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Abstract 

Drought is complex and one of the least understood natural hazards in Southern Africa. 

Timely information about the extent, the intensity, duration and impacts of the 

agricultural drought is essential for adaptation and management. In this study, the 

research aims, are made to monitor and map agricultural drought across different land 

uses and land cover in north-eastern KwaZulu-Natal as it was declared a disaster area  

in 2016 (AgriSA, 2016). Droughts occurred throughout South Africa during the summer 

season of 2014 to 2015 and 2015 to 2016. In this study the adopted methodology was 

through the use of remote sensing and Geographic Information System (GIS) 

techniques. Remote sensing and GIS was used to map and monitor the agricultural 

drought in the study area.  To understand the impacts of the drought across different 

agricultural land use and other land cover types, the land uses and land cover was 

classified using Landsat earth observation data and maximum likelihood algorithm in 

the study area, and multi-temporal Normalized Difference Vegetation Index (NDVI) 

(1997-2017) with a twenty year interval used to map and monitor the agricultural 

drought and the meteorological (rainfall) in order to validate the NDVIs. Agricultural 

drought was then determined from investigating changes between 2015 and 2017 which 

were years that experienced severe conditions. The rainfall data was interpolated using 

Inverse Distance Weighted (IDW) interpolation to understand the mean rainfall from 

the weather stations services. Thereafter, Standardized Precipitation Index (SPI) values 

were determined from the rainfall data in order to understand the severity of the 
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droughts in certain parts of the study area from the weather station data. The 

meteorological analysis was cross compared with agricultural drought. 

The mean NDVI and mean rainfall interpolated shows that their relationship is inversely 

proportional, because where rainfall is low; NDVI is high for the years 2015 to 2017. 

The land use and land cover in the study is largely dominated by bush, cultivated cane 

crop, grassland and plantations.  Looking at the overall classification in the year 2015, 

it is clear that bush land use and land cover was largely dominated in the study area, 

with other land use and land cover classes which were also part of the year 2015. During 

the year 2016 the other classes of land use and land cover where also dominating the 

study area for example grasslands and plantations. In the year 2017 we see cultivated 

cane crop start to emerge in the study area but land use and land cover is largely 

dominated by bush land use and land cover. The overall accuracy of the study was 

74.2%.  

 

Keywords: Agricultural drought, Land use/land cover, Remote 

sensing, Landsat 8 OLI/TIRS, Normalized Difference Vegetation 

Index, Standardized Precipitation Index, Accuracy Assessment.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

South Africa’s economy has remained predominately dependent on agriculture as it is 

a primary economic driver (AgriSA, 2017). Rain-fed farming systems form an 

important part of South Africa’s agricultural sector. Seasonal rainfall patterns with low 

and erratic rainfall, variable topography and soil physical characteristics all influence 

the development of rain-fed farming systems practiced in South Africa (Hardy 2011). 

Declining farming profitability and water scarcity (drought, declining rainfall or over 

demand for water) has left South Africa with less than two-thirds of the number of farms 

it had in the early 1990s (Agricultural Statistics, 2008). In South Africa, rainfall in some 

provinces has been below normal for the whole of 2014 and 2015 (October 2014-

September 2015). The spring season is recorded as the third-driest for South Africa as 

a whole since the early 1930s, when the country was hit by drought in the midst of the 

Great Depression (Drought SA, 2017). 

 

Droughts are a major feature of the climate of South Africa (Vuuren, 2015) as it is at 

the southern tip of Africa between cold and warm sea currents and its unique 

topography, which creates a variable over space and time (Vuuren, 2015). For such 

reasons the country is considered to have one of the most variable river flow regimes in 

the world, and drought is one manifestation of this variability.  Drought is one of the 

major worldwide natural hazards that cause water shortages, which not only increases 
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the vulnerability of the agricultural sector and economic loss but also human life 

(Department of Agriculture, 2005). Environmental factors such as land or the 

environment can result in the effect of drought in a different way for example the kind 

of landscape can affect the way in which drought occurs. As a result when monitoring 

drought it is important to consider the drought type that has occurred. The use of satellite 

remote sensing for drought assessment and monitoring can be effective, as satellite 

covers a large area at high temporal resolutions (e.g. daily) (Park et al, 2015). 

 

The results of experiencing an agricultural drought have impacts on land use and land 

cover in South Africa and also affect crops. The impacts on crop are often on different 

crop types and agricultural crop, including but are not limited to sugar cane and 

plantation, respectively. Between different scholars and meteorologists the 

understanding of drought can be categorized into three types. This research will focus 

on agricultural drought using meteorological data due to South Africa experiencing a 

decrease in the agricultural production. For the purposes of this research agricultural 

drought is defined as a situation when rainfall and soil moisture are inadequate during 

the crop growing season to support healthy crop growth to maturity, causing crop stress 

and wilting. 

 

Agricultural drought occurs when the moisture level in soils is insufficient to maintain 

average crop yields (Disha Experts, 2017). In this research, agricultural drought 

monitoring through satellite based information will be adopted as a method because of 

its low cost, synoptic view, repetition of data acquisition and reliability. In addition, 
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remote sensing based indices methods such as Normalized Difference Vegetation Index 

(NDVI), Standardized Precipitation Index (SPI) and Vegetation Condition Index (VCI) 

have been accepted globally for identifying agricultural drought in different regions 

with varying conditions (Nicholson and Farrar, 1994; Kogan, 1995; Seiler et al, 2000; 

Wang et al, 2001; Anyamba et al, 2001; Ji and Peters, 2003).   

 

The status of crops can be estimated according to the best and worst crop vigour over a 

particular period in different years that give a more accurate result as compared to NDVI 

while monitoring drought at a regional scale (Bajgiran et al, 2008). Drought stress poses 

a major threat to trees by possibly causing hydraulic failure. Various remote sensing 

technologies have been proven useful for mapping health of conifer species such as 

infrared aerial photography and multispectral satellite imagery. Hyper spectral imagery 

has an advantage of providing information related to the physiological condition of the 

vegetation which can be modelled. Even more visual assessment of time series of aerial 

photographs will record change and dieback in extent of conifer vegetation for select 

sites.  

Field assessment of the crop's condition is usually subjective and prone to observer bias 

(Boubacar, 2010). This can be emphasized by situations where differences in 

appearance do not necessarily indicate poor health. There are measures to reduce 

biasness such as the scale or classification method used. Remote sensed imagery that 

has cloud cover cannot be used and this poses a major limitation on the study analysis. 

On the other hand remote sensing can be useful for identifying related stress in drought 

monitoring. 
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1.2 Research problem statement 

Agricultural drought monitoring has become very important in understanding the land 

changes within the north-eastern part of KwaZulu-Natal. More than ever researchers 

(WMO, 1975; Wilhite and Glantz, 1985; White and O’Meagher, 1995; McVicar and 

Jupp, 1998) have found it difficult to quantify the extent of drought disturbance due to 

many factors such as the development of the drought; as it is slow and the spread over 

an area can be undefined as the impact is non-structural; meaning that droughts often 

do not form part of a given structure. 

 

Furthermore, according to weather reports during the summer of 2015/2016 and 

2015/2016, a severe drought affected the Southern African continent (AgriSA, 2016). 

During this time warm anomalies developed in 2014 in the Pacific Ocean and conditions 

in austral summer 2014/2015 were nearly El Nino-like and the whole of the strongest 

El Nino developed in 2015 (AgriSA, 2016). In general, the drought lasted for about two 

years. Due to crop failure, it has left 2.5 million people in Malawi, Zimbabwe, 

Mozambique, Madagascar and Lesotho requiring quick humanitarian response while 

South Africa has a drop of 25% in maize production in the summer of 2014/2015 

(AgriSA, 2016). 

 

Agricultural drought monitoring has become very important in understanding the land 

changes within the north-eastern part of KwaZulu-Natal (KZN). In the study area, the 

north-eastern part of KZN was affected by a hydrological drought where rivers had 
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dried up, such as the Umfolozi River (AgriSA, 2016). The extent and impact of 

agricultural drought on farmers and ordinary citizens has had a major effect on their 

livelihoods.  

 

Biodiversity loss in the world is one of the major drivers towards land cover change. 

According to Jewitt (2015) using the Intensity Analysis framework for analysis, one of 

the major drivers and contributors of habitat loss are agriculture, timber plantations, 

built environments, mines and dams. In KwaZulu-Natal the natural habitat continues to 

be lost and the associated negative impacts and habitat degradation has been related to 

land cover threat to the biodiversity. The impact of agricultural drought has been a 

challenge to natural habitats and degradation of the land causing the drought effect to 

be difficult to quantify. Land cover maps derived from satellite imagery provide useful 

tools for monitoring land use and land cover change.  

 

Among the different drought types the agricultural drought is the least quantified, and 

the most uncertain type (Agricultural Statistics, 2008).  This research will monitor and 

map the drought across different land use/cover in order understand the spatial extent 

of drought over a specific area. Scientific conclusions about the use of indices can be 

made to answer whether droughts have had an effect on the land cover/land use in the 

Northeast KwaZulu-Natal area. 
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1.3 Objectives of the Study 

The aim of this study is to monitor and map agricultural drought across different land 

uses and land cover in the North-eastern KwaZulu-Natal. Specific objectives of the 

study area are too: 

 

 Map the land cover and land use using Landsat 8 OLI/TIRS and maximum 

likelihood algorithm classification. 

 To assess agricultural drought conditions across different land use and land cover 

using Multitemporal Landsat 8 (OLI/TIRS) and different vegetation indices. 

