (6.3.6) provides an expression for the con-

vective heat flux which now incorporates the full spectrum of turbulence. How-

ever, the difference between the two is that due to its derivation from within

the EDQNM framework, equation (6.3.6) is based an inherently more robust

2The values of these constants as well as a discussion of the numerical procedure can be
found in [22].
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description of the non-linear interactions than equation (6.2.19) which assumes

a phenomenology for these interactions.

6.4 Comparison of the CGM and CM fluxes

with MLT

With the form of the ΦCGM and ΦCM now determined via equations (6.2.19)

and (6.3.6) respectively, we can now compare the CGM and CM flux treat-

ments to that of the MLT across both efficiency regimes. As with the analogue

of this comparison in section (5.3.2) for the KH model, we expect the convec-

tive fluxes in the FST models to be higher in the high S regime and lower

in the low S regime when compared to the MLT. Taking the ratios of the

respective flux equations confirms that this is indeed the case:

S � 1 :
ΦCM

ΦMLT

≈ 9.8 ;
ΦCGM

ΦMLT

≈ 9.5

(
Ko

1.5

)3 ( σt
0.72

)3/2

(6.4.1)

S � 1 :
ΦCM

ΦMLT

≈ 0.11 ;
ΦCGM

ΦMLT

≈ 0.31

(
Ko

1.5

)3

(6.4.2)

Therefore, the FST models predict fluxes that can differ by up to an order of

magnitude relative to the MLT. Furthermore, the inability of the MLT to cor-

rectly predict the true magnitude of the convective flux in highly inviscid fluids

has also been confirmed by DNS simulations of turbulent convection [13; 30].

This suggests that the FST models do indeed provide a better description of

convection in stars than the MLT.
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6.5 Discussion

The inclusion of the “feedback/backscattering mechanism” in the CGM ex-

pression for the eddy correlation rate results in a closure for the turbulent

energy spectrum which overcomes the deficiencies of its predecessor, the CGC

model. As stated in section 4.5, the inability of the CGC model to match the

DIA spectrum in the LST region is due in large part to the omission of this

mechanism from its closure (which was based on a simple proportionality re-

lation between νt(k) and nc(k)). One would therefore expect the CGM model

to be in good agreement with the form of the energy spectrum predicted by a

model of turbulent convection based on the DIA or one of its derivatives. This

indeed appears to be the case, with both the CGM model, and the EDQNM

based CM model, making very similar flux predictions in both the high and

low efficiency regimes. While a direct comparison between the CGM and CM

spectra is not trivial, the differences in the absolute magnitude of their fluxes

can certainly be attributed to the following facts,

1. The CGM model utilizes a self-consistent framework for the determina-

tion of the source growth rate (which in the case of turbulent convection

corresponds to the buoyancy force), whereas the CM model relies exclu-

sively on the linear approximation to ns(k).

2. The CGM model uses a phenomenological closure for the energy spec-

trum, whereas the CM model is based directly on the EDQNM model,

and hence incorporates a more complete description of the non-linear

interactions associated with the eddy viscosity.

However, it should be noted that neither of these differences are likely to result

in a significant discrepancy between the CM and CGM spectra. In particular

the CM model’s use of the linear approximation to ns(k) should be of lit-
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tle consequence for the calculation of bulk quantities, such as the convective

heat flux, which are determined principally by eddies in the LST region of

the k-space. It is for these reasons that one would expect the application of

these models to simulations of stellar structure and evolution to result in fairly

similar predictions for stars across various regions of the Hertzsprung-Russell

(HR) diagram. This is indeed a feature exhibited by the evolutionary tracks

produced from our numerical implementation of the CM and CGM models,

which is discussed in Chapter 7.

In summary, both of the CGM and CM models presented in this chapter are

designed to treat the full spectrum of eddies that contribute to the convective

heat flux in a turbulent fluid. When compared to the MLT, they confirm the

general trend that, when a more complete description of the turbulence spec-

trum is accounted for, the flux magnitudes predicted by the MLT are lower

than they should be in the high efficiency regime, and higher than they should

be in the low efficiency regime.

Furthermore, the parametric nature of the flux equations in the CGM and

CM models make them ideal for implementation in stellar evolution codes.

However, despite the fact that from a theoretical point of view, these mod-

els provide an unquestionably better description of convection than the MLT,

much of the research work currently being performed using 1-D stellar evolu-

tion codes still relies on the MLT for the treatment of convection in the stellar

interior [139; 140].

In light of this, I have developed an implementation of the CGM and CM mod-

els (hereafter referred to collectively as the full spectrum of turbulence (FST)

models) for one of the most widely used stellar evolution codes at present. The

details of this implementation will be discussed in the next chapter.



