
University of the Witwatersrand, Johannesburg

A new hybrid meta-heuristic algorithm

for solving single machine scheduling

problems

by

Natasha Zlobinsky

A dissertation submitted in partial fulfilment of the

degree of Master of Science in Engineering (Electrical) (50/50)

in the

Faculty of Engineering and the Built Environment

Department of Electrical and Information Engineering

May 2017

Declaration of Authorship

I, Natasha Zlobinsky, declare that this dissertation titled, ‘A new hybrid meta-heuristic

algorithm for solving single machine scheduling problems’ and the work presented in it

are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this dissertation has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this dissertation is entirely my own work.

� I have acknowledged all main sources of help.

� Where the dissertation is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

23/05/2017

“ - Nick Fury: How bad is it?

- Agent Phil Coulson: That’s the problem, sir. We don’t know”

The Avengers (2012)

“ Sometimes you have to go through something else to find what you’re looking for”

Robert Genn

“One does not stand still looking for a path. One walks; and as one walks, a path comes

into being”

Mas Kodani

Abstract

Numerous applications in a wide variety of fields has resulted in a rich history of research

into optimisation for scheduling. Although it is a fundamental form of the problem, the

single machine scheduling problem with two or more objectives is known to be NP -hard.

For this reason we consider the single machine problem a good test bed for solution

algorithms. While there is a plethora of research into various aspects of scheduling

problems, little has been done in evaluating the performance of the Simulated Annealing

algorithm for the fundamental problem, or using it in combination with other techniques.

Specifically, this has not been done for minimising total weighted earliness and tardiness,

which is the optimisation objective of this work.

If we consider a mere ten jobs for scheduling, this results in over 3.6 million possible

solution schedules. It is thus of definite practical necessity to reduce the search space in

order to find an optimal or acceptable suboptimal solution in a shorter time, especially

when scaling up the problem size. This is of particular importance in the application

area of packet scheduling in wireless communications networks where the tolerance for

computational delays is very low. The main contribution of this work is to investigate

the hypothesis that inserting a step of pre-sampling by Markov Chain Monte Carlo

methods before running the Simulated Annealing algorithm on the pruned search space

can result in overall reduced running times.

The search space is divided into a number of sections and Metropolis-Hastings Markov

Chain Monte Carlo is performed over the sections in order to reduce the search space for

Simulated Annealing by a factor of 20 to 100. Trade-offs are found between the run time

and number of sections of the pre-sampling algorithm, and the run time of Simulated

Annealing for minimising the percentage deviation of the final result from the optimal

solution cost. Algorithm performance is determined both by computational complexity

and the quality of the solution (i.e. the percentage deviation from the optimal). We

find that the running time can be reduced by a factor of 4.5 to ensure a 2% deviation

from the optimal, as compared to the basic Simulated Annealing algorithm on the full

search space. More importantly, we are able to reduce the complexity of finding the

optimal from O(n.n!) for a complete search to O(nNS) for Simulated Annealing to

O(n(NMr+NS) +m) for the input variables n jobs, NS SA iterations, NM Metropolis-

Hastings iterations, r inner samples and m sections.

Acknowledgements

I have been blessed to have some very patient and understanding people on my side

during the course of this research. First and foremost, a huge vote of thanks to my

amazing supervisor, Prof. Ling Cheng. I sincerely thank you for your assistance, di-

rection, patience, understanding and invaluable contribution of ideas. Thank you for

sticking with me despite my moving to another city, changing jobs and taking a year

longer to complete the dissertation than I had originally planned! I would not have

been able to finish this without you. Also to Ling’s other students in the CeTAS group:

Ayokunle (Fami), Ryan, Yves and Ashton, thank you for your camaraderie and sharing

of ideas. I would also like to say that I appreciate Wits being understanding of my

situation and allowing me the extensions necessitated by changing circumstances.

My thanks go to Dr. David Johnson for his patience and understanding, allowing me

the time to complete this degree while starting the next and a new job. You are without

exaggeration the best boss I have ever had.

To Richard Maliwatu, I am so grateful for your time in assisting me with the gargantuan

task of moving this dissertation to LATEX, as well as for your valuable advice and technical

and emotional support. Thanks go to other lenders of emotional support and words of

reassurance that there would indeed be a time when this would be complete: Janine

Silberbauer, Danielle Retief and Lindsay Donaldson. Your friendship means more to me

than you know! I also would like to extend my gratitude to Estie Boshoff and co. who

jumped to my aid when the unimaginable happened and my laptop crashed along with

two weeks of work. Mpendulo Ndlovu, my friend, thank you for your words of wisdom

from one who has been here and done this, and reminding me not to take myself so

seriously.

Mamma, dankie dat jy hierdeur gelees het en so baie foute opgetel het sodat ek nie ’n

gek van myself gemaak het nie! Dankie vir alles wat jy nog oor die laaste drie jaar vir

my gedoen het om my te help om hierdie graad klaar te maak, en om my lewe bietjie

makliker te maak.

Thank you to any and all not mentioned by name for the countless votes of confidence

and help both tangible and intangible.

Lastly, thank you to my examiner for giving this work an (albeit captive) audience.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables xi

Abbreviations xii

Symbols xiv

1 Introduction 1

1.1 Background . 1

1.2 The Problem . 3

1.3 Motivation . 4

1.3.1 Possible applications . 4

1.3.2 Usefulness of more research on scheduling 6

1.3.3 Why Simulated Annealing? . 7

1.4 Overview of Dissertation . 8

2 Preliminaries: Models, Definitions and Techniques 10

2.1 Scheduling Theory . 10

2.1.1 Notation and Definitions . 10

2.1.2 Priority dispatch rules . 13

2.2 Algorithms . 14

2.3 A Note on Notation . 15

2.4 Bayesian Inference . 16

2.5 Markov Chains . 17

2.6 Monte Carlo Simulation . 18

2.6.1 Ordinary Monte Carlo . 18

2.6.2 Markov Chain Monte Carlo . 19

2.6.2.1 Metropolis-Hastings . 20

v

Contents vi

2.6.2.2 Burn-in . 22

2.6.2.3 Convergence . 22

2.7 Simulated Annealing: The technique . 25

3 Related Work 27

3.1 Simulated Annealing . 28

3.1.1 Multi-objective . 28

3.1.2 Learning effects . 29

3.1.3 Neighbour generation . 30

3.1.4 Experimental methodologies and results 30

3.2 Genetic Algorithms . 32

3.3 Tabu Search . 34

3.4 Branch and Bound . 35

3.5 Dynamic Programming . 35

3.6 Other hybrid or combined algorithms and approaches 37

3.7 Metropolis-Hastings Markov Chain Monte Carlo 38

3.8 In summary . 38

4 Simulated Annealing with Metropolis-Hastings pre-sampling 39

4.1 Formulation . 39

4.2 Motivation for the section-based pre-sampling approach 43

4.3 SAM . 50

4.3.1 Initialisation . 50

4.3.2 Metropolis-Hastings: implementation details 50

4.3.3 Simulated Annealing . 53

4.3.4 Random Considerations . 60

4.3.5 Termination . 61

4.3.6 Computational complexity of SAM 62

4.4 In Summary . 63

5 Simulation results and discussion 66

5.1 Experimental methodology . 66

5.1.1 Generating problem instances . 66

5.1.2 Experimental set-up . 67

5.2 Simulated Annealing as the base case . 67

5.2.1 Significance of starting temperature on percentage deviation 69

5.2.2 The effect of iteration count on percentage deviation 70

5.3 SAM . 71

5.3.1 Coarse Metropolis-Hastings . 71

5.3.1.1 Different runs with the same settings 72

5.3.1.2 Impact of iteration count 75

5.3.1.3 Impact of number of samples 76

5.3.1.4 Impact of number of sections 77

5.3.2 Reduced search Simulated Annealing 77

5.4 Discussion . 79

5.4.1 Overview of Results . 79

5.4.2 Comparisons . 81

Contents vii

6 Conclusion 90

A Complexity Classes 94

A.0.1 Big-Oh notation . 94

A.0.2 P , NP and NP -complete . 95

B Problem instances 96

C Results 100

C.1 Simulated Annealing base case . 100

C.2 Metropolis-Hastings simulations . 105

C.2.1 Chi-squared test of significance . 105

C.2.2 Impact of iteration count . 111

C.3 Reduced search SA final results . 112

References 128

List of Figures

1.1 An example of a wireless network. The resource manager gathers trans-
mission requests and allocates each requested flow a specific channel and
time slot so as to optimise the overall capacity of the network 5

2.1 Example representation of a schedule, showing due window start and end
times . 10

2.2 A Markov Chain representing states of a Monte Carlo random variable
with transition probabilities . 17

2.3 Flow chart showing general steps of the Simulated Annealing algorithm. . 26

3.1 Taxonomy of solution procedures for scheduling problems 27

4.1 The evolution of the Markov Chain with sample data gathered on each
state change . 40

4.2 Bar graph of the indices of the schedule permutations against the inverse
cost of the corresponding schedules. A certain general clustering of similar
cost values can be observed . 42

4.5 Representation of the set of permutation indices as a wheel with tempera-
ture parameter specifying how far around the circumference the algorithm
traverses. 54

4.3 Full SAM procedure . 64

4.4 Initialisation procedure of SAM algorithm. 65

5.1 Normalised frequency distribution by Metropolis-Hastings sampling: prob-
lem set with smaller variance . 73

5.2 Normalised frequency distribution by Metropolis-Hastings sampling: prob-
lem set with larger variance . 73

5.3 Histogram showing the effect of iteration count on the sections selected
by MH: 500 inner samples and 20 sections 83

5.3 Histogram showing the effect of iteration count on the sections selected
by MH: 500 inner samples and 20 sections 84

5.4 Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 1. Higher numbers of inner samples result
in more concentrated distributions . 85

5.5 Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 5. Higher numbers of inner samples result
in more concentrated distributions . 86

5.6 Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 10. Higher numbers of inner samples result
in more concentrated distributions . 87

viii

List of Figures ix

5.7 Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 13. Higher numbers of inner samples result
in more concentrated distributions . 88

5.8 Histogram of the results of SAM, taken over all problem sets, shown
for SAM with 20 MH sections (SAM20), 50 sections and 100 sections
(SAM50 and SAM100). The results of basic SA for two different starting
temperatures are also shown for ease of comparison. 89

C.1 The effect of different run lengths on the frequency distribution for 20
section divisions, 500 inner samples: dataset 1 111

C.2 The effect of different run lengths on the frequency distribution for 20
section divisions, 500 inner samples: dataset 2 111

C.3 The effect of different run lengths on the frequency distribution for 20
section divisions, 500 inner samples: dataset 3 112

C.4 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 0 121

C.5 Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 1 122

C.6 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 2 122

C.7 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 3 123

C.8 Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 4 123

C.9 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 5 124

C.10 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 6 124

C.11 Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on x-axis: dataset 7 125

C.12 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 8 125

C.13 Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on x-axis: dataset 9 126

C.14 Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on x-axis: dataset 10 126

List of Figures x

C.15 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 11 127

C.16 Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by
the iteration counts on the x-axis: dataset 12 127

List of Tables

4.1 Calculating computational complexity of components of the SA algorithm 59

5.1 Parameter values used for evaluation of SA Full search 68

5.2 Summary of averages of all results - basic SA 68

5.3 Significance of iteration count by p-values per dataset 70

5.4 0.99 percentiles of maximum percentage deviations for run lengths given
by the iteration count . 71

5.5 Unnormalised frequency with which each section (out of 20 sections) was
selected in 20 runs of MH, with the p-values of Chi-squared test: Dataset 0 74

5.6 Average percentage deviation of reduced search SA results compared with
full search basic SA . 78

B.1 Problem Instances . 96

C.1 Summary of SA results . 100

C.2 Dataset 0 MH: Summary for division of search space into 100 sections,
part 1 . 106

C.3 Dataset 0 MH: Summary for division of search space into 100 sections,
part 2 . 107

C.4 Dataset 0 MH: Summary for division of search space into 50 sections, part 2108

C.5 Dataset 0 MH: Summary for division of search space into 20 sections, part 1109

C.6 Dataset 0 MH: Summary for division of search space into 20 sections, part 2110

C.7 Summary of results of reduced search SA compared with full basic SA . . 113

C.7 Summary of results of reduced search SA compared with full basic SA . . 114

C.7 Summary of results of reduced search SA compared with full basic SA . . 115

C.7 Summary of results of reduced search SA compared with full basic SA . . 116

C.7 Summary of results of reduced search SA compared with full basic SA . . 117

C.7 Summary of results of reduced search SA compared with full basic SA . . 118

C.7 Summary of results of reduced search SA compared with full basic SA . . 119

xi

Abbreviations

B&B Branch and Bound

CPU Central Processing Unit

CTS Clear to Send

DP Dynamic Programming

EDD Earliest Due Date

GA Genetic Algorithm

IEEE Institute of Electrical and Electronic Engineers

LCL Least Cost Last

LTE Long Term Evolution

MAC Medium Access Control (layer)

MCMC Markov Chain Monte Carlo

MDP Markov Decision Process

MH Metropolis-Hastings

NDTM Non-deterministic Turing Machine

NP Non-deterministic Polynomial

NSE Numeric Standard Error

p.d.f. probability density function

PHY Physical (layer)

QoS Quality of Service

RDD Relative Due Date

RTS Request to Send

SA Simulated Annealing

SAM Simulated Annealing with Metropolis-Hastings sampling

SSDP Successive Sublimation Dynamic Programming

SPT Shortest Processing Time

xii

Abbreviations xiii

SRPT Shortest Remaining Processing Time

TS Tabu Search

WSPT Weighted Shortest Processing Time

Symbols

J set of jobs

j index referring to a single job

pj processing time of job j

dj end of due window of job j

ej start of due window of job j

sj starting time of job j

Cj completion time of job j

w′j earliness weight of job j

w′′j tardiness weight of job j

Ej earliness of job j

Tj tardiness of job j

≡ identical to

P (X) ≡ PX probability distribution

p(X = x) ≡ p(x) single probability value

IEPX
[f(x)] expectation of the function f(x) over the probability

density function PX

γ ≡ ∑
j∈J

(w′jEj + w′′j Tj) cost function to minimise

∨ OR

∧ AND

U(a, b) uniform distribution of real numbers between a and b

|S| size of object or set S. If S is a set this is equal to the

number of elements in S

xiv

Chapter 1

Introduction

1.1 Background

Scheduling can be described as the allocation of a set of tasks over any sparse resource

in order to optimise certain objectives [1]. The applications are as numerous as the field

of engineering is broad, making this an important area of research. With a history of

research mainly centred on the manufacturing industry, traditional scheduling methods

may come short of meeting the needs of more modern applications, where results may

be more time-sensitive. In Telecommunications, for instance, tasks such as data packets

may be cleverly scheduled in time or frequency domains, or both, in order to maximise

data throughput. This needs to be done quickly enough to ensure the user experience

is not negatively affected. Being typically an NP -hard or NP -complete problem –

even with just one machine or processor, and a single optimisation objective – meta-

heuristic algorithms are the accepted solution technique since no optimal polynomial

time algorithm exists (unless P = NP) [2]. Finding the optimal solution is as easy as

finding the proverbial needle in a haystack – without a magnet or other metal detector.

Some common algorithms used to date are Genetic Algorithms (GAs), Tabu Search

(TS) and Simulated Annealing (SA), as well as Particle Swarm optimisation, to name

but a few. These may provide acceptable answers in a much shorter time than optimal

methods or the brute force approach, but there is still a time cost to pay. If a general

way can be found to reduce the solution search space and reduce run times without

eliminating potentially “good” solutions, this would be of great benefit to a variety of

industries.

A few questions now emerge:

i) What algorithm to choose out of the ocean of possible options?

1

2

ii) Can any algorithm categorically be named the best?

iii) Can algorithms be combined to exploit advantages of each?

iv) Can performance be improved by adding pre-sampling to prune the search space?

It is not the aim of this work to answer all these questions but it does aim to shed some

light on iv and to some extent iii. We have chosen the Simulated Annealing algorithm as

the basis, partly motivated by an apparent shortage of research using this algorithm for

the sum of weighted earliness and tardiness even though it appears to be an attractive

option, but also owing to its comparative computational simplicity and shorter running

time over the often-preferred Genetic Algorithm. Further justification of this choice can

be found in Section 1.3.3 It is not by any means contended that this algorithm always

displays better performance than others, and this is indeed irrelevant to the purpose of

this work. Simply, the aim is to investigate the hypothesis that pre-sampling methods

can be combined successfully with a basic SA algorithm in an advantageous way. A full

motivation is presented in Section 1.3.

Although algorithms have become increasingly sophisticated and a number of options

exist when a scheduling problem is to be solved, there is still a limit to the size of the

problem for which we can find optimal solutions because the inherent computational

complexity results in long running times. For scheduling problems this is of particular

concern as the number of permutations (and thus the search space) grows very fast with

the number of jobs. When fast results are required or the number of tasks is even as

modest as ten, a method is required to reduce the time to obtain an answer of acceptable

quality, as determined by the particular context. The question arises whether any gain

can be had from combining techniques to trade off the strengths and weaknesses of

each. SA is a fitting general algorithm to use when little is known of the problem and

the search space does not follow any identifiable pattern or trend. The latter may seem

true of scheduling problems in general but on closer investigation it may be seen that

certain areas of the search space could be eliminated early in the search process to

prevent the algorithm wasting time foraying into sections that statistically are unlikely

to contain the optimal answer. Pre-sampling may offer a way to prune early without

counterbalancing this improvement with more complexity.

In this work it is investigated if the performance of Simulated Annealing can be improved

by combining the SA algorithm with other sampling methods in a two-step process. The

focus thus turns to efficient sampling methods. Probably the most powerful sampling

method available at this time is Markov Chain Monte Carlo (MCMC) methods based

on Bayesian inference.

3

1.2 The Problem

The problem is to apply, or devise, and test an algorithm that is able to find solutions

to single machine scheduling problems in a relatively short time period that are mini-

mally deviant from the optimal value. Since the number of possible scheduling problem

instances is infinite, our experiments are confined to a few instances only, which we con-

tend are sufficiently representative for the results here to be of more general significance.

Performance is evaluated in terms of the running time and quality of the solution: on

the basis of analysis of the worst-case complexity, and percentage deviation from the

optimum value, respectively. While we note that there are limitations to characterising

run time by worst-case complexity analysis, a concern raised by Hall and Posner [3], this

method is more fair for the purposes of a comparative study than measuring running

times in seconds, since it enables the evaluation to be independent of implementation de-

tails and bias that would inevitably arise from the way a programmer writes the code for

the different methods, or from platform differences (operating system, processor etc.).

We now list assumptions necessary to narrow the focus of the problem and provide a

springboard for solutions.

Assumptions:

• The processing times of jobs are known a priori to the scheduling activity and all

jobs are available at the start of the scheduling activity.

• Machine idle time is not allowed or required and no set-up time is considered.

• No pre-emption is allowed.

• There are no precedence relationships between jobs, so that any sequence of jobs

is a feasible solution.

• The problem instances tested are sufficiently representative of real problem sets

in as far as proving the methodology to be presented is valid and for relative

performance evaluations to be at least indicative of expected results for any given

problem instance.

The scheduling goal is to minimise the total weighted amount of time by which each

job is completed outside of its due window, and we seek an efficient solution (i.e. one

that satisfies the conditions given by eqn. (1.2)). This is an NP -hard problem [1, 4, 5].

Since machine idle time is considered unproductive and assumed unnecessary, it is not

4

considered in this work; consequently the scheduling decision involves only the order in

which jobs are to be scheduled so as to minimise the scheduling objective, eqn. (1.1)

minγ = min
∑
j∈J

(w′jEj + w′′j Tj) , (1.1)

where jobs are given unique due windows (not just due dates) and earliness (Ej) and

tardiness (Tj) carry different penalties per job, w′j and w′′j , respectively. Please note

that clarification and illustration of elements of scheduling are given in Section 2.1.

A schedule S is said to be efficient if there does not exist another schedule S0 satisfying,

over all j ∈ J ,{
max
j

[w′jEj(S0)] < max
j

[w′jEj(S)]

}
∧
{

max
j

[w′′j Tj(S0)] < max
j

[w′′j Tj(S)]

}
. (1.2)

The null (H0) and alternate (Ha) hypotheses investigated are:

• H0: A combination of Simulated Annealing and Metropolis-Hastings Markov Chain

Monte Carlo pre-sampling (to prune the search space) cannot be found that re-

duces the running time of SA (on the full search space) for the problem instances

presented.

• Ha: A combination of Simulated Annealing and Metropolis-Hastings Markov Chain

Monte Carlo pre-sampling (to prune the search space) can be found that reduces

the running time of SA (on the full search space) for the problem instances pre-

sented.

To this point, we have evaded defining what a “reasonable”, “acceptable” or “good”

solution would be, since this is situation dependent and relative. Similarly, ambivalent

terms for run times are used. For the problem instances investigated in this work, the

issue has been circumvented by comparing results on a relative scale, and categorising

solutions depending on their statistical properties. Detail on this is given in Chapter 5.

1.3 Motivation

1.3.1 Possible applications

Optimal scheduling of resources is a popular area of research with an almost inex-

haustible list of possible application areas. Benefit can be derived by a number of

5

industries from improvements in algorithms for the purpose. Scheduling was first ap-

plied in the industrial engineering realm for ensuring Just-in-Time delivery in factories

by scheduling when unfinished materials were to be processed on each machine along

the production line. Scheduling is very useful in Distributed Computing environments

to allocate computing resources to users, or to schedule CPU threads optimally [6].

Scheduling has been used to find optimal task and time allocation strategies for the

people working on large software projects, each with different skill levels for different

tasks [7], and has also been used for scheduling of maintenance activities on electrical

generators [8]. These are just a few examples.

Figure 1.1: An example of a wireless network. The resource manager gathers trans-
mission requests and allocates each requested flow a specific channel and time slot so

as to optimise the overall capacity of the network

A very pertinent and topical application of this algorithm is in wireless communication

networks where devices have limited access to channel and time slot resources. In recent

years the issue of spectrum scarcity has become quite contentious and has sparked a

fair amount of research activity into more optimal ways to allocate and use spectrum

resources [9–11]. In order for varying Quality of Service (QoS) requirements to be met,

different packets to be transported in the network may have different penalties related to

their QoS level. Tardiness relates to throughput delay while, in such networks, if a packet

is sent too early collisions may occur, thus prompting a series of retries and ultimately

causing further throughput delays. Possibly, the destination may still be processing a

previous frame and clearing its buffers, causing the frame to be lost and requiring further

6

transmission retries. Limited buffer size may be a pertinent problem in low-power low-

cost Wireless Sensor Networks. This may be the case in mesh and other networks where

non-cooperative coexistence methods are employed. If, instead, the specific channel and

time slot allocations to optimise these criteria are decided upon in advance by a channel

or resource manager entity, collisions can be avoided and optimal use made of a channel

as soon as it becomes available. Such a managed situation is illustrated in Figure 1.1.

In the figure, ti represent time slots and chi are wireless channels.

In most current wireless standards (such as IEEE 802.11af, 802.19.1, 802.16-2012, 1900.4),

the MAC/PHY includes the architecture and data types to enable a managing entity

such as the channel manager of 802.19.1 to allocate resources to devices based on cer-

tain objectives and using an on-board algorithm [12–14]. An application may be where

nodes must first send RTS control frames containing the size of the data packet to the

manager before continuing with the transmission. An example of a network with flows

(links) allocated over time and channels (frequency) is illustrated in Figure 1.1. While

protocol mechanisms are provided for the interaction mechanisms of the manager and

its terminals to broadcast assigned channels, few specific algorithms are provided for the

actual scheduling decision to be made. The algorithms presented in this work can be

run by the management entity for network channel or time slot allocation, or both, in

terms of IEEE 802.19.1, IEEE 802.22 [15] and other standards. The algorithm can be

run on the channel manager node while waiting for channel availability and then when

it becomes available, spectrum utilisation during the short assigned time slot can be

improved. The algorithm may also be suited to wired networks.

1.3.2 Usefulness of more research on scheduling

While a fair body of literature exists in which SA is used to solve the single machine

scheduling problem and a little has been done that deals with the specific optimisation

criterion of weighted earliness and tardiness, most literature does not show in depth how

the performance is influenced by the various parameters or quantify what performance

can be expected for different combinations of values of the parameters, nor do they show

how the parameters interact and influence one another. There is also no other work that

applies and uses Metropolis-Hastings sampling in the unique way we do here or uses pre-

sampling or hybridises sampling with SA to produce a more efficient algorithm. This

fact emerges from the literature reviewed in Chapter 3.

The main contribution of this work is to add a pre-sampling step that enables a significant

reduction in the search space before running the SA algorithm on scheduling problems in

a way that enables low-cost solutions to be found much more efficiently than by the basic

7

SA algorithm alone. We present a unique application method and implementation of

Metropolis-Hastings Monte Carlo to a problem that has not been done in the literature,

as far as the author is aware, and that recognises and uses specific properties of the search

space in solving this particular problem. We also investigate in detail the influence of

parameters on the performance of the basic SA approach and introduce a new neighbour

generation method that can be used in many meta-heuristic scheduling algorithms. This

neighbour generation method relies on a new way of visualising the search space.

1.3.3 Why Simulated Annealing?

As is illustrated by the summary of previous work on the topic of heuristic algorithms for

scheduling (Chapter 3), a number of algorithms have been used and have seen varying

degrees of success. It has been claimed that the GA is a very, if not the most, successful

meta-heuristic. GAs, however, have some disadvantages.

GAs are complex and require a number of further calculations and operations between

iterations beyond the basic steps. For example, the mutation operator typically requires

a number of operations and calculations to be performed to ensure the offspring created

by the crossover operator are feasible [16–18]. These operations are typically complex.

Additionally, the mutation operator must be applied either every iteration or when the

best value found remains unchanged for a predetermined number of iterations. In the

latter case, the operator must be applied as many times as the value remains unchanged,

adding further complexity. In some cases a quantity such as the entropy within a gen-

eration is calculated first in order to determine the number of times the operator is to

be executed [18]. All of these operations and calculations are particularly costly, adding

time that is not affordable in today’s highly time-sensitive applications.

In each generation a large number of solutions is considered and every time a new solution

is created by the genetic operators, the chromosomes must be placed into their ranking

order once again, necessitating a sorting algorithm to be run on the chromosomes of

every generation. Even a relatively cheap sorting algorithm of O(n log n) run 1000 or

even 100 times is very costly, particularly for large population sizes, e.g. where n is of

the order of 200.

Adewole et al. performed a detailed comparison of SA and GAs as applied to the

travelling salesman problem [19]. They conclude that GAs can provide a high quality

of solution over SA but under the condition that the population set is large enough.

Large population sizes in turn increase the complexity and running time exponentially.

The researchers note that if powerful parallel computing capability is available, GAs

can perform very well and reach solutions in shorter time periods. Noting our intended

8

application area of wireless networks, this implies that GAs would be most useful in

a fully distributed wireless network where all nodes have powerful computers on-board

and can run parallel streams of populations. However, such fully distributed networks,

where computing power can be shared, are not yet commonplace and are not the intended

application scenarios for our work. Applications where GA meta-heuristics are chosen

are typically less time-sensitive and more quality-centric. Examples are component

placement in circuit design [20] or flight scheduling [21].

TS has also been used frequently but, as Raaymakers and Hoogeveen remark, requires

significant tailoring to the specific problem [22].

In contrast, SA is generally applicable and relatively simple to implement. It requires

only sampling a solution, calculating the Boltzmann quantity and comparing the result

with a chosen random value. Solution quality provided by SA may not be as high as

when using GAs but the running time is significantly lower. We have chosen SA as it

is less complex and its implementation is simpler than GA but the method still offers

the benefits of being able to escape from local optima and a minimal prior knowledge of

the search space, while yielding acceptable solutions. In the intended application area

of a centralised wireless network, obtaining a solution in a short space of time is more

important than obtaining a solution that is very close to optimal (or is possibly optimal)

but causes significant delays. The formulation of the problem as an SA problem is also

well suited to the method we introduce to prune the search space.

1.4 Overview of Dissertation

The main contributions of this dissertation are to:

• Introduce a new neighbour generation method that can be used in meta-heuristic

single machine scheduling algorithms.

• Introduce a new combination algorithm of Metropolis-Hastings pre-sampling and

Simulated Annealing, which we call SAM, for the solution of single machine

scheduling problems with due windows and without pre-emption, where idle time

is not allowed, and set-up time is not required, and present a comparison of perfor-

mance results from and theoretical computational complexity of basic Simulated

Annealing, and the proposed hybrid algorithm.

In Chapter 2 we first go through some preliminary theoretical and foundational concepts,

models and definitions to provide a sufficiently complete introduction to the work that

9

follows. Chapter 3 presents some of the more pertinent literature related to this work.

The design and details of my specific implementation of SA and a thorough description

and development of the new hybrid algorithm of coarse Metropolis-Hastings sampling

and SA is presented in Chapter 4. Chapter 5 contains a presentation and analysis of

simulation results of the algorithms before we conclude in Chapter 6.

Chapter 2

Preliminaries: Models,

Definitions and Techniques

2.1 Scheduling Theory

2.1.1 Notation and Definitions

The essential theory of scheduling that may aid understanding of the work presented in

this dissertation is briefly presented here. This is drawn from some well-known literature

in the field, in particular the definitive work by Pinedo [5], and is not intended to be

any more comprehensive than necessary.

Figure 2.1: Example representation of a schedule, showing due window start and end
times

Figure 2.1 illustrates elements of the general scheduling problem. The general scheduling

problem is defined by a set of n jobs J = (J1, J2, ..., Jn), which are to be scheduled on a

set of m machines or processors M = (M1,M2, ...,Mm). For the purpose of this work,

it is assumed that a machine can only process one job at a time. If a machine is able

to process a number of jobs simultaneously, this is called batch scheduling. Each job

10

11

j ∈ J can be characterised by its processing time on machine i (pij), its due date (dj)

and a possible weight (wj) or set of weights (w′j and w′′j) for earliness and tardiness,

which indicates relative importance. The job start time is denoted sj . The subscript i

denoting the processor is omitted in the single machine case. We generalise the due date

into a due window within which a task must be completed to prevent carrying earliness

or tardiness penalties. The beginning of the due window is given by ej and the end of

the due window by dj as illustrated in Figure 2.1. The weighted earliness of job j is

defined as w′jEj and the weighted tardiness as w′′j Tj . The job’s actual completion time is

Cj . If pre-emption is not allowed, i.e. all jobs must be completed without interruption,

we define Cj = sj + pj .

For a job with due window, earliness is defined as eqn. (2.1)

Ej = max{ej − Cj ; 0} (2.1)

and tardiness as eqn. (2.2)

Tj = max{Cj − dj ; 0} = max{Lj ; 0} (2.2)

The schedule may have to allow for idle time on the machine(s) for maintenance, setting

up or during faults or breakdown.

A schedule is feasible if no two jobs are overlapping and no job starts earlier than the

schedule start time, i.e the condition of eqn. (2.3) is met.

{si ≥ Cj ∀ i > j } ∧ {si ≥ t0} ∀ i, j ∈ J (2.3)

The scheduling problem is described using the traditional three-field notation, 〈 α | β | γ 〉
[1], where

– α describes the processing environment. For single machine problems, this value

is simply 1.

– β describes the constraints. These could include a release date rj when the job

initially becomes available for processing, set-up time, precedence constraints, pre-

emption or any of a variety of other constraints.

– γ is the objective function. Some examples are the makespan (maximum com-

pletion time), total completion time (the sum of completion times of all jobs) or

total weighted completion time. The total earliness and tardiness of jobs, either

12

separately or jointly (defined in eqn. (2.4)), are also common functions to be

minimised (and the objective function of this work).

γ =
∑
j∈J

(w′jEj + w′′j Tj) (2.4)

Numerous models of the scheduling problem exist, each having very different meth-

ods that may provide the best results. Some variants to the model include situations

where set-up time is considered as a cost separately from the processing time, where

pre-emption may or may not be allowed, and where processing is either batched or

non-batched. Schedule models with several processors include parallel-machine, where

machines may be identical or differing in capabilities and/or speeds; flow-shop, where

each job has to go through a series of different processors before being complete; and flex-

ible flow-shop, a generalisation of flow-shop; job-shop, which is still further abstracted

in that each job may have an independent set of processes to follow, and open-shop

processing, where jobs are to be processed on each machine in any order. Models may

define deterministic job characteristics or may be stochastic, such as in the Markov Deci-

sion Process approach [23]. A newer model that has emerged is multi-agent scheduling,

where each agent is responsible for a certain set of jobs and has its individual set of

objectives to optimise.

