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ABSTRACT

Hepatitis B virus (HBV) infection is endemic to several populous regions and is 

often complicated by cirrhosis and hepatocellular carcinoma (HCC). Present 

treatment of chronic HBV infection is usually ineffective and novel therapeutic 

approaches are an important medical objective. The X open reading frame (ORF) 

of HBV, HBx, is a conserved sequence that overlaps with the polymerase ORF 

and viral c/'s-elements, and is present within all viral transcripts. In addition, the 

HBx ORF encodes a 17 kDa transactivator protein, HBx, which is required for the 

establishment of viral infection and has been implicated in HBV-associated 

hepatocarcinogenesis. The HBx sequence thus represents a compelling target for 

applying nucleic acid hybridisation-based therapeutic agents for the inhibition of 

HBV gene expression and replication.

Hammerhead ribozymes are RNA enzymes that can be designed to 
hybridise to short complementary RNA sequences and catalyse the specific 

endonucleolytic cleavage of the phosphodiester backbone in trans at conserved 5' 

NUH 3' triplet sequences. Trans-cleaving hammerhead ribozymes have been 

applied as therapeutic agents to a number of different diseases for the targeted 

‘knockdown’ of both viral and cellular gene expression. Although previous studies 
have shown that HBV RNA is susceptible to hammerhead ribozyme cleavage in 

vitro, the intracellular inhibitory effects of hammerhead ribozymes targeted to HBV 

remained unresolved.

Liver-derived cells were co-transfected with anti-HBx ribozyme 
expression vectors (along with catalytically inactive and antisense RNA control 

vectors) together with plasmids that constitutively express HBx or reconstitute 

intracellular HBV infection. Hammerhead ribozymes that were catalytically active 

in vitro were able to inactivate HBx mRNA, and inhibit HBx trans-activation 

function in cultured cells. Using a replication-competent HBV vector, ribozymes 

inhibited markers of HBV replication by inhibiting viral gene expression and 

decreasing the secretion of HBsAg and HBeAg into the culture medium. To 

confirm ribozyme antireplicative effects, a sensitive in situ measurement of 

ribozyme action in co-transfected Huh7 cells was assessed using an HBV vector, 
where the preS2/S region was replaced by DNA encoding enhanced green



fluorescent protein (EGFP). Ribozymes inhibited EGFP marker gene expression in 

situ and provided an accurate measurement of ribozyme antireplicative efficacy in 

cell culture. Flowever, the data do not exclude a dominant antisense effect.

Vectors were developed that include head-to-tail concatamers of 

different ribozyme-encoding units, each with a respective 3'-flanked cis 

complementary target cleavage sequence. The aim was to generate expression 
cassettes encoding single transcripts with many c/s-cleaving hammerhead 

ribozymes that retain the ability to cleave simultaneously in trans. All multimeric 

hammerhead ribozyme transcripts generated in vitro, self-cleaved to release 5' 

and 3' trimmed trans-acting hammerhead ribozymes. Expression vectors that 

encode multimeric cis- and trans-cleaving hammerhead ribozymes decreased 

HBsAg and FIBeAg secretion when co-transfected along with HBV vectors in Fluh7 

cells. These ribozymes demonstrated an improved antireplicative effect when 

compared to previous single-unit, or catalytically defective ribozyme controls. The 

most elaborate multimeric hammerhead ribozyme expression vector, a 24-mer 

construct, that generates eight units of each of the three ribozymes, inhibited 

EGFP marker gene expression 10-15% more efficiently than single-unit ribozyme 

counterparts when measured in situ using a modified HBV EGFP vector.

In conclusion, the hammerhead ribozyme-encoding vectors generated 

represent a significant improvement on previously described anti-HBV ribozyme 

constructs. Moreover, the HBx ORF proved to be a suitable target site for 

hammerhead ribozyme-mediated inhibition of HBV gene expression and markers 

of replication in cell culture. For future use in vivo, expression cassettes encoding 

multimeric hammerhead ribozymes may be incorporated into liposomes or viral 

delivery vectors. Should the endogenously expressed hammerhead ribozymes 

presented in this thesis prove to be safe and efficacious in animal models of viral 

infection they may be further applied as therapeutic agents for the treatment of 

chronic HBV infection.
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1.0 INTRODUCTION

The hepatitis B virus (HBV) is an aetiological agent of both acute and chronic 

viral hepatitis. Chronic HBV infection represents a worldwide health problem. It is 

estimated that 375 million people are infected, that is, over 5% of the world’s 

population (World Health Organisation, 1998). Endemic areas include sub- 

Saharan Africa, east and South-East Asia, and the western Pacific islands. In 
these regions between 8-15% of the population are chronic carriers (Beasley et 

ai, 1981). Although clinical manifestations of infection vary considerably, there is 

a strong correlation between chronic HBV infection and the risk of developing 

cirrhosis and hepatocellular carcinoma (HCC) (Robinson, 1994). In fact, nearly 

25% of deaths in chronic carriers can be attributed to HCC (Beasley, 1988) 

which, along with cirrhosis, is the primary cause of morbidity and mortality in 

chronic HBV infected individuals.

Antiviral chemotherapy, using immune modulators and nucleoside 

analogues, remains presently the only treatment option for chronic HBV infection 

(Ganem, 1998; Lok, 2000). None of the many different chemotherapeutic 

strategies used at present and in the past has proven consistently successful. 

Moreover, chronic HBV infection continues to persist despite the availably of a 

suitable prophylactic vaccine for over 20 years. The global implementation of 

HBV vaccines, within the Expanded Programme on Immunisation (EPI), has not 

achieved the desired penetration, especially in sub-Saharan Africa.

An effective treatment of HBV remains elusive and represents an 

important medical objective. New knowledge will come from a better 

understanding of HBV replication and pathogenesis as well as from the 

propagation of new molecular tools for the treatment of viral diseases. One such 

approach is in the application of ribonucleic acid (RNA) catalysts, or ribozymes, 

which hold much promise as novel molecular therapeutic agents. The enzymatic 

effects of ribozymes have recently been examined for their therapeutic potential 

in a number of different acquired and inherited diseases (James and Gibson,

1998). Ribozymes can in principle be designed to inhibit HBV gene expression 
and viral replication and prevent the onset of disease-causing sequelae of 

chronic HBV infection. Of particular interest is the therapeutic potential of the



hammerhead ribozymes, which are the most versatile of the naturally occurring 
ribozymes (Birikh et al., 1997b; Bramlage et al., 1998). Although presynthesized 

hammerhead ribozymes can be constructed as therapeutic agents (Usman and 

Blatt, 2000), hammerhead ribozymes can be exploited to induce their potential 

antiviral effects as RNA generated endogenously from a ribozyme-encoding 

expression cassette.

In this thesis the antiviral potential of hammerhead ribozymes targeted 
to unique sequences within HBV was determined using cell culture models of 

HBV infection. Hammerhead ribozymes targeted to HBV have, to date, only been 

tested in vitro. Plasmid vectors were generated such that they expressed single

unit and/or multiple-unit hammerhead ribozymes. These ribozymes and their 

catalytically inactive ribozyme controls were tested along with antisense RNAs 

using assays that were specifically designed to test the efficacy of nucleic acid- 
mediated inhibition of HBV in cell culture. By characterising the effects of 

hammerhead ribozymes as intracellular inhibitors, the feasibility of these 

endogenously expressed nucleic acids was established for the future treatment of 

chronic HBV and the prevention of hepatocarcinogenesis.

1.1 Hepatitis B virus biology

1.1.1 Hepadnaviruses

HBV was first identified in 1965 by Blumberg as a new antigen in leukaemic sera 

of native Australians and was originally referred to as the “Australia antigen” 
(Blumberg et al., 1965). Only later was this antigen shown to be the viral surface 

antigen or HBsAg. In 1970, Dane managed to isolate an infectious complete 

particle and identify it by electron microscopy (Dane et al., 1970). Since then, 

significant strides have been made in characterising HBV biology, epidemiology 

and pathogenesis.
Human HBV represents the prototype of the Hepadnaviridae, a family 

of small DNA viruses that persistently infect liver cells and whose genome is the 

smallest known for mammalian viruses. The hepatocyte is the only confirmed site 

of replication for all members of this virus family. Nevertheless, HBV has been 

shown to infect bile ductule epithelial cells and a number of extrahepatic sites.



These include, but are not necessarily limited to, cells of the pancreas, kidney 
and lymphoid systems (Blum et al., 1984; Nicoll et al., 1997). HBV shares 70% 

sequence homology with mammalian hepadnaviruses discovered in woodchucks 

(Summers et al., 1978) and in various ground squirrel species (Marion et al., 

1980). Old and New World primates possess wild-type infection of HBV 

subvariants that may prove to be species specific (Takahashi et al., 2001). 

Human HBV is, however, capable of infecting chimpanzees, baboons and other 
great apes as well as various marsupials (Seeger and Mason, 2000). More 

distantly related viruses have been found in ducks (DHBV) (Mason et al., 1980), 

wild herons (Sprengel et al., 1988) and recently in white storks (Pult et al., 2001). 

Domestic geese and other hosts are susceptible to infection from other avian 
hepadnaviral species (Marion et al., 1987). Avian hepadnaviruses are grouped in 

the genus avihepadnavirus and share a similar genome structure, albeit with little 

sequence homology, to the mammalian hepadnaviruses, which belong to the 
genus orthohepadnavirus.

There are other significant differences between avian and mammalian 

hepadnaviruses. The genome of the avihepadnaviruses, which is slightly smaller 

than the orthohepadnaviruses, codes for two surface envelope proteins (as 

opposed to three in the mammalian viruses), and lacks the open reading frame 

(ORF) for a multifunctional protein termed HBx (Sprengel et al., 1988). There 

does, however, appear to be a sequence vestige of the HBx ORF in the 

avihepadnaviruses, suggesting that HBx was present at some point in the 

evolution of the avian viruses (Lin and Anderson, 2000; Netter et al., 1997). Both 

avian and mammalian viruses are often used as models to study the molecular 

biology of HBV, particularly with respect to the infection cycle, host immune 

response and disease-causing sequelae of chronic infection such as cirrhosis 

and liver cancer. More specifically, the woodchuck hepatitis virus (WHV) is used 

predominantly as a model of viral-induced hepatocarcinogenesis as DHBV- 

infected ducks or geese do not develop viral-associated HCC (Seifer et al., 
1991).



1.1.2 HBV structure, genome and transcripts

The genome of HBV, within virus particles or spherical virions (Dane particle), is 

composed of relaxed-circular, partially double-stranded DNA (pdsDNA) (Figures

1.1 and 1.2) (Robinson et al., 1974). The long, full-length minus-strand is 

approximately 3200 nucleotides (nt) in length and has a protein (the viral 

polymerase) covalently bound to its 5' terminus. The plus-strand, which varies 

between 1700 and 2800 nt in length, depending on species and subtype, has a 

capped oligoribonucleotide at its 5' end. The plus-strand maintains genome 

circularity by a cohesive overlap across the 5' and 3' termini of the minus-strand.
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Figure 1.1 A diagrammatic illustration of an infectious HBV virion or ‘Dane’ particle. The 
envelope bilayer contains the large (L), middle (M) and small (S) surface 
glycoproteins. The preS1 domain of L is displayed on both internal and 
external virion compartments (Prange and Streeck, 1995). The partially double 
stranded DNA (pdsDNA) genome is present within the icosahedral 
nucleocapsid. The 5’ end of the complete minus-strand DNA is covalently 
linked to the terminal protein (TP) domain of Polymerase (P). Hsc70 
represents a cellular chaperone, which co-purifies with virions and S particles 
(Nassal, 1999).

The HBV genome includes four ORFs that encode at least seven translation 

products through the use of varying in-frame initiation codons. These translation 

products include three surface antigens (HBsAg), the envelope glycoproteins 
preS1, preS2, and S; core (C or HBcAg) and e antigens (HBeAg); viral 

polymerase (P); and the X protein (HBx) (Figure 1.2). The genome is also replete 
with c/s-elements required for the regulation of HBV gene expression and
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Figure 1.2 Transcriptional and translational organisation of the hepatitis B virus genome 
(strain ayw). Co-ordinates of the genome are given relative to the single 
EcoRI restriction site. Partially double stranded (pds) HBV DNA comprises + 
and - strands with cohesive complementary 5' ends. Attached to the 5' end 
of the - DNA strand is a terminal protein (TP), whilst the 5' end of the + 
strand includes a short RNA oligomer cap. The c/s-elements that regulate 
HBV transcription are represented by the circular and rectangular symbols. 
The positions of direct repeats DR1 and DR2 are indicated as black 
rectangles. Thick circular arrows immediately surrounding the genome 
indicate the viral open reading frames (with initiation codons) that 
encompass the entire genome. Four outer arrows, that give the 5' to 3' 
polarity, indicate the HBV transcripts. Multiple arrowheads at the 5' ends of 
the PreC/Pregenome and PreS2/S transcripts indicate heterogeneous 
transcription start sites. The common 3' end of all the HBV transcripts is 
depicted by the identical termination site and sequences that overlap with 
the HBx transcript.



replication. These include viral promoters, enhancers and signal regions. The 5' 

terminus of both strands contains regions of short (11 nucleotide) direct repeats, 

DR1 and DR2, which are essential for priming the synthesis of their respective 

DNA strands during replication. HBV’s compact coding organisation ensures that 

every nucleotide falls within a transcribed region and that 50% of translated 

sequences are present in more than one ORF.

Covalently closed circular HBV DNA (cccDNA) is the template for both 

genomic and subgenomic viral transcript mRNAs, which are produced using cellular 

RNA polymerase II. The 5' terminus of the preC/pregenome and preS2/S 

transcripts both have heterogeneous transcription start sites. The HBx transcript, 

however, has only one unique start site. The preC and pregenomic RNA 

(preC/pgRNA) transcripts, which are approximately 3500 nt in size, are more than a 

full genome in length and contain terminal repeats at each end (Figure 1.2). The 

pgRNA transcript is unique in that, apart from being the genomic template for 

reverse transcription, it represents the mRNA for production of the core protein as 

well as the viral polymerase protein (Summers and Mason, 1982). Unlike the 

pgRNA, the genomic preC mRNA is not encapsidated (Jeong et al., 2000; Nassal et 

al., 1990). The S transcript is 2400 nt in length whilst the preS2 family of transcripts 

are roughly 2100 nt in size. The HBx mRNA is a single 900 nt transcript. The 

presence of a common 3' polyadenylation termination signal on the FIBV genome 

results in all transcripts sharing the same 3' terminal sequences (see section 

1 .1 .4.2).

