
UNIVERSITY OF THE WITWATERSRAND

On the Use of Heterogenous
Computing in High-Energy

Particle Physics at the ATLAS
Detector

Author:
Marc SACKS

Supervisor:
Professor Bruce

MELLADO

A dissertation submitted in fulfillment of the requirements
for the degree of Master of Physics

in the

School of Physics

November 1, 2017

ii

Declaration of Authorship
I, the undersigned, hereby declare that the work contained in this thesis is
my own original work and that I have not previously in its entirety or in
part submitted it at any university for a degree.

Signed:

Date:

Marc.Sacks
Typewriter
1/11/2017

iii

UNIVERSITY OF THE WITWATERSRAND

Abstract
Faculty of Science
School of Physics

Master of Physics

On the Use of Heterogenous Computing in High-Energy Particle Physics
at the ATLAS Detector

by Marc SACKS

The ATLAS detector at the Large Hadron Collider (LHC) at CERN is
undergoing upgrades to its instrumentation, as well as the hardware and
software that comprise its Trigger and Data Acquisition (TDAQ) system.
These upgrades are necessitated largely by the planned increase in running
luminosity at the LHC from 1033 cm−2s−1 to 1035 cm−2s−1 in around 2022.
The increased energy will yield larger cross sections for interesting physics
processes, but will also lead to increased artifacts in on-line reconstruction
in the trigger, as well as increased trigger rates, beyond the current system’s
capabilities. To meet these demands it is likely that the massive parallelism
of General-Purpose Programming with Graphic Processing Units (GPGPU)
will be utilised. This dissertation addresses the problem of integrating GPG-
PU into the existing Trigger and TDAQ platforms; detailing and analysing
GPGPU performance in the context of performing in a high-throughput,
on-line environment like ATLAS. Preliminary tests show low to moderate
speed-up with GPU relative to CPU, indicating that to achieve a more sig-
nificant performance increase it may be necessary to alter the current plat-
form beyond pairing suitable GPUs to CPUs in an optimum ratio. Possible
solutions are proposed and recommendations for future work are given.

iv

Acknowledgements
I would like to acknowledge first of all my parents for their support, both
moral and financial. You value education highly and have instilled this
value in your children. Secondly to my supervisor Professor Mellado, thank
you for your guidance and for introducing me to the world of high-energy
particle physics. Thanks is also due to the HEPP team at Wits for their help
and encouragement throughout my MSc and to the NRF for their generous
support.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

List of Abbreviations viii

1 Introduction 1
1.1 Big Data at the ATLAS Detector at the LHC 1

1.1.1 GPGPU in ATLAS . 1
1.2 Motivation for Research . 2
1.3 Problem Statement and Layout of Dissertation 3

1.3.1 Problem Statement . 3
1.3.2 Layout of Dissertation 4

2 The ATLAS Experiment at the LHC 5
2.1 The Large Hadron Collider . 5
2.2 The ATLAS Detector . 6

2.2.1 Inner Detector . 6
2.2.2 Calorimeters . 7
2.2.3 Muon Spectrometer . 7

2.3 ATLAS Trigger and DAQ System 8
2.3.1 Trigger Operation . 8

The Low-Level Trigger 9
The High-Level Trigger 10

3 GPU 12
3.1 GPGPU . 12

3.1.1 The Evolution of the GPU 12
3.1.2 Many-core Processors 14
3.1.3 What Computations Benefit from GPU Implementation? 15
3.1.4 Performance Limits . 17
3.1.5 The CUDA Programming Platform 17

CUDA Kernel . 18

vi

Thread Hierarchy . 18
Nvidia GPU Memory Structure 19

4 GPU Characterisations, Benchmarks, and Comparisons 22
4.1 Introduction . 22
4.2 Hardware . 22
4.3 Methods . 23
4.4 Results and Analyses . 23

4.4.1 Sum Reduction . 23
4.4.2 Matrix Multiplication Benchmarks 25
4.4.3 Memory Bandwidth Benchmarks 26

4.5 Selecting GPUs for GPGPU Application 27

5 GPGPU in ATLAS Level-1 Trigger 29
5.1 ATLAS Level-1 Trigger . 29

5.1.1 FPGA Use in Trigger Front-end 29
5.2 GPGPU in the Level-1 Trigger 30

5.2.1 Limitations of GPGPU in Online Environment 30
5.2.2 Heterogeneous Co-Processing Unit 31

A GPU-ARM based PU 31
5.3 Potential Functionality for GPU to Execute 32

5.3.1 Processing of High Quality-Factor Events 32
5.3.2 Facilitating Less Dead-time 34

5.4 Conclusion . 35

6 Heterogenous Computing Platforms in the ATLAS HLT 36
6.1 Introduction . 36

6.1.1 HLT Upgrade . 36
6.2 GPU Demonstrator . 37

6.2.1 Accelerator Process Extension 37
6.3 Algorithms Tested by GPU Demonstrator 38

6.3.1 Inner Detector Tracking 39
6.3.2 Calorimeter Clustering 40

6.4 Analysis of GPU Demonstrator Results 41
6.4.1 ID Tracking Results . 41
6.4.2 Calorimeter Clustering Results 43
6.4.3 Combined ID Tracking and Calorimeter Clustering . . 43

6.5 Critical Analysis . 44
6.5.1 Necessity of Improved Algorithms 46
6.5.2 Co-PU in HLT . 48

Porting APE to ARM Architecture 49

vii

7 Conclusion 50
7.1 GPU Performance Parameters 50
7.2 GPGPU in the Level-0/1 Trigger 51
7.3 GPGPU in the HLT Trigger . 52
7.4 Future Work . 53

7.4.1 In the Level-0/1 . 53
7.4.2 In the HLT . 53

References 54

viii

List of Abbreviations

ATLAS A Toroidal LHC ApparatuS
LHC Large Hadron Collider
GPGPU General-purpose Programming with GPU
GPU Graphic Processing Unit
HL-LHC High Luminosity LHC
QF Quality Factor
TDAQ Trigger and Data AcQuisition
CERN European Laboratory for Particle Physics
CMS Compact Muon Solenoid
LHCb Large Hadron Collider beauty
ALICE A Large Ion Collider Experiment
SM Standard Model
BSM Beyond the Standard Model
ID Inner Detector
SCT Semiconductor Central Tracker
TRT Transition Radiation Tracker
PMT Photo Multiplier Tube
FPGA Field Programmable Gate Array
HLT High Level Trigger
EF Event Filter
CTP Central Trigger Processor
sROD super Read Out Driver
ROS Read Out System
RoI Region of Interest
ASIC Application Specific Integrated Circuit
FTK Fast TracKer
TilePPr Tile Pre Processor
RoIB Region of Interest Builder
HLTSV HLT SuperVisor
SIMD Single Instruction Multiple Data
SPMD Single Program Multiple Data
FLOPS Floating Point Operations Per Second
RAM Random Access Memory
HDL Hardware Description Language
Co-PU Co Processing Unit

ix

OF Optimal Filtering
APE Accelerator Process Extension
EDM Event Data Model
CA Cellular Automata
IPC Inter Process Communication

x

This dissertation and the energy spent authoring it
are in dedication to my eternally beloved friends Eli

and Dmitri.

1

Chapter 1

Introduction

1.1 Big Data at the ATLAS Detector at the LHC

A Large Toroidal LHC Apparatus (ATLAS) is a general-purpose proton-
proton collision detector at the Large Hadron Collider (LHC) at CERN in
Geneva, Switzerland [1]. Bunches of protons collide in the detector every
25 ns - these collisions are referred to as events. At about 1.7 MB per event,
the detector faces data rates of about 70 TB/s. Most of these events rep-
resent uninteresting physics processes or background noise, and must be
discarded. The decision whether to store or discard the event must be done
in real-time for every bunch crossing, i.e. at a rate of 40 MHz. The first stage
of this decision process occurs in no more than 2.5 µs. During Run-2 of data
taking (2015-2018) the LHC operates at a luminosity of 1 × 1034 cm−2s−1.
At this luminosity approximately only 1 out of every 400 000 events can be
accepted for permanent storage so as not to exceed the write speed of the
current storage system of about 100 MB/s [2]. ATLAS has achieved this
performance with a multi-stage trigger system consisting of a custom hard-
ware front-end and commodity server back-end, which reduces the 40 MHz
bunch rate to a storage rate of a few 100 Hz.

1.1.1 GPGPU in ATLAS

General-Purpose Programming with Graphics Processing Units (GPGPU)
is a Graphics Processing Unit (GPU) based technology which allows users
to compute with massive parallelism [3]. In certain contexts this results in
lower processing times and greater energy efficiency. GPGPU is a relatively
new technology, over the last decade or so it has been used successfully in
many fields of science to, for instance, run simulations or solve compute
intensive problems which are cumbersome or impossible to solve on CPU
processors due to time constraints.

This dissertation concerns the integration of GPGPU into the ATLAS
trigger system, for increased processing power at lower costs.

2 Chapter 1. Introduction

FIGURE 1.1: Illustration of the LHC and its detectors [4].

1.2 Motivation for Research

During Run-1 (2009-2013) of data taking at ATLAS, the LHC was operating
at a nominal centre-of-mass energy of 8 TeV and a luminosity of 8 × 1033

cm−2s−1. Run-2 operates at 13 TeV with a luminosity of 1×1034 cm−2s−1. In
terms of peak interactions per bunch crossing; in 2011 the maximum was 15,
increased to almost 35 in 2012, and a maximum of 80 for Run-2 so far. Circa
2022 the LHC is expected to run at 14 TeV, referred to as the High Luminos-
ity LHC (HL-LHC), with a luminosity on the order of 1035 cm−2s−1. This
raised luminosity increases the cross-section of electroweak processes, but
also leads to an increase in pile-up (a type of artifact) and an increase in trig-
ger rates. Figure 1.2 illustrates the practical consequences of these increases.
Firstly subfigure 1.2a shows how trigger rates increase for increasing lumi-
nosity. Subfigure 1.2b illustrates how time-to-process events increases with
pile-up. Subfigure 1.2c shows how Quality Factor (QF), a measure of the
quality of energy reconstruction, is affected in different pile-up scenarios.
Note that quality decreases for increasing QF.Ain andAout refer to two types
of pile-up, the details of which are unimportant here. What is of note here is
the degradation of QF with increased pile-up energy. Finally, subfigure 1.2d
illustrates the increase in χ2 error for amplitude estimation for events with
pile-up compared to those without.

To meet the requirements for physics taking in high luminosity, high
pile-up conditions, it is not feasible to scale up the existing trigger and data
acquisition (TDAQ) infrastructure as is. More sophisticated algorithms are
required and, with or without algorithms of higher complexity, it would be
necessary to look towards processors other than CPUs to meet the latency

1.3. Problem Statement and Layout of Dissertation 3

(A) Trigger rate vs luminosity [5]. (B) Processing time vs pile-up [6].

(C) Quality Factor with pile-up [7]. (D) Amplitude estimation in pile-up [8].

FIGURE 1.2: The effects of increased pile-up and trigger rates.

and throughput needs of the HL-LHC TDAQ. It is proposed here that to this
end GPGPU technology could be a viable option.

1.3 Problem Statement and Layout of Dissertation

1.3.1 Problem Statement

Given the inverse relationship between quality of physics reconstruction
and luminosity, the HL-LHC will require increased computational power
to support higher trigger rates and algorithms of increased complexity to
more efficiently address increased pile-up. GPU technology presents a low-
cost, user-friendly platform with which speed-ups can be achieved through
massive parallelism. Their introduction to the TDAQ system would not be
trivial. This dissertation is an analysis of the factors that must be con-
sidered for successful integration of GPUs into the TDAQ, namely: GPU
platform, GPU:CPU ratio, stage/s of the trigger into which GPU will be

4 Chapter 1. Introduction

inserted, and types of reconstruction algorithms suitable for GPU imple-
mentation.

1.3.2 Layout of Dissertation

Chapter 2 introduces the LHC and the ATLAS detector, and the trigger and
data acquisition systems. Chapter 3 is a discussion of the history and tech-
nical characteristics of GPUs of relevance in this dissertation. Chapter 4
presents results from GPU benchmark tests conducted by the author, which
will give the reader a better understanding of GPGPU, and allow the reader
to follow arguments relating to GPGPU in the ATLAS trigger more readily.
Chapter 5 explores the possibility of GPGPU implementation into the AT-
LAS Level-1 Trigger. Chapter 6 concerns the introduction of GPGPU into
the ATLAS High-Level Trigger as well as presents results from the ATLAS
GPU demonstrator project, and an analysis thereof. Chapter 7 concludes the
dissertation with recommendations for future work.

