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ABSTRACT 

Rainfall is a complex phenomenon, which has previously been explored by assessing rainfall 

patterns in time and space, typically using ground-based weather stations. Rainfall patterns in 

southern Africa tend to have a direct impact on vegetation growth and surface water 

availability, and an indirect impact on animal movement.  

This study investigated rainfall in Botswana by analysing changes in spatial and temporal 

patterns from 1998 to 2013, using satellite imagery. Tropical Rainfall Measuring Mission 

(TRMM) 3B43 dataset (1998-2013) was used to document monthly rainfall magnitude and 

variability over the 15-year period. Additionally, a GIS spatial analysis approach, the Anselin 

Local Moran’s I tool, was used to determine changes (i.e. persistence) of rainfall conditions 

on a year by year basis during the study period. WorldClim precipitation data (1950-2000) 

were utilised as a longer term average reference dataset against which TRMM data could be 

compared. 

This study found that the rainy season consisted of relatively high rainfall magnitudes and 

variability, while the post rainy season consisted of relatively lower rainfall magnitudes and 

variability across Botswana. Higher magnitudes persisted into April, indicating the 

occurrence of late summer rainfall during this observation period. From a regional 

perspective, the Okavango Delta remained a region of relatively higher rainfall magnitude 

and variability compared to surrounding regions, regardless of the season. The rainy season 

was associated with a high frequency of rainfall events above the long term WorldClim 

average, and the post rainy season with a high frequency of rainfall below the long term 

WorldClim average. The spatial analysis indicated an annual persistence of high rainfall 

clusters in northern Botswana, and a persistence of low rainfall clusters in southern Botswana 

throughout the 15-year analysis. In addition, a progressive drying trend towards the end of the 

time series was observed. 

These findings suggest that Botswana has experienced both wetter conditions and drier 

conditions within the 15-year analysis period, than have been historically documented. The 

progressive drying trend towards the end of the time series may be indicative of a changing 

climate in Botswana. However, due to the length of this analysis period it cannot be proven 

conclusively that the detected wetter and drier conditions, than historically documented, are a 

signal of climate change. 
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This rainfall analysis provides a comprehensive understanding of recent spatial and temporal 

rainfall patterns and changes in Botswana. More specifically, this rainfall study fits into a 

bigger research project focused on herbivore conservation in Botswana. Together, these 

studies will collectively enable protected areas authorities to better manage herbivore 

migration, improving conservation in Botswana over time. Ultimately, this study stands to 

make a positive contribution towards the development of existing conservation practices in 

Botswana.  
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CHAPTER 1: INTRODUCTION 

Variability in rainfall is a significant component of semi-arid regions. Previous research on 

rainfall in semi-arid regions has indicated that rainfall can vary from year to year, within a 

year, and within a single rainfall event, as well as seasonally (Grist et al. 1997; Veenendaal, 

1996; Batisani and Yarnal, 2010). Changes in rainfall influence factors such as the amount, 

distribution, timing and frequency of rainfall in time and space. According to the 

Intergovernmental Panel on Climate Change (IPCC) climate models have projected a 

decrease in average annual precipitation over both northern and southern Africa, during the 

mid-late twenty first Century (IPCC, 2014). Similar climate models over southern Africa 

have projected an annual rainfall decrease by at least 20% by 2080, accompanied by a 

temperature increase of approximately 2-3°C above the global average. These projections 

stand to have implications for rain dependent components such as surface water, soil, and 

vegetation. Conway et al. (2015) relates these projections to a reduction in regional surface 

water availability and soil moisture, and as a result, relatively lower crop yields. The authors 

argue that the projections serve as warning systems for global governments to invest in 

measures for promoting sustainable water and food security. However, these warning systems 

need to be accompanied by a thorough understanding of the distribution of water resources, 

water needs, and efficient water use, in time and space (Conway et al. 2015). 

With consideration of the above mentioned projections, rainfall studies over southern Africa 

(Botswana, Namibia and Zambia) published in the last 20 years over a 30-year period show 

evidence of consistently lower rainfall measurements compared to historic rainfall records 

(e.g. Adedoyin and Mphale, 2002; Batisani and Yarnal, 2010), suggestive of progressively 

drier conditions in time and space in the region. Various authors argue that it is likely for 

rainfall variability in Botswana to increase as relatively drier conditions continue to emerge 

(Lazaro et al. 2001; Modarres and Rodrigues da Silva, 2007). Recent studies predict the 

occurrence of greater local rainfall variability and stronger seasonal rainfall, than previously 

anticipated over southern Africa (Conway et al. 2015). These rainfall analyses have been 

conducted at a national level, and appear to be sensitive to the time period chosen for 

analysis, particularly when there has been large rainfall variability between years. Therefore, 

a more detailed analysis conducted at finer scales of observation is required. 

Additionally, a more recent assessment of rainfall variability for Botswana would be highly 

beneficial for the Botswana government and conservation authorities. Given the known 
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influence of rainfall on vegetation and the indirect influence on animal populations (Bartlam-

Brooks et al. 2011; Birkett et al. 2012), it is of considerable interest to conservation 

authorities to comprehend the nature of recent rainfall patterns across the country. During the 

last 10 years Botswana has experienced relatively wet conditions (McCarthy et al. 2003; 

Molefe et al. 2015). However, there has been a consistent decline in the number of large 

grazers in protected areas across Africa, including Botswana, during the same time (e.g. 

Ogutu and Owen-Smith, 2003). According to Chase (2011), a trend analysis of wildlife 

estimations from aerial surveys in Botswana showed a severe decline in population numbers 

during the last 10 years, and an explanation for this serious decline is required.  

Rainfall research over southern Africa has determined that rainfall variability influences the 

availability of surface water and vegetation cover, and indirectly affects herbivore movement 

across the southern African landscape (Dahlberg, 2000; Ogutu and Owen-Smith 2003; 

Bartlam-Brooks et al. 2011; Birkett et al. 2012). A more recent rainfall study over Botswana 

would be advantageous for the development of sustainable, effective and efficient measures 

for on-going water and food security, as well as wildlife conservation in Botswana. 

Furthermore, clarification on the complexities and limitations surrounding rainfall in semi-

arid regions makes for valuable research for conservation practices in southern Africa. 

Therefore, this report is considered a positive contribution towards on-going conservation 

studies in Botswana; by providing a clearer understanding of recent rainfall patterns. 

1.1 Rationale 

Rainfall is a complex phenomenon, yet a vital component of the earth’s system. Rain has 

been previously investigated by analysing rainfall patterns related to timing (i.e. when it 

rains), magnitude (i.e. the amount of rainfall), intensity (i.e. the amount of rainfall within a 

given time), and frequency (i.e. how often it rains). Traditionally, rainfall studies have been 

conducted using rainfall data from ground-based weather stations, which while reliable, 

offers spatially incomplete rainfall information. As a consequence of this, detailed research 

surrounding rainfall magnitude, frequency, intensity, timing and gaps is limited. Ground-

based weather stations are usually clustered in specific areas with their spatial locations based 

on accessibility conditions, and the location of relevant rainfall research needs (http://www. 

noaa.gov/features/02_monitoring/weather_stations.html). As such, a lack of rainfall 

measurements in areas beyond the immediate localities of ground-based weather stations is 

evident. The method of interpolation may be applied to produce complete rainfall datasets, 
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but this approach is associated with a level of uncertainty (Fernandez et al. 2013), and tends 

to require further evaluation of the rainfall measurement in order to ascertain the quality of 

the data. 

In recent years the use of satellite imagery has played a significant role in addressing issues 

around access to certain localities and incomplete ground-based data. The use of satellite 

imagery has become an increasingly recognised methodology, and a tool for analysing spatial 

and temporal rainfall patterns worldwide. Satellite imagery has been extensively used to 

detect land cover change, and for assessing the nature and status of vegetation around the 

world (Relton, 2015). Since 1997, satellite products like the Tropical Rainfall Measuring 

Mission (TRMM) (http://trmm.gsfc.nasa.gov/3b43.html) have been making use of merged 

high quality, infrared precipitation data to provide accurate, continuous and comprehensive 

measurements of rainfall in the tropics (http://trmm.gsfc.nasa.gov/3b43.html). 

The TRMM satellite has been purposely designed to monitor rainfall within the tropics, 

which is convective in nature and rains intensively over short durations (Hughes and Collier, 

2011). The main objective of the TRMM satellite is to provide complete and continuous 

rainfall records over the tropics, at a high spatial resolution (Krummerow et al. 2000; Houze 

Jr et al. 2015). Valuable aspects of TRMM include, the satellite’s ability to provide i) rainfall 

measurements for locations which were previously regarded as inaccessible; and ii) complete 

spatial and temporal rainfall data in areas where standard ground-based rainfall data are 

incomplete. The most striking attribute of TRMM, is the satellite’s ability to overcome 

historical limitations associated with rainfall measurement over the tropics. TRMM satellite 

data are also good for conducting comprehensive rainfall variability studies for specific times 

in space, particularly in low latitude (0°-23.5° N/S) convective rainfall regions (Houze Jr et 

al. 2015). In addition, the continuous attribute of the satellite data allows for variations in 

rainfall patterns to be predicted with reference to time and space.  

This research report analyses and describes the spatial and temporal patterns of rainfall in 

Botswana from 1998 to 2013. Using satellite imagery, this study seeks to understand the 

limitations that go beyond known ground-based rainfall measurements. The Botswana 

landscape fulfils many of the requirements for which TRMM was designed, i.e. convective 

rainfall. Thus, it is argued that TRMM may provide valuable information for exploring recent 

rainfall patterns in Botswana; beyond that which has previously been documented in the 

literature. The aim of this study is to fill the knowledge gap concerning complete ground-

http://trmm.gsfc.nasa.gov/3b43.html
http://trmm.gsfc.nasa.gov/3b43.html
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based rainfall data in Botswana, which results in an incomprehensive understanding of the 

spatial extent of rainfall measurements in the country.  

Furthermore, this study considers the direct influence of rainfall patterns on rain dependent 

factors such as surface water and vegetation, and the indirect influence on animal movement. 

This rainfall research feeds into a bigger research project related to herbivore conservation in 

Botswana. At present, there are on-going studies assessing the greening of vegetation in 

Botswana using NDVI, tracking herbivore movement, as well as the interactions between 

these two aspects. An updated evaluation of rainfall patterns in Botswana, specifically one 

that captures spatial and temporal changes in recent years, is considered an urgent research 

requirement that has yet to be addressed. There appears to be no other recent studies that have 

carried out a similar TRMM satellite based study to obtain a comprehensive understanding of 

rainfall measurements for the full extent of Botswana, between 1998-2013. Hence, this study 

fills the research need for i) extensive and continuous rainfall data monitoring across 

Botswana, as well as ii) provision of a more comprehensive understanding of the rainfall 

patterns, and their changes in space and time. 

1.2 Aim 

The aim of this research is to investigate rainfall in Botswana by analysing spatial and 

temporal rainfall patterns, and changes in these rainfall patterns, over a 15-year period from 

1998 to 2013.  

1.3 Objectives 

1. To document the spatial and temporal rainfall patterns of Botswana using monthly 

TRMM rainfall measurements over the period 1998-2013. 

2. To describe changes in spatial and temporal patterns of rainfall in Botswana over 

the period 1998-2013. 

1.4 Research questions 

1. What is the magnitude, variability, frequency and duration of rainfall events in time and 

space in Botswana for the period 1998-2013?  

