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Abstract 
 

Obesity is a common risk factor for non-communicable disease and is most often 

described in relation to body mass index (BMI), although it is not the best predictor of body 

composition. Heritability estimates of obesity (predominantly based on Europeans) suggest 

that there is a significant genetic component. The latest genome-wide association study 

(GWAS) of obesity-related traits have identified over hundred loci contributing to BMI alone. 

These findings have yet to be robustly replicated in African populations.  

The aim of this study was to assess whether risk loci previously associated with body 

composition in European populations showed a similar trend in a South African black 

population by:  

i. Replicating the association of six SNPs previously linked to adult BMI, in an 

adolescent cohort (the Birth to twenty cohort (Bt20); N=990).  

ii. Performing a replication and fine-mapping study by genotyping participants within this 

same cohort using the Metabochip (N=2273). 

iii. Estimating the narrow-sense heritability (h2) of body composition measures in this 

cohort.  

In the candidate gene analysis, three of the SNPs tested were significantly associated 

with BMI, and showed a consistent (albeit smaller) directional effect to that observed in non-

African cohorts.  

Results from the replication and fine-mapping analyses reaffirmed that several loci 

including SEC16B, NEGR1, FTO, TMEM18, WARS2, NRXN3, and SP110 previously found 

to be associated with body composition, were similarly associated in this African cohort. The 

associated loci were replications of previous findings but they do not involve the same SNPs 

observed in European, African-American and Asian populations. This suggests that GWAS-

identified variants of body composition are tagged by different SNPs in an African cohort.  An 

important finding of this study was the observation of ten cross-phenotype associations.  

Heritability estimates for most of the body composition phenotypes were similar to 

estimates derived for European populations, albeit trending towards the upper limits of such 

heritability measures. 

This study highlights the importance of assessing genetic factors for body 

composition in urban black South Africans. Results from this study suggests that more in-

depth genomic studies in larger cohorts will reveal novel SNP associations for body 

composition and insight into the aetiology of obesity.  
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Problem identification   
 

The completion of the human genome project (Mcpherson et al., 2001, Collins et al., 2003) 

has resulted in the development of new methodologies in human genomics. The 

development of these new technologies has created opportunities for generating huge public 

data sharing initiatives allowing for multiple collaborations and projects that aim to describe 

genomic variation globally. The International HapMap project (Gibbs et al., 2003) followed by 

the 1000 Genomes Project (1000 Genomes Project, 2010) aimed to elaborate on what we 

know about human variation. These projects allowed for the advancement of new research 

tools such as fine-mapping (Immunochip and Metabochip) chip array designs and invoked 

the follow-up of whole genome sequencing (WGS) applications. These new techniques 

impacted on the discovery of many genomic regions associated with disease loci or 

quantitative traits (Adeyemo and Rotimi, 2014). However, most of these studies have been 

performed in individuals of European ancestry with other ethnic populations being 

understudied. African-based initiatives such as Human Heredity and Health in Africa 

(H3Africa) and, more specifically relevant to this project, African Wits-INDEPTH Partnership 

for the GENomic study of body composition and cardiometabolic risk (AWI-GEN) (described 

below) aim to shed more light on genomic regions associated with cardiometabolic diseases 

in African populations, particularly because obesity rates are on the rise on the African 

subcontinent, especially amongst black females (Dalal et al., 2011, Ng et al., 2014).  

 

As it is not known which genetic variants are associated with body fat mass variation in the 

South African black population, this research project aims to address this question by 

analyzing generated genotype-phenotype information and conducting a genetic association 

study on several body composition phenotypes. If the genetic risk factors contributing to 

obesity can be identified, perhaps it will give us greater insights into the underlying biological 

pathways associated with this phenotype, allowing the development of interventions to 

prevent the full-onset of the disease. It is also possible that such studies will allow us to 

identify subjects early in the life course who are at high risk of developing obesity and in 

whom early interventions can be used to prevent excess body fat accumulation. An 

understanding of the molecular pathways that control fat deposition may also allow the 

development of techniques to block sub-cellular lipid accumulation in organs such as the liver 

and muscle, where fat deposition can have major metabolic consequences. 

 

The Birth to Twenty cohort (Bt20) from Soweto in Gauteng (refer to Fig. 1.) was used as a 

source of biological samples for this study. This cohort is a rich longitudinal resource 

containing data collected on several phenotypes relevant to obesity and body composition 

together with DNA samples. The main proposed study will generate a dataset (flagship 
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project) as part of a large genomics project partly funded by the H3Africa initiative. H3Africa 

is the culmination of a partnership among the African Society of Human Genetics (AfSHG), 

the Wellcome Trust (WT), and the National Institutes of Health (NIH). H3A’s mandate is to 

support genomics research related to human diversity and disease biology that will be of 

scientific and clinical relevance to African populations (Consortium et al., 2014). The AWI-

GEN project falls under the umbrella of H3A and focuses on elucidating the genomic and 

environmental risk factors for cardiometabolic disease in Africans. One of the aims of the 

AWI-GEN project has been to assess if known genetic risk factors for obesity are common to 

both European and African populations. 

 

       
 
Figure 1. Map of South Africa showing the geographical location of the Birth to Twenty cohort in 
Gauteng province (Richter et al., 2007)  
 

Chapter 1 of this thesis provides an overview of the literature highlighting the key aspects of 

the obesity phenotype including a description of the causes and contributors to obesity. It 

also includes an overview of the genetics of obesity, which covers monogenic forms of 

obesity, candidate gene studies and genome wide association studies (GWAS) plus a 

summary of African specific studies. 

 

Before embarking on the flagship project, the feasibility and power to detect GWAS-derived 

Eurocentric associations was assessed in an African population by analyzing a previously 

generated dataset in a candidate-gene approach, which was termed a “pilot study”.  This 

involved the analysis of six SNPs genotyped on a BeadExpress platform on a smaller 

adolescent subset of the Bt20 (N=990) cohort. This was an extension of a previous study 

conducted by (Lombard et al., 2012) where they assessed 44 SNPs in six candidate genes 
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linked to the appetite regulation pathway. The published pilot study (Pillay et al., 2015) is 

discussed in Chapter 2 in the format of an extended publication. 

 

Chapter 3 describes the flagship “Metabochip study” and forms the main body of this study. 

In this Chapter, genetic associations with body composition are reported and described. 

Chapter 4 focuses on the additive genetic contribution to the variance of the phenotypes 

used in the study by estimating narrow-sense heritability (h2) using the genotype data 

generated from the Metabochip study. Heritability estimates of body composition phenotypes 

in African populations are limited. 

 

Please note that the use of the term “Bantu” is in reference to various ethno-linguistic groups 

spoken in South Africa as a subgroup of Niger-Kordofanian languages (Schlebusch et al., 

2012). Use of the term “Coloured”, which may be used intermittently in this thesis, refers to a 

South African community of mixed-ancestry (Lombard, 2008, Chimusa et al., 2013).  The 

term “Indian” as described in Table 1.1 refers to South Africans of Indian descent, many of 

whom are descendants of migrants from India and the term “White” refers to South Africans 

of European descent. 
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1. Overview of the chapter 
 

Obesity has many negative effects on health (Guh et al., 2009) and is on the increase in low 

and middle-income countries (LMIC) such as South Africa (SA), particularly in the South 

African black population.  A recent South African National Health and Nutrition Examination 

Survey (SANHANES-1) (Shisana et al., 2013) has shown that the prevalence of overweight 

and obesity was significantly higher in females than males (24.8% and 39.2% compared to 

20.1% and 10.6% for females and males, respectively), with the highest figures for obesity 

being recorded in the SA black female population. Obesity is a complex disease in that both 

genetic and environmental factors play a role. The heritability of body mass index (BMI) an 

indicator of of overweight and obesity has been shown from studies in European populations 

to range between 40-70% (Bodurtha et al., 1990, Walley et al., 2009).  Most genome-wide 

association studies (GWAS) conducted on obesity have been carried out in mainly European 

study cohorts. Figure 1.1 shows that almost 90% of GWAS have been conducted in 

European/Asian populations with a paucity of African-embedded research (~7%). This has 

been mainly localised to  African populations thare are admixed and have arisen from 

migration events such as the African diaspora, thus reducing their genetic variability. African 

populations, in particular sub-Saharan African populations, remain understudied for many of 

these traits. More importantly, given that sub-Saharan African populations harbour the 

greatest amount of genetic diversity (Ramsay et al., 2011, Schlebusch et al., 2012, Mboowa, 

2014, 1000 Genomes Project, 2015) and have lower levels of linkage disequilibrium (Teo et 

al., 2010), exploring this variation would be a very useful contribution towards defining the 

causative variants for obesity and related phenotypes.  

 

 

 

 
 
 
 
 
 
 
Figure 1.1 Breakdown of GWAS recorded in GWAS catalogue  
Breakdown of GWAS recorded in GWAS catalogue (accessed- 11th December 2013 
http://www.genome.gov/26525384) according to ancestry of populations from whom DNA was 
collected (Adeyemo and Rotimi, 2014 ). This data illustrates the scarcity of African-focused GWAS 
(n=1744 studies) 
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2. Obesity 
 

Obesity is described as an imbalance between energy intake and output. Consequently, 

excess energy ends up being stored in fat cells, which eventually grow bigger and/or 

increase in number (Goedecke et al., 2005). Increased intake of energy-dense foods and a 

decrease in physical inactivity (Speakman and O’Rahilly, 2012) contribute to the high obesity 

rates reported globally. Some have argued that obesity is a consequence of our changing 

environment i.e. humans have become obese over time due to changes in eating habits and 

modes of transportation (influencing physical activity) and increased sedentary behaviour 

(Speakman and O’Rahilly, 2012). However, identifying the causal relationship of 

environmental factors with obesity is not an easy process (Hebebrand et al., 2013), with 

many such factors other than food intake and level of exercise having been linked to obesity. 

These include gut microbiota, stress, socio-economic status (Speakman and O’Rahilly, 

2012), duration of sleep, education level and other cultural factors (Feeley et al., 2012). 

 

The genetic input into obesity is also complex. Several studies have reported on the high 

heritability of BMI in European populations (Bodurtha et al., 1990, Walley et al., 2009), 

suggesting that genetic factors play a role in driving body composition. Moreover, gene-gene 

and gene-environment interactions may also play a role in the variability observed in BMI 

among human populations. This thesis will concentrate on the genetic aetiology of obesity in 

sub-Saharan African study participants and the present chapter will give an overview of the 

epidemiology, consequences, measurement and causes of obesity with a particular 

emphasis on the genetic determinants of body fat mass. 

 

2.1 Epidemiology of obesity  

2.1.1 Globally 

Obesity has become a global epidemic with an estimated 700 million obese and about 2 

billion individuals being classified as overweight according to WHO estimates in 2010 

(Speakman and O’Rahilly, 2012). The most recent Global Burden of Disease (GBD) study 

has confirmed that these combined overweight and obesity figures have increased from 857 

million in 1980, to 2.1 billion in 2013 (Ng et al., 2014).  If the obesity trend continues at this 

rapid rate, it is estimated that over 50% of adults in the United States (US) will be clinically 

obese by 2030. The GBD study (Ng et al., 2014) found that countries like Tonga and Kuwait 

have extremely high prevalences of obesity and that greater than half of the ~671 million 

obese individuals in the world reside in just ten countries which collectively accounted for 

13% of obese individuals worldwide. These researchers also observed other interesting 
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trends spanning the period between 1980 - 2013 (Ng et al., 2014): 

• Globally, the combined prevalence of overweight and obesity increased by 27,5% for 

adults and 47,1% for children.  

• An increase in overweight in both women and men in both high-income countries 

(HIC) and LMIC but with different sex patterns; there were more overweight and 

obese females in LMIC while HIC showing the converse. 

2.1.2 South Africa 

It has been suggested that the increase in overweight and obesity in SA is associated with 

both adopting a “westernised” lifestyle (nutrition transition) together with urbanisation 

(geographical transition) (Armstrong et al., 2006). Also, it has been shown that South African 

urban black females are at greatest risk of becoming obese (Janssen et al., 2004, Goedecke 

et al., 2005, Obesity Task Force, 2005). Findings from the first South African Demographic 

and Health Survey (SADHS) conducted in 1998 on 13 089 individuals showed that the 

overall prevalence of overweight (BMI >25) and obesity (BMI >30) in South Africa was high, 

with 29% of men and 56% of women being classified as overweight or obese (Puoane et al., 

2002). The most recent South African National Health and Nutrition Examination Survey 

(SANHANES-1) conducted by (Shisana et al., 2013) reaffirmed that obesity levels are on the 

rise in SA, and also highlighted that black females have the highest prevalence of obesity 

amongst South Africans (summarized in Table 1.1). This combined prevalence of overweight 

and obesity according to SANHANES in females and males (≥15yrs) is ~64% and 30.7%, 

respectively. The GBD study estimates of the combined prevalence for South Africa are 

slightly higher than the local estimates as indicated in Table 1.1 with figures of overweight 

and obesity at 69.3% and 38.8% in females and males, respectively. The inconsistency in 

GBD and local estimates is associated with a difference in collection periods as well as the 

inclusion of adolescent data in the local estimates (≥15yrs) whilst GBD (≥20 years) estimates 

are based on an entirely adult dataset. Ultimately both figures highlight the significant burden 

of obesity in countries undergoing epidemiological transition, such as South Africa and the 

need for urgent intervention, especially in black females. 

2.1.3 Obesity in children and adolescents 

Globally the prevalence of overweight and obesity has increased (1980-2013) by almost 47% 

in children (2-18 years) in both HIC and LMIC with little difference between sexes (Ng et al., 

2014). It seems that factors that predispose children to an overweight or obese trajectory 

may persist to adulthood (Singh et al., 2008, Lundeen et al., 2015). A recent study based on 

the Birth to Twenty Cohort (Soweto, Johannesburg) has shown that longitudinal data is a 

valuable resource for determining periods of “greater risk” for assessing childhood obesity 

(Lundeen et al., 2015). This study shows that for the females in the cohort, overweight and 
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obesity prevalence gains in momentum throughout childhood and adolescence, and the 

years just succeeding puberty seem critical for the development of obesity (Lundeen et al., 

2015). In boys, however, even by late adolescence, overweight and obesity are not as 

prevalent as for girls. This highlights the importance of planning interventions at critical time 

points especially with younger females. 

 

Table 1.1 Prevalence of obesity and overweight in South Africa                                 
Prevalence of overweight and obesity in South Africa stratified by race and sex. Summarised from 
(Shisana et al., 2013, Ng et al., 2014) 

 

Population Groups Overweight (%) Obese (%) 
Combined 

overweight and 
obese 

 
Males Females Males Females Males Females 

Black 19.1 24.9 9.4 39.9 
  

Indian 32.2 22.8 7.6 32.4 
  

Coloured 22.1 24.4 15.1 34.9 
  

White 36.3* 18.2* 26.5* 22.7* 
  

SANHANES Overall 

(≥15yrs) 
20.1 24.8 10.6 39.2 30.7 64.0 

GBD Overall (≥20yrs) 
  

13.5 42.0 38.8 69.3 

* Data for the white population were included from Puoane et al. (2002) since the study by Shisana et al. (2013) lacked available data 

 

The heritability of obesity susceptibility seems to increase throughout childhood and 

adolescence until adulthood, where it then decreases, as suggested by evidence from 

longitudinal twin studies (Den Hoed et al., 2010, Loos, 2013). This would suggest that the 

environmental exposure time in childhood is far less than in adults and that genetics might 

play more of a critical role in influencing the obesity phenotype. A better understanding of the 

influence of genetic factors on obesity may lead to better management and strategies to 

introduce timely interventions that could prevent and/or reduce the number of obese children 

from becoming obese adults. 

 

2.2 Consequences of obesity 

2.2.1 Global 

The latest GBD study reported that overweight and obesity were estimated to cause about 

3.4 million deaths worldwide in 2010, which equates to 4% of all lives lost (Ng et al., 2014). 
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Overweight and obesity are the fifth leading risk factor for deaths, globally (Obesity Task 

Force, 2005). High BMI is the seventh leading risk factor for males, the third leading risk 

factor in females and overall sixth leading risk factor contributing to the overall global burden 

of disease (Lim et al., 2013). Specifically overweight and obesity are accountable for 44% of 

diabetes cases, 23% of ischemic heart disease cases and a range of certain cancer burdens 

ranging from 7%-41% (Lau et al., 2015). 

2.2.2. Local (South Africa) 

Obesity is a considerable risk factor for the development of several chronic, non- 

communicable diseases (NCDs) in LMIC such as South Africa (Tollman et al., 2008, Mayosi 

et al., 2009), as it is globally. It has been outlined by Goedecke et al. (2005)  and others that 

being obese increases the risk for a myriad of conditions including type 2 diabetes, coronary 

heart disease (CHD), hypertension, certain forms of cancers, psychological conditions, 

osteoarthritis as well as morbidities in children. It has been reported that obesity itself can be 

classified as a chronic disease and can be separated into two categories, those diseases 

associated with increased fat mass like sleep apnoea, osteoarthritis and psychological 

problems and those associated with the metabolic effects of adiposity like CHD, 

hypertension, type 2 diabetes and certain cancers (Joubert et al., 2007). A study by Joubert 

et al. (2007) based in a South African setting, reported that excess body weight was a major 

risk to health, particularly among South African females where the burden of disease was 

almost double that of males. They also reported that overall almost 87% of type 2 diabetes, 

68% of hypertensive disease, 61% of endometrial cancer, and 45% of ischaemic stroke was 

as a result of BMI ≥ 21 kg.m-2. Variations in body composition measures, including BMI, waist 

circumferences, fat mass and others described below have been used to assess the level of 

obesity in individuals. 

 

2.3. Estimating body composition  

 

The whole body (Fig. 1.2- Level V) level of body composition describes body size and 

configuration which is often explained by the anthropometric measures described below. 

Body composition can also be described on a molecular level (Fig. 1.2- Level II), which takes 

into account six main components including water, lipid, protein, carbohydrates, bone 

minerals and soft tissue minerals (Santos et al., 2014). These measures can be estimated 

through a variety of methods such as direct body composition methods (estimates of levels I-

III described in Fig. 1.2) including isotope dilution, total body counting and neutron activation 

(Duren et al., 2008). Criterion methods measure a property of the body e.g. density or 

describe quantities and distribution of adipose, skeletal or muscle, and include Dual-Energy 
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X-Ray Absorptiometry (DXA) scans, Computerized Tomography (CT) and Magnetic 

Resonance Imaging (MRI) scans. Indirect methods provide estimates of body composition 

based on results from direct or criterion methods and include anthropometry and bioelectrical 

impedance (Duren et al., 2008). Indirect methods rely on the biological interplay between 

body components and tissue types that are measured by direct or criterion methods and their 

distribution among normal individuals (Duren et al., 2008). Therefore these methods are 

subject to large predictive errors and the extrapolation of data may be limited especially 

when obtaining molecular body composition measures (Duren et al., 2008, Santos et al., 

2010). 

 
 

Figure 1.2 The five levels of human body composition                                                   
[Adapted from (Wang et al., 1992)] according to (Heymsfield, 2005). ECF - refers to extracellular fluid, 
ECS- extracellular solids.  

 

2.3.1 Indirect measures  

Anthropometric measurements are the simplest way of determining body composition and 

are used to describe body mass, shape, degree of fatness, and size of individuals. A basic 

assessment of adiposity can be determined from body size which changes with a gain in 

weight (Duren et al., 2008). For adequate assessments of overall adiposity is it important that 

standardized anthropometric techniques are used for comparison as they are very much 

influenced by sex, age and population from which references are derived. 

BMI 

Typically individuals with higher body weight have higher amounts of fat and body weight is 
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highly related to stature (Duren et al., 2008). BMI is a readily measurable proxy for body fat 

on a population-level based on an individual’s weight in kilograms divided by the square of 

height in meters (kg/m2) (WHO, 1995). Obesity and overweight are defined according to 

criteria outlined by the World Health Organisation (WHO, 1995).  Being overweight is 

described as having a BMI of ≥ 25.0 kg/m2 and obese as having a BMI of ≥ 30 kg/m2 (WHO, 

1995). There are further grades within the ‘obese class’ that are defined by BMI ranges 

(class I: 30.0-34.9 kg/m2, class II: 35.0-39.9 kg/m2, class III: >40.0 kg/m2) (Nishida et al., 

2010). BMI is often thought to be a crude indicator of obesity because it doesn’t take into 

account body composition or weight distribution, however it has been traditionally used, as it 

is an easy and inexpensive measure to obtain, requiring only a scale and stadiometer. Also, 

because of the availability of comprehensive reference data and its established relationships 

with fatness, morbidity and mortality in adults (Duren et al., 2008), BMI has conventionally 

been used as a predictor of increased risk for non-communicable diseases (NCDs) (Janssen 

et al., 2004, Obesity Task Force, 2005, Menke et al., 2007).  

 

WAIST CIRCUMFERENCE, HIP CIRCUMFERENCE AND WAIST-TO-HIP RATIOS  

Waist circumference (WC), and waist-to-hip-ratios (WHR) are measures of central adiposity 

(abdominal obesity) and have been shown to be good predictors of health risk, metabolic 

syndrome or cardiometabolic diseases (Janssen et al., 2004, Menke et al., 2007, Crowther 

and Norris, 2012, Murphy et al., 2014), even after adjusting for BMI. The reason for this is 

that abdominal obesity reflects the amount of visceral adipose tissue (VAT) and the level of 

VAT has been speculated to be strongly correlated with cardiovascular disease and related 

pathologies (Lear et al., 2010). According to WHO (2011), WC measurements should be 

made at the midpoint between the lower margin of the last palpable rib and the top of the iliac 

crest in centimetres (cm). It is strongly noted by WHO (2008b) that sex, age, reproductive 

status (including parity and menopause) and ethnicity are key regulators for both WC and 

WHRs and inform the cut-offs used to predict increased metabolic disease risk. 

 

All studies utilising hip circumference (HC) measurements show that the measurement 

should be taken around the widest portion of the buttocks in centimetres (WHO, 2008 (b)). 

Recently more studies have included HC to examine whether the components of WHR exert 

their effects primarily through waist circumference or hip circumference. The WHR is 

commonly defined as WC divided by HC and more correctly reflects the ratio of abdominal 

(includes both subcutaneous and VAT) circumference to hip circumference. The ratio of the 

two measurements gives a basic index describing the distribution of abdominal adipose 

tissue (Duren et al., 2008) and seems to be more accurately measured than skin fold 

estimates (WHO, 2011). This index provides a description of both subcutaneous and visceral 
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abdominal adipose tissue and is therefore much more useful as an indication of both fat 

distribution and adiposity. 

  

African women have been shown to have a lower levels of visceral but higher subcutaneous 

fat mass than BMI-matched European women (Crowther and Ferris, 2010). Fat distribution is 

strongly associated with sex and ethnicity, and many of the genetic signals related to the 

distribution of body fat seem to be more strongly associated in females than males (Visscher, 

et al., 2012).  It has also been suggested that the current anthropometric cut-points used to 

define adiposity (particularly waist circumference), certainly as indicators of cardiometabolic 

risk, may not be suitable for African populations (Crowther and Norris, 2012, Murphy et al., 

2014), as African populations have been shown to be different not only in terms of body fat 

distribution but also in terms of height, and fat mass when compared to their European 

counterparts (Kruger et al., 2015). Both of these studies have recommended changes in the 

currently recommended cut-point for waist circumference, which would have an impact on 

the prevalence of abdominal obesity and of metabolic syndrome in these populations. 

 

SKINFOLD MEASUREMENTS  

These measurements are used to describe the thickness of subcutaneous adipose tissue 

(SAT) at various regions of the body including trunk skinfolds, arm skinfolds, and leg 

skinfolds (Lukaski, 1987, Duren et al., 2008), of which the tricep and subscapular skinfold 

measurements seem to be the most well documented. Skinfold measurements are made on 

two assumptions: (i) that the sites chosen for measurements represent the average thickness 

of the SAT and (ii) the thickness of the SAT is a consistent proportion of the total body fat 

(Lukaski, 1987). Skinfold measurements are made by grasping the skin and neighbouring 

subcutaneous tissue (trying to exclude the underlying muscle) whilst pulling away from the 

body to allow the caliper jaws to grasp onto the skinfold (Lukaski, 1987). This technique is 

subject to operator accuracy and therefore duplicate readings are encouraged to improve the 

precision involved with this technique. The utility of this techniqe seems to be more limited for 

use in overweight or obese adults because of upper measurement constraints of the caliper 

(Duren et al., 2008) and difficulty in grasping the skinfold. Body fat estimation in children is 

more effective using this technique due to mainly subcutaneous localisation of fat deposits 

and smaller body size (Duren et al., 2008). 

 

BIOELECTRICAL IMPEDANCE 

This method is reliant on the principle that electrical conductivity is greater in fat free tissue 
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mass than it is in fat mass (Lukaski et al., 1985). With this technique, estimates of total body 

water (TBW) and fat free mass (FFM) are generated by measuring the body’s resistance as 

a conductor to small electrical impulses (Duren et al., 2008). Here, an impedance index 

(stature2/resistance) is proportional to the volume of TBW and is used to predict body 

composition by acting as an independent factor in regression equations (Duren et al., 2008). 

The validity of this technique and its value in evaluating body composition seems to be more 

useful at a group level than for individuals due to large errors (Duren et al., 2008), and has 

limited use for obese individuals. Also, this method is only accurate when the population in 

whom the measurements are being made closely match the reference population usually 

Caucasian, from whom the equations used to predict body composition were derived, in body 

size and shape (Duren et al., 2008) and are therefore not good measures to employ in Sub-

Saharan African populations. 

 

2.3.2 Direct measures  

 

TOTAL BODY WATER (TBW) estimates are obtained by isotope dilution. Water/isotope 

dilution volumes allow for the prediction of FFM, and fat (calculated by body weight – FFM) 

because of the stable relationship of water to FFM (Duren et al., 2008). This is measured in 

normal weight individuals and TBW has limited use in obese individuals. This is because the 

density of excess adipose tissue in obese individuals results in higher and water and protein 

content of FFM. An increased water content of FFM then results in a greater estimation bias 

for percentage fat with increasing levels of obesity (Lohman and Milliken, 2003). 

 

TOTAL BODY COUNTING measures the amount of naturally produced radioactive 

potassium 40, which inherently provides an estimate of body cell mass, since most cell 

bodies contain potassium (Ellis, 2005, Duren et al., 2008). FFM can then be calculated once 

an idea of total body potassium is established on the premise that there is a constant 

concentration of potassium in FFM (Ellis, 2005, Duren et al., 2008). 

 

NEUTRON ACTIVATION involves the exposure of a subject to a neutron field, where the 

generated gamma output can be measured as well as many elements in the body like 

carbon, nitrogen, sodium and calcium (Ellis, 2005, Duren et al., 2008). Measures of nitrogen 

can be quantified to predict the amount of protein in the body, which can then be used to 

establish components of FFM. A limitation of this technique is the long exposure to 

radioactive elements. 
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2.3.3 Criterion methods (DXA, CT and MRI) 

DUAL-ENERGY X-RAY ABSORPTIOMETRY (DXA) SCANS 

Dual energy X-ray absorptiometry (DXA) is the preferred method of inferring body 

composition by quantifying fat, lean and bone tissues. This method allows for the resolution 

of total adipose tissue and soft tissue, bone mineral content and bone mineral density (Duren 

et al., 2008). The advantages of DXA is its ease of use and the speed of conducting a whole 

body scan, but estimates are limited by differences in models and the software between 

manufacturers as well as between machines.  There are also physical limitations in terms of 

excessive body length, body weight, thickness and width, which is pronounced with obese 

subjects (Duren et al., 2008, Santos et al., 2010). 

 

Estimates of body composition can be estimated regionally (head, trunk or appendages) or 

for the whole body to estimate bone mineral content (BMC) and soft tissue (fat mass and fat-

free mass), respectively. These estimates can be used to get an idea of body composition as 

well as body fat distribution. This in indicated in the DXA image (Fig. 1.3) where the different 

colours correspond to different tissue types that can be differentiated. Measurements of total 

fat mass, fat-free and percentage fat mass (PFM) can be used as indicators of adiposity. The 

main limitations with the use of DXA scans is perhaps its impractical use in the field and 

caution should be exercised with regard to the error in measurement when detecting small 

changes in body composition (Santos et al., 2010).    

                                       

 
Figure 1.3 Modified DXA scan                                                                                         
Modified DXA scan showing the three tissues scanned; fat (yellow), lean (red) and bone (blue) 
(https://www.measureup.com.au/media/docs/female_body_composition_example) 
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COMPUTERISED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING 

Newer techniques such as computerised tomography and magnetic resonance imaging are 

becoming more popular for use in estimating body composition. Again their utility for use on 

obese subjects is limited. Although CT is able to accommodate larger body sizes, whole 

body assessments are not possible because this would involve long exposures to harmful 

radiation (Duren et al., 2008). However it is possible to concentrate on a specific area e.g. 

intra-abdominally (Duren et al., 2008). MRI does not allow for larger-bodied individuals and is 

more suited for normal-slightly overweight people. Accurate whole body estimates from CT 

and MRI depend on extra time and software (Duren et al., 2008). 
 

Indirect measures such as anthropometry may provide an easy and inexpensive way to 

determine body composition, however, the inconsistencies that may arise make it less 

reliable than others. Criterion methods, in particular DXA, are precise, have low-radiation 

doses, and are easier to access than other ways to examine body composition, and therefore 

seem to be the most appropriate and valuable tool to describe body composition (Santos et 

al., 2014).  

 

2.4 Causes of obesity  

It is well accepted that many factors may contribute to an obesity phenotype, given its highly 

complex nature including the influence of genetics, the environment and more recently 

epigenetics and the microbiome. 

2.4.1 Non-Genetic   

NUTRITION AND PHYSICAL EXERCISE 

Most agree that the recent increase in obesity prevalence is orchestrated by increases in the 

consumption of cheap, tasty foods and sedentary lifestyle (Goedecke et al., 2005, Farooqi, 

2012). The epidemiological transition, which describes a change in environment from one in 

which the prevalence of infectious diseases is high (with associated periodic famine, 

malnutrition, poor sanitation) to one in which chronic diseases are more common, is mainly 

as a result of moving to more industrialised areas (urbanisation) and the resulting changes in 

lifestyle as previously mentioned (Omran, 2001, Popkin, 2006, Feeley et al., 2012, Popkin et 

al., 2012). The nutrition transition, which emerged in response to the epidemiological 

transition, is as a result of alterations to dietary patterns with concomitant increases in the 

intake of fats, sugars and refined foods (Popkin, 2006, Feeley et al., 2009, Feeley et al., 

2012, Popkin et al., 2012) and increased occurrences of non-communicable diseases, of 

which increases in obesity rates drive these occurrences. This is particularly relevant in the 

South African context where the ‘rapid transformation’ from traditional diets (lower in fats, 



 

 

	
Chapter 1 - Literature Review 

	
	 	

13 

higher in carbohydrates) to more “Westernised” diets (higher in calories) has resulted in 

increased obesity rates (Feeley et al., 2012). This nutrition transition is influenced by a 

number of factors including social, economic factors and cultural practices, that all work 

together to influence what we consume. The pattern emerging over time, is a substantial shift 

in the foods we consume, our level of physical activity (more sedentary behaviours), and 

what we drink (increased consumption of sugary drinks) and these changes are influencing 

body composition (Popkin et al., 2012).  

 

Epidemiological studies have noted the influence of environmental factors in early life 

together with changes in gene expression (epigenetic and genetic mechanisms) that result in 

changes in disease patterns (Silveira et al., 2007). These observations are supported by 

similar experimental observations that underpin a strong relationship between unsuitable 

environmental exposures during the early stages of life and the resulting chronic diseases 

that prevail throughout life (Silveira et al., 2007), the culmination of which has led to the 

concept of the Developmental Origins Of Health And Disease (DOHaD)  hypothesis (Burgio 

et al., 2015). 

DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE  

The idea of a ‘thrifty genotype” was first proposed by James Neel in 1962 (Neel, 1962), 

where he suggested that random genetic mutations that were responsible for efficient 

processing and deposition of fat when food was plentiful, were selected for during periods of 

famine, over the course of human evolution (Gillman, 2005, Silveira et al., 2007, Burgio et al., 

2015). When populations were exposed to caloric-rich environments, this “thrifty genotype” 

would then be detrimental to those individuals carrying it and eventually lead to obesity and 

co-morbid diseases. This theory has been criticised over the years where researchers have 

shown that populations with high prevalences of obesity or diabetes, have not historically 

been exposed to famines (adverse conditions) yet still have high levels of insulin resistance 

(Burgio et al., 2015). 

 

Lucas (1991) first introduced the concept of foetal programming where he postulated that “a 

stimulus or insult at a critical period of development has lasting or lifelong significance.”  

Later Hales and Barker (1992) proposed the idea of a “thrifty phenotype” with regards to the 

origins of type 2 diabetes, which proposed that inadequate nutrition in early life, impaired the 

development of the pancreas leading to the development of type 2 diabetes in late life, 

particularly in those subjects who were exposed to an obesogenic environment in adult life. 

This concept then led Barker and colleagues to propose that adverse intrauterine, childhood 

conditions and as a result, low birth weight would result in the onset of many chronic 

diseases later in life including cardiovascular and type 2 diabetes disease phenotypes 
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(Barker et al., 2002). These observations together with other studies conducted around the 

same time regarding low birth weight, refined the “thrifty phenotype” hypothesis, which 

postulates that the foetus is able to adapt to adverse intrauterine conditions by reducing its 

energy needs to guarantee survival. This adaptation can be costly, affecting certain organs 

over others, like the heart and pancreas and producing long-standing effects later in life 

(Silveira et al., 2007). It has been hypothesised that these foetal adaptions are the result of 

epigenetic modifications of the human genome.  

 

Important research by Ravelli et al. (1976) conducted on male offspring born to mothers who 

were exposed to food rationing during different periods of gestation (Dutch Famine 1944-

1945), showed different body composition patterns in the offspring later in life (Silveira et al., 

2007). The incidence of obesity was increased in the offspring of mothers exposed to famine 

earlier in their pregnancy (first six months), than if the insult occurred later, specifically in the 

last three months (Ravelli et al., 1976, Silveira et al., 2007). 

 

EPIGENETIC CONTRIBUTIONS TO OBESITY 

In order for a foetus to survive during adverse conditions that may occur in the intrauterine 

environment such as exposure to maternal malnutrition, certain adaptations or changes have 

to be made during critical developmental periods (Smith and Ryckman, 2015). These 

adaptations can also have a lingering metabolic effect, increasing one’s risk of developing 

chronic diseases such as obesity later on in life. These “programmed” adaptations are 

termed ‘developmental programming’ and may be the result of epigenetic changes to the 

way genes are expressed, or permanent changes in the organisation of organs and tissues. 

Epigenetic changes refers to changes in gene expression that are heritable and that do not 

involve changes to the existing DNA sequence but rather changes to the biochemical 

structure of DNA (Smith and Ryckman, 2015). These epigenetic changes can occur through 

various modifications including, DNA methylation, histone modification, and non-coding RNA 

processes (Li, 2002, Goldberg et al., 2007, Mercer et al., 2009). Epigenetic modifications 

alter the way the transcriptional units are accessed, and in doing so determine whether the 

gene is expressed or not (Van Dijk et al., 2015).  

 

Maternal over-nutrition has also been implicated in increasing risk to the offspring for 

developing obesity (Kaar et al., 2014, Smith and Ryckman, 2015). Most of the evidence that 

portray developmental programming as critical to the outcome of chronic NCD’s is observed 

through epidemiological and now recently well-established animal model studies. There are 

many studies that point to body composition being in part regulated by epigenetic 

mechanisms, in particular DNA methylation studies where the pattern of methylation of 
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several genes have been implicated in obesity (Burgio et al., 2015).  Prader-Willi syndrome 

(PWS) for example results in developmental delays, impaired cognition, uncontrolled eating 

and life-threatening obesity (Xia and Grant, 2013), caused epigenetic errors. In the majortiy 

of cases, the paternal copy of the region is deleted, and the maternal copy, while present, is 

silenced and non-transcribed due to the normal imprinting pattern of this locus. Anglemann 

syndrome, the reciprocal disorder to PWS, shows growth retardation and together with 

Beckwith-Wiedermann and Russel-Silver syndromes, serve as examples to illustrate that 

imprinted loci are often involved in early development, and aberrant imprints lead to either 

undergrowth or overgrowth syndromes. Also imprinting may be cell or locus specific at the 

human leptin  (explained below) promoter region because of differing methylation pattern 

between alleles and cells (Xia and Grant, 2013); thus regulating BMI variance. More 

investigations have to be conducted to fully understand the epigenetic mechanisms by which 

body weight is regulated. 

 

MICROBIOME 

Increasing evidence from studies have shown that some interaction exists between host, 

environment, diet, microbiota and obesity and these have mostly been investigated through 

metagenomic and metabolomic approaches (Burgio et al., 2015, Graham et al., 2015). The 

human microbiome is said to encompass 100 trillion microbial cells containing almost 100-

fold more unique genes than the human genome (Burgio et al., 2015, Graham et al., 2015).  

Most microbiota belong to two main classes, Firmicutes and Bacteroidetes, with the rest of 

the organisms belonging to both gram-positive and gram–negative bacteria (Graham et al., 

2015). Although there is a proposed core set of microorganisms that dominate the 

microbiome, a large proportion of the variation in the microbiome between individuals 

depends on the environment and diet to which the host is exposed, during various stages of 

the life cycle (Graham et al., 2015).  

 

Initiatives such as the Human Microbiome Project aim to assess the relationship between the 

human microbiome and particular health outcomes (Ding and Schloss, 2014). Metagenomic 

studies have shown that some combinations of gut microbia either predispose or protect 

individuals from weight gain (Burgio et al., 2015). In some instances obese individuals have 

been shown to have increased colonisations of Firmicutes and decreased Bacteroidetes 

species in the gut compared to non-obese subjects (Tsai and Coyle, 2009, Ley, 2010). The 

mechanisms through which gut microbiota may influence body fat mass is complex but it has 

been proposed (Tsai and Coyle, 2009, Ley, 2010, Parekh et al., 2014, Burgio et al., 2015, 

Graham et al., 2015) that: 
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• The permeability of the gut is modified by the microbiome causing the absorption of 

lipopolysaccharides from the gut bacteria which leads to an inflammatory response 

thus increasing insulin resistance, 

• Gut microbiota affects the hosts metabolism by increasing the energy harvest from 

the ingested food, or increasing fat storage in adipocytes, altering endocrine function 

or modulating the breakdown of lipids, 

• The microbiome interferes with the regulation of epigenetic signals in obese and type 

2 diabetic individuals. 

Although gut microbiota have been implicated to influence obesity, the extent to which they 

bring about weight gain or loss is yet to be completely elucidated because of the strong 

interplay between diet and the microbiome. The current obesity epidemic has been mainly 

attributed to adopting a “Westernized” lifestyle as stated earlier, however not everyone 

exposed to this obesogenic environment –(intrauterine, epigenetic or microbiome), becomes 

obese. 

 

2.4.2 Obesity Genetics (Syndromic/monogenic, common) 

Genetics has an important part to play in programming our physiological state and therefore 

has a large influence on body composition (Loos, 2013) with strong evidence supplied by 

twin-, family- and adoption studies supporting the heritability of body fat mass and distribution 

(Bodurtha et al., 1990, Walley et al., 2009). In order to foster viable treatment and prevention 

strategies, we need to search for ‘at-risk’ genes with a view to understand pathways and 

networks that mediate body weight regulation. The discovery that the disruption of certain 

biological pathways, due to monogenenic mutations, could result in obese phenotypes was 

perhaps the first step in trying to understand the influence that genetics has on the regulation 

of body weight. 

 

MONOGENIC AND SYNDROMIC OBESITY 

When obesity is a result of a chromosomal aberration or a single gene effect, the pattern of 

inheritance is often Mendelian and normally results in an extreme form of obesity with an 

early-onset (Loos, 2013).  These forms of obesity are mostly rare and are often classified into 

either monogenic or syndromic obesity. More than 200 instances of these monogenic (single-

gene) disorders have been reported, where they seem to predominantly affect the leptin-

melanocortin pathways, which are critical in body weight regulation by controlling food intake 

through the brain-satiety pathway located in the hypothalamus (Loos, 2012, Zegers et al., 

2012, El-Sayed Moustafa and Froguel, 2013). The main genes implicated in these pathways 
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are leptin (LEP) and its receptor (LEPR), pro-opiomelanocortin (POMC) and its derived 

hormones, the melanocortin-4 receptor (MC4R) as well as pro-hormone convertase 

subtilisin/kexin type 1 (PCSK1) (Loos, 2012, Zegers et al., 2012, El-Sayed Moustafa and 

Froguel, 2013). Syndromic obesity is associated with an extreme obesity phenotype that is 

often accompanied by other abnormalities including developmental delay and brain 

dysfunction. The most common forms include Prader-Willi syndrome (mentioned previously) 

and Bardet-Biedl syndrome where the genetic causes include single-gene defects, 

chromosomal and imprinting abnormalities as well as X-linked disorders (Hebebrand et al., 

2013, Loos, 2013).  

 

COMMON POLYGENIC OBESITY 

Heritability estimates indicate that genetic factors contribute to almost 40-70 % of the inter-

individual variation in measures of body fat mass, particularly BMI (Elks et al., 2012, Nan et 

al., 2012). Common obesity is a complex disorder (Walley et al., 2009) of which the interplay 

between a large number of genetic variants and gene-environment interactions (Loos, 2012) 

complicate the understanding of its genetic aetiology. Family-based linkage studies alluded 

to the initial genetic link to common obesity together with studies on specific ethnic groups to 

estimate heritability of obesity risk. Heritability studies aim to quantify how much of variation 

in obesity risk is explained by a heritable contribution. The heritability of BMI in indigenous 

African populations is largely understudied, barring a single publication on a Nigerian cohort 

(Luke et al., 2001) where heritability estimates were shown to be 50% for weight, BMI, fat 

mass and percentage fat mass. 

 

The main approaches for investigating complex diseases such as polygenic obesity have 

involved genetic association studies or recently the use of whole genome sequencing (WGS) 

efforts. When using genetic association studies to identify loci for disease-related traits, one 

could employ two strategies, the candidate-gene approach, which is hypothesis-driven, or 

the genome-wide approach. Direct candidate gene analysis relies on an a priori hypothesis 

to identify a disease-causing variant by direct genotyping/sequencing. The rationale behind 

focusing on allelic variation in specific, biologically relevant regions of the genome is that 

certain mutations will directly impact the function of the gene in question, and lead to the 

phenotype or disease state being investigated. This approach usually uses case-control 

study designs to try and answer questions “Is one allele of a candidate gene more frequently 

seen in subjects with the disease than in non-disease controls. GWAS relies on an indirect 

association to locate a disease-causing variant. GWASs typically focus on associations with 

SNPs and traits that contribute to disease. If one type of the variant is more frequent in 
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people with a particular phenotype, the variant is said to be associated with that phenotype. 

The associated SNPs are then considered to mark a region of the human genome that may 

influence the risk of disease. 

 

3. Investigating genetics related to obesity phenotypes 
 

Public databases such as dbSNP (Sherry et al., 2001), HapMap and recently the 1000 

genomes project (1000G) have given us more insight into the variation harboured within the 

human genome, which has led to the development of tools to help in the study of polygenic 

diseases such as obesity. The HapMap project in particular enabled the use of tag-single 

nucleotide polymorphisms (SNPs). Tag SNPs allow for the genotyping of representative 

SNPs in a block of the genome that has high linkage disequilibrium (LD) and is sufficient to 

identify haplotypes (Gibbs et al., 2003), thus reducing the cost of the genotyping exercise. A 

haplotype is made up of a group of specific alleles located near each other on the same 

chromosome that tend to be inherited together (Pearson and Manolio, 2008). The use of tag 

SNPs is particularly relevant in candidate gene studies and GWAS carried out in populations 

of varying ethnicities, where tagSNPs can be selected against the LD background for that 

particular population (or closest to it). When designing approaches to investigate genetic 

associations, there are two possible interpretations of a positive association. The first one 

(direct) being that the association arises due to the identification of the disease causing allele 

or secondly (indirect) that the disease- associated allele is in LD with the true causal variant 

(Collins et al., 1997). The direct association methods forms the basis for candidate gene 

studies in that they are hypothesis driven.  

 

Both these interpretations of a positive association (direct or indirect) rely on the premise of 

common variants underlying susceptibility to common diseases. This common disease-

common variant (CDCV) hypothesis  (Lander, 1996, Cargill et al., 1999, Chakravarti, 1999, 

Reich and Lander, 2001) predicts that there will be one or few predominating disease-

causing alleles at each of the major underlying disease loci (Reich and Lander, 2001). 

 

3.1 Candidate gene studies of obesity 

 

Candidate gene studies are hypothesis driven, relying on what we understand about the 

current biology and pathophysiology of the disease that is being investigated (Loos, 2009). 

Genes that are implicated in energy homeostasis in animal models and extreme monogenic 

models of obesity are tested for correlation with obesity-associated phenotypes (variances in 
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body composition) at the population or case control level. Historically candidate gene studies 

have not been as successful as GWAS in reinforcing obesity-related associations. The main 

limitations being that sample sizes are often too small to detect small or moderate effects, 

that the tag-SNPs did not efficiently capture the variation within the gene or that the biological 

pathway was not fully understood so incorrect candidate genes were selected (Loos, 2013). 

Large-scale candidate gene studies of BMI conducted recently have the necessary power to 

detect smaller effects and also to refute false-positive associations. Most large-scale 

candidate gene studies have identified common variants (most of them resulting in changes 

to the amino acid sequence) in about six genes, MC4R, β-adrenergic receptor 3 (ADRB3), 

PCSK1, brain-derived neurotrophic factor (BDNF), melatonin receptor type 1 B (MTNR1B) 

and lactase (LCT) (Loos, 2013).  
 

3.2 Genome wide association studies (GWAS) 

 

GWAS are designed to identify genetic associations with observed phenotype(s)/trait(s) that 

occur across the genome and exploit the principle of LD at the population level (N.I.H., 2007, 

Pearson and Manolio, 2008). LD is the non-random (more likely to be inherited together) 

association between alleles at different loci that are in close proximity to each other (Pearson 

and Manolio, 2008). The LD is measured using Pearsons coefficient of correlation- r2 or D´ 

(Ardlie et al., 2002). LD arises due to evolutionary forces such as selection, drift, mutation 

and is broken down by recombination events (Hartl and Clark, 1997). The genomic distance 

at which LD decays determines how many genetic markers are used to tag/represent a 

haplotype (Visscher et al., 2012). The HapMap Project in particular (Gibbs et al., 2003), 

resulted in a list of tag SNPs that captured most of the common variation in currently 11 

populations of various ethnic backgrounds included in HapMap-Phase 3. Subsequent to, and 

in response to the strides made by the HapMap project, commercial companies such as 

Illumina and Affymetrix have produced dense SNP chips that allowed hundreds of thousand 

of SNP markers to be combined in a single experiment (Visscher et al., 2012). GWAS 

studies have limitations in that they rely on the LD between the SNPs being genotyped and 

the causal variants and thus the causal variant may be quite distant from the identified 

tagSNP (Visscher et al., 2012). Also statistical association (assesses the relationship 

between two alleles) is based on the frequency of the alleles in the population. So the 

strength of the association decreases as the level of LD decreases. Most GWAS are 

designed to detect associations with causal variants that are common in the population 

(minor allele frequency- MAF ≥ 0.05). Also to minimise the number of false positive 

associations that may arise because of the large numbers of SNPs on the array, multiple 

testing corrections and being able to replicate associations in an independent study are vital 
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(Fall and Ingelsson, 2014). The accepted ‘genome-wide’ (GW) significance levels are P-

values ≤ 5 X 10-8 (Hoggart et al., 2008, Panagiotou and Ioannidis, 2012). This limit is based 

on a significant P-value of α=0.05/number of independent SNPs. Despite these limitations, 

GWAS have contributed to our understanding of the genetic aetiology of polygenic diseases 

and have provided us with more information on the allele frequencies and effect sizes of 

variants involved in these diseases (Andersen and Sandholt, 2015). 

 

3.2.1 GWAS associated with Body Mass Index (BMI) 

The distribution of risk alleles associated with variations in BMI at a population level would be 

represented by only very few individuals having the least risk alleles and at the other extreme 

by very few having the most risk alleles, if the data was normally distributed as shown in Fig. 

1.4. Most individuals in the population would have an intermediate number of risk alleles. 

Being able to genotype a large enough number of individuals at the population-level is 

necessary for discovery and validation of these at risk variants, which has led to more and 

more collaborative efforts of GWAS using a meta-analysis approach (Hebebrand et al., 

2013).  

       
 

Figure 1.4 Effect estimators of genetic variants for body weight                                          
Effect estimators of genetic variants for body weight identified by meta-analysis of GWAS (Hebebrand 
et al., 2013) 

 

EUROPEAN COHORTS 

The first gene variant associated with increased BMI identified by GWAS using high-

throughput methodologies was the FTO (fat mass and obesity associated) locus, which was 
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found to be strongly associated with type 2 diabetes (Frayling et al., 2007). However when 

the investigators adjusted the association for BMI, the association fell away, thus implying 

that FTO was associated with BMI and not type 2 diabetes. They later replicated their finding 

in a larger cohort (both adult and childhood) and concurrently other researchers have 

replicated this locus as an obesity risk locus in a childhood obesity study (Dina et al., 2007). 

This was then followed by a meta-anaysis (Loos et al., 2008) where the FTO association was 

replicated and a new locus near MC4R was both discovered and further replicated. It 

became evident that there was a need for an increase in sample size through collaboration. 

The first major collaborative effort was from the Genetic Investigation of ANthropometic 

Traits (GIANT) consortium whose mandate is to gain insight into genetic loci that influence 

body size and shape, including height and measures of obesity.  

 

The first publication by the GIANT consortium (Willer et al., 2009) together with a study by 

Thorleifsson et al. (2009) confirmed the previous findings with regard to FTO and MC4R and 

further identified and replicated eight additional BMI risk loci including those in/near 

TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2, NEGR1, ETV5 and BDNF. Following that, a 

landmark paper (Speliotes et al., 2010) increased the total of BMI-associated loci to 32 via a 

large increase in sample size (~124 000, replication in ~126 000 individuals). However the 

latest GWAS and Metabochip meta-analyses by GIANT has shown 97 loci (refer to Fig.1.5 

for an overview of the BMI-associated loci discovered to-date) to be robustly associated with 

BMI at genome-wide significance (Speliotes et al., 2010, Locke et al., 2015). This 

collaborative effort encompassed almost 340 000 individuals of mostly European (~322 000 

individuals) descent and about ~17 000 individuals that were non-Europeans (mainly African 

American but also included Hispanic, Filipino, Jamaican and South Asian individuals) (Locke 

et al., 2015) (supplementary data 2). Of the 97 loci found to be significantly associated with 

BMI, 56 were novel to the study (Locke et al., 2015).  Cumulatively it has been suggested 

that only ~3% of the total variation in BMI can be accounted for by the common genetic 

variants uncovered by GWAS (Andersen and Sandholt, 2015). Also a recent study has 

reported that when BMI was examined for age-specific effects, 15 BMI associated loci were 

discovered (four novel), with 11 of the loci showing larger effects in the younger cohort 

(Winkler et al., 2015). Even though missing heritability remains a problem (discussed further 

on), further investigations in populations with increased genetic diversity such as the current 

fine-mapping study may offer new avenues in terms of addressing the variation in adiposity 

traits accounted for by genetic variants.  
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NON-EUROPEAN POPULATIONS 

Prior to 2012 most BMI-associated GWAS performed in non-Europeans did not report any 

GW significant findings, even though the variants were directionally consistent with those 

identified in European GWAS (Fall and Ingelsson, 2014). These studies included GWAS in a 

large mixed Asian cohort (Chinese, Malay and Indians from Singapore) (Dorajoo et al., 

2012), a Filipino cohort (Croteau�Chonka et al., 2011), a Native American cohort (Malhotra 

et al., 2011), a Japanese cohort investigating hypertension traits, including BMI (Hiura et al., 

2010) and two GWAS including populations of African Ancestry (AA) (Kang et al., 2010, 

Monda et al., 2013). In 2012 two GWAS focusing on Asian populations, more specifically 

mixed Chinese, Korean and Indonesian cohorts (Wen et al., 2012) and a Japanese cohort 

(Okada et al., 2012) reported replication of signals from GIANT at seven and five obesity risk 

loci (including FTO, BDNF and SEC16B), respectively. These two studies also reported four 

novel non-European signals (near CDKAL1, PCSK1, GP2 and KLF9 genes) with CDKAL1 

seen in both Asian cohorts (Okada et al., 2012, Wen et al., 2012). Also, a GWAS meta-

analysis of individuals of African ancestry (Monda et al., 2013) reported the discovery of 

three other novel BMI-associated loci near GALNT10, MIR148-A-NFE2L3 and KLHL32, as 

well as replicating 32 out of the then 36 signals from GIANT (Speliotes et al., 2010), five of 

which were at GW-significance and the others at P= 9.7 x 10-7 (Monda et al., 2013).  

Investigation of variants in other populations has shown an overlap of variants associated 

with increased obesity risk in European populations, but also the discovery of 11 novel 

obesity risk loci (Andersen and Sandholt, 2015). Further investigation is warranted in 

individuals of non-European ancestry, which as a result of their greater genetic diversity, can 

better inform genetic studies. This is relevant for risk factors that vary in prevalence among 

different ancestral populations, and might impact the distribution of rare variants in WGS 

studies and population structure in GWAS. 

 

3.2.2 GWAS Associated With Fat Distribution (waist circumference, hip circumference and 

waist-to-hip ratio) 

EUROPEAN COHORTS 

Visceral and abdominal fat distribution has been shown to be relevant in the development of 

metabolic disease, so determining the genetic factors that underpins this process, would be 

very relevant to the obesity phenotype. WC and WHR give an indication as to the distribution 

of body fat and in most studies are adjusted for BMI. This is because BMI is highly correlated 

with WC and WHR (Fall and Ingelsson, 2014). The effect of WC and WHR to fat distribution 

should be examined, taking BMI into consideration. To date there have been 69 loci 

associated with body fat distribution from GWAS (Andersen and Sandholt, 2015). 
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Figure 1.5 View of the current loci associated with increased obesity risk                       
Adapted from (Andersen and Sandholt, 2015) 

 

The first study to show an association with WC (Frayling et al., 2007) showed FTO to be 

associated with both BMI and WC. This was followed by two meta-analyses spearheaded by 

the GIANT and CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) 
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consortia where they examined both WC and WHR and WC only, respectively. The 

CHARGE study confirmed the FTO association with WC (Heard-Costa et al., 2009). The 

GIANT consortium paper identified two loci near TFAP2B and MSRA associated with WC 

and LYPLAL1 to be associated with WHR in females only (Lindgren et al., 2009). Further, a 

meta-analysis by GIANT focussing on WHRadjustBMI reported the discovery of 13 new loci 

(highlighted in Fig.1.6) at GW-significance and replicated the known effect observed at 

LYPLAL1 (Heid et al., 2010). They also reported that seven out of the 13 new loci showed 

sex-specific effects with a majority of the loci have a stronger effect on WHR in females over 

males. 

 

 

 
Figure 1.6 View of the current loci associated with body fat distribution                        
Adapted from (Andersen and Sandholt, 2015) 

 

The most current GIANT study has robustly confirmed 49 loci (33 novel to the study) 

associated with WHRadjustBMI, 19 loci associated with WHR, WCadjustBMI, HCadjustBMI and HC 

(Shungin et al., 2015). HC and WC with and without adjustment for BMI were included as 

phenotypes to clarify the distribution of fat deposits independent of adiposity, which allowed 

the discovery of the additional 19 loci (Sandholt et al., 2015). There seems to be a strong 
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influence of sex in the regulation of fat distribution and most of the loci discovered regarding 

the distribution of body fat account for 1.36% of the phenotypic variance observed, more so 

in females (Andreasen et al., 2009, Randall et al., 2013). The sexual dimorphism effects on 

body shape (WHR-adjust BMI) was recently confirmed by a meta-analysis examining age- and 

sex-specific effects where 44 loci were reported at GW-significance (17 novel), 28 of which 

had larger effects in females, five had larger effects in males and 11 of the loci had opposite 

effects in each sex (Winkler et al., 2015). This study also reported that there were no age-

dependent effects with regard to WHRadjustBMI between older and younger adults. 

