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Abstract  
 

CD4, a key molecule of the immune system, is expressed on the surface of certain T 

lymphocytes (T cells) and participates in MHC class II driven lymphocyte activation. It is also 

the essential primary receptor for Human Immunodeficiency Virus (HIV) cell entry. Reactive 

oxygen species (ROS) and other redox-active molecules are important components of the 

immunological response. They initiate cytocidal responses of the pathogen defence scheme, 

and redox-activated signalling events ensure appropriate induction of adaptive 

immunological responses. A redox imbalance can result in failure of essential regulatory 

mechanisms and the development of pathological immune conditions. An increasing 

amount of evidence suggests that redox active enzymes such as thioredoxin (Trx) are 

implicated in CD4 immunological function and in HIV entry at the cell surface, and the 

dynamic localization of CD4 in specific plasma membrane microdomains, like detergent 

resistant membrane microdomains (DRM) or lipid rafts, has been shown to play a key role in 

these regards. However, the biological utility of both the microdomain distribution and the 

disulphide reduction of CD4, together with the interplay between these processes and the 

role of cellular oxidoreductases therein remain poorly understood. In this study, we 

investigated a cell surface-based Trx redox system, and asked whether a relationship exists 

between these two fundamental aspects of CD4 function by analysing how manipulating cell 

surface redox conditions affects CD4 membrane domain localization and HIV entry into host 

CD4-positive (CD4 +) cells.  

Our investigation of the role of a cell surface redox system in regulating CD4 function was 

prefaced by research into the membrane association of a variant of Thioredoxin reductase 1 

(TrxR1), the enzyme responsible for reducing (and thereby recharging) the active site 

cysteines of Trx. These studies, carried out in the laboratory of Prof. E Arner (Medical 

Biochemistry and Biophysics, Karolinska Institutet), were the first to show that a TrxR1 

variant called TXNRD1_v3 (henceforth v3) is targeted to DRM domains via N-terminal 

acylation. Although the role(s) of v3 in this context remains poorly understood, the evidence 

suggesting that TrxR can associate with the plasma membrane under certain circumstances 

alludes to the importance of redox capacity at the cell surface, which increasingly suggests it 

is essential for the function of CD4.  
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To this end, using a transgenic cell line that has been extensively used to model HIV entry 

and various HIV pseudoviruses, we then analysed the effects of manipulating cell surface 

redox conditions on CD4 membrane domain distribution and HIV entry. Our results showed 

that under normal cell growth conditions, the majority of CD4 is associated with detergent 

soluble regions of the plasma membrane (non-raft regions). Intriguingly, we found that the 

inhibition of cellular oxidoreductases, and specifically  Trx1, results in a redistribution of CD4 

into DRMs. CD4 DRM redistribution appears to be targeted, as other cell surface molecules 

(such as the HIV co-receptor, CCR5) remain unaffected. Furthermore, the redistribution of 

CD4 to the DRM’s correlates with reduced CD4-dependent HIV infection. 

Overall, these findings provide evidence for the presence of cell surface-acting redox 

systems and demonstrate how redox exchanges influence CD4 localization and function. In 

the context of HIV, our data support previous findings that the thioredoxin system plays an 

important role in regulating viral entry, which may be related to uncoupled trafficking of 

CD4 and the HIV co-receptor.  Trx-mediated regulation of CD4 membrane domain trafficking 

may represent a redox switch for functional CD4 clustering during T cell activation. 
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Chapter 1: 

Introduction 
 

1.1 CD4 

 

Cluster of Differentiation 4, CD4, a central molecule in the immune system, is a 

transmembrane glycoprotein widely expressed on the surface of a subset T lymphocytes (T 

cells) and to a lesser extent on B lymphocytes, granulocytes  and other cells of 

monocyte/macrophage lineage (1, 2). CD4 expressing (CD4+) lymphocytes have both 

regulatory roles in lymphocyte development and differentiation over and above their vital 

function in enhancing antigen recognition by Major Histocompatibility class II (MHC-II) 

molecules (3, 4). Importantly, CD4 was also identified in the 1980’s as the primary receptor 

for Human Immunodeficiency Virus-1 (HIV-1), facilitating initial viral attachment to the host 

cell (5, 6).  

1.1.1 CD4 function in antigen presentation 

 

Biologically, one of the key roles of CD4 is in antigen presentation to MHC-II molecules and 

facilitation of the formation a functional immunological synapse (3). To this end, CD4 + T 

cells recognize peptide-loaded MHC-II complexes through their T cell receptors (TCRs) (7). 

TCRs are optimized for binding MHC-II but are varied enough to recognize a multitude of 

peptides with which they then form complexes. These complexes can then be encountered 

by CD4+ T cells (7).     The direct binding of CD4 to non-polymorphic regions of MHC-II 

molecules, is thought to stabilize the interaction between the T cell receptor (TCR) and the 

peptide with MHC-II (8, 9). In binding to the TCR-MHC-II complex, CD4 also delivers the Src 

tyrosine kinase p56Lck (Lck) (non-covalently linked to the cytoplasmic tail of CD4) into the 
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area of the TCR-MHC-II complex. This allows immunoreceptor tyrosine-based activation 

motifs (ITAMs) of the CD3, in the TCR complex, to be phosphorylated (10-12). Other 

downstream signalling molecules (such as the Zeta chain associated protein kinase 70 [Zap-

70]) are then recruited to the TCR complex, triggering a signalling cascade that culminates in 

the production of cytokines and T cell activation (12). CD4 recruitment appears to be 

regulated by the half-life of the initial TCR-MHC-II complex (12) and the localized co-

engagement of CD4 and the TCR to MHC-II is required for an antigen specific response (13). 

Interestingly, in the absence of the MHC-II-CD4 interactions, binding of the TCR to MHC-II 

results in an unresponsive T cell, a phenomenon known as ” T cell anergy” (9, 13).  Of note 

too, is that both the T cell activation and lymphocyte development functions of CD4 need 

not involve signalling through Lck (14, 15).  

1.1.2 CD4 structure 

 

Belonging to the immunoglobulin superfamily of molecules, CD4 is a typical Type I integral 

membrane protein, consisting of an N-terminal extracellular portion, a transmembrane 

portion and a short cytoplasmic tail (16-18). The four extracellular N-terminal domains 

display sequence similarity with immunoglobulin (Ig) variable regions, and have been 

described as a concatemer of four Ig-like domains, designated domains 1, 2, 3, and 4 (D1-

D4) (19, 20).  All four Ig domains contain seven strands, which form two apposed  sheets 

(21). (Figure 1)  
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Figure 1: Ribbon representation of the Extracellular domains of CD4 
The extracellular portion of CD4 containing domains 1 (blue), 2 (orange), 3 (yellow) and 4 (green) [D1-D4] is 
shown as a ribbon diagram. Amino acids in the D1 disulphide (Cys16-Cys84) and salt (Asp78-Arg54) bridges are 
shown in stick and ball representation and labelled. Select strands in D1 and D2 have been annotated as by 
Harrison et al(18). The figure was generated using PDB ID 1WIQ (22) and PyMOL.   
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1.1.2.1 The extracellular domains 

 

The D1 domain is most characteristic of an Ig variable domain and has nine strands in two -

sheets (20). The core of the domain has several hallmarks typical of an Ig variable light 

chain, including  several conserved hydrophobic residues, a pair of inter-sheet disulphide-

bridged cysteines (Cys16-Cys84) and an arginine (Arg54)-aspartic acid (Asp78) salt bridge,  

that links strand D with the EF loop, amongst other features (18-20, 23). It differs 

significantly though from an Ig variable domain in that it lacks features responsible for 

dimerization, and has a lengthened C’C” loop (18, 20), which presents a phenylalanine 

(Phe43) at its apex that is essential for the HIV gp120 interaction (19, 23).  CD4 also engages 

class II MHC via D1 (24); however, while there is overlap between the MHC-II and gp120 

binding sites on CD4, these sites are distinct and can be separated (24, 25). D1 and D2 form 

a rod-like structure and are linked by a continuous -strand with several consecutive non-

polar residues, thought to stabilize the rod-like unit, at the domain 1/2 interface (18). 

The second domain of CD4 resembles a miniaturized Ig constant domain with shortened 

strand lengths (20).   D2 has the very distinctive feature of a disulphide bond between 

strands in the same sheet rather than between sheets as is typical of an Ig domain, while a 

hydrophobic core, common in all Ig domains, is maintained (20). This atypical disulphide is 

susceptible to changes in redox potential, resulting in facile reduction that is purported to 

have a functionally significant allosteric effect on CD4 structure (21, 26, 27).  X-ray 

crystallographic data of soluble CD4 (D1-4) suggests a flexible juncture between domains 2 

and 3, comparable with the hinge region of Ig molecules (23).  

Low diffractive resolution and the presence of highly polymorphic crystals in human sCD4 

have resulted in inferences of structural features of domains 3 and 4 from rat CD4 (18, 23).   
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Thus the inferred structure of domain 3 maintains the fundamental Ig variable domain 

organization, although it has a noteworthy lack of a disulphide linkage and key amino acid 

substitutions when compared to the archetypical Ig framework (18).   The link between 

domains 3 and 4 mimics that between domains 1 and 2 (18).  D4 structure is similar to that 

of D2 with the same seven -strand topology however, the membrane proximal tip of the 

domain is shortened making it more compact (18).  

1.1.2.2 The transmembrane and cytoplasmic domains  

 

Structural characterization of the transmembrane and cytoplasmic domains of CD4 indicates 

the presence of an -helix in each region (28). The transmembrane -helix spans residues 

372-395 of CD4 and is stable and inflexible (29).   Recently, sequence analysis of the CD4 

transmembrane domain of select mammals identified a highly conserved Gly-Gly-X-X-Gly 

sequence motif that appears to function in the Lck-independent role of CD4 in T-cell 

activation (30).  The cytoplasmic helix is the shorter of the two (residues 403-413) but 

nevertheless is still stable (29). The C-terminus extremity of the cytoplasmic tail is 

unstructured and this  domain contains the two cysteine residues (Cys420 and Cys422) , 

known as a cysteine clasp, that are important for activation of the Src kinase, Lck, and thus 

CD4’s signal transduction function (10, 29, 31). These two cysteine residues have also been 

implicated in the homodimerization of CD4 (32). Cysteine residues 394 and 397 of the 

cytoplasmic domain  are post translationally palmitoylated (33), a feature that has been 

suggested to be important for CD4 aggregation and translocation to lipid rafts (34).    
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1.1.3 CD4 oligomerization 

 

Many cell surface receptors dimerize or oligomerize  in order to acquire full functionality 

(35).  Indeed,  several receptor tyrosine kinases (RTKs) have been shown to be activated in 

this way (35).   For example, epidermal growth factor, an RTK, is activated by dimerization 

and/or higher order oligomerization, which is induced by ligand binding (36-38). (36-38).  In 

addition to the established lateral association of CD4 with other molecules (39),  early 

analysis of the crystal structure of CD4 showed that it has the potential for self-dimerization 

or oligomerization (23). In 1999 Lynch et al, demonstrated that native CD4 dimers and 

oligomers are present on the surface of lymphoid cells (40).  More recently, it has been  

shown that CD4 homodimers can vary from 32% to 42% of total CD4 depending on the cell 

line analysed (32). Several studies have shown that CD4 dimers or oligomers are in fact the 

functional form, required for stable binding to MHC-II and proper T-cell activation (41-44). 

Interestingly, it appears that a balance between the monomeric and dimeric forms of CD4 

could adjust the threshold for T cell activation (41). However, some have proposed that the 

formation of homodimers is proportional to the amount of CD4 expressed (32).  

There is however much ambiguity about the mechanisms underlying CD4 dimer and 

oligomer formation and particularly which domains of CD4 are involved in the process. All 

four of the extracellular domains of CD4 have been implicated in CD4 dimerization or 

oligomerization. Initially, the crystal structure of the extracellular domains of CD4 (sCD4) 

showed that CD4 can form dimers through its D4 domain (22). In support of this, Moldovan 

et al demonstrated that maintaining the two residues, highly conserved among mammals in 

D4 domain of CD4 (K318 & Q344), is an absolute requirement for CD4 dimer formation (42).  

However, more recent insights based on modelling this type of dimer formation from the 
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crystal structure of the TCR-MHC-II-CD4 complex, indicates that CD4 dimer formation 

through D4 is unlikely to occur because of stereochemical constraints (13).  In D1, the 

Complementarity Determining Region (CDR)-3 loop was proposed as a major dimerization 

site (45).  Some evidence pointed to a role for D3/D4 in mediating CD4 oligomerization (44). 

Recently, compelling evidence from experimental and molecular modelling approaches has 

suggested that the cleavage of the D2 disulphides on the surface of cells leads to the 

formation of CD4 dimers, implying that D2 could facilitate the formation of CD4 dimers and 

oligomers through redox changes (27, 46). In fact, a D2 disulphide bond mutant is not able 

to form dimers (27). 

In another study, Fragoso et al proposed that the two palmitoylation sites near the 

transmembrane domain drove dimerization (34).  More recently, the two cysteines in the 

cytoplasmic domain of CD4 (the same two that mediate zinc dependent Lck binding) have 

been shown to be indispensable for CD4 dimerization (32) while the transmembrane glycine 

patch (Gly-Gly-X-X-Gly) appears to have no role in CD4 dimerization (30).  Given this 

uncertainty, it is possible that several domains of CD4 are involved in oligomerization, with 

certain domains potentiating the formation of oligomers and others stabilizing them. It is 

likely that factors such as liganded state, plasma membrane microenvironment and other 

environmental factors all play critical roles in CD4 oligomerization with multi-domain 

involvement (47).  

1.1.4 CD4 plasma membrane compartmentalization 

 

Together with increasing knowledge about the structural dynamics of CD4, the recent 

findings that CD4 undergoes functionally significant lateral movement between different 

plasma membrane microdomains are augmenting our understanding of the complex 
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physiological and molecular determinants of CD4 function.  The spatial distribution of 

receptors and signalling molecules in the plasma membrane combined with their re-

arrangement during ligand engagement is fundamentally important to the efficiency of most 

cell signalling pathways (48).  During MHC-II-based antigen presentation, specific, efficient 

and well coordinated cell signalling must occur on the T cell following successful 

engagement of the TCR by peptide-loaded MHC-II (48, 49). This, in part at least, is achieved 

by spatially restricting and regulating the physical segregation of signalling molecules by 

compartmentalization (50).   Broadly speaking, this entails ligand binding to immune 

receptors, the movement of critical elements to key contact zones and the nucleation of 

active signalling complexes (50).  This, in turn, requires two fundamental cellular processes:  

mobilization of the supporting cellular architecture such as cytoskeletal networks, and 

lateral segregation of certain membrane-bound proteins into distinct microdomains (50). 

1.1.4.1 Plasma membrane structure and lipid rafts 

 

The Singer-Nicolson fluid mosaic model of cellular membranes proposed in the early 1970s 

described the plasma membrane as a bilayer of phospholipids with itinerant integral 

membrane proteins and glycoproteins intercalated into this lipid platform (51). Since then, 

the basic model has been refined to include additional layers of complexity which 

accommodate the existence of specialized membrane microdomains, controversially termed 

‘lipid rafts’ (see below), and protein/glycoprotein complexes that are critical for many 

cellular functions (52-55).   

Lipid rafts are biochemically distinct microdomains of the plasma membrane in which the 

lipid components exist in a liquid-ordered state that differs significantly from the  liquid-

disordered regions of the bilayer (56) (Figure2). These ordered regions, are predominantly 
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enriched in cholesterol, sphingomyelin, and glycosphingolipids, but may also contain other 

saturated acyl lipids such as ethanolamine glycophospholipids, phosphotidylserine, 

arachidonic acid, phosphatidylglucloside, ceramide and lactosylceramide (53, 57). This 

composition results in lipid rafts having a low density and resistance to disruption by non-

ionic detergents (53). Consequently, these domains are commonly, and more correctly 

perhaps, referred to as detergent resistant lipid membrane domains (DRLM’s or DRM’s)1 

and may be isolated based on these properties. Shortly after the ‘lipid raft’ hypothesis was 

conceptualized, it became evident that the use of detergents and certain conditions under 

which these membrane domains are frequently isolated (low temperatures in particular) 

can produce artefactual clustering of raft lipids with certain proteins, and this raised 

questions regarding the physiological relevance of the raft hypothesis. Since then, various 

methodologies, including the use of milder detergents/ no detergents, as well as 

morphological approaches like super-resolution microscopy (53, 58) have provided 

compelling evidence for the physiological existence of these unique membrane 

microdomains, and it is now widely accepted that they play fundamentally important 

biological roles. More recently,  DRM’s have been further segregated into high density or 

heavy DRMs  and light DRM’s which are distinguished based on their differential separation 

by sucrose density gradient centrifugation following solubilisation with polyoxyethylene 

type detergents (50). Membrane rafts have been linked to an ever-rising number of 

biologically important functions including signalling events and intracellular and membrane 

trafficking of proteins and lipids (59, 60).  For instance, the recruitment of the T-cell receptor 

to lipid rafts during TCR activation, coincides with the aggregation of rafts and the triggering 

of signalling cascades (61).  Lipid rafts are often viewed as moving platforms that carry 
                                                           
1
 In this work, the terms, lipid raft, DRM and DRLM are used interchangeably, although we acknowledge 

growing evidence that distinct types of lipid rafts exist.  
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specific proteins, since they maintain the ability to move laterally and rotate in the plasma 

membrane (59).  They have also been implicated as being sites for host-pathogen 

interactions and participate in cell morphogenesis (55, 59, 62).  

 

 

Figure 2: Schematic representation of the plasma membrane with lipid raft (Lo) microdomains 
The plasma membrane lipid bilayer is segregated into raft and non-raft microdomains. Lipid rafts are more 
ordered (Lo) and tightly packed than the surrounding lipid bilayer.  Lipid rafts represent specialized 
microdomains of dynamic, nanoscopic assemblies of lipids and proteins, often rich in cholesterol that facilitate 
the functional compartmentalization of membrane molecules. Figure adapted from Simons et al. (63).  

 

1.1.4.2 CD4-Lipid Raft association  

 

By compartmentalization in membrane microdomains under normal conditions, the spatial 

separation of signalling proteins is thought to prevent the spontaneous formation of signal 

transducing activation complexes (50).  In this model, control of activation is regulated by 

microdomain-restricted negative feedback loops and the biophysical constraints imposed by 

these ordered lipid structures. In the case of T cell activation, the model proposes that 

presentation of an appropriate antigenic stimulus results in the juxtaposition of 
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microdomains such as those containing the TCR complex and CD4, which facilitates efficient 

and co-ordinated interaction of the molecules required for signal transduction amplification 

(50).  

