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Abstract 

 

Community Health Workers or “CHWs” are often the only link to healthcare for 

millions of people in the developing world. They are the first point of contact with the 

formal care system, and represent the most immediate and cost effective way to save 

lives and improve healthcare outcomes in low-resource contexts. Mobile-health or 

‘mHealth’ technologies may have potential to support CHWs at the point-of-care and 

enhance their performance. 

 

Yet, there is a gap in substantive empirical evidence on whether the use of mHealth 

tools enhances CHW performance, and how their use contributes to enhanced 

healthcare service delivery, especially in low-resource communities. This is a 

problem because a lack of such evidence would pose an obstacle to the effective 

large-scale implementation of mHealth-enabled CHW projects in low-resource 

settings.  

 

This thesis was motivated to address this problem in the Kenyan community health 

worker context. First, it compared the performance of CHWs using mHealth tools to 

those using traditional paper-based systems. Second, it developed and tested a 

replicable Technology-to-Performance Chain (TPC) model linking a set of CHW task 

and mHealth tool characteristics, to use and user performance outcomes, through four 

perspectives of Task-Technology Fit (TTF), namely Matching, Moderation, 

Mediation, and Covariation.  

 

A quasi-experimental post-test only research design was adopted to compare 

performance of CHWs using an mHealth tool to those using traditional paper-based 

systems. A primary structured questionnaire survey instrument was used to collect 

data from CHWs operating in the counties of Siaya, Nandi, and Kilifi, who were 

using an mHealth tool to perform their tasks (n = 257), and from CHWs operating in 

the counties of Nairobi and Nakuru using traditional paper-based systems to perform 

their tasks (n = 353). Results showed that CHWs using mHealth tools outperform 

their counterparts using paper-based systems, as they were observed to spend much 

less time completing their monitoring, prevention, and referral reports weekly, and 
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report higher percentages of both timeous and complete monthly cases. In addition, 

mHealth tool users were found to have more positive perceptions of the effects of the 

technology on their performance, compared to those using traditional paper-based 

systems.  

 

An explanatory, predictive, research design was adopted to empirically assess the 

effects of a ‘fit’ between the CHW task and mHealth technology (TTF) on use of the 

mHealth technology and on CHW user performance. TTF was tested from the 

Matching, Moderation, Mediation, and Covariation ‘fit’ perspectives using the cross-

sectional survey data collected from the mHealth tool users (n = 257). Results 

revealed that there are various unique ways in which a ‘fit’ between the task and 

technology can have significant impacts on use and user performance. Specifically, 

results showed that the paired-match of time criticality task and technology 

characteristics impacts use, while that of time criticality and information dependency 

task and technology characteristics impacts user performance. Results also showed 

that the cross-product interaction of mobility task and interdependence technology 

characteristics impacts use, and that of mobility task and interdependence and 

information dependency technology characteristics, impacts user performance. 

Similarly, the cross-product interaction of information dependency task and time 

criticality technology characteristics impacts user performance. Moreover, results 

showed that a perceived ‘fit’ between CHW task and mHealth technology 

characteristics partially and fully mediates the effects of user needs and tool functions 

on use and user performance, whereas ‘fit’ as an observed pattern of holistic 

configuration among these task and technology characteristics impacts use and user 

performance. It was also found that the perfect ‘fit’ between CHW task and mHealth 

tool technology characteristics leads to the highest levels of use and user performance, 

while a misfit leads to a decline in use and user performance. Notably, an over-fit of 

mHealth technology support to the CHW task leads to declining use levels, while an 

under-fit leads to diminishing user performance. Of the four ‘fit’ perspectives tested, 

the matching and cross-product interaction of task and technology characteristics 

offer the most dynamic insights into use and user performance impacts, whereas user-

perception and holistic configuration, were also shown to be significant, thus further 

reinforcing these effects. Tests of a full TPC model revealed that greater mHealth tool 

use had a positive effect on the effectiveness, efficiency, and quality of CHW 
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performance in the delivery of patient care. Moreover, it was found that ‘facilitating 

conditions’ and ‘affect toward use’ had positive effects on mHealth tool use. 

Furthermore, a perceptual TTF was found to have positive effects on mHealth tool 

use and CHW performance. Of note, this perceived TTF construct was found to be 

simultaneously a stronger predictor of mHealth tool use than ‘facilitating conditions’ 

and ‘affect toward use’, and a stronger predictor of CHW performance than mHealth 

tool use. Consequently, TTF was confirmed as the central construct of the TPC.  

 

The findings constitute significant empirical insights into the use of mHealth tools 

amongst CHWs in low resource settings and the extent to which mHealth contributes 

to the enhancement of their overall performance in the capture, storage, transmission, 

and retrieval, of health data as part of their typical workflows. This study has 

provided much needed evidence of the importance of a ‘fit’ between CHW task and 

mHealth technology characteristics for enabling mHealth impacts on CHW 

performance. The study also shows how these inter-linkages could improve the use of 

mHealth tools and the performance of CHWs in their delivery of healthcare services 

in low-resource settings, within the Kenyan context. Findings can inform the design 

of mHealth tools to render more adequate support functions for the most critical CHW 

user task needs in a developing world context.  

 

This study has contributed to the empowerment of CHWs at the point-of-care using 

mHealth technology-enabled service delivery in low-resource settings, and 

contributes to the proper and successful ‘scaling-up’ of implemented mHealth 

projects in the developing world. 

 

Keywords: Mobile-Health (mHealth), Community Health Workers (CHWs), 

Technology-to-Performance Chain (TPC), Task-Technology Fit (TTF), Use, 

Precursors of Use, User Performance, Quasi-Experimental Post-Test-Only Design, 

Partial Least Squares – Structural Equation Modeling (PLS – SEM), Polynomial 

Regression, Response Surface Methodology, Mobile Informatics, Health Informatics, 

Kenya, Africa, Developing Countries 
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1 Introduction to the Problem of Mobile-Health (mHealth) 

and Community Health Worker (CHW) Performance 

1.1 The Promise of Mobile Health (mHealth) 

 

“Mobile Health”, otherwise known as “mHealth”, is defined as the use of mobile devices 

to enhance service delivery within healthcare systems (Mechael, 2009; van Heerden, 

Tomlinson and Swartz, 2012). The use of mHealth tools promises greater access to 

service for populations particularly within developing country and low resource settings
1
. 

Moreover, mHealth can create cost efficiencies and improve the capacity of health 

systems to facilitate the provision of quality patient care (Lasica, 2007). The uptake of 

mHealth technologies can enhance point-of-care data collection, patient communication, 

and real-time medication adherence support (Tomlinson, Solomon, Singh and Doherty, 

2009). The mobile platform can support the delivery of healthcare services to wherever 

people are. Thus the utilization of mHealth can be effective in addressing the challenges 

of reaching underserved populations in remote areas, and improving patient care. Despite 

the promise and potential of mHealth, developing country contexts have been 

characterized by unsustainable pilot projects that often expire once initial funding is 

exhausted (LeMaire, 2011). Because few studies have been conducted in low-resource 

settings to date, there are gaps in substantive evidence of impacts on healthcare (Earth 

Institute, 2010; Tomlinson, Rotheram-Borus, Swartz and Tsai, 2013). Furthermore, there 

is a persistent lack of understanding of how to evaluate the contribution of mHealth 

devices to enhanced patient care (Pop-Eleches, Thirumurthy, Habyarimanaa, Zivin, 

Goldstein, De Walque, MacKeen, Haberer, Kimaiyo and Sidle, 2011; Siedner, Haberer, 

Bwana, Ware and Bangsberg, 2012). This is characterized by a lack of evidence that 

poses an obstacle to effective large-scale implementation of mHealth projects (Collins, 

2012). Consequently, there is a growing demand for scientific research in low-resource, 

developing country settings to evaluate if and how equipping health workers with 

mHealth tools impacts their performance in health service delivery. Accordingly, the 

application of rigorous methodology to generate quality evidence has since emerged as a 

key priority (Philbrick, 2013).  

                                                 
1
 A low-resource setting is an area characterized by poor infrastructure and limited access to basic needs 

and services, and covers low-income countries, but also includes areas in middle or high income countries 

where under-served populations encounter difficulties accessing specialized healthcare (Wootton and 

Bonnardot, 2015). 
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1.2 The Community Health Worker (CHW) 

 

Community Health Workers or “CHWs”, are often the only link to patient care for 

millions of people in the developing world. In the absence of medical professionals, 

CHWs are the first point of contact with the formal care system (Global Health 

Workforce Alliance, 2010). They cost comparatively little to train but can deliver life-

saving, high-impact interventions in areas such as hygiene, sanitation, reproductive 

health, first aid, vaccinations, and oral rehydration therapy for infants. In some 

developing countries, CHWs have been deployed to identify, refer and even administer 

basic treatment for illnesses at the household level (Liu, Sullivan, Khan, Sachs and Singh, 

2011). Due to their important role in health service delivery, there has been an increasing 

need to support CHWs at the point-of-care (Liu et al., 2011; Perry and Zulliger, 2012). 

The use of mHealth tools by CHWs at the point-of-care could enable their access to 

information, provide them with adequate decision-support, and enhance their timeliness 

in emergency responses and effectiveness in monitoring and disease surveillance 

(Mechael, 2009; Earth Institute, 2010, p. 36; Perry and Zulliger, 2012). Therefore 

incorporating mHealth tools into their workflows could enhance the capacity of CHWs to 

effectively link patients to the formal care system (Braun, Catalani, Wimbush and 

Israelski, 2013, p. 5) and improve patient care in low-resource settings (Earth Institute, 

2010; LeMaire, 2011). Unfortunately, there remains limited evidence of the impacts of 

mHealth on the service delivery performance of CHWs in low-resource settings (Perry 

and Zulliger, 2012; Braun et al., 2013). This is a problem because a lack of such evidence 

would pose an obstacle to the effective large-scale implementation of mHealth-enabled 

CHW projects in low-resource settings. Consequently, there is a need for rigorous 

empirical evaluation of the link between mHealth tool use and CHW performance (Braun 

et al., 2013, p. 5). Moreover, frameworks with which to evaluate the mHealth-enabled 

support of CHWs at the point-of-care are needed (Tariq and Akter, 2011). These 

frameworks could be useful for the design of effective mHealth tools to enhance the 

performance of CHWs in meeting local needs through the provision of patient care at the 

household level (Illuyemi, Fitch, Parry and Briggs, 2010).  
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1.3 Problem and Research Questions 

 

There are several research questions that arise from the knowledge gaps discussed in 

sections 1.1 and 1.2. These questions concern the impacts of mHealth tool use on CHW 

performance, how this use is influenced by a fit of the technology used to the task 

performed, and other factors. 

 

First, CHWs in low-resource settings have traditionally used paper-based systems as 

reporting tools (Singh and Sullivan, 2011). Replacing these conventional tools with 

mHealth platforms has increasingly become a subject of interest. However, 

accompanying evidence of mHealth tool use impacts on the performance of CHWs in 

their delivery of patient care is needed (Braun et al., 2013). Moreover, rigorous evaluation 

with comparable CHW performance indicators in specific developing country contexts is 

called for (Tomlinson et al., 2013). To address these knowledge gaps, Research Questions 

1 and 2 are formulated: 

 

 

 

Second, there is a need for rigorous research to inform the design of mobile technologies 

for enhanced CHW performance. In this regard, it is important to understand what 

functional requirements are important for specific CHW tasks (Global Health Workforce 

Alliance, 2010). Furthermore, there appears to be a lack of frameworks with which to 

systematically evaluate whether mHealth tools fit CHW needs, and to assess CHW 

performance as a consequence of this fit (Tariq and Akter, 2013). To address these 

knowledge gaps, Research Questions 3 and 4 are formulated: 

 

 

3. How can a fit between mHealth tools and CHW tasks be conceptualized? 

4. To what extent does this fit impact mHealth tool use and CHW 

performance? 

 

 

 

1. What are the differences in CHW performance using mHealth tools 

compared to those using traditional paper-based systems? 

2. How are these differences indicative of expected positive mHealth tool 

impacts on CHW performance?  
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Third, there appears to be little, if any, substantive evidence of what factors may 

contribute to, or facilitate, mHealth tool use in low-resource settings. In addition, there is 

a need for more rigorous research on the extent to which the use of an mHealth tool 

impacts CHW performance. To address these knowledge gaps, Research Questions 5 to 7 

are formulated: 

 

 

 

The Study Objectives identified to address these seven Research Questions, are discussed 

in Section 1.4. 

1.4 Study Objectives 

 

To answer the research questions formulated in Section 1.3, a set of objectives are 

specified. First, to answer Research Questions 1 and 2, the following objectives are 

specified: 

 

 

   

Second, to answer Research Questions 3 and 4, the following study objectives are 

specified: 

 

 

3. Identify a relevant set of dimensions with which to evaluate CHW tasks 

and mHealth tools. 

4. Use these dimensions to operationalize the fit between CHW tasks and 

mHealth tools. 

5. Examine the impact of this fit on mHealth tool use and CHW performance.  

 

 

 

1. Identify a relevant set of dimensions with which to evaluate CHW 

performance. 

2. Use these dimensions to compare the performance of CHWs using an 

mHealth tool to those using a paper-based system. 

 

 

 

5. What are the determinants of mHealth tool use by CHWs?  

6. To what extent do these determinants impact mHealth tool use by CHWs? 

7. To what extent does mHealth tool use impact CHW performance? 
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Third, to answer Research Questions 5, 6, and 7, the following study objectives are 

specified: 

 

 

 

To achieve Study Objectives 1 and 2, CHWs using an mHealth tool were compared to 

those using a paper-based system. To achieve Study Objectives 3 to 9, a conceptual 

model linking technology to use and user performance, through its fit with the task, was 

developed to guide the present study. This conceptual model, a Technology-to-

Performance Chain (TPC), is described in Section 1.5. 

1.5 The Technology-to-Performance Chain (TPC) 

 

The Technology-to-Performance Chain (TPC) (Goodhue, 1992; Goodhue and Thompson, 

1995), depicted in Figure 1.1, was developed to address Study Objectives 3 to 9. The TPC 

is a causal model underpinned by the theory of Task-Technology Fit (TTF), which can be 

traced to the perspectives of Cognitive Fit (Vessey, 1991; Vessey and Galleta, 1991; 

Vessey, 1994), and Task-System Fit (Goodhue, 1992; Goodhue, 1994; Goodhue, 1995). 

In the present study, the TPC is a conceptual model linking task and technology 

characteristics to mHealth tool use and CHW performance through four perspectives of 

‘fit’ (Venkatraman, 1989).  

 

6. Identify a relevant set of dimensions to evaluate mHealth tool use 

precursors. 

7. Using these dimensions, examine the impact of precursors on mHealth tool 

use. 

8. Identify a relevant set of dimensions with which to evaluate mHealth tool 

use. 

9. Use these dimensions to examine the impact of mHealth tool use on 

performance. 
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Figure 1.1. Conceptual Model 

 

This conceptual model comprises the four constructs of TTF (A), use (B), user 

performance (C), and precursors of use (D). These constructs are the components of a 

TPC. TTF, the core component of this TPC, is linked first to use (Link 1.1) and second to 

user performance (Link 1.2). The TTF outcomes of use and user performance are 

concurrent
2
. As per the traditional TTF (Fit-Focus) model (Goodhue and Thompson, 

1995), technological support of the task is expected to influence both use and user 

performance (p. 215). TTF is conceptualized using four perspectives of ‘fit’ 

(Venkatraman, 1989) operationalized as Matching, Moderation, Mediation, and 

Covariation. Third, use is linked to user performance (Link 2). The traditional TTF (Fit-

Focus) model is therefore extended to form a complete TPC, such that user performance 

is considered a function of both TTF and use (Goodhue, 1992; Goodhue and Thompson, 

1995, p. 216). Fourth, precursors are linked to use (Link 3). The completed TPC is thus 

extended such that use is considered a function of both TTF and a set of precursors 

(Goodhue, 1992, p. 305). The TPC was used to examine mHealth impacts on CHW 

performance in low-resource developing country settings. The context for the present 

study is discussed in Section 1.6. 

 

                                                 
2
 It is recognized in this study that in performing the task, the user is using the technology. The TTF 

outcomes of use and user performance are discussed in detail in Section 4.6.5 of Chapter 4. 
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1.6 Context of the Study 

 

The use of mHealth tools by CHWs deployed in low-resource developing country settings 

informs the context of the study. To link households to the formal care system, these 

CHWs deliver patient care by performing reporting, monitoring, prevention, and referral 

tasks. The study context is informed by the implementation of mHealth projects in Kenya, 

an emerging developing country. As participants in these projects, CHWs are equipped 

with mHealth tools used to deliver patient care during household visits. Kenya represents 

a microcosm of global mHealth CHW initiatives. Kenya has among the highest mobile 

penetration rates
3

 in the developing world (Ngugi, Pelowski and Ogembo, 2010). 

Moreover, Kenya is a leading country in mobile technology-enabled innovation (Aker 

and Mbiti, 2010). Furthermore, Kenya is at the forefront of global mHealth community 

projects in low-resource settings (LeMaire, 2011), and is attractive to international 

development partners investing in mobile technology-enabled service delivery platforms 

(Zambrano and Seward, 2012). Chapter 2 expands the discussion of the research context 

and the study setting. 

1.7 Methodology of the Study 

 

The methodology used in the present study, is depicted as a layered schematic in Figure 

1.2. 

                                                 
3
 According to the most recent statistical report from the Communications Authority of Kenya (CAK), there 

are 37.8 million subscribers in Kenya, and the mobile penetration rate currently stands at 88% 

(Communications Authority of Kenya, 2016). 
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Figure 1.2.  Methodology of the Study 

 

The present study was informed by a philosophy consistent with empirical positivism 

(Straub, Boudreau and Gefen, 2004), the objective expression of reality using causal 

relationships to test theories and concepts (Orlikowski and Baroudi, 1991; Bhattacherjee, 

2012, p. 18). The method selection for the study was quantitative (Creswell, 2009). A 

cross-sectional survey strategy (Saunders, Lewis and Thornhill, 2012, p. 190) was used in 

the study. Structured questionnaire instruments (Orlikowski and Baroudi, 1991) were 

developed and used to collect data from respondent CHWs in Kenya. These CHWs were 

operating within peri-urban communities in the counties of Siaya, Nandi, Kilifi, Nairobi, 

and Nakuru. 

 

First, to address Study Objectives 1 and 2 and answer Research Questions 1 and 2, a 

quasi-experimental research design was adopted (Harris, McGregor, Perencevich, Furino, 

Zhu, Peterson and Finkelstein, 2006). A quasi-experimental post-test was conducted to 

compare the performance of CHWs using an mHealth tool versus those using a paper-
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based system. Data from cross-sectional surveys were analysed using first generation
4
 

multi-variate techniques
5
 (Hair, Black, Babin and Anderson, 2010) including Analysis of 

Covariance (ANCOVA) and Sequential (Hierarchical) Regression (Brace, Kemp and 

Snelgar, 2012).  

 

Second, to Study Objectives 3 to 9 and answer Research Questions 3 to 7, an explanatory, 

predictive research design was adopted to understand relationships between theoretical 

constructs and their underlying causes (Gregor, 2006). To empirically test these 

relationships, a hypothetico-deductive approach is used (Kaplan and Duchon, 1988). This 

approach was used in the present study to empirically test (1) the ‘fit’ between the 

mHealth tool and CHW task, and its effects on use and user performance, (2) the effects 

of mHealth tool use on CHW performance, and (3) the effects of precursors on mHealth 

tool use. Data from cross-sectional surveys were analysed using Partial Least Squares – 

Structural Equation Modeling (PLS-SEM)
6
, a component-based, second-generation

7
, 

statistical path modeling technique (Hair, Hult, Ringle and Sarstedt, 2014). Path modeling 

is described as the use of diagrams to visualize systematically related propositions 

examined via Structural Equation Modeling (SEM) and underpinned by theory (Hair, 

Ringle and Sarstedt, 2011). Response Surface Methodology (RSM) with Polynomial 

Regression (Edwards, 2002)
8
 was used to extend empirical testing of the ‘fit’ between the 

mHealth tool and CHW task (TTF), to account for non-linear interaction effects on use 

and user performance (Shanock, Baran, Gentry, Pattison and Heggestad, 2010).  

 

The research designs employed to address Study Objectives 1 to 9 and answer Research 

Questions 1 to 7 are summarized in Table 1.2. 

 

 

 

                                                 
4
 First-generation techniques have been classified as the primarily exploratory methods of cluster analysis, 

exploratory factor analysis, and multi-dimensional scaling, and the primarily confirmatory methods of 

Analysis of Variance (ANOVA), logistic regression, and multiple regression (Hair et al., 2014, p.2). 
5
 Data analysis was conducted using the IBM SPSS (Version 22) software package for Windows. 

6
 Data analysis was conducted using the SmartPLS (Versions 2 and 3) software package for Windows and 

Mac. 
7
 Second-generation techniques encompass the Partial Least Squares (PLS) and Covariance Based (CB) 

approaches to Structural Equation Modeling (SEM), and include confirmatory factor analysis (Hair et al, 

2014, p. 2). 
8
 Data analysis was conducted using the SYSTAT (Version 13) software package for Windows. 
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  Table 1.1. Research Design  

Design  Research 

Questions 

Study Objective Description 

Quasi-Experimental  1,2 1, 2  A comparison of CHW performance 

using an mHealth tool versus paper-

based system. 

Explanatory, Predictive 3,4 3, 4, 5 Examine: 

 The effects of TTF as Matching on 

mHealth tool use and CHW performance. 

 The effects of TTF as Moderation on 

mHealth tool use and CHW performance. 

 The effects of TTF as Mediation on 

mHealth tool use and CHW performance. 

 The effects of TTF as Covariation on 

mHealth tool use and CHW performance. 

5, 6, and 7 6, 7, 8, 9 Examine: 

 The effect of precursors on mHealth tool 

use. 

 The effect of mHealth tool use on CHW 

performance. 

 

The contributions of the present study to research and practice are highlighted in Section 

1.8. 

1.8 Contributions of the Study 

 

In the present study, contributions were made to theory, methodology, practice, and 

context. The following is an overview of these theoretical, methodological, practical, and 

contextual contributions. 

 

First, the study constitutes a contribution to theory through the conceptualization of a 

replicable Technology-to-Performance Chain (TPC) linking mHealth tools to CHW 

performance through Task-Technology Fit (TTF), which is a multi-faceted, multi-

perspective construct, which forms the core of this conceptual model. The TPC is 

underpinned by the theory of TTF (Vessey, 1991; Vessey and Galleta, 1991; Goodhue, 

1992; Goodhue, 1994; Vessey, 1994; Goodhue and Thompson, 1995). In developing this 

TPC, a set of mHealth tool and CHW task characteristics were adopted for use in the 

context of the study. The importance of TTF as a perspective from which to predict and 

explain the outcomes of tool use and user performance is demonstrated through its 
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application to mHealth for community-oriented patient care in low-resource settings in 

Kenya. In addition to TTF positioned at its core, the TPC was completed through a 

‘forward linkage’ between use and user performance, and a ‘backward linkage’ between a 

set of precursors and use. 

 

Second, the study constitutes a contribution to methodology through the development of 

survey instrument scales for the measurement of (1) CHW task and mHealth tool 

characteristics, (2) the ‘fit’ between them, (3) mHealth tool use, (4) precursors of 

mHealth tool use, and (5) CHW performance. Moreover, the ‘fit’ between the task and 

technology (TTF) was operationalized from the four adopted ‘fit’ perspectives of 

Matching, Mediation, Moderation, and Covariation (Venkatraman, 1989). A quasi-

experimental post-test-only design (Harris et al., 2006) was adopted to empirically 

examine the performance of CHWs using an mHealth tool compared to a traditional 

paper-based system. In addition, an explanatory, predictive design (Gregor, 2006) was 

adopted and used to empirically test the link between the mHealth tool and CHW 

performance through TTF and use constructs. This methodological contribution of the 

present study is conducive to the increasing need for rigorous, evidence-based study 

designs in mHealth research (Global Health Workforce Alliance, 2010). 

 

Third, the study constitutes a contribution to practice through the establishment of a set of 

criteria with which to substantively evaluate the performance of CHWs as mHealth tool 

users in low-resource developing country settings. Specifically, eleven performance 

indicators were developed to examine the effectiveness, efficiency, and quality of CHWs 

in reporting tasks. Specifically, these indicators were used to evaluate task reporting 

performance criteria including CHW workload, flow time, error rate, and completeness 

metrics. Community project implementers in low-resource settings can use these CHW 

reporting performance criteria to better quantify impacts of mHealth tools compared to 

the more traditional paper-based systems. These quantifiable metrics serve as indicators 

of the expected positive impacts of mHealth tools on CHW performance, thereby 

informing implementers seeking to replace traditional paper-based reporting systems or 

enhance current mHealth tool support functions for task reporting. In addition, practicable 

criteria were established for the evaluation of (1) the fit between the CHW task and the 

mHealth tool, and its effects on use and user performance, (2) the effects of mHealth tool 

use on CHW performance, and (3) the effects of precursors of use on mHealth tool use. A 
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TPC was used to evaluate the inter-linkages between these constructs. This TPC can 

serve as a diagnostic tool with which mHealth practitioners could empirically assess how 

and why a ‘fit’ between mHealth tools and CHW tasks, impacts mHealth tool use and 

CHW performance in a particular context. The TPC can also be used to effectively 

explain the possible ways in which mHealth tool use is influenced, and itself influences 

CHW performance. The core mechanism or process of the TPC is a multi-faceted task-

technology fit (TTF) construct, which can be transformed into a perspective-oriented 

evaluative framework with which to explain technology use and user performance, to 

inform the design of functionally supportive mHealth tools. Furthermore, of particular 

importance, the TPC and multi-perspective TTF mechanisms that were examined in the 

present study can be developed into analytic, evaluative, or classificatory frameworks 

informing any context, setting, or industry in which technology users are compelled to 

use tools or systems to perform their tasks. This practical contribution informs the need to 

(1) contribute to the design of effective mHealth technologies that enhance CHW 

performance in low-resource settings, (2) contribute to the design of effective 

technologies that enhance performance in multiple user environments, and (3) positively 

influence use and user performance behaviours. 

 

Fourth, the study constitutes a contribution to context through the application of theory 

and quantitative methodology, to evaluate mHealth projects implemented in real-world 

settings, therefore representing practical solutions to currently existing global problems. 

In these projects, CHWs are equipped with mHealth tools and deployed in low-resource 

developing country settings, to deliver patient care at the household level. The use of 

mHealth tools and CHW performance in the Kenyan context was examined in 

conjunction with community projects aligned to inter-alia (1) the mHealth Alliance, (2) 

the Millennium Development Goals (MDGs), (3) the Global Health Workforce Alliance, 

and (4) Frontline Health Workers Coalition, as part of collaborative efforts with among 

others (1) the Government of Kenya (GOK) Ministry of Health (MOH) Division of 

Community Health Services (DCHS), (2), the United States Agency for International 

Development (USAID) sponsored APHIAplus project, and (3) The Africa Medical and 

Research Foundation (AMREF). This contextual contribution of the present study 

informs the need for evidence-based health service delivery policy in developing 

countries, through the mobile technology-enabled support of CHWs in low-resource 



 13 

settings, effectively linking households to the formal care system using mHealth tools at 

the point-of-care. 

 

The structure of the present study and its contents are presented and summarized in 

Section 1.9.  

1.9 Structure of the Study 

 

The present study is structured as a thesis consisting of eleven chapters as shown in 

Figure 1.3. Given the design, research questions, and objectives of the study, the thesis is 

not structured as a typical monograph, and instead comprises an introductory chapter, a 

contextual background chapter, theoretical underpinnings and conceptual model 

development chapters, six empirical chapters within which methods and data analyses are 

embedded, and a conclusion chapter. 

 

 

Figure 1.3. Structure of Thesis 

 

In Chapter 2, the contextual background of this study is discussed. First, the existing 

literature on mHealth and CHW work in developing countries is reviewed. Second, 
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typical examples of mobile technology applications for healthcare are identified. Third, 

shortcomings in prior works in the areas of mHealth and community health work are 

identified. Fourth, several implications of these shortcomings are derived.  

 

In Chapter 3, the quasi-experimental post-test (Harris, McGregor, Perencevich, Furino, 

Zhu, Peterson and Finkelstein, 2006) that was conducted to compare the performance of 

CHWs using an mHealth tool with those using a traditional paper-based system, is 

reported on. For analysis, the multi-variate techniques of ANCOVA and Sequential 

(Hierarchical) Regression (Brace et al., 2012) were used.  

 

In Chapter 4, the theoretical underpinnings of the study are discussed. First, existing 

literature pertaining to the theory of TTF (Vessey, 1991; Vessey and Galleta, 1991; 

Goodhue, 1992; Goodhue, 1994; Vessey, 1994; Goodhue and Thompson, 1995) is 

reviewed to inform the development of the study’s technology-to-performance chain 

model. In Chapter 5, the TPC conceptual model is described in detail and the links 

between the concepts of TTF, use, user performance, and precursors of use, are 

developed. 

 

In Chapter 6, the adoption and use of the Fit as Matching perspective (Venkatraman, 

1989, p. 430) to examine the ‘fit’ between the CHW task and mHealth tool characteristics 

(TTF) and its effects on use and user performance, is described. This ‘fit’ was 

operationalized as the product of corresponding (complementary) pairwise task and 

technology characteristics. To assess the impact of TTF, continuous moderator effects 

were modelled using the PLS-SEM product indicator approach to create interaction terms 

(Hair et al., 2014). In Chapter 7, the adoption and use of the Fit as Moderation 

perspective (Venkatraman, 1989, p. 424) to examine the ‘fit’ between the CHW task and 

mHealth tool characteristics (TTF) and its effects on use and user performance, is 

described. This ‘fit’ was operationalized as the cross-product interaction of all pairwise 

task and technology characteristics. To assess the impact of TTF, continuous moderator 

effects were also modelled using the PLS-SEM product indicator approach to create 

interaction terms (Hair et al., 2014). This Moderation ‘fit’ perspective was extended by 

examining TTF for non-linear effects on mHealth tool use and CHW performance, using 

Response Surface Methodology with Polynomial Regression (Edwards, 2002). In Chapter 

8, the adoption and use of the Fit as Mediation perspective (Venkatraman, 1989, p. 428) 
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to examine the ‘fit’ between the CHW task and mHealth tool characteristics (TTF) and its 

effects on use and user performance, is described. This ‘fit’ was operationalized as a 

perceived intervening mechanism between antecedent CHW task and mHealth tool 

characteristics and consequent use and user performance outcomes. To assess the impact 

of TTF, PLS-SEM mediator analysis with bootstrapping was used (Hair et al., 2014, p. 

219). In Chapter 9, the adoption and use of the Fit as Covariation perspective 

(Venkatraman, 1989, p. 435) to examine the ‘fit’ between the CHW task and mHealth 

tool characteristics (TTF) and its effects on use and user performance, is described. This 

‘fit’ was operationalized as an observed pattern of co-aligned and internally consistent 

CHW task and mHealth tool characteristics. To assess the impact of TTF, PLS-SEM 

(Hair et al., 2014) was used to model ‘fit’ as a reflective first-order reflective second-

order construct (Jarvis, Mackenzie and Podsakoff, 2003, p. 205).  

 

In Chapter 10, the examination of the impacts of (1) mHealth tool use on CHW 

performance, (2) perceived TTF on mHealth tool use and CHW performance, and (3) 

precursors of use on mHealth tool use, including the use of PLS-SEM mediator analysis 

with bootstrapping (Hair et al., 2014), is described. In doing so, determinants of use and 

user performance in addition to TTF, were examined. In addition, the intervening role of 

use between precursors and user performance was considered.  

 

In Chapter 11, the present study is concluded. A summary of the study is provided and 

limitations in research design are highlighted. Subsequently, study contributions to 

theory, methodology, practice, and context, are described, and implications for future 

research are derived. 

 

A number of thesis chapters have already been published. The thesis publications are 

listed in Table 1.3. In all instances, the published papers have been re-formatted and 

updated for inclusion in this thesis. 
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    Table 1.2. Thesis Publications  

Thesis 

Component 

Publication 

Abstract  Gatara (2013) ‘Mobile Technology-Enabled Healthcare Service Delivery Systems for Community Health 

Workers in Kenya: A Technology-to-Performance Chain Perspective’, Journal for Health Informatics in 

Africa (JHIA) vol.1, no. 1, pp. 179-180. This paper was also part of proceedings of the 8
th

 Health Informatics 

in Health Informatics in Africa Conference (HELINA), Nairobi, Kenya). 

5
  

Gatara, M. and Cohen, J.F (2015) Mobile Health Tool Use and Community Health Worker Performance: A 

Quasi-Experimental Post-Test Perspective, Journal for Health Informatics in Africa (JHIA), vol. 2, no.2, pp. 

44-54. This paper was also part of proceedings of the 9
th
 Health Informatics in Africa Conference (HELINA), 

Accra, Ghana. 

6 Gatara, M. and Cohen, J.F (2015) ‘Matching Task and Technology Characteristics to Predict mHealth Tool 

Use and User Performance’, A Study of Community Health Workers in the Kenyan Context’, Proceedings of 

the 8th International Conference on Health Informatics (HEALTHINF), Lisbon, Portugal, pp. 454-461. 

8 Gatara, M. and Cohen, J.F (2014) ‘The Mediating Effect of Task-Technology Fit on mHealth Tool Use and 

Community Health Worker Performance in the Kenyan Context’, Proceedings of the 8
th

 International 

Development Informatics Association Conference, Port Elizabeth, South Africa, pp. 323-336. 

9 Gatara, M. and Cohen, J.F. (2014) ‘Mobile-Health Tool Use and Community Health Worker Performance in 

the Kenyan Context: A Task-Technology Fit Perspective’, Proceedings of the Southern African Institute for 

Computer Scientists and Information Technologists (SAICSIT) Annual Conference 2014, Pretoria, South 

Africa, pp. 1-10. 

6 to 9
  

Gatara, M. (2016) ‘Mobile Health Tool Use and Community Health Worker Performance in the Kenyan 

Context: A Comparison of Task-Technology Fit Perspectives, In mHealth Ecosystems and Social Networks 

in Healthcare, Lazakidou, A.A., Zimeras, S., Iliopoulou, D. and Koutsouris, D.  [Eds.], Springer, pp. 55 – 78. 
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2 Contextual Background 

2.1 Introduction 

 

In the developing world, expanding networks and decreasing costs have contributed to the 

proliferation of emerging mobile technologies (Jan, Mohutsiwa-Dibe and Loukanova, 

2014). These technologies could enable service delivery in the sectors of governance 

(Ntaliani, Costopoulou and Karestos, 2008), education (Ally, 2009), finance (Ngugi, 

Pelowski and Ogembo, 2010), and health (Mechael, 2009). In the health sector 

particularly, the use of mobile technologies to enhance patient care delivery has emerged 

as a key priority for sustainable development (Zambrano and Seward, 2012). 

 

In this chapter, the underlying contextual background of the present study is discussed. 

The existing literature on (1) mobile health (mHealth) and (2) community health work, is 

reviewed. First, mHealth applications are identified and examples provided. Second, 

mHealth projects in which these applications are used are identified. Third, shortcomings 

in research on mHealth (1) applications and (2) projects, are identified. Fourth, the role 

and responsibilities of Community Health Workers (CHWs) are discussed. Fifth, the use 

of mHealth tools by CHWs is discussed. Sixth, shortcomings in research on (1) CHWs 

and (2) CHW mHealth tool use, are discussed.  

 

The mobile technology-enabled support of health service delivery is discussed in Section 

2.2. 

2.2 An Overview of Mobile Health (mHealth) 

 

‘Mobile-health’ or ‘mHealth’ is the use of mobile technologies to support service delivery 

within healthcare systems (Mechael, 2009; van Heerden, Tomlinson and Swartz, 2012). 

The concept of mHealth is informed by two distinct perspectives (Mechael, 2009; Leon 

and Schneider, 2012). First, mHealth can be viewed as a subset or extension of ‘electronic 

health’ or ‘eHealth’, the use of Information and Communication Technologies (ICTs) to 

support healthcare delivery. Second, mHealth can be described as a ‘mobile service’ or 

‘mService’. In the present study, mHealth is understood to be the intersection between 

mobile technologies and healthcare systems, as depicted in Figure 2.1. 
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Figure 2.1. The Intersection between Mobile Technologies and Healthcare Systems  

 

If applied correctly, mHealth could enable the delivery of care to underserved populations 

and contribute to improving disease prevention efforts (World Health Organization, 

2010). This could ameliorate the lack of timely and actionable surveillance and slow 

down rates of information flow occasioned by reporting delays (LeMaire, 2011, p. 10). 

To understand the importance of mHealth, it is important to first recognize its various 

applications, especially in low-resource developing country settings. There are six typical 

mHealth applications, as discussed in Section 2.3. 

2.3 Mobile-Health (mHealth) Applications 

 

Numerous mobile technologies have been designed to support various healthcare 

initiatives in the developing world. These technologies can be grouped into the following 

categories of mHealth applications. 

 

 

 

1. Education and Awareness 

2. Health Data Collection 

3. Health Worker Support  

4. Disease Surveillance 

5. Treatment Compliance 

6. Emergency Medical Response 
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First, mHealth applications have been used to educate communities and create awareness. 

2.3.1 Education and Awareness 

 

The prevention of infectious diseases is less costly than treatment (Earth Institute, 2010). 

Consequently, more emphasis is now being placed on disease prevention. Diseases 

impose great economic burdens on society, making prevention efforts a worthwhile 

investment globally. This is especially the case in low-resource settings where infectious 

diseases and chronic conditions put a strain on existing healthcare infrastructure (p. 36). 

To counteract this, the World Health Organization (WHO) identified three steps to 

ensuring more effective preventive patient care (Earth Institute, 2010, p. 36). These steps 

are (1) providing integrated preventive healthcare, (2) promoting financing systems and 

policies to support preventive healthcare, and (3) prioritizing preventive healthcare as a 

key component of every intervention. Unfortunately, service delivery is not often aimed 

at preventive care. Moreover, persuading patients to adopt healthier lifestyles poses a 

challenge (World Health Organization, 2008). In low-resource settings the rapid adoption 

of mobile technologies present numerous opportunities to enhance preventive care. For 

example, Short Message Service (SMS) messages could be transmitted to patients to 

promote smoking cessation (Earth Institute, 2010). In a study conducted of a low-income 

HIV-positive population, it was reported that respondents were equipped with free mobile 

handsets through which they received counselling. Findings indicated that 75% of 

participants abstained and 95% attempted to quit smoking (Lazev, Vidrine, Arduino and 

Gritz, 2004). A typical case of an mHealth application for education and awareness is 

highlighted in Box 2.1. 

Box 2.1: mHealth Application for Education and Awareness 

 

Source(s): (Earth Institute, 2010, p. 42) 

‘Text to Change’ is an NGO that deploys mobile phones in an effort to enhance HIV/AIDS 

sensitization and prevention efforts in Uganda. It is part of a pilot project devised to scale up 

Voluntary Counseling and Testing (VCT), influence behavioural change through civic education, and 

monitor and evaluate HIV/AIDS prevention. Text to Change spearheaded the development of 

interactive multiple-choice quizzes to improve HIV/AIDS knowledge and awareness. Questions were 

sent through SMS to 15,000 mobile phone subscribers in the Greater Mbarara region. Over a three-

month period from February to April of 2008, 2,610 out of 15,000 mobile phone users responded to 

these questions (Earth Institute, 2010). Some questions elicited more frequent responses than 

others. For instance, a question on ‘the accuracy of HIV tests’ elicited responses from approximately 

2,500 participants. In comparison, a question on the ‘presence of HIV in body fluids’, elicited 

responses from between 1,000 and 1,500 participants (Earth Institute, 2010, p. 42).  
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Second, mHealth applications have been used to support data collection for patient care. 

2.3.2 Health Data Collection 

 

The collection of disease data in real-time can dramatically reduce morbidity and 

mortality (Earth Institute, 2010). The analysis of this data can impact the speed at which 

treatment reaches patients in low-resource settings. However, health data collection has 

often proven cumbersome due to the use of traditional paper-based systems (p. 22). The 

use of mobile technologies for data collection can resolve this. For instance, adopting 

mHealth tools over paper-based systems can significantly reduce data collection error 

rates (Earth Institute, 2010). In a study of health surveys in Gambia, it was observed that 

respondents using Personal Digital Assistants (PDAs) to collect malaria data reported 

error rates of between 0.1% and 0.6%, which indicated improved accuracy over paper-

based forms (Forster, Behrens, Campbell and Byass, 1991). A typical case of an mHealth 

application for the collection of health data is highlighted in Box 2.2. 

 

Box 2.2: mHealth Application for Data Collection  

 

Source(s): (Vital Wave Consulting, 2009) 

 

Third, mHealth applications have been used by field health workers for decision-support.  

2.3.3 Support for Health Workers  

 

The use of mobile technologies by field health workers can be used as decision support 

tools at the point-of-care or as an enabler of access to information (Earth Institute, 2010). 

For instance, nurses in Dangme West, Ghana, have used mobile phones to consult senior 

medical colleagues on handling complex maternal and newborn cases (Mechael, 2009). In 

‘EpiHandy’, is a health data collection and record access system sponsored by the Centre for 

International Health in Norway, enabled by mobile devices to help mitigate the high costs and 

inefficiencies of large-scale paper-based surveys. Despite its deployment in various countries since 

its launch in 2003, it has largely been used in Uganda, Zambia, and Burkina Faso. For instance, in 

Uganda, mobile phones were deployed to participating clinics and public health experts trained the 

local staff on using its open source ‘JavaRosa’ software to complete and submit filled medical forms. 

The data on these forms were transmitted through services made available on the local mobile 

network. EpiHandy has yielded positive results during a 5-year assessment in which 14 interviewers 

collected information on breastfeeding habits and child anthropometry in rural Eastern Uganda. 

Notable outcomes of this initiative include a reduction in data entry errors and improved cost 

effectiveness over paper-based surveys. 
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Cameroon, it was similarly observed that resident medical students used mobile phones to 

consult their supervisors through voice and SMS whilst completing their training in a 

rural setting (Scott, Ndumbe and Wootton, 2005). A typical case of an mHealth 

application for health worker support is highlighted in Box 2.3. 

 
Box 2.3: mHealth Application for Health Worker Support  

 
Source(s): (Vital Wave Consulting, 2009) 

 

Fourth, mHealth applications have been used by field health workers for disease 

surveillance.  

2.3.4 Disease Surveillance 

 

The use of mobile technologies for disease surveillance and reporting at the point-of- care 

could contribute to more integrated health systems. This is aided by the use of mobile 

devices to detect epidemics early (Earth Institute, 2010). Mobile technologies offer the 

added advantage of providing accurate data for the effective delivery of patient care (p. 

22). Uses of mobile technologies for disease surveillance have been cited (Earth Institute, 

2010). For example, in a ten-day field study conducted to facilitate effective patient 

follow-ups in Mozambique, Global Positioning System (GPS)-enabled mobile phones 

were used to map 4,855 households across 32 villages in 8 districts (Krishnamurthy, 

Frolov, Wolkom, Vanden and Hightower 2006). A typical case of an mHealth application 

for real-time disease surveillance is highlighted in Box 2.4. 

 
Box 2.4: mHealth Application for Disease Surveillance  

 
Source(s): (Vital Wave Consulting, 2009) 

 

The ‘Tamil Nadu Health Watch’, sponsored by ‘Voxiva’, was a phone-based disease surveillance 

platform deployed in India’s hard-hit Tamil Nadu State. The platform, launched in May 2005, 

supported field workers to relay disease incidence data to health officials in real time. As part of this 

initiative, Voxiva was used to train over 300 primary health centre doctors. This was achieved 

through interactive sessions conducted with local authorities to promote and reinforce outbreak 

surveillance. 

The Ugandan Health Information Network (UHIN), an initiative sponsored by Uganda Chartered 

HealthNet (UCH), AED-SATELLIFE, Makerere University Medical School, Connectivity Africa, and 

the International Development Research Centre (IDRC) used PDAs to provide medical education 

services to health personnel in Uganda. The PDAs transmitted messages via infrared beams 

transmitting signals to battery operated access points. The program was launched in 2003, and so 

far 350 PDAs connected to 20 access points in various districts in Uganda have been used. Health 

workers now using these devices have reported improved job satisfaction and staff retention.  
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Fifth, mHealth applications have been used to facilitate treatment compliance among 

patients. 

2.3.5 Treatment Compliance 

 

Treatment compliance involves the adherence of patients to medication. For instance, 

patients must adhere to prescribed antibiotics used to treat tuberculosis or anti-retroviral 

therapy for HIV/AIDS (Earth Institute, 2010). Mobile technologies could enable 

treatment compliance (p. 14). Uses of mobile technologies for treatment compliance have 

been cited (Earth Institute, 2010). For instance, in a study of 31 HIV patients in Peru, it 

was reported that mobile phone use significantly improved their adherence to anti-

retroviral treatment (Curioso and Kurth, 2007). A typical case of an mHealth application 

for treatment compliance is highlighted in Box 2.5. 

 

Box 2.5: mHealth Application for Treatment Compliance  

 

(Source: Vital Wave Consulting, 2009) 

 

Sixth, mHealth platforms have been used to support prompt responses to medical 

emergencies. 

2.3.6 Emergency Medical Response Systems 

 

In low-resource settings, Emergency Medical Response Systems (EMRSs) are not often 

prioritized (Earth Institute, 2010). This has been attributed to the prohibitive costs of 

transportation and advanced clinical care (Kobusingye, Hyder, Bisha, Hicks, Mock and 

Joshipura, 2005). The use of mobile devices as EMRSs is a simple and effective solution 

to these prohibitions (Earth Institute, 2010). During emergencies, mobile technologies can 

facilitate human resource support, transport and communications, patient transfers, and 

disaster planning (p. 45). The use of mobile phones as EMRSs in low-resource settings 

has been cited (Earth Institute, 2010). For example, in a study in Egypt it was reported 

‘SIMpill’ is a solution designed to help improve TB treatment compliance through the attachment of 

a SIM card and transmitter to pill bottles. When a patient opens one, an SMS message is sent to the 

nearest health worker. If it is not opened as expected, the patient receives an SMS reminder to take 

his or her medication. If the patient fails to comply, the health worker is prompted to call or visit the 

patient to encourage medication adherence. Following a 2007 pilot study conducted in South Africa 

to test system efficacy, it was reported that 90% of patients using ‘SIMpill’ complied with their 

medication regimen.  
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that during emergencies, participants preferred using mobile phones to hire transport 

because their calls were routed to a call centre thereby reducing response times (Mechael, 

2006). A typical case of an mHealth application for emergency medical responses is 

highlighted in Box 2.6. 

Box 2.6: mHealth Application for Emergency Medical Responses  

 

(Source: May et al., 2009; Vital Wave Consulting, 2009) 

 

In summary, a review of the existing literature indicates that mHealth applications could 

enhance preventive care by promoting healthy patient behaviour (Ladzev et al., 2004). In 

addition, mHealth applications could improve data collection by reducing error rates (Yu 

et al., 2009). Moreover, mHealth applications could facilitate consultation between field 

workers and health professionals on complex medical cases (Mechael, 2009). 

Furthermore, GPS-enabled mHealth applications could facilitate the mapping of 

households for disease monitoring (Krishnamurthy et al., 2006), treatment compliance 

through SMS adherence reminders transmitted to patients (Curioso et al., 2009), and 

emergency interventions for timely access to medical care (Mechael, 2006). It is 

important to recognize that the applications identified can be tools used as part of 

developing country mHealth projects. Examples of mHealth projects in the 

aforementioned application categories are provided in Table 2.1. 

 

  Table 2.1. mHealth Projects in Developing Countries 

Category Project Intervention Country 

Education and 

Awareness 

Project Masiluleke Send SMS messages to 

encourage HIV/AIDS testing and 

treatment. 

South Africa 

SMS for Health Promote HIV prevention through 

an SMS Quiz. 

Uganda 

Learning About Living Promote learning about HIV/AIDS 

through question and answer 

platform. 

Nigeria 

Health Data Collection EpiHandy Collect data and access patient Uganda, 

‘Alerta DISAMAR’, is a multi-platform emergency alert system deployed in Peru and supported by 

the US Navy. The system allows users to transmit or access data using multiple technologies, 

including mobile phones and the Internet. Alerts of disease outbreaks are sent as text, voice, and e-

mail messages. Following an evaluation of the project conducted in 2003, it was found that within 

the first year of deployment, disease outbreak responses in remote areas were improved. Since its 

launch, the system has been used to report more than 80,500 health cases of diphtheria, yellow 

fever, snakebites, diarrhoea, and acute respiratory infection. 



 24 

records enabled by PDAs. Zambia, Burkina 

Faso 

EpiSurveyor Create, share, and deploy health 

surveys and forms on mobile 

devices. 

Kenya, Uganda, 

Zambia 

Pesinet Use of a mobile application collect 

and transfer child health data. 

Mali 

Uganda Health 

Information Network 

(UHIN) 

Use of PDAs to collect health data 

and provide medical information 

to physicians. 

Uganda 

Mobile E-IMCI Use of PDAs to promote health 

worker adherence to Integrated 

Management of Childhood Illness 

(IMCI) protocols. 

Tanzania 

Disease Surveillance GATHER Use of data entry tools for weekly 

disease surveillance for 20 health 

clinics. 

Uganda 

Remote Interaction, 

Consultation, and 

Epidemiology (RICE) 

Use of a mobile platform for 

tracking and early detection of 

communicable diseases. 

Vietnam 

Tamil Nadu Health 

Watch 

Use of mobile phones to report 

disease incidence data to health 

officials in real time. 

India 

Treatment Compliance Cell-Life  Use of data-enabled mobile 

phones to record HIV/AIDS 

patient details such medication 

adherence. 

South Africa 

SIMpill  Sending SMS messages to health 

workers monitoring TB patient 

medication adherence. 

South Africa 

Emergency Medical 

Responses 

Alerta DISAMAR Use of mobile technologies to 

transmit and access data for rapid 

disease outbreak reporting. 

Peru 

Source(s): Vital Wave Consulting (2009); LeMaire (2011) 

 

The significance of implementing mHealth projects in low-resource settings is discussed 

in Section 2.4. 

2.4 Mobile-Health (mHealth) Projects 

 

As evidenced by Table 2.1, several mHealth projects have been implemented in 

developing countries, particularly in Africa. Unfortunately, despite the promise of 

mHealth, many of these projects are unsustainable and often expire once initial funding 

has been exhausted. For instance, in Uganda, 23 mHealth projects implemented between 
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2008 and 2009 did not scale-up
9
 beyond the pilot phase (LeMaire, 2011). Similarly, In 

India, over 30 mHealth pilot projects implemented in 2009 did not scale-up (p. 12). 

Existing mHealth policies, models and funding schemes have influenced this proliferation 

of pilot projects without enabling their meaningful and replicable scale-up. LeMaire 

(2011) evaluated developing country mHealth projects and identified key elements useful 

for successful scaling-up. There are three elements that inform the present study. First, 

mHealth projects must be tailored to local contexts to best serve population needs in 

specific settings. The assessment of local conditions such as typical work practices would 

contribute to the successful scale-up of these projects. In other words, the mHealth tools 

used must fit the CHW tasks performed. Second, implementers must devise useful 

metrics that can be integrated into pilot projects to form a sound basis for the evaluation 

of mHealth impacts (Mechael, 2009). As such, CHW performance outcomes must be 

quantified. Third, key stakeholders should be involved in mHealth project design. For 

instance, engaging potential end-users such as health workers would influence the 

successful uptake of mHealth tools. In essence, CHW perspectives of task-fit and their 

use of mHealth tools and facilitating conditions need to be understood. To support the 

scale-up of mHealth projects, global donors have encouraged research on the use of 

mHealth platforms in developing countries (Qiang, Yamaichi, Hausman and Altman, 

2011). In Section 2.3, examples of applications and benefits of mHealth in low-resource 

settings were cited. Subsequently, it was established that these are tools used in 

implemented mHealth projects. Examples of mHealth projects implemented in 

developing countries were provided. Whereas elements for the scale-up of mHealth 

projects cited in existing literature were discussed in Section 2.4, there is little or no 

evidence of mHealth tool impacts on the performance of CHWs in the delivery of patient 

care. These shortcomings in mHealth research are discussed further in Section 2.5. 

2.5 Shortcomings in Prior mHealth Research  

 

In Section 2.3, a number of mHealth applications cited in the literature were identified. 

These are tools used in various contexts across multiple settings. In prior mHealth 

research, the possible uses and benefits of these tools have often been cited. However, it 

must be recognized that the use of these tools is an essential component of mHealth 

                                                 
9
 The term scale-up has been described as the replication of technology in multiple contexts and the large-

scale implementation or expansion of mHealth projects in line with national health agendas (LeMaire, 

2011; 2013). 
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projects. In Section 2.4, mHealth projects for low-resource developing countries were 

discussed. In prior research, conditions for scale-up of mHealth projects are often cited. 

However, there is a lack of evidence of what factors may contribute to this scale-up of 

mHealth projects. Specifically, empirical evidence of mHealth impacts on the delivery of 

patient care is lacking (Mburu, Franz and Springer, 2013; Mburu, 2014). Furthermore, 

there is an absence of robust frameworks with which to evaluate these impacts. This 

continues to hamper opportunities to scale-up mHealth projects sustainably (Tomlinson et 

al., 2013). Scholars have proposed steps that could be followed to ensure the design of 

more rigorous mHealth studies (Flay, Biglan, Boruch, Castro, Gottfredson et al., 2005). 

Notably, it has been observed that evidence-based health studies must be underpinned by 

validated theories of end-user behaviour (Fishbein, Bandura, Triandis, Kanfer, Becker et 

al., 2000). In addition, the Multi-Phase Optimization Strategy (MOST) has been cited as 

an example of a systematic approach to the evaluation of health projects (Collins, Baker, 

Mermelstein, Piper, Jorenby et al., 2011). This strategy comprises two useful 

components. First, features that contribute to variations in particular interventions must be 

described. To achieve this, a small core set of key constructs or factors must be identified 

for observation. Second, multi-factorial designs or multi-variate methodologies must be 

used to empirically test the effects of these constructs. This systematized evaluation of 

mHealth impacts is lacking in prior research. In prior works, researchers tend to cite 

mHealth consequences such as improved accuracy and patient care, but neither qualify 

nor quantify what factors precipitate these outcomes (Earth Institute, 2010). Moreover, in 

prior works, mHealth tool end-users are hardly recognized as key contributors to patient 

care. In addition, the research designs used in prior studies often inform non-replicable 

feasibility studies in which relatively small sample sizes are used (Earth Institute, 2010). 

Thus there is a need for studies designed for the comprehensive evaluation of mHealth 

impacts on end-user behaviour (Prgomet et al., 2009). This can be ensured in a number of 

ways. First, replicable study designs must be devised to guide research on mHealth 

impacts. Second, large sample sizes must be used to conduct research on these impacts. 

Third, the impacts of the mHealth tool on user performance must be evaluated (Earth 

Institute 2010; Singh and Sullivan, 2011; Tomlinson et al., 2013; Philbrick, 2013). 

 

Despite a growing knowledge repository, policymakers need robust evidence but 

unfortunately the methods of past studies do not ensure statistically significant results that 

would meaningfully inform the uptake of mHealth in low-resource developing country 
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settings. Consequently, it becomes more difficult to inform mHealth project planning and 

implementation (Earth Institute, 2010). This lack of meaningful evidence-based mHealth 

research is propagated by the persistent use of qualitative designs such as ethnographic 

methods and interviews. This is indicative of a growing need for more quantitative 

research designs (Earth Institute, 2010). The use of more rigorous methodologies would 

benefit mHealth research in two ways. First, evidence would be a product of robust 

quantitative analysis signifying a data-driven approach to evaluating mHealth impacts. 

Second, appropriate indicators with which to evaluate mHealth performance impacts can 

be devised. Scholars in the field of mHealth must also employ robust indicators with 

which to compare interventions in different patient care settings (Duan et al., 2007). Thus 

it is important for researchers and practitioners to reach consensus on what study designs, 

methods, and measures are appropriate for evaluating mHealth impacts in low-resource 

settings (Earth Institute, 2010). 

 

In summary, mHealth research shortcomings identified indicate that (1) there is a need for 

evidence of mHealth tool impacts on end-user behaviour such as performance in the 

delivery of patient care (Prgomet et a., 2009), (2) quantitative multi-factorial designs or 

multi-variate methodologies with multi-variate analysis must be used to evaluate these 

impacts (Collins et al., 2011; Philbrick, 2013) (3) researchers must conduct evidence-

based research underpinned by validated theories of end-user behaviour (Fishbein et al., 

2000), and (4) replicable study designs with large sample sizes must be used (Earth 

Institute, 2010; Tomlinson et al., 2013). 

 

The present study is informed by two integral components of mHealth projects 

implemented in low-resource developing country settings. First, the mHealth tool is the 

technology used by the end-user to deliver patient care. Second, the mHealth tool end-

user must be a health worker entrusted with the responsibility of delivering patient care in 

a community setting. Consequently, in the present study, the extension of mHealth to 

community health work is particularly important. Specifically, research is needed on how 

to support the health worker through mHealth tool use at the point-of-care. Therefore a 

distinction must be made between two mHealth project typologies. First, there have been 

several general-purpose mHealth projects. Second, there are considerably fewer mHealth 

projects extended to community health work. Prior mHealth research is often skewed in 

favour of broader mHealth tool use contexts. Thus more specific research on mHealth for 
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community health work is lacking. To link mHealth to community health work, it is 

important to first identify and recognize the role of the health worker tasked with the 

delivery of patient care. The component of community health work is discussed in 

Section 2.6. 

2.6 The Community Health Worker (CHW) 

2.6.1 Community Health Workers (CHWs) and the Formal Care System 

 

Community Health Workers (CHWs) are often the only link to patient care for millions of 

people in the developing world (Liu et al., 2011). They are often the first point of contact 

with the formal care system (Global Health Workforce Alliance, 2010), acting as a bridge 

between their communities and hospitals or clinics (World Health Organization, 2006). 

Consequently, CHWs represent the intersection between two dynamic and overlapping 

systems (Naimoli, Frymus, Quain and Roseman, 2012) as depicted in Figure 2.2. 

 

 

Figure 2.2. The Intersection between the Community and Formal Health System 

 

There are five primary responsibilities of CHWs deployed to serve patients in households. 

These are the responsibilities of (1) visitation, (2) monitoring, (3) prevention, (4) referral, 

and (5) reporting. First, CHWs routinely visit households to collect health data and 

deliver care to patients who would otherwise be unreachable (DeRenzi et al., 2012). In 

visiting households, they offer an entry point for the delivery of patient care (Braun et al., 

2013) by performing the tasks of monitoring, prevention, and referral (Burket, 2006; 
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Partners in Health, 2011, Liu et al., 2011). Second, CHWs monitor households when 

conducting real-time disease surveillance (Braun et al., 2013) and observing patients for 

treatment compliance (Earth Institute, 2010). Examples of monitoring include assessing 

mother and child nutrition, detecting diarrhoea symptoms and fever and malaria signs, 

observing HIV/AIDS and TB patients, conducting birth registration, evaluating usage of 

bed nets, and collecting health data from patients (Bhutta, Darmstadt, Hasan and Haws, 

2005; Bryce Black, Walker, Bhutta, Lawn and Steketee, 2005; Adudans, Wariero, Wendo 

and Barasa, 2013). Third, CHWs exercise prevention to promote health initiatives to 

mitigate against disease (Singh and Sullivan, 2011). Examples of prevention include 

educating patients on water treatment and hygiene, advocating for HIV testing, promoting 

immunization, re-stocking condoms and contraceptive pills, installing insecticide-treated 

nets for malaria, and administering oral rehydration therapy (Conway et al., 2007; Haines, 

Sanders, Lehmann, Rowe, Lawn, Jan, Walker and Bhutta, 2007; World Health 

Organization, 2006; Peterson, 2008; Adudans et al., 2013). Fourth, CHWs refer patients 

to hospitals and clinics for further care or treatment (Liu et al., 2011). Examples of 

referral include cases of children with oedema and severe weight loss symptoms, febrile 

infants under 5 years at risk of fever and malaria, couples who need advice on long-term 

family planning methods, and mothers who seek maternal care (Singh and Sullivan, 2011; 

Adudans et al., 2013). Fifth, CHWs are expected to routinely report their household 

visitations. In addition, they are required to report on monitoring, promotion, and referral 

tasks that they perform in the delivery of patient care. This is effected through the transfer 

or submission of health data from households to hospitals or clinics (DeRenzi et al., 2011; 

DeRenzi et al., 2012; Otieno, 2012).  

 

In summary, the community health work literature indicates that typically, CHWs visit 

patients in households (Earth Institute, 2011), monitor sickness and treatment compliance 

(Perry and Zulliger, 2012), take preventive measures to mitigate against diseases (Bhutta 

et al., 2010), and refer patients to hospitals and clinics for advanced care or treatment (Liu 

et al., 2011). In addition, CHWs are expected to report on their household visitations, and 

the monitoring, prevention, and referral tasks that they perform (Bhutta et al., 2005; 

Haines et al., 2007; Braun et al., 2013). These are the responsibilities that encompass 

tasks that underscore the importance of CHWs to the delivery of patient care in low-

resource settings. Thus the importance of CHWs to the developing world must be 

recognized.  
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2.6.2 Community Health Workers in the Developing World 

 

In developing countries, it has been reported that there is a shortage of 2.3 million 

doctors, nurses, and midwives, and in excess of 4 million health workers overall. 

Moreover, in Europe for instance, 173,000 doctors are trained every year, compared to 

only 5,100 in Africa. By providing basic low-cost healthcare and services to these 

populations, CHWs represent a solution to this shortfall in global health workers 

(Conway, Gupta and Khajavi, 2007). Furthermore, of the world’s seven billion people, 

one billion will never formally seek patient care. Of these people, 350 million are 

children (Dalberg Global Development Advisors, 2012, p. 11). Consequently, 

underserved populations in low-resource settings have become more dependent on CHWs 

for primary healthcare services (Liu et al., 2011). For additional insight, recent estimated 

numbers of CHWs deployed
10

 in several developing African countries are provided in 

Table 2.2. The CHWs deployed in these developing countries typically operate within 

low-resource settings. 

 

  Table 2.2. Community Health Workers (CHWs) in Developing Countries 

Country Number of CHWs Household Coverage Population Coverage 

Mali 698 1000 - 2500 1,302,455 

Zambia 50,460 250 - 500 28,065,000 

Malawi 12,207 500 -1000 12,237,153 

Kenya 22,675 25 - 100 4,811,075 

Rwanda 83,476 50 - 100 19,370,155 

Ethiopia 41,490 500 - 1000 8,549,547 

Senegal 2,301 50 - 100 1,155,000 

Ghana 4,517 75 - 100 3,418,643 

Nigeria 7,107 2500-3500 5,362,904 

Congo (DRC) 4,696 100 - 500 352,200 

Niger 3,056 100-250 21,833 

Mozambique 4,300 100 - 400 4,750,000 

Sierra Leone 3,753 50 - 100 5,129,300 

Liberia 9,672 250 - 500 9,375,719 

Source(s): One Million Community Health Workers Campaign (2013); 

(http://1millionhealthworkers.org/operations-room-map/); CCM Central (2014) 

                                                 
10

 There are approximately 322, 199 CHWs deployed in 34 countries in Sub-Saharan Africa, covering an 

estimated total population of 126, 211, 216 (http://1millionhealthworkers.org/operations-room-map/). The 

majority of these CHWs (including those in the countries listed in Table 2.2) are not adequately equipped 

with mHealth tools and have typically relied on paper-based systems. 

http://1millionhealthworkers.org/operations-room-map/
http://1millionhealthworkers.org/operations-room-map/
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Notably, training a CHW for a year would cost 2.5% of the equivalent for a doctor and 

take less than a fifth of the time required (Conway et al., 2007). Whereas clinically skilled 

personnel contribute to enhanced patient services, CHWs need relatively shorter training 

to more rapidly provide basic household-level care (Singh and Sullivan, 2011). Of note, a 

typical CHW is expected to provide care for up to 100 households (Dalberg Global 

Development Report, 2012). In delivering patient care to households, CHWs have been 

recognized as significant contributors to Millennium Development Goals (MDGs) 4, 5, 

and 6 of improving child and maternal health (Earth Institute, 2011). Every year, 

approximately 8.8 million children die before age 5 and roughly 350,000 women have 

succumbed to pregnancy or birth-related complications, yet these deaths can be prevented 

by enabling access to the basic primary care that CHWs could provide (Dalberg Global 

Development Advisors, 2012). CHWs deployed to households play a crucial role in low-

resource settings, thus enhancing their capacity to deliver services to patients is 

imperative (Perry and Zulliger, 2012). One effective way in which this could be achieved 

is by equipping them with mHealth tools at the point-of-care (Liu et al., 2011). The 

integration of these tools into their customary workflows could empower them by 

enhancing their performance of monitoring, prevention, referral, and reporting tasks 

(Bhutta et al., 2005; Haines et al., 2007; Braun et al., 2013). In recognizing this 

opportunity, there is a pertinent need to extend mHealth to community health work. 

2.6.3 The Use of mHealth Tools for Community Health Work 

 

The use of mHealth tools is arguably a more immediate and cost-effective way through 

which CHW-facilitated patient care in low-resource settings could be enhanced (Perry 

and Zulliger, 2012). These tools would strengthen point-of-care support whilst enabling 

quicker emergency response times (Mechael, 2009; Singh and Sullivan, 2011, p. 36). 

Moreover, when referring patients for further care or treatment, CHWs would be able to 

directly liaise with clinicians or doctors in clinics and hospitals. Furthermore, CHWs 

would be able to more accurately collect data at the household level (Braun et al., 2013), 

where the accuracy of this data is important to planning community-based interventions 

and tracking disease prevalence. A number of trends in CHW mHealth tool use have been 

cited in the existing literature.  
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First, researchers have supported the aim of designing mHealth tools that improve CHW 

workflows (Bernabe-Ortiz, Curioso, Gonzales, Evangelista, Castagnetto et al., 2009; 

Tomlinson et al., 2009). Second, the use of mHealth tools could facilitate the exchange of 

information between CHWs and nurses or physicians in hospitals and clinics (Lemay, 

Sullivan, Jumbe and Perry, 2011). Third, mHealth tool use among CHWs could support 

health and disease monitoring (Chaiyachati, Loveday, Lorenz, Leash, Larkan, Cinti, 

Ferdinand and Haberer, 2013). Fourth, mHealth tool use among CHWs could enhance 

decision support (Arango, Iyengar, Dunn, and Zhang, 2011). Despite these positive 

trends, there is a need to create strong linkages between mHealth tools and consequences 

such as (1) improved workflows or (2) CHW performance. Whereas several possible uses 

of mHealth tools among CHWs have been cited, the most prominent interventions have 

included health and disease monitoring and data collection (Medhi, Jain, Tewari, 

Bhavsar, Matheke-Fischer and Cutrell, 2012; Chaiyachati et al., 2013), and the use of job 

aids for decision support (Arango, Iyengar, Dunn et al., 2011). In precious few prior 

works, specific consequences of mHealth-enabled CHW interventions are quantified. In 

these works, mHealth tools have been compared to traditional paper-based systems. For 

the most part, positive mHealth tool impacts have been confirmed primarily in the area of 

monitoring in relation to data collection and reporting (DeRenzi et al., 2011; Medhi et al., 

2012; Chaiyachati et al., 2013). For instance, in a study on pregnancy monitoring by 

CHWs in Rwanda, it was reported that there was an increase in facility-based deliveries 

from 72% to 92% within a year of using an mHealth tool (Ngabo, Nguimfack, Nwalgwe, 

Mugeni, Muhoza, Wilson, Kalach, Gakuba, Karema and Binagwaho, 2012). Elsewhere, 

in a study on child healthcare provision by CHWs in Tanzania, it was reported that 85% 

of cases were successfully monitored using an mHealth tool compared to 65% enabled by 

a traditional paper-based system (DeRenzi, Parikh, Mitchell, Chemba, Schellenberg, 

Leash, Sims, Maokola, Hamisi and Borriello, 2008). Similarly, in a study on child health 

monitoring by CHWs in India, it was reported that on average, mHealth tools reduced the 

time spent collecting field data from 45 days to 8 hours, increased patient form 

completion rates from 67% to 84%, and minimized error rates from 9.4% to less than 1% 

(Medhi, Jain, Tewari, Bhavsar, Matheke-Fisher and Cutrell, 2012). 

 

These and similar past studies on mHealth outcomes in the context of community health 

work are summarized in Table 2.3. 
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Table 2.3. Mobile Technology and Community Health Work Studies 

Approach Intervention Outcome Source 

Randomized 

Control  

Routine CHW patient 

visits with and without 

supervisor involvement. 

CommCare mHealth platform 

generates SMS reminder 

reducing days patients were 

overdue by 86%. 

DeRenzi et al 

(2012) 

Mixed Methods  The monitoring of 

patients infected with 

multi-drug resistant 

tuberculosis. 

Mobilize mHealth platform. 

increases weekly paper patient 

forms submitted to 27% (9 of 33) 

from  5% (14 of 29). 

Chaiyachati et al 

(2013) 

Randomized 

Prospective 

Crossover Study 

Patient care aided by 

rich media clinical 

guidelines on a mobile 

phone. 

mHealth platform reduces errors 

by an average of 33% and 

increases protocol compliance 

by 30.18%.  

Arango et al 

(2011) 

Semi-Structured 

Interview(s), Clinical 

Trial(s) 

Child health monitoring. eIMCI mHealth platform 

increases case observed in 

paper-based trial to 84.7% (304 

of 359) from 61% (183 of 299). 

DeRenzi et al 

(2008) 

System Design and 

Piloting 

Maternal and child 

health monitoring. 

RapidSMS-MCH mHealth 

platform increases facility-based 

deliveries, by 27% up from 72% 

at baseline a year earlier to 

92%. 

Ngabo et al 

(2012). 

Field Trial Child health monitoring. CommCare mHealth platform (i) 

increases forms filled to 84% 

from 67%, and (ii) reduced error 

rate of 9.4% to approach data 

quality levels near 100%. 

Medhi et al 

(2012) 

 

Despite cited outcomes in these studies, there is no explicit indicator of CHW 

performance. Instead, mHealth tool impacts are reported as evidence of CHW 

performance. Specifically, mHealth platform functionality is prioritized with less 

attention afforded to the technology user, namely the CHW. Consequently, it appears that 

the mHealth tool takes precedence over its user to whom patient care delivery is 

entrusted. Thus CHW work has rarely been evaluated in these prior studies (Kallander, 

Tibenderana, Akpogheneta, Strachan, Hill, ten Asbroek, Conteh, Kirkwood and Meek, 

2013). This can be effectively addressed by (1) prioritizing CHW performance and (2) 

evaluating this performance using an mHealth tool compared to the alternative traditional 

paper-based system. However, a common set of criteria with which to evaluate CHW 

performance dimensions is necessary for the effective evaluation of CHW performance.  
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Despite the outcomes measured above, more specific user performance measures are 

needed to guide research on CHW mHealth tool use. Instead, mHealth tool indicators are 

used as performance criteria observed as consequences attributed to the technology. Thus 

a distinction must be made between comparative studies that signify (1) mHealth tool- 

focused research to demonstrate functional superiority of the mHealth tool as evidence of 

CHW performance and (2) CHW-focused research to demonstrate superior performance 

using the mHealth tool as evidence of mHealth tool impacts. Therefore more studies on 

CHW performance as evidence of mHealth tool impacts are needed. In prior CHW 

mHealth studies, the former appears to be more prominent than the latter. Moreover, there 

is insufficient evidence of how CHWs perceive the contribution of mHealth tools to their 

performance or evaluate functions of the technology used. These and relative CHW 

mHealth research shortcomings are expounded in Section 2.7. 

2.7 Shortcomings in Prior mHealth Community Health Work 

Research 

 

In Section 1.6.1, a number of CHW tasks cited in the existing literature were identified. 

These CHW tasks are performed in low-resource developing country settings. In prior 

works, examples of these tasks performed at the household level have often been cited. 

However, the use of mHealth tools to perform these tasks has hardly been evaluated in 

prior research. Moreover, there is a lack of evidence of what factors influence mHealth 

tool use. Furthermore, there is little or no evidence of how or why these tools can 

functionally support CHW tasks. There is a dearth of evidence of how CHW tasks must 

be evaluated (Lehmann and Sanders, 2007), or what factors contribute to enhancing 

workflows through task performance (Perry and Zulliger, 2012), yet a potential 

significant contributor is the use of mHealth tools at the point-of-care. In addition, there is 

a need for an improved understanding of how to design mHealth tools that better fit CHW 

tasks to optimize performance (Braun et al., 2013). Consequently, two important steps 

inform the present study. First, factors must be identified to explain how or why mHealth 

tool use impacts CHW performance. Second, these factors must be used to evaluate the fit 

between the CHW tasks performed and mHealth tool used (Perry and Zulliger, 2012; 

Braun et al., 2013). It is not clear from the existing literature how CHWs equipped with 

mHealth tools perceive, engage with, or use these technologies. Moreover, there is a lack 

of evidence of how CHWs evaluate the contribution of mHealth tools to their 
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performance (Kaphle, Chaturvedi, Chaudhuri, Krishnan and Lesh, 2015). Thus there is a 

need for frameworks with which to evaluate whether mHealth tools are appropriate for 

and responsive to CHWs (Svoronos, Mjungu, Dhadialla, Luk and Zue, 2010). Despite the 

role of CHWs as key contributors to primary care, there have been very few studies in 

which their work practices have been evaluated (UNDP, 2012). The aforementioned 

shortcomings can be addressed in a number of ways to inform the present study. First, 

studies to capture the perceptions of CHWs of their work practices must be conducted. 

Second, researchers must evaluate how CHWs perceive, engage with or use mHealth 

tools. Third, study findings must be used to explain how CHWs evaluate or perceive 

mHealth tool impacts on their performance. Lehman and Sanders (2007) observed that 

researchers have often narrated experiences involving CHWs, thus making a case for their 

importance, rather than analysing impacts. In existing literature, a set of consistent 

indicators with which to evaluate CHW performance impacts is lacking. Moreover, the 

effects of mHealth tool use on CHW performance have rarely been quantified (Lehmann 

and Sanders, 2007). Furthermore, there is little or no evidence that the causal effects of 

mHealth tool use on CHW performance have been empirically tested (Braun et al., 2013). 

Consequently, the use of rigorous methods to evaluate CHW performance impacts is 

necessary (Jaskiewicz and Tulenko, 2012). 

 

In summary, the shortcomings identified in CHW research indicate that (1) evidence to 

support the design of mHealth tools that fit CHW task requirements is needed (Braun et 

al., 2013), (2) robust frameworks and rigorous methodologies must be applied to explain 

how a fit between CHW tasks and mHealth tools impacts user performance (Svoronos et 

al., 2010), (3) CHW performance impacts using mHealth tools must be rigorously 

evaluated (Jaskiewicz and Tulenko, 2012), and (4) the CHW performance effects of 

mHealth tool use and its determinants must be evaluated (Tomlinson et al., 2013). 

Notably, in prior research, it appears that CHWs who have been evaluated are not 

deployed within mHealth projects implemented in low-resource developing country 

settings. Thus to appreciate the inextricable link between mHealth and community health 

work, it must be explicitly recognized that the tool user, the CHW, must be an integral 

component of an implemented mHealth project. 

 

In prior studies, there is an apparent absence of synergy between (1) mHealth tool use (2) 

mHealth projects, and (3) CHW mHealth tool users. Therefore for the present study, 
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CHW tool users deployed within mHealth projects that are implemented in low-resource 

developing country settings must be evaluated. Consequently, a number of such projects 

inform the choice of research setting for the present study. 

2.8 Research Setting 

 

The context of the present study is informed by developing world CHW mHealth 

projects. These are initiatives in which mHealth tools are used by CHWs who visit 

patients in households and routinely perform the tasks of monitoring, promotion, referral, 

and reporting. CHWs deployed as part of these mHealth projects could deliver care in a 

given task category
11

. There are, however, few mHealth projects that explicitly inform 

CHW delivery of patient care in low-resource settings. For instance, the ‘Pesinet’ project 

launched in Mali involves CHWs using mHealth tools to reduce child mortality by 

enabling access to early treatment (LeMaire, 2011). Similarly, the ‘Project Mwana’ 

initiative launched in Zambia involves the use of mHealth tools by CHWs to improve 

care delivery to mothers and infants in rural settings (Philbrick, 2013). Elsewhere, the 

‘National Rural Health Mission’ project launched in India involves equipping CHWs with 

mHealth tools used to improve maternal care access (Singh and Sullivan, 2011). These 

are among notable developing world mHealth projects that involve CHWs using mHealth 

tools. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
11

 In developing world CHW mHealth projects, applications have typically been used for education and 

awareness, health data collection, health worker support, disease surveillance, treatment compliance, and 

emergency medical responses. 
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Table 2.4. Developing Country Community Health Worker (CHW) Mobile-Health (mHealth) Projects 

Project(s) Intervention Task Country 

Pesinet Observe infants for signs of fever, 

vomiting, diarrhoea, and weight loss. 