 

NON EUROPEAN POPULATIONS 

Few studies have been reported on the genetic influence on body fat distribution in non-

European populations. A study carried out in Indian Asians showed a GW significant 

association between WC (and independently with insulin resistance) and MC4R (Chambers 

et al., 2008) while another study in Asian individuals reported a novel locus near C12orf51 

was associated with WHR (Cho et al., 2009). The novel discovery in the latter study is yet to 

be replicated and confirmed in other populations. The only GWAS study of body fat 

distribution conducted in African Americans, reported 2 novel loci near LHX2 (WCadjustBMI), 

RREB1 (WHRadjustBMI) (Liu et al., 2013) and overlap with six Euro-centric loci (Heid et al., 

2010). There was nominal evidence for sexual dimorphism shown in this study. 

 

3.2.3 Other GWAS relevant to obesity phenotype (Morbid Obesity, Early-Onset Obesity, 

Adiposity) 

GWAS have been carried out in individuals with extreme phenotypes including 

morbid/extreme obesity in the expectation of discovering more penetrant variants than those 

found in the general population (Sandholt et al., 2015). These analyses were carried out 

predominantly in a case-control (obese vs. normal weight) fashion, however there was no 

consensus regarding inclusion criteria for obesity classes amongst the various studies. 

Criteria included established cut-offs for obesity or cut-offs based on percentile distribution of 

the trait (Fall and Ingelsson, 2014). A majority of the studies were conducted on extremely 

obese adult cohorts although two studies included child cohorts (Meyre et al., 2009, Scherag 

et al., 2010). All of the studies found overlap with SNPs previously reported for BMI or body 

fat distribution and only three studies reported finding novel variants near MAF (Meyre et al., 

2009), SDCCAG8 (Scherag et al., 2010) and KNCMA1 (Jiao et al., 2011) genes. A study 

focussing on both extreme phenotypes associated with adiposity as well as stratifying the 

data according to clinical obesity classes, found no GW significant associations for the 
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former but found seven novel loci for the latter outlined in Fig. 1.5 (Berndt et al., 2013). Five 

of these associations were also found in the largest GIANT BMI meta-analysis (Locke et al., 

2015), hinting at the notion that these loci might not really be associated specifically with 

extreme obesity classes, but rather correlated with the increase in sample size (Sandholt et 

al., 2015).  

 

There are very few studies published on direct measures of adiposity derived from DXA and 

bioelectrical impedance. Two studies assessed derived measures of fat mass and obesity, 

one utilizing DXA scans (Liu et al., 2008b), the other bioelectrical impedance (Melka et al., 

2011). This resulted in the discovery of loci associated with fat mass, CTNNBL1 and PAX5 

and MRP522, respectively. One study (Kilpeläinen et al., 2011) used percentage fat mass 

and confirmed the association of FTO and adiposity as well as finding two novel loci, IRS1 

(associated with a decrease in % fat mass) and SPRY2 at GW significance.  

 

3.3 Fine mapping studies 

 

GWAS studies help us better understand the biological mechanisms that underline the 

obesity phenotype however they do not necessarily pinpoint the causal and functional 

variant. Most of the variants that have been implicated in fine mapping studies may provide a 

solution for this by trying to identify all known variants within a specific region identified by 

GWAS and then honing in on the strongest signals in large validation cohorts or by 

combining data on the same regions from different populations with different LD backgrounds 

(Fall and Ingelsson, 2014). Populations with lower LD structure such as African or Asian 

populations are useful in unmasking causal variants that are hidden by higher levels of LD in 

European populations (Buyske et al., 2012, Crawford et al., 2013). Fine mapping studies in 

populations of varying ethnicities are also useful in the identification of additional causal 

variants that may not be present or occur at extremely low frequencies in other discovery 

populations (Buyske et al., 2012).  

 

The most current fine mapping approaches have shown that non-coding variants are likely to 

be responsible for associations at established loci and that newly discovered loci had a large 

number of enhancer elements (Horikoshi et al., 2015). Recent studies have fine-mapped 

genome-wide obesity-related loci (Gong et al., 2013, Liu et al., 2014, Horikoshi et al., 2015) 

and some have chosen to focus on single regions (candidate fine-mapping) such as FTO or 

SH2B1 (Hassanein et al., 2010, Peters et al., 2013, Volckmar et al., 2015). Most of the 

cohorts examined have been European populations but the use of African ancestry 

populations (Gong et al., 2013, Peters et al., 2013, Liu et al., 2014), has shown that fine-
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mapping across populations of differing LD backgrounds reduces the number of common 

alleles that are likely to be functional candidates and is therefore a powerful tool in gaining 

insight into the causal variants for polygenic obesity. 

 

To drive the discovery of additional loci, and to hone in on the actual causal SNPs, higher 

resolution SNP arrays have been developed to examine trait/s of particular interest; these 

include the dense genotyping/fine mapping arrays such as the Metabochip (Voight et al., 

2012). 

3.3.1 The Metabochip 

The Metabochip is a custom genotyping array from Illumina that allows for the genotyping of 

almost 200 000 SNPs known to influence cardiometabolic and atherosclerotic traits (Voight 

et al., 2012). The chip contains 11 main traits captured in Tier 1, of which BMI and WHR are 

included (Table 1.2). The SNPs included on the chip are the top (highest association signals)  

~5000 (Tier 1) and ~1000 (Tier 2) independent association signals obtained from GWAS 

meta-analyses for the 23 traits captured. These include SNPs from the International HapMap 

and 1000G project [refer to (Voight et al., 2012) for breakdown of SNPs]. Together with each 

GWAS-identified SNP, additional proxy SNPs (that are in high LD with the index SNP; r2> 

0.9) together with four other supplementary SNPs (r2> 0.5) were selected from the CEU 

(Utah residents with Northern and Western European ancestry) and YRI (Youruba, Nigeria) 

HapMap Phase II datasets, respectively, to be included on the array. Also SNPs were 

included for fine-mapping purposes to elucidate regions related to metabolic traits, as well as 

Major Histocompatibility Complex (MHC) SNPs, copy number variant (CNV)-tagging SNPs, 

mitochondrial DNA SNPs, X and Y chromosome SNPs as well as “wildcard” SNPs (Voight et 

al., 2012, Spencer et al., 2013). “Wildcard” SNPs – refers to additional SNPs of particular 

interest to each consortia present on the chip.  

 

The Metabochip differs from GWAS chips in its SNP coverage of rare and low frequency 

variants (Buyske et al., 2012). This describes variants  with a MAF of < 1%. For example 

there is a notable difference in MAF captured by Metabochip SNPs in African Americans 

versus ASW (African ancestry in Southwest USA) compared to Affymetrix 6.0 and Illumina 

1M arrays. A total of 21.6% of the polymorphic Metabochip SNPs have MAF less than 0.025, 

compared to 5.8% and 6.8% for the Affymetrix 6.0 and Illumina1 M arrays, respectively 

(Buyske et al., 2012).  

 
 
Studies assessing the generalisation of GWAS signals in European discovery populations in 

non-Europeans populations using the Metabochip have shown directionally consistent 
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effects. However, the differential effect sizes of these variants vary, more so in populations of 

African Ancestry (Carlson et al., 2013) and this is due mostly to differing LD backgrounds 

rather than true differences in effect sizes. 

 
 
Table 1.2 Breakdown of SNPs of the Metabochip by trait and tier. Tier 1 contains 11 traits of 
primary interest, Tier 2 contains 12 traits of secondary interest. Adapted from Voight et al., 
(2012) 
 

Consortium Trait Name Fine Mapping 
Replication 

SNPs 

  

 

# Loci Size (Mb) # SNPs   

Tier 1            

DIAGRAM Type 2 Diabetes 34 6.56 16 717 5 067 

CARDIoGRAM MI and CAD 30 9.60 19 558 6 485 

Lipids HDL Cholesterol 23 4.62 12 150 5 024 

  LDL Cholesterol 21 4.06 9 981 5 060 

GIANT Triglyceride 20 4.68 9 784 5 057 

  Body Mass Index 24 7.48 18 211 5 055 

MAGIC Waist -to-hip ratio* 15 2.25 5 464 5 056 

ICBP Fasting Glucose 19 5.05 13 644 5 058 

  

Diastolic Blood 

Pressure 20 8.34 13 239 5 060 

QT-IGC Systolic Blood Pressure 21 6.01 10 641 5 059 

  QT Interval 18 4.08 10 910 5 041 

Tier 2 
     DIAGRAM T2D Age of Diagnosis 0 0.00 0 1 039 

  T2D Early Onset 0 0.00 0 1 040 

HaemGen Mean Platelet Volume 0 0.00 0 657 

  Platelet Count 0 0.00 0 577 

  White Blood Cell 0 0.00 0 598 

Lipids Total Cholesterol 0 0.00 0 941 

Body Fat Body Fat Percentage 0 0.00 0 1 035 

GIANT Height 0 0.00 0 1 050 

  Waist Circumference* 2 0.50 1 374 1 048 

MAGIC 24-Hour Glucose 3 0.61 1 249 1 038 

  Glycated Haemoglobin 5 0.46 2 181 1 045 

  Fasting Insulin 2 0.67 1 309 1 046 

TOTAL with Redundancy 257 64.97 146 453 68 126 

  Unique Regions/SNPs 257 45.52 122 241 63 450 

 
*Waist -to-hip ratio and waist circumference were adjusted for body mass index 
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Many studies have demonstrated the usefulness of the Metabochip in fine mapping signals 

at a particular locus as well as population-specific signals for example, at the 

CELSR2/PSRC1/SORT1 locus, a study reported the strongest associated SNP for LDL 

cholesterol to be rs12740374 (P= 3.6 x 10-11). This particular variant could not be 

discriminated from other SNPs in high LD  in European cohorts (Buyske et al., 2012). Further 

they also reported a SNP rs17231520 at CEPT to be associated with HDL-cholesterol in 

African Americans, which occurs at a very low frequency in European populations and would 

not have been tagged on normal GWAS chips. 

 

More specifically with regard to obesity, one study has demonstrated the effective use of the 

Metabochip to densely genotype and evaluate 21 BMI loci identified in European GWAS in 

~29 000 African Americans from the Population Architecture using Genomics and 

Epidemiology (PAGE) study (Gong et al., 2013). They showed that eight of the 21 loci were 

associated with BMI at P= 5.8 x 10-5 and that for most of the loci, fewer variants were in LD 

(r2>0.5) with the most significant SNP in African American populations than European 

populations. Further, they also reported two new variants associated with BMI, BRE and 

DHX34 as well as a putative independent signal near GNPDA2 (Gong et al., 2013). It is 

unknown how this chip will perform in a sub-Saharan African population but it has potential to 

narrow down ‘risk intervals’ in susceptibility loci revealed by GWAS and also potentially will 

aid in the discovery of population-specific loci, as will be examined in this study. 

 

4. African Data from Candidate Gene Studies and GWAS 
 

Reports on the prevalence of obesity in Africa are few with approximately 20 population-

based studies published throughout Africa (Kengne et al., 2013). The prevalence of obesity 

varies throughout Africa, with rates as low as 5,3% in Uganda (rural setting) and as high as 

45,7% in rural South Africa (Kengne et al., 2013, Yako et al., 2015). The reason for these 

varying rates may not only be a reflection of the differing dietary environments or socio-

economic statuses but also the frequency of obesity-associated genetic variants. Generally it 

is understood that obesity is a complex disease resulting from the cumulative effect of “at-

risk” variants described previously in the chapter when “at-risk” carriers are exposed to an 

obesogenic environment (Yako et al., 2015).  According to a recent review paper (Yako et 

al., 2015), over 300 studies have been conducted in Africa regarding genetic variants 

associated with obesity risk with variants in genes such as ACE, ADIPOQ, ADRB2, AGRP, 

AR, CAPN10, CD36, C7orf31, DRD4, FTO, MC3R, MC4R, SGIP1, LEP and LEPR having 
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been reported.  

 

Prior to the work outlined in this thesis, only the FTO and MC4R GWAS-validated loci have 

been investigated for correlations with BMI in a South African (Lombard et al., 2012), 

Gambian (Hennig et al., 2009) and Nigerian cohort (Adeyemo et al., 2010). Both the South 

African and the Nigerian study found associations with variants in FTO. The Gambian study 

investigating correlations in FTO and BMI, did not report any significant associations, which 

may be due to a number of reasons, including a very lean study cohort (Hennig et al., 2009). 

Most studies investigating obesity-related loci in African populations adopted a candidate-

gene approach and there is not a lot of overlap in loci examined, barring FTO, LEP and 

LEPR (>three studies) (Yako et al., 2015). This lack of overlap between studies of various 

African populations prevents the comparison of effects of obesity-linked variants. Also most 

studies on African populations have been conducted in South Africa, Tunisia, Nigeria or the 

Gambia with single studies conducted on obesity loci in other African populations. The 

studies are not consistent with regard to sample size (ranging from N= 85 – 2 332; with five 

studies N>1000), age (ranging from 2-93yrs) or phenotype (all including BMI, although WC, 

WHR, percentage fat mass and BMI as a dichotomous trait have been reported) (Yako et al., 

2015).  

 

Only some studies accounted for confounding factors in the association analysis including 

population stratification (Yako et al., 2015). There is a growing body of evidence to suggest 

that variations in ethnicity associate with genetic variation and that population structure is 

greater within Africa than elsewhere (Teo et al., 2010) and therefore must be considered. 

Also African populations exhibit the highest levels of  genetic variation and the lowest levels 

of LD among human populations (Tekola-Ayele et al., 2013). A meta-analysis including 

individuals of AA (Monda et al., 2013) found that 32 of the loci associated with BMI (Speliotes 

et al., 2010) were directionally consistent with European populations albeit not GW 

significant. A similar Asian GWAS (Wen et al., 2012) also confirmed the lack of 

reproducibility of GW significant signals in non-European populations. To date there has 

been one GWAS study conducted in an African (Nigerian) cohort (Kang et al., 2010) on 

anthropometric traits. There could be a number of reasons responsible for the lack of 

reproducibility of these signals including inconsistent genotyping strategies across the 

studies, smaller sample sizes, or the difference in the genetic architecture and LD patterns 

(Teo et al., 2010, Yako et al., 2015). 

 

In summary, 188 loci have been reported to associate with obesity-related phenotypes with 

major contributions from the GIANT BMI (97 loci) and WHRadjBMI (49 loci) meta-analyses, 
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GIANT analyses of obesity classes (three loci) and other fat distribution measures (19 loci), 

as well as independent GWAS of early-onset obesity (eight loci), non-European populations 

(11 loci) and phenotypes (one locus) (Sandholt et al., 2015). The small amount of variation in 

BMI explained by data from GWAS in populations of European descent suggests that studies 

must be undertaken in other ethnicities that have lower LD levels and are more polymorphic. 

African populations meet both these requirements and the detailed analysis of relevant 

obesity phenotypes within such populations could lead to the identification of additional 

genetic risk markers for obesity, including those associated with fat distribution and whole 

body adiposity. 

 

5. Missing heritability 
 

A common thread mentioned throughout this literature review speaks to the high heritability 

of body composition traits that contribute to obesity. The fact that the level of heritability of 

height is 80-90% (Visscher, 2008) was aptly described by Maher (2008) “… if 29 centimetres 

separate the tallest 5% of a population from the shortest, then genetics would account for as 

many as 27 of them.” Despite the high heritability estimates (40-70%) for obesity related 

traits, GWAS-identified variants are only able to explain a very small percentage of this 

heritability (Maher, 2008, Bogardus, 2009, Manolio et al., 2009). Plausible explanations for 

this “missing heritability” could lie with variants that are too rare to be identified by GWAS 

that have large effects on body fat mass, and the inability of GWAS to detect other variant 

types e.g. copy-number variations (Maher, 2008, Manolio et al., 2009, Marian, 2012). Also 

that there are a lot of frequent variants that are not penetrant (Maher, 2008), so GWAS 

cannot statistically detect those associations. It has also been suggested that gene-gene, 

gene-environment interactions as well as the contribution of microRNAs in bringing about 

epigenetic changes might explain some aspects of hidden heritability (Marian, 2012).  

 

However a majority of what we currently know about genetic factors linked to obesity is 

focussed on European and some Asian studies, with African populations remaining 

understudied. There are significant advantages in studying African populations, in that the 

high genetic diversity and low linkage disequilibrium allows for narrowing down of loci where  

previous signals have been identified (Teo et al., 2010). This could potentially result in 

unveiling and discovery of causal variants. The main motivation for this study is the lack of 

genetic studies, either association or heritability estimates, of traits contributing to obesity in 

diverse sub-Saharan African populations. 
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6. Study Aim and Objectives 
 

Differences have been observed in obesity risk factors, distribution of body fat and 

environmental and nutritional exposure when comparing European and African populations. 

Given these observations, this study focuses on exploring whether genetic factors contribute 

to measures of body fat in African subjects. The aims of this study are therefore to: (1) 

identify genetic markers associated with body fat and lean measures in a South African black 

population and (2) establish if the heritability estimates of these body composition measures 

derived from European populations are similar in African populations.   

 

To achieve these overall aims, the following objectives were explored:  

 

i. Conduct a pilot study to assess the feasibility and power to detect GWAS-derived 

Eurocentric SNP associations of obesity in an African population via a candidate 

gene association study performed in an adolescent subset of the Birth to Twenty 

Cohort. 

ii. Perform a genome-wide replication and fine-mapping study by genotyping Birth to 

Twenty cohort participants (young adults and older caregivers) using the Illumina 

Metabochip array to assess if the same variants associated with body fat and lean 

measures in European populations can be observed in an African population. 

iii. Calculate the heritability estimates of each of the anthropometric measures described 

above using the data from the Metabochip array, and compare to data from 

heritability studies conducted in European populations. The heritability will be 

estimated using software called “genome wide complex trait analysis (GCTA)”. 
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The aim of this pilot study was to assess the association of six genetic variants known to be 

associated with BMI in Europeans, in a subset of the Birth to Twenty cohort. This would 

provide preliminary evidence that common variants influence this complex trait in an 

indigenous African population. Adolescent data were used to facilitate the identification of 

genetic loci that predispose to obesity early in life, as it is known that overweight/obese 

children have an elevated risk of becoming obese adults (Singh et al., 2008, Lundeen et al., 

2015). This study focused on genetic variants shown to be associated with increased BMI in 

both adult and childhood cohorts as undertaken by the GIANT consortium (Thorleifsson et 

al., 2009, Willer et al., 2009, Speliotes et al., 2010). A previous study (Lombard et al., 2012) 

showed that BMI was associated with genetic variants known to influence appetite control in 

adolescent black South Africans. Some aspects of the work presented in this chapter were 

not included in the manuscript (Pillay et al., 2015), due to editorial limitations of the journal 

(refer to Appendix G for a copy of the manuscript). 

 

1. Introduction 
 

Recent studies show that the mean prevalence of overweight and obesity (combined) in 

South African children and adolescents is approximately 15% (Shisana et al., 2013). The 

prevention of childhood obesity is a key global health priority as obesity is a major contributor 

to increased mortality in adulthood (Reilly and Kelly, 2010), and is increasing in prevalence in 

both HIC and LMIC, such as South Africa. 

 

The risk of developing obesity is modulated by both heritable and environmental factors 

(Wardle et al., 2008). Heritability studies of body mass index (BMI) demonstrated that a 

significant proportion of the variance in BMI (40-70%) is due to heritable factors e.g. 

genetics, epigenetics, intrauterine environment (Bodurtha et al., 1990) with genome-wide 

association studies (GWAS) of obesity-related traits identifying more than 97 risk loci thus far 

(Loos, 2012, Fall and Ingelsson, 2014, Locke et al., 2015). An explicit deficit of African-

centric GWAS data for body composition and obesity exist, especially for sub-Saharan 

African populations. In addition, most published genetic association studies of BMI have 

primarily focused on the association with adult BMI. Identifying loci that predispose to obesity 

early in life could provide a better understanding of the early determinants of adult obesity 

and may also uncover potential new targets for the therapeutic prevention of obesity.  

 

Previously, Lombard et al., (2012) investigated the role of gene variants in appetite regulating 

genes with BMI in an adolescent cohort, replicating SNP associations in FTO and MC4R, as 

well as establishing a novel association with variants in the LEP gene. In this paper, the 
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replication within the same cohort, of six variants are described, based on previous evidence 

of robust association with BMI in non-African populations in large meta-analyses undertaken 

by the GIANT consortium (Thorleifsson et al., 2009, Willer et al., 2009, Speliotes et al., 

2010). These include SNPs in or near GNPDA2, MTCH2, NEGR1, SH2B1, STK33 and 

TMEM18. 

 

2. Materials and Methods  

2.1 Subjects 

 

Bt20 is Africa’s largest and longest running birth cohort study, focused on the health and 

development of children born in Soweto, South Africa (Richter et al., 2007). Initially in 1990, 

the Bt20 cohort began to track the development of 3,273 newborn infants and their 

caregivers. The participants in the Bt20 cohort are South African blacks who self-identified as 

Sotho speakers (speaking southeastern Bantu languages), thus belonging to the Niger-

Kordofanian ethno-linguistic group. The inclusion criteria included all births in a seven week 

window (April 23 to June 8, 1990) and if the mothers enrolled in the study resided in Soweto-

Johannesburg for six months following delivery (Richter et al., 2007). 

 

Various biological data have been collected from the Bt20 cohort and caregivers for use in 

several studies over the years following informed consent. A subset of individuals (43%, n = 

990) from the Bt20 cohort were randomly selected for this study, and consisted of 524 (53%) 

female and 466 (47%) male adolescents, with a mean (± SD) age of 13.7 ± 0.2 years. 

Phenotype data including age, sex, BMI and pubertal stage collected from these individuals 

at year 13 were used in the study. Anthropometric measurements were obtained using 

standard methods (Cameron et al., 1998) where BMI was computed as weight (measured in 

kg) divided by the square of the height (measured in meters) of an individual. The pubertal 

stage was assessed using a validated self-assessment method (Norris and Richter, 2005). 

BMI is the most commonly used measure of obesity and for comparison purposes we utilised 

BMI in adolescents. Due to the lack of published data in African populations, standardized  

child BMI categories (BMI-specific age and sex cut-offs) according to Cole et al. (2007) were 

used. Written assent was obtained from all adolescents in conjunction with written consent 

from parents/legal guardians, prior to a blood sample collection. The most current consent 

forms are included in Appendix H. It is also important to note that at every data collection 

wave, participants reconsent for the data collected. With regard to genomic studies there is a 
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form of blanket consent (refer to reconsent forms in Appendix H), however each respective 

study (including analyses) have to be approved by the Wits Human Research Ethics 

committee (medical) (HREC). 

 

Ethics approval from the HREC (Certificate nr. M120647- Appendix H) was obtained to use 

the DNA samples in the study. The Wits HREC previously permitted the collection of DNA 

samples and phenotype data from the adolescent cohort (Certificate nr. M010556- Appendix 

H). 

 

2.2. SNP selection, DNA extraction and genotyping platform  

 

SNPs previously associated with BMI (Thorleifsson et al., 2009, Willer et al., 2009, Speliotes 

et al., 2010) from GWAS were selected for analysis, and included rs2568958 near NEGR1, 

rs6548238 near TMEM18, rs10938397 near GNPDA2, rs10769908 in STK33, rs10838738 in 

MTCH2 and rs7498665 in SH2B1. DNA was extracted using a salting-out technique (Miller, 

et al., 1988). Participant DNA samples are housed within the National Health Laboratory 

Service (NHLS) at the University of the Witwatersrand, Division of Human Genetics bio-

repository. DNA was quantified using absorbance spectroscopy (Tecan Infinite® 200 PRO 

NanoQuant), and normalized to a concentration (50ng/ul) required for genotyping. 

Genotyping was performed using the GoldenGate™ VeraCode assay (Illumina, San Diego, 

CA, USA) (steps outlined in Fig. 2.1). Internal quality control was performed on all raw 

genotype data according to the supplier’s specifications using the genotyping module of 

BeadStudio (Framework version 3.1.3.0; Illumina, San Diego, CA).  Further quality control 

filters based on minor allele frequency (MAF<0.01) and Hardy–Weinberg equilibrium 

(HWE<0.05) were used as exclusion criteria.  Ancestry information markers (used to assess 

population substructure) previously genotyped in this cohort show no significant global 

population structure within the cohort (Lombard et al., 2012). Ancestry infornative markers 

are a subset of genetic markers that differ in frequencies across different continental 

populations (Kosoy et al., 2009). 



 

 

	
Chapter 2 –Pilot Study 

	
	 	

37 

 
 

Figure 2.1 Outline of the workflow used in VeraCode GoldenGate                               
(Obtained from Technical Note: SNP Genotyping: GoldenGate™ VeraCode assay, Illumina) 
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2.3 Statistical Analysis 

 

PLINK v.1.9 was used for all statistical analyses, unless stated otherwise (Purcell et al., 

2007).  The distribution of BMI was skewed and therefore was log-transformed to 

approximate normality for all analyses.  Linear regression was used to assess the 

association of the selected SNPs with BMI. As BMI correlated significantly with sex, pubertal 

stage and age, analyses were adjusted for these variables by including them in the linear 

model as covariates (Padj). Given the strong prior information about the correlation of the 

SNPs tested here with BMI, this was considered this a replication study, and therefore, P 

values below 0.05 were considered significant. Given the minor allele frequencies of the 

SNPs tested, the study achieves 80% power to detect differences among the means of BMI, 

with a standard F-test for linear regression, as previously calculated (Lombard et al., 2012). 

To assess the combined impact of risk alleles on BMI, a risk allele score was calculated by 

summing the number of BMI-increasing alleles per individual. This score was calculated 

including the risk alleles described here, as well as the four previously identified BMI-

associated variants in this cohort: FTO (rs17817449), LEP (rs10954174 and rs6966536) and 

MC4R (rs17782313) (Lombard et al., 2012).	 

 

The BMI across genotypes  for each SNP was also assessed using ANCOVA in Statistica 

v11.0 (StatSoft, Tulsa, OK, USA), after adjusting for age, sex and pubertal stage. The 

Tukeys post hoc test was used to examine the difference between genotype group medians 

after adjusting for the effect the covariates mentioned above. To visualise the relationships 

between BMI and the genotypes box and whisker plots were constructed in Microsoft Excel 

for only the significant SNPs observed in the association testing. 

 

2.4 Computational predictions 

 

RegulomeDB is a database that contains manually curated regions from the ENCODE 

project, CHIP-seq information, chromatin state information, expression quantitative trait loci 

(eQTL) data together with computational predictions and predicting DNAase footprinting 

(Boyle et al., 2012). This database was used to elucidate the functionality of the SNP 

variants found to be signficantly associated with BMI. Lower scores in this database indicate 

increasing evidence for a variant to be located in a functional region as outlined in Table 2.1. 

There are sub-categories within category 1 that indicate additional information about the 

confidence of the annotation with 1a being the most confident (containing evidence for 

transcription factor (TF) binding, a motif for that TF, and a DNase footprint) to the lowest sub 

category 1f (containing only TF binding or a DNase peak) (Boyle et al., 2012). 
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Table 2.1 The classification of variants using RegulomeDB                                       
Classification of variants according to RegulomeDB using a large body of regulatory information as 
reported by (Boyle et al., 2012) 

 

eQTL-refers to expression quantitative trait loci, TF- refers to transcription factor binding sites; DNase- 

refers to DNase footprinting to demonstrate protein binding sites. 

 

3. Results 
 

The study group consisted of 524 (53%) female and 466 (47%) male adolescents, with a 

mean (± SD) age of 13.7 ± 0.2 years. Summary statistics and trends related to BMI in this 

subset were described previously (Lombard et al., 2012), and based on these data all 

analyses were adjusted for sex, sex-specific pubertal stage and age. 

 
Table 2.2 reports the association of the SNP variants with (log)BMI. Of the six SNPs 

investigated, three were replicated in this African cohort, and showed a similar (albeit 

smaller) directional effect to that observed in the discovery studies. Significant correlations 

were identified between BMI and rs10938397 (effect allele-G) near GNPDA2 (Padj = 0.003), 

Category Description 

  Likely to affect binding and linked to expression of a gene target 

1a eQTL + TF binding + matched TF motif + matched DNase footprint + DNase peak 

1b eQTL + TF binding + any motif + matched DNase footprint + DNase peak 

1c eQTL + TF binding + matched TF motif + DNase peak   

1d eQTL + TF binding + any motif +  DNase peak   

1e eQTL + TF binding + matched TF motif  
 

  

1f eQTL + TF binding/DNase peak     

  Likely to affect binding 
  

  

2a  TF binding + matched TF motif + matched DNase footprint + DNase peak 

2b  TF binding + any motif + matched DNase footprint + DNase peak 

2c  TF binding + matched TF motif + DNase peak   

  Less likely to affect binding 
 

  

3a TF binding + any motif + DNase peak 
 

  

3b TF binding + matched TF motif      

  Minimal binding evidence 
 

  

4 TF binding + DNase peak 
  

  

5 TF binding or DNase peak 
  

  

6 Motif hit         
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rs7498665 (effect allele-G) in SH2B1 (Padj = 0.014), and with rs6548238 (effect allele-C) near 

TMEM18 (Padj = 0.030). 

 

 

 



 

 41 

 

  
Table 2.2 Results of the six SNPs tested for association with log(BMI) in the Bt20  

 
 

 
 

	 	 	 	 Alleles1 	 	 P values 	
Nearest 

gene SNP Chr N Effect2 Other 
Frequency 

effect 
allele 

Frequency 
effect 
allele* 

Punadj Padj
3 Effect size4 

Βeta (s.e.m) 

GNPDA2 rs10938397 4 961 G A 0.21 0.45 0.001 0.003 0.013(0.004) 
MTCH2 rs10838738 11 982 G A 0.07 0.36 0.680 0.739 -0.003(0.007) 
NEGR1 rs2568958 1 976 A G 0.44 0.67 0.713 0.837 0.001(0.004) 
SH2B1 rs7498665 16 963 G A 0.29 0.38 0.086 0.014 0.007(0.004) 
STK33 rs10769908 11 985 C T 0.25 0.57 0.663 0.701 -0.002(0.004) 
TMEM18 rs6548238 2 982 C T 0.92 0.15 0.086 0.029 0.011(0.006) 

 

 

 

1Allele coding according to the forward strand (NCBI dbSNP Build 134). 2Effect allele associated with increased BMI in the original study. 3P-values are adjusted for 
age, sex and sex-specific pubertal stage. 4Effect sizes in log (kg/m2). Significant P-values are shown in bold. *- refers to frequency of effect allele in Caucasian 
populations. 
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To assess the combined impact of risk alleles on BMI,  a risk allele score (Fig. 2.2) was 

calculated, in which the three risk alleles currently described were included, as well as four 

previously identified risk alleles in the same cohort (rs17817449 in FTO, rs10954174, 

rs6966536 in LEP and rs17782313 in MC4R) (Lombard et al., 2012). The difference in 

average BMI between individuals with a high genetic-susceptibility score (defined as having 

≥10 BMI-increasing alleles) and those with a low genetic-susceptibility score (≤4 BMI-

increasing alleles) was 3.90 kg/m2, signifying a 21.7% increase in average BMI between 

these two groups. In comparison, if only the three SNPs from this study are used, the 

increase in average BMI (comparing the lowest to highest risk score) is 2.06 kg/m2, signifying 

a 10.5% increase in average BMI between these two groups. This implies that both set of 

risk SNPs drive the effect observed when all SNPs are used. 

 

            
         

Figure 2.2 Combined impact of risk alleles on average BMI in the Bt20 cohort.  
Risk alleles were summed for each individual. The number of individuals in each risk allele category is 
shown along the x-axis 
 

BMI was assessed across the genotypes for each SNP in Table 2.3. The CC genotype 

(TMEM18) and the AA genotype (GNPDA2) were significantly associated with an increase 

and a decrease in BMI, respectively. Figures 3.2 a, b and c refer to box and whisker plots 

illustrating the relationship between BMI and genotypes for significant SNPs, TMEM18 (a), 

GNDPA2 (b) and SH2B1 (c). 

 

 

 
 

 

0"

50"

100"

150"

200"

250"

300"

350"

0.00"

5.00"

10.00"

15.00"

20.00"

25.00"

≤4" 5" 6" 7" 8" 9" ≥10"

N
um

be
r'o

f'i
nd

iv
id
ua

ls
'

Av
er
ag
e'
BM

I'

Number'of'risk'alleles'



 

 

	
Chapter 2 –Pilot Study 

	
	 	

43 

 
Table 2.3 Showing genotypes associated with each SNP tested and BMI 

 

                                                

 
BMI data# expressed as median (interquartile range); *P<0.05, **P<0.005 vs. heterozygote in 
ANCOVA analysis adjusted for age, sex and pubertal stage. NC ran the data analysis in Statistica for 
this table. 
 

	

Gene Data 

NEGR1 

Genotype AA AG GG 

N 180 492 304 

BMI# 18.52 (17.18, 20.43) 18.93 (17.17, 21.49) 18.51 (16.97, 20.87) 

TMEM18 

Genotype CC CT TT 

N 827 150 5 

BMI 18.77 (17.15, 21.34)* 18.45 (16.82, 19.96) 18.57 (18.19, 19.41) 

GNPDA2 

Genotype AA AG GG 

N 597 316 48 

BMI 18.53 (16.92, 20.65)** 19.06 (17.34, 21.90) 18.77 (16.97, 21.29) 

STK33 

Genotype CC CT TT 

N 60 368 557 

BMI 18.34 (17.11, 21.25) 18.75 (17.05, 20.97) 18.65 (17.15, 21.09) 

MTCH2 

Genotype AA AG GG 

N 851 124 7 

BMI 18.69 (17.06, 21.21) 18.94 (17.45, 20.79) 18.44 (14.63, 19.13) 

SH2B1 

Genotype AA AG GG 

N 481 413 69 

BMI 18.75 (17.22, 20.81) 18.53 (16.95, 20.82) 19.08 (17.26, 22.49) 
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Figure 2.3 Box and whisker plots showing the association of genotype with BMI - 
for the significantly associated SNPs: a) TMEM18, b) GNPDA2, c) SH2B1, where the number of 
samples with a particular genotypes are shown in brackets 
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Results tabulated in Table 2.4 show that the variant observed in our study, rs7498665 in/near 

SH2B1, had a score (1f) that is suggestive of being “likely to affect binding and linked to 

expression of a gene target” (Boyle et al., 2012). rs10938397 in/near GNPDA2 has no data 

available on the RegulomeDB database as to its proposed functionality and rs6548238 

in/near TMEM18 has a score of (4) which shows minimal evidence of binding any targets. 

 
Table 2.4 Results of RegulomeDB functional analysis 

 

 
Chr, chromosome number1, Chromosomal base pair position is based on NCBI dbSNP Build 134. 

 

4. Discussion and Conclusion 
 

Several common genetic variants have been robustly associated with adult obesity risk. This 

study provides confirmation that three of these variants are also associated with BMI in a 

South African cohort of adolescents. The G-allele of both rs7498665 (SH2B1) and 

rs10938397 (GNPDA2), and the C-allele of rs6548238 (TMEM18) were shown to be 

associated with an increase in BMI. A similar, albeit smaller, directional effect was observed 

to that seen in the discovery studies in non-African cohorts. Further investigation of the 

genotypes associated with significant SNPs and the resulting effect on BMI showed that the 

CC genotype associated with TMEM18 (Table 2.3 and Fig. 2.3a) and the AA genotype 

associated with GNPDA2 (Table 2.3 and Fig. 2.3b) were significantly associated with an 

increase (P<0.05) and a decrease in BMI (P<0.005), respectively. These results correlate 

with the allelic association analysis conducted in PLINK. The GG genotype associated with 

SH2B1 also was associated with an increase in BMI, but was not statistically significant. This 

was probably due to the small number of individuals (N=66) with that genotype. These 

results demonstrate that genetic variants for adult BMI are also associated with BMI earlier in 

life, which may provide insights into the genetic aetiology of obesity within an indigenous 

African population. 

 

Gene Chr 
BP start 
position1 SNP 

Regulome
DB Score Proposed Action 

SH2B1 16 28883240 rs7498665 1f 

Likely to affect binding and linked 

to expression of a gene target 

TMEM18 2 634904 rs6548238 4 Minimal binding evidence 

GNPDA2 4 45182526 rs10938397  - No Data 
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GNPDA2, TMEM18 and SH2B1 are all highly plausible biological candidates for adiposity – 

all three are expressed in the brain, with evidence of a role in appetite regulation or affecting 

adipose tissue biology (Speakman, 2013). GNPDA2 is expressed in the hypothalamus, 

alluding to a neuronal influence on energy balance, and has been associated with BMI in 

both paediatric (Zhao et al., 2009) and adult cohorts, including a replication in an African-

American cohort (Gong et al., 2013). SH2B1’s link to metabolic function is well established 

(Ren et al., 2007) and deletions in this gene are associated with severe early-onset obesity 

(Bochukova et al., 2010). RegulomeDB aims to annotate the functional importance of non-

coding variants, since most inter-individual changes (captured by GWAS studies) occur 

outside of coding variants (Boyle et al., 2012). It also aids in the interpretation of what role 

these potentially regulatory variants will play biologically. The database was queried for the 

three variants found to be significantly associated with BMI in our study. Data on two of the 

three variants associated with increased BMI in this study was uninformative with no 

information available for rs10938397, whilst rs6548238 showed minimal binding evidence. 

The accuracy of RegulomeDB is very much limited by the availability of experimental data 

however, the database still remains highly informative when information on variants is 

available as in the case of rs7498665. The score generated by the database predicted that 

this variant will likely affect binding and expression of a target gene. Furthermore, rs7498665 

in SH2B1 is a missense-coding variant and results in a substitution of alanine with threonine, 

which likely affects protein activity and expression. TMEM18 is ubiquitously expressed, and 

although a direct link to obesity is still elusive, early evidence suggests a likely role through 

transcriptional regulation of critical targets (Speakman, 2013). 

 

A number of limitations are acknowledged in our study. The sample size is moderate and 

therefore not powered to detect small effects on BMI, suggesting that the potential 

contribution of MTCH2 and STK33 warrants follow-up investigation in a larger cohort. The 

significant differences in the genomic structure between African and non-African genomes, 

could lead to a situation where SNPs shown to be associated with a trait in European 

populations may be weak predictors for causal variants in African populations, due to 

differences in linkage disequilibrium (Teo et al., 2010). Another consideration is that, 

although BMI is an established obesity index, it is not the best indicator of adiposity (Wells, 

2014) and the use of more suitable measures may help to elucidate the role of genetics in 

adiposity. 

Finally, the data in this study are derived from a cohort of adolescents in the midst of puberty. 

It is therefore possible that the effects on weight of some polymorphisms may have been 

masked by puberty-associated changes in body fat mass. Furthermore, the effects of some 
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polymorphisms on BMI are conceivably only observed later in life. Elucidating the genetic 

component of obesity in children is important because it may uncover factors that have a 

stronger phenotypic effect than those gene variants that only become apparent after years of 

exposure to an obesogenic environment. Also, gene variants that give rise to childhood 

obesity may provide important information on important metabolic or neurological pathways 

that could be therapeutically manipulated to reduce adipose tissue accumulation. The 

discovery of such polymorphisms may also help identify individuals with a high risk of obesity 

and hence allow early lifestyle interventions. 

 

In conclusion, our study has replicated associations for increased BMI with SNPs present in 

or near TMEM18, SH2B1 and GNPDA2 in an African adolescent population. These 

observations suggest that variants in these genes or neighbouring loci may be important in 

body weight regulation in divergent populations. 
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1. Introduction 
 

Following the outcomes of the exploratory study outlined in Chapter 2 where three obesity 

risk variants in or near GNPDA2, SH2B1 and TMEM18 were found to be significantly 

correlated with changes in BMI in adolescents, it encouraged us to further pursue the 

investigation of obesity risk variants in a larger adult cohort (within Bt20) of black South 

Africans. The purpose of this part of the study was to replicate and fine map in an African 

population signals captured from GWAS that were associated with obesity in European 

subjects. 

 

GWAS (described in the literature review) are based on LD and incorporate mostly common  

genetic variation in populations that are in LD or tag other variants that are not directly typed 

on an array (Crawford et al., 2013). This is in keeping with the common-disease-common-

variant hypothesis. Due to the fact that very few GWAS variants have been identified as true 

‘risk’ variants, it is difficult to elucidate their potential contributions to the underlying biology of 

the particular disease under investigation. Fine-mapping, which is the dense interrogation of 

GWAS-identified loci using many more SNP markers (Crawford et al., 2013), may be useful 

in identifying the true causal variants.  

 

Given that African populations have lower LDs compared to European and Asian 

populations, fine-mapping African populations may offer greater value in identifying potential 

risk variants, masked by the high LD in European populations. Fine-mapping studies in 

African populations are limited to mainly African American populations. The Metabochip 

(described earlier in Chapter 1) was used in this study to assess both fine-mapping and 

replication of about ~200 000 SNP markers. These markers encompass the top-signals from 

GWAS together with dense coverage around the GWAS-associated loci, related to metabolic 

diseases and traits including obesity. This would provide the most comprehensive and cost-

effective approach toward replicating GWAS-discovered signals in a novel population as well 

as provide the opportunity to discover new population-specific obesity-related signals. The 

transferability of obesity-associated risk variants across different populations are not well 

understood, more so for African populations, and this study provides the opportunity to 

assess this. 
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2. Materials and Methods 

2.1 Participants, study design and sample selection  

 

In this part of the study, both phenotype data and DNA samples were used from the 

participants (young adults) and the caregivers of the Birth to Twenty (Bt20) cohort that has 

been described in detail elsewhere (Richter et al., 2009) and briefly in Chapter 2. Following 

informed consent, blood samples were collected and DNA extracted using a salting-out 

method (Miller et al., 1988) (highlighted earlier in Chapter 2). The DNA is currently stored at 

the Division of Human Genetics, National Health Laboratory Service (NHLS) and the 

University of the Witwatersrand, Johannesburg, South Africa. This study was approved by 

the Human Research Ethics Committee (Medical) of the University of the Witwatersrand 

(Ethics clearance certificates number M010556 and M120647, Appendix H).  

 

Participants (N=1240) and female caregivers (N=1033) from the Bt20 cohort, in whom 

phenotype data collected was at age 17/18 (young adults) and age 40 (middle-age; 

caregivers), respectively were selected for this study. This included 973 caregiver-young 

adult pairs, with 61 unrelated caregivers and 275 unrelated young adults. The term 

“caregiver” describes the person or relative who accompanied the participant during 

assessment and in most cases is the mother of the participant. If the mother was unavailable 

or deceased then the term refers to a female relative (either maternal grandmother, sister or 

aunt), who accompanied the participant (personal communication, SA Norris, 15 July 2014). 

 

2.2 Sample preparation and genotyping 

 

Prior to genotyping, the DNA samples (isolated using salting-out) were normalized to a 

concentration of 50ng/µl using the Tecan Freedom EVO® (Tecan Trading AG, Switzerland). 

This was done following quantification using either the Tecan Infinite® 200 PRO NanoQuant 

(Tecan Trading AG, Switzerland) or PicoGreen® dsDNA Quantitation Reagent (Thermo 

Fisher Scientific, Wilmington, Delaware USA). Genotyping was performed using the Illumina 

Metabochip (Illumina, San Diego, CA, USA), which is an Illumina iSelect assay (Illumina, San 

Diego, CA, USA). Genotyping was performed at the DNA Technologies Core of the 

University of California Davis, California, USA by the genotyping services team. Genotyping 

was performed in two batches – first for the caregiver samples, and finally for the participant 

sample. A set of duplicate samples from each batch was sent together with the unique 

samples to rule out batch effects on the chip and also to ensure that samples were 

genotyped consistently on the same chip. Necessary documentation (materials transfer 
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agreement and export permit) was obtained prior to shipment (Appendix H). We obtained 

permission to access the phenotype data together with stored DNA samples in accordance 

with Developmental Pathways and Health Research Unit (DPHRU’s) policy for data requests. 

 

2.3 Power analysis calculation  

 

The power to detect associations was assessed using the software package Power 

GWAS/QT vs.1.0 that uses the F-test (Feng et al., 2011). In this test an a priori power 

analysis option was assumed, which allowed the calculation of the statistical power of this 

study to detect an association if SNPs explained a certain percentage of the heritability of a 

particular trait with a given sample size N.  This programme is designed for quantitative traits. 

The heritability estimates as well as the effect sizes for the power calculations were based on 

European populations from Speliotes et al. (2010) because there are no other data available 

from African ancestry populations therefore we applied the next-best proxy from Caucasian 

populations. 

 

Results from power analyses (Power plots are shown in Appendix A) showed that with 

PowerGWAS/QT using an F-test with a 0.05 significance level (standard for linear regression 

models) we have 80% power to detect associations with effect sizes of 0.035 in 1000 

individuals.  

 

2.4 Phenotype data  

 

Weight, height, age, waist circumference (WC), hip circumference (HC), subtotal fat mass 

(grams) and subtotal fat-free mass (grams) (excluding bone mineral content) were measured 

and recorded in all young adults and caregivers. Subsequently, BMI, percentage fat mass 

(PFM) and waist-to-hip ratio (WHR) were calculated from these measures. Anthropometric 

measurements were obtained using standard methods (Cameron et al., 1998). Weight was 

measured with a digital scale (Dismed, Halfway House, South Africa) and height with a 

stadiometer (Holtain, Crosswell, UK), with light clothing and shoes removed. BMI was 

computed as weight (measured in kg) divided by the square of height (measured in meters) 

of an individual. The methods for obtaining WC, HC and body composition measurements 

were according to (Feeley, 2012). Briefly, WC was measured with subjects standing, with a 

soft measuring tape, at the level of the smallest girth above the umbilicus and HC was 

measured at the widest part of the buttocks (Feeley, 2012). Both WC and HC were 

measured in centimetres. Waist to hip ratio was computed as WC divided by HC. Body 



 

 

	
Chapter 3 - Metabochip 

	
	 	

52 

composition readings were obtained using dual energy X-ray Absorptiometry (DXA, Hologic, 

Bedford, USA) as per guidelines recommended by the International Society of Clinical 

Densitometry (Feeley, 2012). Subjects were asked to remove all items of jewellery and other 

metal objects, and wore light clothing. Total body fat and lean mass (in grams) were 

measured. PFM was calculated as fat mass (in grams) divided by total fat mass (in grams). 

DXA scans for the whole body did not include measurements for the head as many subjects 

wore wigs and hair attachments (weaves) that would result in inaccurate measurements 

because of similar densities to that of soft tissue (Feeley et al., 2012). 

 

Pubertal stage was not included in the young adults in the subsequent analyses, as it was 

expected that the majority of participants, would have finished puberty already at this age. 

Another study assessing fracture patterns and bone mass density in the same cohort 

excluded the effects of puberty in the young adults in the analysis due to a lack of correlation 

(Thandrayen et al., 2014).   

 

2.5 Quality Control (QC) 

 

The quality of both genotype and phenotype data was assessed in the dataset to try to 

remove potential confounders that could affect the downstream association analysis. 

2.5.1 Phenotype Data QC 

Following the receipt of the phenotype data, some inconsistencies were noted between 

sample information recorded in DNA biobank database and the phenotype database. An 

extensive quality control exercise was conducted by retrieving original patient files, where 

available, to remove ambiguous data, and to confirm that DNA profiles matched the 

phenotype dataset. In other words, it was confirmed that DNA samples and phenotype data 

collected on the day, was from the same person. It was also confirmed that the phenotype 

data that were recorded in the original patient files, matched the information captured in the 

phenotype database. 

2.5.2 Genotype Data QC  

Genotypes were called using GenomeStudio (vs. 2011.1) (Illumina, San Diego, CA, USA), 

with calls based on a modified clustering manifest trained on the sample data. Final data 

reports were produced in the forward strand orientation. The raw genotyping data was 

converted into a PLINK-compatible format that was used in all downstream applications 

(Appendix B). A rigorous quality control assessment was performed on genotype data 

according to published quality control filters (Anderson et al., 2010, Clarke et al., 2011). The 

QC process outlined in Fig. 3.1 was divided into three main steps: 
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Figure 3.1 Overview of the quality control process, outlining the key steps and criteria 
selected for the analysis. HWE- refers to Hardy-Weinberg equilibrium; MAF- minor allele frequency; 
PCA- principal component analysis, SD – standard deviations; n= sample size  
 

PRE-QC STEP 

This step involved the conversion of the final reports in the forward orientation into tped/tfam 

(transposed) format using the script convert2tped (Appendix B). Subsequently, data was 

converted into a binary format (bed files) using PLINK v.1.9 (Purcell et al., 2007)1. ‘.bed’ files 

are a primary representation of genotype calls as biallelic variants and are usually 

accompanied by .bim and .fam files (Purcell et al., 2007). During genotype calling, SNPs that 

cannot be called by the software for various reasons are termed “NaN” SNPs. All NaN SNPs 

were removed at this stage together with samples that had greater than 20% of the 

genotypes missing. At this stage of the analysis it was decided to QC batches separately, 

due genotyping performance, before merging the final datasets. 

 

All of steps below were performed in PLINK unless otherwise stated using default cut-offs 

(Anderson et al., 2010) or cut-offs determined using this data. 

                                                

 
1 Any further mention of PLINK will refer to PLINK v. 1.9 Purcell, S., Neale, B., Todd-Brown, K., 
Thomas, L., M.A.R, F., Bender, D., Maller, J., Sklar, P., De Bakker, P., Daly, M., et al. (2007). PLINK: 
a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet, 81. 
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SNP QC 

1. SNP missingness distribution was assessed based on plots of maximum missing 

rate vs. number of SNPs remaining in the study where thresholds (0.02) were used 

for both batches. If there was high SNP missingness (values >2%) then the SNPs 

were discarded from the analysis. High SNP missingness implies that there is an 

inadequate separation of that SNP into a particular cluster and is inaccurately called 

and therefore has to be removed. 

2. The distribution of minor allele frequency (MAF) was assessed and a default MAF 

> 0.01 was set for both batches according to (Anderson et al., 2010). Genotype 

calling algorithms tend to perform inefficiently for SNPs with a low MAF. Therefore 

SNPs that had a MAF of <1% were discarded.  

3. A range of P value thresholds were tested for deviations from Hardy-Weinberg 
equilibrium (HWE) and a default value of P < 1x10-5 was selected as a cut-off for 

both the batches according to Anderson et al., (2010). Extreme deviations from HWE 

can be due to genotyping error or any violations of HWE assumptions. SNPs were 

then filtered out if they showed extreme HWE deviation based on the above cut-off.  

  

SAMPLE QC  

1. A sample missingness threshold was determined by plotting the maximum missing 

rate vs. number of samples remaining in the study.  The threshold for sample 

missingness was set to 2% and 3% for Batches 1 and 2, respectively which means 

that samples were excluded if the genotype information for that samples was less 

than 98% or 97%, respectively. 

2. A sex check was conducted on the raw genotype data. Here, homozygosity on the 

X-chromosome was estimated (HXE) to determine ‘genetic sex’.  Males have a single 

copy of the X- chromosome therefore males are assumed to be hemizygous for all X 

chromosome SNPs (excluding the pseudo autosomal region). Males have HXE 

>0.80, females have HXE: <0.20-0.35 and those coded as ‘ambiguous sex’ have 

estimates in the range of 0.35>HXE<0.80. The ‘genetic sex’ was estimated using the 

above estimates and compared to the sex information provided with the phenotype 

data and samples were removed from both batches for discordant sex information. 

Inconsistencies may be due to mis-labeling of samples which may have arisen during 

sample collection or sex being incorrectly reported during recruitment. All 

inconsistencies were reported to the biobank where the DNA samples are stored and 

to the  project manager of the cohort.  
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3. To ensure that the individuals within each batch were unrelated (i.e. the maximum 

relatedness between any pair of individuals is less than a second degree relative) 

(Anderson et al., 2010, Laurie et al., 2010) a criteria called the ‘Identity by state’ (IBS) 

was calculated. This score is calculated for each pair of samples and is based on the 

average proportion of alleles shared in common for genotyped SNPs excluding the 

sex chromosomes. The IBS scores rely on the SNPs being unlinked; therefore the 

data was pruned (to remove regions of extended LD) using a 50kb window. Identity 
by descent (IBD) scores were estimated from IBS data in PLINK. IBD, pi_hat =1 for 

duplicates/monozygotic twins, pi_hat =0.5 for first-degree relatives, pi_hat =0.25 for 

second-degree relatives and pi_hat =0.125 for third degree relatives. We removed all 

samples in the dataset with IBD pi_hat scores > 0.1875 (halfway between 2nd and 3rd 

degree relatives).  

4. Duplicates (included in the study for QC purposes) were also removed using IBD 

scores where pi_hat =1. 

5. Individuals were then removed based on outlying heterozygosity rates. 

Heterozygosity rates were calculated by dividing the number of total non-missing 

genotypes (N) - homozygous genotypes (0) by the total non-missing genotypes (N). 

Excess heterozygosity gives an indication of possible sample contamination whilst 

less than expected heterozygosity rates indicate possible inbreeding. The threshold 

for inclusion of samples is within ±3 standard deviations (SD). Samples were 

removed outside of the set cut-offs. 

6. Principal component analysis (PCA) plots were constructed (smartpca) in 

EIGENSTRAT-vs.3.0 (HelixSystems, Maryland, USA) and Genesis 

(http://www.bioinf.wits.ac.za/software/genesis/) was used to visualize PC plots. 

Association analyses can be confounded by population structure.  Population 

structure may be present when an allele is more prevalent in one population over 

another, resulting in a spurious association between the trait being tested for and any 

genetic characteristics, which vary between the two different groups of people (Price 

et al., 2006). PCA plots allow us to examine if population substructure exists in 

dataset by contextualising genetic variation using various population groups. 

Genome-wide data previously generated for the Bt20 cohort (May et al., 2013) were 

pruned and combined with this data to reflect only SNPs in common. The same was 

done for other African 1000 genomes (1000G) datasets (YRI-Yoruba from Ibadan in 

Nigeria, LWK-Luhya from Webuye, Kenya, MKK-Maasai from Kinyawa in Kenya) and 

data from  southeastern Bantu-speakers (SEB) and southwestern Bantu-speakers 

(SWB) (Schlebusch et al., 2012) were included in the analysis. Outliers were 

removed manually from both batches using visual cut-offs.  
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Following the removal of both SNPs and samples that performed below the quality 

parameters described above, the resultant dataset was used for the association analysis. 

 
2.6 Association analysis      
 

A higher frequency of a genotype in individuals within a cohort that have a particular 

phenotype (e.g. higher BMIs) could mean that genotype is correlated with an increased risk 

for a particular disease (Lewis and Knight, 2012). An estimation of these associations can be 

gained through a variety of tests of which the ‘allelic test’ is the simplest. Along with the allelic 

and genotypic tests, additive, dominant and recessive models can be employed. However 

additive genetic tests are most commonly used with complex traits because of the possible 

contribution of several genetic variants to that trait. Within these tests significant associations 

can be determined by employing a variety of statistical methods depending on the sample 

composition as well as traits/phenotypes being tested. All statistical analyses were performed 

with PLINK for unmerged data or GCTA (genome-wide complex trait analysis) vs.1.24 (Yang 

et al., 2011a) 2  for merged data. In analysis scenarios where related individuals were 

combined it was necessary to use GCTA as PLINK cannot factor in relatedness. In this study 

the association between each SNP and BMI (natural log-transformed), WC, HC, WHR, FM, 

LM and PFM were estimated with both a basic association test and linear regression 

analysis. 

2.6.1 Basic Association Testing (without covariates) 

The appropriate genotype files (.bed, .bim and .fam) together with a phenotype file (.txt file 

where phenotypes are listed in columns) are required as input files for PLINK. The statistical 

determination of genotype-phenotype associations were assessed with Wald’s t-test within 

PLINK by initiating the --assoc flag. This test generates a ‘t’-statistic based on a distribution 

of ‘t’ as well as an asymptotic P-value. Within PLINK the flag --assoc-name                             

allows more than one phenotype to be called and tested using one text file. The name of the 

phenotype should always correspond to the column identifier within the phenotype file. The --

ci 0.95 generates 95% confidence intervals for the estimated parameters, in addition to the 

L95 (lower confidence interval) and U95 (upper confidence interval) fields in the output files. 

