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ABSTRACT

Hidden Markov models (HMMs) and double chain Markov models (DCMMs) are

classical Markov model extensions used in a range of applications in the literature.

This dissertation provides a comprehensive review of these models with focus on i)

providing detailed mathematical derivations of key results - some of which, at the

time of writing, were not found elsewhere in the literature, ii) discussing estimation

techniques for unknown model parameters and the hidden state sequence, and iii)

discussing considerations which practitioners of these models would typically take

into account.

Simulation studies are performed to measure statistical properties of estimated model

parameters and the estimated hidden state path - derived using the Baum-Welch

algorithm (BWA) and the Viterbi Algorithm (VA) respectively. The effectiveness of

the BWA and the VA is also compared between the HMM and DCMM.

Selected HMM and DCMM applications are reviewed and assessed in light of the

conclusions drawn from the simulation study. Attention is given to application in the

field of Credit Risk.
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Notation and Abbreviations

Although notation and abbreviations are defined as they are introduced, the below

list of commonly used notation and abbreviations may be helpful.

Notation

The notation listed assumes discrete-time, discrete-state space and discrete-signal

space models which are time homogeneous.

Sk Output (signal) observed at time k

Sn The sequence of observed outputs (signals) for the first n time points.
This will be (S1, S2, . . . , Sn) for a HMM and (S0, S1, S2, . . . , Sn) for a DCMM.

Xk State occupied by a Markov chain at time k

Xn The sequence of states visited by a process for the first n time points.
This will be (X1, X2, . . . , Xn) for both the HMM and the DCMM.

S The state space, that is the set of all possible states which can be visited by
the process

δ The signal space, that is the set of all possible signals which can be observed

pi The unconditional initial state probabilities, that is pi = P (X1 = i) for i ∈ S
pi(k) The unconditional state probabilities at time k, that is pi(k) = P (Xk = i)

for i ∈ S
πi The limiting steady state probability for state i ∈ S
π Vector containing the limiting steady state probabilities, that is π = {πi}
pij The probability of a one-step transition from state i ∈ S to state j ∈ S.

For a given time point k, pij = P (Xk+1 = j|Xk = i).

bjm The probability of observing output (signal) νm ∈ δ, conditional on a HMM
being in state j ∈ S. For a given time point k, bjm = P (Sk = νm|Xk = j).

b
(j)
lm The probability of observing output (signal) νm ∈ δ, conditional on a DCMM

being in state j ∈ S and the previous observed output (signal) being νl ∈ δ.
For a given time point k, b

(j)
lm = P (Sk = νm|Xk = j, Sk−1 = νl).

a Vector containing the unconditional initial state probabilities, that is a = {pi}

xi



P Matrix containing the one-step state transition probabilities, that is P = {pij}
B Matrix containing the output (signal) probabilities for a HMM, that is B = {bij}
B(j) Matrix containing the output (signal) transition probabilities for a DCMM,

conditional on state j ∈ S. That is B(j) = {b(j)lm}.
λ The complete parameter set for a HMM or a DCMM. That is λ = (P,B, a) where,

for the DCMM, B represents a stacking of the B(j) matrices.

Fk(j) The forward equation, defined as P (Sk = sk, Xk = j|λ)

Bk(i) The backward equation, defined as P (Sk+1 = sk+1, . . . , Sn = sn|Xk = i, λ)

Vk(j) The Viterbi equation, defined as max
i1,...,ik−1

P (Xk−1 = (i1, . . . , ik−1), Xk = j,Sk = sk|λ)

Abbreviations

AIC Akaike information criterion

BIC Bayesian information criterion

BWA Baum-Welch Algorithm

DCMM Double Chain Markov model

EM algorithm Expectation Maximization algorithm

HMM Hidden Markov Model

MTD model Mixture transition distribution model

VA Viterbi Algorithm
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Chapter 1

Introduction

1.1 An Overview

Markov models are a family of stochastic processes familiar to many statisticians.

The underlying assumption of Markov models is that the state process possesses the

Markov property (defined in Section 1.4). Importantly, the state process of Markov

models is directly observable.

A hidden Markov model (HMM) is an extension of the ordinary Markov model since

the evolution of the state process is governed by the Markov property. Now, however,

the states visited are no longer known or observable. Instead only signals (or outputs),

which are produced by the states which have been visited, are observable. It is

assumed that these signals are emitted by the state process as follows: each state

in the state space has a probability distribution defined on the set of all possible

signals, and at each time point the current state will emit a signal according to this

distribution.

While the sequence of signals observed is dependent on the sequence of states visited,

there is no direct dependence structure between successive signals emitted - that is,

conditional independence exists between the signals.
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However, in some instances an assumption of conditional independence of the signals

might not be justified. In such cases it would be advantageous to assume a process

which satisfies the assumptions of a HMM, but where, for a given time point, the

signal emitted is not only dependant on the current state, but also on the previous

signal(s) which has been observed. An example of such an extension of the HMM is

the double chain Markov model (DCMM). In particular, the DCMM assumes that

the signal process also possesses the Markov property. That is, both the state and

signal processes are driven by the Markov property, where the signal process is also

dependent on the states which the state process visits.

The fundamentals of the Markov model, the HMM and the DCMM are summarised

in three plots presented in [10] and are reproduced in the next page in Figures 1.1 -

1.3.

Figure 1.1 shows a Markov model whereby the output (the state process) possesses

the Markov property and is directly observable. Figure 1.2 shows a HMM whereby

the output process is dependent on the state process (which possesses the Markov

property, but is not observable) but is conditionally independent of the previous

outputs. Figure 1.3 shows a DCMM whereby the output process is not only dependent

on the state process (which possesses the Markov property, but is not observable) but

is also conditionally dependent on the previous outputted value through the Markov

property.
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Figure 1.1: Representation of a Markov chain. 

 

 

Figure 1.2: Representation of a hidden Markov model 
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Figure 1.3: Representation of a double chain Markov model 
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1.2 Objectives of the Dissertation

The primary objectives of this dissertation are to

• Provide a detailed theoretical review of HMMs including a review of estimation

techniques which may be used to estimate model parameters and the under-

lying hidden state sequence. While alternative HMM specifications will be

overviewed, the focus of this dissertation will be on discrete-time, discrete-state

space and discrete-signal space HMMs. Attention will also be given to the

mathematical derivation of key results.

• Explore and detail how the mathematical framework of the HMM can be ex-

tended to formulate the mathematical framework for the DCMM. As with the

HMM, the focus of the research will be on discrete-time, discrete-state space

and discrete-signal space DCMM.

• Perform a comprehensive simulation exercise which explores the behaviour of

model parameter estimation and the estimation of the underlying hidden state

sequence for both the HMM and DCMM.

• Provide a review of selected HMM and DCMM applications which are doc-

umented in the literature, and assess several of these applications in light of

conclusions drawn from the simulation study mentioned above. Attention is

given to the application of HMMs and DCMMs in the field of Credit Risk.

This dissertation is structured as follows. The remainder of Chapter 1 provides a brief

overview of stochastic processes before introducing Markov models - in particular the

discrete-time, discrete-state space Markov model (also known as the Markov chain).

This is followed by a detailed discussion of the discrete-time, discrete-state space and

discrete-signal space HMM in Chapters 2 to 5. Alternative HMM specifications are
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also overviewed in these chapters. Chapter 6 then proceeds to detail the discrete-

time, discrete-state space and discrete-signal space DCMM. Simulation exercises for

HMMs and DCMMs, and conclusions which can be drawn from these simulations,

are discussed in Chapter 7. Chapter 8 provides a review of selected documented

applications of HMMs and DCMMs. Concluding remarks are then given in Chapter

9. Finally the appendices of this dissertation provide mathematical detail of key

results within the HMM and DCMM framework.

1.3 Stochastic Processes

The material outlined in this section is covered in many introductory references within

the literature, see for example Sections 2.1 and 2.8 of [41].

Markov models, HMMs and DCMMs all fall under the broad field of stochastic pro-

cesses. In order to adequately describe these models, an overview of the concept of a

stochastic process is therefore required.

To begin, a random variable is defined as a variable whose value results from the

measurement of some type of random process. It is typically a function which will

associate a unique numerical value with every possible outcome of the random pro-

cess. The value of the random variable is not known in advance and will vary with

each realisation of the random process. However, the probability distribution of the

random variable is known (or may be inferred) and can therefore be used to describe

probabilities of interest regarding the random variable.

For example, consider the random process of tossing a coin. The possible outcomes

for this process are Ω = {head, tail}. The random variable Y may be introduced for

this random process as follows

Y (ω) =

{
0, if ω = heads;
1, if ω = tails.
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Before each coin toss, although it is known that Y ∈ {0, 1}, the exact value that will

be realised for the random variable Y is unknown. However, if the coin is unbiased,

the probability mass function for Y is known and given by

P (Y = y) =

{
1
2
, y = 0;

1
2
, y = 1.

Finally, random variables are either classified as discrete (a random variable that may

assume values from a countable set) or as continuous (a variable that may assume

any numerical value in an interval or collection of intervals on the real line).

A stochastic process {X(t) : t ∈ T} is then a sequence of random variables, indexed

by the set T , that describes the evolution of some physical process over the set T .

That is, for each t ∈ T , X(t) is a random variable. Typically for a stochastic process,

some form of dependence structure exists among the random variables X(t), t ∈ T .

These dependence relationships dictate the manner in which the random variables

will evolve over t and thus play a role in characterising the stochastic process.

In most applications, the index t is interpreted as time. X(t) is then referred to as

the state of the process at time t. For example, X(t) could represent:

• the number of customers in a supermarket at time t,

• the total number of customers that have entered a supermarket up to time t,

• the total sales amount registered at a supermarket up to time t,

• the amount of time that a customer queues at the cashier of a supermarket at

time t,

• the size of a bacteria colony after elapsed time t,

• the number of calls arriving at a telephone exchange during a time interval [0, t),

• the return yielded by an asset at time t, etc.
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The set T is called the index set of the process. If T is a countable set the stochastic

process is said to be a discrete-time process. If T is an interval of the real line

(uncountable) the stochastic process is said to be a continuous-time process. For

example:

• {Xn : n = 0, 1, 2, . . .} is a discrete-time stochastic process indexed by the non-

negative integers,

• {X(t) : t ≥ 0} is a continuous-time stochastic process indexed by the non-

negative real numbers.

The state space S of a stochastic process is the set of all possible values which the

random variables X(t), t ∈ T , can assume. That is X(t) ∈ S for each t ∈ T . If

S is a countable set the stochastic process is said to be a discrete-state process. If

S is an interval of the real line (uncountable) the stochastic process is said to be a

continuous-state process. For example:

• if S = Z then {X(t) : t ∈ T} is a discrete-state stochastic process,

• if S = R then {X(t) : t ∈ T} is a continuous-state stochastic process.

Based on the above, four distinct categories of stochastic processes are possible. These

are shown, together with examples, in Table 1.1.

In summary, a stochastic process is a collection of random variables which, through

dependence relationships among the random variables, describe the evolution of some

physical process over some index set (typically time). As such, a stochastic process

is therefore characterised by:

• the nature of the index set T ,

• the nature of the state space S,

• the dependence relationships amongst the random variables X(t), t ∈ T .

7



Process Examples
Discrete-time, Discrete-state Simple random walk

Gambler’s Ruin
Markov chain

Discrete-time, Continuous-state Time series process
Markov process

Continuous-time, Discrete-state Generalised random walk
Poisson process
Yule process
Birth-and-death process
Continuous-time Markov chain

Continuous-time, Continuous-state Brownian motion/Wiener process
Diffusion process

Table 1.1: Types of stochastic processes.

1.4 Discrete Time Markov Chain

The material outlined in this section is covered in many introductory references within

the literature, see for example Sections 4.1 to 4.4 of [41].

It has been previously mentioned that the HMM and the DCMM are extensions of

the family of stochastic processes known as Markov models. In order to completely

define the HMM and DCMM, a basic understanding of Markov models is therefore

first required. As outlined in the previous section (in Table 1.1), different types of

Markov models (based on the nature of the state space and the index set) are used

in applications. However, the distinguishing property of any Markov model (which

differentiates it from other types of stochastic process models) is the fact that the

dependence relationship among the states which are visited is driven by the Markov

property. The Markov property states that the probability that the process will

enter a given state at a given future time is independent of past states which have

been visited and depends only on the state that the process is currently in. The

Markov property will thus drive the evolution of the states in Markov models (for a

8



mathematical representation, see equation (1.1) later).

This dissertation will be focusing on the discrete-time, discrete-state space HMMs

and DCMMs, so only the discrete-time, discrete-state space Markov model (otherwise

known as the Markov chain) will be further detailed in this section. Also, since the

focus of this dissertation is on the HMM and DCMM, the primary focus of this

section will be to simply provide widely-used results for the Markov chain. Many of

the numerous sources which discuss Markov chains in the literature contain proofs

for these results, for example [41].

A Markov chain is a discrete-time stochastic process {Xn : n = 1, 2, . . .} with Xn,

the state at a given time point n, taking on a countable number of possible values.

That is the state space is discrete and will for the remainder of this dissertation be

denoted by S, where

S = {1, 2, . . . ,M}, if the state space is finite, or

S = {1, 2, . . .}, if the state space is infinite (but countable),

where 1 represents state 1; 2 represents state 2; and so on. Thus Xn = i, where i ∈ S,

implies that the Markov chain is in state i at time n.

It should be noted that for the purposes of this dissertation, the initial state of the

process is denoted by X1 (since this is the notation which is widely used in the

literature for the HMM).

Furthermore, let the transition probabilities and the initial state probabilities be

respectively denoted by

pij(m,n) = P [Xn = j|Xm = i], and

pi = P [X1 = i] .

As was previously mentioned, the distinguishing property of a Markov chain is that

the state transitions are governed by the Markov property. This is expressed mathe-
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matically, for the Markov chain, as follows

P [Xm+l = j|X1 = i1, X2 = i2, . . . , Xm = i] = P [Xm+l = j|Xm = i] (1.1)

for states i1, . . . , im−1, i, j ∈ S, and l ∈ {1, 2, . . .}.

If pij(m,m + 1) = pij(1) for all m ∈ {1, 2, . . .}, then the Markov chain is said to be

time homogeneous. This dissertation will assume time homogeneity throughout. It

then holds that, for a given l ∈ {1, 2, . . .} , the l-step transition probability satisfies

P [Xm+l = j|Xm = i] = pij(l), for all m ∈ {1, 2, . . .}.

That is, under the assumption of time homogeneity, the transition probabilities do

not depend on time points m or m+ l, but only on the time interval l.

Since pi and pij(l) are probabilities, the following constraints must hold:∑
i∈S

pi = 1

pi > 0, for i ∈ S, and (1.2)

∑
j∈S

pij(l) = 1, for i ∈ S and l ∈ {1, 2, . . .}

pij(l) > 0, for i, j ∈ S and l ∈ {1, 2, . . .}. (1.3)

The one-step transition probability is defined as the probability of going directly from

state i to state j in one transition and is obtained by setting l = 1, that is

pij = pij(1) = P [Xm+1 = j|Xm = i], for all m ∈ {1, 2, . . .}.

Define matrix P to be the matrix containing the one-step transition probabilities.

That is P = {pij}.

A given transition probability pij(n + m) can be expressed (see for example [41]) in

the following way:

pij(m+ n) =
∑
k∈S

pik(m)pkj(n), for all n,m > 1 and i, j ∈ S. (1.4)
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The equations collected in (1.4) are referred to as the Chapman-Kolmogorov equa-

tions. For a given n, let P(n) denote the matrix containing the n-step transition

probabilities. That is P(n) = {pij(n)}. Then equation (1.4) implies that

P(m+n) = P(m) .P(n), (1.5)

where the dot represents matrix multiplication.

From equation (1.5), for any l ∈ {1, 2, . . .},

P(l) = Pl. (1.6)

This can be proven by setting m = n = 1 in equation (1.5) and then making use of

mathematical induction. Thus, the matrix containing the l-step transition probabili-

ties can be obtained by multiplying the matrix P by itself l times; and so a transition

probability of any arbitrary step length can be derived from the one-step transition

probabilities. As such, the one-step transition probabilities is a crucial aspect of the

Markov chain. The way in which these transition probabilities are chosen will vary

depending on the application.

The unconditional probabilities for the Markov chain are defined as follows:

pi(n) = P (Xn = i), for i ∈ S and n ∈ {1, 2, . . .} .

The vector of unconditional probabilities at time n is denoted by

p(n) = (p1(n), p2(n), . . . , pi(n), . . .) .

Using the well known statistical results of the partition rule for probabilities and

the multiplication rule for probabilities (these are defined later in this dissertation in

equations (2.9) and (2.10) respectively), it follows that

p(m+ n) = p(m) .P(n) . (1.7)
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Equation (1.7) implies

p(n) = p(1) .P(n−1) = p(1) .Pn−1, (1.8)

where p(1) is the vector containing the initial unconditional probabilities of the pro-

cess.1 This result shows that the evolution of the Markov chain is determined com-

pletely by the distribution of the initial probabilities p(1) and the one-step transition

matrix P.

In certain applications of the Markov chain it may well be of interest to determine

the value of p(n) as n becomes large (that is as n → ∞). To this end, vector π is

said to contain the limiting probabilities for the Markov chain (also referred to as the

stationary distribution) if for each j ∈ S it satisfies

πj ≥ 0 and∑
j∈S

πj = 1 and

πj =
∑
i∈S

πipij

⇒ π = π .P . (1.9)

Now, if lim
n→∞

p(n) exists then lim
n→∞

p(n) = π . This follows from p(n + 1) = p(n) .P

(which can easily be verified using equation (1.7)).

A general result suggested by [46], which can conveniently be used to determine the

limiting probabilities (when they exist) is the following:

π = 1(Im −P + Um)−1 , (1.10)

1For consistency with other models described in this dissertation, the state process is assumed
to begin at time 1. Hence the initial state is defined at time 1.
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where m is the number of states in the state space,

P is the transition probability matrix,

1 is a m-dimensional row vector of ones,

Im is the m×m identity matrix,

Um is the m×m matrix of ones.

This can easily be proven as follows:

π = π .P

π . Im − π .P + π .Um = π .Um

π (Im −P + Um) = 1

π = 1(Im −P + Um)−1.

It should be noted that in general the limiting probabilities of the Markov chain are

not guaranteed to exist, and if they do exist, they need not be unique. Conditions

defining when these limiting probabilities will exist and when they can be guaranteed

to be unique are discussed in [41]. The situation is somewhat simplified if the state

space of the Markov chain is finite. In fact, if S is finite, and the Markov chain is

aperiodic (if returns to a given state i ∈ S can occur at non-regular time intervals)

and irreducible (a Markov chain is said to be irreducible if there exists a positive

integer nij such that pij(nij) > 0 for each possible (i, j) pair, where i, j ∈ S), then

the limiting probabilities for the Markov chain will exist and will be unique.

The following is also concluded in numerous sources in the literature (see for example

[41]) for the limiting probabilities of a Markov chain :

• πj represents the long-run proportion of time that the process will be in state

j.

• πj is independent of the current state that the process is in.
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• If pj is chosen to be πj for each j ∈ S, then pj(n) = πj for each n ∈ {2, 3, . . .} .
For this reason the limiting probabilities are often also referred to as the sta-

tionary probabilities.

• Finally if for state j ∈ S, mjj is defined to be the expected number of tran-

sitions until a Markov chain in state j will return to state j, then πj = 1
mjj

.

Alternatively, mjj = 1
πj
.

Numerous extensions of Markov models exist in the literature. The next chapter will

explore one such extension, namely the hidden Markov model.
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Chapter 2

An Introduction to the Hidden
Markov Model

2.1 Defining the Hidden Markov Model

A hidden Markov model (HMM) is a doubly embedded stochastic process whereby

the underlying stochastic process (that of the states) possesses the Markov property.

This stochastic process of the states, denoted by {X(t) : t ∈ T}, is at no point known

or observable. However, a second stochastic process {S(t) : t ∈ T}, that being the

process of observations (or signals), is observable and is driven by the unobservable

state process in the following way: it is assumed that at each time point, the current

state emits a signal according to a probability distribution defined on the set of all

possible signals for that state. In this way, the first stochastic process (that of the

states) drives the second stochastic process (that of the signals). However, while the

sequence of signals is dependent on the sequence of states visited, it is important to

note that there is no direct dependence between successive signals emitted - that is,

given the current state, each new signal emitted is conditionally independent of all

previous signals emitted.

Due to the relationship which exists between the state and signal processes, a signal
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sequence which has been observed can be used to infer the most likely sequence of

states already visited by the HMM and estimate, among other probabilities of interest,

the probability that certain states will be visited in the future.

Applications of the HMM are numerous and examples of applications in the literature

extend to a variety of fields of study. A selection of these applications are discussed

further in Chapter 8 of this dissertation.

Owing to the fact that the state process of the HMM is governed by the Markov

property, the HMM can be seen as an extension of the Markov model (discussed

in Section 1.4). While the name ‘hidden Markov model’ occurs commonly in the

literature it is by no means the only name used. Other terms which also appear in

the literature for such models include ‘hidden Markov process’, ‘Markov-dependent

mixture’, ‘Markov-switching model’, ‘models subject to Markov regime’ and ‘Markov

mixture model’.

2.1.1 A Simple Example of a Hidden Markov Model

An illustrative example of the HMM is given below. This is based on an example

given in [41] - see page 257.

Consider a machine that produces a single product at each time point. At each time

point the machine can be in one of two conditions, either in a good condition (state 1),

or in a poor condition (state 2) - where it is assumed that the process of the condition

of the machine over time possesses the Markov property. If the machine is in state

1 during the current period, it will (independent of the previous states) remain in

state 1 during the next period with probability 0.9. State 2 is an absorbing state (if

the machine is in poor condition it will, independent of the previous states, remain

in poor condition for all future periods). Now suppose it is impossible to observe

what condition the machine is in directly, but it is possible to observe the quality

of the product that the machine produces (the product can either be satisfactory
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or defective). Furthermore, suppose that the machine will produce a product of

satisfactory quality when it is in state 1 with probability 0.99, while it will produce

a satisfactory product with probability 0.96 if it is in state 2.

The above is then a simple example of a HMM. This follows since the process of the

condition of the machine (the sequence of the states) has the Markov property and

is unobservable, while the process of the products produced (or signals) is observable

and driven entirely by the sequence of states, through a probabilistic distribution

defined on the set of possible signals for each state.

2.1.2 Elements of a Discrete-Time Hidden Markov Model

HMMs are well described in the literature, see for example [37], [41] and [46] - which

have been used as the basis for the material presented in this section and Section 2.1.3.

In particular, this section will define and detail the various components of the discrete-

time HMM. To this end, assume that {Xn : n = 1, 2, . . .} represents the unobservable

state process and that {Sn : n = 1, 2, . . .} represents the observable signal process.

Since the process of the states {Xn : n = 1, 2, . . .} represents a Markov chain, the

results and findings of Section 1.4 will apply to {Xn}. The various components of the

discrete-time HMM are now defined below.

State space S: As was defined for Markov chains (see Section 1.4), let S represent

the state space. It will be assumed for the remainder of this dissertation that

the state space for the HMM is discrete, That is,

S = {1, 2, . . .},

where 1 represents state 1; 2 represents state 2; and so on.

In example 2.1.1, S = {1, 2}, where 1 = good condition (state 1), and

2 = poor condition (state 2).
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Initial state probabilities pi: As was defined for Markov chains let pi = P [X1 = i],

for all i ∈ S, represent the unconditional initial state probabilities, subject

to the constraints given in equation (1.2). Further define a to be the vector

containing all these initial probabilities.

One-step state transition probabilities pij: It is assumed for the purposes of

this dissertation that state transitions are time homogeneous.

Therefore, as was the case for Markov chains, pij = P [Xm+1 = j|Xm = i]

(for all m = 1, 2, . . . ), and P = {pij} is the one-step transition probability ma-

trix containing all these transition probabilities for the state sequence. These

one-step transition probabilities are subject to the constraints given in equation

(1.3).

In example 2.1.1, P =

(
0.9 0.1
0 1

)
.

Signal probabilities: The signals observed can either be from a discrete or a con-

tinuous space (or a mixture of both).

Discrete signal space: Let δn = {v1, v2, . . .} be the set of all possible signals

which can be emitted at time n, for n = 1, 2, . . . , and let Sn be the signal

emitted at time n, where Sn ∈ δn. Further define

bik(n) = P [Sn = vk|Xn = i]

to be the probability of observing signal vk (where vk ∈ δn) at time n,

given that the process is in state i at time n.

For a discrete signal space, if time homogeneity is assumed then the set

of all possible signals which can be observed will not change over time. In

such cases, let δ be the signal space for all n = 1, 2, . . . . Then,

δ = δn, and Sn ∈ δ, for n = 1, 2, . . . .
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Under these time homogeneous conditions for the signals, define

bik = P [Sn = vk|Xn = i] ,

which does not depend on the time n.

Also define the signal probability matrix to be B, where the ith row and

kth column of B is bik. That is B = {bik}.

In example 2.1.1, δ ∈ {v1, v2} for n = 1, 2, . . . , where v1 = satisfactory,

and v2 = defective,

and B =

(
0.99 0.01
0.96 0.04

)
.

Continuous signal space: When the signal space, δn, is a continuous space

(which is not necessarily time homogeneous),

bi(Sn) = f(Sn|Xn = i)

is the probability density function (pdf), defined over δn, for the emitted

signal at time n, given that the process is in state i at time n.

Unless stated otherwise, the remainder of this dissertation will make reference to

a discrete-time, discrete-state and discrete-signal HMM where both the state and

signal processes are assumed to be time homogeneous. From the above, a HMM is

fully described by P, B, and a. For convenience, the compact notation

λ = (P,B, a)

will be used to denote the complete parameter set of a HMM.

For the purpose of readability, Sk = sk will at times be written in the shortened

form Sk. Similarly Xk will at times be used to represent Xk = ik. In addition the

terms ‘signal sequence’ and ‘observation sequence’ will be used interchangeably in
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this dissertation without implying different meanings.

As a final observation, it should be noted that the time homogeneous, discrete-time

and discrete-state Markov chain is a special case of the time homogeneous, discrete-

time, discrete-state and discrete-signal HMM. This is proven in Appendix A of this

dissertation.

2.1.3 Further Properties Regarding the Hidden Markov Model

As has been mentioned, it is assumed that the state process of a HMM possesses the

Markov property. Furthermore, since the state process drives the signal process (and

not vice a versa), no signal which has already been emitted will play a role in what

a future state will be. Therefore, the following holds for t = 1, 2, 3, . . .

P (Xn+t = j|S1, X1, . . . , Sn, Xn = i) = P (Xn+t = j|Xn = i). (2.1)

It should however be noted that the following does not hold:

P (Xn+t = j|S1, . . . , Sn) = P (Xn+t = j), where t = 1, 2, 3, . . . . (2.2)

The reason why equation (2.2) does not hold is that while the signal process does not

drive the state process in any way, the signal sequence which has been observed does

hold information as to what the current state is - which (due to the Markov property)

will influence the probability of the state at time n+ t. Equation (2.2) will in fact be

correctly defined later in Section 3.4.3.

Another key assumption for the HMM is that the probability of a signal being emitted

is dependent only on the state of the HMM at the time the signal is emitted. That

is, conditional on the current state, the probability distribution of the current signal

is independent of all previous states visited by the process and all previous signals

which have been emitted. For the signal emitted at the arbitrary time n, this can be

expressed mathematically as follows:

P [Sn = vk|X1, S1, . . . , Xn−1, Sn−1, Xn = i] = P [Sn = vk|Xn = i] = bik (2.3)
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for i ∈ S, vk ∈ δ and n ∈ {1, 2, . . .}.

By making use of equation (2.1), equation (2.3) can be extended to the following:

P [Sn+t = vk|S1, X1, . . . , Sn, Xn = i] = P [Sn+t = vk|Xn = i] (2.4)

where t = 1, 2, 3 . . . .

An explanation of equation (2.4) is that at time n+t, conditional on all previous states

and signals, only the state at time n + t will determine the signal at time n + t (by

equation (2.3)). However, from equation (2.1) it can be seen that, given information

up to time n, Xn+t is dependent only on Xn. Therefore, given information up to time

n, Sn+t will also be dependent only on Xn.

Equation (2.4) can also be extended to the following:

P [Sk+t, . . . , Sn |S1, . . . , Sk, X1, . . . Xk] = P [Sk+t, . . . , Sn |Xk]

where k < n and t = 1, 2, . . . , n− k , (2.5)

P [Sk+t, . . . , Sn |S1, . . . , Sk, X1, . . . , Xn] = P [Sk+t, . . . , Sn |Xk+t, . . . , Xn]

where k < n and t = 1, 2, . . . , n− k . (2.6)

These equations make intuitive sense and may be proven mathematically (see for

example Appendix A of [35]).

Finally, since bik is a probability, the following must also hold:

bik ≥ 0, for i ∈ S and vk ∈ δ∑
vk∈δ

bik = 1, for i ∈ S. (2.7)

21



2.2 Distribution Hidden Markov Models

In many applications of the HMM it may be convenient to assume that given the

state which the HMM is in, the signal is emitted according to a familiar probability

distribution - e.g. a binomial or a Poisson distribution. An example of this is a HMM

whereby, given that the occupied state at some time point n is i ∈ S, the probability of

observing the signal x ∈ {0, 1, 2, . . .} is governed by a Poisson distribution as follows1

P [Sn = x|Xn = i] = bix =
e−ωi ωxi
x!

. (2.8)

That is, each state in the state space will emit a signal according to the particular

Poisson distribution defined for that state.

Notice from the above that x is used to notate the observed signal for these HMMs

since, depending on the signal distribution assumed, the signal space δ need not be

discrete, as is implied by the usual notation νm. For example, in Section 4.1.4 of this

dissertation the normal distribution is used to define the signal distribution for each

state.

A variety of names are used in the literature to refer to such models; for example

[46] refers to distribution HMMs (e.g. a Poisson HMM), [35] refers to hidden Markov

time series models. This dissertation will make use of the term distribution HMMs to

refer to these HMMs for which the signal distribution is specified by some parametric

probability distribution.

An example of how a distribution HMM model can be used to improve the modelling

of a series of data is given in [46]. In this example the series of annual counts of

major earthquakes (magnitude 7 and above) for the years 1900-2006 is given. For

ease of reference, Figure 2.1 plots this data. Since the observations are unbounded

counts, the Poisson distribution would be a natural choice to describe them. How-

1Note that ωi is used to notate the parameter of the Poisson distribution as λ, the usual notation,
has been reserved to notate the parameter set of the HMM.
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ever an examination of Figure 2.1 suggests that there may be some periods with a

low rate of earthquakes, and some with a higher rate of earthquakes. This results in

the earthquake series having a sample variance, s2 ≈ 52, which is much larger than

the sample mean, x̄ ≈ 19, indicating strong over-dispersion relative to the Poisson

distribution (which has the property that the variance equals the mean). In addition

to this, the sample autocorrelation function for this data, given in [46] - see page 29,

suggests the presence of strong positive serial dependence. Hence a model consisting

of independent Poisson random variables would be inappropriate due to the two rea-

sons mentioned above.

 

Figure 2.1: Number of major earthquakes in the world (magnitude 7 or greater),
1900-2006. This is based on data provided in [46], p. 4, Table 1.1.

One method of dealing with over-dispersed observations with a multimodal distri-

bution is to use a mixture model. Mixture models are designed to accommodate

unobserved heterogeneity in the population; that is mixture models will attempt to

model unobserved groups in the population, with each group having a distinct distri-

bution for the observed variable. In the above example, suppose that each count of

the earthquake series is generated by one of two Poisson distributions, with means ω1
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and ω2, where the choice of mean is determined by another process referred to as the

parameter process. In the simple case, this parameter process is a series of indepen-

dent random variables, giving rise to independent counts. Such a model is termed an

independent mixture model. It is shown in [46] that if ω1 is chosen with probability

δ1 and ω2 is chosen with probability δ2, then the variance in the resulting distribution

exceeds the mean by δ1δ2(ω1 − ω2)
2. Hence an independent Poisson mixture model

permits overdispersion, that is s2 exceeding x̄.

However, an independent Poisson mixture model is not ideal for the earthquake series

as, by definition, it does not allow for serial dependence in the observations. One way

of allowing for this serial dependence is to relax the assumption that the parameter

process is serially independent. A mathematically convenient way to do this is to

assume that the parameter process is a Markov chain. The resulting model is then an

example of the Poisson HMM described above. Thus modelling the observed earth-

quake counts with a Poisson HMM will overcome the mentioned shortcomings which

arise when a model consisting of independent Poisson random variables is used. The

above example thus illustrates how a HMM can be interpreted as a mixture model

which allows for serial dependence among the observations, thereby further high-

lighting the usefulness of the HMM. These are also properties of the general HMMs

described in the previous section.

Appendix A of this dissertation proves that, as expected, the independent mixture

model is indeed a special case of the HMM.

Finally, it is important to note that the HMM assumptions and properties described

in Section 2.1 will also hold true for distribution HMMs. An overview on parameter

estimation for distribution HMMs is provided in Section 4.1.4 of this dissertation.

Further variations of distribution HMMs are also discussed in [35] and [46] - see for

example pages 116 to 118 of [46].
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2.3 Deriving Important Equations for the Hidden

Markov Model

In order for HMMs to be useful in applications, three particular problems regarding

the HMM need to be solved - namely the evaluation problem, the decoding problem

and the learning problem. The solutions to these problems rely heavily on three

equations - namely the forward, backward and Viterbi equations. While the solution

to the three mentioned problems will be discussed further in Chapters 3 and 4, the

three equations of interest needed to solve these problems will be defined and discussed

in this section.

To begin, some elementary statistical results will be needed. The first of these results

is the partition rule for probability which states:

If {Br; r ≥ 1} forms a partition of the sample space Ω, that is Bj ∩ Bk = φ for j 6= k,

and
⋃
r

Br = Ω, then

P (A) =
∑
r

P (A ∩Br) . (2.9)

Other elementary results which will be used during the derivation of the forward,

backward and Viterbi equations are:

P (A ∩B) = P (B)P (A|B) (2.10)

P (A ∩B|C) =
P{A ∩ (B ∩ C)}

P (C)
..... by (2.10)

=
P (B ∩ C)P (A|B ∩ C)

P (C)
..... by (2.10)

=
P (C)P (B|C)P (A|B ∩ C)

P (C)
..... by (2.10)

= P (B|C)P (A|B ∩ C) . (2.11)

The derivations provided in the next sections are adapted from those given in [41]

and will make regular use of the results stated above.
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2.3.1 Deriving the Forward Equation

This section will define and derive a computational form for the forward equation.

To begin, let

Sn = (S1, . . . , Sn)

be a vector of random variables for the first n signals, and

sn = (s1, . . . , sn)

be the actual sequence of the first n signals which have been observed, where sk ∈ δ
for k = 1, 2 . . . , n.

Now, for j ∈ S, let the forward equation be defined as follows:

Fk(j) = P (Sk = sk, Xk = j|λ). (2.12)

For ease of readability, the derivations below will suppress the explicit conditioning

on λ, i.e. Fk(j) = P (Sk = sk, Xk = j):

Fk(j) = P (Sk = sk, Xk = j)

= P (Sk−1 = sk−1, Sk = sk, Xk = j)

=
∑
i∈S

P (Sk−1 = sk−1, Xk−1 = i, Sk = sk, Xk = j) ..... by (2.9)

=
∑
i∈S

P (Sk−1 = sk−1, Xk−1 = i)P (Sk = sk, Xk = j|Sk−1 = sk−1, Xk−1 = i)

..... by (2.10)

=
∑
i∈S

Fk−1(i)P (Sk = sk, Xk = j|Sk−1 = sk−1, Xk−1 = i) ..... by (2.12)

=
∑
i∈S

Fk−1(i)P (Xk = j|Sk−1 = sk−1, Xk−1 = i)

×P (Sk = sk|Sk−1 = sk−1, Xk−1 = i,Xk = j) ..... by (2.11)
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=
∑
i∈S

Fk−1(i)P (Xk = j|Xk−1 = i)P (Sk = sk|Xk = j) ..... by (2.1) and (2.3)

=
∑
i∈S

Fk−1(i) pij P (Sk = sk|Xk = j). (2.13)

By letting

bj,sk = P (Sk = sk|Xk = j), where sk ∈ δ and j ∈ S, (2.14)

equation (2.13) can be used to define the forward equation at time k as a function of

the forward equations at time k − 1 (where k = 2, 3, . . . , n), as shown below:

Fk(j) = bj,sk
∑
i∈S

Fk−1(i) pij . (2.15)

Generating the forward equation for the first n signals, Fn(j), is done as follows:

Starting with k = 1,

F1(j) = P (S1 = s1, X1 = j|λ) ..... by (2.12)

= P (X1 = j|λ)P (S1 = s1|X1 = j, λ) ..... by (2.11)

= pj bj,s1 (2.16)

must be calculated for each state j ∈ S.

Equation (2.15) is then used recursively to calculate

F2(j) = P (S2 = s2, X2 = j|λ) = bj,s2
∑
i∈S

F1(i)pij, for each j ∈ S

F3(j) = P (S3 = s3, X3 = j|λ) = bj,s3
∑
i∈S

F2(i)pij, for each j ∈ S

...

Fn(j) = P (Sn = sn, Xn = j|λ) = bj,sn
∑
i∈S

Fn−1(i)pij, for each j ∈ S.
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2.3.2 Deriving the Backward Equation

This section will derive a computational form for the backward equation, which is

defined for i ∈ S as follows:

Bk(i) = P (Sk+1 = sk+1, . . . , Sn = sn|Xk = i, λ) . (2.17)

For ease of readability, the derivations below will suppress the explicit conditioning

on λ, i.e. Bk(i) = P (Sk+1 = sk+1, . . . , Sn = sn|Xk = i):

Bk(i) = P (Sk+1 = sk+1, . . . , Sn = sn|Xk = i)

=
∑
j∈S

P (Sk+1 = sk+1, . . . , Sn = sn, Xk+1 = j|Xk = i) ..... by (2.9)

=
∑
j∈S

P (Sk+1 = sk+1, . . . , Sn = sn|Xk = i,Xk+1 = j)P (Xk+1 = j|Xk = i)

..... by (2.11)

=
∑
j∈S

P (Sk+1 = sk+1|Xk = i,Xk+1 = j)

×P (Sk+2 = sk+2, . . . , Sn = sn|Sk+1 = sk+1, Xk = i,Xk+1 = j) pij

..... by (2.11)

=
∑
j∈S

P (Sk+1 = sk+1|Xk+1 = j)P (Sk+2 = sk+2, . . . , Sn = sn|Xk+1 = j) pij

..... by (2.3) and (2.5)

=
∑
j∈S

P (Sk+1 = sk+1|Xk+1 = j)Bk+1(j) pij . (2.18)

Using the notation introduced in equation (2.14), equation (2.18) can be used to

express the backward equation at time k as a function of the backward equations at

time k + 1 (where k = 1, 2, . . . , n− 1), as shown below:

Bk(i) =
∑
j∈S

bj,sk+1
Bk+1(j) pij . (2.19)
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Generating the backward equations Bk(i) for k = 1, 2, . . . , n is done by working

backwards in time as follows:

Starting with k = n, set

Bn(i) = 1. (2.20)

This is done since Bn(i) calls upon the (n + 1)th observed signal, but only the first

n signals have been observed. Setting Bn(i) to 1 ensures that 0 ≤ Bk(i) ≤ 1 for k =

1, 2, . . . , n and i ∈ S, which of course needs to hold true since Bk(i) is a probability.

Equation (2.19) is then used recursively to calculate

Bn−1(i) = P (Sn = sn|Xn−1 = i, λ) =
∑
j∈S

bj,sn Bn(j) pij =
∑
j∈S

bj,sn pij i ∈ S

Bn−2(i) = P (Sn−1 = sn−1, Sn = sn|Xn−2 = i, λ) =
∑
j∈S

bj,sn−1 Bn−1(j) pij i ∈ S

...

B1(i) = P (S2 = s2, . . . , Sn = sn|X1 = i, λ) =
∑
j∈S

bj,s2 B2(j) pij i ∈ S.

As a final comment, it should be noted that, by equation (2.5),

P (Sk+1 = sk+1, . . . , Sn = sn|Sk = sk, Xk = i, λ) = P (Sk+1 = sk+1, . . . , Sn = sn|Xk = i, λ) .

Therefore, the backward equation could also have been defined as

Bk(i) = P (Sk+1 = sk+1, . . . , Sn = sn|Sk = sk, Xk = i, λ) . (2.21)

The form of the backward equation expressed in equation (2.21) will be called upon

in Section 6.1.3 of this dissertation when the DCMM is discussed.
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2.3.3 Deriving the Viterbi Equation

This section will detail the Viterbi Equation. To begin, define

Xk = (X1, . . . , Xk)

to be a vector of random variables for the first k states visited by the HMM.

In Section 3.2, one of the problems of interest will be to find the sequence of states

(i1, . . . , in) which maximises P{Xn = (i1, . . . , in)|Sn = sn, λ}, where ik ∈ S for k =

1, . . . , n.

In order to solve this, Section 3.2 will call upon the Viterbi equation, which is defined,

for k ∈ {1, 2, . . . , n}, as follows:

Vk(j) = max
i1,...,ik−1

P{Xk−1 = (i1, . . . , ik−1), Xk = j,Sk = sk|λ} (2.22)

where ih ∈ S for h = 1, . . . , k − 1 .

For ease of readability, the derivations below will suppress the explicit conditioning

on λ, i.e. Vk(j) = max
i1,...,ik−1

P{Xk−1 = (i1, . . . , ik−1), Xk = j,Sk = sk} :

Vk(j) = max
i1,...,ik−1

P{Xk−1 = (i1, . . . , ik−1), Xk = j,Sk = sk}

= max
i∈S

max
i1,...,ik−2

P{Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Xk = j,Sk = sk}

= max
i∈S

max
i1,...,ik−2

P{Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Sk−1 = sk−1, Xk = j, Sk = sk}

= max
i∈S

max
i1,...,ik−2

[P{Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Sk−1 = sk−1}

×P{Xk = j, Sk = sk|Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Sk−1 = sk−1}]

..... by (2.10)
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= max
i∈S

max
i1,...,ik−2

[P{Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Sk−1 = sk−1}

×P{Xk = j|Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Sk−1 = sk−1}

×P{Sk = sk|Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Xk = j,Sk−1 = sk−1}]

..... by (2.11)

= max
i∈S

max
i1,...,ik−2

[P{Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Sk−1 = sk−1}

×P{Xk = j|Xk−1 = i}P{Sk = sk|Xk = j}] ..... by (2.1) and (2.3)

= P{Sk = sk|Xk = j}

×max
i∈S

[pij max
i1,...,ik−2

P{Xk−2 = (i1, . . . , ik−2), Xk−1 = i,Sk−1 = sk−1}]

= P{Sk = sk|Xk = j} max
i∈S

pij Vk−1(i) ..... by (2.22).

Using the notation introduced in equation (2.14), the above equation expresses the

Viterbi equation at time k as a function of the Viterbi equations at time k−1 (where

k = 2, 3, . . . , n), as shown below:

Vk(j) = bj,sk max
i∈S
{pij Vk−1(i)} . (2.23)

The Viterbi equations are then calculated recursively beginning with V1(j) up to

Vn(j), for each j ∈ S. It is convenient to show these recursive calculations in Section

3.2.2 when the Viterbi equations will be called upon.
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Chapter 3

Solving Problems Regarding the
Hidden Markov Model

Application of the HMM requires that three problems of interest regarding the model

be solved. These three problems are the evaluation problem, the decoding problem

and the learning problem. Discussions and solutions of these three problems are

provided in this chapter, and in doing so, the forward, backward and Viterbi equations

discussed in the previous chapter are called upon.

As will be shown in this chapter, once solved, the evaluation, decoding and learning

problems serve as powerful tools when using the HMM.

3.1 The Evaluation Problem

3.1.1 Describing the Evaluation Problem

The evaluation problem is described as follows:

Given the sequence of n signals which have been observed, sn = (s1, . . . , sn), and a

HMM with λ = (P,B, a), the question of interest for the evaluation problem is how

to calculate P (Sn = sn|λ), the probability that the observed sequence of signals was
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generated by the HMM λ.

If the process is currently at time 0 and λ is known, the evaluation method can be

used to calculate the probability that a certain sequence for the first n signals will be

observed. For instance, returning to the example described in Section 2.1.1, it may

well be of interest to calculate the probability that the first n products (signals) that

the machine will produce will all be satisfactory.

As mentioned, this view of the evaluation problem can only be used if λ is known, or

if good estimates of the components of λ are known. However, in most applications λ

is not known and needs to be estimated using the sequence of signals which has been

observed (this is discussed further in Section 4). In such instances the evaluation

problem provides a method of evaluating how efficiently a given model describes the

observed sequence of signals. That is P (Sn = sn|λ̂) is a measure of the likelihood of

an estimate of λ.

This viewpoint is particularly useful if the components of λ are not fully known

(as is typically the case) and there are potentially k plausible models, λ(1), . . . , λ(k)

which are thought to describe the HMM well. Having observed a signal sequence, the

probability that this sequence was generated by λ(i) can then be calculated, using the

evaluation method, for each i = 1, . . . , k. In this way, the model that best describes

the sequence of observed signals (i.e. the model that has the highest probability

P (Sn = sn|λ(i))) can be selected from the k plausible models.

3.1.2 Solving the Evaluation Problem

This section will describe how the probability P (Sn = sn|λ) can be calculated, thereby

providing a solution to the evaluation problem. The derivations given in this section

are adapted from [37] and [41].

To illustrate the usefulness of the forward and backward equations (described in the
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previous chapter), a solution to the evaluation problem will first be provided without

making use of these two equations. Thereafter, the forward and backward equations

will be called upon to provide a simplified method of solving the evaluation problem.

To begin, one way of solving the evaluation problem (without making use of the

forward and backward equations) is as follows:

P (Sn = sn|λ)

=
∑
i1∈S

. . .
∑
in∈S

P (Sn = sn, X1 = i1, . . . , Xn = in|λ) ..... by (2.9)

=
∑
i1∈S

. . .
∑
in∈S

P (S1 = s1, . . . , Sn = sn|X1 = i1, . . . , Xn = in, λ)

×P (X1 = i1, . . . , Xn = in|λ) ..... by (2.11)

=
∑
i1∈S

. . .
∑
in∈S

P (S2 = s2, . . . , Sn = sn|S1 = s1, X1 = i1, . . . , Xn = in, λ)

×P (S1 = s1|X1 = i1, . . . , Xn = in, λ)P (X1 = i1|λ)

×P (X2 = i2, . . . , Xn = in|X1 = i1, λ) ..... by (2.11)

=
∑
i1∈S

. . .
∑
in∈S

P (S2 = s2, . . . , Sn = sn|X2 = i2, . . . , Xn = in, λ)P (S1 = s1|X1 = i1, λ)

× pi1 P (X2 = i2|X1 = i1, λ)P (X3 = i3, . . . , Xn = in|X1 = i1, X2 = i2, λ)

(by (2.6), (2.11) and the fact that conditional on the current state, the

current signal is independent of any future state)
...