5

Chapter 2

The ATLAS Experiment at the LHC

2.1 The Large Hadron Collider

CERN, the European Laboratory for Particle Physics 1, was founded in 1954
[9]. It was responsible for securing the funding for the construction of the
LHC, and today is in charge of the operation of the LHC. The LHC is a cir-
cular particle accelerator, at 27 km in circumference it is the largest and most
powerful accelerator to date, and considered the largest machine ever made
[10]. It is located on the Swiss-Franco border, in a cavern approximately
100 m below ground. The LHC began operation in 2008, colliding protons
as well as heavy ions. Cross sections of physical processes of interest such
as the production of the Standard Model (SM) Higgs Boson are small, to
make the study of these processes viable the LHC must therefore operate
at high energies [1]. The LHC uses a series of accelerators to get particles
up to the energy necessary for injection into the LHC. These are, in order,
Linac 2, Proton Synchrotron Booster, Proton Synchrotron, and Super Proton
Synchrotron. Protons are injected into the LHC beam pipes in up to 3546
bunches 20 µm in diameter and 2 cm in length. Bunches circulate in two
separate beam pipes, in opposite directions. The direction of travel of these
particles is controlled by an 8 T magnetic field generated by helium cooled
superconducting electromagnets at a temperature of 1.9 K. At four points
along the circumference of the LHC, corresponding to four detectors, these
particle beams are collided. These detectors are

• ATLAS: A Toroidal LHC Apparatus

• CMS: Compact Muon Solenoid

• LHCb: Large Hadron Collider beauty

• ALICE: A Large Ion Collider Experiment

1The acronym is derived from the original French name for CERN; Conseil Européen
pour la Recherche Nucléaire.

6 Chapter 2. The ATLAS Experiment at the LHC

The first two detectors are considered general purpose, and are used
to explore a wide range of physics processes, while LHCb investigates the
proportion of matter versus anti-matter and ALICE focuses on quark-gluon
plasma. The ATLAS detector is the focal point of this dissertation.

2.2 The ATLAS Detector

The ATLAS detector explores a wide range of physics, from refining SM
physics measurements (QCD, electroweak interaction, flavour physics) to
studying possible Beyond the Standard Model (BSM) physics (supersym-
metry, extra dimensions). ATLAS, along with CMS, made history in 2012
after confirming the existence of the SM Higgs Boson. Discoveries of further
novel particles continue to be explored. Figure 2.1 illustrates the dimensions
of the detector, the tallest of the detectors. Weighing 7000 tons, ATLAS it-
self comprises several sub-detectors to measure the energy and trajectories
of the particles resulting from the proton-proton collisions occurring in its
centre. These sub-detectors are

• The Inner Detector (ID)

• The electromagnetic and hadronic calorimeters

• The Muon Spectrometer

What follows is a short description of the instrumentation of each sub-
dectector, a complete description can be found in [1].

2.2.1 Inner Detector

The ID itself comprises three sub-detectors subjected to a 2 T magnetic field:
the Pixel detector, Semiconductor Central Tracker (SCT), and the Transition
Radiation Tracker (TRT). The ID measures charged particles in |η|< 2.6.
The pixels of the tracker are 50x400 µm2, and its read-out channels are ap-
proximately 80.4 million in number. The pixel tracker has a precision of 115
µm in the direction of the beam axis, and 10 µm perpendicular to the beam
axis. The SCT has about 6.3 million read-out channels, an accuracy of 17
µm along the beam axis and 580 µm perpendicular to the axis. The TRT has
approximately 351000 read-out channels, and only detects particles orthog-
onal to the beam axis, at an accuracy of 130 µm [12].

2.2. The ATLAS Detector 7

FIGURE 2.1: Illustration of the ATLAS detector [11].

2.2.2 Calorimeters

The electromagnetic and hadronic calorimeters cover the region |η|< 4.9,
measuring electrons and photons. These measurements are used in jet re-
construction and missing transverse energy measurements. The electro-
magnetic calorimeter is a Lead-LAr detector. The hadronic calorimeter uses
tiles of scintillating plastic sandwiched between plates of steel designed to
dampen particle energy. The tiles of the hadronic calorimeter have lent it
the moniker Tile Calorimeter, or TileCal. Wavelength shifting fibres sitting
on two edges of each tile transmit energy to photomultiplier tubes (PMTs) -
of which there are also two per tile [13].

2.2.3 Muon Spectrometer

The muon spectrometer uses air-core toroidal electromagnets to deflect mu-
on trajectories in the large barrel toroids in the region|η|< 1.4, and smaller
end-cap toroids at both ends in the region 1.6 < η < 2.7. Muon chambers sit
cylindrically around the beam axis in the barrel region and orthogonal to
the beam axis in the end caps [14].

8 Chapter 2. The ATLAS Experiment at the LHC

2.3 ATLAS Trigger and DAQ System

All of ATLAS’ subdetectors interface with a network of electronics and soft-
ware which, in real-time, integrates their measurements to develop a coher-
ent picture of a collision, referred to as an event. Within seconds of the event,
the system decides whether to discard or permanently retain the measure-
ment data of the event for later analysis. The system comprises the Trig-
ger, which makes the decision to discard or store, and the Data Acquistion
(DAQ) system which routes information to and from subdetectors in aid
of the trigger, and to permanent storage [15]. The trigger is multi-stage
algorithm, using detector-wide readings at varying levels of detail (low,
medium, or full ’granularity’). It is tasked with analysing the billion colli-
sions per second and, based on their time-energy profiles, deciding whether
it is likely that a given event could constitute interesting physics. There is
a maximum rate of event acceptance which ultimately reflects the techni-
cal limitations of data transfer and storage protocol rates currently avail-
able. The compromise between useful data capturing and proper resource
management is that of wanting to permanently store as many possible in-
teresting events for further analysis, and wanting to store as few events as
possible for logistical reasons.

2.3.1 Trigger Operation

The entrance point of the trigger is the low-level hardware-based portion.
The crucial hardware element at this level is the Field Programmable Gate
Array (FPGA), a type of customisable processor capable of low latency, par-
allel calculations. The low-level trigger accepts or rejects an event with a
latency of about 2 µs. The trigger has evolved from Run-1 of data taking
at ATLAS to Run-2 due to increasing trigger rates. Run-1 saw a collision
frequency of 20 MHz, Run-2 is double this. In both runs the latency require-
ments remained, implying increased computational requirements in Run-2.
The TDAQ passes events accepted by the low-level trigger to the next stage
of the trigger at rate no higher than 100 kHz in Run-2. This rate reduction
is needed due to the next stage of the trigger being software based, thus
operating at far larger latencies of around 500 ms. From Run-1 to 2, the
split between low and High Level Trigger (HLT) has altered, going from a
three stage (Level-1, Level-2, Event Filter (EF)), to a two-stage configuration
where Level-2 and the EF have merged. In both runs the trigger selected
events based on the following markers: high-pT muons, electrons, photons,
jets and τ -leptons. Additionally large missing transverse energy, and large

2.3. ATLAS Trigger and DAQ System 9

FIGURE 2.2: The ATLAS trigger [17].

total transverse energy. The performance of the trigger is therefore depen-
dent on the quality of its time-energy reconstruction of events. The quality
of the reconstruction is inversely proportional to the running luminosity
and bunch spacing of the LHC, as these dictate how much time the trigger
has to perform the necessary computations.

The Low-Level Trigger

The trigger as a whole functions to reduce both the rate at which events
need to be processed and stored, as well as to reduce the absolute number of
events that are processed and stored. In Run-2 the Level-1 Trigger consisted
of mainly the Calorimeter and Muon Trigger [16]. These systems trigger in
the presence of high-pT muons, electrons, photons, jets and τ -leptons. The
Central Trigger Processor (CTP) is seeded by these triggers to make a deci-
sion to accept (L1-accept) or reject an event. Upon an L1-accept, the event
is read out by the Read-Out Driver (ROD) into the Read-Out System (ROS).
The Level-1 trigger defines Regions of Interest (RoI). This information can
then be requested by the next stage of the trigger, which is the High-Level
Trigger, discussed in the following section. A schematic illustration of the
trigger is shown in Figure 2.2.

The CTP is an FPGA-based system with a latency of about 2 µs, capa-
ble of performing 15 algorithms. The Calorimeter system was also changed
in Run-II; its Application Specific Integrated Circuits (ASICs) were replaced

10 Chapter 2. The ATLAS Experiment at the LHC

FIGURE 2.3: TileCal Read-Out with TilePPr [18].

with FPGAs to deal with increased pile-up, by giving the system the com-
putational resources to perform an auto-correlation algorithm. In general,
the trend in the Level-1 trigger has been to implement trigger and read-out
functionality on FPGAs. This is done to keep the trigger rates in a range
manageable to the current platform, shown in Figure 2.2. New trigger com-
ponents are currently being tested: the new Level-1 Topology Trigger will
provide topology information to the calorimeter and muon triggers and the
Fast Tracker (FTK) will provide them with global tracking information.The
ROD is being integrated into the trigger systm as a Trigger Pre-Processor
(PPr), and upgraded in bandwidth and functionality. It will interface with
the calorimeter front-ends, preparing data for the Level-0/1 triggers, as well
as interfacing with the HLT and other platforms related to the detector in-
frastructure - see figure 2.3. The precise role of the TilePPr system is unde-
cided and as such it is a good candidate for GPGPU experimentation.

The High-Level Trigger

The boundary between the Level-1 and High-Level Trigger is the Region-
of-Interest Builder (RoIB) which reconstructs events in small regions of the
detector flagged by the Calorimeters and Muon systems, and passes these
event fragments to the HLT at a maximum rate of 100 kHz. The fragments
are dealt with by the HLT Trigger Supervisor (HLTSV), which distributes
them to an HLT node which then processes the event. These systems run
on commodity CPU servers, one of which functions as the HLTSV. The HLT
nodes run software-based algorithms similar to those used for offline anal-
ysis, in order to determine whether an event should be stored permanently.
The HLT executes a sequence of algorithms on RoIs known as a trigger
chain. More than one trigger chain can be executed on a given RoI, and the

2.3. ATLAS Trigger and DAQ System 11

same trigger chain can be used for different RoIs. Algorithms in these chains
pass their results to the proceeding algorithm, and each algorithm is more
complex than the preceding one, due to using increasingly more complete
event data. If a particular algorithm outputs a decision to reject, the trigger
chain is marked as failed and the event is discarded. These algorithms are
discussed in more detail in section 6.3. The HLT selects events for perma-
nent storage at a maximum rate of 1 kHz, corresponding to a throughput of
about 1500 MB/s. The HLT has a latency of about 500 ms.

The software framework utilised by the HLT is known as Athena, based
on the HEP software framework GAUDI [19]. The trigger software is a sub-
set of the entire Athena framework, sharing some commonality with offline
analysis algorithms, as previously mentioned. It comprises about 4 million
lines of C++ code and 1 millions lines of Python code. Code is distributed
among approximately 4000 libraries and 2000 packages. Its functionality in-
cludes event generation, detector simulation, particle reconstruction, data
fragment encoding and decoding, and event management.

12

Chapter 3

GPU

3.1 GPGPU

General-Purpose Programming with Graphics Processing Units (GPGPU),
refers to the use of processors originally designed for graphics rendering
(GPUs) for general-purpose computation [3]. General-purpose in this con-
text basically means any computation which is not image-based, frequently
simulations of physical systems. It can be defined conversely as the im-
plementation of computations on GPU which are traditionally performed
on CPUs. Today GPUs are known as ’accelerators’, capable of speeding up
computations relative to a CPU by orders of magnitude. However, achiev-
ing these speedups is often a complicated task, and sometimes simply not
possible. The capabilities and limitations of GPUs, and how this relates to
the computations which stand to benefit from GPGPU, are discussed in this
section.