 

Different strategies were employed for association testing, to exploit the disparate age and 

sex dynamic in this dataset.  The choice of strategy is later addressed in Chapter 5, under 
                                                

 
2 Any further mention of GCTA will refer to GCTA vs.1.24 Yang, J., Lee, S. H., Goddard, M. 
E.&Visscher, P. M. (2011a). GCTA: a tool for genome-wide complex trait analysis. The American 
Journal of Human Genetics, 88, 76-82. 
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the limitations, as to how the composition in terms of age and sex might influence the 

outcomes of the analysis. The strategies are summarised below:  

• Females only (combining females from the young adult dataset with female 

caregivers),  

• All samples merged, 

• Young males and females merged, 

• Young females only,  

• Older females only and 

• Young males only. 

Data will be presented on results of different association strategies outlined in the results 

section. 

To ensure that population structure was controlled for by removal of the outliers, the genomic 

control method (GC) was flagged during the association analysis using PLINK v.1.9 to 

calculate the genomic inflation (GI) scores for each phenotype by including the --adjust flag. 

According to Devlin and colleagues (2001), this method uses inherent characteristics of the 

genome to correct for stratification. This is performed by estimating the degree of 

“overdispersion” of the statistics generated and is used to assess association (Devlin et al., 

2001). 

 

Results from genomic control (GC) indicated genomic inflation (GI) scores of 1.01 for BMI, 

1.00 for WC, 1.00 for HC, 1.00 for WHR, 1.00 for fat mass, 1.01 lean mass and 1.00 for 

PFM. 

 

2.6.2 Linear Regression (with covariates) 

Each phenotype was analysed using linear regression under an additive model with 

adjustments for covariates (listed in Table 3.1) for each of the strategies outlined above. 

Within PLINK the flags --covar (txt. file) together with --covar-name allows more than one 

covariate to be called and included in the analysis. The covariates included in the analysis 

are age, height (was included in the analysis where necessary, outlined in Table 3.1) and sex 

(sex was only included, when young males and females are combined). The --linear, --ci 

0.95, --pheno, --pheno-name, --covar and --covar-name flags were called in PLINK to 

generate a plink.assoc.linear output file which generates P values together with effect sizes 

(beta) estimated from the regression analysis for each analysis scenario. 
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Table 3.1 Linear regression models used for analysis of anthropometric variables 

 

Phenotypes Model 1 Model 2 

 Adjusted for AGE 

only 

Adjusted for AGE 

and HEIGHT 

BMI ✓  

Waist circumference  ✓ 

Hip circumference  ✓ 

Waist-to-hip ratio ✓  

Fat mass  ✓ 

Fat-free mass (lean)  ✓ 

Percentage fat mass  ✓ 

 
✓-Data are presented for phenotypes adjusted for these models in the results section 
 
 

2.6.3 Mixed Linear Model Association (MLMA) 

Due to the fact that individuals from the datasets were related when we merged datasets, 

mixed linear model association analyses (MLMA) were employed using the programme 

GCTA where the effect of genetic relatedness was taken into account. Both datasets were 

merged to increase the sample size and therefore power to detect genetic associations (De 

Bakker et al., 2005, Spencer et al., 2009). However, because these subjects are related, this 

decreases the power of the test to detect genetic associations, because the estimate of 

variances contributed by the SNPs are biased because of the shared environment of related 

individuals (Yang et al., 2011a).  

 

Linear mixed models (LMMs) have been used increasingly in GWAS as a statistical tool for 

identifying genetic associations and trying to evade confounding factors like relatedness and 

population substructure (Zhou and Stephens, 2012, Eu-Ahsunthornwattana et al., 2014). 

LMMs integrate both “fixed effects” and “random effects” (i.e., “mixed effects”). The 

independent variables in a linear regression may be thought of as fixed effects. In order to 

find the random effects in a mixed model, something should be known about the variance 

and covariance of these random effects. The covariance structure of these random effects 

follows a polygenic (multifactorial) model and integrates the genetic relationship (kinship) 

between each pair of individuals (Eu-Ahsunthornwattana et al., 2014).  GWAS MLMA uses 

this kinship matrix to correct for cryptic relatedness as a random effect and can include any 

additional fixed effects in the model.  
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Briefly, GCTA calculated a relatedness/kinship matrix based on the pairwise covariance 

between genotypes and then estimated the effect of each SNP on the phenotype while 

controlling for the relatedness matrix with a linear mixed model. An additive model of 

inheritance was assumed and all phenotypes were treated as continuous variables. Also the 

linear effects of age, sex, principal components and relatedness were controlled for during 

the analysis. The method is explained below in greater detail. The scripts used in the 

analysis can be found in Appendix C. 

 

Merging the two data sets: 

• Following QC both datasets (caregivers and young adults) were merged using the --

bmerge flag in PLINK. Sample identifiers were updated for the individual identifier 

(IID) column in the .fam file using the (--update-id) flag in PLINK. This was done to 

distinguish which batch they were from as related samples share the same family 

identifier (FID). 

• Mitochondrial DNA (MtDNA) SNPs were removed together with non-overlapping 

SNPs to create a prunedbmerge.* file. 

• Following the merging of the datasets we re-ran basic QC on the dataset and 

removed any additional SNPs and samples accordingly. A new prunedbmerge2* was 

created for further downstream analysis. 

• This file (prunedbmerge2.*) was then used to create the combined_females.* file by 

excluding all the male samples in the analysis (--exclude in PLINK) . 

• The phenotype files were also merged and sorted according to the FID column to 

create a sorted_combined_batches.phen file. (GCTA requires the phenotype file to be 

a text file with.phen appended). 

• The first step for MLMA in GCTA is to produce a genetic relationship matrix (GRM) 

between pairs of individual from the prunedmerge2.* or combined_female.* datasets. 

By incorporating fixed effects such as MAF (0.01) and PCA’s (10), principal 

components are created (.eigenvec and eigenval) which can be used as covariates in 

the downstream analysis (make_grm2.sh in Appendix C). 

• The appropriate covariate models were then created (using Linux commands), by 

combining principal components (eigenvectors generated by --pca command above 

when the --make-grm flag is called in GCTA) and the various covariate columns from 

sorted_combined_batches.phen for both the combined_all as well as the 

                                                

 

*Refers to the input files required by PLINK (.bed, .bim, .fam) 
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combined_female analysis. The model names are the same for linear regression as 

outlined in Table 3.1. 

• Once the GRM and covariate models were created (GRM_combinedall.**/ 

GRM_combinedfemales.**) they were inputted in the script explained below for 

association analysis. 

• A script mlma_2.sh (Appendix C) was written to include all the phenotypes (eight) as 

well as taking into account all the various linear regression models, (this is explained 

in Appendix C) to create output files for each phenotype run with each respective 

model. 

 

2.7 Adjusting for multiple testing 

 

Multiple testing concerns come about when many hypotheses are tested at the same time, 

with some test statistics showing significance even if there are no real associations 

(Dudbridge and Gusnanto, 2008, Han et al., 2009). It is important to reduce type 2 errors 

(false-negative associations) or the inability to detect an effect that is present. According to 

Mayr et al. (2007) a statistical test can result in non-significance for two reasons; the null is 

accepted and is retained correctly or the alternative hypothesis holds but the test has been 

inefficient at detecting deviations from the null. 

 

In this study the Bonferroni correction was applied to adjust for multiple testing. The 

Bonferroni genome wide (GW) significance level for Metabochip data was calculated by 

using only unlinked loci on the Metabochip. This was achieved by running the command: 

--indep-pairwise 50 5 x --out ldpruned, where x = a range of LD (proxy is r2) values from 0.1 - 

0.9 that were tested. This command considers windows of 50 SNPs at a time and calculates 

LD between each pair of SNPs in that window and removes one pair of SNPs if LD is greater 

than the value stipulated by x. It then shifts the window five SNPs forward and reiterates the 

process for the next 50 SNPs. Various r2 values were tested to establish a cut-off value 

before the greatest number of SNPs were lost. 

 

An r2 of 0.5 resulted in 82231 SNPs remaining following LD pruning. Due to the fact that the 

Bonferroni test assumes independent tests and therefore only unlinked markers, the 

“Bonferroni genome-wide significance level for Metabochip” SNPs was calculated by dividing 

α=0.05 by the number of independent tests (unlinked Metabochip SNPs) i.e.  (0.05/82231) 
                                                

 
** --make-grm creates output files .grm.bin, .grm.N.bin and .grm.id. 
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which gives P ≤ 6.1 x 10-7. Given the prior information about the association of SNPs 

captured on the Metabochip with obesity risk as well as the small sample size, P values ≤ 5 x 

10-5 were considered as suggestive of association and potentially interesting leads. To 

address the possible introduction of Type II errors through the application of this rigorous 

correction, we chose to also present a second category of results where a cut-off of P ≤ 5 x 

10-5 were met. 

 

2.8 Visualisation of results following association analysis 

 

Quantile-quantile (QQ) plots were drawn in R vs.3.2.2 (Development Core Team, 2008) 

using the package “qqman” to visualise the distribution of the test-statistic for each of the 

phenotypes. These plots are shown in Appendix D and showed no evidence of population 

stratification in the combined data sets. 

 

Results from the association analyses described above were visualised using both 

Manhattan as well as LocusZoom plots. Manhattan plots allow the visualization of PLINK 

association results across the genome whilst LocusZoom is a tool used to plot regional 

association results. Manhattan plots were drawn using Haploview vs. 4.2 (Barrett et al., 

2005) while LocusZoom plots were drawn using LocusZoom vs.1.1 (Pruim et al., 2010). 

Manhattan plots can be described as representing GWAS on a genomic scale where P 

values (-log10) are represented on the Y-axis and chromosomal position is represented on 

the X-axis of the plot (Ehret, 2010).  SNPs with significant P values appear higher up on the 

plot thus resembling a Manhattan skyline. LocusZoom plots have the additional advantage of 

being able to display the association signal together with recombination information, LD and 

the closest genes in the region (Pruim et al., 2010). LocusZoom plots also display P values  

(-log10) as represented on the vertical axis and chromosomal position on the horizontal axis. 

All LocusZoom plots were drawn using hg18/1000 Genome June 2010 builds for LD 

background. 
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3. Results 

3.1 Results from QC 

3.1.1 Population Structure and PCA Analysis 

PCA was used to identify outliers during the sample quality control process. Figures 3.2 and 

3.3 show PC plots following the removal of outliers (details shown in Fig 3.4 and 3.5). The 

Bt20 samples represent a fairly homogenous group. PC plots (based on PC1 and PC2) were 

drawn using 13500 and 12100 SNPs for caregivers and young adults, respectively. Both 

groups (red triangles) form a close cluster and show strong overlap with previously studied 

Bt20 participants (black Sowetans-BSO) (green squares) and southeastern Bantu-speakers 

(blue circles). Both groups cluster distinctly from the African 1000G samples but seem to 

share more ancestry with the Luhya (blue triangles) and Yoruba (purple triangles). The 

Herero (SWB) from Botswana and Namibia (yellow squares) also share some ancestry with 

Bt20, illustrated by the close clustering in Figures 3.2 and 3.3.  

 

 
 

Figure 3.2 Principal component analysis plot comparing Bt20 (caregivers) genetic variation 
to various African populations following quality control, using PC 1 and 2.  
PC 1 captures 60% whilst PC 2 captures 22% of the variation. 
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Figure 3.3 Principal component analysis plot comparing Bt20 (young adults) genetic 
variation to various African populations following quality control.  
PC 1 captures 60,5% whilst PC 2 captures, 22,5% of the variation. 
 
 

3.1.2 SNP and Sample QC 

Following both SNP and sample QC measures - focusing on data missingness, Hardy-

Weinberg equilibrium, relatedness, population stratification and phenotype QC, the final 

dataset comprised 972 samples containing 140649 SNPs and 954 individuals containing 

127764 SNPs in caregivers and young adults, respectively. 

 

Figure 3.4 illustrates that the greatest number of SNPs was lost in both datasets due to 

monomorphic SNPs and SNPs having a MAF < 1%.  In the young adults most SNPs were 

removed due to SNP missingness and failing HWE criteria as shown in the figure. In terms of 

sample QC, Fig. 3.5 illustrates that more samples were removed in young adults due to poor 

genotyping and sample missingness than the female caregivers. There was also a higher 

degree of cryptic relatedness in the young adult as illustrated by the amount of samples 

removed for IBD, with both data sets having the same number of samples that were removed 

due to inconsistencies with sex between genotype and phenotype. 
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Figure 3.4 Results of SNP QC, showing the number of SNPs removed for each QC step. 
52 593 SNPs and 51 819 SNPs were removed for MAF <1%, 6644 SNPs and 22 286 SNPs for 
combined missingness and HWE in the caregivers and young adults, respectively 
 
 

 
 
 
 
Figure 3.5 Results of sample QC showing proportion of samples removed for each QC   
step. The most samples, N=24 and N=100 were removed due to discordant sex information and poor 
genotyping for caregivers and young adults, respectively 
 
 

Young adults 
127 764 SNPs 

Caregivers 
140 649 SNPs 

Young adults 
N= 954 

Caregivers 
N= 972 
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3.2 Summary Statistics 

 
The young adults were a mixed sex sample with N= 505 males, and N= 449 females. The 

group had a mean age of 17.9 years. The caregiver group was an all female group (N= 972) 

with a mean age of 41.8 years. The summary statistics are presented on the dataset 

following QC (Table 3.2), which includes data from 954 participants in the young adult group 

and 972 individuals in the caregiver group. 
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Table 3.2 Description of the Birth to Twenty cohort 
The summary statistics for the young adults are further subdivided into males and females 
 

Subjects 
Caregivers Young Adults 

  All Females Males 
N 972 954 449  505  

Females (%) 100 47 100  0  
 Mean* (SD) IQR Mean* (SD) IQR Mean* (SD) IQR Mean* (SD) IQR 

Age (years) 42.00 (8.8)  17.88 (0.38)  17.88 (0.36)  17.88 (0.39)  
Body mass index 

(kg.m-2) 30.30  25.70-
34.40 21.70  19.00-

23.30 22.30  20.00-
25.55 19.80 18.50-

21.50 
Height (m) 1.58 (0.06)  1.65 (0.08)  1.59 (0.06)  1.71 (0.07)  
Weight (kg) 76.03 (17.29)  59.20 (11.53)  59.20 (13.27)  59.21 (9.72)  

Hip circumference 
(cm) 111.10 (18.562)  94.10 (14.01)  98.65 (15.64)  90.19 (10.08)  
Waist 

circumference (cm) 86.57 (16.608)  73.04 (11.94)  74.79 (14.41)  71.49 (8.91)  
Waist-to-hip ratio 

(WHR) 0.77 (0.12)  0.77 (0.11)  0.75 (0.12)  0.79 (0.08)  

Fat mass (grams) 28164.98 
(12043.30)  

10522.46 
(9200.22)  

15774.79 
(10160.69)  

5843.29 
(4643.70)  

Lean mass (grams) 36565.36 
(9978.57)  

32379.29 
(16379.77)  

28029.07 
(13421.17)  

36284.72 
(17742.41)  

Percentage fat 
mass (%) 39.34 (11.10)  18.86 (14.01)  28.12 (14.23)  10.62 (6.79)  

 

  

     *All values are presented as means except BMI values, which are presented as medians together with interquartile range (IQR) because BMI was 
not normally distributed and was log transformed to normality 

 Medians +IQR are in italics 
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3.3 Summary of signals following association analysis 

 

Both basic association (unadjusted) and linear regression (adjusted for covariates) analysis 

were carried out for all phenotypes in the various analysis strategies outlined earlier. MLMA 

analysis was used when datasets were combined (combined all and combined females) to 

account for relatedness. All of the results from association testing for the various analysis 

strategies can be found in Appendix E. In this section association results of the top ten 

signals were presented when:  

• A previously associated GWAS- locus was replicated, or  

• When the signal at a particular locus was supported by more than one SNP or, 

• When a signal was observed across phenotypes, termed cross-phenotype 

associations according to (Lu et al., 2016) and 

• When a signal was at Metabochip genome-wide significance (P ≤ 5 x10-7) 

 

The signals presented in the tables do not always reflect the most significant P-value for a 

particular trait in that analysis but also satisfied one of the conditions set out above and they 

are adjusted for covariates (summarised beneath each table). As mentioned previously P-

values that were trending towards significance as well as those that were genome-wide 

significant (in bold), were considered. All cross-phenotype associations are colour-coded in 

the tables by gene, whilst those loci only associated with one phenotype are not highlighted. 

The signals associated with one specific phenotype are reported in different sections (3.3.1-

3.3.7) All unadjusted association (basic association tests) results can be found in Appendix 

E. The association results presented in Tables 3.3-3.10 were supported with Manhattan and 

LocusZoom plots where appropriate. 

 

3.3.1 Body mass index 

Variants in or near APOH, CNTNAP5, ZFYVE9, TRPM7 correlated with BMI as reported in 

Table 3.3. These loci are discussed further in section 3.6 under cross-phenotype 

associations, as they were associated with other phenotypes. 
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Table 3.3 SNP associations with body mass index  
 

  Gene symbol 
Gene 

location SNP ID Chr BP A1* A2 MAF Beta SE P-value 
                      Padj**** 

Combined all APOH | PRKCA intergenic rs115012414 17 61724373 C T 0,04 -0,03 0,01 7,53 x10-6 

  APOH | PRKCA intergenic rs77612309 17 61724990 C T 0,04 -0,03 0,01 1,17 x10-5 

  SP110 intron rs2114591 2 230758813 T C 0,40 0,01 0,00 6,62 x10-5 

                      Padj*** 
Combined females APOH | PRKCA intergenic rs115012414 17 61724373 C T 0,03 -0,04 0,01 1,68 x10-5 

  APOH | PRKCA intergenic rs77612309 17 61724990 C T 0,03 -0,04 0,01 2,85 x10-5 

  SP110 intron rs2114591 2 230758813 T C 0,4 0,01 0 9,06 x 10-5  

                      Padj* 
Older females  LOC728241 | CNTNAP5 intergenic rs6541885 2 123668890 A G 0,04 -0,05 0,01 5,39 x10-5 

(caregivers) LOC728241 | CNTNAP5 intergenic rs4411698 2 123651577 C T 0,04 -0,04 0,01 5,89 x10-5 

                      Padj** 
Young adults ZFYVE9 intron rs2753399 1 52546945 A G 0,07 0,07 0,01 1,66 x10-5 

                      Padj* 
Young males TRPM7 intron rs17598819 15 48701919 T C 0,01 0,12 0,03 5,17 x10-6 

  USP50 | TRPM7 intergenic rs17598264 15 48632003 G A 0,01 0,12 0,03 5,27 x10-6 

  TRPM7 utr rs62021060 15 48640931 C T 0,01 0,12 0,03 5,27 x10-6 

  TRPM7 intron rs62017164 15 48655616 T C 0,01 0,12 0,03 5,27 x10-6 

  TRPM7 intron rs62017165 15 48655833 T G 0,01 0,12 0,03 5,27 x10-6 

  TRPM7 intron rs1060599 15 48661924 T C 0,01 0,12 0,03 5,27 x10-6 

  TRPM7 intron rs62017202 15 48736535 A G 0,01 0,12 0,03 5,27 x10-6 
 

All genetic loci that are correlated with more than one phenotype are colour-coded in the tables, whilst those loci only associated with one phenotype are not 

highlighted. BMI values were logged transformed to normality for all the analysis. Chr- chromosome, BP1- Note that all BP positions are reported using NCBI Build 

36 (hg18), utr-untranslated region, A12 (effect allele) is the minor allele in this study, A2-major allele, MAF-minor allele frequency, Beta- refers to per allele change in 

the phenotype in kg.m-2 where a positive beta value shows that the minor allele is associated with an increase in the phenotype and a negative value is associated 

with a decrease, SE- standard error, Padj- P-value adjusted for various covariates. The combined all and combined females were further adjusted for 10 PC’s upon 

merging to rule out any confounding from substructure amongst related individuals. Padj**** adjusted for relatedness, sex, age and 10 principal components, 

Padj***adjusted for relatedness, age, and 10 principal components, Padj**adjusted for sex and age, Padj*adjusted for age. 
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3.3.2 Waist circumference 

SNPs in or near SP110, NRXN3, LPAL2, ZFYVE9 and TRPM7 were found to be associated 

with WC. Only a single variant rs10146149 near NRXN3 (Neurexin 3) was associated with 

WC in both the combined dataset and the combined females following adjustment for 

covariates outlined below Table 3.4. All of the variants associated with WC were suggestive 

of association. SP110, LPAL2, ZFYVE9 and TRPM7 were associated with other phenotypes 

besides WC (refer to section 3.4). 
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Table 3.4 SNP associations with waist circumference  
 

Subject groups  Gene symbol Gene location SNP ID Chr BP A11 A2 MAF Beta SE P-value 
          

 
          Padj**** 

Combined all SP110 intron rs2114591 2 230758813 T C 0.40 1.62 0.37 1.10 x10-5 
  NRXN3 | LOC100131580 intergenic rs10146149 14 78578318 T C 0.11 -2.40 0.59 4.49 x10-5 
          

 
          Padj*** 

Combined 
females SP110 intron rs2114591 2 230758813 T C 0.40 2.13 0.47 6.40 x10-6 

  NRXN3 | LOC100131580 intergenic rs10146149 14 78578318 T C 0.11 -3.08 0.75 4.13 x10-5 
          

 
          Padj* 

Older female LPAL2 intron rs9364558 6 160849934 G C 0.27 27.93 6.271 9.46 x10-6 
 (caregivers) SLC22A3 | LPAL2 intergenic rs115553347 6 160806782 G C 0.04 56.29 13.89 5.48 x10-5 

          
 

          Padj** 
Young adults ZFYVE9 intron rs2753399 1 52546945 A G 0.01 8.93 2.05 1.41 x10-5 

        
  

          Padj* 
Young males TRPM7 utr rs62021060 15 48640931 C T 0.01 16.41 5.50 6.19 x10-8 

  TRPM7 intron rs62017164 15 48655616 T C 0.01 16.41 5.50 6.19 x10-8 
  TRPM7 intron rs62017165 15 48655833 T G 0.01 16.41 5.50 6.19 x10-8 
  TRPM7 intron rs1060599 15 48661924 T C 0.01 16.41 5.50 6.19 x10-8 
  TRPM7 intron rs62017202 15 48736535 A G 0.01 16.41 5.50 6.19 x10-8 
  TRPM7 intron rs62017207 15 48745151 C T 0.01 16.41 5.50 6.19 x10-8 
  TRPM7 intron rs62017208 15 48746646 A G 0.01 16.41 5.50 6.19 x10-8 
  TRPM7 intron rs62017209 15 48747259 A G 0.01 16.41 5.50 6.19 x10-8 
  TRPM7 intron rs17520350 15 48684965 C T 0.01 16.41 5.49 6.19 x10-8 

   

In Plink the A1 (effect allele) is the minor allele1. Beta refers to per effect allele change in WC in mm 
 
Padj****adjusted for relatedness, sex, age, height and 10 principal components 
Padj***adjusted for relatedness, age, height and 10 principal components 
Padj**adjusted for sex, age and height 
Padj*adjusted for age and height 
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3.3.3 Hip circumference  

Variants in or near PPP1R3B | LOC100129150, APOH | PRKCA, WARS2, BDNFOS, LPAL2 and CNTNAP5 were associated with HC. Only BDNFOS 

(brain-derived neurotrophic factor opposite strand) was associated with HC alone. When combining females only (young female adults and female 

caregivers) following adjustment for covariates, three SNPs were suggestively associated with HC (rs58174260, rs12574325 and rs16917135, shown 

in Table 3.5). SNPs rs12574325 and rs16917135 (Punadj =6.42 x 10-5) were associated with HC in the female caregivers (Appendix E). Following 

adjustment for age and height the two SNPs still remained suggestively associated with HC in the female caregivers, shown in Table 3.5. 

 

Table 3.5 SNP associations with hip circumference  
 

Subject 
groups  Gene symbol 

Gene 
location SNP ID Chr BP A11 A2 MAF Beta SE P-value 

                      Padj**** 
Combined 

all PPP1R3B | LOC100129150 intergenic rs11778774 8 9251517 G A 0.01 6.64 1.60 3.25 x10-5 
  APOH | PRKCA intergenic rs115012414 17 61724373 C T 0.04 -4.18 1.01 3.34 x10-5 
  APOH | PRKCA intergenic rs77612309 17 61724990 C T 0.04 -4.11 1.01 4.34 x10-5 
  PPP1R3B | LOC100129150 intergenic rs78933755 8 9245811 G A 0.01 6.75 1.67 3.25 x10-5 
  PPP1R3B | LOC100129150 intergenic rs73535332 8 9255047 C G 0.01 6.97 1.77 3.25 x10-5 
  WARS2 intron rs56750694 1 119382364 T G 0.05 3.75 0.96 3.25 x10-5 
                      Padj*** 

Combined  PPP1R3B | LOC100129150 intergenic rs78933755 8 9245811 G A 0.01 8.84 2.10 2.65 x10-5 
 females BDNFOS intron rs58174260 11 27547828 T G 0.04 4.92 1.22 5.61 x10-5 

  BDNFOS intron rs12574325 11 27569624 A G 0.06 4.28 1.08 7.10 x10-5 

 
BDNFOS intron rs16917135 11 27571281 T C 0.06 4.28 1.08 7.10 x10-5 

                      Padj* 
Older LPAL2 intron rs9364558 6 160849934 G C 0.27 27.93 6.27 9.46 x10-6 

 Female SLC22A3 | LPAL2 intergenic rs115553347 6 160806782 G C 0.04 56.29 13.89 5.48 x10-5 
 (caregivers) LOC728241 | CNTNAP5 intergenic rs4411698 2 123651577 C T 0.04 -62.23 14.58 2.17 x10-5 

  LOC728241 | CNTNAP5 intergenic rs6541885 2 123668890 A G 0.04 -66.78 15.92 2.99 x10-5 
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 Older LOC400796 | SEC16B intergenic rs6425446 1 176031200 A G 0.41 25.07 5.99 3.13 x10-5 
 Females PPP1R3B | LOC100129150 intergenic rs78933755 8 9245811 G A 0.01 106.40 25.51 3.29 x10-5 

  PPP1R3B | LOC100129150 intergenic rs35584813 8 9245040 C T 0.01 102.40 25.07 4.79 x10-5 
  PPP1R3B | LOC100129150 intergenic rs73535332 8 9255047 C G 0.01 109.30 27.03 5.69 x10-5 
  BDNFOS intron rs12574325 11 27569624 A G 0.06 51.01 12.69 6.25 x10-5 
  BDNFOS intron rs16917135 11 27571281 T C 0.06 51.01 12.69 6.25 x10-5 
                      Padj** 

Young 
adults ZFYVE9 intron rs2753399 1 52546945 A G 0.01 9.20 2.05 8.29 x10-6 

                      Padj* 
Young 
males USP50 | TRPM7 intergenic rs17598264 15 48632003 G A 0.01 18.04 3.12 1.28 x 10-8 

  TRPM7 utr rs62021060 15 48640931 C T 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs62017164 15 48655616 T C 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs62017165 15 48655833 T G 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs1060599 15 48661924 T C 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs62017202 15 48736535 A G 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs62017207 15 48745151 C T 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs62017208 15 48746646 A G 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs62017209 15 48747259 A G 0.01 18.04 3.12 1.28 x 10-8 
  TRPM7 intron rs17598819 15 48701919 T C 0.01 18.05 3.12 1.28 x 10-8 

  

 The effect allele is the minor allele (A11). Beta refers to the per effect allele change in HC in mm 
Padj****adjusted for relatedness, sex, age, height and 10 principal components 
Padj***adjusted for relatedness, age, height and 10 principal components 
Padj**adjusted for sex, age and height 
Padj*adjusted for age and height 
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Table 3.6 SNP associations with waist-to-hip ratio 
 

Subject groups  Gene symbol 
Gene 

location SNP ID Chr BP A1* A2 MAF Beta SE P-value 
                      Padj**** 

Combined all FTO intron rs1861554 16 52607268 G A 0.07 0.02 0.00 2.91 x10-5 
  WARS2  utr rs17023092 1 119375976 T C 0.07 -0.02 0.00 9.11 x10-5 
  WARS2 utr rs74112264 1 119376488 A G 0.07 -0.02 0.00 9.11 x10-5 
  WARS2 utr rs17023118 1 119381509 A G 0.07 -0.02 0.00 9.11 x10-5 
                      Padj*** 

Combined 
females FTO intron rs1861554 16 52607268 G A 0.07 0.02 0.01 2.75 x10-5 

  FTO intron rs1861358 16 52602704 A C 0.06 0.03 0.01 4.83 x10-5 
  FTO intron rs2111116 16 52606753 A G 0.06 0.03 0.01 4.83 x10-5 
                      Padj** 

Young adults WARS2                 intron rs12095241 1 119431520 G T 0.13 0.02 0.00 1.08 x10-6 
  WARS2 intron rs12088290 1 119385449 T C 0.14 0.02 0.00 1.01 x10-5 
                      Padj* 

Young males LOC100129474 | SLC17A4 intergenic rs3923725 6 25842899 A C 0.01 0.16 0.02 6.31 x10-13 
  COBLL1 intron rs115743734 2 165255601 A G 0.01 0.09 0.01 6.34 x10-9 

  
  In Plink the A1 (effect allele) is the minor allele*. Beta refers to per effect allele change in WHR 
Padj****adjusted for relatedness, sex, age and 10 principal components 
Padj***adjusted for relatedness, age, and 10 principal components 
Padj**adjusted for sex and age; 
Padj*adjusted for age 
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3.3.4 Waist to hip ratio  

Variants in or near FTO, WARS2, LOC100129474 | SLC17A4 and COBLL1 were associated 

with WHR. WARS2 was also associated with HC, albeit with a different variant rs56750694. 

The suggestive association in FTO (fat mass and obesity associated locus) with rs1861554 

was observed when combining the datasets, after adjustment for covariates. The association 

with FTO is strengthened by the observation that three intronic SNPs (reported in Table 3.6) 

in FTO are related to WHR when merging the 2 groups of females. This signal is driven by 

rs1861554 as illustrated in Fig. 3.6 (i). None of the signals observed at FTO were at GW 

significance, but rather trending toward significance following adjustment for covariates. 

Regional plots for the lead SNP are shown in Fig. 3.6 (ii-a) for the combined females against 

an African LD background and European (ii-b). There are highly correlated SNPs (three 

SNPs) with the index SNP against both the European and African LD structure, but there are 

some SNPs against the African LD background (indicated by black arrows) that have a lower 

correlation with the index SNP, but their P-values are not significant (10-3).  

 

Only variants in or near LOC100129474 | SLC17A4 (solute carrier family 17) and COBLL1 

(Cordon-Bleu WH2 repeat protein-like1) were observed with WHR at genome-wide 

significance in the young males. The signal observed near LOC100129474 | SLC17A4 was 

the strongest, signified by the highest P-value observed in all the analyses, however together 

with COBLL1 had a single SNP supporting the association. 
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(i) 

 
(ii) 

Figure 3.6 Manhattan plot (i) and regional plot (ii) for variants near FTO and waist-to-hip ratio 
(i) Showing the three variants suggestively associated with WHR in the combined females. The blue 
horizontal line indicates (P< 5 x 10-5) which is the cut-off used in this study indicating suggestive 
associations. 
(ii) Regional plots for WHR and lead SNP rs1861554 in FTO in the combined female data set with LD 
structure shown against a YRI (a) and CEU (b) background. The recombination rates are indicated in 
blue. The three intronic SNPs are highly correlated as indicated by r2 values in red. The black arrows 
represent variants that have lower P-values, and are not as highly correlated with the index SNP 
(purple) that might be important signals in narrowing down causal loci because they are 
indistinguishable against the European LD background. The closest genes are shown beneath the 
plots.

a) YRI b) CEU 
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3.3.5 Fat mass 

 Several interesting variants in or near SEC16B, CNTNAP5, SP110, ZFYVE9, TMEM18 and 

NEGR1 were associated with fat mass. SNPs rs114285121, rs78501377, rs76275602, 

rs7840669 and rs78559588 in or near TMEM18 (transmembrane 18) were only associated in 

the young female adults with fat mass following adjusted association analysis (Table 3.7). 

The variants were trending toward significance, shown in Fig. 3.7. All minor alleles effect 

positive changes to β values. Regional plots were not drawn for this locus, as LD information 

for European populations was not available. All of the other variants were associated with 

other phenotypes and were reported in section 3.4. 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
Figure 3.7 Manhattan plot for fat mass in the young adult females showing the association of 
SNPs in or near TMEM18.  
The blue horizontal line is the cut-off for suggestive associations (P≤ 10-5) 
 
 

 

 
 
 
 
 
 
 

 TMEM18 
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Table 3.7 SNP associations with fat mass 

 

 Subject 
groups Gene symbol 

Gene 
location SNP ID Chr BP A11 A2 MAF Beta SE P-value 

                      Padj**** 
Combined all LOC400796 | SEC16B intergenic rs6664268 1 176031329 C T 0.22 -1.80 0.37 9.48 x10-7 

  LOC400796 | SEC16B intergenic rs4075235 1 176034945 T C 0.26 -1.65 0.35 1.84 x10
-6

 

  LOC400796 | SEC16B intergenic rs4072161 1 176036310 G T 0.48 1.45 0.31 3.18 x10
-6

 

  LOC400796 | SEC16B intergenic rs6425446 1 176031200 A G 0.42 1.36 0.31 1.01 x10
-5

 

  LOC400796 | SEC16B intergenic rs11581129 1 176037754 A G 0.17 -1.69 0.40 2.68 x10
-5

 

  LOC400796 | SEC16B intergenic rs4311843 1 176035387 C A 0.33 1.32 0.33 5.50 x10
-5

 

                      Padj*** 
Combined LOC400796 | SEC16B intergenic rs6425446 1 176031200 A G 0.41 1.81 0.40 5.55 x10

-6
 

females LOC400796 | SEC16B intergenic rs4075235 1 176034945 T C 0.26 -1.98 0.44 7.54 x10
-6

 

  LOC400796 | SEC16B intergenic rs6664268 1 176031329 C T 0.22 -2.06 0.46 9.63 x10
-6

 

  LOC400796 | SEC16B intergenic rs4072161 1 176036310 G T 0.47 1.71 0.40 2.27 x10
-5

 

  LOC400796 | SEC16B intergenic rs4311843 1 176035387 C A 0.32 1.73 0.42 4.47 x10
-5

 

  LOC728241 | CNTNAP5 intergenic rs6541885 2 123668890 A G 0.03 -4.27 1.08 7.39 x10
-5

 

  SP110 intron rs2114591 2 230758813 T C 0.40 1.53 0.39 8.27 x10
-5

 

                      Padj* 
Older LOC400796 | SEC16B intergenic rs6425446  1 176031200 A G 0.41 2.26 0.47 2.08 x10

-6
 

 Female LOC728241 | CNTNAP5 intergenic rs6541885 2 123668890 A G 0.04 -5.94 1.29 4.48 x10
-6

 

 (caregivers) LOC728241 | CNTNAP5 intergenic rs4411698 2 123651577 C T 0.04 -5.24 1.17 8.91 x10
-6

 

  LOC400796 | SEC16B intergenic rs4072161 1 176036310 G T 0.46 2.10 0.48 1.29 x10
-5

 

  LOC400796 | SEC16B intergenic rs4348685 1 176034251 G C 0.27 -2.26 0.53 2.43 x10
-5

 

  LOC400796 | SEC16B intergenic rs4075235 1 176034945 T C 0.27 -2.26 0.53 2.43 x10
-5

 

  SP110 intron rs2114591 2 230758813 T C 0.39 1.99 0.47 2.83 x10
-5

 

                      Padj** 
Young adults ZFYVE9 intron rs2753399 1 52546945 A G 0.01 7.33 1.56 3.26 x10

-6
 

                      Padj* 
Young females LOC727944 | TMEM18 intergenic rs114285212 2 630159 A G 0.02 12.00 2.79 2.27 x10

-5
 

  LOC727944 | TMEM18 intergenic rs78501377 2 630682 C T 0.02 12.00 2.79 2.27 x10
-5
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Young females LOC727944 | TMEM18 intergenic rs76275602 2 631877 A G 0.02 12.00 2.79 2.27 x10
-5

 

  LOC727944 | TMEM18 intergenic rs78460669 2 633005 C G 0.02 12.00 2.79 2.27 x10
-5

 

  LOC727944 | TMEM18 intergenic rs78559588 2 637656 C T 0.02 12.00 2.79 2.27 x10
-5

 

  LOC727944 | TMEM18 intergenic rs78348389 2 638436 G C 0.02 12.00 2.79 2.27 x10
-5

 

  LOC727944 | TMEM18 intergenic rs116093073 2 638520 A G 0.02 12.00 2.79 2.27 x10
-5

 

  LOC727944 | TMEM18 intergenic rs114461922 2 642236 A G 0.02 12.00 2.79 2.27 x10
-5

 

                      Padj* 
Young males LOC400796 | SEC16B intergenic rs16852018 1 176098880 A G 0.02 6.39 1.12 2.41 x10-8 

  NEGR1 | LOC100132353 intergenic rs72941254 1 72446505 A C 0.05 3.28 0.67 1.64 x10
-6

 

  NEGR1 | LOC100132353 intergenic rs72941257 1 72451438 C T 0.05 3.28 0.67 1.64 x10
-6

 

  NEGR1 | LOC100132353 intergenic rs72941270 1 72465674 A T 0.05 3.28 0.67 1.64 x10
-6

 

  NEGR1 | LOC100132353 intergenic rs72941224 1 72411598 T A 0.05 3.27 0.68 1.90 x10
-6

 

 

  In Plink the A1 (affect allele) is the minor allele
1
. Beta refers to per effect allele change in fat mass in kilograms (kgs) 

Padj****adjusted for relatedness, sex, age, height and 10 principal components 

Padj***adjusted for relatedness, age, height and 10 principal components 

Padj**adjusted for sex, age and height 

Padj*adjusted for age and height 

 

3.3.6 Lean mass 

Variants in or near SP110 and PPP1R3B were associated with lean mass (Table 3.8).  These variants are also associated with other phenotypes. 

The variants are all suggestive or trending towards suggestive significance.  
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Table 3.8 SNP associations with lean mass 

 

Subject groups Gene symbol 
Gene 

location SNP ID Chr BP A11 A2 MAF Beta SE P-value 

 
                    Padj**** 

Combined all SP110 intron rs2114591 2 230758813 T C 0.40 0.77 0.18 9.89 x10
-6

 

 
                    Padj*** 

Combined  SP110 intron rs2114591 2 230758813 T C 0.40 0.83 0.21 5.27 x10
-5

 

females PPP1R3B | LOC100129150 intergenic rs73535324 8 9252643 A C 0.01 3.79 0.92 9.89 x10
-5

 

 
PPP1R3B | LOC100129150 intergenic rs73535332 8 9255047 C G 0.01 3.81 0.93 4.61 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs78933755 8 9245811 G A 0.01 3.64 0.90 5.29 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs11778774 8 9251517 G A 0.01 3.45 0.86 6.56 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs35584813 8 9245040 C T 0.01 3.46 0.88 8.06 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs36090863 8 9246378 T C 0.01 3.46 0.88 8.06 x10

-5
 

Older females 
(caregivers)                     Padj* 

 
PPP1R3B | LOC100129150 intergenic rs73535324 8 9252643 A C 0.01 4.70 1.10 2.15 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs73535332 8 9255047 C G 0.01 4.76 1.12 2.53 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs11778774 8 9251517 G A 0.01 4.31 1.04 3.77 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs35584813 8 9245040 C T 0.01 4.34 1.06 4.53 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs36090863 8 9246378 T C 0.01 4.34 1.06 4.53 x10

-5
 

 
PPP1R3B | LOC100129150 intergenic rs78933755 8 9245811 G A 0.01 4.38 1.08 5.52 x10

-5
 

 

  In Plink the A1 (affect allele) is the minor allele*. Beta refers to per effect allele change in lean mass in kg’s. 

Padj****adjusted for relatedness, sex, age, height and 10 principal components 

Padj***adjusted for relatedness, age, height and 10 principal components 

Padj*adjusted for age and height 

3.3.7 Percentage fat mass 

Variants in or near SEC16B, APOH | PRKCA, CNTNAP5, NBEAL1 and NEGR1 were associated with PFM. Two SNPs rs7576822 and rs9678194 

(Table 3.9 and Fig. 3.8) in and NBEAL1 (neurobeachin like 1) were seen to be associated with percentage fat mass in the young adults only, following 

the adjustment for covariates whilst variants in or near SEC16B, APOH | PRKCA, CNTNAP5, and NEGR1 were associated with other
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phenotypes as well.  The association with NBEAL1 was only observed in the young adults 

group. 

 

 

 
 
Figure 3.8 Manhattan plot for PFM in the young adult dataset where SNPs correlated with 
NBEAL1 are trending towards significance. 
 
 
 
 
 
 
 

 NBEAL1 
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Table 3.9 SNP associations with percentage fat mass 
 

  Gene symbol 
Gene 

location SNP ID Chr BP A1* A2 MAF Beta SE P-value 

                      Padj**** 

Combined all LOC400796 | SEC16B intergenic rs6664268 1 176031329 C T 0,22 -1,35 0,27 7,90 x10-7 

  LOC400796 | SEC16B intergenic rs4075235 1 176034945 T C 0,26 -1,27 0,26 9,05 x10-7 

  LOC400796 | SEC16B intergenic rs4072161 1 176036310 G T 0,48 1,10 0,23 2,50 x10-6 
  LOC400796 | SEC16B intergenic rs2068973 1 176059338 A G 0,43 1,01 0,23 1,35 x10-5 
  LOC400796 | SEC16B intergenic rs11581129 1 176037754 A G 0,17 -1,28 0,30 2,00 x10-5 
  LOC400796 | SEC16B intergenic rs6425453 1 176085789 G A 0,48 0,96 0,23 1,35 x10-5 
  LOC400796 | SEC16B intergenic rs6425446 1 176031200 A G 0,42 0,95 0,23 1,35 x10-5 
  APOH | PRKCA intergenic rs115012414 17 61724373 C T 0,04 -2,40 0,59 1,35 x10-5 
                      Padj*** 
  LOC400796 | SEC16B intergenic rs4075235 1 176034945 T C 0,26 -1,38 0,31 8,89 x10-6 
Combined females LOC400796 | SEC16B intergenic rs6425446 1 176031200 A G 0,41 1,24 0,28 9,53 x10-6 
  LOC400796 | SEC16B intergenic rs2068973 1 176059338 A G 0,42 1,21 0,28 1,49 x10-5 
  LOC400796 | SEC16B intergenic rs6664268 1 176031329 C T 0,22 -1,38 0,33 2,31 x10-5 
  LOC400796 | SEC16B intergenic rs10913437 1 176062763 T C 0,43 1,18 0,28 2,77 x10-5 
  LOC400796 | SEC16B intergenic rs4072161 1 176036310 G T 0,47 1,18 0,28 3,23 x10-5 
  LOC400796 | SEC16B intergenic rs6425453 1 176085789 G A 0,47 1,14 0,28 4,44 x10-5 
                      Padj* 
  LOC728241 | CNTNAP5 intergenic rs4411698   2 123651577 C T 0,04 -3,78 0,77 8,89 x10-6 
Older females LOC728241 | CNTNAP5 intergenic rs6541885 2 123668890 A G 0,04 -4,03 0,85 2,20 x10-6 
 (caregivers) LOC400796 | SEC16B intergenic rs2068973 1 176059338 A G 0,43 1,44 0,31 4,17 x10-6 
  LOC400796 | SEC16B intergenic rs6425446 1 176031200 A G 0,41 1,42 0,31 5,86 x10-6 
  LOC400796 | SEC16B intergenic rs4072161 1 176036310 G T 0,46 1,43 0,31 6,32 x10-6 
  LOC400796 | SEC16B intergenic rs6425453 1 176085789 G A 0,47 1,40 0,31 7,09 x10-6 
  LOC400796 | SEC16B intergenic rs10913437 1 176062763 T C 0,43 1,38 0,31 1,07 x10-5 
  LOC400796 | SEC16B intergenic rs1854288 1 176069710 A G 0,47 1,36 0,31 1,21 x10-5 
  LOC400796 | SEC16B intergenic rs12092449 1 176081551 C T 0,47 1,35 0,31 1,48 x10-5 
                      Padj** 
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Young adults  ZFYVE9 intron rs2753399 1 52546945 A G 0,01 10,03 2,25 1,09 x10-5 

 
NBEAL1 intron rs7576822 2 203782462 T C 0,02 4,52 1,12 6,13 x10-5 

  NBEAL1 intron rs9678194 2 203760073 G C 0,02 4,52 1,12 6,30 x10-5 
  LOC400796 | SEC16B intergenic rs16852018 1 176098880 A G 0,01 5,45 1,37 7,40 x10-5 
                      Padj* 
Young males LOC400796 | SEC16B intergenic rs16852018 1 176098880 A G 0,02 7,00 1,40 8,51 x10-7 
  NEGR1 | LOC100132353 intergenic rs72941254 1 72446505 A C 0,05 3,90 0,84 4,35 x10-6 
  NEGR1 | LOC100132353 intergenic rs72941257 1 72451438 C T 0,05 3,90 0,84 4,35 x10-6 
  NEGR1 | LOC100132353 intergenic rs72941270 1 72465674 A T 0,05 3,90 0,84 4,35 x10-6 
  NEGR1 | LOC100132353 intergenic rs72941224 1 72411598 T A 0,05 3,89 0,84 5,00 x10-6 

 
  In Plink the A1 (affect allele) is the minor allele1. Beta refers to per effect allele change in PFM. 
Padj****adjusted for relatedness, sex, age, height and 10 principal components 
Padj***adjusted for relatedness, age, height and 10 principal components 
Padj**adjusted for sex, age and height 
Padj*adjusted for age and height 
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3.4 Sub-group and cross phenotype associations 

 

Nine loci were found to be either suggestively or significantly associated with more than one 

trait. These loci are summarised in Table 3.10. The cross phenotype associations are 

discussed according to the genetic loci in common. The observed sub-group and cross 

phenotype associations are also presented in the Appendix E (Table E.11). 

 
Table 3.10 Summary of cross-phenotype associations 

 

Loci 
Phenotypes	

BMI WC HC WHR FM LM PFM 
LOC400796 | SEC16B     x   x   x 

NEGR1 | LOC100132353*         x   x 
TRPM7 x x x         
WARS2     x x       

LOC728241 | CNTNAP5 x   x   x   x 
SP110   x     x x   
LPAL2   x x         

PPP1R3B | LOC100129150     x     x   
ZFYVE9 x x x   x   x 

APOH | PRKCA x   x       x 
 

 

3.4.1 SEC16 homolog B (SEC16B) 

When both datasets were combined (after adjusting for covariates), three GW-significant 

signals were observed in or near SEC16B with lead SNP rs6664268 being the same for both 

fat mass and PFM. The variants rs6664268 and rs4075237 were GW significant for PFM in 

the combined dataset (Table 3.9), while only rs6664268 was GW significant for fat mass 

(Table 3.7). The association with fat mass and PFM was mirrored in the merged female 

group (female caregivers and young females) following adjustment for covariates. The 

association was driven by lead SNP rs6425446 (fat mass) and rs4075235 (PFM) in or near 

SEC16B as reported in Table 3.7 and illustrated in Fig. 3.9 and Table 3.9 and Fig. 3.10, 

respectively. Several SNPs were observed with SEC16B together with fat mass (lead SNP-

rs6425446), and PFM (rs2068973), reported in Table 3.7 and 3.8, in the female caregivers 

after adjusting for age and height. Only a single SNP, rs16852018 was associated with 

SEC16B and PFM in the young adult group, after adjustment for sex, age and height (Table 

3.9). Rs16852018 was also found at GW significance after adjustment for covariates with 

both fat mass and PFM in the young male adults with no signals for SEC16B observed with 
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any of the phenotypes in the young adult females. A single signal in or near SEC16B was 

observed for rs6425446 and HC in the female caregivers following adjustment for both age 

and height (Table 3.5). 

 

 
 

Figure 3.9 Manhattan plots for fat mass in the combined all (a) and combined female dataset 
(b), respectively  
Illustrating the signals observed in or near SEC16B  with the various sub-groups in the analysis, with a 
stronger signal for fat mass observed when all samples are combined (a). The horizontal lines in the 
Manhattan plots correspond to suggestive P-values ≤ 5.0 x 10-5 (blue) 
  

 

β (beta) coefficients are reported for each SNP in the association results (Tables 3.4, 3.6 and 

3.8) where the value reflects the per effect allele change in the phenotype. All the β (beta) 

values reported for SEC16 associations effect a large change in the respective phenotypes. 

Some β values effect negative changes for the top signals, according to  frequency of minor 

allele in African populations (by default PLINK uses the minor allele in association analysis), 

suggesting that the major allele is associated with increases in beta. These results showed 

that an increase in sample size (merging both datasets; or merging the females) increased 

the statistical power to detect the associations in or near SEC16B. Regional plots of lead 

a 

b 

 SEC16B 
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SNPs for fat mass and PFM in the combined datasets are illustrated and reported in Fig.s 

3.11 - 3.13.  

 
 

Figure 3.10 Manhattan plots for percentage fat mass in the combined all (a) and combined 
female dataset (b), respectively illustrating the strength of signals observed in the various 
sub-groups 

 
 

 

a 

b 

 SEC16B 
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Figure 3.11 LocusZoom plots for fat mass and lead SNP rs6664268 in or near SEC16B in 
the combined dataset against various LD backgrounds   
The presence of variants that have are trending towards significance that have a weaker correlation 
(as indicated by the arrow heads) with the index SNP (purple diamond), were observed against an 
African LD background. In Fig.s 3.11-3.13 the relationship of SNPs drawn against a European LD 
background, show that the cluster of associated SNPs are indistinguishable from one another, as 
reflected by their strong LD with the index SNP. Fig.s 3.11c-3.13c illustrates an intermediate effect of 
correlated SNPs against an Asian LD background. The recombination hotspots are illustrated in blue 
peaks, with neighbouring genes shown beneath the plot 
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Figure 3.12 LocusZoom plots for fat mass and lead SNP rs6425446 in or near SEC16B in 
the combined females against various LD backgrounds 
In this figure, the presence of two closely associated variants that have a weaker correlation (as 
indicated by the arrow) with the index SNP (purple diamond), were observed against an African LD 
background (a), this signal is indistinguishable against the European background (b), with an 
intermediate effect of correlated SNPs against an Asian LD background (c) 
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Figure 3.13 LocusZoom plots for PFM and lead SNP rs4075235 in or near SEC16B in the 
combined female dataset against various LD backgrounds 
In this figure, the presence of two closely associated variants that have a weaker correlation (as 
indicated by the arrows) with the index SNP (purple diamond), were observed against an African LD 
background (a), this signal is indistinguishable against the European background (b), with an 
intermediate effect of correlated SNPs against an Asian LD background (c) 
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3.4.2 Neuronal growth factor 1 (NEGR1) 

Variants in or near NEGR1, rs72941254, rs72941257, rs72941270 and rs72941224 (Table 

3.7 and Table 3.9) were associated with fat mass and PFM in the young adult males only 

after adjusting for age and height (Fig. 3.14). The signal near NEGR1 was only observed in 

the young male adults and variants were associated with positive effect allele changes as 

reflected by the β values. The association is stronger with fat mass (a) than with PFM (b) as 

illustrated by the P-values in Fig. 3.14. LocusZoom plots for the lead SNP are shown in Fig. 

3.15 for the lead SNP in NEGR1. 

 

 
 

Figure 3.14 Manhattan plots for fat mass (a) and PFM (b) in the young male adults 
illustrating the cross-phenotype signals observed for NEGR1  
The horizontal lines in the Manhattan plots correspond to suggestive P-values ≤ 5.0 x 10-5 (blue) and 
genome-wide P-values ≤ 5.0 x 10-7 (red) 
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Figure 3.15 LocusZoom plots for fat mass and lead SNP rs72941254 near NEGR1 in the 
young male adults with LD structure shown against a YRI (a) and CEU (b) background 
In this figure, the presence of very closely associated variants that have a weaker correlation (as 
indicated by the arrows) with the index SNP (purple diamond), were observed against an African LD 
background (a), there was no available LD information to assess the correlation of SNPs against index 
SNP for a European background (b) 
 

3.4.3 Transient receptor potential melastatin 7 (TRPM7) 

SNPs in or near TRPM7 were associated with WC (10 SNPS) and HC (10 SNPs) at GW 

significance  in young males with rs62021060 as the lead SNP for WC and rs17598264 as 

the lead SNP for HC reported in Tables 3.4 and  3.5, respectively and illustrated in Fig. 3.16. 

Variants associated with BMI (7 SNPs, rs17598819, lead SNP) were trending toward GW 

significance, reported in Table 3.3. The effect alleles were associated with increases in the 

respective phenotypes as reflected by the positive β values. Regional plots are shown in Fig. 

3.17, however there is no available African LD structure for the variants around TRPM7. The 

regional plots against a European LD background (Fig. 3.17b), shows that there is strong 

SNP coverage around the TRPM7 locus with several SNPs in strong LD with the index SNP. 
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Figure 3.16 Manhattan plots for WC (a) and HC (b) in the young adult males where the 
cross-phenotype signals observed (at genome-wide significance) in or near TRPM7 are 
shown 

 
Figure 3.17 LocusZoom plots for HC and lead SNP rs17598264 near TRPM7 in the young 
male adults against with LD structure shown against a YRI (a) and CEU (b) background 

 

 

a 

b 

TRPM7 

a) YRI b) CEU 

0

2

4

6

8

10

−
lo

g
1
0
(p
−

va
lu

e
)

0

20

40

60

80

100

R
e
c
o
m

b
in

a
tio

n
 ra

te
 (c

M
/M

b
)

●
●
●

●

●●

●●

●●
●●

●

●●●

●

●

●●
●●
●

●

●
●
●

●

●●
●●
●●

●●

●

●
●●
●

●●

●●

●

●●●●●
●●●

●

●
●●●
●●
●
●
●
●

●
●
●
●●●●●
●●●

●

●●

●

●
●●●

●

●
●
●●●●

●

●
●●

●●

●

●
●
●

●
●●

●●●

●

●●
●
●
●●●

●

●

●

●

●●●●

●

●●●●●●●●
●
●
●
●●●●●●
●

●

●

●

●
●

●

●●●●●
●
●

●

●●●●●●
●●●

●

●●

●
●●

●

●●

●

●

●
●
●
●

●●
●●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●●●●

●

●

●

●●●●

●●
●
●

●

●●

●

●●●

●

●

●
●●

●

●

●

●●●●

●

●

●●
●
●●

●

●

●

●

●
●
●
●

●●●●●

●
●

●●
●●●

●

●●

●

●

●
●
●●

●

●
●●
●

●

●●

●
●
●●●

●

●●●●
●
●●●●

●

●●

●

●●

●

●●●●

●

●●
●●
●
●●
●

●

●

●●

●

●●●

●

●●

●
●

●

●
●

●

●

●

●●

●●

●●

●●

●●●●●

●
●

●

●●

●

●

●●

●●
●●

●

●●

●

●●●●●
●

●

●●

●
●●●
●●
●
●●●●
●
●

●

●
●

●

●●●●

●

●●
●
●●

●

●
●●●

●

●●●
●
●●●
●●●

●●

●
●

●

●●

●

●

●●
●
●

●
●

chr15:48632003

SLC27A2

HDC

GABPB1

FLJ10038

LOC100129387

USP8

USP50

TRPM7 SPPL2A AP4E1

LOC100132724

48.4 48.6 48.8 49
Position on chr15 (Mb)

Plotted SNPs

0

2

4

6

8

10

−
lo

g
1

0
(p
−

va
lu

e
)

0

20

40

60

80

100

R
e

c
o

m
b

in
a

tio
n

 ra
te

 (c
M

/M
b

)

●●●
●●
●
●●

●●

●

●●●●●●●●●
●●
●
●
●

●
●●●
●
●●
●
●●●●●

●●

●●
●

●●

●●●
●
●●●

●
●●
●●
●

●

●

●

●
●●●●●●●
●●
●●

●

●

●

●
●●●

●

●

●

●●

●

●●●●●●

●●●

●

●

●●
●●●●●
●●

●

●●●

●
●
●●

●

●

●
●

●
●
●●

●

●●●●●

●

●●
●
●
●

●

●

●

●

●●●●●●●●●●

●●

●●●

●●
●●●

●

●●

●

●●
●
●
●
●

●

●

●●

●

●
●●

●

●
●●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●
●●●
●●●

●
●
●
●●
●●●
●
●

●●
●●●
●

●
●
●●
●
●●
●●●●

●

●
●
●
●●●●

●
●●●●●●●●●●●●●●●

●● ●
●
●●●●●●

●
●●●●●●●●●●●●●

●

●

● ●
●●●
●
●
●
●●
●●
●
●
●
●
●●●●●●●

●●●●

●
●●●●

●

● ●

●

● ●●●●

●
●
●
●
●
●●

●

●
●●
●

●

●●●

●

●

●●●

●●

●●●

●

●●

●

●

●

●

●●

●

●●

●

●

●●
●
●

●●

●

●●●●

●

●●●●●

●

●●●●

●

●

●
●●●

●

●

●

●
●●●●

●
●●●

●●●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

● ●
●

●

●

●

●

●●●

●

chr15:48632003

0.2
0.4
0.6
0.8

r2

SLC27A2

HDC

GABPB1

FLJ10038

LOC100129387

USP8

USP50

TRPM7 SPPL2A AP4E1

LOC100132724

48.4 48.6 48.8 49
Position on chr15 (Mb)

Plotted SNPs



 

 

 

	
Chapter 3 - Metabochip 

	
	 	

92 

3.4.4 Mitochondrial form of tryptophanyl-tRNA synthetase (WARS2) 

Three SNPs, rs17023092, rs74112264 and rs17023118 in the untranslated region (UTR) 

were associated with WHR (Fig. 3.18a), whilst a single intronic SNP rs56750694 was 

associated with HC following adjustment for covariates when the datasets are combined. 