2. Have there been any observed changes in magnitude, variability, frequency and duration of 

rainfall events in time and space in Botswana during 1998-2013? 
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3. If there have been changes, what are these observed changes in magnitude, variability, 

frequency and duration of rainfall events in time and space in Botswana during1998-2013? 

4. What are the implications for herbivore movement, and consequently, conservation, in 

Botswana? 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Climate and vegetation of Botswana 

Botswana, the designated study area, is a semi-arid country located in southern Africa 

(Nicholson and Fairar, 1994; Veenendaal, 1996; Grist et al. 1997). It is a landlocked country, 

bordered by South Africa to the south and southeast, Namibia to the west and northwest, 

and Zimbabwe to the northeast (Figure 1). Botswana forms part of the southern African 

Development Countries (SADC). The country has a surface area of approximately 600 

000km
2
, and is situated on a flat plateau with an elevation of 1000m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Map of southern Africa illustrating the geographic location of Botswana, which is the study 

area for this rainfall analysis (Created by Relotilwe Maboa, 2014). 

http://en.wikipedia.org/wiki/South_Africa
http://en.wikipedia.org/wiki/Namibia
http://en.wikipedia.org/wiki/Zimbabwe
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The nature of rainfall in Botswana is localised, convective, and strongly seasonal in nature 

(Nicholson and Fairar, 1994; Regenmortel, 1995; Grist et al. 1997). The wet season occurs 

during the summer months (October-March) and is associated with an increase in rainfall 

events, coupled with an increase in surface water and vegetation cover (Nicholson and Fairar, 

1994; Birkett et al. 2012; World Wildlife Fund, 2015a). These high rainfall periods coincide 

with high evaporation rates, with summer temperatures exceeding maximum of 33
o
C 

(Winterbach et al. 2014). The dry season (May-July) is associated with a decrease in rainfall 

events, a reduction in surface water and vegetation cover (Nicholson and Fairar, 1994; Birkett 

et al. 2012; World Wildlife Fund, 2015a). 

The rainfall gradient in Botswana increases gradually from the dry southwest (arid) to the wet 

northeast (less arid) (Nicholson and Fairar, 1994; Grist et al. 1997) (Figure 2). As a semi-arid 

region, rainfall patterns in Botswana have an annual rainfall variation of approximately 450-

550mm between seasons, and regions (Regenmortel, 1995; Veenendaal, 1996).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Map indicating rivers and large surface water bodies in Botswana. The abundance of rivers and 

surface water bodies serves as a proxy for displaying the rainfall gradient, increasing from southwest to 

northeast (Created by Relotilwe Maboa, 2014). 
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Approximately 70% of the country is covered by the Kalahari Desert and semi-arid plains of 

unconsolidated sands (Nicholson and Fairar, 1994). Botswana consists of a predominantly 

flat landscape with poorly developed sandy soil, and relatively uniform sandveld vegetation 

cover (Regenmortel, 1995; Grist et al. 1997). The vegetation is mainly savanna with grasses, 

shrubs and trees in varying proportions (Nicholson and Fairar, 1994; Grist et al. 1997) 

(Figure 3). The diversity of groundcover and the abundance of trees increase from southwest 

to northeast (Nicholson and Fairar, 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The extremely dry southwest is characterised by sand dunes, separated by grassland with 

occasional trees and shrubs. More specifically southwest Botswana consists of Acacia shrub 

savanna and Acacia thorn bush savanna. Towards eastern Botswana Croton sp. and 

Figure 3: Map showing the vegetation cover along the rainfall gradient of Botswana, which 

increases from a southwest to northeast direction (Created by Relotilwe Maboa, 2014). 
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Combretum sp. tree savanna, and dense woodland such as Mopane savanna woodland 

(Colophospermum mopane) is apparent. The wet northeast is characterised by high rainfall, 

and a canopy forest consisting of Acacia tree savanna (Weare and Yalala, 2009).  

It is understood that the seasonal and variable nature of rainfall in Botswana has an influence 

on rainfall dependent factors such surface water and vegetation growth, with rainfall events 

with a minimum of 10mm known to be conducive for vegetation growth in Botswana 

(Knight, 1991). 

2.2 Herbivore movement 

Comprehension of the impact of the country’s rainfall patterns on herbivore movement is 

limited. Previous studies surrounding the causes of herbivore migration in arid landscapes 

have related the migration of herbivores in southern Africa to emergence of seasonal 

conditions, i.e. change in the availability of surface water and vegetation between rainfall 

seasons (Fryxell and Sinclair, 1988; Bergstrom and Skarpe, 1999; Traill, 2004; Fynn et al. 

2014). Yet, studies have indicated that during the last 10 years, periods of good rainfall in 

Botswana have not resulted in the associated increase in herbivore population as expected 

(McCarthy et al. 2003; Ogutu and Owen-Smith, 2003; Molefe et al. 2015). Therefore, further 

research on factors related to herbivore conservation is required. 

The greater Serengeti grassland ecosystem is well known for impressive animal migrations, 

with more than a million blue wildebeest (Connochaetes taurinus), zebra (Equus burchelli) 

and Thomson’s gazelle (Eudorcas thomsonii) moving across Eastern Africa (World Wildlife 

Fund, 2015b). Various authors argue that the contributing factors towards herbivore 

migration in southern Africa are namely seasonal conditions, herbivore physical attributes, 

and the development of fencing systems (Fryxell and Sinclair, 1988; Berger, 2004; Traill, 

2004; Brooks et al. 2011; Fynn et al. 2014). Some of these studies are discussed below: 

Seasonal conditions: Smit (2010) conducted a study on resources driving the migration 

patterns of grazers in African savanna, and found that forage quality and surface water are the 

main contributors towards herbivore movement within the region. An investigation of 

changes in elephant (Loxodonta africana) movement in relation to rainfall patterns over the 

Kruger National Park, South Africa, determined that herbivore migration patterns are 

influenced by the rainfall patterns (Birkett et al. 2012). Bartlam-Brooks et al. (2011) 

completed herbivore migration research in Botswana, which found that zebra first migrate 
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towards the Okavango Delta during the dry season, and thereafter move towards the 

Makgadikgadi grasslands during the rainy season. 

Physical attributes: Berger (2004) completed research on the sustainability of land distance-

migration in mammals, and found that the physical attributes, (i.e. body size) of terrestrial 

mammal influences the distance of the migration. According to this study, the forage quality 

threshold for large bodied herbivores is higher than for small bodied herbivore. This means 

that large bodied herbivores are more likely to accept a broader range of forage quality, 

compared to smaller herbivores during the dry season. This finding is based on the fact that 

the metabolic and nutritional requirements for herbivores increase with body size (Smit, 

2010).  

Fencing: The historic positioning of fencing across the Botswana landscape is another factor 

influencing herbivore migration. Veterinary cordon fences in Botswana were erected, 

between 1950-1980, as part of the condition (i.e. disease regulation) for the export of 

livestock to Europe (Mbaiwa and Mbaiwa, 2006). As a consequence, the migration routes of 

migratory wildlife species such as wildebeest, zebras, giraffes (Giraffe camelopardis) and 

buffalo (Syncerus caffer) were blocked (Mbaiwa and Mbaiwa, 2006; Bartlam-Brooks et al. 

2011). Unfortunately, there was a lack in detailed understanding of impacts of the fences on 

the wildlife at the time. These impacts included, i) disturbance to animal migratory patterns, 

ii) increased habitat fragmentation, and iii) changes in animal behaviour and population 

genetics (Cozzi et al. 2013). Mbaiwa and Mbaiwa (2006) conducted a study on the effects of 

veterinary fences on wildlife populations in the Okavango Delta, Botswana. The authors 

attributed the observed decline in wildlife numbers over the past decade to the fencing 

system, which was associated with the obstruction and restriction of wildlife movements.  

Similarly, Rahm et al. (2006) identified that about 99% of the wildebeest population in 

Botswana had declined since the establishment of the fencing system in 1954. This decline in 

wildlife prompted conservation authorities in Botswana to establish Wildlife Management 

Areas (WMA). Thirty-five percent of the land in Botswana is reserved for Wildlife 

Management Areas (WMA), for the primary purpose of protecting wildlife heritage and 

exercising effective wildlife management (Rahm et al. 2006; Winterbach et al. 2014). 

Protected areas in Botswana are located distances apart from each other (Figure 4), 

characterised by an open fence system, traversing private farms, ranches and communal lands 

(Rahm et al. 2006).  
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With regards to the future development of conservation in Botswana, contributing factors 

towards herbivore movement should be investigated further by conservation authorities. This 

will provide conservation authorities with a comprehensive understanding of the complexities 

and limitations surrounding herbivore migration within the country, as well as how to 

improve current conservation practices. 

2.3 Drivers of rainfall variability 

Climate predictions over southern Africa place emphasis on the occurrence of variable 

rainfall patterns, including a decrease in annual rainfall and frequency, as well as an increase 

in temperatures (Conway et al. 2015). Richard et al. (2000) related these projections of drier 

Figure 4: Map illustrating the position of national protected areas (parks and reserves) within the study 

site (Created by Relotilwe Maboa, 2014). 
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climate conditions to the El Nino Southern Oscillation (ENSO) effect. Numerous studies 

have investigated the relationship of rainfall variability to climatic phenomena like ENSO 

and the Inter Tropical Convergence Zone (ITCZ) (Nicholson and Kim, 1997; Richard et al. 

2000; Nicholson et al. 2001; Reason et al. 2006; Collier and Hughes, 2011).  

 

El Nino Southern Oscillation: ENSO is a climatic phenomenon which involves changes in 

sea-surface temperature (SST) and the direction of the winds across the oceans (Camberlin et 

al. 2001; Kane, 2009). ENSO events are prone to occur approximately every three to seven 

years and have been related to distinct differences in temperature and rainfall measurements 

worldwide. Thus, ENSO is considered a substantial driver for change in climate, particularly 

a change from usual rainfall patterns. Nicholson et al. (2001) carried out a study on the 

relationship of ENSO and drought in Botswana, and deduced that ENSO events have an 

effect on the magnitude, timing and duration of rainfall. A substantial amount of literature 

surrounding rainfall variability in relation to ENSO is available, some of which have been 

described below. 

Over the last decade various studies in southern Africa have determined that ENSO has a 

modulating effect on rainfall, which is coupled by the occurrence of drought conditions 

during an ENSO event (Nicholson and Kim, 1997; Richard et al. 2000; Conway, 2008; Kane, 

2009; Yeh et al. 2009; Mpheshea, 2014).  Richard et al. (2000) support this notion, and 

attributes the series of drought occurrences in southern Africa prior to the year 2000 

(Camberlin et al. 2001) to the ENSO effect. More recently, 2015 was recorded as the hottest 

year globally (Hansen et al. 2016; Otto, 2016). The Goddard Institute for Space Studies 

(GISS) conducted a global temperature analysis (GISTEMP), which found 2015 to be the 

warmest year to date and exceeded the previous record by more than 0.1
o
C (Hansen et al. 

2016). The analysis correlated the warmer temperatures in 2015 with the strong presence of 

El Nino, and indicated that these warm weather conditions were likely to continue in 2016, 

even as the impact of El Nino starts to weaken (Hansen et al. 2016). According to Otto 

(2016), January 2016 recorded the hottest temperatures on record and based on the observed 

global temperatures, 2016 may be the hottest year on record (Hansen et al. 2016). 

Furthermore, an observation of long term global warming trends related to ENSO 

occurrences, shows that over the past three decades ENSO has had a similar suppressing 

effect on rainfall (Reason and Rouault, 2002).  

