
Trajectory-Based Methods for Solving
Nonlinear and Mixed Integer Nonlinear

Programming Problems

Terry-Leigh Oliphant

School of Computational and Applied Mathematics
University of the Witwatersrand, Johannesburg.

This dissertation is submitted for the degree of
Doctor of Philosophy

November 2015

I would like to dedicate this thesis to my loving parents and brothers, Michael, Bridgette,
Michael and Barry-more, and my precious grandmother Deannah.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is the result of my own work and includes nothing which is the outcome of work
done in collaboration, except where specifically indicated in the text.

Terry-Leigh Oliphant
November 2015

Acknowledgements

I would like to acknowledge a number of people who contributed towards the completion of
this thesis. Firstly, I thank my supervisor Professor Montaz Ali for his patience, enthusiasm,
guidance and teachings. The skills I have acquired during this process have infiltrated every
aspect of my life. I remain forever grateful. Secondly, I would like to say a special thank
you to Professor Jan Snyman for his assistance, which contributed immensely towards this
thesis. I would also like to thank Professor Dominque Orban for his willingness to assist me
for countless hours with the installation of CUTEr, as well as Professor Jose Mario Martinez
for his email correspondence. A heartfelt thanks goes out to my family and friends at large,
for their prayers, support and faith in me when I had little faith in myself. Thank you also to
my colleagues who kept me sane and motivated, as well as all the support staff who played a
pivotal roll in this process. Above all, I would like to thank God, without whom none of this
would have been possible.

Abstract

Trajectory-based methods for solving constrained nonlinear programming problems (CNLPs)
and mixed integer nonlinear programming problems (MINLPs) are proposed in this thesis.
The trajectory-based method for unconstrained nonlinear programming problems (UNLPs)
was proposed by Snyman [115]. The algorithms developed for CNLPs and MINLPs in thesis,
which are extensions of Snyman’s method [115], are however novel. First we develop a
trajectory-based local algorithm for solving general CNLPs and then an adaptation of this
algorithm for MINLPs is designed around the definition of a local minimum for MINLPs
proposed by Newby [90]. In the development of the algorithms, the augmented Lagrangian
function is used to convert the constrained problem into an equivalent unconstrained problem.
Several contributions are made, including a new scheme for updating the penalty parameter,
the implementation of an adaptive step size routine and a scaling mechanism for badly scaled
problems. Global and local convergence properties of TACNLP are stablished.

Contents

List of Figures xv

List of Tables xvii

Nomenclature xxi

1 Introduction 1
1.1 Nonlinear Programming Problems . 1
1.2 Mixed Integer Nonlinear Programming Problems 2
1.3 Motivation . 3
1.4 Organization of the thesis . 6

2 Review of Some Solution Techniques for CNLPs 9
2.1 Nonlinear Continuous Optimization . 9

2.1.1 Duality . 15
2.2 Review of Constraints Handling in Constrained Nonlinear Programming . . 19

2.2.1 Penalty methods for nonlinear constrained optimization 20
2.2.2 Algorithms for CNLPs . 28

3 Review of Some Solution Techniques for MINLPs 37
3.1 Mixed Integer Optimization . 37
3.2 Nonlinear programming subproblems . 40
3.3 The mixed integer linear programming problem (MILP) 43
3.4 Algorithms for convex MINLPs . 44
3.5 Algorithms for non-convex MINLPs . 50

4 A Trajectory-Based Method for UNLPs 53
4.1 Overview of TAUNLP . 53
4.2 The main features of the TAUNLP algorithm 55

xii Contents

5 A Trajectory-Based Method for CNLPs 63
5.1 Overview of TACNLP . 63
5.2 The main features of the TACNLP algorithm 66

5.2.1 Updates of xk, λ k and µk . 67
5.2.2 Adaptive step size . 68
5.2.3 Scaling . 70
5.2.4 Quantities for convergence . 71

6 Implementation of Trajectory-Based Algorithms 75
6.1 Comparison of procedures used in TACNLP

and ATAUNLP . 75
6.1.1 Updating xk and λ k . 76
6.1.2 Updating the integration time steps ∆tk

x and ∆tk
λ

. 76
6.1.3 Scaling . 79
6.1.4 Convergence . 79

6.2 Implementation of the procedures used in TACNLP and ATAUNLP 80
6.2.1 Pseudo-code for the adaptive step size routine 81
6.2.2 Pseudo-code for the step size update used in ATAUNLP 81
6.2.3 Pseudo-code for the penalty parameter updating strategy proposed

in this thesis . 82
6.2.4 Pseudo-code for the conventional penalty parameter updating strategy 83
6.2.5 Pseudo-code for the scaling routine 84

6.3 The TACNLP and ATAUNLP algorithm 85
6.3.1 pseudo-code for TACNLP . 85
6.3.2 pseudo-code for ATAUNLP . 88
6.3.3 Parameters used in the experiments 90

7 Convergence analysis 93
7.1 Global convergence analysis . 93
7.2 Local convergence analysis . 103

8 Trajectory-Based Method for MINLPs 111
8.1 Notation and definitions pertaining to the local minimum of MINLPs 111
8.2 Overview of TAMINLP . 117
8.3 The first phase of TAMINLP . 119
8.4 The second phase of TAMINLP . 120

8.4.1 Generating integer trial points . 121

Contents xiii

8.4.2 Details of the minimization in the second phase of TAMINLP . . . 123
8.4.3 Increasing the search space when no feasible solution is found . . . 125

8.5 The third phase of TAMINLP . 130
8.5.1 Selecting points for the final phase of TAMINLP 133

8.6 The Pseudo-code of TAMINLP . 135
8.7 Convergence . 136

8.7.1 Convergence of TAMINLP . 137

9 Numerical Results for CNLPs 141
9.1 Results and discussion for TACNLP . 141

9.1.1 Test problems and parameters . 142
9.1.2 Results for TACNLP . 145

9.2 Results and discussion for ATAUNLP . 151
9.2.1 Results for ATAUNLP . 152

9.3 Comparison of TACNLP and ATAUNLP 155
9.4 Comparison of TACNLP and SNOPT . 157
9.5 Results for UNLPs . 158

10 Numerical Results of MINLPs 163
10.1 Test problems and parameters . 163
10.2 Results and discussion for TAMINLP . 165
10.3 Comparison of MINLP algorithms . 167

11 Conclusion 173
11.1 Summary . 173
11.2 Future Work . 176

Appendix A Results for the trajectory-based algorithms 187
A.1 TACNLP and ATAUNLP Results . 187
A.2 MINLP Data . 200
A.3 TAMINLP RESULTS . 201

Appendix B Test Problems 203

List of Figures

2.1 Illustration of a KKT point. 14
2.2 Quadratic penalty function for min x2

1 +2x2
2 subject to x1 + x2 = 1. 21

2.3 Log barrier function for min (x1+0.5)2+(x2−0.5)2 subject to 0≤ x1,x2 ≤ 1. 23
2.4 Augmented Lagrangian function for min x2

1 + 2x2
2 subject to x1 + x2 = 1,

with fixed µ = 1. 25

3.1 Feasible regions of CNLPs, INLPs and MINLPs 39
3.2 Optimal solutions of CNLPs, INLPs and MINLPs 41

8.1 The plot of f (x,y) = (x− y)2 − y, where the continuous manifolds are
obtained by fixing y = {−2,−1,0,1,2} in f (x,y). 113

8.2 The manifold minima of f on the continuous parabolic manifolds, obtained
by fixing y in f (x,y) to the integer-feasible values in (8.3). The manifold
minima are represented by the black dots on each manifold. 114

8.3 Illustration of different local minima corresponding to Definitions 8.1.4,
8.1.5 and 8.1.6 respectively. 116

8.4 Trial points, (1,0)T , (0,1)T , (−1,0)T , (0,−1)T generated about the pattern
center ȳ = (0,0)T , using the rule of PS. 122

8.5 Feasible and infeasible trial points, (1,0)T , (0,1)T , (−1,0)T , (0,−1)T ,
generated using the rule of PS. The blue points are feasible, while the green
points are infeasible. 122

8.6 The set of new trial points generated using feasible trial points as pattern
centers . 126

8.7 The set of new trial points generated using infeasible trial points as pattern
centers . 128

9.1 Progression of µk under PC1, PC2 and PC3 in TACNLP, using Problem 2 . 148
9.2 The effect of using the conventional updating strategy for µ in TACNLP

using Problem 2 . 149

xvi List of Figures

9.3 Performance profile examining the effectiveness of the new penalty parameter
updating scheme . 151

9.4 Progression of µk under PC1, PC2 and PC3 in ATAUNLP 153
9.5 Progression of µk under PC3, in ATAUNLP using Problem 24 154
9.6 Performance profile examining the effectiveness of including the new updates

in TACNLP . 155
9.7 Performance profile examining the effectiveness of including the new updates

in ETAUNLP . 160

List of Tables

6.1 The fundamental differences between the updates x and λ used in TACNLP
and ATAUNLP . 77

6.2 The fundamental differences between the time step updates used in TACNLP
and ATAUNLP . 80

6.3 A list of the parameters used in the implementation of TACNLP and ATAUNLP 92

8.1 The fundamental difference between TACNLP and TAMINLP 119

8.2 Important items used in the discussion of the second phase of TAMINLP
minimization. 130

8.3 Important items used in the discussion of the third and final phase of
TAMINLP minimization. 134

9.1 Test problems which did not converge unless the specified parametric values
were used, as opposed to the default values stipulated in Table 6.3 143

9.2 Test problems which converged faster using the specified parametric values
as opposed to the default values stipulated in Table 6.3 143

9.3 Scaled problems . 144

9.4 Test problems with specifications for the penalty parameter, which differ
from those listed in Table 6.3 . 144

9.5 A comparison of the overall performance of TACNLP and ATAUNLP . . . 156

9.6 Results obtained when solving problems from the CUTEr test set using
SNOPT and TACNLP . 158

9.7 Comparison of the performance of TAUNLP and ETAUNLP 159

9.8 Comparison of the performance of TAUNLP and ETAUNLP with scaling . 161

10.1 The structure of the mixed integer problems in the test set 164

10.2 Test problems which did not converge unless the specified parametric values
were used as opposed to the default values stipulated in Table 6.3 164

xviii List of Tables

10.3 Test problems with specifications for the penalty parameter, which differ
from those listed in Table 6.3 . 165

A.1 Results based on the performance of TACNLP on 71 test problems, with
µ ∈ [0.01,10] . 189

A.2 The error estimates of the solutions obtained using TACNLP on 71 test
problems, with µ ∈ [0.01,10] . 192

A.3 Data for large test problems . 193
A.4 Results based on the performance of ATAUNLP on 71 test problems, with

µ ∈ [0.01,10] . 196
A.5 The error estimates of the solutions obtained using ATAUNLP on 71 test

problems, with µ ∈ [0.01,10] . 199
A.6 The performance of TAMINLP on 24 test problems, with µ ∈ [0.01,10] . . 201
A.7 The error estimates of the solutions obtained using TAMINLP on 24 test

problems, with µ ∈ [0.01,10] . 202

List of Algorithms

1 Brief outline of TAUNLP . 59
2 Brief outline of TACNLP . 72
3 Adaptive step size scheme used in TACNLP 81
4 Step size update used in ATAUNLP . 81
5 Penalty parameter updating strategy for ATAUNLP and TACNLP 82
6 Conventional penalty parameter updating strategy 84
7 Scaling used in TACNLP and ATAUNLP 85
8 TACNLP . 86
9 ATAUNLP . 88
10 TAMINLP . 135

Nomenclature

Greek Symbols

δ The maximum allowable size for the space steps ∆x and ∆λ

δ1 Used for the magnification of ∆tx and ∆tλ

ε̂ Tolerance for the discretization error of Euler’s method

ε Tolerance for the trajectory-based algorithms

λ̂ The Lagrange multiplier estimate obtained using modified Euler’s method

λ The Lagrange multiplier

Λ Used to denote the Lagrange multiplier in certain instances

γ The decreasing factor for the conventional penalty parameter update

µ The penalty parameter

µmax The maximum value which µ can attain

µmin The minimum value which µ can attain

Ωc The feasible region of the general CNLP problem

Ωd The feasible region of the general INLP problem

Ωm The feasible region of the general MINLP problem

φA The augmented Lagrangian for equality and inequality constraints

∇xφA The gradient of the augmented Lagrangian with respect to x

∇λ φA The gradient of the augmented Lagrangian with respect to λ

xxii Nomenclature

∆t The time step

∆tmax The maximum value ∆t can attain

∆tmin The minimum value ∆t can attain

τ Scaling parameter

∆tλ The time step with respect to λ

∆tµ The time step with respect to µ

∆tx The time step with respect to x

∆x The space step

Superscripts

k superscript index

Subscripts

i subscript index

j subscript index

Other Symbols

A(x) The set of active constraints at x

a(x) The force acting on the particle x

A The matrix describing the linear equality constraints, Ax = b

A(x)c The complement of A(x)

As(x) The set of strongly active constraints at x

b The vector describing the linear equality constraints, Ax = b

b∗ The optimal solution for the Lagrangian dual problem

Bε(xc) The open ball {x ∈ Rnc : |x− xc|< ε}

ci, i ∈ E The number of equality constraints

ci, i ∈ I The number of inequality constraints

Nomenclature xxiii

∇ci The gradient of the ith constraint, also known as the constraint normal

(ci)s The mean value obtained for the constraint, ci

(∇ci)s The mean value obtained for the constraint normal, ∇ci

d The direction vector used in several algorithms

di The coordinate directions used to generate trial points using the rule of PS, di, i =
1, . . . ,ns

E The finite index set of equality constraints

f The objective function

f M(x,yd) The feasible continuous manifold obtained by fixing the integer variables to the
value yd

∇ f The gradient of f

(∇ f)s The mean value obtained for the gradient of the objective function, ∇ f

g The vector describing the quadratic function, q(x) = 1
2zT Hz+gT z

H The matrix describing the quadratic function, q(x) = 1
2zT Hz+gT z

I The finite index set of inequality constraints

iλ Used to ensure that the descent condition, (4.6), is satisfied

ix Used to ensure that the descent condition, (4.6), is satisfied

jλ Used to ensure that the descent condition, (4.6), is satisfied

jx Used to ensure that the descent condition, (4.6), is satisfied

∇L The gradient of the Lagrangian function, L

L The Lagrangian function

M̂ Used for the adaptive step size update for µ

m̂ Used to keep track of the desired progress of the trajectory computed in TAUNLP

m̂λ Used to keep track of the desired progress of the trajectory computed wrt λ

xxiv Nomenclature

m̂x Used to keep track of the desired progress of the trajectory computed wrt x

M(x) The set of active and infeasible inequality constraints

M(x)c The complement of M(x)

mE The number of equality constraints in the general CNLP and MINLP

mI The number of of inequality constraints in the general CNLP and MINLP

m The number of constraints in the general CNLP and MINLP

N (x) A continuous neighborhood of x.

N (y) A discrete neighborhood of y

n The total number of decision variables in the general CNLP and MINLP

Ncomb(x,y) The neighborhood used in the definition of a combined local minimum

nc The number of continuous decision variables in the general MINLP

Nd(x,y) A discrete user defined neighborhood

nd The number of discrete decision variables in the general MINLP

Nr(x,y) The neighborhood used in the definition of a local minimum of a mixed integer
problem

ns A user prescribed parameter, indicating the number of integer points to include in the
search space of the MINLP trajectory-based algorithm

p∗ The best lower bound obtained from the Lagrangian dual function

P̂ The number of integer-feasible trial points generated during the first phase of
TAMINLP

P The number of points which satisfy the inequality (8.32)

pλ Used for the magnification of ∆tλ

px Used for the magnification of ∆tx

Q The vector describing the linear function, QT z

q The number of random decision variables generated for scaling purposes

Nomenclature xxv

q̄ The vector describing the linear function l(x) = q̄T x

q The vector describing the linear function l(z) = qT z

r convergence parameter

Sλ The discretization error estimate with respect to λ

Sx The discretization error estimate with respect to x

f (x) Used to denote the potential energy of the particle x

T (x) Used to denote the kinetic energy of the particle x

t(λ ,1) The factor ∆tλ is decreased by during the step size routine

t(x,1) The factor ∆tx is decreased by during the step size routine

t(λ ,2) The factor ∆tλ is increased by during the step size routine

t(x,2) The factor ∆tx is increased by during the step size routine

v The velocity of the particle x

w The velocity of the particle λ

W k The Hessian matrix of the Lagrangian function L, evaluated at the kth iteration of the
SQP algorithm, W k = ∇2

xxL(xk,λ k)

x The vector of continuous decision variables

x0 The user prescribed initial point for x

y The vector of integer decision variables

y0 The user prescribed initial point for y

ȳ The integer value obtained by rounding and fixing the solution, y∗c , of the relaxed
MINLP problem (8.1)

ȳi The trial points generated about the centre ȳ, using the rule of PS

z The vector of continuous and discrete decision variables, z = (xT ,yT)T

z∗c The solution to problem M , obtained during the first phase of TAMINLP, z∗c =

(x∗c ,y
∗
c)

T

xxvi Nomenclature

z∗f The best solution to problem M̄ (ȳi), i = 1, . . . ,ns, obtained during the second phase
of TAMINLP, z∗f = (x∗f ,y

∗
f)

T

z∗ The local minimum obtained during the third and final phase of TAMINLP, z∗ =
(x∗,y∗)T

⌈.⌉ The ceiling function

⌊.⌋ The floor function

Acronyms / Abbreviations

AL Augmented Lagrangian

ATAUNLP An adaptation of TAUNLP, for constrained nonlinear programming problems

BB Branch and Bound

α−BB α Branch and Bound

CNLPs Constrained nonlinear programming problems

ECP Extended Cutting Plane

α−ECP α Extended Cutting Plane

GBD Generalized Benders decomposition

INLPs Integer nonlinear programming problems

KKT Karush-Kuhn Tucker

LB Log Barrier

LICQ The Linear independence constraint qualification

MFCQ The Mangasarian-Fromovitz constraint qualification

MILPs Mixed integer linear programming problems

MINLPs Mixed integer nonlinear programming problems

MIQPs Mixed integer quadratic programming problems

NLPs Nonlinear programming problems

Nomenclature xxvii

OA Outer approximation

QP Quadratic Penalty

SCQ Slater’s Constraint Qualification

SQP Sequential Quadratic Programming

TAMINLP Trajectory-based method for mixed integer nonlinear programming problems

TACNLP Trajectory-based method for constrained nonlinear programming problems

TAUNLP Trajectory-based method for unconstrained nonlinear programming problems

UNLPs Unconstrained nonlinear programming problems

Chapter 1

Introduction

The aim of this chapter is to provide a brief introduction to the work contained in this
thesis. Section 1.1 provides a description of general nonlinear programming problems
(NLPs), including unconstrained NLPs (UNLPs) and constrained NLPs (CNLPs). In Section
1.2, we provide a description of general mixed integer nonlinear programming problems
(MINLPs) considered in this thesis. Section 1.3 presents our motivation for the development
of trajectory-based methods [115, 116, 118] for CNLPs and MINLPs. Finally, Section 1.4
outlines the layout of the rest of the thesis.

1.1 Nonlinear Programming Problems

The first class of problems we consider in this thesis are NLPs. NLPs are classified as either
UNLPs or CNLPs. General UNLPs can be expressed as follows:

min
x∈Rn

f (x), (1.1)

where f : X ⊆Rn −→R. In this thesis, however, we are concerned with CNLPs. Constrained
nonlinear optimization continues to be a critical area of optimization with applications arising
naturally in finance [34], water supply systems [37], [70], [72], automotive design [111],
and all areas of engineering [13], [122]. Constrained nonlinear optimization, unlike its
unconstrained counterpart, involves the minimization of an objective function subject to
constraints. We consider the general CNLP of the form:

2 Introduction

P

min
x∈Rn

f (x),

s.t. ci(x) = 0, i ∈ E,
ci(x)≥ 0, i ∈ I,
x ∈Ωc,

(1.2)

where
Ωc = {x ∈ Rn|ci(x) = 0 ∀ i ∈ E, ci(x)≥ 0 ∀ i ∈ I},

f : X ⊆ Rn −→ R and c : X ⊆ Rn −→ Rm are twice continuously differentiable functions,
and I and E are finite index sets of inequality and equality constraints respectively. The
nonlinearity of the problem arises because at least one of f (x) or ci(x) is nonlinear in the
argument x. The total number of constraints in (1.2) is denoted by m. When there are
only equality constraints present, the number of constraints is denoted by mE , i.e. m = mE .
Similarly when there are only inequality constraints present, we denote the number of
constraints by mI , i.e. m = mI .

Most solution approaches for this type of problem require first and second derivative
information. The use of second derivative information usually renders second-order methods
computationally expensive as opposed to first order methods [130]. The extension and
adaptation of the trajectory-based method [115], for solving NLPs of type (1.2), is therefore
crucial because it requires first derivative information only.

1.2 Mixed Integer Nonlinear Programming Problems

The second class of problems we consider in this thesis are MINLPs. When CNLPs of
the form (1.2) contain continuous as well as integer variables, then they are referred to as
MINLPs. MINLPs are defined as follows:

M

min

z
f (z),

s.t. ci(z) = 0, i ∈ E,
ci(z)≥ 0, i ∈ I,
z ∈ X×Y,

(1.3)

where f : X ×Y −→ R and c : X ×Y −→ Rm are real valued, nonlinear functions, z is the
vector made up of continuous and integer variables, z = (xT ,yT)T , X ⊆ Rnc and Y ⊆ Znd is a

1.3 Motivation 3

polyhedral set of integer points, and T is the transpose of a vector. The number of decision
variables, n, in the general MINLP, is made up of the number of continuous variables, nc,
and the number of discrete variables, nd , i.e. n = nc +nd . The variables, y, are the integer
variables while the variables, x, are the continuous variables; y can either take on general
integer values, binary values or a combination of the two. Throughout the rest of the thesis we
write z = (x,y)T to mean z = (xT ,yT)T . Furthermore, any continuous vector x, will be written
as x = (x1, x2, . . . , xnc)

T , and any discrete vector y will be written as y = (y1, y2, . . . , ynd)
T .

Let Ωm denote the feasible region of (1.3), then the point z is feasible if z ∈ Ωm. When
no continuous variables are present in (1.3), the problem reduces to an integer nonlinear
programming problem (INLP) and the feasible region Ωm reduces to the discrete part only.
We denote this discrete feasible region by Ωd . Similarly, when no discrete variables are
present in (1.3), the problem reduces to (1.2) and the feasible region Ωm reduces to the
continuous part only. We denote this feasible part, as in problem (1.2), by Ωc.

In this thesis, we deal only with smooth objective functions f (x) and f (z) and smooth
constraint functions ci(x) and ci(z). The problem (1.2) and the general MINLP problem (1.3)
generally have more than one local minimum. We are interested in locating a local solution
to (1.2) as well as a local solution to (1.3). Most existing solution processes for (1.3) are
designed to solve convex MINLPs [27], [36], [41], [49], [55], [125], while the trajectory-
based method proposed here adequately solves non-convex problems locally. Clearly the
trajectory-based method can be applied to solve convex problems also.

1.3 Motivation

The main objective of this thesis is to develop a trajectory-based algorithm to solve (1.2) and
adapt it to solve (1.3). Trajectory optimization is gaining some momentum since its inception
[5, 74]. In the literature a few trajectory-based methods exist for solving UNLPs. These
include first-order-in-time trajectory-based methods [10, 32] as well as second-order-in time
trajectory-based methods [3, 4, 8, 9, 11, 26, 100, 115, 116, 118].
The method of Zirilli et al. [3] involves rewriting a system of second order ODEs as a set of
first-order equations which are then linearized and solved using the implicit Euler method
[3, 26].
On the other hand Antipin [8] uses the gradient projection method of first and second order
to obtain a solution to the unconstrained problem (1.1). The problem (1.1) is formulated on
drawing a trajectory which is obtained as a solution to the system of differential equations
given by (1.4):

ẋ =−x+πQ× (x−α∇ f (x)), x(0) = x0, (1.4)

4 Introduction

where πQ(·) is the projection operator of a vector onto the set Q and α > 0 is a step length
parameter. The right hand side of (1.4) is chosen to satisfy necessary and sufficient optimality
conditions at x∗ [8].
The method of Alvarez [4] solves (1.1) by considering the solution of a second order evolution
equation with linear damping and convex potential:

ẍ+ γ ẋ =−∇Φ(x), (1.5)

where Φ : H −→ R, H is a real Hilbert space and γ is a positive real number, γ > 0. The
system (1.5) is commonly referred to as a nonlinear oscillator with damping. The solution
to (1.5) is guided to the minimum x∗ because it is a dissipative system. Here a dynamical
approach is used for the iterative framework of the proposed algorithm [4]. This methodology
was then further extended by Alvarez and Attouch [9] to solve the convex constrained version
of (1.2) by considering the gradient-projection dynamical system

ẍ+ γ ẋ+ x = πC(x−µ∇Φ(x)), (1.6)

where πC(·) is the projection operator of a vector onto C which is a closed convex subset of
H.
A review of the methods of Snyman [115, 116], Snyman and Fatti [118] and the generalized
descent method of Griewank [62] can be found in Diener et al. [39]. The basic idea of
Snyman’s method [115, 116] is to solve the differential equation

ẍ =−∇ f (x), x(0) = x0, ẋ(0) = 0, (1.7)

where f (x) is the real valued unconstrained function to be minimized over some
n-dimensional box which contains all minimizers as interior and isolated, and ∇ f is the
gradient of f . This local method was then extended by Snyman and Fatti [118] to solve
unconstrained global optimization problems. The solution process of Snyman and Fatti’s
method involves performing multiple searches to locate the global minimizer of the problem,
with a certain probability. The method was also extended by Snyman to solve constrained
problems via penalty function formulations [117]
On the other hand, the generalized descent method of Griewank [62] solves the system

max [0, f (x)− c] ẍ+ e(I− ẋẋT)∇ f (x) = 0, x(0) = x0, ẋ(0) = 0, (1.8)

where c and e are parameters. The method is parameter dependent and convergence to the
global minimizer can be guaranteed for a certain class of functions only. Unfortunately, not

1.3 Motivation 5

much numerical testing with the generalized descent is known in the literature.

The most common solution processes for (1.2) use first and second derivate information
to reach an optimal solution. Some benchmarking software packages, namely LANCELOT,
which uses the augmented Lagrangian method [33], and LOQO, based on an interior point
algorithm [121], requires first and second-order information. Other software packages,
namely SNOPT, which uses the sequential quadratic programming method [61], [56], [57]
and MINOS, which is based on a combination of quasi-Newton’s method, a projected
Lagrangian method, the simplex method and the reduced-gradient method [89], only requires
first order information. The use of second-order information generally reduces the number
of iterations, but increases the CPU time, rendering the method computationally expensive.
Depending on the nature of the problem, it may not even be possible to obtain second-order
information. Even when no second-order information is required, sometimes line search
techniques are needed to ensure convergence to an optimal solution. Line search procedures
however, usually require a significant amount of function evaluations to monitor the progress
of a sequence of iterates to a solution [52], [130]. Based on the fact that existing second-
order methods are usually computationally expensive, and alternative methods, which use
line-search strategies, require function evaluations, we develop a trajectory-based method for
CNLPs.

In the trajectory-based method presented here solution trajectories are computed for
Augmented Lagrangian formulations of the constrained problem (1.2) and the method uses
first order information only and requires no function evaluations throughout the solution
process. This method is not only an extension of the trajectory-based method proposed by
Snyman [115, 116], but includes some novel updates to the existing trajectory-based method.
These include:

• The implementation of an adaptive step-size routine.

• A new technique for updating the penalty parameter µ .

• A mechanism used to circumvent the effects of badly-scaled problems.

In addition, we have provided convergence proofs which were not given in the original
papers [115, 116, 118], dealing with UNLPs.

In this thesis, our first objective is to develop a trajectory-based algorithm for CNLPs, which
we denote as TACNLP. Our second objective is to extend this and develop a trajectory-based
algorithm for MINLPs. This algorithm is denoted as TAMINLP.

6 Introduction

Mixed integer optimization has applications arising naturally in process and engineering
design [75], heat exchanger networks [21], production planning and control [88, 120] location
- allocation [81], pump configurations [97], water transmission networks, finance [82], process
flowsheets [76] and scheduling [66, 109]. Due to these numerous applications of MINLPs
[21, 66, 75, 76, 81, 82, 88, 97, 109, 120] several methods have been developed to solve convex
MINLPs. These are mostly deterministic methods, viz., the Branch and Bound method (BB),
the Outer approximation method (OA), the Generalized Benders Decomposition method
(GBD), and the extended cutting plane method (ECP).
These methods usually combine methods from CNLPs and mixed integer linear programming
problems (MILPs) [27, 36, 41, 49, 55, 125]. For MINLPs, a large number of binary variables
may results in a potentially large combinatorial problem [50]. If binary as well as general
integer variables are present, then this poses an even harder problem. Furthermore, if the
MINLP is non-convex, then it generally contains more than one solution and the deterministic
methods for convex MINLPs mentioned above can not be applied to solve it. A number of
global MINLP algorithms have, however, been developed for non-convex problems with
specific structures. These algorithms use convex under-estimators for the original non-convex
problem [2, 102]. Unfortunately, very little research can be found in the literature for general
non-convex MINLPs. Developing an algorithm which is able to solve general MINLPs will
therefore have a significant impact on the advancement of existing methods for MINLPs. At
present no trajectory-based algorithm for MINLPs exists. It is with this objective in mind
that we develop a local trajectory-based algorithm for general MINLPs.

1.4 Organization of the thesis

The remainder of the thesis is organized as follows. In Chapter 2, we outline some important
theoretical concepts pertaining to the solution of CNLPs and summarize some of the most
common nonlinear programming methods used for solving CNLPs. Chapter 3 contains
a summary of the most common solution approaches used to solve general MINLPs. In
Chapter 4, we provide a review of Snyman’s trajectory-based algorithm for UNLPs [115],
which is denoted as TAUNLP throughout the rest of this thesis. Chapter 5 contains an outline
of the framework of our trajectory-based algorithm for CNLPs, TACNLPs. In Chapter 6,
we outline and compare TACNLP with an adaptation of TAUNLP for CNLPs. We denote
this adaptation as ATAUNLP. The comparison between TACNLP and ATAUNLP highlights
the fundamental differences between TACNLP and ATAUNLP. Chapter 7 contains local
and global convergence discussions of TACNLP. Chapter 8 outlines the trajectory-based
algorithm for MINLPs, denoted as TAMINLP. The overview of an important advancement in

1.4 Organization of the thesis 7

the definition of a local minimum of an MINLP [90] is also presented in Chapter 8. We will
use this definition to aid in the convergence discussion of the trajectory-based algorithm for
MINLPs. Computational results demonstrating the performance of TACNLP and ATAUNLP
are given in Chapter 9. In Chapter 10, we present numerical results for TAMINLP. Finally,
some concluding remarks are made in Chapter 11.

Chapter 2

Review of Some Solution Techniques for
CNLPs

In this chapter, we provide a review of various existing methods for continuous nonlinear
programming problems. In Section 2.1, we provide a review on theories of nonlinear
programming problems for continuous variables. We then provide an overview of some of
the most common solution techniques used for solving problem (1.2), in Section 2.2.

2.1 Theories of Constrained Nonlinear Optimization

Problem (1.2) contains both equality and inequality constraints. Inequality constraints are
classified as either active or inactive at the optimal solution. We refer to the following
definition for the differentiation between active and inactive constraints.

Definition 2.1.1. (Active and Inactive constraints)
For the set of inequality constraints ci(x)≥ 0, the i-th constraint is said to be active at some
feasible point x̂, if ci(x̂) = 0, and inactive if ci(x̂)> 0. If ci(x̄)< 0, i ∈ I, then ci(x) is said to
be violated at some infeasible point x̄ [52]. Clearly all equality constraints are active at a
feasible solution x̂. The active index set is defined at any feasible x as follows:

A(x) = E ∪{i ∈ I|ci(x) = 0}. (2.1)

CNLPs are often characterized by a nonlinear function and/or nonlinear constraints. A direct
implication of this is that more than one solution to (1.2) may exist. In this thesis, we are
only interested in obtaining a local solution to (1.2). The distinction between a local and a
global solution is provided in the definitions.

10 Review of Some Solution Techniques for CNLPs

Definition 2.1.2. (Local minimizer)
A vector x∗ ∈Ωc is a local minimizer of (1.2), if there exists a neighborhood N (x∗) of x∗,
such that

f (x∗)≤ f (x), ∀ x ∈N (x∗)∩Ωc.

Definition 2.1.3. (Global minimizer)
A vector x∗ ∈Ωc is a global minimizer of (1.2), if

f (x∗)≤ f (x), ∀ x ∈Ωc.

Problem (1.2) is referred to as the primal problem, since it is defined in terms of the primal
variables x. Recall that (1.2) involves the minimization of an objective function subject to
constraints. To incorporate the effect of the constraints on the minimization of the objective
function, we introduce the Lagrangian function:

L(x,λ) = f (x)− ∑
i∈E∪I

λici(x) = f (x)−λ
T c(x). (2.2)

The impact of a particular constraint, ci(x), on the minimization of the objective function is
quantified by its corresponding Lagrangian multiplier λi, which is also known as the dual
variable associated with problem (1.2)1. To demonstrate this, we notice that at the optimal
solution, {x∗, λ ∗}T , the gradient of the Lagrangian (2.2) vanishes:

∇xL(x∗,λ ∗) = ∇ f (x∗)− ∑
i∈E∪I

λ
∗
i ∇ci(x∗) = 0. (2.3)

Depending on whether (1.2) contains equality or inequality constraints, (2.3) must be
interpreted accordingly. When only equality constraints are present, an implication of (2.3)
is that the gradient of the objective function can be written as a linear combination of the
gradient of the constraints or constraint normals, at the optimal solution (x∗, λ ∗)T :

∇ f (x∗) = ∑
i∈E

λ
∗
i ∇ci(x∗) = ∇c(x∗)λ ∗

where λ ∗, is the vector of Lagrange multipliers λ ∗i , i ∈ E. When only inequality constraints
are present in (1.2), the following cases arise:

1The dual problem associated with problem (1.2) will be defined later in this section

2.1 Nonlinear Continuous Optimization 11

Case 1: Consider the case when all ci(x) are active at x∗, i.e. ci(x∗) = 0,∀i ∈ I. In this case,
as with the equality constrained problem, (2.3) implies that

∇ f (x∗) = ∑
i∈I∩A(x∗)

λ
∗
i ∇ci(x∗), (2.4)

but the non-negative restriction on the Lagrange multiplier, i.e. λ ∗i ≥ 0,∀i ∈ I, is imposed. If
(2.4) were satisfied with negative values for λ ∗i , then λ ∗, the vector of Lagrange multipliers
λ ∗i , i ∈ I, would not be optimal. This is because, satisfying (2.3) with negative values for λ ∗i ,
implies that a decrease in the current objective function value at the corresponding point x∗,
is still possible [130].

Case 2: Consider now the case when all ci(x) are inactive at x∗. Here ci(x∗) > 0,∀i ∈ I,
and these constraints do not have an impact on the minimization of f (x). In this case
the corresponding Lagrange multipliers are 0, i.e. λ ∗i = 0,∀i ∈ I, and (2.3) reduces to the
unconstrained optimality condition:

∇ f (x∗) = 0.

Remark 2.1.1. When both equality and inequality constraints are present, we have that

∇ f (x∗) = ∑
i∈A(x∗)

λ
∗
i ∇c(x∗).

Here, inactive inequality constraints are not included in the right hand summation since, as
we have shown, they have null Lagrange multipliers.

We observe that λ ∗i describes how sensitive the optimal objective function value, f (x∗),
is to the presence of the constraint ci(x∗) [130]. With reference to the following definition,
we can now classify constraints in terms of their corresponding Lagrange multipliers.

Definition 2.1.4. (Strongly active constraints and weakly active constraints)
A constraint is said to be strongly active if its corresponding Lagrange multiplier is not equal
to 0. Conversely, a constraint is said to be weakly active at some point x̄, if ci(x̄) = 0 and its
corresponding Lagrange multiplier λ̄i is also 0.

The set of strongly active constraints, which we denote by As(x), are those in A(x), which
are strongly active, as per Definition 2.1.4. For a strongly active equality constraint, λi

may be negative or positive, but the Lagrange multiplier λi corresponding to a strongly
active inequality constraint must be strictly positive. We reiterate that all inactive inequality

12 Review of Some Solution Techniques for CNLPs

constraints have null Lagrange multipliers, λi = 0. If λi = 0, then the corresponding constraint
has no effect on the minimization of f (x).

Before we summarize the first order optimality conditions for constrained nonlinear
optimization, we introduce what is known as a constraint qualification. Constraint
qualifications are necessary for establishing optimality conditions. We illustrate this with an
example. Consider the following problem:

{
min f (x) = x1 + x2,

s.t. c1(x) = (x2
1 + x2

2−1)3 = 0.

Notice that, ∇c1(x) = (0, 0)T for any feasible point, and at the minimizer,

x∗ = (−
√

1
2 ,−

√
1
2)

T , ∇L(x∗,λ ∗) = 0, reduces to ∇ f (x∗) = 0, which is a fallacy. A
constraint qualification ensures that for any problem (1.2), this degeneracy does not occur,
i.e. the normal to the constraint, ∇ci(x), does not vanish at x∗ [52], [130]. One such
constraint qualification is defined below.

Definition 2.1.5. (Linear independence constraint qualification (LICQ))
If we consider the set of constraints in (1.2) at some point x∗, then the linear independence
constraint qualification (LICQ) holds if the set of active constraint gradients {∇ci(x∗), i ∈
A(x∗)} is linearly independent [52].

We can now summarize the first order optimality conditions for the general CNLP (1.2).

Theorem 2.1.6. (Karush-Kuhn-Tucker (KKT) conditions)
Suppose x∗ is a local solution of (1.2) and that the LICQ holds at x∗, then x∗ is a KKT point
or equivalently, x∗ satisfies the first order necessary optimality (KKT) conditions if there
exists a Lagrange multiplier vector λ ∗ such that:

(2.1.6a) ∇xL(x∗,λ ∗) = 0,

(2.1.6b) ci(x∗) = 0, ∀ i ∈ E,

(2.1.6c) ci(x∗)≥ 0, ∀ i ∈ I,

(2.1.6d) λ ∗i ≥ 0, ∀ i ∈ I,

(2.1.6e) λ ∗i ci(x∗) = 0, ∀ i ∈ E ∪ I,

where L is defined as in (2.2).

Proof. See Nocedal and Wright [130].

2.1 Nonlinear Continuous Optimization 13

The condition, (2.1.6e), is called the complementarity condition. It implies that the Lagrange
multiplier λ ∗i , i∈ I, can be strictly positive if and only if ci(x∗), i∈ I, is strongly active. When
this is not the case, i.e. when ci(x), i ∈ I is weakly active or inactive, then the corresponding
Lagrange multiplier λi is null. If strict complementarity of the constraint and multiplier
pair is satisfied, then (6d) implies λ ∗i > 0,∀ i ∈ I ∩A(x∗) and λ ∗i = 0, ∀i ∈ I \A(x∗). An
implication of this is that all active constraints are strictly active at x∗, i.e. A(x∗) = As(x∗). A
formal definition of strict complementarity is given in Definition 2.1.7.

Definition 2.1.7. (Strict complementarity)
Strict complementarity holds at a Karush-Kuhn-Tucker (KKT) point x∗, if there is a multiplier
λ ∗ satisfying the KKT conditions such that λ ∗i > 0 ∀i ∈ I∩As(x∗) [52].

The KKT conditions can be depicted geometrically. We do so by considering the following
problem:

min f (x) = (x1−1)2 +(x2−1)2,

s.t. c1(x) =−0.5x1− x2−1.07≥ 0,
c2(x) = 4.25− (x1 +2)2− (x2 +2)2 ≥ 0,

which has solution x∗ = (0.5086 −1.336)T . Figure 2.1 represents the KKT conditions of this
problem. This figure was adapted from Emet [43]. The feasible region is the shaded area. It is
clear from the figure that at x∗, ∇ f (x∗) can be written as a linear combination of ∇c1(x∗) and
∇c2(x∗), since ∇ f (x∗) points into the cone spanned by ∇c1(x∗) and ∇c2(x∗). This is inline
with the the KKT conditions, where ∇xL(x∗,λ ∗) = ∇ f (x∗)− ∑

i∈E∪I
λ ∗i ∇ci(x∗) = 0. Moreover,

since ∇c1(x∗) and ∇c2(x∗) are both strictly active at x∗ and {∇c1(x∗),∇c2(x∗)} is linearly
independent, it follows that λ ∗1 , λ ∗2 > 0, i.e. strict complementarity holds.

The KKT conditions can also be defined in terms of the weaker Mangasarian-Fromovitz
constraint qualification defined below:

Definition 2.1.8. (Mangasarian-Fromovitz constraint qualification (MFCQ))
Given the point x∗ and the active set A(x∗), the Mangasarian-Fromovitz constraint
qualification (MFCQ) holds if there exists a vector d ∈ Rn, such that

∇ci(x∗)T d > 0, ∀i ∈ (A(x∗)∩ I),
∇ci(x∗)T d = 0, ∀i ∈ E,

and the set of equality constraint gradients is linearly independent [130].

14 Review of Some Solution Techniques for CNLPs

Ñc1Hx*L Ñc2Hx*L

c1Hx*L=0 ®
¬ c2Hx*L=0

¬ x*

Λ2Ñc2Hx*L

Λ1Ñc1Hx*L
ÑfHx*L

Figure 2.1 Illustration of a KKT point.

It is possible to prove a version of Theorem 2.1.6 with MFCQ replacing LICQ. MFCQ has
the useful property that it is equivalent to the boundedness of the set of Lagrange multiplier
vectors λ ∗ for which the KKT conditions of Theorem 2.1.6 (with MFCQ replacing LICQ)
are satisfied [130].
LICQ is a stronger constraint qualification than MFCQ. To demonstrate this consider a
problem with the feasible region characterized by the following constraints

c1(x) = 2− (x1−1)2− (x2−1)2 ≥ 0,

c2(x) = 2− (x1−1)2− (x2 +1)2 ≥ 0,

c3(x) = x1 ≥ 0.

At the point x∗ = (0, 0)T all three constraints are active. In order to satisfy MFCQ we
therefore need only find some direction d = (d1, d2)

T such that ∇ci(x∗)T d > 0, i = 1, . . . ,3.
If we choose d = (1,0)T then:

∇c1(x∗)T d =
(

2 2
)(1

0

)
= 2 > 0,

2.1 Nonlinear Continuous Optimization 15

∇c2(x∗)T d =
(

2 −2
)(1

0

)
= 2 > 0,

∇c3(x∗)T d =
(

1 0
)(1

0

)
= 1 > 0.

MFCQ is therefore satisfied at x∗ with d = (1,0)T . We have shown that all three constraints
are active at x∗, therefore LICQ is satisfied if we can prove that the set of constraint gradients
is linearly independent. If we choose k1 = 1, k2 = 1 and k3 = −4 however, then

∑
i=1

3ki∇ci(x∗) = (0,0)T . Hence LICQ is not satisfied at x∗. This proves that LICQ is indeed

stronger than MFCQ.

The last constraint qualification we consider, is a special case of MFCQ [16]. This constraint
qualification is known as Slater’s constraint qualification (SCQ) for convex problems, and is
associated with strong duality. Before we present Slater’s constraint qualification, we need
some background on the theory of duality.

2.1.1 Duality

Problem M defined by (1.2), is usually difficult to solve directly. As an alternative, one can
solve its dual problem. Recall the Lagrangian function defined by (2.2) and the associated
dual variable λ . We now define the Lagrange dual function D : Rm −→ R, as the minimum
possible value of L over its range:

D(λ) = inf
x∈D

L(x,λ) = inf
x∈D

(f (x)− ∑
i∈E∪I

λici(x)), (2.5)

where D is a concave function and D = ∩m
i=1dom(ci) [16], [25].

Let p∗ denote the optimal value of (1.2), that is, the optimal value of f at the feasible optimal
solution x∗. Then, provided D(λ) is bounded below, for λi ≥ 0, i ∈ I, the Lagrange dual
function yields lower bounds on this optimal value p∗ of (1.2):

D(λ)≤ p∗. (2.6)

We now verify this. For some feasible point x̄ of the problem (1.2) and λi ≥ 0, i ∈ I, we have

∑
i∈E∪I

λici(x)≥ 0,

16 Review of Some Solution Techniques for CNLPs

since each term in the sum is non-negative. It therefore follows that:

L(x̄,λ) = f (x̄)− ∑
i∈E∪I

λici(x̄)≤ f (x̄).

Now since D(λ)≤ L(x̄,λ) for every feasible point x̄, it follows that (2.6) holds. The inequality
(2.6) only holds when λi ≥ 0, i ∈ I and D(λ)>−∞. By (2.6), for λi ≥ 0, i ∈ I the Lagrange
dual function yields a lower bound on the optimal value p∗.

Solving the following problem, we obtain the best lower bound of the Lagrange dual function:

DP

{
max D(λ),

s.t. λi ≥ 0, i ∈ I.
(2.7)

This is called the Lagrange dual problem associated with (1.2). Even when (1.2) is non-
convex, DP is convex since D(λ) is concave and the constraint λi ≥ 0, i ∈ I is linear. We
can now define weak and strong duality in terms of the Lagrange dual problem.

Definition 2.1.9. (Weak Duality)
Denote the optimal solution to (2.7) as b̄∗. This is the best lower bound on p∗ that can be
obtained from the Lagrange dual function. When the following equality is satisfied:

b̄∗ ≤ p∗, (2.8)

we say that weak duality holds. This inequality holds even when the original problem is
non-convex.

The difference between p∗ and b̄∗ is known as the optimal duality gap of the original problem
since it describes the gap between the solution of the primal problem (1.2) and the dual
problem (2.7). Strong duality holds when there is no duality gap.

Definition 2.1.10. (Strong Duality)
Strong duality holds when the equality

b̄∗ = p∗,

is satisfied, i.e., the optimality gap is zero. Naturally, when the primal problem is convex, the
duality gap is zero.

Strong duality on a convex problem can also be verified by satisfying constraint qualifications
[25]. One such constraint qualification is Slater’s constraint qualification.

2.1 Nonlinear Continuous Optimization 17

Definition 2.1.11. (Slater’s constraint qualification (SCQ))
Given the convex problem

min
x∈Rn

f (x),

s.t. ci(x)≥ 0, i ∈ I,
Ax = b,

(2.9)

where f : X ⊆ Rn −→ R and c : X ⊆ Rn −→ RmI are convex, A ∈ RmE×n and b ∈ RmE ,
Slater’s constraint qualification (SCQ) is satisfied if there exists an x ∈ relint(Ωc), where
relint is the relative interior of Ωc, such that

ci(x)> 0, i ∈ I

and
Ax = b.

By convexity of the problem, SCQ implies that strong duality holds [16], [25].

Remark 2.1.2. From Theorem 2.1.9, it follows that if P is unbounded below, (that is if
p∗ =−∞), then DP is infeasible. Also, if DP is unbounded above (that is if b∗ = ∞), then
p∗ = ∞, that is P is infeasible [93].

Theorem 2.1.12. If there exists x ∈Ωc and λ such that

f (x) = D(λ), (2.10)

then,
f (x) = p∗ = D(λ) = b̄∗. (2.11)

This implies that x is optimal and λ is optimal.

Proof. This proof is adapted from [93]. We know that the following relations hold:

D(λ)≤ b̄∗, (2.12)

and
p∗ ≤ f (x). (2.13)

From Theorem 2.1.12, and the relations (2.12) and (2.13), we have

18 Review of Some Solution Techniques for CNLPs

D(λ)≤ b̄∗ ≤ p∗ ≤ f (x), (2.14)

Combining (2.10) and (2.14), we get (2.11), which completes the proof.

Theorem 2.1.13. If strong duality holds, and P is a convex optimization problem, then the
KKT conditions are sufficient, that is, every KKT point is an optimal point and every dual
variable such that {x∗,λ ∗} satisfy (2.1.6) is an optimal pair for DP.

Proof. The conditions (2.1.6b) and (2.1.6c) imply that the point x∗ is primal feasible. Since
the functions f , ci, i ∈ E ∪ I are convex, L, defined by (2.2), is also convex. The conditions
(2.1.6a) shows that x∗ minimizes L(x,λ ∗) over D . Thus D(λ ∗) = L(x∗,λ ∗). Furthermore,
by applying (2.1.6b) and (2.1.6c), we have D(λ ∗) = f (x)∗. It follows by Theorem 2.1.12 ,
that b̄∗ = D(λ ∗) = f (x∗) = p∗. So x∗ is a primal optimal point and λ ∗ is dual optimal.

Assuming that f and c are twice continuously differentiable, second order sufficient
conditions for (1.2) are presented in the following theorem [130].

Theorem 2.1.14. (Second-Order Sufficient Conditions)
Suppose that x∗ is a local solution of (1.2) and that LICQ is satisfied. Furthermore assume
that λ ∗ satisfies the KKT conditions in Theorem 2.1.6 and let d ∈ S(x∗), where

S(x∗) =

d ∈ Rn|d ̸= 0,
∇ci(x∗)T d = 0, i ∈ E
∇ci(x∗)T d = 0, i ∈ As(x∗)∩ I,
∇ci(x∗)T d ≥ 0, i ∈ (A(x∗)\As(x∗))∩ I,

(2.15)

then

dT
∇

2
xxL(x∗,λ ∗)d > 0, ∀ d ∈ S(x∗), (2.16)

where A(x∗) and As(x∗) are defined as in Definitions 2.1.1 and 2.1.4 respectively.

Proof. See Nocedal and Wright [78, 130].