1.1.3 Viral gene products
1.1.3.1 Core and preC/eAg

The core ORF contains two in-frame initiation codons that divide it into the pre 

core (preC) and core (C) domains. Translation from the C initiation codon results 

in the formation of the viral core or capsid protein, C (or HBcAg). Core proteins 

dimerise and assemble independently to form an icosahedral nucleocapsid, 
which is 22 to 25 nm in diameter (Chang et al., 1994). Short carboxy-terminal 

truncated core proteins can induce the formation of smaller nucleocapsid shells 
(Conway et al., 1998). Translation from the preC initiation codon results in the 
synthesis of a fusion protein containing a signal peptide (Ou et al., 1986). The



signal peptide targets the fusion protein for translocation through the lumen of the 

endoplasmic reticulum and onto a pathway where proteolytic cleavage of the 

carboxy- and amino-termini generates a soluble secreted product, the HBeAg 

(Bruss and Gerlich, 1988). Although the exact function of the eAg is unknown, its 

detection in serum is an important clinical marker as its presence indicates active 
viral replication.

1.1.3.2 Surface proteins

Surrounding the viral core is a lipid envelope which is derived from the host cell 

membrane and endoplasmic reticulum (Kamimura etal., 1981). The infectious 42 

nm virion or Dane particle contains an envelope with three classes of surface 

proteins embedded in the lipid membrane: small (S), middle (M) and large (L). All 

three surface proteins are glycosylated and form stable, transmembrane 

structures. The S protein (226 amino acids long) defines the S domain. The two 

larger proteins, M and L, contain S plus two additional amino terminal extensions 

(Seeger and Mason, 2000). The preS2 extension defines the extra domain of M, 

whilst L consists of both preS1 and preS2 domain extensions. Infectious particles 

are composed of up to 70% S, with the remainder of the particle constituted by 

approximately equal amounts of M and L (Heermann et a!., 1987). These 

envelope glycoproteins are also secreted in the form of small, non-infectious, 

non-DNA-containing, lipoprotein particles. These subviral particles are 

abundantly secreted and greatly outnumber the infectious HBV virions. Subviral 

particles are found in two forms: spheres, which consist of mainly S and M 

proteins; and filaments, which have slightly more L protein than spheres 

(Heermann et at., 1984). Owing to the abundance of subviral particles in infected 

sera, they are thought to be largely responsible for the immune complex 

syndromes that occur in transient infections and may possibly act as decoys for 

anti-S neutralising antibodies (Seeger and Mason, 2000).

Although much remains to be ascertained, the specific function of the 

surface proteins appears to be in selectively transporting the nucleocapsid into 

and out of the host hepatocyte without causing cellular lysis. The preS1 domain 

appears to have a dual role in HBV biology. PreS1 is both a ligand to core



Figure 1.3 Schematic illustration of the HBV infection and replicative cycle within the hepatocyte. Infectious virions attach to a cellular receptor(s) 
and uncoat, releasing nucleocapsids that migrate to the cell nucleus. The pdsDNA genome is converted to cccDNA, which is the 
template for the transcription of four viral transcripts. Translation occurs following transcript export to the cytoplasm. The pgRNA 
interacts with two gene products, Polymerase (P) and Core (C), to form immature, RNA packaged, nucleocapsids. The preC/pgRNA is 
reverse transcribed into DNA by P. The DNA genome can be either redelivered to the nucleus, or nucleocapsids can be coated by 
surface glycoproteins (in the Golgi and endoplasmic reticulum) before being exported as enveloped virions.



particles during viral envelope assembly (which is why a fraction of L particles 
display the preS1 domain towards the cytosolic interior), and a substrate to an 

unidentified host cell receptor during viral infection (Nassal, 1999) (Figure 1.3). 

Although antibodies to S alone provide sufficient protection against all strains of 

HBV, the preS1 epitope is also suited for the generation of virus-neutralising 

antibodies (Lambert, 1991). The precise function of preS2, however, is not as 

well understood but appears not to be required for viral infection (Fernholz et at.,

1993).

1.1.3.3 Polymerase

The P ORF encodes the viral polymerase, which is translated from an internal 

initiation codon on the viral preC/pgRNA. The P ORF is not in frame with the C 

ORF (Chang et at., 1989) and the P gene is transcribed as part of a second 

cistron of the preC or pgRNA transcript and thus lacks its own direct upstream 

promoter element. Regulation of P appears, therefore, to be at the level of 

translation. Translation of P requires ribosomal ‘scanning’ of the preC/pgRNA and 

thus P is produced less efficiently than either eAg or C proteins (Seeger and 
Mason, 2000).

HBV polymerase is responsible for both DNA- and RNA-dependent 

DNA polymerase activity during viral DNA replication (Toh et al., 1983). P is 

further endowed with two functional domains: the terminal protein (TP) at its 

amino terminal, and RNase H-like activity at its carboxy-terminal (Radziwill et al.,

1990). The TP is found covalently linked to the 5' end of HBV minus-strand DNA 

and is important for the packaging of the RNA pregenome as well as acting as a 

primer for reverse transcription (Wang and Seeger, 1993).

The viral polymerase is principally responsible for reverse transcription 

of pgRNA to produce minus-strand DNA, concomitant degradation of the RNA 

template, and synthesis of plus-strand DNA. P is also required as a structural 

component for the packaging of pgRNA into immature core particles 
(Bartenschlager et al., 1990) and may play a role in orchestrating entry into the 

host cell nucleus for early replication (Wang and Seeger, 1993).



1.1.3.4 X Protein, HBx

Considering the efficient utilisation of sequence space by HBV, with significant 

portions of the viral genome coding for more than one protein, it is expected that 

a coding region unique to hepadnaviruses would reveal a protein whose function 

is obvious in the biology of the virus. However, understanding the biological role 

of the X protein, HBx, has been far from simple. The name, ‘X’ gene, was 
assigned when no amino acid sequence homology was observed with the 

existing database of viral or cellular proteins (Miller and Robinson, 1986).

HBx is a small, 17 kDa protein and although poorly immunogenic, 

produces antibodies in sera of infected humans and naturally infected animals 

(Feitelson and Clayton, 1990). Although the specific function of HBx in natural 

infection remains elusive, its presence is necessary for the establishment of viral 

infection in vivo in animals (Chen et al., 1993; Zoulim et al., 1994). HBx appears 

to possess a multitude of activities in vitro, although few of these define a specific 

role for this protein during viral replication.

HBx has been shown to activate the transcription of a variety of viral 

and host cellular genes (Caselmann, 1996; Rossner, 1992). This indiscriminate 

or ‘promiscuous’ trans-activation activity appears to be via an indirect process. 

HBx, without DNA-binding domains, cannot act alone. Although it appears that 

trans-activation is supplementary to HBx’s intended primary function, recent 

studies suggest a more prominent role for this function in the HBV life cycle as 

HBx was shown to activate transcription of the core gene in vivo in HBx 

transgenic mice (Reifenberg et al., 1999). Apart from modulating transcription, 

HBx is a multifunctional viral regulator that adapts cell responses to genotoxic 

stress (by modulating or affecting DNA repair and apoptosis), protein 

degradation, signalling pathways, and cell cycle checkpoints (reviewed in 

Arbuthnot et al., 2000). These modulations affect viral replication, directly or 

indirectly, and in turn provide insight into the possible role of HBx in the aetiology 

of HBV-induced carcinogenesis (see section 1.1.7.3). The overwhelming array of 

host-cell factors that are associated with HBx (as well as other viral factors) 

underscores the exquisite sensitivity and specificity which HBV enjoys in its 
natural cellular environment.



1.1.4 Viral cis-elements
1.1.4.1 HBVpromoters and enhancers

Transcription of the four ORFs is controlled by four promoter elements: preS1, 

preS2, core and X promoter (Figure 1.2). Two viral enhancer elements, 

enhancers I (Enhl) and II (Enhll), located upstream of the core promoter (CP), as 
well as cis-acting negative regulatory elements, are necessary for regulation of all 

viral genes (Schaller and Fischer, 1991b). The basic (basal) core promoter (BCP) 

along with an uptream regulatory region (URR), constitute the major functional 

elements of the core promoter. Although the BCP lacks the canonical TATA box 

sequence, distinct TATA-box like sequences form part of two partially overlapping 
yet genetically distinct cis-acting elements that independently drive the 

transcription of both preC and pgRNA transcripts (Yu and Mertz, 1996). URR can 

be further divided into positive and negative regulatory regions (Guo et al., 1993). 

The core upstream regulatory sequence (CURS) region contains several 
domains (c/'s-elements) that stimulate BCP activity. Two domains in the CURS 

region (CURS-A and CURS-B) span most of the Enhll sequence. However, 

unlike CURS, which is position and orientation dependent in activating BCP, 

Enhll activates preS1, preS2 and X promoters alone and functions indifferently to 

its position and orientation (Kramvis and Kew, 1999). Further upstream of the 

BCP and CURS is a negative regulatory element (NRE), which acts to suppress 

BCP and Enhll activity (Lo and Ting, 1994). In addition, a number of liver-derived 

transcription factors bind to the BCP and its upstream regulatory sequence as 

well as other viral promoters in order to modulate viral transcription (reviewed by 

Kramvis and Kew, 1999, and Schaller and Fischer, 1991a).

The preS1 and preS2 promoters control the expression of the surface 

transcript mRNAs and accurately regulate the abundance of each of the three 
surface glycoproteins. The preS1 promoter regulates transcription of the entire S 

ORF, which is translated into the large surface protein (L). The preS2 promoter 

controls transcription of a family of transcripts resulting in middle (M) and small 

(S) surface proteins upon translation. Unlike the preS1 promoter, the preS2 

promoter lacks a TATA box and is contained within two ORFs (Schaller and 
Fischer, 1991a). Although present on all viral transcripts, the HBx ORF encodes 

a unique HBx transcript, which is under its own transcriptional control. Uniquely,



the X promoter overlaps with the 3'-end sequence of Enhl. However, the minimal 

X promoter can be separated from Enhl whilst retaining its function (Guo et al.,

1991). Since Enhl dramatically influences the transcription of preC/pgRNAs and 

HBx mRNA (Hu and Siddiqui, 1991), the virus must avoid the impact of promoter 

occlusion. Seeger and Mason speculate that different cccDNA templates, which 

behave like mini-chromosomes, may differentiate promoter-coupled transcription 

events (Seeger and Mason, 2000). Additionally, the X promoter contains cis- 

elements for binding of transcription factors, some of which are liver-specific. This 

includes the tumour suppressor protein, p53, which has been shown to 

downregulate the function of the X promoter.

1.1.4.2 Polyadenylation signal

All HBV transcripts share the same 3' termini due to the presence of a common 

polyadenylation signal on the cccDNA viral genome. PreC/pgRNA transcripts are 

larger-than-genome-length since RNA polymerase II skips the polyadenylation 

signal on the first pass. The polyadenylation signal is only recognised on the 

second encounter (Russnak, 1991). The resultant transcripts possess terminal 

sequence repeats at both their 5' and 3' termini. The greater-than-genome-length 

pgRNA sequence is necessary for viral replication and packaging into 

nucleocapsids (see sections 1.1.4.3 and 1.1.5). A number of factors possibly 

affect the termination of transcription. The HBV polyadenylation signal (5' 

UAUAAA 3') is known to be less effective than the canonical eukaryotic 

polyadenylation signal sequence 5' AAUAAA 3', suggesting a necessary 

adaptation for the differential use by HBV (Russnak, 1991). More specifically, 

DHBV cccDNA possesses a c/s-element or positive effector of transcription 

(PET), which is located within the 5' transcribed region of the pgRNA-encoding 

sequence. The presence of PET ensures that RNA polymerase II skips the 

transcription termination site during first passage of pregenome transcription 

(Huang and Summers, 1994). Termination of transcription during the second 
encounter appears to be regulated by a second c/s-element, termed negative 

effector of transcription (NET) (Beckel-Mitchener and Summers, 1997).



1.1.4.3 Epsilon (a)

The terminal repeats of the pgRNA contain a stem-loop sequence, or epsilon (s), 

which plays a key role in HBV DNA encapsidation and reverse transcription. The 

location of s was determined by fusing heterologous genes to various regions of 

the HBV genome and by observing subsequent encapsidation (Junker-Niepmann 

etal., 1990; Pollack and Ganem, 1993). Despite the presence of terminal repeats 

on the pgRNA, only the 5 's retains functionality resulting in encapsidation of the 

pgRNA transcript, notwithstanding the fact that all HBV transcripts have the s 

coding region at their 3' ends. Analysis of s shows a series of inverted repeats 

that fold into a three-dimensional stem-loop structure. This stem-loop is 

conserved among all hepadnaviruses irrespective of differences in the primary 
sequence (Junker-Niepmann et a i, 1990). Polymerase recognises and directly 

interacts with s, initiating both encapsidation as well as reverse transcription of 

the HBV pgRNA (Fallows and Goff, 1995).

1.1.5 HBV life cycle

Although knowledge of the HBV replicative cycle is comprehensive, a number of 

important questions remain unanswered. Surprisingly, little is known about the 

mode of receptor-mediated infection of host hepatocytes. Most pertinently, the 

absence of cell lines susceptible to hepadnavirus infection has prevented an 

accurate understanding of the initial stages of viral infection. A large membrane 

glycoprotein termed gp180 or p170 (a protein of the carboxypeptidase D [CPD] 

family) has been identified as a component of the cellular receptor for DHBV 
(Breiner et a i, 1998; Urban et a i, 1998). Although human homologues of CPD 

have been identified, it appears that further receptor components are necessary 

for HBV-mediated infections in hepatocytes (Seeger and Mason, 2000).

Once inside the nucleus, using host-dependent factors, the virus 

converts its partially double-stranded genome into covalently closed circular DNA 
(cccDNA) through an as yet unknown mechanism of DNA repair. The presence of 

cccDNA in hepatocytes indicates a successful initiation of infection (Ruiz-Opazo 
et ai, 1982). CccDNA is the template for transcription of genomic and 

subgenomic viral mRNAs. The greater-than-genome-length pgRNA, which is



transcribed by cellular RNA polymerase II, represents the mRNAs (along with 

preC mRNAs) for the translation of P and C proteins as well as being the 

template for reverse transcription of minus-strand DNA (Schaller and Fischer, 

1991a). The pgRNA interacts, possibly simultaneously, with both its gene 

products, C and P. Translation of P and pgRNA packaging are tightly coupled 

events. Polymerase binds to the 5' end s (Figure 1.4A), and triggers the addition 

of core complex dimers, which allows for packaging into capsids (Figure 1.3) 

(Bartenschlager et al., 1990; Junker-Niepmann et a i, 1990). Reverse 

transcription takes place during capsid formation (Figure 1.4) (Nassal and 
Schaller, 1993).