 Monitoring 

 Prevention 

 Reporting 

Mali 

National Rural Health 

Mission 

Track pregnancies in villages and 

encourage facility-based delivery. 

 Monitoring 

 Referral 

 Reporting 

India 

Nompilo Providing care by using mobile phones to 

upload patient data to web servers. 

 Reporting South Africa 

Project Mwana Check up on HIV positive mothers to 

prevent transmission to infants during 

birth.  

 Monitoring 

 Referral 

 Reporting 

Zambia, Malawi 

Millennium Villages 

Project (MVP) 

Provide maternal and newborn care, 

check for malaria, malnutrition, and 

diarrhoea signs, effectively link 

households to clinics.  

 Monitoring 

 Prevention 

 Referral 

 Reporting 

 

Kenya, Tanzania, Uganda, 

Rwanda, Ethiopia, Malawi, 

Mali, Senegal, Ghana, 

Nigeria 

The Academic Model 

Providing Access to 

Healthcare (AMPATH) 

Track mothers for pregnancy danger 

signs, and infants postpartum, collect 

patient data for decision support and 

provide rapid feedback. 

 Monitoring 

 Referral 

 Reporting 

 

Kenya 

The (mHMtaani) 

‘Mobile Health for Our 

Communities’ project 

Monitor orphans and pregnant mothers, 

support data gathering and effectively 

link patients to health facilities. 

 Monitoring 

 Referral 

 Reporting 

Kenya 

Source(s): Vital Wave Consulting (2009); Svoronos et al (2010); LeMaire (2011); Singh and Sullivan (2011); 

Adudans et al (2013); Fazen et al (2013); Mkalla (2014) 

 

The implementation of CHW mHealth projects in Kenya informs the context of the 

present study. Kenya, an emerging developing country, represents an appropriate case for 

several reasons. First, Kenya has among the highest mobile penetration rates
12

 in the 

developing world (Ngugi, Pelowski and Ogembo, 2010). Second, Kenya is an African 

leader in mobile technology-enabled innovation (Aker and Mbiti, 2010). Third, Kenya is 

at the forefront of global mHealth community projects in low-resource developing 

country settings (LeMaire, 2011). Fourth, Kenya is attractive to international 

development partners investing in mobile technology-enabled service delivery platforms 

(Zambrano and Seward, 2012).  

                                                 
12

 According to the most recent statistical report from the Communications Authority of Kenya (CAK), 

there are 37.8 million subscribers in Kenya, and the mobile penetration rate currently stands at 88% 

(Communications Authority of Kenya, 2016). 
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In light of the above, three projects
13

 in which CHWs use mHealth tools
14

 to deliver 

patient care inform the present study. The first of these projects, the Millennium Villages 

Project (MVP) initiative, is described in Box 2.7. 

 

Box 2.7: The Millennium Villages Project (MVP)  

 

 

Recently, within the Siaya County (Sauri Village) MVP, ‘CommCare’, a mobile phone-

based open-source application, was used by 120 CHWs to improve disease surveillance, 

data reporting, and decision support for the monitoring of maternal and child health 

(Svoronos et al., 2010; Adudans et al., 2013). The CommCare application is installed on 

smartphones used as mHealth tools by CHWs in Sauri Village, Siaya County. A typical 

example of the CommCare mHealth tool interface is illustrated in Figure 2.3. 

 

                                                 
13

 Note: In Kenya, there are not more than approximately 500 deployed CHW mHealth tool users within 

implemented low-resource setting mHealth projects. As at the time of this study, these were the only 

officially documented mHealth projects in Kenya. The MOH Division of Community Health Services 

(DCHS) regulates access to all CHWs in Kenya. CHWs in Kenya have traditionally used Ministry of Health 

(MOH)-classified paper-based systems.  
14

 Similar mHealth technology platforms were used within CHW mHealth projects across identified study 

sites.  

The Millennium Villages Project (MVP) was launched in 2005 in Sauri Village, Siaya County, Kenya, 

and has since expanded through the formation of 13 other village clusters across 10 African 

countries. These are Dertu (Kenya), Koraro (Ethiopia), Ruhiira (Uganda), Mbola (Tanzania), 

Gumulira and Mwandama (Malawi), Mayange (Rwanda), Ikaram (Nigeria), Pampaida (Nigeria), 

Bonsaaso (Ghana), Potou (Senegal), Tiby and Toya (Mali). This was initially part of the now defunct 

United Nations (UN) Millennium Project, in conjunction with Columbia University’s Earth Institute, 

and ‘Millennium Promise’ a US-based global non-profit initiative. The MVP, was aligned to 

Millennium Development Goals (MDGs) 4 and 5, of improving child and maternal health in 

developing countries. As part of the MVP, CHWs using mobile technologies are deployed to monitor 

mothers and infants to prevent malaria, malnutrition, and diarrhoea signs, and effectively link them 

to clinics. Sony Ericsson, MTN, Novartis, the Open Mobile Consortium, the Bill and Melinda Gates 

Foundation, and the World Health Organization (WHO), sponsored the initiative. 
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Figure 2.3. CommCare Mobile-Health (mHealth) Tool Interface for the Siaya (Sauri) Implementation 

 

The second project, the Academic Model Providing Access to Healthcare (AMPATH), is 

described in Box 2.8. 

 

Box 2.8: The Academic Model Providing Access to Healthcare (AMPATH)  

 

 

In Nandi County (Kosirai District), Kenya, 92 CHWs were using ‘AccessMRS’, an open-

source Android application loaded on mobile phones and used for maternal and child 

monitoring, data collection, and reporting (Fazen, Chemwolo, Songok, Ruhl, Kipkoech, 

Green, Ikemeri, Chritoffersen-Deb, 2013). This application is installed on smartphones 

used as mHealth tools by CHWs in Kosirai District. A typical example of the AccessMRS 

mHealth tool interface is illustrated in Figure 2.4. 

 

The Academic Model Providing Access to Healthcare (AMPATH) project was initiated in 2001, as 

part of a collaborative effort between Indiana University, Moi University, and the Moi Teaching 

Referral Hospital. The project was launched to address high maternal and infant mortality in 

Western Kenya, by supporting innovative approaches to improving maternal, newborn and child 

health. As part of this initiative, a system was developed for rapid communication between mothers 

and their care providers, ‘The Mother-Baby Health Network’, through an mHealth project in Kosirai 

District, Nandi County, Kenya, implemented to ensure that sustainable maternal and newborn care 

was provided. The AMPATH, was sponsored by the United States Agency for International 

Development (USAID), the Bill and Melinda Gates Foundation, and Grand Challenges Canada. 

 

 

 

 

 

 

 

 

 

 

The AMPATH project was designed as a Primary Health Care (PHC) initiative to 

address high rates of maternal and infant mortality in Western Kenya to support 

innovative approaches to the delivery of the Kenya Essential Package for Health 

(KEPH).  

 

AMPATH was developed to foster rapid communication and feedback between 
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Figure 2.4. AccessMRS Interface Mobile-Health (mHealth) Tool Interface for the Nandi Implementation 

 

The third project, the (mHMtaani) ‘Mobile Health for Our Communities’ Initiative, is 

described in Box 2.9. 

 

Box 2.9: mHMtaani ‘Mobile Health for Our Communities’  

 

 

As part of the mHMtaani project in Kilifi, 267 CHWs used the ‘CommCare Mobile’ 

platform for decision support and to monitor orphans and pregnant mothers at the 

household level (Mkalla, 2014). The CommCare Mobile application is installed on 

smartphones used as mHealth tools by CHWs in Kilifi. A typical example of the 

CommCare
 15 

mHealth tool interface is illustrated in Figure 2.5. 

  

                                                 
15

 A similar ‘CommCare’ application platform was used by CHWs in the Millennium Villages Project 

(MVP) in Sauri Village, Siaya County, Kenya. 

The Mobile Health for Our Communities (mHMtaani) project was initiated in 2013 as part of a 

collaborative effort between Pathfinder and Dimagi Inc, to support the Aids, Population and Health 

Integrated Assistance – People Led Universal Sustainability (APHIAplus) initiative. The mHMtaani 

project was implemented for the sole purpose of enabling high quality patient care at the household 

level, through the monitoring of antenatal care visits, breastfeeding, and pregnancy danger signs. 

The mHMtaani project was implemented in six Community Units (CUs) in Kilifi County, Kenya, 

namely Kaliang’ombe, Dabaso, Jimba, Mtwapa, Shimo la Tewa, and Tsangatsini. The Africa 

Medical and Research Foundation (AMREF), the United States Agency for International 

Development (USAID), Visa, and Net Hope, are among notable collaborating project sponsors. 
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Figure 2.5. CommCare Mobile-Health (mHealth) Tool Interface for the Kilifi Implementation 

 

The mHealth tool interfaces used at the point-of-care, the counties in which these were 

applied, the CHW user base, and respective technology platforms, are summarized in 

Table 2.5. 

 

Table 2.5. Mobile-Health (mHealth Tool) Use Summary 

Interface County Community Health Worker (CHW) User Base  Platform  

CommCare Siaya 120 CHWs Open-Source Code Application 

(Java or Android enabled) 

AccessMRS Nandi 92 CHWs Open-Source Code Application 

(Android enabled devices)  

CommCare Kilifi 267 CHWs Open-Source Code Application 

(Java or Android enabled) 

 

To demonstrate the impacts of mHealth tool use on CHW performance in low-resource 

settings, two additional projects are incorporated that were not mHealth projects but 

instead informed by the use of traditional paper-based systems. The first of these paper-

based projects is the Kibera Community Integrated Health Programme initiative, 

described in Box 2.10. 
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Box 2.10: The Kibera Community Integrated Health Programme Project  

 

 

In Nairobi County, Kenya, 400 CHWs were deployed as part of the Kibera Community 

Integrated Health Programme Initiative. The second paper-based project is the Aids, 

Population and Health Integrated Assistance – People Led Universal Sustainability 

(APHIAplus) initiative, described in Box 2.11. 

 

Box 2.11: The Aids, Population and Health Integrated Assistance – People Led Universal 

Sustainability (APHIAplus) Project  

 

 

In Nakuru County, Kenya, 275 CHWs were deployed as part of the APHIAplus initiative. 

In these two paper-based projects, CHWs deployed to households deliver patient care 

through the performance of monitoring, prevention, referral, and reporting tasks during 

household visits.  

The Aids, Population and Health Integrated Assistance – People Led Universal Sustainability 

(APHIAplus) project, was launched in 2011, in 8 of 14 Counties in the Rift Valley, namely Kenya 

Narok, Kajiado, Nakuru, Baringo, Laikipia, Elgeyo, Marakwet, Trans Nzoia, and West Pokot. The 

project was implemented by the Africa Medical and Research Foundation (AMREF), as a lead 

agency rolling out strategies to improve access to healthcare by supporting data collection at the 

household level, and strengthening linkages between communities and clinics through effective 

referral systems. APHIAplus is aligned to the Global Health Initiative (GHI) principles of country led 

sustainability and integration geared to improving the lives of mothers, children, and their families 

through HIV/AIDS, tuberculosis, malaria, and reproductive health interventions. As part of the 

initiative, Community Units (CUs) were established for the sustainable provision of household 

HIV/AIDS care in collaboration with dispensaries and health centres, by promoting disease 

prevention through sanitation and hygiene, the monitoring and evaluation of patients, and data 

reporting for decision support. The initiative is funded by the United States Agency for International 

Development (USAID) in partnership with AMREF, Family Health International (FHI) 360, Catholic 

Relief Services (CRS), the National Organization for Peer Educators (NOPE), and Gold Star Kenya. 

 

 

 

 

 

 

The Kibera Community Integrated Health Programme project was launched in 1998, in Kibera, 

Nairobi County, Kenya, covering a target population of 35,010 infants below the age of five years, 

and 43,762 women. In this initiative, maternity nursing clinics, and VCT centres were targeted as 

outlets for maternal and child care. This project was implemented in four of Kibera’s 13 Community 

Units (CUs), in the areas of Laini Saba, Mashimoni, Silanga, and Soweto East. These units 

consisted of health facilities such as the Belgian government sponsored Silanga Health Centre. The 

primary focus of the project was to educate communities on personal hygiene and sanitation, and 

monitor maternal, newborn and child health to provide care for HIV/AIDS and tuberculosis. The 

Africa Medical and Research Foundation (AMREF) supported by the European Union (EU) 

spearheaded this initiative. 
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The CHW deployed in the Counties of Nairobi and Siaya use traditional paper-based 

systems defined as ‘A4 size level 1 data capture tools’, which are classified as ‘Forms 

513-515’. A sample of the ‘Ministry of Health (MOH) classified Form 515’ is depicted in 

Figure 2.6. 

 

 

Figure 2.6. Ministry of Health (MOH) Form 515 Sample 

 

In the present study, three key projects in which CHWs use mHealth tools to deliver 

patient care are evaluated. In addition, two projects in which paper-based systems are 

used are evaluated. Together, five projects
16

 inform the context of the present study as 

mapped in Figure 2.7. 

 

                                                 
16

 Supported by the Kenya Government through the Ministry of Health (MOH) Division of Community 

Health Services (DCHS). 
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Figure 2.7. Community Project Sites for the Present Study 

2.9 Chapter Conclusion 

 

In this chapter, literature on (1) mHealth and (2) community health work was reviewed.  

 

First, six types of mHealth applications (tools) were identified and examples provided. 

Second, mHealth projects in which these tools are used were identified. Third, 

shortcomings in research on mHealth (1) applications and (2) projects, were discussed. 

Fourth, the role and responsibilities of CHWs were identified. Fifth, the use of mHealth 

tools by CHWs was discussed. Sixth, shortcomings in research on (1) CHWs and (2) 

mHealth tool use by CHWs, were discussed. The shortcomings identified following a 

review of literature on (1) mHealth applications, (2) mHealth projects, (3) CHWs, and (4) 

CHW mHealth tool use, are convergent. Consequently, several prescribed guidelines 

inform the agenda proposed to guide the present study: 
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In congruence with the research questions and study objectives presented in Chapter 1, 

the shortcomings identified and discussed will be addressed in subsequent chapters of the 

present study. Consequently, the guidelines prescribed above must inform the trajectory 

of the study. In line with the above-stated guidelines, and in order to empirically 

demonstrate the importance of mHealth technology for CHW performance in low-

resource settings in the context of the study, a quasi-experimental post-test was 

conducted, as detailed in Chapter 3. 

 

 

 

1. Employ a rigorous, replicable, study design underpinned by validated 

theories of technology-user behaviour. 

2. The study must be oriented towards the synergy between the technology, the 

mHealth tool, and end-user, the CHW. 

3. Use a survey-based approach to collect data from a large sample of CHWs 

deployed within developing country mHealth projects in low-resource 

settings.  

4. Similarly, collect data from a large supplementary sample of CHWs using 

traditional paper-based systems in low-resource developing country settings. 

5. Use quantitative multi-factorial designs or multi-variate methods to 

systematically evaluate or empirically test mHealth impacts on CHW 

performance in the delivery of patient care. 

6. Identify a set of CHW performance indicators with which to evaluate 

impacts using mHealth tools compared to traditional paper-based systems. 

7. Explicate the causal mechanisms through which the technology (the mHealth 

tool) impacts user (CHW) performance.  

8. Evaluate (i) the fit between CHW tasks and mHealth tools and (ii) impacts 

on mHealth tool use and CHW performance.  

9. Evaluate (i) the use of mHealth tools by CHWs and (ii) determinants of 

mHealth tool use. 
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3 The Impact of Mobile-Health (mHealth) Tools on the 

Performance of Community Health Workers (CHWs) in 

Kenya: A Quasi-Experiment  

 

This chapter is an updated version of the publication: Gatara, M. and Cohen, J.F (2015) 

Mobile Health Tool Use and Community Health Worker Performance: A Quasi-

Experimental Post-Test Perspective, Journal for Health Informatics in Africa (JHIA), 

2(2), pp. 44-54. 

3.1 Introduction 

 

In Chapter 2, mHealth tools were identified as having high potential to support CHWs at 

the point-of-care in low-resource settings (Liu et al., 2011; Perry and Zulliger, 2012). 

However, as described in Chapter 1, there is a lack of consensus on how to evaluate 

mHealth tool impacts. Moreover, there have been few studies conducted to examine the 

outcomes of mHealth tool use for CHW performance (Jaskiewicz and Tulenko, 2012). 

Therefore, to address the need for more robust evidence on the impacts of mHealth tools 

on CHWs (Bhutta et al., 2010), research questions 1 and 2 were formulated: 

 

 

 

The purpose of this chapter is to address these two research questions. First, indicators 

with which to measure CHW performance are identified. Second, these indicators are 

used to compare the performance of a sample of CHWs using mHealth tools (the 

intervention group) against a sample using traditional, paper-based systems (the control 

or reference group). A quasi-experimental post-test only design was employed (Harris et 

al., 2006).  

 

1. What are the differences in CHW performance using mHealth tools 

compared to those using traditional paper-based systems? 

2. How are these differences indicative of expected positive mHealth tool 

impacts on CHW performance? 
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3.2 Conceptualizing Community Health Worker (CHW) Performance 

 

To conceptualize and derive measures of CHW user performance, two areas of literature 

were reviewed. Given that CHWs are technology (mHealth tool) users, the general 

Information Systems (IS) literature was first reviewed to provide a basis for 

conceptualizing the broader concept of technology user performance. Second, the CHW 

mHealth literature was examined in order to derive a comparable set of performance 

indicators that reflect the specific context of CHW work, for purposes of this quasi-

experimental study. 

3.2.1 Perceived User Performance 

 

In previous IS studies, user performance has been defined as the accomplishment of a set 

of tasks (Goodhue et al., 1997). The achievement of higher levels of user performance 

would require a combination of improved effectiveness, efficiency, and quality in the 

execution of technology-enabled work tasks (p. 452). First, effectiveness is the execution 

of actions or tasks to achieve desired work outcomes or results (Teo and Men, 2008). ITs 

have been shown to improve the effectiveness of users by enhancing their productive 

output in executing tasks (Torkzadeh and Doll, 1999). Second, efficiency is the 

completion of tasks in the least time, at the lowest cost (Garrity and Sanders, 1998). ITs 

have been shown to improve the efficiency of users by automating time-consuming tasks 

thereby reducing the wastage of resources (Belanger, Collins and Cheney, 2001). Third, 

quality is the completion of tasks without committing errors (Junglas et al., 2009). ITs 

have been shown to improve output quality not only by validating the inputs of users, but 

also minimizing errors in capturing and transmitting data (Belanger et al., 2001). In prior 

works, researchers have relied heavily on perceptual measures of the above dimensions of 

user performance (e.g. Henderson, 1988; Henderson and Lee, 1992; Teo and Men, 2008). 

Moreover, it has been found that these user performance measures are related to other 

outcomes such as enhanced decision-making speed (Leidner and Elam, 1993), improved 

user satisfaction (Seddon and Kiew; 1996), increased individual productivity (Igbaria and 

Tan, 1997), and maximized job performance (Becker, Billings, Eveleth and Gilbert, 

1996).  
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In IS studies, perceptual measures of performance are preferred because indicators 

typically used tend to be intangible or qualitative, such that it becomes difficult to 

precisely quantify their actual value as objective quantifiable measurement criteria. 

Moreover, while objective indicators may be desirable, it is not always possible to 

compute exact measures of IT impacts (Henderson, 1988; Kemerer, 1989). Consequently, 

perceptual, self-reported, user-evaluated measures, have increasingly been adopted in IS 

research (Ives et al., 1983; DeLone and MacLean, 1992; Goodhue, 1992; Mahmood and 

Soon, 1991; Sethi and King, 1991). Thus performance can be a useful indicator of user 

perceptions of the importance or utility of ITs for their work tasks. Performance can also 

indicate a change in user perceptions of this importance or utility (Hou, 2012). The 

reliance of users on their perceptions in evaluating whether or not IT use for their tasks 

creates value, is based not only on personal experience or peer evaluations, but also on 

underlying expectations of performance. Consequently, the use of perceptual measures in 

IS research would constitute an acceptable approach to gauging user performance 

(Tallon, Kramer and Gurbaxani, 2000). From previous IS research, measures of user 

performance can thus be derived to reflect perceptual measures of (1) effectiveness, such 

as ‘the [system] increases my productivity’ (Torkzadeh and Doll, 1999), (2) efficiency, 

such as ‘the [system] helps me spend less time’ (Hou, 2012), and (3) quality, such as ‘the 

[system] decreases my error rates in reporting’ (Junglas et al., 2009). These measures of 

user performance employed in past studies are classified in the present study as Perceived 

User Performance (PUP) indicators. These indicators are summarized in Table 3.3. 

3.2.2 Community Health Worker (CHW) Reporting Performance 

 

In Chapter 2 it was established that self-reported measures of performance in CHW tasks 

such as reporting, have been used in few healthcare studies conducted in CHW mHealth 

settings. For example, self-reported measures have been used to indicate effectiveness 

e.g. ‘percentage of tasks completed during patient visits’ (Makoul, Raymond, Curry, Paul 

and Tang, 2001), efficiency e.g. ‘time spent capturing case records’ (Anantharaman and 

Han, 2001), and quality e.g. ‘errors observed for each task’ (Arango et al., 2011). In low-

resource settings, CHWs are expected to transmit reports to hospitals and clinics on 

households visited and tasks completed (Braun et al., 2013). Reporting is thus an 

important part of how CHWs improve service delivery and link patients to the formal 
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care system
17

 (World Health Organization, 2006; Global Health Workforce, 2010). 

Consequently, performance in CHW work tasks such as reporting constitutes an 

important and useful dimension along which to evaluate the impacts of an IT-based 

intervention such as the use of an mHealth tool. Therefore, CHW performance in 

reporting is also operationalized in terms of self-reported dimensions of effectiveness, 

efficiency, and quality. These measures are classified in the present study as CHW 

Reporting Performance (CHWRP) indicators. These reporting indicators are summarized 

in Table 3.4. The quasi-experimental study conducted to compare CHW mHealth tool and 

traditional paper-based system users along both the PUP and CHWRP performance 

indicators, is described in Section 3.3. 

3.3 Methods 

 

A quasi-experimental post-test-only design with non-equivalent groups (Harris et al., 

2006; Cook, Shadish and Wong, 2008; Leedy and Ormrod, 2013; Creswell, 2014) was 

used to achieve study objectives 1 and 2 of evaluating CHW performance using mHealth 

tools compared to traditional paper-based systems. For this type of design, there are two 

groups, one with an intervention (X) and the other without. The intervention (X) as 

implemented in one group can then be evaluated by comparing observed outcomes in the 

two groups. Since these groups are non-equivalent, confounding effects may be present 

(Harris et al., 2006). As a consequence, the effects of potential confounds on CHW 

performance must be tested for. This is to differentiate between effects on CHW 

performance that are due to the intervention (X) and those that are influenced by possible 

confounding variables. To enhance the likelihood of observing the true effect of the 

intervention (X), it is thus necessary to control for potential confounding variables (Harris 

et al., 2006, p. 18). In the present study, the intervention group, comprising CHWs using 

an mHealth tool, was compared to a reference (control) group, consisting of traditional 

paper-based system users. The intervention (X) is the use of an mHealth tool by CHWs. 

As such, CHW performance (O) in the mHealth tool (O1) and paper-based system (O2) 

user groups was examined. The relationship between these non-equivalent intervention 

and reference groups, is expressed as follows (Harris et al., 2006): 

 

 

                                                 
17

 Please refer Figure 2.2 in Chapter 2. 
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Interventiongroup (mHealth Tool Users): X O1 

Controlgroup (Paper-Based System Users): O2 

 

The use of a quasi-experimental design was motivated by two reasons. First, since the 

researcher did not introduce the intervention (refer section 2.8 for a discussion of the 

projects and Figure 2.7 for their geographic locations), random assignment of CHWs to 

the mHealth tool and paper-based system user groups was not possible. Second, it was 

not possible to establish baseline equivalence by conducting a pre-test since the 

intervention (mHealth tool use) was already underway (Leedy and Ormrod, 2013). 

Therefore, a post-test only design (Harris et al., 2006, p. 20) was the most feasible 

approach. For the purposes of data collection, administered self-reported structured 

questionnaires
18

 were used to obtain 610 responses from CHWs. For the intervention 

group (X O1) comprising CHWs using mHealth tools, data were obtained from 257 

respondents operating in sites in the peri-urban counties of Siaya, Nandi and Kilifi. For 

the reference group (O2) comprising CHWs using traditional paper-based systems, data 

were obtained from 353 respondents in the counties of Nairobi and Nakuru. To construct 

the sampling frame
19

, a proportionate, stratified approach with systematic random 

sampling was used (Daniel, 2012). Specific Community Health Units (CHUs)
20

 were 

identified within each of the counties. A proportional number of respondents were then 

systematically drawn from lists of CHWs operating in each CHU. Subsequent to 

collecting data using the structured questionnaires to elicit respondent data, the perceptual 

and self-reported performance of CHWs using mHealth tools could then be compared to 

those using traditional paper-based systems. The sample design used to elicit responses 

from these two groups of CHWs is depicted in Figure 3.1. 

 

                                                 
18

 The structured questionnaires used to collect data, are presented in Appendices P and Q. 
19

 The sampling procedures used are discussed in Appendix A. 
20

 A CHU is a community-based structure created by and within the Ministry of Health (MOH) through a 

link facility, and comprises CHWs supervised and led by a Community Health Extension Worker (CHEW) 

(Ministry of Public Health and Sanitation, 2013). 



 51 

 

Figure 3.1. Sampling Frame 

 

The counties identified are profiled in Table 3.1 (Kenya Population and Housing Census, 

2009, p. 8).  

 

Table 3.1. County Profiles 

County Region (Province) Total Population Land Area (km
2
) Density (Persons per km

2
) 

Siaya Nyanza 743,946 2,530 333 

Nandi Rift Valley 842,304 3,029 261 

Kilifi Coast 1,109,735 12,609 12,607 

Nairobi Nairobi 3,138,369 695 4,515 

Nakuru Rift Valley 1,603,325 7,495 214 

 

In the counties covered, CHWs are expected to support at least approximately 20 

households
21

 each, serving up to 100 patients (Ministry of Health, 2006). In each 

supported household, there are between 3 and 5 patients (Kenya Demographic and Health 

Survey, 2014). The Ministry of Health (MOH) in Kenya allocates the CHWs to 

Community Health Units (CHUs) from which the sampling
22

 frame for the present study 

was derived. A proportionate number of CHWs from their respective CHUs were 

sampled. Irrespective of the intervention tool or system used, sampled CHWs were 

serving equivalent numbers of households in their respective counties. The intervention 

and control groups were therefore comparable as far as their average workloads (number 

of allocated households) were concerned. In addition to CHW coverage in the counties 

                                                 
21

 43% of the household population is under the age of 15 years (Kenya Demographic and Health Survey 

Report, 2014). 
22

 Details of the sampling criteria employed (including CHUs per county) are provided in Appendix A. 
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identified, the most recent MOH statistics (estimated in the year 2012) of reported rates
23

 

for all diseases (childhood morbidity), for children below 5 years of age, and the 

immunization rate (%) for children including (infants) aged between 12 and 23 months ( 

Kenya Demographic and Health Survey, 2014; Kenya National Bureau of Statistics, 

2014), are of significance to this study.  

 

Table 3.2. Reported Health Rate Indicators and Outcomes 

County Childhood (Morbidity) Reported 

Rate of Disease  

Immunization Rate (%)  

Siaya 97 72.5% 

Nandi 91 64.2% 

Kilifi 95 71.5% 

Nairobi 71 60.4% 

Nakuru 91 72.0% 

Source: Kenya Demographic and Health Survey Report (2014); MOH (2015) 

 

Table 3.2 indicates that the reported rates of all childhood diseases across the counties 

identified are within range. Moreover, the relative reported rate of immunization (%) for 

children below 5 years (and aged between 12 and 23 months) across the counties is 

similar. Furthermore, the distribution of reported childhood disease and immunization 

(%) is consistent. Notably, as there has been no significant variation across regions, the 

under-five mortality
24

 index has been virtually the same in both rural and urban areas of 

Kenya (Kenya Demographic and Health Survey, 2014). In terms of child mortality, the 

challenges faced by patient populations across counties are therefore relatively similar. 

Thus as per reported childhood disease and immunization (%) rates and national under-

five mortality estimates (Kenya Demographic and Health Survey, 2014; Ministry of 

Health (MOH) Estimates, 2015), population health outcomes in the counties identified are 

comparable. Thus, there are no notable or significant inhibiting regional or public health 

characteristics in the areas where CHWs are equipped with either an mHealth tool or 

                                                 
23

 County level data is limited as the Ministry of Health (MOH) only recently began aggregation of county-

level indicators, particularly in those areas where mHealth projects were implemented (see Figure 2.7 in 

Chapter 2). 
24

 In relation to child mortality and according to the Kenya Demographic and Health Survey Report (2014), 

the indicator of maternal mortality for the seven-year period from 2007 to 2014 averaged 362 deaths per 

100,000 live births, with a range of between 254-471 (p. 8). Notably, the Millennium Development Goal 

(MDG) 4 set to attain the target of reducing the maternal mortality ratio by three quarters between 1990 and 

2015, is yet to be attained (Millennium Development Goals (MDGs) Status Report for Kenya, 2012) thus 

CHWs remains a critical link to formal care in this respect (p. 17). The enhancement of CHW performance 

is therefore important for public health outcomes at the household level (State of Kenya Population 2010, 

2011). 



 53 

traditional paper-based system. Therefore households across the counties covered 

similarly require CHW intervention with a relative equivalence of trends in population 

health across the counties. Taken together, the average CHW workload and identified 

trends in population health across counties covered are indicative of a shared burden of 

task reporting at household level. Over time, equipping CHWs with mHealth tools may 

positively influence overall population health outcomes, but for now, the focus of this 

study is on the performance of the individual CHW user. Thus the intervention and 

control groups examined in this study are considered comparable. 

 

The Perceived User Performance (PUP) indicators
25

 comprised eight, seven-point Likert 

scale measurement items. Specifically, items 4, 5, 6, and 7 were adapted from Torkzadeh 

and Doll (1999) to measure the dimensions of user effectiveness, efficiency, and quality, 

as listed in Table 3.3. Items, 2, 3, and 8, were adapted from Junglas, Abraham and Ives 

(2009) to measure the dimensions of user effectiveness and quality. Item 1 was adapted 

from Hou (2012) to measure the dimension of effectiveness.  

 

Table 3.3. Perceived User Performance (PUP) Indicators 

Item Indicator Effectiveness Efficiency Quality 

Intervention Group  Control (Reference) Group    

1 The mHealth tool increases my 

productivity. 

The paper-based system increases my 

productivity.

2 The mHealth tool increases my 

effectiveness with patients. 

The paper-based system increases my 

effectiveness with patients.

   

3 The mHealth tool increases my 

quality of patient care. 

The paper-based system increases my 

quality of patient care. 

   

4 The mHealth tool saves me time. The paper-based system saves me 

time. 

   

5 The mHealth tool enables me to 

complete tasks more quickly. 

The paper-based system enables me 

to complete tasks more quickly.

   

6 Using the mHealth tool improves my 

effectiveness in completing tasks. 

Using the paper-based system 

improves my effectiveness in 

completing tasks.

   

7 The mHealth tool improves the quality 

of my tasks. 

The paper-based system improves the 

quality of my tasks. 

   

8 The mHealth tool decreases my 

reporting errors. 

The paper-based system decreases 

my reporting errors. 

   

                                                 
25

  The Perceived User Performance (PUP) construct is discussed in Appendix E3. 
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The contextualized, self-reported CHW Reporting Performance (CHWRP) measures 

comprised eleven indicators. First, workload (number of reported monthly cases) and 

throughput indicators (% of households visited monthly) were used to measure CHW 

effectiveness in reporting. Second, a flow time (hours spent completing case reports 

weekly) indicator was used to measure CHW efficiency in reporting. Third, error rate (% 

of reports returned to sender due to incorrect data) and completeness (% of complete 

monthly reports sent) indicators were used to measure CHW reporting quality. In addition 

to adapting items from the extant literature, the self-reported CHWRP indicators were 

informed by field discussions with health specialists and community coordinators. In 

addition, supplementary material provided by the Ministry of Health (MOH) such as 

CHW performance evaluation checklists, health extension worker indicators, and 

household registers were reviewed. The indicators used to measure self-reported CHW 

Reporting Performance (CHWRP) are classified in Table 3.4. 

 
Table 3.4. Community Health Worker Reporting Performance  (CHWRP) Indicators 

Item Statement Dimension 

Effectiveness Efficiency Quality 

1 How many households do you visit per month?    

2 What percentage of households visited are you 

able to report? 

   

3 Of the households visited, how many monitoring 

cases do you report per month? 

   

4 Of the households visited, how many prevention 

cases do you report per month? 

   

5 Of the households visited, how many referral 

cases do you report per month? 

   

6 In a typical week, how much time (in hours) do 

you take to complete monitoring case reports?  

   

7 In a typical week, how much time (in hours) do 

you take to complete prevention case reports? 

   

8 In a typical week, how much time (in hours) do 

you take to complete referral case reports?  

   

9 Of the cases reported per month, approximately 

what percentage is completed on time? 

  

10 Of the cases reported per month, what 

percentage is complete (no missing data)? 

  

11
26

 What percentage of completed reports is 

returned to you due to errors or inconsistencies?  

  

                                                 
26

 This indicator was reverse-scored prior to analysis. 
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3.4 Results 

3.4.1 Response Rate 

 

The calculated response rates for the intervention and control groups are presented in 

Table 3.5. 

 

Table 3.5. Response Rate 

User Group Invited 

Respondents 

Actual 

Responses  

Response Rate 

(%) 

Number Missing 

Data 

Number Usable 

Responses 

Retained 

Mobile Health (mHealth) Tool (X O1) 312 257 82% 56 201 

Paper-Based System (O2) 375 353 94% 136 217 

 

Structured questionnaires were administered to 687 respondents, comprising 312 mHealth 

tool users from the intervention group (X O1) and 375 paper-based system users from the 

control group (O2). For the intervention group (X O1), 257 responses were obtained 

(82% response rate). First, 112 responses were obtained from the County of Siaya. 

Second, 77 responses were obtained from the County of Nandi. Third, 68 responses were 

obtained from the county of Kilifi. For the control group (O2), 353 responses were 

obtained (94% response rate). First, 90 responses were obtained from the County of 

Nairobi. Second, 263 responses were obtained from the County of Nakuru. The data 

obtained from respondents in the two user groups were screened
27

 for missing values and 

outliers. Screening and missing value replacement resulted in 201 usable responses for 

the intervention group (X O1) of mHealth tool users, and 217 usable responses for the 

reference group (O2) of paper-based system users. 

3.4.2 Demographics 

 

The mHealth tool and paper-based system user groups were first compared along the 

demographic indicators of age, gender, education level, experience as a CHW, and use 

experience. CHW respondent ages in the mHealth tool and paper-based system user 

groups are shown in Table 3.6. 

 

 

                                                 
27

 A detailed description of data screening procedures is provided in Appendix D. 
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Table 3.6. Age  

 mHealth Tool User  % (100) Paper-Based System User  % (100) 

Age n = 201  n = 217  

Below 25 Years 14 7.0 17 7.8 

25-34 Years 102 50.7 79 36.4 

35-44 Years 66 32.8 69 31.8 

45-54 14 7.0 35 16.1 

55-64 Years 3 1.5 14 6.5 

65 Years and Above 1 0.5 1 0.5 

Prefer Not to Say 0 0 1 0.5 

Total 200 99.5 216 99.5 

Missing 1 0.5 1 0.5 

a 
Mann-Whitney U Test: U = 17885.500, p = 0.001, two-tailed 

 

Table 3.6 indicates that most respondents across the two user groups were relatively 

young. Among mHealth tool users, respondents were mostly aged between 25 and 34 

years (51%). The paper-based system users followed a similar trend (36%). However, a 

Mann-Whitney test conducted to compare these user groups (Brace et al., 2012) indicated 

a statistically significant difference in ages (U = 17885.500, p < 0.05). As shown in 

Figure 3.2, there were proportionately more paper-based system users aged 45 years or 

older. 

 

Figure 3.2. Age 

The two user groups comprised more female than male CHW users. Specifically, 63% of 

mHealth tool users were females compared to 37% of males. Similarly, 65% of paper-

based system users were females compared to 35% of males. Following a Chi-Square test 
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(Brace et al., 2012), no significant gender differences were found between the two user 

groups (
2
 = 0.146, p = 0.703). 

 

Table 3.7. Gender 

 mHealth Tool User  % (100) Paper-Based System 

User  

% (100) 

Gender n = 201  n = 217  

Female 127 63.2 141 65.0 

Male 74 36.8 76 35.0 

Total 201 100 217 100 

Missing 0 0 0 0 

b
 Pearson Chi-Square Test: 

2 
 (1, N = 418) = 0.146, p = 0.703 

 

The mHealth tool users mostly reported between 1 and 5 (57.2%), and 6 and 10 (30.3%) 

years of experience as CHWs. Similarly, the paper-based system users mostly reported 

between 1 and 5 (75.1%), and 6 and 10 (11.5%) years of experience as a CHW. The 

relative experience of CHWs using mHealth tool and paper-based systems is summarized 

in Table 3.8. Following a Kruskall-Wallis test (Brace et al., 2012) to compare the user 

groups, a statistically significant difference in CHW experience (
2
 = 13.441, p = 0.000) 

was observed.  

 

Table 3.8. Experience as a CHW 

 mHealth Tool User  % (100) Paper-Based System User  % (100) 

Experience as a CHW  n = 201  n = 217  

Under 1 Year 14 7.0 17 7.8 

1-5 Years 115 57.2 163 75.1 

6-10 Years 61 30.3 25 11.5 

Over 10 Years 5 2.5 7 3.2 

Total 195 97.0 212 97.7 

Missing 6 3.0 5 2.3 

c 
Kruskal-Wallis Test: 

2 
 (1, N = 418) = 13.441, p = 0.000 

 

The graph in Figure 3.3 shows that proportionately more paper-based system users 

reported up to 5 years of experience as a CHW. However, proportionately more mHealth 

tool users reported between 6 and 10 years of experience as a CHW. Of note, a 

comparison of medians in the two user groups (2 years for mHealth tool and paper-based 

system users) indicated that on average, CHWs reported equivalent levels of experience. 
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Figure 3.3. Experience as a CHW  

The mHealth tool users were mostly educated up to secondary level (73.6%). Similarly, 

paper-based system users were mostly educated up to secondary level (73.6%). Education 

levels of mHealth tool and paper-based systems users are summarized in Table 3.9. 

Following a Kruskal-Wallis test (Brace et al., 2012) to compare the education levels of 

mHealth tool and paper-based system users, results indicated that there were no 

significant differences between the two user groups (
2
 = 0.329, p = 0.566). 

 

Table 3.9. Education Level 

 mHealth Tool User  % (100) Paper-Based System User  % (100) 

Education n = 201  n = 217  

Secondary 148 73.6 166 76.5 

Post-Secondary 35 17.4 34 15.7 

Undergraduate 3 1.5 3 1.4 

Postgraduate Diploma 7 3.5 8 3.7 

Other 3 1.5 2 9 

Total 196 97.5 213 98.2 

Missing 5 2.5 4 1.8 

c 
Kruskal-Wallis Test: 

2 
 (1, N = 418) = 0.329, p = 0.566 

 

Similarly, there was no statistically significant difference (
2
 = 0.019, p = 0.890) in use 

experience between mHealth tool and paper-based system users. Table 3.10 indicates that 

most mHealth tool users mostly reported 5 or more months of use experience with the 
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mHealth tool (79.1%). Similarly, most paper-based system users mostly reported 5 or 

more months of use experience with their paper-based tool (78.3%).  

 

Table 3.10. Use Experience 

 mHealth Tool User  % (100) Paper-Based System User  % (100) 

Use Experience n = 201  n = 217  

Less Than One Month 6 3.0 4 1.8 

1-2 Month 1 0.5 14 6.5 

3-4 Months 31 15.4 22 10.1 

5 or More Months 159 79.1 170 78.3 

Total 197 98.0 210 96.8 

Missing 4 2.0 7 3.2 

d 
Kruskal-Wallis Test: 

2 
 (1, N = 418) = 0.019, p = 0.890 

 

Together, significant differences only in age and experience as a CHW were observed 

between the mHealth tool and paper-based system user groups. However, no significant 

gender, education level, and use experience differences between the two user groups were 

observed. Notably, a low number of respondents reported in the user experience 

categories of ‘less than one month’ and ‘between 1 and 2 months’. Respondents falling 

into these very low experience categories were excluded from further analyses. 

Consequently, only responses from users reporting in the categories of ‘between 3 and 4 

months’ and ‘5 or more months’ of experience, were retained for analysis. This resulted 

in an mHealth tool user sample size of 190 and a paper-based user sample size of 192. 

3.4.3 The Influence of User Group on Reporting Performance 

 

The reporting performance of mHealth tool and paper-based system users was initially 

examined using Analysis of Covariance (ANCOVA) and compared along the eleven 

CHW Reporting Performance (CHWRP) indicators. The demographic variables of age 

and experience as a CHW were excluded from the ANCOVA due to their violation of 

statistical assumptions. For four CHWRP indicators (2, 5, 6, and 11), gender, education 

level, and use experience, were selectively controlled for, and in specific instances 

excluded due to their violation of these assumptions
28

. Since these assumptions were 

satisfied for the remaining seven CHWRP indicators (1, 3, 4, 7, 8, 9, and 10), gender, 

education level, and use experience, were included in the ANCOVA. However, as an 

                                                 
28

 Details of ANCOVA assumptions and criteria used to selectively control for gender, education level, and 

use experience, are provided in Appendix H.  
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additional check independent of ANCOVA assumptions, Hierarchical Regression
29

 

(Brace et al., 2012) was used to control for the potential confounding effects of age and 

experience as a CHW on each of the CHWRP indicators (1 to 11). In addition, gender, 

education level, and use experience, were included as control variables. Thus, 

Hierarchical Regression was used to control for all demographic variables. The 

ANCOVA and Hierarchical Regression results are summarized in Table 3.11. Results of 

the ANCOVA and Hierarchical Regression indicate that the two user groups differ 

significantly with respect to six of the eleven CHWRP indicators. These were indicator 5 

(monthly referral cases reported), 6 (time spent completing monitoring case reports 

weekly), 7 (time spent completing prevention case reports weekly), 8 (time spent 

completing referral case reports weekly), 9 (percentage of reported monthly cases 

completed on time), and 10 (percentage of complete monthly cases reported). 

Independent T-Tests were conducted to observe user group differences in CHWRP 

indicators 5 to 8. The mHealth tool users reported higher numbers of hours spent on 

weekly monitoring, prevention, and referral case reports, with respect to CHWRP 

indicators 6, 7, and 8. These users reported higher percentages of monthly cases 

completed on time with respect to CHWRP indicator 9. There were also differences 

observed with respect to CHWRP indicators 6 to 8, where it appeared that the mHealth 

tool users save at least an hour, and up to two hours, in completing weekly case reports. 

However, with respect to CHWRP indicator 5, the mHealth tool users reported lower 

numbers of monthly referral cases.  

                                                 
29

 Using Hierarchical Regression, it was possible to control for the demographic variables of age and 

experience as a CHW, both previously excluded from ANCOVA. Moreover, Hierarchical Regression was 

used to ensure that potential confounding effects of all demographic variables on each of the CHWRP 

indicators (1 to 11) were controlled for. Details of Hierarchical Regression assumptions are provided in 

Appendix I. 
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Table 3.11. Analysis of Covariance (ANCOVA) and Hierarchical Regression Results 

Analysis of Covariance (ANCOVA) (a) Hierarchical Regression (b) 

Item Indicator F-ratio Sig (p) Partial 
2
 Item Indicator Sig (p) Beta () 

1 Monthly households visited
1a

. 0.818 0.366 0.002 1 Monthly households visited
1b

. 0.138 - 0.076 

2 Percentage of monthly household visits reported. 1.867 0.173 0.005 2 Percentage of monthly household visits reported
2b

. 0.065 - 0.094 

3 Monthly monitoring cases reported. 0.044 0.833 0.000 3 Monthly monitoring cases reported
3b

. 0.857 - 0.012 

4 Monthly prevention cases reported. 0.030 0.862 0.000 4 Monthly prevention cases reported
4b

. 0.820 0.015 

5 Monthly referral cases reported. 5.182 0.024* 0.026 5 Monthly referral cases reported. 0.016* 0.175 

6 Time spent completing monitoring case reports weekly
2a

. 13.704 0.000*** 0.043 6 Time spent completing monitoring case reports weekly
5b

. 0.000*** 0.206 

7 Time spent completing prevention case reports weekly. 4.360 0.038* 0.014 7 Time spent completing prevention case reports weekly. 0.025* 0.130 

8 Time spent completing referral case reports weekly. 23.502 0.000*** 0.074 8 Time spent completing referral case reports weekly. 0.000*** 0.267 

9 Percentage of reported monthly cases completed on 

time
3a

. 

26.640 0.000*** 0.082 9 Percentage of reported monthly cases completed on 

time
6b

. 

0.000*** - 0.229 

10 Percentage of complete monthly cases reported
4a

. 17.622 0.000*** 0.043 10 Percentage of complete monthly cases reported
7b

. 0.000*** - 0.181 

11 Percentage of reports completed without errors. 0.069 0.793 0.000 11 Percentage of reports completed without errors. 0.978 - 0.002 

*** p < 0.0001, ** p < 0.01, * p < 0.05 

 

1a Use experience (F (1, 384) = 4.172, p = 0.013*, partial 2 = 0.016) and education level (F (1, 384) = 10.475, p = 0.001**, partial 2 = 0.027) were found to have effects on CHWRP 1. 

2a Gender (F (1, 306) = 4.432, p = 0.036, partial 2 = 0.014) was found to have an effect on CHWRP 6. 3a Use experience (F (1, 300) = 4.219, p = 0.041, partial 2 = 0.014) was found to 

have an effect on CHWRP 9. 4a Use experience (F (1, 393) = 18.562, p = 0.000, partial 2 = 0.045) was found to have an effect on CHWRP 10. 1b Age (p = 0.017*, beta () = 0.124) and 

education level (p = 0.003* and beta () = -0.147) were found to have an effect on CHWRP 1. 2b Use experience (p = 0.000***, beta () = 0.249) was found to have an effect on CHWRP 

2. 3b Experience as a CHW (p = 0.042*, beta () = 0.137) was found to have an effect on CHWRP 3. 4b Experience as a CHW (p = 0.001***, beta () = 0.233) was found to have an 

effect on CHWRP 4. 5b Gender (p = 0.022*, beta () = - 0.0127) was found to have an effect on CHWRP 6. 6b Use experience (p = 0.000***, beta () = 0.229) was found to have an 

effect on CHWRP 9. 7b Use experience (p = 0.000***, beta () = 0.210) was found to have an effect on CHWRP 10. 



 62 

First, the difference between user groups with respect to CHWRP 5 (monthly referral 

cases reported) was statistically significant (t = -2.183, df = 255.000, p = 0.15, one-

tailed). Contrary to expectations, mHealth tool users (mean = 5.5 hours) report fewer 

monthly referral cases than paper-based system users (mean = 6.5 hours). Error bars 

indicating sample means (with 95% confidence intervals) for both user groups with 

respect to CHWRP5 are shown in Figure 3.4. It appears that the CHWs using a traditional 

paper-based system to report referred cases on a monthly basis are outperforming their 

counterparts using an mHealth tool. The paper-based system using CHWs may be either 

be more experienced or more comfortable at using conventional means to refer patients, 

such that using an mHealth tool is not preferable. This unexpected finding may be an 

indicator that reporting on referral cases may be less cumbersome using paper-based 

systems, to which users are accustomed.  

 

 

Figure 3.4.Error Bars: Monthly Referral Cases Reported 

 

To further ascertain this difference in reported referrals, the interaction effects between 

experience as a CHW and user group on CHWRP 5 were plotted, as shown in Figure 3.5.  
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Figure 3.5. Effect of Experience as a CHW on Monthly Referral Cases Reported 

 

Figure 3.5 indicates that at all levels of experience as a CHW, paper-based system users 

appear to be a significantly higher number of monthly referrals than mHealth tool users. 

This result further indicates that perhaps users may be encountering functional difficulties 

referring patients using the mHealth tool. In this regard, the mHealth tool interface may 

not be designed to optimize reporting task performance on referral cases, and as a result is 

not functioning as well. Nevertheless, further analysis on reporting performance in 

referral is warranted. 

 

Second, the difference between mHealth tool and paper-based system users with respect 

to CHWRP 6 (time spent completing monitoring case reports weekly) was statistically 

significant (t = -3.565, df = 253.592, p = 0.000, one-tailed). CHWs using mHealth tools 

(mean = 3 hours) reported less time completing weekly monitoring case reports than 

paper-based system users (mean = 4 hours). Error bars indicating the sample means (with 

95% confidence intervals) for both user groups with respect to CHWRP 6 are shown in 

Figure 3.6. 
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Figure 3.6. Error Bars: Mean Time Taken to Complete Weekly Monitoring Case Reports (Hours) 

 

Third, the difference between user groups with respect to CHWRP 7 (time spent 

completing prevention case reports weekly) was statistically significant (t = -1.727, df = 

246.136, p = 0.0425, one-tailed). Compared to paper-based system users, mHealth tool 

users (mean = 3 hours) reported less time spent completing weekly prevention case 

reports than their counterparts (mean = 4 hours). Error bars indicating the sample means 

(with 95% confidence intervals) for both user groups with respect to CHWRP 7 are 

shown in Figure 3.7 (a). Fourth, the difference between user groups with respect to OUP 

8 (time spent completing referral case reports weekly) was statistically significant (t = -

4.892, df = 310.000, p = 0.000, one-tailed). Compared to CHWs using paper-based 

systems, mHealth tool users (mean = 1 hour) reported less time spent completing weekly 

referral cases (mean = 3 hours). Error bars, indicating the sample means (with 95% 

confidence intervals) for both user groups with respect to CHWRP 8, are shown in Figure 

3.7 (b).  
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Figure 3.7. Error Bars: Weekly Case Reports for (a) Prevention (b) Referral  
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The percentages of monthly reported cases completed on time (CHWRP 9) in the 

mHealth tool and paper-based system user groups are shown in Figure 3.8. The graph in 

Figure 3.8 shows that while 30% of CHWs using mHealth tools reported over 90-100% 

of cases on time, only 10% of their counterparts using paper-based systems accomplished 

the same quantity. Moreover, 65% of CHWs using mHealth tools reported more than 

60% of cases on time, compared to 46% using paper-based systems.  

 

 

Figure 3.8. Group Differences in Monthly Cases Completed on Time 

 

The differences in percentage of complete monthly case reports (CHWRP 11) as reported 

by mHealth tool and paper-based system users are shown in Figure 3.9. Compared to 

paper-based system users, CHWs who use mHealth tools reported higher percentages of 

complete monthly cases (no missing data entries). Moreover, 37% of mHealth tool users 

reported over 90% of complete cases, compared to 17% using paper-based systems. 
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Figure 3.9. Clustered Bar Chart: Group Differences in Complete Monthly Cases 

 

The ANCOVA results show that the demographic indicators of use experience and 

gender had significant confounding effects on the three CHWRP indicators 1 (monthly 

households visited), 6 (time spent completing monitoring case reports weekly), and 10 

(percentage of complete monthly cases reported). The Hierarchical Regression results 

show that the demographic indicators of age, education level, use experience, experience 

as a CHW, and gender, had significant confounding effects on seven CHWRP indicators 

including 1 (monthly households visited), 2 (percentage of monthly household visits 

reported), 3 (monthly monitoring cases reported), 4 (monthly prevention cases reported), 

6 (time spent completing monitoring case reports weekly), 9 (percentage of reported 

monthly cases completed on time), and 10 (percentage of complete monthly cases 

reported). These effects are further described below. 

 

The demographic indicator of age (p = 0.017, beta ()  = 0.124) was found to have a 

significant effect on CHWRP 1 (households visited monthly). The interaction effect 

between age and user group on CHWRP 1 (households visited monthly) is shown in 

Figure 3.10. CHWs aged below 25 years, using paper-based systems, reported a slightly 

higher number of monthly household visits than mHealth tool users. In the two user 

groups, CHWs aged between 25 and 34 years reported equivalent households monthly 

visitations. However, among CHWs aged 25 years and older, mHealth tool users reported 

a significantly higher number of household visits compared to their paper-based system 

using counterparts.  



 68 

 
 

Figure 3.10. Effect of Age on Households Visited Monthly 

 

The graph in Figure 3.11 indicates that the youngest mHealth tool users reported a lower 

number of monthly household visits. Thus the mHealth tool appears to strengthen the 

performance of older CHWs as among these respondents, a steady increase in reporting 

was experienced. It was also found that use experience has a significant effect (F (1, 384) 

= 4.172, p = 0.013, partial 
2
 = 0.016) on CHWRP 1 (households visited monthly). The 

interaction effects of use experience and user group on indicator CHWRP 1 is shown in 

Figure 3.11.  

 

The graph in Figure 3.11 shows that in the initial months of use, CHWs using mHealth 

tools reported fewer monthly households visited than paper-based system users. 

However, after five or more months of use, mHealth tool users reported higher numbers 

of monthly household visits. The mHealth tool users appear to be slower at first (possibly 

due to a technology learning curve) but after gaining enough experience they eventually 

report a higher number of monthly household visits. Experience with the paper-tool does 

not appear to have a similar effect on user performance as the line is flat. 
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Figure 3.11. Effect of Use Experience on Households Visited Monthly 

 

Following ANCOVA (F (1, 384) = 10.475, p = 0.001, partial 
2
 = 0.027) and 

Hierarchical Regression (p = 0.003* and beta () = -0.147), education level was found to 

have a significant effect on CHWRP 1 (households visited monthly). The effect of the 

interaction between education level and user group on indicator CHWRP 1 is shown in 

Figure 3.12. Compared to paper-based system users, mHealth tool users reported a higher 

number of households visited monthly. However, at the post-secondary education level, 

paper-based system users reported a higher number of monthly household visits. The 

reported monthly household visits appear to decrease as education levels increase, 

especially among mHealth tool users. The decline in monthly visits reported could be 

attributed to more educated CHWs reporting fewer but more complex cases based on 

their availability, due to other engagements. Nonetheless, this declining trend warrants 

further investigation. 
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Figure 3.12. Effect of Education Level on Households Visited Monthly 
 

Use experience was also found to have an effect (p = 0.000, beta () = 0.249) on CHWRP 

2 (percentage of monthly household visits reported). The interaction effect of use 

experience and user group on CHWRP 2 is shown in Figure 3.13. Compared to paper-

based system users, as CHWs using mHealth tools gain use experience, they tend to 

report higher percentages of households visited monthly. Notably, mHealth tool users 

seem to struggle initially, gradually improving with experience to eventually overtake 

their paper-based system using counterparts after five or more months of use. 
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Figure 3.13. Effect of Use Experience on Households Visited Monthly 

 

Experience as a CHW was found to have an effect (p = 0.042, beta () = 0.137) on 

CHWRP 3 (monthly monitoring cases reported). The effects of the interaction between 

experience as a CHW and user group on CHWRP 3 is shown in Figure 3.14 (a). 

Compared to paper-based system users, mHealth tool users with less than 1 year of 

experience as a CHW reported a higher number of monthly monitoring cases. However, 

between 6 and 10 years of experience as a CHW, paper-based system users reported a 

marginally higher number of monthly monitoring cases than their counterparts. Of note, 

both mHealth tool and paper-based system users with between 1 and 5 years of 

experience as a CHW reported an equivalent number of monitoring cases monthly. 

Moreover, mHealth tool users appear to report as many, or more, monthly monitoring 

cases than their paper-based system using counterparts at all levels of CHW experience, 

except between 6 and 10 years where there are marginally fewer. The most experienced 

CHWs using mHealth tools reported significantly higher numbers than paper-based 

system users. A similar pattern is evident for prevention cases reported (Figure 3.14 (b)). 
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Figure 3.14.. Effect of Experience on Reported Monthly Cases of (a) Monitoring (b) Prevention 
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Gender was found to have an effect (p = 0.022, beta () = - 0.0127) on CHWRP 6 (time 

spent completing monitoring case reports weekly). The effects of the interaction between 

gender and user group on CHWRP 6 is shown in Figure 3.15. Compared to paper-based 

system users, mHealth tool users reported completion of weekly monitoring case reports 

in significantly fewer hours. In both groups, female CHWs reported less time spent 

reporting weekly monitoring cases than their male counterparts. However, both genders 

seem to perform well with the mHealth tool. 

 

 

Figure 3.15. Effect of Gender on Monitoring Case Reports Completed Weekly 

 

Following ANCOVA (F (1, 300) = 4.219, p = 0.041, partial 
2
 = 0.014) and Hierarchical 

Regression (p = 0.000, beta () = 0.229), use experience was found to have an effect on 

CHWRP 10 (percentage of reported monthly cases completed on time). The interaction 

between use experience and user group along CHWRP 10 is shown in Figure 3.16. 
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Figure 3.16. Effect of User Experience on Monthly Cases Reported on Time 

 

The graph in Figure 3.16 indicates that in the early months of use, CHWs using mHealth 

tools reported marginally fewer monthly cases completed on time than paper-based 

system users. However, after five or more months of use, mHealth tool users report 

significantly higher percentages. The mHealth tool users may appear to be slower at first, 

but gradually accumulate sufficient experience to report higher percentages of monthly 

cases completed on time.  

 

Following ANCOVA (F (1, 393) = 18.562, p = 0.000, partial 
2
 = 0.045) and 

Hierarchical Regression (p = 0.000, beta () = 0.210), use experience was found to have 

an effect on CHWRP 11 (percentage of complete monthly cases reported). The 

interaction between use experience and user group along CHWRP 11 is shown in Figure 

3.17. Compared to paper-based system users, CHWs using mHealth tools reported higher 

percentages of complete monthly case reports (no missing data entries). 
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Figure 3.17. Effect of User Experience on ‘Complete’ Monthly Cases Reported  

 

Significant results following of the quasi-experimental study are summarized in Table 

3.12. 
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Table 3.12. Significant Findings of Quasi-Experimental Study 

Community Health Worker Reporting Performance Main Effect (Group) Interaction Effect (Confound) 

Item Indicator Yes No Age Gender Education 
Level 

Experience 
as a CHW 

Use 
Experience 

1 Monthly households visited
1
.        

2 Percentage of monthly household visits reported
1
.        

3 Monthly monitoring cases reported
1
.        

4 Monthly prevention cases reported
1
.        

5 Monthly referral cases reported
1
.        

6 Time spent completing monitoring case reports weekly
2
.        

7 Time spent completing prevention case reports weekly
2
.        

8 Time spent completing referral case reports weekly
2
.        

9 Percentage of reported monthly cases completed on 
time

1
. 

       

10 Percentage of complete monthly cases reported
3
.        

11 Percentage of reports completed without errors or 
inconsistencies

3
. 

       

User Performance Dimensions: 1 = Effectiveness 2 = Efficiency 3 = Quality  
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Table 3.12 indicates that a number of group performance and confounding effects were 

observed. First, mHealth tool users reported less time spent completing monitoring, 

prevention, and referral cases weekly, and higher levels of monthly cases completed on 

time. They also reported a higher volume of reports completed without errors. Second, 

mHealth tool users report higher levels of monthly household visits depending on age, 

education level, and use experience. These users report higher levels of monitoring and 

prevention cases monthly depending on experience as a CHW, and monitoring cases 

weekly depending on gender. They also report higher levels of monthly cases completed 

on time and higher volumes completed without errors, depending on use experience. 

3.4.4 The Influence of User Group on Perceived User Performance 

 

User performance using mHealth tools and paper-based systems was descriptively 

compared along the eight perceptual indicators (PUP 1 – 8)
30

 introduced in Table 3.1. The 

means and confidence intervals for the two groups are depicted as error bars in Figure 

3.18. CHWs using mHealth tools had generally higher perceptions of performance 

impacts than paper-based system users along all of the indicators.  

 

 

Figure 3.18. Perceptual User Performance (PUP) Means: 95% Confidence Intervals 

                                                 
30

 PUP 1 The mHealth tool / paper-based system increases my productivity, PUP 2 The mHealth tool / paper-based system 

increases my effectiveness with patients, PUP 3 The mHealth tool / paper-based system increases my quality of patient care, 

PUP 4 The mHealth tool / paper-based system saves me time, PUP 5 The mHealth tool / paper-based system enables me to 

complete tasks more quickly, PUP 6 Using the mHealth tool / paper-based system improves my effectiveness in completing 

tasks, PUP 7 The mHealth tool / paper-based system improves the quality of my tasks, PUP 8 The mHealth tool / paper-based 

system decreases my reporting errors. 
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3.5 Chapter Conclusion 

 

The purpose of this chapter was to add to the evidence on the impacts of mHealth by 

comparing performance of CHWs using the mHealth tool compared to those using 

traditional paper-based systems. A quasi-experimental post-test-only design with non-

equivalent groups (Harris et al., 2006) was used to compare the CHWs using mHealth 

tools with those using paper-based systems along two sets of indicators. First, typical self-

reported indicators of CHW task reporting performance were used. Second, perceptual 

indicators of tool or system impacts on the effectiveness, efficiency and quality, of 

individual tasks were examined.  

 

In summary, findings indicated that mHealth tool users outperform paper-based system 

users by spending less time to complete monitoring, prevention, and referral reports 

weekly, and reporting higher percentages of both timeous and complete monthly cases. In 

general, the older mHealth tool users outperform their younger counterparts in reporting a 

higher number of monthly household visits. In the initial months of use, less experienced 

mHealth tool users appear to outperform paper-based system users in reporting monthly 

household visits. However, after a period of at least five months, it appears that mHealth 

tool users have accumulated sufficient experience to outperform their counterparts. The 

mHealth tool users tend to report higher percentages of monthly household visits than 

paper-based system users as they gain in experience. A similar trend in monthly reported 

cases completed on time was also evident. At every level of use experience, mHealth tool 

users appear to outperform paper-bases system users at reporting complete monthly cases. 

It also appears that they report equivalent or higher numbers of monthly monitoring cases 

than paper-based system users, but less so with between six and ten years of experience 

as CHWs. In general, the most experienced users report higher numbers using an mHealth 

tool. A similar trend in reporting of monthly prevention cases was observed. The mHealth 

tool and paper-based system using females appear to outperform their male counterparts 

by spending less time to complete weekly monitoring case reports. The findings that 

mHealth tool users report fewer monthly referral cases than paper-based system users, 

and appeared to report fewer monthly household visits as education levels increase, were 

unanticipated and require further investigation in future work. Lastly, mHealth tool users 

were found to be more positive about the effects of their tool on their performance, than 

those using paper-based systems, particularly with regards to its time-saving. 
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4 The Theoretical Underpinnings of the Technology-to-

Performance Chain (TPC) 

4.1 Introduction 

 

Having now established that on average mHealth tools influence superior user 

performance over traditional paper-based systems, the subsequent step in the present 

study is to examine how the performance of tool users can be impacted by a ‘fit’ between 

their tasks and the technology.  

 

The purpose of this chapter is to discuss the theoretical underpinnings of the Technology-

Performance Chain (TPC) model addressing the study’s objectives to examine the 

impacts of ‘fit’ on mHealth tool use and CHW performance, the impact of mHealth tool 

use on CHW performance, and the impact of precursors of use on mHealth tool use. First, 

the origins and evolution of Task-Technology Fit (TTF) and Technology-to-Performance 

Chain (TPC) theories are discussed. Second, prior scholarly contributions are highlighted 

and their shortcomings are identified. Third, the implications of these shortcomings for 

the present study are derived.  

4.2 The Theory of Task-Technology Fit (TTF) 

 

The theory of Task-Technology Fit (TTF) can be traced to the perspectives of ‘Cognitive 

Fit’ (Vessey, 1991; Vessey and Galleta, 1991; Vessey, 1994), and ‘Task-System Fit’ 

(Goodhue, 1992; Goodhue, 1994). These two theoretical foundations of the fit concept 

are important. 

4.2.1 Cognitive Fit 

 

Vessey (1991) examined the ‘Cognitive Fit’ between a task and its mental representation, 

to influence individual performance in problem-solving (p. 221). The central premise of 

Cognitive Fit is that problem-solvers must use processes that match problem 

representations. The generic model upon which this ‘fit’ perspective is premised is 

depicted in Figure 4.1. 
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Figure 4.1. Generic Problem-Solving Model (Vessey, 1991, p. 221) 

 

‘Problem-solution’ is the performance outcome of the relationship between ‘problem 

representation’ and ‘problem solving task’. The ‘mental representation’ is a consequence 

of a Cognitive Fit between ‘problem representation’ and ‘problem-solving task’ 

characteristics. These characteristics then match for a ‘problem-solution’. Vessey and 

Galleta (1991) presented a variation of the generic problem-solving model, incorporating 

a match between ‘problem-solving skill’ and the task or problem representation. This 

extension of the generic problem-solving model is depicted in Figure 4.2. 

 

 

Figure 4.2. Extended Problem-Solving Model (Vessey and Galletta, 1991, p. 67) 

 

The matching of ‘problem representation’, ‘problem-solving task’, and ‘problem-solving 

skill’, leads to a ‘Cognitive Fit’, which is expected to increase problem-solving 

performance (Vessey and Galleta, 1991). However, a mismatch between these 

characteristics would lower performance (p. 66). The ‘Cognitive Fit’ perspective 

preceded the theory of ‘Task-System Fit’, discussed next. 
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4.2.2 Task-System Fit 

 

Goodhue (1992) defined ‘Task-System Fit’ as the degree to which an information system 

or systems environment assists users in performing their tasks. This perspective is also 

described as the ‘Fit’ between task requirements and the functionality of the Information 

Systems (IS) environment (p. 304). ‘Task-System Fit’ is based on the Theory of 

Information Systems (IS) ‘Satisfactoriness’ (Goodhue, 1988), which was derived from 

the concepts of ‘job satisfaction’ and ‘individual satisfactoriness’, which were 

components of the Theory of Work Adjustment (Dawis, Lofquist and Weiss, 1968). 

Goodhue (1988) made four important observations, in understanding Task-System Fit. 

First, ‘IS satisfaction’ implicitly relates to ‘job satisfaction’ (Bailey and Pearson, 1983). 

‘Job satisfaction’ may not necessarily be strongly linked to performance (Iaffaldano and 

Muchinsky, 1985). However, user evaluations of IS are considered similar or dissimilar to 

‘job satisfaction’, and could be strongly or weakly linked to performance. Second, to 

better understand user evaluation of IS, Dawis et al. (1968) defined the difference 

between ‘job satisfaction’ and ‘individual satisfactoriness’. ‘Job satisfaction’ was 

described as the extent to which the system used meets an individual’s personal needs. 

‘Individual satisfactoriness’ was described as the extent to which user abilities meet task 

requirements. Third, Goodhue (1988) proposed distinguishing between the concepts of 

‘job satisfaction’ and ‘IS satisfaction’, a similar approach to articulating the difference 

between ‘‘job satisfaction’ and ‘individual satisfactoriness’ (Dawis et al., 1968). In 

evaluating the ‘satisfactoriness’ of IS, users must assess how well the system meets their 

personal needs. Goodhue (1988) contended that multiple user evaluations could blur the 

distinction between task requirements and personal needs, thereby representing less clear 

linkages with performance. He postulated that user evaluations of systems based on a 

‘Task-System Fit’ would more closely link with task performance, and must, therefore, be 

considered. Goodhue’s (1988) ‘Task-System Fit’ Model is depicted in Figure 4.3. Causes 

of ‘Task-System Fit’ can be identified as the system and task, both of which are 

moderated by individual abilities. 
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Figure 4.3. Task-System Fit Model (Goodhue, 1988) 

 

He posited that all being equal, changes to tasks that require the user to impose greater 

demands on the systems environment should lead to a decrease in ‘Task-System Fit’. 

Similarly, changes to the systems environment (more suitable functionality or policies) as 

needed to perform the tasks at hand, should enhance ‘Task-System Fit’. In essence, ‘the 

‘system’ used must be defined to suit the ‘task’ being supported. The notion of ‘Task-

System Fit’ preceded the theoretical perspective of Task-Technology Fit (TTF), discussed 

next. 

4.2.3 Task-Technology Fit (TTF) 

 

In IS research, the concept of Task-Technology Fit (TTF) has assumed various 

definitions. The numerous TTF definitions that have been used in TTF research are 

summarized in Table 4.1.  
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Table 4.1. Definitions of Task-Technology Fit (TTF)  

Definition Source 

The degree to which available technology is useful in supporting the unique 

needs of a given task. 

Nance (1992, p. 50) 

The degree to which technology assists an individual in performing his or her 

portfolio of tasks. 

Goodhue and Thompson (1995, p. 216) 

The degree to which a technology does or could meet user needs. Goodhue, Littlefield and Straub (1997, p. 458) 

The matching of the functional capability of available information technology 

with the activity demands of the task at hand. 

Dishaw (1994, p. 36), Dishaw and Strong (1998, p. 

154) 

The extent to which tasks can be performed effectively and efficiently using 

particular technologies. 

Mathieson and Keil (1998, p. 222) 

User perceptions of the fit of systems and services used based on personal 

task needs. 

Pendharkar, Khosrowpour and Rodger (2001, p. 84) 

The match or congruence between an information system and its 

organizational environment. 

Klaus et al (2003, p. 106) 

The extent to which technology provides features and fits requirements of 

the task. 

Lippert and Forman (2006, p. 275) 

The perception that system capabilities match user task requirements. Jarupathirun and Zahedi (2007, p. 945) 

The degree to which an organization’s information systems functionality and 

services meet information needs of the task. 

Wu, Shin and Heng (2007, p. 168) 

 

Ioiomo and Aronson (2003) observed that as the gap between task requirements and 

technological support capacity increases, ‘Fit’ significantly decreases (p. 197). This gap 

signifies an ‘under-fit’ or ‘over-fit’. An ‘under-fit’ represents minimal capacity because 

the technology used does not sufficiently meet task requirements and is rendered 

ineffective. Conversely, an ‘over-fit’ represents excessive technological support capacity 

because the technology provides excessive resources, thereby causing IT ‘slack’ (Gupta, 

2003). Thus ‘fit’ technology represents sufficient supporting capacity to meet user needs 

(Nance and Straub, 1996).  Since the inception of TTF theory, a clear distinction between 

research at the individual and group levels has been observed. At the individual level, 

survey methods have often been used. For example, to assess impacts of TTF on 

utilization and performance outcomes, Goodhue (1998) surveyed 357 technology users 

across ten companies. However, at the group level, experimental studies have often been 

conducted. For example, Fuller and Dennis (2004) conducted a longitudinal experiment 

to assess TTF effects on group performance. As such, TTF can be used to link observed 

occurrences at the individual and group level, to utilization and performance outcomes. 
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TTF models comprise the task and technology, and the ‘fit’ between task and technology 

characteristics, which in turn affects technology use and/or task performance outcomes 

(Goodhue, 1995; Goodhue and Thompson, 1995; Dishaw and Strong, 1998a; Dishaw and 

Strong, 2003; Dishaw, Strong, and Bandy, 2002; Strong, Dishaw and Bandy, 2006). TTF 

influences use because an IT will be used if its functions ‘fit’ user needs (Dishaw and 

Strong, 1998a, p. 153). Similarly, TTF influences user performance because a task will be 

performed if functions of the IT used ‘fit’ user needs (Goodhue, 1995, p. 1829).  

The task performed by the technology user is the first Task-Technology Fit (TTF) 

component. A task is an action a performer needs to perform in order to accomplish a 

goal or influence an outcome (Hackman, 1969; Hackos and Redish, 1998; Hansen, 1999; 

Shepherd, 1998).  In prior works, four task types have been identified and used to 

evaluate decision processes (Hackman, 1969; Wood, 1986, p. 61). These task types are 

classified in Table 4.2. 

Table 4.2. Task-Types 

Task Type Description Source(s) 

Task Qua Task Tasks are defined as a pattern of stimuli impinging on the task 

performer. Task characteristics are objective “real world” 

properties such as the physical nature of either the stimuli e.g. 

input rate, or stimulus material e.g. instructions. 

Roby and Lanzetta, 

1958; McGrath and 

Altman, 1966 

Task as Behaviour 

Requirements 

Tasks are defined as the behavioural responses of the task 

performer to achieve a specified level of performance. Task 

characteristics are specific behavioural requirements, needs, or 

‘critical demands’, i.e. required or needed for adequate 

performance.  

Miller, 1962; Gagne, 

1964 

Task as Behaviour 

Description 

Tasks are defined as a group of job-oriented technological 

processes e.g. recording, or human behaviours e.g. decision-

making that the performer would typically exhibit when performing 

the task. 

McCormick 1965; 

Dunnette, 1966 

Task as Ability 

Requirements 

Tasks are defined as a specific pattern of abilities or 

characteristics i.e. skills, required of the task performer for 

successful task completion based on physical, psychological and 

background characteristics.  

Ferguson, 1956; 

Fleishman and Hogan, 

1978;  

 

In the domain of TTF research, tasks have often been characterized as behaviour 

‘requirements’ (Miller, 1962; Gagne, 1964), or ‘description’ (McCormick, 1965; 

Dunnette, 1966). For the most part, the task has been defined as an action to be performed 

by a technology user (Nance, 1992). This performed task has been described as the 
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‘behavioural requirements’ that are necessary for accomplishing a stated goal through a 

process, given the information available (Zigurs and Buckland, 1998, p. 316). The 

‘behaviour requirement’ task-type is considered a relatively stable attribute of any task, 

and can be described independently of the characteristics of the task performer (Wood, 

1986). Moreover, since tasks are activities performers need to perform, required 

behaviours are influenced by the nature of the task, not the characteristics of the 

performer. This task type therefore represents a sound basis for task description 

(Hackman, 1969). As such, it is has been considered the most applicable approach to IS 

research (Junglas, Abraham and Watson, 2008). The task performed can therefore 

comprise characteristics that reflect the performer’s behavioural requirements, needs, or 

critical job demands (Hackman, 1969, p. 104). Tasks can be characterized along 

dimensions such as routineness versus non-routineness (Perrow, 1967), interdependence 

(Wageman and Gordon, 2005), variety (Karimi, Somers and Gupta, 2004), time criticality 

(Ballard and Siebold, 2004), user mobility (Gebauer et al., 2010), and location 

dependency (Yuan et al., 2010). These characteristics of a task, typically used in IS 

research, are described in Table 4.3. 

 

Table 4.3. Typical Task Characteristics  

Task characteristic Description Source 

Routineness Versus Non-

Routineness 

The need of the task performer for 

structuredness, difficulty, and predictability 

in performing the task. 

Gebauer, Shaw and Gribbins 

(2010) 

Interdependence The need of the task performer to co-

operate with others in preforming the task. 

Wageman and Gordon, 2005; 

Hsiao and Chen (2012) 

Time criticality The need of the task performer to urgently 

perform the task. 

Ballard and Siebold, 2004; 

Gebauer and Tang, 2007 

Mobility The need of the task performer for 

manoeuvrability in performing the task. 

Gebauer, Shaw and Gribbins 

(2010) 

Location Dependency The need of the task performer to know his 

or her location and the location or 

positioning of physical objects. 

Yuan, Archer, Connelly and Zheng 

(2010) 

Information Seeking The need of the task performer to acquire 

information to fill a knowledge gap. 

Wilson, 2000; Case 2012 

 

The technology used by the task performer is the second component of Task-Technology 

Fit (TTF). Technology is the system or tool (hardware, software, or data) used by a user 

to perform a task (Goodhue, 1995). This system or tool can be computerized or paper-
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based
31

, and encompasses procedures, equipment, and knowledge or information transfer 

(Randolph, 1986; Ammenwerth et al., 2006, p. 4). The technology is described as 

providing a set of features that influences how the user chooses to perform a particular 

task (DeSanctis and Poole, 1994). In the Operations Management discipline, three types 

of technology have been identified in previous research. Technology has been classified 

as operations, materials, or knowledge (Hickson, Pugh, Pheysey, 1969, p. 380), as 

summarized in Table 4.4. 

 

Table 4.4. Technology Types 

Technology Type Description Source(s) 

Operations Technology Technology is defined as the techniques used in sequencing 

workflow activities to produce and distribute output i.e. desired 

goods or services. 

Thompson and Bates, 1957; Pugh, 

Hickson Hinings, Macdonald, 

Turner and Lupton, 1963 

Materials Technology Technology is defined as the characteristics of particular objects 

or raw materials or used by users in workflow activities. 

Perrow, 1967; Thompson, 1967 

Knowledge Technology Technology is defined as the characteristics of particular 

knowledge or information attributes useful to users in workflow 

activities. 

Hickson, Pugh and Pheysey 

(1969) 

 

In more recent research, two basic groups of Information Technologies (ITs) have been 

identified (Huber, 1990). The first group, described as ‘basic characteristics’, relates to 

data storage, transmission, and processing capacities. Advanced ITs could enable higher 

levels of these characteristics. Notably, no clear distinction has been made between data 

(stimuli and symbols), and information (data that conveys meaning as a result of reducing 

uncertainty) (p. 49). The second group, described as ‘properties’, relates to the multi-

faceted configuration of levels that characterize those technologies most relevant to 

particular tasks. These may cause the use of advanced ITs to have effects on users (p. 50). 