=
∑
i1∈S

. . .
∑
in∈S

bi1,s1 . . . bin,sn pi1 pi1,i2 pi2,i3 . . . pin−1,in (3.1)

(by repeatedly using (2.6), (2.11),

the fact that conditional on the current state, the current signal

is independent of any future state,

and the fact that the state process possess the Markov property).
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If there are N states in the state space, the above calculation would involve the

summation of Nn terms, with each term being the product of 2n values. As this

calculation can become very involved if either N or n is large, a more compact calcu-

lation for the evaluation method is desirable. To this end, computationally simpler

calculations of P (Sn = sn|λ) can be obtained by using either the forward equation,

or the backward equation or a combination of the two.

Starting with the forward equation, the evaluation problem can be solved as follows:

P (Sn = sn|λ) =
∑
i∈S

P (Sn = sn, Xn = i|λ) ..... by (2.9)

=
∑
i∈S

Fn(i) , (3.2)

where the last step is obtained using equation (2.12), and Fn(i) is obtained recursively

(as described in Section 2.3.1) for each i ∈ S.

Alternatively, by using the backward equation, the evaluation problem can be solved

in the following way:

P (Sn = sn|λ) =
∑
i∈S

P (S1 = s1, . . . , Sn = sn, X1 = i|λ) ..... by (2.9)

=
∑
i∈S

P (S1 = s1, . . . , Sn = sn|X1 = i, λ)P (X1 = i|λ) ..... by (2.11)

=
∑
i∈S

P (S1 = s1|X1 = i, λ)P (S2 = s2, . . . , Sn = sn|S1 = s1, X1 = i, λ) pi

..... by (2.11)

=
∑
i∈S

bi,s1 P (S2 = s2, . . . , Sn = sn|X1 = i, λ) pi ..... by (2.5)

=
∑
i∈S

bi,s1 B1(i) pi , (3.3)

where the last step is obtained using equation (2.17), and B1(i) is obtained recursively

(as described in Section 2.3.2) for each i ∈ S.

If there are N states in the state space, either of the above two calculations would
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involve calculating nN quantities, with each of the last (n− 1)N of these quantities

(F2(i), . . . , Fn(i) or Bn−1(i), . . . , B1(i), for i = 1, 2, . . . , N) requiring a summation

over N terms. This is a far more economical calculation for P (Sn = sn|λ) than the

previous approach described, thereby highlighting the importance of the forward and

backward equations.

A further approach to calculate the evaluation method is to combine the forward and

backward equations as follows:

P (Sn = sn, Xk = i|λ)

= P (Sk = sk, Sk+1 = sk+1, . . . , Sn = sn, Xk = i|λ)

= P (Sk = sk, Xk = i|λ)

×P (Sk+1 = sk+1, . . . , Sn = sn|Sk = sk, Xk = i, λ) ..... by (2.11)

= P (Sk = sk, Xk = i|λ)

×P (Sk+1 = sk+1, . . . , Sn = sn|Xk = i, λ) ..... by (2.5)

= Fk(i)Bk(i) . (3.4)

It then follows that,

P (Sn = sn|λ) =
∑
i∈S

P (Sn = sn, Xk = i|λ)) ..... by (2.9)

=
∑
i∈S

Fk(i)Bk(i) . (3.5)

It should be noted that if k = n in the above, then by equation (2.20), equation (3.5)

is equivalent to (3.2). Similarly, by equation (2.16), if k = 1 then equation (3.5) is

equivalent to (3.3).

Using the above, P (Sn = sn|λ) can be determined by recursively using the forward

and backward equations to calculate Fk(i) from F1(i) and Bk(i) from Bn(i), for each

i ∈ S. These computations can then be stopped once both Fk(i) and Bk(i) have been

calculated for each i ∈ S.
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3.1.3 Illustrating the Evaluation Problem

This section aims to further supplement the evaluation method by revisiting the

example provided in Section 2.1.1 to explicitly illustrate the calculations required to

perform the evaluation method. These calculations, which are an expansion of what

is given in [41], will be based on the P and B matrices given in Section 2.1.2, and

the vector of initial probabilities a =
[

0.8 0.2
]
. In addition, suppose that the first

three items produced by the machine are ‘satisfactory’, ‘defective’ and ‘satisfactory’.

Therefore, using the notation from Section 2.1.2, the observed signal sequence for the

first 3 signals will be s3 = (ν1, ν2, ν1).

The forward equations are recursively calculated as follows:

F1(1) = (0.8)(0.99) = 0.7920

F1(2) = (0.2)(0.96) = 0.1920

F2(1) = (0.01) {(0.7920)(0.9) + (0.1920)(0)} = 0.0071

F2(2) = (0.04) {(0.7920)(0.1) + (0.1920)(1)} = 0.0108

F3(1) = (0.99) {(0.0071)(0.9) + (0.0108)(0)} = 0.0064

F3(2) = (0.96) {(0.0071)(0.1) + (0.0108)(1)} = 0.0111 .

The calculations for the backward equations are as follows:

B3(1) = 1

B3(2) = 1

B2(1) = (0.99)(1)(0.9) + (0.96)(1)(0.1) = 0.9870

B2(2) = (0.99)(1)(0) + (0.96)(1)(1) = 0.9600

B1(1) = (0.01)(0.9870)(0.9) + (0.04)(0.9600)(0.1) = 0.0127

B1(2) = (0.01)(0.9870)(0) + (0.04)(0.9600)(1) = 0.0384 .
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In Section 3.1.2 three approaches using the forward and backward equations to solve

the evaluation problem were given (see equations (3.2), (3.3) and (3.5)). For com-

pleteness, all 3 of these methods are shown below:

P (S3 = s3|λ) =
2∑
i=1

F3(i) = 0.0064 + 0.0111 = 0.0174 or,

P (S3 = s3|λ) =
2∑
i=1

bi,1B1(i) pi (recall that bi,1 = P (Sk = ν1|Xk = i))

= (0.99)(0.0127)(0.8) + (0.96)(0.0384)(0.2)

= 0.0174 or,

P (S3 = s3|λ) =
2∑
i=1

F2(i)B2(i)

= (0.0071)(0.9870) + (0.0108)(0.9600)

= 0.0174 .

If the first three items produced were all ‘satisfactory’ - denoted as s∗3 = (ν1, ν1, ν1),

then P (S3 = s∗3|λ) is calculated, using the same methodology as above, to be 0.9464 .

These probabilities can be interpreted in one of two ways.

If the signal sequence has already been observed, then the evaluation probability can

be viewed as the probability that the HMM λ produced the signal sequence. If the

signal sequence which was observed is s3, there would be little confidence that the

parameters specified for λ are accurate. However, an observed signal sequence of s∗3

would provide more comfort that the parameters of λ are accurately specified.

The second way the probabilities from the evaluation method can be interpreted is

as follows. If there is confidence in the accuracy of the specified HMM λ, and if the

signal sequence has not yet been observed, then the probability that the first three

items produced will be ‘satisfactory’, ‘defective’ and ‘satisfactory’ is 1.74% ; while

the probability that the first three items produced will all be ‘satisfactory’ is 94.64% .
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Based on these calculations, the machine owners can have a view regarding the quality

to expect for the first three products.

3.2 The Decoding Problem

3.2.1 Describing the Decoding Problem

Given a HMM with parameter set λ and a sequence of n signals which have been

observed, sn = (s1, . . . , sn), the decoding problem entails finding the most likely

sequence for the n states which have been visited by the model. Solving the decoding

problem is then a matter of unravelling the hidden part of the model.

Since the sequence of states produced by the model is at no point observable, no

‘correct’ state sequence can be found. Instead, optimisation techniques are used to

maximise likelihood functions, thereby finding an optimal sequence of states which

best describes the sequence of signals which has been observed. Unlike the evaluation

problem, more than one approach to solve the decoding problem is possible which

could potentially lead to solutions which are not necessarily the same (i.e. different

estimated state sequences). In Section 3.2.2, two possible approaches are contrasted.

3.2.2 Solving the Decoding Problem

This section will discuss the derivations of two possible methods which can be used

to solve the decoding problem. These approaches have been adapted from [33], [37],

[38] and [41].

To begin, let

X̂k denote the optimal estimator of Xk ∈ S.

As has been the case in previous sections, assume that the first n signals have been

observed and that this observed signal sequence is denoted by sn = (s1, . . . , sn).

39



The task of this section is then to find X̂k for each k = 1, 2, . . . , n .

The first optimisation technique looks to maximise the number of individual states

which are correctly predicted. This entails finding the state at each time point which

is individually the most probable given the sequence of n observed signals; that is,

finding the state i ∈ S which maximises the likelihood

P (Xk = i|Sn = sn, λ) ,

for each k = 1, 2, . . . , n .

Described mathematically, X̂k is derived as follows for this optimisation technique:

X̂k = arg max
i∈S

P (Xk = i|Sn = sn, λ) , for each k = 1, 2, . . . , n .

Now, notice that

P (Xk = i|Sn = sn, λ) =
P (Sn = sn, Xk = i|λ)

P (Sn = sn|λ)
..... by (2.11)

=
Fk(i)Bk(i)∑

j∈S
Fk(j)Bk(j)

, (3.6)

where the last step of the above was obtained using equations (3.4) and (3.5).

By noting that
∑
j∈S

Fk(j)Bk(j) is constant for each i ∈ S, it follows that given Sn = sn,

X̂k = arg max
i∈S
{Fk(i)Bk(i)} (3.7)

for each k = 1, 2, . . . , n .

While (3.7) maximises the number of individually correct states, the ‘optimal’ state

sequence produced by (3.7) may not always result in an attainable state sequence.

To see this, suppose that the HMM has a zero state transition probability between

the two states i and j (for some i, j ∈ S), that is pij = 0. This technique cannot

guarantee that if X̂k = i then X̂k+1 6= j for all k = 1, 2, . . . , (n − 1) in the ‘optimal’
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state sequence. Similarly, pij = 1 (for some i, j ∈ S) may also result in an impossible

‘optimal’ state sequence if this technique is used.

The above problem occurs due to the fact that the solution in (3.7) determines the

most probable state individually at every time point without regarding the probability

of state sequences as a whole. However, the solution given in (3.7) can at times still

prove useful as these problematic situations (where pij = 0 or pij = 1) will not always

occur in practice. Also this technique is computationally quite simple to perform

once the forward and backward equations have been calculated for each time point.

A solution to the decoding problem which overcomes the shortfalls of the above

method would be appealing. To this end, the most widely used technique in the

field of HMMs is to regard the entire state sequence as a single entity. Using this

approach, the solution to the decoding problem will be the state sequence (i1, . . . , in)

which maximises

P (Xn = (i1, . . . , in)|Sn = sn, λ) ,

a likelihood containing the entire joint state sequence.

Now, by equation (2.11), the following holds:

P (Xn = (i1, . . . , in)|Sn = sn, λ) =
P (Xn = (i1, . . . , in),Sn = sn|λ)

P (Sn = sn|λ)
. (3.8)

Since the calculation of P (Sn = sn|λ) does not depend on the state sequence which

has been visited (see Section 3.1), the problem of interest is equivalent to finding the

state sequence (i1, . . . , in) which will maximise

P (Xn = (i1, . . . , in),Sn = sn|λ) . (3.9)

In other words, the optimal state sequence for this approach is defined as

(X̂1, X̂2, . . . , X̂n) = arg max
i1,...,in

P (Xn = (i1, . . . , in),Sn = sn|λ)

where ik ∈ S for each k = 1, 2, . . . , n .
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For a given state sequence, the derivation of equation (3.1) in Section 3.1.2 showed

that

P (Xn = (i1, . . . , in),Sn = sn|λ) = bi1,s1 . . . bin,sn pi1 pi1,i2 pi2,i3 . . . pin−1,in . (3.10)

Using this, the likelihood expressed in (3.9) can be calculated for each possible state

sequence, and in so doing, the optimal state sequence (that is, the state sequence

which maximises (3.9)) can be found. If there are N states in the state space, the

total number of possible state sequences is Nn. This number will grow rapidly if either

n or N is large and so, for this reason, a less computationally intensive approach is

required.

To this end, typically the Viterbi algorithm is used for this purpose.

The Viterbi algorithm (VA) is defined in [24] as a “recursive optimal solution to

the problem of estimating the state sequence of a discrete-time finite-state Markov

process observed in memoryless noise”. The VA then seems well suited to finding the

hidden state sequence of a HMM as this state sequence is a Markov process while

the signal sequence, conditional on the state sequence, is memoryless. The algorithm

however is by no means restricted to the field of the HMM. In fact, the VA was

originally proposed in [44] as an algorithm for decoding convolutional codes and, as

mentioned in [25], has since been extended and is used in numerous applications

within the fields of (amongst others) decoding, communications (such as deep-space

communication, mobile communication and digital video broadcasting) and of course

HMMs. Within the field of HMMs it has been widely used in a variety of pattern

recognition problems, particularly for speech recognition (see for example [37]) and

computational biology (where the VA is used to locate genes in DNA sequences - see

for example [29]). While the VA extends beyond the field of HMMs, in order to keep

the research presented in this dissertation relevant, further discussions of the VA will

be within the context of the HMM.

Returning to the topic of interest for this section, recall that, in order to solve the
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decoding problem, it is required that the VA be called upon to determine the state

sequence which will maximise (3.9). A description on how the algorithm is performed

will be provided next. Thereafter it will be proven that the state sequence which is

determined by the VA is indeed the optimal state sequence which maximises (3.9).

It will also be shown that this optimal state sequence overcomes the problem which

was experienced when (3.7) was used to determine the optimal state sequence (that

being that the ‘optimal’ state sequence may in actual fact be an unattainable state

sequence).

To begin, for k ∈ {2, 3, . . . , n}, let

Vk(j) = max
i1,...,ik−1

P{Xk−1 = (i1, . . . , ik−1), Xk = j,Sk = sk|λ} . (3.11)

This equation is none other than the Viterbi equation which was discussed in Section

2.3.3 (see equation (2.22)). In equation (2.23) it is shown that

Vk(j) = bj,sk max
i∈S
{pij Vk−1(i)} . (3.12)

Now if k = 1 then, for each j ∈ S, equation (3.12) is reduced to

V1(j) = P (X1 = j, S1 = s1|λ)

= P (X1 = j|λ)P (S1 = s1|X1 = j, λ) ..... by (2.11)

= pj bj,s1 . (3.13)

In order to perform the VA, for k ∈ {2, 3, . . . , n}, let

ψk(j) be the state that maximised {pij Vk−1(i)} in the calculation of Vk(j).

That is, let

ψk(j) = arg max
i∈S
{pij Vk−1(i)}.

The VA is then performed by recursively working forward, using equations (3.12) and

(3.13), to calculate the following:
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V1(j) = pj bj,s1 for each j ∈ S

V2(j) = bj,s2 max
i∈S
{pij V1(i)} for each j ∈ S

ψ2(j) = arg max
i∈S
{pij V1(i)} for each j ∈ S

V3(j) = bj,s3 max
i∈S
{pij V2(i)} for each j ∈ S

ψ3(j) = arg max
i∈S
{pij V2(i)} for each j ∈ S

...

Vn(j) = bj,sn max
i∈S
{pij Vn−1(i)} for each j ∈ S

ψn(j) = arg max
i∈S
{pij Vn−1(i)} for each j ∈ S.

For a given k and j, there is a possibility in the above that ψk(j) has more than one

value. If this occurs, then there exists multiple optimal state sequences which will

result in equivalent likelihood values.

Finding the optimal state sequence is then done by recursively working backwards

through the above as follows:

X̂n = arg max
j∈S
{Vn(j)}

X̂n−1 = ψn(X̂n)

X̂n−2 = ψn−1(X̂n−1)
...

X̂2 = ψ3(X̂3)

X̂1 = ψ2(X̂2) . (3.14)

The optimal state sequence, as determined by the Viterbi Algorithm, will then be

(X̂1, X̂2, . . . , X̂n).

The above process can be explained as follows.
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Firstly define the likelihood score to be the value of likelihood (3.9) for a given state

sequence. Now, for each state in the state space, the initial likelihood score (that is

the value of the likelihood if n = 1) is calculated.

For a given state j ∈ S, at time 2 one must then find the most likely transition to j

and update the likelihood score (for when n = 2) for this transition. This is done by

multiplying the transition probabilities of all the transitions coming into state j with

their corresponding previous likelihood scores, and selecting the transition with the

maximum product to be the most likely transition to j. This most likely transition

to state j, at time 2, would then be (ψ2(j), j).

The likelihood score for the most likely transition to state j at time 2 is then obtained

by multiplying the above maximum product by bj,s2 . This updated likelihood score is

none other than V2(j) - which makes sense since, by definition, V2(j) = max
i1∈S

P{X1 =

i1, X2 = j,S2 = s2|λ} .

The above is repeated for all j ∈ S. This process is then performed recursively until

time n is reached. In this way, for each time point k = 2, 3, . . . , n and each state

j ∈ S, ψk(j) - the state which will give rise to the most likely transition into state j

at time k - is determined.

At the end of the recursive process, the final state in the optimal state sequence (X̂n)

is found by examining which state at time n gives rise to the maximum likelihood

score at time n. The optimal state at time n−1 (X̂n−1) is then chosen to be the state

which was determined as the most likely to transition into X̂n at time n. This state

was of course determined during the forward recursions as ψn(X̂n) .

Similarly, the optimal state at time n− 2 is then chosen to be ψn−1(X̂n−1), the state

which was determined during the forward recursions as the most likely to transition

into X̂n−1 at time n− 1. This process is continued until the optimal state at time 1

is determined, thereby giving rise to the optimal state sequence as determined by the

VA.
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The above has detailed the procedure of performing the VA in the context of HMMs.

Three theorems are presented next to further expand the VA. As the basis of these

theorems are only outlined in literature (see for example [41]), the formal proofs to

these theorems have been explicitly derived by the author of this dissertation. These

are presented below.

To begin, a question of interest regarding the VA is whether it achieves the objective

initially desired - that is, does the VA find the state sequence which will maximise

(3.9). This is indeed the case, as is formally proven in Theorem 1 below.

Theorem 1: The optimal state sequence derived from the Viterbi Algorithm is the

state sequence which maximises the likelihood

P (Xn = (i1, . . . , in),Sn = sn|λ) ,

where ik ∈ S for each k = 1, 2, . . . , n .

Proof: Firstly assume that (X̂1, X̂2, . . . , X̂n) is the state sequence which is generated

by the VA (defined in equation (3.14)).

Now, by (3.10), for a given state sequence (i1, . . . , in), the likelihood of interest

can be calculated as follows

P (Xn = (i1, . . . , in),Sn = sn|λ) = bi1,s1 . . . bin,sn pi1 pi1,i2 . . . pin−1,in .

Thus, if the VA does indeed maximise the likelihood of interest, then the fol-

lowing will hold

max
i1,...,in

P{Xn = (i1, . . . , in),Sn = sn|λ} = bX̂1,s1
. . . bX̂n,sn

pX̂1
pX̂1,X̂2

. . . pX̂n−1,X̂n
.

(3.15)
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To prove that this is the case, consider the following:

max
i1,...,in

P{Xn = (i1, . . . , in),Sn = sn|λ}

= max
j∈S

max
i1,...,in−1

P{Xn−1 = (i1, . . . , in−1), Xn = j,Sn = sn|λ}

= max
j∈S

Vn(j) ..... by (3.11)

= Vn(X̂n) ..... since, by (3.14), X̂n = arg max
j∈S
{Vn(j)}

= bX̂n,sn
max
i∈S
{pi,X̂n

Vn−1(i)} ..... by (3.12)

= bX̂n,sn
pψn(X̂n),X̂n

Vn−1(ψn(X̂n))

(since ψn(j) = arg max
i∈S
{pij Vn−1(i)}, it follows that

ψn(X̂n) = arg max
i∈S
{pi,X̂n

Vn−1(i)})

= bX̂n,sn
pX̂n−1,X̂n

Vn−1(X̂n−1) ..... by (3.14)

= bX̂n,sn
pX̂n−1,X̂n

bX̂n−1,sn−1
max
i∈S
{pi,X̂n−1

Vn−2(i)} ..... by (3.12)

= bX̂n,sn
pX̂n−1,X̂n

bX̂n−1,sn−1
pψn−1(X̂n−1),X̂n−1

Vn−2(ψn−1(X̂n−1))

(since ψn−1(X̂n−1) = arg max
i∈S
{pi,X̂n−1

Vn−2(i)})

= bX̂n,sn
pX̂n−1,X̂n

bX̂n−1,sn−1
pX̂n−2,X̂n−1

Vn−2(X̂n−2) ..... by (3.14)

...

= bX̂n,sn
. . . bX̂2,s2

pX̂n−1,X̂n
. . . pX̂1,X̂2

V1(X̂1)

= bX̂n,sn
. . . bX̂2,s2

bX̂1,s1
pX̂n−1,X̂n

. . . pX̂1,X̂2
pX̂1

..... by (3.13).

Thus, equation (3.15) holds - thereby proving that the state sequence which is

derived from the Viterbi Algorithm is indeed the state sequence which max-

imises the likelihood P (Xn = (i1, . . . , in),Sn = sn|λ) .
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The final comments which need to be made are those surrounding the attainability

of the optimal state sequence calculated using the VA.

Recall, from earlier in the section, that it cannot be guaranteed that the ‘optimal’

state sequence calculated by (3.7) will indeed be an attainable state sequence. The

optimal state sequence produced by the VA will however always be an attainable one,

as is proven by the two theorems below.

Theorem 2: If (X̂1, X̂2, . . . , X̂n) is the optimal state sequence determined by the

VA, pi,j = 0 (for some i, j ∈ S) and X̂k = i (for some k = 1, 2, . . . , n− 1), then

X̂k+1 6= j .

Proof: Recall that the underlying assumption for this section (which was stated at

the beginning of the section) is that the first n signals generated by the HMM

λ have been observed.

Now, since a single signal is generated each time the HMM enters a new state,

the HMM must have followed some state path to have generated the signal

sequence which has been observed. That is, there must exist a least one state

sequence (i1, . . . , in) such that P (Xn = (i1, . . . , in)|Sn = sn, λ) > 0 , where

i1, i2, . . . , in ∈ S.

It then follows, by equation (3.8), that P{Xn = (i1, . . . , in),Sn = sn|λ} > 0 for

at least one state sequence (i1, . . . , in). Thus,

max
i1,...,in

P{Xn = (i1, . . . , in),Sn = sn|λ} > 0 . (3.16)

Since (X̂1, X̂2, . . . , X̂n) is the optimal state sequence determined by the VA,

equation (3.15) holds true (validated in the proof of Theorem 1), that is

max
i1,...,in

P{Xn = (i1, . . . , in),Sn = sn|λ} = bX̂1,s1
. . . bX̂n,sn

pX̂1
pX̂1,X̂2

. . . pX̂n−1,X̂n
.

Now, assume that X̂k+1 = j . Then, from the hypothesis of the theorem, it

follows that pX̂k,X̂k+1
= pi,j = 0 for some k = 1, 2, . . . , n− 1 . This then implies,
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from the above equation, that

max
i1,...,in

P{Xn = (i1, . . . , in),Sn = sn|λ} = 0 .

This however results in a contradiction of equation (3.16). Therefore the as-

sumption that X̂k+1 = j must be incorrect.

Hence X̂k+1 6= j, thereby completing the proof.

Theorem 3: If (X̂1, X̂2, . . . , X̂n) is the optimal state sequence determined by the

VA, pi,j = 1 (for some i, j ∈ S) and X̂k = i (for some k = 1, 2, . . . , n− 1), then

X̂k+1 = j .

Proof: Using the same arguments as was used in the proof for Theorem 2, equation

(3.16) can once again be established. Also, as was stated in the proof for

Theorem 2, since (X̂1, X̂2, . . . , X̂n) is the optimal state sequence determined by

the VA, equation (3.15) holds true.

Now, assume that X̂k+1 6= j . Then, from the hypothesis of the theorem, it

follows that pX̂k,X̂k+1
= 0 for some k = 1, 2, . . . , n− 1 . This, by equation (3.15),

implies that

max
i1,...,in

P{Xn = (i1, . . . , in),Sn = sn|λ} = 0 .

This however results in a contradiction of equation (3.16). Therefore the as-

sumption that X̂k+1 6= j must be incorrect.

Hence, X̂k+1 = j , thereby completing the proof.

The above two theorems show that the VA will always calculate an attainable optimal

state sequence.

3.2.3 Illustrating the Decoding Problem

An illustrative example showing calculations for the decoding problem is provided in

this section. As the Viterbi algorithm is better illustrated in a 3 state HMM than by
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the 2 state HMM provided in example 2.1.1, consider the HMM (adapted from [40])

λ = (P,B, a), where

P =

 0.8 0.05 0.15
0.2 0.6 0.2
0.2 0.3 0.5

 , B =

 0.1 0.9
0.8 0.2
0.3 0.7

 , a =
(

1
3

1
3

1
3

)
.

Further suppose that 3 signals have been observed, producing the observed signal

sequence s3 = (ν2, ν1, ν1).

The calculations illustrating the VA, which are an expansion of those in [40], are as

follows:

For k = 1,

V1(1) = p1 b12 =
1

3
(0.9) = 0.300

V1(2) = p2 b22 =
1

3
(0.2) = 0.067

V1(3) = p3 b32 =
1

3
(0.7) = 0.233.

For k = 2,

V2(1) = (b11) max
i∈S
{pi1V1(i)} = (0.1) max{(0.8)(0.300), (0.2)(0.067), (0.2)(0.233)}

= (0.1) max{0.2400, 0.0133, 0.0467} = (0.1)(0.2400) = 0.0240

Ψ2(1) = arg max
i∈S
{pi1 V1(i)} = 1

V2(2) = (b21) max
i∈S
{pi2V1(i)} = (0.8) max{((0.05)(0.300), (0.6)(0.067), (0.3)(0.233)}

= (0.8) max{0.0150, 0.0400, 0.0700} = (0.8)(0.0700) = 0.0560

Ψ2(2) = arg max
i∈S
{pi2 V1(i)} = 3

V2(3) = (b31) max
i∈S
{pi3V1(i)} = (0.3) max{((0.15)(0.300), (0.2)(0.067), (0.5)(0.233)}

= (0.3) max{0.0450, 0.0133, 0.1167} = (0.3)(0.1167) = 0.0350

Ψ2(3) = arg max
i∈S
{pi3 V1(i)} = 3.
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For k = 3,

V3(1) = (b11) max
i∈S
{pi1V2(i)} = (0.1) max{(0.8)(0.0240), (0.2)(0.0560), (0.2)(0.0350)}

= (0.1) max{0.0192, 0.0112, 0.0070} = (0.1)(0.0192) = 0.0019

Ψ3(1) = arg max
i∈S
{pi1 V2(i)} = 1

V3(2) = (b21) max
i∈S
{pi2V2(i)} = (0.8) max{(0.05)(0.0240), (0.6)(0.0560), (0.3)(0.0350)}

= (0.8) max{0.0012, 0.0336, 0.0105} = (0.8)(0.0336) = 0.0269

Ψ3(2) = arg max
i∈S
{pi2 V2(i)} = 2

V3(3) = (b31) max
i∈S
{pi3V2(i)} = (0.3) max{(0.15)(0.0240), (0.2)(0.0560), (0.5)(0.0350)}

= (0.3) max{0.0036, 0.0112, 0.0175} = (0.3)(0.0175) = 0.0053

Ψ3(3) = arg max
i∈S
{pi3 V2(i)} = 3.

Working backwards using the above,

X̂3 = arg max
j∈S
{V3(j)} = arg max{0.0019, 0.0269, 0.0053} = 2

X̂2 = Ψ3(X̂3) = Ψ3(2) = 2

X̂1 = Ψ2(X̂2) = Ψ2(2) = 3.

And so the most likely state sequence, as determined by the Viterbi Algorithm, is

(3, 2, 2).

It was proven in Section 3.2.2 that this is the state sequence which will maximise the

likelihood (3.9) for the observed signal sequence s3 = (ν2, ν1, ν1). The actual value of

the likelihood is calculated using equation (3.10) as follows

P (X3 = (3, 2, 2),S3 = s3|λ) = (b32) (b21) (b21) (p3) (p32) (p22)

= (0.7) (0.8) (0.8) (1/3) (0.3) (0.6)

= 0.0269 . (3.17)
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At first glance this probability may seem low. Recall however that there are 27 pos-

sible state sequences and 8 possible signal sequences on which the above probability

is defined. Due to this large set of possible values, it should not be unexpected that

the probability of an individual state sequence and an individual signal sequence oc-

curring be low.

Conditional on the signal sequence which has been observed, the probability that the

Viterbi state sequence is indeed the state sequence which has visited is calculated,

using equation (3.8), as follows

P (X3 = (3, 2, 2)|S3 = s3, λ) =
P (X3 = (3, 2, 2),S3 = s3|λ)

P (S3 = s3|λ)

=
0.0269

0.0825

= 0.3259,

where P (S3 = s3|λ) was calculated using the evaluation method. As expected, this

conditional probability is notably higher than the probability in equation (3.17).

Recall from Section 3.2.2 that the ‘optimal’ state sequence can also be determined by

maximising the number of individual states which are correctly predicted, that is

X̂k = arg max
i∈S

P (Xk = i|S3 = s3, λ) , for each k = 1, 2, 3 .

By deriving the forward and backward equations, and by making use of equation

(3.7), the optimal state sequence for this optimisation technique is calculated to be

(3,2,2). For this example, this optimal state sequence is equivalent to the optimal

state sequence obtained through the Viterbi Algorithm.
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3.3 The Learning Problem

3.3.1 Describing the Learning Problem

In most applications, the values for the parameters of a given HMM, λ = (P,B, a),

are unknown and therefore need to be estimated. The purpose of the learning prob-

lem is then to determine an appropriate methodology to optimally estimate these

unknown parameters for the HMM. This is typically done by finding the parameter

set which will maximise some likelihood of the observed signal sequence. That is, the

learning method looks to optimally estimate the model parameters of λ so as to best

describe the signal sequence which has been observed.

Depending on the application, different model specifications may be considered for the

HMM. While the same broad principals may be used to estimate the model parame-

ters, these may need modifying depending on the specified HMM. As such, variations

of solving the learning problem may need to be considered according to the model

specification of the HMM which is assumed.

Due to the rich literature available on this topic, details on how the learning problem

can be resolved will be covered in the next chapter. For convenience however, a brief

summary of this is given below.

For the general case of the time homogeneous, discrete-time, discrete-state and discrete-

signal HMM which has been discussed in the previous sections of this dissertation,

an iterative algorithm known as the Baum-Welch algorithm (BWA) is commonly ref-

erenced by the literature as a solution to the learning problem. This algorithm will

be detailed in Section 4.1.

In certain applications of the HMM it may be convenient to assume that signals are

emitted according to a familiar probability distribution (for a example a Poisson dis-

tribution or a binomial distribution). These HMMs were introduced as distribution

HMM in Section 2.2. As a result of the differing signal distributions, the classical
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BWA must be adapted in order to estimate the unknown signal probabilities for these

distribution HMMs. An overview regarding this is provided in Section 4.1.4.

An alternative approach (to the BWA), of optimally estimating the parameters for

the HMM is introduced in Section 4.2. This approach looks to maximise the likeli-

hood function directly through the use of numerical techniques.

In summary, since in most applications of the HMM the exact values for the parame-

ters of λ are unknown, the learning method is crucial as it looks to optimally estimate

these unknown parameters based on the signal sequence which has been observed.

3.4 Other Statistical Properties of Interest

Additional statistical properties of the HMM may be of interest in many applica-

tions. These include marginal distributions and moments, as well as calculating the

probabilities that certain states will be visited at future time points and that certain

signals will be emitted at future time points. The work presented in this section is

adapted predominantly from [41] and [46].

3.4.1 Marginal Distributions

Since it is assumed that the underlying hidden state process of a HMM is a Markov

chain (which is in no way driven by the signals which are emitted), the marginal

distribution for the states will follow the results which were given in Section 1.4.

That is, the marginal probability pi(k) = P (Xk = i), for i ∈ S and k ∈ {1, 2, . . . , n},
can be calculated from the initial state probabilities, a = (p1, p2, . . . , pi, . . .) , and the

one-step state transition probabilities, P, by making use of equation (1.8). Of course,

if the underlying Markov chain is stationary then the marginal distribution for the

states is simply pi(k) = πi for each i ∈ S.

The marginal distribution for Sk, the signal emitted at time k ∈ {1, 2, . . . , n}, is as
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follows

P (Sk = νm) =
∑
i∈S

P (Xk = i)P (Sk = νm|Xk = i) ..... by (2.9) and (2.10)

=
∑
i∈S

pi(k) bim (3.18)

for each νm ∈ δ.

In some applications, the bivariate marginal distributions may be required. These can

be derived by firstly noting that the joint distribution of a set of random variables Vi

is given by

P (V1, V2, . . . , Vz) =
Z∏
i=1

P (Vi | pa(Vi)) ,

where pa(Vi) denotes all the ‘parents’ of Vi in the set V1, V2, . . . , Vz (i.e., the variables

on which Vi is dependant on); see for example [19], p. 250.

Considering the four random variables Sk, Sk+h, Xk and Xk+h for positive integer

h, it can be seen that pa(Xk) is empty, pa(Sk) = {Xk}, pa(Xk+h) = {Xk} and

pa(Sk+h) = {Xk+h}. It therefore follows that

P (Sk, Sk+h, Xk, Xk+h) = P (Xk)P (Sk|Xk)P (Xk+h|Xk)P (Sk+h|Xk+h).

Hence

P (Sk = νp , Sk+h = νq)

=
∑
i∈S

∑
j∈S

P (Sk = νp, Sk+h = νq, Xk = i,Xk+h = j)

=
∑
i∈S

∑
j∈S

P (Xk = i)P (Sk = νp |Xk = i)P (Xk+h = j |Xk = i)P (Sk+h = νq |Xk+h = j)

=
∑
i∈S

∑
j∈S

pi(k) bip pij(h) bjq ,

where P(h) = {pij(h)} = Ph by equation (1.6).

Similarly, P (Xk = i,Xk+h = j) = pi(k)pij(h) .

Expressions for higher-order marginal distributions can similarly be derived.
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3.4.2 Moments

For certain applications of the HMM it may be necessary to calculate moments for

either the state or signal for a given time point. This is easy enough for the general

HMM described thus far as the marginal distributions are known and can be computed

as shown in Section 3.4.1.

For the case of the distribution HMMs described in Section 2.2, it is often convenient

to use the following to express the moments for the signal emitted at time k:

E(Sk) =
∑
i∈S

E(Sk |Xk = i)P (Xk = i) =
∑
i∈S

pi(k) E(Sk |Xk = i) .

More generally, the following analogous results hold:

E(g(Sk)) =
∑
i∈S

pi(k) E(g(Sk) |Xk = i)

E(g(Sk, Sk+h)) =
∑
i∈S

∑
j∈S

E(g(Sk, Sk+h) |Xk = i,Xk+h = j) pi(k) pij(h) .

So, for example, if it is assumed that the signal of a HMM is emitted from state i

by the (univariate) state-dependent distribution bi(s), and that µi and σ2
i denote the

mean and variance of the distribution bi, then it can easily be verified using the above

(see [46] for details) that:

E(Sk) =
∑
i∈S

pi(k)µi

E(S2
k) =

∑
i∈S

pi(k) (σ2
i + µ2

i )

Var(Sk) =

[∑
i∈S

pi(k) (σ2
i + µ2

i )

]
−

[∑
i∈S

pi(k)µi

]2
E(Sk, Sk+h) =

∑
i∈S

∑
j∈S

µi µj pi(k) pij(h) .

Using the above, Cov(Sk, Sk+h) and Corr(Sk, Sk+h) can also easily be calculated.
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3.4.3 Forecasting Future States and Signals

Forecasting distributions for both the signals and states of the general HMM described

thus far are derived in this section.

To begin, firstly assume that n signals have been observed. Now, notice that for each

j ∈ S

P (Xn = j|Sn = sn, λ) =
P (Sn = sn, Xn = j|λ)

P (Sn = sn|λ)
..... by (2.11)

=
Fn(j)∑

l∈S
Fn(l)

..... by (2.12) and (3.2).

This is consistent with equation (3.6) in Section 3.2.2 since, by definition, Bn(i) = 1

for each i ∈ S.

The forecasting distribution for the state visited at time n+h, where positive integer

h is termed the forecast horizon, can be derived as follows:

P (Xn+h = j|Sn = sn, λ)

=
∑
i∈S

P (Xn+h = j,Xn = i|Sn = sn, λ) ..... by (2.9)

=
∑
i∈S

P (Xn+h = j|Xn = i,Sn = sn, λ)P (Xn = i|Sn = sn, λ) ..... by (2.11)

=
∑
i∈S

P (Xn+h = j|Xn = i, λ)P (Xn = i|Sn = sn, λ) ..... by (2.1)

=
1∑

l∈S
Fn(l)

∑
i∈S

pij(h)Fn(i) . (3.19)

The forecasting distribution for the signal emitted at time n + h can be derived as

follows:
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P (Sn+h = νm|Sn = sn, λ)

=
∑
i∈S

P (Sn+h = νm, Xn+h = i|Sn = sn, λ) ..... by (2.9)

=
∑
i∈S

P (Sn+h = νm|Xn+h = i,Sn = sn, λ)P (Xn+h = i|Sn = sn, λ) ..... by (2.11)

=
∑
i∈S

P (Sn+h = νm|Xn+h = i, λ)P (Xn+h = i|Sn = sn, λ) ..... by (2.3)

=
∑
i∈S

bim P (Xn+h = i|Sn = sn, λ) , (3.20)

where P (Xn+h = i|Sn = sn, λ) can be calculated using the equation (3.19) for each i ∈ S.
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Chapter 4

Solving the Learning Problem for
the Hidden Markov Model

This chapter will review how the learning problem can be solved for the HMM. Recall

from Section 3.3 that this involves estimating unknown parameters for a given HMM.

To begin, parameter estimation for the Markov Chain is briefly discussed. In partic-

ular, if there is a relatively lengthy history of transitions available, then statistical

inference for the transition probabilities can be made. For example, the maximum

likelihood estimate of pij is given (see [1]) by:

p̂ij =
T∑
t=2

nij(t) /
T−1∑
t=1

ni(t) (4.1)

where nij(t) is the number individuals which are in state i at time t− 1

and state j at time t,

ni(t) is the number of individuals which are in state i at time t,

T is the last time point of available historical observations, and

t = 1 is the time at which the process begins.

And so a relatively simple analytical solution exists to find the maximum likelihood

estimate of pij for the Markov chain. Section 4.1 presents an analytical approach
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for estimating the parameters of the time homogeneous, discrete-time, discrete-state

and discrete-signal HMM discussed in the previous sections of this dissertation. This

approach, also based on likelihood maximisation, is an iterative algorithm which is

commonly referenced in the literature as the Baum-Welch algorithm (BWA). As shall

be seen in Section 4.1, while the BWA does indeed provide an analytical solution to

parameter estimation for the HMM, this solution is considerably more complex than

the direct analytic parameter estimators for the Markov chain (equation (4.1)).

4.1 The Baum-Welch Algorithm

4.1.1 Describing the Baum-Welch Algorithm

Before detailing the BWA, a brief historical overview (adapted from [35]) is provided.

The algorithm was developed through a series of papers ([5], [6], [7], [8] and [9]) pub-

lished by L.E. Baum and his co-workers between 1966 and 1972. The name Welch

seems to just appear as the joint author (with Baum) of a paper referenced only within

[9]. The algorithm is in fact an early example of the Expectation Maximization (EM)

algorithm (a description of the EM algorithm and the relationship of the BWA to the

EM algorithm are provided in Appendix B). It should be noted that some references

in the literature refer to the BWA as the forward-backward algorithm (since, as will

be shown, the previously defined forward and backward equations form part of the

algorithm).

The focus of this section will be to explain how the BWA is performed and to give an

intuitive overview as to why the algorithm works. Details of several implementation

considerations which should be taken into account when performing the algorithm

are also given in this section. These discussions are adapted primarily from [35] and

[37]. Rigorous mathematics supporting the algorithm and an explanation as to how

the BWA fits into the EM framework is provided in Appendix B. Since the math-

ematics of this relationship is often overlooked or only briefly accounted for in the
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literature, it is believed that the work presented in this appendix adds definite value

to the existing HMM literature.

The BWA can be described as follows: given the sequence of the first n observed

signals, sn = (s1, ..., sn) , the BWA looks to estimate the HMM parameters, λ =

(P,B, a) , such that the likelihood P (Sn = sn|λ) is maximised. The estimators cal-

culated from the BWA are thus maximum likelihood estimators.

Before detailing the algorithm, some additional equations and their computational

forms are required.

For k = 1, ..., n− 1 , notice that

P (Sn = sn, Xk = i,Xk+1 = j|λ)

= P (Sk = sk, Xk = i,Xk+1 = j, Sk+1 = sk+1, ..., Sn = sn|λ)

= P (Sk = sk, Xk = i|λ)P (Xk+1 = j, Sk+1 = sk+1, ..., Sn = sn|Sk = sk, Xk = i, λ)

..... by (2.11)

= P (Sk = sk, Xk = i|λ)P (Xk+1 = j|Sk = sk, Xk = i, λ)

×P (Sk+1 = sk+1, ..., Sn = sn|Sk = sk, Xk = i,Xk+1 = j, λ) ..... by (2.11)

= Fk(i) pij P (Sk+1 = sk+1, ..., Sn = sn|Xk+1 = j, λ) ..... by (2.1), (2.6), (2.12)

= Fk(i) pij P (Sk+1 = sk+1|Xk+1 = j, λ)

×P (Sk+2 = sk+2, ..., Sn = sn|Xk+1 = j, Sk+1 = sk+1, λ) ..... by (2.11)

= Fk(i) pij bj,sk+1
P (Sk+2 = sk+2, ..., Sn = sn|Xk+1 = j, λ) ..... by (2.5)

= Fk(i) pij bj,sk+1
Bk+1(j) . (4.2)
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For i, j ∈ S and νm ∈ δ, define

ξk(i, j) = P (Xk = i,Xk+1 = j|Sn = sn, λ) , and

γk(i) = P (Xk = i|Sn = sn, λ)

γk,m(i) =

{
γk(i) if sk = νm

0 if sk 6= νm .
(4.3)

Computational forms for ξk(i, j) and γk(i) are be derived as follows:

ξk(i, j) = P (Xk = i,Xk+1 = j|Sn = sn, λ)

=
P (Sn = sn, Xk = i,Xk+1 = j|λ)

P (Sn = sn|λ)
..... by (2.11)

=
Fk(i) pij bj,sk+1

Bk+1(j)

P (Sn = sn|λ)
..... by (4.2)

γk(i) = P (Xk = i|Sn = sn, λ)

=
Fk(i)Bk(i)

P (Sn = sn|λ)
..... by (3.6). (4.4)

The probability P (Sn = sn|λ) in the above may be calculated using any of the

representations of the evaluation calculation which were obtained in Section 3.1.2.

The following interpretations can be made about the above probabilities. While these

results are intuitive, they are also formally proven in Appendix B:

n∑
k=1

γk(i) = expected number of times the HMM is in state i during the first n

observed time points,

n−1∑
k=1

γk(i) = expected number of transitions from state i during the first n observed

time points,
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n−1∑
k=1

ξk(i, j) = expected number of transitions from state i into state j during the

first n observed time points,

n∑
k=1

γk,m(i) = expected number of times the HMM is in state i and emits signal νm

during the first n observed time points.

(4.5)

As the BWA is an iterative algorithm, define λ∗ = (P∗,B∗, a∗) to be the current

estimate of the parameters for the HMM, and λ̂ = (P̂, B̂, â) to be the re-estimate of

λ∗.

Also define

γ∗k(i), ξ
∗
k(i, j) and γ∗k,m(i) (4.6)

to be the values for γk(i), ξk(i, j) and γk,m(i) calculated using λ∗.

Then for i, j ∈ S and νm ∈ δ the elements of λ̂ can be calculated as follows:

p̂i = P (X1 = i|Sn = sn, λ
∗)

= γ∗1(i) (4.7)

p̂ij = proportion of times that, when the HMM is in state i, a transition into state

j occurs

=
expected number of transitions from state i to state j

expected number of transitions from state i

=

n−1∑
k=1

ξ∗k(i, j)

n−1∑
k=1

γ∗k(i)

(4.8)
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b̂jm = proportion of times that, when the HMM is in state j, signal νm is emitted

=
expected number of times the process is in state j and emits signal νm

expected number of times the process is in state j

=

n∑
k=1

γ∗k,m(j)

n∑
k=1

γ∗k(j)
. (4.9)

The expressions (4.7)-(4.9), evaluated at the current parameter estimates, provide

iteratively updated estimates of pi, pij and bjm .

As was mentioned in the introductory paragraphs of this section, the BWA is in fact an

example of the Expectation Maximization (EM) algorithm; that is the Baum-Welch

re-estimation equations (equations (4.7)-(4.9)) are identical to the iteration steps of

the EM algorithm applied to this particular problem. The mathematics showing this

are presented in Appendix B. This relationship is important as it allows conclusions

regarding the properties of the BWA estimates to be made - as is highlighted in the

paragraphs below.

An important result regarding the BWA is given next. This result is a property

of estimates which are derived from the EM algorithm and is thus inherited by the

BWA. The result, also proven in [8], states that for the BWA either:

1) λ∗ defines a critical value of the likelihood function, P (Sn = sn|λ), in which case

the above calculations will produce λ̂ = λ∗, or

2) model λ̂ results in a higher value in the likelihood function than λ∗ - that is

P (Sn = sn|λ̂) > P (Sn = sn|λ∗). Therefore a new model, λ̂, has been found

from which the observed signal sequence is more likely to have been produced.

Based on the above findings, if λ̂ is iteratively used in place of λ∗ in the re-estimation

calculations, the probability of the observed signal sequence being produced by the

estimated model is improved until convergence is achieved. The final result of this
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re-estimation procedure is then the maximum likelihood estimator. It should however

be noted that the BWA only leads to a local maxima of the likelihood function, and

that in most applications many local maxima are likely to exist. This however is the

best which can be done since, to the best of knowledge at the time of writing, no

analytical or numerical methods exist which will solve for the global maxima of the

likelihood P (Sn = sn|λ). Since only a local maxima can be found, the choice of the

initial values of λ used for the BWA will influence the final estimated values.