A unique polymerase-linked DNA primer consisting of three or four 

nucleotides is synthesized using the bulge region of the stem-loop c as template 

(Tavis et al., 1994; Wang and Seeger, 1993) (Figure 1.4B). Following priming, the 

first of three template switches occurs. The short primer translocates to a 

homologous three/four-nucleotide sequence, which is part of direct repeat DR1, 

at the 3' end of the pgRNA (Figure 1.4C). Subsequently, minus-strand DNA 

synthesis continues within the immature nucleocapsid (Havert and Loeb, 1997). 

RNase H activity of P then degrades the pgRNA which is hybridised to the minus- 

strand DNA (Summers and Mason, 1982) (Figure 1.4D). Degradation is complete 

except for a short stretch at the 5' terminus (16-18 nt) which acts as the primer for 

synthesis of the complementary plus-strand viral DNA (Loeb et al., 1991; Seeger 

et al., 1986). This primer RNA is translocated to the second direct repeat (DR2) 

where the synthesis of plus-strand DNA is initiated (Figure 1.4E). Plus-strand 

DNA is extended to the physical end of minus-strand DNA using a short terminal 

repeat r followed by a template switch from the 5'- to the 3'-end of the minus- 

strand DNA (Flavert and Loeb, 1997). Failure to translocate, referred to as in situ 

priming (Staprans et al., 1991), leads to the synthesis of a double-stranded linear 

form of the viral genome, which is often observed in tissue culture. A third 

template switch enables the synthesis of the partially double-stranded DNA 

genome found in mature, infectious virions (Seeger et al., 1986) (Figure 1.4F). 

The plus-strand DNA maintains genome circularity through a cohesive overlap 

across the 5' and 3' ends of the minus-strand DNA.

Within the viral replicative cycle there are a number of potential targets 

for drug development. However, many of these await the identification of both
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Figure 1.4 Essential steps involved in hepadnaviral DNA replication starting from a newly transcribed pgRNA template, with terminal repeats (R), 5' 
cap and a polyA tail. A) The reverse transcriptase (P) binds to the epsilon (e) stem-loop structure near the 5' terminus of the pgRNA 
(blue). B) Reverse transcription is by a protein priming mechanism, utilising a tyrosine located near the amino terminus of the reverse 
transcriptase itself (Zoulim and Seeger, 1994). C) Following the synthesis of three or four bases in the bulge region of e, P translocates 
to the 3' terminus of the RNA template, where the four bases can anneal with a complementary sequence. D) Elongation of the minus- 
strand DNA (red) to the 5' end is concomitant with RNase H degradation of the pregenome sparing the 5' cap and DR1, which remain 
hybridised to the minus-strand. Completion of minus strand produces a short (~9 nt) terminal repeat (r) in the -  strand DNA. E) The 
remaining oligoribonucleotide fragment serves as primer for plus-strand DNA synthesis (green), following its translocation to DR2. 
Failure to translocate leads to a double-stranded, linear form of the viral genome (a process referred to as in situ priming). F) A third 
translocation occurs when the plus-strand DNA reaches the 5' terminus of the minus-strand, circularising the molecule and allowing 
continued plus-strand elongation. This translocation is facilitated by the short terminal repeat on the minus strand DNA (r) (Nassal, 
1999).



viral and cellular determinants that are involved in each step of the viral life cycle 

Antiviral strategies to date have focused on inhibiting viral DNA polymerase or 

reverse transcriptase. Future antiviral targets under consideration include: viral 

attachment to the host cell, penetration and translocation to the nucleus, and 

uncoating of the viral nucleocapsid. More accessible targets include: viral 

transcription and translation, viral genome packaging, maturation of the viral 

nucleocapsid, and envelope formation. Of particular interest are the antiviral 

strategies that target HBV nucleic acid sequences. Since HBV sequences are 

distinct from that of the host hepatocyte, targeting the inhibition of viral gene 

expression and replication can be highly specific. The HBV genome life cycle 

uses both DNA and RNA as replicative intermediates. Consequently, therapeutic 

strategies that make use of nucleic-acid hybridisation may suppress viral 

replication and gene expression by degrading viral RNA intermediates or by 
blocking translation of important proteins necessary for viral propagation.

1.1.6 Serotypes and genotypes
1.1.6.1 Serotypes

Four serotypes, also known as subtypes of HBsAg, were initially defined by two 

mutually exclusive determinant pairs, d/y and w/r, and a common a determinant 

(Le Bouvier and McCollum, 1970). Nine different subtypes were identified 

following further subdivision of the w subdeterminant into w1 through to w4, and 

the acquisition of the q determinant. Thus in total, eleven subtypes have been 

identified: ayw, ayw2, ayw3, ayw4, adw2, adw4 (adw4q+ and adw4q~), adr, ayr, 

and adr (adrq+ and adrq'). Further modifications were later made by adding two 

compound subtypes: adyr and adwr (Courouce-Pauty et at., 1983).

1.1.6.2 Genotypes

To determine a molecular basis for the serological variations of HBsAg, variants 

of the HBV S gene were sequenced and compared. HBV sequence data 

established a phylogenetic relationship between HBV variants resulting in the 
definition of six HBV genotypes: A to F (Norder et at., 1993; Okamoto et at., 

1988). A possible seventh genotype, G, appears to correlate with the serotype



adw2 (Stuyver et ai, 2000). However, in general, the interrelation between the 

nine subtypes and the seven genotypes remains unclear. Genotypes A and D are 

prevalent in sub-Saharan Africa (Bollyky and Holmes, 1999; Bowyer et ai, 1997; 

Norder et al., 1994). The most divergent genotype is F, which is geographically 

distributed in South America. The F genotype differs by up to 14% from other 
HBV genomes (Norder et ai, 1993).

1.1.7 Pathogenesis
1.1.7.1 A cute and chronic HB V infection

Primary infection of HBV can result in both acute and chronic hepatitis. Acute 

hepatitis represents a transient infection which generally runs a course of one to 

six months, and which includes an asymptomatic period characterised by high- 
titre viraemia (1010 per ml). Both cellular and humoral immune responses to HBV- 

encoded antigens are responsible for viral clearance, and have been extensively 

reviewed elsewhere (Chisari and Ferrari, 1995).

The risk of developing a persistent or chronic infection following a 

usually mild acute infection is inversely correlated with age and 

immunocompetence (Hyams, 1995). Infections occur in less than 5% of adult 

individuals and in approximately 90% of neonates. The latter is usually through 

perinatal infection. Chronic infection is defined as the persistence of HBsAg in the 

serum of an individual for six months or longer (Evans and London, 1998). As 

HBV is not cytopathic, liver damage from chronic HBV infection is thought to be 

largely immune-mediated, in which various mechanisms are involved. These may 

include recognition of viral antigens (both expressed on hepatocytes and 

secreted) by B cell immunoglobulin receptors, and recognition of short, 

processed viral antigen peptides associated with human leucocyte antigen (HLA) 

molecules of the a-p heterodimer receptors on T cells (Chisari and Ferrari, 1995). 

Viral peptide fragments, processed within the infected hepatocyte, are presented 

along with HLA class I to CD8+ cytotoxic T cells, leading to both cytolytic and 
noncytolytic inhibition of viral replication (Guidotti et a i, 1996).

In chronically infected patients with little to no serum HBeAg levels, 

viral persistence appears to be through a ‘non-replicative’ mechanism as the rate 
of viral replication is low. HBV mutations in the preC gene can, however, result in



viral infection occurring in the absence of detectable serum HBeAg (Carman et 
al., 1989) and may be responsible for 95% HBeAg-negativity rate in sub-Saharan 

asymptomatic carriers of infection (Kramvis et al., 1997).

1.1.7.2 HBV and hepatocellular carcinoma (HCC)

The correlation between chronic HBV infection and the development of HCC is 

well established globally with several lines of evidence implicating the virus and 

its persistent infection in the aetiology of hepatocyte tumorigenesis (reviewed by 
Arbuthnot and Kew, 2001; Sherlock et al., 1970). In a cohort study in Taiwan, 

HBV chronic carriers showed a greater than 100-fold increased relative risk of 

developing HBV-associated HCC (Beasley et al., 1981), thus ranking chronic 

HBV infection as one of the worst environmental carcinogenic risk-factors known 

to humans. The relative risk of HBV-associated HCC varies depending on a 

number of factors, some of which include geographical environment, age and 

method of infection, the presence or absence of HBeAg, and the presence of 

cirrhosis (Figure 1.5 correlates the geographical distribution of HBV with HCC; 

reviewed by Arbuthnot and Kew, 2001).

Both direct and indirect processes are involved in establishing HBV- 

associated HCC. Integration of HBV into the chromosomes of infected 

hepatocytes, although not required for HBV replication, represents a direct 

mechanism of establishing HCC. Evidence of viral integration is observed in 

infected hepatocytes during the course of chronic infection with a higher 

proportion of viral integrants detected in HBV-associated HCC tumours (Brechot 

et al., 1981; Takada et al., 1990). Infected hepatocytes are susceptible to 

chromosomal integration of HBV DNA via an illegitimate recombination 

mechanism. The linear, double-stranded HBV DNA produced by in situ priming is 

the predominant precursor for integration (Gong etal., 1995; Yang and Summers,

1995). Integration often results in several heterogeneous rearrangements of the 

viral genome causing significant disruption of the expression of viral genes. Core 

and polymerase coding regions are usually interrupted while envelope protein 
reading frames and their promoters, as well as the HBx ORF, often remain intact 

(although fewer than 50% of integrants have a complete HBx sequence) (Miyaki 
et al., 1986; Paterlini etal., 1995; Robinson, 1994).
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Figure 1.5 Global maps showing the similarity between the geographical distributions of 
chronic hepatitis B virus infection (A) and hepatocellular carcinoma (B).



Integration may stimulate tumorigenesis through the cis-activation of 

cellular genes. This is certainly true for woodchuck infections where WHV 

integration appears to be near or in c-myc and N-myc proto-oncogenes in 50% of 

WHV-associated HCC (Hsu et al., 1988). There is a direct correlation between 

viral integration and activation of the myc family of genes in woodchucks (Fourel 

et al., 1990). No such correlation exists in HBV-associated HCC. Viral surface 

proteins M and L possess trans-activation properties if truncated at the carboxy- 

terminal and have been shown to trans-activate several cellular oncogenes. For 

the most part, c/s-activation of oncogenes appears to be rare in human HBV 

infections. An alternative model for HBV-associated tumorigenesis implies that 

HBV, like tumour viruses, contains an oncogene. One of the principle candidates 

for a viral oncogene is the HBx protein.

1.1.7.3 The role of HBx in HBV-associated HCC

The HBx protein has been widely studied in the development of HBV-associated 

HCC and has been the subject of recent reviews (Arbuthnot et al., 2000; 

Caselmann, 1996). This is mainly due to the plethora of activities displayed by 

HBx both in vitro and in cell culture. HBx is a non-specific transcriptional trans- 

activator and is believed to trans-activate a large variety of viral and host cell cis- 

elements (Caselmann, 1996; Rossner, 1992). Trans-activation by HBx involves

1) interaction with transcriptional factors and 2) activation of cell signalling 
pathway activity.

Several viral transcription regulatory elements, such as Enhl, are 

responsive to HBx-induced trans-activation (Spandau and Lee, 1988). Host 

genes that are activated by HBx include, inter alia, those of the major 

histocompatability complex (Zhou et al., 1990), c-myc (Balsano et al., 1991), c- 

fos (Avantaggiati et al., 1993), c-jun (Twu et al., 1993), p-interferon (Aufiero and 

Schneider, 1990; Twu and Schloemer, 1987) and tRNAAla (Aufiero and 

Schneider, 1990; Twu and Schloemer, 1987). HBx mediates transcription 

responses to cAMP by binding to cAMP-responsive element binding protein 

(CREB) thus affecting DNA binding through the interaction with transcription 

factors such as ATF-2 and NF-kB (Maguire et al., 1991; Twu and Robinson, 

1989). Other HBx trans-activation activities include stimulation of the mitogen-



activated protein kinase (MAP) and Janus family tyrosine kinase (JAK)/ signal 
transducer and activator of transcription (STAT) signal transduction pathways 

(Benn and Schneider, 1994; Kekule et al., 1993), and interactions with the tumour 

suppressor protein p53 (Feitelson et al., 1993). These latter interactions implicate 

HBx in the regulation of cell cycle control (Benn and Schneider, 1995) and 
programmed cell death (reviewed in Arbuthnot et al., 2000).

Lastly, HBx may be directly responsible for hepatocarcinogenesis by 

modulating DNA repair in the host cell (for a recent review, refer to Arbuthnot et 

al., 2000). HBx has been shown to compromise the repair of UV-damaged DNA 

and is known to interact with factors that participate in cellular DNA repair 

pathways (Becker et al., 1998; Capovilla et al., 1997; Lee et al., 1995). 

Intracellular factors, which are known to interact with HBx, include the tumour- 

suppressor protein p53 (thus affecting the p53-mediated repair pathway), and 

damaged DNA binding protein, DDB (Becker et al., 1998).

1.2 Treatment of chronic HBV infection

As stated previously, treatment of HBV infection remains largely ineffective. 

Although HBV immunisation usually prevents HBV infection, those who are 

already chronically infected with the virus continue to be at risk for developing 

cirrhosis and liver cancer. Most therapeutic agents under clinical evaluation 

belong to a new generation of immune system modulators and nucleoside or 

nucleotide analogues. These agents may deliver therapeutic benefits in the short

term. However, it remains to be seen whether these will overcome the serious 

concerns regarding long-term efficacy and tolerability.

Most anti-HBV agents developed to date target the inhibition of viral 

DNA synthesis. Since the HBV polymerase possesses multiple functions, some 

of which are unique to hepadnaviruses, it represents an ideal target for antiviral 

agents. Deoxy- and dideoxynucleoside analogues specifically inhibit the RNA- 

dependent DNA polymerase action of HBV polymerase by competing with natural 

substrates and leading to truncated DNA synthesis. Other strategies rely on 

boosting the immune system response to viral infection. Patients who develop 

HBV chronic infection appear to have a deficient immune response to HBV 

antigens (Chisari and Ferrari, 1995). The immune system modulators developed



to date possess both a direct antiviral and an immune modulatory action (Vilcek 
and Sen, 1996).