In prior IS research, ITs have been characterized along attributes related to 

communication and decision aiding, information codification, and information diffusion  

(Huber, 1990; Simons, 1995; Wickramasinghe, 1999). These technology characteristics 

are described in Table 4.5. 

 

 

 

                                                 
31

 Please refer Chapter 3 for empirical comparisons of mHealth tool and paper-based system user 

performance impacts. 
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Table 4.5. Typical Technology Characteristics 

Technology Characteristic Description Source(s) 

Communication IT enables easier, more reliable, and less costly, 

means of communication, and recording and indexing 

of content. 

Huber, 1990 

Decision Aiding IT enables the storing and retrieval of large amounts 

of data, the rapid and selective access to, and 

accurate combination and reconfiguration of, 

information. 

Huber, 1990 

Information Codification IT enables the structuring of information through the 

categorization (codifying) and compression of raw 

data. 

Boisot, 1986; Simons, 1995 

Information Diffusion IT enables easy information sharing by providing 

efficiently and effectively codified channels for 

diffusing data. 

Simons, 1995 

 

In related IS research, technology has been assessed along information characteristics 

such as accuracy, timeliness, relevance, aggregation, formatting, uniqueness, conciseness, 

clarity, and readability (Swanson, 1974; Ahituv, 1980; DeLone and McLean, 1992). 

Technology has similarly been characterised as system and information quality (DeLone 

and McLean, 2003). System quality refers to desired processing characteristics of 

technology such as usability, reliability, and response time, whereas information quality 

refers to desired content characteristics such as completeness, accuracy, format, and 

currency (p. 25). In TTF-related research, technology features evaluated have closely 

resembled so-called IT ‘properties’ (Huber, 1990), typically consistent with 

characteristics such as communication and decision aiding (p. 50). For instance, for 

communication, these properties have included facilitating the ITs used in (1) 

transmitting precise information easily, cost-effectively, rapidly, and across time and 

geographic location (Rice and Bair, 1984), and (2) recording and indexing information 

content more reliably (Culnan and Markus, 1987). For decision aiding, these properties 

have included facilitating the users of ITs in (1) quickly and cost-effectively storing and 

retrieving large amounts of information, (2) more rapidly and selectively accessing the 

most recent information generated, and (3) more accurately combining, re-configuring, 

and transmitting information for interpretation and use (Zmud, 1983; Sprague and 

McNurlin, 1986; Sprague and Watson, 1986). In prior works, the ‘fit’ variable in TTF 

models has been theorized to influence outcomes of use (e.g. Dishaw and Strong, 1998a; 

Dishaw and Strong, 2003, Strong et al., 2006), user performance (e.g. Goodhue, 1995, 



 88 

Goodhue et al., 2000), or a combination thereof (e.g. Goodhue and Thompson, 1995). In 

TTF research, the use of technologies has involved hardware such as Electronic 

Performance Support Systems (Tjahono, Fakun, Greenough and Kay, 2001), software 

such as UML (Grossman, Aronson and McCarthy, 2005) data such as web travel 

information (D’Ambra and Wilson, 2004a, 2004b), and user-support services such as 

voice recognition (Goette, 2000). The performance of tasks involves but is not restricted 

to user activities such as intellective tasks such as solving problems with correct 

responses (Murthy and Kerr, 2004), decision-making such as evaluating criteria (Fuller 

and Dennis, 2009), and software maintenance such as de-bugging administrative systems 

and applications (Dishaw and Strong, 1998a). The TTF theoretical model, and its 

variations and extensions, are identified and discussed in Section 4.3. 

4.3 The Evolution of the Task-Technology Fit (TTF) Model 

 

In building on the theoretical perspectives of ‘Task-System Fit’ and ‘Cognitive Fit’, 

Goodhue (1995) and Goodhue and Thompson (1995) proposed two distinct albeit related 

general models representing the concept of TTF. Goodhue (1995) proposed a TTF as 

User Evaluation (UE) model based on users perceptions of the degree to which systems 

characteristics match their task needs (p. 1827).  

 

 

Figure 4.4. User-Evaluation (UE) Model (Goodhue, 1995, p. 1830) 

 

As per this model (Figure 4.4), users will evaluate the characteristics of the system used 

and the degree to which it meets their task needs and abilities (TTF), which are presumed 

to lead to higher levels of task performance. If users utilize a technology in performing 

specific tasks, then they are capable of evaluating its TTF from personal experience. As 

such, higher user evaluations of TTF will lead to increased performance levels (Goodhue, 

1995, p. 1830). At the same time, Goodhue and Thompson (1995) posited that utilization 
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and performance impacts will result from a Task-Technology Fit (TTF). As such, a ‘fit’ 

between the task and technology occurs when the technology has features or support that 

‘fit’ task requirements (p. 214). This ‘fit’ relationship is depicted in Figure 4.5. 

 

 

Figure 4.5. Basic (Fit-Focus) Task-Technology Fit (TTF) Model (Goodhue and Thompson, 1995, p. 215) 

 

In this basic (Fit-Focus) model
32

, which is the basis for the modeling of TTF, ‘fit’ is 

linked to the outcomes of utilization and performance (Goodhue and Thompson, 1995). 

Information systems have been observed and are expected to positively impact 

technology utilization and performance outcomes when there is correspondence between 

technological functionality and the user’s task requirements (p. 214). This model 

indicates that use and user performance outcomes are together, consequences of a ‘fit’ 

between task and technology. As such, in performing the task, the technology is utilized. 

In essence, to perform the task, there must be a ‘fit’ between the task and technology. In 

addition, to use the technology, this ‘fit’ must be present. In later work, Dishaw and 

Strong (1998a) emphasized that Information Technology (IT) will be used and provide 

benefits if its functions support the activities of the user, and proposed a basic model of 

‘TTF and Utilization’ (p. 153). This model shows TTF as the independent variable and 

utilization as its outcome. This was a linear model, as depicted in Figure 4.6. 

 

 

Figure 4.6. Task-Technology Fit (TTF) and Utilization Model (Dishaw and Strong, 1998a, p. 153) 

 

                                                 
32

 This ‘Fit-Focus’ is evident in ‘Cognitive Fit’ research on the impact of graphs versus tables on individual 

decision-making performance (Vessey, 1991). 



 90 

This model is based on the premise that a higher ‘fit’ leads to user expectations of 

beneficial consequences of use. The TTF construct captures task, technology, and 

individual characteristics, and their matching. However, in an expanded TTF model, these 

characteristics can be included and shown to affect a ‘fit’ variable (Dishaw and Strong, 

1998a). In subsequent work, Dishaw, Strong and Bandy (2002) developed a TTF model 

integrated with the Technology Acceptance Model (TAM). 

 

 

Figure 4.7. Task-Technology Fit (TTF) Integrated with Technology Acceptance Model (TAM) (Dishaw, 

Strong and Bandy, 2002, p. 153) 

 

The TAM and TTF constructs depicted in Figure 4.7 were combined to capture two 

alternative perspectives of users choices to utilize ITs. The TAM is premised upon beliefs 

and attitudes as determinants of IT use, whereas TTF is based on users choosing to use 

ITs that provide benefits such as improved performance, irrespective of their attitudes 

(Goodhue, 1995). In a subsequent study, Strong, Dishaw and Bandy (2006) developed a 

TTF model, in which the task performed affects the utilization of the technology, 

depending on the levels of rendered technological support for the task being supported. 

This model captures TTF as the capacity of the IT used to support the task performed 

(Goodhue and Thompson, 1995). The model is depicted in Figure 4.8. 
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Figure 4.8. Task-Technology Fit (TTF) Model (Strong, Dishaw and Bandy, 2006, p. 97) 

 

This model has been extended by including the construct of ‘Computer Self-Efficacy’ 

(CSE), which has been defined as a judgement of the technology user’s ability to use a 

computer (Compeau and Higgins, 1995). This model was extended on the basis that TTF, 

which is premised upon a rational approach to use, may not itself sufficiently capture 

utilization choices, which may be affected by characteristics of the individual user 

(Strong, Dishaw and Bandy, 2006, p. 97). This extended basic TTF model is depicted in 

Figure 4.9. 

 

Figure 4.9. Extended Task-Technology Fit (TTF) Model (Strong, Dishaw and Bandy, 2006, p. 99) 

 

The extended TTF model shows that utilization is affected by users’ judgement of their 

ability to use ITs, as moderated by the characteristics of the technology that is appraised. 

Since the introduction of the TTF model in the mid 1990s, and its subsequent variations 

and extensions, the ‘fit’ construct has been operationalized in various ways. This 

operationalization of the ‘fit’ construct in TTF research is discussed in Section 4.4. 
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4.4 The Operationalization of Fit in Task-Technology Fit (TTF) 

Research 

 

In TTF research, a variety of TTF constructs have been proposed, developed, and 

examined. In prior works, the TTF construct has been operationalized using two distinct 

approaches.  

 

First, the construct of TTF has mostly been operationalized as ‘user-evaluated’ or 

‘perceived’. A notable example is Goodhue’s (1995) operationalization of TTF as 

comprising user evaluations of twelve dimensions.  

 

 

Figure 4.10. Operationalization of Basic Task-Technology Fit (TTF) Model (Goodhue, 1995) 

 

Goodhue and Thompson (1995) argued that this approach to operationalizing TTF could 

be generally applied to any combination of information systems, tasks, and users, and 

supported their assertion by empirically examining these twelve ‘fit’ dimensions (Figure 

4.10). In addition to proposing their basic model of ‘TTF and Utilization’ (Figure 4.6), 

Dishaw and Strong (1998a) operationalized TTF as a ‘Fitness-for-Use’ (FFU) construct 

(p. 157). This operationalization is similar to Goodhue’s (1995) ‘user evaluation’. The 

difference, however, is that technology characteristics and task needs are evaluated in 

terms of the ‘quality’ of technology, and in terms of whether or not it is ‘fit’ for user 

purposes.  
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Figure 4.11. Operationalization of Basic Fit-For-Use (FFU) Model (Wang and Strong, 1996) 

 

TTF was operationalized as fifteen dimensions grouped as four categories, classified as 

‘intrinsic’, ‘contextual’, ‘representational’, and ‘accessibility’ (Dishaw and Strong, 1998a, 

p. 158), based on Wang and Strong’s (1996) research on ‘data fitness’ for users (Figure 

4.11).  

 

Second, the construct of TTF has been operationalized as a ‘computed interaction’ or 

equivalent ‘difference score’. Dishaw (1994) operationalized TTF as a result of the 

correspondence between task and technology factors, and computed ‘fit’ as a difference 

score as follows: 

 

Fit = f (task, technology, | task – technology |) 

 

‘Fit’ is a function of the task, the technology, and the correspondence between the task 

and technology. An instrument was used to measure task and technology dimensions, and 

these measures used to calculate a ‘fit’ between the task and technology (Dishaw, 1994, 

p. 60). Dishaw and Strong (2003, p. 7) operationalized TTF as the ‘interaction’ between 

task and technology factors, and computed a ‘fit’ interaction term as follows: 

 

Fit = f (task * technology) 

 

‘Fit’ is a function of the task, the technology, and the interaction between task and 

technology. Dishaw and Strong (1998b) used this expression to calculate a ‘fit’ between 

dimensions of the task and technology measured using an instrument (p. 114). Strong, 

Dishaw and Bandy (2006) operationalized TTF as the interaction between the task and 

technology and Computer Self-Efficacy Fit (CSE Fit), as the interaction between the 

technology and CSE (Figure 4.9). These interactions are depicted in Figure 4.12. 
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Figure 4.12. Extended Task-Technology Fit (TTF) Model Interactions (Strong, Dishaw and Bandy, 2006) 

 

Task and technology characteristics are shown to have direct effects on utilization. These 

task and technology characteristics are also shown to interact to affect utilization (Strong 

et al., 2006). Technology characteristics and CSE also directly affect utilization. In 

addition, the interaction between these variables has an effect on utilization (p. 100). The 

operationalization of the ‘fit’ construct as described in the above studies, is represented in 

a number of notable previous studies on the impacts of TTF, as summarized in Table 4.6. 

 

Table 4.6. Operationalization’s of Fit in Task-Technology Fit (TTF) Research 

Model Constructs Operationalization(s) of Fit Design Source 

Perceived Usefulness, Perceived 

Ease of Use, Attitude Toward 

Use, Intention to Use, Actual 

Use, Task, Technology, Fit 

Computed Difference Score 

(|Task – Technology|), User Evaluation 

Survey Dishaw (1994) 

Task, Technology, Fit, 

Performance, Computer Literacy 

User Evaluation Survey Goodhue (1995) 

Task, Technology, Fit, Utilization, 

Performance 

User Evaluation Survey Goodhue and Thompson (1995) 

Fit, Utilization User Evaluation Experiment Dishaw and Strong (1998a) 

Task, Technology, Fit, Utilization Computed Interaction (Task * Technology) Survey Dishaw and Strong (1998b) 

Task, Technology, Fit, Utilization, 

Task Experience, Technology 

Experience 

Computed Interaction (Task * Technology) Survey Dishaw and Strong (2003) 

Task, Technology, Fit, Utilization, 

Computer Self Efficacy 

Computed Interaction (Task * Technology) Survey Strong, Dishaw and Bandy 

(2006) 

 

In subsequent works, the operationalization of TTF as user evaluation (UE) has mostly 

been adopted (for example D’Ambra and Wilson, 2004a, 2004b). However, in fewer 
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works, TTF has been operationalized as computed interaction (for example Teo and Men, 

2008). In these works, TTF theory has been applied to various contexts in which various 

technologies have been used in diverse task domains. This application of TTF theory to 

various contexts is discussed in Section 4.5. 

4.5 The Application of Task-Technology Fit (TTF) Theory  

 

TTF theory has been applied to study users in organisational contexts such as electronic 

procurement (e-Procurement) (Gebauer and Shaw, 2004), Knowledge Management (KM) 

systems (Lin and Huang, 2008, 2009), and manufacturing (Lippert and Forman, 2006). 

TTF theory has also been applied to study IT service consumers such as airline travellers 

using Online (Web) Information Systems (D’Ambra and Wilson, 2004a, 2004b), and 

students using Online (Web) Shopping Websites (Klopping and McKinney, 2008), and 

more recently to the contexts of Mobile Information Communication Technologies 

(MICTs) such as health care in hospital settings (Junglas, Abraham and Ives, 2009), and 

Mobile Banking (m-Banking) service systems (Zhou, Lu and Wang, 2010). These and 

various other contexts to which TTF theory has been applied are summarized in Table 

4.7. 
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Table 4.7. Applications of Task-Technology Fit (TTF) Theory 

Context Source(s) 

Task Domain Technology Domain 

Nursing Patient Care in Hospitals Mobile Information Communication 

Technologies (MICTs) 

Junglas, Abraham and Ives (2009) 

Electronic Procurement (e-Procurement) Mobile Business Applications Gebauer and Shaw (2004) 

Computer-Mediated Communication Group Support Systems (GSSs) Shirani et al (1999) 

Information Processing and Decision-

Making 

 Graphic User Interfaces (GUIs) 

 Database Management Systems 

(DBMSs) 

Mathieson and Keil (1998) 

Cognitive and Coordination for Problem-

Solving 

Group Support Systems (GSSs) Fuller and Dennis (2009) 

Knowledge Processing Knowledge Management Systems (KMSs) Hahn and Wang (2009) 

 Computer Access 

 Environment Control 

 Word Processing 

Voice Recognition Technology (VRT) Goette (2000) 

Academic  Integrated Information Center (IIC) 

Technology 

Lending and Straub (1997) 

Accessing Information for International 

Travel 

Online (Web) Information Resource System D’Ambra and Wilson (2004a, 2004b) 

Knowledge Creation, Storage, Retrieval, 

Transfer, and Application 

Knowledge Management Systems (KMSs) Lin and Huang (2008, 2009) 

Field Mobile Computing for Policing and 

Law Enforcement 

Mobile Computer Information System 

Devices 

Ioimo and Aronson (2003) 

Software Development Unified Modeling Language (UML)  Grossman et al (2005) 

Electronic Commerce (e-Commerce) Consumer Online (Web) Shopping 

Websites 

Klopping and McKinney (2004) 

Manufacturing of Parts, Components, and 

Assemblies 

Collaborative Visibility Network (CVN) 

Supply Chain System 

Lippert and Forman (2006) 

Consulting Knowledge Management Systems (KMSs) Teo and Men (2008) 

Port Industry Operations and Services Internet Norzaidi, Chong, Murali and Salwani 

(2007); Norzaidi, Chong, Murali and 

Salwani (2009) 

Mobile Banking (m-Banking) Mobile Banking (m-Banking) Services Zhou, Lu and Wang (2010) 

Information Processing for Hospitality 

Services 

 Zhou, Guoxim and Lam (2009) 

Manufacturing Operations Task Support System (TSS) Tjahjono, Fakun, Greenough and Kay 

(2001) 

Clinical Healthcare Health Information Systems (HISs) Pendharkar, Khosrowpour and Roger 

(2001) 

Nursing Patient Care in Pediatric Hospitals Health Information Technology (HIT) Karsh, Holden, Escoto, Alper, 

Scanlon, Arnold, Skibinski and Brown 

(2009) 

Patient Care in a Health Centre Electronic Health Record (EHR) System Willis, Gayar and Deokar (2009) 

Clinical Health Care  Electronic Medical Record (EMR) System Kilmon, Fagan, Pandy and Belt 

(2008) 

Clinical Tasks Nursing Information Systems Lin (2008) 

 

Despite the widespread application of TTF theory, TTF research has had notable 

shortcomings. These shortcomings in the application of TTF theory are discussed in 

Section 4.6. 
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4.6 Shortcomings in Task-Technology Fit (TTF) Research 

4.6.1 Task Characteristics 

 

In some prior works, tasks have not been distinguished from their underlying 

characteristics. For example, Klaus, Gyires and Wen (2003) studied the ‘Fit’ of web 

information systems to the non-work activities of searching, purchasing, and 

entertainment (p. 110). However, it was not clear whether these activities were tasks or 

their characteristics. In some works, tasks and their underlying characteristics are 

distinguishable from each other. However, it is not clear how the identified characteristics 

reflect tasks performed. For example, in a study on the use of mobile technologies for 

mobile locatability, Junglas, Abraham and Watson (2008) defined tasks as behaviour 

requirements. However, in evaluating the task dimensions of ‘location sensitiveness and 

insensitiveness’, they did not clarify why these characteristics were behaviour 

requirements.  Such a lack of separation between the task construct and its characteristics 

is a problem for TTF research. This is because without specified characteristics, it 

becomes difficult to evaluate the needs, requirements, or demands of the task performer. 

Moreover, task attributes must be observed relative to technology characteristics. In light 

of the above, the following implications for task specification in TTF research are derived 

for the present study: 

 

 

4.6.2 Technology Characteristics 

 

As with tasks, in some prior works, technologies have not been distinguished from their 

characteristics. For instance, in a study of web usage for information tasks, D’Ambra and 

Wilson (2004a) categorized hardware and software tools as technology characteristics (p. 

298). However, these descriptions should be used to describe technologies, not 

characteristics. In some studies, technologies and their underlying characteristics are 

differentiated. However, even in these studies, it has not always been apparent how the 

characteristics identified reflect the technologies used. For instance, in a study on port 

industry managers, Norzaidi, Chong, Murali and Salwani (2007) defined the intranet 

1. The task performed must be clearly described. 

2. The characteristics of this task must be specified. 

3. These characteristics must represent the described task. 
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technology characteristics as ‘social presence’, ‘concurrency’, ‘physical interface’, and 

‘communication immediacy’ (p. 1231). However, they did not explain how these 

characteristics represented intranet technology. As with the task component discussed in 

Section 4.6.2, a lack of separation between the technology construct and its underlying 

characteristics is problematic for TTF research. This is because without specified 

characteristics, it becomes more difficult to appraise functions or support features of the 

technology being used. Thus the following implications for technology specification in 

TTF research are derived for the present study: 

 

 

4.6.3 The Fit between Task and Technology Characteristics 

 

TTF researchers do not always expound on the concept of a ‘fit’ between task and 

technology characteristics as the presence of functional support for particular user needs. 

For example, D’Ambra, Wilson and Akter (2013) conducted a study on electronic book 

(e-book) usage. First, task characteristics were specified as ‘teaching’ and ‘research’. 

Second, technology characteristics were specified as ‘platform’ and ‘content’. 

Consequently, their ‘fit’ was theorized (p. 51). There was, however, no sufficient 

explanation as to how ‘teaching’ and ‘research’ must necessarily ‘fit’ with ‘platform’ and 

‘content’. As such, ‘fit’ did not clearly represent e-book support functions for academic 

tasks. In other work, Chang (2008) conducted a study on IT usage for web-based auction 

processes. First, the auction task characteristics ‘price negotiation’ and ‘item acquisition’ 

were specified. Second, the technology characteristics ‘autonomy’, ‘continuity’, 

‘adaptivity’, ‘goal orientation’, ‘learning ability’, and ‘communication’ were specified. 

As such, a ‘fit’ between these characteristics comprising eight dimensions was theorized. 

However, a ‘fit’ of technology to task needs was not explicated. Such a lack of 

explanation for the relevance of technology characteristics to tasks poses a problem for 

TTF research because a ‘fit’ is purported and yet remains unspecified. The following 

implications for the conceptualization of ‘fit’ are thus derived: 

 

1. The technology used by the user must be clearly described. 

2. The characteristics of this technology must be specified. 

3. These characteristics must represent the described technology. 



 99 

 

 

Subsequent to correctly specifying task and technology characteristics and a ‘fit’ between 

these characteristics, it is important to ensure consistent theorizing and testing of this ‘fit’. 

One way to ensure this is by specifying the ‘fit’ perspective adopted to test its impacts 

(Venkatraman, 1989). The use and utility of ‘fit’ perspectives is discussed next. 

4.6.4 The Importance of Fit Perspectives in Task-Technology Fit (TTF) Research 

 

Blalock Jr (1965) argued that a lack of correspondence between ‘fit’ concepts and 

underlying mathematical formulations could weaken the link between theory and testing. 

Two decades later, Venkatraman (1989) observed that ‘fit’ concepts were seldom tested 

in precisely the manner theorized (p. 438), and proposed that ‘fit’ models should be tested 

using multiple techniques, each representing a distinct perspective of ‘fit’ theory. More 

recently, Bergeron, Raymond and Rivard (2001) suggested that future researchers ought 

to theorize ‘fit’ concepts in a manner consistent with their empirical analysis (p. 125). To 

date, the theorizing and testing of ‘fit’ concepts has remained rather inconsistent. The 

adoption of ‘fit’ perspectives in context would be most useful for evaluating the various 

ways in which task and technology characteristics come to affect use and user 

performance. Moreover, a mechanism can be identified to better articulate these impacts. 

Furthermore, the components of TTF can be assessed without re-specification. As 

articulated in Sections 4.6.2 to 4.6.4, TTF researchers have not sufficiently specified task 

and technology characteristics, and the ‘fit’ between these characteristics. Consequently, 

it is not possible to operationalize TTF using ‘fit’ perspectives (Venkatraman, 1989). As 

such, the adoption of ‘fit’ perspectives without succinctly theorizing a ‘fit’ between task 

and technology characteristics signifies a mis-specification. The proper specification of 

these underlying characteristics is, therefore, fundamental, and to give guidance on 

whether ‘fit’ is best examined as a user evaluation or as a computed interaction, among 

other approaches. With such specificity, ‘fit’ perspectives would strengthen TTF theory, 

and as such, has three advantages: 

1. The relationship between the task performed and the technology used must 

be specified such that a ‘fit’ between their underlying characteristics is 

observable. 

2. In doing so, a ‘fit’ between technological support and task needs is 

adequately represented. 
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4.6.5 Use and User Performance as Outcomes of the Fit between Task and 

Technology Characteristics 

 

In the basic ‘Fit-Focus’ TTF model (Goodhue and Thompson, 1995), ‘fit’ was theorized 

to influence use and user performance (Figure 3.5). However, use was not linked to user 

performance. Thus Goodhue and Thompson (1995) proposed its inclusion and argued that 

adding use would signify a better understanding of performance. The model was extended 

so that TTF was linked to user performance through use. In subsequent works, 

implications of this extension to the TTF model, must, however, be clarified. First, the 

TTF outcomes of use and user performance are concurrent. It is not recognized that in 

performing the task, the user is using the technology. It is only recognized that to perform 

the task, the user must use the technology. Thus TTF impacts use and user performance 

concurrently and sequentially. This notion is quite under-appreciated. Second, the TTF 

outcome of use impacts user performance. Use is positioned to mediate between TTF and 

user performance. It must be therefore acknowledged that use is a multi-purpose 

construct, in being observed as a TTF outcome, performance determinant, and mediator. 

In light of the above, the processes through which technology is linked to performance 

have not been sufficiently understood. Naturally, this linkage must thus be further 

interrogated. 

4.7 The Link between Technology and Performance 

 

Crowston and Treacy (1986) observed that the purpose of ITs is to improve performance. 

As such, attempts have been made to link IT, user evaluations, utilization, and 

performance, with the sole purpose of modelling IT impacts on performance. The use of 

an ‘Input-Process-Output’ model is one such technique (Crowston and Treacy, 1986). 

This is the selection of a specific ‘process’ theory, and ‘inputs’ and ‘outputs’ for the 

1. The theorizing and testing of TTF is consistent. 

2. The evaluation of varying use and user performance TTF effects is 

simplified. 

3. If correctly specified, a uniform set of task and technology characteristics 

are usable. 
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precise investigation of the impacts of ITs (p. 308). This model (Figure 4.13) was first 

proposed for assessing IT impacts on enterprise-level performance (productivity). 

 

 

Figure 4.13. Input-Process-Output Model (Crowston and Treacy, 1986, p. 308) 

 

Later, Doll and Torkzadeh (1991) described the modeling of ‘end-user computing 

satisfaction’ as a causal chain with ‘forward’ and ‘backward’ linkages. This is a 

network of ‘cause’ and ‘effect’ relationships that are considered important for IS 

research (p. 5). This causal network, known as the ‘System to Value Chain’, is 

depicted in Figure 4.14. 

 

 

Figure 4.14. System to Value Chain (Doll and Torkzadeh, 1991, p. 6) 

 

In this model, ‘end-user computing satisfaction’ (EUCS) is both a dependent variable 

(upstream factors causes of EUCS), and an independent variable (downstream factors are 

effects of EUCS). As such, causal networks are useful for assessing IT performance 

impacts. Based on Crowston and Treacy (1986) and Doll and Torkzadeh (1991), 

Goodhue (1992) presented a linear causal chain linking ‘systems’ to performance impacts 

(p. 305). Input characteristics such as ‘systems’, ‘user’, ‘task’, and ‘organization’ were 

linked to the output of ‘performance impacts’ through the processes of ‘user evaluation’ 

and ‘use of system’. These chain inter-linkages are depicted in Figure 4.15.  
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Figure 4.15. A Typical Link between Systems and Performance (Goodhue, 1992, p. 305) 

 

Goodhue (1992) subsequently developed the Systems-to-Performance Chain (Figure 

3.15) to link the concepts of systems and IS policies, user tasks, utilization, and 

performance (p. 304).  

 

 

Figure 4.16. The System-to-Performance Chain (Goodhue, 1992, p. 305) 

 

This model (Figure 4.16) links ‘systems, policies’ to ‘performance’ through ‘task-system 

fit’, ‘expected consequences of use (beliefs)’, ‘affect toward using system’, and ‘actual 

use’. ‘Task-system fit’ and ‘actual use’ are the core processes through which the 

system is linked to ‘performance’. Goodhue (1992) observed that without either a ‘fit’ 

between the task and system, or its actual use, the system used will not positively impact 

user ‘performance’ (p. 304). Thus in this particular model, the system impacts 

performance through a ‘fit’ with the task performed and its use, due to user beliefs of 

expected use consequences and affect toward using it. The constructs of ‘task-system fit’ 

and ‘actual-use’ are positioned to directly impact ‘performance’. In addition, ‘social 

norms’ and ‘habit’ are linked to ‘performance’ through ‘actual use’, and ‘individual 
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characteristics’ are considered to moderate the relationships between ‘task characteristics’ 

and ‘task-system fit’, and ‘systems, policies’ and ‘task-system fit’. Use is considered a 

form of behaviour and is considered to have its determinants. Thus the lower portion of 

the model is underpinned by theories of Attitude and Behaviour (Fishbein and Azjen, 

1975; Triandis, 1979). These theories have, notably, together underpinned Bagozzi’s 

(1982) model of usage, which represents beliefs about consequences of use and affect 

toward the behaviour of use.  

4.8 The Evolution of the Technology-to-Performance Chain (TPC)  

 

Goodhue and Thompson (1995) developed the Technology-to-Performance Chain (TPC), 

based on its predecessor, the System-to-Performance Chain, and underpinned by both 

theories of Fit (Goodhue, 1988; Goodhue, 1992) and Attitude and Behaviour (Fishbein 

and Azjen, 1975; Triandis, 1979), as depicted in Figure 4.17. 

 

 

Figure 4.17. Technology-to-Performance Chain (Goodhue and Thompson, 1995, p. 217) 

 

This model links ‘task characteristics’, ‘technology characteristics’, and ‘individual 

characteristics’ to ‘performance impacts’ through ‘task-technology fit’, ‘expected 

consequences of use’, and ‘utilization’. ‘Task-technology fit’ and ‘utilization’ are the 

core processes through which the technology is linked to ‘performance impacts’. 

Goodhue and Thompson (1995) observed that TTF-focused models do not sufficiently 

account for the fact that systems must be used to impact user performance, whereas in 

utilization-focused models, the ‘fit’ between task and technology was not acknowledged. 

As such, it was established that the addition of utilization determinants could enrich TTF-
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focused models, and the inclusion of ‘fit’ could enhance utilization-focused models. 

Therefore as per this causal chain, the perspectives of TTF and utilization could together 

determine performance impacts (p. 216). Thus the characteristics of the task and the 

individual technology user, impact performance through the ‘fit’ of the technology to the 

task performed, together with its utilization, resulting from user beliefs of expected 

consequences of use. ‘Task-technology fit’ and ‘utilization’ are directly linked to 

‘performance impacts’. In addition, ‘affect toward using’, ‘social norms’, ‘habit’ and 

‘facilitating conditions’ are linked to ‘performance impacts’ through ‘utilization’, and 

‘technology characteristics’ are considered to moderate the relationships between ‘task 

characteristics’ and ‘utilization’, and ‘individual characteristics’ and ‘utilization’. 

Evidently, The TPC is a complex causal model, and has been observed to be difficult to 

examine in whole. Thus Goodhue and Thompson (1995) proposed a reduced TPC model 

for testing (p. 219).  

 

 

Figure 4.18. Reduced Technology-to-Performance Chain (Goodhue and Thompson, 1995, p. 220) 

 

This model (Figure 4.18) links ‘task characteristics’, and ‘technology characteristics’ to 

‘performance impacts’ through ‘task-technology fit’ and ‘utilization’. ‘Task-technology 

fit’ is the core process through which the technology is linked to ‘performance 

impacts’. Thus, task and technology characteristics impact performance through the ‘fit’ 

of the technology to the task performed, and its consequent utilization. Notably, 

utilization is positioned as both a primary and intermediary outcome of ‘task-technology 

fit’. This is consistent with the stated goal of Goodhue and Thompson (1995), which was 

to examine core TPC components from task and technology, to performance, but with 

‘particular emphasis on the role of ‘task-technology fit’ (p. 219). Since determinants of 

utilization are not depicted in the model, Attitude and Behaviour theories are not applied 
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to account for impacts on utilization. Thus ‘utilization’ is positioned as a consequence of 

TTF. However, because of the link between ‘utilization’ and ‘performance’, the model is 

itself an extension of the TTF (Fit-Focus) model (Figure 4.5). Therefore the model is in 

fact a TPC underpinned by the theory of TTF. In subsequent work, Goodhue (1997) 

developed a TPC to link the constructs of ‘task characteristics’, ‘technology 

characteristics’, ‘task-technology fit’, ‘facilitating conditions’, ‘utilization’, and 

‘performance impacts’ (p. 450), as depicted in Figure 4.19. 

 

 

Figure 4.19. Technology-to-Performance Chain (Goodhue, 1997, p. 450) 

 

This model is supposed to link ‘task characteristics’ and ‘technology characteristics’ to 

‘performance impacts’ through ‘expected consequences of use’, ‘affect toward using 

system’, ‘facilitating conditions’ and ‘utilization’. The supposed link between ‘task-

technology fit’ and the ‘utilization’ determinant of ‘facilitating conditions’ does not, 

however, appear to have been expounded. In the original study conducted by Goodhue 

(1997), ‘facilitating conditions’ was highlighted in the TPC presented, despite no direct 

apparent linkage between TTF and ‘facilitating conditions’. There appears to be a direct 

linkage between TTF and ‘expected consequences of use’, to which ‘affect toward using 

system’ is connected. Goodhue (1997) posited that ‘utilization’ intervenes between 

‘technology characteristics’ and individual performance (p. 450). This linkage was, 

however, unclear. ‘Task-technology fit’ and ‘utilization’ remain as the core processes 

through which the technology is linked to ‘performance’. Goodhue (1997) observed 

that without either a ‘fit’ between the task and technology or its utilization, the system 

utilized will not enhance ‘performance’ (p. 304). ‘Task-technology fit’ and ‘utilization’ 
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are positioned to directly affect ‘performance impacts’. In addition, ‘social norms’ and 

‘habit’ are linked to ‘performance’ through ‘actual use’, and ‘individual characteristics’ 

are considered to moderate the relationships between ‘task characteristics’ and 

‘technology characteristics’, and ‘task-technology fit’. In subsequent work, Goodhue, 

Littlefield and Straub (1997) developed a more-focused TPC to link the constructs of 

‘task characteristics’, ‘technology characteristics’, ‘task-technology fit’, ‘utilization’, 

‘performance impacts’, and ‘feedback’ (p. 455) as depicted in Figure 4.20. 

 

 

Figure 4.20. Technology-to-Performance Chain (Goodhue, Littlefield and Straub, 1997, p. 455) 

 

This model links ‘task-technology fit’ to ‘performance impacts’ through ‘utilization’, and 

can essentially be viewed as a TPC underpinned by TTF (Figure 4.18), but with 

extensions. First, ‘accessibility’ is linked to ‘performance impacts’ through ‘utilization’. 

As such, utilization is positioned to mediate between ‘accessibility’ and ‘performance 

impacts’. Second, ‘task-technology fit’ is linked to ‘feedback’ through ‘performance 

impacts’. As such, ‘performance impacts’ are positioned to mediate between ‘utilization’ 

and ‘feedback’, and between ‘task-technology fit’ and ‘feedback’. Third, ‘task-technology 

fit’ is directly linked to ‘feedback’. Thus, the ‘fit’ of the technology to the task, influences 

subsequent feedback through performance, which it influences directly and through 

utilization, itself determined by accessibility. Notably, task and technology characteristics 

are not independently linked to ‘task-technology fit’, but instead combine to form the ‘fit’ 

construct. ‘Task-technology fit’ and ‘utilization’ remain as the core processes 

through which the technology is linked to ‘performance impacts’. Goodhue et al. 

(1997) observed that the TPC was useful for assessing the validity of the Fit-Focus model 

and technology performance impacts, with the TTF model as its base. In addition, it was 
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observed that in relation to ‘TTF-Focus’ and ‘Utilization-Focus’ models, a TPC could be 

reduced and modified to be more specific to a particular context (p. 454). In later work, 

Staples and Seddon (2004) developed a TPC (Figure 4.21) to link ‘task-technology fit’, a 

set of ‘precursors of utilization’, ‘utilization’, and ‘performance impacts’ (p. 20).  

 

 

Figure 4.21. Technology-to-Performance Chain (Staples and Seddon, 2004, p. 20) 

 

This model links ‘task-technology fit’ to ‘performance impacts’ through ‘expected 

consequences of use’, ‘affect toward use’, and ‘utilization’. In addition, ‘task-technology 

fit’ is directly linked to ‘performance impacts’. The precursors of ‘expected consequences 

of use’, ‘affect toward use’, ‘social norms’, and ‘facilitating conditions’, are linked to 

‘performance impacts’ through ‘utilization’, which is positioned as mediating. Thus, the 

‘fit’ of the technology to the task influences performance directly and through expected 

usage consequences, a user’s affect toward using it, and its eventual utilization, which is 

also determined by social norms and facilitating conditions. ‘Task-technology fit’ is uni-

dimensional, subsuming task and technology characteristics, and representing the user’s 

evaluation of a ‘fit’ between these characteristics. ‘Task-technology fit’, ‘expected 

consequences of use’, ‘affect toward use’, and ‘utilization’, are the core processes 

through which the technology is linked to ‘performance impacts’. Staples and Seddon 

(2004) observed that a better ‘fit’ between the task and technology would influence 

positive expected consequences of use and a higher affect toward using it (p. 21). 

Notably, the link between ‘task-technology fit’ and ‘utilization’ is absent from their 

model. Evidently, there are various ways in which technology can be theorized to impact 

performance, such that multiple TPC models can be developed and examined in various 

contexts. In TTF-related research, variations based on the above-described TPCs have 



 108 

been proposed. The TPCs
33

 that have been conceptualized in various TTF studies are 

summarized in Table 4.8. 

 

Table 4.8. Technology-to-Performance Chain (TPC) Models 

Source Constructs Core Process(es) Key Linkage(s) 

D’Ambra and Wilson 

(2004) 

 Task Char 

 Un Reduct 

 Tech Char 

 Indiv Char 

 Task-Tech Fit 

 Soc Norm 

 Cont Fact 

 Util 

 Perf Imp 

 

 Task-Tech Fit 

 Util 

 Task  Task-Tech Fit  Perf Imp 

 Tech Char  Task-Tech Fit  Perf Imp 

 Indiv Char  Task-Tech Fit  Perf Impacts 

 Task  Task-Tech Fit  Util  Perf Imp 

 Tech Char  Task-Tech Fit  Util  Perf 

Imp 

 Indiv Char  Task-Tech Fit  Util  Perf 

Imp 

D’Ambra and Wilson 

(2004b) 

 Task 

 Tech Char 

 Indiv Char 

 Task-Tech Fit 

 Soc Norm 

 Util 

 Perf Imp 

 Task-Tech Fit 

 Util 

 Task  Task-Tech Fit  Perf Imp 

 Tech Char  Task-Tech Fit  Perf Imp 

 Indiv Char  Task-Tech Fit  Perf Imp 

 Task  Task-Tech Fit  Util  Perf Imp 

 Tech Char  Task-Tech Fit  Util  Perf 

Imp 

 Indiv Char  Task-Tech Fit  Util  Perf 

Imp 

McGill and Klobas 

(2009) 

 Task-Tech Fit 

 Exp Con Use 

 Att Use 

 Soc Norm 

 Facil Con 

 Util 

 Perf Imp 

 Task-Tech Fit 

 Exp Con Use 

 Att Use 

 Util 

 Task-Tech Fit  Exp Con Use  Att Use  

Utilization  Perf Imp 

McGill, Klobas and Renzi 

(2011) 

 Task-Tech Fit 

 Soc Norm 

 Facil Con 

 Util 

 Perf Imp 

 Util  Task-Tech Fit  Utilization  Perf Imp 

D’Ambra, Wilson, and 

Akter (2013) 

 Task 

 Tech Char 

 Indiv Char 

 Task-Tech Fit 

 Use 

 Perf 

 Task-Tech Fit  Task  Task-Tech Fit  Perf Imp 

 Tech Char  Task-Tech Fit  Perf Imp 

 Indiv Char  Task-Tech Fit  Perf Imp 

 Task  Task-Tech Fit  Use  Perf Imp 

 Tech Char  Task-Tech Fit  Use  Perf 

Imp 

 Indiv Char  Task-Tech Fit  Use  Perf 

Imp 

Key: Task Char = Task Characteristics, Tech Char = Technology Characteristics, Task-Tech Fit = Task-

Technology Fit, Indiv Char = Individual Characteristics, Util/Use = Utilization/Use, Perf/Perf Imp = 

Performance/Performance Impacts, Exp Con Use = Expected Consequences of Use, Soc Norm = Social Norms, 

Att Use = Attitude Towards Use, Facil Con = Facilitating Conditions, Cont Fact = Control Factors 

                                                 
33

 Core (key) TPC process linkages are specified (in boldface) in Table 4.8. Additional constructs are 

underlined. The inclusion of these constructs in the TPC necessitates additional linkages, considered as 

model extensions. These are not specified in the table, as the focus is on the core processes that constitute a 

TPC i.e. a TPC can function without extensions as long as its core process linkages are specified. 
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It is evident from the models reviewed in Section 4.7 that there are some notable 

shortcomings in previous TPC research. These shortcomings have implications for the 

modeling of TPCs. 

4.9 Shortcomings in Technology-to-Performance Chain (TPC) 

Research 

 

Despite the demonstrated importance of TPCs in TTF research, there have been apparent 

shortcomings in prior TPC models, particularly those underpinned by TTF theory. First, 

the conceptual differences between a TTF model and TPC have often been 

misunderstood. In linking use to user performance, it is apparent that the Fit-Focus TTF 

model (Figure 4.5) is transformed into a TPC. As such, the TPC is a causal model 

underpinned by TTF as a theory. This represents an observable difference between TTF 

and TPC models. Second, the theoretical underpinnings of TPCs are not specified as 

‘process-influenced’. It is thus important that the theory underpinning a TPC must be 

determined by a particular mechanism or process through which the technology is 

expected to impact use and user performance. If, as is intended in the present study, this 

process is the TTF construct, then it follows that the TPC must be underpinned by the 

theory of TTF. As such TPCs must be theory driven, and as such TPC theory must be 

process-specific. Third, the nature of chain construct linkages and their sequencing in 

TPCs is not often explicated. To understand a TPC process, the path from technology to 

performance must be completely discernible. Thus the links between TPC constructs and 

their order of precedence must be clearly described. As such, these constructs and inter-

linkages must be annotated. Fourth, the difference between TPC constructs and model 

extensions is not often qualified. This is characteristic of additional determinants such as 

precursors of use. In some instances, precursors of use are considered core TPC 

constructs. However, in most cases, it is not clear whether these are in fact TPC 

extensions, a distinction that cannot be ignored. If the TPC is TTF-determined, then it 

appears that logically, precursors of use can only be model extensions, not core chain 

constructs. This is partly because use is treated as an outcome of the core TPC construct, 

‘TTF’, so that any other determinants of use are considered a posteriori. Consequently, 

supplementary theory can be used to underpin these TPC extension constructs.  
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In light of the above, the following implications for the conceptualization of a TPC are 

identified: 

 

 

4.10 Chapter Conclusion 

 

The purpose of this chapter was to discuss Task-Technology Fit (TTF) as the theoretical 

underpinning of the present study. First, the origin of TTF theory was discussed. Second, 

the evolution of TTF models developed in prior works was discussed. Third, 

shortcomings in TTF research were discussed and subsequent implications derived. It is 

evident that the task and technology must be distinguished from task and technology 

characteristics, and that the ‘fit’ between these characteristics must be clearly specified. In 

specifying such a relationship, multiple perspectives of ‘fit’ must be adopted in order to 

evaluate the distinct effects of TTF on the outcomes of use and user performance. In 

addition, use can be linked to user performance, and a set of precursors. Consequently, 

for the present study, the theory of TTF is selected to underpin a Technology-to-

Performance Chain (TPC). This TPC is a causal model to link the technology to user 

performance through a ‘fit’ with the task. In this model, user performance is concurrent 

with use. However, user performance can also be subsequent to use, and this is 

recognized. In addition, a set of precursors as additional determinants of use, is 

considered. As such, a conceptual model linking technology to performance, that is 

specific to an mHealth setting and CHW task performers as mHealth tool technology 

users, will be developed in Chapter 5. 

 

1. It must be recognized that a TPC can be considered an extended TTF 

model. 

2. TPCs must be theorized based on their underlying core processes or 

mechanisms. 

3. The causal linkages between TPC constructs must be verbalized and/or 

annotated. 

4. The inclusion of other determinants of use should be specified as an 

extension of the TPC. 
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5 Conceptual Technology-Performance Chain (TPC) Model 

Development 

5.1 Introduction 

 

In Chapter 4, the theoretical underpinnings of Task-Technology Fit (TTF) and the 

Technology-to-Performance Chain (TPC) model (Goodhue, 1992; Dishaw, 1994; 

Goodhue; 1994; Goodhue, 1995; Goodhue and Thompson, 1995) were outlined and 

discussed. The purpose of this chapter is to develop a TPC conceptual model underpinned 

by the theory of TTF as postulated in Chapter 4 that links the constructs of ‘fit’, use, user 

performance, and a set of precursors as determinants of use. As per the theoretical 

underpinning of TTF
34

, the TTF construct consists of (1) Task Characteristics, (2) 

Technology Characteristics, and (3) the ‘Fit’ between Task and Technology 

Characteristics. These components of the construct of TTF are conceptualized in Section 

5.2. 

5.2 Task-Technology Fit (TTF) 

5.2.1 Task Characteristics 

 

With the embedding of Information Technologies (ITs) into work practices, TTF 

researchers have begun to examine the task construct and more specifically, task 

characteristics in the context of technology usage. These task characteristics may result in 

tool or system users depending more on certain aspects of the technology used to perform 

the task (Goodhue, 1992). Task characteristics have been considered to be reflective of 

needs (Nance, 1992), requirements (Goodhue, 1986), or activity demands (Dishaw and 

Strong, 1998b). For example, in their study on organizational IT usage, Goodhue and 

Thompson (1995) evaluated transportation enterprise and insurance task characteristics 

through the dimensions of non-routineness and interdependence. In a software 

maintenance study, Dishaw and Strong (1998b) evaluated task characteristics such as the 

user activities of planning, knowledge building, diagnosis, modification, co-operation, 

and control. Elsewhere, in a study on consulting using Knowledge Management (KM) - 

portals, Teo and Men (2008) evaluated task characteristics such as knowledge tacitness 

                                                 
34

 Please refer Chapter 4 for a discussion of theoretical underpinnings. 
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and interdependence. These and various other task characteristics specified in past TTF 

research are captured in Table 5.1. 

 

Table 5.1. Task Characteristics Task-Technology Fit (TTF) Research 

Construct Dimension(s) Context Source 

Task Characteristics  Non-Routineness 

 Interdependence 

Technology Use in Organizations Goodhue and 

Thompson (1995) 

Task Activities  Planning 

 Knowledge Building 

 Diagnosis 

 Modification 

 Cooperation 

 Control 

Software Engineering Tool Use in 

Organizations 

Dishaw and Strong 

(1998b) 

Task Characteristics  Accessing Data Files 

 Quantitative Analysis 

 Administrative Data 

 Organizing Documents 

 Literature Searching 

Use of Technologies in an Information 

Centre 

Goodhue et al 

(1997) 

Task Characteristics  Knowledge Tacitness 

 Task Interdependence 

Use of Knowledge Management 

Technologies in Consulting Firms 

Teo and Men 

(2008) 

Task Characteristics  Difficult or Non-Routine 

Tasks 

 Interdependence 

Use of Technologies in Organizations Goodhue (1995) 

Task Characteristics  Dependence Tasks 

 Interdependence Tasks 

 Independent Tasks 

Use of Mobile Technologies for 

Healthcare. 

Hsiao and Chen 

(2012) 

Task Characteristics  Location Sensitiveness vs. 

Insensitiveness 

Use of Mobile Locatable Information 

Systems 

Junglas et al (2008) 

Mobile Task 

Characteristics 

 Mobility 

 Location Dependency 

 Time Criticality 

Use of Mobile Work Technologies  Yuan et al (2010) 

Task Characteristics  Routineness 

 Interdependence 

 Spatial Mobility 

Use of mHealth Technologies Tariq and Akter 

(2011) 

Task Difficulty   Non-Routineness 

 Interdependence 

 Time Criticality 

Use of Mobile Technologies for 

Business 

Gebauer and Tang 

(2007) 

Task Characteristics  Non-Routineness 

 Interdependence 

 Time Criticality 

Use of Mobile Technologies for 

Managerial Processes 

Gebauer et al 

(2010) 

 

For studies conducted in more formal settings, characteristics such as task difficulty or 

non-routineness, and interdependence, have typically been evaluated (Goodhue, 1995; 

Goodhue and Thompson, 1995). However, in some of these studies, actual ‘behaviour 

description’ tasks (McCormick 1965; Dunnette, 1966) such as the activities of organizing 

documents and accessing data files have also been assessed (Goodhue et al., 1997). In 

studies on user mobility, researchers have evaluated task characteristics such as location 

sensitiveness, location dependency, spatial mobility, and time criticality (Gebauer and 
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Tang, 2007; Zheng, 2007; Gebauer, 2008; Gebauer and Tang, 2007; Gebauer et al., 2008; 

Junglas et al., 2008; Yuan et al., 2010). Some more generic task characterizations such as 

dependence and interdependence have also been used in contexts that range from 

consulting (Teo and Men, 2008) to the use of mHealth systems (Tariq and Akter, 2011). 

Drawing on the above, characteristics most relevant to the tasks performed
35

 by CHWs 

are defined next. 

5.2.2 Community Health Worker (CHW) Task Characteristics 

 

In this chapter, the tasks performed by CHWs are described as monitoring, promotion, 

and referral. Four CHW task characteristics are specified as relevant to their critical job 

demands. CHWs are required to deliver patient care timeously, co-operate with co-

workers, manoeuvre from one location to another, and access information at the point-of-

service (Balasubramanian et al., 2002; Junglas and Watson, 2003; Ballard and Siebold, 

2004; Gebauer, Shaw and Gribbins, 2005; Junglas et al., 2008; Lin and Huang, 2008; 

Gebauer, Shaw and Gribbins, 2010; Yuan et al., 2010). These behavioural demands 

translate into the task characteristics of time criticality, interdependence, mobility, and 

information dependency. 

 

First, time criticality is the need of the task performer to urgently perform the task  

(Gebauer and Tang, 2007). This characteristic has been adapted in prior works to evaluate 

tasks performed using mobile technologies. For example, Siao, Lim and Shen (2001), 

Yuan and Zhang (2003), and Liang and Wei (2004), observed that task performers could 

be required to support emergency services. This underscores the time critical nature of the 

tasks being performed. Time criticality may be a greater characteristic for CHW tasks 

such as patient referral to clinics for emergency treatment (Liu et al., 2011), but perhaps 

less so for those such as the promotion of immunization (Haines et al., 2007). 

 

Second, interdependence is the need of the task performer to co-operate with others in 

preforming the task (Gebauer et al., 2010). In certain workplace settings such as Research 

and Development (R & D) laboratories for co-ordinated software projects (Andres and 

Zmud, 2002), task interdependence may be greater than in others such as goal-oriented 

supervised information processing within dissimilar work units (Tushman, 1979). In the 
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 Please refer Section 4.6.1 of Chapter 4. 
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health care setting, the need for care-givers such as nurses to co-operate in the sharing of 

medical data with one another to solve pending medical problems, increases the task 

interdependence of their work (Hsiao and Chen, 2012). For CHWs, task interdependence 

is high if there is a need to co-ordinate through information-sharing, such as when co-

operating with local community health supervisors during real-time disease surveillance 

household exercises (Braun et al., 2013). 

 

Third, mobility is the need of the task performer for manoeuvrability in performing the 

task (Gebauer et al., 2010). This characteristic is a location-sensitive (geographical) 

component of the activity of the task performer (Junglas et al., 2008), and has been 

assessed in various studies on mobile technologies. For example, in their study on mobile 

work, Yuan, Archer, Connelly, and Zheng (2010) argued that compared to their hospital-

based counterparts, home-visiting nurses needed greater support for task mobility. CHW 

task mobility is high if there is a need to collect health data from patients in remote 

locations when they routinely visit households to deliver patient care (DeRenzi et al., 

2012). 

 

Fourth, information dependency is the need of the performer to access data in performing 

the task at the point-of-service (Yuan et al., 2010). This characteristic is related to the 

concept of location-dependency, described as the extent to which dynamic location-based 

information is required to perform a particular task (p. 126). This location-sensitive 

(information) task component has been assessed in a number of studies on mobile 

technology adoption. For example, Junglas, Abraham, and Watson (2008) observed that 

in performing their tasks, mobile workers use data specific to their locations of service. 

CHW task information dependency is high if there is a need for data on household 

locations for monitoring when conducting disease surveillance (Earth Institute, 2010). 

5.2.3 Technology Characteristics 

 

In the TTF IS domain, technology has often been characterized as system or tool features 

that represent the applications, infrastructure, or services that support the execution of 

tasks (Tariq and Akter, 2011). This is irrespective of whether the technology used 

represents a system or systems, policies, or services (Cane and McCarthy, 2009). TTF 

researchers have begun to examine the technology construct and more specifically, 
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technology characteristics in the context of supporting task performance. Technologies 

have been described as system attributes, and tool functions or functional support 

(Dishaw and Strong, 1998b; Tariq and Akter, 2011; D’Ambra et al., 2013). Technology 

characteristics are considered to be reflective of support functions (Dishaw and Strong, 

2003), functionality (Gebauer, Shaw and Gribbins, 2010), or attributes (D’Ambra and 

Rice, 2001). A broad range of technology characteristics have been evaluated in past 

studies. For example, Teo and Men (2008) evaluated the Knowledge Management (KM) - 

portal technology characteristics of output quality and compatibility (p. 561). Elsewhere, 

Dishaw and Strong (1998b) evaluated the software maintenance technology 

characteristics of analysis, representation, transformation, co-operation, and control (p. 

110). These and various other technology characteristics specified in past TTF research 

are captured in Table 5.2. 

 

Table 5.2. Technology Characteristics in Task-Technology Fit (TTF) Research 

Construct Dimension(s) Context Source 

Technology Characteristics  Access Web Usage for Travel D’Ambra and 

Wilson (2004a) 

Tool Functionality  Analysis 

 Representation 

 Transformation 

 Cooperation 

 Control 

Software Engineering Tool Use in 

Organizations 

Dishaw and Strong 

(1998b) 

Technology Characteristics  Output Quality 

 Compatibility 

Use of Knowledge Management 

Technologies in Consulting Firms 

Teo and Men 

(2008) 

m-NIS Characteristics  Degree of Integration 

 Service Support 

Use of Mobile Technologies for 

Healthcare. 

Hsiao and Chen 

(2012) 

Technology Characteristics  Combined Locatability 

and Mobility 

Use of Mobile Locatable Information 

Systems 

Junglas et al (2008) 

Functions of Mobile Work 

Support 

 Mobile Notification 

 Location Tracking 

 Navigation 

 Real Time Mobile Job 

Dispatching 

Use of Mobile Work Technologies  Yuan et al (2010) 

Mobile IT  User Interface 

 Adaptability 

Use of Mobile Technologies for 

Managerial Processes 

Gebauer et al 

(2010) 

 

In prior TTF studies on user mobility, researchers have evaluated technology 

characteristics such as location tracking, navigation, notification, real-time job 

dispatching, user interface, and adaptability (Junglas et al., 2008; Gebauer et al., 2010; 

Yuan et al., 2010). In TTF research, mobile technology characteristics have been 

described as work support functions (Zheng, 2007, p. 17; Yuan et al., 2010, p. 126; Hsiao 

and Chen, 2012, p. 266). For instance, Liang and Wei (2004) characterized mobile 
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technology into the categories of time-critical services, location-aware and location-

sensitive services, identity-enacted services, ubiquitous communications and content 

delivery services, business process streamlining, and mobile offices. Elsewhere, 

Balasubramanian, Peterson and Jarvenpaa (2002) categorized mobile technology along 

three dimensions described as the extent to which the tool or system used is (1) location 

sensitive, (2) time-critical, and (3) controlled by the information receiver or provider. Per 

TTF theory, technology functions must support user needs. Moreover, the technology will 

only be used if tool or system functions rendered support user activities (Vessey and 

Galleta, 1991; Goodhue, 1998; Dishaw and Strong, 1998b; Dishaw and Strong, 1999; 

Hollingsworth, 2015). Of note, functional support can be understood in terms of 

functional and non-functional requirements. Functional requirements are described as 

‘specific behaviours’ of a system that are inherent in the functions that ‘it can perform’. 

These requirements determine what the system ‘can do’ and the extent to which user 

tasks can be supported. Non-functional requirements are functions that relate to the 

‘operation of the system’. These requirements determine what the system ‘should be’ 

(Gebauer, Tang and Baimai, 2007). 

 

In the present study, the focus is more on mHealth technology design than hardware 

specifications. However, mHealth tools can be understood to incorporate both functional 

and non-functional characteristics. In line with TTF theory, the design of technology for 

task requirements is important to the technology user, who will have expectations of the 

functional support of the tool for their needs, and not necessarily its underlying 

architecture. In essence, the present study is restrictive to features designed to support 

CHW needs. In Section 5.2.3, four mHealth technology user needs are identified as 

relevant to the critical behavioural job demands of CHWs. These were the task 

characteristics of time criticality, interdependence, mobility, and information dependency. 

Therefore functional support of the mHealth tool for CHW tasks is needed. Drawing on 

the above, characteristics most relevant to the mHealth technology used
36

 by CHWs are 

defined next. 
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 Please refer Section 4.6.2 of Chapter 4. 
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5.2.4 Mobile-Health (mHealth) Technology Characteristics 

 

In this chapter, the technology used by the CHW as the user, is described as an mHealth 

tool. Four mHealth tool technology characteristics are specified as relevant properties to 

be utilized by CHWs. These properties must be designed as mobile support functions for 

critical CHW task needs. CHWs need mHealth tools with supporting functions for 

emergency (time-critical) services, mobility from one location to another, data integration 

and information sharing, and access to data at the point-of-service (Balasubramanian et 

al., 2002; Liang and Wei, 2004; Junglas and Watson, 2006; Hsiao and Chen, 2012). 

These properties of the mHealth tool translate into the technology characteristics of time 

criticality support, interdependence support, mobility support, and information 

dependency support. 

 

First, time criticality support is the function designed for the user need of the task 

performer to respond urgently (Gebauer and Shaw, 2004). This support function has been 

evaluated in prior works on mobile technology use for task performance. For example, 

the time critical function of mobile notification is used to remind the performer when 

urgent tasks need to be performed immediately or during emergencies (Yuan et al., 2010). 

If the time criticality of CHW tasks is high, then mHealth tool notification e.g. event-

trigger SMS messages, is critical i.e. during emergencies. This would prompt CHWs to 

respond quickly and if need be, refer patients to hospitals or clinics for further care or 

specialized treatment (Liu et al., 2011).  

 

Second, interdependence support is the function designed for the user need of the task 

performer to co-operate with others in preforming the task (Dishaw and Strong, 1998b). 

This support function, evaluated as co-ordination functionality in the context of software 

maintenance, can be applied to study mobile technology use for task performance. For 

example, integrated common systems are used to support collaborative information 

sharing between task performers for decision-making (Hsiao and Chen, 2012). If CHW 

task interdependence is high, then mHealth tool interpersonal functionality for 

communication e.g. the interactive transmission of voice and text, is critical i.e. for 

integration of data, processing, and sharing. This information would support CHWs in 

sharing household health data in co-ordination with community supervisors when real-

time disease surveillance is conducted (Braun et al., 2013). 
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Third, mobility support is the function designed for the user need for location 

manoeuvrability of the task performer (Yuan et al., 2010). This support function has been 

evaluated in research on mobile work. For example, location-tracking is used to identify 

and locate task performers (Zhao, Shin and Reich, 2002). If CHW task mobility is high, 

then mHealth tool location-tracking service e.g. GPS-enabled navigation, is critical i.e. to 

map a target destination, relative to the movement of the user. This would support CHWs 

in moving to remote locations to collect data from patients during household visits 

(DeRenzi et al., 2012). 

 

Fourth, information dependency support is the function designed for the user need of the 

task performer to access data at the point-of-service (Junglas et al., 2008). This support 

function has been evaluated as location dependency in previous research on user mobility. 

For example, mobile locatability is a function used to provide task performers with 

location-specific information (Yuan et al., 2010). If CHW task information dependency is 

high, then mHealth tool location-aware service e.g. localized data in real-time, is critical 

i.e. for access to data on the user’s location relative to others, and objects such as supplies 

or equipment. This would support CHW household surveillance initiatives (Earth 

Institute, 2010). 

 

CHWs need support from an mHealth tool for (1) timely healthcare delivery e.g. when 

they need to refer patients to clinics or hospitals for emergency care, (2) co-operation as 

co-workers e.g. when they need to share information in co-ordination with community 

health supervisors, (3) manoeuvrability e.g. when they need to visit households to deliver 

care, and (4) real-time access to information at the point of patient care e.g. when they 

need household data ‘on-location’ during monitoring for surveillance. The technology, 

therefore, must represent functional support for time criticality, interdependence, 

mobility, and information dependency needs. According to TTF theory for optimal 

technology use and user performance, characteristics of the tool used must ‘fit’ 

characteristics of the work tasks being performed (Dishaw, 1994; Goodhue and 

Thompson, 1995; Kilmon, Fagan, Pandey and Belt, 2008). This concept of a ‘fit’ between 

the task and technology is conceptualized next. 
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5.2.5 The Fit between the Task and Technology  

 

The ‘fit’ between the technology used by the task performer, and the task performed by 

the technology user, is the third component of Task-Technology Fit (TTF). The ‘fit’ 

between task and technology is conceptualized by drawing on the work of Venkatraman 

(1989), who classified six perspectives of ‘fit’ (p. 438). Four of these ‘fit’ perspectives are 

used for the purposes of the present study. The first perspective of ‘fit’, Fit as Matching, 

refers to the pairing of two related variables (Venkatraman, 1989, p. 430). It has been 

used to inform ‘fit’ concepts in strategy research (Bergeron, Raymond and Rivard, 2001), 

and adapted for IS research. For example, Dishaw and Strong (1998b) expressed the 

relationship between user activities and tool functionality using a TTF matrix to illustrate 

their matching pairs (p. 110), and postulated that ‘fit’ as the matching of certain task 

(user) activities and technology (tool) support functions, occurs as shown on the shaded 

diagonal depicted in Figure 5.1. They then modelled its intended effect on tool use as 

depicted in Figure 5.2. 

 

 

Figure 5.1. Task-Technology Fit (TTF) Matrix (Dishaw and Strong, 1998b, p. 110) 
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Figure 5.2. Fit of Tool Functionality to User Activity (Dishaw and Strong, 1998b, p. 109) 

 

Similarly, in the present study, the relationship between the identified mHealth tool 

support functions and CHW task characteristics can be expressed using a TTF matrix as 

illustrated in Figure 5.3.  

 

 

Figure 5.3. Task-Technology Fit (TTF) Matrix: Matching 

 

These matching CHW task and mHealth tool characteristics form the shaded diagonal in 

Figure 5.3. Subsequently, the effects of TTF as Matching on use and user performance 

can be modelled as illustrated in Figure 5.4.  
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Figure 5.4. Task-Technology Fit (TTF) as Matching Model 

 

The second perspective of ‘fit’, Fit as Moderation, occurs when the impact of a predictor 

variable on a criterion variable depends on the level of a third variable, the moderator 

(Venkatraman, 1989 p. 424). Venkatraman (1989) observed that Moderation could be 

examined by testing ‘fit’ as an interaction effect (p. 425). This perspective has been 

applied in IS research where TTF as Moderation was modelled as the interaction (Figure 

5.5) of Knowledge Management (KM) task and technology characteristics (Teo and Men, 

2008). Since its effects on a criterion are specified, Fit as Moderation has been classified 

as a criterion-specific form of ‘fit’ (Venkatraman, 1989). 

 

 

Figure 5.5. Fit of Knowledge Management (KM) Technology to Knowledge Task (Teo and Men, p. 561)  

 

This interaction is calculated as the cross-product of each task with each technology 

characteristic. In the present study, similar interactions can be conceptualized to include 
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both on-diagonal and off-diagonal cells, expressed using a TTF matrix as illustrated in 

Figure 5.6.  

 

Figure 5.6. Task-Technology Fit (TTF) Matrix: Moderation (Interaction) 

 

Based on the approach of Teo and Men (2008), the effects of TTF as Moderation on use 

and user performance can be modelled as depicted in Figure 5.7.  

 

 

Figure 5.7. Task-Technology Fit (TTF) as Moderation (Interaction) Model 

 

The third perspective of ‘fit’, Fit as Mediation, involves an intervening mechanism, a 

mediator, positioned between one or more predictor and criterion variables 
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(Venkatraman, 1989, p. 428). This perspective originated from research on strategic 

management (Bergeron et al., 2001), and can be used to conceptualize a ‘fit’ between task 

and technology characteristics. Venkatraman (1989) suggested that this ‘fit’ could be 

evaluated by testing the intervening, indirect effects of a predictor (or set of predictors) on 

a consequent variable. This perspective of ‘fit’ is adaptable to TTF research. For example, 

in their Fit-Focus model (Figure 5.8), which is representative of a traditional TTF model, 

Goodhue and Thompson (1995) positioned the TTF construct as a user-evaluation 

between antecedent task and technology characteristics, and consequent utilization and 

performance impacts (p. 215). Since its effects on a criterion are specified, Fit as 

Mediation has also been classified as a criterion-specific form of ‘fit’ (Venkatraman, 

1989). 

 

Figure 5.8. Fit-Focus Model (Goodhue and Thompson, 1995, p. 215) 

 

The Goodhue and Thompson (1995) Fit-Focus model is adopted for the present study 

where the ‘fit’ of mHealth technology characteristics to CHW task characteristics is 

modelled as a user evaluation. Notably, it appears that in prior works, ‘fit’ as a user 

evaluation has not typically been described as mediating despite its positioning as an 

intervening variable between antecedent task and technology characteristics, and 

consequent use and user performance outcomes, and has neither been classified nor tested 

as such. This intervening ‘fit’ links these task and technology characteristics to use and 

user performance, as depicted in Figure 5.9. 
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Figure 5.9. Task-Technology Fit (TTF) as Mediation Model 

 

The fourth and final perspective of ‘fit’ is Fit as Covariation, which is observed as a 

pattern of internal consistency among a set of underlying and theoretically related 

variables (Venkatraman, 1989 p. 435). This ‘fit’ perspective has been used in research on 

‘fit’ in strategic management (Bergeron et al., 2001), and in the IS discipline in research 

on ‘fit’ for ERP implementation (Wang, Shih, Jiang and Klein, 2008). However, 

curiously, it has never been adapted for TTF research. Venkatraman (1989) suggested 

that ‘fit’ could be evaluated as a pattern of internally consistent, co-aligned factors, tested 

for its effects on use and user performance. In a broader IS study, Wang et al’s (2008) 

conceptualization of co-alignment as internal consistency for their study of Enterprise 

Resource Planning (ERP) success factors, is depicted in Figure 5.10. The co-alignment 

amongst these six success factors is further depicted as impacting on outcomes such as 

decision-making and control, and efficiency and profitability. Although this form of ‘fit’ 

was originally classified as criterion-free (Venkatraman, 1989), it can be evaluated as 

criterion-specific since its effects on an outcome or outcomes are specified. 
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Figure 5.10. The Fit as Covariation (Consistency) of Enterprise Resource Planning (ERP) Factors (Wang et 
al., 2008, p. 1613) 

 

In the present study, this perspective of ‘fit’ as a pattern of co-aligned CHW task 

characteristics and mHealth technology characteristics is depicted
37

 in Figure 5.11, with 

expected consequent effects for use and performance. Specifically, covariation ‘fit’ is 

represented as a second-order factor, with first-order task and technology factors as its 

reflective indicators (Venkatraman, 1990; Segars, Grover and Teng, 1998). This model 

specification has been described as a reflective first-order, reflective second-order (Type 

I) model, one in which the second-order construct (TTF) has underlying first-order factors 

(task and technology characteristics) as reflective dimensions, which themselves are 

measured using reflective manifest indicators
38

 (Jarvis, Mackenzie and Podsakoff, 2003, 

p. 204).  

 

                                                 
37

 For schematic clarity, the reflective indicators of the first-order factors (task and technology 

characteristics) are not drawn here. These task and technology characteristics are latent constructs, each 

being a reflective indicator of ‘fit’ (Jarvis et al., 2003). 
38

 Please refer Tables E.1 and E.2 of Appendix E for a detailed description of task and technology 

characteristics. 
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Figure 5.11. Task-Technology Fit (TTF) as Covariation Model 

 

The technology the task performer uses to perform the task is linked through TTF theory 

to use and user performance. The TTF outcome constructs of use and user performance 

are discussed in Sections 5.3 and 5.4. 

5.3 Use in Task-Technology Fit (TTF) Research 

 

Various dimensions of the concept of technology use have been evaluated in TTF 

research. For instance, Teo and Men (2008) operationalized use as frequency, intensity 

and extent of use. Similarly, McGill, Klobas and Renzi (2011) operationalized use as 

frequency of use and intensity of use. Elsewhere, Dishaw and Strong (1998b) 

operationalized use as extent of use. One promising use concept in TTF research relates 

to use as user dependence on the system (Junglas et al., 2009). This is because task 

characteristics may move users to depend more on certain aspects of a technology that is 

being used (Goodhue and Thompson, 1995, p. 216). This reflects the extent to which use 

of the tool is integral to typical task routines (Trice and Treacy, 1986). Goodhue and 

Thompson (1995) evaluated use as the user’s dependence on the system being used (p. 

223). For optimal use, the technology used must ‘fit’ the task performed (Dishaw, 1994). 

As per the traditional Fit-Focus TTF model (Goodhue and Thompson, 1995), user 

dependence has been evaluated as a dimension of use consequent to TTF. In their study 

of Mobile Information Communication Technology (MICT) use by nurses, Junglas, 

Abraham and Ives (2009) evaluated dependence as the extent to which the user became 



 127 

dependent on the technology in performing the task (p. 645). These and various other use 

dimensions specified in past TTF research are captured in Table 5.3. 

 
Table 5.3. Use Concepts in Task-Technology Fit (TTF) Research 

Use Construct Dimension(s) Context Source 

Tool Utilization  Extent of Use Software Maintenance Dishaw and Strong (1998a, 

1998b) 

Utilization  Extent of Technology Use Use of Software for Operations 

Management Courses 

Dishaw et al (2006) 

KMS Usage  Frequency Use of Knowledge Management 

Technologies in Companies 

Lin and Huang (2008) 

Utilization  Time Spent Using System  Use of Virtual Learning Environments 

(VLEs) 

McGill and Hobbs (2007) 

Utilization  Frequency of Use 

 Intensity of Use 

Use of Learning Management Systems 

(LMs) 

McGill and Klobas (2009) 

Utilization  Frequency of Use 

 Intensity of Use 

Use of Learning Management Systems 

(LMs) 

McGill, Klobas and Renzi 

(2011) 

Utilization  Frequency 

 Intensity 

 Extent of Use 

Use of Knowledge Portals  Teo and Men (2008) 

Utilization 

Impact 

 Dependence on the System Use of Mobile Technologies in a 

Hospital 

Junglas et al (2009) 

Usage  Extent of Use Technology use among mobile 

professionals. 

Gebauer (2008) 

Extent of Use  Extent of Use The general use of mobile information 

systems. 

Gebauer and Ginsburg (2009) 

 

Of note, use dimensions have rarely been evaluated in mobile technology and healthcare 

TTF research. Drawing on the above, a technology use construct is conceptualized for the 

present study. 

5.3.1 Mobile-Health (mHealth) Technology Use  

 

For the efficacious delivery of patient care, the use of mHealth tools by CHWs at the 

point-of-care can encompasses three technology use dimensions, namely ‘frequency’, 

‘intensity’, and ‘dependence’.  

 

First, frequency is how many times on average the user uses the technology in task 

performance (Lee, 1986; Lee, Kozar and Larsen, 2003; Teo and Men, 2008). The 

repetitive use of ITs has been cited as evidence of enhanced frequency of use of the 

technology (Hou, 2012).  

 

Second, intensity is how much time on average the user spends using the technology in 

performing tasks (McGill and Hobbs, 2007). In general, the more the user uses the 
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technology in performing tasks, the greater their level of intense tool or system usage. 

However, in particular contexts, it has been acknowledged that a more advanced or 

sophisticated IT user may spend less time using the technology than is expected of the 

average user (Igbaria, Zinatelli, Cragg and Cavaye, 1997). 

 

Third, dependence is the extent to which the user has come to rely on using the 

technology in task performance (Junglas et al., 2009). The integration of ITs into 

individual work routines has been observed to enhance user dependence as the 

technology becomes more integral to the tasks being performed (Goodhue and 

Thompson, 1995). 

5.4 User Performance in Task-Technology Fit (TTF) Research 

 

Various dimensions of the concept of user performance have been evaluated in TTF 

research. For example, in their study of system users, Goodhue and Thompson (1995) 

evaluated performance impacts as the dimensions of effectiveness and productivity. 

Perceptual measures have been used because more objective dimensions are deemed 

incompatible in contexts where technology users perform various tasks (Goodhue and 

Thompson, 1995). In a study of information centre end-users, Goodhue (1997) contended 

that performance represents a combination of improved efficiency, effectiveness and 

quality. Variations of these user performance dimensions have been used in TTF 

research. In an academic setting, Staples and Seddon (2004) assessed performance 

impacts as user perceptions of system worth, effectiveness, efficiency, and satisfaction. 

Similarly, in a study on the use of e-books, D’Ambra, Wilson and Akter (2012) assessed 

performance as the user perceptions of improved quality, productivity, and effectiveness. 

Elsewhere, in a knowledge work setting, Teo and Men (2008) evaluated performance as 

the measure of work operation efficiency, worker effectiveness, and quality. In research 

on web usage, D’Ambra and Rice (2001) assessed performance as a perceptual construct 

comprising the dimensions of impact on user ability to accomplish tasks, increased 

communication with others, improved work quality, better decision making, increased 

task completion speed, and improved access to information. In their study on Spatial 

Decision Support Systems (SDSS), Jarupathirun and Zahedi (2003) measured 

performance as technology satisfaction, quality, and efficiency. These and other user 

performance concepts in TTF research are captured in Table 5.4.  
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Table 5.4. User Performance Concepts in Task-Technology Fit (TTF) Research 

Construct Dimension(s) Source 

Performance Impacts  Effectiveness 

 Productivity 

Goodhue and Thompson (1995) 

Performance  Efficiency 

 Effectiveness 

 Quality 

Goodhue (1997) 

Performance Impacts  System Worth 

 Effectiveness 

 Efficiency 

 Satisfaction 

Staples and Seddon (2004) 

Performance   Quality 

 Productivity 

 Effectiveness 

D’Ambra, Wilson and Akter (2012) 

Performance  Efficiency 

 Productivity 

 Effectiveness 

 Quality 

Teo and Men (2008) 

Performance   User Ability to Accomplish Tasks 

 Communication with Others 

 Work Quality 

 Decision-Making 

 Task Completion Speed 

 Access to Information 

D’Ambra and Rice (2001) 

Performance  Decision Satisfaction 

 Technology Satisfaction 

 Perceived Decision Quality 

 Perceived Decision Efficiency 

Jarupathirun and Zahedi (2003) 

Performance Impact  Effectiveness 

 Efficiency 

 Quality of Care 

 Decreased Error Rates 

Junglas et al (2009) 

Nursing Performance  Nursing Speed 

 Quality 

 Efficiency 

Goodhue (1997) 

Performance  Quality of Care Karsh et al (2009) 

CHW Performance  Efficiency 

 Effectiveness 

 Quality 

Tariq and Akter (2011) 

Individual Performance  Time taken to complete tasks Junglas et al (2008) 

Performance  Speed 

 Accuracy 

 Decision Quality 

 Effectiveness 

 Efficiency 

Gebauer et al (2005) 

Overall System Evaluation  System Rating 

 Perceived System Quality 

 Price Value 

Gebauer et al (2007) 

 

Similar user performance dimensions have been evaluated in mobile technology and 

healthcare research. For example, in a study on the use of Mobile Information 

Communication Technologies (MICTs) by nurses, Junglas, Abraham, and Ives (2009) 
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evaluated performance comprising effectiveness, efficiency, and quality dimensions of 

patient care. These dimensions were self-reported measures. Elsewhere, in a study on 

mobile-Nursing Information Systems (m-NISs), Hsiao and Chen (2012) evaluated 

performance using the dimensions of speed, quality and efficiency of nursing 

performance. In other work, Karsh, Holden, Escoto, Alper, Scanlon, Arnold, Skibinski 

and Brown (2009) evaluated performance as the perceived quality of patient care in 

hospital settings from the perspective of nurses. In similar work on mHealth technologies 

in developing countries, Tariq and Akter (2011) described performance as the efficiency, 

effectiveness, and quality of CHW task completion. Elsewhere, in a study on mobile 

locatable systems, Junglas, Abraham, and Watson (2008) evaluated individual 

performance as the time users spent completing their tasks (p. 1051). In other work, in a 

study on mobile system use, Gebauer, Shaw and Gribbins (2005) measured performance 

as perceived user speed, accuracy, decision quality, and efficiency. In a related study on 

mobile user requirements, Gebauer, Tang, and Baimai (2007) assessed performance as a 

user system rating capturing quality and price value. Drawing on the above, a user 

performance construct is conceptualized for the present study. 

