
School of Computer Science and Applied Mathematics

Crowd Behavioural Simulation via
Multi-Agent Reinforcement Learning

Sheng Yan Lim (0710918P)
Supervised by Prof. Clint Van Alten and Mr. Pravesh Ranchod

August 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/188775606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Crowd simulation can be thought of as a group of entities interacting with one another. Tra-
ditionally, an animated entity would require precise scripts so that it can function in a virtual
environment autonomously. Previous studies on crowd simulation have been used in real world
applications but these methods are not learning agents and are therefore unable to adapt and
change their behaviours. The state of the art crowd simulation methods include flow based, par-
ticle and strategy based models. A reinforcement learning agent could learn how to navigate,
behave and interact in an environment without explicit design. Then a group of reinforcement
learning agents should be able to act in a way that simulates a crowd. This thesis investigates
the believability of crowd behavioural simulation via three multi-agent reinforcement learning
methods. The methods are Q-learning in multi-agent markov decision processes model, joint
state action Q-learning and joint state value iteration algorithm. The three learning methods are
able to produce believable and realistic crowd behaviours.
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Chapter 1

Introduction

One of the challenges in crowd simulation is to generate large background groups of virtual
agents in a believable manner [Torrey 2010]. Applications of crowd simulation can be found
in architecture, computer graphics, physics, robotics, safety science, training systems and soci-
ology [Thalmann and Musse 2007]. Methods to simulate crowds and their behaviour include
rule-based approach where the agents follow some predefined scripts, flow models where indi-
viduals are non-distinguishable, particle models where crowds are particles and move according
to the physics of particle motion and strategy based models where crowds follow probabilistic
behavioural rules.

Animating crowd behaviour started with the work done by Reynolds [1987]. It was argued
that group behaviour is just the result of individuals (termed boids) interacting with one an-
other. Therefore, by simulating individual, small and unsophisticated boids, a more complex
behaviour would develop through the interactions. This method was inspired by observing be-
haviours present in flocks of birds and schools of fishes.

There are two main directions in crowd simulations, realism of behavioural aspects and high-
quality visualisation [Thalmann and Musse 2007]. In the former, simulations are achieved in
a simple 2D environment so that more quantitative validation can be compared to real world
observations, for example, a simulated emergency evacuation and a hazard drill. In the latter
idea, one considers visual results that can be presented in a convincing and believable manner,
for example, animated movies and 3D games.

In machine learning, reinforcement learning [Sutton and Barto 1998] is a learning paradigm
where a learning agent is able to navigate an unknown environment by performing actions that
cause transitions between states within the environment. A numerical reward is associated with
each transition of states. The objective of a reinforcement learning agent is to maximise this
numerical reward based on the actions performed. The key aspect of reinforcement learning
is that an agent learns through interactions within an environment by trial-and-error. A frame-
work called Markov Decision Processes is often used for representing reinforcement learning
problems.

Two notable methods for solving reinforcement learning problems are Q-learning and value
iteration. The value iteration algorithm, a class of dynamic programming algorithms, attempts
to compute optimal policies in a model-based environment. The Q-learning algorithm, a class
of temporal-difference learning algorithms, updates the estimates based on previously learned
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estimates (experiences) in a model-free environment.

A multi-agent reinforcement learning task is similar to the single-agent approach with the intro-
duction of more agents interacting with one another in an environment. However, reinforcement
learning was initially designed for single-agent applications, adding more agents that apply rein-
forcement learning and interacting simultaneously in a shared environment is often discouraged
as the guarantee of convergence is violated [Torrey 2010; Sutton and Barto 1998].

Fortunately, the framework of Markov games, derived from game theory is able solve the multi-
agent reinforcement learning problem. However, Markov games are not without their limits
and complications. The first and foremost problem is the exponential explosion of state space
making a large multi-agent system impractical to implement. The exponential state space is
due to the fact that agents not only need to coordinate but also take into account the state of the
every other agent in the environment. Secondly, solving a game theory problem requires the
searching of one equilibrium (global optimum) from multiple equilibria (local optimum) and
this is generally difficult. Despite the restrictions, Markov games still provide a good theoreti-
cal framework for multi-agent reinforcement learning.

Reynolds’s argument that a crowd behaviour is the consequence of interactions between agents
and the notion that reinforcement learning is the study of interactions of an agent in an envi-
ronment, makes it logical to combine these two ideas together. Furthermore, we can extend
reinforcement learning in a single-agent environment to a multi-agent environment as crowd
simulation is inherently a multi-agent problem. Consequently, we propose to study the multi-
agent reinforcement learning paradigm through crowd simulation.

To investigate this proposition, we have formulated the following research question:

Given a 2D environment with a set of actors and objectives, can multi-agent re-
inforcement learning algorithm be used to produce policies that create believable
crowd behaviour?

To answer the question, we present four methods of crowd behaviour simulation where the
crowd behaviour being examined is that of a group of agents navigating to the goal state.

The four methods of crowd simulation are rule based, multi-agent Q-learning, joint-state-action
Q-learning and joint-state value iteration. In the rule based approach, the simulation agents
navigate around the environment using a set of defined rules. In multi-agent Q-learning, we
will explore the effectiveness of extending the single-agent Q-learning method to a multi-agent
environment. The first two methods are adapted from the work of [Torrey 2010]. In joint-state-
action Q-learning, the agents will learn to navigate in the environment using the Q-learning
method with a joint-state-action approach. To our knowledge, we believe our version of the
joint-state-action Q-learning is a novel approach. Lastly, we will extend the value iteration
method from the single-agent environment to a multi-agent environment. The comparisons be-
tween these four methods in the environment considered in this thesis have not been considered
elsewhere.

This research thesis is organised as follows: The background and related work is covered in
chapter 2. The chapter contains a discussion of reinforcement learning background including
both single-agent and multi-agent approaches; the discussion also covers methods of crowd
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simulation. Chapter 3 contains the research question for this research; it also explains the
multi-agent environments that are used in the experiments and the method of measuring the
effectiveness of the four crowd behaviour simulation methods. Chapters 4 and 5 present the
experiments and analyses of the four testing methods. Lastly, chapter 6 concludes the thesis
and presents a brief overview of future work.
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Chapter 2

Background and Related Work

2.1 Reinforcement Learning
Reinforcement Learning is a machine learning paradigm wherein an agent learns to achieve
objectives through experience by means of exploring the world where rewards are associated
with each step of the learning phase. Other types of machine learning, e.g. supervised and
unsupervised learning, are widely used but they do not learn while interacting with the world
[Sutton and Barto 1998].

In general, the framework of reinforcement learning has three basic components: Policy, Re-
ward function, and Value function [Sutton and Barto 1998]. A policy dictates the agent’s deci-
sion at any given time. It is a mapping from the observed state to an action when the policy is
deterministic. A deterministic policy is also denoted by π(s) ∈ A = {a1, a2, ..., an} where s is
a state and A is a set of n actions. On the other hand, a non-deterministic or stochastic policy,
π(s, a), is the probability of choosing action a in state s.

A reward function is a guiding mechanism for the learning agent when exploring the unknown
environment. It is a mapping of states (usually including the current state and next state) and
actions to a number (the reward). The reward function can take the form of lookup table which
is the simplest representation. The agent’s objective is defined through optimising the reward
function. The reward that the agent receives is also known as the immediate reward. Note that
the term penalty is sometimes used to refer to a negative reward.

The highest immediate reward may not be the best action as the long-term reward could be
a better option. For example, consider the simple scenario shown in figure 2.1. The green cell
(0, 1) is the goal with the associated reward of 10, black cells (0, 2) and (1, 2) are obstacles
and they carry −10 penalty, the red cell (2, 3) carries a penalty of −1 and each of the empty
cells have a reward of 0. An agent starts at state s (1, 3) , as indicated in the figure and tries to
navigate to the goal. Consider the two actions up and down. The action that yields the highest
reward is up, giving the agent an immediate reward of 0 which is better than −1 if choosing
the action down. However, an obstacle ahead of that new resultant state will cause a negative
impact for which the reward received will be −10. Therefore, the highest immediate reward
(greedy approach) does not mean that it is the best option asymptotically.
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Figure 2.1: Example showing immediate and long-term rewards

Unlike the reward function that specifies an agent’s immediate reward, a value function provides
a long-term reward. The value of a state is the sum of rewards that an agent can collect from
that state by following the specified policy.

One important idea in reinforcement learning is the balance of exploitation and exploration. In
exploitation, the agent follows some previously known policy to obtain higher rewards. How-
ever, in exploration, the agent tries to discover a new policy to gain higher future rewards. A
method is provided later as an approach to decide when an agent should exploit or explore.

Since an agent interacts with the world, reinforcement learning is suitable for solving prob-
lems where the environment is unknown and this is called model-free reinforcement learning.
Similarly, if the environment’s dynamics are known, it is called model-based reinforcement
learning.

2.2 Single Agent Reinforcement Learning
Reinforcement learning attempts to solve problems that can be formulated as a Markov De-
cision Process (MDP). The definitions and equations discussed in this section are taken from
Sutton and Barto [1998], unless stated otherwise.

A finite MDP is a tuple
M = (S,A, P,R),

where S = {s1, s2, ..., sn} is a finite set of all possible states, A = {a1, a2, ..., am} is a finite
set of all actions, P : S × A × S → [0, 1] is the transition probability function; for s, s′ ∈ S
and a ∈ A, P (s, a, s′) is the probability that the agent ends in state s′ given that the agent
was in state s and took action a. Lastly, R : S × A × S → R is the reward function where
r = R(s, a, s′) is the real valued reward that the agent receives in state s′ given that the agent
was in state s and took action a.

Note that throughout this paper, we will focus solely on discrete state spaces, where states
can be represented using lookup tables or similar structures. The discrete state space represen-
tation allows the agent to interact in the environment over a sequence of discrete time steps,
t = 0, 1, 2, 3, ..., T . At each time step t, the agent is placed in the state st and chooses an action
at. In the next time step t + 1, the agent has moved to the new state st+1 and receives a reward
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rt+1. This process ends when t = T , which is the final time step. Moreover, an episode denotes
the sequence of agent-environment interactions from t = 0 to t = T or from t = 0 until the
agent arrives at a terminal or absorbing state.

The MDP environment is stationary. That is, the states will remain unchanged over the du-
ration of the episodes.

The objective of a reinforcement learning agent is to choose actions so that the sum of the
discounted rewards it receives over the future is maximised. The sum of discounted future
rewards is also known as the discounted return and it is defined as

Rt =
∞∑
i=0

γiri+t+1

where 0 ≤ γ ≤ 1 is the discount rate which affects the weighting of future rewards. If γ = 0,
the learning agent will then disregard future rewards and will be interested in immediate rewards
only. As γ approaches 1, the learning agent increasingly takes future rewards into consideration
and thus being far-sighted.

The value function of a policy π, denoted V π : S → R, is formally defined in equation 2.1.

V π(s) = Eπ

{
Rt|st = s

}

= Eπ

{
∞∑
k=0

γkrt+k+1|st = s

}

=
∑
a

π(s, a)
∑
s′
P (s, a, s′)

[
R(s, a, s′) + γV π(s′)

]
.

(2.1)

Equation 2.1 is the expected return when starting in s and following π thereafter. V π is also
called the state-value function for policy π.

Similarly, we can define the action-value function, denoted Qπ : S × A → R, to be the ex-
pected return when starting in s, taking action a and thereafter following the policy π as

Qπ(s, a) = Eπ

{
Rt|st = s, at = a

}

= Eπ

{
∞∑
k=0

γkrt+k+1|st = s, at = a

}

=
∑
s′
P (s, a, s′)

[
R(s, a, s′) + γ

∑
a′
π(s′, a′)Qπ(s′, a′)

]
.

This function Qπ is called the action-value function for policy π.

A deterministic policy π(s) can be determined from any function V : S → R, provided P
is known, is expressed in equation 2.2.

π(s) = arg max
a

∑
s′

P (s, a, s′)

[
R(s, a, s′) + γV (s′)

]
, ∀s ∈ S. (2.2)
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Note that P must be known is equivalent to having a model-based environment. Moreover, a
deterministic policy can also be determined from any function Q : S × A → R is shown in
equation 2.3.

π(s) = arg max
a

Q(s, a), ∀s ∈ S. (2.3)

Similarly, the missing P indicates the environment is model-free.

A policy π is better than or equal to a policy π′ if and only if π’s expected return is greater
than or equal to the expected return of π′. That is π ≥ π′ ⇐⇒ V π(s) ≥ V π′(s) for all s ∈ S.
As such, there is at least one policy that is greater than or equal to all the other policies. This
policy is called the optimal policy, π∗. The optimal policy, by definition, has a corresponding
optimal state-value function V ∗ and is given by

V ∗(s) = max
π

V π(s).

Similarly, the optimal policy also has a corresponding optimal action-value function Q∗ and is
defined as

Q∗(s, a) = max
π

Qπ(s, a).

Policies constructed from equations 2.2 or 2.3 are also known as greedy policies as the action
that yields the highest value at each state is chosen. The greedy policy may be the best pol-
icy to use at times (given a particular non-optimal value function), however, it is not without
restriction. The nature of the action selection method tends to avoid other actions that could
result in higher future rewards. That is, if the agent always selects the action that it currently
calculates is optimal based on incomplete information, it cannot acquire new information about
the alternative states, and can therefore not discover even better policies. This means that the
policy will fail to explore other potentially ‘good’ states. On the other hand, if a policy explores
too much, the overall rewards that the learning agent receives will be significantly lower.

The greedy policy does not balance the important concept of exploitation (follow states with
the highest values) and exploration (discover new states) described in section 2.1. The greedy
policy does not explore the environment fully. That is, the greedy policy only employs exploita-
tion. To add in exploration, we can introduce a control ε ∈ [0, 1] to the greedy policy. This new
policy is called the ε-greedy policy where ε is the probability that the policy chooses a random
action (state exploration), while 1 − ε is the probability that the policy chooses an optimal ac-
tion (state exploitation). In the event of multiple optimal actions (actions that yield the same
maximum value), one of the actions is chosen randomly.

2.2.1 Value Iteration
The recursive function described in equation 2.1 is also known as the Bellman equation for V π.
This equation describes the relationship between the value of a state s, V (s) and the value of
its successor state s′, V (s′) [Bellman and Kalaba 1965; Sutton and Barto 1998]. The optimal
value function, V ∗ satisfies the Bellman optimality equation

V ∗(s) = max
a

∑
s′
P (s, a, s′)

[
R(s, a, s′) + γV ∗(s′)

]
.
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By turning this equation into an update rule to approximate the values of each state, it becomes

Vk+1(s) = max
a

∑
s′
P (s, a, s′)

[
R(s, a, s′) + γVk(s

′)

]
,

and it can be shown that for any arbitrary V0, the sequence Vk will converge to V ∗. This update
rule can be used to approximate the values of all states through an iterative process. This iter-
ative process stops when the value function changes by only a small amount (i.e. the current
value and the new value differs by a small amount). The outline of this method, Value Iteration,
is described in algorithm 1. Value iteration is a dynamic programming tool for finding optimal
policies.

Algorithm 1 Value Iteration
Require:

Initialise V (s) arbitrarily, ∀ s ∈ S
repeat

∆← 0
for s ∈ S do
v ← V (s)
V (s)← max

a

∑
s′
P (s, a, s′)[R(s, a, s′) + γV (s′)]

∆← max(∆, |v − V (s)|)
end for

until ∆ < θ

A deterministic policy, π(s), can be determined from the final value function V ∗. See equation
2.2. Once again, the presence of P (s, a, s′) requires that the value iteration to be implemented
in a model-based environment.

2.2.2 Q-Learning Algorithm
While Value Iteration attempts to find an optimal policy from the optimal state-value function,
we can also find an optimal policy from the optimal action-value function, Q∗. The value of this
function is also known as the Q-value and one of the learning algorithms for learning the opti-
mal action-value function is called the Q-learning algorithm [Watkins and Dayan 1992; Sutton
and Barto 1998].

The Q-learning algorithm is an iterative update solution to estimate the optimal action-value
function, Q∗(s, a). The update is defined in equation 2.4 where 0 < α ≤ 1 is the learning rate ,
0 ≤ γ ≤ 1 is the discount rate.