To this end, recent studies have suggested that several molecules involved in T cell 

activation such as CD4 and CD8, the Src family kinase members Lck and Fyn, CD3 of the TCR 

complex and the transmembrane adaptor, Linker for Activation of T cells (LAT), are lipid raft 

associated (34, 50, 64), and that TCR complex signalling depends largely on the integrity of 

lipid rafts (50).  Importantly, major subsets of CD4 associated with Lck have been shown to 

localize to lipid rafts (65). In addition, it has been shown that CD4 is required for both TCR 

association with lipid rafts and the TCR/Protein Kinase Csubunit clustering at the site of 

the immunological synapse (64). It has also been observed that the lipid raft-based 

membrane order is important for the clonal expansion of CD4+ T cells following antigen 

stimulation (49).  Perhaps the most compelling evidence for the importance of CD4 and lipid 

raft involvement in T cell signalling, is from the work of Nagafuku et al, who demonstrated 

that knockout animals lacking the membrane ganglioside, GM3, a major component of lipid 

rafts, have severely compromised CD4+ dependent T cell signalling but not CD8+ T cell 

signalling (66). 

Despite the strong evidence for the importance of raft localized CD4 in T cell activation, 

there is considerable ambivalence in the literature with regards to the actual localization of 

CD4 in the plasma membrane of normal, resting cells.  While some studies have shown that 

CD4 is enriched in raft microdomains (67, 68) others indicate that only a small percentage of 

CD4 (10%) is present in these detergent resistant microdomains and that the rest can be 

found in the detergent soluble membrane (DSM) (65). Image tracking of CD4 on live cells 
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provides evidence that CD4 exhibits two distinct behaviours on a cell.  In one instance, CD4 

is able to freely diffuse, consistent with its association with the soluble membrane portion, 

while at other times, CD4 receptors were restricted (either transiently or permanently) to 

certain domains, arguing for raft microdomain association  (69). Intriguingly, there is 

evidence that CD4 dimers and CD4 monomers segregate to different microdomains of the 

plasma membrane (32). Thus, it seems most plausible that pools of CD4 are present in both 

the soluble and raft portions of the plasma membrane. Interestingly, a few studies have 

shown that even raft associated CD4 may reside in different types of DRM domains.  Millan 

et al showed that CD4 can be found in either microdomains with GPI-anchored proteins and 

high glycolipid associated kinase activity or in DRMs lacking glycolipid-associated kinases 

and GPI –anchored proteins (65). Similarly, work by Filipp et al proposes two pools of CD4 

DRMs exist - one of DRM associated kinase inactive CD4-Lck complexes, that is largely 

lacking in CD45, and another of  active Lck associated CD4 that also contains TCR/CD3 and 

CD45 (50). Based on this data, they posit that there are functional differences between 

different types of DRMs in the context of their roles in T cell activation (50).  Consequently, 

it seems that the disparity in the literature with regards to CD4 plasma membrane 

distribution is likely reflective of functional differences of CD4 localized to different 

microdomains and underscores the need to better understand CD4 localization and its role 

in activated and resting lymphoid cells.   

1.2 CD4 redox biology 

1.2.1 Disulphide bonds and protein function 

 

CD4 like many cell surface proteins that function in the extracellular space, has disulphide 

bonds- covalent links between cysteine residues (20, 23). Historically,  it was generally 
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believed that disulphide bonds in mature proteins are inert and function principally as 

stabilizers of protein structure (70). Of late however, there is growing interest in the role of 

reversible oxidation of cysteine residues on proteins and the consequence of these changes 

on protein function (71).  These disulphide bonds are referred to as being “redox-labile” or 

“allosteric” due to their propensity for easier reduction and accessibility to reducing agents 

(71-76). Indeed, several cellular proteins exploit the inherent efficacy of electron transfer via 

redox active disulphides in their activity and in so doing, initiate signalling pathways (74, 77).  

In such instances, the catalytic disulphides which mediate thiol/disulphide exchange in other 

proteins are located at the active sites of oxidoreductases and thiol isomerases (78). This 

demonstrates the aptness of rapid, readily reversible thiol/disulphide exchange reactions 

for directing protein function, by changing the redox state of structural or catalytic 

sulfhydryl (SH) groups (73). In general, allosteric disulphides are cleaved by either 

oxidoreductases or by thiol/disulphide exchange within the protein containing the allosteric 

disulphide and in certain instances both cleavage mechanisms can take place (74). An 

example of disulphide bond-controlled switches in protein function is that of the thiol-

disulphide oxidoreductase, protein disulphide isomerase (PDI) mediated disulphide 

interchange of thrombospondin-1 (TSP-1). TSP-1 functions in the growth and differentiation 

of tissues, and different disulphide bonded isoforms of TSP-1 have been found in vivo. Each 

of these isoforms appears to have different cell adhesive activities, suggesting functional 

significance for the different disulphide bonded isoforms (74).  

1.2.2 CD4 redox regulation  

 

Several studies have shown that CD4 itself is a target for cellular oxidoreductases, and that 

CD4 reduction is a fundamentally important component of its biological activity.  In 
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particular, the pioneering work of Hogg and colleagues has shown that the atypical 

disulphide bond in D2 is redox active and can exist in both the reduced dithiol form  or 

oxidised form on the surface of cells (27, 79). Biochemical analysis has implicated this 

disulphide bond in the redox-dependent formation of naturally occurring oligomers and 

isoforms of CD4 (22, 27, 40, 80).  These redox dependent isoforms appear to be important 

both for CD4-MHC-II interaction and CD4 interaction with HIV-1 gp120 (26, 41, 42, 44, 81, 

82).  For instance, the redox state of CD4 is linked to the activation state of T cells  as an 

increase in the dithiol form of CD4 was noted when T cells were activated (80).  Activated T 

cells also upregulate their constitutive secretion of the cellular oxidoreductase, thioredoxin 

(Trx), and Trx can reduce CD4 (27, 83). More recently, our group has shown that an isoform 

of Trx, Trx1 is capable of highly efficient reduction and isomerization of CD4 (83). This results 

in the formation of distinct monomeric CD4 isoforms and a disulphide linked dimer, and the 

formation of these requires the participation of both D1 and D2 disulphides (83). 

Interestingly, Trx1 (84) and the oxidoreductase Glutaredoxin 1 (Grx1),  (85) but not PDI (86) 

can mediate cleavage of disulphide  bonds  in D1, D2 and D4 domains of CD4.  The finding 

that D2 CD4 mutants are dimerization defective, and T cells expressing such CD4 molecules 

are not activated through MHC-II based mechanisms (27, 42) demonstrates the functional 

importance of oxidoreductive isomerisation of CD4 in the context of antigen presentation.   

1.2.3 Cellular antioxidant systems 

 

Since the reversible oxidation of cysteine residues can impact protein function, homeostasis 

of the reducing/oxidising (redox) environment is critical for maintaining normal cellular 

functions. Under physiological conditions, the redox balance of the cellular environment is 

largely  maintained by the disulphide/dithiol-reducing activity of the two major thiol 
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antioxidants, the glutathione (GSH) and Trx systems (87, 88). These systems, with 

overlapping and distinctive roles, are responsive to oxidative stress and regulate a diversity 

of cellular events through distinct redox pathways which impact on redox signalling (88).  

The GSH system comprises GSH, glutathione reductase and glutaredoxins which catalyse the 

nicotinamide adenine dinucleotide phosphate (NADPH) dependent reduction of oxidised 

glutathione (GSSG) (78, 88).  Likewise, the Trx system has thioredoxin, which is reduced by 

electrons from NADPH via thioredoxin reductase (TrxR) (78, 88).  Other enzyme antioxidant 

systems include superoxide dismutases, superoxide reductases, catalases, and 

peroxiredoxins, while non-enzymatic antioxidant compounds comprise low molecular 

weight compounds such as vitamins C and E and selenium containing compounds  like 

selenite (89).  

1.2.4 Oxidoreductases  

 

Thiol-disulfide oxidoreductase enzymes facilitate protein folding and repair. They act by 

reducing disulphides and forming a catalytic site disulphide which is then reduced by an 

external electron donor. Cellular oxidoreductases are characterized by a Cys-X-X-Cys 

catalytic sequence within a thioredoxin-like domain that is required for enzymatic activity of 

all the thioredoxin superfamily protein members (78). This family includes the 

oxidoreductases Trx, other protein disulphide isomerases (such as PDI) and functionally 

dissimilar proteins such as the glutathione S-transferases and glutathione peroxidase (90). 

These enzymes occur in different cellular compartments and also have varied protein 

substrates and mechanisms of reactivation. For example, glutaredoxins have thiol reductase 

and S-glutathionylation activity, important regulatory mechanisms of many biological 
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processes, while protein disulfide isomerases are generally located in the endoplasmic 

reticulum (ER)  where they function  as chaperones in protein folding (78, 88, 91).  

1.2.4.1 The Thioredoxin (Trx) system 

 

Thioredoxins are small (12kDa) reductases, with catalytic protein disulphide/dithiol 

exchange activity mediated by the conserved active site motif Cys-Gly-Proline-Cys (78). In 

mammalian cells, there are two isoforms of Trx, thioredoxin 1 (Trx1) and thioredoxin 2 

(Trx2) which localize to different cellular compartments. Trx1 is mainly cytosolic, but can 

move to the nucleus and be secreted at the plasma membrane (89, 92) while Trx2 is 

restricted to the mitochondria (89, 93). A third variant, spTrx, is highly expressed in 

spermatozoa (89, 94). Trx is essential for cellular and organism survival with Trx1 knockout 

showing embryonic lethality in mice (78, 95). Thioredoxins function as general and potent 

oxidoreductases by facilitating the reduction of many proteins through cysteine thiol-

disulfide exchange (89, 90, 96). In so doing, they can regulate enzyme activity, protect 

proteins from oxidative damage and facilitate protein folding (89, 96). Known targets of Trx 

include, ribonucleotide reductase, PDI, and the transcription factors p53 and NF-B, 

amongst others (89, 97-99).  Trx is also known to function in an immunological capacity, 

where it functions as a cytokine (100, 101) and co-cytokine (92, 102) and has growth-factor 

like effects that stimulate lymphocyte proliferation and recruitment (89, 100). Generally, Trx 

expression is induced under conditions of oxidative stress and under such conditions, Trx 

increases the reduction of intracellular proteins and maintains redox homeostasis (78, 89, 

90). In addition, Trx can carry out its antioxidant activities by regulating the signal 

transduction properties of Reactive Oxygen Species (ROS) (103), by the reduction of 

intracellular  protein disulphides (104) and by the direct lowering of ROS levels (89). Trx 

https://en.wikipedia.org/wiki/Redox
https://en.wikipedia.org/wiki/Cysteine
https://en.wikipedia.org/wiki/Disulfide_bond
https://en.wikipedia.org/wiki/Disulfide_bond
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activity can be regulated endogenously by the protein thioredoxin interacting protein 

(TXNIP/TBP2/VDUP1) (78, 95). 

The second oxidoreductase of the Trx system is thioredoxin reductase (TrxR) which catalyses 

the reduction of the active site disulphide in oxidised Trx as well as other protein 

disulphides, low molecular weight disulphide compounds and non-disulphide compounds,  

giving it a wide substrate specificity (89, 105).  As TrxR is responsible for reducing the active 

site disulphide of Trx to a dithiol, it is essential for all downstream Trx regulated activities 

(90, 101, 106).  In higher eukaryotes, a high molecular weight (55-65kDa) homodimeric form 

of this protein is found (78, 89, 101, 107). In parallel with its substrate Trx, three types TrxR 

have been identified, cytosolic TrxR1, mitochondrial TrxR2 and a testis-specific thioredoxin 

glutathione reductase (TGR), which in addition to Trx can also directly reduce GSSG (78, 

108).  Each of these isoenzymes is encoded by a separate gene and interestingly, all three 

human TrxR genes, undergo extensive splicing, predominantly at the 5’ end resulting in 

numerous transcripts which encode different protein isoforms (109, 110).  A unique feature 

of TrxR is that it is a selenoprotein, containing selenocysteine (Sec), the selenium analogue 

of cysteine, and that this Sec residue is essential for its enzymatic activities (89, 111, 112). 

Functional impairment of TrxR results in pro-oxidant effects characterized by reduced 

activity of Trx and many other TrxR substrates and increased ROS accumulation, ultimately 

decreasing the total cellular antioxidant capacity (89, 113, 114).   
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1.2.5 Redox regulation at the cell surface and in the extracellular 

microenvironment  

 

Despite the high oxidizing potential of the extracellular environment, it is now well-

established that proteins containing redox active reduced thiol groups, exist on the cell 

surface and carry out important biological functions (115, 116). As referenced above, 

evidence suggests that many cell surface/membrane proteins have redox-labile, non-

structural disulphide bonds that regulate molecular function upon reduction to cysteine (73, 

115-117). For example, a previous study identified 30 proteins on the leukocyte cell surface 

that have labile disulphide bonds, these included receptors, integrins, transport and cell–cell 

recognition proteins (72). In addition, the demonstration that Trx and PDI are present and 

active on cell surface (118, 119) provides a mechanism for oxidative regulation of 

membrane protein function, and further support for the biological importance of such 

activity.  

Examining the secreted form of Trx, which has a well-established role as an autocrine 

growth-like  and cytokine-like factor (92, 120), Bertini and colleagues suggested that it  

catalyses oxidoreduction of thiols in one or more membrane proteins with chemotactic 

functions (121). Since disulphide bond reduction by Trx is a catalytic process and one 

molecule may reduce a number of disulphide bonds, it would be necessary for the active 

site disulphide of Trx to be reduced to a dithiol (122, 123). The presence of this functional 

capacity, poses the question as to how Trx (or other oxidoreductases) at the cell surface are 

kept reduced?  A high likelihood possibility is the presence and activity of the enzyme 

thioredoxin reductase 1 (TrxR1). TrxR1 with its broad substrate specificity could, using 

NADPH, supply electrons to Trx / other Trx superfamily members, to allow continuous 
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turnover keeping the enzymes reduced and active. In support of this, extracellular TrxR1 has 

been shown to be secreted by cells and present in plasma (124). Nevertheless, the presence 

and activity of pro- and anti-oxidant systems including the Trx system at the plasma 

membrane is not well studied and the possible association of Trx and TrxR with lipid rafts is 

largely unknown. Of interest,  is the observation that  a rare alternative transcript derived 

from the  thioredoxin reductase 1 encoding gene, TXNRD1,  that expresses an atypical N-

terminal Grx domain fused TrxR1 module and encoded by alternative exons located 

upstream of the core promoter, known as TXNRD1_v3 (v3),  was shown to have the capacity 

to induce cell membrane protrusions (122).  GFP- fusion variants of v3 were found located 

along the length and growing tips of these protrusions leading to cell membrane 

restructuring with the promotion of actin polymerization (122). Since actin has been 

described as stabilizer of membrane rafts, (125) this argues for a possible raft association of 

this TrxR1 variant.  In support of this notion, Volonte and Galbiati showed that TrxR1 

localized with specialized lipid rafts structures called caveolae, and that the key protein of 

caveolae, caveolin-1, can bind to and modulate TrxR1 activity via this interaction (126).  

Interestingly, it has been shown that lymphocytes require a reducing environment for 

activation and proliferation (127-129).   For example, the activation of T cells results in up 

regulation of thioredoxin resulting in the augmentation of thiols at the T cell surface (129-

131). It is thought that this influences the persistence of T cells and consequently immune 

outcomes as cells bearing high levels of surface thiols, appear to have enhanced survival in 

oxidative microenvironments (132). In addition, T cell activation is associated with an 

increase in ROS (132) and enhanced production levels of reversible cysteine sulfenic acid 

formation, important reactive oxygen intermediate that is required for disulphide bond 
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formation and S-glutathionylation, implicating it as an important molecule in regulating 

redox-related T cell activation (133). Michalek, et al showed that certain proteins, including 

actin, undergo increased sulfenic acid modification after TCR stimulation, and that the 

reversible  formation of sulfenic acid was indispensable for  the proliferation of naive CD8+ 

and CD4+ T cells (133).  Dendritic cells have also been shown to convert cystine to cysteine 

and release thioredoxin during antigen presentation, creating the reducing environment for 

T lymphocyte activation (127). This suggests that decreases in redox potential of the 

extracellular space in the immunological synapse can occur during antigen presentation to T 

cells, potentially creating a microenvironment that favours the reduction of labile disulphide 

bonds  at the immune-cell surface (73, 130).   

These insights into the role of CD4 in antigen presentation, its membrane 

compartmentalization and redox biology at the membrane surface raises questions as to 

how these phenomena might be integrated. The conformational changes in CD4, from its 

oxidised to reduced isoforms, require redox active enzymes and CD4 is a known substrate of 

cellular oxidoreductases (79, 84, 85). In addition, CD4’s membrane spatial distribution and 

its association with lipid rafts is known to influence its activity (64) both with respect to its 

immune- and HIV receptor function.  CD4+ T cell function is also subject to redox regulation 

by ROS, a feature that can influence activation states and thus the outcome of immune 

responses (132).  However, how redox events regulate the distribution of CD4 between 

different membrane microdomains, and the nature of functional oxidoreductase systems 

that might control these events at the cell surface are incompletely understood. 
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1.3 The CD4-HIV-redox biology paradigm  

 

In addition to being an important component of the adaptive immune response, CD4 is also 

the primary receptor for HIV entry into cells.  

 

1.3.1 HIV entry 
 

1.3.1.1 Gp120 interaction with CD4 

 

HIV-1 gp120 is known to bind to CD4 through a high-affinity interaction involving a large 

contact surface on gp120 known as the CD4 binding site (CD4bs) (134). This site 

incorporates two regions on gp120, the larger of which is a shallow cavity with residues that 

do not form direct contact with CD4, a feature that affords flexibility in the otherwise well 

conserved CD4bs (134) The smaller rounded, hydrophobic pocket is lined with highly 

conserved residues and is deeply concealed within gp120 where it becomes ‘plugged’ with 

the Phenylalanine 43 (Phe43) residue of CD4 upon CD4 binding (134). The conserved 

residues important for CD4 binding include Trp432, Trp427, Thr257, Asp368, Asp457, and 

Glu370 (134, 135). The most important contacts are those between Phe43 of CD4 and 

Glu370 and Trp427 of gp120, together with electrostatic interactions between Arg59 of CD4 

and Asp368 of gp120 (19, 134) (Figure 3). Interestingly, this interaction seems to mimic the 

interaction observed between CD4 and MHC-II, in which both Phe43 and Arg59 (of CD4) are 

important residues (19). Additionally, five of gp120’s nine disulphide bonds are all in close 

proximity to amino acids in gp120 that make contact with CD4 (134). Recent evidence has 

suggested that complex rearrangements of disulphide bonds in gp120 are required before, 

during and after the binding event, and that dynamic redox regulation of these bonds is 
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important for virus entry (136, 137). The binding of gp120 to CD4 induces structural changes 

in both proteins, with the conformational changes induced in gp120 facilitating further 

interaction with the cellular co-receptors, CCR5 or CXCR4.  