Generally practical iterative methods are used to solve (1.2). The algorithmic framework
of the solution process is to formulate subproblems at each iteration and carry out an
approximate minimization with respect to the primal variable x, until the sequence of iterates
{xk} converges to x∗, where k is the iteration counter of the algorithm. Convergence can be
characterized both locally and globally. The local convergence of an algorithm describes the
rate of convergence in some neighborhood of x∗ ∈ Ω, while the global convergence of an

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 19

algorithm tells us how efficiently the algorithm converges independent of the initial point x0.
Note that for an algorithm to be globally convergent, it is sufficient that it converges from
any point x0 to a stationary point x∗, where x∗ need not be a global minimizer. The basis for
local convergence analysis of an algorithm can be summarized below.

a The algorithm is said to converge linearly if it generates the sequence {xk}which converges
to x∗ such that for some α ∈ (0, 1) and k0 ≥ 0

||xk+1− x∗|| ≤ α||xk− x∗||, k ≥ k0.

b The algorithm is said to converge superlinearly if it generates the sequence {xk} which
converges to x∗ such that for some sequence {αk}→ 0

||xk+1− x∗|| ≤ α
k||xk− x∗||, k = 0,1 . . .

c The algorithm is said to converge quadratically if it generates the sequence {xk} which
converges to x∗ such that for some non-negative α , not necessarily less than 1

||xk+1− x∗|| ≤ α||xk− x∗||2, k = 0,1 . . .

Within the iterative scheme, (1.2) may be modified or reformulated into an equivalent
unconstrained problem. We will now consider some of the most common reformulations of
(1.2).

2.2 Review of Constraints Handling in Constrained
Nonlinear Programming

For general constrained optimization problems we expect the presence of constraints to
increase the level of difficulty of the problem. This can however be circumvented by
reformulating the problem. In the most commonly used solution approaches, the problem P ,
given by (1.2), is reformulated into a penalty function [15, 35, 38, 47, 53, 58, 85, 130]. The
most prominent penalty methods used include the quadratic penalty method (QP) [35], the
logarithmic (log) barrier method (LB) [47, 53] and the augmented Lagrangian method (AL)
[15, 67, 107], also known as the method of multipliers. We now provide a brief outline of
the aforementioned.

20 Review of Some Solution Techniques for CNLPs

2.2.1 Penalty methods for nonlinear constrained optimization

The QP method

The quadratic penalty method (QP) was first proposed by Courant [35]. It is defined for
equality constraints ci(x), i ∈ E. It reformulates the original problem, defined by:{

min
x∈Rn

f (x)

s.t. ci(x) = 0, i ∈ E
(2.17)

into the QP function:

Q(x; µ) = f (x)+
1

2µ
∑
i∈E

c2
i (x), (2.18)

where µ > 0 is a penalty parameter. The methods based on QP solve (2.17) iteratively for
each k, by generating a decreasing sequence of values for µ which penalize the constraint
violations, by driving µ to 0, µk→ 0, as k→ ∞. One of the draw-backs of QP is that the
equality constraints ci(x) = 0, i ∈ E are not satisfied to exactness, rather they satisfy

ci(xk) =−µkλ
∗
i , ∀ i ∈ E, (2.19)

where λ ∗ satisfies the KKT conditions in Theorem 2.1.6. See Nocedal and Wright [130] for
the proof. As µ → 0, however, the approximation improves, but unless search directions are
carefully chosen, this results in ill conditioning of the Hessian matrix ∇2

xxQ(x; µ) for small
values of µ . Figure 2.2 illustrates this ill conditioning. Consider the problem{

min f (x) = x2
1 +2x2

2

s.t. c1(x) = x1 + x2−1 = 0,

which has the solution x∗ = (2
3 ,

1
3)

T . The QP function for this problem is

Q(x; µ) = x2
1 +2x2

2 +
1

2µ
|x1 + x2−1|2.

Q(x∗; µ) is illustrated in Figure 2.2 for different values of µ . The constraint c1(x) as well as
the optimal solution x∗ depicted by the bold black point on c1(x) are also included in each
figure.

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 21

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

1

2

3

(a) µ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

1

2

3

(b) µ = 0.75

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

1

2

3

4

(c) µ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

10

20

30

40

50

(d) µ = 0.01

Figure 2.2 Quadratic penalty function for min x2
1 +2x2

2 subject to x1 + x2 = 1.

We notice in Figure 2.2d, that the minimum corresponding to the QP function, is a fairly
accurate representation of the actual minimum of the problem only when µ = 0.01. Notice
also however that unlike the contours in 2.2a, 2.2b and 2.2c, the contours of the QP function
in 2.2d are quite elongated and less ellipsoidal which is indicative of a poorly scaled QP
function. This results in the ill conditioning of the approximation of the Hessian matrix
[130].

The LB method

The log barrier method (LB) was first proposed by Frisch [53]. Fiacco and McCormack [47]
later published an in-depth study on the method. Unlike QP, LB is defined for inequality

22 Review of Some Solution Techniques for CNLPs

constraints ci(x), i ∈ I only, i.e.{
min
x∈Rn

f (x)

s.t. ci(x)≥ 0, i ∈ I.
(2.20)

This method reformulates (2.20) by introducing a logarithmic term which acts as a barrier,
in that it keeps feasible iterates well within the boundary of the feasible region. This LB
function is defined as:

P(x; µ) = f (x)−µ ∑
i∈I

log(ci(x)), (2.21)

where µ is the barrier parameter and −∑i∈I log(ci(x)) is the logarithmic barrier term. Notice
that the barrier parameter appears explicitly as µ in the LB function and not 1

µ
as with

the penalty parameter in the QP function. We have done this for consistency, because we
present the effects of driving µ to 0, on the different penalty methods. By decreasing µ , the
minimizer of P(x; µ), x(µ), tends to the solution of (2.20). The search for the minimizer
x(µ) can be carried out using any method for unconstrained minimization, provided that
the method produces feasible iterates only. Even though (2.21) is defined for inequality
constraints only, this method can be modified for equality constraints. Note that P(x; µ) is
undefined at the boundaries of the feasible region, which makes it a non-smooth function.
We use Figure 2.3 to illustrate how smaller values for µ tend to yield better approximations
of the objective function. Consider the problem{

min f (x) = (x1 +0.5)2 +(x2−0.5)2

s.t. 0≤ (x1,x2)≤ 1,
(2.22)

which has solution x∗ = (0, 0.5)T . The problem (2.22) can be written explicitly as:

min f (x) = (x1 +0.5)2 +(x2−0.5)2

s.t. c1(x) = x1 ≥ 0,
c2(x) = x2 ≥ 0,
c3(x) = 1− x1 ≥ 0,
c4(x) = 1− x2 ≥ 0.

The corresponding LB function is given by:

P(x; µ) = (x1 +0.5)2 +(x2−0.5)2−µ(log(x1)+ log(x2)+ log(1− x1)+ log(1− x2))

and is illustrated in Figure 2.3 for different values of µ. Each figure also includes the optimal
point x∗ depicted by the bold black point.

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 23

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

4

5

6

7

8

9

(a) µ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

3

4

5

6

7

(b) µ = 0.75

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

2

3

4

5

(c) µ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

0.5

1.0

1.5

2.0

2.5

(d) µ = 0.01

Figure 2.3 Log barrier function for min (x1 +0.5)2 +(x2−0.5)2 subject to 0≤ x1,x2 ≤ 1.

When µ = 0.01, the LB function is a fairly accurate representation of the actual minimum of
the problem, see Figure 2.3d, but the same kind of contour elongation which was displayed
in Figure 2.2d is displayed. This implies that depending on f (x) and ci(x), P(x,µ) may
exhibit the same kind of ill conditioning as the QP function, for small values of µ .

The AL method

The augmented Lagrangian method (AL) was first introduced by Hestenes [67] and Powell
[107]. Here, the AL function is minimized iteratively where at each iteration the solutions xk

as well as the dual variables λ k and the parameter µk are updated. The choice of AL is

24 Review of Some Solution Techniques for CNLPs

motivated by its smoothness and ability to reduce or eliminate ill-conditioning associated
with small values of the penalty parameter µ [130]. As we have seen in Figures 2.2 and 2.3,
alternative methods like QP [35, 38, 58, 85, 130], and LB [38, 47, 53, 58, 85, 130] are
susceptible to either ill-conditioning, non-smoothness or both of these short-comings [130].

The augmented Lagrangian (AL) for equality constraints is given by:

LA(x,λ ; µ) = f (x)−∑
i∈E

λici(x)+
1

2µ
∑
i∈E

c2
i (x), (2.23)

where λi is the classical Lagrangian multiplier and µ is the penalty parameter used to penalize
constraint violations [6, 7, 15, 18–20, 28, 38, 58, 59, 67, 85, 87, 107, 110, 130]. Consider
again the problem:{

min f (x) = x2
1 +2x2

2

s.t. c1(x) = x1 + x2−1 = 0,

with solution x∗ = (2
3 ,

1
3)

T . We use Figure 2.4 to illustrate that, unlike QP and LB, µ does
not have to be driven to 0 in order for the AL function to be an accurate representation
of the problem. With the fixed value of µ = 1, the AL function adequately represents the
problem. Judging by the ellipsoidal contours of the function, LA is not susceptible to the ill
conditioning we have seen in Figures 2.2 and 2.3. This means that when µ = 1, the minimizer
corresponding to AL is a fairly good approximation to the minimum of the original problem.
To verify this, the constraint c1(x) as well as the optimal solution x∗, depicted by the bold
black point on c1(x), are included in Figure 2.4.

Although (2.23) is defined for equality constraints only, it can be extended for inequality
constraints by introducing the slack variables si [130]. These variables convert the
inequality constraints

ci(x)≥ 0

into equality constraints:

ci(x)− si = 0, si ≥ 0 ∀i ∈ I. (2.24)

Defining AL in terms of these constraints yields a smooth function which depends on µk

and λ k. Iterative methods used to solve (1.2), use the construction of this AL at each k-th
iteration:

min
x,s

f (x)−∑
i∈I

λ
k
i (ci(x)− si)+

1
2µk ∑

i∈I
(ci(x)− si)

2, (2.25)

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 25

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

0.5

1.0

1.5

2.0

2.5

3.0

(a) λ = 0.3,µ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

1.0

1.5

2.0

2.5

(b) λ = 0.6,µ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

1.0

1.5

2.0

2.5

(c) λ = 0.9,µ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

1.0

1.5

2.0

(d) λ = λ ∗ = 4
3 ,µ = 1

Figure 2.4 Augmented Lagrangian function for min x2
1 + 2x2

2 subject to x1 + x2 = 1, with
fixed µ = 1.

26 Review of Some Solution Techniques for CNLPs

subject to si ≥ 0, ∀i ∈ I.

An optimal value for si can then be found analytically since (2.25) is separable in si. The
solution is given by

si = max{ci(x)−µ
k
λ

k
i ,0} ∀i ∈ I, (2.26)

where the positive restriction on si follows from (2.24). Combining (2.25) and (2.26), the
following AL function for inequality constraints is obtained

ŁA(x,λ k; µ
k) = f (x)+

∑
i∈I
−λ k

i ci(x)+ ∑
i∈I

1
2µk c2

i (x), ci(x)−µkλ k
i ≤ 0;

∑
i∈I
− µk

2 (λ k
i)

2, ci(x)−µkλ k
i > 0.

(2.27)

A strong argument supporting the derivation of this AL can be found in Nocedal and Wright
[92].
Suppose one were to minimize (2.27) up to the k-th iteration, where xk, λ k

i and µk are known.
Conventionally, the iterative procedure progresses by updating (2.27) with λ k and µk and
then minimizing (2.27) again to get xk+1. One then updates λ

k+1
i and µk+1 using appropriate

formulae and the iterative procedure continues [130]. The method proposed in this thesis,
however, uses a different strategy. Here, xk, λ k

i and µk, are simultaneously updated in the
optimization of (2.27).

It is important to note that (2.27) is a smooth function with respect to x, but a discontinuity
in the Hessian with respect to x occurs whenever ci(xk) = µkλ k

i for some i ∈ I [130]. If
strict complementarity holds, then this problem is circumvented. To verify this, consider
the case when ci(xk) is active. By strict complementarity the corresponding Lagrange
multiplier λ k

i is non-zero. When ci(xk) is inactive, for k large enough λ k
i ≈ 0. In both cases

ci(xk) = µkλ k
i is not satisfied and the discontinuous region is avoided [130]. The trajectory-

based method which we develop in this thesis does not require second-order information, so
the discontinuity in the Hessian does not impact on the solution process.

The AL function in (2.27) is not explicitly defined for active or inactive inequality
constraints. To investigate which inequality, i.e. ci(x)≤ µkλ k

i and ci(x)> µkλ k
i corresponds

to which type of inequality constraints, we define the following set

M(xk) = {i ∈ I|ci(xk)−µ
k
λ

k
i ≤ 0}.

Since weakly active constraints do not impact on the minimization of f (x), we focus on
constraints which are strongly active. By extension, the equality µkλ k

i = ci(xk) can not be
satisfied. We therefore assume strict complementarity and redefine M(xk) as follows:

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 27

M(xk) = {i ∈ I|ci(xk)−µ
k
λ

k
i < 0}, (2.28)

where ci(xk)< µkλ k
i can be satisfied in two ways. The first is with λ k

i > 0, i ∈ I. By the strict
complementarity assumption, it follows that ci(xk) is active, i.e. ci(xk) = 0. The second way
in which ci(xk)< µkλ k

i can be satisfied, is with λ k
i = 0, i ∈ I. An implication of this is that

ci(xk) is infeasible, i.e. ci(xk) < 0. M(xk) therefore contains all strongly active inequality
constraints, as well as inequality constraints which are violated at xk, should they exist. In
Chapters 5 and 8, we develop trajectory-based algorithms, based on AL, for which local and
global convergence properties are established (in Chapters 7 and 8). As k→ ∞, therefore, we
may assume that all constraints which are initially violated in AL, converge to feasibility. For
k large enough, we may therefore define M(xk) as the set of constraints which are strongly
active at some feasible x:

M(x) = {i ∈ I|ci(x) ∈ As(x)}.

We now consider the other set of constraints in (2.27), i.e. the set of constraints which satisfy
the following inequality

ci(xk)> µ
k
λ

k
i , i ∈ I.

Since λi ≥ 0, ∀i ∈ I, the only way that the condition ci(xk) > µkλ k
i can be satisfied, is if

ci(xk) is inactive, i.e. ci(xk)> 0. The set of inequality constraints corresponding to AL in
equation (2.27) can thus neatly be defined in terms of the two sets As(x) and I \As(x):

ŁA(x,λ k; µ
k) = f (x)+

∑
i
−λ k

i ci(x)+∑
i

1
2µk c2

i (x), i ∈ I∩As(x);

∑
i
− µk

2 (λ k
i)

2, i ∈ I \As(x).
(2.29)

Observe that for all inequality constraints, ci(x), such that i ∈ I∩As(x), equation (2.29) is
exactly the same as AL in (2.23) for ci(x), i ∈ E. Since for any x, the constraints, ci(x), are
either strongly active at x i.e. i ∈ As(x), or inactive, i.e. i ∈ I \As(x), we now define a general
AL, where constraints of all types at x are integrated:

φA(x,λ ; µ) = f (x)− ∑
i∈E∪(I∩As(x))

λici(x)+
1

2µ
∑

i∈E∪(I∩As(x))
c2

i (x)+ψ(x,λ ; µ) (2.30)

28 Review of Some Solution Techniques for CNLPs

where

ψ(x,λ ; µ) =− ∑
i∈I\As(x)

µ

2
λi

2,

The second and third terms containing index sets corresponding to active inequality
constraints are identical to that of the AL function in (2.23). The last term in (2.30)
corresponds to all inactive inequality constraints, contained in I \ As(x). In the
implementation of AL, all types of constraints are included in the summation in (2.30), but
for the theoretical discussion, we write (2.30) excluding weakly active constraints.

Many of the problems considered in this thesis contain a combination of equality and
inequality constraints. Since all the inequality constraints have been converted to equality
constraints, we can define the general AL function as (2.30). The multiplier estimates
for inequality constraints however, must be strictly non-negative. We therefore still treat
inequality and equality constraints separately. This is to make sure that λi ≮ 0 for inequality
constraints.

The penalty parameter µ in (2.30), is conventionally updated using various techniques to
ensure that constraint violation is penalized at each iteration, particularly if maintaining
feasibility is an important criteria for the solution process [130]. In the current literature µ is
either decreased by a factor γ or kept constant, depending on whether or not constraint
violation is improved [6, 7], [18, 19], [20]. In this thesis, however, we update µ by solving a
differential equation. The details of this penalty parameter update scheme are provided in
Sections 5.1 and 5.2.

We now briefly describe some popular algorithms for CNLPs.

2.2.2 Algorithms for CNLPs

Once the problem (1.2) is reformulated into either (2.18), (2.21) or (2.30), practical iterative
methods are used to locate an optimal solution x∗ [60], [130]. The general framework of the
solution process is to formulate one of these subproblems at the kth iteration and carry out
the minimization with respect to x using methods for UNLPs. We take a brief look at two
of the most popular methods for CNLPs, namely interior point methods [25], [93], [130]
and sequential quadratic programming methods (SQP) [24, 45, 61, 86, 95, 96, 130, 104–
106, 128].

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 29

Interior point methods

Interior point methods solve a special case of (1.2):

min
x∈Rn

f (x)

s.t. ci(x)≥ 0, i = 1, . . . ,mI,

Ax = b,

(2.31)

where f : X ⊆ Rn −→ R and c : X ⊆ Rn −→ RmI are convex and twice continuously
differentiable, b ∈ Rme and A ∈ RmE×n, with rank(A) = mE < n. The problem is assumed
strictly feasible, i.e. all equality constraints are satisfied and all inequality constraints are
satisfied as ci(x) > 0,∀i ∈ I. Interior point methods are designed to solve linearly
constrained problems with both equality and inequality constraints by reformulating the
original problem into a sequence of equality constrained problems [25]. We present a
particular interior-point method, namely the barrier method. The basic idea of the barrier
method is to reformulate (2.31) into the LB function, i.e. the function presented by (2.21),
subject to the equality constraint Ax = b:

 min
x∈Rn

P(x; µ) = f (x)−µ ∑
i∈I

log(ci(x))

s.t. Ax = b.
(2.32)

Since (2.32) is twice continuously differentiable, an adaptation of Newton’s method for
equality constrained problems can be applied to solve it [25]. The problem (2.32) is just an
approximation of problem (2.31). As we have demonstrated in Section 2.2, as µk decreases
this approximation become more accurate, but ill conditioning can occur when µk is small.

Within the algorithmic framework, a sequence of problems of the form (2.32) are solved.
At each iteration µk is gradually decreased. At the (k+1)-th iteration, Newton’s method is
initialized from the previous solution, xk, obtained using µk. The barrier parameter, µk+1, is
then updated and xk+1 is found using Newton’s method. The iterative procedure continues in
this way until the optimal solution is found.

An alternative interior-point method is known as the primal-dual interior-point method.
Primal-dual interior-point methods are usually more accurate than barrier methods since they
exhibit better convergence [25]. We now consider one such method.

30 Review of Some Solution Techniques for CNLPs

Primal-Dual Interior Point Method for CNLPs

We derive the primal-dual interior point method for nonlinear programming, based on the
assumption that f ,ci, i ∈ E ∪ I are twice continuously differentiable. We also assume that
strong duality holds. We now describe a feasible primal-dual interior point method for
solving P̄ , where feasibility of the iterates is maintained throughout the solution process.
Here P̄ is defined as:

P̄

min
x∈Rn

f (x),

s.t. ci(x) = 0, i ∈ E,
ci(x)≥ 0, i ∈ I.

(2.33)

The Lagrangian L̄ is defined as follows:

L̄(x,ν ,λ) = f (x)− cE(x)T
ν− cI(x)T

λ , (2.34)

where cE(x) = (ci(x))i∈E and cI(x) = (ci(x))i∈I are equality and inequality constraints
respectively, and ν and λ are the corresponding Lagrange multipliers. The first and second
derivatives of L with respect to x are defined respectively, as:

∇xL(x,ν ,λ) = ∇ f (x)− JE(x)ν− JI(x)λ ,

and
∇xxL(x,ν ,λ) = ∇

2 f (x)−∑
i∈E

νi∇
2ci(x)−∑

i∈I
λi∇

2ci(x),

where JE and JI(x) are the Jacobian matrices of equality and inequality constraints
respectively:

JE(x) = (∇c1(x),∇c2(x), . . . ,∇cmE (x))
T , (2.35)

JI(x) = (∇c1(x),∇c2(x), . . . ,∇cmI(x))
T , (2.36)

and JE(x) ∈ RmE×n, mE < n and JI(x) ∈ RmI×n.

The KKT conditions for P are:

(2.35a) ∇xL(x∗,ν∗,λ ∗) = 0,

(2.35b) cE(x∗) = 0,

(2.35c) C(x∗)λ ∗ = 0,

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 31

(2.35d) λ ∗ ≥ 0, cI(x∗)≥ 0,

where C(x∗) = diag(cI(x∗)).
The perturbed KKT system KKT(µk), µk > 0 is then defined as:

(2.36a) ∇xL(x∗,ν∗,λ ∗) = 0,

(2.36b) cE(x∗) = 0

(2.36c) C(x∗)λ ∗−µke = 0,

(2.36d) λ ∗ ≥ 0, cI(x∗)≥ 0,

where e = (1,1, . . . ,1)T ∈ RmE .

The primal-dual interior point method approximately solves the sequence of systems
KKT(µk) in the variable {x,ν ,λ}, for a sequence of positive values µk > 0, where µk→ 0
as k→ ∞. For each parameter µk, Newton’s method approximates the solution (xk,νk,λ k)

of the system of equations defined by (2.36a)− (2.36c). To maintain feasibility, the Newton
iterates are chosen such that (2.36d) is satisfied. In this way, (xk,νk,λ k) converges to the
solution x∗,ν∗,λ ∗ as k→ ∞ [92], [108].

We obtain the Newton search directions (∆x,∆ν ,∆λ) for the system KKT(µk), by solving

 ∇2
xxL(x) −(Jk

E)
T (Jk

I)
T

Jk
E 0 0

ΛJk
I C 0

 ∆x

∆ν

∆λ

=−

 ∇xL
cE(x)

Cλ −µke

 , (2.37)

where Λ = diag(λ). Given a point (xk,νk,λ k), Newton’s method computes the new iterate
(xk+1,νk+1,λ k+1) as follows:

xk+1 = xk +α∆x,

ν
k+1 = ν

k +α∆ν

λ
k+1 = λ

k +α∆λ ,

where (∆x,∆ν ,∆λ) is given by (2.37) and α is chosen such that condition (2.36d) is satisfied.
A suitable choice for α is:

α = min{1,τk×min
i∈I
{− λi

∆λ i
: (∆λ)i < 0},τk min

i∈I
α

i}

where α i ≤min{β > 0 : ci(xk +β∆x) = 0} [108], [93].

32 Review of Some Solution Techniques for CNLPs

Sequential Quadratic Programming (SQP)

SQP methods were first proposed by Wilson [128] and was later developed by Garcia et
al.[86], Han [95, 96] and Powell [104–106]. SQP methods are second order methods as they
require second derivative information. They construct a series of quadratic approximations
to (1.2) iteration by iteration. We consider first the SQP method for equality constrained
problems. The basic idea is to solve a problem consisting of a quadratic approximation of
the objective function subject to linear approximations of the constraints, at every iteration.
The subproblem at the current iteration xk is given by:

{
min

d
1
2dTW kd +(∇ f k)T d

s.t. (∇ck
i)

T d +(ck
i) = 0, i ∈ E,

(2.38)

where W k = ∇2
xxL(xk,λ k),∇ f k = ∇ f (xk), ∇ck

i = ∇ci(xk), ck
i = ci(xk) and L is defined as

in (2.2). The iterate generated by solving (2.38) is equivalent to the iterate generated by
applying Newton’s method to the KKT conditions described in Theorem 2.1.6 [130]. To
demonstrate this, let J(x) denote the Jacobian matrix of the constraints:

J(x) = (∇c1(x),∇c2(x), . . . ,∇cm(x))T , (2.39)

where J ∈ Rm×n, m < n. The problem (2.38) can now be written equivalently as

{
min

d
1
2dTW kd +(∇ f k)T d

s.t. Jkd + ck = 0
(2.40)

where Jk = J(xk) and ck = c(xk) is the vector made up of components ci(xk), i ∈ E. Denote
the Lagrangian of (2.40) by

L =
1
2

dTW kd +(∇ f k)T d−Λ
T (Jkd + ck), (2.41)

where Λ is the Lagrangian multiplier. By applying the KKT conditions to (2.41), and
assuming that J(x) has full row rank, (2.40) has a unique solution (dk,Λk) that satisfies

W kdk +∇ f k− (Jk)T Λk = 0,
Jkdk + ck = 0,

(2.42)

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 33

where the first equation in (2.42) corresponds to ∇dL = 0 and the second equation in (2.42)
corresponds to ∇ΛL = 0.

We can rewrite (2.42) as

[
W k −(Jk)T

Jk 0

][
dk

Λk

]
=−

[
∇ f k

ck

]
. (2.43)

Now recall that the Lagrangian function for problem (1.2) is defined by (2.2). By applying
the KKT conditions to (2.2) with equality constraints only, we obtain the following system:

∇L =

[
∇xL
∇λ L

]
=

[
∇ f (x)−∇c(x)λ

c(x)

]
= 0. (2.44)

We can define (2.44) as a function of x and λ

F(x,λ) =

[
∇ f (x)−∇c(x)λ

c(x)

]
= 0, (2.45)

and apply Newton’s method to obtain a solution to (2.45), by solving the following system

F(xk,λ k)+(∇F(xk,λ k))T

[
dk

x

dk
λ

]
= 0. (2.46)

The left hand side of (2.46) expands to

[
∇ f k−∇ckλ k

ck

]
+

[
∇

(
∇xL
∇λ L

)]T [
dk

x

dk
λ

]

=

[
∇ f k−∇ckλ k

ck

]
+

[
∇2

xxL ∇2
λx

∇2
xλ

L ∇2
λλ

L

]T [
dk

x

dk
λ

]

34 Review of Some Solution Techniques for CNLPs

=

[
∇ f k−∇ckλ k

ck

]
+

[
W k ∇ck

(−∇ck)T 0

]T [
dxk

dk
λ

]

=

[
∇ f k−∇ckλ k

ck

]
+

[
W k −∇ck

(∇ck)T 0

][
dxk

dk
λ

]
.

Now, obtaining a solution to (2.46) is equivalent to obtaining a solution to the following
system

[
W k −(Jk)T

Jk 0

][
dk

x

dk
λ

]
=

[
−∇ f k +(Jk)T λ k

−ck

]
, (2.47)

where dk
x and dk

λ
correspond to the step size in the x and λ directions respectively. The

Newton step from the current iterate (xk,λ k) is given by

[
xk+1

λ k+1

]
=

[
xk

λ k

]
+

[
dk

x

dk
λ

]
. (2.48)

By subtracting (Jk)T λ k from both sides of the first equation in (2.47), we obtain

[
W k −(Jk)T

Jk 0

][
dk

x

λ k+1

]
=−

[
∇ f k

ck

]
, (2.49)

which is equivalent to (2.43), with dk
x = dk and λ k+1 = Λk. This relationship is referred to

as the equivalence between SQP and Newton’s method and is particularly useful because
it enables convergence properties for SQP methods to be easily established. Provided
an optimal solution (x∗,λ ∗) exists, convergence of the SQP method is guaranteed [130].
Once (1.2) has been approximated by (2.38), quadratic programming algorithms, such
as gradient- projection methods [25, 130], range-space methods [25, 130], interior point
methods [25, 50, 51, 92, 98, 103, 130], and active set methods [25, 50, 51, 92, 130, 98] can
be used to locate an approximate minimizer at each iteration. SQP methods are globalized
by incorporating either line search or trust region strategies into the SQP algorithm [25].

2.2 Review of Constraints Handling in Constrained Nonlinear Programming 35

Remark 2.2.1. Notice that with the interior point method, at xk one has µk which is then used
to get xk+1, where µk is updated again to get µk+1. The process continues until x∗ is found.
In the primal-dual interior point method as well as SQP however, one calculates {xk,λ k}
iteratively until {x∗,λ ∗} are found. The trajectory-based methods developed in this thesis
follow a strategy similar to that of the primal-dual interior point method and SQP in that
xk, λ k and µk are updated simultaneously. Furthermore, as with the Primal-dual interior
point method, the trajectory-based methods developed in this thesis are primal-dual in the
continuous space.

Chapter 3

Review of Some Solution Techniques for
MINLPs

In this chapter, we provide a review of various existing methods for mixed integer nonlinear
programming problems. In Section 3.1, we present various types of mixed integer problems.
Section 3.2 introduces CNLP subproblems pertinent to the discussion in the remainder of the
chapter. In Section 3.3 we present an important MILP problem used in the iterative scheme of
various MINLP algorithms. A review on some of the existing methods for convex MINLPs
and non-convex MINLPs can be found in Sections 3.4 and 3.5 respectively.

3.1 Mixed integer nonlinear programming

When there are both integer as well as continuous variables present in an optimization
problem, this is called a mixed integer problem. The problem is classified as either linear,
quadratic or nonlinear, depending on the nature of the objective function and constraints. If
the objective function and constraints are all linear, then this is referred to as a mixed integer
linear programming problem (MILP). The general MILP can be written as

min

z
qT z,

st ci(z) = 0, i ∈ E,
ci(z)≥ 0, i ∈ I,
z ∈ X × Y,

(3.1)

where c : X×Y −→ Rm are real valued, linear functions, q ∈ Rn, z is the vector made up of
continuous and integer variables, z = (x, y)T , and X and Y are defined as in (1.3).

38 Review of Some Solution Techniques for MINLPs

If the objective function is quadratic and the constraints are linear, then this is referred to as a
mixed integer quadratic programming problem (MIQP). The general MIQP can be written as

min
z

q(z) = 1
2zT Hz+gT z

st ci(z) = 0, i ∈ E,
ci(z)≥ 0, i ∈ I,
z ∈ X × Y,

(3.2)

where H ∈ Rn × n is a real, symmetric matrix, g ∈ Rn, and z and c are defined as in (3.1).

When either the objective function or the constraints are nonlinear, this is referred to as the
MINLP described by (1.3):

M

min

z
f (z),

s.t. ci(z) = 0, i ∈ E,
ci(z)≥ 0, i ∈ I,
z ∈ X×Y.

(3.3)

We now demonstrate the effect of the continuous and integer variables on the feasible region
of a problem. Let the constraints of a problem be defined as follows:

c1(x,y) = 5y− (x−7)2 ≥ 0, (3.4)

c2(x,y) = 1.8y− x≥ 0.

The feasible region formed by the constraints is depicted in Figure 3.1. If both variables
are continuous, then the feasible region is represented by the shaded region in Figure 3.1a.
When x is continuous and y is discrete, the feasible region of the MINLP is represented by
the parallel horizontal lines in Figure 3.1b. If x is the discrete variable and y is continuous,
then the feasible region of the MINLP would be represented by the parallel vertical lines
in Figure 3.1c. If x and y are both restricted to integer values, probably the most complex
problem to solve, then the problem is formally known as an integer nonlinear programming
problem (INLP). The feasible region of this problem is represented by the dotted points in
Figure 3.1d.
As far as the optimality conditions are concerned, it is not possible to apply the same
optimality conditions to MINLPs as those used for CNLPs. For instance, the condition
∇L = 0, usually corresponds to a solution which is continuous and not necessarily integer.
Simple optimality conditions are therefore not easily constructed for MINLPs. Figure 3.2
illustrates this. Consider the problem of minimizing f (x,y) = (x−3)2−10x

3x+y+1 subject to the
constraints in equation (3.4). Figure 3.2 represents the solution of this problem as a CNLP,

3.1 Mixed Integer Optimization 39

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(a) The feasible region for CNLP

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(b) The feasible region for MINLP

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(c) The feasible region for MINLP

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(d) The feasible region for INLP

Figure 3.1 Feasible regions of CNLPs, INLPs and MINLPs

40 Review of Some Solution Techniques for MINLPs

INLP and MINLP. The difference between the CNLP solution and the other solutions is
depicted by the enlarged red circular point and the enlarged green triangular point respectively
in each figure. We notice that the solutions are very different and that the same optimality
conditions can not be applied to the separate problems.

A number of existing algorithms for solving MINLPs with convex and/or pseudo-convex
objective and constraint functions can be found in the literature. Most prominent of these
methods are the branch and bound method (BB) [36], the generalized benders decomposition
method (GBD) [55], the outer-approximation method (OA) [41], [49] the branch and bound
integrated with SQP method (sequential quadratic programming) [80], and the extended
cutting plane method (ECP) [125]. These methods rely on a number of subproblems which
we briefly present now.

3.2 Nonlinear programming subproblems

There are three important CNLP subproblems associated with the solution process for convex
MINLPs. These are given below.

The first CNLP subproblem is obtained by continuous relaxation. The CNLP relaxation
of M , defined by (3.3), is the problem M defined as:

M

min
x,y

f (x,y)

s.t. ci(x,y) = 0, i ∈ E,
ci(x,y)≥ 0, i ∈ I,
x ∈ X ,y ∈ conv(Y),

(3.5)

where convY is the convex hull of Y . This subproblem is generally solved for each k-th step
of a BB search by adding an additional bound constraint to each node of the BB tree [63],
[50].

The second CNLP subproblem is obtained by fixing the integer variables in M . For
yk ∈ Y , the following subproblem is obtained by fixing the integer variables y equal to the
value yk:

M̄ (yk)

min

x
f (x,yk)

s.t. ci(x,yk) = 0, i ∈ E,
ci(x,yk)≥ 0, i ∈ I,
x ∈ X .

(3.6)

If f (x,y) and ci(x,y) are convex then M provides an absolute lower bound and M̄ (yk) an
upper bound to M . M̄ (yk) provides an upper bound provided it has a feasible solution, i.e.

3.2 Nonlinear programming subproblems 41

-3

-2.5

-2

-1

-0.5

0

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(a) The optimal solution of a CNLP

-3

-2.5

-2

-1

-0.5

0

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(b) The different optimal solutions of a CNLP and
a MINLP problem

-3

-2.5

-2

-1

-0.5

0

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(c) The different optimal solutions of a CNLP and
a MINLP

-3

-2.5

-2

-1

-0.5

0

0 2 4 6 8 10
0

2

4

6

8

10

x

y

(d) Different optimal solutions of a CNLP and an
INLP

Figure 3.2 Optimal solutions of CNLPs, INLPs and MINLPs

42 Review of Some Solution Techniques for MINLPs

a feasible xk such that the constraints in (3.6) are satisfied [63]. When this is not the case, the
third CNLP subproblem, known as the feasibility subproblem, is considered:

CNLPF(yk)

min
x∈X

∑
|I|
i=1 αi

s.t. ci(x,yk) = 0, i ∈ E,
ci(x,yk)≥ αi, i ∈ I,
αi ≥ 0,

(3.7)

where |I| = mI . Notice that ∑
|I|
i=1 αi = 0 ensures feasibility. The subproblems CNLPF(yk)

and M̄ (yk) are used by OA [41], [49], [63] and GBD [50], [63]. The above problem can be
re-written as:

CNLPF1(yk)

{
min
x∈X

∑
|I|
i=1 c+i (x,y

k)

s.t. ci(x,yk) = 0, i ∈ E,
(3.8)

where
c+i (x,y

k) = max{0,−ci(x,yk)}, i ∈ I.

An l∞-minimization problem is also defined as:

CNLPF2(yk)

{
min
x∈X

max
i∈I

c+i (x,y
k)

s.t. ci(x,yk) = 0, i ∈ E.
(3.9)

The feasibility problem can be formulated from another point of view where the
l1-minimization is constructed using only the violated inequality constraints, e.g.

CNLPF3(yk)

min
x∈X

∑
i∈J

c+i (x,y
k)

s.t. ci(x,yk) = 0, i ∈ E,
ci(x,yk)≥ 0, i ∈ I \ J,

(3.10)

where J is the index set which corresponds to infeasible inequality constraints.

A general form of the infeasibility problem suggested by Fletcher and Leyffer [49], [50] is as
follows:

FP(yk)

min
x∈X

∑
i∈J

ωic+i (x,y
k)

s.t. ci(x,yk) = 0, i ∈ E,
ci(x,yk)≥ 0, i ∈ I \ J,
ωi ≥ 0.

(3.11)

3.3 The mixed integer linear programming problem (MILP) 43

We now consider the MILP used within the solution process of some MINLP algorithms.

3.3 The mixed integer linear programming problem
(MILP)

Many optimization models have objective functions and constraints which are linear with
respect to the continuous and integer variables [50]. These are referred to as mixed integer
linear programming problems (MILPs). Some convex MINLPs or pseudo-convex MINLPs
with pseudo-convex objective functions and convex feasible regions are approximated and
solved using MILPs [41, 49, 125, 127].
For convex MINLPs, one can exploit the convexity of the nonlinear functions by replacing
them with cutting planes. For example, at the k-th iteration of the OA algorithm, a solution
(xk+1,yk+1)T is generated by solving an MILP, where cutting planes are used as constraints.
We now define this MILP denoted by M-OAk:

M-OAk

min α

s.t. f (xk,yk)+(∇ f (xk,yk))T

(
x− xk

y− yk

)
≤ α ∀k ∈ K,

ci(xk,yk)+(∇ci(xk,yk))T

(
x− xk

y− yk

)
≥ 0, ∀k ∈ K,

x ∈ X ,

y ∈ Y,
α ∈ R+.

(3.12)

This MILP problem is obtained by adding recent cutting planes to the previous MILP
problem. The MILP problem is based on |K| points (xk,yk)T (k = 1,2, . . . , |K|) generated at
|K| previous steps, i.e. k ∈ K = {1,2, . . . |K|}. OA generates the point (xk+1,yk+1)T at the
k-th iteration, by solving M-OAk. ECP on the other hand generates the MILP, denoted as
M-ECPk, by adding recent cutting planes corresponding to the most violated constraints, to
the previous problem M-ECPk−1. M-ECPk−1 is presented later in Section 3.4.

We mentioned earlier on in the chapter, that most prominent MINLP algorithms use either
the CNLP subproblems presented in Section 3.2, the MILP we have just presented or a
combination of both. We now present these methods.

44 Review of Some Solution Techniques for MINLPs

3.4 Algorithms for convex MINLPs

We briefly discuss the algorithms for convex MINLPs that use the subproblems presented
in Sections 3.2. Different algorithms use either one or a combination of these subproblems
and/or M-OAk or M-ECPk, discussed in Section 3.3.

The Branch and Bound method (BB)

The Branch and Bound method (BB) was first introduced by Dakin [36]. The idea of BB is to
successively split the problem into smaller problems which are easier to solve or infeasible.
BB uses subproblem M at each node, where M includes integer constraints corresponding
to the node. BB starts by solving first the continuous CNLP relaxation, M , which means the
integrality restriction on the integer variables are removed. If this first solution satisfies the
integrality constraint, then the search is stopped. Otherwise, a tree search is performed along
an integer variable yk

i that does not fulfill the integrality constraint. The variable yk
i can be

chosen using a number of methods, see for example [43], [66], [71]. The tree search results
in two new subproblems, known as child nodes, where yk

i is known in the parent node. If we
let Fk be the set of points satisfying

Fk = {(x,y)|ci(x,y) = 0, i ∈ E,ci(x,y)≥ 0, i ∈ I},

then child nodes are created by the following feasible sets:

Fk+1
1 = {(x,y)|ci(x,y) = 0, i ∈ E,ci(x,y)≥ 0, i ∈ I, yi ≤ ⌊yk

i ⌋},

Fk+1
2 = {(x,y)|ci(x,y) = 0, i ∈ E,ci(x,y)≥ 0, i ∈ I, yi ≥ ⌈yk

i ⌉},

where ⌈.⌉ and ⌊.⌋ are the respective ceiling and floor functions. The solutions to the
subproblems at the child nodes provide upper bounds on the solution to the parent nodes.
These upper bounds are successively restricted at giving rise to relaxed CNLP subproblems
M , which yield lower bounds for the solutions to the subproblems in the descendant nodes.

The best known integer-feasible solution is considered as the current overall upper bound.
If the relaxed solution to any nodal subproblem is greater than the current overall upper
bound, then that nodal subproblem is fathomed. If the solution of the subproblem, M , at any
node is integer-feasible, then its solution is compared with the current overall upper bound.
Therefore the fathoming takes place when the optimal value of M exceeds the current upper
bound, the relaxed problem M is infeasible, or an integer-feasible nodal soution is found.
Fathoming at an integer-feasible node takes place since any child node of this node would be

3.4 Algorithms for convex MINLPs 45

inferior in the sense that it would yield a higher objective function value. The BB algorithm
terminates if there are no nodes left to consider (in which case the current upper bound is the
optimal solution) [22, 63].

The Outer Approximation method (OA)

The Outer Approximation method (OA) is an alternative to BB. OA was first introduced by
Duran and Grossmann [41] for MINLPs which are linear in the integer variables y. It was
then generalized to the wide class of convex MINLP problems by Fletcher and Leyfer [49].
In OA, given (xk,yk)T subproblems M̄ (yk) and M-OAk are solved successively in a cycle of
iterations to generate the points (xk+1,yk+1)T .
Let the index sets T and S be such that

T k={ j ≤ k|M̄ (y j) is feasible and x j is the optimal solution to M̄ (y j)},
Sk={l ≤ k|M̄ (yl) is infeasible and xl is the optimal solution to CNLPF(yl)},
where initially i.e. for k = 0, an integer-feasible solution y0 is chosen and T 0 and S0 are
empty. At the k-th iteration of OA, let (xk+1,yk+1)T be the solution obtained by solving
M-OAk:

M-OAk

min α

s.t. f (x j,y j)+(∇ f (x j,y j))T

(
x− x j

y− y j

)
≤ α ∀ j ∈ T k

ci(x j,y j)+(∇ci(x j,y j))T

(
x− x j

y− y j

)
≥ 0, ∀ j ∈ T k

ci(xl,yl)+(∇ci(xl,yl))T

(
x− xl

y− yl

)
≥ 0, ∀l ∈ Sk

x ∈ X ,

y ∈ Y,
α ∈ R+.

(3.13)

The value α = f (xk+1,yk+1) is a lower bound (LBk+1) of the original problem. If yk+1 is
feasible, then it is chosen to create the subproblem M̄ (yk+1). The subproblem M̄ (yk+1) is
then solved and the corresponding solution xk+1 is obtained. The value f (xk+1,yk+1) is an
upper bound (UBk+1). If yk+1 is infeasible, then CNLP(yk+1) is solved and the corresponding
solution xk+1 is found.

If M̄ (yk+1) is feasible, then T k+1 = T k ∪ {k} is updated and Sk+1 = Sk. Otherwise
Sk+1 = Sk ∪{k} is updated and T k+1 = T k. To prevent the discrete variable assignment

46 Review of Some Solution Techniques for MINLPs

y j, j ∈ T k+1 from being the solution to the relaxed master problem, M-OAk+1, it is necessary
to define:

UBk+1 = min{ f (x j,y j)| j ∈ T k+1}.

This gives rise to the OA master problem, M-OAk+1:

M-OAk+1

min α

s.t. α <UBk

f (x j,y j)+(∇ f (x j,y j))T

(
x− x j

y− y j

)
≤ α ∀ j ∈ T k+1

ci(x j,y j)+(∇ci(x j,y j))T

(
x− x j

y− y j

)
≥ 0, ∀ j ∈ T k+1

ci(xl,yl)+(∇ci(xl,yl))T

(
x− xl

y− yl

)
≥ 0, ∀l ∈ Sk+1

x ∈ X ,

y ∈ Y,
α ∈ R+.

(3.14)

Here new cutting planes have been added to M-OAk+1 to obtain the new discrete variable
assignment yk+2 such that (xk+2,yk+2)T is the solution of M-OAk+2. Clearly, lower bounds
are such that

LBk+1 ≥ LBk ≥ . . .LB0.

The new integer yk+2 is chosen again to create a subproblem M̄ (yk+2) or CNLPF(yk+2) and
the process continues. Since the functions f (x,y) and ci(x,y) are convex, the linearizations
in M-OAk correspond to outer-approximations of the feasible region in problem M and
under-estimations of the objective function being approximated [63]. OA terminates when
the upper bound generated by the solutions of M̄ (yk), and the lower bound of M-OAk,
are within a specified tolerance, or when OAk is infeasible. Naturally the OA algorithm
converges in 1 iteration if f (x,y) and c(x,y) are linear [63].

The Generalized Benders Decomposition method (GBD)

The Generalized Benders Decomposition method (GBD) is similar to OA. Here two
sequences of updated upper (non-increasing) and lower (non-decreasing) bounds are created
that converge within a finite number of iterations. The upper bound, UB, of the problem

3.4 Algorithms for convex MINLPs 47

comes from the primal problem M̄ (yk) and the lower bound, LB, comes from the master
problem, which is derived from duality theory. Here yk is the integer solution obtained for
the master problem, see below. The solution of M̄ (yk) also provides information about the
Lagrangian multiplier estimate associated with inequality and equality constraints.

Unlike OA, GBD generates the master problem from duality theory. Let yk be the integer
solution obtained from the master problem, M-GBDk−1, at the (k−1)-th iteration (Initially
y0 is found such that M̄ (y0) is feasible). The subproblem M̄ (yk) is then solved. If M̄ (yk)

is infeasible, then CNLPF(yk) is solved.

When M̄ (yk) is feasible, its solution together with the dual variable λ k
i , i ∈ E ∪ I,

corresponding to equality and inequality constraints is found, and the Lagrange function:

L(x,y,λ k) = f (x,y)− ∑
i∈E∪I

λ
k
i ci(x,y),

is constructed. Recall that the solution of M̄ (yk) provides the upper bound, UBk. Now, the
set T k is updated as T k = T k−1∪{k} and the upper bound is found such that:

UBk = min{ f (x j,y j)| j ∈ T k}.

On the other hand, when CNLPF(yk) is solved, its solution xl together with the dual variable
λ̄ l are obtained and the Lagrangian function:

L̄(xl,y, λ̄ l) = f (xl,y)− ∑
i∈E∪I

λ̄
l
i ci(xl,y),

is found. The following master problem M-GBDk is then defined

M-GBDk

min
y,α

α

s.t. α ≥ inf
x

L(x,y,λ k) ∀k ∈ T k

0≤ inf
x

L(xl,y, λ̄ l) ∀l ∈ Sk

α ∈ R+.

(3.15)

The integer solution yk+1 of M-GBDk is then used to create the new subproblem, M̄ (yk+1)

or CNLPF(yk+1), and the process continues. We notice that M-GBDk has, as constraints,
two inner optimization problems (for the case of feasible primal, M̄ (yk), and infeasible
primal, CNLFP(yk) problems). The solution of M-GBDk provides a lower bound LBk of the

48 Review of Some Solution Techniques for MINLPs

original problem, which is non-decreasing, i.e.

LBk ≥ LBk−1 ≥ ·· · ≥ LB1 ≥ LB0.

As the iterations proceed, it is shown that the sequence of updated upper bounds is non-
decreasing, while the sequence of lower bounds is non-increasing. This results in the
sequence converging in a finite number of iterations. GBD stops when |UBk−LBk| ≤ ε ,
where ε is a small positive number, or when all integer solutions are considered (in which
case the updated upper bound UBk is treated as the optimal solution) [50].

The Extended Cutting Plane method (ECP)

The extended cutting plane method (ECP) [125] is an extension of the Kelley’s cutting plane
method for solving convex NLP problems [73]. It was first extended to solve convex
MINLPs [125] and later the αECP method was developed to solve convex MINLPs with
pseudo-convex constraints [127]. Convergence properties for ECP were then established for
MINLPs containing quasi-convex constraints, in Still and Westerlund [119]. The most recent
αECP method for MINLP problems containing a pseudo-convex objective function and
pseudo-convex constraints, also guarantees convergence to a global minimizer [126].

Some of the advantages of ECP and αECP include the fact that they are first order methods,
so no second order derivatives are required. They also require very few objective function
evaluations. However, for problems with a fairly simple structure, i.e. containing a small
number of integer variables and an objective function which is not very nonlinear, methods
such as BB tends to outperform ECP. For more complex or large scale problems however,
αECP tends to perform very well [43], [124].

ECP is very similar to OA, but unlike OA and GBD, ECP does not split the problem into
CNLP and MILP subproblems, which means the continuous and discrete variables are
optimized simultaneously. Naturally this may result in ECP requiring more iterations than
OA and GBD. Despite this drawback, ECP efficiently solves large convex MINLPs which
are not very nonlinear.

Let (xk, yk)T be the solution of the initial bound constrained linearization of problem
(3.3), ECPk−2, see below, and define the set

Ĵk = { j ∈ arg{min c j(xk,yk)}}.

3.4 Algorithms for convex MINLPs 49

This is the set containing the most violated constraint of (3.3). Given (xk,yk)T , the (k)-th
iteration of ECP solves the M-ECPk problem:

M-ECPk

min α

s.t. f (x j,y j)+(∇ f (x j,y j))T

(
x− x j

y− y j

)
≤ α ∀ j ∈ Ĵk

ci(x j,y j)+(∇ci(x j,y j))T

(
x− x j

y− y j

)
≥ 0, ∀ j ∈ Ĵk

x ∈ X ,

y ∈ Y,
α ∈ R+,

(3.16)

to obtain the point (xk+1,yk+1)T . Here, at least one linearization is made, corresponding
to the most violating constraint at (xk+1,yk+1)T , and the set Ĵk+1 = Ĵk ∪{k} is updated.
M-ECPk+1 is then solved for a new point (xk+2,yk+2)T . New cutting planes are generated,
where again only the cutting planes corresponding to most violated constraints are added
to M-ECPk+2. The process is repeated until an optimal solution to M , defined by (1.3) is
found.

The method can be summarized as follows. ECP successively adds a linearization or
cutting plane of the most violated constraint at the predicted point (xk,yk)T and the solution
of the increasingly tight M-ECPk made up of these linearizations. A valid cutting plane does
not cut off any part of the feasible region and ensures that the solution for the next iteration is
improved. An invalid cutting plane, however may cut off part of the MINLP feasible region
[77]. Valid cutting planes at the k-th iteration, together with the cutting planes generated
at the previous iteration are added to M-ECPk and at every iteration M-ECPk is solved.
This is done until all the constraints are satisfied. If a solution to ECPk, i.e. (xk+1,yk+1)T

is infeasible, then the algorithm generates a new point which is different from all points
obtained in previous solutions [66, 77].