1.2.1 Nucleoside analogues and immune system modulators

The second generation nucleoside analogue lamivudine or 3TC (p-L-2',3'- 

dideoxy-3'-thiacytidine) is a deoxycytidine analogue with an unnatural 

levorotatory ‘L’ configuration and is currently the only approved alternative to 

interferon-alpha (IFN-a) treatment. Lamivudine is part of a new generation of 

biochemically novel nucleoside analogues that was originally developed to 

combat human immunodeficiency virus (HIV) and members of the herpes simplex 

virus family. Although lamivudine appears to be a well-tolerated inhibitor of HBV 

replication, it has been established that short-term lamivudine monotherapy is 

ineffective in clearing residual viral infection. A twelve-month course of 

lamivudine monotherapy was found to achieve clearance of HBeAg in 20-30% of 

eAg-positive chronic patients and virological remission in more than 65-70% of 

HBeAg-negative chronic carriers (Papatheodoridis et al. 2002). However, for the 

latter, relapses were observed in the majority of responders following the 

cessation of therapy. Although long-term lamivudine therapy appears to be 

relatively safe, prolonged therapy (for longer than twelve months) is associated 

with a progressive increase in the rate of viral resistance to lamivudine (Ling et 

al., 1996). Virological breakthrough usually develops after six months of 

lamivudine monotherapy and that rate varies between 15-30% after twelve 

months, and exceeds 50% after three years of therapy in both HBeAg positive 

and negative chronic carriers (Delaney et al., 2001). The propensity to develop 

resistant HBV strains is likely the result of a combination of high viral turnover 

and HBV polymerase function. HBV polymerase, like most retroviral 

polymerases, lacks proof-reading ability and as a result is prone to a high error 

rate. It has not been firmly established whether resistant HBV mutant strains exist 

prior to therapy or whether these occur during the course of therapy. However, 

there does appear to be some evidence supporting the hypothesis that 
lamivudine-resistant strains are present ab initio and are then selected 
immediately following treatment.



The first lamivudine-resistant HBV strains presented mutations within 

the YMDD motif (tyrosine-methionine-aspartate-aspartate) of the HBV 

polymerase. This motif is in catalytic region C of the HBV polymerase and is 

conserved in all viral reverse transcriptases. The most common nucleotide 

substitutions result in a change from leucine (L) at position 526 to methionine (M), 
and M to valine (V) at position 550 (L526M and M550V, respectively) (Ling et ai, 

1996; Tipples et a i, 1996). Many mutations have been identified in different 

regions of HBV polymerase yet the next most common resistance mutation is the 

substitution of M with isoleucine (I) at position 550 (M550I) (Tipples et ai, 1996). 

Other mutations of HBV polymerase have been described predominantly within 

catalytic regions B and C, but their significance towards resistance remains 
undetermined (Delaney et ai, 2001). The replication rate of lamivudine-resistant 

mutant strains in cell culture is a lot lower than that of wild-type HBV. A single 

mutation at position 550 (M550V or M550I) was found to decrease significantly 

the rate of viral replication (Dienstag et a i, 1999; Lai et a i, 1998), whereas this 

does not seem to be affected by additional mutations at position 526 (L526M). 

Lamivudine-resistant mutant strains suffer from a selective disadvantage in the 

absence of antiviral pressure, which may explain why wild-type HBV reappears a 

few months after the discontinuation of lamivudine therapy (Chayama et ai,

1998).

The clinical impact of lamivudine resistant mutations has not been 

clarified. Biochemical evidence for viral breakthrough, which is usually expressed 

as an increase in serum transaminase levels, appears several months after the 

first detection of lamivudine resistant strains (Liaw et a i, 1999). This may be 

either after or before the peak detection of HBV viraemia levels. Nevertheless, 

several studies recommend that patients who develop resistant strains should 

continue to be treated with lamivudine since resistant strains are less aggressive 
than wild-type HBV (Honkoop et ai, 2000).

Among newer HBV antivirals in clinical studies, the purine derivatives 
such as adefovir dipivoxil and entecavir, and the pyrimidine derivative 

emtricitabine, appear to be at least as potent as lamivudine in suppressing HBV 

replication. The carbocyclic deoxyguanosine analogue famciclovir has recently 

undergone Stage III clinical trials. However, famciclovir appears to have a 
relatively limited efficacy for general use in patients with chronic HBV. Extensive



clinical trials are necessary for the development of any new nucleoside/tide 

analogues since some have been shown to be severely toxic in vivo and have 

even resulted in death (McKenzie et a/., 1995).

Of serious concern to the future of nucleoside/tide analogues are the 

results obtained from in vitro studies which indicate that mutations found in 

lamivudine- and famciclovir-resistant HBV strains (in particular, the YMDD 

mutations of viral polymerase) can confer cross-resistance to emtricitabine, and 

the pyrimidine derivative p-L-Fd4C (2',3'-dideoxy-2',3'-didehydro-[3-L-5- 

fluorocytidine). Notwithstanding the above concerns, preliminary studies using 

adefovir dipivoxil show that clinical efficacy is possible following the development 

of lamivudine resistance (Xiong et al., 2000). A number of nucleoside analogues, 

which include adefovir dipivoxil and entecavir, suppress replication of YMDD 

mutant HBV (Delaney et al., 2001; Perrillo et al., 2000). However, since only 

short-term studies have been completed to date, it remains to be seen whether 

these nucleoside/nucleotide analogues will develop their own mutant-resistant 

HBV quasi-species in vivo. The most likely future outcome will include 

combination-based therapies for treatment of chronic HBV infection using various 

nucleoside/nucleotide analogues in combination with the immune modulator 

interferon-alpha (IFN-a). These combinations may be augmented at a later stage 

by novel molecular approaches to therapy. However, the ease with which drug- 

resistant strains develop and the added toxicity of combination therapy must be 

worrying factors for the future development of these antiviral chemotherapeutic 
agents (Delaney et al., 2001).

Present therapy for chronic HBV infection includes the immune 

modulator IFN-a. Positive results have been reported in only a limited number of 

cases. A subgroup of patients with active viral replication (HBeAg positive), with 

elevated serum transaminases, and low viraemia, appear to respond well to IFN- 

a treatment. But, for the vast majority of chronic carriers IFN-a therapy remains 

ineffective. Interferon therapy is also associated with unfavourable dose-limiting 

side effects (Niederau et al., 1996). Although a number of other immune 

modulators have been tested for their effects against chronic HBV infection, such 
as interferon-gamma (Guidotti et al., 2002), thymosin alphal (Lau, 2000), and 

interleukin-12 (Zeuzem and Carreno, 2001), it is obvious that a better



understanding of the antiviral effects of the immune modulators is needed in 
order to improve their therapeutic efficacy and tolerability.

1.2.2 Novel molecular approaches to therapy

Significant progress is being made in establishing entirely novel treatment 

strategies for chronic HBV infection. Owing to the emergence of various cellular 

and animal models of viral infection, as well as to advances in the field of 

molecular biology, a number of different and innovative molecular approaches 
have been tested for their therapeutic potential against chronic HBV infection. 

Many review articles deal with the emegence of these novel molecular or gene- 

based approaches to therapy (Nassal, 1997; von Weizsacker e ta i, 1997; Wands 

et al., 1997; Zoulim and Trepo, 1999). Most putative molecular therapeutic 

strategies are presently in an early stage of development, and many remain 

untested hypotheses. However, some of these novel molecular therapies appear 

to represent an improvement on existing pharmacological treatment regimes and 

have imminent clinical application, particularly with regard to specificity and 

toxicity. Promising candidates include antisense oligonucleotides, naked DNA 

vaccines, hairpin and hammerhead ribozymes, and decoy attenuated viruses 

(dominant negative mutants). Of these candidates, the therapeutic effects of 

hybridising nucleic acids will be explored, namely antisense oligoribonucleotides 
and ribozymes.

As potentially novel therapeutic agents, antisense RNA molecules can 

inactivate viral nucleic acid by Watson-Crick hybridisation to complementary viral 

RNAs, thereby inducing viral RNA degradation or preventing the translation of 

viral proteins. Catalytic RNAs, or ribozymes, differ from antisense molecules in 

that they function as endonucleolytic enzymes, targeting and degrading viral RNA 

in a sequence-specific manner. Both nucleic acid approaches to therapy of 

chronic HBV infection are explored. However, this thesis specifically focuses on 

the antiviral effects of hammerhead ribozymes, which are the most 

therapeutically versatile of the ribozyme species.



1.3 Ribozymes

This section briefly reviews the discovery of catalytic RNAs and their significance 

with regard to the origins of biomolecular replicators and the early evolution of 

life. The vast array of research conducted on hammerhead ribozymes is 

explored, emphasising the efforts made to engineer this RNA species into 

potentially viable antiviral therapeutic agents.

1.3.1 Catalytic RNAs

Since their discovery over 100 years ago, proteins were regarded as the only 

macromolecule capable of fulfilling the role of biological catalysts. For all life, 

proteins represent a ubiquitous and versatile catalyst. Enzymes are so intimately 

coupled to their protein nature that they have always been unambiguously 

defined as proteins. Yet, until relatively recently, there has been little appreciation 

of the scope and biological contribution of other macromolecular biocatalysts, in 

other words, of non-protein enzymes.

Although early studies on the nature and function of the ribosome 

suggested a role for RNA in the catalytic functions of this organelle, it was not 

until the early 1980’s that Thomas Cech, Sydney Altman and colleagues 

discovered independent RNA catalysts. These were reported in 1982 for group I 

intervening sequences (introns) of Tetrahymena (Kruger et al., 1982) and in 1983 

for the RNA subunit component of ribonuclease P (RNase P), which is necessary 

for tRNA maturation (Guerrier-Takada et al., 1983). The name ‘ribozyme’ was 

thus coined to denote all ribonucleic acid sequences with enzyme-like functions. 

There are seven different types of naturally existing ribozymes (Table 1.1). These 

are conveniently divided into two groups, namely the large and small ribozymes. 

Large ribozymes include group I and II introns and the catalytic RNA subunit of 

RNase P (Guerrier-Takada et al., 1983; Kruger et al., 1982; Peebles et al., 1986). 

Small ribozymes include hammerhead (Forster and Symons, 1987; Uhlenbeck, 
1987), hairpin (Wu et al., 1989), hepatitis delta virus (HDV) (Buzayan et al., 1986; 

Dange et al., 1990) and the Neurospora mitochondrial Varkud Satellite (VS) 
ribozymes (Saville and Collins, 1990).



Table 1.1 Naturally occurring ribozyme species (Cech and Golden, 1999; Doudna and

Cech, 2002).

Category Number
Sequenced Biological Source Reaction

performed3

Self splicing RNAs:

Group I >1500 Eukaryotes (nuclear and 

organellar), prokaryotes 

and bacteriophages

Trans-esterification 

(3' - OH)

Group II >700 Eukaryotes (organellar) and 

prokaryotes

Trans-esterification 

(3 '-OH)

Self-cleaving:

Group l-like 6 Didymium, Naeglaria Hydrolysis (3'-OH)

Small self-cleavers:

Hammerhead 11 Plant viroids, virusoids and 

Satellite RNAs (newts & 

cave crickets)

Trans-esterification 

(2', 3' >p)

Hairpin 1 Satellite RNAs of tobacco 

ringspot virus

Trans-esterification 

(2', 3' >p)

Hepatitis 5 
Virus (HDV)

2 Human hepatitis virus Trans-esterification 

(2', 3' >p)

Varkud Satellite 1 Neurospora mitochondria Trans-esterification 

(2', 3' >p)

RNase P RNAs

Various >500 Eukaryotes (nuclear and 

organellar), prokaryotes

Hydrolysis

(3'-OH)

aAs seen from the reaction products.



Recent studies suggest that the ribosomal RNA as well as the RNA 
component of the spliceosome is a ribozyme (Cech, 2000; Collins and Guthrie, 

2000; Nissen et ai, 2000). In nature, however, the catalytic repertoire of 

ribozymes is limited to RNA processing reactions. Ribozymes generally catalyse 

the endonucleolytic trans-esterification of the phosphodiester bond backbone of 

RNA, requiring structural and/or catalytic divalent metal ions under physiological 

conditions. The group I and II introns are found in bacteria and in organelles of 
higher plants, fungi and algae (Cech and Herschlag, 1996; Michel et a i , 1989). 

These large ribozymes cleave RNA phosphodiester linkages, using an external 

nucleophile in a two-step reaction to splice-out their primary transcripts. The 5' 

splice site is attacked by the 3'-OH of the external guanosine in group I introns, or 

by the 2'-OH of internal adenosine for group II introns. RNase P is an 

endonuclease that, in a simpler reaction, generates the mature 5' end of tRNAs 

(Takagi et ai, 2001). The bacterial RNase P RNA subunit has catalytic activity 

independent of its protein subunit component. However, both components are 

necessary for catalysis in vivo. By contrast, the small ribozymes use an internal 

nucleophile (usually the 2' oxygen of the ribose moiety at the cleavage site) for a 

non-hydrolytic cleavage reaction, which results in the formation of 2',3'-cyclic 

phosphate and 5'-hydroxyl termini (Takagi et ai, 2001).

1.3.2 Ribozymes and the origins of life debate

The central dogma of molecular biology, that biological information flows from 

DNA to RNA (transcription) and from RNA to proteins (translation), defines the 

role of nucleic acids as molecules of information storage and retrieval. An 
evolutionary paradox is established, since each component of the biological 

information pathway requires catalysis, a role previously the sole preserve of 

protein enzymes. Molecules capable of sustaining early life require, theoretically, 

two fundamental criteria: catalytic function as well as information storage and 

retrieval. It is not surprising then that catalytic RNAs, or ribozymes, which 

possess both these requirements, fulfil the role of candidate progenitor molecule 
for all life. The storage, transfer and replication of information allow any system to 

undergo natural selection and improve biological viability. Equally important is



catalytic function. At the very least the information-carrying molecules require 

enzymatic properties in order to copy their information from generation to 

generation. The enzymatic process must be specific and proceed with high 

fidelity, but a frequency of errors is necessary for the diversity to drive adaptation 

and evolution. It is now thought that the evolution of life did include a phase 

where RNA was the predominant biological macromolecule, predating both 

proteins and DNA. Today, a multitude of evidence supports RNA as a precursor 

hereditary biological molecule in what has been termed “The RNA World” 

hypothesis (Figure 1.6) (Di Giulio, 1997; Gilbert, 1986).