 

 

 
 
Figure 3: Ribbon representation of the CD4-gp120 interaction  
A ribbon diagram of gp120 (grey) binding to CD4 domain (D1, blue) and domain 2 (D2, orange). The inset 
shows the gp120-CD4 interface with important interacting residues between gp120 (Asp368, Glu370 and 
Trp427) and CD4 (Phe43 and Arg59) shown in stick representation and labelled. The binding pocket in which 
the Phe43 residue of CD4 is inserted is indicated. The electrostatic interaction between Arg59 of CD4 and 
Asp368 of gp120 is shown as green dashed lines. Hydrophobic interactions are established between Phe43 of 
CD4 and Trp427 and Glu370 of gp120. Generated using PDB ID 1G9M (134) and PyMOL.  
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1.3.1.2 HIV–host cell membrane fusion 

 

The sequential binding of gp120 to CD4 and the co-receptor leads to re-arrangements in the 

HIV-1 transmembrane glycoprotein subunit, gp41, resulting in its transformation into a 

“fusion-active” state and triggering of the membrane fusion cascade (138). At this stage, the 

formation of a triple-stranded coiled-coil enables the hydrophobic N-terminal fusion peptide 

of gp41 to insert into the target membrane and gp41 adopts a pre-hairpin intermediate 

conformation that bridges the viral and target membranes (139, 140) (Figure 4). Subsequent 

bending back of the coiled-coil on itself leads to the formation of the six-helix bundle which 

brings the viral and target membranes into close enough proximity for fusion to occur, 

culminating in the internalization of the virus capsid (138), (141). 

 

Figure 4: Schematic representation of the key steps leading to HIV-host cell membrane fusion 
(1) HIV-1 gp120 binds to CD4 (CD4 binding) exposing the conserved co-receptor binding site on gp120. (2) The 
newly exposed co-receptor binding site on gp120 recognizes and binds either CCR5 or CXCR4 (co-receptor 
binding). (3) Engagement of the co-receptor exposes the gp41 fusion peptide and results in its insertion into 
the target membrane. (4) The formation of a helical hairpin structure (six-helix bundle) culminates in 
membrane fusion. Figure adapted from Delhalle et al. (142)  
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1.3.2 The redox biology of HIV-1 entry 

 

Several studies have signified an important role for thiol/disulphide exchange at the cell 

surface in the entry mechanisms of a number of viruses (73, 143, 144).  An example of this is 

the entry of Newcastle disease virus, in which free thiols in the Fusion (F) glycoprotein 

(required for virus entry into the cell) are detected only after binding of the virus to the 

target cell surface, suggesting that the reduction of disulphide bonds occurs (143). This 

results in conformational changes in the F protein leading to membrane fusion (143, 145).  

Similarly, changes in the topology of disulphide bonds appear to be important in the entry 

and pathogenesis of other viruses, such as Hepatitis C virus and Sindbis alphavirus (73, 143, 

146).   

The accepted HIV entry model attributes the structural changes within gp120 largely to 

intrinsic properties of the viral envelope, but the molecular mechanism(s) by which these 

changes are effected is poorly understood. An increasing amount of evidence suggests that 

these changes occur in the context of redox active enzymes present at the cell surface (147),  

implying that associated host factors may play an important role in the membrane fusion 

process.   Both CD4 and gp120 have disulphide bonds that could be reduced under such 

physiological conditions, and there is a growing body of evidence that the cleavage of 

disulphide bonds in both gp120 and CD4 may be necessary for envelope-mediated cell-cell 

fusion and HIV entry (147-149). Further support for this is provided by the observations that 

compounds that block the cleavage of disulphide bonds also inhibit HIV-1 entry (148, 150). 
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1.3.3 CD4 oligomerization and compartmentalization: role in HIV infection 

 

Several lines of evidence suggest that the oligomerization status of CD4 as well as its 

membrane microdomain localization influence virus entry and pathogenesis.   As discussed 

in section 1.1.3,  CD4 dimers and oligomers are required for T cell activation, with the 

monomeric form of CD4 displaying weak affinity for its natural ligand, MHC-II (42-44, 151).  

Conversely, it has been shown that HIV-1 preferentially binds to the monomeric reduced 

form of CD4 (82) (although the potential of gp120 to bind dimeric CD4 has not been 

unequivocally excluded)  and that when CD4 dimerization is disrupted, enhanced viral entry 

is observed (81).  

There is also data to suggest that HIV can alter the steady-state quotient of CD4 monomers 

and dimers to favour monomers (32, 152). Whether this is a mechanism for delaying the 

native immune response and facilitating immune surveillance evasion or if it is a 

requirement for the entry process is not known. CD4 oligomerization may be important for 

downstream events in the virus replication cycle although it is not necessary for viral entry 

(45).  For these reasons, there is still some uncertainty around whether HIV-1 is capable of 

using CD4 dimers for entry or if CD4 dimers are disrupted by interaction with HIV-1 gp120. 

Likewise, the membrane microdomain distribution of CD4 in the context of HIV-1 infection 

remains a subject of debate. Lipid rafts are used by a host of pathogens including viruses, 

parasites and bacteria as portals of entry into cells (59). In the case of HIV-1, certain studies 

support the notion that HIV-1 uses raft- associated CD4 as a site of entry (153-155). For 

example, in macrophages, it seems that CD4 raft localization is a requirement for productive 

infection (153, 155). In contrast, other studies have shown that CD4 located in non-raft 

plasma membrane microdomains supports entry of the virus into cells (156, 157).   In 
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addition, the membrane microdomain distribution of HIV-1 co-receptors is also unclear. The 

co-receptors for HIV-1 may reside in microdomains different to that in which CD4 is found 

(158-160). Consequently, it may be necessary for co-mobilization of CD4 and/or co-receptor 

into or out of raft regions for efficient HIV-1 entry (161, 162).  Dumas et al, proposed that 

these contradictory observations may be accounted for by considering the possibility that 

different steps of the entry process were being assessed in each study (161). Hence, raft 

localization of CD4 may not be required for virus binding, but post-binding fusion/entry 

steps may require intact lipid rafts (156, 161).  There is an ever growing body of evidence 

that glycosphingolipids and cholesterol, both components of lipid rafts, play a vital, perhaps 

diverse role in HIV-1 pathogenesis, from viral entry to assembly of progeny virions (162-

164). Taken together, these insights underscore the complexity of the structural and 

membrane localization dynamics of CD4 that are at play during the formation of immune 

signalling complexes and during HIV infection, and the factors involved in the regulation 

thereof. 

1.3.4 CD4, gp120 and cellular oxidoreductases  

 

Agents that interfere with thiol-disulphide exchange following the interaction of CD4 and 

gp120 have been shown to inhibit HIV infection (149, 150, 165). This effect is attributed to 

the inhibition of cell surface oxidoreductases such as PDI, although the precise molecular 

mechanism for this inhibition has not been elucidated (150).  In the context of the gp120-

CD4 interaction, Auwerx and colleagues provided evidence that the interaction between 

CD4 and HIV-1 gp120 can be regulated by Grx1 and Trx1 (85). Taken together, the data 

showing that HIV-1 gp120 preferentially binds to reduced isoforms of CD4, and that 

manipulating the activities of cell surface active oxidoreductases such as PDI, Grx and Trx 
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has significant effects on HIV replication  in vitro(150, 166, 167), suggests that redox 

exchanges play a critical role in the mechanism of HIV-1 entry. However, elucidating the role 

of these oxidoreductases on CD4 is complicated by the observations that gp120, itself 

containing nine disulphide bonds, is also a substrate for PDI-, Trx- and Grx1-mediated 

reduction (167).  

Accordingly, despite the increasing amount of evidence alluding to the importance of 

dynamic oxidoreductive isomerisation and the plasma membrane microdomain localization 

of CD4 in both T cell activation and HIV entry, our understanding of the molecular 

mechanisms thereof and consequences of oxidoreductase activity on CD4 in the cellular 

context is limited. Expanding our knowledge on these intricate aspects of CD4 biology is 

essential for gaining a complete understanding of both CD4-dependent cell signalling and 

HIV entry, and has relevance for the conceptualization of novel antiviral and 

immunomodulatory therapies.   

1.4 Thesis outline and main objectives  

 

In this thesis, we report the findings of studies that provide further insights into the 

biological significance of cell surface redox systems, particularly in the context of immune- 

and HIV receptor functions of CD4. These are presented in the form of two journal 

publications. In Chapter 2 we show the results of collaborative research lead by Prof Elias 

Arner (Karolinska Institutet), which investigated the membrane association of the v3 variant 

of Thioredoxin reductase 1 (TXNRD1_v3) (v3).  These studies show that v3 is targeted to lipid 

rafts via N-terminal acylation, where it may be involved in regulating changes in the 

underlying cytoskeleton. While the physiological relevance of a membrane-associated Trx 

system remains unclear, the findings allude to the importance of redox capacity at the cell 
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surface, which increasingly suggests is essential for the function of CD4. With this in mind, 

we then investigated the effects of manipulating cell surface redox activity on CD4 

membrane domain trafficking and function as HIV receptor. We describe experiments on 

the membrane microdomain distribution of CD4 under conditions that alter the extracellular 

redox environment by general and specific inhibition of cellular oxidoreductases, and 

discuss how this segregation relates to known viral inhibition by agents that interfere with 

thiol-disulphide exchange. To assess this, we used a combination of modern and classical 

methodologies for analyzing the plasma membrane microdomain contents, and were able 

to obtain quantifiable data on the microdomain localization of CD4 from a flow cytometric 

detergent solubility assay. In parallel, we assessed the effect of these altered conditions of 

HIV infectivity of viruses with differing CD4 dependencies. These results are presented in 

Chapter 3 as a published research article. In conclusion to this thesis, Chapter 4 summarizes 

our key observations and provides perspective on the role of oxidoreductases, particularly 

those of the Trx system, in HIV entry.    

 

 

 

 

 
 
 
 
 
 
 
 
 



The Rare TXNRD1_v3 (“v3”) Splice Variant of Human
Thioredoxin Reductase 1 Protein Is Targeted to Membrane
Rafts by N-Acylation and Induces Filopodia Independently of
Its Redox Active Site Integrity*
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Background: The TXNRD1_v3 (“v3”) protein is a rare variant of human thioredoxin reductase 1.
Results: Membrane targeting of v3 occurs by N-terminal myristoylation and palmitoylation, and its overexpression triggers
induction of filopodia independently of its redox active site integrity.
Conclusion: The v3 protein is targeted to membrane rafts.
Significance: These results imply that v3, shown to be targeted to membrane rafts, may be involved in signaling events.

The human selenoprotein thioredoxin reductase 1 (TrxR1),
encoded by the TXNRD1 gene, is a key player in redox regula-
tion. Alternative splicing generates several TrxR1 variants, one
of which is v3 that carries an atypical N-terminal glutaredoxin
domain. When overexpressed, v3 associates with membranes
and triggers formation of filopodia. Here we found that mem-
brane targeting of v3 is mediated by myristoylation and palmi-
toylation of its N-terminal MGC motif, through which v3 spe-
cifically targets membrane rafts. This was suggested by its
localization in cholera toxin subunit B-stainedmembrane areas
and also shown using lipid fractionation experiments. Utilizing
site-directed mutant variants, we also found that v3-mediated
generation of filopodia is independent of the Cys residues in its
redox active site, but dependent upon its membrane raft target-
ing. These results identify v3 as an intricately regulated protein
that expands TXNRD1-derived protein functions to the mem-
brane raft compartment.

Thioredoxin reductase (TrxR)2 and thioredoxin (Trx)
together with NADPH comprise the Trx system, which is
involved in a wide range of cellular processes, including cell
proliferation and differentiation, antioxidant defense, mainte-
nance of deoxyribonucleotide synthesis, signaling of apoptosis,
redox control of protein function, transcription factor activity,

and cancer development (1–7). The Trx system orchestrates its
many functions mainly through redox reactions, whereby Trx
reduces disulfides in target proteins for the support or modu-
lation of their activities, whereasTrx in turn is kept reduced and
active by TrxR using NADPH.
Human cells carry three genes encoding three distinct TrxR

isoenzymes. The TXNRD1 gene encodes the classical and most
abundant, predominantly cytosolic, TrxR1, which is expressed
inmost human cells and uses Trx1 as its prime substrate (3, 4, 8,
9). The predominantly mitochondrial TrxR2 enzyme is
encoded by TXNRD2 and mainly reduces mitochondrial Trx2
(10–12). TheTXNRD3 gene encodes a thioredoxin glutathione
reductase isoenzyme that contains a monothiol glutaredoxin
(Grx) domain as an N-terminal addition to the TrxR module,
which otherwise is similar in domain structure to TrxR1 and
TrxR2. The thioredoxin glutathione reductase isoenzyme was
found to be involved in the maturation of sperm cells and is
mainly expressed in early spermatids in testis (13–15). Both the
cytoplasmic and the mitochondrial Trx systems are essential
formammals, as demonstrated by the embryonically lethal phe-
notype of knock-out mice for any one of the enzymes TrxR1,
Trx1, TrxR2, or Trx2 (16–19).
The human TXNRD1 gene on chromosome 12 (12q23-

q24.1) displays a complex genomic organization. It gives rise to
numerous transcripts that can undergo extensive splicing, in
particular at the 5�-end, producing several different protein iso-
forms (8, 9, 20–22). One of these isoforms, TXNRD1_v3 (“v3”),
is peculiar by utilizing three additional exons encoding an atyp-
ical dithiol active site Grx domain, which is expressed in N-ter-
minal fusion to the classical TrxR1module (8, 20, 23, 24). These
three exons, termed �-VIII, �-VI, and �-V, are unique to v3 and
are encoded by a genomic region upstream of the more com-
monly transcribed TXNRD1 exons. Therefore, transcription of
v3 must initiate upstream of the previously characterized core
promoter of TrxR1 (8, 21, 22, 25, 26) andmust thus be regulated
by an alternative promoter, which hitherto has remained
uncharacterized. Intriguingly, humans, chimpanzees, and dogs
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TXNRD1_v3, splice variant of human TrxR1 carrying an additional N-termi-
nal glutaredoxin domain; TXNRD1, human gene encoding TrxR1; CT-B,
cholera toxin subunit-B; Grx, glutaredoxin; v3, short notation for the
TXNRD1_v3 splice variant; v3(Grx), glutaredoxin domain of v3; 2-HMA,
2-hydroxymyristic acid; 2-BPA, 2-bromopalmitic acid; GAP, growth-associ-
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express v3, butmice or rats do not (20). Endogenous expression
of v3 has been demonstrated in human testis by Northern blot
analyses as well as using immunohistochemistry, with the latter
displaying particularly strong staining in Leydig cells (23).
Immunoblotting and mass spectrometry also indicated v3 pro-
tein expression in a human mesothelioma cell line (24), and v3
could furthermore be detected in extracts of bovine and dog
testis (20). In addition, several human cancer cell lines show
expression of v3-encoding transcripts, as detected by first-
strand reverse transcription-polymerase chain reaction (PCR),
with v3 expression also found to be induced by estradiol or
testosterone treatment (23). However, transcripts for v3 are
rarely found in the form of expressed sequence tag clones with
only few such clones currently found in the National Center for
Biotechnology Information (NCBI) databases (including five from
testis, accession numbers BG772375, AY057105, BG717223,
DC401599, andDC400412; four from trachea, accession numbers
AK304241, DC417264, DB230289, andDB233566; two from glio-
blastoma, accession numbers BF342747 and AW027910; one
from squamous cell carcinoma, accession number BP355955; and
one from astrocytes, accession number DA033928). This should
be comparedwithmore than 1,700 expressed sequence tag clones
found to encode the other forms of TrxR1. It should be noted,
however, that someof those other sequences could also bederived
fromv3-encoding transcripts, although theywill notbediscovered
as such if they have incomplete 5�-ends, which is the case with
many expressed sequence tag clones.
TheGrx domain of v3 has an atypical CTRC redox active site

motif (8, 20) and lacks activity in any of the classical Grx assays
(20). However, when mutated to CPYC, the motif commonly
found in Grx proteins (27), the altered v3 protein also gained
classical Grx activity (20). The v3 isoform, when overexpressed
in human cells either as the isolated Grx domain or in fusion
with the TrxR1module as its C-terminal partner, triggers rapid
changes in cell shape and a dynamic formation of cell mem-
brane protrusions (23). GFP fusion variants of v3 were found to
locate along the length and growing tips of these protrusions, in
close proximity to actin. Furthermore, v3 seemed to lead actin
into these protrusions followed by �-tubulin (23). These cell
membrane protrusions were later characterized as having all
features typical of filopodia (28). In the present study, we
wished to further characterize the features of v3 that trigger
these changes of the cellular phenotype and to understand how
the protein is targeted to themembrane compartment. Because
it was previously found that expression of either the complete
TXNRD1_v3 protein or only the isolated v3(Grx) domain was
sufficient for membrane targeting and induction of filopodia
(23), we focused here on this property as held by the v3(Grx)
domain.
By mutating the two v3(Grx) active site Cys residues to Ser

and thus converting its CTRCmotif to STRS, thereby incapac-
itating any potential redox activity of thismotif, we showherein
that association of v3(Grx) with actin polymerization as well as
its membrane targeting is independent upon the integrity of its
active site. Instead we found thatN-acylation of the N terminus
of v3(Grx) is both required and sufficient to target the protein
to the plasma membrane. We furthermore found that it is spe-
cifically targeted to membrane rafts. These membrane struc-

tures have commonly also been called “lipid rafts,” but are in the
present study named and defined according to the 2006 con-
sensus of the Keystone Symposium on Lipid Rafts and Cell
Function (29).