Two intronic SNPs were associated with WHR and WARS2, rs12095241 and rs12088290 in 

the young adults shown Fig. 3.18 (b), where the signal observed is stronger than that 

observed when the datasets are combined. 

 

 
 
Figure 3.18 Manhattan plots for WHR in the young adults (a) and the combined all dataset 
(b) where the signals observed in the different sub-groups in or near WARS2 are indicated 
The signals in the young adults (b) are suggestive of significance, whilst the signal in the combined 
dataset (a) is attenuated compared to the young adults 
 

3.4.5 Contactin Associated Protein-Like 5 (CNTNAP5) 

Two SNPs (rs6541885 and rs4411698) were suggestively associated with BMI after 

adjusting for age, together with HC, fat mass and PFM after adjusting for both age and height 

in the female caregivers. The signals at CNTNAP5 were mainly observed in the older female 

caregivers, with only a single SNP rs6541885 associated with fat mass in the combined 

females. The association signal near CNTNAP5 is stronger in the caregivers with PFM (b) 

than with fat mass as illustrated in Fig. 3.19 (a). Negative β values were observed for all 

a 

b 

WARS2 
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minor allele variants associated with the intergenic region near LOC72841 | CNTNAP5 gene 

clusters. There was no available LD information around this region to draw regional plots. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.19 Manhattan plots showing the cross-phenotype association for CNTNAP5 in the 
female caregivers The Manhattan plots refer to fat mass (a) and percentage body fat (b) where the 
suggestive association signals observed in or near CNTNAP5 are more strongly associated with PFM 
than fat mass in the female caregivers 

 

3.4.6 SP110 nuclear body (SP110) 

A single intronic variant rs2114591 was associated with BMI, and was the strongest signal 

associated with WC and LM following adjustment for covariates, in the combined dataset. It 

was also the lead SNP correlated with WC and lean mass in the combined females. This 

SNP was associated with WC and fat mass in the female caregivers following adjusted linear 

regression, where the association with WC was stronger than with fat mass.  

 

 3.4.7 Lipoprotein(a)-like 2) (LPAL2) 

After adjusting WC and HC for age and height, two SNPs, were trending towards significance 

in the female caregivers only, intronic SNP rs9364558 and rs115553347 an intergenic SNP 

in or near SLC22A3 and LPAL2. This SNP was only observed in the female caregivers. 
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Figure 3.20 Manhattan plots showing the sub-group association with PPP1R3B and HC in 
combined dataset (a) and the female caregivers (b)  

 

3.4.8 Protein phosphatase 1 regulatory subunit 3B (PPP1R3B) 

Following adjustment for PC1 & 2, sex, age and height, three SNPs, rs11778774, 

rs78933755 and rs73535332, were trending towards significance with HC in the combined 

dataset illustrated in Fig. 3.20 (a). Two SNPs rs78933755 and rs35584813 were trending 

toward significance in the female caregivers and HC in Fig. 3.20 (b). A signal (5 SNPs) 

trending towards significance was correlated with lean mass in the combined females and 

female caregivers (Table 3.8) following adjustment for covariates but becomes attenuated 

when the datasets are combined. 

 

3.4.9 Brain-derived neurotrophic factor-opposite strand (BDNFOS) 

Following adjustment with age and height two SNPs were trending towards significance with 

HC in the female caregivers shown in Fig. 3.21 (a). When combining only the 
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Figure 3.21 Manhattan plots showing the sub-group association with BDNFOS and HC in 
combined dataset (a) and the combined females 
 

 

females (young female adults and female caregivers) following adjustment for first 10 PCS, 

age, and height, three SNPs were significant with HC, rs58174260, rs12574325 and 

rs16917135, shown in Fig. 3.21 (b). 

 

3.4.10 Zinc finger FYVE-type containing 9 (ZFYVE9) 

A single SNP, rs2753399 in ZFYVE9 was associated with BMI, WC, HC and fat mass in the 

young adults following adjustment for covariates. Associations were then observed for this 

SNP rs2753399 with fat mass and PFM in the young male adults after adjusting for age and 

height. 

 

3.4.11 Apolipoprotein H (APOH) 

SNPs, rs115012414 and rs77612309 in the APOH| PRKCA gene cluster were suggestively 

associated with BMI, HC in the combined dataset. The association with BMI persisted in the 

combined female dataset only with both SNPs rs115012414 and rs77612309 trending 

 

BDNFOS 
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towards significance whilst the signal for HC was attenuated. The signal for APOH | PRKCA 

gene complex was not found in any of the other stratified datasets. 

 

3.5 Age and sex-specific interactions 

 

The dataset was stratified into various groups (summarised in Table 3.11) to establish if 

there were any age and sex-specific associations. Variants in or near TRPM7, SLC17A7, 

COBLL1 and NEGR1 were associated with different traits in the young males only whilst 

variants in or near CNTNAP5 and BDNFOS were associated with females only (combined 

young and old).  

Variants in or near TMEM18 were associated with young females only whilst variants in or 

near LPAL2 were associated with older female caregivers only. Also, when comparing older 

female caregivers to young adults (mixed sex), variants in or near ZFYVE9, WARS2 and 

NBEAL1 were only associated with young adults.  
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Table 3.11 Summary of age and/or sex-specific interactions  
The main genetic loci (17) associated with body composition were compared to the group 
stratifications to assess age and sex interactions. The colour key is found below the table indicating 
the various stratifications in the dataset 
 

Loci 

Groups	

Combined 
all 

Combined 
females 

Female 
caregivers 

Young 
Adults 

Young 
females 

Young 
males 

APOH | PRKCA x x         
LOC728241 | CNTNAP5   x x       

ZFYVE9       x     
TRPM7           x 
SP110 x x x       

NRXN3 | LOC100131580 x x         
LPAL2     x       

PPP1R3B | LOC100129150 x x x       
WARS2       x     

BDNFOS   x x       
LOC400796 | SEC16B x x x x   x 

FTO x x 		 		 		 		
LOC100129474 | SLC17A4 		 		 		 		 		 x 

COBLL1 		 		 		 		 		 x 
LOC727944 | TMEM18 		 		 		 		 x 		

NEGR1 | LOC100132353 		 		 		 		 		 x 
NBEAL1 		 		 		 x 		 		

 
  Females only 

  Young adults 

  Young males 

  Young females 

  Older females 
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4. Discussion 
 

This study used the Metabochip as a tool, the content of which includes the top-hits from 

GWAS of body composition traits including BMI (24 fine-mapping loci; 5065 replication 

SNPs), WHR (15 fine-mapping loci; 5056 replication SNPs), percentage body fat (1035 

replication SNPs) and WC (2 fine-mapping loci; 1048 replication SNPs) (Voight et al., 2012). 

This tool has proved to be useful in many European and African American populations in the 

discovery and replication of variants contributing to obesity-related traits, but its use in sub-

Saharan African (SSA) populations such as the Sowetan cohort has yet to be established, 

until now. A major aim of this study was to assess if association with obesity markers from 

GWAS in European populations were transferable to African populations. Genetic 

association analyses have replicated loci for increased obesity risk including SEC16B, FTO, 

NEGR1 and TMEM18 and led to the discovery of new signals that may correlate with an 

increased risk for obesity-related traits. Although the loci in which the associations occur 

have been replicated, different SNPs are implicated in Africans when compared with 

European, African-American and Asian populations. This could be attributable to 

ascertainment bias given that most of the SNPs on the Metabochip were informed from 

GWAS studies conducted in European populations. An important finding of this study was 

the observation of at least ten cross-phenotype associations (only the top 10 hits were 

reported). This is where a genetic locus previously associated with mainly variations in BMI 

have been shown to be associated with better surrogates of adiposity, DXA-derived body 

composition or traits associated with fat distribution.  

 

4.1 Population Structure and PCA 

 

PCA (PC1 and PC2) showed that the Bt20 dataset represents a homogenous group, as 

demonstrated by the clustering of individuals which confirms the demographics of urban 

Soweto, as observed by May et al. (2013). The Bt20 samples showed a close clustering, 

overlapping with other Bt20 participants (black Sowetan samples) and southeastern Bantu-

speakers, thus implying a common genetic origin. This is expected for the black Sowetan 

samples as they were drawn from the larger Bt20 cohort. The Bt20 dataset together with the 

black Sowetan samples and southeastern Bantu samples, self-identify as being Sotho-

speakers speaking southeastern Bantu languages. Southeastern Bantu languages belong to 

the Niger-Congo (Niger-Kordofanian; NK) ethno-linguistic group, being one of the four major 

language groups spoken in Africa (Li et al., 2014), along with Afroasiatic, Nilo-Saharan and 

Khoe (Wood et al., 2005). Both the Yoruban (west African) as well as the Luhya (east 
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African) from 1000G dataset speak a Niger-Congo language, which contribute to their closer 

clustering with the Bt20 dataset. The Masaai from Kenya (east African), who speak a Nilo-

Saharan language, as expected, cluster further away from the Bt20 dataset. Further, the 

SWB, which clustered more closely to the Bt20 group, also speak a Niger-Congo language.  

Results from PCA show that language (based on self identification) has a high correlation 

with genetic variation. This correlation has been noted in other studies (Nettle and Harriss, 

2003, Schlebusch et al., 2012, May et al., 2013, Li et al., 2014).  

 

4.2 SNP and sample quality control 

 

The results from quality control (illustrated in Fig. 3.4 and 3.5) showed that the greatest 

number of SNPs removed during QC were due to SNPs being rare or monomorphic in the 

Sowetan population. The increased number of monomorphic SNP observations reflects the 

limitations of using a tool designed for capturing common variation in European populations, 

in African populations. These results were consistent with the use of Metabochip in an 

African HapMap population (Yoruba), where ~24% of variants were found to be 

monomorphic (Crawford et al., 2013), also to a lesser extent in an African American dataset 

(Buyske et al., 2012). According to (Buyske et al., 2012) almost ~22% of polymorphic 

Metabochip SNPs have MAFs less than 0.025% in African Americans. Other differences 

such as genetic drift, environmental factors, recent mutations may also contribute to 

differences observed in the MAFs (Fu et al., 2011). 

 

Some samples were removed due to poor DNA quality. Good quality DNA is imperative to 

successful genotyping, especially on large genotyping platforms (Adler et al., 2013). DNA 

quality and concentration is influenced to a large extent by handling, extraction method and 

possibly storage conditions (Tan and Yiap, 2009). The study utilised previously extracted 

DNA samples by salting-out, the quality of which may have been affected by user handling 

during the extraction process together with ageing reagents. 

 

4.3 Adjustments for multiple testing 

 

The failure to detect variants at loci that correlate with a particular trait can be due to false 

negatives associations. This arises as a result of effect sizes being too small causing 

associations not to reach GW significance. Therefore it was decided that the GWAS 

Bonferroni correction might be too strict and P values ≤ 5 x 10-5 were considered suggestive 

of association, as supported by other reported findings in the literature. The issue 
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surrounding the strictness of the Bonferroni correction has been debated over the years with 

some claiming that the correction is in fact too harsh (Perneger, 1998, Cordell and Clayton, 

2005, Armstrong et al., 2009). Bonferroni correction is based on the assumption that each 

test is independent, but does not take into consideration the unknown correlation of SNPs 

that are in strong LD with each other (Armstrong et al., 2009). Other researchers have opted 

for the use of a false-discovery rate (FDR) correction, which measures the number of Type I 

errors (false positives) one would have to take into consideration for a result to be a real 

discovery and therefore reject the null hypothesis (Benjamini and Hochberg, 1995, 

Armstrong et al., 2009, Carlson et al., 2013).  

 

4.4 Power to detect associations 

 

The PowerGWAS/QT software, designed for use in GWAS of quantitative traits, was used to 

assess the power to detect genetic associations in this study. The power calculations were 

based on mean differences in BMI in this dataset, using effect sizes based on European 

populations as outlined by (Speliotes et al., 2010). These estimates were used, as the next-

best proxy as no other data was available from African ancestry populations and the 

implications are further addressed in Chapter 5. Although the power analyses showed that 

the study was sufficiently powered to detect associations with moderate effect sizes, a 

limitation of the analysis was that effect size ranges were based on European estimates. The 

power to detect associations with other traits like WHR, WC, HC, fat mass, lean mass and 

PFM were not assessed in this study. 

 

4.5 Association Analyses 

4.5.1 SEC16B 

In this study, variants in or near SEC16B were observed, with rs6664268 (fat mass- 

Padj=9.48 x 10-7 and PFM- Padj=7.90 x 10-7) the lead SNP in the merged dataset for both fat 

mass and PFM, while rs6425446 (Padj=5.55 x 10-6) was the lead SNP for fat mass and 

rs4075235 (Padj=8.89 x 10-6) with PFM when combining females only. Many of the variants 

observed during association analysis were suggestive of significance (P ≤10-5) with only 

variants in or near SEC16B, TRPM7, COBLL1 and SLC17A4 reaching Metabochip genome-

wide significance.  Evidence for strong signals in or near the SEC16B locus was illustrated in 

Manhattan plots for fat mass and PFM in the caregivers, merged dataset and combined 

females. There was a concomitant increase in the signal observed and number of SNPs 

associated in or near SEC16B with an increase in sample size (N=972-caregivers; N=1421-
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combined females; N=1926-merged dataset). A single association signal in or near SEC16B 

was observed in the young males only. This may allude to the signal in or near SEC16B 

locus being associated with increased obesity risk with body composition measures (high 

levels of fat mass and PBF) in older individuals, however this remains to be established as 

older males were unavailable to assess the association.  

 

The results from regional plots highlighted that the lead variants in or near SEC16B suggest 

the possibility of multiple independent association signals in or near this locus, with the 

presence of associated (albeit not at GW-significance) but not strongly correlated signals 

(Pruim et al., 2010). Also variants in or near SEC16B are indistinguishable from other SNPs 

that are highly correlated against a European LD background, with intermediate correlations 

observed in Asian populations. This illustrates the value of using diverse populations that 

display high levels of genetic diversity and low levels of LD in dissecting possible 

independent association signals and thus narrowing in on potential causal loci.  Possible 

independent signals near this locus therefore warrant more studies with increased sample 

sizes in other diverse African populations. 

 

SEC16B variants (index SNP rs543874 or rs10913469) in association with body composition 

have been observed in several continental populations including European (Thorleifsson et 

al., 2009, Speliotes et al., 2010, Bradfield et al., 2012), Asian (Hotta et al., 2009, Ng et al., 

2010, Okada et al., 2012, Wen et al., 2012) and African Americans. In African Americans it 

was the most strongly associated signal observed in a fine-mapping study using the 

Metabochip (Gong et al., 2013). This locus is a widely replicated obesity risk locus 

associated with increased BMI in both adults and children (Zhao et al., 2009, Bradfield et al., 

2012, Felix et al., 2015). Currently only one study, an Asian (Japanese) study (Hotta et al., 

2011), has specifically assessed the association of SEC16B variants  (rs10913469) with 

other body composition data. In this study they assessed CT-derived visceral fat area and 

subcutaneous fat area. This study did not find any associations with SEC16B or other obesity 

risk variants (12 variants at 10 obesity risk loci) examined, with the exception of a single 

association with SH2B1 variants and visceral fat area. More recently a (mainly) European 

meta-analysis (Lu et al., 2016) on percentage body fat reported associations with SEC16B 

variant rs543874 and increases in percentage body fat. This study also highlighted and 

emphasised “cross-phenotype associations” in their study, where a trait previously 

associated with increased BMI, was also associated with another trait, in this case increases 

in percentage body fat. Besides this current study, SEC16B variants have not been 

examined/reported in a SSA population, nor has a genetic association study with body 

composition traits (DXA- derived fat mass and PFM) other than BMI, been carried out. 
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SEC16B encodes the long Sec16L and the short Sec16 proteins, which are required for 

transport of secretory molecules from the endoplasmic reticulum (ER) to the Golgi apparatus 

(Hotta et al., 2009, Budnik et al., 2011). Studies carried out in yeast models (Saccharomyces 

cerevisiae) have shown that mutations in SEC16B genes result in the absence of vesicles 

(Budnik et al., 2011). Since vesicles are important in the transport of molecules from the ER 

to the Golgi it implies an effect on the efficient transport of molecules. Hotta and collegues 

(2009) have postulated that the Sec16 protein plays a role in the transport of appetite-

regulatory peptides such as neuropeptide Y and propiomelanocortin and may be involved in 

the regulation of these appetite-related peptides (Hotta et al., 2009). This protein is mainly 

expressed in adipose tissue and the gastrointestinal organs (Hotta et al., 2009). However, a 

study scomparing obesity related genes in Zucker diabetic fatty rats to that of its lean 

normoglycaemic counterpart showed that SEC16B was one of the only obesity-risk variants 

(of those tested) that was not expressed in the hypothalamus, but rather in subcutaneous 

adipose tissue, implying a more peripheral role in the regulation of obesity (Schmid et al., 

2012).  

 

4.5.2 TRPM7 

This study reports the novel association of variants in the intron of TRPM7 with measures of 

obesity. The signal for TRPM7 was correlated with WC following linear regression analysis of 

WC in the young males.  However when the dataset was stratified into males and females, 

the signal in TRPM7 becomes stronger in the young males and no association signal was 

observed in the young females. This would imply that it is the young males driving the 

association in the young adults. Variants in TRPM7 in the young males are associated with 

BMI (suggestive association) and with WC and HC at GW significance. The correlation of 

these variants with increases in WC and HC have yet to be replicated in a larger mixed sex 

cohort to assess if these variants are associated with males only.  

 

TRPM7 is a member of the melastatin-related subfamily of proteins, also known to be 

associated with cell proliferation  (Park et al., 2014). TRPM7 together with TRPM6 are 

ubiquitously expressed throughout the body and have been implicated in being involved with 

cellular magnesium homeostasis, which is critical for insulin and glucose metabolism (Song 

et al., 2009). A study examined whether there is an association between exonic variants in 

TRPM6 and TRPM7 and increased risk for type 2 diabetes but they did not find any 

significant associations  (Song et al., 2009). A review (Liu et al., 2008a) highlighting the role 

of TRPM channel proteins in metabolic disease pointed to disruptions in the expression or 
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function of transient receptor potential (TRP) proteins that may result in increased 

cardiovascular risk in patients with metabolic syndrome. Some TRP molecules have been 

implicated in regulating adipogenesis, regulation of insulin secretion, lipid composition, and 

atherosclerosis with others including TRPM7 have been involved in hypertension (Liu et al., 

2008a). Although these TRPM7 variants have not been previously associated in GWAS with 

increases in WC and HC, they might play a role in affecting the expression of other TRP 

molecules that influence adipogenesis in young males. 

 

4.5.3 SLC17A7 

A variant intergenic to LOC100129474 | SLC17A7, rs3923725 was associated with WHR 

only in the young males at genome-wide signficance. SLC17A1 variants have been 

associated with cardiovascular disease risk factors where probable functions include sodium-

dependent phosphate transmembrane transporter activity and symporter activity (White et 

al., 2016). SLC17A7 is an important paralog (paralogs are genes related by duplication and 

evolve new functions which are related to the original gene) of SLC17A1. 

 

4.5.4 COBLL1 

A single variant in COBLL1 was associated at GW-significance with WHR in young males. 

An intergenic region (COBBL1-GRB14) including this locus has recently been implicated in a 

GWAS as a novel locus that results in an increase in body fat percentage (Lu et al., 2016). 

This study showed that the body fat percentage increasing allele of COBBL1-GRB14 was 

associated with reduced WHRadjBMI, implying a gluteal rather than an abdominal fat storage 

mechanism of action. This was not observed in the current study with variant rs115743734, 

as it was only associated with increased unadjusted WHR in the males. It has also been 

noted that variants in or near COBBL1-GRB14  have previously been associated with T2D 

risk, fasting insulin, triglycerides, HDL-cholesterol (Lu et al., 2016), indicating cross-

phenotype associations. 

  

4.5.5 FTO 

SNPs in or near FTO are the most universally associated with obesity across all populations. 

Results from this study showed three intronic variants in FTO to be associated with WHR 

when merging the females, driven by lead SNP rs1861554. This may suggest that in this 

study variants in FTO might play a role in the distribution of body fat more so in females, 

however this finding needs to be replicated in a larger dataset. The distribution of body fat in 

females (more subcutaneous - specially deposited at the hips and thighs) differs to that of 

males who have more visceral fat, that is preferentially deposited around internal organs and 
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mostly accumulates around the waist (Randall et al., 2013). Varying hormone levels in males 

versus females are often associated with differences in body fat distribution which may also 

contribute to differences in body fat distribution (Randall et al., 2013). No significant 

associations were observed with FTO variants and BMI. FTO variants (mainly rs993906 and 

tagSNPs) have unequivocally been replicated against various ethnic backgrounds including a 

SSA population (Lombard et al., 2012) in both children and adults and with other body 

composition traits including WHR (Heid et al., 2010, Vasan et al., 2013).  

 

Most functional studies (mouse models, in vitro and in vivo) related to FTO-GWAS identified 

variants have argued its link to mainly three candidate genes although there are other 

proposed mechanisms. These mechanisms aid in trying to unpack how FTO variants 

contribute to the obesity phenotype, which is described in a recent review article (Sandholt et 

al., 2015). The three candidates that have been identified include RPGRIP1L (retinitis 

pigmentosa GTP-ase regulator- interacting protein-like 1) (Peters et al., 2013), IRX3 

(Iroquois homeobox protein 3) and IRX5 (Iroquois homeobox protein 5) (Smemo et al., 2014, 

Claussnitzer et al., 2015). The fine-mapping study on FTO variants in intron1 and RPGRIP1L 

in an African American population (N= 20 000) showed a reduction of the risk interval within 

the European LD block initially containing 104 SNPs down to 29 SNPs against an African LD 

background. Of the SNPs narrowed down, rs8050136 (in high LD with GIANT index SNP) 

affects a binding site, which resulted in reduced levels of mRNA expression for both FTO and 

RPGRIP1L. Since RPGRIP1L has been linked to the movement of Leptin receptors in the 

hypothalamus, it was postulated that the cellular response to Leptin could be influenced by 

FTO variants acting via RPGRIP1L (Peters et al., 2013, Sandholt et al., 2015). Using circular 

chromosome conformation capture (4C) experiments, (Smemo et al., 2014) have shown that 

intron 1 FTO variants interacts with the promoter region of homeobox gene IRX3 and that 

obesity-risk SNPs in FTO are also associated with the expression of IRX3 and not FTO in the 

brain. Further, when Irx3 was knocked down in mice, the resulting phenotype in the mutant 

mice showed a reduction in body weight, and fat compared to its wildtype counterpart. The 

most recent study by (Claussnitzer et al., 2015) conferring a link to IRX3/IRX5, showed that a 

thymine (T) to cytosine (C) change in variant rs1421085, affects a conserved motiff for 

ARID5B which influences the expression of IRX3/IRX5. The subsequent increased 

expression of IRX3/IRX5 impacts the expression of other genes that affects the outcome of a 

preadipocyte, pushing its fate in favour of white adipocytes for storage over beige adipocytes 

associated with increased thermogenesis (generation of energy in the form of heat). When 

IRX3 or IRX5 was knocked down in white adipocytes from patients with rs1421085 C-allele, 

the effects were reversed, with an observed increase in thermogenesis (Claussnitzer et al., 
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2015). It is enticing to pinpoint the causal interaction of FTO variants to anyone of these 

candidates, but the exact mechanism in contributing to obesity remains unknown. 

 

4.5.6 NEGR1 

Variants in or near NEGR1 were associated with fat mass only in the young males. The 

regional plot with focus on the lead SNP rs72941254 near NEGR1 best illustrates the 

possible multiple independent signals observed using African LD structure, unfortunately the 

LD information for European and Asian backgrounds were not available for comparison. The 

NEGR1 variant rs2568958 was assessed in a mixed sex, adolescent subset of the Bt20 

cohort (Chapter 2) and no significant associations with BMI were observed. Since this signal 

is only observed in young adult males (N~500), it is tempting to speculate that this signal 

near NEGR1 plays more of an important role in contributing to adiposity in younger males, 

however this warrants replication in other African populations of increased sample size. 

 

NEGR1 variants were amongst the first variants to be associated with increased BMI 

(Thorleifsson et al., 2009, Willer et al., 2009, Speliotes et al., 2010). NEGR1 variants have 

been associated with two deletions (conserved non coding DNA) upstream of the gene, the 

smaller of which removes a binding site for NKX6.1, a strong transcriptional repressor (Willer 

et al., 2009, Wheeler et al., 2013). This has been implicated in contributing to the obesity 

phenotype. Neuronal growth regulator 1 (NEGR1) has been shown to be highly expressed in 

the hypothalamus (Willer et al., 2009) and is part of a family of cell adhesion molecules that 

have a putative role in regulating neuronal outgrowth (Schäfer et al., 2005). Animal model 

studies involving a loss of function of Negr1 resulted in mutant mice with reduced weight and 

body size and energy output (Lee et al., 2012), suggesting a role in the regulation of energy 

balance as well as body weight. Another study focussing on the expression of Negr1 in rats 

confirmed the strong expression of Negr1 in the hypothalamus and demonstrated a role for 

Negr1 in the regulation of energy expenditure by controlling the intake of specific nutrients 

(Boender et al., 2014). NEGR1 has also been shown to be expressed in other tissues 

outside of the brain, including white adipose tissue and smooth muscle; also differential 

expression of NEGR1 has been observed in subcutaneous adipose tissue (SAT) in lean 

versus obese siblings, suggesting that NEGR1 might have a function in adipose tissue, 

possibly playing a role in regulating adipogenesis (Speakman, 2013). 

 

 

A study investigating whether GWAS-identified loci for T2D and obesity have been subject to 

recent selective pressures showed that of all the obesity-related loci examined in the various 

continental populations, NEGR1 showed the greatest differentiation among sub-Saharan 
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Africans (Klimentidis et al., 2011) together with evidence of selection from another African 

population (Ethiopian-Wolaita) (Tekola-Ayele et al., 2015). This can be seen as suggestive 

evidence of recent selection influencing genetic variants in or near NEGR1 that could then 

potentially impact on metabolism and coping mechanisms for periods of famine and adapting 

to environments during human history (Tekola-Ayele et al., 2015). 

 

4.5.7 TMEM18 

Variants (lead SNP rs114285121) in or near TMEM18 were only associated with young 

females and fat mass. The variant rs6548238 (index SNP in Europeans studies) in or near 

TMEM18 was previously described in a candidate gene study of six obesity-associated 

variants in an adolescent mixed sex subset of Bt20 (outlined in Chapter 2) to be associated 

with increased BMI. Variants in or near TMEM18 have been first described and replicated in 

adult as well as child cohorts (Thorleifsson et al., 2009, Willer et al., 2009, Zhao et al., 2009, 

Speliotes et al., 2010, Bradfield et al., 2012). No significant associations were observed with 

TMEM18 variants and BMI in the adult Bt20 dataset, only the suggestive association of novel 

variants with fat mass in the young females. This possibly suggest that variants near 

TMEM18 might play more of a significant role in contributing to overall adiposity earlier on in 

life, than in adulthood. 

 

TMEM18 codes for a poorly described transmembrane protein, which has been suggested to 

be located in the nuclear membrane (Almén et al., 2010). It has been postulated that 

TMEM18 has a DNA-binding domain and binds transcription factors and thereby regulates 

transcription. However it remains unclear which genes are targeted (Speakman, 2013). 

TMEM18 seems to be a highly conserved protein and is ubiquitously expressed in the body 

(Almén et al., 2010, Speakman, 2013), but in humans it has been shown to be maximally 

expressed in adipose tissue (Bernhard et al., 2013). Some studies have shown increased 

expression in the hypothalamic appetite-regulating centre (Almén et al., 2010), but these 

results are localised to mouse models (Speakman, 2013). Its link to the obesity phenotype is 

not clear but it has been suggested that it might play a role in suppression of the genes 

implicated in energy expenditure or that its link to obesity is not via the central nervous 

system but might be related to peripheral functions in adipose tissue (Speakman, 2013). 

 

4.5.8 WARS2 

Three variants in the 3’ untranslated region of WARS2 (tryptophanyl tRNA synthetase 2, 

mitochondrial) were observed to be associated with WHR in the merged dataset. Variants in 

TBIX15-WARS2 have previously been associated with increased WHR (Heid et al., 2010). 
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This study demonstrated that TBIX15 showed definite depot-specific differences in adipose 

tissue expression in both humans and mice. Another study showed that although TBIX15-

WARS2 mRNA expression in SAT did not correlate with WHR, differential expression 

between VAT and SAT was observed for all the genes tested including WARS2 (Schleinitz et 

al., 2014).   

4.5.9 CNTNAP5  

Two SNPs in the contactin associated protein–like 5 (CNTNAP5) gene had a negative effect 

on HC, fat mass and PFM in the female caregivers. Only a single SNP, rs6541885 showed 

an association with fat mass in the merged females. No associations were observed in the 

combined dataset. These variants have not been described previously to be associated with 

obesity. The latest GIANT study, assessed the functional relevance of the 97 variants 

associated with increased BMI, by manually reviewing the literature around the 457 genes 

within 500 kb and r2> 0.2 of these variants. They characterised the resulting variants 

according to function. The CNTNAP5 gene was one of those surrounding genes and has 

been implicated in lipid biosynthesis and metabolism (Locke et al., 2015). 

  

Variants in CNTNAP2 have been implicated in a child with syndromic obesity (Vuillaume et 

al., 2014, Yazdi et al., 2015), while a recent GWAS on obesity and T2D risk in an Australian 

Aboriginal population has noted suggestive associations with BMI and variants in CNTNAP2 

(Anderson et al., 2015). CNTNAP2 is found in myelinated axons where it is required for 

localisation of the potassium-voltage gated channel protein KCN1 (Anderson et al., 2015). 

Mutations in mouse Cntnap2 have resulted in obesity by disrupting the localisation of the 

mouse equivalent KCN1 (Kv1.1) (Yazdi et al., 2015). Perhaps variants in or near CNTNAP5 

contribute a similar effect towards body composition through a possible involvement with 

protein KCN1. 

 

4.5.10 SP110, LPAL2, PPP1R3B, BDNFOS, NBEAL1 and NRXN3 

A single variant, rs2114591 in or near SP110  (SP110 nuclear body protein) was associated 

with WC (lead SNP), BMI and lean mass in the combined dataset and WC, BMI, fat mass 

and lean mass in the combined females. Variants in SP110 have been reported in a study on 

childhood obesity in a Hispanic population that was suggestive of association with increased 

BMI (Comuzzie et al., 2012). A variant rs6727879 near SP110 has also recently been shown 

to be nominally associated (P<10-7) with SAT in a GWAS of sex-specific loci linked with 

abdominal and visceral fat distribution (Sung et al., 2015).   
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Two variants in or near LPAL2 (lipoprotein, Lp(A)-Like 2) were associated with WC in the 

female caregivers.  This locus together with SLC22A3 and LPA form a gene complex, 

variants of which have previously been associated with increased risk for CHD (Trégouët et 

al., 2009).  

Variants in or near PPP1R3B (protein phosphatase 1 regulatory subunit 3B) were trending 

towards significance in the combined dataset with HC. This locus has previously been 

identified as a susceptibility locus in a GWAS of obesity-related fatty liver disease conducted 

in a European population (Speliotes et al., 2011).  

 

When combining females (young and caregivers) variants in or near brain-derived 

neurotrophic factor opposite stand (BDNFOS) were associated with HC. Several variants in 

or near BDNF have been associated with BMI across populations (Thorleifsson et al., 2009, 

Speliotes et al., 2010, Okada et al., 2012, Wen et al., 2012). A recent study has shown that 

the BDNF variant rs12291063  (C-allele) disrupts binding and transactivation via a 

transcriptional regulator and is associated with lower ventromedial hypothalamic 

BDNF expression and with obesity (Mou et al., 2015). BDNF is a pivotal player in the energy 

homeostasis pathway by being a downstream regulator of the propiomelanocortin pathway 

and could contribute to the obesity phenotype via this mechanism of action.  

 

Variants in or near NBEAL1 (neurobeachin like 1) were tentatively associated with PFM in 

the young adults. Variants near this locus have been reported in a study on childhood obesity 

in a Hispanic population and were associated with increased fat mass change and deposition 

and energy storage (Comuzzie et al., 2012).   

 

A single variant near NRXN3 (neurexin 3) was associated with WC in the combined females 

and the merged dataset.  The variant, rs10146997 in or near NRXN3 has previously been 

described and replicated as a novel locus associated with increased WC in a European 

population (Heard-Costa et al., 2009, Bille et al., 2011). NRXN3 encodes a protein that plays 

a role in cell adhesion in the vertebrate nervous system (Bille et al., 2011), but the 

mechanism by which it modifies abdominal fat deposition is unknown. Even though the 

association with WC near NRXN3 was replicated in this study, there is a need for this signal 

to be replicated in a larger cohort. 

4.6 Replication of GWAS associations in African populations 

 

The majority of association signals that have been reported in this study show a replication of 

obesity risk loci identified in previous studies and has addressed the transferability of GWAS 

identified signals in a locus-wide manner. This suggests that GWAS-identified variants of 
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body composition are tagged by different SNPs in an African cohort. According to (Lu and 

Loos, 2013) this type of comparison is more detailed and takes into account differences in 

genetic LD backgrounds between populations of varying ancestries, however they also note 

that these studies are not always possible due to lack of data. Most of the regional plots 

constructed in this study drawn using r2 (proxy for LD) and recombination rates from African 

populations illustrated the presence of areas of increased recombination activity near the top 

association signals observed. It is tempting to postulate that the same SNPs that are present 

in European populations are not being replicated because the LD blocks may have been 

broken up into smaller haplotype blocks in African populations due to recombination (decay 

in LD). Due to the smaller African LD blocks, the tagging efficiency of the Metabochip array is 

decreased. However, it must be noted that the allele frequencies of these variants may be 

different between European and African populations and our study had a limited sample size. 

Other studies have observed the “dilution of effects” (Carlson et al., 2013) when the 

transferability of signals from European to African American populations or African 

American/European to indigenous African populations have been examined (Ng et al., 2012, 

Gong et al., 2013, Adeyemo et al., 2015). It has been postulated that besides the difference 

in sample sizes influencing the ability to detect smaller effects, differences in environment, 

especially diet and physical activity, may attenuate the relationship between causative SNPs 

and obesity (Adeyemo et al., 2015). This may be true for differences in signals observed in 

African American vs. African populations, where although they share related ancestries, the 

environment (diet, physical activity, etc.) is very different (Adeyemo et al., 2015). Also it is 

possible that variants that have been replicated in European populations have failed quality 

control criteria and have been discarded due to low MAFs in indigenous African populations. 

 

Many previously reported associations with BMI were not replicated in this SSA cohort. This 

may partly be due to the low tagging efficiency of the Metabochip array in an African 

population given that the assay design is based on European LD structure. Varying allele 

frequencies of variants between European and African populations may have contributed to 

lower statistical power to detect associations in this study. The authors of the MalariaGEN 

consortium stated that the lack of replication of GWAS signals in African populations 

questions the validity of previously reported associations, stating that real associations may 

fail to replicate due to overestimation of effect size (‘winner's curse’), variation in frequency of 

effect allele between populations, variations in LD between index SNP and causative SNP 

and the overall complexity of the disease (allelic heterogeneity or epistasis) (Jallow et al., 

2009). This is particularly relevant for this study where only locus-wide, rather than SNP-SNP 

interactions, were replicated. Other studies have also noted the attenuation of signals due to 

low LD when replicating European signals in African and other continental populations 
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(Jallow et al., 2009, Buyske et al., 2012, Carlson et al., 2013, Lu and Loos, 2013, Adeyemo 

et al., 2015). 

The lack of statistical power to detect genome-wide associations due to small effects and 

small sample size is acknowledged in this study. This combined dataset (N=1926) might not 

have been sufficient to detect small effects for BMI as have been previously reported 

(Speliotes et al., 2010). Large, meta-analyses are needed to detect the small effect sizes 

from surrogate measures of adiposity such as BMI. The latest GIANT consortium meta-

analyses have combined sample sizes of 339 224 individuals in which 97 BMI-associated 

loci (GW significance) were discovered and replicated, 56 of which, were novel. Only five of 

the 97 loci demonstrated strong evidence of several independent association signals, and 

also highlighted that these BMI-associated loci had significant effects on other metabolic 

phenotypes (Locke et al., 2015). This idea of cross-phenotype associations was recently 

echoed in a GWAS meta-analysis of percentage body fat (Lu et al., 2016). 

 

4.7 BMI is not a good indicator of obesity 

 

No significant association signals for BMI were observed in the larger adult-based 

Metabochip study. However three BMI-associated variants in the smaller adolescent subset 

of the Bt20 study (see Chapter 2) were replicated in a SNP-SNP candidate gene approach. 

This is possibly due to these genetic variants having a greater influence on BMI earlier in life, 

than later where environmental influences have more of an effect. The associations may also 

not have been replicated in the adult study because of the difference in approach (candidate 

gene versus hypothesis free approach) together with the difference in the number of 

markers, with six variants tested in the adolescent study as opposed to the ~200 000 SNP 

markers on the Metabochip. Therefore the conditions to satisfy statistical significance is 

much lower in a candidate gene approach rather than a hypothesis free approach. Also, 

most of the SNPs tested in the candidate gene study, failed QC in the Metabochip study. 

 

Most GWAS for obesity-risk variants have focussed on BMI as a measure of obesity, 

however BMI is not the best measure of adiposity as it does not discriminate between fat 

mass and fat free mass (Tan et al., 2014). More accurate measures of body adiposity have 

been suggested including percentage fat mass and total fat mass (Comuzzie and Allison, 

1998, Tan et al., 2014). This study focussed on the genetic association between SNPs 

captured on the Metabochip and a number of measures of adiposity including BMI, WC, HC, 

WHR, fat mass, fat free mass (excluding BMC) and PFM.  
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Other studies have shown that estimates of body composition by DXA may be better 

indicators of obesity (Comuzzie et al., 2012, Tan et al., 2014). It is well known that BMI 

(determined from twin and family studies) exhibits high heritability estimates ranging from 40-

70% in European populations as mentioned in the literature review, but the heritability of 

other body composition phenotypes are less well described. A study of 554 participants (492 

European and 48 African-American sib pairs) that assessed the heritability of body 

composition measures using DXA showed that fat mass, fat-free mass and PFM (0.71, 0,60 

and 0.64, respectively) are highly heritable traits (Hsu et al., 2005). This suggests that these 

phenotypes have a strong genetic component and are well suited for genetic association 

studies.  

 

4.8 Age- and sex-specific signals 

 

There have been some suggestive sex- and age-specific associations in this dataset. 

Variants in or near TRPM7, SLC17A7, COBLL1 and NEGR1 were associated with 

anthropometry in males only, while variants in or near CNTNAP5 and BDNFOS were 

associated with females only (combined young and old). Variants in or near TMEM18 were 

associated with young females only whilst variants in or near LPAL2 were associated with 

older female caregivers only. Also when comparing older female caregivers to young adults 

(mixed sex), variants in or near ZFYVE9, WARS2 and NBEAL1 were only associated with 

young adults of mixed sex. 

 

An important consideration is that certain phenotypes may be modulated by variations in age 

and sex more than others. The GIANT meta-analyses have shown that there were no 

significant sex-specific and SNP-BMI associations (Winkler et al., 2015) while phenotypes 

associated with the distribution of fat like waist-to-hip ratio, waist circumferences and hip 

circumferences, displayed sex- and age-specific SNP associations in European populations 

(Heid et al., 2010, Randall et al., 2013, Shungin et al., 2015, Winkler et al., 2015). In this 

study age- and sex-specific SNP effects were observed for fat mass, PFM and WHR. Very 

few genetic associations were observed for BMI, so the existence of age- and sex-specific 

SNP associations with BMI could not be properly assessed. 
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5. Conclusion  
 

In summary, 17 loci associated with either increased anthropometric measures (BMI, WC, 

HC, WHR) or increased DXA-derived body composition measures (fat mass, PFM), were 

observed in this study. Some of the signals that are reported in this study, have not 

previously been associated with obesity elsewhere. In addition, several cross-phenotype 

associations were observed in this study, where variants previously associated with BMI 

were also associated with other body fat-associated phenotypes. This study also 

demonstrated that more specific measures of body fat, such as those generated by DXA 

produced stronger SNP associations than did composite variables like BMI.  

 

Age- and sex-specific effects of genetic variants on obesity were highlighted in the recent 

GIANT meta-analyses of BMI, body fat distribution and percentage body fat. It was also 

noted in Chapter 2 and in the Metabochip study that some of the genetic variants associated 

with obesity measures have stronger associations earlier on in life or in a particular sex. 

However, these correlations remain to be confirmed. Larger, longitudinal studies of body 

composition traits and genetic variants, and taking into account sex and age are necessary 

to better assess these sex- and age-specific gene effects.  

 

GWAS have led to the discovery of potentially functional intronic non-coding variants. The 

question of how these intronic/intergenic variants contribute to biological mechanisms 

resulting in diseases is a major challenge. Recent endeavours such as the Encyclopedia of 

DNA elements (ENCODE) project (Consortium, 2012) aim to elucidate the biological 

relevance of these variants together with others. As illustrated by the example of FTO, 

polymorphisms in intronic regions can have “long reaching” effects on genes, and play a role 

in regulating gene expression. Intronic variants have also been shown to contain regulators 

of alternative splicing and other regulatory elements entrenched within these regions 

(Cooper, 2010). Caution has to be exercised with regards to the direct functional relevance of 

the SNP being captured by GWAS as opposed to being in LD with a ‘yet to be discovered’ 

causal SNP (Cooper, 2010). 

 

This study has demonstrated the value of: 

• Using more accurate measures of adiposity, such as DXA-derived fat mass in eliciting 

suggestive association signals even when optimum sample sizes are not achieved.  

• Using an African population and capitalising on LD decay to narrow-down signals 

within loci to possibly hone in on causal variants or African-specific variants. 
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This study contributes important information to what we currently understand about the 

genetic contributions to body composition in an African population, and suggests that a 

GWAS using a larger cohort and with an African-specific SNP array may uncover further 

novel, causal gene variants. 
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1. Introduction 
 

The study described in the previous chapter involved the genome-wide analysis of SNPs 

from a chip array and their association with anthropometric variables within our study 

population. Recent advances in the downstream use of such array data has led to the 

development of mathematical models that allow chip arrays to be used for measuring the 

level of heritability of various phenotypes (Yang et al., 2011a). The level of heritability of 

anthropometric variables, and particularly fat mass, has not been studied in African 

populations. Therefore the current chapter will describe the use of the Metabochip array for 

assessing the heritability of various anthropometric measurements in our study population. 

 

The familial heritability of complex diseases such as obesity demonstrates that genetic 

factors do play a role in their development. An estimation of heritability tells us about the 

proportion of variation of a phenotype that is due to genetic factors. According to Visscher 

(2008) heritability is more formally defined as the proportion of total variance in a population 

(VP) for a given trait that is due to genetic variance. There are two types of heritability, 

narrow-sense (h2) and broad-sense (H2). Narrow-sense heritability is phenotypic variation 

resulting from additive genetic effects, whilst broad-sense heritability is phenotypic variation 

that is due to a combination of additive, dominant and epistatic genetic effects. These three 

genetic effects are defined thus: 

• Additive - sum of the contribution of allelic variation over many SNPs  

• Dominance - is non-additive and is characterised by the heterozygotic phenotype not 

being the midpoint between the 2 different homozygotic phenotypes (Van Asselt et 

al., 2006).  

• Epistatic- arises due to non-additive effects and is the result of genetic interactions 

between alleles at different loci (E-Resource2). 

 

Calculations of heritability include only additive effects i.e. h2 because the non-additive 

effects described above do not normally explain phenotypic similarities between family 

members. 
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A recent meta-analysis reporting on variance components for almost 18 000 traits and 

including almost ~14,5 million partly-dependent twin pairs, indicated that the heritability for 

most traits (69%) showed mostly additive genetic effects and that almost half of all the traits 

cluster around functional domains (Polderman et al., 2015), implying that the heritability of 

most traits are not random and can mostly be explained by narrow-sense heritability.  This 

study included global populations but mentioned that African studies were clearly 

underrepresented. Recent GWAS have shown that several genetic variants play a role in 

complex traits, each with small effects, but that the additive effect of those variants is much 

smaller than the reported heritability for that trait (Visscher, 2008, Manolio et al., 2009, Yang 

et al., 2010, Hemani et al., 2013, Polderman et al., 2015). This issue of the missing 

heritability (discussed in the literature review) is a contentious one with some believing that 

missing heritability is simply not being captured with current tools while others claim that it 

lies in non-additive variation, inflated heritability estimates or parent-of-origin effects (Zaitlen 

et al., 2013). 

 

Genetic markers captured on GWAS arrays are not only valuable in finding links between 

SNPs and biological mechanisms underlying diseases, but also offer the opportunity to 

estimate heritability for traits of interest (Visscher, 2008). Identity-by descent (IBD) describes 

the phenomenon whereby related individuals have a higher probability of sharing identical 

genotypes at polymorphic loci when compared to unrelated individuals and due to this show 

more likeness for particular phenotypes (Thompson, 2013). Therefore relatedness can be 

inferred through IBD by assessing pair-wise comparisons of genetic markers, although many 

markers are required. The inferred relatedness is then correlated with similarities in 

phenotypes and estimates of heritability can then be determined (Visscher et al., 2010). An 

important study by Yang et al. (2010) proposed the use of the total amount of phenotypic 

variance captured by all SNPs on commercial SNP arrays and using this to estimate 

heritability. Yang and colleagues (2011a) later developed a method to assess heritability 

from SNP arrays termed Genome-Wide Complex Trait Analysis (GCTA). 

 

Missing heritability can be described as the difference between h2 and the portion of 

phenotypic variance accounted for by genome-wide significant GWAS SNPs (h2
gwas) (Zaitlen 

et al., 2013). The method described by Yang et al. (2011a) aims to explain the contribution of 

all SNPs (genotyped SNPs and SNPs in LD with genotyped SNPs) on the array to the 

variance (termed h2
g), including even those SNPs that are not significantly associated with 

the trait, and in this way account for more of the missing heritability. If related individuals are 

included in the analyses the estimate of the genetic variance could be biased by shared 

environmental effects and thus be inflated (Yang et al., 2011a). However removal of related 
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individuals also results in a loss of sample size, which results in large standard errors (Zaitlen 

et al., 2013). An approach to overcome this issue has been proposed Zaitlen et al. (2013) 

where the method allowed h2 to be estimated with the inclusion of both closely and distantly 

related individuals. Further, the approach using a new variance component method produces 

both estimates of h2 and h2
g, so they are directly comparable within the same population 

(Zaitlen et al., 2013).  

 

Heritability estimates have been reported for body composition traits (summarised in Table 

4.1), including height (0.40-0.80), weight (0.52-0.59), BMI (twin studies 0.40-0.90; 0.24-0.81 

for family studies), WC (0.31-0.76), HC (0.41-0.45) and WHR (0.31-0.76), showing high 

levels of heritability (Rose et al., 1998, Elks et al., 2012, Murrin et al., 2012, Nan et al., 2012, 

Liu et al., 2013, Randall et al., 2013, Locke et al., 2015, Shungin et al., 2015, Sung et al., 

2015, Winkler et al., 2015). Heritability estimates for body composition traits measured by 

DXA, CT or bioelectrical impedance, are less common with estimates ranging from 0.47-0.64 

for PFM, 0.48-0.71 for fat mass and 0.49-0.72 for lean mass (Luke et al., 2001, Hsu et al., 

2005), and again show a high genetic contribution to the variance of these traits. These 

estimates include reports across ancestries with several studies reporting on sex differences 

in estimates of heritability for WC and WHR (mostly adjusted for BMI), with larger measures 

of heritability reported in females over males (Heid et al., 2010, Liu et al., 2013, Randall et 

al., 2013, Shungin et al., 2015, Sung et al., 2015, Winkler et al., 2015).  

 

Since heritability estimates for traits relating to body composition are unknown in SSA 

populations, and cannot be extrapolated from other populations we decided to use the 

Metabochip genotype data in an attempt to capture narrow-sense heritability or h2. 

Metabochip data can be used to specifically ask, how much of the phenotypic variance for a 

single trait or traits can be explained by all the SNPs captured on the Metabochip (h2). We 

used GCTA as adapted by Zaitlen et al. (2013) for use in our dataset. 

 

2. Materials and Methods 
 

GCTA3 vs.1.24 together with R vs.3.2.2 (Development Core Team, 2008), were used for the 

analysis. GCTA software estimates a relatedness matrix based on pairwise genetic 

                                                

 
3 Any further mention of GCTA will refer to GCTA vs.1.24 Yang, J., Lee, S. H., Goddard, M. 
E.&Visscher, P. M. (2011a). GCTA: a tool for genome-wide complex trait analysis. The American 
Journal of Human Genetics, 88, 76-82. 
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covariance. In GCTA, the estimation of the proportion of variance is captured by the SNPs on 

the Metabochip. This is achieved by fitting the various body composition traits with a linear 

mixed model using the relatedness matrix as a variance term. All of the analysis was 

conducted on the Wits cluster (www.cream-ce.core.wits.ac.za), as the analyses were 

computationally intensive.  

 

Narrow sense-heritability estimates were generated for weight, height, BMI, WC, HC, WHR, 

fat mass, fat-free mass and PFM using Metabochip data for different scenarios. We 

calculated heritability estimates where ‘all individuals’ refers to the relationships from all pairs 

of individuals. In this scenario these estimates are neither an indication of h2 or h2
g. With 

regards to ‘related individuals’, in this scenario only those individuals with kinship coefficients 

>0.05 are used and is an estimation of h2. Lastly, for ‘unrelated individuals’, the dataset was 

pruned to only include individuals that had kinship values of <0.05 and is an estimate of h2
g. 

With the Zaitlen method the full relatedness matrix using all individuals was fitted with two 

variance components, one that resulted in an estimate of h2 and one that resulted in an 

estimate of h2
g, with both these components being estimated simultaneously (Zaitlen et al., 

2013).  

 

The scripts required for the analysis were modified and adapted from Zaitlen et al. (2013) 

with assistance from G. Hemani (Bristol University, UK). Fig. 4.1 was drawn using R vs.3.2.2 

with assistance from G. Hemani. The final scripts required to generate estimates of h2 were 

optimised and automated for all the phenotypes in the combined dataset, to generate a 

single output file. Bearing in mind that GCTA requires a large dataset for the analysis to 

reduce the standard error, we used the combined dataset containing both related and 

unrelated individuals. All scripts used in the analyses are shown in Appendix F. 

 

2.1 Merging, basic QC, and generation of GRMs 

 

1. The merged dataset together with the phenotype file were used as input files to 

conduct the SNP heritability analysis. The merging of the datasets (caregivers and 

young adults) were described in detail in Chapter 3 and Appendix C.  

2. The merged dataset (prunedbmerge2.*) was further subjected to QC (by removing 

markers with MAF <0.01, markers showing significant deviations from HWE P < 1 x 
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10-6, as well as markers missing more than 1% of their genotypes) to ensure a clean 

dataset, bearing in mind that QC prior to this was conducted on individual batches 

and not the merged dataset. Relatedness based on IBS was assessed within the 

merged dataset. 

3. Following the removal of SNPs that did not meet QC requirements  - a cleaned 

merged file was generated (clean.*). 

4. The next step involved the generation of a GRM in GCTA that consisted of all related 

and unrelated individuals (‘all individuals’ using clean.*) and the following commands: 

 
gcta64 \  

--bfile ${plinkfile} \  

--make-grm \  

--maf 0.01 \  

--out ${allfile}  

where plinkfile = clean.*; allfile = the output file of GRM1. 

 

The possibility of any duplicates in the dataset upon merging were assessed using the script 

find_duplicates.R where IBS cut-offs > 0.80 denoted duplicate individuals.  

 

5. Possible duplicates were removed in PLINK with the -–remove command together 

with the duplicate_geno.txt file, which generated a new cleaned file without 

duplicates (clean2.*). 

6. A new GRM was generated without any duplicates. 

7. The GRM generated was adjusted for 10 principal components (PCs), to account for 

any possible substructure in the dataset. 

8. The R-script remove_unrelateds.R  was run to create GRMs for ‘related 

individuals’, ‘unrelated individuals’. 

Steps 1-8 were automated using the script geno_data.sh. 

 

2.2 Generation of phenotype files 

 

A phenotype file generation script was modified to include all phenotypes including height, 

weight, BMI, WC, HC, WHR, fat mass, lean mass and PFM, together with the covariates 

PCs, age and sex, in the R-script, pheno_data_all.R. 
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2.3 Running and automating the analysis in GCTA 

 

Once the appropriate data files were generated, the analyses were run in GCTA using the 

modified script run_allpheno_analysis.sh, which uses a restricted maximum likelihood 

(REML) algorithm to perform regression, assuming additive inheritance. The analyses were 

adjusted for covariates, PCs, age and sex (generated in the previous step). Each phenotype 

was analysed where, 1) all individuals were considered, 2) only related individuals were 

considered, 3) only unrelated individuals were considered, 4) combining GRMs from all 

individuals and related individuals (Zaitlen method). 

 

The comparative h2 results from Ngcungcu (2013) were calculated using the ASSOC option 

within Statistical Analysis for Genetic Epidemiology (SAGE) vs.6.01 assuming an additive 

model of inheritance and were adjusted for the necessary confounders described in Table 

4.1.  The  African Programme on Genes in Hypertension cohort (APOGH) cohort is made up 

of random black South African nuclear families that self identify as being Nguni or Sotho 

speakers (Ngcungcu, 2013). The family data includes one or more children (>16 years) 

together with one or both parents if available. 