Genetic Genetic
takeover takeover

Pre-biotic I RNA World -► RNP World | DNA World

Information: 
Pre-RNA polymer 
Catalysis:

Template-directed
polymerisation

Information:
RNA

Catalysis:
Ribozymes ± peptides

Figure 1.6 The ‘R N A W orld  hypo thes is ’ as envis ioned by Cech and G olden (Cech and 
G olden, 1999). The RNA W orld  predates both D N A and prote ins and 
suggests  tha t all life, both extan t and extinct, derives from  R N A-based se lf
rep licators. In the RNA W orld , the tw o im portant p re requ is ites fo r life, 
in form ation  storage and ca ta ly tic  power, is in the  dom ain  o f RNA. Later, the 
deve lopm en t o f specia lised ro les m ay have resulted in the transfe rence  o f 
ca ta ly tic  activ ity  to RN A-pro te in  com plexes and u ltim ate ly  to prote ins alone. 
S im ilarly, in form ation  storage m ay have been transfe rred  from  RNA to the 
dom ain  o f DNA. Today, all o f life lies w ith in  the ‘DNA W o rld ’. Y e t a preb io tic  
world  o r p re -R N A  environm ent, w hich is specu la ted  to involve m ore sim ple 
cata lysts, m ust have preceded the R N A W orld . Th is is like ly due to the 
d ifficu lties  in deve lop ing com plex RN A-based reactions in  v itro . These 
reactions are im plic it in the chem istry  o f the RNA W orld . There  is, however, 
no d irec t evidence from  extant life o f a p re -R N A  W orld .



Two major hurdles persist in the analysis of the RNA World. Firstly, few 
ribozymes from extant species possess the catalytic repertoire necessary for 

even the most basic of replication reactions. Secondly, RNA is a complex 

macromolecule and is unlikely to self-assemble by random molecular evolution 

even under a highly reducing environment (lack of free oxygen) (Mojzsis et al.,

1999). For this reason, there is general consensus that a pre-biotic condition 

must have preceded the RNA World (Mojzsis et al., 1999). However, the exact 

nature of such a pre-RNA World environment remains speculative. Although the 

second hurdle still remains unsolved, the first hurdle has been tackled by in vitro 

experiments, which aim to increase the catalytic variability of ribozymes. 

Techniques have been developed which improve the repertoire of ribozyme- 
catalysed reactions, thus exploring the chemical boundaries of the RNA World. 

Since any sequence change to the ribozyme backbone directly results in a 

different phenotype (as the catalytic action is altered), specific ribozyme 

phenotypes can be selected from a pool of random RNA sequences. Successive 

rounds of in vitro selection and evolution mould and refine the creation of 

artificially desired phenotypic traits (Green et al., 1990; Joyce, 1989). Briefly, a 

large combinatorial library of different RNA sequences is chemically challenged 

to express a particular phenotypic trait. The molecules that succeed are amplified 

and reselected. Through successive iterations of challenging, selecting and re

amplifying generations of RNA molecules, new enzymatic traits are created 

(Green et al., 1990; Joyce, 1989). This represents a useful way of mining 

sequence space (up to 1015 different oligoribonucleotides can be screened). 

Newly identified nucleic acid catalysts may shed light on previously extinct 

enzymatic functions or offer completely new traits altogether. In vitro 

selection/evolution has greatly improved the catalytic repertoire of RNA (and 

DNAs). Some of the catalytic activities that have been selected in vitro include 

RNAs that utilise nucleoside triphosphate substrates (Ekland and Bartel, 1996; 

Lorsch and Szostak, 1994), make and break amide bonds (Dai et al., 1995; 

Wiegand et al., 1997), alkylate a nucleoside or a thiophosphate (Wilson and 

Szostak, 1995), and add an amino acid to a nucleoside via an ester linkage 
(lllangasekare et al., 1995). Although these reactions all utilise RNA as a 

substrate, other substrates have been tested. Notably, RNAs have been selected 
to catalyse a classical chemistry reaction, Diels-Alder cycloaddition, in the



presence of Cu2+ ions (Tarasow et at., 1997), and have been selected to insert 
metal ions into porphyrin rings (Conn etal., 1996).

Perhaps the most intriguing developments to date are in the efforts to 
develop an in vitro RNA replicator. An RNA-dependent RNA polymerase was 

generated and selected in vitro that repeatedly extends an RNA chain up to 14 

nucleotides from a specified template (Johnston et ai, 2001). Apart from their 

value to studies aimed at understanding the role of RNA in the early history of 
life, experiments of this nature may lead to the development of in vitro self- 

replicating systems. These sytems are likely to facilitate the discovery of new 

RNA enzymes by automating Joyce and Green’s in vitro evolution technique 

(Green etai ,  1990; Joyce, 1989).

1.3.3 Hammerhead ribozymes

Hammerhead ribozymes are the smallest known RNA catalysts capable of 

directing the site-specific trans-esterification of a phosphodiester bond in the 

presence of divalent metal ion cofactors. These ribozymes were discovered in the 

RNA genomes of several different small plant pathogens possessing site-specific 

self-cleavage activity. The hammerhead ribozyme catalytic motif was first 

identified in viroid RNA (Hutchins et a i, 1986) and later in virusoids (Forster and 

Symons, 1987) and in small satellite RNAs (Miller et al., 1991). Hammerhead 

ribozymes have also been found in RNA transcripts of satellite DNA tandem 

repeat sequences in several newt (Koizumi et ai, 1988), schistosome (Ferbeyre 

et ai, 1998) and cave cricket species (Rojas et ai, 2000). In contrast to the 

catalytic activity of hammerhead ribozymes in the newt, schistosome, and cave 

cricket (which are all associated with transcribed repetitive DNA sequences in 

animals), hammerhead ribozyme activity in the small plant pathogens is well 

defined and appears to be an integral component for genomic replication. The 

observed RNA processing involves the site-specific, self-cleavage of linear RNA 

intermediates (multimeric RNA precursors). These pregenomic viral concatamers 
represent the precursor RNA multiples of monomeric plus and minus RNA 

template strands that undergo site-specific internal RNA editing (Bratty et ai, 

1993; Symons, 1992). Spliced monomers then join head-to-tail to form a 

circularised single-stranded RNA genome. This form of the rolling-circle



replication mechanism is a feature shared by all ribozyme-containing RNA 

pathogens.
Recent evidence from experiments using in vitro selection techniques 

suggests that the hammerhead ribozyme catalytic motif is ubiquitously conserved 

for the catalysis of phosphodiester bond hydrolysis. The divergent organisms 

may thus have derived their hammerhead ribozyme function independently 

(Salehi-Ashtiani and Szostak, 2001). The biological role of hammerhead 
ribozymes in newt, schistosomes and cave crickets remains speculative. These 

ribozymes were found to be active in vivo and appear to impact RNA processing 

events at the riboprotein complex (Denti et al., 2000; Luzi et at., 1997). More 

specifically, with respect to the newt hammerhead ribozyme, dimeric and 

multimeric RNA transcripts, which are generated by all somatic tissues as well as 

in the testes, self-cleave into monomers at the hammerhead domain. Monomeric 
units contain intact hammerhead ribozyme sequences. These sequences 

associate with the newt ovary riboprotein complex with the help of a protein that 

specifically binds to the ovarian form of the newt ribozyme (Cremisi et ai., 1992; 

Denti et al., 2000).

1.3.4 Hammerhead ribozyme structure and function

The hammerhead ribozyme, in its wild-type conformation, consists of roughly 

forty nucleotide sequences and folds into a secondary structure containing three 

distinct domains that form stem-loop helical motifs. These domains are 

designated helix I, II and III. The consensus sequence requisite for the catalytic 

core consists of at least thirteen conserved nucleotides at the junction of three 

duplex stems (Figure 1.7) (Forster et al., 1990; Forster and Symons, 1987; 

Haseloff and Gerlach, 1988). Endonucleolytic cleavage of a phosphodiester bond 

then takes place 3' of the 5' NUH 3' catalytic core, where N represents any base, 

U represents a conserved uridine and H represents any base except G, to 

generate sequences terminating in 2',3'-cyclic phosphate and 5'-hydroxyl termini 

(Shimayama et al., 1995; Zoumadakis and Tabler, 1995). Recent experiments 

determining hammerhead ribozyme sequence specificity at the cleavage site 

have resulted in the reformulation of the 5' NUH 3' rule to 5' NHH 3' (Kore et al., 

1998). The hammerhead ribozyme is a metalloenzyme and requires the presence



of divalent metal ion cofactors for catalysis to occur. Although in nature, Mg2+ is 

the most commonly found metal ion cofactor, Co2+, Mn2+ and Ca2+ have proven to 

be effective substitutes (Dahm and Uhlenbeck, 1991). Studies have also shown 

that ribozymes are catalytically active using high concentrations of monovalent 

cations (Murray et al., 1998).
The distinctive shape of the hammerhead ribozyme was first observed 

in the stable conformation computations of two-dimensional RNA folding patterns 

(Forster and Symons, 1987; Symons, 1992). Evidence for this particular 

conformation was also later observed in thermodynamic studies and NMR 
measurements (Heus et al., 1990; Odai et al., 1990; Pease and Wemmer, 1990). 

More recent configurations derived from X-ray diffraction data 

(Pley et al., 1994; Scott et al., 1995) and fluorescent resonance energy transfer 

(FRET) studies (Tuschl et al., 1994), indicate a three-dimensional y or ‘wishbone’ 

shape, where helices II and III are part of the same axis and where helix I lies 

adjacent to helix II (see Figure 1.7B). X-ray crystal analyses have provided a 

wealth of information regarding the overall function and structure of the 

hammerhead ribozyme. Structurally, the hammerhead ribozyme’s catalytic core, 

which resides predominantly in helix II, is well defined and is divided into two 
domains (Hertel et al., 1992). The hammerhead ribozyme numbering system is 

defined according to Hertel et al. (1992) and refers to the nucleotides in the 

catalytic core essential for hammerhead ribozyme function. These include 

domain I comprising nucleotides 5' C3U4G5A6 3' and domain II comprising 

nucleotides 5' G12A13A14 3' and 5' UzGsAg 3' (shaded in blue in Figure 1.7A & B). 

Nucleotides 5' Ui6Hi7 3', however, form part of the catalytic core on the 

complementary RNA strand (red italicised letters in Figure 1.7A & B). The three- 

dimensional configuration of the hammerhead ribozyme described by Pley et al 

(1994) and Scott et al (1995) elucidates its putative catalytic action (Birikh et al., 

1997b) and proposes domain II as the location for Mg2+ ion binding sites. The 

exact sites, however, remain to be determined.
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1.3.5 Hammerhead ribozymes that cleave in-trans

The wild-type hammerhead ribozyme has two of its three helical arms terminated 

by nucleotide loops allowing for intramolecular (c/'s) cleavage only. Intermolecular 

(trans) cleaving ribozymes, however, can be created synthetically by removing a 

loop terminating one of the helical arms. The trans-acting ribozyme thus requires 

the hybridisation of two independent RNA strands. Trans-cleaving hammerhead 

ribozymes have been constructed from two RNA strands in a number of ways: 

with helix III closed and helices I and II open-ended (Clouet-D'Orval and 

Uhlenbeck, 1996), with helix I closed and helices II and III open-ended (Jeffries 

and Symons, 1989; Uhlenbeck, 1987), and similarly with helix II closed and 

helices I and III open-ended (Haseloff and Gerlach, 1988).

The hammerhead ribozyme described by Haseloff and Gerlach (1988), 

where a nucleotide loop terminates helix II, is the most versatile of the trans- 

cleaving hammerhead ribozymes and has been shown to cleave substrates more 

efficiently than other constructs (Ruffner et a/., 1989). In this example, most of the 

conserved sequences necessary for the hammerhead ribozyme catalytic core 

(the RNA sequence containing a closed helix II) are present on one strand. The 

target complementary RNA strand, which forms helices I and III upon 

hybridisation, requires only the cleavage triplet (as described above) to generate 

an active site for effective catalysis. The Haseloff-Gerlach ribozyme has the least 

sequence constraints when defining its ‘substrate’ RNA strand, making it the best 

model for applications that require the targeting of ribozymes to foreign RNA 

substrates. Strictly speaking, the hammerhead ribozyme requires both RNA 

strands to contribute elements of the hammerhead ribozyme catalytic core for 

cleavage activity to occur. This is to say, the presence of all three helices is 

necessary for the hammerhead ribozyme to act catalytically. The Haseloff- 

Gerlach hammerhead ribozyme, however, distinguishes the RNA strand 

harbouring most of the catalytic core as the ‘enzyme’ or ‘ribozyme’ component 

from the cleaved target complementary RNA strand which is defined as the 

‘substrate’ component. By definition, a true enzyme requires sequential catalysis 
for substrate to product turnover. Identifying two RNA molecules as distinct 

moieties, one of which is regarded as the enzyme and the other the substrate, 
allows for the study of hammerhead ribozyme enzyme kinetics (Haseloff and



Gerlach, 1988; Koizumi et at., 1989; Koizumi et al., 1988). The separation of 

substrate from enzyme in the Haseloff-Gerlach model has allowed the use of 

hammerhead ribozymes for the site-specific intermolecular cleavage of an array 

of RNA targets. The targeted ‘knockdown’ of specific RNA molecules represents 

the single most important innovation for the potential use of ribozymes as novel 

therapeutic agents.

1.3.5.1 Defining the trans-c/eaving activity of hammerhead ribozymes

The consensus sequence requisite for the target RNA is a 5' NUH 3' triplet. The 

sequences either side of the helix II active site on the hammerhead ribozyme 

strand are complementary to the target substrate sequence adjacent to the 

cleavage triplet (Figure 1.8). These sequences form hammerhead ribozyme 

helices I and III respectively and bind the ribozyme to its substrate. The only 

requirement for helices I and III are that they bind through Watson-Crick base 

complementation with their respective substrate. By altering the sequence of the 

ribozyme arms that form helices I and III, it is theoretically possible to design 

synthetic hammerhead ribozymes that cleave substrate RNAs of any sequence. 

Random RNA sequences are replete with 5' NUH 3' cleavage triplet sites, hence 

any RNA species is theoretically accessible for hammerhead ribozyme cleavage. 