EXPERIMENTAL PROCEDURES

Chemicals and Reagents—All regular chemicals or reagents
were of high purity and obtained from Sigma-Aldrich, unless
otherwise specified.
Cell Lines—HumanA549 lung carcinoma (A549 cells) (CCL-

185; ATCC) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Life Technologies) containing 4.5 g/liter glu-
cose at 37 °C in a humidified atmosphere with 5% CO2. Human
embryonic kidney cells (HEK293) (CRL-1573;ATCC)were cul-
tured in Eagle’s minimum essential medium (ATCC), and
human ovarian SKOV3 cells (HTB-77) were cultured in
McCoy’s 5A medium, modified with L-glutamine and sodium
bicarbonate (Sigma-Aldrich) at 37 °C in a humidified atmo-
sphere with 5% CO2. Cell culture media were supplemented
with 10% heat-inactivated fetal bovine serum (FBS), 2 mM

L-glutamine, 100 �g/ml streptomycin, and 100 units/ml peni-
cillin (all from PAA Laboratories).
Vectors for Expression of the Glutaredoxin Domain of v3

in Fusion with GFP and Mutants Thereof—The construct
expressing the wild type Grx domain of v3 with GFP as a C-ter-
minal fusion partner (here called “v3(Grx)”) was kindly pro-
vided by Dr. Anastasios E. Damdimopoulos (Karolinska Insti-
tutet, Stockholm, Sweden) and was previously described in
detail (23). Using standard cloning techniques with that plas-
mid as template, we created vectors expressing the active site
double mutant C76S/C79S and the G2A and C3S mutants, as
well as a variant encompassing only the first 14 amino acids of
v3 in fusion with GFP (1–14), as further described under
“Results.” We also used a pure GFP control. Primers were pur-
chased from Thermo Scientific, and all constructs were
sequenced by GATCBiotech to confirm the desiredmutations.
Transfection and Immunocytochemistry—Cells were grown

on glass chamber slides (Lab-Tek II chamber slide system,
Nalge Nunc International) and transiently transfected using
Lipofectamine 2000 (Invitrogen) or TurboFect transfection
reagent (Thermo Scientific) according to the manufacturer’s
instructions. About 18 h after transfection, the slides were
washed with PBS or treated with 2-hydroxymyristic or 2-bro-
mopalmitic acid (see below) before fixation in 4% paraformal-
dehyde solution for 15min. For experiments that involved sub-
sequent actin staining, the slides were washed two times with
PBS and cells were permeabilized using PBS containing 0.5%
TritonX-100 and 2%BSA for 20min at�20 °Cwhereupon they
were washed two times in PBS and incubated with rhodamine-
conjugated phalloidin (1:500; Molecular Probes/Invitrogen) in
PBS for 1 h at �20 °C. For experiments involving subsequent
staining of membrane rafts/caveolae, slides were then washed
two times with PBS and subsequently incubated with Alexa
Fluor 555-conjugated cholera toxin subunit-B (CT-B; Molecu-
lar Probes/Invitrogen) (1mg/ml) for 20min in chilled complete
growthmediumon ice. Finally, all slideswerewashed two times
with PBS and mounted with glass coverslips (Menzel-Gläser/
Thermo Scientific) using ProLong Gold antifade reagent with
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DAPI (4�,6-diamidino-2-phenylindole, Invitrogen). Confocal
imaging was carried out on a LSM700 (Zeiss). In all cases, mul-
ticolor imaging was performed sequentially to minimize cross-
talk between the channels.
Treatmentwith 2-Hydroxymyristic Acid (2-HMA)and2-Bro-

mopalmitic Acid (2-BPA)—2-Hydroxymyristic acid and 2-bro-
mopalmitic acid (Santa Cruz Biotechnology) were stored as 100
mM stock solutions in ethanol and delivered to cells as com-
plexes with BSA. To prepare each complex, the fatty acid com-
pound was incubated at a concentration of 2 mM in serum-free
medium containing 2 mM fatty acid-free BSA for 2 h at 37 °C.
Subsequently, transfected cells were treated with the fatty acid-
BSA solution for 2 h before adding serum containing full
medium to final concentrations of 1 mM fatty acid, 1% (v/v)
ethanol, and 5% (w/v) serum. The cells were thereupon incu-
bated for 24 h with 2-bromopalmitic acid or for 48 h with 2-hy-
droxymyristic acid and subsequently prepared for immunocy-
tochemistry as described above.
Isolation ofMembrane Rafts—HEK293 cells transfected with

the wild type v3(Grx), G2A, or C3S expression plasmids were
harvested for membrane extractions 48–64 h after transfec-
tion.Membrane rafts were extracted by “flotation” ultracentrif-
ugation according to methods described by Alexander et al.
(30), with minor modifications. Briefly, �6 � 106 transfected
cells were harvested and resuspended in 400 �l of flotation
buffer (25 mMTris-HCl, pH 7.4, 150mMNaCl, 5 mM EDTA, 10
mM �-glycerol phosphate disodium salt pentahydrate, 30 mM

sodium pyrophosphate, and 1% Triton X-100). The suspension
was centrifuged at 2,000 � g for 5 min, the pellet was washed
with 100 �l of fresh flotation buffer, and sucrose was added to
the combined supernatants to a concentration of 45% (final
volume of 2 ml in flotation buffer). The 2 ml of sucrose-con-
taining lysate was transferred to the bottom of a 12.5-ml poly-
carbonate centrifuge tube (Beckman), over which 30% (5.5-ml)
and then 5% (4.5-ml) sucrose solutions in flotation buffer were
gently and sequentially layered. The tubes containing the
sucrose cushions were then centrifuged at 200,000 � g for 18 h
at 4 °C. 1-ml fractions (12 in total) were gently collected from
the top of the gradient, snap-frozen in liquid nitrogen, and
stored at �80 °C for further analysis.
Biochemical Analysis ofGrx-GFPAssociationwithDetergent-

resistant Membrane Fractions—The level of expression and
distribution of v3(Grx)-GFP variants in transfected HEK293
cells was assessed by Western and slot blotting approaches,
respectively. Firstly, to confirm that all three variants were uni-
formly expressed, total cell lysates for each transfected culture
were generated by pooling equal quantities of each fraction
(1–12) from the membrane raft preparations. The pooled sam-
ples were diluted in PBS, reconcentrated, and analyzed by SDS-
PAGE andWestern blot using an HRP-conjugatedmonoclonal
anti-GFP antibody (Rockland Immunochemicals) and standard
procedures. In the experiments designed to gain insights into
the oligomeric state of the raft-associated Grx-GFP proteins,
only fractions 4–6 and 10–12 from each sample were pooled,
and the samples were then either subjected to conventional
SDS/DTT/heat treatment or treated with a DTT-free loading
buffer and not heated, before loading onto gels. To control for
the specificity of GFP detection, mock-transfected cells were

processed and analyzed identically. To evaluate the extent of
localization of the Grx-GFP variants in detergent-resistant
membrane fractions, all of the fractions 1–12 from each prep-
aration were analyzed individually by a slot blot procedure.
Briefly, a 50-�l sample of each fraction was diluted 5-fold in
Tris-buffered saline (TBS, pH 7.4) containing 10% methanol,
with 100 �l subsequently adsorbed onto a nitrocellulose mem-
brane using a Minifold II slot blot apparatus (Schleicher &
Schuell). Detection of GFP fusion protein was carried out using
the anti-GFP antibody as described above. To confirm consis-
tency of raft enrichment for each sample, the same fractions
were immobilized and probed in parallel with an HRP-conju-
gated CT-B (Life Technologies), which binds the exclusively
membrane raft-residing GM1 ganglioside with high affinity.

RESULTS

Membrane Targeting of v3 by Myristoylation and Palmitoy-
lation at Its N-terminal MGC Motif—When overexpressed in
cancer cells, the glutaredoxin domain of v3 (v3(Grx)) in fusion
with GFP at its C-terminal end displays a distinct localization
pattern that is characterized by strong staining of the perinu-
clear region and cytosolic speckles as well as accumulation of
the protein at the plasma membrane (23, 28). An N-terminal
myristoylation motif of v3 was suggested using ExPASy Prosite
and NMT – The MYR Predictor, as reported earlier (8, 28, 31,
32), but this has not yet been experimentally studied. The Grx
domain of v3 also carries an atypical dithiol active site motif, as
discussed above. To characterize the importance of these
motifs for v3 targeting to cell membrane regions, we expressed
a number of v3(Grx)-derived mutant variants in fusion with
GFP (see Fig. 1A for a scheme of the constructs) using three
different human cell lines (A549, HEK293, and SKOV3) (Fig.
1B). This revealed that a variant with the two Cys moieties of
the redox active site changed to redox inactive Ser residues
(C76S/C79S) yielded an identical phenotype of membrane
association as seen with wild type v3(Grx), which was highly
reminiscent of that reported earlier for the wild type protein
(23, 28). Both variants strongly accumulated in the perinuclear
area and showed distinct cytosolic structures in a dotted pat-
tern, as well as a pronounced plasma membrane association in
all three cell types (Fig. 1B). Interestingly, however, a single
substitution of the Gly residue at position 2 with Ala (G2A)
completely abolished the membrane association of the protein.
This G2A mutant, destroying the myristoylation consensus
motif (33–35), showed a diffuse cytosolic and nuclear distribu-
tion similar to that of pure GFP (Fig. 1B). Thus, the prominent
features of plasma membrane association, cytosolic speckles
and strong perinuclear accumulation, were all impeded by this
single amino acid substitution. In contrast, substituting solely
the Cys residue at position 3 with Ser, yielding the (C3S) con-
struct that is expected to eliminate the possibility of palmitoy-
lation (35, 36) while maintaining the myristoylation site at the
Gly-2 residue (35, 37, 38), lowered the extent of plasma mem-
brane association and the amount of cytosolic speckles, but
maintained a strong compartmentalization of the protein, with
mainly perinuclear localization (Fig. 1B). To study whether the
membrane targeting could indeed be guided solely by acylation
of the N-terminal motif of v3, we also analyzed a construct
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encompassing only the first 14 amino acids of v3(Grx) in fusion
withGFP. Cells expressing this protein displayed the same phe-
notype as seen with wild type v3(Grx) (Fig. 1B). Together, these
results revealed that the N-terminal MGC motif of v3(Grx) is
both required and sufficient for the targeting of this protein to
specific membrane structures of the transfected cells.
To further study the dependence of the v3membrane target-

ing upon myristic and palmitic acid, we incubated A549,

HEK293, or SKOV3 cells expressing v3(Grx) with 2-hydroxy-
myristic acid (2-HMA) and 2-bromopalmitic acid (2-BPA), two
competitive inhibitors of myristoylation and palmitoylation,
respectively (39–41). After treatment with 2-BPA, the subcel-
lular localization of the protein changed to amainly perinuclear
localizationwith significantly reduced plasmamembrane stain-
ing and fewer cytosolic speckles (Fig. 2). This pattern coincides
with the expression profile of the palmitoylation-impeded C3S
variant (compare Fig. 1B and Fig. 2). The 2-HMA treatment, on
the other hand, nearly completely abolished compartmental-
ization of the protein and gave a diffuse cytosolic distribution
closely reminiscent of pure GFP or the G2A variant of v3 (com-
pare Fig. 1B and Fig. 2).
Co-localization of v3(Grx) with the Membrane Raft Marker

CT-B—Next we investigated the subcellular localization of
v3(Grx) in relation to membrane structures binding CT-B, a
marker often used for membrane rafts (42–44). For this, A549
cells were transfected with the GFP fusion constructs express-
ing wild type v3(Grx), the active site mutant C76S/C79S, or the
N-terminal mutants G2A and C3S. To subsequently assess
localization in relation to the CT-Bmarker formembrane rafts,
the cells were fixed 24 h after transfection and incubated with
Alexa Fluor 555-conjugated CT-B. Incubation with CT-B did
not affect the overall cellular appearance nor the subcellular
GFP fluorescence patterns obtained with the various v3(Grx)
variants. CT-B showed a similar pattern in all of the cells, with
plasmamembrane staining in selected localized areas, as well as
dotted cytosolic and perinuclear distribution. The latter com-
partments were previously identified as being early endosomes
and Golgi apparatus or endoplasmic reticulum, respectively
(45, 46). TheGFP signal of the v3(Grx) andC76S/C79S variants
closely overlapped with that of CT-B staining, although the
overlap was not exclusive, and fractions of the cells also showed
staining for only one of the fluorophores (Fig. 3, arrows and
magnified lower panel). In contrast, theG2A variant of v3(Grx),
which displayed a diffuse cytosolic distribution, lacked subcel-
lular proximity with CT-B in all cellular compartments (Fig. 3).
Devoid of the palmitoylation site (Cys-3) but maintaining an

FIGURE 1. The redox active site dithiol motif of v3 is dispensable, whereas
its N-terminal acylation motif is required for membrane association of
the v3(Grx) domain. A, the Grx domain of v3 is here shown with the pro-
posed consensus sequence for myristoylation underlined (dotted; presumed
myristoylated Gly residue shown in blue) at the beginning of a 14-amino acid
stretch at the N terminus of the protein (orange). A Cys-3 residue may poten-
tially be palmitoylated (red). The dithiol active site motif of v3(Grx) is under-
lined (solid). Final amino acid sequences of the v3(Grx)-derived constructs
studied herein are schematically indicated below. Mutated residues are
marked bold and in black with the names of the variants to the left. Two dots
indicate omitted residues (for full sequence, see top panel), and -GFP in green
indicates a C-terminal GFP fusion partner. B, A549, HEK293, and SKOV3 cells
were transfected using either of the v3(Grx)-derived GFP fusion constructs:
wild type v3(Grx), the active site mutant C76S/C79S, the N-terminal G2A or
C3S mutants, or a truncated variant solely containing the first 14 amino acids
of v3 (1–14). Control transfections were performed using a construct express-
ing GFP alone (GFP). Fluorescence was recorded 18 h after transfection using
confocal microscopy. Scale bar � 20 �m.

FIGURE 2. Inhibition of myristoylation and palmitoylation by 2-HMA and
2-BPA. A549, HEK293, and SKOV3 cells were transfected using the wild type
v3(Grx)-GFP fusion construct. 18 h after transfection, cells were treated with
either 1% EtOH or 2-hydroxymyristate for 48 h or with 2-bromopalmitate for
24 h. GFP fluorescence was recorded using confocal microscopy. Scale bar �
20 �m. Ctrl, control.
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intact myristoylation site at Gly-2, the C3S variant displayed
mainly its perinuclear distribution, where it showed some over-
lap with CT-B, but appeared only minimally at the plasma
membrane (Fig. 3) as also shown above.
These results strongly suggested that overexpressed v3 in

transfected cells becomes targeted to cell membranes through
myristoylation and palmitoylation, where it furthermore closely
associates with themembrane raft marker CT-B.We next wished
to confirm the localization of v3(Grx) in membrane rafts by the
alternative method of membrane fractionation.
Appearance of v3(Grx) in CT-B-positive Purified Membrane

Raft Fractions—Theproposed sizes ofmembrane raftmicrodo-
mains are below 100 nm and are thus not resolvable by conven-
tional confocal microscopy, thereby limiting the interpretation
of co-localization studies by microscopy. To further validate
co-localization of v3(Grx) with CT-B, we therefore purified
membrane rafts from HEK293 cells expressing either the wild
type v3(Grx) or the G2A or C3S variants and analyzed these by
slot and Western blot approaches. The membrane rafts were
purified by conventional flotation methods, which involve sep-
aration of intact, detergent-resistant rafts from Triton X-100
solubilized membranes and cytosolic proteins, based on their
unique “buoyancy” in sucrose-containing media subjected to
high speed centrifugation (Fig. 4A, left). The v3(Grx), G2A, and
C3S variants were all expressed as similar levels and recovered
to the same extent in this centrifugation, as visualized using

immunoblotting with antibodies directed against GFP, which
were used to probe pooled fractions (Fig. 4B). In agreement
with the co-localization data suggested by fluorescent micros-
copy, only the wild type v3(Grx) variant showed association
with membrane rafts (fractions 4–6), whereas the G2A and
C3S variants were not detected in these membrane microdo-
main fractions (Fig. 4C, right panel). This effect was specific and
directly related to the amino acid sequences of the N-terminal
raft-localization domain of the proteins because the amounts of
purified membrane rafts, measured by enrichment of CT-B-
binding lipids in fractions 4–6, were comparable between the
samples (Fig. 4C, left panel).
To additionally confirm the findings and gain further

insights into the nature of the raft-associated v3(Grx)-GFP, we
next analyzed fractions 4–6 (rafts) and fractions 11–12 (solu-
ble) by conventional and “mildly denaturing, nonreducing”
SDS-PAGE/Western blot protocols. For this, we pooled frac-
tions 4–6 and 11–12 and then treated them with SDS without
or with DTT and heat, before separation on SDS-PAGE and
subsequent Western blot analyses. Although all v3(Grx) vari-
ants displayed a clear and equally strong signal at the expected
size of�48 kDa in the soluble fractions, again confirming com-
parable total expression levels, only the wild type v3(Grx) vari-
ant was seen in the membrane raft fractions. This membrane
raft-associated protein appeared partly in the formof a dimer in
the absence of DTT and heat, whereas reducing and denaturing
conditions resolved the dimeric band into a solely monomeric
protein (Fig. 4D).
Induction of Filopodia, Changes of Cell Morphology, and

Effects on Actin Polymerization—Concomitant with its com-
partmentalized membrane targeting, v3(Grx) overexpression
was previously found to be correlatedwith actin polymerization
and induction of cell membrane protrusions, identified as filo-
podia (23, 28). Here we analyzed how these features compared
between wild type v3(Grx) and the C76S/C79S, G2A, or C3S
mutants, as visualized using detection of theGFP fusion partner
and co-staining of actin with rhodamine-conjugated phalloi-
din. Both v3(Grx) and actin appeared localized in close proxim-
ity with each other at the cell membrane, as found earlier (28).
This was also seenwith the redox active sitemutantC76S/C79S
(Fig. 5). Particularly strong accumulation could be seen at cell-
to-cell contact sites (Fig. 5, see C76S/C79S variant). As also
found above, cell membrane accumulation required the Gly-2
and Cys-3 residues (Fig. 5), i.e. uncompromised N-terminal
myristoylation and palmitoylation motifs, respectively (Fig.
1A). Expression of v3(Grx) as well as C76S/C79S triggered high
increases in the number of filopodia-like membrane protru-
sions, and at higher magnification, both proteins could be seen
directly associated with these protrusions (Fig. 5). In contrast,
the mainly cytosolic G2A and preferentially perinuclear C3S
variants did not induce this filopodia-enriched cellular pheno-
type, although a few membrane protrusions were also seen in
cells expressing these proteins (Fig. 5).

DISCUSSION

Herewe found that the association of v3with cellmembranes
was independent of its dithiol redox active site motif and fully
governed by targeting to membrane rafts through its N-termi-

FIGURE 3. Co-localization of v3(Grx)-GFP fusion variants with the mem-
brane raft marker CT-B. A549 cells were transfected with constructs
expressing either the wild type v3(Grx) domain or mutants thereof (C76S/
C79S, G2A, or C3S) fused to GFP, as indicated. 18 h after transfection, the cells
were fixated and stained using Alexa Fluor 555-conjugated CT-B for 20 min on
ice to visualize membrane rafts. Fluorescence was acquired using confocal
microscopy. The lower panel shows a higher magnification of the selected
area in the cells transfected with the wild type v3(Grx) (white rectangle).
Regions with a high degree of co-localization are indicated by arrows. Scale
bar � 20 �m.
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nalMGCmyristoylation and palmitoylationmotif. This target-
ing of the protein to membrane rafts was also sufficient and
required to support v3-stimulated increases in the number of
cell membrane filopodia.
The N-terminal MGCAEG sequence of v3 meets the general

consensus motif for myristoylation, even if the second Gly res-

idue at position 6 deviates from more commonly seen Ser or
Thr residues inmyristoylated proteins (8, 31, 32). Upon further
inspection of this sequence, we noted that the Cys-3 residue
might potentially be palmitoylated, which led us to the con-
struction and characterization of the C3S variant. The results
presented herein indeed strongly suggest that the Cys-3 residue

FIGURE 4. Localization of wild type v3(Grx) in purified, CT-B-positive membrane raft fractions. A, principle of membrane raft purification by centrifugation
and flotation. HEK293 cells expressing the v3(Grx)-GFP fusion variants were harvested and lysed 48 h upon transfection. The Triton X-100-solubilized cell lysate
was overlaid sequentially with the indicated sucrose cushions, and the samples were centrifuged at 200,000 � g for 18 h. Consecutive 1-ml fractions (fractions
1–12) were collected from the top of the centrifuge tubes. B, Western blot analysis of pooled fractions (fractions 1–12) showing uniform expression of the
�48-kDa v3(Grx)-GFP variants in all transfected cultures. C, slot blot analysis of individual fractions 1–12, probed with an HRP-conjugated CT-B (left panel) or
GFP antibody (�-GFP, right panel). MOCK, mock-transfected. D, fractions 4 – 6 (raft) or fractions 11–12 (soluble) of each sample were pooled and analyzed by
Western blot for the presence of v3(Grx)-GFP fusion variants using �-GFP. The samples were either treated with SDS, DTT, and heat or treated only with SDS. The
monomeric v3(Grx)-GFP variants (Grx-GFP (M)) as well as the dimeric form of the wild type variant v3(Grx) (Grx-GFP (D)) are indicated by arrows. MW, molecular
size markers.