With so many more complex models in existence, it may be necessary to justify the

practical applicability of the model we have chosen for our analysis. A large number of

practical problems are in fact accurately reflected in the single machine model [5, 24–26].

Examples may include a number of tasks or task segments to be processed by a single

CPU. Even if there is more than one CPU in such a situation, the units often func-

tion independently in parallel and thus are decomposed into separate single processor

problems and solved independently. The decomposition of multi-machine problems into

single machine problems is often done [5] and so this model provides a good fundamental

basis for analysis, and results can easily be extended to apply to more complex prob-

lems. The situation where pre-emption is not allowed has been chosen as this is also a

generalised form of the problem, and the model can easily be adapted to situations with

pre-emption allowed. For example, jobs can be divided into arbitrarily small pieces and

scheduled as separate tasks to model situations where pre-emption is allowed. The crite-

ria of weighted earliness and weighted tardiness are very common measures in industrial

settings and several other just-in-time applications, and are recognised in the literature

as important for research focus [4, 16, 27–31]. The problem as it stands is already known

to be strongly NP -hard [4, 26, 32–34]. In fact, even the problem considering only one

objective 〈1||∑j∈J w
′′
j Tj〉 is known to be a strongly NP -hard problem [5]. Thus, our

problem is complex and practically applicable enough to justify investigation, and to

13

justify investigation into evaluating and improving the performance of meta-heuristic

algorithms to solve this type of problem.

2.1.2 Priority dispatch rules

Some theorems on the prioritisation of tasks, known in the literature, are briefly pre-

sented here. These may be optimal for certain simpler single-criterion scheduling prob-

lems but are not optimal for the problem of this work. We present them as they form a

starting point for a number of solutions presented in the literature.

Theorem 2.1 (Shortest Processing Time (SPT) [5]). When minimising completion

time, an optimal schedule is found by sorting jobs in increasing order of processing time.

This is called the Shortest Processing Time (SPT) and Shortest Remaining Processing

Time (SRPT) rule, which also extends to Weighted Shortest Processing Time (WSPT).

Proof. The reason emerges from the equation for total completion time shown below for

the unweighted case (eqn. (2.5)) and weighted case (eqn. (2.6)). These equations

show that when scheduling N jobs, the first job’s processing time is added N times, p2 is

added N −1 times, p3 added N −2 times and so on, so to minimise the total completion

time it is necessary to start with the shortest, and end with the longest processing time.

∑
j

Cj = (t+ p1) + (t+ p1 + p2) + (t+ p1 + p2 + p3) + ... (2.5)

∑
j

Cj = (t+ p1)w1 + (t+ p1 + p2)w2 + (t+ p1 + p2 + p3)w3 + . . . (2.6)

Corollary 2.2. The WSPT heuristic processes the values
pj
wj

in non-decreasing order,

where wj is the weighting given to job j, as shown by eqn. (2.7):

p1

w1
≤ p2

w2
≤ ... ≤ pn

wn
. (2.7)

Building on from these rules, certain problems may enable the assumption of restrictions

on processing times and weights. These theorems are presented and proved by Yano and

Kim [27]. These are:

14

Theorem 2.3. For adjacent jobs i and j with starting time si ≥ sj, it is optimal to

sequence i before j if and only if the conditions given by eqn. (2.8) to (2.11) are met.

Ei/Ej ≤ pi/pj (2.8)

and

pi/pj ≤ Ti/Tj (2.9)

and

Eipi + Tjpi ≤ (Tj + Ej)(sj − si + pj) (2.10)

or

Ei + Ti ≤ Tj + Ej (2.11)

Proof. The proof is presented in [27].

Theorem 2.4 (Earliest Due Date (EDD) [35]). Jobs are to be sorted into increasing

order of due dates to obtain an optimal schedule for minimising maximum lateness or

maximum tardiness.

Proof. Full proof in [35]. Intuitively, jobs with earlier due dates are in greater danger of

being later than their due date than jobs with later due dates, so to obtain an optimal

schedule, these must be scheduled first. Where jobs are weighted, the weighted due date

must be used.

Theorem 2.5 (Least Cost Last (LCL) [36]). Jobs with the lowest weighted cost are

scheduled towards the end to solve the general 〈1|prec|fmax〉 in O(n2) time.

Proof. Full proof in [36]. As the rule is an extension of EDD, similar to the EDD rule,

this aims to minimise the total cost of the schedule.

The techniques above, and extensions to these, are heuristic techniques rather than

algorithms and are specific to scheduling problems. They are called “constructive” since

they gradually build up a schedule using certain rules [5].

2.2 Algorithms

Meta-heuristic algorithms find either approximate solutions to optimisation problems,

or solutions to not all instances [37]. Most do this by starting with an initial solution

and then searching the space of all possible solutions to improve on it. Meta-heuristic

15

algorithms such as Genetic Algorithms, Simulated Annealing and Tabu Search have

been used to solve scheduling problems but can be applied to any of a wide variety

of other optimisation problems. Deterministic or exact algorithms in contrast can be

used to find the optimal solution but their time complexity for large problems may be

unacceptably high in cases. Two of these optimal methods are dynamic programming

and the branch-and-bound algorithm. Branch-and-Bound is often cut short to reduce

computation resulting in only a suboptimal solution, when the gap between the upper

and lower bounds becomes acceptably small. Complexity is a key consideration in the

choice of algorithm. We formalise the notion of complexity classes and appropriate

definitions in Appendix A.

2.3 A Note on Notation

Some points about the notation used are necessary to avoid ambiguity. I have tried to be

as consistent as possible in this respect. Random Variables (R.V.s) are given as capital

letters (e.g. Y and X) unless otherwise stated. Sample spaces are given by similar

notation. The terms observation, random draw and sample are equivalent.

i) A single observation of a scalar R.V. is denoted e.g. x, y or, explicitly, X = x.

ii) A set of n random draws from a scalar R.V. is denoted as x = {x(1), x(2), ..., x(n)}.

iii) A row vector of size D is written y = (y1, y2, ..., yD).

iv) The nth sample of the vector R.V. Y = y, is y(n) = (y1, y2, ..., yD)(n).

v) A set of n random draws from a multidimensional or vector R.V. is in bold print

e.g. x = {x(1),x(2), ...x(n)}.

vi) The probability density function (p.d.f.) of a random variable over the set of all

possible values is written in uppercase P (X) or PX , while the probability that the

random variable takes on a specific value is written in lowercase p(X = x).

vii) A set of values that occupy d-dimensional space may be denoted Sd ⊂ IRd.

viii) The term “distribution” is used in this context to mean p.d.f. P and the terms

are used interchangeably. This is in keeping with the usual literature on the topic,

though it is noted that “distribution” may also refer to the cumulative distribution

function in other texts.

16

ix) Conditional expectations will use the notation:

IEπ(x|y)[f(x)]

for example, which is equivalent to

IEx[f(x)|y] =

∫
x

p(x|y)f(x)dx .

x) One final note applicable in particular to the results (Chapter 5), where we make

a perhaps sacrilegious return to frequentist techniques for evaluation and results

analysis, is that a p-value of 0.05 or less for statistical significance tests such as

Chi-squared and t-test, is considered statistically significant.

2.4 Bayesian Inference

Bayesian probability is an integral part of all Machine Learning algorithms, since it

provides a method by which inference about the future can be made from previous

observed data or about latent variables, given observed data variables [38]. Bayesian

probability exploits dependencies between data samples, rather than assuming or forc-

ing an artificial independence. The application of Bayesian statistics to MCMC has

been directly responsible for the great popularity that MCMC has seen in recent times,

enabling characterisation of complicated posterior distributions such as parameters in

complicated system models [39].

Scalar R.V.s are used to illustrate concepts for clarity and to avoid the messy notation

of Jacobians that would be required otherwise. Bayes’ theorem states that, given sample

data y ∈ S1 ⊆ IR from a distribution with known likelihood P (y|x), a posterior distri-

bution π(x|y) (given by eqn. (2.12)) for unknown variable x ∈ S2 ⊆ IR can be inferred

from an a priori density for x given by P (x) via the conditional probability, as shown

in eqns. (2.12) and (2.13):

π(x|y) ∝ P (y|x)P (x) (2.12)

where the constant of proportionality is∫
x∈S2

p(y|x)p(x)dx = p(y) . (2.13)

17

The expression P (x) captures initial assumptions about x before the observation. The

equivalent for discrete random variables, given by eqn. (2.14), is equally valid.

π(x|y) =
(P (y|x)P (x))

P (y)
=

P (y|x)P (x)∑
S2

(p(y|x)p(x))
=

P (y|x)P (x)∑
S2

(p(y, x))
(2.14)

where p(y, x) represents the joint probability of x and y. We may want to find expecta-

tions, such as eqn. (2.15), of a function f(x) over the probability density π(x|y):

IEπ(x|y)[f(x)] =

∫
S2

f(x)π(x|y)dx , (2.15)

or the discrete equivalent. Clearly, we require that f(x) is integrable with respect to

π(x|y). For many problems it may not be feasible to evaluate the integral directly, either

because no closed form integral exists or owing to high dimensionality making computa-

tion practically prohibitive. In such situations, it is necessary to employ approximations

or relaxation techniques. Such problems are very common and this is where Monte Carlo

techniques shine.

2.5 Markov Chains

x

�

x

�

x

�

x

�

� x

���

x

���

� x

���

x

���

� x

�����

x

���

Figure 2.2: A Markov Chain representing states of a Monte Carlo random variable
with transition probabilities

A Markov Chain, such as illustrated in Figure 2.2, is a series of states or random variables

with memory representing a stochastic process so that the value or probability of a state

depends on previous state(s) and the dependency relationships can be represented by

transition probabilities, Tm. If a state depends only on its immediate predecessor, the

Markov Chain is said to be first order; if it depends on its immediate predecessor as well

as the one before, the chain is second order and so forth. More formally, for a first order

Markov Chain x(1), x(2), ..., x(M), the condition of eqn. (2.16) holds.

P (x(m+1)|x(1), ..., x(m)) = P (x(m+1)|x(m))

≡ Tm(x(m), x(m+1))

∀ m ∈ {1, ...,M − 1} ⊆ IN

(2.16)

18

For the purpose of MCMC simulation, we require that the chain is ergodic, that is, it is

required that the distribution P (x(m)) converges (asymptotically) to a single invariant

distribution (the equilibrium distribution) when m→∞, regardless of the chain’s start

point. Provided that the conditions on the transition probability are met, the invariant

or stationary distribution satisfies eqn. (2.17).

P (x) =
∑
x′

T (x′, x)p(x′) (2.17)

2.6 Monte Carlo Simulation

2.6.1 Ordinary Monte Carlo

A number of good texts exist on this topic, which the reader may consult if necessary. We

have drawn from Christopher Bishop’s comprehensive text here [38], as well as [39–42],

and others cited as needed.

Ordinary Monte Carlo aims to estimate properties, such as expectations, of a certain

p.d.f. p(x) by drawing N independent identically distributed (i.i.d.) samples from the

distribution of random variables and approximating the density function using a point

mass approximation for the density [43], as shown in eqn. (2.18).

P (x) ≈ PN (x) =
1

N

N∑
i=1

δx(i)(x) (2.18)

Then, expectations are calculated using the usual averaging calculation,

IEN [f] =
1

N

N∑
i=1

f(x(i)) , (2.19)

which tends to the required expectation

IE[f] =

∫
f(x)p(x)dx (2.20)

in the limit lim
N→∞

IEN [f].

Now if

IEP (x)[f
2(x)]− (IE[f])2 <∞

19

holds, and noting that for ordinary Monte Carlo samples are i.i.d., we can use Central

Limit Theorem to find a normal p.d.f. of the approximation’s error

IEPN
[f(x)]− IEP [f(x)] . (2.21)

The problem, however, is that all too often it is not feasible to get i.i.d. samples from the

required distribution and expectations are intractable or impossible to calculate. That

is where Markov Chain Monte Carlo comes to the rescue.

2.6.2 Markov Chain Monte Carlo

The essence of MCMC is that statistical inferences can be made about a system without

having to know, or be able to simulate, the exact behaviour of a system or know the

form of a function describing the behaviour, and this can be achieved with dependent

samples instead of i.i.d. samples. We only need to construct a Markov Chain that has the

same equilibrium distribution as the true system in question and employ some Bayesian

statistics. The complicated distribution and the constructed distribution are typically

related by a constant that is difficult to calculate or for which there is insufficient data

to calculate, such as may arise in finding a normalised Bayesian posterior. MCMC

nonetheless enables one to gather statistical information about the true system, such as

expectations of functions under the distribution. This powerful technique performs well

even in the case of high dimensionality.

Suppose we wish to sample from a complicated, unknown or unknowable unnormalised

distribution π(x). We are able to evaluate π(x) for any given x up to a certain constant,

Xp. This constant would normally involve a complicated integral from the Bayesian

inference step and is not known. So we have

π(x) =
P (x)

Xp
.

We cannot sample from π(x) directly so we construct a Markov chain on x ∈ S ⊂ IR with

incremental transition probabilities T (x, dy), where both x and y ∈ S. Marginalising x,

the resultant distribution becomes

∫
x∈S

p(dx)T (x, dy)dx =

∫
x∈S

p(dx)q(dy|x)dx = P (dy) , (2.22)

which is the Bayesian normalising constant. We can now sample from a simpler proposal

distribution, the transition probability Q(x(i+1)|x(i)). Each time a sample is drawn from

20

the proposal distribution it is recorded for comparison with the next sample. The

distribution as well as the next state drawn thus depends on the current state. This is

the Markov Chain. As the number of samples becomes very large, P (dy) approaches

π(x). The choice of proposal distribution is arbitrary but its choice influences how

fast the chain converges to the desired stationary distribution while the specific update

mechanism determines whether a candidate state is accepted or not. In choosing Q there

are several subtleties. Details about the conditions to ensure the chain converges to the

equilibrium distribution are discussed in Section 2.6.2.3. It is sufficient to say for now

that it is usually possible to construct a Markov Chain with the required properties.

Several sampling methods are harboured under the umbrella of MCMC. These include

rejection sampling, importance sampling, slice sampling and Gibbs sampling. The focus

of our work is on the Metropolis-Hastings method discussed below. One of the reasons

for this choice is that it allows for an asymmetrical proposal distribution. Another

widely used method, Gibbs sampling, is generally applied to a different problem type

where the variables represent parameters of a statistical model to be estimated. The

parameters must be able to be partitioned into independent sets and should follow a

standard conditional probability density function. In this method all proposed updates

are accepted. Not only is our situation not one of parameter estimation and so not

well-suited to Gibbs sampling, but the acceptance of all updates increases the required

memory to store all states, and the running time. Gibbs sampling is simply a special

case of the Metropolis-Hastings algorithm, as is rejection sampling [44]. We prefer the

more general method.

Importance sampling is another option, but this is a method only for estimating the

expectation of a function and does not generate samples from the distribution [45].

We would like samples to be generated for use in the SA step. Another disadvantage

of importance sampling is that there may be a very large error in the estimate since

the empirically found variance does not necessarily represent the actual variance to

any degree of accuracy. Slice sampling may have been an advantageous option, but

Metropolis-Hastings is clearer and simpler to implement.

2.6.2.1 Metropolis-Hastings

The Metropolis-Hastings method provides a way of updating samples in the random walk

of a Markov Chain Monte Carlo simulation. We start by specifying three distributions,

using the variable z here:

i) Target distribution is the approximation to the desired distribution which we may

know up to the normalising constant. This is P̃ (z).

21

ii) Proposal distribution. This is an arbitrarily chosen starting transition probability

q(z′|z) used to draw new samples. The aim is to construct the chain so that the

samples drawn look like samples from the actual distribution, P̃ (z).

iii) A function that samples from the proposal density.

Now, supposing the first state is z(τ), a candidate point z(∗) is generated from the

proposal distribution. The candidate is accepted as the new state with probability given

α(z(∗), z(τ)) = min

(
1,
p(z(τ))q(z(τ)|z(∗))

p(z(∗))q(z(∗)|z(τ))

)
. (2.23)

In practice, the choice is achieved by comparing the value of α(z(∗), z(τ)) with a value

drawn from the uniform distribution in the interval (0, 1) and accepting if α(z(∗), z(τ)) is

greater than this sample. If the candidate is not accepted, z(τ+1) = z(τ). We then draw

another sample from the proposal distribution and repeat until the specified terminating

conditions are reached. Theoretically, as τ → ∞, P (z(τ)) converges to the desired

distribution. Convergence is discussed further in Section 2.6.2.3.

First, a note on the choice of proposal distribution: The success or failure of the MCMC

simulation hinges quite heavily on the choice of proposal distribution. If it is too narrow,

a large proportion of candidate samples will be rejected and a large number of iterations

may be required before any useful information is gained from the sample. In contrast, if

it is too wide, a large proportion of samples are accepted and correlations may be high,

once again limiting the information conveyed by the samples. The choice of proposal

distribution may be the most important decision for an implementer to make, and is the

one for which no guidance truly exists.

The existence of a stationary distribution is a sufficient condition for irreducibility. This

condition informs the choice of proposal distribution, since the proposal must have a

wide enough girth to support the probability of reaching any state in the state space

with a positive probability in π. Both the blessing and the curse is that this guidance on

choosing a proposal distribution is not much guidance at all since almost any arbitrary

distribution chosen will fulfil the requirement. On the other hand, most distributions

may take an insupportably long time before the chain starts to converge.

MCMC is a supremely powerful technique allowing the characterisation of complex sys-

tems but one runs the risk of wasting resources with a too-lengthy run or never reaching

the equilibrium state. We wish to exploit the power of the system while limiting expo-

sure to, or consequence of, this weakness. Our question is whether it is useful to use the

technique to pre-sample and get a general idea of the terrain of the problem’s search

22

space to inform a more focused search, and if this can be done in a way that saves rather

than compounds overall complexity when in combination with a local search heuristic.

Such questions are addressed in Chapters 4 and 5, but are greatly influenced by the

implementation issues we now put forward.

2.6.2.2 Burn-in

A common practice in MCMC is to include a “burn-in” or “thermalisation”, a set of

samples drawn and discarded before samples are recorded for use in obtaining the re-

quired distribution. The reason for this is usually asserted to be removing biases caused

by high initial correlation between samples. Geyer asserts, however, that what is impor-

tant is rather to find a good starting point for the chain [41]. He asserts that if we could

start the chain somewhere in the middle of the equilibrium distribution, there would be

no bias to eliminate, and since there are other methods that can be used to find starting

points, there is no theoretically defensible reason for the practice [41]. Unfortunately, if

there truly is no knowledge of the posterior distribution there is no way to ensure the

starting point fulfils this requirement (or hope). Yet burn-in is still an accepted, most

common and expected addition to the Metropolis-Hastings initialisation process.

2.6.2.3 Convergence

To ensure that the chain does in fact converge, it is required that the system has the

property that starting from any point (vertex if we consider the chain a graph) in the

state space, an infinite random walk will always end at a certain point v. Since the

Markov Chain constructed is ergodic and stationary with respect to π(x), if X(t) ∼ π(x),

necessarily X(t+1) ∼ π(x) for all t, so X is converging to π. The condition of general

balance (eqn. (2.24)) must hold for a stationary distribution π, i.e.

πT = π , (2.24)

where T is the transition probability matrix, which leaves the distribution unchanged.

Restrictions on the transition probability to ensure convergence (and ergodicity) are:

• Connectedness, which implies irreducibility - there is a positive probability of

transitioning from any state to any other state. The method requires connectedness

so that the same result can be obtained regardless of where the chain starts.

• Aperiodicity - intuitively a periodic function implies that the chain does not end

while we require a finite chain.

23

When using Metropolis-Hastings method, one constructs a number of transition prob-

ability matrices along the chain, each individually maintaining π but not usually indi-

vidually irreducible with respect to the state space S [39]. In the case of a chain of such

transition probability matrices, we require eqn. (2.25):

∑
x∈S

π(x)T (x, x′) = π(x′) (2.25)

to hold for x, x′ ∈ S. This condition is both necessary and sufficient to prove invariance.

However, since the sum may be intractable to solve, the more stringent condition of

detailed balance may be introduced as a sufficient condition. If detailed balance holds,

π(x)T (x, x′) = π(x′)T (x′x) . (2.26)

If each T1, ..., Tn individually maintains detailed balance, so does T . Detailed balance

also implies that the chain is time reversible and that Metropolis-Hastings then reduces

to a Metropolis sampling.

The difficulty with MCMC methods is that the resultant distribution can only be claimed

conclusively to have converged to the equilibrium distribution after infinity iterations.

This means there are no better than approximate ways to calculate when to stop the

chain of the simulation, and there is no way to know how close an approximation the

result is to the real desired distribution.

A number of heuristic techniques are thus required to inform the decision of where to

stop the chain. There are a number of different methods which can be compared in

order to determine a suitable point of termination. Some are presented below.

Gelman and Rubin

Gelman and Rubin’s method requires that a number of independent parallel chains are

run, all with different starting points [46, 47]. A factor is then calculated that quantifies

how a parameter might shrink if sampling were to be continued indefinitely. The factor

includes a comparison between variance of the means of the m parallel chains (B), and

the m averages of the variances within the m chains (W). If the scale factor is close to

one, they posit that this means the chains are effectively unbiased by the starting points

and likely to approximate the target density. The method involves two steps:

i) Before sampling, it is required that an “over-dispersed” estimate of the target den-

sity is obtained so that suitably spread out starting points for parallel chains may

be generated.

24

ii) For each quantity, the last n iterations are used to estimate the target distribution

of the quantity using a Student-t distribution.

Using the symbols above, for m parallel chains, where df represents the degrees of

freedom, the factor is calculated as

√
R =

√
(
n− 1

n
+
m+ 1

mn

B

W
)

df

df − 2
. (2.27)

While Gelman and Rubin’s method has seen reasonable popularity, there are a few

points worth questioning. Firstly, it is computationally very inefficient to run a number

of independent chains when the same computation time may have been used simply to

run a single chain for longer and possibly get a closer approximation to the target distri-

bution. Secondly, the first step of getting over-dispersed samples from the target implies

that there must be knowledge of the limits of the sample space, which is unlikely if the

point of the MCMC simulation is to infer properties of a distribution without any direct

knowledge about it. Thirdly, it involves running the simulation for a certain number of

iterations, and then using the last n to calculate the diagnostic factor. The choice of n

encounters the same problem with which the original Monte Carlo method is afflicted. It

may be necessary to repeat this step several times and compare how the factors shrink,

costing extra time and computation, which may have been used with equal gain to run

the Markov Chain for longer.

Raftery and Lewis

The Raftery and Lewis method assists in determining the length that the Markov Chain

in MCMC algorithms should reach, determined by the properties of a short initial “pilot”

run [46, 47]. The premise is that the ergodic average of the chain is asymptotically normal

for large number of samples [44] by the central limit theorem. They estimate the value

of n that ensures that P (θ − ε ≤ θn ≤ θ + ε) = 1− α for deviation ε > 0 and 0 < α < 1

by using the formula,

n ≈ ︷︸︸︷var (θ)

[
Φ−1(1− α

2)

ε

]2

, (2.28)

where Φ(·) here denotes the normal cumulative distribution function and
︷︸︸︷
var (θ) is an

estimate of the variance of the ergodic average, based on the observations gained from

the pilot run.

Geweke

Used to determine when to terminate an MCMC sampler when MCMC is used to find the

25

mean of a function g(θ), this method assumes that the function g has a spectral density

that is continuous at a frequency 0 [46]. A set of MCMC samples after N iterations can

be viewed as a time series. Owing to the properties of Markov processes, the Geweke

method considers this a Wide Sense Stationary signal and uses the relationship between

the variance of a time series and its power spectral density Sg(ω) (where ω is angular

frequency). After N iterations, the estimated expectation of a function g with respect

to θ, is given by

ḡN =
1

N

N∑
i=1

g(θ(i)) . (2.29)

The asymptotic variance of the series is then given by Sg(0)/N , the power spectral

density over N . This estimated standard deviation calculated from the variance is called

the Numeric Standard Error (NSE). This value can be calculated at several points until

the desired precision is achieved.

The convergence diagnostic functions by taking the difference between means calculated

on NA iterations from the beginning of the chain, ḡ(θ)AN , and ḡ(θ)BN , NB iterations from

the end, and computing

ḡ(θ)AN − ḡ(θ)BN
NSE

(2.30)

Geweke suggests NA to be 1/10 of the total iteration count and NB to be half. Various

implementations of the Geweke diagnostic exist, one being to calculate correlations be-

tween the two subsets of the total number of samples and determining whether they are

sufficiently different.

2.7 Simulated Annealing: The technique

SA is a probabilistic search heuristic used in optimisation problems with complex search

space characteristics, such as multiple local optima, first introduced by Kirkpatrick,

Gelett and Vecchi [48]. The algorithm models a search on the physical process of an-

nealing where a substance is slowly cooled so that freezing occurs at the minimum

energy configuration (the, or a, minimum). General requirements are a finite search

space, a real-valued cost function, a set of neighbours for each state or neighbour gen-

eration method and a non-increasing temperature cooling function. Starting from the

first state, the algorithm creates a discrete Markov Chain with the evolution of states

in the chain determined on the basis of

i) whether the cost has decreased

26

Initialise starting parameters

Generate new state

energyt+1 < energyt ?

generate rand(0, 1)accept candidate

rand(0, 1) < exp(−∆E
kT

) ?

change temp

no

yes

reject

no

yes

Figure 2.3: Flow chart showing general steps of the Simulated Annealing algorithm.

ii) if the cost of the new state is not lower than the previous value, the state value may

still be accepted using a Boltzmann probability distribution. This feature enables

the algorithm to escape from local optima.

The general SA algorithm is given in Figure 2.3. The block rand(0, 1) represents the

generation of a random real number from a uniform distribution in the range 0 to 1

(excluded). While the SA algorithm is generic, some important aspects of the imple-

mentation are mentioned here. Detail about the generation of pseudo-random numbers is

important as unintentional biases that may be introduced within the generation method

may have unfavourable consequences. The perturbation function for generating neigh-

bour states, to be determined by the implementer, depends on the application and is

instrumental in the performance of the algorithm.

That concludes all the main background theory and applicable technical information

that forms the basis for all the work that follows.

Chapter 3

Related Work

Solution methods for scheduling

DP

Meta-heuristic Heuristic Optimal

B&B

LP

GA

Goal Programming EDD

WSPT

Memetic

Multi-agent

Neighbourhood search

Particle swarm

Recovering Beam

SA

Scatter search

Tabu search

LCL

Figure 3.1: Taxonomy of solution procedures for scheduling problems

27

28

This section is structured in a top-down manner, first providing an overview of the

main classes of algorithm used in the available literature to solve scheduling problems

as well as a clear taxonomy, and then detailing the approaches in subsequent sections.

In addition to the better known algorithms applied to the scheduling problem, some

different and specific methods have been developed. These are discussed briefly. The

final section investigates comparative works where the performance results of different

algorithms have been compared. While the focus is on single machine scheduling, other

works that have investigated multiprocessor scheduling are also mentioned.

Generally, solution methods may be divided into optimal or exact, and suboptimal or

heuristic methods. Heuristic methods include problem-specific and more general meta-

heuristic techniques for producing suboptimal results. The taxonomy of algorithms that

are discussed in this dissertation is given in Figure 3.1.

3.1 Simulated Annealing

Simulated Annealing has usually been used in the scheduling literature in cases where

there are other complicating factors to the problem. The objectives for the algorithm

vary, as do the applications and number of machines. It is rare to find literature on

SA being used for the basic single machine scheduling problem with weighted earliness

and tardiness penalties. Some only consider a single objective, or investigate multiple

machine scheduling, learning effects or more application-specific objectives.

Tan and Narasimhan investigate minimising tardiness on a single machine with the ad-

dition of sequence-dependent set-up times [49]. A rather unique situation is investigated

by Jozefowska et al., where each task can be executed in one of several modes, which

are divided according to activity resource requirements and duration [50]. They use

SA for minimising the makespan with pre-emption not allowed. Their process involves

assigning modes to jobs and feasible starting times for activities, resulting in an activity

list (schedule) and a list of execution modes. The researchers perform pre-processing on

the search space to eliminate non-executable or inefficient modes and redundant non-

renewable resources. Multiple machine single objective scheduling is approached using

SA by Kim et al., where they also consider the additional aspect of set-up times between

jobs of different lots [51].

3.1.1 Multi-objective

Similar to our work, Mahdavi et al. address the single machine scheduling problem to

minimise total weighted earliness and tardiness without pre-emption also with an SA

29

approach [52]. In their formulation, however, they assume controllable processing times

where job lengths can be expanded or compressed within certain limits. They seek to

find an optimal set of expansions, compressions and job sequence. They also assume

fixed due dates and not due windows as we do. Priority dispatch rules are employed to

find a suitable starting point for their SA algorithm using the net-benefit-compression

— net-benefit-expansion heuristic. An application-specific multi-objective problem is

approached by Saraiva et al. for generator maintenance [8].

An attempt is made to find a general solution to multi-objective scheduling problems

with two or more objectives by Loukil et al. [53]. Their method requires that a set of

“potentially efficient” points be initialised at the start and a family of weighting functions

be defined to direct the statistical search to potentially more efficient solutions. These

functions are used every iteration of the algorithm to update the set of potentially

efficient points. This adds complexity to the method and it can be seen that the choice

of weighting functions is both arbitrary and problem-dependent and can have a large

impact on the solution. The authors also concede that a large number of experiments

is necessary to determine the number of sets of weights that give “good” solutions. The

method also involves a filtering procedure where the solutions in potentially efficient

sets undergo pairwise comparison to remove solutions that area unfairly dominated by

any one of the objectives. This requires n choose 2 operations. It is our opinion that

this solution is unnecessarily complex and contains too many variables that have a large

impact on the solution quality and run time, and that there is space for more innovation

in multi-objective scheduling algorithms.

3.1.2 Learning effects

Wu et al. use SA for the single machine scheduling problem where the objective is to

minimise total lateness of work, which is somewhat related to our objective [54]. Their

contribution is to include a job position-based learning effect. This work is continued by

Wu in solving a two-agent single machine scheduling problem, in which two or more dis-

tinct families of jobs with different criteria are the subjects for scheduling [55]. Learning

effects in the context of transmission mode selection in LTE Networks are considered

by Wang et al. [56]. Fichera et al. also consider learning effects, as well as deteriora-

tion effects, in factories; specifically, the effect of workers having to learn and adapt to

different lots of products, and machine deterioration [57].

30

3.1.3 Neighbour generation

Neighbour generation is known to be a strategic part of the implementation of SA,

having a profound influence on the performance [8], yet most frequently in the literature

the same methods are employed i.e. selecting random positions and performing various

shift, swap, and insertion operations on tasks. Fichera [57], Kim et al. [51], Loukil et

al. [53], Jozefowska et al. [50], Tan and Narasimhan [49] and Wu et al. [54] are examples

that all use interchange and insertion of items. These methods both involve unnecessary

complexity and add to the algorithm run time, necessitating the storage and generation

of a number of arrays and performing numerous operations on them many thousands

of times, failing to take advantage of the general structure and pattern of the costs of

schedules when arranged in a lexicographical order.

3.1.4 Experimental methodologies and results

The most common problem instance generation technique used in the literature is that

proposed by Potts and Van Wassenhove [58] and expanded by Hall and Posner [3].

This generation technique is considered the classical approach [54, 59] and is also the

method we use in Section 5.1.1. Other researchers use real industry problems [8, 22]

or benchmark problems from libraries [50]. Unfortunately, the libraries are not open

access or are no longer available so we could not use these. They also appear not to

have variable due windows.

Mahdavi et al. generate problem sets with due dates from a uniform distribution [52].

In their experiments they also measure performance by relative percentage deviation

from the optimum. SA is run only five times on each problem instance to account

for statistical variation. As is shown in the results section of our work (Chapter 5),

statistical variation may be large enough that five runs is not adequate to find acceptably

representative averages.