A pleasing property of the Baum-Welch re-estimation procedure is that at each it-

eration the following constraints of the HMM are met (provided of course that the

initial estimates chosen for the BWA satisfy these constraints):∑
i∈S

p̂i = 1

p̂i > 0, for i ∈ S, and∑
j∈S

p̂ij = 1, for i ∈ S

p̂ij > 0, for i, j ∈ S, and∑
vk∈δ

b̂ik = 1, for i ∈ S .

b̂ik ≥ 0, for i ∈ S and vk ∈ δ. (4.10)

So, based on the above, the final estimated values of λ produced by the BWA will

satisfy the HMM constraints given in equations (1.2), (1.3) and (2.7).

The property that p̂i > 0, p̂ij > 0 and b̂jk > 0 for each iteration is guaranteed from

the fact that forward and backward equations will be guaranteed to be greater than

or equal to zero for each observed time point, provided that the initial estimates of p̂i,

p̂ij and b̂jk are chosen to be greater than or equal to zero (see Section 2.3 for details

of this).

The remaining three properties of equation (4.10) can once again be proven by con-
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sidering how the Baum-Welch re-estimation equations can be derived by making use

of the EM algorithm. It is shown in Appendix B that when deriving the re-estimation

equations which will maximise P (Sn = sn|λ), Lagrange multipliers are used in the

EM algorithm to ensure that these constraints are satisfied for each iteration.

Incidentally, these three properties can also be proven algebraically by noting that if

the partition rule for probability (equation (2.9)) is applied to equation (4.3), then∑
j∈S

ξk(i, j) = γk(i) and
∑
νm∈δ

γk,m(j) = γk(j) is obtained, which when applied to equa-

tions (4.7)-(4.9) yield the desired properties.

Some further remarks regarding the BWA for HMMs are made below.

Initial probabilities estimated by the Baum-Welch algorithm

Recall that the vector a contains the initial state probabilities at time 1; that is a

will contain pi = P (X1 = i) for each i ∈ S.

Implementation of the BWA reveals that at a maximum of the likelihood, p̂i will tend

to 1 for some i ∈ S and p̂j will tend to 0 for the remaining j ∈ S. That is, if there are

m states in the state space, the value for a which will maximise the likelihood (and

therefore be estimated by the BWA) will tend to one of the m possible unit vectors.

This is also noted in [31] and [34] - see page 1055 and 305 respectively.

For certain applications of the HMM, this however may not be acceptable or intu-

itively correct. In such instances an approach used in the literature is to fix the initial

state probabilities at a pre-determined value and then use the BWA equations (equa-

tions (4.8) to (4.9)) to determine the state transition and signal probabilities which

will maximise the likelihood under these fixed initial state probabilities. This could

be done for a range of initial state probability values, with the final estimates for λ

being the parameter set which yields the highest likelihood value.
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The Baum-Welch algorithm for stationary HMMs

In some applications of the HMM it may be necessary to assume that the underlying

Markov chain is stationary (see equation (1.9)). Under this assumption however, the

BWA equations for the p̂i and p̂ij parameters (equations (4.7) to (4.8)) will no longer

hold. Practically, this can be seen from the fact that the BWA estimate of a (equation

(4.7)) is a unit vector (as discussed above). As such, the BWA estimates for p̂i and

p̂ij given in equations (4.7) to (4.8) will not respect stationarity.

It is shown in Appendix B (see Section B.2.2) that due to the additional constraint

implied by stationarity1, a different function needs to be maximised when performing

the EM algorithm - see equation (B.10). Analytical maximisation of (B.10) becomes

rather involved, even for a two state HMM (as is shown in [46]). It is therefore

suggested in [15] and [46] that, under the assumption of stationarity, numerical tech-

niques be incorporated into the BWA to maximise (B.10).

An alternative to using the BWA, that being direct maximisation of the likelihood

function, is discussed in Section 4.2.

4.1.2 Implementation Considerations for the Baum-Welch
Algorithm

The methodology required to perform the BWA was detailed in the previous sec-

tion. This section discusses implementation considerations which should be taken

into account when applying the BWA.

4.1.2.1 Scaling

In order to understand why scaling may be necessary for the implementation of the

BWA, consider the calculation of the forward equation, Fk(j) (equation (2.15)). Since

1This constraint is a = 1(Im−P+Um)−1 and was discussed in Section 1.4 (see equation (1.10)).
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the calculation of Fk(j) is an iterative procedure whereby the terms which are mul-

tiplied are all less than 1 (generally significantly less than 1), as k becomes large

(that is, the signal sequence becomes long), Fk(j) tends exponentially to 0. Similar

comments hold for the computations of the backward equations. This fact is evident

even in the simple example which was given in Section 2.1.1 where the forward and

backward equations for a signal sequence of length 3 already started to tend towards

0 (see Section 3.1.3). Depending on the software used to perform the BWA, for signif-

icantly large k, the dynamic range of the Fk(j) and Bk(j) computations may exceed

the precision range of the software.

Since both the forward and backward equations are required for the implementation

of the BWA, the incorporation of a scaling procedure for the calculation of the BWA

re-estimation equations may clearly be needed. The goal of this scaling procedure

is then to ensure that Fk(j) and Bk(j) are kept within the dynamic range of the

computer (for k = 1, . . . , n), while ensuring that the re-estimation equations of the

Baum-Welch algorithm still produce the same outcome.

A basic scaling procedure which achieves this, adapted from [37], is the following:

To begin, let

F
(s)
k (j) denote the scaled version of Fk(j), and

B
(s)
k (j) denote the scaled version of Bk(j) .

Now define, for each j ∈ S and k = 1, . . . , n

F
(s)
k (j) =

F̃k(j)∑
i∈S

F̃k(i)
= ck . F̃k(j) , (4.11)
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where

F̃1(j) = F1(j) ,

F̃k(j) = bj,sk
∑
i∈S

F
(s)
k−1(i) pij for each k = 2, . . . , n ,

ck =
1∑

i∈S
F̃k(i)

for each k = 1, . . . , n .

Next the backward equations need to be scaled. These are scaled for each time point

k = 1, . . . , n using the same scaling parameters which were used for the forward

equations. That is define, for each i ∈ S and k = 1, . . . , n

B
(s)
k (i) = ck . B̃k(i) , (4.12)

where

ck was defined in (4.11),

B̃n(i) = Bn(i) = 1,

B̃k(i) =
∑
j∈S

bj,sk+1
B

(s)
k+1(j) pij for each k = 1, . . . , n− 1 .

By repeatedly making use of equations (4.11) and (4.12), it can easily be proven

through induction that, for each k = 1, . . . , n and i ∈ S,

F
(s)
k (i) =

(
k∏
t=1

ct

)
Fk(i) = CkFk(i) , and

B
(s)
k (i) =

(
n∏
t=k

ct

)
Bk(i) = DkBk(i) . (4.13)

Since each scaling factor effectively restores the magnitude of the forward equations

to 1, and since the magnitudes of the forward and backward equations are comparable

(the same scaling factors were used for both the forward and backward equations),

the above scaling procedure is an effective way of keeping the computations within
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reasonable bounds. Furthermore, the scaling procedure described above will ensure

that the re-estimation equations of the BWA are unaffected.

To see this, notice that the ξk(i, j) and γk(i) terms form the building blocks of the

BWA re-estimation equations. Hence, if it can be shown that the described scaling

procedure does not influence ξk(i, j) and γk(i) for each k = 1, . . . , n and i, j ∈ S,

it will imply that the scaling procedure will not influence the results of the BWA.

To this end, using the scaled forward and backward equations to calculate ξk(i, j)

(denoted ξ
(s)
k (i, j)), the following is obtained:

ξ
(s)
k (i, j) =

F
(s)
k (i) pij bj,sk+1

B
(s)
k+1(j)∑

l∈S
F

(s)
n (l)

..... by (3.2) and (4.4)

=
Ck Fk(i) pij bj,sk+1

Dk+1Bk+1(j)∑
l∈S

Cn Fn(l)
..... by (4.13)

=
Cn Fk(i) pij bj,sk+1

Bk+1(j)

Cn
∑
l∈S

Fn(l)

=
Fk(i) pij bj,sk+1

Bk+1(j)

P (Sn = sn|λ)
..... by (3.2)

= ξk(i, j) ..... by (4.4).

Similarly, using the scaled forward and backward equations to calculate γk(i) (denoted

γ
(s)
k (i)), the following is obtained:

γ
(s)
k (i) =

F
(s)
k (i)B

(s)
k (i)∑

l∈S
F

(s)
k (l)B

(s)
k (l)

..... by (3.5) and (4.4)

=
CkDk Fk(i)Bk(i)

CkDk

∑
l∈S

Fk(l)Bk(l)
..... by (4.13)

=
Fk(i)Bk(i)

P (Sn = sn|λ)
..... by (3.5)

= γk(i) ..... by (4.4).
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And so it is proven that the scaling procedure described in this section will not

influence the HMM parameter estimates calculated by the BWA.

4.1.2.2 Initialising parameters in the BWA

It has been previously mentioned that the estimates computed by the BWA will

produce a local maxima of the likelihood function. As such, the initial estimates

chosen for the BWA will influence the final calculated Baum-Welch estimates. The

key question then is whether the initial parameters can be chosen such that the local

maxima found by BWA is equal to (or close to) the global maxima of the likelihood

function. Unfortunately however, at the time of writing, no solution to this question

could be found in the literature.

One option available to overcome this is to choose (randomly or otherwise) several

different initial parameter sets. The BWA can then be performed for each initial

parameter set, with the final parameter estimates being the estimates which yield the

largest local maxima.

Another technique which is also discussed in the literature (see for example [37])

is segmentation of the observation sequence into states. This is achieved by firstly

choosing an initial estimate for the model parameter set, denoted λ∗(1) (this is usually

done randomly). λ∗(1) together with the observation sequence is then used to perform

the BWA and produce λ̂(1), the parameter set which yields a local maxima. Using the

observation sequence and λ̂(1), the Viterbi algorithm (see Section 3.2) is performed -

thus calculating an optimal state path. This state path can then be used to segment

the observation sequence into states. Thus the proportion of times a given signal

was emitted from a given state can be estimated. The proportion of times a given

state transition occurred can also be estimated from the Viterbi state path. Based

on these, improved initial estimates (denoted λ∗(2)) can be determined for the BWA.

The observation sequence can once again be used together with λ∗(2) to perform the
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BWA and produce λ̂(2), the parameter set which yields the local maxima given the

initial estimate λ∗(2). This process can then be iteratively repeated until convergence

in λ̂(·) is achieved. The process described above can however become quite involved

since we now have two iterative processes - the iterative process of the BWA nested

within the iterative process of choosing the initial parameters.

The segmentation of the observation sequence into the states can usually be done

manually if the signal space is discrete. This however will not be possible if the

signal space is continuous. Under such applications [37] suggests maximum likelihood

segmentation or segmentation using k-means clustering to cluster the observed signals

within each state.

Regardless of how the initial parameter set is chosen for the BWA, it is important

that the chosen parameters satisfy the constraints given in equation (4.10). As has

been previously mentioned, if the initial estimates satisfy these constraints, then these

constraints will also be satisfied for each iteration of the BWA.

The effect of varying initial parameter estimates on the final BWA estimates may be

of interest. This was investigated through a simulation exercise and the results are

presented in Section 7.1.1 of this dissertation.

4.1.2.3 Insufficient training data

A potential challenge associated with training HMM parameters is that the obser-

vation sequence is finite. Thus there may be instances where there are insufficient

occurrences of certain model events (e.g. signal occurrences within certain states) to

efficiently estimate certain model parameters.

The simplest solution to this problem is to simply increase the size of the training

observation set. This could include increasing the length of the training observation

sequence and/or using multiple observation sequences (this is discussed in Section

4.1.3) when training the HMM. However, in many applications this may be imprac-
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tical or expensive.

A second possible solution is to reduce the size of the model - e.g. reduce the num-

ber of states or the number of possible signals per state. Typically the number of

parameters can also be reduced by assuming a distribution HMM (since, for a given

state, the parameters for the assumed signal distribution now need to be estimated

rather than the actual signal probability for each possible signal). While reducing

the number of parameters is usually possible, doing so may increase the risk of model

misspecification.

A consequence of insufficient training data may be that one or more parameters of the

HMM are incorrectly estimated to be zero or very close to zero. To see this, consider

a HMM where it is likely that signal νm ∈ δ will be emitted if the state sequence is in

state j ∈ S. However, due to insufficient training data, no such events have occurred

during the time points for which the HMM has been observed, and as such bjm is

estimated to be zero.

Now suppose that it is required to calculate the probability that a given new signal

sequence will be generated by the model. Even if this new sequence is likely to be

generated by the model, due to parameters which have been estimated to be zero,

the probability of this signal sequence being observed (given the estimated model

parameters) may be calculated to be zero, therefore indicating an impossible event.

To illustrate this, consider the HMM example which was given in Section 2.1.1.

For this HMM the actual signal matrix is given as B =

(
0.99 0.01
0.96 0.04

)
. Sup-

pose that the signal sequence s5 = (ν1, ν1, ν1, ν1, ν1) has been observed and is used

to train the BWA. This will result in the BWA estimate B̂ =

(
1 0
1 0

)
. Now

suppose that it is desired to calculate, for a similar machine, the probability that

s3 = (ν1, ν2, ν1) will be observed. Then using the above B̂, this probability will be

calculated as P (S3 = (ν1, ν2, ν1)|λ̂) = 0, thereby indicating an impossible event. How-

ever, in Section 3.1.3 it was shown that the true probability of this event is in fact

73



P (S3 = s3|λ) = 0.0174. This non-zero probability specifies that s3 = (ν1, ν2, ν1) is in

actual fact not an impossible event.

The error described could be fatal in certain applications of the HMM, yet the shorter

the observation sequence used to train the HMM, the more likely it is to occur.

A solution is given in [31] in which it is proposed that the additional constraint

0 < ε ≤ bjk ≤ 1 be applied to the estimated HMM parameters for each j ∈ S

and νk ∈ δ. To incorporate this constraint, [31] proposes that the Baum-Welch re-

estimation equations ((4.7) to (4.9)) be used to estimate B, denoted by B̂. Now

suppose that there are N signals in the signal space δ and that l < N of the esti-

mated parameters of the jth row of B̂ are less than ε. It can be assumed without loss

of generality that these correspond to the first l signals in δ. So b̂jk < ε for 1 ≤ νk ≤ l .

Now set b́jk = ε for 1 ≤ νk ≤ l and re-align the remaining parameters in the jth row

so that they sum to (1− lε). This can be achieved as follows

b́jk = (1− lε) b̂jk
N∑

i=l+1

b̂ji

for νk = l + 1, . . . , N .

If one or more b́jk become less than ε (for νk = l + 1, . . . , N) when the above re-

alignment is performed, then these values must also be set equal to ε and the remaining

b́jk re-aligned.

After performing the above re-alignment for each row of B̂, it can easily be verified

that the resulting B́ will satisfy the constraints 0 < ε ≤ b́jk ≤ 1 and
N∑
i=l

b́ji = 1 for

each j ∈ S and νk ∈ δ. Furthermore it is also verified in [31] that B́ is the value for B

which will maximise the likelihood P (Sn = sn |λ) subject to the desired constraints.

If required, this methodology can similarly be extended to also include the other

parameters of λ.
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4.1.3 The Baum-Welch Algorithm for Multiple Observation
Sequences

In certain applications of the HMM, multiple observation sequences (all of which

were generated by the same HMM) may be available to train the unknown parameter

set λ. An example of such an application is speech recognition, of which the voice

dialling feature in almost all modern cellular phones is a fairly common and well-

known example. For voice dialling, a separate HMM is built for each word in the

vocabulary. When training the HMM for a given word, the word is spoken several

times by the user of the cellular phone. Each time it is spoken the word is converted

into a observation or signal sequence. In this way multiple observation sequences are

available to train the HMM for that particular word.

Regardless of what the application of the HMM may be, should multiple observation

sequences be available, it would be desirable that all the available data be used to

estimate the parameters of the HMM. As such, this section will discuss how the BWA

can be adapted to train the HMM when multiple observation sequences, all of which

were generated from the HMM in question, are available.

To begin, assume that M observation sequences have been generated by the same

HMM and that the set of these observation sequences is notated by

Ś = [S(1)
n1
,S(2)

n2
, ...,S(M)

nM
],

where S(r)
nr

= (s
(r)
1 , s

(r)
2 , ..., s

(r)
nr ) is the rth observation sequence, consisting of nr indi-

vidual signals (observations), and r ∈ {1, 2, ...,M}.

It is assumed that each observation sequence was generated independently of every

other observation sequence. The goal of the BWA now becomes to find the HMM

that has the highest likelihood of generating all M observation sequences, that is to

estimate the parameters of λ such that the following likelihood is maximised:

P (Ś |λ) =
M∏
r=1

P (S(r)
nr

= s(r)nr
|λ) . (4.14)
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As was the case for a single observation sequence, define λ∗ = (P∗,B∗, a∗) to be the

current estimate of the parameter set for the HMM, and λ̂ = (P̂, B̂, â) to be the

Baum-Welch re-estimate of this parameter set.

Also, let

ξ
∗(r)
k (i, j), γ

∗(r)
k (i), γ

∗(r)
k,m (i)

be the probabilities corresponding to those given in equation (4.3), calculated for the

rth observation sequence using λ∗, where r = 1, 2, ...,M ; k = 1, ..., nr ; i, j ∈ S ; and

νm ∈ δ .

Since the Baum-Welch re-estimation equations for a single observation sequence are

based on the expected number of occurrences of certain events, it is suggested in [31]

that the re-estimation equations for multiple observation sequences be modified by

adding together the individual frequencies of these occurrences for each of the M

sequences. The modified re-estimation formulas for multiple observation sequences

are thus

p̂ij =

M∑
r=1

nr−1∑
k=1

ξ
∗(r)
k (i, j)

M∑
r=1

nr−1∑
k=1

γ
∗(r)
k (i)

for each i, j ∈ S

b̂jm =

M∑
r=1

nr∑
k=1

γ
∗(r)
k,m(j)

M∑
r=1

nr∑
k=1

γ
∗(r)
k (j)

for each j ∈ S and νm ∈ δ. (4.15)

It is mentioned in [37] that the BWA estimates in equation (4.15) will locally maximise

the likelihood function expressed in equation (4.14).

In the case of a single observation sequence, when p̂ij and b̂jm is calculated, the

term 1/P (Sn = sn|λ∗) appears in both the numerator and the denominator and can

therefore be cancelled out. This however is not the case for multiple observation
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sequences, as is shown for p̂ij below:

p̂ij =

M∑
r=1

nr−1∑
k=1

ξ
∗(r)
k (i, j)

M∑
r=1

nr−1∑
k=1

γ
∗(r)
k (i)

=

M∑
r=1

1
P ∗(r)

nr−1∑
k=1

F
∗(r)
k (i) p∗ij b

∗
j,s

(r)
k+1

B
∗(r)
k+1(j)

M∑
r=1

1
P ∗(r)

nr−1∑
k=1

F
∗(r)
k (i)B

∗(r)
k (i)

where P ∗(r) = P (S(r)
nr

= s
(r)
nr |λ∗) for r = 1, 2, . . . ,M .

It should be clear that the re-estimation equations in (4.15) will satisfy p̂ij ≥ 0 and

b̂jm ≥ 0. It can also be proven algebraically that
∑
j∈S

p̂ij = 1 and
∑
νm∈δ

b̂jm = 1 since∑
j∈S

ξ
∗(r)
k (i, j) = γ

∗(r)
k (i) and

∑
νm∈δ

γ
∗(r)
k,m(j) = γ

∗(r)
k (j) for a given r and k.

Should scaling be required, the scaling technique previously detailed in Section 4.1.2

can once again be used to scale the forward and backward equations. Since the

1/P ∗(r) terms are left in the re-estimation equations, the scaling factors will be can-

celed for each term within the inner summation (see Section 4.1.2 for a proof of this).

Thus using scaled forward and backward equations when computing the re-estimation

equations will correctly result in unscaled p̂ij and b̂jm.

In [31], from which the re-estimation equations in (4.15) are adapted, the application

of the HMM was such that it was convenient to assume that the initial state was

always state 1; that is that p1 = 1 and pi = 0 for all i 6= 1. Therefore a re-estimation

equation for pi was not included in [31]. To align with the re-estimation equations in

(4.15), this dissertation suggests the following re-estimation equation for pi:

p̂i = the average of {P (Xk = i|S(1)
n1

= s(1)n1
, λ) , . . . , P (Xk = i|S(M)

nM
= s(M)

nM
, λ)}

=
1

M

M∑
r=1

γ
∗(r)
1 (i) .

Using this re-estimation equation will also ensure that p̂i ≥ 0 and
∑
i∈S

p̂i = 1 for each

iteration. This estimate can also be enhanced by incorporating a weighting for each
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γ
∗(r)
1 (i), for example a weighting based on the sequence length of S(r)

nr
or the likelihood

value P (S(r)
nr

= s
(r)
nr |λ).

This is similar to what is suggested in [18] where an alternative approach of using

multiple observation sequences to train the BWA is given. In [18] it is suggested

that the parameters of λ first be estimated using the single sequence Baum-Welch

re-estimation equations (equations (4.7) to (4.9)) for each individual observation se-

quence. Thus M different estimates are obtained for each parameter. The final

Baum-Welch estimates are then given by:

p̂i =
M∑
r=1

Wr

Na

p̂
(r)
i

p̂ij =
M∑
r=1

Wr

Nb

p̂
(r)
ij

b̂jm =
M∑
r=1

Wr

Nc

b̂
(r)
jm ,

where λ̂(r) =
(
P̂

(r)
, B̂

(r)
, â(r)

)
is the final Baum-Welch estimate obtained from S(r)

nr
,

Wr is the weighting factor for the estimates from S(r)
nr
,

Na, Nb and Nc are normalization factors .

The effectiveness of several different weightings was tested in [18]. These included unit

weight factors (Wr = 1 for each observation sequence), weight factors expressed as a

function of P (S(r)
nr

= s
(r)
nr | λ̂(r)) and weight factors expressed as a function of P (Ś | λ̂(r)).

For each of these weightings, ‘trimmed’ weight factors were also tested whereby the

weight factors for unlikely models were set to 0. That is, for each r ∈ {1, 2, . . . ,M},
either P (Ś | λ̂(r)) or P (S(r)

nr
= s

(r)
nr | λ̂(r)) was calculated and the models were ranked

accordingly. For the lowest ranked models, Wr = 0 was used. In this way, poorly

estimated HMMs (on a sequence-by-sequence basis) were eliminated from the final

parameter estimation.

78



In particular, the performance of the re-estimation equations using nine different

weight factors was tested against the re-estimation equations given in [31] (equation

(4.15)). According to the results documented in [18], two weight factors produced

model estimates which out-performed the model estimates obtained using the re-

estimation equations given in [31] (the performance measure used in [18] was the

value of the likelihood function in equation (4.14), evaluated using the estimated

model parameters). These weight factors are the unit weight factors (Wr = 1 for

each r) and one of the ‘trimmed’ unit weight factors (Wr = 1 for the higher ranked

models, otherwise Wr = 0).

These results may however not necessarily hold for all HMMs. It is therefore advised

that several of the above mentioned techniques from [18] and [31] be considered when

estimating the HMM parameters using multiple observation sequences.

Finally, the estimation methods discussed in this section have assumed that the multi-

ple observation sequences were generated independently of each other; [32] presents an

approach for training HMMs using multiple observation sequences without imposing

this assumption.

4.1.4 The Baum-Welch Algorithm for Distribution Hidden
Markov Models

In Section 2.2 distribution HMMs were described. Recall that these HMMs have

the same properties and assumptions as the general HMM; the only difference being

that given the state at a particular point in time, it is assumed that the observation

is emitted according to a probability distribution - e.g. a binomial or a Poisson

distribution. For example the Poisson HMM assumes that given the HMM is in state

j at some time point t, the probability of observing the signal x ∈ {0, 1, 2, . . .} is

defined as

P [St = x|Xt = j] = bjx =
e−ωj ωxj
x!

(4.16)
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for each j ∈ S. This probability was also detailed in equation (2.8) of Section 2.2.

Since the state process for a distribution HMM is assumed to have the same proper-

ties as the general HMM, and the state process of a HMM is in no way influenced by

the observed signals, the Baum-Welch equations for pi and pij (previously defined in

equations (4.7) and (4.8)) are once again the Baum-Welch equations for the distribu-

tion HMM. This can also be seen through the mathematical derivation of the BWA

equations shown in Appendix B.

The Baum-Welch equation for bjm for the general HMM, defined in equation (4.9), will

however no longer be appropriate for the distribution HMM. For the general HMM,

the focus of the BWA is to estimate bjm individually for each j ∈ S and νm ∈ δ. For

the distribution HMM, the focus now shifts to finding the appropriate distribution

parameters for each j ∈ S (e.g. ωj for each j ∈ S for the Poisson HMM). For a given

state j, once the appropriate distribution parameters have been estimated, these can

be used to estimate bjx for x ∈ δ.

It is shown for the general HMM in Appendix B that the BWA estimate (for a given

iteration of the algorithm) for bjm is derived by maximising∑
k∈S

n∑
t=1

ln(bk,st)P (Xt = k|Sn = sn, λ
∗) (4.17)

with respect to bjm, subject to the constraint
∑
νk∈δ

bjk = 1. This is achieved through dif-

ferentiation with respect to bjm . It is shown in Appendix B that iteratively estimating

bjm in this way will result in the local maximization of the likelihood P (Sn = sn |λ).

For the distribution HMM, bk,st in equation (4.17) is replaced by the appropriate prob-

ability distribution (e.g. equation (4.16) for the Poisson HMM) and maximisation is

now performed with respect to the appropriate distribution parameters (e.g. ωj for

the Poisson HMM), subject to the required constraints of the distribution parameters

(e.g. ωj ≥ 0 for the Poisson HMM). This is performed for each j ∈ S. The constraint∑
x∈δ

bjx = 1 will be implicitly satisfied for each j ∈ S as this is a property of all valid
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probability distributions.

The Baum-Welch estimation of bjx for the Poisson HMM, for j ∈ S and x ∈
{0, 1, 2, . . .}, is now derived.

For the Poisson HMM it can easily be verified that equation (4.17) can be simplified,

through the use of equation (4.16), to the following:∑
k∈S

n∑
t=1

ln

(
e−ωk ωstk
st!

)
P (Xt = k|Sn = sn, λ

∗)

=
∑
k∈S

n∑
t=1

{(−ωk + stln(ωk)− ln(st!)) P (Xt = k|Sn = sn, λ
∗)} . (4.18)

For a given state j ∈ S, the maximisation of (4.18) with respect to ωj can be achieved

through differentiation as follows:

∂

∂ωj

[∑
k∈S

n∑
t=1

ln

(
e−ωk ωstk
st!

)
P (Xt = k|Sn = sn, λ

∗)

]
= 0

∂

∂ωj

[∑
k∈S

n∑
t=1

{(−ωk + stln(ωk)− ln(st!)) γ
∗
t (k)}

]
= 0 ..... by (4.3), (4.6) and (4.18)

∂

∂ωj

[
n∑
t=1

{(−ωj + stln(ωj)− ln(st!)) γ
∗
t (j)}

]
+ 0 = 0

n∑
t=1

{
−γ∗t (j) +

st
ωj
γ∗t (j)

}
= 0

⇒ ω̂j =

n∑
t=1

γ∗t (j) st

n∑
t=1

γ∗t (j)
.

The above assumes that
n∑
t=1

γ∗t (j) 6= 0. As γ∗t (j) ≥ 0 for each time point t, this will

hold if γ∗t (j) > 0 for at least one t. Of course γ∗t (j) = 0 for each t, implies that

P (Xt = j|Sn = sn, λ
∗) = 0 for each t, which then questions either the validity of the

estimate λ∗ (perhaps improved initial estimates should be chosen) or the validity of

keeping state j in the model. Either way the assumption that
n∑
t=1

γ∗t (j) 6= 0 seems
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reasonable for a well functioning Poisson HMM.

Also note that ω̂j ≥ 0 is satisfied, a necessary constraint for the Poisson distribution.

To show that ω̂j is indeed a maxima, the second partial derivative is evaluated at ω̂j.

This yields

∂2

∂ωj
2

[∑
k∈S

n∑
t=1

ln

(
e−ωk ωstk
st!

)
P (Xt = k|Sn = sn, λ

∗)

]

=
∂

∂ωj

[
n∑
t=1

{
−γ∗t (j) +

st
ωj
γ∗t (j)

}]

= − 1

ωj2

n∑
t=1

γ∗t (j) st .

And so

∂2

∂ωj
2

[∑
k∈S

n∑
t=1

ln

(
e−ωk ωstk
st!

)
P (Xt = k|Sn = sn, λ

∗)

] ∣∣∣∣∣
ωj=ω̂j

= −

[
n∑
t=1

γ∗t (j)

]2
n∑
t=1

γ∗t (j) st

< 0 if γ∗t (j) st 6= 0 for at least one t = 1, 2, . . . , n .

If γ∗t (j) st = 0 for each t = 1, 2, . . . , n then inspection of equation (4.18) reveals that

the value for ωj (subject to ωj ≥ 0) which will result in the maximisation of (4.18) is

ωj = 0 = ω̂j. And so the above derived ω̂j is indeed a maxima.

Once ω̂j has been calculated for each j ∈ S, equation (4.16) can be used to calculate

b̂jx for each j ∈ S and x ∈ {0, 1, 2, . . .}. Therefore b̂j,sk can be calculated for each j ∈ S
and each k = 1, 2, . . . , n . By making use of the forward and backward equations, this

in turn can be used to calculate the final value of the likelihood, P (Sn = sn | λ̂), for

the iteration of the BWA in question (see Section 3.1).

For the normal HMM, given that the HMM is in state j ∈ S at some time point t,
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the probability of observing the signal x ∈ R is defined as

P [St = x|Xt = j] = bjx =
(
2πσ2

j

)− 1
2 exp

{
− 1

2σ2
j

(x− µj)2
}
.

Using similar techniques to those used for the Poisson HMM, differentiation of (4.17)

with respect to µj and σ2
j can be performed to yield the maximizing values of µj and

σ2
j :

µ̂j =

n∑
t=1

γ∗t (j) st

n∑
t=1

γ∗t (j)
, and

σ̂2
j =

n∑
t=1

γ∗t (j) (st − µ̂j)2

n∑
t=1

γ∗t (j)
.

This holds true for each j ∈ S.

Further variations of distribution HMMs are also discussed in [35] and [46]. In partic-

ular [46] (see pages 116 to 118) discusses when different state-dependent distributions

(i.e. the distributions which are assumed to emit the signals) are appropriate. It is

suggested that Poisson and negative binomial HMMs be considered when the observed

signals are unbounded counts, Bernoulli HMMs be considered for binary observations

and binomial HMMs be considered when the observed signals are bounded counts.

In this discussion, it is also noted that exponential, normal and Gamma distributions

are important state-dependent distributions for the HMM when continuous-valued

signals are observed. For example, in Section 13.2 of [46] a normal HMM is used to

model share return series for four shares.

Finally it is noted in [46] (see page 66) that the ease by which equation (4.17) can

be maximised depends on the state-dependent distribution assumed. For example, in

the case of the Poisson and normal distributions, closed-form solutions are available

(as has been demonstrated in this section). In other cases, e.g. gamma and negative
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binomial distributions, numerical techniques are required to carry out the necessary

maximisation.

4.2 Solving the Learning Problem Through Direct

Maximization of the Likelihood

Section 4.1 of this dissertation discussed using the BWA as a tool to solve the learning

problem, thereby estimating the model parameters of a HMM. This section (based

primarily on [34] and [46]) will summarise an alternative methodology, that of using

numerical techniques to directly estimate the parameter set λ which will maximise

the likelihood P (Sn = sn |λ).

In a general maximisation framework, several different numerical techniques exist

which can be called upon to maximise the likelihood. These are implemented in

various software packages. For example the unconstrained optimisers nlm and optim

are available in R as well as the package constrOptim which permits constraints to

be placed on the parameters which need to be optimised. For a given application of

the HMM it is advised that several different techniques be explored.

In many applications of the HMM certain considerations may need to be taken into

account, whether estimating the model parameters through direct maximisation or

using the BWA. These include numerical underflow in the calculation of the likelihood,

constraints on the parameters which need to be estimated, and multiple local maxima

in the likelihood function. These were addressed for the BWA in Section 4.1 and are

discussed next for the direct maximisation approach.

To begin, recall from Section 3.1 that an effective way to calculate the likelihood

function is through the use of the forward equations as follows

P (Sn = sn|λ) =
∑
i∈S

Fn(i) .
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As was discussed in Section 4.1.2, numerical underflow can occur during the calcu-

lation of the forward equations. This may occur due to the fact that as k becomes

large, Fk(j) tends rapidly to zero. Thus, depending on the software used, the compu-

tations of the forward equations may exceed the precision range of the software for a

long observed signal sequence. This may be resolved by once again making use of the

scaling technique described in Section 4.1.2. To this end let Ln denote the value of

the likelihood calculated using the forward equations and L
(s)
n the value of the likeli-

hood calculated using the scaled forward equations. Then it is shown in Section 4.1.2

that Ln = L
(s)
n /Cn, where Cn is computed during the scaling process (see equations

(4.11) and (4.13)). And so, by using appropriate scaling when calculating the for-

ward equations, the likelihood can still be computed, and therefore maximised, even

if numerical underflow occurs in the calculation of the unscaled forward equations.

When maximising the likelihood function consideration of parameter constraints needs

to be taken into account. Recall that various constraints are assumed for the HMM,

as was discussed in Chapter 2. As mentioned, some maximisation packages can ac-

commodate for constraints on parameters. If however unconstrained optimisers are

used, re-parametrisation may be needed to guarantee that the parameter constraints

are satisfied, thereby ensuring that the final HMM parameter estimates sensible. For

example, each row of the state transition probability matrix must sum to one and

all the state transition probabilities pij must be non-negative. To this end, a pos-

sible transformation (given in [46]) to obtain the constrained probabilities pij from

re-parameterised real numbers τij, which are unconstrained, is described below.

Let g : R→ R+ be a strictly increasing non-negative function, e.g.

g(x) = ex x ∈ R .

Now define

%ij =

{
g(τij), i 6= j;

1, i = j.
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By setting pij = %ij/
∑
k∈S

%ik (for each i, j ∈ S), it can easily be verified that the

constraints of the transition probability matrix P are satisfied.

As an illustration of this, consider the first row of P for a three state HMM. Then,

p11 = 1 / (1 + exp(τ12) + exp(τ13))

p12 = exp(τ12) / (1 + exp(τ12) + exp(τ13))

p13 = exp(τ13) / (1 + exp(τ12) + exp(τ13)).

The transformation in the opposite direction yields

τ12 = ln(p12 / (1− p12 − p13)) = ln(p12 / p11)

τ13 = ln(p13 / (1− p12 − p13)) = ln(p13 / p11).

No transformation is required for τ11, as will be explained later.

To further elaborate, let the term ‘natural parameters’ refer to the constrained pa-

rameters (pij in the above example) and the term ‘working parameters’ refer to un-

constrained parameters (τij in the above example). Then the maximisation of the

likelihood can performed as follows:

• Choose initial natural parameters subject to the required constraints.

• Transform the initial natural parameters into the corresponding working pa-

rameters.

• Perform the numerical maximisation of the likelihood P (Sn = sn |λ) with re-

spect to the working parameters.

• Transform the final working parameter estimates to the natural parameters,

thereby ensuring that the final parameter estimates of the HMM satisfy the

necessary constraints.
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Returning to the above example, it should now be clear that the working parameter

τ11 need not be estimated as τ11 is not required for the transformation back to the

natural parameters.

A further comment regarding the above example is that in many applications defining

g(x) as

g(x) =

{
ex, x ≤ 0

x+ 1, x > 0

may produce parameter estimates which are more stable than if g(x) = ex is used.

The reason for this is that, due to the nature of the exponential function, defining

g(x) = ex might result in small changes in the estimated working parameters (when

the working parameters are greater than zero) leading to more significant changes

in the estimated natural parameters, and hence possible instability in the parameter

estimation process.

For the general HMM, similar transformations can also be applied to the signal prob-

abilities bjm to ensure that the final estimated probabilities satisfy the required con-

straints. For distribution HMMs, appropriate transformations should be applied to

ensure that the parameters of the state-dependant signal distributions satisfy the

necessary constraints. For example, in the case of the Poisson HMM an additional

constraint, apart from the usual constraints on P, is that the means ωi of the state-

dependant signal distributions are non-negative for each i ∈ S. One way this can be

achieved is by defining the working parameters as ηi = ln(ωi) for each i ∈ S. Once

the likelihood has been maximised with respect to the working parameters (ηi ∈ R),

the natural parameters can be obtained by transforming back: ω̂i = exp(η̂i). And so

ω̂i satisfies the required constraint.

Next the matter of multiple local maxima of the likelihood is briefly discussed. As was

mentioned during the discussion of the BWA, the likelihood of the HMM is an involved

function of the model parameters which will typically have several local maxima. The

global maxima is of course desired. Unfortunately there is however no simple method
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of guaranteeing that a given numerical maximisation approach will find the global

maxima. The reason for this is that, depending on the initial parameter values, a

given numerical algorithm will typically identify some local maxima rather than the

desired global maxima. As mentioned in Section 4.1.2, this also applies when the

BWA is used to estimate the model parameters. A sensible strategy to overcome this

is to consider a range of starting values for the numerical maximisation and analyze

the resulting likelihood maxima and parameter estimates.

4.3 Further Discussions Around the Learning Prob-

lem

4.3.1 Comparison of the Baum-Welch and Direct Maximiza-
tion Methods

The previous two sections have described two different techniques of estimating MLEs

for the HMM parameters; that being the BWA described in Section 4.1 (where an

analytical approach derived from the EM algorithm is used) and an approach which

considers direct numerical maximisation of the likelihood function, as described in

Section 4.2. Regarding these two approaches, [34] notes that “There is a close histor-

ical connection between hidden Markov (chain) models and the EM algorithm, as the

Baum-Welch algorithm for finding MLEs in such a model is an important forerunner

and special case of EM”. Following this, [34] further notes that “the likelihood is easy

to evaluate, and although direct numerical maximisation seems less common than

EM, it has by now been used fairly widely in the fitting of HMMs and extensions

thereof”. Interestingly [15] notes that “although neither algorithm is superior to the

other in all respects, researchers and practitioners who work with HMMs tend to use

only one of the two algorithms, and ignore the other”.

When it is the general HMM which is being considered, the BWA has the advantage

that no evaluation or maximisation of the likelihood needs to be performed directly;
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that is the established BWA equations ((4.7)-(4.9)) are used to estimate the model

parameters. However, as was highlighted in Section 4.1.1 (and is further discussed in

Appendix B), if the HMM is assumed stationary then the BWA equations for the p̂i

and p̂ij parameters (equations (4.7) to (4.8)) will no longer hold. Typically numerical

techniques will have to be incorporated into the BWA under these conditions (see

Appendix B for more details). To this end [34] notes that, under the assumption of

stationarity, direct numerical maximisation provides a less complicated approach to

parameter estimation.

When distribution HMMs are being considered, the BWA equations for the param-

eters of the state-dependant signal distributions will differ depending on the distri-

bution which is assumed (see Section 4.1.4 for more details). For a given signal

distribution, differentiation first needs to be performed to establish the BWA equa-

tions for that specific distribution. As was discussed in Section 4.1.4, depending on

the signal distribution chosen, this may or may not prove challenging. For some signal

distributions (e.g. gamma and negative binomial) no closed-formed solutions exist for

the necessary differentiation, and hence numerical techniques are required to evaluate

these derivatives. As such, significant changes in code may be required if it is desired

that different signal distributions are tested to determine which distribution best de-

scribes an observed signal sequence and ultimately gives rise to the most meaningful

parameter estimates. This however will not be the case if direct numerical maximisa-

tion of the likelihood is used to estimate the model parameters, as no differentiation

is required. Hence one can repeatedly modify a model in an interactive search for

the most appropriate signal distribution. Often all that is required is a change to the

code which evaluates the likelihood.

However, if direct maximisation is used, one does need to take into consideration the

impact that the choice of i) re-parameterisation (to ensure parameter constraints are

met) and ii) numerical techniques used can have on the final estimates. This may

result in a significant amount of testing.
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Further discussions on this topic are provided in [15], [34] and [46]. In particular, [15]

uses both simulated and actual data to investigate and compare the speed of conver-

gence, stability, dependence on initial values, the effects of different parameterisations

and the general performance for these two approaches. A hybrid algorithm combin-

ing these two approaches is also considered. As an alternative to the two approaches

discussed in this chapter, Bayesian estimation is also considered and discussed in [46].

4.3.2 Standard Errors and Confidence Intervals for the Esti-
mated Parameters

Sections 4.1 and 4.2 of this dissertation provided a discussion on how point estima-

tors for the HMM parameters can be computed. Standard errors and intervals for

these estimates may also be desirable in applications of the HMM. A discussion is

provided in [46] (see Section 3.6) as to how these standard errors and intervals can

be estimated, either through the use of the Hessian matrix or through the use of

bootstrapping techniques. This discussion is summarised below.

Conditions under which the MLEs of the HMM parameters can be assumed asymp-

totically normal are discussed in [46]. If asymptotic normality can indeed be assumed,

and if the standard errors of the MLEs can be estimated, then approximate confidence

intervals can be computed. A suggestion in [46] is that the standard errors be esti-

mated through the Hessian of minus the log-likelihood, evaluated at the minimum of

this function, i.e. the observed information matrix. This can be outputted by many

statistical packages. The inverted Hessian provides an estimate of the asymptotic

variance-covariance matrix for the estimators of the HMM parameters. It is however

noted that difficulties do arise when some of the parameters are on the boundary of

their parameter space, which may frequently occur when the HMM is fitted.

An alternative proposed in [15] and [46] is to make use of parametric bootstrapping

techniques. An excellent reference to obtain further details on bootstrapping is [21].
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Through the use of this technique, multiple random sampling can be used to esti-

mate both the standard errors and confidence intervals (based on percentiles) for the

HMM parameter estimates. While this technique may overcome the short-comings

of the above-mentioned approach, it should be noted that the computations may on

occasions be quite time intensive. Application of these bootstrapping techniques to

HMM parameter estimates, for both simulated and actual data, is given in [15] and

[46].
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Chapter 5

Additional Considerations for the
Hidden Markov Model

Various aspects of the HMM have been detailed in the previous chapters of this

dissertation. This chapter summarises further discussions regarding HMMs which

appear in the literature.

5.1 Model Selection and Inspection

An increase in the number of parameters of a given statistical model will typically

improve the fit of the model. In practice however, it is usually desirable not to have

too many parameters in the model as over-fitting the data may reduce the out-of-

sample predictive power of the model. Additionally having too many parameters in

the model may also be disadvantageous as these parameters will typically have to

be estimated from the available data. Hence the improvement in fit of a model has

to be traded off against this the number of parameters in the model. A criterion for

model selection is therefore required. This is true also when HMMs are fit to available

data. In addition to this, once a HMM is selected one would desire a manner to assess

goodness-of-fit and the existence of outliers to ensure that the model is adequate. This

section, based on discussions provided in [46], outlines these concepts for HMMs.
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5.1.1 Model Selection

A challenge which naturally arises when fitting HMMs is that of choosing an ap-

propriate model, e.g. selecting the number of states, or choosing between a general

HMM (in which case the number of possible signals need to be chosen) or a distribu-

tion HMM (in which case the appropriate signal distributions need to be chosen). As

mentioned in the introductory paragraph, a selection criteria is required which will

consider both the fit of the model as well as the number of parameters which need to

be estimated in the model.

In the general field of statistical modelling, well documented criterion for comparing

models are, among others, the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC). These are defined as follows:

AIC = −2 ln(L) + 2p

BIC = −2 ln(L) + p ln(T ) ,

where ln(L) is the log-likelihood of the fitted model, p denotes the number of param-

eters in the model and T is the number of observations. For both AIC and BIC the

first term is a measure of the fit of the model and will decrease as the fit improves.

The second term is a penalty term and will increase as the number of parameters

increase. Hence for both AIC and BIC, typically the model with the lowest value is

chosen and both the model fit and number of parameters is taken into account.

Also note that compared to AIC, the penalty term of BIC has more weight if T >

e2 ≈ 7.4, which holds in most applications. Thus BIC can often favour models with

fewer parameters when compared to AIC.

Crucially, for the purposes of this dissertation, since the likelihood L = P (Sn = sn|λ)

can be readily calculated for the HMM using the forward and backward equations

(see Section 3.1), AIC and BIC calculations can be used to compare HMMs of varying

state and signal structures.
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A worked example is given in [46] (see Section 6.1) whereby AIC and BIC are used

to compare various HMMs and independent mixture models. This is done using the

earthquake data which was discussed in Section 2.2 of this dissertation. For this par-

ticular example, both AIC and BIC finds the 3 state Poisson HMM to be superior to

the independent mixture models and other HMMs fitted.

Finally AIC and BIC provides one method of selecting a model from a group of po-

tential models. These criteria are by no means the only ones which can be used (for

example [46] also discusses the comparison of autocorrelation functions between fitted

HMMs).

5.1.2 Testing Model Adequacy with Pseudo-Residuals

Once a HMM has been selected by some criterion as the ‘best’ model, the question

still remains as to whether the model is indeed adequate. To this end, tools to assess

general goodness-of-fit and to identify possible outliers are desired. For instance, in

the context of regression models, the role of the residuals as a tool to test model

adequacy is well established. This section will introduce quantities called pseudo-

residuals which can fulfil a similar role in a more general sense. These will prove

useful in testing goodness-of-fit and detecting outliers for fitted HMMs. The general

concept of pseudo-residuals will first be explained after which their application to

HMMs will be reviewed.

To begin, consider the useful statistical result (proven in various references within the

literature - see for example page 54 of [17]) which states:

Let X be some continuous random variable with distribution function F.

Then U = F (X) is uniformly distributed on the unit interval, i.e. U ∼ U(0, 1) .
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Now, the uniform pseudo-residual of an observation xt from a continuous random

variable Xt is defined, under the fitted model, as

ut = P (Xt ≤ xt) = FXt(xt) .

That is, the pseudo-residual ut is the observation xt transformed by the distribution

function of the fitted model. If the fitted model adequately describes the observed

data, then these pseudo-residuals are approximately distributed U(0, 1). Conversely,

if a histogram or quantile-quantile plot (qq-plot) of the calculated uniform pseudo-

residuals casts doubt on the conclusion that they are distributed U(0, 1), then one

should suspect that the fitted model may indeed not be adequate.