Chapter 7

Numerical Simulations

7.1 Introduction

Numerical simulations are of vital importance in stellar astrophysics. They

provide valuable insights into the complex nature of the stellar interior. The

extreme conditions found in stars cannot be realised in laboratory based ex-

periments. We therefore have no other means to investigate the processes that

occur under these extremes.

Convection in stellar evolution codes have relied, and still largely rely, princi-

pally on MLT which was developed in the mid to late 1950’s as a first order

approximation to the convective process in stars. The mixing-length treat-

ment has been found adequate for stellar models whose sole purpose is the

description of the gross features of stellar evolution. But MLT has well known

shortcomings in specific applications. Almost all versions of MLT approximate

the equations of motion in the manner set out by Boussinesq. The Boussinesq

approximation is known to be valid only when the mixing-length is less than

the pressure and density scale heights, and assumes in particular that the con-

vective motion is subsonic. However, stellar models based on the MLT disagree

with observations when the mixing length is less than these scale heights. To

force agreement, the mixing length must be assumed greater than the scale

101
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heights. This makes the model internally inconsistent.

To assess the theoretical analysis presented in this thesis, I have devised a

method for implementing the CM and CGM models in the MESA code library

[106; 107; 108]. MESA is widely regarded as the premier open-source numeri-

cal tool for research in stellar astrophysics at present.

In this chapter I will show that, when implemented in a modern state-of-

the-art stellar evolution code, the FST models produce results which differ

significantly from those of the MLT.

7.2 MESA

MESA is a highly modularized, open-source code library for stellar astrophysics

that began as an effort to improve the now defunct EZ stellar evolution code

[99; 106]. The MESA modules are thread safe. This means that more than one

process can execute the module routines at the same time, and allows for the

utilization of multicore processors. This type parallelizability is particularly

useful in simulations of stellar evolution.

The MESA library includes a one-dimensional feature-rich code called MESA

star. The numerical and computational methods used in MESA star, which

include adaptive mesh refinement and sophisticated time-step adjustment, al-

low it to evolve stellar models consistently through phases of stellar evolu-

tion that have posed substantial challenges for evolutionary codes in the past.

These include the helium core flash in low mass stars and the advanced nu-

clear burning phases in massive stars. A detailed review of MESA’s extensive

feature set can be found in the MESA instrument papers [106; 107; 108].
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As of September 2016, the MESA user base consists of approximately 915 reg-

istered users across six continents. The code serves as the basis of a vast array

of research currently being pursued in the field. This is evidenced by the fact

that the MESA instrument papers have at present been cited collectively more

than 1500 times in academic articles, with the number of citations continuing

to grow.

South 
Pacific
Ocean

South 
Atlantic
Ocean

North 
Atlantic
Ocean

North 
Pacific
Ocean

Indian
Ocean

MESA: ~915 Total Registered Users Sept. 2016

Figure 7.1: The MESA user map as of September 2016. [138]

7.2.1 Treatment of convection in MESA

The default treatment of convection in MESA is based on the standard version

of the MLT [132], with the core flux calculation in the code being described

by equation (5.2.1). Several variations of the MLT are also included to allow

a wider range of physical scenarios to be studied. The full list of convection

options currently present in MESA are listed below:

(i) Cox: based on Cox and Giuli (1968) [132]

(ii) Henyey: based on Henyey, Vardya, and Bodenheimer (1965) [58]

(iii) Mihalas: based on Mihalas (1978) [94] and Kurucz (1979) [74]
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(iv) ML1: based on Böhm-Vitense (1958) [8]

(v) ML2: based on Bohm and Casinelli (1971) [9]

As shown by the above list, the current version of MESA does not include any

official support for either the CM or CGM treatments of turbulent convection.

In light of this, I have developed numerical implementations of both of these

FST models in such a way that they can be naturally incorporated within the

framework of the code. The key motivation for developing this implementation

is based on the analysis in the previous chapters of the severe theoretical short-

coming of the MLT as a model of fluid turbulence. I will show in this chapter

that these shortcoming have observable consequences on numerical studies of

stellar structure and evolution.

7.3 Implementation of the FST models in

MESA

My implementation of the FST models allows replacement of the standard

MLT calculation of the convective heat flux with that of either the CM or

CGM models (described in sections 6.2.3 and 6.3.2). To achieve this, I used

MESA’s run star extras platform, which provides an interface to the core

numerics contained in MESA star.

One of the key differences between the present implementation of the FST

models in MESA and the one used by CM and CGM in their ATON code [130],

is the treatment of the mixing-length parameter α. This will be discussed in

detail below.
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7.3.1 The mixing length

Implementation of a convection model within a stellar evolution code requires

the specification of methods for determining two key quantities associated with

the mixing process. These are, the convective heat flux, Φ, and the mixing-

length, l.