Initial temperature is an important parameter to fix and is often determined by setting a

starting acceptance ratio and deriving temperature from that [51]. It has been asserted

that initial solution is also an important factor in algorithm performance and much of

the literature sees the use of priority dispatch rules or other methods to generate a

good starting solution [22, 51, 60]. The effect of starting point on the final solution

is investigated by Tan and Narasimhan, using “better than randomly generated” and

“randomly generated” starting points [49]. They find no evidence that “better than

randomly selected” initial solutions lead to lower objective function values in the final

solution (on average), prompting the researchers to conclude that a properly tuned SA

31

algorithm can produce good results regardless of the initial solution. It is also seen in

the literature that the number of iterations is another parameter to which the results

are sensitive [51], as can be expected.

Some researchers design the algorithm such that a large number of solution updates is

performed at every temperature value or within a temperature range [8, 49]. This num-

ber is yet another variable that is to be determined experimentally. Tan and Narasimhan

test 1, 50 and 100 such updates per temperature range and find that increasing this num-

ber from 1 to 50 results in almost twice the number of optimum solutions being identified

by the algorithm, but a further increase from 50 to 100 reduces this to 60% [49]. They

then conclude that it would probably yield better results to use a smaller tempera-

ture decay function than a larger number of updates at each single temperature value.

Raaymakers and Hoogeveen also find that the number of iterations with the same tem-

perature does not affect the final solution quality [22]. We rely on the conclusions of

these researchers and choose only to do one update at each temperature and use a log

temperature decay function to ensure a gentle reduction. Saraiva et al. run experi-

ments with 200 problem-generation loops per temperature [8] but do not investigate

alternatives or different values to allow comparison.

The experiments of Jozefowska et al. are based on a pseudo-random number generator

which is seeded with the same value at the start of every run [50]. This method may

introduce bias and casts doubt on the generalisability of the results. The results are

presented as a number of times out of the total number of runs in which an optimal

solution is identified. For 10-job schedules, average relative deviation without penalty

functions is 0.93% and sky-rockets to 110% maximum in 60 000 iterations, with perfor-

mance generally improving for larger problem instances. This trend may suggest that

the results we present in Chapter 5 could also be improved in larger problem instances.

Some experimenters give only running times, which does not allow for objective compar-

isons [60], or do not have instances of ten jobs and, most significantly, do not optimise

the same criteria as we do. Wu at al.’s experiments on SA with learning effect had re-

sults ranging from an average percentage deviation of 1% to a maximum of 1371% and

even 3867% for 12-job instances [54]. Such big discrepancies indicate that more work is

required on scheduling using SA to get more consistent results.

Many researchers use mean CPU run times of their algorithms as a performance measure

(examples are [16, 52, 54]) but neglect to present the complexity order. This makes

comparisons fairly meaningless as myriad factors affect running times, including the

platform (hardware and Operating System), other software running on the platform,

the language in which the algorithms are coded, and the developer’s coding technique.

32

This is why we have opted not to record running times and only consider complexity

order in our work.

3.2 Genetic Algorithms

GAs were developed by Jon Holland and his students, with the intent of investigating a

more general method than had previously been developed to apply natural adaptation to

computer systems [61]. The GA consists of a starting set of candidates - usually a subset

of the search space. These are called the initial population chromosomes. An important

consideration to be made in setting up a GA is the representation of the chromosome

structure to be used, since this can affect the final result significantly. In the case of task

scheduling, a chromosome is usually represented by a permutation of a job sequence,

i.e. a schedule [5], while individual jobs characterised by their processing time represent

genes [17, 62, 63] with additional constraints imposed where necessary. Batch [6, 16, 62]

and multiprocessor scheduling [6], or scheduling with pre-emption allowed [16, 63], may

require more exotic representations. The representation structure directs the application

method of selection and the genetic operators.

A fitness function is used to quantify the performance or quality of candidate solu-

tions, and rank and select candidates accordingly. Operations on chromosomes include

crossover and random mutation to produce future generations. GA is differentiated from

other search methods in that several solutions are generated and carried over at each

iterative step of the algorithm.

Selection methods by which chromosomes are chosen to produce offspring are generally

divided into roulette wheel, rank, steady-state and elitism. In roulette wheel, the pro-

portion of an individual’s fitness value to the average fitness value of the population is

used as the expected value of the number of times that individual is chosen to reproduce.

The actual selection for each new generation is performed statistically based on these

expected values [61]. This method is prone to premature convergence as insufficient

exploration is a common affliction. In elitism some number of the fittest individuals

is always retained at each generation, without allowing the destruction of their genes

by operations such as mutation or crossover. This is usually used in addition to other

selection methods. In rank selection, individuals are ranked according to fitness. The

expected value then depends on the rank rather than proportional or absolute fitness.

Ranking reduces the overwhelming effect of large fitness differences on the selection,

and so reduces the likelihood of premature convergence of a population. In steady-state

selection, only a few of the least fit individuals are replaced at every generation by the

mutation and crossover operators.

33

These background points are made here to highlight the level of complexity, both com-

putationally and practically, involved in implementing the GA, which is to be contrasted

with the comparatively simpler SA algorithm.

In the literature on single machine scheduling using GAs there is very little that considers

the same scheduling criteria as we do in this work. Of the more closely related work

is that of Hamidinia et al. who seek to minimise total weighted tardiness and earliness

of jobs without pre-emption but in the case of a batched delivery system [16]. The

authors also make the simplifying assumption of a due date as opposed to a due window

as we do in this work. Other batch approaches are those of Zade and Fakhrzad who

find the number of batches in which to divide the jobs, as well as the sequencing of

jobs in the batches to enable maintenance to take place after a predetermined time

period [62]. Other criteria considered in the literature are minimising completion time

variance between completed jobs [18] along with the number of tardy jobs; minimum

flow time and maximum earliness [63]; number of tardy jobs and maximum earliness

assuming fixed due dates [17]; makespan with multiple heterogeneous processors [6, 62]

within the constraint that the machine may be taken out of service for maintenance

at certain times and with pre-emption allowed; as well as mixed criteria more closely

tailored to the context [7]. Köksalan et al. aim to find all efficient schedules in the

search space [63].

While many researchers start with a randomly selected population of chromosomes, some

have employed certain heuristics to find a suitable starting point. For example, Köksalan

and Burak Keha develop a heuristic that finds an approximately efficient solution set

for a specific number of tardy jobs as the seed for the initial population [63]. This is

also used by Jolai et al. [17]. An interesting method for generating neighbour solutions

is employed, which follows from the representation of solutions as points in [0, 1]n-space.

Chromosomes are generated at certain Euclidian distances from the heuristic solution

by first randomly generating a direction in [−1, 1]n-space and then finding a vector that

has the same generated direction and the required length. The new vector is added to

the present solution and scaled appropriately to get tasks in the given direction each

in the range [0, 1]. Since random number generation may be resource intensive, the

authors use an “alias method” to reduce the number of random numbers to generate, to

1. However, the method requires a sorting algorithm to be run at least as many times

as there are iterations, and entails many vector operations, both of which carry a major

computational burden.

For the batch scheduling situation of Hamidinia et al., steady-state selection is employed

with the top
√
n individuals chosen to reproduce [16]. Mutation then occurs with 50%

probability. Additionally, the number of mutation points depends on the number of

34

consecutive generations with unchanged best fitness value in an effort to rescue the

algorithm from local optima in a way that is in proportion to the severity of the situa-

tion. In [62], roulette wheel selection is used, with single-point crossover, while mutation

frequency is also correlated to the number of iterations with an unchanged best solu-

tion. Partially matched crossover is used and mutation is implemented by swapping

job positions, while a combination of crowding and elitism is used for replacement. All

offspring with improved performance over the current population replace the equivalent

number of chromosomes from the current generation, thus ensuring the best-performing

chromosomes from the current generation are preserved. Crossover rate, mutation rate,

population size and number of generations are included in the parameters investigated.

In this work, mutation is carried out depending on the entropy of the population – when

the entropy of a generation is below a certain threshold value – and repeated as many

times as is required for the entropy to be raised to, or above, the threshold.

Roulette wheel selection is also used by Jolai et al. [17] and tournament selection is

employed by Köksalan and Burak Keha [63], both with elitist strategy, while mutation

occurs by choosing one chromosome and one of its genes randomly and changing the

value of the chosen gene with 80% probability. Jolai et al. use a less effective fixed

probability of 60% crossover and 40% probability of mutation [17]. In contrast, Gupta

and Kumar experiment with 90% crossover and 5% mutation rate [18]. Since all the

algorithms have differing criteria and problem sizes, it is not meaningful to compare

results so this has been omitted by intent. The impression from this section is that GAs

are highly computationally expensive and intricate to implement.

3.3 Tabu Search

Generating weighted earliness-tardiness problems similarly to the method we use in this

work, Wan and Yen investigate the performance of Tabu search methods in solving the

problem with task sizes of 15 to 80 jobs [30]. A weakness is that worst- or average-case

computational complexity is not given mathematically; only running times are given,

which does not allow for fair comparison. It is claimed that their search method usually

obtains deviations within 5% of the optimal value, with an average 2% deviation for

15-job problems. The worst-case values or variances are not given, which may lead to

misrepresentation of the actual performance. Hino and Ronconi address the earliness-

tardiness problem using Tabu Search, but include heuristics for finding a suitable starting

schedule [33]. They find deviations ranging from 0% to 0.25% from the benchmark (not

the optimal) for ten-job problems, solving 216 of 280 instances optimally. The complexity

of this algorithm is O(n2). Wodecki finds errors below 5% for 40-job earliness-tardiness

35

problems after 2n2 iterations, but also uses another algorithm to find a suitable starting

point [64]. Other related Tabu Search algorithms for scheduling are for the total tardiness

problem [65], minimising makespan [64], number of tardy jobs and average flow time [66]

and parallel machine scheduling [67].

3.4 Branch and Bound

The Branch and Bound (B&B) procedure is a suitable optimal algorithm for schedul-

ing problems, more storage efficient than other optimal algorithms such as dynamic

programming and, as such, has been used in a number of works that seek optimal sched-

ules [4]. Yano et al. present a B&B algorithm as optimal with heuristics used to provide

an upper bound to prune the search space [68], as do Ronconi and Kawamura [69] and

Wan and Yen [59]. Yano and Kim determine that the optimal timing algorithm for the

special case of equal weights is O(n2 log n) [70]. Tan et al. find that B&B would be the

preferred solution for smaller problems compared to SA and GAs since it yields an op-

timum solution in an acceptable time period [71], however we seek a solution that could

be applicable to both small and large problems. Their particular problem also considers

sequence-dependent set-up times in the minimisation of total tardiness. This algorithm

obtains upper bounds by starting with depth-first branching, so that each sequence is

traversed as far as possible before stopping or turning back. Mazdeh et al. compare the

performance of a B&B algorithm with a Dynamic Programming (DP) method and show

that using B&B gives significantly better efficiency than the DP method owing to the

high time complexity of DP [60].

3.5 Dynamic Programming

The method of Dynamic Programming has received quite a lot of attention in recent

years owing to its general nature that allows it to be used to optimise a wide variety of

systems, including non-linear systems. A number of researchers have used DP in solv-

ing scheduling optimisation problems and, in particular, the single machine scheduling

problem. See [27, 31, 72–77] for examples. DP does have its disadvantages, though.

It is not the most efficient of optimisation methods. That is why the use of certain

precedence or dominance properties of the problem to prune the solution search space

is a recurring theme in DP research.

Yano and Kim’s investigation of the single machine scheduling problem with weighted

earliness and tardiness shows that for a specific subclass of the problem under specific

36

conditions, rules of precedence can be found with a simple sorting algorithm [27]. This

then provides the optimal sequence and so simplifies the process of obtaining the optimal

solution. The optimal timing is then found easily using DP, on the assumption that a

sequence is given. The conditions of the subclass of problems are similar to those used

by Chand et al. [72]. The performance of the dynamic algorithm or the combination

of sorting and timing algorithms are not evaluated. DP is used by Tanaka and Sato

who propose an exact algorithm for the precedence-constrained single machine problem

that is based on Sublimation Dynamic Programming [78]. A solution is found for the

objective of minimising general additive costs instead of a specific restrictive function.

They claim that their algorithms outperform all others up to that date (2013) on the

same non-precedence-constrained problem set.

Shabtay also presents a DP-based optimisation algorithm for a bi-criteria batch schedul-

ing problem with rejection, to minimise total completion time as well as the total rejec-

tion cost incurred when the scheduler is forced to reject jobs [79]. The author observes

that the set of accepted jobs will have an optimal sequence where the SPT rule applies.

This assumption is then used as the basis for the DP algorithm. The algorithm is proved

to run in O(n5) time. It is thus very computationally expensive.

Ibaraki summarises Successive Sublimation DP (SSDP) by saying that it is a method

that executes a series of Dynamic Programming recursions, refining or pruning the

underlying state space as it continues. SSDP does this by eliminating states from the

search space as soon as it is determined that they do not lead to the optimal solution [74].

The value that this SSDP algorithm adds over other algorithms of its time (such as B&B)

is that its use is not restricted to non-decreasing objective functions, and so has a much

more general field of application. State space relaxation methods are introduced for the

algorithm and the percentage error computed and compared with the optimal solution.

One relaxation method uses discrete time and introduces job penalties. For this case, the

study shows percentage errors of the method’s solutions as low as 0.23% in 85 iterations

and up to 3.13% in 80 iterations, for a range of problems, with N = 30. They obtain

still more accurate results when starting with upper bounds found by simple heuristic

procedures, introducing the constraint of maintaining the linear order of jobs, and then

solving the constrained version of the DP to improve the accuracy of the upper bound

found by heuristic. In many cases, this method results in 0% error. In various simulation

experiments, the running time of SSDP was found to be significantly lower than for the

original DP, when the number of states (i.e. jobs) is above a certain value.

SSDP is also used by Tanaka et al. as a basis for their proposed algorithm [78]. In this

version of SSDP, Lagrangean relaxation is applied and the relaxed problem solved to find

the lower bound, and then constraints are added successively to this problem until the

37

error bounds disappear. Their numerical experiments were carried out using problem

instances from the open source OR-Library. Processing time, tardiness weight and due

date were generated from a uniform distribution, and the CPU times were recorded for

both DP and their SSDP solution.

3.6 Other hybrid or combined algorithms and approaches

Estimation of Distribution Algorithm (EDA) is a probabilistic algorithm with a com-

plexity of O(n2). In [80], EDA is combined with GA to improve the effective complexity

of EDA. The addition of genetic operators to EDA prevents over-fitting and premature

convergence, while EDA is used to characterise parent solutions in the GA, so that

favourable features may be maintained.

Yannibelli and Amandi combine SA and an evolutionary algorithm, where the multi-

objective SA algorithm is integrated into a multi-objective evolutionary algorithm [81].

In their formulation, the stage of the evolutionary algorithm and level of diversity of

the population changes the behaviour of SA. During the earlier iterations of the evolu-

tionary algorithm, SA is used to reduce the now diverse population of solutions for fine

tuning. Towards the later stages of the evolutionary algorithm, SA is used to increase

the diversity and encourage exploration to prevent premature convergence. The problem

addressed in this work is very different from ours, however, since they look at scheduling

starting times of project activities and assigning the most effective human resources to

those activities so as to minimise makespan.

Ali and Bijari develop a two-stage heuristic approach for minimising the sum of maxi-

mum earliness and tardiness [82], which is similar, but not the same, as our considered

objective. The first step of their heuristic involves finding the approximate position of

jobs in the sequence, and the second step refines the positions using an Hungarian al-

gorithm. Of problem instances with ten jobs, their algorithm solved 18 of 20 problems

optimally, with an average percentage deviation from the optimal of 0.28%. In another

set of problems, 11 of 20 were solved optimally with an average deviation of 3.34%. Ji

et al. find an O(n4) solution algorithm for the single machine scheduling problem with a

common due window and rate-modifying activity, to find the minimum cost of earliness,

tardiness, due window start time, size and resource consumption [83]. They also provide

an O(n2 · log n) algorithm for the special case of identical rate of ageing for all jobs.

Cheng and Cheng show that the algorithm of Ji et al. is incorrect, but remains valid for

the case of a common modifying rate of 1 [84].

38

A greedy randomised adaptive search procedure is employed for the single machine

scheduling problem for minimising total tardiness, with the added complication of sequence-

dependent set-up times in [85]. Researchers have investigated other approximation al-

gorithms [86] and memetic algorithms (which include scatter search) [87, 88], claimed

to combine the strengths of a hierarchical population approach (such as in GA) and the

“intensification power” of local search procedures [88]. Neighbourhood search [89, 90],

particle swarm [91] and recovering-beam search [32] are all examples of alternative tech-

niques that appear in the literature. Problems modelled as multiple competing agents

are presented by Perez-Gonzalez and Framinan, who review existing solutions [92] and

Mor and Mosheiov, who present a polynomial time solution for a specific two-agent prob-

lem [93]. The proposed Goal Programming method of Li, Fonseca and Chen promises

to ensure a global optimum solution is found, but fails to highlight the trade-off of

increased computational complexity [94]. Linear Programming solutions that include

certain upper bounds are presented by Ng, Cheng and Kovyalov [95] and an analysis of

a Linear Programming heuristic by Potts shows that for the minimisation of maximum

completion time on two parallel machines, a linear-time algorithm can be used [58].

3.7 Metropolis-Hastings Markov Chain Monte Carlo

Markov Chain Monte Carlo methods have arguably been the most influential algorithms

of the 20th century, being used in fields as varied as Physics, Engineering, Econometrics,

Statistics and Computer Science. Surprisingly, this kind of Monte Carlo does not appear

to have been used in scheduling applications at all, let alone the Metropolis-Hastings

method. Developments are ongoing with improvements such as adaptive MCMC [96–99],

Hamiltonian Monte Carlo [100, 101], reversible jump MCMC [102] and various papers

on convergence diagnostics [46, 47, 103, 104].

3.8 In summary

This concludes our account of some of the work most relevant to ours. We see that

most approaches to the problem are quite different from our own, with no previous work

combining SA and Metropolis-Hastings MCMC in the way we have. We hope that this

has highlighted some gaps and started to provide a justification for the work we present

here. Further motivation will be provided in later chapters as appropriate.

Chapter 4

Simulated Annealing with

Metropolis-Hastings pre-sampling

The details of our new hybrid algorithm, which we call SAM for Simulated Annealing

with Metropolis-Hastings, are now presented. Briefly, in this algorithm a pre-sampling

sequence is first performed to funnel in on one section in which further search may be

done so that a solution to the single machine weighted earliness-tardiness problem can

be found that is near-optimal (or possibly even optimal in some cases) in a way that

is less computationally intensive than existing methods. The pre-sampling is done by

Metropolis-Hastings MCMC to infer the section that is most likely to contain an optimal

or low-deviation solution. Once a section has been chosen, the search space of possible

schedules is greatly reduced and SA can be used more efficiently to find a solution.

4.1 Formulation

In this section we formulate and motivate how the problem is modelled as a Metropolis-

Hastings (MH) sampling problem and how the interpretation leads to a more efficient

search procedure. We start with some notation and definitions.

Figure 4.1 represents the evolution of the Markov Chain. The figure shows that states

i are drawn from the set of section indices I = {1, 2, . . . ,m} with the prior distribution

on

I ∼ P (I) : p(i) =
1

m
∀ i ∈ I . (4.1)

39

40

� �

���

, �

���

� �

���

, �

���

� �

�����

, �

���

�

���

�

���

�

���

�

���

�

���

�

���

�

���

�

���

���

�

|�

�

� ���

�

|�

�

, … , �

�

����

�

|�

�

, �

�

, �

�

����
�

|�

�

, �

�

�

 �

���

|�

���

 �

���

|�

�����

 �

���

|�

���

Figure 4.1: The evolution of the Markov Chain with sample data gathered on each
state change

The set I divides the full set of schedule permutations S into sections 1 to m. Each

index i ∈ I maps to the set of schedules S(i) ⊂ S within a range i of size |S|m = n!
m for an

n-job schedule, as per eqn. (4.2):

i→ S(i) = Sx, Sx+1, ..., Sx+[n!
m

]−1 . (4.2)

The target distribution is the posterior distribution of I, which is inferred from data

D gathered after every sample drawn from I. We require a function to calculate the

likelihood that a chosen section i contains an optimum schedule, which we can calculate

from the cost of schedules in the chosen section. This likelihood is a representation of

our belief that the optimal schedule lies within the range S(i). An example of a way to

get a likelihood value of a specific section i from the costs is eqn. (4.3).

L =

(min
s∈S(i)

γ(Ss))
−1∑

j∈I min
x∈S(j)

γ(Sx)−1
(4.3)

Instead of using all schedules in S(i), a value is estimated from cost values of a subset of

schedules sampled in i i.e. the evidence dataset Di ⊂ D, where D is all samples drawn

from all sections thus far, as shown in eqn. (4.4).

L(D|i) =

(
min
s∈Di

γ(Ss)

)−1

∑
D

(
min
x∈D

γ(Sx)

)−1 (4.4)

We draw the evidence dataset Di from a uniform distribution over S(i). We make

the assumption of a uniform distribution as no further information is available about

the statistical properties and shape of cost values in each section. This assumption is

41

maintained throughout the procedure as it is not the goal in this pre-sampling process

to define the nature of the distribution function within each section. The posterior

P (I|D) ∝ L(D|I) is updated every iteration and emerges from the MH procedure after

a sufficient number of iterations.

The proposal distribution must be defined in a way that encourages wide exploration

of the search space, and we must ensure that every section is sampled at least once so

that the likelihood value can be updated with more realistic values. For this reason, we

initialise the algorithm by drawing a sample from the prior P (I) as the first state value.

Data from schedules within the range of the sample state are gathered and the likelihood

calculated based on the data. As part of initialisation, this process is repeated once in

every section, setting p(i|Di) as per the data for all i ∈ I, and noting that

P (I|D) =
L(D|I)× P (I)

P (D)

to scale appropriately. All subsequent samples are drawn from the conditional proposal

distribution q(i(t)|i(t−1)), and transition to the next chosen candidate depends on the

acceptance probability, eqn. (4.5):

α =
p(i(t)|D(t)

i)q(i(t)|i(t−1))

p(i(t−1)|D(t)
i)q(i(t−1)|i(t))

. (4.5)

The value p(i|Di) is updated every time a new sample is drawn from the set of sections,

because the new samples change the denominator of the likelihood. This process con-

tinues until termination conditions are met, at which point a discrete piecewise-defined

function has been quantified representing the likelihood over section indices of each sec-

tion containing an optimal schedule. The section with maximum likelihood is selected,

after which SA is performed within this section i.e. only considering schedules within

the selected section.

SA is still useful for a fine search because it is able to start broadly according to the

results of the rough search and then home in progressively on an optimum, which is now

more likely to be a global optimum since the pre-sampling method has concentrated on

exploration of the state space. SA then performs exploitation in a more fine-grained

search on a smaller search space.

Having formulated our approach to the problem, we now provide motivation for some

significant elements and assumptions.

42

(a) Dataset 5

(b) Dataset 8

Figure 4.2: Bar graph of the indices of the schedule permutations against the inverse
cost of the corresponding schedules. A certain general clustering of similar cost values

can be observed

43

4.2 Motivation for the section-based pre-sampling approach

The foundation for the solution methods to the single machine scheduling problem pre-

sented in this work is the way the problem is visualised. The search space S is the

set of all permutations of the base schedule, with indices corresponding to schedule

Sx 7→ x ∈ {0, 1, 2, ..., n! − 1} and the goal is to find the index corresponding to the

permutation with the lowest cost γ, i.e. we seek the index of eqn. (4.6).

min
S
γ(Sx) = min

S

∑
j∈J

(w′jEj(x) + w′′j Tj(x))

 (4.6)

The search space is visualised as a discrete function in two-dimensional space with the

horizontal axis as the set of indices of the schedule permutations sorted in lexicographical

order and the vertical axis as a function which represents the likelihood that that schedule

is the optimal and has the lowest cost. It is reasonable to assume that the likelihood of

an index being optimal is inversely proportional to the cost, so the discrete likelihood

function is assumed to take the form c · 1
γ(Sx) over all Sx in S for c some normalising

constant.

When the schedules are sorted into lexicographical order, observations of the cost over

the x-space show that the values are naturally grouped or clustered roughly into sections

in which the energy values fall within certain minimum and maximum energy limits.

This behaviour is evident in plots for various different problem instances. It is inherent

from the nature of the cost calculation and the sorting order, and is thus independent

of the specific sets of processing times or penalties, although the weighting values may

mask this behaviour somewhat. The example graphs of permutation indices with their

corresponding cost values (Figures 4.2a and 4.2b) illustrate this clustering-like behaviour.

We claim that the range of total weighted earliness and tardiness (i.e. γ) within a

section is, in general, less than the range of γ-values of schedules in different sections.

We motivate by showing that the expectation of the difference in cost between schedules

in the same section is less than the expected difference between costs of schedules in

different sections, assuming specifically lexicographical ordering.

We proceed by noting that when job sequences are sorted lexicographically, for any

number of consecutive sequences, there will be a fixed part and a variable part. The

fixed part is the part of the sequence where certain job positions are fixed. For example,

we consider consecutive sequences ordered lexicographically in A to D:

A: 1 2 3 4 5 6 7 8 9 10

44

B: 1 2 3 4 5 6 7 8 10 9

C: 1 2 3 4 5 6 7 9 8 10

D: 1 2 3 4 5 6 7 9 10 8

The set of sequences all have the positions of 1 2 3 4 5 6 7 fixed. Then sequences A and

B also have the position of job 8 fixed, while sequences C and D have the position of 9

fixed. The cost γ of a schedule depends on the position of jobs, which determines how

early or late each job is. If the variable part is varied from the end of the sequence all

sequences sharing the fixed part will also have a fixed cost component. We can represent

the cost as eqn. (4.7):

γ = c+ γvar = c+ γ′var + γ′′var (4.7)

where we see the variable part of γ decomposed into the part influenced by earliness

penalties (γ′var) and the part influenced by tardiness penalties (γ′′var).

We can say there exist permutations Π1 = {α1, . . . , αn} and Π2 = {β1, . . . , βn} such

that α1 = β1, α2 = β2, . . . , αi−1 = βi−1 but αi < βi then Π1 < Π2. In this way the

lexicographical ordering assigns permutation indices N(Π) to permutations Π such that

N(Π1) < N(Π2) ∀ Π1 < Π2. The lexicographical metric [105] is defined as eqn. (4.8).

N(Π) =
n−1∑
k=1

(lk − 1)(n− k)! + 1 (4.8)

where lk denotes the ordinal number of element αk in the sequence. The distance between

two permutations is |N(Π2)−N(Π1)|. For permutations 1 and 2 in the same section,

and permutation 3 in a later section,

|N(Π2)−N(Π1)| < |N(Π3)−N(Π1)|
n−1∑
k=1

(lk(Π2)− 1)(n− k)! <
n−1∑
k=1

(lk(Π3)− 1)(n− k)! .
(4.9)

We know Π1 = Π2 = Π3 ∀ {lk = 1, . . . , i− 1} and Π2 = Π3 ∀ {lk = 1; . . . ; j − 1} for

j < i. In each permutation, the ordinal number of i increases and n decreases so Π1 has

i, . . . , n− 1 the latest and Π3 has i, . . . , n− 1 the earliest. This means

Ci(Π1) > Ci(Π2) > Ci(Π3)

∴ Ci(Π3)− Ci(Π1) > Ci(Π2)− Ci(Π1) .
(4.10)

For every job position shift later, another job must move earlier. However, we generate

earliness and tardiness weights as per Section 5.1.1 so that on average w′ = 0.5w′′. This

45

means that tardiness dominates the cost calculation over earliness and, on average, the

increase in weighted Ci is greater than the decrease in weighted Ci when jobs are shifted

in position, which is related to the cost since

E = max(ej − Cj ; 0) and T = max(dj − Cj ; 0) .

In a section, the maximum expected increase in Cj can only be within average processing

time multiplied by the maximum position change j(in − section), which is less than

j(between− section),

∴ E[∆Cj(in− section)] < E[∆Cj(between− section)] .

γvar is directly related to the number of job position changes j. As observed, both the

maximum and expected number of position changes within a section are smaller than

the maximum and expected number of changes in the whole search space, and so

max j(in− section) < max j(between− section)

∴ E|γvar(in− section)| < E|γvar(between− section)|
(4.11)

since γ′′var > γ′var .

In the example, all four sequences will have equal c for jobs up to 7 while A and B will

further share the same cost incurred by job 8 and sequences B and C will share the

cost component of job 9. Therefore, consecutive schedules A and B will have a larger

equal cost component c in common with each other than with sequence D, which is not

consecutive and further away; and similarly for C and D vs. A and B. The greater the

number of adjacent fixed positions between sequences, the greater the fixed part of the

cost and the smaller the variable part of the cost is.

In general, this means that the cost values of sequences that share a large fixed compo-

nent will be more similar than the cost values of sequences that have fewer job positions

in common. Since schedules are sorted lexicographically, with job position changes oc-

curring from the end, job sequences in the same section will generally have a larger fixed

component and therefore will have similar costs compared to schedules in another non-

adjacent section that would necessarily have a larger variable component, while they

may have a larger fixed portion within the section.

From this, we conclude that, on average, the plot of the cost values of schedules sorted

lexicographically will display a certain structure.

46

To illustrate the relative ranges of cost values between and within sections, we start by

looking at the maximum difference within a section.

Suppose a section has width 36288, such that schedule 1 is 1 2 3 4 5 6 7 8 9 10. Using

the C++ sorting algorithm, the final schedule in the section is 1 2 10 4 6 5 9 8 7 3.

The maximum position changes are jobs 10 and job 3, both moving 7 positions. Job 10

moves to position 3 and job 3 moves to position 10. We shall call these the critical jobs.

The maximum cost to the schedule 1 owing to job 10 in position 10 occurs if it has the

highest tardiness penalty, the earliest possible due date and the longest possible pro-

cessing time. This is because tardiness weights are always larger than earliness weights

using the problem generation technique in Section 5.1.1. Without loss of generality, let

RDD = T = 0.2 for illustration. Let p10 = 100, and for the latest completion time, let

pj = 100 ∀ j ∈ {1, ..., 10}. Let job 10 have the maximum tardiness weight w′′10 = 10.

Maximum tardiness penalty occurs when the job has the earliest possible end of due win-

dow, d10 given the above, so earliest d10 occurs when it is assigned the earliest possible

centre of due window and the smallest possible window size as in eqn. (4.12).

d10(earliest) = (1−T − RDD
2

)CT + 0.5× 1 = (1− 0.2− 0.1)× 1000 + 0.5 = 700.5 (4.12)

The cost of job 10 at position 10 is therefore given by eqn. (4.13).

γ10(Π(1)) = max{Cj − dj ; 0} × w′′10 = (1000− 700.5)× 10 = 2995 (4.13)

Job 3 has its maximum cost in the first schedule at position 3 if it is assigned the latest

due window and the maximum earliness penalty. This makes e3 = 999.5, d3 = 1000.5

and w′3 = 9.9. The maximum cost of job 3 at position 3 is then

γ3(Π(1)) = max{e3 − C3; 0} × w′3 = 6925.05 . (4.14)

Now suppose that job 10 is moved to position 3 as in schedule 36288: 1 2 10 4 6 5 9 8

7 3. No further properties of the job are changed so it is now scheduled too early. The

start of the job’s due window is

e10(1− T − RDD

2
)CT − 0.5× 1 = 699.5 (4.15)

and it is now completed at time 300.

The cost of job 10 at position 3 with maximum earliness weight, w′10 = 9.9 is now

γ10(Π(36288)) = max{e10 − C10; 0} × w′10 = 3955.05 . (4.16)

47

Job 3 is moved to position 10, now having a completion time C3 = 1000. This is within

its due window so it incurs no penalty.

All other jobs in schedules 1 and 362288 have moved fewer positions than jobs 10 and 3.

Since job 10 was given the greatest tardiness weight and actual lateness, and job 3 was

given the greatest earliness penalty and actual earliness, the cost difference for any other

job must therefore be lower and these moves are less significant to the total variance on

average.

The maximum difference within the first section is given by

∆γ(within− section) = γ(Π(1))− γ(Π(36288))

= 2995 + 6925.05− 3955.05

= 5965 .