 

3. Results 
 

Further QC was performed when the datasets were merged where duplicate individuals 

(N=4), together with additional SNPs (N=390), were removed, resulting in N=125 388 SNPs 

and N=1923 individuals available for analysis in the combined dataset. Fig. 4.1 illustrates the 

distribution of relationships between unrelated (Fig. 4.1a) and related (Fig. 4.1b) individuals, 

where ‘Unrelateds’ refers to all pairs of individuals with kinships ≤ 0.05 and ‘Relateds’ refers 

to all pairs of individuals with kinships ≥ 0.05.  The figure shows a clear clustering of 

individuals around 0.5, indicating parent-child or full-sibling relationships, together with other 

relationships distributed from 0.05-0.3 in the related individuals (Fig. 4.1b). As previously 

described in Chapter 3, kinship scores (derived from IBS) of ≥ 0.80 refer to duplicates or 

monozygotic twins, ≥ 0.5 implies first-degree relatives, ≥0.25 implies second-degree relatives 

and ≥ 0.125 third degree relatives. This clustering observed in Fig. 4.1b is suggestive of the 

study design that includes mother-child pairs, together with other cryptic relationships that 

exist within the dataset.   
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Figure 4.1 Graph showing the frequency (y-axis) versus kinship values (x-axis) illustrating 
the distribution of kinship scores in unrelated (a) and related individuals (b).  
 

Results of the narrow sense heritability estimates (h2) are presented in Table 4.1. These 

estimates and the GRMs were calculated for four different scenarios to better understand the 

relatedness in the dataset. In Table 4.1 ALL samples, refers to the relationships from all 

individuals, thus reflecting kinships containing a heterogeneous mix of related and unrelated 

individuals. RELATED, uses all individuals, but sets everyone with a kinship value of <0.05 to 

that of 0. This ensures that the REML algorithm then only seeks to maximise the variance 

between different relatedness groups, similar to that of traditional pedigree analysis. 

UNRELATED, uses a dataset that was pruned to only include individuals that have kinship 

values of <0.05. This analysis reduces the dataset by almost half. The ZAITLEN method fits 

two GRM’s simultaneously: the GRM generated from all samples and the GRM generated for 

related samples only. This algorithm attempts to partition the genetic variance into SNP 

heritability in one component (h2
g) and the remaining variance that is due to genetic effects 

not captured by SNPs together with common environment (h2).  

 

a b 
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 Table 4.1 Narrow sense heritability estimates (h2) for different analysis strategies together with published data 

 

 
h2 – is equivalent to the heritability estimated from IBS according to a certain threshold, h2

g- heritability explained by genotyping SNPs and h2
g / h2 is the heritability 

explained by the Zaitlen method, where the method allows for both variance components to be fitted simultaneously; #Adjusted for first 10 principal components, age 
and sex. 
§h2- Heritability data from MSc. Thesis (Ngcungcu, 2013) *adjusted for age and sex; **adjusted for age, sex, smoking and drinking; calculated using SAGE (Statistical 
Analysis for Genetic Epidemiology) software vs.6.01 in a black Sowetan population. 
$h2 estimates reported from published pedigree, family-based and population studies where pedigree studies = twin design, full-siblings and siblings and family-
based and population studies = where SNPs are used to construct GRMs and h2 is based on the additive model (Rose et al., 1998, Luke et al., 2001, Hsu et al., 
2005, Elks et al., 2012, Murrin et al., 2012, Nan et al., 2012, Liu et al., 2013, Randall et al., 2013, Locke et al., 2015, Shungin et al., 2015). 
With the exception of (Luke et al., 2001) all of the other estimates have been derived from populations of European descent  
 

 

  All# N Relateds# N Unrelateds# N 
Zaitlen 

Method# N 
SAGE 

Estimates 
Published 
estimates 

  h2+h2
g  (SE) 

 
h2 (SE) 

 
h2

g  (SE) 
 

h2
g / h2 (SE) 

 
§h2 (SE) $h2

published 

Height (mm) 0.50 (0.05) 1921 0.84 (0.06) 1921 1.30 x 10 -1 (0.1) 1109 0.83 (0.06) 1921 0.76 (0.07)* 0.40-0.80 

Weight (kg) 0.27 (0.05) 1919 0.56 (0.06) 1919 1.00 x 10-5 (0.1) 1107 0.57 (0.06) 1919 0.38 (0.09)** 0.52-0.59 

BMI (kg.m-2) 0.23 (0.05) 1919 0.48 (0.07) 1919 2.00 x 10-6 (0.1) 1107 0.40 (0.07) 1919 0.26 (0.01)** 0.24-0.90 

Waist circumference (cm) 0.20 (0.05) 1898 0.40 (0.07) 1898 1.00 x 10-5 (0.1) 1096 0.40 (0.07) 1897 0.35 (0.10)** 0.31-0.76 

Hip circumference (cm) 0.26 (0.05) 1899 0.52 (0.07) 1899 2.00 x 10-6 (0.1) 1097 0.52 (0.07) 1899 0.42 (0.09)** 0.41-0.45 

WHR 0.10 (0.05) 1897 0.17 (0.07) 1897 1.00 x 10-5 (0.1) 1096 0.18 (0.07) 1897 0.46 (0.09)** 0.31-0.76 

Fat mass (kg) 0.15 (0.06) 1711 0.52 (0.08) 1711 2.00 x 10-6 (0.1) 993 0.58 (0.07) 1711 did not assess 0.48-0.71 

Lean mass (kg) 0.47 (0.06) 1711 0.79 (0.07) 1711 1.00 x 10-2 (0.1) 993 0.79 (0.07) 1711 did not assess 0.49-0.72 

PFM 0.18 (0.06) 1711 0.49 (0.07) 1711 4.00 x 10-6 (0.1) 993 0.54 (0.07) 1711 did not assess 0.47-0.64 
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The results in Table 4.1 show that the Zaitlen method (h2
g/h

2) reflects the upper bound of the 

heritability estimates with h2
g/h

2  ranging from 0.18 for WHR - 0.83 for height. These values 

are very similar to the estimates when only considering related individuals (h2 = 0.17-0.84). 

The highest heritability estimates from related individuals were observed for height and lean 

mass, (h2 = 0.84 and 0.79, respectively). The heritability estimates from related individuals 

are most similar to traditional pedigree analysis estimates, which are comparable with 

estimates observed in European populations for most traits, with the exception of WHR. Very 

low estimates of heritability were estimated for h2
g, using the unrelated individuals for all 

traits. When all samples were considered, irrespective of the relatedness, the heritability 

estimates reflects an average between heritability estimates generated separately for related 

and unrelated individuals.  

 

The comparative h2 results from Ngcungcu (2013) showed that the heritability estimates 

ranged from 0.26 for BMI to 0.76 for height. These heritability estimates were based on the 

variances in phenotype using the APOGH, living in metropolitan Johannesburg (Ngcungcu, 

2013). The heritability estimates shown for this study are lower than the heritability estimates 

from our dataset using the Zaitlen method with the exception of WHR.  

 

4. Discussion 
 

In this part of the study GCTA was used in conjunction with SNP data from Metabochip to 

measure the narrow-sense heritability (h2) of body composition traits including BMI, weight, 

height, WC and HC. We also focussed on DXA-derived fat mass, lean mass and PFM. 

GCTA was used to estimate additive genetic effect of fine-mapping and replication SNPs 

captured on this array. Most GWAS association studies have been carried out on measures 

of body size (BMI) and body fat distribution (WC and WHR) with the latest GWAS meta-

analyses showing that only 2,7% and 1,36% of the variation in BMI and body fat distribution 

is explained by the identified SNPs (Sandholt et al., 2015). 

 

The method proposed by Yang et al. (2010) for assessing heritability using GWAS arrays 

requires data from unrelated individuals. Our dataset comprised a large number of mother-

child pairs together with some unrelated individuals. The method proposed by Zaitlen et al. 

(2013) which fits two variance components at the same time, allowed for the use of both 

closely and distantly related individuals and was therefore used to accommodate our 

experimental design.  
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Heritability was estimated using different scenarios as described earlier, with the analysis of 

unrelated individuals (h2
g) most closely resembling the approach used by Yang et al. (2010) 

The heritability estimates calculated in this scenario was very low for all traits when 

compared to estimates of heritability captured by published data. Published h2
g estimates 

from GWAS arrays for BMI, height and WHR were reported as 0.16, 0.42 and 0.13, 

respectively (Yang et al., 2011b, Vattikuti et al., 2012) whereas Zaitlen and colleagues 

reported equivalent h2
g of 0.23, 0.40 and 0.14 for BMI, height and WHR, respectively (Zaitlen 

et al., 2013). There was no available published h2
g for the other traits.  A possible reason for 

this low heritability is that the current study was underpowered in terms of the number of 

SNPs (~125 000 markers on a fine-mapping and replication array) contributing to the 

variances captured on the array. Yang and co-workers (2010) used ~295 000 GWAS SNPs  

while Zailten and colleagues (2013) used about ~ 300 000 SNPs, each contributing small 

effects to variance of phenotypes tested. It is also possible that SNPs captured by 

Metabochip only contribute a small fraction to the phenotypic variance of body composition 

traits in African populations. In other words, the Metabochip array is designed to reflect 

variation based on LD patterns in European populations and might not accurately tag 

variants in African populations because of the lower LD. Yang and colleagues have stated 

that that the missing heritability not captured by GWAS SNPs regarding height can be 

explained by incomplete linkage between SNPs and the causal variants (Yang et al., 2010).  

 

Although Zaitlen et al. (2013) reported high heritabilities for the 23 traits examined in their 

study, their estimates were much lower than most estimates captured from traditional twin or 

family studies. The estimates reported were 0.54, 0.58 and 0.74 for BMI, height and WHR, 

respectively. The estimates for our study using the Zaitlen approach ranged from 0.18 

(WHR) -0.83 (height) and were mostly within the range given in the literature from twin or 

family studies, with the exception of WHR.  The estimates obtained using the Zailten 

approach were very similar to the estimates achieved when only related individuals were 

used in the analysis. Other studies cited in (Zaitlen et al., 2013) have shown that using the 

approach described by Yang et al. (2011a) results in overestimates of h2 when using related 

individuals, which is reflected in our estimates when only related individuals are considered. 

This is why we employed the Zaitlen approach, but still achieved the upper bound of 

heritability estimates. Possible reasons include the unaccounted for epistatic interactions in 

related individuals leading to overinflated heritability estimates which has been described 

previously (Falconer and Mackay, 1995), or due to ethnic differences in body fat distirbution 

and limitations of current dataset. 
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Using the Zaitlen approach, estimates of heritability (h2
g/h

2) reported in the current study for 

BMI (0.40) and WHR (0.18) were lower than the estimates reported by Zaitlen et al. (2013) 

for BMI (0.54) and WHR (0.75). This could be due to differences within and between 

populations contributing to the variances in phenotypes as well as difference in tools (GWAS 

vs. Metabochip) used to estimate the heritability. Similar, although higher estimates of 

heritability were reported in our study as compared to h2 estimates from family-studies 

reported in Ngcungcu (2013) with exception of WHR.  Despite the inconsistencies, the 

APOGH study together with the current study remain the only estimates of heritability for 

body composition available for SSA populations.  

 

 Very low estimates of heritability for WHR were reported in this study for (h2
g/h

2) 0.18, (h2) 

0.17,  (h2
g) 1x10-5. Zaitlen et al. (2013) reported estimates of (h2

g/h
2) 0.75, (h2) 0.19 and (h2

g) 

0.14 for WHR. The estimates reported by Zaitlen et al. (2013) for WHR using related 

individuals were similar to the estimates reported in this study. Vatikutti and colleagues 

(2012) also reported low estimates (h2
g) of WHR (0.13). These low and varying estimates of 

WHR are most likely due to WHR not being an accurate measure of body fat distribution and 

that each component, WC or HC independently, have separate factors including genetic and 

environmental contributing to them.  

 

The accuracy of heritability estimates is reflected by the standard error, with a low standard 

error being optimal. The standard error is influenced mainly by sample size and confounding 

variables. However Visscher and Goddard (2015) have stated that sometimes even with very 

large sample sizes, large standard errors are observed, which may be a reflection of the 

experimental design. The estimates reported in our study have large standard errors 

(especially in the unrelated individuals) because of the small sample size, as GCTA requires 

sample sizes of 3000 or more (Zaitlen et al., 2013). 

 

A recent publication by Kumar et al. (2016) has postulated that GCTA is flawed in its ability to 

assess heritability because of two main reasons: 

• Heritability estimates produced by GCTA are unreliable because of the inaccurate 

estimation of genetic relationship matrices due to the fact that the number of SNPs 

used exceeds the sample size for the phenotype data.   
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• That GCTA doesnot properly control for population stratification, which results in 

unreliable estimates of heritability. They postulate that GCTA ‘over fits’ normal 

GWAS and results in higher heritability estimates.  

However, despite these criticisms the methods used to determine heritability in the current 

study give values that are comparable to the literature. Furthermore, population structure 

was taken into account in our study by including 10 PCs as a fixed effect in the linear 

analysis as well as removing outliers during the individual batch QC process. It should be 

noted that the sample size used in this study was small and this may affect the accuracy of 

our estimates of heritability. It is recommended that N>3000 should be used when using the 

GCTA methodology (Yang et al., 2011a, Zaitlen et al., 2013). Further investigations should 

be performed using a larger sample size to confirm these findings.   

 

5. Conclusion 
 

As with most studies surrounding heritability estimates, one has to be cautious in its 

interpretation. This study shows that within the Bt20 cohort, there is a substantial genetic 

contribution to the variation in traits related to body composition as captured by the 

Metabochip. The captured heritability is similar to those reported for European populations 

and warrants further investigations using larger cohorts of unrelated (so contamination from 

shared common environment can be eliminated) individuals and using a SNP array that 

captures common variation and the appropriate LD structure for African populations. The 

main strength of this study is that it provided the opportunity to estimate narrow-sense 

heritability for body composition traits in a population for which heritability estimates are 

unavailable. 
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5.1 Rationale of the thesis 
 

This study aimed to expand our current knowledge regarding the genetic contribution to 

obesity risk in a sub-Saharan African population by: 

 

1. Using phenotypes describing various aspects of body composition, in particular DXA-

derived measures and their association with genetic markers. 

2. Estimating the narrow-sense heritability of phenotypes contributing to body 

composition using Metabochip data, and to assess if these estimates were similar to 

those observed in other populations. 

3. Determining whether variants associated with increased obesity risk in European 

populations, played a similar role in a South African black population. 

 

Obesity rates are increasing not only globally but also within the African continent, with 

obesity being more common in females than males (Dalal et al., 2011, Ng et al., 2014). 

This was observed within this study with a median BMIs of ~30kg/m2 in older females, 

and a higher BMI measure observed in young females compared to their young male 

counterparts.  

 

Heritability estimates of traits related to obesity (BMI, WC, WHR, fat mass, PFM) have 

shown a strong genetic contribution across European populations. Estimates of 

heritability allow a comparison of the importance of genetic and non-genetic factors 

contributing to a trait but because it is a ratio it cannot inform the size of the component 

(Visscher, 2008). Genetic components imply susceptibility of an individual to developing 

obesity (in this case) in a given environment, and identifying these genetic factors has 

been the focus of many studies (Anderson et al., 2015).  

 

However a majority of what we currently know about genetic factors linked to obesity is 

focussed on European and some Asian studies, with African populations remaining 

understudied. There are advantages in studying African populations, in that the high 

genetic diversity and low linkage disequilibrium allows for narrowing down of loci where 

signals have been identified (Teo et al., 2010). This could potentially unveil causal 

variants. The main motivation for this study is the lack of genetic studies, either 

association or heritability estimates, of traits contributing to obesity in diverse sub-

Saharan African populations where obesity is a considerable problem. 
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5.2 Summary of findings 

 
The overall aim of the study was to assess whether genetic variants contributing to obesity 

risk, captured in European populations were the same in African populations. Both SNP-SNP 

as well as obesity-susceptibility loci replications were reported within the Bt20 cohort. Three 

out of six obesity risk variants in or near, TMEM18 (rs6548238), SH2B1 (rs7498665) and 

GNPDA2 (rs10938397), were associated with increased BMI using a candidate gene 

approach, in an adolescent subset of the Bt20 cohort. It was suggested that these variants 

might be correlated with the regulation of body size in African adolescents (Pillay et al., 

2015). 

 

Most studies have focussed on using BMI as an indicator of obesity risk together with 

surrogate measures of fat distribution, including WC, HC, WHR, and more recently 

WHRadjBMI. This measure has been used to assess the effects of fat distribution that is 

separate from overall adiposity (Andersen and Sandholt, 2015). In this study more precise 

measures of body composition were used to conduct fine-mapping and replication using the 

Metabochip. These measures included DXA-derived total fat mass, total lean mass and PFM 

together with the conventional surrogates for obesity risk (BMI, WC, HC and WHR). 

 

Obesity-susceptibility loci (with novel variants rather than previously associated SNPs) were 

replicated in or near SEC16B, NEGR1, FTO, TMEM18, WARS2, NRXN3, and SP110 

together with new signals. These associations were reported with fat mass, PFM and WHR. 

Cross-phenotype associations for anthropometric and body composition traits were observed 

for four of the five of the replicated loci perhaps indicating a common biological pathway. 

These loci have previously been associated with increases in BMI or measures of fat 

distribution. Associations were reported between SEC16B, NEGR1 and TMEM18 with 

increased fat mass and PFM while FTO and WARS2 were associated with increased WHR. 

The strongest signals (supported by more than one variant) observed in this study were with 

variants in or near SEC16B with fat mass and PFM.  

 

The narrow-sense heritability estimates calculated in this study demonstrated that within the 

Bt20 cohort, there was a substantial genetic contribution (ranging from 0,10-0,50) to the 

variation in body composition traits, captured by the Metabochip, but that the effects of 

shared common environment amongst individuals cannot be excluded. 
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5.3 Implications of findings 

 
In this study some obesity-risk loci that are common to European populations have been 

replicated, together with the same SNP (as with the candidate gene study in Chapter 2), 

however some of the variants within other replicated loci are novel to this study (described in 

Chapter 3). This is an example of the genetic heterogeneity that characterises complex 

disease phenotypes (Rosenberg et al., 2010) that may only be identified when conducting 

fine-mapping in a population other than the discovery population. Obesity risk loci that are 

common to populations suggest common disease aetiologies between populations, however 

the presence of novel associations within populations indicates that population-specific 

variants contribute to the disease process (Fu et al., 2011). Such findings have been 

reported in populations of East Asian ancestry with traits such as T2D, systemic lupus 

erythematosus, ulcerative colitis and height (Fu et al., 2011). Such studies are important for 

genetic risk prediction, and can be advantageous in cross-ethnicity fine-mapping studies. 

 

Conducting fine-mapping studies in populations of diverse ancestries such as African 

populations are beneficial due to the high genetic diversity and the low linkage disequilibrium. 

High genetic diversity and low LD can be exploited by fine-mapping to refine disease/trait -

associated loci, and thus hone in on actual causal variants as well as identifying population-

specific variants. Fine-mapping studies involve the genotyping of extra variants at identified 

GWAS loci that may result in the unveiling of SNPs that are more strongly associated with 

the trait than the index SNPs reported from GWAS (Wu et al., 2013). This can be used to 

further localise causal variants. The associations reported in this study have not been 

previously linked to obesity and are likely to be African-specific variants and might include 

causal variants. Replication in an independent SSA population using an independent 

genotyping platform would be necessary to confirm this. Other studies (Buyske et al., 2012, 

Musunuru et al., 2012, Wu et al., 2013) have demonstrated that for lipid-associated traits, 

fine-mapping in non-European populations resulted in the discovery of additional 

associations that may be rare or absent in discovery populations, usually European.  A 

previous study identified more signals per locus in African American populations and more 

signals overall than in European populations, due to the greater diversity in non-European 

populations (Wu et al., 2013). Most trans-ethnic fine-mapping studies (Buyske et al., 2012, 

Musunuru et al., 2012, Wu et al., 2013) together with the current study have demonstrated 

the benefit of fine-mapping populations of varying ethnic backgrounds to identify population-

specific variants as well as refining association signals.  
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“Allelic heterogeneity” is characterised by different variants at the same gene/locus having an 

effect on the same phenotypes (Wu et al., 2013) and applies to both monogenic and complex 

disorders. Studies have demonstrated the occurrence of allelic heterogeneity with complex 

traits like T2D (Voight et al., 2010, Sim et al., 2011), CAD (Peden and Farrall, 2011) and 

lipid-associated traits (Wu et al., 2013) in different populations. In this study the presence of 

possible independent signals at SEC16B, NEGR1 and FTO were suggested (illustrated in 

regional plots) and further studies including deep-sequencing of these loci, are necessary to 

confirm these findings. 

 

To date most obesity risk loci have been associated with variations in BMI, as previously 

mentioned. In this study we have shown possibly African-specific variants associated with 

more than one phenotype – cross-phenotype associations. Several overlaps were 

highlighted in this study with the same genetic variant(s) being associated with more than 

one phenotype, which may be suggestive of sharing common underlying pathways with 

highly related traits. Pleiotropy refers to the contribution of a gene (broad-sense) or an allele 

(narrow-sense) to more than one phenotype (Mackay et al., 2009), which is common to 

complex genetic disorders, but is generally defined in terms of “seemingly” unrelated clinical 

outcomes. A recent study by Lu et al. (2016) has demonstrated cross-phenotype 

associations with BMI and percentage body fat in eight loci including SEC16B. They also 

showed that genetic variants that have a larger effect on percentage body fat than BMI, are 

also associated with other cardiometabolic traits including fasting glucose, lipid levels, T2D 

and CAD. In this study, cross-phenotype associations with fat mass and PFM were observed 

more so with loci previously associated with BMI (an indicator of overall body size) rather 

than loci involved in fat distribution (WC, HC, WHR), with the exception of FTO. Variants in 

FTO have previously been shown to be associated with phenotypes other than BMI, in 

particular WHR (Heid et al., 2010, Vasan et al., 2013). This suggests that genetic variants 

contributing to overall adiposity are connected to a common biological pathway and are 

distinct to those variants contributing to fat distribution. 

 

Variants in or near SEC16B, NEGR1, TMEM18 and FTO previously associated with BMI 

were shown to be associated with fat mass, PFM and WHR in this current study. The use of 

more precise measures of adiposity, particularly fat mass and PFM, resulted in an increase 

in power (also reported in Lu, et al., 2016) to detect these correlations. It has been reported 

that neither BMI nor other anthropometric measurements such as WC or HC, are accurate 

predictors of body fatness in most cross-sectional studies (Baumgartner et al., 1995, Müller 

et al., 2010, Okorodudu et al., 2010, Jenkins and Campbell, 2014).  Jenkins and Campbell 

(2014) have reported that large-scale genomic studies have focussed on measures that do 
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not adequately represent the degree of body fatness and that their on-going use adds to the 

current uncertainties about genetic contribution to obesity. Also, even though studies utilising 

direct measures of body fatness such as DXA have shown little benefit, this may only be due 

to the use of small sample sizes because of the inherent costs involved. The authors go on 

to mention that the gain in statistical power and interpretation possibilities with the use of 

more direct phenotypes to describe adiposity potentially outweigh the additional costs of 

collecting these phenotypes. 

 

The narrow-sense heritability estimates for body composition show that these traits have 

high heritability estimates. This means that genetic factors have a large part to play in the 

variance of these phenotypes, however the possible contribution of shared environment 

cannot be excluded. Estimates of heritability allow us to ask new questions about the biology 

of traits and allow a comparison of the importance of genetic versus non-genetic factors in a 

particular surrounding (Visscher et al., 2008). A lot of heterogeneity is observed in studies 

estimating heritability. Heritability estimates for BMI range from 0.47-0.90 and 0.21-0.81 in 

twin and family studies, respectively. According to Elks et al. (2012) study design factors 

contribute almost 47% to the heterogeneity observed. The authors also postulate that 

variations in BMI are dependent on age of the cohort, with a greater influence in the 

heritability of BMI in childhood than later on in life. 

 

5.4 Overall limitations of the study 
 

There were some challenges in conducting a fine-mapping and replication study in an SSA 

setting some of which were addressed earlier, but include: 

 

•  Statistical power and sample size calculations 
Normally power calculations for general quantitative traits require summary statistics 

(mean and variance/standard deviation) of the trait/s. Due to the fact that in genetic 

studies effect sizes of quantifiable traits are traditionally assessed from heritability 

estimates, normal requirements for power calculations are not sufficient (Feng et al., 

2011). This is because heritability is difficult to translate into summary statistics. The 

power calculations conducted in this study may not have been suitable for an African 

population due to the fact that heritability estimates and effect sizes were based on 

European estimates (Speliotes et al., 2011), however they were the only estimates 

available for use. 
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Sample size is an important factor in being able to determine statistically significant 

associations (Visscher et al., 2012). The lack of ability to detect most of the previously 

replicated obesity loci captured by Metabochip is mostly due to false negatives or the 

lack of statistical power that is due to sample size. Also, due to the fact that BMI is not a 

precise indicator of obesity, the effect sizes of SNPs that contribute to this heterogeneous 

trait are small, and therefore large sample sizes are required for these small-effect size 

variants to be statistically significant. The use of more precisely measured phenotypes 

(discussed earlier) associated with variants with larger effect sizes may negate the need 

for extremely large sample sizes (Lu et al., 2016), and may be the reason why 

associations with DXA-measured estimates of adiposity, were mainly replicated in this 

study. 

 

• Experimental design 
One of the challenges of this study was the use of related individuals. Although 

relatedness was accounted for by including a kinship matrix during both the association 

and heritability analysis, there may still have been a reduction in the power to detect 

associations or an effect of shared common environment, respectively.  

 

Another challenge in this study was unequal proportion of males and females in the 

study, with males being underrepresented. We also had an unequal proportion of young 

and older female adults upon merging females only. Including older males in the study to 

match that of the female caregivers would have been advantageous to assess the effects 

of age and sex in the older adults more accurately, as these factors are important 

modifiers of body composition. 

 

• Metabochip as a tool to capture variation in African populations 
As previously highlighted, a large proportion of SNP data could not be used, as these 

variants are monomorphic, and therefore uninformative in this population. This is a major 

limitation of using arrays capturing common variation in European populations, in 

populations of diverse genetic ancestries. Despite this limitation, genetic associations 

were still reported, aided by the use of more precisely defined phenotypes. 

 

The fact that the Metabochip is not a GWAS chip but rather a chip with genome-wide 

representation of closely linked markers, is a limitation for PCA. The use of unlinked 

markers that are independent of each other is a prerequisite for PCA. PCA may have 

been limited by the varying sample sizes of the population groups (HapMap and 1000 

Genomes, BSO, SEB and SWB) used to construct the plots. Since the Bt20 dataset was 
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much larger than the other populations, it would have been ideal to draw a subset of the 

Bt20 to match that of the other 1000G datasets. Also the number of SNPs available after 

merging and pruning that were common to all datasets were based on 13500 and 12100 

markers for the female caregivers and young adults, respectively and may not have been 

ideal to tease out genetic relations amongst individuals. Having noted the limitations of 

PCA, it is also important to report that PCA was not performed to elucidate the genetic 

variation among African populations, but rather to establish if any substructure existed in 

the dataset (based on PC1 and 2) and for those individuals to be removed, prior to 

performing the association analysis.  

 

• Use of Genomic Control (GC) 
During association analysis the Genomic Control (GC) was assessed in PLINK as a way 

to address substructure following QC. GC controls for confounding that may arise as a 

result of substructure by increasing the threshold required for statistical significance, 

thereby controlling the number of false positives (Cordell and Clayton, 2005). However 

drawbacks of this method include the fact that there is no control in place for false 

negatives, which leads to a loss in power to detect real associations. Results from the 

GC (as indication by the GI test statistic; lambda) showed no evidence of inflation of 

lambda that could be attributed to population stratification. Scores further away from one 

suggests that there is an over-inflation of the test statistic that can be attributed to false 

differences in allele frequencies, which may arise due to cryptic relatedness, population 

structure or errors during genotyping (Yang et al., 2011c). GI scores of close to one in 

this dataset for all phenotypes shows that the PCA carried out was effective in the 

identification of outliers, proving its usefulness even though limitations were present. 

 

• Lack of information for African populations 
Another challenge and limitation of this study and one that is due to the paucity of 

information on obesity risk variants on the African continent, is the need for replication of 

the association signals observed. In order for these correlations to be validated, they 

should be replicated in other African populations using independent technologies. Even 

though African-American or West African cohorts may be available for replication, there 

are differences in genetic substructure of SSA populations. These differences were 

illustrated in principle component analysis plots shown earlier in the results sections and 

reported in a project describing the variation of African populations on the subcontinent – 

African Genome Variation Project (AGVP), which must be taken into consideration 

(Gurdasani et al., 2015). Nevertheless, these populations remain the only options for 
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replication purposes however very few, if any studies have the matching detailed 

phenotypes (e.g. DXA-derived body composition) that were used in this current study.  

 

The challenges that still remain that are relevant to GWAS in general, is the issue of missing 

heritability. With regard to BMI, the current 97 loci that have been associated with this trait 

only accounts for 2.7% of the variation in BMI (Locke et al., 2015). GWAS are not sufficient 

or efficient enough by virtue of their design in capturing rare variants that might confer larger 

effects, and whole genome sequencing is a better tool to capture these rare variants. 

Perhaps investigating the impact of dominance and epistasis on narrow-sense heritability 

estimates in closely related individuals may also contribute to this missing heritability (Zaitlen 

et al., 2013). Zaitlen et al. (2013) have reported inflated narrow-sense heritability estimates 

for T2D and CAD, when they included the effects of dominance and epistasis in regression 

models. Smaller effects could be captured by expanding sample sizes (hence a drive 

towards more consortia efforts), or implementing better study designs. There is logic in all 

these arguments, and future studies should draw on all these suggestions and include 

studies with phenotypes that have more biological relevance. Using precisely measured 

phenotypes may increase the ability to detect genetic variants conferring risk for obesity and 

capturing more of the heritability contributing to the phenotypic variance. 

 

5.5 Future Work 
 

The next step would be to replicate and perform a meta-analysis of the results from this 

study with other Metabochip and GWAS data in African populations. A causal variant is 

described by Visscher (Visscher et al.) as “……..an unknown variant that has a direct or 

indirect functional effect on disease risk, rather than a variant that is associated with disease 

risk through LD - it is the variant that causes the observed association signal”. The strategies 

for possible ways of identifying causal genetic variants in general are challenging and have 

been summarised in Fig. 5.1 (adapted from Kumar et al., 2012). These strategies make use 

of powerful bioinformatics tools and resources, most of which are easily available web-based 

applications, together with pathway analysis tools and expression quantitative loci (e-QTL) to 

rank the importance of gene loci that have been discovered by GWAS (Kumar et al., 2012). 

Such software are useful in assigning the functionality of genetic variants using a number of 

approaches (Chami and Lettre, 2014). Some software rank genetic variants according to 

whether they are evolutionarily conserved, with conserved variants more likely to be 

important functionally (Lindblad-Toh et al., 2011). Others, use prediction methods based on 

conservation, physical and chemical changes that DNA variants may have on amino acids 
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(Chami and Lettre, 2014) including ‘Sorting tolerant from intolerant (SIFT) algorithms’ (Kumar 

et al., 2009) and Polyphen-2 (Adzhubei et al., 2010). It is also possible to test associated 

genotypes in silico to see if they have an effect on regulatory mechanisms as with e-QTL 

(Chami and Lettre, 2014). Initiatives such as ENCODE have been used to define regulatory 

sequences in human cell lines, to establish if non-coding SNPs fall within such regions 

(Consortium, 2012).  

 

 

 

Figure 5.1 Summary of strategies to identify causal variants.  
Adapted from (Kumar et al., 2012). GWAS signals can be followed up by using a meta-analysis or 

fine-mapping strategy. Then e-QTL or pathway analysis is helpful in ranking causative genes and 

these can be used to ask questions about how they relate to disease and identifying causal variants. 

These potential causal variants then have to be tested experimentally. 
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Also outlined in Figure 5.1, is the use of diverse ethnic populations for conducting GWAS or 

fine-mapping or imputation studies. Given, the current challenges of conducting research on 

the African continent, the use of the Metabochip to establish if European gene associations 

with obesity could be applied to African populations, was the most suitable choice at the 

time. This is mainly due to the fact that genetic analyses of African populations are 

particularly suited to fine-mapping disease loci in Caucasians, where this is difficult to 

achieve due to higher LD. However, an African-specific GWAS chip reflecting African LD 

structure would be the most appropriate tool to discover African-specific variants as well as 

adequately test replication of European GWAS signals.  

 

One approach to advance our understanding of the biological mechanisms underlying a 

phenotype under investigation is to better refine a trait. These “sub-phenotypes" could be 

defined by severity of disease, age of onset, or the site and/or pattern of symptoms, such as 

that observed with inflammatory bowel disease, for example. In this way, we may detect 

associations with variants contributing different effects to sub-phenotypes that would 

otherwise be overlooked by considering all cases,simultaneously, as the same phenotype. 

However, by focusing on specific sub-phenotypes we reduce sample size, and thus will lose 

power to map loci contributing homogeneous effects to the unified phenotype (Morris et al., 

2010). We are aware of the benefits of sub-phenotyping, however with restrictions in our 

current sample size we may loose power to detect associations. 

 

In summary, this study using more precisely measured obesity-related phenotypes, has 

contributed new findings on obesity-associated gene variants in an African population. With 

new research initiatives like H3Africa (www.h3africa.org), whose mandate is to support 

genomics research related to human diversity and disease biology in Africa, it is possible that 

more African-based genomic research will be undertaken and will lead to the discovery of 

new and specific disease causing variants in African populations.  
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Appendix A: Power analysis 

 

The power plots were drawn using the programs PowerGWAS/QT 

(http://www.mybiosoftware.com/gwaspowerqt-1-0-statistical-power-calculation-software-

designed-gwas.html) (Feng et al., 2011). This program is commonly used with GWAS when 

using quantitative traits. All power plots were drawn by Ananyo Choudury (Bioinformatician at 

SBIMB). 

 

 

 

Figure 1: Power plot drawn with 1800 individuals shows that in 1800 individuals we have 

25% power to capture an effect size of Beta = 0.01. 
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Figure 2: Power plot drawn using 1800 individuals shows that in 1800 individuals we have 

~90% power to capture an effect size of Beta = 0.02 
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Figure 3: Power plot drawn using 900 individuals shows that ~55% power to capture an 

effect size of Beta = 0.03 in 900 individuals 
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APPENDIX B: PLINK commands used during quality control process 

All QC was done together with Liesl Hendry for quality assurance purposes. 

 

Pre-QC step: Conversion of final reports in forward format into tped/tfam format, check and 

then conversion to bed files 

 

1. Convert all the forward report files into one tped and tfam format files for each batch  

a. Converting raw genotypes to tped format (batch* - refers to either 

batch 1 or 2) 

 

Convert to tped.py 

 

#!/usr/local/bin/python 

import os 

 

# Arrays 

snpdata = { } 

csvfiles = [ ] 

tfamarray = [ ] 

tpedarray = { } 

tfamfilename = "batch*.tfam" 

tpedfilename = "batch*.tped" 

 

# Create a list of CSV files 

files=os.listdir("./") 

for eachfile in files: 

 if eachfile[-3:] == "csv": 

  csvfiles.append(eachfile) 

# csvfiles = 

["Metabo_Batch2_Plate_11_12_FinalReport_Forward.csv","Metabo_Batc

h2_Plate_3_4_FinalReport_Forward.csv","Metabo_Batch2_Plate_9_10_F

inalReport_Forward.csv","Metabo_Batch2_Plate_1_2_FinalReport_Forw

ard.csv","Metabo_Batch2_Plate_5_6_FinalReport_Forward.csv","Metab

o_Batch2_Plate13_FinalReport_Forward.csv","MetaboBatch2_Plate_7_8

_FinalReport_Forward.csv"] 

 

# Read in metabochip SNP annotations 

annotationfile = open("Metabochip_Gene_Annotation.txt",'r') 

annotations = annotationfile.readlines() 
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for annotation in annotations: 

 annotation = annotation.strip().split("\t") 

 snpdata[annotation[0]] = 

[annotation[1],annotation[0],"0",annotation[2]] 

annotationfile.close() 

 

# Read in individual CSV files 

for eachfile in csvfiles: 

 datafile = open(eachfile, 'r') 

 FRdata = datafile.readlines() 

 samplerow = "" 

 for i in range(10): 

  samplerow = FRdata.pop(0) 

 samplelist = samplerow.strip().strip(",").split(",") 

 print samplelist 

 tfamarray.extend(samplelist) 

 for row in FRdata: 

  row = row.strip().split(",") 

  snpid = row.pop(0) 

  for genotype in row: 

   try: 

    if genotype != "--": 

     tpedarray[snpid].append(genotype[0]) 

     tpedarray[snpid].append(genotype[1]) 

    else: 

     tpedarray[snpid].append("0")  

     tpedarray[snpid].append("0")  

   except: 

    if genotype != "--": 

     tpedarray[snpid] = [(genotype[0])] 

     tpedarray[snpid].append(genotype[1]) 

    else: 

     tpedarray[snpid] = ["0"] 

     tpedarray[snpid].append("0")  

    

         

 datafile.close() 

  

# Write out tfam file 

tfamfile = open(tfamfilename, 'w') 
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for individual in tfamarray: 

 tfamfile.write("\t".join([individual,individual,"0","0","0","0"

])+"\n") 

tfamfile.close() 

 

# Write out tped file 

tpedfile = open(tpedfilename, 'w') 

for snp in tpedarray.keys(): 

 snpcols = "\t".join(snpdata[snp]) 

 tpedfile.write(snpcols+"\t"+"\t".join(tpedarray[snp])+"\n") 

tpedfile.close() 

 

print tfamarray 

 

2. Check a few genotypes against samples in the report file to see that it worked. 

 

3. plink --tfile batch* --extract snplist.txt --recode --out 

extracted_1 

 

4. And then check manually in excel 

 

5. Repeat 1 and 2 for both batches 

 

6. Convert tped/tfam to bed file 

 

plink --tfile batch* --make-bed --out batch* --noweb 

 

Removal of “NaN” SNPs  

 

1. Made a text file with the ID’s of samples containing the ‘NaN’ SNPs 

Removed SNPs with the command 

 

plink --bfile batch* --exclude NaNsnps.txt --make-bed --out 

NoNanbatch* 
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QC OF BATCHES SEPARATELY 

 

Initial removal of poorly genotyped samples 

 

* - refers to either batch 1 or 2. 

 

plink --noweb --bfile  NoNanbatch* --mind 0.20 --make-bed --out 

NoNanbatch*_mind_0.2 --allow-no-sex 

 

SNP QC 

 

Ø Missingness 

 

A range of ‘geno’ thresholds were tested 

 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.10 --out 

NoNanbatch*_mind_0.2_snp90 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.08 --out 

NoNanbatch*_mind_0.2_snp92 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.06 --out 

NoNanbatch*_mind_0.2_snp94 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.05 --out 

NoNanbatch*_mind_0.2_snp95 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.04 --out 

NoNanbatch*_mind_0.2_snp96 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.03 --out 

NoNanbatch*_mind_0.2_snp97 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.02 --out 

NoNanbatch*_mind_0.2_snp98 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.01 --out 

NoNanbatch*_mind_0.2_snp99 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.009 --out 

NoNanbatch*_mind_0.2_snp99.1 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.008 --out 

NoNanbatch*_mind_0.2_snp99.2 

plink --bfile  NoNanbatch*_mind_0.2  --geno 0.007 --out 

NoNanbatch*_mind_0.2_snp99.3 
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Batch 1: Based on our plot, we decide on a 0.02 (2%) threshold for SNP  

 

Ø MAF 

 

A range of MAFs were tested to decide on the threshold. 

 

plink --bfile  NoNanbatch*_mind_0.2 --maf 0.05 --out 

NoNanbatch*_mind_0.2_0.05 

plink --bfile  NoNanbatch*_mind_0.2 --maf 0.04 --out 

NoNanbatch*_mind_0.2_0.04 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.03 --out 

NoNanbatch*_mind_0.2_0.03 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.02 --out 

NoNanbatch*_mind_0.2_0.02 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.01 --out 

NoNanbatch*_mind_0.2_0.01 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.009 --out 

NoNanbatch*_mind_0.2_0.009 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.008 --out 

NoNanbatch*_mind_0.2_0.008 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.006 --out 

NoNanbatch*_mind_0.2_0.006 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.004 --out 

NoNanbatch*_mind_0.2_0.004 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.003 --out 

NoNanbatch*_mind_0.2_0.003 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.002 --out 

NoNanbatch*_mind_0.2_0.002 

plink --bfile  NoNanbatch*_mind_0.2 -- maf 0.001 --out 

NoNanbatch*_mind_0.2_0.001 

 

Ø HWE 

 

Tested a range of theholds to decide on the the level that didn’t loose the greatest amount of 

SNPs 

plink --bfile  NoNanbatch*_mind_0.2 --hwe 0.00000001 -

outNoNanbatch*_mind_0.2_10_8 
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plink --bfile  NoNanbatch*_mind_0.2 --hwe 0.0000001 --out 

NoNanbatch*_mind_0.2_10_7 

plink --bfile  NoNanbatch*_mind_0.2 --hwe 0.000001 --out 

NoNanbatch*_mind_0.2_10_6 

plink --bfile  NoNanbatch*_mind_0.2 --hwe 0.00001 --out 

NoNanbatch*_mind_0.2_10_5 

plink --bfile  NoNanbatch*_mind_0.2 --hwe 0.0001 --out 

NoNanbatch*_mind_0.2_10_4 

plink --bfile  NoNanbatch*_mind_0.2 --hwe 0.001 --out 

NoNanbatch*_mind_0.2_10_3 

 

Once the thresholds were selected the final datasets could then be filtered accordingly: 

 

plink --noweb --bfile  NoNanbatch1_mind_0.2  --geno 0.02 --maf 0.01-

-hwe 0.00001 --make-bed --out batch1_snp_qc2 --allow-no-sex 

 

plink --noweb --bfile  NoNanbatch2_mind_0.2  --geno 0.02 --maf 0.01-

-hwe 0.00001 --make-bed --out batch2_snp_qc2 --allow-no-sex 

 

 

SAMPLE QC 

 

Ø Missingness 

 

Tested a range of “mind” thresholds to plot graph to decide on our threshold for removal of 

individuals (did this on the SNP QC filtered data/bed files). 

 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.10 --out 

batch*_snp_qc2_ind90 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.08 --out 

batch*_snp_qc2_ind92 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.06 --out 

batch*_snp_qc2_ind94 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.05 --out 

batch*_snp_qc2_ind95 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.04 --out 

batch*_snp_qc2_ind96 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.03 --out 

batch*_snp_qc2_ind97 
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plink --noweb --bfile  batch*_snp_qc2 --mind 0.02 --out 

batch*_snp_qc2_ind98 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.01 --out 

batch*_snp_qc2_ind99 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.009 --out 

batch*_snp_qc2_ind99.1 

plink --noweb --bfile  batch*_snp_qc2 --mind 0.008 --out 

batch*_snp_qc2 _ind99.2 

 

Filtering based on chosen thresholds: 

 

plink --noweb --bfile  batch1_snp_qc2 --mind 0.02 --make-bed --out 

batch1_clean --allow-no-sex 

 

plink --noweb --bfile  batch2_snp_qc2 --mind 0.03 --make-bed --out 

batch2_clean --allow-no-sex 

 

 

Ø Sex check 

 

Run on raw data 

 

plink --bfile batch* --check-sex --out batch * 

 

Ouput file = batch1.sexcheck 

 

In excel look at last column (homozygocity rate: <0.2/0.35=female; >0.8=male; 0.2/0.35-

0.8=inconclusive/unspecified) 

Column 3 – ascertained sex 

Column 4 – sex according to genotype data (1-male; 2-female) 

 

Batch 1:  

Females (according to genotyping) = 999 

25 problem individuals (0.35 or greater). Of the 25, 23 are definite males and 2 are 

undetermined. Of these, 24 individuals have not yet been removed in previous QC steps and 

are thus removed at this point.   

 

Save 24 individuals (as Family ID/Individual ID pairs) in text file called sexremoved_batch1 
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plink --bfile batch1_clean --remove sexremoved_batch1.txt --noweb --

make-bed --out batch1_clean2 

 

Individuals remaining (batch 1): 1000 (999 plus 1 duplicate) 

 

Batch 2: 

Females (according to genotyping) = 629 

Unspecified (according to genotyping) =31 

Male (according to genotyping) = 588 

 

6 missing phenotype sexes – apply sex values according to genotypes (as values are 

definite males and females) 

1 possible male (already removed in previous QC step) 

4 undetermined sexes according to genotype (already removed in previous QC step) 

91 discrepancies (of these 65 have already been removed in previous QC steps and 26 have 

not yet been removed in previous QC steps and are thus removed at this point) 

 

Save 26 individuals (as Family ID/Individual ID pairs) in text file called sexremoved_batch2 

 

plink --bfile batch2_clean --remove sexremoved_batch2.txt --noweb --

make-bed --out batch2_clean2 

 

 

Ø PCA analysis 

 

PCA no. 1 

 

Prune dataset to remove highly correlated variants 

 

plink --bfile batch*_clean2 --indep-pairwise 50 5 0.2 --noweb --out 

ldpruned2_batch*  

plink --bfile batch*_clean2 --extract ldpruned2_batch*.prune.in --

make-bed --out batch*_ldpruned2 

 

Batch 1: 59601 SNPs remaining after pruning (these will be used to run PCA and IBD) 

Batch 2: 55508 SNPs remaining after pruning (these will be used to run PCA and IBD) 
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Running PCA 

 

(1) Make a “phenotype” file from the fam file: column 1=FamID, column 2=IndID, column 

3=population (in our case Bt20), column 4=batch* [Batch*_clean2_phenotype.txt] 

(2) Make a queuerunpca.sh script (Batch 1 – queuerunpca1_batch1.sh; Batch 2 – 

queuerunpca1_batch2.sh) 

 

#!/bin/bash 

#PBS -N Batch*_pca 

#PBS -q WitsLong 

#PBS -l walltime=24:00:00,mem=10GB 

  

cd /home/venesa/Metaboanalysis_30.01/Batch*_pca1 

  

 ./runpca.sh batch*_ldpruned2 

 

Save it in the working directory (venesa) 

Put the following into the Batch*pca1 directory: 

bed, bim and fam files (batch*_ldpruned2.bed, batch*_ ldpruned2.bim, 

batch*_ldpruned2.fam) 

Phenotype file (Batch*_clean2_phenotype.txt) 

runpca.sh script 

 

#! /bin/bash 

 

smartpca.perl -i $1.bed -a $1.bim -b $1.fam -p $1.pca -e 

$1.eval -o $1.pca -q NO -l $1.log  

 

(3) Make the runpca.sh and queuerunpca.sh scripts executable. 

 

chmod 733 runpca.sh 

chmod 733 queuerunpca1_batch1.sh 

chmod 733 queuerunpca1_batch2.sh 

 

(4) Run the jobs  

 

qsub queuerunpca1_batch1.sh 

qsub queuerunpca1_batch2.sh 
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Defined new cut-offs for PCA analysis 

 

• After removing individuals for heterozygosity we had 973 (B1) and 987 in B2 

• We then removed 9 samples from PCA analysis, B1 and 4 samples from PCA 

analysis B2, after PCA 

• Left with 974-B1 and 983 in B2 

 

Admixture – PCA plots 

 

PCA plot with ldpruned4 (i.e. no other populations included) 

 

Make new ldpruned files 

 

plink --bfile batch*_clean4 --indep-pairwise 50 5 0.2 --noweb --out 

ldpruned4_batch*  

plink --bfile batch*_clean4 --extract ldpruned4_batch*.prune.in --

make-bed --noweb --out batch*_ldpruned4 

 

Batch 1: 59605 SNPs remaining after pruning 

Batch 2: 55567 SNPs remaining after pruning 

 

Folders: 

Batch1_clean4 and Batch2_clean4 

 

Running PCA 

 

(1) Make a “phenotype” file from the fam file: column 1=FamID, column 2=IndID, column 

3=population (in our case Bt20B*) [batch*_ldpruned4_phenotype.txt] 

(2) Make a queuerunpca.sh script (Batch * – queuerunpca_batch*_ldpruned4.sh) 

#!/bin/bash 

#PBS -N Batch*_pca_ldpruned4 

#PBS -q WitsLong 

#PBS -l walltime=24:00:00,mem=10GB 

  

cd /home/venesa/Metaboanalysis_30.01/Batch*_clean4 

  

 ./runpca.sh batch*_ldpruned4 

 

Save it in the working directory  
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(3) Put the following into the Batch*_clean4 directory: 

bed, bim and fam files (batch*_ldpruned4.bed, batch*_ ldpruned4.bim, 

batch*_ldpruned4.fam) 

Phenotype file (batch*_ldpruned4_phenotype.txt) 

runpca.sh script 

 

Make the scripts executable and run 

 

Removing samples 

 

To decide which samples to remove, we chose the following cut-offs: 

Horizontal: -0.075<=x<=0.075 

Vertical: -0.05<=x<=0.05 

 

PCA plot with Africans (excluding coloureds and Khoisan) 

 

Make new ldpruned files 

 

plink --bfile batch*_clean5 --indep-pairwise 50 5 0.2 --noweb --out 

ldpruned5_batch*  

plink --bfile batch*_clean5 --extract ldpruned5_batch*.prune.in --

make-bed --noweb --out batch*_ldpruned5 

 

Batch 1:  59601 SNPs remaining after pruning 

Batch 2:  55585 SNPs remaining after pruning 

Use the batch1_allafrican2 files 

 

Make a list of Bt20 individuals from batch1_allafrican2 (batch1.txt) and remove them from 

these files. 

 

plink --bfile batch*_allafrican2 --remove batch1.txt --noweb --make-

bed --out african_nokca 

 

 

Now merge the new ldpruned5 files for each batch to this african_nokca file 
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plink --bfile batch*_ldpruned5 --bmerge african_nokca.bed 

african_nokca.bim african_nokca.fam --noweb--make-bed --out batch*_ 

african_nokca 

 

The first attempt at merging failed due to strand errors, therefore run the following command: 

 

plink --bfile batch*_ldpruned5 --flip batch*_african_nokca.missnp --

make-bed --out batch*_flipped --noweb 

 

Then try merging again: 

 

plink --bfile batch*_flipped --bmerge african_nokca.bed 

african_nokca.bim african_nokca.fam --make-bed --out batch*_ 

african_nokca2 

 

Once data are merged, prune away those SNPs that do not overlap between datasets 

 

plink --bfile batch*_african_nokca2 --geno 0.05 --make-bed --out batch*_ african_nokca3 

 

Batch 1: 13532 SNPs remaining after merging and pruning 

Batch 2: 12126 SNPs remaining after merging and pruning 

 

Make a new phenotype file 

 

Make from the fam files: column 1=FamID, column 2=IndID, column 3=population (in our 

case Bt20B1 or Bt20B2 and whatever the other populations are)  

 

awk ‘{print $1,$2}’ batch*_african_nokca3.fam > 

batch*_african_nokca3_phenotype.txt 

 

(This maintains the order of the study participants in the fam file) 

 

Then add the phenotype column in excel 

 

Make new folders: Batch*_african_nokca3 

 

 

Running PCA 
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(1) Make a queuerunpca.sh script (queuerunpca_batch*_african_nokca3.sh) 

 

#!/bin/bash 

#PBS -N Batch*_pca_african_nokca3 

#PBS -q WitsLong 

#PBS -l walltime=24:00:00,mem=10GB 

  

cd /home/venesa/Metaboanalysis_30.01/Batch*_african_nokca3 

  

 ./runpca.sh batch*_ african_nokca3 

 

Save it in the working directory (venesa or wherever) 

 

(2) Put the following into the Batch*_ african_nokca3 directory: 

bed, bim and fam files (batch*_african_nokca3.bed, batch*_african_nokca3.bim, 

batch*_african_nokca3.fam) 

Phenotype file (batch*_ african_nokca3_phenotype.txt) 

runpca.sh script 

 

Make the scripts executable and run the jobs 

 

Batch1: 0 further individuals to remove  

Batch 1: 0 further individuals to remove) 

 

Global PCA (all populations incl. Khoisan and coloureds) 

 

In folder called batch*_pca_global 

 

Use batch*_ldpruned5 files to merge with Andrew’s pruned data files (allthin) 

 

plink --bfile batch*_ldpruned5 --bmerge allthin.bed allthin.bim 

allthin.fam --make-bed --out batch*_allthin** 

 

The first attempt at merging failed due to strand errors, therefore run the following command: 

 

plink --bfile batch*_ldpruned5 --flip batch*_allthin**.missnp --

make-bed --out batch*_flipped --noweb 

 

Then try merging again: 
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plink --bfile batch*_flipped --bmerge allthin.bed allthin.bim 

allthin.fam --make-bed --out batch*_allthin** 

 

Once data are merged, prune away those SNPs that do not overlap between datasets 

 

plink --bfile batch*_allthin** --geno 0.05 --make-bed --out 

batch*_allthin4 

 

Batch 1: 14010 SNPs remaining after merging and pruning 

Batch 2: 13287 SNPs remaining after merging and pruning 

 

Make a new phenotype file 

 

Make from the fam files: column 1=FamID, column 2=IndID, column 3=population (in our 

case Bt20B1 or Bt20B2 and whatever the other populations are)  

 

awk ‘{print $1,$2}’batch*_allthin4.fam > 

batch*_allthin4_phenotype.txt 

 

(This maintains the order of the study participants in the fam file) 

 

Then add the phenotype column in excel 

Running PCA 

 

(1) Make a queuerunpca.sh script (queuerunpca_allthin4_batch*.sh) 

 

#!/bin/bash 

#PBS -N Batch*_pca_allthin4 

#PBS -q WitsLong 

#PBS -l walltime=24:00:00,mem=10GB 

  

cd /home/venesa/Metaboanalysis_30.01/batch*_pca_global 

  

 ./runpca.sh batch*_allthin4 

 

Save it in the working directory (venesa or wherever) 

 

(2) Put the following into the Batch*_pca_global directory: 
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bed, bim and fam files (batch*_allthin4.bed, batch*_ allthin4.bim, batch*_ allthin4.fam) 

Phenotype file (batch*_ allthin4_phenotype.txt) 

runpca.sh script 

 

Make the scripts executable and run the jobs 

 

Draw PCA plots. 

 

Clustering generally good and what we expected (although coloured and Khoisan individuals 

make the plot quite messy). Didn’t exclude any more individuals although some were slightly 

out of cluster so should be watched carefully. 

 

Batch 1:  

9412207 

 

Batch 2: 

3076321 

9412207 

3385402 

7888045 

3341858 

 

Ø IBD 

Run on pruned data set (Anderson et al.) 

 

Four folders in main IBD folder (Batch1_pruned; Batch2_pruned) 

In each of the four folders put the bed, bim and fam files (batch*_ldpruned2) 

 

Removing related individuals step 1 

 

plink --bfile batch*_ldpruned2 --genome --min 0.05 --noweb  

 

[Change names of .genome file to name that appears in runibd.pl script and change name in 

script. Save script and make it executable. 

 

Run the runibd.pl scripts for all for IBD runs (pruned and clean for batch 1 and batch 2) 

directly in the cluster. 
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perl runibd.pl > ibsdist_related_batch1_ldpruned2 

perl runibd.pl > ibsdist_related_batch2_ldpruned2 

 

runibd.pl script 

 

#!/usr/bin/perl -w 

 

 

open(IN,"batch*_ldpruned2.genome");  

$fl=<IN>;$fl=""; 

 

while(<IN>){ 

$line=$_; 

chomp($line); 

 

@tabs=split(/\s+/,$line); 

 

if($tabs[10] < 0.05 or $tabs[12]>0.95){ 

 

print $line,"\n"; 

 

} 

} 

 

 

############################### 

sub log10{ 

my $n=shift; 

return log($n)/log(10); 

} 

################################### ] 

 

*Not necessary to run perl script. Alternatively assess genome file manually. 

 

Sort by PI_HAT column and pick out pairs with PI_HAT value of >0.18 (Anderson et al.) 

 

Batch1: 7 pairs (incl. 1 duplicate) with PI_HAT>0.18 

Batch2: 13 pairs (incl. 6 pairs with PI_HAT of 1 that aren’t duplicates) with PI_HAT>0.18 
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For Batch 2, the remaining 7 duplicates weren’t picked up as being related. Therefore all of 

the remaining duplicates must be removed.  

 

Deciding which individual of related pairs to remove 

 

Draw the PCA plot (ldpruned2) for batch* in Genesis (using generated evec file and 

phenotype file) 

We discovered the following: 

 

A number of the samples from the IBD pairs weren’t in the PCA plot. Looking at the PCA log 

file, we saw that a number of samples were removed during running the PCA as they were 

outliers.  