1.4 Limitation of the Study 

 Satellite data for other years has a lot of cloud cover in the winter months, making 

it difficult to trace the years before in order to monitor a bigger period for the 

study. 

 North-eastern KwaZulu-Natal weather services stations had data for only a few 

weather stations and some stations had too much data missing. Data from the 

four rainfall stations are not enough for proper image interpolation to generate 

drought severity.  

1.5 Outline of the Thesis 

This thesis contains five chapters.  

 Chapter one outlines the Introduction and highlights the background and 

objectives of the study.  
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 Chapter two outlines the Literature Review and covers previous research carried 

out in the field of drought assessment as well as role of remote sensing and GIS 

technology in the arena of monitoring of droughts. 

 

 Chapter three outlines the Study area giving a brief overview of the study area 

and the materials and methods used for the research.   

 

 Chapter four outlines the Results which give a critical observation for 

agricultural drought indices and their relationships. 

 

 Chapter five outlines the Discussion giving a brief discussion based on the results 

achieved and the analysis carried out. Recommendations and conclusions are 

also drawn from this study.    
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Drought is a term which is difficult to define, according to scholars and researchers (Wilhite et al, 

1985). Often the term is used to refer to a deficiency in rainfall, soil moisture, vegetation greenness, 

ecological conditions or socioeconomic conditions; as a result, there are different kinds of droughts 

that can be referred to (Wilhite et al, 1985).  In general terms, a drought is essentially a climate 

phenomenon, a consequence of an abnormal decrease of precipitation (Palmer, 1965). In this study, 

drought is considered as a period when precipitation is low in regard to long-term average conditions. 

Even more, a drought is a period of abnormally dry weather, which further results in a change in 

vegetation cover conditions (Heim, 2002; Tucker and Choudhury, 1987). 

 

The frequency and intensity of drought has increased over the last three decades (Humle and Kelly, 

1993; McCarthy et al., 2001), and there has been a trend of drying in many parts of the world which 

have been suffering from an elevated water crisis (Dai et al, 2004; Ghulam et al, 2008). According to 

Bates (2008) the proportion of land surface in extreme drought is projected to increase in the future, 

particularly in continental interiors during summer months. The results of this trend if it were to 

continue as projected by climate change scenarios would be catastrophic. 

 

In the present context of climate change and increasing land degradation and desertification (Mabbutt, 

1985; Le Houerou, 1996; Geist and Lambin, 2004), say being able to calculate the impact of a drought 

is crucial in determining the environmental consequences of a hypothetical change in climatic 

conditions. Due to the interest over the years in climate change, scientists have had interest in 

detecting drought onsets and ends, assessing its impact on agriculture, the environment and the 
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economy and finding the connection between climate change and spatial-temporal dynamics using 

satellite-derived information. 

 

The use of remote sensing data presents a number of advantages when determining drought impact 

on vegetation. Remotely sensed data can cover the whole of a territory and repetition of images can 

provide multi-temporal measurements (Kogan, 2001). Vegetation indexes gathered from satellite data 

can also allow areas affected by droughts to be identified, according to researchers, (Kogan 1995 and 

1998); (McVicar and Jupp, 1998). Aerial and satellite photographs enable the analysis of an entire 

landscape and, using multi-temporal sets of photographs, enables processes to be followed over time 

(Russell et al, 2014). In order to monitor the drought assessment through the use of remote sensing 

effectively products such as Land Surface Temperature (LST), Normalized Difference Vegetation 

Index (NDVI), and evapotranspiration (ET), are possible to monitor drought using not only in situ 

measurements at weather stations but also satellite-based drought factors (Anderson et al, 2011).  

 

Drawing out a single factor that will fully explain the complexity and diversity of drought is difficult, 

because drought is caused by a multitude of factors. Blending various indices is thus useful to monitor 

drought (Hayes et al, 2005; Mizzell, 2008; Wardlow et al, 2012). This blending approach started in 

the 1990s (Heim, 2002) and many blended hybrid indices have been developed, for example, some 

drought indices use not only satellite data, but also climate, biophysical and oceanic data more 

accurately to monitor drought.  

 

2.2 Drought impacts 

The impact of drought can be understood either directly or indirectly, because of its varying impact, 

for example a loss of yield resulting from drought is a direct or first-order impact of drought. When 
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we have the consequences of the impact (for example, loss of income, farm foreclosures and 

government relief programmes), then it is considered as secondary or even tertiary.  

 

Inter-annual climate variability over South Africa has been well studied (Preston et al, 1988; Preston-

Whyte et al, 1991; D’ Abreton et al, 1996), but there is less documentation on climate variability 

specific to KwaZulu-Natal (Dube et al, 2000). In KwaZulu-Natal the period from 1993 to the end of 

1995 has exceptionally high positive temperatures relative to the whole period from 1960 to 1995 

(Dube et al, 2000). Rainfall departures show increasing variability, this shows that the period of 1992 

and93 had one of the worst droughts.  The impacts of this drought in 1992 and93 shows there is still 

insufficiency in understanding the characteristic and impact assessment.  

 

In a more recent study for KwaZulu-Natal (Thomas et al, 2007) account for the Region 11 in 

northwest KwaZulu-Natal where recent historical mean rainfall of 800 to 900 millimetres (mm) pa 

range was recorded. There seems to be an increase in inter-annual variability in the rainfall and higher 

rainfall in the first half of the growing season (Thomas et al, 2007). There is an increase in early 

seasons of rainy days and a decline in late season (February and March) rains (Thomas et al, 2007). 

Variability in the rain grew in 1990 and 1994, while in 1991 rains commenced in September, but was 

subsequently limited until January 1992.  

 

The KwaZulu-Natal province faced acute water problems and agricultural loss from the drought in 

1992 to93 (Dube, 2002). According to Dube (2002) the complexity of dealing with drought as a threat 

is compounded by rapid population growth and urbanisation. Furthermore, it is estimated that the 

normal cycle of droughts will cause water demand in South Africa. In KwaZulu-Natal there is a three 

to five year cycle and this shows that the frequency and intensity of drought has increased and is 

intensifying, seen over the last three decades (Dube, 2002).  
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For the purposes of this research it is important to understand the whole concept of droughts, but it is 

just as relevant to define both meteorological and agricultural drought in order to assess the impacts 

of agricultural droughts in the study area. According to Masih et al, (2014) meteorological and 

agricultural droughts remain the main studies. This literature review will then seek to explain both 

meteorological and agricultural drought as the two are important for the purposes of understanding 

droughts and the methodology adopted for this research. 

 

2.3 Meteorological drought 

 

According to Wilhite et al, (1985) droughts are classified in four distinctive types; meteorological, 

agricultural, socioeconomic and hydrological. Meteorological drought is stated on the basis of the 

degree of dryness in comparison to some normal or average amount and the duration of the dry period 

(NDMC, 2008). This means the main characteristics for a meteorological drought are intensity and 

duration.  

 

The occurrence of meteorological droughts occurs when the annual precipitation is between 70% and 

85% of long-term annual precipitation. At a national level, meteorological drought is said to occur 

when the annual rainfall is below 75% of the long term mean (Wilhite et al, 1985). Long term means 

a period that exceeds 30 years. A meteorological drought is constituted by a deficit in runoff of rivers, 

surface reservoirs and ground water (as a result of rainfall).  

The occurrence of a meteorological drought can be viewed as the below normal precipitation amount 

during an extended period of time (months, years, etc.) over a region. The lack of precipitation is the 

main cause of meteorological drought. The drought is often measures at 3, 6 and 12 months scales 

(Palmer, 1965). According to researchers, between late 2014 and June 2016, South Africa experienced 



12 

 

the worst meteorological drought in the Southern African region in 35 years (BBC 2015, SAWS 

2016a, and WFP 2016) specifically during the period October 2015 to January 2016 (WFP 2016). It 

also followed the driest season in the last 80 years (Stoddard 2015). In the South African Weather 

Services meteorological drought is better understood as the basis of the degree in comparison to 

normal or average amounts of rainfall for a particular area or place and the duration of the dry period 

(SAWS, 2016b). The recent meteorological droughts in South Africa occurred as a result of the El 

Niño which caused a lack of rain (BBC, 2015) (Stoddard, 2015), and climate change causing 

abnormally high temperatures in South Africa (Mojapelo, 2016).  

In order to calculate various indexes using meteorological data, the data is used to quantify droughts 

(Heim, 2002). The commonly used index to determine the drought index calculation is the 

Standardized Precipitation Index (SPI) because it can be calculated at different time scales, resulting 

in the ability to understand water deficits of different duration (McKee et al., 1993). The SPI is 

computed by fitting a probability density function to the frequency distribution of precipitation 

summed over the time scale of interest (Costa, 2011). This index is easier to use than other indexes 

such as Palmer Drought Severity Index (PDSI; Palmer, 1965), because the SPI requires only 

precipitation data, whereas the PDSI uses several parameters (Soulé, 1992). Even more the PDSI has 

some shortcomings in spatial and temporal comparisons (Alley, 1984 & Karl, 1986). The SPI is more 

preferred as it is comparable in both time and space, and is not affected by geographical or 

topographical differences (Lana et al, 2001). 

 

Meteorological drought that is prolonged leads to a decrease of soil moisture content that triggers 

agricultural drought. Meteorological droughts are useful for indicating potential water crisis if the 

condition is prolonged. Meteorological drought can begin and end immediately. There is no uniform 

method to characterize drought conditions and there are a variety of drought indices that can be used 

as tools to monitor meteorological drought (Quiring, 2009).Oftentimes the calculation for input 
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variables for the meteorological drought indices vary depending on the drought index in question, but 

include precipitation, temperature or available water holding capacity of the soil.  