Q(st, at) = Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Qπ(st, at)]

= (1− α)Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)]
(2.4)

The benefit of applying Q-learning is that the implementation is straightforward and with suf-
ficient learning episodes, the solution will converge. The general outline of Q-learning is in
algorithm 2. The agent maintains a record of Q-values. Starting from an initial state s0, the
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agent chooses an action a from a policy then observes a reward r and the next state s1. The
agent is then able to update Q(s0, a) using equation 2.4. Again, starting from s1, the process
continues until an episode ends.

Algorithm 2 The Q-Learning Algorithm
Require:

Initialise Q(s, a) arbitrarily, ∀ s ∈ S, a ∈ A
Repeat for specified number of episodes
repeat

initialise s
for each step of episode do

Choose a from s using policy derived from Q (e.g. ε-greedy policy)
Take action a and observe r and s′

Q(s, a)← (1− α)Q(s, a) + α[r + γ max
a

Q(s′, a)]

s← s′

end for
until episode ends

As oppose to the value iteration algorithm, Q-learning can function in a model-free environ-
ment.

2.2.3 Example: Path Finding
To put the above two methods into perspective, we can consider a simple grid world (figure
2.2). A grid world is a simple representation of a complex environment where each state is
discretised. This is a 5 × 4 grid world, indexed from 0, where the goal is at (0, 3), the original
(starting) position is at (4, 0) and obstacles are at positions (1, 2), (2, 2), (1, 3), (2, 3). The ob-
jective is to find an optimal path from the starting position to the goal and to avoid obstacles.

Figure 2.2: Example: path finding

There are four actions available: up, right, down and left and they are denoted as 0, 1, 2 and
3 respectively. The rewards are 100 when the agent arrives at the goal state, -10 when the agent
moves to an obstacle state or it moves off the grid world (i.e. to an out of bounds state) and
lastly, a penalty of −1 for every action taken except when agent is in the goal state. Note that if
an action takes the agent to an obstacle state or an out-of-bounds state, the agent will remain in
the original state.

9



Value Iteration

Let γ = 1 and θ = 0.01. The values V (s) are initialised to 0 for all s ∈ S. Following the value
iteration algorithm (refer to Algorithm 1), the algorithm converges after 4 iterations, the values
of the states of the first 3 iterations are as follows:

0 1 2 3
0 -1 -1 99 0
1 -1 -1 - -
2 -1 -1 - -
3 -1 -1 -1 -1
4 -1 -1 -1 -2

(a) First iteration

0 1 2 3
0 -2 98 99 0
1 -2 97 - -
2 -2 96 - -
3 -2 95 94 93
4 -2 94 93 92

(b) Second iteration

0 1 2 3
0 97 98 99 0
1 96 97 - -
2 95 96 - -
3 94 95 94 93
4 93 94 93 92

(c) Third iteration

Table 2.1: First 3 iterations of Value Iteration

In practice, we can see that value iteration propagates the values starting from the goal state,
and it updates the value of the neighbouring states of the goal state. Note that by convention,
the value of a terminal state is usually 0. The values approximated on the fourth iteration are
exactly the same as the values found in table 2.1c (the third iteration). Since the algorithm ter-
minates after the fourth iteration, this indicates that the value functions generated from the third
and fourth iterations differ by a small amount (in this case, they are the same). Therefore, we
can conclude that the values listed in table 2.1c are the final optimal values.

Note that the number of iterations is dependent on the visiting order of the states. In this
example, the iteration order starts from state (0, 0), moving from left to right and continuing at
the next row until state (4, 3). If the iteration order starts from state (4, 0), moving from left to
right and continuing at the previous row until state (0, 3), the number of iterations will be larger.

A policy generated from this optimal value function, using equation 2.2, is shown below:

0 1 2 3
0 1→ 1→ 1→ -
1 0↑ 0↑ - -
2 0↑ 0↑ - -
3 0↑ 0↑ 3← 3←
4 0↑ 0↑ 0↑ 0↑

Table 2.2: Policy 1 generated from the optimal value function

It is clear that there is more than one optimal policy that can be obtained. For example, from the
starting position, there are two possible actions that the agent can take (up or right). The two
actions are optimal because the resulting state from taking the either action has the same value.
A random tie breaker will be able to generate a new optimal policy (a policy that traverses a
different route to the goal state). Another possible policy is shown in table 2.3.
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0 1 2 3
0 1→ 1→ 1→ -
1 1→ 0↑ - -
2 1→ 0↑ - -
3 1→ 0↑ 3← 3←
4 1→ 0↑ 3← 3←

Table 2.3: Policy 2 generated from the optimal value function

Q-Learning

Let the parameters α, γ and ε be 0.25, 1 and 0.1 respectively. The Q(s, a) entries are initialised
to 0 for all s ∈ S and a ∈ A. Initially, the agent is placed randomly in the environment. One
training/learning episode ends when the agent reaches the goal state and the agent will be placed
randomly again for the next episode. The agent will return to its current state if the next state
is an obstacle state or an out-of-bounds state. The number of episodes is 1000 and an episode
ends when the agent arrives at the goal state. The update rule used is the Q-Learning update
from equation 2.4.

Substituting the parameters, the update rule becomes

Q(s, a) = (1− α)Q(s, a) + α[r + γ max
a

Q(s′, a)]

= 0.75 Q(s, a) + 0.25[r +max
a

Q(s′, a)].

The first 5 steps of the first episode, where the actions: up, right, up, right and up or 0, 1, 0, 1, 0
are chosen, are tabulated in table 2.4.

Step s a s′ r Q(s, a)

1 (4, 0) 0 (3, 0) -1 -0.25
2 (3, 0) 1 (3, 1) -1 -0.25
3 (3, 1) 0 (2, 1) -1 -0.25
4 (2, 1) 1 (2, 1) -10 -2.5
5 (2, 1) 0 (1, 1) -1 -0.25

Table 2.4: These are the first five steps of the training episodes

Table 2.5 is the final Q-value as represented in a table form.

11



State/Action 0 1 2 3
(0, 0) 97 96 96 94
(0, 1) 96 96 95 93
(0, 2) 95 95 94 92
(1, 0) 86 94 94 92
(1, 1) 86 85 85 83
(2, 0) 98 97 94 93
(2, 1) 97 96 94 92
(3, 0) 96 95 93 91
(3, 1) 96 95 92 85
(3, 2) 87 86 83 82
(3, 3) 99 95 95 93
(4, 0) 98 95 94 93
(4, 1) 97 94 93 92
(4, 2) 88 93 93 82
(4, 3) 88 84 93 82

Table 2.5: The final Q-table

A policy can be generated using the greedy approach by choosing the action that has the highest
value in all states (see equation 2.3). The policy is shown in table 2.6.

0 1 2 3
0 1→ 1→ 1→ -
1 0↑ 0↑ - -
2 0↑ 0↑ - -
3 0↑ 0↑ 3← 3←
4 0↑ 0↑ 0↑ 0↑

Table 2.6: Policy generated from the final Q-function

The policy for finding the goal at state (0, 3) starting from state (4, 0) is 0, 0, 0, 0, 1, 1, 1 or up,
up, up, up, right, right, right. Furthermore, it is clear that there is a policy for every state that
will lead to the goal and this is learned by randomly assigning the agent a starting position in
each episode.

Remarks

The two methods are able to compute optimal policies in this example grid world. We can see
that the two algorithms function differently in the same environment. The value iteration algo-
rithm functions in a model-based environment as the agent needs to possess a full knowledge of
the environment in order to consider all possible actions when visiting a state. By contrast, the
Q-learning algorithm only requires a model-free environment and the agents are able to learn
the transitions in the environment through trial and error. The Q-learning agent is able to learn
its way in an unknown environment without prior knowledge.
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2.3 Multi-Agent Machine Learning
In this section, we will discuss the multi-agent reinforcement learning framework. In particular,
the extension of the single-agent framework and the overview of game theory leading to Markov
games.

2.3.1 Multi-Agent Markov Decision Process
In a multi-agent environment, the simplest method of applying reinforcement learning is to im-
plement n MDP’s if there are n > 1 agents. Treating each agent as if it is acting alone in the
environment makes this model simple to use. This model is also called the multi-agent MDP
(MMDP) model [Buşoniu et al. 2008]. The MMDP model is one of the four research methods
used in this thesis (see chapter 4.2).

Furthermore, we can extend the Q-learning algorithm discussed in section 2.2.2 to a MMDP
model (see algorithm 3). Each agent i maintains a Q-table and updates the contents according
to the update rule. The procedure is similar to the single-agent Q-learning algorithm.

Algorithm 3 The Multi-Agent Q-Learning Algorithm
Require:

Initialise Qi(s, a) arbitrarily, ∀ i ∈ n, s ∈ A, a ∈ A
Repeat for specified number of episodes
repeat

initialise s for all agents
for each step of episode do

for each agent i do
Choose a from s using policy derived from Qi

Take action a and observe r and s′

Qi(s, a)← (1− α)Qi(s, a) + α[r + γ max
a

Qi(s′, a)]

s← s′

end for
end for

until one episode ends

Note that, the addition of agents present in the environment is a violation of the MDP re-
quirement that the environment must remain stationary. Introducing multiple agents makes
the environment non-stationary. That is, each agent causes a non-stationary environment for
the other agents while it is navigating in the environment.

Despite the shortfall of losing theoretical guarantees, multi-agent Q-learning in MMDP models
is able to produce significant results [Torrey 2010; Tesauro and Kephart 2002].

2.3.2 Game Theory
This section contains the literature review on game theory. This section is included as game
theory is the foundation of the Markov Game model for multi-agent reinforcement learning dis-
cussed in the next section.
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Game theory is the mathematical study of interactions (decision-making) among two or more
agents [Shoham and Leyton-Brown 2008; Osborne 2004]. Formally, a simple game (strategic
game) consists of

• a set of players (P = {p1, p2, ..., pn})

• for each player pi, a set of actions Ai with m actions

• for each player pi, a utility or payoff function ui

A utility or payoff function is a description of all possible outcomes (by taking actions) denoted
by some numerical values. The utility function expresses a player’s preference to all possible
outcomes in a game. The utility function for player i can be represented as

ui(a1, a2, ..., ai, ..., am).

To simplify, in a two-player two-action game, ui(a1, a2) denotes the payoff that player i receives
if player 1 chooses action a1 and player 2 chooses action a2. Generally, the utility function of
a game can be tabulated for ease of reference. Note that the terms player and agent are inter-
changeable, they denote an entity in an intelligent system.

This form of strategic game is also known as a normal form game where players simultane-
ously select an action and it is done so once off. In repeated games, players play the games
repeatedly. Repeated games are also known as stateless games as there is no state transition.

An action profile is a set of all players’ actions or a collection of strategies. Player i’s strat-
egy σi : Ai → [0, 1] is a probability distribution over Ai. A pure strategy is a strategy where the
player always chooses the same action, σi(a) = 1 where a ∈ Ai and 0 for all other actions. A
non pure strategy is called mixed strategy.

Types of Games

In general, games can be classified by their utility functions into three types, namely purely
cooperative, purely competitive and mixed. In purely cooperative games, all players’ utility
functions are the same (u1 = u2 = ... = un). In this scenario, the players have a common goal
and they interact with each other in a collaborative manner. However, in purely competitive
games or zero-sum games, the total utility functions add to zero (u1 + u2 + ... + un = 0). The
last type of game is neither fully cooperative nor competitive, and in this game, all players have
different utility functions (u1 + u2 + ... + un = R). This type of game is called a mixed game
[Buşoniu et al. 2010; Bowling and Veloso 2000]. Mixed and purely cooperative games are also
known as general-sum games.

Example: Prisoner’s Dilemma

To put the definitions into perspective, one well illustrated example of game theory is the Pris-
oner’s Dilemma problem, a cooperative game. The problem states that two criminals are ar-
rested. Each prisoner is in solitary confinement which means they are not allowed to commu-
nicate with each other. However, there isn’t enough evidence to convict the pair but only one
of the two. The two are now faced with two choices, confess or deny the charges. If they both
confess, they will each get a lesser sentence, say 1 year. If one confesses and the other denies,
then they will get 0 and 3 years respectively and vice versa as the confessor will testify against
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the other. If they both deny, they will both get 2 years of sentencing.

In this problem, the players are the two suspects, their actions are confess and deny. The utility
function for the players consist of the number of years behind bars with respect to the actions
they have chosen.1 The utility function that represents this game is shown in table 2.7 where
suspect 1’s payoffs are given by the first element of the utility pair and suspect 2’s payoffs are
given by the second element of the utility pair.

Suspect 1
Confess Deny

Suspect 2
Confess -1,-1 -3,0

Deny 0,-3 -2,-2

Table 2.7: The Prisoner’s Dilemma - utility function

The Prisoner’s Dilemma illustrates a scenario where cooperation gives the best result. See
the section on Nash Equilibrium below for more discussion.

The Coordination Game

An example of a pure cooperative game, is the Coordination game involving players that have a
common interest. Two players have the same utility function (table 2.8) for the task of choosing
to go left or right. This simple problem shows that the players have to coordinate to get some
optimal payoff or risk the chance to get 0 payoff.

Player 1
Left Right

Player 2
Left 5,5 0,0

Right 0,0 2,2

Table 2.8: The Coordination Game - utility function

Example: Bach or Stravinsky?

The third classic game theory example is the Bach or Stravinsky (BoS) or the Battle of the Sexes
(as it was formally known). Two players decide to go to a concert together. Player 1 prefers
Bach while player 2 prefers Stravinsky. The utility function is shown in table 2.9.

Player 1
Bach Stravinsky

Player 2
Bach 2,1 0,0

Stravinsky 0,0 1,2

Table 2.9: Bach or Stravinsky? - utility function

This example illustrates that the players agree to cooperate (a cooperation game), however, they
disagree about the best outcome.

1Usually the value of a payoff signifies a gain (positive payoff) or a loss (negative payoff).
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Example: Matching Pennies

This game is a simplification of the Rock, Paper, Scissors game. Two players each have a coin
and they need to decide whether to show their coins to be head or tail. If the coins show the
same side, player 1 gains a point from player 2; if the coins show different sides, player 2 gains
a point from player 1. Unlike the previous two examples, this game is conflictual or competitive
where each player wants to take the opposite action of the other. This is a zero-sum game.

Player 1 (same)
Head Tail

Player 2 (different)
Head 1,-1 -1,1

Tail -1,1 1,-1

Table 2.10: Matching Pennies - utility function

Example: Chicken

A well studied mixed game is the two-player game called Chicken. Chicken is a game where two
drivers are approaching from opposite direction in a straight and narrow road. The ‘chicken’ is
the driver who backs up so that the other driver can drive pass. In this case, both drivers will try
not to be the chicken, however, if both drivers are not willing to be the chicken could result in
a collision (worst outcome). A similar game is the Hawk-Dove game [Osborne and Rubinstein
1994].

To illustrate the Chicken game, table 2.11 represents the utility function of the game. There
are two possible actions that each player can perform. For example, if player 1 decides to be
chicken and player 2 decides to dare, then player 1 gets a reward of 3 and player 2 gets a reward
of 9. On the contrary, player 1 gets a reward of 9 and player 2 gets a reward of 3 if their roles are
exchanged. It is clear that this game has two pure strategies (a pure strategy clearly defines how
a player plays a game), (chicken, dare) and (dare, chicken) as mentioned above with rewards
3 and 9. However, the pure strategies state that each player prefers daring, as opposed to be
‘chicken’. This will lead to the actions (dare, dare) where both players will be in a collision.
There is one more equilibrium that can be obtained by applying mixed strategies where the
choice of action is influenced by a probabilistic measure. In this game, the third equilibrium is
for both players to be ‘chicken’. In this scenario, both players will try to avoid daring each other
and if possible, they want to be the only player who dares with some independent probability
(say 1

3
chance of daring). The solution turns out to be ‘chicken’ for both players as both players

get the same reward.

Player 1
Chicken Dare

Player 2
Chicken 7,7 9,3

Dare 3,9 -10,-10

Table 2.11: Chicken - utility function
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Nash Equilibrium - Solution to Games

Suppose in a two-player game, the players have agreed on some actions. However, if one player
was to deviate from its agreed action to another action where the resulting payoff is better
than the others, the situation becomes unstable or infeasible. To put it in context, in the Pris-
oner’s Dilemma problem, if both prisoners choose to deny, they will each get a sentence of 3
years. However, if prisoner 1 were to confess instead of denying, then the payoff will be more
favourable towards prisoner 1 which shows the strategy is unstable. To illustrate, the payoffs
for both the prisoners are −2 each if they choose to deny. If prisoner 1 deviates his action to
confess, the payoffs are changed to 0 and −3 for the prisoner 1 and 2 respectively. This clearly
show that prisoner 1 will benefit with such a strategy.