The solution of M-ECPk provides a new point, (xk+1,yk+1)T , on which to base the choice
of the constraint to be linearized for the next iteration of the algorithm. A sequence of
decreasing outer approximations to the feasible region is thus formed. The final M-ECPk

solution is a valid underestimation of the MINLP problem. This means that the feasible
region of the MINLP is a subset of the feasible region of M-ECPk:

Ω
k
m ⊂Ω

k−1
m ⊂ ·· · ⊂Ω

1
m ⊂Ω

0
m,

50 Review of Some Solution Techniques for MINLPs

where Ω0
m represents the initial feasible region corresponding to M-ECP0 and Ωk

m represent
the feasible region corresponding to the final solution of the method, M-ECPk. The optimal
solution of M-ECPk and the MINLP, are therefore identical if the solution is feasible for both
problems.

At each iteration the optimal objective value of M-ECPk yields an objective value which
is greater than the solution obtained at the previous iteration, M-ECPk−1. As a result, a
sequence of non-decreasing lower bounds to the optimal objective value of the convex
MINLP problem is obtained:

LBk ≥ LBk−1 ≥ ·· · ≥ LB1 ≥ LB0.

The algorithm has converged when all cutting planes are valid at the optimal solution [66].
More specifically, convergence of ECP is achieved when the maximum constraint violation
lies within some prescribed tolerance [22, 63, 125].

3.5 Algorithms for non-convex MINLPs

A non-convex MINLP problem generally contains more than one solution. When f (x,y) and
c(x,y) are non-convex, two difficulties arise. First, the NLP subproblems M , M̄ (y j) and
CNLPF(y j) may not have a unique local optimal solution. Second, M-OA and M-ECP do
not guarantee a valid lower bound or a valid bounding representation with which the global
optimum may be cut off. Under these circumstances, the deterministic methods discussed
above cannot be applied to solve general MINLP problems. Unfortunately, very little
research can be found in the literature for general non-convex MINLP problems. However, a
number of global MINLP algorithms have been developed for non-convex problems with a
specific structure [114]. These are based on the convex MINLP algorithms discussed in the
previous section. They use convex under-estimators for the original non-convex problems.
An overview of the most well known ones are presented below.

Ryoo and Sahinidis [112] extended BB to the Branch-and-Reduce method, for which
valid convex underestimating CNLPs can be constructed for the non-convex relaxations.
Unfortunately, the method cannot be applied to general nonlinear MINLP problems, except
bi-linear and separable problems.

The SMIN-αBB algorithm, proposed by Adjiman et al. [2], was designed to solve
mathematical models to global optimality where the binary/integer variables appear linearly
and hence are separable from the continuous variable and/or appear in at most bi-linear terms.
The nonlinear terms in the continuous variables appear separably from the bi-linear/integer
variables. Clearly, SMIN-αBB can be applied for a special class of non-convex problems.

3.5 Algorithms for non-convex MINLPs 51

The use of αECP for non-convex MINLP problems was suggested by Porn and Westerlund
[102]. The αECP method was designed to solve problems with pseudo-convex objective
functions and pseudo-convex inequality constraints. They have suggested a new method
which approximates the pseudo-convex objective function with an improving cone of
linearizations.
Homogeneous with ECP, all violated constraints are approximated by cutting planes. A
line-search technique is also used, where the success of the line-search is due to the
convexity of the level sets for pseudo-convex functions. The αECP method solves problems
with a pseudo-convex objective function and pseudo-convex constraints and is particularly
efficient for solving pseudo-convex INLPs, where convergence to the global optimal solution
is guaranteed in a finite number of iterations [22, 102, 127]. Global convergence of this
method is also ensured for MINLPs with a linear objective function and pseudo-convex
constraints. For pseudo-convex MINLPs, αECP solves a sequence of MILPs. The MILPs
approximate the MINLP and the final MILP solution is a valid underestimation of the
MINLP [77]. This type of problem is fairly general and many other problems can be
modeled in the form of pseudo-convex objective functions with linear constraints. Some
problems with a non-linear objective function and pseudo-convex constraints can also be
rewritten in the form of a pseudo-convex objective function with linear constraints [66]. The
αECP method is therefore applicable to a wide class of MINLPs.

The main differences between ECP and αECP occur in the modification of the parameter
αk and the generation of new constraints for the MILP at each iteration. In particular, the
objective function constraint used in regular ECP is replaced with a pseudo-convex reduction
constraint in αECP [77, 102]. The reduction constraint is modified whenever an improved
solution for the non-convex MINLP is found. At each iteration, the solution of the MILP is
used to formulate a new MILP resulting in a sequence of MILPs being solved. If an iteration
produces a feasible solution, then the upper bound of the reduction constraint is modified
so that no point which gives a worse objective function value, than the one obtained, can be
found. When the final pseudo-convex MILP is solved and all the cutting planes are valid
cutting planes, and the objective function value evaluation at the MILP solution point differs
no more than the tolerance ε f from the MILP solution:

| f (xk,yk)−α
k| ≤ ε f ,

then the global optimal solution for the pseudo-convex MINLP has been located [77]. Here
ε f is a small positive number.

Chapter 4

A Trajectory-Based Method for UNLPs

In this chapter we present the details of Snyman’s trajectory-based method for UNLPs,
TAUNLP [115, 116]. Section 4.1 consists of a review of TAUNLP and a detailed description
of TAUNLP is presented in Section 4.2. This section is concluded by presenting a pseudo-
code for TAUNLP.

4.1 Overview of TAUNLP

Snyman [115, 116] developed a method for obtaining the unconstrained minimizer of (1.1),
using a trajectory-based iterative method. The trajectory-based method is designed to
simulate the motion of a particle of unit mass in an n-dimensional conservative force field,
where at position x the objective function f (x) represents the potential energy of the particle
and T (x) denotes the kinetic energy of the particle. By exploiting the conservative properties
of the force field, in which the total kinetic and potential energies of the particle remain
constant, the particle is guided along a trajectory towards a local minimum by ensuring that
its potential energy is strategically reduced [115, 116].

The differential equation (1.7) is derived by applying Hamiltonian’s principle to the
Lagrangian:

L̂(x) = T (x)− f (x),

to obtain the equations of motion:

d
dt

∂ L̂
∂ ẋi
− ∂ L̂

∂xi
= 0, i = 1, . . . ,n. (4.1)

54 A Trajectory-Based Method for UNLPs

By manipulating and vectorizing (4.1), one obtains (1.7) [115, 116]. The trajectory of the
particle may be accurately monitored at successive time instances tk, k = 0,1,2 . . . by
solving (1.7), using an exact (energy conserving) numerical integration method. The force,
a = −∇ f (x), acting on the particle at x will always tend to reduce its potential energy.
However, since no frictional forces are present in (4.1) the particle will move interminably
withut settling at its lowest potential energy position x∗. To remedy this situation the velocity
of the particle may be monitored along the computed trajectory and manipulated to aid in
guiding it toward a local minimizer x∗ [115, 116].

If one denotes the velocity of the particle by

v(x) = ẋ,

then by convention, the kinetic energy of the particle is defined as

T (x) =
1
2
||ẋ||2,

where ||.|| denotes the l2-norm. On the other hand, the potential energy of the particle satisfies
the following integral [115, 116]

f (x) =−
∫ x

x∗
a(s)ds+ f (x∗), (4.2)

since the negative rate of change of the potential energy of the particle is equivalent to the
force a(x) acting on it. As a result, the following is obtained

a(x) =−∇ f (x),

i.e,
ẍ =−∇ f (x).

The significance of x∗ in the integral (4.2), is that it is the point at which the particle attains
its lowest potential energy i.e. the unconstrained minimizer of (1.1).
Conservation of energy implies the following relation:

T (x)+ f (x) = T (x0)+ f (x0) = E0, (4.3)

where x0 represents the initial position of the particle, E0 represents the initial total energy
of the particle and T (x0) and f (x0) represent the initial kinetic and potential energies of the
particle respectively. Now, in order to obtain a computed trajectory that will tend to the

4.2 The main features of the TAUNLP algorithm 55

local minimum x∗ of (1.1), the potential energy should decrease overall along the exaclty
computed path. If the initial velocity of any particle is 0, it follows that T (x0) = 0. By (4.3)
then, at least from some initial point x0, the potential energy of the particle is guaranteed
to decrease, as desired. Furthermore, an increase in velocity and consequently an increase
in the kinetic energy of the particle brings about a decrease in the potential energy of the
particle. To demonstrate this, note that by conservation of energy, the following holds at any
two consecutive times tk and tk+1:

∆ f k = f (xk+1)− f (xk) =−T (xk+1)+T (xk) =−∆T k.

It follows that ∆ f k < 0 if and only if ∆T k > 0. A decrease in f is therefore guaranteed by an
increase in the velocity of the particle:

T (xk)< T (xk+1). (4.4)

The kinetic energy of the particle xk, i.e., T (xk), is a function of the velocity vk:

T (xk) =
1
2
||vk||2. (4.5)

It therefore follows from (4.4) and (4.5), that for descent

||vk||< ||vk+1||. (4.6)

Within the iterative procedure of the trajectory-based method the velocity of the particle may
be monitored and accordingly be manipulated so that predominantly the function value at
two successive times tk and tk+1 satsifies

f (xk+1)≤ f (xk), ∀x ∈Ω.

Since condition (4.6) brings about a decrease in f , it can be thought of as a descent
condition. With the outline of Snyman’s [115, 116] trajectory-based algorithm in place, we
now present the details of TAUNLP.

4.2 The main features of the TAUNLP algorithm

In this section, the process used by Snyman [115, 116], to solve the unconstrained
optimization problem (1.1), will be discussed. It is important to realize at this point that the

56 A Trajectory-Based Method for UNLPs

computationally economic integration method used by Snyman, namely the Leap-Frog
method and implemented below via (4.7) and (4.8), is only approximately energy conserving
(see equation (A.8) in the Appendix to [115]). The subtle implication is that one cannot
conclude with absolute certainty that if the computed velocities satisfy (4.6) that descent is
necessarily achieved in all instances (although for sufficiently small time steps one may
expect it to occur for most cases). Therefore the implementation of the descent philosophy
described in the previous section required the introduction of some heuristic adjustments to
the computed trajectory in order to impose a high probability of the overall descent along the
computed path and effective controlled convergence to a local minimum. Throughout this
section we make the distinction between "calculated" and "assigned" quantities. During the
integration process described below, we "calculate" the position and velocity of the particle
at x. Whenever corrective procedures are activated however, we "assign" new values for the
position and velocity of the particle. This distinction will become clearer in the discussions
that follow.

At the k-th iteration of Snyman’s method [115, 116], one has a central system, integrating
(1.7) over the interval [tk, tk+1], where there are a number of parameters involved. These
include the time step, ∆tk, the parameter used to monitor the progress of the iterates, i.e. m̂
and the parameters used to magnify ∆tk, i.e. δ , δ1 and pk. The significance of these
parameters will be made clear a little later on in this section. Note that ∆tk is just a
parameter, i.e. the integration time step used when integrating the system (1.7) from tk to
tk+1. It is not used to mean ∆tk = tk+1− tk, unlike ∆xk = xk+1− xk.

The Euler formulae used to integrate (1.7) are the respective Euler forward and Euler
backward equations below

xk+1 = xk + vk
∆tk, (4.7)

vk+1 = vk−∇ f (xk+1)∆tk. (4.8)

Before integrating (1.7), TAUNLP is initialized as follows. Given x(0) = x0, the velocity of
the particle is initialized as

v0 =−1
2

∇ f (x0)∆t0. (4.9)

Now, at any iteration of TAUNLP, as with any algorithm, there is a possibility that ||∇ f ||
is large. To avoid excessively large steps from occurring whenever ||∇ f || is large, Snyman

4.2 The main features of the TAUNLP algorithm 57

[115, 116] proposed that the following inequality be satisfied

||∆xk||< δ , (4.10)

where ∆xk is calculated from equation (4.7) as

||∆xk||= ||vk||∆tk. (4.11)

Here δ denotes the maximum allowable step size. If (4.10) is not satisfied, then vk is assigned
as

vk =
δ

∆tk
vk

||vk||
, (4.12)

using the same δ from (4.10), which is typically equal to 1. Since, by (4.7), ||∆xk|| is
dependent on the value of vk, Snyman [115, 116] proposed that vk be assigned using (4.12),
to reduce the step ||∆xk||.

At this stage one begins to integrate (1.7) to obtain xk+1 and vk+1 using (4.7) and (4.8)
respectively.

We now consider two cases in which the velocity and position of the particle are adjusted
if the iterates are not progressing as desired. The first adjustment takes place whenever (4.6)
is not satisfied. If at the k-th iteration the velocity of the particle at any fixed time interval
[tk, tk+1] does not increase, i.e. (4.6) is not satisfied, then the new velocity at xk+1 is assigned
as

vk+1 =
1
2
(
1
2

vk +
1
2

vk+1), (4.13)

i.e. the half of the average of the known velocities at tk and tk+1.
This restart at tk+1 with vk+1 is likely to give a more satisfactory trajectory towards x∗.

Should the velocity continue to decrease after the restart and integration, it is likely that the
particle is not following the required trajectory and the more severe restart for the velocity,

vk+1 = 0, (4.14)

is used. The next iteration xk+1 is then found by integration in [tk, tk+1] either using vk+1

in (4.13) or vk+1 = 0 as the case may be. An adjustment of this new iterate is carried out.
In both cases, i.e. when either (4.13) or (4.14) is applied, the position of the particle is also
assigned as:

xk+1 =
1
2

xk +
1
2

xk+1, (4.15)

58 A Trajectory-Based Method for UNLPs

i.e. 1
2xk+ 1

2xk+1 is assigned to xk+1 whenever vk+1 = 1
2(

1
2vk+ 1

2vk+1) or vk+1 = 0 is activated.
The update described by (4.15) was used by Snyman [115, 116], as opposed to xk+1 = xk,
because it gave improved convergence.

At the k+1-th iteration, when vk+1 is reduced, using (4.13) or (4.14), xk+1 is updated using
(4.15). In the next iterate vk+2 is then found from (4.8) using vk+1, ∇ f (xk+1) and ∆tk+1.

The second adjustment of vk and xk is based on the angle between two successive gradient
approximations. Here ∆tk is also updated since it is a significant parameter for the integration
process. To ensure optimal performance ∆tk is monitored and updated based on the following
criterion. If the angle between 2 successive gradient estimates ak = −∇ f (xk) and ak+1 =

−∇ f (xk+1) is greater than π

2 , i.e.

(ak+1)T (ak)≤ 0, (4.16)

then Snyman [115, 116] attributes this to the fact that the trajectory is inaccurate. According
to Snyman [115, 116], this is likely to be the result of an excessively large time step. Without
intervening too much at the first instance when this happens, Snyman [115, 116] proposed
that the following correctional procedure be put into place. Whenever (4.16) is satisfied, the
parameter m̂k is updated as follows:

m̂k+1 = m̂k +1, (4.17)

where initially m̂k = 0. If m̂k+1 = 3, i.e. if (4.16) is satisfied for 3 consecutive pairs
(ak−2,ak−1), (ak−1,ak) and (ak,ak+1) (we refer to this as the angle violation criterion
throughout this thesis) then Snyman suggested the following. At the time tk+1, the velocity
vk+1 is assigned as

vk+1 =
1
2
(
1
2

vk+1 +
1
2

vk), (4.18)

and the position xk+1 is assigned using (4.15).

∆tk is also updated as follows

∆tk+1 =
∆tk

2
, (4.19)

where ∆tk+1 is used in the next iteration to integrate over [tk+1, tk+2]. The value of m̂k+1 at
any iteration is 0 if (4.16) is not satisfied.

At each k-th integration in [tk, tk+1], ∆tk is monitored and in the event of a successful step,
where

(ak+1)T (ak)> 0, (4.20)

4.2 The main features of the TAUNLP algorithm 59

∆tk+1 is magnified as follows

∆tk+1 =

{
pk∆tk i f ak+1T ak > 0, ||∆xk||< δ ,

∆tk i f ak+1T ak > 0, ||∆xk|| ≥ δ ,
(4.21)

where pk satisfies

pk+1 =

{
pk +δ1 i f ak+1T ak > 0, ||∆xk||< δ ,

pk i f ak+1T ak > 0, ||∆xk|| ≥ δ .
(4.22)

The parameter pk is initially set to 1 and whenever (4.20) is satisfied, is gradually increased
by the factor δ1, which is typically equal to 0.001. In the event of an unsuccessful step, i.e.
when (4.16) is satisfied, in addition to imposing (4.17), pk+1 is reset to 1:

pk+1 = 1.

The implementation of an adaptation of this method is presented later in Chapter 6. The main
features of TAUNLP are presented in Algorithm 1 below.

Algorithm 1 Brief outline of TAUNLP

1: Given ∆tk, m̂k = 0, pk, δ , δ1, initialize k← 0
2: Given xk, compute ∇ f (xk) and calculate vk using (4.9).
3: while ||−∇ f (xk)||= ||ak||> ε do
4: if ||∆xk||> δ then
5: assign (4.12) to vk,
6: else
7: update ∆tk+1 and pk+1 using (4.21) and (4.22) respectively.
8: end if
9: if m̂k ≥ 3 then

10: assign (4.15), (4.18) and (4.19) to xk+1, vk+1 and ∆tk+1 respectively.
11: end if
12: Integrate the system defined by equation (1.7) over the interval [tk, tk+1] at iteration

k, to obtain xk+1, using Euler’s method described by (4.7).
13: Compute ∇ f (xk+1) and integrate the system defined by (1.7) over the interval

[tk, tk+1], using Euler’s method described by (4.8), to obtain vk+1.
14: if (4.16) holds then,
15: set pk+1 = 1, and update m̂k+1 = m̂k +1
16: else
17: set m̂k+1 = 0
18: end if

60 A Trajectory-Based Method for UNLPs

19: if ||∇ f (xk+1)||= ||−ak+1|| ≤ ε then
20: STOP
21: else
22: go to 24
23: end if
24: if condition (4.6) is not satisfied then
25: Assign (4.13) and (4.15) to xk+1 and vk+1, upon the first instance that (4.6) is

not satisfied or (4.14) and (4.15) upon the second consecutive instance that (4.6) is not
satisfied, set k = k+1 and return to 12.

26: else
27: Set k = k+1 and go to 3.
28: end if
29: end while

Remarks on Algorithm 1

Remark 4.2.1. In lines 4-8 of Algorithm 1, one calculates ∆xk as in (4.11) and determines
whether the inequality (4.10) is satisfied. If it is satisfied, then ∆tk+1 and pk+1 are magnified.
If it is not satisfied, then vk is updated to reduce ∆xk.

Remark 4.2.2. In lines 9-11, if the angle violation criterion is satisfied, then one reduces the
velocity of the particle as in (4.13) and the particle is recalculated using (4.15). One also
reduces the step size ∆tk using (4.19), as a corrective measure to improve on the accuracy of
the integration method for the next iteration.

Remark 4.2.3. Here we present the integration of x which is activated in line 12 of TAUNLP:
Euler’s method described in (4.7) is used to integrate (1.7). Given xk and ∆tk, the method
calculates xk+1.

Remark 4.2.4. Here we present the integration of v which is activated in line 13 of TAUNLP:
∇ f (xk+1) is updated and Euler’s method described in (4.8), is used to integrate (1.7). Given
xk+1, vk and ∆tk, the method calculates vk+1.

Remark 4.2.5. In lines 14-18, the angle between two successive gradient approximations is
calculated, and the parameters m̂k+1 and pk+1 are updated accordingly. If the angle between
two successive gradient approximations is less than π

2 , then m̂k+1 is set to 0.

Remark 4.2.6. Recall that vk is the velocity at tk obtained over the interval [tk−1, tk] and vk+1

is the velocity at tk+1 obtained over the interval [tk, tk+1]. In lines 24-26, these are compared.
If the descent condition (4.6) is not satisfied, then the assignments described in (4.13) and

4.2 The main features of the TAUNLP algorithm 61

(4.15) are used. If there is still no improvement in the velocity of the particle for more than 2
consecutive iterations, then (4.14) is assigned to vk+1 and (4.15) is assigned to xk+1.

Remark 4.2.7. Once the descent condition, (4.6), is satisfied, we proceed to the next iteration
in line 27 of TAUNLP.

TAUNLP has seen some success since its inception and has proven to be competitive with
some methods for unconstrained optimization [115, 116]. One of its most attractive features
is that it is a first order method, so no Hessian computation is needed throughout the
minimization routine. Furthermore, no function evaluations are needed within the solution
process. One of the focal points of this thesis is thus to further extend the trajectory
methodology by its application here to Augmented Lagrangian formulations of the for
general constrained optimization (1.2). We develop such an algorithm in the next chapter.

Chapter 5

A Trajectory-Based Method for CNLPs

In this chapter, we present the trajectory-based algorithm (TACNLP) for Augmented
Lagrangian formulations of the general constrained optimization problem (1.2). The success
of the trajectory-based method for unconstrained optimization, TAUNLP, has prompted our
interest in the development of TACNLP. The outline of TACNLP, which is an extension of
TAUNLP, can be found in Section 5.1. Section 5.2 contains a detailed break down of the
main features of TACNLP. Some fundamental changes are made in an attempt to improve on
the existing framework of the method proposed by Snyman [115]. This includes
incorporating an adaptive step size routine into TACNLP. A new technique for updating the
penalty parameter, µ , associated with the augmented Lagrangian (2.30) is also discussed.

5.1 Overview of TACNLP

The trajectory-based algorithm (TACNLP) considered here is a first order method. Much like
the gradient-based methods mentioned in Chapter 2, it uses gradient information to progress
from one iteration to the next. Within the framework of TACNLP, AL will be used to solve
P , defined by (1.2). Since AL contains primal and dual variables, the algorithms presented
will minimize (2.30) with respect to the primal variable x and maximize (2.30) with respect
to the dual variables λ .

Under the mathematical arguments used to derive (1.7) when minimizing the
unconstrained function f (x), we can convert the dual problem of minimizing (2.30) with
respect to x and maximizing (2.30) with respect to λ , to

ẍ =−∇xφA(x,λ ; µ), x(0) = x0, ẋ(0) = 0, (5.1)

64 A Trajectory-Based Method for CNLPs

λ̈ = ∇λ φA(x,λ ; µ), λ (0) = λ (0), λ̇ (0) = 0, (5.2)

where φA is defined as in (2.30). We therefore look for the trajectories x(t) and λ (t) that
minimize φA(x,λ ; µ) with respect to x and maximize φA(x,λ ; µ) with respect to λ , by
solving (5.1) - (5.2) simultaneously. This step is homologous with the minimization of
the unconstrained problem (1.1). Another step which is used identically in TAUNLP and
TACNLP is the manipulation of the velocity component vk. Here vk is manipulated in the
solution process of (5.1) - (5.2) such that φA(x,λ ,µ) is minimized with respect to x. The
solution converges when the first order KKT conditions:

||∇xφA|| ≤ ε, (5.3)

and

||∇λ φA|| ≤ ε, (5.4)

are satisfied, where ε > 0 is a small positive number. By monitoring the trajectories we can
ensure that both x(t) and λ (t) are guided to their respective optimal values x∗ and λ ∗.

The penalty parameter, µ in φA(x,λ ; µ) is used in various Augmented Lagrangian
methods. Within the solution process of these methods, µ is updated to retain feasibility of
the equality constraints and improve complementarity of the inequality constraints. This
follows from the KKT conditions in Theorem 2.1.6, which imply that, for equality
constraints the iterates {xk} generated by any CNLP algorithm must satisfy:

lim
k→∞

ci(xk)
i∈E

= 0.

Furthermore, for inequality constraints one of the following must be satisfied

lim
k→∞

ci(xk)
i∈I∩As(x)

= 0, (5.5)

or
lim
k→∞

λ
k
i

i∈I\As(x)
= 0, (5.6)

where (5.5) corresponds to active inequality constraints and (5.6) corresponds to inactive
inequality constraints. Equations (5.5)-(5.6) can be rewritten as

5.1 Overview of TACNLP 65

lim
k→∞

λ
k
i ci(xk)

i∈I
= 0,

which is the complementarity condition. Further details of this are provided in Section 6.2.3.

Conventionally a combination of the strategies employed, for example, in [6, 18] and
[130] are used to determine how µ should be updated. Unlike the updates used in [6, 18,
130] though, we update µ by solving a differential equation. Since TACNLP is based on
differential equations, in particular involving the trajectories of x(t) and λ (t), we incorporate
the following differential equation based on µ

µ̈ =−µ, µ(0) = µ(0), µ̇(0) = 0. (5.7)

The parameter µ(t) is now coupled with x(t) and λ (t) via (5.8) and (5.9). The resultant
system of equations to be solved throughout the minimization process in TACNLP becomes:

ẍ =−∇xφA(x,λ ; µ), x(0) = x0, ẋ(0) = 0, (5.8)

λ̈ = ∇λ φA(x,λ ; µ), λ (0) = λ (0), λ̇ (0) = 0, (5.9)

µ̈ =−µ, µ(0) = µ(0), µ̇(0) = 0. (5.10)

There are some obvious challenges when obtaining a solution to this system of differential
equations, as opposed to obtaining a solution to (1.7). These include the fact that φA is an
approximation of, and not the exact representation of the objective function and constraints
in (1.2). Moreover, unlike the unconstrained case, here the system (5.8) - (5.10) is coupled
with three completely different types of variables. The conflicting role of x and λ and the
highly influential nature of µ , make the integration very sensitive. To overcome these and
other difficulties, a number of mechanisms have been put into place.

Firstly, whenever the descent condition (4.6) is not satisfied, we manipulate the trajectories
x(t) and λ (t) via vk so that working with φA instead of f (x) is not an issue. We elaborate
more on this in Sections 5.2 and 6.1. Secondly, an adaptive step size routine has been

66 A Trajectory-Based Method for CNLPs

implemented within the solution process of (5.8) - (5.9). The objective here is to control and
maintain errors for the stability of the solution of the system of differential equations. An
adaptive step size routine is not used within the solution process of (5.10), since this is a
simple differential equation which effects, but is not affected by the solutions to (5.8) - (5.9).
Lastly, TACNLP is particularly sensitive to badly scaled problems, or problems of relatively
high dimension. To overcome this difficulty, a scaling procedure has been put in place to
detect and scale these types of problems. We discuss this thoroughly here and in Section 6.1
of Chapter 6.

Unlike Snyman [115], we introduce the adaptive step control to deal with the solution of
a system of differential equations. For the adaptive step size routine, we introduce Modified
Euler’s method which was not implemented by Snyman [115]. Modified Euler’s method is
an extension of the Euler method presented in Section 4.2. A solution to the system (5.8) -
(5.9) is obtained by using a combination of Euler’s method and Modified Euler’s method.
Euler’s method and Modified Euler’s method are paired together as part of the routine for an
adaptive step size method which will be used within the integration strategy. The adaptive
step size method adjusts the step size, ∆t, to maintain minimal local truncation error of the
integration method [29, 30, 65, 69]. This acts as a safe guard for producing a sequence of
converging iterates. Within the adaptive step size routine, we need to obtain a solution using
both Euler’s and Modified Euler’s methods. The difference between Euler’s and Modified
Euler’s method will be made clearer in Section 5.2. The approximations x̂k and λ̂ k obtained
using Modified Euler’s method will be used to acquire an estimate for the local truncation
error. No extra computation is needed to calculate the Modified Euler estimate, so this will
not hinder the computational time or overall performance of the algorithm. Both Euler’s
and Modified Euler’s methods approximately preserve energy [115], a crucial feature for
the success of the minimization procedure. We refer the reader to Snyman’s paper [115] for
verification of this.

An iterative algorithm, TACNLP, which can be found in Chapter 6, has been developed
to obtain a solution to (1.2), by solving (5.8) - (5.10). We now present a detailed break down
of the main features of TACNLP.

5.2 The main features of the TACNLP algorithm

In this section, we outline the main features of TACNLP. Within TACNLP, some
fundamental adjustments have been made in comparison to the unconstrained case. An
adaptive step size routine has been implemented to optimize both primal and dual variables,
xk and λ k, when solving (5.8) - (5.9). A new method for updating the penalty parameter µ is

5.2 The main features of the TACNLP algorithm 67

also implemented. This has resulted in minimizing the use of parameters. The details of
TACNLP are outlined below.

5.2.1 Updates of xk, λ k and µk

This section is necessary because we use this information in subsequent sections, i.e. the
adaptive step size method, the penalty parameter update and the scaling routine. We have
mentioned in Section 5.1 that x, λ and µ will be updated using Euler’s method and x and λ

will be updated using Modified Euler’s method as well. Here we denote the time increments
used to integrate (5.8) - (5.10) with respect to x, λ and µ by ∆tk

x , ∆tk
λ

and ∆k
µ respectively.

Starting with an initial point (x0, λ 0, µ0), the system (5.8) - (5.10) is integrated at the k-th
iteration in [tk, tk+1] as follows.

xk+1 = xk + vk
∆tk

x (5.11)

λ
k+1
i = λ k

i +wk
i ∆tk

λ
, i ∈ E,

λ
k+1
i = max{λ k

i +wk
i ∆tk

λ
,0}, i ∈ I,

(5.12)

and

µ
k+1 = µ

k +dk
∆tk

µ , (5.13)

where

vk = vk−1 +ak
∆tk−1

x , (5.14)

wk = wk−1 +bk
∆tk−1

λ
, (5.15)

and

dk = dk−1 + ck
∆tk−1

µ . (5.16)

68 A Trajectory-Based Method for CNLPs

In equation (5.12) the update, max{λ k
i +wk

i ∆tk
λ
,0}, corresponding to inequality constraints

is imposed to comply with the KKT conditions in Theorem 2.1.6, which state that these
must be non-negative. Furthermore ak, bk and ck correspond to the right hand side of the
system (5.8) - (5.10). Here ak = −∇xφA and bk = ∇λ φA, where φA is defined as in (2.30),
and ck = −µk, since we are not minimizing or maximizing φA with respect to µ . Using
Modified Euler’s method, the following updates are obtained

x̂k+1 = xk + v̂k
∆tk

x (5.17)

and

λ̂
k+1
i = λ k

i + ŵk
i ∆tk

λ
, i ∈ E,

λ̂
k+1
i = max{λ k

i + ŵk
i ∆tk

λ
,0}, i ∈ I,

(5.18)

where

v̂k = vk−1 + (ak−1+ak)
2 ∆tk−1

x ,

ŵk = wk−1 + (bk−1+bk)
2 ∆tk−1

λ
.

(5.19)

The Modified Euler estimates in equations (5.17) - (5.19) will be used within the adaptive
step size routine. From (5.14) and (5.15), we notice that the Euler updates used to calculate
vk and wk depend on ak and bk respectively. Notice also that the Modified Euler updates v̂k

and ŵk calculated in (5.19), require the evaluation of ak−1, bk−1, ak and bk, which would
have been calculated anyway using Euler’s method. This asserts the claim made earlier, that
no extra computation is required for computing a solution using Modified Euler’s method.
We now use these estimates within the adaptive step size routine.

Remark 5.2.1. While integrating (5.8) - (5.10) in [tk, tk+1], we enforce the criteria (4.6) using
vk and vk+1 as well as wk and wk+1. This means that we manipulate the trajectory of x(t) and
λ (t) to enforce (4.6). This process will be described later in this section and again in Section
6.1 of Chapter 6.

5.2.2 Adaptive step size

We implement the adaptive step size routines for x and λ . Since we are optimizing primal as
well as dual variables, we need to ensure that the corresponding step sizes are adapted for
both variables. For the adaptive step size implementation, the solutions obtained at the kth

5.2 The main features of the TACNLP algorithm 69

iteration, using Euler’s and Modified Euler’s method, are denoted as xk+1, λ k+1 and x̂k+1,
λ̂ k+1 respectively. The absolute differences between these are calculated:

Sx = ||xk+1− x̂k+1||,
Sλ = ||λ k+1− λ̂ k+1||.

(5.20)

We then use Sx and Sλ as measurements of the local discretization error of Euler’s method
[29, 30, 65, 69].
The user prescribed tolerance for the discretization error, ε̂ , is compared to this actual error.
If the ratio between ε̂ and Sx i.e. ε̂

Sx
is small, then the actual error of the method is greater

than ε̂ , indicating that the Euler approximate xk is not very accurate. In this case we need
to reduce the step size ∆tk

x , corresponding to (5.8), by the factor t(x,1), which must not be
smaller than 1

2 . If, on the other hand ε̂

Sx
is large, then Sx is smaller than the user prescribed

tolerance for the local discretization error ε̂ , indicating that the integration formula, Euler’s
method, is relatively accurate. In this case, we would like to increase the step size ∆tk

x by the
factor t(x,2), which must be no larger than 2.

We use the same logical argument when comparing the ratio between ε̂ and Sλ . In this
case, when ε̂

Sλ
is small, we reduce the step size ∆tk

λ
, corresponding to (5.9), by the factor

t(λ ,1) ≥ 1
2 . Similarly when ε̂

Sλ
is large, we increase ∆tk

λ
by the factor t(λ ,2) ≤ 2. We must be

careful not to decrease or increase the step sizes too much in each of the above cases.
To do this, when updating ∆tk

x and ∆tk
λ

, we multiply the ratios
√

(ε̂

Sx
) and

√
(ε̂

Sλ
) by a

positive number less than 1. The common choice for this parameter is 0.9 [29, 30]. The
step sizes ∆tk+1

x and ∆tk+1
λ

, corresponding to x and λ respectively, are therefore updated as
follows [29, 30]:

∆tk+1
x = ∆tk

x ×max{t(x,1),min{t(x,2),0.9×
√
(ε̂

Sx
)}},

∆tk+1
λ

= ∆tk
λ
×max{t(λ ,1),min{t(λ ,2),0.9×

√
(ε̂

Sλ
)}}.

(5.21)

By implementing the adaptive step size routine, we are able to update ∆tk+1
x and ∆tk+1

λ
based

on the extent to which the maximum prescribed discretization error, ε̂ , has been violated
at each iteration. Typically t(x,1) = t(λ ,1) =

1
2 and t(x,2) = t(λ ,2) = 2, but these values can

be varied to increase optimal performance of the algorithm and we take advantage of this
within our algorithm. Furthermore, the bounds ∆tmin and ∆tmax are set on both ∆tk

x and ∆tk
λ

,
to prevent them from getting too small or too large respectively. More details of this are
presented in Chapter 6.

70 A Trajectory-Based Method for CNLPs

5.2.3 Scaling

To ensure that TACNLP performs optimally, it is important that there is a mechanism in place
for badly scaled problems. Problems where f (x) or c(x) have magnitudes much larger than 1,
when evaluated at any point xk, can impact on the performance of the algorithm. Problems of
high dimension may produce similar results. TACNLP is particularly sensitive to these types
of problems, specifically within the adaptive step size routine used for x and λ . In particular,
badly scaled problems usually produce solutions {xk+1,λ k+1} and {x̂k+1, λ̂ k+1}, described
by (5.11), (5.12), (5.17) and (5.18) respectively, which may be large in magnitude when they
are far from {x∗, λ ∗} . The discretization error estimates, Sx and Sλ are consequently large
and not accurate representations of the performance of the integration scheme. Because the
updates of ∆tk

x and ∆tk
λ

rely on these error estimates, they too are compromised. Scaling the
objective function and constraints is an effective way of dealing with this. To illustrate this,
consider a problem{

min f (x) = 100(x2− x2
1)

2− (1− x1)
2,

st c1(x) = x2 +1.5≥ 0,

for which
∇ f (x) = [−400x1(x2− x2

1)+2(1− x1), 200(x2− x2
1)]

T .

This can be written equivalently as

∇ f (x) = 100[−4x1(x2− x2
1)+0.02(1− x1), 2(x2− x2

1)]
T .

The unconstrained objective function f (x) has the exact same minimizer if it has the gradient

∇ f (x) = [−4x1(x2− x2
1)+0.02(1− x1), 2(x2− x2

1)]
T .

By scaling this problem we can avoid disproportional error estimates Sx and Sλ , which cause
high iteration numbers and eventual divergence of the TACNLP algorithm [38, 58]. Within
our algorithmic framework the following scaling implementation is carried out. Before
initialization of TACNLP, we generate q random vectors, xq, within some user defined
interval as follows. For each problem, limits on each variable are estimated such that
xi ∈ (li, ui), i = 1,2, . . .n. Typically li and ui are set to −50 and 50 respectively, to cover a
suitably large range. The i-th coordinate of a random point xq is calculated as

xi = li + r̄× (ui− li), (5.22)

5.2 The main features of the TACNLP algorithm 71

where r̄ ∈ (0,1) is a random number. Each of the q random points are then generated. We
then evaluate the gradient of the objective function, ∇ f (x), the constraints ci(x), as well as
the constraint normals, ∇ci(x) at each of the q vectors. We consider only ∇ f (x), ci(x) and
∇ci(x) since these appear explicitly in the gradient of AL defined by (2.30). We then obtain
the averages (∇ f)s, (ci)s and (∇ci)s of ∇ f (xq), ci(xq) and ∇ci(xq) respectively. During the
course of the TACNLP algorithm ∇ f (xk), ci(xk) and ∇ci(xk) are scaled with their respective
averages. For instance the gradient at xk, ∇ f (xk), will be scaled as:

∇ f (xk)

(∇ f)s
, (5.23)

whenever ||∇ f (x)|| ≥ τ . Here τ is some user prescribed tolerance. Similarly ci(xk) will be
scaled as:

ci(xk)

(ci)s
, (5.24)

if ||ci(x)|| ≥ τ , and ∇ci(xk) will scaled as:

∇ci(xk)

(∇ci)s
, (5.25)

if ||∇ci(x)|| ≥ τ . This scaling procedure ensures that the magnitude of these components
are at most close to unity throughout the minimization routine in TACNLP. A problem may
arise as the iterates converge closer to the optimal solution because we expect the magnitude
of the gradient of the augmented Lagrangian to decrease significantly. If the components
∇ f (x), ci(x) and ∇ci(x), are still scaled when they no longer need to be then this could result
in the algorithm terminating prematurely. It is important therefore that scaling only takes
place when we are far from the optimal solution. Therefore whenever ||∇ f (x)|| < τ , we
no longer scale ∇ f . Similar strategies are used for termination of scaling ci(x) and ∇ci(x).
This scheme contributes significantly to the convergence of the algorithm, which is outlined
below.

5.2.4 Quantities for convergence

The convergence criterion, which will be used in stopping TACNLP, is presented here. Recall
that we are using an Augmented Lagrangian which is continuous. Define

ζ (xk,λ k; µk) =

(
∇xφA(xk,λ k; µk)

∇λ φA(xk,λ k; µk)

)

72 A Trajectory-Based Method for CNLPs

where

∇xφA(xk,λ k; µk) = ∇x f (xk)− ∑
i∈E∪(I∩As(x))

λ k
i ∇xci(xk)+ 1

µk ∑
i∈E∪(I∩As(x))

ci(xk)∇xci(xk)

+∇xψ(xk,λ k; µk)

with
∇xψA(xk,λ k; µ

k) = 0,

and
∇λ φA(xk,λ k; µ

k) =− ci(xk)
i∈E∪(I∩As(x))

+∇λ ψ(xk,λ k; µ
k)

with
∇λ ψ(xk,λ k; µ

k) =− µ
k
λ

k
i

i∈I\As(x)
.

If we let

θ(xk,λ k; µ
k) = ||ζ (xk,λ k; µ

k)||, (5.26)

then convergence is said to take place if

θ(xk,λ k; µ
k)≤ ε

k, (5.27)

where εk → 0. This is inline with the satisfaction of the KKT conditions (5.3) - (5.4)
presented in Section 5.1

An outline of the TACNLP algorithm is now presented, where the fundamental differences
between TAUNLP and TACNLP can be observed.

Algorithm 2 Brief outline of TACNLP

1: Given ∆tk
x , ∆tk

λ
, t(x,1) = tλ ,1, t(x,2) = tλ ,2, ε̂ , initialize k← 0

2: Given xk, λ k and µk, compute ak = −∇xφA(xk,λ k; µk), vk = 1
2ak∆tk

x , bk =

∇λ φA(xk,λ k; µk), wk = 1
2bk∆tk

λ
, ck = −µk and dk = 1

2ck∆tk
µ (implement with Scaling

described in Algorithm 7 if necessary).
3: Let εk ↓ 0 and update θ(xk,λ k; µk) as in (5.26)
4: while θ(xk,λ k; µk)> εk do
5: Integrate the system defined by (5.8) - (5.10) over the interval [tk, tk+1] at iteration k

to obtain xk+1, λ k+1 and µk+1 using Euler’s method described by (5.11) - (5.13), and
x̂k+1 and λ̂ k+1 using Modified Euler’s method described in (5.17) - (5.18).

5.2 The main features of the TACNLP algorithm 73

6: Compute ak+1 = −∇xφA(xk+1,λ k+1; µk+1), bk+1 = ∇λ φA(xk+1,λ k+1; µk+1) and
ck+1 =−µk+1, integrate the system defined by (5.8) - (5.10) over the interval [tk, tk+1]

at iteration k to obtain vk+1, wk+1 and dk+1 using Euler’s method described by (5.14) -
(5.15), and v̂k+1 and ŵk+1 using Modified Euler’s method described by (5.19).

7: Update ∆tk+1
x and ∆tk+1

λ
by implementing an adaptive step size routine to monitor

the performance of the integration formula used in step 5.
8: These steps are similar to steps 19 - 23 of Algorithm 1, using the optimality

conditions stipulated in (5.3) and (5.4).
9: These steps are similar to steps 24 - 28 of Algorithm 1, including similar updates

for λ k+1 and wk+1.
10: Set k = k+1 and go to 3.
11: end while

Remarks on Algorithm 2

Remark 5.2.2. Here we present the integration of x, λ and µ which is activated in line 5 of
TACNLP: Euler’s method, described in (5.11) - (5.16) is used to integrate the system (5.8) -
(5.10). Modified Euler’s method described in (5.17) - (5.19), is also used to integrate (5.8)
and (5.9). Given (xk,λ k, µk) and (∆tk

x , ∆tk
λ

, ∆k
µ) the methods calculate (xk+1,λ k+1, µk+1)

and (x̂k+1, λ̂ k+1).

Remark 5.2.3. Here we present the integration of v, w and d which is activated in line 6 of
TACNLP: We update ∇xφA(xk+1,λ k+1; µk+1) and ∇λ φA(xk+1,λ k+1; µk+1) and use Euler’s
method described in (5.11) - (5.16) to integrate the system (5.8) - (5.10). Modified Euler’s
method described in (5.17) - (5.19), is also used to integrate (5.8) and (5.9). Given (xk+1,
λ k+1, µk+1), (x̂k+1, λ̂ k+1), (vk, wk,dk) and (∆tk

x , ∆tk
λ

, ∆k
µ) the method calculates (vk+1,wk+1,

dk+1) and (v̂k+1, ŵk+1).

Remark 5.2.4. In line 7, an adaptive step size routine is implemented to monitor the error of
the integration formula used in line 4 above, and ∆tk+1

x , ∆tk+1
λ

are updated using (5.21).

Remark 5.2.5. In line 8, corrective procedures are implemented pertaining to the descent
condition: If at the k-th iteration, the descent condition (4.6) is not satisfied, then the updates
described in (4.13) and (4.15) are used to update vk and xk+1. Similar updates are used for
wk and λ k+1:

wk =
1
2
(
1
2

wk +
1
2

wk+1), (5.28)

74 A Trajectory-Based Method for CNLPs

λ
k+1 =

1
2

λ
k +

1
2

λ
k+1. (5.29)

If the velocity of the particle, vk, continues to decrease for more than 2 consecutive iterations,
then vk is restarted, as in (4.14). A similar restart is used for wk:

wk = 0. (5.30)

Remark 5.2.6. Since these updates take place at the k-th iteration, they still correspond to
the integration within the interval [tk, tk+1]. This line is homologous with lines 24-28 of
Algorithm 1. Notice here that any updates made to wk and vk are based on the descent
condition (4.6) with respect to vk. Whenever the descent condition (4.6) is not satisfied we
update vk using (4.13) or (4.14) as well as wk, using (5.28) or (5.30), since the trajectories
x(t) and λ (t) are dependent on each other.

Chapter 6

Implementation of Trajectory-Based
Algorithms

In this chapter, we present a detailed breakdown of the implementation of TACNLP and
compare it with a direct adaptation of TAUNLP [115] for CNLP problems. We denote
the adaptation of TAUNLP by ATAUNLP. As per Chapter 5, a few changes were made in
TACNLP, in an attempt to improve on the existing framework of TAUNLP. To motivate
the new features in TACNLP, we introduce this direct adaptation of TAUNLP for solving
CNLPs and compare it with the performance of TACNLP. We present a comparison of
the implementations of TACNLP and ATAUNLP, in Section 6.1. The procedures used in
TACNLP and ATAUNLP are presented in Section 6.2. Finally the pseudo-codes for the
TACNLP and ATAUNLP algorithm are presented in Section 6.3. A numerical comparison of
the performance of these two algorithms is presented in Chapter 9.

6.1 Comparison of procedures used in TACNLP
and ATAUNLP

In this section, we present the outline of ATAUNLP. ATAUNLP is a direct adaptation of
TAUNLP. Recall the synopsis of TAUNLP [115] discussed in Sections 4.1 and 4.2. Recall
also the details of TACNLP which was presented in Sections 5.1 and 5.2. TACNLP and
ATAUNLP are similar, but there are some crucial differences in the implementation of the
two algorithms. We compare and contrast the differences between ATAUNLP and TACNLP
to measure the effects of including the adaptive step size routine in the solution process of
TACNLP. The main differences in the implementation of the two algorithms is now presented.

76 Implementation of Trajectory-Based Algorithms

6.1.1 Updating xk and λ k

Here we present the differences in the x and λ updates for TACNLP and ATAUNLP. We first
present the updates used in TACNLP. This is followed by a description of the updates used in
ATAUNLP.

TACNLP updates xk and λ k at the k-th iteration in [tk, tk+1], using:

• Euler’s method, described in (5.11) and (5.12) as well as Modified Euler’s method,
described in (5.17) and (5.18).

• The assignments described by (4.15) in Section 4.2 and (5.29) in Section 5.2. These
assignments are used whenever the descent condition (4.6) is not satisfied

ATAUNLP updates xk and λ k at the k-th iteration in [tk, tk+1], using:

• Euler’s method, described by (5.11) and (5.12) only.

• The assignments described by (4.15) in Section 4.2 and (5.29) in Section 5.2. These
assignments are used whenever the descent condition (4.6) is not satisfied

• The assignments described in (4.15) and (5.29). These assignments are used whenever
the angle violation criterion is satisfied.

The differences between TACNLP and ATAUNLP, presented above, are summarized in Table
6.1. The table entry "✓" means the update was used, the table entry "✗" means the update
was not used, and the table entry "−" means that update is not applicable in the respective
algorithm. Furthermore, the column pa lists the parameters used in the respective algorithm.
An exhaustive list of all the parameters used in TACNLP and ATAUNLP is presented at the
end of this chapter, in Table 6.3.

TACNLP and ATAUNLP use the same number of parameters when updating x and λ . As
per Table 6.1, the number of parameters used is 7.

Remark 6.1.1. In Table 6.1, the parameters used in Euler’s method are identical to those used
in Modified Euler’s method, so we have not listed them again.

6.1.2 Updating the integration time steps ∆tk
x and ∆tk

λ

The fundamental difference between TACNLP and ATAUNLP is the mechanism for
updating the time step. We now present these differences. We first present the updates used
in TACNLP. This is followed by a description of the updates used in ATAUNLP.

6.1 Comparison of procedures used in TACNLP
and ATAUNLP 77

TACNLP pa ATAUNLP pa Description
(i) Euler’s ✓ ∆tx ✓ ∆tx This method

method ∆tλ ∆tλ is used in
updates: ∆tµ ∆tµ both algorithms
(5.11) - to integrate
(5.12) the system

(5.8) - (5.10)
(ii) Modified ✓ − ✗ − This method

Euler’s is used as
method part of
updates: the adaptive
(5.17) - step size
(5.18) routine

described in
Section 5.2.

(iii) Descent ✓ jx ✓ jx This is used
condition jλ jλ whenever the
updates: ix ix descent
(4.15) and iλ iλ condition
(5.29) (4.6) is

not satisfied.

(iv) Angle ✗ − ✓ − This update
violation is used
criterion whenever
updates: the angle
(4.15), violation
(5.29) criterion

is satisfied.

Table 6.1 The fundamental differences between the updates x and λ used in TACNLP and
ATAUNLP

78 Implementation of Trajectory-Based Algorithms

• TACNLP computes approximate solutions xk and λ k using both Euler and modified
Euler’s method, as described in (5.11), (5.12), (5.17) and (5.18) and uses them within
the adaptive step size routine, see (i) and (ii) of Table 6.1. As per the discussion in
Sections 5.1 and 5.2, an adaptive step size routine is used in TACNLP to monitor the
accuracy of the integration method and to update the time steps accordingly, using
(5.21). The accuracy of the integration method is measured by the difference between
the Euler’s and modified Euler’s approximations, as is described in (5.20).

• In ATAUNLP, we compute xk and λ k using only Euler’s method, described in (5.11) -
(5.12), see (i) of Table 6.1. Here, the step sizes ∆tk

x and ∆tk
λ

are adjusted based on the
angle violation criterion, discussed in Section 4.2. The process for updating ∆tk

x and
∆tk

λ
in ATAUNLP is now described.