5.4.1 Community Health Worker (CHW) Performance 

 

In prior works, higher performance levels have been defined as the improvement in 

effectiveness, efficiency and quality (Staples and Seddon, 2004; Bravo, Santana and 

Rodon, 2015). In the mobile technology and healthcare context, these three dimensions of 

user performance have been emergent (Junglas et al., 2009).  

 

First, effectiveness is the execution of actions or tasks to achieve desired work outcomes 

or results (Teo and Men, 2008). ITs have been shown to improve the effectiveness of 

users by enhancing their productive output in executing tasks (Torkzadeh and Doll, 

1999). 

  

Second, efficiency is the completion of tasks in the least time, and at the lowest cost 

(Garrity and Sanders, 1998). ITs have been shown to improve the efficiency of users by 

automating time-consuming tasks, thereby reducing the wastage of resources (Belanger, 

Collins and Cheney, 2001). 
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Third, quality is the completion of tasks without committing errors (Junglas et al., 2009). 

ITs have been shown to improve output quality not only by validating the inputs of tool 

or system users, but also minimizing errors in the capture and transmission of data 

(Belanger et al., 2011). 

 

The delivery of effective, efficient, and quality patient care by CHWs
39

 using mHealth 

tools is imperative to their monitoring, prevention and referral task performance. 

Therefore, the dimensions of effectiveness, efficiency and quality, will underscore user 

performance in the present study. As per theories of Attitude and Behaviour, use is 

determined by a set of precursors. These precursors are considered as determinants of use 

besides the ‘Fit’ between the Task performed and Technology used. These precursors of 

use are introduced in Section 5.5. 

5.5 Precursors of Use in Task-Technology Fit (TTF) Research 

 

Goodhue and Thompson (1995) extended their TTF model by including a set of 

precursors. They evaluated effects of these precursors as determinants of use besides TTF 

(p. 216). These determinants have been evaluated in TTF studies in various contexts. The 

precursors of use evaluated in TTF research have included dimensions such as social 

norms (D’Ambra and Wilson, 2004), accessibility (Goodhue et al., 1997), attitude toward 

system utilization (McGill and Hobbs, 2007), and facilitating conditions (McGill and 

Klobas, 2009). These and various other precursors of use specified in past TTF research 

are captured in Table 5.5. The theories of Attitude and Behaviour linking precursors to 

use are expanded upon in Chapter 10. 

 

 

 

 

 

 

 

 

 

                                                 
39

 Please refer Chapter 2 for a discussion of the contextual background of the present study. 
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Table 5.5. Precursors of Use in Task-Technology Fit (TTF) Research 

Construct Dimension(s) Context Source 

Precursors of Utilization  Social norms 

 Control Factors 

Use of Web Technologies for 

Travel 

D’Ambra and Wilson 

(2004) 

Accessibility  Accessibility Use of technologies in an 

information centre 

Goodhue et al (1997) 

Precursors of Utilization   Expected Consequences of Use 

 Attitude Towards Using 

 Social Norms 

 Facilitating Conditions 

Use of Virtual Learning 

Environments (VLEs) 

McGill and Hobbs 

(2007) 

Precursors of Utilization  Expected Consequences of LMS 

Use 

 Attitude Towards LMS Use 

 Social Norms 

 Instructor Norms 

 Facilitating Conditions  

Use of Learning Management 

Systems (LMSs) 

McGill and Klobas 

(2009) 

Precursors of Utilization  Expected Consequences of Use 

 Affect Toward Use 

 Social Norms 

 Facilitating Conditions 

Voluntary and Mandatory Tool 

Use 

Staples and Seddon 

(2004) 

 

Notably, precursors of use have not featured prominently in mobile technology and 

healthcare TTF research. Nevertheless, the above dimensions can be used to 

conceptualize precursors of technology use for the present study. 

5.5.1 Precursors of Mobile-Health (mHealth) Technology Use  

 

In previous TTF research, precursors of use are typically examined in institutional 

settings and much less in the more dynamic contexts of mobile technology and 

healthcare. For the present study, two precursors of mHealth technology use are 

considered. 

 

First, facilitating conditions are support factors in the user environment that are 

conducive to technology use (Thompson et al., 1991). For example, supporting resources 

e.g. user training, have been observed to facilitate the use of ITs (McGill and Hobbs, 

2007).  

 

Second, affect toward use is the extent to which the user has a liking for the technology 

(Compeau, Higgins and Huff, 1999). The positive affect of users towards use e.g. 
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enjoyment, is expected to enhance the use of ITs. Conversely, the negative affect of users 

e.g. apprehension, could undermine their use of ITs (McGill and Klobas, 2009).  

 

Having conceptualized the constructs of TTF, use, user performance, and precursors of 

use, the conceptual TPC model developed for testing in the present study is presented in 

Section 5.6. 

5.6 The Conceptual Technology-to-Performance Chain (TPC) Model 

 

The conceptual model, a TPC (Goodhue, 1992; Goodhue and Thompson, 1995) that is 

developed to link TTF, use, user performance, and precursors of use, is depicted in Figure 

5.12. 

 

 

Figure 5.12. Conceptual Model 

 

This conceptual model comprises the four constructs of TTF (A), use (B), user 

performance (C), and precursors of use (D). These constructs are components of the TPC. 

TTF is the core TPC component, linked first to use (Link 1.1) and second to user 

performance (Link 1.2). The TTF outcomes of use and user performance are concurrent. 

As per the traditional TTF (Fit-Focus) model (Goodhue and Thompson, 1995), 

technological support of the task is expected to influence both use and user performance. 
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TTF is conceptualized using four perspectives of ‘fit’ (Venkatraman, 1989) 

operationalized as Matching, Moderation, Mediation, and Covariation. Third, use is 

linked to user performance (Link 2). The traditional TTF (Fit-Focus) model is thus 

extended to form a complete TPC, such that user performance is considered a function of 

both TTF and use (Goodhue, 1992; Goodhue and Thompson, 1995, p. 216). Fourth, 

precursors are linked to use (Link 3). The completed TPC is thus extended, such that use 

is considered a function of both TTF and a set of precursors (Goodhue, 1992, p. 305). 

5.7 Conclusion 

 

The purpose of this chapter was to develop an empirically testable TPC linking task and 

technology characteristics to use and user performance through four perspectives of ‘fit’ 

(Venkatraman, 1989).  

 

The four task characteristics of ‘time criticality’, ‘interdependence’, ‘mobility’, and 

‘information dependency’, and the four technology characteristics of ‘time criticality 

support’, ‘interdependence support’, ‘mobility support’, and ‘information dependency 

support’, were surfaced as relevant in the context of mHealth tool use and CHW 

performance. Use and user performance are multi-dimensional constructs. User 

performance consists of ‘effectiveness’, ‘efficiency’, and ‘quality’ dimensions, and use 

encompasses ‘frequency’, ‘intensity’, and ‘dependence’ dimensions. In addition, use is 

positioned as mediating between a set of precursors, namely ‘facilitating conditions’ and 

‘affect toward use’, and user performance.  

 

The TPC developed for the present study is tested in Chapters 6 to 10. The effects of TTF 

as Matching, Moderation, Mediation, and Covariation, on use and user performance, are 

tested in Chapters 6 to 9. The effects of use as a determinant of user performance, and 

TTF and precursors as determinants of use, are tested in Chapter 10. The results of these 

tests of the TPC, and derived implications for research and practice are discussed in 

Chapter 11. 
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In chapter 1, a need for rigorous research to inform the design of mobile technologies that 

fit the needs of CHWs and enhance their task performance was established (Global 

Health Workforce Alliance, 2010). Consequently the following research questions were 

formulated: 

 

 

 

The purpose of Chapters 6 to 9 is to address Research Questions 3 and 4 by examining 

the implications of Task-Technology Fit (TTF) for mHealth tool use and CHW 

performance from the ‘fit’ perspectives of Matching, Moderation, Mediation, and 

Covariation (Venkatraman, 1989). In Chapter 6, the effects of TTF as Matching on use 

and user performance are examined. 

 

 

Figure 5.13. Task-Technology Fit (TTF) as Matching 

 

 

 

3. How can a fit between mHealth tools and CHW tasks be conceptualized? 

4. To what extent does this fit impact mHealth tool use and CHW 

performance? 
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6 The Effect of Task-Technology Fit (TTF) as Matching on 

Use and User Performance  

 

This chapter is an updated version of Gatara, M. and Cohen, J.F (2015) Matching Task 

and Technology Characteristics to Predict mHealth Tool Use and User Performance – A 

Study of Community Health Workers in the Kenyan Context, Proceedings of the 8th 

International Conference on Health Informatics (HEALTHINF), Lisbon, Portugal, pp. 

454-461. 

6.1 Introduction 

 

The purpose of this chapter is to employ the Fit as Matching perspective (Venkatraman, 

1989) to examine the effects of Task-Technology Fit (TTF) on mHealth tool use and 

CHW performance. First, ‘fit’ is conceptualized as comprising four sets of matching 

CHW task and mHealth technology characteristics. Second, using data collected from 

CHWs operating in Kenya, these matched task and technology characteristics are 

examined for their effects on CHWs’ self-reported mHealth tool use and user 

performance outcomes.  

6.2 Task-Technology Fit (TTF) as Matching 

 

In prior works, Task-Technology Fit (TTF) has been defined as the matching of 

functional tool capacity with user activity demands (Dishaw and Strong, 1998b, p. 109). 

From this perspective, TTF as Matching is thus the pairing of corresponding user needs 

and tool functions. These paired needs and functions are complementary characteristics 

that can be configured using a TTF matrix (Dishaw, 1994, p. 37). Figure 6.1 depicts the 

TTF matrix representing the paired task and technology characteristics relevant to the 

mHealth tool context under study. These task and technology characteristics were 

described in detail in Section 5.3 of Chapter 5. Task characteristics are the features of a 

work task that reflect the task performer’s job demands or needs (Dishaw, 1994), whereas 

technology characteristics are the supporting features or functions of the tool used to 

perform the task (Dishaw and Strong, 1998b). In Figure 6.1, the corresponding pairs of 

CHW task and mHealth technology characteristics are shaded, forming a diagonal in the 

TTF matrix. 
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Figure 6.1. Task-Technology Fit (TTF) Matrix: Matching 

 

Although Venkatraman (1989) originally specified the Fit as Matching perspective 

without reference to a criterion variable, the consequent effects of matching on specified 

outcomes can however be examined (p. 430). The link between TTF as Matching and use 

and user performance is discussed in Section 6.3. 

6.3 Conceptual Model 

6.3.1 The Link between Task-Technology Fit (TTF) as Matching and Use and User 

Performance 

 

TTF theory is based on the premise that ‘fit’ as the matching of task and technology 

characteristics impacts use and user performance (Dishaw, 1994). This theorized link 

between TTF as Matching and use and user performance is shown in Figure 6.2.  

 

 

Figure 6.2. The Link between Task-Technology Fit (TTF) as Matching and Use and User Performance 
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According to TTF theory, if the technology matches the task performed, then use is 

stimulated and user performance should improve. This is because the technology used 

would directly complement the task performed such that tool functions would match user 

needs. For use and user performance to be optimized, there must be a match between user 

activities and tool functionality (Dishaw, 1994). In the mHealth context, ‘fit’ as the 

matching of CHW task characteristics (needs) and mHealth tool characteristics 

(functions) should similarly improve use and user performance. For example, a CHW 

may have to perform a high time criticality task such as the referral of a patient to a clinic 

for emergency care (Liu et al., 2011). The mHealth tool can functionally match this need 

by transmitting automated emergency SMS notifications or reminders (DeRenzi et al., 

2011). As another example, a CHW may have a high information dependency task such 

as the monitoring of households when conducting disease surveillance (Braun et al., 

2013). The mHealth tool can match this need with functionality such as interactive 

mapping to enable access to data on household locations (Yuan et al., 2010). As a 

consequence of such paired task-technology matches, CHWs are expected to become 

more dependent on using their mHealth tool to more effectively and efficiently deliver 

patient care with improved quality. The following propositions linking TTF as Matching 

to use and user performance are therefore formulated: 

 

Proposition 1 (P1): Fit as the match between CHW task characteristics and mHealth tool 

characteristics will influence mHealth tool use. 

Proposition 2 (P2): Fit as the match between CHW task characteristics and mHealth tool 

characteristics will influence CHW performance. 

 

The following sub-propositions are derived: 

 

Proposition 1a (P1a): Fit as the match between time criticality of CHW tasks and time 

criticality support of the mHealth tool will influence use. 

Proposition 2a (P2a): Fit as the match between time criticality of CHW tasks and time 

criticality support of the mHealth tool will influence user performance. 

Proposition 1b (P1b): Fit as the match between interdependence of CHW tasks and 

interdependence support of the mHealth tool will influence use. 

Proposition 2b (P2b): Fit as the match between interdependence of CHW tasks and 

interdependence support of the mHealth tool will influence user performance. 
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Proposition 1c (P1c): Fit as the match between mobility of CHW tasks and mobility 

support of the mHealth tool will influence use. 

Proposition 2c (P2c): Fit as the match between mobility of CHW tasks and mobility 

support of the mHealth tool will influence user performance. 

Proposition 1d (P1d): Fit as the match between information dependency of CHW tasks 

and information dependency support of the mHealth tool will influence use. 

Proposition 2d (P2d): Fit as the match between information dependency of CHW tasks 

and information dependency support of the mHealth tool will influence user performance. 

 

The methods used to examine the impact of TTF as Matching on use and user 

performance are discussed in Section 6.4. 

6.4 Methods 

6.4.1 Sampling, Instrument, and Measures 

 

Dataset 1 (n = 201) is used in this chapter. Dataset 1 is described in detail in Section B.1 

of Appendix B. The dataset consists of responses from CHW mHealth tool users in the 

counties of Siaya, Nandi, and Kilifi. A structured questionnaire survey instrument was 

used to collect the data. The measures for CHW task characteristics, mHealth technology 

characteristics, use and user performance, were developed as described in Appendix E. 

These constructs were tested for multi-collinearity, reliability and validity, and final 

measures were used in subsequent analyses as per the procedures and criteria outlined in 

in Sections G.1 and G.2 of Appendix G. 

6.4.2 Task-Technology Fit (TTF) as Matching 

 

TTF as Matching was operationalized as the product indicator
40

 of corresponding task 

(user need) and technology (tool function) characteristics. This was computed using the 

following equation (1):  

 

Fit MATCH IJ = Task Characteristic I x Technology Characteristic J  (1) 

      where: 

                                                 
40

 Per Venkatraman (1989, p. 424), interaction terms representing matching fit variables were computed. 
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    Fit
 MATCH IJ = Task-Technology Fit (TTF) of mHealth technology characteristic J to 

CHW task characteristic J 

       I = Supporting Technology Characteristic (Tool Function)  

       J = Task Characteristics (User Need) 

 

The four matches of CHW task (need) and mHealth tool (function) characteristics were 

computed as interaction terms (Henseler and Fassott, 2010, p. 723) using equation 1. The 

TTF matrix in Figure 6.1 can be modified to capture each corresponding user need and 

tool function as a product term. This modified TTF matrix, with each matching pair 

represented as a product term, is shown in Figure 6.3. 

 

 

Figure 6.3. Task-Technology Fit (TTF) Matrix: Computed Matching 

 

The four matching pairs of CHW task characteristics and mHealth tool function 

characteristics were time criticality fit, interdependence fit, mobility fit, and information 

dependency fit.  

 

Partial Least Squares - Structural Equation Modeling (PLS - SEM) was used to test the 

effects of TTF as Matching on use and user performance (Hair, Hult, Ringle and Sarstedt, 

2014). The indicator values expressed in Equation (1) were mean-centered prior to 

multiplication. This was necessary because centering predictor variables greatly lessens 

multi-collinearity when using multiplicative terms to model moderating effects (Henseler 

and Fassott, 2010, p. 728). First, a structural path model was estimated to test the effect of 

each match of task and technology characteristics, on use and user performance. 

Interaction effects were then plotted for TTF matches found to be significant for the 
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prediction of use or user performance. Second, a structural path model was estimated to 

test the simultaneous effect of multiple matches of task and technology characteristics, on 

use and user performance. This test was necessary because as Dishaw (1994) observed, 

tool users are capable of performing tasks simultaneously or in parallel (p. 37). 

Coefficients of determination (R
2
 values) of the endogenous constructs use and user 

performance were used to determine the predictive accuracy
41

 of the PLS structural path 

models (Hair et al., 2014, p. 174), and Stone-Geisser’s Q
2
 values (Geisser, 1974; Stone, 

1974) of use and user performance were used to determine their predictive relevance
42

 

(Hair et al., 2014, p. 178). In addition, f 
2

 (q 
2
) effect sizes

43
 were computed to determine 

relative impacts of each matching pair of task and technology characteristics on the 

predictive accuracy (R
2
) and relevance (Q

 2
) of the PLS structural path models (Urbach 

and Ahlemann, 2010; Hair et al., 2014). Results of the structural path model estimates of 

TTF as Matching are discussed in Section 6.5. 

6.5 Results 

 

The structural path models estimated to test TTF matching effects of time criticality fit 

(model A), interdependence fit (model B), mobility fit (model C), and information 

dependency fit (model D), are depicted in Figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
41

 R
2
 values of approximately 0.670, 0.333, and 0.190 are substantial, moderate, and weak, respectively 

(Chin, 1998; Urbach and Ahlemann, 2010, p. 21). 
42

 Q
2
 values larger than zero for a certain reflective endogenous latent variable are indicators of predictive 

relevance (Henseler et al., 2009, Hair et al., 2014, p. 178). 
43 For f

 2
, values of 0.02, 0.15, and 0.35 are small, medium, and large effects, respectively (Cohen, 1988). 

These threshold values are also used to assess q 
2
 (Urbach and Ahlemann, 2010; Hair et al., 2014). 
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Figure 6.4. Path Models: Task-Technology Fit  (TTF) as Matching 



 143 

Results including t values, p values, significance levels, and confidence intervals, of the 

four structural path models estimated to test the effect of time criticality fit (model A), 

interdependence fit (model B), mobility fit (model C), and information dependency fit 

(model D), on use and user performance, are presented in Table 6.1.  

 
Table 6.1. Structural Path Model Results 

Path Path Coefficient t p  Significance  90% CI 

Model A: Time Criticality Fit 

Time Criticality  Use 0.092
 

1.48 0.14 NS [-0.01, 0.20] 

Time Criticality Support  Use 0.380
 

4.99 0.00 *** [0.25, 0.50] 

Time Criticality x Time Criticality Support  

(TC * TCS)  Use 

0.103 1.49 0.14 NS [-0.01, 0.22] 

R
2
 = 0.193, f 

2 
(TC * TCS)  Use = 0.01,  

Q
2
 = 0.097, q 

2 
 (TC * TCS) Use = 0.08 

Time Criticality  User Performance 0.251 3.44 0.00 *** [0.13, 0.37] 

Time Criticality Support  User 

Performance 

0.255 3.36 0.00 *** [0.13, 0.38] 

Time Criticality x Time Criticality Support  

(TC * TCS)  User Performance 

0.176 2.23 0.03 ** [0.05, 0.31] 

R
2
 = 0.219, f 

2 
(TC * TCS)  User Performance = 0.04,  

Q
2
 = 0.135, q 

2 
 (TC * TCS) User Performance = 0.02 

Model B: Interdependence Fit 

Interdependence  Use 0.051
 

0.80 0.42 NS [-0.05, 0.15] 

Interdependence Support  Use 0.266
 

3.23 0.00 *** [0.13, 0.40] 

Interdependence x Interdependence 

Support  

(I * IS)  Use 

-0.104 1.47 0.14 NS [-0.22, 0.01] 

R
2
 = 0.095, f 

2 
(I * IS)  Use = 0.01,  

Q
2
 = 0.049, q 

2 
 (I * IS) Use = 0.01 

Interdependence  User Performance 0.044 0.86 0.39 NS [-0.04, 0.13] 

Interdependence Support  User 

Performance 

0.388 4.53 0.00 *** [0.25, 0.53] 

Interdependence x Interdependence 

Support  

(I * IS)  User Performance 

0.102 1.33 0.19 NS [-0.02, 0.23] 

R
2
 = 0.174, f 

2 
(I * IS)  User Performance = 0.01,  

Q
2
 = 0.100, q 

2 
 (I * IS) User Performance = 0.00 

Model C: Mobility Fit 

Mobility  Use 0.061
 

1.04 0.30 NS [-0.04, 0.16] 

Mobility Support  Use 0.269
 

3.95 0.00 *** [0.16, 0.38] 

Mobility x Mobility Support  

(M * MS)  Use 

-0.315 4.71 0.00 *** [-0.42, -0.21] 
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R
2
 = 0.164, f 

2 
(M * MS)  Use = 0.11,  

Q
2
 = 0.097, q 

2 
 (M * MS) Use = 0.07 

Mobility  User Performance 0.107 1.89 0.06 * [0.01, 0.20] 

Mobility Support  User Performance 0.437 7.00 0.00 *** [0.33, 0.54] 

Mobility x Mobility Support  

(M * MS)  User Performance 

-0.350 4.17 0.00 *** [-0.49, -0.21] 

R
2
 = 0.323, f 

2 
(M * MS)  User Performance = 0.17,  

Q
2
 = 0.193, q 

2 
 (M * MS) User Performance = 0.08 

Model D: Information Dependency Fit 

Information Dependency  Use 0.188
 

2.46 0.02 * [0.06, 0.31] 

Information Dependency Support  Use 0.310
 

3.45 0.00 *** [0.16, 0.46] 

Information Dependency x Information 

Dependency Support (ID * IDS)  Use 

-0.141 1.74 0.08 * [-0.27, -0.01] 

R
2
 = 0.188, f 

2 
(ID * IDS)  Use = 0.03,  

Q
2
 = 0.095, q 

2 
 (ID * IDS) Use = 0.02 

Information Dependency  User Performance 0.177 2.19 0.03 ** [0.05, 0.31] 

Information Dependency Support  User 

Performance 

0.318 3.42 0.00 *** [0.17, 0.47] 

Information Dependency x Information 

Dependency Support (ID * IDS)  User 

Performance 

0.253 2.80 0.01 ** [0.11, 0.40] 

R
2
 = 0.189, f 

2 
(ID * IDS)  User Performance = 0.07,  

Q
2
 = 0.117, q 

2 
 (ID * IDS) User Performance = 0.04 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01 

6.5.1 Time Criticality Fit 

 

Time criticality fit is the match between time criticality as a CHW task characteristic (user 

needs) and time criticality support as a technology characteristic (tool functions). Results 

in Table 6.1 indicate that a match between the time criticality of tasks and time criticality 

support of the mHealth tool has a significant positive effect (path coefficient = 0.176, t = 

2.23, p < 0.05) on user performance. Matching time criticality support (tool function) to 

time criticality (user need) task characteristics leads to increased user performance. 

Proposition 2a (P2a) is supported. However, a match between time criticality of tasks 

and time criticality support of the mHealth tool does not have a significant effect on 

actual use. Whereas this match may lead to higher user performance levels, it does not 

appear to be important for explaining use. The graph in Figure 6.5 shows the effects of 

the matched-pair interaction between time criticality (needs) and time criticality support 

(tool functions) on user performance. 
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Figure 6.5. Time Criticality Fit: Interaction Effects on User Performance 

 

The graph shows that CHWs who have a high need to respond urgently during 

emergencies, and for whom delivery of patient care is time critical, will perform better 

when mHealth tools provide support for time criticality through functions such as 

scheduled SMS-based notifications or automated alerts (Liang and Wei, 2004; Yuan et 

al., 2010; DeRenzi et al., 2012). However, high need users who perceive lower functional 

support levels from their mHealth tool report lower levels of user performance.  

6.5.2 Interdependence Fit 

 

Interdependence fit is the match between interdependence as a CHW task characteristic 

(user needs) and interdependence support as a technology characteristic (tool functions). 

Results in Table 6.1 indicate that contrary to expectations, matching interdependence and 

interdependence support does not have significant effects on use and user performance. 

Propositions 1b (P1b) and 2b (P2b) were not supported. Notably, interdependence 

support had a significant positive effect on use (path coefficient = 0.266, t = 3.23, p < 

0.01) and user performance (path coefficient = 0.388, t = 4.53, p < 0.01). Despite the 

absence of an interdependence need, the presence of interdependence support functions is 

sufficient for a higher dependence among CHWs on mHealth tool use and the more 

effective and efficient delivery of higher quality patient care attributed to the tool. 
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6.5.3 Mobility Fit  

 

Mobility fit is the match between mobility as a CHW task characteristic (user needs) and 

mobility support as a technology characteristic (tool functions). Results in Table 6.1 

indicate that matching mobility (user need) and mobility support (tool function) 

characteristics has a significant negative effect (path coefficient = -0.135, t = 4.71, p < 

0.01) on use. Similarly, the matching of mobility (need) and mobility support (tool 

function) characteristics has a significant negative effect (path coefficient = -0.350, t = 

4.17, p < 0.01) on user performance. Despite their significance, these effects are not 

consistent with Proposition 1c (1c) and Proposition 2c (P2c) as they are not in the 

expected direction. The graphs in Figures 6.6 and 6.7 show the effects of the matched-

pair interactions of mobility and mobility support on use and user performance 

respectively.  

 

 

Figure 6.6. Mobility Fit: Interaction Effects on Use 

 

Figure 6.6 shows that for CHWs with high task mobility, dependence on the tool is not 

contingent on the characteristics of the technology. It is only among CHWs with low task 

mobility that dependence on the tool is contingent on the characteristics of the 

technology. This is most likely because the nature of CHW work dictates that regardless 

of tool support, CHWs are highly mobile anyway, and are therefore much less likely to 

become more dependent on the tool. But those who perhaps less regularly enter the field 

or do less outreach may rely more on the tool. 
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Figure 6.7. Mobility Fit: Interaction Effects on User Performance 

 

Figure 6.7 shows that the performance of CHWs with relatively little task mobility 

(typically travel less from one location to another) is however contingent on the tool such 

that they perform better with more functionality. This indicates that supporting CHWs 

with higher mobility needs is less successful than those with lower mobility needs. This is 

most likely because most CHWs will need mobility regardless of tool support because it 

is inherent to the nature of their work. As such, only the less mobile appear to rely on the 

tool to improve performance in the field. 

6.5.4 Information Dependency Fit  

 

Information dependency fit is the match between information dependency as a CHW task 

characteristic (user needs) and information dependency support as a technology 

characteristic (tool functions). Results in Table 6.1 indicate that matching information 

dependency (user need) and information dependency (tool function) characteristics has a 

significant positive effect on user performance (path coefficient = 0.253, t = 2.80, p < 

0.05). Proposition 2d (P2d) was supported. However, matching information dependency 

(user need) and information dependency (tool function) characteristics has a significant 

negative effect on use (path coefficient = -0.141, t = 1.74, p < 0.10). Despite its 

significance, this effect is not consistent with Proposition 1d (P1d), since it is not in the 

expected direction. The graphs in Figures 6.8 and 6.9 show effects of the matched-pair 

interaction between information dependency of CHW tasks and mHealth support for 

information dependency (tool functions) on use and user performance respectively.  
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Figure 6.8. Information Dependency Fit: Interaction Effects on (a) Use 

 

The graph in Figure 6.8 shows that user dependence on the tool is highest among those 

CHWs with a high level of information dependency and a tool that provides matched 

support. Some users with a low information dependency need and who don’t then 

investigate the functional support offered by the tool, will not come to depend on the tool 

in their work. Some users with high information dependency may be struggling to also 

have those dependency needs met by the tool but they persevere with tool use non-the-

less. 

 

Figure 6.9. Information Dependency Fit: Interaction Effects on (a) User Performance 

 

The graph in Figure 6.9 similarly shows that the highest performers are CHWs with high 

information dependency tasks and a tool that provides matching support. However, some 

users with high information dependency needs are struggling to perceive those 
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dependency needs supported by the tool’s functionality, and are thus likely to become 

frustrated and report lower levels of user performance. CHWs with high information 

dependency are not able to deliver high quality care, more efficiently and effectively if 

they perceive that their tool lacks support for their information needs. These CHWs report 

the lowest performance. 

6.5.5 Combined Matching 

 

The combined effects of matched-pairs time criticality fit, interdependence fit, mobility 

fit, and information dependency fit, on use and user performance was also examined. The 

structural path model estimated to test the simultaneous effects of all the four matched-

pairs on use and user performance is presented in Figure 6.10. The model has significant 

predictive accuracy for the endogenous constructs of use (R 
2
 = 0.309) and user 

performance (R 
2
 = 0.466), respectively. The model also has significant predictive 

relevance for the endogenous constructs of use (Q
 2

 = 0.181) and user performance (Q
 2
 = 

0.290) as Q
 2

 values are above 0 (Hair et al., 2014, p. 178). Figure 6.10 shows that all of 

the mHealth tool characteristics are significant for user performance along with time 

criticality fit, mobility fit, and information dependency fit matched-pairs. The CHW task 

characteristics time criticality support and information dependency support are significant 

for use along with the mobility fit and information dependency fit matched-pairs.  
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Figure 6.10. Path Model – Task-Technology Fit (TTF) as Matching: Simultaneous Effect 

 

The path coefficients, t values, p values, f 
2 

(q
2
) effects, and significance levels of the 

structural path model estimated to test a combined matching fit are summarized in Table 

6.2. 

 

Table 6.2. Results: Combined Matching Effects 

Predictor (Matching Pair) Endogenous Construct 

Use 
 

User Performance 

Path Coefficient  f 
2 

q 
2
 Path Coefficient f 

2
 q 

2
 

Time Criticality x Time Criticality Support  

(TC * TCS) 

0.053 (0.79 
NS

) 0.00 0.01 0.131 (1.92 *) 0.03 
S 

0.01 

Interdependence x Interdependence 

Support  

(I * IS) 

-0.053 (0.89 
NS

) 0.00 0.01 0.048 (0.82) 0.00 -0.00 

Mobility x Mobility Support (M * MS) -0.245 (2.83 **) 0.08 
S 

0.04 
S 

-0.233 (3.62 ***) 0.09 
S 

0.03 
S 

Information Dependency x Information 

Dependency Support (ID * IDS) 

-0.125 (1.78 *) 0.02 
S 

0.02 
S 

0.210 (2.64 **) 0.07 
S 

0.04 
S 

R 
2

  (Use) = 0.309, Q 
2
 (Use) = 0.181, R 

2
  (User Performance) = 0.466, Q 

2
 (Use Performance) = 0.290 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01, S = Small Effect 



 151 

6.6 Discussion 

6.6.1 Time Criticality Fit  

 

A match between CHW perceptions of the mHealth tool’s time criticality support and the 

task need for time criticality does not have significant effects on use. CHW dependence 

on the mHealth tool is therefore not contingent upon this match. This fit pairing, however, 

significantly influences user performance. It is observed that matching functional support 

to the CHW need to respond urgently, e.g. during emergencies, leads to CHW delivery of 

higher quality patient care, more effectively and efficiently. Junglas, Abraham, and Ives 

(2009) similarly observed that in a hospital setting, a time criticality fit was not 

particularly important for nurse dependence on mobile technology (p. 641), but that 

utilizing a system that generated timely emergency notifications improved nursing 

performance (p. 642). The finding in this study is consistent and supports the notion that 

for effective patient care in time-sensitive scenarios, health workers require timely 

notifications (p. 635). It is also instructive to note that during emergencies in health 

settings, a lack of access to timely notifications has been observed to adversely affect 

patient care delivery (Junglas et al., 2009). 

6.6.2 Interdependence Fit  

 

Matching interdependence support of the mHealth tool to the CHW task need to co-

operate with co-workers does not have significant effects on either use or user 

performance. CHW dependence on the mHealth tool for effective and efficient delivery 

of quality patient care is not conditional upon this match. It appears that CHWs tend to 

co-operate through established interpersonal relationships, informally co-ordinating and 

exchanging information. The notion that CHW co-workers would instantly adapt to 

mHealth tools for this purpose and disrupt their established mechanisms for facilitating 

interdependence is thus not reinforced. This non-significant finding corroborates Teo and 

Men’s (2008) observation that system utilization is often incompatible with existing work 

practices and that collaborating co-workers in a particular setting may prefer their more 

traditional customs of interpersonal contact (p. 569). This finding, however, contradicts 

Dishaw and Strong (1998b) who observed that similarly matching co-ordination tool 

functionality to co-ordination task activities, contributes to increased tool utilization (p. 

115), although their study was situated in a software development setting. It is thus 
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evident that the significance or non-significance of an interdependence match for use and 

performance is context-sensitive. 

6.6.3 Mobility Fit 

 

A match of mobility support as an mHealth tool function to the CHW need for 

manoeuvrability has an unexpected negative effect on both use and user performance. 

Contrary to expectations, this matched pair is associated with less CHW dependence on 

the mHealth tool, and lower performance, thus diminished effectiveness, efficiency, and 

quality in the delivery of patient care. Graphical plots of the interaction effects of this 

paired fit show that when there is high CHW task mobility, mHealth tool dependence and 

user performance are not contingent on technological support. However, in a low CHW 

task mobility environment, the tool used drives user dependence and task performance. 

As such, the importance of tool design is recognized as an essential contributor to a 

positive fit between mobile technology and the user’s need for mobility (Junglas et al., 

2009; p. 638). In a related study, Junglas, Abraham, and Ives (2009) observed that a 

similar construct, physical fit, was not found to be instrumental to mobile technology 

utilization and nursing performance (p. 641). It therefore appears that not every user may 

benefit from all mobile technology tools, especially when their tasks are information-

intensive. The finding in this study however, contradicts Yuan, Archer, Connelly and 

Zheng’s (2010) observation that a fit between mobility task needs and mobile work 

support characteristics leads to an increase in user intentions to use mobile systems (p. 

131). Users who perceive the tool as more supportive of mobility than their tasks 

necessitate, are more likely to use it and perform better, while others who acknowledge 

the mobility demands of their work may attribute less of their performance to tool 

functionality. Evidently, not all mobile technology users in particular contexts necessarily 

enjoy the same advantages that accrue from a tool’s supporting functionality. 

6.6.4 Information Dependency Fit 

 

The matching of information dependency support as an mHealth tool function to the 

CHW need to access information at the point-of-care has significant positive effects on 

user performance. This finding corroborates Junglas, Abraham, and Ives (2009) who 

established that data access for health workers was necessary for their effective patient 

care delivery (p. 637). However, the match had a negative impact on usage dependency 
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such that CHWs are less dependent on using the mHealth tool to perform tasks. This 

contradicts Yuan, Archer, Connelly, and Zheng (2010) who observed that a fit between 

location dependence tasks and equivalent mobile technology support functions signified a 

positive utilization experience for workers (p. 131). CHWs who exhibit high information 

dependency are dependent on the tool even if they do not always perceive functional 

support. It is only those users who exhibit low information dependency who report low 

dependence on the tool and are less likely to consider the support it may provide for the 

information dependency characteristics of their work.   

6.6.5 Simultaneous Fit as Matching 

 

It has been acknowledged in prior research that the concept of ‘fit’ can assume a 

theoretically defined match between two related components (Venkatraman, 1989, p. 

430). Bergeron, Raymond and Rivard (2001), however, recognized that ‘fit’ could also 

signify the matching of multiple pairs of related components (p. 127). The matching pairs 

of time criticality fit, interdependence fit, mobility fit, and information dependency fit, 

together, have significant effects on use and user performance. This indicates that at the 

point-of-care, functional mHealth tool support for CHW task needs can be simultaneously 

present. These results are indicative of the possible co-existence of multiple user needs 

and tool functions in a particular context. Thus the matching of two related components 

need not necessarily occur in isolation, but rather as a combination of paired 

characteristics in a shared user environment. Findings also indicate that matching pairs 

observed independently appear to retain their characteristic use and user performance 

effects even when observed collectively. 

6.6.6 Implications for Research 

 

There are two emergent implications for research arising from the findings discussed in 

this chapter. 

 

First, a TTF matrix was used to configure the matching pairs of time criticality fit, 

interdependence fit, mobility fit, and information dependency fit, thus signifying the 

visual representation of complementary dimensions of TTF. This representation is 

particularly useful for researchers who seek to visualize matching user needs and tool 

functions. To depict primary matching pairs, Dishaw (1994) first introduced a TTF 

matrix. Since its inception however, this configurative approach only featured in one 
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subsequent study (Dishaw and Strong, 1998b). Its use, therefore, signifies a renewed 

interest in TTF conceptualization. 

 

Second, it was found that particular matching pairs may influence user performance 

whilst not being significant for use, not at all be significant for either use or user 

performance, have adverse effects on use and user performance for some users, and even 

negatively affect use whilst positively influencing user performance. These findings 

represent unique insights into the complexity of TTF matching in context, and can be 

useful for interpreting the magnitude and direction of its effects on tool dependence and 

task performance outcomes. It is apparent that despite the expectation of an ideal match, a 

positive pairing of user needs and tool functions may not always occur. These observed 

fit characteristics are not without precedent in previous research. Dishaw (1994) similarly 

found that in a maintenance task domain, some matching TTF pairs were associated with 

higher software tool use, whereas others negatively influenced levels of usage (p. 124). 

Researchers would therefore be better informed to anticipate and carefully observe the 

various ways in which a match between task and technology characteristics manifests.  

6.6.7 Implications for Practice 

 

There are two emergent implications for practice arising from the findings discussed in 

this chapter. 

 

First, mHealth tool designers must focus more on CHW task characteristics when 

developing support functions. Enhanced support requires that there is first an acute 

awareness of critical CHW task requirements. The findings observed in this study 

therefore represent important practical insights to inform the design of responsive 

mHealth technologies that better support CHW tasks. CHWs may not necessarily be 

homogenous in their task needs. 

 

Second, support functions that meet specific CHW needs must supersede the long-

standing practice of merely automating technologies and imposing tools that do not 

complement user needs. To achieve complentarity, mHealth tool designers must 

endeavour to develop technologies that enable users to select and use task-specific 

support functionality. 
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6.7 Chapter Conclusion 

 

The purpose of this chapter was to adapt Venkatraman’s (1989) Fit as Matching 

perspective to test the effects of Task-Technology Fit (TTF) on mHealth tool use and 

CHW performance. Four pairs of matching task and technology characteristics were 

examined for their effects on mHealth tool use and CHW performance. First, time 

criticality fit was significant for CHW performance, but was not significant for mHealth 

tool use. Second, interdependence fit was neither significant for mHealth tool use nor 

CHW performance. Third, mobility fit unexpectedly had negative effects on mHealth tool 

use and CHW performance. It was found that only CHWs with relatively lower task 

mobility will depend more on the mHealth tool and perform better with its functionality. 

Fourth, information dependency fit similarly had negative effects on mHealth tool use. 

However, as expected, this matched fit was significant for CHW performance. 

Information dependency support of the mHealth tool to information dependency of tasks 

leads to even more effective and efficient delivery of patient care with more quality. The 

combined effects of the task, the technology and the four matched-pairs on mHealth tool 

use and CHW performance were also examined. These matched-pairs were found to be 

significant predictors of mHealth tool use and CHW performance. It was found that 

multiple pairs of corresponding CHW needs and mHealth tool functions, together 

influence dependence on the mHealth tool and patient care effectiveness, efficiency and 

quality. Moreover, it becomes apparent that in the context of the present study, a 

matching fit is not necessarily restricted to a single pair of corresponding task (user need) 

and technology (function) characteristics.  
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Results of tests of TTF as Matching and its effects on use and user performance are 

summarized in Table 6.3. 

 

Table 6.3. Findings 

Proposition Finding 

P1 Fit as the match between task (need) and technology (tool function) characteristics 

will influence use. 

Supported
 

P2 Fit as the match between task (need) and technology (tool function) characteristics 

will influence user performance. 

Supported
 

P1a Fit as the match between time criticality and time criticality support will influence 

use. 

Not Supported 

P1b Fit as the match between time criticality and time criticality support will influence 

user performance. 

Supported 

P2a Fit as the match between interdependence and interdependence support will 

influence use. 

Not Supported 

P2b Fit as the match between interdependence and interdependence support will 

influence user performance. 

Not Supported 

P3a Fit as the match between mobility and mobility support will influence use. Negative Effects 

P3b Fit as the match between mobility and mobility support will influence user 

performance. 

Negative Effects 

P4a Fit as the match between information dependency and information dependency 

support will influence use. 

Negative Effects 

P4b Fit as the match between information dependency and information dependency 

support will influence user performance. 

Supported 
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In Chapter 6, TTF as Matching and its effects on use and user performance was 

examined. In Chapter 7, TTF as Moderation and its effects on use and user performance 

is examined.  

 

 

Figure 6.11. Task-Technology Fit (TTF) as Moderation 
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7 The Effects of Task-Technology Fit (TTF) as Moderation on 

Use and User Performance  

 

This chapter is in part, published in Gatara, M. (2016) Mobile Health Tool Use and 

Community Health Worker Performance in the Kenyan Context: A Comparison of Task-

Technology Fit Perspectives, in mHealth Ecosystems and Social Networks in Healthcare, 

Springer. 

7.1 Introduction 

 

The purpose of this chapter is to employ the Fit as Moderation perspective (Venkatraman, 

1989) to examine the effects of Task-Technology Fit (TTF) on mHealth tool use and 

CHW performance. In Chapter 4, it was established that Fit as Moderation (Venkatraman, 

1989) has been used to examine the effects of TTF in contexts such as the use of 

knowledge - portals for collaboration tasks (Teo and Men, 2008), surgical procedures in 

hospital settings (Schoonhoven, 1981), and engineering tools for software maintenance 

tasks (Dishaw, 1994). In this study, Fit as Moderation comprises sixteen sets of 

interacting CHW task and mHealth tool characteristics, each representing a cross-product 

term examined for effects on use and user performance. The concept of TTF as 

Moderation is discussed in Section 7.2.  

7.2 Task-Technology Fit (TTF) as Moderation 

 

In Chapter 6, the Fit as Matching perspective (Venkatraman, 1989) was used to 

conceptualize TTF as the pairing of corresponding task and technology characteristics. In 

this chapter, TTF is conceptualized from the perspective of Fit as Moderation 

(Venkatraman, 1989). From this perspective, TTF is defined as the cross-product 

interaction of all task and technology characteristics, then examined for its effects on 

mHealth tool use and CHW performance. This perspective is premised upon the impact 

of two variables, a predictor on a criterion, depending on the level of a third variable, the 

moderator (Venkatraman, 1989, p. 424). TTF as Moderation thus represents the effect of 

all task characteristics on use and user performance, depending on all functional support 

levels rendered. Therefore, the technology (tool functions) moderates the relationship 

between the tasks (needs), and use and user performance. Venkatraman (1989) 

conceptualized this moderating effect as an interaction (p. 438). In this study, the 
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predictor is the CHW task characteristic, the criterion variables are use and user 

performance, and the moderator is the mHealth technology characteristic. As such, all 

task and technology characteristics interact. This interaction is reflected as a cross-

product of these interacting task and technology characteristics. This is a ‘fit’ that 

captures both on-diagonal (matched) and off-diagonal (non-matched) interactions. This 

mode of interaction has been adopted elsewhere. For example, Teo and Men (2008) 

conceptualized TTF as the cross-product of Knowledge Management (KM) task and 

technology characteristics (p. 561). The TTF matrix (Dishaw, 1994; p. 37) used in 

Chapter 6 can be modified to represent cross-product interactions as depicted in Figure 

7.1. 

 

 

Figure 7.1. Task-Technology Fit (TTF) Matrix: Configured Cross-Product Terms 

 

The TTF matrix in Figure 7.1 shows that there are sixteen possible ways in which CHW 

task characteristics and mHealth tool characteristics can interact. The shaded cells 

represent these interactions. Venkatraman (1989) originally specified the Fit as 

Moderation perspective with reference to a criterion (p. 424). Therefore, the effect of TTF 

on the criteria variables of use and user performance can be examined.  

 

The link between TTF as Moderation and use and user performance is discussed in 

Section 7.2. 
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7.3 Conceptual Model 

7.3.1 The Link between Task-Technology Fit (TTF) as Moderation and Use and 

User Performance 

 

Fit as the cross-product interaction of task and technology characteristics, impacts use and 

user performance (Teo and Men, 2008). The link between TTF as Moderation and use 

and user performance is shown in Figure 7.2. 

 

 

Figure 7.2. The Link between Task-Technology Fit (TTF) as Moderation and Use and User Performance 

 

If the technology used interacts with the task performed, then use and user performance 

should improve. Task (user need) characteristics would have a stronger effect on use and 

user performance at higher functional support levels, but a weaker effect at lower 

functional support levels. In essence, the strength of the relationship between task 

characteristics and use and user performance would vary due to differences in technology 

characteristics of the tool. Therefore the task requirement would determine user 

behaviour, depending on levels of functional support (Teo and Men, 2008, p. 563). In 

their TTF study, Teo and Men (2008) hypothesized that when differences in technology 

characteristics such as output quality are observed, usage behaviour may not be the same 
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even if the task characteristics of users are similar (p. 563). Thus the importance of 

technology characteristics as a moderator is recognized. Essentially, mHealth tool 

functions would moderate the relationship between CHW needs, and use and user 

performance. Consequently, CHW task characteristics would have a stronger effect on 

use and user performance at higher functional support levels. In prior works, hypotheses 

premised upon technology characteristics moderating the relationships between task 

characteristics, and use and user performance, have been formulated (Strong, Dishaw and 

Bandy, 2006; Teo and Men, 2008). To examine the link between TTF as Moderation and 

use and user performance, the following propositions are formulated: 

 

Proposition 3 (P3): Fit as the cross-product interaction of all CHW task characteristics 

and all mHealth tool characteristics will influence use. 

Proposition 4 (P4): Fit as the cross-product interaction of all CHW task characteristics 

and all mHealth tool characteristics will influence user performance. 

 

The methods used to examine the impact of TTF as Moderation on use and user 

performance, are discussed in Section 7.4. 

7.4 Methods 

7.4.1 Sampling, Instrument and Measures 

 

Dataset 1 (n = 201) is used in this chapter. Dataset 1 is described in detail in Section B.1 

of Appendix B. The dataset consists of responses from CHW mHealth tool users in the 

counties of Siaya, Nandi, and Kilifi. A structured questionnaire survey instrument was 

used to collect the data. The measures for CHW task characteristics, mHealth technology 

characteristics, use and user performance, were developed as described in Appendix E. 

These constructs were tested for multi-collinearity, reliability and validity, and final 

measures were used in subsequent analyses as per the procedures and criteria outlined in 

in Sections G.1 and G.2 of Appendix G. 

7.4.2 Task-Technology Fit (TTF) as Moderation 

 

As indicated in Section 7.2, the Fit as Moderation (Venkatraman, 1989) perspective has 

been adopted to operationalize interacting task and technology characteristics as a cross-

product (Teo and Men, 2008).  
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In this study, TTF as Moderation is operationalized as the cross-product of interacting 

CHW task and mHealth tool characteristics. These interaction terms can then be 

examined for their effects on use and user performance. The interaction between these 

characteristics was computed using equation 1:  

 

Fit INTERACT IJ = Task Characteristic I x Technology Characteristic J  (1) 

      where: 

    Fit
 INTERACT IJ = Task-Technology Fit (TTF) of mHealth technology characteristic J to 

CHW task characteristic J 

       I = Supporting Technology Characteristic (Tool Function)  

       J = Task Characteristics (User Need) 

 

Using equation 1, the sixteen possible interactions of CHW task and mHealth tool 

characteristics were computed as interaction terms (Henseler and Fassott, 2010, p. 723). 

The modified TTF matrix depicted in Figure 7.3 captures each interacting task and 

technology characteristic as a cross-product term in the cells numbered from 1 to 16. 

 

 

Figure 7.3. Task-Technology Fit (TTF) Matrix: Computed Interaction 

 

Dishaw (1994) argued that a primary, on-diagonal, ‘fit’ of corresponding (matching) task 

and technology characteristics is expected, but conceded that a secondary, off-diagonal, 

‘fit’ of tool functionality to user activities could and must occur (p. 119). In essence, a 

tool function designed for a specific user need can instead fit another, secondary task 

requirement (Dishaw, 1994, p. 37). Thus in this chapter, greater emphasis is placed on 
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examining these secondary (off-diagonal) fit interactions
44

 of CHW task and mHealth 

tool characteristics. It is, however, important to recognize that as per Figure 7.3, cross-

product interactions encompass both interacting primary (on-diagonal) and secondary 

(off-diagonal) task and technology characteristics. Notably, secondary (off-diagonal) fit 

interactions are typically considered an exception (Dishaw, 1994). As such, a selective 

approach is employed to identify and examine only those significant off-diagonal, 

interaction TTF effects on use and user performance.  

 

In accordance with equation 1 and Figure 7.3, continuous moderating effects were 

modelled using a product indicator approach to create cross-product interaction terms for 

use in PLS-SEM testing (Hair et al., 2014 p. 263). The indicator values expressed in 

Equation 1 were mean-centered prior to multiplication. As observed in Chapter 6, this 

was necessary because centering predictor variables greatly lessens multi-collinearity 

when using multiplicative terms to model moderating effects (Henseler and Fassott, 2010, 

p. 728).  

 

A structural path model was then estimated to examine the effects of each cross-product 

interaction on use and user performance. Interaction effects on use and user performance 

were graphically plotted for significant cross-product terms. A structural path model was 

also estimated to examine the combined effects of all cross-product interactions on use 

and user performance. Coefficients of determination (R
2
 values) of the endogenous 

constructs use and user performance were used to determine the predictive accuracy
45

 of 

the estimated PLS structural path models (Hair et al., 2014, p. 174), and Stone-Geisser’s 

Q
2
 values (Geisser, 1974; Stone, 1974) of use and user performance were used to 

determine their predictive relevance
46

 (Hair et al., 2014, p. 178). In addition, f 
2

 (q 
2
) 

effect sizes
47

 were computed to determine the relative impacts of significant interacting 

pairs of task and technology characteristics, on the predictive accuracy (R
2
) and relevance 

(Q
 2

) of the PLS structural path models estimated to examine the effects of each cross-

                                                 
44

 Refer Chapter 6 for analyses of primary (on-diagonal) fit (matching) of CHW task and mHealth tool 

characteristics. 
45

 R
2
 values of approximately 0.670, 0.333, and 0.190 are substantial, moderate, and weak, respectively 

(Chin, 1998; Urbach and Ahlemann, 2010, p. 21). 
46

 Q
2
 values larger than zero for a certain reflective endogenous latent variable are indicators of predictive 

relevance (Henseler et al., 2009, Hair et al., 2014, p. 178). 
47 For f

 2
, values of 0.02, 0.15, and 0.35 are small, medium, and large effects, respectively (Cohen, 1988). 

These threshold values are also used to assess q 
2
 (Urbach and Ahlemann, 2010; Hair et al., 2014). 
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product interaction on use and user performance (Urbach and Ahlemann, 2010; Hair et 

al., 2014).  

 

To extend and enrich the Moderation interaction ‘fit’ perspective (Venkatraman, 1989, p. 

438), TTF was examined for non-linear interaction effects on use and user performance 

using Polynomial Regression with Response Surface Methodology (Edwards, 1993, 

2002; Shanock et al., 2010; Yang et al., 2013). This technique is used for a more nuanced 

view of the relationships between bi-variate combinations of predictors and a criterion, by 

graphing the results of polynomial regression analyses in a three-dimensional (3-D) plane 

(Edwards and Parry, 1993). In this chapter, ‘fit’ is a bi-variate product of task and 

technology components. Thus the dynamic, multiple, non-linear interaction effects of ‘fit’ 

at varying levels of task need and technology functionality can be precisely captured 

(Yang et al., 2013, p. 699). 

 

Results of the structural path model estimates of TTF as Moderation (Interaction) are 

discussed in Section 7.5. 

7.5 Results 

7.5.1 Cross-Product Interaction (Cells 1 to 4)  

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path models estimated to test the interactions in cells 1 to 4 (Figure 7.3), by 

evaluating the moderating effects of mHealth technology characteristics on the 

relationship between time criticality in CHW tasks, and use and user performance, are 

shown in Table 7.1.  
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Table 7.1. Structural Path Model Results: Cross-Product Interactions (Cells 1 - 4) 

Cell
48

 Interaction Effect Path 

Coefficient 

t p Significance 90% CI 

1 Time Criticality x Time Criticality Support  

(TC * MS)  Use 

0.103 1.49 0.14 NS [-0.01, 0.22] 

Time Criticality x Time Criticality Support  

(TC * MS)  User Performance 

0.176 2.23 0.03 ** [0.05, 0.31] 

R
2
 = 0.219, f 

2 
(TC * TCS)  User Performance = 0.04, Q

2
 = 0.135, q 

2 
 (TC * TCS) User Performance = 0.02 

2 Time Criticality x Interdependence Support   

(TC * IS) Use 

0.181 0.93 0.35 NS [-0.14, 0.50] 

Time Criticality x Interdependence Support   

(TC * IS) User Performance 

-0.108 0.52 0.61 NS [-0.45, 0.24] 

3 Time Criticality x Mobility Support  

(TC * MS)  Use 

-0.210 1.12 0.27 NS [-0.52, 0.10] 

Time Criticality x Mobility Support  

(TC * MS)  User Performance 

-0.258 1.16 0.25 NS [-0.62, 0.11] 

4 Time Criticality x Information Dependence Support   

(TC * IDS) Use 

-0.213 1.06 0.29 NS [-0.54, 0.12] 

Time Criticality x Information Dependence Support   

(TC * IDS) User Performance 

-0.122 0.63 0.53 NS [-0.44, 0.19] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 7.1 indicate that the moderating effect of time criticality tool support on 

the links between time criticality of tasks and user performance is positive and significant 

(path coefficient = 0.176, t = 2.23, p < 0.05). This is an affirmation of the on-diagonal or 

matching
49

 effect. However, there were no significant off-diagonal effects, such that the 

tool functions of interdependence support, mobility support, and information dependency 

support, did not moderate the effects of time criticality on CHW performance. None of 

the cross-product interactions were significant for mHealth tool use. Proposition 3 (P3) 

and Proposition 4 (P4) are not supported for time criticality.  

7.5.2 Cross-Product Interaction (Cells 5 to 8)  

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path models estimated to test the interactions in cells 5 to 8 (Figure 7.3), by 

evaluating the moderating effects of mHealth technology characteristics on the 

                                                 
48

 Each cell in TTF matrix (Figure 7.3) is examined by rows representing four support functions for a 

particular need. 
49

 Refer Chapter 6 for discussions of TTF as Matching. 



 166 

relationship between interdependence in CHW tasks and use and user performance, are 

shown in Table 7.2.  

 

Table 7.2. Structural Path Model Results: Cross-Product Interaction (Cells 5 - 8) 

Cell Interaction Effect Path 

Coefficient 

t p Sig Level 90% CI 

5 Interdependence x Time Criticality Support  

(I * TCS)  Use 

-0.099 1.06 0.29 NS [-0.43, 0.23] 

Interdependence x Time Criticality Support  

(I * TCS)  User Performance 

0.200 0.64 0.53 NS [-0.12, 0.51] 

6 Interdependence x Interdependence Support  

(I * IS)  Use 

-0.104 1.47 0.14 NS [-0.22, 0.01] 

Interdependence x Interdependence Support  

(I * IS)  User Performance 

0.102 1.33 0.19 NS [-0.02, 0.23] 

7 Interdependence x Mobility Support (I * MS)  Use 0.179 1.06 0.29 NS [-0.15, 0.51] 

Interdependence x Mobility Support (I * MS)  User 

Performance 

0.207 0.64 0.53 NS [-0.11, 0.52] 

8 Interdependence x Information Dependence Support (I * IDS) 

 Use 

-0.093 1.06 0.29 NS [-0.42, 0.24] 

 

Interdependence x Information Dependence Support (I * IDS) 

 User Performance 

0.171 0.64 0.53 NS  [-0.14, 0.49] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 7.2 indicate that there were no significant on-diagonal or off-diagonal fit 

effects. Proposition 3 (P3) and Proposition 4 (P4) are not supported for interdependence. 

7.5.3 Cross-Product Interaction (Cells 9 to 12)  

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path models estimated to test the interactions in cells 9 to 12 (Figure 7.3), 

by evaluating the moderating effects of mHealth technology characteristics on the 

relationship between mobility in CHW tasks and use and user performance, are shown in 

Table 7.3.  
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Table 7.3. Structural Path Model Results: Cross-Product Interaction (Cells 9 - 12) 

Cell Interaction Effect Path 

Coefficient 

t p Sig Level 90% CI 

9 Mobility x Time Criticality Support (M * TCS)  Use -0.285 0.24 0.81 NS [-0.67, 0.10] 

Mobility x Time Criticality Support (M * TCS)  User 

Performance 

-0.266 0.16 0.87 NS [-0.53, 0.00] 

10 Mobility x Interdependence Support (M * IS)  Use -0.311 1.65 0.10 ** [-0.62, -0.00] 

R
2
 = 0.253, f 

2 
 (M * IS) Use = 0.10,  

Q
2
 = 0.074, q 

2 
 (M * IS)  Use = 0.05 

Mobility x Interdependence Support (M * IS)  User 

Performance 

-0.279 1.65 0.05 * [-0.51, -0.05] 

R
2
 = 0.195, f 

2 
 (M * IS) User Performance = 0.10,  

Q
2
 = 0.125, q 

2 
 (M * IS)  User Performance = 0.05 

11 Mobility x Mobility Support (M * MS)  Use -0.315 4.71 0.00 *** [-0.42, -0.21] 

R
2
 = 0.164, f 

2 
(M * MS)  Use = 0.11,  

Q
2
 = 0.097, q 

2 
 (M * MS) Use = 0.07 

Mobility x Mobility Support (M * MS)  User Performance -0.350 4.17 0.00 *** [-0.49, -0.21] 

R
2
 = 0.323, f 

2 
(M * MS)  User Performance = 0.17,  

Q
2
 = 0.193, q 

2 
 (M * MS) User Performance = 0.08 

12 Mobility x Information Dependency Support (M * IDS)  Use -0.186 1.20 0.23 NS [-0.44, 0.07] 

Mobility x Information Dependency Support (M * IDS) User 

Performance 

-0.360 2.29 0.02 ** [-0.62, -0.10] 

R
2
 = 0.251, f 

2 
(M * IDS)  user performance = 0.17,  

Q
2
 = 0.156, q 

2 
 (M * IDS)  user performance = 0.10 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 7.3 indicate that in addition to the negative on-diagonal effects observed, 

two off-diagonal interactions were significant for CHW performance, and one off-

diagonal interaction was significant for use. The first significant off-diagonal interaction 

finding was that interdependence support moderates the effect of mobility in tasks on use 

(path coefficient = -0.311, t = 1.65, p < 0.10) and user performance (path coefficient = -

0.279, t = 1.65, p < 0.10). These moderating effects are however not consistent with 

Proposition 3 (P3) and Proposition 4 (P4), as they are not in the expected direction.  

 

The structural path model estimated to test TTF moderation effects of interacting mobility 

and interdependence support is depicted in Figure 7.4. 
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Figure 7.4. Path Model: Mobility Interdependence Support Fit 

 

The moderating effect of the technology’s interdependence support on the links between 

mobility task characteristics and tool use, and CHW performance is illustrated in Figures 

7.5 and 7.6. 

 

Figure 7.5. Mobility Interdependence Support Fit: Interaction Effects on Use 

 

Figure 7.5 shows that the effect of mobility of tasks on the use of the tool depends on 

whether the tool has functionality that integrates data from others. It shows that mobility 

of tasks increases use of the tool when functionality is low, but decreases use when 

functionality is high.  
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Figure 7.6. Mobility Interdependence Support Fit: Interaction Effects on User Performance 

 

Similarly, Figure 7.6 shows that as the mobility of tasks increases, performance will 

decrease with a tool with high support for data integration, but increase with a tool with 

low support for data integration. When a CHW moves a short distance from location to 

location, they are less likely to depend on the use of the mHealth tool unless they have a 

high need to access integrated data functionality of the tool. However, it is very difficult 

to improve the performance of CHWs who move a lot from location to location, as their 

use of the tool and their performance does not depend as much on whether it has data 

integration capabilities.  

 

The second significant off-diagonal interaction was that information dependency support 

of the tool moderates the effect of mobility in task characteristics on user performance 

(path coefficient = -0.360, t = 2.29, p < 0.05). However, this moderating effect is not 

consistent with Proposition 4 (P4) since it is not in the expected direction.  

 

The structural path model estimated to test TTF moderation effects of interacting mobility 

and information dependency support is depicted in Figure 7.7. The moderating effect is 

illustrated in Figure 7.8. 
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Figure 7.7. Path Model: Mobility Information Dependency Support Fit 

 

 

 

Figure 7.8. Mobility Information Dependency Support Fit: Interaction Effects on User Performance 

 

In Figure 7.8, a similar pattern exists where, as the mobility of tasks increases, 

performance will decrease with a tool with high support for information provision, but 

increase with a tool with low support for data provision. The performance of CHWs who 

move a lot from location to location does not depend on whether the mHealth tool has 

data provision capabilities. 
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The final significant interaction was an on-diagonal interaction of mobility with mobility 

support, in relation to use (path coefficient = -0.315, t = 4.71, p < 0.01). This on-diagonal 

interaction was discussed in Chapter 6. 

7.5.4 Cross-Product Interaction (Cells 9 to 12)  

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path models estimated to test the interactions in cells 13 to 16 (Figure 7.3), 

by evaluating the moderating effects of mHealth technology characteristics on the 

relationship between information dependency in CHW tasks and use and user 

performance, are shown in Table 7.4.  

 

Table 7.4. Structural Path Model Results: Cross-Product Interaction (Cells 13 - 16) 

Cell Interaction Effect Path 

Coefficient 

t p Sig Level 90% CI 

13 Information Dependency x Time Criticality Support  (ID * TCS) 

 Use 

-0.057 0.40 0.69 NS [-0.29, 0.18] 

Information Dependency x Time Criticality Support  

(ID * TCS)  User Performance 

0.271 1.90 0.06 ** [0.04, 0.50] 

R
2
 = 0.208, f 

2 
(ID * TCS)  user performance = 0.09,  

Q
2
 = 0.134, q 

2
 (ID * TCS)  user performance = 0.06 

14 Information Dependency x Interdependence Support  (ID * IS) 

 Use 

-0.145 1.18 0.24 NS [-0.35, 0.06] 

Information Dependency x Interdependence Support  

(ID * IS)  User Performance 

-0.180 0.69 0.49 NS [-0.61, 0.25] 

15 Information Dependency x Mobility Support (ID * MS)  Use -0.084 0.51 0.61 NS [-0.35, 0.19] 

Information Dependency x Mobility Support (ID * MS)  User 

Performance 

-0.107 0.51 0.61 NS [-0.45, 0.23] 

16 Information Dependency x Information Dependency Support 

(ID * IDS)  Use 

-0.141 1.74 0.08 * [-0.27, -0.01] 

R
2
 = 0.188, f 

2 
(ID * IDS)  Use = 0.03, Q

2
 = 0.095, q 

2 
 (ID * IDS) Use = 0.02 

Information Dependency x Information Dependency Support 

(ID * IDS)  User Performance 

0.253 2.80 0.01 ** [0.11, 0.40] 

R
2
 = 0.189, f 

2 
(ID * IDS)  User Performance = 0.07,  

Q
2
 = 0.117, q 

2 
 (ID * IDS) User Performance = 0.04 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

The significant but negative on-diagonal interaction between information dependency and 

information dependency support was previously discussed in Chapter 6.  
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Results in Table 7.4 indicate that only one off-diagonal interaction was significant, 

between information dependency of tasks and time criticality support of the mHealth tool, 

in relation to user performance (path coefficient = 0.271, t = 1.90, p < 0.10). Thus 

Proposition 4 (P4) was partially supported for information dependency.  

 

The structural path model estimated to test TTF moderation effects of interacting 

information dependency and time criticality support is depicted in Figure 7.9. 

 

 

Figure 7.9. Path Model Information Dependency Time Criticality Support Fit 

 

Figure 7.10 shows the moderating effect of time criticality support on the link between 

information dependency of tasks and mHealth use and CHW performance.  
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Figure 7.10. Information Dependency Time Criticality Support Fit: Interaction Effects on User Performance 

 

Figure 7.10 shows that the effect of information dependency of tasks on the performance 

of the user depends on whether the tool has functionality that enables time-critical 

responsiveness. When information dependency is high, performance increases with time 

criticality support but decreases with lack of support. This is likely because users who 

need access to information to complete their tasks are likely to perform better when that 

information is provided quickly. 

7.5.5 Combined Cross-Product Interaction 

 

The combined effect of all sixteen TTF cross-product interactions of CHW task (need) 

and mHealth tool (function) characteristics on use and user performance was tested. This 

structural path model has significant predictive accuracy for the endogenous constructs 

use (R
2
 = 0.412) and user performance (R

2
 = 0.614). The model has significant predictive 

relevance for the endogenous constructs use (Q
 2

 = 0.214) and user performance (Q
 2

 = 

0.385). The direct and moderating effects obtained for the endogenous constructs use and 

user performance, are summarized in Table 7.5. 
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Table 7.5. Results: Combined Moderation (Interaction) Effects 

Predictor Criterion 

Use User Performance 

Effect (+/-) Effect (+/-) 

Task Characteristics 

Time Criticality  NS NS 

Interdependence  NS
 

NS 

Mobility NS NS 

Information Dependency  NS NS 

Technology Characteristics 

Time Criticality Support NS (+) 
MAIN

 

Interdependence Support NS (+) 
MAIN

 

Mobility Support NS (+) 
MAIN

 

Information Dependency Support (+) 
MAIN

 NS 

Interactions 

1. Time Criticality x Time Criticality Support (TC * MS) NS NS 

2. Time Criticality x Interdependence Support (TC * IS) NS NS 

3. Time Criticality x Mobility Support (TC * MS) NS NS 

4. Time Criticality x Information Dependence Support (TC * IDS) NS NS 

5. Interdependence x Time Criticality Support (I * TCS) NS NS 

6. Interdependence x Interdependence Support (I * IS) NS NS 

7. Interdependence x Mobility Support (I * MS) NS NS
 

8. Interdependence x Information Dependence Support (I * MS) NS NS 

9. Mobility x Time Criticality Support (M * TCS) NS NS 

10. Mobility x Interdependence Support (M * IS) NS NS 

11. Mobility x Mobility Support (M * MS) NS NS 

12. Mobility x Information Dependency Support (M * IDS) NS NS 

13. Information Dependency x Time Criticality Support  (ID * TCS) NS NS 

14. Information Dependency x Interdependence Support  (ID * IS) NS NS 

15. Information Dependency x Mobility Support (ID * IS) NS NS 

16. Information Dependency x Information Dependency Support (ID * IDS) NS NS 

Predictive Significance of Model 

R-squared (R
2
) 0.412 (+) 0.614 (+) 

Q-squared (Q
2
) 0.214 (+)

 
0.385 (+) 

NS = Non-Significant Effect, MAIN = Main Effect,  

(+) = Positive Significant Effect, (-) = Negative Significant Effect,  

R
2
 = Model Predictive Accuracy, Q

2
 = Model Predictive Relevance 

 

Table 7.5 indicates that the mHealth tool characteristic information dependency support is 

significant for use. In addition, the mHealth tool characteristics time criticality support, 

interdependence support, and mobility support, are significant for user performance. 

However, none of the sixteen cross-product interactions signifying support for the CHW 

task characteristics time criticality support, interdependence support, mobility support, 

and information dependency support, appear to be significant for use and user 

performance. This could be due to the multiplicity of shared dependencies between task 

and technology characteristics, such that independent main and interaction effects are 

diminished in a combined effects model. In essence, it must be recognized that many user 

tasks can be dependent on one technology characteristic, or one task can be dependent on 

many technology characteristics. In contrast, results in Chapter 6 indicated that matching 

interactions have identical effects on use and user performance in both the independent 
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and simultaneous TTF structural path models that were estimated. Therefore, unlike 

Moderation interaction, Matching appears to exhibit uniform characteristics whether 

independently or within a combined effects TTF structural path model. Notably, as 

independent main and interaction effects appear to be negated, the overall predictive 

explanatory power of the TTF as Moderation (interaction) combined effects model 

appears to be significant. This interplay between effects and overall predictive model 

significance would nevertheless warrant further investigation. Results of tests of TTF as 

Moderation (Interaction) on use and user performance are summarized in Table 7.6. 

 

Table 7.6. Findings 

Proposition Finding 

P3 Fit as the cross-product interaction of CHW 

need and mHealth tool characteristics, will 

influence use. 

 Mobility Interdependence Support Fit as Moderation 

(Interaction) negatively influences use. 

P4 Fit as the cross-product interaction of CHW 

need and mHealth tool characteristics, will 

influence user performance. 

 Mobility Interdependence Support Fit as Moderation 

(Interaction) negatively influences user performance. 

 Mobility Information Dependency Support Fit as Moderation 

(Interaction) negatively influences user performance. 

 Information Dependency Time Criticality Support Fit as 

Moderation (Interaction) positively influences user 

performance. 

 

As articulated in Section 7.4, TTF as Moderation (interaction) can be further examined 

for non-linear effects on use and user performance (Edwards and Parry, 1993). The linear 

relationship between TTF interaction and use and user performance is often presumed in 

prior works (Yang et al., 2013). Moreover, TTF interaction has often been viewed as a 

single, stable, static point. However, as evidenced by recent research, the relationship 

between TTF, and use and user performance, can be represented as multiple states of 

equilibrium that differ in terms of their magnitude and location (Yang et al., 2013, p. 

696). Therefore a more nuanced TTF interaction perspective is observable. Thus TTF 

must be examined for non-linear interaction effects on use and user performance. This 

examination of non-linear interaction TTF effects is discussed next. 
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7.5.6 The Non-Linear Effect of Task Technology Fit (TTF)
 
as an Interaction, on 

Use and User Performance 

 

In this section, the use of Polynomial Regression with Response Surface Methodology 

(Edwards, 1993, 2002; Shanock et al., 2010; Yang et al., 2013) to examine the interaction 

of task and technology components for non-linear effects on use and user performance is 

described. These non-linear TTF effects are examined using an atomistic approach, which 

involves testing the task and technology components separately in order to assess the 

impact of each factor on use and user performance (Edwards, 1991; Oh and Pinsonneault, 

2007). Furthermore, this approach is used to observe the impact of TTF in relation to 

dynamic changes in equilibrium levels between functional support and user needs (Yang 

et al., 2013, p. 704). The use of Response Surface Methodology (RSM) ensures that the 

value of each component (task and technology) is preserved, as the extent of ‘fit’ is 

computed without collapsing these components into one construct. This is aligned with 

the purpose of the atomistic approach, to evaluate a ‘fit’ between two predictors and its 

impacts (Yang et al., 2013). To examine ‘fit’ using the atomistic approach, PLS-SEM was 

used to estimate a reflective formative Type II model (Becker, Klein and Wetzels, 2012, 

p. 363) to obtain unstandardized latent variable scores used as scale measures
50

 for 

purposes of Polynomial Regression
51

. For this type of model
52

, the task and technology 

are second-order factors with underlying characteristics as first-order factors. These first-

order factors are themselves formative indicators of the second-order factors (Jarvis, 

Mackenzie and Podsakoff, 2013). As discussed in Section 7.4.2, a PLS-SEM product 

indicator approach was used to compute TTF interaction terms and model continuous 

moderator effects on use and user performance (Henseler and Fassott, 2010; Hair et al., 

2014). Similarly, in prior works, methods used to examine TTF have included standard 

multiple and Partial Least Squares (PLS) regressions, and factor analysis. Moreover, in 

many of these works, TTF has been directly measured as a user-perceived construct, and 

in limited studies, as an aggregation of two component factors into a composite index 

(Yang et al., 2013). In contrast, Polynomial Regression (Edwards, 1993) can be used to 

model the relationship between task and technology characteristics and use and user 

performance, as a non-linear function (Yang et al., 2013, p. 706). This technique can have 

                                                 
50

 Please refer Section M.1 of Appendix M for a discussion of scale measurement parameters. 
51

 Please refer Section M.1 of Appendix M for a discussion of Polynomial Regression. 
52

 This structural model and its path effects are presented with further details in Figure M.1 of Appendix M. 
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greater explanatory potential than conventional moderated regression analyses. 

Furthermore, it can be used as an alternative to moderated regression, as it outputs more 

precise information on combinations (interactions) of variables, beyond the results of the 

more conventional moderator analyses (Shanock et al., 2010). 

 

The latent variable scores obtained from PLS-SEM analysis were used to compute task 

(X) and technology (Y) components, their interaction (XY), and quadratic terms (X
2
, Y

2
), 

for predicting use and user performance using Polynomial Regression as per the 

following expression: 

 

Z = b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2 + e                    

where: 

Z = Use or User Performance 

X = The Task 

Y = The Technology 

 

The above variables were centered at their midpoints i.e. ‘4’ for seven point Likert scales. 

Centering is recommended for Polynomial Regression Analyses (Edwards, 1994). 

Moreover, Aiken and West (1991) suggested that centering minimizes the likelihood of 

multicollinearity. Using the above equation, beta () coefficients for the terms X (b1), Y 

(b2), X
2 

(b3), XY (b4) and Y
2
 (b5) were obtained. Results of the Polynomial Regression are 

summarized in Table 7.7. 

 

Table 7.7. Polynomial Regression Results: Task-Technology Fit (TTF) Impacts 

Use User Performance 

Predictor Beta () Standard Error Predictor Beta () Standard Error 

Constant (b0) 4.470*** 0.231 Constant (b0) 5.370*** 1.149 

Task (b1X) 0.073 0.183 Task (b1X) 0.124 1.118 

Technology (b2Y) 0.758*** 0.214 Technology (b2Y) 0.369* 1.138 

Task
2
 (b3X

2
) 0.061 0.084 Task

2
 (b3X

2
) -0.045 0.540 

Task*Technology 

(b4XY) 

-0.053 0.097 Task*Technology 

(b4XY) 

0.091 0.063 

Technology
2
 (b5Y

2
) -0.070 0.060 Technology

2
 (b5Y

2
) -0.039 0.039 

R
2
 = 0.202, F = 9.872*** R

2
 = 0.300, F = 16.703*** 

*** p < 0.0001, ** p < 0.01, * p < 0.05 
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Using Response Surface Methodology, three-dimensional (3-D) surfaces of the TTF, use 

and user performance components were plotted (Edwards, 2002 p. 376). Regression beta 

() coefficients obtained using equation 9, were used to estimate stationary points (X0, 

Y0), first (p10, p11) and second (p20, p21) principal axes, as well as lines of congruence (a3, 

a4) and incongruence (a1, a2). The response surface values
53

 obtained to examine TTF for 

non-linear effects on use and user performance are shown in Table 7.8. 

 
Table 7.8. Response Surface Analysis Results: Task-Technology Fit (TTF) 

Use User Performance 

Stationary Point X0 1.506 

(0.011) 

 

Stationary Point X0 -34.299 

(-0.339) 

Y0 4.844 

(0.045) 

Y0 -35.285 

(-0.376) 

First Principal Axis Intercept (P10) 5.137 

(0.013) 

First Principal Axis Intercept (P10) 1.350 

(0.002) 

Slope (P11) -0.195 

(-0.001) 

Slope (P11) 1.068 

(0.006) 

(-P10 /(1+P11) -6.379 

(-0.003) 

(-P10 /(1+P11) -0.653 

(0.000) 

Second Principal Axis Intercept (P20) -2.894 

(-0.002) 

Second Principal Axis Intercept (P20) -67.397 

(-0.056) 

Slope (P21) 5.138 

(0.015) 

Slope (P21) -0.936 

(-0.009) 

Shape Along Line of 

Congruence (Y = X) 

Slope: a1 (b1 + b2) 0.831 

(2.797) ***  

Shape Along Line of 

Congruence (Y = X) 

Slope: a1 (b1 + b2) 0.493 

(1.394) 

Curvature: a2 

(b3 + b4 + b5) 

-0.062 

(-0.595) 

Curvature: a2 

(b3 + b4 + b5) 

0.007 

(0.068) 

Shape Along Line of 

Incongruence (Y = -X) 

Slope: a3 (b1 - b2) -0.685 

(-1.505) 

Shape Along Line of 

Incongruence (Y = -X) 

Slope: a3 (b1 - b2) -0.245 

(-0.616) 

Curvature: a4 

(b3 - b4 + b5) 

0.044 

(0.139) 

Curvature: a4 

(b3 - b4 + b5) 

-0.175 

(-0.569) 

*p < 0.10. **p < 0.05. ***p < 0.01. 

 

The response surface for the task (X) and technology (Y) predicting use (Z) is shown in 

Figures 7.11 (a) and (b).  

 

                                                 
53

 The slopes and curvatures along lines of congruence (Y = X) and incongruence (Y = - X) represent 

surface responses. 
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Figure 7.11. Response Surface: Task-Technology Fit (TTF) Effects on Use: Front (a) and Rear (b)  

 

The response surface for TTF effects on use was concave shaped
54

 (stationary point: X0 = 

1.506, Y0 = 4.844). The first principal axis is not significantly different [t = -0.001 (p11), t 

= -0.003 (-p10/p11+1)] from the line of congruence (Y = X)
55

. As such, a perfect fit 

between the task and technology leads to maximal use. The upward slope along the line 

of congruence (Y = X) is positive and significant (a1 = 0.831, t = 2.797, p < 0.01). A 

closer fit between the CHW task and the mHealth tool leads to an increase in use. 