 

For Batch 1: 13 outliers. 

Of these 13, only 7 (6 in 3 pairs and one separate) overlapped with the IBD pairs (coloured in 

red). For the other 3 pairs, we looked to see which was the best individual to exclude based 

on the position on the PCA plot (coloured in green). There were 6 extra outliers (coloured in 

blue). 

There are a total of 16 individuals that need to be removed at this point.  

 

plink --bfile batch1_clean2 --remove ibd_excludedind_batch1.txt --noweb --make-bed --out 

batch1_clean3 

 

For Batch 2: 52 outliers. 

Of these 52, only 16 (16 in 8 pairs) overlapped with the IBD pairs (coloured in red). For the 

other 5 pairs, we looked to see which was the best individual to exclude based on the 

position on the PCA plot (coloured in green). There were 36 extra outliers (coloured in blue).  

There are a total of 57 individuals that need to be removed at this point.  

 

plink --bfile batch2_clean2 --remove ibd_excludedind_batch2.txt --noweb --make-bed --out 

batch2_clean3 

 

Individuals remaining after IBD (Batch 1): 984 

Individuals remaining after IBD (Batch 2): 1002 

 

Re-prune dataset (clean 3) before running IBD again 
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plink --bfile batch*_clean3 --indep-pairwise 50 5 0.2 --noweb --out 

ldpruned3_batch*  

plink --bfile batch*_clean3 --extract ldpruned3_batch*.prune.in --

make-bed --out batch*_ldpruned3 

 

Batch 1: 59607 SNPs remaining after pruning (these will be used to run IBD 2) 

Batch 2: 55557 SNPs remaining after pruning (these will be used to run IBD 2) 

 

Rerun of IBD (IBD 2) 

 

Run on pruned data set (Anderson et al.) 

 

Four folders in main IBD folder (Batch1_pruned; Batch2_pruned) 

In each of the four folders put the bed, bim and fam files (batch*_ldpruned3) 

 

plink --bfile batch*_ldpruned3 --genome --min 0.05 --noweb  

 

Sort by PI_HAT column in .genome file and check for relatedness 

 

Batch 1: PI_HAT<= 0.1619 

Batch 2: PI_HAT<= 0.1687 

 

Therefore no further samples need to be removed due to relatedness. 

 

Now working in Batch*_clean4 folder. 

 

Ø Duplicates 

 

Removal of duplicates (7 pairs  and 1 remaining of pair 8) for batch 2 

 

Make list of all 8 duplicate Ids (twice for seven of them to remove both sets=15 individuals) – 

batch2_removedup.txt  
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Ø Outlying heterozygosity rates 

 

 

Heterozygocity rate vs Proportion of missing SNPs plots (Identification of individuals with 

outlying heterozygosity rate) 

 

Calculated missingness using NoNanBatch* files 

 

plink --bfile NoNanbatch*--missing --out NoNanbatch*  

 

The sixth column in the imiss file (F_MISS) gives the proportion of missing SNPs per 

individual. 

 

plink --bfile NoNanbatch* --het --out NoNanbatch*  

 

In the .het file, the third column gives the observed number of homozygous genotypes 

[O(Hom)] and the fifth column gives the number of non-missing genotypes [N(NM)], per 

individual. 

 

 Calclate the observed heterozygosity rate per individual using the formula (N(NM) - 

O(Hom))/N(NM).  

 

Create a graph where the observed heterozygosity rate per individual is plotted on the x-axis 

and the proportion of missing SNPs per individuals is plotted on the y-axis. 

Examine the plot to decide reasonable thresholds at which to exclude individuals based on 

extreme heterozygosity. We chose to exclude all individuals with a heterozygosity rate ± 3 

standard deviations from the mean.  

Batch 1: 8 individuals (7 excluded in previous steps) 

 

0.237286028 Mean+ 3SD 

0.181778524 Mean- 3SD 

 

Batch 2: 52 individuals (all excluded in previous steps) 

 

0.295526 Mean+3SD 

0.15677 Mean- 3SD 

 

Add the family ID and individual ID of the 1 sample in batch 1 to batch1_removedup.txt 



 

 177 

 

Run remove commands (for duplicates and heterozygosity):  

 

plink --bfile batch*_clean3 --remove batch*_removedup.txt --noweb --

make-bed --out batch*_clean4 
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APPENDIX C: Mixed Linear Model Association analysis analysis 

 

Make GRM_2.sh 

!/bin/bash 

 

#PBS -N Heritability 

#PBS -q WitsLong 

#PBS -l walltime=20:00:00,mem=3GB 

#PBS -l nodes=1:ppn=1 

 

WORKING_DIR='/home/venesa/heritability' 

 

#Change to the working directory where the files are. 

cd $WORKING_DIR 

 

# name of binary plink filename (excluding .bed/.bim/.fam suffix) 

plinkfile="prunedbmerge" 

 

# name of phenotype file in plink format (i.e. col1=fid, col2=iid, col3=phenotype 

phenfile="sorted_combined_batches.phen" 

 

# name of covariate file in plink format (i.e col1=fid, col2=iid, col3=covariate) 

covarfile="combine_batches.covar" 

 

# make up a name for the grm for all individuals 

allfile="GRM_all" 

 

# make up a name for the grm for related individuals 

relatedsfile="GRM_relateds" 

 

# maximum relatedness threshold 

threshold=0.05 

 

# make up a name for output file (it will have .hsq appended to the end by gcta) 

outfile="bmi_snps_heritability" 

 

## Alternative way to have multiple phenotypes 
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# phenotype_col="8" 

 

 

gcta64 \ 

 --bfile ${plinkfile} \ 

 --make-grm \ 

 --maf 0.01 \ 

 --out ${allfile} 

  

gcta64 \ 

 --grm ${allfile} \ 

 --pca 10 \ 

 --out ${allfile} 

  

MLMA run in GCTA: When using GCTA; the mpheno command on its own takes the 3rd 

column automatically as the column (in the phenotype file) being analysed. So running the 

command mpheno 2 takes the 4th column, mpheno 3 takes the 5th column and so on 

 

Column number mpheno command (function) 

1- FID  

2-IID  

3-SEX (1-M; 2-FM)  

4-AGE (yrs.)  

5-HEIGHT (mm)  

6-HEIGHT_1 (m)  

7-WEIGHT (kg)  

8-BMI (kg.m-2) 6 

9-logBMI 7 

10-WC (mm) 8 

11-HC (mm) 9 

12-WHR (index) 10 

13-free fat mass (kg) 11 

14-lean mass (kg) 12 

15-percentage body fat 13 

 

Model1a.covar: sex+age only 

Model2a.covar: sex+age+height 

Model3a.covar: sex+age+height+leanmass 
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Model4a.covar: sex+age+height +fatmass 

 

mlma_2.sh 

 

#!/bin/bash 

 

#PBS -N MLMA 

#PBS -q WitsLong 

#PBS -l walltime=20:00:00,mem=3GB 

#PBS -l nodes=1:ppn=1 

 

WORKING_DIR='/home/venesa/heritability' 

 

#Change to the working directory where the files are. 

cd $WORKING_DIR 

 

# name of binary plink filename (excluding .bed/.bim/.fam suffix) 

plinkfile="prunedbmerge2" 

 

# name of phenotype file in plink format (i.e. col1=fid, col2=iid, col3=phenotype 

phenfile="sorted_combined_batches.phen" 

 

# make up a name for the grm for related individuals 

allfile="combinedall" 

 

# covariate file (including the suffix.qcovar if quantitative, if sex then .covar) 

covarfile1="model1a.qcovar" 

covarfile2="model2a.qcovar" 

covarfile3="model3a.qcovar" 

covarfile4="model4a.qcovar" 

 

# make up a name for output file (it will have .mmla appended to the end by gcta) 

#outfile="test.mma" 

 

## Alternative way to have multiple phenotypes (mpheno-normally column 4 but if you give a 

column number after that its usually the position of the column  

#say BMI is in column 8 (-2) will be mpheno 6)) 

#column="7" 
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#gcta64 \ 

#        --mlma 

#        --bfile ${plinkfile} \ 

#        --grm ${allfile} \ 

#        --pheno ${phenfile} \ 

#        --mpheno ${column} \ 

#        --qcovar ${covarfile} \ 

#        --out ${outfile} 

 

 

function the_function () 

{ 

    gcta64 \ 

        --mlma \ 

 --bfile ${plinkfile} \ 

        --grm ${allfile} \ 

        --pheno ${phenfile} \ 

        --mpheno "$1" \ 

        --qcovar $2 \ 

        --out $1_$2 

} 

 

the_function 7 $covarfile1 

the_function 8 $covarfile1 

the_function 8 $covarfile2 

the_function 9 $covarfile1 

the_function 9 $covarfile2 

the_function 10 $covarfile1 

the_function 11 $covarfile1 

the_function 11 $covarfile2 

the_function 11 $covarfile3 

the_function 12 $covarfile1 

the_function 12 $covarfile2 

the_function 12 $covarfile4 

the_function 13 $covarfile1 

the_function 13 $covarfile2 

 

Modified mlma script for combined females: 

mlma_combinedfemales.sh 
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#!/bin/bash 

 

#PBS -N MLMA 

#PBS -q WitsLong 

#PBS -l walltime=20:00:00,mem=3GB 

#PBS -l nodes=1:ppn=1 

 

WORKING_DIR='/home/venesa/heritability' 

 

#Change to the working directory where the files are. 

cd $WORKING_DIR 

 

# name of binary plink filename (excluding .bed/.bim/.fam suffix) 

plinkfile="combinedfemales" 

 

# name of phenotype file in plink format (i.e. col1=fid, col2=iid, col3=phenotype 

phenfile="sorted_combined_batches.phen" 

 

# make up a name for the grm for related females 

allfile="GRM_female" 

 

# covariate file (including the suffix.qcovar if quantitative, if sex then .covar) 

covarfile1="PCA_age_females.qcovar" 

covarfile2="PCA_age_height.qcovar" 

covarfile3="PCA_age_height_leanmass.qcovar" 

covarfile4="PCA_age_height_fatmass.qcovar" 

 

# make up a name for output file (it will have .mmla appended to the end by gcta) 

#outfile="test.mma" 

 

## Alternative way to have multiple phenotypes (mpheno-normally column 4 but if you give a 

column number after that its usually the position of the column  

#say BMI is in column 8 (-2) will be mpheno 6)) 

#column="7" 

 

#gcta64 \ 

#        --mlma 

#        --bfile ${plinkfile} \ 

#        --grm ${allfile} \ 
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#        --pheno ${phenfile} \ 

#        --mpheno ${column} \ 

#        --qcovar ${covarfile} \ 

#        --out ${outfile} 

 

 

function the_function () 

{ 

    gcta64 \ 

        --mlma \ 

 --bfile ${plinkfile} \ 

        --grm ${allfile} \ 

        --pheno ${phenfile} \ 

        --mpheno "$1" \ 

        --qcovar $2 \ 

        --out $1_$2 

} 

 

the_function 7 $covarfile1 

the_function 8 $covarfile1 

the_function 8 $covarfile2 

the_function 9 $covarfile1 

the_function 9 $covarfile2 

the_function 10 $covarfile1 

the_function 11 $covarfile1 

the_function 11 $covarfile2 

the_function 11 $covarfile3 

the_function 12 $covarfile1 

the_function 12 $covarfile2 

the_function 12 $covarfile4 

the_function 13 $covarfile1 

the_function 13 $covarfile2 
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APPENDIX D: QQ Plots to assess the distribution of the test statistic for phenotypes in the 

study 

 

QQ plots were drawn in R vs.3.2.2 using the package qqman to visualise the distribution of 

the test-statistic for each phenotype analysis, and showed no evidence of population 

stratification. 
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 185 

QQ Plot for all seven phenotypes when datasets are combined. A- logBMI; B-WC; C-HC, D-

WHR, E-Fat mass, F-Lean mass, G-PFM 
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QQ Plot for all seven phenotypes when females are combined. A- logBMI; B-WC; C-HC, D-

WHR, E-Fat mass, F-Lean mass, G-PFM 
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QQ Plot for all seven phenotypes with female caregivers. A- logBMI; B-WC; C-HC, D-WHR, 

E-Fat mass, F-Lean mass, G-PFM 
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QQ Plot for all seven phenotypes with young adults. A- logBMI; B-WC; C-HC, D-WHR, E-Fat 

mass, F-Lean mass, G-PFM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

		E																																																																						F 

	G																																																																																															



 

 192 

		A																																																																				B 

		C																																																																			D 



 

 193 

 
 

QQ Plot for all seven phenotypes with young female adults. A- logBMI; B-WC; C-HC, D-

WHR, E-Fat mass, F-Lean mass, G-PFM 
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QQ Plot for all seven phenotypes with young male adults. A- logBMI; B-WC; C-HC, D-WHR, 

E-Fat mass, F-Lean mass, G-PFM 
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Appendix E: All results from association testing (basic, linear regression and mixed model association analysis) 

 

Section A: Unadjusted association analysis 

 

Table E1. The top associated SNPs with body composition traits in the female caregiver dataset 

CHR-refers to chromosome; BP-base position, NMISS-number of samples used in the analysis, SE-standard error, Beta refers to per allele change in the phenotype 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP4 NMISS BETA SE P- value 

          BMI 8 rs76966674 LPL | SLC18A1 intergenic 19987694 972 0.03 0.01 3.08 x 10
-5

  

 
2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 972 -0.05 0.01 3.68 x 10

-5
  

 
7 rs7808316 DGKB | TMEM195 intergenic 15112007 972 -0.02 0.00 3.82 x 10

-5
  

 
1 rs9442211 FMN2 | GREM2 intergenic 238709807 972 -0.02 0.00 3.87 x 10

-5
  

 
1 rs6425446 LOC400796 | SEC16B intergenic 176031200 972 0.02 0.00 6.33 x 10

-5
  

 
6 rs11967047 CDKAL1 intron 20949459 972 -0.02 0.01 7.33 x 10

-5
  

 
6 rs7769223 KHDRBS2 | LOC100128610 intergenic 63215802 972 -0.02 0.00 7.46 x 10

-5
  

 
7 rs75802768 JAZF1 | LOC100128081 intergenic 28088471 972 -0.02 0.01 9.58 x 10

-5
  

 
2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 972 -0.04 0.01 9.79 x 10

-5
  

          WC 3 rs12493688 HES1 | LOC100131551 intergenic 195401542 960 136.60 31.36 1.46 x 10
-5

  

 
6 rs9364558 LPAL2 intron 160849934 956 28.18 6.53 1.76 x 10

-5
  

 
2 rs2114591 SP110 intron 230758813 959 25.93 6.04 1.96 x 10

-5
  

 
4 rs7661253 LOC728191 | ODZ3 intergenic 183276086 958 49.57 12.00 3.93 x 10

-5
  

 
17 rs11867979 LOC728073 | RPL38 intergenic 69148107 960 -33.78 8.19 4.08 x 10

-5
  

 16 
 

rs1861554 FTO intron 52607268 960 48.77 12.03 5.41 x 10
-5

  
 9 rs7021554 ANRIL | LOC729983 intergenic 22142884 960 45.32 11.21 5.67 x 10

-5
  

 13 rs7990860 OLFM4 | LOC387930 intergenic 52887195 960 -24.62 6.15 6.78 x 10
-5

  
 14 rs2282277 LOC729165 intron 44017413 960 -57.42 14.66 9.60 x 10

-5
  

          WHR 15 rs12438098 LOC728292 | MCTP2 intergenic 92188493 960 0.03 0.01 2.29 x 10
-6

   

                                                

 

4	Note that all BP positions are reported using NCBI Build 36 (hg18)	
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WHR 1 rs10926800 PLD5 | LOC400723 intergenic 240867832 960 -0.02 0.00 3.11 x 10
-6

   

 
11 rs481855 PGR intron 100474570 960 -0.02 0.00 1.30 x 10

-5
  

 
6 rs195852 POU3F2 | FBL4 intergenic 99397313 960 0.02 0.00 4.96 x 10

-5
  

 
2 rs11679288 ALK intron 29494717 960 0.02 0.00 5.16 x 10

-5
  

 
16 rs2037912 PPL coding-1055/2; 4873940 960 0.06 0.01 5.50 x 10

-5
  

  12 rs115649230 R3HDM2 | INHBC intergenic 56001394 960 0.07 0.02 5.74 x 10
-5

  
  12 rs145249220 R3HDM2 | INHBC intergenic 56064088 960 0.07 0.02 5.74 x 10

-5
  

  6 rs9456538 SLC22A3 intron 160773383 960 0.02 0.00 6.06 x 10
-5

  
  18 rs10164068 LOC100132894 intron 72381591 959 -0.02 0.00 6.40 x 10

-5
  

  16 rs1861554 FTO intron 52607268 960 0.03 0.01 6.65 x 10
-5

  

                    
HC 1 rs6425446 LOC400796 | SEC16B intergenic 176031200 960 26.34 6.07 1.58 x 10

-5
  

  1 rs113015095 ATG4C intron 63067732 951 39.73 9.55 3.49 x 10
-5

  
  12 rs3138139 RDH5 intron 54402150 960 -26.59 6.40 3.58 x 10

-5
  

  2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 960 -66.24 16.17 4.54 x 10
-5

  
  15 rs624191 LOC100128434 | GPR176 intergenic 37880127 960 -33.28 8.13 4.59 x 10

-5
  

  2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 960 -60.63 14.82 4.65 x 10
-5

  
  8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 960 104.90 25.93 5.63 x 10

-5
  

  11 rs12574325 BDNFOS intron 27569624 960 51.73 12.89 6.42 x 10
-5

  
  11 rs16917135 BDNFOS intron 27571281 960 51.73 12.89 6.42 x 10

-5
  

  8 rs35584813 PPP1R3B | LOC100129150 intergenic 9245040 960 102.20 25.48 6.53 x 10
-5

  

 
Fat mass  1 rs4311843 DOCK7 | ATG4C intergenic 176035387 927 2366 514.70 4.87 x 10

-6
   

 
1 rs4072161 LOC400796 | SEC16B intergenic 176036310 927 2218 488.70 6.42 x 10

-6
 

  1 rs4348685 LOC400796 | SEC16B intergenic 176034251 927 -2371 545.10 1,51 x 10
-5

  
  1 rs4075235 LOC400796 | SEC16B intergenic 176034945 927 -2371 545.10 1.51 x 10

-5
  

  2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 927 -5142 1202.00 2.09 x 10
-5

  
  1 rs2094122 ANKRD38 | USP1 intergenic 62627179 923 2863 678.90 2.72 x 10

-5
  

  7 rs75802768 JAZF1 | LOC100128081 intergenic 28088471 927 -2975 716.20 3.58 x 10
-5

  
  22 rs738671 LOC100128818 | TBC1D22A intergenic 45927613 927 2045 495.70 4.04 x 10

-5
  

  2 rs2114591 SP110 intron 230758813 926 1976 483.90 4.81 x 10
-5

  
  9 rs10781091 GDA | ZFAND5 intergenic 74064112 927 3451 860.30 6.52 x 10

-5
  

                    
Lean mass 9 rs10781091 GDA | ZFAND5 intergenic 74064112 927 2352 480.40 1.15 x 10

-6
   

  14 rs34664345 PNN | MIA2 intergenic 38761479 927 1245 282.20 1.14 x 10
-5

  
  7 rs17443228 LRRN3 | IMMP2L intergenic 110774133 927 -2039 497.00 4.44 x 10

-5
  

  8 rs6601538 KR6 intron 10812864 927 -1336 329.30 5.39 x 10
-5

  
  5 rs17554781 RGNEF | ENC1 intergenic 73344284 927 1193 296.00 6.05 x 10

-5
  

  1 rs2375278 RUN3 | SYF2 intergenic 25401625 927 5146 1294.00 7.51 x 10
-5
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  3 rs9872002 LOC344787 | GPD1L intergenic 32065107 927 1151 292.20 8.76 x 10
-5

  
  1 rs6664016 FAM5B | LOC400796 intergenic 175587093 927 1198 304.30 8.83 x 10

-5
  

  11 rs1263149 BUD13 intron 116145151 927 1044 266.80 9.71 x 10
-5

  
  11 rs1263151 BUD13 intron 116146238 927 1054 269.70 9.97 x 10

-5
  

  
PFM 1 rs6425446 LOC400796 | SEC16B intergenic 176031200 927 1.51 0.32 2.99 x 10

-6
   

 
1 rs4072161 LOC400796 | SEC16B intergenic 176036310 927 1.47 0.32 6.66 x 10

-6
   

  1 rs4311843 LOC400796 | SEC16B intergenic 176035387 927 1.48 0.34 1.55 x 10
-5

  
  1 rs2068973 LOC400796 | SEC16B intergenic 176059338 927 1.40 0.32 1.61 x 10

-5
  

  11 rs116083352 FADS2 | FADS3 intergenic 61396917 927 3.22 0.74 1.65 x 10
-5

  

 
1 rs6425453 LOC400796 | SEC16B intergenic 176085789 927 1.36 0.32 2.39 x 10

-5
  

  1 rs4348685 LOC400796 | SEC16B intergenic 176034251 927 -1.53 0.36 2.51 x 10
-5

  
  1 rs4075235 LOC400796 | SEC16B intergenic 176034945 927 -1.53 0.36 2.51 x 10

-5
  

  1 rs10913437 LOC400796 | SEC16B intergenic 176062763 927 1.35 0.32 3.32 x 10
-5

  

 

 

Table E2. Top associated SNPs with body composition traits in the young adult dataset 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP5 
NMI
SS BETA SE P- value 

                    
BMI 1 rs2753399 ZFYVE9 intron 52546945 953 0.09 0.02 9.98 x 10

-7
   

  3 rs157538 EDEM1 | GRM7 intergenic 6312837 951 0.02 0.01 1.56 x 10
-5

  
  10 rs7072408 PCBD1 | UNC5B intergenic 72419228 949 -0.02 0.00 1.67 x 10

-5
   

  3 rs2370840 ACVR2B utr 38504829 953 0.12 0.03 5.26 x 10
-5

   
  15 rs62017164 TRPM7 intron 48655616 953 0.07 0.02 5.84 x 10

-5
   

  15 rs62017165 TRPM7 intron 48655833 953 0.07 0.02 5.84 x 10
-5

  
  15 rs1060599 TRPM7 intron 48661924 953 0.07 0.02 5.84 x 10

-5
  

  15 rs62017202 TRPM7 intron 48736535 953 0.07 0.02 5.84 x 10
-5

  
  15 rs62017207 TRPM7 intron 48745151 953 0.07 0.02 5.84 x 10

-5
  

  15 rs62017208 TRPM7 intron 48746646 953 0.07 0.02 5.84 x 10
-5

  
  15 rs62017209 TRPM7 intron 48747259 953 0.07 0.02 5.84 x 10

-5
  

                                                

 

5	Note that all BP positions are reported using NCBI Build 36 (hg18)	
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WC 

 
1 

 
rs2753399 

 
ZFYVE9 

 
intron 

 
52546945 

 
944 

 
9.73 

 
2.14 

 
6.15 x 10

-6
    

  20 rs6059958 HM13 intron 29606939 942 -2.09 0.47 8.57 x 10
-6

    

 
5 rs4607330 RAB9P1 | EFNA5 intergenic 105035114 939 3.64 0.82 1.08 x 10

-5
  

 
12 rs2373459 SPIC intron 100398087 944 2.24 0.52 1.64 x 10

-5
  

  15 rs4143844 VPS13C intron 60100132 944 7.24 1.72 2.64 x 10
-5

  
  20 rs6120815 HM13 | ID1 intergenic 29648527 944 -1.83 0.44 2.81 x 10

-5
  

 
15 rs34173668 VPS13C intron 60092876 944 6.77 1.62 3.06 x 10

-5
  

  15 rs34958705 VPS13C intron 60104049 944 6.77 1.62 3.06 x 10
-5

  
  15 rs34311301 VPS13C intron 60129847 944 6.77 1.62 3.06 x 10

-5
  

  15 rs17271312 VPS13C intron 60123571 939 6.75 1.62 3.29 x 10
-5

  

                    
HC 1 rs2753399 ZFYVE9 intron 52546945 944 11.82 2.33 4.56 x 10

-7
   

  10 rs7072408 PCBD1 | UNC5B intergenic 72419228 940 -2.40 0.54 1.01 x 10
-5

  
  4 rs7683492 LOC644624 | ANKRD50 intergenic 125737729 944 2.09 0.48 1.31 x 10

-5
  

  1 rs1329817 POU3F1 | LOC400750 intergenic 38709564 943 -1.93 0.46 2.72 x 10
-5

  
  12 rs17374759 LOC644976 | LOC100131677 intergenic 20228731 944 4.41 1.05 2.94 x 10

-5
  

  3 rs17186340 STAC intron 36407617 944 4.24 1.04 4.63 x 10
-5

  
  1 rs11688 JUN coding 59020581 941 -2.42 0.59 4.84 x 10

-5
  

  3 rs720679 LRIG1 | KBTBD8 intergenic 66916749 944 10.71 2.63 4.89 x 10
-5

  
  17 rs9893680 KIAA1303 intron 76407353 942 2.00 0.49 4.92 x 10

-5
  

  5 rs4607330 RAB9P1 | EFNA5 intergenic 105035114 939 3.67 0.90 5.17 x 10
-5

  

                    
WHR 4 rs13113267 MGC48628 intron 91825412 943 0.02 0.00 6.19 x 10

-8
   

  1 rs12095241 WARS2 intron 119431520 941 0.02 0.00 9.89 x 10
-7

   
  3 rs2400349 EPHB1 | LOC645218 intergenic 136041127 943 0.05 0.01 1.78 x 10

-6
   

  1 rs12088290 WARS2 intron 119385449 943 0.02 0.00 4.34 x 10
-6

   
  3 rs17016150 LOC644990 | LOC100130354 intergenic 25313965 943 0.05 0.01 4.35 x 10

-6
   

  7 rs6972785 JAZF1 | LOC100128081 intergenic 28002776 942 0.02 0.01 4.57 x 10
-6

   
  9 rs4382560 LOC646609 | LOC402360 intergenic 22854667 940 0.02 0.00 6.28 x 10

-6
   

  9 rs28617580 C9orf96 intron 135242773 943 0.03 0.01 6.55 x 10
-6

   
  6 rs3923725 LOC100129474 | SLC17A4 intergenic 25842899 942 0.09 0.02 8.22 x 10

-6
   

  9 rs34399743  C9orf96 intron 135241179 943 0.03 0.01 9.13 x 10
-6

   

                    
Fat mass 4 rs17668731 AFF1 intron 88218507 782 6601.00 1303.00 5.02 x 10

-7
   

  4 rs17604937 AFF1 intron 88204139 778 6040.00 1225.00 9.99 x 10
-7

   
  4 rs35658582 AFF1 | KLHL8 intergenic 88284946 787 6208.00 1277.00 1.41 x 10

-6
   

  1 rs2753399 ZFYVE9 intron 52546945 787 9871.00 2148.00 5.03 x 10
-6

   
  4 rs116385428 AFF1 intron 88257323 787 5223.00 1184.00 1.17 x 10

-5
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 Fat mass 1 chr1:56916879 USP24 | PPAP2B intergenic 56689467 785 3290.00 750.00 1.31 x 10
-5

  
  3 rs16831219 PE5L | LOC131054 intergenic 181389359 786 9087.00 2084.00 1.47 x 10

-5
  

  15 rs11071662 FAM148B | FLJ38723 intergenic 60287838 787 2466.00 567.60 1.59 x 10
-5

  
  21 rs2838727 ITGB2 intron 45140335 787 2426.00 569.50 2.30 x 10

-5
  

  16 rs1862748 CDH1 intron 67390444 785 2187.00 528.70 3.89 x 10
-5

  
  17 rs2955245 CSH1 | CSHL1 intergenic 59333577 786 9848.00 2386.00 4.05 x 10

-5
  

   
Lean mass 6 rs115578077 PHACTR1 intron 13026552 785 -4091.00 895.80 5.75 x 10

-6
   

 
6 rs115593358 PHACTR1 intron 13026798 787 -4056.00 906.90 8.88 x 10

-6
   

  19 rs8113016 LOC284417 intron 60525997 787 7851.00 1805.00 1.54 x 10
-5

  
  3 rs6441886 CDCP1 intron 45103101 786 -1613.00 371.50 1.59 x 10

-5
  

  13 rs116170577 COL4A1 intron 109621762 787 -2866.00 676.40 2.54 x 10
-5

  
  4 rs11734664 STK32B intron 5276947 787 2849.00 686.50 3.70 x 10

-5
  

  16 rs111357538 FTO intron 52400213 787 3500.00 859.90 5.18 x 10
-5

  
  19 rs12611418 THEG | FAM148C intergenic 339413 787 8054.00 1988.00 5.59 x 10

-5
  

  16 rs7190220 AKTIP | RPGRIP1L intergenic 52109683 787 -1595.00 394.50 5.81 x 10
-5

  
  16 rs117696251 FTO intron 52358082 787 4666.00 1183.00 8.72 x 10

-5
  

PFM  
 

4 rs17668731 AFF1 intron 88218507 782 9.21 1.83 6.04 x 10
-7

   

 
4 rs35658582 AFF1 | KLHL8 intergenic 88284946 787 8.62 1.80 1.87 x 10

-6
   

  4 rs17604937 AFF1 intron 88204139 778 8.26 1.73 2.08 x 10
-6

   
  3 rs4504165 LOC730057 intron 64676930 787 -5.18 1.11 3.46 x 10

-6
   

  3 rs6772129 LOC730057 intron 64675465 787 -5.01 1.09 4.87 x 10
-6

   
  3 rs9860730 LOC730057 intron 64676186 787 -5.02 1.10 5.71 x 10

-6
   

 
3 rs4422297 LOC730057 intron 64679900 787 -4.94 1.09 7.08 x 10

-6
   

  4 rs116385428 AFF1 intron 88257323 787 7.34 1.66 1.17 x 10
-5

  
  1 chr1:56916879 USP24 | PPAP2B intergenic 56689467 785 4.56 1.05 1.74 x 10

-5
  

  21 rs2838727 ITGB2 intron 45140335 787 3.43 0.80 2.04 x 10
-5

  

  2 rs529963 HJURP 
coding/nonsyn 

stop|R 234423239 787 -2.64 0.62 2.31 x 10
-5
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Table E3. - Top associated SNPs with body composition traits when the dataset is stratified into young male adults  

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP6 NMISS BETA SE P- value 
 
BMI 19 rs11670765 LOC339344 intron 51093838 505 0.02 0.00 2.64 x 10

-7
   

 
19 rs8113016 LOC284417 intron 60525997 505 0.07 0.01 1.54 x 10

-6
   

 
12 rs7961916 TB3 | LOC100129020 intergenic 113839509 505 0.02 0.00 3.21 x 10

-6
   

 
15 rs17598819 TRPM7 intron 48701919 503 0.12 0.03 5.03 x 10

-6
   

 
15 rs17598264 USP50 | TRPM7 intergenic 48632003 505 0.12 0.03 5.13 x 10

-6
     

 
15 rs62021060 TRPM7 utr 48640931 505 0.12 0.03 5.13 x 10

-6
    

 
15 rs62017164 TRPM7 intron 48655616 505 0.12 0.03 5.13 x 10

-6
    

 
15 rs62017165 TRPM7 intron 48655833 505 0.12 0.03 5.13 x 10

-6
    

 
15 rs1060599 TRPM7 intron 48661924 505 0.12 0.03 5.13 x 10

-6
    

 
15 rs62017202 TRPM7 intron 48736535 505 0.12 0.03 5.13 x 10

-6
    

          WC 8 rs2013640 DLC1 intron 13133461 502 3.13 0.58 9.64 x 10
-8

    

 
15 rs17598264 TRPM7 intron 48632003 502 15.76 3.08 4.36 x 10

-7
   

 
15 rs62021060 TRPM7 intron 48640931 502 15.76 3.08 4.36 x 10

-7
   

  15 rs62017164 TRPM7 intron 48655616 502 15.76 3.08 4.36 x 10
-7

   
  15 rs62017165 TRPM7 intron 48655833 502 15.76 3.08 4.36 x 10

-7
   

  15 rs1060599 TRPM7 intron 48661924 502 15.76 3.08 4.36 x 10
-7

   
  15 rs62017202 TRPM7 intron 48736535 502 15.76 3.08 4.36 x 10

-7
   

  15 rs62017207 TRPM7 intron 48745151 502 15.76 3.08 4.36 x 10
-7

   
  15 rs62017208 TRPM7 intron 48746646 502 15.76 3.08 4.36 x 10

-7
   

  15 rs62017209 TRPM7 intron 48747259 502 15.76 3.08 4.36 x 10
-7

   

                    
HC 15 rs17598264 TRPM7 intron 48632003 502 17.35 3.20 9.13 x 10

-8
   

  15 rs62021060 TRPM7 intron 48640931 502 17.35 3.20 9.13 x 10
-8

   
  15 rs62017164 TRPM7 intron 48655616 502 17.35 3.20 9.13 x 10

-8
   

  15 rs62017165 TRPM7 intron 48655833 502 17.35 3.20 9.13 x 10
-8

   
  15 rs1060599 TRPM7 intron 48661924 502 17.35 3.20 9.13 x 10

-8
   

  15 rs62017202 TRPM7 intron 48736535 502 17.35 3.20 9.13 x 10
-8

   

                                                

 

6	Note that all BP positions are reported using NCBI Build 36 (hg18)	
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 HC 15 rs62017207 TRPM7 intron 48745151 502 17.35 3.20 9.13 x 10
-8

   
  15 rs62017208 TRPM7 intron 48746646 502 17.35 3.20 9.13 x 10

-8
   

  15 rs62017209 TRPM7 intron 48747259 502 17.35 3.20 9.13 x 10
-8

   
  15 rs17598819 TRPM7 intron 48701919 500 17.35 3.20 9.27 x 10

-8
   

 
WHR  2 rs115743734 COBLL1 intron 165255601 502 0.09 0.02 5.26 x 10

-9
 

  7 rs114209770 DGKB intron 14547297 502 0.08 0.02 6.04 x 10
-8

   
  7 rs76358458 DGKB intron 14548446 502 0.08 0.02 6.04 x 10

-8
   

  12 rs76712056 FLJ40142 intron 108989096 502 0.08 0.01 1.15 x 10
-7

   
  3 rs1543143 SRGAP3 intron 9087876 502 0.06 0.01 1.24 x 10

-7
   

  3 rs17651358 CNTN4 intron 3039513 502 0.08 0.02 2.52 x 10
-7

   
  9 rs7020313 UBQLN1 | GKAP1 intergenic 85537074 502 0.08 0.02 3.04 x 10

-7
   

  12 rs12308957 FLJ40142 intron 22242796 502 0.06 0.01 7.13 x 10
-7

   

 
Fat mass 1 rs9970334 ICMT | C1orf211 intergenic 6218825 414 22930.00 4000.00 1.92 x 10

-8
   

  1 rs16852018 LOC400796 | SEC16B intergenic 176098880 414 6397.00 1127.00 2.57 x 10
-8

   
  11 rs77275360 SLC22A18 intron 2894032 411 4767.00 924.20 3.91 x 10

-7
   

  1 rs6670797 GP7 | MGC52498 intergenic 52870169 414 9192.00 1812.00 5.94 x 10
-7

    
  1 rs2753399 ZFYVE9 intron 52546945 414 9002.00 1814.00 1.03 x 10

-6
   

  12 rs2116677 OCC-1 intron 104232358 414 6904.00 1442.00 2.37 x 10
-6

   
  3 rs115473751 EIF5A2 intron 172106758 414 4897.00 1026.00 2.51 x 10

-6
   

  1 rs72941254 NEGR1 | LOC100132353 intergenic 72446505 414 3203.00 676.70 3.04 x 10
-6

   
  1 rs72941257 NEGR1 | LOC100132353 intergenic 72451438 414 3203.00 676.70 3.04 x 10

-6
   

  1 rs72941270 NEGR1 | LOC100132353 intergenic 72465674 414 3203.00 676.70 3.04 x 10
-6

   

 
Lean mass 19 rs8113016 LOC284417 intron 60525997 414 8690.00 1651.00 2.27 x 10

-7
    

 
1 rs587271 SSBP3 intron 54515699 414 9424.00 2076.00 7.39 x 10

-6
   

  1 rs59391530 TAF1A | MIA3 intergenic 220847044 414 3415.00 773.40 1.29 x 10
-5

  
  1 rs7525548 TNNI3K intron 74774062 414 -1858.00 423.10 1.43 x 10

-5
  

  8 rs2409658 PIN1 intron 10706375 414 -2123.00 497.10 2.42 x 10
-5

  
  6 rs6924854 PHACTR1 intron 13229646 414 -2167.00 510.60 2.70 x 10

-5
  

  8 rs9969626 PIN1 intron 10708211 413 -2123.00 503.70 3.09 x 10
-5

  
  3 rs6441886 CDCP1 intron 45103101 414 -1595.00 383.70 3.95 x 10

-5
  

  17 rs4459609 CYB561 | LOC342541 intergenic 58902680 414 -1637.00 394.60 4.09 x 10
-5

  
  4 rs1844994 LOC100132227 intron 108417809 414 -2716.00 655.90 4.19 x 10

-5
  

                    
PFM 1 rs16852018 LOC400796 | SEC16B intergenic 176098880 414 7.066 1.40 6.73 x 10

-7
    

  11 rs77275360 SLC22A18 intron 2894032 411 5.716 1.14 8.00 x 10
-7

    
  1 rs6670797 GP7 | MGC52498 intergenic 52870169 414 10.75 2.24 2.26 x 10

-6
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 PFM 1 rs72941254 NEGR1 | LOC100132353 intergenic 72446505 414 3.794 0.84 7.48 x 10
-6

   
  1 rs72941257 NEGR1 | LOC100132353 intergenic 72451438 414 3.794 0.84 7.48 x 10

-6
   

  1 rs72941270 NEGR1 | LOC100132353 intergenic 72465674 414 3.794 0.84 7.48 x 10
-6

   
  3 rs58574369 NT5DC2 intron 52536300 414 4.583 1.01 7.77 x 10

-6
   

  1 rs72941224 NEGR1 | LOC100132353 intergenic 72411598 411 3.784 0.84 8.49 x 10
-6

   
  1 rs2753399 ZFYVE9 intron 52546945 414 10.12 2.25 8.90 x 10

-6
   

  14 rs10134920 
LOC100132612 | 

C14orf177 intergenic 97789730 414 3.532 0.81 1.84 x 10
-5

  

 

 

Table E4. Top associated SNPs with body composition traits when the dataset is stratified into young female adults 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP 
NMI
SS BETA SE P 

 
BMI 3 rs149090 EDEM1 | GRM7 intergenic 6486781 448 0.12 0.02 2.02 x 10

-6
   

  5 rs32479 ST8SIA4 intron 100200494 448 0.13 0.03 1.79 x 10
-5

  
  3 rs9836894 PBRM1 intron 52691165 448 0.07 0.02 2.40 x 10

-5
  

  3 rs76913378 GLT8D1 intron 52706513 448 0.07 0.02 2.40 x 10
-5

  
  3 rs13325325 NEK4 intron 52778629 448 0.07 0.02 2.40 x 10

-5
  

  16 rs113530185 DHODH | HP intergenic 70638303 448 0.06 0.01 2.92 x 10
-5

  
  3 rs9824342 NISCH intron 52486947 448 0.06 0.02 3.49 x 10

-5
  

  3 rs9813653 DNAH1 intron 52366874 448 0.05 0.01 4.07 x 10
-5

  
  3 rs9828432 DNAH1 intron 52375005 448 0.05 0.01 4.07 x 10

-5
  

  3 rs9843055 PHF7 | SEMA3G intergenic 52434363 448 0.05 0.01 4.07 x 10
-5

  

                    
WC 5 rs32479 ST8SIA4 intron 100200494 442 17.60 4.11 2.31 x 10

-5
  

  11 rs114431455 SLC35C1 | CRY2 intergenic 45795746 442 8.01 1.91 3.34 x 10
-5

  
  5 rs4607330 RAB9P1 | EFNA5 intergenic 105035114 440 5.26 1.26 3.54 x 10

-5
  

  17 rs2006827 GAS7 intron 9798897 440 -2.94 0.70 3.63 x 10
-5

  
  15 rs34173668 VPS13C intron 60092876 442 9.54 2.32 4.51 x 10

-5
  

  15 rs34958705 VPS13C intron 60104049 442 9.54 2.32 4.51 x 10
-5

  
  15 rs34311301 VPS13C intron 60129847 442 9.54 2.32 4.51 x 10

-5
  

  15 rs17271312 VPS13C intron 60123571 439 9.51 2.32 5.03 x 10
-5

  
  4 rs7434427 LOC285501 | LOC728081 intergenic 179754269 442 3.11 0.76 5.41 x 10

-5
  

  11 rs80081080 SLC35C1 | CRY2 intergenic 45796003 442 6.83 1.69 5.95 x 10
-5
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HC 5 rs32479 ST8SIA4 intron 100200494 443 20.28 3.97 4.72 x 10

-7
    

  3 rs149090 EDEM1 | GRM7 intergenic 6486781 443 14.88 3.19 4.22 x 10
-6

   
  10 rs11598794 SGMS1 intron 51766998 442 10.34 2.35 1.34 x 10

-5
  

  11 rs114431455 SLC35C1 | CRY2 intergenic 45795746 443 8.13 1.86 1.45 x 10
-5

  
  16 rs3091402 IGSF6 intron 21571296 443 4.07 0.94 2.00 x 10

-5
  

  3 rs9836894 PBRM1 intron 52691165 443 8.77 2.05 2.32 x 10
-5

  
  3 rs76913378 GLT8D1 intron 52706513 443 8.77 2.05 2.32 x 10

-5
  

  3 rs13325325 NEK4 intron 52778629 443 8.77 2.05 2.32 x 10
-5

  
  12 rs4766988 PTPN11 | RPH3A intergenic 111589413 443 9.52 2.25 2.81 x 10

-5
  

                    

 
WHR 9 rs1571578 ZNF618 intron 115754911 442 0.11 0.02 7.73 x 10

-7
    

  12 rs12578133 
LOC100128389 | 
LOC100131905 intergenic 41307952 442 0.07 0.02 1.19 x 10

-5
  

  2 rs4312532 SMEK2 intron 55665565 442 -0.02 0.01 1.34 x 10
-5

  
  11 rs116828695 KCNQ1 intron 2428628 441 0.11 0.03 1.35 x 10

-5
  

  3 rs118152687 CADM2 intron 85886949 442 0.06 0.01 1.54 x 10
-5

  
  11 rs78366803 LOC100128354 | MTNR1B intergenic 92331703 442 0.08 0.02 1.69 x 10

-5
  

  11 rs11607061 LOC100128354 | MTNR1B intergenic 86737757 442 0.12 0.03 1.90 x 10
-5

  
  2 rs73922219 BRE intron 28165640 439 0.05 0.01 2.14 x 10

-5
  

  6 rs1247330 PLG | MAP3K4 intergenic 161246640 442 -0.02 0.00 2.20 x 10
-5

  
  6 rs2073724 PLG | MAP3K4 intergenic 31237686 442 0.05 0.01 3.12 x 10

-5
  

                    
Fat mass 3 rs117195838 BTD intron 15625332 373 9906.00 1972.00 7.88 x 10

-7
    

  19 rs12611418 LOC389435 | OPRM1 intergenic 339413 373 25370.00 5498.00 5.45 x 10
-6

   
  2 rs3934784 LOC100131211 | NAB1 intergenic 191156494 373 35470.00 7769.00 6.78 x 10

-6
   

  2 rs13005335 LOC100131211 | NAB1 intergenic 191179265 373 35470.00 7769.00 6.78 x 10
-6

   
  11 rs11224449 FLJ32810 intron 100166537 373 10290.00 2278.00 8.39 x 10

-6
   

  10 rs17106320 GRID1 coding 87888709 373 -3065.00 706.10 1.84 x 10
-5

  
  2 rs114285212 LOC727944 | TMEM18 intergenic 630159 373 12060.00 2780.00 1.86 x 10

-5
  

  2 rs78501377 LOC727944 | TMEM18 intergenic 630682 373 12060.00 2780.00 1.86 x 10
-5

  
  2 rs76275602 LOC727944 | TMEM18 intergenic 631877 373 12060.00 2780.00 1.86 x 10

-5
  

  2 rs78460669 LOC727944 | TMEM18 intergenic 633005 373 12060.00 2780.00 1.86 x 10
-5

  
  2 rs78559588 LOC727944 | TMEM18 intergenic 637656 373 12060.00 2780.00 1.86 x 10

-5
  

 
Lean mass 11 rs90192 SIDT2 intron 116564557 373 1481.00 351.20 3.13 x 10

-5
  

 
11 rs6590779 LOC729305 intergenic- 134317533 372 -1613.00 385.00 3.49 x 10

-5
  

  2 rs1477514 NCK2 | LOC100132455 intergenic 105896372 373 2810.00 674.40 3.85 x 10
-5
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Lean mass 4 rs11734664 STK32B intron 5276947 373 2773.00 690.70 7.23 x 10
-5

  
  12 rs74103533 LOC729298 | HMGA2 intergenic 64496995 372 2157.00 539.10 7.65 x 10

-5
  

  11 rs236916 PCSK7 intron 116594838 373 1537.00 385.20 7.97 x 10
-5

  
  8 rs6472822 LY96 | JPH1 intergenic 75213296 373 1909.00 482.90 9.23 x 10

-5
  

  4 rs7434427 LOC285501 | LOC728081 intergenic 179754269 373 1479.00 374.70 9.52 x 10
-5

  
  10 rs11598794 SGMS1 intron 51766998 372 4592.00 1165.00 9.71 x 10

-5
  

 
PFM 3 rs117195838 BTD intron 15625332 373 7.70 1.76 1.62 x 10

-5
  

  15 rs78946279 VPS33B intron 89348470 373 2.20 0.51 2.28 x 10
-5

  
  19 rs4802246 SFRS16 intron 50255028 373 -2.93 0.69 2.50 x 10

-5
  

  2 rs3843862 C2orf3 | LRRTM4 intergenic 76096624 373 -3.41 0.84 6.03 x 10
-5

  
  10 rs17106320 GRID1 coding 87888709 373 -2.54 0.63 6.54 x 10

-5
  

  16 rs6501109 A2BP1 | LOC283953 intergenic 8398889 371 1.97 0.50 9.29 x 10
-5

  

 

 

Section B: Results from linear regression analysis (with adjustment for covariates) 

 

Table E5. Top associated SNPs with body composition traits in female caregivers with adjustment for covariates under the various models outlined in                                

Table 3.1 (Chapter 3),  also including  Model 3 (where FM is adjusted for LM) and Model 4 where LM is adjusted for FM. 

CHR-refers to chromosome, BP-base position, NMISS-number of samples used in the analysis, SE-standard error, Beta refers to per allele change in the phenotype, A1 refers to the 

minor allele (default allele in PLINK). L95 and U 95 refer to to the lower and upper confidence intervals and P-refers to the P-value 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP A1 NMISS BETA SE STAT P 
 
BMI 8 rs76966674 LPL | SLC18A1 intergenic 19987694 C 970 0.03 0.01 4.33 1.63 x 10

-5
  

Model 1 1 rs9442211 FMN2 | GREM2 intergenic 238709807 A 970 -0.02 0.00 -4.15 3.55 x 10
-5

  
  11 chr11:100005545 CNTN5 | LOC440063 intergenic 100005545 A 970 -0.04 0.01 -4.08 4.81 x 10

-5
  

  3 rs2271077 GALNTL2. syn coding 16236424 T 970 0.02 0.01 4.07 5.18 x 10
-5

  
  2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A 970 -0.04 0.01 -4.06 5.39 x 10

-5
  

  7 rs7808316 DGKB | TMEM195 intergenic 15112007 A 970 -0.02 0.00 -4.04 5.68 x 10
-5

  
  7 rs2037695 UBE2H | ZC3HC1 intergenic 129416799 T 970 -0.02 0.00 -4.04 5.80 x 10

-5
  

  2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 C 970 -0.04 0.01 -4.04 5.89 x 10
-5
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 BMI 7 rs75802768 JAZF1 | LOC100128081 intergenic 28088471 C 970 -0.02 0.01 -4.02 6.38 x 10
-5

  
  14 rs34664345 PNN | MIA2 intergenic 38761479 G 970 0.02 0.00 4.01 6.51 x 10

-5
  

 
WC 2 rs2114591   SP110 intron 30758813 T 957 27.01 5.83 4.63 4.10 x 10

-6
   

Model 1 3 rs12493688 HES1 | LOC100131551 intergenic 195401542 G 958 137.90 30.22 4.56 5.72 x 10
-6

   
  6 rs9364558 LPAL2 intron 160849934 G 954 28.39 6.30 4.51 7.31 x 10

-6
   

  9 rs10781091 GDA | ZFAND5 intergenic 74064112 A 958 45.05 10.30 4.37 1.36 x 10
-5

  
  7 rs6583393 CDC14C | VWC2 intergenic 49734785 A 958 94.31 22.57 4.18 3.20 x 10

-5
  

  12 rs75772217 CU2 intron 1102 17165 A 958 -117.80 28.79 -4.09 4.67 x 10
-5

  
  14 rs11622292 PRO1768 | FON3 intergenic 89136080 T 958 33.68 8.27 4.07 5.00 x 10

-5
  

  4 rs7661253 LOC728191 | ODZ3 intergenic 183276086 C 956 46.35 11.60 4.00 6.90 x 10
-5

  
  9 rs7021554 ANRIL | LOC729983 intergenic 22142884 T 958 43.16 10.82 3.99  7.13 x 10

-5
  

  13 rs7990860 OLFM4 | LOC387930 intergenic 52887195 A 958 -23.60 5.94 -3.97 7.74 x 10
-5

  

                        
HC 1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A 958 25.58 6.04 4.23 2.52 x 10

-5
  

Model 1 2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 C 958 -61.21 14.71 -4.16 3.47 x 10
-5

  
  12 rs3138139 RDH5 intron 54402150 G 958 -26.40 6.36 -4.15 3.62 x 10

-5
  

  15 rs624191 LOC100128434 | GPR176 intergenic 37880127 T 958 -33.02 8.09 -4.08 4.83 x 10
-5

  
  8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 G 958 105.00 25.75 4.08 4.89 x 10

-5
  

  1 rs113015095 ATG4C intron 63067732 A 949 38.59 9.50 4.06 5.25 x 10
-5

  
  11 rs12574325 BDNFOS intron 27569624 A 958 51.89 12.80 4.06 5.41 x 10

-5
  

  11 rs16917135 BDNFOS intron 27571281 T 958 51.89 12.80 4.06 5.41 x 10
-5

  
  8 rs35584813 PPP1R3B | LOC100129150 intergenic 9245040 C 958 102.30 25.30 4.04 5.74 x 10

-5
  

                        
HC 2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 C 958 -62.23 14.58 -4.26 2.17 x 10

-5
  

Model 2 2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A 958 -66.78 15.92 -4.19 2.99 x 10
-5

  
  1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A 958 25.07 5.992 4.18 3.13 x 10

-5
  

  8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 G 958 106.4 25.51 4.17 3.29 x 10
-5

  
  1 rs113015095 ATG4C intron 63067732 A 949 39.14 9.408 4.16 3.47 x 10

-5
  

  15 rs624191 LOC100128434 | GPR176 intergenic 37880127 T 958 -32.81 8.015 -4.09 4.62 x 10
-5

  
  8 rs35584813 PPP1R3B | LOC100129150 intergenic 9245040 C 958 102.4 25.07 4.08 4.79 x 10

-5
  

  8 rs73535332 PPP1R3B | LOC100129150 intergenic 9255047 C 958 109.3 27.03 4.04 5.69 x 10
-5

  
  11 rs12574325 BDNFOS intron 27569624 A 958 51.01 12.69 4.02 6.25 x 10

-5
  

  11 rs16917135 BDNFOS intron 27571281 T 958 51.01 12.69 4.02 6.25 x 10
-5

  

                        
WHR 1 rs10926800 PLD5 | LOC400723 intergenic 240867832 T 958 -0.02 0.00 -4.73 2.65 x 10

-6
   

Model 1 2 rs11679288 ALK intron 29494717 T 958 0.02 0.00 4.44 1.02 x 10
-5

  
  5 rs67960962 HAVCR1 intron 156417764 C 958 0.02 0.00 4.27 2.20 x 10

-5
  

  1 rs34996202 REG4 coding. 104/3 120142649 G 958 0.02 0.01 4.23 2.57 x 10
-5
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WHR  6 rs76551104 LRRC16 intron 25547206 A 958 0.04 0.01 4.19 3.01 x 10
-5

  

  16 rs2037912 PPL 
coding-

1055/2;nonsyn c|s 4873940 G 958 0.06 0.01 4.16 3.44 x 10
-5

  
  1 rs12075846 LRRC7 | PIN1L intergenic 70139675 C 958 0.02 0.00 4.16 3.46 x 10

-5
  

 
18 rs10164068 LOC100132894 intron 72381591 C 957 -0.02 0.00 -4.16 3.47 x 10

-5
  

  5 rs17307165 NDUFS4 | ARL15 intergenic 53113382 G 956 0.03 0.01 4.12 4.16 x 10
-5

  
  8 rs6586919 LZTS1 | GFRA2 intergenic 20481302 A 958 0.02 0.00 4.10 4.41 x 10

-5
  

                        
Fat mass 1 rs6425446  LOC400796 | SEC16B intergenic 176031200  A 927 2320.00 475.90 4.88 1.28 x 10

-6
   

Model 1 2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A 927 -5919.00 1296.00 -4.57 5.59 x 10
-6

   
  2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 C 927 -5264.00 1179.00 -4.46 9.04 x 10

-6
   

  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G 927 2138.00 480.20 4.45 9.54 x 10
-6

   
  1 rs4311843 DOCK7 | ATG4C intergenic 176035387 C 927 2237.00 506.20 4.42 1.11 x 10

-5
  

  9 rs10781091 GDA | ZFAND5 intergenic 74064112 A 927 3706.00 844.10 4.39 1.26 x 10
-5

  
  1 rs4348685 LOC400796 | SEC16B intergenic 176034251 G 927 -2281.00 535.50 -4.26 2.25 x 10

-5
  

  1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T 927 -2281.00 535.50 -4.26 2.25 x 10
-5

  
  2 rs2114591 SP110 intron 230758813 T 926 2007.00 474.70 4.23 2.59 x 10

-5
  

 
Fat mass 1 rs6425446  LOC400796 | SEC16B intergenic 176031200 A 927 2262.00 473.80 4.78 2.08 x 10

-6
   

Model 2 2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A 927 -5944.00 1288.00 -4.62 4.48 x 10
-6

   
  2 rs4411698 LOC728241 | CNTNAP5 intergenic 123651577 C 927 -5237.00 1172.00 -4.47 8.91 x 10

-6
   

  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G 927 2095.00 477.70 4.39 1.29 x 10
-5

  
  1 rs4311843 DOCK7 | ATG4C intergenic 176035387 C 927 2191.00 503.60 4.35 1.51 x 10

-5
  

  9 rs10781091 GDA | ZFAND5 intergenic 74064112 A 927 3582.00 840.60 4.26 2.24 x 10
-5

  
  1 rs4348685 LOC400796 | SEC16B intergenic 176034251 G 927 -2259.00 532.50 -4.24 2.43 x 10

-5
  

  1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T 927 -2259.00 532.50 -4.24 2.43 x 10
-5

  
  2 rs2114591 SP110 intron 230758813 T 926 1987.00 472.20 4.21 2.83 x 10

-5
  

                        

Fat mass 3 rs6802030 LOC730168 | TBL1R1 intergenic 177944881 C 927 1435.00 323.60 4.44 1.03 x 10
-5

  
Model 3 7 rs4729039 ANKIB1 | GATAD1 intergenic 91880904 C 927 2312.00 522.40 4.43 1.08 x 10

-5
  

  1 rs823114 NUCKS1 | RAB7L1 intergenic 203986155 A 927 1671.00 380.30 4.40 1.24 x 10
-5

