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Abstract

Country risk evaluation is a crucial exercise when determining the ability of

countries to repay their debts. The global environment is volatile and is filled

with macro-economic, financial and political factors that may affect a country’s

commercial environment, resulting in its inability to service its debt. This re-

search report compares the ability of conventional neural network models and

traditional panel logistic regression models in assessing country risk. The mod-

els are developed using a set of economic, financial and political risk factors

obtained from the World Bank for the years 1996 to 2013 for 214 economies.

These variables are used to assess the debt servicing capacity of the economies

as this has a direct impact on the return on investments for financial institu-

tions, investors, policy makers as well as researchers. The models developed

may act as early warning systems to reduce exposure to country risk.

Keywords : Country risk, Debt rescheduling, Panel logit model, Neural net-

work models.
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Chapter 1

Introduction

1.1 Background of the Study

The last decades have seen a deterioration in the world economic environment

which has led to an interest in the study of country risk. The 1960’s and

1970’s were filled with political crises, while the 1980’s with debt crises which

saw many underdeveloped countries with large debts from foreign banks failing

to service them in the agreed time frame. Lastly, the 1990’s had financial crises

which were unique for different countries as they were triggered by different

factors. These historical events are still relevant and are used as a guide in

present day to help adopt a holistic view and create general guidelines to apply

in the assessment of countries at risk of debt rescheduling (Bouchet, Clark and

Groslambert, 2003).

There has recently been a European debt crisis which emerged after the re-

cession in 2008 and has seen countries like Greece, Portugal, Ireland, Spain

and Cyprus failing to repay their debts. The Greek debt crisis began in 2009

after it announced that it had been downplaying its yearly deficit. Greece’s

economy declined by 26% from 242 billion Euros in 2008 to about 179 billion

Euros in 2014. In 2010 and 2012, Greece received bailouts valued at 240 bil-

lion Euros and 264 billion Euros from the International Monetary Fund (IMF)

and European states respectively (ABC, 2015). Greece was the first developed
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nation to default on an IMF loan valued at 1.5 billion Euros in June 2015,

leading to a third bailout worth 88 billion Euros (ABC, 2015). An assessment

of country risk which is the risk related with lending or investing in a coun-

try is therefore relevant as countries classified as being risky are faced with

tax increases, budget cuts, difficulties in securing loans and lack of confidence

among investors (ABC, 2015).

The financial institutions that give loans to risky countries face potential losses

as many may need to reduce the value of the debts they are owed or as some

countries default completely on their debts. In order to minimise the potential

effects of country risk, international banks and risk rating agencies have been

trying to identify and explain the general factors that lead to these difficult

situations (Bouchet et al., 2003). According to Kosmidou, Doumpos and Zo-

pounidis (2008), the various dimensions found in country risk are a result of

the different causes of the economic and financial situations which may stem

from political and civil unrest and external factors such as droughts or floods

as well as other factors.

1.2 Rationale for the Study

The results obtained from country risk analysis are of importance to banks,

multinational corporations, governments, policy makers and investors operat-

ing in different markets worldwide as pre-decision and post-decision making

tools. According to Henisz and Zelner (2010) these organisations will gain a

competitive advantage only if they are able to anticipate and manage risk.

Experts use different macro-economic and financial indicators such as gross

domestic product (GDP) and inflation to determine risk ratings for the clas-

sification of countries. These ratings give investors and lenders the platform

to decide whether to take a “gamble” in an investment or lending opportunity

(Becerra-Fernandez, Zanakis and Walczak, 2002). A good “gamble” would

yield profits for investors and financial institutions especially if they are the
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first to enter the markets.

Although some organisations offer country risk assessment services, the ratings

they provide are general and may not be specific to the actual project being

considered by the multinational corporation. According to Asiri and Hubail

(2014) risk rating agencies take time in lowering credit risk ratings in the face of

crisis. It is therefore necessary to predict how the macro-economic conditions

will change. The quantitative methods that have been used for country risk

assessment by banking institutions and risk rating agencies include both para-

metric and non-parametric methods, where the latter involves fewer model

assumptions. The statistical techniques commonly used include the use of

logit and probit analysis, principal component analysis, factor analysis, clus-

ter analysis, discriminant analysis and regression analysis. The non-parametric

methods include neural networks (NN), rule induction, fuzzy set theory and

rough sets (Kosmidou et al., 2008). The diversity of the empirical literature

and research aimed at developing the best country risk models indicates the

importance of this area.

Furthermore, country risk is widespread throughout the global markets. Fig-

ure 1.1 is a heat map indicating the levels of risk for different countries. The

colour scale ranges from green, yellow, orange and red with green represent-

ing the least risky countries and red showing the riskiest countries. The map

shows that most developed nations like Norway, Switzerland, Singapore, Lux-

embourg, Sweden, Denmark, Finland, Netherlands, Canada and Australia have

lower levels of country risk while most African countries are flagged as being

risky as well as countries like Iraq, Iran, Afghanistan and their neighbours. An

understanding of the factors that make the red and orange zones risky climates

is critical to loan and investment decisions.
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Figure 1.1: The distribution of country risk (Verisk Maplecroft, 2015)

1.3 Aim and Objectives

The study seeks to classify 214 countries into “risky” and “stable” economies

by identifying countries that will fail to repay their external debt probably

due to political, social and economic factors. The results can be used for

the early identification of risky countries and will assist in the reduction of

possible financial losses associated with incorrect and inefficient decisions. The

objectives of the research are:

1. To emphasise the importance of country risk evaluation and to anal-

yse the causes and factors of country risk assessment identified by risk

analysts and researchers;

2. To identify the important political, macro-economic and financial factors

to aid in investment and loan decisions involving countries;

3. To clarify the merits and demerits of the quantitative country risk as-

sessment methods that will be used;
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4. To develop a logistic regression (LR) model and artificial NN model for

modelling country risk that is capable of evaluating country risk taking

into account the relationships between the predictor variables to be used;

5. To compare the best results obtained from the developed models using

real world historic data and propose a model for classifying countries at

risk.

1.4 Research Hypotheses

1. The adoption of country risk analysis using economic, political and fi-

nancial risk factors strengthens the ability to identify countries that will

default on their debt.

2. Financial, economic and political factors are all relevant in classifying

high risk countries.

1.5 Research Questions

1. Which variables are of importance in the development of a country risk

model?

2. What is the best NN architecture to be used in the classification of

countries?

3. What is the predictive power of the NN model to be developed as com-

pared to LR?

4. What is the relationship between the predictor variables and the rela-

tionship between each predictor variable and the dependent variable?

1.6 Limitations of the Study

The country information available is for those countries that have statistical

systems including official sources and the World Bank country management
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units. This means that countries that do not have statistical sources are ex-

cluded from the research. In addition, some countries do not want to share

their debt information as they may consider it as being of sensitive nature.

Country risk is also a diverse and broad subject with many elements and vary-

ing contributing factors so this study will be limited to modelling the risk of

debt rescheduling using variables available from the World Bank that are com-

monly used in literature. Natural occurrences such as floods, earthquakes and

drought that may escalate country risk are not modelled directly but these are

factored indirectly through the macro-economic variables that are affected by

these conditions.

1.7 Structure of the Research Report

The research is composed of a literature review (Chapter 2) describing country

risk and its aspects. The methodologies of country risk used by other authors

are also presented to give a better understanding of the subject. This chap-

ter ends with model building aspects detailing the methods that are used to

develop the models. Chapter 3 presents the data used as well as a step by

step methodology of the country risk assessment model building process while

Chapter 4 summarises the model development process. Chapter 5 presents an

analysis and assessment of the models and lastly, Chapter 6 will discuss the

general conclusions obtained from the research.
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Chapter 2

Literature Review

2.1 Introduction

With the subject of country risk becoming more important, it is necessary

to develop an understanding of the country risk elements in order to be able

to identify the attributes that could interfere with a country’s capability to

pay back its external debt. Definitions of the different types and aspects

of risk including macro-economic, financial and political risk provide a good

comprehension of the key factors involved in country risk modelling. It is also

necessary to understand the parametric and non-parametric approaches that

have been commonly used in literature to model country risk with a strong

emphasis on the advantages, disadvantages as well as limitations of the different

methods. The aspects involved in the NN and LR approaches are also detailed

within the literature review to give insights and identify the methods to apply

in the country risk model building process.

2.2 Overview of Country Risk

There has been a growth of interest among private and official lending insti-

tutions as well as investors on the subject of country risk. Researchers have

given various definitions of country risk. Meldrum (2000) defines risk as the

uncertainty that occurs when an event lacks some pre-specified requirements.
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Nath (2009) differentiates between the risk related to obtaining a loan from a

sovereign government and the risk related to lending or investing in a country

and defines country risk as the risk associated with factors that deter sovereign

states or organisations from these countries to fulfil their obligations to for-

eign investors or lenders. This is because business transactions become risky

when they occur across international borders as there may be additional risks

present. The nations may have differences in terms of policies, geography, cur-

rencies or economic structures.

Country risk also exists despite the country’s economic level. The 2016 USA

elections resulted in highly volatile financial markets across the world due to

uncertainty among investors on the impact on the global economy and trade

caused by Mr Trump’s victory. Analysts at Goldman Sachs believe that Mr

Trump will pursue a looser fiscal policy that may result in higher interest rates

from banks leading to inflation (The Telegraph, 2016). The British exit from

the European Union (Brexit) also occurred in June 2016 and resulted in volatile

global markets with the British pound falling to its lowest level in decades. Ac-

cording to The New York Times (2016), the British nationals voted to exit the

Union to regain their identity, culture, place in the world and to minimise im-

migration which creates a sense of abandonment among the poor and working

class Britons. It is projected that this decision will result in loss of trade and

investment for Britain as it will no longer have access to the Unions open trade.

Calverley (1985) argues that country risk involves undesirable macroeconomic

or political climates which result in economic and financial losses. Cosset,

Siskos and Zopounidis (1992) describe country risk as the likelihood that a

nation will back out from paying its external loans to creditors due to its in-

ability to generate adequate foreign exchange. Meldrum (2000) discusses how

researchers have separated country risk into six sections that are interrelated

and very often overlap. These country risk categories are economic, transfer,

exchange rate, neighbourhood, political and sovereign risk. Heinrichs and Sta-
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noeva (2012) stated that most researchers fail to differentiate country risk from

sovereign risk and use the latter as a proxy of country risk causing difficulties

in corporate modelling.

2.2.1 Sovereign risk

Sovereign risk may refer to a country as a whole or to the government itself

and is described by Ghose (1988) as the risk that arises when a sovereign Gov-

ernment renounces its external obligations and hinders local individuals from

fulfilling their obligations. This is different from country risk, which, according

to Heinrichs and Stanoeva (2012), is the negative side of a country’s business

and legal environment, corruption levels and other socio-economic factors. In

financial lending, it is fundamentally important to have an understanding of

the factors that prevent loan defaulting and repudiations (Eaton and Gerso-

vitz, 1981). Although it is often difficult to ascertain if a borrowing nation

will comply with the loan agreements, it is possible to analyse whether a coun-

try is vulnerable and if it has weak fundamentals that may trigger a crisis if

there are sudden shifts (Christl and Spanel, 2001). This vulnerability is the

one that impacts on a country’s ability to service its debt and is dependant

on a country’s wealth, the strength and stability of its economy, internal and

external stability, income derived from exports, the size of its debt burden and

the available liquidity dedicated to the servicing of its debt.

In discussing the issues that make a country to either service or default its

debt payment, Mellios and Paget-Blanc (2006) argued that a country is more

likely to pay its debt to ensure that it has access to future loans. Moreover,

these countries are driven by the need to prevent financial institutions which

have assets in the country from seizing them and by so doing, maintaining both

the country’s reputation and its positive impact on international trade. Bulow

and Rogoff (1989) stated that a country has a higher probability of defaulting

if cash in advance commitments allow it to evade future stochastic payments

and lending as the amount a country is supposed to pay may fluctuating at
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different times.

In this research, the definition of default will be in line with the study by

Feder and Just (1977) and will be described as any instance in which pub-

lic or publicly guaranteed loan payments to lending institutions are delayed

or rescheduled without the consent of the financial institution. Owing to the

close relationship between country risk and sovereign risk, the political, eco-

nomic and financial variables that have been used to model them are similar.

In some cases, sovereign risk is used to model country risk as they have similar

influential factors.

2.2.2 Political risk

Political risk has been a critical attribute to consider in business judgements

that involve foreign markets. Simon (1992) describes political risk as social

and political developments that influence the value or withdrawal of foreign

investments. Hoti and McAleer (2002) state that political risk is caused by

political forces in combat, domestic and external strife, land disputes, rebel

attacks and revolutions. Moreover, they discuss how social forces such as reli-

gion, income and ideological differences may ferment political unrest.

Governments may also cause political risk through capital controls, hiking

taxes, expropriation of private property and the freezing of assets. This may

result in delays in fund transfers which, in turn, will affect the investment

profits. Changes in politics due to social factors, non economic factors and the

reorganisation of government reign are said to be the causes of political risk

(Meldrum, 2000). He adds traditional political analysis as a factor causing this

type of risk. According to Kosmidou et al. (2008), political risk also encom-

passes the readiness of foreign debtors to service their loans as the decision to

reschedule is political in nature. Simon (1992) highlights that there has never

been a reliable method of predicting future social and political crises as there

are too many situations that can unravel in the host countries.
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2.2.3 Neighbourhood risk

Neighbourhood risk materialises when a country experiences an influx of po-

litically motivated migrations from citizens from the neighbouring war-torn

countries. This results in spillover effects as the countries surrounding the po-

litically unstable country also become risky investment areas (Meldrum, 2000).

2.2.4 Economic and financial risk

Economic and financial risk refer to fluctuations in the economic conditions

of a country such as prices, interest, foreign exchange rates and decline in the

terms of trade (Bouchet et al., 2003). This risk also involves poor investment

of foreign funds as well as unwise lending by banks (Nagy, 1988). Meldrum

(2000) highlights that economic risk may be due to depletion of resources,

demographic changes and the distribution and creation of wealth.

2.2.5 Transfer and exchange rate risk

Transfer and exchange rate risk involves the placing of capital controls by

foreign governments which make it difficult to return profits, capital and div-

idends to the countries that have foreign investments. This risk is difficult to

quantify as governments normally place capital controls in response to crises.

Exchange rate risk is defined as the devaluation of currency or sudden changes

in the foreign currency exchange rate (Meldrum, 2000).

The definitions of country risk, fail to highlight the differences between natural

risk which includes the weather and seismic occurrences that can impact the

business and economy and the man-made sources of risk such as socio-political

risks and economic risks.
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2.3 Sovereign Rating Agencies

Risk assessment organisations such as Fitch, Standard and Poor’s (S&P) and

Moody assess the likelihood that a borrower will fail to repay their debt (Can-

tor and Packer, 1996). These three agencies are considered to be the best

and have been providing ratings since the 1980’s debt crisis in third world

countries. They combine economic, financial and political measures into a risk

rating (Hoti and McAleer, 2002). These agencies also run stress tests to as-

sess the ability of the countries’ economies to overcome crises. The sovereign

credit ratings they developed are alphabetical indicators where higher grades

represent a lower probability of risk.

2.4 Macro-economic Indicators of Risk

Substantial judgement on country risk is based on knowledge from experts.

Political, economic and financial risk indicators have been adopted for use in

present day by risk analysis agencies. McAleer, da Veiga and Hoti (2011) dis-

cuss how various risk analysis agencies namely Moody, S&P, International

Country Risk Guide (ICRG) and Political Risk Services (PRS) have been

formed as a result of the importance of country risk analysis. Other agen-

cies are Euromoney, Institutional investor and the Economist Intelligence Unit

(EIU). These organisations combine qualitative and quantitative information

to establish a nation’s risk index. Nath (2009) emphasises the need to make

use of political, economical and financial variables as indicators of profitability

and stability of a borrowing country or foreign direct investment host country

to ensure returns on investments and prevent rescheduling of loans. However,

he indicates that there is need for continued research in country risk analysis

due to the failure by these agencies to forecast a number of financial catastro-

phes.

The importance of country risk analysis came into play after the first and

second oil price increase in 1973 to 1974 and 1979 to 1980 respectively in
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which most countries failed to service their debts (Nath, 2009). Prior to the

crisis, Avramovic (1968) developed indicators for assessing the risk in countries

so as to reduce undesirable financial outcomes. These indicators are:

1. Growth rate of export volume;

2. Ratio of debt service payments to exports;

3. Ratio of foreign exchange reserves to imports;

4. growth rate of GDP;

5. the ratio of investment to GDP;

6. the ratio of exports to GDP; and

7. the rate of price increases.

Christl and Spanel (2001) described the indicators as showing different as-

pects of a country’s condition. They identified that the wealth and strength

of a country’s economy are best explained by GDP per capita, GDP growth,

internal economic stability, the ratio of budget deficit to GDP as well as the

inflation rate. On the other hand, they stated that the external equilibrium of

a country is characterised by the current account balance as a ratio of GDP,

its foreign debt to GDP ratio and its debt servicing capacity which is obtained

by measuring the export product concentration ratio.

Some analysts build models to replicate the results from the risk agencies

while others use an indicator of debt rescheduling as the dependent variable.