 

2.4 Agricultural drought 

 

Agricultural drought can be understood through both characteristics of meteorological and 

hydrological drought that has an impact on agriculture (Wilhite, 2000). This essentially means that 

the effects of agricultural drought can be understood as the effect of not having enough water available 

for a particular crop to grow at a particular time. For the purposes of this research, agricultural drought 

is nothing, but the decline in the productivity of crops due to irregularities in the rainfall as well as a 

decrease in the soil moisture, which in turn affects the economy of the nation. 

 

As a result of the severe productivity of rain-fed crop and indirect effect on employment as well as 

per capita income, agricultural drought has become a prime concern worldwide. Agricultural drought 

is mainly dependent on low rainfall which results in agricultural production (Choudhary et al, 2013). 

Agricultural drought produces a complex web of impacts that span many economic sectors. 

Agriculture is the primary economic sector affected by agricultural drought. The risks associated with 

agricultural drought are spatially variable; hence there is an important need to adopt adaption 

strategies and options for drought monitoring.  

 

The agricultural sector is most affected by the onset of drought as it is highly reliable on the weather, 

climate, soil, moisture and many more (Sruthi et al, 2015). When crops decline in a certain region and 

cause irregularities from rainfall patterns, then agriculture monitoring becomes important. The role 

of remote sensing and GIS in agricultural drought detection, assessment and management is becoming 
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crucial as it provides up to date information in different range of spatial and temporal scales which is 

time consuming when done by traditional methods such as Field Survey and sampling questionnaires.  

 

Although precipitation deficiencies are important, agricultural drought severity is usually more 

closely associated with deficiencies in soil moisture. The areas which are affected by drought evolve 

gradually as the symptoms of moisture stress in plants often develop slowly. Soil moisture condition 

is an important indicator for evaluating drought reflects recent precipitation and indicated agricultural 

potential and available water storage (Boken, 2005). Soil moisture conditions are very important in 

agriculture because they are used directly to assess the irrigation needs for a variety of crops. 

Growing crops need continuous supplies of soil water to ensure harvest. Rainfall and irrigation are 

the main sources of soil water in agricultural fields. When the soil water supply is sufficient for 

growing crops, evapotranspiration from agricultural fields is high, which leads to the observation of 

low surface temperature in satellite remote sensing images (Cunha et al, 2015). In South Africa, 

recurring drought conditions have always been an endemic feature of climate, affecting all sectors of 

society, with agriculture being the first sector to feel the effect as it primarily depends on precipitation 

for crop growth and production (Vogel et al,2000; Wolli, 2010). Although agricultural drought may 

occur when there is a deficiency in soil, agricultural drought does not only depend on the amount of 

precipitation received but also the timing and duration of the drought (Fraisse et al, 2011). 

 

2.5 Field-based methods for mapping and monitoring drought 

 

The traditional collection of field data currently available is generally difficult to use for predicting 

regional or global changes, because of the way it is collected at small spatial and temporal scales and 

vary in their type and reliability. A study by Yongdeng et al (2016) conducted a field survey to 
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examine a changing climate and recurrent drought through in-depth interviews from questionnaires. 

All the input and output data was obtained through field surveys and was mutually compared and 

verified to avoid individual error. 

 

In a study for drought assessment for agricultural and meteorological analysis using remote sensing 

and GIS, field work was done before going to field for the study of agricultural drought stress on crop 

performance (Murad, 2010). During this field collection basic information was collected that was 

related to the literature, searching for drought stress and its impact on agricultural crops and the 

advancements in satellite based indices for monitoring drought. 

 

A probabilistic approach to assess agricultural drought risk using field data is time consuming and 

costly. The traditional field based method of mapping and characterizing drought areas has a number 

of challenges. In regards to the collection of ground data on agricultural changes in a certain area the 

task becomes difficult, because of the spatial coverage and the diversity of farming system within its 

boundaries (Lambin et al, 1993). Weather conditions are limiting factors in regards to estimating 

production because some harvest needs certain conditions in order to grow. The ground data is time-

consuming and expensive in its nature because of frequent field trips and airborne surveys (ESRIN, 

2004). 

 

2.6 Remote sensing techniques for mapping and monitoring drought 

 

The use of the field based data collection is not the same as satellite sensors as it provides direct spatial 

information on vegetation stress caused by drought conditions and the information is used to assess 

the spatial extent of drought situation. Satellite remote sensing technology is widely used for 

monitoring crops and agricultural drought assessment (Roy et al, 2010). The use of remote sensing in 
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mapping and monitoring agricultural drought can  be understood from the context of understanding 

vegetation abundance and develop information that is related to rainfall in order to assess the drought. 

In order to understand the capability of agricultural drought conditions using visible, near infrared 

and microwave, satellite data has been used by researchers with the aim to map and monitor drought 

activities. Perry and Lautenschlager (1984) provide an extensive review on vegetation indices based 

on Landsat and NOAA satellite data which includes (but is not limited to) Difference Vegetation 

Index (DVI), Greenness Vegetation Index (GVI) and Normalized Difference Vegetation Index 

(NDVI). 

 

The significance of NDVI, according to NRSA, (1991) and Sesha Sai et al, (2004), is that in order to 

avoid problems of non-availability of cloud free optical; data, time composite NDVI over an 

aggregated period of a fortnight or a month should be generated to cover the entire crop growth to 

assess agricultural drought. The variations on the progression of NDVI, in terms of the magnitude and 

rate of progression, in relation to its respective normal NDVI provide information about the prevailing 

status of vegetation (Roy et al, 2010). 

 

Satellite remote techniques are operationally being used to provide intra-seasonal and inter-seasonal 

information on the spatial distribution of crop distribution at different levels. Analysis of satellite data 

for crops with the information on other natural resources provides ways for agricultural sustainability, 

for environmentalists, especially with the use of remote sensing. Unlike point observations of ground 

data, satellite sensors provide direct spatial information on vegetation stress caused by drought 

conditions and the information is used to assess the spatial extent of drought situations (Roy et al, 

2010). 
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In understanding remote sensing techniques of mapping drought monitoring, remote sensing models 

and indices have been developed and used in the interpretation of agricultural drought. For example 

a study was conducted by, (Wu et al, 2004) to develop an agricultural drought risk assessment model 

using multivariate techniques. The model was specific to corn and soybeans where detection was to 

assess real-time agricultural risk associated with crop yield losses. The results show that the model is 

suitable in providing information on agricultural drought risks. Vicente- Serrano (2007) evaluated the 

impact of drought using remote sensing in a Mediterranean semi-arid region. The study determines 

spatial differences in the effects of drought on the natural vegetation and agricultural crops by means 

of joint use of vegetation indexes derived from Advanced Very High Resolution Radiometer 

(AVHRR) images. The results show that the effects of drought on vegetation vary noticeably between 

areas, a pattern that is determined mainly by the location of land-cover types.  

 

In general, it can be understood as firstly thermal remote sensing methods, secondly microwave 

remote sensing methods and lastly combined remote sensing methods for agricultural drought 

monitoring and its applications. It is important to also understand that the remote sensing based 

methods depend on different factors, including but are not limited to satellite data availability, cost, 

data quality, pre-processing and post-processing requirements.  

 

2.6.1 Optical remote sensing methods for agricultural applications 

 

A study done by Dalezios et al, 2012 on the assessment of remotely sensed drought features in 

vulnerable agriculture uses optical remote sensing data that are in the range 0.4 and 2.5 μm to add 

inputs to the agricultural drought indices. In this spectral range, red, near infrared (NIR) and 

shortwave infrared (SWIR) are the most commonly used bands, due to their obvious response to 

agricultural drought conditions through vegetation greenness and vegetation wetness conditions. In 
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instances where there is vegetation greenness, healthy vegetation is often greener and tends to absorb 

most of the incident visible light (e.g. red spectrum) and reflects a significant amount in the NIR 

spectrum (Dalezios et al, 2012). 

 

In understanding optical remote sensing-based agricultural drought indices there are three groups, 

according to their purposes, which it can be divided into. Group one is the soil drought monitoring 

indices, group two is the vegetation drought monitoring indices and the third group is the soil and 

vegetation drought indices (Hazaymeh et al, 2016). According to Farooq et al, (2009) vegetation 

could resist drought conditions by utilizing different reactions in their leaves and roots. The cause of 

this might affect or delay the identification of agricultural drought conditions, especially over more 

densely vegetated areas and cause uncertainties in the results of the indices. In another study, 

vegetation indices were found to be more applicable over moderate to densely vegetated areas than 

sparsely vegetated areas. This was because soil background reflectance might affect the calculations 

and cause uncertainties in monitoring drought (Ghulam et al, 2008).  

 

In general, semi-arid areas are described as sparsely vegetated areas which then mean that neither 

vegetation drought indices nor soil drought indices can solely provide accurate monitoring of drought 

in these regions (Hillerislambers et al, 2001). Other solutions to this problem could be performing 

land cover classification and assigning a suitable index for each class or applying different drought 

indices at different plant growing stages (Wang et al, 2010). Scientists and researchers developed 

solutions to such problems by monitoring agricultural drought for both soil and vegetation at the same 

time such as, shortwave infrared water stress index (SIWSI), normalized multiband drought index 

(NMDI) and the visible and short-wave drought index (VSDI) (Fensholt et al, 2003; Wang et al, 2007 

and Zhang et al, 2013). These indices do not only provide mapping vegetation and soils on a pixel 

basis, but they also provide qualitative and quantitative measurements of their conditions (i.e. 
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greenness and wetness) within a pixel (Hazaymeh et al, 2016). Table 1 shows the most commonly 

used optical remote sensing agricultural drought indices. 