3.1.1 The Evolution of the GPU

GPUs as they are known today are a relatively new technology - the term
GPU was coined in 1999 [3]. Its predecessors, processors dedicated to ren-
dering images on a screen, go by several names including framebuffers,
graphics accelerators, video graphics array, graphics engines, etc. Whatever
the case, these processors were designed with the sole purpose of speeding
up the process of image rendering. As a result these early GPUs were prac-
tically useless for general purpose applications however they have always
had a property which is of interest in general purpose computing; that is a
high number of processing units, able to hide high latency. In this context
latency refers to time of computation. These properties are easily under-
stood in the context of graphics rendering. Firstly, the human eye cannot
perceive changes faster than 50 Hz - for instance a light oscillating at 50 Hz
will be perceived as a steady light. The refresh rate, or the rate at which the
images on a screen are updated, is therefore chosen to be around 50 Hz. In

3.1. GPGPU 13

the case of 1080p HD screens, there are roughly 2 million pixels that must be
updated concurrently every 2 ms, and each of those pixels may require hun-
dreds of computations. This leads to some billion computations a second,
a highly attractive figure for general purpose computing. Moreover, GPUs
have (and continue to be) improved at a rate faster than the familiar Moore’s
Law predicts - current high-end processors are capable of trillions of com-
putations a second. This scenario, where a large number of computations
are performed each clock-cycle, is referred to as high-throughput comput-
ing. A 2 ms latency may be sufficiently small for the human eye, but in the
context of CPUs where latencies of nanoseconds are possible, it is exceed-
ingly large. This is then a basic principle of GPGPU, it is optimised for pro-
cesses that are not latency bound: GPUs are optimized for throughput, not
latency. This principle will inform its applicability to HEPP processing, as is
discussed in chapters 5 and 6. CPUs achieve such low latencies by dedicat-
ing much of their hardware to, for instance, complex memory management
and branch prediction. In contrast to this, a GPU with a similar transistor
count to a given CPU would use those in service of computational activity.

Until around 2000, GPUs were fixed function processors. That is to say
they were designed to fulfill the specific role of image processing/render-
ing, and nothing else. The first attempts to use these GPUs for computa-
tions other than image rendering had therefore to frame their problems in
the terms of the image processing framework. To explain this concept, an
overview of the ’assembly line’ nature of early GPUs is listed [3]:

1. The image, or ’geometric primtive’ is represented as the collection of
vertices of which it is composed.

2. The vertices are then joined to form triangles, all shapes and figures
are built up with triangles of varying size.

3. The processor determines how the triangles will be displayed on scr-
een, in terms of the pixel locations they will occupy. It is possible for
triangles to overlap, in this case the colour/shading of the pixel will be
determined as a combination of the triangles. This process is known
as rasterisation.

4. Interpolation, texturing and colouring the pixels.

This is a simplified representation of what is usually referred to as the
GPU graphics pipeline. The steps described above are often broken into
substeps with for instance a primitive rasterisation occurring after the cal-
culation of the geometric primitive. The hardware itself was optimised to
perform these operations, to the exclusion of performing any other opera-
tions efficiently. Roughly speaking then, the programmer wishing to use the

14 Chapter 3. GPU

GPU for general purpose tasks had to express the task first as a geometrical
primitive: the initial states of a problem would be expressed as an image
upon which rasterisation/texturing etc. would be performed to determine
the evolution of the system. To perform a fluid dynamics simulation, for in-
stance, the numerical solutions to the appropriate partial differential equa-
tions would have to be expressed in terms of image rendering operations -
the particles would be represented as pixels or groups of pixels. The prob-
lem would become similar to the nature of a video, where each frame (or
state) is determined from the last frame as per the equations relevant to the
real physical system. Suffice it to say this was not a convenient state of af-
fairs for the general-purpose programmer. Nevertheless strides in general-
purpose use were made using this paradigm which laid the foundation for
future interest in the subject. From this early use of GPGPU it was possi-
ble to point to particular characteristics of a problem and gauge whether it
would be amenable to implementation on GPU. Subsequent programming
languages developed for GPGPU aimed to alleviate the cumbersome task
of expressing a given problem in terms of image manipulation, to allow the
programmer to express problems in a more familiar way. These languages
also aimed to expose and exploit the very characteristics which make a par-
ticular problem suitable for implementation of GPU. Section 3.1.3 describes
the nature of these characteristics, and also those characteristics which limit
the performance of GPU computation. Alongside the transformation of
GPU languages from specialised to general-purpose was the transforma-
tion of the hardware in the same direction. With fixed-function pipeline
GPUs, even the most intuitive user-friendly programming language would
have to eventually convert the code to an image manipulation problem -
i.e. pose the problem in such a way that it can be computed with the fixed
function units available. What was needed for true general-purpose pro-
gramming was freely programmable hardware, in the same vein as a CPU.
From the inception of GPGPU, therefore, the hardware has moved away
from a fixed function pipeline with a small amount of programmability, to
a large amount of programmability with pipeline included for specialised
(image rendering) tasks.

3.1.2 Many-core Processors

Current CPUs are often multi-core, having 2, 4, 8, or 16 cores. This allows
the CPU to run threads in parallel, or concurrently. A thread can be under-
stood as a sequence of instructions/operations. Current GPUs have thou-
sands of cores, but they must not be viewed as ’super-CPUs’, each core of
the GPU is substantially less powerful than a CPU core (see figure 3.1). This

3.1. GPGPU 15

FIGURE 3.1: Schematic representation of CPU vs Modern GPU
architecture.

is why compared to a CPU, a GPU can have similar (or better) thermal and
energy characteristics despite the large difference in core number. A more
detailed description of the GPU architecture is given in section 3.1.5. It is
possible to appreciate the many-core structure of a GPU in light of its role
as a graphics processor. The GPU is suited to updating millions of pixels
simultaneously because each of its many cores is assigned a relatively small
number of pixels to deal with at a given time. Importantly, each GPU core
functions independently of all the other cores, that is the result given by one
core does not depend on the result of any other core.

3.1.3 What Computations Benefit from GPU Implementa-
tion?

As mentioned in 3.1.1, GPUs are optimised for throughput as opposed to
latency. The analogy given in many texts in comparing GPUs to CPUs is
that of several slow cars versus one fast sports-car. To deliver an amount of
goods from point A to B, the sports car would need to make several trips
while the slow cars would each need to make only a single trip (i.e. deliver
them ’in parallel’ as opposed to the sports car which delivers them sequen-
tially). Thus, while the sports car (CPU) may be significantly faster than
the slow cars (GPU), the slow cars outperform the sports car in this type of
problem. The GPU achieves better performance than a CPU because it is
capable of massively-parallel computation. The question is then what type
of problems lend themselves to massively parallel computation. Two sim-
ple examples of problems which benefit from parallel computation are sum
reduction and matrix multiplication. Consider a simple sum of integers:

100∑
n=1

n

16 Chapter 3. GPU

On a GPU the calculation of the sum of the first and second integers can
occur at the same time as the calculation of the sum of the third and fourth
integers, which can occur at the same time as the fifth and sixth, and so on.
The results of these calculations must then be added together and this can
again be done simultaneously.

A CPU would perform this sum sequentially, with only one summation
occurring per clock cycle, meaning the entire calculation will take approx-
imately the duration of a clock cycle multiplied by the number of required
sums. The time it would take a GPU to do the sum would be approximately
the duration of a clock cycle multiplied by the number of required sums, di-
vided by the number of cores. This model is sometimes referred to as single
instruction multiple data (SIMD) or single program multiple data (SPMD),
here the distinction is unimportant. In reality there are other factors to be
considered when determining how long a calculation will take, but for illus-
trative purposes this explanation is accurate enough. Consider now matrix
multiplication whose general form is given by:

(AB)ij =
n∑

k=1

AikBkj

Each element (AB)ij of the product matrix is calculated by an appropriate
combination of addition and multiplication (itself just repeated summing),
and does not depend on the result of any other element. Therefore each ele-
ment can be calculated in parallel, resulting in a much reduced computation
time with respect to a CPU.

Sum reduction and matrix multiplication are examples of problems that
are referred to as embarrassingly parallel, a term intended to convey the
ease with which the problems can be implemented on parallel processors.
They can be described as inherently parallel or parallelisable - it is not diffi-
cult to point to the individual independent elements of the problem that
will be assigned to the cores of the GPU. Generally speaking, problems
that are suitable for GPU computation have a high amount of parallelism.
The problem should also be large enough to benefit from parallel imple-
mentation [20]. For instance in a parallel reduce sum, if CPU computa-
tion time is clock rate × number of sums and GPU computation time is
clock rate× number of sums÷ core number, then because the clock rate of a
GPU is far smaller than that of a CPU, for the GPU to outperform the CPU
it will need as many of its cores occupied as possible. This core-occupancy
increases for increasing problem size, so for a program to achieve speed-up
from GPU implementation it must be sizable. Lastly, in deciding to use a
GPU for a computational problem, latency must not be a priority. To use
the analogy of vehicles again, if the goal is to get from point A to B in the

3.1. GPGPU 17

smallest time possible (i.e. low latency), then a GPU probably isn’t suitable.

3.1.4 Performance Limits

Usually a problem is neither completely parallelisable nor completely serial,
but has portions of both. If there is a non-parallelisable portion then any
performance increase will be limited by it. This concept is formalised by
Amdahl’s law [21]. If T is the total time for a computation, then T/s is
the reduced time from using s cores in parallel. If only p percent of the
computation is parallelisable then the computation time becomes pT/s plus
(1 − p)T from the serial portion. Dividing T by (pT/s + (1 − p)T) yields
Amdahl’s Law:

S =
1

1− p+ p
s

Capital S denotes the factor by which computation time can be improved.
For instance, if the problem is exactly half serial and half parallel, and the
parallel portion can be improved by a factor of 10, then the overall improve-
ment S is only 1.81. If s is increased to 100, S becomes 1.98. It is apparent
that the speed-up due to parallelisation is only significant if the parallel por-
tion of the computation is itself significant.

Realistically the speed-up from GPU implementation is not easily pre-
dictable based on core count. If a given problem is completely parallelis-
able, it’s speed-up with regard to a CPU will not be T/s but T/s+ O where
O represents necessary overheads related to the execution of the program
from, for instance, memory transfers. Additionally, Amdahl’s Law is only
helpful if an accurate delineation between parallel and non-parallel portions
of a program have been made. To get an accurate sense of the speed-up a
GPU can offer, it is usually necessary to actually implement the program on
a GPU and take empirical measurements.

3.1.5 The CUDA Programming Platform

Implementing a given program on a GPU in such a way as to allow for the
most dramatic speed-up is not trivial. An introduction to the CUDA pro-
gramming platform is given to illustrate the process a programmer might
take when designing a program for massive parallelism. CUDA is a collec-
tion of libraries and APIs which allow the programmer to interact with the
processing units of the GPU in the most direct and transparent way possible
[22, 23]. That is to say, it saves the programmer from having to frame the
problem in the way described in 3.1.1. CUDA makes parallel programming
more accessible in that it can be used with common programming languages

18 Chapter 3. GPU

such as C, C++, and Fortran. It is a propriety platform developed by Nvidia,
for use on Nvidia GPUs, and was first released in 2007. A key concept of
the CUDA programming model is that of the ’device’ versus the ’host’. The
GPU, the device, must be connected to a CPU, the host, in order to receive
instructions and data.

CUDA Kernel

The CUDA kernel can be described as the instruction in the SIMD model.
It is similar to a C/C++ function and takes a similar form. Below is an ex-
ample of a simple kernel, named Addition, which adds the integer values
stored in vectors X[i] and Y[i], and stores the result in Z[i]. Aside from
syntactical differences, the kernel should not be too unfamiliar to the reader
with a basic knowledge of C/C++ and many other languages.

__global__ void Addition(float* X, float* Y, float* Z)
{
int i = threadIdx.x;
Z[i] = X[i] + Y[i];
}
int main()
{
...
// Kernel invocation with N threads
Addition<<<1, N>>>(X, Y, Z);
...
}

The significant feature is the introduction of the variable threadIdx. This
variable is not defined by the programmer but rather it is ’built-into’ CUDA,
explained below.

Thread Hierarchy

The thread in CUDA has a similar meaning to that usually used in reference
to computations; the execution of a set of instructions. In CUDA, the kernel
is this set of instructions and can be executed on many threads in parallel.
In the parallel reduction described in 3.1.3, the sum of integers 1 and 2 can
be executed by instructions given in the kernel on thread 1, while the sum
of integers 3 and 4 can be executed concurrently using the same kernel but
a different thread, say thread 2. The variable threadIdx is used to identify
the thread number - which each thread has. For instance, in the example
kernel above, the instruction int i = threadIdx.x is given. In thread

3.1. GPGPU 19

1, this instruction will assign the value one to i, in thread 2 the value two,
and so on. Thus in the kernel, thread 1 will assign the value 1 to i, and
in the following line add together X[1] and Y[1], the first values of array
X[i] and Y[i] respectively. Each thread can therefore use the same kernel
to return the appropriate result.