From the above, we can define an action profile to be a Nash Equilibrium (equilibria for plural)
so that no player can deviate from its strategy to out-perform any other players. In other words,
when players have reached the Nash equilibrium, there is no need for any player to deviate its
strategy so that it can do better. If Nash equilibrium is achieved, the strategies are then in a
steady state [Osborne 2004]. Formally, we can define a to be the action profile, and ai denotes
the action of player i. Then, a′i is the action selected by player i, where it can equal ai or differ.
Let a-i be the collection of every players’ actions (following a) except i’s. Hence, (a′i, a-i) is the
action profile where all players’ actions follow a and player i follows a′i. Therefore, the action
profile a∗ of a Nash equilibrium in a normal form game is shown in equation 2.5.

ui(a
∗) ≥ ui(ai, a

∗
-i) for every action ai of player i. (2.5)

Finding the Nash equilibrium is an iterative process. Consider the four possible pairs of actions
(action profiles) in the Prisoner’s Dilemma (see table 2.7). The Nash equilibrium here is the
pair (Confess, Confess). According to equation 2.5, the resulting inequalities hold:

u1(Confess, Confess) ≥ u1(Deny, Confess)
−1 ≥ −3

and
u2(Confess, Confess) ≥ u2(Confess, Deny)

−1 ≥ −3

There is only one Nash equilibrium in the Prisoner’s Dilemma, hence it is a unique equilibrium.
This equilibrium indicates that no players can change their choice of action without reducing
their payoffs. The other three pairs are not Nash equilibria as they do not satisfy equation 2.5.
This is because players always have incentives to deviate their action so to achieve better out-
come. For example, in the case where both players choose to deny, it is always an incentive
for a player to deviate the action to confess and thereby getting a higher payoff (reducing the
sentence from 2 years to 0). Furthermore, in the case where one player chooses to confess and
the other chooses to deny, it is always beneficial for the denying player to choose to confess
(resulting in both players confessing) so as to obtain a higher payoff (reducing the sentence
from 3 years to 1).

The process of finding a Nash equilibrium is iterative. During the learning phase, player i
tries to find an optimal strategy (πi) while interacting with other players. Then, a Nash Equi-
librium is a collection of strategies from all players such that no player can perform better by
changing strategies provided that all other players follow the equilibrium.
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There are two Nash equilibria in the BoS game, namely (Bach, Bach) and (Stravinsky, Stravin-
sky). Similarly, there are also two Nash equilibria in the Coordination game: (Left, Left) and
(Right, Right). In Matching Pennies, the game has a mixed strategy Nash equilibrium as there
is no pure strategy. Lastly, Chicken has three Nash equilibria namely: two pure strategies
(Chicken, Dare) and (Dare, Chicken) and the mixed strategy where players choose Dare with a
probability of 1

3
as discussed above.

It is clear that in a game, the number of Nash equilibra can be none or many. However, the
possibility that there are one or more Nash equilibria means that there may exist sub-optimal
equilibria and this poses the problem of choosing the optimal equilibrium [Kolokoltsov and
Malafeyev 2010].

2.3.3 Markov Game
Markov games or stochastic games developed by Shapley [1953] are the extension and gener-
alisation to multi-agent settings of multi-agent markov decision processes and repeated games.
Markov games are the natural platform for solving multi-agent problems using reinforcement
learning. This section is a literature review of Markov Games and the methods to solve the
problem. The methods are not part of the research methods as they are examples of showing
the limitations of Markov Games.

In general, a Markov game is a tuple

M = (S,A1, ..., An, P, R1, ..., Rn),

where n > 1 is the number of agents2, S = {s1, s2, ..., sm} is the unified finite state space,
Ai = {a1, a2, ..., ak} is the finite action set available for agent i, P : S×A1×...×An×S → [0, 1]
is the transition probability function and P (s, a1, ..., an, s

′) is the probability that the agents end
in state s′ given the agents were in state s and the joint action3 a1, ..., an or ~a is taken. Lastly,
Ri(s, a1, ..., an, s

′) : S × A1 × ...× An × S → R is a reward function for agent i that returns a
real value r when given any action ~a, state s and new state s′.

The discounted return with respect to the joint policy ~π = (π1, ..., πn) for agent i at time t
is now defined as

R~π
i(t) =

∞∑
j=0

γjrj+t+1

where the rewards rj+t+1 are dependent on the reward functionRi. Furthermore, the state-value
function V ~π

i (s) for agent i following the joint policy ~π is now defined as

V ~π
i (s) = E~π

{
R~π
i(t)|st = s

}

= E~π

{
∞∑
j=0

γjrj+t+1|st = s

}
.

2Note that if n = 1, a Markov game will be reduced to an MDP
3A joint action is a set of actions taken by agents at any given step
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Similarly, the action-value function Q~π
i(t)(s,~a) for agent i is defined w.r.t ~π as

Q~π
i(t)(s,~a) = E~π

{
∞∑
j=0

γjrj+t+1|st = s,~at = ~a

}
.

Moreover, let ~π−i be a joint policy excluding πi. Then, in an n player stochastic game, the Nash
equilibrium is a collection of n policies ~π∗ (strategies) such that

V ~π∗

i (s) ≥ V
~π∗−i,πi
i (s) ∀ πi ∈ Πi, s ∈ S

where Πi is the set of policies available to agent i.

Let n be the number of agents, |S| be the number of states and |A| be the number of actions (as-
suming all agents have the same number of actions, |A1| = |A2| = ... = |An|). The state-action
space required for Q-learning in a MDP model is O(|S|·|A|); the state-action space required
for multi-agent Q-learning in a MMDP model is O(n·|S|·|A|) as agents need to maintain n
Q-tables. However, the state-action space required for a Markov game is O(n·|S|n·|A|n). The
presence of joint state and joint action cause the complexity of the state-action space to be ex-
ponential instead of linear. It is, therefore, very important to keep in mind that joint actions, or
even joint state implementation is expensive.

Consider the single-agent Q-learning update rule (equation 2.4). The Q-learning update rule
in a Markov game model for agent i can be extended as

Qπ
i (st,~at) = Qπ

i (st,~at) + α[ri(t+1) + γV π
i (st+1)−Qπ

i (st,~at)]

= (1− α) Qπ
i (st,~at) + α[ri(t+1) + γV π

i (st+1)].

In single-agent Q-learning, the update takes the highest value, max
~a

Q(st+1,~a), with respect to

the actions available in the next state st+1, as an estimate of V π
i (st+1) under the greedy policy.

However, in multi-agent Q-learning under a Markov game model, the agents must take into
account other agents’ actions as well.

Most multi-agent reinforcement learning algorithms that follow the model of the Markov game
focus on how to choose the best optimal value V π

i (s′). In general, these algorithms follow the
template in algorithm 4. The algorithm follows the usual Q-learning update rule (algorithm 2)
with the addition of multiple agents, together with joint action. The notable difference is the
way of estimating V π

i (s′).

NashQ-Learning

Hu and Wellman [2003] have extended the concept of Nash equilibrium to Q-learning called
NashQ-learning. As mentioned above, the key factor is to choose a function that represents
the best optimal future value (next state s′), Vi(s′). Under the joint-action condition, NashQ-
learning redefines theQ-function to be the expected sum of discounted rewards, where all agents
follow unique Nash equilibrium strategies from the future. The NashQ-function for agent i is

Q∗i (s,~a) = ri + γ
∑
s′∈S

p(s′|s,~a)V ~π∗

i (s′),
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Algorithm 4 The General Multi-Agent Q-Learning Algorithm
Require:
Qi(s,~a) = 0 ∀ i ∈ n, s ∈ Sn,~a ∈ A
Initialise state s
Repeat for specified number of episodes
repeat

for all agents i do
Select action ai using policy derived from Qi

end for
Execute joint action ~a = (a1, ..., an)
Observe new state s′ and rewards ri
for all agents i do
Qi(s,~a)← Qi(s,~a) + α[ri + γVi(s

′)−Qi(s,~a)] where some estimated Vi(s′) is used.
end for

until termination condition

where ~π∗ is the joint Nash equilibrium strategy, ri is agent i’s reward, and V ~π∗
i (s′) is agent i’s

total discounted reward from state s′ provided that agents follow ~π∗.

The extended Q-learning will be changed to update future Nash equilibrium rewards instead
of each agent’s own maximum reward. Initially (t = 0), agent i starts learning its Q-value by
guessing arbitrarily. A common approach is to initialise all Qi(s,~a) = 0 for all s ∈ S and
~a ∈ ~A. Then, at time t, agent i observes the current state, and perform its action. Besides
observing its reward, agent i also inspects actions and rewards taken by all other agents. In-
stead of searching for the maximum Q-value when taking action a in state st+1 in single-agent
Q-learning, agent i needs to calculate the future Nash Equilibrium payoffs, ui(π1(s′)...πn(s′)),
as well as an approximation of other agents’ immediate rewards and actions, Qi(t)(s

′,~a). The
Nash Equilibrium is calculated using the Lemke-Howson method [Cottle et al. 1992].

The extended Q-learning update rule now becomes

Qi(st,~a)← Qi(st,~a) + α[ri(t+1) + γ NashQi(st+1,~a)],

where 0 < α ≤ 1 is the learning rate, 0 ≤ γ ≤ 1 is the discount rate and

NashQi(s,~a) = ui(π1(s)...πn(s′)).Qi(s,~a),

is the Nash equilibrium payoffs under the joint policy. Following algorithm 4, the value func-
tion Vi(s′) is defined to be NashQi(s

′,~a).

The disadvantage of NashQ-learning is the existence of multiple Nash equilibria. Sub-optimal
Nash equilibria form part of the solution, however, choosing one of them could result in a lower
average payoff. Consider the Coordination game in table 2.8 where there are two Nash equi-
libria (Left, Left) and (Right, Right). It is clear that (Right, Right) is the sub-optimal Nash
equilibrium, if both players agree on this joint action, the payoff will be lower than (Left, Left).
Generally, the Nash equilibrium method is implemented in two-player games where the worst
case complexity is exponential.

Currently, the complexity of finding Nash equilibrium is PPAD-complete even in a two-player
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game [Daskalakis et al. 2006]. PPAD-complete is a sub-class of FNP (function-NP), an exten-
sion of the decision problem class NP. It shows that currently there is no efficient solution for
computing a specific Nash equilibrium, even though it is guaranteed that solutions (many Nash
equilibria) exist.

Correlated Q-Learning

Mixed strategies do not provide fairness as players are always trying to deviate to perform ac-
tions that could maximise their rewards as shown in the Chicken game on page 16. Fairness is a
social phenomena where players not only are concerned with their payoffs but also the payoffs
of the others. By introducing a judge or mediator in the game, players follow the mediator’s
decision and understand that other players also follow the same decision and never deviate. The
resultant expected reward payoff from this correlated strategy is better than using mixed strat-
egy [Osborne and Rubinstein 1994]. An equilibrium obtained using this correlated strategy is
known as a Correlated Equilibrium.

Consider an n-player game with strategy πi for player i and Π = π1 · π2 · ... · πn [Papadimitriou
and Roughgarden 2004]. Define x to be the distribution on Π and π̄ ∈ Π-i, then, let xiκ,π̄ be
the probability that player i chooses strategy κ while other players choose π̄. Furthermore, uiκ,π̄
is the utility (reward) of player i for taking the strategy κ while other players take π̄. Then x
is a correlated equilibrium, provided that the expected utility of player i taking strategy κ is
no smaller than that of playing another strategy τ . The correlated equilibrium is expressed in
equation 2.6. ∑

π̄∈Π-i

uiκ,π̄ xκ,π̄ ≥
∑
π̄∈Π-i

uiτ,π̄ xκ,π̄ ∀ κ, τ ∈ Πi

∑
π̄∈Π-i

uiκ,π̄ xκ,π̄ −
∑
π̄∈Π-i

uiτ,π̄ xκ,π̄ ≥ 0.

(2.6)

Equation 2.6 can also be rewritten in the form of a linear program:∑
π̄∈Π-i

[
uiκ,π̄ − uiτ,π̄

]
xκ,π̄ ≥ 0,

xπ ≥ 0 ∀π ∈ Π,∑
π∈Π

xπ = 1.

The inequalities satisfy the problem-constraints and non-negative values conditions. The ob-
jective function to be maximised by this linear program will be players’ utility. Consider the
Chicken game with utility shown in table 2.11. Suppose a mediator randomly chooses the three
joint actions (Dare, Chicken), (Chicken, Dare) and (Chicken, Chicken) with equal probability
[Papadimitriou and Roughgarden 2004]. This means that there is a 1

3
probability of randomly

choosing the three joint actions. The joint action (Dare, Dare) is not chosen because of the
unfavourable consequence. Moreover, let Dare = D and Chicken = C. We can construct the
probabilities into constraints

xCC + xCD + xDC + xDD = 1
3

+ 1
3

+ 1
3

+ 0
= 1

xCC , xCD, xDC , xDD ≥ 0,
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and from inequality 2.6, the first corresponding constraint (from player 1) is

[u1
CC − u1

DC ]xCC + [u1
CD − u1

DD]xDD ≥ 0

(7− 9)xCC + (3− (−10))xDD ≥ 0

−2xCC + 13xDD ≥ 0.

Similarly, the next constraint can be reduced to

2xCC − 13xDD ≥ 0.

Note that there are four rational constraints in this game. However, since the game is symmet-
ric, player 2’s rational constraints will be identical to player 1’s. In this problem, one possible
objective function is to maximise the expected sum of all player’s utilities over the total distri-
bution,

maximise:
∑
π∈Π

[
xπ

n∑
i=0

uiπ
]

= 14xCC + 12xCD + 12xDC − 20xDD

Greenwald and Hall [2003] has further extended the multi-agent Q-learning method using the
correlated equilibrium. A correlated equilibrium is more general than a Nash equilibrium. A
Nash equilibrium is a correlated equilibrium but a correlated equilibrium is not necessary a
Nash equilibrium. In general, correlated equilibria are easier to compute than Nash equilibria.
A Nash equilibrium is a distribution over each player’s action, while a correlated equilibrium is
a distribution over agents’ joint action space.

Following the template in algorithm 4, the value function Vi(s′) is now defined as player i’s
reward corresponding to some correlated equilibria estimated by other player’s rewards. That
is,

Vi(s
′) = CEi(Qi(s,~a)) =

∑
~a∈A

π∗(~a)Qi(s,~a),

where π∗ is a correlated equilibrium chosen from many equilibria using four selection mech-
anisms. The four selection mechanisms are used for selecting the objective function. The
selection mechanisms are to maximise: 1) the sum of the players’ rewards, 2) the minimum
of the players’ rewards, 3) the maximum of the players’ rewards and 4) the maximum of each
player i’s rewards.

Though computing correlated equilibria requires less work, the existence of multiple equilibria
coupled with the fact that the state-action space is exponential poses a critical problem in large
scale environments.

2.3.4 Coordinating Q-Learning
The use of MMDP model in the multi-agent environment violates the requirement of the tran-
sition probability being stationary in an MDP, thus MMDP learning may fail to converge; and
the exponential cost of implementing the Markov game in a large scale environment is, there-
fore, not practical. However, Nowé et al. [2012] observed that by making use of the benefits of
the two extreme methods (coordinate using multi-agent techniques and act independently us-
ing single-agent techniques), it is possible for agents to observe their surrounding states while
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updating. Essentially, an agent observes if there is an interaction needed between other agents
in some states. In such a case, the agent will use multi-agent techniques to coordinate, or act
independently otherwise. This learning algorithm is closely related to the research method dis-
cussed in chapter 5.

The aforementioned technique is called Coordinating Q-Learning or CQ-learning and it fol-
lows the concept of learning on multiple levels (see figure 2.3). An agent in this framework
identifies the states where it needs to take other agents into consideration (so as to coordinate)
when it is choosing its action. The primary goal in this framework is to reduce the joint action
space in multi-agent environments.

Figure 2.3: Framework for learning on two levels

The basis of CQ-learning is to assume that all agents have a learned policy. This policy tells
the agent the expected reward of taking an action in some states. This is equivalent to hav-
ing the agents trained an MDP individually (as if other agents are not present) and retain the
Q-function as the baseline for this algorithm. This baseline serves the purpose for agents to
identify the states where coordination is needed.