The most common naturally occurring cleavage triplet is 5' GUC 3', which 

statistically appears once every 64 nucleotides. Other naturally occurring 

hammerhead ribozyme cleavage triplets include 5' GUA 3' and 5' AUA 3' (Miller 

et al., 1991). There are only slight differences in catalytic efficiency with regard to 

the nucleotide composition of the cleavage triplet. However, for conditions that 

include saturated levels of ribozyme and substrate, the most catalytically efficient 

hammerhead ribozyme cleavage site remains 5' GUC 3' (Shimayama et al., 

1995).

1.3.5.2 In vitro kinetics of trans-c/ea ving hammerhead ribozymes

Hammerhead ribozyme steady state kinetics lends itself to Michaelis-Menten 
analysis in vitro in the same way as do kinetics studies of protein-based enzymes
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(Perreault et a!., 1990; Uhlenbeck, 1987). The enzymatic parameters /ccat 
(chemical turnover) and Km (ribozyme-substrate affinity) allow for mechanistic 

studies of the ribozyme enzymatic reaction. The minimal kinetic mechanism for 

hammerhead ribozyme catalytic action can be summarised in three reversible 

reaction steps. Ribozyme (Rz) and substrate (S) assemble into an enzyme- 

substrate complex (Rz.S) followed by cleavage of the phosphodiester bond 

generating 5' and 3' end products with a 2',3'-cyclic phosphate terminus (P1) and 

a 5'-hydroxyl terminus (P2) respectively, and followed lastly by the release of 

both products (Figure 1.9). Defining each step, where each represents the

Figure 1.9 An illustration of the minimal kinetic description and reaction scheme for a 
trans-cleaving hammerhead ribozyme. The ribozyme catalysed reaction 
consists of at least three reversible steps: A) and B) Together with Mg2+ 
ions, the substrate RNA (S) first binds to the ribozyme (Rz) (kassoc) followed 
by C) Mg2+-induced cleavage of the phosphodiester bond of the bound 
substrate (kcieav). D) The cleaved products (P1 and P2) fragments then 
dissociate from the ribozyme allowing the liberated ribozyme to engage in 
new catalytic events (kdiss) (Hertel eta!., 1994; Hertel and Uhlenbeck, 1995).

elemental rate constants in both the forward and reverse reaction, facilitates the 

analysis of individual catalytic parameters for every stage of the reaction. 
Although such an analysis yields important information, it still represents a 

simplified model as both the parameters of turnover and affinity, respectively kcat 

and Km, may unwittingly be affected by indistinguishable contributions from 

several of the reversible reaction steps. These include the folding of ribozyme



and substrates into alternative inactive conformations (Clouet-D'Orval and 
Uhlenbeck, 1996; Fedor and Uhlenbeck, 1992; Hertel et al., 1994) or unusually 

slow release (dissociation) of reaction products (Fedor and Uhlenbeck, 1990). 

Flence determining an accurate kinetic scheme for hammerhead ribozyme 

catalysis necessitates the delineation of rate constants for each individual 

reaction step. Most importantly, it is necessary to separate the rate of chemical 

cleavage activity from the rates of substrate binding and substrate-product 
dissociation (Hertel etal., 1994).

Under multiple turnover conditions where ribozyme concentrations are 
small relative to that of substrate, in vitro kinetic studies have shown that the rate 

limiting step, kcaU occurs during bond cleavage, where the cleavage rate (/cCieav) is 
less than the rate of product dissociation (kdiss) (Sawata et al., 1993; Takagi and 

Taira, 1995). Substrate binding and product dissociation is relatively fast as long 

as ribozyme helices I and III contain fewer than six nucleotides each. However, 

substrate binding and product release can become rate limiting even with the 

modest elongation of both helices I and III to 8 nuceotides each. The lengthening 

of the helical arms appears to result in protracted binding and increased ribozyme 

stability, which concomitantly increases ribozyme-substrate specificity. The 

association/dissociation rate for both substrates and products decreases 

drastically, resulting in a decrease in the overall catalytic rate (kcat < 0.008 min'1). 

The dissociation rate, kdlss, becomes rate limiting and the reaction kinetics change 

to that described under single-turnover conditions, where the ribozyme is present 

in excess over substrate (Hertel et al., 1994; Hertel and Uhlenbeck, 1995). It can 

be seen that, along with changes in pH or divalent metal ion concentration (Dahm 

et al., 1993; Dahm and Uhlenbeck, 1991), the binding nature of helices I and III 

plays the largest role in affecting the reaction rate constants. Varying the 

sequence length and nucleotide composition of the substrate-binding arms is an 

important tool for modulating the rate of substrate and product dissociation 

(Fedor and Uhlenbeck, 1992) (see section 5.2.1). The general nucleotide 
composition and the sequence encoding the hammerhead ribozyme catalytic 

core, by contrast, have a very limited effect on the rates of substrate and product 

binding. Although the cleavage reaction is reversible under standard conditions 

(10 mM MgCI2, 40-50 mM Tris-CI pH 7.5 at 25°C), the formation of products from 

substrates is 130-fold more favourable at reaction equilibrium for ribozymes



containing a total of 16 complementary annealing nucleotides. In this case the 
rate of ligation, k\\gat, is approxmately 0.008 min'1. This is due to an increase in 

entropy subsequent to bond cleavage of the bound ribozyme-substrate complex 

(Hertel and Uhlenbeck, 1995). The binding and release of substrate and 

products, on the other hand, follow the kinetics expected from a Watson-Crick 
dissociation curve.

Wild-type cleavage rates for most of the described hammerhead 
ribozymes as well as other small ribozyme species (for example, hairpin and VS 

ribozyme) are remarkably similar, with typical catalytic turnover approximating 

one molecule per minute (kcat« 1 min'1) (McKay and Wedekind, 1999). Evident is 

the fact that ribozyme catalytic rates in general are paltry when compared to 

protein-based enzymes, suggesting that ribozymes are intrinsically adapted to 

perform a single catalytic reaction in their wild-type conformation. This, perhaps, 

underscores their function and biological origin as intramolecular (in-c/s) cleaving 

enzymes, which have a higher emphasis on specificity rather than turnover.

1.3.6 Other small ribozymes designed to cleave in-trans

Of the naturally occurring small ribozymes, the hairpin (Hampel et al., 1990), 

HDV (Been, 1994) and Neurospora VS (Guo and Collins, 1995) ribozymes have 

all been converted to cleave in trans. The construction of these trans-acting 

ribozymes was achieved by adopting a similar approach to that used for 

hammerhead ribozymes. Sequences were selected that allow the ribozyme to be 

distinguished into substrate and enzyme components. The substrate sequence 

selected contains the minimal number of nucleotides necessary to complement 

the nucleotides provided by the ribozyme sequence for proper catalytic core 
function.

A number of different hairpin (Kruger et al., 1982; Ojwang et al., 1992) 

and HDV ribozymes (Ananvoranich and Perreault, 1998; Kato et al., 2001) have 

been adapted and used extensively to cleave RNA molecules in trans. Their 

enzymatic properties are discussed in detail elsewhere (Takagi et al., 2001). Of 
the naturally occurring small ribozymes, the Neurospora VS trans-cleaving 

ribozyme is the least understood and is unlikely to be immediately applied as a 
therapeutic agent (James and Gibson, 1998).



Hairpin ribozymes are unique among the small ribozymes in that they 
do not require Mg2+ ions for catalysis (Chowrira et al., 1993; Hampel and Cowan, 

1997). This ribozyme species is composed of four helical regions interspersed by 

two nonduplexed regions. The trans-cleaving hairpin ribozyme hybridises with its 

substrate forming helices I and II. A nonduplexed region lies between the two 

helices (Berzal-Herranz et al., 1993). The substrate RNA requires a minimal 

sequence necessary to complement the hairpin ribozyme catalytic core for 

cleavage, namely, 5' RYNGHYB 3' (where N = any base; R = A,G; Y = C,U; B = 

C,G,U; H = A,C,U; V = A,C,G) (Figure 1.10A). Cleavage occurs immediately 5' of 

the guanosine in the nonduplexed region of the substrate sequence. Like the 

hammerhead ribozyme, the hairpin ribozyme has been widely applied for its 

potential as a therapeutic agent (James and Gibson, 1998). Although the 

hammerhead ribozyme is reversibile with cleavage being favoured over ligation, 

hairpin ribozymes favour ligation ten-fold over cleavage in the presence of excess 

products (Hegg and Fedor, 1995; Nesbitt et al., 1997). This is assumed to be the 

result of a more rigid cleavage reaction, which constrains the products within the 
cleavage site (McKay and Wedekind, 1999).

Both genomic and antigenomic HDV ribozymes possess a pseudoknot 

secondary structure consisting of four helices and three single-stranded regions 

(Ferre-D'Amare et al., 1998; Takagi et al., 2001). The fra/is-cleaving ribozyme 

(Figure 1.1 OB) is divided at the junction of helices I and II (referred to as P1 and 

P2). P1, consisting of 7 bp in the wild-type HDV ribozymes, has a cleavage site at 

the 5'-end of the cleavage recognition sequence 5' GN6 3' (G followed by six 

nucleotides) (Roy et al., 1999). Like hammerhead ribozymes, the HDV ribozyme 

requires divalent metal ions for catalysis. Their catalytic properties are different to 

hammerhead ribozymes in that a cytosine (or pyrimidine) base distal to the 
cleavage site is thought to act as a general acid during catalysis (Takagi et al., 

2001). Helices II and III (P2 and P3) retain the catalytic core structure while helix 

IV (P4) acts to stabilise the active site conformation. However, studies have 

shown that P4 is dispensable in the function of the trans-cleaving HDV ribozyme 
(Bartolome et al., 1995).

Since the natural host of HDV is the human hepatocyte, HDV 
ribozymes have the unique advantage of acting naturally within an intracellular
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Figure 1.10 The general secondary structure depicting the minimal core sequences of 
both a trans-cleaving A) hairpin (Berzal-Herranz et at., 1993) and B) 
antigenomic HDV ribozyme (Ananvoranich and Perreault, 1998) and their 
complementary substrates. The hairpin catalytic region is defined by helices 
III and IV, whilst recognition of the susbtrate is by Watson-Crick base 
pairing within helices I and II. The pseudoknot HDV structure is numbered 
according to Perrotta and Been (Perrotta and Been, 1991). The minimal 
substrate strand for both hairpin and HDV ribozymes is labelled in blue with 
the essential cleavage recognition region shaded (light blue). Single dots 
represent Watson-Crick base pairing. A red dash represents the G-U 
wobble basepair in the P1 helix, while a blue dash denotes a homopurine 
basepair at the top of the P4 helix. The black arrows indicate the cleavage 
sites. IUB codes are used: N = any base; R = A,G; Y = C,U; B = C,G,U; H = 
A,C,U; V = A,C,G.



environment. These ribozymes are especially attractive in targeting HBV given 
that the HDV infection life cycle is dependent on the presence of HBV, as HDV 

makes use of HBV-generated envelope proteins. Interestingly, HDV has been 

proposed as a vector for the delivery of ribozymes specific for chronic HBV 

infection (Hsieh and Taylor, 1992). Yet, little is known about the aetiology of 

HDV-associated liver disease and the possibility of cytopathic effects induced by 

HDV ribozyme sequences in the course of infection. There exists a 75% 

homology between the antigenomic HDV self-cleavage region and the first 55 

nucleotides of human 7SL RNA (Negro et at., 1991; Negro et at., 1989), which is 

an essential component of the signal recognition particle (SRP), a small 

cytoplasmic ribonucleoprotein that targets nascent secretory and membrane 

proteins, to the rough endoplasmic reticulum (Walter and Blobel, 1982). HDV 

ribozymes may induce cytopathic effects on the host cell through an antisense 

mechanism by hybridising to 7SL RNA (Bartolome et at., 1995).

Clearly other small ribozymes can be designed to act as therapeutic 

agents. Nevertheless, their unique features do not, at this moment, appear to add 

value to the trans-cleaving effects of hammerhead ribozymes, which have a more 

simple structure and can be designed to cleave almost any RNA backbone with 
exquisite specificity (Kato et at., 2001).

In summary, the hammerhead ribozyme is the most amenable 

ribozyme species for experimental study owing to its size and versatility (Kato et 

at., 2001; Sczakiel and Nedbal, 1995). It has been extensively applied as a tool to 

understand the molecular evolution of biological life. Furthermore, X-ray crystal 

analyses of the hammerhead ribozyme have revealed the intricacies of RNA 

catalysis, facilitating the study of ribozyme mechanics and enzyme kinetics. It is, 

however, as a potential therapeutic agent that the hammerhead ribozyme offers 

interesting prospects in the treatment of HBV infection.

1.4 Nucleic acid-based therapy of HBV

Ribozymes and antisense molecules are examples of hybridising nucleic acid 

sequences that can be designed to inhibit the expression of specific genes. 

Targeted inhibition or ‘knockdown’ of gene expression represents the most potent 

therapeutic application of both antisense and ribozyme approaches. Like



ribozymes, antisense DNA or RNA oligonucleotides are designed specifically to 
hybridise to the target ‘sense’ mRNA by virtue of Watson-Crick hybridisation. 

Unlike ribozymes, which inactivate target substrate RNA through both antisense 

binding and endonucleolytic cleavage, antisense oligonucleotides form double- 

stranded DNA-RNA (antisense DNA) or RNA-RNA (antisense RNA) duplexed 
hybrids that prevent RNA replication, reverse transcription or block translation of 

mRNA. Additionally, double-stranded RNA-RNA or RNA-DNA duplexed hybrids 

elicit the action of RNase H, which degrades these duplexed hybrids, thereby 

inactivating target RNA (Agrawal and Zhao, 1998).

Ribozymes possess a significant pharmacological advantage over 

antisense molecules because of their enzymatic properties. Unlike antisense 

molecules, which behave like conventional competitive inhibitors, ribozyme 

molecules can cleave multiple RNA substrates, and are thus theoretically more 

efficient. Considering the parallels between ribozymes and antisense 

mechanisms, studies using antisense oligonucleotides for the inactivation of gene 

expression hold valuable information for the construction of ribozymes. Of 

particular importance are results obtained from antisense research regarding 

optimal target site selection. Even though antisense oligonucleotide therapeutic 

strategies preceded the use of ribozymes, antisense RNAs are still integrated into 

ribozyme studies as additional experimental controls. Antisense approaches that 

target HBV will be discussed first as a prelude to a review of anti-HBV ribozymes.