N-Acylation and Membrane Raft Targeting of v3

APRIL 5, 2013 • VOLUME 288 • NUMBER 14 JOURNAL OF BIOLOGICAL CHEMISTRY 10007

 by guest on June 26, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


of v3 is palmitoylated, as judged from the typical subcellular
targeting patterns of the different fusion variant proteins and
their changes in localization upon treatmentwith the palmitoy-
lation inhibitor 2-BPA. N-Acylation of proteins is a rather well
characterized process. It occurs predominantly co-translation-
ally with myristic acid (C14:0) linked via an amide bond to the
N-terminal Gly residue in N-acylation motifs of targeted pro-
teins. This myristoylation will, however, not provide stable
membrane attachment but serves to increase the hydrophobic-
ity of the N-terminal end of the modified protein to facilitate
transient membrane association (47). Myristoylated mem-
brane-associated proteins thus gain spatial access to mem-
brane-bound DHHC (Asp-His-His-Cys) domain proteins that
may subsequently catalyze the addition of palmitic acid (C16:0)
to Cys residues located adjacent to the myristoylation site,
which further increases the hydrophobicity of a target protein.
In this manner, palmitoylation yields stable binding or associa-
tion to membranes of N-acylated proteins (48). Our substitu-
tion of Gly-2 in v3(Grx) with Ala as well as the treatment with
2-HMA resulted in diffuse cellular distribution, similar to sole
expression of GFP. We suggest that myristoylation of v3 at the
Gly-2 residue is the only explanation for the observed protein
localization phenotypes. Importantly, all of the unique subcel-
lular targeting features of v3(Grx)-GFP, including plasma
membrane association, formation of cytosolic speckles, and
strong perinuclear accumulation, were completely impeded by
this single Gly-for-Ala amino acid substitution or by use of the
inhibitor of myristoylation, hence strongly suggesting that v3 is
indeed N-acylated at its MGC motif. The C3S mutant also
showed a clear reduction of plasma membrane association and
cytosolic speckles, whereas maintaining strong compartmen-
talization with mainly perinuclear localization. This phenotype
was also highly similar to the change in subcellular targeting of the
wild type v3(Grx) if the cells were treated with the palmitoylation

inhibitor 2-BPAandalso exactlymimicked thephenotypeof other
N-acylated proteins, having eliminated N-palmitoylation but
maintainedN-myristoylation (35, 37, 38).We thereby suggest that
v3 is myristoylated at its Gly-2 residue and palmitoylated at its
Cys-3 residue.
The permanently strong perinuclear staining of wild type

v3(Grx) and the C76S/C79S variant should be the result of
highly regulated cellular palmitoylation processes (49). The
dynamics of palmitoylation and depalmitoylation have been
studied for severalN-acylated proteins, includingRas, endothe-
lial nitric-oxide synthase (eNos), GAP43, andGi�1, or a number
of model peptides, which all display subcellular localization
patterns highly similar to those found here for v3 (49–51). As
an example, H- and N-Ras need to acquire palmitoylation to
achieve stable membrane association and trafficking between
the Golgi and plasma membrane, thereby yielding patterns of
localization highly reminiscent of those seen here for v3 (51).
Also, expressing a synthetic protein with a consensusmyristoy-
lationmotif including a palmitoylable Cys residue (MGCTLS-),
Navarro-Lérida et al. (35) found very similar distribution of that
model protein as that seen here with v3; a G2A mutant com-
pletely impeded membrane association, whereas a C3S mutant
showed perinuclear distribution representing accumulation in
the Golgi apparatus. Thus, here we found that v3 displays typ-
ical compartmentalization properties as previously shown for
other proteins that aremyristoylated and palmitoylated at their
N-acylation motifs.
The close overlap of v3(Grx) with CT-B-stained specific sub-

structures of the plasma membrane and in perinuclear areas,
but not in the intracellular vesicles, was a striking finding.With
CT-B being a well recognized probe for membrane rafts, the
overlap in signal withwild type v3(Grx) strongly suggested to us
that the protein was targeted to membrane rafts and the Golgi,
where raft-specific gangliosides to which CT-B bind are known
to accumulate (45, 46). The intracellular vesicles that solely
showedCT-B-coupled fluorescencewere likely endosomes (45,
46), and it should therefore not be surprising that they lacked
the v3(Grx)-GFP signal. Because the v3-derived fusion proteins
were intracellularly expressed, they would not co-localize with
CT-B in endosomes, carrying extracellular proteins as taken up
from the medium. The resolution of conventional confocal
microscopy, however, cannot resolve membrane rafts as these
are thought to be dynamicmembrane domainswith sizes of less
than 100 nm in length (29, 52). We therefore purified CT-B-
bindingmembrane raft fractions fromHEK293 cells expressing
v3(Grx) and probed for co-localization using immunoblotting.
It was thereby notable that we could not only validate mem-
brane raft association of wild type v3(Grx), but additionally
detected a loosely associated dimeric formof the protein, which
was specifically seen in the membrane raft fractions. We pro-
pose that this dimeric variant could have been formed by the
GFP domain, which has a tendency to dimerize at high concen-
trations (53). Overexpression of v3(Grx)-GFP in combination
with the partitioning intomembrane rafts should likely create a
high local concentration of the protein, thereby triggering
dimerization. Such effects have previously been reported by
Zacharias et al. (37) who studied partitioning of GFP variants
into membrane microdomains by FRET. Expressing myristoy-

FIGURE 5. The relation of v3(Grx) to cell morphology and actin polymeri-
zation is independent of the active site but requires a functional N-acyl-
ation motif. A549 cells were transfected using the indicated v3(Grx)-GFP
fusion constructs. Cells were additionally stained for actin using rhodamine-
conjugated phalloidin, and fluorescence was recorded using confocal
microscopy. The pictures show merged fluorescent signals of GFP (green) and
rhodamine (red) after excitation at 488 and 555 nm, respectively. Higher mag-
nifications of selected areas, showing only GFP or rhodamine signal, are dis-
played for all variants as indicated. The intensity and contrast of the magni-
fied areas were optimized for visualization of filopodia. Scale bar � 20 �m.
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lated and palmitoylated 13-amino acid NH2-terminal frag-
ments of the Lyn protein in fusion with either CFP or YFP, they
could detect strong clustering at the plasma membrane (37).
They also showed that hydrophobic residues of the GFP dimer
interface contributed to dimer formation specifically at the
membrane microdomains (37).
Partitioning of v3 into membrane rafts may also give further

insights to the close association of v3 with actin polymerization
and the stimulated generation of filopodia.With regards to sig-
naling via glycosylphosphatidylinositol-anchored proteins, it is
well known that actin plays a central role in organization of
sphingolipid- and cholesterol-rich membrane domains and is
tightly linked to these structures (43, 54–56). Actin has indeed
been described as a stabilizer of membrane rafts (57), with pro-
teins targeted to these structures being able to affect the orga-
nization of the cytoskeleton (58, 59). Additionally, several stud-
ies link induction of filopodia to stimulation or patching of
membrane raft microdomains (43, 60–63). An example that is
reminiscent of expression of v3(Grx) with induction of filo-
podiawas given byGauthier-Campbell and co-workers (61, 62),
studying phenotypes of Cos-7 cells as induced by expression of
diverse palmitoylated peptides. In particular, a 14-amino acid
doubly palmitoylated peptide derived from GAP43 (GAP-1–
14) induced formation of filopodia when expressed in fusion
withGFP (61, 62). Another example reminiscent of our findings
herein is the neuronal glycoprotein M6a, which also associates
with membrane rafts and induces formation of filopodia (63).
Thus, our findings open the possibility that v3 is first targeted to
membrane rafts through N-acylation, whereupon the protein
can interact with actin in a compartmentalized manner,
directly or indirectly, which may trigger the generation of filo-
podia as observed.
The role(s) of endogenous v3 in membrane rafts are still

unknown, but its targeting to these structures by N-acylation
clearly expands the possible spectrumofTXNRD1-derived pro-
tein functions. The Trx and Grx systems are generally not well
studied in terms of signal regulation within membrane rafts,
although these structures are known as key players in redox
signaling events (64). However, a few studies have reported
upon Trx1 association with membrane rafts, in leukocyte-en-
dothelial cell interaction during inflammation (65) or when
internalized through endocytosis (66). Interestingly, Volonte
and Galbiati (67) showed that caveolin 1, a key protein of cave-
olae, is an inhibitor of TrxR1 through direct binding via a pro-
posed caveolin-bindingmotif of TrxR1 (amino acids 454–463).
They also showed that a constitutively active variant of TrxR1,
lacking the caveolin-binding motif, could inhibit oxidative-
stress-mediated activation of p53/p21waf1/Cip1 and induction of
premature senescence (67). It is not yet clear whether or how
those findings relate to targeting of v3 to membrane rafts. A
large number of proteins important for cellular signaling events
aremyristoylated and located tomembrane rafts, including sev-
eral Src family tyrosine kinases and other protein kinases, phos-
phatases, Ca2�-binding proteins, cytoskeleton-binding pro-
teins, viral proteins, and specific redox-related proteins such as
NO synthases (31). The v3 protein should hereby also be con-
sidered in the context of cellular signaling through membrane

rafts, and its possible relation to cellular signaling events clearly
deserves further study.
In conclusion, we have herein identified the mechanisms for

targeting of v3 to membrane rafts to be dependent upon its
N-terminal motif and likely to involve myristoylation at Gly-2
and palmitoylation at its Cys-3 residue. We also showed that
the induction of filopodia triggered by overexpression of
v3(Grx) was independent of its redox active site motif, but
required its ability to associate with membrane microdomains.
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Background: CD4 is a glycoprotein expressed on the surfaces of certain immune cells. On lymphocytes, an
important function of CD4 is to co-engage Major Histocompatibility Complex (MHC) molecules with the T Cell
Receptor (TCR), a process that is essential for antigen-specific activation of T cells. CD4 localizes dynamically
into distinct membrane microdomains, an important feature of its immunoregulatory function that has also
been shown to influence the efficiency of HIV replication. However, the mechanism by which CD4 localization
is regulated and the biological significance of this is incompletely understood.
Methods: In this study, we used confocal microscopy, density-gradient centrifugation and flow cytometry to
analyze dynamic redox-dependent effects on CD4 membrane domain localization.
Results: Blocking cell surface redox exchanges with both a membrane-impermeable sulfhydryl blocker (DTNB)
and specific antibody inhibitors of Thioredoxin-1 (Trx1) induces translocation of CD4 into detergent-resistant
membrane domains (DRM). In contrast, Trx1 inactivation does not change the localization of the chemokine re-
ceptor CCR5, suggesting that this effect is targeted. Moreover, DTNB treatment and Trx1 depletion coincide with
strong inhibition of CD4-dependent HIV entry, but only moderate reductions in the infectivity of a CD4-
independent HIV pseudovirion.
Conclusions: Changes in the extracellular redox environment, potentially mediated by allosteric consequences of
functional disulfide bond oxidoreduction, may represent a signal for translocation of CD4 into DRM clusters, and
this sequestration, another potential mechanism by which the anti-HIV effects of cell surface oxidoreductase
inhibition are exerted.
General significance: Extracellular redox conditions may regulate CD4 function by potentiating changes in its
membrane domain localization.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

HumanCD4 is a 55kDa type I integralmembrane glycoprotein found
on the surfaces of certain cells of the innate and adaptive immune
system, and comprises 4 immunoglobulin-like ectodomains (D1–D4)
tethered to the cell membrane by short transmembrane- and cytosolic
sequences [1]. One of the most important biological functions of
CD4 is to potentiate the transduction of immunostimulatory signals
conveyed to T-lymphocytes by antigen presenting cells (APCs), which
present antigenic peptides associated with the class II Major Histocom-
patibility Complex (pMHC) to cognate T-Cell Receptors (TCRs) [2,3].
CD4 is also the primary cellular receptor for Human Immunodeficiency
etergent-resistant membrane;
munodeficiency Virus; MBCD,

Complex; TCR, T Cell Receptor;
1.

illa).
Virus 1 (HIV-1) [4–6], which attaches to host CD4+-cells via the enve-
lope surface glycoprotein gp120. While the identity and structures of
many of the proteins that underlie these 2 processes have been defined,
our understanding of the complex dynamics that regulate their interac-
tions is incomplete.

To this end, it is now known that CD4 is able tomove laterally on the
cell surface into ‘lipid rafts’ [7], detergent-resistant membrane (DRM)1

micro-domains rich in cholesterol and sphingolipids that serve as
platforms for functional compartmentalization of specific membrane
receptors and signaling molecules [8,9]. CD4 is recruited into DRM
‘patches’ that are assembled on the T-Cell around pMHC-TCR signaling
complexes during antigen presentation [10,11], and several lines of
evidence have suggested a role for DRMs in HIV infection [12–14],
although their significance in this regard remains unclear. Indeed,
certain studies have shown that DRM localization of CD4 is essential
1 In this article we will refer to ‘lipid-raft’ and ‘detergent-resistant membrane/DRM’ in-
terchangeably, while acknowledging the historical controversy surrounding the
nomenclature.
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for HIV entry [15,16], while others have shown that cells with CD4
retained in detergent-soluble (DSM)/‛non-raft’membranes support ro-
bust HIV replication [17,18]. A more recent study has enriched the de-
bate about the involvement of membrane microdomains in HIV entry
by showing that the virus-host fusion reaction occurs at the ‘edges’ of
cholesterol-rich lipid domains [19]. The reasons for these apparently
discrepant findings are unclear, but they clearly highlight important ef-
fects of CD4 shuttling between membrane microdomains on the cell
surface, a precise definition of which has been challenged by variations
in experimental design, models of HIV entry employed and physiologi-
cal context.

Adding another level complexity tomodels describing the functional
significance of CD4 dynamics at the cellular level are recent insights into
how the interactions of CD4 with cognate immune and viral receptors
may be regulated at the structural level. Of particular salience in this re-
gard, revealed through several computational, cell-based and biophysi-
cal studies, is the finding that CD4 can exist in a number of different,
naturally occurring isoforms [20], transitions between which may be
controlled by an allosteric effect of reduction of the atypical CD4 domain
2 (D2) disulfidebond [21]. These isomers appear to have distinct ligand-
binding properties [22], with evidence suggesting that an oxidized,
probably domain-swapped [23], CD4 dimer is required for functional
MHCII engagement and TCR signaling [24], while a reduced, mono-
mer is the preferred target of HIV-1 gp120 [25,26]. The latter is
consistent with the observations that agents which interfere with
thiol-disulfide exchange such as 5,5′-dithiobis(2-nitrobenzoic acid)
(DTNB) [27], and specific inhibitors of Glutaredoxin (Grx-1) [28]
and Thioredoxin (Trx) [29] - cellular oxidoreductases that are pres-
ent on the surface of cells [30,31] and known to catalyze the reduc-
tion of CD4 disulfides in vitro - result in significant impairment of
HIV replication in cell culture.

Despite these insights, the mechanisms and functional significance
of spatiotemporal changes in CD4 localization and structure remain
poorly understood. Together with evidence which suggests that CD4
isoforms segregate into different membrane microdomains [32], how-
ever, they now advance the intriguing question as to whether there is
any causality or integration between these 2 processes that could be
reconciled with the central role played by CD4 in HIV entry and T-Cell
signaling. CD4 undergoes C-terminal S-palmitoylation [33], a reversible
acylation reaction catalyzed by palmitoyl acyltransferases that regulates
the shuttling of many proteins between membrane microdomains
[34–36], and a number of studies have suggested this to be important
for the mechanism by which CD4 clusters into rafts and enhances im-
mune receptor signaling [10,37]. In contrast, others have shown that
palmitoylation per se is not sufficient for association of CD4 with DRM
[13], demonstrating instead that a linear sequence of C-terminal
amino acids (RHRRR) in its cytosolic domain is a dominant determinant
of raft localization [18]. Thus, while themobilization of CD4 into rafts is a
well-defined feature of immune synapse formation and TCR signaling,
and has a demonstrable, albeit incompletely characterized, effect on
HIV replication, the mechanism(s) of CD4 shuttling, whether this is
mechanistically associated with oxidoreductive isomerization, and
how these events are important for HIV replication are not entirely
clear and require further investigation.

With this in mind, in this study we set out to analyze the effect of
manipulating cell surface redox conditions on CD4 membrane domain
localization and HIV entry. Our results show that movement of CD4
into DRM domains is induced by the membrane-impermeable sulfhy-
dryl blocker, DTNB, which, consistent with previous studies, mediates
significant of impairment of HIV entry. Remarkably, these effects are
reproduced by treatment of cells with purified anti-Trx1 antibodies,
suggesting that changes in the activity or level of this oxidoreductase
on the cell surface may represent a physiological trigger for CD4 mem-
brane relocalization. We posit that redox-dependent CD4 allostericity
may thus be a fundamental component of its membrane trafficking po-
tential, and its influence on HIV infection may be related to both the
membrane context and structure required for virus receptor engage-
ment and host cell membrane fusion.