Suppose agents arrive at a state where they are influencing one another, and so the resulting
expected reward received by agents, and the observed reward will be inconsistent. The Stu-
dent t-test, is used to detect if there is a discrepancy between the rewards received when agents
are alone (expected), and the rewards received while agents are learning together (observed)
in some states. There are two steps to finding coordinating states. Firstly, the statistics detect
discrepancies in the observed rewards against expected rewards. Then, it attempts to identify
the agents that have contributed to the discrepancies. The second step is done by collecting new
samples (joint state action pairs) from a joint state space. The joint state action pairs are tested
against the observed rewards.

Furthermore, when selecting an action, agents need to verify that if the current local state is
the state which is causing the discrepancy, otherwise agents choose actions according to the
learned policy (this tells the agents to act as if they were alone). After identifying the local
state, agents need to observe the global state (joint state space) to determine if the state infor-
mation of other agents is the same when the discrepancy was detected. If this is the case, then
agents choose actions according to the global state information.

Agents in CQ-learning update their Q-values using a joint state Q-value function. That is,
for agent i, the joint state Q-value function is denoted as Qj

i (js, ai) where js is the joint state
information. The Q-learning update rule for agent i is now defined as

Qj
i (js, ai)← (1− αt)Qj

i (js, ai) + αt[r(js, ak) + γ max
a

Q(s′k, a)].
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The state-action space in CQ-learning could be reduced only if the environment is sparse. If
the environment is dense (the agents are placed in the environment compactly), then the agents
would have to coordinate almost at all the states as each step of learning there will be conflict
or collision. The CQ-learning algorithm is described in Appendix A on page 58.

The CQ-learning method is the foundation of our novel approach, the joint-state-action Q-
learning in chapter 5.

2.4 Crowd Simulation
The sections covered so far contain the literature on single-agent and multi-agent reinforcement
learning and their respective methods to solve the problems. The goal of this thesis is to study
multi-agent reinforcement learning using crowd simulation as a domain. This section intro-
duces the concept of crowd simulation and the current techniques in crowd simulation.

Crowd simulation is the process of reproducing interactions, and movements of a large num-
ber of entities in an environment. Crowd simulation can be found in a number of fields such
as computer graphics, safety science, architecture, physics and sociology. In these fields, the
main concern is to simulate a crowd with a collection of entities. There are two areas in crowd
simulation: focusing on the realism of simulated crowd behaviour and achieving visualisation
of high-quality [Thalmann and Musse 2007].

Reynolds [1987]’s work had revolutionised the task of animating and simulating crowds. The
main idea was based on observations from the behaviour of flocks of flying birds. It was realised
that each bird in a flock follows some common behaviour, that is, it maintains its position in the
flock (to stay close), and avoids collisions. Therefore, the complex motion formed by a flock of
birds was just a collection of actions taken by each bird perceived in its entirety.

Reynolds simulated the actions of these birds, naming them boids for the purposes of his simu-
lation. By allowing interactions between simple boids individually, a more complex fluid-like,
flocking behaviour can be accomplished. There are only three simple rules that govern the be-
haviour of each boid : 1) avoid collisions with nearby boids, 2) match velocity with nearby
boids, and 3) stay close to nearby boids. The simulated results confirmed that the boids were
able to portray complex flock-like behaviours.

Extending Reynolds’s work, Tu and Terzopoulos [1994] had simulated schools of fishes. To
achieve realistic behaviours for fishes, several factors need to be considered. The fishes’ phys-
ical bodies are modelled as spring-mass systems representing the muscle movements through
contraction. The fishes’ mobility is modelled after hydrodynamics to simulate the visualisation
of volume displacement as the fishes swim. Furthermore, the fishes are equipped with vision
and temperature sensing models. The behaviours of the fishes are much more complicated than
birds. The behaviours (dependent on the internal state) include hunger, libido, fear, and some
habit conditions. The actions corresponding to the behaviours are avoiding obstacles (including
other fishes), eating food, mating, leaving, wandering, escaping and schooling. The fishes are
grouped into predators and prey.

Producing a realistic and believable simulated human is a complex task, as human beings
are complex creatures in nature. To animate a seemingly believable humanoid (a reference
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to Reynold’s term boid, a simulated human-like object), an animator has to manually adjust
every detail over the course of the animation period. Extending to simulating a crowd of hu-
manoids (say ten humanoids), the workload of the animator has now increased more than ten
fold. Besides giving instructions to each individual humanoid, there is a need to take into ac-
count interactions between humanoids, particularly collisions. Note that the instructions given
to each individual humanoid must be unique so that humanoids do not appear predictable.

There are two distinct views on the crowd simulation models: macroscopic and microscopic.
Macroscopic models treat the crowd as a whole (flow and fluid characteristics of moving crowd),
while microscopic models examine and analyse the individual behaviour and interactions be-
tween the entities.

2.4.1 Macroscopic Model
Fluid Dynamics

In the macroscopic view of simulating a crowd, the model considers the individuals as a collec-
tion. One such model uses fluid dynamics [Kachroo et al. 2008]. Consider the one-dimensional
problem of modelling car traffic flow as continuous flow. Let p be the density and v be the
velocity. Given an initial density p0, an initial velocity v0, and a point x, the flow (with time t)
is defined as

f(p, v) = p(x, t)v(x, t)

Figure 2.4: Traffic flow

Given a segment x1 and x2 (figure 2.4), the number of cars within [x1, x2] at time t is shown in
equation 2.7.

N =

x2∫
x1

p(x, t)dx. (2.7)

Furthermore, suppose no cars were destroyed, and the change of the number of cars is caused by
cars entering and leaving the boundaries only. We can define the rate of change of the number
of cars as expressed in equation 2.8.

dN

dt
= fin(p, v)− fout(p, v). (2.8)

Combining equations 2.7 and 2.8, we get

d

dt

x2∫
x1

p(x, t)dx = fin(p, v)− fout(p, v).
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This equation represents the change in number of cars due to the flows at the two boundaries.
Suppose the boundary points are independent, then

∂

∂t

x2∫
x1

p(x, t)dx = fin(p, v)− fout(p, v),

and the change in number of cars with respect to distance is

fin(p, v)− fout(p, v) = −
x2∫
x1

∂

∂x
f(p, v)dx,

then combining the two, we can show that the law of conservation holds, that is,
x2∫
x1

[
∂

∂t
p(x, t) +

∂

∂x
f(p, v)

]
dx = 0.

If p(x, t) and f(p, v) are smooth, this equation can be deduced to

∂

∂t
p(x, t) +

∂

∂x
f(p, v) = 0.

Extending to crowd flow, the domain is now two-dimensional. The initial velocity along the y-
axis is denoted by u0 and the two velocities (v, u) direct the flow of the crowd in any direction.
The density function is now additionally a function of y, and is denoted by p(x, y, t). Then, the
flow rates f and g along the two axes are

f(p, v) = p(x, y, t)v(x, t)
g(p, u) = p(x, y, t)u(y, t)

Similarly, the law of conservation is maintained

∂

∂t
p(x, y, t) +

∂

∂x
f(p, v) +

∂

∂y
g(p, u) = 0.

Given initial density and velocities, the future density can be predicted. Therefore, it is impor-
tant to choose density dependent velocity functions that simulate the model behaviour.

2.4.2 Microscopic Models
Particle Motion Model

The particle motion model discussed by Heı̈géas et al. [2010] is used to simulate crowd be-
haviours. The particles were modelled using geometrical estimates to detect collisions with
some physical properties. In the model, the moving crowd (people) are defined as two-dimensional
particles, and obstacles (non-mobile objects like buildings) are defined as fixed particles.

Interactions among the crowd, and ultimately the collective behaviour can be represented as
obstacle avoidance by the crowd. The interacting forces between two particles are defined to be

~F =


(K1D + Z1V )~u if D < D1

(Ki+1D + Zi+1V )~u if Di < D < Di+1 for i = 1, 2
0 if D3 < D

,
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where D is the distance between the particles, K is the stiffness, V is the norm relative velocity
between the two particles, Z is the viscosity and ~u is the unit vector between the particles. The
stiffness of a body (particle) is the measure of rigidity, the resistance applied by some force.
The viscosity of fluid (pertaining to flow) is the measure of the fluid’s resistance asserted by
some pressure. The three thresholds (D1, D2 and D3) regulate the explicit behaviour within
each divided zone between two particles (fixed and non-mobile particles). See table 2.12. Note
that there will be no interacting forces when the particles are separated by a distance greater
than D3.

Zones Distance Stiffness and Viscosity Threshold Name
A (D < D1) Closest High Impenetrable Zone
B (D1 < D < D2) Medium Medium Avoidance Zone
C (D2 < D < D3) Furtherest Low Anticipation Zone

Table 2.12: Zone classification

In the impenetrable zone (zone A), there is a need for collision detection and avoidance. Hence,
the high stiffness value will generate high repulsive force, coupled with the high value of vis-
cosity, the velocity behaviour can be regulated. The high stiffness and viscosity values will
produce lower velocity. Similarly, there will be low stiffness and viscosity values in the an-
ticipation zone, as collision detection and avoidance produce lesser impact. The argument in
avoidance zone will be the same.

The simulated crowd was unrealistic as they tended to move past obstacles along similar paths,
thereby producing predictable behaviours. To remedy this, the thresholds were modified so that
the stiffness and viscosity were uniformly distributed between some minimum and maximum
values.

Helbing’s Model

[Helbing et al. 2000]’s model (Helbing’s model in short) is a combination of sociopsychol-
ogy and physical forces found in humans. This combined model is also called the social force
model and it had been able to capture the behaviours of crowd evacuation simulated using a
force model.

In Helbing’s model, there are N pedestrians where each pedestrian i has a mass mi. Each
pedestrian has a desired (initial) velocity v0

i in a direction e0
i over a time interval τi, while ob-

serving its instantaneous velocity vi. Pedestrian i keeps a velocity-dependent distance from
other pedestrians j and walls W , using interaction forces fij and fiW . Formally, given time t,
Helbing’s model can be expressed as the change in velocity, using the acceleration equation

mi
d

dt
vi = mi

v0
i (t)e

0
i (t)− vi(t)
τi

+
∑
j 6=i

fij +
∑
W

fiW .

Suppose Ai and Bi are constants, the repulsive interaction force describes how two pedes-
trians i and j would stay away from each other. Let the distance between two pedestrians’
centres of mass be dij =||ri − rj||, where ri is the change of position of pedestrian i, and
nij = (n1

ij, n
2
ij) =

ri−rj
dij

be the normalised vector (perpendicular) pointing from pedestrian j to
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pedestrian i. Then, the repulsive interaction force is Aie(rij−dij)/Binij . The two pedestrians will
come in contact (touching each other) when the sum rij = ri + rj is greater than their distance
dij . Furthermore, there are two additional forces that can be observed, a body force counter-
acting the body compression k(rij − dij)nij , and a sliding friction force disrupting the relative
tangential motion k(rij − dij)4vtjitij , where tij = (−n2

ij, n
1
ij) =

−rj−ri
dij

is the direction of the
tangent, and 4vtji = (vj − vi)tij is the tangential velocity difference. Putting it all together,
we get

fij =

[
Aie

rij−dij
Bi + kg(rij − dij)

]
nij + kg(rij − dij)4vtjitij,

where g(x) is zero if (rij < dij), and it is rij − dij otherwise. k and k are some large constants.

Similarly, denote diW to be the distance to the wall, niW to be the direction perpendicular
to the wall, and tiW to be the direction tangential to the wall. The interaction force between a
pedestrian i and wall W is

fiW =

[
Aie

rij−diW
Bi + kg(rij − diW )

]
niW − kg(riW − diW )(vi · tiW )tiW

Helbing’s model was able to simulate realistic behaviour of pushing in an evacuation scenario,
through the use of repulsion and attraction forces. However, in high density cases, the simulated
pedestrians appeared to be ‘shaking’ or ‘vibrating’, as there are too many inter-personal frictions
when pedestrians are too close together in a large volume. Nevertheless, the simulated result is
similar to the empirical observations of escape panics (evacuation events).

Rule-Based Model

Reynold’s boids is an example of a rule-based model. In addition to the three stated rules at the
beginning of this section, Reynolds [1999] further discussed a more general crowd behaviour
called steering. The steering behaviour further enhances the original behaviour model by adding
more behavioural rules. The rules are listed in table 2.13.

seek and flee crowd path following
pursue and evade leader following
wander unaligned collision avoidance
arrive queuing
obstacle avoidance flocking
containment
wall following
path following
flow field following steer behaviour

Table 2.13: General Steering Behaviour [Reynolds 1999]

2.4.3 Crowd Simulation using Reinforcement Learning
Multi-agent learning is a natural framework for crowd simulation where a collection of agents
interact in an open environment. Rule-based methods have been able to generate crowds, how-
ever, the crowd behaviours are believed to be predictable. Current crowd simulation techniques
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discussed above are able to simulate believable crowds, however, the agents which are involved
do not perform any learning. Multi-agent reinforcement learning models accommodate this
criterion. This section describes a multi-agent reinforcement learning approach to crowd simu-
lation.

Recent work on comparing the use of a multi-agent reinforcement learning method, and a rule
based method in simulating crowd behaviour in a school domain by Torrey [2010] had given a
new direction in crowd simulation. This work introduces the school domain, which simulates
the behaviours from students’ interactions during recess (break) time. There are two behaviours
to be studied, agents socialising with one another and trying to get to classrooms on time. The
agents’ interaction area is a 18 × 3 grid world and this area denotes the hallway (corridor) that
connects to six classrooms. Agents are placed randomly in the hallway, and their goals are to
get to their assigned classrooms while socialising (see figure 2.5). There are 3 available actions
where at each time step, each agent chooses to

1. Stay in the current state

2. Move one state closer towards the goal classroom

3. Move one state closer towards the closest agent

(a) Before training (b) After training

Figure 2.5: The 2D School Domain [Torrey 2010]

More than one agent can occupy one state space (cell) in the hallway while socialising at each
time step. The classrooms are the absorbing states. The rewards are 30 for agents successfully
arriving at the assigned classroom, and reward of 1 for each time step while socialising. The
length of the learning episode is 25. The episode length ensures that arriving at classroom is
more beneficial than constantly socialising.

Using the Q-learning algorithm in the MMDP environment (see section 2.3.1), with param-
eters α = 0.1 and ε = 0.4, the average episode reward produces good results for 10 agents
in the school domain. Agents with high rewards (over 30) generally socialise at the beginning
of the episode and manage to arrive at the goal classrooms, whereas agents with low rewards
(below 30) do not arrive at the goal classrooms as they prefer socialising. The average reward
obtained by each agent is 38 per episode.

29



The rules given in the rule-based approach are:

1. If the time left is less than or equal to the goal distance, move towards the goal.

2. Otherwise, move towards the closest agent.

In the rule-based approach, all agents managed to receive substantially higher rewards (above
30), i.e. they all arrived at their classrooms on time. The average reward obtained by each agent
is 46 per episode, which is much higher than reinforcement learning agents’ average rewards.

In reality, not all students are always on time. Rule based agents may achieve higher rewards
but they behave in a mechanical and predictable manner. Reinforcement learning agents cap-
ture human personalities where some agents prefer to socialise more than the others. This shows
that reinforcement learning agents portray human traits, in this case they are either extroverts
or introverts. To simulate human qualities in a rule based method, animators have to lay down
more rules and introduce probability into the system. Reinforcement learning is flexible and is
able to acquire these qualities without explicit configuration.

It could be noted that the erratic or unpredictable behaviours presented by the reinforcement
learning agents in the school domain are due to the violation of an MDP property (the MDP en-
vironment needs to be stationary). However, it is important to realise that in visual simulations,
the qualitative result surpasses the quantitative result. That is, getting higher rewards does not
mean the observed (visual) result is better in this case. There is a trade-off between obtaining
highest rewards, found in a rule-based method, and higher believability, found in reinforcement
learning method.

Agents are able to portray life-like personalities autonomously using the reinforcement learn-
ing approach whereas extra effort is needed to create probabilistic rules in rule-based agents.
Owning to the fact that reinforcement learning agents influence one another in the learning pro-
cess, each agent learns a different policy (optimal or sub-optimal) and thus can produce less
predictable behaviour than that of rule-based agents.