They use political and economic indicators to assess the important factors

that determine the risk ratings or risk of debt rescheduling such as those listed

above. In their research, Asiri and Hubail (2014) analysed a sample of 70

countries from 2006 to 2011. They used country credit risk ratings from Eu-

romoney and EIU as their dependent variables in two separate analysis. They

concluded that the political risk indicator is the most significant while GDP
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and gross capital formation (GCF) were the important economic variables.

They also discovered that the export growth and foreign debt to export ratio

were significant in determining the ratings from the EIU. Other variables they

used in their initial analysis were international reserves to imports ratio and

current account balance on GDP.

Canuto, Dos Santos, and de Sa Porto (2012) surveyed the macroeconomic

determinants of sovereign risk commonly used by rating agencies. They iden-

tified income per capita, public debt to GDP ratio, external debt, inflation

(which they considered as one of the best barometer of risk), credit risk to

GDP ratio and the trade to financial openness ratio as being common in lit-

erature. The countries that were classified as being less risky in their research

had a high income per capita, low public debt to GDP ratio, low inflation and

low external debt.

Aguiar, Aguiar-Conraria and Gulamhussen (2006) used data from more than

a hundred countries to assess the factors that affect foreign direct investment

decisions in Brazil and they also calculated the probability of non investors

investing in the future. They used Euromoney’s country risk rating which is a

combination of credit ratings, economic stability and political risk of a coun-

try to determine which variables to use for their analysis. They discovered

that there was 90% correlation between the three factors used in the rating

and hence chose to use one variable to avoid over-fitting. They chose a credit

ranking variable which is considered by Moody, S&P and International bank

credit analysis limited (IBCA) as a good measure of economic and political

stability. This credit ranking index is higher for countries with a lower risk.

They concluded that a riskier climate in Brazil resulted in a lower number of

investors using the information from the hundred countries used in the study.
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2.4.1 The relationship between macro-economic vari-

ables and risk

Cantor and Packer (1996) gave detailed descriptions of the relationship be-

tween the variables they identified as being repeatedly used by rating agencies

to show a country’s willingness to service its debt. They argued that:

1. Per capita income indicates a level of political stability and that a bor-

rowing country is more likely to service its debt if it has a larger tax

base;

2. GDP growth indicates economic growth and a higher value shows that

the nation can manage to repay its debt over time;

3. Inflation is an indicator of the financial position of a government with a

high value showing financial problems;

4. External debt is indicated by a low balance in the current account which

shows that both the private and public sector of a country rely on finan-

cial loans from external sources;

5. The economic development of a country indicates whether it will default

or not. Those that reach a certain economic threshold being considered

to have a minimal chance of defaulting;

6. Default history of countries is highly predictive of future defaults with

those that have failed to repay their foreign debt being considered as

highly risky.

Using the variables described above, Cantor and Packer (1996) built a multiple

linear regression model to determine the importance of each of the variables.

Their study showed that external debt balance (4) explained 10% while the

remainder of the variables explained 90% of variation in the model.
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2.5 Political Indicators of Risk

Debt rescheduling may be influenced by the political climate of a country. A

country may postpone debt payment to reduce government budgetary con-

straints during times of political instability (Citron and Nickelsburg, 1987).

Balkan (1992) developed a probit model to determine debt rescheduling based

on two political variables which are democracy and political instability. Their

study concluded that there is an inverse relationship between rescheduling and

level of democracy and a direct relationship between rescheduling and political

stability. Simon (1992) discusses how identifying the key political and social

variables is as important as selecting a methodology for the analysis. Political

risk variables are grouped into macro and micro risk variables. Macro polit-

ical risk variables are aimed towards foreign businesses which are affected by

the actions and policies of a host country. Micro political risk variables affect

only selected businesses or sectors of a country (Robock, 1971). The political

risk variables for both international banks and multinational organisations are

summarised in Table 2.1.

16



Table 2.1: Political risk variables (Simon, 1992, p. 126)

Source International bank Multinational enterprise (MNE)

Macro-government Repudiation of all foreign

debt, suspension or can-

cellation of interest pay-

ments and demands for

debt rescheduling.

Expropriation or nationalization

of all foreign business, remit-

tance restrictions for all foreign

business and foreign exchange

controls.

Micro-government Repudiation of selected

debt, suspension or cancel-

lation of selected interest

payments and demands for

selected debt rescheduling.

Selective expropriation of for-

eign business assets, discrimina-

tory taxes, local content laws

and breach of contract.

Macro-societal Interest group or public

demands for repudiating

debt, general instability

due to revolution, civil

war, etc.

Terrorism or violence directed at

all foreign business, general in-

stability due to revolution, civil

war, etc.

Micro-societal Societal protests against a

particular bank, terrorist

attacks against a particu-

lar bank.

Strikes, boycotts, etc. against a

particular MNE and terrorist at-

tacks against a particular MNE.

2.6 Methods used for Evaluating Country Risk

The impact of globalisation and constant changes in the fiscal, economic and

political climates of countries have necessitated the use of improved country

risk evaluation techniques. Quantitative methods are useful in establishing

the relationship between country risk variables (which have been discussed

earlier) and in modelling the risk exposure which is normally binary in form

eg. (rescheduling debt or not) or (defaulting in debt or not). The major
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quantitative techniques applied in assessing country risk include discriminant

analysis, principal component analysis (PCA), logit models, probit models,

tobit models, classification and regression trees and artificial NN (Nath, 2009).

These techniques allow the evaluation of the useful measures used in predicting

country risk. The techniques that are going to be employed in this research

are LR and artificial NN.

2.7 Logistic Regression

The LR model belongs to a class of generalized linear models and has over the

years been integrated into studies describing the relationship between a binary

response variable and one or more predictor variables that may be continuous

or categorical in nature. It was developed in the 1970’s as an alternative option

to the ordinary least squares (OLS) regression method. The latter method has

many limitations due to strict statistical assumptions that surround it. Some of

the assumptions given by Hosmer, Lemeshow and Sturdivant (2000), include:

1. The conditional distribution of the errors has a mean of zero;

2. The observations X and Y are independently and identically distributed;

3. Outliers must be removed from the model;

4. There should be no multicollinearity.

LR is considered as a superior modelling technique to other parametric meth-

ods as it allows the modelling of modern day binary decisions for example

presence or absence of a disease, defaulting or non-defaulting loan applicants,

passing or failing students and in our case debt rescheduling and non-debt

rescheduling countries. The aim of the model development process is to obtain

the best fitting realistic and parsimonious model to explain the relationship

between a binary outcome and its explanatory variables (Hosmer et al., 2000).
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2.7.1 Univariate logistic regression model

The simplest LR model involves one predictor variable, X and one binary

response variable, Y . The central concept that underlies this model is the use

of the logit transformation which is the natural logarithm of an odds ratio.

The odds ratio measures the odds of an outcome occurring given exposure to

a variable of interest. The LR model thus predicts the logit of the response

variable (Y ) from the predictor variable (X). This gives a model of the form:

logit(Y)= ln(odds) = ln(
π

1− π
) = β0 + βX (2.1)

π is used to estimate the probability that an event will occur for our dichoto-

mous dependent variable (Y ).

π = P(Y=y|X=x) =
expβ0+βx

1 + expβ0+βx
(2.2)

where β0 is the intercept, β is the parameter or coefficient of the LR model’s

predictor variable and π is the probability of the outcome of interest occurring

(Park, 2013).

The estimates will always fall between 0 and 1 due to the logistic transfor-

mation. If the probability is above the cut off of 0.5 then it is concluded that

the event will occur and if it is less than 0.5 then it is inferred that the event

will not occur (Park, 2013).

2.7.2 Multiple logistic regression model

The simple univariate LR model can be extended into a multiple LR model

with many predictors (X1, X2, ..., Xp). The model is given by the following

equations according to Park (2013):

logit(Y) = ln( π
1−π ) = β0 + β1X1 + β2X2 + .........+ βpXp (2.3)

π = P(Y =y|X1 = x1, X2 = x2, ....., Xp = xp) (2.4)
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π = expβ0+β1X1+β2X2+....+βpXp

1+expβ0+β1X1+β2X2+....+βpXp
(2.5)

According to Stoltzfus (2011), the multiple LR model has the following model

assumptions:

1. The dependent variable should be measured on a dichotomous scale;

2. There should be one or more predictor variables which can either be

continuous or categorical;

3. There should be a linear relationship between the continuous predictor

variables and the logit transformation of the dependent variable;

4. The observations must be independent and should have mutually exclu-

sive and exhaustive categories;

5. There should be little or no multicollinearity between the predictor vari-

ables;

6. Large sample sizes should be used. The general rule that is applied is

that there should be 10 to 20 events per covariate;

7. There should be no outliers in the model.

2.7.3 Advantages of logistic regression

The advantages of LR according to Song et al. (2005) are that:

1. It yields weights showing the contribution of each variable to the model;

2. The odds ratio can be calculated for each variable.

Fensterstock (2005) gives the following advantages:

1. The LR model removes redundant variables when there is high correla-

tion between them to avoid over-fitting of the model;

2. It is possible for an individual to check the sources of error to optimise

the model.
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2.7.4 Disadvantages of logistic regression

1. It is difficult to implement some complex problems as compared to NN

since the data are analysed using a formulated function (Ayer et al.,

2010);

2. Fensterstock (2005) states that variable preparation takes time and some-

times it is necessary to preselect variables using a separate analysis as it

is necessary to make sure that the data used for the analysis is clean.

2.7.5 Dealing with panel data for the logit model

Country risk data is normally measured repeatedly over time therefore the

between-subject heterogeneity and the within-subject correlation need to be

taken into account. The generalized estimating equations (GEE) are an anal-

ysis method that is used to fit models to correlated repeated categorical re-

sponses through a mean function that relates the mean response to the regres-

sion equation for example using the ’logit’ function for a LR model. The GEE

procedure has the following advantages:

1. Binomial, gamma, inverse Gaussian, negative binomial, normal, Poisson

and multinomial response variable distributions are supported;

2. Various link functions including the probit and the logit (to be used in

this research)are supported;

3. A range of correlation structures including the first order autoregressive,

exchangeable, independent, m-dependent and unstructured correlation

structures are supported;

4. Allows for missing data;

5. Can perform alternating LR for binary and ordinal data.

The form of the GEE is like a generalized linear model but it is not necessary

to specify the joint distribution and so there is no likelihood function (Penn
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State Eberly College of Science, 2016). The variables in the GEE model are

also described as follows:

1. Y is a categorical response variable where Y = Yiz is the response for

each subject i, measured at varying time points, (z = 1, 2, ..., ni). Each

yi is a binary outcome variable and ni is the number of time points;

2. X = (X1, X2, ..., Xk) is a set of predictor variables which can be discrete

or continuous in nature and XT
i = ni×k transposed matrix of covariates

for each country i which will be used in the model and for k explanatory

variables;

3. β is the regression coefficient.

The GEE model is given by:

g(µi) = xTi β (2.6)

where:

1. Random component is any distribution of the response that we can use

for GLM, e.g. binomial, multinomial or normal;

2. Systematic component is a linear predictor of any combination of con-

tinuous and discrete variables;

3. µi is a link function;

4. The link function can be any g(.) e.g. identity, log or logit (Penn State

Eberly College of Science, 2016).

2.7.6 Assumptions of the model

The following model assumptions have to be satisfied for a panel logit model:

1. The responses Y1, Y2.....YN are correlated or clustered and N represents

the number of response variables;
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2. The homogeneity of variance that assumes that all groups have simi-

lar variance does not need to be satisfied(Penn State Eberly College of

Science, 2016).

2.8 The Artificial Neural Network Model

An artificial NN is a non-parametric technique used in forecasting, classifica-

tion, multi-factorial analysis and pattern recognition. The network’s structure

resembles the biological neural system and adapts to different environments

by learning from experience. This complex system may be decomposed into

simpler elements for understanding. In his paper, Tucker (1996) describes the

structure of NN as consisting of processing units known as neurones that have

an input layer, hidden layer and output layer which are interconnected. In

a basic network there is a set of nodes that operate as non-linear summing

devices and connections between these nodes. Figure 2.1 is an illustration of

an artificial NN with four inputs X1, X2, X3 and X4. The neural system’s hid-

den layer consist of three hidden units H1, H2, H3 and its output layer has two

units Z1, Z2 and the two outputs are Y1 and Y2.

2.8.1 The processes in developing neural network solu-

tions

The nodes resemble computational units which receive inputs and process them

into outputs. The variables are presented in the input layer to the network.

Major processing takes place in the hidden layer by taking the average of the

weighted connections. The final results are then shown in the output layer

(Gouvea and Gonçalves, 2007). The output is produced when weights of the

corresponding link are multiplied by all inputs and the values summed up to

determine the strength of each input connected to a neurone. These weights

are adjusted when the data are presented to a network during training. An ac-
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Figure 2.1: A two layer feed-forward network with four inputs and two outputs

(Jones, 2004, p. 9)

tivation function such as linear, step or sigmoid is then applied to the weighted

sum of inputs (Angelini, di Tollo and Roli, 2008). The most commonly used

activation functions are the linear and sigmoid functions. Examples of sigmoid

functions include the logistic function, hyperbolic-tangent, arc-tangent and the

squash activation function (Jones, 2004).

The sigmoid (logistic) function:f(x) = (1 + (e−x))−1 (2.7)

The hyperbolic tangent (tanh) function:f(x) =
(ex − e−x)
(ex + e−x)

(2.8)

The arc-tangent function:f(x) =
2

π
arctan

π × x
2

(2.9)

The squash activation function:f(x) =
x

1 + |x|
(2.10)

NN may therefore be used for different models such as regression models and

binary probit models by changing the activation function. In the training

process the weights are adjusted until a pre-specified accuracy or threshold

is achieved. The accuracy is calculated by comparing the NN results and the

actual results obtained from the data to obtain the bias. The error calculations
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are important in the training and development of NN. These calculations differ

depending on the NN’s application. The error, E may be given by:

E =
1

2

N∑
i=1

C∑
k=1

(tik − t̂ik)2 (2.11)

where N is the total number of training cases, C is the number of network

outputs, tik is the observed output of the ith training case and the kth network

output and t̂ik is the networks prediction for that case.

Figure 2.2: Basic structure of neural networks (Han and Kamber, 2006, p.

331)

Figure 2.2 illustrates how the NN works to reach a solution. The variables

X1, X2 up to Xn represent the inputs. The corresponding weights are given

by wij for i = 1 to n. The terms i and j represent the weight connections

from unit i in the previous layer to unit j. The bias obtained in the network

is denoted by θj and lastly, f represents the activation function. Successful

training of the NN results in networks that can predict an output value, classify

and estimate functions as well as recognise and complete patterns.
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2.8.2 Neural network architecture

NN have different architectures and learning mechanisms. According to An-

gelini et al. (2008), most networks are either layered or completely connected.

In completely connected networks all neurones are connected to one another.

The layered networks may comprise of feed-forward network in which the con-

nections from the input layer to the output layer are in one direction such as

in Figure 2.1 or recurrent network which incorporates ‘if else’ loops into the

network (Figure 2.3). According to Angelini et al. (2008), the learning mech-

Figure 2.3: Recurrent neural networks (Jones, 2004, p. 10)

anisms that are used in NN may be supervised, unsupervised or reinforced. In

supervised learning the NN are provided with a training set of correct variable

problems (inputs) and the respective desirable output upon which it trains.

The error produced by the network is used to adjust the weights. The net-

work is provided with a set of inputs and no desirable output in unsupervised

learning and therefore the algorithm has to guide the network towards a good

output. In reinforced learning, penalties and prizes are used to modify the

weights and these are a function of the network response. The network is su-
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pervised by an external reviewer (Angelini et al., 2008).

The supervised learning method normally used to train networks is the back-

propagation method (Tucker, 1996). This method allows for computation of

the correct combination of the NN weights for complicated models that have a

large number of parameters by calculating the gradient of the networks by ob-

taining the first derivatives of the weights in the network (Rojas, 1996). The

aim of the backpropagation algorithm is to develop and adjust the weights

so that the NN can learn how to accurately obtain outputs from the input

variables. The purpose of the algorithm is to estimate an appropriate set of

network weights based upon a training set. It achieves this through processing

a training dataset iteratively and comparing the results from the training with

the actual target values. It is necessary to provide a training set with some

inputs as well as known correct outputs to show the network what kind of

behaviour is expected (Tucker, 1996).

The backpropagation method allows the network to adapt. For each classi-

fication problem, the mean square error between the network results and the

actual results is then minimised by adjusting the weights by strengthening con-

nections which give accurate results and by weakening connections which give

incorrect results. This is achieved by use of the method of gradient descent

through the calculation of the gradient at each iteration for each error. It is

therefore a requirement that the error function be continuous and differentiable

(Rojas, 1996). Other optimisation methods that can be used to minimise the

error term include the steepest descent, quasi-Newton as well as the conjugate

gradient. The name backpropagation emanates from the fact that adjustments

are made to the error value in a backward direction beginning from the output

layer and to the hidden layers and to the first hidden layer and minor changes

are made to the weights in each layer. These changes in weights are calcu-

lated to reduce the error in each case. According to (Rojas, 1996) the network

weights are selected at random for initialisation and then the gradient of the

27



error function is used to correct these initial weights.