The form of Φ is in general determined from a fluid model of the convective

process, such as the MLT or CGM models. However, these models typically

require a set of parameters to be specified before a numerical solution of the

convective heat flux can be obtained. In models of astrophysical turbulence,

the key parameter required for the calculation of Φ is the mixing length. How-

ever, the mixing-length is itself a-priori unknown, and in the absence of a

complete analytical model of convective turbulence, one usually determines

the form of l by some ad hoc prescription.

In stellar astrophysics, the standard method for determining l is by the follow-

ing equation,

l = αHp (7.3.1)

where α is a free parameter (the mixing length parameter), and Hp is the pres-

sure scale height. Since Hp is assumed to be a known or calculable quantity,

equation (7.3.1) reduces the problem of determining l to one of specifying the

value of α.

As part of their publication of the CM model, Canuto and Mazzitelli proposed

a new method for determining the mixing-length [22]. Their method is based

on the concept of “vertical stacking”, which treats eddies at the top of the

convection zone as having smaller sizes than those in the deep interior. The

inclusion of this effect within the FST models is an attempt to account for
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the effects of compressibility in turbulent flows, however, as will be discussed

below, it is unclear whether this prescription for l is significantly better than

that of equation (7.3.1) [83].

The CM expression for the mixing length is given by [22][83],

l = αcmz (7.3.2)

where αcm is a variable coefficient of order unity, and z is the distance from

the location of the eddy to the boundary of the convective layer. CM have

recommended setting αcm = 1, which effectively results in a parameter free ex-

pression for l which, in principle, should be applicable to any star irrespective

of its position on the HR diagram.

Simulations of stellar convection which are based on the CM/CGM treatments

typically couple the FST flux routines in the code with equation (7.3.2) for

the calculation of the mixing-length [99; 130]. However, calibrations of this

equation, performed using two-dimensional hydrodynamical simulations, have

shown that the variation in αcm is comparable to that of α over extended re-

gions of the HR diagram [83].

Therefore, even though the physical interpretation of αcm is different to that

of α, equation (7.3.2) is not truly parameter free since αcm must also be fitted

to astrophysical data in order for credible results to be obtained from a stellar

model which used the CM prescription for l.

It is also worth noting that in addition to equations (7.3.1) and (7.3.2), several

alternative forms of the mixing-length have also been proposed in the litera-

ture. Some examples of these additional prescriptions for the l include taking

the mixing-length as being proportional to the density scale height [116], or
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regarding it as equal to the width of the superadiabatic region [8].

Due to the uncertainty in the correct prescription for l, and since no major

contradictions with the data have arisen in previous studies based on equation

(7.3.1), I have chosen to set l = αHp in the present simulations.

I have also adopted the standard practice of fixing the value of alpha via a

solar calibration of the models. This is an acceptable approach since it allows

direct comparison of the flux calculations across all three models, and removes

the differences that arise from the various definition of l. However, future ver-

sions of this implementation will be extended to take into account the different

prescriptions for the mixing length to allow for a wider range of studies to be

performed.

7.3.2 Calibration of the Models

Based on the discussion above, I have calibrated the models presented to within

0.1% of the observed effective temperature of the Sun. To achieve this I con-

structed a set of 1M� pre-main sequence models, with Z = 0.02 and Y = 0.28,

for each of the MLT, CM and CGM treatments of convection.1 Each of these

models were then evolved from the pre-main sequence phase onto the zero-age

main sequence, and then from the zero-age main sequence to the present age

of the Sun.

In each of the convection models, the mixing-length parameter was fixed by

requiring that the model match the currently accepted effective temperature

of the Sun, Teff = 5777K , to within 0.1% accuracy at an age of 4.7 × 109yrs

(where this age includes the pre-main sequence lifetime). In the case of the

1Note that throughout this chapter I follow the standard astrophysical convention of
referring to Y and Z as the initial stellar helium and metal mass fractions, respectively.
Note also, that quantities subscripted by � refer to Solar values.
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MLT treatment, this was achieved with αMLT = 1.9, while in the case of

the CM and CGM treatments, the desired result was achieved with αCM =

0.9 and αCGM = 0.6 respectively. The complete set of evolutionary tracks

corresponding to this calibration are shown in figure 7.1.

Figure 7.1: Evolutionary tracks for a 1M� star with Z = 0.02 and Y = 0.28,
from pre-main sequence to present solar age.