 



26 
 

Inter Tropical Convergence Zone: The ITCZ is another phenomenon known to influence 

rainfall patterns over southern Africa (Reason et al. 2006). The ITCZ is an atmospheric 

convergence zone along the equator, where north easterly and south easterly trade winds from 

the northern and southern hemisphere converge (Reason et al. 2006; Collier and Hughes, 

2011). The location of the ITCZ varies throughout the year as the sun traverses the tropics, 

resulting in wet and dry seasons (Tyson and Crimp, 1998; Reason et al. 2004; Zhou et al. 

2005; Chikoore and Jury, 2010; Collier and Hughes, 2011). Authors argue that seasonal 

rainfall patterns experienced over southern Africa are largely influenced by the ITCZ (Tyson 

and Crimp, 1998; Collier and Hughes, 2011). Over the African continent the ITCZ moves 

from the equator, and towards either the Tropic of Cancer (northwards) or Tropic of 

Capricorn (southwards) in response to the sun’s annual cycle of declination (Reason et al. 

2004; Collier and Hughes, 2011). Convergence at the ITCZ is associated with deep 

convection which produces intense thunderstorm activity over the tropics (Chikoore and Jury, 

2010; Collier and Hughes, 2011). 

2.4 Measuring rainfall remotely 

The measurement of rainfall is an important aspect for understanding rainfall patterns in time 

and space. For decades meteorologists have studied rainfall patterns over the land using 

ground-based rainfall data, yet rain gauge data are prone to produce spatially unreliable 

measurements (Kummerow, 2000; Javanmard et al. 2010). This issue of spatial unreliability 

leads to i) incomplete ground-based data, and ii) an inconsistent representation of rainfall 

measurements spatially. 

The most recent approach for rainfall research is the use of satellite observations, which 

allow for accurate rainfall measurements in areas where ground-based weather stations 

cannot detect. The quality of the satellite rainfall measurements is validated and corroborated 

using corresponding ground-based rainfall measurements (Adeyewa et al. 2003; Nicholson et 

al. 2003; Javanmard et al. 2010). This is an effective method for reducing the occurrence of 

meteorological errors, and increases the level of confidence associated with rainfall satellite 

products such as the Tropical Rainfall Measuring Mission (TRMM).  

Literature shows that TRMM satellite data are considered sufficiently accurate for global use, 

due to the extensive validation and corroboration effort associated with the data. TRMM has 

carried out a long term (1998-2010) study comparing global TRMM 3B43 data to Global 

Rain gauge data (compiled by Global Precipitation Climatology Centre (GPCC) (Huffman 
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and Bolvin, 2014). The study found that TRMM 3B43 and rain gauge data were consistently 

similar, with high levels of comparison over both land and ocean. The difference between the 

averages for each dataset is as follows: over the land TRMM 3B43 = 3.19mm/day; rain gauge 

= 3.16mm/day and over the ocean TRMM 3B43 = 3.00mm/day; rain gauge = 2.79mm/day. 

Franchito et al. (2009) validated TRMM precipitation radar monthly rainfall estimates with 

rain gauge data over 5 geographic regions in Brazil, from December 1997 to November 2000. 

The results show that TRMM correlated with the rain gauge data over most of Brazil, with 

significant correlation coefficients at a 99% confidence level. Zhong (2015) conducted a 

study evaluating the precipitation climatology (1998-2013) derived from TRMM 3B43 over 

land with two rain gauge products (GPCC, and Wilmott and Matsuura (WM)). The results 

indicated a strong agreement throughout the study period, although accuracy is shown to 

decline in relatively lower rainfall conditions (i.e. rainfall rate regions = <0.5mm/day) such as 

the Sahara Desert, Arabian Peninsula and the Andes (Zhong, 2015). However, Nicholson et 

al. (2003) conducted rainfall estimates with a high density gauge dataset (Global Precipitation 

Climatology Project) for West Africa. The study found that TRMM demonstrated a strong 

agreement with the gauge dataset, with a difference of less than 0.5mm/day during May-

September (i.e. the relatively dry season).  

The TRMM satellite was developed to produce remote rainfall measurements, and is 

considered an important part of the National Aeronautical and Space Administration (NASA) 

(http://trmm.gsfc. nasa.gov /3b43.html). TRMM has provided continuous, high quality 

rainfall measurements over tropical regions, for more than a decade. The satellite’s data has 

been successfully used worldwide, which includes research in Iran, Africa, India and 

Bangladesh (Adeyewa et al. 2003; Nicholson et al, 2003; Islam and Uyeda, 2005; Nair et al. 

2009; Javanmard et al. 2010). 

TRMM is a joint venture between NASA in the United States of America (USA) and 

Japanese Space Agency JAXA, with the aim of measuring tropical rainfall. The TRMM 

observatory was launched in 1997 into a near circular orbit of approximately 350km altitude, 

an inclination of 35 degrees and a period of 92.5 minutes (Sherperd et al. 2000; Tian et al. 

2007; Immerzeel et al. 2009; Nair et al, 2009). This circular orbit allows TRMM to record 

rainfall at different locations and at different local times each day, which is very useful for 

detailed temporal rainfall studies. TRMM rainfall estimates (measurements) are on a 3-hour 

temporal resolution and a fine spatial resolution of 0.25 by 0.25 degrees, in a global belt 

extending from 50 degrees south to 50 degrees north (Immerzeel et al. 2009; 
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http://trmm.gsfc.nasa.gov/3b43.html). TRMM’s altitude of 350 km is considered low 

compared to other satellites. This is attributed to the fact that satellites at lower altitudes 

obtain higher resolutions, thus producing high resolution images (Ceccanti and Marcuccio, 

2000).  

At the present time, TRMM is considered as one of the satellites producing some of the best 

available remotely sensed rainfall measurements in global tropical regions (50
o
 N-50

o 
S, 0-

360
o 
E) (Nair et al. 2009; http://rain.atmos.colostate.edu/CRDC/ datasets/TRMM_3B43. 

html). TRMM has a number of rainfall measurement products, produced from passive 

microwave and precipitation radar sensors, namely TRMM Microwave Image (TMI) and 

Precipitation Radar (PR) (Kummerow and Barnes, 1997; Kummerow et al. 2000; Tian et al. 

2007; Immerzeel et al. 2009; http://rain.atmos.colostate.edu/CRDC/datasets/TRMM 

_3B43.html). TMI is a microwave sensor for measuring water vapour, cloud water and 

rainfall intensity by detecting the energy released by the earth and its atmosphere. PR is used 

to locate and calculate the motion of rainfall (http://trmm.gsfc.nasa.gov/3b43. html; 

Kummerow, 2000; Sherperd. 2001). This study uses the TRMM 3B43 monthly product, 

which is designed to produce reliable precipitation measurements at a monthly temporal 

resolution, and a fine spatial resolution of 0.25 by 0.25 degrees. TRMM 3B43 is a 

combination product of 3B42 dataset (3-hourly temporal resolution dataset) and monthly 

global rain gauge measurements (http://trmm.gsfc.nasa.gov/3b43.html; http://rain.atmos. 

colostate.edu/ CRDC/datasets/ TRMM_3B43.html).  

2.5 Spatial analysis 

There are various approaches for identifying rainfall patterns spatially. In general, a cluster 

analysis helps group objects (cases) or datasets into classes (clusters) on the basis of 

similarities, and or dissimilarities within different classes (Mostashari et al. 2003; Singh et al. 

2004). Clusters can be defined as relative points in space with similar variables or 

characteristics (Gong and Richman, 1995; Lyra et al. 2014). For this reason, the cluster 

analysis approach has been used in a number of studies (rainfall and risk assessment) as an 

effective method of consolidating large amounts of data (Pan et al. 2009). There are a number 

of different statistical techniques commonly used for performing cluster analysis namely 

Principal Component Analysis (PCA), Euclidean Distance, and Ward’s Method (Gadgil and 

Iyengar, 1980; Drosdowsky, 1993; Mu˜noz-D´ıaz and Rodrigo, 2004; Singh et al. 2004; Pan 

et al. 2009). 

http://trmm.gsfc.nasa.gov/3b43.html
http://rain.atmos.colostate.edu/CRDC/%20datasets/TRMM_3B43.%20html
http://rain.atmos.colostate.edu/CRDC/%20datasets/TRMM_3B43.%20html
http://rain.atmos.colostate.edu/CRDC/datasets/TRMM%20_3B43.html
http://rain.atmos.colostate.edu/CRDC/datasets/TRMM%20_3B43.html
http://trmm.gsfc.nasa.gov/3b43.%20html
http://trmm.gsfc.nasa.gov/3b43.html
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Principal Component Analysis (PCA): PCA is a multivariate statistical technique for carrying 

out data cluster analyses, by statistically converting a set of observations or variables with 

similar characteristics into principal components (clusters) (Drosdowsky, 1993; Mu˜noz-

D´ıaz and Rodrigo, 2004; Singh et al. 2004). This method has been used for grouping and 

correlating a vast number of variables and is a preferred approach within rainfall research 

(Gadgil and Iyengar, 1980; Ronen and Avinoam, 1999; Mu˜noz-D´ıaz and Rodrigo, 2004). 

For example, Ronen and Avinoam (1999) made use of PCA to determine the distribution of 

plant species in relation to variable rainfall in Israel, and found that the cluster of plants 

species distribution corresponds to the rainfall gradient.  

Euclidean Distance: The Euclidean Distance is a cluster technique which indicates data 

clusters, based on real or derived measures of distances between variables. This technique 

analyses the square root differences between variables and is commonly used in computer 

science for data mining, which makes use of hierarchical clustering approach to find patterns 

in large datasets (Kardi, 2015).  

Ward’s Method: Ward’s Method is another clustering method associated with hierarchical 

data clustering. This approach involves the calculation of the distance between clusters, as the 

sum of squares between two clusters, and then summed up over all variables (Gadgil and 

Iyengar, 1980; Pan et al. 2009). Ward’s method is used when the objective of the analysis is 

to build a hierarchy of small clusters.  

A cluster analysis is not only useful for grouping variables, but it also useful for interpreting 

data and identifying patterns in space. For this reason, the spatial cluster analysis is a widely 

used technique for investigating clusters spatially. Where variables have a spatial dimension 

with geographic properties; a computational spatial analyses tool within Geographical 

Information Systems (GIS) can be used. Motashari et al. (2003) made use of a geographic 

cluster analysis, which involved the use of spatial scan statistics to i) represent the 

geographical clusters, and ii) to spatially predict dead bird clusters. These bird clusters 

indicated regions where people may be at risk of contracting the West Nile Virus (WNV) in 

New York (Motashari et al. 2003). The Anselin Local Moran’s I tool is another GIS 

approach, which provides i) a ‘by region’ assessment of spatial data, and ii) a comparison of 

the regions to surrounding regions (neighbourhood pattern).  

A number of studies have used the Anselin Local Moran’s I tool as a method to detect spatial 

clusters in rainfall, temperature and pollution, as well as for identifying spatial outliers, i.e. 
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areas surrounded by regions that have opposite or contrasting patterns of rainfall occurrence 

(Anselin, 1995; Sugumaran et al. 2009; Fischer and Getis, 2010). Brody et al. (2008) used 

Anselin Local Moran’s I to determine clusters of high and low climate risk, in order to inform 

local climate change policy in the United States of opportunities to adopt mitigation strategies 

against adverse risks of climate change. Zhang et al. (2008), also made use of Anselin Local 

Moran’s I to detect pollution hotspots of lead (Pb) concentrations in urban soils of Galway, 

Ireland in order to improve environmental management. Although, the literature cited in this 

section does not consist of specific rainfall examples using the Anselin Local Moran’s I tool, 

it has been used it to illustrate how a similar approach can be applied to TRMM rainfall data. 