2.5 Chapter Summary
In this chapter, we presented the background and related work on reinforcement learning and
crowd simulation. A reinforcement learning agent is able to learn an optimal policy by means
of gaining experience while interacting in environment. The single-agent reinforcement learn-
ing problem can be formulated as an MDP. Two methods were discussed on solving the MDP:
value iteration and Q-learning. In multi-agent settings, the simplest form of applying rein-
forcement learning in this framework is having MDPs for each agent and solving via the Q-
learning method. This technique provides overall good results albeit losing theoretical guaran-
tees. Markov game is the natural extension of MDP in a multi-agent environment. Agents in a
Markov game co-exist with one another in the environment and are aware of actions taken by
the other agents (coordination) but they are exposed to the multi equilibria selection problem.
Current multi-agent reinforcement techniques focus on the two-layer design where the multi-
agent framework activates if there’s a need for agents to coordinate, otherwise the single-agent
framework is sufficient and thereby reducing the state-space.
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The goal of crowd simulation is to produce the interactions and movements of entities in an
environment. The approaches to simulating crowd are divided into two categories: macroscopic
and microscopic. The techniques are able to depict the general behaviour found in crowds, but
they do not involve learning. Recent work in simulating crowds using reinforcement learning
produces believable crowd behaviour in a school environment. The ‘students’ are able to exhibit
distinct (unpredictable) characteristics in the interactions with each other.
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Chapter 3

Multi-Agent Crowd Simulation

The multi-agent domain is inherently difficult to implement effectively. As discussed in the
previous chapters, the main challenge in the multi-agent domain is the exponential explosion
found in the state-action space. Extending the single-agent reinforcement learning paradigm to
the multi-agent environment is often trivial to implement, but computationally expensive.

In this dissertation, we study four methods to simulate crowd behaviour in a multi-agent en-
vironment. The methods are:

1. Rule Based (Chapter 4)

2. Multi-Agent Markov Decision Process (MMDP) (Chapter 4)

3. Joint State Action Q Learning (JSA-Q1) (Chapter 5)

4. Joint State Value Iteration (JS-VI) (Chapter 5)

The objective is to obtain some results from the four methods, so as to answer our research
question:

Given a 2D environment with a set of actors and objectives, can multi-agent re-
inforcement learning algorithm be used to produce policies that create believable
crowd behaviour?

3.1 The Environment
The simulated environment in this research is a grid world. Figure 3.1 is a general depiction of
a 40 × 30 grid world. Each cell represents one state, and each state can be either a goal state,
obstacle state or empty state at each time step. Empty states and goal states are states that an
agent can occupy. The states are colour coded for reference, where goal states are in green,
obstacle states are in black and lastly empty states are coded in grey (figure 3.1a).

A state is occupied when an agent is placed in that state, and this agent is represented as a
coloured circle with a number referencing the agent’s identification (figure 3.1b). Different
agents will never occupy the same state at any given time step.

Figure 3.2 is a scaled down version of the grid world. The smaller grid world is 5 × 5. Re-
fer to chapter 5 for more discussions.
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(a) (b)

Figure 3.1: Crowd simulation platform

Figure 3.2: Small scaled simulation platform

The objective of the agents is to navigate to the goal states from any starting positions in an ef-
ficient manner, while steering clear of obstacle states and avoiding collisions with other agents.
The goal states are the absorbing states as agents that enter the goal state will stay in the goal
state for the remainder of the episode, irrespective of the actions (if any) chosen.

To simplify the simulation task, we assume that the following conditions hold:

1. agents move at the same velocity

2. each cell in the world represents a uniform space occupied by the average human size

3. any move performed by an agent is executed precisely in one time step

The third condition allows an agent to move or turn, say, 180◦ in one time step. That is, agents
do not face any direction specifically, they can move in any direction without facing the intended
orientation. There are 5 actions that an agent can perform: up, right, down, left and stop.
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Collision and Out-of-Bounds

Special attention is needed in the event of agent collisions and when an action takes the agent
out of the boundary of the environment. In the learning phase, suppose two or more agents have
executed their respective actions and moved to the same resulting state, this scenario leads to
the notion of an agent collision. As explained above, a state cannot be occupied by more than
one agent at the same time. One solution to manage this problem that we use here is to let the
colliding agents move back to their respective previous states and randomly choose one agent
to proceed to the new (previously collision) state. Similarly, if an action takes an agent to an
out-of-bounds state, the agent moves back to its previous state.

3.2 Formation of Bottlenecks
The study of crowd behaviour in a simulated environment is a subjective evaluation process, and
is often difficult to quantify [Schadschneider et al. 2009; Martinez-Gil et al. 2012]. To simplify
the evaluation process, we have decided to generate density graphs for our simulations.

A density graph or heat map in crowd simulation is a representation of density (the number
of objects, humans, agents that are within a specific radius) over a period of time. Figure 3.3 is
the colour scale that will be used to depict the density intensity. The darker the shade of a state
the higher the density of population in that state. Similarly, a lower density of population will
have a lighter colour representation over that state.

Figure 3.3: An example of the colour scale representing the density intensity. Lighter to darker
shades depicting lower to higher density.

The local density ρ of a state ~r = (x, y) at time t is defined as

ρ(~r, t) =
∑
i

f(~ri(t)− ~r), (3.1)

where ~ri(t) is agent i’s current position at time t and

f(~z) =
1

πR2
exp
[−||~z||2

R2

]
, (3.2)

is a distance dependent weight function. Note that this density is obtained by averaging over a
circular region of radius R [Johansson et al. 2007]. In a grid world, the radius corresponds to
the number of immediate neighbours to the state ~r. Figure 3.4 is an example of a density graph.
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Figure 3.4: Density Graph - This density graph represents the movement of 30 agents in the
grid world from figure 3.1a over a period of time.

It is inevitable that in any kind of crowd movement, especially in larger crowds, there will be
congestion at exits (near and around) where the congestion will eventually build up long lines
of lanes. The clogging and blockage of crowd movements contribute to the formation of bottle-
necks. Observations of the formation of bottlenecks in both real-life simulation and computer
generated simulation, have suggested that there is a definite shape that can be recognised. This
shape is in the form of a zipper (the Y or V shape) [Schadschneider et al. 2009] (see figure 3.5).
This zipper shape, otherwise is also known as the zipper effect is used to analyse our simulated
results in chapters 4.1 and 4.2.

Figure 3.5: The Y or V shape forms around the exit where the clogging occurs
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3.3 Simultion Recordings
Selected actual simulation recordings are available at pages.ms.wits.ac.za/˜fred for
viewing.

3.4 Chapter Summary
In this chapter, we formulated the research question and described the general domains for the
four research methods. There are two environments available, a 40 × 30 large grid world and
a smaller 5 × 5 grid world. The general depiction of the states in the grid world is discussed.
Special attention to collision and out-of-bounds is also included.

Lastly, we introduced the notion of bottlenecks forming at the space around an exit. The bottle-
neck is a consequence of clogging and blockage of crowd movements which produce a recog-
nisable zipper shape. We have devised density graphs as tools to identify the zipper shape in
our experiments.
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Chapter 4

Rule Based and MMDP Agents

In this chapter, we investigate the performance of the rule based and MMDP approach to crowd
simulation. The 40× 30 grid world described in section 3.1 is used for both methods.

4.1 Rule Based Agents
As discussed in section 2.4.3, rule based agents in crowd simulation present predictable be-
haviours. However, the rule based mechanism is a simple and intuitive solution. With the use of
simple rules, it is possible to simulate life-like simple agents without carrying large computa-
tional cost. On the other hand, to simulate complex objects would require explicit rules and this
will eventually become too tedious to implement in large size crowd simulations. Nevertheless,
rule based methods have merit as they are simple and precise.

4.1.1 Rule Set
The rules that govern the actions of the agents at each time step are to move a new position, say
s′, which is closer to the goal state, while making sure that s′ is not occupied by another agent
and s′ is not an obstacle state. Agents can move to any of the four immediate neighbouring
states, s′, with actions: up, right, down and left provided the action takes the agent to a valid
state. That is, the new state is valid if it is within the grid world. Failing to meet the three rules,
the agent will remain in the current state s′.

For each action, in the order of up, right, down and left, the three rules are listed below

1. determine if new state is a valid state, then

2. if the new state is not an obstacle or an occupied state, then

3. if the distance to the goal state is lower, move to the new state

Note that the distance between two states is determined by taking the Manhattan distance be-
tween two points.

4.2 MMDP Agents
Recall that in an MMDP model, the goal is to iterate over n agents so that their respective Q-
table values are updated using the Q-learning algorithm. The aim is to simulate a large crowd
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navigating to exits in a large environment using the MMDP model. We also investigate whether
the loss of theoretical guarantees will have any impact on the simulation.

4.2.1 State Space
We consider two ways to represent the state space. Firstly, an elementary representation of
states with size O(n·|S|·|A|) where n is the number of agents, |S| is the size of the dimension
and |A| is the number of actions. That is, each agent maintains a Q-table of size O(|S|·|A|).
TheQ-value is indexed by the state and action pair. For exampleQi(s1, a1) denotes theQ-value
that agent i is in state s1 and chooses action a1.

Secondly, additional state information is included such that agents receive the information of
neighbouring states. The additional states are shown in figure 4.1.

Figure 4.1: The state information (shaded regions) that is available to the agent at position X.

There are a total of 12 extra bits of state information where each bit indicates the presence of an
agent. Therefore, the size of theQ-table that each agent has isO(n·|S|·|A|·212). TheQ-value is
indexed by the state-action pair and the 12 additional bits. For example,Qi(s1, a1, b1, b2, ..., b11, b12)
denotes the Q-value that agent i is in state s1 and chooses action a1 while taking account of the
12 neighbouring states. The additional state information serve to expedite the learning process.

4.3 Experiments
Rule based agents do not require any pre-training or pre-learning prior to the simulations as
agents react to the environment and perform actions during the simulation. Agents are placed in
the simulation environment randomly and each agent navigates the environment following the
above described rules as per simulation.

Contrary to rule based simulations, the MMDP agents need to learn to navigate in the environ-
ment first. Refer to the MMDPQ-learning algorithm as described in section 2.3.1, Algorithm 3.

The length of one learning episode is 500 moves (steps) or until all agents have reached the
goal state. An agent will stay in the terminal (absorbing) state for the duration of an episode
once it enters a terminal state.

The rewards and penalties associated with each action are as follows: reward of 100 for ar-
riving at goal state, penalty of−10 for colliding with other agent(s), penalty of −10 for moving
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to an obstacle state, lastly a penalty of−1 for every action taken except when the agent is in the
goal state. The −1 penalty is designed to ensure that agents can find short paths to the goal.

Following the discussion on collision and out-of-bounds in section 3.1, a learning agent will
move back to its previous state if an action takes the agent to an out-of-bounds state. However,
in the event of a collision, there is no need for agents to move back to their previous states as
the agents make their moves asynchronously.

The policy is obtained from the final Qi-tables for each agent by

πi(s) = arg max
a

Qi(s, a), ∀s ∈ S.

In the simulation phase, a full simulation or round ends when all agents have arrived at the goal
state or when the number of moves are more than 500. At each step, the order of agents taking
actions is randomly selected.

The parameters α, γ and ε are 0.25, 0.99 and 0.1 respectively are used for all the experiments.
Note that α is set to decay.

A complete simulation is obtained when all agents have arrived at the goal state. The order
in which the agents move to new states is chosen by their identification number in ascending
order. At every time step of the simulation, the density of the crowd is calculated using equation
3.1.

4.4 Results and Analyses
The number of agents used in both methods are 20, 50 and 100.

Rule Based Agents

The simulation results from the rule based approach are shown in figures 4.2 to 4.4. As the
number of rounds increases for each simulation, we can see that the agents (or crowd) are fol-
lowing a fixed path. The movement of the crowd is predictable as they are inclined to move
straight ahead (in a straight line) and then move across to the exits. The crowd moves in such a
predictable manner because we have forced them to choose actions in the up, right, down and
left order.

This phenomenon can be seen from the denser horizontal region at the top of the graph. We can
also confirm that the zipper effect or the shape is not found in the density graph. Even though
the crowd will always try to find the shortest path to the exits, however, without introducing any
variance or randomness in choosing actions, the path that the crowd follows will be similar in
every simulation.

The concept of adding randomness is that each individual in a crowd could portray some traits
of uniqueness or individuality, but it must also preserve the quality of a crowd as a whole. Fur-
thermore, as evidenced from section 2.4.2, more rules have to be introduced in order to produce
more believable crowd behaviour. The process will eventually become tedious and completely
infeasible when simulating large crowds (especially as humans), as more complex rules must

39



be designed for each agent to achieve a higher degree of believability.
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Figure 4.2: 20-agent simulations - 50, 100 and 200 rounds
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Figure 4.3: 50-agent simulations - 50, 100 and 200 rounds
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Figure 4.4: 100-agent simulations - 50, 100 and 200 rounds
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Moreover, the complexity analysis indicates that the order is O(n) where n is the number of
agents. This linear complexity is comprised of two parts, a O(1) complexity at determining the
three rules and this is done over n times (O(n)). Combining both parts, we get O(n).

MMDP Agents

To differentiate the two methods of representing states, we denote the elementary representa-
tion (where each agent maintains a Q-table of sizeO(|S|·|A|)) as Experiment A and the second
representation (where each agent maintains a Q-table of size O(n·|S|·|A|·212)) as Experiment
B. An interesting phenomenon is observed from the two experiments. In the 20-agent environ-
ment, agents in Experiment A are able to learn optimal policies after 2000 episodes, whereas
agents in Experiment B are able to learn optimal policies after 500 episodes. This indicates
that agents in Experiment B learn faster. However, owing to the fact that 212 additional bits
of information is present in the state space, the time taken to learn is substantially longer than
Experiment A.

The average number of successful exits over the number of episode graphs in figure 4.5 in-
dicate that with sufficient learning, all the agents from both experiments are able to locate and
move to the goal states. Note that the average number is obtained by running 200 simulations.
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(a) Graph showing average number of exits in Experi-
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Figure 4.5: Average number of exits in Experiment A and B

Furthermore, the agents in the two experiments are following similar policies as the density
graphs show close similarities. In addition, the Y shape can be identified in the density graphs.
The Y shape or the zipper effect is an indication the agents are portraying common behaviours
found in and around exits. Figure 4.6 from Experiment B shows the presence of the Y pattern.
The density graphs are obtained by averaging 200 rounds of simulations.
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Figure 4.6: Density graphs generated by 200 rounds of simulations trained over 2000 episodes

On the other hand, consider the average number of collisions over the number of episodes
graphs in figure 4.7. The average number of collisions per episode is increasing as indicated
from both graphs. While the agents are able to navigate to the goal states successfully, they are
colliding with one another rather frequently.
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(a) Graph showing average number of collisions in Ex-
periment A
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Figure 4.7: Average number of collisions in Experiment A and B

One simple deduction of such an occurrence is the non-stationary environment that the agents
reside. As discussed previously, the theoretical guarantee of an MDP converges is no longer
valid if it is extended to a multi-agent environment. The reward function specifies that agents
will receive penalties if collisions occur, thus an attempt is made to prevent the same colli-
sion from occurring again. However, the non-stationary environment coupled with the fact that
agents are not aware of other agents’ actions and thus prompting the frequency of collisions.

The motivation for including the additional information of the neighbouring states is to let the
agents be aware of their surroundings while learning so that they are able to learn to coordinate.
However, being aware of the presence of the other agents is not sufficient for the agents to coor-
dinate in this case. The additional information indicate the occupancy of the surrounding states,
but they do not inform what actions the other agents are performing.
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To demonstrate, consider the scenario in figure 4.8. In the learning phase, agent 0 understands
that agent 1 is in its neighbouring state, however because agent 0 does not know which action
agent 1 will perform, agent 0 eventually learns that the best action is the action up. Similarly,
agent 1 learns that the best action is the action left. In this scenario, the collision is inevitable.
The agents update their Q-values as if they are alone in the environment.

Figure 4.8: An example showing that a collision is unavoidable in the MMDP model.

4.5 Chapter Summary
The simulated rule based agents in crowd simulation behaved in a predictable way. An observa-
tion found in our rule based simulations is that the cost of the implementation is linear in nature
due to the three simple rules. However, the crowds resemble no individuality as the agents are
not exposed to randomness when choosing actions and more complex instructions have to be
tailored for each agent.