The backpropagation is repeated until the network has learned correctly the

relationship between the inputs and outputs and the overall error drops be-

low some predetermined threshold (Tucker, 1996; Han and Kamber, 2006).

According to the research by Jones (2004), the backpropagation method is

the most efficient method for estimating the gradient and contributed largely

by reducing the network training time as well as making it possible to train

networks with a large number of inputs.

2.8.3 Advantages of neural networks

The advantages of modelling using artificial NN according to Tu (1996) are

that:

1. There is no need to meet the assumptions of linearity since NN assume

a non-linear relationship among predictor attributes;

2. Artificial NN can be adapted to sparse and noisy data and model selec-

tion can be applied;

3. The networks are flexible in solving complex problems;

4. NN are easily available in various software packages;

5. The networks have parallel processing ability and can perform many

functions at once since computations at each node are independent of

others (Topping et al., 1998).

2.8.4 Limitations of neural networks

Bouchet et al. (2003) outlined some of the difficulties associated with NN.

1. It is difficult to perform any significance tests based on the results from

NN;
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2. The selection of the NN’s architecture is not governed by any rules of

selection. Determining which activation function to use or the number

of hidden nodes to use is done on a trial and error basis and so can affect

the accuracy of the training set;

3. The networks may have a large number of local minima which refers to

neighbourhoods or intervals in the graph where the height of a function

a is lower than or equal to height anywhere else in the interval. These

minimum points occur if the objective function is not globally convex.

Therefore the network may not find the best solution or it may converge

towards a sub-optimal solution. This can be rectified by repeating the

training with random starting weights. Rojas (1996) proposed the use

of the backpropagation with momentum as a way of reducing the risk of

getting a local minimum. This is done by introducing a momentum term

in which instead of following the negative gradient direction, a weighted

average of the current gradient and the previous correction direction is

computed at each step. Making use of adaptive learning rates as well as

statistically pre-processing the data to de-correlate the input patterns is

useful in avoiding the effects of large eigenvalues of the correlation ma-

trix. This is also known to help the algorithm to converge quickly.

Other algorithms discussed in Rojas (1996) included Silva and Almeida’s

algorithm and a variant of this algorithm known as resilient backpropa-

gation (Rprop) which was developed by Martin Riedmiller and Heinrich

Braun in 1993. The Rprop algorithm works through the adjustment of

weights in the network that is being developed. It makes use of the com-

bination of the speed with which a network undergoes training as well

as the sign of the partial derivative of the error function with respect

to each weight. This speeds up the learning in the regions that have

local minimum values that prevent the network from converging towards

a maximum solution of the error function. The flat regions or local min-

imums refer to areas with large errors on the error surface plane. Mini-
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mum and maximum learning rates are enforced to avoid accelerating and

decelerating too quickly when the algorithm reaches these points. The

dynamic adaptation algorithm is based on a global learning rate. This

method develops two new points instead of one commonly used point by

making use of the negative gradient direction. The point amongst the

two with the lowest error is used in the next iteration. The algorithm

accelerates if the point is far away by enlarging the constant. If it is the

closest one, the learning constant is minimised (Rojas, 1996);

4. The networks are difficult to comprehend since they do not explain their

decision making procedure (Worrell, Brady and Bala, 2012). They do

not give the weighting of the variables to the user and so it is difficult

to tell which variables are significant. West (2000) describes them as a

black-box technology that does not make use of logic or rules;

5. The artificial NN models take a long time to train so that they give

accurate results (Bouchet et al., 2003).

2.9 Application of Neural Networks and Lo-

gistic Regression

Basu, Deepthi and Reddy (2011) group country risk methods used in literature

as being either qualitative, quantitative or check-list. According to them, the

methods applied in most research are quantitative methods and artificial NN

are described as the most commonly used quantitative technique.

Artificial NN and LR have been used extensively both at firm and indus-

trial level to solve a wide range of real world classification, forecasting and

dimensionality reduction problems. The aim of these quantitative methods is

to establish a clear relationship between an indicator of risk and the financial,

economic and political factors. Furthermore, these methods help to identify

patterns which allow the classification of countries into different risk categories.
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The indicator of risk is usually in a binary form for example rescheduling debt

or not, defaulting or not. These statistical techniques have also been used in

evaluating the prediction strength of country risk measures published by banks

and rating agencies as well as identifying the importance of different factors

in the ratings of various agencies (Nath, 2009). This study will focus on the

comparison of NN and LR which are shown in the literature to be superior

modelling techniques with minimum error rates. Furthermore, LR models pop-

ularity may be attributed to the fact that it does not make any assumptions of

normality, linearity, and homogeneity of variance for the independent variables

as well as its interpretation of parameters which is simple.

Paliwal and Kumar (2009) reviewed 96 studies that compared multi-layered

feed forward NN to one of the three traditional methods of regression analysis,

LR and discriminant analysis. The NN outperformed the traditional meth-

ods in 58% of the cases, had equivalent performance in 18% of the cases and

were outperformed in 18% of the cases. They stated how NN are preferred to

the traditional statistical methods but highlighted some disadvantages of NN

which were discussed in section 2.8.4.

Feder and Just (1977) applied the logit model to investigate the significance of

the debt service ratio, export fluctuations, compressibility of imports, imports

to gross national product (GNP) ratio, imports to reserves ratio, amortisation

to debt ratio, per capita GNP and export growth on the binary dependent

variable of debt servicing capacity. They used a sample of 30 countries for the

period of 1962 to 1975. They found all variables except export fluctuations

and compressibility of imports to be significant and their research gave the

lowest error rate out of all statistical methods applied in country risk.

Saini and Bates (1984) applied logit and discriminant analysis on a sample

of 25 countries containing 298 observations for the period 1960 to 1977. Their

dependent variable was a combination of postponing the repayment of debt and
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remaining amount of foreign loans due for payment without which the countries

would have rescheduled. They used a combination of different macro-economic

variables such as the ratio of imports to GDP, the ratio of imports to reserves,

GDP per capita, the difference in the consumer price, the rate of increase of

money circulating within a country, the increase or decrease in the amount of

exported goods and services, averaged over three years, adjusted for change

in reserves to exports ratio, cumulative current account balance over five year

period adjusted for change in reserves to exports in the latest year ratio, the

ratio of the remaining foreign assets of the banking system to money supply

and the increase or decrease in international reserves. They showed that the

errors and coefficients generated by both models had no significant differences.

The variables which they found to explain the dependant variables the most,

the difference in the consumer price, the rate of increase of money circulating

within a country, the ratio of the adjusted cumulative current account balance

to exports, and the increase or decrease of reserves.

Cooper (2000) used a multi-layer NN trained by the backpropagation algo-

rithm to identify countries that were most likely to reschedule their debt pay-

ments in 1983. He used a sample of 70 borrowers, 22 who rescheduled and

48 who made their loan payments. The data he used for the analysis was

obtained from the Morgan Guaranty Trust Company and included four world

bank economic indicators. The economic growth indicator was described as an

average of the increase in GNP per capita from 1960 to 1982 while the import

cover was obtained by dividing international reserves by imports in 1982. The

remaining two indicators were the ratio of short term debt to exports and the

debt service ratio which was described as an interest on debt from external

sources and amortisation as a percentage of exports of goods and services in

1982. Their results showed that NN were able to classify the countries with a

higher degree of accuracy as compared to discriminant analysis, the logit and

probit methods.
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Leon-Soriano and Mun˜oz-Torres (2012) developed a three layer feed-forward

NN using publicly available economic data for European countries for the years

1980 to 2011. They wanted to assess if the results from their model would be

consistent with those from Moody and Fitch’s credit sovereign ratings for the

respective years. They used GDP per capita, gross debt to exports ratio, ex-

ternal balance relative to GDP, fiscal balance relative to GDP, inflation and

unemployment rate. They used the rating time line to create a dataset and

the results showed that NN should be used to model sovereign risk. They

concluded that NN can accurately predict sovereign risk provided the input

variables are accurately selected. Yim and Mitchell (2005) developed a hybrid

NN to assess country risk. They wanted to assess whether their model could

outperform traditional statistical models and the ordinary NN method. The

results showed that country risk can be predicted accurately using a combi-

nation of discriminant analysis and artificial NN and still produce good results.

Bennell, Crabbe, Thomas and Ap Gwilym (2006) compared the predictive

ability of a NN classification model, a NN regression model and a probit model

in their research. The NN models they applied were generalised feed-forward

networks. The NN classification models were used to categorize data while the

NN regression model was used to predict continuous values after supervised

learning, They obtained a dataset from 11 international risk rating agencies

with 1383 annual observations of foreign currency sovereign ratings for the

period 1989 to 1999. They used external debt to export ratio, inflation, GDP

per capita, fiscal balance, external balance, GDP growth, indicator for devel-

opment as well as the results from the agencies. Training and test sets were

obtained from the 1999 ratings which were augmented using the 1998 ratings

since they were fewer high quality ratings in comparison to the full data used.

The new data then resembled the distribution found in the complete dataset.

The training and test set comprised of 69.1% and 17.7% respectively, while

the validation set consisted of the 1996 ratings which contributed 13.2% of the

full dataset. The NN were trained and tested five times. The results that were
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obtained are summarised in Table 2.2. The best models for the Classification

and Regression neural models and the Probit model were 42.4%, 33.9% and

31.8% respectively. The results from these models indicate that the predictive

ability of the models is very low therefore, these may not be the best models

to apply. The model that outperformed all others was the classification NN

Table 2.2: Predictive ability of different models

Results Classification

neural model

Regression neu-

ral model

Probit model

Best Model 42.4% 33,9% 31.8%

Model Averages 40.4% 34.6% No average

followed by the regression NN and lastly the probit model. The best models

chosen were the ones that had the lowest minimum error. As a result, in the

regression based NN the best model had a lower percentage of correctly clas-

sified results but had the minimum mean absolute error.

Somerville and Taffler (1995) assessed the differences between the use of a

banker’s judgement and multivariate statistical techniques in predicting the

creditworthiness of less developed countries over a one year time horizon. The

data used for the analysis covered the period from 1979 to 1989. The banker

judgement was represented by the Institutional investor’s credit ratings. The

dependent variable was creditworthiness which was a binary variable with the

value one representing a country with a year case of arrears from financial

institutions and a value zero representing those countries with no arrears in

that year. Their analysis showed that bankers where biased when predicting

the creditworthiness of less developed countries and classified most as having

arrears. There was no type 1 error but a type 2 error of 62%. The multivari-

ate techniques where shown to have high miscalculation costs. Discriminant

analysis had a type 1 and type 2 error of 11% and 17% respectively while LR

had a type 1 and type 2 error of 8% and 22% respectively. The error rates for

the banker judgement, LR and discriminant analysis were 24%, 14% and 14%
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respectively.

2.10 Model Building Aspects

Model building refers to the methods used in developing a model that best

describes the relationship between the dependent and independent variables

and selecting which independent variables to include. The model building

steps that will be used in the development of the LR model and NN models

as explained in Han and Kamber (2006) are listed below.

1. Data pre-processing;

2. Univariate exploratory data analysis (EDA);

3. Multivariate EDA;

4. Covariate selection methods;

5. Variable selection methods;

6. Cross validation methods;

7. Logistic regression;

8. Neural networks;

9. Model performance comparison.

2.10.1 Data pre-processing

Data pre-processing is a technique that involves transforming raw data into

an usable format. Data pre-processing techniques need to be applied as most

real world data consists of noise, missing values and inconsistencies. These

techniques include cleaning, variable selection, transformation, sampling and

normalisation (Han and Kamber, 2006).
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2.10.2 Exploratory data analysis

EDA is an approach used to analyse data sets to summarise their main char-

acteristics, often using visual methods. Primarily, EDA is a useful approach

in deducing what the data can tell us beyond the formal modelling. This

includes checking of model assumptions, detecting mistakes, determining the

relationships between variables and preliminary selection of the models. EDA

is classified as either graphical or non-graphical and as univariate or multivari-

ate. Univariate methods look at one variable (data column) at a time while

multivariate looks at two or more variables at a time (usually bivariate) to

explore the relationships between these variables (Behrens, 1997).

2.10.3 Univariate exploratory data analysis

EDA of categorical variables involves the use of frequency tables. The range

of these categorical values is assessed. Univariate EDA for the continuous

independent variables is done to make preliminary assessments about the pop-

ulation distribution of the variable using the data of the observed sample.

Descriptive statistics are used to learn about the data characteristics in terms

of central tendency measures such as the mean, mode and median. The de-

gree to which the numerical variables are dispersed is normally shown using

the variance. These measures are used to understand the distribution of the

data. The most basic graph that is used in the univariate graphical EDA is the

histogram which is a bar plot in which each bar represents the frequency or

proportion out of the total population. A substitute that can be used in place

of a histogram is a stem and leaf plot which shows all the data points and the

shape of the distribution. Boxplots are another form of graphical EDA used

to visually represent the measures of central tendency. Outlying data points

may be identified using this method (Seltman, 2015).
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2.10.4 Multivariate exploratory data analysis

Scatter plots are often used as visual aids to determine the relationship pat-

terns or trends between two numerical variables. This allows correlated vari-

ables and outliers to be identified within the data. Some of the methods used

for detecting multicollinearity include checking for large correlations among a

pair of predictor variables and the use of the variance inflation factor (VIF).

Collinearity of predictor variables in regression refers to a situation where the

explanatory variables are related to each other. The VIF quantifies how much

the variance of the estimated regression coefficients is inflated by the existence

of correlation among the predictor variables. The VIF is calculated as follows:

An ordinary least squares regression is run that has predictor variable Xi as a

function of all the other predictor variables in the equation. The equation is

given below:

X1 = α2X2 + α3X3 + . . . . . . + αkXk + c0 + e (2.12)

where, co is a constant and e is the error term.

V IFi =
1

1−R2
i

(2.13)

where R2
i is the coefficient of determination of the regression equation, with

Xi on the left hand side and all other predictor variables on the right side.

The variable k represents the number of VIF values calculated, one for each

Xi (O’Brien, 2007). If there is no correlation between the predictor variable

and the remaining predictor variables the VIF value will be one. Any VIF’s

exceeding four warrant further investigation and those above ten are signs of

major multicollinearity. The VIF can be calculated for variables in a LR model

since its calculation is based on the predictor variables. Therefore, the method

for VIF calculation described above is applied to the LR predictor variables.

It is important to check for multicollinearity as it may cause the estimates

of the coefficients to be unstable, resulting in small changes in the dependent

and independent variables producing large changes in the estimate values.
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This is seen in the large variances (O’Brien, 2007). Another effect of multi-

collinearity is that R2 may be large while individual slope estimates are not

significant or they may have signs opposite to what is expected (Liao and Val-

liant, 2012). Collinearity can increase estimates of parameter variance; yield

models in which no variable is statistically significant even though R2 is large

and, in truly extreme cases, prevent the numerical solution of a model (Belsley,

Kuh and Welsch, 1980; Greene, 1993).

2.10.5 Variable selection methods

Variable pre-selection helps in identifying the most relevant input variables or

subset of predictors. This process is necessary so as to explain the data in a

simple way. Hosmer et al. (2000) indicated that the goal of any LR analysis

is to select predictor variables that result in the best model. This is difficult

because most real world applications of LR involve complex datasets that have

many independent variables. They highlighted that the effect of having many

independent variables in the model is that it results in over-fitting since more

variables may result in larger standard errors. The LR model also becomes

more dependent on the actual data leading to numerically unstable elements.

2.10.5.1 Stepwise methods

The stepwise method is a variable selection method in which variables are in-

cluded or excluded based solely on statistical criteria. There are three common

approaches used in developing a LR model. Variables may be added in a step-

wise manner through forward selection in which the original model is empty

and the most significant variable is added at each step. The stepwise back-

ward selection method involves starting with a full model and removing the

variables that are not significant. The third approach is a combination of the

forward selection and backward selection and it is known as stepwise selection.

In this method variables are both added and removed (Tucker, 1996; Dreiseitl

and Ohno-Machado, 2002). The backward selection method is favoured as it

allows the removal of variables based on their statistical significance as com-
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pared to other variables and prevents omission of variables, and it also deals

with confounding variables (Edwards, 2012).

The non-linear nature of artificial NN hinders the use of significance tests

therefore separate networks can be used to train each input variable and vari-

ables are added to the network one at a time to the best network to assess the

effect of adding them. The advantage of variable pre-selection for NN are that

the processing time will be reduced (Zhang, 2000).

2.10.5.2 Principal component analysis/ Factor analysis

PCA is a dimension reduction technique that is used to project data onto a

smaller surface. It differs from attribute selection methods which select vari-

ables from their initial number and combines the essence of different attributes

by creating a smaller set of variables. The basic PCA procedure involves nor-

malising the variables so that they fall into the same range, computation of

the principal components which are orthonormal vectors, ordering of the prin-

cipal components in order of decreasing significance and lastly elimination of

the weaker principal components (Han and Kamber, 2006). PCA is similar to

factor analysis but the two methods differ in that PCA is much quicker compu-

tationally and researchers gain more information from PCA such as individual

scores on certain components which can not be obtained from factor analysis.

However the aim of conducting a factor analysis is to determine the factors

accounting for the structure of the correlations between measured variables

and therefore information relating to factor scores is not required (Fabrigar,

Wegener, MacCallum and Strahan, 1999).