1.4.1 Presynthesized antisense oligodeoxynucleotides

Antisense approaches include both presynthesized oligodeoxynucleotides 
(ODNs) and endogenously expressed RNAs. Goodarzi and colleagues were the 

first to apply presynthesized antisense molecules to inhibit HBV gene expression 
(Goodarzi et al., 1990). In their study, a range of presynthesized antisense ODNs 

of 15 nt in length were directed to the preS2/S ORF of HBV. These antisense 

ODNs inhibited HBsAg production by up to 96% in the HOC cell line, PLC/PRF/5, 

which contains several copies of integrated HBV DNA. The results obtained by 
Goodarzi et al. (1990) were later confirmed using HBV-transfected Huh7 human 

hepatoma cells (Blum et al., 1991a). In the latter experiments, both the



production of HBsAg and HBeAg were significantly inhibited by antisense ODNs 
(Blum et al., 1991a).

Later studies, testing 56 different antisense target sites, showed that 

antisense ODNs targeting the HBV encapsidation signal (s) were the most 

effective inhibitors of the generation of nascent viral particles (Korba and Gerin, 

1995). None of the antisense ODNs examined had any effect on HBV transcript 

RNA levels, indicating that its therapeutic action was through the blocking of 

translation and not necessarily by degrading the target RNA (Korba and Gerin, 

1995). Antisense ODNs targeted to the core ORF, including the sequences 

complementary to the polyadenylation signal of HBV, were specifically directed to 

liver cells via their asialoglycoprotein receptors (Wu and Wu, 1992). This was 

achieved by complexing DNA to polycations, namely poly-L-lysine conjugated to 

asialo-orosomucoid. In this case, cellular uptake of complexed DNA was 

significantly faster than for uncomplexed antisense DNA. Furthermore, 

complexed antisense ODNs proved to be more effective in reducing HBsAg 

secretion and viral replication than the uncomplexed counterparts. All ODNs 

constructed were linked together by phosphorothioate bonds resulting in 

reduction of their susceptibility to nuclease degradation (Wu and Wu, 1992). In a 

later study it was also noted that pre-exposure of cells to targeted complexed 

antisense DNA blocked viral gene expression and replication following 
transfection of HBV DNA (Nakazono et al., 1996). A similar approach targeting 

ODNs to avian liver cells was attempted using complexes of unmodified human 

adenoviral particles and a protein conjugate consisting of modified bovine serum 

albumin, streptavidin and poly-L-lysine (Madon and Blum, 1996). With this 

delivery system, an antisense ODN targeted to the encapsidation site of the HBV 

pregenome caused a modest inhibition of HBV replication in transfected cells.

The first in vivo application of anti-hepadnaviral antisense ODNs was 

reported for the inhibition of Peking duck hepatitis B virus (DHBV) in Peking 

ducks. The most effective antisense ODN was directed against the 5' region of 

the preS gene and resulted in a significant inhibition of viral replication and gene 
expression in vivo (Offensperger et al., 1993). Following on from earlier in vitro 

work by Wu and colleagues (Wu and Wu, 1992), antisense ODNs complexed to 

asialo-orosomucoid poly-L-lysine conjugates were adapted to target the 

polyadenylation region and adjacent upstream sequences of the pregenome of



woodchuck hepatitis virus (WHV) in vivo (Bartholomew etai., 1995). Woodchucks 

presenting with hepatitis were injected with both complexed and uncomplexed 

antisense DNA, which resulted in a significant decrease in circulating viral DNA 

for up to 25 days post treatment. Uncomplexed antisense ODNs and random 

DNA sequences did not reduce circulating viral DNA levels (Bartholomew et al.,

1995) .

Using a mouse model for HCC, which is transgenic for the HBx gene of 

HBV, phosphorothioate antisense ODNs were targeted to two sites, including the 

initiation codon and 5' coding region of the HBx ORF. Significantly, antisense 

DNAs were able to inhibit the expression of HBx and prevented the development 

of preneoplastic lesions in the liver of treated mice (Moriya et al., 1996). In 

another study, an animal model expressing HBV markers was developed in order 

to test phosphorothioate antisense ODNs targeting HBV in vivo (Yao et al.,

1996) . Athymic BALB/c nude mice were transplanted subcutaneously with the 

hepatoma cell line, HepG2 2.2.15. This HBV transfected hepatoma cell line 

continuously replicates HBV and produces infectious particles which resulted in 

the formation of tumours after two weeks. Antisense DNA, which was injected 

directly into the tumour that developed post-transplantation, resulted in a 

decrease in the presence of viral antigens, HBsAg and HBeAg, ten days after 
treatment (Yao et al., 1996).

Most studies thus far have used phosphorothioate-modified ODNs in 

order to prevent the degradative effects of serum and cellular nucleases. 

However, their use in human therapy is hampered by questions regarding 

toxicity. Of particular concern is the risk that chemically modified nucleosides will 

be incorporated into cellular DNA (Agrawal and Zhao, 1998; Plenat, 1996). 

Robaczewska and colleagues used a polymeric DNA-binding cation, namely 

linear polyethylenimine (IPEI), as a synthetic carrier of natural unmodified 

antisense ODNs (Robaczewska et al., 2001). DHBV-infected Pekin ducklings 

were injected with natural antisense DNA complexed to IPEI targeting the 

initiation codon of the large surface protein. The unmodified antisense DNA/IPEI 

conjugates were better at targeting hepatocytes than antisense molecules alone 

and were able to inhibit viral replication and protein expression. However, the 
results were not as significant as those achieved using phosophorothioate 

modified antisense DNA (Robaczewska et al., 2001).



1.4.2 Endogenously expressed antisense RNA

Presynthesized oligonucleotides must be given continuously and in large 

quantities in order to suppress viral gene expression and replication. 

Furthermore, as has been indicated these molecules, especially 

phosphorothioates, often have undesired toxic and immunological effects 

(Branch, 1998; Stein, 1995). These effects have been reported in animal models 

and include: decreased blood clotting, white blood cell count, and heart rate 

(Guidotti and Chisari, 1996). The constitutive expression of antisense RNA from a 

DNA expression cassette may negate many of the toxicity and efficacy concerns 

of antisense ODNs and phosphorothioates. Antisense gene therapy may 

potentially provide long-term protection against the pathogenic effects of chronic 
HBV infection.

Wu and Gerber (1997) were the first to test the therapeutic effects of 

expressed antisense RNAs as antiviral agents against HBV. Initially prokaryote 

expression vectors were used to express three RNAs, which were targeted to 

inhibit the translation of HBsAg mRNA in vitro. In addition, the secretion of HBsAg 

was significantly inhibited in an HBsAg-secreting cell line transfected with 

antisense RNA-expressing vectors. The inhibitory effects lasted for many months 

post-transfection (Wu and Gerber, 1997). Using a retroviral vector delivery 

system, two antisense RNAs targeting the preC/C and preS2/S regions of HBV 

were expressed in the HepG2 2.2.15 cell line (Ji and Si, 1997). Antisense RNA 

targeted to preS2/S inhibited HBsAg and HBeAg secretion by 71% and 23% 

respectively in transduced cells, while the antisense RNA targeted to preC/C 

inhibited secretion of HBsAg and HBeAg by 23% and 59% respectively (Ji and Si,
1997).

A comprehensive study was conducted using five subgenomic 

fragments of the HBV genome to generate antisense and sense RNAs. These 

were tested for their ability to interfere with HBV replication in cultured cells (zu 

Putlitz et al., 1998). A replication-competent HBV vector was transfected into 

human HCC cells, in order to reconstitute viral replication. Antisense RNAs of 
approximately 300 nt in length targeting the preS2/S and the C/P regions 

inhibited viral antigen secretion and HBV replication by between 60% to 75%. 

Unlike the Wu and Gerber study, there was no significant reduction of HBV



transcript RNA, indicating that the antisense molecules were exerting their 
antiviral effects via the blocking of translation. However, an antisense RNA 

complementary to preS2/S was able to prevent the encapsidation of viral 

pregenomic RNA (zu Putlitz et al., 1998). Apart from the problems regarding the 

general safety and efficacy of presynthesized oligonucleotides (see section 

5.3.3), there are other concerns associated with the therapeutic application of 

both antisense DNA and RNA that warrant consideration. Although evidence in 

eukaryotic cells is slight, it is generally accepted that expressed RNAs deploy 

their antisense-mediated antiviral effects via Watson-Crick hybridisation with viral 

RNAs. Apart from impeding translation (refered to as ‘translational arrest’) and 

becoming substrates for rapid degradation by double-strand-specific RNases, 

duplexed RNA-DNA or RNA-RNA hybrids may also elicit unwanted non-specific 

or ‘non-antisense’ effects. The latter include the degradation of alternative, non- 

targeted RNAs by cellular RNase H. Since most expressed antisense RNAs are 

several hundred nucleotides in length and since only ten hybridised nucleotides 

are enough to elicit an RNase H response, the potential for antisense RNAs to 

inactivate cellular mRNAs is considerable (Branch, 1996; Branch, 1998).

Additional concerns include the fact that duplexed RNA-RNA species 

may also first serve as substrates for cellular deaminases, which modify RNA 

sequences within the duplex (Poison et al., 1996); and secondly, activate 

components of the interferon-associated antiviral pathway whose products in turn 

are known to activate the usually latent endonuclease, RNase L (Baglioni, 1979; 

Desai et al., 1995). While it is clear from most of the antisense studies that 

inhibition of HBV gene expression and replication is possible, few have 

adequately addressed these non-antisense effects. In order for antisense 

approaches to be given therapeutic credence, non-antisense effects need to be 

mitigated in any future applications.

1.4.3 Ribozymes targeting HBV

Ribozymes were first observed to cleave HBV RNA in vitro in 1992 (von 
Weizsacker et al., 1992). In contrast to research conducted using antisense 

oligonucleotides, there have only been a handful of studies exploring the potential 
of ribozymes as anti-HBV therapeutic agents.



The first anti-HBV ribozyme study made use of a triple hammerhead 

ribozyme construct. A single transcript RNA encompassing a total length of 44 

antisense nucleotides was produced from a single DNA template (von 
Weizsacker et al., 1992). These linked ribozymes were targeted to three adjacent 

cleavage triplet sites on the C ORF of HBV. All three ribozymes efficiently 

cleaved a transcribed HBV RNA substrate in a cell-free system in vitro. The study 

found that 80% cleavage of a short target RNA was possible using a 1:1 molar 

ratio of ribozyme to substrate under physiological conditions. Furthermore, the 

cleavage efficiency and kinetics of the triple ribozyme transcript was similar to 

that previously described for single ribozymes. The authors speculate that this is 

due to the fact that cleavage products were able independently to dissociate from 

the cleavage complex, thus reducing the dissociation rate of the remaining 

complementary antisense hybridising arms. However, the hammerhead 
ribozymes developed by von Weizsacker et al. (1992) showed cleavage in vitro 

using either artificial or truncated RNA substrates. These substrates prevent a 

native secondary structure conformation resulting in ribozyme cleavage 

conditions different to those found in vivo. In a later study, Beck and Nassal 

(1995) were able to express high levels of hammerhead ribozymes, which were 

driven by an RNA Polymerase III (RNA Pol III) U6 snRNA promoter in transfected 

cells. These ribozymes were directed to cleave the highly conserved 

encapsidation signal (s) of HBV. In intact cells, ribozymes were unable to reduce 

the steady-state levels of full-length HBV pgRNA, which was expressed from a 

co-transfected DNA construct. Nevertheless, ribozymes cleaved target expressed 

RNA in extracts of transfected cells in vitro since prior to cleavage, the cellular 

extracts were treated with proteinase K and phenol, and supplemented with 

additional MgCI2. These results indicate that some unknown factor(s), possibly 

proteins, prevented the intracellular hybridisation of hammerhead ribozymes to 

the s region of the pgRNA transcript. It also appears that low intracellular Mg2+ 

concentration limited the efficiency of intracellular ribozyme activity (Beck and 

Nassal, 1995). However, Mg2+ ions are critical for the establishment of the active 

form of the ribozyme-substrate complex. It was concluded that intracellular Mg2+ 

ion concentration is limiting in cases were ribozyme-substrate annealing is 

hampered by a highly structured target, such as the viral encapsidation signal. 

This result does not preclude the possibility that alternative sites on the HBV



genome are susceptible to ribozyme cleavage. The s region of HBV is known to 

be highly structured and to bind to viral polymerase, which may have 

compromised the activity of hammerhead ribozymes.

To date, the antiviral effects of hammerhead ribozymes have not been 

characterised in vivo. Other studies were able to assess the antiviral effects of 

hairpin ribozymes targeting HBV in an intracellular context. A retroviral-mediated 

delivery system was constructed in order to express three hairpin ribozyme- 

encoded sequences in hepatoma cells (Welch et a/., 1997). In this study, HOC 

cells were co-transfected with a plasmid vector containing a replication- 

competent dimer of HBV. This vector reconstitutes HBV infection in transfected 

hepatocyte cell cultures. Hairpin ribozymes, which were targeted to three regions 

on the viral pgRNA, reduced the level of viral particle production by 66% using an 
endogenous polymerase assay (Welch et al., 1997). To find accessible ribozyme 

cleavage sites on the HBV genome, a library of modified hairpin ribozymes with 
randomised substrate binding domains was constructed (zu Putlitz et al., 1999). 

This hairpin library was challenged to cleave target sites on a full-length in vitro 

transcribed HBV pgRNA substrate. Primer extension analysis revealed cleavage 

products which define potential candidate cleavage sites. Of the 40 sites 

identified, 17 conserved sites were selected for further study. Selected ribozyme 

constructs were transfected, expressed from both RNA Pol II and Pol III promoter 

elements, and tested for their antiviral effects in cultured cells. Accessible 

cleavage sites were clustered around three regions of the HBV genome: the 5' 

end of the C ORF, several sites in preS2/S, and between DR1 and DR2 on the 

HBx ORF. Four hairpin ribozymes targeting the preS2/S region were selected for 

their ability to inhibit viral replication and gene expression in transfected cells in 

culture and were shown to inhibit HBV replication and antigen synthesis by up to 

80%. Although three of the four ribozymes selected were driven by the U6 

snRNA Pol III promoter, there did not appear to be a significant difference in 

either the intracellular levels of ribozyme expression or in ribozyme-mediated 

antireplicative effects using different promoter systems.