The lack of a theoretical guarantee of convergence is a shortfall in MMDP models as the envi-
ronment is non-stationary. However, with adequate learning episodes, the agents were able to
find the goal states while navigating in the environment as supported by the learning curves pre-
sented. The fact that the density graphs conformed to the zipper shape further demonstrated that
the agents were presenting crowd-like behaviour in our simulations. The MMDP Q-learning al-
gorithm can produce policies that would allow a fixed number of agents (up to 100 agents) to
locate and navigate to the goal states.

On close inspection, the graphs in figures 4.5 and 4.7 indicate that agents are certainly navi-
gating to the goal states, however, with collision tendencies. This scenario resembles an evac-
uation simulation where a group of agents (a crowd) attempts to escape an environment in an
emergency situation.

Finally, despite efforts made to encourage agents to coordinate by including additional infor-
mation from their surrounding states, agents in an MMDP model failed to prevent collisions.
Without being informed of the actions that the other agents take, agents cannot coordinate. Con-
sequently, we investigate the effectiveness of the joint state action space for agents to coordinate
in the next chapter.
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Chapter 5

JSA-Q1 and JS-VI Agents

In this chapter, we introduce two multi-agent reinforcement learning methods: joint state action
Q-learning and joint state value iteration. The methods are tested in the 5 × 5 environment
described in section 3.1. In contrast to the environment used in the MMDP model in the previous
chapter, this smaller environment is necessary as large sized environment makes joint state
action (even joint state) representation infeasible. The joint state action space, allows the agents
to be aware of the actions taken by one another, suggests that agents should be able to learn to
coordinate.

5.1 JSA-Q1 Agents
We introduce a novel approach to implement multi-agentQ-learning in joint state action spaces.
Essentially, this is equivalent to having one centralised agent learning the tasks of the other
agents. We also try to address the problem of exponential growth which occurs in joint state
action spaces and attempt to find a way to reduce the computational cost. Suppose an optimal
policy for one agent (single-agent) is available. Then, for two agents to learn in the same
environment, there is no need to learn further when one agent arrives at the goal state as there
will only be one agent left in the environment. This observation reduces the two-agent problem
to a single-agent problem which in turn reduces the number of joint state action spaces that the
algorithm needs to visit and update.

5.1.1 Joint State Action Space
The joint state and joint action spaces concept is discussed briefly in section 2.3.3. In an n agent
environment, let |S| be the size of the environment and |A| be the number of actions. The size
of the joint state space is |S|n and the size of the joint action space is |A|n. Hence, the required
size of a joint state action space is O(|S|n · |A|n). Note that the joint state space is not exactly
|S|n as agents are not allowed to occupy the same state at the same time.

One motivation for using the joint state action space is to correlate the movements of the agents
during the simulation phase. Realistically, the agents should perform actions simultaneously
rather than in some defined order as shown in the previous two methods.

The full joint state action set is a set of all possible states and actions for n agents. That is,
suppose in a 2× 2 grid world with 2 agents, the agents are allowed to perform 4 actions (0, 1, 2
and 3). Then the total number of states is 4 and the number of joint states is 42 = 16. However,

44



since we are limiting the agents to not occupy the same state, the actual number of joint states
available is 12. The number of joint actions is 42 = 16. The total size of the joint state action
space needed is 12× 16 = 192.

Figure 5.1: A 2× 2 grid world illustrating the joint state action space concept

The two agents, 1 and 2, are placed in states (0, 0) and (1, 1) which constitute a joint state,
while a joint action comprises the collection of two actions, say (0 0) where both agents take
the action 0. A pair of joint state and joint action represent a joint state action pair. The joint
state action set is used to access the Q-value from the Q-table, Q(~s,~a), where ~s is the joint state
and ~a is the joint action.

5.1.2 The JSA-Q1 Algorithm
Extending the general multi-agent Q-learning method from Algorithm 4 in section 2.3.3, we
have derived the JSA-Q1 algorithm as shown in Algorithm 5. This algorithm is based on the
notion that it is relatively easy for one agent to learn in a simple environment (single-agent re-
inforcement learning). Suppose an optimal policy for one agent exists. Then for two agents to
learn in the same environment, the learning iteration per episode terminates when an agent has
arrived at the goal. That is, there is no need for the remaining agent (one agent in this case) to
learn an optimal policy since we already have the optimal policy for one agent. This process is
then repeated until an optimal policy for two agents is achieved.

Similarly, once an optimal policy for two agents has been obtained, this two-agent policy can
now serve as the basis for finding an optimal policy for three agents. The learning iteration
per episode terminates when an agent has arrived at the goal, thus leaving two agents behind.
Therefore, using this method, we can find some policy for n agents navigating in an environ-
ment. The learning iteration per episode ends when one agent has found the goal, hence the
name Q1. Note that, for n agents to learn, the algorithm needs to be executed n times in the
order of 1, 2, 3, ..., n agents.

The objective of applying this method is to reduce the size of the joint state action space and
accelerate the learning process. The assumption is to limit the algorithm to explore additional
joint state action set when an agent arrives at the goal state, thus, trimming down the size of the
joint state action space which can then accelerate the learning process.

There are two parts to the JSA-Q1 algorithm (shown in algorithm 5). The first segment (the
while loop) handles the learning mechanism for n agents until one agent has found a goal state.
The second segment is necessary as we need an extra step to allow the remaining agent(s) to
follow the correct policy. To illustrate this motive, consider a two-agent example (see figure
5.2a). Let the rewards be 100 for arriving at a goal state, -10 for an agent collision, -10 for
moving to an obstacle state and -1 in addition for every move. The agents’ positions are at
(1, 2) and (1, 4). Suppose agent 0 has chosen to move up, thus moving to the goal state. At this
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Algorithm 5 The JSA-Q1 Algorithm for n agents
Require:

Initialise Q(~s,~a) = 0 ∀ ~s ∈ Sn,~a ∈ An where n is the number of agents
Initialise state ~s
while no agent has arrived at goal do

Choose ~a from ~s using policy derived from Q(~s,~a)
Take action ~a and observe r and ~s

′

Q(~s,~a)← (1− α)Q(~s,~a) + α[r + γ max
~a

Q(~s
′
,~a)]

~s← ~s
′

end while
if number of agents remaining is more than 0 then
~s← Backtrack all the agents to previous states
Choose ~a from ~s using policy derived from Q(~s,~a)
Take action ~a and observe r and ~s

′

Q(~s,~a)← (1− α)Q(~s,~a) + α[r + γ max
~a

Q-1(~s
′

-1,~a-1)]

end if

point, the algorithm will perform one last update to the Q-table. However, this update does not
take into account the action of agent 1. That is, a two-agent policy is optimal if one agent is able
to navigate to the goal state, regardless of the other agent’s actions. Therefore, the two policies
where agent 0 and agent 1 move

1. up and left

2. up and down

are considered as optimal policies as one agent in both policies is able to locate the goal state.
Nevertheless, the second policy is not optimal as agent 1 is moving a step further away from the
goal state.

(a) Initial (b) Policy 1 (c) Policy 2

Figure 5.2: Two policies to following from the initial states

To rectify this flaw, the Q-value of the conflicting states needs to be adjusted, hence, we have
the second part of the algorithm. Before the update begins, let i∗ be the agent that is in the goal
state and the algorithm backtracks all the agents (including agent i∗) to their previous states, ~s ′ .
Similar to the first part, the adjustment occurs at the update of Q-value. Instead of finding the
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future Q-value from the n agent policy after finding and executing the joint action, this update
now finds the value from the n − 1 agent policy using the joint state ~s ′-1 and joint action ~a-1

where agent i∗’s state and action are excluded. This extra step allows the two policies (n and
n− 1 policies) to be coherent.

Consider the example above, if the single-agent policy is optimal, then agent 1’s maximum
future Q-value will be from the state to its left, (1, 3). This value will then be used to update the
two-agent Q-value, and with sufficient learning, there will only be one optimal policy (Policy
1, figure 5.2b).

As an extension from Q-learning , the JSA-Q1 learning algorithm assumes no prior knowledge
of the environment, thus making the environment model-free.

5.2 JS-VI Agents
We also look at the value iteration (VI) algorithm, which is a dynamic programming approach,
to crowd simulation (multi-agent). The multi-agent value iteration algorithm is almost identi-
cal to the single-agent value iteration algorithm discussed previously. The single-agent value
iteration algorithm is shown in algorithm 1 in section 2.2.1.

5.2.1 Joint State and Joint Action
The only modification to the single-agent value iteration algorithm is the use of joint states, ~s,
to index the value function V (~s ). The size of the joint state space is still exponential, O(|S|n)
where |S| is the size of the environment and n is the number of agents.

Similar to the joint state action space discussed in the previous chapter, the definition of joint
state and joint action remain unchanged. The difference is that the JSA-Q1 algorithm requires
the presence of the full joint state action set in order to index the values from the Q-table,
whereas the algorithm used in this chapter handles the joint states and joint actions separately.
The algorithm calls for the existence of joint states to obtain the values from a value function
and joint actions for when agents are selecting actions.

5.2.2 The JS-VI Algorithm
The revised algorithm, joint state value iteration or JS-VI, is outlined below (algorithm 6).
The value iteration algorithm requires the full knowledge of the transition probability thus re-
quiring the JS-VI algorithm to work in model-based environments.

5.3 Experiments
Owing to the nature of exponential growth in the state space with joint state action set, it is
infeasible to use the same environment as the previous two methods discussed in chapter 5. A
simple calculation shows that in a 40× 30 grid with 10 agents where each agent has 5 actions,
the state space requirement is 120010×510 ≈ 6×1044, which is astronomical. Similar argument
holds for the joint state approach. We therefore test the two methods in a smaller environment
described in section 3.1.
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Algorithm 6 The Joint State Value Iteration (JS-VI) Algorithm
Require:

Initialise V (~s ) = 0 ∀ ~s ∈ Sn where n is the number of agents
repeat

∆← 0
for ~s ∈ Sn do
v ← V (~s )
V (~s)← max

~a

∑
~s ′
P (~s,~a, ~s

′
)[R(~s,~a, ~s

′
) + γV (~s

′
)]

∆← max(∆, |v − V (~s )|)
end for

until ∆ < θ

JSA-Q1 Agents

A single agent Q-value (or Q-table) is obtained by letting one agent learn in the environment
using the single agent Q-learning method from Algorithm 2 in section 2.2.2. This single agent
Q-table is used as the base case as described above.

A full episode of learning ends when one agent has arrived at the goal state. The handling
of agent collision and out-of-bounds occurrences in the learning phase is as discussed in section
3.1. The rewards and penalties for different states are as follows: reward of 100 for arriving
at a goal state, penalty of −10 for colliding with other agent(s), penalty of −10 for moving to
an obstacle or out-of-bounds state, lastly a penalty of −1 for every action taken except when
agent is in the goal state. The parameters for the experiments α, γ and ε are 0.25, 0.99 and 0.1
respectively.

A random selection is made when there is a tie. The ties are usually found in choosing the
highest next joint state value (max

~a
Q(~s′,~a)) in the learning phase and in choosing the joint

action that has the highest value in the simulation phase.

JS-VI Agents

The JS-VI algorithm uses the same reward function as the JSA-Q1 algorithm. The parameters
for the experiments γ and θ are 0.99 and 0.01 respectively.

In the process of evaluating V (~s), it is safe to assume that a joint action that results in a collision
will not have the highest value. That is, there exists at least one joint action where one of the
agents will ‘give way’ which in turn will have a higher value. This assumption indicates that we
do not need to handle the reassignment of agents when there is a collision or an out-of-bounds
occurrence as the corresponding joint action will always have lower values than other joint ac-
tions.

Once the learning phase is complete, the deterministic policy π(~s ) is determined by

π(~s ) = arg max
~a

∑
~s ′

P (~s,~a, ~s
′
)

[
R(~s,~a, ~s

′
) + γV (~s

′
)

]
, ∀~s ∈ Sn. (5.1)
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A random tie breaker is introduced if there are two or more joint actions that have the same
values when determining a policy.

5.4 Results and Analysis
Both algorithms are tested on 2, 3 and 4 agents and the results are discussed below.

5.4.1 JSA-Q1 Agents
The length of the learning episodes for each experiment with different numbers of agents can
range from 2, 000 to 4, 500, 000 episodes. The number of joint state action sets visited are
recorded from each experiment and they form the total number of entries found in the Q-table.
The number of entries (joint state action set) is to be compared with the theoretical calculations
of the joint state action space as discussed above (section 5.1.1).

Table 5.1 lists the number of entries (joint state action set) present in the Q-table per each
episode, and the theoretical calculation of the joint state action space.

Number
of Agents

Number of
Episodes

Number of Entries
in the Q table

Theoretical
Calculation

2

500,000 10,700

15,625

1,000,000 10,669
2,000,000 10,691
2,500,000 10,708
3,000,000 10,710

3

2,000,000 56,8676

1,953,125
2,500,000 606,036
3,000,000 632,849
4,000,000 678,609

4

2,000,000 2,914,979

244,140,625

2,500,000 3,550,623
3,000,000 4,163,536
3,500,000 4,759,815
4,000,000 5,338,670
4,500,000 5,898,055

Table 5.1: Comparisons of the Number of Entries in Q-table

We have chosen the starting policy π∗1 (one agent policy) from the Q-table of 1000-episodes.
This policy is optimal as we have tested that the agent manages to find optimal paths to the
goal state when placed randomly in the environment. Using this policy π∗1 , we are able to apply
the algorithm for experiments involving two agents over a range of episodes and thus obtain a
two-agent optimal policy, π∗2 . Again, using this two-agent optimal policy, we are able to obtain
a three-agent optimal policy, π∗3 , and so forth.

Unfortunately, it is infeasible to obtain an optimal policy for 5 agents. The size of the joint
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state space of a five-agent, 5 × 5 environment is 255 × 55 = 30, 517, 578, 125, which is ap-
proximately 30 billion. This number is impractical to be implemented as the physical computer
memory will be inadequate. In fact, the optimal policies for the three-agent and four-agent sce-
nario are sub-optimal policies. Without running out of memory, the number of visited joint state
action sets is only a fraction of the number of theoretical joint state action set. We can see that
in the three-agent and four-agent policies, the number of visited joint state action sets is only
roughly 35% and 2% of the theoretical number respectively. As shown in table 5.1, the number
of entries escalates exponentially as the number of agents increases.

Agent Collision

In an optimal policy, agents learn to coordinate in order to avoid collisions. Consider a two-
agent environment (figure 5.3a) where the agents’ (0 and 1) positions are (1, 1) and (2, 2). From
the contents of the Q-table, table 5.2 is extracted for the joint state (1, 1) and (2, 2) where each
unique joint action is associated with a Q-value. The joint action is of the form a0 a1 which
means agent 0 performs action a0 and agent 1 performs action a1.

(a) Initial (b) Step 1 (c) Step 2

Figure 5.3: Collision Avoidance

Table 5.2 lists 25 joint actions and the Q-value pairs from the joint state (1, 1) and (2, 2). The
number of joint action and Q-value pairs corresponds to the total number of joint actions in
our calculation, which is |A|n = 52. This indicates that the agents have attempted all possible
joint actions from all possible states, and with sufficient learning, the values of each joint action
should be able to reflect the consequence of performing such joint actions. There are two joint
action sets that have the same maximumQ-value (195), namely (1 4) and (0 4). The joint action
pairs are indeed the optimal actions. Evidently, looking at figure 5.3a we can easily conclude
that one agent has to give way to the other agent in order to avoid a collision, and it is clearly
represented in the two joint action sets (1 4) and (0 4). A random tie breaker is used in the event
of multiple optimal actions.

By allowing the fifth action stop, the agents are able to coordinate when they are moving to
a conflicting state. Since there is no preference or priority on which agent gets to move to the
new state, the selection is done randomly. Suppose the joint action (1 4) is selected and the
agents perform the actions where the results are shown in figure 5.3b. In this scenario, there is
no threat of collision and therefore there should only be one joint action set that has a maximum
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Joint Action Q-value
0 0 185
0 1 183
0 2 183
0 3 183
0 4 183
1 0 173
1 1 194
1 2 194
1 3 194
1 4 195

Joint Action Q-value
2 0 194
2 1 191
2 2 191
2 3 173
2 4 193
3 0 194
3 1 191
3 2 191
3 3 191
3 4 193

Joint Action Q-value
4 0 195
4 1 193
4 2 193
4 3 193
4 4 193

Table 5.2: Q-values of the joint state (1, 1) and (2, 2)

value (0 0). After performing this joint action, agent 1 will be the only agent left in the environ-
ment (figure 5.3c). This simulation ends with agent 1 taking action 0 from the one agent policy
π∗1 .