It is important to note that, in general, when this type of calibration is per-

formed using the MLT model, it places a constraint on the allowed value of

αMLT such that 1.4 ≤ αMLT ≤ 2.0, where the exact value of the parameter

within this range depends on the specific details of the stellar code being used

[89; 126]. As already noted, a solar calibration of the MLT in MESA results

in a value of α = 1.9. However, from a theoretical point of view, values of

α > 1 should be considered unphysical since in the vast majority of cases,

the extent of the superadiabatic region is only a fraction of the total pres-

sure scale height. Furthermore, the use of α > 1 leads to a violation of the

Boussinesq approximation,2 on which all convection models considered in this

2See reference [119] and appendix (A)
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thesis, including the MLT, are based. The Boussinesq approximation implic-

itly assumes that the mixing length is shorter than any scale length associated

with the structure of the star. In order for progress to made, the unphysical

values of alpha predicted by the MLT in stellar codes are typically overlooked,

with the violation of the Boussinesq approximation usually being attributed

to other uncertainties in the modelling of the fundamental input physics in the

code.

It is remarkable, therefore, that when used in a stellar evolution code the CM

and CGM models yield values of α that lie in a physically acceptable range of

values (ie. αCGM < αCM < 1) and are hence fully consistent with the Boussi-

nesq approximation on which they are based. This is an important and useful

result since it implies that the model used for convective energy transport in

the stellar interior is internally self-consistent and incorporates successfully a

credible and physically realistic framework.

As a further check of the accuracy of the present numerical implementation of

the FST treatments, I evolved the 1M� model up to a value of logL = 1.5L�

on the red giant branch. This allows comparison of the results of the simulation

against those originally published by CM. Figure 7.2 compares the evolution-

ary tracks that were produced using MESA, against figure 6 of Canuto and

Mazzitelli (1991) [22], which they produced using the ATON code. As illus-

trated by these graphs, the evolutionary tracks are nearly identical. The slight

differences in Teff between the two graphs is due to the fact CM used an initial

helium abundance of Y = 0.27 in their solar model, whereas I have updated

the simulation to include the most recent estimate of Y = 0.28 [117].
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Figure 7.2: Comparison of the MESA implementation of the FST models for a
1M� star with Y = 0.28 and Z = 0.02 (left panel), against figure 6 of Canuto
and Mazzitelli (1991) [22] (right panel) which considers the same evolution, but
with Y = 0.27, within the context of the ATON code . Note that the curves
labelled ‘1’ and ‘2’ correspond to the solar calibrated MLT and CM models
respectively, whereas the curve labelled ‘3’ corresponds to the CM model with
l = z (which I have not implemented).

7.3.3 Numerical exploration of the FST models

This section provides several illustrations of the major differences in predic-

tions made by the MLT and FST models when applied to calculations of stellar

structure and evolution. The results of several simulations that were run using

the FST and MLT treatments in MESA are shown in the figures below.

Note that all simulations used the following input physics:

• OPAL equation-of-state (EOS) tables [113].

• Ferguson et.al low temperature opacities [38].

• OPAL tables for high temperature opacities [64].
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• Nuclear reaction networks according to the JINA REACLIB database

[32].

• Mixing according to each of the MLT [132], CM [22] and CGM [23] mod-

els.

Note that I have not incorporated into the present simulations the effects of

turbulent pressure, since they are not expected to lead to any significant dif-

ferences in the locations of the evolutionary tracks on the HR diagram [22].

The quantitative differences between MLT and FST treatments of convection

become most apparent in my calculations for stars with convective cores, and

at the post main-sequence stages of evolution respectively (see for example,

figures 7.2 and 7.4).

In figure 7.3, we notice that episodes of rapid extension of the convective core

(the “spikes” in the plots) during main-sequence hydrogen-burning are seen

to occur at substantially different ages in the CGM model compared with the

MLT and CM treatments. The physical reason for this is not understood.

Figure 7.4 illustrates the substantial difference in the evolutionary tracks that

occur when switching between the Schwarzschild and Ledoux criteria respec-

tively. This figure emphasises the fact that, when computing stellar models, it

is essential to use the Ledoux criterion which takes into account gradients in the

chemical composition of the stellar fluid, rather than the simpler Schwarzschild

criterion. However, we note that even across changes in the choice of stability

criterion, the relative behaviour of the CM, CGM and MLT curves is still pre-

served.

Note also that the evolutionary tracks corresponding to the MLT, CM and
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Figure 7.3: Plot of the mass fraction of the convective core of a 1.5M� star
as a function of its age in Gyr. The left panel plots the total evolution of the
core from near the onset of hydrogen burning up until core hydrogen depletion.
The right panel is a magnified version of the graph in the left panel.