(4.17)

Now the maximum difference between sections is dependent on the maximum number

of position shifts possible, i.e. 9, shifted by job 10 forward, and by job 1 to the end. We

have said that job 10 has the highest tardiness penalty, the earliest possible due date

and the longest possible processing time, with pj = 100 ∀ j ∈ {1, ..., 10}. Job 10 still

has due window start at e10 = 699.5, but completion time C10 = 100. The cost it incurs

at position 1 is given by

γ10(Π(3628800)) = max{e10 − C10; 0} × w′10 = 5935.05 . (4.18)

Job 1 incurs maximum penalty at position 1 if it has the latest due date and largest

earliness penalty and is completed at C1 = 100. This means the cost incurred is

γ1(Π(1)) = 8905.05. When job 1 is moved to position 10, it incurs no penalties as

it is within its due window. The maximum that job 3 can move is from position 3

to position 9 since position 10 is occupied. It is completed at time 900 and still has

d3 = 999.5. This makes the cost incurred with maximum tardiness penalty 995.

The maximum difference between sections is as per eqn. (4.19).

∆γ(between− section) = γ(Π(1))− γ(Π(3628800))

≈ 18780.55− 6930.05

= 11850.55 > γ(within− section)

(4.19)

We conclude that the maximum difference between sections is greater than that within

sections, so the range of costs between sections is greater than that within sections.

48

The sorting algorithm sorts the vector by increasing values. This means that values are

not in strictly increasing distance from the first schedule in terms of a metric such as the

Lee distance. Should a different algorithm be used to generate the permutations, such as

Steinhaus–Johnson–Trotter [106] or Heap’s algorithms [107], consecutive schedules are

likely to be more reflective of a monotonically increasing distance metric, making relative

differences in cost values within and between sections clearer. An evaluation of the

algorithm we develop when used on schedules permuted by these and other algorithms

is left as future work. Please note, however, that our method is, in fact, a general one

and can be used for any objective function and any kind of cost value distribution. As

will be seen, it is likely to be less accurate for a more uniform cost distribution but it is

still applicable in any case.

For this reason, as well as the obvious largely statistically varying nature of all quantities,

we claim clustering in this work in a general sense, not an absolute or exact sense. In

general, in a new section, the critical job will move another position to the left, usually

creating an even greater difference in cost, since tardiness overwhelms earliness, and

other moves in general have less impact on the cost. This shift of the critical job creates

a new norm around which the schedule costs cluster. This claim is made for the general

case and shows the usual trend to be expected. It does not apply to every schedule,

since the problem is NP -hard.

This behaviour can be exploited to assist in finding the global optimum more efficiently.

The x-space is large for an SA algorithm to traverse and still poses a threat of insufficient

exploration causing the algorithm to settle at a local optimum and miss the global

optimum. For this reason, we devise a pre-sampling method to narrow the search space.

To this end, the x-space is sectionalised into a number of intervals equally dividing the

total space. Looking at a cost vs. index graph, a rough function of the sections vs.

an average cost over that section is revealed. Since the likelihood must be proportional

to the inverse of cost, a rough function is similarly assumed to exist for the likelihood

function and, by extension, the probability distribution. The task of pre-sampling is to

determine the section in which the optimum schedule is most likely to be found so that

SA can be run within the limited search space of that section to find the solution with

greater efficiency than without the knowledge of the section. The pre-sampling method

ideally should have the following attributes:

i) Allow the estimation of unknown and complex functions from relatively few samples.

ii) Take advantage of the inherent structure of the index-cost function.

iii) Traverse large search spaces to estimate the function.

49

iv) Yield the same answer regardless of the starting point.

v) Work without knowledge of the normalising factor that converts the likelihood func-

tion 1
γ to a probability.

Metropolis-Hastings MCMC meets these criteria and, as such, has been chosen for pre-

sampling in the novel hybrid algorithm presented here. Here, the Markov state is given

a special meaning which is not just the index of the schedule but, most importantly, the

section to which it belongs.

The full set of schedule permutation indices is subdivided into intervals. The sampling

activity consists of selecting a section and then choosing indices within that section so

that a concrete cost value can be used in the MH acceptance probability calculation.

Every time an interval is sampled, “inner” sampling is done per interval. No data

structures are required to be constructed for the search in this case. The relevant section

in the range 0 to m − 1 is simply determined by the floor of the index
|section| where index

numbering begins from 0, and |section| denotes section size. An array of limits is kept

and the bounds looked up. If a search algorithm were required, the minimum complexity

would be lower bounded atO(log n). In this case it has been kept to a constant, excluding

the array storage. This method of uniform sampling is a constant time operation where

the number of samples taken is some ratio of the number of permutations of the n jobs.

The question is whether the search space can be reduced effectively by its employment.

The only knowledge we have of the actual distribution π is the assumption by intuitive

understanding that it must be proportional to 1
γSi

but the constant of proportionality

is unknown. This is the classical situation for the use of Metropolis-Hastings. The

difference is only that, not only can the real distribution not be defined, but the target

distribution for the MH algorithm is discrete and cannot be defined either, but a value

proportional to it can be calculated for each sample. Samples can be drawn from a

proposal distribution and accepted according to the MH acceptance probability so that

a Markov Chain is constructed that fulfils the conditions of ergodicity and stationarity

with respect to the target distribution. As long as the sampling procedure of MH is

followed, these conditions are met and the Markov Chain will eventually converge to the

desired distribution [39].

At inception, there is no a priori knowledge of the likelihood of sections, so all sections

are given uniform likelihood. The likelihood values of the sections are then built up and

refined as the number of samples drawn increases and more knowledge of the relative

costs is gained. After a sufficient number of iterations, the chain of samples is assumed

to have mixed to such an extent that a histogram of the accumulated samples resembles

the actual probability distribution. Whereas in most applications, the bins used for the

50

histogram are made small enough to give a fine view of the probability distribution, the

form of the histogram we generate is peculiar in that the search space is not divided

into the smallest possible bins, but into the bins as large as the sections, since the goal

is to get a rough idea of the way in which the cost values cluster in certain areas. The

section that boasts the highest likelihood is then chosen as the reduced state space in

which SA performs a fine search.

It has been motivated why this pre-sampling approach is reasonable and likely to yield

improved results. We now give further details of the algorithm.

4.3 SAM

We call the novel combination of Metropolis-Hastings pre-sampling with Simulated An-

nealing on the reduced search space, SAM. The SAM algorithm consists of three main

phases: initialisation, MH sampling and SA. The full algorithm is illustrated in Fig-

ure 4.3 and the initialisation procedure in Figure 4.4 (both are placed at the end of the

Chapter). Each step is discussed in the subsections below.

4.3.1 Initialisation

In the initialisation phase, the input parameter values to the algorithm are set. The set

of sections indexed I = {1, 2, . . . ,m} has a certain p.d.f indicating, for each i ∈ I, the

likelihood that the overall optimal schedule s∗ is found in that section. On initialisation

an a priori p.d.f. P (I) must be defined for the set of sections, which represents our

initial beliefs about the shape of the p.d.f. The starting assumption is that P (I) is a

uniform distribution. The starting value for MH is a sample section index drawn from

P (I). We illustrate this in Figure 4.4.

4.3.2 Metropolis-Hastings: implementation details

Our specific implementation of the MH algorithm is shown in Algorithm 1. For each

iteration of MH, a sample is drawn from P (I). A quick search is performed within the

section and from these results a likelihood value is deduced, the acceptance probability

calculated and the next sample chosen.

This section provides further clarification of Algorithm 1. MH has been implemented

in an object-oriented manner, allowing the user to pass in essential arguments and

parameters that affect the algorithm’s performance and facilitating easy expansion to

51

Algorithm 1: Metropolis-Hastings algorithm pseudo-code

Input: N, x, r, burnin, numSections, start, varianceFactor, randomEngine,

samples[], vector<int> , accSamples

Output: The largest element in the set

1 Define: proposalpdf, targetpdf, uniform real pdf, GewekeTest()

2 forall i ∈ burnin do
3 candidate ← draw sample from proposalpdf(x)

4 draw r samples from uniformpdf(candidate)

5 foreach inner sample ∈ candidate do
6 calculate cost

7 calculate likelihood of candidate
8 calculate α
9 draw uniform random value u in (0, 1)

10 if u ≤ min(α, 1) then
11 x← candidate

12 update proposalpdf(x)

13 a← 1

14 else
15 x← x
16 a← 0

17 while terminating conditions not met do
18 forall i ∈ N do
19 candidate ← draw sample from proposalpdf(x)

20 draw r inner samples from uniformpdf(candidate)

21 foreach inner sample ∈ candidate do
22 calculate cost

23 calculate likelihood of candidate
24 calculate α
25 draw uniform random value u from (0, 1)
26 if u ≤ min(α, 1) then
27 x← candidate

28 accSamples ← x
29 update proposalpdf(x)

30 a← 1

31 else
32 x← x
33 a← 0

34 acrrate ← |accSamples|/N
35 if GewekeTest() returns true then
36 assume suitable convergence to correct value
37 Select winning section

include new distribution types without exposing or needing to alter the core functionality.

The implementation of generating and seeding the distributions is hidden, as well as the

routine itself, the stored samples and current state of the algorithm. In the initialisation

52

phase, the parameters passed in from the main program are: number of iterations (i.e.

samples) (N), burn-in sample size (burnin), chain start point (start), the number of

sections in which the search space is to be divided (numSections), and the number of

jobs in the problem instance (numJobs). In addition, a variable (varianceFactor) can

be passed. The significance of this factor is clarified later in this chapter.

Typically, in MH implementations very little guidance on the choice of proposal distri-

bution is available and this aspect is left open to the engineer. A number of different

proposal distributions were tested, more detail of which is given below but the symmetric

random walk proved to yield the most consistent results. Because there is essentially no

knowledge available to the system before the start of the algorithm, and to avoid the in-

troduction of any bias, the most generic proposal distribution – the uniform distribution

– is chosen and is probably the most successful for those reasons of limiting bias in case

the algorithm is not run for long enough. Since the algorithm cannot be run to infinity, a

certain degree of bias cannot be eliminated completely from the resulting solution. It is

our claim that using a uniform distribution for the proposal distribution reduces the bias

that could originate from the proposal. To take advantage of the Markov dependence of

samples and progressively move towards a specific section, however, the option is added

to define the distribution over a moving window that depends on the current state of the

algorithm. The variance factor variable (herein denoted k) is introduced to give some

flexibility in the implementation of the size of the window from which samples are to be

drawn every iteration i, the distribution being defined in the interval[
x(i−1) − N !

M
× k, x(i−1) +

N !

M
× k
]

.

The size of the variance factor k controls the extent to which the proposal distribution

retrieves samples from other sections, controlling the spread. In future work, this fac-

tor could be made adaptive, becoming larger when acceptance rates show that more

exploration is required, and smaller when more exploitation is preferred.

It is not immediately obvious that this restriction on the proposal distribution state space

maintains the conditions for irreducibility of the final distribution. This is addressed

in [39]. Besag proves that it is not necessary for each transition kernel to maintain

irreducibility individually but only that the combination of all transition kernels achieve

irreducibility. He shows that if a single transition probability for state i is Ti, which only

allows transition within some subset of the state space S(i) ⊂ S, some combination of Ti

such as T = T1 T2...TN maintains the possible transitions of all the component kernels.

Also, if Ti individually maintain the stationary distribution then the combination of

transition kernels do so as well. In constructing the proposal distribution it is thus

53

only necessary for the combination to allow transition to any other state so that the

chain will have the property of irreducibility and can converge to the desired stationary

distribution. At any rate constructing transition kernels from uniform distributions in

this way still ensures that general balance (eqn. (2.25)) is satisfied. The method is,

therefore, validated.

At iteration i, we choose a sample x(i) from a section m within the set of sections I with

size M , which maps to a subset of the search space S i.e.

x(i)(Im) ∈ Im → S(Im) : S(Im) ⊂ S .

If we call the start point x(0)(Im), we choose the next sample such that x(1)(Il) : l 6= m

to ensure exploration of the search space. We may continue imposing this condition until

every section is represented by a set of inner samples before continuing the algorithm

without the restriction. Since the proposal distribution is symmetric, the Metropolis-

Hastings acceptance ratio simplifies to the Metropolis acceptance probability:

α = min

{
1,

π(x(i))

π(x(i−1))

}
= min

{
1,

k × 1
γ(x(i))

k × 1
γ(x(i−1))

}
= min

{
1,
γ(x(i−1))

γ(x(i))

}
. (4.20)

This value is compared to a uniformly generated random number u in (0, 1) and, if u is

less than α, the point is accepted and the cost added to an accumulator.

4.3.3 Simulated Annealing

Neighbour Generation

As mentioned, neighbour generation is a strategic part of the implementation, having a

definite influence on the performance [8], yet in the literature shift, swap and insertion

operators are used almost exclusively. These methods add to the algorithm run time

and storage requirements.

In our representation, different solutions are indices to different permutations of the job

set (different possible schedules). This implementation circumvents the usual computa-

tional load of neighbour generation and reduces memory requirements by visualising the

search space as a set of permutation indices 0 to n! − 1(= 3628799) arranged radially

similarly to the hours of a clock, as shown in Figure 4.5. Instead of a schedule being

represented by a ten-job set in a certain order, the algorithm sees only indices that rep-

resent the permutations. The permutations, which would need to be stored as arrays,

do not need to be stored at all. The actual schedule at a specific index is only called to

calculate the cost if that schedule is sampled.

54

226800

1

453600

680400

907200

1134000

1360800

1587600

1587600

1814400

2041200

2268000

2494800

2721600

2948400

�

Figure 4.5: Representation of the set of permutation indices as a wheel with temper-
ature parameter specifying how far around the circumference the algorithm traverses.

In Simulated Annealing the temperature is related to the extent of perturbation of

one solution to obtain another neighbour solution. The temperature perturbation gives

the range around the current schedule index of the distribution from which the next

schedule may be chosen. The neighbour solution is selected from an integer uniform

distribution T indices above and T indices below the current schedule i.e. for a schedule

x, that would be (x− T, x + T) ⊂ Z, a range represented by the arrows in Figure 4.5.

Visualising the search space in this circular way eliminates the problem of “falling off

the edge” of the search space by a temperature that causes a perturbation beyond the

maximum index or a negative index. Such values will result in the algorithm simply

counting forward or backwards respectively from 0 again. Eliminating the need to trun-

cate the temperature distribution strengthens the validity of the sampling method by

eliminating bias and what would have been a reduction in the randomness of the dis-

tribution. This also enables us to use different distributions such as Gaussians without

synthetically truncating the distribution. The sampler simply walks around and back

to the beginning.

Only to smooth the process of performing the experiments, all permutations of the set

of jobs {1, 2, 3, ..., 10} were found, sorted lexicographically and stored in an indexed

array. This set of permutations need only be generated once on initialisation of the MH

algorithm and is reused for each run of SA and indeed for any simulation of ten jobs

regardless of the weightings, job lengths or any other specific feature of the problem

55

instance. A perturbation algorithm has thus been reduced merely to a lookup. This

unique way of visualising the search space has enabled a simplified neighbour generation

method.

Parameters

SA is a very useful tool to use in finding good suboptimal solutions to scheduling prob-

lems. It enables relatively good answers to be obtained without requiring in-depth

knowledge of the details of the problem instance, such as the relative distribution of

earliness and tardiness penalties, or variance among the task lengths or distribution of

energies. This is what is required as we seek a tool that is as general as possible to

apply to any problem instances that can occur. An observed limitation in the use of

SA, however, is the variation of solution quality and running time depending on the

parameters used. The starting temperature has been said to have an effect on how well

the algorithm performs, in terms of how many iterations are required before a solution

close to the actual optimal is found [49, 67, 108].

Theoretically, the initial temperature should ensure that a move to any other solution

in the search space is possible. A starting temperature that is too small results in

only a limited exploration of the solution search space unless, and possibly even if, the

number of iterations is extremely large. A too-large starting temperature results in

very loose solution estimates or, once again, a high number of iterations is required for

the temperature to reduce to a small enough value, or pseudo-converge, and for the

algorithm to settle on a solution. It is worth noting that the temperature can be seen

informally as a measure of the dissimilarity between successive candidate solutions. If

the temperature is still large by the final iteration, there is still high uncertainty in the

solution and, therefore, it may be a solution of low quality and high percentage deviation

that has been found. Since temperature is such a critical parameter in the model, it

would be of great use to have a way to find a starting temperature that enables sufficient

exploration of the terrain but that allows a sufficient narrowing towards a solution within

a set number of iterations. Such a way would be yet more useful if it did not rely on

an assumption that the temperature must reduce to a certain value in a set number

of iterations, and instead is calculated on a probabilistic basis. Some attempts have

been made in the literature to calculate a proper starting temperature value, but few

using the temperature cooling function used in this work, and fewer that are generally

applicable.

SA consists of a series of probabilistic selections of new solutions based on the tempera-

ture, by the Boltzmann distribution e−(∆E/kBT). The Boltzmann constant, kB is often

omitted in non-physical applications, as we do. Although it is common for the temper-

ature to decay by a constant cooling factor according to a scheme where Ti+1 = r Ti for

56

{0 < r < 1 : r ∈ R} [22, 53, 67], in the implementation of this work, the temperature

values follow a logarithmically decaying cooling function. This method, also found to a

lesser extent in the literature [109], allows finer changes according to the conclusions of

Tan that slower decay rates are more successful than repeated iterations at unchanged

temperatures [49]. The temperature at iteration i > 1 is given by Ti = d T1
ln(i+1)e. The

added 1 in the denominator is to ensure that the temperatures are only decreasing, re-

quiring the integer argument of ln(·) to be greater than 2. We round up as indices must

be whole numbers.

If we represent the initial temperature as T1 and the energy (cost) of the schedule at

state i as Ei, the probability of transitioning to candidate state i∗ from i entails two

possible events, either the cost of the candidate schedule is lower than the previous

schedule, or the Boltzmann probability of the transition is less than a randomly selected

number from a uniform distribution in the interval (0, 1), as expressed in eqn. (4.21).

[Ei∗ < Ei] ∨

q(Ti∗ |Ti) = e
−
[

Ei∗−Ei
T1

ln(i+1)

]
< U(0, 1)

 (4.21)

At each iteration, the probability of acceptance involves these two probabilities, so if

one was to calculate this analytically for the entire chain of N iterations (intersection of

all probable outcomes), this would require calculating

p(T1, N) =

N∏
i=1

[
p(Ei∗ ≥ Ei) exp

(
−Ei∗ − Ei

T1
ln(i+1)

)
+ p(Ei∗ < Ei)

]
. (4.22)

Suppose that the invariant distribution reduces to the form of eqn. (4.23) (which it does

[109]):

Zp

N∏
i=1

exp

[
−Ei∗ − Ei

T1
ln(i+1)

]
(4.23)

If we wish to find an optimal value of the starting temperature, the Expectation Max-

imisation method may appear to be appropriate. Using the log likelihood reduction and

ignoring, for now, the constant offset term, the problem is equivalent to

−
N∑
i=1

[
Ei∗ − Ei

T1
ln(i+1)

]
= −N

T1

N∑
i=1

[(Ei∗ − Ei) ln(i+ 1)] . (4.24)

Three reasons why the analytical approach to calculating a suitable starting temperature

is inappropriate and invalid are now presented.

57

1. To determine the optimum temperature using maximisation techniques would re-

quire finding a solution to

−
N∑
i=1

d

dT1

[
1

T1
(Ei∗ − Ei) ln(i+ 1)

]
=

1

T 2
1

N∑
i=1

(Ei∗ − Ei) ln(i+ 1) = 0 .

The implicit assumption in using this method, however, is that the change in energy

is independent of the starting temperature and only depends on the iteration count

i. The Markovian dependence nature of the process invalidates this assumption,

unless i is sufficiently large. We may replace i with N and perform the calculation

assuming that the final iteration count N is sufficiently large and the first-order

Markov Chain assumption holds, yet without running and observing the algorithm,

“sufficiently large” is completely abstract.

2. It is very difficult, if not impossible, to characterise p(Ei∗ < Ei) accurately. If this

were possible, in theory it would be possible to jump to the optimal solution with

relative ease.

3. Even if the second term were eliminated by shifting it to a certain constant factor

in the Markov Chain’s invariant distribution (as in [109]), the inherent limitation

remains. Analytical methods to determine speed of convergence, or the number

of iterations required to ensure that the solution found is outside the optimal

set with a probability less than a certain ε, are largely useless. Any analytical

method involves the calculation of asymptotic tendencies and is irrelevant to prac-

tical implementations [109]. Such methods intrinsically are not suitable even to

prove superiority of SA over exhaustive search. The calculation required to ensure

probability of 1− ε of finding a solution in the optimal set S∗ after N iterations,

given starting T and cooling schedule, is equivalent to finding the starting T that

ensures this probability in a given N iterations. The change of variable is a mat-

ter of Bayesian inference. If we could find N that solves p(xN 6∈ S∗, N |T1) < ε,

the same method could be used to find T1 that solves this for a given N since

p(xN 6∈ S∗, N |T1) < ε ∝ p(xN 6∈ S∗, T1|N). We can conclude, therefore, that

the same limitations exist similarly inherently to the problem at hand of finding a

“good” (optimal or close suboptimal) starting temperature.

Since it is concluded that analytical probabilistic methods are unsuitable to solving the

problem of finding a “good” starting temperature, we turn to computational methods.

The tested values have been based roughly on the relations between starting tempera-

ture and maximum iteration count shown in eqn. (4.25). The relation is based on the

assumption that by the final iteration N , the temperature must have reduced to a value

58

no greater than one, as this is the value of desired accuracy of the result, i.e. the solution

should be within one schedule index accurate.

TN = 1 =
T1

ln(N + 2)

T1 = ln(N + 2)

∴ N = eT1 − 2

(4.25)

As has been implied, the number of iterations is as much an integral parameter as

temperature and indeed they are so interrelated, as is clear from eqn. (4.25), that in order

to investigate the temperature variable without the assumption of final temperature of

one, it is necessary that the number of iterations be fixed to an acceptable number.

Preliminary runs showed larger temperatures – those a significant fraction of the size of

the search space – are favourable. Owing to the complexity of performing this search

and because it is not the main substance of the work, we have elected to investigate

empirically the effect of only two starting temperature parameter values. The results

are presented in Chapter 5.

The other influential parameter is starting point. This value we have fixed to the median

index of the search space for all experiments. Since at the beginning of the SA journey

of exploration, we have no knowledge whatsoever of the terrain, we must find a way

to determine a good starting temperature that is effectively independent of starting

point. Different combinations of parameter values were investigated and the results are

discussed in depth in Chapter 5.

Computational Complexity of SA

In order to determine what factors have the greatest influence on the computational

complexity of any modifications or other methods used to narrow the search space,

the computational complexity of the base case SA algorithm implementation for this

problem is analysed.

Theorem 4.1. The computational complexity of the Simulated Annealing algorithm is

O(nN)

Proof. In each iterative loop of SA, the operations and their dependencies in Table 4.1

are executed (all kl are constants).

No distinction is made here in the running time of random number generation and

simpler mathematical operations such as additions, subtractions, multiplications and

assignment. These are constants and irrelevant to the rate of growth. The starting tem-

perature T1, number of jobs n and number of iterations N are inputs to the algorithm.

59

Table 4.1: Calculating computational complexity of components of the SA algorithm

Compute new temperature Tstart
ln(i+2) ≈ k1

Find new solution
Create new normal distribution and choose rand no.
Shift solution placeholder to new solution and append energy to
vector of energies.
Compare energies

k2

Calculate Energy
n− 1 times
Find next entry in lengths vector
Compute earliness
Compute tardiness
Compute sum

O(n)

Accept point?
Compare energies
negative
OR
Generate random number
Compute Boltzmann value
Compare values

k3+
k4

OR

k5

where k5 > k4

=⇒ k5

Miscellaneous instructions k6

The temperature cooling function follows Ti = T1
ln(i+2) , where i is the iteration number.

The asymptotic behaviour of this function as i becomes large is shown in eqn. (4.26).

We have removed the “+2” factor in the ln(·) and instead, equivalently, started the sum

from 2 to make the analysis clearer.

N∑
i=2

1

ln(i)
>

N∑
i=2

1

i
(4.26)

The right-hand sum, which is clearly smaller than the left, is the well-known divergent

harmonic series (without the first term). Since the harmonic summation is divergent,

so is the left sum. The harmonic series approximates to ln(n) + γ (where γ here is the

Euler-Mascheroni constant) [110] and so has complexity O(log n), which is also a tight

bound, Θ(log n). The sum on the left of the comparison reduces more slowly than the

sum on the right, so the sum on the left is lower bounded by O(log n) but must have

greater worst-case complexity. The author cannot provide an analogous approximation

for the sum of 1/ ln(i), so we assume no tight upper bound exists.

Should we instead do the analysis by assuming we continue the algorithm only until the

temperature has reduced to a value of one so that we assume the algorithm’s result is

correct within an accuracy of a schedule by iteration count N , this would require an

iteration count, as determined in eqn. (4.25). The equation (4.25) shows that there is an

60

interrelationship between the starting temperature and the final iteration count and the

algorithm complexity is decided by which of these is fixed and the extent to which that

relationship is kept. We have decided to test the algorithm for various values of N and

T1 combinations, with N being the controlling variable so T1 is a fixed value in terms of

complexity and the temperature decay function does not influence the time complexity.

The values were chosen so that temperature decays to a reasonably small value in the

maximum iteration counts tested. The complexity is dominated per iterative step by

the number of jobs n, thus the algorithm is O(Nn).

4.3.4 Random Considerations

Implementation is coded in C++11 in an object-oriented paradigm using the <random>

library. One default random engine object is used per complete run. The <random>

class has 31 useful bits of (pseudo-)randomness per call (encoded to the integer range

1 to 2 147 483 646), which we assume do not pose a constraint. This engine is called at

most twice per iteration and the number of iterations does not exceed 1 million.

It is important that the programme’s internal random number generator, the random

engine, be initialised carefully so that pseudo-random numbers with sufficient entropy

are generated. This is the random source for the algorithm chosen so that the internal

workings do not bias the result of the MCMC algorithm. The <random> header of

C++11 provides a variety of random engine types [111] and the initialisation phase

includes an instantiation of an object of one of these types. An important consideration

to be made is ensuring that the random engine type chosen can in fact produce values

in the required range and that the stream is long enough to produce as many values

as required without recycling values. Other considerations in the choice include the

performance–size trade-off. For this implementation, a Mersenne twister-type engine is

selected, using the 64-bit std::mt19937 64 source.

The obvious second important consideration is proper seeding of the engine. The header

provides constructor overloads for instantiation using a default seed, or it can be passed

a seed value on object instantiation. In order for the number streams to differ in every

run of the MCMC algorithm, each run must have a unique seed. The library provides

the random device type to provide the seed. Using a random device object precludes

the need for seeding using time or attempting to find another source of entropy in-

ternal to the system. Since the machine on which these simulations were run has no

other sound source of clearly defined and high enough entropy, we have elected to use

a random device object. To allow simple and rapid generation of the large number of

61

random numbers that is required from the proposal distribution, we have built func-

tions to perform required functions, similar to the toolkit provided in [111]. A function

std::mt19937 & global urng() is used to return a global instance of the Mersenne

twister random engine. The function randomize() is created to seed the global random

number generator. A generic function getsample() generates a proposal distribution

function “on the fly” given the current sample value as the mean.

It must be ensured that the SA and MCMC random processes remain as uncorrelated as

possible, and should have zero correlation in the ideal case. While the C++11 standard

allows a random engine to be reused for different distribution objects and can be re-

seeded, our application requires that separate engine objects are created for the MCMC

process and SA runs. The same engine is used for all the runs of SA within one run of

MCMC, but the SA random engine is given a different seed to start every run of SA.

4.3.5 Termination

Termination of the algorithm is determined by reaching the maximum number of iter-

ations specified at the initialisation stage. This number was determined and verified

based on the behaviour of the Geweke test results for different values, and by observa-

tion of the acceptance ratio. The results of investigation of the effect of running the

algorithm for various different run lengths are given in Chapter 5. On termination, the

SA algorithm outputs which section has the highest likelihood of containing an optimal

solution.

The correlation of samples results in more samples being required before the set of

samples has the same expectation or variance as the actual target distribution π [112].

For this reason, the term effective sample size has been coined defining the correction

factor by which the empirical average differs from the standard variance if the samples

were independent. The measure scales the sample size by the autocorrelation. We define

τN = N/ρ as the effective sample size for the autocorrelation ρ of sequence g(X(t)). This

means that to be a sufficiently meaningful set of correlated samples, any value that would

be deemed sufficient in the independent case is to be scaled in this way to get a suitable

effective sample size.

The Geweke test is implemented as a test for whether the algorithm has “converged”

sufficiently [46]. The means of the last 50% and first 10% of samples are compared. In

general, an error percentage is defined and success is based on the error between the two

sample means falling within this limit. In this work, the important work of the algorithm

is to narrow down on a specific section in which SA will search. In this context, the

definition of passing the Geweke test is that the two subset means indicate the same

62

section. The acceptance ratio was also observed. Too low a ratio may indicate being

very far from convergence and too high may mean insufficient exploration has taken

place and being trapped in a local optimum.

4.3.6 Computational complexity of SAM

Lemma 4.2. The MH algorithm can find a suitable section in O(Nrn+m) time.

Proof. The inputs to the algorithm are burn-in length b, the number of section divisions

m, number of inner samples per section sample r, and run length N . Both m and r are

variables. If the Geweke test gives a positive result, the algorithm has found a suitable

section. If a suitable section can be found in N iterations after burn-in of length b for n

jobs, with permutations divided into m sections, the algorithm finds a solution in

time ∝ {b× (k + r × t(cost)) +N × (k + r × t(cost) + t(recording samples)+

t(update proposal)) + t(bin)}
= O(bnr +Nnr +m)

= O (Nnr +m) .

(4.27)

If, afterN iterations, the Geweke test returns true and assuming the burn-in is a constant

value, the complexity is O(Nrn+m).

For Theorem 4.3, we define separate iteration count variables, denoting the SA run

length by NS and the MH run length by NM .

Theorem 4.3. For the single machine scheduling problem, 〈1 | no pre-emption | γ〉, a

feasible suboptimal schedule can be found in no more than O(n(NMr + NS) + m) time

using the combination algorithm.

Proof. It has been proven in Theorem 4.1 that the complexity of Simulated Annealing

is O(nNS).

From Lemma 4.2, the complexity of MH is O(NMnr + m) for NM , n, r and m all

variables. Since the two algorithms are additive, the combined complexity is

O(NMnr +m+NSn) = O(n(NMr +NS) +m)

63

To perform a search through all schedules for the optimal solution requires performing

the cost calculation n! times and performing comparisons as many times. This has

a complexity O(n · n!). Our algorithm provides a significant improvement to this by

reducing the complexity successfully to O(n(NMr + NS) + m). It also provides the

flexibility of a number of variables that can be reduced to improve run time, or increased

to improve solution quality. The solution quality–run time trade-off is dealt with in

Chapter 5.

4.4 In Summary

In this chapter we have presented the formulation of the problem and detailed how it has

been interpreted and moulded to facilitate the application of techniques of Metropolis-

Hastings sampling and Simulated Annealing. We have provided motivation for the

interpretation and selection of parameter values, and presented details about the novel

SAM hybrid algorithm, including the steps involved, and implementation details. We

have shown that a brute force complete search of the search space for the optimal

solution is significantly more complex than the alternative algorithm we provide and

have reduced the required complexity from O(n · n!) to O(n(NMr +NS) +m).

64

Draw samples

from ���

�∗�

�

Get � �

�

for

all � in �

�∗�

Calculate

� �

�∗�

|

�

�∗�

Draw sample

�

�∗�

from	�

�

� min 1, � ?

Generate rand

� in (0, 1)

Calculate

�

accept sample

�

���

� �

�∗�

reject sample

�

���

� �

�����

Terminating

conditions

met?

Update

� �

���

|�

�����

terminate

start

Get histogram of

samples and choose

section

SA

Subroutine b)

�

�∗�

Update

� �

Initialisation

(subroutine a)

Y

N

Figure 4.3: Full SAM procedure

65

Draw samples

�

�

from ����

Find

�min

�∈�

�

	

�

�

��

Set � �|�

�

��	

�∈�

�

 �

�

��

∑

��	

�∈�

 �

�

��

�∈�

Set � 1

store

� � �

� �?