Recall that for the unconstrained case, the parameter m̂ is used to keep track of the
number of times (4.16) is satisfied. For the constrained problem, P , defined by (1.2),
we need to monitor the trajectories with respect to x and λ . For this reason, we use
m̂x to keep track of the number of times (6.1) is satisfied and m̂λ to keep track of the
number of times (6.2) is satisfied:

(ak+1)T (ak)≤ 0, (6.1)

(bk+1)T (bk)≤ 0, (6.2)

where ak =−∇xφA(xk,λ k; µ) and bk = ∇λ φA(xk,λ k; µk). Whenever (6.1) or (6.2) are
satisfied, m̂k

x and m̂k
λ

are respectively updated as follows:

m̂k+1
x = m̂k

x +1, (6.3)

m̂k+1
λ

= m̂k
λ
+1, (6.4)

where initially m̂k
x = 0 and m̂k

λ
= 0. If m̂k

x ≥ 3 or m̂k
λ
≥ 3 then the angle violation

criteria is said to be satisfied and we decrease the step sizes respectively, as per (4.19):

∆tk+1
x = t̂(x,1)×∆tk

x ,

∆tk+1
λ

= t̂(λ ,1)×∆tk
λ
,

(6.5)

where t̂(x,1) = t̂(λ ,1) =
1
2 . In the event of successful steps, where (6.6) and (6.7) are

satisfied:

6.1 Comparison of procedures used in TACNLP
and ATAUNLP 79

(ak+1)T (ak)> 0, (6.6)

(bk+1)T (bk)> 0, (6.7)

we magnify the times steps as per (4.21):

∆tk+1
x =

{
pk

x∆tk
x i f ak+1T ak > 0, ||∆xk||< δ ,

∆tk
x i f ak+1T ak > 0, ||∆xk|| ≥ δ ,

∆tk+1
λ

=

{
pk

λ
∆tk

λ
i f bk+1T bk > 0, ||∆λ k||< δ ,

∆tk
λ

i f bk+1T bk > 0, ||∆λ k|| ≥ δ .
(6.8)

Here ||∆xk|| is defined as in (4.11), ||∆λ k||= ||wk||∆tk
λ

and pk
x and pk

λ
satisfy:

pk+1
x =

{
pk

x +δ1 i f ak+1T ak > 0, ||∆xk||< δ ,

pk
x i f ak+1T ak > 0, ||∆xk|| ≥ δ ,

pk+1
λ

=

{
pk

λ
+δ1 i f bk+1T bk > 0, ||∆λ k||< δ ,

pk
λ

i f bk+1T bk > 0, ||∆λ k|| ≥ δ .
(6.9)

A table listing the differences in the mechanisms used to update the time steps ∆tk
x and ∆tk

λ
in

TACNLP and ATAUNLP, is now presented. From Table 6.2, we see that the total number
of parameters used to update the time steps in TACNLP is 5, whereas the total number of
parameters used in ATAUNLP is 7.

6.1.3 Scaling

Identical strategies are used for updating the penalty parameter and scaling problems in
TACNLP and ATAUNLP. Recall that the details of these were discussed in Section 5.2.

6.1.4 Convergence

The same criteria for establishing the convergence of TACNLP and ATAUNLP is used. This
was discussed in Section 5.1 and summarized in (5.27).

80 Implementation of Trajectory-Based Algorithms

TACNLP pa ATAUNLP pa Description
(i) Adaptive ✓ t(x,1) ✗ − This is an effective

step size t(x,2) way for controlling
routine t(λ ,1) the error of the
described t(λ ,2) integration method
in Section 5.2 ε̂ via (5.20).
using
(5.21)

(ii) Time step ✗ − ✓ δ1 This is used to
update px update the time
described pλ steps ∆tk

x and ∆tk
λ

,
in Section 4.1 t̂(x,1) but is not as effective
using (6.5) - (6.8) t̂(λ ,1) as an adaptive step

m̂x size method.
m̂λ

Table 6.2 The fundamental differences between the time step updates used in TACNLP and
ATAUNLP

Remark 6.1.2. In some cases, particularly when we are far from the limit point {x∗,λ ∗},
decreasing the step size whenever the angle between two successive gradient estimates is
greater than π

2 , hinders the convergence. This has motivated our use of the adaptive step size
routine listed in (i) of Table 6.2, instead of using the mechanism for updating ∆t, proposed
by Snyman [115].

6.2 Implementation of the procedures used in TACNLP
and ATAUNLP

We now present each of the items discussed in Section 6.1, in pseudo-code format. First, we
present the pseudo-code for the adaptive step size method for x and λ . Second, we present
the pseudo-codes using two different penalty parameter updating schemes. We then present
pseudo-codes for three different penalty parameter updating criteria, and finally, we present
the pseudo-code for the scaling routine. The pseudo-codes are further explained by remarks
on the steps used, below each code. Implementation differences between TACNLP and
ATAUNLP in each pseudo-code are also given in the remarks after each code. We begin with
the adaptive step size.

6.2 Implementation of the procedures used in TACNLP and ATAUNLP 81

6.2.1 Pseudo-code for the adaptive step size routine

The pseudo-code for the adaptive set size routine is given below. Recall the parameters used
for the adaptive step size routine were listed in Table 6.2.

Algorithm 3 Adaptive step size scheme used in TACNLP

1: Given x(0) and λ (0)

2: Compute {xk+1,λ k+1} and {x̂k+1, λ̂ k+1} as in (5.13), (5.14), (5.17) and (5.18)
respectively

3: Compute Sx and Sλ as in (5.20) and compare this with the user supplied tolerance ε̂

4: if the estimates (Sx and/or Sλ) < ε̂ then
5: accept the step ∆tk+1

x and ∆tk+1
λ

respectively
6: else reject the step ∆tk+1

x and ∆tk+1
λ

respectively
7: end if

Remarks on Algorithm 3

Remark 6.2.1. In line 2 of Algorithm 3, {xk+1,λ k+1} and {x̂k+1, λ̂ k+1} are computed using
Euler’s and Modified Euler’s method respectively.

Remark 6.2.2. In lines 3-7, the error estimates Sx and Sλ are calculated as in (5.20) and
compared to the user prescribed tolerance ε̂ to determine whether to decrease or increase ∆tk

x

and ∆tk
λ

. The step sizes are updated accordingly, using (5.21).

Remark 6.2.3. The adaptive step size routine described above, is only implemented in
TACNLP and not in ATAUNLP.

6.2.2 Pseudo-code for the step size update used in ATAUNLP

We now present the pseudo-code for the time step size update used in ATAUNLP. New
parameters have been introduced for the constrained case, as opposed to TAUNLP, see Table
6.2.

Algorithm 4 Step size update used in ATAUNLP

1: Given m̂k
x, m̂k

λ
, pk

x, pk
λ

, δ and δ1

2: if m̂k
x ≥ 3 or m̂k

λ
≥ 3 then

3: Update ∆tk+1
x or ∆tk+1

λ
respectively using (6.5)

4: else
5: Update ∆tk+1

x or ∆tk+1
λ

respectively, using (6.8) where pk
x and pk

λ
satisfy (6.9).

6: end if

82 Implementation of Trajectory-Based Algorithms

Remarks on Algorithm 4

Remark 6.2.4. In lines 2 - 7, ∆tk
x and ∆tk

λ
are decreased if (6.1) and (6.2) respectively are

satisfied for 3 consecutive iterations. In the event of a good step, when (6.1) and (6.2) are not
satisfied, ∆tk

x and ∆tk
λ

are increased by the factors pk
x and pk

λ
respectively.

Remark 6.2.5. The step size update in Algorithm 4 is only implemented in ATAUNLP.

6.2.3 Pseudo-code for the penalty parameter updating strategy
proposed in this thesis

We now consider the pseudo-code for the penalty parameter updating strategy proposed in this
thesis. We introduce the parameter r, where r ∈ (0,1), and the functions T i(x,λ), i = 1, . . . ,3.
The significance of the number 3 is that three different penalty parameter updating criteria
will be presented. For each of these penalty parameter updating criteria, Ti(x,λ) will be
defined differently. This is done to determine which penalty parameter updating criteria,
based on the different definitions of Ti(x,λ), is most effective.

The pseudo-code for the penalty parameter updating strategy, which consists of an
updating scheme and updating criteria, is as follows

Algorithm 5 Penalty parameter updating strategy for ATAUNLP and TACNLP

1: Given xk, xk+1, λ k, λ k+1, ck, dk and r, we define Ψi(x,λ) = ||T i(x,λ)||, i = 1, . . .3
2: if

Ψi(xk+1,λ k+1)≤ rΨi(xk,λ k) (6.10)

then
3: set µk+1 = µk

4: else
5: Update µk+1 as in (5.13)
6: end if

Remarks on Algorithm 5

Remark 6.2.6. The penalty parameter updating scheme proposed in this thesis is described in
line 5 by (6.10). This describes "how" µk is updated, i.e., as the solution to the differential
equation (5.10). There needs to be a further mechanism in place which tells us "when" µk

should be updated. We consider three such updating criteria, which are now described in
detail.

Remark 6.2.7. The first penalty parameter updating criterion, which we refer to as PC1,
considered in Algorithm 5 is updated based on whether or not feasibility and

6.2 Implementation of the procedures used in TACNLP and ATAUNLP 83

complementarity of the respective constraints are improved. We let Ψ1(x,λ) = ||T 1(x,λ)||,
where

T 1(x,λ) =

(
ci(x), i ∈ E

min{ci(x),λi}, i ∈ I

)
.

PC1, derived from Andreani et al, [6], ensures that feasibility and complementarity are
obtained and maintained throughout the minimization routine in TACNLP and ATAUNLP.

Remark 6.2.8. For the second penalty parameter updating criterion PC2, we let Ψ2(x,λ) =
||T 2(x,λ)||, where

T 2(x,λ) =

 ∇xφA(x,λ ; µ)

ci(x), i ∈ E
min{ci(x),λi}, i ∈ I

 ,

and φA(x,λ ; µ) is the augmented Lagrangian defined in (2.30). PC2 does not only require
feasibility and complementarity of the respective constraints, but also requires an
improvement in ∇φA. This criterion, derived from Birgin et al.[18] is slightly stronger than
the first criteria using T 1(x,λ), in that it requires the resulting sequence of iterates to
converge to a KKT point.

Remark 6.2.9. For the third and final penalty parameter updating criterion PC3, we let
Ψ3(x,λ) = ||T 3(x,λ)||, where

T 3(x,λ) =

(
ci(x), i ∈ E

λici(x), i ∈ I

)
.

We have proposed PC3, which is a slightly more relaxed version of PC1 in that it requires that
lim
k→∞

λici(x) = 0, as opposed to lim
k→∞

min{ci(x),λi}= 0. PC3 proves to exhibit more favorable

results than PC1 and PC2, as we will see in Section 9.3.

Remark 6.2.10. In lines 2-5 of Algorithm 5, depending on whether or not the updating
criterion described is satisfied, µk+1 either remains unchanged or µk+1 is decreased using
(5.13).

Remark 6.2.11. The penalty parameter updating strategy described above is implemented
identically in TACNLP and ATAUNLP.

6.2.4 Pseudo-code for the conventional penalty parameter updating
strategy

In the previous subsection we have implemented the updating of µk based on the differential
equation solution approach. We now present the pseudo-code for a conventional penalty
parameter updating scheme used in, for example, Andreani et al, [6, 7] and Birgin et

84 Implementation of Trajectory-Based Algorithms

al.[18, 19]. In Chapter 9, we will compare the performance of our trajectory-based algorithms
using this conventional updating scheme and the updating scheme described in Algorithm
5.

Algorithm 6 Conventional penalty parameter updating strategy

1: given xk, λ k, xk+1, λ k+1 and r
2: if Ψi(xk,λ k+1)≤ rΨi(xk−1,λ k), i = 1, . . . ,3, where Ψi corresponds to either PC1, PC2

or PC3 in Algorithm 5 then
3: set µk+1 = µk

4: else
5: set µk+1 = γµk, where 0 < γ < 1
6: end if

Remark on Algorithm 6

Remark 6.2.12. As with Algorithm 5, the conventional updating strategy consist of an
updating scheme and an updating criterion. The updating citeria used in Algorithm 6 are
identical to those used in Algorithm 5. The updating scheme is described below.

Remark 6.2.13. In line 5 of Algorithm 6, the penalty parameter is updated by a fixed value,
γ , whenever complementarity or feasibility of the constraints is not improved. This is the
fundamental difference between the newly introduced penalty parameter updating scheme
and the penalty parameter updating scheme described in Algorithm 6.

Throughout the rest of this thesis we refer to the penalty parameter updating scheme
introduced in this thesis, as the new−µ scheme, and the conventional updating scheme as
the conventional−µ scheme. In Chapter 9, we test the effectiveness of using our penalty
parameter updating scheme by comparing the performance of our algorithm using the
schemes in Algorithms 5 and 6.

Remark 6.2.14. When the conventional−µ scheme presented in Algorithm 6 is implemented,
it is done so identically in TACNLP and ATAUNLP.

6.2.5 Pseudo-code for the scaling routine

The strategy for scaling is now summarized in the form of a pseudo-code below.

6.3 The TACNLP and ATAUNLP algorithm 85

Algorithm 7 Scaling used in TACNLP and ATAUNLP

1: Given xk, λ k, µk, ε , τ and q random vectors xq

2: Compute ∇ f (xq), ci(xq) and ∇ci(xq) for each xq, to obtain scaling factors (∇ f)s, (ci)s

and (∇ci)s and compare these with the user supplied tolerance τ

3: Compute ∇ f (xk), ci(xk) and ∇ci(xk)

4: if (∇ f)s)> τ , (ci)s > τ , (∇ci)s > τ then

5: scale: ∇ f (xk) = ∇ f (xk)
(∇ f)s

, ci(xk) =
c(x

k)

(ci)s
and ∇c(xk) =

∇c(x
k)

(∇ci)s
respectively

6: if ∇ f (xk)< (∇ f)s, ci(xk)< (ci)s, ∇c(xk)< (∇c)s then
7: do not scale ∇ f (xk), ci(xk) and ∇c(xk) respectively
8: end if
9: end if

Remarks on Algorithm 7

Remark 6.2.15. Lines 1-3 of Algorithm 7 entail generating random vectors as per Section
5.2.3, which will be used to obtain a mean value for the functions appearing in the Augmented
Lagrangian φA, i.e. ∇ f (x), ci(x) and ∇ci(x).

Remark 6.2.16. In line 4, the strategy for scaling these functions is described. Recall that the
details of this were presented in Section 5.2.

Remark 6.2.17. The scaling mechanism described above is implemented identically in
TACNLP and ATAUNLP.

6.3 The TACNLP and ATAUNLP algorithm

In this final section of Chapter 6 we present the pseudo-codes for TACNLP and ATAUNLP,
as well as a list of all the parameters used in the implementation of both algorithms, in Table
6.3. We begin by presenting the pseudo-code for TACNLP.

6.3.1 pseudo-code for TACNLP

Having described Algorithms 3 - 7, in this we subsection present the pseudo-code for
TACNLP in Algorithm 8 .

86 Implementation of Trajectory-Based Algorithms

Algorithm 8 TACNLP

1: Given µmin, µmax, ∆tk
x , ∆tk

λ
, ∆tµ , ∆tmin, ∆tmax, τ , q, ε̂ , εk, ix = 0 = iλ , jx = 2 = jλ ,

counter= 0, initialize k← 0
2: Given xk, λ k and µk, compute: ak = −∇xφA(xk,λ k; µk) , vk = 1

2ak∆tk
x , bk =

∇λ φA(xkλ k; µk), wk = 1
2bk∆tk

λ
, ck = −µk and dk = 1

2ck∆k
u (implement with Scaling

described in Algorithm 7 if necessary)
3: Let εk ↓ 0 and update θ(xk,λ k; µk) as in (5.26)
4: while θ(xk,λ k; µk)> εk do
5: Compute Ψi(xk,λ k) as per Algorithm 5.
6: Integrate the system defined by (5.8) - (5.10) over the interval [tk, tk+1], at iteration

k to obtain {xk+1,λ k+1,µk+1} using Euler’s method described in (5.11) - (5.13)
7: Compute Ψi(xk+1,λ k+1) as per Algorithm 5
8: Update µk+1 using Algorithm 5
9: Compute ak+1 = −∇xφA(xk+1,λ k+1; µk+1), bk+1 = ∇λ φA(xk+1,λ k+1; µk+1),

ck+1 = −µk+1 and integrate the system defined by (5.8) - (5.10) over the interval
[tk, tk+1] at iteration k to obtain {vk+1,wk+1,dk+1}, using Euler’s method described
by (5.14) - (5.16).

10: Update θ(xk+1,λ k+1; µk+1) as in (5.26)
11: if θ(xk+1,λ k+1; µk+1)≤ εk then
12: STOP
13: else
14: if counter= 0 then
15: Compute the Modified Euler estimates {x̂k+1, λ̂ k+1} and {v̂k+1, ŵk+1} using

(5.17), (5.18) and (5.19) respectively and update ∆tk+1
x and ∆tk+1

λ
using Algorithm 3

16: elseif counter= 1
17: ∆tk+1

x = ∆tk
x and ∆tk+1

λ
= ∆tk

λ

18: if ||vk+1||> ||vk|| then set ix = 0, iλ = 0 and go to 27
19: else
20: set counter= 1, ix = ix +1 and iλ = iλ +1 and go to 23
21: end if
22: end if
23: if ix < jx and iλ < jλ then update {vk+1,xk+1}, as in (4.13) and (4.15), and
{wk+1,λ k+1} as in (5.28) and (5.29), and go to 10

6.3 The TACNLP and ATAUNLP algorithm 87

24: else
25: Update {vk+1,xk+1} as in (4.14), (4.15), and set jx = 1, and {λ k+1,wk+1} as

in (5.29) and (5.30), set jλ = 1, and go to 10
26: end if
27: Set counter= 0 and k = k+1 and go to 3
28: end if
29: end while

Remarks on Algorithm 8

Remark 6.3.1. Before integrating, the components v0 and w0 are initialized similarly to the
unconstrained case, using (6.11) and (6.12):

v0 =−1
2

∇xφA(x0,λ 0; µ
0)∆t0

x (6.11)

w0 =
1
2

∇λ φA(x0,λ 0; µ
0)∆t0

λ
(6.12)

Remark 6.3.2. The integration of x, λ and µ is activated in line 6 of TACNLP: Euler’s method,
described in (5.11) - (5.16) is used to integrate the system (5.8) - (5.10) to obtain xk+1, λ k+1

and µk+1. Given {xk,λ k, µk} and {∆tk
x , ∆tk

λ
, ∆k

µ} the methods calculate {xk+1,λ k+1,µk+1}.

Remark 6.3.3. The penalty parameter updating scheme is described in lines 7-8, where
µk+1 is updated based on one of the criteria described in Algorithm 5. Even though µk+1

is obtained as a solution to (5.10) at every iteration, this value is only assigned based on
Algorithm 5.

Remark 6.3.4. In line 9 of TACNLP we present the integration of v, w and d : We update
ak+1 = −∇xφA(xk+1,λ k+1; µk+1), bk+1 = ∇λ φA(xk+1,λ k+1; µk+1) and ck+1 = µk+1. We
then use Euler’s method described in (5.11) - (5.16) to integrate the system (5.8) - (5.10) to
obtain vk+1, wk+1 and dk+1. Given {xk+1, λ k+1, µk+1}, {vk, wk,dk} and {∆tk

x , ∆tk
λ

, ∆k
µ} the

method calculates {vk+1,wk+1, dk+1}

Remark 6.3.5. The Modified Euler estimates {x̂k+1, λ̂ k+1} and {v̂k+1, ŵk+1} are computed
and the adaptive step size routine, described in Algorithm 3 is implemented in lines 14-18
of TACNLP, provided counter= 0. This is done so that the adaptive step size routine is
only implemented to detect the error of the integration method, not as part of the corrective
procedures used when the descent condition, (4.6), is not satisfied.

88 Implementation of Trajectory-Based Algorithms

Remark 6.3.6. In lines 19 -26, adjustments are made based on whether or not the descent
condition, (4.6), is met. Once the descent condition (4.6) is satisfied, the iterative process is
restarted at line 27.

We now present the pseudo-code for ATAUNLP.

6.3.2 pseudo-code for ATAUNLP

Having described Algorithms 3 - 7, in this we subsection present the pseudo-code for
ATAUNLP in Algorithm 9.

Algorithm 9 ATAUNLP

1: Given µmin, µmax, ∆tk
x , ∆tk

λ
, ∆tk

µ , ∆tmin, ∆tmax, m̂k
x, m̂k

λ
, τ , q, ε̂ , εk, δ = 1, δ1 = 0.001, set

ix = 0 = iλ , jx = 2 = jλ , sx = 0 = sλ , px = 1 = pλ , initialize k← 0
2: Given xk, λ k and µk, compute: ak = −∇xφA(xk,λ k; µk) , vk = 1

2ak∆tk
x , bk =

∇λ φA(xkλ k; µk), wk = 1
2bk∆tk

λ
, ck = −µk and dk = 1

2ck∆k
u (implement with Scaling

described in Algorithm 7 if necessary)
3: Let εk ↓ 0 and update θ as in (5.26)
4: while θ(xk,λ k; µk)> εk do
5: Compute Ψi(xk,λ k) as per Algorithm 5
6: Compute ||∆xk||= ||vk||∆tk

x and ||∆λ k||= ||wk||∆tk
λ

7: if ||∆xk||< δ and ||∆λ k||< δ then go to 11
8: else
9: set vk = δ

∆tk
x ||vk|| or wk = δ

∆tk
λ
||wk|| respectively and go to 12

10: end if
11: Set pk+1

x = pk
x +δ1, pk+1

λ
= pk

λ
+δ1 and update ∆tk+1

x and ∆tk+1
λ

as in (6.8) and go
to 12

12: if m̂k
x < 3 and m̂k

λ
< 3 then go to 16

13: else
14: Update {vk+1,xk+1,∆tk+1

x } or {wk+1,λ k+1,∆tk+1
λ
} respectively, as in Algorithm

4 and go to 16.
15: end if
16: Integrate the system defined by (5.8) - (5.10) over the interval [tk, tk+1], at iteration

k to obtain{xk+1,λ k+1,µk+1} using Euler’s method described in (5.11) - (5.13)
17: Compute Ψi(xk+1,λ k+1) as per Algorithm 5
18: Update µk+1 using Algorithm 5

6.3 The TACNLP and ATAUNLP algorithm 89

19: Compute ak+1 = −∇xφA(xk+1,λ k+1; µk+1), bk+1 = ∇λ φA(xk+1,λ k+1; µk+1),
ck+1 = −µk+1 and integrate the system defined by (5.8) - (5.10) over the interval
[tk, tk+1] at iteration k to obtain {vk+1,wk+1,dk+1}, using Euler’s method described
by (5.14) - (5.16).

20: if (ak+1)T ak > 0 and (bk+1)T bk > 0 then
21: set m̂x = 0 and m̂λ = 0 respectively and go to 25
22: else
23: set m̂x = m̂x +1, px = 1 or m̂λ = m̂λ +1, pλ = 1 respectively and go to 25
24: end if
25: Update θ(xk+1,bk+1; µk+1) as in (5.26)
26: if θ(xk+1,bk+1; µk+1)≤ εk then
27: STOP
28: else
29: if ||vk+1||> ||vk|| then set ix = 0 and iλ = 0 and go to 37
30: else
31: set ix = ix +1 and iλ = iλ +1 and go to 33
32: end if
33: if ix < jx and iλ < jλ then update {vk+1,xk+1}, as in (4.13) and (4.15), and
{wk+1,λ k+1} as in (5.28) and (5.29), and go to 25

34: else
35: Update {vk+1,xk+1} as in (4.14), (4.15), and set jx = 1, and {λ k+1,wk+1} as

in (5.29) and (5.30), set jλ = 1, and go to 25
36: end if
37: k = k+1 and go to 3
38: end if
39: end while

Remarks on Algorithm 9

Remark 6.3.7. ATAUNLP initializes v0 and w0 the same way as TACNLP does.

Remark 6.3.8. The step sizes ∆xk and ∆λ k are computed in line 6 of ATAUNLP and the
parameters used to update ∆tk+1

x and ∆tλ k+1 are updated accordingly, in lines 7-11.

Remark 6.3.9. Lines 12-15 detect whether the angle violation criterion has been satisfied and
updates ∆tk+1

x , ∆tk+1
λ

, xk+1, λ k+1, vk+1 and wk+1 accordingly.

Remark 6.3.10. The integration of x, λ and µ is activated in line 16 of ATAUNLP: Euler’s
method, described in (5.11) - (5.16) is used to integrate the system (5.8) - (5.10) to obtain

90 Implementation of Trajectory-Based Algorithms

xk+1, λ k+1 and µk+1. Given {xk,λ k, µk} and {∆tk
x , ∆tk

λ
, ∆k

µ} the methods calculate
{xk+1,λ k+1,µk+1}.

Remark 6.3.11. The penalty parameter updating scheme is described in lines 17-18, where µ

is updated based on one of the criteria described in Algorithms 5.

Remark 6.3.12. The integration of v, w and d, is activated in line 18 of ATAUNLP: We update
ak+1 =−∇xφA(xk+1,λ k+1; µk+1), bk+1 = ∇λ φA(xk+1,λ k+1; µk+1) and ck+1 =−µk+1. We
then use Euler’s method described in (5.11) - (5.13) to integrate the system (5.8) - (5.10) to
obtain vk+1, wk+1 and dk+1. Given {xk+1, λ k+1, µk+1}, {vk, wk,dk} and {∆tk

x , ∆tk
λ

, ∆k
µ} the

method calculates {vk+1,wk+1, dk+1}.

Remark 6.3.13. The angle between the two successive estimates ak and ak+1, as well as bk

and bk+1 are checked in line 20 and the parameters contributing to updating ∆tk+1
x and ∆tk+1

λ

are updated accordingly in lines 21-23. This procedure is described in Algorithm 4.

Remark 6.3.14. In lines 29 - 36, adjustments are made based on whether or not the descent
condition, (4.6), is met. Once the descent condition (4.6) is satisfied, the iterative process is
restarted at line 37.

Remark 6.3.15. Note that the fundamental difference between ATAUNLP and TACNLP is
described in lines 6-15 and lines 20-24 of ATAUNLP.

We now present a list of all the parameters used in TACNLP and ATAUNLP.

6.3.3 Parameters used in the experiments

Apart from a few exceptions which we will discuss in more detail in Chapter 9, TACNLP
and ATAUNLP, were initialized with the following parameters. The table entry "−" means
the parameter was not used in the respective algorithm.

Description Parameter TACNLP ATAUNLP

Typical value
used

Typical value
used

Maximum value µ can attain µmax 1 1
Minimum value µ can attain µmin 0.1 0.1
Maximum value ∆t can attain ∆tmax 0.2 0.2
Minimum value ∆t can attain ∆tmin 0.01 0.01
The time step with respect to x ∆tx ∈ [0.01, 0.2] ∈ [0.01, 0.2]
The time step with respect to λ ∆tλ ∈ [0.01, 0.2] ∈ [0.01, 0.2]
The time step with respect to µ ∆tµ ∈ [0.01, 0.2] ∈ [0.01, 0.2]

6.3 The TACNLP and ATAUNLP algorithm 91

Description Parameter TACNLP ATAUNLP

Typical value
used

Typical value
used

Tolerance for the discretization ε̂ 10−2 −
error of Euler’s method
The factor ∆tx is decreased by t(x,1) 0.5 −
The factor ∆tx is increased by t(x,2) 2 −
The factor ∆tλ is decreased by t(λ ,1) 0.5 −
The factor ∆tλ is increased by t(λ ,2) 2 −
The maximum allowable size δ − 1
for the space steps ∆x and ∆λ

Used for the magnification of ∆tx
and ∆tλ

δ1 − 0.001

The factor ∆tx is decreased by t̂(x,1) − 0.5
The factor ∆tλ is decreased by t̂(λ ,1) − 0.5
Used for the magnification of ∆tx px − 1
Used for the magnification of ∆tλ pλ − 1
Scaling parameter τ ∈ (100, 1000) ∈ (100, 1000)
Scaling parameter li −50 −50
Scaling parameter ui 50 50
The number of random decision q 100 100
variables generated for scaling
purposes
The tolerance for the stopping ε 10−3 10−3

criteria
Used to keep track of the desired m̂x − 2
progress of the trajectory wrt x
Used to keep track of the desired m̂λ − 2
progress of the trajectory wrt λ

Used to ensure that the descent jx 2 2
condition, (4.6), is satisfied

92 Implementation of Trajectory-Based Algorithms

Description Parameter TACNLP ATAUNLP

Typical value
used

Typical value
used

Used to ensure that the descent jλ 2 2
condition, (4.6), is satisfied
Used to ensure that the descent ix ∈ [0, 2] ∈ [0, 2]
condition, (4.6), is satisfied
Used to ensure that the descent iλ ∈ [0, 2] ∈ [0, 2]
condition, (4.6), is satisfied

Table 6.3 A list of the parameters used in the implementation of TACNLP and ATAUNLP

In total, ATAUNLP uses 3 more parameters than TACNLP. These parameters contribute to
the time step update in ATAUNLP. As we will see in Chapter 9, these impact significantly on
the performance of the methods.

Chapter 7

Convergence analysis

In this chapter, we establish convergence properties of TACNLP. We begin with the global
convergence analysis in Section 7.1, and end the chapter with the local convergence discussion
of TACNLP in Section 7.2.

7.1 Global convergence analysis

In this section, we discuss the global convergence of TACNLP. We look specifically at the
convergence of the algorithm using PC2 since this is the most stringent of the three penalty
parameter updating criteria. We begin with some assumptions which are central to our local
convergence discussion.

Assumption 1. The velocity v∗ of the stationary point x∗ is null, i.e., ||v∗||= 0.

Assumption 2. The velocity w∗ of the stationary point λ ∗ is null, i.e., ||w∗||= 0.

Assumption 3. The set Ωc is compact.

Assumption 4. The function f (x) is bounded on the set Ωc.

Assumption 5. MFCQ (presented in Chapter 2), is satisfied at x∗ and there is only one
vector λ ∗ of associated Lagrange multipliers.

Assumption 6. For AL defined by (2.30), the following relation holds for feasible {x∗,λ ∗}:

φA(x∗,λ : µ)≤ φA(x∗,λ ∗ : µ)≤ φA(x,λ ∗ : µ).

The following lemma is crucial for the convergence discussion.

94 Convergence analysis

Lemma 7.1.1. Assume that {xk} is a sequence generated by TACNLP. Then,

lim
k→∞

ci(xk) = 0, i ∈ E,

and
lim
k→∞

λ
k
i ci(xk) = 0, i ∈ I.

Proof. Consider the Lagrange multiplier updates defined by (5.12):

λ
k+1
i = λ

k
i +wk

i ∆tk
λ
, i ∈ E,

and
λ

k+1
i = max{0,λ k

i +wk
i ∆tk

λ
}, i ∈ I,

where

wk = wk−1 +∇λ φA(xk,λ k; µ
k)∆tk

λ
(7.1)

and the i-th component of ∇λ φA(xk,λ k; µk) is:{
−ci(xk), i ∈ E ∪ (I∩As(x)),
−µkλ k

i , i ∈ I \As(x).
(7.2)

We obtain (7.2) by differentiating (2.30) with respect to λ . By Assumption 2, we know that

||w∗||= 0.

We are required to prove that the sequence {wk} converges to w∗. To do so, we define the
function D(λ) as in (2.5):

D(λ) = inf
x∈Ωc

φA(xk,λ k; µk)

= inf
x∈Ωc

 f (x)−

∑
i
λ k

i ci(x)−∑
i

1
2µk c2

i (x), i ∈ E ∪ (I∩As(x));

∑
i

µk

2 (λ k
i)

2, i ∈ I \As(x).

 ,
(7.3)

where the Lagrangian in (2.5) is replaced by the augmented Lagrangian. Provided D(λ) is
bounded below, for λi ∈ I, this function yields a lower bound on the optimal value f (x∗). We
know that MFCQ is equivalent to the boundedness of the set of Lagrange multiplier vectors
λ ∗. Therefore, by Assumption 5, D(λ) is bounded below.
We now show that D(λ) yields a lower bound on f (x∗). At some feasible x̄k, we have that

∑
i
(λ k

i ci(x̄k)) = 0, i ∈ E ∪ (I∩As(x)),

7.1 Global convergence analysis 95

since c(x̄k) = 0, i ∈ E and c(x̄k) = 0, i ∈ I∩As(x). By the same argument

∑
i

1
2µ

ci(x̄k)2 = 0, i ∈ E ∪ (I∩As(x)).

Furthermore, since µ > 0,

∑
i

µ

2
(λ k

i)
2 > 0, i ∈ I \As(x),

by the strict complementary condition. It thus follows from (7.3) that:

φA(x̄,λ ; µ) = f (x̄)−

∑
i
λ k

i ci(x)−∑
i

1
2µk c2

i (x), i ∈ E ∪ (I∩As(x));

∑
i

µk

2 (λ k
i)

2, i ∈ I \As(x)

≤ f (x̄).

(7.4)

Therefore,
D(λ) = min

x∈Ωc
φA(x,λ ; µ)≤ f (x∗),

i.e.,
φA(x∗,λ ; µ)≤ f (x∗). (7.5)

This proves that φA is bounded above by f (x∗).
Now, recall that at every iteration of Algorithm 8, the augmented Lagrangian φA(x,λ ; µ),
defined in (2.30), is maximized with respect to λ . This follows from the nature of the
differential equation (5.2). Consequently, at each k-th iteration we have that

φA(xk,λ k+1; µ
k)≥ φA(xk,λ k; µ

k).

Therefore, by the boundedness of φA, for large k and ε > 0 arbitrarily small, we have

||φA(xk,λ k+1; µ
k)−φA(xk,λ k; µ

k)|| ≤ ε. (7.6)

Since (5.2) implies conservation of energy, the following holds

∆φ
k
A = φA(xk,λ k+1; µ

k)−φA(xk,λ k; µ
k) =−T̂ (xk,λ k+1; µ

k)+ T̂ (xk,λ k; µ
k) =−∆T̂ k,

(7.7)
where φA(xk,λ k; µk) is the potential energy, of the particle λ k and

T̂ (xk,λ k; µ
k) =

1
2
||wk||2, (7.8)

96 Convergence analysis

is the kinetic energy of λ k. Combining (7.6) and (7.7), we have

||φA(xk,λ k+1; µ
k)−φA(xk,λ k; µ

k)||= ||− T̂ (xk+1)+ T̂ (xk)|| ≤ ε.

By (7.8), it follows that for k large enough:

||wk+1−wk|| ≤ ε.

Therefore, for large k, (7.1) is approximately satisfied as:

wk ≈ ∇λ φA(xk,λ k; µ
k), (7.9)

which implies that

w∗ ≈ ∇λ φA(x∗,λ ∗; µ
∗). (7.10)

But we know that ||w∗||= 0. Therefore,

0 = ||w∗|| ≈ lim
k→∞
||wk||= lim

k→∞
||∇λ φA(xk

λ
k; µ

k)∆tk
λ
||. (7.11)

Since ∆tk
λ

is finite, based on the typical values in Table 6.3, (7.11) reduces to

lim
k→∞
||∇λ φA(xk,λ k; µ

k)|| ≈ 0. (7.12)

By (7.2), we can expand (7.12) as:

0 = lim
k→∞

∑
i
(−ci(xk))2 = lim

k→∞
∑
i
(ci(xk))2, i ∈ E ∪ (I∩As(x)), (7.13)

and

0 = lim
k→∞

∑
i
(−µkλ k

i)
2 = lim

k→∞
∑
i
(µkλ k

i)
2, i ∈ I \As(x). (7.14)

Since each term in the summations (7.13) and (7.14) are non-negative, the respective
summations can only be null if each of their terms are null:

lim
k→∞

ci(xk) = 0, i ∈ E ∪ (I∩As(x)), (7.15)

and

lim
k→∞

µ
k
λ

k
i = 0, i ∈ I \As(x). (7.16)

7.1 Global convergence analysis 97

By (7.15), the lemma is proved for the equality constrained case.
The inequality constrained case is now proved. By the continuity of λ k

i , i ∈ E ∪ (I∩As(x)),
by (7.15), we have

lim
k→∞
|λ k

i ci(xk)|= 0, i ∈ E ∪ (I∩As(x)). (7.17)

Furthemore, since the penalty parameter µk is finite, based on the typical values in Table 6.3,
equation (7.16) reduces to

lim
k→∞

λ
k
i = 0, i ∈ I \As(x). (7.18)

Thus, by the continuity of ci(xk), i ∈ I \As(x), by (7.18), we have

lim
k→∞
|λ k

i ci(xk)|= 0, i ∈ I \As(x). (7.19)

Combining (7.17) and (7.19), we conclude that

lim
k→∞
|λ k

i ci(xk)|= 0, i ∈ I, (7.20)

since I = I∩As(x)∪ I \As(x). This completes the proof.

We now prove that Algorithm 8 exhibits convergence of the primal variable x.

Theorem 7.1.2. Assume that x∗ is a limit point of the sequence {xk} generated by Algorithm
8. Then,

lim
k→∞
||xk||= x∗.

Proof. By equation (5.11), we have

xk+1 = xk + vk
∆tk

x . (7.21)

It therefore follows that
lim
k→∞
||xk+1− xk||= lim

k→∞
||vk|||∆tk

x |. (7.22)

We need to prove that the right hand side of (7.22) converges to ||v∗||. To do so we define a
function Q(x), such that

98 Convergence analysis

Q(x) = sup
λ

φA(xk,λ k; µk)

= sup
λ

 f (x)−

∑
i
λ k

i ci(x)−∑
i

1
2µk c2

i (x), i ∈ E ∪ (I∩As(x));

∑
i

µk

2 (λ k
i)

2, i ∈ I \As(x).

 .

We now prove that this function yields an upper bound on f (x). Firstly, by Assumption 6,
this function is bounded below by φA(x∗,λ ∗; µ). Secondly, since λ ∗ = 0, i ∈ I \As(x), and
|ci(xk)|2 ≥ 0, i ∈ E ∪ (I∩As(x)), we have

sup
λ

φA(x,λ ; µ) = f (x)−

∑
i
λ ∗i ci(x)−∑

i

1
2µ∗ c

2
i (x), i ∈ E ∪ (I∩As(x));

∑
i

µk

2 (λ k
i)

2, i ∈ I \As(x)

≥ f (x)− ∑
i∈E∪I∩As(xk)

λ ∗i ci(x).

Therefore for k large enough, we have that xk is feasible and

Q(x) = max
λ

φA(x,λ ; µ) = φA(x,λ ∗; µ)≥ f (x),

proving that φA yields an upper bound on f (x).

Now, at every iteration of Algorithm 8, the augmented Lagrangian φA(x,λ ; µ), defined
in (2.30), is minimized with respect to x. This follows from the nature of the differential
equation (5.1). Consequently, at each k-th iteration we have that

φA(xk,λ k; µ
k)≥ φA(xk+1,λ k; µ

k).

Therefore for large k and ε > 0 arbitrarily small, we have

||φA(xk,λ k; µ
k)−φA(xk+1,λ k; µ

k)|| ≤ ε. (7.23)

Since (5.1) implies conservation of energy, we have the following relation

∆φ
k
A = φA(xk+1,λ k; µ

k)−φA(xk,λ k; µ
k) =−T̄ (xk+1,λ k; µ

k)+ T̄ (xk,λ k; µ
k) =−∆T̄ k.

By (7.23), it follows that for k large enough:

||vk+1− vk|| ≤ ε,

7.1 Global convergence analysis 99

where here we take T̄ (xk,λ k; µk) = 1
2 ||v

k||2. Consequently, we have

lim
k→∞
||vk|| ≈ v∗ = 0, (7.24)

by Assumption 1. Invoking continuity and finiteness of ∆tk
x , (7.22) and (7.24) imply that

lim
k→∞
||xk+1− xk|| ≈ ||v∗||= 0. (7.25)

By Assumption 1, the velocity of any particle is zero when the particle itself is stationary,
i.e. at x∗, v∗ = 0. Therefore, by (7.22), (7.24) and (7.25), we have

lim
k→∞
||xk|| ≈ ||x∗||.

This concludes the proof.

The next theorem shows that Algorithm 8 exhibits convergence of the multiplier estimates.

Theorem 7.1.3. Assume that the sequence {λ k} is generated by Algorithm 8, and that λ ∗

is a limit point of that sequence. Then

lim
k→∞
||λ k||= λ

∗. (7.26)

Proof. For equality constraints, by (5.12) we have that

λ
k+1 = λ

k +wk
∆tk

λ
. (7.27)

By the same argument used in Lemma 7.1.1, we have that

lim
k→∞

wk ≈ w∗ = 0.

By (7.27) and the same argument used in Theorem 7.1.2, since ∆tk
λ

is finite, the results
follow:

lim
k→∞
||λ k|| ≈ λ

∗. (7.28)

For inequality constraints, we have by (5.12), that

λ
k+1 = max{0, λ

k +wk
∆tk

λ
}, (7.29)

where 0 is the zero vector of corresponding dimension. Equation (7.29) gives rise to the
following two cases:

100 Convergence analysis

(i) λ k +wk∆tk
λ
> 0, and

(ii) λ k +wk∆tk
λ
≤ 0.

For Case (i), (7.29) reduces to
λ

k+1 = λ
k +wk

∆tk
λ
,

which is identical to (7.27), for the equality constrained case. Result thus follow from the
first result of this theorem.
For Case (ii), (7.29) reduces to

λ
k = 0,

which implies that
lim
k→∞
||λ k|| ≈ ||λ ∗||= 0,

and this completes the proof.

To assert the results in Theorems 7.1.2 and 7.1.3, we consider the following theorem.

Theorem 7.1.4. Algorithm 8 is well defined.

Proof. The problems that define each xk are smooth minimization problems with respect to
φA in the compact set Ωc. Therefore, their solutions converge.

Lemma 7.1.5. Assume that {xk} is generated by Algorithm 8 and that {xk} is a subsequence
that converges to x∗ ∈ Rn.

Then,
lim
k→∞
||∇ f (xk)− ∑

i∈E∪I
λi∇ci(xk)||= 0.

Furthermore, if the point x∗ is feasible and satisfies MFCQ, then the sequence {λ k} is
bounded, where λ k is the vector of multiplier estimates corresponding to both equality and
inequality constraints. In this case x∗ satisfies the KKT conditions and, if there is one and
only one vector λ ∗ of Lagrange multipliers associated with x∗, we have:

lim
k→∞

λ
k ≈ λ

∗. (7.30)

Proof. For the first part of the proof we differentiate (2.30) with respect to x to obtain

∇xφA(xk,λ k; µ
k) = ∇ f (x)+Θ(x,λ ; µ), (7.31)

where Θ is defined as

Θ(x,λ ; µ) =

 −∑
i
λ k

i ∇ci(xk)+∑
i

1
µk ci(xk)∇ci(xk), i ∈ E ∪ (I∩As(x));

0, i ∈ I \As(x).

7.1 Global convergence analysis 101

By (7.15) we have that

lim
k→∞

ci(xk) = 0, i ∈ E ∪ (I∩As(x)),

which, by the continuity of ∇c and the finiteness of µ , implies:

lim
k→∞

∣∣∣∣∣∣∣∣ 1
µk ci(xk)∇ci(xk)

∣∣∣∣∣∣∣∣= 0, i ∈ E ∪ (I∩As(x)).

Therefore,

lim
k→∞

∑
i

(
1

µk ci(xk)∇ci(xk)

)2

= 0, i ∈ E ∪ (I∩As(x)). (7.32)

Since every term in the summation (7.32) is non-negative, each term is satisfied as:

lim
k→∞

(
1

µk ci(xk)∇ci(xk) = 0
)
, i ∈ E ∪ (I∩As(x).

Therefore, for all active constraints ci(x), i ∈ E ∪ (I∩As(x)), (7.31) reduces to

lim
k→∞
||∇xφA(xk,λ k; µ

k)||= lim
k→∞

∣∣∣∣∣
∣∣∣∣∣∇ f (xk)− ∑

i∈E∪(I∩As(x))
λ

k
i ∇ci(xk)

∣∣∣∣∣
∣∣∣∣∣ . (7.33)

By (5.14), we have
vk− vk−1 =−∇xφA(xk,λ k; µ

k)∆tk−1
x , (7.34)

and by Theorem 7.1.2, we know that

lim
k→∞
||vk|| ≈ 0. (7.35)

We therefore have that
lim
k→∞
||vk− vk−1|| ≈ 0,

and equation (7.34) reduces to:

lim
k→∞
||−∇xφA(xk,λ k; µ

k)|| ≈ 0. (7.36)

It follows from (7.33) and (7.36), that

lim
k→∞

∣∣∣∣∣
∣∣∣∣∣−
(

∇ f (xk)− ∑
i∈E∪(I∩As(x))

λ
k
i ∇ci(xk)

)∣∣∣∣∣
∣∣∣∣∣= lim

k→∞
||−∇xφA(xk,λ k; µ

k)|| ≈ 0.

102 Convergence analysis

This proves the result for all active constraints ci(x), i ∈ E ∪ (I∩As(x)).

For inactive constraints, ci(x), i ∈ I \As(x), we have that

0≈ lim
k→∞
||∇xφA(xk,λ k; µ

k)||= lim
k→∞
||∇ f (xk)||= lim

k→∞
||∇ f (xk)− ∑

i∈I\As(x)
λ

k
i ∇ci(xk)||,

since λ k
i = 0, ∀i ∈ I \As(x), and this proves the first part of the lemma.

For the second part of the lemma, we use a proof by contradiction. Assume that the
sequence {λ k} is unbounded. Therefore

lim
k→∞

Mk = ∞,

where

Mk = ||λ k||∞.

The sequence { λ k

Mk
} is however bounded. It therefore follows that some subsequence is

convergent and that its limit is 1, since by the choice of Mk, infinitely many elements in this
sequence have modulus equal to 0, except for max |λ k

i |
Mk

which has modulus equal to 1. The
KKT Lagrange multiplier estimates λ ∗i , i ∈ I corresponding to active constraints however,
are not null. Therefore, taking limits for this subsequence and using the first part of the
theorem, we obtain that MFCQ cannot hold since the limit of this convergent subsequence is
not a KKT multiplier. This contradicts the initial assumption that MFCQ holds.

Now, if MFCQ holds, every limit of a convergent subsequence of {λ k} defines a set of
KKT multipliers λ ∗i [130]. Therefore, (7.30) holds in the case that the multipliers are unique.

We use Lemma 7.1.5 to prove the main convergence result of this section.

Theorem 7.1.6. Assume that the sequence {xk} is generated by Algorithm 8, and that x∗ is
a limit point of that sequence. Also assume that strict complementarity holds at x∗. Then the
following properties hold:

(1) The constraints of problem (1.2) are satisfied as:

ci(x) = 0, i ∈ E,

7.2 Local convergence analysis 103

and
ci(x)≥ 0, i ∈ I,

at x∗, where x∗ is feasible.

(2) If x∗ satisfies MFCQ with respect to all the constraints of (1.2), then x∗ fulfills the KKT
conditions of the problem.

Proof. For the first part of the proof, by Lemma 7.1.1 we have that

ci(x∗) = 0, i ∈ E.

In addition, by the property of strict complementarity we have that

λ
∗
i > 0, ci(x∗) = 0, i ∈ I∩As(x∗).

We also have that

ci(x∗)> 0 i ∈ I \As(x∗).

Thus, ci(x∗)≥ 0, i ∈ I, since I = (I∩As(x))∪ I \As(x). This completes the proof for the first
part of the theorem.
For the second part of the theorem, following the results of Lemma 7.1.5 and the first part
of this theorem, by Theorem 2.1.6 (with MFCQ replacing LICQ) all the requirements of a
KKT point are fulfilled. This completes the proof.

This concludes the global convergence discussion for TACNLP. We now establish local
convergence properties of the trajectory-based method.

7.2 Local convergence analysis

In this section, we formalize the basis of our local rate of convergence and proceed with the
local convergence analysis of TACNLP. We make use of the following lemma to establish
our local convergence properties.

Lemma 7.2.1. Assume that xk is generated by Algorithm 8. Then, there exists k̂ ∈ N such
that ∀ 0≪ k̂ ≤ k :

λ k−λ k+1

(∆tk−1
λ

∆tk
λ
)
≥min{c(xk),µk

λ
k}, (7.37)

104 Convergence analysis

where c(x) is the vector of equality and inequality constraints ci(x), i ∈ E ∪ I, and λ is the
corresponding vector of Lagrange multipliers λi, i ∈ E ∪ I.

Proof. Recall by (5.15) and (7.2) that:

wk
i = wk−1

i −∆tk−1
λ

{
ci(xk), i ∈ E ∪ (I∩As(x));
µkλ k

i , i ∈ I \As(x),
(7.38)

which, by (2.27) and (2.30) can be written equivalently as:

wk
i = wk−1

i −∆tk−1
λ

{
ci(xk), ci(xk)< µkλ k

i ;
µkλ k

i , ci(xk)> µkλ k
i .

(7.39)

Now by the initialization of Algorithm 8, using (6.12) and (7.2), we have

w0
i =−

∆t0
λ

2

{
ci(x0), ci(x0)< µ0λ 0

i ;
µ0λ 0

i , ci(x0)> µ0λ 0
i .

(7.40)

Furthermore, by (7.39), we have

w1
i = w0

i −∆t0
λ

{
ci(x1), ci(x1)< µ1λ 1

i ;
µ1λ 1

i , ci(x1)> µ1λ 1
i ,

(7.41)

and

w2
i = w1

i −∆t1
λ

{
ci(x2), ci(x2)< µ1λ 2

i ;
µ2λ 2

i , ci(x2)> µ2λ 2
i ,

= w0
i −∆t0

λ

{
ci(x1), ci(x1)< µ1λ 1

i

µ1λ 1
i , ci(x1)> µ1λ 1

i
−∆t1

λ

{
ci(x2), ci(x2)< µ1λ 2

i ;
µ2λ 2

i , ci(x2)> µ2λ 2
i .

(7.42)

In general, the i-th component of wk, k > 0 can be written as the summation:

wk
i = w0

i −
k

∑
j=1

∆t j−1
λ

min{ci(x j),µ j
λ

j
i }, i ∈ E ∪ I. (7.43)

Equation (7.43) can be simplified by considering two different cases, which can be written
explicitly as follows:

Case (i) ci(xk)< µkλ k
i (with xk feasible)

7.2 Local convergence analysis 105

Recall from Section 2.2, that this case implies ci(xk) = 0, i.e. ci(xk) is (strictly) active.

Case (ii) ci(xk)> µkλ k

Recall from Section 2.2, that this case implies that ci(xk) is inactive.