Thread identification is not limited to a single integer value, because
threads are not only organised one-dimensionally. As illustrated in figure
3.2, threads are bundled into collections known as blocks. The size of the
blocks, i.e. the number of threads per block, is decided by the program-
mer. Blocks, in turn, are grouped into grids - the size of which is also de-
termined by the programmer. Also illustrated in figure 3.2 is the fact that
the programmer can decide how to arrange the blocks within the grid - as
can be seen in the difference between grid 0 and grid 1. In this arrangement
each thread has not only an identity threadIdx.x (the ’x-coordinate’), but
also an identity threadIdx.y (the ’y-coordinate’). If the programmer so
wishes, grids can be three dimensional, and each thread will be specified
by 3 ’coordinates’. The size of the blocks and grids is specified when the
kernel is called. In the above example the specification is Addition«<1,
N»>(X, Y, Z), which results in a one-dimensional grid with N threads.
One can begin to see intuitively why GPUs succeed in tasks such as matrix
multiplication; the structure of the threads is essentially in matrix format.

Nvidia GPU Memory Structure

Figure 3.2 shows the types of memory available on a (Nvidia) GPU: local,
shared, and global memory. There is also a type of memory cache, the tex-
ture memory, which is a specialised form of memory not considered here.

20 Chapter 3. GPU

FIGURE 3.2: Memory types on an Nvidia GPU.

As figure 3.2 indicates, local memory is a small, low-latency memory
that can be accessed only by the thread which owns it. Shared memory is
accessible to all threads within a given block, and is thus a way for threads
in the block to communicate with one another. Global memory is a large
memory accessible to any thread in any block (hence global). The size of
global memory depends on the GPU, but is on the order of 16 GB. Global
memory is also the slowest of the three memory types. GPUs ’hide’ mem-
ory latency, that is compensate for the slowness of memory accesses, by
executing a group of threads while the memory accesses for another group
of threads is occurring. It is again the prerogative of the programmer to de-
cide how to use the memory available. If data needn’t be accessed by more

3.1. GPGPU 21

than one grid, it is of course undesirable to use global memory. However
it might be the case that the data is too large for shared memory, in which
case the programmer must split it up and send it to shared memory when it
is needed. Data local to a single thread must eventually be passed to global
memory to make it accessible to the rest of the memory. The size of blocks
and grids is limited by memory size. As an example, the Nvidia Jetson TK1
GPU has a limit of 1024 threads per block, and maximum grid dimensions
of (1024, 1024, 64).

Optimising all these parameters for a given problem is the challenge for
the programmer.

22

Chapter 4

GPU Characterisations,
Benchmarks, and Comparisons

4.1 Introduction

In this chapter data are presented relating to the performance of GPUs. The
GPUs tested allow the reader to get a sense of the range of GPUs available
and their performance relative to each other and to a CPU.

4.2 Hardware

The devices used for these tests are three NVIDIA GPUs:

1. Tegra K1 [24]: Kepler GPU with 192 cores, 17 GB/s memory band-
width, with a Quad-Core ARM Cortex A15 CPU on-board. Power
consumption of 11 W.

2. GeForce 840m [25]: Maxwell GM108 GPU, 384 cores, 16 GB/s memory
bandwidth. Power consumption of 30 W.

3. Tesla K80 [26]: 2x Kepler GK210 GPUs with 4992 cores, 480 GB/s
memory bandwidth. Power consumption 300 W.

A CPU was used; the Intel R© CoreTM i7-5500U [27]. It is a dual-core CPU
which can support a maximum of four concurrent threads. ’Maxwell’ and
’Kepler’ refer to proprietary Nvidia GPU architecture. Maxwell is the newer
of the two and the trend has been increased performance with each new
generation of architecture. However, the reader will note that the GPU with
the best results is the K80, as even with the older architecture its memory
bandwidth and large core count gives it the edge. Memory bandwidth is
a measure of how quickly the GPU can read in data and supply it to its
processing cores. GPUs 1 and 2, as well as the CPU, are located in the High-
Throughput Electronics Lab at the University of the Witwatersrand, GPU

4.3. Methods 23

3 is located in CERN, Geneva, and was accessed remotely. Tests were con-
ducted by the author.

These GPUs were chosen to represent 1) a low-end GPU intended for
mobile devices, 2) a midrange GPU intended for consumer computer plat-
forms and 3) a sever-grade GPU intended for high-end, high-throughput
applications. These benchmarks will therefore give the reader an idea of
the spectrum of performance available. The CPU chosen is a high-end con-
sumer device chosen to illustrate the performance of a top-of-the-range CPU
against these GPUs.

4.3 Methods

Matrix multiplication benchmarking tests were carried out on the GPUs
and the CPU. Square matrices of dimension 32 increasing in powers of 2
to 4096, were used. These dimensions are commonly used as they are con-
ducive to maximum GPU performance due to the configuration of the cores
and memory. On GPU the tests were carried out with CUDA, using the
matrixMulCUBLAS code available from Nvidia as part of their linear alge-
bra library. On CPU, matrix multiplication was performed using MATLAB’s
inbuilt matrix multiplication functionality.

Sum reduction benchmarking was carried out on the GPUs with CUDA
code available from [28]. On CPU the tests were conducted using MAT-
LAB’s inbuilt array summing functionality.

Memory bandwidth tests were performed on the GPUs using CUDA’s
bandwidthTest code, also available from Nvidia.

4.4 Results and Analyses

4.4.1 Sum Reduction

Tables 4.1 to 4.4 present the results of the sum reduction benchmarks, of
the type described in section 3.1.3. The parameter N refers to the number
of elements in the array to be summed. ’GB/s’ refers to the rate at which
data is retrieved from memory, ’Percent’ indicates the fraction of total mem-
ory bandwidth in use. The time taken for the computation is given in mi-
croseconds. The accuracies quoted are conservative, and reflect the fluctu-
ating tendency such benchmarks have in response to temperature, the non-
deterministic nature of digital circuits, uncontrollable patterns of memory
interaction, and the inability to accurately account for programmatic over-
head as a percent of total run-time.

24 Chapter 4. GPU Characterisations, Benchmarks, and Comparisons

TABLE 4.1: Parallel sum reduction performance for the Tegra
K1.

GK20A @ 14.784 GB/s
N GB/s (±0.1) Percent (±0.1) ms (±0.01)
220 7.0 47.5 0.59
221 8.3 56.3 1.00
222 9.4 63.8 1.77
223 12.2 82.8 2.74
224 12.0 81.7 5.55
225 12.2 82.7 10.96
226 12.2 82.9 21.88

TABLE 4.2: Parallel sum reduction performance for the
GeForce 840m.

GeForce 840M @ 14.400 GB/s
N GB/s (±0.1) Percent (±0.1) ms (±0.01)
220 12.7 88.7 0.32
221 13.2 91.8 0.63
222 13.4 93.6 0.12
223 13.6 94.5 0.24
224 13.6 94.5 0.49
225 13.6 94.7 0.98
226 13.6 94.9 1.96
227 13.7 95.3 3.91

The tables indicate the maximum memory throughput rates achieved by
the benchmarking application (not present for the CPU). That each through-
put rate is lower than the rates specified in section 4.2 is an illustration of
an important point. The performance parameters given by manufacturers
regarding their products represent an often unattainable best case scenario.
The specifications are either theoretical upper limits, or were actually at-
tained through a combination of software written for the express purpose
of extracting the best performance (as opposed to representing a realistic
scenario), and extremely efficient cooling systems, for instance liquid nitro-
gen cooling of the processor during testing.

For each GPU it can be seen that increasing the problem size results in
increased throughput. Comparing the performance of the Tegra K1 to the
CPU graphically, in figure 4.1, the notion that GPU outperforms CPU for
ever increasing problem size as described in section 3.1.3, is borne out. The
Tegra K1 was chosen for comparison because it is the worst performer of

4.4. Results and Analyses 25

TABLE 4.3: Parallel sum reduction performance for the Tesla
K80.

Tesla K80 @ 240.480 GB/s
N GB/s (±0.1) Percent (±0.1) ms (±0.01)
220 87.8 36.5 0.47
221 106.3 44.2 0.78
222 123.4 51.3 0.13
223 133.1 55.3 0.25
224 136.5 56.8 0.49
225 137.0 56.9 0.97
226 141.6 58.9 1.89
227 161.1 66.9 3.33

TABLE 4.4: Serial sum reduction on the Intel Core i7-5500U

Intel Core i7-5500U
N ms (±0.01)
220 0.94
221 2324
222 4.39
223 9691
224 18.4
225 35.07
226 74.84
227 16.95

the three GPUs. This is to illustrate how even a low-end GPU can outper-
form a high-end CPU in the right circumstances. As expected, the Tesla K80
outperforms the GeForce 840m, which outperforms the Tegra K1.

4.4.2 Matrix Multiplication Benchmarks

Figure 4.2 illustrates the performance of the GPUs in floating-point opera-
tion per second (FLOPS), a measure of the number of calculations per sec-
ond achieved by the GPU. Again, it can be seen that the highest perfor-
mance is attained for the bigger problem sizes. It is interesting to note that
the Tesla K80 begins to outperform the GeForce 840m only after the matrix
dimensions increase beyond 256. This indicates that, GPUs in general per-
form better for large problem sizes, and GPUs with high core-counts may
not outperform those with lower core-counts for certain problem sizes. The
same is true for the computation latencies, illustrated in figure 4.3.

26 Chapter 4. GPU Characterisations, Benchmarks, and Comparisons

FIGURE 4.1: GPU outperforms CPU for sum reduction prob-
lems.

TABLE 4.5: Bandwidth of Host-Device Intercommunication

Device H-to-D (MB/s) D-to-H (MB/s) D-to-D (MB/s)
Tegra K1 6444.5 6461.3 10320.5
K80 7343.2 7341.3 141281.3
840M 1528.0 1615.9 13181.7

Figure 4.4 compares the matrix multiplication latencies of the Tegra K1
and the CPU. Again, the GPU begins to outperform the CPU only for suffi-
ciently large problem sizes.

4.4.3 Memory Bandwidth Benchmarks

Table 4.5 presents bandwidth of communication between host and device,
in both directions, and communication between the GPU and its Random
Access Memory (RAM), i.e. device-to-device. It is interesting to note that
the Tegra K1 performs almost as well as the high-end Tesla K80 for host-to-
device communication (and vice versa). This is because, as stated in section
4.2, the Tegra K1 has a CPU on-board, and device-to-host communication is
not performed over PCIe interface.

4.5. Selecting GPUs for GPGPU Application 27

FIGURE 4.2: GPU performance in FLOPS for matrix multipli-
cation.

4.5 Selecting GPUs for GPGPU Application

A number of factors make it difficult to select an appropriate GPGPU plat-
form for a given problem. The technology is relatively new and it is pro-
gressing quickly. If a researcher attempts to achieve optimum performance
from a particular GPU for the duration of, say, a year, more advanced de-
vices will be available at the termination of the study than at the start. While
new devices are intended to be as compatible as possible with code from a
previous generation GPU, it is not realistic in the long-run. Additionally
manufacturers often do not release detailed technical specifications of their
devices, which does not concern the average consumer but it is often essen-
tial knowledge in high-throughput environments like ATLAS. Parameters
which are provided by manufacturers are to be interpreted as ideal, and not
necessarily realistic.

As the results in this chapter have shown, it is not a case of the most
expensive, high-end GPU performing the best, but rather the nature of the
computation determines which GPU is best suited. Additionally, the best
performance may be sacrificed for lower cost and better energy efficiency.

28 Chapter 4. GPU Characterisations, Benchmarks, and Comparisons

FIGURE 4.3: GPU latencies for matrix multiplication.

FIGURE 4.4: GPU vs CPU for matrix multiplication.

29

Chapter 5

GPGPU in ATLAS Level-1 Trigger

5.1 ATLAS Level-1 Trigger

5.1.1 FPGA Use in Trigger Front-end

As mentioned, FPGAs are a key technology used in the Level-0/1 Trigger.
They are used in big data environments in general, such as the SKA project.
The ’Field Programmable’ in FPGA refers to the fact that the individual
logic units on-board can be programmed into any type of configuration any
number of times [29]. This is in contrast to, for example, CPU and GPU
technology where the configuration of logic units is fixed, and only the soft-
ware programmed on them is customisable. The customisability of FPGAs
allows for the programming of functional units tailored to perform a spe-
cific job with high efficiency. The disadvantage of this is that FPGAs are
not as easy to program as a CPU or GPU. FPGAs are programmed with
a low-level Hardware Description Language (HDL). In general, low-level
programming languages are more efficient than their high-level counter-
parts. FPGAs are also more expensive and energy consumptive than CPUs
or GPUs.

Because The Level-0/1 Trigger reacts in real-time to data coming from
the muon and calorimeter systems at the 40 MHz bunch crossing rate, the
latency of these stages is around 2 µs. FPGA technology has been imple-
mented in spite of its drawbacks because of the extreme latency constraints
of the Level-1 Trigger. The reason the FPGA portions of the Trigger are re-
ferred to as hardware-based as opposed to software-based is that FPGAs do
not waste any clock cycles executing software protocols. Each clock-cycle,
a useful computation is performed. This, as well as the fact that FPGAs
are capable of massive parallelism in a similar way to GPUs, make them an
ideal choice for the Level-1 Trigger.