Consequently, when the CHW task and mHealth tool fit (are congruent), user needs and 

functional support levels increase with increasing levels of technology dependence. The 

curvature
56

 along the line of congruence (Y = X)
57

 was negative but not significant (a2 = -

0.062, t = -0.595), indicating that the relationship between TTF and use is linear. This 

indicates that the curvature along line Y = X does not significantly change for mHealth 

tool use. The downward slope along the line of incongruence (Y = -X) was negative but 

not significant (a3 = -0.685, t = -1.505). A lack of fit between the task and technology 

leads to a decrease in use. The curvature along the line of incongruence (Y = -X) was 

positive but non-significant (a4 = 0.044, t = 0.139), further indicating that the relationship 

between TTF and use is linear.  

 

The response surface for the task (X) and technology characteristics (Y) predicting user 

performance (Z) is shown in Figures 7.12 (a) and (b).  

                                                 
54

 For a concave surface, the curvature of the response surface is smallest along the first principal axis (X0). 
55

 Task-Technology Fit (TTF) occurs along the line of congruence (Y = X). 
56

 The curvature along the line of congruence (Y = X) indicates changes in use when TTF occurs. 
57

 The lack of Task-Technology Fit (TTF) occurs along the line of incongruence (Y = -X). 
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Figure 7.12. Response Surface: Task-Technology Fit (TTF) on User Performance: Front (a) and Rear (b)  

 

The first principal axis is not significantly different [t = 0.006 (p11), t = 0.000 (-p10/p11+1)] 

from the line of congruence (Y = X). As such, a perfect fit between the task and 

technology leads to maximal user performance. The upward slope along the line of 

congruence (Y = X) is positive but not significant (a1 = 0.493, t = 1.394). The curvature 

along the line of congruence (Y = X) was positive but not significant (a2  = 0.007, t = 

0.068), indicating that the relationship between TTF and user performance is linear. Thus 

the curvature along line Y = X does not significantly change for CHW performance. The 

downward slope along the line of incongruence (Y = -X) was negative but not significant 

(a3 = -0.245, t = -0.616). As such, a lack of fit between the CHW task and mHealth tool 

leads to a decrease in user performance. The curvature along the line of incongruence (Y 

= -X) was negative but not significant (a4 = -0.175, t = -0.569), further indicating a linear 

relationship between TTF and user performance. The curvature along line Y = -X did not, 

therefore, change significantly for CHW performance. The lateral shift (Atwater, Ostroff, 

Yammarino and Fleenor, 1998)
58

 in use and user performance, in the surface along and 

perpendicular to the line of congruence (Y = X) was determined as follows:  

 

                                                                 b2 – b1           
    ——————————     
   2 (b3 – b4 + b5)  

 

The lateral shift in use in the surface along the line of congruence (Y = X) was positive 

(7.784), indicating movement of approximately eight units toward the region where 

                                                 
58

 This is an indicator of whether the lowest use and user performance levels are laterally displaced from 

line (Y = X). 
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functional support levels exceed user needs (Y > X). At this point, the technology over-

fits the task. As such, when mHealth tool functions over-fit user needs, there is a steep 

decline in CHW dependence on use. However, the lateral shift in user performance in the 

surface along the line of congruence (Y = X) was negative (-0.700), indicating movement 

of approximately one unit toward the region where user needs exceed functional support 

levels (Y < X). Along this surface, the technology under-fits the task such that when 

mHealth tool functions under-fit user needs, there is a steep decline in the effectiveness, 

efficiency, and quality, of patient care. 

7.6 Discussion 

7.6.1 Mobility Interdependence Support Fit  

 

The interaction between the CHW task need for mobility and mHealth tool support for 

interdependence, has a negative effect on both use and user performance. This cross-

product pairing is associated with lower CHW dependence on the mHealth tool, and 

minimized effectiveness, efficiency, and quality of patient care. Graphical plots of the 

interaction effects of this paired fit show that when there is high task mobility, mHealth 

tool dependence and CHW performance are not contingent on support for 

interdependence. On the contrary, in a technology user environment characterized by low 

task mobility, support functions for interdependence drive higher mHealth tool use 

dependence and better CHW performance. It is evident from findings that these 

interactions can influence a decline in CHW mHealth tool dependence and levels of 

CHW performance. In terms of tool dependence, Dishaw (1994) observed that it is 

possible that certain non-matched TTF configurations will be associated with lower usage 

(p. 37). 

7.6.2 Mobility Information Dependency Support Fit  

 

The interaction between the CHW task need for mobility and mHealth tool support for 

information dependency has a negative effect on user performance. This cross-product 

pairing is associated with lower patient care effectiveness, efficiency, and quality. 

Graphical plots of the interaction effects of this paired fit show that when there is high 

task mobility, CHW performance is not contingent on support for information 

dependency. However, when user task mobility is low, support functions for information 

dependency drive higher CHW performance. These findings lend credence to the 
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possibility that TTF configurations will be associated with lower task performance, 

adding support to Dishaw’s (1994, p. 37) observation that non-matched TTF 

configurations would lead to lower levels of tool usage.  

7.6.3 Information Dependency Time Criticality Support Fit  

 

The interaction between the CHW task need for information dependency and mHealth 

tool support for time criticality has a positive effect on user performance. This cross-

product pairing is associated with higher patient care effectiveness, efficiency, and 

quality. This interaction, however, does not have substantive effects on use. Thus it 

appears that CHW dependence on the mHealth tool is not conditioned upon this 

interaction fit. The positive performance effects observed represent an affirmation of 

Dishaw’s (1994) observation that user needs can be indirectly supported by tool 

functions. This is reflective of potential co-dependence between certain otherwise 

incompatible task and technology characteristics in a particular context (p 125).  

7.6.4 Simultaneous Fit as Moderation 

 

The sixteen cross-product fit interactions identified and modelled in this study for their 

combined effects, together with task and technology characteristics, appears to be 

positively and significantly associated with the higher dependence of CHWs on the 

mHealth tool and their enhanced effectiveness, efficiency, and quality, in the delivery of 

patient care. This configuration of TTF Moderation as interaction uniquely incorporates 

both primary, on-diagonal, and secondary, off-diagonal interactions, that are observed for 

their effects on use and user performance, without a preference for matching 

characteristics. As such, each combination is representative of a different mode of the 

mHealth tool’s functional support for CHW task needs. Notably, this finding lends 

support to Goodhue, Littlefield, and Straub’s (1997) observation that technology must 

encompass every tool function that is necessary for user task performance (p. 456).  

7.6.5 Non-Linear Fit as Moderation 

 

The analysis of non-linear impacts on use and user performance represents a perspective 

of task-technology equilibrium. This is a mechanism that allows for more dynamic and 

complex insights into the effectiveness of TTF, and is useful for observing the degree to 

which IT functions influence levels of tool use and user performance. Findings show that 
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a perfect fit between the CHW task and mHealth technology has a positive effect on use. 

Seemingly, this fit is indicative of a higher dependence among CHWs on the mHealth 

tool such that without it, this dependence is diminished. This finding is consistent with 

Yang, Kang, Oh and Kim’s (2013) observation that fit as the congruence between the task 

and technology leads to maximal levels of tool usage (p. 709). Similarly, the fit between 

CHW task and mHealth technology components is positively associated with user 

performance. CHWs thus perceive themselves as delivering higher quality patient care, 

more effectively and efficiently. This finding lends credence to a prior finding that 

congruent task and technology components lead to optimal user performance (Yang, 

Kang, Oh and Kim 2013 p. 709).  

 

It is noteworthy that when there is excessive mHealth tool function support for CHW 

tasks, there appears to be a lower dependence on the technology. Yet, with insufficient 

functionality, tool users appear to perceive that they deliver lower quality patient care, 

less effectively and efficiently. These findings signify ‘IT deficiency’, the supply of tool 

functions that are insufficient for the levels users would require to perform their tasks, 

and ‘IT surplus’, the supply of tool functions that exceed user task requirements (Yang et 

al., 2013, p. 700). These two extremes both represent a misfit, where the former is an 

under-fit and the latter an over-fit (Gupta, 2003). In prior research, these misfits have 

been observed to have adverse effects on task productivity (Oh and Pinsonneault, 2007). 

The under-fit of the technology to the task results in users not optimizing tool functions 

for higher performance, thereby compromising their effectiveness (Gupta, 2003).             

Moreover, an over-fit leads to declining information accessibility and processing 

performance, and has been attributed to a proliferation of support functions that may be 

deemed by the technology user to be either excessive or redundant (Jarvenpaa, 1989). 

7.6.6 Implications for Research 

 

There are four emergent implications for research arising from the findings discussed in 

this chapter. 

 

First, as was the case for TTF as Matching, a TTF matrix was used to configure sixteen 

possible interactions of CHW needs and mHealth tool functions. This is a useful 

analytical tool for identifying fit combinations and represents a versatile approach to 
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configuring and examining multiple TTF representations for use and user performance 

effects. 

 

Second, findings indicate that cross-product interactions together with task and 

technology predictors combine to enhance CHW dependence on the mHealth tool and 

task performance. This is indicative of the importance of examining TTF as the 

simultaneous effect of multiple task and technology interactions, in concert with task and 

technology characteristics as drivers of use and user performance. As such, researchers 

must anticipate that whereas each of the observed interactions are distinctive pairings, 

their collective impact may be useful for explaining use and user performance, although 

as suggested in this study, would nevertheless warrant further investigation. 

 

Third, significant cross-product TTF interactions were identified as important. For 

instance, the interaction of information dependency and time criticality support was 

identified as a positive contributor to CHW perceptions of their task performance. 

However, another interaction between mobility and information dependency support had 

an inverse effect on the same. Similarly, the TTF interaction of mobility and 

interdependency support had a negative effect on mHealth tool dependence and CHW 

task performance. Both positive and negative interactions constitute value-added 

feedback on those TTF combinations that are functional or dysfunctional in a particular 

context. 

 

Fourth, the use of an atomistic approach (Yang et al., 2013), said to involve the 

articulation and measurement of separate components (p. 712), represents a more 

realistic, nuanced perspective of TTF impacts. This novel approach can be used in 

subsequent research to further investigate TTF as interaction. Furthermore, the in depth 

analysis of differential use and user performance effects modelled using three-

dimensional surfaces signifies a more enriching approach to testing TTF for non-linearity. 

7.6.7 Implications for Practice 

 

There are two emergent implications for practice arising from the findings discussed in 

this chapter. 
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First, findings indicate that cross-product interactions of user needs and mHealth tool 

functions enhance CHW dependence on their use for patient care effectiveness, 

efficiency, and quality. These co-dependent fit characteristics constitute practicable 

information for future mHealth designs. Results represent practical insights into the 

design of mHealth tools that incorporate simultaneous cross-functional support for 

multiple CHW tasks. Moreover, findings represent essential guidelines with which to 

enhance mHealth tool usability. As such, designers ought to focus more on user 

responsiveness and tool versatility.  

 

Second, these findings are useful as guidelines on how increases or decreases in 

functional support relate to mHealth tool use and CHW performance. This sets a 

particularly important benchmark that mHealth tool designers can use to gauge the 

sensitivity of functional support to user task needs. Moreover, findings indicate that 

excessive or insufficient functional mHealth tool support for CHW needs may have 

negative use and user performance impacts. Consequently, mHealth tool designers must 

be cognizant of these task-technology sensitivities in order to establish equilibrium 

between supporting functions and CHW needs.  

7.7 Chapter Conclusion 

 

The purpose of this chapter was to adapt Venkatraman’s (1989) Fit as Moderation 

perspective to test the effects of Task-Technology Fit (TTF) on mHealth tool use and 

CHW performance. Sixteen pairs of interacting task and technology characteristics were 

examined. Both primary (on-diagonal) and secondary (off-diagonal) fit interactions were 

examined for their effects on mHealth tool use and CHW performance.  

 

First, one off-diagonal fit interaction was found to be significant for use. This was 

between the task characteristic of mobility and the technology characteristic of 

interdependence. Second, three off-diagonal fit interactions were found to be significant 

for user performance. These were between mobility and interdependence, mobility and 

information dependency support, and information dependency and time criticality 

support. It was evident that cross-product interactions between non-matching task and 

technology characteristics can influence, either positively or negatively, mHealth tool 
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dependence, and the effectiveness, efficiency, and quality with which CHWs deliver 

patient care. 

 

TTF was also examined for non-linear interaction effects on mHealth tool use and CHW 

performance.  

 

It was found that perfect congruence (fit) between the task and technology leads to the 

highest levels of use. However, it was also observed that incongruence (misfit) between 

the task and technology leads to lower levels of use. It was observed that perfect 

congruence (fit) between the CHW task and the mHealth tool technology leads to the 

highest levels of user performance. However, it was also found that incongruence (misfit) 

between the CHW task and the mHealth tool technology leads to lower levels of 

performance. Results of further testing indicated that an over-fit of the mHealth tool to 

the CHW task could lead to a steep decline in use. These results also indicated that an 

under-fit of the mHealth tool to the CHW task could lead to a steep decline in user 

performance. It was evident that the relationships between TTF and mHealth tool use and 

CHW performance were more linear than non-linear in nature. Moreover, increases or 

decreases in functional support for user needs can have positive or negative effects on 

mHealth tool use dependence and the effectiveness, efficiency, and quality with which 

CHWs deliver patient care. 
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In Chapter 7, TTF as Moderation and its effects on use and user performance was 

examined. In Chapter 8, TTF as Mediation and its effects on use and user performance is 

examined.  

 

 

Figure 7.13. Task-Technology Fit (TTF) as Mediation 
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8 The Effects of Task-Technology Fit (TTF) as Mediation on 

Use and User Performance  

 

This chapter is an updated version of Gatara, M. and Cohen, J.F (2014) The Mediating 

Effect of Task-Technology Fit on mHealth Tool Use and Community Health Worker 

Performance in the Kenyan Context – Proceedings of the 8
th

 International Development 

Informatics Association Conference (IDIA), Port Elizabeth, South Africa, pp. 323-336. 

8.1 Introduction 

 

The purpose of this chapter is to employ the Fit as Mediation perspective (Venkatraman, 

1989) to examine the effects of Task-Technology Fit (TTF) on mHealth tool use and 

CHW performance. In Chapter 4 it was established that Fit as Mediation (Venkatraman, 

1989) has been used to examine the effects of TTF in contexts such as the use of Decision 

Support Systems (DSSs) (Goodhue and Thompson, 1995), academic information systems 

(Staples and Seddon, 2004), and Information Communication and Technologies (ICTs) 

for patient care (Junglas et al., 2009). In this chapter, Fit as Mediation comprises four sets 

each representing a perceived intervening mechanism in the relationship between CHW 

task and technology characteristics and use and user performance. The concept of TTF as 

Mediation is discussed in Section 8.2.  

8.2 Task-Technology Fit (TTF) as Mediation 

 

In this chapter, TTF is conceptualized from the perspective of Fit as Mediation 

(Venkatraman, 1989). From this perspective, ‘fit’ is positioned as a significant 

intervening mechanism between antecedent and consequent variables (Venkatraman, 

1989 p. 428). Within TTF, ‘Fit’ as perceived by the user has been positioned as a 

mediator between task and technology characteristics, and use and user performance 

(Goodhue and Thompson, 1995, p. 220). Dishaw (1994) observed that the perceived fit 

construct was initially examined independent of the task and technology (p. 63). 

However, its effects on use and user performance are observable (Staples and Seddon, 

2004). Tool or system users must perceive a fit between characteristics of their task and 

the technology used, where such perceptions of ‘fit’ would influence how they use the 

tool, and ultimately perceive its impacts on their performance. Whereas TTF Moderation 

and Matching are computed, TTF Mediation is a user- perceived construct, and thus a 
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manifestation of a cognitive fit process
59

  (Vessey, 1991). Unlike computation which 

involves the bi-variate fit configuration between task and technology characteristics, 

perception represents a user-evaluated fit between the two variables. In contrast to the 

Moderation and Matching ‘fit’ perspectives, perceived TTF was examined as a mediating 

construct, uniquely positioned to intervene between antecedent user needs and tool 

functions, and consequent use and user performance outcomes. The corollary is that TTF 

as Mediation can be recognized as both a user-evaluated and intervening mechanism, 

essentially becoming a dual-purpose construct. Notably, in comparison to the Matching 

and Moderation fit perspectives examined in this study, TTF as Mediation was found to 

have less explanatory power for use and user performance. 

8.3 Conceptual Model  

8.3.1 The Link between Task-Technology Fit (TTF) as Mediation and Use and 

User Performance 

 

‘Fit’ as a perceived intervening mechanism, impacts use and user performance (Dishaw, 

1994). The link between TTF as Mediation and use and user performance is shown in 

Figure 8.1. 

 

 

Figure 8.1. The Link between Task-Technology Fit (TTF) as Mediation and Use and User Performance 

 

                                                 
59

 The concept of Cognitive Fit was introduced and discussed in Section 4.2.1 of Chapter 4. 



 190 

If the technology is perceived to fit the task performed, then use and user performance 

improve. This is because if users use technology because of its utility, then they are 

capable of evaluating whether tool or system functions fit their needs in performing their 

tasks (Staples and Seddon, 2004). Consequently, users will evaluate technologies based 

on the extent to which they perceive that tool or system functions meet their task needs. 

For optimal use and user performance, users must perceive the extent to which the 

technology used fits the task performed (Goodhue, 1995; Goodhue et al., 2000). In the 

mHealth context, the perceived fit between mHealth tool and CHW task characteristics is 

expected to improve use and user performance. As such, CHWs who perceive that the 

functional support available to them fits their needs will become more dependent on the 

mHealth tool, and use it more effectively and efficiently to deliver patient care of higher 

quality. Therefore mHealth tool use and CHW performance are expected consequences of 

a cognitive process through which the user evaluates the fit of the technology provided to 

the task performed.  

 

To examine the link between TTF as Mediation and use and user performance, the 

following propositions are formulated: 

 

Proposition 5 (P5): Perceived Fit will mediate between task (need) and technology 

(function) characteristics and use.  

Proposition 6 (P6): Perceived Fit will mediate between task (need) and technology 

(function) characteristics and user performance. 

 

The following sub-propositions are derived. 

 

Proposition 5a (P5a): Perceived time criticality fit will mediate the effects of time 

criticality of tasks and time criticality tool support characteristics on mHealth tool use. 

Proposition 6a (P6a): Perceived time criticality fit will mediate the effects of time 

criticality of tasks and time criticality support tool characteristics on CHW performance. 

Proposition 5b (P5b): Perceived interdependence fit will mediate the effects 

interdependence of tasks and interdependence support tool characteristics on mHealth 

tool use. 
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Proposition 6b (P6b): Perceived interdependence fit will mediate the effects 

interdependence of tasks and interdependence support tool characteristics on CHW 

performance. 

Proposition 5c (P5c): Perceived mobility fit will mediate the effects mobility of tasks and 

mobility support tool characteristics on mHealth tool use. 

Proposition 6c (P6c): Perceived mobility fit will mediate the effects mobility of tasks and 

mobility support tool characteristics on CHW performance. 

Proposition 5d (P5d): Perceived information dependency fit will mediate the effects 

information dependency of tasks and information dependency support tool characteristics 

on mHealth tool use. 

Proposition 6d (P6d): Perceived information dependency fit will mediate the effects 

information dependency of tasks and information dependency support tool characteristics 

on CHW performance. 

 

The methods used to examine the impact of TTF as Mediation on use and user 

performance, are discussed in Section 8.4. 

8.4 Methods 

8.4.1 Sampling, Instrument and Measures 

 

Dataset 1 (n = 201) is used in this chapter. Dataset 1 is described in detail in Section B.1 

of Appendix B. The dataset consists of responses from CHW mHealth tool users in the 

counties of Siaya, Nandi, and Kilifi. A structured questionnaire survey instrument was 

used to collect the data. The measures for CHW task characteristics, mHealth technology 

characteristics, perceived fit, use and user performance, were developed as described in 

Appendix E. These constructs were tested for multi-collinearity, reliability and validity, 

and final measures were used in subsequent analyses as per the procedures and criteria 

outlined in in Sections G.1 and G.2 of Appendix G. 

8.4.2 Task-Technology Fit (TTF) as Mediation 

 

TTF as Mediation was operationalized as the intermediate variables of perceived time 

criticality fit, perceived interdependence fit, perceived mobility fit, and perceived 

information dependency fit.  
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PLS-SEM mediator analysis with bootstrapping procedures
60

 (Preacher and Hayes, 2004; 

Hair et al., 2014) were used to examine the direct effects of task and technology 

characteristics on use and user performance, and their indirect effects through these 

intermediaries. A more common approach to testing the significance of mediating effects 

is the Sobel (1982) test, which is used to examine the relationship between independent 

and dependent variables, including and excluding the mediation construct (Helm, Eggert 

and Garnefeld, 2010). This test, however, relies on distributional assumptions that are not 

consistent with the non-parametric PLS-SEM method. In addition, the parametric 

assumptions of the test do not hold for the indirect effect. Moreover, the test lacks 

statistical power, and unstandardized path coefficients are required as input for the test 

statistic (Hair et al., 2014, p. 223). As such, it has been recommended that researchers 

must instead bootstrap the sampling distribution of the indirect effect, a technique that 

applies to both simple and multiple mediator models (Preacher and Hayes, 2004, 2008). 

Unlike the Sobel test, bootstrapping makes no assumptions about the sampling 

distribution of the statistics and can be applied with more confidence. Furthermore, the 

approach has been observed to exhibit greater statistical power. Thus bootstrapping is not 

only more superior, but better suited to the PLS-SEM method. For these among other 

reasons, researchers have dismissed the Sobel test for mediation analyses, particularly in 

PLS-SEM studies (Klarner, Sarstedt, Hoeck and Ringle, 2013), opting for bootstrapping 

as the superior alternative (Henseler et al., 2009; Sattler, Volckner, Riediger and Ringle, 

2010).  

 

In this chapter, structural path models were first estimated to test the mediating effects of 

each of the specified intermediate variables as a perceived TTF construct. Second, a 

structural path model was estimated to test the combined mediating effect of all four 

specified perceived TTF constructs. Coefficients of determination (R
2
 values) of the 

endogenous constructs use and user performance were used to determine the predictive 

accuracy
61

 of the estimated PLS structural path models (Hair et al., 2014, p. 174), and 

                                                 
60

 The significance of direct and indirect effects were tested using 5000 sub-samples (Efron and Tibshirani, 

1986; Davison and Hinkley, 1997; Preacher and Hayes, 2008). 
61

 R
2
 values of approximately 0.670, 0.333, and 0.190 are substantial, moderate, and weak, respectively 

(Chin, 1998; Urbach and Ahlemann, 2010, p. 21). 
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Stone-Geisser’s Q
2
 values (Geisser, 1974; Stone, 1974) of use and user performance were 

used to determine their predictive relevance
62

 (Hair et al., 2014, p. 178).  

 

Results of the structural path model estimates of TTF as Mediation are discussed in 

Section 8.5. 

8.5 Results 

 

The structural path models estimated to test TTF mediating effects of perceived time 

criticality fit (model A), perceived interdependence fit (model B), perceived mobility fit 

(model C), and perceived information dependency fit (model D), are depicted in Figure 

8.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
62

 Q
2
 values larger than zero for a certain reflective endogenous latent variable are indicators of predictive 

relevance (Henseler et al., 2009, Hair et al., 2014, p. 178). 
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Figure 8.2. Path Models: Task-Technology Fit (TTF) as Mediation 
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8.5.1 Perceived Time Criticality Fit 

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path model estimated to test perceived time criticality fit are summarized in 

Table 8.1. 

 

Table 8.1. Structural Path Model Results: Perceived Time Criticality Fit 

Path Coefficient t p  Significance  90% CI 

Time Criticality  Perceived Time 

Criticality Fit 

0.234
 p1 

3.07 0.00 *** [0.11, 0.36] 

Time Criticality Support  

Perceived Time Criticality Fit 

0.446
 p1

 5.65 0.00 *** [0.32, 0.58] 

Time Criticality  Use 0.019
 p3

 0.23 0.82 NS [-0.11, 0.15] 

Time Criticality Support  Use 0.234
 p3

 2.46 0.01 ** [0.08, 0.39] 

Perceived Time Criticality Fit  

Use 

0.323
 p2

 3.35 0.00 *** [0.16, 0.48] 

Time Criticality  User 

Performance 

0.183
 p3

 1.86 0.07 * [0.02, 0.34] 

Time Criticality Support  User 

Performance 

0.115
 p3

 1.29 0.20 NS [-0.03, 0.26] 

Perceived Time Criticality Fit  

User Performance 

0.371
 p2

 3.81 0.00 *** [0.21, 0.53] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 8.1 indicate that time criticality (t = 3.07, p < 0.01) and time criticality 

support (t = 5.65, p < 0.01) had significant positive effects on perceived time criticality 

fit. Time criticality support (t = 2.46, p < 0.01) and perceived time criticality fit (t = 3.35, 

p < 0.01) had significant positive effects on use. Perceived time criticality fit had a 

significant positive effect on user performance (t = 3.81, p < 0.01). Time criticality did 

not have a significant effect on use (t = 0.23), but had a positive significant effect on user 

performance (t = 1.86, p < 0.10). The significance of the indirect effects of perceived time 

criticality fit was tested. In addition, the mediating strength of perceived time criticality fit 

was determined. Indirect effect sizes, bootstrapping standard errors, t values, and VAF 

values are summarized Table 8.2. 
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Table 8.2. Indirect Effect and Mediation Strength Results 

Direct Effect Size Indirect Effect Size Total 

Effect 

Standard 

Error 

t Significance VAF 

Value % 

Time Criticality  

Use 

0.019 Time Criticality  

Perceived Time 

Criticality Fit  Use 

0.076 0.095 0.034 2.24 ** 0.800 80% 

Time Criticality 

Support  Use 

0.234 Time Criticality Support 

 Perceived Time 

Criticality Fit  Use 

0.144 0.378 0.058 2.48 ** 0.380 38% 

Time Criticality  

User Performance 

0.183 Time Criticality  

Perceived Time 

Criticality Fit  User 

Performance 

0.087 0.270 0.042 2.07 ** 0.322 32%
 

Time Criticality 

Support  User 

Performance 

0.115 Time Criticality Support 

 Perceived Time 

Criticality Fit  User 

Performance 

0.165 0.280 0.056 2.95 *** 0.589 59% 

NS = Not Significant. *p < 0.10, **p < 0.05, ***p < 0.01 

Non-Mediation (VAF < 20%), Partial mediation (20% < = VAF < = 80%), Full mediation (VAF > 80%) 

Total Effect = Direct Effect + Indirect Effect 

 (20% < = VAF < = 80%), Full mediation (VAF > 80%) 

 

Results in Table 8.2 indicate that the effects of time criticality (t = 2.24, p < 0.05) and 

time criticality support (t = 2.48, p < 0.05) on use through perceived time criticality fit 

were significant. In addition, the effects of time criticality (t = 2.07, p < 0.05) and time 

criticality support (t = 2.95, p < 0.01) on user performance through perceived time 

criticality fit were significant. In addition, perceived time criticality fit accounts for 80% 

(VAF = 0.800) of the effect of time criticality on use, and 32% (VAF = 0.322) of the 

effect of time criticality on user performance. CHWs must perceive a fit before they are 

willing to depend on using the technology in response to the time critical nature of tasks. 

Perceived time criticality fit accounts for 38% (VAF = 0.380) of the effect of time 

criticality support on use and 58% (VAF = 0.589) of the effect of time criticality support 

on user performance. The functional support for time criticality adds to mHealth tool 

dependence, and perceptions of CHWs of fit result in more effective and efficient 

delivery of quality patient care through the tool. Since VAF values obtained are larger 

than 20%, the observed effects would signify the partial mediation of perceived time 

criticality fit of the effects of time criticality and time criticality support on use and user 

performance. Thus Proposition 5a (P5a) and Proposition 6a (P6a) are supported. 
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8.5.2 Perceived Interdependence Fit 

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path model estimated to test perceived interdependence fit are summarized 

in Table 8.3. 

 

Table 8.3. Structural Path Model Results: Perceived Interdependence Fit 

Path Coefficient t p  Significance  90% CI 

Interdependence  Perceived 

Interdependence Fit 

0.205
 p1 

3.38 0.00 *** [0.11, 0.30] 

Interdependence Support  

Perceived Interdependence Fit 

0.545
 p1

 8.86 0.00 *** [0.44, 0.65] 

Interdependence  Use 0.002
 p3

 0.02 0.98 NS [-0.13, 0.13] 

Interdependence Support  Use 0.161
 p3

 1.49 0.14 NS [-0.02, 0.34] 

Perceived Interdependence Fit  

Use 

0.202
 p2 

1.83 0.07 * [0.02, 0.38] 

Interdependence  User 

Performance 

-0.036
 p3

 0.46 0.65 NS [-0.17, 0.09] 

Interdependence Support  User 

Performance 

0.237
 p3

 2.07 0.04 ** [0.05, 0.42] 

Perceived Interdependence Fit  

User Performance 

0.284
 p2

 2.82 0.01 *** [0.12, 0.45] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 8.3 indicate that interdependence (t = 3.38, p < 0.01) and 

interdependence support (t = 8.86, p < 0.01) had significant positive effects on perceived 

interdependence fit. Perceived interdependence fit had significant positive effects on use 

(t = 1.83, p < 0.10) and user performance (t = 2.82, p < 0.01). Interdependence support (t 

= 2.07. p < 0.05) had a significant positive effect on user performance. Interdependence 

(t = 0.02) and interdependence support (t = 1.49) did not have a significant effect on use. 

Interdependence (t = 0.46) did not have a significant effect on user performance. The 

significance of the indirect effects was tested. The significance of the indirect effects of 

perceived interdependence fit was tested. In addition, the mediating strength of perceived 

interdependence fit was determined. Indirect effect sizes, bootstrapping standard errors, t 

values, and VAF values are summarized Table 8.4. 
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Table 8.4. Indirect Effect and Mediation Strength Results 

Direct Effect Size Indirect Effect Size Total 

Effect 

Standard 

Error 

t Significance VAF 

Value % 

Interdependence 

Support  Use 

0.161 Interdependence 

Support  Perceived 

Interdependence Fit  

Use 

0.110 0.271 0.028 1.77 * 0.406 41% 

Interdependence 

 User 

Performance 

-0.036 Interdependence  

Perceived 

Interdependence Fit  

User Performance 

0.058 0.022 0.062 2.15 ** 2.636 263%
 

Interdependence 

Support  User 

Performance 

0.237 Interdependence 

Support  Perceived 

Interdependence Fit  

User Performance 

0.155 0.392 0.027 2.67 *** 0.395 40% 

*p < 0.10, **p < 0.05, ***p < 0.01 

Non-Mediation (VAF < 20%), Partial mediation (20% < = VAF < = 80%), Full mediation (VAF > 80%) 

Total Effect = Direct Effect + Indirect Effect 

 

Results in Table 8.4 indicate that the effect of interdependence support (t = 1.77, p < 

0.10) on use through perceived interdependence fit was significant. In addition, the 

effects of interdependence (t = 2.15, p < 0.05) and interdependence support (t = 2.67, p < 

0.01) on user performance through perceived interdependence fit were significant. 

However, the effect of interdependence (t = 1.46) on use through perceived 

interdependence fit was not significant. The mediating strength of perceived 

interdependence fit was determined. Results are summarized in Table 8.6. In addition, 

perceived interdependence fit accounts for 41% (VAF = 0.406) of the effect of 

interdependence support on use, and 40% (VAF = 0.395) of the effect of interdependence 

support on user performance. CHWs must perceive a fit before they are willing to depend 

on using the technology in response to the interdependent nature of tasks. The functional 

support for interdependence adds to mHealth tool dependence, and perceptions of CHWs 

of fit result in more effective and efficient delivery of quality patient care. Notably, 

perceived interdependence fit accounts for 263% (VAF = 2.636) of the negative effect of 

interdependence on user performance (-0.036). CHWs deliver lower quality patient care 

less effectively and efficiently, in response to the interdependent nature of tasks. The 

perceptions of CHWs of fit result in the suppression of any adverse effects of 

interdependent tasks on the performance of the user. Since VAF values obtained are 

larger than 20%, the observed effects signify the partial mediation of perceived 



 199 

interdependence fit of the effect of interdependence and interdependence support on use, 

and the full mediation of perceived interdependence fit of the effect of interdependence 

on user performance. Thus Proposition 5b (P5b) and Proposition 6b (P6b) are supported. 

8.5.3 Perceived Mobility Fit 

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path model estimated to test perceived mobility fit are summarized in Table 

8.5. 

 

Table 8.5. Structural Path Model Results: Perceived Mobility Fit 

Path Coefficient t p  Significance  90% CI 

Mobility  Perceived Mobility Fit 0.364
 p1 

5.50 0.07 *** [0.26, 0.47] 

Mobility Support  Perceived 

Mobility Fit 

0.202
 p1

 2.72 0.07 *** [0.08, 0.32] 

Mobility  Use -0.044
 p3

 0.57 0.08 NS [-0.17, 0.48] 

Mobility Support  Use 0.224
 p3

 2.32 0.10 ** [0.06, 0.39] 

Perceived Mobility Fit  Use 0.179
 p2

 2.05 0.09 ** [0.04, 0.32] 

Mobility  User Performance 0.011
 p3

 0.17 0.06 NS [-0.09, 0.11] 

Mobility Support  User 

Performance 

0.421
 p3

 5.87 0.07 *** [0.30, 0.54] 

Perceived Mobility Fit  User 

Performance 

0.074
 p2

 1.13 0.07 NS [-0.03, 0.18] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 8.5 indicate that mobility (t = 5.50, p < 0.01) and mobility support (t = 

2.72, p < 0.05) had significant positive effects on perceived mobility fit. Mobility support 

had a significant positive effect on use (t = 2.32, p < 0.05) and user performance (t = 

5.87, p < 0.01). Perceived mobility fit had a significant positive effect on use (t = 2.05, p 

< 0.05). Mobility did not have a significant effect on use (t = 0.57) and user performance 

(t = 1.13). Perceived mobility fit did not have a significant positive effect on user 

performance (t = 0.17). The significance of the indirect effects of perceived mobility fit 

was tested. In addition, the mediating strength of perceived mobility fit was determined. 

Indirect effect sizes, bootstrapping standard errors, t values, and VAF values are 

summarized Table 8.6. 
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Table 8.6. Indirect Effect and Mediation Strength Results 

Direct Effect Size Indirect Effect Size Total 

Effect 

Standard 

Error 

t Significance VAF 

Value % 

Mobility  Use -0.044 Mobility  Perceived 

Mobility Fit  Use 

0.065 0.021 0.036 1.81 * 3.095 309% 

*p < 0.10, **p < 0.05, ***p < 0.01 

Non-Mediation (VAF < 20%), Partial mediation (20% < = VAF < = 80%), Full mediation (VAF > 80%) 

Total Effect = Direct Effect + Indirect Effect 

 

Results in Table 8.6 indicate that the effect of task mobility (t = 1.81, p < 0.10) on use 

through perceived mobility fit was significant. However, the effect of mobility support (t 

= 1.57) on use through perceived mobility fit was not significant. As such, its effect is not 

mediated but direct. The effects of mobility (t = 1.04) and mobility support (t = 1.07) on 

user performance through perceived mobility fit were also not significant. In addition, 

perceived mobility fit accounts for 309% (VAF = 3.095) of the negative effect of mobility 

on use (-0.044). CHWs depend on mHealth tools in response to the mobile nature of 

tasks. The perceptions of CHWs of fit result in the suppression of any adverse effects of 

mobile tasks on the use of the technology. Since the VAF value obtained is larger than 

80%, the observed effect signifies the full mediation of perceived mobility fit, of the 

effect of mobility on use. Thus Proposition 5c (P5c) is supported. Proposition 6c (P6c) is 

however not supported. Evidently, users attribute performance to the mobility support 

provided by the tool whether or not they perceive a fit. 

8.5.4 Perceived Information Dependency Fit 

 

The path coefficients, t values, p values, significance levels, and confidence intervals of 

the structural path model estimated to test perceived information dependency fit are 

summarized in Table 8.7. 

 

Table 8.7. Structural Path Model Results: Perceived Information Dependency Fit 

Path Coefficient t p  Significance  90% CI 

Information Dependency  

Information Dependency Fit 

0.102
 p1 

1.43 0.15 NS [-0.01, 0.22] 

Information Dependency Support 

 Perceived Information 

Dependency Fit 

0.474
 p1

 6.66 0.00 *** [0.36, 0.59] 

Information Dependency  Use 0.180
 p3

 2.31 0.02 ** [0.05, 0.31] 

Information Dependency Support 

 Use 

0.217
 p3

 2.37 0.02 ** [0.07, 0.37] 
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Perceived Information 

Dependency Fit  Use 

0.197
 p2

 2.33 0.02 ** [0.06, 0.33] 

Information Dependency  User 

Performance 

0.099
 p3

 1.14 0.26 NS [-0.04, 0.24] 

Information Dependency Support 

 User Performance 

0.232
 p3

 2.23 0.03 ** [0.06, 0.40] 

Perceived Information 

Dependency Fit  User 

Performance 

0.171
 p2

 2.13 0.03 ** [0.04, 0.30] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 8.7 indicate that perceived information dependency fit had significant 

positive effects on use (t = 2.33, p < 0.05) and user performance (t = 2.13, p < 0.05). 

Information dependency (t = 2.31, p < 0.05) and information dependency support (t = 

2.37, p < 0.05) had significant positive effects on use. Information dependency support (t 

= 2.23, p < 0.05) had significant user effects on user performance. Information 

dependency (t = 1.14) did not have significant effects on user performance. The 

significance of the indirect effects was tested. The significance of the indirect effects of 

information dependency fit was tested. In addition, the mediating strength of perceived 

information dependency fit was determined. Indirect effect sizes, bootstrapping standard 

errors, t values, and VAF values, are summarized Table 8.8. 

 

Table 8.8. Indirect Effect and Mediation Strength Results 

Direct Effect Size Indirect Effect Size Total 

Effect 

Standard 

Error 

t Significance VAF 

Value % 

Information 

Dependency 

Support  Use 

0.217 Information 

Dependency Support 

 Perceived 

Information 

Dependency Fit  Use 

0.093 0.310 0.019 1.05 NS 0.300 30% 

Information 

Dependency 

Support  User 

Performance 

0.232 Information 

Dependency Support 

 Perceived 

Information 

Dependency Fit  

User Performance 

0.081 0.313 0.044 2.11 ** 0.258 26% 

NS = Not Significant. *p < 0.10, **p < 0.05, ***p < 0.01 

Non-Mediation (VAF < 20%), Partial mediation (20% < = VAF < = 80%), Full mediation (VAF > 80%) 

Total Effect = Direct Effect + Indirect Effect 
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Results in Table 8.8 indicate that the effect of information dependency support on use (t = 

2.11, p < 0.05) and user performance (t = 2.03, p < 0.05) through perceived information 

dependency fit was significant. However, the effects of information dependency on use (t 

= 1.05) and user performance (t = 1.00) through perceived information dependency fit 

were not. The mediating strength of perceived information dependency fit was 

determined. Results are summarized in Table 8.12. In addition, perceived information 

dependency fit accounts for 30% (VAF = 0.300) of the effect of information dependency 

support on use and 26% (VAF = 0.258) of the effect of information dependency support 

on user performance. The functional support for information dependency adds to 

mHealth tool dependence. Moreover, perceptions of CHWs of fit result in higher mHealth 

tool dependence and more effective and efficient delivery of quality patient care. Since 

VAF values obtained are larger than 20%, the observed effects would signify the partial 

mediation of perceived information dependency fit of the effects of information 

dependency support on use and user performance. Thus Proposition 5d (P5d) and 

Proposition 6d (P6d) are supported. 

8.5.5 Combined Perceived Fit as Mediation 

 

A multiple mediator simultaneous effects structural path model was estimated
63

 to test the 

combined effects of perceived time criticality fit, perceived interdependence fit, perceived 

mobility fit, and perceived information dependency fit, as intermediaries in a single 

model. The model has significant predictive accuracy for the endogenous constructs of 

use (R 
2
 = 0. 289) and user performance (R 

2
 = 0. 374), and significant predictive 

relevance for the endogenous constructs of use (Q
 2

 = 0. 147) and user performance (Q
 2
 = 

0. 222). The path coefficients, t values, p values, significance levels, and confidence 

intervals, of the structural path model estimated to test the combined effects of perceived 

fit are summarized in Table 8.9. 

 

 

 

 

 

                                                 
63

 A detailed description of the mediation process, including details of the formulae applied to determine 

these multiple mediator effects (for each of the four sets of results obtained for Table 8.9), is provided in 

Appendix N.  
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Table 8.9. Path Model Results: Perceived Fit Combined Effects 

 Path Coefficient 

1 Task Perceived Fit 1.028
p1 

Perceived Fit  Use 0.461
 p2 

Task  Use 0.000
 p3

 

Indirect Effect 1 (1) = p
1
 (1.028) x p

2 
(0.461) = 0.474 

2 Technology  Perceived Fit 2.313
 p1

 

Perceived Fit  Use 0.461
 p2

 

Technology  Use 0.261
 p3

 

Indirect Effect 2 (2) = p
1
 (2.313) x p

2 
(0.461) = 1.067 

3 Task Perceived Fit 1.028
p1

 

Perceived Fit  User Performance 0.383
 p2

 

Task  User Performance 0.051
p3

 

Indirect Effect 3 (3) = p
1
 (1.028) x p

2 
(0.383) = 0.394 

4 Technology  Perceived Fit 2.313
 p1

 

Perceived Fit  User Performance 0.383
 p2

 

Technology  User Performance 0.401
p3

 

Indirect Effect 4 (4) = p
1
 (2.313) x p

2 
(0.383) = 0.886 

 

As indicated in Table 8.9 four sets of results were obtained by applying formulae as 

detailed in Appendix N. The significance of the indirect effects in this model was 

determined. The significance of the indirect effects of perceived fit was tested. In 

addition, the mediating strength of perceived fit was determined. Indirect effect sizes, 

bootstrapping standard errors, t values, and VAF values, are summarized Table 8.10. 

 

Table 8.10. Indirect Effect and Mediation Strength Results 

Direct Effect Size Indirect Effect Size Total 

Effect 

Standard 

Error 

t Significance VAF 

Value % 

Task  Use 0.000 Task  Perceived Fit 

 Use 

0.474 0.474 0.052 9.11 *** 1.000 100% 

Technology  Use 0.261 Technology  

Perceived Fit  Use 

1.067 1.328 0.113 9.44 *** 0.803 80% 

Task  User 

Performance 

0.051 Task  Perceived Fit 

 User Performance 

0.394 0.445 0.049 8.04 *** 0.885 89%
 

Technology  User 

Performance 

0.401 Technology  

Perceived Fit  User 

Performance 

0.886 1.287 0.098 9.04 *** 0.688 69% 

NS = Not Significant. *p < 0.10, **p < 0.05, ***p < 0.01 

Non-Mediation (VAF < 20%), Partial mediation (20% < = VAF < = 80%), Full mediation (VAF > 80%) 

Total Effect = Direct Effect + Indirect Effect 
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Results in Table 8.10 indicate that perceived fit accounts for 100% (VAF = 1.000) of the 

effect of the task and 80% (VAF = 0.803) of the effect of the technology on use. In 

addition, perceived fit accounts for 89% (VAF = 0.885) of the effect of the task on user 

performance and 69% (VAF = 0.688) of the effect of the technology on user 

performance. It is evident that CHWs must perceive a fit before they are willing to 

depend on using the technology in response to the nature of the task. The functional 

support for the task adds to mHealth tool dependence, and perceptions of CHWs of fit 

result in more effective and efficient delivery of quality patient care. VAF values 

obtained are larger than 20% such that observed effects would signify the partial 

mediation of perceived fit, of the effects of the technology on use and user performance. 

In addition, VAF values obtained are larger than 80% such that observed effects would 

signify the full mediation of perceived fit of the effects of the task on use and user 

performance. Thus Proposition 5 (P5) and Proposition 6 (P6) are supported. 

8.6 Discussion 

8.6.1 Perceived Time Criticality Fit  

 

The user perception of a fit between the mHealth tool’s time criticality support and the 

CHW task needs to respond urgently has significant impacts on use and user 

performance. This perception partially mediates the effects of task and tool characteristics 

on use and user performance. This finding indicates that tool use and task performance 

may be dependent in part, on how the CHW perceives a time critical fit. This is consistent 

with the notion of time criticality fit of mHealth technology, such that technology meets 

the need for urgent patient care intervention, as having, significant, positive performance 

impacts on health service delivery (Junglas, Abraham, and Ives 2009, p. 641).  

8.6.2 Perceived Interdependence Fit  

 

The user perception of a fit between the mHealth tool’s interdependence support and the 

need for CHWs to co-operate as co-workers is significant for use and user performance. 

This perception partially mediates the effects of tool characteristics on use and user 

performance, and fully mediates the effects of task characteristics on user performance. 

Where full mediation was evident, there was inconsistent mediation (MacKinnon, 

Fairchild and Fritz, 2007) such that a suppressor effect was observed (p. 174). As such, a 
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perceived fit between the CHW task and the mHealth tool absorbs or suppresses any 

negative effects that interdependence needs may have on user performance. Therefore in 

the absence of a perceived fit, interdependence characteristics do not influence CHW 

dependence on mHealth tool use or patient care. 

8.6.3 Perceived Mobility Fit  

 

The user perception of a fit between the mHealth tool’s mobility support and the need for 

CHWs to move from one location to another is significant for use. This is a full mediator 

of mobility need effects on mHealth tool dependence, thereby signifying a suppressor 

effect, a case of inconsistent mediation (MacKinnon et al., 2007). Thus, a perceived fit 

between the CHW task and the mHealth tool neutralizes any negative effects that 

mobility needs may have on use. Evidently, mobility user need characteristics are not 

significant on their own. However, there was no observed mediation effect of mobility 

need and support effects on user performance. This means that the mobility user need and 

support function characteristics are sufficient drivers of the mHealth tool’s contribution to 

effectiveness, efficiency, and quality in patient care delivery. 

8.6.4 Perceived Information Dependency Fit  

 

The user perception of a fit between the mHealth tool’s information dependency support 

and the need for CHWs to access information is significant for use and user performance. 

This perception partially mediates information dependency support effects on use and 

user performance. This finding indicates that tool use and task performance may be 

dependent in part, on how the CHW perceives an information dependency fit. However, 

there was no observed mediation effect of information dependence need effects on use 

and user performance. Thus the need for information dependency alone sufficiently 

compels use and user performance. Evidently, a recognized need or tool function on its 

own can be a catalyst for user behaviour. Therefore, an implicit need is created in the 

mind of the technology user, compelling their tool use and task performance such that 

conceiving of a fit is not necessarily the only mechanism through which need influences 

use. However, perceived fit is still important. 

 

 



 206 

8.6.5 Simultaneous Fit as Mediation  

 

The fit dimensions of perceived time criticality, interdependence, mobility, and 

information dependency fit, together, have significant effects on user performance. This 

finding indicates that CHWs who perceive a simultaneous fit of mHealth tool support 

functions to their task performance needs become more dependent on use of the 

technology and deliver more improved patient care. This is evidence that in particular 

user environments, users can simultaneously acknowledge co-existent task and 

technology characteristics, implicitly or explicitly. 

8.6.6 Implications For Research 

 

There are four emergent implications for research arising from the findings discussed in 

this chapter. 

 

First, unlike the prior two perspectives of Matching and Moderation where ‘fit’ is 

calculated, TTF was conceptualized in this chapter as a perceptual construct. This user 

perception of ‘fit’ comprised multiple dimensions each examined as intervening 

mechanisms positioned between user needs and tool functions, and technology use and 

task performance. In prior TTF research, the construct of perceived fit has not been 

explicitly tested as a mediating variable. The empirical testing of a specified fit construct 

as both perceptual and mediating thus represents a more refined and substantive approach 

to TTF conceptualization and contribution over prior works. 

 

Second, it was found that certain perceived fit dimensions mediated either partially or 

fully, tool function effects on use and user performance. For instance, perceived time 

criticality had partial mediating effects, significantly intervening between time criticality 

needs and functions, and use and user performance. However, perceived mobility fit was 

a full mediator of mobility need effects on mHealth tool use, but was insignificant for 

CHW performance. These findings indicate that in some instances, the perception of 

either a task need or functional support are sufficient causes for CHW dependence on the 

mHealth tool, and patient care effectiveness, efficiency, and quality. However, perceiving 

a fit of the technology to the task amplifies these user perceptions and as such, influences 

use and user performance.  
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Third, suppressor effects were observed. For example, perceived interdependence fit 

suppresses the negative effects of interdependence needs on CHW performance. In some 

cases, therefore, CHW dependence on the mHealth tool and effective and efficient, 

quality patient care delivery, is wholly dependent on users perceiving that functional 

support fits their task needs. This observation is important for researchers in seeking to 

better understand TTF as a mediating mechanism. 

 

Fourth, users with multiple needs can perceive, recognize, and reflect on the multiple 

dimensions of fit. Therefore, the presence of multiple, perceived fits between the CHW 

task and mHealth technology is recognized as a possibility beyond singular TTF 

dimensions that are observed initially. This implies that it is possible to observe CHW 

needs and mHealth tool functions as co-existent characteristics in a shared user 

environment and accordingly, anticipate simultaneous use and user performance impacts 

in TTF research. 

8.6.7 Implications For Practice 

 

There are two emergent implications for practice arising from the findings discussed in 

this chapter. 

 

First, CHWs depend more on the mHealth tool and deliver quality patient care more 

effectively and efficiently when they perceive that functional support fits their needs. The 

findings observed could therefore constitute guidelines with which mHealth tool 

designers can diagnose and then prioritize CHW preferences to design responsive, user-

centric support interfaces. 

 

Second, CHWs perceiving that they have a need for interdependence and mobility 

adversely affects their levels of mHealth tool dependence and delivery of patient care. 

These findings could inform the development of enhanced mHealth tool functionality to 

aid designers in counteracting any negative user perceptions of task requirements that 

may arise. In the tool development phase particularly, fit perception scores must be 

obtained from technology users as feedback. Where these indices are found to be low, 

mHealth tool designers ought to reflect on support functions to determine how best to 
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enhance fit and thereby improve user experience engaging with the technology, and by 

extension, improve user ratings.  

8.7 Chapter Conclusion 

 

The purpose of this chapter was to adapt Venkatraman’s (1989) Fit as Mediation 

perspective to test the effects of a perceived Task-Technology Fit (TTF) on mHealth tool 

use and CHW performance. Perceived time criticality fit, perceived mobility fit, 

perceived interdependence fit and perceived information dependency fit, were all 

significant for mHealth tool use and CHW performance. Only perceived mobility fit was 

not significant for CHW performance. Perceived fit fully mediated the effects of the 

CHW task’s mobility on mHealth tool use, but only partially mediated the effects of the 

CHW task’s time criticality on mHealth tool use. Perceived fit partially mediated the 

effects of the mHealth technology’s time criticality support, interdependence support, and 

information dependency support, on mHealth tool use. Perceived fit partially mediated 

the effects of the CHW task’s time criticality on CHW performance, but did not mediate 

the effects of interdependence, mobility, and information dependency, on CHW 

performance. Perceived fit fully mediated the effects of the mHealth technology’s time 

criticality support on CHW performance, but only partially mediated the effects of 

information dependency and interdependence support, on CHW performance. Mobility 

support retained a direct effect on CHW performance. Combined, perceived time 

criticality fit, perceived mobility fit, perceived interdependence fit, and perceived 

information dependency fit, fully mediated the effects of the CHW task’s characteristics 

on use and user performance, but only partially mediated the effects of the mHealth 

technology’s characteristics on use and user performance. Taken together, perceived time 

criticality fit, perceived mobility fit, perceived interdependence fit, and perceived 

information dependency fit, can be perceived by the user either independently or as a 

combination. In either case, a perceived fit could mediate between task and technology 

characteristics, and mHealth tool use and CHW performance.  

 

Results of tests of TTF as Mediation and its effects on use and user performance are 

summarized in Table 8.11. 
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Table 8.11. Findings 

Proposition Result 

P5a Perceived time criticality fit will mediate the effects of time criticality of tasks and time 

criticality tool support characteristics on mHealth tool use. 

Supported 

P6a Perceived time criticality fit will mediate the effects of time criticality of tasks and time 

criticality support tool characteristics on CHW performance. 

Supported 

P5b Perceived interdependence fit will mediate the effects interdependence of tasks and 

interdependence support tool characteristics on mHealth tool use. 

Supported 

P6b Perceived interdependence fit will mediate the effects interdependence of tasks and 

interdependence support tool characteristics on CHW performance. 

Supported 

P5c Perceived mobility fit will mediate the effects mobility of tasks and mobility support 

tool characteristics on mHealth tool use. 

Supported 

P6c Perceived mobility fit will mediate the effects mobility of tasks and mobility support 

tool characteristics on CHW performance. 

Not Supported 

P5d Perceived information dependency fit will mediate the effects information 

dependency of tasks and information dependency support tool characteristics on 

mHealth tool use. 

Not Supported 

P6d Perceived information dependency fit will mediate the effects information 

dependency of tasks and information dependency support tool characteristics on 

CHW performance. 

Supported 

P5 Perceived Fit will mediate between task (need) and technology (function) 

characteristics and use. 

Supported full 

mediation 

P6 Perceived Fit will mediate between task (need) and technology (function) 

characteristics and user performance. 

Supported 

partial mediation 
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In Chapter 8, TTF as Mediation and its effects on use and user performance was 

examined. In Chapter 9, TTF as Covariation and its effects on use and user performance 

is examined. 

 

 

Figure 8.3. Task-Technology Fit (TTF) as Covariation 
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9 The Effects of Task-Technology Fit (TTF) as Covariation on 

Use and User Performance  

 

This chapter is an updated version of Gatara, M. and Cohen, J.F. (2014) Mobile-Health 

Tool Use and Community Health Worker Performance in the Kenyan Context: A Task-

Technology Fit Perspective – Proceedings of the Southern African Institute for Computer 

Scientists and Information Technologists (SAICSIT) Annual Conference 2014, Pretoria, 

South Africa, pp. 1-10. 

9.1 Introduction 

 

In Chapter 8, the Fit as Mediation perspective (Venkatraman, 1989) was adopted and 

used to conceptualize TTF as a perceptual intervening mechanism (p. 428) between 

antecedent task and technology characteristics, and consequent use and user performance 

outcomes. The purpose of this chapter is to employ the Fit as Covariation perspective 

(Venkatraman, 1989) to examine the effects of Task-Technology Fit (TTF) on mHealth 

tool use and CHW performance. In this chapter, Fit as Covariation represents the co-

alignment of four interrelated CHW task and mHealth technology characteristics, 

subsequently examined for internally consistent effects on use and user performance 

outcomes. The concept of TTF as Covariation is discussed in section 9.2. 

9.2 Task-Technology Fit (TTF) as Covariation 

 

The Fit as Covariation perspective (Venkatraman, 1989) informs the conceptualization of 

TTF as a pattern of internal consistency among a set of underlying, interrelated, task and 

technology characteristics (p. 435). In this chapter, ‘fit’ is described as a holistic pattern 

or stream of concurrent user needs and tool functions. For this holistic ‘fit’ to manifest, 

the task and technology characteristics identified must be in co-alignment in order to 

constitute the pattern or stream through with their covariation effects can be observed (p. 

436). These characteristics are the co-aligned factors that form a TTF construct that can 

be examined for its effects on the criteria variables of use and user performance. In 

essence, there must exist a central thread and internal logic that underlies a pattern which 

if modelled, reflects the degree of covariation among a set of attributes considered as 

constituent dimensions that together are dimensions of a coherent ‘fit’ (Venkatraman, 

1989, p. 436; Segars, Grover and Teng, 1998). As such, TTF can be described as the 
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internal consistency of a set of co-aligned user needs and tool functions that is observed 

for its effects on outcomes of use and user performance. Although originally specified 

without reference to a criterion variable, Venkatraman (1989) observed that ‘fit’ as 

covariation can be examined for its effects on an outcome variable such as performance. 

The operationalization of this ‘holistic fit’ involves its examination as a second-order 

factor expressed in terms of a set of first-order factors (Venkatraman, 1989). In other 

words, the ‘fit’ construct must be specified as a higher-order factor such that its lower-

order factors represent the underlying inter-related dimensions that are in co-alignment 

(p. 436). In this study, these underlying co-aligned dimensions can be described as a set 

of first-order task and technology characteristics. This is evocative of a ‘systems approach 

to fit’, synonymous with the evaluation of internally consistent, inter-related underlying 

components, examined as a collective (Segars, 1994). In this study, the systems approach 

was adapted for the examination of ‘TTF’ from the ‘fit’ perspective of Covariation
64

. 

Notably, the Covariation ‘fit’ perspective is neither computed nor user-perceived, but is 

instead represented as an observable pattern termed as ‘holistic configuration’. In contrast 

to other perspectives of ‘fit’ examined in the present study, the paradigm of covariation 

‘fit’ was observed as a state of co-alignment and internal consistency, subsequently tested 

for its effects on use and user performance. For covariation ‘fit’ to fully manifest 

however, two conditions must be satisfied. First, user needs and tool functions must be 

inter-related factors for their TTF co-alignment to be testable. Second, these factors must 

be coherent, for an internally consistent TTF between them to be observed. Thus the co-

existence of task and technology characteristics in the same contextual domain, observed 

together for their effects, is essential. For the effects of covariation to be aptly 

demonstrated, these co-aligned and internally consistent task and technology 

characteristics must be modelled for the effects of their ‘fit’ on a set of criteria variables 

such as use and user performance. To this effect, the Covariation ‘fit’ perspective, is 

unique in that in a manner unlike Moderation, Matching, and Mediation, is considered 

‘hidden’ and thus only indirectly observable. 

 

The link between TTF as Covariation and use and user performance is discussed in 

Section 9.3. 

                                                 
64

 Two other systems ‘fit’ approaches, namely Gestalts and Profile Deviation, have been examined in prior 

works as alternatives to Covariation. 
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9.3 Conceptual Model 

9.3.1 The Link between Task-Technology Fit (TTF) as Covariation and Use and 

User Performance 

 

In this chapter, TTF as a second-order factor represents the co-alignment of CHW task 

and mHealth technology characteristics, represented as a set of first-order factors
65

. In 

this representation, the first-order factors are differentiated from their ‘fit’ as a second-

order factor, as depicted in Figure 9.1. 

 

 

Figure 9.1. The Link between Task-Technology Fit (TTF) as Covariation and Use and User Performance 

 

If the technology used supports the task performed then tool use and user performance 

levels are expected to improve (Goodhue, 1992). This is because of a pattern of alignment 

between user needs and tool functions. For optimal use and user performance, these co-

aligned user needs and tool functions must be internally consistent. Therefore, the 

internally consistent, co-alignment of CHW task and mHealth tool technology 

characteristics would lead to enhanced use and user performance. Thus, CHWs would 

become more dependent on mHealth tool use and deliver higher quality patient care more 

effectively and efficiently.  

                                                 
65

 For schematic clarity, the reflective indicators of the first-order factors (task and technology 

characteristics) are not drawn in the models depicted in this chapter. For a detailed description of the 

reflective manifest indicators used to represent the dimensions of the task and technology characteristics, 

please refer Appendices E and G.  
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To examine the link between TTF as Covariation and use and user performance, the 

following propositions are formulated: 

 

Proposition 7 (P7): Fit as the internally consistent co-alignment of task (need) and 

technology (function) characteristics will influence use. 

Proposition 8 (P8): Fit as the internally consistent co-alignment of task (need) and 

technology (function) characteristics will influence user performance. 

 

The methods used to examine the impact of TTF as Covariation on use and user 

performance are discussed in Section 9.4. 

9.4 Methods 

9.4.1 Sampling, Instrument and Measures 

 

Dataset 1 (n = 201) is used in this chapter. Dataset 1 is described in detail in Section B.1 

of Appendix B. The dataset consists of responses from CHW mHealth tool users in the 

counties of Siaya, Nandi, and Kilifi. A structured questionnaire survey instrument was 

used to collect the data. The measures for CHW task characteristics, mHealth technology 

characteristics, use and user performance, were developed as described in Appendix E. 

These constructs were tested for multi-collinearity, reliability and validity, and final 

measures were used in subsequent analyses as per the procedures and criteria outlined in 

in Sections G.1 and G.2 of Appendix G. 

9.4.2 Task-Technology Fit (TTF) as Covariation 

 

TTF as Covariation was operationalized as a second-order factor intermediate co-

alignment construct (Venkatraman, 1989, p. 437) to form a pattern of internally 

consistent, conceptually-related, co-aligned, first-order task and technology 

characteristics, together comprising eight factors. These are a set of four time criticality, 

interdependence, mobility, and information dependency CHW task needs and mHealth 

tool support functions apiece. The second-order ‘fit’ of these first-order task and 

technology characteristics was tested for its effects on use and user performance. PLS-

SEM (Hair et al., 2014) with second-order factor analyses (Venkatraman, 1989, p.436) 

was used to test the effect of TTF as internally consistent co-alignment on use and user 
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performance. The purpose of second-order factor analysis is to examine covariation 

among a set of lower-order factors and explain it in terms of a higher-order factor 

representing their ‘fit’. As such, ‘fit’ as covariation must be specified as a second-order 

factor with first-order factors representing its underlying, co-aligned dimensions 

(Venkatraman, 1989, p. 436). The use of PLS-SEM is, therefore, ideal for second-order 

factor analysis. The TTF construct in this chapter was modelled as a reflective first-order 

reflective second-order construct, using reflective-reflective Type I models (Becker, 

Klein and Wetzels, 2012, p. 363). In these model setups
66

, the second-order construct 

typically comprises a set of underlying first-order constructs as its reflective indicators, 

and these first-order constructs are themselves measured using reflective manifest 

indicators (Jarvis et al., 2003, p. 204).  

 

The Type I ‘fit’ models (Becker et al., 2012) used were examined in two stages
67

. First, a 

structural path model was estimated to test the internal consistency among the specified 

co-aligned first-order task and technology characteristics. This model was used to capture 

the main effects of these first-order factors on the TTF construct modelled as a second-

order factor. Second, to comprehensibly examine the concept of ‘fit’ as covariation, a 

structural path model was estimated to test the second-order TTF construct for its effects 

on use and user performance. This model was used to fully capture and represent the 

covariation effects of ‘fit’ as a second-order factor.  

 

The procedure used to model ‘fit’ is described as a ‘repeated indicator approach’
68

, where 

a higher-order latent variable is modelled by specifying a construct that represents all the 

manifest indicators of a set of underlying lower-order latent variables (Wold, 1982; 

Noonan and Wold, 1983; Lohmoller, 1989; Becker, Klein and Wetzels, 2012). As such, a 

                                                 
66

 It is recognized that in prior work, there have been inconsistencies in the modeling of a ‘fit’ as 

covariation, which should typically be modelled using reflective first-order, reflective second-order Type I 

models (Becker et al., 2012), in order to correctly observe the co-alignment among a set of observable 

underlying theoretically-related dimensions, in terms of a separate, unobservable construct (Venkatraman, 

1990; Segars, 1994). Refer Section O.2 of Appendix O. 
67

 In prior work, a baseline or direct (main) effects model, with no second-order ‘fit’ factor has also been 

specified for comparison with a ‘fit’ as co-alignment model subsequently specified, implying that each first-

order factor directly impacts the criterion e.g. use or user performance (Venkatraman, 1989, p. 437). The 

modeled second-order factor ‘fit’ has been said to merely explain the covariation among the first-order 

factors more parsimoniously (Segars et al., 1998, p. 314). As such, the baseline model is not depicted in this 

chapter, as the focus is purely on internally consistent co-alignment ‘fit’ models, one specified without 

criteria variables, and one specified with effects on criteria variables i.e. use and user performance.  
68

 The advantage of this approach is that it allows for the simultaneous estimation of all constructs 

simultaneously instead of estimating first-order and second-order dimensions separately (Becker et al., 

2012, p. 365). 
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dual-purpose ‘fit’ as covariation model can be examined. By using this scheme, it is 

possible to capture the TTF construct as a second-order latent variable that consists of 

eight underlying inter-related task and technology characteristics as its first-order latent 

variables, each with their reflective manifest indicators, where this second-order latent 

variable is itself specified using all reflective manifest variables of its underlying first-

order variables (Becker et al., 2012). Therefore in essence, the reflective manifest 

variables are used in the same model twice, first for the first-order latent variables, and 

second, for the second-order latent variables. Notably, the path coefficients between the 

first-order and second-order latent variables each must represent the loadings of the 

second-order latent variable (p. 365).  

 

By evaluating a second-order factor model, it becomes possible to distinguish between 

the mere observation of first-order factors that are expressed as co-aligned and internally 

consistent reflective indicators of a second-order TTF factor, and the observation of its 

effects on a criterion variable or criteria variables as specified (Venkatraman, 1989). As 

such, the extent of a covariation ‘fit’ is only fully evident when its effects are observed. 

Of note, Venkatraman (1989) postulated that there are no directly observable indicators of 

this ‘fit’ construct represented as a pattern of co-aligned and internally consistent 

dimensions, arguing that instead, its meaning must be derived as a second-order factor 

through directly operationalized first-order factors, each with observable reflective 

indicators (p. 437). He further argued that the second-order factor can be termed as co-

alignment, and observed that if first-order factors are consistent dimensions of a second-

order factor, then it follows that all coefficients of first-order factor loadings of the 

second-order factor must be significant (p. 438). If these first-order factor loadings are 

statistically significant, then support for the existence of ‘fit’ as a second-order construct 

of co-alignment is established (Segars et al., 1998, p. 315). This postulation is further 

advanced in the present study. The co-alignment among first-order factors as the 

dimensions of a second-order factor is important to understanding the concept of internal 

consistency, and explaining the nature of a ‘fit’ as covariation. If the above-described 

conditions are satisfied, then covariation can be deemed an acceptable specification of 

‘fit’, where its effects on a criterion variable or criteria variables are substantiated by the 

magnitude and significance of the relationship between the second-order factor and an 

observed outcome variable or set of variables (Venkatraman, 1989). Therefore, in the 

present study, a ‘fit’ as covariation can be represented as the appropriate co-alignment of 
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task and technology characteristics that would impact use and user performance. As such, 

these characteristics are expressed as first-order factors examined as reflective indicators 

of a second-order factor ‘fit’, which is then tested for its subsequent impacts.  

 

Coefficients of determination (R
2
 values) of the endogenous constructs use and user 

performance were used to determine the predictive accuracy
69

 of the estimated PLS 

structural path models (Hair et al., 2014, p. 174), and Stone-Geisser’s Q
2
 values (Geisser, 

1974; Stone, 1974) of use and user performance were used to determine their predictive 

relevance
70

 (Hair et al., 2014, p. 178).  

 

Results of the structural path model estimates of TTF as Covariation are discussed in 

Section 9.5. 

9.5 Results 

9.5.1 The Testing of Fit as Internally Consistent Co-alignment 

 

The following is a description of results following analysis of a reflective-reflective Type 

I
71

 measurement model representing TTF tested for internally consistent co-alignment, 

per the following steps:  

 

First, multiple regressions run to assess the collinearity
72

 of the reflective first-order task 

and technology characteristics as reflective indicators (Hair et al., 2014, p. 124), yielded 

Tolerance values higher than 0.20 and VIF values lower than 5. Hence collinearity was 

not a problem (Hair et al., 2011).  

 

Second, to substantiate a ‘fit’ as co-alignment and internal consistency, the significance 

of the paths from the reflective first-order task and technology characteristics as reflective 

                                                 
69

 R
2
 values of approximately 0.670, 0.333, and 0.190 are substantial, moderate, and weak, respectively 

(Chin, 1998; Urbach and Ahlemann, 2010, p. 21). 
70

 A Q
2
 value larger than zero for a certain reflective endogenous latent variable is indicative of its 

predictive relevance (Henseler et al., 2009, Hair et al., 2014, p. 178). 
71

 The reflective measurement constructs of the first-order task and technology characteristics in the 

reflective-reflective Type I models specified were also tested for their internal consistency reliability 

(composite reliability), indicator reliability, convergent validity (average variance extracted), and 

discriminant validity (Hair et al., 2014, p. 97). Results are detailed in Tables O.1 to O.3 of Appendix O. 
72

 Results of multi-collinearity assessment are shown in Table O.4 of Appendix O. 
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indicators of ‘fit’ as a second-order construct (outer weights), was assessed using a 

bootstrapping procedure (Hair et al., 2014, p. 132).  

 

The structural path model estimated
73

 to test fit as co-alignment and internal consistency 

is shown in Figure 9.2. 

 

 

Figure 9.2. Path Model: Task-Technology Fit (TTF) as Internally Consistent Co-alignment 

 

The path coefficients, t values, p values, significance levels, and confidence intervals, of 

the structural main effects path model estimated to test fit as co-alignment and internal 

consistency, are shown in Table 9.1. Results indicate that the co-alignment of time 

criticality (path coefficient = 0.521, t = 5.87), interdependence (path coefficient = 0.439, t 

= 4.48), mobility (path coefficient = 0.382, t = 4.54), information dependency (path 

coefficient = 0.519, t = 5.92), time criticality support (path coefficient = 0.657, t = 12.36), 

interdependence support (path coefficient = 0.700, t = 14.12), mobility support (path 

coefficient = 0.627, t = 12.26), and information dependency support (path coefficient = 

0.619, t = 8.78), has significant positive effects on fit (p < 0.01). 

 

 

                                                 
73

 Screenshots of the structural path model estimates representing fit as co-alignment and internal 

consistency, and its covariation effects, respectively, are shown in Figures O.1 and O.2 of Appendix O.  



 219 

Table 9.1 Structural Path Model Results: The Main Effects of Fit as Co-Alignment and Internal Consistency 

Path Path Coefficient (Outer Weight) t p  Significance  90% CI 

Time Criticality  Task-Technology Fit (TTF) 0.521
 

5.87 0.00 *** [0.47, 0.57] 

Interdependence  Task-Technology Fit (TTF) 0.439
 

4.48 0.00 *** [0.38, 0.50] 

Mobility  Task-Technology Fit (TTF) 0.382 4.54 0.00 *** [0.31, 0.45] 

Information Dependency  Task-Technology Fit 

(TTF) 

0.519 5.92 0.00 *** [0.47, 0.57] 

Time Criticality Support  Task-Technology Fit 

(TTF) 

0.657 12.36 0.00 *** [0.62, 0.69] 

Interdependence Support  Task-Technology Fit 

(TTF) 

0.700 14.12 0.00 *** [0.66, 0.74] 

Mobility Support  Task-Technology Fit (TTF) 0.627 12.26 0.00 *** [0.59, 0.66] 

Information Dependency Support  Task-

Technology Fit (TTF) 

0.619 8.78 0.00 *** [0.57, 0.67] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Therefore the internally consistent co-alignment among these co-aligned CHW task and 

mHealth tool technology characteristics was empirically substantiated. This internally 

consistent ‘fit’ as co-alignment was then tested for its covariation effects on use and user 

performance. 

9.5.2 The Testing of Fit as Internally Consistent Co-alignment for Covariation 

Effects  

 

The structural path model estimated to test fit as internally consistent co-alignment for 

covariation effects is shown in Figure 9.3. As depicted in Figure 9.3, the main effects 

model represented in Figure 9.2 as depicting internally consistent co-alignment, is 

extended and tested as a covariation model with which to examine TTF effects as a 

second-order factor on use and user performance outcomes. As alluded to in Section 

9.4.2, this approach is evocative of Venkatraman (1989) who presented a schematic 

representation of the concept of covariation, by presenting two distinct models to 

highlight their core differences. More specifically, the first model signified a second-

order ‘fit’ as co-alignment, depicted as a main effects model, while the second, described 

as the covariation model, captured the effects of this fit as co-alignment on use and user 

performance (p. 437). 
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Figure 9.3. Path Model: The Covariation Effects of Task-Technology Fit (TTF) as Internally Consistent Co-

alignment 

 

The path coefficients, t values, p values, significance levels, and confidence intervals, of 

the structural path model estimated to test fit as co-alignment and internal consistency for 

covariation effects are shown in Table 9.2.  

 

Table 9.2 Structural Path Model Results: Covariation Effects 

Path Path Coefficient t p  Significance  90% CI 

Time Criticality  Task-Technology Fit (TTF)  0.518
 

5.69 0.00 *** [0.45, 0.58] 

Interdependence  Task-Technology Fit (TTF) 0.425
 

4.29 0.00 *** [0.36, 0.49] 

Mobility  Task-Technology Fit (TTF) 0.369 4.35 0.00 *** [0.31, 0.43] 

Information Dependency  Task-Technology Fit (TTF) 0.514 5.71 0.00 *** [0.45, 0.57] 

Time Criticality Support  Task-Technology Fit (TTF) 0.664 12.71 0.00 *** [0.62, 0.70] 

Interdependence Support  Task-Technology Fit (TTF)  0.702 13.82 0.00 *** [0.66, 0.75] 

Mobility Support  Task-Technology Fit (TTF)  0.634 12.55 0.00 *** [0.59, 0.68] 

Information Dependency Support  Task-Technology Fit (TTF)  0.626 8.83 0.00 *** [0.57, 0.68] 

Task-Technology Fit (TTF)  Use 0.441 6.69 0.00 *** [0.33, 0.55] 

Task-Technology Fit (TTF)  User Performance 0.534 8.48 0.00 *** [0.43, 0.64] 

NS = Not Significant. *p < 0.10. **p < 0.05. ***p < 0.01. 

 

Results in Table 9.2 indicate that TTF as the internal consistency of co-aligned CHW task 

and mHealth tool technology characteristics has significant positive covariation effects on 

use (path coefficient = 0.441, t = 6.69, p < 0.01) and user performance (path coefficient = 
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0.534, t = 8.48, p < 0.01). Thus Proposition 7 (P7) and Proposition 8 (P8) are supported. 

In addition, this fit model of internally consistent co-alignment has significant predictive 

accuracy for the endogenous constructs of use (R 
2
 = 0.173) and user performance (R 

2
 = 

0.285), and significant predictive relevance for the endogenous constructs of use (Q
 2

 = 

0.100) and user performance (Q
 2

 = 0.163). 

9.6 Discussion 

9.6.1 Fit as Internally Consistent Co-alignment 

 

In this chapter, a ‘fit’ as co-alignment was specified among four CHW task and mHealth 

tool technology characteristics, and represented as a pattern of covariation among them. 

Findings indicate that this pattern was evident among the four mHealth tool technology 

and CHW task characteristics, supporting the inter-relatedness of these co-aligned factors, 

which is consistent with conceptualizations of TTF. In the context of CHW mHealth, a 

‘fit’ signifies the appropriate co-alignment of the CHW task characteristics of time 

criticality, interdependence, mobility, information dependency and the mHealth tool 

technology characteristics of time criticality support, interdependence support, mobility 

support, and information dependency support, that will influence use and user 

performance. This observed co-alignment of internally consistent mHealth tool support 

functions to CHW task needs is consistent with Venkatraman and Prescott’s (1990) 

notion of ‘fit’ as the simultaneous, holistic configuration of a set of inter-related 

components (p. 5). Initially, based on the postulations of Venkatraman (1989), the 

internal alignment among CHW task and mHealth tool dimensions was conceptualized 

and found to be a construct that represents internal consistency. From this perspective of 

‘fit’, it is evident that internal consistency must be formally represented in a TTF model 

(Figure 9.3), in order for use and user performance effects to be directly assessed. The 

findings adduced corroborate Bergeron, Raymond and Rivard’s (2001) observation that 

‘fit’ is a pattern of internal consistency among a set of underlying and theoretically 

related variables (p. 135). Wang, Shih, Jiang, and Klein (2008) similarly observed that the 

internal co-alignment of consistent ERP factors had significant positive impacts on 

implementation success (p. 1618). Findings clearly indicate that the co-variation among 

the mHealth tool’s support functions and CHW task needs is positively associated with 

both use and user performance. This means that in context, internally consistent, 

concurrent mHealth tool support for the CHW task needs of time criticality, 
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interdependence, mobility, and information dependency, would result in higher levels of 

dependence on technology use and CHW performance. It is therefore evident that the 

alignment of mHealth tool support functions to CHW task needs has positive technology 

use and user performance consequences. As envisioned by Venkatraman (1989), ‘fit’ 

represents the central thread or internal logic that underlies the inter-relatedness of a set 

of factors empirically evaluated for their degree of covariation (Venkatraman, 1986, p. 

436). 

9.6.2 Implications for Research 

 

There are four emergent implications for research arising from the findings discussed in 

this chapter. 

 

First, findings constitute new empirical insights into the conceptualization of TTF, and 

assessment of its effects on use and user performance in a context-specific domain. 