2.10.6 Cross validation methods

Cross validation was originally used in evaluating the predictive strength of

linear regression methods. The three main types of cross validation methods

are the holdout method, k-fold cross validation and leave one out cross valida-

tion. The holdout method involves splitting the data into a training and test
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set. The model is developed using the training set and it predicts the output

values for data in a testing set. The k-fold cross validation is an improvement

of the holdout method by dividing the data k times and repeating the hold-

out method k times. One of the k sets are used for testing while the k − 1

remaining variables form the training set. The leave-one out method involves

training the model on all data points except one, and a prediction of that

point is done. The disadvantage of this method is that it is computationally

expensive. Three way data splits are also commonly used in literature. The

training set is used to learn the patterns of the data and is usually the largest

set. The validation set is used to confirm the results of the trained network

while the test set is used to assess if the results from the trained NN or LR

model may be generalised to different datasets (Kaastra and Boyd, 1996).

2.10.6.1 Bootstrapping

The bootstrapping technique involves re-sampling data with replacement sev-

eral times in order to obtain an estimate of the entire sampling distribution

statistic with few or no assumptions about the distribution of the underlying

population. The original sample is duplicated repeatedly to obtain an extended

sample that is treated as a virtual population. If the sample size being anal-

ysed is small, bootstrapping will be used. The advantages of bootstrapping

are:

1. A simpler mathematical way to calculate the asymptotic distribution of

a statistic is provided if computation is difficult;

2. In cases were finite samples exhibit a large sample bias, it provides better

accuracy;

3. Bootstrapping proves useful in relation to partially observed dependent

variables such as binary, discrete or censored variables which are small

with unknown sampling distributions. Bootstrapping can be applied to

identify the distributions for these types of data (DiCiccio and Efron,

1996).
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The disadvantages of bootstrapping are discussed by Baser, Crown and Polli-

cino (2006) and include:

1. Misleading results may be obtained if the model is incorrectly chosen

and since bootstrapping samples from the model it may lead to incorrect

results;

2. They cause bias in the estimates since the confidence intervals and re-

jection probabilities are estimates.

2.10.7 Model goodness of fit measures

2.10.7.1 Criterion based measures

The Akaike information criterion (AIC) and the Bayesian information criterion

(BIC) are the two commonly used methods of selecting the best models. They

measure the quality of statistical models for a given data set. The AIC and BIC

estimate the information lost and represents a trade-off between the complex

nature of the model and its goodness of fit. The AIC and BIC resolve the

problem of model over-fitting by introducing a penalty term based on the

number of variables in the model.

AIC = −2log − likelihood+ 2p (2.14)

and

BIC = −2log − likelihood+ plogn (2.15)

The aim for the LR method is to minimise the AIC or BIC. Large models have

smaller residual sum of squares and fit better but they generally use more

predictor variables. Therefore, these two methods select the best models by

balancing the model size and model fit. However, the BIC tends to penalise

models with more predictor variables more heavily than the AIC making it

prefer smaller models to the latter (Aho, Derryberry and Peterson, 2014).
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2.10.7.2 The Wald test

The Wald test (also known as the Wald Chi-Squared test) is a parametric sta-

tistical test that is used when testing the ‘significance’ of explanatory variables

in a statistical model. The term ‘significant’ means that a variable adds value

to the model. The variables that are not significant are removed from the

model. The Wald test can be used to test the true value of a variable based on

the sample estimate. If the test fails to reject H0 it means that removing the

variables will not substantially affect the model fit. The Wald statistic, WT ,

is used to test

H0 : θ = θ0. vs.

HA : θ 6= θ0.
(2.16)

and is calculated as :

WT =
[θ̂ − θ0]2

1/In(θ)
= In(θ̂)[θ̂ − θ0]2 (2.17)

where θ̂ is the maximum likelihood estimate (MLE) , and In(θ̂) is the expected

Fisher information evaluated at the MLE. The variables with p-values < 0.05

are normally considered as not being significant in the model. However, for

multiple LR models variables with p-values < 0.25 in its uni-variable analysis

are considered as candidates for a multi-variable analysis. This is because some

variables may become important predictor variables when taken together than

when taken individually so using the traditional p-value of 0.05 may exclude

important variables from the analysis (Agresti, 1996).

2.10.7.3 The score test

The score statistic indicates how sensitive a likelihood function is to its param-

eter, that is the score for θ is the gradient of the log-likelihood with respect

to θ. The score tests are used in estimating the model improvement if more

variables are added to the model. This test is sometimes referred to as a test

for omitted variables (Weesie, 2001).
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2.10.7.4 The likelihood ratio test

This is a test used to compare the goodness of fit of two models where one

model is simpler or more parsimonious than the other. The test is based on

the likelihood ratio which estimates how many times more likely the data are

under one model than the other. It tests:

H0 : The reduced model is true. vs.

HA : The current model is true.
(2.18)

where the reduced model refers to a model which omits m predictors and the

current model is the one that includes them. The likelihood-ratio statistic is

given by

∆G2 = −2logL from reduced model −(−2logL from the current model)

where m is the degrees of freedom and the p-value is P (χ2
m >= ∆G2) (Penn

State Eberly College of Science, 2016).

2.10.7.5 The Hosmer and Lemeshow goodness of fit test

The Hosmer and Lemeshow statistic is an alternative method of testing the

model goodness of fit. The test is used to assess whether observed event rates

match expected event rates. According to Hosmer et. al (2000), it tests the

following hypotheses:

H0 : The current model fits well. vs.

HA : The current model does not fit well.
(2.19)

The statistic is calculated by grouping the observations by the model predicted

probabilities. The recommended number of groups is calculated by adding one

to the number of covariates in the model. The Hosmer-Lemeshow statistic is

highly dependent on how the observations are grouped. Furthermore, its not

as accurate when you have one or two categorical predictor variables and is

therefore best used for continuous predictor variables. The statistic is given

by:
g∑
l=1

2∑
j=1

(obsij − expij)2

expij
(2.20)
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where g= Number of groups and the test used is the chi-square with g − 2

degrees of freedom.

2.10.7.6 The logistic regression R2

The R2 statistic refers to the proportion of the variance in the dependent

variable that is explained by the predictor variables, with larger R2 values

indicating that more variation is explained in the model. The coefficient of

determination for models with categorical dependent variables is estimated by

the Cox and Snell’s R2, the Nagelkerke’s R2 and the McFadden’s R2. These

pseudo R2 values are essential in evaluating multiple models predicting the

same outcome on the same data (Veall and Zimmermann, 1996).

2.10.8 Neural network paradigms

In the construction of artificial NN, it is necessary to determine the number

of input nodes, output nodes, hidden nodes and the number of hidden layers.

The selection of these parameters are problem dependent (Zhang, Patuwo and

Hu, 1998). The NN architecture is done on a trial and error basis. The correct

number of hidden layers that improves the model fit has to be selected. The

problem of over-fitting that can arise from using many hidden layers will be

solved through the use of additional techniques such as cross validation. The

ideal number of hidden nodes is selected graphically by comparing the use of

different number of hidden nodes in the same network. The number of hidden

nodes are plotted against the predictive performance of both the training and

test set and the hidden nodes which gives the best accuracy results in terms

of the root mean square error (RMSE) for both the training and test sets is

selected (Costea, 2012).

There have been several suggestions on the formulas to determine the correct

number of neurones. Hunter et al. (2012) implemented the formula Nh = N+1

for a multi layer perceptron (MLP), Nh = 2N + 1 for a bridged MLP and

Nh = 2n−1 for a fully connected MLP where N is the input-target relation or
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parity number (number of input variables), Nh is the number of hidden nodes

and n is the total number of neurons in the network. The results obtained in

their study had 85% accuracy. Trenn (2008) determined the number of hidden

nodes using the formula Nh = N + N0 − 1
2
, where N is the number of inputs

and N0 is the number of outputs. Xu and Chen (2008) determined that the

best number of hidden nodes leads to the minimum RMSE. They implemented

the formula Nh = Cf (
N
d
logN)

1
2 , where N is the number of training pairs, d

is the input dimension, and Cf is first absolute moment of Fourier magnitude

distribution of target.

Lastly, Masters (1993) suggested that for one hidden layer, the number of

neurones is given by Nh = sqrt(NINP x NOUT ), where Nh is the number of

neurones in the hidden layer, NINP is the number of neurones in the input

layer and NOUT is the number of neurones in the output layer. The formula

for two hidden layers is given by r = NINP
NOUT

1
3 , where Nh = NOUT x r2 is the

number of neurones in the first hidden layer and Nh2 = NOUT x r is the num-

ber of neurones in the second hidden layer. Input selection techniques such as

feed forward networks are applied and the backpropagation learning algorithm

is used (Cooper, 2000).

2.10.9 Evaluating the model performance

2.10.9.1 Confusion matrix

The confusion matrix (Figure 2.4) is a method that is used to determine if

the outcomes being modelled have been classified correctly and incorrectly

compared to the true results obtained from the data. The following will be

calculated using the confusion matrix:

1. Accuracy: The total proportion of correct predictions;
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Figure 2.4: Confusion matrix (Analytics Vidhya, 2015)

2. Positive Predictive Value (PPV): The portion of accurately identified

positive outcomes;

3. Negative Predictive Value (NPV): The portion of negative outcomes that

were accurately classified;

4. Sensitivity: The portion of actual positive outcomes that were classified

accurately;

5. Specificity: The portion of actual negative outcomes that were accurately

classified (Akobeng, 2007).

2.10.9.2 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve is a graphical means of

comparing different classification methods. The curve is obtained by plotting

the false positive rate which is obtained by subtracting the specificity from one

on the X-axis which is the probability of a target outcome being equal to one

when its value is zero against the true positive rate also known as the sensitivity

on the Y -axis. The sensitivity is the probability of obtaining a target equal to

one when its true value is actually equal to one at varying threshold values.

The ideal curve converges quickly towards the top left corner, meaning that

the model is a perfect classifier and accurately predicted all cases (Fawcett,

2006).
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Figure 2.5: Receiver operating characteristic curve (Sayad, 2015)

2.10.9.3 Area under the curve

The area under the curve (AUC) shows the quality and performance of a binary

classification method. A random classifier which is not useful will have an area

of 0.5 while a perfect test will have an area of 1. Most AUC fall between 0.5

and 1 and this means that they are able to predict the outcomes better than

a randomly selected classifier. The classifier can not discriminate between the

two groups when the area=0.5 while an area of 1 shows perfect separation

between the two groups. Therefore, the preferred AUC should be close to one

for the model to be considered as being accurate (Fawcett, 2006).

2.11 Conclusion

1. Most literature shows that research on the application of NN and LR

has been mainly in the area of financial and accounting problems such as

credit scoring, predicting bankruptcy, detecting fraud and property eval-

uation (Paliwal and Kumar, 2009). Very little is shown in the application

of NN and LR to country risk.

2. The numerous variables, coupled with the wide range of areas they cover

(financial, legal, economic and political) make country risk modelling

difficult to predict with accuracy. This explains why risk rating agen-
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cies with vast resources failed to predict many changes in economies

worldwide due to globalisation. Therefore, there is need for constant

adaptation and inclusion of better country risk methods as well as new

sources of risk that have not been considered in literature (Sviderske,

2014).

3. There are several quantitative methods used to evaluate country risk in-

cluding; discriminant analysis, principal component analysis, logit mod-

els, tobit models, classification and regression trees and artificial NN.

4. LR and artificial NN are said to be the most commonly used classifi-

cation techniques in biomedicine (Dreiseitl and Ohno-Machado, 2002).

According to Gouvea and Gonçalves (2007) the LR and NN models pro-

duce better results to the genetic algorithm for credit scoring. Given

their application in other areas such as credit risk and in medicine, it

is therefore necessary to evaluate these models when applied to country

risk data.
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Chapter 3

Methodology

3.1 Introduction

The scope of this study seeks to apply the panel LR model and the NN model

on political, economic and financial risk factors to aid in investment and loan

decisions involving countries. The debt servicing capacity of countries is in-

vestigated using the effect of using exports as a percentage of GDP, external

debt as a percentage of GDP, inflation, GDP per capita, GDP growth, political

stability and no violence, regulatory quality, rule of law, control of corruption,

government effectiveness and public debt as a percentage GDP as predictor

variables. The data used in the research is obtained from the World Bank.

Data pre-processing techniques including data cleaning and data reduction

will be used. Multivariate and univariate EDA will be used to check model

assumptions, preliminary selection of variables and in determining the rela-

tionships among the explanatory variables. A descriptive data summary will

serve as the foundation of these techniques and will help in identifying the

general characteristics of patterns within the data as well as detecting the

presence of noise and outliers. LR and NN models will be built to compare

their performances in identifying countries that will reschedule their debt.
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3.2 Data Source

The World Bank is a multilateral financial institution based in Washington. It

provides loans and grants to governments and their agencies for use in develop-

ment projects that are aimed at poverty reduction and in the equitable sharing

of prosperity. The Development Data Group is responsible for maintaining

macro and financial sector databases as well as the coordination of statisti-

cal and data work. The data developed by the World Bank is obtained from

the statistical systems of member countries including official sources and bank

country management units and the quality of data is dependent on their per-

formance. The World Bank works hand in hand with bodies in countries and

invests in statistical activities used in implementing standards and frameworks

for collection of data, the methodologies used to analyse it and for dissemi-

nating the data. The bank checks for data consistency caused by differences

in timing and reporting when combining data from different countries. They

make adjustments in the balance of payments to account for fiscal/calender

year differences (World Bank, 2015).

The macroeconomic and political data to be used for the analysis were ob-

tained from the World Bank open data which gives free data access on the

development of countries around the globe. The macro-economic variables

were obtained from the World Development Indicators (WDI) which is a col-

lection of development indicators that cover 214 economies for the period 1960

to 2015. It was compiled from official recognised international sources and

includes exports, external debt and public debt as a percentage of GDP, infla-

tion, GDP per capita and GDP growth. It makes available the most accurate

and current data including national, regional and global estimates. The politi-

cal variables were obtained from the Worldwide Governance Indicators (WGI)

which has aggregates that pertain to separate governance indicators for 215

countries and territories for the period 1996 to 2014. The WGI dataset are used

for research purposes and summarises the views on the quality of governance
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provided by a vast number of enterprises. The different citizen and expert sur-

vey respondents in industrial and developing countries are also summarised.

These data are gathered from several institutions that conduct surveys, think

tanks which refer to experts that provide advice on varying political and eco-

nomic problems , non-governmental organisations, international organisations,

and private sector firms (World Bank, 2015). The World Bank applies some

aggregation rules due to the presence of missing data in which it treats the

different aggregates for different grouped economies as estimates of unknown

totals or mean values. It applies five methods of aggregation:

1. Missing values are imputed for group or world totals using proxy variables

which have complete data for that year. Imputation is not carried out if

the variable has more than a third of its values missing for that year;

2. Missing values are not imputed for aggregates concerning sums and these

total sums are not calculated if the missing data exceeds a third of the

total data in any given year;

3. The ratio aggregates are computed as weighted averages. The value of the

denominator or of another indicator can be used as a weight. Variables

with missing data are assumed to have the same weights as that from

the available data and no ratios can be computed if more than a third

of the dataset is missing;

4. The growth rates of aggregates are calculated as weighted averages for

growth rates. They are not computed if more than a third of the data is

missing. They are computed as annual averages and represented as per-

centages using either the least squares, exponential or geometric growth

rate;

5. Aggregates concerning medians have no values shown if half the obser-

vations for countries with a population exceeding one million are missing

(World Bank, 2015).
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3.3 Description of Variables

The World Bank (2015) gives comprehensive definitions of the variables that

were used in the analysis. The data set that was created for use in the research

included variables that were commonly used in empirical literature. The ratio

of debt service payments to exports, growth rate of GDP, the ratio of exports

to GDP and the rate of price increases were used in a study by (Avramovic,

1968). Canuto et al. (2012) identified income per capita, public debt to GDP

ratio, external debt and inflation as good predictors of debt rescheduling. As

such, these variables were analysed in this research. The data was extracted

for the years 1996 to 2013 as the political variables considered were available

for that particular period. The definitions of the variables are given below:

1. The debt rescheduling variable was obtained from the World Bank and

gives the entire quantity of debt rescheduled which includes the total

debt value that a country owes, capital sum, interest charges and penal-

ties that are postponed (World Bank, 2015). Countries which have not

rescheduled have a value of zero while those that rescheduled have the

value of the remaining sum of their debt shown. All countries that

rescheduled debt will be given a value of one so that we have a binary

variable;

Debt rescheduling =

1, if debt is rescheduled.

0, otherwise.

(3.1)

2. Total debt service as a percentage of exports of goods, services and pri-

mary income is the sum of principal repayments and interest actually

paid in currency, goods, or services on long-term debt, interest paid on

short-term debt, and repayments (repurchases and charges) to the IMF

(World Bank, 2015);

3. GDP per capita is obtained by dividing the GDP by midyear population.

GDP refers to the sum of gross value added by all resident producers in
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the economy plus any product taxes and minus any subsidies not included

in the value of the products. It is calculated without making deductions

for depreciation of fabricated assets or for depletion and degradation of

natural resources (World Bank, 2015);

4. GDP growth is an annual percentage growth rate measure of GDP at

market prices and is based on the constant local currency and measures

how fast an economy is growing. It is a combination of gross value

added by all resident producers in the economy, plus any product taxes

and minus any subsidies not included in the value of the products. De-

ductions arising from depreciation of fabricated assets or from depletion

and degradation of natural resources are exempted when making this

calculation (World Bank, 2015);

5. Inflation, consumer prices annual percentage as measured by the con-

sumer price index is defined as the annual percentage increase or de-

crease in the level of prices or cost to the average consumer of acquiring

a basket of goods and services that is measured at a fixed time point.