This particular spatial cluster approach may be used to identify local scale patterns and 

variation in recorded rainfall measurements. 
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CHAPTER 3: MATERIALS AND METHODS 

This is a desktop study using satellite derived rainfall measurements extending across the full 

extent of Botswana. A spatial and temporal analysis has been carried out to investigate 

rainfall magnitude, variability, frequency, and the duration of rainfall events in Botswana. In 

addition, a GIS spatial analysis approach, the Anselin Local Moran’s I tool was used to 

determine the persistence of wet and dry conditions in space and time. 

3.1 Data sources 

 TRMM 3B43 real-time monthly rainfall data with a spatial resolution of 0.25 by 0.25 

degrees (0.463km x 0.463km), for the period of 1998 to 2013 was downloaded from the 

NASA Goddard Space Flight Centre website (http://disc.sci.gsfc.nasa.gov/TRMM). The 

TRMM 3B43 monthly product was particularly good at producing complete spatial coverage 

of rainfall measurements in Botswana (Figure 5). 

 

Figure 5: Maps depicting the spatial comparison of TRMM rainfall measurement 

points and ground-based rainfall points in Botswana (Created by Relotilwe Maboa, 

2014). 

WorldClim precipitation data was downloaded from the WorldClim website 

(http://www.WorldClim.org). The WorldClim data layers were generated through the 

interpolation of average monthly climate data from weather stations on an arc-second 

resolution grid (i.e. 1km
2
) (Hijmans et al. 2005; http://WorldClim.org/methods). WorldClim 

http://disc.sci.gsfc.nasa.gov/TRMM
http://www.worldclim.org/
http://worldclim.org/methods
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data are described as interpolated, since it has been generated based on known historical 

rainfall data. The data interpolation was initiated using the smoothing spline algorithm from 

the ANUSPLIN software. The occurrence of errors in the data was considered, and all 

weather stations were checked to ensure correspondence between the recorded data and 

mapping (Hijmans et al. 2005). Monthly averages of climate were measured at weather 

stations from global, regional, national, and local surfaces for the period 1950-2000 (Hijmans 

et al. 2005). Major climate databases were compiled by the Global Historical Climatology 

Network (GHCN), the International Centre for Tropical Agriculture and numerous other 

databases around the world (Hijmans et al. 2005; http://WorldClim.org/methods).  

In this report, WorldClim precipitation data are representative of the global long term rainfall 

average between 1950 and 2000 (50-year period). The spatial extent of the WorldClim 

precipitation dataset was converted to 0.25 by 0.25 degrees in order to maintain spatial 

consistency with the TRMM rainfall data. This study used the WorldClim precipitation 

dataset as a ‘long term average rainfall reference’, for determining the frequency of rainfall 

events above and below the long term reference, specific to localities across Botswana.  

3.2 Data analysis 

TRMM 3B43 monthly data were downloaded as rainfall intensities (mm.hr
-1

), which were 

converted to millimetres (mm) to obtain rainfall total values. The rainfall totals were further 

transformed into the relevant rainfall variables for this research. The dataset was then used to 

determine rainfall magnitude, variability, frequency and spatial clusters of high and low 

rainfall regions across the time series. The software used to process the data includes ArcGIS 

10.2 (Esri, 2014) and Microsoft Excel 2010.  

3.2.1 Magnitude  

The purpose of investigating rainfall magnitude is to understand on average, the amount of 

monthly rainfall falling in Botswana during the analysis period. A total of 180 TRMM 3B43 

monthly files were downloaded in Network Common Data Form (Netcdf) format and 

imported into ArcGIS. The Multi-dimensions tool in ArcGIS was used to convert each Netcdf 

file into raster format. The global extent of each data output was clipped, using the Clip tool 

in ArcGIS to represent the Botswana landscape. All 180 clipped monthly raster outputs from 

1998 to 2013, were used to calculate average monthly magnitude rainfall. The raster 

http://worldclim.org/methods
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Figure 6: An annotation of the average monthly magnitude rainfall calculation used for this 

study. The January calculation is used as an example (Created by Relotilwe Maboa, 2014). 

calculator tool in ArcGIS was used to calculate the average monthly magnitude rainfall over 

the 15-year period. Below is the raster calculator expression, using January as an example: 

Average RainfallJanuary: ∑January1998  + January1999  + January2000  + ………… 

January2013 / 15 

Below is a schematic representation of the raster calculator expression used to calculate the 

average monthly magnitude rainfall between 1998-2013 (Figure 6). January is used as an 

example below: 

 

 

∑ 

 

 

 

 

 

3.2.2 Variability:  

Rainfall magnitudes in the tropics vary both in space (i.e. within a region) and time (i.e. 

convective rainfall is episodic in nature). Temporal variability was ascertained by observing 

regional (pixel) based average monthly magnitudes values across the time series. In this 

study, variability of average monthly magnitudes values across the time series were analysed 

by calculating the standard deviation for the average monthly magnitudes values across the 

full 15 years. Standard deviation was determined using the Focal statistics tool in ArcGIS. 

The standard deviation values provided an assessment for rainfall consistency or 

inconsistency across the country. Rainfall standard deviation values close to 0mm represented 

little variability in rainfall magnitudes, and temporally consistent rainfall falling in a specific 

space, throughout the time series. High standard deviations values represented increased 

variability in average monthly magnitudes, and temporally inconsistent rainfall falling in a 

specific space, throughout the time series. 
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3.2.3 Frequency 

The significance of evaluating rainfall frequency is to observe the frequency of rainfall events 

above (measured as peaks) and below (measured as troughs) the long term WorldClim 

average reference throughout the analysis period. Five rainfall frequency reference points (A-

E), along the Botswana rainfall gradient were chosen to determine rainfall frequency (Figure 

7). Point A and B represent spatial-temporal rainfall in the northern part (Chobe and 

Makgadikgadi region) of Botswana, point C represents the central part (Central Kalahari 

region), and point D and E (Kgalagadi region) represent the southern part. The frequency of 

the average monthly magnitude rainfall values at point A-E, above and below the long term 

average was used to determine the rainfall frequency during the 15-year period. 

 

 

 

 

 

 

 

 

 

 

3.2.4 T-Test 

The test investigated the statistical significance of the observed frequency of average monthly 

magnitude rainfall above and below the long term average reference, for Point A-E 

respectively. Below is the T-test formula used in this study: 

 

Figure 7: Diagram illustrating the location of the 5 rainfall points (A-E), along Botswana’s rainfall gradient, 

which were chosen for the rainfall frequency analysis. Point A represents the less arid region and point E the 

more arid region of Botswana (Created by Relotilwe Maboa, 2014). 
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𝒕 =
𝑿𝟏 − 𝑿𝟐
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+
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𝒏𝟐
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X1 = Long term average rainfall 

X2 = Average Monthly magnitudes 

S = Standard deviation 

n = number of rainfall observations 

 

3.2.5 Spatial analysis 

The 180 monthly rainfall total raster maps from 1998 to 2013 were used to perform the 

spatial analysis of high and low rainfall regions in Botswana. The purpose of the spatial 

cluster analysis application was to determine the annual spatial persistence of high and low 

rainfall regions in Botswana. In ArcGIS the Anselin Local Moran’s I tool was used to 

perform the spatial cluster analysis, for each one of the 180 monthly rainfall total raster maps. 

The tool’s output feature class has four main attributes: the Local Moran’s I index, z-score, p-

value, and cluster/outlier type (COType) fields (Anselin, 1995). This study was interested in 

the outcome of the COType attribute which indicates features with either, High-High (HH) 

cluster values or Low-Low (LL) cluster values, as well as spatial outliers. Spatial outliers 

refer to features that are exceedingly different from the general features. In this study, spatial 

outliers are indicated by either features with high values surrounded by low value features, 

which is known as High-Low (HL) or features with low values surrounded by high value 

features, which is known as Low-High (LH) (Anselin, 1995). 

The Reclass tool was used to reclassify outputs from the spatial cluster analysis, as a way of 

‘classifying clusters’ of high and low rainfall in Botswana between 1998-2013. The 

reclassification included the following: 0 represents insignificant rainfall clusters, 1 

represents the LL rainfall clusters, the value 2 represents the LH rainfall clusters, the value 3 

represents the HL rainfall clusters, and the value 4 represents HH clusters (Table 1). In 

ArcGIS insignificant clusters refer to spatial clusters where the p-value is greater than 0.05, 

and the null hypothesis is rejected. The validity of the reclassification applied here (Table 1) 

was tested using a transition matrix, where the probability for the persistence of high and low 
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spatial clusters is investigated, throughout the time series, on a year by year basis. The raster 

calculation expression below was used to determine the annual rainfall clusters, from the 

monthly cluster outputs. 1998 is used as an example: 

 Rainfall Cluster1998 = ∑January1998 + February1998 + March1998 + ………… December1998 

The annual rainfall cluster regions were validated using annual rainfall totals across the 15-

year period’. The annual rainfall totals were calculated according to the following raster 

calculator expression, using 1998 as an example: 

 

 

 

 

 

 

 

 

 

Annual Rainfall Total1998 = ∑January1998 + February1998 + March1998 + ………… 

December1998 

On the whole, the analysis of rainfall magnitudes, variability, frequency and annual spatial 

cluster provides comprehensive understanding of the rainfall patterns and changes in 

Botswana.  

 

 

 

 

Reclassification Raster calculator 

output (mm) 

Rainfall cluster 

0 0 Insignificant 

1 0>-15 Low rainfall( LL) 

2 >15-30 Low-High rainfall (LH) 

3 >30-45 High-Low rainfall (HL) 

4 >45-60 High rainfall (HH) 

Table1. Reclassification codes used to classify TRMM rainfall clusters during the spatial 

analysis. 
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CHAPTER 4:  RESULTS 

The analysis of rainfall in Botswana exhibited a rainfall pattern that varied by region, and by 

season. Figures 8-15 depict the results for the rainfall magnitude, variability, frequency and 

spatial analysis respectively.  

4.1 Magnitude 

The average monthly magnitude rainfall results consisted of twelve maps, specific to 

Botswana, illustrating the amount of rainfall during 1998-2013 (Figure 8). Hereafter, ‘rainfall 

magnitude’ refers to average monthly magnitude rainfall. The pattern of rainfall magnitudes 

in space and time is described below. 

4.1.1 Rainy season: January-March 

A spatial difference in rainfall magnitude amounts was evident during the rainy season. 

January, February and March showed high rainfall magnitudes (96-159mm) in the northern, 

western and south eastern parts of Botswana (Figure 8). While relatively lower rainfall 

magnitudes (32-95mm) were evident in the southwest Kgalakgadi region. 

4.1.2 Post rainy season: April-August 

The persistence of elevated rainfall magnitudes (32-63mm) until April signified the 

occurrence of late summer rainfall conditions. However, these high rainfall magnitudes were 

slightly lower than the preceding calendar months (January-March). The Okavango Delta 

region experienced the highest rainfall magnitudes during this season, with magnitudes on 

average, up to 10mm higher than surrounding regions. May and June (i.e. seasonally 

considered the winter months) indicated low rainfall magnitudes (0-32mm) across the 

landscape, with the exception of the Okavango Delta and south eastern Botswana, which 

maintained elevated magnitudes (32-63mm). Rainfall magnitudes during July and August 

were uniformly low (0-31mm) across Botswana, while the Okavango Delta region showed 

evidence of elevated rainfall magnitudes (32-63mm) during August.   