While the uniform pseudo-residuals are useful in this respect, it has the drawback

that outliers may be difficult to visually detect using them. This is because it is

difficult to see if a value is unlikely or not; for instance a pseudo-residual of 0.999 (a

potential outlier) is difficult to distinguish from a value of say 0.96.

This shortfall can be easily rectified if the following statistical result is considered.

Let X be some continuous random variable with distribution function F, and Φ

the standard normal distribution function. Then Z = Φ−1(F (X)) is distributed

standard normal.

This follows from the previous mentioned result and is also discussed on page 55 of

[17].

Now, the normal pseudo-residual of an observation xt from a continuous random

variable Xt is defined, under the fitted model, as

zt = Φ−1(ut) = Φ−1(FXt(xt)) .

If the observations were indeed generated from the fitted model, then the normal

pseudo-residuals zt would follow a standard normal distribution. One can therefore
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test the adequacy of the fitted model by performing normality tests on these residuals.

Since extreme observations are visually easier to identify when the observations follow

a standard normal distribution (as opposed to the uniform distribution), potential

outliers are easier to detect (from a visual sense) when using the normal pseudo-

residuals rather than the uniform pseudo-residuals.

The above outlined theory has dealt with continuous distributions only. It is noted

in [46] that in the case of discrete observations, it is usually more meaningful to no

longer define the pseudo-residuals as points but rather as intervals (this allows for the

pseudo-residuals to be plotted as a histogram, thereby enabling a visual inspection

of the distribution of the pseudo-residuals). Thus for a discrete random variable Xt

with distribution function FXt , the uniform pseudo-residual intervals are defined as

[u−t ;u+t ] = [FXt(x
−
t );FXt(xt)] ,

where x−t denotes the greatest possible realisation that is strictly less than xt. Simi-

larly, the normal pseudo-residual intervals as

[z−t ; z+t ] = [Φ−1(u−t ); Φ−1(u+t )] .

To perform further residual analysis for discrete observations (e.g. qq-plot analysis),

[46] also suggests the use of the so-called ‘mid-pseudo-residuals’, defined as

zmt = Φ−1
(
u−t + u+t

2

)
.

Now that the concept of pseudo-residuals has been outlined, pseudo-residuals in the

context of HMMs can be discussed. In particular, [46] introduces two types, namely

ordinary pseudo-residuals and forecast pseudo-residuals.

The ordinary pseudo-residuals for HMMs are calculated from the conditional distri-

bution given all other observations. That is, for continuous signal observations (for

example if a beta HMM is applied), the normal pseudo-residual is

zt = Φ−1[P (St ≤ st|S(−t)
n = s(−t)n )]
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where S(−t)
n = (S1, . . . , S(t−1), S(t+1), . . . , Sn). That is S(−t)

n denotes Sn with tth element

dropped.

If the fitted HMM is adequate, then zt should resemble a standard normal variable.

The intervals [z−t ; z+t ] for HMMs with discrete observations follow similarly, as was

explained above,

z−t = Φ−1[P (St < st|S(−t)
n = s(−t)n )]

z+t = Φ−1[P (St ≤ st|S(−t)
n = s(−t)n )] .

In the discrete case, for st = νm ∈ δ, the conditional probabilities P (St = st|S(−t)
n =

s
(−t)
n ) can be calculated as follows:

P (St = νm|S(−t)
n = s(−t)n , λ) =

P (St = νm,S
(−t)
n = s

(−t)
n |λ)

P (S(−t)
n = s

(−t)
n |λ)

..... by (2.11)

=
P (St = νm,S

(−t)
n = s

(−t)
n |λ)∑

w∈δ
P (St = w,S(−t)

n = s
(−t)
n |λ)

..... by (2.9).

Both the numerator and denominator of this expression can be computed using the

evaluation calculation described in Section 3.1. The calculations for continuous signal

observations follow similarly with probabilities replaced by densities.

The second type of residuals which can be used to test the adequacy of a fitted

HMM are the forecast pseudo-residuals. These are calculated from the conditional

distributions given all preceding observations. That is, for continuous observations

the normal pseudo-residual is defined as

zt = Φ−1[P (St ≤ st|St−1 = st−1)] .

The intervals [z−t ; z+t ] for HMMs with discrete observations follow similarly,

z−t = Φ−1[P (St < st|St−1 = st−1)]

z+t = Φ−1[P (St ≤ st|St−1 = st−1)] .
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Equation (3.20) can be called upon to calculate these conditional probabilities.

Finally, a worked example of pseudo-residual analysis is provided in Section 6.3.1 of

[46]. This analysis is done for various HMMs which have been fitted to the earthquake

data which was discussed in Section 2.2 of this dissertation.

5.1.3 Performing Out-of-Time and Out-of-Sample Tests

In addition to using pseudo-residual analysis, out-of-time and out-of-sample tests may

also aid in assessing the adequacy of a HMM which has been fit and in selecting a

final HMM from various possible HMMs. The forecasting accuracy of a fitted HMM

can also be assessed through these tests.

The out-of-time test is defined as follows. Suppose that observations for n time points

have been observed. Let x < n be the number of time points on which the test should

be performed. Then, using the observed signals from the first n− x time points, the

parameters of the HMM can be estimated. Using the fitted HMM, the signals for the

final x time points can be forecast (through the use of equation (3.20)) and compared

to the actual signals which were observed.

While out-of-time tests may prove useful in some applications, it is important to note

that observed signals are dependent on both the stochastic process of the hidden

states and the probability distribution for each state through which the signals are

emitted. Hence there are two sources of possible variability, and this may in turn lead

to additional variability (than what would usually be expected for an out-of-time test)

between the observed and forecasted signals.

When multiple observation sequences have been observed, out-of-sample tests can

also be performed. To perform this, assume that y independent observation sequences

have been observed and that v < y of these sequences are randomly selected and used

to estimate the model parameters. The remaining y − v observation sequences can
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then be used to assess the model (e.g. perform the model selection and adequacy tests

mentioned in Section 5.1.1 and 5.1.2 using the remaining y−v observation sequences).

In this way the data used to assess the model is distinct from the data which was

used to estimate the model parameters.

5.2 Adaptations of the Hidden Markov Model

A notable advantage of the HMM is its flexibility in that it can be modified or gen-

eralized depending on the application. This section will highlight some of the HMM

adaptations discussed in the literature (see for example [46]). One such extension

of the HMM, that of allowing direct dependencies among the signals, is discussed in

greater detail in the next chapter of this dissertation.

Some degree of flexibility has already been detailed in this dissertation. For example,

discussions have already been provided regarding how the HMM can easily be adapted

to cater for signals being emitted according to explicitly defined probabilities for each

state (the general HMM), or signals being emitted according to familiar probability

distributions (the distribution HMMs). Examples are given in [46] as to when certain

distributions may be applicable. To this end the following is noted:

• The Bernoulli distribution is appropriate for HMMs with binary counts (sig-

nals). Examples of such HMMs, given in [46], include daily rainfall occurrence

(rain or no rain), consecutive departures of aeroplanes at an airport (on time,

not on time) and daily trading of shares (traded or not traded).

• The Poisson and negative binomial distributions may be used for HMMs with

unbounded discrete counts. In particular Section 2.2 discussed how a Poisson-

HMM can improve the fit, when compared to an independent Poisson mix-

ture model, for overdispersed data. It is further noted in [46] that a negative

binomial HMM “may sensibly be used if even a Poisson-HMM seems unable
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to accommodate the observed overdispersion”. Examples of application given

in [46] for Poisson- and negative binomial-HMMs include series of counts for

breakdowns of technical equipment, earthquakes, insurance claims, accidents

reported, products sold and defective items produced.

• Binomial-HMMs may be used to model series of bounded discrete counts. To

this end define nt as the number of trials at time t and xt as the number of

successes at time t. An example of a series of bounded counts, as given in [46],

is purchasing preference (nt = number of purchases of all brands on day t; xt =

number of purchases of a specific brand on day t). Binomial-HMMs are used in

[4] and [27] to model the number of defaults for a credit portfolio (nt = number

of performing companies or accounts making up the portfolio at time t; xt =

number of performing companies or accounts at time t which default within a

given time period, eg. a year). Additionally in [4] it is assumed that transitions

between the hidden states of the HMM are not only driven by the Markov

property, but also by macro-economic drivers. In both [4] and [27] it is assumed

that while nt is time dependent (i.e the portfolio size will vary over time as new

companies or accounts enter the portfolio and defaults exit the portfolio) nt is

known for the time points for which defaults have been observed. An additional

consideration if one requires that the forecast distribution of xT+h be calculated

(where T + h is h time points after the last defaults have been observed) is that

nT+h must then either be assumed or estimated.

• A distribution HMM may also be used when signals from a continuous distribu-

tion are observed. In these instances the state-dependent signal distributions,

which are assumed to generate the signals at each time point, are assumed to

be continuous probability density functions. In particular exponential, Gamma

and normal distributions are mentioned in [46], as well as an application of the

normal-HMM in modelling share return series.
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In addition to the above, [46] also illustrates how the HMM can be generalised to

incorporate more complex types of observations; for example, at each time point a

series of signals is emitted according to some multivariate distribution such as the

multinomial distribution.

Another possible adaptation of the HMM is to allow covariates to be introduced into

the model, either via the state transition probabilities (see for example [4] and [46]) or

the signal probabilities / signal distributions (see for example [35]). These covariates

allow models to incorporate time trend and seasonality components and also allow

for the inclusion of other factors which may be of interest, e.g. economic conditions.

By taking appropriate transformations into account, this can be achieved through the

use of regression. In this way the state transition probabilities / signal probabilities

(general HMM) / parameters of the state-dependent signal distributions (distribution

HMM) will change through time as the covariates evolve through time. An applica-

tion of this is given in [4] where movements in credit market conditions are modelled

by HMMs. In this case the state transition probabilities are regressed to economic

macro factors by making use of the logistic transformation.

The final adaptation of the HMM which will be discussed is that of incorporating ad-

ditional dependencies into the model. To begin consider the underlying state process

where a first order Markov chain has thus far been assumed. A generalisation of this

for the HMM and the double chain Markov model (this model is detailed in the next

chapter) described the literature is to replace the underlying first-order Markov chain

by a higher order Markov chain (see for example [11], [22] and [46]). In particular,

the time homogeneous state transition probabilities for a second-order Markov chain

are as follows:

pi,j,k = P [Xm+l = k|X1 = i1, . . . , Xm−1 = i,Xm = j]

= P [Xm+l = k|Xm−1 = i,Xm = j]

for states i1, . . . , im−2, i, j, k ∈ S, and l ∈ {1, 2, . . .} .
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A possible downside to using higher order models to describe the state process is that

the number of parameters in the model can increase quite rapidly (i.e an increased

number of transition probabilities need to be considered). To overcome this several

papers (see for example [11], [22] and [39]) incorporate mixture transition distribu-

tion (MTD) models into the Markov chain, HMM or double chain Markov model

framework in order to estimate the higher order transition probabilities. In short,

MTD models provide a framework to approximate higher order transition probabili-

ties through a defined model rather than estimate each individual transition proba-

bility directly. In this way the number of parameters which need to be estimated are

reduced.

Up until this point, the only considered dependence between observations has been

that which arises from the underlying state process. Additional dependencies in the

observed signal process may however also be considered. In [46] an extension of

the general HMM is discussed whereby the observed signal depends not only on the

current state but also on the state at the previous time point. There may also be

applications where direct dependence between the emitted signals is suspected, and

should therefore be incorporated into the model. Thus the probability of observing a

signal at some time point is dependent on both the state occupied at that time point

and the previous emitted signal(s). One way of incorporating this into the HMM is

to assume an autoregressive process for the observations (see [37], [46]).

Another possibility discussed in the literature is to assume that the signal process

also possesses the Markov property. That is, both the state and signal processes are

driven by the Markov property, where the signal process is also dependent on the

states visited by the state process. This model is commonly referred to by the litera-

ture as the double-chain Markov model and it is this model which will be detailed in

the next chapter.
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Chapter 6

The Double-Chain Markov Model

6.1 Defining the Double-Chain Markov Model

Adaptations of the HMM were discussed in Section 5.2 of this dissertation. One such

adaptation, namely the Double-Chain Markov model (DCMM) will be detailed in

this chapter. The DCMM will first be introduced before model details, estimation

and prediction will be discussed. The work presented in this chapter is adapted

predominately from [10], [11], [22] and the previous chapters of this dissertation (since

the DCMM is an extension of the HMM it will be shown that certain mathematics

from the HMM can be extended to the DCMM).

6.1.1 Introducing the Double-Chain Markov Model

Markov chains and HMMs have been reviewed in the previous chapters of this disser-

tation. Recall that the Markov chain is a stochastic process where transitions between

successive outputs of a discrete time random variable is governed by the Markov prop-

erty. This process is entirely observable as each observed output is exactly identified

with one state of the process. This was depicted in Figure 1.1 of Section 1.1. While

Markov chains are widely used, there are applications where the model is not appro-
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priate. For example in speech recognition there is not perfect identification between

the state at a given point and the signal output. Instead, at each time point the state

of the chain is unknown, but the output of another variable (the distribution of which

depends entirely on the state of the model at the time point in question) is observed.

This process is of course the HMM which has been discussed in detail. Importantly,

the outputted signal sequence of the HMM is governed by the state process (whereby

the state process is in turn governed, similar to the Markov chain, by the Markov

property). It should however be noted that if the state process is not known / not

assumed, then the probability of observing a given signal at some arbitrary time point

k is dependent on the previous outputted signals.1 However, given the state at time

k, the probability of observing a given signal at time k is conditionally independent of

all previous outputted signals. This was summarised in Figure 1.2 and is also made

clear by the two equations below:

P (Sk = sk|Sk−1 = sk−1) 6= P (Sk = sk)

P (Sk = sk|Xk = i,Sk−1 = sk−1) = P (Sk = sk|Xk = i) . (6.1)

This conditional independence between the outputs of the HMM (equation (6.1))

may not always be justified. In fact in the literature there are numerous examples of

processes governed by the HMM structure, but where the assumption of conditional

independence between outputs is deemed to not be appropriate (see for example [10],

[11], [22], and [46]). In particular, if it is assumed that successive outputs are related

through the Markov property, then the resulting model is the double-chain Markov

model (DCMM) presented in this chapter. That is, the DCMM has a similar stochas-

tic framework to the HMM, but now it is assumed that for a given time point the

signal emitted is not only dependant on the current hidden state, but also depen-

dant (through the Markov property) on the previous observed signal (see Figure 1.3).

1The reason for this is that the observed signal sequence holds valuable information in predicting
the state sequence, which in turn drives the signal process. Hence if the state process is not known
/ not assumed, then the previous outputted signals hold valuable information in calculating the
probability of observing a given signal.
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The name double-chain Markov model is now clear as the model is a combination of

two inter-linked Markov chains; the hidden chain governing the relation between the

states and the observable chain governing (together with the hidden state process)

the relation between the observed outputs or signals.

The dependence of a signal on both the current state and the previous emitted signal

can be explained as follows. The signal process can be considered as a Markov chain,

but where the transition probability matrix is dependant on the current state occu-

pied. That is, a signal transition probability matrix is associated with each state in

the state space, and each time the DCMM enters a new state, the signal transition

probability matrix for that state is used to determine which signal (given the previ-

ous signal) will be emitted for that time point. The output of the DCMM can thus

be viewed as a time inhomogeneous Markov chain, where the transition probability

matrix used for the outputs is driven by the state process of the DCMM.

A benefit of the DCMM is that the advantages of both the Markov chain and HMM

are conserved - that is the system is driven by an unobserved latent process while

successive outputs are dependent through the Markov property.

As an example of the DCMM, consider the following application adapted from [10].

In this application it is desired to model a time-series of daily average wind speeds

at a specific location over a 17 year period. These wind speeds are of interest in

order to determine the possible use of wind power in the area. More specifically two

extreme conditions which can prevent a good exploitation of power need to be con-

sidered: days with exceptionally low wind speed and days with exceptionally high

wind speed. Accordingly the data is classified into three categories, ‘low wind speed’,

‘normal wind speed’ and ‘high wind speed’. Let these categories be denoted by Cl,

Cn and Ch respectively.

Several models were used to model this data including Markov chains, HMMs and

DCMMs. For each of these models, let {Cl, Cn, Ch} represent the set of possible ob-
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servations.

For the Markov chain, the output of the process is its state (that is the state process

is also the signal process) and hence {Cl, Cn, Ch} represents the state/signal space of

the Markov chain. A single transition matrix is then used throughout to model tran-

sitions between these outputs {Cl, Cn, Ch}. That is, dependence between the wind

speeds on successive days is modelled, but no underlying latent factor is considered.

The HMM considers an underlying latent factor by including the hidden state pro-

cess. This could for example be some seasonal factor; at certain times of the year

higher wind speeds could be expected, while at other times lower wind speeds could

be the norm. Since the output of the HMM is a signal determined by its hidden state

process, {Cl, Cn, Ch} now represents the signal space of the HMM. And so the current

state occupied would then influence the probability of observing one of the signals

from {Cl, Cn, Ch}. While the HMM does incorporate this latent factor which drives

the wind speed which is observed, it is assumed that there is no direct dependence

between the wind speeds on successive days.

The DCMM incorporates these two models and conserves the advantage of each

model. The DCMM once again incorporates the hidden state process (e.g. the

process of the seasonal factor) which influences the signal which is observed from

the signal space {Cl, Cn, Ch}.2 However now direct dependence (through the Markov

property) between the wind speeds on successive days is also modelled. This is done

by estimating a separate signal transition probability matrix for each hidden state

(seasonal factor) in the state space. In the application given in [10] it was found,

using BIC as a model selection criterion, that of the models considered, the DCMM

with two states was the most appropriate. The state transition matrix was estimated

to be

P =

(
0.9875 0.0125
0.0148 0.9852

)
.

2For the DCMM, the output is a signal (influenced by its hidden state process), and so
{Cl, Cn, Ch} represents the signal space of the DCMM.
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Thus, as intuitively expected, the seasonal factor is estimated to be quite stable

through time (as the underlying data represents daily intervals).

The signal transition probability matrix for each state was estimated as

B(1) =

 0.3550 0.6450 0
0.0805 0.8874 0.0321
0.0228 0.7721 0.2051

 B(2) =

 0.1973 0.7846 0.0181
0.0361 0.8137 0.1502

0 0.6826 0.3174


where B(1) represents the signal transition probability matrix when the DCMM

is in state 1, and

B(2) represents the signal transition probability matrix when the DCMM

is in state 2.

It can be seen that transitions into Cl (column 1) are more likely using B(1) than

B(2). Conversely, transitions into Ch (column 3) are more likely using B(2) than in

B(1). This suggests that state 1 corresponds to seasons or time periods when lower

wind speeds would be expected, while state 2 corresponds to seasons or time periods

when higher wind speeds would be expected. For the DCMM, this then highlights

the dependence of the output signal on both the previous signal (through the Markov

property) and the current state (which is governed by the hidden Markov chain).

The DCMM may thus prove particularly useful when it is expected that the tran-

sition probability matrix of a Markov chain could potentially change through time

according to changes through time of some underlying latent process.

Based on the above discussion it may well be expected that both the time-homogeneous

Markov chain and HMM are special cases of the DCMM. This desirable property does

indeed hold true and is formally proven in Appendix A.

While the advantages of the DCMM have been mentioned, one notable disadvantage

is that the DCMM will contain more parameters than either the Markov chain or the

HMM. For a given application, these parameters will typically have to be estimated

from the data observed (parameter estimation for the DCMM will be discussed later
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in this chapter). Thus for a given application, one of the considerations which needs

to be taken into account when assessing the suitability of the DCMM over the time-

homogeneous Markov chain and the HMM is the amount of data which is available.

The number of parameters which need to be estimated for each model is given below

(where M represents the number of states in the state space and K represents the

number of signals in the signal space):

• For the Markov chain, the number of parameters which need to be estimated is

(M − 1) +M(M − 1).

• For the HMM, the number of parameters which need to be estimated is

(M − 1) +M(M − 1) +M(K − 1).

• For the DCMM, the number of parameters which need to be estimated is

(M − 1) +M(M − 1) +MK(K − 1).

Finally, it should be noted that this dissertation will focus on the discrete-time,

discrete-state and discrete-signal DCMM where the state transition probability ma-

trix and the signal transition probability matrix for each state are assumed time

homogeneous.

6.1.2 Model Assumptions and Notation

Now that the framework of the DCMM and its relation to the HMM has been outlined,

model assumptions and notational changes for the DCMM will be formalised in this

section.

To begin, recall that due its model structure the following assumptions (for k ≥ 1)

could be made for the HMM (see equations (2.1) - (2.6) from Section 2.1.3):
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P [Xk+t = j |S1, X1, . . . , Sk, Xk = i] = P [Xk+t = j |Xk = i]

P [Sk = νm |S1, X1, . . . , Sk−1, Xk−1, Xk = i] = P [Sk = νm |Xk = i] = bim

P [Sk+t = νm |S1, X1, . . . , Sk, Xk = i] = P [Sk+t = νm |Xk = i]

P [Sk+t, . . . , Sn |S1, . . . , Sk, X1, . . . Xk = i] = P [Sk+t, . . . , Sn |Xk = i]

P [Sk+t, . . . , Sn |S1, . . . , Sk, X1, . . . , Xn] = P [Sk+t, . . . , Sn |Xk+t, . . . , Xn] .

(6.2)

The model assumptions for the DCMM follow from the above HMM assumptions, by

taking the following into account. Firstly, recall that it is assumed that the HMM

process begins at time 1. For the DCMM, since S1 will depend on the output at the

previous time point, an initial output at time 0 will be considered for the DCMM

with no corresponding hidden state (as is shown in Figure 1.3). Secondly, since the

state process of the DCMM follows the Markov property, and is in no way influenced

by the observed signals, the first equation of (6.2) will still hold for the DCMM.

Finally, due to the signal process being governed by both the Markov property and

the current state, the remaining conditional probabilities of (6.2) will show additional

dependence. Thus, the probabilities of equation (6.2) are expressed for the DCMM,

where k ≥ 1, as follows:

P [Xk+t = j |S0, S1, X1, . . . , Sk, Xk = i] = P [Xk+t = j |Xk = i]

P [Sk = νm |S0, S1, X1, . . . , Sk−1 = νj, Xk−1, Xk = i] = P [Sk = νm |Sk−1 = νj, Xk = i]

P [Sk+t = νm |S0, S1, X1, . . . , Sk = νj, Xk = i] = P [Sk+t = νm |Sk = νj, Xk = i]

P [Sk+t, . . . , Sn |S0, S1, . . . , Sk = νj, X1, . . . Xk = i] = P [Sk+t, . . . , Sn |Sk = νj, Xk = i]

P [Sk+t, . . . , Sn |S0, S1, . . . , Sk, X1, . . . , Xn] = P [Sk+t, . . . , Sn |Sk, Xk+t, . . . , Xn] .

(6.3)
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For notational ease, under the previously mentioned time-homogeneous assumption,

define the conditional probability of observing a signal for the DCMM as

b
(i)
jm = P [Sk = νm |Sk−1 = νj, Xk = i] ,

where i ∈ S; νj, νm ∈ δ; k ∈ {1, 2, . . . , n}.

Given the structure of the DCMM, it should be clear that initial state probabilities

and the one-step state transition probabilities for the DCMM are subject to the same

constraints which were applicable to the Markov chain and HMM (see equations (1.2)

and (1.3)); while the signal probabilities for the DCMM are subject to:∑
vl∈δ

b
(i)
jl = 1, for i ∈ S and νj ∈ δ

b
(i)
jm ≥ 0, for i ∈ S and νj, νm ∈ δ.

For a given state i ∈ S, let the matrix B(i) contain the conditional signal transition

probabilities for state i, where the (j,m) entry of B(i) is b
(i)
jm . That is, if the DCMM

is currently in state i, B(i) will be the signal transition probability matrix used to

determine the signal output at the current time point given the signal which was

outputted at the previous time point. From this it can be seen that the output of the

DCMM can be viewed as a time inhomogeneous Markov chain, where the transition

probability matrix used for the outputs is dependent on the state of the DCMM (as

previously mentioned).

6.1.3 Deriving Important Equations for the Double-Chain
Markov Model

The mathematical particulars of the HMM have been discussed in detail in previous

chapters. In particular, three important equations formed the foundation for the

HMM, namely the forward, backward and Viterbi equations. These equations can

be similarly defined for the DCMM, a difference however being that the sequence of
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observed signals, Sk (where k ≤ n), now includes S0, the signal observed at time

0. These equations will once again form the foundation of the DCMM. As such

computational forms of these equations are desired and will be discussed in section.

To begin, the forward equation for the DCMM is defined, similar to the HMM, as

follows

Fk(j) = P (Sk = sk, Xk = j|λ) ,

where j ∈ S and k ∈ {1, . . . , n}.

Using a similar approach to that followed in Section 2.3.1, but replacing the assump-

tions from equation (6.2) with those in equation (6.3), it can easily be verified that

Fk(j) = b(j)sk−1,sk

∑
i∈S

Fk−1(i) pij ,

where

F1(j) = P (S0 = s0, S1 = s1, X1 = j|λ)

= P (S1 = s1|S0 = s0, X1 = j, λ)P (S0 = s0, X1 = j|λ) ..... by (2.11)

= b(j)s0,s1 P (S0 = s0, X1 = j|λ) .

Since S0 and X1 are independent and S0 has been observed and is therefore known,

it follows that

F1(j) = b(j)s0,s1 P (S0 = s0|λ)P (X1 = j|λ)

= b(j)s0,s1 .1. P (X1 = j|λ)

= b(j)s0,s1 pj .

Next the backward equation for the DCMM is defined as follows:

Bk(i) = P (Sk+1 = sk+1, . . . , Sn = sn|Sk = sk, Xk = i, λ) ,

where i ∈ S and k ∈ {1, . . . , n− 1}.
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Note the extra term Sk = sk which did not appear in the backward equation of

the HMM (equation (2.17)). However, equation (2.21) confirms that the backward

equation for the HMM could have equivalently been expressed in this form.

Using a similar approach to that used in Section 2.3.2, but replacing the assumptions

from equation (6.2) with those in equation (6.3), it can easily be verified that

Bk(i) =
∑
j∈S

b(j)sk,sk+1
Bk+1(j) pij .

As with the HMM, the backward equation for the DCMM at time n is set to 1 for

each state in the state space; that is Bn(i) = 1 for each i ∈ S. This ensures that

0 ≤ Bk(i) ≤ 1 for each i ∈ S and each k = 1, 2, . . . , n , which of course needs to hold

true since Bk(i) is a probability.

Finally, the Viterbi equation for the DCMM is defined, similar to the HMM, as follows

Vk(j) = max
i1,...,ik−1

P{Xk−1 = (i1, . . . , ik−1), Xk = j,Sk = sk|λ} ,

where k ∈ {1, . . . , n} and j, ih ∈ S for h = 1, . . . , k − 1 .

Using a similar approach to that used in Section 2.3.3, but replacing the assumptions

from equation (6.2) with those in equation (6.3), it can easily be verified that

Vk(j) = b(j)sk−1,sk
max
i∈S
{pij Vk−1(i)} ,

where

V1(j) = P (X1 = j, S0 = s0, S1 = s1|λ) = F1(j) = b(j)s0,s1 pj .

The above discussed iterative relationships greatly simplifies the computations of

the forward, backward and Viterbi equations when calculations of their values are

required, as will be the case in the next section.
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6.2 Solving Problems Regarding the Double-Chain

Markov Model

Estimation particulars regarding the DCMM will typically be of interest during ap-

plications of the DCMM. These include:

• The estimation of the likelihood of a sequence of signals so, s1, . . . , sn given a

DCMM λ. This is commonly referred to in the literature as the evaluation

problem.

• The estimation of the optimal sequence of hidden states given a DCMM λ and

the sequence of observed signals. This is commonly referred to in the literature

as the decoding problem.

• The estimation of the parameter set of a DCMM (the initial state probabilities,

the state transition probability matrix, and the signal transition probability

matrix for each state) given the sequence of observed signals. This is commonly

referred to in the literature as the learning problem.

• Estimating the probabilities of future states which will be visited and future

signals which will be emitted by the DCMM, given the sequence of observed

signals.

This section will detail the estimation particulars of the above for the DCMM.

To begin, consider the evaluation problem where the problem of interest is to calculate

the probability of the signal sequence so, s1, . . . , sn given a DCMM λ:

P (S0 = so, S1 = s1, . . . , Sn = sn|λ) = P (Sn = sn|λ) .
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This can be calculated in one of three ways for the DCMM:

P (Sn = sn|λ) =
∑
i∈S

Fn(i) , or

P (Sn = sn|λ) =
∑
i∈S

b(i)so,s1 B1(i) pi , or

P (Sn = sn|λ) =
∑
i∈S

Fk(i)Bk(i) , (6.4)

where the forward and backward equations for the DCMM can be calculated using the

techniques discussed in Section 6.1.3. The above three equations for the evaluation

probability are derived using a similar approach to that which was used for the HMM

(see Section 3.1.2).

In order to solve the decoding problem (i.e. optimally determine the sequence of

hidden states which have been visited, given a DCMM λ and the sequence of observed

signals), let X̂k denote the optimal estimator of Xk, the hidden state of the DCMM

at time k.

Recall from Section 3.2.2 that two approaches to solving the decoding problem for the

HMM were considered; that of calculating X̂k independently for each time point and

that of treating the entire state sequence as a single entity which must be optimised.

These two approaches can once again be followed for the DCMM.

Similar to the HMM note that

P (Xk = i|Sn = sn, λ) =
P (Sn = sn, Xk = i|λ)

P (Sn = sn|λ)

=
Fk(i)Bk(i)∑

j∈S
Fk(j)Bk(j)

.

Since
∑
j∈S

Fk(j)Bk(j) is constant for each i ∈ S, it follows that,

X̂k = arg max
i∈S
{P (Xk = i|Sn = sn, λ)}

= arg max
i∈S
{Fk(i)Bk(i)}
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for each k = 1, 2, . . . , n .

As was the case with the HMM, while this approach will maximize the number of

individually correct states, the ‘optimal’ state sequence estimated may not always be

attainable. To see this, suppose that pij = 0 for some i, j ∈ S. This approach cannot

guarantee that X̂k = i and X̂k+1 = j (for some k = 1, 2, . . . , (n − 1)) will not occur

in the ‘optimal’ state sequence. Similarly, pij = 1 may also result in an unattainable

‘optimal’ state sequence if this approach is used.

For the HMM, the solution to this which was presented in Section 3.2.2 was to regard

the entire state sequence as a single entity. That is, the solution to the decoding

problem will be the state sequence (X̂1, . . . , X̂n) such that

(X̂1, . . . , X̂n) = arg max
(i1,...,in)

{P (Xn = (i1, . . . , in)|Sn = sn, λ)} ,

where the likelihood which is maximised contains the entire state sequence.

To calculate the sequence (X̂1, . . . , X̂n) for the DCMM, the Viterbi algorithm can

once again be performed in the same way which was described for the HMM, this

time using the Viterbi equation for the DCMM (see Section 6.1.3). This can be proven

using similar techniques to those used in the proof of the theorem 1 in Section 3.2.2,

as is briefly discussed below.

To begin, notice that by equation (2.11)

P (Xn = (i1, . . . , in)|Sn = sn, λ) =
P (Xn = (i1, . . . , in),Sn = sn|λ)

P (Sn = sn|λ)
.

Since the calculation of P (Sn = sn|λ) does not depend on the state sequence which

has been visited, the problem of interest is equivalent to finding the state sequence

(i1, . . . , in) which will maximise

P (Xn = (i1, . . . , in),Sn = sn|λ) .

Using the assumptions of the DCMM (equation (6.3)) it can easily be verified (using

similar techniques to those used in the derivation of equation (3.1)) that for a given
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state sequence

P (Xn = (i1, . . . , in),Sn = sn|λ) = b(i1)s0,s1
b(i2)s1,s2

. . . b(in)sn−1,sn
pi1 pi1,i2 pi2,i3 . . . pin−1,in .(6.5)

Now define (Ẋ1, Ẋ2, . . . , Ẋn) be the estimated state sequence for the DCMM derived

from the Viterbi equation. That is

Ẋn = arg max
j∈S
{Vn(j)}

Ẋk = ψk+1(Ẋk+1) for k = 1, . . . , n− 1 ,

where

ψk(j) = arg max
i∈S
{pij Vk−1(i)} for each j ∈ S and k = 2, . . . , n ,

Vk(j) = b(j)sk−1,sk
max
i∈S
{pij Vk−1(i)} for each j ∈ S and k = 2, . . . , n ,

V1(j) = b(j)s0,s1 pj for each j ∈ S .

It can then be verified, using similar techniques to those used in the proof of the

theorem 1 in Section 3.2.2, that for the DCMM

max
i1,...,in

P{Xn = (i1, . . . , in),Sn = sn|λ}

= b(Ẋn)
sn−1,sn

. . . b(Ẋ2)
s1,s2

b(Ẋ1)
s0,s1

pẊn−1,Ẋn
. . . pẊ1,Ẋ2

pẊ1
.

This then demonstrates the validity of Viterbi Algorithm in solving the decoding

problem for the DCMM as it has been shown that

(Ẋ1, Ẋ2, . . . , Ẋn) = arg max
(i1,...,in)

{P (Xn = (i1, . . . , in)|Sn = sn, λ)} .

Next the learning problem for the DCMM is discussed, that is estimating the param-

eter set of the DCMM given the sequence of observed signals. To this end, using an

approach comparable to that used for HMMs, the Baum-Welch Algorithm (BWA)

estimates for the DCMM parameters can be derived.
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To begin, firstly define

ξk(i, j) = P (Xk = i,Xk+1 = j|Sn = sn, λ)

γk(i) = P (Xk = i|Sn = sn, λ)

γk,h(i) =

{
γk(i) if sk−1 = νh

0 if sk−1 6= νh

γk,h,m(i) =

{
γk(i) if sk−1 = νh and sk = νm

0 otherwise.
(6.6)

Using similar mathematics to that described for the HMM, but replacing the assump-

tions from equation (6.2) with those in equation (6.3), computational forms for ξk(i, j)

and γk(i) can be derived for the DCMM:

ξk(i, j) =
Fk(i) pij b

(j)
sk,sk+1 Bk+1(j)

P (Sn = sn|λ)

γk(i) =
Fk(i)Bk(i)

P (Sn = sn|λ)
,

where P (Sn = sn|λ) can be calculated using equation (6.4).

The following interpretations can be made about the above probabilities:
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n−1∑
k=1

γk(i) = expected number of transitions from state i during the first n ob-

served time points,

n−1∑
k=1

ξk(i, j) = expected number of transitions from state i into state j during the

first n observed time points,

n∑
k=1

γk,h(i) = expected number of times, during the first n time points, that the

DCMM is in state i when the previous emitted signal was νh ,

n∑
k=1

γk,h,m(i) = expected number of times, during the first n time points, that the

DCMM is in state i when the previous emitted signal was νh and

the current signal emitted is νm .

Proofs for the first two equations were formally derived for the HMM in Appendix

B and can be similarly derived for the DCMM. Proofs for the last two equations are

shown in Appendix C.

Now define λ∗ = (P∗,B∗, a∗) to be the current estimate of the parameters for the

DCMM, and λ̂ = (P̂, B̂, â) to be the re-estimate of λ∗.

Also define

γ∗k(i), ξ
∗
k(i, j), γ

∗
k,h(i) and γ∗k,h,m(i) (6.7)

to be the values for γk(i), ξk(i, j), γk,h(i) and γk,h,m(i) calculated using λ∗.
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Then for i, j ∈ S and νj, νm ∈ δ the elements of λ̂ can be calculated as follows:

p̂i = P (X1 = i|Sn = sn, λ
∗)

= γ∗1(i) (6.8)

p̂ij = proportion of times that, when the DCMM is in state i, a transition

into state j occurs

=
expected number of transitions from state i to state j

expected number of transitions from state i

=

n−1∑
k=1

ξ∗k(i, j)

n−1∑
k=1

γ∗k(i)

(6.9)

b̂
(i)
jm = proportion of times that, when the DCMM is in state i and the previous

signal emitted was νj, signal νm is emitted

{expected number of times the DCMM is in state i when the previous

=
emitted signal was νj and the current signal emitted is νm}
{expected number of times the DCMM is in state i when the previous

emitted signal was νj}

=

n∑
k=1

γ∗k,j,m(i)

n∑
k=1

γ∗k,j(i)
. (6.10)

The expressions (6.8)-(6.10), evaluated at the current parameter estimates, provide

updated estimates of pi, pij and b
(i)
jm .

At first glance it may appear that the Baum-Welch equations (6.8)-(6.9) for the

DCMM will produce identical estimates to the Baum-Welch equations (4.7)-(4.8) for

the HMM. This however will not be the case as the calculation of the forward and

backward equations, which are used in the calculations of γ∗k(i) and ξ∗k(i, j), differ

between the HMM and the DCMM.

119



When discussing the BWA for the HMM, several comments and findings were made.

These can also be extended to the BWA for the DCMM as is discussed next.

Firstly it should be noted that the BWA for the DCMM is an example of the Expec-

tation Maximization (EM) algorithm (the EM algorithm is detailed in Appendix B).

That is the Baum-Welch re-estimation equations (equations (6.8)-(6.10)) are identical

to the iteration steps which arise from the EM algorithm applied to this particular

problem. The mathematics proving this for the DCMM are presented in Appendix

C. This result is key as important properties have been proven for the EM algorithm

(see Appendix B) and can thus be extended to the BWA estimates. For example,

from the alignment of the BWA to the EM algorithm, the following can be concluded

for the Baum-Welch estimates for the DCMM:

1) either λ∗ defines a critical value of the likelihood function, P (Sn = sn|λ), in which

case the above calculations will produce λ̂ = λ∗, or

2) model λ̂ results in a higher value in the likelihood function than λ∗ did - that is

P (Sn = sn|λ̂) > P (Sn = sn|λ∗). Therefore a new model, λ̂, has been found

from which the observed signal sequence is more likely to have been produced.

Based on the above, if λ̂ is iteratively used in place of λ∗ in the re-estimation calcula-

tions, the probability of the observed signal sequence being produced by the estimated

model is improved (until convergence is achieved). That is, the updated BWA esti-

mates will result in the value of the likelihood function being repeatedly increased

until some limiting point is reached. The final result of this re-estimation procedure

is then the maximum likelihood estimator (this is formally proven for the EM algo-

rithm in Appendix B). It should however be noted that the BWA only leads to a local

maxima of the likelihood function, and that in most applications many local maxima

are likely exist. This however is the most which can be achieved since, to the best

of knowledge at the time of writing, no analytical or numerical methods exist in the

literature which will solve for the global maxima of the likelihood P (Sn = sn|λ) for
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the DCMM. Since only a local maxima can be found, the choice of the initial values

of λ used to train the BWA will influence the final estimated values.

As was the case with the HMM, a pleasing property of the BWA is that at each it-

eration the parameter estimates satisfy the DCMM parameter constraints (provided

of course that the initial estimates chosen for the BWA satisfy these constraints):∑
i∈S

p̂i = 1

p̂i > 0, for i ∈ S, and

∑
j∈S

p̂ij = 1, for i ∈ S

p̂ij > 0, for i, j ∈ S, and

∑
vm∈δ

b̂
(i)
jm = 1, for i ∈ S and νj ∈ δ

b̂
(i)
jm ≥ 0, for i ∈ S and νj, νm ∈ δ.

And so the final estimated values of λ produced by the BWA will satisfy the DCMM

parameter constraints.

The property that p̂i > 0, p̂ij > 0 and b̂
(i)
jm > 0 for each iteration is guaranteed from

the fact that forward and backward equations will be guaranteed to be greater than

or equal to zero for each observed time point, provided that the initial estimates for

pi, pij and bjm are chosen to be greater than or equal to zero (see Section 6.1.3 for

details of this).

The remaining three properties can once again be proven by considering how the

Baum-Welch re-estimation equations for the DCMM can be derived by making use of

the EM algorithm. In Appendix C it is shown that these properties are guaranteed

since, when deriving the re-estimation equations which will maximise P (Sn = sn|λ),

Lagrange multipliers are used in the EM algorithm to ensure that these constraints
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are satisfied for each iteration. Similar to the HMM, these three properties can also

be proven algebraically by noting that if the partition rule for probability (equation

(2.9)) is applied to equation (6.6), then
∑
j∈S

ξk(i, j) = γk(i) and
∑
νm∈δ

γk,j,m(i) = γk,j(i)

is obtained, which when applied to equations (6.8)-(6.10) yield the desired properties.

In applications of the DCMM, multiple observation sequences may be available. To

this end an adaptation of the BWA is required such that all available data is utilised

in the estimation of the DCMM parameters. To begin, consider M independent

observation sequences notated by

Ś = [S(1)
n1
,S(2)

n2
, ...,S(M)

nM
],

where S(r)
nr

= (s
(r)
1 , s

(r)
2 , ..., s

(r)
nr ) is the rth observation sequence, consisting of nr

individual signals (observations), and r ∈ {1, 2, ...,M}.

It is then desired to use the entire set of data to train a single DCMM. Since all the

observation sequences are independent, the likelihood is equal to

P (Ś |λ) =
M∏
r=1

P (S(r)
nr

= s(r)nr
|λ) ,

where P (S(r)
nr

= s
(r)
nr |λ) is the likelihood of the rth observation sequence and can be

calculated using equation (6.4).

As was the case for a single observation sequence, define λ∗ = (P∗,B∗, a∗) to be the

current estimate of the parameter set for the DCMM, and λ̂ = (P̂, B̂, â) to be the

Baum-Welch re-estimate of this parameter set.

Also, define

γ
∗(r)
k (i), ξ

∗(r)
k (i, j), γ

∗(r)
k,h (i) and γ

∗(r)
k,h,m(i)

be the probabilities corresponding to those given in equation (6.6), calculated for the

rth observation sequence using λ∗, where r = 1, 2, ...,M ; k = 1, ..., nr ; i, j ∈ S ; and
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νh, νm ∈ δ .

Since the Baum-Welch re-estimation equations for a single observation sequence are

based on the expected number of occurrences of certain events, it is suggested in [10]

that the BWA re-estimation equations (equations (6.8) - (6.10)) be adapted as follows

to take into account the information from the M sequences:

p̂i =
1

M

M∑
r=1

γ
∗(r)
1 (i)

p̂ij =

M∑
r=1

nr−1∑
k=1

ξ
∗(r)
k (i, j)

M∑
r=1

nr−1∑
k=1

γ
∗(r)
k (i)

b̂
(i)
jm =

M∑
r=1

nr∑
k=1

γ
∗(r)
k,j,m(i)

M∑
r=1

nr∑
k=1

γ
∗(r)
k,j (i)

. (6.11)

In Section 4.1.3 the approach used by [18] to extend the BWA for multiple observation

sequences was discussed for the HMM. Similarly this approach is outlined for the

DCMM next.

Under this approach it is suggested that the parameters of λ first be estimated using

the single sequence Baum-Welch re-estimation equations (equations (6.8) to (6.10))

for each individual observation sequence. Thus M distinct estimates are obtained

for each parameter. The final Baum-Welch estimates, for the multiple observation

123



sequences, are then given by:

p̂i =
M∑
r=1

Wr

Na

p̂
(r)
i

p̂ij =
M∑
r=1

Wr

Nb

p̂
(r)
ij

b̂
(i)
jm =

M∑
r=1

Wr

Nc

b̂
(i)(r)
jm , (6.12)

where λ̂(r) =
(
P̂

(r)
, B̂

(r)
, â(r)

)
is the final Baum-Welch estimate obtained from S(r)

nr
,

Wr is the weighting factor for the estimates from S(r)
nr
,

Na, Nb and Nc are normalization factors .

Typically the weight factors used in the above calculations include unit weight factors

(Wr = 1 for each observation sequence, that is the estimated parameters from each

individual observation will have equal weight), weight factors expressed as a function

of P (S(r)
nr

= s
(r)
nr | λ̂(r)) and weight factors expressed as a function of P (Ś | λ̂(r)). For

each of these weightings, ‘trimmed’ weight factors can also be considered whereby

the weight factors for unlikely models (as determined by either P (S(r)
nr

= s
(r)
nr | λ̂(r)) or

P (Ś | λ̂(r))) are set to 0.

When applications consisting of multiple observation sequences are performed for the

DCMM it is advised that both the approach described by equation (6.11) and the

approach described by equation (6.12) be considered.

The final comment to be made regarding the BWA for the DCMM is that when calcu-

lating the BWA re-estimation equations, scaling may be required as the forward and

backward equations can easily take on values too small to be handled by a computer.

This is also noted in [10]. In Section 4.1.2.1 of this dissertation a technique for scaling

the forward and backward equations for the HMM was discussed. This technique can

also be used to scale the forward and backward equations for the DCMM.
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Another aspect of the DCMM which may be of interest during applications is that of

forecasting the state which will be visited and/or the signal which will be emitted at

some future time point. A similar discussion was provided for the HMM in Section

3.4.3.

To begin assume that signals for the first n time points has been observed. Using

similar mathematics to that which was used in Section 3.4.3, the forecasting distribu-

tion for the state visited at time n+h, where positive integer h is termed the forecast

horizon, can be derived as the following:

P (Xn+h = j|Sn = sn, λ) =
1∑

l∈S
Fn(l)

∑
i∈S

pij(h)Fn(i) , (6.13)

where P(h) = {pij(h)} = Ph by equation (1.6).

While at first glance equation (6.13) may appear identical to the state forecasting

distribution for the HMM (see equation (3.19)), this is not the case since the calcu-

lation of the forward equations differs for the HMM and DCMM.