CGM models exhibit a general trend. That is, they initially follow each other

very closely while the star is on the main-sequence and undergoing core hydro-

gen burning. This feature extends onto the sub-giant branch (SGB) until the

formation of an extended convective envelope (see for example, figures 7.2 and

7.4). Once the red-giant branch (RGB) is reached, the differences between the

models start to become severely exaggerated, with the FST curves exhibiting

larger effective temperatures at a given luminosity.

This can be understood in terms of the fact that in the surface regions of a

star, where there is a large decrease in the density of the stellar fluid, ∇ begins

to deviate from ∇ad and the region becomes superadiabatic, resulting in a pro-

nounced difference between the FST and MLT models. Figure 7.5 shows the

profile of the superadiabatic gradient in the outer region of a 0.8M� star with

Z = 0.0001 and Y = 0.25 on the RGB. The peak of the superadiabatic gradient
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is several times larger in FST model than it is in the standard MLT treatment.

Figure 7.6 shows a remarkable change in the extent of the horizontal branch

for a 5M� star. This finding could have important implications for the study

of classical pulsators (specifically: Cepheids and RR Lyrae stars) as well as

the study of subdwarf B (sdB) pulsators.

Finally, figures 7.7 and 7.8 show the differences in the predicted temperatures

of the main-sequence turn-offs, and red giant branches for low-mass (convec-

tive envelope) stars. In figure 7.7 (left panel) and figure 7.8 (left panel), it

can be seen that the MLT treatment delivers a hotter main-sequence turn-off

and a significantly cooler RGB than FST models for a 0.8M� globular clus-

ter star with Z = 0.0001. However, for a 1.2M� star with Z = 0.02, while

the behaviour of the RGBs is preserved, the location of the turn-off points is

reversed, with the MLT predicting a cooler main-sequence turn-off than the

FST treatments.
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Figure 7.4: Evolutionary tracks for a 1.5M� star with solar abundances. This
figure illustrates the differences in the evolutionary tracks that result from the
use of the Schwarzschild criterion (left panel) and the Ledoux criterion (right
panel) respectively.

Figure 7.5: Plot of (∇−∇ad) vs logP , in the surface region of a 0.8M� star
with Z = 0.0001 and Y = 0.25.
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Figure 7.6: Evolutionary tracks comparing the CM and MLT models for a
5M� star with solar abundances. The star has been evolved through core He
burning. Note the significant difference in the Horizontal Branch (HB) location
on this diagram.

Figure 7.7: Evolutionary tracks centred and magnified at the main sequence
turn-off for: (left panel) a 0.8M� star with Z = 0.0001, Y = 0.25; and (right
panel) a 1.2M� star with Z = 0.02, Y = 0.25
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Figure 7.8: Evolutionary tracks for: (left panel) a 0.8M� star with Z = 0.0001,
Y = 0.25 ; and (right panel) a 1.2M� star with Z = 0.02, Y = 0.25

7.4 Concluding Remarks

The above results serve to illustrate the significant differences between the

FST and MLT treatments of convection when applied to calculations of stellar

structure and evolution.

The figures demonstrate the fact that when applied to a modern, state-of-the-

art stellar evolution code, the FST models make predictions that are in severe

enough disagreement with those of the MLT, that they should not be ignored.

We also note that, through numerical simulations of their own, other groups

have extensively tested the FST and MLT treatments, against observational

data where possible, and shown that in each of the applications considered,

the FST models perform at least as well as the MLT eg. [1; 2; 5; 31; 33; 90; 124].
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In view of the theoretical arguments made elsewhere in this thesis for the sig-

nificant problems associated with the use of the MLT in stellar models, the

numerical results reported in this chapter suggest that the current, standard

MLT evolutionary paths published in the literature (and used in a plethora of

applications in stellar astrophysics) may be in need of substantial revision.

Future extensions of this work will include a further exploration of the differ-

ences between these models, as well as the inclusion of oscillation modelling

into the FST-modified MESA models represented here. I also plan to im-

plement several different prescriptions for the mixing length, as discussed in

section 7.3.1.

Summary

The benefits of using the FST models in simulations of stellar structure and

evolution can be summarized as follows:

• The flux expression obtained from the FST models include the full spec-

trum of eddy sizes. These are expected to provide a significantly more

accurate representation of the convective energy transfer in stellar con-

vection zones.

• Unlike the MLT, when implemented in a stellar evolution code, the CM

and CGM models both predict values of α < 1. This indicates that

the treatment of convection in the stellar interior is consistent with the

Boussinesq approximation and ensures that the convection model incor-

porates a credible and physically realistic framework.

• The FST models make several predictions regarding the structure and

evolution of stars which are expected to be in better agreement with
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astrophysical data than the MLT. This is consistent with the results of

several authors eg. [1; 2; 5; 31; 33; 90; 124].