2. Materials and methods

2.1. Antibodies and reagents

Methyl-β-Cyclodextrin (MBCD) and 5,5′-dithiobis-2-nitrobenzoic
acid (DTNB) were purchased from Sigma Aldrich (St Louis, USA). HIV-1
pseudoviruses SF162.LS [38] and ZM53M.PB12 (HIV-1 Clade C) [39]
were produced by transient transfection using the following reagents
obtained through the NIH AIDS Research and Reference Reagent
Program, Division of AIDS, NIAID, NIH (contributor in parenthesis):
the HIV Env-deficient backbone, pSG3Δenv (Dr. John C. Kappes
and Xiaoyun Wu), and complementing Env (gp160)-
expressing plasmids ZM53M.PB12 (Drs E. Hunter and C. Derdeyn)
and SF162.LS (Dr. D. Montefiori). The following primary antibodies
were used (all monoclonal and raised in mice unless otherwise
indicated): goat, purified polyclonal anti-human thioredoxin (α-
Trx1) (IMCO Corporation, Stockholm, Sweden); anti-CD4 (α-CD4)
clones MT310 (for Western blotting) (Santa Cruz Biotechnology,
Santa Cruz, USA), RPA-T4 (for immunohistochemistry) (BD Biosci-
ences, San Jose, USA) and RFT4 PE conjugate (α-CD4PE for flow cy-
tometry) (Dr. D Glencross, National Health Laboratory Services and
University of the Witwatersrand, South Africa in collaboration with
Royal Free College, United Kingdom); anti-β-adaptin (α-adaptin)
and anti-Flotillin-1 (α-Flotillin) (both Santa Cruz Biotechnology);
anti-transferrin (CD71) FITC conjugate (α-TFRFITC) (Thermofisher,
Pleasanton, USA); anti-CCR5 (CD195) clone 2D7/CCR5 PE conjugate
(α-CCR5PE) (BD Biosciences). Cholera toxin subunit B conjugated
with Alexa Fluor®488 (CTBAF488) and Alexa Fluor® 594 (CTBAF594)
(Thermofisher) were used for detection of GM1 ganglioside. The
following secondary monoclonal antibodies were used (all raised in
goats and obtained fromThermofisher): anti-human IgGHRP conjugate
(α-hIgGHRP); anti-mouse IgG HRP conjugate (α-mIgGHRP), anti-mouse
IgG FITC conjugate (α-mIgGFITC) and anti-mouse IgG Alexa Fluor 594
conjugate (α-mIgGAF594).

2.2. Cell lines and culture conditions

TZM-bl cells, a HeLa-derived cell clone engineered to express
CD4, CCR5 and CXCR4 [40], were obtained through the NIH AIDS
Reagent Program, Division of AIDS, NIAID, NIH from Dr. John C. Kappes,
Dr. XiaoyunWu and Tranzyme Inc. [41–44]. The cell line also has an in-
tegrated firefly luciferase (F-Luc) reporter gene under the control of an
HIV-1 long terminal repeat sequence [44], which enables quantitative
determination of viral infection efficiency by luminescence measure-
ments. TZM-bl cells are known to be highly permissive to infection by
most strains of HIV, including primary HIV-1 isolates and envelope-
pseudotyped viruses, and are widely used in models of HIV entry. The
cells are maintained in Dulbecco's modified Eagle's medium (DMEM)
supplemented with 10% fetal calf serum, 2 mM L-glutamine, 100 U
penicillin, and 100 U streptomycin at 37 °C in a 5% CO2 humidified incu-
bator, and passaged using Trypsin/EDTA (Sigma Aldrich) according to
standard procedures.

2.3. Cell treatments with MBCD, DTNB, α-Trx1 and HIV-1 pseudoviruses

For the treatment of TZM-bl cells withMBCD, DTNB andα-Trx1,me-
dium from TZM-bl cultures at 80% confluence was decanted, cells were
washed with phosphate buffered saline (PBS) and MBCD/DTNB/α-Trx1
added at the indicated concentrations in DMEM supplemented with 5%
fetal calf serum and 2 mM L-glutamine. Cells were incubated at 37 °C
for 40 min (MBCD), 10/30/120 min (DTNB) or 12 h (α-Trx1), unless
otherwise stated. After washing with PBS, the cells were either proc-
essed further for immunohistochemistry, flow cytometry
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or membrane/raft extraction, or they were infected with HIV-1
pseudoviruses SF162.LS or ZM53M.PB12 (see Section 2.7).

2.4. Immunohistochemistry

Washed, treated and untreated TZM-bl cells were blocked for
10 min at 4 °C using PBS containing 0.5% bovine serum albumin
(BSA). Cells were then incubated with α-CD4 (RPA-T4) and either
α-TFRFITC or CTBAF594 for 30 min on ice, and then washed with
cold PBS + 0.5% BSA. Unlabelled antibodies were detected by fur-
ther incubation with a fluorophore-conjugated secondary antibody
(α-mIgGFITC or α-mIgGAF594) for 30 min on ice. The washed cells were
fixed using a freshly prepared 4% formaldehyde solution in cold PBS
for 15 min at 4 °C. Cell nuclei were counter-stained with 4′,6-
diamidino-2-phenylindole (DAPI) (Thermofisher) for 10 min at room
temperature. The fixed, stained cells were washed and stored in PBS
at 4 °C in the dark until visualization. Cells were visualized with a
63 × oil immersion objective and images were captured by scanning
confocal microscopy on a Zeiss LSM 780 instrument (Carl Zeiss,
Oberkochen, Germany). Colocalization analysis was performed on N5
cells/sample and each sample was analyzed in triplicate by Image J soft-
ware (http://rsbweb.nih.gov/ij) using the colocalization plug-ins JACOP
and Colocalization Finder according to published methods [45,46].

2.5. Membrane/lipid raft isolation

Total cell- and detergent-resistant (DRM)membranemicrodomains
were isolated by density-gradient centrifugation (flotation) according
to published procedures [47] with minor modifications. The following
protocol was applied to 1.5 × 107 cells, and can be adjusted proportion-
ally for increases/decreases in cell number. Briefly, TZM-bl cells were
rinsed with PBS, detached in PBS supplemented with 2 mM EDTA, col-
lected using a cell scraper, centrifuged at 1000 ×g and washed once in
PBS at room temperature. For total cell membrane isolation, cell pellets
were resuspended in 400 μl of cold flotation buffer (25 mM Tris-HCl
pH 7.4, 150 mM NaCl, 5 mM EDTA, 10 mM β-glycerol phosphate,
30mM sodium pyrophosphate) and lysed by 3 cycles of freeze/thawing
in a liquid nitrogen/37 °C water bath. Lysed cells were briefly sonicated
(3 × 15 s cycles, 0.3 kJ per cycle), then centrifuged at 2000 ×g for 5min,
and the supernatant (S1) was collected and set aside on ice. The pellet
was washed with 100 μl of cold flotation buffer, re-centrifuged, and
the supernatant (S2) added to S1. Sucrose was added to the combined
supernatants to a final concentration of 80% (w/v) in a total volume of
2 ml, and this was placed at the bottom of 14 ml round-bottom Ultra
Clear™ ultracentrifuge tube (Beckman Coulter, Brea, USA). Layers of flo-
tation buffer (5.5ml, 65% sucrose followed by 4.5ml, 10% sucrose) were
gently added to the top of the cell lysate, taking care not to disturb the
interfaces that formed between each layer. Centrifugation was per-
formed at 220,000 ×g for 18 h, 4 °C. 1 ml fractions were collected
from the top of the gradient, aliquoted and stored at −70 °C for later
analysis. Detergent resistant membranes were prepared in the same
way as total membranes, with the following adjustments: (i) 1% Triton
X-100 (Sigma Aldrich) was added to the flotation buffer (including
lysate and sucrose cushions); (ii) the final sucrose concentration in
the cell lysate was adjusted to 45%; (iii) in the order of addition, the
‘cushions’ layered on top of the 2 ml cell lysate contained 30% and 5%
sucrose. CD4 and control marker proteins (β-adaptin, Flotillin) were
detected in cell- and detergent-resistant membrane fractions by stan-
dardWestern blotting and chemiluminescence procedures using the in-
dicated primary antibodies and HRP-conjugated secondary antibodies.

2.6. Flow cytometry

Treated and untreated TZM-bl cells were detached in PBS supple-
mented with 2 mM EDTA, collected using a cell scraper, centrifuged at
300 x g and washed once with PBS at 4 °C. The cells were then
resuspended in 1 ml of PBS and 100 μl aliquots were left unlabelled or
labelled with α-CD4PE CTBAF488, α-CCR5PE or α-TFRFITC for 30 min on
ice. All antibodies were titrated and used at the optimal concentration
for staining. Cells were washed with 1 ml of cold PBS by centrifugation
and resuspended in 300 μl of PBS. The relative abundance of CD4 and
controls (transferrin, GM1, CCR5) in DSM and DRM domains were
then quantified by the method of Gombos et al. [48] with minor modi-
fications. Briefly, the labelled and unlabelled cells were incubated with
or without 0.1% Triton X-100 for 20 min on ice. Thereafter, the samples
were acquired on a FACSCalibur flow cytometer which was calibrated
using Calibrite beads and FACSComp software (BD Biosciences). Ten
thousand events were acquired for all samples using CellQuest Pro soft-
ware (BD Biosciences), and FlowJo (TreeStar Inc., Ashland USA) was
used for all data processing and analyses. Cells were gated using their
forward and side scatter properties and the same gate was used for un-
treated and detergent-treated cells. Data was analyzed as the mean
fluorescence intensity (MFI) for (CTB/TRF) FITC and (CD4/CCR5) PE.
Unlabelled cells were used to measure auto-fluorescence. In order
to calculate the Flow Cytometry Detergent Resistance Index (FDRI),
the mean fluorescence intensity (MFI) of the following conditions
was obtained: labelled, detergent-treated cells (MFIdet); unlabelled
detergent-treated cells (MFIAFdet); labelled, PBS-treated cells
(MFImax); unlabelled PBS-treated cells (MFIAF). The extent of de-
tergent resistance was calculated as follows:

FDRI ¼ MFIdet−MFIAFdetð Þ= MFImax−MFIAFð Þ:

Three independent results were generated for each treatment data-
point, and reported results reflect average FDRI values. Error bars repre-
sent standard deviations, and statistical significanceswere calculated by
Student's t-test.

2.7. HIV-1 pseudovirion inhibition assay

Pseudoviruses were generated as previously described by Li et al.
[49]. Briefly, HEK293T cells were cotransfected with the HIV-1 env-
deficient backbone expression plasmid (pSG3Δenv) and either of the
Env-expressing plasmids (pZM53M.PB12 or pSF162.LS) using Polyfect
Transfection Reagent (Qiagen, Hilden, Germany) as per the
manufacturer's instructions at an experimentally optimized ratio of en-
velope to backbone plasmid. Virus-containing supernatants were har-
vested 48 h later, centrifuged at 1000 ×g, adjusted to a final
concentration of 20% fetal calf serum (FCS), and filtered through a
0.2 μm filter. Aliquotswere stored at−70 °C. Themedian Tissue Culture
Infectious Dosages (TCID50) of the produced HIV-1 pseudoviruseswere
titrated against the TZM-bl cell line according tomethods previously de-
scribed [49]. Importantly, DEAE dextran hydrochloride, a polycation fre-
quently used in HIV pseudovirus assays to enhance virus adsorption
onto target cells [50], was omitted in this protocol. The measured viral
entry efficiencies thus represent the result of unenhanced, bona fide
CD4-pseudovirus envelope interactions. Following treatment of cells
with DTNB or α-Trx1, SF162 and ZM53 pseudoviruses were added at
TCID50s of 200/1 × 104 cells, and the cultures were incubated for
24–48 h at 37 °C. Luciferase activity was then quantified by measur-
ing luminescence using the Bright Glo Kit (Promega, Sunnyvale,
USA) according to the manufacturer's instructions. Measurements
were read on a Victor3, 1420 Multilabel Counter Luminometer
(Perkin Elmer, Waltham, USA).

3. Results

3.1. CD4 localizes to non-raft membrane domains in TZM-bl cells

A number of studies have investigated the distribution of CD4
across different membrane microdomains in several different T- and
non-T cell lines, as well as primary T cells [10,12,13,15–18,37]. These

http://rsbweb.nih.gov/ij


1857N. Moolla et al. / Biochimica et Biophysica Acta 1860 (2016) 1854–1863
have shown a large range of CD4 enrichment levels within raft- and
non-raft membranes, with some studies showing that CD4 is predomi-
nantly associated with rafts, while others have detected significantly
lower amounts. Taken together with experiments that have demon-
strated large increases in the proportion of CD4 in the detergent-
resistant membrane fraction upon mitogenic stimulation [10,15],
these results illustrate that CD4 membrane microdomain distribution
is substantially dependent on cell type and state of activation.
Fig. 1.Membrane microdomain localization of CD4 in TZM-bl cells. (A) TZM-bl cells were cultu
with amousemonoclonal anti-CD4antibody (RPA-T4) and either amonoclonal anti-transferrin
antibodies were detected with secondary anti-mouse IgGs (AF594-conjugated when co-labell
visualized by scanning confocal microscopy, and co-localized protein detected by Image
Colocalization Finder [45,46]. (B) Total- and detergent-resistant membrane (DRM) fraction
Western blotting using monoclonal anti-CD4, anti-β-adaptin and anti-Flotillin antibodies. (C)
Cytometry Detergent Resistance Index (FDRI). Live, unfixed TZM-bl cells were treated or left
α-CD4PE, α-TFRFITC or CTBAF594. The mean fluorescence intensities (MFI) of 10,000 cells was t
values in the presence:absence of detergent. The FDRI values represent averages from 3 ind
Statistically significant differences were calculated by Student's t-test and are indicated with an
With this inmind, we set out to examine the pattern of CD4distribu-
tion in detergent-sensitive (DSM) and detergent-resistant (DRM) mi-
crodomains in TZM-bl cells, a HeLa-derived line stably expressing
human CD4 (and the HIV coreceptors CCR5 and CXCR4) that is widely
used to model HIV infection in cell culture [40,51]. We first sought to
gain qualitative insights in this regard by microscopic analysis of un-
treated TZM-bl cultures, which were grown under normal conditions
until 80% confluent, and then probedwith a primarymousemonoclonal
red in DMEMwith 10% BSA until 80% confluent, washed with PBS, fixed and then probed
antibody (α-TFRFITC, green) or Cholera Toxin subunit B (CTBAF594, red). Bound CD4 primary
ing with TFR, and FITC-conjugated when co-labelling with GM1). The labelled cells were
J software (http://rsbweb.nih.gov/ij) using the co-localization plug-ins JACOP and

s were isolated from TZM-bl cells by density gradient centrifugation, and analyzed by
Quantitative analysis of membrane microdomain localization by calculation of the Flow
untreated with Methyl-β-Cyclodextrin (MBCD, 10 mM), washed and then labelled with
hen analyzed by flow cytometry, and the FDRI calculated as the ratio of normalized MFI
ependent experiments performed in triplicate, and error bars are standard deviations.
asterisk (P b 0.05).

http://rsbweb.nih.gov/ij
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anti-CD4 antibody (RPA-T4) and either a FITC-conjugated mouse
monoclonal anti-transferrin antibody (α-TFRFITC) or Alexa Fluor 594-
conjugated Cholera Toxin subunit B (CTBAF594). Bound primary CD4
antibodies were detected with either secondary anti-mouse IgG Alexa
Fluor594- or FITC-conjugated secondary antibodies (α-mIgGAF594/α-
mIgGFITC). Excluded from DRM domains, TFR is commonly used as a
target marker of non-raft membrane regions, while CTB binds GM1
ganglioside, a glycosphingolipid constituent of DRMs frequently used
to mark lipid rafts. Using scanning confocal microscopy, we performed
co-localization analyses on 5 randomly selected CD4/GM1- and CD4/
TFR-labelled cells from 3 independent cultures, and representative im-
ages are shown in Fig. 1A. These results suggested that cell surface
CD4 is located primarily in non-raft membrane domains in TZM-bl
cells cultured under normal growth conditions.

Because of the technical complexity involved in generating accurate
quantitative co-localization data by conventional microscopy, we then
sought to confirm these findings by isolating total- and DRM fractions
from normal TZM-bl cells by flotation centrifugation, and analyzing
these byWestern blot. In these experiments,we used antibodies against
a different pair of raft- and non-raft marker proteins (Flotillin-1 and β-
adaptin respectively), which we reasoned would provide additional
confidence in the pattern of localization that had been suggested bymi-
croscopy. Consistent with this, we found that CD4 was located
exclusively in the same detergent-sensitive membrane regions of
TZM-bl cells occupied by the non-raft protein β-adaptin (Fig. 1B, left
top and middle panels), with none detected (Fig. 1B, right top and mid-
dle panels) in detergent-resistant membranes enriched with the raft
marker Flotillin (Fig. 1B, bottom right panel).

Since quantitative, high-throughput, multi-condition analysis of
membrane localization dynamics is technically difficult to perform by
conventional microscopy or immunoblotting of fractionated mem-
branes, we then set up an assay based on the method of Gombos et al.
[48] to examine the membrane distribution of CD4 (and controls) in a
defined population and number of live TZM-bl cells. In this approach,
cells were labelled with α-CD4PE, α-TFRFITC or CTBFITC, and the mean
fluorescence intensities (MFI) of cells that had been subjected to mild
detergent treatment with TX-100, or left untreated, were determined
by flow cytometry. Since detergent solubilization of DSM-localized
proteins effects a reduction in MFI, which is reflected graphically by
a leftward shift (reduction) in peak fluorescence, the normalized
MFI(detergent-treated cells):MFI(detergent-untreated cells) ratio –
defined as the FDRI value – is indicative of the proportion of protein lo-
cated in DRM [48]. Consistent with this, and the exclusive residence of
the GM1 ganglioside in DRM domains, TX-100 treatment had no effect
on the MFI of CTB-labelled cells (Fig. 1C, bottom left panel), which
have an FDRI value of approximately 1. In contrast, detergent treatment
results in dramatic reduction in MFI of cells labelled with α-TFRFITC

relative to untreated cells (Fig. 1C, middle left), and a typically low
FDRI (b0.1). Similarly, TX-100 treatment also resulted in significant
reduction in MFI of anti-CD4 labelled cells (Fig. 1C, top left panel),
although the FDRI value was slightly, but significantly higher at 0.12,
suggesting that a small amount of CD4 (not readily detectable by mi-
croscopy or WB) is present in DRM in these cells. In order to confirm
that the FDRI assay approach legitimately reflected changes in mem-
brane domain localization, we then labelled cells with the α-CD4PE, α-
TFRFITC and CTBFITC probes and performed FDRI analysis following
depletion of membrane cholesterol, another integral component of
DRM, with Methyl-β-Cyclodextrin (MBCD). As expected, MBCD treat-
ment resulted in dramatic reductions in MFI and FDRI of CTB-labelled
cells (Fig. 1C, bottom right panel), consistent with ablation of GM1-
containing rafts that is effected by cholesterol extraction. Furthermore,
incubation with MBCD decreased the FDRI value of α-CD4-labelled
cells to levels seen for α-TFR-labelled counterparts (Fig. 1C, top right
panel), providing further support to the notion that a small, but
measureable quantity of CD4 is located in DRM in TZM-bl cells. Taken
together, these results provide further evidence that under normal
growth conditions, CD4 is based predominantly in non-raft membranes
on the surface of TZM-bl cells.
3.2. Inhibition of cell surface Thioredoxin induces translocation of CD4 to
lipid rafts

Wenext sought to investigate the effects ofmanipulating cell surface
redox conditions on CD4 domain distribution. First we compared CD4/
GM1 co-localization in cells that had been treated or untreated with
the non-specific, membrane-impermeable sulfhydryl oxidant, 5,5′-
dithiobis-2-nitrobenzoic acid (DTNB), by confocal microscopy. TZM-bl
cells were incubatedwith 5mMDTNB in growthmedia or an equivalent
volume of growthmedia only for 2 h,washedwith PBS, and then probed
withα-CD4 RPA T4 and CTBAF594. Intriguingly, DTNB treatment induced
the formation of several clusters of CD4 that had co-localized with CTB-
stained membranes (Fig. 2A, bottom right image). This phenomenon
was not related to any toxic effect of DTNB treatment that may have
compromised cell viability or caused gross perturbation in membrane
structure, since treated and untreated cells were equally viable (data
not shown), and had qualitatively similar distributions of the raft- and
non-raft marker proteins Flotillin and β-adaptin in total- and DRM
membrane fractions (Fig. 2B). These data provided us with the first ten-
tative suggestions that redox events on the cell surface are capable of
influencing CD4 localization dynamics.