  
  9 rs2066184 OSTF1 | PCSK5 intergenic 77680325 C 927 1727.00 396.10 4.36 1.46 x 10

-5
  

  7 rs2070971 GCK intron 44164108 A 927 -1322.00 320.70 -4.12 4.10 x 10
-5

  
  17 rs191474766 ZNF750 intron 78387864 A 927 -1399.00 344.60 -4.06 5.32 x 10

-5
  

  17 rs114826858 ZNF750 intron 78387395 C 926 -1760.00 441.10 -3.99 7.12 x 10
-5

  
  1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A 927 1249.00 313.40 3.99 7.28 x 10

-5
  

  17 rs116685344 ZNF750 intron 78386414 T 927 -1737.00 439.50 -3.95 8.37 x 10
-5

  
  17 rs114391003 ZNF750 intron 78387085 G 927 -1737.00 439.50 -3.95 8.37 x 10

-5
  

  1 rs6425453 LOC400796 | SEC16B intergenic 176085789 G 927 1221.00 310.00 3.94 8.79 x 10
-5
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Lean mass 9 rs10781091 GDA | ZFAND5 intergenic 74064112 A 927 2389.00 480.50 4.97 7.89 x 10

-7
    

Model 1 14 rs34664345 PNN | MIA2 intergenic 38761479 G 927 1259.00 282.10 4.46 9.15 x 10
-6

   
  7 rs17443228 LRRN3 | IMMP2L intergenic 110774133 A 927 -2029.00 496.90 -4.08 4.84 x 10

-5
  

  8 rs6601538 KR6 intron 10812864 G 927 -1328.00 329.20 -4.03 5.95 x 10
-5

  
  5 rs17554781 RGNEF | ENC1 intergenic 73344284 T 927 1188.00 295.90 4.01 6.45 x 10

-5
  

  1 rs2375278 RUN3 | SYF2 intergenic 25401625 A 927 5103.00 1294.00 3.94 8.65 x 10
-5

  
  1 rs6664016 FAM5B | LOC400796 intergenic 175587093 G 927 1198.00 304.10 3.94 8.76 x 10

-5
  

Lean mass 9 rs10781091 GDA | ZFAND5 intergenic 74064112 A 927 2116.00 438.70 4.82 1.66 x 10
-6

   
Model 2 14 rs34664345 PNN | MIA2 intergenic 38761479 G 927 1148.00 257.20 4.46 9.12 x 10

-6
   

  7 rs7808316 DGKB | TMEM195 intergenic 15112007 A 927 -1101.00 255.20 -4.31 1.79 x 10
-5

  
  8 rs73535324 PPP1R3B | LOC100129150 intergenic 9252643 A 927 4702.00 1101.00 4.27 2.15 x 10

-5
  

  8 rs73535332 PPP1R3B | LOC100129150 intergenic 9255047 C 927 4759.00 1124.00 4.23 2.53 x 10
-5

  
  15 rs624191 LOC100128434 | GPR176 intergenic 37880127 T 927 -1377.00 329.50 -4.18 3.20 x 10

-5
  

  8 rs76966674 LPL | SLC18A1 intergenic 19987694 C 927 1876.00 451.80 4.15 3.61 x 10
-5

  
  8 rs11778774 PPP1R3B | LOC100129150 intergenic 9251517 G 927 4308.00 1040.00 4.14 3.77 x 10

-5
  

  8 rs35584813 PPP1R3B | LOC100129150 intergenic 9245040 C 927 4342.00 1060.00 4.10 4.53 x 10
-5

  
  8 rs36090863 PPP1R3B | LOC100129150 intergenic 9246378 T 927 4342.00 1060.00 4.10 4.53 x 10

-5
  

 
Lean mass 11 rs12364237 COMMD9 | FLJ14213 intergenic 36318610 T 927 1899.00 449.80 4.22 2.66 x 10

-5
  

Model 4 9 rs116485958 GLIS3 intron 4257720 G 927 3350.00 797.00 4.20 2.89 x 10
-5

  
  9 rs2066184 OSTF1 | PCSK5 intergenic 77680325 C 927 -857.30 207.70 -4.13 4.01 x 10

-5
  

  15 rs17270501 RORA intron 58907943 T 927 2005.00 491.60 4.08 4.92 x 10
-5

  
  15 rs2677909 SLCO3A1 intron 90445178 T 927 -770.30 191.80 -4.02 6.41 x 10

-5
  

  2 rs1347684 OC728597 | LOC727982 intergenic 4130803 T 927 680.30 171.10 3.98 7.54 x 10
-5

  
  3 rs2606736 ATG7 intron 11375249 A 927 693.50 176.20 3.94 8.88 x 10

-5
  

  15 rs192009379 IQCH intron 65480944 G 927 -1215.00 309.40 -3.93 9.22 x 10
-5

  
  1 rs1146581 ACADM intron 75985612 A 927 -631.30 161.30 -3.91 9.77 x 10

-5
  

 
PFM 2 rs4411698   LOC728241 | CNTNAP5 intergenic 123651577 C 927 -3.76 0.77 -4.88 1.26 x 10

-6
   

Model 1 2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A 927 -4.04 0.85 -4.76 2.21 x 10
-6

   
  1 rs2068973 LOC400796 | SEC16B intergenic 176059338 A 927 1.45 0.31 4.65 3.78 x 10

-6
   

  1 rs6425453 LOC400796 | SEC16B intergenic 176085789 G 927 1.40 0.31 4.50 7.74 x 10
-6

   
  1 rs10913437 LOC400796 | SEC16B intergenic 176062763 T 927 1.40 0.31 4.46 9.03 x 10

-6
   

  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G 927 1.40 0.31 4.45 9.64 x 10
-6

   
  1 rs1854288 LOC400796 | SEC16B intergenic 176069710 A 927 1.36 0.31 4.38 1.32 x 10

-5
  

 
1 rs12092449 LOC400796 | SEC16B intergenic 176081551 C 927 1.35 0.31 4.34 1.59 x 10

-5
  

  1 rs4348685 LOC400796 | SEC16B intergenic 176034251 G 927 -1.46 0.35 -4.15 3.70 x 10
-5
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PFM 2 rs4411698   LOC728241 | CNTNAP5 intergenic 123651577 C 927 -3.78 0.77 -4.91 1.06 x 10

-6
   

Model 2 2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A 927 -4.03 0.85 -4.76 2.20 x 10
-6

   
  1 rs2068973 LOC400796 | SEC16B intergenic 176059338 A 927 1.44 0.31 4.63 4.17 x 10

-6
   

  1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A 927 1.42 0.31 4.56 5.86 x 10
-6

   
  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G 927 1.43 0.31 4.54 6.32 x 10

-6
   

  1 rs6425453 LOC400796 | SEC16B intergenic 176085789 G 927 1.40 0.31 4.52 7.09 x 10
-6

   
  1 rs10913437 LOC400796 | SEC16B intergenic 176062763 T 927 1.38 0.31 4.43 1.07 x 10

-5
  

  1 rs1854288 LOC400796 | SEC16B intergenic 176069710 A 927 1.36 0.31 4.40 1.21 x 10
-5

  
  1 rs12092449 LOC400796 | SEC16B intergenic 176081551 C 927 1.35 0.31 4.36 1.48 x 10

-5
  

 

Table E6. Top associated SNPs with body composition traits in young adults following linear regression with adjustment for covariates 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP A1 
NMI
SS BETA SE STAT P 

                        
BMI 10 rs7072408 PCBD1 | UNC5B intergenic 72419228 G 949 -0.02 0.00 -4.43 1.06 x 10

-5
  

Model 1 1 rs2753399 ZFYVE9 intron 52546945 A 953 0.07 0.02 4.33 1.66 x 10
-5

  
  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T 951 0.02 0.00 4.21 2.77 x 10

-5
  

  19 rs8113016 LOC284417 intron 60525997 G 953 0.06 0.01 4.18 3.21 x 10
-5

  
  10 rs12570727 SLC39A12 | CACNB2 intergenic 18465525 A 953 0.01 0.00 4.16 3.45 x 10

-5
  

  1 rs7540766 LOC643717 intron 217154788 C 953 0.01 0.00 4.13 4.01 x 10
-5

  
  15 rs7168761 C15orf29 | TMEM85 intergenic 32293510 G 953 -0.01 0.00 -4.02 6.27 x 10

-5
  

  12 rs776037 INHBC intron 56129281 C 953 -0.01 0.00 -3.95 8.52 x 10
-5

  
  12 rs35287743 MVK | C12orf34 intergenic 108541633 T 940 0.06 0.01 3.93 9.14 x 10

-5
  

  7 rs799214 BAZ1B intron 72497728 A 953 0.03 0.01 3.92 9.45 x 10
-5

  

                        
WC 1 rs2753399 ZFYVE9 intron 52546945 A 944 9.10 2.08 4.39 1.28 x 10

-5
  

Model 1 4 rs11735605 EPHA5 | CENPC1 intergenic 66366424 C 944 3.10 0.72 4.31 1.79 x 10
-5

  
  10 rs12570727 SLC39A12 | CACNB2 intergenic 18465525 A 944 1.89 0.45 4.17 3.36 x 10

-5
  

  8 rs13267357 LOC646909 | TMEM66 intergenic 29914768 A 944 3.53 0.85 4.14 3.85 x 10
-5

  
  5 rs4607330 RAB9P1 | EFNA5 intergenic 105035114 T 939 3.29 0.80 4.13 4.01 x 10

-5
  

  19 rs8113016 LOC284417 intron 60525997 G 944 7.55 1.85 4.08 4.80 x 10
-5

  
  11 rs114879235 CENTD2 intron 72091467 T 944 5.24 1.29 4.08 4.94 x 10

-5
  

WC  10 rs7094782 KIAA1217 intron 24665411 G 944 3.56 0.88 4.04 5.73 x 10
-5

  
Model 1 2 rs11679410 PLCL1 | SATB2 intergenic 199450476 G 944 9.07 2.25 4.03 6.15 x 10

-5
  

  20 rs6059958 HM13 intron 29606939 C 942 -1.82 0.45 -4.01 6.52 x 10
-5
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WC 1 rs2753399 ZFYVE9 intron 52546945 A 944 8.93 2.05 4.37 1.41 x 10

-5
  

Model 2 10 rs12570727 SLC39A12 | CACNB2 intergenic 18465525 A 944 1.92 0.45 4.30 1.87 x 10
-5

  

  11 
chr11:7209146

7 CENTD2 intron 72091467 T 944 5.43 1.27 4.29 1.97 x 10
-5

  
  8 rs13267357 LOC646909 | TMEM66 intergenic 29914768 A 944 3.58 0.84 4.26 2.27 x 10

-5
  

  4 rs11735605 EPHA5 | CENPC1 intergenic 66366424 C 944 2.96 0.71 4.17 3.37 x 10
-5

  
  5 rs4607330 RAB9P1 | EFNA5 intergenic 105035114 T 939 3.27 0.78 4.17 3.37 x 10

-5
  

  17 rs2006827 GAS7 intron 9798897 C 941 -1.60 0.40 -4.01 6.51 x 10
-5

  
  15 rs62017164 TRPM7 intron 48655616 T 944 8.37 2.10 3.98 7.36 x 10

-5
  

  15 rs62017165 TRPM7 intron 48655833 T 944 8.37 2.10 3.98 7.36 x 10
-5

  
  15 rs1060599 TRPM7 intron 48661924 T 944 8.37 2.10 3.98 7.36 x 10

-5
  

 
HC 10 rs12570727 SLC39A12 | CACNB2 intergenic 18465525 A 944 2.19 0.45 4.83 1.63 x 10

-6
   

Model 1 19 rs8113016 LOC284417 intron 60525997 G 944 8.70 1.86 4.68 3.25 x 10
-6

   

 
10 rs7072408 PCBD1 | UNC5B intergenic 72419228 G 940 -2.24 0.48 -4.66 3.70 x 10

-6
   

  1 rs2753399 ZFYVE9 intron 52546945 A 944 9.39 2.09 4.49 7.87 x 10
-6

   
  1 rs11688 JUN coding 59020581 A 941 -2.28 0.53 -4.32 1.71 x 10

-5
  

  9 rs10812811 LINGO2 intron 28399229 T 944 3.05 0.71 4.29 1.98 x 10
-5

  
  12 rs74955017 FON4 | MYO1H intergenic 108256738 T 943 6.50 1.55 4.19 3.07 x 10

-5
  

  10 rs7082582 GPAM | TECTB intergenic 113981387 T 943 1.75 0.42 4.13 3.97 x 10
-5

  
  12 rs4766988 PTPN11 | RPH3A intergenic 111589413 A 944 4.54 1.12 4.06 5.29 x 10

-5
  

  12 rs17824620 PTPN11 | RPH3A intergenic 111585377 A 944 4.54 1.12 4.06 5.29 x 10
-5

  

                        
HC 10 rs12570727 SLC39A12 | CACNB2 intergenic 18465525 A 944 2.23 0.45 5.00 6.80 x 10

-7
    

Model 2 1 rs2753399 ZFYVE9 intron 52546945 A 944 9.19 2.05 4.48 8.29 x 10
-6

   
  10 rs7072408 PCBD1 | UNC5B intergenic 72419228 G 940 -2.10 0.47 -4.42 1.08 x 10

-5
  

  1 rs11688 JUN coding 59020581 A 941 -2.26 0.52 -4.36 1.44 x 10
-5

  
  19 rs8113016 LOC284417 intron 60525997 G 944 7.94 1.83 4.34 1.60 x 10

-5
  

  9 rs10812811 LINGO2 intron 28399229 T 944 2.98 0.70 4.26 2.23 x 10
-5

  
  10 rs7082582 GPAM | TECTB intergenic 113981387 T 943 1.77 0.42 4.25 2.39 x 10

-5
  

  10 rs9299702 ITGB1 | LOC401640 intergenic 33331688 G 943 -1.94 0.46 -4.17 3.31 x 10
-5

  
  21 rs2827546 NCAM2 | LOC284821 intergenic 22797455 A 938 -2.15 0.53 -4.10 4.60 x 10

-5
  

  12 rs776037 INHBC intron 56129281 C 944 -1.68 0.41 -4.09 4.66 x 10
-5

  

                        
WHR 4 rs13113267 MGC48628 intron 91825412 A 943 0.02 0.00 5.41 8.24 10

-8
   

Model 1 3 rs2400349 EPHB1 | LOC645218 intergenic 136041127 A 943 0.05 0.01 5.36 1.07  x 10
-7

    
  1 rs12095241 WARS2 intron 119431520 G 941 0.02 0.00 4.91 1.08 x 10

-6
   

  7 rs6972785 JAZF1 | LOC100128081 intergenic 28002776 C 942 0.02 0.00 4.72 2.71 x 10
-6
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 WHR 9 rs4382560 LOC646609 | LOC402360 intergenic 22854667 C 940 0.02 0.00 4.60 4.73 x 10
-6

   
  9 rs28617580 C9orf96 intron 135242773 T 943 0.03 0.01 4.49 8.20 x 10

-6
   

  2 rs2221999 SCN2A | FAM130A2 intergenic 166091596 G 943 0.02 0.00 4.47 8.68 x 10
-6

   
  9 rs34399743  C9orf96 intron 135241179 A 943 0.03 0.01 4.44 1.01 x 10

-5
  

  1 rs12088290 WARS2 intron 119385449 T 943 0.02 0.00 4.44 1.01 x 10
-5

  
  7 rs115602681 DGKB intron 14563567 C 942 0.05 0.01 4.42 1.12 x 10

-5
  

                        
Fat mass 4 rs4240248 FAM114A1 intron 38593309 A 787 2403.00 497.90 4.83 1.68 x 10

-6
   

Model 1 1 rs2753399 ZFYVE9 intron 52546945 A 787 7314.00 1567.00 4.67 3.58 x 10
-6

   
  22 rs11704615 PDGFB | RPL3 intergenic 38026780 G 787 5827.00 1309.00 4.45 9.74 x 10

-6
   

  10 rs17106320 GRID1 coding 87888709 A 787 -1647.00 382.00 -4.31 1.84 x 10
-5

  
  8 rs13267357 LOC646909 | TMEM66 intergenic 29914768 A 787 2706.00 635.50 4.26 2.31 x 10

-5
  

  12 rs74955017 FON4 | MYO1H intergenic 108256738 T 787 4891.00 1154.00 4.24 2.50 x 10
-5

  
  3 rs16831219 PE5L | LOC131054 intergenic 181389359 A 786 6335.00 1518.00 4.17 3.36 x 10

-5
  

  5 rs740366 CAST intron 136302695 A 786 2283.00 547.30 4.17 3.38 x 10
-5

  
  10 rs10827955 PLDC2 intron 20405001 G 787 -1310.00 314.30 -4.17 3.41 x 10

-5
  

 
16 rs935753 LOC644649 | LOC729159 intergenic 58934916 A 781 2156.00 509.10 4.24 2.55 x 10

-5
  

 
4 rs4240248 FAM114A1 intron 38593309 A 787 1772.00 421.10 4.21 2.88 x 10

-5
  

  
Fat mass  8 rs6421010 ZFAT1 intron 135582302 C 786 -2156.00 528.80 -4.08 5.03 x 10

-5
  

Model 2 8 rs13267357 LOC646909 | TMEM66 intergenic 29914768 A 787 2142.00 535.80 4.00 7.03 x 10
-5

  

 
2 rs4672376 BCL11A intergenic 60347849 G 786 -1026.00 260.50 -3.94 8.94 x 10

-5
  

  10 rs2487927 KIAA1462 intron 30351372 T 787 -1696.00 431.20 -3.93 9.11 x 10
-5

  
  10 rs2478835 KIAA1462 coding 30357955 T 787 -1695.00 432.00 -3.92 9.52 x 10

-5
  

                        
Lean mass 19 rs8113016 LOC284417 intron 60525997 G 787 6568.00 1275.00 5.15 3.28 x 10

-7
   

Model 1 11 rs11226119 PDGFD | DDI1 intergenic 103 404484 T 787 -2663.00 577.60 -4.61 4.68 x 10
-6

   
  20 rs10485674 DH35 | MAFB intergenic 38727246 G 787 5488.00 1211.00 4.53 6.83 x 10

-6
   

  1 rs587271 SSBP3 intron 54515699 C 787 6301.00 1460.00 4.32 1.79 x 10
-5

  
  11 rs11224449 FLJ32810 intron 100166537 T 787 4380.00 1022.00 4.28 2.06 x 10

-5
  

  4 rs4235133 YIPF7 | GUF1 intergenic 44350101 A 787 1198.00 281.60 4.26 2.35 x 10
-5

  
  4 rs11734664 STK32B intron 5276947 T 787 2065.00 487.40 4.24 2.54 x 10

-5
  

  9 rs17251166 FKTN | TAL2 intergenic 107449435 C 787 -1222.00 297.40 -4.11 4.37 x 10
-5

  
  15 rs1044355 ULK3 | SCAMP2 intergenic 72924117 A 787 -4246.00 1042.00 -4.07 5.11 x 10

-5
  

  9 rs73644048 LINGO2 intron 28475113 G 786 3659.00 904.80 4.04 5.77 x 10
-5

  

                        
Lean mass 20 rs10485674 DH35 | MAFB intergenic 38727246 G 787 4649.00 986.40 4.71 2.89 x 10

-6
   

Model 2 15 rs17158168 HOMER2 intron 81356715 A 786 1402.00 305.80 4.59 5.26 x 10
-6

   
  1 rs587271 SSBP3 intron 54515699 C 787 5335.00 1189.00 4.49 8.25 x 10

-6
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 Lean mass 6 rs78936838 LRRC16 intron 25402494 A 787 -1808.00 416.60 -4.34 1.60 x 10
-5

  
  19 rs8113016 LOC284417 intron 60525997 G 787 4547.00 1048.00 4.34 1.63 x 10

-5
  

  3 rs11705953 
MULTIPLE_GENES:2613

7.100132655 complex 115768609 A 787 4510.00 1077.00 4.19 3.14 x 10
-5

  
  6 rs115551443 PHACTR1 intron 13031785 G 787 -1413.00 338.60 -4.17 3.36 x 10

-5
  

  16 rs77685839 NRN1L coding 66477488 G 782 -1395.00 342.70 -4.07 5.17 x 10
-5

  
  10 rs10509761 AS3MT intron 104622759 C 786 1358.00 338.00 4.02 6.43 x 10

-5
  

  6 rs74829142 LRRC16 intron 25408508 A 787 -1575.00 398.20 -3.96 8.33 x 10
-5

  

                        
Lean mass 20 rs10485674 DH35 | MAFB intergenic 38727246 G 787 4092.00 829.60 4.93 9.91 x 10

-7
   

Model 4 7 rs62451130 JAZF1 intron 27943699 T 782 4431.00 932.10 4.75 2.39 x 10
-6

   
  17 rs1526187 CA10 intron 47169634 G 786 -999.20 220.50 -4.53 6.75 x 10

-6
   

  2 rs75276762 KIAA1486 | IRS1 intergenic 226755929 T 786 -875.50 207.90 -4.21 2.85 x 10
-5

  
  6 chr6:25402494 LRRC16 intron 25402494 A 787 -1477.00 351.30 -4.21 2.91 x 10

-5
  

  8 rs6989280 TRIB1 | LOC100130231 intergenic 126577928 G 787 -1253.00 298.80 -4.19 3.06 x 10
-5

  
  12 rs79224935 ATP2B1 utr 88506542 A 787 1456.00 348.90 4.17 3.32 x 10

-5
  

  12 rs74940559 ATP2B1 intron 88530271 C 787 1456.00 348.90 4.17 3.32 x 10
-5

  
  1 rs587271 SSBP3 intron 54515699 C 787 4170.00 1004.00 4.15 3.66 x 10

-5
  

  7 rs62451122 JAZF1 intron 27921261 T 787 3822.00 934.30 4.09 4.74 x 10
-5

  

 
PFM 4 rs4240248 FAM114A1 intron 38593309 A 787 2.21 0.49 4.56 5.97 x 10

-6
   

Model 1 17 rs10512513 PRKCA intron 61965600 G 787 1.50 0.35 4.34 1.64 x 10
-5

  
  2 rs7576822 NBEAL1 intron 203782462 T 787 4.52 1.12 4.03 6.13 x 10

-5
  

  2 rs9678194 NBEAL1 intron 203760073 G 786 4.52 1.12 4.02 6.30 x 10
-5

  
  12 rs11838318 DYRK2 | IFNG intergenic 66558171 C 787 1.95 0.49 4.02 6.32 x 10

-5
  

  1 rs16852018 LOC400796 | SEC16B intergenic 176098880 A 786 -1.32 0.33 -4.00 6.84 x 10
-5

  
  2 rs137874153 WDR12 intron 203461410 C 787 5.45 1.37 3.98 7.40 x 10

-5
  

  2 rs114986742 LOC100129743 | NBEAL1 intergenic 203627965 T 787 5.01 1.28 3.92 9.58 x 10
-5

  
  2 rs116337069 RAPH1 | CD28 intergenic 204134869 T 787 5.01 1.28 3.92 9.58 x 10

-5
  

  8 rs13267357 LOC646909 | TMEM66 intergenic 29914768 A 787 5.01 1.28 3.92 9.58 x 10
-5

  

 
PFM 4 rs4240248 FAM114A1 intron 38593309 A 787 2.21 0.49 4.56 5.97 x 10

-6
   

Model 2 17 rs10512513 PRKCA intron 61965600 G 787 1.50 0.35 4.34 1.64 x 10
-5

  
  2 rs7576822 NBEAL1 intron 203782462 T 787 4.52 1.12 4.03 6.13 x 10

-5
  

  2 rs9678194 NBEAL1 intron 203760073 G 786 4.52 1.12 4.02 6.30 x 10
-5

  
  2 rs4674359 AO1 | AO2 intergenic 201302574 C 787 1.95 0.49 4.02 6.32 x 10

-5
  

  12 rs11838318 DYRK2 | IFNG intergenic 66558171 C 786 -1.32 0.33 -4.00 6.84 x 10
-5

  
  1 rs16852018 LOC400796 | SEC16B intergenic 176098880 A 787 5.45 1.37 3.98 7.40 x 10

-5
  

  2 rs137874153 WDR12 intron 203461410 C 787 5.01 1.28 3.92 9.58 x 10
-5
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 PFM 2 rs114986742 LOC100129743 | NBEAL1 intergenic 203627965 T 787 5.01 1.28 3.92 9.58 x 10
-5

  
  2 rs116337069 RAPH1 | CD28 intergenic 204134869 T 787 5.01 1.28 3.92 9.58 x 10

-5
  

 

 

Table E7. Top associated SNPs with body composition traits in young female adults following linear regression with adjustment for covariates 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP A1 NMISS BETA SE STAT P 
 
BMI 3 rs149090 EDEM1 | GRM7 intergenic 6486781 G 448 0.12 0.02 4.85 1.70 x 10

-6
   

Model 1 5 rs32479 ST8SIA4 intron 100200494 G 448 0.13 0.03 4.33 1.82 x 10
-5

  
  3 rs9836894 PBRM1 intron 52691165 G 448 0.07 0.02 4.26 2.46 x 10

-5
  

  3 rs76913378 GLT8D1 intron 52706513 C 448 0.07 0.02 4.26 2.46 x 10
-5

  
  3 rs13325325 NEK4 intron 52778629 G 448 0.07 0.02 4.26 2.46 x 10

-5
  

  16 rs113530185 DHODH | HP intergenic 70638303 C 448 0.06 0.01 4.22 2.99 x 10
-5

  
  3 rs9824342 NISCH intron 52486947 G 448 0.06 0.02 4.18 3.58 x 10

-5
  

  3 rs9813653 DNAH1 intron 52366874 T 448 0.05 0.01 4.14 4.11 x 10
-5

  
  3 rs9828432 DNAH1 intron 52375005 A 448 0.05 0.01 4.14 4.11 x 10

-5
  

  3 rs9843055 PHF7 | SEMA3G intergenic 52434363 C 448 0.05 0.01 4.14 4.11 x 10
-5

  
  3 rs34540591 SEMA3G coding 52449814 T 448 0.05 0.01 4.14 4.11 x 10

-5
  

 
WC 17 rs2006827 GAS7 intron 9798897 C 440 -3.12 0.69 -4.49 9.14 x 10

-6
   

Model 1 5 rs32479 ST8SIA4 intron 100200494 G 442 17.60 4.06 4.34 1.79 x 10
-5

  
  3 rs149090 EDEM1 | GRM7 intergenic 6486781 G 442 14.10 3.27 4.31 2.03 x 10

-5
  

  11 rs114431455 SLC35C1 | CRY2 intergenic 45795746 C 442 8.09 1.89 4.29 2.20 x 10
-5

  
  5 rs4607330 RAB9P1 | EFNA5 intergenic 105035114 T 440 5.29 1.24 4.25 2.60 x 10

-5
  

  15 rs34173668 VPS13C intron 60092876 C 442 9.42 2.29 4.12 4.51 x 10
-5

  
  15 rs34958705 VPS13C intron 60104049 G 442 9.42 2.29 4.12 4.51 x 10

-5
  

  15 rs34311301 VPS13C intron 60129847 C 442 9.42 2.29 4.12 4.51 x 10
-5

  
  11 rs80081080 SLC35C1 | CRY2 intergenic 45796003 G 442 6.84 1.66 4.11 4.64 x 10

-5
  

  15 rs17271312 VPS13C intron 60123571 C 439 9.40 2.29 4.10 4.97 x 10
-5

  

                        
WC 17 rs2006827 GAS7 intron 9798897 C 440 -3.17 0.68 -4.64 4.62 x 10

-6
   

Model 2 5 rs32479 ST8SIA4 intron 100200494 G 442 17.54 4.00 4.38 1.48 x 10
-5

  

 
5 rs4607330 RAB9P1 | EFNA5 intergenic 105035114 T 440 5.22 1.23 4.26 2.56 x 10

-5
  

  3 rs149090 EDEM1 | GRM7 intergenic 6486781 G 442 13.70 3.23 4.24 2.74 x 10
-5
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 WC 9 rs10810279 FREM1 intron 14868094 A 442 3.49 0.85 4.10 4.91 x 10
-5

  
  7 rs10269203 POU6F2 intron 39430634 T 441 2.93 0.71 4.09 5.06 x 10

-5
  

  3 rs117195838 BTD intron 15625332 T 442 10.27 2.54 4.04 6.42 x 10
-5

  
  10 rs16930166 LYZL1 | LOC387647 intergenic 29647143 T 442 8.75 2.17 4.03 6.59 x 10

-5
  

  2 rs114285212 LOC727944 | TMEM18 intergenic 630159 A 442 12.39 3.09 4.01 7.02 x 10
-5

  

                        
HC 5 rs32479  ST8SIA4 intron 100200494 G 443 20.28 3.97 5.11 4.80 x 10

-7
   

Model 1 3 rs149090 EDEM1 | GRM7 intergenic 6486781 G 443 15.27 3.21 4.76 2.68 x 10
-6

   
  10 rs11598794 SGMS1 intron 51766998 A 442 10.38 2.35 4.42 1.25 x 10

-5
  

  11 rs114431455 SLC35C1 | CRY2 intergenic 45795746 C 443 8.15 1.86 4.39 1.42 x 10
-5

  
  16 rs3091402 IGSF6 intron 21571296 A 443 4.09 0.95 4.33 1.85 x 10

-5
  

  6 rs761840 TMEM200A | LOC285733 intergenic 131155994 C 443 9.64 2.26 4.27 2.45 x 10
-5

  
  3 rs9836894 PBRM1 intron 52691165 G 443 8.73 2.05 4.25 2.56 x 10

-5
  

  3 rs76913378 GLT8D1 intron 52706513 C 443 8.73 2.05 4.25 2.56 x 10
-5

  
  3 rs13325325 NEK4 intron 52778629 G 443 8.73 2.05 4.25 2.56 x 10

-5
  

  11 rs7935037 CHST1 | DKFZp779M0652 intergenic 45679874 G 443 18.22 4.32 4.22 3.02 x 10
-5

  

                        
HC 5 rs32479 ST8SIA4 intron 100200494 G 443 20.20 3.90 5.18 3.40 x 10

-7
   

Model 2 3 rs149090 EDEM1 | GRM7 intergenic 6486781 G 443 14.84 3.16 4.69 3.61 x 10
-6

   
  16 rs3091402 IGSF6 intron 21571296 A 443 4.25 0.93 4.58 6.17 x 10

-6
   

  6 rs761840 TMEM200A | LOC285733 intergenic 131155994 C 443 9.85 2.22 4.44 1.15 x 10
-5

  
  3 rs117195838 BTD intron 15625332 T 443 10.85 2.49 4.35 1.68 x 10

-5
  

  12 rs797611 PTPN11 | RPH3A intergenic 111533680 T 443 9.83 2.26 4.35 1.70 x 10
-5

  
  12 rs4766988 PTPN11 | RPH3A intergenic 111589413 A 443 9.59 2.21 4.33 1.85 x 10

-5
  

  12 rs17824620 PTPN11 | RPH3A intergenic 111585377 A 443 9.59 2.21 4.33 1.85 x 10
-5

  
  11 rs7935037 CHST1 | DKFZp779M0652 intergenic 45679874 G 443 18.11 4.25 4.26 2.48 x 10

-5
  

  3 rs9836894 PBRM1 intron 52691165 G 443 8.44 2.02 4.18 3.59 x 10
-5

  

  3 rs76913378 GLT8D1 intron 52706513 C 443 8.44 2.02 4.18 3.59 x 10
-5

  

 
WHR 9 rs1571578 ZNF618 intron 115754911 A 442 0.11 0.02 5.23 2.69 x 10

-7
   

Model 1 11 rs78366803 LOC100128354 | MTNR1B intergenic 92331703 C 442 0.09 0.02 4.65 4.45 x 10
-6

   
  1 rs72929703 ANKRD38 | USP1 intergenic 62613996 A 442 0.04 0.01 4.60 5.56 x 10

-6
   

  11 rs11607061 TMEM135 | RAB38 intergenic 86737757 A 442 0.12 0.03 4.52 8.11 x 10
-6

   
  3 rs118152687 CADM2 intron 85886949 A 442 0.05 0.01 4.44 1.14 x 10

-5
  

  6 rs1247330 PLG | MAP3K4 intergenic 161246640 C 442 -0.02 0.00 -4.43 1.17 x 10
-5

  

 
1 rs114779017 LDLRAP1 intron 25752966 T 436 0.03 0.01 4.36 1.63 x 10

-5
  

  1 rs114995236 LDLRAP1 intron 25751183 T 442 0.03 0.01 4.36 1.64 x 10
-5

  
  1 rs75401001 LDLRAP1 intron 25752594 G 442 0.03 0.01 4.36 1.64 x 10

-5
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Fat mass 3 rs117195838 BTD intron 15625332  T 373 1.01  x 10

4
    1.98 x 10

3
  5.07x 10

2
  6.36 x 10

-7
   

Model 1 19 rs12611418 LOC389435 | OPRM1 intergenic 339413 C 373 2.54  x 10
4
     5.51 x 10

3
    4.60x 10

2
  5.71 x 10

-6
   

  2 rs3934784 LOC100131211 | NAB1 intergenic 191156494 C 373 3.55  x 10
4
    7.78x 10

3
    4.56x 10

2
  7.05 x 10

-6
   

  2 rs13005335 LOC100131211 | NAB1 intergenic 191179265 G 373 3.55  x 10
4
    7.78x 10

3
   4.56x 10

2
  7.05 x 10

-6
   

  11 rs11224449 FLJ32810 intron 100166537 T 373 1.03  x 10
4
    2.28x 10

3
   4.52x 10

2
  8.31 x 10

-6
   

  10 rs17106320 GRID1 coding 87888709 A 373 -3.07 x 10
3
   7.07x 10

2
    -4.34x 10

2
   1.87 x 10

-5
  

  2 rs114285212 LOC727944 | TMEM18 intergenic 630159 A 373 1.21  x 10
4
    2.78x 10

3
  4.33x 10

2
  1.91 x 10

-5
  

  2 rs78501377 LOC727944 | TMEM18 intergenic 630682 C 373 1.21  x 10
4
    2.78x 10

3
  4.33x 10

2
  1.91 x 10

-5
  

  2 rs76275602 LOC727944 | TMEM18 intergenic 631877 A 373 1.21  x 10
4
    2.78x 10

3
  4.33x 10

2
  1.91 x 10

-5
  

  2 rs78460669 LOC727944 | TMEM18 intergenic 633005 C 373 1.21  x 10
4
    2.78x 10

3
  4.33x 10

2
  1.91 x 10

-5
  

 
Fat mass 3 rs117195838 BTD intron 15625332 T 373 1.01 x 10

4
    1.98x 10

3
  5.11x 10

2
  5.32 x 10

-7
   

 Model 2 19 rs12611418 LOC389435 | OPRM1 intergenic 339413 C 373 2.50 x 10
4
    5.53x 10

3
  4.52x 10

2
  8.36 x 10

-6
   

  2 rs3934784 LOC100131211 | NAB1 intergenic 191156494 C 373 3.50 x 10
4
    7.80x 10

3
  4.48x 10

2
  9.92 x 10

-6
   

  2 rs13005335 LOC100131211 | NAB1 intergenic 191179265 G 373 3.50 x 10
4
    7.80x 10

3
  4.48x 10

2
  9.92 x 10

-6
   

  11 rs11224449 FLJ32810 intron 100166537 T 373 1.02 x 10
4
    2.29x 10

3
  4.43x 10

2
  1.24 x 10

-5
  

  10 rs17106320 GRID1 coding 87888709 A 373 -3.12 x 10
3
  7.07x 10

2
    -4.41x 10

2
  1.36 x 10

-5
  

  2 rs114285212 LOC727944 | TMEM18 intergenic 630159 A 373 1.20 x 10
4
    2.79x 10

3
  4.29x 10

2
  2.27 x 10

-5
  

  2 rs78501377 LOC727944 | TMEM18 intergenic 630682 C 373 1.20 x 10
4
    2.79x 10

3
  4.29x 10

2
  2.27 x 10

-5
  

  2 rs76275602 LOC727944 | TMEM18 intergenic 631877 A 373 1.20 x 10
4
    2.79x 10

3
  4.29x 10

2
  2.27 x 10

-5
  

  2 rs78460669 LOC727944 | TMEM18 intergenic 633005 C 373 1.20 x 10
4
    2.79x 10

3
  4.29x 10

2
  2.27 x 10

-5
  

  2 rs78559588 LOC727944 | TMEM18 intergenic 637656 C 373 1.20 x 10
4
    2.79x 10

3
  4.29x 10

2
  2.27 x 10

-5
  

                        
Fat mass 16 rs935753 LOC644649 | LOC729159 intergenic 58934916 A 373 3284.00 754.40 4.35 1.75 x 10

-5
  

Model 3 12 rs10773511 LOC644489 | TMEM132C intergenic 127295998 T 373 1812.00 425.60 4.26 2.64 x 10
-5

  
  3 rs7810655 COLQ intron 15509721 A 373 3651.00 859.70 4.25 2.74 x 10

-5
  

  3 rs80245351 COLQ intron 15510186 T 373 3651.00 859.70 4.25 2.74 x 10
-5

  
  3 rs79803475 COLQ intron 15510923 C 373 3651.00 859.70 4.25 2.74 x 10

-5
  

  3 rs76214503 COLQ intron 15511325 C 373 3651.00 859.70 4.25 2.74 x 10
-5

  
  3 rs77099202 COLQ intron 15511710 A 373 3651.00 859.70 4.25 2.74 x 10

-5
  

  3 rs74519258 COLQ intron 15526083 T 373 3651.00 859.70 4.25 2.74 x 10
-5

  
  3 rs74781229 COLQ intron 15526219 T 373 3651.00 859.70 4.25 2.74 x 10

-5
  

  3 rs78249903 COLQ intron 15528593 C 373 3651.00 859.70 4.25 2.74 x 10
-5

  

                        
Lean mass 2 rs1477514 NCK2 | LOC100132455 intergenic 105896372 A 373 2866.00 679.00 4.22 3.06 x 10

-5
  

Model 1 11 rs90192 SIDT2 intron 116564557 G 373 1479.00 351.70 4.21 3.27 x 10
-5

  
  11 rs6590779 LOC729305 intergenic 134317533 T 372 -1614.00 385.40 -4.19 3.54 x 10

-5
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Lean mass 12 rs74103533 LOC729298 | HMGA2 intergenic 64496995 T 372 2161.00 539.90 4.00 7.60 x 10
-5

  
  4 rs11734664 STK32B intron 5276947 T 373 2770.00 692.30 4.00 7.64 x 10

-5
  

  11 rs236916 PCSK7 intron 116594838 A 373 1536.00 386.50 3.98 8.46 x 10
-5

  
  4 rs7434427 LOC285501 | LOC728081 intergenic 179754269 T 373 1488.00 375.60 3.96 8.92 x 10

-5
  

  8 rs6472822 LY96 | JPH1 intergenic 75213296 T 373 1907.00 483.60 3.94 9.59 x 10
-5

  

 
Lean mass 12 rs1373573 LOC100131677 | PDE3A intergenic 20424861 T 373 1199.00 275.70 4.35 1.76 x 10

-5
  

Model 2 3 chr3:186006566 DGKG coding 187489260 G 373 3317.00 799.00 4.15 4.10 x 10
-5

  

 
4 rs2348638 RAPGEF2 | FSTL5 intergenic 160983514 G 373 -1359.00 328.40 -4.14 4.34 x 10

-5
  

  10 rs12570727 SLC39A12 | CACNB2 intergenic 18465525 A 373 1298.00 318.40 4.08 5.64 x 10
-5

  
  16 rs116027434 EDC4 intron 66475231 T 373 5160.00 1292.00 3.99 7.89 x 10

-5
  

 
Lean mass 18 rs2163544 LOC388474 intron 35139073 A 373 966.50 220.90 4.38 1.58 x 10

-5
  

Model 4 18 rs16971807 LOC388474 intron 35152687 A 372 996.60 232.00 4.30 2.22 x 10
-5

  
  8 rs2978056 LOC100129104 | ZFAT1 intergenic 134693776 T 373 -909.10 218.10 -4.17 3.83 x 10

-5
  

  11 rs12288732 ADAMTS15 | C11orf44 intergenic 129939477 A 373 -865.10 208.50 -4.15 4.14 x 10
-5

  
  8 rs602382 UNC5D | KCNU1 intergenic 36223678 T 372 -858.00 211.40 -4.06 6.04 x 10

-5
  

  5 rs1700574 
LOC729506 | 

LOC100128382 intergenic 8595619 C 373 1312.00 325.80 4.03 6.90 x 10
-5

  
  1 rs6683071 FLJ43505 coding 220989974 A 373 959.50 238.40 4.02 6.94 x 10

-5
  

  2 rs2042144 NAG intron 15310767 T 373 -2933.00 735.10 -3.99 7.95 x 10
-5

  
  11 rs90192 SIDT2 intron 116564557 G 373 816.00 205.10 3.98 8.37 x 10

-5
  

  2 rs7606415 YSK4 intron 135479450 T 372 -794.60 201.60 -3.94 9.70 x 10
-5

  

                        
PFM 3 rs117195838 BTD intron 15625332 T 373 7.80 1.78 4.39 1.46 x 10

-5
  

Model 1 15 rs78946279 VPS33B intron 89348470 A 373 2.20 0.51 4.29 2.33 x 10
-5

  
  19 rs4802246 SFRS16 intron 50255028 A 373 -2.93 0.69 -4.27 2.54 x 10

-5
  

  2 rs3843862 C2orf3 | LRRTM4 intergenic 76096624 C 373 -3.42 0.84 -4.06 5.91 x 10
-5

  
  10 rs17106320 GRID1 coding 87888709 A 373 -2.54 0.63 -4.03 6.67 x 10

-5
  

  16 rs6501109 A2BP1 | LOC283953 intergenic 8398889 A 371 1.97 0.50 3.95 9.49 x 10
-5

  

                        
PFM 19 rs4802246 SFRS16 intron 50255028 A 373 -3.07 0.68 -4.55 7.47 x 10

-6
   

Model 2 3 rs117195838 BTD intron 15625332 T 373 7.65 1.75 4.38 1.57 x 10
-5

  
  15 rs78946279 VPS33B intron 89348470 A 373 2.05 0.51 4.03 6.85 x 10

-5
  

  16 rs6501109 A2BP1 | LOC283953 intergenic 8398889 A 371 1.94 0.49 3.95 9.41 x 10
-5
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Table E8. Top associated SNPs with body composition traits in young male adults following linear regression with adjustment for covariates 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP A1 NMISS BETA SE STAT P 
                        
BMI 19 rs11670765 LOC339344 intron 51093838 T 505 0.02 0.00 5.16 3.50 10

-7
   

Model 1 19 rs8113016 LOC284417 intron 60525997 G 505 0.07 0.01 4.90 1.28 x 10
-6

   
  12 rs7961916 TB3 | LOC100129020 intergenic 113839509 A 505 0.02 0.00 4.66 4.06 x 10

-6
   

  15 rs17598819 TRPM7 intron 48701919 T 503 0.12 0.03 4.61 5.17 x 10
-6

   
  15 rs17598264 USP50 | TRPM7 intergenic 48632003 G 505 0.12 0.03 4.60 5.27 x 10

-6
   

  15 rs62021060 TRPM7 utr 48640931 C 505 0.12 0.03 4.60 5.27 x 10
-6

   
  15 rs62017164 TRPM7 intron 48655616 T 505 0.12 0.03 4.60 5.27 x 10

-6
   

  15 rs62017165 TRPM7 intron 48655833 T 505 0.12 0.03 4.60 5.27 x 10
-6

   
  15 rs1060599 TRPM7 intron 48661924 T 505 0.12 0.03 4.60 5.27 x 10

-6
   

  15 rs62017202 TRPM7 intron 48736535 A 505 0.12 0.03 4.60 5.27 x 10
-6

   

                        
WC 8 rs2013640 DLC1 intron 13133461 G 502 3.10 0.57 5.41 9.80 x 10

-8
   

Model 1 15 rs17598264 USP50 | TRPM7 intergenic 48632003 G 502 15.82 3.05 5.19 3.02 x 10
-7

   
  15 rs62021060 TRPM7 utr 48640931 C 502 15.82 3.05 5.19 3.02 x 10

-7
   

  15 rs62017164 TRPM7 intron 48655616 T 502 15.82 3.05 5.19 3.02 x 10
-7

   
  15 rs62017165 TRPM7 intron 48655833 T 502 15.82 3.05 5.19 3.02 x 10

-7
   

  15 rs1060599 TRPM7 intron 48661924 T 502 15.82 3.05 5.19 3.02 x 10
-7

   
  15 rs62017202 TRPM7 intron 48736535 A 502 15.82 3.05 5.19 3.02 x 10

-7
   

  15 rs62017207  TRPM7 intron 48745151 C 502 15.82 3.05 5.19 3.02 x 10
-7

   
  15 rs62017208 TRPM7 intron 48746646 A 502 15.82 3.05 5.19 3.02 x 10

-7
   

  15 rs62017209 TRPM7 intron 48747259 A 502 15.82 3.05 5.19 3.02 x 10
-7

   

 
WC 15 rs17598264 USP50 | TRPM7 intergenic 48632003 G 502 16.41 2.99 5.50 6.19 x 10

-8
   

Model 2 15 rs62021060 TRPM7 utr 48640931 C 502 16.41 2.99 5.50 6.19 x 10
-8

   
  15 rs62017164 TRPM7 intron 48655616 T 502 16.41 2.99 5.50 6.19 x 10

-8
   

  15 rs62017165 TRPM7 intron 48655833 T 502 16.41 2.99 5.50 6.19 x 10
-8

   
  15 rs1060599 TRPM7 intron 48661924 T 502 16.41 2.99 5.50 6.19 x 10

-8
   

  15 rs62017202 TRPM7 intron 48736535 A 502 16.41 2.99 5.50 6.19 x 10
-8

   
  15 rs62017207  TRPM7 intron 48745151 C 502 16.41 2.99 5.50 6.19 x 10

-8
   

  15 rs62017208 TRPM7 intron 48746646 A 502 16.41 2.99 5.50 6.19 x 10
-8

   
  15 rs62017209 TRPM7 intron 48747259 A 502 16.41 2.99 5.50 6.19 x 10

-8
   

  15 rs17520350 TRPM7 intron 48684965 C 501 16.41 2.99 5.49 6.31 x 10
-8
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WHR 
6 rs3923725  

LOC100129474 | 
SLC17A4 intergenic 25842899 A 501 0.16 0.02 7.39 6.31 1013 

Model 1 2 rs115743734 COBLL1 intron 165255601 A 502 0.09 0.01 5.91 6.34 1009 
  3 rs17651358 CNTN4 intron 3039513 A 502 0.08 0.01 5.37 1.19 x 10

-7
   

  7 rs115252878 DGKB intron 14546425 T 502 0.08 0.01 5.29 1.88 x 10
-7

   
  7 rs114209770 DGKB intron 14547297 A 502 0.08 0.01 5.29 1.88 x 10

-7
   

  7 rs76358458 DGKB intron 14548446 G 502 0.08 0.01 5.29 1.88 x 10
-7

   
  3 rs1543143 SRGAP3 intron 9087876 T 502 0.05 0.01 5.24 2.41 x 10

-7
   

  12 rs76712056 FLJ40142 intron 108989096 A 502 0.07 0.01 5.21 2.76 x 10
-7

   
  7 rs115602681  DGKB intron 14563567 C 501 0.06 0.01 5.19 3.02 x 10

-7
   

  3 rs2400349 EPHB1 | LOC645218 intergenic 136041127 A 502 0.06 0.01 5.16 3.51 x 10
-7

   

                        
HC 15 rs17598264 USP50 | TRPM7 intergenic 48632003 G 502 17.34 3.20 5.42 9.44 x 10

-8
   

Model 1 15 rs62021060 TRPM7 utr 48640931 C 502 17.34 3.20 5.42 9.44 x 10
-8

   
  15 rs62017164 TRPM7 intron 48655616 T 502 17.34 3.20 5.42 9.44 x 10

-8
   

  15 rs62017165 TRPM7 intron 48655833 T 502 17.34 3.20 5.42 9.44 x 10
-8

   
  15 rs1060599 TRPM7 intron 48661924 T 502 17.34 3.20 5.42 9.44 x 10

-8
   

  15 rs62017202 TRPM7 intron 48736535 A 502 17.34 3.20 5.42 9.44 x 10
-8

   
  15 rs62017207  TRPM7 intron 48745151 C 502 17.34 3.20 5.42 9.44 x 10

-8
   

  15 rs62017208 TRPM7 intron 48746646 A 502 17.34 3.20 5.42 9.44 x 10
-8

   
  15 rs62017209 TRPM7 intron 48747259 A 502 17.34 3.20 5.42 9.44 x 10

-8
   

  15 rs17598819 TRPM7 intron 48701919 T 500 17.34 3.20 5.41 9.59 x 10
-8

   

                        
HC 15 rs17598264 USP50 | TRPM7 intergenic 48632003 G 502 18.04 3.12 5.79 1.28 x 10

-8
   

Model 2 15 rs62021060 TRPM7 utr 48640931 C 502 18.04 3.12 5.79 1.28 x 10
-8

   
  15 rs62017164 TRPM7 intron 48655616 T 502 18.04 3.12 5.79 1.28 x 10

-8
   

  15 rs62017165 TRPM7 intron 48655833 T 502 18.04 3.12 5.79 1.28 x 10
-8

   
  15 rs1060599 TRPM7 intron 48661924 T 502 18.04 3.12 5.79 1.28 x 10

-8
   

  15 rs62017202 TRPM7 intron 48736535 A 502 18.04 3.12 5.79 1.28 x 10
-8

   
  15 rs62017207  TRPM7 intron 48745151 C 502 18.04 3.12 5.79 1.28 x 10

-8
   

  15 rs62017208 TRPM7 intron 48746646 A 502 18.04 3.12 5.79 1.28 x 10
-8

   
  15 rs62017209 TRPM7 intron 48747259 A 502 18.04 3.12 5.79 1.28 x 10

-8
   

  15 rs17598819 TRPM7 intron 48701919 T 500 18.05 3.12 5.79 1.29 x 10
-8

   

                        
Fat mass 1 rs9970334 ICMT | C1orf211 intergenic 6218825 T 414 22880.00 4001.00 5.72 2.07 x 10

-8
   

Model 1 1 rs16852018 LOC400796 | SEC16B intergenic 176098880 A 414 6367.00 1128.00 5.65 3.06 x 10
-8

   
  11 rs77275360 SLC22A18 intron 2894032 T 411 4794.00 923.90 5.19 3.34 x 10

-7
   

  1 rs6670797 GP7 | MGC52498 intergenic 52870169 A 414 9112.00 1817.00 5.02 7.89 x 10
-7
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Fat mass 1 rs2753399 ZFYVE9 intron 52546945 A 414 8935.00 1817.00 4.92 1.27 x 10
-6

   
  1 rs72941254 NEGR1 | LOC100132353 intergenic 72446505 A 414 3272.00 677.80 4.83 1.95 x 10

-6
   

  1 rs72941257 NEGR1 | LOC100132353 intergenic 72451438 C 414 3272.00 677.80 4.83 1.95 x 10
-6

   
  1 rs72941270 NEGR1 | LOC100132353 intergenic 72465674 A 414 3272.00 677.80 4.83 1.95 x 10

-6
   

  3 rs115473751 EIF5A2 intron 172106758 A 414 4924.00 1025.00 4.80 2.21 x 10
-6

   
  1 rs72941224  NEGR1 | LOC100132353 intergenic 72411598 T 411 3264.00 680.40 4.80 2.26 x 10

-6
   

                        
Fat mass 1 rs16852018 LOC400796 | SEC16B intergenic 176098880 A 414 6386.00 1122.00 5.69 2.41 x 10

-8
   

Model 2 1 rs9970334 ICMT | C1orf211 intergenic 6218825 T 414 22530.00 3992.00 5.64 3.13 x 10
-8

   
  11 rs77275360 SLC22A18 intron 2894032 T 411 4760.00 920.50 5.17 3.65 x 10

-7
   

  1 rs6670797 GP7 | MGC52498 intergenic 52870169 A 414 9072.00 1809.00 5.01 7.96 x 10
-7

   
  12 rs2116677 OCC-1 intron 104232358 C 414 7179.00 1440.00 4.99 9.15 x 10

-7
   

  1 rs2753399 ZFYVE9 intron 52546945 A 414 8854.00 1811.00 4.89 1.45 x 10
-6

   
  3 rs115473751 EIF5A2 intron 172106758 A 414 4982.00 1021.00 4.88 1.51 x 10

-6
   

  1 rs72941254 NEGR1 | LOC100132353 intergenic 72446505 A 414 3282.00 674.80 4.86 1.64 x 10
-6

   
  1 rs72941257 NEGR1 | LOC100132353 intergenic 72451438 C 414 3282.00 674.80 4.86 1.64 x 10

-6
   

  1 rs72941270 NEGR1 | LOC100132353 intergenic 72465674 A 414 3282.00 674.80 4.86 1.64 x 10
-6

   
  1 rs72941224 NEGR1 | LOC100132353 intergenic 72411598 T 411 3274.00 677.30 4.83 1.90 x 10

-6
   

                        
Fat mass 1 rs16852018 LOC400796 | SEC16B intergenic 176098880 A 414 6050.00 1054.00 5.74 1.83 x 10

-8
   

Model 3 1 rs6670797 GP7 | MGC52498 intergenic 52870169 A 414 8844.00 1695.00 5.22 2.87 x 10
-7

   
  11 rs77275360 SLC22A18 intron 2894032 T 411 4400.00 864.50 5.09 5.49 x 10

-7
   

  1 rs2753399 ZFYVE9 intron 52546945 A 414 8316.00 1701.00 4.89 1.46 x 10
-6

   
  2 rs77393265  SUPT7L intron 27733704 A 414 5545.00 1155.00 4.80 2.21 x 10

-6
   

  1 rs72941254 NEGR1 | LOC100132353 intergenic 72446505 A 414 2966.00 636.20 4.66 4.26 x 10
-6

   
  1 rs72941257 NEGR1 | LOC100132353 intergenic 72451438 C 414 2966.00 636.20 4.66 4.26 x 10

-6
   

  1 rs72941270 NEGR1 | LOC100132353 intergenic 72465674 A 414 2966.00 636.20 4.66 4.26 x 10
-6

   
  4 rs7685796 LOC152742 | LOC441009 intergenic 14553996 A 414 6305.00 1357.00 4.65 4.55 x 10

-6
   

  1 rs72941224  NEGR1 | LOC100132353 intergenic 72411598 T 411 2955.00 638.30 4.63 4.96 x 10
-6

   

 
Lean mass 19 rs8113016 LOC284417 intron 60525997 G 414 8701.00 1655.00 5.26 2.37 x 10

-7
   

Model 1 1 rs587271 SSBP3 intron 54515699 C 414 9424.00 2078.00 4.54 7.58 x 10
-6

   
  1 rs59391530 TAF1A | MIA3 intergenic 220847044 A 414 3428.00 777.40 4.41 1.32 x 10

-5
  

  1 rs7525548 TNNI3K intron 74774062 T 414 -1860.00 423.70 -4.39 1.44 x 10
-5

  
  8 rs2409658 PIN1 intron 10706375 A 414 -2133.00 498.20 -4.28 2.32 x 10

-5
  

  6 rs6924854 PHACTR1 intron 13229646 A 414 -2166.00 511.40 -4.24 2.81 x 10
-5

  
  8 rs9969626 PIN1 intron 10708211 A 413 -2133.00 504.90 -4.23 2.95 x 10

-5
  

  3 rs6441886 CDCP1 intron 45103101 C 414 -1638.00 387.80 -4.22 2.96 x 10
-5

  
  17 rs4459609 CYB561 | LOC342541 intergenic 58902680 C 414 -1636.00 395.30 -4.14 4.24 x 10

-5
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  4 rs1844994 LOC100132227 intron 108417809 A 414 -2715.00 656.70 -4.13 4.32 x 10
-5

  

                        
Lean mass 19 rs8113016 LOC284417 intron 60525997 G 414 6562.00 1336.00 4.91 1.31 x 10

-6
   

Model 2 1 rs9970334 ICMT | C1orf211 intergenic 6218825 T 414 19490.00 4371.00 4.46 1.07 x 10
-5

  
  7 rs62451130 JAZF1 intron 27943699 T 410 6552.00 1474.00 4.45 1.14 x 10

-5
  

  15 rs12917461 LOC390638 | SV2B intergenic 89398076 A 414 -1349.00 306.70 -4.40 1.38 x 10
-5

  
  4 rs10030759 FRAS1 intron 79668559 G 414 -1449.00 331.70 -4.37 1.58 x 10

-5
  

  1 rs587271 SSBP3 intron 54515699 C 414 7271.00 1670.00 4.35 1.70 x 10
-5

  
  18 rs16951815 LRRC30 | PTPRM intergenic 7456596 G 414 2140.00 511.60 4.18 3.52 x 10

-5
  

  5 rs9654427 ANKRD31 intron 74502589 G 414 9144.00 2198.00 4.16 3.89 x 10
-5

  
  10 rs7067741 NT5C2 intron 104894612 C 414 2015.00 486.90 4.14 4.24 x 10

-5
  

  10 rs113503123 NT5C2 | LOC401648 intergenic 104951623 C 414 1950.00 471.80 4.13 4.36 x 10
-5

  
  10 rs79562142 CNNM2 intron 104725395 C 413 2026.00 493.00 4.11 4.79 x 10

-5
  

                        
Lean mass 7 rs62451130 JAZF1 intron 27943699 T 410 6771.00 1377.00 4.92 1.29 x 10

-6
   

Model 4 7 rs62451122 JAZF1 intron 27921261 T 414 6917.00 1563.00 4.43 1.23 x 10
-5

  
  15 rs12917461 LOC390638 | SV2B intergenic 89398076 A 414 -1261.00 288.20 -4.38 1.54 x 10

-5
  

  18 rs9955441 SLC14A2 intron 41486630 C 414 -2930.00 672.10 -4.36 1.65 x 10
-5

  
  20 rs10485674 DH35 | MAFB intergenic 38727246 G 414 5149.00 1204.00 4.28 2.35 x 10

-5
  

  18 rs16951815 LRRC30 | PTPRM intergenic 7456596 G 414 2051.00 479.90 4.27 2.40 x 10
-5

  
  4 rs10030759 FRAS1 intron 79668559 G 414 -1329.00 312.10 -4.26 2.55 x 10

-5
  

  14 rs10148443 LOC644584 | MBIP intergenic 35522543 G 414 1505.00 354.10 4.25 2.64 x 10
-5

  
  10 rs7067741 NT5C2 intron 104894612 C 414 1915.00 457.00 4.19 3.42 x 10

-5
  

                        
PFM 11 rs77275360 SLC22A18 intron 2894032 T 411 5.76 1.14 5.06 6.30 10

-7
   

Model 1 1 rs16852018 LOC400796 | SEC16B intergenic 176098880 A 414 7.01 1.40 5.01 8.15 10
-7

   
  1 rs6670797 GP7 | MGC52498 intergenic 52870169 A 414 10.60 2.25 4.72 3.24 x 10

-6
   

  1 rs72941254 NEGR1 | LOC100132353 intergenic 72446505 A 414 3.90 0.84 4.66 4.20 x 10
-6

   
  1 rs72941257 NEGR1 | LOC100132353 intergenic 72451438 C 414 3.90 0.84 4.66 4.20 x 10

-6
   

  1 rs72941270 NEGR1 | LOC100132353 intergenic 72465674 A 414 3.90 0.84 4.66 4.20 x 10
-6

   
  1 rs72941224  NEGR1 | LOC100132353 intergenic 72411598 T 411 3.89 0.84 4.64 4.82 x 10

-6
   

  
14 rs10134920 

LOC100132612 | 
C14orf177 intergenic 97789730 G 414 3.67 0.82 4.49 9.25 x 10

-6
   

  1 rs2753399 ZFYVE9 intron 52546945 A 414 9.99 2.25 4.44 1.15 x 10
-5

  
  3 rs58574369 NT5DC2 intron 52536300 A 414 4.48 1.02 4.40 1.41 x 10

-5
  

  2 rs7592118 CPS1 | ERBB4 intergenic 211913738 T 412 2.43 0.57 4.28 2.36 x 10
-5

  

                        
PFM 11 rs77275360 SLC22A18 intron 2894032 T 411 5.78 1.14 5.07 5.99 x 10

-7
   

Model 2 1 rs16852018 LOC400796 | SEC16B intergenic 176098880 A 414 7.00 1.40 5.00 8.51 x 10
-7
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PFM 1 rs6670797 GP7 | MGC52498 intergenic 52870169 A 414 10.61 2.25 4.72 3.19 x 10
-6

   
  1 rs72941254 NEGR1 | LOC100132353 intergenic 72446505 A 414 3.90 0.84 4.66 4.35 x 10

-6
   

  1 rs72941257 NEGR1 | LOC100132353 intergenic 72451438 C 414 3.90 0.84 4.66 4.35 x 10
-6

   
  1 rs72941270 NEGR1 | LOC100132353 intergenic 72465674 A 414 3.90 0.84 4.66 4.35 x 10

-6
   

  1 rs72941224  NEGR1 | LOC100132353 intergenic 72411598 T 411 3.89 0.84 4.63 5.00 x 10
-6

   

  
14 rs10134920 

LOC100132612 | 
C14orf177 intergenic 97789730 G 414 3.68 0.82 4.50 8.76 x 10

-6
   

  1 rs2753399 ZFYVE9 intron 52546945 A 414 10.03 2.25 4.45 1.09 x 10
-5

  
  3 rs58574369 NT5DC2 intron 52536300 A 414 4.50 1.02 4.41 1.33 x 10

-5
  

  2 rs7592118 CPS1 | ERBB4 intergenic 211913738 T 412 2.45 0.57 4.31 2.05 x 10
-5

  

 

 

Section C: Results from mixed linear model association (MLMA) 

 

In addition to the linear regression models outlined in Table 3.1. (Chapter 3) all the analyses presented in Tables E9 and E10 are also adjusted for 

relatedness and ten principle components. 