Next the forecasting distribution for the signal emitted at time n + h is derived. To

begin consider

P (Sn+1 = νm|Sn = sn, λ)

=
∑
i∈S

P (Sn+1 = νm, Xn+1 = i|Sn = sn, λ) ..... by (2.9)

=
∑
i∈S

P (Sn+1 = νm|Xn+1 = i,Sn = sn, λ)P (Xn+1 = i|Sn = sn, λ) ..... by (2.11)

=
∑
i∈S

P (Sn+1 = νm|Xn+1 = i, Sn = sn, λ)P (Xn+1 = i|Sn = sn, λ) ..... by (6.3)

=
∑
i∈S

b(i)sn,m P (Xn+1 = i|Sn = sn, λ) , (6.14)
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where P (Xn+1 = i|Sn = sn, λ) can be calculated using equation (6.13);

P (Sn+2 = νm|Sn = sn, λ)

=
∑
i∈S

∑
νj∈δ

P (Sn+2 = νm|Xn+2 = i, Sn+1 = νj,Sn = sn, λ)

×P (Xn+2 = i, Sn+1 = νj|Sn = sn, λ) ..... by (2.9) and (2.11)

=
∑
i∈S

∑
νj∈δ

P (Sn+2 = νm|Xn+2 = i, Sn+1 = νj, λ)

×P (Xn+2 = i|Sn+1 = νj,Sn = sn, λ)

×P (Sn+1 = νj|Sn = sn, λ) ..... by (2.11) and (6.3)

=
∑
i∈S

∑
νj∈δ

b
(i)
jm P (Xn+2 = i|Sn+1 = sn+1, λ)P (Sn+1 = νj|Sn = sn, λ) ,

where it is assumed that sn+1 = (s0, s1, . . . , sn, νj) and P (Xn+2 = i|Sn+1 = sn+1, λ)

and P (Sn+1 = νj|Sn = sn, λ) can be calculated using equation (6.13) and equation

(6.14) respectively;

P (Sn+3 = νm|Sn = sn, λ)

=
∑
i∈S

∑
νj∈δ

∑
νl∈δ

P (Sn+3 = νm|Xn+3 = i, Sn+2 = νj, Sn+1 = νl,Sn = sn, λ)

×P (Xn+3 = i, Sn+2 = νj, Sn+1 = νl|Sn = sn, λ) ..... by (2.9) and (2.11)

=
∑
i∈S

∑
νj∈δ

∑
νl∈δ

P (Sn+3 = νm|Xn+3 = i, Sn+2 = νj, λ)

×P (Xn+3 = i|Sn+2 = νj, Sn+1 = νl,Sn = sn, λ)

×P (Sn+2 = νj, Sn+1 = νl|Sn = sn, λ) ..... by (2.11) and (6.3)

=
∑
i∈S

∑
νj∈δ

∑
νl∈δ

b
(i)
jm P (Xn+3 = i|Sn+2 = sn+2, λ)

×P (Sn+2 = νj|Sn+1 = νl,Sn = sn, λ)P (Sn+1 = νl|Sn = sn, λ) ..... by (2.11)

=
∑
i∈S

∑
νj∈δ

∑
νl∈δ

b
(i)
jm P (Xn+3 = i|Sn+2 = sn+2, λ)

×P (Sn+2 = νj|Sn+1 = sn+1, λ)P (Sn+1 = νl|Sn = sn, λ) ,
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where it is assumed that sn+1 = (s0, s1, . . . , sn, νl). and sn+2 = (s0, s1, . . . , sn, νl, νj).

The terms P (Xn+3 = i|Sn+2 = sn+2, λ), P (Sn+2 = νj|Sn+1 = sn+1, λ) and P (Sn+1 =

νl|Sn = sn, λ) can be calculated using equations (6.13) and equation (6.14).

And so the above procedure can be continued until the desired forecasting horizon is

reached. It can be seen from the above that, due to the dependence structure within

the output of the DCMM, quite detailed computations are required to calculate the

probability of future signals being emitted for large h.

6.3 Additional Considerations for the Double Chain

Markov Model

In addition to the discussions surrounding the DCMM presented in this chapter,

further concepts which were discussed for the HMM in this dissertation can also be

extended to the DCMM. These include

• deriving marginal distributions and moments for the DCMM,

• implementation considerations for the BWA for the DCMM,

• utilising direct maximisation of the likelihood function in order to estimate

the model parameters (as opposed to using the Baum Welch / EM algorithm

approach which was discussed for the DCMM in this chapter),

• Bayesian estimation for the DCMM,

• utilising standard errors and confidence intervals to assess the adequacy of es-

timated model parameters,

• assessing the fit of the estimated model to the observed data through model

selection criterion and pseudo-residuals.
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Comments surrounding these areas are similar to those made for the HMM and as

such will not be repeated again here. One point to elaborate on however is a discus-

sion presented in [23]. In [23] Bayesian estimation for the DCMM is explored. An

algorithm for sampling from the posterior distribution associated with the DCMM,

when multiple independent observation sequences are observed, is presented. Simu-

lation studies and an application to real data (relating to credit rating migrations)

are also presented in [23] to illustrate the proposed algorithm. This application will

be further discussed in Chapter 8 of this dissertation.

Model adaptations to the DCMM which has been detailed in this chapter are also

explored in the literature. In particular, a discussion on higher order DCMMs is pre-

sented in [11] and [22]. In these papers it is shown how the DCMM can be adapted

to incorporate higher orders on both the process of the hidden states and the process

of the observations. That is, for order g in the state process and order f in the signal

process, the following assumptions are made:

P [Xm = k|X1 = i1, S1 = s1, . . . , Xm−1 = im−1, Sm−1 = sm−1]

= P [Xm = k|Xm−1 = im−1, Xm−2 = im−2, . . . , Xm−g = im−g]

and

P [Sm = νk|X1 = i1, S1 = s1, . . . , Xm−1 = im−1, Sm−1 = sm−1, Xm = im]

= P [Sm = νk|Xm = im, Sm−1 = sm−1, Sm−2 = sm−2, . . . , Sm−f = sm−f ] .

These assumptions will greatly increase the number of parameters in the model. For

example if there are M states in the state space and K signals in the signal space,

then the number of parameters which would need to be estimated would increase

from

• M − 1 to
g−1∑
l=0

M l(M − 1) for the initial state probabilities,

• M(M − 1) to M g(M − 1) for the state transition probabilities,
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• MK(K − 1) to MKf (K − 1) for the signal transition probabilities.

In order to reduce the number of parameters for such a model, [11] and [22] propose

the use of a Mixture Transition Distribution model (MTD), initially introduced by

[39]. The MTD model was overviewed in Section 5.2 of this dissertation.

Applications comparing the performance of different dimension and different order

Markov chains, HMMs and DCMMs (with and without the use of a MTD model) are

also explored in [11], [22] and [23]. These studies will be explored in more detail in

Chapter 8 of this dissertation.
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Chapter 7

A Simulation Study of Hidden and
Double Chain Markov Models

Previous chapters of this dissertation have provided theoretical discussions on HMMs

and DCMMs. The sections of this chapter will explore how some of the aspects of

these models actually perform in practice. After careful consideration it was decided

that this analysis would best be facilitated through simulated data (as opposed to

sourcing actual data) as this allows knowledge of the true model parameters and un-

derlying state sequence. The approach used to perform these simulations are detailed

in the relevant sections.

In order to preserve the structure and flow of each subsection, all graphs relating to

a particular subsection are displayed at the end of the relevant subsection. Finally

it should be noted that all code required to perform the simulations and analysis

presented in this chapter was written entirely by the author of this dissertation.
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7.1 Exploring the Baum-Welch Algorithm for the

HMM

The BWA for the HMM has been detailed in previous discussions in this dissertation.

The following key questions regarding the BWA for the HMM will now be explored

in this section:

• How accurately does the BWA estimate the actual model parameters?

• What influence does the choice of the starting parameter values used to train

the BWA have on the final parameters estimated by the BWA?

• What influence does the length of the signal sequence used to train the BWA

have on the final parameters estimated by the BWA?

• How sensitive is the BWA to the signal sequence which is used to train it? That

is, if different signal sequences, all simulated from a single HMM, are used to

train the BWA, how variable will the different BWA estimates be?

• By considering the above points, can a technique be derived to enhance the

effectiveness of the BWA when used in practice?

In exploring the above, it is believed that the techniques and findings presented in

this section can greatly aid a practitioner in both understanding and implementing

the BWA.

7.1.1 Exploring the Effect which Different Starting Parame-
ter Values has on the Baum-Welch Algorithm

Simulations to test the effect that different starting parameter values have on the

BWA for the HMM are now discussed. In particular, the structure of the simulations

performed is first outlined before results are analysed.
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To begin, the following HMM, λ = (P,B, a), was chosen to perform the simulations:

a =

(
a1
a2

)
=

(
0.50
0.50

)
P =

(
p11 p12
p21 p22

)
=

(
0.70 0.30
0.15 0.85

)
B =

(
b11 b12
b21 b22

)
=

(
0.70 0.30
0.10 0.90

)
.

Assuming that the parameters of λ are unknown, there are essentially five parameters

which need to be estimated by the BWA namely a1, p11, p21, b11, b21 (since of course

a2 = 1− a1; p12 = 1− p11; p22 = 1− p21; b12 = 1− b11 and b22 = 1− b21; and as was

discussed in Section 4.1.1 these properties are respected by the BWA). It was noted

in Section 4.1.1 that the BWA estimate for a1 will tend to either 0 or 1. For this

reason the BWA estimate for a1 will not be a focus of this simulation exercise. What

is however of interest is how accurately the values for p11, p21, b11, b21 are recovered

by the BWA.

Using λ specified above, a HMM process was simulated. That is, an underlying state

sequence and a corresponding signal sequence were simulated using the probabilities

specified in λ. In order to ensure that meaningful results were achieved when per-

forming the BWA, it was decided to ensure that the sequence lengths were suitably

long (so as to ensure that there is sufficient data to train the BWA). To this end the

simulated state and signal sequence each consisted of 5500 data points (shorter data

sequences are also used later in this section to see how the BWA performs when less

training data is available). Let the simulated state and simulated signal sequence be

denoted by x̃1
5500 and s̃15500 respectively, where 5500 denotes the length of the state

and signal sequences and 1 signifies that only one state and signal sequence has been

simulated.

From the specified values of λ, it is noted that the limiting steady state probabilities

for the underlying Markov chain is π = [1
3
, 2

3
]. This can be confirmed through equa-

tion (1.9). Furthermore, the marginal probabilities of the HMM outputting signal 1

and signal 2 are 0.3 and 0.7 respectively (see equation (3.18) for details of this calcu-
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lation). If simulated correctly, these probabilities should be reflected in the simulated

state and signal sequence. This is indeed the case as state 1 and state 2 occur 1,807

and 3,693 times respectively in the simulated state sequence (a proportion of 0.33 and

0.67 respectively) and signal 1 and signal 2 occur 1,628 and 3,872 times respectively

in the simulated signal sequence (a proportion of 0.30 and 0.70 respectively).

To quantify how accurately the BWA estimates the parameters of λ, 1,000 distinct

starting values to train the BWA were generated, denoted by

λ̃1000 = {λ̃(1), λ̃(2) . . . , λ̃(1000)} .

These were generated by drawing random numbers from the uniform(0,1) distribu-

tion, while still ensuring that the appropriate properties of λ are conserved (i.e. the

constraints given in equations (1.2), (1.3) and (2.7)).

Next s̃15500 and λ̃1000 were used to perform the BWA and create 1,000 distinct BWA

estimates for λ, denoted as

λ̂10005500 = {λ̂(1)5500, λ̂
(2)
5500 . . . , λ̂

(1000)
5500 } ,

where, for i = 1, 2, . . . , 1000, λ̂
(i)
5500 is the BWA estimate of λ calculated using s̃15500

and λ̃(i).

The four plots depicted in Figure 7.1.1 show the distributions of λ̃1000 and λ̂10005500

(labelled as ‘Random Inputs’ and ‘BWA estimates’ respectively), separated into each

of the four parameters of interest which need to be estimated (namely p11, p21, b11

and b21). The true parameter value is depicted in the plots as a bar.

As expected, λ̃1000 is uniformly distributed for each of the four parameters. The

distribution of λ̂10005500 for each of the four parameters appears to be multi-modal (in

particular there appears to be two modes in the BWA estimates for p11 and p21, and

three modes in the BWA estimates for b11 and b21). While the BWA seems to estimate

the true parameter value well for some of the inputs in λ̃1000, in other instances it

appears as if the BWA is converging to a local maxima which does not represent
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the true parameter value. This may indeed be problematic in practice as typically

the true parameter value is unknown and hence it will be unknown if the BWA has

converged to the true parameter value or some incorrect value. In addition to this, in

some cases the BWA estimate for p11 and p21 has not converged to one of the modes.

At first glance these results may appear quite discouraging, however further analysis

reveals some interesting insights and shows that the BWA is indeed performing well for

this particular simulation. To this end scatter plots of λ̃1000 and λ̂10005500 were graphed

and are displayed in Figure 7.1.2. This allows the interaction between the BWA

estimates for the four parameters to be analysed. Once again the following can clearly

be seen: the uniform randomness in the initial estimates λ̃1000 which are used to start

training the BWA; the two modes in the BWA estimates for p11 and p21; the fact that

not all of the BWA estimates for p11 and p21 have converged to one of the modes; and

the three modes in the BWA estimates for b11 and b21. Furthermore, it can also be

seen that the two apparent modes for the p11 and p21 BWA estimates coincide and

the three apparent modes for the b11 and b21 BWA estimates also coincide.

In order to gain further insights, separate scatter plots were produced for each of

the three apparent modes for b11 and b21. These are shown in Figures 7.1.3 (i)-(iii).

Analysing these plots lead to the following conclusions:

• If the starting values used to train the BWA (λ̃1000) were such that they were

situated in the region of the lower right triangle for P (that is p11 > p21 ) and

the lower right triangle for B (that is b11 > b21 ), then the final BWA estimates

λ̂10005500 tended to be estimated in the vicinity of a mode centred at p11 = 0.725,

p21 = 0.15, b11 = 0.675 and b21 = 0.1. These estimates are close to the true

model parameter values.

• If the starting values used to train the BWA (λ̃1000) were such that they were

situated in the region of the lower right triangle for P (that is p11 > p21 ) and

the upper left triangle for B (that is b11 < b21 ), then the final BWA estimates
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λ̂10005500 tended to be estimated in the vicinity of a mode centred at p11 = 0.85,

p21 = 0.275, b11 = 0.1 and b21 = 0.675. These estimates are further discussed

below.

• If the starting values used to train the BWA (λ̃1000) were such that they were

situated in the region of the upper left triangle for P (that is p11 < p21 ) then

the BWA estimates for b11 and b21 tended to be estimated in the vicinity of a

mode b11 = 0.3 and b21 = 0.3, while BWA estimates for p11 and p21 did not

significantly change from their starting BWA estimates. These estimates are

further discussed below.

It should at this point be noted that a HMM with parameters p11 = 0.85, p21 =

0.3, b11 = 0.1, b21 = 0.7 is equivalent in terms of statistical properties to the HMM

with parameters specified in λ (all that has changed is that the state labels have

been permuted). Furthermore, the BWA parameter estimates mentioned in the sec-

ond point above align closely with these parameter values. This then explains the

symmetry which can be viewed in the BWA estimates around the lines p21 = 1− p11
and b21 = b11 in the scatter plots of Figure 7.1.2. In order to make the BWA esti-

mates λ̂10005500 more identifiable, all estimates for (p11, p21) which lie above the diagonal

p21 = 1− p11 were reflected around p21 = 1− p11. The associated (b11, b21) estimates

for these points were reflected around the diagonal b21 = b11. This gives rise to the

scatter plot in Figure 7.1.4. It can be observed that once reflected, the BWA esti-

mates originally clustered around (p11, p21) = (0.85, 0.275) and (b11, b21) = (0.1, 0.675)

are now transformed to estimates clustered around (p11, p21) = (0.725, 0.15) and

(b11, b21) = (0.675, 0.1), which of course closely resemble the true parameter values of

λ.

The cluster of BWA estimates around the point (b11, b21) = (0.3, 0.3) in Figure 7.1.4

appear to correspond to a process where the signal distribution for each state follows

a Bernoulli process with probability 0.3. To see this note that since for this cluster

the rows of B̂ are effectively equivalent, the state is irrelevant to the signal which is
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emitted (i.e., the signal emitted will be 1 with probability 0.3 and 2 with probability

0.7 for either state). As mentioned earlier in this section, the marginal probability

for the HMM λ outputting signal 1 is 0.3. This then explains the cluster of BWA

estimates around the point (b11, b21) = (0.3, 0.3) and also why, for these points, the

associated BWA estimates for (p11, p21) are scattered - see Figure 7.1.3 (iii) (since the

state occupied has no influence on the signal emitted, the state transition probabili-

ties can be any value without effecting the outputted signal sequence).

Next the likelihood value for each of the BWA parameter set estimates within λ̂10005500

was calculated; that is for each i = 1, 2, . . . , 1000 the following was calculated:

l
(i)
5500 = P (S5500 = s̃15500|λ̂

(i)
5500) .

The BWA estimate corresponding to the maximum of {l(1)5500, l
(2)
5500, . . . , l

(1000)
5500 } is (p̂11, p̂21)

= (0.87, 0.27) and (b̂11, b̂21) = (0.11, 0.67). Once reflected, this yields (p̂11, p̂21) =

(0.73, 0.13) and (b̂11, b̂21) = (0.67, 0.11). These estimates closely resemble the true

parameter values (p11, p21) = (0.70, 0.15) and (b11, b21) = (0.70, 0.10). This is encour-

aging especially if one considers that no data from the hidden state sequence forms

part of the training data for the BWA.

From the above analysis key observations can be made. Firstly the starting value for

the BWA may play a significant role in determining what the final BWA estimate

will be. For this reason it is advised that several different starting values be used as

was the case in the above exercise. Secondly, once the BWA has been performed and

a HMM has been fit, one should take care in labelling and interpreting the states. To

this end appropriate reflection of the BWA estimates may be required as was consid-

ered in the analysis above. Finally it can also be seen that if interpreted correctly,

the BWA may indeed be effective in estimating the true model parameters for the

HMM.

Of course it should be noted that a signal sequence of length 5500 was used to train

the BWA in the above exercise. The next question of interest is how the results of
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the above exercise compare when a shorter signal sequence is used. To this end signal

sequences of length 1000, 500, 250, 150 and 75 were simulated, denoted as s̃11000, s̃1500,

s̃1250, s̃1150 and s̃175 respectively, and the above exercise was repeated for each simulated

signal sequence. Figure 7.1.5 shows both the final BWA estimates and reflected final

BWA estimates for (p11, p21) and (b11, b21) when s̃11000 was used to train the BWA. The

graphs depicting the corresponding results when s̃1500, s̃1250, s̃1150 and s̃175 were used to

train the BWA are shown in Figures 7.1.6 to 7.1.9.

Next the BWA estimates corresponding to the maximum of {l(1)1000, l
(2)
1000, . . . , l

(1000)
1000 },

{l(1)500, l
(2)
500, . . . , l

(1000)
500 }, {l

(1)
250, l

(2)
250, . . . , l

(1000)
250 }, {l

(1)
150, l

(2)
150, . . . , l

(1000)
150 } and {l(1)75 , l

(2)
75 , . . . , l

(1000)
75 }

were determined and reflected where necessary. These parameter estimates are sum-

marised in the table below (together with the results given earlier when s̃15500 was

used to train the BWA).

p̂11 p̂21 b̂11 b̂21
True parameter value 0.70 0.15 0.70 0.10

BWA estimate from max of {l(1)5500, l
(2)
5500, . . . , l

(1000)
5500 } 0.73 0.13 0.67 0.11

BWA estimate from max of {l(1)1000, l
(2)
1000, . . . , l

(1000)
1000 } 0.68 0.24 0.58 0.05

BWA estimate from max of {l(1)500, l
(2)
500, . . . , l

(1000)
500 } 0.73 0.17 0.70 0.03

BWA estimate from max of {l(1)250, l
(2)
250, . . . , l

(1000)
250 } 0.90 0.02 0.67 0.15

BWA estimate from max of {l(1)150, l
(2)
150, . . . , l

(1000)
150 } 0.48 0.24 0.99 0.00

BWA estimate from max of {l(1)75 , l
(2)
75 , . . . , l

(1000)
75 } 0.39 0.26 0.99 0.02

Table 7.1.1: BWA estimates using simulated signal sequences of different lengths

Figures 7.1.4 - 7.1.9 and the above table show, as expected, that the performance

of the BWA deteriorates as shorter data sequences are used to train the algorithm.

Considering that the chosen λ is a HMM of the most basic form (i.e. five unknown

parameters), the poor performance of the BWA when a signal sequence of length 75

or 150 is used for training suggests that the BWA is quite a ‘data hungry’ algorithm.

This may be attributed to the fact that no direct data from the hidden state process is

available to train the model parameters. The results do however show that if enough

data is available for training, the BWA can be effective in determining the true model
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parameters of the HMM.

The stability of the above simulation exercise was also tested. For each signal se-

quence s̃1k, where k ∈ {75, 150, 250, 500, 1000, 5500}, the BWA estimates from the 50

largest values of {l(1)k , l
(2)
k , . . . , l

(1000)
k } (as opposed to just the maximum) were com-

pared. Each of these estimates gave similar results to the corresponding estimate in

Table 7.1.1.

Recall that for a given signal length in above simulations, the same signal sequence

was used for each of the 1000 iterations. That is for k ∈ {75, 150, 250, 500, 1000, 5500}
the same signal sequence s̃1k was used to train the BWA and obtain estimates λ̂1000k =

{λ̂(1)k , λ̂
(2)
k . . . , λ̂

(1000)
k }. Only the starting values for the BWA changed. Of course the

simulated signal sequence used to train the BWA estimates could also have an influ-

ence on the final BWA estimates. For example, a second state and signal sequence of

length 75 was simulated and the above simulation exercise repeated. For this simu-

lated signal sequence, the BWA estimates from the maximum of {l(1)75 , l
(2)
75 , . . . , l

(1000)
75 }

was (p̂11, p̂21) = (0.83, 0.03) and (b̂11, b̂21) = (0.85, 0.16). This is a material improve-

ment to the BWA estimates given in Table 7.1.1. The corresponding graph of Figure

7.1.9 also shows that the BWA is producing significantly improved estimates (when

compared to the actual parameter values) for this particular simulated signal se-

quence. This suggests that a study of the sampling distribution of the BWA estimates

given in Table 7.1.1 would prove insightful. This is examined in more detail in the

next section.

To summarise the above discussion, there appears to be three significant drivers of

the accuracy of BWA, namely (i) the starting values used for the BWA, (ii) the length

of the signal sequence used to train the BWA, and (iii) the actual data sequence used

to train the BWA. Points (i) and (ii) have been detailed in the preceding discussion.

The next section explores point (iii) and also adds further discussion to point (ii).
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Figure 7.1.1: Frequency curves of BWA estimates using a signal sequence of 5500 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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Figure 7.1.2: Scatter plot of BWA estimates using a signal sequence of 5500
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Figure 7.1.3 (i): Mode 1 for the B BWA estimates using a signal sequence of 5500
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Figure 7.1.3 (ii): Mode 2 for the B BWA estimates using a signal sequence of 5500
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Figure 7.1.3 (iii): Mode 3 for the B BWA estimates using a signal sequence of 5500
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Figure 7.1.4: Reflected Scatter plot of BWA estimates using a signal sequence of 5500
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Figure 7.1.5: Scatter plot of BWA estimates using a signal sequence of 1000
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Figure 7.1.6: Scatter plot of BWA estimates using a signal sequence of 500
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Figure 7.1.7: Scatter plot of BWA estimates using a signal sequence of 250
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Figure 7.1.8: Scatter plot of BWA estimates using a signal sequence of 150
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Figure 7.1.9: Scatter plot of BWA estimates using a signal sequence of 75 
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7.1.2 Investigating Sampling Distributions of Baum-Welch
Algorithm Estimates

The above section discussed the influence which different starting values and sig-

nal sequence lengths have on the BWA estimates. In particular, for a given signal

sequence, the BWA was trained using different starting values (randomly assigned

using the uniform distribution) and the BWA estimate corresponding to the max-

imum likelihood value was determined. This was performed using different signal

sequence lengths, resulting in the BWA estimates shown in Table 7.1.1. It should be

noted that for each signal sequence length, the signal sequence used for training was

kept constant. This section enhances the previous section by now investigating the

sampling distributions of the BWA estimates from Table 7.1.1 (that is using various

simulated signal sequences to train the BWA rather than a constant signal sequence

as was the case in the above section). This is performed for selected signal sequence

lengths.

To begin the structure of the simulation exercise is described. Assume the same

HMM λ = (P,B, a) which was specified above. Using λ, 500 distinct state and signal

sequences were simulated, each of length 250. Let these signal sequences be denoted

by

s̃1250, s̃
2
250, . . . , s̃

500
250 .

Now for each simulated signal sequence s̃k250, where k ∈ {1, 2, . . . 500}, 150 distinct

starting values for the BWA were randomly created from the uniform(0,1) distribution

(in the same manner which was described above). Let these be denoted by

λ̃150k = {λ̃(1)k , λ̃
(2)
k . . . , λ̃

(150)
k } .

In other words, for each k = 1, 2, . . . , 500 a signal sequence of length of 250, s̃k250,

is simulated and the BWA is performed 150 times, using the 150 randomly created

distinct starting values contained in λ̃150k . Thus for each k, 150 distinct BWA estimates

150



are calculated, denoted by

λ̂150k = {λ̂(1)k , λ̂
(2)
k . . . , λ̂

(150)
k } .

The likelihood value for each of the BWA parameter set estimates within λ̂150k is then

calculated; that is for each i = 1, 2, . . . , 150 the following is calculated:

l
(i)
k = P (S250 = s̃k250|λ̂

(i)
k ) .

Let the BWA estimate corresponding to the maximum of {l(1)k , l
(2)
k , . . . , l

(150)
k } be de-

noted by λ∗k. That is

λ∗k = arg max
λ̂
(i)
k

{l(i)k : i = 1, 2, . . . , 150} .

This process is repeated for each k, yielding 500 final BWA estimates calculated using

500 distinct simulated signal sequences and 150 distinct starting inputs into the BWA

for each of the 500 simulated signal sequences. Let this be denoted as

λ∗ = {λ∗1, λ∗2, . . . , λ∗500}.

Thus, λ∗ is a (simulated) set of realisations from the sampling distribution of λ̂ when

the sequence length is 250. Assessment of the distribution of λ∗ gives light into the

sensitivity of the BWA to the signal sequence used to train it. Importantly assess-

ment of the distribution of λ∗ will also give insight into the statistical properties (such

as bias and variability) of the estimates described in Table 7.1.1. This analysis may

prove to be valuable if the technique used to derive Table 7.1.1 is used in practice to

recover the true HMM parameters.

The results presented in Figures 7.1.10 and 7.1.11 are the 500 estimates contained

in λ∗ which have been reflected where appropriate according to the estimates for

b11 and b21. For a given i ∈ {1, 2, . . . , 500}, this reflection is such that if the (b11, b21)

estimates from λ∗i lie above the diagonal b21 = b11 then the estimates for (b11, b21) are

reflected around the diagonal b21 = b11. The associated (p11, p21) estimates for these
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points are reflected around the diagonal p21 = 1− p11.

Frequency distributions of the 500 parameter estimates for p11, p21, b11 and b21 are

shown in Figure 7.1.10. This is followed by Figure 7.1.11 which depicts the interac-

tion between the 500 BWA estimates through scatter plots. Also included in Figure

7.1.11 are scatter plots of the 500 parameter estimates for p11, p21, b11 and b21 before

the reflection is performed. From this the symmetry in the parameter estimates can

clearly be seen, especially in the estimates for b11 and b21 - hence justification for the

reflection applied.

The mean squared error (MSE) for λ∗ is also examined. Recall that for some param-

eter y with estimator values ŷ = {ŷ1, ŷ2, . . . , ŷn}, the MSE is given by

MSE(ŷ) =
1

n

n∑
i=1

[ŷi − y]2

=
1

n

n∑
i=1

[ŷi −mean(ŷ) + mean(ŷ)− y]2

=
1

n

n∑
i=1

[ŷi −mean(ŷ)]2 + [y −mean(ŷ)]2 + 0

= Var(ŷ) + Bias(ŷ, y)2 .

The MSE was assessed for each of the four parameters of interest in λ∗. The results

are shown in the table below.

Parameter MSE(λ∗) mean(λ∗) Bias(λ∗, λ)2 Var(λ∗)
p11 0.0305 0.7007 0.0000 0.0305
p21 0.0120 0.1511 0.0000 0.0120
b11 0.0417 0.7484 0.0023 0.0393
b21 0.0057 0.0870 0.0002 0.0055

Table 7.1.2: Mean squared error analysis of λ∗, using a sequence length of 250

Analysis of Figures 7.1.10 and 7.1.11 and Table 7.1.2 reveal that the p11 and p21

parameter estimates contained in λ∗ are approximately centred around the true pa-

rameter values and show very little bias. When assessing the parameter estimates for

b11 and b21 it is noted that a significant portion of the estimates lie on the boundary.
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In particular, 17% of the estimates for b11 lie in the interval (0.99, 1] and 24% of the

estimates for b21 lie in the interval [0, 0.01). The percentage of estimates which lie

in both these intervals (that is the estimate for b11 is in (0.99, 1] and the estimate

for b21 is in [0, 0.01)) is 1.4%. This introduces some degree of bias in the estimates

for b11 and b21. The occurrence of parameters estimated on the boundary of their

parameter space is also noted in [46] (see page 53) where it is stated that “... some

of the parameters are on the boundary of their parameter space, which occurs quite

often when HMMs are fitted”.

The spread of the parameter estimates λ∗ is significant, particularly the estimates for

the p11 and b11 parameters. This variability in the parameter estimates λ∗ can come

from one of two sources. Suppose that i, j ∈ {1, 2, . . . , 500} such that the estimate λ∗i

is significantly different from the estimate λ∗j . This difference can either be due to (a)

the number (150 in this simulation exercise) of random starting values used for the

BWA not being sufficient large enough, or (b) the simulated signal sequence differ-

ing between run i and run j of the simulation exercise (that is sampling variability).

Analysis revealed that case (a) does not seem to be a significant contributor to the

variability in λ∗.1 This suggests that the variability in λ∗ is due to case (b) rather

than case (a). That is, the different simulated signal sequence used in run i and run

j seems to be the driver in λ∗i and λ∗j differing, and hence the sampling variability in

λ∗. This highlights the sensitivity of the BWA to the signal sequence used to train

the estimates - a somewhat expected result.

Finally, review of Figures 7.1.10 and 7.1.11 highlights the presence of four extreme

outliers in the estimates for p11 and p21. Analysis which was performed showed that

the cause of these outlying estimates was due to the signal sequence used to train the

BWA rather than the random inputs used as starting inputs into the BWA. This is

consistent with the discussion in the above paragraph. Further analysis also showed

1Analysis was performed by using the 150 starting values from simulation run j and the simu-
lated signal sequence from run i to train the BWA. The estimates which were obtained were very
comparable to λ∗i . This was tested for various i, j ∈ {1, 2, . . . , 500}.
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that these outlying estimates did not significantly alter the conclusions derived from

the MSE results presented in Table 7.1.2.

The above exercise was repeated using a sequence length of 1000. That is λ∗ now rep-

resents 500 BWA estimates calculated using 500 distinct simulated signal sequences

of length 1000 and 150 distinct starting inputs into the BWA for each of the 500 sim-

ulated signal sequences. The distribution of this λ∗ is summarised in Figures 7.1.12

and 7.1.13 and in the table below.

Parameter MSE(λ∗) mean(λ∗) Bias(λ∗, λ)2 Var(λ∗)
p11 0.0090 0.6965 0.0000 0.0090
p21 0.0030 0.1557 0.0000 0.0030
b11 0.0152 0.7165 0.0003 0.0149
b21 0.0025 0.0920 0.0001 0.0024

Table 7.1.3: Mean squared error analysis of λ∗, using a sequence length of 1000

These results are compared to the earlier discussed sampling distributions of the BWA

estimates when signal sequences of length 250 was used to train the BWA. Once again

the parameter estimates are approximately centred around the true parameter values

and show very little bias for the p11 and p21 parameters. Bias is still present in the

BWA estimates for b11 and b21, however less than was observed in Table 7.1.2. This

is largely due to the fact that a notably smaller portion of the estimates lie on the

boundary. In particular, 2.8% of the estimates for b11 lie in the interval (0.99, 1] and

8.4% of the estimates for b21 lie in the interval [0, 0.01). There were no estimates

which lie in both these intervals (that is the estimate for b11 is in (0.99, 1] and the

estimate for b21 is in [0, 0.01)). The corresponding proportions when a signal length

of 250 was used was 17%, 24% and 1.4% respectively.

While the parameter estimates of λ∗ do still show spread around the true parame-

ter values, it has decreased when compared to the spread which was observable in

the sampling distributions when signal sequences of length 250 was used to train the

BWA. This can be seen by comparing Figures 7.1.12 and 7.1.13 to Figures 7.1.10

and 7.1.11; as well as by comparing Table 7.1.3 to Table 7.1.2. In particular, using a
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signal sequence length of 1000 led to the variance of the sampling distribution of the

parameter estimates decreasing by a factor of 3.4, 4.0, 2.6 and 2.3 for p11, p21, b11, b21

respectively (when compared to the variance of the sampling distribution of the pa-

rameter estimates when the signal length of 250 was used). This in turn, together

with decreased bias, has resulted in decreased mean squared errors (by factors of 3.4,

4.0, 2.7 and 2.3 for p11, p21, b11, b21 respectively).

One point to note is that a general rule of thumb is that the variance of the sampling

distribution of a parameter estimate should decrease by a factor approximately equal

to the factor of the sample size increase. In this particular exercise, the sequence

length of each simulation has increased by a factor of 4 (from 250 to 1000), hence

the sampling variance of the parameter estimates is expected to decrease by a factor

of 4. The variance decrease observed for the p11 and p21 parameter estimates is in

this region (the variance decreases by a factor of 3.4 and 4.0 respectively). However

the variance decrease observed for the b11 and b21 parameter estimates is notably less

(the variance decreases by a factor of 2.6 and 2.3 respectively). A search through

the literature reveals little to explain this. For example [46] discusses the standard

errors of HMM parameter estimates (see Section 3.6) but does not mention the rela-

tionship between these standard errors and the sample size. A possible reason for the

observed variance decrease for the b11 and b21 parameter estimates being less than

expected could be the number of parameter estimates located on the boundary of the

parameter space when a sample size of 250 was used (as was discussed earlier in this

section - see Figures 7.10 and 7.11). Had there not been a boundary constraint, these

estimates might have been estimated further from their true parameter value and

hence the variance would have been larger for a sample size of 250. Thus when the

sample size of 1000 is used (and fewer estimates are now located on the boundary),

the variance of the parameter estimates for b11 and b21 decreases by a factor lower

than expected.

Encouragingly, no obvious outliers are observable in the sampling distributions when
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signal sequences of length 1000 were used to train the BWA.

In summary, increasing the length of the signal sequences used to train the BWA from

250 to 1000 led to following observable properties in the sampling distributions for the

parameter estimates: (a) notably less bias in the parameter estimates, (b) notably

less spread in the parameter estimates, (c) significantly fewer parameter estimates

situated on the boundary for b11 and b21, (d) the removal of the extreme outlying

parameter estimates.
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Figure 7.1.10: Frequency curves of the 500 BWA estimates contained in    - using a signal sequence length of 250 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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Figure 7.1.11: Scatter plot of the 500 BWA estimates contained in    - using a signal sequence length of 250 
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Figure 7.1.12: Frequency curves of the 500 BWA estimates contained in    - using a signal sequence length of 1000 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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Figure 7.1.13: Scatter plot of the 500 BWA estimates contained in    - using a signal sequence length of 1000 
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7.1.3 Concluding Remarks

The key findings from Sections 7.1.1 and 7.1.2 are summarised below. These findings

were obtained by simulating data using the 5-parameter HMM specified by λ. It is

however believed that the analysis described in this section can easily be used for

HMMs with differing parameter values.

• The technique used to derive the BWA estimates in Table 7.1.1 may indeed

prove useful in practice in estimating the true HMM parameters as the influence

of the starting values used to train the BWA are taken into account. This is

important as analysis confirmed that BWA estimates are indeed influenced by

the starting values used to initialise the algorithm. This is somewhat expected

as the BWA will typically locate a local maxima rather than a global maxima.

The importance of considering appropriate reflection of the BWA estimates was

also highlighted.

• Simulating multiple signal sequences allowed the statistical properties of the

estimates in Table 7.1.1 to be investigated. In particular sampling distributions

were compared when a signal sequence length of 250 and a signal sequence

length of 1000 was used. The following was concluded from this analysis.

– As expected, the final estimates calculated using the technique from Table

7.1.1 are indeed influenced by the data (signal sequence) used to train

the algorithm. This gives rise to the sampling variability which can be

observed in Figures 7.1.10, 7.1.11, 7.1.12 and 7.1.13 and Tables 7.1.2 and

7.1.3.

– Using 150 random starting values for the BWA (generated using the uni-

form distribution) appears to be sufficient to ensure that the final estimates

calculated using the technique from Table 7.1.1 is not significantly influ-

enced by the starting values used for the BWA.
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– The estimates for the P parameters (the transition probabilities for the

underlying state sequence) showed little evidence of bias. Several of the

simulated signal sequences led to the technique from Table 7.1.1 estimating

B parameters (the probabilities of observing the signals given the states)

at the boundary value, that is either zero or one. This resulted in the B

parameters showing a degree of bias. It was however noted that using a

signal sequence length of 1000 significantly diminished the number of B

parameter estimates being estimated at a boundary value. This in turn

lowered the bias of the B parameter estimates.

– The estimates calculated using the technique from Table 7.1.1 posses non-

material variance (see Figures 7.1.10, 7.1.11, 7.1.12 and 7.1.13 and Tables

7.1.2 and 7.1.3). As mentioned above, this variability in the estimates is

due to the dependence of the BWA on the data used to train the algorithm.

It should however be noted that using a signal sequence length of 1000

significantly decreased the variance observed in the parameter estimates

(by a factor of 3.4, 4.0, 2.6 and 2.3 for p11, p21, b11, b21 respectively).

– It is possible that the technique from Table 7.1.1 may result in an ex-

treme outlying estimate. In particular 4 out of the 500 simulated runs

(this equates to 0.8%) resulted in extreme outlying estimates for the P

parameters when a signal sequence length of 250 was used to perform the

simulations. No obvious outliers were however identified in the sampling

distributions when a signal sequence length of 1000 was used to perform

the simulations.

• The above analysis confirmed the expected result that using longer observed

signal sequences to train the BWA yields more accurate final BWA estimates.

162



7.2 Exploring the Viterbi Algorithm for the HMM

7.2.1 Simulation Results

The use of the Viterbi Algorithm (VA) to predict the underlying hidden state se-

quence of a HMM was detailed in Section 3.2. This section will use the different

simulation scenarios described in Section 7.1 to explore how effectively the VA re-

covers the underlying hidden state sequences which were simulated using the HMM

λ = (P,B, a) defined in Section 7.1. It should be noted that scaling was needed in

order to perform the VA due to the length of the signal sequences. For this purpose

scaling using the natural logarithm, as described in [37], was used.

To begin, recall the parameter estimates for λ calculated using the BWA given in Table

7.1.1. To derive these estimates the BWA was trained separately using a simulated sig-

nal sequence of length of 75, 150, 250, 500, 1000 and 5500 respectively. Let these sim-

ulated signal sequences be denoted by {s75, s150, s250, s500, s1000, s5500} and the corre-

sponding BWA estimates of Table 7.1.1 be denoted by {λ̂75, λ̂150, λ̂250, λ̂500, λ̂1000, λ̂5500}.
Due to the fact that each signal sequence {s75, s150, s250, s500, s1000, s5500} was simu-

lated, the corresponding underlying state sequence is in this case known, denoted

by {x75,x150,x250,x500,x1000,x5500}. Hence, for a given signal sequence length n ∈
{75, 150, 250, 500, 1000, 5500}, sn and λ̂n can be used to perform the VA and estimate

the state sequence, denoted by x̂n. A comparison of x̂n and xn then provides a mea-

sure of the accuracy of the Viterbi path. Of course λ (as opposed to λ̂n) can also be

used to perform the VA and estimate the state sequence. This gives a measure as to

whether the performance of the VA diminishes when estimated model parameters are

used to perform the VA as opposed to the actual model parameters.

The exercise described above was performed and the results are given in Table 7.2.1.

The results given are the simulated joint distribution of the true state i (rows) and

the Viterbi estimate j (columns) of the state. The left tables represent the results
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when λ was used to perform the VA, while the right tables represent the results when

the BWA estimates {λ̂75, λ̂150, λ̂250, λ̂500, λ̂1000, λ̂5500} from Table 7.1.1 were used to

perform the VA. The percentage of states which were correctly predicted by the VA

(i.e those which appear on the diagonals of the 2× 2 tables) is also given.

The first result to note is that when λ was used to perform the VA, the Viterbi state

path correctly predicted the true underlying state path for 80% to 90% of the n time

points. This is true for all the signal sequence lengths n ∈ {75, 150, 250, 500, 1000, 5500}
which were tested. It is interesting to note that despite the BWA estimates being

quite different to the true parameter values for some sequence lengths (see Table

7.1.1), when {λ̂75, λ̂150, λ̂250, λ̂500, λ̂1000, λ̂5500} was used to perform the VA, the per-

centage of states correctly predicted was comparable to when λ was used to perform

the VA, the biggest difference occurring for n = 250. Even in this instance however

the VA correctly predicted the true state for 82% of the 250 time points (i.e. for 205

time points).

From these tables one may conclude that for n = 5500, for instance, the esti-

mated probability that the inferred state is 2 if the true state is 2, is 3383
5500

/3693
5500

= 0.916 (when λ is used to perform the VA). More generally, Table 7.2.2 gives

P (inferred state = j|true state = i) and P (true state = i|inferred state = j). This

is done for each sequence length n ∈ {75, 150, 250, 500, 1000, 5500} and is shown for

when both λ and λ̂n was used to perform the VA. Diagonal elements close to 1 are

desirable for these tables. Here interestingly, P (inferred state = 1|true state = 1)

is consistently lower than P (inferred state = 2|true state = 2); a possible reason

for this could be that less data is available from state 1 (recall that the limit-

ing steady state probabilities for this particular HMM are π = [1
3
, 2
3
]). However,

P (true state = 1|inferred state = 1) shows higher probability values in most cases.

This is encouraging since in practice the true state will typically not be known and

will be estimated using the VA inferred state.

To further expand the above analysis, the simulated state and signal sequences from
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Section 7.1.2 were also used to assess the effectiveness of the VA. Recall that in Sec-

tion 7.1.2 a sequence length of n = 250 was used and 500 separate state sequences

were simulated using the same HMM λ from Section 7.1.1. For each simulated state

sequence, a signal sequence was simulated. The procedure described in Section 7.1.1

was performed for each simulated signal sequence to obtain a BWA estimate of λ.

Hence 500 sets of BWA estimates were obtained (one set for each simulated signal

sequence).

For each of the 500 simulated signal sequences, the VA was performed separately us-

ing both λ and the BWA estimate of λ associated with the signal sequence. This was

then compared to the simulated state sequence to measure the percentage of states

in the state sequence which were correctly predicted by the Viterbi path. These 500

percentages are shown in Figure 7.2.1, separately for when λ and the BWA estimate

of λ was used to perform the VA. Let these distributions be denoted by P1 and P̂1

respectively. In addition to this, there are two added plots in Figure 7.2.1. These were

obtained by repeating the exercise described, but using a new set of 500 simulated

state and signal sequences (while still using λ and the original BWA estimates of λ

from Section 7.1.2 to perform the VA). Let these distributions of the percentage of

states correctly predicted be denoted by P2 and P̂2 respectively. 2

It can be seen from Figure 7.2.1 that, as expected, the distribution of P1 and P2 are

very similar with the majority of the percentage of states correctly predicted lying

between 77.5% and 92.5%. The distribution of P̂1 lies slightly more to the right than

the distribution of P̂2. This suggests that (for this particular HMM λ) the Viterbi

path predicted the underlying state sequences slightly better when the same signal

sequence which was used to train the BWA was also used to perform the VA. For both

P̂1 and P̂2, the majority of the percentage of states correctly predicted was between

2In obtaining P̂1, the same simulated signal sequence which was used to train the BWA was also
used (together with this BWA estimate) to perform the VA. This could lead to a potential bias in
measuring the accuracy of the VA. This follows as using a BWA estimate in conjunction with the
signal sequence used to train the BWA may produce a more accurate Viterbi path than if another
signal sequence (not used to train the BWA) was used to perform the VA.
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67.5% and 92.5%. These distributions lie to the left of P1 and P2 indicating that the

VA better predicted the underlying state sequences when actual model parameters

were used to perform the VA rather than the BWA estimates (a somewhat expected

result). Also noticeable is the long lower tail of P̂1 and P̂2; that is for some of the

simulation runs, the Viterbi path (when the BWA parameter estimates were used to

train the VA) poorly predicted the true state path. For P̂1, the prediction accuracy

of the Viterbi path was less than 67.5% for 46 of the 500 (9.2%) simulations; while for

P̂2, the prediction accuracy of the Viterbi path was less than 67.5% for 63 of the 500

(12.6%) simulations. Analysis showed that all of the 46 simulation runs which were

below 67.5% for P̂1 were also below 67.5% for P̂2. To further investigate this, the BWA

estimates for these simulations (where the VA performed poorly) were isolated. Fig-

ure 7.2.2 shows the 46 sets of BWA estimates mentioned above (where P̂1 < 67.5%).

Two things are noticeable from Figure 7.2.2. Firstly the four sets of outlying BWA

estimates which were identified in Section 7.1.2 are contained in the 46 isolated sets

of BWA estimates. Secondly the remaining 42 sets of BWA estimates are clustered

around the point (p̂11, p̂21) = (0.95, 0.10) and (b̂11, b̂21) = (0.40, 0.07). That is, for this

particular HMM λ, when BWA estimates in the vicinity of (p11, p21) = (0.95, 0.10)

and (b11, b21) = (0.40, 0.07) are used to train the VA, the success rate of the Viterbi

path predicting the true state path is poor.

Next Figure 7.2.3 is presented which depicts the distributions of P1, P̂1, P2 and P̂2,

but with the results from the 46 simulations mentioned above removed from P1 and

P̂1, and the results from the 63 simulations mentioned above removed from P2 and P̂2.

It can be seen from P̂1 and P̂2 in this graph that once the simulation runs mentioned

above are removed, the Viterbi path (trained using BWA estimates) predicts the true

state path well, although not quite as well as the Viterbi path trained using the actual

model parameters. Once again the distribution of P̂1 lies slightly more to the right

than the distribution of P̂2, suggesting that (for this particular HMM λ) the Viterbi

path predicted the underlying state sequences slightly better when the same signal
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sequence which was used to train the BWA was also used to perform the VA.

The importance of considering appropriate reflection of the BWA estimates was dis-

cussed in Section 7.1. The importance of this reflection can again be highlighted

when BWA estimates are used to perform the VA. Figure 7.2.4 shows the distribu-

tion of P̂1 when the BWA parameter estimates used to perform the VA were not

reflected where necessary. A comparison to the distribution of P̂1 depicted in Figure

7.2.1 (whereby reflection to the BWA parameters was applied before performing the

VA) clearly indicates that the Viterbi path predicts the true state path significantly

better if reflection is appropriately applied to the BWA estimated parameters before

performing the VA.