In order to gain further insights in this regard, we then investigated
changes in CD4 distribution on DTNB-treated cells by FDRI analysis.
TZM-bl cells were incubated with 1.0 and 5.0 mM of DTNB (or dilution
control) for 2 h, and 1.0mMof DTNB for 0, 30 and 120min, thenwashed
and labelled with α-CD4PE and CTBFITC, and treated with TX-100 before
analyzing by flow cytometry. Consistent with results from microscopy,
these results confirmed that DTNB induced the movement of CD4
into DRMs, effecting progressive increases in the FDRI values of α-
CD4-labelled cells that were both concentration (Fig. 3C) and time-
dependent (Fig. 3D).

Since DTNB is a synthetic, non-specific blocker of sulfhydryls, a
logical question could be asked regarding the biological relevance and
mechanism of redox-dependent effects on CD4 membrane domain
localization. Considering that several cellular oxidoreductases are
now known to be secreted onto the extracellular surfaces of cells [30,
31,52], and have been shown to reduce CD4 disulfide bonds in vitro
[21,28], we hypothesized that one or several of these enzymes, or an al-
ternative yet to be characterized in this context, may play an important
role in this regard. Among these, Thioredoxin-1 (Trx1) has gained
prominence as a putative physiological reductant of CD4, since the cal-
culated redox potential of its active site dithiol is of sufficientmagnitude
to effect thermodynamically favorable reduction of the CD4D2 disulfide
(130C-C169) [25], and Trx1 has been shown to react with CD4 on the
surfaces of lymphocytes [21,29]. Moreover, we recently showed that
Trx1 catalyzes robust oxidoreductive isomerization of recombinant 2-
domain CD4 (2dCD4) [26].

With this in mind, we next investigated whether direct inhibition of
Trx1 by treatment of TZM-bl cells with purified inhibitory Trx1 antibod-
ies (α-Trx1) resulted in any detectable change in CD4 localization. Cells
were incubated with different doses of α-Trx1 (IMCO Ltd., Sweden),
and then analyzed by confocal microscopy and FDRI analysis as
described above. Remarkably, Trx1 inhibition resulted in the same visi-
ble co-clustering of CD4 with CTB-labelled membranes induced by
DTNB (Fig. 3A), the quantitative effect of which was a considerable in-
crease in the MFI of TX-100-treated cells (Fig. 3C), and a corresponding
5-fold increase in FDRI (Fig. 3B). In contrast, α-Trx1 treatment had no
significant effect on the MFI (Fig. 3C) or FDRI (Fig. 3B) of CTB-labelled
cells. We again disqualified the possibility that this effect could have
been related to any toxic effect of the Trx1 antibodies, since the viabil-
ities of control TZM-bl cells and α-Trx1-treated cells were equivalent
(data not shown).



Fig. 2.Analysis of the effect of 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) treatment on themembranedomain localization of CD4. (A) TZM-bl cellswere treated or left untreatedwithDTNB
(1mM) for 1 h, washedwith PBS, fixed, labelledwithα-CD4FITC and CTBAF594 and then analyzedmicroscopically as described. (B) Total- and DRMmembrane fractionswere isolated from
DTNB-treated and control cells, whichwere then analyzed byWestern blotting.Monoclonal antibodies against β-adaptin and Flotillin were used, respectively, to compare total- and DRM
membrane integrity under each condition. (C and D) The extent of change in microdomain localization of CD4 as a function of DTNB concentration (C) and incubation time (D) was
analyzed by FDRI. TZM-bl cells were incubated with the indicated concentration of DTNB for 1 h (left) or with 1 mM of DTNB for the indicated time (right), washed with PBS, labelled
with α-CD4PE or CTB AF594 and the FDRI values for each marker calculated by flow cytometry as described. Data for each data point (DTNB concentration or incubation time) was
generated independently 3 times in triplicate, and are represented as average fold-changes in FDRI relative to corresponding untreated controls. Error bars represent standard
deviations and statistically significant differences are indicated with an asterisk (P b 0.05).
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We then assessed whether the observed translocation of CD4might
be caused by an ‘off-target’ effect of exposing cells to immunoglobulin,
by checking to see if an irrelevant antibody of the same species (goat)
and at the same (highest) concentration as α-Trx1 induced movement
of CD4 into DRM. Indeed this was not the case, since cells treated with
an anti-human IgG antibody raised in goats had the same FDRI values
as untreated controls (Fig. 3D). That the changes induced by Trx1 inhi-
bition represented bona fide localization of CD4 into rafts was addition-
ally confirmed by incubating cells withMBCD following treatment with
α-Trx1. Consistent with this, the FDRI value of the MBCD-treated α-
CD4-labelled cells reverted to the same value as those seen in untreated
cells (Fig. 3D).

Collectively, these results provide compelling evidence that extra-
cellular redox events, mediated through the enzymatic activity of
Thioredoxin-1 (and potentially other oxidoreductases active on the
cell surface), play a role in regulating CD4 membrane localization
dynamics.

3.3. Inhibition of Thioredoxin-1 impairs CD4-dependent HIV entry

Previous studies have demonstrated that blocking redox exchanges
on the cell surface compromises HIV replication in cell culture [25,
27–29,53], although the molecular basis for this is poorly understood.
Considering this, we next checked whether these antiviral effects
were faithfully reproduced under the same conditions that induce CD4
translocation, which we reasoned might provide additional insights
into themechanism(s) bywhich Trx1 is able to regulate HIV replication.
TZM-bl cellswere treatedwith the indicated concentrations of DTNB,α-
Trx1, control IgG or corresponding dilution buffers, washed with PBS,
and then infectedwith theHIV pseudovirus ZM53. Consistentwith pub-
lished data, both DTNB andα-Trx1 effected robust inhibition HIV ZM53
(Fig. 4A). The inhibitory effect ofα-Trx1was specifically related to Trx1
inhibition, since control goat IgGs at 20 μg/ml had no effect onHIV entry.
Interestingly, while a 5mMdose of DTNB resulted in complete blockage
of ZM53 infection, α-Trx1 was only able to achieve a maximum of 80%
inhibition at its highest concentration (20 μg/ml) and further increases
(up to over 2-fold at 50 μg/ml) did not enhance this antiviral effect fur-
ther (Fig. 4B). This suggests, in line with the findings of other studies,
that other sources of oxidoreductase activity may be located on the
cell surface that have overlapping substrate reduction capabilities. Re-
lated to this, it should also be noted that because of structural conserva-
tion of the Thioredoxin-fold among different oxidoreductases [54,55],
some cross reactivity may occur between α-Trx1 and enzymes other
than Trx1, which may be present on the cell surface and capable of
catalyzing redox exchanges with CD4. It is possible, therefore, that
such enzymes, not alluded to in this study, are also involved in the
redox-dependent mechanism by which CD4 membrane domain locali-
zation is regulated.

We then tested the effects of DTNB and α-Trx1 on the HIV
pseudovirus, SF162. ZM53 and SF162 are distinguishable only by the
identities of their surface envelope glycoproteins: ZM53 is derived
from a primary viral isolate and is dependent on both CD4 and the che-
mokine co-receptor CCR5 for entry into host cells [56], while SF162 dis-
plays an envelope cloned from a laboratory-adapted virus that is able to



Fig. 3.Analysis of the effect of Thioredoxin (Trx1) depletion on themembrane domain localization of CD4. (A) TZM-bl cells were treated or left untreatedwith anti-thioredoxin antibodies
(α-Trx1) at the concentration shown for 12 h, and then analyzed microscopically as described. (B) TZM-bl cells were incubated with the indicated concentrations of α-Trx1 for 12 h,
washed, labelled with α-CD4FITC or CTBAF594, and the fold-changes in FDRI of α-Trx1-treated (relative to untreated controls) were calculated for CD4 and for GM1 by flow cytometry.
(C and D) The specificity of the DRM-localizing effect of Trx depletion was confirmed by analyzing changes in the localization of CD4 in TZM-bl cells treated in the same way with
non-specific goat anti-human antibodies. Cells were incubated with 20 μg/ml of either α-Trx1 or gα-hIgG, washed and then analyzed either directly – or after further treatment with
MBCD for 1 h – by flow cytometry to calculate (C) Mean Fluorescence Intensities and (D) fold-change in FDRI values of CD4- and GM1-labelled cells relative to untreated controls.
Statistical parameters and significance testing were as described in Fig. 2.
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infect HIV permissive cells expressing CCR5 but lacking CD4 [57,58]. In
contrast to ZM53, which was effectively inhibited by DTNB and α-
Trx1, the same treatments exerted only mild inhibition (20–40%) of
the CD4-independent pseudovirus, SF162 (Fig. 4C), suggesting that effi-
cient HIV entry requires the catalytic activity of Trx1 at a point in the
entry process preceding engagement of CCR5 (or CXCR4 potentially)
by gp120.

With this in mind, we reasoned that the dramatic translocation
of CD4 induced by Trx1 inactivation - in addition to the redox-
dependent changes in the CD4-gp120 complex structure that have
been suggested to be necessary for exposing the gp120 co-receptor
binding sites immediately after CD4 binding [59–61] - could also com-
promise viral entry by disrupting the spatiotemporal co-ordination of
CD4 and co-receptor that is required for efficient assembly of virus-
host pre-fusion complexes. To test the feasibility of this hypothesis,
we investigated how Trx1 inhibition affected the co-localization dy-
namics of CD4 and CCR5 by FDRI analysis. The FDRI value calculated
for CCR5-labelled cells was 0.11 (data not shown), almost identical to
that of the CD4-labelled counterparts (FDRI = 0.12), suggesting that
CCR5 is found predominantly in non-raft membranes in normal, un-
treated TZM-bl cells. Unlike CD4-labelled cells, however, α-Trx1 treat-
ment did not result in a significant change in the FDRI of CCR5-
labelled cells (Fig. 4D), implying that blocking Trx1 does not induce syn-
chronous translocation of CCR5 to DRM.

Taken together, while our data does not account for the antiviral ef-
fect of Trx inhibition that results from structural changes induced in CD4
(and possibly gp120), our results suggest that differential sequestration
of surface receptormolecules intomembranemicrodomainsmay repre-
sent an additional hypothetical mechanism by which oxidoreductases
regulate HIV entry that warrants further investigation.

4. Discussion and conclusion

T cells are activated when their antigen-specific T Cell Receptors
(TCR) stably engage cognate MHC proteins displayed on the surfaces
of antigen-presenting cells (APC). Among the earliest events precipitat-
ed byMHCII-TCR binding is themobilization of the submembranal cyto-
skeletal (actin/myosin) apparatus and the condensation of CD4 and
other cell adhesion and signaling molecules into clusters – so called su-
pramolecular activation complexes (SMACs) [62]– that coalesce around
the TCR on the T cell membrane (reviewed in [3]). Here, CD4 binds
MHCII and conveys its non-covalently associated tyrosine kinase Lck
to activation motifs (ITAMs) located within cytosolic subunits of the
TCR-CD3 complex [63], the phosphorylation of which initiates the sig-
naling cascade that culminates in T cell proliferation and inflammatory
cytokine production. Failure of CD4 to engage TCR-bound MHCII leads
to T cell anergy and apoptosis [64], a finding that alluded to the essential
role played by CD4 in ensuring that T cells are activated efficiently, but
only under conditions that simultaneously encourage its association
with TCR at the TC-APC contact site.

Many studies that have investigated CD4 localization - with respect
to both its membrane microdomain context and proximity to TCR (and
other important components of the T cell signaling apparatus) – have
provided detailed insights into lateral trafficking dynamics that are an



Fig. 4. Depletion of cell surface Trx inhibits CD4-dependent HIV entry. (A and C) TZM-bl cells were treated with DTNB (5 mM for 2 h), α-Trx1 or controlα-hIgG (both 20 μg/ml for 12 h)
prior to infection with HIV pseudoviruses ZM53 (A) or SF162 (C). α-Trx1-mediated entry inhibition was evaluated by measuring HIV Tat-induced firefly luciferase reporter gene
expression levels. (B) Dose-dependent inhibition of HIV by α-Trx1 by was assessed by treating TZM-bl cells with the indicated concentrations of antibodies as described above,
followed by infection with pseudovirus ZM53. In all cases, infections were performed in triplicate, and the inhibitory efficiency of DTNB/α-Trx1 treatment expressed as average
percentage decreases in luminescence relative to untreated controls. Error bars are standard deviations, and statistically significant differences were calculated by t-test. (D) Relative
changes in dynamic localization of CCR5 were investigated by calculating FDRI values for CD4-, CCR5-, and GM1-labelled TZM-bl cells that had been treated with the indicated
concentrations of α-Trx1 according to the procedures outlined in Fig. 3.
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important feature of CD4’s biological function. However, our under-
standing of the immediate molecular consequences of TCR-pMHCII
binding that trigger translocation of CD4, and the physiological and bio-
physical factors that regulate this, is limited. Sites for S-palmitoylation, a
process known to play a fundamental role in regulating the association
of many proteins with lipid rafts, were identified in the C-terminus of
CD4 almost 25 years ago, and several studies have firmly established
the presence of CD4 in different membrane microdomains, most
recently in the form of nanoclusters separated from those containing
TCR [65,66]. Yet themechanism by which CD4 traffics on the cell mem-
brane remains unclear, with no clear consensus on the roles played
by S-palmitoylation, Lck association and putative C-terminal raft-
localizing signal sequences. How these factors combine to coordinate
membrane compartmentalization dynamically, a clearly important
component of the immunoregulatory function of CD4, remains an
open question, therefore. The central finding of this study that manipu-
lation of cell surface redox activity - and Thioredoxin-1 inhibition in par-
ticular - induces profound changes in CD4 localization makes an
important contribution in this regard, and is integrable with several fea-
tures of CD4 biology, T cell activation and HIV entry.

Firstly, it is now clear that enzymatic oxidoreduction of ‘allosteric’
disulfides represents an important mechanism by which the activities
of many proteins are regulated (reviewed in [67]), and since the first
seminal studies byHogg and colleagues demonstrated functional effects
of CD4 disulfide bond reduction [21], it has become generally accepted
that thiol-disulfide exchange is important for normal CD4 functioning,
although the basis for this has remained poorly understood. Secondly,
and consistent with this, recent studies conducted in our laboratory
have revealed how an intact domain 2 (D2) disulfide (130C-C159) con-
tributes to CD4 metastability, and its reduction results in stabilizing
structural changes that appear to be propagated beyond D2 [68]. Al-
though these studies were performed only on single- and 2-domain
N-terminal variants of CD4, they indirectly suggest that redox ex-
changes in the ectodomain of CD4 have distal allosteric effects, which
may interface with the proposed mediators of CD4 microdomain local-
ization described above. Thirdly, reactive oxygen species (ROS) have
been shown to promote lipid raft formation in lymphocytes [69], and
it is well-established that ROS regulate the activation of T Cells
(reviewed in [70,71]). While their precise role(s) in this regard remains
controversial, having been shown to potentiate both proliferative and
apoptotic effects that are dependent on their source, type, concentration
and localization, extracellular ROS produced by phagocytic APCs pre-
senting antigen in the immunological synapse would correlate with
localized Trx depletion, providing a hypothetical mechanism by which
TCR-MHC engagement could be linked to redox-dependent CD4
translocation.

Finally, several experiments have now demonstrated unequivocally
that inhibiting cell surface oxidoreductase activity impairs HIV entry.
Until recently, this effect was thought to be related principally to
redox-dependent structural changes induced in CD4 that influence its
ligand-binding specificity.While our results do not directly imply an ad-
ditional mechanism in this regard, considering the many studies that
have described correlations between the membrane microdomain
contexts of the HIV receptors and their ability to support efficient HIV
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entry, and our observation that the movements of CD4 and coreceptor
in response to Trx inactivation are not coupled, we reason that strong
antiviral effects of oxidoreductase inhibition are potentially alsomediat-
ed through dramatic changes induced in CD4 localization.

As with all studies that employ cell culture surrogates to model
physiological processes, our data is presented with the acknowledge-
ment that important differences may exist between TZM-bl cells and
CD4-expressing cells in vivo (e.g. plasma membrane lipid and protein
composition, extracellular redox environment) that need to be consid-
ered when interpreting this data. For example, it has been shown that
different oxidoreductases appear to be active on the surfaces of different
primary CD4+ cell lineages, at least insofar as their requirement for HIV
infection is concerned [29]. To this end, ongoing studies in primary T
cells and other models of T cell activation should provide further in-
sights into the physiological importance, potentiators and mechanism
of redox-dependent CD4membrane trafficking. However, the profound
effect that Trx depletion has on CD4 localization in a cell line that has
been used extensively to model HIV entry, andmust reasonably be pre-
sumed to reflect the dynamics of the receptor and co-receptor in this
context accurately, therefore, encourages us to propose the following
intriguing hypothesis for further consideration: that oxidoreductase-
dependent CD4 allostericity plays an important role in regulating CD4
membranemicrodomain localization, and this may represent an impor-
tant mechanistic basis for triggering functional CD4 clustering, and an
additional potential mechanism by which changes in redox conditions
at the cell surface impair HIV entry.
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Chapter 4: 

Concluding Remarks 
 

Antigen engagement by the T cell receptor triggers a sophisticated signalling network 

leading to the activation, proliferation and differentiation of T cells (168). It has long been 

recognized that reactive oxygen species (ROS) play an important role in the regulation of T 

cell signalling (169, 170).  ROS production by immunological cells forms part of the host 

response to pathogens and the release of ROS during inflammatory responses are important 

for balancing T-cell activation/anergy, leading to the regulation of immune outcomes (170). 

One consequence of the change in the redox potential during inflammation and immune 

activation is the reversible oxidation of cysteine residues that result in altered protein 

function, which is now known to represent an important mechanism by which signal 

transduction is regulated (71, 171).   Indeed, a variety of signalling molecules involved in T 

cell activation have been shown to possess cysteine residues that are sensitive to oxidation, 

including Lck, Zap-70 and LAT (171-173).  In addition, ROS have been shown to participate in 

the formation of lipid rafts and the inhibition of ROS is linked with decreased TCR-mediated 

raft signalling platforms (174).  Furthermore, the spatiotemporal distribution of molecules 

(such as CD4, CD28 and TCR)  impacts on the efficiency of T cell signalling and is recognized 

as a modulatory mechanism for T cell activation (48).  