We have that Case (i) is satisfied by all equality constraints as well as all strictly active
inequality constraints. We consider these separately.
Firstly, for i ∈ I∩As(x), and for k large enough, since µk > 0, we have that

min{ci(xk),µk
λ

k
i }= ci(xk). (7.44)

Equation (7.43) therefore reduces to

wk
i =−

∆t0

2
ci(x0)−

k

∑
j=1

∆t j−1
λ

ci(x j). (7.45)

We now show that ∃ k̂ such that all terms in (7.43) with

0≪ j ≤ k̂,

are negligible. We do this because we assume that steady convergence of the iterations only
takes place after k̂ iterations.

When we are far away from the minimum, it is safe to assume that the particle λ will
steer away from the optimal trajectory at least once. This means the decent condition (4.6)
will be violated for more than 2 consecutive iterations. In this case the velocity w j is restarted
using (5.30) and all previous directions are ignored in successive calculations. Assuming
that this restart take place at the k̂-th, iteration, all previous iterations j = 0, . . . , k̂−1 have
no impact on the calculation of wk

i , and (7.45) reduces to:

wk
i =−

k

∑
j=k̂

∆t j−1
λ

ci(x j). (7.46)

Now by (5.12), we have

λ
k+1
i = max{λ k

i +wk
i ∆tk

λ
, 0}, i ∈ I, (7.47)

and since ci(xk) is strictly active, we have λ
k+1
i > 0. Equation (7.47) therefore reduces to:

λ
k+1
i = λ

k
i +wk

i ∆tk
λ
. (7.48)

106 Convergence analysis

By (7.46), we can write (7.48) equivalently as

λ
k+1
i = λ

k
i −∆tk

λ

k

∑
j=k̂

∆t j−1
λ

ci(x j). (7.49)

We therefore have

λ
k
i −λ

k+1
i = ∆tk

λ

k

∑
j=k̂

∆t j−1
λ

ci(x j), (7.50)

which by (7.44), becomes:

λ
k
i −λ

k+1
i = ∆tk

λ

k

∑
j=k̂

∆t j−1
λ

min{ci(x j),µ j
λ

j
i }. (7.51)

Now since every term in the right hand summation of (7.51) is positive for all inequality
constraints and since ∆tk

λ
is finite and positive ∀ k, we have

k

∑
j=k̂

∆t j−1
λ

min{ci(x j),µ j
λ

j
i } ≥ ∆tk−1

λ
min{ci(xk),µk

λ
k
i }. (7.52)

Combining (7.51) and (7.52), we have

λ k
i −λ

k+1
i

(∆tk−1
λ

∆tk
λ
)
≥min{ci(xk),µk

λ
k
i }, (7.53)

proving that (7.37) holds ∀i ∈ I∩As(x).

Secondly, for i ∈ E, where ci(x) is active, we have by strict complementarity that either
λ k

i > 0 or λ k
i < 0. If λ k

i > 0, then

min{ci(xk),µk
λ

k
i }= ci(xk),

since µk > 0. Here the same result proved above for active inequality constraints applies. We
do not need to consider the case where λi <

k 0, as this does not contribute to the rest of the
discussion in this chapter.

For Case (ii), i ∈ I \As(x), and ci(xk)> µkλ k
i . Here ci(x) is inactive and consequently

λi = 0. We therefore have
min{ci(xk),µk

λ
k
i }= µ

k
λ

k
i .

Following the same line of proof used for Case (i), we have

7.2 Local convergence analysis 107

λ
k+1
i −λ k

i

(∆tk−1
λ

∆tk
λ
)
≥= min{ci(xk),µk

λ
k
i },

and this completes the proof, based on the assumption that all previous j iterations, where
j = 0, . . .(k̂−1), do not impact on the calculations at the current iteration.

When this is not the case, by Theorem 7.1.6, the solutions are converging and
approaching the feasible region. Therefore, we may assume that:

wk
i = ∑

j=k̂

∆t j−1
λ

min{ci(x j),µ j
λ

j} ≥ ∆tk−1
λ

min{ci(x),µk
λ

k}, i ∈ E ∪ I,

and the results follow. This completes the proof.

The following assumptions are central to our local convergence discussion.

Assumption 7. Let a constraint qualification with respect to c(x) be satisfied ∀x ∈Ωc. Then
by Assumption 3 and Theorem 7.1.4, the sequence {xk}, generated by Algorithm 8, is well
defined.

Assumption 8. The sequence of iterates {xk} generated by Algorithm 8 converges to a
feasible point x∗.

Assumption 9. The functions f and c are twice continuously differentiable at x∗ and the
second order sufficient optimality condition is fulfilled at x∗. This means that the KKT
conditions hold and there is an associated Lagrange multiplier λ ∗ such that:

dT
∇

2
xxL(x∗,λ ∗; µ

∗)d > 0,

for a non-null vector d.

Assumption 10. For all k = 1,2,3, . . . , we define εk→ 0 in such a way that

εk ≤ χ(Ψ2(xk,λ k)),

where χ : R+→ R+ is such that lim
t→0

χ(t)
t = 0, and Ψ2 is defined as in Algorithm 5 using

PC2.

Assumption 11. For all k = 1,2,3, . . . , we use the penalty parameter updating scheme
outlined in Algorithm 5 ,with PC2.

Lemma 7.2.2. Let Assumptions 5, 7 and 8 hold. Then,

108 Convergence analysis

lim
k→∞

λ
k = λ

∗.

Proof. The results follow from Lemma 7.1.5.

Lemma 7.2.3. Let Assumptions 7 - 9 hold. Then there exists k0 ∈ {1,2, . . .}, β1,β2 > 0
such that, for all k ≥ k0,

β1||(xk,λ k)− (x∗,λ ∗)|| ≤Ψ2(xk,λ k)≤ β2||(xk,λ k)− (x∗,λ ∗)||

Proof. The proof follows from Lemma 7.2.2 and Assumption 9, using the local error bound
theory [46, 48, 64, 79].

Lemma 7.2.4. Suppose that Assumptions 7 - 10 hold. Then, there exists k1 ∈ {1,2, . . .},
q1,q4 > 0 and a sequence η → 0 such that, for all k ≥ k1,

(
1− q4

(∆tk−1
λ

∆tk
λ
)

)
Ψ2(xk+1,λ k+1)≤

(
q1ηk +

q4

(∆tk−1
λ

∆tk
λ
)

)
Ψ2(xk,λ k), (7.54)

where

ηk =
χ(Ψ2(xk,λ k))

Ψ2(xk,λ k)
, (7.55)

and Ψ2 is defined as in Algorithm 5 using PC2.

Proof. Throughout this proof, let c(x) denote the set of inequality constraints and let λ denote
the corresponding multiplier estimates. Also let ĉ(x), denote the set of equality constraints,
and let λ µ = ∑

i∈E∪I
λiµ . By (5.12), (6.10), Assumption 7 and Lemma 7.1.1, there exists

q > 0 such that Ψ2(xk+1,λ k+1,λ k+1)≤ qεk, ∀ k = 1,2, . . . , where Ψ2(xk+1,λ k+1,λ k+1) =

||T2(xk+1,λ k+1,λ k+1)||, and

T2(xk+1,λ k+1,λ k+1) =

 ∇xφA(xk+1,λ k+1,λ k+1)

ĉ(xk+1)

min{c(xk+1),λ k+1}

 .

Therefore, there exist q1,q2 > 0 such that, for all k = 1,2, . . . ,

Ψ2(xk+1,λ k+1,λ k+1)≤ q1ε
k +q2ĉ(xk+1)+ ||min{c(xk+1),λ k+1} (7.56)

Since 0.1≤ µk ≤ 1 ∀k, we have that

min{c(xk+1),µk+1
λ

k+1} ≤min{c(xk+1),λ k+1}.

7.2 Local convergence analysis 109

Therefore (7.56) can be written equivalently as:

Ψ2(xk+1,λ k+1,λ k+1)≤ q1ε
k +q2ĉ(xk+1)+ ||min{c(xk+1),µk+1

λ
k+1}||.

Thus by the Lemma 7.2.1 and Lemma 7.2.2 there exists q3 > 0 such that, for k ≥ k1,

Ψ2(xk+1,λ k+1,λ k+1)≤ q1ε
k +

q3

(∆tk−1
λ

∆tk
λ
)
(||λ k+1−λ

k||+ ||λ k+1−λ
k||).

Thus, for all k ≥ k1,

Ψ2(xk+1,λ k+1,λ k+1)≤ q1ε
k+

q3

(∆tk−1
λ

∆tk
λ
)
(||λ k+1−λ

∗||+||λ k−λ
∗||+||λ k+1−λ

∗||+||λ k−λ
∗||).

Therefore, by Lemma 7.2.3, there exists q4 > 0 such that, for all k ≥ k1,

Ψ2(xk+1,λ k+1,λ k+1)≤ q1ε
k +

q4

(∆tk−1
λ

∆tk
λ
)
[Ψ2(xk+1,λ k+1,λ k+1)+Ψ2(xk,λ k,λ k)].

By Assumption 10, for all k ≥ k1, we therefore have:

(1− q4

(∆tk−1
λ

∆tk
λ
)
)Ψ2(xk+1,λ k+1,λ k+1)≤ q1χ(Ψ2(xk,λ k,λ k))+

q4

(∆tk−1
λ

∆tk
λ
)
Ψ2(xk,λ k,λ k).

(7.57)

By Lemma 7.2.2, Lemma 7.2.3 and Assumption 10, we have that

lim
k→∞

η
k = lim

k→∞

χ(Ψ2(xk,λ k))

Ψ2(xk,λ k)
= 0,

which implies that for k large enough:

η
k
Ψ2(xk,λ k)≈ χ(Ψ2(xk,λ k)).

Therefore, for k ≥ k1 and letting λ once again denote the multiplier estimates for all
constraints, (7.57) becomes:

(1− q4

(∆tk−1
λ

∆tk
λ
)
)Ψ2(xk+1,λ k+1)≤ (q1ηk +

q4

(∆tk−1
λ

∆tk
λ
)
)Ψ2(xk,λ k),

as we wanted to prove.

Theorem 7.2.5. By the boundedness of ∆tλ , we have that

110 Convergence analysis

Ψ2(xk+1,λ k+1)≤ rΨ2(xk,λ k).

Proof. By Lemma 7.2.4, there exists k1 such that (7.54) holds for k ≥ k1. Let k2 ≥ k1 be
such that (

1− q4

(∆tk−1
λ

∆tk
λ
)

)
>

1
2
,

for all k ≥ k2. Then, by (7.54), for k ≥ k2, we have that

Ψ2(xk+1,λ k+1)≤ 2

(
q1η +

q4

(∆tk−1
λ

∆tk
λ
)

)
Ψ2(xk,λ k). (7.58)

Let k3 ≥ k2 be such that

2

(
q1η +

q4

(∆tk−1
λ

∆tk
λ
)

)
≤ r,

for all k ≥ k3. Then, for all k ≥ k3,

Ψ2(xk+1,λ k+1)≤ rΨ2(xk,λ k),

and the theorem is proved.

Corollary 7.2.6. Under the assumption of Theorems 7.1.4, 7.1.6 and 7.2.5, the sequence
{xk,λ k} converges to (x∗,λ ∗) with R-linear convergence rate equal to r.

Proof. By Theorem 7.2.5 for all k large enough, we have that

Ψ2(xk+1,λ k+1)≤ rΨ2(xk,λ k).

Therefore the result follows from Lemma 7.2.3.

Chapter 8

Trajectory-Based Method for MINLPs

In this chapter, we present a trajectory-based algorithm for MINLPs. We denote this algorithm
by TAMINLP. TAMINLP is an adaptation of the trajectory-based algorithm TACNLP for
CNLPs. TAMINLP is threefold, and within the framework of TAMINLP we use the same
AL used in TACNLP, i.e., (2.30). Here, AL will be based on the subproblems discussed in
Section 3.2 i.e., M defined by (3.5) and M̄ defined by (3.6). In Section 8.1, we present
some definitions which are pertinent to the rest of the discussion in this chapter. Section
8.2 outlines the details of TAMINLP. The first, second and third phases of the threefold
TAMINLP algorithm are presented in Sections 8.3, 8.4 and 8.5 respectively. We summarize
the main features of each phase in Section 8.6 and present the pseudo-code outlining these
features. Finally, we present the convergence analysis of TAMINLP in Section 8.7.

8.1 Notation and definitions pertaining to the local
minimum of MINLPs

Before we discuss the details of TAMINLP, we present some important notations and
definitions related to a local solution of MINLPs. Recall the definition of an MINLP:

M

min

z
f (z),

s.t. ci(z) = 0, i ∈ E,
ci(z)≥ 0, i ∈ I,
z ∈ X×Y.

(8.1)

112 Trajectory-Based Method for MINLPs

Recall also the definition of Ωm from Chapter 1. If there are no continuous variables present
in M i.e., nc = 0, then the feasible region Ωm reduces to the discrete part only, and this we
denote by Ωd . Similarly if no discrete variables are present in (8.1) i.e., nd = 0, then Ωm

reduces to the continuous feasible region only. We denote this by Ωc.

If we fix the integer variables in M to some feasible values y = yd in the problem M ,
then the remaining freedom in the continuous variable x, describes the continuous manifold:

f M(x) = { f (x,yd) : (x, yd) ∈Ωm}. (8.2)

We refer to the feasible region of this manifold as a feasible continuous manifold. More
specifically, the constrained region over which f M(x) is defined is known as the feasible
continuous manifold. For illustrative purposes, we consider the problem

min f (x,y) = (x− y)2− y,
s.t. −2≤ x≤ 2,

y ∈ {−2,−1,0,1,2},
(8.3)

where x is continuous and y is discrete. Figure 8.1 illustrates f (x,y) = (x− y)2− y, subject
to the simple bound constraints in (8.3), as well as the continuous manifolds of f obtained at
the fixed integer-feasible points y = {−2,−1,0,1,2}.

A manifold minimizer, obtained on each continuous manifold of f , is defined as follows:

Definition 8.1.1. (Manifold minimizer) A point x∗ ∈Ωc is a manifold minimizer if it is the
continuous local minimizer of f on the respective feasible continuous manifold of problem
(8.1), such that

f M(x∗,yd)≤ f M(x,yd),∀x ∈Ωc∩Bε(x∗),

where Bε(x∗) denotes the open ball {x ∈ Rnc : ||x− x∗||< ε}, for some ε > 0.

The manifold minima obtained on the continuous manifolds of f (x,y) are depicted in
Figure 8.2.

Suppose now that we were to fix the continuous variables in M , to some point xc. We
denote Nr(·, ·), as the neighborhood of some integer point, where the continuous variables
are fixed. For example Nr(xc,yd) is the integer neighborhood of yd when x is fixed at xc:

Nr(xc,yd) = {(x, y) ∈ Rn : x = xc,y ∈Nd(yd,εd)},

where
Nd(yd,εd) = {y ∈Ωd : ||y− yd|| ≤ εd}, (8.4)

8.1 Notation and definitions pertaining to the local minimum of MINLPs 113

-2
-1

0
1

2

-2
-1

0
1 2

0

5

10

15

(a) A 3D plot of f (x,y) = (x− y)2− y.

-4 -2 0 2 4

0

5

10

15

20

25

30

x

fHx
L

(b) A 2D plot of the parabolic manifolds obtained by fixing y
in f (x,y) to the integer-feasible values in (8.3). The plot is
viewed along the x-axis

Figure 8.1 The plot of f (x,y) = (x− y)2− y, where the continuous manifolds are obtained
by fixing y = {−2,−1,0,1,2} in f (x,y).

114 Trajectory-Based Method for MINLPs

-4 -2 0 2 4

0

5

10

15

20

25

30

x

fHx
L

Figure 8.2 The manifold minima of f on the continuous parabolic manifolds, obtained by
fixing y in f (x,y) to the integer-feasible values in (8.3). The manifold minima are represented
by the black dots on each manifold.

denotes a user defined neighborhood of discrete integer values which fall within the radius of
εd [90], [91].

The remainder of this discussion would not make much sense without considering the
definitions of continuous and discrete local minima separately. We therefore consider the
definition of a continuous local minimizer and a discrete local minimizer. We also present
three existing definitions for a mixed integer local minimizer. These define a separate local
minimizer, an extended local minimizer and a combined local minimizer respectively.

The following definition of a continuous minimizer is considered [92].

Definition 8.1.2. (Continuous local minimizer) A point x∗ ∈Ωc is a local minimizer if, for
some ε > 0,

f (x∗)≤ f (x), ∀x ∈ Ωc∩Bε(x∗).

For an INLP, where no continuous variables are present, we consider the following
definition of a discrete local minimizer [129]

Definition 8.1.3. (Discrete local minimizer) A point y∗ ∈Ωd is a local minimizer if,

f (y∗)≤ f (y), ∀ y ∈Ωd ∩Nd(y∗,εd).

Definitions for a local minimizer of an MINLP exist in the literature. We consider two
such definitions. We then consider the definition of a combined local minimum which was

8.1 Notation and definitions pertaining to the local minimum of MINLPs 115

recently proposed by Newby [90, 91], to overcome some of the short-comings of these
existing definitions.

For general MINLPs, the following definition of a local minimizer of M is used [83, 123]

Definition 8.1.4. (Separate local minimizer) A point z∗=(x∗, y∗)T ∈Ωm is a local minimizer
of (8.1) if, for some ε > 0,

f (x∗,y∗)≤ f (x,y), ∀ (x,y) ∈ {(x y) : x ∈ Bε(x∗), y = y∗}∩Ωm,

f (x∗,y∗)≤ f (x,y), ∀(x,y) ∈Nr(x∗,y∗)∩Ωm.
(8.5)

The stronger definition of a local minimizer of (8.1) is also considered [1, 12, 84]. We
refer to this as an extended local minimizer.

Definition 8.1.5. (Extended local minimizer) A point z∗ = (x∗, y∗)T ∈ Ωm is a local
minimizer of (8.1) if, for some ε > 0,

f (x∗,y∗)≤ f (x,y),∀ (x,y) ∈
(

∪
(x, y)∈Nr(x∗,y∗)

Bε(x)×{y}
)
∩Ωm. (8.6)

We now consider the definition of a combined local minimizer, recently proposed by
Newby [90, 91]

Definition 8.1.6. (Combined local minimizer) A point z∗ = (x∗, y∗)T ∈ Ωm is a local
minimizer of (8.1) if, for some ε > 0,

f (x∗,y∗)≤ f (x,y), ∀ (x,y) ∈ {x ∈ Bε(x∗), y = y∗}∩Ωm,

f (x∗,y∗)≤ f (x,y), ∀(x,y) ∈Ncomb(x∗,y∗)∩Ωm.
(8.7)

where Ncomb(x∗,y∗) will now be defined.

Define A (x̃, ỹ) as

A (x̃, ỹ) = {(x̄, ȳ) : ȳ = ỹ, f (x̄, ȳ)≤ f (x,y) ∀(x,y) ∈ {(x,y) : x ∈ Bε(x̄),y = ỹ}∩Ωm}.

A is therefore the set of manifold minima obtained at each continuous manifold of f , where
each manifold may contain more than one local minimum.

116 Trajectory-Based Method for MINLPs

Here Ncomb(x∗,y∗) is given by

Ncomb(x∗,y∗) = {argmin
z

[f (z) s.t. z ∈ A(x̃, ỹ)] : (x̃, ỹ) ∈Nr(x∗,y∗)\{(x∗,y∗)}}.

We notice that Ncomb(x∗,y∗) contains only the set of the smallest local minima on each
feasible continuous manifold on which Nr(x∗,y∗) has a point, excluding z∗ = (x∗,y∗)T .

We now demonstrate with figures, an MINLP local minimizer as per each of the above
definitions. We use one continuous and one integer variable for the illustrations.

y

x

()X

x

x

*

*

(a) Separate local minimizer, as per
Definition 8.1.4.

y

x

*

*

X

x

x

)
)

)

(
(

(

(b) Extended local minimizer, as per
Definition 8.1.5.

*

x

x
()X

x

y

*

(c) Combined local minimizer, as per
Definition 8.1.6.

Figure 8.3 Illustration of different local minima corresponding to Definitions 8.1.4, 8.1.5 and
8.1.6 respectively.

In Figure 8.3, "X" denotes the location of the local minimizer in Ωm with coordinate (x∗, y∗)T .
Each "x" denotes a point in Nr(x∗,y∗). The solid lines represent the open balls Bε(x) for
fixed y ∈Nr(x,y). The points "x" circumscribed by circles, seen in Figure 8.3c, denote the
best manifold minimizers. Corresponding to the mixed local minimizer in each figure, both
locations of optimal x∗ and y∗ are marked with ✽.

Figure 8.3a corresponds to the definition of a separate local minimizer, as per Definition
8.1.4. Here the point X = (x∗,y∗)T , is identified as the mixed local minimizer since it is the

8.2 Overview of TAMINLP 117

best minimizer in the open ball Bε(x∗) within the neighborhood Nr(x∗,y∗). In this definition,
only X = (x∗,y∗)T , found along the feasible continuous manifold corresponding to y∗, is
detected.

Figure 8.3b is an illustration of a local minimizer, as per Definition 8.1.5. Here the
point X = (x∗,y∗)T is identified as the mixed local minimizer since it is the best manifold
minimizer in the open ball Bε(x∗) within the neighborhood Nr(x∗,y∗). Furthermore, each of
the points "x" may or may not be the best manifold minimizer on their respective feasible
continuous manifolds, see the illustration in Figure 8.3b. This definition is therefore not
ideal.

Figure 8.3c corresponds to the definition of a local minimizer, as per Definition 8.1.6.
Here the point X = (x∗,y∗)T is identified as the mixed local minimizer since it is the overall
best of the three best manifold minima. This definition makes sure that the points "x"
circumscribed by circles are the actual best manifold minima and therefore overcomes the
shortcomings of Definition 8.1.5.

The definition of a combined local minimizer, i.e., Definition 8.1.6 was designed to
satisfy a list of restrictions proposed by Newby [90, 91]. These restrictions are not satisfied
by Definition 8.1.4 and Definition 8.1.5. We refer the reader to Newby [90, 91] for the list
of restrictions.

8.2 Overview of TAMINLP

The development and implementation of TACNLP has led to a fairly straightforward
adaptation thereof for MINLPs. In this section, we outline the main steps of TAMINLP and
briefly present the differences between TACNLP and TAMINLP.

TAMINLP is threefold; it consists of a first, second and third phase. We now provide a brief
overview of each phase. This is then followed by a detailed description of the first, second
and third phase of TAMINLP, in Sections 8.3, 8.4 and 8.5 respectively.

• In the first phase of TAMINLP, TACNLP solves the continuous relaxation of M i.e.,
M , to obtain the solution z∗c = (x∗c , y∗c)

T . If y∗c is integer, then TAMINLP terminates
as the optimal solution has been located. When this is not the case, the solution y∗c is
rounded and fixed to the nearest integer-feasible value ȳ, which is used in the second
phase of TAMINLP. In this phase, the algorithm is initialized at z(0) = (x(0),y(0))T =

(x0,y0)T , λ (0) = λ 0 and µ(0) = µ0 to initialize the system of differential equations
which is solved. The point z(0) = (x0, y0)T and λ 0 are user defined and µ0 = µmax,

see Table 6.3.

118 Trajectory-Based Method for MINLPs

• In the second phase of TAMINLP, all the discrete variables ȳi which lie within some
discrete user prescribed neighborhood of ȳ are selected. TACNLP is then applied to
M̄ (ȳi) defined by (3.6), where M̄ (ȳi) is solved for different fixed values of ȳi. The
best of these solutions, z∗f = (x∗f ,y

∗
f)

T , is stored, where y∗f = ȳi for some i. For each
ȳi the second phase of the algorithm is initialized at x∗c , with ȳi fixed throughout the
minimization routine, e.g z0 = (x∗c , ȳ

i)T . In this phase TAMINLP uses the initialization
z(0) = (x(0),y(0))T = (x∗c , ȳ

i)T , λ (0) = λ 0 and µ(0) = µ0 to initialize the system of
differential equations is solved. Here λ 0 is user defined and µ0 = µmax as per Table
6.3.

• The third phase of the minimization consists of performing a final continuous
minimization at certain points found during the second phase of the minimization,
including (x∗f ,y

∗
f)

T . These points are typically the ones whose objective function value
lie within some user defined neighborhood of the current best known objective
function value f (z∗f) = f (x∗f ,y

∗
f)

T . Every minimization is initialized at each of these
points, by applying TACNLP to M . We define z(0) accordingly when initializing the
system of differential equations solved in this phase, and µ0 = µmax is defined
homogeneously with phases one and two of TAMINLP. Here λ 0 is user defined. The
best solution obtained in this phase, i.e., z∗ = (x∗,y∗)T is identified as the overall
optimal solution. If y∗ is not integer, then an integer solution is strategically found.
The details of this are presented later in Section 8.5.

Remark 8.2.1. During the second and third phase of TAMINLP, a few function evaluations
are required to determine the best solution. These are however minimal, and never exceed
the number of points investigated in the second and third phase.

AL for MINLPs is defined as follows:

φA(z,λ ; µ) = f (z)− ∑
i∈E∪(I∩As(z))

λici(z)+
1

2µ
∑

i∈E∪(I∩As(z))
c2

i (z)+ψ(z,λ ; µ) (8.8)

where

ψ(z,λ ; µ) =− ∑
i∈I\As(z)

µ

2
λi

2.

The second and third terms contain index sets corresponding to equality and strongly active
inequality constraints and the last term corresponds to inactive inequality constraints, where
z = (x,y)T . As with the continuous case, when implementing AL, we include all types
of constraints in (8.8). For the theoretical discussion however, we exclude weakly active
constraints in (8.8).

8.3 The first phase of TAMINLP 119

Notice that when the integer constituent of M is relaxed, as in M , AL for MINLPs is the
same as AL for CNLPs.

The fundamental difference between TACNLP and TAMINLP is that TAMINLP implements
TACNLP in a series of minimizations. These minimizations are done in the three separate
phases of TAMINLP. Table 8.1 summarizes the differences between TACNLP and
TAMINLP.

Algorithm Description
TACNLP Implements the continuous minimization described in Algorithm 8, to

obtain the continuous optimal solution, x∗, of (1.2).
TAMINLP Implements the continuous minimization described in Algorithm 8

during all three phases of TAMINLP, to obtain the mixed integer optimal
solution, z∗ = (x∗,y∗)T , of (8.1):
The first phase implements Algorithm 8 by solving the relaxed problem
M to obtain the solution z∗c = (x∗c ,y

∗
c)

T .
The second phase implements Algorithm 8 by solving the problem M̄ (ȳi)

for different fixed integer points, ȳi, to obtain the solution z∗f = (x∗f ,y
∗
f)

T .
The third and final phase of TAMINLP, implements Algorithm 8, by
solving M for each point (x∗i , ȳ

i)T whose objective function value lies
within some user defined neighborhood of f (x∗f ,y

∗
f)

T . Here x∗i is the
manifold minimizer corresponding to ȳi. The best feasible solution
obtained here is denoted by z∗ = (x∗,y∗)T .

Table 8.1 The fundamental difference between TACNLP and TAMINLP

We now present an in-depth discussion of the the three-fold TAMINLP procedure.

8.3 The first phase of TAMINLP

In this section, we present the details of the first phase of TAMINLP. In this phase, TACNLP
is applied to M by solving the following set of equations:

z̈ =−∇zφA(z,λ ; µ), z(0) = z0, ż(0) = 0

120 Trajectory-Based Method for MINLPs

λ̈ = ∇λ φA(z,λ ; µ), λ (0) = λ 0, λ̇ (0) = 0,

µ̈ =−µ, µ(0) = µ0, µ̇(0) = 0, (8.9)

to obtain z∗c , where z=(x, y)T , z∗c =(x∗c , y∗c)
T and y∈ convY . This minimization is initialized

at some user defined values x(0) = x0, y(0) = y0 and λ (0) = λ 0. The penalty parameter is
initialized as µ(0) = µ0 in accordance with the stipulations given in Table 6.3. The first
phase of the algorithm terminates when:

||∇xφA(z,λ ; µ)|| ≤ ε,

and
||∇λ φA(z,λ ; µ)|| ≤ ε.

Once the solution z∗c = (x∗c , y∗c)
T has been obtained we proceed in one of two ways. If y∗c

is integer then the algorithm terminates as the optimal solution has been found. If y∗c is not
integer then we fix y∗c to the nearest integer value ȳ. If any bound constraints are present or
if any of the discrete variables are binary, and ȳ is integer-infeasible with respect to these
restrictions, then we apply the following:

ȳ j =

{
u j, if ȳ j > u j;
l j, if ȳ j < l j,

(8.10)

where ȳ j corresponds to the jth component of the vector ȳ and l j and u j are lower and upper
bounds on the integer variables respectively. Naturally if y is binary then l j = 0, u j = 1,∀ j.
Once the integer-feasible point ȳ has been identified, we proceed with the second phase of
the minimization in TAMINLP.

8.4 The second phase of TAMINLP

In this section, we present the details of second phase of TAMINLP. For this phase of the
minimization, we generate several integer trial points. We use only the integer constituent
y, of z = (x,y)T , to generate these trial points. We then perform separate minimizations

8.4 The second phase of TAMINLP 121

with respect to x for each of these trial point. The discussion on how these trial points are
generated is now presented.

8.4.1 Generating integer trial points

The trial points used for the second phase of TAMINLP are generated using the rule of the
Pattern Search method (PS) [54]. Recall that nd is the number of discrete variables present
in M . Let ns denote the number of trial points generated, where ns = 2nd . Given ȳ, trial
points are generated along the ns coordinate axes as is done in the POLL step of PS [54].
The search pertains only to y, not x, since we are generating integer trial points. The POLL
step of PS uses ns = 2nd directions given by the set D = {di}ns

i=1:

D = {d1,d2, . . . ,d2nd}= {e1, . . . ,end ,−e1, . . . ,−end}, (8.11)

where ei is the i-th unit coordinate vector in Rnd . The set D is said to positively span Rnd .
For example, the set of positive spanning directions in R2, is made up of the four column
vectors of D:

D =

{
1 0 −1 0
0 1 0 −1

}
. (8.12)

In R3, the set D is defined as follows

D =

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

 . (8.13)

D is defined similarly in Rnd .

We now illustrate, with the use of an example for the case of binary integer variables, the
generation of integer (trial) points in R2, using ȳ = (0,0)T . Four trial points are generated by
traversing from ȳ along each direction in (8.12) [54]. These trial points are (1,0)T , (0,1)T ,
(−1,0)T and (0,−1)T and are each located one unit from ȳ, see Figure 8.4.

We denote the trial points illustrated in Figure 8.4 as ȳi:

ȳi = ȳ0 +di, i = 1, . . .2nd, (8.14)

where ȳ0 = ȳ. Often certain restrictions are placed on the integer variables ȳi, calculated using
equation (8.14). These include upper and lower bounds or binary restrictions. Unlike the
strategy used in (8.10), if any of ȳi, i = 1, . . . ,2nd are integer-infeasible, they are discarded.

122 Trajectory-Based Method for MINLPs

(0, 1)

(-1, 0)

(0, -1)

H0, 0L

Center of pattern

(1, 0)
- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

Figure 8.4 Trial points, (1,0)T , (0,1)T , (−1,0)T , (0,−1)T generated about the pattern center
ȳ = (0,0)T , using the rule of PS.

For instance, when the integer solutions are restricted to binary variables, then moving in a
direction which results in ȳi taking on a value other than 0 or 1, would render the solution
integer-infeasible. For the example above in R2, if the integer variables are restricted to
taking on binary values, then two of the trial points in Figure 8.4 are integer infeasible. These
are identified in Figure 8.5.

Feasible points

Infeasibe points

Center of pattern

(0, 0) (1, 0)

(0, -1)

(0, 1)

(-1, 0)

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

Figure 8.5 Feasible and infeasible trial points, (1,0)T , (0,1)T , (−1,0)T , (0,−1)T , generated
using the rule of PS. The blue points are feasible, while the green points are infeasible.

In Figure 8.5, we see that the points (−1,0)T and (0,−1)T are integer-infeasible, while
(1,0)T and (0,1)T are feasible. Traversing along the directions d1 and d2 results in

8.4 The second phase of TAMINLP 123

integer-feasible trial points, we therefore refer to these as feasible directions in D.

Our motivation for using this strategy to generate trial points is as follows. Since ȳ is the
closest integer-feasible point to y∗c , the integer optimal solution to the problem M is either ȳ
or close to ȳ. The trial points generated in this phase therefore clearly fulfill this premise.
Having generated these trial points, we now present the details of the second phase of
TAMINLP.

8.4.2 Details of the minimization in the second phase of TAMINLP

The details in this section are based on the assumption that at least a subset of the trial points
ȳi are integer-feasible. Let us assume that P̂ of these trial points are integer-feasible. The
problem M is now projected onto the continuous space via the AL function φA(x,y,λ ; µ), so
that the integer constituent of the problem is constant throughout the minimization. Separate
minimizations are therefore performed on P̂ continuous manifolds. Feasible continuous
manifolds are now defined in terms of the objective and constraint functions f (x) and ci(x),
and adapted to equation (8.2) using φA(x,y,λ ; µ). Projecting the augmented Lagrangian
φA(x,y,λ ; µ) onto the space of the continuous variables x by fixing feasible y = ȳi, gives rise
to various continuous manifolds of the form given in equation (8.2):

φ
i
A(x, ȳ

i,λ ; µ)), i = 0, . . . , P̂, (8.15)

where ȳi = (ȳi
1, ȳ

i
2, ȳi

3, . . . , ȳi
nd
)T . Having obtained a set of integer-feasible points, which

give rise to feasible continuous manifolds, we can begin with the second phase of TAMINLP.
In this phase, we apply TACNLP to M̄ (ȳi), i = 1, . . . , P̂, where M̄ (ȳi) is defined as

follows

M̄ (ȳi)

min

x
f (x, ȳi)

s.t. c j(x, ȳi) = 0, j ∈ E,
c j(x, ȳi)≥ 0, j ∈ I,
x ∈ X .

(8.16)

The above problem will be solved P̂ times, since there are P̂ integer-feasible points ȳi. Each
ȳi needs to be explored since any of these may correspond to the optimal solution of the
problem.
For each problem M̄ (ȳi), the second phase of the algorithm terminates when:

||∇xφ
i
A(x, ȳ

i,λ ; µ)|| ≤ ε,

124 Trajectory-Based Method for MINLPs

and
||∇λ φ

i
A(x, ȳ

i,λ ; µ)|| ≤ ε,

Here φA is projected onto the x space, so it is identical to (2.30), and ε is defined as in the
continuous case presented in Chapter 5. Every other aspect of this minimization is identical
to that of the continuous case.

Particularly, for each ȳi we solve the following system, for i = 1, . . . , P̂:

ẍ =−∇xφ
i
A(x, ȳ

i,λ ; µ), x(0) = x∗c , ẋ(0) = 0, (8.17)

λ̈ = ∇λ φ
i
A(x, ȳ

(i),λ ; µ), λ (0) = λ 0, λ̇ (0) = 0,

µ̈ =−µ, µ(0) = µ0, µ̇(0) = 0,

where each minimization is initialized at feasible x(0) = x∗c . The dual variable is set to some
initial value λ 0 independent of the solution to the relaxed problem in the first phase. This
is because the problems in the first and second phase are separate, and the constraints are
changed due to projection onto the continuous space. All the parameters used in TACNLP are
set to their initial values used in the first phase of the minimization, see Table 6.3. The updates
for x and λ , the adaptive step size implementation, the penalty parameter update, scaling and
the convergence conditions (5.27), are identical to that of the continuous algorithm described
in Section 5.1. For each ȳi, the solution of (8.17) is denoted by(x∗i , ȳ

i)T . The optimal feasible
solution (x∗f ,y

∗
f)

T , is obtained, such that

(x∗f ,y
∗
f) = argmin

x∗i ,ȳ
i
{ f (x∗i , ȳ

i)}. (8.18)

Since x is fixed when generating the trial points ȳi, there is no guarantee that M (ȳi) is
feasible in x. If M (ȳi) is infeasible in x ∀i, then (x∗i , ȳ

i)T are infeasible for M . In this case,
new trial points need to be generated1. The details of which are now discussed.

1Although we initialize the system (8.17) with feasible x∗c and feasible ȳi, we are unable to prove theoretically
that the solution of (8.17) will be feasible. Our numerical experiments however always produced feasible
(x∗i , ȳ

i)T .

8.4 The second phase of TAMINLP 125

8.4.3 Increasing the search space when no feasible solution is found

In the second phase of TAMINLP, P̂ feasible trial points are generated. Including ȳ, there are
P̂ + 1 continuous manifolds upon which separate minimizations with respect to x are
performed, to find a feasible solution (x∗f ,y

∗
f)

T . Here (x∗f ,y
∗
f)

T is the point which yields the
current lowest objective function value of M , defined by (8.1). Essentially we minimize
M (ȳi) by solving φ i

A(x, ȳ
i,λ ; µ) with respect to some initial conditions. However, M̄ (ȳi)

can be infeasible in x for all ȳi. If this is the case then all (x∗i , ȳ
i)T are infeasible, and we need

to generate trial integer points further away from ȳ.

A similar consideration is used by Newby [90]. Newby defines the neighborhood Nd(ȳ,εd)

given by equation (8.4), where all integer points which fall within the radius of the
neighborhood, εd , are considered for the search space. This neighborhood can be increased
at the user’s discretion, by increasing εd . As a result, the number of possible integer
solutions considered will be increased and the accuracy of the algorithm will improve. We
look at this idea in more depth in Section 8.7.

By defining Nd(ȳ,εd), we have control over the number of integer trial points we generate.
Using the idea of expanding Nd(ȳ,εd), the discussion on how new trial points are generated
when no feasible solution corresponding to the initial trial points ȳi is found, is now presented.

We again use the previous example in R2, for the case of binary integer variables. Thus
far the four points

{(1,0)T ,(0,1)T ,(−1,0)T ,(0,−1)T}, (8.19)

have already been examined, see Figure 8.5. Here, the radius of the neighborhood Nd(ȳ,εd)

is 1. This neighborhood is increased by one unit whenever no feasible solution is obtained.
Assuming that all solutions produced by (8.17), using the feasible ȳi in (8.19) are infeasible,
we now generate new integer-feasible trial points within the neighborhood of ȳ, Nd(ȳ,εd),
with εd = 2. This is done by generating another 4 trial points about each of the feasible
trial points (1,0)T and (0,1)T , using them as ȳ0. As a result we obtain the set of 8 new trial
points, see Figure 8.6. The feasible and infeasible points generated here are illustrated in
Figure 8.6, where the feasible points are depicted by the blue points and the infeasible points
are depicted by the green points.

Some patterns occur in the generation of the new integer trial points. To demonstrate this
denote the new trial points by

ȳi j = di +d j, (8.20)

126 Trajectory-Based Method for MINLPs

Feasible points
Center of pattern

Infeasible points

(1, 1)

(2, 0)

(1, -1)

(0, 0) (1, 0)0.5 1.0 1.5 2.0

- 1.0

- 0.5

0.5

1.0

(a) Trial points generated about the center of
pattern, (1,0)T .

(0, 2)

(1, 1)

(-1, 1)

(0, 0)

(0, 1)

Center of pattern

Feasible points

Infeasible points

- 1.0 - 0.5 0.5 1.0

0.5

1.0

1.5

2.0

(b) Trial points generated about the center of
pattern, (0,1)T .

Figure 8.6 The set of new trial points generated using feasible trial points as pattern centers

8.4 The second phase of TAMINLP 127

where i and j are indices corresponding to the set of feasible directions di,d j ∈ D, and D is
defined by (8.12)2. We do not use infeasible directions or infeasible pattern centers for the
generation of new trial points. This is motivated in the discussion below.

Notice that the integer trial points generated around the pattern center ȳ0 = (1,0)T , along
the feasible directions (1,0)T and (0,1)T , are:

ȳ11 = ȳ0 +d1 +d1 = (2,0)T ,

and
ȳ12 = ȳ0 +d1 +d2 = (1,1)T ,

respectively, see Figures 8.6a. Notice also that the integer trial points generated around the
pattern center, ȳ0 = (0,1)T , along feasible directions, are

ȳ21 = ȳ0 +d2 +d1 = (1,1)T ,

and
ȳ22 = ȳ0 +d2 +d2 = (0,2)T ,

respectively, see Figure 8.6b. Several observations are made. Firstly, we observe that
ȳ12 = ȳ21. Secondly, we observe that ȳ11 and ȳ22 are not binary, and are therefore infeasible.
Lastly, increasing the discrete neighborhood Nd(ȳ,εd) along infeasible directions results in
infeasible points, i.e., (−1,1)T and (1,−1)T , or points which are repeated3, i.e., (0,0)T , see
Figure 8.7:

We rectify these issues as follows:

• To avoid the kind of repetitive redundancy displayed by ȳ12 = ȳ21, once a solution yi j
d

has been obtained, we do not calculate y ji
d , where i and j are indices corresponding to

a subset of feasible directions di,d j ∈ D.

• When y is binary, we have seen that generating trial points with repeated indices results
in infeasible trial points. For this reason, when y is restricted to binaries, the trial points
with repeated indices, ȳii are not calculated, where i is the index corresponding to the
set of feasible directions di ∈ D from the first phase.

• When Nd(ȳ,εd) is expanded, it is done along feasible directions only. Recall that
the first set of integer trial points generated consisted of 4 points, see Figure 8.5.

2Recall that feasible directions are those which yield the initial set of integer-feasible trial points in (8.14).
3The initial pattern center, ȳ is equal to (0,0)T and would have already been considered, hence (0,0)T is

not a unique integer trial point.

128 Trajectory-Based Method for MINLPs

Center of patternInfeasible points

Infeasible point Feasible point

(-1, 1)

(0, 0)

(-1, -1)

(-2, 0) (-1, 0)- 1.5 - 1.0 - 0.5 0.0

- 1.0

- 0.5

0.5

1.0

(a) Trial points generated about the center of
pattern, (−1,0)T .

Infeasible points

Feasible point

Infeasible point

Center of pattern

(0, 0)

(1, -1)(-1, -1)

(0, -2)

(0, -1)

- 1.0 - 0.5 0.5 1.0

- 1.5

- 1.0

- 0.5

0.0

(b) Trial points generated about the center of
pattern, (0,−1)T .

Figure 8.7 The set of new trial points generated using infeasible trial points as pattern centers

8.4 The second phase of TAMINLP 129

Performing another POLL about each of those points results in the generation of
2nd

2 = 16 new integer trial points, some of which are infeasible, see Figures 8.6
and 8.7. However, by expanding the discrete neighborhood Nd(ȳ,εd) about integer-
feasible points, along feasible directions only, we only calculate 1 new trial point, i.e.,
ȳ12 = (1,1)T . This integer-feasible trial point could be generated using either of the
feasible pattern centers (1, 0)T or (0, 1))T and traversing along either of the feasible
directions (0, 1)T or (1, 0))T respectively, see Figure 8.6.

We summarize the above process as follows. When we generate the first set of integer-feasible
trial points, the radius of Nd(ȳ,εd) is 1:

Nd(ȳ,1) = {y ∈Ωd : ||y− ȳ|| ≤ 1}. (8.21)

This yields the integer-feasible trial points (1, 0))T and (0, 1))T . We then increase this
neighborhood by increasing εd by one unit:

Nd(ȳ,2) = {y ∈Ωd : ||y− ȳ|| ≤ 2}, (8.22)

to obtain the integer-feasible trial point (1, 1)T . If however no feasible solution x∗f
corresponding to this point is obtained, then we continue increasing our discrete
neighborhood (8.22) until a feasible solution is found. For the binary example in R2

however, we have done an exhaustive enumeration of all 0 - 1 combinations4.

Once we have identified the set of new integer-feasible trial points, we perform continuous
minimizations with respect to the continuous variable x, described in Section 8.4.2, to obtain
(x∗f ,y

∗
f)

T .

The discussion above only pertains to the case where the integer variables are binary. A similar
strategy is however used when the integer variables take on general integer values. Firstly,
the trial points are generated exactly the same way for general integer and binary integer
variables. Feasible trial points are then selected to satisfy any restrictions on the general
integer variables, i.e lower and upper bounds, which we denote by li and ui respectively, as
given in (8.10). For the binary case these bounds are just 0 and 1 respectively. The rest of the
second phase proceeds in the exact same way for binary and general integer variables. It is

4For any binary problem, there are 2nd integer-feasible combinations. For the binary example above these
combinations are: (0, 0)T , (1, 0)T , (0, 1)T and (1, 1)T . Thus, for the example illustrated in Figures 8.4 - 8.6,
we have done an exhaustive enumeration of 0 -1 alternatives (integer-feasible trial points), within Nd(ȳ,εd).
This means that no new integer-feasible point will be found by increasing the radius of the discrete neighborhood
Nd(ȳ,εd).

130 Trajectory-Based Method for MINLPs

also easy to envisage a strategy for problems where both binary and general integer variables
are present.
We summarize the important items discussed during the second phase of TAMINLP, in Table
8.2 below:

notation Description
1. ȳ The value obtained by fixing y∗c to the nearest feasible

integer point.
2. di, i = 1, . . . ,2nd The coordinate directions used to generate trial points

using the rule of PS.
3. ȳi, i = 1, . . . ,2nd The integer trial points, generated using the rule of PS.
4. Nd(ȳ,εd) A discrete user defined neighborhood used to control

the number of integer- feasible trial points generated in 3,
for the second phase of TAMINLP.

5. εd The radius of the discrete neighborhood, Nd(ȳ,εd) in 4.
7. P̂ The number of integer-feasible trial points generated
8. (x∗i , ȳ

i), i = 1, . . . P̂ The optimal solution obtained on the manifold
corresponding to fixed value ȳi.

9. ȳi j, where di,d j ∈ D If x∗i are infeasible ∀i in 8, then εd is increased by one
unit and new integer trail points yi j are generated.

10. z∗f = (x∗f ,y
∗
f)

T The best solution obtained, by solving M̄ (ȳi)

for different fixed values of feasible ȳi (or ȳi j).

Table 8.2 Important items used in the discussion of the second phase of TAMINLP
minimization.

8.5 The third phase of TAMINLP

In the third phase of TAMINLP, we apply TACNLP to the continuous relaxation of M . Our
motivation for this is as follows. Consider again any integer problem which is restricted
to binaries. When nd is large it is impractical to consider all 0 - 1 combinations, for the
second phase of TAMINLP. Even when nd is relatively small, i.e., nd = 5, the number of
0 - 1 combinations which make up integer-feasible points are 2nd = 26=32, see Appendix
(A.1). Exploring all 32 points is computationally expensive. A similar argument applies for
general integer problems. As a result, the optimal integer solution y∗ may go unexplored. An
example is used to illustrate this possible exclusion of y∗.

8.5 The third phase of TAMINLP 131

Consider a binary example in R5, with ȳ = (0,0,0,0,0)T . The 25 = 32 feasible 0 - 1
combinations for this problem are given in Appendix (A.1). Assuming the optimal solution
for this problem is y∗ = (1,1,1,1,0)T , we now show that its computationally impractical
to generate the trial point y∗ = (1,1,1,1,0))T , via the procedure discussed in phase two of
TAMINLP.

In order to locate y∗ = (1,1,1,1,0))T , we would have to generate four sets of different
trial points as follows:

For the generation of the first set of trial points, 2nd = 10, integer points are generated,
as shown in the columns of I:

I =

1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 −1

, (8.23)

Only 5 of the points in (8.23) are integer-feasible, and therefore lie within the neighborhood:

Nd(ȳ,1) = {y ∈Ωd : ||y− ȳ|| ≤ 1}. (8.24)

The integer-feasible points, which are generated along the corresponding nd feasible
directions are given in the columns of I1.

I1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. (8.25)

Evidently, the optimal point y∗ = (1,1,1,1,0))T is not contained in this set. We then generate
the second set of trial points. By employing the strategy discussed in Section 8.4.3, which
excludes the generation of repeated and infeasible trial points, we generate 10 integer-feasible

132 Trajectory-Based Method for MINLPs

trial points:

I2 =

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

. (8.26)

These points satisfy

Nd(ȳ,2) = {y ∈Ωd : ||y− ȳ|| ≤ 2}. (8.27)

Again, the optimal point y∗ = (1,1,1,1,0))T is not contained in this set. We generate a third
set of 10 trial points which satisfy

Nd(ȳ,3) = {y ∈Ωd : ||y− ȳ|| ≤ 3}, (8.28)

i.e.,

I3 =

1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1

, (8.29)

and a fourth set of 5 trial points:

I4 =

1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

, (8.30)

which satisfy
Nd(ȳ,4) = {y ∈Ωd : ||y− ȳ|| ≤ 4}, (8.31)

8.5 The third phase of TAMINLP 133

before we finally locate the optimal point y∗ = (1,1,1,1,0))T . Consequently, we would have
to perform ∑ Ii

i=1

4 = 30 separate minimizations before y∗ is located. This number increases for

problems of higher dimensions.

We consider the MINLP example found in Duran et al. [42], with optimal solution

y∗ = (0,1,0,1,0,1,0,1))T , and ȳ = (1,0,0,1,0,1,0,0))T . This optimal solution is only
obtained after expanding Nd(ȳ,εd) thrice and performing more than 50 separate
minimizations. This is computationally impractical.

It is easy to see how the optimum y∗ may be excluded in the second phase of TAMINLP.
In order to increase the probability of obtaining the optimal solution, without repeating many
more integer-feasible solutions, we perform a continuous local search from all points whose
objective function values lie within some neighborhood of f (x∗f ,y

∗
f)

T . This strategy, for the
final phase of TAMINLP, is presented below.