 

Table 1: Commonly used optical remote sensing agricultural drought indices 

Type Index Expression Pros Cons 

Soil drought 

index 

Perpendicular Drought 

Index 

 

𝑃𝐷𝐼 = 1 +
1

√𝑀2
+ (𝑝𝑅 + 𝑀 ∗ 𝑝𝑁𝐼𝑅) 

Simple and 

effective in 

calculating 

drought 

conditions 

Unable to provide high 

accuracy over variable 

land cover types 

especially bare soils and 

densely vegetated fields. 

Vegetation 

drought index 

Normalized Difference 

Vegetation Index (NDVI) 

𝑁𝐷𝑉𝐼 =
𝑝𝑁𝐼𝑅 −  𝑝𝑥

𝑝𝑁𝐼𝑅 +  𝑝𝑥
 Provides a 

measure of 

vegetation health 

or greenness 

conditions 

Sensitive to darker and 

wet soil conditions. 

Vegetation 

drought index 

Moisture Stress Index 𝑀𝑆𝐼 =
𝑝𝑆𝑊𝐼𝑅2

𝑝𝑁𝐼𝑅
 More sensitive at 

canopy level 

rather than leaf 

level 

Applicable for densely 

vegetated areas. 

Simple Ratio Water Index 𝑀𝑆𝐼 =
𝑝𝑁𝐼𝑅

𝑝𝑆𝑊𝐼𝑅2
 

Normalized Difference 

Water Index (NDWI1) 

𝑁𝐷𝑊𝐼 =
𝑝𝑁𝐼𝑅 −  𝑝𝑆𝑊𝐼𝑅1

𝑝𝑁𝐼𝑅 + 𝑝𝑆𝑊𝐼𝑅
 Effective in 

monitoring, 

vegetation water 

content 

Uncertainties increased 

considerably in the 

presence of soil and 

sparsely vegetated or 

bare surfaces. 

Normalized Difference 

Infrared Index (NDII) 

𝑁𝐷𝐷𝐼 =
𝑝𝑁𝐼𝑅 − 𝑝𝑆𝑊𝐼𝑅2

𝑝𝑁𝐼𝑅 + 𝑝𝑆𝑊𝐼𝑅
 

Land Surface Water Index 

(LSWI) 

𝐿𝑆𝑊𝐼 =
𝑝𝑁𝐼𝑅 − 𝑝𝑆𝑊𝐼𝑅1

𝑝𝑁𝐼𝑅 + 𝑝𝑆𝑊𝐼𝑅
 

Vegetation Condition 

Index (VCI) 

𝑉𝐶𝐼 =
𝑁𝐷𝑉𝐼𝑖 −  𝑁𝐷𝑉𝐼𝑚𝑎𝑥

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 

Provides 

vegetation 

greenness 

conditions 

Requires data over a 

longer time period. 
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Soil and 

vegetation 

drought index 

Modified Perpendicular 

Drought Index (MPDI) 

𝑀𝑃𝐷𝐼 =
1

1−𝑓𝑥
 (PDI- 𝑓𝑥 * PDIx ) Applicable over 

variable 

topography, soil 

types and 

ecosystems 

Assumption of fixed soil 

line; however it is highly 

dependent on the soil 

type, level of fertilization 

and soil moisture. 

(Hazaymehet al, 2016) 

 

A study by Tang el al, 2014 on the application of thermal remote sensing in agriculture, drought 

monitoring and thermal anomaly detection, uses thermal inertia which is a measurement that describes 

the resistance of the materials (e.g. soil and vegetation) to temperature variations; it depends on the 

bulk density, thermal conductivity and heat capacity of the materials. It has a proportional relationship 

with water content levels, therefore if water content decreases, thermal inertia decreases as well. This 

means it can be used as an indicator of agricultural drought. The study also recognizes that since 

different materials have different thermal inertia, and bulk density, thermal conductivity, and heat 

capacity cannot be derived from remote sensing data, mapping thermal inertia was inapplicable 

through remote sensing (Tang et al, 2014).  

 

A different method was suggested where thermal inertia could be derived from remote sensing data 

by measuring the surface albedo and the diurnal temperature range (Claps et al, 2004 and Verstraeten 

et al, 2006). However, the application of this method was found to be restricted to arid regions with 

bare land or very sparse vegetation areas (Van doninck et al, 2011). Even more so, another method 

known as Ts-based method has employed the surface temperature retrieved from remote sensing 

systems in measuring agricultural drought over different spatial scales. This Ts-based method was 

found to be a better indicator over sparse canopies or bare lands than vegetated lands (Hazaymeh et 

al, 2016). With this method, its results show that the accuracy of detecting drought conditions depends 
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on the accuracy of retrieving surface temperature from remote sensing data and the heterogeneity of 

the earth surfaces which increase the uncertainty of these methods to detect drought (Moran, 2004).  

 

2.6.2 Microwave remote sensing methods for agricultural applications 

 

Microwave remote sensing provides useful information of water content through detecting the change 

in the dielectric constants between water, soil and vegetation (Wang et al, 2009). A study, which 

mapped daily evapotranspiration at field to continental scales using geostationary, and polar orbiting 

satellite imagery, shows that passive and active microwave remote sensing based models/indices 

show satisfactory results for the water content estimation and agricultural drought studies (Moran, 

2004 & Anderson et al, 2011).  

 

Passive microwave has a solid physical basis for water content retrieval and high temporal resolution, 

it has different major challenges including spatial resolution (i.e. 10-20kilometres), the available 

wavelength does not provide adequate water content sensitivity over different levels of vegetation 

covers, and technical and engineering challenges (Hazaymeh et al, 2016). There are various 

monitoring indices which can be used for microwave remote sensing-based agriculture.  

 

 Although, active microwave sensors have the capability to provide higher spatial resolution (i.e. ~tens 

of metres), they have poor temporal resolution (i.e., ~one month).  
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2.6.3 Combined remote sensing-based methods for agricultural drought applications 

 

As researchers have investigated and discovered many researches in order to understand agricultural 

drought, there have been many methods which have been adopted to include different remote sensing 

indices that have different capabilities for monitoring and detection (Hao, 2013). In the uses of the 

optical remote sensing domain, indices have been combined into one index since they showed 

different sensitivity to drought conditions even when applied to the same location. According to Gu 

et al, (2007) the Normalized Difference Drought Index (NDDI) and Normalized Moisture Index 

(NMI) have been calculated as the same function Normalized Difference Water Index (NDWI) and 

Normalized Difference Vegetation Index (NDVI). 

 

Combined methods such as thermal and optical remote sensing have been done based on the indices. 

In a practical example combinations have occurred between Ts and VIs and have been presented as 

such two approaches (Hazaymeh et al, 2016). The first approach is the mathematical approach where 

Ts and Vis have been incorporated into mathematical operations, such as Vegetation Health Index 

(VHI) which is a combination of the VCI and TCI to determine overall vegetation health status and 

to detect drought affected areas in agricultural dominant regions.  

 

The combination of various drought indices from different data sources provides a more 

comprehensive assessment of drought conditions than the use of one single index (Sun et al, 2012). 

The implementation of combined methods has been challenging due to the lack of systematic methods 

for combining, implementing and also evaluating this phenomenon. Remote sensed based indices are 

unable to discriminate vegetation stress caused by sources other than drought (Sun et al, 2012). This 
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means the combination of various Indies may offer a better understanding and better monitoring of 

drought conditions. 

 

3. The use of Landsat data for drought mapping and monitoring 

 

The use of Landsat in understanding drought monitoring offers potential for generating detailed 

vegetation classification in order to understand the effects of drought in specific classes (for example, 

moderate, severe and extreme rough classification) even though the dataset offers lower temporal 

resolutions (Soler et al, 2016). There are multiple forms of freely available remotely sensed imagery 

that is suitable for drought analysis, for example Landsat, MODIS and ASTER imagery, as it provides 

a wide range of resolutions and spectral channels (Cia et al, 2011).  Such remote sensed data can be 

applied to land use assessment or enable the analysis of temperature, through specific indexes (Doi, 

2002).  

 

A study conducted by Tran et al, (2017) for monitoring drought vulnerability used both MODIS and 

Landsat data in a relatively small study area. The Landsat data shows many advantages in monitoring 

drought at the local and national scales compared to MODIS. This is because Landsat showed higher 

accuracy in the results to a smaller area where the study assessed the performance in characterizing 

drought severity and monitoring stress on crops. Even more so the Landsat data allowed not only 

assessment of areas at a severe drought level, but also assessment of drought patterns monitored with 

identification of specific locations (Tran et al, 2017).  