30 Chapter 5. GPGPU in ATLAS Level-1 Trigger

5.2 GPGPU in the Level-1 Trigger

As luminosity is increased at the LHC until its maximum in the HL-LHC,
and new Level-1 Trigger components as well as new detector infrastruc-
ture are being developed and tested, the question discussed here is how,
if at all, could GPGPU be utilised at this level to improve physics results.
For GPGPU to be considered for use, it must meet relevant technical re-
quirements and it must meet a reasonable cost-to-benefit ratio relative to
other technologies. As GPGPU platforms can be coded in CUDA (see 3.1.5)
and other C-like languages, whereas FPGAs must be programmed in HDL,
GPGPU is an attractive option for developing more complex algorithms for
use in the Level-0/1 Trigger. More advanced algorithms are needed to en-
sure both that Trigger rates will remain manageable, and that physics recon-
struction remains accurate and therefore valuable for analysis. The benefit
of a programming language both more familiar and more accessible than
HDL should not be underestimated. In researching potential Trigger al-
gorithms for the HL-LHC, researchers would require more time between
conception and testing of an algorithm using FPGA than they would using
GPU (or CPU) - using GPGPU could expedite this process. In terms of cost,
energy-efficiency, and ease-of-use, GPGPU is preferable to FPGA.

5.2.1 Limitations of GPGPU in Online Environment

Due to thermal restrictions, 2 µs is a prohibitively low latency for many
GPUs to operate under. GPUs either can’t achieve latencies as low as this, or
if they can the time is insufficient for producing useful results because under
such a small latency, workload is likely to be insufficiently large to benefit
from parallelism (see chapter 4). This is partially due to the limited memory
speeds at which GPUs can receive data from the host or CPU. New technol-
ogy is being developed by both academic institutions and corporations such
as Nvidia to allow GPUs to transmit and receive data to and from a host
at low latencies. At this stage in its development, using non-commercial
products to achieve the necessary latencies would likely present difficul-
ties in programming and interfacing greater than the difficulties associated
with FPGAs. Current commercially available high-bandwidth technologies
such as Nvidia’s GPUDirect and NVLink, which could possibly function
at sufficiently low latencies, can do so with only a limited number of I/O
devices. Any communication with surrounding front-end devices would
imply a transfer bottleneck, again rendering GPU use in this environment
useless.

5.2. GPGPU in the Level-1 Trigger 31

Because GPUs perform so poorly in low-latency environments, it would
not be possible to simply replace FPGAs or place them between the TilePPr
and front-end or between TilePPr and Level-0/1 directly without introduc-
ing unacceptably high latencies, hindering Trigger rates.

5.2.2 Heterogeneous Co-Processing Unit

The alternative is to introduce GPGPU outside the main path of data flow in
Level-0/1. In this scenario GPGPU would interface with the TilePPr/Level-
0/1 via a CPU capable of latencies small enough not to impede the efficiency
of the Trigger. The CPU would receive the relevant data and pass it to the
GPU for processing, after which the result would be passed back to the CPU
and then to the TilePPr. Since the GPU operation would see latencies orders
of magnitudes larger than that of the entire Level-0/1 Trigger, it would not
function synchronously to the 40 Mhz bunch crossing. Instead it would
function as a co-processing unit (Co-PU), in parallel with the Trigger. There
are two ways in which the Co-PU could be configured:

• The TilePPr/Level-0/1 Trigger could query the Co-PU, the Co-PU then
processes data and passes the result back to the TilePPr or the Level-
0/1 Trigger either when it’s inactive during running or after running.

• The TilePPr/Level-0/1 Trigger could query the Co-PU, the Co-PU pro-
cesses the data and passes it to the HLT, either directly or through the
TilePPr.

Before evaluating what type of queries could be passed to the Co-PU,
i.e. what type of algorithms the Co-PU could be expected to perform, a
more detailed analysis of the possible interfaces the Co-PU could have with
the TilePPr and/or Level-0/1 is necessary.

A GPU-ARM based PU

One option is to interface GPU to the TilePPr/Level-0/1 Trigger using ARM
CPUs, such an interface is illustrated in figure 5.1. ARM CPUs are an open-
source, low-cost, energy-efficient alternative to the common x86 CPU archi-
tecture of, for instance, Intel. Cox [30] has demonstrated that it is possible
to interface ARM CPUs to the TilePPr (in [30] it is still referred to as the
sROD) through PCIe technology. PCIe is a type of electronic communica-
tion protocol used to, for instance, interface CPUs to peripherals such as
GPUs and soundcards. It transmits data serially through a bus of up to 16
lanes. The PCIe standard is set by PCI-SIG, who control the specifications

32 Chapter 5. GPGPU in ATLAS Level-1 Trigger

FIGURE 5.1: Schematic of Co-PU - TilePPr Interface

of the technology, which can be found in [31]. Such an interface between an
ARM device and the TilePPr would allow for data transfers with latencies in
the order of hundreds of nanoseconds. This type of interface would there-
fore not interrupt Trigger rates. However, the latency of the transfer of data
from ARM to GPU and vice versa, as well as the latency of the GPU com-
putation itself, disqualifies a GPU-ARM Co-PU from acting synchronously
with the Trigger, or in real-time. In this instance the Co-PU would act either
as a quasi-offline or entirely offline platform. This notion is explored further
below in section 5.3 with reference to specific functionality the GPU could
have.

5.3 Potential Functionality for GPU to Execute

5.3.1 Processing of High Quality-Factor Events

In TileCal, a charged particle will strike the plastic scintillator tiles causing
them to luminesce in proportion to the energy lost due to ionisation of the
particle. The wavelength of light from the tiles is shifted by wavelength
shifting fibres and fed to PMTs which convert the signals to an amplified
voltage which can then be digitised for computer analysis. The digitised
samples from the PMTs are used with weights in the so-called Optimal Fil-
tering (OF) algorithm (optimal in its signal-to-noise ratio (SNR)) to recon-
struct the energy deposition of a particle, resulting in the waveforms of the
sort shown in figure 5.2a [32].

The OF algorithm has as its output the phase τ , amplitude A, and pedes-
tal ped of the waveform, as can be seen in figure 5.2a. These parameters are
reconstructed with the weighted sums shown in equation 5.1. The seven
terms of these sums are the seven digital samples taken by the analogue-
to-digital converter (ADC). The weights are chosen so that the variance of
the parameters are minimized relative to electronic noise as well as noise
from pile-up. The weights are determined with offline calibration, using

5.3. Potential Functionality for GPU to Execute 33

(A) (B)

FIGURE 5.2: Ideal pulse-shape and parameters of interest for TileCal sam-
ples (left), and modified pulse shape by out of time pulse (right). [32].

Langrange multipliers, and stored in the detector for online operation.

A =
7∑

i=1

aisi τ =
1

A

7∑
i=1

bisi ped =
7∑

i=1

cisi (5.1)

The signal can then be described with

s(t) = Ag(ti − τ) + ped (5.2)

Where s(t) is the reconstructed signal, ti is the time the sample is taken, and
g is the a priori expected pulse shape.

Also defined is the Quality Factor (QF) of the reconstruction, shown in
equation 5.3, which calculates the discrepancy between measured and ex-
pected signal. Large QFs are therefore an indication of a signal degraded
from noise, pile-up, or other errors.

QF =
n∑

i=1

[si − (Agi + Aτg
′

i) + ped] (5.3)

Currently, if energy reconstruction fails, the raw data from these events can
be saved for offline analysis. The threshold for a failure decision is pre-
programmed and limited by the size of raw event data relative to recon-
structed data - raw data consumes more bandwidth. These borderline or
failed events are designated for offline analysis because online analysis is
limited by latency constraints, and therefore not as accurate. Practically this
results in online calculations being done in fixed point arithmetic using the
simplest form of the OF algorithm. Offline analyses can use floating point

34 Chapter 5. GPGPU in ATLAS Level-1 Trigger

(A) (B)

FIGURE 5.3: The effect of pile-up on energy reconstruction χ2 error for the
OF algorithm (left), and the same for the signal deconvolution technique
(right) [8].

arithmetic as well as a more computationally intensive and accurate itera-
tive form of the OF algorithm or any other kind of reconstruction algorithm.
It is possible to offload these failed events to the Co-PU with a more liberal
threshold.

The are other techniques which provide more accurate energy recon-
struction results than OF, especially in the presence of high pile-up, that
the Co-PU could implement in the case of a failed event reconstruction. For
instance, a signal deconvolution technique where the signal is recovered us-
ing a known template for the pulse shape, in the presence of additive white
noise. Figure 5.3 shows how the deconvolution algorithm results in a sub-
stantially smaller χ2 error in the presence of pile-up (figure 5.3b) relative to
the OF algorithm’s performance (figure 5.3a).

As developing algorithms for GPU is a relatively simple and quick pro-
cess, the scope is large for improved energy reconstruction algorithms that
could be used to reconstruct events that OF could not.

5.3.2 Facilitating Less Dead-time

Dead-time can be applied either between the calorimeter and muon Triggers
and the CTP, or between the CTP and the HLT [16]. In the first case, after
an L1-accept, a dead-time of four bunch crossings is applied, meaning the
Trigger detectors will not pass L1-accept for those crossings. In the second
case, dead-time is applied when the HLT passes a busy signal to the CTP
indicating that the rate of L1-accepts is exceeding its ability either to read or
process data. In this case it is possible that the Co-PU could function as a

5.4. Conclusion 35

buffer between the CTP and HLT, storing events which the HLT cannot ac-
cept, instead of increasing the number of HLT nodes. It needn’t be restricted
to the role of a buffer, and could function as a sort of primitive HLT in its
own right, relieving the HLT of these events and reducing dead-time. A re-
duction in dead-time is an increase in integrated luminosity, an opportunity
to decrease dead-time is therefore extremely valuable.

5.4 Conclusion

It is clear that as the TilePPr and Level-0/1 Trigger architecture are still be-
ing decided that there is a possibility for the inclusion of a component such
as the proposed Co-PU. It also seems possible from the results in [30] to
integrate such a Co-PU into the Level-0/1 Trigger without introducing un-
acceptably high latencies which would hinder Trigger rates. Additionally
there appear to be tasks that the Co-PU could perform, as outlined in sec-
tion 5.3, which could alleviate the Trigger from certain burdens, as well as
decrease dead-time and therefore increase effective luminosity. What is not
clear, however, is the necessity of the inclusion of GPU in this Co-PU. Since
the inclusion of GPU would disqualify the Co-PU from operating online in
this environment, it becomes difficult to justify its use. If the Co-PU were
to operate offline, this would imply that it would have essentially an arbi-
trarily large amount of time to complete any operation. Any speed-up from
GPU may then be irrelevant or unneeded. However if it can be demon-
strated that, over time, including a GPU or GPUs in the Co-PU results in a
more energy efficient platform, and if it could be further demonstrated that
this energy offset compensated for the difficulty and cost of the design of a
heterogeneous Co-PU platform, then the use of GPU may be justified.

36

Chapter 6

Heterogenous Computing
Platforms in the ATLAS HLT

6.1 Introduction

This chapter is structured as follows. First a description is given of how
the LHC upgrades will affect the HLT system, and why GPGPU is a likely
solution to foreseen issues. The ATLAS GPU demonstrator project is then
discussed, this project was initiated at ATLAS to test the viability of GPGPU
in the HLT. The tests conducted are described, and the results are presented
and analysed in detail.

6.1.1 HLT Upgrade

In the Letter of Intent for the Phase-II Upgrade of the ATLAS Experiment pub-
lished by CERN detailing the upgrades to ATLAS [33], two criteria are given
to motivate upgrades to the HLT platform. First, increased Level-1 accep-
tance rates implying higher throughput for the HLT. The HLT must deal
with events of higher complexity by running algorithms of higher complex-
ity. The HLT must also take advantage of evolving computer architecture
allowing for more efficient computing while remaining affordable. The use
of parallel architecture is mentioned specifically: "[it] is now evident that
our code must use multi-threading, vectorization and parallelization". Sec-
ond, a redesign which does not commit to a single programming language
or paradigm and which allows for increased I/O throughput: "ATLAS must
plan for a heterogeneous storage deployment using an array of technolo-
gies, and its I/O framework and persistent data organization must be flex-
ible enough to be configurable, and to allow optimization for the range of
storage implementations encountered." These criteria are considered now
in relation to the GPU demonstrator.