Chapter 8

Conclusion

“Although the turbulent motion has been extensively discussed in

the literature from different points of view, the very essence of this

phenomenon is still lacking sufficient clearness.”

- L.D. Landau. [78]

Turbulence in fluids is a remarkably complex and fascinating phenomenon that

manifests itself in a myriad of ways. Numerous difficulties are associated with

its description. This has forced researchers to resort to a variety of models that

approximate its effect on the evolution of the stellar interior. In the absence

of a complete, analytical model of turbulence, this appears to be the only vi-

able approach via which progress in our understanding of the behaviour of the

stellar fluid can be made.

For several decades the MLT has been the default model for treating convective

energy transfer in stars. While this model has played a useful role in providing

a qualitative description of the stellar convection zone, it is not without flaw.

In this this thesis I have discussed several alternative models which, from both

a qualitative and quantitative point of view, provide a significantly better de-

scription of convection than does MLT. The purpose of this thesis has been to

119
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motivate replacement of MLT in present day studies of stellar structure and

evolution by alternative theories.

8.1 Review of the CG/CGC/CGM models

In this thesis I have presented a detailed theoretical analysis of several models

of turbulent convection that have been developed by Canuto et. al. [17; 21; 23].

The fundamental assumptions, equations and predictions associated with each

of these models have been derived and explained in significant detail. The CG,

CGC and CGM models were shown to be parts of a chain of successive at-

tempts aimed at improving our ability to describe accurately the phenomenon

of convective turbulence.

8.1.1 The CG model

The CG model arose as an attempt to improve on the limitations of the KH

model. Since the KH model is limited to only a small region of the k-space,

which is in general far removed from the LST sector of the flow, it is not well

suited to the description of astrophysical systems that fail to exhibit an ex-

tended inertial subrange. To address this shortcoming, CG proposed a closure

relation which leads to an analytical expression for the energy spectrum in the

LST region. The CG model has been shown to perform well in studies of LST,

with the theoretical predictions of the model being in good agreement with

experimental data in several different applications.

One of the great achievements of this model is that it is able to predict the

MLT equation for the convective heat flux in the k ≈ k0 region of the spec-

trum. This appears to be the first derivation in the literature of the MLT from

a model of turbulence [17]. The fact that the CG model reproduces the form
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of the MLT flux when k ≈ k0, is completely consistent with the notion that the

MLT is a single-eddy model of turbulence since, if one reduces the description

of turbulent energy spectrum to the extreme LST sector only, then the bulk

of the convective heat flux is indeed carried by the k0 eddy. Unlike the the

MLT however, the CG model is also capable of describing the distribution of

turbulent kinetic energy across the entire region where ns(k0) > 0. This makes

the CG model much richer than the MLT in both its theoretical foundations

and in its predictive power.

8.1.2 The CGC model

The closure relation used to provide an analytic solution for the turbulent en-

ergy spectrum in the CG model limits the applicability of the model to the LST

region of the flow. The CGC model therefore arose as an attempt to improve

on the CG model by allowing for a treatment of the entire k-space. This was a

achieved through an improved closure for the correlation rate which related it

directly to the eddy viscosity. In addition to being able to treat the SST region

of the spectrum, the CGC model also provides a method for self-consistently

determining the turbulent growth rates from within the model itself. This ap-

proach to the determination of growth rates freed the model from any physical

inconsistencies associated with the use of the linear approximation to ns(k).

The shortcoming of the CGC model is its omission of the feedback mechanism

expected to occur between the source instability and eddies in the cascade.

8.1.3 The CGM model

The CGM model is based directly on the self-consistent framework of the CGC

model, however, the difference between the two lies in their interpretation of

the eddy correlation time. The CGM model incorporates into the definition
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of the correlation time the phenomenology associated with the scattering of

eddies that generates the feedback mechanism discussed in section 4.5. The

net effect of this mechanism is to regulate the source input energy by the tur-

bulence itself. This allows for a significantly improved closure compared with

that of the CGC model, and is the reason why the energy spectrum predicted

by the CGM model is likely to be in better agreement with the DIA/EDQNM

spectra than the CGC model.

Furthermore, the parametric nature of the CGM expression for the convective

heat flux, allows it to be implemented numerically in 1-D stellar evolution

codes, making it an ideal replacement to the MLT in studies of stellar struc-

ture and evolution.

8.1.4 The CM model

In this thesis, I also considered briefly the formulation of the CM model which,

unlike the models discussed above, is based on the DIA/EDQNM approach to

turbulence. The merit of using this approach is that it allows the CM model

to incorporate a more complete description of the non-linear interactions than

the CGM model. However, due to the difficulties associated with incorporating

a self-consistent method for determining the rates within the DIA/EDQNM

framework, the CM model is still limited to the use of the linear theory for its

description of the turbulence generating instability.