 

 

Another study assessing drought monitoring using Landsat 8 showed results that Landsat 

8OLI and TIRS data performed well in retrieving soil moisture results (Guohua et al, 2016). 
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Nithya et al, (2014) used Landsat for early detection of agricultural vulnerability and the 

study showed the use of this methodology should be adopted for remote sensed based 

vulnerability assessment studies. Drought mapping in the Central Highland of Vietnam used 

Landsat imagery generated drought related indices such as NDVI, NDWI to provide an 

assessment for drought monitoring (Nguyen, 2016). This study presented that Landsat 

helped to better understand drought in the Central Highland of Vietnam and was extremely 

useful for detecting drought impacted areas and additional drought causing factors such as 

local land-use land-cover changes (Nguyen, 2016). The limitation with Landsat is its spatial 

and temporal resolution is a limitation in certain areas and/or applications. For example, in 

some areas of West Africa Landsat spatial resolution has been limited in capturing the small 

agricultural plots. Its temporal resolution, coupled with excessive cloud cover has largely 

prevented mapping the spatial distribution of different crops in these African environments 

(Forkuor, 2017). Image fusion approaches can however be used to overcome the spatial and 

temporal resolution limitations of Landsat. 
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CHAPTER 3: METHODOLOGY 

This chapter presents the study area and the research methodology. The first part briefly describes the 

study area, by focusing mainly on the location of the study area, the geology, climatic conditions and 

the fauna and flora. The fauna and flora are presented in limited details, principally due to constraints 

of using non peer-reviewed documentations. The second part provides detailed descriptions of the 

methods adopted in the study. In this chapter, the reference data and remotely-sensed data was 

described first. This will be followed by analysis of data. The chapter concludes with the data analysis 

performed for the study for satellite imagery. 

3.1 Study Area 

3.1.1 Location 

The study area is conducted in uMkhanyakude District Municipality (DM) between Latitudes (28° 

7'34.49"S, 26°51'32.05"S) (31°49'29.84"E, 32°52'48.65"E) (in KwaZulu-Natal (KZN) Province of 

South Africa (Figure 1). UMkhanyakude DM is a Category C municipality located along the coast in 

the far north of KZN Province. It shares its borders with Swaziland and Mozambique, as well as with 

the districts of Zululand and King Cetshwayo. It is the second-largest district in the province. 

‘UMkhanyakude’ refers to the Acacia Xanthephloea fever tree and means ‘that shows light from afar’. 

The name reflects both the uniqueness of its people and their hospitality, as well as the biodiversity 

and conservation history that the region is proud of (StatsSA, 2011).   

 

The district extends from Mtubatuba (St Lucia) in the South to Kosi Bay in the North, across to the 

Lubombo Mountains in the west. The district is strategically linked to the provincial markets of KZN 

and Mpumalanga and to the neighbouring market of Swaziland, via the N2 route. The district is 
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largely rural; Mtubatuba is in the south being the only substantial town. The population is 

exceptionally young, with 70% being below 18 years of age. The key drivers of the local economy 

are agriculture, services, tourism and retail.  

 

The proportion of this rural district is under a thicket, grassland and wetland, while the remaining areas are 

cultivated land settlement. Large areas of land are under communal tenure, located in the traditional 

authority areas. The remaining areas are under state conservation or private ownership with limited urban 

area.
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    Figure 1: Study area map showing sampled sites 
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3.1.2 Livelihoods 

Agriculture is the principal economic activity in the municipality and the source of livelihood for the 

majority of households (Municipality, Mtubatuba Local, 2017). The farming in the municipality is 

largely subsistence farming where the main crops are for large commercial farming. Subsistence 

agriculture is practiced throughout the region, but is concentrated mostly along the Pongola floodplain 

and in and around the coastal lake wetland systems.  

The Integrated Development Plan (2008/9:37) states that the district has been experiencing severe 

drought until March 2104. The district contributed R4.9 million to the drought relief programme. 

According to Integrated Development Plan-UMkhanyakude (2008/9:38) over the last five years 

drought has become a serious problem such that water resources have dropped drastically. Predictions 

are the situation will become even worse in the next coming years, probably until at least 2009.  

3.1.3 Climate 

The area is characterized with coastal areas and the inland areas. Overall climatic conditions are 

described from inland towards the coast (Nucina et al, 2006). The inland areas experience summer 

rainfall with very little rain in winter. The climate gives natural resources whose comparative 

advantages are mean annual rainfall decreases from an average of 1200-1400 millimetres along the 

coastal region with an average of 650 millimeters inland. Similarly, mean annual temperatures 

decrease varies from 21 degrees Celsius along the coast to 18 degrees Celsius inland (Municipality, 

uMkhanyakude District Municipality, 2009).  

UMkhanyakude has one of the best climatic conditions in KwaZulu-Natal and South Africa. This 

includes the best sunshine and weather conditions for good agricultural activity. It is one of the few 

areas that can grow crops all year round (Municipality, uMkhanyakude District Municipality, 2009). 

The climate observed within the study area, is expected to vary substantially between the coastal areas 
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and the inland areas. Overall climatic conditions are described starting from inland towards the coast 

(Mucina & Rutherford, 2006). The inland Lebombo Bushveld and Zululand Sourveld areas 

experience summer rainfall with little rain in winter. The central part of the study area experiences 

summer rainfall with some rain in winter of approximately 550-800 millimetres.  

 

Figure 2: Average rainfall in uMkhanyakude District Municipality 

 

3.1.4 Geology and soil 

The North-eastern KwaZulu-Natal geology is underlain by Mesozoic and Cenozoic sediments (Meyer 

et al, 2001). The Cretaceous age deposits of the Zululand Group comprise of the Makhathini, Mzinene 

and St Lucia Formations from bottom to top, respectively, are the lower most layers underlying the 

northern KwaZulu-Natal (Meyer et al, 2001). The Zululand Group sediments are overlain by the 
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Maputaland group sediments, these sediments are mostly infertile, windblown distributed sands 

(Meyer et al, 2001). Within the study area the geology comprises of stratigraphic units which 

comprises of Tertiary and Quaternary periods, and other units consisting of rock from the Cretaceous 

period, towards the study area. The variation in geology within the study area has a definite effect on 

the vegetation types found within the study area. 

 

Figure 3: Geology formation within the study area 

 

3.1.5 Fauna and Flora 

Maputaland covers a large area, with many different habitats; as a result there is a range of mammal 

species that inhabit the area. There are a few species that are found in the protected areas of the region, 

while others are ubiquitous (Rowe, 1992). In addition, there are large mammal fauna within the area 
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where preserved sand and swamp forest, wooded grassland and wetland patches will host higher small 

mammal, bird and invertebrate diversity (Rowe, 1992).   

 

The Maputaland is recognized for its diverse, complex mosaic of forest types, bushland, thicket, 

wooded grassland and edaphic grassland (Municipality, uMkhanyakude District Municipality, 2009). 

There are six biomes in which the area comprises of thus being Azonal Forest, Forest, Indian Ocean 

Coast Belt, Savanna, Grassland and Wetlands Biomes and contains 15 vegetation types with varying 

degrees of disturbance and statutory protection (Municipality, uMkhanyakude District Municipality, 

2009).  

 

Figure 4: Flora (Biome) within the study area 

 

Flora within the study area 
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3.2 Data and Methods 

3.2.1 Remotely Sensed Data 

3.2.2.1 Landsat 8 data acquisition 

For the purposes of this study, Landsat images were used. Landsat 8 OLI/TIRS data were acquired 

for the purposes of this study. Five separate cloud free Landsat OLI/TIRS both summer (December 

to February) and winter (June to August) were acquired freely from the United States Geological 

Survey (USGS) (http://earthexplorer.usgs.gov/). To minimize chances of cloud coverage, cloud-free 

satellite images were selected. The use of these images is suitable for the calculation of indices. This 

study used climatic data to correlate the changes from the indices and what rainfall coverage has 

occurred over the years 2015 to 2017 (three year interval).  

Landsat data was used for this study because it is freely available. In addition, Landsat is able to map 

vegetation because of the highly accurate land cover characteristics that it can discriminate.  It has a 

refined spectral range for certain bands which is critical for improving the vegetation spectral 

responses across the near-infrared (Pahlevan and Schott, 2013; El-Askary et al, 2014). Landsat 8 

sensor was launched on the 11th of February 2013 by the National Aeronautics and Space 

Administration and the United States Geological Survey (NASA–USGS) (NASA, 2015). It carries a 

two-sensor payload, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), 

which are described in detail in Irons et al, (2012). It officially began normal operations on the 30th 

of May 2013; presenting a number of key improvements in design and spectral configuration (Dube 

and Mutanga, 2015). 

 

 

 

http://earthexplorer.usgs.gov/
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Table 2: Spectral and spatial characteristics of Landsat 8 imagery. 

Band Wavelength 

(micrometers) 

Spatial 

resolution 

(metres) 

Band 1- Coastal aerosol 0.43 – 0.45 30 

Band 2 -Blue 0.45 – 0.51 30 

Band 3 -Green 0.53–0.59 30 

Band 4 -Red  0.64–0.67 30 

Band 5  -Near Infrared (NIR) 0.85–0.88 30 

Band 6  -Short-wave infrared 

(SWIR 1) 

1.57–1.65 30 

Band 7 -Short-wave infrared 

(SWIR 2) 

2.11–2.29 30 

Band 8 -Panchromatic 0.50–0.68 15 

Band 9 -Cirrus 1.36–1.38 30 

Band 10 -Thermal infrared 

(TIRS) 1 

10.60–11.19 30 

Band 11-Thermal infrared 

(TIRS) 2 

11.50–12.51 30 

Source: USGS, 2015 
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Table 3: Characteristics of the satellite imagery used in the study. 

Study Area WRS-2 

path/row 

Spatial resolution 

(metres) 

Bands Sensor Archive 

North-eastern 

KwaZulu-Natal 

167/79 30 2,3,4,5,6,7 L8 OLI/TIRS USGS 

 

Table 4: Summary of dataset used for the study. 