8.5.1 Selecting points for the final phase of TAMINLP

For the final phase of TAMINLP, we select the solutions from the second phase, whose
objective function values lie within some user defined neighborhood Nm(x∗f ,y

∗
f)

T of
(x∗f ,y

∗
f)

T :
Nm(x∗f ,y

∗
f) = {(x∗i , ȳi) ∈Ωm : || f (x∗f ,y∗f)− f (x∗i , ȳ

i)|| ≤ ε}. (8.32)

Once we have identified these points, TACNLP is applied to M for each point (x∗i , ȳ
i)T

satisfying (8.32). Since (x∗f ,y
∗
f)

T satisfies (8.32) identically, we also perform a continuous
minimization about (x∗f ,y

∗
f)

T . Let x∗1 = x∗f , and ȳ1 = y∗f , then assuming there are P points
which satisfy (8.32), we perform separate continuous minimization with respect to P
augmented Lagrangians:

φ
i
A(z,λ ; µ)), i = 1, . . . ,P. (8.33)

Particularly, we apply TACNLP to M and solve the system:

z̈ =−∇zφ
i
A(z,λ ; µ), z(0) = (x∗i , ȳ

i))T ż(0) = 0,

λ̈ = ∇λ φ
i
A(z,λ ; µ), λ (0) = λ 0, λ̇ (0) = 0,

µ̈ =−µ, µ(0) = µ0, µ̇(0) = 0, (8.34)

134 Trajectory-Based Method for MINLPs

for each i = 1, . . . ,P. Each minimization is initialized at the solutions to the second phase
which satisfy (8.32). Although we are performing a continuous local search from each of
these low lying feasible points, there is no guarantee that any of the optimal solutions will
produce integer solutions of the integer part. Depending on whether the integer part of the
solution is real or integer, we proceed as follows.

• If the integer part of the best solution to (8.34) is integer, then it is compared with the
solution to the second phase (x∗f ,y

∗
f)

T , to determine which of these is the best. The
best point is chosen as the final solution (x∗,y∗)T .

• If the integer part of the best solution to (8.34) is non-integer, then we round it to
the nearest integer-feasible point. We also identify all the other solutions obtained
during the final phase, rounding all of those which are non-integer, to the nearest
integer-feasible point. We then compare all these points with (x∗f ,y

∗
f)

T . The best of
these solutions z∗ = (x∗,y∗)T , is chosen such that:

f (x∗,y∗)≤ f (x̃, ỹ). (8.35)

Here, z̃ = (x̃, ỹ)T ∈ F, where F = F1∪F2:

F1 = {(x∗f ,y∗f)T},

F2 = {(x̂, ŷ))T ∈Ωm |(x̂, ŷ)T},

where:

– F2 contains all the solutions obtained during the third phase, with ŷ integer-
feasible. Here, ŷ are either obtained as a solutions to (8.34), or by rounding the
non-integer solutions to (8.34) to the nearest integer-feasible points.

A summary of important items introduced in this section is presented in Table 8.3 below.

notation Description
Nm(x∗f ,y

∗
f)

T Some user defined neighborhood of (x∗f ,y
∗
f)

T .
P The number of points whose objective function value lie within

Nm(x∗f ,y
∗
f)

T

z∗ = (x∗,y∗)T The overall optimal solution of TAMINLP.

Table 8.3 Important items used in the discussion of the third and final phase of TAMINLP
minimization.

8.6 The Pseudo-code of TAMINLP 135

8.6 The Pseudo-code of TAMINLP

Here, we present the pseudo-code of TAMINLP. Important steps in the pseudo-code are
further explained by remarks.

Algorithm 10 TAMINLP
1: The initialization of TAMINLP is done as in TACNLP.
2: Obtain a solution (x∗c ,y

∗
c))

T , by solving (8.9) as in Algorithm 8.
3: if y∗c is integer then
4: Stop
5: else Obtain ȳ by fixing y∗c , and calculate ȳi, i = 0, . . . ,ns, using the rule of PS.
6: end if
7: Find P̂ integer-feasible vectors, ȳi, i = 1, . . . P̂.
8: Solve (8.17), for P̂ initial points as in Algorithm 8, to find the feasible solution (x∗f ,y

∗
f)

T

which satisfies (8.18), such that

f (x∗f ,y
∗
f)≤ f (x∗i , ȳ

i),

i = 1, . . . , P̂ and go to 9.
9: if (x∗i , ȳi)T /∈Ωm,∀i, then

10: set ε
k+1
d = εk

d +1, calculate new feasible trial points using (8.20) and go to 5.
11: end if
12: Identify all the points (x, y)T ∈Nm(x∗f ,y

∗
f).

13: Obtain the solution (x∗,y∗)T which satisfies (8.35), by solving M for each point (x,y)T ∈
Nm(x∗f ,y

∗
f).

Remarks on Algorithm 10

Remark 8.6.1. In line 2 of Algorithm 10, the first phase of TAMINLP is implemented, to
obtain (x∗c ,y

∗
c)

T .

Remark 8.6.2. In line 3, If the solution y∗c to (8.9) is integer, then the algorithm terminates as
the optimal solution has been found. If the solution y∗c is non-integer then it is rounded to the
nearest feasible integer. The rule of PS described in Section 8.4.1, is then implemented in
line 5 of Algorithm 10.

Remark 8.6.3. In line 7, the integer-feasible points ȳi, i = 1, . . . , P̂ are identified, which are
used to initialize the second phase of TAMINLP.

Remark 8.6.4. In line 8, the second phase of TAMINLP is implemented for all P̂, to obtain
(x∗f ,y

∗
f)

T .

136 Trajectory-Based Method for MINLPs

Remark 8.6.5. If no feasible solution, (x∗i , ȳ
i)T is obtained in the neighborhood of radius εd ,

then we expand our search space. This is done by increasing the radius of the neighborhood
εd until a feasible solution is obtained. This process is described in lines 9 - 11 of Algorithm
10.

Remark 8.6.6. In lines 12 - 13, the third phase of TAMINLP is implemented, to obtain the
local minimizer (x∗,y∗)T .

8.7 Convergence

In this section, we study the convergence properties based on the definition of a local
minimum proposed by Newby [90, 91]. We also argue that this definition fails if we do not
consider all points in the neighborhood Nd(ȳ,εd), with εd ≥ 1.

In order to study the convergence properties of TAMINLP, we use the Definition 8.1.6
of a local minimizer in Ωm.

Once the solution to the first phase of TAMINLP has been obtained all the feasible
initial points for the second phase of the minimization can be defined by the set Nr(x∗c , ȳ) in
Definition 8.1.6:

Nr(x∗c , ȳ) = {(x, y)T : x = x∗c , ||y− ȳ|| ≤ εd}, (8.36)

where εd is typically equal to 1. We initialize the second phase of the minimization from each
of these points, which is equivalent to finding the (smallest) local minimum on each feasible
continuous manifold on which Nr(x∗,y∗) has a point. Since we are interested in obtaining
the smallest of these minima, we identify the feasible point (x∗f ,y

∗
f)

T which satisfies:

f (x∗f ,y
∗
f)≤ f (x,y), ∀ (x,y) ∈ {x ∈ Bε(x∗f), y = y∗f }∩Ωm,

f (x∗f ,y
∗
f)≤ f (x,y), ∀(x,y) ∈Ncomb(x∗f ,y

∗
f)∩Ωm.

(8.37)

According to Newby [90] this point (x∗f ,y
∗
f)

T is the optimal solution to (8.1), i.e., (x∗,y∗)T .
However, since only a subset of all the points satisfying (8.36) with εd ≥ 1, is considered, it
is possible that y∗ may be excluded from this subset (this was illustrated with an example, at
the beginning of Section 8.5). This is the shortcoming of Definition 8.1.6.

Often, if ȳ is feasible and a corresponding feasible x∗i exists, then the pair (x∗i , ȳ)
T is

optimal, i.e., (x∗,y∗)T = (x∗f ,y
∗
f)

T = (x∗i , ȳ)
T . This is because ȳ is the closest integer to the

continuous optimum y∗c . In this case, Definition 8.1.6 suffices. If however ȳ is obtained with

8.7 Convergence 137

rounding error then it may not represent the nearest integer to y∗c . An example is used to
illustrate this.

Suppose a problem has the optimal integer solution y∗ = 1. Assume that y∗c = 0.4999 is
the solution obtained after the first phase of TAMINLP, and that y = 0 and y = 1 are both
integer-feasible. Rounding y∗c to the nearest integer, we obtain ȳ = 0, and not ȳ = 1, which is
the optimum. Since y = 0 is one unit from y = 1 however, by generating feasible trial points
in Nd(ȳ,εd), where εd = 1, via the second phase of TAMINLP, we are able to recover the
optimal solution y∗ = 1. When nd is much larger though, say nd = 1000, this becomes
difficult. If 20 of the 1000 integer variables are rounded incorrectly as a result of numerical
error, then this means we are 20 units away from the optimal solution. In order to recover the
optimal solution, we would need to generate feasible trial points in Nd(ȳ,εd), where
εd = 20. As a result the number of integer trial points which need to be generated is
extremely high. In this case Definition 8.1.6 falls short again.

Thus far we have illustrated two cases which highlight the limitation of Definition 8.1.6:

1) The optimal point y∗ has been excluded from the subset of candidate trial points generated
for the second phase of TAMINLP.

2) The point (x∗i , ȳ)
T ∈ Ωm, but due to rounding error ȳ is not the closest integer-feasible

point to y∗c .

In both cases it is impractical to recover the optimal solution y∗. Therefore, at best we can
only guarantee that the point (x∗f ,y

∗
f)

T will be found during the second phase of TAMINLP.
We therefore denote the feasible point satisfying (8.37) by (x∗f ,y

∗
f)

T and not by the actual
local minimizer (x∗,y∗)T .

To account for the possible exclusion of y∗ during the second phase of TAMINLP, we
perform the third phase of TAMINLP.

In the remainder of this chapter, we discuss the convergence of TAMINLP. Recall that
we have already established global and local convergence for TACNLP, which is used in the
3 separate phases of TAMINLP. All that is left to prove is that our choice of ȳ(i)d , i = 1, . . . P̂ ,
which determines the number of continuous manifolds upon which we perform minimizations
with respect to x, is optimal. Lastly we need to prove that the third phase of the minimization
ensures convergence to the optimal solution (x∗,y∗)T .

8.7.1 Convergence of TAMINLP

We reiterate that TAMINLP is designed to locate a local solution of any given problem. This
discussion is therefore centered around said local minimizer.

138 Trajectory-Based Method for MINLPs

We begin by establishing relationships between y∗c , ȳ and y∗. Firstly, we know that the
solution to the relaxed problem M , defined by (3.5), i.e., (x∗c ,y

∗
c)

T yields a lower bound for
the solution to the MINLP M , i.e., (x∗,y∗)T . That is:

f (x∗c ,y
∗
c)≤ f (x∗,y∗),

where
f (x∗,y∗) = f (x∗c ,y

∗
c),

if y∗c is integer. We also know that

f (x∗c ,y
∗
c)≤ f (x∗c , ȳ),

where
f (x∗c ,y

∗
c) = f (x∗c , ȳ),

if y∗c is integer. Recall that the feasible trial points generated for the second phase are denoted
by ȳi, i = 1, . . .ns and that ȳ0 = ȳ. For the rest of the discussion, we make the following
assumption.

Assumption 12. The objective function f and constraints c of the relaxed problem M

defined by (3.5), are convex near the relaxed solution (x∗c ,y
∗
c)

T of M .

It follows from Assumption 12, that if (x∗c , ȳ
0)T is the closest candidate point to (x∗c ,y

∗
c)

T ,
then every other candidate point, i.e., every integer-feasible trial point (x∗c , ȳ

i)T , will yield a
higher function value than both (x∗c ,y

∗
c)

T and (x∗c , ȳ
0)T :

f (x∗c ,y
∗
c)≤ f (x∗c , ȳ

0)≤ f (x∗c , ȳ
i), i = 1, . . . , P̂,

Provided the continuous manifold corresponding to ȳ0 is feasible, this manifold minimizer
will correspond to the solution (x∗f ,y

∗
f)

T , where y∗f = ȳ0.

If the continuous manifold corresponding to ȳ0 is not feasible in x, then no feasible x∗i
corresponding to ȳ0 exists. By the convergence of TACNLP, at least one of the remaining
feasible trial points ȳi i = 1, . . . ,ns will converge to (x∗f ,y

∗
f)

T . If none of these trial points
are feasible, then the initial discrete neighborhood Nd(ȳ,εd) is increased until the feasible
solution (x∗f ,y

∗
f)

T is obtained. Once again convergence to (x∗f ,y
∗
f)

T is guaranteed by the
convergence of TACNLP.

Since the trial points generated are not exhaustive of all the possible candidate points
for the second phase, we execute the third phase of TAMINLP to locate the local optimum

8.7 Convergence 139

(x∗,y∗)T . Since the third phase of TAMINLP is equivalent to solving TACNLP, we know
that convergence to a local solution is guaranteed.

Chapter 9

Numerical Results for CNLPs

In this chapter, we present numerical results for the algorithms presented in Chapters 5 and 6.
In order to make any comments on their practical merit, it is necessary to test the performance
of each algorithm. In Sections 9.1 and 9.2, numerical results for a MATLAB implementation
of TACNLP and ATAUNLP respectively, are presented. Both algorithms are tested on a test
set of 71 problems which include problems from the CUTEr test set. A comparison of the
performance of TACNLP and ATAUNLP is presented in Section 9.3.

For further comparison, the CUTEr test problems are solved using the benchmarking
solver SNOPT [56]. The numerical results of this study are presented and discussed in
Section 9.4.

In Section 9.5, a final analysis is done to test the effectiveness of the adaptive step size
method as well as the scaling routine introduced in this thesis. To do this a comparison is
made between Snymans unconstrained trajectory-based algorithm [115] and our extension
of this algorithm for unconstrained problems. We denoted our version of the unconstrained
trajectory-based algorithm by ETAUNLP.

All tests in this chapter were performed on a PC with an Intel Core i5 CPU at 2.5 GHz
with 4GB of 1333 MHz RAM, running OS X 10.8.5. All Algorithms were coded in MATLAB
2013a 64 bit.

9.1 Results and discussion for TACNLP

In this section, we preset the results for TACNLP. A detailed discussion of the test problems
as well as the parameters used for the implementation of TACNLP is presented in Subsection
9.1.1. This is followed by a discussion of the numerical results, in Subsection 9.1.2.
Throughout the rest of this chapter, we make use of two concepts extensively. The first is
the penalty parameter updating criteria, and the second is the penalty parameter updating

142 Numerical Results for CNLPs

scheme. The updating criteria determines "when" µk will be updated, as per PC1, PC2
or PC3, while the penalty parameter updating scheme specifies "how" µ will be updated,
as per the new−µ or conventional−µ updating schemes described in Algorithms 5 and 6
respectively.
The discussion in Subsection 9.1.2 includes an examination of the effects of using the three
different updating criteria for µ , i.e., PC1, PC2 and PC3. The comparison is done to
determine which of these updating criteria is the most efficient. The section is concluded
with a comparison of the updating schemes for the penalty parameter, i.e., new−µ and
conventional−µ .

9.1.1 Test problems and parameters

The CNLP test problems were collected from Escudero [44], Hock et al. [68] and the CUTEr
test collection [23]. A total of 71 nonlinear constrained problems were identified. Of these
problems, 12 have been obtained from the CUTEr test set, i.e., problems 60 (BT1) - 71
(BT12). The entire test set can be found in Appendix B. The structure of each problem is
further summarized in Appendix A, in Table A.1. Important information such as the optimal
value for each problem x∗, and the solution obtained by the TACNLP algorithm, Algorithm
8 xk, are also provided in Table A.2.

For the numerical experiments the parameters listed in Table 6.3 were used. For certain
problems however, the parameter values specified in Table 6.3 were not optimal. Specifically,
certain problems from the test set were either unable to converge or converged with an
excessively high number of iterations unless some of the values in Table 6.3 were modified
slightly. Test runs were therefore conducted to obtain the optimal values of some parameters.
The first set of experiments were conducted with TACNLP using various values of the step
size parameters t(x,2) and t(λ ,2) (in (5.21)). For each problem a number of values for t(x,2) and
t(λ ,2), within the range of [1, 2], were used to determine which of these are optimal. In these
experiments the other variables were kept constant.

We summarize the problems and the optimal parameter values obtained from the experiments,
in Tables 9.1 - 9.2 below.

9.1 Results and discussion for TACNLP 143

Problems t(x,2) t(λ ,2)
1 1.5 2

39, 57 1.1 1.5
54, 56, 68 1.1 2
45, 59, 70 1.1 1.1

Table 9.1 Test problems which did not converge unless the specified parametric values were
used, as opposed to the default values stipulated in Table 6.3

With reference to Table 9.1, there are 9 test problems which did not converge unless the
assigned parameter values in this table were used.

In the next table, we summarize the problems as well as the time step parameter values
used to speed up convergence.

Problems t(x,2) t(λ ,2)
6, 42, 52 1.5 2
17, 33 2 1.5

16, 25, 44 1.5 1.5
43 1.1 2

58, 61 2 1.1
55 1.1 1.1

Table 9.2 Test problems which converged faster using the specified parametric values as
opposed to the default values stipulated in Table 6.3

With reference to Table 9.2, 12 of the problems from the test set converged faster with the
parameter values for t(x,2) and t(λ ,2) specified in this table.

The second experiment conducted, was done to determine problems needing scaling. Within
the solution process of TACNLP, the scaling mechanism discussed in Chapter 6 was
implemented for 16 problems from the test set. These problems are listed in Table 9.3. Of
these, problems 45, 55 - 57, 59, BT10 and BT11 were implemented by scaling ∇ f and c(x)
only. By scaling ∇c as well, convergence was hindered. Table 9.3 lists the problems and
their respective scaled functions. The table entry ✓ indicates that the corresponding vector or
function was scaled and the table entry ✗ indicates that it was not.

144 Numerical Results for CNLPs

Problems ∇ f (x) c(x) ∇c(x)
16, 19, 22, 24, 29, ✓ ✓ ✓

BT2, BT4, BT6, BT7 ✓ ✓ ✓

45, 55, 56, 57, 59, BT10,BT11 ✓ ✓ ✗

Table 9.3 Scaled problems

Problems µmin µmax
1 1 1

45, 50, 58, 59, BT11 0.01 1
40 0.1 10

Table 9.4 Test problems with specifications for the penalty parameter, which differ from
those listed in Table 6.3

Whenever scaling is implemented, using Algorithm 7, the values li =−50 and ui = 50 are
used for all test problems. Recall, these values are assigned to generate the q random vectors
used during scaling, as per (5.22) in Section 5.2.3.

The penalty parameter µ plays a crucial role in locating the optimal solution to TACNLP.
The final parameter experiments were conducted to determine the optimal values for µmin

and µmax. For each problem experiments were conducted with TACNLP using a number of
values for µmax within the range of (1, 10), and µmin within the range of (0.01, 1). Most
problems converged easily without having to drive the penalty parameter µ to 0. A few
problems were implemented with parametric value specifications which differed from the
default values listed in Table 6.3. These are summarized in Table 9.4 below:

With reference to Table 9.4, seven problems converged more efficiently using values for µmin

and µmax which differed from those in Table 6.3. Problem 1 converged with µmax = µmin = 1,
problems 45, 50, 58, 59 and BT11 converged with µmin = 0.01, and problem 40 converged
with µmax = 10, see Table 9.4. Every other problem in the test set converged with µmax = 1
and µmin = 0.1.

Remark 9.1.1. For every test problem the initial vector of multiplier estimates was set to the
zero vector of corresponding dimension.

We now examine the performance of TACNLP.

9.1 Results and discussion for TACNLP 145

9.1.2 Results for TACNLP

Tabulated results based on the performance of TACNLP are presented in Appendix A, in
Tables A.1 - A.3. TACNLP was implemented with PC1, PC2 and PC3. This was done to
determine which of these criteria yields the best results.

In Table A.1, columns 1 through 3 give the problem P, the number of variables n, and the
structure of the objective function f (x). Columns 4 to 7 give the number of linear equality
constraints LE, the number of linear inequality constraints LI , the number of nonlinear
equality constraints NE, and the number of nonlinear inequality constraints NI.
Furthermore, columns 8 through 10 give k1, k2 and k3 which correspond to the iteration
number of TACNLP using PC1, PC2 and PC3 respectively. The updating criteria PC1, PC2
and PC3 were implemented using the new−µ updating scheme proposed in this thesis.
Column 11 in each table gives the iteration number corresponding to an implementation of
TACNLP using PC3 with the conventional−µ updating scheme, k4 [6], [17, 18, 20, 130],
described in Algorithm 6. We have specifically used PC3 when implementing the
conventional−µ updating scheme since it yields better results than PC1 and PC2, see Table
A.1. Lastly, columns 12 through 13 give the CPU time corresponding to an implementation
of TACNLP using PC3 with the new−µ updating scheme tk3 , and the CPU time
corresponding to an implementation of TACNLP using PC3 with the conventional−µ

updating scheme tk4 . The CPU time when TACNLP reached the maximum iteration number
Ī, is also provided for each column tk3 and tk4 . The final row of Table A.1 summarizes the
average number of iterations and the average CPU time taken by each implementation of
TACNLP, to solve a problem.

In Table A.2, column 1 corresponds to the problem P, and column 2 gives the value of x∗.
Columns 3 through 5 give the difference between x∗ and the solution obtained by TACNLP,
xk, implemented with PC1, PC2 and PC3 respectively. Each implementation is done with the
new−µ updating scheme. Lastly, column 4 gives the difference between x∗ and the solution
xk obtained by TACNLP implemented with the conventional−µ updating scheme. Here, xk

corresponds to the final k-th iteration. Information on larger CNLP test problems which
could not fit into Table A.2, is provided in Table A.3.

For the convergence of TACNLP, we have used the relatively large tolerance, ε = 10−3, since
this is a first order method. The algorithm terminates when condition (5.27) is satisfied. Apart
from the algorithm converging to within the above precision, it terminates if the following
situation occurs (Ī): The number of iterations k in xk exceeds 500. The solutions obtained
under Ī are not far from the optimal. We have added another experiment, where we re-run all

146 Numerical Results for CNLPs

problems to test an additional criterion for divergence. Here, the algorithm terminates if

103×||x0− x∗||< ||xk− x∗||.

If the iterates diverge, then this has been denoted by (D̄).

We now examine the effects of updating the penalty parameter using PC1, PC2 and PC3.

Comparison of updating criteria for the penalty parameter

One of the most significant findings from Table A.1 is that the different criteria for updating
µk impact significantly on the number of iterations of the solution process. Recall that PC1,
PC2 and PC3 correspond to an implementation of Algorithm 5, using T 1(x,λ), T 2(x,λ)
and T 3(x,λ) respectively. These are defined as follows:

T 1(x,λ) =

(
ci(x), i ∈ E

min{ci(x),λi}, i ∈ I

)
. (9.1)

T 2(x,λ) =

 ∇xφA(x,λ ; µ)

ci(x), i ∈ E
min{ci(x),λi}, i ∈ I

 , (9.2)

T 3(x,λ) =

(
ci(x), i ∈ E

λici(x), i ∈ I

)
. (9.3)

For each implementation, the penalty parameter is decreased, using (5.13), unless there is an
improvement in Ψ :

Ψi(xk+1,λ k+1)≤ rΨi(xk,λ k),

where
Ψi(x,λ) = ||T i(x,λ)||, i = 1, . . .3,

and r is defined as in Algorithm 5.

In the experiments conducted, TACNLP implemented with PC3 is seen to yield the overall
best results, solving 28 of the test problems with the lowest iteration number, see Table
A.1. PC1 yields similar results to PC3, for certain problems, because PC1 and PC3 are very

9.1 Results and discussion for TACNLP 147

similar. PC1 however, solves only 21 of the test problems with the lowest iteration number,
see Table A.1. TACNLP implemented with PC2 is seen to yield the worst convergence,
solving only 15 of the test problems with the lowest iteration number. Every other problem
converged within the exact same number of iterations or terminated with Ī or D̄ for all three
implementations (i.e., PC1, PC2 and PC3).

The superior performance of TACNLP, implemented with PC3 may be because it is a more
relaxed criterion for updating µ , in comparison with PC1 and PC2. The inferior performance
of TACNLP implemented with PC2 on the other hand may be a result of the more stringent
requirement that unless there is some improvement in the augmented Lagrangian at {xk,λ k},
µk is decreased. Since we are solving the second order differential equation (5.1) in µ , where
the solution is rapidly accelerated and µ is decreased rapidly, less frequent updates of µ

are needed to maintain feasibility and complementarity of the constraints. The negative
performance of TACNLP, implemented with PC2 can thus be attributed to the fact that µ is
decreased frequently and consequently too rapidly to yield good progress of the iterates {xk},
to a solution.

We assert this claim by plotting the progression of µk against k, obtained as a solution to
(5.10). We do this for TACNLP implemented with PC1, PC2 and PC3, using problem 2 from
the test set. Figure 9.1, illustrates how µk, updated as a solution to (5.10), changes with k.
The plots corresponding to PC1, PC2 and PC3 are respectively represented in Figure 9.1 by
TACNLP with new µ - PC1, TACNLP with new µ - PC2 and TACNLP with new µ - PC3.

The significance of the number 35 in Figure 9.1 is that TACNLP converges in 35 iterations
using PC1 and PC2; TACNLP converges in 33 iterations using PC3, see Table A.1. Notice
that µ attains a minimum value of 0.9528 using PC3 and attains minimum values of 0.9327
and 0.9303 with PC1 and PC2 respectively. Notice also that µ is decreased more rapidly
when updated using PC2. This is inline with the conjecture we made previously stating that
PC2 brings about a rapid decrease in µ , which may hamper convergence. This hampering of
convergence is true for 30% of the test set, i.e., problems 6, 13, 15, 17, 24, 32, 34, 39, 42, 44,
48 - 50, 52 - 55, 57, 59, 66 and 69, see Table A.1.

Overall PC3 is the most effective criterion since it produces the least decrease in µ and yields
better convergence than PC1 and PC2. This is the general trend for most of the problems in
the test set, see Tables A.1 - A.2.

We now present a discussion around the different updating schemes for the penalty parameter,
presented in Algorithms 5 and 6.

148 Numerical Results for CNLPs

0 5 10 15 20 25 30 35
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

iteration number

µ

TACNLP with new µ − PC1

TACNLP with new µ − PC2

TACNLP with new µ − PC3

Figure 9.1 Progression of µk under PC1, PC2 and PC3 in TACNLP, using Problem 2

Comparison of updating schemes for the penalty parameter

We examine the effects of updating µ using the new−µ updating scheme versus using the
conventional−µ updating scheme [6, 17, 18, 20, 130]. Recall that, k4 in Table A.1
represents the iteration number corresponding to an implementation of TACNLP, using the
conventional−µ updating scheme.
Data under k4 are clearly inferior to those under k1− k3. A comparison of the data under the
headings k1, k2 and k3 shows the superiority of the new−µ updating scheme introduced in
this thesis. Judging by the disproportionately high iteration numbers displayed under k4,
TACNLP implemented with the new−µ updating scheme introduced in this thesis, yields far
better results than that of the conventional−µ updating scheme. In a few cases, TACNLP
implemented with the conventional−µ updating scheme yields better results than TACNLP
implemented with the new−µ updating scheme. This is true for six problems from the test
set, i.e., 6, 38, 47, 51, 53 and 56. The implementation of the new−µ updating scheme
however, resulted in the best overall performance, exhibiting significantly better results in
every other problem.

9.1 Results and discussion for TACNLP 149

We now illustrate the effect of using the conventional−µ updating scheme implemented with
PC3 since this is the most effective updating criteria. We plot the progression of µk against
k, obtained using the conventional−µ updating scheme.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration number

µ

Conventional µ − PC3

Figure 9.2 The effect of using the conventional updating strategy for µ in TACNLP using
Problem 2

Once again we have used problem 2 from the test set for illustrative purposes. This allows us
to make a comparison with the plots in Figure 9.1. In Figure 9.2, notice that µ is driven to its
lower bound of 0.1, and even so TACNLP only converges in 103 iterations, see Table A.1.
This may be the result of placing the bound µmin = 0.1 on µ . However, decreasing µ below
µmin resulted in divergence of the algorithm. By comparing the progression of µ in Figure
9.1 to the progressions obtained in Figure 9.2 , we notice huge differences in the amount of
iterations taken as well as the range of µ . Here, TACNLP implemented with new−µ ,
converges using fewer iterations, with µ not much smaller than unity, whereas TACNLP
with conventional−µ converges slower with smaller values of µ .

To further demonstrate the impact of updating µ using the new−µ updating scheme, as
opposed to using the conventional−µ updating scheme, we have generated the performance
profiles [40] seen in Figure 9.3. Performance profiles are used to illustrate the performance
of different algorithms. If one denotes the CPU time taken by algorithm a to solve problem

150 Numerical Results for CNLPs

p by tp,a then the performance ratio is given by

rp,a =
tp,a

min{tp,a : a ∈ A}
,

where A is the set of algorithms whose performance we wish to evaluate [40]. A parameter
rM such that rM ≥ rp,a for all p, a is chosen, where rp,a = rM if and only if the algorithm a
does not solve problem p [40]. Dolan et al.,[40] defines

ρa(τ) =
1
np

size{p ∈ P : log2(rp,a)≤ τ},

as the probability for solver a ∈ A that the log scale of a performance ratio log2(rp,a) is
within a factor τ of the best possible log scaled ratio, where np is the number of problems in
the set P. The function ρa is thus a cumulative distribution function for the performance ratio.
We use the log2 scale to display all the activity that takes place with τ ≤ rM, including the
behavior of τ close to 1. The subset of performance ratios which are less than τ , is denoted
by Pp,a(log2(rp,a)≤ τ : 1≤ a≤ na), where na denotes the number of algorithms in the set A.
Every performance profile is a plot of Pp,a against τ , for each algorithm. The profiles give a
clear indication of the relative performance of each algorithm and provide an estimate of the
expected performance difference between algorithms.

The profiles generated in this section are based on the CPU times given in Table A.1. In
Figure 9.3, new µ update represents the performance of TACNLP implemented with the
new−µ updating scheme proposed in this thesis, and conventional µ update represents the
performance of TACNLP implemented with the conventional−µ updating scheme. Both
implementations are done using PC3. Again, this is done specifically because PC3 yields
better results than PC1 and PC2. We have used γ = 0.5 as the reduction factor for µk in the
implementation of Algorithm 6. Here the number rM ≈ 2.5, as indicated on the x−axis in
Figure 9.3.

In Figure 9.3, we observe that the implementation of TACNLP with the new−µ updating
scheme yields significantly better results than the implementation with the conventional−µ

updating scheme. We are interested here in the probability that an algorithm will successfully
solve test problems to optimality, faster than any of the algorithms we are testing. This
information can be obtained by looking at the height of the performance profile. Judging
by the initial height of the performance profiles, we can infer that TACNLP implemented
with the new−µ updating scheme, is the fastest algorithm on approximately 77% of the
problems. Furthermore, looking at the height at which profile flatlines, we deduce that this
implementation of TACNLP solves about 94% of the problems from the test set, to optimality.

9.2 Results and discussion for ATAUNLP 151

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(l
o
g

2
(r

p
,a

)≤
τ
 :
1
 ≤

 a
 ≤

 n
a
)

TACNLP with new µ update

TACNLP with conventional µ update

Figure 9.3 Performance profile examining the effectiveness of the new penalty parameter
updating scheme

On the other hand, TACNLP implemented with the conventional−µ updating scheme is
the fastest algorithm on approximately 18% of the problems, solving approximately 48%
of the problems from the test set to optimality. This indicates that updating µ using the
new−µ updating scheme, i.e., as a solution to (5.10), is far more effective than using the
conventional−µ updating scheme.

9.2 Results and discussion for ATAUNLP

In this section, we preset the results for a Matlab implementation of ATAUNLP. As with
TACNLP, the numerical results for a MATLAB implementation of ATAUNLP is obtained
for a test set of 71 problems. The details of this test set were presented in Subsection 9.1.1.
ATAUNLP was implemented with the same parameter values used for TACNLP. The details
of these were also presented in Subsection 9.1.1. A discussion of the numerical results for
ATAUNLP is now presented in Subsection 9.2.1. Here, we examine the effects using the
three different updating criteria for µ , i.e., PC1, PC2 and PC3, to determine which of these
updating criteria is most effective for ATAUNLP. The section is concluded with a comparison
of the updating schemes for the penalty parameter, i.e., new−µ and conventional−µ .

152 Numerical Results for CNLPs

9.2.1 Results for ATAUNLP

Tabulated results based on the performance of ATAUNLP are presented in Appendix A, in
Tables A.3 - A.5. ATAUNLP was implemented with PC1, PC2 and PC3 to determine which
of these criteria yields the best results for ATAUNLP.

In Table A.4, all the columns are defined as in Table A.1. The updating criteria PC1, PC2
and PC3 were implemented using the new−µ updating scheme proposed in this thesis.
Column 11 in each table gives k4 which is the iteration number corresponding to an
implementation of ATAUNLP using PC3 with the conventional−µ updating scheme
[6, 17, 18, 20, 130], described in Algorithm 6. We have used PC3 when implementing the
conventional−µ updating scheme since its the best updating criteria for µ , see Table A.3.
Lastly, column 12 in Table A.3 gives the CPU time corresponding to an implementation of
ATAUNLP using PC3 with the new−µ updating scheme tk3 . The final row of Table A.4
summarizes the average number of iterations and the average CPU time taken by each
implementation of ATAUNLP, to solve a problem.

In Table A.5, the columns are defined as per Table A.2. Each of the implementations, with
PC1, PC2 and PC3, is done with the new−µ updating scheme. Finally, column 4 gives the
difference between x∗ and the solution xk obtained by the ATAUNLP algorithm, Algorithm
9, implemented with the conventional−µ updating scheme. Information on larger CNLP test
problems which could not fit into Table A.4, is provided in Table A.3.

ATAUNLP terminates according to the same criteria as TACNLP. This was presented in
Section 9.1.2.

We begin by examining the effects of updating the penalty parameter using PC1, PC2 and
PC3.

Comparison of updating criteria for the penalty parameter

Similar findings were obtained for TACNLP and ATAUNLP, see Tables A.2 and A.4. Here,
ATAUNLP implemented with PC3 performed best on 25 of the test problems, while
ATAUNLP implemented with PC1 and PC2 performed best on 19 and 21 problems
respectively. All other problems either converged within the exact same number of iterations
or terminated with Ī or D̄ for all three implementations (i.e., PC1, PC2 and PC3).
We plot the progression of µk against k, obtained as a solution to (5.10), using PC1, PC2 and
PC3. We do so using problem 24 from the test set. The progressions corresponding to PC1,

9.2 Results and discussion for ATAUNLP 153

PC2 and PC3 are respectively represented in Figure 9.1 by ATAUNLP with new µ - PC1,
ATAUNLP with new µ - PC2 and ATAUNLP with new µ - PC3.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration number

µ

ATAUNLP with new µ − PC1

ATAUNLP with new µ − PC2

ATAUNLP with new µ − PC3

Figure 9.4 Progression of µk under PC1, PC2 and PC3 in ATAUNLP

The significance of the number 100 in Figure 9.1 is that ATAUNLP converges in 103
iterations using PC3. TACNLP converges in 125 and 120 iterations using PC1 and PC2
respectively, see Table A.3. Notice that µ attains its lower bound of 0.1 with all three
implementations, but yields better convergence with PC3. Notice also that, as with TACNLP,
µ is decreased more rapidly when updated using PC2. This is seen to hinder the convergence
of some problems. With reference to Tables A.3, we see that this is true for 21% of the test
set, i.e., problems 7, 9, 13, 14, 17, 19, 26, 27, 34, 42, 59 and 60 - 62.24. As with the findings
for TACNLP, PC3 is the most effective criterion since it yields better convergence than PC1
and PC2. This is the general trend for most of the problems in the test set, see Table A.3.

We now present a discussion around the different updating schemes for the penalty parameter,
presented in Algorithms 5 and 6 respectively.

Comparison of updating schemes for the penalty parameter

In this section, we examine the effects of updating µ using the two updating schemes new−µ

and conventional−µ . We refer to the data in Table A.4. As with TACNLP, the results

154 Numerical Results for CNLPs

corresponding to k4 are inferior to the results under k1, k2 and k3, corresponding to the
new−µ updating scheme. There are a few cases where ATAUNLP implemented with the
conventional−µ updating scheme yields better results. This is true for 10 problems from the
test set, i.e., 14, 17, 20, 27, 34, 36, 38, 40, 42 and 52. However, the superiority of ATAUNLP
implemented using the new−µ updating scheme introduced in this thesis, is established
by comparing the entire data set under k1− k3 with that of k4. Here, as with TACNLP, the
new−µ updating scheme yields the overall best performance.

To assert these findings, we plot the progression of µk, updated using the conventional−µ

updating scheme, against k. We use PC3 as the updating criteria for µ .

0 10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration number

µ

ATAUNLP with conventional µ − PC3

Figure 9.5 Progression of µk under PC3, in ATAUNLP using Problem 24

In Figure 9.5, we plot the progression of µk using problem 24. This allows us to make a
comparison with the plots in Figure 9.4. With reference to Figure 9.5, we see that µk is
driven to its lower bound within the first 20 iterations. The number 110 in Figure 9.5
represents the iteration number of ATAUNLP using the conventional−µ updating scheme.
ATAUNLP implemented using the new−µ updating scheme therefore only performs slightly
better, converging in 103 iterations, see Table A.4. By comparing the progression of new−µ

- PC3, in Figure 9.4, with the progression in Figure 9.5, we see that these are almost identical.
Even though there are generally no significant discrepancies between performance of
ATAUNLP with these two updating schemes, ATAUNLP exhibits better overall performance
with the scheme proposed in this thesis. Specifically, ATAUNLP implemented with

9.3 Comparison of TACNLP and ATAUNLP 155

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(l
o
g

2
(r

p
,a

)≤
τ
 :
1
 ≤

 a
 ≤

 n
a
)

TACNLP

ATAUNLP

Figure 9.6 Performance profile examining the effectiveness of including the new updates in
TACNLP

conventional−µ performs better on 21 problems, while ATAUNLP implemented with the
new−µ updating scheme introduced in this thesis, outperforms on 29 problems, see Table
A.4. For every other problem, ATAUNLP either terminated with Ī or D̄ for both schemes. At
this stage, we may conclude that both TACNLP and ATAUNLP exhibit superior performance
implemented with the updating criterion PC3, using the new−µ updating scheme.

A comparison of the performance of TACNLP and ATAUNLP, is presented next.

9.3 Comparison of TACNLP and ATAUNLP

We now examine the effectiveness of the adaptive step size routine implemented in
TACNLP. To measure the impact of introducing the adaptive step size mechanism in
TACNLP, we have generated the performance profiles [40] in Figure 9.6, which compares
the performance of TACNLP and ATAUNLP. Both algorithms are implementated with PC3,
using the new−µ updating scheme. The profiles for TACNLP and ATAUNLP are based on
the CPU times in Tables A.1 and A.5 respectively. Here the number rM ≈ 4, as indicated on
the x−axis in Figure 9.6.

156 Numerical Results for CNLPs

The performance profile for TACNLP is significantly higher than that of ATAUNLP, see
Figure 9.6. This is inline with the tabulated results in Tables A.1 and A.3, which reveal that
TACNLP out-performs ATAUNLP. Judging by the initial height of the performance profiles,
we deduce that TACNLP is the fastest algorithm on approximately 80% of the problems.
Furthermore, looking at the height at which the profile flatlines, we can conclude that
TACNLP solves approximately 94% of the problems from the test set to optimality.
ATAUNLP, on the other hand is the fastest algorithm on approximately 17% of the problems,
solving approximately 64% of the problems from the test set to optimality. An important
observation which can be made from these results is that with the new strategies in place in
TACNLP, the iteration numbers have decreased by more than half in most cases when
compared to ATAUNLP. In other cases ATAUNLP is seen to diverge or exceed the maximum
acceptable iteration number. ATAUNLP is only seen to perform better than TACNLP for
problem 29.

Table 9.5 summarizes the overall performance of TACNLP and ATAUNLP. Data under Ī, D̄
and S̄ respectively denote the number of problems which reached the maximum iteration
number, the number of problems which diverged, and the number of problems which were
solved to optimality.

TACNLP ATAUNLP

Ī D̄ S̄ Ī D̄ S̄

PC1 with new−µ update 7 0 64 24 1 46
PC2 with new−µ update 13 1 57 25 1 45
PC3 with new−µ update 5 0 66 24 1 46

PC3 with conventional −µ update 35 3 33 21 2 48
Total: 60 4 220 94 5 185

Table 9.5 A comparison of the overall performance of TACNLP and ATAUNLP

Table 9.5 also presents the total number of problems which failed to converge within 500
iterations, Ī, the total number of problems which diverged, D̄, and the total number of
problems which were solved, S̄, for TACNLP and ATAUNLP respectively. This total is
calculated for each penalty parameter updating strategy described in column 1, which
consists of the updating criteria and updating scheme for µ . These separate totals are then
tallied up in the last row of Table 9.5, to provide an overview of the general performance of
TACNLP and ATAUNLP. TACNLP successfully solves more problems and diverges less
frequently than ATAUNLP, when implemented with the new−µ updating scheme. One
exception is noticeable between the two when ATAUNLP outperforms TACNLP with

9.4 Comparison of TACNLP and SNOPT 157

respect to S̄ implemented with PC3 and the conventional−µ updating scheme. TACNLP
however, is much more superior to ATAUNLP with the new−µ updating scheme. This
clearly shows the positive effect of the adaptive set size routine used in TACNLP.

With reference to Tables A.2 and A.3 in Appendix A, we notice that most of the problems
which failed to converge within 500 iterations, terminated at solutions xk close to x∗. Here xk

corresponds to the final k-th iteration. This finding is favorable because it indicates that for a
large proportion of the test set TACNLP was in fact able to locate the optimal solution x∗.

We now compare the performance of TACNLP with that of the benchmarking solver SNOPT
[56].

9.4 Comparison of TACNLP and SNOPT

To test the performance of TACNLP within the context of existing optimization software, we
sum up this section by comparing the performance of TACNLP with that of the sequential
quadratic package, SNOPT [56]. We compare the performance of TACNLP implemented
with PC3. The performance of SNOPT and TACNLP are tested on the CUTEr test problems,
60 (BT1) - 71 (BT12).

The results in Table 9.6, based on the performance of SNOPT, have been referenced
from Gill et al.[59]. The default SNOPT parameters were used throughout and the absolute
convergence tolerance for TACNLP has been change to ε = 10−6 to be able to present a
fair comparison between TACNLP and SNOPT, since the results for SNOPT were produced
using this value. For more information on the implementation of SNOPT, see Gill et al.
[57]. In Table 9.6, for each test problem we list the number of variables, n, the number of
constraints, m, the number of function evaluations, f e, and the number of iterations, k, used.
We also tally up the average amount of iterations taken per solved problem and the average
number of function evaluations needed per problem in the last row of Table 9.6. We have
not included problems which terminated with Ī in the calculation of these averages, for each
algorithm. Following the notational convention used before, a table entry Ī indicates that
the algorithm failed to converge within 500 iterations and a table entry D̄ indicates that the
algorithm diverged. It should be noted that SNOPT is an established package which has been
refined over many years, whereas TACNLP is just a straightforward Matlab implementation
of Algorithm 8.
Of the 12 CUTEr test problems, TACNLP failed to solve four problems within 500 iterations,
namely BT4, BT5, BT7 and BT12. In total TACNLP successfully solved 8 problems and

158 Numerical Results for CNLPs

P (n) (m) SNOPT TACNLP

f e k f e k

60 (BT1) 2 1 21 10 0 93
61 (BT2) 3 1 16 15 0 109
62 (BT3) 5 3 7 6 0 97
63 (BT4) 3 2 10 7 0 Ī
64 (BT5) 3 2 11 8 0 Ī
65 (BT6) 5 2 16 14 0 143
66 (BT7) 5 3 36 19 0 Ī
67 (BT8) 5 2 13 11 0 72
68 (BT9) 4 2 30 18 0 205

69 (BT10) 2 2 23 13 0 200
70 (BT11) 5 3 14 11 0 125
71 (BT12) 5 3 28 19 0 Ī
Average: 18 13 0 131

Table 9.6 Results obtained when solving problems from the CUTEr test set using SNOPT
and TACNLP

terminated with Ī for 4 problems. SNOPT managed to successfully solve all 12 problems.
Furthermore, the average number of iterations required per problem for SNOPT and TACNLP,
is k = 13 and k = 131 respectively. The average number of function evaluations required
however, is fe = 18 for SNOPT, and fe = 0 for TACNLP. We hope that the overall results are
compensated for by the fact that TACNLP does not use any function evaluations. Another
important factor to consider is that SNOPT implements a Quasi-Newton method, using
a Broyden (BFGS) class update for the hessian matrix, paired with a line search strategy.
TACNLP uses no line search or any sort of second derivative approximations. We therefore
expect that TACNLP will spend on average more time on each iteration. Even though the
iteration number for TACNLP is on average significantly higher than that of SNOPT, we hope
we have convinced the reader that TACNLP redeems itself in terms of overall evaluations
(function, first derivative and second derivative) needed to successfully converge to an optimal
solution.

9.5 Results for UNLPs

We end off this chapter by comparing the performance of Snymans TAUNLP [115], with our
extension of this algorithm for unconstrained problems. We refer to the latter as an extended
trajectory-based algorithm for unconstrained nonlinear programming problems (ETAUNLP).

9.5 Results for UNLPs 159

ETAUNLP is an adaptation of TACNLP for the unconstrained case. The
major difference between TACNLP and ETAUNLP is that ETAUNLP minimizes the
objective function f (x) and not the augmented Lagrangian. ETAUNLP is therefore a much
simpler adaptation of TACNLP, with the adaptive step size routine implemented for the
integration of x, and the scaling routine implemented wherever necessary, for ∇ f . Results
based on the performance of TAUNLP and ETAUNLP are presented in Table 9.7. The
algorithms were tested on 10 problems, including the 8 test problems used in Snyman [115].
For each algorithm the absolute convergence tolerance was set to 10−5.

P (n) TAUNLP ETAUNLP

k ||x∗− x|| time k ||x∗− x|| time

1 2 29 1.44×10−6 0.0164 20 4.65×10−6 0.0137
2 2 23 2.12×10−6 0.0186 2 0 0.0060
3 2 151 7.81×10−6 0.0257 248 6.16×10−5 0.0345
4 2 180 3.7×10−3 0.0332 397 2.11×10−2 0.0591
5 2 371 2.06×10−2 0.0681 Ī 1.50×10−1 0.0127
6 2 65 6.32×10−6 0.0243 249 1.73×10−6 0.0267
7 4 463 1.03×10−1 0.0334 111 8.68×10−2 0.0272
8 4 192 3.24×10−6 0.0469 Ī 6.03×10−6 0.0746
9 4 180 1.77×10−6 0.0258 66 2.81×10−6 0.0208
10 4 148 1.75×10−6 0.0238 77 1.36×10−6 0.0138

Average: 180 0.0316 146 0.0289

Table 9.7 Comparison of the performance of TAUNLP and ETAUNLP

In Table 9.7, columns 1 through 2 corresponds to the problem P and the dimension of the
problem n. Furthermore, for each algorithm the iteration number k, as well as the difference
between x∗ and the solution xk obtained by the respective algorithm, are given. Here xk

corresponds to the final k-th iteration. The CPU time for TANULP and ETAUNLP can be
found in the column headed "time". The average iteration number and CPU time taken to
solve each problem is listed in the final row of Table 9.7. We have not included problems
which terminated with Ī in the calculation of these averages, for each algorithm. For the
implementation of ETAUNLP, four problems were scaled, i.e., problems 3, 4, 7 and 8. None
of the problems in Table 9.7 were scaled in the implementation of TAUNLP. Of the 10
problems, ETAUNLP successfully solved 8 problems and terminated with Ī for 2 problems.
TAUNLP successfully solved all 10 problems.
We now illustrate the performance of TAUNLP and ETAUNLP using performance profiles
which are based on the CPU time for TAUNLP and ETAUNLP.

160 Numerical Results for CNLPs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
(ρ

 ≤
 τ

)

ETAUNLP

TAUNLP

Figure 9.7 Performance profile examining the effectiveness of including the new updates in
ETAUNLP

In Figure 9.7, we notice from the initial height of the profile that ETAUNLP is the fastest
algorithm on approximately 50% of the problems. The height at which the profile flatlines,
also reveals that TACNLP solves approximately 90% of the problems from the test set to
optimality. On the other hand TAUNLP is the fastest algorithm on approximately 40% of the
problems and solves approximately 90% of the problems from the test set to optimality. Even
though both algorithms are competitive, ETAUNLP performs slightly better than Snyman’s
TAUNLP [115].
We now measure the effect of introducing the scaling mechanism presented in Section 5.2.
To do so, we consider problem 7 from Table 9.7, obtained from Snyman [115]:

min f (x) = (x1 +10x2)
2 +5(x3− x4)

2 +(x2−2x3)
4 +10(x1− x4)

4. (9.4)

By considering the coefficient of 10 in the first and last term, as well as the power of 4 in the
last two terms, it is easy to see how this problem may generate iterates which are large. We
now implement both TAUNLP and ETAUNLP with scaling, and measure the effects. The
results are tabulated in Table 9.8:
Recall that the parameters d1 used in TAUNLP and t(x,2) used in ETAUNLP are both
magnification factors for ∆t. Table 9.8 provides data for TAUNLP and ETAUNLP, using
different magnification factors for the different step size updates. Each implementation is

9.5 Results for UNLPs 161

TAUNLP ETAUNLP

k d1 k t(x,2)
without scaling 463 0.001 D̄ 1.001
with scaling 236 0.001 354 1.001
without scaling Ī 0.01 D̄ 1.01
with scaling 123 0.01 111 1.01

Table 9.8 Comparison of the performance of TAUNLP and ETAUNLP with scaling

done firstly without scaling, and then with scaling. In Table 9.8, k corresponds to the
iteration number, and d1 and (t(x,2)) are the magnification factors for ∆t used in TAUNLP
and ETAUNLP respectively.
With reference to Table 9.8, we notice that TAUNLP implemented without scaling solved
problem 7 in 463 iterations, while ETAUNLP implemented with scaling solved problem 7 in
111 iterations. Here, the magnification factors for each algorithm were chosen as d1 = 0.001
and t(x,2) = 1.01 respectively. Since the parameters d1 and t(x,2) are both magnification factors
for ∆t, we can select them to be somewhat comparable. If we choose d1 = 0.01, which is
slightly larger than the default value used, i.e., d1 = 0.001 [115], then TAUNLP terminates
with Ī. If in addition, we implement TAUNLP with scaling, then the algorithm converges to
x∗ in 123 iterations. With reference to Table 9.8, we notice that this is less than the number
of iterations taken using d1 = 0.001, without scaling, i.e., k = 463 and with scaling, i.e.
k = 236. Thus by implementing the scaling mechanism, the choice of the parameter d1 no
longer has to be restricted to very small values, i.e., 0.001 and consequently ∆t is magnified
more effectively. By implementing the scaling mechanism in ETAUNLP the same problem
is solved in 111 iterations, again demonstrating that the scaling mechanism as well as the
adaptive step size routine contribute favorably to the performance of the trajectory-based
methods.