Over the last two decades it has also been recognized that redox events play a fundamental 

role in the HIV entry mechanism. The key viral and host entry proteins, gp120 and CD4 both 

require oxidoreduction of allosteric disulphides to induce the conformational changes 

necessary for productive entry to occur (79, 83, 136). Implicated in several studies as the 

key facilitators in these processes are cellular oxidoreductases belonging to the thioredoxin 
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superfamily (84, 136, 148, 150, 167, 175, 176). Disulphide bond reduction by 

oxidoreductases is a catalytic process, thus a single enzyme molecule can reduce several 

disulphide bonds and there is an obvious requirement for co-enzymes to ensure a 

continuous turnover. Although evidence of the activity and the importance of redox 

mechanisms within the plasma membrane environment continues to mount, conclusive 

identification of physiologically relevant molecules is still lacking and is thus needed for the 

full elucidation of these redox active membrane systems, so that we can understand how 

they work and what their roles are in pathophysiological processes. 

In this study, we have described an important link between redox homeostasis at the cell 

membrane and the spatial-temporal distribution of CD4 in the plasma membrane, which 

expands our understanding of the relationship between oxidative stress and HIV entry, and 

puts forward an intriguing hypothesis regarding how redox events may be involved in 

regulating CD4-dependent T cell signalling processes.   

First, we presented the results of our collaborative efforts with colleagues at the Karolinska 

Institutet, who analyzed the association of an isoenzyme of TrxR1 with lipid raft membrane 

microdomains. Significantly, this study demonstrated that TrxR1 enzymes are targeted to 

lipid raft membrane microdomains, providing strong additional support to an emerging 

picture of the importance of redox systems in regulating protein function at the cell surface. 

In the second part of this study, we present our findings on the membrane microdomain 

distribution of CD4 and how altering the extracellular redox environment (by the inhibition 

of cellular oxidoreductases) affects CD4 membrane distribution. Importantly, we 

demonstrated enhanced CD4 lipid raft association in the presence of inhibitors of the 

cellular oxidoreductase, Trx1. Our data provide compelling evidence that oxidoreductases 
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play an important role in CD4’s spatial distribution in plasma membrane microdomains.  We 

posit that in the physiological context, the enhanced redox-mediated CD4 raft association 

may be related to the generation of ROS (by the inhibition of thioredoxin, a critical 

antioxidant), the accumulation of which has been implicated in enhanced lipid raft 

formation and clustering (177, 178). Lipid rafts can be the direct targets for oxidative stress 

and raft clustering mediated by S-S-bonded or S-X-S bonded crosslinking of cell-surface 

proteins (179).  Indeed,  it has been shown that ROS promote raft assembly  and entry of the 

TCR complex into lipid rafts  leading to T cell activation (174). Hence, CD4 movement to the 

raft, in the presence of elevated ROS may be an important component of this process.   

There is also evidence that the removal of ROS impairs the ability of Lck, the CD4-associated 

Src family protein tyrosine kinase that is essential for MHCII-dependent T Cell activation, to 

stay in lipid rafts (174).  Lck, a key molecule in TCR signalling localizes to lipid rafts upon 

TCR/CD4 activation, and impairing its association with lipid rafts impacts negatively on T cell 

signalling (180, 181).  These observations have interesting implications in the context of HIV 

infection and appear to support yet another role for the involvement of thioredoxin and/or 

other antioxidants in HIV entry. Oxidoreductases are likely to play a pivotal role in 

maintaining redox balance at the cell surface, by preventing the accumulation of ROS and 

reducing the association of CD4 (and by implication Lck), with DRMs/rafts. This would lead 

to conditions that impact negatively on T cell activation, which may, by delaying the immune 

response, be more favourable for HIV-1 entry and consistent with the concept that HIV-1 

utilizes non-raft associated CD4 for entry (156).   

To verify this theory and elucidate the mechanism underlying the inhibition of HIV-1 

infection in the presence of Trx1 inhibitors, we have initiated work to extend our analysis of 
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the potential changes in CD4 microdomain localization, on cells exposed to HIV 

pseudovirions (Appendix A).  Our preliminary observations indicate that HIV per se does not 

induce any changes in CD4 localization in TZM-bl cells (Appendix A- Figure 1A). Interestingly, 

however, when cells that had been treated with inhibitors of Trx1 were infected with an 

HIV-1 pseudovirus, we observed a reversal of the Trx1 inhibitor-induced CD4 DRM 

association (Appendix A, Figures 1B and 1C), an effect that was more pronounced in cells 

infected with the CD4-dependent virus, ZM53 (Appendix A, Figure 2). Notably, these 

observations are consistent with the findings of previous studies that have shown HIV-

mediated destabilization of rafts. Together with the results of this study which show that 

CD4 is localized almost exclusively in non-raft membrane microdomains in TZM-bl cells, and 

that the induced localization of CD4 into DRM is associated with impaired HIV entry, these 

data provide further support for a model in which CD4-dependent HIV entry proceeds 

through non-raft membrane microdomains.  Moreover, they indirectly suggest that while 

HIV particles are able to interact with raft-localized CD4 - a notion supported by our 

observation that recombinant gp120 colocalizes robustly with DRM following treatment of 

cells with DTNB (Appendix A, Figure 3), as well as previous studies that have shown that an 

anti-CD4 antibody exerts inhibitory effects on HIV by trapping CD4 in DRMs post CD4-gp120 

binding (182) - such viruses are blocked at a critical point in the maturation of the virus-host 

membrane fusion complex.  

Integrating these preliminary observations with our published findings on redox-dependent 

effects on CD4 localization and HIV entry, we propose that although HIV is capable of 

binding raft-localized CD4, productive viral entry must proceed through detergent-sensitive 

membrane domain compartments. In this regard, we hypothesize that potent inhibitory 
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effects on HIV entry may result from two aggregated consequences of blocking redox 

activity at the cell surface:  1) inhibition of the oxidoreductase-dependent conformational 

changes that must be effected in the virus-host receptor complex after CD4-gp120 binding 

(70, 79, 83, 136), and 2) uncoupling of CD4 and co-receptor localization, shown in this study 

to result from cell surface oxidoreductase inhibition.  

Collectively, our data affirm the role of cellular redox–active proteins, specifically 

oxidoreductases of the thioredoxin system, in the redox biology of HIV entry and add 

credence to the recent targeting of these cellular antioxidant systems in the search for novel 

HIV treatments (176, 183). Our results support the evolving concept that redox conditions in 

the extracellular space potentiate dynamic changes in CD4 membrane domain localization, 

which influence the efficiency of virus entry and are likely to play an important role in 

regulating CD4-dependent signalling events. Our studies suggest that oxidoreductases may 

play a role in maintaining CD4 dissociation from lipid rafts, which may reflect the 

requirement for the virus-host receptor complex to be localized in an appropriate (non-raft) 

membrane domain context to effect efficient fusion, a concept supported by preliminary 

experiments conducted during the course of this study. The potential involvement of redox 

events in the mechanism of HIV entry is proposed in the model illustrated in Chapter 4’s, 

Figure 1.   Herein, we propose that initially, by maintaining the membrane surface redox 

balance and preventing the accumulation of ROS, Trx minimizes the raft association of CD4 

and in so doing, creates conditions that are more favourable for HIV entry. Secondly, Trx 

keeps CD4 reduced, the preferred isoform for HIV gp120 interaction (184) and finally, Trx 

catalyses the conformational changes in CD4 and/or gp120 that are essential for virus entry 

(27, 166).  
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In conclusion, this work describes important aspects of the involvement of the extracellular 

redox system in regulating spatiotemporal changes in CD4 membrane localization, and 

provides evidence that redox systems exist at the appropriate locations to support this 

process. It also suggests a further functional role for cellular oxidoreductases in regulating 

HIV entry. Through ongoing studies, we aim to investigate the membrane contexts required 

for efficient HIV entry, the roles played by cellular oxidoreductases in establishing these, and 

the effects of CD4 oxidoreduction in T cell lines and human peripheral blood mononuclear 

cells (PBMCs) that will provide more detailed insights into the effects of redox events on 

CD4 function.  
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Figure 14: Proposed model for the involvement of redox events in the mechanism of HIV entry.(1) More favourable conditions for HIV entry are created when Trx prevents ROS 

accumulation at the cell surface preventing CD4 association with rafts. (2)  CD4 is kept reduced by Trx, the preferred gp120 binding isoform.  (3) Possible HIV-mediated movement of CD4 to 
non-raft membrane regions, more conducive to virus entry. (4) Trx mediated conformational changes in both CD4 and gp120 are essential for post-binding entry steps. 
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Appendices 
 

Appendix A:  CD4 distribution in cells treated with HIV gp120 protein and 

HIV-1 pseudo-typed virus, in the absence and/ or presence of Trx1 

inhibitors 

 

The data presented in Chapter 3 established that CD4 membrane microdomain distribution 

is influenced by the extracellular redox environment. Coupling this information with the 

existing knowledge that inhibition of thiol active oxidoreductases results in HIV entry 

inhibition, we conducted preliminary analyses on the impact of HIV-1 envelope pseudo-

typed viruses, in the presence or absence of inhibitors of cellular oxidoreductases on CD4 

distribution. This data is presented below.  

 

1.  Materials and Methods 

 

1.1 Cell treatments with recombinant HIV-1 gp120BAL, HIV-1 Env pseudo-typed 

virus, in the presence of Trx1 inhibitors 

 

For the treatment of TZM-bl cells with HIV-1 gp120 and Env pseudo-typed virus, growth 

media was decanted, cells were washed with phosphate buffered saline (PBS) and an excess 

of recombinant HIV-1 gp120BAL (1g/1x105 cells) or HIV-1 pseudovirus SF162.LS (SF162) or 

ZM53M.PB12 (ZM53) (200 TCID50 /1x104 cells) (185) was added in DMEM supplemented 

with 5% foetal calf serum and 2 mM glutamine. The cells were incubated at 37 °C for 2 

hours, unless otherwise stated. For the treatment of cells with the thiol modifying agent 

DTNB in combination with recombinant gp120BAL protein or the pseudovirus SF162.LS or 

ZM53M.PB12, cells were treated for 1.5 hours with 5mM DTNB followed by the addition of 

protein or Env pseudo-typed virus in the presence of DTNB and incubated for a further 1.5 
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hours. For the treatment with the anti thioredoxin antibody, cells were treated overnight 

(approximately 18 hours) with either antibody only, or with a combination of antibody and 

recombinant gp120BAL protein or the pseudovirus ZM53M.PB12 added simultaneously to 

the cells. Following treatments, cells were processed for confocal microscopy or the flow 

cytometric detergent solubility assay as outlined in method section of chapter 3.   

1.2 Expression and purification of recombinant HIV-1 gp120BAL  

 

The nucleotide sequence encoding a codon optimized (mammalian expression) sequence 

for amino acids 30-500 of HIV-1 gp120 Envelope, BaL isolate (Genebank No. M68893) was 

synthesized with a C-terminal Histidine tag [6 x His] (Geneart; Germany) and sub-cloned into 

the Xho1 and EcoR1 sites of the pCI-neo expression vector (Promega, USA). Following 

sequence confirmation, 293-F cells were stably transfected with the construct using 

Lipofectamine 2000 (Invitrogen, USA) as per the manufacturer’s recommendations. A clone 

expressing high levels of secreted recombinant HIV-1 gp120BAL protein (HIV-1 gp120BAL) was 

selected using G418 sulphate (Gibco, Life Technologies, USA) and propagated. Collected 

culture supernatants from this clone, were purified by an optimized Lectin affinity 

chromatography protocol. Briefly, four milliliters of Galanthus (G.) nivalis lectin cross-linked 

to 4% beaded agarose (Sigma Aldrich, USA) was incubated with approximately 500 ml of 

harvested culture supernatant containing the expressed protein, with stirring, overnight at 

4˚C. The resin was packed into a liquid chromatography column and the resin bed was 

washed with 20 column bed volumes (80 ml) of 0.65 M sodium chloride (NaCl) in PBS, 

followed by 20 column bed volumes of 1.0 M NaCl in PBS, and a final wash of 20 column bed 

volumes of PBS. Bound gp120BAL was eluted with 7.5 bed volumes of PBS containing 1M 

methyl α-D-mannopyranoside [MMP] (Sigma Aldrich, USA). Washing and elution procedures 
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were carried out using the Biologic LP Chromatography System (BioRad Laboratories, USA). 

Eluted recombinant gp120BAL was filtered through a 0.45 μm, low-protein binding filter 

(PALL Corporation, USA) and then concentrated to approximately 1 ml using a 50kDa 

molecular weight cut-off Amicon® Ultra Centrifugation Filter Unit (Merck Millipore, 

Germany). The purified protein was quantified using the Bradford Concentration Assay 

[BCA] kit (Pierce, ThermoFisher Scientific, USA) and aliquots were stored at −70 oC for later 

use.  Initial verification of the expression and purification steps of recombinant gp120BAL was 

evaluated by SDS-PAGE followed by Western blotting or Coomassie blue staining. 

HisProbe™-HRP (ThermoFisher Scientific, USA) was used for the detection of recombinant 

HIV-1 gp120BAL by Western blot.  

 

The functional integrity of the purified gp120 was evaluated by checking CD4-binding 

activity using an Enzyme Linked Immuno Sorbent Assay (ELISA). In brief, 96-well microtiter 

plates (Maxisorp, Nunc, Denmark) were coated overnight at 4°C with 100 μl of the 

monoclonal anti-gp120 antibody D7324 (1μg/ml, Aalto Bio Reagents Ltd., Ireland). The 

plates were then blocked with PBS containing 0.05% Tween 20 and 1% BSA (250μl per well) 

for 1 hour at room temperature. A dilution series ranging from 1– 8ng/ml of purified 

gp120BAL was prepared and each dilution was incubated with an equal volume of 2μg/ml of 

soluble CD4 (sCD4) (Progenics Pharmaceuticals Inc., USA) at room temperature for 1 hour. 

Thus, a range of 0.5 – 4ng/ml of gp120BAL was tested.  Blocked plates were washed thrice 

with 300μl /well of PBS-T (PBS containing 0.05% [v/v] Tween 20), using an automated plate 

washer (BioTek, USA). 100 μl of each dilution of gp120BAL/sCD4 or gp120BAL only was added 

to the plate and incubated at room temperature for 2 hours. Dilutions were assayed in 

duplicate and wells to which no gp120BAL was added were included as a control. Unbound 
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protein was removed by washing each well 5 times with 300μl/well of PBS-T and a 1:2000 

dilution of the antibodies 2G12 (wells containing gp120BAL only) or 17b (wells with 

gp120BAL/sCD4), prepared in PBS-T with 1% BSA, was added to the wells for 2 hours at room 

temperature. 17b binds to a conserved, conformation-dependent epitope of HIV-1 gp120 

that is exposed only when gp120 is bound to CD4; efficient 17b binding is therefore 

diagnostic of functional CD4-gp120 engagement (186-188). The binding epitope for 2G12 

comprises glycans on the gp120 surface, and is also conformation-dependent (189). Plates 

were washed as before and bound antibody was detected using 100μl of HRP-conjugated 

monoclonal anti-human Fc antibody (Amersham Biosciences, United Kingdom) diluted 

1:2000 in PBS-T for 1 hour at room temperature. Following washing, plates were developed 

using the chromogenic substrate Sure BlueTM TMB peroxide substrate (KPL, USA) and TMB 

stop solution (KPL, USA) as per the manufacturer’s instructions. Absorbance values were 

quantified spectrophotometrically at 450 nm using a BioRad Model 680 microplate reader 

(BioRad, USA). 

 

2.  Results  

2.1 CD4 distribution in cells treated with HIV-1 virus 

 

To investigate whether HIV-1 causes changes in the plasma membrane distribution of CD4 

we treated cells with HIV-1 Env pseudo-typed virus and assessed changes in CD4 localization 

by flow cytometry. We observed no significant changes in the DSM or DRM distributions of 

CD4 in cells treated with Env pseudo-typed virus. The FDRI of CD4 for cells treated with HIV-

1 Env pseudo-typed virus was comparable to that of untreated cells (Figure 1A). 
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Given that CD4 is mostly associated with DSM in TZM-bl cells, and that HIV per se does not 

induce changes in CD4 localization, this data appears to support a model in which CD4-

dependent HIV entry proceeds through non-raft membrane microdomains. This model 

would be consistent with our previous observations that enhanced CD4 DRM association 

results in the inhibition of virus entry.  

 

2.2 CD4 distribution in cells treated with HIV-1 virus, in the presence of DTNB or 

anti Trx1 antibodies 

   

Next we sought to assess whether the addition of HIV-1 Env pseudo-typed virus to cells 

treated with DTNB or anti Trx1 antibodies (Trx1) - shown previously to mediate the 

movement of CD4 into DRMs (Chapter 3) - had any effect on the localization of CD4.  

Interestingly, when we added HIV-1 Env pseudo-typed virus to cells that had been treated 

with DTNB/Trx1, we observed a reversal of the Trx1 inhibitor-induced CD4 DRM 

association (Figures 1B and 1C), an effect that is more pronounced by the CD4-dependent 

virus (ZM53) (Figure 2). These differences are not as a result of gp120/virus binding and 

interfering with CD4 detection during the flow cytometric assay, as the binding sites for 

gp120 and the epitope of the CD4-detecting antibody do not overlap on CD4 (190). We 

verified this using flow cytometry and confocal microscopy (Figure 3) by treating the cells in 

the presence of DTNB with both pseudo-typed virus and soluble gp120 and analyzing CD4 

staining thereafter. 
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Figure 1: Changes in CD4/GM1 raft association in the presence of HIV Env pseudo-typed virus and Trx1 inhibitors. 
The histogram plots show the change in FDRI (   FDRI)  after the treatment of cells with Env pseudo-typed virus only (A); treatment of cells with Env pseudo-typed virus in 

the presence of DTNB (B); treatment of cells with Env pseudo-typed virus in the presence of anti-Trx1 antibodies (-Trx) (C). Reduced CD4 raft association is observed for 
cells treated with Env pseudo-typed viruses in the presence of Trx1 inhibitors. Results presented are representative of 3 or more independent experiments; error bars 
represent standard deviations and statistically significant differences are indicated with an asterisk (*) (P<0.05).   

* 
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Figure 2: HIV Env pseudo-typed virus induced changes in CD4 DRM association in the presence of DTNB.   
DTNB induced CD4 DRM association is reversed/inhibited by the addition of Env pseudo-typed viruses. The 
CD4 dependent virus ZM53, has a more marked effect than the less CD4 dependent virus SF162. Results are 
represented as fold change (  FDRI) compared to untreated cells. Results presented are representative of 3 or 
more independent experiments; error bars represent standard deviations.  

 

 
 

Figure 3: Detection of CD4 and gp120 on DTNB treated cells.  
DTNB treatment does not affect the binding of gp120/virus particles to CD4, implying HIV is able to interact 
with raft associated CD4. CD4 staining intensity is not affected by the addition of gp120/virus particles, 
confirming that observed differences are not artifacts of the methodology employed. Methods used are 
outlined in the chapter 3.  
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