Specifically, conceptualizing TTF as a pattern of covariation offers the advantage of 

simultaneously evaluating a ‘fit’ between multiple first-order constructs as reflective 

indicators of a second-order ‘fit’ construct that is linked to the outcomes of use and user 

performance. As evidenced by the results reported in this study, this represents a 

transition from the observation of internally consistent co-alignment, to the examination 

of its covariation effects on use and user performance. Therefore to ensure conceptual and 

schematic clarity, and simplify the evaluation of ‘fit’ as covariation, the concepts of 

internally consistent coalignment must be more precisely examined using such a phased 

approach. This is significant because contrary to basic assumptions, a ‘fit’ as internally 

consistent co-alignment can be differentiated from its covariation effects. If the internally 

consistent co-aligned first-order factors are considered on their own, the significance of 

their path coefficients as factor loadings of a second-order factor ‘fit’ construct are 

established. If covariation is considered on its own, the significant effects of this second-

order factor ‘fit’ construct on use and user performance are evidenced. This sequenced 

evaluation of the covariation ‘fit’ perspective represents a relatively unique approach to 

evolving TTF research. This is a subtle distinction that to date, has not been succinctly 

explained in prior ‘fit’ research, and as such, is clearly explicated and clarified in the 

present study. 
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Second, it is important to emphasize that in light of reported findings, just examining the 

direct effects of co-aligned task and technology characteristics, is insufficient for 

discerning the full extent of a pattern of covariation between them. When these co-

aligned characteristics are, however, examined for an internally consistent ‘fit’ and its 

subsequent effects on use and user performance, their covariation becomes observable, 

thereby offering a more complete picture. In essence, a ‘fit’ as covariation is not directly 

observable, such that its presence must be tested for in order for it to manifest. This is 

consistent with Venkatraman’s (1989) postulation that the co-variation among co-aligned 

factors is observed at a higher theoretical plane than these factors, which are essentially 

the underlying dimensions of the ‘fit’ between them. In other words, ‘fit’ is an 

unobservable construct specified as coalignment, and its meaning is derived through first-

order factors measured using observable reflective manifest indicators (Bergeron, 

Raymond and Rivard, 2001, p. 437). Thus the effective application of this principle to 

TTF research is justified, as evidenced in this chapter. 

 

Third, in light of the empirical evidence of internally consistent co-alignment, TTF 

researchers can better understand and explain the nature of a ‘fit’ between a set of inter-

related, underlying task and technology characteristics. These characteristics are 

essentially critical success factors that are observed in a single model capturing their 

coherence in a single theoretical model. This approach represents an effective way in 

which researchers can directly measure and observe whether a set of co-aligned factors 

are consistent, coherent first-order contributors of TTF represented as a second-order 

factor. In essence, by using a reflective-reflective Type I model (Becker et al., 2012) in 

which main effects and covariation effects are distinguishable, the concept of a ‘fit’ as 

covariation is better explicated and more succinctly expressed. 

 

Fourth, it is empirically evident as demonstrated in this chapter, that contrary to 

widespread notions, internally consistent co-alignment and covariation effects can be 

differentiated, as the transition from the former to the latter has been empirically 

demonstrated in this study. As has been established in this chapter, there appears to be a 

sequence through which a preceding ‘fit’ as co-alignment can be examined for its 

covariation effects. In other words, inter-related components as lower-order factors that 

are in co-alignment must significantly constitute a ‘fit’ as a higher-order factor, for their 

internal consistency to be empirically substantiated. For covariation as an observable 
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pattern to be grasped in its entirety, it is imperative that this internally consistent ‘fit’ as 

co-alignment is then examined for its effects on criteria variables such as performance. 

Findings indicate that researchers must not make the erroneous assumption that an 

internally consistent first-order ‘fit’ between a set of co-aligned first-order factors, and the 

testing of its covariation effects, are necessarily identical states, and must instead 

recognize that the evaluation of a ‘fit’ as covariation is in fact sequential, thus 

necessitating a phased approach. This signifies a richer understanding of the ‘fit’ 

perspective of covariation. In the manner described, the observation of a pattern of 

covariation can be considered more credible, thereby enhancing ones understanding of 

‘fit’ as covariation. This further lends credence to using a ‘two-stage approach’ as an 

effective supplement to second-order factor analysis techniques. In essence, the 

establishment of internal consistency need not merely be an end in itself. As such, 

researchers ought to further examine an internally consistent ‘fit’ as co-alignment for its 

effects on a set of specified criteria variables.  

9.6.3 Implications for Practice 

 

There are two implications for practice arising from the findings discussed in this chapter. 

 

First, in designing technologies that ‘fit’ the task requirements of users, practitioners must 

strive to establish a balance between mHealth tool support functions and CHW task 

needs. If a technology function-user need ‘fit’ is best captured as a pattern of consistent 

and concurrent resource allocations in the form of an mHealth tool’s support for the 

CHW task needs of time criticality, interdependence, mobility, and information 

dependency, then any one particular task or technology characteristic is by itself 

insufficient for optimal use and user performance levels to be attained. Thus sufficient 

attention must be afforded to all task and technology characteristics so as to maximize use 

and user performance. Therefore, it can be recognized that the characteristics of the CHW 

task and mHealth tool can be joined together in a holistic configuration that signifies their 

coherence in a shared user environment, thereby achieving a state of completeness. In 

other words, a pattern or stream of user needs and tool functions, all of which must be 

prioritized, are expected to coherently constitute a ‘fit’ pattern that would in turn impact 

levels of use and user performance output. As such, in a given context, designers must 
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allocate adequate resources to all user need and tool functions, to effectively attain and 

reinforce a ‘fit’ as the co-existence of these components in co-alignment. 

 

Second, findings can constitute empirical evidence with which practitioners can 

determine technology use and user performance impacts as a function of the level of 

coherence between concurrent CHW task and mHealth technology characteristics. 

Moreover, with this evidence-based approach as a diagnostic framework, quantifiable 

benchmarks can be determined and used to calibrate those levels of coherence that are 

necessary for the optimization of use and task performance in particular contexts. 

Practitioners would be able to effectively determine the degree of internal consistency 

among a set of co-aligned inter-related user needs and tool functions, so as to create 

decision streams that are explicitly informed by the relative weighted significance of 

these factors, to better interpret use and user performance levels. 

9.7 Chapter Conclusion 

 

The purpose of this chapter was to adapt Venkatraman’s (1989) Fit as Covariation 

perspective to test the effects of Task-Technology Fit (TTF) on mHealth tool use and 

CHW performance. An observable pattern of co-aligned, internally consistent CHW task 

and mHealth technology characteristics was examined for its covariation effects on use 

and user performance. This co-alignment and internal consistency of task and technology 

characteristics was found be significant, therefore establishing a ‘fit’. This ‘fit’ as co-

alignment and internal consistency was found to have positive impacts on use and user 

performance. These results indicate that ‘fit’ as an observable pattern of co-aligned, 

internally consistent task and technology characteristics, will lead to increased levels of 

CHW dependence on the mHealth tool, and the more effective and efficient delivery of 

higher quality patient care. As such, the effects of a TTF pattern as an observed state of 

covariation were empirically substantiated. 
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Results of tests of TTF as Covariation and its impacts on use and user performance are 

summarized in Table 9.3. 

 

Table 9.3. Findings 

Proposition Finding 

P7 Fit as the internally consistent co-alignment of task (need) and technology (function) characteristics will 

influence use. 

Supported 
 

P8 Fit as the internally consistent co-alignment of task (need) and technology (function) characteristics will 

influence user performance. 

Supported  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 227 

In Chapter 9, TTF as Covariation and its effects on use and user performance was 

examined. In Chapter 10, the determinants of use and its effects on user performance are 

examined. 

 

 

Figure 9.4. Use, Task-Technology Fit (TTF), Precursors, and User Performance 
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10 The Determinants of Mobile-Health (mHealth) Tool Use  

 and Effects on User Performance  

10.1 Introduction 

 

In Chapter 1, it was noted that there is a dearth of evidence on the impact of mHealth tool 

use on CHW user performance. Moreover, it was recognized that there is limited 

knowledge of the determinants of mHealth tool use (Liu et al., 2011). Consequently, to 

address this knowledge gap, research questions, 5, 6, and 7, were formulated: 

 

 

 

The purpose of this chapter is to address these three questions. In the conceptual model 

developed in this chapter, use is positioned as mediating between a set of precursors and 

user performance. The theoretical underpinnings of this conceptual model are discussed 

in Sections 10.2 and 10.3. 

10.2 Task-Technology Fit (TTF) and the Technology-to-Performance 

Chain (TPC) 

 

As articulated in Chapter 4, the basic ‘Fit-Focus’ model of TTF was theorized to 

influence use and user performance outcomes. However, in that original TTF model, use 

as an outcome was not linked to performance. Thus for an improved understanding of 

user performance, the inclusion of use impacts has been proposed (Goodhue and 

Thompson, 1995, p. 214). ‘Fit’ can thus be linked to user performance through use. The 

extended theoretical TTF model is depicted in Figure 10.1. In this ‘Fit-Focus’ TTF 

model, the extension representing a link between use and user performance is highlighted. 

This extension of the TTF model completes a TPC that links technology to user 

performance through a ‘fit’ with the task and its use. However, TTF is the core process 

through which technology impacts user performance. As such, TTF theory underpins this 

5. What are the determinants of mHealth tool use by CHWs?  

6. To what extent do these determinants impact mHealth tool use by CHWs? 

7. How does mHealth tool use impact CHW performance?  
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TPC. Within this TPC, use is a function of ‘fit’. However, use also has additional 

determinants or precursors that must be considered. 

 

 

Figure 10.1. Extended ‘Fit-Focus’ Task-Technology Fit (TTF) Model (Goodhue and Thompson, 1995, p. 220) 

 

10.3 Technology Use and its Precursors 

 

In Chapter 4, it was also observed that use is behavioural and considered to have 

determinants other than a ‘fit’ between the task and technology. These additional 

determinants are underpinned by theories of use (Fishbein and Azjen, 1975; Bagozzi, 

1982). Thus the completed TPC can be extended to include precursors as additional 

determinants of use, where theories of use are drawn on to provide a relevant 

underpinning. Within this extended TPC, use is positioned between its determinants and 

consequent user performance.  

 

Trice and Treacy (1986) argued that linkages between utilization and its determinants 

needed to be better understood. Davis (1989) observed that drivers of system user 

behaviour should be investigated through the critical examination of alternative theories 

and models for predicting utilization. Central to these theories, user attitudes and beliefs 

are fundamental to understanding system utilization (Lucas, 1975, 1981; Robey, 1979; 

Cheney, Mann and Amoroso, 1986; Swanson, 1987; Davis, 1989; Davis, Bagozzi and 

Warsaw, 1989). As postulated in Chapter 4, use is considered to have determinants 

besides a ‘fit’ between the task performed and the IT used. In prior works, determinants 

of IT use have been underpinned by theories of Attitude and Behaviour (Fishbein and 

Azjen, 1975; Azjen and Fishbein, 1977; Triandis, 1979). The first of these reference 

theories is previewed next. 
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10.3.1 The Theory of Reasoned Action (TRA) and The Theory of Planned 

Behaviour (TPB) 

The Theory of Reasoned Action (TRA) is based on the premise that individuals evaluate 

outcomes of specific behaviour and form intentions based on their evaluations (Fishbein 

and Azjen, 1975). These intentions influence the intended behaviour (p. 372). The TRA 

model was extended to form the Theory of Planned Behaviour (TPB). The TPB is based 

on the premise that ‘behavioural, normative, and control beliefs’ influence the three 

factors of ‘attitude toward behaviour’, ‘subjective norm’, and ‘perceived behavioural 

control’. These factors in turn determine intention and subsequent behaviour (Azjen, 

1985; 1991). The TPB model, an extended TRA model, is depicted in Figure 10.2. 

 

 

Figure 10.2. The Theory of Planned Behaviour (TPB) (Azjen, 1985) 

 

As depicted, the constructs of ‘control beliefs and perceived facilitation’, and ‘perceived 

behavioural control’, were included to extend the TRA model (Figure 10.2). The TRA 

and TPB informed Bagozzi’s (1982) Expectancy-Value Theory, discussed next. 

10.3.2 Expectancy-Value Theory 

 

Expectancy-Value Theory is based on Fishbein and Azjen’s (1975) TRA and TPB 

(Azjen, 1985, 1991), in conjunction with Triandis’ Interpersonal Behaviour model (1979, 

1980). A fundamental difference between the TRA, TPB, and Interpersonal Behaviour 

model, is the presence of the construct of ‘affect’. This construct is not included in the 

TRA and TPB models. In these models, ‘attitude’ is included as an outcome of cognitive 

evaluations of behavioural consequences (Fishbein and Azjen, 1975). In contrast, 

Triandis (1979) included ‘affect’, which was considered to occur ‘in the moment’, and 
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independent of beliefs of behavioural consequences. Subsequently, Bagozzi (1982) 

developed the ‘Volitional Model’ incorporating the concepts of TRA, TPB, and 

Interpersonal Behaviour. This conceptual model is depicted in Figure 10.3. 

 

 

Figure 10.3. The Volitional Model (Bagozzi, 1982, p. 581) 

 

This model was adapted and used to theorize the relationship between a set of precursors 

and IT use, and depicted as the lower portion of Goodhue’s (1992) System-to-

Performance Chain (Figure 10.4). These precursors were considered as determinants of 

IT use besides a ‘Task-System Fit’. In addition to behavioural consequence beliefs and 

affect, ‘social norms’ and ‘habit’ have been considered to affect behaviour (Bagozzi, 

1982). However, despite potential impacts of ‘social norms’ and ‘habit’ as determinants 

of IT use, these constructs have not been recognized as user evaluations of systems, and 

are thus not typically considered (Goodhue, 1992). 

 

 

Figure 10.4. Bagozzi’s (1982) Model in Goodhue’s (1992) System-to-Performance Chain 
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Goodhue and Thompson (1995), and Goodhue (1997), also incorporated Bagozzi’s 

(1982) model into TPCs to examine precursors of use as determinants other than TTF. 

Notably, in these TPCs, ‘facilitating conditions’ was included as a precursor of use. 

Triandis (1980) described ‘facilitating conditions’ as objective factors that make an act 

easy to do (p. 205). In previous IS research, ‘facilitating conditions’ have been described 

as those supportive factors in the environment that simplify the use of ITs (Thompson et 

al., 1991). For example, the provision of technical support for users is one example of a 

facilitating condition that could influence the use of ITs in task performance (p. 129). 

‘Facilitating conditions’ have also been variously described in terms of ‘perceived 

behavioural control’, defined as the IT user’s perceived internal and external constraints 

on behaviour, such as efficacy, resources, or technology as an enabler (Taylor and Todd, 

1995a, 1995b). Drawing on the above, this chapter’s conceptual model is developed in 

Section 10.4, next. 

10.4 Conceptual Model 

 

As discussed in Section 10.3, the precursors of ‘affect’ and ‘facilitating conditions’ are 

important determinants of IT use. Unlike ‘attitude’ (Fishbein and Azjen, 1975), ‘affect’ 

(Triandis, 1979) can impact use directly, and not through ‘behavioural intentions’. 

‘Facilitating conditions’ are considered important because actual usage behaviour is not 

possible if objective conditions in the environment prevent it (Triandis, 1980). As 

articulated in Section 10.3, ‘social norms’ and ‘habit’ do not represent user evaluations of 

systems. As such, these precursors of use are not considered as complementary to TTF. 

‘Expected consequences’ could complement TTF, but has been positioned as a conduit 

through which use is influenced (Goodhue and Thompson, 1995). Previously, Triandis 

(1980) modelled a ‘perceived consequences’ construct to impact intentions and 

subsequent behaviour. Goodhue (1997) asserted that in the IT domain, the prediction of 

actual behaviour and subsequent performance impacts is of more significance than the 

determination of intentions. This approach was consistent with prior studies of IT use 

(Davis, 1989; Thompson et al., 1991; Moore and Benbasat, 1992). As such, intentions 

were omitted from their TTF-influenced conceptual model (p. 450). TTF could be 

examined for its direct impacts on use. Notably, determinants independent of TTF that 

directly impact use are considered, and as such, perceived consequences of use are not 

included in the model for the present study.  
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Affect toward use and perceived facilitating conditions that enable use are of potentially 

greater relevance. Thus the factors of ‘affect toward use’ and ‘facilitating conditions’ are 

most appropriate to a TPC model. Use is an outcome of both these precursors and TTF, 

and a determinant of user performance. A conceptual model is thus developed linking use 

as an outcome of TTF, to precursors, and subsequent user performance. This model is 

depicted in Figure 10.5. 

 

 

Figure 10.5. Conceptual Model: Extended Technology-to-Performance Chain (TPC) 

 

Use is conceptualized as the ‘frequency’, ‘intensity’, and ‘dependence’ with which the 

technology user uses the tool or system (Lee, 1986; Goodhue and Thompson, 1995; 

Igbaria et al., 1997; Lee et al., 2003; McGill and Hobbs, 2007; Teo and Men, 2008; 

Junglas et al., 2009). First, frequency is how many times on average the user uses the 

technology in task performance (Lee, 1986; Lee et al., 2003; Teo and Men, 2008). The 

repetitive use of ITs, i.e. enhanced user frequency, signifies this regularity (Raymond, 

1985; Hou, 2012). Second, intensity is the amount of time spent using the technology in 

task performance (Lee, 1986; McGill and Hobbs, 2007). In the early learning phase for 

many users, more time would typically be spent using the technology. However, the 

intensity of technology use may decrease as the user becomes more proficient at using the 
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tool or system (Szajna, 1993; Igbaria et al., 1997). Third, dependence is the extent to 

which the user has come to rely on using the technology in task performance (Junglas et 

al., 2009). The integration of ITs into individual work routines has been observed to 

enhance user dependence (Goodhue and Thompson, 1995).  

 

User performance is reflected as the effectiveness, efficiency, and quality, with which 

tasks are completed or executed using the technology (Garrity and Sanders, 1998; 

Torkzadeh and Doll, 1999; Belanger et al., 2001; Staples and Seddon, 2004; Teo and 

Men, 2008; Junglas et al., 2009). First, effectiveness is the execution of actions or tasks to 

achieve desired work outcomes or results (Teo and Men, 2008). ITs have been observed 

to improve the effectiveness of users by enhancing their productive output in executing 

tasks (Torkzadeh and Doll, 1999). Second, efficiency is the completion of tasks in the 

least time, at the lowest cost (Garrity and Sanders, 1998). ITs have been observed to 

improve the efficiency of users by automating time-consuming tasks, thereby reducing 

the wastage of resources (Belanger, Collins and Cheney, 2001). Third, quality is the 

completion of tasks without committing errors (Junglas et al., 2009). ITs have been 

observed to improve output quality not only by validating the inputs of users, but also 

minimizing errors in the capture and transmission of data (Belanger et al., 2001).  

 

In order to complete a TPC, the TTF outcome of use is linked to user performance (P9). 

As per TTF theory (Goodhue 1995; Goodhue and Thompson, 1995; Dishaw, 1994; 

Dishaw and Strong, 1998a; Strong et al., 2006), ‘fit’ is linked to use (P10a) and user 

performance (P10b). For purposes of this chapter, TTF is conceptualized as ‘perceived 

fit’. ‘Perceived fit’ is the perception of the intended user that the technology used meets 

user task requirements (Pendharkar et al., 2001; Jarupathirun and Zahedi, 2007). As a 

point of departure from the conceptualizations tested in Chapters 6 to 9, ‘fit’ in this 

chapter is conceptualized purely as perceptual, comprising multiple user-evaluated TTF 

dimensions. This is evocative of Goodhue and Thompson’s (1995) TTF as User 

Evaluation (UE), and Dishaw and Strong’s (1998b) TTF as Fitness-For-Use 

manifestations, comprising multiple user-perceived ‘fit’ dimensions in a singular 

construct. Goodhue (1992b) observed that TTF can be measured independently of task 

and technology antecedents, and therefore forming a basis for a more ‘general fit’ as 

opposed to ‘a specific (derived) fit’ (Dishaw, 1994, p. 63). This more general ‘fit’ has 
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been proven an acceptable alternative TTF concept, operationalized for subsequent 

testing. 

 

As per Expectancy Value Theory (Triandis, 1979, 1980; Bagozzi, 1982) and its 

antecedents the TRA (Fishbein and Azjen, 1975) and TPB (Azjen, 1985, 1991), the 

precursors of facilitating conditions and affect toward use are linked to technology use 

(P11, P12). First, facilitating conditions are support factors in the user environment that 

are conducive to technology use (Thompson et al., 1991). For example, supporting 

resources e.g. user training, have been observed to facilitate the use of ITs (McGill and 

Hobbs, 2007). Second, affect toward use is the extent to which the user has a liking for 

the technology (Compeau, Higgins and Huff, 1999). The positive affect of users towards 

use e.g. enjoyment, is expected to enhance the use of ITs. However, the negative affect of 

users e.g. apprehension, could undermine their use of ITs (McGill and Klobas, 2009). The 

model’s propositions are developed further below.  

10.4.1 The Link between Use and User Performance 

 

The use or non-use of technology can impact user performance. If the technology is well 

designed, then its increased use should positively impact user performance. However, the 

non-use of technology that is well designed should negatively impact user performance 

(Staples and Seddon, 2004). This is because any supposed gains in the effectiveness and 

efficiency of the user are lost due to non-use of the technology (p. 22). The positive 

linkage between use and user performance is considered a key component of the TPC, 

and has been examined in several studies (Goodhue and Thompson, 1995; Goodhue et al., 

1997; D’Ambra and Wilson, 2004b; McGill and Klobas, 2009). The enhanced use of the 

technology should lead to an increase in user performance (McGill et al., 2011). In order 

for technology to have an impact on user performance, it must be used (Teo and Men, 

2008). The use of mHealth tools by CHWs is expected to positively impact their 

performance of tasks. Moreover, a dependence on frequent and intensive use of mHealth 

tools would lead to more effective and efficient patient care, with improved quality. To 

examine the link between use and user performance, the following proposition is 

formulated: 
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Proposition 9 (P9): The use of mHealth tools by CHWs will positively influence user 

performance. 

10.4.2 The Link between Task-Technology Fit (TTF) and Use and User 

Performance 

 

In accordance with TTF theory, the ‘fit’ between the task and the technology, is 

hypothesized to influence both use and user performance (refer Chapters 6 to 9). As such, 

if users perceive a closer ‘fit’ between their needs and the functionality of the technology 

used, they then believe that the technology is useful, affords greater relative advantage in 

the completion of tasks, or enhances their productivity (Goodhue, 1997). This is 

consistent with the notion that a ‘fit’ between task and technology represents an 

assessment of how satisfactorily tool functions meet user needs (p. 452). In prior works, 

the positive linkage between TTF and use has been suggested (Goodhue and Thompson, 

1995; Dishaw and Strong, 1998a, 1998b). If users expect that the technology used 

represents the capacity needed to complete the required tasks, then higher use should 

ensue (Teo and Men, 2008). If the technology used is ‘fit’ for user needs, then it should 

positively impact technology use. This is because the user considers the technology most 

appropriate for the required task (McGill et al., 2011, p. 48). In past studies, a positive 

linkage between TTF and user performance has also been observed (Goodhue, 1995; 

Goodhue et al., 1997; Goodhue, Klein and March, 2000; D’Ambra and Wilson, 2004a, 

2004b). If users expect that required tasks can be completed using the appropriate 

technology, then higher performance should result (Staples and Seddon, 2004). If the 

technology used is ‘fit’ for user needs, then it should positively impact task performance. 

This is because the user considers the technology more useful for completing the required 

task (p. 21). A perceived ‘fit’ between CHW user task needs and mHealth tool technology 

functions will lead to improved use and user performance. Thus CHWs would become 

highly dependent on using the mHealth tool frequently, with a high degree of intensity, 

and delivering higher quality patient care more effectively and efficiently.  

 

To examine the link between TTF and use and user performance, the following 

propositions are formulated: 
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Proposition 10a (P10a): The perceived ‘Fit’ between CHW tasks and mHealth tools will 

positively influence use. 

Proposition 10b (P10b): The perceived ‘Fit’ between CHW tasks and mHealth tools will 

positively influence user performance.  

10.4.3 The Link between Precursors of Use and Use 

 

In prior works, the linkage between beliefs and affect, and user behaviour, has been 

observed (Hartwick and Barki, 1994). In the IT domain, user behaviour has been 

observed to be instrumental to task performance (Goodhue, 1997). The affect of users 

toward the technology used influences this usage behaviour (Staples and Seddon, 2004, p. 

22). In addition to the affective response of users, situational factors such as ‘facilitating 

conditions’ could enable the use of the technology to perform tasks (Goodhue et al., 1997, 

p. 97). These factors are considered external and could also constrain technology users in 

their task performance (Goodhue, 1997, p. 451). Therefore for use to occur, users must 

have a positive affect toward the technology used. In addition, their enabled technology 

use for the performance of tasks must be facilitated (Thompson et al., 1991). The resource 

facilitation of CHWs in low-resource settings is useful for their performance (Braun et al., 

2013). Moreover, these CHWs must be sufficiently motivated to deliver improved patient 

care during household visits (Bhattacharya et al., 2001). If CHWs perceive that there are 

resources that facilitate their support, and have a liking for, or positive inclination towards 

mHealth tools, then they would become more frequent technology users with higher 

levels of intensity, and higher use dependence. 

 

To examine the link between the precursors of ‘affect toward use’ and ‘facilitating 

conditions’ and use, the following propositions are formulated: 

 

Proposition 11 (P11): Affect toward use will positively influence mHealth tool use. 

Proposition 12 (P12): Facilitating conditions will positively influence mHealth tool use. 

 

The methods used to test the conceptual model (Figure 10.6) are discussed in Section 

10.5. 
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10.5 Methods 

10.5.1 Sampling, Instrument, and Measures 

 

Dataset 1 (n = 201) is used in this chapter. Dataset 1 is detailed in Section B.1 of 

Appendix B. The dataset comprises responses from CHW mHealth tool users in the 

Siaya, Nandi, and Kilifi counties. A structured questionnaire survey instrument was used 

to collect data. The measures for perceived fit, use, user performance, and precursors of 

use, were developed as described in Appendix E. These constructs were tested for multi-

collinearity, reliability and validity, and final measures were used in subsequent analyses 

as per the procedures and criteria outlined in in Sections G.1 and G.2 of Appendix G.  

 

The use dimensions of frequency, intensity, and dependence, were captured using self-

reported measures. First, a measurement scale adapted from Thompson, Higgins and 

Howell (1991), was used to measure frequency. Frequency was measured on a scale from 

1 = almost never to 7 = several times a day. Second, a measurement scale adapted from 

Igbaria, Zinatelli, Cragg and Cavaye (1997), was used to measure intensity. Intensity was 

measured on a scale from 1 = almost never to 6 = more than 3 hours. Third, a three-item 

measurement scale adapted from Junglas, Abraham and Ives (2009), was used to measure 

dependence. Dependence was measured on a seven-point Likert scale from 1 = strongly 

disagree to 7 = strongly agree. The items used to measure these self-reported use 

dimensions are summarized in Table 10.1.  

 
Table 10.1. Measurement Items for Use 

Item Statement Dimension Source(s) 

Frequency Intensity Dependence 

1 
a 

On average, how many times do you use the 

mHealth tool to perform your tasks? 

   Thompson et al., (1991) 

1
a 

On average, how much time do you spend per day 

using the mHealth tool to perform your tasks?  

   Igbaria et al., (1997) 

1 
b 

I am very dependent on the mHealth tool to 

perform tasks. 

   Junglas et al., (2009)

2 
b 

My work is dependent on using the mHealth tool 

to perform tasks. 

   

3 
b 

Using the mHealth tool allows me to do more than 

would be possible without it. 

   

a = Measured on 7-point scale 1 = Almost Never to 7 = Several Times a Day 

b = Measured on 6-point scale 1 = Almost Never to 7 = More than 3 hours 
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The use precursor dimensions
74

 of facilitating conditions and affect toward use were also 

captured using self-reported measures. First, a four-item measurement scale adapted from 

Taylor and Todd (1995) was used to measure facilitating conditions. Second, a five-item 

measurement scale adapted from Compeau and Higgins (1995) and Compeau, Higgins 

and Huff (1999) were used to measure affect toward use. Facilitating conditions and 

affect toward use were measured on seven-point Likert scales from 1 = strongly disagree 

to 7 = strongly agree. The items used to measure these self-reported use precursor 

dimensions
75

 are summarized in Table 10.2. 

 

Table 10.2. Measurement Items for Precursors of Use 

Item Statement Dimension Source(s) 

Facilitating 

Conditions  

Affect Toward 

Use 

1 
a
 
 

I have the resources required to use the mHealth tool.   Taylor and Todd 

(1995) 2 
a
 I have the knowledge required to use the mHealth tool.   

3 
a
  With the required training, it would be easy for me to use 

the mHealth tool. 

  

4 
a
  The mHealth tool does not complement paper-based 

systems I use. 

  

1 
a
 I like using the mHealth tool.   Compeau and 

Higgins (1995), 

Compeau, Higgins 

and Huff (1999)

2 
a
  I look forward to using the mHealth tool.  

3 
a
 Using the mHealth tool is frustrating (R).  

4 
a
 Once I start using the mHealth tool, I find it hard to stop 

(R). 

 

5 
a
  I get bored quickly when using the mHealth tool.  

a = Measured on 7-point scale 1 = Almost Never to 7 = Several Times a Day 

R = Reverse Scored 

 

Perceived TTF was measured as detailed in Appendix E as a sixteen-item measurement 

scale adapted from Dishaw (1994) and Junglas et al. (2009). Items such as ‘the [tool] 

supports me in receiving information from co-workers’ (Junglas et al., 2009) were used to 

measure perceived TTF. A more detailed outline of these measures is provided in Section 

E.1 of Appendix E.  

 

                                                 
74

 Item 4 of the precursor ‘facilitating conditions’, and items 3, 4, and 5 or the precursor ‘affect toward use’ 

were excluded, as they did not meet the criteria for internal consistency reliability and convergent validity 

criteria (Hair et al., 2014, p. 107) as detailed in Table G.7 of Appendix G. 
75

 The proposed link between precursors of use and use was positive. Thus the negatively phrased survey 

instrument items 3 and 5 of the precursor ‘affect toward use’ were reverse scored to ensure that all 

correlations and loadings were aligned within the same factor (Hair et al., 2010). 
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User performance was measured as detailed in Section 3.3 of Chapter 3, and Appendix E 

as an eight-item measurement scale adapted from Torkzadeh and Doll (1999), Junglas et 

al. (2009), and Hou (2012). Items such as ‘the [tool] increases my productivity’ 

(Torkzadeh and Doll, 1999) were used to measure user performance. 

 

Partial Least Squares - Structural Equation Modeling (PLS - SEM) was used to test the 

effects of (1) use on user performance, (2) perceived TTF on use and user performance, 

and (3) precursors of use on use. A structural path model was estimated to test these 

effects. Coefficients of determination (R
2
 values) of the endogenous constructs use and 

user performance were used to determine the predictive accuracy
76

 of the estimated PLS 

structural path model (Hair et al., 2014, p. 174), and Stone-Geisser’s Q
2
 values (Geisser, 

1974; Stone, 1974) of use and user performance were used to determine their predictive 

relevance
77

 (Hair et al., 2014, p. 178). In addition, f 
2

 (q 
2
) effect sizes were computed to 

determine the relative impacts of use, perceived TTF, and precursors of use, on the 

predictive accuracy (R
2
) and relevance (Q

 2
) of the estimated PLS structural path model 

(Urbach and Ahlemann, 2010; Hair et al., 2014).  

 

Use was positioned as an intervening mechanism between (1) perceived TTF and user 

performance, and (2) precursors and user performance. As such, PLS mediator analyses 

with bootstrapping (Preacher and Hayes, 2004) were used to test use for mediating 

effects. 

10.6 Results 

10.6.1 Main Effects 

 

The structural path model estimated to test the effects of (1) use on user performance, (2) 

perceived TTF on use and user performance, and (3) precursors of use on use, is shown in 

Figure 10.6. The model has significant predictive accuracy for the endogenous constructs 

of use (R 
2
 = 0.318) and user performance (R 

2
 = 0.490). The model also has significant 

predictive relevance for the endogenous constructs of use (Q
 2

 = 0.117) and user 

performance (Q
 2

 = 0.281). 

                                                 
76

 R
2
 values of approximately 0.670, 0.333, and 0.190 are substantial, moderate, and weak, respectively 

(Chin, 1998; Urbach and Ahlemann, 2010, p. 21). 
77

 Q
2
 values larger than zero for a certain reflective endogenous latent variable are indicators of predictive 

relevance (Henseler et al., 2009, Hair et al., 2014, p. 178). 
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Figure 10.6. Path Model: Extended Technology-to-Performance Chain (TPC) 

 

The path coefficients, t values, p values, significance levels, and confidence intervals, of 

the structural path model estimated to test the effects of (1) facilitating conditions and 

affect toward use, on use, (2) perceived TTF on use and user performance, and (3) use on 

user performance, are summarized in Table 10.3. 

 
Table 10.3. Structural Path Model Results 

Path Path Coefficient t p Significance 90% CI 

Use  User Performance 0.176 2.491 0.01 ** [0.05, 0.24] 

f 
2 

Use  User Performance = 0.025, q 
2 
Use  User Performance = 0.025 

Perceived TTF  Use 0.347 4.069 0.00 *** [0.21, 0.49] 

Perceived TTF  User 

Performance 

0.269 4.189 0.00 *** [0.16, 0.37] 

f 
2  

Perceived TTF  Use = 0.299, q 
2 

Perceived TTF  Use = 0.385 

f 
2 

Perceived TTF  User Performance = 0.096, q 
2 

Perceived TTF  User Performance = 0.068 

Facilitating Conditions  Use 0.168 2.169 0.03 ** [0.04, 0.30] 

Affect Toward Use  Use 0.172 2.400 0.02 ** [0.05, 0.29] 

f 
2 

Facilitating Conditions  Use = 0. 063, q 
2 

Facilitating Conditions  Use = 0.128 

f 
2 

Affect Toward Use  Use = 0.072, q 
2 
Affect Toward Use  Use = 0.111 

NS = Not Significant, *p < 0.10, **p < 0.05, ***p < 0.01 
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Results in Table 10.3 indicate that use has a significant positive effect on user 

performance (path coefficient = 0.176, t = 2.491, p < 0.05). Thus the TPC is completed 

and Proposition 9 (P9) is supported. Perceived TTF has a significant positive effect on 

use (path coefficient = 0.347, t = 4.069, p < 0.01) and user performance (path coefficient 

= 0.269, t = 4.189, p < 0.01). Thus Proposition 10a (P10a) and Proposition 10b (P10b) 

are supported. Facilitating conditions has a significant positive effect on use (path 

coefficient = 0.168, t = 2.169, p < 0.05), and affect toward use has a significant positive 

effect on use (path coefficient = 0.172, t = 2.400, p < 0.05). Thus the TPC is extended and 

Propositions 11 (P11) and Proposition 12 (P12) are supported. Perceived TTF has 

stronger effects
78

 on use (f 
2
 = 0.299, q

2
 = 0.385) than facilitating conditions (f 

2
 = 0.063, 

q
2
 = 0.128) and affect toward use (f 

2
 = 0.072, q

2
 = 0.111), although facilitating 

conditions and affect toward use have small incremental effects on use over and above 

perceived TTF. Perceived TTF also has stronger effects on user performance (f 
2
 = 0.096, 

q
2
 = 0.068) than use (f 

2
 = 0.025, q

2
 = 0.025), although use has small incremental effects 

on user performance over and above perceived TTF. In prior works, demographic 

characteristics have been observed to influence technology use (Agarwal and Prasad, 

1999; Venkatesh and Morris, 2000; Potagolu and Ekin, 2001; Piccoli, Ahmad and Ives, 

2001). As such, the effects of age, experience as a CHW, education level, and tool use 

experience, on use, were controlled for in the estimation of the structural path model. 

However, these control variables were not found to have a significant effect on use. 

10.6.2 Mediating Effects 

 

Use was tested for mediating effects between (1) perceived TTF and user performance, 

and (2) facilitating conditions and affect toward use and user performance. The path 

coefficients, t values, p values, significance levels, and confidence intervals, of the 

structural path model estimated to test the effects of (1) facilitating conditions and affect 

toward use on user performance through use, and (2) perceived TTF on user performance 

through use, are summarized in Table 10.4. 

 

 

 

                                                 
78 For f

 2
, values of 0.02, 0.15, and 0.35 are small, medium, and large effects, respectively (Cohen, 1988). 

These threshold values are also used to assess q 
2
 (Urbach and Ahlemann, 2010; Hair et al., 2014). 



 243 

Table 10.4. Structural Path Model Results  

Direct Effects Path Coefficient t  p Significance 90% CI 

Perceived TTF  Use 0.347
 p1 

4.048 0.00 *** [0.21, 0.49] 

Use  User Performance 0.146
 p2 

2.559 0.01 ** [0.05, 0.24] 

Perceived TTF  User 

Performance 

0.269
 p3 

4.193 0.00 *** [0.16, 0.38] 

Indirect Effect = p
1
 (0.347) x p

2 
(0.146) = 0.051

 

Facilitating Conditions  Use 0.168
 p1 

2.117 0.04 ** [0.04, 0.30] 

Use  User Performance 0.146
 p2 

2.559 0.01 ** [0.05, 0.24] 

Facilitating Conditions  User 

Performance 

0.327
p3 

2.648 0.01 *** [0.12, 0.53] 

Indirect Effect = p
1
 (0.168) x p

2
 (0.146) = 0.025 

Affect Toward Use  Use 0.172
 p1

 2.420 0.02 ** [0.06, 0.29] 

Use  User Performance 0.146
 p2

 2.559 0.01 ** [0.05, 0.24] 

Affect Toward Use  User 

Performance 

0.191
p3

 2.224 0.03 ** [0.05, 0.33] 

Indirect Effect = p
1
 (0.172) x p

2 
(0.146) = 0.025 

NS = Not Significant, *p < 0.10, **p < 0.05, ***p < 0.01 

 

The significance of the indirect effects was tested. In addition, the mediating strength of 

use was determined. Indirect effect sizes, bootstrapping standard errors, t values, and 

VAF values are summarized in Table 10.5. 

 

Table 10.5. Indirect Effect and Mediation Strength Results 

Direct Effect Size Indirect Effect Size Total 

Effect 

Standard 

Error 

t Significance VAF 

Value % 

Perceived TTF  

User Performance 

0.269 Perceived TTF  Use 

 User Performance 

0.051 0.320 0.023 2.217 ** 0.159  16% 

Facilitating 

Conditions  User 

Performance 

0.327 Facilitating Conditions 

 Use  User 

Performance 

0.025 0.352 0.015 1.667 * 0.071 7% 

Affect Toward Use 

 User 

Performance 

0.191 Affect Toward Use  

Use  User 

Performance 

0.025 0.216 0.015 1.667 * 0.116  12%
 

NS = Not Significant. *p < 0.10, **p < 0.05, ***p < 0.01 

Non-Mediation (VAF < 20%), Partial mediation (20% < = VAF < = 80%), Full mediation (VAF > 80%) 

Total Effect = Direct Effect + Indirect Effect 

 

Results in Table 10.5 indicate that the effect of perceived TTF on user performance 

through use (t = 2.217, p < 0.05) is significant. In addition, the effects of facilitating 

conditions (t = 1.667, p < 0.10) and affect toward use (t = 1.667, p < 0.10) on user 
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performance through use are significant. In addition, use accounts for 16% (VAF = 

0.159) of the perceived TTF effect on user performance, and 7% (VAF = 0.171) of the 

effect of facilitating conditions on user performance, and 12% (VAF = 0.116) of the 

effect of affect toward use on user performance. Since the VAF values obtained are 

smaller than 20%, almost no mediation occurs (Hair et al., 2014, p. 225). Thus use does 

not fully mediate the effects of perceived TTF on user performance, and the effects of 

facilitating conditions and affect toward use on user performance. 

10.7 Discussion 

10.7.1 The Link Between Use and User Performance 

 

In this chapter, it was postulated that in the mHealth context technology use and user 

performance are significantly and positively associated. This is confirmed as findings 

indicate that mHealth tool use is significantly and positively associated with CHW 

performance. Notably, Trice and Treacy (1986) posited that technology if not used, 

cannot impact its users, and proposed a ‘forward linkage’ between the system, utilization 

and performance (p. 13). Similarly, Goodhue and Thompson (1995) posited that 

utilization positively impacts performance (p. 214), as did Goodhue, Littlefield, and 

Straub (1997, p. 461). Thus a ‘forward linkage’ is confirmed as higher technology use 

increases user task performance (Luarn and Huang, 2009, p. 235). Similarly, Chiasson, 

Kelley and Downey (2015) theorized and observed significant positive associations 

between use and performance, a linkage described as a feed-forward chain relationship (p. 

169), and notably, in a prior study, Hsiao and Chen (2012) found that the use of mobile IS 

in a hospital setting enhances the effectiveness and efficiency of nurses in patient care 

performance.  

10.7.2 The Link Between Task-Technology Fit (TTF) and Use and User 

Performance 

It was also postulated that a perceived ‘fit’ between the task and the technology is 

significantly and positively associated with use and user performance. This is supported 

as findings indicate that the perceived ‘fit’ of the mHealth tool to the CHW task is 

significantly and positively associated with mHealth tool use and CHW performance. 

This is consistent with the observation that perceived TTF is a direct performance 

antecedent (Goodhue and Thompson, 1995), and that using technology with a high TTF 
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would positively influence user performance because the tool or system used closely 

meets the task performed (Hsiao and Chen, 2012). This finding corroborates evidence in 

previous research that indicates that perceived TTF has positive impacts on both use and 

user performance outcomes (Luarn and Huang, 2009, p. 236, D’Ambra et al., 2013, p. 

60). Technology use and its outcomes have been considered to be dependent on context 

(Tambe and Hitt, 2012) such that perceived TTF can be considered to have either 

negative or positive consequences for user performance. In some cases, users can choose 

to use a tool or system with low TTF more frequently to meet their needs. On the other 

hand, users can also choose to use a tool or system with high TTF more frequently 

because it sufficiently meets their needs (p. 53). Moreover, a perceived TTF may have 

diminished impacts on user performance levels if the user does not use the tool or system. 

Notably, the observed finding is not consistent with McGill, Klobas and Renzi’s (2011) 

observation that perceived TTF does not influence utilization but was found to have a 

significant and positive effect on performance outcomes (p. 52). Similarly, McGill and 

Klobas (2009) found only positive perceived TTF performance effects (p. 503). It has 

been argued that in particular contexts, use is independent of a perceived ‘fit’ between the 

task and the technology (McGill et al., 2011, p. 53). It is notable that use is partly 

dependent on a perceived ‘fit’, and contributes to translating this perception into 

improved performance.  

10.7.3 The Link Between Precursors of Use and Use 

 

The identification of factors that affect the degree to which system users use technologies 

has been emphasized in previous research (Fuerst and Cheney, 1982; Thompson et al., 

1991). In addition to perceived TTF, it was found that the precursors of facilitating 

conditions and affect toward use have significant impacts on use. Thompson, Higgins, 

and Howell (1994) posited that facilitating conditions are those factors that enable task 

performance (p. 170). This observation is consistent with Chang and Cheung’s (2001) 

finding that facilitating conditions are positive and significant precursors of technology 

use (p. 9). Findings confirm these expectations such that CHWs are less likely to use 

systems when facilitating conditions e.g. training support and information resources, and 

positive affective evaluations of the technology, are absent. Selim (2007) observed that 

facilitating conditions such as accessibility, quality of infrastructure, and technical and 

financial support were significantly and positively associated with technology use (pp. 
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407-410). Moreover, Compeau and Higgins (1995) observed that the affective response 

of users towards a system impacts their usage behaviour (p. 196), and similarly, 

Compeau, Higgins, and Huff (1999) affirmed that affect toward use was a determinant of 

system usage (p. 153). Therefore in this study, mHealth tool use and the above precursors 

were expected to be significantly and positively associated. Findings thus confirm the 

importance of affect, and affirm that mHealth tool use is dependent on CHWs having a 

positive or enjoyable experience using the technology such that their frustration would 

inhibit its use. 

10.7.4 The Technology-to-Performance Chain (TPC) 

 

In addition to the postulated effects of perceived TTF on use and user performance, use 

was linked to user performance and a set of precursors, and as such, completed an 

extended TPC. In addition, use was positioned to mediate between these precursors and 

user performance. Trice and Treacy (1986) observed that in linking systems to 

performance impacts, utilization can be the conduit between ‘backward and forward 

linkages’ (p. 13). However, in the present study, mHealth tool use was not found to fully 

mediate the effects of affect toward use on CHW performance, thus contradicting 

LeBlanc and Kozar (1990) who observed that IT and performance are positively 

associated, but only through use as an intervening mechanism (p. 274). As such, 

depending on the context, IT that is enjoyable to use can directly impact user task 

performance. Based on results of TPC model (Figure 10.6) tests reported in this chapter, 

it was observed that perceived TTF and use have significant and positive impacts on user 

performance. Similarly, D’Ambra, Wilson and Akter (2013) found that a user-perceived 

TTF and utilization accounted for a significant amount of the variance in performance 

effects. It is noteworthy that perceived TTF was found to have a stronger impact on user 

performance than does use. This finding is consistent with previous studies in which it 

was found that perceived TTF has greater explanatory power than utilization in the 

prediction of performance impacts (Staples and Seddon, 2004, p.28; McGill and Klobas, 

2009, p. 505). As such, the perceptions of CHWs of a ‘fit’ between their tasks and the 

mHealth tool is more important for their delivery of patient care than their levels of 

dependence on using it. In some previous studies however, utilization has been observed 

to be more strongly associated with perceived task performance than perceived TTF, such 

that the actual usage of a tool or system may not be contingent upon user perceptions of a 
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‘fit’ to task (Luarn and Huang, 2009, p. 236; D’Ambra et al., 2013, pp. 61-62). As such, 

in some user environments, enhancing use is believed to more directly impact task 

performance  (p. 236). Moreover, it is possible that tool or system users can perceive that 

they are best assisted through the use of IT, which in turn enhances their task 

performance. Furthermore, it can be speculated that in some contexts, technology users 

accumulate sufficient experience using a particular tool or system and are thus familiar 

with its functionality such that a perceived ‘fit’ is not a determining factor for their task 

performance. It therefore appears that in prior works, findings indicative of ‘forward 

linkages’ from TTF and use, to performance, have been inconsistent. Perceived TTF is 

nevertheless found here to be essential for enhanced use and user performance. In 

addition, it is noteworthy that perceived TTF has a stronger impact on use than 

facilitating conditions and affect toward use. This result is consistent with Goodhue, 

Littlefield and Straub’s (1997) finding that perceived TTF was more highly correlated 

with utilization than the facilitating condition of accessibility (p. 461). Thus TTF as a 

theory for use has greater explanatory power than some of the other use theories. As 

McGill and Klobas (2009) observed, the role of TTF in directly impacting user 

performance is a core element of the TPC, as has been confirmed in previous research 

conducted in various contexts (Goodhue et al., 1997; Goodhue et al., 2000; D’Ambra and 

Wilson, 2004). In the present study, perceived TTF and use are core processes through 

which technology impacts user performance (Goodhue, 1992, p. 305; Goodhue and 

Thompson, 1995, pp. 217-220; Goodhue, 1997, p. 450; Goodhue, Littlefield and Straub, 

1997, p. 455; D’Ambra and Wilson, 2004a, 2004b; Luarn and Huang, 2009, p. 229; 

D’Ambra, Wilson and Akter, 2013). Thus user performance can be considered a function 

of both perceived TTF and use (Staples and Seddon, 2004; Luarn and Huang, 2004), and 

use a function of both perceived TTF and precursors of use (Goodhue et al., 1997). 

Within the extended TPC model tested in the context of the present study, TTF is a 

significant predictor of use and user performance when CHWs perceive a ‘fit’ between 

their tasks and characteristics of the mHealth tool, in addition to their dependence on 

using it, and positively and affectively evaluate the technology. Therefore considered 

retrospectively, the empirical evidence adduced in this chapter serves to affirm, clarify, 

and extend the relationships between technology, TTF, use and performance through 

‘forward and backward linkages’ (Trice and Treacy, 1986; Goodhue, 1995; Goodhue and 

Thompson, 1995; Staples and Seddon, 2004; Luarn and Huang, 2009; Chiasson et al., 
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2015). Therefore findings lend support to Goodhue and Thompson’s (1995) proposed 

integration of use and fit models into a TPC. 

10.7.5 Implications for Research  

 

There are seven implications for research, arising from this chapter’s test of the extended 

complete TPC model. 

 

First, use comprises the dimensions of ‘frequency’, ‘duration’, and ‘dependence’, 

together forming a composite construct, which is useful in that it can be empirically 

examined for its effects on user performance. The inclusion of frequency and duration 

dimensions to supplement use as dependence, extends the TPC, thereby representing an 

enriched perspective of the use construct beyond perceptions of user dependence on the 

tool.  

 

Second, the evaluation of multiple use dimensions meaningfully extends TTF theory. In 

addition, by linking use to user performance, the ‘forward linkage’ of the TPC is 

completed (Trice and Treacy, 1986). It is apparent that this linkage ought to be 

incorporated as an essential component of causal chains. This gives more impetus to 

LeBlanc and Kozar’s (1990) observation that to fully grasp the relationship between 

technology and performance, utilization can and must play a significant role as a 

predictor (p. 263).  

 

Third, ‘facilitating conditions’ and ‘affect toward use’ were examined as precursors of 

technology use in the present study. By linking these precursors to use, a ‘backward 

linkage’ of the TPC extended the model (Trice and Treacy, 1986). This relationship is 

especially useful for researchers who endeavour to understand and explain the 

incremental effects of use precursors in a TPC.  

 

Fourth, observed findings can greatly benefit researchers testing mHealth tool use 

precursors in multiple contexts. Subsequently, the findings reported in this study can 

enhance pre-existing, limited research on determinants of use. It would, therefore, be 

prudent for theorists developing and testing TPCs to re-assess the linkages between use 

and its determinants.  
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Fifth, it is important for researchers to simultaneously consider the determinants of use 

and its impacts on user performance. This represents a more balanced and precise 

approach for researchers who endeavour to exhaustively investigate the role of 

technology use behaviour in linking task and tool components and other user perceptions 

to user performance. 

 

Sixth, it is important to recognize that in testing the use construct as an intervening 

mechanism, simultaneous ‘backward and forward linkages’ must be anticipated, and not 

necessarily one or the other. This enriches the currently existing research on the 

determinants and consequences of technology use. Moreover, this approach signifies a 

multi-functional perspective of technology use. Thus researchers must recognize and 

validate that in addition to TTF, precursors are alternative use determinants that could 

substantively impact user performance.  

 

Seventh, following this study, it must be appreciated that TPC components together form 

a causal chain that must be systematically and sequentially evaluated. Consequently, 

researchers can use the TPC as an analytical framework useful for evaluating technology 

impacts in a particular context. They could also empirically assess the robustness of 

linkages in the causal chain to identify those components that need strengthening. For 

example, in this study, TTF was tested as perceived TTF but further work could be 

replicated to consider TTF modelled as Covariation within an extended TPC model for 

example. Alternative conceptualizations of use such as ‘deep structure use and ‘presence 

of use’ could also be considered. 

10.7.6 Implications for Practice  

 

There are six implications for practice, arising from this chapter’s test of the extended 

complete TPC model. 

 

First, mHealth tool designers should consider the link between use and CHW 

performance. In doing so, they must prioritize those factors that are instrumental to 

technology use in a particular context. To derive performance benefits, technology must 

be used and for use to occur, tool user preferences must be anticipated along with 

facilitating mechanisms e.g. decision support, technical support, logistical support, 
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training support, access to supplies, information resources, access to feedback 

mechanisms, and adequate mobile coverage.  

 

Second, as demonstrated in this study, an evidence-based understanding of the 

relationship between use and user performance represents invaluable feedback for 

technology designers, instrumental to their design of enhanced, user-responsive mHealth 

tools for CHW tasks. In addition, findings of this study represent empirical support for 

the importance of forward linkages as a critical component of enhanced patient care 

delivery. 

 

Third, mHealth tool designers must recognize the importance of the CHW as the end-

user. CHW input must, therefore, be incorporated to better anticipate user perceptions, 

and identify those factors that directly influence mHealth tool use. Designers must also 

focus on translating mHealth tool use into CHW performance through an enhanced user 

‘task-fit’ experience. Findings are thus useful for those who may wish to design superior 

mHealth technologies. This can be achieved by identifying what factors both influence 

and affect tool use behaviour in the CHW context. As the intended users of the 

technology, it is important that CHWs be involved as participants in the design process, 

so as to ensure that the mHealth tool they are equipped with ‘fits’ their task needs, while 

also satisfying standard best practices for the effective delivery of patient care. 

 

Fourth, designers must design more user-friendly mHealth tools to create a CHW 

dependence on use. In addition, they could use a set of metrics with which to customize 

CHW user preferences. This is to ensure that the tools are more enjoyable and less 

frustrating to use, thereby enhancing the affective response of users to the tool used. A 

more scientific, data-driven approach to mHealth tool design must, therefore, be adopted 

to guide design. 

 

Taken together, designers could use the TPC as a multi-purpose, diagnostic evaluative 

framework for (1) re-designing mHealth tools and CHW support functions to enhance 

user perceptions of a ‘fit’ of the technology to task, (2) prioritizing functions that can 

enhance CHW performance, and (3) involving CHWs to enhance mHealth tool use 

impacts on their user experience. 
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It is clear that the findings reported constitute important practical implications for 

mHealth projects in which implementers wish to support CHW-assisted patient care 

delivery systems. In doing so, well-designed mHealth tools sensistive to the task 

requirements of CHW users would be used to enhance their performance and could 

complement or even replace existing technologies. 

10.8 Chapter Conclusion 

 

The purpose of this chapter was to evaluate the determinants of technology use and its 

impacts on user performance. First, use was examined for its effect on user performance. 

Use was found to have a positive influence as a determinant of user performance besides 

TTF. Second TTF was examined for its effects on use and user performance. TTF was 

found to have a positive influence on use and user performance. Third, the precursors of 

facilitating conditions and affect toward use were examined for their effects on use. 

Facilitating conditions and affect toward use were found to have a positive influence as 

determinants of use besides TTF. Fourth, use was examined for mediating effects 

between TTF and user performance, and the precursors of facilitating conditions and 

affect toward use, and user performance. Use was not found to mediate between TTF and 

user performance, and facilitating conditions and affect toward use and user performance. 

Overall, in this chapter, a completed and extended TPC model has been empirically 

substantiated. 

 

Results of tests of determinants of use and its impacts on user performance are 

summarized in Table 10.6.  

 

Table 10.6. Findings 

Proposition Finding 

P9 The use of mHealth tools by CHWs will positively influence user performance. Supported 
 

P10a The perceived ‘Fit’ between CHW tasks and mHealth tools will positively influence use. Supported
 

P10b The perceived ‘Fit’ between CHW tasks and mHealth tools will positively influence user performance. Supported  

P11 Affect toward use will positively influence mHealth tool use. Supported 

P12 Facilitating conditions will positively influence mHealth tool use. Supported  
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11 Conclusion 

11.1 Introduction 

 

The purpose of this study was to examine the implications of mHealth tools for the 

performance of CHWs in the Kenyan context and to evaluate how supporting technology 

characteristics ‘fit’ with CHW task characteristics to influence the use of mHealth tools. 

Several knowledge gaps in previous mHealth research, and emergent research problems 

were identified. To address these research problems, seven research questions were 

formulated
79

. To answer these research questions, nine study objectives were specified
80

. 

To address these study objectives, a conceptual model was developed
81

 to link mHealth 

technology to CHW performance. The purpose of this chapter is to conclude this study by 

(1) Summarizing the study, (2) Discussing the research limitations of the study, (3) 

Highlighting contributions of this study to theory and practice, and (3) Discussing the 

implications of the study for future research. Chapters 2 to 10 of this thesis are 

summarized in Section 11.2. 

11.2 Summary of the Study 

 

In Chapter 2, literature on mHealth and CHW performance was reviewed, and 

shortcomings were identified. The context of this study was the use of mHealth tools 

among CHWs in Kenya. In Chapter 3, a quasi-experimental post-test study of non-

equivalent groups (Harris et al., 2006) was conducted to compare the performance of 

CHWs using mHealth tools to those using traditional paper-based systems, in the Kenyan 

context. The intervention, mHealth tool use (X), was observed in one group, and not the 

other, a control group comprising traditional paper-based systems users. It was found that 

mHealth tool users outperform their counterparts using paper-based systems as they 

spend less time completing their monitoring, prevention, and referral reports weekly, and 

report higher percentages of both timeous and complete monthly cases. Although no 

significant differences were found along the demographic indicators of gender, education 

level, and use experience, it was observed that they had significant effects on CHW 

                                                 
79

 Please refer Section 1.3 of Chapter 1 for a description of the Research Questions formulated for this 

study. 
80

 Please refer Section 1.4 of Chapter 1 for a description of the Study Objectives specified for this study. 
81

 The development of this conceptual model is detailed in Chapter 5, and the conceptual model is presented 

in Figure 5.12 of Chapter 5. 
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reporting performance between the two user groups. Moreover, while in some instances 

paper-based system users may initially perform better, mHealth tool users gradually 

accumulate sufficient experience catching up to, and eventually surpassing their more 

conventional counterparts. In addition, mHealth tool users were found to be more positive 

about their performance compared to those using traditional paper-based systems. Study 

Objectives 1 and 2 were addressed and thus answers to Research Questions 1 and 2 were 

provided. Having established the relative advantage of mHealth tools for CHW 

performance, the theory of Task-Technology Fit (TTF) was then drawn on to better 

understand the within-group variation in tool use and user performance, among mHealth 

tool users, who were the primary units of analysis in this study. 

 

In Chapter 4, the concept of TTF was identified as the theoretical underpinning of this 

study. In Chapter 5, a Technology-to-Performance Chain (TPC) underpinned by TTF 

theory was developed to link CHW task and mHealth technology characteristics to 

mHealth tool use and CHW performance. Previous research in which TPC models have 

been developed and empirically tested were built upon. In past studies on TPC concepts, 

constructs including ‘system characteristics’, ‘task-system fit’, ‘expected consequences of 

use’, ‘affect toward using’, and ‘performance impacts’ (Goodhue and Thompson, 1995; 

Goodhue, 1997; Goodhue et al., 1997; Staples and Seddon, 2004) have been linked. 

However, as Staples and Seddon (2004) noted, while TPCs have been proven useful for 

testing theory, explanation, and prediction, the linkages between their constructs have not 

been exhaustively evaluated especially in prior TTF-influenced research (p. 18). 

 

This study was therefore positioned to constitute a unique contribution through the 

development of a TPC to link the constructs of Task-Technology-Fit (TTF) (A), use (B), 

user performance (C), and a set of precursors (D). As reproduced in Figure 11.1, this TPC 

was a complete, extended conceptual model developed for, and comprehensively tested 

in, the context of mHealth tool use and CHW performance in Kenya. First, TTF was 

linked to use and user performance (Links 1.1 and 1.2), from multiple adopted ‘fit’ 

perspectives (Venkatraman, 1989). Second, use was linked to user performance (Link 2). 

Third, a set of precursors of use was linked to use (Link 3).  
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Figure 11.1. Tested Completed and Extended Technology-to-Performance Chain (TPC)  

 

TTF is the core process in the TPC. TTF is a multi-faceted construct, which has often 

been described as the extent to which a system assists users in performing their tasks 

(Goodhue, 1992), or the ‘fit’ of system or tool support functions to task requirements 

(Dishaw, 1994; Goodhue and Thompson, 1995). As observed, in some prior works, the 

user typically evaluates the ‘fit’ of the tool used to the task performed. Elsewhere, ‘fit’ is 

computed as a bivariate term combining task needs and tool support functions (Dishaw, 

1994). TTF has been linked to both tool utilization and user performance outcomes 

(Goodhue, 1992; Dishaw, 1994; Goodhue and Thompson, 1995). Four ‘fit’ perspectives 

were adopted from Venkatraman (1989) and used to operationalize TTF and its effects on 

use and user performance. As such, by conducting the study, research on the nature and 

impacts of ‘fit’ was meaningfully extended. TTF was examined not only as a user-

evaluated construct (Chapter 8), but also as a configured, computed, by-product of its 

underlying task and technology characteristics (Chapters 6 and 7). Moreover, TTF was 

examined for non-linear effects on use and user performance. Furthermore, for the first 

time, TTF was examined as an internally consistent, observable pattern of co-aligned, 

inter-related characteristics, tested for its consequent effects on use and user performance 

(Chapter 9). To conceptualize TTF for this study, its underlying task and technology 

characteristics were defined and operationalized, as described in Chapters 3 and 4. The 
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task characteristics of CHW work were defined in terms of time criticality, 

interdependence, mobility, and information dependency dimensions. The technology 

characteristics of the mHealth tool were defined as support functions for time criticality, 

interdependence, mobility, and information dependency. The adoption of multiple ‘fit’ 

perspectives was important to ensure that useful insights into the complex, dynamic 

interplay between task and technology characteristics were comprehensively analysed, 

offering a more in-depth explanation of TTF. A discussion of the results of testing of the 

adopted ‘fit’ perspectives is described as follows: 

 

First, in Chapter 6, the perspective of Fit as Matching (Venkatraman, 1989, p. 430) was 

adopted and used to operationalize TTF as the corresponding pairs of user needs and tool 

functions. Four paired matches were examined for their effects on mHealth tool use and 

CHW performance. Tests of TTF as Matching showed that time criticality fit was 

important for user performance, but that interdependence fit was not important. In 

addition, mobility fit could be negative for use and user performance because unlike 

CHWs with low task mobility, the dependence on the mHealth tool and patient care 

effectiveness, efficiency, and quality, of those with relatively high task mobility is not 

contingent upon the characteristics of the technology used. 

 

Second, in Chapter 7, the perspective of Fit as Moderation (Venkatraman, 1989, p. 424) 

was adopted and used to operationalize TTF as the cross-product interactions of user 

needs and tool functions. Sixteen combinations signifying interacting fit pairs
82

 were 

examined for their effects on use and user performance. Tests of TTF as Moderation 

showed that a mobility-interdependence fit was important for both use and user 

performance, and that a mobility-information dependency fit was important for user 

performance. Similarly, an information dependency-time criticality fit was important for 

user performance. It was also found that TTF as interaction had significant non-linear 

effects on mHealth tool use and CHW performance.  

 

In addition, a perfect fit (congruence) between composite CHW task and mHealth 

technology components was observe to influence the highest levels of tool use. However, 

a misfit (incongruence) between the CHW task and mHealth technology was found to 

                                                 
82

 Please refer discussion in Section 7.4.2 and Figure 7.3 in Chapter 7. 
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influence lower levels of tool use. Likewise, the perfect fit (congruence) between the 

CHW task and the mHealth technology was found to influence the highest levels of user 

performance, whereas a misfit (incongruence) between the CHW task and mHealth 

technology was found to influence much lower levels of user performance. Moreover, it 

was found that an over-fit (excessive functional support) of the mHealth technology to the 

CHW task leads to a decline in levels of tool use. Furthermore, results also indicated that 

an under-fit (insufficient functional support) of the mHealth tool to the CHW task leads to 

a decline in levels of user performance. 

 

Third, in Chapter 8, the perspective of Fit as Mediation (Venkatraman, 1989, p. 428) was 

adopted and used to operationalize TTF as an intervening construct between user needs 

and tool functions, and use and user performance. Four identified user-perceived fit 

dimensions were evaluated. It was found that user-perceived fit fully mediates the effects 

of the mobility of CHW tasks on mHealth tool use, but partially mediates the effects of 

mHealth tool support for CHW task time criticality, interdependence, and information 

dependency, on the use of the mHealth tool. Moreover, user-perceived fit partially 

mediates the effects of time criticality of CHW tasks on user performance. However, this 

perceptual fit was not found to mediate the effects of CHW task interdependence, 

mobility, and information dependency, on user performance. Furthermore, user-perceived 

fit fully mediates the effects of mHealth tool support for time criticality on user 

performance, but partially mediates the effects of mHealth tool support for 

interdependence and information dependency, on user performance. In addition, a TTF 

combination of the four dimensions of user-perceived fit, as a set of simultaneous 

intervening mechanisms, was found to be a significant predictor of mHealth tool use and 

CHW performance. 

 

Fourth, in Chapter 9, the perspective of Fit as Covariation (Venkatraman, 1989, p. 435) 

was adopted and used to operationalize a holistic TTF system observed as a discernible 

pattern of co-aligned and internally consistent user needs and tool functions, examined for 

its effects on use and user performance. It was found that the inter-relatedness of CHW 

task time criticality, interdependence, mobility, and information dependency, and co-

aligned mHealth tool time criticality support, interdependence support, mobility support, 

and information dependency support, was established as these co-aligned factors were 

found to be significant first-order dimensions of a second-order fit. This second-order fit 
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was representative of their co-alignment and internal consistency. Subsequently, this ‘fit’ 

as co-alignment and internal consistency, was found to be a significant predictor of 

mHealth tool use and CHW performance, thereby providing an additional, more nuanced 

perspective of TTF, not conceptualized in prior works. In essence, this is neither a 

computed nor user-perceived TTF as has been expressed in various forms in previous 

studies, but is instead a holistically configured combination of user needs and tool 

functions. Thus a significant alternative ‘fit’ configuration that can be observed to have 

impacts on use and user performance is represented. 

For additional insight, the predictive significance of each of the four TTF-modelled
83

 ‘fit’ 

perspectives is summarized in Table 11.1. 

 

Table 11.1. Task-Technology Fit (TTF) Model Comparison 

Criterion Use User Performance 

Model Matching Moderation Mediation Covariation Matching Moderation Mediation Covariation 

R
2

adj 0.264 0.332 0.244 0.157 0.432 0.561 0.334 0.251 

Q
2

adj 0.129 0.107 0.093 0.058 0.245 0.301 0.172 0.134 

 

As indicated in Table 11.1, the predictive accuracy (R
2
) and relevance (Q

2
) for use and 

user performance, of the TTF models tested for their combined effects, were estimated. 

To account for the dimensionalities of each modelled ‘fit’, Adjusted R
2
 (R

2
adj) and Q

2
 

(Q
2

adj) values were calculated
84

. The adjusted R
2
 (R

2
adj) values for use and user 

performance are significant across the various models. Similarly, across the models, all 

the values of the cross-validated redundancy measure Q
2
 (Q

2
adj) are significant. Overall, 

the R
2

adj and Q
2

adj of Moderation for use (R
2

adj = 0.332, Q
2
adj = 0.107) and user 

performance (R
2

adj = 0.561, Q
2

adj = 0.301), and Matching for use (R
2

adj = 0.264, Q
2

adj = 

0.129) and user performance (R
2

adj = 0.432, Q
2

adj = 0.245), are the highest and most 

significant across all the models. In addition, the R
2

adj and Q
2

adj of Mediation for use 

                                                 
83

 Note: In Chapters 6 to 8, and in addition to TTF examined for covariation effects in Chapter 9, TTF was 

also modelled and tested for simultaneous effects on use and user performance, as detailed in Section 6.5.5 

of Chapter 6, Section 7.5.5 of Chapter 7, Section 8.5.5 of Chapter 8, respectively. In these sections, the 

overall predictive significance of the TTF models tested was determined. 
84

 The following formula (Hair et al., 2014) was used to calculate  R
2
adj  values, where n is the sample size 

and k is the number of exogenous latent variables (predictors) in the estimated structural path models (p. 

176): The same formula was used to calculate Q
2
adj values, by substituting R for Q in the formula (Sarstedt 

et al., 2013). 

  

R
2

adj =  1- (1 - R
2
)  .    n - 1 

                         ————  

                          n – k - 1 
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(R
2

adj = 0.244, Q
2
adj = 0.093) and user performance (R

2
adj = 0.334, Q

2
adj = 0.172) is lower, 

and the R
2

adj and Q
2

adj of the TTF as Covariation model for use (R
2

adj = 0.157, Q
2

adj = 

0.058) and user performance (R
2

adj = 0.251, Q
2

adj = 0.134) is the lowest, and least 

significant of the models.  

 

 

Figure 11.2. Task-Technology Fit (TTF) Matrix: The Integration of Matching and Moderation Interactions 

 

As illustrated (Figure 11.2), interaction encapsulates both the Moderation and Matching 

‘fit’ perspectives. This configuration exposes an apparent fundamental difference 

between the cellular
85

 matching and non-matching of ‘fit’ interactions. The phenomenon 

of TTF can be represented as a paradigm that is either tool user-perceived, or computed 

as a bi-variate construct. As such, TTF is as much a cognitive process, as it is a calculated 

or computed by-product (Dishaw, 1994). TTF is neither restricted to Matching nor 

Moderation (interaction). Therefore it can be postulated that TTF can at once be captured 

as matching, moderation (interaction), and user-evaluation, thus lending credence to its 

potential versatility. There is, however, an alternative approach that has been seldom 

tested in past studies. ‘Fit’ can also be considered as a system of holistic configuration 

examined for covariation effects, although it appears that this perspective provides less of 

an explanation of its effects on use and user performance, than the alternative 

manifestations of TTF examined in this study. 

 

In its totality, a ‘fit’ between task and technology characteristics can be evaluated through 

multiple perspectives adopted to understand TTF as a distinctive, multi-faceted, multi-

dimensional, construct. As such, the TTF construct can be (1) matching, (2) cross-product 

                                                 
85

 Distinctive TTF matrices configured for Matching and Moderation (interaction) ‘fit’ perspectives are 

described and depicted in Figures 6.1 and 6.3 of Chapter 6, and Figure 7.3 of Chapter 7, respectively. 
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interaction, (3) user-evaluation, and (4) observed as a pattern of inter-related components. 

The complex and nuanced disposition of the ‘fit’ concept was thus aptly demonstrated in 

this study. Using this concept, the effects of TTF on use and user performance were 

established. Study Objectives 3 to 5 were addressed and therefore answers to Research 

Questions 3 and 4 were provided. 

 

In Chapter 10, use was examined for its effects on user performance, and the two 

precursors ‘facilitating conditions’ and ‘affect toward use’, were examined for their 

effects on use. A perceptual TTF construct was also examined for its effects on use and 

user performance. It was found that mHealth tool use had a positive effect on CHW 

performance, thereby completing the TPC. It was also found that ‘facilitating conditions’ 

and ‘affect toward use’ had positive effects on mHealth tool use, thereby extending the 

TPC. Furthermore, perceived TTF was found to have positive effects on mHealth tool use 

and CHW performance. Of note, perceived TTF was found to be a stronger predictor of 

use than the tested precursors of use, and a stronger predictor of user performance than 

use. This is an affirmation of perceived TTF as the core process
86

 through which use and 

user performance effects are observed. Study Objectives 6 to 9 were addressed and thus 

answers to Research Questions 5 to 7 were provided. By addressing Study Objectives 3 to 

9 to answer Research Questions 3 to 7, a completed and extended TPC was effectively 

and fully tested, and empirically substantiated. Next, the theoretical and methodological 

limitations of this study are identified in Section 11.3. 

11.3 Limitations of the Study 

 

In this study, the impact of mHealth tools on CHW performance was empirically 

examined. To achieve this, a quasi-experimental post-test research design was used in 

Chapter 3, and an explanatory, predictive, research design was used in Chapters 6 to 10. 

However, a number of theoretical and methodological limitations of the study are noted.  

 

First, this study was designed and implemented as field research. As such, there are 

limitations that are inherent in any field study. For instance, in this study, the researcher 

                                                 
86

 The various mechanisms or processes through which technology can be linked to performance are 

described in detail in Section 4.7 of Chapter 4. 
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had limited control over the design of mHealth technologies that were implemented and 

currently in use, and standard mHealth project protocols that were already instituted. 

 

Second, a cross-sectional survey strategy (Saunders et al., 2010, p. 190) was used for this 

study. Structured questionnaire instruments (Orlikowski and Baroudi, 1991) were 

developed and used to collect data from respondent CHWs operating in Kenya. A cross-

sectional survey design is useful for collecting respondent data at a single point in time. 

However, the long-term impact of TTF on use and user performance over time is not, 

therefore, observable. Moreover, the cross-sectional survey strategy used in this study 

imposes a limitation on the inference of causal relationships between model constructs 

other than those associations that are theoretically underpinned.  

 

Third, owing to the use of a survey design consistent with empirical positivism, the nature 

of this study dictated that although technology user behaviour can be predictively 

modelled, it was not possible to qualitatively explore more extensive societal implications 

of mHealth tool use among CHWs in low-resource settings. The focus of this study on 

quantitative analysis prevented more qualitative insights into relationships between 

‘TTF’, ‘use’, ‘user performance’, and ‘precursors of use’. 

 

The quasi-experimental post-test study detailed in Chapter 3 had the following 

limitations. First, the observed intervention, mHealth tool use, was not introduced prior to 

conducting the quasi-experiment. Consequently, CHWs were not randomly assigned to 

the intervention or control groups. This lack of random assignment has been cited as a 

weakness of quasi-experimental study designs (Harris et al., 2006, p. 17). Moreover, 

since the observed intervention was already underway at the time of the study, it was not 

possible to establish baseline equivalence.  

 

Second, in any given empirical study, it is difficult to measure or control for all possible 

important confounding variables, particularly those that are unmeasured. This lack of 

sufficient control for confounds stems from a lack of randomization that is inherent in 

quasi-experiments, as conducted in this study. A higher number of potential confounding 

variables that are unmeasured or immeasurable cannot be controlled for in non-

randomized quasi-experimental studies, but are part of the randomization processes 

inherent in randomized controlled trials (Harris et al., 2006, p. 18), that are more typical 
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in clinical health informatics research. However, it must be recognized that despite 

observed limitations in controlling for possible confounding effects, the quasi-

experimental design used in this study allowed for the opportunity to observe large 

numbers of technology users in their actual real-world setting. 

 

The explanatory, predictive study detailed in Chapters 6 to 10 had the following 

limitations. 

 

First, self-reported seven-point Likert scale measurement items (Bhattacherjee, 2012) 

were used to measure the constructs Task, Technology, Fit, Use, User Performance, and 

Precursors of Use. The employment of self-administered instrument indicators can be a 

possible source of respondent bias (p. 39). In this regard, more objective measurement 

indicators can be considered by future researchers to supplement more perceptual, self-

administered scale item measures. 

 

Second, although there was a high response rate, there were some unusable responses that 

needed to be omitted. There is no a priori expectation that the omitted respondent would 

differ from the usable responses. However, any differences that might exist would limit 

the external validity or generalizability of the findings of this study to the full population 

of CHWs. 

 

Third, the precursors ‘facilitating conditions’ and ‘affect toward use’ were tested for their 

effects on use. The selection of these precursors in this study was in no small part 

motivated by deliberate theoretical considerations for the intended purpose of extending 

the developed TPC. It must, however, be acknowledged that there could be other 

precursors of mHealth tool use by CHWs in low-resource developing world contexts. 

Together with perceived TTF, the precursors evaluated in this study explained 31.8% of 

the variance in use, leaving nearly 70% of the variance unexplained. The impact of 

alternative determinants of technology use in such contexts, must, therefore, be 

investigated further. 

 

In summation, the degree of influence of limitations identified in this study cannot be 

quantified. However, it is important that findings reported in this study should be 

recognized as substantive empirical evidence indicative of specific outcomes, rather than 
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as conclusive, thus warranting their careful interpretation and subsequent application. The 

limitations highlighted, are, however, far outweighed by the contributions of this study to 

research and practice. These contributions are identified and discussed in Section 11.4. 

11.4 Contributions of the Study 

 

There were important contributions of the present study to theory, methodology, practice, 

and context. 

11.4.1 Contributions to Theory 

 

First, in Chapter 5, four dimensions of task and technology characteristics relevant to the 

CHW mHealth context, namely ‘time criticality’, ‘interdependence’, ‘mobility’, and 

‘information dependency’, were conceptualized. The ‘task’ component specified in this 

study has characteristics that reflect CHW needs, while the ‘technology’ component has 

characteristics that reflect mHealth tool functions. Consequently, in this study, a ‘fit’ 

between these CHW user needs and mHealth tool functions was specified. These task and 

technology characteristics can be used in future work as a basis for examining mobile 

health work and how mobile technology tools support work tasks. 

 

Second, in Chapter 6, the perspective of Fit as Matching (Venkatraman, 1989, p. 430) 

was conceptualized and examined as four matched pairs of task and technology 

characteristics tested for their effects on use and user performance. Specifically, these 

matched-fit pairs were tested for their independent and combined effects on use and user 

performance. To the researcher’s knowledge, this study is the first to adopt this approach 

to conceptualizing and testing TTF as Matching. 

 

Third, in Chapter 7, the perspective of Fit as Moderation (Venkatraman, 1989, p. 424) 

was conceptualized and examined as sixteen cross-product interactions between pairs of 

task and technology characteristics, tested for their effects on use and user performance. 