Inflation may be fixed or may be tracked at specific time intervals, such

as annually (World Bank, 2015);

6. External debt also known as foreign debt is the total amount of debt

owed to foreign residents inclusive of governments, banks or financial

institutions that may be paid back in the form of money, goods, or

services. It is the total sum of all the public, publicly guaranteed, and

private non guaranteed long-term debt or IMF credit, and lastly debt

accumulated over a short period. The short-term debt refers to all debt

having an original maturity of one year or less and interest in arrears on

long-term debt (World Bank, 2015);

7. Exports of goods and services as a percentage of GDP is a variable that

reflects the value of all goods and market services that are provided to

other countries that are produced in the home country. The examples
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of exports include the value of merchandise, freight, insurance, trans-

port, travel, royalties and license fees. The other services that can be

exported include communication, construction, financial, information,

business, personal, and government services. The factor services (now

known compensation of employees and investment income) and transfer

payments are excluded (World Bank, 2015). The economic and financial

variables are monetary quantitative measures while the debt rescheduling

variable is a binary variable.

Political variables were considered for the analysis since risk rating agencies

that create risk indices combine political, economic and financial information

into a single composite rating. Government stability, corruption, law and or-

der were amongst the political variables they listed as causing a country to

fail to service its debt (Hoti and McAleer, 2002). These political variables

are created from hundreds of variables obtained from 31 different data sources

which capture information from survey respondents combining these into po-

litical indices. Therefore, the political variables that were used in this study

as defined by the World Bank (2015), include:

1. Political stability and absence of violence/terrorism is a variable that

reflects perceptions of the likelihood that the government will be desta-

bilized due to its lack of integrity and may be overthrown by unconsti-

tutional or radical means, including politically-motivated violence, coup

d’états or revolutions as well as terrorism;

2. Regulatory quality is a variable that captures the perceptions of the

ability of the government to formulate, promote and implement sound

policies and regulations that permit and promote the development of the

private sector;

3. Rule of law refers to the legal principle and of the extent to which indi-

viduals , policy makers and private entities trust and abide by the rules

of society. In particular, everyone is held accountable by the quality of
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contract enforcement, property rights, the police, and the courts, as well

as the likelihood and frequency of crime and violence.

3.4 Logistic Regression Methodology

3.4.1 Data extraction

The World Bank data was extracted into an excel worksheet and imported

into statistical analysis systems (SAS) 9.4. The debt rescheduling dependent

variable was dichotomised so that it could be used in LR model building.

3.4.2 Exploratory data analysis

EDA was conducted to identify the patterns within the data. The procedures

that were conducted are described below:

1. The contents procedure was employed in SAS 9.4 to give a description of

the data to be used, including the number of observations, the number

of variables to be used, the variable types as well as their lengths. The

continuous variables wrongly classified by SAS 9.4 as being characters

were changed to numeric by multiplying them by one so that SAS 9.4

recognised them as numeric;

2. EDA of the debt rescheduling binary variable was done using frequency

tables to determine the frequency of countries that rescheduled debt as

opposed to those that paid their debt;

3. Descriptive statistics were used to learn about the data characteristics

of the independent variables in terms of central tendency measures such

as the mean, maximum and minimum data values. The SAS 9.4 means

procedure was used to obtain the statistics. The degree to which the

numerical variables were dispersed was shown using the variance. These

measures were used to understand the distribution of the data;
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4. As a general rule, SAS 9.4 procedures deal with incomplete data by

excluding the missing values from the analysis, but the way in which

missing values are excluded from the dataset varies depending on the

procedure being used. Table 3.1 shows how SAS 9.4 deals with missing

variables for the different procedures employed in the analysis.

Table 3.1: Handling missing data in SAS 9.4

SAS Procedure How SAS deals with missing data

proc means All values that have no missing data are used.

proc freq Variables with missing values are removed and cumula-

tive frequencies are calculated from the variables that

do not have missing data.

proc corr By default the correlation calculations are based on the

number of pairs with complete data. This is also known

as pairwise deletion. However, the nomiss option can

be used for listwise deletion to compute correlations for

data that has no missing values.

proc logistic If any of the variables on the model or var statements

are missing they are excluded from the model.

3.4.3 Multivariate exploratory data analysis

Multivariate EDA was conducted to investigate the patterns and relationships

between two or more variables in the data. The procedures that were con-

ducted are summarised below:

1. Multicollinearity checks to identify large correlations among a pair of

predictor variables were conducted using the corr procedure in SAS 9.4.

The VIF values were obtained from the reg procedure. Variables with

VIF values above 10 were identified removed from the model to avoid

over-fitting the model (O’Brien, 2007);
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2. The PCA variable reduction technique was conducted using the princomp

procedure to create a smaller number of variables that best described the

data (Han and Kamber, 2006);

3. Statistics were calculated for the categorical dependent variable and each

of the quantitative independent variables individually. Univariate LR

models with one covariate at a time were run and the fits analysed. All

the variables whose p-value < 0.25 for the Wald statistic in the univariate

analysis were used to develop the final model (Sperandei, 2014). The

AIC values for each of the variables were also compared in the univariate

analysis;

4. According to (Reitermanova, 2010), the hold out cross validation tech-

nique is popular due to its efficiency and simplicity. It separates the data

into three mutually disjoint sets and one of its biggest advantages is that

the proportions of these three sets are not strictly restricted. The train-

ing, validation and test sets used in his research were split into subsets

of the proportions 50%, 25% and 25%. Cieslak and Chawla (2007) split

the data used by classifiers in their research into 50% training, 20% val-

idation and 30% testing. In their book, Camm et al. (2014) encouraged

the use of a 50:30:20 split for the training, validation and test sets. Sim-

ilar proportions 50:30:20 for the training, test and validation sets were

applied in this research. Splits of 40:30:30 and 45:35:20 were used for

model comparison and these proportions were used due to the flexibility

available when splitting data (Reitermanova, 2010). The final models

were compared to obtain the most accurate model in predicting debt

rescheduling.

3.4.4 Model building

To define the panel multiple LR model, consider a country c observed over

t periods of time, where t = 1, ..., T and c = 1, ..., N . For this country there

exists an unobservable random variable Y ∗ct, indicating latent propensity, which
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is observed indirectly using a binary variable, Yct such that Yct = 1(Y ∗ct > 0),

where Yct is an indicator variable that takes a value of one if the condition in the

brackets is satisfied. The following equation represents the above statements:

Y ∗ct = αc +X ′ctβ + uct (3.2)

where Yct is the total amount of debt rescheduled, Xct represents the predictor

variables, uct is the random error term and Yct is a dummy variable given by:

Yct =

1, if Yct > 0.

0, otherwise.

(3.3)

Multiple LR models will be developed and the backward elimination procedure

is used. Let X1ct, .....Xkct be the predictor variables in the model observed for

country c at time t. When the event is equal to one, it denotes countries

that have rescheduled their debt and zero denotes countries that have not

rescheduled their debt. For the variable β , the likelihood of obtaining the

expected outcomes Yct is dependent on variables Xct. The likelihood that a

country c will postpone the payment of its debt at time t is calculated as

follows:

p(Yct = 1|X, Y ) =
expαc+β1ControlCorruptionct+...+βkPublicDebtPercGDPct

1 + expαc+β1ControlCorruptionct+....+βkPublicDebtPercGDPct
(3.4)

The probability of not rescheduling debt is calculated as follows:

p(Eventct = 0|X, Y ) =
expαc+β1ControlCorruptionct+...+βkPublicDebtPercGDPct

1 + expαc+β1ControlCorruptionct+β2+...+βkPublicDebtPercGDPct

(3.5)

where βk is a (k × 1) vector of predictor variables that is related to the trans-

posed vector of Xct (Lausev, Stojanovic and Todorovic, 2011).
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3.5 Neural Network Methodology

3.5.1 Variable selection

The non-linear nature of the artificial NN hinders the use of significance tests.

The most important decision to be made regarding a NN model is its con-

figuration. It is necessary to determine the number of inputs, the number of

outputs, the number of hidden layers and the number of neurones in each of

the hidden layers.

According to May et al. (2011), there is no generally accepted method used

in selecting the amount of attributes to apply in building NN. The authors

state that selecting the variables to use in a NN model is complex due to some

highly correlated variables that cause redundancy. The number of input vari-

ables available as well as the low predictive ability of some of these variables

makes selection a complex problem. However, even though there is a common

notion that NN are capable of removing redundant variables, NN modellers

are now aware of the importance of variable selection.

For the purposes of this research, variable selection for the NN will be done

using a method proposed by Garson (1991) which selects predictor attributes

by comparing their significance for specific dependent variables in a NN by

breaking down the model weights. This is known as the relative importance

of the variables. It is based on the concept that a specific dependent variable

can be determined by identifying all weighted connections between the nodes

that are of concern. The scores of the input connections are calculated and

scaled relative to all other inputs. One value is obtained for each explanatory

variable that describes the relationship with response variable in the model.

The function that was developed to calculate the comparative importance of

attributes is called gar.fun and will be used in the R-statistical package.
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3.5.2 Variable normalisation

A NN converges to a solution at a very slow rate and the number of iterations

may be many if the attributes in the input layer are not normalised when the

backpropagation algorithm is used (Rojas, 1996). Normalisation is a form of

data transformation in which the attributes are scaled so that they fall in a

specific range. These attributes may fall between -1.0 to 1.0 or 0.0 to 1.0. The

min-max transformation performs a linear transformation on the original data.

This transformation technique will be used to speed up the training phase of

NN modelling. It is summarised below:

Let minX and maxX be the minimum and maximum variables of an attribute,

X. The normalisation procedure maps a value, v, of X to v′ in the range

[newminX − newmaxX ]. The equation is given by:

v′ = v −minX
maxX −minX

(newmaxX − newminX) + newminX (3.6)

The advantage of using min-max normalisation is that it preserves the rela-

tionship amongst the original data values (Han and Kamber, 2006).

3.5.3 Training, testing and validating data

The data used in the research was divided into three subsets. The training

set is the largest subset and has the most data points. The training set is

used by the NN to learn the patterns in the data. The validation set is used

as a final check of the performance of the trained network while the test set

is used to evaluate the generalization ability of the network. The NN were

trained, tested and validated using similar sets applied in the LR methodology

for model comparability using the same training, test and validation test sizes

(Jha, 2007).
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3.5.4 Determining the neural network architecture

One hidden layer was used and the number of hidden neurones in the hidden

layer was determined through plotting the number of hidden nodes and the

RMSE. The pyramid rule proposed by Masters (1993) was used to determine

the initial number of hidden nodes. The activation function which was imple-

mented was the sigmoid activation function. A weight initialisation function

was chosen for the NN model building and the network error was calculated

until a specified minimum error was reached.

3.5.5 Neural network model building

The R statistical package, neuralnet was used for the network development and

made use of the backpropagation algorithm by using the economic, financial

and political data to adjust the network’s weights and thresholds so as to min-

imise the error in its predictions in the training set. The pattern connectivity

of the network is given by a weight matrix, w, where wij are the elements of

the matrix and denote the weight connection from unit ui to uk. The pattern

connectivity determines the NN structure. The three step procedure below

shows how a hidden component in the output layer determines its activity.

1. The total weighted input Xk is given by

Xk =
∑
i

Diwij (3.7)

where Di is the activity of the kth unit in the previous layer and wij is

the weight of the connection between the ith and kth unit.

2. The activity Dk is calculated by the unit using an activation function

calculated based on input variables that are weighted.

3. The error is then calculated from the following formula:

E =
1

2

∑
i

(Dk − Yk)2 (3.8)
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where Dk is the extent of activity of the kth unit in the first layer and Yk

is the output of the kth unit that is preferred.

According to Jha (2007), the backpropagation algorithm is summarised by the

following three steps:

1. A computation is done of the speed of the increase or decrease of the

error as the activity of the unit in the output layer changes. Therefore,

the derivative of the error is a computation of the difference between the

actual and preferred output and is given by:

EAk =
δE

δDk

= Dk − Yk (3.9)

2. A computation is done to calculate how quickly the bias obtained alters

as the input transmitted by an output unit is altered. This is obtained

by multiplying step one by the frequency at which an output of unit is

modified as the total input is altered. It is given by:

EIk =
δE

δXk

=
δE

δDk

× dDk

dXk

= EAk(1−Di) (3.10)

3. A computation is done of the rate of change of the error as a weight on

the network into an output node is altered (EW). EW is obtained by

multiplying the activity level of the unit from which the unit emanates

by step two.

Ewik =
δE

δwik
=
δE

Xk

× δXk

δwik
= EIkDi (3.11)

Once each error derivative of s unit is known, step two and three can be

used to compute the Ew’s of the following connections.

3.5.6 Evaluating model performance

The LR and NN model performances were compared through the use of the

ROC curve to determine the discriminative ability of the models (Jaimes,

Farbiarz, Alvarez and Martinez, 2005). Calculations of the sensitivity and

specificity and model accuracy as well as the AUC are also common measures

of discrimination (Dreiseitl and Ohno-Machado, 2002). The discussed methods

will be used in evaluating the model to be used in predicting country risk.
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3.6 Conclusion

The chapter had a detailed description of the variables selected for use in

model development that were identified from previous research. The steps

that were taken in building the LR and NN models were summarised including

data preparation and descriptive statistics that helped in understanding the

patterns within the data.
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Chapter 4

Model Development

4.1 Introduction

Research is a process of inquiry that aims at discovery of knowledge, building

theories, testing and validating the theories. One of the crucial steps involved

in every research is model development. This process involves model selection,

model fitting and model validation. These three steps are conducted iteratively

until the best model for the data has been developed. This process takes into

consideration the assumptions of the different models and the plots of the

data, and these are used to help in developing the models. The unknown

parameters are estimated and the models developed are assessed to see if they

meet the modelling assumptions. This chapter will give a detailed description

of the processes involved in the development of the LR and the NN models.

This will assist in describing, predicting, testing and understanding complex

events. Model development for LR will be conducted using SAS 9.4 and that

for the NN will be conducted using the R statistical software package.

4.2 Model Development Steps

The steps that will be conducted in the model building process are shown in

Figure 4.1 as well as the location of the SAS and R code.
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Figure 4.1: Model building process

4.2.1 Data pre-processing

Figure 4.2: Proportion of non debt rescheduling (Debt1=0) to debt reschedul-

ing countries (Debt1=1)
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The dependent debt rescheduling variable has a value of zero for countries

which have not rescheduled while countries that rescheduled debt have a value

of one. The proportion of non debt rescheduling to debt rescheduling countries

is shown in Figure 4.2. It indicates that are larger number of countries do not

reschedule their debt and a smaller proportion reschedules their debt. The

calculation of the proportion does not include the missing data as the missing

data was excluded completely from the data set using the SAS software.

Table 4.1: The effect of increasing the value of the independent variables on

the debt rescheduling variable

Variable Type Variables Positive Negative

Economic Exports as a percentage of GDP X

Economic/Financial External debt as a percentage of GDP X

Financial Inflation X

Economic GDP per capita X

Economic GDP growth X

Political Political stability of no violence X

Political Regulatory quality X

Political Rule of law X

Political Control of corruption X

Political Government effectiveness X

Financial/Economic Public debt as a percentage of GDP X

The analysis is started with 11 economic, financial and political variables.

The list of each of the variables used and the possible effect that each one is

anticipated to have on the debt rescheduling variable is presented in Table 4.1.

The X’s in Table 4.1 represent the type of impact each variable will have.

1. Positive values in Table 4.1 indicate that an increase in the values of

inflation, exports as a percentage of GDP and public debt as a percentage

of GDP will result in less stable economic climates that will likely lead

to debt rescheduling by the respective countries.
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2. An indication of a negative effect in the table shows that the variables

are negatively related to the probability of debt rescheduling as these

indicate a growing and stable economy.

The descriptive statistics for the countries that have rescheduled their debt

and those that have not rescheduled their debt are given in Table 4.2 and

Table 4.3.