Chapter 10

Numerical Results of MINLPs

In this chapter, we present numerical results for TAMINLP (presented in Chapter 8).
TAMINLP is tested on a set of 24 problems. Details of this test set are presented in Section
10.1. Section 10.2 consists of a description of the numerical study of TAMINLP, and a
description of its results.
For comparison, the performance of our TAMINLP algorithm is compared with that of two
existing algorithms for convex MINLPs. These are the BB algorithm and the OA algorithm
presented in Section 3.4. The numerical results of this study are presented and discussed in
Section 10.3.
All tests in this chapter were performed on a PC with an Intel Core i5 CPU at 2.5 GHz with
4GB of 1333 MHz RAM, running OS X 10.8.5. All Algorithms were coded in MATLAB
2013a 64 bit.

10.1 Test problems and parameters

A total of 24 MINLPs and 1 MILP were identified for the numerical experiments in this
section. Details of the test set can be found in Table A.6, in Appendix A. The dimensions
of the problems range from n = 2 to n = 17, with the number of constraints ranging from 4
to 57, see Table A.6. Further information on the structure of each problem is summarized
below.

With reference to Table 10.1, 16 of the test problems are non-convex, two problems are
pseudo convex, five problems are convex and one problem is linear. We have included an
MILP to demonstrate that our algorithm is particularly efficient for solving MINLPs.

Problems 18, 23 and 24 are related to the problem of synthesizing a process system [42].
In order to satisfy design specifications, the optimal structural and operating parameters for a

164 Numerical Results of MINLPs

Problems Description
3 Linear

5, 8, 10,13,15 Convex
6, 7 Pseudo-convex

1, 2, 4, 9, 11, 12, 14, 16, 17 - 24 Non-convex

Table 10.1 The structure of the mixed integer problems in the test set

Problems t(x,2) t(λ ,2)
22 1.5 1.5

16, 17 1.1 2
1, 21, 24 1.1 1.1

Table 10.2 Test problems which did not converge unless the specified parametric values were
used as opposed to the default values stipulated in Table 6.3

process must be determined. Here the binary variables are associated with each piece of
equipment and the continuous variables represent the process parameters such as the flow
rates of material. The constraints are modeled to satisfy design specifications, topological
considerations and conservation equations around nodes in the superstructure [42].

TAMINLP was implemented using PC3 with the new−µ updating scheme. For each phase,
the absolute convergence tolerance is set to 10−3. For each problem, we set the radius for the
initial discrete neighborhood Nd(yd,εd), to 1. Whenever the routine for TACNLP was called
in TAMINLP, the same parameters were used as with the continuous case. Each phase was
initialized using the zero vector of corresponding dimension, for the initial multiplier
estimates.

As with the continuous case, certain problems from the test set were unable to converge or
converged slowly unless some of the values in Table 6.3 were modified slightly. Test runs
were therefore conducted to obtain the optimal values of some parameters. The first test
was conducted with TAMINLP, where for each problem a number of values for t(x,2) and
t(λ ,2), within the range of (1, 2), were used to determine which of these are optimal. In these
experiments the other variables were kept constant. We summarize the problems and the
assigned parametric values obtained from the test runs, in Table 10.2 below.

10.2 Results and discussion for TAMINLP 165

Problems µmin µmax
10 0.01 1

Table 10.3 Test problems with specifications for the penalty parameter, which differ from
those listed in Table 6.3

With reference to Table 10.2, six test problems exhibited improved convergence using these
parameter specifications.

The next test was done to determine optimal values for µmax within the range of (1, 10) and
µmin within the range of (0.01, 1). From the entire test set, only problem 10 was implemented
with parametric specifications for µ which differed from the default values listed in Table
6.3. We summarize the details in Table 10.3 below:

Within the solution process of TAMINLP, the scaling mechanism discussed in Subsection
5.2.3 was implemented for problem 20 only, but even so it failed to converge.

10.2 Results and discussion for TAMINLP

Numerical results based on the performance of TAMINLP are presented in Appendix A,
in Tables A.6 - A.7. In Table A.6, the first column gives the problem P. Using the same
notational convention presented in previous chapters, columns 2 through 3 give the number
of continuous variables nc and the number of discrete variables nd . Furthermore, column 9
gives k̄1, which correspond to the iteration number of the first phase of TAMINLP. Columns
10 through 11 give k̄2 and k̄3 which give to the iteration number corresponding to the best
solution obtained during the second and third phases of TAMINLP respectively. Column
12 gives f e which indicates how many function evaluations were used within the entire
algorithm and column 13 gives εd , which indicates the radius of the discrete neighborhood
Nd(yd,εd). Column 14 indicates if ȳ is feasible or not and column 15 gives np which
indicates how many trial points were explored. Lastly, column 16 gives re f which provides
the source of each problem. The other symbols are defined as before, while the table entry
"−" means that information could not be obtained for that particular problem.

The table entry ✓ means ȳ is feasible, while the table entry ✗ means ȳ is infeasible. Lastly,
the table entry ✓* means that ȳ is feasible, but no feasible x∗i is found on the corresponding
feasible-continuous manifold.

166 Numerical Results of MINLPs

The tabulated results in Table A.6 indicate that 23 of the 24 test problems converged to
feasible solutions. This was true even when the optimality conditions were not satisfied
within 500 iterations. For instance, problems 1 converged to the optimal point z∗ = (x∗,y∗)T ,
even though the algorithm terminated with Ī, see Table A.6. Furthermore, for problems 1, 5
and 11, the integer constituent of the solution converged to an integer feasible solution after
the first phase of TAMINLP. Activation of the second and third phases were therefore not
necessary.

Following the discussion from the first example in Section 8.7, we recall that the closest
integer-feasible point to the continuous optimum y∗c , is in general the solution to M , provided
y∗c has been rounded accurately. An example was used to illustrate this at the beginning of
Section 8.7. Therefore, provided ȳ is feasible (and has not been affected by rounding error)
and a corresponding feasible solution x∗i exists, the point (x∗i , ȳ)

T is the optimal solution to
the MINLP M . Since ȳ, which has been accurately rounded, is feasible for problems 2 - 4, 8
- 10, 13 and 22- 24, and the corresponding feasible x∗i exists, the points (x∗i , ȳ)

T are optimal
for these problems, i.e., z∗ = (x∗i , ȳ)

T , see Table A.6.
For problem 13, ȳ is feasible, and x∗c = x∗. The second phase of TAMINLP therefore
terminates upon initialization because x∗c is the continuous optimal solution corresponding to
each ȳi.
For problems 12, 14, 16, 18 and 19, even though ȳ is feasible, no corresponding feasible x
exists. For these problems ȳ is therefore not optimal.
For problems 6, 7, 15, 17 and 21, ȳ is infeasible and is therefore not optimal.
For both of the latter instances, the optimal solution corresponds to one of the other feasible
trial points generated in the neighborhood Nd(ȳ,εd). Recall that, if all of the trial points
generated are infeasible in x, then the neighborhood Nd(ȳ,εd) is increased until at least one
feasible point ȳi and corresponding x∗i is obtained.

An important observation which was made is that most problems which terminated with
the output Ī in the first phase of TAMINLP still converged to an optimal solution. This is
true for problems 2, 9, 10, 14 - 17, 19 and 21 - 24. The only problem which did not converge
is problem 20, which diverged. Furthermore, TAMINLP was able to locate the solution to
problems 6 and 8, which are pseudo-convex and convex respectively, faster than it was able
to locate a solution to problem 3, the MILP, see Table A.6. This indicates that TAMINLP is
better structured for solving MINLPs.

We now compare the performance of TAMINLP with that of BB and OA.

10.3 Comparison of MINLP algorithms 167

10.3 Comparison of MINLP algorithms

In this section, we use a small convex MINLP, to compare TAMINLP with some of the
existing algorithms for convex MINLPs, discussed in Section 3.4. Specifically, we compare
TAMINLP with BB and OA. The following convex MINLP example is taken from [93]:

M

min

x,y1,y2
x2 +(y1− 1

3)
2 +(y2− 1

4)
2,

st 2y1−2y2 +1− x≥ 0,
x ∈ [−5, 5], y ∈ {0, 1}2.

(10.1)

We begin by illustrating BB using the MINLP in (10.1). This worked solution, was adapted
from [93]. BB starts by solving the relaxed CNLP M :

M

min
x,y

x2 +(y1− 1
3)

2 +(y2− 1
4)

2,

st 2y1−2y2 +1− x≥ 0,
x ∈ [−5, 5], y ∈ [0, 1]2,

and obtains the solution (x,y)T = (0, 1
3 ,

1
4)

T . This is not an integer feasible solution, so using
the branching rule of choosing the most fractional integer variable, the variable y2 =

1
4 is

chosen for branching. This results in two subproblems:

M 1

min
x,y

x2 +(y1− 1
3)

2 +(y2− 1
4)

2,

st 2y1−2y2 +1− x≥ 0,
y2−1≥ 0,
x ∈ [−5, 5], y ∈ [0, 1]2.

and

M 2

min
x,y

x2 +(y1− 1
3)

2 +(y2− 1
4)

2,

st 2y1−2y2 +1− x≥ 0,
y2 ≤ 0,
x ∈ [−5, 5], y ∈ [0, 1]2.

Subproblem M 1 has optimal solution (x,y)T = (− 1
15 ,

7
15 ,1)

T with f1 = f (x,y) = 405
720 .

168 Numerical Results of MINLPs

The solution to subproblem M 2 is (x,y)T = (0, 1
3 ,0)

T , with f2 = f (x,y) = 1
16 . The node

corresponding to M 2 is the most promising since f2 < f1. The subproblems M 21 and M 22

are therefore solved, by branching on the non-integer variable 1
3 :

M 21

min
x,y

x2 +(y1− 1
3)

2 +(y2− 1
4)

2,

st 2y1−2y2 +1− x≥ 0,
y2 ≤ 0,
y1−1≥ 0,
x ∈ [−5, 5], y ∈ [0, 1]2.

and

M 22

min
x,y

x2 +(y1− 1
3)

2 +(y2− 1
4)

2,

st 2y1−2y2 +1− x≥ 0,
y2 ≤ 0,
y1 ≤ 0,
x ∈ [−5, 5], y ∈ [0, 1]2.

Subproblem M 21 has optimal solution (x,y)T = (0,1,0)T with optimal function value
f21 = f (x,y) = 73

144 . The point (x,y)T = (0,1,0)T is integer-feasible and since f21 < f1, the
node corresponding to M 1 is pruned due to dominated upper bound. We store the solution,
(x,y)T = (0,1,0)T and proceed to solve M 22. Subproblem M 22 has the integer-feasible
solution (x,y)T = (0,0,0)T , with optimal function value f22 = f (x,y) = 25

144 . Since there
are no more nodes to explore in the BB tree and f22 < f21, the BB optimal solution to the
problem (10.1) is (x∗,y∗)T = (0,0,0)T .
In total, five CNLPs were solved before the BB optimal solution (x∗,y∗)T = (0,0,0)T was
located.
We now illustrate OA, using problem (10.1)
OA is initialized at the feasible point y0 = (0, 1)T , with T−1 = /0, S−1 = /0 and UBD−1 = ∞.
Since y0 is feasible, M̄ (y0) is solved:

M̄ (y0)

min

x
x2 + 97

144 ,

st −x−1≥ 0,
x ∈ [−5, 5],

10.3 Comparison of MINLP algorithms 169

which has solution x0 =−1. The MILP M-OA0 is then solved:

M-OA0

min
α

α,

st α <UBD0 = 241
144 ,

−2x− 2
3y1 +

3
2y2− 263

144 ≤ α,

2y1−2y2 +1− x≥ 0,
x ∈ [−5, 5], y ∈ {0,1}2,

to obtain the solution (x,y)T = (3,1,0)T , and α = −1223
144 . We then use the feasible point

y1 = (1,0)T to solve M̄ (y1) and obtain x1 =0, and f 1 = 73
144 < f 0 = 241

144 . M-OA1 is then
solved:

M-OA1

min
α

α,

st α <UBD1 = 73
144 ,

−2x− 2
3y1 +

3
2y2− 263

144 ≤ α,
4
3y1− 1

2y2− 119
144 ≤ α,

2y1−2y2 +1− x≥ 0,
x ∈ [−5, 5], y ∈ {0,1}2,

to obtain the solution (x,y)T = (−1
2 ,0,0)T and α = −119

144 . We choose y2 = (0,0)T as the
next integer assignment. The point y2 is feasible, so M̄ (y2) is solved to obtain x2 = 0, and
f 2 = 25

144 < f 1. We then solve M-OA2:

M-OA2

min
α

α,

st α <UBD2 = 25
144 ,

−2x− 2
3y1 +

3
2y2− 263

144 ≤ α,
4
3y1− 1

2y2− 119
144 ≤ α,

−2
3y1− 1

2y2− 25
144 ≤ α,

2y1−2y2 +1− x≥ 0,
x ∈ [−5, 5], y ∈ {0,1}2,

to obtain the solution (x,y)T = (−1
2 ,1,1)T , and α = 1

144 . The point y3 = (1,1)T is chosen
as the next integer assignment, which happens to be feasible. M̄ (y3) is the solved and the
solutions x3 = 0 and f 3 = 145

144 >UBD2 are obtained. The next MILP, M-OA3 is then solved:

170 Numerical Results of MINLPs

M-OA3

min
α

α,

st α <UBD0 = 263
144 ,

−2x− 2
3y1 +

3
2y2− 263

144 ≤ α,
4
3y1− 1

2y2− 119
144 ≤ α,

−2
3y1− 1

2y2− 25
144 ≤ α,

4
3y1 +

3
2y2− 263

144 ≤ α,

2y1−2y2 +1− x≥ 0,
x ∈ [−5, 5], y ∈ {0,1}2,

which is infeasible, so the algorithm stops. The optimal solution is thus found to be
(x∗,y∗)T = (0,0,0)T , corresponding to the solution of M̄ (y2).
A total of four CNLPs and four MINLPs were solved before the OA optimal solution
(x,y)T = (0,0,0)T was located.

We now use TAMINLP to solve the problem (10.1).

TAMINLP starts by solving the relaxed problem M :

M

min
x,y

x2 +(y1− 1
3)

2 +(y2− 1
4)

2,

st 2y1−2y2 +1− x≥ 0,
x ∈ R, y ∈ R,

and obtains the solution (x∗c ,y
∗
c)

T = (0, 1
3 ,

1
4)

T . Since y∗c is non-integer, it is rounded to the
nearest integer point ȳ0 = (0,0)T . The set of integer-feasible trial points, ȳi, i = 1,2., which
make up the columns of I1, are then generated:

I1 =

{
1 0
0 1

}
. (10.2)

Including ȳ0, the set of integer-feasible points from which the second phase of TAMINLP is
initialized, make up the columns of I2:

I2 =

{
0 1 0
0 0 1

}
. (10.3)

10.3 Comparison of MINLP algorithms 171

Three separate minimizations are then performed during the second phase of TAMINLP by
solving M̄ (yi), i = 0, . . .2:

M̄ (y0)

{
min

x
x2 + 25

144 ,

st x ∈ [−5, 5],

M̄ (y1)

{
min

x
x2 + 73

144 ,

st x ∈ [−5, 5],

M̄ (y2)

{
min

x
x2 + 97

144 ,

st x ∈ [−5, 5].

The second phase of TAMINLP terminates upon initialization for each ȳi, since the points
(x,y)T = (0,0,0)T , (x,y)T = (0,1,0)T and (x,y)T = (0,0,1)T are all optimal solutions on
their respective manifolds.

The third phase of TAMINLP is initialized from (x,y)T = (0,0,0)T and
(x,y)T = (0,1,0)T , as these points lie within the neighborhood (8.32). The point
(x∗,y∗)T = (0,0,0)T is then confirmed as the TAMINLP optimal solution.
A total of three CNLPs were solved (since the algorithm terminated upon initialization of the
second phase) to locate the TAMINLP optimal solution (x∗,y∗)T = (0,0,0)T . This is less
than the amount taken by both BB and OA. Furthermore, no separate feasibility problem
needed to be solved since each phase of TAMINLP terminated upon convergence to a
feasible solution. Here, it is the roll of the penalty term in AL (8.8), used in TAMINLP:

1
2µ

∑
i

c2
i (x,y),

which ensures that infeasible iterates are driven to feasibility.
In conclusion, TAMINLP is seen to perform significantly better than the convex MINLP
solvers BB and OA.
In an attempt to compare our algorithm with existing algorithms for general MINLPs [14],
[45], [94],[113], [131], we found that they were not comparable. These methods use the
number of function calls and CPU times as a criteria for comparison. Our method however,
uses a very negligible number of function calls and CPU times are much lower than those
reported in recent papers. Hence the comparison will be favorable for our algorithm.

Chapter 11

Conclusion

The trajectory-based methods for CNLPs and MINLPs have been introduced in this thesis.
Although the trajectory-based method for UNLPs, TAUNLP [115] exists, the methods for
CNLPs and MINLPs developed in this thesis, are new. The method for CNLPs, TACNLP
is an extension of TAUNLP, while the method for MINLPs, TAMINLP, is a adaptation of
TACNLP. New strategies have been introduced to improve on the existing framework of
TAUNLP. These include the integration of an adaptive step size routine into the framework
of the trajectory-based algorithms and a new approach for updating the penalty parameter µ .
A new technique for scaling badly scaled problems is also introduced. Computational results
have been given showing the effectiveness of the contributions made in this thesis.

Some of the strengths of the methods developed in this thesis include the fact that they are
first-order methods, with no function evaluations used for TACNLP, and minimal function
evaluations used for TAMINLP. Unlike the MINLP methods presented in Chapter 3, no
separate infeasibility problem needs to be solved in TAMINLP. Theoretical convergence
is also given for both TACNLP and TAMINLP. Furthermore, TAMINLP can solve MILPs,
convex MINLPs (both convex MIQPs and general convex MINLPs) and general MINLPs
(for which no credible algorithm exists).

11.1 Summary

Chapter 2 contains a review of CNLPs. The review is three-fold. In the first part, we present
some theory pertaining to general CNLPs. This review is important since it allows us to
establish optimality conditions for the existence of a local solution to the methods developed
for CNLPs in this thesis. In the second part, we present a review of constraints handling in
constrained nonlinear programming. Various penalty functions are discussed. This review is
motivated by the fact that the methods developed in this thesis use the augmented

174 Conclusion

Lagrangian penalty function. In the third part, we present a review of the existing methods
for solving CNLPs. This review provides us a basis for comparison with the methods for
CNLPs presented in this thesis.

In Chapter 3, we present a review of MINLPs. The review is divided into three parts. In the
first part, we present an overview of general MINLPs. The second part provides details of
important CNLP and MILP subproblems used within the solution process of existing
methods for MINLPs. This is followed by a review of these existing methods for MINLPs.
The methods for MINLPs are divided into two classes in the review; convex MINLPs and
non-convex MINLPs with a specific structure, i.e. pseudo-convex MINLPs. These methods
are based on one or a combination of CNLP subproblems presented in this second part of
this chapter. The detail of the review is motivated by the fact that we have developed an
adaptation of TACNLP for general MINLPs. This adaptation for MINLPs, TAMINLP,
presented in Chapter 8, is designed to solve general MINLPs and uses a combination of two
of the CNLP subproblems presented in this chapter.

In Chapter 4, we present a review of Snyman’s trajectory-based method for UNLPs,
TAUNLP [115]. This is a first order method, which uses no objective function value
evaluations, no line search techniques and no second-order derivative information
throughout the solution process. TAUNLP has seen success since its inception and has
proven to be competitive with some methods for unconstrained optimization [115]. The
detail of the review is motivated by the fact that all the methods developed in this thesis, are
extensions of TAUNLP.

Chapter 5 contains the detail of our trajectory-based algorithm for CNLPs, TACNLP. Some
fundamental changes are made in an attempt to improve on the existing framework of the
method proposed by Snyman [115]. This includes incorporating an adaptive step size routine
into TACNLP. A new technique for updating the penalty parameter µ associated with the
augmented Lagrangian (2.30) is also introduced, and a new scheme for scaling problems is
proposed. As with Snyman’s [115] TAUNLP, no function evaluations, no second-order
derivative information and no line search techniques are used within the framework of
TACNLP.
Constrained optimization is a mature area of research, but very little literature exists on
trajectory-based methods for CNLPs. This has motivated the development of TACNLP for
general CNLPs.

11.1 Summary 175

In Chapter 6, we present a direct adaptation of TAUNLP [115] for CNLPs, ATAUNLP.
Details of the implementation of TACNLP and ATAUNLP are presented and compared. This
comparison is done to motivate the new features introduced in TACNLP, i.e. the adaptive
step size routine. We establish that the number of parameters used in TACNLP is less than
that of ATAUNLP. The performance of TACNLP as well as the performance of ATAUNLP
are presented in Chapter 9.

In Chapter 7, local and global convergence properties of TACNLP are established. Global
convergence as well as local convergence for the method are guaranteed.

Chapter 8 is divided into three parts. In the first part, we review some important definitions
pertaining to the local solution of an MINLP. This includes the definition of a local
minimizer. We later prove that Newby’s definition of a local minimizer [90] is not ideal. The
review is important nonetheless because it aids us in developing our own criteria for
detecting whether a solution is an optimum.
Following the review, in the second part, we present the detail of our three-fold TAMINLP
algorithm. TAMINLP is an adaptation of TACNLP, and relies on two of the CNLP
subproblems discussed in Chapter 3. During each phase of TAMINLP solutions to one of
these subproblems is sought.
In the final part of this chapter, convergence properties of TAMINLP are established.
Unlike TAUNLP and TACNLP, TAMINLP uses a few function evaluations during the
solution process. This is done to determine which of the solutions in the second and third
phases are the best. As with TAUNLP and TACNLP, TAMINLP does not require any
second-order derivative information or line search techniques, for its convergence.
No trajectory-based methods for MINLPs exist in the literature. This has motivated the
development of TAMINLP for general MINLPs..

In Chapter 9 computational results are presented illustrating the effectiveness of the methods
developed in Chapters 5 and 6. TACNLP and ATAUNLP are tested on a set of 71 CNLP
problems. From the results, we conclude that TACNLP is efficient for solving small scale
CNLP problems. Furthermore Snyman’s TAUNLP [115] is compared with our extension
thereof for UNLPs, ETAUNLP. With the new strategies in place, the methods developed in
this thesis are comparable with the existing unconstrained trajectory-based method [115] and
out-perform the constrained adaptation thereof.

176 Conclusion

Computational results are presented in Chapter 10, showing the effectiveness of the MINLP
trajectory-based method, TAMINLP, developed in Chapter 8. TAMINLP is tested on 23
MINLP problems. The results obtained for TAMINLP assert that the improvements we
proposed in Chapter 8, for the definition of a mixed minimizer, are useful. TAMINLP is
compared with BB and OA and proves to exhibits superior performance over these convex
MINLP methods.

11.2 Future Work

The main areas of improvement in this thesis are outlined below:

• The research presented in this thesis is new and can therefore be developed to solve
optimization problems of other types such as complementarity problems.

• Mathematical theories based on the method can be further developed both for CNLPs
and MINLPs.

• The trajectory-based algorithm can be developed further to solve large scale CNLPs
and MINLPs.

Our future research will certainly continue in these areas of development.

Bibliography

[1] Abramson, M. A., Audet, C., Chrissis, J. W., and Walston, J. G. (2009). Mesh adaptive
direct search algorithms for mixed variable optimization. Optimization Letters, 3(1):35–
47.

[2] Adjiman, C. S., Androulakis, I. P., and Floudas, C. A. (2000). Global optimization of
mixed-integer nonlinear problems. AIChE Journal, 46(9):1769–1797.

[3] Aluffi-Pentini, F., Parisi, V., and Zirilli, F. (1984). A differential-equations algorithm for
nonlinear equations. ACM Transactions on Mathematical Software (TOMS), 10(3):299–
316.

[4] Alvarez, F. (2000). On the minimizing property of a second order dissipative system in
hilbert spaces. SIAM Journal on Control and Optimization, 38(4):1102–1119.

[5] Alvarez, F. and Cabot, A. (2004). Steepest descent with curvature dynamical system.
Journal of optimization theory and applications, 120(2):247–273.

[6] Andreani, R., Birgin, E. G., Martínez, J. M., and Schuverdt, M. L. (2007). On augmented
lagrangian methods with general lower-level constraints. SIAM Journal on Optimization,
18(4):1286–1309.

[7] Andreani, R., Birgin, E. G., Martínez, J. M., and Schuverdt, M. L. (2008). Augmented
lagrangian methods under the constant positive linear dependence constraint qualification.
Mathematical Programming, 111(1-2):5–32.

[8] Antipin, A. S. (1994). Minimization of convex functions on convex sets by means of
differential equations. Differential Equations, 30(9):1365–1375.

[9] Attouch, H. and Alvarez, F. (2000). The heavy ball with friction dynamical system for
convex constrained minimization problems. Springer.

[10] Attouch, H. and Cominetti, R. (1996). A dynamical approach to convex minimization
coupling approximation with the steepest descent method. Journal of Differential
Equations, 128(2):519–540.

[11] Attouch, H., Goudou, X., and Redont, P. (2000). The heavy ball with friction method, i.
the continuous dynamical system: global exploration of the local minima of a real-valued
function by asymptotic analysis of a dissipative dynamical system. Communications in
Contemporary Mathematics, 2(01):1–34.

[12] Audet, C. and Dennis Jr, J. (2001). Pattern search algorithms for mixed variable
programming. SIAM Journal on Optimization, 11(3):573–594.

178 Bibliography

[13] Bartholomew-Biggs, M. (2008). Nonlinear optimization with engineering applications,
volume 19. Springer.

[14] Belotti, P., Lee, J., Liberti, L., Margot, F., and Wächter, A. (2009). Branching and
bounds tightening techniques for non-convex minlp. Optimization Methods & Software,
24(4-5):597–634.

[15] Bertsekas, D. P. (1982). Constrained optimization and lagrange multiplier methods.
Computer Science and Applied Mathematics, Boston: Academic Press, 1982, 1.

[16] Bertsekas, D. P. (1999). Nonlinear programming.

[17] Birgin, E. G., Castillo, R., and Martínez, J. M. (2005). Numerical comparison of
augmented lagrangian algorithms for nonconvex problems. Computational Optimization
and Applications, 31(1):31–55.

[18] Birgin, E. G., Fernández, D., and Martínez, J. M. (2012). The boundedness of
penalty parameters in an augmented lagrangian method with constrained subproblems.
Optimization Methods and Software, 27(6):1001–1024.

[19] Birgin, E. G. and Martínez, J. M. (2008). Structured minimal-memory inexact
quasi-newton method and secant preconditioners for augmented lagrangian optimization.
Computational Optimization and Applications, 39(1):1–16.

[20] Birgin, E. G. and Martínez, J. M. (2012). Augmented lagrangian method
with nonmonotone penalty parameters for constrained optimization. Computational
Optimization and Applications, 51(3):941–965.

[21] Björk, K.-M. (2002). A global optimization method with some heat exchanger network
applications. PhD thesis, Department of Chemical Engineering, Abo Akademi University.

[22] Björkqvist, J. (2001). Discrete and disjunctive optimization: Parallel strategies and
applications in industrial scheduling. PhD thesis, Department of Chemical Engineering,
Abo Akademi University.

[23] Boggs, P. T. and Tolle, J. W. (1989). A strategy for global convergence in a sequential
quadratic programming algorithm. SIAM Journal on Numerical Analysis, 26(3):600–623.

[24] Boggs, P. T. and Tolle, J. W. (2000). Sequential quadratic programming for large-scale
nonlinear optimization. Journal of Computational and Applied Mathematics, 124(1):123–
137.

[25] Boyd, S. and Vandenberghe, L. (2009). Convex optimization. Cambridge university
press.

[26] Brown, A. and Bartholomew-Biggs, M. C. (1989). Some effective methods for
unconstrained optimization based on the solution of systems of ordinary differential
equations. Journal of Optimization Theory and Applications, 62(2):211–224.

[27] Buchheim, C. and Trieu, L. (2013). Quadratic outer approximation for convex integer
programming with box constraints. In SEA, pages 224–235. Springer.

Bibliography 179

[28] Burachik, R. S. and Kaya, C. Y. (2012). An augmented penalty function method with
penalty parameter updates for nonconvex optimization. Nonlinear Analysis: Theory,
Methods & Applications, 75(3):1158–1167.

[29] Butcher, J. (1986). Optimal order and stepsize sequences. IMA journal of numerical
analysis, 6(4):433–438.

[30] Butcher, J. (1990). Order, stepsize and stiffness switching. Computing, 44(3):209–220.

[31] Cardoso, M. F., Salcedo, R., de Azevedo, S. F., and Barbosa, D. (1997). A simulated
annealing approach to the solution of minlp problems. Computers & chemical engineering,
21(12):1349–1364.

[32] Cominetti, R. and Courdurier, M. (2002). Coupling general penalty schemes for convex
programming with the steepest descent and the proximal point algorithm. SIAM Journal
on Optimization, 13(3):745–765.

[33] Conn, A. R., Gould, G., and Toint, P. L. (2010). LANCELOT: a Fortran package
for large-scale nonlinear optimization (Release A). Springer Publishing Company,
Incorporated.

[34] Cornuejols, G. and Tutuncu, R. (2007). Optimization methods in Finance. Cambridge
University Press.

[35] Courant, R. et al. (1943). Variational methods for the solution of problems of
equilibrium and vibrations. Bull. Amer. Math. Soc, 49(1):1–23.

[36] Dakin, R. J. (1965). A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8(3):250–255.

[37] Datta, B. and Harikrishna, V. (2005). Optimization applications in water resources
systems engineering. Indian Institute of Technology, Kanpur.

[38] Dennis Jr, J. E. and Schnabel, R. B. (1996). Numerical methods for unconstrained
optimization and nonlinear equations, volume 16. Siam.

[39] Diener, I. (1995). Trajectory methods in global optimization. In Handbook of Global
optimization, pages 649–668. Springer.

[40] Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with
performance profiles. Mathematical programming, 91(2):201–213.

[41] Duran, M. A. and Grossmann, I. E. (1986a). An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical programming, 36(3):307–339.

[42] Duran, M. A. and Grossmann, I. E. (1986b). An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical programming, 36(3):307–339.

[43] Emet, S. (2004). A comparative study of solving some nonconvex MINLP problems.
PhD thesis, Department of Chemical Engineering, Abo Akademi University.

180 Bibliography

[44] Escudero, L. (1988). More test examples for nonlinear programming codes: Klaus
schittkowski volume 282 in: Lecture notes in economics and mathematical systems,
springer, berlin, 1987, iv+ 261 pages, dm49. 00.

[45] Exler, O. and Schittkowski, K. (2007). A trust region sqp algorithm for mixed-integer
nonlinear programming. Optimization Letters, 1(3):269–280.

[46] Fabian, M. J., Henrion, R., Kruger, A. Y., and Outrata, J. V. (2010). Error bounds:
necessary and sufficient conditions. Set-Valued and Variational Analysis, 18(2):121–149.

[47] Fiacco, A. V. and McCormick, G. P. (1990). Nonlinear programming: sequential
unconstrained minimization techniques, volume 4. Siam.

[48] Fischer, A. (2002). Local behavior of an iterative framework for generalized equations
with nonisolated solutions. Mathematical Programming, 94(1):91–124.

[49] Fletcher, R. and Leyffer, S. (1994). Solving mixed integer nonlinear programs by outer
approximation. Mathematical programming, 66(1-3):327–349.

[50] Floudas, C. A. (1995). Nonlinear and mixed-integer optimization: fundamentals and
applications. Oxford University Press.

[51] Floudas, C. A., Pardalos, P. M., Adjiman, C., Esposito, W. R., Gümüs, Z. H., Harding,
S. T., Klepeis, J. L., Meyer, C. A., and Schweiger, C. A. (2013). Handbook of test problems
in local and global optimization, volume 33. Springer Science & Business Media.

[52] Forsgren, A., Gill, P. E., and Wright, M. H. (2002). Interior methods for nonlinear
optimization. SIAM review, 44(4):525–597.

[53] Frisch, K. (1955). The logarithmic potential method of convex programming.
Memorandum, University Institute of Economics, Oslo.

[54] Gabere, M. N. (2007). Simulated annealing driven pattern search algorithms for global
optimization.

[55] Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of optimization
theory and applications, 10(4):237–260.

[56] Gill, P. E., Murray, W., and Saunders, M. A. (2002). Snopt: An sqp algorithm for
large-scale constrained optimization. SIAM journal on optimization, 12(4):979–1006.

[57] Gill, P. E., Murray, W., and Saunders, M. A. (2006). Users guide for snopt version 7:
Software for large-scale nonlinear programming.

[58] Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical optimization. Academic
press.

[59] Gill, P. E. and Robinson, D. P. (2012). A primal-dual augmented lagrangian.
Computational Optimization and Applications, 51(1):1–25.

[60] Gould, N. (2006). An introduction to algorithms for continuous optimization.

Bibliography 181

[61] Gould, N. I. and Toint, P. L. (2000). SQP methods for large-scale nonlinear
programming. Springer.

[62] Griewank, A. O. (1981). Generalized descent for global optimization. Journal of
optimization theory and applications, 34(1):11–39.

[63] Grossmann, I. E. (2002). Review of nonlinear mixed-integer and disjunctive
programming techniques. Optimization and Engineering, 3(3):227–252.

[64] Hager, W. W. and Seetharama Gowda, M. (1999). Stability in the presence of degeneracy
and error estimation. Mathematical Programming, 85(1):181–192.

[65] Hairer, E., Nørsett, S. P., and Wanner, G. (2008). Solving ordinary differential equations
I: nonstiff problems, volume 1. Springer Science & Business.

[66] Harjunkoski, I. (1997). Application of MINLP methods to a scheduling problem in the
paper-converting industry. Process design laboratory, Department of chemical engineering,
Abo Akademi University.

[67] Hestenes, M. R. (1969). Multiplier and gradient methods. Journal of optimization
theory and applications, 4(5):303–320.

[68] Hock, W. and Schittkowski, K. (1980). Test examples for nonlinear programming codes.
Journal of Optimization Theory and Applications, 30(1):127–129.

[69] Holsapple, R., Iyer, R., and Doman, D. (2007). Variable step-size selection methods for
implicit integration schemes for odes. International journal of numerical analysis and
modeling. Computing and Information, 4(2):210–240.

[70] Housh, M., Ostfeld, A., and Shamir, U. (2012). Box-constrained optimization
methodology and its application for a water supply system model. Journal of Water
Resources Planning and Management, 138(6):651–659.

[71] Karlsson, S. (2001). Optimization of a sequential-simulated moving-bed separation
process with mathematical programming methods. Process Design Laboratory,
Department of Chemical Engineering, Abo Akademi University.

[72] Karuppiah, R. and Grossmann, I. E. (2006). Global optimization for the synthesis of
integrated water systems in chemical processes. Computers & Chemical Engineering,
30(4):650–673.

[73] Kelley, Jr, J. E. (1960). The cutting-plane method for solving convex programs. Journal
of the Society for Industrial & Applied Mathematics, 8(4):703–712.

[74] Khalil, E. M., Zhou, H., and Chen, W. (2014). Steepest-ascent revisited: Unconstrained
missile trajectory. International Journal of Aerospace Engineering, 2014.

[75] Kocis, G. R. and Grossmann, I. E. (1989a). Computational experience with dicopt
solving minlp problems in process systems engineering. Computers & Chemical
Engineering, 13(3):307–315.

182 Bibliography

[76] Kocis, G. R. and Grossmann, I. E. (1989b). A modelling and decomposition strategy
for the minlp optimization of process flowsheets. Computers & chemical engineering,
13(7):797–819.

[77] Lastusilta, T. (2007). An implementation of the extended cutting plane method in gams.

[78] Lehmann, T. (2013). On Efficient Solution Methods for Mixed-Integer Nonlinear and
Mixed-Integer Quadratic Optimization Problems. PhD thesis, PhD thesis, Universität
Bayreuth, 2013. urn: nbn: de: bvb: 703-opus4-12758.

[79] Lewis, A. S. and Pang, J.-S. (1998). Error bounds for convex inequality systems.
In Generalized Convexity, Generalized Monotonicity: Recent Results, pages 75–110.
Springer.

[80] Leyffer, S. (2001). Integrating sqp and branch-and-bound for mixed integer nonlinear
programming. Computational Optimization and Applications, 18(3):295–309.

[81] Lieckens, K. and Vandaele, N. (2007). Reverse logistics network design with stochastic
lead times. Computers & Operations Research, 34(2):395–416.

[82] Liu, S., Adams, A., and Ibrahim, B. M. (2013). Effects of tax on investment portfolios
and financial markets under mixed integer stochastic programming. Technical report,
Centre for Finance and Investment, Heriot Watt University.

[83] Liuzzi, G., Lucidi, S., and Rinaldi, F. (2012). Derivative-free methods for bound
constrained mixed-integer optimization. Computational Optimization and Applications,
53(2):505–526.

[84] Lucidi, S., Piccialli, V., and Sciandrone, M. (2005). An algorithm model for mixed
variable programming. SIAM Journal on Optimization, 15(4):1057–1084.

[85] Luenberger, D. G. and Ye, Y. (2008). Linear and nonlinear programming, volume 116.
Springer.

[86] M, G.-P. U. and L, M. O. (1976). Superlinearly convergent quasi-newton methods for
nonlinearly constrained optimization problems. Mathematical Programming, 11:1–13.

[87] Martinez, J. M. (2000). Box-quacan and the implementation of augmented lagrangian
algorithms for minimization with inequality constraints. Computational and Applied
Mathematics, 19:31–56.

[88] McDonald, C. M. and Karimi, I. A. (1997). Planning and scheduling of parallel
semicontinuous processes. 1. production planning. Industrial & Engineering Chemistry
Research, 36(7):2691–2700.

[89] Murtagh, B. A. and Saunders, M. A. (1998). Minos 5.5 users guide. report sol 83-20r,
dept of operations research.

[90] Newby, E. (2013). General solution methods for mixed integer quadratic programming
and derivative free mixed integer non-linear programming problems. PhD thesis,
Computational and Applied Mathematics, The University of the Witwatersrand.

Bibliography 183

[91] Newby, E. and Ali, M. M. (2014). A trust-region-based derivative free algorithm for
mixed integer programming. Computational Optimization and Applications, pages 1–31.

[92] Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science &
Business Media.

[93] Nzengang, F. V. and Ali, M. M. (2010). Introduction to mixed integer nonlinear
programming.

[94] O Exler, LT Antelo, J. E. A. A. and Banga, J. (2008). A tabu search-based algorithm
for mixed-integer nonlinear problems and its application to integrated process and control
system design. Computers and Chemical Engineering, 32(8):77–91.

[95] P, H. S. (1976). Superlinearly convergent variable metric algorithms for general
nonlinear programming problems. Mathematical Programming, 11:263–282.

[96] P, H. S. (1977). A globally convergent method for nonlinear programming. Journal of
Optimization Theory and Applications, 22:297–309.

[97] Pettersson, F. (1994). Mixed integer non-linear programming applied on pump
configurations. PhD thesis, Department of Chemical Engineering, Abo Akademi
University.

[98] Pillo, G. and Roma, M. (2006). Large-scale nonlinear optimization, volume 83.
Springer.

[99] Polisetty, P. K. and Gatzke, E. P. (2005). A decomposition-based minlp solution method
using piecewise linear relaxations. International Transactions in Operations Research.

[100] Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

[101] Porn, R. (2000). Mixed integer non-linear programming: convexification techniques
and algorithm development. PhD thesis, Department of Chemical Engineering, Abo
Akademi University.

[102] Pörn, R. and Westerlund, T. (2000). A cutting plane method for minimizing pseudo-
convex functions in the mixed integer case. Computers & Chemical Engineering,
24(12):2655–2665.

[103] Potra, F. A. and Wright, S. J. (2000). Interior-point methods. Journal of Computational
and Applied Mathematics, 124(1):281–302.

[104] Powell, M. (1977). A fast algorithm for nonlinearly constrained optimization
calculations. Numerical analysis Dundee, pages 144–157.

[105] Powell, M. (1978a). Algorithms for nonlinear constraints that use lagrangian functions.
Mathematical programming, pages 224–248.

[106] Powell, M. (1978b). The convergence of variable metric methods for nonlinearly
constrained optimization calculations. Nonlinear programming, 3:27–63.

184 Bibliography

[107] Powell, M. J. (1967). " A method for non-linear constraints in minimization problems".
UKAEA.

[108] R. Silva, J. S. and Vincente, L. N. (2008). Local analysis of the feasible primal-dual
interior point method. Computational Optimization and Applications, 41:41 – 57.

[109] Roslöf, J. (2002). Application of MILP-based Methods to a Class of Industrial
Production Scheduling Problems. PhD thesis, Abo Akademi University.

[110] Rubinov, A., Yang, X., and Bagirov, A. (2002). Penalty functions with a small penalty
parameter. Optimization Methods and software, 17(5):931–964.

[111] Ryberg, A.-B., Domeij Bäckryd, R., and Nilsson, L. (2012). Metamodel-based
multidisciplinary design optimization for automotive applications.

[112] Ryoo, H. S. and Sahinidis, N. V. (1995). Global optimization of nonconvex nlps
and minlps with applications in process design. Computers & Chemical Engineering,
19(5):551–566.

[113] Schlüter, M., Egea, J. A., and Banga, J. R. (2009). Extended ant colony optimization
for non-convex mixed integer nonlinear programming. Computers & Operations Research,
36(7):2217–2229.

[114] Smith, E. and Pantelides, C. C. (1997). Global optimisation of nonconvex minlps.
Computers & Chemical Engineering, 21:S791–S796.

[115] Snyman, J. A. (1982). A new and dynamic method for unconstrained minimization.
Applied Mathematical Modelling, 6(6):449–462.

[116] Snyman, J. A. (1983). An improved version of the original leap-frog dynamic method
for unconstrained minimization lfop1(d). Applied Mathematical Modelling, 7:216–218.

[117] Snyman, J. A. (2000). The lfopc leap-frog dynamic method for constrained
optimization. Computers Math. Applic., 40:1085–1096.

[118] Snyman, J. A. and Fatti, L. (1987). A multi-start global minimization algorithm
with dynamic search trajectories. Journal of Optimization Theory and Applications,
54(1):121–141.

[119] Still, C. and Westerlund, T. (2009). Extended Cutting Plane Algorithm. Springer.

[120] van den Heever, S. A. and Grossmann, I. E. (2003). A strategy for the integration of
production planning and reactive scheduling in the optimization of a hydrogen supply
network. Computers & Chemical Engineering, 27(12):1813–1839.

[121] Vanderbei, R. J. (1999). Loqo users manual version 3.10. Optimization methods
software, 12:485–514.

[122] Vanderbei, R. J. (2005). Nonlinear programming and engineering applications. In
Tutorials on Emerging Methodologies and Applications in Operations Research, pages
7–1. Springer.

Bibliography 185

[123] Wah, B. W., Chen, Y., and Wang, T. (2007). Simulated annealing with asymptotic
convergence for nonlinear constrained optimization. Journal of Global Optimization,
39(1):1–37.

[124] Westerlund (2005). Aspects on N-dimensional allocation. PhD thesis, Department of
Chemical Engineering, Abo Akademi University,.

[125] Westerlund, T. and Pettersson, F. (1995). An extended cutting plane method for
solving convex minlp problems. Computers & Chemical Engineering, 19:131–136.

[126] Westerlund, T. and Pörn, R. (2002). Solving pseudo-convex mixed integer optimization
problems by cutting plane techniques. Optimization and Engineering, 3(3):253–280.

[127] Westerlund, T., Skrifvars, H., Harjunkoski, I., and Pörn, R. (1998). An extended
cutting plane method for a class of non-convex minlp problems. Computers & Chemical
Engineering, 22(3):357–365.

[128] Wilson, R. B. (1963). A simplicial algorithm for concave programming. PhD thesis,
Graduate School of Business Administration, Harvard University.

[129] Wolsey, L. A. (1998). Integer programming, volume 42. Wiley New York.

[130] Wright, S. and Nocedal, J. (1999). Numerical optimization, volume 2. Springer New
York.

[131] Zhu, W. and Lin, G. (2011). A dynamic convexized method for nonconvex mixed
integer nonlinear programming. Computers & Operations Research, 38(12):1792–1804.

Appendix A

Results for the trajectory-based
algorithms

This appendix contains large data used during the discussion of this thesis, as well as the
detailed computational results obtained using TACNLP, ATAUNLP and TAMINLP. Section
A.1 contains the results and information on the test problems used in TACNLP and ATAUNLP,
in Tables A.1 - A.5. In Tables A.2 and A.5, for each problem P the tables provide the value of
x∗ as well as the difference between x∗ and the solution obtained by each respective algorithm,
xk. Information on larger CNLP test problems is provided in Table A.3. The data used in
the convergence discussion of Chapter 8 can be found in Section A.2 in (A.1). Lastly, the
results for TAMINLP are given in Section A.3, in Tables A.6 - A.7. An analysis of the results
contained in these Appendix is given in chapter 9.