Y

N

Figure 4.4: Initialisation procedure of SAM algorithm.

Chapter 5

Simulation results and discussion

5.1 Experimental methodology

5.1.1 Generating problem instances

We define a problem or problem instance by an array of processing time values, an array

each of tardiness and earliness penalties (weights), and arrays for the due window start

times and end times, all indexed by job number. A set of problems then consists of a

number of problem instances.

We have elected to generate problems using a variant of the generally accepted method

first proposed by Potts and Van Wassenhove [58] but with due windows (as opposed to

due dates) as in [27, 30]. The Potts and Van Wassenhove method is widely used and

accepted as a standard technique [30, 80, 82, 113–116]. While some researchers in the

literature have used problem instances from open libraries (such as the OR-library [117]),

these libraries either do not have the specific type of problem investigated in this work

or are outdated and no longer available. Specifically, problems with due windows are

difficult to find, and we have not been able to locate results of algorithms developed by

other researchers that can be considered comparable to ours and tested on the specific

instances for the same objective we consider. Noting that the research question requires

a comparison of the performance of our implementation of the basic SA algorithm with

our modified algorithms, using instances of other researchers is also not necessary to

provide an adequate answer to the research question. For these reasons, it is most

practical and instructive to generate our own problems using the method outlined here.

Processing times are generated from a uniform distribution in the interval [1; 100] i.e.

the set of processing times p ∈ [1, 100]n. The sizes of the n due windows are selected

randomly from U [1, Ctotal
n].

66

67

Then, defining Ctotal =
p∑
i=1

pi , tardiness factor T is selected per complete problem in-

stance from {0.2, 0.3, 0.4, . . . , 0.9, 1.0} and the Relative Due Date (RDD) is selected

per problem instance from the set {0.4, 0.6, 0.8, 1.0, 1.2}. The centres of the due win-

dows are generated from a uniform distribution with limits as indicated in eqn. (5.1):

U

[
(1− T − RDD

2
)× Ctotal, (1− T +

RDD

2
)× Ctotal

]
. (5.1)

Tardiness penalties w′′ are drawn from U [1, 10].

Earliness penalties w′ from U [k × w′′] for k in (0, 1).

The full set of problem instances generated for the experiments to follow is presented in

Appendix A.

5.1.2 Experimental set-up

All results must be compared against a full search of the solution space. Any heuristic

is valuable mainly in its ability to yield reasonably accurate results in a fraction of the

time of the incumbent method. For a full search, the cost is calculated for every possible

permutation of the original schedule, that is n! times, so the complexity is O(n× n!).

The performance measure is to determine the percentage deviation of the cost of the

schedule produced by the tested algorithm compared with the optimum value. The

quantity evaluated is percentage deviation,

percentage deviation =
x− x∗
x∗

× 100% , (5.2)

where x∗ is the cost of the optimum schedule and x is the cost of the schedule output

by the algorithm. This value is obtained for the best, average and worst (maximum)

solutions in 20 to 50 runs of the algorithm. All numerical solutions are rounded to the

nearest two decimal places. The shorter term deviation is used at times to refer to the

quantity of eqn. (5.2). Where statistical standard deviation of test results is intended,

the term standard deviation will be stated explicitly.

5.2 Simulated Annealing as the base case

We examine the statistical properties of the experimental results of the basic SA al-

gorithm to determine the relationships between the variables and as a baseline point

of comparison with the SAM algorithm we have developed. The results were obtained

68

from 20 to 50 runs per unique combination of parameters on each of thirteen problem

instances. The problem instances were generated as described in Section 5.1.2 and the

variable parameter values used for the experiments are listed in Table 5.1. The “number

of iterations” parameter relates directly to the algorithm run time, being the maximum

iteration count for which the algorithm was run before the result was recorded.

Table 5.1: Parameter values used for evaluation of SA Full search

Independent variables Test values

Variable name Symbol

Starting temperature T0 {0.5; 0.25} × n!

Number of iterations N {1; 2; 5; 10; 50; 100; 150; 200; 500; 1000} × 103

Start point st Fixed at n!
2 =1814400

Table 5.2: Summary of averages of all results - basic SA

Temp 907200 1814400 t-
test

N Max
%

Ave
%

Min
%

Var Max
%

Ave
%

Min
%

Var |t| >
tcrit

5k 7.28 3.57 0.88 13.53 7.04 3.51 0.96 12.01 F

10k 5.98 2.52 0.40 9.77 5.44 2.57 0.40 7.87 F

50k 2.67 1.23 0.19 2.00 2.55 1.16 0.11 2.00 F

100k 1.93 0.83 0.02 1.14 1.80 0.82 0.08 0.96 F

150k 1.46 0.64 0.01 0.64 1.46 0.60 0.03 0.70 F

200k 1.24 0.51 0.06 0.48 1.21 0.49 0.01 0.43 F

500k 0.79 0.25 0.00 0.16 0.48 0.14 0.00 0.26 F

1M 0.56 0.16 0.00 0.16 0.48 0.14 0.00 0.12 F

Running experiments on all 13 datasets and all variable value combinations, each for 50

runs, results in 13 000 full runs of SA. We assert that 50 is a sufficiently large number

of runs to get an acceptably accurate reflection of the algorithm’s performance with

different combinations of parameter settings. The minimum, maximum and average

percentage deviation from the optimum of the cost of the final selected schedule were

recorded for the 50 runs of each problem instance, and then averaged over the 13 problem

instances. The variance was also computed, which shows how longer runs (greater

iteration counts) tend to converge to more similar results than shorter runs do, when

comparing multiple runs with the same algorithm settings. The summary of these results

are presented in Table 5.2. The right-most column is discussed in Section 5.2.1. The

summary of results per problem dataset is in Section C.1 of Appendix C.

69

5.2.1 Significance of starting temperature on percentage deviation

In order to determine whether the starting temperature has a statistically significant

impact on the percentage deviation, the t-test for two samples with unequal variances

(Welch’s test) was performed on the results obtained by running the algorithm on the

same dataset with the same starting point and for the same iteration count, but at two

different temperatures. The null hypothesis for this test is H0: there is no significant

difference in the results for the two starting temperatures, and starting temperature has

no significant impact on the performance of the SA algorithm. The assumptions of the

test are that the sample results are approximately normally distributed and indepen-

dent. Since each run is seeded with a different pseudo-randomly generated value, the

independence assumption has a high confidence. While the sample resultant costs are

not strictly normally distributed (since the range is limited), we still contend that the

t-test calculation can provide some elucidation into the temperature dependence. By

the t-test, we reject H0 if and only if condition

|tstat| > tcrit (5.3)

is met.

These results are presented in the right-most column of Table 5.2 above, and for all

datasets in Section C.1. T indicates if condition (eqn. (5.3)) above is true and sta-

tistical significance can be claimed, and F if false. Out of 130 sets of runs com-

paring starting temperatures of 907 200 (a quarter the size of the search space) and

1 814 400 (half of the size of the search space) only 7 instances returned a true t-test

result i.e. have a statistically significant difference. For the other 123 sets of results,

tstat 6< −tcrit and tstat 6> tcrit. Three of the instances where statistically significant dif-

ferences can be observed are in the lowest iteration count (N = 1000 iterations), as can

be expected, since in shorter runs the range of exploration that the algorithm is able to

do is much smaller than in longer runs. The higher starting temperature appears to be

superior in the case of very short runs but the data is insufficient to make a conclusive

claim. The other instances do not show any significant pattern. There is not enough

evidence to reject the null hypothesis and we conclude that starting temperature does

not affect the results significantly for the iteration counts and temperatures tested. This

conclusion suggests that comparisons of basic SA with our hybrid algorithm SAM in the

following subsection will not be skewed by a dependence on the starting temperature.

70

5.2.2 The effect of iteration count on percentage deviation

By glancing through the results in Table 5.2, we can observe that the accuracy of results

of SA improves considerably and steadily from runs of 1000 iterations to longer runs

of 1 million iterations. As a precaution, however, we first perform hypothesis testing

to determine whether the maximum iteration count has an effect on the percentage

deviation of the final results. To determine this, a (multi-column or array) Chi-squared

test has been done on each dataset, comparing the results with those that would have

been obtained if selections followed pure chance. The p-values are presented below in

Table 5.3. Since for all values, p � 0.001, we can conclude that iteration count does

indeed have a statistically significant impact on the percentage deviation obtained.

Table 5.3: Significance of iteration count by p-values per dataset

Dataset p-value

0 4.42E-26

1 2.2E-109

2 5.3E-101

3 6.6E-124

4 7.7E-105

5 1.49E-53

6 7E-47

7 1.36E-28

8 9.59E-31

9 6.43E-30

10 7.19E-43

11 2.34E-48

12 6.22E-41

Table 5.4 presents the 99th percentile of the maximums of the results of all datasets

to show what expected accuracy can be anticipated by choosing a suitable number

of iterations for which to run the algorithm. Notably, the results show that a high

iteration count is required to ensure that results are close to the optimum solution.

Specifically, the 99th percentile of the maximum deviation values reveals that if an

application requires that the result be no more than 2% deviant from the optimum

with a 99% likelihood, this would generally require runs of length between 150 000 and

200 000 iterations. If a 5% or less deviation is required, this would probably require

around 40 000 iterations. These results were obtained by calculating the 0.99 percentile

of all the worst-case (maximum) deviations (in %) for all runs of all problem sets, for

the solutions produced by the algorithm run for various iteration counts. The goal

71

Table 5.4: 0.99 percentiles of maximum percentage deviations for run lengths given
by the iteration count

Iteration count 0.99 percentile

1k 16.68

2k 13.47

5k 8.53

10k 6.82

50k 3.24

100k 2.13

150k 2.05

200k 1.52

500k 1.03

1M 0.61

of the SAM algorithm we developed and present in the next few sections is to produce

results with similar accuracy in significantly fewer iterations (shorter runs), to reduce the

running time and effective complexity. This is because the time sensitivity in applications

such as communications makes algorithms with longer run times impractical.

5.3 SAM

5.3.1 Coarse Metropolis-Hastings

As per Chapter 4, the aim of the SAM algorithm is to add in a step of pre-sampling by

MH before running SA on the pruned search space to reduce the overall running time

required to get a result within 5% of the optimum. The outline of coarse MH sampling

is to divide the total search space of possible schedule permutations into a number of

sections and use MH sampling to find a piecewise-defined distribution over the sections,

and then to determine the most likely section to contain an optimum schedule. There

are three main parameters we examine in the MH implementation: number of sections

(m), the algorithm run length or maximum number of iterations (N), and the number

of inner samples taken for every section sampled in MH (r).

The set of number of sections used in the experiments is

m = {20, 50, 100} . (5.4)

72

The algorithm was run using each of the values in this set, for the run lengths of iteration

counts in the set

N = {500, 1 000, 2 000, 5 000, 10 000, 50 000} . (5.5)

The third variable to investigate was the number of uniform inner samples taken per

section sampled. The number of samples investigated are in the set

r = {50, 100, 200, 500} . (5.6)

The important interactions we explore are the number of iterations vs. number of

sections (for the same number of inner samples), the number of iterations vs. number

of inner samples (for constant number of sections), and number of sections vs. number

of inner samples for the same iteration count.

Before embarking on these investigations, however, the Chi-squared test was performed

on every set of MH section results to confirm that the method does, in fact, provide useful

information that has a statistically significant difference from if it were constructed by

pure chance (the case of maximum entropy).

5.3.1.1 Different runs with the same settings

Different runs of the same algorithm with exactly the same parameter settings produce

different results each time and so the algorithm was run 20 times on each unique combi-

nation of parameters. For our purposes, it is desirable that the differences between runs

be small enough so that the same section is most likely to be selected in each run. If the

spread and, thus, variance of the section chosen as most likely is large, the algorithm

does not prove as useful, since it does not supply us with valuable information. In such

a case, the selected section result cannot be trusted and one may be better off running

SA on the full search area for a large number of iterations.

Figures 5.1 and 5.2 show the normalised frequency distribution histograms, each of five

different runs – represented by the different coloured bars – of the MH algorithm with

the same parameter settings, for two different problem instances. For this example, the

search space is divided into 10 sections, the iteration count is 500 (excluding burn-in),

and the start point is at the midpoint of the search space. In Figure 5.1, it can be seen

that the frequency distribution is different for the five runs but that the section with

the highest frequency is still fairly clear and similar for all runs. Figure 5.2 shows five

runs for a different problem set with equal parameter settings to those of Figure 5.1.

The results for this problem instance are more diverse such that runs produce different

73

Figure 5.1: Normalised frequency distribution by Metropolis-Hastings sampling:
problem set with smaller variance

Figure 5.2: Normalised frequency distribution by Metropolis-Hastings sampling:
problem set with larger variance

74

selected sections. In this figure, the variance of the chosen section is large. This may

have a negative impact on the overall SAM result. This is the danger of running the

algorithm for too short a duration, and illustrates that performance may be notably

different on different datasets. More examples are in C.2.2. Table 5.5 also shows the

number of times out of 20 runs that each of 20 sections was chosen, illustrating the

varying results per run. Whether the larger variance significantly affects the final result

of SAM is explored in Section 5.3.2.

Table 5.5: Unnormalised frequency with which each section (out of 20 sections) was
selected in 20 runs of MH, with the p-values of Chi-squared test: Dataset 0

N 500 1000 2000 5000 10000 50000

section H0 Ha Ha Ha Ha Ha Ha

1 1 0 0 0 0 0 0

2 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0

4 1 0 0 0 0 0 0

5 1 0 0 0 0 0 0

6 1 0 0 0 0 0 0

7 1 0 0 0 0 0 0

8 1 0 0 0 0 0 0

9 1 0 0 0 0 0 0

10 1 0 0 0 0 0 0

11 1 0 0 0 0 0 0

12 1 0 0 0 0 0 0

13 1 0 0 0 0 0 0

14 1 0 0 0 0 0 0

15 1 0 0 0 0 0 0

16 1 0 0 0 0 0 0

17 1 0 0 0 0 0 0

18 1 4 4 6 2 4 5

19 1 16 16 14 18 16 15

20 1 0 0 0 0 0 0

p-value 1.2E-42 1.2E-42 1.4E-34 4.6E-54 1.2E-42 3.4E-38

The Chi-squared test was performed on every set of MH section results to determine that

the method produces results with a statistically significant difference compared to the

situation if sections were selected by pure chance (the case of maximum entropy). An

example is given in Table 5.5 to illustrate the methodology. The table shows the number

of full runs of MH out of 20 in which each section number was selected as the most likely

candidate to contain an optimum schedule (taking r = 50 inner samples per section

75

sample in this example). The benchmark against which these relative frequencies were

tested, representing the null hypothesis (H0) that there is no difference in the frequencies

with which sections are chosen, is pure chance where each section is equally likely to

be chosen. For 100 sections, therefore, H0 is 0.2 out of 20 runs for all sections. In the

case of 50 sections, it is 0.4 out of 20 runs and for 20 sections it is 1 out of 20. The

frequencies for each combination of parameters were compared against H0 by running

the Chi-squared test.

Since the Chi-squared test proved p� 0.0001 for every set of runs for every dataset and

all combinations of parameters (see Appendix C.2.1 for all), we can conclude, at the very

least, that MH provides a large information content1 that may be helpful in determining

where the optimum, or a good schedule, is least and most likely to be found.

5.3.1.2 Impact of iteration count

We now present results of the frequency distributions of selected sections, illustrating

the impact of iteration count on the section selected in the MH step. To illustrate,

histograms are presented in Figure 5.3 showing the number of times out of 20 runs or

the unnormalised frequency with which each section was selected. The figures are all

of results where the maximum number of inner samples (500 per section samples) was

used to control the variable and with 20 sections, simply because 20 sections is visually

clearer than cases of more sections. Only a sample of the results is shown here, i.e.

dataset 0 (Figure 5.3a), dataset 5 (Figure 5.3b), dataset 8 (Figure 5.3c) and dataset 10

(Figure 5.3d). The full set can be found in Appendix C.2.2.

There is a strong observable correlation between the results of longer and shorter runs,

with the same two or three sections selected every time, whether MH was run for 1000

or 50 000 iterations. We may observe a slightly lower variance in the chosen sections

of longer runs than shorter but these differences were tested not to be statistically

significant nor do they fulfil the requirement of repeatability since the effect is not

present in the results of all datasets. This means that we can get away with shorter

runs of 1000 iterations without a drop in solution quality – a positive indicator to the

usefulness of this kind of pre-sampling because it does not add significant computation

to the algorithm.

76

5.3.1.3 Impact of number of samples

Figures 5.4 to 5.7 are histograms of the final most likely section chosen in 20 different

runs of MH per dataset, for increasing numbers of uniform inner samples in r per section

sample of MH, in runs of different lengths. The x-axis shows the sections: either 1 to

20 for examples of 20 section divisions or 1 to 50 for 50 sections. The y-axis shows the

number of times out of 20 runs that the corresponding section was chosen, representing

an unnormalised frequency. The different coloured bars are for runs of different lengths

in the set N , defined by eqn. (5.5).

The figures illustrate a trend that the sections chosen from the distributions generated by

MH become more concentrated as the number of inner samples per MH section sample

increases. Looking at Figure 5.4a of dataset 1 for 50 inner samples, the sections chosen

are diverse with selections of section 3, a few between sections 26 and 29, 36 and 39 and

46 to 49. Figure 5.4b with 100 inner samples is more concentrated on sections 46 to

50 with no selections in the range 36 to 39. Figures 5.4c and 5.4d (200 and 500 inner

samples, respectively) are yet more concentrated with all selections being in the range

46 to 50 by the latter. The same trend is clear from the figures of dataset 5 (Figure 5.5).

The narrowing in as the number of inner samples increases is even more pronounced in

dataset 10 (Figure 5.6) as Figure 5.6a shows a large assortment of chosen sections, all

with significant frequencies while Figure 5.6d shows much less varied resultant section

selection. The more inner samples are gathered, the more information is provided to

the algorithm about the properties of the section from which these samples are taken,

and the clearer its understanding of the cost distribution, and thus, the likelihood of

optimal or near-optimal solutions being contained in each section. There is a trade-off

to be made between increased inner samples providing greater clarity on the section to

use for SA and the increased computational load introduced by the requirement to take

and store more samples, which compounds as these are taken at every iteration of the

outer MH loop.

Looking at Figures 5.4 to 5.7 and comparing them to Figure 5.3, it appears that the

number of inner samples has a more profound effect than the iteration count on the

chosen section, at least for the values used in these experiments. As the inner sample

count increases so the range of chosen most likely section reduces and narrows down on

fewer options. This is because the more samples that are gathered, the more accurate

the inference is about the value representing the likelihood value of the sample’s section

is. The effect is especially pronounced in Dataset 10, although it is also visible in all

other sets. It is curious that there is very little significant difference in the results

1This refers to the formal definition of information content as defined in terms of entropy by Shannon,
“A Mathematical theory of communication” [118]

77

when increasing iteration count and suggests, surprisingly, that better results could be

obtained by doubling the number of inner samples than doubling the iteration count –

both of which have the same effect on run time (see Lemma 4.2).

5.3.1.4 Impact of number of sections

Considering the number of sections variable, with constant number of inner samples and

all run for lengths of 50 000 iterations, a general correlation between spread of chosen

section and number of section divisions is observable. This uncertainty makes division

into greater numbers of sections undesirable. The smaller the section size (more sections)

used in the MH step, the easier it is for SA to find the optimal in a short time in the

second SA step. On the other hand, the larger the number of sections, the greater the

error, requiring longer runs of MH to reduce this error. Only using 10 sections produces

the same selected optimal section for all runs of the algorithm on the same dataset.

Indeed, the correct section was selected in as few as 500 iterations for the majority of

the problem sets tested with 10 sections.

This result can be used to find trade-offs between smaller sections resulting in less

uncertainty and variability in the outcomes of SA reduced search but with reduced

exploration opportunity resulting in increased probability of error; and larger sections

enabling more exploration by reduced SA but greater variability. A suitable trade-off to

ensure low errors while still providing a significant decrease in effective complexity on

the final SAM results is discussed in the next subsection.

5.3.2 Reduced search Simulated Annealing

Table 5.6 presents the summarised results obtained when running the SA algorithm on

the reduced search space selected by the coarse MH algorithm for cases of 20, 50 and 100

sections, averaged over all runs for all problem sets. A complete set of results alongside

those of the basic “full search” SA algorithm can be found in Table C.7 of Appendix C.3.

In the tables, SAM20 refers to SA reduced search with 20 section divisions of the search

space, SAM50 refers to 50 sections and SAM100 to 100 sections. Results with the label

T1 are those of basic SA using a starting temperature of 907 200 (i.e. a 1/4 of the size

of the search space), and T2 refer to results with starting temperature of 1 814 400 (1/2

the size of the search space).

The SA algorithm was run 30 times on each of the sections that were selected in the

previous MH step on the thirteen data sets, for each of the run lengths shown by N.

The temperature for reduced search space SA was set to exactly half the size of the

78

Table 5.6: Average percentage deviation of reduced search SA results compared with
full search basic SA

Basic SA T1 Basic SA T2 SAM20 SAM50 SAM100

N Avg
%

Var Avg
%

Var Avg
%

Var Avg
%

Var Avg
%

Var

1k 7.84 168.78 6.98 47.72 6.19 19.74 5.82 29.03 1.83 9.89

2k 5.31 39.80 5.06 33.42 5.48 16.94 5.20 17.43 1.34 5.60

5k 3.57 13.53 3.51 12.01 4.82 8.33 4.59 12.07 0.91 2.87

10k 2.52 9.77 2.57 7.87 4.48 6.24 4.36 11.13 0.71 1.92

50k 1.23 2.00 1.16 2.00 4.03 4.21 4.06 10.12 0.52 1.25

100k 0.83 1.14 0.82 0.96 3.94 3.78 4.01 9.84 0.50 1.12

150k 0.64 0.64 0.60 0.70 3.91 3.70 4.00 9.88 0.50 1.10

200k 0.51 0.48 0.49 0.43 3.89 3.65 3.99 9.81 0.50 1.08

500k 0.25 0.21 0.25 0.26 3.86 3.46 3.99 9.80 0.50 1.08

1M 0.16 0.16 0.14 0.12 3.85 3.39 3.99 9.80 0.50 1.08

sections, and the start point was set to the midpoint of the section. The maximum

(max), minimum (min) and average (avg) deviations of the selected schedule calculated

over the set of 30 runs were recorded for all section sizes and all datasets. Averages

were calculated as weighted averages taken over all the runs performed on that section

division number (20, 50 or 100) weighted according to the frequency with which the

section was selected by MH sampling as having the highest likelihood. For example, for

dataset 0, the summary of the results of coarse MH sampling for 20 sections is given

in Table 5.5 in Section 5.3.1. This shows how many times each section number from

1 to 20 was chosen out of the 20 runs performed for run lengths of the iteration count

indicated. For 2000, 5000 and 50 000 iterations, the result was section 18, 30% of the

runs and section 19, 70% of the runs; section 18, 10% of runs and section 19, 90% of

runs; and section 18, 25% of runs and section 19 75% respectively. These percentages

are the weights by which the average percentage deviation values obtained by the SA

search in those respective sections are multiplied in the weighted averaging calculation

of Table 5.6. In other words, the deviations per run were averaged over the 30 runs, and

multiplied by the section weight. The variances were calculated directly from the data.

The result of performing Welch’s test for significance comparing the % deviation results

of basic SA with those of SAM are in the columns headed |t| > tcritical in the Table C.7

in Appendix C.3. This column shows whether the differences in the results of basic SA

compared with those of the two-step SAM algorithm are statistically significant.

For ease of visualisation of the relationships, the mean values obtained from a basic SA

with starting temperature of 1/4 of the search space (907 200), basic SA with starting

79

temperature of 1/2 the search space, SAM with 20 sections, 50 sections and 100 sections

are plotted together in Figure 5.8 along with the averages of all the datasets’ maximum

values. These are denoted by Fullsearch 0.25N, Fullsearch 0.5N, SAM20, SAM50 and

SAM100 respectively where N here (and only here) is the total number of points in the

search space (n!). For the results of all datasets, please refer to Figures C.4 to C.16.

5.4 Discussion

5.4.1 Overview of Results

From the results, it is clear that for shorter runs our modified SAM algorithm yields

significantly better results than basic SA. The point at which basic SA starts to catch

up in longer runs differs per dataset from 10 000 to 200 000 iterations in length. If

this algorithm is to be deployed in network managers for scheduling packets in wireless

networks, the time cost of runs longer than 10 000 iterations is not acceptable to provide

QoS as network delays will be too long. In this situation our SAM algorithm is clearly

the preferred choice, as it can yield deviations as low as 0.15% in a mere 1000 iterations.

Figures 5.8 and C.4 to C.16 illustrate that SAM is superior to basic SA when considering

lower iteration counts and converges on lower percentage deviations in the same number

of iterations, whether SAM20, 50 or 100 sections. In particular, SAM100 generally

produces the lowest percentage deviation results for shorter runs, up to 5k (see Figures

C.7, C.8, C.12) and even up to 10k iterations (Figures C.5, C.9, C.16), 50k iterations

(Figures C.4, C.6, C.10, C.11) and 200k iterations (Figure C.14). The worst-case values

of both basic SA algorithms are significantly higher than the SAM results for run lengths

less than 5000 iterations, emphasised by the pre-eminence of True Welch test outcomes

for the results showing statistical significance of the difference between basic SA and the

superior SAM algorithm. SAM20 still performs well even when compared to long runs of

basic SA up to 1 million iterations in length. On dataset 7, SAM performs better than

basic SA throughout, with SAM20 performing significantly better even when compared

to basic SA runs of 1 million iterations.

There is a point in run lengths where the two methods cross over and it is more effective

to run basic SA longer than to use SAM. We also see from Table 5.6 that the differences

in % deviation results are likely to be significantly better for SAM than basic SA on

the lower iteration count spectrum and significantly better for basic SA than SAM at

the high iteration counts but in the middle iteration count ranges, the performance

is not generally statistically significantly different. This point is where the difference

becomes statistically insignificant and the t-test returns false (shown in Table C.7) and

80

is generally between 100 000 and 150 000 iterations. However, as an example we note

that the execution time measured to run the SA algorithms for 150 000 iterations was

of the order of 5 s. The acceptable maximum delay for Voice over IP or video stated in

Request For Comment (RFC) flow specification 1363, and telephony according to the

ITU-T recommendation G.114, is 150 ms [119]. This means that even if our system and

programming style or environment has bloated the execution time by a factor of 10, this

would still cause an unacceptable delay of 500 ms in data traffic for the purpose of VoIP

or video in a network. We can recommend the use of short runs of SAM instead. Still,

we note that scheduling optimisation may only be performed less regularly between large

batches of packet transmissions so the longer time becomes more acceptable. Also, with

increasing research in high speed network cards, the complexity may become less of a

problem and the time delay reduced.

If the accuracy of the MH results is good then SAM can provide significant improvements

but when a bad suboptimal section is chosen such as when the algorithm does not escape

from a local minimum, the deviation can be quite large (such as can be observed in

dataset 11, 50 sections). Large deviations after long runs are particularly prevalent in

SAM20 and SAM50, as can be seen in both Figures 5.8 and C.5, C.14 and C.15. Even

in this instance, however, it must be noted that the deviation does not exceed 3.5% in

the cases where the deviation is larger than that of basic SA. This performance is still

quite acceptable. On the other end of the spectrum even for large sections (SAM20)

very small deviations can be obtained (such as observed in Figures C.7 and C.8). For

different datasets and depending on the sections chosen by MH there is no clear winner

between 20, 50 or 100 sections as they each perform differently on the datasets tested.

Together then it is observed that if the coarse MH algorithm is run for 1000 iterations,

reducing the search space by a factor of 20 and then running SA on the reduced search

space for 10 000 iterations, a similar deviation can be achieved as running SA on the full

search space for 50 000 iterations (about 5%). The improvement achieved is reducing

the run time by a factor of 4.5. While this may seem modest, it must be noted that job

sets to be scheduled will typically be far larger than ten as used in all our experiments.

For 50 jobs, let us assume that the full search SA will require 1 million iterations. The

cost calculation is an unavoidable bottleneck with a complexity O(n), which would need

to be calculated 1 million times. SAM could provide the solution in less than a total of

222 223 iterations including as many cost calculations or less.

81

5.4.2 Comparisons

Both basic SA and SAM are significant improvements from the brute force search ap-

proach, which has a complexity of O(n ·n!). A search for a problem of 50 jobs using the

brute force search requires the cost calculation to be made of the order of 1064 times. SA

is a great improvement from this, and our SAM algorithm an even greater improvement.

The benchmarks provided by Biskup and Feldmann of average percentage deviation

from the optimal of 70 different 10-job problem instances with common due dates was

2.28% [120], which our SAM100 algorithm outperforms at 1.83% when run for only

1000 iterations. This is despite the problem being more difficult, since there are more

variables to consider (the different due windows).

M’Hallah’s hybrid GA-Hill Climbing algorithm for minimising total single machine

earliness-tardiness [121] has a complexity of

time ∝ P ·G ·O(fitnessfunction) · (O(crossover) +O(mutation) +O(replacement))

∝ O(P ·G · n(2s+ 2 + 2n))

= O(PGn(s+ n)) ,

(5.7)

where

N is the number iterations or steps,

P is the population size,

G is the number of generations,

n is the gene size (number of jobs), and

s is the size of the subsequence chosen for cross-over.

This complexity does not show the number of constant-time operations that have a

high load, causing the whole algorithm to have long running times in practice. If we

consider, for each simulation of SAM, that we keep the number of inner samples and the

number of sections constant, this complexity of the hybrid GA-Hill Climbing algorithm

is much higher than SAM’s O(n(NM +NS)). This complexity also omits that the initial

population is generated by a greedy heuristic.

The datasets for testing were generated using the same framework as we did [120] so we

loosely compare results for 10-job schedules. Three different variants of greedy heuris-

tics yielded average results of 11.80%, 14.58% and 60.13% deviation from the optimal,

respectively, but the number of iterations required to produce these results is not clear.

This we can compare to our average results of SAM20, SAM50 and SAM100 of 3.85%,

3.99% and 0.50% respectively for a run of 1 million iterations. The rest of the results

are not given in terms of deviation from the optimum and so defy further comparison.

82

A multi-objective SA algorithm is hybridised with an evolutionary algorithm by Yan-

nibelli and Amandi [81], but the differing objectives make comparison with our work

less instructive. In particular, the fitness function depends on the optimisation objec-

tives so the complexity of this step cannot be compared fairly. The hybrid algorithm,

however, includes a full run of SA performed on every generation. This inevitably in-

creases the complexity by the number of SA iterations, since it is multiplied by the basic

evolutionary complexity instead of being added to the pre-sampling step as we do.

Hino et al. test hybrids of TS and GA on minimising earliness and tardiness penalties

with a single common due date [33]. Numerical results of running the proposed algorithm

on problems generated by the usual Biskup-Feldmann method [120] had mean percentage

deviations of between 1.53% and 22.97% for 10-job problems.

The hybrid heuristic of Ali and Bijari for minimising maximum earliness and tardiness

with distinct due dates had average percentage deviations of between 0.0% and 3.34%

for 10-job problems constructed by the Biskup-Feldmann method [82]. Their heuristic

makes use of the Kuhn-Munkres Hungarian algorithm.

GA is alternated with EDA to improve the effective complexity of EDA, which may result

in a complexity of O(n2) [80]. The algorithms are alternated in different proportions to

determine an effective mix ratio. A similar method is used for problem generation but

problem sizes tested are from 20 to 90 jobs with runs of 50 000 to 125 000. Results are

given as absolute values instead of percentage deviation so comparison cannot be made.

Other hybrid algorithms are used for parallel machine scheduling [122, 123], flow-shop [124]

and single-machine total tardiness scheduling with breakdown interruptions [125], none

of which can be effectively compared with our work.