The reason for including this model in this thesis was to illustrate the fact that

even though the CGM model is based on a phenomenological closure for the

eddy viscosity that is not derived directly from the NSE, the physical basis of

this closure is robust enough that the model produces results which are com-

parable to those of the DIA/EDQNM approach, which incorporates a much

more sophisticated treatment of the non-linear energy transfer in the fluid.
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Furthermore, since the CM model also produces a parametric expression for

the convective heat flux, it allows for a direct comparison with the results of

the CGM model when applied to numerical simulations of stellar structure

and evolution. The closeness between the evolutionary tracks predicted by the

CGM and CM models in chapter 7 speak to the strength of the CGM closure

and its inclusion of a method for determining the growth rates in a way that

is independent of the linear mode analysis of the fluid equations.

8.2 The need for a replacement of the MLT

It has been shown in this thesis that several models exist which provide a

better description of turbulent convection than the MLT. Each of the models

discussed above form part of a hierarchy of improvements to the MLT. How-

ever, while these models have existed for some time, the MLT still remains

the de facto standard model when it comes to the treatment of convection

in stars. This is remarkable in light of the fact that all the models discussed

use more complete representations of the turbulent energy spectrum than the

MLT, which assumes a δ-function for F (k).

The convective fluxes predicted by these models differ significantly from those

predicted by the MLT, especially for the situation of highly efficient convec-

tion. These differences should not be ignored for they are bound to result in

inaccurate descriptions of the structure and evolution of stars. This is reflected

in the set of evolutionary diagrams displayed in Chapter 7. It was noted there

that the differences between alternative treatments of convection become most

apparent for stars with convective cores, and at the post main-sequence stages

of evolution respectively. Most prominent among these results are the follow-

ing:



CHAPTER 8. CONCLUSION 124

1. A significantly hotter red giant branch.

2. Substantial changes in the position of the terminal age main-sequence.

3. A substantially extended horizontal branch (including a hotter blue edge).

In summary, the figures of Chapter 7 serve to justify the fact that the current,

standard evolutionary paths published in the literature using the MLT, may

be in need of substantial revision and that the use of more realistic models

for convective energy transfer is imperative for future calculations of stellar

structure and evolution.

8.2.1 Future work

The phenomenological closure models discussed in this thesis are designed to

provide detailed information about the structure and distribution of energy in

turbulent flows. They have also been shown to provide a significantly better

description of the convective process than the canonical MLT. However, these

models are not capable of treating accurately turbulence which is incompress-

ible, inhomogeneous, or strongly anisotropic. They also lack the ability to

describe the physics of non-local effects such convective overshooting. These

deficiencies prevent the FST models from being able to probe in a direct way

the coupling of convection to other key physical processes that occur in the

stellar fluid, such as pulsation.

A model which is capable of circumventing these deficiencies, and which has

recently been adapted by the principle author of the CG, CGC, CGM and CM

models to the description of stellar turbulence, is the Reynolds Stress Model

(RSM) [24; 25; 26; 27; 28]. The RSM belongs to a class of turbulence models

which do not employ the concept of an eddy-viscosity. They deal rather with
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the second-order moments of the NSE in real coordinate space, and incorpo-

rate in a natural way the dynamics of non-local fluid effects [79; 122].

When we investigated these models, we concluded that their implementation

in current stellar codes was beyond the scope of this project. I have therefore

not undertaken this task in the present thesis. In fact, there do not at present

appear to be any 1-D stellar evolution codes that incorporate the full set of

partial differential equations suggested by the RSM for the treatment of con-

vective turbulence [99]. Investigation of how to implement these equations in

current or new stellar codes thus provides a natural avenue for future work, in

which I propose exploring the possibility of implementing this model within

the MESA code library.

The CGM and CM models therefore represent the best currently available

alternatives to the MLT that can be feasibly incorporated into present day,

1-D stellar evolution codes. While this thesis was being written, a new version

of MESA (-r9575) was released which added several new features to the code

library. These include significant updates and improvements to the opacity,

pulsation and accretion modules. I therefore plan to update and extend the

present FST implementation to ensure full compatibility with these recent

changes (in particular the MESA-Gyre pulsation package) and, having done

so, to make our FST convection module available to the MESA user base in

the hope that it will reignite an interest in these models, and provide the large

number of researchers who use the MESA code with an alternative method for

calculating convective energy transfer in their models.

8.2.2 Final remarks

The convection problem has vexed stellar astrophysics for several decades.