Next the 500 simulated state and signal sequences of length 1000 from Section 7.1.2

were used to re-perform the above exercise. The corresponding P1, P̂1, P2 and P̂2

distributions are plotted in Figure 7.2.5. The paragraphs below highlight conclusions

which can be drawn from these distributions.

Firstly, as was the case when a sequence length of 250 was used, the distributions

of P1 and P2 are very similar with the majority of the percentage of states correctly

predicted lying between 77.5% and 92.5%.

When analysing the prediction accuracy of P̂1 and P̂2 it is observed that the lower

tail of these distributions is not as long as when the sequence length of 250 was used.

For P̂1, only 5 of the 500 (1.0%) simulations had a Viterbi path prediction accuracy

of less than 67.5%; while for P̂2, only 6 of the 500 (1.2%) simulations had a Viterbi

path prediction accuracy of less than 67.5%. These are significantly less than the

comparative results which were given earlier when a sequence length of 250 was used

(9.2% and 12.6%). The second point to note is that for both P̂1 and P̂2 the majority

of the percentage of states correctly predicted lies above 72.5% (in particular 97.6%

for P̂1 and 97.2% for P̂2). This is significantly higher than the comparative results

when a sequence length of 250 was used (84.6% for P̂1 and 80.4% for P̂2). The sig-
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nificant improvement in the BWA estimates which were obtained using the sequence

length of 1000 (when compared to the BWA estimates which were obtained when the

sequence length of 250 was used) was noted in the previous section (see for example

Figures 7.1.11 and 7.1.13). From the above two points it is clear that when these

improved BWA estimates are used to perform the VA, the prediction accuracy of the

Viterbi path increases. It should however be noted that while the prediction accuracy

of the Viterbi path has significantly improved when using a sequence length of 1000,

the distributions of P̂1 and P̂2 still lie to the left of P1 and P2. That is, when BWA

estimates are used to perform the VA, the prediction accuracy of the Viterbi path is

still less than when the actual model parameters are used to perform the VA.

The final point to note is that when a sequence length of 250 was used, the distri-

bution of P̂2 was to the left of P̂1. This however is significantly less notable when a

sequence length of 1000 is used.

7.2.2 Concluding Remarks

In conclusion of Section 7.2, the results from various simulation exercises analysing the

prediction accuracy of the VA have been presented and discussed. These simulations

have been performed using the HMM specified by λ in Section 7.1. As these simulation

exercises help quantify the expected accuracy of the Viterbi path for a given HMM,

they are recommended in applications of other HMMs where the interpretation of the

Viterbi path is an important objective of the analysis.
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Table 7.2.1: Prediction results of the Viterbi path, using both actual model parameters and BWA 

estimated model parameters to perform the Viterbi algorithm.  

 

 

 

 

 

 

j =1 j =2 % Correct j =1 j =2 % Correct

i =1 17 5 22 i =1 16 6 22

i =2 10 43 53 i =2 8 45 53

27 48 75 80.0% 24 51 75 81.3%

j =1 j =2 % Correct j =1 j =2 % Correct

i =1 36 21 57 i =1 40 17 57

i =2 7 86 93 i =2 8 85 93

43 107 150 81.3% 48 102 150 83.3%

j =1 j =2 % Correct j =1 j =2 % Correct

i =1 40 26 66 i =1 29 37 66

i =2 6 178 184 i =2 8 176 184

46 204 250 87.2% 37 213 250 82.0%

j =1 j =2 % Correct j =1 j =2 % Correct

i =1 110 44 154 i =1 125 29 154

i =2 30 316 346 i =2 44 302 346

140 360 500 85.2% 169 331 500 85.4%

j =1 j =2 % Correct j =1 j =2 % Correct

i =1 186 135 321 i =1 246 75 321

i =2 54 625 679 i =2 135 544 679

240 760 1000 81.1% 381 619 1000 79.0%

j =1 j =2 % Correct j =1 j =2 % Correct

i =1 1180 627 1807 i =1 1206 601 1807

i =2 310 3383 3693 i =2 348 3345 3693

1490 4010 5500 83.0% 1554 3946 5500 82.7%

n =1000

n =5500

VA performed using  actual model 

parameters

VA performed using  BWA 

parameter estimates

n =75

n =150

n =250

n =500
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Table 7.2.2: Conditional probabilities obtained when comparing the Viterbi path and the true state 

path (using both actual model parameters and BWA estimated model parameters to perform the 

Viterbi algorithm).  

 

 

j =1 j =2 j =1 j =2 j =1 j =2 j =1 j =2

i =1 77% 23% i =1 73% 27% i =1 63% 10% i =1 67% 12%

i =2 19% 81% i =2 15% 85% i =2 37% 90% i =2 33% 88%

j =1 j =2 j =1 j =2 j =1 j =2 j =1 j =2
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Figure 7.2.1: Prediction accuracy of the Viterbi path (using the 500 simulated signal and state paths of length 250 from section 7.1.2).* 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 

 

 
 

 

 Figure 7.2.2: The BWA parameter estimates which, when used to perform the Viterbi Algorithm, led to poor prediction accuracy of the Viterbi path. 
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Figure 7.2.3: Prediction accuracy of the Viterbi path (using the simulated signal and state paths of length 250 

from section 7.1.2). The simulations which led to the BWA estimates shown in figure 7.2.2 were removed. * 

 

 
Figure 7.2.4: Prediction accuracy of the Viterbi path (using the 500 simulated signal and state paths of length 250 

from section 7.1.2), including the scenario where un-reflected BWA parameter estimates were used to perform 

the VA. * 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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Figure 7.2.5: Prediction accuracy of the Viterbi path (using the 500 simulated signal and state paths of length 

1000 from section 7.1.2). * 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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7.3 Exploring the Baum-Welch Algorithm for the

DCMM

7.3.1 Simulation Results

Section 7.1 of this dissertation discussed a simulation exercise which highlighted prop-

erties of the BWA applied to a chosen HMM. In particular, in Section 7.1.1 it was

shown for HMMs that the initial values used to train the BWA can greatly influence

what the final BWA estimates will be. If this held true for the HMM, it is likely to

also hold true for the DCMM. Analysis indeed confirms this. Hence the corresponding

analysis from Section 7.1.1 will not be presented again for the DCMM. Instead this

section will explore, through simulated sampling distributions, the properties of the

BWA estimates for the DCMM (similar to what was discussed in Section 7.1.2 for the

HMM), a study which is believed can provide a practitioner with valuable insights.

To begin, consider the following DCMM which will be used to perform the simulations

for this section, λ = (P,B, a), where3

a =

(
a1
a2

)
=

(
0.50
0.50

)
P =

(
p11 p12
p21 p22

)
=

(
0.70 0.30
0.15 0.85

)

B(1) =

(
b
(1)
11 b

(1)
12

b
(1)
21 b

(1)
22

)
=

(
0.60 0.40
0.05 0.95

)

B(2) =

(
b
(2)
11 b

(2)
12

b
(2)
21 b

(2)
22

)
=

(
0.50 0.50
0.30 0.70

)
. (7.1)

This DCMM λ was chosen in order to ensure some degree of alignment to the HMM

which was used to perform the analysis of Section 7.1. In particular, the same a and

P parameters which were chosen for the HMM analysis are once again chosen for

3It should be noted that the results discussed in this section relate to the DCMM specified by
λ. This DCMM is such that B(1) and B(2) are similar to some degree, and is also such that most
probabilities within P, B(1) and B(2) are not close to a boundary value. Sampling distributions of
BWA parameter estimates may show more (or less) accuracy for other specified DCMMs. This may
be explored for differing DCMMs through simulations similar to those presented in this section.
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the DCMM analysis. Hence the limiting steady state probabilities for the underlying

Markov chain is once again π = [1
3
, 2

3
]. Furthermore, the marginal probabilities of the

HMM used in Section 7.1 outputting signal 1 and signal 2 were 0.3 and 0.7 respec-

tively. The marginal probabilities of outputting signal 1 and signal 2 for λ specified

in equation (7.1) are comparable. To show this the following analysis was performed.

Using λ specified in equation (7.1), 100 separate state and signal sequences, each of

length 1000, were simulated. The proportion of times signal 1 and signal 2 appeared

was calculated for each of the 100 signal sequences. The mean and median of these

100 proportions was 0.307 and 0.309 respectively for signal 1; and 0.693 and 0.691 for

signal 2. The corresponding mean and median proportions for the 100 state sequences

was 0.332 and 0.334 for state 1 and 0.668 and 0.666 for state 2 (which are very com-

parable to the discussed theoretical limiting steady state probabilities π = [1
3
, 2

3
]).

In Section 7.1 the importance that reflection of the BWA estimates be considered for

the HMM was discussed. Similarly reflection of the BWA estimates for the DCMM

will also need consideration. To address this, consider the following three DCMMs.

a =

(
0.50
0.50

)
P =

(
0.85 0.15
0.30 0.70

)
B(1) =

(
0.50 0.50
0.30 0.70

)
B(2) =

(
0.60 0.40
0.05 0.95

)
(7.2)

a =

(
0.50
0.50

)
P =

(
0.70 0.30
0.15 0.85

)
B(1) =

(
0.95 0.05
0.40 0.60

)
B(2) =

(
0.70 0.30
0.50 0.50

)
(7.3)

a =

(
0.50
0.50

)
P =

(
0.85 0.15
0.30 0.70

)
B(1) =

(
0.70 0.30
0.50 0.50

)
B(2) =

(
0.95 0.05
0.40 0.60

)
. (7.4)
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Examination of the DCMMs expressed in equations (7.2)-(7.4) reveal that they are

equivalent in terms of statistical properties to the DCMM expressed in equation

(7.1). All that has changed between the models is that the state and/or signal labels

have been permuted. Analysis revealed that for different simulated signal sequences

and initial parameter set inputs, the BWA interchangeably estimated the parameters

associated with either of the DCMMs expressed in (7.1)-(7.4). Hence, in order to make

meaningful interpretations from the simulation exercise which will be presented in this

section, the parameters estimated by the BWA need to be appropriately reflected to

represent the parameters of (7.1). This is achieved as follows.

Firstly, in order to make (7.2) identifiable to (7.1) and (7.4) identifiable to (7.3), all

(p11, p21) estimates which lie above the diagonal p21 = 1 − p11 need to be reflected

around the diagonal p21 = 1− p11. This is achieved using the following logic:

if p21 > 1− p11

then p11 = 1− p21

p21 = 1− p11

b
(1)
11 = b

(2)
11

b
(1)
21 = b

(2)
21

b
(2)
11 = b

(1)
11

b
(2)
21 = b

(1)
21 . (7.5)

As mentioned, performing the transformation given in equation (7.5) will ensure that

the DCMMs in (7.1)-(7.4) are now expressed as either (7.1) or (7.3). In order to

make (7.3) identifiable to (7.1), all (b
(1)
11 , b

(1)
21 ) estimates which lie above the diagonal

b
(1)
21 = 1 − b(1)11 need to be reflected around the diagonal b

(1)
21 = 1 − b(1)11 ; and similarly

all (b
(2)
11 , b

(2)
21 ) estimates which lie above the diagonal b

(2)
21 = 1− b(2)11 need to be reflected

around the diagonal b
(2)
21 = 1− b(2)11 . This is achieved using the following logic:
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if b
(1)
21 > 1− b(1)11

then b
(1)
11 = 1− b(1)21

b
(1)
21 = 1− b(1)11

if b
(2)
21 > 1− b(2)11

then b
(2)
11 = 1− b(2)21

b
(2)
21 = 1− b(2)11 . (7.6)

Application of transformations (7.5) and (7.6) ensures that BWA parameter estimates

associated with one of the DCMMs (7.2)-(7.4) are appropriately reflected to represent

the parameters of the DCMM (7.1).

The approach followed to obtain simulated sampling distributions of the BWA esti-

mates for the DCMM is similar to that which was used for the HMM in Section 7.1.2.

This is outlined again for ease of reference.

To begin assume the DCMM λ = (P,B, a) which was specified in equation (7.1).

Using λ, 500 distinct state and signal sequences were simulated, each of length 1000.

Let these signal sequences be denoted by

s̃11000, s̃
2
1000, . . . , s̃

500
1000 .

For each simulated signal sequence s̃k1000, where k ∈ {1, 2, . . . 500}, 150 distinct start-

ing values for the BWA were randomly generated from the uniform(0,1) distribution

such that the required probability properties hold. Let these be denoted by

λ̃150k = {λ̃(1)k , λ̃
(2)
k . . . , λ̃

(150)
k } .

In other words, for each k = 1, 2, . . . , 500 a signal sequence of length of 1000, s̃k1000, is

simulated and the BWA is performed 150 times, using the 150 randomly generated

177



distinct starting values contained in λ̃150k . Thus for each k, 150 distinct BWA estimates

are calculated, denoted by

λ̂150k = {λ̂(1)k , λ̂
(2)
k . . . , λ̂

(150)
k } .

The likelihood value for each of the BWA parameter set estimates within λ̂150k is then

calculated; that is for each i = 1, 2, . . . , 150 the following is calculated:

l
(i)
k = P (S1000 = s̃k1000|λ̂

(i)
k ) .

Let the BWA estimate corresponding to the maximum of {l(1)k , l
(2)
k , . . . , l

(150)
k } be de-

noted by λ∗k. That is

λ∗k = arg max
λ̂
(i)
k

{l(i)k : i = 1, 2, . . . , 150} .

This is repeated for each k, yielding 500 final BWA estimates calculated using 500

distinct simulated signal sequences and 150 distinct initial inputs into the BWA for

each of the 500 simulated signal sequences. Let this be denoted as

λ∗ = {λ∗1, λ∗2, . . . , λ∗500}.

Thus, λ∗ is a (simulated) set of realisations from the sampling distribution of λ̂ when

the sequence length is 1000. Assessment of the distribution of λ∗ gives light into the

sensitivity of the BWA to the signal sequence used to train it. Importantly assessment

of the distribution of λ∗ will also give insight into the statistical properties of the BWA

parameter estimates.

What may also be of interest to a practitioner is how the distribution of λ∗ might

change if a longer signal sequence is used to train the BWA. To this end, the above

exercise was repeated using a signal sequence of length 2500 and the resulting λ∗

investigated. In particular, graphs at the end of this section show the following (note

that all parameter estimates shown in these graphs have been appropriately reflected

according to equations (7.5) and (7.6)):
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• Histograms of the 500 estimated BWA parameter estimates for p11 and p21

(Figure 7.3.1) and b
(1)
11 , b

(1)
21 , b

(2)
11 and b

(2)
21 (Figure 7.3.2) when signal sequences of

length 1000 were used to train the BWA.

• Scatter plots showing the interaction between the 500 estimated BWA parame-

ter estimates for p11 and p21, b
(1)
11 and b

(1)
21 , and b

(2)
11 and b

(2)
21 (Figure 7.3.3) when

signal sequences of length 1000 were used to train the BWA.

• Histograms of the 500 estimated BWA parameter estimates for p11 and p21

(Figure 7.3.4) and b
(1)
11 , b

(1)
21 , b

(2)
11 and b

(2)
21 (Figure 7.3.5) when signal sequences of

length 2500 were used to train the BWA.

• Scatter plots showing the interaction between the 500 estimated BWA parame-

ter estimates for p11 and p21, b
(1)
11 and b

(1)
21 , and b

(2)
11 and b

(2)
21 (Figure 7.3.6) when

signal sequences of length 2500 were used to train the BWA.

• Figures 7.3.7 and 7.7.8 will be discussed in more detail in the paragraphs below.

• Histograms comparing the distributions of the 500 estimated BWA parameter

estimates when signal sequences of length 1000 and 2500 were used to train the

BWA - these are shown for p11 and p21 (Figure 7.3.9) and b
(1)
11 , b

(1)
21 , b

(2)
11 and b

(2)
21

(Figure 7.3.10).

The two tables below also show the MSE analysis for the 500 BWA parameter esti-

mates (after they have been appropriately reflected according to equations (7.5) and

(7.6)) when signal sequences of length 1000 and 2500 were used to train the BWA.

Parameter MSE(λ∗) mean(λ∗) Bias(λ∗, λ)2 Var(λ∗)
p11 0.151 0.568 0.017 0.133
p21 0.122 0.257 0.011 0.110

b
(1)
11 0.140 0.337 0.069 0.070

b
(1)
21 0.075 0.220 0.029 0.046

b
(2)
11 0.023 0.510 0.000 0.022

b
(2)
21 0.022 0.184 0.014 0.008

Table 7.3.1: Mean squared error analysis of λ∗, when signal sequences of length of
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1000 were used to train the BWA

Parameter MSE(λ∗) mean(λ∗) Bias(λ∗, λ)2 Var(λ∗)
p11 0.115 0.583 0.014 0.102
p21 0.094 0.237 0.008 0.087

b
(1)
11 0.121 0.348 0.063 0.058

b
(1)
21 0.088 0.251 0.040 0.047

b
(2)
11 0.020 0.507 0.000 0.020

b
(2)
21 0.024 0.178 0.015 0.009

Table 7.3.2: Mean squared error analysis of λ∗, when signal sequences of length of

2500 were used to train the BWA

Beginning with the P parameter estimates it can be seen that the estimates lie in two

distinct groupings, one where p̂11 > p̂21 and the other grouping where p̂11 < p̂21. This

is true for when both sequences of length 1000 and 2500 were used to train the BWA.

As the true model parameters are (p11, p21) = (0.70, 0.15), parameter estimates in the

grouping p̂11 > p̂21 are desirable. As such, it is hoped that as the length of the signal

sequence used to train the BWA increases, the proportion of BWA estimates which

are estimated in the region p̂11 < p̂21 decreases. This is indeed the case - when a signal

sequences of length 1000 were used to train the BWA, the proportion of estimates in

the region p̂11 < p̂21 was 30.0% (150 of the 500 estimates). This proportion decreased

to 25.4% (127 of the 500 estimates) when signal sequences of length 2500 were used

to train the BWA. Despite the decrease, this proportion is still concerning.

The sampling distributions in Figures 7.3.9 and 7.3.10 as well as the MSE analysis in

Tables 7.3.1 and 7.3.2 can be used to assess how accurately the BWA estimates pre-

dict the true model parameter. The bias and variance in the P parameter estimates

is material. This is somewhat expected due to the two distinct groupings for the P

parameter estimates mentioned above. However, as the length of the signal sequence

used to train the BWA is increased, it is hoped that the bias and variance shown in

the sampling distribution will decrease. This is indeed the case, using signal sequences

of length 2500 to train the BWA decreased the variance for the p11 and p21 parame-
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ters (when compared to using signal sequences of length 1000) by factors of 1.31 and

1.27 respectively. The squared bias decreased by factors of 1.27 and 1.49 respectively

and the mean squared error decreased by factors of 1.31 and 1.29 respectively. The

improvement in accuracy of the P parameter estimates can also be seen visually in

Figure 7.3.9. Another encouraging observation is that the BWA seems less likely to

produce estimates on the boundary (p11, p21) = (0,1) and (p11, p21) = (1,0) when a

sequence length of 2500 is used (see Figures 7.3.3, 7.3.6 and 7.3.9). However, despite

these observed improvements when using sequences of length 2500, the variance and

bias (and therefore also the MSE) is still material. As mentioned this is largely due

to the grouping of estimates in the region p̂11 < p̂21.

Analysis of the BWA estimates for the b
(1)
11 and b

(1)
21 parameters reveals that the BWA

has not performed well in estimating the true parameter value for these parameters.

In particular, the spread of the estimates is large (with little clustering at the true

parameter values) leading to bias and variance in the estimates. The accuracy of the

BWA estimates for b
(1)
11 appears to marginally improve when the length of the signal

sequences used to train the BWA is increased from 1000 to 2500 (MSE decreases by

a factor of 1.15). Increasing the signal length does not appear to yield noticeable

improvement in the BWA estimates for b
(1)
21 . One encouraging observation however is

that the BWA seems less likely to produce estimates on the boundary (b
(1)
11 , b

(1)
21 ) =

(0,0) when a sequence length of 2500 is used (see Figures 7.3.3, 7.3.6 and 7.3.10).

Analysis of the BWA estimates for the b
(2)
11 and b

(2)
21 parameters reveals that for this

particular DCMM, the BWA has produced estimates which show greater accuracy in

predicting the true parameter value than the estimates for b
(1)
11 and b

(1)
21 . This is clear

from the tables and graphs supplied, see for example Figures 7.3.3, 7.3.6 and 7.3.10

and Tables 7.3.1 and 7.3.2. Notably, the estimates for b
(2)
11 show very little bias and

the variance and mean squared error decreases by a factor 1.15 as the length of the

signal sequences used to train the BWA changes from 1000 to 2500. The improve-

ment in the estimates can also be observed in the sampling distribution in Figure
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7.3.10. The estimates for b
(2)
21 show more bias but less variance when compared to

the estimates for b
(2)
11 . Interestingly, the sampling distribution for b

(2)
21 does not appear

to fundamentally change when the signal sequence length is increased from 1000 to

2500. A pleasing attribute of both the b
(2)
11 and b

(2)
21 estimates is that there does not

appear to be an obvious clustering of the estimates on any of the boundary values.

For this particular DCMM, the BWA estimates for the b
(2)
11 and b

(2)
21 parameters appear

to be more accurate than the BWA estimates for the b
(1)
11 and b

(1)
21 parameters (as was

mentioned above). A possible reason for this could be that the limiting steady state

probabilities for the underlying Markov chain is π = [1
3
, 2

3
]. On average, over the

course of a given state sequence, the underlying state is expected to be state 2 twice

as often as it is expected to be state 1. Hence it is expected that there will be twice as

much data available to estimate b
(2)
11 and b

(2)
21 when compared to b

(1)
11 and b

(1)
21 . This is

similar to the sampling distributions which were seen for the HMM - see Section 7.1.2.

In this section, the HMM used had the same limiting steady state probabilities for the

underlying Markov chain, π = [1
3
, 2

3
]. For this HMM, the sampling distributions for

the BWA estimates revealed that the BWA produced more accurate estimates (less

bias and variance in the estimates) for b21 (signal probability given state 2) than for

b11 (signal probability given state 1). The above explanation could potentially also

be the reason why the estimates for p21 show a lower MSE than the estimates for p11

for both the HMM and the DCMM.

It is also insightful to compare the sampling distributions for the BWA estimates

for the HMM to those of the DCMM. In particular, as mentioned at the start of this

section, the two state, two signal HMM used in Section 7.1.2 is comparable to the two

state, two signal DCMM used in this section. The results in Table 7.1.3 summarise

the sampling distributions for the HMM BWA estimates when signal sequences of

length 1000 were used to train the BWA. This can be compared to Table 7.3.1 of this

section which summarises the sampling distributions for the DCMM BWA estimates

when signal sequences of length 1000 were used to train the BWA. This comparison
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reveals that the BWA estimates for the HMM estimated the true model parameters

with notably more accuracy (for example, the highest MSE in Table 7.1.3 is lower

than the lowest MSE in Table 7.3.1). This difference in estimation accuracy is also

confirmed by comparing the figures in Section 7.1.2 with the figures of this section.

That is, the added dependence between the DCMM signal outputs is likely to result

in less accurate BWA estimates when compared to the BWA estimates for the HMM

(provided of course that the length of the signal sequence used to train the BWA is

the same for both the HMM and the DCMM).

Finally, it was noted earlier in this section that the P parameter estimates for this

particular DCMM simulation exercise are such that the estimates lie in two distinct

groupings, one where p̂11 > p̂21 and the other grouping where p̂11 < p̂21. What may

be of interest is to investigate how the BWA estimates for the b
(1)
11 , b

(1)
21 , b

(2)
11 and b

(2)
21

differ for when the BWA estimates for p11 and p21 were estimated such that p̂11 > p̂21

compared to when they were estimated such that p̂11 < p̂21. This is shown in Figure

7.3.7 (when p̂11 > p̂21) and Figure 7.3.8 (when p̂11 < p̂21) for the case when sequences

of length 2500 were used to train the BWA. The two tables below show the MSE

analysis for the BWA estimates when signal sequences of length 1000 (Table 7.3.3)

and 2500 (Table 7.3.4) were used to train the BWA and when p̂11 > p̂21. Table 7.3.4 is

then the MSE analysis for the BWA parameter estimates depicted in Figure 7.3.7. As

expected, the MSE in Tables 7.3.3 and 7.3.4 is considerably lower for the P parameter

estimates when compared to Tables 7.3.1 and 7.3.2

Parameter MSE(λ∗) mean(λ∗) Bias(λ∗, λ)2 Var(λ∗)
p11 0.033 0.789 0.008 0.025
p21 0.013 0.060 0.008 0.005

b
(1)
11 0.159 0.305 0.087 0.072

b
(1)
21 0.084 0.228 0.032 0.052

b
(2)
11 0.020 0.485 0.000 0.020

b
(2)
21 0.018 0.197 0.011 0.007

Table 7.3.3: Mean squared error analysis of λ∗, when signal sequences of length of
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1000 were used to train the BWA and where p̂11 > p̂21

Parameter MSE(λ∗) mean(λ∗) Bias(λ∗, λ)2 Var(λ∗)
p11 0.023 0.754 0.003 0.020
p21 0.011 0.081 0.005 0.006

b
(1)
11 0.139 0.316 0.081 0.058

b
(1)
21 0.103 0.267 0.047 0.056

b
(2)
11 0.019 0.489 0.000 0.018

b
(2)
21 0.020 0.191 0.012 0.009

Table 7.3.4: Mean squared error analysis of λ∗, when signal sequences of length of

2500 were used to train the BWA and where p̂11 > p̂21

7.3.2 Concluding Remarks

The results from a simulation exercise which explored the sampling distributions of

parameter estimates for a two-state two-signal DCMM were discussed in this section.

The model parameters were estimated using the BWA. This was done separately for

when signal sequences of length 1000 and 2500 were used to the train the BWA. In

particular the accuracy of the BWA parameter estimates for six parameters of interest

was investigated, namely p11, p21, b
(1)
11 , b

(1)
21 , b

(2)
11 and b

(2)
21 . Conclusions drawn from this

study are summarised below. While these conclusions relate to the specified DCMM

which was used for the simulation study, it is believed that the analysis described can

easily be replicated for DCMMs with differing parameter values.

• Reflection of parameter estimates produced by the BWA needs to be considered

before meaningful interpretation can be made. A procedure to appropriately

reflect parameter estimates for the DCMM was proposed in equations (7.5)

and (7.6). Where necessary, this approach was used to reflect the parameter

estimates presented in this section.

• As expected, the accuracy of the BWA parameter estimates is not equivalent

across all six parameters. In particular, the sampling distribution of the p21
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estimates showed greater accuracy (according to the mean squared error) than

the sampling distribution of the p11 estimates; and the sampling distributions of

the b
(2)
11 and b

(2)
21 estimates showed greater accuracy than the sampling distribu-

tions of the b
(1)
11 and b

(1)
21 estimates. A possible reason for this could be that the

limiting steady state probabilities for the underlying Markov chain is π = [1
3
, 2

3
].

On average, over the course of a given state sequence, the underlying state is

expected to be in state 2 twice as often as it is expected to be in state 1. Hence

it is expected that there will be twice as much data available to estimate p21,

b
(2)
11 and b

(2)
21 when compared to p11, b

(1)
11 and b

(1)
21 .

• Increasing the length of the signal sequence used to train the BWA from 1000 to

2500 appeared to improve the accuracy of some of the parameter estimates, but

not all. This improvement was evident for the p11, p21, b
(1)
11 and b

(2)
11 estimates.

Improvement in the accuracy of the parameter estimates for b
(1)
21 and b

(2)
21 was

however not as apparent.

• The BWA estimates of some parameters exhibited a high MSE, even if signal

sequences of length 2500 were used to train the BWA. This was particularly true

for p11, p21, b
(1)
11 and b

(1)
21 . Investigation revealed that the p11 and p21 parameter

estimates were such that two distinct groupings were apparent in the estimates,

one where p̂11 > p̂21 and the other grouping where p̂11 < p̂21. As the true

model parameters are (p11, p21) = (0.70, 0.15), a grouping of parameter estimates

such that p̂11 < p̂21 is concerning. Furthermore, investigation revealed that the

variance of the b
(1)
11 and b

(1)
21 parameter estimates was considerable. This resulted

in the mode of their sampling distributions being less identifiable than what

would be desired.

Based on these findings, it is recommended that either a signal sequence longer

than 2500 points or multiple signal sequences be used in practice to train the

BWA and estimate the parameters for a two-state two signal DCMM.
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• When signal sequences of length 1000 were used to train the BWA, the param-

eter estimates for the HMM (see Section 7.1.2) showed greater accuracy than

the parameter estimates for the DCMM. This is somewhat expected due to the

additional dependence structure in the signal outputs of the DCMM. This sug-

gests that, in order to produce accurate parameter estimates, a longer signal

sequence is required to train the BWA for the DCMM than for the HMM.
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Figure 7.3.1: Frequency curves of the 500 BWA estimates (for the state transition probabilities) contained in    - using a signal sequence 

length of 1000. 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025, 0.025) to [0,975, 1.025)
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Figure 7.3.2: Frequency curves of the 500 BWA estimates (for the signal transition probabilities) contained in    - using a signal sequence length of 1000. 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025, 0.025) to [0,975, 1.025)
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Figure 7.3.3: Scatter plot of the 500 BWA estimates contained in    - using a signal sequence length of 1000.  



 

 
 

 

Figure 7.3.4: Frequency curves of the 500 BWA estimates (for the state transition probabilities) contained in    - using a signal sequence length of 2500. 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025, 0.025) to [0,975, 1.025)



  

  

Figure 7.3.5: Frequency curves of the 500 BWA estimates (for the signal transition probabilities) contained in    - using a signal sequence length of 2500. 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025, 0.025) to [0,975, 1.025)



 

 
 

 

 
 

 

 
 

 

Figure 7.3.6: Scatter plot of the 500 BWA estimates contained in    - using a signal sequence length of 2500.  



 

 
 

 

 
 

 

 
 

 

Figure 7.3.7: Scatter plot of the BWA estimates contained in   , for which           - using a signal sequence length of 2500. 



 

 
 

 

 
 

 

 
 

 

Figure 7.3.8: Scatter plot of the BWA estimates contained in   , for which           - using a signal sequence length of 2500. 



 

 
 

 

Figure 7.3.9: Frequency curves of the 500 BWA estimates (for the state transition probabilities) contained in    - comparing a signal sequence length of 

1000 and 2500. 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025, 0.025) to [0,975, 1.025)
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Figure 7.3.10: Frequency curves of the 500 BWA estimates (for the signal transition probabilities) contained in    - comparing a signal sequence length of 

1000 and 2500. 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025, 0.025) to [0,975, 1.025) 



7.4 Exploring the Viterbi Algorithm for the DCMM

7.4.1 Simulation Results

The use of the Viterbi Algorithm (VA) to predict the underlying hidden state se-

quence of a DCMM was detailed in Section 6.2. This section will expand on the

simulations described in Section 7.3 to explore how effectively the VA recovers the

underlying hidden state sequence for the DCMM λ = (P,B, a) defined in Section 7.3.

It should be noted that due to the length of the signal sequences, scaling was needed

to perform the VA. For this purpose scaling using the natural logarithm, as described

in [37], was used. The scaling procedure is described for the HMM in [37], however

it can also be extended to the DCMM, as was done in order to produce the results of

this section.

To begin, recall from Section 7.3 that 500 separate state sequences (initially all of

length 1000 time points) were simulated using the DCMM λ. For each simulated

state sequence, a signal sequence was simulated. Each simulated signal sequence was

then used to train the BWA to obtain an estimate of λ. Hence 500 separate BWA

parameter set estimates were obtained (one set for each simulated signal sequence).

For each of the 500 simulated signal sequences, the VA was performed separately

using both λ and the BWA estimate of λ associated with the signal sequence. The

resulting Viterbi path was then compared to the simulated state sequence to measure

the percentage of time points for which the state sequence was correctly predicted

by the Viterbi path. These 500 percentages are shown in Figure 7.4.1, separately

for when λ and the BWA estimate of λ was used to perform the VA. Let these dis-

tributions be denoted by P1 and P̂1 respectively. In addition to this, there are two

added plots in Figure 7.4.1. These were obtained by repeating the exercise described,

but using a new set of 500 simulated state and signal sequences (while still using λ

and the original BWA estimates of λ from Section 7.3) to perform the VA. Let these
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distributions of the percentage of states correctly predicted be denoted by P2 and P̂2

respectively. 4

The above exercise was also repeated using the results from 7.3 when a sequence

length of 2500 was used to perform the simulations. The distributions P1, P̂1, P2 and

P̂2 corresponding to a sequence length of 2500 are shown in graph 7.4.2. In Figure

7.4.3 the two distributions for P1, using a sequence length of 1000 and 2500 respec-

tively, are plotted on the same graph; while Figure 7.4.4 shows the two distributions

for P̂1, using a sequence length of 1000 and 2500 respectively. These four figures are

discussed in the paragraphs below.

The distributions P1 and P2 are similar, as are the distributions P̂1 and P̂2. This

is true for both a 1000 and 2500 sequence length. For this reason the remainder of

discussion in this section will focus on P1 and P̂1.

As expected, using a sequence length of 1000 or 2500 resulted in a similar distribution

for P1, with the percentage of states correctly predicted lying predominately between

62.5% and 72.5% for this particular DCMM. The distribution of P̂1 lies to the left of

P1 when either a sequence length of 1000 or 2500 is used. That is, using the BWA

parameter estimates as opposed to the actual model parameters to perform the VA

leads to the predicted Viterbi state path being less accurate (when compared to the

actual simulated state path) - a somewhat expected result. What is also noticeable

is that P̂1 appears to be bi-modal (for both a sequence length of 1000 and 2500).

This is further explored in the next paragraph. Finally the distribution for P̂1 using

a sequence length of 2500 lies to the right of the distribution for P̂1 when a sequence

length of 1000 was used (see Figure 7.4.4). In Section 7.3 it was noted that using a

sequence length of 2500, as opposed to 1000, to train the BWA produced more ac-

4In obtaining P̂1, the same simulated signal sequence which was used to train the BWA was also
used (together with this BWA estimate) to perform the VA. This could lead to a potential bias in
measuring the accuracy of the VA. This follows as using a BWA estimate in conjunction with the
signal sequence used to train the BWA may produce a more accurate Viterbi path than if another
signal sequence (not used to train the BWA) was used to perform the VA.
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curate parameter estimates. Figure 7.4.4 then shows that using these more accurate

BWA parameter estimates to perform the VA results in a more accurate Viterbi state

path (when compared to the actual simulated state path).

The bi-modal nature of P̂1 is now explored. Recall from Section 7.3 that the 500

BWA estimates for p11 and p21 appeared to have two distinct groupings, one where

p̂11 > p̂21 and the other where p̂11 < p̂21 (see for example Figure 7.3.6). The grouping

p̂11 > p̂21 represents more accurate estimates as the true P model parameters for λ

are (p11, p21) = (0.70, 0.15). As these BWA parameter estimates were used to perform

the VA, this bi-modal nature of the BWA estimates could then result in the bi-modal

nature of P̂1. Analysis shows that this is indeed the case. Figure 7.4.5 shows the

sets of BWA estimates which resulted in the predication accuracy of the Viterbi path

being between 47.5% and 57.5% (i.e. the left mode of P̂1 in Figure 7.4.2) when a

sequence length of 2500 was used. Investigation of Figure 7.4.5 shows that most of

these sets of BWA estimates are such that p̂11 < p̂21. Hence the less accurate BWA

parameter estimates have resulted in a less accurate Viterbi path.

It is also interesting to note the sets of BWA parameter estimates which resulted in a

prediction accuracy of the Viterbi path less than 47.5%. These are plotted in Figure

7.4.6 for a signal length of 2500 and appear to be such that (p̂11, p̂21) is clustered

around the point (0.7, 0.2); (b̂
(1)
11 , b̂

(1)
21 ) is close to the line b̂

(1)
21 = b̂

(1)
11 ; and b̂

(2)
21 < 0.15.

That is, for this particular DCMM λ, when BWA estimates in the vicinity of these

regions are used to train the VA, the success rate of the Viterbi path in predicting

the true state path is poor. Analysis revealed similar findings when a sequence length

of 1000 was used.

Next the number of state transitions which occur in the state sequences is inves-

tigated. The results using a sequence length of 2500 are discussed below, however

analysis revealed that similar comments hold when a sequence length of 1000 is used.

To begin, the number of state transitions were determined for each of 500 simulated

state sequences, the 500 Viterbi state paths when the actual model parameters were
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used to perform the VA, and the 500 Viterbi state paths when the BWA parameter

estimates were used to perform the VA. The mean of the number of transitions which

occurred across the 500 sequences was then taken. In this way it was determined

that the average number of transitions which occurred per simulated state sequence

(of length 2500) was 499. Similarly it was determined that the average number of

transitions which occurred per Viterbi state path when the actual model parameters

were used to perform the VA was only 3.8. That is, considerably fewer transitions

occurred within the Viterbi state paths when the actual model parameters were used

to perform the VA than what occurred in the actual simulated state paths. To further

explore this, the exercise was repeated for the alternative DCMMs specified by λ1, λ2

and λ3 below. The average number of state transitions for the simulated state paths

and the average number of state transitions for the Viterbi state paths (using actual

model parameters to perform the VA) was 166 and 104 respectively for λ1; 2,310 and

2,472 for λ2; and 1,502 and 2,023 for λ3. The percentage of states correctly predicted

by the Viterbi path was also averaged over the 500 simulated sequences and found

to be 93.1% for λ1, 67.1% for λ2, and 72.0% for λ3. Medians for the above were also

tested - these gave very similar results to the means.

Based on this analysis, it appears as if the accuracy of the VA (measured through

the percentage of states correctly predicted by the Viterbi path and by comparing

the number of state transitions in the Viterbi path and in the actual state sequence)

can differ vastly depending on the parameters of the underlying DCMM. The speci-

fications for the DCMMs λ1, λ2 and λ3 discussed above are as follows:

λ1 : a =

(
0.50
0.50

)
P =

(
0.90 0.10
0.05 0.95

)
B(1) =

(
0.20 0.80
0.90 0.10

)
B(2) =

(
0.90 0.10
0.30 0.70

)

λ2 : a =

(
0.50
0.50

)
P =

(
0.05 0.95
0.90 0.10

)
B(1) =

(
0.50 0.50
0.25 0.75

)
B(2) =

(
0.30 0.70
0.50 0.50

)

λ3 : a =

(
0.50
0.50

)
P =

(
0.50 0.50
0.75 0.25

)
B(1) =

(
0.20 0.80
0.60 0.40

)
B(2) =

(
0.70 0.30

1 0

)
.
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Returning to the original DCMM λ, the average number of transitions which occurred

per Viterbi state path when the BWA parameter estimates were used to perform the

VA was explored. Analysis revealed that this average number of transitions was

605. Further investigation revealed however that a considerable number of the 500

individual Viterbi state paths had more than 2000 state transitions. This is high

considering that the path length is 2500 (and that the average number of transitions

which occurred per actual simulated state sequence was 499), but can be explained.

Recall from Section 7.3 that of the 500 sets of BWA parameter estimates, there was

a material number where (p̂11, p̂21) was close to the boundary point (0, 1) - see for

example Figure 7.3.6. A large number of state transitions would then be expected in

the Viterbi state path when using these BWA parameter estimates to perform the VA.

In fact, analysis showed that when the BWA parameter estimates with p̂11 < p̂21 were

used to perform the VA (this accounted for 127 of the 500 simulations) the average

number of transitions which occurred per Viterbi state path was 2209. By contrast,

when the BWA parameter estimates with p̂11 ≥ p̂21 were used to perform the VA (this

accounted for 373 of the 500 simulations) the average number of transitions which

occurred per Viterbi state path was 59. This number is considerably less than 499 -

the average number of state transitions which occurred per simulated state sequence.

Finally the prediction accuracy of the Viterbi path for the DCMM of this section

is compared to the prediction accuracy of the Viterbi path for the HMM used in

Section 7.2. As has been previously mentioned, the two state, two signal HMM used

in Section 7.2 is comparable to the two state, two signal DCMM used in this section.

Figure 7.4.7 shows the following:

• The distribution of the percentage of states correctly predicted by the Viterbi

path using the HMM from Section 7.2, a sequence length of 1000 and the actual

model parameters to perform the VA. This is the solid blue line in Figure 7.4.7

and is equivalent to distribution P1 of Figure 7.2.5.

• The distribution of the percentage of states correctly predicted by the Viterbi
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path using the HMM from Section 7.2, a sequence length of 1000 and the BWA

parameter estimates to perform the VA. This is the solid red line in Figure 7.4.7

and is equivalent to distribution P̂1 of Figure 7.2.5.

• The distribution of the percentage of states correctly predicted by the Viterbi

path using the DCMM from this section, a sequence length of 1000 and the

actual model parameters to perform the VA. This is the dotted green line in

Figure 7.4.7 and is equivalent to distribution P1 of Figure 7.4.1.

• The distribution of the percentage of states correctly predicted by the Viterbi

path using the DCMM from this section, a sequence length of 1000 and the

BWA parameter estimates to perform the VA. This is the dotted purple line in

Figure 7.4.7 and is equivalent to distribution P̂1 of Figure 7.4.1.

From Figure 7.4.7 it can be seen that for this particular HMM and DCMM, the

prediction accuracy of the Viterbi path is lower for the DCMM. This is true when

either the true model parameters or the BWA estimates are used to perform the VA. In

particular, for the HMM, the majority of the percentage of states correctly predicted

by the VA lie between 77.5% and 87.5% when true model parameters are used to

perform the VA, and between 72.5% and 87.5% when BWA parameter estimates

are used to perform the VA. For the DCMM, the majority of the percentage of

states correctly predicted by the VA lie between 62.5% and 72.5% when true model

parameters are used to perform the VA, and between 47.5% and 72.5% when BWA

parameter estimates are used to perform the VA. The distributions of the percentage

of states correctly predicted by the VA for the DCMM lie notably to the left of the

corresponding HMM distributions.

7.4.2 Concluding Remarks

In conclusion of Section 7.4, the results from various simulation exercises analysing the

prediction accuracy of the VA have been discussed. These simulations have been per-
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formed using the DCMM specified by λ. As these simulation exercises help quantify

the expected accuracy of the Viterbi path for a given DCMM, they are recommended

in applications of other DCMMs where the interpretation of the Viterbi path is an

important objective of the analysis.

The following can be concluded for the DCMM λ from the analysis performed:

• The VA predicted the true underlying state sequence more accurately when the

actual model parameters were used to perform the VA as opposed to the BWA

estimated parameters. In particular for the majority of the simulation exercises

(when sequences of length 2500 were used), the percentage of states correctly

predicted by the VA ranged between 62.5% and 72.5% when the actual model

parameters were used to perform the VA, and between 47.5% and 72.5% when

the BWA estimated parameters were used to perform the VA.

• As the accuracy of the BWA parameter estimates used to perform the VA im-

proved, the VA predicted the true underlying state sequence with more accuracy.

• The accuracy of the VA can differ vastly among different underlying DCMMs.

This however was only tested using true model parameter values to train the

VA.

• The number of state transitions were investigated. In particular it was found

that, depending on the underlying DCMM, the number of state transitions

predicted by the VA may differ vastly to the number of state transitions which

actually occur in the true underlying state sequence.

• The VA predicted the true underlying state sequence considerably more accu-

rately for the HMM than for the DCMM. This was tested using sequences of

length 1000.
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Figure 7.4.1: Prediction accuracy of the Viterbi path (using the 500 simulated signal and state paths of length 

1000 from section 7.3).* 

 

Figure 7.4.2: Prediction accuracy of the Viterbi path (using the 500 simulated signal and state paths of length 

2500 from section 7.3).* 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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Figure 7.4.3: Comparison of the prediction accuracy of the Viterbi path when a sequence length of 1000 and a 

sequence length of 2500 are used. The actual model parameters were used to perform the Viterbi algorithm.* 

 

 

Figure 7.4.4: Comparison of the prediction accuracy of the Viterbi path when a sequence length of 1000 and a 

sequence length of 2500 are used. The estimated BWA model parameters were used to perform the Viterbi 

algorithm.* 

 *Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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Figure 7.4.5: The BWA parameter estimates which, when used to perform the Viterbi Algorithm, led to a poor prediction accuracy of the Viterbi path of 

between 47.5% and 57.5% 
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Figure 7.4.6: The BWA parameter estimates which, when used to perform the Viterbi Algorithm, led to a poor prediction accuracy of the Viterbi path of less 

than 47.5%. 
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Figure 7.4.7: Prediction accuracy of the Viterbi path – a comparison between the HMM and the DCMM when a 

sequence length of 1000 is used.* 

*Note that values on the x-axis represent the midpoint of the bins. The bins range from [-0.025,0.025) to [0.975,1.025) 
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7.5 Additional Simulation Studies

The simulation exercises presented in this chapter have provided insights into the

mechanics, the effectiveness and the shortcomings of the BWA and the VA for both

HMMs and DCMMs. Scope for simulations within the HMM and DCMM framework

is vast, and hence many other simulation studies may also be explored. Review of

the literature reveals numerous simulation exercises which have been performed by

various authors, particularly for the HMM.

For example [15] uses simulated data to compare the performance of three different

parameter estimation approaches for the HMM - namely numerical maximisation of

the log-likelihood function (discussed in Sections 4.2 and 4.3 of this dissertation), the

EM algorithm (which is aligned to a BWA approach) and a hybrid approach proposed

by [15]. Similar to the simulation study of this dissertation, the properties of these

different approaches are investigated (for example the dependence on starting val-

ues, the influence of different signal sequence lengths and the stability of estimation).

Bootstrap-based confidence intervals are also explored in [15].

In [18] HMM simulations are used to compare different parameter estimation ap-

proaches (all based on a Baum-Welch approach) when multiple signal sequences are

observed. Mention is made in [18] of the possibilities of ‘local minima traps’ when

performing the BWA. This was also noted in the simulation study presented in this

chapter.

While not as numerous as for the HMM, simulation studies for the DCMM are also

discussed in the literature. One interesting example is presented in [10]. In [10] a

three-state two-signal DCMM is used to simulate 20 signal sequences each of length

504. Using the simulated data, 11 different models were fit to each sequence: the

independence model, Markov chains of order 1 to 4, HMMs with 2, 3 and 4 hidden

states and DCMMs with 2, 3 and 4 hidden states. HMMs and DCMMs were fit using

the BWA. Models were classified according to their BIC value and in all but one of
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the 20 cases, the best model was a DCMM. It was thus concluded in [10] that the

DCMM can represent non-homogeneous time-series better than homogeneous Markov

chains and HMMs.