83

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(a) Dataset 0

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(b) Dataset 5

Figure 5.3: Histogram showing the effect of iteration count on the sections selected
by MH: 500 inner samples and 20 sections

84

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(c) Dataset 8

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(d) Dataset 10

Figure 5.3: Histogram showing the effect of iteration count on the sections selected
by MH: 500 inner samples and 20 sections

85

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(a) Dataset 1 with 50 inner samples

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Sections

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(b) Dataset 1 with 100 inner samples

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Sections

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(c) Dataset 1 with 200 inner samples

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(d) Dataset 1 with 500 inner samples

Figure 5.4: Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 1. Higher numbers of inner samples result in more

concentrated distributions

86

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Sections

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(a) Dataset 5 with 50 inner samples

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(b) Dataset 5 with 100 inner samples

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Sections

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(c) Dataset 5 with 200 inner samples

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

U
n
n
o
r
m
a
li
se
d
fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(d) Dataset 5 with 500 inner samples

Figure 5.5: Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 5. Higher numbers of inner samples result in more

concentrated distributions

87

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d
fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(a) Dataset 10 with 50 inner samples

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(b) Dataset 10 with 100 inner samples

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(c) Dataset 10 with 200 inner samples

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(d) Dataset 10 with 500 inner samples

Figure 5.6: Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 10. Higher numbers of inner samples result in more

concentrated distributions

88

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1000 iterations

2000 iterations

5000 iterations

10k iterations

50k iterations

(a) Dataset 13 with 50 inner samples

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(b) Dataset 13 with 100 inner samples

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(c) Dataset 13 with 200 inner samples

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m
a
li
se
d

fr
e
q
u
e
n
c
y

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

(d) Dataset 13 with 500 inner samples

Figure 5.7: Histogram showing the distribution produced by MH with 50, 100, 200
and 500 inner samples, dataset 13. Higher numbers of inner samples result in more

concentrated distributions

89

(a) Average values

(b) Maximum values

Figure 5.8: Histogram of the results of SAM, taken over all problem sets, shown
for SAM with 20 MH sections (SAM20), 50 sections and 100 sections (SAM50 and
SAM100). The results of basic SA for two different starting temperatures are also

shown for ease of comparison.

Chapter 6

Conclusion

The contributions of this work have been to investigate, in detail, the performance

of Simulated Annealing in solving the single machine scheduling problem and, more

importantly, to present the first hybrid MH-SA algorithm for use in optimisation of

scheduling problems. The hybrid algorithm known as SAM is a unique application

method of Metropolis-Hastings Monte Carlo to a problem that has not been done in the

literature before, and that recognises and uses specific properties of the search space in

solving this particular problem. It also relies on a new perspective of the search space.

Despite its ability to specialise to the characteristics of the search space, it is also a

general method applicable to a wide range of different problems and objectives. The

performance on problems with different criteria is left as future work.

In Chapter 1, we give background relevant to the scheduling problem, define the specific

problem that is the focus of this work, and present the hypotheses we aim to investigate

and some assumptions we make to narrow the focus. We motivate the importance

of investigating the problem by giving pertinent examples of applications where the

particular scheduling problem could be useful. We also motivate why we have selected SA

as the locus of concern. Important theoretical background on scheduling, computational

complexity, Bayesian inference, Markov Chains and ordinary and MCMC as well as

SA are presented in Chapter 2. Other related work is the subject of Chapter 3. In

Chapter 4, we present the models by which our algorithm functions, prove why the

section-based approach is reasonable and useful, and formulate the algorithms in detail.

Some implementation details are also provided in this chapter, including consideration

that had to be made in the generation of the many pseudo-random numbers that are

required, and computational complexity of the algorithms are analysed. We find that

the complexity of SAM is O(n(NMr + NS) + m) while basic SA has a complexity of

O(nNS) for n the number of jobs. We also contrast this much improved complexity

90

91

with that of a complete search of all possible schedule permutations, O(n · n!) showing

the remarkable improvement in complexity that can be achieved. Experimental results

are presented in Chapter 5 showing trade-offs between different methods, computational

load and solution quality.

The single machine scheduling problem for minimising weighted earliness and tardiness

is NP -hard and requires a solution algorithm to scour a very large and turbulent search

terrain that contains all the possible feasible permutations of jobs i.e. all possible sched-

ules. As has been emphasised, with as few as ten jobs, the search space contains over 3.6

million points. In typical situations where the number of jobs is considerably greater,

this search space is almost impossibly large. To illustrate we mentioned for 50 jobs

the size is of the order 1064. We have shown in Chapter 3 that previous literature has

not provided a sufficient way of pruning the large search space in a generally applicable

way, although researchers have investigated the performance of Simulated Annealing in

solving the problem, as well as several other meta-heuristic approaches.

For this reason, we have presented the hybrid SAM algorithm which views the search

space as a discrete piecewise-defined distribution dividing the large search space of per-

mutations into a number of sections and defining likelihood values per section, which

represent the likelihood of that section containing an optimal schedule. The details of

the discrete distribution on sections are discovered using Metropolis-Hastings sampling.

In this interpretation of MH sampling, the search space is divided into a specific number

of sections, and the states to be sampled are sections of the search space and sampling

states involves a process of inner sampling using a uniform distribution within the sam-

ple section state. This method chooses a likely section and so enables the large search

space to be pruned to a manageable size so that SA is able to provide a similarly accu-

rate solution schedule in a shorter run and fewer iterations. This new hybrid algorithm

along with applicable assumptions is formulated and presented in Chapter 4.

The results of Chapter 5, in which the algorithms were run on thirteen different datasets,

show that similar results to basic SA can be achieved by the hybrid SAM algorithm in

much shorter run times to achieve the same percentage deviation from the optimum,

even considering the uncertainty introduced in the MH step and the possibility that an

incorrect section is chosen using this approach. We investigated the effect of starting

temperature on the results of basic SA and found no statistically significant difference

between using a temperature of 90720 and 1814400 (a quarter and a half the size of the

search space, respectively). It is shown that between 150 000 and 200 000 iterations are

required to get a solution with no more than 2% deviation from the optimum 99% of

the time. In contrast, SAM can provide deviations of less than 2% in less than 1000

iterations in the case of 20 sections, and 2% deviation in less than 2000 iterations for

92

50 sections but only in some instances. If the coarse MH algorithm is run for 1000

iterations, reducing the search space by a factor of 20 and then running SA on the

reduced search space for 10 000 iterations, a similar 5% deviation can be achieved as

running SA on the full search space for 50 000 iterations. The improvement achieved is

reducing the run time by a factor of 4.5, particularly useful for larger task sizes.

Using SAM, however, it is not possible to guarantee a 2% deviation 99% of the time

as the results are so varied according to the performance of the Metropolis-Hastings

sampling. When running time is of primary concern and some percentage deviation of

up to 20% is acceptable, improved results can be achieved by SAM than by basic SA for

low iteration counts (generally 1000 iterations and up to 100 000 iterations). There is a

point, however, where the two cross over and it is more effective to run basic SA longer

than to use SAM, to ensure lower deviations. Where longer runs are acceptable, the

percentage deviation of basic SA tends to be considerably lower than that of SAM. We

can conclude that, in general, a good implementation of SA can in fact produce good

results regardless, even when the search space is very large. It must be noted, though,

that it is possible that in the case of very large search space, such as when finding optima

for 50 or 100-job schedules or larger, this search space may result in unacceptably long

run times and SAM may become preferable in such a situation. Further experimentation

with more jobs is required to verify this behaviour.

While simulation results have not shown conclusive superiority of our new hybrid algo-

rithm and the unique implementation approach of MH sampling in the solution of the

single machine weighted earliness-tardiness problem, we contend that the investigation

was useful and provided a new approach to pruning the search space. We can accept

the alternate hypothesis that a combination of Simulated Annealing and Metropolis-

Hastings MCMC pre-sampling (to prune the search space) can be found that reduces

the running time of SA (on the full search space), and makes a remarkable improvement

on brute force search. Further experimentation may reveal clear situations in which

our approach is superior and provide more justification for its usefulness. We also be-

lieve that this pre-sampling approach may be hybridised with other algorithms in other

application scenarios and other problems in a useful way and further work in this field

may have some utility. More experimentation on larger and more varied problems would

be a good next step on from this work to verify our findings further, and especially to

compare more rigorously our results with other hybrid and existing algorithms using the

same problem sets. Another useful next step would be to use different sorting meth-

ods according to different distance metrics such as using Steinhaus–Johnson–Trotter

or Heap’s algorithms. These are likely to produce more clustered and less uniformly

93

distributed cost terrains and may improve the SAM algorithm’s performance. Imple-

mentation in real-world applications would also be very useful for further development

and evaluation.

Appendix A

Complexity Classes

The references used here are the books by Arora and Barak [126] and Cormen et al. [127].

The goal of this section is to give just enough background about mathematical and

computing topics that are essential to the research reported on in this document. This

means it is, by no means, a formal or complete handling of any of the topics as this can

be found elsewhere.

This research is primarily concerned with finding low complexity algorithms to solve

problems in the category NP -hard or NP -complete. For this reason, some relevant

formal definitions are presented. In Computer Science, problems are divided into classes

of complexity depending on how difficult they are to solve.

Definition: A complexity class is a set of functions that can be computed within a

given resource [126, 127].

A.0.1 Big-Oh notation

Definition: If f and g are two functions from IN to IN then we say that

i) f(n) = O(g(n)) if there exists a constant c such that f(n) ≤ c.g(n) for every

sufficiently large n

ii) f(n) = Ω(g(n)) if g = O(f) or, equivalently f(n) ≥ c.g(n) for sufficiently large n

iii) f(n) = O(g(n)) if and only if f = O(g) and g = O(f) (i.e. f(n) = Ω(g(n)))

The above statement also implies that the bound is tight.

iv) f = O(g) if for every ε > 0, f(n) ≤ ε.g(n) for every sufficiently large n

v) f = w(g) if g = O(f)

94

95

Statement i is most relevant to this work.

A.0.2 P , NP and NP -complete

Roughly speaking, the class of problems P are those for which an answer can be found

in polynomial time.

An English definition is given instead of a Mathematical one for clarity (that is, to

prevent the use of confusing notation). NP is the abbreviation of non-deterministic

polynomial-time, and was originally defined in terms of a Non-deterministic Turing

Machine (NDTM). A NDTM is one with two transition functions instead of one and at

each transition point the machine makes an arbitrary choice which of these two functions

is applied. This means that there exists a sequence of (non-deterministic) choices that

results in the machine outputting 1 (YES) for input x. Specifically, a decision problem is

in NP if, given an input x, we can easily verify that x is a YES instance of the problem

if we are given the polynomial-size solution for x that certifies this fact. i.e. the YES

answer can be accepted in polynomial time by a non-deterministic Turing machine 1.

However, no known polynomial-time algorithm exists to find the solution. Less formally,

we can verify the solution easily but we cannot find the solution easily. The scheduling

problem where the objective is to minimise weighted earliness and tardiness belongs to

the class NP .

1A.M. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem”[128]

Appendix B

Problem instances

Table B.1 gives all the parameter values for the datasets generated for, and used in, our

experiments. Job processing times, due window start and end times, and earliness and

tardiness penalties.

Table B.1: Problem Instances

Problem no.

T, RDD

Processing

times

Due win-

dow start

Due win-

dow end

Earliness

penalty

Tardiness

penalty

0

(0.1, 0.4)

72.90 406.64 463.80 0.58 1.28

91.62 521.51 543.23 0.78 4.02

59.84 414.53 450.04 0.91 6.86

52.02 520.01 563.49 0.29 7.57

97.54 625.91 670.31 0.22 8.85

66.49 427.94 465.56 0.34 7.04

53.34 426.07 435.83 0.77 8.44

79.06 562.64 605.51 0.49 1.87

8.34 591.18 639.20 0.75 5.16

33.66 621.71 649.90 0.98 2.60

1

(0.1, 0.8)

30.49 505.15 539.99 0.33 7.51

33.87 601.26 602.52 0.39 7.13

70.00 479.79 503.76 0.55 2.03

85.98 437.42 446.97 0.18 1.63

37.44 491.97 495.16 0.11 3.88

59.86 536.28 580.34 0.61 1.90

74.06 327.04 332.66 0.16 2.21

85.89 458.38 489.42 0.46 7.01

25.82 251.49 285.37 0.54 2.58

22.83 326.00 347.29 0.38 3.11

Continued on next page

96

97

Problem no.

T, RDD

Processing

times

Due win-

dow start

Due win-

dow end

Earliness

penalty

Tardiness

penalty

2

(0.1, 1.2)

36.09 212.47 213.60 0.86 3.67

41.97 379.04 403.46 0.92 6.59

86.87 718.76 771.93 0.18 7.96

67.67 780.57 820.07 0.64 7.43

88.43 479.93 507.13 0.23 5.88

35.52 203.97 239.28 0.25 7.20

78.83 282.45 313.73 0.68 1.36

87.64 689.65 693.29 0.62 2.60

6.44 482.11 511.40 0.10 2.31

15.05 523.86 575.48 0.75 3.28

3

(0.5, 0.4)

72.90 160.72 217.88 0.58 1.28

91.62 275.59 297.31 0.78 4.02

59.84 168.61 204.12 0.91 6.86

52.02 274.09 317.57 0.29 7.57

97.54 380.00 424.39 0.22 8.85

66.49 182.02 219.64 0.34 7.04

53.34 180.15 189.91 0.77 8.44

79.06 316.72 359.59 0.49 1.87

8.34 345.26 393.28 0.75 5.16

33.66 375.79 403.98 0.98 2.60

4

(0.5, 0.8)

30.49 294.65 329.50 0.33 7.51

33.87 390.77 392.03 0.39 7.13

70.00 269.29 293.26 0.55 2.03

85.98 226.93 236.47 0.18 1.63

37.44 281.47 284.67 0.11 3.88

59.86 325.78 369.84 0.61 1.90

74.06 116.55 122.16 0.16 2.21

85.89 247.88 278.93 0.46 7.01

25.82 41.00 74.87 0.54 2.58

22.83 115.50 136.79 0.38 3.11

5

(0.3, 0.8)

72.00 164.28 221.00 0.58 1.28

91.00 374.66 396.21 0.78 4.02

59.00 169.20 204.44 0.91 6.86

52.00 382.47 425.61 0.29 7.57

97.00 593.08 637.13 0.22 8.85

66.00 196.86 234.19 0.34 7.04

53.00 179.32 189.01 0.77 8.44

79.00 466.76 509.30 0.49 1.87

8.00 525.95 573.60 0.75 5.16

33.00 576.70 604.67 0.98 2.60

Continued on next page

98

Problem no.

T, RDD

Processing

times

Due win-

dow start

Due win-

dow end

Earliness

penalty

Tardiness

penalty

6

(0.3, 1.0)

30.00 407.25 441.68 0.33 7.51

33.00 521.81 523.07 0.39 7.13

70.00 374.58 398.27 0.55 2.03

85.00 320.47 329.91 0.18 1.63

37.00 387.06 390.23 0.11 3.88

59.00 446.84 490.38 0.61 1.90

74.00 183.64 189.20 0.16 2.21

85.00 349.01 379.69 0.46 7.01

25.00 93.82 127.30 0.54 2.58

22.00 184.29 205.34 0.38 3.11

7

(0.3, 1.2)

36.00 102.52 103.65 0.86 3.67

41.00 267.41 291.59 0.92 6.59

86.00 603.71 656.34 0.18 7.96

67.00 664.89 703.99 0.64 7.43

88.00 367.28 394.21 0.23 5.88

35.00 94.11 129.07 0.25 7.20

78.00 171.79 202.77 0.68 1.36

87.00 574.89 578.50 0.62 2.60

6.00 369.44 398.44 0.10 2.31

15.00 410.78 461.87 0.75 3.28

8

(0.4, 0.6)

94.27 409.23 427.00 2.90 5.25

33.09 712.38 738.00 5.30 9.60

38.40 105.83 139.13 3.39 6.14

48.76 420.42 437.00 0.74 1.33

61.55 504.35 550.33 4.55 8.23

11.35 505.10 536.02 2.23 4.03

30.75 632.13 676.69 2.10 3.80

79.52 8.66 39.12 3.14 5.69

47.34 43.68 47.35 3.45 6.23

25.51 385.52 406.11 3.74 6.77

9

(0.4, 0.6)

1.00 172.67 179.33 0.80 2.00

76.00 298.63 319.35 2.00 5.00

54.00 264.56 274.98 1.20 3.00

5.00 169.18 199.38 2.80 7.00

68.00 274.96 316.15 4.00 10.00

39.00 231.83 255.16 2.40 6.00

84.00 321.01 323.49 0.40 1.00

6.00 173.52 197.30 2.40 6.00

68.00 293.46 294.79 0.40 1.00

39.00 241.54 245.42 0.40 1.00

Continued on next page

99

Problem no.

T, RDD

Processing

times

Due win-

dow start

Due win-

dow end

Earliness

penalty

Tardiness

penalty

10

(0.4, 0.6)

89.00 385.71 438.72 4.00 10.00

4.00 217.64 237.33 1.60 4.00

76.00 379.32 388.90 0.80 2.00

16.00 249.67 254.53 0.40 1.00

65.00 351.63 367.85 1.20 3.00

60.00 338.39 358.24 1.60 4.00

58.00 341.56 346.52 0.40 1.00

90.00 394.64 433.22 2.80 7.00

11.00 236.57 245.09 0.80 2.00

78.00 372.22 404.58 2.40 6.00

11

(0.4, 0.6)

68 374.31 403.90 2.40 6.00

47.00 325.17 354.38 2.00 5.00

15.00 243.99 285.43 3.20 8.00

68.00 363.61 411.83 3.60 9.00

91.00 419.23 466.89 3.60 9.00

64.00 363.93 395.04 2.40 6.00

78.00 386.97 435.89 3.60 9.00

89.00 413.12 461.48 3.60 9.00

26.00 285.35 294.77 0.80 2.00

34.00 298.67 322.67 2.00 5.00

12

(0.4, 0.6)

32.00 267.36 288.20 1.60 4.00

60.00 323.41 349.67 2.00 5.00

15.00 228.14 255.87 2.40 6.00

90.00 382.39 417.94 2.80 7.00

85.00 376.51 401.90 2.00 5.00

98.00 405.19 428.14 2.00 5.00

32.00 258.99 295.34 2.80 7.00

22.00 232.87 279.18 3.60 9.00

6.23 1.00 2.00 2.00 6.00

6.77 1.00 6.00 5.00 3.00

Appendix C

Results

C.1 Simulated Annealing base case

Table C.1: Summary of SA results

Temp 907200 1814400

N Max

%

Ave

%

Min

%

Var Max

%

Ave

%

Min

%

Var t-

test

0

1k 24.60 3.47 0.32 29.45 3.72 1.70 0.37 0.57 T

2k 3.02 1.54 0.11 0.33 2.25 1.44 0.41 0.21 F

5k 2.23 1.02 0.29 0.17 1.99 1.03 0.31 0.16 F

10k 2.05 0.74 0.12 0.16 1.47 0.81 0.00 0.11 F

50k 0.75 0.37 0.00 0.04 0.73 0.38 0.00 0.04 F

100k 0.68 0.25 0.00 0.03 0.52 0.23 0.00 0.02 F

150k 0.42 0.18 0.00 0.02 0.63 0.22 0.00 0.03 F

200k 0.42 0.17 0.00 0.01 0.44 0.16 0.00 0.02 F

500k 0.29 0.07 0.00 0.01 0.29 0.07 0.00 0.00 F

1M 0.18 0.05 0.00 0.62 0.08 0.03 0.00 0.00 T

1

1k 20.55 9.70 0.34 25.48 18.31 9.34 1.37 17.99 F

2k 14.72 6.57 1.17 14.86 16.77 6.64 1.17 12.86 F

5k 11.43 4.37 0.31 5.80 9.19 4.04 0.34 5.30 F

10k 6.64 2.80 0.03 3.29 9.52 3.03 0.03 3.28 F

50k 2.28 0.88 0.00 0.36 2.28 1.04 0.00 0.40 F

100k 2.23 0.70 0.00 0.24 1.42 0.57 0.00 0.19 F

150k 1.66 0.35 0.00 0.17 1.35 0.51 0.00 0.15 T

200k 1.19 0.38 0.00 0.14 1.19 0.39 0.00 0.11 F

Continued on next page

100

101

N Max

%

Ave

%

Min

%

Var Max

%

Ave

%

Min

%

Var t-

test

500k 0.52 0.12 0.00 0.01 0.52 0.10 0.00 0.03 F

1M 0.31 0.04 0.00 0.01 0.08 0.03 0.00 0.01 F

2

1k 36.26 9.98 0.84 34.64 15.40 9.70 3.71 9.40 F

2k 20.32 8.42 1.58 13.27 15.32 7.88 1.78 8.72 F

5k 10.74 5.74 0.61 4.37 11.54 5.98 1.37 4.52 F

10k 9.37 4.68 0.63 2.67 8.31 4.87 1.10 2.42 F

50k 4.78 2.90 0.74 1.00 5.49 2.72 0.00 1.98 F

100k 3.97 2.00 0.15 1.05 3.75 1.79 0.00 1.06 F

150k 3.05 1.49 0.00 0.64 3.57 1.49 0.00 0.87 F

200k 3.13 1.16 0.00 0.77 2.82 1.10 0.00 0.59 F

500k 1.99 0.65 0.00 0.26 1.99 0.58 0.00 35.87 F

1M 1.93 0.42 0.00 0.18 1.58 0.40 0.00 0.16 F

3

1k 63.54 9.98 0.39 82.87 17.09 8.15 1.36 10.92 F

2k 13.12 5.86 0.15 10.67 16.89 6.12 0.00 13.25 F

5k 8.08 4.44 0.15 3.13 8.23 4.48 0.80 2.79 F

10k 11.04 3.27 0.24 3.20 5.89 3.13 0.24 2.03 F

50k 3.50 1.19 0.00 0.91 3.02 1.16 0.00 0.78 F

100k 2.56 1.05 0.00 0.53 1.97 0.86 0.00 0.36 F

150k 1.98 0.67 0.00 0.45 2.37 0.64 0.00 0.38 F

200k 1.36 0.44 0.00 0.17 1.44 0.40 0.00 0.20 F

500k 1.24 0.17 0.00 0.07 1.08 0.12 0.00 0.03 F

1M 0.36 0.04 0.00 0.01 0.24 0.02 0.00 0.00 F

4

1k 33.09 12.68 1.65 54.80 28.89 10.70 3.12 27.01 F

2k 21.65 9.14 2.64 14.97 16.14 7.91 2.09 13.27 F

5k 13.42 5.67 0.66 8.49 11.69 5.45 1.06 7.16 F

10k 10.85 4.10 0.00 4.56 8.91 4.46 0.88 4.47 F

50k 4.77 2.17 0.40 1.01 4.69 2.09 0.00 1.11 F

100k 3.74 1.35 0.00 0.71 3.01 1.39 0.00 0.47 F

150k 2.43 1.23 0.15 0.37 2.35 1.10 0.00 0.36 F

200k 1.91 0.97 0.00 0.22 1.72 0.90 0.00 0.23 F

500k 1.47 0.56 0.00 0.13 1.28 0.47 0.00 0.14 F

1M 1.28 0.39 0.00 0.11 1.06 0.35 0.00 0.09 F

Continued on next page

102

N Max

%

Ave

%

Min

%

Var Max

%

Ave

%

Min

%

Var t-

test

5

1k 14.66 8.47 4.73 9.84 14.65 7.62 2.32 11.40 F

2k 12.54 7.12 1.49 8.53 9.78 5.72 1.44 4.42 F

5k 7.28 4.11 0.81 2.78 7.49 4.65 2.69 2.16 F

10k 6.02 3.83 1.41 1.37 7.13 3.60 1.28 2.26 F

50k 3.85 1.84 0.52 0.83 2.98 1.84 0.26 0.59 F

100k 2.37 1.27 0.00 0.53 2.26 1.19 0.26 0.46 F

150k 2.05 1.25 0.00 0.22 2.02 0.92 0.00 0.42 F

200k 1.74 0.75 0.00 0.22 1.76 0.81 0.00 0.24 F

500k 1.00 0.32 0.00 0.09 1.20 0.41 0.00 0.14 F

1M 0.63 0.25 0.00 0.04 0.88 0.27 0.00 0.07 F

6

1k 3.97 2.48 0.44 1.05 4.84 2.73 0.47 1.37 F

2k 4.38 2.11 0.61 0.77 4.12 2.23 0.94 0.80 F

5k 3.06 1.60 0.69 0.46 2.38 1.53 0.16 0.39 F

10k 1.72 1.02 0.00 0.16 2.13 1.30 0.59 0.17 F

50k 1.35 0.58 0.03 0.11 1.10 0.68 0.00 0.09 F

100k 0.74 0.41 0.00 0.05 0.80 0.31 0.00 0.07 F

150k 0.92 0.36 0.00 0.06 0.78 0.30 0.00 0.04 F

200k 0.64 0.30 0.00 0.05 0.71 0.30 0.00 0.05 F

500k 0.44 0.14 0.00 0.02 0.49 0.22 0.00 0.03 F

1M 0.19 0.05 0.00 0.00 0.32 0.09 0.00 0.01 F

7

1k 26.18 8.24 1.12 41.37 10.76 4.99 3.11 2.99 T

2k 10.59 4.16 0.97 4.87 5.81 3.53 1.43 2.12 F

5k 4.93 2.68 1.16 0.82 4.65 2.48 0.52 1.21 F

10k 4.13 1.76 0.53 0.77 3.40 1.92 0.40 0.55 F

50k 1.60 0.91 0.25 0.20 2.10 0.80 0.17 0.24 F

100k 1.63 0.65 0.12 0.14 1.55 0.55 0.00 0.14 F

150k 1.13 0.45 0.00 0.07 0.72 0.38 0.15 0.03 F

200k 0.98 0.36 0.00 0.05 1.04 0.42 0.00 0.07 F

500k 0.66 0.22 0.00 0.03 0.41 0.18 0.00 0.01 F

1M 0.25 0.13 0.00 0.01 0.26 0.11 0.00 0.01 F

Continued on next page

103

N Max

%

Ave

%

Min

%

Var Max

%

Ave

%

Min

%

Var t-

test

8

1k 34.76 13.02 1.88 60.63 22.97 11.36 1.71 27.57 F

2k 25.87 9.60 0.32 51.45 25.38 9.82 0.68 46.09 F

5k 14.31 5.32 1.01 13.08 12.12 5.79 1.27 10.01 F

10k 8.65 2.82 0.34 3.54 8.19 2.89 0.33 3.13 F

50k 4.70 1.52 0.00 1.23 3.00 1.46 0.33 0.71 F

100k 2.08 0.99 0.00 0.26 2.37 1.20 0.33 0.34 F

150k 1.84 0.85 0.00 0.22 1.90 0.97 0.27 0.24 F

200k 1.88 0.93 0.32 0.23 1.21 0.53 0.00 0.09 T

500k 0.99 0.42 0.00 0.07 1.26 0.60 0.00 0.10 F

1M 0.86 0.28 0.00 0.05 0.86 0.28 0.00 0.05 F

9

1k 8.43 2.55 0.34 3.33 6.09 2.64 0.09 2.19 F

2k 5.69 1.77 0.35 1.32 3.42 1.51 0.35 0.94 F

5k 2.71 1.07 0.15 0.36 1.97 1.14 0.07 0.31 F

10k 1.41 0.58 0.03 0.16 1.57 0.62 0.01 0.18 F

50k 0.73 0.29 0.00 0.04 0.43 0.21 0.01 0.01 F

100k 0.39 0.14 0.00 0.01 0.32 0.12 0.00 0.01 F

150k 0.33 0.11 0.01 0.01 0.26 0.09 0.01 0.00 F

200k 0.32 0.11 0.00 0.01 0.41 0.10 0.00 0.01 F

500k 0.18 0.05 0.00 0.00 0.12 0.05 0.00 0.00 F

1M 0.09 0.02 0.00 0.00 0.07 0.03 0.00 0.00 F

10

1k 17.27 7.38 2.16 14.94 20.60 10.60 3.56 22.91 T

2k 13.44 6.67 2.90 8.41 10.77 7.05 1.90 7.47 F

5k 8.97 5.08 2.40 3.06 9.55 4.19 1.69 4.18 F

10k 6.77 3.54 1.63 1.97 7.42 4.03 0.48 3.64 F

50k 2.88 1.80 0.48 0.40 3.96 1.88 0.48 0.92 F

100k 2.48 1.30 0.00 0.57 2.90 1.48 0.48 0.58 F

150k 1.86 0.85 0.00 0.23 1.65 0.88 0.00 0.22 F

200k 1.38 0.88 0.48 0.11 1.65 0.86 0.00 0.20 F

500k 0.97 0.37 0.00 0.10 1.84 0.41 0.00 0.19 F

1M 1.14 0.32 0.00 0.10 0.60 0.24 0.00 0.06 F

Continued on next page

104

N Max

%

Ave

%

Min

%

Var Max

%

Ave

%

Min

%

Var t-

test

11

1k 15.31 8.06 2.10 15.29 14.79 7.08 0.99 13.60 F

2k 10.31 5.37 1.15 5.32 9.53 4.83 0.00 5.69 F

5k 6.71 4.16 2.03 1.83 7.18 4.07 1.77 2.50 F

10k 7.10 2.57 0.40 2.40 5.64 2.13 0.00 2.07 F

50k 3.08 1.11 0.12 0.49 1.81 0.64 0.12 0.25 T

100k 1.37 0.56 0.00 0.18 1.70 0.66 0.00 0.21 F

150k 1.01 0.48 0.00 0.13 1.02 0.32 0.00 0.11 F

200k 1.02 0.34 0.00 0.08 1.30 0.42 0.00 0.10 F

500k 0.47 0.14 0.00 0.02 0.26 0.09 0.00 0.01 F

1M 0.19 0.06 0.00 0.01 0.40 0.06 0.00 0.01 F

12

1k 13.15 7.29 1.08 13.39 14.71 9.25 4.29 7.80 F

2k 10.64 4.59 0.13 7.34 9.83 5.23 0.97 5.46 F

5k 6.03 3.89 1.93 1.34 8.56 3.56 1.41 2.94 F

10k 6.50 2.96 0.22 2.49 5.51 2.76 0.22 1.79 F

50k 2.56 1.41 0.13 0.54 3.60 1.15 0.13 0.93 F

100k 2.37 0.84 0.00 0.60 2.32 0.95 0.08 0.41 F

150k 1.35 0.54 0.00 0.18 1.65 0.49 0.00 0.20 F

200k 1.19 0.32 0.00 0.08 1.02 0.45 0.13 0.08 F

500k 0.68 0.20 0.00 0.03 0.47 0.22 0.00 0.02 F

1M 0.29 0.09 0.00 0.01 0.23 0.08 0.00 0.00 F

Avg

1k 25.60 7.84 1.25 168.78 14.04 6.98 1.91 47.72

2k 12.07 5.31 1.00 39.80 10.59 5.06 0.95 33.42

5k 7.28 3.57 0.88 13.53 7.04 3.51 0.96 12.01

10k 5.98 2.52 0.40 9.77 5.44 2.57 0.40 7.87

50k 2.67 1.23 0.19 2.00 2.55 1.16 0.11 2.00

100k 1.93 0.83 0.02 1.14 1.80 0.82 0.08 0.96

150k 1.46 0.64 0.01 0.64 1.46 0.60 0.03 0.70

200k 1.24 0.51 0.06 0.48 1.21 0.49 0.01 0.43

500k 0.79 0.25 0.00 0.21 0.81 0.25 0.00 0.26

1M 0.56 0.16 0.00 0.16 0.48 0.14 0.00 0.12

105

C.2 Metropolis-Hastings simulations

C.2.1 Chi-squared test of significance

106

Table C.2: Dataset 0 MH: Summary for division of search space into 100 sections, part 1

Number of

samples

50 100

number of iterations number of iterations

Section Ho 500 1000 2000 5000 10000 50000 500 1000 2000 5000 10000 50000

0 0.2 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

93 0.2 1 1 2 1 3 1 1 0 2 2 1 3

94 0.2 0 0 0 0 0 0 0 0 0 0 0 0

95 0.2 1 0 1 0 0 0 1 2 1 1 0 2

96 0.2 8 8 5 4 4 7 6 8 7 8 8 4

97 0.2 10 11 11 15 12 12 11 10 10 9 11 11

98 0.2 0 0 0 0 0 0 0 0 0 0 0 0

99 0.2 0 0 0 0 0 0 0 0 0 0 0 0

p-value 4.9E-

112

2.6E-

131

3.61E-

98

1.8E-

186

2.7E-

115

4.4E-

139

9.6E-

106

6E-

114

1.3E-

100

7.54E-

97

2.6E-

131

7.54E-

97

107

Table C.3: Dataset 0 MH: Summary for division of search space into 100 sections, part 2