Landsat 8 ID Date of Acquisition  

LC08_L1TP_167079_20150623_20170407_01_T1 2015-06-23 

LC08_L1TP_167079_20151216_20170331_01_T1 2015-12-16 

LC08_L1TP_167079_20160202_20170330_01_T1 2016-02-02 

LC08_L1TP_167079_20160625_20170323_01_T1 2016-06-25 

LC08_L1TP_167079_20170119_20170311_01_T1 2017-03-11 

LC08_L1TP_167079_20170628_20170714_01_T1 2017-06-28 
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3.2.2.2 Hydro-Meteorological data 

Meteorological data pertaining to monthly rainfall has been collected for a period of 20 years ranging 

from 1996 to2016. Rainfall data was used to analyze and derive Standardized Precipitation Index 

(SPI). Daily rainfall from four rainfall stations has been used to analyze relations between NDVI and 

rainfall and also to derive Standardized Precipitation Index (SPI). The data has been collected from 

South African Weather Service.  

3.2.2.3 Rain station distribution 

Point map of four rainfall stations in the north-east KwaZulu-Natal region as prepared from the 

lat/long file has been used to interpolate rainfall and SPI values in the entire region (Figure 5). For 

monitoring purposes, it is necessary to operationally produce the maps of drought severity and 

analysis from point measurements to trace drought development in the entire region or country. 

 

Figure 5: Location of the north-eastern KwaZulu-Natal weather station 
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The weather station data was collected from the South African Weather Station and a result of the 

average totals per month from year 2010 to 2015 shows the weather station which received the 

lowest and the highest rainfall. 

 

                   Figure 6: Average monthly rainfall in millimetres (mm) from the four weather stations. 
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3.3 Data analysis 

3.3.1 Landsat 8 data preprocessing 

Image preprocessing involved radiometric calibration and atmospheric correction. First, 

unnecessary bands were removed; that is band 1, 10 and 11. Band 1, which is also called 

the coastal or aerosol band has two main uses: imaging shallow water and tracking fine 

particles like dust and smoke (Roy et al, 2014; NASA, 2015). This band therefore was 

deemed unnecessary for drought monitoring in this study. Band 10 and 11 are thermal 

bands and are sensitive to heat, and thus were excluded too from this study (NASA, 

2015).  

 

Atmospheric correction was done with the remaining six bands (blue, green, red, NIR, 

SWIR1, SWIR2) by subtracting the reflectance of band 9 (cirrus band) from each band 

to ascertain that even a small amount of clouds is removed from the bands. The band 9 

was used due to its ability to detect clouds (NASA, 2015).The cloud free bands were 

then calibrated to top-of-atmosphere reflectance using the orbital and sensor parameters 

(USGS, 2015). The conversion was implemented in ArcGIS using Equation 2 provided 

on the USGS website (http://landsat.usgs.gov). 

 

Conversion to TOA Reflectance 

 

𝝆λ' = M𝝆Qcal + A𝝆………………Equation 1 

Where: 

http://landsat.usgs.gov/
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ρλ' = Top-of-Atmosphere Planetary Spectral Reflectance, without correction for solar 

angle.  (Unitless) 

M𝜌= Band-specific multiplicative scaling factor available from the metadata  

A𝜌 = Band-specific additive rescaling factor available from the metadata  

Qcal = Quantized and calibrated standard product pixel values (DN). 

 

The resultant reflectance was then corrected by factoring in the solar angle using 

Equation 3 provided on the USGS website. 

 

Correction of reflectance value with sun angle 

𝝆𝝀 =
𝝆𝝀′

𝒔𝒊𝒏(𝜽𝑺𝑬)
    ………Equation 2 

Where: 

ρλ' = TOA planetary reflectance 

𝜃𝑆𝐸 = Local sun elevation angle  

For the processing of Landsat data 8 image bands were added onto ArcMap 10.13 data 

management tool called Composite bands. These bands included band 2 (blue), band 3 

(green), band 4 (red), band 5 (near-infrared), band 6 (short-wave infrared 1) and band 7 

(short-wave infrared 2) to create a multispectral image.  

After creating the composites for Landsat, the images were then classified by a Drought 

Vulnerability Index analysing data in five classes, the least, mild, moderate, severe and 

critically vulnerable, then the data is entered into Microsoft excel to be represented in 

graphs, tables and pie charts. 
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3.3.2 Drought Indices 

Drought indices were calculated using Landsat data. This is because satellite-based 

drought indices such as the Normalised Difference Vegetation Index (NDVI), 

Standardized Precipitation Index (SPI) and Vegetation Condition Index (VCI) have 

proven to be useful in detecting drought onset and in measuring intensity, duration, and 

drought impact in regions around the world (Kogan, 1995; Anyamba et al, 2001; 

Gutman, 1990; Ji et al 2003, Nicholson et al, 1994; Seiler et al, 2000; Unganai et al, 

1998; Wang et al, 2001).  

The NDVI was computed using Equation 4 (Rouse et al, 1974).  

NDVI = (NIR – RED) / (NIR + RED)………… Equation 3 

The SPI is based on probability 

X - Xm / σ………… Equation 4 

Where X = Precipitation for the station 

 Xm= Mean precipitation 

 Σ= Standardized deviation 

SPI Drought Classes is classified in the table 5 below. 
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Table 5: Classification of SPI values. 

SPI Value Class Probability 

2.0  and more Extremely wet 0.977-1.000 

1.5 to 1.99 Very wet 0.933-0.977 

1.0 to 1.49 Moderately wet 0.841-0.933 

-.99 to .99 Near normal 0.159-0.841 

-1.0 to -1.49 Moderately dry 0.067-0.159 

-1.5 to -1.99 Severely dry 0.023-0.067 

-2 and less Extremely dry 0.000-0.023 

         (McKee et al., 1993) 

Vegetation Condition Index was calculated using ENVI 5.4 software through the 

following equation  

VCI = 100 * (NDVI – NDVImin) / (NDVImax – NDVImin) … (Equation.5) 

Where, 

NDVI – Smoothed weekly NDVI value 

NDVImin – Multiyear minimum NDVI value 
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NDVImax – Multiyear maximum NDVI value 

NDVI ranges from -1 to 1 and functionally ranges from 0-1. VCI rescales this to 0 to 

100 
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3.3.3 Data analysis 

The relationship between climatic data and remotely sensed data can be developed using 

linear regression models (Rauste et al, 1994; Steininger, 2000; Calvao and Palmeirim, 

2004; Mutanga and Skidmore, 2004), multiple regression techniques (Hame et al, 1997; 

Foody, Boyd and Cutler, 2003, Hyde et al, 2006; Hyde et al, 2007) and nonlinear 

regression methods such as k-nearest neighbour, artificial neural networks and semi 

empirical models (Castel et al, 2002; Santos et al, 2002; Wijaya and Gloaguen, 2009; 

Min, Qu, and Xianjun, 2009). 

 

The purpose of this research was to classify land use and cover in the study area. The 

methods used were classification of the multispectral image and as a result a maximum 

likelihood algorithm was used, which does not require prior knowledge about the study 

area cover. Interpretation of land use/cover through an accurate assessment on the recent 

Landsat 8 image was done by comparing it with the reference of the same study area 

from Google Earth. The band combination that was used for interpretation was false 

colour combination 5, 4, 3 (Near Infrared, Red, and Green) which is used for 

agricultural analysis.  

 

Accuracy assessment is an assessment done on a classified image to determine the 

strength of the classification. Classification accuracy assessment for this study used the 

latest image of 2017 from the digitized polygons and compared with reference data 

(Google Earth). The sample points were randomly selected across the study area. An 

error matrix was used to tally the classified and reference data. The reference data was 
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then arranged in columns while the classified data was in rows. Accuracy was then 

assessed in terms of the overall producer’s accuracy and user’s accuracy. Overall 

accuracy is used to assess the accuracy of the entire map while the producer’s and the 

user’s accuracies were calculated to get the percentage of the crop cover for each class. 

The following formulas were used for calculating the overall accuracy, producer’s 

accuracy and user’s accuracy. 

Overall Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠
× 100 … (Equation.6) 

 

Producer’s Accuracy=
 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠
× 10(Equation. 7) 

 

User’s Accuracy=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒𝑟𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑐𝑙𝑎𝑠𝑠
 × 100… (Equation. 8) 

3.4 Summary 

The flow chart (Figure 7) summarizes the methodology adopted in this study. Landsat 

8 data was pre-processed for atmospheric and radiometric corrections. The computation 

of NDVI and SPI was processed in order to produce NDVI and SPI averages. Each 

spectral band value from the preprocessing was then analysed from the data.  
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Figure 7 Flowchart of the methodology adopted in this studyd in this study.
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CHAPTER 4: RESULTS 

 

The results of the analyses of the data sets using the same method in chapter three 

(methodology) are presented in this chapter. The results of this chapter are presented in 

maps and statistically accompanied by detailed descriptions.  

4.1 Seasonal Patterns of Rainfall and NDVI 

From research investigated and obtained in this study, the mean uMkhanyakude District 

season rainfall and NDVI patterns for the entire study area for the period 1966 to 2016 

can be seen from Figure 8, that their relationship is inversely proportional, because 

where rainfall is low; NDVI is high for the years 2015 to 2017.  

  

Figure 8 Showing the severity of the droughts using NDVI and IDW at certain years 

from different weather stations within north-eastern KwaZulu-Natal 
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4.2 Climatic data 

Table 6 presents summary statistics of rainfall data collected at four weather stations. 