Table 4.2: Descriptive statistics for countries that have rescheduled debt

Variables Non Missing Missing Mean Standard Dev

Exports as a % of GDP 727 11 30.9 17.3

External Debt 738 0 280479919572 748159524348

Inflation 690 48 15.2 158.2

GDP Per Capita 736 2 1705.8 2277.5

Public Debt as a % of GDP 432 306 69.0 38.2

GDP Growth 734 4 4.8 4.2

Table 4.3: Descriptive statistics for countries that have not rescheduled debt

Variables Non Missing Missing Mean Standard Dev

Exports as a % of GDP 1579 90 36.6 20.2

External Debt 1657 12 31774504294 99296468056

Inflation 1508 161 10.9 38.9

GDP Per Capita 1622 47 2750.3 2640.4

Public Debt as a % of GDP 344 1325 51.3 31.5

GDP Growth 1617 52 4.5 5.4

The explanatory variables are compiled from the World Bank’s WDI and WGI

and they consist of annual data. The descriptive statistics are split according to

whether a country rescheduled its debt or not as these countries have different

dynamics. Countries that have not rescheduled their debt have a lower mean

value for inflation, public debt as a percentage of GDP and external debt as

a percentage of GDP which corresponds to the results we expect from Table

4.1.
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4.2.2 Covariate selection

According to Bursac, Gauss, Williams and Hosmer (2008), choosing variables

from a large set of covariates to include in the model is one of the challenges

of model building. This process is necessary so as to reduce the confound-

ing of variables as well as to reduce the dimensionality of the problem. They

identified the forward, backward and stepwise methods as the most common

variable selection procedures as well as univariate association filtering. Other

techniques used for variable selection include the use of the AIC and correla-

tion (Hutmacher and Kowalski, 2015)

Table 4.4 is used to assess if there is any multicollinearity in the data by means

of using the VIF. A VIF equal to one indicates that there is no correlation be-

tween the nth predictor variable and the remaining variables. Inflation, GDP

growth and public debt as a percentage of GDP have VIF values closer to one

this indicates that they have low correlation with the other predictor variables.

The variables rule of law, control of corruption and government effectiveness

require further investigation as they have VIF values above four. All the vari-

ables have VIF values below ten and this indicates that multicollinearity is low

(O’Brien, 2007).
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Table 4.4: Variance inflation factor (VIF) for all the variables
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Table 4.5: Correlation matrix with Pearson correlation coefficients
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The Pearson’s correlation coefficient is a measure of strength and direction

of linear association between two predictor variables. It follows the following

modelling assumptions:

1. Each variable should be continuous;

2. There should be no outliers as these may skew the results;

3. There should be linearity and homoscedasticity;

4. There should be two related pairs ie. each observation should have a pair

of values.

It can take a range of values from -1 to +1. A value of zero indicates that

there is no linear association between the variables. A value greater than zero

indicates positive association while a value less than zero indicates negative

association (Norman, 2010).

Table 4.5 shows that there is high positive association between the political

variables, confirming the results from the VIF analysis. Government effec-

tiveness has a correlation of approximately 0.93 with rule of law, control of

corruption and regulatory quality. All variables with correlation coefficients

above 0.60 are highlighted in the diagram. Some of the political variables will

thus have to be excluded from the final model as this may lead to over-fitting

of the model resulting in unstable model parameters.

4.2.3 Principal component analysis

PCA was used to reduce the initial set of variables by removing redundant

variables and retaining variables that explain the most variation in the model.

The Kaiser criterion was used to determine the number of components to be

extracted. All components with eigenvalues greater than one are extracted ac-

cording to the rule (Fabrigar et al., 1999). A total of four factors were shown

to explain 75% of variation in the model with the factor that has the largest
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explanatory power explaining 75% of variation in the model.

Table 4.6: Proportion of variance explained by the extracted variables

Eigenvalue Proportion Cumulative percentage

4.50089879 0.4092000 0.4092

1.412622408 0.3432402 0.5376

1.27830006 0.1722903 0.6538

1.10707103 0.1006000 0.7544

Table 4.7 below identifies each component while Figure 4.3 is a diagrammatic

representation of the variation explained by each component. The table shows

that any model which aims at modelling debt rescheduling can be reduced into

four factors. PCA analysis does not however, show the effect of each factor on

the debt rescheduling variable.

Table 4.7: Identification of extracted components

Factor Significance

1 Political climate

2 Economic outlook

3 Debt

4 Income

The first component is closely associated with rule of law, control of corrup-

tion and government effectiveness. This factor is clearly associated with the

political outlook of a country. The second factor is associated with inflation,

GDP growth and public debt as a percentage of GDP. This second compo-

nent is best described as an indication of the economic outlook of a country.

The third component consists mainly of the variable external debt and it is

summarised mainly as debt. Lastly, the fourth component consists mainly

of exports as a percentage of GDP and GDP per capita which represent a

country’s income.

72



The scree plot is another method that can be used to determine the compo-

nents to select in the model. This plot shows each of the eigenvalues of the

components. The number of components is therefore selected by identifying

the point at which the curve becomes horizontal. According to the scree plot

between 5 and 6 components should be retained in the model. The components

which are above the selected point are retained (Cattell, 1966). The disadvan-

Figure 4.3: Principal component analysis scree plot

tage of using the Kaiser criterion as opposed to the scree plot is that it is quite

arbitrary, that is if a component has an eigenvalue of 1.01 it is retained in the

model while that with an eigenvalue of 0.99 is excluded from the model. This

method therefore often leads to selecting either more or less number of factors

than is required (Fabrigar et al., 1999). The scree plot, on the other hand

has the disadvantage that it is subjective as there is no clear cut rule that is

used to govern the number of factors to retain in the model as well as what

constitutes a substantial drop on the curve (Kaiser, 1970).
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4.2.4 Logistic regression model building process

Figure 4.4: Logistic regression model development (Rosell, Olson, Aguirre-

Hernandez and Carlquist, 2007)

Figure 4.4 summarises the steps involved in the development of a logistic re-

gression model from the initial stages of univariate analysis until a final model

is selected.

4.2.5 Univariate logistic regression analysis

Univariate LR was conducted to investigate the effect of each predictor on the

debt rescheduling variable. The Wald test was used to test the significance of

explanatory variables in the statistical model. The term ‘significant’ means

that a variable adds value to the model. From the univariate LR, inflation

was not significant in the model as it had a probability higher than 0.25. This
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may be due to the presence of an interaction between inflation and the other

predictor variables. However, even though it has a probability of 0.382 that is

higher than our benchmark it will be included in the multiple regression model

to assess how it interacts with other variables in the backward elimination

procedure. Table 4.8 illustrates the univariate LR results for each predictor

variable, the Wald statistic and its probability.

Table 4.8: Univariate logistic regression results

Parameter Df Estimate Wald χ2 Pr> χ2

Exports as a % of GDP 1 -0.0166 41.5213 <0.0001

External debt 1 299E-12 80.2724 <0.0001

Inflation 1 0.000446 0.7643 0.3820

GDP per capita 1 -0.00020 77.4199 <0.001

Political stability 1 -0.1765 8.1414 0.0043

Regulatory quality 1 -0.2474 9.3470 0.0022

Rule of law 1 -0.5076 32.7210 <0.001

Control of corruption 1 -0.4593 20.0211 <0.001

Government effectiveness 1 -0.5628 35.9037 <0.001

Public debt 1 0.0414 17.1010 <0.001

The variables that should be removed from the model taking into account

VIF analysis, correlation, PCA and univariate LR are inflation, government

effectiveness, control of corruption and rule of law. Inflation has a p-value

above 0.25 in the univariate analysis and therefore should be removed from

the model. The variables selected for the final model are shown in Chapter

5, Table 5.2 and the results from the variables selected are explained directly

after the table.

4.2.6 Multivariate logistic regression

Multivariate LR using the backward elimination procedure was used to select

the variables to be included in the final model. The data was divided into
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training, validation and test sets in the ratio’s 50:30:20 (Model 1); 40:30:30

(Model 2) and 45:35:20 (Model 3) to determine the split which would best

summarise the data as well as the best model obtained from the results. The

split from the first model was proposed by (Cochran et al., 2014). Model 2

and 3 were used for comparison purposes.

Each of the training sets were used to model the predictive relationships be-

tween debt rescheduling and the explanatory variables. The validation sets

were used for model verification purposes so as to avoid over-fitting. Lastly,

the test set was used to assess the models ability to generalise on new data.

The AIC’s of the three logit models were used as a measure of relative statis-

tical quality and as model selection criteria. The aim of the AIC is to select

the model that minimises information loss. Models that have more variables

are penalized by this procedure.

Table 4.9: Summary of backward elimination for Model 1

Step Effect Removed DF No. left Wald χ2 Pr > ChiSq

1 Exports Percentage of GDP 1 10 0.0001 0.9939

2 Poltical Stability of No Violence 1 9 0.2396 0.6245

3 Control of Corruption 1 8 0.4667 0.4945

4 Government Effectiveness 1 7 0.6070 0.4359

5 GDP Per Capita 1 6 0.6778 0.4104

6 Ext Debt 1 5 1.5733 0.3812

7 GDP Growth 1 4 2.0647 0.2097

8 Rule of Law 1 3 2.0647 0.1507

Table 4.9 shows the backward selection procedure for Model 1. All variables

with p-values > 0.05% were removed in a backward manner starting with the

variables with the largest p-values. The results indicate that the highly corre-

lated political variables were part of the first variables to be removed by the

backward elimination procedure. This collaborates the results obtained in the

study by Erb, Harvey, and Viskanta (1996) in which they used political risk,
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economic risk, financial risk, a composite risk, and a country credit rating and

discovered that country risk measures were correlated to each other. They

further concluded that in terms of country risk related to foreign direct invest-

ment, financial risk measures contain the most information and political risk

measures contain the least information about future stock returns. The final

variables selected in Model 1 are shown in Chapter 5, Table 5.2 and the results

that were obtained are discussed in detail.

The respective AIC’s for each step in the backward selection procedure are

shown in the Figure 4.5. The AIC is used as a means of model selection.

Given different models for the data, the preferred model is the one with the

minimum AIC value. The AIC works by rewarding the goodness of fit. If the

number of parameters in the model increases, a penalty is included to discour-

age over-fitting. This is because increasing the number of parameters in the

model almost always improves the goodness of the fit (Akaike, 1974). The

AIC for Model 1 is quite low, with a value of 34.6 as compared to Model 2 and

Model 3, which will be shown below.

Figure 4.5: AIC for the backward elimination steps for Model 1: 50:30:20 split
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Table 4.10: Summary of backward elimination for Model 2

Step Effect Removed DF No. left Wald χ2 Pr > ChiSq

1 Poltical Stability of No Violence 1 10 0.0198 0.8881

2 Government Effectiveness 1 9 0.0328 0.8564

3 Control of Corruption 1 8 0.3151 0.5746

4 Rule of Law 1 7 0.0957 0.7570

5 Ext Debt Percentage of GDP 1 6 1.3529 0.2448

6 Regulatory Quality 1 5 1.8889 0.1693

7 Inflation 1 4 1.2988 0.2544

8 Public Debt Perc GDP 1 3 1.2989 0.2544

9 GDP Growth 1 2 0.7536 0.3854

Figure 4.6: AIC for the backward elimination steps for Model 2: 40:30:30 split

A similar pattern was observed from Model 2 represented by Table 4.10, in

which the political variables were the first to be removed from the model.

However, the AIC obtained from Model 2, shown in Figure 4.6 was much

higher than that of Model 1 with AIC values of 79.2 and 34.6 respectively.

The results indicate that information loss was not minimised for Model 2 and

that Model 1 is the preferred model.
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The AIC values of Model 3 were well above the rest of the models but a similar

trend was also observed in which the highly correlated political variables were

first removed from the model. Model 1 has the best results based on the AIC.

Further details on the variables that satisfied the best panel logit model are

given in Chapter 5.

Table 4.11: Summary of backward elimination for Model 3

Step Effect Removed DF No. left Wald χ2 Pr > ChiSq

1 Control of Corruption 1 10 0.1597 0.6895

2 Poltical Stability of No Violence 1 9 0.2224 0.6372

3 Government Effectiveness 1 8 0.8958 0.3439

4 Exports Percentage of GDP 1 7 1.3495 0.2454

5 Regulatory Quality 1 6 2.4710 0.1160

6 Rule of Law 1 5 1.3151 0.2515

7 GDP Growth 1 4 1.3673 0.2423

8 Ext Debt Percentage of GDP 1 3 2.5017 0.1137

Figure 4.7: AIC for the backward elimination steps for Model 3: 45:35:20 split
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4.2.7 Neural network model building process

The NN model building process is summarised by Figure 4.8. The flow diagram

shows nine steps that are involved in the development of NN models. The

financial, economic and political variables that were used in LR were used in

developing the NN. Similar training, test and validation sets sizes were used

as those used in LR. The number of hidden nodes used in the hidden layer

according to Masters (1993) is:

nbrHID = sqr(nbrINP × nbrOUT ) = sqr(11× 2) = 4, 699 (4.1)

Based on the result, NN with four and five hidden nodes were developed.

The RMSE was plotted against the number of hidden nodes to see the nodes

that result in the most accurate NN model and to compare if the results ob-

tained are similar to the pyramid rule proposed by (Masters, 1993). Training

and validation of the NN was done and tested on new cases. However, if a

problem was identified from the validation set, the modelling process was re-

peated using information from the model validation step to select or fit an

improved model (Turban, Sharda, Aronson and King, 2008).
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Figure 4.8: Neural network model building process (Turban et al., 2008)

4.2.8 Variable selection

Variable selection is sometimes conducted prior to NN training to save com-

puter resources (May et al., 2011). The variable selection technique proposed

by Garson (1991) was used to select fewer variables to use in the neural net-

work model to assess if preselecting the variables has any effect on the neural

network model accuracy. The results obtained from the variable selection are

81



shown below:

Figure 4.9: Relative importance of the explanatory variables used in neural

network model development

GDP per capita, exports as a percentage of GDP, public debt as a percent-

age of GDP and political stability are considered to have the highest relative

importance to debt rescheduling.
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4.3 Conclusion

The model development section was used to describe, test, predict and under-

stand the factors that determine country risk, particularly the risk of reschedul-

ing debt. Model development was conducted step by step with model fitting

and validation being used to develop models that are highly accurate. The

underlying assumptions of the different methods were also taken into consid-

eration during both the univariate and multivariate LR model development

process as well as the NN model fitting process. Further detail from the LR

and NN results is shown in Chapter 5.
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Chapter 5

Analysis and Results

5.1 Introduction

In order to understand the phenomenon of country risk based on the debt

rescheduling variable, NN and LR models were developed. The purpose of

fitting several panel logit and NN models was to examine the similarities and

differences of these models. The final models were assessed for adequacy and

accuracy, and the results were presented both graphically and through the

use of tables. The final NN and LR models were compared to determine the

best modelling technique. Consideration was first given to the overall test

of relationship between the dependent and independent variables through an

assessment of the model’s statistical results. The strength of the LR models

was tested and lastly, evaluation of the usefulness of the LR models and NN

models and the relationship between the independent and dependent variables

was analysed.

5.2 Assessing the Overall Model Fit

5.2.1 Likelihood ratio test

The likelihood ratio test is used to compare the fit of the models. The likelihood

ratios of LR model LR1, LR2, and LR3 are summarised in the table below.
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The LR models performed to ascertain the effects of the political, economic

Table 5.1: Likelihood ratio test

Model Test χ2 DF Pr>χ2 R2 Max rescaled R2

1 Likelihood ratio 13.9 3 0.0031 0.29 0.46

2 Likelihood ratio 22.9 2 0.0036 0.17 0.31

3 Likelihood ratio 24.2 3 <0.0001 0.17 0.28

and financial factors on debt rescheduling were statistically significant with χ2

values of 13.9, 22.9 and 24.2 respectively and each having probabilities < 0.05.

The first model explained between 0.29 to 0.46, the second between 0.17 to 0.31

and the last between 0.17 to 0.28 of the variation in the data. These pseudo

R2 measures of the logit models do not give adequate information pertaining

to the model accuracy. More useful measures that can be used include the

accuracy results obtained from the classification tables. However, the pseudo

R2 gives an indication of the variation explained in the model.

5.2.2 Variables selected in the models

The variables in the model show the predictor variables that were statistically

significant in modelling debt rescheduling as well as their contribution to the

final model’s statistical significance. The variables selected for each of the

final models were based on the Wald test and those values with P>0.05 were

removed from the model. The variables that were found to be significant for

the models developed from different training, validation and test sets are shown

in table 5.2.

Model 1 was found to be the most accurate model as it had the highest AUC

and the lowest range of AIC values as well as the highest pseudo R2 value.