6.2. GPU Demonstrator 37

6.2 GPU Demonstrator

The ATLAS GPU demonstrator group has been formed to test the perfor-
mance of GPGPU in the HLT, to determine its viability. The GPU demon-
strator aims to determine the type of speed-up that can be expected, how
difficult adapting Athena for use on GPU is, and which processes are suit-
able for GPU implementation. The results of these tests will inform the de-
sign of the heterogeneous HLT servers regards infrastructure and software
design.

6.2.1 Accelerator Process Extension

Due to the complex hierarchical object-oriented nature of ATHENA, as well
as because a lot of existing code was written for serial processing; altering
the HLT software to be compatible for use on GPU is not a trivial task. The
existing code must satisfy certain lexical differences in software language as
well as be converted into parallel structures. Initially, over a period of two
years, attempts were made to covert the C++ and Python code directly into
CUDA, this proved inviable due to the volume of code that would need to
be converted without introducing unexpected bugs and inefficiencies.

A core software designed for the GPU demonstrator allows this problem
to be circumvented. It is called the Accelerator Process Extension (APE),
and allows the existing ATHENA HLT software to interface with any given
platform other than the CPU processors for which it was originally designed
[34]. In this scenario, APE allows the HLT to interface with a CUDA GPU
platform without changes to ATHENA or CUDA code. The trigger does not
need knowledge of what processor it is interacting with, this is concealed
by APE. As such APE is not limited to interfacing ATHENA and CUDA but
can be altered to interface ATHENA to any platforms. This fulfills the cri-
terion stated above regards flexibility, however to configure APE to run on
a given platform may not be realised so easily (see section 6.5.2). Figure 6.1
illustrates the interface between ATHENA and three separate platforms; an
Nvidia GPU, an Intel CPU, and a GPU-CPU heterogeneous platform. APE
has three components: the Manager, the Module, and the Work item. The
Manager is responsible for communication with ATHENA and scheduling
requests from ATHENA. The Modules control GPU resources such as mem-
ory, and create Work items; which are CUDA kernels.

ATHENA algorithms must format data and query a software component
known as Offload Service to communicate to APE. A message passing soft-
ware, YAMPL, allows ATHENA and APE to receive and pass data in their

38 Chapter 6. Heterogenous Computing Platforms in the ATLAS HLT

FIGURE 6.1: Through APE, ATHENA can interface with an arbitrary plat-
form [35].

native format. APE then passes requests to Modules which execute algo-
rithms on the destination platform. The result can then be passed back to
ATHENA following the reverse path. This is accomplished in the following
way, illustrated in figure 6.2. The HLT must make a request to a software
component referred to as TrigDetAccelSvc. TrigDetAccelSvc converts the
data in question from ATLAS Event Data Model (EDM) format to one more
suitable for GPU, using Data Export Tools. Data Export Tools is a serial oper-
ation and hence limiting to speed-up through parallelisation. The formatted
data is then communicated to APE via OffloadSvc, which also returns the
data back to TrigDetAccelSvc, where it is integrated into the Athena EDM,
and passed back to the HLT. This framework allows ATHENA to request
the GPU platform to run particular HLT algorithms, the following section
discusses these algorithms that have been implemented by the GPU demon-
strator group.

6.3 Algorithms Tested by GPU Demonstrator

The algorithms identified as most time consuming by the GPU demonstra-
tor team, and therefore of most interest for speed-up, are the ID tracking,
calorimeter clustering, and muon tracking algorithms. Inner detector track-
ing has been tested and iterated the most thoroughly, and will be discussed.
Preliminary results of ID tracking speed-up from GPU implementation are
presented. Also discussed is the calorimeter clustering algorithm, muon
tracking will not be discussed as it is still under development.

6.3. Algorithms Tested by GPU Demonstrator 39

FIGURE 6.2: Schematic of the protocol through which ATHENA commu-
nicates with APE [34].

6.3.1 Inner Detector Tracking

ID Tracking is the most time consuming HLT algorithm, and with increased
pile-up, required CPU resources increases combinatorially. ID tracking can
be broken into four steps [34]:

1. Bytestream decoding: A bytestream comprises information about pixel
hits in a format optimised for data transmission. The components
forming the bytestream are referred to as words. Each word is as-
signed to a GPU thread, resulting in decoding done in parallel. The
decoded bytestream represents data in a topographical format, more
convenient for physics calculations.

2. Clustering: Usually a particle will be detected by more than one sensor
module. Groups of sensors activated by the same particle are grouped
together into clusters by a Cellular Automata (CA) algorithm. The CA
algorithm is naturally suited to parallel implementation. Each sensor
module with a hit is assigned a thread, and the algorithm iterates until
all adjacent hits are combined into clusters. A cluster is described by a
centre coordinate and the sum of the energy of the adjacent hits. This
process is illustrated in figure 6.3.

3. Track seeding: As the name implies, track seeds form the base of the
tracks that particles trace in the detector. Seeds are formed from pairs
of hits in adjacent layers of the pixel detector. A 2D thread array loops
over clusters to find suitable pairs of hits. A second 2D thread array
repeats the process, forming track triplets. Triplets are merged to form
track candidates. This process is illustrated in figure 6.4, read from top
left to bottom right.

40 Chapter 6. Heterogenous Computing Platforms in the ATLAS HLT

FIGURE 6.3: ID tracking: clustering process [34].

FIGURE 6.4: ID tracking: track generation [36].

4. Clone removal: The final stage is removing track candidates with the
same outer layer hits but different seeds, referred to as clone removal.

6.3.2 Calorimeter Clustering

The serial Calorimeter Clustering algorithm classifies calorimeter cells into
three categories based on their signal-to-noise ratios. The categories are:
Seeds for SNR > 4, Growing for 4 > SNR > 2, Terminal for 2 > SNR > 0.
The algorithm joins all Growing cells to adjacent Seeds to form clusters.
Growing and Terminal cells continue to be added to clusters until there are
no more to add, or the cluster reaches maximum size. On GPU, each cell is
assigned to a thread. Each cell is joined to the neighbouring cell with the
highest SNR. The algorithm terminates under the same conditions as the
serial implementation.

6.4. Analysis of GPU Demonstrator Results 41

FIGURE 6.5: Calorimeter clustering algorithm. Left: GPU implementation,
right: CPU implementation [34].

6.4 Analysis of GPU Demonstrator Results

The results presented in this section were recorded by the GPU demonstra-
tor group, and should be considered preliminary as code is still under de-
velopment.

6.4.1 ID Tracking Results

The 26x speed-up shown in figure 6.6 is for an Nvidia Tesla C2050 GPU with
respect to an Intel E5620 CPU. The speed-up is for the first two steps of ID
tracking as per section 6.3.1, i.e. for bytestream decoding and clustering. It
should be noted that the CPU in this test is running only a single thread,
which is not a particularly realistic scenario for a CPU in the HLT trigger
farm, which operate with multithreading. In light of this the relative speed-
up is closer to 7x. It can be seen that the speed-up increases with increas-
ing RoI size, i.e. increasing data volume. This reflects the trend of GPUs
to exhibit greater speed-up for larger volumes of data, as discussed in sec-
tion 3.1.3 and illustrated experimentally in section 4.4. Figure 6.7 illustrates
the relative speed-up for the same GPU-CPU pairing as above, however for
steps 3 and 4 of tracking shown in section 6.3.1; track formation and clone
removal. Interesting to note is the gradation in speed-up from processing
both steps on CPU, to just clone removal on CPU, and finally both steps
on GPU. The speed-up for the last case is about 12x, however this is again
for a single-thread on the CPU. Note that the x-axis represents number of
spacepoints as opposed to input data volume as in figure 6.6, however the
two parameters increase in proportion to each other. Figure 6.8 displays the
results for the entire ID tracking process. Additionally it displays the results

42 Chapter 6. Heterogenous Computing Platforms in the ATLAS HLT

FIGURE 6.6: Decoding and clustering time versus data volume for different
ROI sizes in GPU and CPU implementations [35].

for one GPU relative to one CPU, up to four GPUs working in tandem rela-
tive to one CPU. Note the x-axis is number of concurrently running Athena
threads, again related to input data volume. At around 50 Athena threads,
global GPU memory becomes a bottleneck, and one GPU performs worse
than one CPU. Using two or more GPUs in tandem alleviates this issue,
however it can be seen that continuing to add GPUs does not significantly
reduce execution time. These results, as well as the remaining results pre-
sented in this section are from a system consisting of two Intel Xeon E5-2695
v3 14-core CPUs with a clock speed of 2.3 GHz and Nvidia GK210GL GPUs
in a Tesla K80 module. Figure 6.9 details the break down of time spent on
various processes for CPU and GPU processing. The Athena portions of the
pie charts refer to all the non-algorithmic, administrative processes such as
data reception from the Level-1 trigger. For track seeding on GPU, the algo-
rithmic portion occupies a small part of the total processing time relative to
the time breakdown on CPU. The execution of the track seeding algorithms
on GPU are 5x times faster than on CPU, the entire process however is about
1.3x faster. Important to note is that the conversions of data between GPU
and CPU formats, the transfer of data between GPU and CPU, as well as the
Inter-Process Communication (IPC) overheads make up about 13% of total
processing time. This is a significant amount of time spent on overheads
associated with running the ID tracking on GPU.

6.4. Analysis of GPU Demonstrator Results 43

FIGURE 6.7: Tracking and clone removal time versus number of space-
points in GPU and CPU implementations [35].

6.4.2 Calorimeter Clustering Results

The results of the calorimeter clustering algorithm on GPU show poor speed-
ups, however the GPU implementation is still new and not optimised. The
speed-up for the calorimeter clustering algorithm shown in figure 6.10 ran-
ges from about 2x to 2.5x for the range of concurrently running ATHENA
threads tested. It is interesting to note that the global GPU memory does
not impose a bottleneck for this algorithm, as it can be seen that using more
than one GPU concurrently does not lead to greater speed-ups. Figure 6.11
shows the time breakdown for the algorithm. Similar to ID tracking the al-
gorithm itself occupies only a small portion of the total time. Of the 4.1%
of the time spent on the calorimeter clustering algorithm, 45.7% of that time
is spent on communication and conversion overheads. The speed-up asso-
ciated with the algorithm is about 2x, however the time for the entire GPU
implementation is in fact slower than for CPU, about 1.03x times slower.

6.4.3 Combined ID Tracking and Calorimeter Clustering

When running the ID and Calorimeter algorithms concurrently, they effect
one another’s performance. Figure 6.12 indicates the performance of the al-
gorithms in events/second, running alone and simultaneously, on CPU and
one and two GPUs. Using two GPUs only provides a speed-up for ID alone,
and for ID and calorimeter together for high numbers of Athena processes.
ID tracking shows the largest speed-up, while calorimeter tracking and the
two algorithms together show a very small speed-up. The two algorithms

44 Chapter 6. Heterogenous Computing Platforms in the ATLAS HLT

FIGURE 6.8: Overall ID tracking execution time as a function of the number
of Athena threads for GPU and CPU implementations [37].

together operate at a substantially smaller rate than either algorithms in iso-
lation, probably due again to a memory bottleneck.

Comparing figures 6.10 and 6.13, the calorimeter algorithm shows a sim-
ilar performance when run alone and together with ID tracking, however
only when using two or more GPUs. Comparing figures 6.8 and 6.14, ID
tracking exhibits almost identical behaviour when running alone and with
calorimeter tracking.

6.5 Critical Analysis

The preliminary results of the speed-up due to implementation of ID track-
ing and calorimeter clustering on one or more GPUs are underwhelming.
The ID tracking algorithm running in isolation shows a speed-up of ap-
proximately 5x with respect to CPU implementation, but the inclusion of
the overheads related to ATHENA reduce this to approximately 1.3x. The
results for the calorimeter clustering algorithm are less attractive still, with
a 2x speed-up for the algorithm in isolation and a slowing-down of 1.03x
when ATHENA overheads are taken into account. However as the calorime-
ter algorithm is still immature compared to ID tracking, improvements can

6.5. Critical Analysis 45

FIGURE 6.9: Time breakdown of ID tracking on CPU and GPU [38].

FIGURE 6.10: Overall calorimeter clustering execution time versus number
of Athena threads for GPU and CPU implementations [37].

be expected as the code is optimised. The same can be said of a more mature
ID tracking algorithm.

The following parameters are approximated by the GPU demonstrator
group. To break even in terms of cost-to-benefit ratio the speed-up required
is 4x for a GPU:CPU ratio of 1:2 when using server-grade GPUs. The re-
quired speed-up to break even drops to 2x when using commodity-grade
GPUs intended for gaming in a 1:1 GPU:CPU ratio. These speed-ups re-
fer to overall throughput of the HLT algorithm. Of course, breaking even
would not be sufficient cause to overhaul the software and hardware of the
HLT. In the case of gaming GPUs, a 4x speed-up (break even+100%) would

46 Chapter 6. Heterogenous Computing Platforms in the ATLAS HLT

FIGURE 6.11: Time breakdown of calorimeter clustering on CPU and GPU
[38].