An interesting observation from [10] is that for most of the 20 signal sequences, the

fitted two-state DCMM ranked better than the fitted three-state DCMM (according

to the BIC value) - despite the fact that the signal sequences were simulated from a

three-state DCMM. A possible reason given in the paper is that the second state (of

the DCMM used to create the simulated sequences) represents independence, that is

b
(2)
11 = b

(2)
12 = b

(2)
21 = b

(2)
22 = 0.5. The paper thus makes the observation that ‘it appears

that the model concentrates upon the informative part of the data and does not add

extra parameters for the non-informative independence situation’.

Mention is made in [10] that when interpreting the estimated BWA parameters, re-

flection of the estimates may be required in order to make comparisons to the true

model parameters of the original DCMM. This was also seen and noted in the simu-

lation study presented in this chapter.

Finally signal sequences of length 504 were simulated for the study presented in [10].

This seems low based on the results and findings of the simulation study presented

in this chapter. However a contributing factor may be the choice of the DCMM used

to generate the simulations. In [10], probabilities within P are greater than 0.8 on

the diagonal, less than 0.1 otherwise, and such that it is not possible to go in one

step from state one to three and vice versa. This will no doubt limit the number of

transitions within the hidden state process. All probabilities within B(1) and B(3) are

either greater than 0.9 or less than 0.1. Such a DCMM may require less data being

needed to accurately perform the BWA. This is an area of future study which can be

addressed through simulations similar to those presented in this chapter.
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Chapter 8

Selected HMM and DCMM
Applications

In order to appropriately conclude the discussion provided in this dissertation, an

overview of selected HMM and DCMM applications in the literature is provided in

Sections 8.1 and 8.2. Section 8.3 provides a focussed review of HMM and DCMM

applications within the field of credit risk. The simulation studies performed in Chap-

ter 7 of this dissertation will also be referenced to determine if conclusions from this

study can be linked to the applications presented in the literature.

8.1 Selected HMM Applications

A review of the literature reveals that HMMs have been applied to numerous fields.

These include applications in the field of pattern recognition tasks such as speech

recognition, face recognition, handwriting recognition, gesture recognition, human

identification using gait and facial expression identification from videos (see for ex-

ample [31], [37] and [43]), credit risk (details provided later in this section), biology

(for instance gene prediction and the study of DNA and protein sequences, see for ex-

ample [29]) and partial discharge (the study of localized electric breakdowns of small

portions of solid or liquid electrical insulation systems under high voltage stress, see

211



for example [42]).

Focusing on recognition tasks, the usefulness of the HMM stems from its ability to

learn HMM parameters from observation sequences (through for example the Baum-

Welch re-estimation procedure), and then consequently its ability to assess the like-

lihood that a new observation sequence is associated with a learned HMM (using

for example the evaluation procedure described in Section 3.1). For instance, con-

sider speech recognition - a feature of most modern cellular phones (voice dialling),

bluetooth kits, vehicle navigation systems, and used extensively among people with

disabilities to their hands who require alternative means of input into a computer.

The use of the HMM within speech recognition is summarised as follows (numerous

references within the literature, for example [31] and [37], may be consulted should

additional details be required).

Assume a vocabulary of J words denoted by V = {w1, w2, ..., wJ}. Now,

1) A training set is collected for each word wi ∈ V by speaking wi into a signal

processor Mi times, where each time wi is spoken it is converted into an obser-

vation sequence. In other words, wi will have a training set consisting of Mi

observation sequences.

2) For each wi ∈ V, the training set which has been obtained for wi is used to train

a distinct HMM for that word, denoted λi. This can be achieved through some

parameter estimation procedure, for the example the Baum-Welch algorithm.

3) Define w̃ to be the unknown input word that is spoken and is to be recognized

by the speech recogniser.

Also, define w∗ to be the word in V that the speech recogniser identifies w̃ to

be.

w∗ is then selected from V as follows:
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• Firstly w̃ must be converted into an observation sequence, O, by the signal

processor.

• P (O|λi) is calculated for each i = 1, 2, ..., J , using an evaluation procedure

- for example the evaluation procedure discussed in Section 3.1 of this

dissertation.

• w∗ = arg max
1≤i≤J

{P (O|λi)} will then be given as the recognized word, provided

that max
1≤i≤J

{P (O|λi)} is greater than some pre-defined minimum probabil-

ity level. If this is not the case, a default message such as “No match

found” will be given as the output instead of w∗.

Further flavour of the range of HMM applications can be obtained from [35] and [46].

In these publications the HMM framework is used in a variety of studies including

modelling epileptic seizure counts, births at the Edenvale hospital, homicides and

suicides in Cape Town, wind direction at Koeberg, and the trading of shares on the

Johannesburg Stock Exchange (JSE). A selection of recent applications of the HMM

framework include [2], [14], [16], [26], [28] and [45]. These papers are overviewed in

the paragraphs below.

A HMM approach is used in [26] to model the availability or expected life of electri-

cal, electronic and electromechanical systems and products. In [2] a HMM is used

to analyse irrigation decision behaviour of farmers and make forecasts of their fu-

ture decisions. The motivation for this study is that canal operators will typically

divert water from rivers to a field after receiving a water order from a farmer. Hence

if farmers’ irrigation decisions could be better anticipated, it would be possible to

improve canal operations using improved future water demand estimates. In this

study, irrigation decisions were represented by the hidden states of the HMM and

were estimated using the Viterbi Algorithm (VA), discussed in Section 3.2 of this dis-

sertation. In [14] the streamflow of the Upper Colorado River Basin is modelled using

a gamma HMM. According to [14], hydroclimate time series (the underlying driver of

streamflow) often exhibit low year-to-year autocorrelation while showing prolonged
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wet and dry periods reminiscent of regime-shifting behaviour. A HMM framework is

then well suited. In this particular study, the hidden states are described as climate

regimes and the observed sequence, dependent on the current state, is the streamflow

measurements. The gamma distribution is commonly used in hydrologic modelling

(e.g. streamflow and rainfall time series) because of its lower bound of zero. And

so a gamma distribution is used for each hidden state of the HMM to model the

streamflow. A deviation from the classical gamma HMM is also presented in [14]. It

is noted that state transitions are likely to exhibit non-stationarity and is addressed

in [14] as follows. The classical gamma HMM is first assumed and parameters are es-

timated using an EM algorithm approach; these estimated parameters are then used

to perform the VA and decode the hidden states. This decoded state sequence is used

to train a multinomial logistic regression model (where climate indices are used as

explanatory variables) to obtain estimates of the probability that the system was in

a given state at a given time point.

A 3-state Poisson HMM is used in [16] to forecast the expected annual frequency of

earthquakes (until the year 2047) with magnitudes greater than or equal to 4 in the

Bilecik region in Turkey. This interpretation of the HMM is similar to that which

was discussed in Section 2.2 of this dissertation. Analysis presented in [16] compares

the expected number of earthquakes using the Poisson HMM fit to the data to the

expected number of earthquakes using a homogeneous Poisson process fit to the data.

Comparison to the actual frequency of earthquakes observed in the 113 years of histor-

ical data reveals that the Poisson HMM predicts materially more accurately than the

homogeneous Poisson process. The study presented in [45] proposes using a Gaussian

HMM to analyse drought patterns in South Korea and the role that typhoons play in

ending drought conditions. In this study the state sequence of the HMM represents

the latent weather state 1 and observed monthly rainfall amounts are modelled using

a normal distribution dependent on the state of the HMM. Estimating and analysing

1Seven states are assumed which represent weather conditions from extreme drought (state 1) to
extreme wet conditions (state 7).

214



the hidden state path then allows drought patterns to be studied, and the beginnings

and endings of drought periods to be classified. Several aspects are studied in [45], for

example the evolution between drought and wet conditions, the role which typhoons

play in ending drought conditions, and what precipitation conditions are expected for

the months following a typhoon. It is noted in [45] that the advantage of the HMM

framework over other drought analysis tools is that “the HMM explicitly takes into

account the temporal dependence in the drought states so that smoothed transition

probability between drought states over time is clearly identified, while the SPI 2

showed a sudden change in the transition of drought or wet states”.

The use of HMMs in autonomous vehicles to correctly detect the state of a traffic light

(red, yellow, green or no detection 3) is investigated in [28]. According to [28] multi-

ple authors have used image processing as a base for achieving traffic light detection.

To achieve this images captured by a camera located on the autonomous vehicle are

processed to detect traffic lights and determine the active state of the traffic light.

However, adverse lighting and/or weather conditions can result in either the state of

an identified traffic light not being detected or the state of an identified traffic light

being incorrectly detected. It is proposed in [28] that the HMM be used to improve

the detection of the active state of a traffic light as follows. As the autonomous

vehicle approaches the traffic light, several images are captured and processed, and

the state of the traffic light is detected for each image. This then forms the signal

(output) sequence for the HMM, with signal space {red, yellow, green, no detection}.
Now, the true sequence of active states of the traffic light will possess the Markov

property. This sequence can then be represented by the hidden state sequence of the

HMM. Hence the state space of the HMM is also {red, yellow, green, no detection}.
The VA is then used to estimate the true sequence of active states of the traffic light

from the sequence of traffic light states detected from the image processing (the sig-

2[45] notes that the standardized precipitation index (SPI) is the most commonly used drought
index.

3For example, the traffic light is not working or there is no traffic light present.
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nal sequence). If the VA performs accurately then the predicted Viterbi path will

accurately capture the true sequence of active states of the traffic light even if errors

in detecting the state of the traffic light during image processing occurred. A study

presented in [28] resulted in the proposed HMM approach obtaining 90.55% accuracy

in the detection of the traffic light state, versus 78.54% accuracy obtained using solely

image processing.

8.2 Selected DCMM Applications

While fewer, there are several examples in the literature of studies where the DCMM

has been applied - see for example [10], [11], [22], [23] and [46]. These include using

a DCMM to model credit rating transitions ([22], [23]), wind speeds in order to

determine the feasibility of wind power ([10]), births at the Edenvale hospital ([46]),

DNA analysis, behaviour of young monkeys and the phrases of a bird call/song ([11]).

The application presented in [10] is discussed next. Recall that this study was also

mentioned in Section 6.1.1 of this dissertation to illustrate the differences between

Markov chains, HMMs and DCMMs. In this study the average daily wind speed

during the period 1961-1978 (a time series of length 6574 data points) was analysed

in order to determine the possibility of wind power. As exceptionally low and high

wind speeds can prevent good exploitation of this power, the data was classified into

three categories: low wind speed, normal wind speed and high wind speed. Now

intuitively it would be expected that the wind speed on a given day is correlated

with its speed the previous day, but that the process is not stationary and evolves

throughout the year as the seasons change. Hence a DCMM seems well suited to

represent this data. However several other models were also fit to the data (including

the independence model, Markov chains of varying orders, HMMs of varying orders

and mixture transition distribution (MTD) models). According to the BIC values,

the two-state DCMM was identified as the most appropriate model. After analysing
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the estimated model parameters, the first hidden state was interpreted in [10] to be

a situation of low wind speeds and the second hidden state was interpreted to be a

situation of high wind speeds.

Linking the above mentioned study presented in [10] to the simulation studies of this

dissertation (Chapter 7), the following can be noted. Firstly, the BWA was used by

[10] to estimate the DCMM model parameters. This is consistent to the approach

used in Chapter 7 of this dissertation. In these simulation studies it was recommended

that in practice, in order to perform the BWA and fit an unknown DCMM, a signal

sequence longer than 2500 data points be used. This was based on analysis of the

sampling distributions of the BWA parameter estimates. Encouragingly the signal

sequence used in [10] consisted of 6574 data points. In the simulation exercises in

Chapter 7 of this dissertation, it was also noted that starting parameter values used to

train the BWA can greatly affect the final estimated parameters (as the BWA finds

a local maxima of the likelihood function rather than a global maxima). In these

simulation exercises, 150 starting parameter sets were randomly created (such that

the required DCMM probability properties held) and used to train the BWA - the final

BWA estimate set which was selected was that which yielded the highest likelihood

value. In [10], no mention is made regarding the selection of the starting parameter

values used to train the BWA. Encouragingly however, while discussing the theory of

the BWA, the following comment is made in [10]: “Since we cannot insure that this

procedure converges to the global maximum of the likelihood rather than to a local

maximum, the choice of starting values is critical”. Finally, as mentioned above,

the first hidden state was interpreted in [10] to be a situation of low wind speeds

and the second hidden state was interpreted to be a situation of high wind speeds.

It would indeed be interesting to further this study and use the estimated DCMM

model presented in [10] to perform the Viterbi algorithm and estimate the hidden

state path. In this way it could be seen if, for example, the periods when the hidden

path was estimated to be in state 2 corresponded to typically windy months/seasons.
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The premise of using BWA parameter estimates to perform the Viterbi algorithm and

estimate the hidden state path was simulated and investigated in Section 7.4 of this

dissertation.

8.3 HMM and DCMM Applications Within the

Field of Credit Risk

The final HMM and DCMM applications which will be discussed are the use of these

models within a credit risk framework. From a banking sector point of view, a bank

would view credit risk as the risk of default on a debt that may arise from a borrower

failing to make required payments. Papers in which the HMM has been applied in

a credit risk context include [3], [4], [27], [30]; and papers in which the DCMM has

been applied in a credit risk context include [22] and [23].

The first application which will be discussed is the HMM framework used in [3], [4]

and [27]. In these papers the occurrence of defaults within a portfolio of corporate

bonds is modelled as a hidden Markov process. In particular, the hidden state process

is assumed to represent the state of risk within a sector. The signal or observed

process of the HMM is the number of defaults which occurred within the portfolio at

each time point, whereby it is assumed that the number of defaults is conditionally

dependent on the hidden state via the binomial distribution. This is then an example

of the distribution HMM which was discussed in Section 2.2 of this dissertation. The

analysis of interest in this application framework is around the hidden state sequence

as estimation of the hidden state path allows for the detection of periods of enhanced

risk in the credit cycle.

The study presented in [27] assumes that the hidden state can take one of two values:

0 (representing an underlying state of normal risk) and 1 (representing an underlying

state of enhanced risk). This is extended in [3] and [4]. In particular the work
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presented in [4] no longer assumes only two hidden states4. In addition the state

transition probabilities are not assumed to be time homogeneous. Instead now the

state transition probabilities are modelled as a function of observed covariates (for

example macroeconomic variables). This is done through regression using a logistic

link function. It is shown in [4] that making use of covariates to predict the state

transition periods enables sharper identification of periods of high and low default

regimes. In the study presented in [3], the performance of the HMM application is

examined using different specifications of the hidden state space. In particular both

discrete-state and continuous-state HMM specifications are considered. The effect of

mis-specification of the hidden layer is also investigated. Regarding this, it is stated in

[3] that “this appears particularly important given the limited number of time series

observations typically available for default modelling: annual, quarterly, or monthly

time series since the 1980s.” Based on the simulations performed in Section 7.1 of this

dissertation (where it was discovered that if the observation sequence used to train the

BWA is not sufficiently long enough, the BWA estimates are likely to contain material

variance and some degree of bias), this statement in [3] seems valid. In particular

the observation sequence used to train the BWA in [27] consisted of 88 time points.

Based on the simulations performed in Section 7.1 of this dissertation (all be it not for

the binomial HMM used in [27]), a sequence of this length could result in inaccurate

estimates if a mis-specified HMM is used. This is further discussed in the paragraphs

below.

The study performed in [27] is now examined in more detail. Model parameters

are estimated in [27] using the BWA adapted for the binomial distribution HMM5.

These estimated parameters are then used as input to perform the VA to estimate the

hidden state path, thereby analysing which periods in history corresponded to a state

of normal risk and which corresponded to a state of enhanced risk. Interestingly, when

bonds were divided into their appropriate industry sectors and the sectors modelled

4In [4] a discrete state space is assumed with arbitrary s possible states.
5Adaptation of the BWA for distribution HMMs was discussed in Section 4.1.4 of this dissertation.
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separately (four sectors were considered - Consumer, Energy, Media and Transport),

the periods where the hidden state represented enhanced risk differed between sectors,

although correlation could be observed. That is, while correlated to some degree, the

credit risk cycles did show signs of differing between the different industry sectors.

Knowing where in the credit cycle a particular industry sector is can be of great value

to a risk manager. This is particularly true as detection of an enhanced credit risk

state can serve as an early warning mechanism for high default regimes.

As an additional study, data from the different industry sectors was aggregated and

the modelling re-performed (this was done for US issuers only). Hence the enhanced

risk hidden state can now be seen as being related to global economic factors, affecting

all sectors at the same time. Interestingly, since 1990, there have been two recessions

in the US economy and periods where the hidden state represented enhanced risk

overlapped with these two periods of recession. In both cases, the enhanced risk

state anticipated the onset of recession and continued for a few months after the

recession had ended. This indicates that the hidden state process can be used to

detect enhanced risk in the credit cycle before the economy moves into recession, and

also indicates that the credit cycle remains at higher risk for a few months after the

recession has passed. This knowledge can be of great value to a risk manager.

In summary, [27] used a HMM approach to model the hidden layer present in default

rate dynamics. This hidden layer can be viewed as the state of the credit cycle, and

thus has an influence on the number of defaults expected in a portfolio. It is also

shown in [27] that the economic cycle does not fully explain the credit cycle (hence

the need to model this hidden layer).

Linking the studies of [27] to the theory and simulation exercises discussed in this

dissertation, the following can be noted.

• The observed data used for this study was the number of defaults, measured

in quarterly intervals over the period Q1 1981 to Q4 2002. This gives rise to
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an observed sequence of length 88 time points. In order to determine if this

sequence is sufficiently long enough, the sampling distribution for the BWA es-

timates can be determined through simulations (as was done in Section 7.1 of

this dissertation). A similar simulation was indeed performed in [27] and the

sampling distributions for the P parameters are comparable (the other model

parameters could not be compared as a binomial distribution was not used to

output the signals in Section 7.1). Interestingly, in Section 7.1 of this disserta-

tion the presence of outlying BWA estimates in the sampling distributions for

the P parameters was noted. This was also noted in [27].

• The primary focus of the application study in [27] is to analyse the hidden state

sequence. The effectiveness of the Viterbi algorithm to retrieve the hidden

state path for the HMM in question is investigated in [27] through simula-

tion. The Viterbi path appears to agree remarkably well with the true state

path. However this simulation only considered a single simulated state and

observation sequence. This study could be furthered by considering multiple

simulated sequences and obtaining a distribution showing how well the Viterbi

path estimated the true state path across the various simulated sequences, as

was considered in Section 7.2 of this dissertation.

• As has been mentioned, the hidden state sequence gives potentially valuable

insights into the state of risk in the credit cycle. Being able to accurately

forecast the hidden state for future time points would no doubt also be valuable.

A further study of interest would then be, through simulations, to determine

how accurately the hidden state sequence can be foretasted for future time

points. An approach to forecasting the hidden state sequence for future time

points was given in Section 3.4.3 of this dissertation (see equation (3.19)).

Not mentioned in [27] is whether the proposed HMM is suitable for predicting the

number of defaults for future time points (recall that the primary focus of the study
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was to analyse the hidden state path to determine the state of risk in the credit cycle).

This however would be questionable, as it is assumed that each loan within the port-

folio has equal probability of defaulting (the probability parameter of the binomial

distribution used to model the number of defaults). That is, the credit assessment of

an individual loan would not be taken into account when assessing its probability of

defaulting. Furthermore, by construction of the model, the expected portfolio default

rate (total number of defaults divided by total number of loans in the portfolio) would

remain constant while the process remains in the same hidden state.

Another application area (within credit risk) of HMMs and DCMMs discussed in

the literature concerns credit ratings, as detailed in [22], [23] and [30]. It is common

practice in the banking industry to assign a credit rating to a borrower in order to de-

termine the credit quality / credit worthiness of the borrower. Typically these credit

ratings are either performed by external rating agencies (for example Moody’s) or

internally by the bank itself. Reviews of the credit rating are performed periodically,

and a rating change signifies improvement (upgrade) or deterioration (downgrade) in

a borrower’s credit worthiness. Hence these dynamics are typically summarised in a

transition matrix, where each entry in the matrix represents a probability of a credit

rating migration. Furthermore it is standard practice to consider a Markov chain

representation of credit rating dynamics.

It is claimed by [30] that published credit ratings may not always accurately reflect

‘true’ credit worthiness due to the fact that the posted credit ratings may sometimes

be ‘noisy or incomplete’. This is motivated in [30]. It is proposed in [30] that a HMM

can better reveal ‘true’ credit worthiness. In particular it is supposed that the ‘true’

credit quality evolution is described by the hidden state Markov chain of the HMM;

and that the published credit rating is the signal/observation sequence of the HMM.

As a portfolio will typically consist of several borrowers, several observation sequences

will be available to train the HMM and estimate the model parameters (Section 4.1.3

of this dissertation discussed adapting the BWA to cater for multiple observation
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sequences). Once the HMM parameters have been estimated, P̂ then represents the

‘true’ credit rating transition probabilities and B̂ represents the probabilities that the

published credit ratings are different from the ‘true’ credit rating. Of course if B̂ is

estimated to be the identity matrix (or something close to it) then this implies that

the published credit ratings represents the ‘true’ credit quality of a borrower. The

application presented in [30] found this not to be the case. It is therefore suggested

in [30] that, due to ‘noise and incompleteness’, the published credit ratings do not

always represent the ‘true’ credit worthiness of a given borrower. Instead analysis of

P̂ and B̂ can yield a better understanding of the ‘true’ credit quality.

Interestingly, there is alignment of the HMM interpretation between [30] (within

credit risk) and [28] (recall that this paper was detailed in Section 8.1 and discusses

applying a HMM to improve traffic light detection in autonomous cars). In both

papers it is assumed there may be ‘noise’ present in the data observed, but that the

hidden state process of the HMM is the true representation (of credit worthiness in

[30] and the traffic light state in [28]).

A DCMM application is used in [22] and [23] to model the credit rating migration

dynamics of a portfolio. This is indeed of interest in the banking industry as a rating

migration of a company, to which the bank has loaned money to, signifies a change

in the likelihood that the company may default on its loan.

Credit rating transition probabilities are commonly estimated in practice using a dis-

crete time, time homogeneous Markov chain. However, as discussed earlier in this

section, studies presented in [3], [4] and [27] suggest that there are also so-called

hidden factors or risks driving the credit cycle6. This is likely to influence the evo-

lution of credit ratings over time, which could result in non-stationary behaviour.

This however is unlikely to be catered for by the discrete time, time homogeneous

Markov chain. The work presented in [22] and [23] caters for this through the use of

6Furthermore the studies presented in [3], [4] and [27] suggest that these hidden risks depend on
each other in successive periods - i.e. possess the Markov property.
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the DCMM7. The hidden state process is taken to be the state of risk in the credit

cycle (which is assumed to follow a Markov process). The observable process (which

is also assumed to follow a Markov process dependent on the state occupied) is the

credit rating which a given loan receives over time. In this way, the state of risk in

the credit cycle, together with the Markov process describing the rating migrations,

will determine the credit ratings of the loan through time. More detail on both [22]

and [23] is given below.

To begin, it is acknowledged in [22] that the presence of rating drift8 is noted in the

literature. This is catered for in [22] in the DCMM framework by considering higher

orders in both the state and signal Markov chains. The data used for the study in

[22] consisted of 11,284 rated companies over 11 years of rating history (however, de-

pending when a company might have opened or closed, rating information will not be

available for 11 years for each company). As each rated company will give rise to an

observation / signal sequence with which to train the DCMM, multiple observation

sequences are available to estimate model parameters9. This gives rise (according to

[22]) to almost 48,000 rating observations with which to train the DCMM. This is well

in excess of the 2,500 observations which were used in the simulation study in Section

7.3 of this dissertation (this is encouraging as the simulation study showed material

bias and variance in some of the BWA parameter estimates when 2,500 observations

were used).

Various models were fit to this observed data. These included the Independence

model, homogeneous Markov chains of different orders, MTD models of different or-

ders, different combinations of HMMs (varying numbers of hidden states and varying

orders in the hidden states) and different combinations of DCMMs (varying num-

bers of hidden states, varying orders in the hidden states, and varying orders in the

7A discrete-time, discrete-state space and discrete-signal space DCMM, similar to that which has
been described in Chapter 6 this dissertation, is proposed in [22] and [23].

8For example the probability of a downgrade following a downgrade is likely to be higher than
an upgrade following a downgrade, and vice versa.

9A BWA approach is used in [22] to estimate model parameters.
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observations). The fit of these models was assessed according to the AIC and BIC

measures. The analysis performed in [22] showed the most significant model was a

DCMM with 3 hidden states in a second order dependence structure, and first order

dependence structure in the Markov chain describing the observations. It can be seen

in [22] that the credit rating transition matrix for each hidden state (B̂
(1)
, B̂

(2)
and

B̂
(3)

) are clearly different. This indicates that within the credit cycle, there are indeed

different risk situations which influence the probabilities of a rating migration.

The possibility of rating drift in a credit rating transition process was mentioned

earlier. Analysis performed in [22] indeed confirms the presence of rating drift (by

comparing the order one Markov chain with higher order Markov chains). However

the final selected DCMM had a first order dependence structure in the Markov chain

describing the observations (credit ratings). To explain this, it is proposed by [22]

that a credit rating transition process is influenced more significantly by two succes-

sive risk situations (hidden states) than by two successive rating observations - hence

the second order in the hidden states of the DCMM.

To end off the discussion of [22], using a DCMM approach has provided valuable

insights into the varying dynamics of credit rating migrations over time and has also

catered for rating drift, non-stationary behaviour present in a credit ratings process,

and the influence of the hidden risk states of the credit cycle on the credit ratings.

However, the model does have shortfalls (as noted in [22]). In particular, due to the

fact that higher orders are used in the final DCMM chosen, the number of parameters

in the model is high (152 parameters). It is also noted in [22] that the prediction of fu-

ture credit ratings becomes challenging if no information of the future risk situations

(states) is available (estimating the probabilities that future signals will be observed

for a DCMM was discussed in Section 6.2 of this dissertation). Within the credit risk

framework, typically expected and unexpected loss needs to be forecast for the next

12 months, hence forecasted future credit ratings are desired. This area of further

study noted in [22] is addressed in [23].
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As was mentioned earlier, the use of the DCMM in [23] is aligned to [22]. However,

in [23] the area of focus is using a Bayesian approach to estimate the DCMM model

parameters and the hidden state process. As analysis of rating drift is not of primary

focus in [23], a first order (in both the state and signal processes) DCMM is consid-

ered.

Similar to [22], the data used in [23] consisted of rated companies over several years

of rating history. In the case of [23] the rated companies were restricted to financial

institutions and insurance companies (3,918 firms) over a rating history of January

1981 to January 2010. Two hidden states are assumed for the DCMM, and upon re-

viewing the estimated rating transition probability matrices for the two hidden states

(that is B̂
(1)

and B̂
(2)

), it is clear that the first hidden state corresponds to a ‘con-

traction’ regime while the second state corresponds to an ‘expansion’ regime. This is

also made clear by comparing these transition matrices to the transition probability

matrix of a simple Markov chain model fit to the data.

Furthermore, the estimated DCMM model parameters were used to estimate the hid-

den state process. As desired, the state process was typically estimated to be in the

first state over time periods corresponding to known economic downturns in the fi-

nancial services industry.

One of the areas of further research identified in [22] was the prediction of future credit

ratings using the DCMM estimated rating transition probability matrices. This is ex-

plored in [23]. By making use of B̂
(1)

and B̂
(2)

, the expected proportion of defaults

(also known as default rates) for each credit rating can be predicted 12 months into

the future. As was mentioned when [22] was discussed, this can become quite chal-

lenging if no information of the hidden states is available for future time points. This

is bypassed in [23] by making different assumptions for the hidden state path over

the next 12 months and predicting the default rates under these different scenarios.

That is a range of default rates is predicted. For example, one scenario is companies

migrate according to the estimated DCMM, conditional on all of the next 12 months
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migrating under state 1 (the worst possible scenario); another scenario is companies

migrate according to the estimated DCMM, conditional on all of the next 12 months

migrating under state 2 (the best possible scenario).

What may also be of interest from a practitioner’s point of view is an ‘out-of-time’

type analysis. In the context of [23], one such test might be to estimate the DCMM

model parameters using data up to January 2009. This then leaves a 12 month period

to compare the rating migrations and default rates predicted by the DCMM to what

actually occurred over the 12 month period (February 2009 to January 2010).

Finally areas of future research are also identified in [23]. These include imposing

restrictions when estimating the DCMM parameters (e.g. a practitioner might want

to force a credit rating to be absorbing), and to enhance the estimation algorithms

to cater for missing data (i.e. if there are gaps in some of the observation sequences).

Finally, as was mentioned when discussing [22], as each rated company will give rise

to an observation sequence, multiple observation sequences are available to train the

DCMM and obtain estimated parameters. These multiple observation sequences are

assumed conditionally independent given the hidden state process. It is proposed

in [23] that a more complicated data structure between these multiple observation

sequences can be explored (e.g. different types of companies might be affected differ-

ently during the different periods of the economic/credit cycle).

This then concludes Chapter 8, in which an overview of some of the real-life applica-

tions of the HMM and the DCMM (with focus on credit risk) was provided.
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Chapter 9

Concluding Remarks

This dissertation has examined two extensions to classical Markov models, namely the

hidden Markov model (HMM) and the double chain Markov model (DCMM). These

models assume an underlying state process which possesses the Markov property, but

which is at no point visible. Instead the output of another process is observed, the

distribution of which depends on the state of the model at the time point in question.

Hence HMMs and DCMMs assume an observed process which is dependent on an

underlying latent Markov process.

A detailed review of these two models has been provided in this dissertation. While

different specifications of HMMs and DCMMs have been discussed, the research

presented has primarily focused on summarising the literature of the discrete-time,

discrete-state space and discrete-signal space HMM and DCMM. Central themes of

this dissertation have been establishing the mathematical framework for these mod-

els, discussing statistical properties, discussing estimation techniques for the unknown

parameters and the hidden state process, and discussing considerations which prac-

titioners of these models would typically need to take into account. In addition,

mathematical derivations of key HMM and DCMM results are provided in the ap-

pendices of this dissertation. Several of these derivations were, at the time of writing,

not found elsewhere in the literature.

228



Simulation exercises using a two-state two-signal HMM and a two-state two-signal

DCMM were presented. These simulations provided useful insights into the mechan-

ics, the effectiveness and the shortcomings of the BWA and the VA to respectively

estimate the model parameters and the underlying hidden state sequence. Included in

these simulation exercises were studies examining (i) the influence of the starting val-

ues on the final BWA estimates, (ii) the influence of the length of the signal sequence

on the final BWA estimates, (iii) the accuracy of the BWA in recovering the actual

model parameters, (iv) sampling distributions of the BWA parameter estimates, (v)

the accuracy of the VA in recovering the underlying hidden state sequence when ei-

ther actual parameter values or BWA parameter estimates are used to perform the

VA and (vi) how the effectiveness of the BWA and the VA compares between the

HMM and the DCMM. Conclusions from these studies were made and are presented

at the end of each section within Chapter 7.

In order to appropriately conclude the discussion, selected HMM and DCMM applica-

tions were reviewed and assessed in light of the conclusions drawn from the simulation

study. Attention was given to the application of HMMs and DCMMs in the field of

Credit Risk.
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Appendix A

Special Relations Between the
Independent Mixture Model,
Markov Chain, Hidden Markov
Model and Double Chain Markov
Model

Previous chapters of this dissertation have mentioned special relations which exist

between the time homogeneous, discrete-time and discrete-state Markov chain; the

time homogeneous, discrete-time and discrete-state independent mixture model; the

time homogeneous, discrete-time, discrete-state and discrete-signal HMM; and the

time homogeneous, discrete-time, discrete-state and discrete-signal DCMM. This ap-

pendix will prove these relations. The mathematics presented were not found in the

literature and were derived specifically for the purposes of this dissertation.

Proving the Markov chain a special case of the HMM

In Section 2.1 it was stated that the Markov chain is a special case of the HMM. This

is proven below.
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To begin, consider an arbitrary Markov chain {Xk : k = 1, 2, . . .} with state space

S = {1, 2, . . . ,m}, transition probabilities P = {pij} and initial probabilities a =

[p1, p2, . . . , pm].

Now consider the HMM where the hidden state process is the above described Markov

chain {Xk : k = 1, 2, . . .}, the observed signal process is {Sk : k = 1, 2, . . .}, the signal

space is defined as δ = S = {1, 2, . . . ,m} - that is νi = i for each i ∈ {1, 2, . . . ,m},
and the signal probability matrix is defined as the m × m identity matrix - that is

B = Im .

It is thus required to show that {Sk : k = 1, 2, . . .}, the output process of the con-

structed HMM, is equivalent to {Xk : k = 1, 2, . . .}, the output process of the Markov

chain. This is achieved in the proof below by showing that (i) the output process of the

constructed HMM possesses the Markov property, (ii) the transition probabilities for

the output process of the constructed HMM are equivalent to the transition probabili-

ties for the Markov chain, and (iii) P (Sk = j) = P (Xk = j) for each j ∈ {1, 2, . . . ,m}
and k ∈ {1, 2, . . .} .

Recall that for a HMM, where signals have been observed for the first n time points,

that Sn+h will depend on the state visited at time n. That is (see equation (2.4) for

more details)

P [Sn+h = vk|S1, X1, . . . , Sn, Xn = i] = P [Sn+h = vk|Xn = i] .

As the signals S1, . . . , Sn−1 hold valuable information pertaining to the state process

visited by the HMM, and therefore also the state visited at time n, the following will

typically not hold true for a HMM:

P (Sn+h = j|Sn = sn, . . . , S1 = s1, λ) = P (Sn+h = j|Sn = sn, λ) . (A.1)

However in the constructed HMM which is being considered, for j ∈ {1, 2, . . . ,m},
P (Sn = j|Xn = j, λ) = 1 = P (Xn = j|Sn = j, λ) . And so the signal observed at n

will exactly imply the state visited at time n. Hence equation (A.1) will hold for the
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constructed HMM and thus the output process of the constructed HMM possess the

Markov property.

The forward equations for the above HMM can be expressed, for each j ∈ {1, 2, . . . ,m}
as follows:

F1(j) = pj bj,s1 =

{
ps1 , if j = s1
0 , otherwise

F2(j) = bj,s2
∑
i∈S

F1(i) pij = bj,s2 [F1(s1) ps1,j + 0] =

{
ps1 ps1,s2 , if j = s2
0 , otherwise

F3(j) = bj,s3
∑
i∈S

F2(i) pij = bj,s3 [F2(s2) ps2,j + 0] =

{
ps1 ps1,s2 ps2,s3 , if j = s3
0 , otherwise

...

Fn(j) =

{
ps1 ps1,s2 ps2,s3 . . . psn−1,sn , if j = sn
0 , otherwise.

Now by equation (3.19),

P (Xn+h = j|Sn = sn) =
1∑

l∈S
Fn(l)

∑
i∈S

pij(h)Fn(i)

=
1

Fn(sn)
[psn,j(h)Fn(sn)]

= psn,j(h) .

Using this result and equations (3.20) and (A.1), the following can be obtained

P (Sn+h = j|Sn = sn) = P (Sn+h = j|Sn = sn, . . . , S1 = s1, λ)

=
∑
i∈S

bij P (Xn+h = i|Sn = sn, λ)

=
∑
i∈S

bij psn,i(h)

= 1 . psn,j(h) + 0

= psn,j(h)

= P (Xn+h = j|Xn = sn) .
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And so the transition probabilities for the output process of the constructed HMM

are equivalent to the transition probabilities for the Markov chain.

Finally, it follows by the construction of the HMM that P (Sk = j) = P (Xk = j) for

each j ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . .} .

And so, from the above, the output process of the constructed HMM is equivalent to

the Markov chain, thereby proving that the Markov chain is indeed a special case of

the HMM.

Proving the Independent Mixture Model a special case of the
HMM

The independent mixture model was described in Section 2.2. In this section it was

stated that the independent mixture model is a special case of the HMM. This is

proven below.

To begin, assume an independent mixture model with m states and pi the probabil-

ity of selecting state i (where i = 1, 2, . . . ,m) for a given time point. By definition
m∑
i=1

pi = 1. Also assume that given the model is in state i, the observed signal will be

emitted according to some distribution fi.

Also assume a distribution HMM with state process {Xk : k = 1, 2, . . .}; state space

S = {1, 2, . . . ,m}; initial state probabilities a = [P (X1 = 1), . . . , P (X1 = m)] =

[p1, . . . , pm]; and transition probability matrix

P =


p1 p2 · · · pm
p1 p2 · · · pm
...

...
. . .

...
p1 p2 · · · pm

 .

Given that the HMM is in state i, assume that the observed signal will be emitted

according to the distribution fi.

Now, in order to show that the above constructed HMM is equivalent to the inde-
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pendent mixture model, it must be shown that (for a given time point k ∈ {1, 2, . . .},
states i, j ∈ S and positive integer h) the following will hold true for the constructed

HMM:

P (Xk = i) = pi (A.2)

P (Xk+h = i |Xk = j) = pi . (A.3)

Notice that P2 = P .P = P (since
m∑
i=1

pi = 1). And so by induction, for some positive

integer h, Ph = P . As was proven in equation (1.6), the h-step transition probability

matrix can be obtained by multiplying P by itself h times. And so {pji(h)} = P(h) =

Ph = P = {pi}. Equation (A.3) is thus satisfied for the constructed HMM.

Also notice that a .Pk−1 = a .P = a (since
m∑
i=1

pi = 1). And so (by equation (1.8))

[P (Xk = 1), . . . , P (Xk = m)] = p(k) = a .Pk−1 = a = [p1, . . . , pm] .

And so equation (A.2) is satisfied for the constructed HMM. It is thus proven that

the independent mixture model is a special case of the HMM.

Proving the Markov chain a special case of the DCMM

In Section 6.1 it was stated that the Markov chain is a special case of the DCMM.

This is proven below.

To begin, consider an arbitrary Markov chain {Xk : k = 0, 1, 2, . . .} with state

space S = {1, 2, . . . ,m}, transition probabilities P = {pij} and initial probabili-

ties a = [p1, p2, . . . , pm].

Now consider the DCMM with hidden state process {Yk : k = 1, 2, . . .} where the

state space is defined as S̃ = {1}. That is P (Yk = 1) = 1 for each k = 1, 2, . . .

Further suppose that the observed signal process is {Sk : k = 0, 1, 2, . . .}, the signal

234



space is defined as δ = S = {1, 2, . . . ,m} - that is νi = i for each i ∈ {1, 2, . . . ,m},
and B(1) = P .

It is thus required to show that {Sk}, the output process of the DCMM, is equivalent

to {Xk}, the output process of the Markov chain. This is achieved in the proof be-

low by showing that (i) the output process of the constructed DCMM possesses the

Markov property, (ii) the transition probabilities for the output process of the con-

structed DCMM are equivalent to the transition probabilities for the Markov chain,

and (iii) P (Sk = i) = P (Xk = i) for each i ∈ {1, 2, . . . ,m} and k ∈ {0, 1, 2, . . .} .

Firstly note that by definition of the DCMM, {Sk} possesses the Markov property.

Further note that by construction of the DCMM in question, the following will hold

for each i, j ∈ {1, 2, . . . ,m}:

P (Sk+1 = j|Sk = i) = P (Sk+1 = j|Sk = i, Yk = 1) = b
(1)
ij = pij .

And so the transition probabilities for the output process of the constructed DCMM

are equivalent to the transition probabilities for the Markov chain.

In Section 6.1 it was explained that an initial signal at time 0 is considered for

the DCMM with no corresponding hidden state. Assume that the initial signal for

the DCMM is chosen so that it possesses the distribution defined by a. That is

P (S0 = i) = pi = P (X0 = i) for each i ∈ {1, 2, . . . ,m} .

And so both the initial probabilities and transition probabilities are equivalent for

{Xk} and {Sk}. It can then be easily verified from equation (1.8) that P (Xk = i) =

P (Sk = i) for k = 0, 1, 2 .

And so, from the above, the output process of the constructed DCMM is equivalent

to the output process of the Markov chain. This then proves that the Markov chain

is indeed a special case of the DCMM.
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Proving the HMM a special case of the DCMM

In Section 6.1 it was stated that the HMM is a special case of the DCMM. This is

proven below.

To begin consider a HMM with state process {Xk}, state space S = {1, 2, . . . ,m},
signal process {Yk}, signal space δ = {ν1, ν2, . . . , νM}, and signal probability matrix

B given as follows

B =


b11 b12 · · · b1M
b21 b22 · · · b2M
...

...
. . .

...
bm1 bm2 · · · bmM

 .

Now consider a DCMM with state process {Xk}, signal process {Sk} and signal space

δ. For state i ∈ S, assume that the signal transition probability matrix is given by

B(i) =


bi1 bi2 · · · biM
bi1 bi2 · · · biM
...

...
. . .

...
bi1 bi2 · · · biM

 .

It is thus required to show that {Sk}, the output process of the constructed DCMM,

is equivalent to {Yk}, the output process of the HMM. This is achieved in the proof

below by showing that P (Sk = νj) = P (Yk = νj) for νj ∈ δ and k ∈ {1, 2, . . .} .

Notice from the above that for k ∈ {1, 2, . . .}, i ∈ S and νj, νl ∈ δ the following holds

P (Sk = νj |Xk = i, Sk−1 = νl) = b
(i)
lj = bij .
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Further notice that

P (Sk = νj |Xk = i) =
∑
νl∈δ

P (Sk = νj , Sk−1 = νl |Xk = i) ..... by (2.9)

=
∑
νl∈δ

P (Sk−1 = νl |Xk = i)P (Sk = νj |Xk = i , Sk−1 = νl)

..... by (2.11)

=
∑
νl∈δ

P (Sk−1 = νl |Xk = i) bij

= bij
∑
νl∈δ

P (Sk−1 = νl |Xk = i)

= bij . 1

= bij

= P (Yk = νj |Xk = i) .

And so

P (Sk = νj) =
∑
i∈S

P (Sk = νj |Xk = i)P (Xk = i) ..... by (2.9) and (2.10)

=
∑
i∈S

P (Yk = νj |Xk = i)P (Xk = i)

= P (Yk = νj) ..... by (2.9) and (2.10).

From the above it can be seen that {Sk}, the output process of the constructed

DCMM, is equivalent to {Yk}, the output process of the HMM. This then confirms

that the HMM is indeed a special case of the DCMM.
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Appendix B

Further Discussions Surrounding
the Baum-Welch Algorithm

The Baum-Welch algorithm (BWA) for the HMM was discussed in Section 4.1 of this

dissertation. In particular, in Section 4.1.1, the Baum-Welch re-estimation equations

were derived by interpreting the summations of certain probabilities as the expected

number of occurrences of events. These interpretations are formally proven in Section

B.1 of this appendix. Also mentioned in Section 4.1.1 was that the Baum-Welch re-

estimation equations can alternatively be derived through the use of the Expected

Maximization (EM) algorithm. The details substantiating this are given in Section

B.2 of this appendix.

B.1 Proof of Results Used in the Baum-Welch Al-

gorithm for the HMM

Equation (4.5) of Section 4.1.1 stated how
n∑
k=1

γk(i),
n−1∑
k=1

γk(i),
n−1∑
k=1

ξk(i, j) and
n∑
k=1

γk,m(i)

can be interpreted as the expected number of occurrences of certain events for the

first n time points. This section will formally prove these results. It should be noted

that these proofs were not found in any references within the literature but were de-

238



rived specifically for this dissertation.

To begin, recall that Sn = (S1, . . . , Sn) is the vector of random variables for the first

n signals, and sn = (s1, . . . , sn) is the actual sequence of the first n signals which have

been observed, where sk ∈ δ for k = 1, 2 . . . , n. Now,

P (Process is in state i at time k and the kth signal is νm|Sn = sn, λ)

= P (Xk = i, Sk = νm|Sn = sn, λ)

= P (Xk = i|Sn = sn, λ) P (Sk = νm|Xk = i,Sn = sn, λ) ..... by (2.11)

= P (Xk = i|Sn = sn, λ) ×
{

1 if sk = νm
0 if sk 6= νm

=

{
P (Xk = i|Sn = sn, λ) if sk = νm

0 if sk 6= νm

=

{
γk(i) if sk = νm

0 if sk 6= νm
..... by (4.3)

= γk,m(i) . (B.1)

Also, recall the following well known statistical result (see for example page 150 of

[17])

E(g(Z)|Y = y) =
∑
z

g(z) . P (Z = z|Y = y) . (B.2)

Let X be a random variable representing the number of times the HMM is in state i

during the first n time points, and let

Xi,k =

{
1, if the HMM is in state i at time k
0, otherwise.

So, X =
n∑
k=1

Xi,k .
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Now,

Expected number of times the HMM is in state i during the first n observed time points

= E(X|Sn = sn, λ)

= E(
n∑
k=1

Xi,k|Sn = sn, λ)

=
n∑
k=1

E(Xi,k|Sn = sn, λ)

=
n∑
k=1

[(1)P (Xi,k = 1|Sn = sn, λ) + (0)P (Xi,k = 0|Sn = sn, λ)] ..... by (B.2)

=
n∑
k=1

P (Xi,k = 1|Sn = sn, λ)

=
n∑
k=1

P (The HMM is in state i at time k|Sn = sn, λ)

=
n∑
k=1

P (Xk = i|Sn = sn, λ)

=
n∑
k=1

γk(i) ..... by (4.3).

And so the first result given in equation (4.5) is proven.

Now define Y to be the number of transitions by the HMM from state i during the

first n time points, and

Yi,j,k =

{
1, if the HMM is in state i at time k and state j at time k + 1
0, otherwise.

Then Y =
n−1∑
k=1

∑
j∈S

Yi,j,k is satisfied.

Using similar mathematics to above, the following is obtained:
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Expected number of transitions from state i during the first n observed time points

= E(Y |Sn = sn, λ)

=
n−1∑
k=1

∑
j∈S

[(1)P (Yi,j,k = 1|Sn = sn, λ) + (0)P (Yi,j,k = 0|Sn = sn, λ)]

=
n−1∑
k=1

∑
j∈S

P (Xk = i,Xk+1 = j|Sn = sn, λ)

=
n−1∑
k=1

P (Xk = i|Sn = sn, λ) ..... by (2.9)

=
n−1∑
k=1

γk(i) ..... by (4.3).

And so the second result given in equation (4.5) is proven.

By defining Z to be the number of transitions by the HMM from state i to state j

during the first n time points, Z =
n−1∑
k=1

Yi,j,k is satisfied.

Using similar mathematics to above, the following is obtained:

Expected number of transitions from state i to j during the first n observed time

points

= E(Z|Sn = sn, λ)

=
n−1∑
k=1

P (Xk = i,Xk+1 = j|Sn = sn, λ)

=
n−1∑
k=1

ξk(i, j) ..... by (4.3).

And so the third result given in equation (4.5) is proven.