4.1.3 Pre-rainy season: September-October 

A gradual increase in rainfall (32-63mm) from western to eastern Botswana was apparent 

during the September and October months. This increase marked the end of the low rainfall 
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Figure 8: Twelve maps illustrating the average monthly rainfall magnitudes in Botswana from 

January to December for a period of 15 years (1998-2013) (Created by Relotilwe Maboa, 2015). 
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season in the north, eastern and south eastern parts of country. 

4.1.4 Rainy season: November-December 

During November and December northern, central eastern and south eastern Botswana 

indicated high rainfall magnitudes (96-159mm); while southwestern Botswana indicated 

relatively lower rainfall (0-63mm). This rainfall trend is similar to rainfall magnitudes during 

January-March (Figure 7). The Okavango Delta experienced higher rainfall magnitudes (96-

127mm) than surrounding region. Surrounding regions like the Makgadikgadi Saltpans 

experienced relatively lower rainfall magnitudes (96-159mm). 

4.2 Rainfall variability 

The objective of the rainfall variability analysis was to determine the distribution of the 

rainfall magnitude in space throughout the time series. The rainfall variability results are 

illustrated by twelve maps reflecting variability in average monthly rainfall in Botswana, 

from 1998 to 2013 (Figure 9). 

4.2.1 Rainy season: January-March 

High rainfall variability (8-19mm) was observed over majority of the Botswana landscape, 

during January-March. This result coincided with high rainfall magnitudes observed during 

the same season, months and regions. The highest rainfall variability (16-19mm) was 

observed in northern, western, eastern and south eastern Botswana. 

4.2.2 Post rainy season: April-August 

In April low rainfall variability (4-8mm) was experienced in northern, western, eastern and 

south eastern Botswana. This rainfall variability was relatively lower than rainfall variability 

experienced during previous months (January-March). The low rainfall variability 

experienced during April, corresponded with the low rainfall magnitudes observed during the 

same season, month and regions. The Okavango Delta experienced the highest rainfall 

variability (8-15mm) in Botswana landscape during this season. A decrease in rainfall 

variability (0-3mm) was evident across the Botswana landscape during May-August. The 

Okavango Delta experienced relatively higher rainfall variability (4-7mm) than the rest of the 

landscape (0-3mm) during May-August. 
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Figure 9: Twelve maps illustrating the rainfall variability in Botswana from January to 

December for a period of 15 years (1998-2013) (Created by Relotilwe Maboa, 2015). 
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4.2.3 Pre-rainy season: October-September 

An increase in rainfall variability (0-11mm) from western to eastern Botswana was evident in 

September. This increase coincided with increased rainfall magnitudes observed during the 

month. In October, an increase in rainfall variability (4-11mm) was evident in eastern, 

central, south east and western Botswana. This increase corresponded with increased rainfall 

magnitudes observed during the same during the same time. 

4.2.4 Rainy season: November-December 

In November, high rainfall variability (8-19mm) in northern, western, eastern and south 

eastern region of Botswana was observed. Throughout the season, the Okavango Delta 

experienced higher rainfall (8-19mm) variabilities compared to surrounding regions. 

Surrounding regions like the Makgadikgadi Saltpans experienced much lower rainfall 

variability. 

4.3 Frequency 

4.3.1 Long term average reference  

Long term average rainfall data (1950-2000) were used as a long term average rainfall 

reference to explore rainfall frequency along Botswana’s rainfall gradient, specifically at 

points A-E (Figure 10). The long term average rainfall dataset was particularly useful for 

indicating the expected rainfall patterns in Botswana. The long term rainfall dataset exhibited 

a rainfall trend of the highest rainfall occurrence during the rainy season (November to 

March), and a gradual decrease in rainfall during the post rainy season (April). A further 

decrease in rainfall, and a consistent period of low rainfall, was evident between May-

August. This was followed by a gradual increase in rainfall during September and October, 

and an elevated rainfall occurrence between November-December. 

4.3.2 Rainfall frequency analysis 

4.3.2.1 Rainy season rainfall frequency: January-March 

The results (Figure 11) indicated that during the rainy season (January to March) rainfall 

events at point A were predominantly above the long term average (i.e. more than 50% of 

rainfall was above the long term average). January showed 11/15 and March 10/15 rainfall 

events above the long term average. Points B-E indicated rainfall events consistently below 
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the long term average. At points B and C, both the January and February rainfall events were 

below the long term reference (8/15 and 9/15). This trend continued at point D and E, with 

February having shown 11/15 and March 8/15 rainfall events below the long term average. 

At point E, rainfall was predominantly below the long term average, with February having 

shown  9/15 and March 10/15 rainfall events. The observation of rainfall events well above 

the long term average reference at point A, and predominantly below the long term reference 

at Points B-E is similar to the trend of rainfall along Botswana’s rainfall gradient (i.e. spatial 

‘drying’ from northeast towards southwest). 

4.3.2.2 Post rainy season rainfall frequency: April-August 

During April, rainfall at Point A was predominantly above the long term average, with 8/15 

rainfall events above the long term average. At Point B and C, the rainfall frequency was 

largely below the long term average, with an occurrence of 8/15 rainfall events below the 

long term average for both points. At Point D and E, the rainfall frequency was largely above 

the long term average, with 8/15 rainfall events above the long term average at points D and 

E. The rainfall frequency results during May-August (i.e. the dry rainfall period) indicated 

that only at Point A were rainfall events above the long term average. At point A June, July 

and August showed 12/15, 11/15 and 15/15 rainfall events above the long term average. At 

Point B, rainfall was mostly below the long term average with May, July and August having 

shown 14/15, 15 /15 and 11/15 rainfall events below the long term average.  

Figure 10: A line graph showing the long term average reference at points A-E in Botswana for a period of 

years (1950-2000) (Created by Relotilwe Maboa, 2015). 
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Figure 11: Bar graphs showing the frequency of average monthly magnitude rainfall above and below 

the long term average rainfall reference, at spatial location points A-E in Botswana, for a period of 15 

years (1998-2013) (Created by Relotilwe Maboa, 2015). 
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At Point C, rainfall was mostly below the long term average with May, June and August 

showing 15/15, 11/15 and 13/15 rainfall events below the long term average. At Point D, 

rainfall was mostly below the long term average with May, June, July and August having 

shown 14/15, 12/15, 14/15 and13/15 rainfall events below the long term average. At Point E, 

rainfall frequency was mostly below the long term average with May, June, July and August 

having shown 14/15, 10/15, 12/15 and 12/15 rainfall events below the long term average. 

4.3.2.3 Pre-rainy season rainfall frequency: September-October 

October signified an exception to Point A’s expected rainfall trend of being above the long 

term average regardless of the season. October showed more than 50% of rainfall events 

below the long term average (13/15). September showed 100% (15/15) of rainfall events 

above long term average in September. At Point B, rainfall remained below the long term 

average during both September (15/15) and October (11/15), yet at Point C rainfall events in 

October (8/15) were above the long term average. At Point D, rainfall events September were 

below the long term average across the 15-year analysis period (10/15), and in October more 

than 8/15 rainfall events were above the long term average. Rainfall events at Point E, 

remained below the long term average during both September and October, having shown 

9/15 and 8/15 rainfall events below the long term average. 

4.3.2.4 Rainy season rainfall frequency: November-December 

At Point A, November and December showed 9/15 and 10/15 rainfall events below the long 

term average. At both points B and D, rainfall events were largely below the long term 

average in November (9/15 and 11/15), while largely above the long term average in 

December (8/15 and 9/15). At both Point C and E, rainfall events were largely above the long 

term average for both November (8/15 and 8/15) and December (9/15 and 10/15).  

4.3.3 Comparison of rainfall magnitude and long term average rainfall 

The t-test results for the comparison of rainfall magnitudes (i.e. average monthly magnitude 

rainfall) and long term average rainfall (Table 2), specifically at points A- E, indicated that 

there is no significant difference (i.e. p>0.05). Thus, there is no significant difference 

between the observed rainfall (1998-2013), and the long term average rainfall (1950-2000).  
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Table 2: T-test results indicating the difference between the TRMM average monthly 

magnitude rainfall and long term average rainfall, for rainfall points A- E. 

Statistics 

variable 

Point A Point B Point C Point D Point E 

Degrees 

of 

freedom 

(df) 

22 22 22 22 22 

t-value  0.1054 -0.474 0.1809 1.0000 0.3089 

P-value 0.9170 0.6400 0.8580 0.3282 0.76.02 

 

4.4 Spatial analysis 

The spatial analysis results consisted of 15 maps, for each year in the analysis period, 

depicting the occurrence and persistence of high and low rainfall clusters in Botswana 

(Figure 12). In addition, the isolated clusters of HH (i.e. a high rainfall surrounded by a high 

rainfall region) and LL (a low rainfall surrounded by a low rainfall regions) rainfall are 

exhibited in Figures 13 and 14, for visualisation purposes. This spatial analysis of rainfall 

clusters provided an indication of annual variability of rainfall in Botswana (as opposed to the 

monthly rainfall variability analysis investigated earlier).  

4.4.1 Annual rainfall cluster persistence 

The rainfall clusters maps in Figure 13 and 14 were used to calculate the percentage 

persistence of high and low rainfall clusters across Botswana, between 1998-2013 (Table 3).  

4.4.1.1 Northern Botswana 

The spatial analysis results (Figure 12) showed that, on an annual basis, majority of northern 

Botswana experienced insignificant rainfall clusters. However, the Okavango Delta and 

Chobe National Park region showed evidence of HH rainfall clusters. Northern Botswana 

showed 100% persistence for HH rainfall clusters occurring annually, throughout the analysis 

period (Table 3). In contrast, there was zero evidence of LL rainfall clusters occurring 

annually, across the time series. 
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Figure 12: Maps showing annual rainfall clusters between 1998 to 2013 (Created by Relotilwe 

Maboa, 2015). 
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Table 3: Percentage persistence of high and low rainfall clusters across the Botswana 

landscape. 

 

4.4.1.2 Central Botswana 

Central Botswana (Central Kalahari region) demonstrated HH rainfall clusters during 2001-

2003, 2005, 2006 and 2010. The LL rainfall clusters were prevalent during the more recent 

analysis years namely, 1998-2006, 2009, 2011 and 2013. Central Botswana indicated a 

persistence of 40% HH and LL 60% rainfall clusters (Table 3). At the beginning of the time 

series (1998-2003) central Botswana experienced predominantly high rainfall clusters, while 

predominantly low rainfall clusters towards the end (2009-2013). This result was suggestive 

of a progressive drying across the analysis period. 

4.4.1.3 Eastern Botswana 

Eastern Botswana (Francistown region) demonstrated HH rainfall clusters during 1998-2000, 

2003, 2004, 2007, 2009, 2011 and 2013. The LL rainfall clusters were evident during 2001-

2006, 2009, 2010 and 2012. Here a similar drying trend to central Botswana was observed in 

eastern Botswana, where the beginning of the time series experienced predominantly high 

rainfall clusters, and low rainfall clusters towards the end. This indicated a drying trend 

across the analysis. Eastern Botswana depicted the persistence of 53.3 % HH and LL 46.7% 

rainfall cluster throughout the analysis period (Table 3).  