FIGURE 6.12: Speed-up in events/second for ID tracking and calorimeter
clustering separately and simultaneously [38].

imply a halving of the cost of the current HLT platform, and this is the fig-
ure chosen for minimum viability of introduction of GPU into the HLT. The
use of gaming GPUs presents an additional issue of reliability in an environ-
ment as critical as the HLT servers; as these commodity GPUs are typically
not as reliable as their server-grade counterparts.

6.5.1 Necessity of Improved Algorithms

The speed-ups required for viability mentioned above are with reference to
ID tracking and calorimeter algorithms which mimic those already in use
in the HLT. The implementation of these algorithms for the purposes of the
GPU demonstrator was chosen to provide a basis for comparison and the

6.5. Critical Analysis 47

FIGURE 6.13: Performance of calorimeter clustering running together with
ID tracking [37].

ability to check the correctness of the results of the algorithms. However,
although these algorithms have been made parallel where possible, they do
not necessarily represent the algorithms best suited for GPU implementa-
tion. The algorithms upon which they are based were chosen and designed
exclusively for serial implementation on CPU; as at the time of their design
GPGPU was not a viable option. A further speed-up could be expected if
the algorithms of the HLT are from their conception designed for massive
parallelism. This type of redesign is necessary in terms of allowing for the
greatest speed-up but it is also necessary in terms of introducing algorithms
with increased complexity. Increased complexity has two implications of
note: the algorithms are more adept at detecting events of interest in the
face of increased pile-up, and usually they are more computationally intense
and hence higher latency. Complexity, in this context, essentially refers to
the number of operations comprising the algorithm, and how the number
of these operations grow as a function of input size. They may, for instance,
grow in proportion to the square or the cube of the input to the algorithm.
If the same or similar algorithms to those currently in use in the HLT were
retained for the HL-LHC, however sped up they are, this would not im-
ply the possibility of increasing integrated luminosity of events of interest
by searching for event signatures currently not feasible to search for, or the
ability to mitigate the effects of high pile-up environments. It would allow
only for the same results currently achievable, to be achieved with higher

48 Chapter 6. Heterogenous Computing Platforms in the ATLAS HLT

FIGURE 6.14: Performance of ID tracking running together with calorime-
ter clustering [37].

throughput. Algorithms of higher complexity are therefore necessary, but
their higher latency has implications for the break-even analysis described
above. Higher latency implies decreased speed-up with respect to current
algorithms, and therefore lower throughput. The problem that must be ad-
dressed from the present to the inception of the HL-LHC is therefore the
problem of designing algorithms of higher complexity capable of minimis-
ing the problems of high pile-up while at the same time remaining capable
of producing the necessary throughput rates. The reader interested in what
such an algorithm may look like can refer to [39] for a novel tracking algo-
rithm based on the Hough transform.

6.5.2 Co-PU in HLT

It is possible that the HLT could benefit from the inclusion of a low-cost,
energy-efficient co-processor such as that described in section 5.2.2. The
attractive cost and energy parameters are due to the open-source ARM ar-
chitecture of the GPUs in question. The Tegra K1 described in chapter 4,
for instance, operates at 11 Watts, compared to the Tesla K80 used in the
demonstrator that operates at about 300 Watts. The prices of the two are 200
USD and 5000 USD respectively. Of course, these differences are a result of
the greater computational ability of the K80, but the affordability of the K1
would allow it to be used in clusters while still being relatively cheap and

6.5. Critical Analysis 49

energy efficient. However since they are a relatively new platform, there is
a deficiency in support documentation and compatible software.

Porting APE to ARM Architecture

The author tested the viability of porting APE to ARM architecture, on a
Tegra K1 development board. The problem encountered is that APE was
developed for a Red Hat Linux platform, while the Tegra K1 supports only
Ubuntu natively. The author was able to install a Red Hat variant, Fedora,
on the Tegra K1 with some difficulty. In this case it is possible to install an
APE server on the Tegra, but the problem then becomes that at this time
CUDA is not supported on ARM-Fedora platforms. An attempt was made
to adapt the available Ubuntu CUDA package for the TK1 to run on Fedora
with some success, however this scenario would not be conducive to the
most efficient performance from the TK1.

50

Chapter 7

Conclusion

In this dissertation GPGPU technology has been discussed with reference
to its integration into the trigger system of the ATLAS detector in the LHC
at CERN. The sub-detectors comprising ATLAS - the inner detector, the
calorimeters, and the muon spectrometer - have been described. The prin-
ciple of their operation as well as their purpose was outlined. These sub-
detectors work in tandem to detect event signatures of interest. The read-
ings from these detectors are integrated and analysed in real-time by a mul-
tistage trigger system, the details of which have also been described in chap-
ter 2 and in more detail in chapters 5 and 6.

The LHC is undergoing upgrades which will see the ATLAS detector
subjected to higher instantaneous luminosities, leading to increased pile-up
and trigger rates. Consequently, the software and hardware platforms of
the TDAQ system must also be upgraded in order to ensure that physics
results remain accurate, and that the higher luminosity of the LHC can be
fully exploited in the search for new physics.

It is this upgrade that forms the motivation for researching the viabil-
ity of using GPGPU in the Trigger. This dissertation has presented a brief
history of GPGPU, its principles of physical operation, the software that it
runs, and the type of problems it deals with efficiently. GPGPU is a rela-
tively new technology being used in a wide range of sciences to provide
greater performance relative to CPU technology in problems of computa-
tion. The performance improvements are due to the massive parallelism of
GPGPU.

7.1 GPU Performance Parameters

Chapter 4 presents results of benchmark tests conducted by the author. The
results are intended to demonstrate the concepts introduced in chapter 3, as
well as to demonstrate the range of performance of GPUs available commer-
cially. In particular, the results demonstrate that when attempting to speed-
up a computing problem with GPU, the factors affecting performance are

7.2. GPGPU in the Level-0/1 Trigger 51

varied. The nature of the problem dictates, to some extent, which GPU is
most appropriate for use. However cost, space, and compatibility limit the
choices available; meaning code structure must also be informed by GPU
choice. Further convoluting the issue is that GPU vendors release informa-
tion about their products to present them in the most attractive light, and
significant resources must be dedicated to characterising the performance
of the GPU in a way which simulates the actual environment in which it
will operate.

7.2 GPGPU in the Level-0/1 Trigger

Chapter 5 explores the introduction of GPGPU into the Level-0/1 Trigger.
First the platform currently in use is described in greater detail. FPGAs are
used extensively despite their high cost, high energy consumption, and dif-
ficulty of use. This is because of the extreme latency constraints on this stage
of the Trigger requiring the type of performance available from hardware
based technology. The level-0/1 Trigger upgrade provides an opportunity
to consider the involvement of GPGPU, the questions raised in chapter 5
are how could GPUs function in such a low-latency environment, and what
benefits could they offer. Because they operate at latencies far greater than
that of the Level-0/1 Trigger they can neither receive nor process informa-
tion fast enough to operate synchronously with the Trigger. To be used at
this stage then, they would need to operate in parallel with the Trigger. The
communication of data between GPU and the Trigger would need to be me-
diated by a CPU for the Trigger rate to be unhindered. It is argued that the
low-cost, low-energy ARM technology CPU could be used in conjunction
with GPU to form a cost and energy efficient Co-Processing Unit that could
run parallel to the Trigger without disrupting it.

To answer the question of whether the Trigger could benefit from such a
Co-PU, some potential roles for the Co-PU are suggested. It could ease and
expedite the process of testing and implementing new Trigger algorithms -
for instance enhanced OF algorithms and reducing Trigger dead time.

Although it seems possible to use GPU from a technical stand-point, and
also that there are roles GPUs could fulfill in the Level-0/1 Trigger, it re-
mains unclear whether there is material benefit to gain from massive paral-
lelism at this level. As the Co-PU would need to operate asynchronously,
it seems unlikely that any speed-up to be gained would be of much con-
sequence. Thus, benefits regarding ease of use in implementing new algo-
rithms might be more easily gained from CPU in isolation. As the nature

52 Chapter 7. Conclusion

of problems that would be implemented on such a Co-PU become more de-
fined, it will be possible to say with more confidence whether the inclusion
of GPGPU would be beneficial.

7.3 GPGPU in the HLT Trigger

The role of GPGPU in the HLT, as discussed in chapter 6, has been re-
searched to a greater extent than in the low level Trigger, by the GPU demon-
strator group. Initially efforts were made to convert Athena code directly to
CUDA code for GPU implementation. This proved time-consuming and
cumbersome, and was abandoned in favour of the creation of an interme-
diary software to facilitate the interaction of Athena and GPU. This inter-
mediary software, APE, allows HLT Athena processes to query one or more
GPUs, and to receive results from GPUs in the format it expects. APE over-
sees the conversion of data structures from Athena to GPU formats, and
these conversion processes introduce additional latencies to the event pro-
cessing.

The GPU demonstrator group has tested the performance of two HLT al-
gorithms on GPU: inner detector tracking, and calorimeter clustering. Chap-
ter 6 presents, compares, and analyses results collated from several docu-
ments ranging from 2012-2016. The execution of the ID tracking algorithms
on GPU are 5x times faster than on CPU, when including APE overheads
this reduces to 1.3x faster. The speed-up of the calorimeter clustering al-
gorithms is about 2x, however when including APE overheads it is in fact
slower than for CPU, about 1.03x times slower. These speed-ups do not yet
meet the goal of a 4x overall speed-up specified by the demonstrator group
as the improvement which would allow for a 50% reduction in the cost of
the HLT computing system.

Greater speed-ups are expected as GPU technology improves, and as al-
gorithms are designed specifically for parallel implementation, as opposed
to mimicking the current serial algorithms in use. These undecided algo-
rithms must be able to outperform current algorithms in their ability to deal
with increased pile-up and to detect more complex event signatures.

The author attempted to port APE to ARM architecture, based on the
premise that the HLT Trigger could benefit from a low-cost, low-energy Co-
PU of the type described in chapter 5. Although possible, it is both difficult
and not conducive to achieving the best performance from such a Co-PU.

7.4. Future Work 53

7.4 Future Work

7.4.1 In the Level-0/1

In order to determine whether the inclusion of an ARM-GPU based Co-PU
would be beneficial in the Level-0/1 Trigger, future work should focus on
determining the size of the problems likely to be offloaded to the Co-PU,
and the time constraints of the delivery of associated results.

7.4.2 In the HLT

The GPU demonstrator group has already begun testing existing parallelised
algorithms on newer GPU platforms in order to measure any increase in
speed-ups. However research should also be done on developing entirely
new and more robust algorithms, as well as attempting to eliminate over-
heads associated with APE and IPCs in general.

54

References

[1] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008), S08003.

[2] V. Halyo et al. “GPU Enhancement of the Trigger to Extend Physics
Reach at the LHC”. In: Journal of Instrumentation 8.08 (Oct. 2013), P10005.

[3] J. D. Owens et al. “GPU Computing”. In: Proceedings of the IEEE 96.5
(Apr. 2008), pp. 879–899. URL: http://ieeexplore.ieee.org/
document/4490127/.

[4] CERN. Overall view of the LHC. 2016. URL: http://cds.cern.ch/
record/1708847/. Accessed December 2016.

[5] A. R. Martinez on behalf of the ATLAS Collaboration. The Run-2 AT-
LAS Trigger System. CERN CDS. 2016. URL: https://cds.cern.
ch/record/2133909/files/ATL-DAQ-PROC-2016-003.pdf.
Accessed February 2017.

[6] Matteo Bauce et al. “Use of hardware accelerators for ATLAS com-
puting”. In: Proceedings, GPU Computing in High-Energy Physics (2015),
pp. 48–54. DOI: 10.3204/DESY-PROC-2014-05/10.

[7] P. Klimek on behalf of the ATLAS Tile Calorimeter group. “Signal re-
construction performance with the ATLAS Hadronic Tile Calorime-
ter”. In: J. Phys.: Conf. Ser. 404 (2012), p. 012046.

[8] L. M. de A. Filho et al. Calorimeter Signal Response Deconvolution for
Online Energy Estimation in Presence of Pile-up. CERN CDS. 2012.

[9] CERN. About CERN. 2012. URL: http://cds.cern.ch/record/
1997225. Accessed December 2016.

[10] CERN. The Large Hadron Collider. 2014. URL: http://cds.cern.
ch/record/1998498. Accessed December 2016.