Finally, define W to be the number of times the HMM is in state i and emits signal

νm during the first n time points, and

Wi,m,k =

{
1, if the HMM is in state i and emits signal νm at time k
0, otherwise.
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Then W =
n∑
k=1

Wi,m,k is satisfied.

Using similar mathematics to above, the following is obtained:

Expected number of times the HMM is in state i and emits signal νm during the

first n observed time points

= E(W |Sn = sn, λ)

=
n∑
k=1

P (Xk = i, Sk = νm|Sn = sn, λ)

=
n∑
k=1

γk,m(i) ..... by (B.1).

And so the final result given in equation (4.5) is proven.

B.2 Relation of the Baum-Welch Algorithm to the

EM framework

Application of the EM algorithm to the estimation of the HMM model parameters

yields identical re-estimation equations to that of the BWA. This is detailed in Section

B.2.2. As an introduction to this, a general discussion on the EM algorithm is first

be presented in Section B.2.1.

B.2.1 The EM Algorithm

The EM algorithm was formally presented and named for the first time in [20] - a

paper published by Dempster, Laird and Rubin in 1977. It was however noted in

[20] that the method had been “proposed many times in special circumstances” by

earlier authors. For example, a detailed treatment of the EM method for exponential

families had been published in several papers authored by R. Sundberg. However,

[20] generalized the methodology and detailed a convergence analysis for a wider
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class of problems. The algorithm presented in [20] has since been expanded upon

by subsequent research, particularly regarding convergence analysis of the algorithm.

Since these initial papers, the EM algorithm has been established as an important

tool in statistical analysis, and the algorithm has been described and made use of in

numerous publications. Two such publications are [13] and [17], from which the work

presented in this section is predominantly adapted.

In short, the EM algorithm is an iterative procedure for finding the maximum likeli-

hood estimators (MLEs) of parameters in statistical models which depend on unob-

served or latent variables.

To begin, let X be an independent and identically distributed (iid) random sample

which has been observed. The MLE of the parameter set θ is then the value of θ which

will maximise the likelihood function P (X| θ). So, the aim of maximum likelihood

estimation is to estimate the model parameter(s) for which the observed data is most

likely. In order to simplify the mathematics when finding the MLE, it is typical to

introduce the log likelihood function defined as

L(θ) = lnP (X| θ) .

Since ln(x) is a strictly increasing function, the value of θ which maximises L(θ) will

also maximise P (X| θ).

Now, the EM algorithm is an iterative procedure for maximising L(θ) when the

random sample contains both observed and unobserved or latent variables. Denote

the random vector for the unobserved variables by Z and a given realisation by z.

Using equations (2.9) and (2.11), the total likelihood function can be written to

incorporate the hidden variables z as follows

P (X| θ) =
∑
z

P (X| z, θ)P (z| θ) .

Since the EM algorithm is an iterative procedure, assume that after the nth iteration

the current estimate for θ is given by θn. Since the objective is to maximise P (X| θ), it
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is essential that the updated estimate calculated by the EM algorithm, θn+1 , satisfies

the following

L(θn+1) ≥ L(θn) .

Now, consider the function l(θ| θn) which is defined as follows

l(θ| θn) = L(θn) +
∑
z

P (z|X, θn) ln

(
P (X| z, θ)P (z| θ)
P (z|X, θn)P (X| θn)

)
.

It is shown in [13] that this function has the following properties:

L(θ) > l(θ| θn) for all θ, and

L(θn) = l(θn| θn), that is for θ = θn the functions L(θ) and l(θ| θn) are equal.

Recall that the objective of the EM algorithm is to find the value of θ which will

maximise L(θ). This is achieved as follows.

Consider a value for θ, denoted θ̃, which satisfies

l(θ̃| θn) ≥ l(θn| θn) .

Then, using the properties stated above, the following is obtained

L(θ̃) ≥ l(θ̃| θn) ≥ l(θn| θn) = L(θn) .

Therefore, if θn+1 is chosen such that l(θn+1| θn) ≥ l(θn| θn), it can be guaranteed that

L(θn+1) ≥ L(θn) will hold true for each step of the iterative procedure. So, for each

iteration, the log likelihood is non-decreasing - thereby ensuring the desired property

for finding the value of θ which will maximise L(θ).

In order to achieve the greatest possible increase in the value of L(θ) at each iteration,

the EM algorithm will select θn+1 to be the value of θ which will maximise l(θ| θn).

That is, θn+1 is selected by the EM algorithm as follows:

θn+1 = arg max
θ
{l(θ| θn)} .
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This single iteration of the EM algorithm is illustrated in Figure B.1 (reproduced

from [13]).

 
Figure B.1: Graphical interpretation of a single iteration of the EM algorithm: The
function l(θ| θn) is bounded above by the likelihood function L(θ). The functions are
equal at θ = θn. The EM algorithm chooses θn+1 as the value of θ for which l(θ| θn) is
a maximum. This ensures that the value of the likelihood function L(θ) is increased
at each step.

So, the EM algorithm produces the following,

θn+1 = arg max
θ
{l(θ| θn)}

= arg max
θ

{
L(θn) +

∑
z

P (z|X, θn) ln

(
P (X| z, θ)P (z| θ)
P (z|X, θn)P (X| θn)

)}

= arg max
θ

{∑
z

P (z|X, θn) ln (P (X| z, θ)P (z| θ))

}

= arg max
θ

{∑
z

P (z|X, θn) lnP (X, z| θ)

}
..... by (2.11) (B.3)

= arg max
θ

{
EZ|X, θn [lnP (X,Z| θ)]

}
..... by (B.2). (B.4)

Note that in some literature EZ|X, θn [lnP (X,Z| θ)] is equivalently notated as

Q(θ, θn) = EZ[lnP (X,Z| θ) |X, θn] .
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From equation (B.4) the iterating E (Expectation) and M (Maximization) steps of

the EM algorithm become clear:

E-step: Calculate EZ|X, θn [lnP (X, z| θ)] - the expected value of the log likelihood

function with respect to the conditional distribution of Z (the unknown hidden

data) given X (the observed sample data) and θn (the current estimate of θ).

That is, Z is a random variable governed by the distribution P (z|X, θn), where

X and θn are viewed as constants.

In some applications of the EM algorithm, the above expectation may be dif-

ficult to calculate. In such instances it may be computationally simpler to use

the equivalent expression given in equation (B.3). This is often true when the

EM algorithm is used in the context of the HMM, as will be shown in the next

section.

M-step: Maximise either expression (B.3) or (B.4) with respect to θ.

At this point it is fair to ask what has been gained in the MLE calculation given that

we have simply traded the maximization of L(θ) for the maximization of l(θ| θn). The

answer lies in the fact that l(θ| θn) takes into account the unobserved or hidden data

Z. In the case where it is desired to take Z into account when calculating the MLE,

the EM algorithm provides a framework for doing so.

Details of the convergence properties of the EM algorithm can be viewed in [36] and

are also summarised in [13] and [17]. In [13] it is stated that the EM algorithm will

converge to a stationary point of the likelihood function but that this stationary point

is not guaranteed be a local maximum. To this end [13] notes that “it is possible for the

algorithm to converge to local minima or saddle points in unusual cases”. However,

[17] indicates that under appropriate conditions (see page 370) convergence to a local

maximum or saddle point is guaranteed.
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B.2.2 Using the EM Algorithm to Estimate the Parameters
of a HMM

Section 4.1.1 of this dissertation detailed how the parameters of the time homoge-

neous, discrete-time, discrete-state and discrete-signal HMM can be estimated using

the Baum-Welch Algorithm (BWA). This section will detail the mathematics which

show that these estimates are identical to the estimates obtained when the EM algo-

rithm is applied to this HMM. In so doing, it will thus be shown that the estimates

produced by the BWA are indeed MLEs.

While the work presented in this section is predominately adapted from [12], certain

mathematical details from [12] have been expanded upon in this dissertation to pro-

vide additional clarity.

To begin, recall from the previous section that the EM algorithm is an iterative

procedure which is used to find the MLE of parameters in statistical models which

contain unobserved or latent data. Each iteration of the algorithm can be performed

by making use of the following:

θn+1 = arg max
θ
{Q(θ, θn)}

= arg max
θ

{∑
z

P (z|X, θn) lnP (X, z| θ)

}
, (B.5)

where X represents the observed data and z represents the unobserved data.

In order to ease the computations which are to follow (while as far as possible keeping

the notation consistent to that which has been previously used in this dissertation),
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consider the following notation:

λ denote the set of unknown parameters for the HMM which need to be estimated,

λ∗ denote the current estimate of λ,

λ̂ denote the updated estimate of λ,

X = (X1 , X2 , . . . , Xn) be the random vector denoting the hidden states visited by

the HMM during the first n time points (previously notated as Xn),

x = (i1 , i2 , . . . , in) be a realisation of X,

S = (S1 , S2 , . . . , Sn) be the random vector denoting the signals observed during the

first n time points (previously notated as Sn),

s = (s1 , s2 , . . . , sn) be a realisation of S,

α denote the state space (previously notated as S),

δ denote the signal space.

Using this notation, equation (B.5) can be written for the HMM as:

λ̂ = arg max
λ
{Q(λ, λ∗)}

= arg max
λ

{∑
x∈X

P (x|S, λ∗) lnP (S,x|λ)

}
, (B.6)

where ∑
x∈X

P (x) ≡
∑
i1∈α

∑
i2∈α

· · ·
∑
in∈α

P (X = (i1, i2, . . . , in)) .

By making use of equation (3.10), the following can be derived:

lnP (S,x|λ) = ln(pi1) +
n−1∑
t=1

ln(pit,it+1) +
n∑
t=1

ln(bit,st) .
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Using this, the function Q(λ, λ∗) can then be written as follows:

Q(λ, λ∗) =
∑
x∈X

ln(pi1)P (x|S, λ∗) +
∑
x∈X

n−1∑
t=1

ln(pit,it+1)P (x|S, λ∗)

+
∑
x∈X

n∑
t=1

ln(bit,st)P (x|S, λ∗) . (B.7)

Now, the first term of equation (B.7) can be simplified in the following way:

∑
x∈X

ln(pi1)P (x|S, λ∗)

=
∑
i1∈α

∑
i2∈α

· · ·
∑
in∈α

ln(pi1)P (X1 = i1, X2 = i2, . . . , Xn = in|S, λ∗)

=
∑
i1∈α

ln(pi1)
∑
i2∈α

· · ·
∑
in∈α

P (X1 = i1, X2 = i2, . . . , Xn = in|S, λ∗)

=
∑
i1∈α

ln(pi1)P (X1 = i1|S, λ∗) ..... by (2.9)

=
∑
k∈α

ln(pk)P (X1 = k|S, λ∗) .

The second term of equation (B.7) can be simplified as follows:

∑
x∈X

n−1∑
t=1

ln(pit,it+1)P (x|S, λ∗)

=
n−1∑
t=1

∑
i1∈α

· · ·
∑
in∈α

ln(pit,it+1)P (X1 = i1, . . . , Xn = in|S, λ∗) (B.8)

(since the indices of the summations are not dependent on each other, the order

of summation may be changed).
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Now, assume that the index for t is currently at t∗ ∈ {1, 2, . . . , n−1}. Then for t = t∗,

equation (B.8) becomes

∑
it∗∈α

∑
it∗+1∈α

ln(pit∗ ,it∗+1
)
∑
i1∈α

· · ·
∑

it∗−1∈α

∑
it∗+2∈α

· · ·
∑
in∈α

P (X1 = i1, . . . , Xn = in|S, λ∗)

=
∑
it∗∈α

∑
it∗+1∈α

ln(pit∗ ,it∗+1
)P (Xt∗ = it∗ , Xt∗+1 = it∗+1|S, λ∗) ..... by (2.9)

=
∑
k∈α

∑
l∈α

ln(pk,l)P (Xt∗ = k,Xt∗+1 = l|S, λ∗) .

And so the second term of equation (B.7) can be written as:

∑
k∈α

∑
l∈α

ln(pk,l)
n−1∑
t=1

P (Xt = k,Xt+1 = l|S, λ∗) .

The final term of (B.7) can be similarly simplified to yield

∑
x∈X

n∑
t=1

ln(bit,st)P (x|S, λ∗) =
∑
k∈α

n∑
t=1

ln(bk,st)P (Xt = k|S, λ∗) .

And so the function Q(λ, λ∗) has been simplified to the following:

Q(λ, λ∗) =
∑
k∈α

ln(pk)P (X1 = k|S, λ∗)

+
∑
k∈α

∑
l∈α

ln(pk,l)
n−1∑
t=1

P (Xt = k,Xt+1 = l|S, λ∗)

+
∑
k∈α

n∑
t=1

ln(bk,st)P (Xt = k|S, λ∗) . (B.9)

Now recall from equation (B.6) that

λ̂ = arg max
λ
{Q(λ, λ∗)} .
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In particular it is desired the parameters of λ̂ be found subject to∑
i∈α

p̂i = 1

∑
j∈α

p̂ij = 1, for i ∈ α

∑
vk∈δ

b̂ik = 1, for i ∈ α .

This can be achieved by making use of the Lagrange multiplier and setting the partial

derivative to zero.

For p̂i, where i ∈ α, this yields the following:

∂

∂pi

[
Q(λ, λ∗) + β(

∑
k∈α

pk − 1)

]
= 0

∂

∂pi

[∑
k∈α

ln(pk)P (X1 = k|S, λ∗)

]
+

∂

∂pi

[
β(
∑
k∈α

pk − 1)

]
= 0

1

pi
P (X1 = i|S, λ∗) + β + 0 = 0

⇒ p̂i =
−P (X1 = i|S, λ∗)

β
.

So, from the above,

1 =
∑
i∈α

p̂i = − 1

β

∑
i∈α

P (X1 = i|S, λ∗) = − 1

β
(1)

⇒ β = −1

⇒ p̂i = P (X1 = i|S, λ∗)

= γ∗1(i) ..... by (4.3) and (4.6).

And so the estimate for pi obtained from the BWA (see equation (4.7)) is the same

as the above MLE of pi obtained using the EM algorithm.

To show that this estimate is indeed a local maxima, the second partial derivative
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can be evaluated at the above calculated p̂i. Through the use of the quotient rule for

differentiation, this yields:

∂2

∂pi2

[
Q(λ, λ∗) + β(

∑
k∈α

pk − 1)

]∣∣∣∣∣
pi=p̂i

= − 1

γ∗1(i)
.

Since γ∗1(i) ≥ 0 (this was discussed in the paragraph below equation (4.10) in Section

4.1), − 1
γ∗1 (i)

< 0 for γ∗1(i) 6= 0.

If γ∗1(i) = 0 then inspection of equation (B.9) reveals that the value for pi which will

maximise Q(λ, λ∗), subject to
∑
i∈α

pi = 1, is pi = 0 = γ∗1(i) = p̂i.

And so p̂i = γ∗1(i) is indeed a local maxima.

Next the MLE for pij, where i, j ∈ α, is derived as follows:

∂

∂pij

[
Q(λ, λ∗) + β(

∑
k∈α

pik − 1)

]
= 0

∂

∂pij

[∑
k∈α

∑
l∈α

ln(pk,l)
n−1∑
t=1

P (Xt = k,Xt+1 = l|S, λ∗)

]
+ β = 0

1

pij

[
n−1∑
t=1

P (Xt = i,Xt+1 = j|S, λ∗)

]
+ β = 0

⇒ p̂ij =

−
n−1∑
t=1

P (Xt = i,Xt+1 = j|S, λ∗)

β
.
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So, from the above,

1 =
∑
j∈α

p̂ij = − 1

β

∑
j∈α

n−1∑
t=1

P (Xt = i,Xt+1 = j|S, λ∗)

= − 1

β

n−1∑
t=1

∑
j∈α

P (Xt = i,Xt+1 = j|S, λ∗)

= − 1

β

n−1∑
t=1

P (Xt = i|S, λ∗) ..... by (2.9)

⇒ β = −
n−1∑
t=1

P (Xt = i|S, λ∗)

⇒ p̂ij =

n−1∑
t=1

P (Xt = i,Xt+1 = j|S, λ∗)

n−1∑
t=1

P (Xt = i|S, λ∗)

=

n−1∑
t=1

ξ∗t (i, j)

n−1∑
t=1

γ∗t (i)

..... by (4.3) and (4.6).

And so the estimate for pij obtained from the BWA (see equation (4.8)) is the same

as the above MLE of pij obtained using the EM algorithm.

Using similar techniques to that which was used for p̂i, it can be verified that p̂ij is

indeed a local maxima.

Next the MLE for bjm will be derived. To achieve this define, for νm ∈ δ and t ∈
{1, 2, . . . , n}, It(νm) to be the following indicator function:

It(νm) =

{
1 if st = νm
0 if st 6= νm

.
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Then the MLE for bjm, where j ∈ α and νm ∈ δ, is derived as follows:

∂

∂bjm

[
Q(λ, λ∗) + β(

∑
νk∈δ

bjk − 1)

]
= 0

∂

∂bjm

[∑
k∈α

n∑
t=1

ln(bk,st)P (Xt = k|S, λ∗)

]
+ β = 0

n∑
t=1

(
1

bjm

)
It(νm)P (Xt = j|S, λ∗) + β = 0

⇒ b̂jm =

−
n∑
t=1

It(νm)P (Xt = j|S, λ∗)

β
.

So, from the above,

1 =
∑
vm∈δ

b̂jm = − 1

β

∑
vm∈δ

n∑
t=1

It(νm)P (Xt = j|S, λ∗)

= − 1

β

n∑
t=1

P (Xt = j|S, λ∗)
∑
vm∈δ

It(νm)

= − 1

β

n∑
t=1

P (Xt = j|S, λ∗) (1)

⇒ β = −
n∑
t=1

P (Xt = j|S, λ∗)

⇒ b̂jm =

n∑
t=1

It(νm)P (Xt = j|S, λ∗)
n∑
t=1

P (Xt = j|S, λ∗)

=

n∑
t=1

γ∗t (j) It(νm)

n∑
t=1

γ∗t (j)
..... by (4.3) and (4.6)
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=

n∑
t=1

γ∗t,m(j)

n∑
t=1

γ∗t (j)
..... by (4.3) and (4.6).

And so the estimate for bjm obtained from the BWA (see equation (4.9)) is the same

as the above MLE of bjm obtained using the EM algorithm.

Using similar techniques to that which was used for p̂i, it can be verified that b̂jm is

indeed a local maxima.

And so the BWA estimates for pi, pij and bjm are indeed identical to the MLEs of

these parameters obtained when the EM algorithm is applied to the HMM. That is the

Baum-Welch re-estimation equations (equations (4.7)-(4.9)) are essentially identical

to the iteration steps of the EM algorithm described above.

To summarise, the above defined λ̂ is the value for λ which will maximise the function

Q(λ, λ∗). From the discussion in Section B.2.1, this implies that L(λ̂) ≥ L(λ∗), or

equivalently that P (S = (s1, s2, . . . sn)| λ̂) ≥ P (S = (s1, s2, . . . sn)|λ∗). And so the

likelihood function will continually be increased with each iteration until convergence

to a critical point of the likelihood function is reached.

The EM Algorithm for a HMM with a stationary Markov Chain

For certain applications of the HMM it may be desirable to assume that the underlying

Markov chain is stationary. Recall from equation (1.10) that under this assumption

a = 1(Im −P + Um)−1 ,

where it is arbitrarily assumed that there are m states in the state space and that a is

the m-dimensional row vector containing the initial probabilities pi = P (X1 = i) for

each i ∈ {1, 2, . . . ,m}. From the above it can be seen that a is completely determined

by the transition probabilities contained in P, and therefore the question of estimating

a falls away. However, in determining the MLEs for the transition probabilities the
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M step gives rise to the following maximisation problem: maximise, with respect to

P, the first two terms of Q(λ, λ∗). That is for each k, l ∈ α maximise

∑
k∈α

ln(pk)P (X1 = k|S, λ∗) +
∑
k∈α

∑
l∈α

ln(pk,l)
n−1∑
t=1

P (Xt = k,Xt+1 = l|S, λ∗)

(B.10)

with respect to pk,l , where the first term also depends on P.

Even in the case of only two states, [46] points out that analytical maximisation

would require the solution of a pair of quadratic equations in two variables (two of

the transition probabilities), a calculation which becomes rather involved. A numer-

ical solution is therefore typically required to perform the maximisation of (B.10) if

stationarity is assumed (as is noted in [15] and [46]).
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Appendix C

Additional Proofs for the
Double-Chain Markov Model

Parameter estimation for the DCMM was discussed in Section 6.2 of this dissertation.

In particular results were given without formal proof. This appendix will now detail

these proofs. The proofs discussed were not found in the literature at the time of

writing and were derived specifically for the purpose of this dissertation.

C.1 Proof of Results Used in the Baum-Welch Al-

gorithm for the DCMM

The following interpretations were made in Section 6.2 of this dissertation when de-

riving the BWA estimates for the DCMM:

n∑
k=1

γk,h(i) = expected number of times, during the first n time points, that the

DCMM is in state i when the previous emitted signal was νh ,
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n∑
k=1

γk,h,m(i) = expected number of times, during the first n time points, that the

DCMM is in state i when the previous emitted signal was νh and

the current signal emitted is νm .

To prove these statements recall the established statistical result which was given in

equation (B.2) and is replicated again below for ease of reference:

E(g(Z)|Y = y) =
∑
z

g(z) . P (Z = z|Y = y) . (C.1)

Also recall that Sn = (S0, . . . , Sn) is the vector of random variables for the signals

emitted up to time point n, and sn = (s0, . . . , sn) is the actual sequence of signals

which have been observed, where sk ∈ δ for k = 0, 2 . . . , n.

Now define W to be the number of times, during the first n time points, that the

DCMM was in state i when the signal emitted at the previous time point was νh.

Further define

Wi,h,k =

{
1, if the DCMM is in state i at time k and emitted signal νh at time k − 1
0, otherwise.

It then follows that W =
n∑
k=1

Wi,h,k is satisfied.

Now,

Expected number of times, during the first n time points, that the DCMM is in

state i when the previous emitted signal was νh

= E(W |Sn = sn, λ)

= E(
n∑
k=1

Wi,h,k|Sn = sn, λ)

=
n∑
k=1

E(Wi,h,k|Sn = sn, λ)
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=
n∑
k=1

[(1)P (Wi,h,k = 1|Sn = sn, λ) + (0)P (Wi,h,k = 0|Sn = sn, λ)] ..... by (C.1)

=
n∑
k=1

P (Wi,h,k = 1|Sn = sn, λ)

=
n∑
k=1

P (Xk = i, Sk−1 = νh |Sn = sn, λ)

=
n∑
k=1

P (Xk = i |Sn = sn, λ)P (Sk−1 = νh |Xk = i,Sn = sn, λ) ..... by (2.11)

=
n∑
k=1

γk(i) ×
{

1 if sk−1 = νh
0 if sk−1 6= νh

..... by (6.6)

=
n∑
k=1

{
γk(i) if sk−1 = νh

0 if sk−1 6= νh

=
n∑
k=1

γk,h(i) ..... by (6.6).

And so the first expected value result is proven.

Next define Y to be the number of times, during the first n time points, that the

DCMM was in state i when the signal emitted at the previous time point was νh and

the current signal emitted is νm . Further define

Yi,h,m,k =


1, if the DCMM is in state i at time k and emitted signal νh at time

k − 1 and emitted signal νm at time k
0, otherwise.

It then follows that Y =
n∑
k=1

Yi,h,m,k is satisfied.

And so, using similar mathematics as above, it follows that

Expected number of times, during the first n time points, that the DCMM is in

state i when the previous emitted signal was νh and the current emitted signal

is νm

= E(Y |Sn = sn, λ)
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= E(
n∑
k=1

Yi,h,m,k|Sn = sn, λ)

=
n∑
k=1

P (Yi,h,m,k = 1|Sn = sn, λ)

=
n∑
k=1

P (Xk = i, Sk−1 = νh, Sk = νm |Sn = sn, λ)

=
n∑
k=1

P (Xk = i|Sn = sn, λ)P (Sk−1 = νh, Sk = νm |Xk = i,Sn = sn, λ)

..... by (2.11)

=
n∑
k=1

γk(i) ×
{

1 if sk−1 = νh and sk = νm
0 otherwise

..... by (6.6)

=
n∑
k=1

{
γk(i) if sk−1 = νh and sk = νm

0 otherwise

=
n∑
k=1

γk,h,m(i) ..... by (6.6).

And so the second expected value result is proven.

C.2 Using the EM Algorithm to Estimate the Pa-

rameters of a DCMM

It was stated in Section 6.2 that the Baum-Welch algorithm (BWA) estimates for the

DCMM can be derived through the use of the Expected Maximization (EM) algorithm

(in particular the BWA estimates were considered for the discrete-time, discrete-state

and discrete-signal DCMM where the state transition probability matrix and the sig-

nal transition probability matrix for each state are assumed time homogeneous). This

section will prove the result. It should be noted that a large portion of the mathe-

matical content of this section was not found in any references within the literature

and was derived specifically for the purpose of adding clarity to this dissertation.

Recall from Appendix B that the EM algorithm is an iterative procedure which can
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be used to find the maximum likelihood estimate (MLE) of parameters which depend

on unobserved or latent variables. The EM algorithm is therefore of interest as typi-

cally in applications of the DCMM it will be required to estimate the DCMM model

parameters without having observed the state sequence. Furthermore, if it can be

shown that the BWA estimates for the DCMM are equivalent to those derived from

the EM algorithm, then the appealing property that estimates derived from the EM

algorithm are in fact MLEs will also extend to the BWA estimates. That is, the

BWA estimates will have the favourable properties of being both computationally

compact (see Section 6.2) while still giving rise to MLEs. It is however important to

recall from Appendix B that estimates derived from the EM algorithm result in local

maximization of the likelihood, but not necessary global maximization.

It will also be shown in this appendix that Lagrange multipliers ensure that the

derived parameter estimates satisfy the following important properties:
∑
i∈S

p̂i = 1 ,∑
j∈S

p̂ij = 1 , and
∑
vl∈δ

b̂
(i)
jl = 1, where i ∈ S and vj ∈ δ.

To begin, recall from Appendix B that each iteration of the EM algorithm can be

performed by making use of the following:

θn+1 = arg max
θ
{Q(θ, θn)}

= arg max
θ

{∑
z

P (z|X, θn) lnP (X, z| θ)

}
, (C.2)

where X represents the observed data, z represents the unobserved data and θn

represents the nth iteration estimate of the parameter set θ (n = 1, 2, . . .) .

In order to ease the computations which are to follow (while as far as possible keeping

the notation consistent to that which has been previously used in this dissertation),
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consider the following notation:

λ denote the set of unknown parameters for the DMM which need to be estimated,

λ∗ denote the current estimate of λ,

λ̂ denote the updated estimate of λ,

X = (X1 , X2 , . . . , Xn) be the random vector denoting the hidden states visited by

the DCMM during the first n time points (previously notated as Xn),

x = (i1 , i2 , . . . , in) be a realisation of X,

S = (S0 , S1 , . . . , Sn) be the random vector denoting the signals observed up to

time point n (previously notated as Sn),

s = (s0 , s1 , . . . , sn) be a realisation of S,

α denote the state space (previously notated as S),

δ denote the signal space.

Using the above notation, equation (C.2) is written for the DCMM as

λ̂ = arg max
λ
{Q(λ, λ∗)}

= arg max
λ

{∑
x∈X

P (x|S, λ∗) lnP (S,x|λ)

}
, (C.3)

where ∑
x∈X

P (x) ≡
∑
i1∈α

∑
i2∈α

· · ·
∑
in∈α

P (X = (i1, i2, . . . , in)) .

Through the use of equation (6.5), the following can be derived for the DCMM:

lnP (S,x|λ) = ln(pi1) +
n−1∑
t=1

ln(pit,it+1) +
n∑
t=1

ln(b(it)st−1,st
) .
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Using this result, function Q(λ, λ∗) can then be written as follows:

Q(λ, λ∗) =
∑
x∈X

ln(pi1)P (x|S, λ∗) +
∑
x∈X

n−1∑
t=1

ln(pit,it+1)P (x|S, λ∗)

+
∑
x∈X

n∑
t=1

ln(b(it)st−1,st
)P (x|S, λ∗) . (C.4)

Now, using similar techniques to those which were described for the HMM in Section

B.2.2, the first two terms of equation (C.4) can be expressed as follows:∑
x∈X

ln(pi1)P (x|S, λ∗) =
∑
k∈α

ln(pk)P (X1 = k|S, λ∗)

∑
x∈X

n−1∑
t=1

ln(pit,it+1)P (x|S, λ∗) =
∑
k∈α

∑
l∈α

ln(pk,l)
n−1∑
t=1

P (Xt = k,Xt+1 = l|S, λ∗) .

The final term of equation (C.4) can be simplified as follows:∑
x∈X

n∑
t=1

ln(b(it)st−1,st
)P (x|S, λ∗)

=
n∑
t=1

∑
i1∈α

· · ·
∑
in∈α

ln(b(it)st−1,st
)P (X1 = i1, . . . , Xn = in|S, λ∗) (C.5)

(since the indices of the summations are not dependent on each other, the order of

summation may be changed).

Now, assume that the index for t is currently at the value t∗ ∈ {1, 2, . . . , n}. Then

for t = t∗, equation (C.5) becomes∑
i1∈α

· · ·
∑
in∈α

ln(b(it∗ )st∗−1,st∗
)P (X1 = i1, . . . , Xn = in|S, λ∗)

=
∑
it∗∈α

ln(b(it∗ )st∗−1,st∗
)
∑
i1∈α

· · ·
∑

it∗−1∈α

∑
it∗+1∈α

· · ·
∑
in∈α

P (X1 = i1, . . . , Xn = in|S, λ∗)

=
∑
it∗∈α

ln(b(it∗ )st∗−1,st∗
) P (Xt∗ = it∗|S, λ∗) ..... by (2.9)

=
∑
k∈α

ln(b(k)st∗−1,st∗
) P (Xt∗ = k|S, λ∗) .
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And so the final term of equation (C.4) can be written as
n∑
t=1

∑
k∈α

ln(b(k)st−1,st
) P (Xt = k|S, λ∗)

=
∑
k∈α

n∑
t=1

ln(b(k)st−1,st
) P (Xt = k|S, λ∗) .

Using the above, the function Q(λ, λ∗) has been simplified to the following:

Q(λ, λ∗) =
∑
k∈α

ln(pk)P (X1 = k|S, λ∗)

+
∑
k∈α

∑
l∈α

ln(pk,l)
n−1∑
t=1

P (Xt = k,Xt+1 = l|S, λ∗)

+
∑
k∈α

n∑
t=1

ln(b(k)st−1,st
) P (Xt = k|S, λ∗) .

Recall from equation (C.3) that

λ̂ = arg max
λ
{Q(λ, λ∗)} .

In particular it is desired the parameters of λ̂ be found subject to∑
i∈α

p̂i = 1

∑
j∈α

p̂ij = 1, for i ∈ α

∑
vl∈δ

b̂
(i)
jl = 1, for i ∈ α and vj ∈ δ .

This can be achieved by making use of the Lagrange multiplier and setting the partial

derivative to zero.

For i ∈ α, the MLE for pi can be derived through solving the following:

∂

∂pi

[
Q(λ, λ∗) + β(

∑
k∈α

pk − 1)

]
= 0

∂

∂pi

[∑
k∈α

ln(pk)P (X1 = k|S, λ∗)

]
+

∂

∂pi

[
β(
∑
k∈α

pk − 1)

]
= 0 .
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Using similar techniques to those used for the HMM in Appendix B, the solution of

the above yields

p̂i = P (X1 = i|S, λ∗) = γ∗1(i) ..... by (6.6) and (6.7).

Evaluating the second partial derivative at the above calculated p̂i yields that p̂i =

γ∗1(i) is indeed a local maxima. And so it is proven that, for the DCMM, the BWA

estimate for pi (see equation (6.8)) is indeed consistent with the MLE derived using

the EM algorithm.

Next, for i, j ∈ α, the MLE for pij can be derived by solving the following:

∂

∂pij

[
Q(λ, λ∗) + β(

∑
k∈α

pik − 1)

]
= 0

∂

∂pij

[∑
k∈α

∑
l∈α

ln(pk,l)
n−1∑
t=1

P (Xt = k,Xt+1 = l|S, λ∗)

]
+

∂

∂pij

[
β(
∑
k∈α

pik − 1)

]
= 0 .

Using similar techniques to those used for the HMM in Appendix B, the solution of

the above yields

p̂ij =

n−1∑
t=1

P (Xt = i,Xt+1 = j|S, λ∗)

n−1∑
t=1

P (Xt = i|S, λ∗)
=

n−1∑
t=1

ξ∗t (i, j)

n−1∑
t=1

γ∗t (i)

..... by (6.6) and (6.7).

Evaluating the second partial derivative at the above calculated p̂ij yields that p̂ij =
n−1∑
t=1

ξ∗t (i, j) /
n−1∑
t=1

γ∗t (i) is indeed a local maxima. And so it is proven that, for the

DCMM, the BWA estimate for pij (see equation (6.9)) is indeed consistent with the

MLE derived using the EM algorithm.

Next, for j ∈ α and νl, νm ∈ δ the MLE for b
(j)
lm , subject to the constraint

∑
vh∈δ

b̂
(j)
lh = 1,

will be derived. To begin, for t ∈ {1, 2, . . . , n}, define Jt(l) and It(l,m) to be the
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following indicator functions

Jt(l) =

{
1 if st−1 = νl
0 otherwise

It(l,m) =

{
1 if st−1 = νl and st = νm
0 otherwise.

An important result regarding these indicators, which will be called upon later in the

derivation of b̂
(j)
lm, is

∑
νm∈δ

It(l,m) = Jt(l) . (C.6)

To see this arbitrarily assume that there are M signals in signal space, that is δ =

{ν1, ν2, . . . , νM}. Then

∑
νm∈δ

It(l,m) = It(l, 1) + It(l, 2) + . . .+ It(l,M)

=

{
1 if st−1 = νl and st = ν1
0 otherwise

+ . . .+

{
1 if st−1 = νl and st = νM
0 otherwise

=

{
1 if st−1 = νl
0 otherwise

= Jt(l) .

Now the MLE for b
(j)
lm can be derived by solving the following

∂

∂b
(j)
lm

[
Q(λ, λ∗) + β(

∑
vh∈δ

b
(j)
lh − 1)

]
= 0

∂

∂b
(j)
lm

[∑
k∈α

n∑
t=1

ln(b(k)st−1,st
)P (Xt = k|S, λ∗)

]
+

∂

∂b
(j)
lm

[
β(
∑
vh∈δ

b
(j)
lh − 1)

]
= 0 .

(C.7)
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Notice that

∂

∂b
(j)
lm

[
ln(b(k)st−1,st

)
]

= 0 ∀ k 6= j

∂

∂b
(j)
lm

[
ln(b(j)st−1,st

)
]

=

{
1

b
(j)
lm

if st−1 = νl and st = νm

0 otherwise

∂

∂b
(j)
lm

[
b
(j)
lh

]
=

{
1 if νh = νm
0 otherwise.

Using the above, equation (C.7) can be simplified as follows

n∑
t=1

1

b
(j)
lm

It(l,m)P (Xt = j|S, λ∗) + β = 0

⇒ b̂
(j)
lm = −

n∑
t=1

It(l,m)P (Xt = j|S, λ∗)

β
.

And so

1 =
∑
νm∈δ

b̂
(j)
lm = − 1

β

∑
νm∈δ

n∑
t=1

It(l,m)P (Xt = j|S, λ∗)

= − 1

β

n∑
t=1

P (Xt = j|S, λ∗)
∑
νm∈δ

It(l,m)

= − 1

β

n∑
t=1

P (Xt = j|S, λ∗) Jt(l) ..... by (C.6)

⇒ β = −
n∑
t=1

Jt(l)P (Xt = j|S, λ∗)
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⇒ b̂
(j)
lm =

n∑
t=1

It(l,m)P (Xt = j|S, λ∗)
n∑
t=1

Jt(l)P (Xt = j|S, λ∗)

=

n∑
t=1

It(l,m) γ∗t (j)

n∑
t=1

Jt(l) γ∗t (j)
..... by (6.6) and (6.7)

=

n∑
t=1

γ∗t,l,m(j)

n∑
t=1

γ∗t,l(j)
..... by (6.6) and (6.7).

Evaluating the second partial derivative at the above calculated b̂
(j)
lm yields that b̂

(j)
lm =

n∑
t=1

γ∗t,l,m(j) /
n∑
t=1

γ∗t,l(j) is indeed a local maxima. And so it is proven that, for the

DCMM, the BWA estimate for b
(j)
lm (see equation (6.10)) is indeed consistent with the

MLE derived using the EM algorithm.

For completeness, the second partial derivative is shown below:

∂2

∂b
(j)
lm

2

[
Q(λ, λ∗) + β(

∑
vh∈δ

b
(j)
lh − 1)

]

=
∂

∂b
(j)
lm

[
n∑
t=1

1

b
(j)
lm

It(l,m)P (Xt = j|S, λ∗) + β

]

=
∂

∂b
(j)
lm

[
1

b
(j)
lm

n∑
t=1

γ∗t,l,m(j) + β

]

= − 1

[b
(j)
lm]2

n∑
t=1

γ∗t,l,m(j) .
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And so,

∂2

∂b
(j)
lm

2

[
Q(λ, λ∗) + β(

∑
vh∈δ

b
(j)
lh − 1)

]∣∣∣∣∣
b
(j)
lm=b̂

(j)
lm

= −


n∑
t=1

γ∗t,l(j)

n∑
t=1

γ∗t,l,m(j)


2

n∑
t=1

γ∗t,l,m(j)

= −

(
n∑
t=1

γ∗t,l(j)

)2

n∑
t=1

γ∗t,l,m(j)
.

269



References

[1] Anderson, T.W. and Goodman, L.A. Statistical Inference about Markov Chains.

The Annals of Mathematical Sciences, vol. 28, no.1, pp. 89-110. 1957.

[2] Andriyas, S. and McKee, M. Exploring Irrigation Behavior at Delta, Utah using

Hidden Markov Models. Agricultural Water Management, vol. 143, pp. 48-58.

2014.

[3] Banachewicz, K. and Lucas, A. Quantile Forecasting for Credit Risk Manage-

ment using Possibly Misspecified Hidden Markov Models. Journal of Forecasting,

vol. 27, no. 7, pp. 566-586. 2008

[4] Banachewicz, K., Lucas, A. and van der Vaart, A. Modelling Portfolio Defaults

using Hidden Markov Models with Covariates. The Econometrics Journal, vol.

11, no.1, pp. 155-171. 2008.

[5] Baum, L.E. An Inequality and Associated Maximization Technique in Statistical

Estimation for Probabilistic Functions of Markov Processes. Inequalities, vol. 3,

pp. 1-8. 1972

[6] Baum, L.E. and Eagon, J.A. An Inequality with Applications to Statistical Es-

timation for Probabilistic Functions of Markov Processes and to a Model for

Ecology. Bulletin of the American Mathematical Society, vol. 73, pp. 360-363.

1967

270



[7] Baum, L.E. and Petrie, T. Statistical Inference for Probabilistic Functions of

Finite State Markov Chains. The Annals of Mathematical Statistics, vol. 37,

pp. 1554-1563. 1966

[8] Baum, L.E. and Sell, G.R. Growth Transformations for Functions on Manifolds.

Pacific Journal of Mathematics, vol. 27, no. 2, pp. 211-227. 1968.

[9] Baum, L.E., Petrie, T., Soules, G. and Weiss, N. A Maximization Technique Oc-

curring in the Statistical Analysis of Probabilistic Functions of Markov Chains.

The Annals of Mathematical Statistics, vol. 41, pp. 164-171. 1970.

[10] Berchtold, A. The Double Chain Markov Model. Communications in Statistics

- Theory and Methods, vol. 28, no. 11, pp. 2569-2589. 1999.

[11] Berchtold, A. Higher-Order Extensions of the Double Chain Markov Model.

Stochastic Models, vol. 18, no. 2, pp.193-227. 2002.

[12] Bilmes, J.A. A Gentle Tutorial of the EM Algorithm and its Application to

Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Inter-

national Computer Science Institute, Technical Report ICSI-TR-97-021. 1998.

[13] Borman, S. The Expectation Maximization Algorithm: A Short Tutorial. Tech-

nical Report. 2004.

URL : http://www.cs.utah.edu/ piyush/teaching/EM algorithm.pdf

[14] Bracken, C., Rajagopalan, B. and Zagona, E. A Hidden Markov Model Com-

bined with Climate Indices for Multidecadal Streamflow Simulation. Water Re-

sources Research, vol. 50, no. 10, pp. 7836-7846. 2014

[15] Bulla, J. and Berzel, A. Computational Issues in Parameter Estimation for

Stationary Hidden Markov Models. Computational Statistics, vol. 23, no. 1,

pp.1-18. 2008.

271



[16] Can, C.E., Ergun, G. and Gokceoglu, C. Prediction of Earthquake Hazard by

Hidden Markov Model (around Bilecik, NW Turkey). Central European Journal

of Geosciences, vol. 6, no. 3, pp. 403-414. 2014.

[17] Casella, G. and Berger, R.L. Statistical Inference, 2nd edition. Duxbury Thom-

son Learning, University of Florida and North Carolina State University. 2002.

[18] Davis, R.I.A., Lovell, B.C. and Caelli, T. Improved Estimation of Hidden

Markov Model Parameters from Multiple Observation Sequences. Proceedings

of 16th International Conference on Pattern Recognition, vol. 2, pp. 168-171.

2002.

[19] Davison, A.C. Statistical Models. Cambridge University Press, Cambridge. 2003.

[20] Dempster, A.P., Laird, N.M. and Rubin, D.B. Maximum Likelihood from In-

complete Data via the EM Algorithm. Journal of the Royal Statistical Society,

series B, vol. 39, no. 1, pp. 1-38. 1977.

[21] Efron, B. and Tibshirani, R.J. An Introduction to the Bootstrap. Chapman and

Hall / CRC Press, Stanford University and University of Toronto. 1993.

[22] Eisenkopf, A. The Real Nature of Credit Rating Transitions. Goethe University

Frankfurt. 2008.

URL : http://ssrn.com/abstract=968311

[23] Fitzpatrick, M. and Marchev, D. Efficient Bayesian Estimation of the Multi-

variate Double Chain Markov Model. Statistics and Computing, vol. 23, no. 4,

pp. 467-480. 2013.

[24] Forney, G.D. The Viterbi Algorithm. Proceedings of the IEEE, vol. 61, no. 3,

pp. 268-278. 1973.

[25] Forney, G.D. The Viterbi Algorithm: A Personal History. 2005.

URL : http://arxiv.org/abs/cs.IT/0504020

272



[26] Fort, A., Mugnaini, M. and Vignoli, V. Hidden Markov Models Approach used

for Life Parameters Estimations. Reliability Engineering and System Safety,

vol. 136, pp. 85-91. 2015.

[27] Giampieri, G., Davis, M. and Crowder, M. Analysis of Default Data using

Hidden Markov Models. Quantitative Finance, vol. 5, no.1, pp.27-34. 2005.

[28] Gomez, A.E., Alencar, F.A.R., Prado, P.V., Osorio, F.S. and Wolf, D.F. Traffic

Lights Detection and State Estimation Using Hidden Markov Models. Proceed-

ings of IEEE Intelligent Vehicles Symposium, pp. 750-755. 2014.

[29] Henderson, J., Salzberg S. and Fasman, K.H. Finding Genes in DNA with a

Hidden Markov Model. Journal of Computational Biology, vol. 4, no. 2, pp.

127-141. 2009.

[30] Korolkiewicz, M.W. and Elliott, R.J. A Hidden Markov Model of Credit Quality.

Journal of Economic Dynamics and Control, vol. 32, no. 12, pp. 3807-3819. 2008.

[31] Levinson, S.E., Rabiner, L.R. and Sondhi, M.M. An Introduction to the Applica-

tion of the Theory of Probabilistic Functions of a Markov Process to Automatic

Speech Recognition. The Bell System Technical Journal, vol. 62, no. 4, pp. 1035-

1074. 1983.

[32] Li, X., Parizeau, M. and Plamondon, R. Training Hidden Markov Models with

Multiple Observations - A Combinatorial Method. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 22, no. 4, pp. 371-377. 2000.

[33] Lou, H.L. Implementing the Viterbi Algorithm. IEEE Signal Processing Maga-

zine, vol. 12, no. 5, pp. 42-52. 1995.

[34] MacDonald, I.L. Numerical Maximisation of Likelihood: A Neglected Alterna-

tive to EM? International Statistical Review, vol. 82, no. 2, pp. 296-308. 2014.

273



[35] MacDonald, I.L. and Zucchini, W. Hidden Markov and Other Models for

Discrete-valued Time Series. Chapman & Hall, University of Cape Town and

University of Göttingen. 1997.

[36] McLachlan, G.J. and Krishnan, T. The EM Algorithm and Extensions, 2nd

edition. John Wiley and Sons, University of Queensland. 2008.

[37] Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286.

1989.

[38] Rabiner, L.R. and Juang, B.H. An Introduction to Hidden Markov Models.

IEEE ASSP Magazine, vol. 3, no. 1, pp. 4-16. 1986.

[39] Raftery, A.E. A Model for High-order Markov Chains. Journal of the Royal

Statistical Society, series B, vol. 47, no. 3, pp. 528-539. 1985.

[40] Resch, B. Hidden Markov Models, A Tutorial for the Course Computational

Intelligence. Signal Processing and Speech Communication Laboratory. 2004.

[41] Ross, S.M. Introduction to Probability Models, 9th edition. Elsevier, University

of California. 2007.

[42] Satish, L. Use of Hidden Markov Models for Partial Discharge Pattern Classi-

fication. IEEE Transactions of Electrical Insulation, vol. 28, no. 2, pp.172-182.

1993.

[43] Starner, T. and Pentland A. Real-time American Sign Language Recognition

from Video using Hidden Markov Models. Proceedings of International Sympo-

sium on Computer Vision, pp. 265-270. 1995.

[44] Viterbi, A.J. Error Bounds for Convolutional Codes and an Asymptotically Op-

timum Decoding Algorithm. IEEE Transactions on Information Theory, vol. 13,

no. 2, pp. 260-269. 1967.

274



[45] Yoo, J., Kwon, H.H., So, B.J., Rajagopalan, B. and Kim, T.W. Identifying the

Role of Typhoons as Drought Busters in South Korea based on Hidden Markov

Chain Models. Geophysical Research Letters, vol. 42, no. 8, pp. 2797-2804. 2015.

[46] Zucchini, W. and MacDonald, I.L. Hidden Markov Models for Time Series - An

Introduction Using R. Chapman & Hall / CRC Press, Georg-August-Universität

and University of Cape Town. 2009.

275