Inflation, regulatory quality and public debt as a percentage of GDP were the

final parameters in the model. The estimates for each of these parameters

refer to the value by which the difference in log odds for debt rescheduling=1

changes, given that all other variables in the model remain constant. For our
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Table 5.2: Variables in the model

Model Parameter DF Estimate Odds ratio Wald χ2 Pr>χ2

1 Intercept 1 -5.2921 7.0604 0.0079

Inflation 1 -0.0334 0.967 4.2899 0.0383

Regulatory quality 1 -4.8116 0.008 5.7237 0.0167

Public debt 1 0.0407 1.042 3.9528 0.0468

2 Intercept 1 -1.2674 3.7275 0.00535

Exports perc of GDP 1 0.00377 1.038 3.9203 0.0477

GDP per capita 1 -0.00121 0.999 9.4435 0.0021

3 Intercept 1 -2.7460 14.673 0.0001

Inflation 1 0.0611 1.063 7.1467 0.0075

GDP per capita 1 -0.00044 1.00 9.0582 0.0026

Public debt 1 0.0247 1.025 6.8243 0.0090

model we have,

log
p̂

1− p̂
= −5.2921−0.0334×inflation−4.8116×regulatory quality+0.0407×public debt

(5.1)

The intercept is a LR estimate when all the variables in the model are evaluated

at zero. If a country’s inflation was to increase by one unit, the log-odds for

debt rescheduling is anticipated to decrease by 0.0334 given that all other

predictors in the model remain constant. We expect the log odds for debt

rescheduling to decrease by -4.8116 if a country’s regulatory quality were to

increase by one unit and lastly, the log odds are expected to increase by 0.0407

if a countries public debt was to increase by one unit, given that the other

predictors do not change. The variables with negative estimates have a lower

odds ratio and vice-versa. The results obtained are in line with the intuitive

results that were given in Table 4.1.
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5.2.3 Goodness of fit statistics

The Hosmer-Lemeshow goodness of fit test was used to test whether the ob-

served binary response variable, debt rescheduling, conditional on the explana-

tory variables, was consistent with the predictions. In other words, the test

was used to compare the observed and predicted events where the data was

divided into ten equal subgroups. A significant test for the Hosmer-Lemeshow

statistic indicates that the model is not a good fit and a non-significant test

indicates a good fit. This means that a good model is depicted by a high p-

value and low Hosmer-Lemeshow statistic. The results obtained from Model 1

for the Hosmer-Lemeshow test are shown below. The Hosmer-Lemeshow test

Table 5.3: Hosmer-Lemeshow partition for Model 1

Debt=1 Debt=0

Group Total Observed Expected Observed Expected

1 16 1 0.31 15 15.69

2 16 0 0.78 16 15.22

3 16 0 1.10 16 14.90

4 16 0 1.32 16 14.68

5 16 2 1.50 14 14.50

6 16 2 1.82 14 14.18

7 16 2 2.19 14 13.81

8 16 5 3.27 11 12.73

9 16 6 4.57 10 11.43

10 20 10 11.14 10 8.86

had a χ2=7.3151, with Pr > χ2 = 0.5031 and this indicates no lack of fit.
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5.2.4 The receiver operating characteristic curve

Figure 5.1: Model 1 receiver operating characteristic curve of the validation

and test sets

The ROC curve allows the derivation of measures of accuracy, such as the AUC.

These measures of accuracy determine the ability of the test to discriminate

between countries that will reschedule their debt and those that will settle

their debts. The ROC curve is a visual representation of the trade off between

the true positive fraction (TPF) and the false positive fraction (FPF). The plot

shows TPF(sensitivity) versus FPF (1-specificity) across varying cut-offs. The

ROC curves close to the upper left hand conner have higher discriminatory

power while that lying on the diagonal line reflects a diagnostic test perfor-

mance which is no better than chance level.

The AUC obtained for Model 1 on the validation set was 0.875 while that

for the test data was 0.75. This shows that Model 1 has a high predictive

ability to discriminate between the countries that will reschedule their debt

and those that will not reschedule their debt as both the validation and test

sets have a high AUC.
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Table 5.4: Classification table based on the validation set taking 0.5 as cut-off

Training sample Expected

Observed Debt rescheduling=0 Debt rescheduling=1 Total

Debt rescheduling=0 137 23 160

Debt rescheduling=1 11 6 17

Table 5.5: Classification table based on the test set taking 0.5 as cut-off

Training sample Expected

Observed Debt rescheduling=0 Debt rescheduling=1 Total

Debt rescheduling=0 31 6 37

Debt rescheduling=1 4 8 12

The classification rate is one of the most important metrics that indicates how

well a model does on predicting the target variable on out of sample observa-

tions. The reliability of the prediction error rate observed in the training set is

observed by applying the prediction rule to both the validation and test sets.

The prediction error rate from the validation set was 0.19 while that from the

test set was 0.20. This shows that there is no significant differences between the

errors observed from the validation and the test set and we may conclude that

these are reliable indicators of the predictive ability of the logistic regression

model that has been developed.

5.2.5 Modelling neural networks using the R neuralnet

package

The NN models were developed using R statistical software which is an open

source programming language that allows statistical computing and graphics

that are supported by its frameworks. The neuralnet software package was de-

veloped for use in R and was used for the training, validation and testing of the

NN models. The Rprop algorithm was used to train the network (Appendix A6

to A15). The function allows flexible settings through custom-choice of error

and activation function. Furthermore, the calculation of generalized weights
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is implemented (Riedmiller and Braun, 1993). A description of some of the

arguments used in developing the NN models are given below:

Table 5.6: Arguments used in the neuralnet package to develop neural networks

Arguments Description

hidden The number of hidden neurones in each hidden layer

threshold Numeric value which represents the stopping criteria for

the partial derivatives of the error

stepmax The maximum number of steps used for training the NN

rep The number of training repetitions for the NN

algorithm The algorithm used to train the network which in our

case is Rprop

Table 5.7: Neural network results using Model 1 subset split

No. Hidden Nodes Error Threshold Steps AIC

1 8.01 0.0098 1574 44.01

2 3.67 0.0096 22625 61.37

3 1.52 0.0094 6236 83.03

4 2.01 0.0094 23271 110.02

5 1.41 0.0099 69196 134.83

6 0.80 0.0094 20236 159.61

7 0.49 0.0096 51260 184.98

8 0.67 0.0095 45177 211.34

9 0.12 0.0096 23813 236.23

10 0.14 0.0092 26750 262.28

The results from NN with a split in the ratio of 50:30:20 are shown in Table

5.7. The number of hidden nodes used to train the NN ranged from one to ten.

The results obtained are from networks that produced the best results when

tested on new data. Training, testing and validation of the data was done.
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The NN model with five hidden nodes was selected as the best. This network

had 69196 steps until all absolute partial derivatives of the error function were

smaller than 0.01 (the default threshold). If the error function is equal to the

negative log-likelihood function, the error refers to the likelihood, as is to cal-

culate the AIC. The AIC’s for each of the models was used to determine the

model that minimises the information loss.

Figure 5.2: Model 1 errors obtained for each number of hidden nodes

The sum of squared error was plotted against the number of hidden nodes

to determine the number of hidden nodes that minimises the error. The re-

sults from the Figure 5.2 showed better accuracy as the number of hidden

nodes was increased.

The calculation from the pyramid rule from Masters (1993) indicated that

between four and five hidden nodes should be used. This was confirmed by

the ROC results for the NN model with five hidden nodes which had the high-

est AUC values. The predictive validity of the neural network model with five

hidden nodes is shown using the ROC curves obtained from the validation and

test sets which are shown below:
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Figure 5.3: Model 1(Validation set) ROC curve with five hidden nodes and an

AUC=0.850591716

Figure 5.4: Model 1 (Test set) ROC curve with five hidden nodes and an

AUC=0.850591716
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The NN with five hidden nodes had an AUC of 0.85 for both the validation

and the test sets. This shows that the model developed has the ability to

generalise its results and as a result there was no over-fitting in the model.

The network architecture for the final selected model is summarised below:

Table 5.8: Network architecture for the best neural network model.

Number of hidden layers 1

Number of hidden nodes 5

Number of input variables 11

Number of output variables 1

Activation function logistic

Algorithm Rprop

Number of repititions 20

Threshold 0.01

Figure 5.5: Neural network with five hidden nodes

Figure 5.5 is a diagrammatic representation of the network which had the

highest predictive ability. It has eleven input nodes, one hidden layer and
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five hidden nodes in the layer. The output layer also consists of one hidden

node. This network was obtained by normalising the variables and applying

the Rprop algorithm for the training, test and validation sets. The weights as-

sociated with each of the nodes are also shown in Figure 5.5 and the respective

R-code that was used is shown in Appendix A1 to A15.

5.2.6 Logistic regression vs. neural network model re-

sults

Both the final LR and NN models developed had a training, validation and

test set ratio of 50:30:20. The models developed both had high predictive va-

lidity, however each of the models had different limitations in the development

process.

• The logistic regression model was relatively easier to develop and this

may be attributed to the fact that its easy to interpret the model pa-

rameters and its easier to use. The neural network predictor variables

are difficult to interpret and hence the model is considered a black box;

• The logistic regression model took a relatively short time to develop com-

pared to the neural networks. The neural models had high development

time as there is no set method for constructing the network architecture.

Furthermore, the networks required very high training times to allow

the model to learn the patterns in the data. This resulted in higher

computational time required for the neural networks;

• The results obtained from both the logistic regression and neural network

models were impressive with AUC values of 0.75 and 0.85 on the test

data. Although both AUC values were high, the neural network model

outperformed the logistic regression model in terms of predictive ability;

• The results from logistic regression showed that inflation, regulatory

quality and public debt were the best predictors of the risk of debt
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rescheduling. The neural network results can not be broken down how-

ever, we used Garson’s method separately to establish that GDP per

capita, exports as a percentage of GDP and public debt as a percentage

of GDP and political stability were important variables to consider in

the model;

• The disadvantages of the LR model was that model assumptions had to

be met while the neural networks were more flexible as there were no

assumptions that needed to be met.

5.3 Conclusion

We measured and compared the discriminative ability of LR and NN in classify-

ing countries that will reschedule their debt and those that will not reschedule

their debt with the use of the ROC curves. The AUC for each ROC curve

was an indication of how well each discriminates against risky and less risky

countries in terms of debt rescheduling. The ROC curves for the best perform-

ing LR and NN models were plotted. The results show that the NN model

has better discriminatory ability as compared to the LR model as it has a

higher AUC value. However, LR allowed us to determine the most predictive

explanatory variables associated with debt rescheduling. The model develop-

ment process showed some of the advantages and disadvantages of the different

model building methods.
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Chapter 6

Conclusions and Discussions

1. In our study, we reviewed and assessed the application of NN and LR in

modelling the risk of debt rescheduling. The study showed how statistical

and machine learning models may be used by financial institutions, policy

makers and investors to better understand the debt rescheduling factors.

The artificial NN model demonstrated a higher discriminatory power as

compared to LR, yielding a higher AUC as compared to the latter model.

2. It is difficult to draw general conclusions from this study and prior stud-

ies as to which model is superior since the results from each study are

based on specific data sets used. The selection of a superior model should

therefore be based on the advantages of a particular method as well as its

intended purpose of study. NN are prone to over-fitting when it comes

to generalizability and their discriminatory ability is dependent on the

application data set. Furthermore, it is difficult to interpret the results

and identify the important predictors. LR on the other hand requires

more statistical knowledge and fails to detect complex relationships be-

tween the predictor and explanatory variables unless it is identified by

the modeller (Ayer et al., 2010).

3. The variables which were concluded to be the best predictors of debt

rescheduling from the LR models were inflation, regulatory quality and

public debt which are all indications of a country’s financial, political and
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economic outlook. The results in this study are in line with the study by

Canuto et al. (2012) who identified countries that were classified as being

less risky in their research as having a high income per capita, low public

debt to GDP ratio, low inflation and low external debt. Our work had

some limitations in terms of choosing the explanatory variables as most

studies use between 10 to 25 explanatory variables, however, we overcame

this by selecting the variables that were seen as most significant in the

country debt rescheduling literature to select our predictor variables.

4. Despite what the term suggests at first glance, country risk is not only

limited to the governmental or sovereign interference and relationship

with business operations. Country risk also refers to the effects of an

unstable business environment, particularly other sources of risk that

may hinder the optimum operation of any foreign organisation abroad.

Put in other words, country risk emanates from both the public and

private business sectors (Sviderske, 2014).

5. There is not any comprehensive theory of country risk. As such, the list

factors that determine country risk is not exhaustive and none of the

predictor variables used in the different studies weighs more than the

other. This allows flexibility in country risk analysis in the sense that

each case can be decided according to its unique traits as opposed to a

mechanical application of variables that are predetermined and cast in

stone. Furthermore, the lack of a ‘closed list’ opens up to the possibility

of the emergence of new sources of risk and instability and such is crucial

considering the rapidly changing environment in which business is being

conducted. It also allows for the modelling of different financial, eco-

nomic and political situations applicable in different countries and helps

to prevent debt rescheduling. However, a detailed and exhaustive clas-

sification of this concept enables in-depth and extensive discussions and

evaluation of the varying and distinct sources of risk, and by so doing

developing a better understanding of country risk. Researchers that are

97



analysing country risk are not adapting the concept to the increasingly

phenomenon of globalisation. Globalisation has become a reality and

as such, there is need to align the concept of country risk analysis to

globalisation (Sviderske, 2014).

6. An analysis of the scientific literature compels one to arrive to the con-

clusion that country risk appears to be very unsystematic and equally

unpredictable in nature taking into consideration the 1960’s and 1970’s

political crises and debt crises as well as the recent Greek debt crisis and

Brexit (Bouchet et al., 2003). As such, the outcome of a country risk

analysis are highly instructive, but not always conclusive.

6.1 Concluding Remarks

The research used the variables applied in prior studies to assess the im-

portant predictor variables of country risk. A NN model and a LR model

were built using economic, financial and political risk variables obtained

from the World Bank. The results showed that inflation, public debt

and regulatory quality are the best predictors of country risk and that a

NN model has a higher discriminatory ability when applied on this data

sample.

The recommendations for further study are that the countries assessed

should be broken down by their different continents to compare the model

performances across different economic climates. Furthermore, inclusion

of more relevant variables that are more specific for example change of

government or binary variables stating whether there was a war or not in

the country, as well as indicators to more recent crises may be necessary

in a bid to adapt to globalisation.
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APPENDIX A

Figure 6.1: Model 1 ROC curve with one hidden node and an AUC=

0.7307692308
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Figure 6.2: Model 1 ROC curve with two hidden nodes and an

AUC=0.7337278107

Figure 6.3: Model 1 ROC curve with three hidden nodes and an

AUC=0.7647928994
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Figure 6.4: Model 1 ROC curve with four hidden nodes and an

AUC=0.8106508876

Figure 6.5: Model 1 ROC curve with six hidden nodes and an

AUC=0.7810650888
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Figure 6.6: Model 1 ROC curve with seven hidden nodes and an

AUC=0.6479289941

Figure 6.7: Model 1 ROC curve with eight hidden nodes and an

AUC=0.6982248521
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Figure 6.8: Model 1 ROC curve with nine hidden nodes and an

AUC=0.6982249

Figure 6.9: Model 1 ROC curve with ten hidden nodes and an

AUC=0.6701183432
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APPENDIX A1 

R Code for Neural Networks 

A.1 Importing Data 

library("neuralnet", lib.loc="C:/Program Files/R/R-3.3.2/library") 

library(readxl) 

countryrisk <- read_excel("C:/Users/C Ncube/Desktop/Analysis and 

Results/countryrisk.xlsx", sheet = "Sheet1", na = "empty") 

View(countryrisk) 

A.2 Data Preparation 

set.seed(240) 

CR<-countryrisk 

View(CR) 

CRA <- data.frame(CR[,-1])  

View(CRA) 

CRA1<-data.frame(CRA[,-1]) 

View(CRA1) 

CRA2<-na.omit(CRA1) 

View(CRA2) 

CRA3<-as.data.frame(CRA2[,1:1]) 

CRA3$debt1<-ifelse(CRA3>0,1,0) 

View(CRA3) 

CRA4<-data.frame(CRA3[,-1]) 

A.3 Normalising data using min max normalisation 

maxs<-apply(CRA2[,2:12],2,max) 

mins<-apply(CRA2[,2:12],2,min) 
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C<-as.data.frame(scale(CRA2 [,2:12],center=mins, scale=maxs-mins)) 

A<-cbind.data.frame(CRA4,C) 

View(A) 

A.4 Training, validation and test sets (50:30:20) 

trainsample<-floor(0.50*nrow(A)) 

set.seed(123) 

View(trainsample) 

remsample<-sample(seq_len(nrow(A)), size=trainsample) 

View(remsample) 

trainsample <- A[remsample,] 

View(trainsample) 

valid<-A[-remsample,] 

View(train) 

View(valid) 

Validsample<-floor(0.60*nrow(valid)) 

validsample<-sample(seq_len(nrow(valid)), size=Validsample) 

View(validsample) 

validset<-valid[validsample,] 

testset<-valid[-validsample,] 

variable.names(trainsample) 

View(testset) 

A.5 Variable selection using Garson’s method 

cols<-colorRampPalette(c('lightgreen','lightblue')) 

G<-gar.fun("CRA2...1.1.",CR.nn1,bar.plot=T,struct=NULL,x.lab=NULL, y.lab=NULL, 

wts.only = F) 

xlab(G) 
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A.6 One hidden node 

CR.nn1 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation         

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw              

+ControlOfCorruption+GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 1, threshold = 0.01,         

                   stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = FALSE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)  

T1 <- subset(testset, select = c("ExportsPercentageOfGDP", 

"ExtDebtPercentageofGDP","Inflation","GDPPerCapita","GDPGrowth","PoliticalStabilityN

oViolence","RegulatoryQuality" , "RuleOfLaw", "ControlOfCorruption" 

,"GovernmentEffectiveness","PublicDebtPercentageGDP"))       

a1 <- compute(CR.nn1, T1, rep=1)        

results<-data.frame(actual = testset$CRA2...1.1., prediction = a1$net.result) 

results$prediction <- round(results$prediction) 

n1=table(results) 

accuracy1=sum(n1[1,1])/sum(n1)  

plot(CR.nn1, rep="best") 

pred.nn1 <- prediction(results$prediction, testset$CRA2...1.1.) 

perf.nn1 <- performance(pred.nn1, 'tpr', 'fpr') 

plot(perf.nn1,colorize=TRUE) 

auc.tmp1<- performance(pred.nn1,"auc") 

auc1<-as.numeric(auc.tmp1@y.values) 
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A.7 Two hidden nodes 