Values, as listed in table 5.2, can be calculated by adding up the total rewards of the joint
action taken by the agents upon arriving at the goal state (by following some policy)1. For
example, if the agents perform the action (0 0), the rewards will be −10 for moving to an ob-
stacle state and −2 for the penalty. In the next move, the joint action that carries the highest
value is (1 0) and this has a reward of 100 from agent 1 moving to a goal state and −2 for
the penalty. Lastly, agent 0 moves to the goal state and the rewards are 100 and −1. There-
fore, the total rewards for the agents to navigate to the goal state from the starting positions are
(−10) + (−2) + 100 + (−2) + 100 + (−1) = 185. This total reward correspond to the Q−value
of the joint action (0 0).

Performance Curves

To validate the performance of this algorithm, consider the graph in figure 5.4.
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Figure 5.4: Graph showing average number of steps to reach the goal state

1Assuming γ = 1
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The average number of steps for the agents to reach the goal state is steadily decreasing as
the number of training episodes increases where the average is taken by running the simulations
100 times. This graph validates that the algorithm converges for the 2-agent and 3-agent en-
vironments. The graph of the 4-agent case is terminated after 4, 500, 000 learning episodes as
continuing the learning triggers out of memory errors. The higher number of average steps can
be justified as the explored joint state action set is already 2% (as discussed above), signifying
the agents have not visited adequate number of joint state action sets at training due to the large
state space and thus render the agents immobile or forcing the agents take longer paths to the
goal state.

The average number of steps obtained from the simulations using policies π∗2 and π∗3 are as
follows:

Optimal Policy Average steps
π∗2 7.56
π∗3 10.16

Table 5.3: Average steps obtained from the JSA-Q1 optimal policies

5.4.2 JS-VI Agents
Recall that value iteration (in a single-agent environment) is a dynamic programming approach
to finding an optimal policy. Value iteration, provided it converges, will always guarantee an
optimal policy. This concept applies and extends to the JS-VI algorithm.

The convergence criterion of the value iteration algorithm is that the algorithm will stop the
iteration process when the value function changes only by a small amount. This criterion can be
used in the JS-VI algorithm as the algorithm terminates when evaluating the value functions in
the experiments. Furthermore, the only adjustment to the JS-VI algorithm from the single-agent
value iteration algorithm is the use of joint states. This adjustment only changes the representa-
tion of the value function, so the theoretical limits and properties are still preserved. Therefore,
we can formulate the JS-VI algorithm as a standard (single-agent) value iteration problem triv-
ially and thus maintain the convergence criterion.

The JS-VI algorithm is able to terminate (converge) for the 2, 3 and 4 learning agents. This
indicates that we can generate optimal policies using equation 5.1. Unfortunately, the state
space of a 5-agent environment is too large for the algorithm to handle as the algorithm is
forced to abort due to memory limitations.

Collision Avoidance

Consider a two-agent example, where agent 0 (red) and agent 1 (blue) are at positions (1, 1)
and (2, 2) initially (figure 5.5a). The value of this joint state is 195. Using equation 5.1, we
have obtained two joint actions (right stop) and (stop up). The two joint actions are indeed the
optimal strategy in this scenario. Suppose that the joint action (right stop) is chosen randomly,
then the new joint state is (1, 2) and (2, 2) (figure 5.5b). In this new joint state, the value is 197
and the only optimal joint action is (up up). Lastly, the new joint state is (0, 2) and (1, 2) and
the value of this joint state is 199 with optimal joint action (stop up) (figure 5.5c). Finally, the
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last agent will move to the goal state and the simulation ends. The values of all the joint states
in this two-agent environment are listed in appendix B.

(a) Initial (b) Step 1 (c) Step 2

Figure 5.5: Two-agent Collision Avoidance

Similarly, in a three-agent example (figure 5.6), the value function is optimal as there are 3
joint actions that would give a value of 291. Also, in a four-agent example (figure 5.7), there
are 4 joint actions that would give a value of 386. The agents in the two examples are able to
avoid collisions as the policies are optimal.

Figure 5.6: Three-agent Collision Avoidance Figure 5.7: Four-agent Collision Avoidance

Average Steps

Similar to table 5.3, the average steps for the agents to arrive at the goal state is tabulated in
table 5.4.
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Number of Agents Average steps
2 7.42
3 10.95
4 14.8

Table 5.4: Average steps obtained from the JS-VI optimal policies

The number of steps is averaged over 100 simulations for each set of policies (the 2, 3 and
4-agent polices). The average steps obtained from the 2 and 3-agent policies are almost equiva-
lent. Since, policies generated from value iteration are always guaranteed optimal provided the
algorithm converges, we can conclude that the policies π∗2 and π∗3 described in 5.4.1 are optimal.

5.5 Chapter Summary
The fundamental difference between the JSA-Q1 learning algorithm and the MMDPQ-learning
algorithm is that while learning, agents take into account other agents’ actions. And provided
there is sufficient learning, agents are able to learn to coordinate their actions when arriving at
a conflicting state so that a collision is avoided.

The limit to this learning algorithm is the exponential growth of a joint state action space.
Despite this limitation, in the two-agent experiments, we are able to extract an optimal policy
using this algorithm. The number of visited joint state action sets in the optimal policy π∗2 con-
tains roughly 68% of the number of theoretical joint state action sets and the average steps for
the agents to reach the goal state declines to a steady number, suggest that the JSA-Q1 learning
algorithm is converging and it is able to reduce the joint state action space.

The benefit of using the value iteration method is the guarantee of convergence and thus obtain-
ing an optimal policy. The fact that the value function is optimal in the four-agent experiment
shows that the JS-VI algorithm is a favourable option for finding an optimal policy where the
agents are required to coordinate in conflicting states. The optimal policy is able to avoid agent
collisions while providing accurate navigation.
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Chapter 6

Conclusion

The single-agent reinforcement learning paradigm allows an agent to interact within an envi-
ronment to achieve a given objective by means of trial and error. By extension, the multi-agent
reinforcement learning paradigm allows a group of agents to interact within an environment as
well as interact with one another.

While the Markov game provides a theoretically guaranteed framework for solving multi-agent
reinforcement learning problems, it is nonetheless impractical to implement. This is caused by
the PPAD-complete complexity of finding a Nash equilibrium, the existence of multiple equi-
libria and the exponential nature of the joint action or joint state action space.

To overcome these problems, work has been done on shifting multi-agent reinforcement learn-
ing problems from Markov games to learning on multiple levels. The Coordinating Q-Learning
algorithm from section 2.3.4 is an example of learning on multiple levels. However, this method
only works in a sparse environment.

Existing crowd simulation methods cover a wide array of advanced artificial intelligence ap-
proaches. However, the virtual crowd agents generated from these methods do not learn. As
such, we have investigated the learning agents group behaviours by means of experimenting on
simulating crowd behaviours using multi-agent reinforcement learning techniques.

To incorporate multi-agent reinforcement learning and crowd simulation, we have formulated
the research question:

Given a 2D environment with a set of actors and objectives, can multi-agent re-
inforcement learning algorithm be used to produce policies that create believable
crowd behaviour?

To answer the question, we have devised four methods to simulate crowd. The methods are
rule based, multi-agent Q-learning, joint-state-action Q-learning (JS-Q1) and joint-state value
iteration (JS-VI).

We begin the experiments with a rule based approach. Although it is not a reinforcement learn-
ing method, the rule based method has provided a ground rule for measuring the believability
of the simulated crowd behaviour. The simulated rule based agents are predictable. To achieve
a higher degree of realism or believability requires the design of complex rules and the adding
of randomness which will be infeasible when simulating large crowds.
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Despite violating the theoretical guarantee of convergence, the multi-agent Q-learning method
under the MMDP framework has shown promising results. The density graphs have shown that
the MMDP agents are able to follow some optimal policies and navigate to the goal states, pro-
vided there is sufficient learning. The density graphs have further confirmed that the simulated
behaviour correlates to the behaviour observed from real-life simulations. The MMDP frame-
work also has the capacity to cater for a larger environment and a larger number of agents.

On the other hand, agents learning in the MMDP framework are experiencing collisions. A
simple reasoning regarding the collision is that the loss of theoretical guarantees caused by the
chaotic (non-stationary) environment as agents are not able to account for other agents’ actions.
Although the agents failed to coordinate, this scenario best describes an emergency evacuation
simulation where the collisions can be considered as stampedes occurring at mass gatherings.

It is inevitable that in a joint state action or joint state environment, the dimensions and the
number of agents have to be greatly reduced. Although a crowd constitutes a large number of
agents, we follow the multi-agent convention of equating a crowd to having more than 1 agent.
Nevertheless, the results obtained from the simulations of smaller scaled environment are still
worthy of note. One important concept in crowd navigation is the notion of a collision. Agents
need to learn to avoid collisions by means of making way for other agents to pass through.
Provided with sufficient learning in the JSA-Q1 learning algorithm, the agents are able to learn
policies that portray the coordination behaviour. Similarly, the policies generated from the JS-
VI learning algorithm also illustrate such behaviour.

The JSA-Q1 algorithm attempts to reduce the state space requirement by eliminating the need
of exploring the full joint state action space. The algorithm shows promising results as the joint
state action space needed for a sufficiently learnt policy is lower than one with a full joint state
action space. Moreover, the joint state action scheme is a realistic representation of crowds
moving simultaneously rather than moving in an orderly fashion as seen in the rule-based and
MMDP approaches. Despite these advantages, this method is limited to a small scaled environ-
ment.

The fundamental difference between the JSA-Q1 and JS-VI algorithms is that the former op-
erates in a model-free environment while the latter operates in a model-based environment.
Although both algorithms are able to produce believable behaviours, we can assume that in a
perfect world, agents should not be able to have full knowledge of the environment they reside.
Additionally, policies generated from the JS-VI algorithm are always optimal (global), indicat-
ing that agents will always make the optimal actions which are not the case in real crowds.

In conclusion, the three multi-agent reinforcement algorithms (Q-learning in MMDP, JSA-Q1

and JS-VI) have answered the research question. The methods are able to generate policies that
produce believable behaviours in multi-agent environments. The agents in the JS-VI algorithm
are able to learn to coordinate, however, the nature of a model-based environment remains a
challenge as real crowds do not possess full knowledge of the environment.

Future work

As mentioned, the main challenge of multi-agent reinforcement learning problem is the repre-
sentation of states and actions. This challenge makes scaling up, both the environment dimen-
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sion and the number of agents, difficult. State representation can be implemented directly as
we have done in our experiments, however, only in a small scaled environment. One solution
to improve the method of state representation is the use of function approximation [Sutton and
Barto 1998]. Function approximation is a method of generalisation that aims at reducing the
dimensions of the state space.

One method of function approximation is tile coding and it works by partitioning states into
tiles where each partition is called a tiling. Each tile maintains a binary weight value where 1
indicates a particular state falls within that tile and 0 otherwise. By summing weights of the
tiles, an approximate value of a state can be determined at any given point. Tile coding is easy
to implement and is suitable for discrete state space problems.
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Appendix A

The Coordinating Q-Learning algorithm discussed in section 2.3.4 on page 22 is outlined here.

Algorithm 7 Coordinating Q-Learning
Require:

initialise Qi through single agent learning and Qji
while true do

if state si of Agent i is marked then
Select ai for Agent i from Qi

else
if the joint state information js is safe then

Select ai for Agent i from Qi
else

Select ai for Agent i from Qji based on the joint state information js
end if

end if
Sample (si, ai, ri)
if t-test detects difference in observed rewards vs expected rewards then

mark si
for ∀ other state information present in the joint statejs do

if t-test detects difference between independent statesiand joint statejs then
add js to Qji
mark js as dangerous

else
mark js as safe

end if
end for

end if
if si is unmarked for Agent i or js is safe then

No need to update Qi(si)
else

Update Qji (js, ai)← (1− αt)Qji (js, ai) + αt[r(js, ai) + γ max
a

Q(s′k, a)]

end if
end while
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Appendix B

The tables in this appendix contain the joint state values of a two-agent environment.

Joint State Value
(0, 2) (0, 2) 0
(0, 2) (1, 0) 197
(0, 2) (1, 1) 198
(0, 2) (1, 2) 199
(0, 2) (1, 3) 198
(0, 2) (1, 4) 197
(0, 2) (2, 0) 196
(0, 2) (2, 1) 197
(0, 2) (2, 2) 198
(0, 2) (2, 3) 197
(0, 2) (2, 4) 196
(0, 2) (3, 0) 195
(0, 2) (3, 1) 196
(0, 2) (3, 2) 197
(0, 2) (3, 3) 196
(0, 2) (3, 4) 195
(0, 2) (4, 0) 194
(0, 2) (4, 1) 195
(0, 2) (4, 2) 196
(0, 2) (4, 3) 195
(0, 2) (4, 4) 194
(1, 0) (0, 2) 197
(1, 0) (1, 1) 195
(1, 0) (1, 2) 196
(1, 0) (1, 3) 195
(1, 0) (1, 4) 193
(1, 0) (2, 0) 193
(1, 0) (2, 1) 193
(1, 0) (2, 2) 195
(1, 0) (2, 3) 193

Joint State Value
(1, 0) (2, 4) 193
(1, 0) (3, 0) 192
(1, 0) (3, 1) 193
(1, 0) (3, 2) 193
(1, 0) (3, 3) 193
(1, 0) (3, 4) 192
(1, 0) (4, 0) 191
(1, 0) (4, 1) 192
(1, 0) (4, 2) 193
(1, 0) (4, 3) 192
(1, 0) (4, 4) 191
(1, 1) (0, 2) 198
(1, 1) (1, 0) 195
(1, 1) (1, 2) 197
(1, 1) (1, 3) 195
(1, 1) (1, 4) 195
(1, 1) (2, 0) 194
(1, 1) (2, 1) 195
(1, 1) (2, 2) 195
(1, 1) (2, 3) 195
(1, 1) (2, 4) 194
(1, 1) (3, 0) 193
(1, 1) (3, 1) 194
(1, 1) (3, 2) 195
(1, 1) (3, 3) 194
(1, 1) (3, 4) 193
(1, 1) (4, 0) 192
(1, 1) (4, 1) 193
(1, 1) (4, 2) 194
(1, 1) (4, 3) 193

Joint State Value
(1, 1) (4, 4) 192
(1, 2) (0, 2) 199
(1, 2) (1, 0) 196
(1, 2) (1, 1) 197
(1, 2) (1, 3) 197
(1, 2) (1, 4) 196
(1, 2) (2, 0) 195
(1, 2) (2, 1) 196
(1, 2) (2, 2) 197
(1, 2) (2, 3) 196
(1, 2) (2, 4) 195
(1, 2) (3, 0) 194
(1, 2) (3, 1) 195
(1, 2) (3, 2) 196
(1, 2) (3, 3) 195
(1, 2) (3, 4) 194
(1, 2) (4, 0) 193
(1, 2) (4, 1) 194
(1, 2) (4, 2) 195
(1, 2) (4, 3) 194
(1, 2) (4, 4) 193
(1, 3) (0, 2) 198
(1, 3) (1, 0) 195
(1, 3) (1, 1) 195
(1, 3) (1, 2) 197
(1, 3) (1, 4) 195
(1, 3) (2, 0) 194
(1, 3) (2, 1) 195
(1, 3) (2, 2) 195
(1, 3) (2, 3) 195

Joint State Value
(1, 3) (2, 4) 194
(1, 3) (3, 0) 193
(1, 3) (3, 1) 194
(1, 3) (3, 2) 195
(1, 3) (3, 3) 194
(1, 3) (3, 4) 193
(1, 3) (4, 0) 192
(1, 3) (4, 1) 193
(1, 3) (4, 2) 194
(1, 3) (4, 3) 193
(1, 3) (4, 4) 192
(1, 4) (0, 2) 197
(1, 4) (1, 0) 193
(1, 4) (1, 1) 195
(1, 4) (1, 2) 196
(1, 4) (1, 3) 195
(1, 4) (2, 0) 193
(1, 4) (2, 1) 193
(1, 4) (2, 2) 195
(1, 4) (2, 3) 193
(1, 4) (2, 4) 193
(1, 4) (3, 0) 192
(1, 4) (3, 1) 193
(1, 4) (3, 2) 193
(1, 4) (3, 3) 193
(1, 4) (3, 4) 192
(1, 4) (4, 0) 191
(1, 4) (4, 1) 192
(1, 4) (4, 2) 193
(1, 4) (4, 3) 192