Number of

samples

200 500

number of iterations number of iterations

Section Ho 500 1000 2000 5000 10000 50000 500 1000 2000 5000 10000 50000

0 0.2 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

93 0.2 0 1 0 0 2 0 0 0 0 0 1 0

94 0.2 0 0 0 0 0 0 0 0 0 0 0 0

95 0.2 0 0 1 0 1 0 0 0 1 0 0 1

96 0.2 6 11 9 12 6 7 6 10 7 6 7 8

97 0.2 14 8 10 8 11 13 14 10 12 14 12 11

98 0.2 0 0 0 0 0 0 0 0 0 0 0 0

99 0.2 0 0 0 0 0 0 0 0 0 0 0 0

p-value 1.6E-

176

2.6E-

131

2E-

127

8.6E-

153

3.2E-

108

1.2E-

162

1.6E-

176

6E-

145

4.4E-

139

1.6E-

176

4.4E-

139

2.6E-

131

108

Table C.4: Dataset 0 MH: Summary for division of search space into 50 sections, part 2

Number of

samples

200 500

number of iterations number of iterations

Section Ho 500 1000 2000 5000 10000 50000 500 1000 2000 5000 10000 50000

1 0.4 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

46 0.4 0 0 0 1 0 1 0 0 0 0 0 2

47 0.4 0 2 2 1 2 0 1 0 0 0 0 0

48 0.4 20 18 18 18 18 19 19 20 20 20 20 18

49 0.4 0 0 0 0 0 0 0 0 0 0 0 0

50 0.4 0 0 0 0 0 0 0 0 0 0 0 0

p-

value

1.2E-

204

9.8E-

166

9.8E-

166

1.2E-

164

9.8E-

166

4.2E-

184

4.12E-

184

1.2E-

204

1.2E-

204

1.2E-

204

1.2E-

204

9.8E-

166

109

Table C.5: Dataset 0 MH: Summary for division of search space into 20 sections, part 1

Number of samples 50 100

number of iterations number of iterations

Section H0 500 1000 2000 5000 10000 50000 500 1000 2000 5000 10000 50000

1 1 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

18 1 4 4 6 2 4 5 4 2 2 4 2 2

19 1 16 16 14 18 16 15 16 18 18 16 18 18

20 1 0 0 0 0 0 0 0 0 0 0 0 0

p-

value

1.2E-

42

1.2E-

42

1.4E-

34

4.6E-

54

1.2E-

42

3.4E-

38

1.2E-

42

4.6E-

54

4.6E-

54

1.2E-

42

4.6E-

54

4.6E-

54

110

Table C.6: Dataset 0 MH: Summary for division of search space into 20 sections, part 2

Number of samples 200 500

number of iterations number of iterations

Section H0 500 1000 2000 5000 10000 50000 500 1000 2000 5000 10000 50000

1 1 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

18 1 4 2 2 1 1 3 1 0 2 1 0 3

19 1 16 18 18 19 19 17 19 20 18 19 20 17

20 1 0 0 0 0 0 0 0 0 0 0 0 0

p-

value

1.2E-

4

4.6E-

54

4.6E-

54

4.6E-

61

4.6E-

61

6.3E-

48

4.6E-

61

6.3E-

69

4.6E-

54

4.6E-

61

6.3E-

69

6.3E-

48

111

C.2.2 Impact of iteration count

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

Figure C.1: The effect of different run lengths on the frequency distribution for 20
section divisions, 500 inner samples: dataset 1

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
n
n
o
r
m

a
li
se

d
 f
r
e
q
u
e
n
c
y
 d

is
tr

ib
u
ti
o
n

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

Figure C.2: The effect of different run lengths on the frequency distribution for 20
section divisions, 500 inner samples: dataset 2

112

�

���

���

���

���

���

���

��	

��

� � � � � � 	
 � �� �� �� �� �� �� �� �	 �
 �� ��

N
o
r
m

a
li
se

d
 f
r
e
q
u
e
n
c
y
 d

is
tr

ib
u
ti
o
n

Section

500 iterations

1k iterations

2k iterations

5k iterations

10k iterations

50k iterations

Figure C.3: The effect of different run lengths on the frequency distribution for 20
section divisions, 500 inner samples: dataset 3

C.3 Reduced search SA final results

Table C.7 shows maximum (Max), mean and minimum (Min) percentage deviations

from the optimal value obtained in 50 runs of basic SA compared with the two-step SAM

algorithm for division of search space into 20 (SAM20), 50 (SAM50), and 100 sections

(SAM100). The columns headed |t| > tcrit show T if the set of results were found to

be statistically significantly different from basic SA by the t-test for significance, and

F if the differences were not found to be significant. The iteration values represent the

algorithms’ run times. From the results, it is clear that for shorter runs, our modified

SAM algorithm yields significantly better results than basic SA. The point at which

basic SA starts to catch up in longer runs differs per dataset from 10 000 to 200 000. If

this algorithm is to be deployed in network managers for scheduling packets in wireless

networks, the time cost of runs longer than 10 000 iterations is not acceptable to provide

QoS as network delays will be too long. In this situation, our SAM algorithm is clearly

the preferred choice, as it can yield deviations as low as 0.15% in a mere 1000 iterations.

113

Table C.7: Summary of results of reduced search SA compared with full basic SA

Basic SA SAM20 SAM50 SAM100

Dataset N Max

%

Ave

%

Min

%

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

0

1k 3.72 1.70 0.37 2.03 0.64 0.08 T 2.46 0.42 0.03 T 1.70 0.41 0.00 T

2k 2.25 1.44 0.41 1.70 0.51 0.07 T 1.69 0.34 0.07 T 1.20 0.28 0.00 T

5k 1.99 1.03 0.31 1.36 0.30 0.00 T 1.41 0.16 0.00 T 1.20 0.16 0.00 T

10k 1.47 0.81 0.00 1.27 0.23 0.00 T 1.27 0.11 0.00 T 0.82 0.08 0.00 T

50k 0.73 0.38 0.00 0.76 0.09 0.00 F 0.71 0.04 0.00 F 0.65 0.03 0.00 T

100k 0.52 0.23 0.00 0.66 0.07 0.00 F 0.66 0.03 0.00 F 0.61 0.03 0.00 F

150k 0.63 0.22 0.00 0.61 0.07 0.00 F 0.61 0.03 0.00 T 0.58 0.03 0.00 F

200k 0.44 0.16 0.00 0.66 0.06 0.00 F 0.61 0.03 0.00 T 0.58 0.03 0.00 F

500k 0.29 0.07 0.00 0.58 0.06 0.00 F 0.58 0.03 0.00 T 0.58 0.03 0.00 T

1M 0.08 0.03 0.00 0.58 0.06 0.00 F 0.58 0.03 0.00 T 0.58 0.03 0.00 T

1

1k 18.31 9.34 1.37 12.95 4.68 0.00 T 4.97 2.15 0.03 T 6.57 1.86 0.00 T

2k 16.77 6.64 1.17 11.76 3.80 0.03 T 3.88 1.57 0.00 T 5.28 1.09 0.00 T

5k 9.19 4.04 0.34 10.33 3.00 0.00 T 2.41 0.81 0.00 T 3.39 0.73 0.00 T

10k 9.52 3.03 0.03 7.20 2.50 0.00 F 1.40 0.56 0.00 T 1.68 0.57 0.00 T

50k 2.28 1.04 0.00 6.08 2.15 0.00 T 0.31 0.40 0.00 T 1.14 0.52 0.00 T

100k 1.42 0.57 0.00 6.05 2.12 0.00 T 0.31 0.40 0.00 F 1.14 0.52 0.00 T

150k 1.35 0.51 0.00 6.05 2.13 0.00 T 0.31 0.40 0.00 F 1.14 0.52 0.00 T

200k 1.19 0.39 0.00 6.05 2.12 0.00 T 0.31 0.40 0.00 T 1.14 0.52 0.00 T

500k 0.52 0.10 0.00 6.05 2.12 0.00 T 0.31 0.40 0.00 T 1.14 0.52 0.00 T

1M 0.08 0.03 0.00 6.05 2.12 0.00 T 0.31 0.40 0.00 T 1.14 0.52 0.00 T

Continued on next page

114

Table C.7: Summary of results of reduced search SA compared with full basic SA

Basic SA SAM20 SAM50 SAM100

Dataset N Max

%

Ave

%

Min

%

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

2

1k 15.40 9.70 3.71 11.83 4.41 0.15 T 8.61 3.55 0.15 T 8.86 3.30 0.00 T

2k 15.32 7.88 1.78 16.45 3.95 0.20 T 8.35 2.85 0.61 T 6.61 2.57 0.00 T

5k 11.54 5.98 1.37 7.55 2.67 0.15 T 5.79 1.79 0.00 T 5.40 1.60 0.00 T

10k 8.31 4.87 1.10 6.53 1.89 0.00 T 5.30 1.56 0.00 T 4.78 1.27 0.00 T

50k 5.49 2.72 0.00 4.77 1.00 0.00 T 2.97 0.83 0.00 T 2.91 0.77 0.00 T

100k 3.75 1.79 0.00 3.17 0.78 0.00 F 2.71 0.72 0.00 T 2.43 0.70 0.00 T

150k 3.57 1.49 0.00 2.97 0.67 0.00 F 2.43 0.69 0.00 F 2.23 0.68 0.00 T

200k 2.82 1.10 0.00 2.71 0.61 0.00 F 2.43 0.68 0.00 F 2.23 0.68 0.00 F

500k 1.99 0.58 0.00 2.71 0.58 0.00 F 2.23 0.67 0.00 F 2.23 0.68 0.00 F

1M 1.58 0.40 0.00 2.23 0.56 0.00 T 2.23 0.67 0.00 T 2.23 0.68 0.00 T

3

1k 17.09 8.15 1.36 7.68 3.34 0.00 T 9.80 2.45 0.00 T 5.13 2.11 0.00 T

2k 16.89 6.12 0.00 7.07 2.38 0.00 T 4.99 1.77 0.00 T 4.64 1.56 0.00 T

5k 8.23 4.48 0.80 3.37 1.23 0.00 T 4.15 0.92 0.00 T 2.81 1.08 0.00 T

10k 5.89 3.13 0.24 2.32 0.79 0.00 T 2.97 0.58 0.00 T 2.81 0.89 0.00 T

50k 3.02 1.16 0.00 0.82 0.11 0.00 T 1.33 0.29 0.00 T 2.32 0.82 0.00 T

100k 1.97 0.86 0.00 0.39 0.06 0.00 T 1.33 0.28 0.00 T 2.32 0.82 0.00 F

150k 2.37 0.64 0.00 0.15 0.05 0.00 T 1.33 0.28 0.00 F 2.32 0.82 0.00 F

200k 1.44 0.40 0.00 0.15 0.05 0.00 T 1.33 0.28 0.00 F 2.32 0.82 0.00 T

500k 1.08 0.12 0.00 0.15 0.05 0.00 F 1.33 0.28 0.00 T 2.32 0.82 0.00 T

1M 0.24 0.02 0.00 0.15 0.05 0.00 T 1.33 0.28 0.00 T 2.32 0.82 0.00 T

Continued on next page

115

Table C.7: Summary of results of reduced search SA compared with full basic SA

Basic SA SAM20 SAM50 SAM100

Dataset N Max

%

Ave

%

Min

%

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

4

1k 28.89 10.70 3.12 10.45 4.32 0.40 T 13.65 3.96 0.66 T 8.12 3.07 0.00 T

2k 16.14 7.91 2.09 5.87 2.31 0.40 T 6.34 2.88 3.12 T 7.98 2.20 0.00 T

5k 11.69 5.45 1.06 2.71 1.40 0.15 T 5.46 1.98 0.00 T 3.21 1.32 0.00 T

10k 8.91 4.46 0.88 2.16 0.91 0.00 T 4.84 1.50 0.00 T 2.44 1.02 0.00 T

50k 4.69 2.09 0.00 1.28 0.34 0.00 T 3.26 0.96 0.00 T 1.50 0.65 0.00 T

100k 3.01 1.39 0.00 0.55 0.18 0.00 T 3.12 0.91 0.00 F 1.50 0.63 0.00 T

150k 2.35 1.10 0.00 0.55 0.14 0.00 T 3.12 0.88 0.00 F 1.47 0.62 0.00 T

200k 1.72 0.90 0.00 0.40 0.05 0.00 F 3.12 0.87 0.00 T 1.47 0.63 0.00 F

500k 1.28 0.47 0.00 0.00 0.00 0.00 T 3.08 0.87 0.00 T 1.47 0.62 0.00 T

1M 1.06 0.35 0.00 0.00 0.00 0.00 T 3.08 0.87 0.00 T 1.47 0.62 0.00 T

5

1k 14.65 7.62 2.32 9.44 4.13 0.52 T 6.71 2.43 0.17 T 4.21 1.93 0.00 T

2k 9.78 5.72 1.44 9.52 3.34 0.05 T 5.46 1.83 0.00 T 3.27 1.53 0.00 T

5k 7.49 4.65 2.69 6.18 2.73 0.17 T 2.91 1.03 0.00 T 2.17 0.93 0.00 T

10k 7.13 3.60 1.28 5.22 2.38 0.00 T 1.99 0.73 0.00 T 1.35 0.63 0.00 T

50k 2.98 1.84 0.26 3.69 1.70 0.00 F 0.81 0.34 0.00 T 0.72 0.45 0.00 T

100k 2.26 1.19 0.26 3.55 1.62 0.00 F 0.92 0.31 0.00 T 0.60 0.42 0.00 T

150k 2.02 0.92 0.00 3.62 1.62 0.00 T 0.60 0.28 0.00 T 0.55 0.42 0.00 F

200k 1.76 0.81 0.00 3.24 1.56 0.00 T 0.60 0.28 0.00 T 0.55 0.42 0.00 F

500k 1.20 0.41 0.00 3.24 1.54 0.00 T 0.55 0.27 0.00 F 0.55 0.42 0.00 T

1M 0.88 0.27 0.00 3.06 1.53 0.00 T 0.55 0.27 0.00 F 0.55 0.42 0.00 T

Continued on next page

116

Table C.7: Summary of results of reduced search SA compared with full basic SA

Basic SA SAM20 SAM50 SAM100

Dataset N Max

%

Ave

%

Min

%

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

6

1k 4.84 2.73 0.47 2.51 1.14 0.03 T 2.25 1.26 0.16 T 3.41 0.77 0.00 T

2k 4.12 2.23 0.94 1.77 0.83 0.03 T 1.92 0.96 0.00 T 3.03 0.65 0.00 T

5k 2.38 1.53 0.16 1.58 0.62 0.00 T 1.56 0.79 0.03 T 2.57 0.40 0.00 T

10k 2.13 1.30 0.59 1.00 0.45 0.03 T 1.21 0.64 0.00 T 2.26 0.30 0.00 T

50k 1.10 0.68 0.00 0.60 0.15 0.00 T 0.69 0.36 0.00 T 1.88 0.13 0.00 T

100k 0.80 0.31 0.00 0.33 0.06 0.00 T 0.63 0.31 0.00 F 1.73 0.13 0.00 F

150k 0.78 0.30 0.00 0.16 0.03 0.00 T 0.61 0.30 0.00 F 1.64 0.13 0.00 F

200k 0.71 0.30 0.00 0.19 0.02 0.00 T 0.61 0.30 0.00 F 1.64 0.12 0.00 T

500k 0.49 0.22 0.00 0.03 0.00 0.00 T 0.60 0.29 0.00 T 1.64 0.12 0.00 T

1M 0.32 0.09 0.00 0.03 0.00 0.00 T 0.60 0.29 0.00 T 1.64 0.12 0.00 T

7

1k 10.76 4.99 3.11 4.29 1.81 0.12 T 3.84 1.70 0.05 T 2.54 1.20 0.00 T

2k 5.81 3.53 1.43 2.83 1.36 0.00 T 2.59 1.11 0.00 T 2.22 0.86 0.00 T

5k 4.65 2.48 0.52 1.74 0.85 0.05 T 1.92 0.76 0.05 T 1.94 0.49 0.00 T

10k 3.40 1.92 0.40 1.79 0.57 0.00 T 1.26 0.55 0.00 T 1.13 0.34 0.00 T

50k 2.10 0.80 0.17 0.54 0.22 0.00 T 0.37 0.18 0.00 T 0.50 0.15 0.00 T

100k 1.55 0.55 0.00 0.37 0.15 0.00 T 0.33 0.11 0.00 T 0.34 0.13 0.00 T

150k 0.72 0.38 0.15 0.33 0.10 0.00 T 0.25 0.09 0.00 T 0.34 0.13 0.00 T

200k 1.04 0.42 0.00 0.07 0.07 0.00 T 0.31 0.08 0.00 T 0.28 0.13 0.00 T

500k 0.41 0.18 0.00 0.25 0.04 0.00 T 0.12 0.07 0.00 T 0.28 0.13 0.00 T

1M 0.26 0.11 0.00 0.12 0.03 0.00 T 0.12 0.07 0.00 F 0.28 0.13 0.00 F

Continued on next page

117

Table C.7: Summary of results of reduced search SA compared with full basic SA

Basic SA SAM20 SAM50 SAM100

Dataset N Max

%

Ave

%

Min

%

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

8

1k 22.97 11.36 1.71 7.94 3.14 0.54 T 9.38 3.66 0.27 T 12.74 2.56 0.00 T

2k 25.38 9.82 0.68 4.93 2.19 0.00 T 7.27 2.82 0.00 T 6.87 1.87 0.27 T

5k 12.12 5.79 1.27 3.86 1.57 0.27 T 5.25 1.99 0.00 T 6.45 1.49 0.00 T

10k 8.19 2.89 0.33 3.88 1.21 0.27 T 4.41 1.62 0.00 T 4.31 1.21 0.00 T

50k 3.00 1.46 0.33 1.29 0.57 0.00 T 3.96 1.29 0.00 F 3.48 0.87 0.00 F

100k 2.37 1.20 0.33 0.91 0.34 0.00 T 3.33 1.18 0.00 F 3.41 0.81 0.00 F

150k 1.90 0.97 0.27 1.21 0.29 0.00 T 3.33 1.14 0.00 T 3.47 0.80 0.00 T

200k 1.21 0.53 0.00 0.91 0.28 0.00 T 3.31 1.14 0.00 T 3.31 0.79 0.00 T

500k 1.26 0.60 0.00 0.60 0.16 0.00 T 3.31 1.12 0.00 T 3.31 0.79 0.00 T

1M 0.86 0.28 0.00 0.27 0.13 0.00 T 3.31 1.12 0.00 T 3.31 0.79 0.00 T

9

1k 6.09 2.64 0.09 2.02 0.80 0.02 T 2.33 0.80 0.01 T 2.35 0.77 0.00 T

2k 3.42 1.51 0.35 1.71 0.45 0.00 T 1.71 0.51 0.00 T 1.46 0.54 0.00 T

5k 1.97 1.14 0.07 0.73 0.24 0.00 T 1.11 0.37 0.00 T 1.27 0.45 0.00 T

10k 1.57 0.62 0.01 0.51 0.13 0.01 T 1.06 0.31 0.00 T 1.16 0.43 0.00 T

50k 0.43 0.21 0.01 0.25 0.06 0.00 T 0.91 0.25 0.00 F 1.06 0.39 0.00 T

100k 0.32 0.12 0.00 0.12 0.04 0.00 T 0.77 0.24 0.00 T 1.03 0.39 0.00 T

150k 0.26 0.09 0.01 0.08 0.03 0.00 T 0.77 0.24 0.00 T 1.03 0.39 0.00 T

200k 0.41 0.10 0.00 0.08 0.03 0.00 T 0.77 0.24 0.00 T 1.02 0.39 0.00 T

500k 0.12 0.05 0.00 0.06 0.03 0.00 T 0.76 0.24 0.00 T 1.02 0.39 0.00 T

1M 0.07 0.03 0.00 0.05 0.03 0.00 F 0.76 0.24 0.00 T 1.02 0.39 0.00 T

Continued on next page

118

Table C.7: Summary of results of reduced search SA compared with full basic SA

Basic SA SAM20 SAM50 SAM100

Dataset N Max

%

Ave

%

Min

%

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

10

1k 20.60 10.60 3.56 11.58 4.75 0.80 T 19.12 3.52 0.04 T 7.04 2.26 0.00 T

2k 10.77 7.05 1.90 9.78 4.11 0.49 T 8.97 2.41 0.00 T 3.78 1.69 0.00 T

5k 9.55 4.19 1.69 7.55 3.17 0.04 T 4.93 1.60 0.00 T 3.55 1.23 0.00 T

10k 7.42 4.03 0.48 5.97 2.76 0.00 T 3.87 1.38 0.00 T 2.61 0.90 0.00 T

50k 3.96 1.88 0.48 5.10 2.16 0.00 F 2.90 0.86 0.00 T 1.87 0.58 0.00 T

100k 2.90 1.48 0.48 4.62 1.95 0.00 T 2.38 0.74 0.00 T 1.37 0.52 0.00 T

150k 1.65 0.88 0.00 4.61 1.93 0.00 T 2.36 0.71 0.00 F 1.37 0.52 0.00 F

200k 1.65 0.86 0.00 4.17 1.87 0.00 T 1.86 0.70 0.00 T 1.37 0.52 0.00 F

500k 1.84 0.41 0.00 4.13 1.84 0.00 T 1.86 0.69 0.00 T 1.37 0.52 0.00 T

1M 0.60 0.24 0.00 4.13 1.84 0.00 T 1.86 0.69 0.00 T 1.37 0.52 0.00 T

11

1k 14.79 7.08 0.99 13.22 4.23 0.00 T 24.37 5.79 0.00 T 7.30 2.05 0.00 T

2k 9.53 4.83 0.00 8.56 2.76 0.00 T 23.01 4.80 0.00 F 6.22 1.47 0.00 T

5k 7.18 4.07 1.77 6.09 1.67 0.00 T 20.07 3.77 0.00 F 2.71 1.07 0.00 T

10k 5.64 2.13 0.00 5.02 1.37 0.00 F 19.67 3.49 0.00 T 2.12 0.91 0.00 T

50k 1.81 0.64 0.12 3.39 0.95 0.00 T 19.32 3.29 0.00 T 1.84 0.82 0.00 F

100k 1.70 0.66 0.00 3.03 0.89 0.00 T 19.20 3.28 0.00 T 1.77 0.81 0.00 T

150k 1.02 0.32 0.00 2.97 0.88 0.00 T 19.20 3.28 0.00 T 1.65 0.81 0.00 T

200k 1.30 0.42 0.00 3.03 0.87 0.00 T 19.20 3.27 0.00 T 1.65 0.81 0.00 T

500k 0.26 0.09 0.00 2.85 0.86 0.00 T 19.20 3.27 0.00 T 1.65 0.81 0.00 T

1M 0.40 0.06 0.00 2.85 0.86 0.00 T 19.20 3.27 0.00 T 1.65 0.81 0.00 T

Continued on next page

119

Table C.7: Summary of results of reduced search SA compared with full basic SA

Basic SA SAM20 SAM50 SAM100

Dataset N Max

%

Ave

%

Min

%

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

Max

%

Ave

%

Min

%

|t| >
tcrit

12

1k 14.71 9.25 4.29 16.15 2.02 0.13 T 11.06 2.74 0.05 T 8.99 1.52 0.13 T

2k 9.83 5.23 0.97 13.78 1.69 0.00 T 8.99 2.09 0.05 T 7.77 1.13 0.00 T

5k 8.56 3.56 1.41 11.47 1.19 0.00 F 6.96 1.61 0.05 F 6.05 0.84 0.00 T

10k 5.51 2.76 0.22 11.30 0.82 0.00 F 6.46 1.45 0.05 F 5.79 0.72 0.00 T

50k 3.60 1.15 0.13 9.62 0.34 0.00 T 5.38 1.25 0.00 T 5.31 0.61 0.00 T

100k 2.32 0.95 0.08 9.36 0.27 0.00 T 5.13 1.20 0.00 T 5.08 0.60 0.00 T

150k 1.65 0.49 0.00 9.13 0.25 0.00 T 5.31 1.19 0.00 T 5.08 0.59 0.00 T

200k 1.02 0.45 0.13 9.31 0.25 0.00 T 5.13 1.19 0.00 T 5.08 0.59 0.00 T

500k 0.47 0.22 0.00 8.84 0.22 0.00 T 5.08 1.19 0.00 T 5.08 0.59 0.00 T

1M 0.23 0.08 0.00 8.79 0.22 0.00 T 5.08 1.19 0.00 T 5.08 0.59 0.00 T

Avg

1k 14.83 7.37 2.04 11.64 6.19 3.41 - 12.08 5.82 3.32 - 6.07 1.83 0.01 -

2k 11.23 5.38 1.01 10.41 5.48 3.30 - 9.68 5.20 3.48 - 4.64 1.34 0.02 -

5k 7.43 3.72 1.04 8.13 4.82 3.26 - 8.10 4.59 3.21 - 3.28 0.91 0.00 -

10k 5.78 2.73 0.43 7.38 4.48 3.23 - 7.49 4.36 3.21 - 2.56 0.71 0.00 -

50k 2.71 1.24 0.12 6.22 4.03 3.20 - 6.57 4.06 3.20 - 1.94 0.52 0.00 -

100k 1.91 0.87 0.09 5.85 3.94 3.20 - 6.41 4.01 3.20 - 1.80 0.50 0.00 -

150k 1.56 0.64 0.03 5.80 3.91 3.20 - 6.37 4.00 3.20 - 1.76 0.50 0.00 -

200k 1.29 0.53 0.01 5.69 3.89 3.20 - 6.33 3.99 3.20 - 1.74 0.50 0.00 -

500k 0.86 0.27 0.00 5.58 3.86 3.20 - 6.28 3.99 3.20 - 1.74 0.50 0.00 -

1M 0.51 0.15 0.00 5.50 3.85 3.20 - 6.28 3.99 3.20 - 1.74 0.50 0.00 -

120

121

Figure C.4: Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on the x-axis: dataset 0

122

Figure C.5: Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on the x-axis: dataset 1

Figure C.6: Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on the x-axis: dataset 2

123

Figure C.7: Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on the x-axis: dataset 3

Figure C.8: Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on the x-axis: dataset 4

124

Figure C.9: Comparison of percentage deviation of the results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on the x-axis: dataset 5

Figure C.10: Comparison of percentage deviation of the results from basic SA with
two temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iter-

ation counts on the x-axis: dataset 6

125

Figure C.11: Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on x-axis: dataset 7

Figure C.12: Comparison of percentage deviation of the results from basic SA with
two temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iter-

ation counts on the x-axis: dataset 8

126

Figure C.13: Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on x-axis: dataset 9

Figure C.14: Comparison of percentage deviation of results from basic SA with two
temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iteration

counts on x-axis: dataset 10

127

Figure C.15: Comparison of percentage deviation of the results from basic SA with
two temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iter-

ation counts on the x-axis: dataset 11

Figure C.16: Comparison of percentage deviation of the results from basic SA with
two temperatures, SAM20, SAM50 and SAM100 for run lengths indicated by the iter-

ation counts on the x-axis: dataset 12

References

[1] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals

of Discrete Mathematics, 5(C):287–326, 1979. ISSN 01675060. doi: 10.1016/

S0167-5060(08)70356-X.

[2] M.R. Garey and D.S. Johnson. Computers and intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and company, New York, 1979. ISBN

0716710447.

[3] N.G. Hall and M.E. Posner. Generating Experimental Data for Computational

Testing with Machine Scheduling Applications. Operations Research, 49(6):854–

865, 2001.

[4] A. Janiak, W.A. Janiak, T. Krysiak, and T. Kwiatkowski. A survey on scheduling

problems with due windows. European Journal of Operational Research, 242:347–

357, 2015. doi: 10.1016/j.ejor.2014.09.043.

[5] Michael L. Pinedo. Scheduling Theory, Algorithms, and Systems. Springer

Science+Business Media, LLC, New York, USA, third edition, 2008. ISBN

9780387789347.

[6] A.J. Page, T.M. Keane, and T.J. Naughton. Multi-heuristic dynamic task allo-

cation using genetic algorithms in a heterogeneous distributed system. Journal

of Parallel and Distributed Computing, 70:758–766, 2010. ISSN 07437315. doi:

10.1016/j.jpdc.2010.03.011.

[7] Thomas Hanne and Stefan Nickel. A Multi-Objective Evolutionary Algorithm for

Scheduling and Inspection Planning in Software Development Projects. Berichte

des Fraunhofer ITWM, 42(2003), 2003.

[8] J.T. Saraiva, M.L Pereira, V.T. Mendes, and J.C. Sousa. A Simulated Annealing

based approach to solve the generator maintenance scheduling problem. Electric

Power Systems Research, 81:1283–1291, 2011. doi: 10.1016/j.epsr.2011.01.013.

URL www.elsevier.com/locate/epsr.

128

Bibliography 129

[9] B. Han, W. Zhang, X. Lu, and Y. Lin. Parallel-machine configurations with a

single customer: Minimizing the makespan and delivery cost. European Journal of

Operational Research, 000:1–11, 2015. ISSN 0377-2217. doi: 10.1016/j.ejor.2015.

02.008. URL http://dx.doi.org/10.1016/j.ejor.2015.02.008.

[10] A. Khattab and M.A. Bayoumi. Standardization of cognitive radio network-

ing: a comprehensive survey. Annales des Telecommunications/Annals of

Telecommunications, 70(11-12):465–477, 2015. ISSN 19589395. doi: 10.1007/

s12243-015-0468-5.

[11] Haris Kremo and Onur Altintas. On detecting spectrum opportunities for cognitive

vehicular networks in the TV white space. Journal of Signal Processing Systems,

73(3):243–254, 2013. ISSN 19398018. doi: 10.1007/s11265-013-0765-z.

[12] IEEE Computer Society. IEEE Standard for Information technology– Lo-

cal and metropolitan area networks– Specific requirements– Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

Amendment 5: Television White Spaces Operation. New York, USA, 2013.

ISBN 9780738187488. doi: 10.1109/IEEESTD.2009.5307322. URL http://

ieeexplore.ieee.org/servlet/opac?punumber=2408.

[13] IEEE. Telecommunications and information exchange between systems Local

and metropolitan area networks Specific requirements Part 19: TV White Space

Coexistence Methods, 2014.

[14] S. Filin, K. Ishizu, and H. Harada. IEEE draft standard P1900.4a for architecture

and interfaces for dynamic spectrum access networks in white space frequency

bands: Technical overview and feasibility study. IEEE International Symposium

on Personal, Indoor and Mobile Radio Communications, PIMRC, pages 15–20,

2010. doi: 10.1109/PIMRCW.2010.5670353.

[15] IEEE. Draft Standard for Wireless Regional Area Networks Part 22 : Cognitive

Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications : Policies and procedures for operation in the TV Bands. 2010.

[16] A. Hamidinia, S. Khakabimamaghani, M.M. Mazdeh, and M. Jafari. A genetic

algorithm for minimizing total tardiness/earliness of weighted jobs in a batched

delivery system. Computers and Industrial Engineering, 62(1):29–38, 2012. ISSN

03608352. doi: 10.1016/j.cie.2011.08.014. URL http://dx.doi.org/10.1016/j.

cie.2011.08.014.

[17] F. Jolai, M. Rabbani, S. Amalnick, A. Dabaghi, M. Dehghan, and M.Y. Parast.

Genetic algorithm for bi-criteria single machine scheduling problem of minimizing

Bibliography 130

maximum earliness and number of tardy jobs. Applied Mathematics and Compu-

tation, 194:552–560, 2007. ISSN 00963003. doi: 10.1016/j.amc.2007.04.063.

[18] M.C. Gupta, Y.P. Gupta, and A. Kumar. Minimizing flow time variance in a

single machine system using genetic algorithms. European Journal of Operational

Research, 70:289–303, 1993. ISSN 03772217. doi: 10.1016/0377-2217(93)90240-N.

[19] A.P. Adewole, K. Otubamowo, and T.O. Egunjobi. A Comparative Study of

Simulated Annealing and Genetic Algorithm for Solving the Travelling Salesman

Problem. International Journal of Applied Information Systems (IJAIS), 4(4):

6–12, 2012.