CR.nn2 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation                  

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption +GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 2, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = TRUE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)    

CR.nn2 

a2 <- compute(CR.nn2, T1) 

View(a1) 

results2<-data.frame(actual = testset$CRA2...1.1., prediction = a2$net.result) 

results2$prediction <- round(results2$prediction) 

n2=table(results) 

accuracy2=sum(n2[1,1])/sum(n2)  

View(accuracy2) 

pred.nn2 <- prediction(results2$prediction, testset$CRA2...1.1.) 

perf.nn2 <- performance(pred.nn2, 'tpr', 'fpr') 

plot(perf.nn2,colorize=TRUE) 

auc.tmp2<- performance(pred.nn2,"auc") 

auc2<-as.numeric(auc.tmp2@y.values) 

auc2 

118



A8 Three hidden nodes 

CR.nn3 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation           

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption+GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 3, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = FALSE 

                    , exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)  

CR.nn3 

a3 <- compute(CR.nn3, T1) 

results3<-data.frame(actual = testset$CRA2...1.1., prediction = a3$net.result) 

View(results3) 

results3$prediction <- round(results3$prediction) 

n3=table(results) 

accuracy3=sum(n3[1,1])/sum(n3)  

pred.nn3 <- prediction(results3$prediction, testset$CRA2...1.1.) 

perf.nn3 <- performance(pred.nn3, 'tpr', 'fpr') 

plot(perf.nn3,colorize=TRUE) 

auc.tmp3<- performance(pred.nn3,"auc") 

auc3<-as.numeric(auc.tmp3@y.values) 

auc3 
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A.9 Four hidden nodes 

CR.nn4 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation          

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption +GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 4, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = TRUE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)    

CR.nn4 

a4 <- compute(CR.nn4, T1) 

results4<-data.frame(actual = testset$CRA2...1.1., prediction = a4$net.result) 

View(results4) 

results4$prediction <- round(results4$prediction) 

n4=table(results) 

accuracy4=sum(n4[1,1])/sum(n4)  

View(accuracy4) 

pred.nn4 <- prediction(results4$prediction, testset$CRA2...1.1.) 

perf.nn4 <- performance(pred.nn4, 'tpr', 'fpr') 

plot(perf.nn4,colorize=TRUE) 

auc.tmp4<- performance(pred.nn4,"auc") 

auc4<-as.numeric(auc.tmp4@y.values) 

auc4 
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A.10 Five hidden nodes 

CR.nn5 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation                 

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption+GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 5, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = TRUE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)   

CR.nn5 

a5 <- compute(CR.nn5, T1) 

results5<-data.frame(actual = testset$CRA2...1.1., prediction = a5$net.result) 

results5$prediction <- round(results5$prediction) 

n5=table(results) 

accuracy5=sum(n5[1,1])/sum(n5)  

plot(CR.nn5, rep="best") 

pred.nn5 <- prediction(results5$prediction, testset$CRA2...1.1.) 

perf.nn5 <- performance(pred.nn5, 'tpr', 'fpr') 

plot(perf.nn5,colorize=TRUE) 

auc.tmp5<- performance(pred.nn5,"auc") 

auc5<-as.numeric(auc.tmp5@y.values) 

auc5 
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A.11 Six hidden nodes 

CR.nn6 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation              

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption+GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 6, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = TRUE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)  

CR.nn6 

a6 <- compute(CR.nn6, T1) 

results6<-data.frame(actual = testset$CRA2...1.1., prediction = a6$net.result) 

View(results6) 

results6$prediction <- round(results6$prediction) 

n6=table(results) 

accuracy6=sum(n6[1,1])/sum(n6)  

View(accuracy6) 

pred.nn6 <- prediction(results6$prediction, testset$CRA2...1.1.) 

perf.nn6 <- performance(pred.nn6, 'tpr', 'fpr') 

plot(perf.nn6,colorize=TRUE) 

auc.tmp6<- performance(pred.nn6,"auc") 

auc6<-as.numeric(auc.tmp6@y.values) 

auc6 
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A.12 Seven hidden nodes 

CR.nn7 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation                  

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption +GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 7, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = TRUE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)  

a7 <- compute(CR.nn7, T1) 

results7<-data.frame(actual = testset$CRA2...1.1., prediction = a7$net.result) 

pred.nn7 <- prediction(results7$prediction, testset$CRA2...1.1.) 

perf.nn7 <- performance(pred.nn7, 'tpr', 'fpr') 

plot(perf.nn7,colorize=TRUE) 

auc.tmp7<- performance(pred.nn7,"auc") 

auc7<-as.numeric(auc.tmp7@y.values) 

auc7 

CR.nn7 
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A.13 Eight hidden nodes 

CR.nn8 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation               

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption+GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 8, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = TRUE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)   

a8 <- compute(CR.nn8, T1) 

results8<-data.frame(actual = testset$CRA2...1.1., prediction = a8$net.result) 

pred.nn8 <- prediction(results8$prediction, testset$CRA2...1.1.) 

perf.nn8 <- performance(pred.nn8, 'tpr', 'fpr') 

plot(perf.nn8,colorize=TRUE) 

auc.tmp8<- performance(pred.nn8,"auc") 

auc8<-as.numeric(auc.tmp8@y.values) 

auc8 

CR.nn8 
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A.14 Nine hidden nodes 

CR.nn9 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation                

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw             

+ControlOfCorruption+GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 9, threshold = 0.01,         

                    stepmax = 1e+05, rep = 20, startweights = NULL,  

                    learningrate.limit = NULL,  

                    learningrate.factor = list(minus = 0.5, plus = 1.2),  

                    learningrate=NULL, lifesign = "none",  

                    lifesign.step = 2000, algorithm = "rprop+",  

                    err.fct = "sse", act.fct = "logistic",  

                    linear.output = TRUE, exclude = NULL,  

                    constant.weights = NULL, likelihood = TRUE)   

a9 <- compute(CR.nn9, T1) 

results9<-data.frame(actual = testset$CRA2...1.1., prediction = a8$net.result) 

pred.nn9 <- prediction(results9$prediction, testset$CRA2...1.1.) 

perf.nn9 <- performance(pred.nn9, 'tpr', 'fpr') 

plot(perf.nn9,colorize=TRUE) 

auc.tmp9<- performance(pred.nn9,"auc") 

auc9<-as.numeric(auc.tmp9@y.values) 

auc9 
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A.15 Ten hidden nodes 

CR.nn10 <- neuralnet(CRA2...1.1.~ 

ExportsPercentageOfGDP+ExtDebtPercentageofGDP+Inflation               

+GDPPerCapita+GDPGrowth+PoliticalStabilityNoViolence+RegulatoryQuality+RuleOfLaw

+ControlOfCorruption+GovernmentEffectiveness+PublicDebtPercentageGDP,trainsample, 

hidden = 10, threshold = 0.01,         

                     stepmax = 1e+05, rep = 20, startweights = NULL,  

                     learningrate.limit = NULL,  

                     learningrate.factor = list(minus = 0.5, plus = 1.2),  

                     learningrate=NULL, lifesign = "none",  

                     lifesign.step = 2000, algorithm = "rprop+",  

                     err.fct = "sse", act.fct = "logistic",  

                     linear.output = TRUE, exclude = NULL,  

                     constant.weights = NULL, likelihood = TRUE)  

a10 <- compute(CR.nn10, T1) 

results10<-data.frame(actual = testset$CRA2...1.1., prediction = a10$net.result) 

pred.nn10 <- prediction(results10$prediction, testset$CRA2...1.1.) 

perf.nn10 <- performance(pred.nn10, 'tpr', 'fpr') 

plot(perf.nn10,colorize=TRUE) 

auc.tmp10<- performance(pred.nn10,"auc") 

auc10<-as.numeric(auc.tmp10@y.values) 

auc10 
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APPENDIX B 

SAS Code  

B.1   Importing Data 

 

/*Data Preparation: Importing Data into SAS*/ 

 

PROC IMPORT OUT= WORK.Countryrisk  

            DATAFILE= "E:\countryrisk.xlsx"  

            DBMS=EXCEL REPLACE; 

     RANGE="Sheet1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

RUN; 

 

B.2   Data Preparation 

 

/*Data Preparation: Making the dependent variable dichotomous*/ 

 

DATA Debtrescheduling; 

  SET Countryrisk; 

  Debt1=.; 

IF (.<Debt<=0)THEN Debt1=0; 

IF (Debt>0) THEN Debt1=1; 

drop Debt; 
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/* Assessing the variable attributes*/ 

 

PROC CONTENTS VARNUM DATA=Debtrescheduling; 

RUN; 

 

/* Converting variables that were coded in SAS as characters to numeric*/ 

 

data Debtrescheduling1; set Debtrescheduling;  

       Inflation_numeric = input(Inflation,4.); 

       ExtDebtPercentageofGDP_ac = ExtDebtPercentageofGDP_numeric*1; 

       ExtDebtPercentageofGDP_numeric = input(ExtDebtPercentageofGDP,$13.); 

       PublicDebtPercentageGDP_ac = PublicDebtPercentageGDP_numeric*1; 

       PublicDebtPercentageGDP_numeric = input(PublicDebtPercentageGDP,$6.); 

       drop ExtDebtPercentageofGDP; 

       drop PublicDebtPercentageGDP; 

       drop Inflation; 

  run; 

 

B.3  Descriptive statistics 

 

/*Descriptive statistics for countries that rescheduled their debt*/  

 

proc contents data=Debtrescheduling1; 

run; 

proc means data=Debtrescheduling1 (where=(Debt1=1)) n nmiss min max mean std; 

  var  

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 
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GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric; 

  run; 

 

/*Descriptive statistics for countries that did not reschedule their debt*/  

 

proc means data=Debtrescheduling1 (where=(Debt1=0)) n nmiss min max mean std; 

  var  

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric; 

  run; 

proc freq Data=Debtrescheduling1; 

  tables Debt1; 

run; 
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DATA Debt1; 

  SET Debtrescheduling1; 

 

  /*Histogram showing the percentage of debt rescheduling countries to non-debt 

rescheduling countries*/ 

 

proc univariate data=Debtrescheduling1 noprint; 

   histogram Debt1 / midpoints=0.0 0.5 hoffset=10; 

title 'Frequency of debt rescheduling vs. non-debt rescheduling countries'; 

run; 

 

/*Testing for Multicollinearity*/ 

 

proc corr data = Debtrescheduling1; 

var  

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric; 

run; 

 

/* Calculating the variance inflation factor*/ 

 

proc reg data=Debtrescheduling1; 
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model Debt1= 

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric 

  /tol vif; 

  run; 

 

/*Principal Component Analysis*/ 

 

proc princomp data =Debtrescheduling1; 

var ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric ; 

run; 
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B.4   Univariate Analysis 

 

/*Univariate Analysis*/ 

 

proc logist data=Debtrescheduling1 descending; 

title 'Exports as a Percentage of GDP as a predictor'; 

model Debt1 = ExportsPercentageOfGDP/ rsquare; 

run; 

 

proc logist data=Debtrescheduling1 descending; 

title 'External debt as a percentage of GDP as a predictor'; 

model Debt1 = ExtDebtPercentageofGDP_numeric/ rsquare; 

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'Inflation as a predictor'; 

model Debt1 = Inflation_numeric/ rsquare; 

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'GDP Per Capita as a predictor'; 

model  Debt1=  GDPPerCapita/ rsquare; 

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'GDP growth as a predictor' 

model Debt1 =  GDPGrowth / rsquare; 

run; 
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proc logist data=Debtrescheduling1  descending; 

title 'Political stability no violence as a predictor'; 

model Debt1 = PoliticalStabilityNoViolence/ rsquare;  

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'Regulatory quality as a predictor'; 

model Debt1 =  RegulatoryQuality/ rsquare;  

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'Rule of Law as a predictor'; 

model Debt1 = RuleOfLaw/ rsquare; 

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'Control Of Corruption as a predictor'; 

model Debt1 = ControlOfCorruption/ rsquare; 

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'Government effectiveness as a predictor'; 

model Debt1 = GovernmentEffectiveness/ rsquare; 

run; 

 

proc logist data=Debtrescheduling1  descending; 

title 'Public Debt as a Percentage GDP as a predictor'; 

model Debt1 = PublicDebtPercentageGDP_numeric/ rsquare; 

run; 

quit; 
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B.5   Multiple logistic regression 

/* Splitting the data into Training (50%), Validation (30%) and Test (20%) sets*/ 

 

data split1; 

retain seed 384747; 

set Debtrescheduling1; 

if ranuni(seed) < .5 then selected = 1; 

else if 0.5<ranuni(seed)<0.8 then selected = 2; 

else selected=3; 

run; 

 ods graphics on; 

DATA Training; 

Set split1(where=(selected=1)); 

proc logistic data=Training descending plots=all; 

 model Debt1(event="1")= 

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  
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lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc1; 

   run; 

   ods graphics off; 

   ods graphics on; 

 DATA Validation; 

 Set Split1(where=(selected=2)); 

proc logistic data=Validation descending plots=all; 

 model Debt1 (event="1")= 

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc2; 
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run; 

   ods graphics off; 

 ods graphics on; 

DATA Test00; 

 Set Split1(where=(selected=3)); 

proc logistic data=Test00 descending plots=all; 

 model Debt1 (event="1")= 

  ExportsPercentageOfGDP 

  GDPPerCapita 

  RuleOfLaw 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc3; 

   run; 

   ods graphics off; 

ods graphics on; 

DATA Test01; 

 Set Split1(where=(selected=3)); 

proc logistic data=Test01 descending plots=all; 

 model Debt1 (event="1")= 

  Inflation_numeric 

  RegulatoryQuality 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  

   rsquare  
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   ctable 

   link=logit 

   scale=deviance 

   outroc=roc4; 

   run; 

   ods graphics off; 

 

/* Splitting the data into Training (40%), Validation (30%) and Test (20%) sets*/ 

 

data split2; 

retain seed 384747; 

set Debtrescheduling1; 

if ranuni(seed) < .4 then selected1 = 1; 

else if 0.4<ranuni(seed)<0.7 then selected1 = 2; 

else selected1=3; 

run; 

 ods graphics on; 

DATA Training1; 

Set split2(where=(selected1=1)); 

proc logistic data=Training1 descending plots=all; 

 model Debt1(event="1")= 

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 
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scale=deviance 

   outroc=roc6; 

   run; 

   ods graphics off; 

 ods graphics on; 

 

DATA Test10; 

 Set Split2(where=(selected1=3)); 

proc logistic data=Test10 descending plots=all; 

 model Debt1 (event="1")= 

  ExportsPercentageOfGDP 

  PoliticalStabilityNoViolence 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc7; 

   run; 

   ods graphics off; 

ods graphics on; 

 

DATA Test11; 

 Set Split2(where=(selected1=3)); 

proc logistic data=Test11 descending plots=all; 

 model Debt1 (event="1")= 

  ExportsPercentageOfGDP 

  GDPPerCapita 

  /selection=backward  
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lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc7; 

   run; 

   ods graphics off; 

 ods graphics on; 

 

/* Splitting the data into Training (45%), Validation (35%) and Test (20%) sets*/ 

 

data split3; 

retain seed 384747; 

set Debtrescheduling1; 

if ranuni(seed) < .45 then selected2 = 1; 

else if 0.45<ranuni(seed)<0.80 then selected2 = 2; 

else selected2=3; 

run; 

 ods graphics on; 

DATA Training2; 

Set split3(where=(selected2=1)); 

proc logistic data=Training2 descending plots=all; 

 model Debt1(event="1")= 

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 
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  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc8; 

   run; 

   ods graphics off; 

   ods graphics on; 

 DATA Validation2; 

 Set Split3(where=(selected2=2)); 

proc logistic data=Validation2 descending plots=all; 

 model Debt1 (event="1")= 

  ExportsPercentageOfGDP 

  ExtDebtPercentageofGDP_numeric 

  Inflation_numeric 

  GDPPerCapita 

  GDPGrowth  

  PoliticalStabilityNoViolence 

  RegulatoryQuality 

  RuleOfLaw 

  ControlOfCorruption 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  
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rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc9; 

   run; 

   ods graphics off; 

 ods graphics on; 

 DATA Test20; 

 Set Split3(where=(selected2=2)); 

proc logistic data=Test20 descending plots=all; 

 model Debt1 (event="1")= 

  ExportsPercentageOfGDP 

  GovernmentEffectiveness 

  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc10; 

   run; 

   ods graphics off; 

 ods graphics on; 

 DATA Test21; 

 Set Split3(where=(selected2=2)); 

proc logistic data=Test21 descending plots=all; 

 model Debt1 (event="1")= 

  Inflation_numeric 

  GDPPerCapita 
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  PublicDebtPercentageGDP_numeric 

  /selection=backward  

   lackfit  

   rsquare  

   ctable 

   link=logit 

   scale=deviance 

   outroc=roc11; 

   run; 

   ods graphics off; 
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Appendix C

Table 1: Country risk data
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Table 2: Country risk data
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Table 3: Country risk data
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Table 4: Country risk data
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Table 5: Country risk data
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Table 6: Country risk data
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Table 7: Country risk data
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Table 8: Country risk data
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