Table B.1: Value Function generated from a two-agent example - Part 1
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Joint State Value
(1, 0) (2, 4) 193
(1, 0) (3, 0) 192
(1, 0) (3, 1) 193
(1, 0) (3, 2) 193
(1, 0) (3, 3) 193
(1, 0) (3, 4) 192
(1, 0) (4, 0) 191
(1, 0) (4, 1) 192
(1, 0) (4, 2) 193
(1, 0) (4, 3) 192
(0, 2) (0, 2) 200
(0, 2) (1, 0) 197
(0, 2) (1, 1) 198
(0, 2) (1, 2) 199
(0, 2) (1, 3) 198
(0, 2) (1, 4) 197
(0, 2) (2, 0) 196
(0, 2) (2, 1) 197
(0, 2) (2, 2) 198
(0, 2) (2, 3) 197
(0, 2) (2, 4) 196
(0, 2) (3, 0) 195
(0, 2) (3, 1) 196
(0, 2) (3, 2) 197
(0, 2) (3, 3) 196
(0, 2) (3, 4) 195
(0, 2) (4, 0) 194
(0, 2) (4, 1) 195
(0, 2) (4, 2) 196
(0, 2) (4, 3) 195
(0, 2) (4, 4) 194
(1, 0) (0, 2) 197
(1, 0) (1, 1) 195
(1, 0) (1, 2) 196
(1, 0) (1, 3) 195
(1, 0) (1, 4) 193
(1, 0) (2, 0) 193
(1, 0) (2, 1) 193
(1, 0) (2, 2) 195
(1, 0) (2, 3) 193

Joint State Value
(1, 0) (2, 4) 193
(1, 0) (3, 0) 192
(1, 0) (3, 1) 193
(1, 0) (3, 2) 193
(1, 0) (3, 3) 193
(1, 0) (3, 4) 192
(1, 0) (4, 0) 191
(1, 0) (4, 1) 192
(1, 0) (4, 2) 193
(1, 0) (4, 3) 192
(1, 0) (4, 4) 191
(1, 1) (0, 2) 198
(1, 1) (1, 0) 195
(1, 1) (1, 2) 197
(1, 1) (1, 3) 195
(1, 1) (1, 4) 195
(1, 1) (2, 0) 194
(1, 1) (2, 1) 195
(1, 1) (2, 2) 195
(1, 1) (2, 3) 195
(1, 1) (2, 4) 194
(1, 1) (3, 0) 193
(1, 1) (3, 1) 194
(1, 1) (3, 2) 195
(1, 1) (3, 3) 194
(1, 1) (3, 4) 193
(1, 1) (4, 0) 192
(1, 1) (4, 1) 193
(1, 1) (4, 2) 194
(1, 1) (4, 3) 193
(1, 1) (4, 4) 192
(1, 2) (0, 2) 199
(1, 2) (1, 0) 196
(1, 2) (1, 1) 197
(1, 2) (1, 3) 197
(1, 2) (1, 4) 196
(1, 2) (2, 0) 195
(1, 2) (2, 1) 196
(1, 2) (2, 2) 197
(1, 2) (2, 3) 196

Joint State Value
(1, 2) (2, 4) 195
(1, 2) (3, 0) 194
(1, 2) (3, 1) 195
(1, 2) (3, 2) 196
(1, 2) (3, 3) 195
(1, 2) (3, 4) 194
(1, 2) (4, 0) 193
(1, 2) (4, 1) 194
(1, 2) (4, 2) 195
(1, 2) (4, 3) 194
(1, 2) (4, 4) 193
(1, 3) (0, 2) 198
(1, 3) (1, 0) 195
(1, 3) (1, 1) 195
(1, 3) (1, 2) 197
(1, 3) (1, 4) 195
(1, 3) (2, 0) 194
(1, 3) (2, 1) 195
(1, 3) (2, 2) 195
(1, 3) (2, 3) 195
(1, 3) (2, 4) 194
(1, 3) (3, 0) 193
(1, 3) (3, 1) 194
(1, 3) (3, 2) 195
(1, 3) (3, 3) 194
(1, 3) (3, 4) 193
(1, 3) (4, 0) 192
(1, 3) (4, 1) 193
(1, 3) (4, 2) 194
(1, 3) (4, 3) 193
(1, 3) (4, 4) 192
(1, 4) (0, 2) 197
(1, 4) (1, 0) 193
(1, 4) (1, 1) 195
(1, 4) (1, 2) 196
(1, 4) (1, 3) 195
(1, 4) (2, 0) 193
(1, 4) (2, 1) 193
(1, 4) (2, 2) 195
(1, 4) (2, 3) 193

Joint State Value
(1, 4) (2, 4) 193
(1, 4) (3, 0) 192
(1, 4) (3, 1) 193
(1, 4) (3, 2) 193
(1, 4) (3, 3) 193
(1, 4) (3, 4) 192
(1, 4) (4, 0) 191
(1, 4) (4, 1) 192
(1, 4) (4, 2) 193
(1, 4) (4, 3) 192
(1, 4) (4, 4) 191
(2, 0) (0, 2) 196
(2, 0) (1, 0) 193
(2, 0) (1, 1) 194
(2, 0) (1, 2) 195
(2, 0) (1, 3) 194
(2, 0) (1, 4) 193
(2, 0) (2, 1) 193
(2, 0) (2, 2) 194
(2, 0) (2, 3) 193
(2, 0) (2, 4) 191
(2, 0) (3, 0) 191
(2, 0) (3, 1) 191
(2, 0) (3, 2) 193
(2, 0) (3, 3) 191
(2, 0) (3, 4) 191
(2, 0) (4, 0) 190
(2, 0) (4, 1) 191
(2, 0) (4, 2) 191
(2, 0) (4, 3) 191
(2, 0) (4, 4) 190
(2, 1) (0, 2) 197
(2, 1) (1, 0) 193
(2, 1) (1, 1) 195
(2, 1) (1, 2) 196
(2, 1) (1, 3) 195
(2, 1) (1, 4) 193
(2, 1) (2, 0) 193
(2, 1) (2, 2) 195
(2, 1) (2, 3) 193
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Joint State Value
(2, 1) (2, 4) 193
(2, 1) (3, 0) 192
(2, 1) (3, 1) 193
(2, 1) (3, 2) 193
(2, 1) (3, 3) 193
(2, 1) (3, 4) 192
(2, 1) (4, 0) 191
(2, 1) (4, 1) 192
(2, 1) (4, 2) 193
(2, 1) (4, 3) 192
(2, 1) (4, 4) 191
(2, 2) (0, 2) 198
(2, 2) (1, 0) 195
(2, 2) (1, 1) 195
(2, 2) (1, 2) 197
(2, 2) (1, 3) 195
(2, 2) (1, 4) 195
(2, 2) (2, 0) 194
(2, 2) (2, 1) 195
(2, 2) (2, 3) 195
(2, 2) (2, 4) 194
(2, 2) (3, 0) 193
(2, 2) (3, 1) 194
(2, 2) (3, 2) 195
(2, 2) (3, 3) 194
(2, 2) (3, 4) 193
(2, 2) (4, 0) 192
(2, 2) (4, 1) 193
(2, 2) (4, 2) 194
(2, 2) (4, 3) 193
(2, 2) (4, 4) 192
(2, 3) (0, 2) 197
(2, 3) (1, 0) 193
(2, 3) (1, 1) 195
(2, 3) (1, 2) 196
(2, 3) (1, 3) 195
(2, 3) (1, 4) 193
(2, 3) (2, 0) 193
(2, 3) (2, 1) 193
(2, 3) (2, 2) 195
(2, 3) (2, 4) 193

Joint State Value
(2, 3) (3, 0) 192
(2, 3) (3, 1) 193
(2, 3) (3, 2) 193
(2, 3) (3, 3) 193
(2, 3) (3, 4) 192
(2, 3) (4, 0) 191
(2, 3) (4, 1) 192
(2, 3) (4, 2) 193
(2, 3) (4, 3) 192
(2, 3) (4, 4) 191
(2, 4) (0, 2) 196
(2, 4) (1, 0) 193
(2, 4) (1, 1) 194
(2, 4) (1, 2) 195
(2, 4) (1, 3) 194
(2, 4) (1, 4) 193
(2, 4) (2, 0) 191
(2, 4) (2, 1) 193
(2, 4) (2, 2) 194
(2, 4) (2, 3) 193
(2, 4) (3, 0) 191
(2, 4) (3, 1) 191
(2, 4) (3, 2) 193
(2, 4) (3, 3) 191
(2, 4) (3, 4) 191
(2, 4) (4, 0) 190
(2, 4) (4, 1) 191
(2, 4) (4, 2) 191
(2, 4) (4, 3) 191
(2, 4) (4, 4) 190
(3, 0) (0, 2) 195
(3, 0) (1, 0) 192
(3, 0) (1, 1) 193
(3, 0) (1, 2) 194
(3, 0) (1, 3) 193
(3, 0) (1, 4) 192
(3, 0) (2, 0) 191
(3, 0) (2, 1) 192
(3, 0) (2, 2) 193
(3, 0) (2, 3) 192
(3, 0) (2, 4) 191

Joint State Value
(3, 0) (3, 1) 191
(3, 0) (3, 2) 192
(3, 0) (3, 3) 191
(3, 0) (3, 4) 189
(3, 0) (4, 0) 189
(3, 0) (4, 1) 189
(3, 0) (4, 2) 191
(3, 0) (4, 3) 189
(3, 0) (4, 4) 189
(3, 1) (0, 2) 196
(3, 1) (1, 0) 193
(3, 1) (1, 1) 194
(3, 1) (1, 2) 195
(3, 1) (1, 3) 194
(3, 1) (1, 4) 193
(3, 1) (2, 0) 191
(3, 1) (2, 1) 193
(3, 1) (2, 2) 194
(3, 1) (2, 3) 193
(3, 1) (2, 4) 191
(3, 1) (3, 0) 191
(3, 1) (3, 2) 193
(3, 1) (3, 3) 191
(3, 1) (3, 4) 191
(3, 1) (4, 0) 190
(3, 1) (4, 1) 191
(3, 1) (4, 2) 191
(3, 1) (4, 3) 191
(3, 1) (4, 4) 190
(3, 2) (0, 2) 197
(3, 2) (1, 0) 193
(3, 2) (1, 1) 195
(3, 2) (1, 2) 196
(3, 2) (1, 3) 195
(3, 2) (1, 4) 193
(3, 2) (2, 0) 193
(3, 2) (2, 1) 193
(3, 2) (2, 2) 195
(3, 2) (2, 3) 193
(3, 2) (2, 4) 193
(3, 2) (3, 0) 192

Joint State Value
(3, 2) (3, 1) 193
(3, 2) (3, 3) 193
(3, 2) (3, 4) 192
(3, 2) (4, 0) 191
(3, 2) (4, 1) 192
(3, 2) (4, 2) 193
(3, 2) (4, 3) 192
(3, 2) (4, 4) 191
(3, 3) (0, 2) 196
(3, 3) (1, 0) 193
(3, 3) (1, 1) 194
(3, 3) (1, 2) 195
(3, 3) (1, 3) 194
(3, 3) (1, 4) 193
(3, 3) (2, 0) 191
(3, 3) (2, 1) 193
(3, 3) (2, 2) 194
(3, 3) (2, 3) 193
(3, 3) (2, 4) 191
(3, 3) (3, 0) 191
(3, 3) (3, 1) 191
(3, 3) (3, 2) 193
(3, 3) (3, 4) 191
(3, 3) (4, 0) 190
(3, 3) (4, 1) 191
(3, 3) (4, 2) 191
(3, 3) (4, 3) 191
(3, 3) (4, 4) 190
(3, 4) (0, 2) 195
(3, 4) (1, 0) 192
(3, 4) (1, 1) 193
(3, 4) (1, 2) 194
(3, 4) (1, 3) 193
(3, 4) (1, 4) 192
(3, 4) (2, 0) 191
(3, 4) (2, 1) 192
(3, 4) (2, 2) 193
(3, 4) (2, 3) 192
(3, 4) (2, 4) 191
(3, 4) (3, 0) 189
(3, 4) (3, 1) 191
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Joint State Value
(3, 4) (3, 2) 192
(3, 4) (3, 3) 191
(3, 4) (4, 0) 189
(3, 4) (4, 1) 189
(3, 4) (4, 2) 191
(3, 4) (4, 3) 189
(3, 4) (4, 4) 189
(4, 0) (0, 2) 194
(4, 0) (1, 0) 191
(4, 0) (1, 1) 192
(4, 0) (1, 2) 193
(4, 0) (1, 3) 192
(4, 0) (1, 4) 191
(4, 0) (2, 0) 190
(4, 0) (2, 1) 191
(4, 0) (2, 2) 192
(4, 0) (2, 3) 191
(4, 0) (2, 4) 190
(4, 0) (3, 0) 189
(4, 0) (3, 1) 190
(4, 0) (3, 2) 191
(4, 0) (3, 3) 190
(4, 0) (3, 4) 189
(4, 0) (4, 1) 189
(4, 0) (4, 2) 190
(4, 0) (4, 3) 189
(4, 0) (4, 4) 187
(4, 1) (0, 2) 195
(4, 1) (1, 0) 192
(4, 1) (1, 1) 193
(4, 1) (1, 2) 194
(4, 1) (1, 3) 193
(4, 1) (1, 4) 192
(4, 1) (2, 0) 191
(4, 1) (2, 1) 192
(4, 1) (2, 2) 193
(4, 1) (2, 3) 192
(4, 1) (2, 4) 191
(4, 1) (3, 0) 189
(4, 1) (3, 1) 191
(4, 1) (3, 2) 192

Joint State Value
(4, 1) (3, 3) 191
(4, 1) (3, 4) 189
(4, 1) (4, 0) 189
(4, 1) (4, 2) 191
(4, 1) (4, 3) 189
(4, 1) (4, 4) 189
(4, 2) (0, 2) 196
(4, 2) (1, 0) 193
(4, 2) (1, 1) 194
(4, 2) (1, 2) 195
(4, 2) (1, 3) 194
(4, 2) (1, 4) 193
(4, 2) (2, 0) 191
(4, 2) (2, 1) 193
(4, 2) (2, 2) 194
(4, 2) (2, 3) 193
(4, 2) (2, 4) 191
(4, 2) (3, 0) 191
(4, 2) (3, 1) 191
(4, 2) (3, 2) 193
(4, 2) (3, 3) 191
(4, 2) (3, 4) 191
(4, 2) (4, 0) 190
(4, 2) (4, 1) 191
(4, 2) (4, 3) 191
(4, 2) (4, 4) 190
(4, 3) (0, 2) 195
(4, 3) (1, 0) 192
(4, 3) (1, 1) 193
(4, 3) (1, 2) 194
(4, 3) (1, 3) 193
(4, 3) (1, 4) 192
(4, 3) (2, 0) 191
(4, 3) (2, 1) 192
(4, 3) (2, 2) 193
(4, 3) (2, 3) 192
(4, 3) (2, 4) 191
(4, 3) (3, 0) 189
(4, 3) (3, 1) 191
(4, 3) (3, 2) 192
(4, 3) (3, 3) 191

Joint State Value
(4, 3) (3, 4) 189
(4, 3) (4, 0) 189
(4, 3) (4, 1) 189
(4, 3) (4, 2) 191
(4, 3) (4, 4) 189
(4, 4) (0, 2) 194
(4, 4) (1, 0) 191
(4, 4) (1, 1) 192
(4, 4) (1, 2) 193
(4, 4) (1, 3) 192
(4, 4) (1, 4) 191
(4, 4) (2, 0) 190
(4, 4) (2, 1) 191
(4, 4) (2, 2) 192
(4, 4) (2, 3) 191
(4, 4) (2, 4) 190
(4, 4) (3, 0) 189
(4, 4) (3, 1) 190
(4, 4) (3, 2) 191
(4, 4) (3, 3) 190
(4, 4) (3, 4) 189
(4, 4) (4, 0) 187
(4, 4) (4, 1) 189
(4, 4) (4, 2) 190
(4, 4) (4, 3) 189
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