[20] T.W. Manikas and J.T. Cain. Genetic Algorithms vs. Simulated Annealing: A

Comparison of Approaches for Solving the Circuit Partitioning Problem. Technical

report, The University of Pittsburgh, Pittsburgh, PA, 1996.

[21] Tian Jungai and Xu Hongjun. Optimizing Arrival Flight Delay Scheduling Based

on Simulated Annealing Algorithm. Physics Procedia, 33:348–353, 2012. ISSN

1875-3892. doi: 10.1016/j.phpro.2012.05.073. URL http://dx.doi.org/10.

1016/j.phpro.2012.05.073.

[22] W.H.M. Raaymakers and J.A. Hoogeveen. Scheduling multipurpose batch pro-

cess industries with no-wait restrictions by simulated annealing. European Jour-

nal of Operational Research, 126:131–151, 2000. ISSN 03772217. doi: 10.1016/

S0377-2217(99)00285-4.

[23] W.A. Massey, K.G. Ramakrishnan, M. Aravamudan, and G. Pai. Schedul-

ing Algorithms for Downlink Services in Wireless Networks : A Markov Deci-

sion Process Approach. Communications Society, pages 4038–4042, 2004. doi:

10.1109/GLOCOM.2004.1379125.

[24] H.A.J. Crauwels, C.N. Potts, and L.N. Van Wassenhove. Local search heuris-

tics for single-machine scheduling with batching to minimize the number of

late jobs. European Journal of Operational Research, 90(1996):200–213, apr

1996. ISSN 03772217. doi: 10.1016/0377-2217(95)00349-5. URL http://www.

sciencedirect.com/science/article/pii/0377221795003495.

[25] T.C.Edwin; Cheng, Valery S. Gordon, and Mikhail Y. Kovalyov. Single Machine

Scheduling with Batch Deliveries. European Journal of Operational Research, 94

(2):277–283, oct 1996. ISSN 03772217. doi: 10.1016/0377-2217(96)00127-0. URL

http://www.sciencedirect.com/science/article/pii/0377221796001270.

Bibliography 131

[26] Martin Feldmann and Dirk Biskup. Single-machine scheduling for minimizing ear-

liness and tardiness penalties by meta-heuristic approaches. Computers and Indus-

trial Engineering, 44:307–323, 2003. ISSN 03608352. doi: 10.1016/S0360-8352(02)

00181-X.

[27] Candace Arai Yano and Yeong-dae Kim. Algorithms for a class of single-machine

weighted tardiness and earliness problems. European Journal of Operational Re-

search, 52:167–178, 1991.

[28] J. Bank and F. Werner. Heuristic algorithms for unrelated parallel machine

scheduling with a common due date, release dates, and linear earliness and tar-

diness penalties. Mathematical and Computer Modelling, 33:363–383, 2001. ISSN

08957177. doi: 10.1016/S0895-7177(00)00250-8.

[29] V. Sridharan and Z. Zhou. A decision theory based scheduling procedure for single-

machine weighted earliness and tardiness problems. European Journal of Opera-

tional Research, 94(2):292–301, 1996. ISSN 03772217. doi: 10.1016/0377-2217(96)

00133-6.

[30] G. Wan and B.P.C. Yen. Tabu search for single machine scheduling with dis-

tinct due windows and weighted earliness/tardiness penalties. European Jour-

nal of Operational Research, 142:271–281, 2002. ISSN 03772217. doi: 10.1016/

S0377-2217(01)00302-2.

[31] W.K. Yeung, C. Oguz, and T.C.E. Cheng. Single-machine scheduling with a

common due window. Computers and Operations Research, 28:157–175, 2001.

ISSN 03050548. doi: 10.1016/S0305-0548(99)00097-0.

[32] B. Esteve, C. Aubijoux, A. Chartier, and V. T’kindt. A recovering beam search al-

gorithm for the single machine Just-in-Time scheduling problem. European Journal

of Operational Research, 172(3):798–813, aug 2006. ISSN 03772217. doi: 10.1016/

j.ejor.2004.11.014. URL http://www.sciencedirect.com/science/article/

pii/S0377221704008574.

[33] C.M. Hino, D.P. Ronconi, and A.B. Mendes. Minimizing earliness and tardiness

penalties in a single-machine problem with a common due date. European Journal

of Operational Research, 160:190–201, 2005. ISSN 03772217. doi: 10.1016/j.ejor.

2004.03.006.

[34] Han Hoogeveen. Multicriteria scheduling. European Journal of Operational Re-

search, 167:592–623, 2005. ISSN 03772217. doi: 10.1016/j.ejor.2004.07.011.

[35] W.E. Smith. Various optimizers for single-stage production. Naval Research Lo-

gistics Quarterly, 3(1):59–66, 1956.

Bibliography 132

[36] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnoy Kan, and David B.

Shmoys. Minmax criteria.

[37] Natallia Kokash. An introduction to heuristic algorithms. 2005.

[38] C.M. Bishop and N.M. Nasrabadi. Pattern Recognition and Machine Learn-

ing, volume 4. Springer Science+Business Media, LLC, Singapore, 2006. ISBN

9780387310732. doi: 10.1117/1.2819119. URL http://www.library.wisc.edu/

selectedtocs/bg0137.pdf.

[39] Julian Besag. Markov Chain Monte Carlo for Statistical Inference. 2001.

[40] J.C. Spall. Estimation via Markov chain Monte Carlo. IEEE Control Sys-

tems Magazine, 23(April):34–45, 2003. ISSN 0272-1708. doi: 10.1109/MCS.

2003.1188770. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1188770.

[41] C.J. Geyer. Introduction to Markov Chain Monte Carlo. Handbook of Markov

Chain Monte Carlo, (1990):3–48, 2002. URL http://www.mcmchandbook.net/

index.html.

[42] Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov

chains and MCMC algorithms. Probability Surveys, 1:20–71, 2004. ISSN 1549-

5787. doi: 10.1214/154957804100000024. URL http://www.i-journals.org/

ps/viewarticle.php?id=15{&}layout=abstract.

[43] Christophe Andrieu and Johannes Thoms. A tutorial on adaptive MCMC.

Statistics and Computing, 18(4):343–373, 2008. ISSN 09603174. doi: 10.1007/

s11222-008-9110-y.

[44] S.P. Brooks. Markov Chain Monte Carlo Method and its Application. Journal of

the Royal Statistical Society. Series D (The Statistician), 47(1):69–100, 2010.

[45] D.J.C. MacKay. Information Theory, Inference, and Learning Algorithms, vol-

ume 22. 2003. ISBN 0521642981. doi: 10.1017/S026357470426043X. URL

http://www.journals.cambridge.org/abstract{_}S026357470426043X.

[46] M.K. Cowles and B.P. Carlin. Markov Chain Monte Carlo Convergence Diagnos-

tics: A Comparative Review. Journal of the American Statistical Association, 91

(434):883–904, 1996.

[47] S.P Brooks and G.O. Roberts. Assessing Convergence of Markov Chain Monte

Carlo Algorithms. Statistics and Computing, 8:319–335, 1997. ISSN 0717-6163.

doi: 10.1007/s13398-014-0173-7.2.

Bibliography 133

[48] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Anneal-

ing. Science, New Series, 220(4598):671–680, 1983.

[49] K.C. Tan and R. Narasimhan. Minimizing tardiness on a single processor with

sequence-dependent setup times: a simulated annealing approach. Omega, Inter-

national Journal of Management Science, 25(6):619–634, 1997. ISSN 03050483.

doi: 10.1016/S0305-0483(97)00024-8.

[50] J. Jozefowska, M. Mika, R. Rozycki, G. Waligora, and J. Weglarz. Simulated

Annealing for Multi-Mode Resource-Constrained Project Scheduling. Annals of

Operations Research, 102:137–155, 2001.

[51] Dong-Won Kim, Kyong-Hee Kim, Wooseung Jang, and F Frank Chen. Unrelated

parallel machine scheduling with setup times using simulated annealing. Robotics

and Computer-Integrated Manufacturing, 18:223–231, 2002. ISSN 07365845. doi:

10.1016/S0736-5845(02)00013-3.

[52] I. Mahdavi, V. Kayvanfar, and G.M. Komaki. Minimizing total tardiness and

earliness problem with controllable processing times using an effective heuristic.

In 40th International Conference on Computers and Industrial Engineering: Soft

Computing Techniques for Advanced Manufacturing and Service Systems, CIE40,

2010. ISBN 9781424472956. doi: 10.1109/ICCIE.2010.5668166.

[53] T. Loukil, J. Teghem, and D. Tuyttens. Solving multi-objective production

scheduling problems using metaheuristics. European Journal of Operational Re-

search, 161:42–61, 2005. ISSN 03772217. doi: 10.1016/j.ejor.2003.08.029.

[54] C.C. Wu, H.M. Chen, S.R. Cheng, C.J. Hsu, and W.H. Wu. Simulated anneal-

ing approach for the single-machine total late work scheduling problem with a

position-based learning. In IEEE 18th International Conference on Industrial En-

gineering and Engineering Management, IE and EM, pages 839–843, 2011. ISBN

9781612844473. doi: 10.1109/IEEM.2011.6035289.

[55] Wen-hung Wu. Solving a two-agent single-machine learning scheduling problem.

International Journal of Computer Integrated Manufacturing, 27(1):20–35, 2014.

[56] M. Wang, C. Feng, and T. Zhang. A simulated annealing algorithm for the trans-

mission mode selection of multicast services in LTE networks. In The 14th Inter-

national Symposium on Wireless Personal Multimedia Communications (WPMC),

pages 1–5, 2011. ISBN 978-2-908849-26-4.

[57] S. Fichera, F. Cappadonna, A. Costa, and A. Fichera. A Simulated Annealing

Algorithm for Single Machine Scheduling Problem with Release Dates, Learning

Bibliography 134

and Deteriorating Effects. In Proceedings of the World Congress on Engineering,

volume I, pages 6–8, London, UK, 2013. ISBN 9789881925107. URL http://www.

iaeng.org/publication/WCE2013/WCE2013{_}pp584-586.pdf.

[58] C.N. Potts and L.N . Van Wassenhove. A Branch and Bound Algorithm for the

Total Weighted Tardiness Problem. Operations Research, 33(2):363–377, 1985.

[59] G. Wan and B.P.C. Yen. Single machine scheduling to minimize total weighted

earliness subject to minimal number of tardy jobs. European Journal of Op-

erational Research, 195(1):89–97, may 2009. ISSN 03772217. doi: 10.1016/

j.ejor.2008.01.029. URL http://www.sciencedirect.com/science/article/

pii/S0377221708001628http://dx.doi.org/10.1016/j.ejor.2008.01.029.

[60] M.M. Mazdeh, M. Sarhadi, and K.S. Hindi. A branch-and-bound algorithm for

single-machine scheduling with batch delivery minimizing flow times and delivery

costs. European Journal of Operational Research, 183:74–86, 2007. ISSN 03772217.

doi: 10.1016/j.ejor.2006.09.087.

[61] Mitchell Melanie. An introduction to genetic algorithms. MIT Press, Cam-

bridge, Massachusetts, fifth edition, 1996. ISBN 0-262-13316-4. doi: 10.1016/

S0898-1221(96)90227-8.

[62] A.E. Zade and M.B. Fakhrzad. A Dynamic Genetic Algorithm for Solving a Single

Machine Scheduling Problem with Periodic Maintenance. ISRN Industrial Engi-

neering, 2013, 2013.

[63] Murat Köksalan and Ahmet Burak Keha. Using genetic algorithms for single-

machine bicriteria scheduling problems. European Journal of Operational Research,

145(3):543–556, 2003. ISSN 03772217. doi: 10.1016/S0377-2217(02)00220-5. URL

http://www.sciencedirect.com/science/article/pii/S0377221702002205.

[64] Mieczys law Wodecki. A block approach to earliness-tardiness scheduling problems.

International Journal of Advanced Manufacturing Technology, 40:797–807, 2009.

ISSN 02683768. doi: 10.1007/s00170-008-1395-7.

[65] Antoine Jouglet, David Savourey, Jacques Carlier, and Philippe Baptiste.

Dominance-based heuristics for one-machine total cost scheduling problems.

European Journal of Operational Research, 184(3):879–899, feb 2008. ISSN

03772217. doi: 10.1016/j.ejor.2006.11.036. URL http://www.sciencedirect.

com/science/article/pii/S0377221706012367.

[66] F.S. Erenay, I. Sabuncuoglu, A. Toptal, and M.K. Tiwari. New solution methods

for single machine bicriteria scheduling problem: Minimization of average flowtime

Bibliography 135

and number of tardy jobs. European Journal of Operational Research, 201:89–98,

2010. ISSN 03772217. doi: 10.1016/j.ejor.2009.02.014.

[67] D. Danneberg, T. Tautenhahn, and F. Werner. A comparison of heuristic algo-

rithms for flow shop scheduling problems with setup times and limited batch size.

Mathematical and Computer Modelling, 29(99):101–126, 1999. ISSN 08957177.

doi: 10.1016/S0895-7177(99)00085-0.

[68] Candace A. Yano and Y. D. Kim. Algorithms for single machine scheduling prob-

lems minimizing tardiness and earliness. Technical report, 1986.

[69] D.P. Ronconi and M.S. Kawamura. The single machine earliness and tardiness

scheduling problem: lower bounds and a branch-and-bound algorithm. Com-

putational & applied mathematics, 29(2):107–124, 2010. ISSN 01018205. doi:

10.1590/S1807-03022010000200002.

[70] CA. Yano and Y. Kim. Algorithms for a class of single-machine weighted tardiness

and earliness problems. European Journal of Operational Research, 52(2):167–

178, 1991. ISSN 03772217. doi: 10.1016/0377-2217(91)90078-A. URL http:

//www.sciencedirect.com/science/article/pii/037722179190078A.

[71] K. Tan, R. Narasimhan, P.A. Rubin, and G.L. Ragatz. A comparison of four meth-

ods for minimizing total tardiness on a single processor with sequence dependent

setup times. Omega, International Journal of Management Science, 28:313–326,

2000. ISSN 03050483. doi: 10.1016/S0305-0483(99)00050-X.

[72] Suresh Chand, Hans Schneeberger, and West Lafayette. Theory and Methodology

Single machine scheduling to minimize weighted earliness subject to no tardy jobs.

European Journal of Operational Research, 34:221–230, 1988.

[73] Wooseung Jang. Dynamic scheduling of stochastic jobs on a single machine. Eu-

ropean Journal of Operational Research, 138:518–530, 2002. ISSN 03772217. doi:

10.1016/S0377-2217(01)00174-6.

[74] Toshihide Ibaraki and Yuichi Nakamura. A dynamic programming method for

single machine scheduling. European Journal of Operational Research, 76:72–82,

1994. ISSN 03772217. doi: 10.1016/0377-2217(94)90007-8.

[75] V.S. Gordon and V.A. Strusevich. Single machine scheduling and due date assign-

ment with positionally dependent processing times. European Journal of Opera-

tional Research, 198(1):57–62, 2009. ISSN 03772217. doi: 10.1016/j.ejor.2008.07.

044. URL http://dx.doi.org/10.1016/j.ejor.2008.07.044.

Bibliography 136

[76] M. Ji and T.C.E. Cheng. Batch scheduling of simple linear deteriorating jobs on a

single machine to minimize makespan. European Journal of Operational Research,

202(1):90–98, apr 2010. ISSN 03772217. doi: 10.1016/j.ejor.2009.05.021. URL

http://www.sciencedirect.com/science/article/pii/S0377221709003518.

[77] Francis Sourd. Optimal timing of a sequence of tasks with general completion costs.

European Journal of Operational Research, 165:82–96, 2005. ISSN 03772217. doi:

10.1016/j.ejor.2004.01.025.

[78] Shunji Tanaka. An Exact Algorithm for the Single-Machine Earliness-Tardiness

Scheduling Problem. Just-in-Time Systems, pages 21–41, 2012. doi: 10.1007/

978-1-4614-1123-9.

[79] Dvir Shabtay. The single machine serial batch scheduling problem with rejection

to minimize total completion time and total rejection cost. European Journal of

Operational Research, 233(1):64–74, 2014. ISSN 03772217. doi: 10.1016/j.ejor.

2013.08.013. URL http://dx.doi.org/10.1016/j.ejor.2013.08.013.

[80] S.H. Chen, M.C. Chen, P.C. Chang, and Y.M. Chen. EA/G-GA for single ma-

chine scheduling problems with earliness/tardiness costs. Entropy, 13(6):1152–

1169, 2011. ISSN 10994300. doi: 10.3390/e13061152.

[81] Virginia Yannibelli and Anaĺıa Amandi. Expert Systems with Applications Hy-

bridizing a multi-objective simulated annealing algorithm with a multi-objective

evolutionary algorithm to solve a multi-objective project scheduling problem. Ex-

pert Systems With Applications, 40(7):2421–2434, 2013. ISSN 0957-4174. doi:

10.1016/j.eswa.2012.10.058. URL http://dx.doi.org/10.1016/j.eswa.2012.

10.058.

[82] S.P. Ali and M. Bijari. Minimizing maximum earliness and tardiness on a single

machine using a novel heuristic approach. In Proceedings of the 2012 International

Conference on Industrial Engineering and Operations Management, pages 1091–

1097, Istanbul, Turkey, 2012.

[83] M. Ji, J. Ge, K. Chen, and T.C.E. Cheng. Single-machine due-window assignment

and scheduling with resource allocation, aging effect, and a deteriorating rate-

modifying activity. Computers and Industrial Engineering, 66(4):952–961, 2013.

ISSN 03608352. doi: 10.1016/j.cie.2013.08.020. URL http://dx.doi.org/10.

1016/j.cie.2013.08.020.

[84] Bo Cheng and Ling Cheng. Note on “Single-machine due-window assignment

and scheduling with resource allocation, aging effect, and a deteriorating rate-

modifying activity”. Computers and Industrial Engineering, 78:320–322, 2014.

Bibliography 137

ISSN 03608352. doi: 10.1016/j.cie.2013.08.020. URL http://dx.doi.org/10.

1016/j.cie.2014.07.013.

[85] S.R. Gupta and J.S. Smith. Algorithms for single machine total tardiness schedul-

ing with sequence dependent setups. European Journal of Operational Research,

175(2):722–739, dec 2006. ISSN 03772217. doi: 10.1016/j.ejor.2005.05.018. URL

http://www.sciencedirect.com/science/article/pii/S0377221705005060.

[86] S.G. Kolliopoulos and G. Steiner. Approximation algorithms for scheduling prob-

lems with a modified total weighted tardiness objective. Operations Research Let-

ters, 35(5):685–692, sep 2007. ISSN 0167-6377. doi: http://dx.doi.org/10.1016/j.

orl.2006.12.002. URL http://www.sciencedirect.com/science/article/pii/

S0167637706001337.

[87] J. Talebi, H. Badri, F. Ghaderi, and E. Khosravian. An efficient scatter search

algorithm for minimizing earliness and tardiness penalties in a single-machine

scheduling problem with a common due date. In IEEE Congress on Evolu-

tionary Computation, CEC, pages 1012–1018, 2009. ISBN 9781424429592. doi:

10.1109/CEC.2009.4983056.

[88] P.M. França, A. Mendes, and P. Moscato. A memetic algorithm for the to-

tal tardiness single machine scheduling problem. European Journal of Op-

erational Research, 132(1):224–242, jul 2001. ISSN 03772217. doi: 10.

1016/S0377-2217(00)00140-5. URL http://www.sciencedirect.com/science/

article/pii/S0377221700001405.

[89] M.F. Rego, M.J.F. Souza, and J.E.C. Arroyo. Multi-objective algorithms for the

single machine scheduling problem with sequence-dependent family setups. In

Proceedings - International Conference of the Chilean Computer Science Society,

SCCC, pages 142–151, 2013. ISBN 9781479929375. doi: 10.1109/SCCC.2012.24.

[90] Z. Ruiguo and L. Jiejia. A neighborhood search algorithm for one-machine schedul-

ing problem with time lags. Chinese Control and Decision Conference, pages

1937–1940, 2009. doi: 10.1109/CCDC.2009.5191609.

[91] Davide Anghinolfi and Massimo Paolucci. A new discrete particle swarm optimiza-

tion approach for the single-machine total weighted tardiness scheduling problem

with sequence-dependent setup times. European Journal of Operational Research,

193:73–85, 2009. ISSN 03772217. doi: 10.1016/j.ejor.2007.10.044.

[92] P. Perez-Gonzalez and J.M. Framinan. A common framework and taxonomy for

multicriteria scheduling problems with interfering and competing jobs: Multi-

agent scheduling problems. European Journal of Operational Research, 235(1):

Bibliography 138

1–16, 2014. ISSN 03772217. doi: 10.1016/j.ejor.2013.09.017. URL http:

//dx.doi.org/10.1016/j.ejor.2013.09.017.

[93] Baruch Mor and Gur Mosheiov. Single machine batch scheduling with two compet-

ing agents to minimize total flowtime. European Journal of Operational Research,

215(3):524–531, 2011. ISSN 03772217. doi: 10.1016/j.ejor.2011.06.037. URL

http://dx.doi.org/10.1016/j.ejor.2011.06.037.

[94] L. Li, D.J. Fonseca, and D.S. Chen. Earliness-tardiness production planning for

just-in-time manufacturing: A unifying approach by goal programming. European

Journal of Operational Research, 175:508–515, 2006. ISSN 03772217. doi: 10.

1016/j.ejor.2005.06.009.

[95] C.T.D. Ng, T.C.E. Cheng, and M.Y. Kovalyov. Single machine batch scheduling

with jointly compressible setup and processing times. In European Journal of

Operational Research, volume 153, pages 211–219, 2004. ISBN 0377-2217. doi:

10.1016/S0377-2217(02)00732-4.

[96] G.O. Roberts and J.S. Rosenthal. Examples of Adaptive MCMC. Technical Report

0610, University of Toronto Department of Statistics, 2008.

[97] David Luengo and Luca Martino. Fully Adaptive Gaussian Mixture Metropolis-

Hastings Algorithm. In ICASSP, IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 1–10, 2012. ISBN 9781479903566. URL

http://arxiv.org/abs/1212.0122.

[98] Nimalan Mahendran, Z Wang, F Hamze, and N. De Freitas. Adaptive MCMC

with Bayesian Optimization. Proceedings of the 13th International Conference on

Artificial Intelligence and Statistics (AISTATS), 9:152, 2010.

[99] H. Haario, E. Saksman, and J. Tamminen. Adaptive proposal distribution for

random walk Metropolis algorithm. Computational Statistics, 14(3):375, 1999.

ISSN 09434062. doi: 10.1007/s001800050022.

[100] A. Kramer, B. Calderhead, and N. Radde. Hamiltonian Monte Carlo methods for

efficient parameter estimation in steady state dynamical systems. BMC Bioinfor-

matics, 15(1):253, 2014. ISSN 1471-2105. doi: 10.1186/1471-2105-15-253. URL

http://www.biomedcentral.com/1471-2105/15/253.

[101] I. Ekeland, R. Temam, J. Dean, D. Grove, C. Chambers, K.B Bruce, and

E. Bertino. Hamiltonian Mechanics unter besonderer Berucksichtigung der

hohreren Lehranstalten.

Bibliography 139

[102] P.J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82(4):711–732, 1995. ISSN 0006-3444. doi:

10.1093/biomet/82.4.711.

[103] G.O. Roberts, A. Gelman, and W.R. Gilks. Weak convergence and optimal scaling

of random walk Metropolis algorithms, 1997. ISSN 10505164.

[104] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach

to approximate counting and integration. In Approximation algorithms for NP-

hard problems, chapter 12, pages 482–520. 1997. ISBN 0-7803-8794-5. doi: 10.

1109/GLOCOM.2004.1377963.

[105] D. Golenko-Ginzburg. Metrics in the permutation space. Applied Mathematics

Letters, 4(2):5–7, 1991. ISSN 08939659. doi: 10.1016/0893-9659(91)90156-P.

[106] D.E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 2: Generat-

ing all tuples and permutations. Addison-Wesley Professional, 12th edition, 2009.

ISBN 0321580508, 9780321580504.

[107] B.R. Heap. Permutations by interchanges. The Computer Journal, 6(3):293–

298, 1963. ISSN 0010-4620. doi: 10.1093/comjnl/6.3.293. URL http://comjnl.

oxfordjournals.org/content/6/3/293.

[108] P.P. Lukaszewicz. Metaheuristics for Job Shop Scheduling Problem, Comparison

of Effective Methods. Master, Aarhus School of Business, 2005.

[109] Dimitris Bertsimas and John Tsitsiklis. Simulated Annealing, 1993. ISSN 0883-

4237.

[110] M.B. Villarino. Ramanujan’s Approximation to the nth Partial Sum of the Har-

monic Series. 2004. URL http://arxiv.org/abs/math/0402354.

[111] W.E. Brown. Random Number Generation in C ++ 11. pages 1–12, 2013.

[112] C.P. Robert. The Metropolis-Hastings algorithm. 2015. URL http://arxiv.org/

abs/1504.01896.

[113] P.C. Chang. A Branch and Bound Approach for Single Machine Scheduling with

Earliness and Tardiness Penalties. Computers and Mathematics with Applications,

37(99):133–144, 1999. ISSN 08981221. doi: 10.1016/S0898-1221(99)00130-3.

[114] George Li. Single machine earliness and tardiness scheduling. European Journal of

Operational Research, 96(3):546–558, feb 1997. ISSN 0377-2217. doi: http://dx.

doi.org/10.1016/S0377-2217(96)00062-8. URL http://www.sciencedirect.com/

science/article/pii/S0377221796000628.

Bibliography 140

[115] H. Dai, X. Wu, L. Xu, and G. Chen. Practical scheduling for stochastic event

capture in wireless rechargeable sensor networks. IEEE Wireless Communications

and Networking Conference, WCNC, pages 986–991, 2013. ISSN 15253511. doi:

10.1109/WCNC.2013.6554698.

[116] E. Molaee, G. Moslehi, and M. Reisi. Minimizing maximum earliness and number

of tardy jobs in the single machine scheduling problem. Computers and Math-

ematics with Applications, 60(11):2909–2919, 2010. ISSN 08981221. doi: 10.

1016/j.camwa.2010.09.046. URL http://dx.doi.org/10.1016/j.camwa.2010.

09.046http://linkinghub.elsevier.com/retrieve/pii/S0898122110007431.

[117] OR Library. URL ORLibrary:http://sprocket.ict.pwr.wroc.pl/?wbo/

benchmarks.htm21.

[118] Claude E. Shannon. A Mathematical Theory of Communication. The Bell System

Technical Journal, XXVII(3), 1948.

[119] A. Grilo, M.M. Macedo, and M.S. Nunes. IP QoS support in IEEE 802.11b

WLANs. Computer Communications, 26(17):1918–1930, 2003. ISSN 01403664.

doi: 10.1016/S0140-3664(03)00157-9.

[120] Dirk Biskup and Martin Feldmann. Benchmarks for scheduling on a single machine

against restrictive and unrestrictive common due dates. Computers and Opera-

tions Research, 28(8):787–801, 2001. ISSN 03050548. doi: 10.1016/S0305-0548(00)

00008-3.

[121] Rym M’Hallah. Minimizing total earliness and tardiness on a single machine using

a hybrid heuristic. Computers and Operations Research, 34:3126–3142, 2007. ISSN

03050548. doi: 10.1016/j.cor.2005.11.021.

[122] J.P. De C. M. Nogueira, J.E.C. Arroyo, H.M.M Villadiego, and L.B. Goncalves.

Hybrid GRASP heuristics to solve an unrelated parallel machine scheduling prob-

lem with earliness and tardiness penalties. Electronic Notes in Theoretical Com-

puter Science, 302:53–72, 2014. ISSN 15710661. doi: 10.1016/j.entcs.2014.01.020.

[123] H. Tamaki, H. Murao, and S. Kitamura. A heuristic-based hybrid solution for

parallel machine scheduling problems with earliness and tardiness penalties. In

IEEE Conference on Emerging Technologies and Factory Automation. Proceedings,

volume 2, 2003. ISBN 0-7803-7937-3. doi: 10.1109/ETFA.2003.1248706.

[124] Ewa Figielska. A genetic algorithm and a simulated annealing algorithm combined

with column generation technique for solving the problem of scheduling in the

hybrid flowshop with additional resources. Computers and Industrial Engineering,

Bibliography 141

56(1):142–151, 2009. ISSN 03608352. doi: 10.1016/j.cie.2008.04.008. URL http:

//dx.doi.org/10.1016/j.cie.2008.04.008.

[125] Q. Li, L. Liang, and W. Qiao. A Hybrid Robust Scheduling for Single Machine

Subject to Random Machine Breakdown. In Fourth International Workshop on

Advanced Computational Intelligence, pages 700–705, Wuhan, Hubei, China, 2011.

IEEE. ISBN 9781612843759.

[126] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.

Number January. 2007. ISBN 0521424267. doi: 10.1088/1742-6596/1/1/035.

URL http://retarget.googlecode.com/svn-history/r160/trunk/temp/

Complexity/book.pdf$\delimiter"026E30F$nhttp://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.89.7207{&}rep=rep1{&}type=pdf.

[127] T.H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, Cambridge, third edition, 2009. ISBN 9780262033848.

[128] A.M. Turing. On Computable Numbers, with an Application to the Entschei-

dungsproblem. Alan Turing: His Work and Impact, 42(1):230–265, 1936. ISSN

00664138. doi: 10.1016/B978-0-12-386980-7.50002-2.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background
	1.2 The Problem
	1.3 Motivation
	1.3.1 Possible applications
	1.3.2 Usefulness of more research on scheduling
	1.3.3 Why Simulated Annealing?

	1.4 Overview of Dissertation

	2 Preliminaries: Models, Definitions and Techniques
	2.1 Scheduling Theory
	2.1.1 Notation and Definitions
	2.1.2 Priority dispatch rules

	2.2 Algorithms
	2.3 A Note on Notation
	2.4 Bayesian Inference
	2.5 Markov Chains
	2.6 Monte Carlo Simulation
	2.6.1 Ordinary Monte Carlo
	2.6.2 Markov Chain Monte Carlo
	2.6.2.1 Metropolis-Hastings
	2.6.2.2 Burn-in
	2.6.2.3 Convergence

	2.7 Simulated Annealing: The technique

	3 Related Work
	3.1 Simulated Annealing
	3.1.1 Multi-objective
	3.1.2 Learning effects
	3.1.3 Neighbour generation
	3.1.4 Experimental methodologies and results

	3.2 Genetic Algorithms
	3.3 Tabu Search
	3.4 Branch and Bound
	3.5 Dynamic Programming
	3.6 Other hybrid or combined algorithms and approaches
	3.7 Metropolis-Hastings Markov Chain Monte Carlo
	3.8 In summary

	4 Simulated Annealing with Metropolis-Hastings pre-sampling
	4.1 Formulation
	4.2 Motivation for the section-based pre-sampling approach
	4.3 SAM
	4.3.1 Initialisation
	4.3.2 Metropolis-Hastings: implementation details
	4.3.3 Simulated Annealing
	4.3.4 Random Considerations
	4.3.5 Termination
	4.3.6 Computational complexity of SAM

	4.4 In Summary

	5 Simulation results and discussion
	5.1 Experimental methodology
	5.1.1 Generating problem instances
	5.1.2 Experimental set-up

	5.2 Simulated Annealing as the base case
	5.2.1 Significance of starting temperature on percentage deviation
	5.2.2 The effect of iteration count on percentage deviation

	5.3 SAM
	5.3.1 Coarse Metropolis-Hastings
	5.3.1.1 Different runs with the same settings
	5.3.1.2 Impact of iteration count
	5.3.1.3 Impact of number of samples
	5.3.1.4 Impact of number of sections

	5.3.2 Reduced search Simulated Annealing

	5.4 Discussion
	5.4.1 Overview of Results
	5.4.2 Comparisons

	6 Conclusion
	A Complexity Classes
	A.0.1 Big-Oh notation
	A.0.2 P, NP and NP-complete

	B Problem instances
	C Results
	C.1 Simulated Annealing base case
	C.2 Metropolis-Hastings simulations
	C.2.1 Chi-squared test of significance
	C.2.2 Impact of iteration count

	C.3 Reduced search SA final results

	References