The total sum of rainfall for Mbhuzana, Riverview, Pongolapoort Dam and Ingwavuma 

Manguzi is 507 millimetres, 687, 8 millimetres, 729, 8 millimetres and 805, 2 

millimetres respectively. The average rainfall falls between all four weather stations is 

683 millimetres, averaged rainfalls within the north-eastern KwaZulu-Natal. At all 

weather stations calculations have been made for A, Alpha and Beta which shows 

parameters which have been used to calculate the SPI. According to McKee et al, (1993) 

the alpha parameter describes the shape of the curve. An extremely low alpha 

corresponds to a curve that is quite similar to an exponential decay function. Large 

alphas correspond to near-normal distributions. The beta parameter describes the scale 

of a curve. 

Table 6: Summary statistics of all weather stations showing results of A, Alpha and     

Beta. 

Weather stations A Alpha Beta 

Mbhuzana 0,09 5.45 93,04 

Riverview 0,09 5,82 118,14 

Pongolapoort Dam 0,05 10,86 67,22 



47 

 

Ingwavuma 

Manguzi 

0,15 3,54 227,40 

 

The significance level for the weather stations Mbhuzana, Riverview, Pongolapoort 

Dam, and Ingwavuma Manguzi was evaluated using the A-statistics at 95% level of 

confidence (Table 6). Of all the SPI products, the A-statistics has the lowest significance 

level showing that the model was highly significant.  

H0: Model is not significant 

HA: The model is significant 

For Mbhuzana weather station the A- value is 0, 09 

A-value 0.09 > 0.05. The conclusion is that the model is significant because the value 

is far from zero. 

For Riverview weather station the A-value is 0, 09 

A-value 0.09 > 0.05. The conclusion is that the model is significant because the value 

is far from zero. 

For Pongolapoort Dam weather station the A-value is 0, 05 

A-value 0.05 = 0.05. There is no conclusion because the values are equal. 

For Ingwavuma Manguzi weather station the A-value is 0, 15 
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A-value 0.15 > 0.05. The conclusion is that the model is significant because the value 

is far from zero. 

4.3 Relationship between SPI and Drought frequency 

The shape, scale and average values for the precipitation are calculated through the SPI 

(Figure 10). The SPI results align with the objectives of assessing the agricultural 

drought conditions across different land use and land cover using Multitemporal 

Landsat 8 (OLI/TIRS) and different vegetation indices. From the four weather stations 

that are within the study area, it can be seen that SPI values decreased from 2014 which 

means classification of moderate to severe drought conditions were starting to be 

transparent in the area. The years 2015 and 2016 are the most drought stricken years 

from all the weather stations where drought has been from severe drought to very severe 

drought.   

Figure 9 shows the average rainfall of certain years from different weather stations used 

for this analysis. The unit of measurement for the SPI is millimetre. The Mbhuzana 

weather station shows  the highest rainfall experienced was in the year 1996 with (1mm) 

the lowest year was 2015 with (-2.5mm). At the Riverview weather station the highest 

year was 2000 with (2mm), the lowest was in the year 2016 with (-3mm). At the 

Pongolapoort Dam weather station the highest year was in 2000 with (2.00mm), the 

lowest was in the year 2003 with (1.5mm). The Ingwavuma Manguzi weather station 

had the highest value in the year 2000 with (1.5mm) and the lowest year was 2016 with 

(-4.00mm).  
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SPI drought  categories from McKee et al, (1993) indicates that 0 to -0.99 of the drought 

category is mild drought; -1.00 to -1.49   is moderate drought;-1.5 to -1.99 is severe 

drought and -2.00 or less is extreme drought. From figure 9 below the extreme drought 

years are 2015 and 2016 taken from Mbhuzana and Ingwavuma Manguzi respectively. 
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Figure 9 Showing the severity of the 3-months drought using SPI at certain years from different weather stations within north-eastern KwaZulu -Natal.
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4.4 Reference data 

Google Earth was used in this study to create reference data that could be used to assess 

the performance of the satellite products. A total of 100 samples were classified into 

five classes, those being bush, plantations, grasslands, cultivated cane and wetlands. 

Researchers (Foody, 2002, Olofsson et al, 2014) who have used various sampling 

techniques have suggested an approach of how many samples are needed to be 

collected, and it is concluded that a size allocation of 50 to 100 is suitable for the number 

of samples adopted. This allows a reasonable indecision in the size needed to achieve 

certain standard errors (Olofsson et al, 2014). 

 

The classification results were confirmed using reference data set obtained through 

visual interpretation of Google Earth, which has a fine spatial resolution and good 

geometric precision. This study focussed more on the extraction of the agricultural 

spatial distribution. Random sampling separated the distribution of the land use and land 

cover classes. A total of one hundred samples were used in comparison with Landsat 

derived classification and reference data. 

 

Bush land use and land cover and plantations were recognisable on Google Earth by 

their brown and green colour which stood out from grasslands that they intermixed with. 

Grassland was distinctly visible on Google Earth; it was recognised by its green colour 

which stood out from plantations. Cultivated cane crops were recognisable by their low 

light green colour. 



52 

 

4.5 Land use map 

After the interpolation of SPI, selected satellite in digital format with path 167 and row 

97 were obtained from the years 2015 to 2017 of summer (December to February) and 

winter (June to August). Composites from Landsat imagery were created to identify the 

land class within the study area. Classification was achieved using unsupervised 

classification and the land use maps were created by employing digitized polygons for 

different land use classes to provide ground data for training sites. Signatures were 

developed and used for classifying the satellite imagery into the land use maps. 

Purification of signatures was carried out by deleting and / or adding new signatures, 

with the refined signatures producing a better land use map which was used in GIS for 

further analysis (Muthumanickam et al, 2011).  
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Figure 10 Classification results for land cover and land use 2015-2107

Year 2016 – Summer and Winter Classification Year 2015 – Summer and Winter Classification Year 2017 – Summer and Winter Classification 

2016 
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4.6 Classification of land use classes and NDVI comparison 

The classification for the purposes of this research is for identifying the land use from the year 2015-2017 that has experienced drought 

conditions. This is through the use of a raster calculator where winter and summer imagery were added together to get a resultant raster 

image that was classified into five classifications. 

4.7 Results of the VCI in comparison to the NDVI 

Through the classification from the Landsat imagery it is important to compare the results from the NDVI and the VCI in order to 

understand which land use and land cover experienced drought in the study years (2015-2017). The classification scheme to indicate 

different stages of drought hazard severity using VCI is shown in the table 7 below. 

Table 7 Vegetation Condition Index (VCI) values for drought classification 

Drought Hazard Severity Classes VCI Values 

No Drought >40 

Mild Drought 30-40 
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Moderate Drought 20-30 

Severe Drought 10-20 

Extreme Drought <10 
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Figure 11 : Classification for and NDVI winter land use land cover 2015-2017 

Landsat imagery and NDVI for winter 2015 
 Landsat imagery and NDVI for winter 2016 

 

Landsat imagery and NDVI for winter 2017 
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Figure 12 VCI of wet season land cover in years 2015, 2016 and 2017 respectively
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Figure 12 shows that the results show that in 2015 the area is covered mostly with bush 

land use and land cover and the NDVI shows the highest reflectance at 1 showing 

vegetation in the area is healthy. From the NDVI in areas where red is shown it is mostly 

wetland which is accurate in reflection as wetlands have a low reflectance in the green 

band and reflectance. 

 

In 2016 distribution is more varied where bush is not dominating in the study area, but 

also grasslands land use and land cover is more visible. In the NDVI results it shows 

high reflectance where vegetation is healthy and areas where there is grassland the 

NDVI value is slightly away from the highest value of 1. In 2017 the areas of bush are 

more dominating in the study area whilst cultivated cane is emerging and rather visible 

as compared to the year 2015 and 2016. The NDVI shows bush to be closer to 1 where 

reflectance shown is healthy for land use and land cover. When looking at specifically 

cultivated cane, land use in the years 2015 and 2016 the Landsat imagery shows very 

small patches of land use for both the years, however in the year 2017 the cultivated 

cane is strongly distinct in the classified imagery. This means that certain land use and 

land cover experienced strain from drought occurrences in the area. 

 

In figure 8 the results show that the VCI in the year 2015 shows that bush land cover as 

per the classification from Figure 12 is between the values of high and low. The green 

shade in 2015 shows a medium reflectance on land cover and land use indicating low 

agricultural output. Through this analysis drought conditions in the study area can be 

true for the year 2015. In the year 2016 areas where land cover is mostly bush is seen 
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to be represented as medium which is similar to that of the year 2015 indicating drought 

occurrence during the wet season. In the year 2017 land cover and land use shows 

drought conditions on certain land cover and land use. This can be seen in red which 

indicates bush land cover (refer to figure 12) as the most stressed land cover 

experiencing drought conditions in the wet season. The VCI analysis was conducted 

based on all images available over the growing seasons within the observation period 

2015 to 2017 to detect possible drought hazard severity during the observation period.  

4.8 Land use map analysis 

In the year 2015 classification shows the land cover is dominantly bush and the least 

land cover and land use is plantations. In comparison to the year 2015 classification 

shows that the land is mostly dominated by both bush and small patches of plantations. 

In the year 2016 classification shows the land cover and land use is dominated by mostly 

both a distribution of all classes being plantations, cultivated cane, bush and wetlands. 

In the year 2017 the land use and land cover is largely dominated by wetland and 

cultivated cane crop and in the winter of 2017 the land use and land cover is largely 

dominated by bush and cultivated cane wetlands and cultivated cane crop. In the year 

2015 the classification for the highest range is between 200-200 displayed as green in 

the classification which is largely cultivated cane crop land use and land cover. The 

second range is 200-100 which is wetland cover. In the year 2016 the highest range is 

130-150 which constitutes the wetland classification and then the second range is 95-

120 which constitutes cane crop classification. 
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In the year 2017 the highest range is 200-200 which constitutes the cultivated cane crop 

and second highest range is 100-100 which constitutes wetland classification. Overall 

the dominant land use and land cover studying from the post classification results is for 

both the land cover, land use of cultivated cane and bush.  