Spatial Region Rainfall cluster 

HH LL 

Number of 

years 

Percentage 

persistence (%) 

Number of years Percentage 

persistence (%) 

Northern Botswana 15 100 0 0 

Central Botswana 6 40 9 60 

Eastern Botswana 8 53.3 7 46.7 

South eastern Botswana 7 46.6 3 20 

Southwestern 0 0 15 100 
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Figure 13: Map showing annual HH rainfall clusters between 1998-2013 (Created by Relotilwe Maboa, 

2015). 
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Figure 14: Map showing annual LL rainfall clusters between 1998 to 2013 (Created by Relotilwe Maboa, 

2015). 
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4.4.1.4 South eastern Botswana 

South eastern Botswana (Gaborone and Lobatse) showed HH rainfall clusters during 1998- 

2004 and 2009. The LL rainfall clusters were evident during 2002, 2005 and 2012. A similar 

drying trend to central and Botswana was observed in south eastern, which was suggestive of 

a drying trend across the analysis period. The HH rainfall clusters persisted for 46.6% of the 

analysis period, while LL rainfall clusters persisted 20% (Table 3). The remainder of the 

rainfall clusters were insignificant for 33.4% of the analysis period, indicating where and 

when (2000, 2006-2008, 2010-2011 and 2013), there was a low level of confidence for 

rainfall cluster classification. 

4.4.1.5 Southwestern Botswana 

 Southwestern Botswana, typically considered the driest region, showed zero evidence of HH 

rainfall clusters, occurring annually, throughout the time series. Southwestern Botswana 

demonstrated 100% persistence for LL rainfall clusters, occurring annually, between 1998-

2013 (Table 3). This result agreed with the expected rainfall conditions along Botswana’s 

rainfall gradient (i.e. the lowest rainfall conditions are experienced in southwest Botswana) 

(Figure 7). 

4.4.2 Annual rainfall totals 

The annual rainfall totals values between 1998-2013 are depicted by 15 maps, specific to 

Botswana (Figure 15). It is evident that across the 15-year analysis the annual rainfall totals 

ranged between 0-1025mm, which corresponds with the annual rainfall totals observed both 

in the rainfall literature and historical rainfall records for Botswana (Regenmortel, 1995; 

Veenendaal, 1996). The annual rainfall totals were used validate the occurrence of high and 

low rainfall clusters across Botswana. These annual rainfall totals agreed with the observed 

regions of high and low rainfall clusters, during this rainfall analysis.  
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Figure 15: Annual rainfall totals measurements between 1998 to 2013 (Created by Relotilwe 

Maboa, 2016).  
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CHAPTER 5: DISCUSSION  

Rainfall is a complex subject matter that is most understood by analysing patterns of rainfall 

in space and time. Semi-arid regions have spatially complex and seasonal rainfall patterns, 

which contribute towards the nature of climate conditions across semi-arid landscapes 

Veenendaal, 1996; Batisani and Yarnal, 2010). 

5.1 The general rainfall pattern and observed changes 

This study has obtained a better understanding of the spatial and temporal rainfall patterns in 

Botswana. The use of satellite imagery provided a unique analysis approach, and as a result 

has produced highly detailed rainfall information for conservation authorities in Botswana. 

Magnitude: The highest rainfall magnitudes (96-59mm) occurred in the northern, western and 

south eastern parts of Botswana during the rainy season (January-March and November-

December) (Figure 8). These high rainfall magnitude events were likely to promote relatively 

wet conditions conducive for increased vegetation growth and surface water. The lowest 

rainfall magnitudes (0-32mm) occurred across majority of Botswana, during May and June 

(i.e. post rainy season). These low rainfall magnitude events were likely to promote relatively 

dry conditions, decreased vegetation growth and surface water during May and June. The 

Okavango Delta remained a region of relatively higher magnitude (32-159mm) compared to 

surrounding regions throughout the time series. This marks the Okavango Delta region as a 

spatially reliable location for surface water and vegetation growth, at any point in time (1998-

2013).  A deviation from the expected rainfall pattern was observed in April where elevated 

rainfall magnitudes, typical of the rainy season, extended to April throughout the time series. 

This indicated the occurrence of high rainfall events (i.e. late summer rainfall) until April and 

an extended period for relatively wet conditions, throughout the analysis period. 

 Variability: The highest rainfall variability (8-19mm) occurred in the northern, western and 

south eastern parts of Botswana, during the rainy season (January-March and November-

December) (Figure 9). This high rainfall variability is indicative of the most temporally 

inconsistent rainfall events distributed variably across Botswana. The lowest rainfall 

variability (0-3mm) occurred across most of the Botswana landscape during May-August 

(post rainy season). This observation of low rainfall variability is indicative of less temporally 

inconsistent rainfall events distributed across Botswana. 
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The increased magnitudes corresponded with increased variability, spatially and temporally. 

The rainy season (i.e. January-March and November-December) consisted of relatively high 

rainfall magnitudes and variability; high rainfall magnitude events were inconsistently 

distributed across Botswana throughout the analysis period. In contrast, the post rainy (May-

August) season consisted of relatively lower magnitudes and variability. Low rainfall 

magnitude events were less inconsistently distributed across Botswana, spatially and 

temporally. It must be noted that the observed trend of increased magnitudes corresponding 

with increased variability is not due to a general association of increased magnitudes with 

increased variability. Rather, it is because of the nature of the rainfall in Botswana, which is 

strongly seasonal, convective and episodic (i.e. variable timing of rainfall events) in nature. 

Thus rainfall, particularly during the rainy season, is unlikely to fall consistently in the same 

place or in same amounts, through time. 

Rainfall frequency: The rainy season had a high frequency of rainfall events above the 

average long term rainfall reference (along rainfall gradient), meaning relatively wetter 

conditions, than the years preceding this study, were experienced across Botswana. 

According to the results, Point A was the known ‘wettest’ area in Botswana during the 

rainfall analysis period. This trend continues until a change in season emerges, with point A 

remaining wetter than historically documented. The post rainy season consisted of a high 

frequency of rainfall events below the long term average rainfall reference (along rainfall 

gradient), suggesting that relatively drier conditions, than the years preceding this study, were 

experienced across Botswana. Points B-E was consistently drier than previously observed in 

the post rainy season. The observation of these spatially wetter and drier conditions than the 

long term average rainfall suggests the steepening slope of the rainfall gradient (Figure 7) in 

Botswana. This may be an environmental indicator for a changing climate in Botswana. 

While differences between the rainfall magnitudes (i.e. average monthly rainfall magnitudes) 

(1998-2013) and the long term average (1950-2000) rainfall exist, statistically there is no 

significant difference between these rainfall aspects (Table 2). 

Spatial analysis: The 100% persistence of annually high rainfall events in northern Botswana 

means relatively wet conditions persisted in this region, throughout the analysis period. The 

100% persistence of annual low rainfall events towards southern Botswana, means relatively 

dry conditions persisted in southern Botswana, throughout the analysis period. Similar to the 

rainfall gradient (Figure 7), the persistence of annual, high rainfall events decreased from 

northeast to southwest. This suggests the likely occurrence of decreasing surface water and 
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vegetation conditions (i.e. if one assumes all rainfall collects as surface flow), from northeast 

to southwest throughout the analysis period. In addition, it was observed that from central 

Botswana towards southwestern Botswana high rainfall clusters persist at beginning of the 

time series (1998-2003), while low rainfall clusters persist towards the end of the time series 

(2009-2013). This observation is suggestive of a progressive drying across the analysis 

period. This detected progressive drying trend, indicates relatively increasing drying 

conditions across the time series, spatially and temporally. This observation may be another 

environmental indicator for a changing climate in Botswana. 

5.2 Rainfall pattern implications 

This study found that the observed rainfall patterns largely agree with rainfall literature for 

Botswana. It is understood that November-March marks the rainy season, April-May is the 

post rainy season, and September-October is the pre-rainy season. The variability of rainfall 

patterns by season and region is likely to have had consequences for the climate conditions in 

Botswana, during the analysis period. 

5.2.1 Magnitude and variability 

The high rainfall magnitudes and variability during the rainy season (January-March) are 

suggestive of inconsistent wet conditions during this season. A decrease in rainfall 

magnitudes and variability during the post rainy season (April-August) indicates less 

inconsistent, but relatively dry conditions during this season. The rainfall literature supports 

this finding indicating that rainfall events in Botswana are seasonal, unevenly distributed and 

prone to drought conditions (Reason et al. 2004). 

As discussed in the literature review, the seasonal rainfall patterns over southern African are 

attributed to the ITCZ phenomenon (Tyson and Crimp, 1998; Reason et al. 2004; Chikoore 

and Jury, 2010; Collier and Hughes, 2011). Thus, seasonally variable rainfall events observed 

during this study can be attributed to the ITCZ. The ITCZ causes enhanced convective 

conditions that are episodic in nature, contributing to the observed variability results (Tyson 

and Crimp, 1998; Zhou et al. 2005; Collier and Hughes, 2011; Blamely and Reason, 2012).  

The ITCZ typically moves south during November-March resulting in intense convective 

rainfall, cumulus and cumulonimbus clouds, and wet conditions over southern Africa (Collier 

and Hughes, 2011). This suggests that the rainfall events observed during the rainy season, 

consisted of intense convective rainfall events (i.e. thunderstorms), and spatially inconsistent 
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wet conditions across Botswana. When the ITCZ moves north during May-October a strong 

high pressure system is evident over southern Africa. This results in subsidence, minimum 

cloud cover, little or no rainfall and dry conditions over southern Africa (Tyson and Crimp, 

1998; Chikoore and Jury, 2010). Movement of the ITCZ towards the north is likely 

responsible for the low rainfall variability observed during the post rainy season. 

5.2.2 Rainfall frequency 

Given the rainfall gradient in Botswana (Figure 7), relatively wet conditions were anticipated 

in the northern parts of Botswana, and dry conditions in the southern parts. The rainfall 

frequency results showed that rainfall events during the rainy season (January-March) were 

predominantly above the long term average rainfall reference, suggesting relatively wetter 

conditions than in years preceding this study. Rainfall events during the post rainy season 

(April-August) were predominantly above the long term average rainfall reference, 

suggesting relatively drier conditions than in years preceding this study. The observation of 

these spatially wetter and drier conditions compared to the long term average rainfall, 

suggests the steepening slope of the rainfall gradient in Botswana. This may be considered an 

environmental indicator for a changing climate in Botswana.  

During 2008, flooding activity prompted by a high frequency of rainfall events in Botswana, 

resulted in the continuous flow of water into the Savuti Channel, the Boteti River, and the 

Makgadikgadi pans. The point of interest is that these water resources (Savuti Channel and 

Boteti River) do not typically flow throughout the year (McCarthy et al. 2003). This 

suggested an elevated frequency of rainfall events in 2008, compared to previous years. The 

flooding during 2008 may be related to the observation of a larger spatial extent of HH 

rainfall clusters across northern Botswana, during this year. This particular extent was 

spatially larger than the previous (i.e. 2006 and 2007) and subsequent (i.e. 2009-2010) years. 