These cross-product interaction ‘fit’ pairs were tested for their effects on use and user 

performance both independently, and in combination. This interaction TTF perspective 

was mechanically enhanced through the non-linear analysis of response surfaces 

(Edwards, 2002; Yang et al., 2013). These formulations of ‘fit’ extend and enrich TTF 

testing in IS research.  
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Fourth, in Chapters 6 and 7, TTF matrices were devised and used to configure the 

numerous possible matching or cross-product interaction ‘fit’ combinations between user 

needs and tool functions. Other IS researchers can use these matrices to visualize 

interactive TTF combinations and guide them in the computation of ‘fit’. The use of TTF 

matrices to assess these distinct configurations of ‘fit’ as an interaction term 

(Venkatraman, 1989), therefore, represents a more novel and innovative schematic 

representation of the construct. 

 

Fifth, in Chapter 8, the perspective of Fit as Moderation (Venkatraman, 1989, p. 428) was 

examined as four dimensions of perceptual, user-evaluated, intervening mechanisms, 

between determinant task and technology characteristics, and consequent use and user 

performance outcomes. These intervening and user-evaluated ‘fit’ constructs were tested 

for their mediating effects, both in independent models, and as simultaneous multiple 

mediators in a combined effects model. Of note, it appears that in prior works, user-

evaluated TTF has not been explicitly specified as both a user-perception and an 

intervening mechanism in a single study. As such, this signifies a more complete 

approach to testing perceived TTF in IS research, while at the same time enriching the 

Mediation ‘fit’ perspective. 

 

Sixth, in Chapter 9, the perspective of Fit as Covariation (Venkatraman, 1989, p. 435) 

was examined as a pattern of observed co-alignment among four inter-related task and 

technology characteristics, tested for their internal consistency, and subsequent effects on 

use and user performance. To the researcher’s knowledge, this is the first time in TTF 

research, where ‘fit’ is evaluated from the Covariation perspective. Moreover, in 

evaluating Covariation, the concept of ‘fit’ is represented both as co-alignment and 

internal consistency. The task and technology characteristics observed were reflective 

first-order indicators of a ‘fit’, which was modelled as a reflective second-order construct. 

In addition, for the first time in TTF research, the co-alignment and internal consistency 

of ‘fit’ variables and subsequent covariation effects, were differentiated, therefore 

clarifying a common misconception that these manifestations are necessarily 

interchangeable, and demonstrating that they are, in fact, distinguishable. 

 

Seventh, the adoption and comparison of various conceptual models, and the contrasting 

of findings following tests of TTF from multiple ‘fit’ perspectives, itself constitutes a 
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conceptual contribution over prior works in which only one TTF model has been 

considered and examined. There are unique insights that emerge from adapting four 

distinct perspectives of ‘fit’. Specifically, the matched-pairing of corresponding user 

needs and tool functions could have both positive and negative impacts on mHealth tool 

use and CHW performance. Moreover, cross-product paired-interactions between user 

needs and tool functions do not necessarily have to match and could similarly have 

positive and negative impacts on mHealth tool use and CHW performance. Furthermore, 

‘fit’ as a user perception can partially or fully mediate relationships between mHealth 

technology and CHW task characteristics, and mHealth tool use and CHW performance. 

As a full mediator, it is possible for a perceived fit to effectively suppress any negative 

effects of CHW task needs on use and user performance levels. Last but not least, fit as a 

holistically configured representation as a higher-order factor observed in terms of a 

pattern of co-aligned lower-order user needs and tool functions, can also have positive 

impacts on use and user performance. 

 

Eighth, in Chapter 10, a complete, extended TPC was tested through a ‘forward linkage’ 

between use and user performance, and a ‘backward linkage’ between a set of precursors 

and use. In addition, a perceived TTF construct was tested for its effects on use and user 

performance. In doing so, perceived TTF and precursors of use were tested as 

determinants of use, and TTF and use were tested as determinants of user performance. 

Of note, use was positioned as an intervening mechanism firstly between perceived TTF 

as a determinant, and consequent user performance, and secondly between a set of use 

precursors as determinants, and consequent user performance. However, although in this 

study use was not found to mediate between these linkages, its positioning as mediating 

in the TPC represents a meaningful first attempt thereby progressing TTF and TPC 

research. As such, the use construct can at once be examined as a determinant of user 

performance, a consequence of both perceived TTF and a set of precursors, and a 

potential mediator, thus setting a precedent for a re-assessment of its importance as a 

multi-purpose TPC construct. In essence, the TPC theorized in Chapter 4 and developed 

in Chapter 5 is further validated. As such, all its postulated causal mechanisms are 

substantiated to affirm the importance of the technology-to-performance chain as a 

relevant theoretical framework from which to understand how technology supports task 

characteristics to influence user performance outcomes. As evidenced in Chapter 10, 

perceived TTF was found to be a stronger predictor of use than the precursors ‘facilitating 
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conditions’ and ‘affect toward use’, which were also observed to be significant 

determinants of use. In addition, perceived TTF was found to be a stronger predictor of 

user performance than was use, which was itself found to be a significant determinant of 

user performance. This represents insights into this core TPC process, further validating 

that as asserted in Chapter 4
87

, TTF is a primary determinant of use and user performance. 

However, it is abundantly clear that to supplement TTF for the extent of the TPC to be 

fully appreciated, use must impact user performance, and in turn be impacted by 

precursors. Lastly, to incorporate and examine these precursors of use, it was aptly 

demonstrated that system use theories such as Expectancy Value Theory (Triandis, 1979; 

Bagozzi, 1982; Azjen, 1985, 1991) can be effective supplementary theories, therefore 

meaningfully extending the theory of TTF (Vessey, 1991; Vessey and Galleta, 1991; 

Goodhue, 1992; Dishaw, 1994; Vessey, 1994; Goodhue, 1994; Goodhue and Thompson, 

1995) and strengthening the TPC. 

11.4.2 Contributions to Methodology 

 

First, in Chapter 3, a quasi-experimental post-test design with non-equivalent groups 

(Harris et al., 2006; Leedy and Ormrod, 2013, Creswell, 2014) was used to evaluate 

CHW performance groups using mHealth tools compared to traditional paper-based 

systems. Such a study design is rare in IS literature, but as evidenced in this study, has 

been proven to be uniquely useful for understanding the relative advantages of mHealth 

tools on CHW performance. 

 

Second, in Chapters 6 and 7, continuous moderator effects were modelled using product 

indicators (Henseler and Fassott, 2010). In addition, ‘fit’ interactions relative to use and 

user performance were graphically plotted to observe the interplay between user need and 

functional support levels. This signifies useful technical insights into moderator effect 

analyses with the possibility of interactive TTF visualization. 

 

Third, in Chapter 7, Polynomial Regression with Response Surface Methodology (RSM) 

(Edwards, 1993, 2002; Shanock et al., 2010; Yang et al., 2013) was used to evaluate TTF 

for its non-linear effects on use and user performance. For the first time in TTF research 
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situated in the health informatics research space, this sophisticated three-dimensional 

(3D) technique is applied, as it allows for enhanced predictive precision. 

 

Fourth, in Chapters 8 and 10, mediator analyses with bootstrapping procedures (Preacher 

and Hayes, 2004; Hair et al., 2014) were used to test indirect effects on user performance. 

Specifically, the effects of user needs and tool functions on use through perceived fit were 

tested. Similarly, their effects on user performance through perceived fit were tested. The 

effects of precursors on user performance through use were also tested. These mediator 

analyses represent the significance of testing multiple mediating relationships between a 

set of determinants and consequent variables, in TTF research, as demonstrated through 

this study. 

 

Fifth, in Chapter 9, TTF was modelled as a reflective first-order, reflective second-order 

construct. As such, the first order factors were reflective indicators of the second-order 

construct. For the first time in IS and by extension, TTF research, confirmatory second-

order factor analyses were used to examine the concept of ‘fit’ and its effects on 

consequent variables. 

 

Sixth, to effectively assess the impacts of TTF on use and user performance, six 

important steps followed in this study were identified. This sequential procedure forms 

the basis for a comprehensive, prescriptive, TTF evaluation framework, as demonstrated 

in Figure 11.3. This prescribed, diagnostic framework represents a pioneering 

methodological contribution, useful for the theorization of TTF, therefore addressing 

various important shortcomings
88

 identified in previous TTF research. 
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 A detailed description of TTF research shortcomings is provided in Section 4.6 of Chapter 4. 
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Figure 11.3. Proposed Task-Technology Fit (TTF) Framework 

 

In steps 1 and 2, the task and technology, and their underlying characteristics, are 

identified. In step 3, the ‘fit’ between task and technology characteristics is theorized. In 

step 4, ‘fit’ perspectives (Venkatraman, 1989) representing matching, moderation 

(interaction), user evaluation (perception) and covariation (observable pattern) concepts, 

are adopted and used for empirical assessment. For the first time, the ‘fit’ perspectives of 

Matching, Moderation, Mediation and Covariation are adopted and used in a single study 

to examine TTF and its impacts on use and user performance. In step 5, TTF impacts on 

use and user performance are empirically assessed using Partial Least Squares – 

Structural Equation Modeling (PLS -SEM) (Hair et al., 2014) techniques. Uniquely, these 

techniques are applied to mHealth, generic health, TTF, and TPC research, 

simultaneously. Subsequent to steps 4 and 5, a classificatory scheme for the technical 

evaluation of TTF concepts is developed for the first time in TTF research, constituting 

an extended, novel, methodological contribution of this study. This derived classificatory 

scheme, uniquely developed for TTF study in IS research, is presented in Table 11.2, 

effectively extending and re-designing the original analytic schemes successfully 

implemented by Venkatraman (1989). This is therefore a schematic representation that 



 268 

signifies an explicit perspective-oriented approach to TTF analysis, and can be utilized as 

a high precision diagnostic tool. 

 

Table 11.2. Task-Technology Fit (TTF) Classification Scheme 

Perspectives 

Parameters Matching Moderation Mediation Covariation 

Concept Paired complementary 

task and technology 

characteristics. 

Cross product of task and 

technology characteristics. 

Intervening mechanism 

between task and 

technology characteristics 

and use and user 

performance. 

Internally consistent co-

alignment of task and 

technology 

characteristics. 

Approach  Selection  Interaction  User evaluation  Systems 

Type  Computed  Computed  Perceived  Observed 

Analysis  Matrix 

 PLS-SEM 

(moderator 

analysis) 

 Interaction plots 

 Matrix 

 PLS-SEM 

(moderator 

analysis) 

 Interaction plots 

 Polynomial 

regression 

 Response Surface 

Methodology 

 PLS-SEM 

(mediator analysis) 

 PLS-SEM 

(confirmatory 

second-order 

factor analysis) 

Configuration 

(Model Setup) 

 Single Matched-

Pairs 

 Multiple Matched-

Pairs 

 Single Cross-

Product Interaction 

Pairs 

 Multiple Cross-

Product Interaction 

Pairs 

 Single Mediating 

Perceived Fit 

Dimensions 

 Multiple Mediating 

Perceived Fit 

Dimensions 

 Multiple 

Reflective First-

Order Factors 

as Reflective 

Indicators of Fit 

as a Second-

Order Construct 

(Type II model 

setup) 

 

Curiously, and despite its theoretical and practical significance, it must be recognized that 

to date, there has been no universally accepted TTF definition. This is despite various 

researchers (Goodhue et al., 1997; Dishaw, 1994, Dishaw and Strong, 1998) having 

attempted to adequately define
89

 the construct. To define TTF, with its apparent 

complexity, the adoption and use of ‘fit’ perspectives to empirically assess its constituent 

characteristics and consequent impacts is of paramount importance, and must be 

acknowledged. As per step 6 (Figure 11.3), to extend previous efforts to capture this 
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nuanced phenomenon in IS research, the TTF construct must be defined in light of its 

apparent complexity. Furthermore, it is incumbent upon researchers to recognize that TTF 

is context-sensitive. In other words, task domains depend on the needs of particular users 

in specific contexts, for which support functions must be designed to optimize their 

experience using specific tools to perform specific tasks.  As such, it would, therefore, be 

prudent and perhaps more sensible, to define TTF based on the significance of the 

perspectives adopted and used to examine its impacts on use and performance. For 

example, in this study, TTF, which was informed by the adopted ‘fit’ perspectives of 

Matching, Moderation, Mediation, and Covariation, and examined in the context of 

mHealth tool use and CHW performance, was found to have significant impacts on use 

and user performance.  

 

Consequently, in the context of this study, TTF can and must be defined as ‘a (1) 

matched pairwise, (2) cross-product interaction, (3) internally consistent, co-

alignment, and (4) perceived intervening mechanism, that exists between 

determinant CHW needs and mHealth tool functions, and consequent use and user 

performance outcomes’. In essence, TTF is only as good as the ‘fit’ perspective from 

which it is assessed in a particular context. Thus a more precise definition of TTF can 

only be derived from the ‘fit’ perspective that is under observation. This is of particular 

interest to researchers because unlike more conventional IS concepts that have been pre-

defined based on theory a priori, TTF has to be first empirically assessed and can 

therefore be re-assessed as a re-definable construct after testing. This signifies the 

evolution of ‘fit’ conceptualization in TTF research. As a consequence, TTF can assume 

multiple formulations in various settings or user-environments. This realization lends 

credence to the critical importance of adopted ‘fit’ perspectives
90

 in TTF research. As 

indicated earlier in this chapter, in the strategic management discipline, Venkatraman 

(1989) developed a framework of ‘fit’ perspectives each represented as conceptual 

models with corresponding analytical schemes. Similarly, Bergeron (2001) used 

empirical methodologies to compare multiple ‘fit’ perspectives. In retrospect, the 

implementation of these approaches set a precedent to be built upon in future research. 

For the first time, through the present study, multiple ‘fit’ perspectives were explicitly 

operationalized and tested in TTF research, in a manner that ensured theoretical and 
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empirical consistency. Venkatraman (1989) observed that ‘fit’ concepts were seldom 

tested in precisely the manner theorized (p. 438). This has long been a persistent TTF 

research shortcoming, which was addressed in this study. 

11.4.3 Contributions to Practice 

 

First, in Chapter 3, a quasi-experimental post-test was conducted to empirically examine 

CHW performance using mHealth tools compared to traditional paper-based systems. 

This provided evidence helpful to practitioners, constituting an approach with which to 

evaluate distinct intervention and control groups of users performing identical tasks using 

alternative technologies. 

 

Second, in Chapters 6 to 9, the systematic assessment of TTF impacts was demonstrated 

by adopting nuanced perspectives with which to better articulate and explicate the 

complex phenomenon of ‘fit’, in order to evaluate numerous ways in which tool functions 

can meet user needs, and subsequently affect levels of use and user performance. This 

represents a versatile, evaluative, analytic tool with which practitioners can empirically 

assess the impacts of technology in any user environment, setting, or context, in which 

various tools or systems are used in the performance of a wide range of tasks. Moreover, 

using these ‘fit’ perspectives, technology designers can better anticipate user perceptions 

and needs to design consistent and responsive tool support functions for optimized use 

and user performance. This represents the multitude of ways in which practitioners can 

anticipate and envision the extent or degree of a ‘fit’ between user needs and tool 

functions, and effectively evaluate these mechanisms so as to better substantiate use and 

user performance effects. Consequently, practitioners would be better enabled to 

understand under what circumstances tool use and task performance can be enhanced, 

therefore placing greater emphasis on the more scientific, evidence-based, design of user-

centric technologies. 

 

Notably, time criticality fit is important for user performance, and to achieve this, 

mHealth tool designers should incorporate functional features such as event-trigger SMS 

alert messages to support tasks that require CHWs to better respond promptly e.g. during 

emergencies to promptly refer patients to hospitals or clinics for specialized care or 

treatment. Moreover, mobility-interdependence fit is important for use and user 
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performance, and to achieve this, mHealth tool designers must incorporate support 

functions such as interactive transmission of voice and text, to complement tasks that 

require CHWs to process and share data with their community supervisors as they move 

to remote households to collect patient data. Furthermore, mobility-information 

dependency fit is important for user performance, and to achieve this, mHealth tool 

designers must incorporate support functions such as location-aware services e.g. 

localized data in real-time for access to inventory data on the location of supplies or 

equipment when on the move, to complement tasks that require CHW manoeuvrability. 

Equally important, information dependency time criticality fit is important for user 

performance, and to achieve this, mHealth tool designers can consider incorporating 

support functions event-trigger SMS alert messages, not only to enable emergency 

responses, but also to complement tasks that require CHWs to access household data at 

the point-of-care, in real-time. In addition to the design of functional support for tasks, 

practitioners should be acutely aware that users form perceptions of the ‘fit’ of tool 

functions to their needs, which can influence how they use the technology and perform 

their tasks. More positive CHW perceptions would be created by ensuring the design of 

functional support for time criticality, interdependence, and information dependency task 

needs.  

 

Third, in Chapter 10, the importance of technology use, its precursors, and user 

performance impacts, was quantified. In addition to empirically assessing TTF and user 

performance, the importance of use as an outcome to be evaluated for tool or system 

design for practitioners, is therefore emphasized as an emergent priority for the design of 

more user-focused technologies. As such, it is therefore essential for practitioners to 

understand just how the use of ‘fit-for-purpose’ tools or systems eventually translates to 

user performance gains. In addition, facilitating conditions such as decision support, 

logistical support, user training, ease of access to supplies and equipment and information 

resources, and adequate mobile coverage during site-visits should be put in place to ease 

the burden of CHWs. 

 

Fourth, across Chapters 6 to 10, links between TTF, use and its precursors, and user 

performance, were sequentially evaluated as important constructs in an overarching TPC 

model. This is a comprehensive analytic, diagnostic, approach useful for practitioners in 

gauging the specific mechanisms or processes through which technologies that are used 
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in particular contexts or settings can impact the performance of tool or system users. The 

modeling of causal chain mechanisms represents a more thorough approach with which 

practitioners can more accurately pinpoint the impacts of tools or systems, and use 

adduced findings to enhance technology-enabled task performance through more data-

driven design processes to improve task-fit and technology use. 

11.4.4 Contributions to Context 

 

First, in the present study, CHW mHealth projects implemented in peri-urban 

communities across five counties in the Kenyan context were evaluated in conjunction 

with the local government Ministry of Health (MOH) Division of Community Health 

Services (DCHS). These projects are aligned to regional and global health care initiatives 

including (1) the mHealth Alliance, (2) the Millennium Development Goals (MDGs), (3) 

the Global Health Workforce Alliance, and (4) the Frontline Health Workers Coalition. 

 

Second, in Chapter 3, the performance of CHWs was assessed using a data-driven 

comparison of mHealth tools and traditional paper-based systems. This approach was 

devised to provide robust evidence of mHealth tool impacts on CHW perceptions of their 

performance in patient care delivery at the household level, in low-resource settings. 

CHW performance was evaluated largely in relation to the work function
91

 of reporting, 

to for the first time, empirically demonstrate how through this function, CHWs at the 

frontlines of patient care in Kenya effectively act as a bridge between their respective 

communities and hospitals and clinics. 

 

Third, in Chapters 6 to 9, the ‘fit’ between CHW tasks and mHealth technologies was 

evaluated, and its impacts on tool use and user task performance in low-resource settings 

assessed. Subsequent findings constitute substantive empirical evidence useful for a more 

nuanced understanding of the importance of what functional supporting technological 

requirements are most appropriate for CHW task needs in low-resource developing 

country contexts and settings. Moreover, the evidence uncovered in this study signifies 

the empirical substantiation of the technological support of CHWs at the point-of-care 

through mHealth tool use.  
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Fourth, in Chapter 10, mHealth tool use, its determinants, and its consequent impacts, 

were evaluated as applied to the Kenyan context. The substantive findings of this study 

represent empirical evidence that is useful and practical for the enhanced understanding 

of what factors are the most significant determinants of mHealth tool use, what its 

functional role is within a healthcare ecosystem, and how it ultimately impacts CHW 

performance. For instance, along with their perception of a technology ‘fit’ to tasks, 

CHWs must also perceive that facilitating mechanisms are in place for effective tool to 

likely occur. 

11.5 Future Research 

 

First, a cross-sectional study design was used in this study. In future works, researchers 

may consider adopting supplementary longitudinal designs in order to examine and 

observe the long-term impacts of mHealth tool use on CHW performance outcomes, since 

this approach was not conducive to the scope of this study. Longitudinal studies using 

data forecasting techniques or phased approaches such as time-series design analysis 

among others, can be useful for additional, richer, insights into how TTF and other 

precursors influence use over an extended period of time, and as a methodological 

supplement to cross-sectional studies. 

 

Second, four user-perceived fit dimensions, namely ‘perceived time criticality fit’, 

‘perceived interdependence fit’, ‘perceived mobility fit’, and ‘perceived information 

dependency fit’, were empirically assessed in the present study. In future works, 

researchers must consider the development of additional variables to measure the user 

perception of a ‘fit’ between task and technology characteristics across a broader range of 

mHealth technology contexts, for comparison purposes. 

 

Third, multiple ‘fit’ perspectives were adopted and used to examine TTF, but only a 

perceived TTF construct was examined in completing and extending the TPC model 

tested in Chapter 10. To further investigate TTF effects on user performance through use 

in future studies, researchers must consider the evaluation of multiple TTF perspectives 

within a TPC model. This approach can inform the development of an all-encompassing 

TPC theory, which would represent the logical, natural, next phase in the evolution of 

TPC research that is underpinned by TTF theory, and applied to a particular context. 



 274 

Fourth, to effectively assess TTF impacts in alternate tool or system user environments, 

future researchers must consider replicating the conceptual models developed for this 

study in other settings, industries, or sectors that are technology-driven, and in which 

service delivery is technology-enabled. This represents a natural progression in TTF 

research, with potential far-reaching implications for industry, as it must be explicitly 

recognized that technology users in every conceivable setting or user environment would 

use particular tools or systems to perform a wide range of tasks. These users would, 

therefore, always have task needs that necessitate ‘fit-for-purpose’ responsive tool or 

system support functions.  

 

Fifth, from a contextual perspective, mHealth tool impacts in the context of CHW 

performance in Kenya were empirically assessed in this study. Future researchers must 

consider the assessment of mHealth tool impacts in other low-resource settings so as to 

better understand and compare technology-enabled patient care in more widespread 

health contexts e.g. cross-country studies. This would allow for a quantitative comparison 

of impacts across varied mHealth ecosystems, thereby contributing towards enhancing 

on-going concerted efforts to ensure global best practices in the delivery of mHealth 

technology-enabled patient care. Future researchers can consider engaging with the 

literature in the domain of Information and Communication Technologies for 

Development (ICT4D) to investigate mHealth tool-enabled impacts, from the perspective 

of CHWs as participants at the “bottom of the pyramid”. Future researchers could also 

consider impacts from the perspective of the patient. These could be useful alternative 

approaches to evaluating mHealth CHW initiatives. 

11.6 Chapter Conclusion 

 

As an examination of the impact of the mHealth tool on CHW performance, this study 

constitutes a significant contribution to an understanding of the mechanisms through 

which technology impacts user performance, with far reaching implications for research 

and practice. In this study, the substantive impacts of mHealth on CHW performance in 

low-resource settings was confirmed, as mHealth tool users were found to outperform 

traditional paper-based system users on the reporting of complete monitoring, prevention, 

and referral reports weekly in less time than their counterparts, and report significantly 

higher percentages of both timeous and complete monthly cases. In addition, it was found 
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through the development and testing of a technology-to-performance chain model, that a 

task-fit is important to the use of the mHealth tool and the performance of CHWs. The 

characteristics of time criticality, and information dependency are especially considered 

as arguably the more important dimensions of ‘fit’, although interdependence, mobility, 

and information dependency, are considered as potentially critical, thus warranting 

further investigation. The findings of this study are essential to addressing the problem of 

mHealth project scalability by employing rigorous methodologies to provide robust 

evidence-based solutions. As a consequence of this study, researchers and practitioners 

can better understand and explain the mechanisms through which mobile technologies 

impact user performance in the healthcare context, and by extension, positively impact 

socio-economic development in low-resource settings.  
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Appendix A Sampling  

A.1 Dataset 1 

 

Stratification (Daniel, 2012) was used to design the sampling frame for Dataset 1 (n = 

312). This involves separation of the target population into mutually exclusive, 

homogenous segments (strata), from which a simple random sample is selected (p. 131). 

The target population comprised CHWs using mHealth tools
92

 in peri-urban informal 

settlements. Community Health Units (CHUs) were identified from three counties, 

namely Siaya, Nandi, and Kilifi.  

 

Operating under the auspices of the Government of Kenya (GoK) Ministry of Health 

(MOH), the Division of Community Health Services (DCHS) provided registers 

constituting lists from which a proportionate number of CHUs were systematically 

drawn. In addition, a proportionate number of participant CHWs was randomly selected 

from the selected CHUs. In total, 312 CHWs were sampled from CHUs across the 

identified counties.  

 

The distribution (n = 312) of CHWs sampled from each CHU per county selected is 

detailed in Table A.1. 

 

Table A.1. Sampling Frame (Dataset 1) 

County Community Health Workers (CHWs) Community Health Units (CHUs) CHWs per CHU 

Siaya 120 11 11 

Nandi 92 9 10 

Kilifi 100 7 14 

 

As suggested by Daniel (2012), the strata should not overlap, and together, should 

comprise the sample population. Moreover, the strata should comprise independent, 

mutually exclusive, homogenous sample subsets (p. 132). The strata, constituting the 

sampling frame used for this study, were evaluated for coverage biases (Daniel, 2012). In 

addition, to prevent ‘over-coverage’, ‘under-coverage’, and ‘multiple-coverage’ biases 

(Daniel, 2012, p. 28), CHUs identified were thoroughly screened. Moreover, several 

                                                 
92

 To the best of the researcher’s knowledge, there were only three established CHW mHealth project sites 

in Kenya officially acknowledged by the Ministry of Health (MOH) Division of Community Health 

Services (DCHS), as at the time of field data collection for this study. 
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CHUs were identified across the counties selected, and CHWs were selected from various 

sites in these counties.  

 

The sampling frame designed for Dataset 1 comprising 312 CHWs is depicted in Figure 

A.1. 

 

Figure A.1. Sample Design: Dataset 1 (n = 312) (mHealth Tool Users) 

A.2 Dataset 2 

 

Operating under the auspices of the Government of Kenya (GoK) Ministry of Health 

(MOH), the Division of Community Health Services (DCHS) provided registers 

constituting lists from which a proportionate number of CHUs were systematically 

drawn. In addition, a proportionate number of participant CHWs was randomly selected 

from the selected CHUs. In total, 312 CHWs were sampled from CHUs across the 

identified counties.  

 

 

Stratification (Daniel, 2012) was also used to design the sampling frame for Dataset 2 (n 

= 375). The target population comprised CHWs using traditional paper-based systems in 

peri-urban informal settlements. CHUs were identified from two counties, namely 

Nairobi and Nakuru, also using Division of Community Health Services (DCHS) 

registers provided under the auspices of the Ministry of Health (MOH). To form the 

sampling frame, a proportionate number of CHWs was randomly from CHUs 

systematically drawn from across the identified counties.  
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The distribution (n =375) of CHWs sampled from each CHU per county selected is 

detailed in Table A.1. 

 

Table A.2. Sampling Frame (Dataset 2) 

County Community Health Workers (CHWs) Community Health Units (CHUs) CHWs per CHU 

Nairobi 100 4 25 

Nakuru 275 11 25 

 

The CHUs, representing sampling frame strata, were also thoroughly screened for 

coverage biases. 

 

The sampling frame designed for Dataset 2 comprising 375 CHWs is depicted in Figure 

A.2. 

  

Figure A.2. Sample Design: Dataset 2 (n = 375)  (Paper-Based System Users) 
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Appendix B Survey 

B.1 Dataset 1 

 

Survey design is used to generalize a sample to the target population, so that inferences 

can be made about respondent characteristics and orientations (Babbie, 2013, p. 229). A 

cross-sectional survey design was used to elicit data from CHWs using mHealth tools. 

This approach is used to describe a target population at a particular point in time 

(Pinsonneault and Kramer, 1993). A structured questionnaire was developed as the 

primary survey instrument of choice, and administered to CHWs using mHealth tools in 

the Siaya, Nandi, and Kilifi counties. Participating CHWs (n= 312) were contacted by 

telephone and invited to assemble at designated community health centres, where the 

structured questionnaire was administered to them. In each county, respondents were 

informed that their use of mHealth tools for patient care would be evaluated. In each 

county, assisted by one senior researcher, two public health specialists, a county officer, 

and a community field coordinator, the questionnaire was administered to participants. 

Moreover, in each county, CHWs assembled were verbally informed that participation 

was voluntary, confidential, and anonymous, without any penalties whatsoever. 

Furthermore, the CHWs assembled were not interfered with or coerced, and permission 

was ensured, such that completing the questionnaire was taken as their informed consent. 

The questionnaire did not necessitate translation, since the participating CHWs are 

English-speaking
93

. 

B.2 Dataset 2  

 

A cross-sectional survey design was also used to elicit data from CHWs using traditional 

paper-based systems. A structured questionnaire was developed as a supplementary 

survey instrument and administered to CHWs in the Nairobi and Nakuru counties. 

Participating CHWs (n= 375) were also reached by telephone and invited to assemble at 

designated community health centres, where the structured questionnaire was 

administered to them.  In each county, these respondents were informed that their 

performance using traditional paper-based systems for patient care would be evaluated. 

The questionnaire was administered to participants, also with the assistance of a senior 

                                                 
93

 English is the official spoken language in Kenya. 
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researcher, two public health specialists, a county officer, and community coordinator. 

Similarly, in the two counties, CHWs assembled were verbally informed that 

participation was voluntary, confidential, and anonymous, without any penalties 

whatsoever. Moreover, these assembled CHWs were not interfered with or coerced, and 

permission was ensured such that completing the questionnaire informed their consent. 

The questionnaire did not necessitate translation, since participants were English-

speaking. 
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Appendix C Questionnaire 

C.1 Primary (Dataset 1) 

 

Questionnaire design involves two aspects (Saunders, Lewis, and Thornhill, 2012). First, 

respondents must decode questions in the manner intended by the researcher. Second, the 

researcher must decode answers in the manner intended by respondents (p. 429). A 

primary questionnaire twelve pages long and comprising six sections was designed for 

the present study. This questionnaire, used to survey mHealth tool users, was pretested 

for content validity (Leedy and Ormrod, 2013, p. 89), the extent to which instrument 

scale items and concepts correspond (Vanderstoep and Johnston, 2009, 59). First, 

questionnaire items were adapted from literature (Bourque and Clark, 1994). Second, the 

questionnaire was administered for pretesting by four academics, comprising expert 

researchers and social scientists, whose comments were incorporated. Third, the 

questionnaire was administered for pretesting by four practitioners, comprising 

consultants and public health specialists, whose comments were also incorporated. 

Saunders, Lewis and Thornhill (2012) suggested that to ensure content validity, expert 

panellists ought to be involved to evaluate whether items are essential, useful, or 

unnecessary (p. 429).  

 

To ensure face validity (Leedy and Ormrod, 2013), a pilot study of thirteen CHWs using 

an mHealth tool was conducted. Their responses were useful for ascertaining the 

reliability of questionnaire instrument measures. The feedback obtained from these pilot 

testers was used to further refine the questionnaire prior to administering it to 

respondents. Face validity is the extent to which on the surface (Leedy and Ormrod, 

2013), indicators are seemingly measures of their underlying constructs (Bhattacherjee, 

2012). The pilot study was conducted to ensure that questionnaire items were 

comprehensible (Saunders et al., 2010, p. 452) and respondents followed instructions. 

The estimated time for respondents to complete the questionnaire was forty-five minutes. 

It was important to ensure that the full range of item scales in the questionnaire was used 

(Straub, 1989).  

 

Bell (2010) suggested that a pilot study should capture (1) how long it takes respondents 

to complete the questionnaire, (2) whether respondents consider the instructions to be 
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clear and concise, (3) which questions are ambiguous, and (4) which questions make 

respondents uncomfortable. To clearly and concisely explain the purpose and importance 

of the administered questionnaire (Saunders et al., 2012), an accompanying cover letter 

was attached (p. 446). In the letter, respondents were informed that their participation was 

voluntary. Dillman (2009) observed that an accompanying cover letter could improve the 

response rate. As suggested by Saunders, Lewis and Thornhill (2012), the respondents 

were notified both verbally and in writing, that completing and returning the 

questionnaire would be taken as their informed consent. Moreover, as recommended by 

Israel and Hay (2006), respondents must be informed of methods, demands, risks, 

inconveniences, and the provision of aggregated results of the study at their convenience 

(p. 61).  

C.2 Primary (Dataset 2) 

 

A supplementary questionnaire three pages long and comprising three sections, was 

designed. This questionnaire, for paper-based system users, was pretested to ensure 

content validity. First, the questionnaire was administered for pretesting by four 

academics, comprising expert researchers and social scientists, whose comments were 

incorporated. Second, the questionnaire was administered for pretesting by four 

practitioners, comprising consultants and public health specialists, whose comments were 

incorporated. To ensure face validity (Leedy and Ormrod, 2013), a pilot study of fifteen 

CHWs using a paper-based system was conducted, and their input used to further refine 

the questionnaire. The estimated time for respondents to complete the questionnaire was 

twenty minutes. To define the purpose and importance of the administered questionnaire 

(Saunders et al., 2012), there was an accompanying cover letter (p. 446). It indicated that 

participation was voluntary, and completion of the questionnaire would be taken as 

informed consent. 
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Appendix D Data Screening
94

  

D.1 Missing Values (Dataset 1) 

 
For Dataset 1, the survey instrument was administered to 312 respondents, from which 

257 responses were obtained. First, data were screened by observing (1) the number of 

variables with missing values for each case, and (2) the number of cases with missing 

values for each variable. Second, exceptionally high levels of missing data per case or 

observation were identified. Hair, Black, Babin, and Anderson (2010) suggested that less 

than 10% of cases should contain missing data. Moreover, cases with no missing data are 

sufficient for analysis when replacement values are not substituted (imputed) for the 

missing data (p. 47). Cases containing large amounts of missing data or extreme response 

sets were excluded, after which 201 (n = 201) usable mHealth tool user responses were 

retained for subsequent analyses. Hair, Black, Babin, and Anderson (2010) suggested that 

before diagnosing random patterns in the data, exclusion of offending cases or variables 

with excessive missing values should be considered. Moreover, excluding these cases or 

variables substantially reduces the extent of missing data (p. 48). For the remaining cases, 

substitution imputation was used to replace missing data with the series mean for each set 

of constructs, and ensure complete data (Hair et al., 2010, p. 53). The missing values 

replaced with the series mean for task characteristics, are shown in Table D.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
94

 Data collected were captured in Microsoft (MS) Excel then exported to SPSS for screening purposes. 
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Table D.1. Missing Data: Task Characteristics 

Construct Measure Missing Values Replaced (Series Mean) 

Time Criticality TC 1 3 Yes 

TC 2 4 Yes 

TC 3 2 Yes 

TC 4 2 Yes 

TC 5 3 Yes 

TC 6 4 Yes 

Interdependence IN 1 5 Yes 

IN 2 10 Yes 

IN 3 7 Yes 

IN 4 7 Yes 

IN 5 7 Yes 

Mobility MP 1 (M) 11 Yes 

MP 1 (P) 9 Yes 

MP 1 (R) 2 Yes 

M (V) 1 6 Yes 

M (V) 2 5 Yes 

M (V) 3 6 Yes 

M (V) 4 8 Yes 

Information Dependence ID 1 6 Yes 

ID 2 6 Yes 

ID 3 3 Yes 

Total   127 

 

The missing values replaced with the series mean for technology characteristics, are 

shown in Table D.2. 
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Table D.2. Missing Data: Technology Characteristics 

Construct Item Missing Values Replaced (Series Mean) 

Time Criticality Support TCS 1 3 Yes 

TCS 2 7 Yes 

TCS 3 6 Yes 

Interdependence Support IS 1 5 Yes 

IS 2 3 Yes 

IS 3 4 Yes 

IS 4 5 Yes 

Mobility Support MS 1 5 Yes 

MS 2 6 Yes 

MS 3 3 Yes 

MS 4 5 Yes 

Information Dependence Support IDS 1 4 Yes 

IDS 2 2 Yes 

IDS 3 3 Yes 

Total  61 

 
The missing values replaced with the series mean for perceived TTF, are shown in Table 

D.3. 

 
Table D.3. Missing Data: Perceived Task-Technology Fit (TTF)  

Construct Item Missing Values Replaced (Series Mean) 

Perceived Time Criticality Fit PTCF 1 5 Yes 

PTCF 2 3 Yes 

PTCF 3 6 Yes 

PTCF 4 7 No

Perceived Interdependence Fit PIF 1 8 Yes 

PIF 2 7 Yes 

PIF 3 11 Yes 

PIF 4 8 Yes 

Perceived Mobility Fit PMF 1 9 Yes 

PMF 2 10 Yes 

PMF 3 10 Yes 

PMF 4 4 Yes 

Perceived Information Dependence Fit PIDF 1 5 Yes 

PIDF 2 10 Yes 

PIDF 3 13 Yes 

PIDF 4 0 Yes

Total  116 
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The missing values replaced with the series mean for technology characteristics, are 

shown in Table D.4. 

 

Table D.4. Missing Data: Technology Use and Precursors 

Construct Item Missing Values Replaced (Series Mean) 

Use U 1 (F) 3 Yes 

U 2 (Du) 2 Yes 

U 3 (De) 4 Yes 

U 4 (De) 5 Yes

U 5 (De) 2 Yes

Affect Toward Using ATU 1 0 Yes

ATU 2 5 Yes

ATU 3 5 Yes

ATU 4 4 Yes

ATU 5 4 Yes

Facilitating Conditions FC 1 2 Yes

FC 2 4 Yes

FC 3 6 Yes

FC 4 7 Yes

Total  53 Yes

 

The missing values replaced with the series mean for user performance, are shown in 

Table D.5. 

 

Table D.5. Missing Data: User Performance 

Construct Item Missing Values Replaced (Series Mean) 

User Performance 

 

UP 1 (PUP) 3 Yes 

UP 2 (PUP) 5 Yes 

UP 3 (PUP) 7 Yes 

UP 4 (PUP) 4 Yes

UP 5 (PUP) 5 Yes

UP 6 (PUP) 4 Yes

UP 7 (PUP) 3 Yes

UP 8 (PUP) 4 Yes

UP 1 (CHWRP) 11 Yes

UP 2 (CHWRP) 5 Yes

UP 9 (CHWRP) 43 Yes

UP 10 (CHWRP) 37 Yes

UP 11 (CHWRP) 13 Yes

Total  144 Yes
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D.2 Outlier Detection (Dataset 1) 

 

Dataset 1 was screened for potential outliers using univariate detection (Hair et al., 2010). 

Univariate detection involves (1) converting data into standardized (z) scores, and (2) 

designating potential outliers. Observations for each variable were examined and cases 

falling at the outer (high or low) ranges of the distribution were identified as potential 

outliers (Hair et al., 2010 p. 66). For larger samples (80 or more observations), a z score 

of up to 4 should be established to ensure identification of unusually high or low values 

on each item compared to other cases (p. 67). The observations 64, 138, 154, 161, and 

204, exceeded the threshold value of standardized (z) scores for each variable. However, 

none were so extreme as to adversely affect any of the overall variable measures such as 

the mean or standard deviation. The five observations were noted to evaluate whether 

they would be subsequently detected. Dataset 1 was screened for potential outliers using 

bivariate detection (Hair et al., 2010). Using scatterplots, specific relationships between 

variables are assessed, and cases outside the range of observations in isolation, are 

potential outliers (p. 66). Four scatterplots were formed for select CHW characteristics 

and user performance variables. Scatterplots for respective experience as a CHW and 

education level with facilitating conditions and user performance, were examined to 

identify potential outliers. Subsequently, these scatterplots showed that observations 64, 

138, 154, and 161 were isolated points, corroborating univariate outlier detection used 

previously. Hair, Black, Babin, and Anderson (2010) recommended that because 

scatterplots could increase depending on the number of variables, using bivariate methods 

to detect outliers in particular datasets should be restricted to specific relationships (p. 

66).  

 

Despite the use of univariate and bivariate detection to detect potential outliers, no 

observations in the sample population were sufficiently extreme to be considered 

unrepresentative. Consequently, the potential outliers detected were retained for further 

analyses. 
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Figure D.1. Scatterplot for Bivariate Detection of Outliers: Dataset 1 (n=201) 

 

 

A B 

C D 
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D.3 Missing Values (Dataset 2) 

 
The survey instrument for Dataset 2 was administered to 375 respondents, from which 

353 responses were obtained. For the remaining cases, substitution imputation (Hair et 

al., 2010) was used. To ensure a complete dataset, missing values were replaced with the 

series mean for each variable (p. 53). These missing values with the series mean are 

shown in Table D.6. 

 

Table D.6. Missing Data: Dataset 2 

Construct Item Missing Values Replaced (Series Mean) 

User Performance 

 

UP 1 (PUP) 1 Yes 

UP 2 (PUP) 0 Yes 

UP 3 (PUP) 1 Yes 

UP 4 (PUP) 0 Yes

UP 5 (PUP) 1 Yes

UP 6 (PUP) 0 Yes

UP 7 (PUP) 0 Yes

UP 8 (PUP) 0 Yes

UP 1 (CHWRP) 1 Yes

UP 2 (CHWRP) 0 Yes

UP 9 (CHWRP) 31 Yes

UP 10 (CHWRP) 29 Yes

UP 11 (CHWRP) 2 Yes

Total   66 Yes

 

D.4 Outlier Detection (Dataset 2) 

 

Dataset 2 was screened for potential outliers using univariate detection (Hair et al., 2010). 

Observations for each variable were examined, and cases falling at the outer ranges (high 

or low) of the distribution were identified as potential outliers (Hair et al., 2010). The 

observations 8, 29, and 45 exceeded the threshold value of standardized (z) scores for 

each variable. However, none were so extreme as to adversely affect overall variable 

measures such as the mean or standard deviation. The observations were noted for further 

analyses. Dataset 2 was screened for potential outliers using bivariate detection (Hair et 

al., 2010, p. 66). Two scatterplots were formed for select CHW and CHW performance 

characteristics. Scatterplots for respective age and experience as a CHW, with user 
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performance, were examined to identify potential outliers. These scatterplots showed that 

only observation 8, identified previously, was isolated. Despite using univariate and 

bivariate methods to detect potential outliers, no observations in the sample population 

were sufficiently extreme to be considered unrepresentative. Consequently, the potential 

outliers detected were retained for further analyses. 

D.5 Common Method Bias 

 

Since data for variables were obtained from single respondents using a cross-sectional 

survey, common method variance may affect postulated structural path model 

relationships (Sattler et al., 2010). A Harman’s (1976) single-factor test (Podsakoff and 

Organ, 1986) was used to test for common method bias by subjecting variables to 

Exploratory Factor Analysis (EFA). Common method bias is detected if a single factor 

accounts for most (> 50%) of the variance in predictor and criteria variables. The first and 

last factors accounted for 18.8% and 2.1% of overall variance respectively, thereby 

negating any risk of common method bias. In addition, Average Variance Extracted 

(AVE) square root values of 0.90 or lower (Bagozzi, Yi and Phillips, 1991) were 

obtained. Moreover, inter-construct correlations below this threshold were observed. 

Therefore, common method bias was not detected. 
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Appendix E Constructs  

E.1 Task-Technology Fit (TTF) 

 
In Chapter 4, the constructs used to evaluate CHW task and mHealth tool characteristics 

were identified. These constructs were used to operationalize TTF, comprising (1) the 

task, (2) the technology, and (3) the ‘fit’ between the task and the technology. The task 

has characteristics or features that reflect user needs (Goodhue et al., 1997). Four task 

characteristics that reflected CHW needs were identified. First, time criticality is the need 

to perform the task urgently (Gebauer and Tang, 2007). Second, interdependence is the 

need to co-operate with others (Hsiao and Chen, 2012). Third, mobility is the need to 

move form one location to another (Junglas et al., 2009). Fourth, information dependency 

is the need to access data (Yuan et al., 2010). The CHW task characteristics comprised 

twenty-one seven-point Likert scale item measures. The scale items used to measure task 

characteristics are listed in Table E.1. 

 

Table E.1. Measures:  Task Characteristics 

Variable Item Statement Source  

Time Criticality 
a 

TC 1 It is very important for me to start my tasks on time. Yuan, Archer, Connelly and Zheng (2010) 

TC 2 It is very important for me to complete my tasks on 

time. 

Yuan, Archer, Connelly and Zheng (2010) 

TC 3 It is very important for me to start my tasks as soon 

as possible. 

Yuan, Archer, Connelly and Zheng (2010) 

TC 4 It is very important for me to complete my tasks as 

soon as possible. 

Yuan, Archer, Connelly and Zheng (2010) 

TC 5 It is very important for me to take immediate action. Gebauer and Tang (2007) 

TC 6 It is very important for me to promptly respond to 

emergencies. 

Gebauer and Tang (2007) 

Interdependence
 a 

IN 1 I often need to complete my tasks with co-workers. Yuan, Archer, Connelly and Zheng (2010) 

IN 2 I often need to share information with co-workers. Jarvenpaa and Staples (2000), Teo and 

Men (2008) 

IN 3 I often need to rely on the work of other CHWs. Gebauer and Tang (2007) 

IN 4 I often need to use information received from co-

workers. 

Jarvenpaa and Staples (2000), Teo and 

Men (2008) 

IN 5 I often need to depend on the efforts of other 

CHWs. 

Jarvenpaa and Staples (2000), Teo and 

Men (2008) 

Mobility 
b 

Do you perform the following tasks at one or several locations? Yuan, Archer, Connelly and Zheng (2010) 

M (V) 1 Monitoring 

M (V) 2 Prevention 
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M (V) 3 Referral 

Information Dependency 

b
 

ID 1 I often need to depend on information on my current 

location. 

Yuan, Archer, Connelly and Zheng (2010) 

ID 2 I often need to depend on information on the 

location of supplies. 

Yuan, Archer, Connelly and Zheng (2010) 

ID 3 I often need to depend on information on the 

location of households. 

Yuan, Archer, Connelly and Zheng (2010) 

a = Measured on 7-point scale 1 = Strongly Disagree to 7 = Strongly Agree 

b = Measured on 6-point scale 1 = I perform my tasks in the same location to 6 = I perform my tasks in any 

given location where services are required. 

 

The technology has characteristics or features that reflect supporting tool functions 

(Dishaw and Strong, 1998b). Four technology characteristics, reflecting mHealth tool 

functions, were identified. First, time criticality support is the tool function designed to 

support the need to respond urgently (Liang and Wei, 2004). Second, interdependence 

support is the tool function designed to support the need to co-operate with others (Hsiao 

and Chen, 2012). Third, mobility support is the tool function designed to support the need 

to move from one location to another (Junglas et al., 2008). Fourth, information 

dependency support is the tool function designed to support the need to access 

information (Yuan et al., 2010). The mHealth technology characteristics comprised 

fourteen seven-point Likert scale item measures. The scale items used to measure 

technology characteristics are listed in Table E.2. 

 

Table E.2. Technology Characteristics 

Variable Item Statement Source  

Time Criticality 

Support 

TCS 1 The mHealth tool works well in providing timely notification of 

required urgent actions. 

Wixom and Todd (2005) 

 

TCS 2 The mHealth tool effectively responds to my requests quickly. 

TCS 3 The mHealth tool notifies me of emergencies in a timely 

manner. 

Interdependence 

Support 

IS 1 The makes it easy to share information with others. Goodhue (1992), Wixom and Todd 

(2005) 

 

IS 2 The mHealth tool effectively compiles data from co-workers. 

IS 3 The mHealth tool effectively pulls together data from co-

workers. 

IS 4 The mHealth tool effectively integrates data from co-workers. 

Mobility Support MS 1 The mHealth tool effectively responds to changes in location. Wixom and Todd (2005) 

 MS 2 The mHealth tool operates reliably as I move to different places. 

MS 3 The mHealth tool flexibly adjusts as I move from one place to 

another. 

MS 4 The mHealth tool effectively adapts to my movement from one 
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place to another. 

Information 

Dependency Support 

IDS 1 The mHealth tool easily provides information on my current 

location. 

Dishaw (1994), Wixom and Todd 

(2005), Jarvenpaa and Staples (2000) 

 IDS 2 The mHealth tool makes information on the location of 

households very accessible. 

IDS 3 The mHealth tool makes information on the location of supplies 

readily accessible. 

a = Measured on 7-point scale 1 = Strongly Disagree to 7 = Strongly Agree 

 

The ‘fit’ construct has been defined as the degree to which users perceive that the 

technology meets their task requirements (Nance, 1992). Four perceived ‘fit’ dimensions 

were identified. Perceived time criticality fit is the degree to which mHealth tool 

functions meet the need to perform the task urgently. Perceived interdependence fit is the 

degree to which mHealth tool functions meet the need to co-operate with others. 

Perceived mobility fit is the degree to which mHealth tool functions meet the need to 

move from one location to another. Perceived information dependency fit is degree to 

which mHealth tool functions meet the need to access data. The perceived ‘fit’ dimension 

characteristics comprised sixteen seven-point Likert scale items measures. The scale 

items used to measure perceived fit are listed in Table E.3. 

 

Table E.3. Perceived Fit 

Variable Item Statement Source 

Perceived Time 

Criticality Fit 

PTCF 1 The mHealth tool supports me in starting my tasks on time. Junglas, Abraham 

and Ives (2009) PTCF 2 The mHealth tool supports me in finishing my tasks on time. 

PTCF 3 The mHealth tool supports me during urgent interventions. 

PTCF 4 The mHealth tool supports me in promptly responding to emergencies. 

Perceived 

Interdependence Fit 

PIF 1 The mHealth tool supports me in completing tasks with co-workers. Junglas, Abraham 

and Ives (2009) PIF 2 The mHealth tool supports me in information sharing with co-workers. 

PIF 3 The mHealth tool supports me in working with other CHWs. 

PIF 4 The mHealth tool supports me in receiving information from co-workers. 

Perceived Mobility 

Fit  

PMF 1 The mHealth tool supports me in performing tasks at several locations. Junglas, Abraham 

and Ives (2009) PMF 2 The mHealth tool supports me in working away from just one place for long 

periods. 

PMF 3 The mHealth tool supports me in working away form my Community Unit 

(CU). 

PMF 4 The mHealth tool supports me in travelling to remote locations to perform 

tasks. 

Information 

Dependency Fit 

PIDF 1 The mHealth tool supports me in accessing information on my current 

location. 

Dishaw (1994), 

Junglas, Abraham 

and Ives (2009) PIDF 2 The mHealth tool supports me in accessing information on the location of 
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households. 

PIDF 3 The mHealth tool supports me in accessing information on the location of 

supplies. 

PIDF 4 The mHealth tool supports me in accessing information on the locations I 

travel to. 

a = Measured on 7-point scale 1 = Strongly Disagree to 7 = Strongly Agree 

E.2 Use  

 

Use is the extent to which users perceive that they depend on the technology to perform 

the task (Goodhue and Thompson, 1995). Use as technology dependence, comprised 

three seven-point Likert scale item measures. The scale items used to measure use as 

technology dependence are listed in Table E.4. 

 

Table E.4. Use 

Variable Item Statement Source  

Use U 1 I am very dependent on the mHealth tool to perform tasks. Junglas, Abraham and Ives (2009) 

U 2 My work is dependent on using the mHealth tool to perform 

tasks. 

U 3 Using the mHealth tool allows me to do more than would be 

possible without it. 

a = Measured on 7-point scale 1 = Strongly Disagree to 7 = Strongly Agree 

E.3 User Performance 

 

User performance is defined as the perceived effectiveness (Torkzadeh and Doll, 1999), 

efficiency (Hou, 2012), and quality (Junglas et al., 2009), of task completion when using 

the technology. User performance comprised eight seven-point Likert scale item 

measures. The scale items used to measure perceived user performance, are listed in 

Table E.5. 

 

Table E.5. User Performance 

Variable Item Statement Source 

User Performance UP 1 The mHealth tool increases my productivity. Torkzadeh and Doll (1999), 

Junglas et al., (2009), Hou 

(2012) 

UP 2 The mHealth tool increases my effectiveness with patients. 

UP 3 The mHealth tool increases my quality of patient care. 

UP 4 The mHealth tool system saves me time. 

UP 5 The mHealth tool system enables me to complete tasks more 

quickly. 

UP 6 Using the mHealth tool improves my effectiveness in completing 



 328 

tasks. 

UP 7 The mHealth tool improves the quality of my tasks. 

UP 8 The mHealth tool decreases my reporting errors. 

a = Measured on 7-point scale 1 = Strongly Disagree to 7 = Strongly Agree 

E.4 Precursors of Use 

 

There are two precursors linked to technology use in this study. First, facilitating 

conditions are support factors in the user environment that are conducive to technology 

use (Thompson et al., 1991). Facilitating conditions comprised four seven-point Likert 

scale item measures. Second, affect toward use is the extent to which the user has a 

linking for the technology (Compeau et al., 1999). Affect toward use comprised four 

seven-point Likert scale item measures. The scale items used to measure precursors of 

use are listed in Table E.6. 

 

Table E.6. Precursors of Use 

Variable Item Statement Source 

Facilitating Conditions FC 1 I have the resources required to use the mHealth tool. Taylor and Todd (1995) 

 

 

FC 2 I have the knowledge required to use the mHealth 

tool. 

 FC 3 With the required training, it would be easy for me to 

use the mHealth tool. 

FC 4 The mHealth tool does not complement paper-based 

systems I use. 

Affect Toward Use ATU 1 I like using the mHealth tool. Compeau and Higgins (1995), 

Compeau, Higgins and Huff 

(1999) 

ATU 2 I look forward to using the mHealth tool. 

ATU 3 Using the mHealth tool is frustrating. 

ATU 4 Once I start using the mHealth tool, I find it hard to 

stop. 

ATU 5 I get bored quickly when using the mHealth tool. 

a = Measured on 7-point scale 1 = Strongly Disagree to 7 = Strongly Agree 
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Appendix F Multi-Collinearity (The Task-Technology Fit 

Model) 

 

Prior to analyses, multiple regressions were run to check TTF measures for collinearity 

(Hair et al., 2014).  

 

Table F.1. Collinearity: Task-Technology Fit (TTF) 

First Set Second Set 

Criterion: Use Criterion: User Performance 

Predictor Tolerance VIF Predictor Tolerance VIF 

Time Criticality 0.809 1.236 Time Criticality 0.809 1.236 

Interdependence 0.803 1.245 Interdependence 0.803 1.245 

Mobility (Variety) 0.880 1.137 Mobility 0.880 1.137 

Mobility (Proximity) 0.832 1.202  0.832 1.202 

Information 

Dependence 

0.861 1.162 Information 

Dependence 

0.861 1.162 

Time Criticality Support 0.663 1.509 Time Criticality 

Support 

0.663 1.509 

Interdependence 

Support 

0.555 1.802 Interdependence 

Support 

0.555 1.802 

Mobility Support 0.686 1.458 Mobility Support 0.686 1.458 

Information 

Dependence Support 

0.636 1.572 Information 

Dependence Support 

0.636 1.572 

Perceived Time 

Criticality Fit 

0.550 1.819 Perceived Time 

Criticality Fit 

0.550 1.819 

Perceived 

Interdependence Fit 

0.528 1.895 Perceived 

Interdependence Fit 

0.528 1.895 

Perceived Mobility Fit 0.724 1.382 Perceived Mobility Fit 0.724 1.382 

Perceived Information 

Dependence Fit 

0.634 1.578 Perceived Information 

Dependence Fit 

0.634 1.578 

 

The tolerance values were above 0.20, and the VIF values below 5. Thus collinearity was 

not considered a concern (Hair et al., 2011). 
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Appendix G Reliability and Validity 

 

A Partial Least Squares – Structural Equation Modeling (PLS – SEM) algorithm was run 

to calculate the parameter estimates of measurement model constructs. Confirmatory 

Factor Analysis (CFA) was conducted to assess
95

 construct measures for their internal 

consistency reliability, convergent validity, and discriminant validity.  

G.1 Internal Consistency Reliability
96

 and Convergent Validity 

 

Results of evaluation of task characteristics for construct reliability and validity are 

shown in Table G.1. 

 

Table G.1. Task Characteristics: Internal Consistency Reliability and Convergent Validity 

Latent Variable Indicators Outer Loadings Composite Reliability (pc) AVE 

Time Criticality 

 

TC3 0.826 0.803 

 

0.582 

TC4 0.587 

TC5 0.848 

Interdependence I 1 0.772 0.796 0.662 

I 4 0.853 

Mobility (Variety) M (V) 1 0.816 0.842 0.645 

M (V) 2 0.625 

M (V) 3 0.938 

Mobility (Proximity) M (P) 1 1.000 1.000 1.000 

Information Dependency ID 1 0.660 0.774 0.536 

ID 1 0.713 

ID 1 0.814 

 

Results of evaluation of technology characteristics for construct reliability and validity 

are shown in Table G.2. 

 

 

 

 

                                                 
95

 This process is described as model validation, an attempt to ascertain whether the measurement model 

fulfils the quality criteria for empirical study (Urbach and Ahlemann, 2010, p. 18). 
96

 The traditional criterion used to determine internal consistency has long been Cronbach’s alpha. 

However, Cronbach’s alpha is sensitive to the number of items in the scale and tends to underestimate the 

internal consistency reliability of a construct. As such, an alternative measure, composite reliability (pc) is 

preferred for PLS-SEM (Hair et al., 2014). 
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Table G.2. Technology Characteristics: Internal Consistency Reliability and Convergent Validity 

Latent Variable Indicators Outer Loadings Composite Reliability (pc) AVE 

Time Criticality Support TCS 1 0.685 0.800 0.573 

TCS 2 0.828 

TCS 3 0.752 

Interdependence Support IS 1 0.772 0.809 0.517 

IS 2 0.798 

IS 3 0.662 

IS 4 0.631 

Mobility Support MS 1 0.803 0.803 0.576 

MS 2 0.707 

MS 3 0.765 

Information Dependency 

Support 

IDS 1 0.726 0.828 0.617 

IDS 2 0.851 

IDS 3 0.773 

 

Results of evaluation of the perceived fit dimensions for construct reliability and validity 

are shown in Table G.3. 

 
Table G.3. Perceived Fit: Internal Consistency Reliability and Convergent Validity 

Latent Variable Indicators Outer Loadings Composite Reliability (pc) AVE 

Perceived Time Criticality 

Fit 

PTCF 1 0.796 0.829 0.618 

PTCF 2 0.812 

PTCF 3 0.747 

Perceived 

Interdependence Fit 

PIF 1 0.747 0.841 0.570 

PIF 2 0.825 

PIF 3 0.747 

PIF 4 0.694 

Perceived Mobility Fit PMF 1 0.729 0.831 0.552 

PMF 2 0.820 

PMF 3 0.733 

PMF 4 0.683 

Perceived Information 

Dependency Fit 

PIDF 1 0.779 0.795 0.568 

PIDF 2 0.855 

PIDF 3 0.606 

 

Results of evaluation of use measures for construct reliability and validity are shown in 

Table G.4. 
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Table G.4. Use: Internal Consistency Reliability and Convergent Validity 

Latent Variable Indicators Outer Loadings Composite Reliability (pc) AVE 

Use (Frequency) U (F) 1  1.000 1.000 1.000 

Use (Duration) U (DU) 1.000 1.000 1.000 

Use (Dependence) U (DE) 1 0.679 0.770 0.528 

U (DE) 2 0.751 

U (DE) 3 0.747 

 

Results of evaluation of user performance measures for construct reliability and validity 

are shown in Table G.5. 

 

Table G.5. User Performance: Internal Consistency Reliability and Convergent Validity 

Latent Variable Indicators Outer Loadings Composite Reliability (pc) AVE 

User Performance 

 

UP 2 0.786 0.865 0.616 

UP 4 0.750 

UP 6 0.789 

UP 7 0.813 

 

Results of evaluation of use precursor measures for construct reliability and validity are 

shown in Table G.6. 

 

Table G.6. Precursors of Use: Internal Consistency Reliability and Convergent Validity 

Latent Variable Indicators Outer Loadings Composite Reliability (pc) AVE 

Facilitating Conditions FC 1 0.669 0.764 0.524 

FC 2 0.854 

FC 3 0.628 

Affect Toward Use ATU 1 0.868 0.777 0.637 

ATU 2 0.721 

 

 

The criteria that were used to evaluate the reliability and validity of measurement model 

constructs are summarized in Table G.7. 

 

 

 

 

 

 



 333 

Table G.7. Criteria for Construct Reliability and Validity 

Parameter Condition 

Internal Consistency Reliability  Composite reliability (pc) should exceed 0.708 (in exploratory 

research, values between 0.60 and 0.70 are acceptable).  

Indicator Reliability  The indicator’s outer loadings should exceed 0.708. Indicators with 

outer loadings between 0.40 and 0.70 should be considered for 

removal only if the deletion improves the composite reliability and 

Average Variance Extracted (AVE). 

Convergent Validity  The Average Variance Extracted (AVE) should exceed 0.50. 

Discriminant Validity  An indicator’s outer loadings on a construct should exceed all cross-

loadings with other constructs. 

 The square root of the AVE of each construct should be higher than 

its highest correlation with any other construct (Fornell-Larcker 

criterion). 

 Each pair of construct must not exceed the HTMT.90
 
criterion i.e. 0.90 

 

To satisfy the criteria for evaluating construct reliability and validity, specific indicators 

may be excluded (Hair et al., 2014). However, the exclusion of one or more of these 

indicators should improve reliability or discriminant validity without diminishing content 

validity (p. 107). 
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Figure G.1. Outer Loadings: Evaluation Process (Hair, Hult, Ringle and Sarstedt, 2014, p. 104) 

 

The convergent validity of a construct is assessed using the AVE, a common measure 

defined as the grand mean of squared loadings of indicators, associated with the 

construct, or sum of squared loadings divided by the number of indicators (Hair et al., 

2014). An AVE value above 0.50 or higher indicates that on average, the construct 

explains over half of the variance of its indicators. An AVE below 0.50 indicates that on 

average, there is greater error in the items than the variance explained by the construct (p. 

103).  
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Measurement model construct indicators that did not meet the internal consistency 

reliability and convergent validity criteria (Figure G.1) detailed in Table G.7, are 

summarized in Table G.8.  

 

Table G.8. Construct Indicators  

Latent Variable Number of Original Indicators Number of Indicators Retained Indicators Excluded 

Time Criticality 6 3 TC 1 

TC 2 

TC 6 

Interdependence 4 2 INT 2 

INT 3 

Mobility (Proximity) 4 1 M (P) 1 

M (P) 2 

M (P) 3 

Mobility Support 4 3 MS 4 

Perceived Time Criticality Fit 4 3 PTCF 4 

Perceived Information 

Dependency Fit 

4 3 PIDF 4 

Facilitating Conditions 4 3 FC 4 

Affect Toward Use 5 2 ATU 3 

ATU 4 

ATU 5 

User Performance 8 4 UP 1 

UP 3 

UP 5 

UP 8 

Legend: TC = Time Criticality, INT = Interdependence, M (P) = Mobility (Proximity),  
MS = Mobility Support (MS), PTCF = Perceived Time Criticality Fit, PIDF = Perceived Information 
Dependency Fit, FC = Facilitating Conditions, ATU = Affect Toward Use, UP = User Performance 

 

G.2 Discriminant Validity 

 

There are two ways in which discriminant validity can be evaluated (Hair et al., 2014, p. 

104). First, it is evaluated by examining the cross loadings of indicators. An indicator’s 

outer loading on the associated construct should exceed all of its loadings on other 

constructs (Hair et al., 2011). Second, it is evaluated using the Fornell-Larcker criterion 

(Fornell and Larcker, 1981), used to compare the square root of AVE values with latent 

variable correlations (Hair et al., 2014, p. 105). Construct cross-loadings and Fornell-

Larcker criterion results are shown in Tables G.9 and G.10 respectively. 
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Table G.9. Cross-Loadings 

 TC I M (P) M (V) ID TCS IS MS IDS PTCF PIF PMF PIDF ATU FC U (De) U (Du) U (F) UP 

TC 3 0.826 0.247 0.168 0.146 0.205 0.273 0.233 0.177 0.124 0.281 0.259 0.153 0.204 0.254 0.284 0.072 0.115 0.139 0.305 

TC 4 0.590 0.237 0.166 0.036 0.160 0.013 0.031 0.056 0.058 0.136 0.150 0.090 0.050 0.186 0.127 0.045 -0.010 0.013 0.120 

TC 5 0.846 0.188 0.088 0.127 0.157 0.158 0.155 0.188 0.130 0.294 0.140 0.093 0.029 0.287 0.305 0.234 0.079 0.203 0.278 

I 1 0.253 0.768 0.207 0.037 0.183 0.051 0.180 0.145 0.155 0.221 0.273 0.061 0.229 0.073 0.125 0.061 0.107 -0.011 0.098 

I 4 0.200 0.856 0.006 0.032 0.145 0.173 0.194 0.071 0.046 0.103 0.261 0.008 0.173 0.036 0.091 0.106 0.079 -0.065 0.094 

M (V) 1 0.091 0.062 0.819 0.142 0.159 0.082 0.110 0.113 0.074 0.078 0.141 0.322 0.089 -0.092 0.084 0.033 0.006 0.017 0.045 

M (V) 2 0.135 0.170 0.640 0.226 0.040 0.039 0.112 0.103 0.012 0.140 0.058 0.244 -0.008 0.027 0.052 -0.004 -0.009 0.082 0.039 

M (V) 3 0.166 0.094 0.931 0.163 0.096 0.106 0.125 0.135 0.041 0.066 0.105 0.298 0.018 0.000 0.068 0.031 0.040 -0.029 0.093 

M (P) 1 0.150 0.041 0.200 1.000* 0.052 0.108 0.156 0.023 0.077 0.170 0.073 0.250 0.087 0.050 0.171 0.063 -0.036 0.039 0.115 

ID 1 0.093 0.153 0.063 0.040 0.659 0.204 0.148 0.184 0.150 0.144 0.102 0.055 0.124 0.154 0.163 0.130 -0.080 -0.048 0.068 

ID 2 0.030 0.122 0.106 0.084 0.713 0.102 0.105 0.096 0.109 0.093 0.193 0.172 0.156 0.065 0.100 0.184 0.043 0.041 0.118 

ID 3 0.299 0.165 0.094 0.006 0.814 0.209 0.231 0.178 0.210 0.281 0.218 0.124 0.153 0.179 0.194 0.227 0.000 0.114 0.192 

TCS 1 0.175 0.179 -0.005 0.011 0.206 0.686 0.180 0.161 0.372 0.356 0.217 0.019 0.280 0.147 0.217 0.275 -0.057 0.074 0.199 

TCS 2 0.218 0.067 0.064 0.095 0.188 0.828 0.273 0.238 0.329 0.353 0.291 0.156 0.284 0.106 0.241 0.374 -0.030 0.140 0.338 

TCS 3 0.094 0.109 0.191 0.139 0.129 0.752 0.315 0.297 0.274 0.428 0.193 0.178 0.283 0.021 0.146 0.224 -0.039 0.143 0.219 

IS 1 0.195 0.123 0.100 0.106 0.167 0.247 0.773 0.348 0.200 0.391 0.538 0.211 0.207 0.184 0.315 0.224 0.033 0.120 0.325 

IS 2 0.217 0.171 0.146 0.162 0.196 0.282 0.797 0.312 0.249 0.365 0.461 0.159 0.177 0.241 0.260 0.265 0.067 0.169 0.352 

IS 3 0.129 0.223 0.111 0.120 0.226 0.123 0.662 0.309 0.263 0.266 0.334 0.190 0.214 0.165 0.219 0.107 -0.065 0.024 0.189 

IS 4 0.012 0.185 0.036 0.050 0.085 0.281 0.630 0.275 0.339 0.264 0.324 0.117 0.277 0.078 0.160 0.172 -0.098 -0.005 0.245 

MS 1 0.139 0.185 0.068 -0.078 0.100 0.168 0.366 0.802 0.255 0.317 0.298 0.094 0.318 0.278 0.302 0.198 0.209 0.168 0.371 

MS 2 0.147 0.150 0.187 0.103 0.187 0.249 0.268 0.705 0.148 0.249 0.220 0.287 0.201 0.214 0.164 0.125 0.063 0.013 0.275 

MS 3 0.178 -0.025 0.101 0.050 0.187 0.279 0.332 0.767 0.250 0.339 0.259 0.220 0.323 0.194 0.292 0.244 0.000 0.044 0.358 

IDS 1 0.129 0.123 -0.006 0.114 0.054 0.276 0.260 0.212 0.726 0.274 0.251 0.071 0.384 0.155 0.233 0.244 0.083 0.041 0.275 
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IDS 2 0.115 0.082 0.085 0.056 0.255 0.409 0.295 0.271 0.851 0.358 0.302 0.021 0.405 0.179 0.331 0.300 -0.048 0.109 0.317 

IDS 3 0.097 0.068 0.037 0.005 0.196 0.307 0.270 0.204 0.774 0.208 0.218 0.006 0.345 0.094 0.221 0.265 -0.121 0.067 0.183 

PTCF 1 0.311 0.210 -0.008 0.067 0.200 0.356 0.306 0.274 0.337 0.796 0.439 0.142 0.268 0.233 0.273 0.306 0.059 0.125 0.397 

PTCF 2 0.273 0.159 0.156 0.128 0.169 0.440 0.354 0.263 0.372 0.813 0.396 0.235 0.255 0.224 0.279 0.394 -0.089 0.087 0.322 

PTCF 3 0.199 0.085 0.083 0.198 0.223 0.357 0.410 0.401 0.162 0.747 0.347 0.264 0.221 0.138 0.302 0.343 0.045 0.097 0.436 

PIF 1 0.156 0.292 0.114 0.160 0.118 0.254 0.463 0.310 0.202 0.387 0.747 0.305 0.307 0.216 0.225 0.227 0.067 0.024 0.357 

PIF 2 0.182 0.312 0.102 0.012 0.210 0.195 0.479 0.230 0.271 0.377 0.826 0.195 0.302 0.158 0.188 0.246 0.140 0.066 0.328 

PIF 3 0.227 0.242 0.132 0.066 0.247 0.236 0.436 0.300 0.298 0.396 0.748 0.106 0.229 0.216 0.227 0.244 0.117 -0.013 0.262 

PIF 4 0.150 0.117 0.026 -0.030 0.179 0.283 0.403 0.199 0.237 0.353 0.693 0.234 0.182 0.076 0.175 0.118 0.111 0.175 0.294 

PMF 1 0.157 -0.011 0.285 0.207 0.095 0.126 0.139 0.154 0.078 0.253 0.249 0.731 0.140 0.085 0.133 0.188 -0.023 0.044 0.123 

PMF 2 0.066 0.070 0.314 0.155 0.175 0.218 0.190 0.242 0.036 0.215 0.213 0.820 0.198 0.150 0.160 0.167 0.048 0.084 0.174 

PMF 3 0.131 0.018 0.273 0.138 0.068 0.065 0.166 0.086 -0.087 0.147 0.158 0.733 0.113 0.039 0.031 0.079 -0.048 0.025 0.073 

PMF 4 0.095 0.029 0.151 0.233 0.128 0.008 0.198 0.214 0.041 0.170 0.190 0.681 0.165 0.076 0.031 0.103 -0.012 -0.004 0.170 

PIDF 1 0.028 0.136 0.017 0.065 0.076 0.189 0.193 0.317 0.410 0.240 0.195 0.160 0.780 0.155 0.225 0.216 0.017 0.104 0.217 

PIDF 2 0.129 0.205 0.077 0.039 0.155 0.301 0.281 0.343 0.318 0.293 0.325 0.201 0.855 0.131 0.342 0.290 0.050 0.035 0.307 

PIDF 3 0.118 0.205 -0.024 0.104 0.221 0.348 0.169 0.181 0.390 0.165 0.239 0.115 0.605 0.142 0.190 0.262 -0.117 -0.005 0.163 

ATU 1 0.274 0.008 -0.033 0.037 0.126 0.104 0.174 0.263 0.155 0.246 0.185 0.096 0.167 0.870 0.401 0.302 0.066 0.101 0.439 

ATU 2 0.243 0.114 -0.001 0.045 0.175 0.094 0.223 0.215 0.145 0.141 0.172 0.118 0.128 0.719 0.278 0.243 0.132 -0.038 0.280 

FC 1 0.227 0.112 -0.070 0.126 0.091 0.192 0.160 0.169 0.214 0.262 0.185 0.129 0.186 0.335 0.668 0.279 0.045 0.056 0.380 

FC 2 0.270 0.062 0.104 0.184 0.186 0.200 0.288 0.294 0.302 0.255 0.176 0.078 0.267 0.394 0.854 0.305 0.101 0.137 0.494 

FC 3 0.233 0.121 0.141 0.041 0.174 0.205 0.286 0.282 0.211 0.285 0.239 0.100 0.306 0.189 0.629 0.218 0.050 0.038 0.370 

U (De) 1 0.010 0.055 0.029 0.029 0.066 0.345 0.160 0.109 0.261 0.255 0.089 0.182 0.201 0.139 0.192 0.678 0.229 0.010 0.163 

U (De) 2 0.250 0.112 0.078 0.066 0.187 0.334 0.199 0.262 0.185 0.398 0.301 0.224 0.272 0.306 0.295 0.751 0.182 0.016 0.480 

U( De) 3 0.100 0.057 -0.046 0.038 0.290 0.194 0.254 0.174 0.315 0.299 0.198 0.015 0.264 0.286 0.313 0.747 0.140 0.053 0.331 

U (Du) 1 0.098 0.112 0.025 -0.036 -0.005 -0.053 -0.001 0.121 -0.033 0.008 0.143 -0.001 -0.012 0.116 0.095 -0.053 1.000* 0.203 0.102 

U (F) 1 0.185 -0.050 0.005 0.039 0.073 0.159 0.127 0.106 0.095 0.131 0.080 0.058 0.058 0.054 0.114 0.159 0.113 1.000* 0.059 

UP 2 0.224 0.101 0.061 0.163 0.162 0.300 0.346 0.324 0.322 0.376 0.315 0.169 0.224 0.266 0.403 0.300 0.165 0.072 0.775 
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UP 4 0.387 0.158 0.117 0.080 0.150 0.227 0.323 0.380 0.242 0.443 0.312 0.153 0.213 0.437 0.589 0.227 0.780 0.062 0.762 

UP 6 0.221 0.014 0.079 0.024 0.123 0.305 0.269 0.359 0.285 0.312 0.318 0.146 0.228 0.328 0.338 0.305 0.855 0.034 0.778 

UP 7 0.169 0.073 -0.008 0.093 0.152 0.269 0.318 0.328 0.217 0.393 0.351 0.134 0.315 0.389 0.438 0.269 0.605 0.014 0.819 

TC = Time Criticality, I = Interdependence, M (V) = Mobility (Variety), M (P) = Mobility (Proximity), ID = Information Dependency, TCS = Time Criticality Support, 
IS = Interdependence Support, MS = Mobility Support (MS), IDS = Information Dependency Support (IDS), U (F) = Use (Frequency), U (Du) = Use (Duration) U (De) = Use 

(Dependence), FC = Facilitating Conditions, ATU = Affect Toward Using, UP = User Performance 
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Table G.10. Fornell-Larker Criterion Results 

 TC I M M2 ID TCS IS MS IDS PTCF PIF PMF PIDF FC ATU U (F) U (Du) U (De) UP 

 TC 0.763 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 I 0.274 0.814 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M (V) 0.150 0.041 0.803 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M (P) 0.164 0.116 0.197 SIC* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 ID 0.220 0.199 0.052 0.122 0.732 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 TCS 0.225 0.145 0.108 0.103 0.231 0.757 0 0 0 0 0 0 0 0 0 0 0 0 0 

 IS 0.207 0.231 0.156 0.140 0.230 0.337 0.719 0 0 0 0 0 0 0 0 0 0 0 0 

 MS 0.204 0.128 0.023 0.145 0.204 0.302 0.429 0.759 0 0 0 0 0 0 0 0 0 0 0 

 IDS 0.145 0.117 0.077 0.053 0.218 0.427 0.351 0.295 0.785 0 0 0 0 0 0 0 0 0 0 

 PTCF 0.331 0.191 0.170 0.096 0.253 0.489 0.457 0.402 0.365 0.786 0 0 0 0 0 0 0 0 0 

 PIF 0.235 0.326 0.073 0.126 0.246 0.317 0.591 0.344 0.332 0.500 0.755 0 0 0 0 0 0 0 0 

 PMF 0.145 0.039 0.250 0.347 0.167 0.159 0.232 0.251 0.042 0.274 0.281 0.743 0 0 0 0 0 0 0 

 PIDF 0.125 0.243 0.087 0.038 0.198 0.369 0.292 0.379 0.484 0.315 0.343 0.215 0.754 0 0 0 0 0 0 

 FC 0.337 0.130 0.171 0.082 0.209 0.272 0.338 0.343 0.340 0.364 0.270 0.137 0.345 0.724 0 0 0 0 0 

 ATU 0.324 0.065 0.050 -0.024 0.182 0.124 0.241 0.301 0.187 0.250 0.222 0.130 0.186 0.433 0.798 0 0 0 0 

 U (F) 0.185 -0.050 0.039 0.003 0.073 0.159 0.127 0.106 0.095 0.131 0.080 0.057 0.058 0.114 0.053 SIC* 0 0 0 

 U (Du) 0.098 0.112 -0.036 0.026 -0.005 -0.053 -0.001 0.122 -0.033 0.008 0.143 -0.001 -0.012 0.095 0.116 0.203 SIC* 0 0 

 U (De) 0.177 0.105 0.063 0.030 0.256 0.397 0.283 0.257 0.345 0.443 0.280 0.194 0.341 0.372 0.343 0.037 -0.073 0.727 0 

 UP 0.328 0.115 0.115 0.083 0.188 0.348 0.402 0.446 0.339 0.491 0.413 0.193 0.312 0.574 0.458 0.059 0.107 0.459 0.785 

* SIC = Single Item Construct. Shaded diagonal cells represent square roots of construct AVE values. 