 

Table E9 Top SNPs associated with body composition traits when datasets are combined. 

Chr-chromosome, BP-base pair position, utr-untranslated region, in Plink the A1(affect allele) is the minor allele*, A2-major allele, MAF-minor allele frequency, Beta-

refers to per allele change in the phenotype, SE- standard error and P-value adjusted for various covariates. 

 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP A1 A2 MAF 
EFFECT 
(BETA) SE P 

 
BMI 17 rs115012414 APOH | PRKCA intergenic 61724373 C T 0.04 -0.03 0.01 7.53 x 10

-6
   

Model 1 17 rs77612309 APOH | PRKCA intergenic 61724990 C T 0.04 -0.03 0.01 1.17 x 10
-5

  
  21 rs411697 MULTIPLE_GENES:571.54073 complex 29636469 A G 0.48 -0.01 0.00 4.63 x 10

-5
  

  10 rs11015144 APBB1IP intron 26839957 A T 0.17 0.01 0.00 5.01 x 10
-5

  
  19 rs746075 NUCB1 intron 54108748 A G 0.09 -0.02 0.00 5.45 x 10

-5
  

  2 rs2114591 SP110 intron 230758813 T C 0.40 0.01 0.00 6.62 x 10
-5

  
  11 rs7106594 INSC | SO6 intergenic 15477573 C T 0.30 0.01 0.00 7.40 x 10

-5
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BMI  15 rs4775027 AQP9 | LIPC intergenic 56375396 G A 0.36 -0.01 0.00 7.48 x 10
-5

  

 
2 rs7581351 LOC344328 | LOC729141 intergenic 188520180 A G 0.42 0.01 0.00 7.77 x 10

-5
  

  14 rs10146149 NRN3 | LOC100131580 intergenic 78578318 T C 0.11 -0.02 0.00 7.98 x 10
-5

  

 
WC 2 rs2114591 SP110 intron 230758813 T C 0.40 1.66 0.37 8.26 x 10

-6
   

Model 1 10 rs1889516 C10orf112 intron 19637710 A G 0.44 1.60 0.37 1.48 x 10
-5

  

 
9 rs72656779 LOC729983 utr 22145640 A G 0.07 3.21 0.75 1.88 x 10

-5
  

 
9 rs10491772 NFIB | ZDHHC21 intergenic 14540138 C T 0.01 6.84 1.62 2.33 x 10

-5
  

 
14 rs11622292 PRO1768 | FON3 intergenic 89136080 T C 0.14 2.16 0.51 2.67 x 10

-5
  

 
9 rs7021554 ANRIL | LOC729983 intergenic 22142884 T C 0.08 2.83 0.68 2.84 x 10

-5
  

 
14 rs10146149 NRN3 | LOC100131580 intergenic 78578318 T C 0.11 -2.44 0.59 3.85 x 10

-5
  

 
20 rs8122057 JAG1 | LOC728573 intergenic 11085719 G T 0.23 1.76 0.43 4.80 x 10

-5
  

 
5 rs4703034 SLC2A5 | GPR157 intergenic 103839971 G A 0.22 1.80 0.44 4.86 x 10

-5
  

 
1 rs12239636 STARD4 | C5orf13 intergenic 9078288 T C 0.03 -4.12 1.03 6.42 x 10

-5
  

 
5 rs1598818 NUDT12 | RAB9P1 intergenic 110992117 T C 0.37 -1.47 0.37 6.84 x 10

-5
  

                        
WC 2 rs2114591 SP110 intron 230758813 T C 0.40 1.62 0.37 1.10 x 10

-5
  

Model 2 10 rs1889516 C10orf112 intron 19637710 A G 0.44 1.56 0.37 1.97 x 10
-5

  
  9 rs10491772 NFIB | ZDHHC21 intergenic 14540138 C T 0.01 6.76 1.60 2.49 x 10

-5
  

  9 rs72656779 LOC729983 utr 22145640 A G 0.07 3.12 0.74 2.84 x 10
-5

  
  14 rs11622292 PRO1768 | FON3 intergenic 89136080 T C 0.14 2.12 0.51 3.27 x 10

-5
  

  1 rs12239636 STARD4 | C5orf13 intergenic 9078288 T C 0.03 -4.18 1.02 4.44 x 10
-5

  
  14 rs10146149 NRN3 | LOC100131580 intergenic 78578318 T C 0.11 -2.40 0.59 4.49 x 10

-5
  

  3 rs12493688 HES1 | LOC100131551 intergenic 195401542 G T 0.01 7.42 1.82 4.74 x 10
-5

  
  9 rs7021554 ANRIL | LOC729983 intergenic 22142884 T C 0.08 2.73 0.67 4.81 x 10

-5
  

  3 rs72625020 IGF2BP2 | SFRS10 intergenic 187079472 T C 0.21 1.80 0.44 4.93 x 10
-5

  
  5 rs4703034 SLC2A5 | GPR157 intergenic 103839971 G A 0.22 1.76 0.44 6.39 x 10

-5
  

                        
HC 8 rs35584813 PPP1R3B | LOC100129150 intergenic 9245040 C T 0.01 7.19 1.63 1.09 x 10

-5
  

Model 1 8 rs11778774 PPP1R3B | LOC100129150 intergenic 9251517 G A 0.01 7.01 1.62 1.51 x 10
-5

  
  21 rs411697 MULTIPLE_GENES:571.54073 complex 29636469 A G 0.48 -1.62 0.38 1.82 x 10

-5
  

  6 rs2474346 GUCA1A intron 42244235 T G 0.30 1.69 0.40 2.77 x 10
-5

  
  10 rs1889516 C10orf112 intron 19637710 A G 0.44 1.59 0.38 3.17 x 10

-5
  

  8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 G A 0.01 7.01 1.69 3.44 x 10
-5

  
  12 rs3138139 RDH5 intron 54402150 G A 0.31 -1.63 0.41 5.78 x 10

-5
  

  8 rs73535332 PPP1R3B | LOC100129150 intergenic 9255047 C G 0.01 7.18 1.79 6.17 x 10
-5

  
  10 rs7072408 PCBD1 | UNC5B intergenic 72419228 G A 0.24 -1.77 0.44 6.19 x 10

-5
  

  19 rs12974306 DNM2 intron 10691281 T G 0.13 -2.23 0.56 6.28 x 10
-5

  
  9 rs7021554 PRO1768 | FON3 intergenic 22142884 T C 0.08 2.80 0.70 6.93 x 10

-5
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HC 8 rs11778774 PPP1R3B | LOC100129150 intergenic 9251517 G A 0.01 6.64 1.60 3.25 x 10

-5
  

Model 2 17 rs115012414 APOH | PRKCA intergenic 61724373 C T 0.04 -4.18 1.01 3.34 x 10
-5

  
  12 rs3138139 RDH5 intron 54402150 G A 0.31 -1.64 0.40 4.07 x 10

-5
  

  10 rs1889516 C10orf112 intron 19637710 A G 0.44 1.55 0.38 4.27 x 10
-5

  

 
17 rs77612309 APOH | PRKCA intergenic 61724990 C T 0.04 -4.11 1.01 4.34 x 10

-5
  

  8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 G A 0.01 6.75 1.67 5.32 x 10
-5

  
  2 rs2190373 RND3 | LOC344332 intergenic 151482339 A G 0.13 -2.27 0.57 6.04 x 10

-5
  

  20 rs115667632 C20orf174 intron 572110215 T C 0.03 -4.37 1.10 6.81 x 10
-5

  
  8 rs73535332 PPP1R3B | LOC100129150 intergenic 9255047 C G 0.01 6.97 1.77 8.11 x 10

-5
  

  19 rs12974306 DNM2 intron 10691281 T G 0.13 -2.16 0.55 8.59 x 10
-5

  
  1 rs56750694 WARS2 intron 119382364 T G 0.05 3.75 0.96 8.79 x 10

-5
  

                        
WHR 16 rs2037912 PPL coding 4873940 G C 0.02 0.05 0.01 1.21 x 10

-7
   

Model 1 4 rs17605986 RELL1 | LOC727821 intergenic 37434719 A G 0.03 0.03 0.01 1.05 x 10
-6

   
  4 rs11729192 GRIA2 | C4orf18 intergenic 158600300 G A 0.21 0.01 0.00 7.00 x 10

-6
   

  4 rs17246641 GRIA2 | C4orf18 intergenic 158603278 G A 0.21 0.01 0.00 7.21 x 10
-6

   
  15 rs11074155 UNQ9370 | LOC728292 intergenic 91627775 A G 0.04 0.02 0.01 1.52 x 10

-5
  

  7 rs2289055 DD56 intron 44578415 G A 0.04 0.02 0.01 1.74 x 10
-5

  
  7 rs7723 DD56 intron 44584318 A G 0.04 0.02 0.01 1.74 x 10

-5
  

  12 rs1625560 TMTC2 | SLC6A15 intergenic 83719434 G T 0.07 -0.02 0.00 2.73 x 10
-5

  
  3 rs13314361 SCN5A intron 38641586 A C 0.14 0.01 0.00 2.81 x 10

-5
  

  16 rs1861554 FTO intron 52607268 G A 0.07 0.02 0.00 2.91 x 10
-5

  
  2 rs1949915 FLJ41046 | FLJ42418 intergenic 6113406 A G 0.09 -0.02 0.00 5.01 x 10

-5
  

  1 rs17023092 WARS2 utr 119375976 T C 0.07 -0.02 0.00 9.11 x 10
-5

  
  1 rs74112264 WARS2 utr 119376488 A G 0.07 -0.02 0.00 9.11 x 10

-5
  

  1 rs17023118 WARS2 utr 119381509 A G 0.07 -0.02 0.00 9.11 x 10
-5

  

                        
Fat mass 1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -1813.50 368.47 8.58 x 10

-7
   

Model 1 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1663.04 347.89 1.75 x 10
-6

   
  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.48 1453.94 314.57 3.80 x 10

-6
   

  9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 2503.98 542.09 3.85 x 10
-6

   
  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 1996.18 446.37 7.75 x 10

-6
   

  1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A G 0.42 1371.86 310.27 9.80 x 10
-6

   
  21 rs411697 MULTIPLE_GENES:571.54073 complex 29636469 A G 0.48 -1300.83 302.41 1.70 x 10

-5
  

  1 rs11581129 LOC400796 | SEC16B intergenic 176037754 A G 0.17 -1675.78 404.85 3.48 x 10
-5

  
  9 rs10118205 ADAMTSL1 intron 18815134 C G 0.03 3487.23 847.91 3.91 x 10

-5
  

  2 rs2114591 SP110 intron 230758813 T C 0.40 1244.07 305.93 4.77 x 10
-5

  
  2 rs12470086 LOC728773 | LOC100133235 intergenic 147640932 T A 0.22 1462.10 360.72 5.05 x 10

-5
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Fat mass 1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -1795.48 366.27 9.48 x 10

-7
   

Model 2 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1649.56 345.76 1.84 x 10
-6

   
  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.48 1454.81 312.25 3.18 x 10

-6
   

  9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 2408.25 539.52 8.06 x 10
-6

   
  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 1965.69 444.33 9.69 x 10

-6
   

  1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A G 0.42 1360.32 308.08 1.01 x 10
-5

  
  21 rs411697 MULTIPLE_GENES:571.54073 complex 29636469 A G 0.48 -1274.29 301.09 2.31 x 10

-5
  

  9 rs10118205 ADAMTSL1 intron 18815134 C G 0.03 3562.01 843.64 2.42 x 10
-5

  

 
1 rs11581129 LOC400796 | SEC16B intergenic 176037754 A G 0.17 -1690.15 402.53 2.68 x 10

-5
  

  2 rs12470086 LOC728773 | LOC100133235 intergenic 147640932 T A 0.22 1471.27 359.01 4.16 x 10
-5

  
  1 rs4311843 LOC400796 | SEC16B intergenic 176035387 C A 0.33 1315.94 326.26 5.50 x 10

-5
  

                        
Fat mass 1 rs6425453 LOC400796 | SEC16B intergenic 176085789 G A 0.48 1004.70 230.50 1.31 x 10

-5
  

Model 3 1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.48 1006.85 231.45 1.36 x 10
-5

  
  20 rs6047259 C20orf74 | C20orf19 intergenic 21046319 T C 0.46 924.98 216.77 1.98 x 10

-5
  

  2 rs2339853 KLHL29 | ATAD2B intergenic 23811668 T C 0.50 892.60 211.87 2.52 x 10
-5

  
  1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1070.22 254.86 2.68 x 10

-5
  

  3 rs6802030 LOC730168 | TBL1R1 intergenic 177944881 C T 0.49 937.03 223.69 2.80 x 10
-5

  
  1 rs1854288 LOC400796 | SEC16B intergenic 176069710 A G 0.47 965.52 231.64 3.07 x 10

-5
  

  1 rs12092449 LOC400796 | SEC16B intergenic 176081551 C T 0.47 964.83 231.61 3.10 x 10
-5

  
  1 rs2068973 LOC400796 | SEC16B intergenic 176059338 A G 0.43 954.84 230.67 3.48 x 10

-5
  

  1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -1110.31 269.81 3.87 x 10
-5

  
  11 rs7127524 LOC727869 | MMP7 intergenic 101858402 A G 0.29 -1011.08 245.98 3.95 x 10

-5
  

                        
Lean mass 9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 1633.50 350.03 3.06 x 10

-6
   

Model 1 5 rs247544 STARD4 | C5orf13 intergenic 110923874 A G 0.10 -1480.44 338.76 1.24 x 10
-5

  
  2 rs2114591 SP110 intron 230758813 T C 0.40 836.43 198.42 2.49 x 10

-5
  

  14 rs10144702 NRN3 | LOC100131580 intergenic 78582869 G A 0.16 1102 .45 266.55 3.53 x 10
-5

  
  17 rs7207980 ABR intron 971144 C A 0.22 -966.38 237.36 4.67 x 10

-5
  

  19 rs746075 NUCB1 intron 54108748 A G 0.09 -1392.20 344.68 5.37 x 10
-5

  
  3 rs6441886 CDCP1 intron 45103101 T C 0.50 805.94 202.46 6.87 x 10

-5
  

  7 rs6967593 IFRD1 intron 111884028 C T 0.38 787.11 202.17 9.89 x 10
-5

  

                        
Lean mass 9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 1374.36 309.73 9.11 x 10

-6
   

Model 2 2 rs2114591 SP110 intron 230758813 T C 0.40 774.48 175.24 9.89 x 10
-6

   
  17 rs7207980 ABR intron 971144 C A 0.22 -876.17 210.01 3.02 x 10

-5
  

  9 rs56372464 GBGT1 | OBP2B intergenic 135051234 G A 0.14 1051.44 256.11 4.04 x 10
-5

  
  6 rs4248166 BTNL2 intron 32474399 C T 0.14 -1089.19 267.18 4.57 x 10

-5
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  6 rs12529049 C6orf10 | BTNL2 intergenic 32465693 T C 0.14 -1083.50 268.06 5.30 x 10
-5

  
  6 rs4895391 TCF21 | TBPL1 intergenic 134280295 A C 0.45 694.03 174.46 6.95 x 10

-5
  

                        
Lean mass 22 rs1534891 CSNK1E intron 37025045 T C 0.04 1486.67 333.52 8.29 x 10

-6
   

Model 4 20 rs10485674 DH35 | MAFB intergenic 38727246 G A 0.01 2348.38 548.24 1.84 x 10
-5

  
  9 rs1926367 JMJD2C | LOC158345 intergenic 7353762 T G 0.14 731.83 177.44 3.72 x 10

-5
  

  2 rs75276762 KIAA1486 | IRS1 intergenic 226755929 T C 0.26 -665.56 162.88 4.38 x 10
-5

  
  5 rs10040989 CDC23 | GFRA3 intergenic 137601624 A G 0.10 -827.54 204.78 5.32 x 10

-5
  

  3 rs11928440 MUC4 intron 196986392 G A 0.34 526.68 130.73 5.61 x 10
-5

  
  2 rs1550109 SRBD1 intron 45633112 G T 0.07 -955.50 237.78 5.86 x 10

-5
  

  5 rs17409588 RNASEN intron 31564384 C T 0.12 -757.11 191.79 7.90 x 10
-5

  
  17 rs7207980 ABR intron 971144 C A 0.22 -596.27 151.43 8.23 x 10

-5
  

                        

PFM 1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -1.33 0.27 1.18 x 10
-6

   
Model 1 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1.26 0.26 1.24 x 10

-6
   

  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.48 1.10 0.23 2.55 x 10
-6

   
  1 rs2068973 LOC400796 | SEC16B intergenic 176059338 A G 0.43 1.01 0.23 1.35 x 10

-5
  

  1 rs11581129 LOC400796 | SEC16B intergenic 176037754 A G 0.17 -1.29 0.30 1.94 x 10
-5

  
  2 rs2339853 KLHL29 | ATAD2B intergenic 23811668 T C 0.50 0.92 0.22 2.39 x 10

-5
  

  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 1.39 0.33 2.66 x 10
-5

  
  20 rs8122057 JAG1 | LOC728573 intergenic 11085719 G T 0.23 1.12 0.27 2.80 x 10

-5
  

  17 rs115012414 APOH | PRKCA intergenic 61724373 C T 0.04 -2.45 0.59 3.20 x 10
-5

  
  1 rs6425453 LOC400796 | SEC16B intergenic 176085789 G A 0.48 0.95 0.23 4.25 x 10

-5
  

  6 rs2820232 ANKS1A intron 35111581 A C 0.01 -5.20 1.27 4.27 x 10
-5

  

                        
PFM 1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -1.35 0.27 7.90 x 10

-7
   

Model 2 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1.27 0.26 9.05 x 10
-7

   
  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.48 1.10 0.23 2.50 x 10

-6
   

  1 rs12068973 LOC400796 | SEC16B intergenic 176059338 A G 0.43 1.01 0.23 1.35 x 10
-5

  
  20 rs8122057 JAG1 | LOC728573 intergenic 11085719 G T 0.23 1.14 0.27 1.93 x 10

-5
  

  1 rs11581129 LOC400796 | SEC16B intergenic 176037754 A G 0.17 -1.28 0.30 2.00 x 10
-5

  
  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 1.40 0.33 2.04 x 10

-5
  

  2 rs2339853 KLHL29 | ATAD2B intergenic 23811668 T C 0.50 0.91 0.22 2.60 x 10
-5

  
  1 rs6425453 LOC400796 | SEC16B intergenic 176085789 G A 0.48 0.96 0.23 3.31 x 10

-5
  

  1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A G 0.42 0.95 0.23 3.67 x 10
-5
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Table E10. Top SNPs associated with body composition traits when female datasets are combined (caregivers and young adult females) 

 

TRAIT CHR SNP GENE SYMBOL 
GENE 

LOCATION BP A1 A2 MAF 
EFFECT 
(BETA) SE P 

 
BMI 17 rs115012414 APOH | PRKCA intergenic 61724373 C T 0.03 -0.04 0.01 1.68 x 10

-5
  

Model 1 17 rs77612309 APOH | PRKCA intergenic 61724990 C T 0.03 -0.04 0.01 2.85 x 10
-5

  
  19 rs661821 ZNF358 intron 7488649 T C 0.39 -0.01 0.00 3.22 x 10

-5
  

  8 rs4246126 PTK2 intron 141860074 C A 0.21 0.02 0.00 4.26 x 10
-5

  
  15 rs4775027 AQP9 | LIPC intergenic 56375396 G A 0.37 -0.01 0.00 7.63 x 10

-5
  

  11 rs7106594 INSC | SO6 intergenic 15477573 C T 0.30 0.01 0.00 8.10 x 10
-5

  
  9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 0.02 0.01 8.86 x 10

-5
  

  2 rs2114591 SP110 intron 230758813 T C 0.40 0.01 0.00 9.06 x 10
-5

  

 
WC 2 rs2114591 SP110 intron 230758813 T C 0.40 2.16 0.48 5.33 x 10

-6
   

Model 1 9 rs7021554 ANRIL | LOC729983 intergenic 22142884 T C 0.09 3.69 0.86 1.85 x 10
-5

  
  9 rs72656779 LOC729983 utr 22145640 A G 0.07 4.03 0.95 2.05 x 10

-5
  

  1 rs4625336 PADI3 | PADI4 intergenic 17503551 A C 0.13 2.93 0.70 2.57 x 10
-5

  
  14 rs10146149 NRN3 | LOC100131580 intergenic 78578318 T C 0.11 -3.15 0.76 3.08 x 10

-5
  

  14 rs11622292 PRO1768 | FON3 intergenic 89136080 T C 0.14 2.73 0.66 3.73 x 10
-5

  
  3 rs12493688 HES1 | LOC100131551 intergenic 195401542 G T 0.01 10.18 2.47 3.85 x 10

-5
  

  3 rs117195838 BTD intron 15625332 T C 0.03 6.33 1.54 4.05 x 10
-5

  
  18 rs4550540 ZNF521 intron 21145629 A G 0.49 -1.94 0.48 4.68 x 10

-5
  

  7 rs33951980 MLIPL intron 72667373 T C 0.03 5.48 1.38 6.80 x 10
-5

  

                        
WC 2 rs2114591 SP110 intron 230758813 T C 0.40 2.13 0.47 6.40 x 10

-6
   

Model 2 3 rs12493688 HES1 | LOC100131551 intergenic 195401542 G T 0.01 10.74 2.46 1.26 x 10
-5

  
  5 rs6865951 SH3PD2B | LOC100130394 intergenic 171815909 T C 0.07 3.99 0.92 1.55 x 10

-5
  

  9 rs72656779 LOC729983 utr 22145640 A G 0.07 3.96 0.94 2.53 x 10
-5

  
  9 rs7021554 ANRIL | LOC729983 intergenic 22142884 T C 0.09 3.58 0.86 2.91 x 10

-5
  

  1 rs4625336 PADI3 | PADI4 intergenic 17503551 A C 0.13 2.85 0.69 3.84 x 10
-5

  
  3 rs117195838 BTD intron 15625332 T C 0.03 6.29 1.53 4.06 x 10

-5
  

  14 rs10146149 NRN3 | LOC100131580 intergenic 78578318 T C 0.11 -3.08 0.75 4.13 x 10
-5

  
  3 rs72625020  IGF2BP2 | SFRS10 intergenic 187079472 T C 0.21 2.34 0.57 4.54 x 10

-5
  

  14 rs11622292 PRO1768 | FON3 intergenic 89136080 T C 0.14 2.63 0.66 6.41 x 10
-5

  

                        
HC 9 rs7021554 ANRIL | LOC729983 intergenic 22142884 T C 0.09 4.05 0.89 5.97 x 10

-6
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HC 8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 G A 0.01 9.07 2.13 2.06 x 10
-5

  
Model 1 9 rs72656779 LOC729983 utr 22145640 A G 0.07 4.17 0.98 2.16 x 10

-5
  

  18 rs12326471 LMAN1 | CCBE1 intergenic 55191615 C T 0.26 -2.26 0.55 3.53 x 10
-5

  
  18 rs385769 PTPRM intron 7790480 G T 0.11 3.12 0.77 5.34 x 10

-5
  

  8 rs35584813 PPP1R3B | LOC100129150 intergenic 9245040 C T 0.01 8.37 2.08 5.70 x 10
-5

  
  11 rs58174260 BDNFOS intron 27547828 T G 0.04 4.93 1.24 6.61 x 10

-5
  

  8 rs73535332 PPP1R3B | LOC100129150 intergenic 9255047 C G 0.01 8.88 2.23 6.97 x 10
-5

  

  21 rs411697 
MULTIPLE_GENES:571.5407
3 complex 29636469 A G 0.48 -1.92 0.48 7.58 x 10

-5
  

  14 rs10146149 NRN3 | LOC100131580 intergenic 78578318 T C 0.11 -3.09 0.78 8.15 x 10
-5

  
  8 rs11778774 PPP1R3B | LOC100129150 intergenic 9251517 G A 0.01 8.06 2.05 8.55 x 10

-5
  

                        
HC 9 rs7021554 ANRIL | LOC729983 intergenic 22142884 T C 0.09 3.89 0.88 1.07 x 10

-5
  

Model 2 18 rs12326471 LMAN1 | CCBE1 intergenic 55191615 C T 0.26 -2.31 0.54 1.94 x 10
-5

  
  8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 G A 0.01 8.84 2.10 2.65 x 10

-5
  

  9 rs72656779 LOC729983 utr 22145640 A G 0.07 4.07 0.97 2.70 x 10
-5

  
  2 rs2190373 RND3 | LOC344332 intergenic 151482339 A G 0.13 -3.00 0.73 3.68 x 10

-5
  

  11 rs58174260 BDNFOS intron 27547828 T G 0.04 4.92 1.22 5.61 x 10
-5

  
  20 rs115667632 C20orf174 intron 57210215 T C 0.03 -5.68 1.43 7.01 x 10

-5
  

  11 rs12574325 BDNFOS intron 27569624 A G 0.06 4.28 1.08 7.10 x 10
-5

  
  11 rs16917135 BDNFOS intron 27571281 T C 0.06 4.28 1.08 7.10 x 10

-5
  

  6 rs2474346 GUCA1A intron 42244235 T G 0.30 1.98 0.50 7.87 x 10
-5

  

  21 rs411697 
MULTIPLE_GENES:571.5407
3 complex 29636469 A G 0.48 -1.89 0.48 8.01 x 10

-5
  

                        
WHR 12 rs1625560 TMTC2 | SLC6A15 intergenic 83719434 G T 0.07 -0.03 0.01 5.16 x 10

-6
   

Model 1 7 rs2289055 DD56 intron 44578415 G A 0.04 0.03 0.01 7.11 x 10
-6

   
  7 rs7723 DD56 | TMED4 intergenic 44584318 A G 0.04 0.03 0.01 7.11 x 10

-6
   

  15 rs11074155 UNQ9370 | LOC728292 intergenic 91627775 A G 0.04 0.03 0.01 1.40 x 10
-5

  

  16 rs2037912 PPL 
coding 
nonsyn c|s 4873940 G C 0.02 0.05 0.01 2.19 x 10

-5
  

  16 rs1861554 FTO intron 52607268 G A 0.07 0.02 0.01 2.75 x 10
-5

  
  5 rs17307165 NDUFS4 | ARL15 intergenic 53113382 G A 0.09 0.02 0.01 3.56 x 10

-5
  

 
15 rs12438098 LOC728292 | MCTP2 intergenic 92188493 C G 0.13 0.02 0.00 4.79 x 10

-5
  

 
16 rs1861358 FTO intron 52602704 A C 0.06 0.03 0.01 4.83 x 10

-5
  

  16 rs2111116 FTO intron 52606753 A G 0.06 0.03 0.01 4.83 x 10
-5

  
  6 rs9271100 HLA-DRB1 | HLA-DQA1 intergenic 32684456 T C 0.16 0.02 0.00 5.53 x 10

-5
  

  6 rs9271209 HLA-DRB1 | HLA-DQA1 intergenic 32687013 G A 0.16 0.02 0.00 5.53 x 10
-5

  

 
9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 3172.33 702.51 6.31 x 10

-6
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Fat mass 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1997.59 445.14 7.20 x 10
-6

   
Model 1 1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -2085.36 466.88 7.95 x 10

-6
   

  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 2475.25 568.68 1.35 x 10
-5

  
  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.47 1739.79 406.15 1.84 x 10

-5
  

  1 rs4311843 LOC400796 | SEC16B intergenic 176035387 C A 0.32 1743.95 425.85 4.22 x 10
-5

  
  2 rs2114591 SP110 intron 230758813 T C 0.40 1555.03 391.41 7.10 x 10

-5
  

  2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A G 0.03 -4274.74 1081.24 7.70 x 10
-5

  
  14 rs10141212 MDGA2 | RPS29 intergenic 48007525 C T 0.13 -2273.95 578.81 8.54 x 10

-5
  

                        
Fat mass 1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A G 0.41 1809.22 398.26 5.55 x 10

-6
   

Model 2 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1982.54 442.82 7.57 x 10
-6

   
  1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -2055.32 464.45 9.63 x 10

-6
   

  9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 3025.39 699.38 1.52 x 10
-5

  
  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 2409.64 566.10 2.08 x 10

-5
  

  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.47 1710.93 403.88 2.27 x 10
-5

  
  1 rs4311843 LOC400796 | SEC16B intergenic 176035387 C A 0.32 1728.45 423.45 4.47 x 10

-5
  

  14 rs10141212 MDGA2 | RPS29 intergenic 48007525 C T 0.13 -2316.47 576.24 5.82 x 10
-5

  
  2 rs6541885 LOC728241 | CNTNAP5 intergenic 123668890 A G 0.03 -4266.37 1076.42 7.39 x 10

-5
  

  1 rs2404717 PPAP2B intron 56751927 G T 0.15 -2156.07 546.69 8.02 x 10
-5

  
  2 rs2114591 SP110 intron 230758813 T C 0.40 1533.83 389.66 8.27 x 10

-5
  

                        
Fat mass 7 rs4729039 ANKIB1 | GATAD1  intergenic 91880904 C A 0.10 2027.36 423.69 1.71 x 10

-6
   

Model 3 3 rs6802030 LOC730168 | TBL1R1 intergenic 177944881 C T 0.49 1139.91 261.40 1.30 x 10
-5

  
  6 rs7745594 FARS2 | NRN1 intergenic 5843149 T C 0.19 1365.38 329.71 3.46 x 10

-5
  

  3 rs7610881 ROBO2 intron 77619036 G A 0.03 -3206.52 789.34 4.86 x 10
-5

  
  11 rs115124293 FCHSD2 intron 72354213 C A 0.07 1984.73 493.91 5.86 x 10

-5
  

  11 rs114705375 FCHSD2 intron 72383069 T A 0.07 1984.73 493.91 5.86 x 10
-5

  
  11 rs80059745 CHST1 | DKFZp779M0652 intergenic 45679635 C G 0.08 -1835.02 456.75 5.88 x 10

-5
  

  11 rs75409252 FCHSD2 intron 72246468 T C 0.07 1983.39 496.43 6.46 x 10
-5

  
  1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A G 0.41 1057.83 264.95 6.54 x 10

-5
  

  6 rs11243038 FARS2 | NRN1 intergenic 5842767 C T 0.19 1318.07 331.36 6.96 x 10
-5

  
  13 rs6563563 POSTN | TRPC4 intergenic 37093430 T G 0.07 1948.73 493.53 7.86 x 10

-5
  

 
Lean mass 9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 2240.17 407.69 3.91 x 10

-8
   

Model 1 7 rs17443228 LRRN3 | IMMP2L intergenic 110774133 A G 0.08 -1767.14 420.78 2.67 x 10
-5

  
  2 rs2114591 SP110 intron 230758813 T C 0.40 899.49 227.32 7.59 x 10

-5
  

  20 rs6035771 C20orf74 | C20orf19 intergenic 20981250 A G 0.29 -998.63 254.51 8.72 x 10
-5

  

                        
Lean mass 9 rs10781091 GDA | ZFAND5 intergenic 74064112 A G 0.08 1868.52 369.67 4.31 x 10

-7
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Lean mass 5 rs185105 ANKRD34B | DHFR intergenic 79906483 T C 0.04 2184.80 510.10 1.84 x 10
-5

  
Model 2 8 rs73535324 PPP1R3B | LOC100129150 intergenic 9252643 A C 0.01 3790.77 919.74 3.76 x 10

-5
  

  8 rs73535332 PPP1R3B | LOC100129150 intergenic 9255047 C G 0.01 3808.12 934.66 4.61 x 10
-5

  
  2 rs2114591 SP110 intron 230758813 T C 0.40 832.99 206.02 5.27 x 10

-5
  

  8 rs78933755 PPP1R3B | LOC100129150 intergenic 9245811 G A 0.01 3641.13 900.75 5.29 x 10
-5

  
  8 rs11778774 PPP1R3B | LOC100129150 intergenic 9251517 G A 0.01 3451.69 864.75 6.56 x 10

-5
  

  16 rs388997 CDH8 | LOC390735 intergenic 61204594 C T 0.42 -814.29 206.06 7.76 x 10
-5

  
  8 rs35584813 PPP1R3B | LOC100129150 intergenic 9245040 C T 0.01 3459.27 877.38 8.06 x 10

-5
  

  8 rs36090863 PPP1R3B | LOC100129150 intergenic 9246378 T C 0.01 3459.27 877.38 8.06 x 10
-5

  
  10 rs1472135 LOC727878 | PFKP intergenic 2552642 C T 0.18 -1011.66 257.58 8.58 x 10

-5
  

                        
Lean mass 15 rs17270501 RORA intron 58907943 T C 0.03 2003.19 413.04 1.24 x 10

-6
   

Model 4 11 chr11:45676254 CHST1 | DKFZp779M0652 intergenic 45676254 A T 0.40 -639.25 148.56 1.68 x 10
-5

  
  11 chr11:45675448 CHST1 | DKFZp779M0652 intergenic 45675448 C T 0.38 -599.31 147.80 5.01 x 10

-5
  

  3 rs2606738 ATG7 intron 11371562 G A 0.37 557.31 137.86 5.28 x 10
-5

  
  22 rs1534891 CSNK1E intron 37025045 T C 0.04 1449.79 360.78 5.86 x 10

-5
  

  3 rs7610881 ROBO2 intron 77619036 G A 0.03 1650.33 416.09 7.30 x 10
-5

  
  8 rs2978056 LOC100129104 | ZFAT1 intergenic 134693776 T C 0.31 -575.91 146.00 8.00 x 10

-5
  

  7 rs4729039 ANKIB1 | GATAD1  intergenic 91880904 C A 0.10 -875.99 223.74 9.03 x 10
-5

  

 
PFM 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1.37 0.31 1.18 x 10

-5
  

Model 1 1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A G 0.41 1.22 0.28 1.39 x 10
-5

  
  1 rs2068973 LOC400796 | SEC16B intergenic 176059338 A G 0.42 1.21 0.28 1.54 x 10

-5
  

  14 rs11846244 TRDV2 | TRDD1 intergenic 21965715 A G 0.24 1.35 0.31 1.62 x 10
-5

  
  20 rs8122057 JAG1 | LOC728573 intergenic 11085719 G T 0.23 1.37 0.32 2.14 x 10

-5
  

  15 rs74024597 ADAMTSL3 intron 82353771 G A 0.11 1.87 0.44 2.49 x 10
-5

  
  1 rs10913437 LOC400796 | SEC16B intergenic 176062763 T C 0.43 1.19 0.28 2.64 x 10

-5
  

 
14 rs10141212 MDGA2 | RPS29 intergenic 48007525 C T 0.13 -1.68 0.41 3.41 x 10

-5
  

  1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -1.36 0.33 3.51 x 10
-5

  
  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 1.64 0.40 4.12 x 10

-5
  

  6 rs2820232 ANKS1A intron 35111581 A C 0.01 -5.94 1.45 4.40 x 10
-5

  

                        
PFM 1 rs4075235 LOC400796 | SEC16B intergenic 176034945 T C 0.26 -1.38 0.31 8.89 x 10

-6
   

Model 2 1 rs6425446 LOC400796 | SEC16B intergenic 176031200 A G 0.41 1.24 0.28 9.53 x 10
-6

   
  20 rs8122057 JAG1 | LOC728573 intergenic 11085719 G T 0.23 1.41 0.32 1.18 x 10

-5
  

  1 rs2068973 LOC400796 | SEC16B intergenic 176059338 A G 0.42 1.21 0.28 1.49 x 10
-5

  
  3 rs157538 EDEM1 | GRM7 intergenic 6312837 T G 0.14 1.69 0.40 2.05 x 10

-5
  

 
1 rs6664268 LOC400796 | SEC16B intergenic 176031329 C T 0.22 -1.38 0.33 2.31 x 10

-5
  

  1 rs10913437 LOC400796 | SEC16B intergenic 176062763 T C 0.43 1.18 0.28 2.77 x 10
-5
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15 rs74024597 ADAMTSL3 intron 82353771 G A 0.11 1.84 0.44 3.13 x 10

-5
  

  1 rs4072161 LOC400796 | SEC16B intergenic 176036310 G T 0.47 1.18 0.28 3.23 x 10
-5

  
  14 rs11846244 TRDV2 | TRDD1 intergenic 21965715 A G 0.24 1.27 0.31 4.38 x 10

-5
  

  1 rs6425453 LOC400796 | SEC16B intergenic 176085789 G A 0.47 1.14 0.28 4.44 x 10
-5

  

 

Table E11.  Sub-groups (represented in various colours in the key) used in the analysis together with the different phenotypes such that age- and 

sex- specific associations are illustrated. *-refer to loci that were associated with a single phenotype 

 

Loci 
Phenotypes	

BMI WC HC WHR FM LM PFM 
APOH | PRKCA 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

LOC728241 | CNTNAP5 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
ZFYVE9 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
TRPM7 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
SP110 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

NRXN3 | LOC100131580 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
LPAL2 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

PPP1R3B | 
LOC100129150 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

WARS2 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
BDNFOS* 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

LOC400796 | SEC16B 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
FTO* 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

LOC100129474 | 
SLC17A4* 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
COBLL1* 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

LOC727944 | TMEM18 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		   		 		 		 		 		 		 		 		 		 		
NEGR1 | LOC100132353 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

NBEAL1 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
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APPENDIX F: Scripts for calculating narrow-sense heritability estimates using Metabochip 

data. 

 

Script 1: find_duplicates.R 

 

source("../scripts/functions.R") 

 

g <- read_grm("../data/clean") 

dup_values <- g$grm[g$grm$id1 != g$grm$id2 & g$grm$grm > 0.8, ] 

dup_ids <- g$id[unlist(dup_values[,1:2]),] 

write.table(dup_ids, "../data/duplicate_genos.txt", row=F, col=F, 

qu=F) 

 

 

Script 2: remove_unrelateds.R   

 

' Read binary GRM files into R 

#' 

#' @param rootname 

#' @export 

#' @return List of GRM and id data frames 

readGRM <- function(rootname) 

{ 

bin.file.name <- paste(rootname, ".grm.bin", sep="") 

n.file.name <- paste(rootname, ".grm.N.bin", sep="") 

id.file.name <- paste(rootname, ".grm.id", sep="") 

 

cat("Reading IDs\n") 

id <- read.table(id.file.name) 

n <- dim(id)[1] 

cat("Reading GRM\n") 

bin.file <- file(bin.file.name, "rb") 

grm <- readBin(bin.file, n=n*(n+1)/2, what=numeric(0), size=4) 

  females only 
  young adults 
  young males 
  young females 
  older females 

		 combined all 
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close(bin.file) 

cat("Reading N\n") 

n.file <- file(n.file.name, "rb") 

N <- readBin(n.file, n=n*(n+1)/2, what=numeric(0), size=4) 

close(n.file) 

 

cat("Creating data frame\n") 

l <- list() 

for(i in 1:n) 

{ 

l[[i]] <- 1:i 

} 

col1 <- rep(1:n, 1:n) 

col2 <- unlist(l) 

grm <- data.frame(id1=col1, id2=col2, N=N, grm=grm)  

 

ret <- list() 

ret$grm <- grm 

ret$id <- id 

return(ret) 

} 

 

#' Write readGRM style output back to binary GRM for use with 

GCTA 

#' 

#' @param grm Output from \link{readGRM} 

#' @param rootname 

#' @export 

writeGRM <- function(grm, rootname) 

{ 

bin.file.name <- paste(rootname, ".grm.bin", sep="") 

n.file.name <- paste(rootname, ".grm.N.bin", sep="") 

id.file.name <- paste(rootname, ".grm.id", sep="") 

write.table(grm$id, id.file.name, row=F, col=F, qu=F) 

n <- dim(grm$id)[1] 

bin.file <- file(bin.file.name, "wb") 

writeBin(grm$grm$grm, bin.file, size=4) 

close(bin.file) 

n.file <- file(n.file.name, "wb") 

writeBin(grm$grm$N, n.file, size=4) 
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close(n.file) 

} 

 

 

setUnrelsZero <- function(grm, threshold) 

{ 

index <- grm$grm$grm < threshold 

grm$grm$grm[index] <- 0 

return(grm) 

} 

 

 

arguments <- commandArgs(T) 

 

infile <- arguments[1] 

outfile <- arguments[2] 

threshold <- as.numeric(arguments[3]) 

 

grm <- readGRM(infile) 

grm <- setUnrelsZero(grm, threshold) 

writeGRM(grm, outfile) 

 

Script 3: geno_data.sh 

 

#!/bin/bash 

 

#PBS -N Heritability 

#PBS -q WitsLong 

#PBS -l walltime=20:00:00,mem=3GB 

#PBS -l nodes=1:ppn=1 

set -e 

 

cd /home/venesa/archive/data 

 

# Get summary statistics 

plink1.90 --bfile ../data/prunedbmerge --freq --out 

../data/prunedbmerge 

plink1.90 --bfile ../data/prunedbmerge --hardy --out 

../data/prunedbmerge 
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plink1.90 --bfile ../data/prunedbmerge --missing --out 

../data/prunedbmerge 

gzip ../data/prunedbmerge.hwe ../data/prunedbmerge.frq 

../data/prunedbmerge.imiss ../data/prunedbmerge.lmiss 

# Clean data 

plink1.90 --bfile ../data/prunedbmerge --maf 0.01 --hwe 1e-6 --out 

../data/clean --make-bed 

 

# Generate GRM 

plink1.90 --bfile ../data/clean --make-grm-bin --out ../data/clean 

 

# Find duplicates 

R --no-save < find_duplicates.R 

 

# Remove possible duplicates 

plink1.90 --bfile ../data/clean --remove ../data/duplicate_genos.txt --

make-bed --out ../data/clean2 

 

# Generate GRM again without duplicates 

plink1.90 --bfile ../data/clean2 --make-grm-bin --out ../data/clean2 

 

# Principal components 

gcta64 --grm ../data/clean2 --pca 10 --out ../data/clean2 

 

# Make GRM of relateds 

Rscript remove_unrelateds.R ../data/clean2 ../data/clean_relateds2 0.05 

 

# Make MGRM file 

echo -e "../data/clean2" > ../data/mgrm.txt 

echo -e "../data/clean_relateds2" >> ../data/mgrm.txt 

 

# Make GRM of unrelateds by removing a random person from each pair of 

individuals with relationship > 0.05 

gcta64 --grm ../data/clean2 --grm-cutoff 0.05 --out 

../data/clean_unrelateds2 --make-grm 

 

 
Script 4: pheno_data_all.R 

 
## ---- setup ---- 



 

 235 

 

library(GenABEL) 

library(plyr) 

source("../scripts/functions.R") 

 

 

## ---- read_data ---- 

 

dups <- read.table("../data/duplicate_genos.txt", 

stringsAsFactors=FALSE) 

phen <- read.table("../data/pheno.txt", he=T, 

stringsAsFactors=FALSE) 

phen <- subset(phen, ! IID %in% dups$V2) 

 

## ---- write_height ---- 

 

write.table(subset(phen, select=c(FID, IID, HEIGHT_1)), 

file="../data/hieght.phen", row=F, col=F, qu=F) 

 

 

## ---- write_weight ---- 

 

write.table(subset(phen, select=c(FID, IID, WEIGHT)), 

file="../data/weight.phen", row=F, col=F, qu=F) 

 

 

## ---- rank_transform_bmi ---- 

 

phen$rnbmi[phen$BMI != -9] <- rntransform(phen$BMI[phen$BMI != 

-9]) 

 

 

## ---- write_bmi ---- 

 

write.table(subset(phen, select=c(FID, IID, BMI, LOGBMI, 

rnbmi)), file="../data/bmi.phen", row=F, col=F, qu=F) 

 

 

## ---- write_wc ---- 
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write.table(subset(phen, select=c(FID, IID, WC)), 

file="../data/wc.phen", row=F, col=F, qu=F) 

 

 

## ---- write_HC ---- 

 

write.table(subset(phen, select=c(FID, IID, HC)), 

file="../data/hc.phen", row=F, col=F, qu=F) 

 

 

## ---- write_whr ---- 

 

write.table(subset(phen, select=c(FID, IID, WHR)), 

file="../data/whr.phen", row=F, col=F, qu=F) 

 

 

## ---- write_fatmass ---- 

 

write.table(subset(phen, select=c(FID, IID, FATMASS)), 

file="../data/fatmass.phen", row=F, col=F, qu=F) 

 

## ---- write_leanmass ---- 

 

write.table(subset(phen, select=c(FID, IID, LEANMASS)), 

file="../data/leanmss.phen", row=F, col=F, qu=F) 

 

 

## ---- write_pbf ---- 

 

write.table(subset(phen, select=c(FID, IID, PBF)), 

file="../data/pbf.phen", row=F, col=F, qu=F) 

 

 

 

## ---- covariates ---- 

 

pcs <- read.table("../data/clean2.eigenvec", 

stringsAsFactors=FALSE) 

stopifnot(all(pcs$V1 == phen$FID)) 

pcs$sex <- phen$SEX 
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pcs$age <- phen$AGE 

 

 

## ---- write_covs ---- 

 

write.table(pcs, file="../data/covariates.txt", row=F, col=F, 

qu=F) 

 

 

Script 5: run_allpheno_analysis.sh 
 

#!/bin/bash 

 

#PBS -N Heritability 

#PBS -q WitsLong 

#PBS -l walltime=20:00:00,mem=3G                                                                                                                                          

#PBS -l nodes=1:ppn=1  

 

 

set -e 

 

cd /home/venesa/archive/data 

  

 

# Run GCTA BMI zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/bmi_zaitlen 

 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 2 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/logbmi_zaitlen 
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gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 3 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/rnbmi_zaitlen 

 

# Run GCTA BMI all 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/bmi_all 

 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 2 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/logbmi_all 

 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 3 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/rnbmi_all 

 

# Run GCTA BMI relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 1 \ 
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        --qcovar ../data/covariates.txt \ 

        --out ../results2/bmi_relateds 

 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 2 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/logbmi_relateds 

 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 3 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/rnbmi_relateds 

 

# Run GCTA BMI unrelateds 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/bmi_unrelateds 

 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 

        --mpheno 2 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/logbmi_unrelateds 

 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/bmi.phen \ 
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        --mpheno 3 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/rnbmi_unrelateds 

 

 

# Run GCTA WC zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/wc.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/wc_zaitlen 

 

 

 

# Run GCTA WC all 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/wc.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/wc_all 

 

 

# Run GCTA WC relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/wc.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/wc_relateds 

 

 

# Run GCTA WC unrelateds 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 
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        --pheno ../data/wc.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/wc_unrelateds 

 

 

# Run GCTA hc zaitlen 

gcta64 \ 

 --mgrm ../data/mgrm.txt \ 

 --reml --reml-no-lrt \ 

 --pheno ../data/hc.phen \ 

 --mpheno 1 \ 

 --qcovar ../data/covariates.txt \ 

 --out ../results2/hc_zaitlen 

 

 

# Run GCTA hc all 

gcta64 \ 

 --grm ../data/clean2 \ 

 --reml --reml-no-lrt \ 

 --pheno ../data/hc.phen \ 

 --mpheno 1 \ 

 --qcovar ../data/covariates.txt \ 

 --out ../results2/hc_all 

 

 

# Run GCTA hc relateds 

gcta64 \ 

 --grm ../data/clean_relateds2 \ 

 --reml --reml-no-lrt \ 

 --pheno ../data/hc.phen \ 

 --mpheno 1 \ 

 --qcovar ../data/covariates.txt \ 

 --out ../results2/hc_relateds 

 

 

# Run GCTA hc unrelateds 

gcta64 \ 

 --grm ../data/clean_unrelateds2 \ 

 --reml --reml-no-lrt \ 
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 --pheno ../data/hc.phen \ 

 --mpheno 1 \ 

 --qcovar ../data/covariates.txt \ 

 --out ../results2/hc_unrelateds 

 

 

# Run GCTA whr zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/whr.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --pheno ../data/whr.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/whr_zaitlen 

 

 

# Run GCTA whr all 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/whr.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/whr_all 

 

# Run GCTA whr relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/whr.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/whr_relateds 

 

 

# Run GCTA whr unrelateds 

gcta64 \ 
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        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/whr.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/whr_unrelateds 

 

 

# Run GCTA fatmass zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/fatmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --pheno ../data/fatmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/fatmass_zaitlen 

 

 

 

# Run GCTA fatmass all 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/fatmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/fatmass_all 

 

 

 

# Run GCTA fatmass relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/fatmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 
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        --out ../results2/fatmass_relateds 

 

 

# Run GCTA fatmass unrelateds 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/fatmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/fatmass_unrelateds 

 

 

# Run GCTA leanmass zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/leanmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --pheno ../data/leanmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/leanmass_zaitlen 

 

 

 

# Run GCTA leanmass all 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/leanmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/leanmass_all 

 

# Run GCTA leanmass relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 



 

 245 

        --pheno ../data/leanmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/leanmass_relateds 

 

 

# Run GCTA leanmass unrelateds 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/leanmass.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/leanmass_unrelateds 

 

 

 

# Run GCTA PBF zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/pbf.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --pheno ../data/pbf.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/pbf_zaitlen 

 

 

 

# Run GCTA pbf all 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/pbf.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/pbf_all 
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# Run GCTA pbf relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/pbf.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/pbf_relateds 

 

 

# Run GCTA pbf unrelateds 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/pbf.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/pbf_unrelateds 

 

 

# Run GCTA weight zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/weight.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --pheno ../data/weight.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/weight_zaitlen 

 

 

 

# Run GCTA weight all 

gcta64 \ 

        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/weight.phen \ 
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        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/weight_all 

 

 

# Run GCTA weight relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/weight.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/weight_relateds 

 

 

# Run GCTA weight unrelateds 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/weight.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/weight_unrelateds 

 

# Run GCTA height zaitlen 

gcta64 \ 

        --mgrm ../data/mgrm.txt \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/height.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --pheno ../data/height.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/height_zaitlen 

 

 

 

# Run GCTA height all 

gcta64 \ 
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        --grm ../data/clean2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/height.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/height_all 

 

# Run GCTA height relateds 

gcta64 \ 

        --grm ../data/clean_relateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/height.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/height_relateds 

 

 

# Run GCTA height unrelateds 

gcta64 \ 

        --grm ../data/clean_unrelateds2 \ 

        --reml --reml-no-lrt \ 

        --pheno ../data/height.phen \ 

        --mpheno 1 \ 

        --qcovar ../data/covariates.txt \ 

        --out ../results2/height_unrelateds 
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Appendix G: Published Paper attached. 
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Appendix H: Ethics approval, consent forms and relevant permissions obtained from journals 

for re-use of figures in thesis, attached 