The flooding may also be attributed to the observation of high frequency values for months 

July to September, at point A. This suggests relatively wetter conditions, than historically 

documented in the literature, were experienced during this analysis period. Similar flooding 

conditions may have been apparent during 2004-2005 and 2011-2012, due to the observation 

of i) the larger spatial extent of HH rainfall clusters across northern, and ii) high frequency 

values for months July to September at point A. McCarthy et al. (2003) conducted a study on 

flooding patterns in the Okavango Delta Wetland in Botswana, which explains that flooding 

is influenced by the frequency of rainfall events in time and space. The Okavango Delta is 
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one of Africa’s largest wetlands, and the floodplain forms a gentle slope in the shape an 

alluvial fan. It takes flood waters approximately four months to reach the southern part of the 

delta, and peak flooding is known to occur in the month of July or August, well after the 

rainy season (McCarthy et al. 2003; McCarthy, 2006). These flood waters ultimately 

discharge into the Thamalakane River which flows along the scarp of the Delta, discharging 

into the Boteti River (McCarthy et al. 2003; McCarthy, 2006).   

The literature also indicates that flooding in Botswana is known to be influenced by the 

arrival of flood waters from the Angolan Highlands. After 3-4 months of leaving the Angolan 

Highlands, the flood waters arrive (i.e. August-September) at the Okavango Delta (McCarthy 

et al. 2003). This may explain the availability of water and greener vegetation at the 

Okavango Delta during the dry season. The velocity of the flood water is contingent on 

factors such as the quantity of the local rainfall, and water table height when the flood water 

arrives. Therefore, it is understood that a large component of flooding and water availability 

in northern Botswana is to a large extent affected by precipitation originating from beyond 

Botswana’s borders, i.e. rainfall events in the Angolan Highlands. 

5.2.3 Spatial analysis 

It is clear from the spatial cluster analysis that annual rainfall events were spatially and 

temporally variable from year-to-year. Northern Botswana experienced the persistence of HH 

rainfall clusters throughout the rainfall season, while southern Botswana experienced the 

persistence of LL rainfall clusters. The literature indicates that ENSO has an effect on annual 

and regional rainfall patterns in southern Africa and may account for rainfall variability 

during certain years (Tyson and Crimp, 1998; Reason et al. 2004; Reason et al. 2006). Thus, 

the observed progressive drying trend could be attributed to ENSO. Richard et al. (2000) 

conducted a study investigating the modification of southern African rainfall variability by 

ENSO, which is related to the emergence of dry climate conditions to ENSO. According to 

Nicholson et al. (2001), ENSO events have the capacity to strongly influence rainfall 

patterns, in relation to rainfall magnitude, timing and duration, ultimately causing variable 

rainfall events. 

5.2.4 Climate change signals 

This study has detected two environmental indicators which may be indicative of a changing 

climate in Botswana. Due to the length of the analysis period it cannot be proven 
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conclusively whether the observation of relatively wetter and drier conditions during this 

analysis; as well as the observed progressive drying trend across the time series, is indeed 

indicative of a changing climate in Botswana. However, this drying trend supports the 

climate projections of a decrease in rainfall events and increased rainfall variability in future 

(Batisani and Yarnal, 2010; Conway et al. 2015). Whether this drying trend will continue 

beyond this 15-year analysis period, is uncertain. Regenmortel (1995) conducted a study on 

the regionalisation of Botswana rainfall, which found that rainfall events in Botswana are 

spatially variable, and convectional in nature, and even in good rainfall years certain parts of 

the country experience below normal rainfall events. Thus, an extended rainfall analysis 

period is required to determine whether this drying trend is indicative of a changing climate 

in Botswana.  

5.2.5 Conservation in Botswana 

This study fits into a bigger research project that is focused on herbivore conservation in 

Botswana. Rainfall is known to have a direct influence on water, vegetation, and food 

resources throughout Africa, as well as an indirect influence on herbivore movement.  

5.2.5.1 Surface water and vegetation resources 

The seasonal nature of rainfall events in Botswana results in a variable quality of surface 

water and vegetation resources, between seasons (Brooks and Harris, 2008). It is clear from 

the analysis that rainfall in Botswana varies by season and by region. The rainy season 

(November-March) consisted of relatively wetter conditions than historically documented, 

which may have been conducive to an increased quantity of surface water and vegetation 

resources in Botswana, during this season. Beyond the rainy season, a relative decrease in 

wet conditions was evident. The post rainy (April-August) season consisted of relatively drier 

conditions, than historically documented, which may have been conducive to a decreased 

quantity of surface water and vegetation resources during this season. According to 

Mwafulirwa (1999), understanding rainfall variability and predictability is important for 

surface water, vegetation and wildlife conservation management in southern Africa. Given 

that the objective of this study was to provide an analysis of recent spatial and temporal 

rainfall patterns in Botswana, the observed trends can be used to predict the occurrence of 

surface water, vegetation, and also indirectly, predict conditions likely to promote herbivore 

movement in Botswana. 
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From a vegetation cover perspective, the occurrence of vegetation cover in Botswana is based 

on the rainfall gradient (Figure 7), which produces dense vegetation cover in the northeast 

and less dense vegetation cover towards the southwest (Figure 3) (Nicholson and Fairar, 

1994; Weare and Yalala, 2009; Chikoore and Jury, 2010). This study has exhibited evidence 

of relatively seasonally wetter and drier conditions than historically documented. This 

suggests the occurrence of denser or less dense vegetation in Botswana, than the years 

preceding this study, between seasons. The extension of rainy season conditions to April 

throughout the time series suggests dense and or denser vegetation conditions, occurring until 

April (i.e. later than previously expected). Similarly, the drying trend towards the end of the 

time series may have implications for vegetation, like a progressive trend of decreasing 

vegetation quality and quantity in Botswana in future. 

5.2.5.2 Animal movement and conservation 

The literature indicates that animal movement is usually prompted by the need for an 

environment that is conducive for survival (i.e. being in close proximity to surface water and 

vegetation resources) (Cushman et al. 2005; Owen-Smith et al. 2010). Regions of permanent 

surface water are known to be home to large amounts of wildlife (Child, 1970; Campbell, 

1973). Northern and Central Botswana are considered the natural habitats for surface water 

loving species such as hippopotamus (Hippopotamus amphibious), crocodile (Crocodylus 

niloticus), elephants (Loxodonta Africana) and wildebeest (Connochaetes taurinus). The 

Okavango delta in Botswana is a permanent surface water point for wildlife throughout the 

year (Child, 1970). Southwest Botswana is home to species which survive with little access to 

surface water such as gemsbok (Oryx gazelle) and springbok (Antidorcas marsupialis) 

(Campbell, 1973; Cushman et al. 2005). 

 The observations of relatively wetter conditions than historically documented during the 

rainy season, suggests that animals were likely exposed to sufficient surface water and 

vegetation resources. The consequences of these wetter conditions may be increased forage 

quantity and a longer period of forage persistence, compared to preceding years. In turn, 

these conditions could have prompted a delay or reduction in animal movement, which may 

be a change from the expected animal movement during the rainy season. In contrast, the 

relatively drier conditions than historically documented during the post rainy season, suggest 

that animals were exposed to relatively less surface water and vegetation resources, compared 

to the rainy season. The consequences of these drier conditions may be decreased forage 
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quantity and a shorter period of forage persistence, compared to the years preceding this 

study. In turn these conditions could have prompted increased and or earlier animal 

movement than expected, due to the animals need for suitable forage resources given the 

drier conditions. Furthermore, based on the rainfall trends observed during this study, it may 

be predicted that water and or plant dependent animals are likely to migrate towards northern 

Botswana during dry seasons (i.e. post rainy season).  

The extension of rainy season conditions to April means that the period of relatively wet 

conditions was extended. The consequence of an extended period of wet conditions is that 

forage may have lasted longer, beyond the typical rainy season. In turn, this may have 

prompted a change from the expected animal migration during April, i.e. a delay in animal 

movement until the emergence of drier conditions in the following month (i.e. May). In 

addition, the progressive drying trend may result in a change in the availability of forage and 

water resources, as well as a progressive decrease in forage quantity and surface water 

resources through time. This may prompt increased and or earlier animal migration than 

expected, between seasons. 

This study has conducted a comprehensive rainfall analysis for the full extent of Botswana, 

providing valuable information for conservation authorities. Conservation authorities, prior to 

this study, had developed national parks and reserves areas (Figure 4) for protecting wildlife 

in the country. The Botswanan Government recognises the value of wildlife and its 

contribution to the national economy, and thus it is committed to ensuring that wildlife is 

adequately managed (Child, 1970; Mwafulirwa, 1999). Wildlife management in Botswana 

includes maintenance of the national parks and game reserves, as well as controlling and 

improving recreational hunting activities and facilities (Child, 1970). An important 

component of conservation and management of wildlife is ensuring that surface water 

resources are available for water dependent animals, and vegetation resources available for 

plant dependent animals.  

The progressive drying trend detected during this analysis could create a challenge for 

conservation authorities in Botswana, due to the associated reduction in surface water and 

vegetation resources. This finding requires the attention of conservation authorities in order 

for them to establish a comprehensive response plan or strategy that would help sustain 

current conservation priorities in the country. Updated conservation or animal migration 

plans and strategies may be required in Botswana. These improved plans would help ensure 
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that given the expected drying trend, the national parks and game reserves fencing does not 

hinder or prevent access to surface water and vegetation resources. A lack of adequate 

conservation planning against this drying trend could result in wildlife deaths from 

dehydration and starvation (Mbaiwa and Mbaiwa, 2006). However, there is uncertainty, 

whether this drying trend will continue beyond this 15-year analysis period. 
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CHAPTER 6: CONCLUSION 

Rainfall in Botswana is notably variable by season and by region, and is a contributing factor 

to surface water and vegetation availability. This study has documented and described rainfall 

patterns in Botswana from 1998 to 2013, using TRMM satellite data. The analysis revealed 

that spatial and temporal rainfall patterns in Botswana, in recent years, are similar to the 

literature. However, there are notable shifts observed in the 15-year analysis period. 

6.1 Summary 

In summary, the highest rainfall magnitudes occurred in northern Botswana, during the rainy 

season. While the lowest rainfall magnitudes occurred in southern Botswana, during the post 

rainy season. High rainfall magnitudes corresponded with high rainfall variability, indicating 

regions of inconsistent rainfall events distributed variably. Low rainfall magnitudes 

corresponded with low rainfall variability, indicating regions of less inconsistent rainfall 

events. The occurrence and persistence of rainy season conditions (i.e. elevated rainfall 

magnitudes and variability) until April is a change from the expected rainfall pattern, which 

indicated an extended period of wet conditions. In terms of rainfall frequency, rainfall during 

the rainy season consisted of a high frequency of rainfall events above the long term average 

rainfall reference. This indicated relatively wetter conditions, than in the years preceding this 

study, during the rainy season. In contrast, the post rainy season consisted of a high frequency 

of rainfall events below the long term average rainfall reference, indicating relatively drier 

conditions, than the years preceding this study. These spatially wetter and drier conditions 

compared to the long term average rainfall may be an environmental indicator for a changing 

climate in Botswana. 

Based on the spatial analysis, annual high rainfall clusters persisted in northern Botswana, 

indicating the annual persistence of wet conditions. Low rainfall clusters persisted in southern 

Botswana, indicating the annual persistence dry conditions. A deviation from the expected 

annual rainfall pattern, was the observation of a progressive drying trend towards the end of 

the time series, which may indicate a signal of a changing climate in Botswana. An extended 

period of rainfall analysis is required to confirm this climate change trend, and the associated 

consequences thereof. The observed drying trend during analysis period can be considered an 

important environmental indicator for conservationists in Botswana. This finding requires the 

attention of conservation authorities in Botswana in order for them to establish a 
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comprehensive response strategy that would support conservation under changing rainfall 

patterns in future.  