4.9 Accuracy Assessment 

The assessment of the classification results is critical in satellite image classification. 

Reference data (Google Earth) and error matrix was used for the recent 2017 classified 

image.  
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Table 8 Error matrix for classified multispectral of 2017 (all values are in percentage). 

 

 

A total of 100 samples were collected for ground truth all over the study area. Each 

sample was used to identify different land use and land cover classes that were used to 

create ground truth maps for assessing supervised classification performed by remote 

sensing techniques. Considering that imagery needed to be corrected atmospherically, 

this at times affects the accuracy of the imagery when classifying. 

                 REFERENCE DATA FROM GOOGLE EARTH 

Plantations Bush Wetlands Cultivated            

cane 

Grassland Total USER’S 

ACCURACY 

C
L

A
S

S
IF
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D
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A
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O
M
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H

E
 M

A
P

 

Plantations 9 4 0 0 0 13 69.2% 

Bush 8 24 0 2 0 34 71% 

Wetlands 0 1 14 1 3 19 74% 

Cultivated 

cane 

0 0 4 8 2 14 57.1% 

Grasslands 0 0 0 0 17 17 100% 

Total 17 29 18 11 22 97  

PRODUCER’S 

ACCURACY 

53% 83% 78% 73% 77.3%  OVERALL 

ACCURACY 

= 74.2% 
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4.10 Summary 

The results of the study were reported in this chapter. For the rainfall data the SPI was 

used in order to determine and monitor droughts. The use of this index allows an analyst 

to determine the rarity of a drought at a given time scale of interest for any rainfall 

station with historic data. For the satellite imagery classification of land use and land 

cover was adopted through maximum likelihood in order to determine both winter and 

summer occurrence in the classification. Classification was in the form of five classes 

which are bush, plantations, grassland, cultivated cane and wetland. The year 2015 

appears to have most areas as bush with small patches of grassland. Wetlands land use 

and land cover in this winter imagery are distinctly clear and small patches of grasslands 

appear. 

It appears that plantations are strongly defined in the year 2016 and wetlands appear in 

those areas. Another land use and land cover that appears in the year 2016 is grassland. 

In 2017 the area is covered mostly by bush and plantations. Areas that appear to have 

bush have been classified most accurately. 
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CHAPTER 5: DISCUSSION 

5.1 Introduction 

The purpose of this study was to identify drought by remote sensing and GIS techniques 

application over a three year period (2015-2017). This identification occurred through 

mapping both summer and winter land uses and land cover using Landsat data and SPI.  

From the results in figure 9 (showing the severity of the droughts in certain years from 

different weather stations within north-eastern KwaZulu-Natal), it shows that in 

Mbhuzana in the year 1998 (-1.5) it was severely dry in that year. In the year 2001 (-

2.00) and 2015 (-2.50), it was extremely dry. At the weather station Riverview in the 

year 1997 and 2014 (-1.00) experienced moderately dry conditions. In the year 2016 (-

3.00) the conditions were extremely dry. At the weather station Pongolapoort dam, we 

see in the year 1998 and 2005 it experienced near normal conditions (-0.50). In the years 

2002, 2003 and 2008 the conditions were extremely dry (-2.50). In the year 2012 

conditions experienced were moderately dry (-1.00). At the river station Ingwavuma 

Manguzi drastic changes in conditions are in the year 2015 and 2016. In 2015 conditions 

experienced were moderately dry (-1.00) and in 2016 the conditions dropped to being 

extremely dry (-3.00). 

SPI is advantageous as it is simple because it requires only rainfall data. SPI can be used 

for variable time scale that being meteorological, agricultural and hydrological drought. 

SPI is standardized where the frequency of extreme drought events at any location and 

time scale is consistent. The disadvantage however is that extreme droughts (over a 

longer period) occur with the same frequency in all locations meaning that SPI cannot 
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identify drought prone regions. Areas with small seasonal precipitation can mislead 

large positive or negative SPI values which could result.    

5.2 Climate data 

From figure 9 the four weather stations show that conditions for the years 1997 and 

1998 experienced moderate to severe droughts. Making reference to the 3 months 

drought analysis on figure 9 the year 2000 has the average rainfall experienced from the 

four weather station, however in year 2002 the results show extreme drought conditions. 

In the year 2015 conditions of moderate to extreme drought was experienced from the 

four weather stations. Table 6 shows the summary statistics of all weather stations as a 

result of A, Alpha and Beta. Beta parameter describes the scale of a curve. This 

coefficient describes the values associated with the distribution (McKee et al, 1993). 

The alpha parameter describes the shape of the curve. The lowest alpha in table 6 is 

from the weather station Ingwavuma Manguzi (3.54) this means the curve of the shape 

is quite similar to an exponential decay function. The largest alpha from the table is 

from the Pongolapoort Dam, which is said to correspond to near-normal distribution.   

5.3 Landsat 8 image-based land use and land cover assessment 

5.3.1 Relationship of mean rainfall and mean NDVI 

The use of four weather stations has shown fairly short interpolation results for the mean 

rainfall of the years 1996 to 2017 (Figure 4.1). The use of inversely distance weighed 

interpolation was used for the rainfall data to understand the assumption that things that 

are close to one another are more alike than those that are further apart. In stations where 

the highest distribution is around 6.41 – 7.05 there are more weather results that are 



65 

 

distributed and in comparison with the mean NDVI it is where the highest distribution 

of healthy vegetation is found. The NDVI values were averaged over time to establish 

‘normal’ growing conditions in a region for a given time. 

5.3.2 Relationship between summer and winter land use and land cover 

In the year 2015 the classification that is shown is mostly cultivated cane crop with 

small patches of grassland. In 2016 there is a varied distribution of bush, plantations, 

cultivated cane crop, grassland and wetlands. In2017 there are areas where wetlands are 

shown as land covers and land uses which are classified as something different in 2016 

winter. The dominant land use in 2017 is cultivated cane crop although some areas 

where there were plantations are seen to be covered by cultivating cane crop.  

5.3.3 SPI and land use and land cover classification 

To quantify the impact of drought on certain land use and land cover correlation 

between certain years results are shown from figure 10 In the year 2016 conditions were 

extremely dry (-. 3.00) from the Riverview weather station, which can be interpreted as 

times where there was exceptional drought. Looking at figure 10 from the year 2016 

winter, it is clear that some areas were extremely dry as plantations classification is 

barely visible in the classification and the cultivated subsistence. 

From the Ingwavuma Manguzi weather station conditions for 2015 were also 

moderately dry (-1.00) and for the purposes of understanding the drought experienced 

it was more moderate drought over that year and this is seen in the land use and land 

cover changes in summer and winter of 2015. In summer, classification is mostly of the 
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cultivated cane crop and small areas of grassland, but in winter this changes and a wider 

land use and land cover is seen in the year 2015 in winter.  

From the results from classification for comparing year 2015 to 2017 there were 

categories of lowest to highest values for a certain land cover and land use (Figure 12) 

and results show that over this three year period that looking at wetlands and cultivated 

cane crop there has been a decrease in wetlands since 2015-2017 (200-100, 130-150 

and 100-100 respectively). In terms of cultivated cane crop in 2015- 2017 it is 200-200, 

62-94 and 200-200 respectively. This has shown that in the year 2016 cultivated crop 

production decreased due to drought conditions experienced.  

The classification of grasslands (shown in green) (figure 4.1) from the NDVI (2015-

2017) shows values are that are away from 1 which indicated that crop and agricultural 

distribution in the area is not healthy and changes have been experienced from 2015-

2017.  

5.4 Conclusion 

This research monitored and mapped agricultural drought across different land uses and 

land cover in the north-eastern KwaZulu-Natal area. The findings of this work 

demonstrated that: 

1. Satellite derived index of drought has been shown by using meteorological 

derived index Standardized Precipitation Index.  

2. It is found that temporal variations of NDVI are closely linked with SPI and there 

is a strong linear relationship between mean NDVI and mean rainfall. Areas 

where the interpolation is high is where there is more weather rainfall recorded 
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at the weather station showing that the closer things are to each other the more 

alike they are. 

3. The pattern of rainfall and NDVI obtained between 1977 and 2017 data shows 

that where SPI value is low the corresponding NDVI values are also low. 

Conclusion such as the NDVI and SPI share a strong correlation where water is 

a major limiting factor for plant growth. This spatial distribution oppositely 

confirmed that vegetation grew better accordingly with a continuous increase of 

rainfall in rainless areas. As a result of consistent declines in winter, this is why 

NDVI and rainfall showed detectable negative relationships. 

Overall, this study has identified agricultural drought by using remote sensing and 

GIS techniques over a three year period (2015-2017). The results have been through 

the use of SPI and mean NDVI through ArcGIS tools. It is shown that SPI has 

accounted for significant relation with NDVI and rainfall, which suggests that SPI 

can be used as an indicator of vegetation status. This study also assessed drought 

conditions across different land using temporal images from Landsat 8TM.  

5.5 Recommendations 

Though the present work deals with satellite and meteorological parameters to arrive to 

the understanding of drought conditions across different land use and land cover.  

 For better results NDVI and SPI values should be more than 30 years. 

 SPI values in the fourth rainfall station is not appropriate to be the representation 

of the area around it, thus it is recommended to use maximum number of rainfall 

stations to identify meteorological drought. 
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