TC = Time Criticality, I = Interdependence, M (V) = Mobility (Variety), M (P) = Mobility (Proximity), ID = Information Dependency, TCS = Time Criticality Support, 
IS = Interdependence Support, MS = Mobility Support (MS), IDS = Information Dependency Support (IDS), U (F) = Use (Frequency), U (Du) = Use (Duration) U (De) = Use 

(Dependence), FC = Facilitating Conditions, ATU = Affect Toward Using, UP = User Performance 
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Besides cross-loadings (Chin, 1998) and the Fornell-Larcker criterion (Fornell and 

Larcker, 1981), the Heterotrait-Monotrait ratio of correlations (HTMT), can be used to 

establish the discriminant validity of construct measures (Henseler, Ringle and Sarstedt, 

2015, p. 116). First, monotrait-heteromethod correlations quantify relationships between 

two measurements of the same construct using different methods. Second, heterotrait-

heteromethod correlations quantify relationships between two measurements of different 

constructs using different methods (Henseler et al., 2015, p. 120).  

 

The HTMT ratio (Hair et al., 2015) is the average of heterotrait-heteromethod 

correlations (i.e. of indicators across constructs measuring different phenomena) relative 

to the average of monotrait-heteromethod correlations (i.e. of indicators within the same 

construct). If the indicators of two constructs exhibit a HTMT value less than 1, the true 

correlation between the two constructs is most likely different form one, and the 

constructs should differ (p. 121).  

 

The HTMT ratio can be used to establish discriminant validity by comparing it to a 

predefined threshold. If the HTMT value exceeds this threshold, then it can be concluded 

that there is a lack of discriminant validity (Henseler et al., 2015). Gold, Malhotra and 

Segars (1990) suggested that for discriminant validity to be established, the estimated 

correlation between all construct pairs should be below the threshold of 0.90 (Gold, 

Malhotra and Segars, 2001), notated as HTMT.90. However, the alternative threshold of 

0.85 (Clark and Watson, 1995), notated as HTMT.85, is also deemed acceptable. Construct 

HTMT results are shown in Table G.11.  
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Table G.11. HTMT.90 Results 

  ATU FC I ID IDS IS M (V) M (P) MS PIDF PIF PMF PTCF TC TCS U (De) U (Du) Use (F) UP 

ATU                                       

FC 0.858                                     

I 0.173 0.272                                   

ID 0.378 0.409 0.375                                 

IDS 0.330 0.544 0.211 0.324                               

IS 0.428 0.543 0.411 0.349 0.519                             

M (V) 0.077 0.222 0.060 0.076 0.089 0.180                           

M (P) 0.106 0.220 0.252 0.175 0.082 0.200 0.251                         

MS 0.564 0.571 0.303 0.343 0.426 0.637 0.127 0.223                       

PIDF 0.362 0.599 0.452 0.334 0.765 0.452 0.118 0.085 0.584                     

PIF 0.384 0.442 0.529 0.352 0.460 0.789 0.103 0.169 0.493 0.493                   

PMF 0.211 0.224 0.100 0.228 0.134 0.323 0.286 0.464 0.369 0.301 0.363                 

PTCF 0.441 0.610 0.345 0.364 0.524 0.634 0.201 0.184 0.591 0.479 0.700 0.365               

TC 0.577 0.522 0.514 0.312 0.198 0.269 0.163 0.256 0.285 0.196 0.337 0.215 0.455             

TCS 0.230 0.462 0.263 0.374 0.633 0.488 0.134 0.172 0.479 0.597 0.449 0.237 0.750 0.306           

U (De) 0.670 0.673 0.203 0.413 0.561 0.423 0.082 0.092 0.404 0.583 0.414 0.291 0.705 0.296 0.650         

U (Du) 0.186 0.125 0.163 0.073 0.129 0.109 0.036 0.026 0.149 0.105 0.167 0.051 0.099 0.108 0.069 0.098       

U (F) 0.130 0.146 0.066 0.120 0.111 0.131 0.039 0.060 0.123 0.082 0.106 0.061 0.158 0.188 0.195 0.048 0.203     

UP 0.745 0.863 0.196 0.248 0.449 0.510 0.129 0.100 0.615 0.439 0.533 0.237 0.651 0.401 0.471 0.661 0.144 0.065   

TC = Time Criticality, I = Interdependence, M (V) = Mobility (Variety), M (P) = Mobility (Proximity), ID = Information Dependency, TCS = Time Criticality Support, 
IS = Interdependence Support, MS = Mobility Support (MS), IDS = Information Dependency Support (IDS), U (F) = Use (Frequency), U (Du) = Use (Duration) U (De) = Use 

(Dependence), FC = Facilitating Conditions, ATU = Affect Toward Using, UP = User Performance
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Appendix H Analysis of Covariance (ANCOVA) 

 

Analysis of Covariance (ANCOVA) is a statistical procedure used to examine the 

influence of one or more factors on a dependent variable, whilst partialling out or 

removing the effects of one or more covariates (Brace et al., 2012, p. 295). It is informed 

by the following assumptions: 

 

 

 

To test assumption 1, Analysis of Variance (ANOVA), was conducted with age, gender, 

experience as a CHW, education level, and tool use experience, by user groups (Table 

H.1). Relationships involving age (p = 0.000) and experience as a CHW (p = 0.002), were 

significant. Consequently, age and experience as a CHW were excluded from the 

ANCOVA. 

 

Table H.1. ANOVA: User Group on Covariate(s) 

Variable Sig (p) 

Independent Dependent 

User Group Age 0.000*** 

Gender 0.703 

Experience as a CHW 0.002** 

Education Level 0.591 

Tool Use Experience 0.574 

*** p < 0.0001, ** p < 0.01, * p < 0.05 

 

To test assumption 2, ANOVA was conducted with user group as the independent 

variable and each of the eleven CHW Reporting Performance (CHWRP) indicators (1-11) 

as outcomes. Interactions between user group and each of the three remaining covariates 

i.e. gender, education level, and use experience, were included. ANOVA results for the 

interaction between user group and gender are shown in Table H.2. 

 

 

 

1. The covariate(s) should not differ across groups in the experiment.  

2. The relationship between the dependent variable and the covariate(s) 

should be similar for groups. 
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Table H.2. ANOVA: User Group and Gender 

Interaction Term Dependent Variable 

(CHWRP) 

Sig (p) 

User Group * Gender 

 

1 0.321 

2 0.597 

3 0.242 

4 0.353 

5 0.045* 

6 0.123 

7 0.640 

8 0.082 

9 0.309 

10 0.984 

11 0.013* 

*** p < 0.0001, ** p < 0.01, * p < 0.05 

 

The interaction of user group and gender was significant where CHWRP 1 (monthly 

households visited) and CHWRP 2 (percentage of monthly household visits reported) 

were the dependent variables. Consequently, gender was excluded from ANCOVA where 

CHWRP 1 (monthly households visited) and CHWRP 2 (percentage of monthly 

household visits reported) were dependent variables. ANOVA results, including the 

eleven CHWRP indicators and the interaction, are shown in Table H.3. 

 

Table H.3. ANOVA: User Group and Education Level 

Interaction Term Dependent Variable 

(CHWRP) 

Sig (p) 

User Group * Education 

Level 

 

 1 0.157 

2 0.009** 

3 0.876 

4 0.122 

5 0.524 

6 0.126 

7 0.370 

8 0.161 

9 0.069 

10 0.069 

11 0.290 

*** p < 0.0001, ** p < 0.01, * p < 0.05 
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The interaction of user group and education level was significant where CHWRP 2 

(percentage of monthly household visits reported) was the dependent variable. 

Consequently, education level was excluded from ANCOVA where CHWRP 2 

(percentage of monthly household visits reported) was a dependent variable. ANOVA 

results including the eleven CHWRP indicators and the interaction of user group and use 

experience are shown in Table H.4. 

 

Table H.4.ANOVA: User Group and Use Experience 

Interaction Term Dependent Variable 

(CHWRP) 

Sig (p) 

User Group * Tool Use 

Experience 

 

 1 0.069 

2 0.048* 

3 0.502 

4 0.212 

5 0.160 

6 0.340 

7 0.301 

8 0.400 

9 0.286 

10 0.824 

11 0.074 

*** p < 0.0001, ** p < 0.01, * p < 0.05 

 

The interaction of user group and experience was significant for relationships where 

CHWRP 2 (percentage of monthly household visits reported) was the dependent variable. 

Consequently, use experience would be excluded from ANCOVA where OUP 2 

(percentage of monthly household visits reported) was a dependent variable. Where 

interaction terms were significant, Assumption 2 (homogeneity of regression slopes) was 

violated. Following testing of Assumptions 1 and 2 using ANOVA, ANCOVA was 

conducted. Gender, education level, and use experience, were selectively controlled for in 

the ANCOVA. 
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Table H.5. ANCOVA: Controls 

Control Variable Dependent Variable (CHWRP) 

Gender Education Level Use Experience 

   1 

 X X 2 

   3 

   4 

X   5 

X   6 

   7 

   8 

   9 

   10 

X   11 
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Appendix I Sequential (Hierarchical) Regression 

 

Sequential (Hierarchical) Regression is an inferential statistical procedure that involves 

the inclusion of predictors in a sequence determined by theoretical or empirical 

considerations (Brace et al., 2012). It is used to investigate linear relationships between 

multiple variables, whilst controlling for the effects of covariates (p. 270). Following 

Sequential Regression, the variate was examined to ensure that the following assumptions 

were met: 

 

 

 

To test assumptions 1, 2, and 4, the residual of the eleven CHWRP indicators was 

examined. Scatterplots of the residual for each of these indicators were examined. The 

residual examined showed clusters around the middle of the scatterplots, forming a 

rectangular shape (Brace et al., 2012). The scatterplots showed linear relationships 

between the residual and predicted value (Osborne and Waters, 2002). Therefore the 

assumptions 1 (Linearity), and 2 (Homoscedasticity), were satisfied. To test assumption 3 

(Independence), the auto-correlation of residuals, was examined using Durbin-Watson 

values. 

 

 

 

 

 

 

 

1. Linearity: The relationship between the independent and dependent 

variable should be linear. 

2. Homoscedasticity: The variance of errors should be the same for all levels 

of the independent variable. 

3. Independence: For observations, errors should be independent such that 

they are uncorrelated.  

4. Normality: The errors should be normally distributed, approximating a 

normal curve. 

5. Multicollinearity: The independent variables should not correlate at high 

levels. 
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Table I.1. Durbin-Watson Test 

Predictors Criterion 

Variable 

(CHWRP) 

Durbin-

Watson 

Statistic 

1b 2b 

Age Gender Experience 

as a CHW 

Education 

Level 

Use 

Experience 

User 

Group 

      1 1.330 

      2 1.602 

      3 1.699 

      4 1.561 

      5 1.977 

      6 1.676 

      7 1.713 

      8 1.880 

      9 1.618 

      10 1.817 

      11 1.753 

1b = First Block: Covariates in Regression Model, 2b = Second Block: Independent Variable 

 

The Durbin-Watson test statistic can vary between values of 0 and 4. Since values ‘less 

than 1 or greater than 3’ (Field, 2009) were not found, Assumption 3 (Interdependence) 

was met. To test and satisfy assumption 4 (Normality), Probability Plots (P-Plots) of the 

residuals (Brace et al., 2012) were examined and these were found to be normally 

distributed (the residual data points observed formed approximately straight lines). To 

test assumption 5, Tolerance and Variance Inflation Factor (VIF) values were calculated. 

Due to high Tolerance and low VIF values (Brace et al., 2012), Assumption 5 

(Multicollinearity) was not violated. 
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Table I.2. Multicollinearity Test 

Tolerance Value and (VIF) Values  Dependent 

Variable (CHWRP) Age Gender Experience 

as a CHW  

Education 

Level 

Use 

Experience 

User Group 

0.926 

(1.080) 

0.991 

(1.009) 

0.935 

(1.070) 

0.992 

(1.008) 

0.986 

(1.014) 

0.928 

(1.078) 

1 

0.911 

(1.098) 

0.992 

(1.008) 

0.918 

(1.089) 

0.988 

(1.012) 

0.988 

(1.012) 

0.927 

(1.078) 

2 

0.925 

(1.081) 

0.990 

(1.011) 

0.960 

(1.041) 

0.988 

(1.012) 

0.978 

(1.1023) 

0.945 

(1.058) 

3 

0.916 

(1.092) 

0.990 

(1.011) 

0.948 

(1.054) 

0.991 

(1.009) 

0.983 

(1.017) 

0.935 

(1.069) 

4 

0.913 

(1.095) 

0.985 

(1.015) 

0.955 

(1.047) 

0.991 

(1.009) 

0.970 

(1.031) 

0.928 

(1.077) 

5 

0.928 

(1.078) 

0.989 

(1.012) 

0.953 

(1.049) 

0.990 

(1.010) 

0.972 

(1.029) 

0.923 

(1.083) 

6 

0.924 

(1.082) 

0.994 

(1.006) 

0.954 

(1.049) 

0.990 

(1.010) 

0.967 

(1.034) 

0.918 

(1.089) 

7 

0.915 

(1.093) 

0.993 

(1.007) 

0.946 

(1.057) 

0.993 

(1.007) 

0.969 

(1.032) 

0.911 

(1.098) 

8 

0.925 

(1.081) 

0.992 

(1.008) 

0.933 

(1.071) 

0.991 

(1.009) 

0.988 

(1.012) 

0.927 

(1.078) 

9 

0.925 

(1.081) 

0.992 

(1.008) 

0.933 

(1.071) 

0.991 

(1.009) 

0.988 

(1.012) 

0.927 

(1.078) 

10 

0.922 

(1.085) 

0.994 

(1.006) 

0.936 

(1.069) 

0.995 

(1.005) 

0.988 

(1.012) 

0.912 

(1.096) 

11 
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Appendix J Structural Equation Modelling (SEM) 

 

The multi-variate method of Partial Least Squares – Structural Equation Modelling (PLS 

– SEM) is a second-generation technique (Hair et al., 2014). Second-generation 

techniques enable researchers to incorporate unobservable variables indirectly observed 

by indicator variables (p. 2).  

J.1 Path Models with Latent Variables 

 

Path models are diagrams used to visualize hypotheses and variable relationships 

examined using SEM (Hair, Ringle and Sarstedt, 2011). Path models comprise constructs 

or latent variables (not directly measured), and their indicator items, or manifest variables 

(directly measured). Relationships between these constructs and their indicators are 

depicted using arrows (Hair et al., 2014). In path models, there are exogenous (predictor), 

and endogenous (criterion) variables. The former are used to explain other constructs in 

the path model. The latter represent those constructs that are being explained in the path 

model. Path models are developed based on theory, a set of systematically related 

propositions developed following scientific methods used to explain and predict 

outcomes (p. 12). 

J.2 Approaches 

There are two approaches to SEM, namely Partial Least Squares (PLS) and Covariance-

Based (CB). The use of either approach is based on their distinguishing features (Hair et 

al., 2012). PLS-SEM is preferred if the objective of SEM is to predict and explain target 

constructs. Compared to the CB approach, which is a Maximum Likelihood (ML) 

procedure, PLS-SEM is an Ordinary Least Squares (OLS) regression-based method (Hair 

et al., 2014, p. 14). There are four components instructive to the use of PLS-SEM (Hair, 

Ringle and Sarstedt, 2011; Hair et al., 2012a; Hair et al., 2012b; Ringle, Sarstedt and 

Straub, 2012): 

 

 

1. The data. 

2. Model properties. 

3. The PLS-SEM algorithm. 

4. Model evaluation issues. 
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PLS-SEM works efficiently with complex models and is a non-parametric procedure (not 

based on data distribution assumptions). Moreover, PLS-SEM can easily accommodate 

reflective and formative measurement models, and single-item constructs without 

identification problems. By applying PLS-SEM, researchers benefit from high parameter 

estimation efficiency. Furthermore, PLS-SEM has greater statistical power than CB-SEM 

(Hair et al., 2014, p. 15).  

 

Findings reported in prior studies have indicated that the differences between PLS-SEM 

and CB-SEM are minor. As such, PLS-SEM and CB-SEM results do not differ 

significantly (Reinartz, Haenlein and Henseler, 2009). Therefore, when selecting a 

suitable analysis procedure for SEM, researchers can consider either approach. Most 

importantly, researchers ought to use the SEM procedure most suited to their research 

objectives, data attributes, and model setup (Roldan and Sanchez Franco, 2012). The key 

characteristics of PLS-SEM are summarized in Table J.1.  

 

Table J.1. Key Characteristics of Partial Least Squares – Structural Equation Modeling (PLS – SEM) 

Data Characteristics 

Sample Sizes  No identification issues with sample sizes. 

 Generally achieves high levels of statistical power with small sample sizes. 

 The precision (consistency) of PLS-SEM estimations increase with larger 

sample sizes. 

Distribution PLS-SEM is a non-parametric technique (no distributional assumptions). 

Missing Values Highly robust as long as missing values do not exceed a reasonable level. 

Scale of Measurement Functional with metric data, quasi-metric (ordinal) scaled data, and binary 

coded variables (with certain restrictions). 

Is somewhat limited when using categorical data to measure endogenous 

latent variables. 

Model Characteristics 

Number of Items in Each Construct 

Measurement Model. 

Handles construct measures with single and multi-item measures. 

Relationships between Constructs and 

their Indicators 

Easily incorporates reflective and formative measurement models. 

Model Complexity Handles complex model with multiple structural model relations. 

Larger numbers of indicators usefully contribute to reducing PLS-SEM bias. 

Model Setup No causal loops allowed in the structural model (exclusive to recursive 

models). 

PLS-SEM Algorithm Properties 

Objective Minimizes the amount of unexplained variance (maximizes R
2
 values). 

Efficiency Converges after a few iterations (even with complex models and/or large 
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sets of data) to the optimum solution; efficient algorithm. 

Construct Scores Estimated as linear combinations of their indicators. 

Used for predictive purposes. 

Can be used as input for subsequent analyses. 

Not affected by data inadequacies. 

Parameter Estimates Structural model relationships are somewhat underestimated (PLS-SEM 

bias). 

Measurement model relationships are somewhat overestimated (PLS-SEM 

bias). 

Consistency at large. 

High statistical power levels. 

Model Evaluation Issues 

Evaluation of the Overall Model No global goodness-of-fit criterion. 

Evaluation of Measurement Models Reliability and Validity assessments using multiple criteria. 

Evaluation of the Structural Model Collinearity among constructs, significance of path coefficients, coefficient 

of determination (R
2
), effect size (f 

2
), predictive relevance (Q 

2
 and q 

2
 

effect size) 

Additional Analysis Impact-performance matrix analysis, mediating effects, hierarchical 

component models, multi-group analysis, uncovering and treating 

unobserved heterogeneity, measurement model invariance, moderating 

effects. 

 

Notably, PLS-SEM is not without its limitations. For instance, the technique cannot be 

applied when there are causal loops in structural models, or circular relationships between 

latent variables (non-recursive model). Regarding bias and consistency, PLS-SEM 

parameter estimates are not always optimal (Hair et al., 2014, p. 18).  

J.3 Model Specification 

 

Structural models are used to describe the relationships between latent variables 

(constructs). Measurement models represent relationships between these constructs and 

their indicators (Hair et al., 2014). These relationships are determined based on 

measurement theory. Sound theory is instrumental to obtaining useful PLS-SEM results 

(p. 41).  

 

To develop constructs, researchers must consider typologies representing reflective and 

formative measurement models. The reflective measurement (Mode A) model is based on 

classical test theory, based on the premise that measures represent effects (manifestations) 

of an underlying construct. Consequently, causality emanates from the construct to its 
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indicators (p. 42). Conversely, the formative measurement (Mode B) model is based on 

the assumption that indicators cause the construct (p. 43). 

 

 

Figure J.1. Measurement Model Types 

The specification of the content of constructs, determines the measurement model type
97

 

used. There are a number of guidelines
98

 that are useful for measurement model selection: 

 

Table J.2. Guidelines: Measurement Model  

Criterion Decision Reference 

Causal priority between indicator 

and construct 

 If from construct to indicator, 
model is reflective. 

 If from indicators to construct, 
model is formative. 

Diamantopoulos and Winklhofer 

(2001) 

Is the construct a trait that 

explains indicators rather than 

their combination? 

 If yes, model is reflective. 

 If no, model is formative.  

Fornell and Bookstein (1982) 

Do the indicators represent 

consequences or causes of the 

construct? 

 If yes, model is reflective. 

 If no, model is formative. 

Rossiter (2002) 

If the assessment of the trait is 

altered, all indicators will change 

similarly (assuming they are 

coded equally)? 

 If yes, model is reflective. 

 If no, model is formative. 

Chin (1998) 

Are the items mutually 

interchangeable? 

 If yes, model is reflective. 

 If no, model is formative. 

Jarvis, MacKenzie, and Podsakoff 

(2003) 

                                                 
97

 The type of measurement model is determined by construct conceptualization and the aim of the study. 
98

 A data-driven approach must be supplemented with theoretical considerations consistent with the above 

guidelines (Hair et al., 2014, p. 46). 
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Appendix K Bootstrapping 

K.1 Procedure 

 

The PLS-SEM approach is based on the assumption that data are not normally 

distributed. Consequently, a non-parametric, bootstrap procedure (Efron and Tibshirani, 

1986; Davison and Hinkley, 1997) must be used to test path coefficient significance. 

Bootstrapping involves drawing a large number of subsamples (i.e. bootstrap samples), 

from an original sample with replacement (Hair et al., 2014). In other words, each time an 

observation is randomly drawn from a sample population, it is returned before a 

subsequent observation (i.e. the population from with the observation is drawn always 

contains all the same elements). Therefore, for a particular subsample, an observation can 

be selected either more than once, or never (p. 131). The number of bootstrap samples 

drawn should be large, but at least be equal to the number of valid observations in the 

dataset. As a rule of thumb, 5000 bootstrap samples are recommended. In addition, the 

size of each bootstrap must be specified (Hair et al., 2014). The accepted guideline is that 

each bootstrap should equate the number of observations in the original sample. For 

example, if there are 100 valid observations in the original sample, then each of the 5000 

bootstrap samples should have 100 cases. In this does not occur, then the results of 

significance testing will be systematically biased (p. 132). The bootstrap procedure is 

shown in Figure K.1. 
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Figure K.1. Bootstrap Routine (Hair, Hult, Ringle and Sarstedt, 2014, p. 133)
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The bootstrapping procedure follows a t distribution with degrees of freedom (df). The 

degrees of freedom (df) are the number of values in the final calculation of the test 

statistic that are free to vary, and equal to the number of observations minus 1 (Hair et al., 

2014). The t distribution is well approximated by the normal (Gaussian) distribution for 

more than 30 observations. The number of observations usually exceeds this threshold 

such that the normal (Gaussian) quantiles can be used to determine critical t values for 

significance testing (Hair et al., 2014). For example, when the size of the resulting t value 

exceeds 1.96, the assumption is that the path coefficient is significantly different from 

zero at a significance level of 5% ( = 0.05; two-tailed test). The t values for significance 

levels of 1% ( = 0.01; two-tailed test), and 10% ( = 0.10; two-tailed test), are 2.57 and 

1.65 respectively (Hair et al., 2014, p. 134). In using PLS-SEM bootstrapping procedures, 

the signs of latent variable scores are indeterminate (Wold, 1985). This results in arbitrary 

sign changes in bootstrapped estimates of path coefficients, compared to those obtained 

from the original sample (Hair et al., 2014). This pulls the mean value of bootstrap results 

toward zero, inflating the corresponding bootstrap standard error (se
*

w1) upward, and 

decreasing the t value (p. 135). There are three approaches that can be followed to remedy 

sign changes.  

 

First, the default, no sign change option involves accepting the negative impact of sign 

changes on the results for the empirical t value obtained. Second, the individual-level sign 

change option is used to reverse signs if an estimate for a bootstrap sample results in the 

opposite sign to that of the original sample. The signs in the measurement and structural 

models of each bootstrap sample are aligned with the signs in the original sample to avoid 

sign change problems. Third, the construct-level sign change option is used to test a 

group of path coefficients simultaneously and compare the signs of original PLS path 

model estimates with those of the bootstrap sub-sample (Hair et al., 2014, p. 135). If most 

of the signs need to be reversed through bootstrapping to match the signs of the model 

estimated using the original sample, all signs are reversed through bootstrapping, 

otherwise, no signs are changed. The construct-level sign change is a compromise 

between the no sign changes and individual-level changes options. Results obtained using 

the sign change options do not differ much, provided the original estimates are not close 

to zero. If, however, the original estimates are close to zero, then sign reversal may 

systematically reduce the bootstrapping standard error (se
*
). The no sign change option 
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results in the most conservative outcome. If path coefficients are significant under the no 

sign change option, they will also be significant when using the alternatives. Otherwise, 

the individual sign change option should be used since it yields the highest t values when 

comparing the three sign change options. If the result still is not significant, the path 

coefficient is not significant. However, if the result is not significant under the no sign 

change option but is significant under the individual-level sign change option, then the 

construct-level change option should be used to counter-balance the two (Hair et al., 

2014, p. 135).  

 

The interpretation procedure used to evaluate these sign change options is shown in 

Figure K.2. 
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Figure K.2. Bootstrap Sign Change Options (Hair, Hult, Ringle and Sarstedt, 2014, p. 137) 
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Appendix L Task-Technology Fit (TTF) as Moderation  

 

 
Figure L.1. Path Model: Task-Technology Fit (TTF) as Moderation (Interaction) Effects on Use 

   
 

 
Figure L.2. Path Model: Task-Technology Fit (TTF) as Moderation (Interaction) Effects on User Performance 

   
* p < 0.01, ***p < 0.05, ***p < 0.01. 
 
1 = TC x TCS, 2 = TC x IS, 3 = TC x MS, 4 = TC x IDS, 5 = I x TCS, 6 = I x IS, 7 = I x MS 8 = I x IDS, 
9 = M x TCS, 10 = M x IS, 11 = M x MS, 12 = M x IDS, 13 = ID x TCS, 14 = ID x IS, 15 = ID x MS, 16 = ID x 

IDS 
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Appendix M Response Surface Methodology 

M.1 Polynomial Regression 

 

A reflective first-order, formative second-order Type II structural path model (Figure 

M.1), was estimated
99

, in order to obtain unstandardized latent variable scores
100

 for 

Polynomial Regression.  

 

Prior to response surface analysis, Polynomial Regression must be conducted first 

(Edwards, 1994). Polynomial Regression is based on three fundamental assumptions 

(Shanock, Baran, Gentry, Patison, and Heggestad, 2010).  

 

First, the component measures must co-exist in the same conceptual domain (Shanock et 

al., 2010). For example, the task performed, and the technology used, conceptually co-

exist. Since these two components influence use and user performance, a discrepancy 

(misfit) between the task (user needs), and the technology (tool functions), is plausible. 

Second, component measures must often be captured using equivalent scales (Edward, 

2002). Scale equivalence is necessary to determine their degree of correspondence (p. 

360). Third, component measures must be interval or ratio (Pedhazur, 1997). For 

instance, task and technology components were measured using a seven-point Likert 

scale from 1 = ‘strongly disagree’ to 7 = ‘strongly agree’.  

 

Polynomial Regression (Edwards, 1993) and Response Surface Methodology (Edwards, 

2002) are used to examine: 

 

 

                                                 
99

 A bootstrapping procedure (5000 re-samples) was used. 
100

 The unstandardized latent variable scores were imported into SPSS, and used to run Polynomial 

Regression analyses. 

1. How the agreement (fit) between two variables, relates to an outcome. 

2. How the degree of discrepancy (misfit) between two variables relates to an 

outcome. 

3. How the direction of the discrepancy (misfit) between two variables, 

relates to an outcome. 
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Figure M.1. Path Model – Task-Technology Fit (TTF): Reflective First-Order, Formative Second-Order Type II Model 

* p < 0.01, ****p < 0.05. ***p < 0.01 
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M.2 Response Surface Features 

 

Table M.1. Response Surface Features 

Feature Expression Interpretation 

Stationary Point  
X0 =    b2b4 - 2b1b5   ,   Y0 =    b2b4 - 2b1b5 
            b3b5 – b4

2                       
b3b5 – b4

2
 

                

 

 This is the point at which the surface slope is 
zero in all directions. 

 For a concave surface, the stationary point 
represents the maximum. For a convex 
surface, it represents the minimum. For a 
saddle surface, it lies along the intersection 
of the lines along which upward and 
downward surface curvatures are greatest. 

 The stationary point is used to determine the 
response surface structure. For positive 
criteria (e.g. individual performance), it is 
used to identify the peak (dome) of the 
surface. For negative criteria (e.g. 
dissatisfaction), it is used to identify the 
trough (bowl) of the surface.  

Principal Axes (1
ST

 
and 2

nd
) 

1
st
 principal axis: Y = p10  + p11X  

with 
 
p11 = b5 – b3  + √ ((b3 – b5) 

2
 + b4

2
   

(slope) 
b4           

p10 = Y0 – p11 X0  (intercept) 
 
2

nd
 principal axis: Y = p20  + p21X  

with 
 
p21 = b5 – b3  + √ ((b3 – b5) 

2
 + b4

2
   

(slope) 
b4           

p20 = Y0 – p11 X0  (intercept) 

 

 The principal axes indicate the overall 
orientation of the surface, regarding the X, Y 
plane. These represent lines in the X, Y 
plane perpendicular to one another, 
intersecting the stationary point. 

 For a concave surface, the first principal axis 
is the line along which the downward surface 
curvature is minimized. The second principal 
axis is the line along which the downward 
surface curvature is maximized. 

 For a convex surface, the first principal axis 
is the line along which the upward surface 
curvature is maximized. The second 
principal axis is the line along which the 
upward surface curvature is minimized.  

 For a saddle surface, the first principal axis 
is the line along which the upward curvature 
of the surface is maximized. The second 
principal axis is the line along which the 
downward surface curvature is maximized. 

Line of Congruence 
(Fit) 

Y = X 

with following shape along this line: 
Z = b0 + (b1 + b2)X + (b3 + b4 + b5)X

2
 + 

e 
where 
ax = b1 + b2  (slope at X = 0, Y = 0) 
ax2 = b3 + b4  + b5 (curvature) 
 

 The surface shape along the line of perfect 
congruence. 

 The examination of this line involves testing 
its slope and curvature. If ax (its slope at the 
origin), significantly differs from zero, and is 
positive (or negative), and ax2 does not (i.e. 
no significant curvature), the surface slope if 
positive (negative) linear, indicating that 
when the two predictors are congruent (fit) 
the criterion (outcome) increases 
(decreases) as their values increase. 

Line of 
Incongruence (Mis-
Fit) 

Y = - X 

with following shape along this line: 
Z = b0 + (b1 + b2)X + (b3 - b4 + b5)X

2
 + e 

where 
ax = b1 - b2  (slope at X = 0, Y = 0) 
ax2 = b3 - b4  + b5 (curvature) 

 

 Definition: The shape of the surface along 
the line of incongruence. 

 The examination of this line involves testing 
its slope and curvature. If ax does not 
significantly differ from zero (ax = 0) and ax2 
is negative and does (ax<0), the response 
surface will have an inverted U-shape (i.e., 
curved upward) along the Y = -X line, with its 
peak at Y = X. If ax significantly differs from 
zero and is positive (or negative) and a2 
does not (ax2 = 0), the surface slope along 
the line of incongruence is linear indicating 
that the outcome variable increases 
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(decreases) along the line of incongruence.   
 

Lateral Shift and 
Rotation 

     b3 – b4_____ 

                      2(b3 – b4  + b5) 

 The magnitude and direction of the lateral 
shift along the Y = X line is also expressed 
using the formula in the left column. A 
positive value represents a shift toward the 
region where Y > X. A negative value 
represents a shift toward the region where Y 
< X. 

 The examination of this shift helps determine 
what type of incongruence (i.e., Y > X or Y < 
X), has more or less impact on the outcome 
variable. 

 The magnitude and direction of the surface 
rotation can also be analysed by looking at 
b3, b4, and b5. If b3 and b5 are equal, then the 
surface does not rotate, independent of b4. If 
b3 is less than b5, the surface rotates 
clockwise, otherwise it rotates counter-
clockwise. In both cases, the magnitude of 
the rotation is determined not only by the 
difference of b3 and b5, but also by b4, with 
larger rotations for smaller values of b4. 
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Appendix N Task-Technology Fit (TTF) as Mediation  

 

Task-Technology Fit (TTF) as Mediation, is based on the generic mediator model
101

 

shown in Figure N.1. 

 

 

Figure N.1. Generic Mediator Model 

 

Mediation analyses are typically used to address the following questions (Hair et al., 

2014, p. 223): 

 

 

 

To test mediating effects, researchers must bootstrap
102

 the sampling distribution of the 

indirect effect, a technique used to examine simple and multiple mediator models 

                                                 
101

 For a generic mediator model, see Hair, Hult, Ringle and Sarstedt (2014, p. 220). 
102

 Since bootstrapping has no assumptions of the sampling distribution of statistics, it is compatible with 

Partial Least Squares – Structural Equation Modeling (Hair et al., 2014). Moreover, this technique yields 

greater statistical power than traditional methods such as the Sobel Test (Sobel, 1982). 

 

1. Is the direct effect p3, of the task or technology (X), on use or user 

performance (Y), significant when the mediator perceived fit (M), is 

excluded from the path model? 

2. Is the indirect effect (p1  p2), of the task and technology (X), on use or user 

performance (Y), through the mediator perceived fit (M), significant after 

its inclusion in the path model? 

3. How much of the direct effect p3, of the task or technology (X), on use or 

user performance (Y), does the indirect effect (p1  p2), absorb? Is there full 

or partial mediation? 
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(Preacher and Hayes, 2004, 2008). To use this technique, the following procedure
103

 is 

followed: 

 

 

Figure N.2. Mediator Analysis Procedure (Hair, Hult, Ringle and Sarstedt, 2014, p. 218) 

 

                                                 
103

 Alternatively, a single structural path model with direct and indirect effects (with and without mediators) 

can be assessed for path significance. As such, the first step can be skipped, and mediators included. 
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The above procedure was used can be used to examine multiple mediator structural path 

models. There are two benefits of specifying and testing single multiple mediation 

models. First, testing the total indirect effect of a predictor (X) on a criterion (Y), is the 

equivalent of regression analysis using several predictors to determine an outcome. If 

there is a significant effect, it can be concluded that a set of variables mediates the effect 

of the predictor (X) on the criterion (Y). Second, it is possible to determine to what extent 

specific mediator (M) variables, mediate the effect of the predictor (X) on (Y), in relation 

to the presence of co-mediators. A multiple mediator structural path model, was estimated 

to examine the four variables of perceived time criticality fit, perceived interdependence 

fit, perceived mobility fit, and perceived information dependency fit, for total direct and 

indirect effects. There are 56 paths, representing 8 sets of direct effects, in the multiple 

mediation model.  

 

The total direct effect of task characteristics, on perceived fit, was calculated using the 

following expression: 

 

(Time Criticality  Perceived Time Criticality Fit) + (Interdependence  Perceived Time Criticality Fit) + 

(Mobility  Perceived Time Criticality Fit) + (Information Dependency  Perceived Time Criticality Fit) + 

(Time Criticality  Perceived Interdependence Fit) + (Interdependence  Perceived Interdependence Fit) + 

(Mobility  Perceived Interdependence Fit) + (Information Dependency  Perceived Interdependence Fit) + 

(Time Criticality  Perceived Mobility Fit) + (Interdependence  Perceived Mobility Fit) + (Mobility  

Perceived Mobility Fit) + (Information Dependency  Perceived Mobility Fit). 

 

The total direct effect of technology characteristics, on perceived fit, was calculated using 

the following expression: 

 

(Time Criticality Support  Perceived Time Criticality Fit) + (Interdependence Support  Perceived Time 

Criticality Fit) + (Mobility Support  Perceived Time Criticality Fit) + (Information Dependency Support  

Perceived Time Criticality Fit) + (Time Criticality Support  Perceived Interdependence Fit) + 

(Interdependence Support  Perceived Interdependence Fit) + (Mobility Support  Perceived 

Interdependence Fit) + (Information Dependency Support  Perceived Interdependence Fit) + (Time 

Criticality Support  Perceived Mobility Fit) + (Interdependence Support  Perceived Mobility Fit) + 

(Mobility Support  Perceived Mobility Fit) + (Information Dependency Support  Perceived Mobility Fit). 

 

The total direct effect of perceived fit, on use, was calculated using the following 

expression: 
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(Perceived Time Criticality Fit  Use) + (Perceived Interdependence Fit  Use) + (Perceived Mobility Fit  

Use) + (Perceived Information Dependency Fit  Use). 

 

The total direct effect of perceived fit, on user performance, was calculated using the 

following expression: 

 

(Perceived Time Criticality Fit  User Performance) + (Perceived Interdependence Fit  User Performance) 

+ (Perceived Mobility Fit  User Performance) + (Perceived Information Dependency Fit  User 

Performance). 

 

The total direct effect of task characteristics, on use, was calculated using the following 

expression: 

 

(Time Criticality  Use) + (Interdependence  Use) + (Mobility  Use) + (Information Dependency  Use). 

 

The total direct effect of task characteristics, on user performance, was calculated using 

the following expression: 

 

(Time Criticality  User Performance) + (Interdependence  User Performance) + (Mobility  User 

Performance) + (Information Dependency  User Performance). 

 

The total direct effect of technology characteristics, on use, was calculated using the 

following expression: 

 

(Time Criticality Support  Use) + (Interdependence Support  Use) + (Mobility Support  Use) + 

(Information Dependency Support  Use). 

 

The total direct effect of technology characteristics, on user performance, was calculated 

using the following expression: 

 

(Time Criticality Support  User Performance) + (Interdependence Support  User Performance) + 

(Mobility Support  User Performance) + (Information Dependency Support  User Performance). 

 

There are 4 sets, each representing 16 indirect effects, in the multiple mediation model. 

The total indirect effect of task characteristics on use, through perceived fit, was 

calculated using the following expression: 
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(Time Criticality  Perceived Time Criticality Fit * Perceived Time Criticality Fit  Use)  + (Time Criticality  

Perceived Interdependence Fit * Perceived Interdependence Fit  Use) + (Time Criticality  Perceived 

Mobility Fit * Perceived Mobility Fit  Use) + (Time Criticality  Perceived Information Dependency Fit * 

Perceived Information Dependency Fit  Use) + (Interdependence  Perceived Time Criticality Fit * 

Perceived Time Criticality Fit  Use)  + (Interdependence  Perceived Interdependence Fit * Perceived 

Interdependence Fit  Use) + (Interdependence  Perceived Mobility Fit * Perceived Mobility Fit  Use) + 

(Interdependence  Perceived Information Dependency Fit * Perceived Information Dependency Fit  Use) 

+ (Mobility  Perceived Time Criticality Fit * Perceived Time Criticality Fit  Use)  + (Mobility  Perceived 

Interdependence Fit * Perceived Interdependence Fit  Use) + (Mobility  Perceived Mobility Fit * 

Perceived Mobility Fit  Use) + (Mobility  Perceived Information Dependency Fit * Perceived Information 

Dependency Fit  Use) + (Information Dependency  Perceived Time Criticality Fit * Perceived Time 

Criticality Fit  Use)  + (Information Dependency  Perceived Interdependence Fit * Perceived 

Interdependence Fit  Use) + (Information Dependency  Perceived Mobility Fit * Perceived Mobility Fit  

Use) + (Information Dependency  Perceived Information Dependency Fit * Perceived Information 

Dependency Fit  Use). 

 

The total indirect effect of task characteristics on user performance, through perceived fit, 

was calculated using the following expression: 

 

(Time Criticality Support  Perceived Time Criticality Fit * Perceived Time Criticality Fit  Use)  + (Time 

Criticality Support  Perceived Interdependence Fit * Perceived Interdependence Fit  Use) + (Time 

Criticality Support  Perceived Mobility Fit * Perceived Mobility Fit  Use) + (Time Criticality Support  

Perceived Information Dependency Fit * Perceived Information Dependency Fit  Use) + (Interdependence 

Support  Perceived Time Criticality Fit * Perceived Time Criticality Fit  Use)  + (Interdependence Support 

 Perceived Interdependence Fit * Perceived Interdependence Fit  Use) + (Interdependence Support  

Perceived Mobility Fit * Perceived Mobility Fit  Use) + (Interdependence Support  Perceived Information 

Dependency Fit * Perceived Information Dependency Fit  Use) + (Mobility Support  Perceived Time 

Criticality Fit * Perceived Time Criticality Fit  Use)  + (Mobility Support  Perceived Interdependence Fit * 

Perceived Interdependence Fit  Use) + (Mobility Support  Perceived Mobility Fit * Perceived Mobility Fit 

 Use) + (Mobility Support  Perceived Information Dependency Fit * Perceived Information Dependency 

Fit  Use) + (Information Dependency Support  Perceived Time Criticality Fit * Perceived Time Criticality 

Fit  Use)  + (Information Dependency Support  Perceived Interdependence Fit * Perceived 

Interdependence Fit  Use) + (Information Dependency Support  Perceived Mobility Fit * Perceived 

Mobility Fit  Use) + (Information Dependency Support  Perceived Information Dependency Fit * 

Perceived Information Dependency Fit  Use). 

 

The total indirect effect of task characteristics on user performance, through perceived fit, 

was calculated using the following expression: 

 

(Time Criticality  Perceived Time Criticality Fit * Perceived Time Criticality Fit  User Performance)  + 

(Time Criticality  Perceived Interdependence Fit * Perceived Interdependence Fit  User Performance) + 

(Time Criticality  Perceived Mobility Fit * Perceived Mobility Fit  User Performance) + (Time Criticality  

Perceived Information Dependency Fit * Perceived Information Dependency Fit  User Performance) + 
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(Interdependence  Perceived Time Criticality Fit * Perceived Time Criticality Fit  User Performance)  + 

(Interdependence  Perceived Interdependence Fit * Perceived Interdependence Fit  User Performance) 

+ (Interdependence  Perceived Mobility Fit * Perceived Mobility Fit  User Performance) + 

(Interdependence  Perceived Information Dependency Fit * Perceived Information Dependency Fit  User 

Performance) + (Mobility  Perceived Time Criticality Fit * Perceived Time Criticality Fit  User 

Performance)  + (Mobility  Perceived Interdependence Fit * Perceived Interdependence Fit  User 

Performance) + (Mobility  Perceived Mobility Fit * Perceived Mobility Fit  User Performance) + (Mobility 

 Perceived Information Dependency Fit * Perceived Information Dependency Fit  User Performance) + 

(Information Dependency  Perceived Time Criticality Fit * Perceived Time Criticality Fit  User 

Performance)  + (Information Dependency  Perceived Interdependence Fit * Perceived Interdependence 

Fit  User Performance) + (Information Dependency  Perceived Mobility Fit * Perceived Mobility Fit  

User Performance) + (Information Dependency  Perceived Information Dependency Fit * Perceived 

Information Dependency Fit  User Performance). 

 

The total indirect effect of technology characteristics on user performance, through 

perceived fit, was calculated using the following expression: 

 

(Time Criticality Support  Perceived Time Criticality Fit * Perceived Time Criticality Fit  User 

Performance)  + (Time Criticality Support  Perceived Interdependence Fit * Perceived Interdependence Fit 

 User Performance) + (Time Criticality Support  Perceived Mobility Fit * Perceived Mobility Fit  User 

Performance) + (Time Criticality Support  Perceived Information Dependency Fit * Perceived Information 

Dependency Fit  User Performance) + (Interdependence Support  Perceived Time Criticality Fit * 

Perceived Time Criticality Fit  User Performance)  + (Interdependence Support  Perceived 

Interdependence Fit * Perceived Interdependence Fit  User Performance) + (Interdependence Support  

Perceived Mobility Fit * Perceived Mobility Fit  User Performance) + (Interdependence Support  

Perceived Information Dependency Fit * Perceived Information Dependency Fit  User Performance) + 

(Mobility Support  Perceived Time Criticality Fit * Perceived Time Criticality Fit  User Performance)  + 

(Mobility Support  Perceived Interdependence Fit * Perceived Interdependence Fit  User Performance) + 

(Mobility Support  Perceived Mobility Fit * Perceived Mobility Fit  User Performance) + (Mobility Support 

 Perceived Information Dependency Fit * Perceived Information Dependency Fit  User Performance) + 

(Information Dependency Support  Perceived Time Criticality Fit * Perceived Time Criticality Fit  User 

Performance)  + (Information Dependency Support  Perceived Interdependence Fit * Perceived 

Interdependence Fit  User Performance) + (Information Dependency Support  Perceived Mobility Fit * 

Perceived Mobility Fit  User Performance) + (Information Dependency Support  Perceived Information 

Dependency Fit * Perceived Information Dependency Fit  User Performance). 

 

The total direct effects in the multiple mediation model, were calculated based on the 

following: 

 

 n = (p3) 

where: 
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p3 = Task or Technology (X)  Use or User Performance (Y) 

 

The total indirect effects in the multiple mediation model, were calculated based on the 

following: 

 

 n = (p1p2),  

where: 

p1 = Task or Technology (X)  Perceived Fit (M) 

p2 = Perceived Fit (M)  Use or User Performance (Y) 

 

The path model for estimation, with eight predictors, four mediator variables, and two 

criteria, is shown in Figure N.3.  

 

 

Figure N.3. Screenshot: Multiple Mediator Structural Path Model 
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Appendix O Task-Technology Fit (TTF) as Covariation 

O.1 Reliability, Validity, and Multi-Collinearity 

 

Results of testing reflective manifest indicators of the first-order task and technology 

characteristics for internal consistency reliability, indicator reliability, and convergent 

validity (Hair et al., 2014, p. 97), are shown in Table O.1. 

 
Table O.1. Internal Consistency Reliability and Convergent Validity 

Latent Variables Indicators Outer Loadings Composite Reliability AVE 

Time Criticality 

 

TC  1.000 

 

1.000 

 

1.000 

Interdependence I 1.000 1.000 1.000 

Mobility  M (V) 0.821 0.747 0.598 

Information Dependency M (P)  1.000 1.000 1.000 

Time Criticality Support 

 

TCS  1.000 1.000 1.000 

Interdependence Support IS  1.000 1.000 1.000 

Mobility Support MS  1.000 1.000 1.000 

Information Dependency Support I S  1.000 1.000 1.000 

 

Measurement model construct indicators met the criteria for the assessment of internal 

consistency reliability, indicator reliability, and convergent validity (Hair et al., 2014, p. 

107) (refer Figure G.1 of Appendix G). 

Results of testing reflective manifest indicators of the first-order task and technology 

characteristics for discriminant validity using cross-loadings (Hair et al., 2014, p. 97) are 

shown in Table O.2. 
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Table O.2. Cross-Loadings 

 TC I M ID TCS IS MS IDS 

TC 1.000 0.274 0.207 0.220 0.225 0.207 0.204 0.145 

I 0.274 1.000 0.106 0.199 0.145 0.231 0.128 0.117 

M (V) 0.150 0.041 0.722 0.052 0.108 0.156 0.023 0.077 

M (P) 0.164 0.116 0.821 0.122 0.103 0.140 0.145 0.053 

ID 0.220 0.199 0.116 1.000 0.231 0.230 1.000 0.295 

TCS 0.225 0.145 0.136 0.231 1.000 0.337 0.302 0.427 

IS 0.207 0.231 0.189 0.230 0.337 1.000 0.429 0.351 

MS 0.204 0.128 0.116 0.204 0.302 0.429 1.000 0.295 

IDS 0.145 0.117 0.351 0.218 0.427 0.351 0.295 1.000 

 
* SIC = Single Item Construct. Shaded diagonal cells represent square roots of construct AVE values. 

TC = Time Criticality, I = Interdependence, M (V) = Mobility (Variety), M (P) = Mobility (Proximity), ID = 
Information Dependency,  

TCS = Time Criticality Support, IS = Interdependence Support, MS = Mobility Support (MS), IDS = 
Information Dependency Support (IDS) 

 

Results of testing reflective manifest indicators of the first-order task and technology 

characteristics for discriminant validity using the Fornell-Larker Criterion (Hair et al., 

2014, p. 97) are shown in Table O.3.  

Table O.3. Fornell-Larker Criterion Results 

 TC I M ID TCS IS MS IDS 

TC SIC* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

I 0.274 SIC* 0.000 0.000 0.000 0.000 0.000 0.000 

M 0.203 0.106 0.773 0.000 0.000 0.000 0.000 0.000 

ID 0.220 0.199 0.116 SIC* 0.000 0.000 0.000 0.000 

TCS 0.225 0.145 0.231 0.231 SIC* 0.000 0.000 0.000 

IS 0.207 0.231 0.189 0.230 0.337 SIC* 0.000 0.000 

MS 0.204 0.128 0.429 0.204 0.302 0.429 SIC* 0.000 

IDS 0.145 0.117 0.082 0.117 0.427 0.351 0.082 SIC* 

 
* SIC = Single Item Construct. Shaded diagonal cells represent square roots of construct AVE values. 

TC = Time Criticality, I = Interdependence, M = Mobility, ID = Information Dependency,  
TCS = Time Criticality Support, IS = Interdependence Support, MS = Mobility Support (MS), IDS = 

Information Dependency Support (IDS) 

 

The cross-loadings and Fornell-Larcker criterion results met the criteria for the 

assessment of discriminant validity (Hair et al., 2014, p. 104) (refer Section G.2 of 

Appendix G). 

 

Prior to analyses of TTF as internally consistent co-alignment and covariation effects, 

multiple regressions were run to check the measures of task and technology 
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characteristics for collinearity (Hair et al., 2014, p.123). The results are shown in Table 

O.4. 

 
Table O.4: First-Order Task and Technology Characteristics of a Second-Order Fit 

Criterion 

Use User Performance 

Predictor Tolerance VIF Predictor Tolerance VIF 

Time Criticality 0.842 1.188 Time Criticality 0.842 1.188 

Interdependence 0.881 1.136 Interdependence 0.881 1.136 

Mobility 0.931 1.074 Mobility 0.931 1.074 

Information 

Dependence 

0.873 1.146 Information 

Dependence 

0.873 1.146 

Time Criticality Support 0.741 1.349 Time Criticality 

Support 

0.741 1.349 

Interdependence 

Support 

0.705 1.419 Interdependence 

Support 

0.705 1.419 

Mobility Support 0.766 1.305 Mobility Support 0.766 1.305 

Information 

Dependence Support 

0.753 1.328 Information 

Dependence Support 

0.753 1.328 

 

 

TTF was tested first as internally consistent co-alignment, and second, for its covariation 

effects on use and user performance. A screenshot of the estimated structural path model 

representing ‘fit’ as co-alignment and internal consistency is depicted in Figures O.1. and 

O2 respectively. 
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Figure O.1. Fit as Internally Consistent Co-alignment 

 

 
Figure O.2. Covariation Effects of Fit as Internally Consistent Co-alignment on Use and User Performance 
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O.2 The Modeling of Co-Alignment: A Snapshot of Prior ‘Fit’ Model 

Specifications 

 

In the extant literature on ‘fit as covariation’, it appears that in prior works, there have 

been inconsistent specifications of conceptualized and tested ‘fit’ co-alignment models. 

The following are observations: 

 

Venkatraman (1989) appears to have proposed a formative second-order ‘fit as 

coalignment’ (p. 437), as depicted in Figure O.3. 

 

 

Figure O.3 ‘Fit’ as Covariation (Coalignment) Model (Venkatraman, 1989, p. 437) 

 

This model-type has been adopted in some subsequent works, in which ‘fit as 

covariation’ has been conceptualized e.g. Bergeron et al’s (2001) study, in which it 

appears that Venkatraman’s (1989) second-order formative ‘fit’ co-alignment construct 

was adopted (p. 135), as depicted in Figure O.4. 
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Figure O.4 ‘Fit’ as Covariation (Coalignment) Model (Bergeron et al., 2001, p. 135) 

 

However, Venkatraman (1990) tested a second-order reflective ‘fit’ co-alignment 

construct, as depicted below (Figure O.5) in a reflective-reflective (Type I) co-alignment 

model setup, observing that empirical support is provided by the ‘statistical significance 

of the three parameters y1, y2, and y3, representing loadings of the three dimensions’ 

(reflectively measured), ‘on the second-order factor’ (reflectively measured) ‘of co-

alignment’ (p. 32). 

 

 

Figure O.5 The ‘Fit’ Co-alignment Model (Venkatraman, 1990, p. 32) 
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Apparently, a similar approach (reflective second-order factor) to modeling ‘fit’ as co-

alignment is what appears to have been adopted in Segars, Grover and Teng’s (1998) 

paper, where they tested what they termed as a model of ‘internal co-alignment (p. 329), 

as depicted in Figure O.6.  

 

 

Figure O.6 ’Fit’ as Internal Co-alignment (Segars, Grover and Teng, p. 329) 

 

This approach was similarly used in Wang et al’s (2008) paper, in which the effects of 

‘fit’ as ‘consistency’ were tested (p. 1618), as depicted in Figure O.7. 

 

 

Figure O.7 ‘Fit’ as Consistency (Wang, Shih, Jiang and Klein, 2008, p. 1618) 
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Having considered cited literature on approaches to the modeling of a ‘co-alignment’ fit, 

and in recognizing a seemingly more appropriate representation of ‘co-alignment’ and 

‘internal consistency’, the researcher arrived at the informed decision to adopt a 

‘reflective-reflective’ (Type I) model type (Jarvis et al., 2003, p. 205; Becker et al., 2012, 

p. 363). This was to ensure the precise and appropriate specification of models of 

internally consistent co-alignment expressed as a set of observed first-order factors in 

terms of a ‘fit’ as an unobserved second-order factor (Venkatraman, 1990, Segars, 1994, 

Segars et al., 1998), which is subsequently tested for its effects on the criteria variables of 

use and user performance. Accordingly, the TTF models tested for internally consistent 

co-alignment and covariation effects on use and user performance, were specified and 

estimated using the reflective-reflective (Type I) ‘fit’ covariation path model 

configuration, as depicted in Figure O.8.  

 

 

Figure O.8 The Covariation Effects of ‘Task-Technology Fit (TTF)’ as Internally Consistent Co-alignment 

(Chapter 9) 
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Appendix P Cover Letter and Survey Instrument (1)  

 

Dear Sir/Madam, 

 

My name is Maradona Gatara, and I am a Doctoral student in Information Systems (IS) at 

the University of the Witwatersrand (WITS), Johannesburg.  

 

As a PhD degree requirement at WITS, I am conducting a study on mobile-technology 

enabled healthcare service delivery systems for Community Health Worker (CHW) 

performance. 

 

You are invited to take part in this study by completing this questionnaire. There are no 

right or wrong answers.  

 

Participation in this survey is completely voluntary and involves no risk, penalty or loss 

of benefits.  

 

You will not be required to provide your personal details or reveal your identity while 

answering the questionnaire.  

 

The survey is both confidential and anonymous, and the data collected will only be used 

for the study and no other purpose.  

 

The survey questionnaire consists of 84 statements. Please circle the number that reflects 

the extent to which you agree or disagree with each statement.  

 

The survey has been unconditionally approved by the WITS Human Research Ethics 

Committee (protocol number: H13/08/42). 

 

The entire questionnaire should take 45 minutes to complete. Completion of this 

questionnaire will be taken as your consent to participate. 

 

Should you have any queries or wish to obtain a copy of the results of the survey in 

aggregate form, please contact me on +27 93 204 215.  

 

You can also reach me through email correspondence at maradonagatara@gmail.com. 

 

Thank you for considering your participation 

Yours Sincerely,  

 

Maradona C. Gatara      

Ph. D. Candidate      

Department of Information Systems (IS), 

School of Economic and Business Sciences (SEBS),  

University of the Witwatersrand (WITS),  

 Johannesburg, South Africa (SA) 

mailto:maradonagatara@gmail.com
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SECTION 1: COMMUNITY HEALTH WORKER (CHW) PROFILE  

 

1. Please indicate your age by ticking the appropriate box. 

 

☐ Below 25 years    ☐ 45-54 years                ☐ Prefer not to say 

☐ 25-34 years     ☐ 55-64 years       

☐ 35-44 years      ☐ 65 years and above         

            

2. Please indicate your gender by ticking the appropriate box. 

☐ Male     

☐ Female         

☐ Prefer not to say  

     

3. Please indicate your years of experience as a Community Health Worker (CHW):  _____ years. 

4. Please indicate your highest level of education by ticking the appropriate box. 

☐ Secondary School      ☐ Postgraduate Diploma      

☐ Post-Secondary Diploma   ☐ Postgraduate Degree      

☐ Undergraduate Degree    

    

5. Please indicate how long you have been using the mHealth tool by ticking the appropriate box.  

 

☐ Less than 1 month      ☐ 3-4 months        

☐ 1-2 months      ☐ 5 or more months  

 

SECTION 2: HEALTHCARE SERVICE TASKS 

 

1. Please indicate whether you use the mHealth tool in the following healthcare service areas. You may 

tick more than one task. 

 

 Monitoring 

Tasks 

Prevention Tasks Referral Tasks 

Nutritional Care 

 

   

Hygiene and Sanitation 

  

   

Referral 

 

   

Fever and Malaria 

 

   

HIV/AIDS 

 

   

TB Care 

 

   

Neonatal Care 

 

   

Maternal Care 

 

   

Family Planning 
 

   

Other (specify)    
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2. Please circle the average time window (from start to finish) within which you must complete your 

tasks in the selected healthcare service area(s).  
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Nutritional care  

 

1 2 3 4 5 6 7 

Hygiene and sanitation  

 

1 2 3 4 5 6 7 

Fever and malaria  

 

1 2 3 4 5 6 7 

HIV/AIDS care  

 

1 2 3 4 5 6 7 

TB care  

 

1 2 3 4 5 6 7 

Neonatal care  

 

1 2 3 4 5 6 7 

Maternal care  

 

1 2 3 4 5 6 7 

Family planning care  

 

1 2 3 4 5 6 7 

Other (specify):  

 

1 2 3 4 5 6 7 

 

3. After first becoming aware of the need to perform the following tasks, how urgently do you need to 

START them? 
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Monitoring Task 

 

1 2 3 4 5 6 

Health Promotion Task  

 

1 2 3 4 5 6 

Referral Task 

 

1 2 3 4 5 6 
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4. After starting to perform the following tasks, how urgently do you need to FINISH them? 
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Monitoring Task 

 

1 2 3 4 5 6 

Prevention Task 

  

1 2 3 4 5 6 

Referral Task 

 

1 2 3 4 5 6 

 

5. Please circle the number that reflects the extent to which you agree with the following statements 

relating to your tasks as a CHW. 
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a. It is very important for me to start my tasks on 

time. 

 

1 2 3 4 5 6 7 

b. It is very important for me to complete my tasks 

on time. 

 

1 2 3 4 5 6 7 

c. It is very important for me to start my tasks as 

soon as possible. 

 

1 2 3 4 5 6 7 

d. It is very important for me to finish my tasks as 

soon as possible. 

 

1 2 3 4 5 6 7 

e. It is very important for me to take immediate 

action. 

 

1 2 3 4 5 6 7 

f.  It is very important for me to promptly respond 

to emergencies.  

 

1 2 3 4 5 6 7 
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6. Please circle the number that reflects the extent to which you agree with the following statements 

relating to your tasks as a CHW. 
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a. I often need to complete my tasks with co-

workers. 
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b. I often need to share information with co-

workers. 

 

1 2 3 4 5 6 7 

c. I often need to rely on the work of other CHWs. 

 

1 2 3 4 5 6 7 

d. I often need to use information received from 

co-workers. 

 

1 2 3 4 5 6 7 

e. I often need to depend on the efforts of other 

CHWs. 

1 2 3 4 5 6 7 

 

7. In the selected healthcare service areas, do you perform the following tasks in a specific location or 

several locations? 
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Monitoring Tasks 

 

1 2 3 4 5 6 

Promotion Tasks 

 

1 2 3 4 5 6 

Referral Tasks 

 

1 2 3 4 5 6 

Other (specify) 

 

1 2 3 4 5 6 
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8. Please circle the number that reflects the extent to which you agree with the following statements 

relating to your tasks as a CHW. 
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a. I often need to perform my tasks in several 

places. 

 

1 2 3 4 5 6 7 

b. I often need to work away from just one single 

place for long periods. 

 

1 2 3 4 5 6 7 

c. I often need to perform tasks in locations that are 

far from my Community Health Unit (CHU). 

 

1 2 3 4 5 6 7 

d. I often need to travel to remote locations to 

perform tasks. 

 

1 2 3 4 5 6 7 

 

9. Please circle the number that reflects the extent to which you agree with the following statements 

relating to your need to depend on information as you perform your tasks. 
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a. I often need to depend on information on my 

current location. 

 

1 2 3 4 5 6 7 

b. I often need to depend on information on the 

location of supplies. 

 

1 2 3 4 5 6 7 

c. I often need to depend on information on the 

location of households. 

 

1 2 3 4 5 6 7 
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SECTION 3: MOBILE HEALTH TOOL FEATURES 

 

1. Please circle the number that reflects the extent to which you agree with the following statements 

related to your mHealth tool (mobile phone). 
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a. The mHealth tool works well in providing 

timely notification of required urgent actions. 

1 2 3 4 5 6 7 

b. The mHealth tool effectively responds to my 

requests quickly. 

 

1 2 3 4 5 6 7 

c. The mHealth tool notifies me of emergencies in 

a timely manner. 

 

1 2 3 4 5 6 7 

 

2. Please circle the number that reflects the extent to which you agree with the following statements 

relating to features of the mHealth tool. 
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a. The mHealth tool makes it easy to share 

information with others. 

 

1 2 3 4 5 6 7 

b. The mHealth tool effectively compiles data from 

co-workers. 

 

1 2 3 4 5 6 7 

c. The mHealth tool effectively pulls together data 

from co-workers. 

 

1 2 3 4 5 6 7 

d. The mHealth tool effectively integrates data 

from co-workers. 

 

1 2 3 4 5 6 7 
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3. Please circle the number that reflects the extent to which you agree with the following statements 

relating to features of the mHealth tool. 
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a. The mHealth tool effectively responds to 

changes in location. 

 

1 2 3 4 5 6 7 

b. The mHealth tool operates reliably as I move to 

different places. 

 

1 2 3 4 5 6 7 

c. The mHealth tool flexibly adjusts as I move 

from one place to another. 

 

1 2 3 4 5 6 7 

d. The mHealth tool effectively adapts to my 

movement from one place to another. 

 

1 2 3 4 5 6 7 

 

4. Please circle the number that reflects the extent to which you agree with the following statements 

relating to features of the mHealth tool. 
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a. The mHealth tool easily provides information on 

my current location. 

 

1 2 3 4 5 6 7 

b. The mHealth tool makes information on the 

location of households very accessible. 

 

1 2 3 4 5 6 7 

c. The mHealth tool makes information on the 

location of supplies readily accessible. 

 

1 2 3 4 5 6 7 

 

 

 

 

 

 

 

 

 

 



Mobile Technology-Enabled Healthcare Service Delivery Systems for Community Health Workers (CHWs) in 

Kenya: A Technology-to-Performance Chain Perspective 

 

 386 

SECTION 4: FIT 

 

1. Please circle the number that reflects the extent to which you agree with the following statements 

relating to the extent to which the mHealth tool (mobile phone) support functions fit your work. 
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a. The mHealth tool supports me in starting my 

tasks on time. 

1 2 3 4 5 6 7 

b. The mHealth tool supports me in finishing my 

tasks on time. 

1 2 3 4 5 6 7 

c. The mHealth tool supports me during urgent 

interventions. 

1 2 3 4 5 6 7 

d. The mHealth tool supports me in promptly 

responding to emergencies. 

1 2 3 4 5 6 7 

e. The mHealth tool supports me in completing 

tasks with co-workers. 

1 2 3 4 5 6 7 

f. The mHealth tool supports me in information 

sharing with co-workers. 

1 2 3 4 5 6 7 

g. The mHealth tool supports me in working with 

other CHWs. 

1 2 3 4 5 6 7 

h. The mHealth tool supports me in receiving 

information from co-workers. 

1 2 3 4 5 6 7 

i. The mHealth tool supports me in performing 

tasks at several locations. 

1 2 3 4 5 6 7 

j. The mHealth tool supports me in working away 

from just one place for long periods. 

1 2 3 4 5 6 7 

k. The mHealth tool supports me in working away 

form my Community Unit (CU). 

1 2 3 4 5 6 7 

l. The mHealth tool supports me in travelling to 

remote locations to perform tasks. 

1 2 3 4 5 6 7 

m. The mHealth tool supports me in accessing 

information on my current location. 

1 2 3 4 5 6 7 

n. The mHealth tool supports me in accessing 

information on the location of households. 

1 2 3 4 5 6 7 

o. The mHealth tool supports me in accessing 

information on the location of supplies. 

1 2 3 4 5 6 7 

p. The mHealth tool supports me in accessing 

information on the locations I travel to. 

1 2 3 4 5 6 7 
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SECTION 5: USE OF MOBILE (PHONE) HEALTH TOOL  

 

1. On average, how often do you use the mHealth tool (mobile phone) to perform your tasks? Please 

circle ONE number only. 

 

a. Almost never     e.   A few times a week 

b. Less than once a month    f.   About once a day 

c. Once a month     g.   Several times a day 

d. A few times a month 

    

2. On average, how much time do you spend each day you use the mHealth tool (mobile phone) to 

perform your tasks? Please circle ONE number only. 

 

 a.   Almost never    d.   1-2 hours 

 b.   Less than ½ an hour    e.   2-3 hours 

 c.   From ½ an hour to 1 hour   f.   More than 3 hours 

 

3. Please circle the number that reflects the extent to which you agree or disagree with the following 

statements on your use of the mHealth tool (mobile phone) to perform tasks. 
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a. I am very dependent on the mHealth tool to 

perform tasks. 
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b. My work is dependent on using the mHealth tool 

to perform tasks. 

 

1 2 3 4 5 6 7 

c. Using the mHealth tool allows me to do more 

than would be possible without it. 

 

1 2 3 4 5 6 7 
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4. Please circle the number that reflects the extent to which you agree or disagree with the following 

statements on your use of the mHealth tool (mobile phone) to perform tasks. 
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a. I like using the mHealth tool. 

 

1 2 3 4 5 6 7 

b. I look forward to using the mHealth tool. 

 

1 2 3 4 5 6 7 

c. Using the mHealth tool is frustrating. 

 

1 2 3 4 5 6 7 

d. Once I start using the mHealth tool, I find it hard 

to stop. 

 

1 2 3 4 5 6 7 

e. I get bored quickly when using the mHealth tool. 1 2 3 4 5 6 7 

 

5. Please circle the number that reflects the extent to which you agree or disagree with the following 

statements on your use of the mHealth tool (mobile phone) to perform tasks. 
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a. I have the resources required to use the mHealth 

tool. 

 

1 2 3 4 5 6 7 

b. I have the knowledge required to use the 

mHealth tool. 

 

1 2 3 4 5 6 7 

c. With the required training, it would be easy for 

me to use the mHealth tool. 

 

1 2 3 4 5 6 7 

d. The mHealth tool does not complement paper-

based systems I use. 

 

1 2 3 4 5 6 7 
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SECTION 6: PERFORMANCE 

 

1. Please circle the number that reflects the extent to which you agree or disagree with the following 

statements on your use of the mHealth tool to perform tasks. 
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a. The mHealth tool increases my productivity. 

 

1 2 3 4 5 6 7 

b. The mHealth tool increases my effectiveness 

with patients. 

 

1 2 3 4 5 6 7 

c. The mHealth tool increases my quality of 

patient care. 

 

1 2 3 4 5 6 7 

d. The mHealth tool saves me time. 

 

1 2 3 4 5 6 7 

e. The mHealth tool enables me to complete 

tasks more quickly. 

 

1 2 3 4 5 6 7 

f. Using the mHealth tool improves my 

effectiveness in completing tasks. 

 

1 2 3 4 5 6 7 

g. The mHealth tool improves the quality of my 

tasks. 

 

1 2 3 4 5 6 7 

h. The mHealth tool decreases my reporting 

errors. 

 

1 2 3 4 5 6 7 

 

Mobile Health (Phone) Tool Reporting   

 

1. How many households do you visit per month? ______ households 

 

2. What percentage of the households visited are you able to report? Please tick the appropriate box. 

 

☐ 0-20% ☐ 41-60%  ☐ 81-100%    

☐ 21-40%     ☐ 61-80%        

 

3.  Of the households visited, how many of the following cases do you report per month?  

 

Monitoring Cases Health Promotion Cases Referral Cases Other (specify) 

 

 

   

 

 

 



Mobile Technology-Enabled Healthcare Service Delivery Systems for Community Health Workers (CHWs) in 

Kenya: A Technology-to-Performance Chain Perspective 

 

 390 

4.  In a typical week, how much time (in hours) do you take to complete reports for cases?  

 

Monitoring Cases Health Promotion Cases Referral Cases Other (specify) 

 

 

   

 

5. Of the cases reported per month, approximately what percentage are completed on time? 

 

☐ 0-10% ☐ 20-30%  ☐ 40-50% ☐ 60-70% ☐ 80-90% 

    

☐ 10-20%     ☐ 30-40% ☐ 50-60% ☐ 70-80% ☐ 90-100% 

 

6. Of the reports completed for all cases per month, what percentage are complete (i.e no missing data)? 

 

☐ 0-10% ☐ 20-30%  ☐ 40-50% ☐ 60-70% ☐ 80-90%  

   

☐ 10-20%     ☐ 30-40% ☐ 50-60% ☐ 70-80% ☐ 90-100% 

 

7. What percentage of the reports completed are returned to you for additional information due to errors 

or inconsistencies? 

☐ 0-10% ☐ 20-30%  ☐ 40-50% ☐ 60-70% ☐ 80-90% 

    

☐ 10-20%     ☐ 30-40% ☐ 50-60% ☐ 70-80% ☐ 90-100% 
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Appendix Q Cover Letter and Survey Instrument (2)  

 

Dear Sir/Madam, 

 

My name is Maradona Gatara, and I am a Doctoral student in Information Systems (IS) at 

the University of the Witwatersrand (WITS), Johannesburg.  

 

As a PhD degree requirement at WITS, I am conducting a study on mobile-technology 

enabled healthcare service delivery systems for Community Health Worker (CHW) 

performance, involving the use of paper-based systems for patient care. 

 

You are invited to take part in this study by completing this questionnaire. There are no 

right or wrong answers.  

 

Participation in this survey is completely voluntary and involves no risk, penalty or loss 

of benefits.  

 

You will not be required to provide your personal details or reveal your identity while 

answering the questionnaire.  

 

The survey is both confidential and anonymous, and the data collected will only be used 

for the study and no other purpose.  

 

The survey questionnaire consists of 18 statements. Please circle the number that reflects 

the extent to which you agree or disagree with each statement.  

 

The survey has been unconditionally approved by the WITS Human Research Ethics 

Committee, (protocol number: H13/08/42). 

 

The entire questionnaire should take 20 minutes to complete. Completion of this 

questionnaire will be taken as your consent to participate. Should you have any queries or 

wish to obtain a copy of the results of the survey in aggregate form, please contact me on 

+27 93 204 215.  

 

You can also reach me through email correspondence at maradonagatara@gmail.com. 

 

Thank you for considering your participation 

Yours Sincerely,  

 

Maradona C. Gatara      

Ph. D. Candidate      

Department of Information Systems (IS), 

School of Economic and Business Sciences (SEBS),  

University of the Witwatersrand (WITS),  

Johannesburg, South Africa (SA) 

mailto:maradonagatara@gmail.com
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SECTION 1: CHW PROFILE  

 

1. Please indicate your age bracket by ticking the appropriate box. 

 

☐ Below 25 years    ☐ 45-54 years                ☐ Prefer not to say 

☐ 25-34 years     ☐ 55-64 years       

☐ 35-44 years      ☐ 65 years and above         

            

2. Please indicate your gender by ticking the appropriate box. 

☐ Male     

☐ Female         

☐ Prefer not to say   

    

3. Please indicate your years of experience as a Community Health Worker (CHW)  _____ years. 

4. Please indicate your highest level of education by ticking the appropriate box. 

☐ Secondary School      ☐ Postgraduate Diploma      

☐ Post-Secondary Diploma   ☐ Postgraduate Degree      

☐ Undergraduate Degree     

   

5. Please indicate how long you have been using the MOH tool by ticking the appropriate box.  

 

☐ Less than 1 month      ☐ 3-4 months        

☐ 1-2 months       ☐ 5 or more months  

 

SECTION 2: HEALTHCARE SERVICE TASKS 

 

10. Please indicate whether you use the MOH tool in the following healthcare service areas. You may tick 

more than one task. 

 

 Monitoring 

Tasks 

Health Promotion 

Tasks 

Referral 

Tasks 

Nutritional Care 

 

   

Hygiene and Sanitation 

  

   

Referral 

 

   

Fever and Malaria 

 

   

HIV/AIDS 

 

   

TB Care 

 

   

Neonatal Care 

 

   

Maternal Care 

 

   

Family Planning 

 

   

Other (specify)    
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SECTION 3: INDIVIDUAL PERFORMANCE 

 

1. Please circle the number that reflects the extent to which you agree or disagree with the following 

statements on your use of the MOH tool to perform tasks. 
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a. The MOH tool increases my productivity. 

 

1 2 3 4 5 6 7 

b. The MOH tool increases my effectiveness 

with patients. 

 

1 2 3 4 5 6 7 

c. The MOH tool increases my quality of patient 

care. 

 

1 2 3 4 5 6 7 

d. The MOH tool saves me time. 

 

1 2 3 4 5 6 7 

e. The MOH tool enables me to complete tasks 

more quickly. 

 

1 2 3 4 5 6 7 

f. Using the MOH tool improves my 

effectiveness in completing tasks. 

 

1 2 3 4 5 6 7 

g. The MOH tool improves the quality of my 

tasks. 

 

1 2 3 4 5 6 7 

h. The MOH tool decreases my reporting errors. 

 

1 2 3 4 5 6 7 

 

MOH Tool Reporting   

 

1. How many households do you visit per month? ______ households 

 

2. What percentage of the households visited are you able to report? Please tick the appropriate box. 

 

☐ 0-20% ☐ 41-60%  ☐ 81-100%    

☐ 21-40%     ☐ 61-80%        

 

3.  Of the households visited, how many of the following cases do you report per month?  

 

Monitoring Cases Health Promotion Cases Referral Cases Other (specify) 
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4.  In a typical week, how much time (in hours) do you take to complete reports for cases?  

 

Monitoring Cases Health Promotion Cases Referral Cases Other (specify) 

 

 

   

 

5. Of the cases reported per month, approximately what percentage are completed on time? 

 

☐ 0-10% ☐ 20-30%  ☐ 40-50% ☐ 60-70% ☐ 80-90%  

   

☐ 10-20%     ☐ 30-40% ☐ 50-60% ☐ 70-80% ☐ 90-100% 

 

6. Of the reports completed for all cases per month, what percentage are complete (i.e no missing data)? 

 

☐ 0-10% ☐ 20-30%  ☐ 40-50% ☐ 60-70% ☐ 80-90%  

   

☐ 10-20%     ☐ 30-40% ☐ 50-60% ☐ 70-80% ☐ 90-100% 

 

8. What percentage of the reports completed are returned to you for additional information due to errors 

or inconsistencies? 

 

☐ 0-10% ☐ 20-30%  ☐ 40-50% ☐ 60-70% ☐ 80-90%  

   

☐ 10-20%     ☐ 30-40% ☐ 50-60% ☐ 70-80% ☐ 90-100% 
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Appendix R Ethics Clearance 
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Appendix S Approval Letter: Data Collection  
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Appendix T Photographs
104

 of Field Sites  

 

 
Figure T.1. Peri-Urban Area: Nandi County Site 

                                                 
104

 Permission to take snapshots of select field study sites were taken in the Counties of Siaya, Nandi, Kilifi, 

Nairobi, and Nakuru, was granted by the Ministry of Health (MOH) Division of Community Health 

Services (DCHS). In addition, the participants involved gave full consent for their photographs to be taken. 
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Figure T.2. Siaya County Site 
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Figure T.3. Peri-Urban Area: Nakuru County 
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Figure T.4. Nandi County Site 
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Figure T.5. Preparatory Site (Millennium Villages Project): Siaya County: 
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Figure T.6. Peri-Urban Public Health Facility: Nandi County 
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Figure T.7. Assembled Community Health Worker (CHW) Field Session: Kilifi County  
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Figure T.8. Assembled Community Health Worker Session: Nairobi County 
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Figure T.9. Community Health Worker (CHW) Field Briefing: Nakuru County 

 

 

 

 

 

 
 

 

 