6.2 Rainfall gradient adjustment 

The observed rainfall patterns in Botswana are not changing dramatically in time and space. 

The spatially wet and dry conditions remain in the same place, and are similar to that reported 

by the literature. It was observed that northern Botswana became relatively wetter and wetter, 

compared to historical records, while areas from central towards southwest Botswana got 

relatively drier and drier. This suggests that although the rainfall gradient remains in the same 

position (i.e. from northeast and southwest Botswana); it has become steeper in terms of the 

observed rainfall pattern. This steepening is accompanied by greater contrasts between 

traditionally ‘wet’ and ‘dry’ areas. This may be considered as another signal of a changing 

climate in Botswana. 

6.3 Conservation in Botswana 

This study contributes towards the overarching conservation project in Botswana. The 

contribution made by this study entails the ability to suggest spatial regions where vegetation 

growth is likely to occur, and as such, associated herbivore migration, in response to rainfall. 

The findings will be compared with those obtained by other students observing vegetation 

and herbivore movements in time and space in Botswana. Together, these studies will 

collectively enable protected areas authorities to better manage herbivore migration, 

improving conservation in Botswana over time. Based on the 15-year analysis of rainfall, the 

results predict that water and plant dependent animals are prone to move towards northern 

Botswana during the dry season. This prediction should be complimented by further studies 

related to this subject matter. 

6.4 Considerations for other TRMM users 

Accurate rainfall measurement at different temporal and spatial scales is a pertinent aspect for 

rainfall studies. The objective of TRMM is to provide accurate rainfall measurements over 

the tropics (Oki and Sumi, 1994; Habib and Krajewski, 2001). The accuracy of TRMM data 

are calibrated and validated by comparing TRMM rainfall measurements with rainfall 

measurements from surface sensors, precipitation radar and rain gauge data (Habib and 

Krajewsk, 2001; Adeyewa et al. 2003; Nicholson et al. 2003; Javanmard et al. 2010). This 

process is instrumental for providing an adequate level of confidence for use of TRMM 
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measurements. As a point of interest, Almazroui (2010) conducted a calibration study for 

TRMM rainfall climatology over Saudi Arabia during 1998-2009, focusing on annual and 

seasonal rainfall patterns. This calibration study found that TRMM overestimated rainfall 

measurements during certain years, seasons and within certain regions in Saudi Arabia, a 

semi-arid region with a largely flat landscape. According to Oke et al. (2009), who conducted 

a TRMM satellite predictor study in Australia, a poor relationship between rain gauge data 

and TRMM data can lead to large errors. The fact that TRMM has i) a significant positive 

bias for inland elevated altitudes, and ii) does not capture orographic effects at the low spatial 

resolution of TRMM at 0.25 (i.e. localised storms and rain shadow) contributes to a weak 

relationship between rain gauge and TRMM data, which leads to error in rainfall 

measurements (Oke et al. 2009). Therefore, although TRMM is considered as one of the 

satellites producing some of the best available rainfall measurements in tropical regions, the 

literature indicates there are certain issues related to TRMM. 

6.4.1 Issues associated with TRMM 

The error of overestimation is a relevant issue, which has been supported by the literature and 

anecdotal evidence in discussions with other TRMM users. There are several possible reasons 

for rainfall overestimation from TRMM products. These reasons are most frequently related 

to i) quality of TRMM composite rainfall estimation, ii) sensitivity to rain droplet size, iii) 

TRMM sensitivity to frontal rainfall, and iv) the size of the confidence interval between 

ground-based data and TRMM satellite data (i.e. comparison between ground-based data and 

satellite data). Below, these factors have been expanded upon: 

TRMM composite rainfall estimation: The TRMM composite Climatology (TCC) is a 

TRMM product which provides annual average rainfall data over a period of time. This 

product is made up of the merging of various TRMM rainfall products, over both the land 

and the ocean, providing an accurate composite rainfall measurement. TRMM products over 

the ocean include TRMM Microwave Imager (TMI) 2A12, Precipitator Radar (PR) 2A25, 

and TMI-PR 2B31 (http://www.disc.gsfc.nasa.gov). TRMM products over land consist of the 

TRMM Multi-satellite Precipitation Analysis product (TMPA 3B43) 

(http://www.disc.gsfc.nasa.gov ).  

Nicholson et al. (2003) conducted a study on the validation TRMM rainfall product 

estimations with gauge data in West Africa. The study found that the TRMM merged 

products were associated with rainfall overestimation. According to Adler (2008) different 

http://www.disc.gsfc.nasa.gov/
http://www.disc.gsfc.nasa.gov/
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TRMM products produce rainfall measurements with biases towards certain regions or 

surfaces, such as towards land or elevated altitudes. Gebremichael and Romilly (2010) 

conducted a study on satellite derived rainfall measurements over Ethiopian river basins. The 

study detected that a bias in satellite rainfall measurements existed in relation to elevation, 

and the rainfall regime. Additionally, the Ethiopian study found that at low elevations TRMM 

overestimated rainfall, while producing relatively accurate rainfall measurements at higher 

elevations.  

TRMM sensitivity to frontal rain: There are limited studies surrounding TRMM satellite 

sensitivity to mid-latitude rainfall. Nonetheless, frontal rain is known to provide more 

consistent and concentrated TRMM rainfall measurements (Vaughn, 1986). Han et al. (2009) 

conducted a study on mid-latitude rainfall variability using TRMM, which found that TRMM 

satellite sensitivity was elevated for regions experiencing frontal rain. However, according to 

the literature there are certain discrepancies or inconsistences (i.e. rainfall overestimation), 

surrounding TRMM rainfall measurements in convective rainfall regions. It is deduced that 

TRMM may perform better in frontal rain regions, compared to convective rainfall regions.  

Sensitivity to droplet size: Variation in rainfall droplet size influences scattering and 

absorption of clouds, for instance large rainfall droplets are associated with short wave 

absorption (Wetzel, 1990). Large rainfall droplets often lead to the establishment of 

atmospheric instability, promoting rainfall formation. Understanding Rainfall Droplet Size 

Distribution (DSD) is an important aspect of rainfall measurement, because variability in 

rainfall droplet size can be a source of inaccuracy for rainfall measurement. A study sampling 

the rainfall in China found that, increased convection rainfall rates are related to increased 

rain droplet size and concentration, which can result in rainfall overestimation (Liu et al. 

2010). This means droplet size may be a physical issue influencing rainfall measurement in 

the tropics.  

Confidence interval between ground-based data and TRMM satellite data: Both ground-

based data and TRMM satellite data have been associated with rainfall measurement errors. 

Ground-based data errors are considered to be smaller than TRMM satellite data (Nicholson 

et al. 2003). With regards to rainfall measurement accuracy, this creates a trade-off between 

ground-based data accuracy and comprehensive TRMM satellite spatial coverage. Rain gauge 

data consists of spatially limited measurements for rainfall, and also a lack of spatial 
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consistency for rainfall measurements. In contrast, TRMM provides more consistent and 

spatially continuous rainfall measurements. 

A study evaluating TRMM rainfall measurements using ground-based rainfall measurements 

over Central Florida, found that at high rainfall rates ground-based rainfall measurements and 

TRMM rainfall measurements are more likely to differ (Wang and Wolf, 2011). This may 

result in less precise rainfall measurements. While at low rainfall rates the ground-based 

rainfall measurements and TRMM rainfall measurements are less likely to differ (Wang and 

Wolf, 2011). At high rainfall rates the possibility of TRMM rainfall overestimation increases 

and the confidence interval between ground and TRMM rainfall measurements also 

increases. This places emphasis on the importance of understanding the relationship between 

ground-based rainfall data and TRMM rainfall data, in order to avoid less precise rainfall 

measurements or overestimation. 

6.5 Further research directions 

This study is one of the first rainfall studies in Botswana conducted using TRMM 3B43 

monthly rainfall data. This 15-year rainfall analysis, in addition to other studies on vegetation 

and herbivore migration, has used satellite data to explore spatial and temporal patterns in 

Botswana. I argue that the observed rainfall trends are credible and justify the conclusions 

made. The methods and approach used in this study, are considered feasible, and are in line 

with appropriate scientific methodology required for a detailed rainfall study. Ultimately, this 

study is a building block for ensuring accurate use of TRMM data over semi-arid regions 

going forward, and the implementation of increasingly effective conservation planning and 

management in Botswana. Yet, there is still scope for future research across southern Africa 

and within Botswana. The key areas for further research include: 

 The use of TRMM rainfall measurements in this study has allowed for the 

comprehensive spatial analysis of rainfall in Botswana. The TRMM satellite’s ability 

to provide spatially consistent rainfall data has been illustrated in this study, 

addressing the typical historical limitations associated with ground-based rainfall 

measurements. However, the use of satellite data does not replace ground-based data, 

and it is not this study’s intention to suggest this. Rather, satellite data as shown by 

this study might be considered a useful complement to ground-based rainfall 

measurements, particularly in areas where rain gauge measurements are scarce. Based 
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on the anecdotal evidence in discussions with other TRMM users regarding TRMM 

overestimation, it is recommended that increased local validation of TRMM is 

conducted subsequent to TRMM calibration. This will assist with the rectification of 

TRMM overestimation in convective rainfall regions. 

 

 The determination of localised spatial rainfall patterns and changes beyond Botswana, 

i.e. Angola, particularly with reference to climate change is a point of interest. A 

study of this nature would provide more recent information, regarding the 

consequences of climate change for countries neighbouring Botswana. 

 The TRMM satellite dataset used in this study did not include detailed information 

about the conditions of the landscape, for which each rainfall measurement was 

recorded. This made it difficult to predict, with great certainty, how the observed 

rainfall patterns impacted Botswana on the surface (ground level). Consequently, 

further studies investigating the impact of these rainfall patterns at ground level are 

required nonetheless. TRMM satellite data combined with various other statistical 

methods could be highly valuable, in predicting the spatial and temporal response of 

vegetation and surface water resources, as well as herbivores migration in Botswana. 

 An extension of the time series for this rainfall analysis to 30 years, would confirm 

whether the observed drying trend is indeed a signal of a changing climate in 

Botswana. An extended time series would be valuable for making long term 

predictions regarding the response of surface water and vegetation resources, as well 

as animal migration.  

 Although TRMM was developed for rainfall measurement in the global tropics at a 

spatial resolution of 0.25 x 0.25, it might be a point of interest to assess how TRMM 

satellite responds to non-tropical regions, and measurements at different spatial 

resolutions (Lunetta et al. 1991).  

 A hydrological analysis concerning two big rivers in Botswana (i.e. Boteti and Savuti 

rivers) may be valuable for comprehending the effect of the variable rainfall 

frequency events, on surface water bodies in the country. Both the Boteti and Savuti 

rivers derive their flow from the Okavango Delta (McCarthy et al. 2003; McCarthy, 

2006). The river flows are seasonal and influence the abundance of surface water 
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resources and vegetation cover in Botswana. Assessing the hydrology in Botswana is 

a sustainable way of indirectly, but continuously monitoring rainfall patterns in the 

country. 

 An assessment on the performance of TRMM with other satellites or remote sensing 

products (NOAA and STAR satellite rainfall estimates) also used for rainfall 

measurement, is recommended. This assessment will provide more recent information 

regarding quality and reliability of the TRMM product on a broader scale. The 

standard of the TRMM compared other satellites should be indicated, and areas of 

improvement for TRMM products highlighted. 
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