[11] ATLAS Experiment c©2016 CERN. A detailed computer-generated image
of the ATLAS detector and it’s systems. 2016. URL: http://atlasexperiment.
org/photos/full- detector- cgi.html. Accessed February
2017.

[12] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008), pp. 53–
109.

http://ieeexplore.ieee.org/document/4490127/
http://ieeexplore.ieee.org/document/4490127/
http://cds.cern.ch/record/1708847/
http://cds.cern.ch/record/1708847/
https://cds.cern.ch/record/2133909/files/ATL-DAQ-PROC-2016-003.pdf
https://cds.cern.ch/record/2133909/files/ATL-DAQ-PROC-2016-003.pdf
https://doi.org/10.3204/DESY-PROC-2014-05/10
http://cds.cern.ch/record/1997225
http://cds.cern.ch/record/1997225
http://cds.cern.ch/record/1998498
http://cds.cern.ch/record/1998498
http://atlasexperiment.org/photos/full-detector-cgi.html
http://atlasexperiment.org/photos/full-detector-cgi.html

REFERENCES 55

[13] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008), pp. 110–
163.

[14] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008), pp. 164–
205.

[15] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008), pp. 6–
25.

[16] G. Golster. “ATLAS Trigger: Preparations for Run II”. MA thesis. CERN
/ The Niels Bohr Institute, June 2015.

[17] Yu Nakahama. “The ATLAS Trigger System: Ready for Run-2”. In:
Journal of Physics: Conference Series 664.8 (2015), p. 082037. URL: http:
//stacks.iop.org/1742-6596/664/i=8/a=082037.

[18] A. Valero on behalf of the ATLAS Collaboration. A new read-out ar-
chitecture for the ATLAS Tile Calorimeter Phase-II Upgrade. CERN CDS.
2015. URL: https://cds.cern.ch/record/2117093/files/
ATL-TILECAL-PROC-2015-025.pdf. Accessed February 2017.

[19] The ATLAS Collaboration. Atlas TDAQ Software Projects and Tools. 2017.
URL: https://gitlab.cern.ch/atlas-tdaq-software.

[20] J. D. Owens et al. “A Survey of General-Purpose Computation on
Graphics Hardware”. In: Computer Graphics Forum 26.1 (Mar. 2007),
pp. 80–113. URL: https://www.researchgate.net/publication/
227633811_A_Survey_of_General-Purpose_Computation_
on_Graphics_Hardware.

[21] Robert G. Brown. Amdahl’s Law and Parallel Speedup. Aug. 2008. URL:
http://www.phy.duke.edu/~rgb/brahma/brahma_old/
als/als/node3.html. Accessed December 2016.

[22] NVIDIA Corporation. CUDA. 2016. URL: http://www.nvidia.
com/object/cuda_home_new.html. Accessed December 2016.

[23] NVIDIA Corporation. CUDA C Programming Guide. 2016. URL: http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#axzz4TGcIMwea. Accessed December 2016.

[24] NVIDIA Tegra K1 Embedded Platform Design Guide. NVIDIA Corpora-
tion, 2015. URL: http://developer.download.nvidia.com/
embedded /jetson / TK1 /docs / 3 _HWDesignDev / TegraK1 _
Embedded_DG_v03.pdf. Accessed February 2017.

http://stacks.iop.org/1742-6596/664/i=8/a=082037
http://stacks.iop.org/1742-6596/664/i=8/a=082037
https://cds.cern.ch/record/2117093/files/ATL-TILECAL-PROC-2015-025.pdf
https://cds.cern.ch/record/2117093/files/ATL-TILECAL-PROC-2015-025.pdf
https://gitlab.cern.ch/atlas-tdaq-software
https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware
https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware
https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware
http://www.phy.duke.edu/~rgb/brahma/brahma_old/als/als/node3.html
http://www.phy.duke.edu/~rgb/brahma/brahma_old/als/als/node3.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz4TGcIMwea
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz4TGcIMwea
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz4TGcIMwea
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/TegraK1_Embedded_DG_v03.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/TegraK1_Embedded_DG_v03.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/TegraK1_Embedded_DG_v03.pdf

56 REFERENCES

[25] GeForce 840M. NVIDIA Corporation, 2017. URL: http://www.geforce.
com/hardware/notebook-gpus/geforce-840m/specifications.
Accessed February 2017.

[26] TESLA K80 GPU ACCELERATOR. NVIDIA Corporation, 2015. URL:
https://images.nvidia.com/content/pdf/kepler/Tesla-
K80-BoardSpec-07317-001-v05.pdf. Accessed February 2017.

[27] Intel R© CoreTM i7-5500U Processor. Intel Corporation, 2017. URL: https:
/ / ark . intel . com / products / 85214 / Intel - Core - i7 -
5500U-Processor-4M-Cache-up-to-3_00-GHz. Accessed
February 2017.

[28] J. Pettersson. Fast GPU based reduction sum. 2015. URL: http://pastebin.
com/sZCwbHVH. Accessed February 2017.

[29] Xilinx Inc. Field Programmable Gate Array (FPGA). 2017. URL: https:
//www.xilinx.com/training/fpga/fpga-field-programmable-
gate-array.htm. Accessed February 2017.

[30] M. A. Cox. “Energy Reconstruction on the LHC ATLAS TileCal Up-
graded Front End: Feasibility study for a sROD Co-Processing Unit”.
MA thesis. University of the Witwatersrand, Oct. 2015.

[31] PCI-SIG. Specifications Library. 2017. URL: https://pcisig.com/
specifications.

[32] J M Seixas and ATLAS Tile Calorimeter System. “Quality Factor for
the Hadronic Calorimeter in High Luminosity Conditions”. In: Jour-
nal of Physics: Conference Series 608.1 (2015), p. 012044. URL: http:
//stacks.iop.org/1742-6596/608/i=1/a=012044.

[33] Collaboration ATLAS. Letter of Intent for the Phase-II Upgrade of the AT-
LAS Experiment. Tech. rep. CERN-LHCC-2012-022. LHCC-I-023. Geneva:
CERN, Dec. 2012. URL: https://cds.cern.ch/record/1502664.

[34] S Kama et al. “Triggering events with GPUs at ATLAS”. In: Journal
of Physics: Conference Series 664.9 (2015), p. 092014. URL: http://
stacks.iop.org/1742-6596/664/i=9/a=092014.

[35] M. Bauce et al. “Use of hardware accelerators for ATLAS computing”.
In: Proceedings, GPU Computing in High-Energy Physics (GPUHEP2014):
Pisa, Italy, September 10-12, 2014. 2015, pp. 48–54. DOI: 10 . 3204 /
DESY- PROC- 2014- 05/10. URL: http://inspirehep.net/
record/1386621/files/10.pdf.

http://www.geforce.com/hardware/notebook-gpus/geforce-840m/specifications
http://www.geforce.com/hardware/notebook-gpus/geforce-840m/specifications
https://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf
https://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf
https://ark.intel.com/products/85214/Intel-Core-i7-5500U-Processor-4M-Cache-up-to-3_00-GHz
https://ark.intel.com/products/85214/Intel-Core-i7-5500U-Processor-4M-Cache-up-to-3_00-GHz
https://ark.intel.com/products/85214/Intel-Core-i7-5500U-Processor-4M-Cache-up-to-3_00-GHz
http://pastebin.com/sZCwbHVH
http://pastebin.com/sZCwbHVH
https://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
https://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
https://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
https://pcisig.com/specifications
https://pcisig.com/specifications
http://stacks.iop.org/1742-6596/608/i=1/a=012044
http://stacks.iop.org/1742-6596/608/i=1/a=012044
https://cds.cern.ch/record/1502664
http://stacks.iop.org/1742-6596/664/i=9/a=092014
http://stacks.iop.org/1742-6596/664/i=9/a=092014
https://doi.org/10.3204/DESY-PROC-2014-05/10
https://doi.org/10.3204/DESY-PROC-2014-05/10
http://inspirehep.net/record/1386621/files/10.pdf
http://inspirehep.net/record/1386621/files/10.pdf

REFERENCES 57

[36] D. Emeliyanov on behalf of the HLT GPU demonstrator group. HLT
GPU demonstrator project. Indico. 2016. URL: https://indico.cern.
ch/event/438204/contributions/1939229/attachments/
1235352/1813380/HLT_GPU_demonstrator_project_SC_
Week_01_03_2016.pdf#search=HLT%20GPU%20demonstrator%
20project. Accessed April 2017.

[37] J. Baines. Trigger GPU Demonstrator Update. Indico. 2016. URL: https:
//indico.cern.ch/event/575539/. Accessed April 2017.

[38] J. Baines and T. Bold. ATLAS Trigger GPU Demonstrator Performance
Plots. CERN CDS. 2016. URL: https://twiki.cern.ch/twiki/
bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults.
Accessed April 2017.

[39] V. Halyo et al. “GPU enhancement of the trigger to extend physics
reach at the LHC”. In: Journal of Instrumentation 8.10 (2013), P10005.
URL: http://stacks.iop.org/1748- 0221/8/i=10/a=
P10005.

https://indico.cern.ch/event/438204/contributions/1939229/attachments/1235352/1813380/HLT_GPU_demonstrator_project_SC_Week_01_03_2016.pdf#search=HLT%20GPU%20demonstrator%20project
https://indico.cern.ch/event/438204/contributions/1939229/attachments/1235352/1813380/HLT_GPU_demonstrator_project_SC_Week_01_03_2016.pdf#search=HLT%20GPU%20demonstrator%20project
https://indico.cern.ch/event/438204/contributions/1939229/attachments/1235352/1813380/HLT_GPU_demonstrator_project_SC_Week_01_03_2016.pdf#search=HLT%20GPU%20demonstrator%20project
https://indico.cern.ch/event/438204/contributions/1939229/attachments/1235352/1813380/HLT_GPU_demonstrator_project_SC_Week_01_03_2016.pdf#search=HLT%20GPU%20demonstrator%20project
https://indico.cern.ch/event/438204/contributions/1939229/attachments/1235352/1813380/HLT_GPU_demonstrator_project_SC_Week_01_03_2016.pdf#search=HLT%20GPU%20demonstrator%20project
https://indico.cern.ch/event/575539/
https://indico.cern.ch/event/575539/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults
http://stacks.iop.org/1748-0221/8/i=10/a=P10005
http://stacks.iop.org/1748-0221/8/i=10/a=P10005

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Abbreviations
	Introduction
	Big Data at the ATLAS Detector at the LHC
	GPGPU in ATLAS

	Motivation for Research
	Problem Statement and Layout of Dissertation
	Problem Statement
	Layout of Dissertation

	The ATLAS Experiment at the LHC
	The Large Hadron Collider
	The ATLAS Detector
	Inner Detector
	Calorimeters
	Muon Spectrometer

	ATLAS Trigger and DAQ System
	Trigger Operation
	The Low-Level Trigger
	The High-Level Trigger

	GPU
	GPGPU
	The Evolution of the GPU
	Many-core Processors
	What Computations Benefit from GPU Implementation?
	Performance Limits
	The CUDA Programming Platform
	CUDA Kernel
	Thread Hierarchy
	Nvidia GPU Memory Structure

	GPU Characterisations, Benchmarks, and Comparisons
	Introduction
	Hardware
	Methods
	Results and Analyses
	Sum Reduction
	Matrix Multiplication Benchmarks
	Memory Bandwidth Benchmarks

	Selecting GPUs for GPGPU Application

	GPGPU in ATLAS Level-1 Trigger
	ATLAS Level-1 Trigger
	FPGA Use in Trigger Front-end

	GPGPU in the Level-1 Trigger
	Limitations of GPGPU in Online Environment
	Heterogeneous Co-Processing Unit
	A GPU-ARM based PU

	Potential Functionality for GPU to Execute
	Processing of High Quality-Factor Events
	Facilitating Less Dead-time

	Conclusion

	Heterogenous Computing Platforms in the ATLAS HLT
	Introduction
	HLT Upgrade

	GPU Demonstrator
	Accelerator Process Extension

	Algorithms Tested by GPU Demonstrator
	Inner Detector Tracking
	Calorimeter Clustering

	Analysis of GPU Demonstrator Results
	ID Tracking Results
	Calorimeter Clustering Results
	Combined ID Tracking and Calorimeter Clustering

	Critical Analysis
	Necessity of Improved Algorithms
	Co-PU in HLT
	Porting APE to ARM Architecture

	Conclusion
	GPU Performance Parameters
	GPGPU in the Level-0/1 Trigger
	GPGPU in the HLT Trigger
	Future Work
	In the Level-0/1
	In the HLT

	References