A.1 TACNLP and ATAUNLP Results

P n f (x) LE LI NE NI k1 k2 k3 k4 tk3 tk4

1 2 Constant 0 0 2 0 51 51 51 51 0.0431 0.0666
2 2 Linear 0 0 1 0 35 35 33 103 0.0272 0.0606
3 2 Linear 0 0 1 0 47 49 47 137 0.0292 0.0699
4 2 Linear 0 0 0 1 35 36 36 99 0.0290 0.6184
5 2 Linear 0 0 0 1 37 37 37 Ī 0.0299 0.3048
6 2 Linear 0 0 0 1 166 464 82 76 0.0509 0.4689
7 2 Linear 0 0 1 1 74 70 68 373 0.0520 0.2137
8 2 Quadratic 1 0 0 0 82 66 72 81 0.0502 0.0485
9 2 Quadratic 1 0 0 0 33 33 33 73 0.0218 0.0417

188 Results for the trajectory-based algorithms

P n f (x) LE LI NE NI k1 k2 k3 k4 tk3 tk4

10 2 Quadratic 1 0 0 0 39 39 39 101 0.0272 0.0557
11 2 Quadratic 1 0 0 0 50 46 50 Ī 0.0339 0.3567
12 2 Quadratic 0 1 0 0 31 31 31 Ī 0.0233 0.3799
13 2 Quadratic 0 1 0 0 62 68 56 Ī 0.0391 0.3536
14 2 Quadratic 0 0 1 0 15 15 15 Ī 0.0132 0.4300
15 2 Quadratic 0 0 1 0 21 37 21 41 0.0154 0.0291
16 2 Quadratic 0 0 1 0 91 91 91 117 0.0620 0.0678
17 2 Quadratic 0 0 0 2 48 342 48 69 0.0368 0.0440
18 2 Quadratic 0 2 0 0 15 20 15 98 0.0632 0.0623
19 2 Quadratic 0 2 0 0 35 33 35 Ī 0.0277 0.3249
20 2 Quadratic 1 0 0 1 38 38 39 Ī 0.0310 0.3168
21 2 Quadratic 0 1 2 0 93 62 93 Ī 0.0698 0.3141
22 2 Quadratic 0 0 1 0 62 63 62 63 0.0416 0.0382
23 2 Quadratic 0 0 0 1 42 42 42 Ī 0.0349 0.3166
24 2 Quadratic 0 0 0 1 64 94 62 219 0.0441 0.1853
25 2 Quadratic 0 2 0 1 31 27 29 27 0.0914 0.0947
26 2 Quadratic 0 1 0 1 35 33 35 Ī 0.0310 0.3323
27 2 Nonlinear 0 0 1 0 28 28 28 Ī 0.0231 0.1313
28 2 Nonlinear 1 0 0 0 62 50 62 73 0.0425 0.0429
29 2 Nonlinear 0 1 0 0 Ī Ī Ī Ī 0.0634 0.0710
30 2 Nonlinear 0 1 0 0 88 81 83 106 0.0603 0.0164
31 2 Nonlinear 0 2 0 3 78 74 79 103 0.0653 0.0736
32 2 Nonlinear 0 1 0 2 88 102 93 Ī 0.0749 0.0527
33 2 Nonlinear 0 0 3 2 108 102 109 Ī 0.0408 0.3598
34 2 Nonlinear 0 5 0 0 96 Ī 94 Ī 0.0526 0.3429
35 2 Nonlinear 0 2 0 0 64 55 66 422 0.0502 0.2522
36 3 Linear 0 1 1 0 60 61 67 Ī 0.0559 0.3485
37 3 Linear 0 0 0 2 53 45 46 86 0.0393 0.0628
38 3 Quadratic 0 0 1 0 69 69 69 60 0.0539 0.0427
39 3 Quadratic 2 0 0 0 166 Ī 166 Ī 0.1347 0.3262
40 3 Quadratic 2 0 0 0 42 42 42 Ī 0.0361 0.3625
41 3 Nonlinear 0 0 1 0 52 46 52 D̄ 0.0431 −
42 3 Nonlinear 0 0 1 0 104 434 104 165 0.0792 0.1118
43 3 Nonlinear 1 0 0 0 74 75 74 Ī 0.0622 0.3552

A.1 TACNLP and ATAUNLP Results 189

P n f (x) LE LI NE NI k1 k2 k3 k4 tk3 tk4

44 4 Linear 0 0 2 0 157 167 157 186 0.1225 0.1319
45 4 Linear 0 2 0 2 447 447 447 311 0.3360 0.2326
46 4 Quadratic 1 0 1 0 34 34 34 Ī 0.0332 0.4334
47 4 Quadratic 0 0 7 0 77 75 79 62 0.0669 0.0488
48 4 Quadratic 3 0 0 0 Ī Ī 57 Ī 0.0508 0.3746
49 4 Quadratic 0 10 0 0 Ī Ī 177 Ī 0.1629 0.3987
50 4 Nonlinear 2 0 0 0 66 72 66 D̄ 0.0490 −
51 4 Nonlinear 0 3 0 0 116 116 116 56 0.1014 0.0481
52 5 Quadratic 2 0 0 0 125 Ī 125 Ī 0.1030 0.3664
53 5 Nonlinear 0 0 3 0 113 Ī 113 97 0.0958 0.0776
54 6 Nonlinear 6 8 0 0 231 Ī 231 Ī 0.2399 0.4959
55 7 Nonlinear 0 0 0 4 111 164 105 266 0.3538 0.7244
56 9 Quadratic 0 1 0 13 74 74 74 71 0.0836 0.0812
57 10 Quadratic 0 3 0 5 146 171 162 142 0.4242 0.4874
58 20 Nonlinear 0 0 1 0 71 80 71 Ī 0.0696 0.4474
59 50 Nonlinear 0 0 1 0 186 Ī 186 Ī 0.4040 0.4444
60 (BT1) 2 Quadratic 0 1 0 0 60 66 60 Ī 0.0551 0.4068
61 (BT2) 2 Quadratic 0 0 1 0 59 59 59 69 0.0507 0.0589
62 (BT3) 5 Nonlinear 2 0 1 0 56 57 56 Ī 0.0774 0.4402
63 (BT4) 3 Nonlinear 1 0 0 1 Ī Ī Ī Ī 0.5036 0.4873
64 (BT5) 5 Quadratic 3 0 2 0 Ī Ī Ī Ī 0.4405 0.4403
65 (BT6) 5 Quadratic 1 0 1 0 107 93 107 Ī 0.0016 0.0150
66 (BT7) 5 Nonlinear 0 0 3 0 Ī D̄ Ī D̄ 0.4282 −
67 (BT8) 5 Quadratic 0 0 2 0 39 44 39 Ī 0.0410 0.4535
68 (BT9) 4 Linear 0 0 2 0 188 188 188 Ī 0.1515 0.4287
69
(BT10)

2 Linear 0 0 2 0 174 Ī 174 Ī 0.1437 0.3708

70
(BT11)

5 Nonlinear 1 0 2 0 90 90 90 246 0.1325 0.2088

71
(BT12)

5 Nonlinear 0 0 3 0 Ī Ī Ī Ī 0.4935 0.0638

Average: 83 89 82 129 0.1016 0.2211
Table A.1 Results based on the performance of TACNLP on 71 test problems, with µ ∈
[0.01,10]

190 Results for the trajectory-based algorithms

P k1 k2 k3 k4

x∗ ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2

1 (cf. Table A.3) 1.42×10−4 1.42×10−4 1.42×10−4 1.42×10−5

2 (
√

2
2 ,

√
2

2)T 9.53×10−5 9.43×10−5 9.53×10−5 4.59×10−4

3 (3, 2)T 7.10×10−4 8.91×10−4 7.10×10−4 8.19×10−3

4 (0, 0)T 2.89×10−4 3.08×10−4 3.20×10−4 9.02×10−6

5 (−1, −1)T 3.11×10−4 2.79×10−4 3.18×10−4 3.64×10−3

6 (0, 1)T 3.03×10−4 1.86×10−4 3.89×10−4 7.64×10−4

7 (3
5 ,

4
5)

T 5.18×10−5 4.61×10−4 4.06×10−4 5.31×10−3

8 (1, 0)T 8.62×10−4 9.63×10−4 1.00×10−3 1.19×10−3

9 (1
2 ,

1
2)

T 5.00×10−4 4.60×10−4 5.00×10−4 1.32×10−2

10 (5
6 ,

1
6)

T 2.35×10−4 2.45×10−4 2.35×10−4 8.28×10−5

11 (− 1
19 , −

11
19)

T 1.22×10−4 2.11×10−4 1.22×10−4 7.78×10−2

12 (7
5 ,

17
10)

T 5.04×10−4 2.78×10−4 5.04×10−4 7.37×10−2

13 (3
5 ,

7
10)

T 1.16×10−4 3.30×10−4 9.86×10−5 8.66×10−2

14 (2, 2)T 4.04×10−4 4.04×10−4 4.04×10−4 8.72×10−2

15 (−1, −1)T 3.49×10−4 3.09×10−4 3.49×10−4 1.20×10−1

16 (−2, −4)T 2.11×10−4 2.11×10−4 2.11×10−4 8.93
17 (−13

40 ,
11
40)

T 5.22×10−5 1.19×10−4 5.22×10−5 2.28×10−5

18 (3
2 ,

3
2)

T 6.34×10−4 6.92×10−4 6.34×10−4 2.22×10−5

19 (1, 1)T 3.78×10−4 3.07×10−4 3.07×10−4 4.74×10−3

20 (cf. Table A.3) 4.72×10−4 4.72×10−4 9.09×10−4 2.60×10−2

21 (−2.372, −1.836)T 1.70×10−3 3.63×10−4 1.70×10−3 7.73×10−3

22 (1, 1)T 1.11×10−3 7.48×10−4 1.11×10−3 2.99×10−4

23 (1.2348, 1.5247)T 1.66×10−4 1.66×10−4 1.66×10−4 5.23×10−3

24 (2, 3)T 5.95×10−4 6.62×10−5 1.70×10−4 8.09×10−5

25 (1, 0)T 2.42×10−2 2.29×10−2 2.31×10−2 2.28×10−2

26 (1, 1)T 1.29×10−4 4.52×10−4 2.02×10−4 4.74×10−3

27 (0,
√

3)T 1.85×10−4 1.86×10−4 1.85×10−4 9.57×10−2

28 (−3, −4)T 1.3×10−2 1.4×10−2 1.3×10−2 1.76×10−2

20 (1, 1)T 6.20×10−2 6.20×10−2 6.20×10−2 1.38×10−1

30 (1.224, 3
2)

T 4.20×10−5 7.53×10−5 6.14×10−5 5.74×10−5

A.1 TACNLP and ATAUNLP Results 191

P k1 k2 k3 k4

x∗ ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2

31 (1
2 ,

1
2

√
3)T 9.98×10−4 3.52×10−4 3.65×10−4 8.15×10−4

32 (1
2 , 2)T 4.38×10−4 6.73×10−4 2.40×10−3 3.51

33 (1
2 ,

1
4)

T 5.34×10−2 4.98×10−4 4.19×10−4 9.78×10−2

34 (3,
√

3)T 6.98×10−4 5.44×10−3 3.49×10−4 8.63×10−3

35 (1, 0)T 2.84×10−3 4.43×10−3 2.72×10−3 6.17×10−3

36 (3
5 ,

4
5 , 0)T 6.00×10−4 4.10×10−4 4.29×10−4 6.39×10−3

37 (
√

1
3 ,
√

1
3 , −

√
1
3)

T 2.33×10−5 4.71×10−5 5.36×10−5 7.25×10−6

38 (0, 0, 4)T 2.23×10−4 2.23×10−4 2.23×10−4 1.51×10−3

39 (89
20 , −

29
20 , −

59
25)

T 2.27×10−4 9.55×10−3 2.27×10−4 7.33×10−3

40 (32
15 , −

13
15 ,

13
15)

T 4.80×10−4 4.80×10−4 4.79×10−4 1.21×10−3

41 (1, 1, 1)T 2.51×10−4 5.20×10−5 2.51×10−4 NaN
42 (−1, 1, 0)T 2.23×10−3 6.08×10−3 2.23×10−3 3.06×10−4

43 (1
2 , −

1
2 ,

1
2)

T 1.55×10−3 4.75×10−4 1.55×10−3 3.53×10−2

44 (1, 1, 0, 0)T 8.87×10−4 8.96×10−4 8.87×10−4 4.45×10−4

45 (1, 1, 0, 0)T 8.68×10−2 8.68×10−2 8.68×10−2 2.19×10−2

46 (2, 2, 3
5

√
2, 4

5

√
2)T 6.73×10−4 6.69×10−4 6.73×10−4 8.01×10−2

47 (cf. Table A.3) 2.77×10−4 9.37×10−5 6.12×10−5 4.91×10−5

48 (0, 1, 2, −1)T 7.27×10−3 5.81×10−3 2.05×10−5 5.55×10−3

49 (3, 0, 4, 0)T 8.64×10−2 8.64×10−2 5.35×10−4 6.78×10−3

50 (cf. Table A.3) 2.08×10−4 9.99×10−5 2.08×10−4 NaN
51 (cf. Table A.3) 7.45×10−5 7.45×10−5 7.45×10−5 1.38×10−4

52 (1, 1, 1, 1, 1)T 1.61×10−4 2.86×10−3 1.61×10−4 1.18×10−4

53 (1, 1, 1, 1, 1)T 2.38×10−2 1.09×10−1 2.38×10−2 2.33×10−2

54 (0, 4
3 ,

5
3 , 1, 2

3 ,
1
3)

T 2.43×10−3 1.71 2.43×10−3 9.30×10−1

55 (cf. Table A.3) 3.90×10−2 1.96×10−2 2.87×10−2 3.88×10−2

56 (cf. Table A.3) 3.59×10−4 3.59×10−4 3.59×10−4 5.25×10−3

57 (cf. Table A.3) 8.09×10−1 8.09×10−1 8.09×10−1 8.09×10−1

58 (cf. Table A.3) 3.17×10−4 2.53×10−4 3.17×10−4 2.00
59 (cf. Table A.3) 2.69×10−4 1.83 2.69×10−4 3.82×10−3

192 Results for the trajectory-based algorithms

P k1 k2 k3 k4

x∗ ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2

60 (BT1) (1, 0))T 2.56×10−4 2.54×10−5 2.56×10−4 3.49×10−3

61 (BT2) (1.10, 1.20, 1.54)T 7.15×10−3 7.15×10−3 7.15×10−3 1.52×10−3

62 (BT3) (cf. Table A.3) 5.56×10−4 5.73×10−4 5.56×10−4 6.46×10−2

63 (BT4) (cf. Table A.3) 3.17 3.11 3.18 7.37
64 (BT5) (3.51, 0.22, 3.55)T 1.06×10−2 8.41×10−3 1.06×10−2 2.36×10−2

65 (BT6) (cf. Table A.3) 7.70×10−4 1.70×10−4 7.70×10−4 1.29×10−2

66 (BT7) (cf. Table A.3) 1.90 NaN 1.89 NaN
67 (BT8) (1, 0, 0, 0, 0)T 4.18×10−4 3.12×10−4 4.18×10−4 2.28×10−2

68 (BT9) (1, 1, 0, 0)T 1.42×10−3 1.42×10−3 1.42×10−3 2.77×10−3

69
(BT10)

(1, 1)T 2.18×10−2 6.56×10−3 2.18×10−2 6.50×10−1

70
(BT11)

(cf. Table A.3) 2.07×10−3 2.07×10−3 2.07×10−3 6.02×10−4

71
(BT12)

(cf. Table A.3) 19.31 19.31 19.31 20.88

Table A.2 The error estimates of the solutions obtained using TACNLP on 71 test problems,
with µ ∈ [0.01,10]

A.1 TACNLP and ATAUNLP Results 193

P x∗

1 (

√
25+
√

301
2 , 9√

(25+
√

301
2

)T

20 (1
2(
√

7−1), 1
4(
√

7+1))T

47 (3/11, 23/11, 0, 6/11)T

50 (3.3973, 1.2405, −2.0731, −2.3865)T

52 (2(−
1
3), 2(−

1
2), (−1)i2(−

11
12), (−1)i2(−

1
4))T

55 (2.330499, 1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131,
1.594227)T

56 (0, 0, 0, 0, 0, 0, 0, 0, 0)T

57 (2.1720, 2.3637, 8.7739, 5.0960, 0.9907, 1.4306, 1.3216, 9.8287, 8.2801,
8.3759)T

58 (0.91287, 0.408268, −0.000017, −0.0000054, 0.00002,0.0000089,
0.0000082,−0.000014, 0.000022, −0.000014, 0.0000135, −0.000004,
0.000011,−0.000013, 0.000079, 0.000002, 0.00000456, −0.000009,
−0.000001, −0.0000014)T

59 (0.91285, 0.40829, −0.0000065, −0.0000991, 0.000119, −0.0000465,
0.0000576, −0.000048, 0.0000257, 0.0000117, −0.000031, 0.0000087,
0.00002, −0.000012, −0.0000164, 0.00000734, 0.000017, 0.0000044,
−0.0000059, −0.0000025, 0.0000046, 0.00000325, −0.0000666, −0.000144,
−0.000012, −0.0000039, 0.00000099, 0.00000015, −0.00000068, 0.0000024,
0.0000054, 0.0000027, −0.00000293, −0.0000038, 0.00000061, 0.0000044,
0.0000041, 0.000001455, −0.00000126, −0.000003, −0.00000386,
−0.00000426, −0.00000451, −0.0000045, −0.0000038, −0.00000234,
−0.00000075, −0.000000546, −0.0000011, −0.0000021)T

62 (BT3) (−0.76744, 0.25581,0.62791,−0.11628, 0.25581)T

63 (BT4) (4.04, −2.95,−0.09)T

65 (BT6) (1.1662, 1.1821, 1.3803, 1.5060, 0.61092)T

66 (BT7) (−0.79212, −1.2624, 0, −0.89532, 1.1367)T

70 (BT11) (1.1912, 1.3626, 1.4728, 1.6349, 1.6790)T

71 (BT12) (15.811, 1.5811, 0, 15.083, 3.7164)T

Table A.3 Data for large test problems

194 Results for the trajectory-based algorithms

P n f (x) LE LI NE NI k1 k2 k3 k4 tk3

1 2 Constant 0 0 2 0 133 133 133 133 0.0615
2 2 Linear 0 0 1 0 89 82 89 105 0.0365
3 2 Linear 0 0 1 0 74 73 74 91 0.0341
4 2 Linear 0 0 0 1 98 78 98 142 0.5226
5 2 Linear 0 0 0 1 79 58 79 118 0.0492
6 2 Linear 0 0 0 1 Ī Ī Ī Ī 0.2235
7 2 Linear 0 0 1 1 78 171 78 96 0.0397
8 2 Quadratic 1 0 0 0 129 110 131 121 0.0421
9 2 Quadratic 1 0 0 0 93 118 93 111 0.0393
10 2 Quadratic 1 0 0 0 102 86 102 100 0.0367
11 2 Quadratic 1 0 0 0 80 98 80 117 0.0449
12 2 Quadratic 0 1 0 0 104 75 104 103 0.0372
13 2 Quadratic 0 1 0 0 98 100 98 124 0.0488
14 2 Quadratic 0 1 0 0 120 230 120 114 0.0443
15 2 Quadratic 0 0 1 0 77 76 77 102 0.0411
16 2 Quadratic 0 0 1 0 126 126 126 128 0.0519
17 2 Quadratic 0 0 0 2 245 Ī 226 132 0.0506
18 2 Quadratic 0 2 0 0 93 100 120 122 0.0438
19 2 Quadratic 0 2 0 0 79 284 79 116 0.0508
20 2 Quadratic 1 0 0 1 138 Ī 138 121 0.0562
21 2 Quadratic 0 1 2 0 290 98 290 279 0.1321
22 2 Quadratic 0 0 1 0 66 28 66 115 0.0425
23 2 Quadratic 0 1 0 1 110 103 110 122 0.0592
24 2 Quadratic 0 0 0 1 125 120 103 110 0.0519
25 2 Quadratic 0 2 0 1 Ī Ī Ī Ī 0.2960
26 2 Quadratic 0 1 0 1 79 284 79 116 0.0554
27 2 Nonlinear 0 0 1 0 110 170 110 100 0.0403
28 2 Nonlinear 1 0 0 0 286 186 286 233 0.0886
29 2 Nonlinear 0 1 0 0 190 190 190 Ī 0.0924
30 2 Nonlinear 0 1 0 0 71 70 71 75 0.6539

A.1 TACNLP and ATAUNLP Results 195

P n f (x) LE LI NE NI k1 k2 k3 k4 tk3

31 2 Nonlinear 0 2 0 3 Ī Ī Ī Ī 0.2811
32 2 Nonlinear 0 1 0 2 Ī Ī Ī Ī 0.2787
33 2 Nonlinear 0 0 3 2 Ī Ī Ī Ī 0.2647
34 2 Nonlinear 0 5 0 0 177 450 389 105 0.0426
35 2 Nonlinear 0 2 0 0 115 103 93 97 0.0409
36 3 Linear 0 1 1 0 300 210 210 168 0.0793
37 3 Linear 0 0 0 2 124 100 142 124 0.05668
38 3 Quadratic 0 0 1 0 116 128 116 114 0.0478
39 3 Quadratic 2 0 0 0 Ī 499 Ī Ī 0.3271
40 3 Quadratic 2 0 0 0 Ī 262 Ī 111 0.3251
41 3 Nonlinear 0 0 1 0 181 98 181 Ī 0.5483
42 3 Nonlinear 0 0 1 0 171 333 171 149 0.0684
43 3 Nonlinear 1 0 0 0 93 259 93 163 0.0669
44 4 Linear 0 0 2 0 Ī Ī Ī Ī 0.3089
45 4 Linear 0 2 0 2 Ī Ī Ī Ī 0.3003
46 4 Quadratic 1 0 1 0 Ī Ī Ī 269 0.3495
47 4 Quadratic 0 0 7 0 Ī Ī 356 280 0.1423
48 4 Quadratic 3 0 0 0 Ī Ī Ī Ī 0.3932
49 4 Nonlinear 0 10 0 0 Ī Ī Ī Ī 0.3391
50 4 Nonlinear 2 0 0 0 90 99 90 194 0.0906
51 4 Nonlinear 0 3 0 0 102 102 102 108 0.0574
52 5 Quadratic 2 0 0 0 161 106 161 124 0.0581
53 5 Nonlinear 0 0 3 0 Ī Ī Ī 203 0.3070
54 6 Nonlinear 6 8 0 0 Ī Ī Ī Ī 0.3383
55 7 Nonlinear 0 0 0 4 Ī Ī Ī D̄ 0.2947
56 9 Quadratic 0 1 0 13 Ī Ī Ī Ī 0.4159
57 10 Quadratic 0 3 0 5 Ī Ī Ī Ī 0.3795
58 20 Nonlinear 0 0 1 0 403 122 403 149 0.0886
59 50 Nonlinear 0 0 1 0 299 Ī 299 358 0.2398

196 Results for the trajectory-based algorithms

P n f (x) LE LI NE NI k1 k2 k3 k4 tk3

60 (BT1) 2 Quadratic 0 1 0 0 108 152 108 240 0.1409
61 (BT2) 2 Quadratic 0 0 1 0 119 154 119 128 0.0649
62 (BT3) 5 Nonlinear 2 0 1 0 214 359 214 286 0.1648
63 (BT4) 3 Nonlinear 1 0 0 1 Ī Ī Ī Ī 0.3630
64 (BT5) 5 Quadratic 3 0 2 0 331 258 Ī Ī 0.3167
65 (BT6) 5 Quadratic 1 0 1 0 D̄ D̄ D̄ D̄ −
66 (BT7) 5 Nonlinear 0 0 3 0 Ī Ī Ī Ī 0.3454
67 (BT8) 5 Quadratic 0 0 2 0 113 85 113 124 0.0638
68 (BT9) 4 Linear 0 0 2 0 Ī Ī Ī Ī 0.3177
69 (BT10) 2 Linear 0 0 2 0 Ī Ī Ī 299 0.4118
70 (BT11) 5 Nonlinear 1 0 2 0 Ī Ī Ī Ī 0.3401
71 (BT12) 5 Nonlinear 0 0 3 0 Ī Ī Ī Ī 0.1678
Average: 143 158 140 124 0.1639

Table A.4 Results based on the performance of ATAUNLP on 71 test problems, with µ ∈
[0.01,10]

A.1 TACNLP and ATAUNLP Results 197

P k1 k2 k3 k4

x∗ ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2

1 (cf. Table A.3) 1.84×10−4 1.84×10−4 1.84×10−4 1.84×10−4

2 (
√

2
2 ,

√
2

2)T 3.33×10−5 1.23×10−3 3.33×10−5 2.50×10−5

3 (3, 2)T 4.31×10−4 1.96×10−4 4.31×10−4 3.83×10−4

4 (0, 0)T 7.51×10−5 2.03×10−4 7.56×10−5 2.81×10−5

5 (−1, −1)T 1.75×10−5 2.18×10−5 1.75×10−5 2.15×10−6

6 (0, 1)T 9.90×10−1 9.90×10−1 9.90×10−1 9.90×10−1

7 (3
5 ,

4
5)

T 9.77×10−5 3.97×10−4 5.63×10−4 1.89×10−5

8 (1, 0)T 8.62×10−4 5.07×10−4 1.00×10−3 5.20×10−4

9 (1
2 ,

1
2)

T 3.86×10−4 4.51×10−3 3.86×10−4 4.86×10−6

10 (5
6 ,

1
6)

T 2.50×10−4 9.97×10−4 2.50×10−4 1.10×10−4

11 (− 1
19 , −

11
19)

T 1.79×10−4 9.61×10−5 1.79×10−4 1.10×10−4

12 (7
5 ,

17
10)

T 1.36×10−4 3.45×10−4 1.36×10−4 3.27×10−2

13 (3
5 ,

7
10)

T 1.89×10−4 6.51×10−4 1.89×10−4 1.66×10−4

14 (2, 2)T 3.74×10−4 1.82×10−3 3.74×10−5 4.89×10−5

15 (−1, −1)T 1.42×10−4 9.69×10−6 1.42×10−4 6.96×10−7

16 (−2, −4)T 1.05×10−4 1.05×10−4 1.05×10−4 1.23×10−4

17 (−13
40 ,

11
40)

T 5.79×10−5 7.56×10−4 1.91 1.91
18 (3

2 ,
3
2)

T 8.10×10−5 2.37×10−3 6.90×10−5 3.01×10−5

19 (1, 1)T 1.56×10−3 1.48×10−4 1.63×10−3 3.56×10−5

20 (cf. Table A.3) 7.50×10−5 4.90×10−1 7.50×10−5 6.35×10−5

21 (−2.372, −1.836)T 4.73×10−4 4.87×10−4 4.73×10−4 4.71×10−4

22 (1, 1)T 4.26×10−3 6.33×10−3 4.26×10−3 1.75×10−3

23 (1.2348, 1.5247)T 2.28×10−4 2.98×10−4 2.28×10−4 1.49×10−4

24 (2, 3)T 1.52×10−4 2.70×10−4 2.00×10−4 4.42×10−4

25 (1, 0)T 6.99 6.88 6.80 5.44
26 (1, 1)T 1.56×10−3 1.48×10−4 1.63×10−3 3.56×10−5

27 (0,
√

3)T 5.46×10−5 8.10×10−3 5.46×10−5 5.67×10−5

28 (−3, −4)T 5.21×10−3 1.83×10−3 5.21×10−3 1.12×10−3

29 (1, 1)T 9.0×10−1 9.0×10−1 9.0×10−1 9.0×10−1

30 (1.224, 3
2)

T 1.60×10−1 1.60×10−1 1.60×10−1 4.30×10−1

198 Results for the trajectory-based algorithms

P k1 k2 k3 k4

x∗ ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2

31 (1
2 ,

1
2

√
3)T 7.95×10−2 1.38 1.86×10−2 9.47×10−2

32 (1
2 , 2)T 5.80×10−1 5.90×10−1 8.10×10−1 3.89

33 (1
2 ,

1
4)

T 1.6×10−1 2.40×10−1 5.90×10−1 1.30×10−1

34 (3,
√

3)T 1.38×10−4 1.27×10−4 1.93×10−4 1.24×10−3

35 (1, 0)T 7.94×10−4 2.68×10−3 2.13×10−3 6.75×10−4

36 (3
5 ,

4
5 , 0)T 3.00×10−4 3.02×10−4 7.58×10−5 2.82×10−5

37 (
√

1
3 ,
√

1
3 , −

√
1
3)

T 5.99×10−5 9.39×10−5 3.74×10−5 2.45×10−6

38 (0, 0, 4)T 1.10×10−3 1.11×10−3 1.10×10−3 3.76×10−4

39 (89
20 , −

29
20 , −

59
25)

T 4.50×10−1 1.97×10−4 4.50×10−1 1.30×10−1

40 (32
15 , −

13
15 ,

13
15)

T 4.60×10−1 2.45×10−4 2.40×10−1 2.35×10−4

41 (1, 1, 1)T 5.29×10−4 7.59×10−5 5.29×10−4 3.38
42 (−1, 1, 0)T 1.38×10−3 3.51×10−3 1.38×10−3 1.27×10−4

43 (1
2 , −

1
2 ,

1
2)

T 1.71×10−3 1.55×10−3 1.71×10−3 2.57×10−3

44 (1, 1, 0, 0)T 5.30×10−1 4.70×10−1 5.30×10−1 2.00
45 (1, 1, 0, 0)T 12.20 11.67 12.11 5.20
46 (2, 2, 3

5

√
2, 4

5

√
2)T 6.60×10−1 1.70×10−1 6.60×10−1 1.43×10−3

47 (cf. Table A.3) 1.41×10−3 1.10×10−1 3.54×10−4 8.83×10−4

48 (0, 1, 2, −1)T 1.022 5.00×10−2 9.10×10−1 1.10×10−1

49 (3, 0, 4, 0)T 6.04 1.07 6.04 5.42
50 (cf. Table A.3) 3.06×10−4 1.41×10−4 3.06×10−4 3.89×10−5

51 (cf. Table A.3) 3.01×10−4 3.01×10−4 3.01×10−4 1.87×10−4

52 (1, 1, 1, 1, 1)T 3.65×10−4 2.79×10−3 3.65×10−4 1.27×10−4

53 (1, 1, 1, 1, 1)T 4.78×10−1 5.66×10−2 4.78×10−1 7.30×10−4

54 (0, 4
3 ,

5
3 , 1, 2

3 ,
1
3)

T 2.53 8.42×10−1 2.53 1.68×10−1

55 (cf. Table A.3) 1.67 4.37×10−1 4.81×10−1 6.86×10−1

56 (cf. Table A.3) 7.04×10−1 7.04×10−1 7.04×10−1 3.43×10−1

57 (cf. Table A.3) 2.26 1.59 2.71 2.76
58 (cf. Table A.3) 8.17×10−1 1.86×10−4 8.17×10−1 1.36×10−4

59 (cf. Table A.3) 1.21×10−3 1.47 1.21×10−3 2.00

A.1 TACNLP and ATAUNLP Results 199

P k1 k2 k3 k4

x∗ ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2 ||x∗− xk||2

60 (BT1) (1, 0))T 9.91×10−5 5.99×10−4 9.91×10−5 3.57×10−5

61 (BT2) (1.10, 1.20, 1.54)T 1.42×10−4 1.10×10−3 1.42×10−4 6.09×10−4

62 (BT3) (cf. Table A.3) 1.57×10−4 5.78×10−4 1.57×10−4 1.94×10−4

63 (BT4) (cf. Table A.3) 3.49 3.15 3.18 3.70
64 (BT5) (3.51, 0.22, 3.55)T 7.38×10−3 4.65×10−4 7.38×10−3 2.40×10−2

65 (BT6) (cf. Table A.3) 1.08×108 2.61×108 1.08×108 1.28×1012

66 (BT7) (cf. Table A.3) 4.02 4.08 4.02 3.44
67 (BT8) (1, 0, 0, 0, 0)T 2.45×10−2 4.65×10−4 2.45×10−2 8.44×10−4

68 (BT9) (1, 1, 0, 0)T 1.55 4.70×10−2 1.55 2.00
69
(BT10)

(1, 1)T 7.27 9.68 7.27 2.56×10−2

70
(BT11)

(cf. Table A.3) 6.31 6.31 6.31 3.73

71
(BT12)

(cf. Table A.3) 18.22 18.22 18.22 18.03

Table A.5 The error estimates of the solutions obtained using ATAUNLP on 71 test problems,
with µ ∈ [0.01,10]

200 Results for the trajectory-based algorithms

A.2 MINLP Data

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1
1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1
1 1 1 1 1

. (A.1)

The rows of (A.1) are made of all the 0−1 combinations for a binary problem in R5.

A.3 TAMINLP RESULTS 201

P nc nd f (x) LE LI NE NI k̄1 k̄2 k̄3 f e εd ȳ np re f
1 1 1 Linear 0 4 0 1 Ī 0 0 0 − − − [51]
2 1 1 Linear 0 5 0 1 Ī 147 69 0 1 ✓ 2 [31]
3 1 1 Linear 0 4 0 0 56 43 79 3 1 ✓ 3 [66]
4 1 1 Linear 0 4 0 2 94 98 44 3 1 ✓ 3 [43]
5 1 1 Nonlinear 0 4 0 0 113 0 0 0 − − − [91]
6 1 1 Nonlinear 0 3 0 1 34 18 Ī 3 1 ✗ 3 [126]
7 1 1 Nonlinear 0 5 0 1 150 41 181 3 1 ✗ 3 [101]
8 1 1 Nonlinear 0 5 0 1 21 0 18 3 1 ✓ 3 [43]
9 1 1 Nonlinear 0 6 0 0 Ī 218 Ī 3 1 ✓ 3 [101]

10 1 1 Linear 0 4 0 0 Ī 39 Ī 5 1 ✓ 5 [50]
11 2 1 Linear 0 1 0 5 103 0 0 0 − − − [31]
12 2 1 Nonlinear 0 8 0 1 129 212 81 1 1 ✓* 2 [51]
13 2 2 Nonlinear 0 1 0 0 23 − 19 2 1 ✓ 2 [93]
14 2 2 Bilinear 10 0 0 0 Ī 264 Ī 4 1 ✓* 5 [101]
15 1 3 Nonlinear 0 12 0 0 Ī 488 Ī 6 2 ✗ 4 [50]
16 2 3 Linear 1 12 0 1 Ī 212 0 3 1 ✓* 4 [99]
17 3 3 Linear 12 0 2 0 Ī 192 Ī 3 1 ✗ 4 [21, 51]
18 3 3 Nonlinear 0 16 0 2 401 179 393 3 1 ✓* 4 [42]
19 3 4 Nonlinear 0 12 0 5 Ī 291 Ī 4 1 ✓* 5 [51]
20 2 6 Linear 0 21 0 1 D̄ D̄ D̄ − − − − [99]
21 7 2 Linear 3 14 2 0 Ī 285 Ī 0 1 ✗ 3 [97]
22 3 8 Linear 0 26 3 0 Ī 190 I 8 1 ✓ 8 [51]
23 6 5 Nonlinear 1 32 0 3 Ī 382 Ī 6 1 ✓ 6 [42]
24 9 8 Nonlinear 2 51 0 4 Ī 387 Ī 7 1 ✓ 7 [42]

Table A.6 The performance of TAMINLP on 24 test problems, with µ ∈ [0.01,10]

A.3 TAMINLP RESULTS

202 Results for the trajectory-based algorithms

P x∗ ||xk− x∗||
1 (4, 1)T 1.4×10−3

2 (0.5, 1)T 3.98×10−5

3 (3, 2)T 1.74×10−4

4 (−2.1381, −1)T 6.07×10−6

5 (2, −2)T 1.43×10−3

6 (4.3338, 3)T 9.7×10−3

7 (3.528, 4)T 1.69×10−2

8 (−
√

2/2, 1)T 2.36×10−9

9 (1.9891, 0)T 4.62×10−5

10 (0.5, 1)T 8.60×10−4

11 (1.375, 0.375, 1)T 2.51×10−4

12 (0.9419, −2.1, 1)T 1.36×10−4

13 (0, 0, 0)T 5.23×10−6

14 (3, 0, 5, 0)T 5.00×10−3

15 (0.2,0,0,1)T 1.90×10−3

16 (4, 1, 1, 0, 0)T 8.8×10−3

17 (1.12, 1.3, 1, 0, 1, 1)T 1.040×10−2

18 (1.30097, 0, 1, 0, 1, 0)T 2.6×10−3

19 (0.2, 0.8, 1.908, 1, 1, 0, 1)T 1
20 (3, 1, 1, 1, 0, 1, 0, 0)T -
21 (13.428, 0, 13.428, 10, 0, 3.5140, 0, 1, 0)T 1.59×10−1

22 (0.97, 0.9925, 0.98, 0, 1, 1, 1, 0, 1, 1,0)T 1
23 (0, 2, 0.65201, 0.32601, 1.07839, 1.07839, 0, 1, 1, 1, 0)T 1.5853
24 (0, 2, 0.46784, 0.58480, 2, 0, 0, 0.26667, 0.58480, 1, 0, 0, 1, 0, 1, 0, 0)T 4.2377

Table A.7 The error estimates of the solutions obtained using TAMINLP on 24 test problems,
with µ ∈ [0.01,10]

Appendix B

Test Problems

This appendix contains details of the continuous test problems used in chapter 9. In the list
below we provide the objective function as well as the constraints which make up each CNLP.

• Problem 1
min −1
st x2

1 + x2
2−25 = 0,

x1x2−9 = 0.

• Problem 2{
min −x1− x2

st x2
1 + x2

2−1 = 0.

• Problem 3{
min 2x1 +3x2

st x1x2−6 = 0.

• Problem 4{
min x1

st 1− (x1−1)2− x2
2 ≥ 0.

204 Test Problems

• Problem 5{
min x1 + x2

st 2− x2
1− x2

2 ≥ 0.

• Problem 6{
min x1− x2

st 1−3x2
1 +2x1x2− x2

2 ≥ 0.

• Problem 7
min −x2

st 1+ x1−2x2 ≥ 0,
x2

1 + x2
2−1 = 0.

• Problem 8{
min 10−5(x2− x1)

2 + x2

st x2 ≥ 0.

• Problem 9{
min x2

1 + x2
2

st x1 + x2−1 = 0.

• Problem 10{
min x2

1 +5x2
2

st x1 + x2−1 = 0.

• Problem 11{
min −1

2x2
1 +6x1 +2x1x2 + x2

2−2x2

st 3x1−2x2−1 = 0.

205

• Problem 12{
min (x1−1)2 +(x2−2.5)2

st 2+ x1−2x2 ≥ 0.

• Problem 13
min x2

1−2x1−2x1x2−6x2 +2x2

st 1− 1
2x1− 1

2x2 ≥ 0,
2− x1−2x2 ≥ 0.

• Problem 14{
min x1x2

st x1 + x2−4≥ 0.

• Problem 15{
min x2

1 + x2
2

st x2
1 + x2

2−2 = 0.

• Problem 16{
min x2

1 + x2
2

st 3x2
1 +4x1x2 +6x2

2−140 = 0.

• Problem 17
min 1

6x1 +
10
3 x1x2

st 19
6 − x2

1 +
5
2x2

2 ≥ 0,
x1− x2 +

3
5 ≥ 0.

• Problem 18
min (x1−2)2− (x2−2)2

st 3− x1− x2 ≥ 0,
−2+10x1− x2 ≥ 0.

206 Test Problems

• Problem 19
min (x1−2)2− (x2−1)2

st 2− x1− x2 ≥ 0,
x2− x2

1 ≥ 0.

• Problem 20
min (x1−2)2 +(x2−1)2

st 1−0.25x2
1− x2

2 ≥ 0,
x1−2x2 +1 = 0.

• Problem 21
min x2

1 + x2

st −(x1 + x2)+1≥ 0,
−(x1 + x2

2)+1≥ 0,
x2

1 + x2
2−9 = 0.

• Problem 22{
min (1− x1)

2

st 10(x2− x2
1) = 0.

• Problem 23{
min (x1−5)2 + x2

2−25
st −x2

1 + x2 ≥ 0.

• Problem 24{
min 0.5x2

1 + x2
2− x1x2−7x1−7x2

st 25−4x2
1− x2

2 ≥ 0.

207

• Problem 25
min (x1−2)2 + x2

2

st (1− x1)
3− x2 ≥ 0,

x1 ≥ 0,
x2 ≥ 0.

• Problem 26
min (x1−2)2 +(x2−1)2

st 2− x1− x2 ≥ 0,
x2− x2

1 ≥ 0.

• Problem 27{
min ln(1+ x2

1)− x2

st (1+ x2
1)

2 + x2
2−4 = 0,

• Problem 28{
min sin(π

12x1)cos(π

16x2)

st 4x1−3x2 = 0.

• Problem 29{
min 100(x2− x2

1)
2 +(1− x1)

2

st x2 +1.5≥ 0.

• Problem 30{
min 100(x2− x2

1)
2 +(1− x1)

2

st x2−1.5≥ 0.

208 Test Problems

• Problem 31

min 100(x2− x2
1)

2 +(1− x1)
2

st x1 + x2
2 ≥ 0,

x2
1 + x2 ≥ 0,

x2
1 + x2

2−1≥ 0,
−0.5≤ x1 ≤ 0.5,

• Problem 32
min 100(x2− x2

1)
2 +(1− x1)

2

st x1x2−1≥ 0,
x1 + x2

2 ≥ 0,
0.5− x1 ≥ 0.

• Problem 33

min 100(x2− x2
1)

2 +(1− x1)
2

st x1 + x2
2 ≥ 0,

x2
1 + x2 ≥ 0,

1− x2 ≥ 0
−0.5≤ x1 ≤ 0.5, .

• Problem 34

min 1
27
√

3
((x1−3)2−9)x3

2

st x1√
3
− x2 ≥ 0,

x1 +
√

3x2 ≥ 0,
6− x1−

√
3x2 ≥ 0,

x1 ≥ 0,
x2 ≥ 0.

• Problem 35
min 1

3(x1 +1)3 + x2

st x1−1≥ 0,
x2 ≥ 0.

209

• Problem 36
min −x2

st 1−2x2 + x1 ≥ 0,
x2

1 + x2
2 + x2

3−1 = 0.

• Problem 37
min −x1− x2 + x3

st 1− x2
1− x2

2− x2
3 ≥ 0,

1− x3
1− x3 ≥ 0.

• Problem 38{
min x2

1 +3x2
2

st x2
1 + x2

2 + x2
3−16 = 0.

• problem 39

min x2

1 +4x1 +2x1x2 +3x2
2 +5x2 +6x3

st x1 + x2−3 = 0,
4x1 +5x3−6 = 0.

• Problem 40
min 3x2

1−8x1 +2x1x2 +
5
2x2

2−3x2 +2x2x3 + x1x3 +3x2
3−3x3

st x1 + x3−3 = 0,
x2 + x3 = 0.

• Problem 41{
min (x1− x2)

2 +(x2− x3)
4

st (1+ x2
2)x1 + x4

3−3 = 0.

210 Test Problems

• Problem 42{
min 0.01(x1−1)2 +(x2− x2

1)
2

st x1 + x2
3 +1 = 0.

• Problem 43{
min (x1 + x2)

2 +(x2 + x3)
2

st x1 +2x2 +3x3−1 = 0.

• Problem 44
min −x1

st x2− x3
1− x2

3 = 0,
x2

1− x2− x2
4 = 0.

• Problem 45

min −x1

st x2− x3
1 ≥ 0,

x2
1− x2 ≥ 0,

x2− x3
1− x2

3 = 0,
x2

1− x2− x2
4 = 0.

• Problem 46
min (x1−1)2 +(x2−2)2 +(x3−3)2 +(x4−4)2

st x1−2 = 0,
x2

3 + x2
4−2 = 0.

• Problem 47

min x2
1 +0.5x2

2 + x2
3 +0.5x2

4− x1x3 + x3x4− x1−3x2 + x3− x4

st −x1−2x2− x3− x4 +5≥ 0,
−3x1− x2−2x3 + x4 +4 = 0,
x2 +4x3 +4≥ 0,
xi ≥ 0, i = 1,2,3,4.

211

• Problem 48
min x2

1 + x2
2 +2x2

3 + x2
4−5x1−5x2−21x3 +7x4

st 8− x2
1− x1− x2

2 + x2− x2
3− x3− x2

4 + x4 ≥ 0,
10− x2

1 + x1−2x2
2− x2

3−2x2
4 + x4 ≥ 0,

5−2x2
1−2x1− x2

2 + x2− x2
3 + x4 ≥ 0.

• Problem 49

min x1− x2− x3− x1x3 + x1x4 + x2x3− x2x4

st 8− x1−2x2 ≥ 0,
12−4x1− x2 ≥ 0,
12−3x1−4x2 ≥ 0,
8−2x3− x4 ≥ 0,
8− x3−2x4 ≥ 0,
5− x3− x4 ≥ 0,
xi ≥ 0, i = 1 . . .4.

• Problem 50
min (x1−3)4 +(x2 + x3)

6 +(x4 +2)2 + exp(x1 + x2 + x3 + x4)

st 2x1−3x2 + x3−1 = 0,
−x2 +2x3− x4 +3 = 0.

• Problem 51
min −x1x2x3x4

st x3
1 + x2

2−1 = 0,
x2

1x4− x3 = 0,
x2

4− x2 = 0.

• Problem 52
min (x1−1)2 +(x2− x3)

2 +(x4− x5)
2

st x1 + x2 + x3 + x4 + x5−5 = 0,
x3−2(x4 + x5)+3 = 0.

212 Test Problems

• Problem 53
min (x1− x2)

2 +(x2− x3)
3 +(x3− x4)

4 +(x4− x5)
4

st x1 + x2
2 + x3

3−3 = 0,
x2− x2

3 + x4−1 = 0,
x1x5−1 = 0.

• Problem 54

min x1 +2x2 +4x5 + exp(x1x4)

st x1 +2x2 +5x5−6 = 0,
x1 + x2 + x3−3 = 0,
x4 + x5 + x6−2 = 0
x1 + x4−1 = 0,
x2 + x5−2 = 0,
x3 + x6−2 = 0,
xi ≥ 0, i = 1, . . .6,
1− x1 ≥ 0,
1− x4 ≥ 0.

• Problem 55

min (x1−10)2 +5(x2−12)2 + x4
3 +3(x4−11)2 +10x6

5 +7x2
6 + x4

7−4x6x7−10x6−8x7

st 127−2x2
1−3x4

2− x3−4x2
4−5x5 ≥ 0,

282−7x1−3x2−10x2
3− x4 + x5 ≥ 0,

196−23x1− x2
2−6x2

6 +8x7 ≥ 0,
−4x2

1− x2
2 +3x1x2−2x2

3−5x6 +11x7 ≥ 0.

213

• Problem 56

min −0.5(x1x4− x2x3 + x3x9− x5x9 + x5x8− x6x7)

st 1− x2
3− x2

4 ≥ 0,
1− x3

5− x2
6 ≥ 0,

1− (x1− x5)
2− (x2− x6)

2 ≥ 0,
1− (x1− x7)

2− (x2− x8)
2 ≥ 0,

1− (x3− x5)
2− (x4− x6)

2 ≥ 0,
1− (x3− x7)

2− (x4− x8)
2 ≥ 0,

1− x2
7− (x8− x9)

2 ≥ 0,
1− x2

1− (x2− x9)
2 ≥ 0,

x5x8− x6x7 ≥ 0,
x1x4− x2x3 ≥ 0,
1− x2

9 ≥ 0,
x3x9 ≥ 0,
−x5x9 ≥ 0,
x9 ≥ 0.

• Problem 57

min x2
1 + x2

2 + x1x2−14x1 +16x2 +(x3−10)2 +4(x4−5)2 +(x5−3)2 +2(x6−1)2

+5x2
7 +7(x8−11)2 +2(x9−10)2 +(x10−7)2 +45

st 105−4x1−5x2 +3x7−9x8 ≥ 0,
−10x1 +8x2 +17x7−2x8 ≥ 0,
8x1−2x2−5x9 +2x10 +12≥ 0,
120−3(x1−2)2−4(x2−3)2−2x2

3 +7x4 ≥ 0,
40−5x2

1−8x2− (x3−6)2 +2x4 ≥ 0,
30−0.5(x1−8)2−2(x2−4)2−3x2

5 + x6 ≥ 0.
−x2

1−2(x2−2)2 +2x1x2 +145x5 +6x6 ≥ 0.
3x1−6x2−12(x9−8)2 +7x10 ≥ 0.

• Problem 58{
min ∑

20
i=1 i(x2

i + x4
i)

st ∑
20
i=1 x2

i −1 = 0

214 Test Problems

• Problem 59{
min ∑

50
i=1 i(x2

i + x4
i)

st ∑
50
i=1 x2

i −1 = 0

• Problem 60{
min −x1 +10(x2

1 + x2
2−1)

st x2
1 + x2

2−1 = 0

• Problem 61{
min (x1−1)2 +(x1− x2)

2 +(x2− x3)
4

st x1(1+ x2
2)+ x4

3−4−3
√

2 = 0

• Problem 62
min (x1− x2)

2 +(x2 + x3−2)2 +(x4−1)2 +(x5−1)2

st x1 +3x2 = 0
x3 + x4−2x5 = 0
x2− x5 = 0

• Problem 63
min x1− x2 + x3

2

st x2
1 + x2

2 + x2
3−25 = 0

x1 + x2 + x3−1≥ 0

• Problem 64
min 1000− x2

1−2x2
2− x2

3− x1x2− x1x3

st −25+ x2
1 + x2

2 + x2
3 = 0

−56+8x1 +14x2 +7x3 = 0

215

• Problem 65
min (x1−1)2 +(x1− x2)

2 +(x3−1)2 +(x4−1)4 +(x5−1)6

st x2
1x4 + sin(x4− x5)−2

√
2

x2 + x4
3x2

4−8−
√

2 = 0

• Problem 66
min 100(x2− x2

1)
2 +(1− x1)

2

st x1x2−1− x2
3 = 0

x2
2 + x1− x2

4 = 0
−x1− x2

5 +0.5 = 0

• Problem 67
min x2

1 + x2
2 + x2

3

st x1− x2
4−1 = 0

x2
1 + x2

2− x2
5−1 = 0

• Problem 68
min −x1

st x2− x3
1− x2

3 = 0
x2

1− x2− x2
4 = 0

• Problem 69
min −x1

st x2− x3
1 = 0

x2
1− x2 = 0

• Problem 70
min (x1−1)2 +(x1− x2)

2 +(x2− x3)
2 +(x3− x4)

4 +(x4− x5)
4

st x1 + x2
2 + x3

3−2−
√

18 = 0
x2− x2

3 + x4 +2−
√

8 = 0
x1x5−2 = 0

216 Test Problems

• Problem 71
min 0.1x2

1 + x2 = 0
st x1 + x2− x2

3−25 = 0
x2

1 + x2
2− x2

4−25 = 0
x1− x2

5−2 = 0

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Nonlinear Programming Problems
	1.2 Mixed Integer Nonlinear Programming Problems
	1.3 Motivation
	1.4 Organization of the thesis

	2 Review of Some Solution Techniques for CNLPs
	2.1 Nonlinear Continuous Optimization
	2.1.1 Duality

	2.2 Review of Constraints Handling in Constrained Nonlinear Programming
	2.2.1 Penalty methods for nonlinear constrained optimization
	2.2.2 Algorithms for CNLPs

	3 Review of Some Solution Techniques for MINLPs
	3.1 Mixed Integer Optimization
	3.2 Nonlinear programming subproblems
	3.3 The mixed integer linear programming problem (MILP)
	3.4 Algorithms for convex MINLPs
	3.5 Algorithms for non-convex MINLPs

	4 A Trajectory-Based Method for UNLPs
	4.1 Overview of TAUNLP
	4.2 The main features of the TAUNLP algorithm

	5 A Trajectory-Based Method for CNLPs
	5.1 Overview of TACNLP
	5.2 The main features of the TACNLP algorithm
	5.2.1 Updates of xk, k and k
	5.2.2 Adaptive step size
	5.2.3 Scaling
	5.2.4 Quantities for convergence

	6 Implementation of Trajectory-Based Algorithms
	6.1 Comparison of procedures used in TACNLP and ATAUNLP
	6.1.1 Updating xk and k
	6.1.2 Updating the integration time steps txk and tk
	6.1.3 Scaling
	6.1.4 Convergence

	6.2 Implementation of the procedures used in TACNLP and ATAUNLP
	6.2.1 Pseudo-code for the adaptive step size routine
	6.2.2 Pseudo-code for the step size update used in ATAUNLP
	6.2.3 Pseudo-code for the penalty parameter updating strategy proposed in this thesis
	6.2.4 Pseudo-code for the conventional penalty parameter updating strategy
	6.2.5 Pseudo-code for the scaling routine

	6.3 The TACNLP and ATAUNLP algorithm
	6.3.1 pseudo-code for TACNLP
	6.3.2 pseudo-code for ATAUNLP
	6.3.3 Parameters used in the experiments

	7 Convergence analysis
	7.1 Global convergence analysis
	7.2 Local convergence analysis

	8 Trajectory-Based Method for MINLPs
	8.1 Notation and definitions pertaining to the local minimum of MINLPs
	8.2 Overview of TAMINLP
	8.3 The first phase of TAMINLP
	8.4 The second phase of TAMINLP
	8.4.1 Generating integer trial points
	8.4.2 Details of the minimization in the second phase of TAMINLP
	8.4.3 Increasing the search space when no feasible solution is found

	8.5 The third phase of TAMINLP
	8.5.1 Selecting points for the final phase of TAMINLP

	8.6 The Pseudo-code of TAMINLP
	8.7 Convergence
	8.7.1 Convergence of TAMINLP

	9 Numerical Results for CNLPs
	9.1 Results and discussion for TACNLP
	9.1.1 Test problems and parameters
	9.1.2 Results for TACNLP

	9.2 Results and discussion for ATAUNLP
	9.2.1 Results for ATAUNLP

	9.3 Comparison of TACNLP and ATAUNLP
	9.4 Comparison of TACNLP and SNOPT
	9.5 Results for UNLPs

	10 Numerical Results of MINLPs
	10.1 Test problems and parameters
	10.2 Results and discussion for TAMINLP
	10.3 Comparison of MINLP algorithms

	11 Conclusion
	11.1 Summary
	11.2 Future Work

	Appendix A Results for the trajectory-based algorithms
	A.1 TACNLP and ATAUNLP Results
	A.2 MINLP Data
	A.3 TAMINLP RESULTS

	Appendix B Test Problems