It is the prototype of many astrophysical problems in which the bottle-neck

preventing significant progress is the difficulty involved in solving the Navier-
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Stokes equations. With the current generation of hydrodynamical simulations

unable to perform full evolutionary calculations, one has no choice but to resort

to phenomenological models of convective turbulence that can be implemented

in a tractable way in 1-D stellar evolution codes. In this thesis I have presented

a detailed analysis of such models and, through this analysis, have suggested

that the MLT is in need of replacement. In particular I have focused on the

theoretical foundations of models of convective turbulence which improve on

the MLT by incorporating the full spectrum of turbulent eddies in their predic-

tions of the convective heat flux. I have argued in several ways that these FST

type models represent a significantly more robust and improved description of

convective turbulence than the MLT. It is hoped that the analysis presented

in this thesis will shed light on the origins and theoretical foundations of the

FST models, and stimulate interest in their use as a replacement for the MLT

in studies of stellar structure and evolution.



Appendix A

The Convective Heat Flux

In this appendix I provide a first principles derivation of the formula for the

convective heat flux stated in equation (2.6.4). This quantity is also related

to, ε, the total input energy from the source.

Consider a fluid constrained between two boundaries of infinite horizontal ex-

tent. Let the vertical distance between these boundaries be denoted by D.

Now suppose that the fluid is subjected to a heat flux from the lower bound-

ary. Applying the Boussinesq approximation [119] to the above fluid results

in the following equations for the fluctuating velocity and temperature fields,

denoted by u and θ respectively,

(
∂

∂t
− ν∇2

)
u(x, t) = (u · ∇) u (x, t)− 1

ρ
∇p+ gαθ(x, t) (A.0.1)

(
∂

∂t
− χ∇2

)
θ(x, t) = −(u · ∇)θ(x, t) + β(z)uz(x, t) (A.0.2)

∇ · u = 0 (A.0.3)

where u = (ux, uy, uz).
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The equation for the heat flux in the above system is given by,

−χdT (z)

dz
+ uzθ(z) = χNβ0 (A.0.4)

where T (z) is the average temperature at z, N is the Nusselt number, and

β0 = ∆T/D, where ∆T is the temperature difference between the upper and

lower boundaries. Note that the bars in the above equation refer to horizontal

averages, which will be assumed to be equal to ensemble averages.

The volume average of equation (A.0.4) is given by,

Hc =

(
ρcp
V

)∫
V

(wθ) dV = (N − 1) cpρχβ0 (A.0.5)

In the above notation, the expression for the turbulent convective heat flux is

given by,

Hc = cpρuzθ (A.0.6)

where the angular brackets, 〈·〉, denote an ensemble average. In order to de-

velop a spectral representation of this equation, we begin by using Fourier

expansions of u(x, t) and θ(x, t) to generate equations for the second order

moments of these fields. The procedure is as follows:

Starting from,

u(x, t) = V
3
√

2π

∫
V

U(k, t)eik·x dV (A.0.7)

θ(x, t) = V
3
√

2π

∫
V

θ(k, t)eik·x dV (A.0.8)

we can write down volume averages of the fluctuating quantities as follows:

u2 ≡ 1

V

∫
V

〈uu∗〉dV =

∫ ∞
k0

F (k)dk (A.0.9)
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θ2 ≡ 1

V

∫
V

〈θθ∗〉dV =

∫ ∞
k0

G(k)dk (A.0.10)

uzθ ≡
1

2V

∫
V

〈wθ∗ + w∗θ〉dV =

∫ ∞
k0

H(k)dk (A.0.11)

F (k), G(k) and H(k) may now be identified as spectral functions describing

the turbulent velocity, temperature fluctuations and turbulent convective heat

flux, respectively.

It has been shown [135] that, for the case of stationary turbulence, the spectral

equations obeyed by these functions are,

gαH(k) = νk2F (k) + TF (k) (A.0.12)

βH(k) = χk2G(k) + TG(k) (A.0.13)

Combining equations (A.0.12) and (2.4.2) results in,

H(k) =
1

gα

[
ns(k) + νk2

]
F (k) (A.0.14)

The volume average of (A.0.4) is

Fc = cp

( ρ
V

)∫
(wθ)dV = (N − 1) cpρχβo (A.0.15)

Using equations (A.0.6), (A.0.11), (A.0.12), this becomes

Hc = cpρ

∫ ∞
k0

H(k)dk = cpρβχΦ (A.0.16)

where the dimensionless convective flux, Φ, is given by
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Φ =
1

gαβχ

∫ ∞
k0

[
ns(k) + νk2

]
F (k)dk (A.0.17)

Finally, combining the above equation with equation (2.4.1), results in,

Φ =
ε

gαβχ
(A.0.18)
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