Both studies using hairpin ribozymes offer valuable information 

regarding target-site accessibility. Further information was obtained from the 
observation of ribozyme-mediated antiviral effects in cell culture transfection and 

transduction experiments. However, hairpin ribozymes have a significantly



different catalytic mode of action compared to hammerhead ribozymes, and 
results obtained for the hairpin ribozymes cannot necessarily be interpreted for 

hammerhead ribozymes.

1.4.4 Thesis objectives

There are unique features of the hepatitis B virus that make it receptive to the 
targeting effects of therapeutic nucleic acids. The HBV genome consists of 

overlapping ORFs that cover the entire 3200 nt length of the viral genome. The 

sequence heterogeneity among hepadnaviral species is modest in comparison to 

other RNA viruses such as HIV. Conserved regions of the compact HBV genome 

may encode more than one protein as well as HBV c/'s-elements required for viral 

replication (Tiollais et al., 1981). Moreover, HBV replicates its genome from a 

pregenomic RNA template and produces numerous subgenomic transcripts. Both 

pregenomic and preC RNA species are greater-than-genome-length and 

encompass the entire 3200 nt genomic sequence of HBV. Other important RNA 

species include the 2100 and 2400 nt preS/S and the 900 nt HBx transcripts. 

Since all HBV transcripts are indispensable in the viral life cycle, any viral RNA 

entity is a potential target for attack using therapeutic nucleic acids.

Many of the viral transcripts share the same sequences, ensuring that 

ribozyme and antisense molecules can be exploited simultaneously to orchestrate 

the targeted inactivation of multiple viral RNAs. Even though there appears to be 

numerous antisense recognition sequences suitable for targeting, it is important 

to select sequences implicated in multiple functions in the life cycle of the virus, 

since the targeting of conserved sequences is less likely to result in the 
generation of ribozyme-resistant viral variants. Moreover, oncogenic viral proteins 

such as HBx and preS2/S are often expressed endogenously in non-replicative 

HBV chronic individuals. Viral integration into the chromosomes of the host 

hepatocyte usually renders the virus incapable of replicating. The onset of 

disease-causing complications of viral infection may be caused by persistent 

gene expression and is not necessarily dependent on viral replication. Therefore, 

it may also be necessary to target those viral transcripts in which translational 

products are potentially carcinogenic.



The inhibitory effects of therapeutic hammerhead ribozymes targeting 

HBV infection have not been characterised in a cellular environment. For the 

present thesis, the multifunctional HBx region was chosen as a target for 

antisense and hammerhead ribozyme-mediated attack. Previous studies using 

antisense DNA/RNA and hairpin ribozymes have indicated that the HBx region of 

HBV is accessible to nucleic acid hybridisation (Moriya et al., 1996; Welch et ai, 

1997; zu Putlitz etal., 1999). Thus, this thesis broadly encompassed the following 

objectives:

1) Mammalian expression vectors were generated to constitutively 

express RNA encoding: hammerhead ribozymes, catalytically inactive 

ribozyme controls, and antisense RNA targeted to two sites of the HBx 

ORF of HBV.
2) The functional endonucleolytic cleavage activities of various 

hammerhead ribozyme transcripts were determined in vitro. 

Hammerhead ribozyme-mediated cleavage of target HBx RNA 

substrate at specific sites was assayed in an in vitro cleavage reaction.

3) Endogenously expressed hammerhead ribozymes and antisense 

RNAs were tested to inhibit HBx mRNA expression and HBx trans- 

activation function in transfected liver-derived cells.

4) The efficacy of hammerhead ribozymes for the inhibition of viral gene 

expression and markers of viral replication was determined in 

transfected cells that reconstitute HBV infection following co

transfection with a replication-competent vector of HBV.

5) The antireplicative effects of the anti-HBx ribozymes were assayed in 

situ in transfected cells by measuring the expression of a marker gene 

for Enhanced Green Fluorescent Protein (EGFP). The EGFP ORF was 

used to substitute the preS2/surface ORF in a vector that constitutively 

expressed all HBV pregenomic and subgenomic transcripts.

6) Multimeric cis- and trans-cleaving hammerhead ribozyme vectors were 

generated to increase the intracellular concentration anti-HBx 
hammerhead ribozymes and improve their efficacy in vivo. Cis- and 

trans-cleavage activities were determined using in vitro transcribed 

multimeric ribozyme transcripts and substrate HBx RNA.



7) The antireplicative effects of multimeric ribozymes targeted to the HBx 
ORF of HBV was assessed in transfected cells using the EGFP/HBV 

reporter assay and using vectors which reconstitute viral infection in 

transfected cells.

Some of the approaches used to modify hammerhead ribozymes for therapeutic 

use are discussed later in section 5.2. Of particular interest to this thesis are the 

methods used to deliver ribozyme therapeutic genes to their target tissue or cells 

and the methods employed to maintain their intracellular expression and 

concentration once acquired. These issues are discussed in the view of applying 

hammerhead ribozymes for the future treatment of chronic HBV infection.



2.0 HAMMERHEAD RIBOZYMES AND ANTISENSE 
RNAs TARGETED TO THE HBV H B x  OPEN 
READING FRAME

2.1 Summary

The multifunctional HBx ORF of HBV encodes a 17 kDa protein, HBx, which is 
necessary for viral infection and implicated in HBV-associated 

hepatocarcinogenesis. In this study, the HBx ORF of HBV was chosen as a 

target for hammerhead ribozyme hybridisation and cleavage. Oligonucleotides 

encoding two selected hammerhead ribozymes and sequences encoding 

respective antisense RNA as well as catalytically inactive ribozyme sequences, 

were cloned into the mammalian expression vector pCI neo to generate plasmids 

pHBx.Rzl U73 and pHBx:Rz2165i.
Hammerhead ribozymes HBx:Rz11473 and HBx:Rz2165i, cleaved their 

target HBx sequences in vitro within 60 minutes under standard physiological 

conditions. HBx:Rz1 1473 was slightly more efficient than HBx:Rz2165i and 

suggested that the site targeted by HBx:Rz1 i473 was more accessible for 

cleavage. The efficacy of the two endogenously expressed hammerhead 

ribozymes and their antisense RNA controls were tested in co-transfections of 

various liver-derived hepatoma cells. The target vectors included a plasmid that 

constitutively expresses HBx and a replication-competent dimer of HBV, which 

reconstitutes HBV infection in transfected Huh7 cells. Both ribozyme-encoding 

expression vectors, pHBx:Rz1 1473 and pHBx:Rz2165i, inactivated HBx mRNA, and 

concomitantly inhibited HBx trans-activation of the reporter plasmid pp-actin p- 

gal, which expresses p-galactosidase under control of the HBx-inducible p-actin 

promoter. HBx trans-activator function was inhibited in Chang and PLC/PRF/5 

cells and in primary hepatocellular carcinoma cultures that express endogenous 

HBx. However, since the antisense RNA control p/-/Bx;At2165i was equally as 

effective as p/-/Bx:Rz2165i, it is evident that, for this ribozyme species at least, 
antisense effects were likely to be largely responsible for ribozyme-mediated 

inhibition in cell culture.



2.2 Introduction

The HBx open reading frame (ORF) represents an ideal target for nucleic acid- 

based hybridisation. HBx is required for viral replication and the HBx sequence 

encodes multiple functions in the HBV genome (see sections 1.1.3.4 and 1.1.7.3) 

(Chen et al., 1993; Tiollais et al., 1985; Zoulim et al., 1994). The multifunctional 

HBx sequence overlaps with the 3'-terminal sequence of the polymerase ORF as 

well as HBV sequences encoding the essential basic core promoter (BCP), which 

is relatively conserved amongst the mammalian hepadnaviruses (Chen et al., 

1993; Tiollais et al., 1985; Zoulim et al., 1994). These factors restrict sequence 

plasticity of the HBx ORF and limit the ability of the virus to evade therapeutic 

nucleic acid hybridisation. All viral transcripts share a common 3' end owing to the 

presence of a single polyadenylation signal on the viral genome (Figure 1.2). As a 

result, the sequence of the smallest HBx transcript is fully included in the 3'-end 

sequences of all HBV transcripts including the pregenome (Tiollais et al., 1985). 

Targeting the HBx ORF allows for the simultaneous inactivation of the template 

RNA necessary for viral replication, along with all viral transcript mRNA species.

Although the function of HBx in the life cycle of the virus remains 

unclear, HBx is directly implicated in HBV-associated hepatocarcinogenesis 

(section 1.1.7.3) (Arbuthnot et al., 2000). As a preventative measure against the 

onset of HOC in chronic HBV individuals, inactivating the expression of viral 

proteins that are potentially carcinogenic, which include HBx, is an important 
medical objective. Since HBx can be expressed from replication-incompetent viral 

integrants, the presence of HBx-encoding sequences may be independently 

responsible for the onset of hepatocarcinogenesis, irrespective of whether 

successful suppression of viral replication is achieved. Reducing the intracellular 

presence of HBx may improve the long-term prognosis of chronically infected 

individuals.

In this chapter, two hammerhead ribozymes targeting different sites of 

the HBx ORF were investigated for the potential to cleave HBx mRNA transcribed 

in vitro. Moreover, these ribozymes were targeted to inhibit HBx trans-activator 

function in co-transfected liver-derived cell cultures. Two regions of the HBx ORF 

were chosen as targets for nucleic acid hybridisation and cleavage based on 

conserved sequences and computer predictions of accessible RNA secondary



structures- Two antisense RNA expression vectors, which anneal to the same 

sites as their hammerhead ribozyme counterparts, were used in addition to 

defective ribozyme variants as ribozyme-negative controls.

2.3 Materials and methods

2.3.1 Hammerhead ribozyme and antisense RNA expression vectors

Plasmids producing ribozyme sequences (p/-/Bx:Rz11473 and p/-/Bx:Rz2165i), their 

catalytically inactive counterparts (p/-/Bx:Rz1*u73 and pHBx:Rz2*i65i) and 

antisense oligonucleotides sequences (p/-/Bx:At1 1473 and pHBx:At21651) directed 

to the HBx ORF were generated in the pCI neo mammalian expression vector 

(Promega, Wl, USA). Oligonucleotides designed to encode the ribozyme and 

antisense sequences were synthesized using standard phosphoramadite 

chemistry (Ransom Hill, USA). Complementary sense and antisense 

oligonucleotide sequences for hammerhead ribozyme cassettes HBx:Rz1 1473 and 

HBx: Rz2i65i, and their respective catalytically-defective counterparts 

HBx:Rz1*1473 and HBx:Rz2*-|65i are presented in Table 2.1. Complementary 
sequences for antisense oligonucleotide cassettes /-/Bx:At1 1473 and HBx:At2165i 

are presented in Table 2.2. Altered bases in the sequences encoding catalytically 

inactive ribozymes are underlined. Oligonucleotides were annealed after heating 

to 95°C for 5 minutes followed by slow cooling to room temperature. Double 

stranded DNA, with 5' EcoRI and 3' Xba\ cohesive ends, was cloned into the 

equivalent restriction sites of the pCI neo vector.

Plasmid pCI neo was digested with EcoRI and Xbal. The vector 

backbone fragment was excised and eluted from a 1% agarose gel. Following 

extraction with chlorophorm/phenol (Appendix A4-1), the DNA was precipitated 

with ethanol (see Appendix A4-2). A ligation reaction containing a 50:1 molar 

ratio of annealed fragment to vector (0.6 pmol vector backbone to 30 pmol 
annealed fragment insert) was incubated at room temperature for 1 hour in a 20 

pi reaction volume containing 20 U T4 DNA Ligase (New England Biolabs, MA, 

USA). Aliquots (10 pi) of the ligation reaction were used to transform competent



Table 2.1 Complementary sense (S) and antisense (A) oligonucleotide sequences for single 
unit hammerhead ribozymes and their respective cleavage-defective counterparts.

HBx :Rz11473 S
5' AATTCTCCCAAGCCTGATGAGTCCGTGAGGACGAAACCCCG 
AGT 3'

HBx: Rz 1 1 4 7 3 A 5' CTAGACTCGGGGTTTCGTCCTCACGGACTCATCAGGCTTGG 
GAG 3'

HBx : Rz1*1473 S 5' AATTCTCCCAAGCCTAATGAGTCCGTGAGGACGACACCCCG 
AGT 3,a

HBx: Rz1*1473 A 5' CTAGACTCGGGGTGTCGTCCTCACGGACTCATIAGGCTTGG 
GAG 3'a

HBx: Rz2i65i S 5' AATTCTTATGTAACTGATGAGTCCGTGAGGACGAAACCTTGGGT 3'

HBx :Rz21651 A 5' CT AGACCCAAGGTTT CGT CCT CACGG ACT CAT CAGTTACAT AAG 3'

HBx : Rz2*165i S 5' AATTCTTATGTAACTAATGAGTCCGTGAGGACGACACCTTG GGT 
3,a

HBx: Rz2*1651 A 5' CTAGACCCAAGGTGT CGT CCT CACGG ACT CATTAGTT ACATAAG
3 ,a

a Underlined nucleotides indicate the alterations made to the ribozyme catalytic site 
rendering hammerhead ribozymes H B x :Rz1* 1473 and H B x :Rz2 *165i catalytically 
defective (see Figure 2.1).

Table 2.2 Complementary sense (S) and antisense (A) oligonucleotide sequences for 
antisense RNA encoding vectors.

HBx: At11473 S 5' AATTCTCCCAAGCGAACCCCGAGT 3'

HBx: At11473 A 5' CTAGACTCGGGGTCGCTTGGGAG 3'

HBx:At2i65i S 5' AATTCTTATGTAAGACCTTGGGT 3'

H B x i At2! 65 i A 5' CTAGACCCAAGGTCTTACATAAG 3'



Escherischia coli XL1-Blue™ (Stratagene, CA, USA), which were plated on Luria 

Bertani ampicillin positive (100 pg/ml ampicillin; Gibco BRL, United Kingdom) 

agar plates (see Appendices B3-1, B3-2). To identify correctly cloned ribozyme- 

encoding plasmids, individual colonies (± 10) were cultured in 50 ml of ampicillin 

positive medium (Appendix B3-1). Plasmids were prepared by silica mini-prep 

plasmid purification (see Appendix A2-1) and digested with EcoRI and Xba\. 

Digested fragments were run on non-denaturing 8% polyacrylamide gels along 
with 30 pmol of annealed dsDNA oligonucleotides encoding HBx:Rz1 1473 as a 

molecular weight control. Gels were soaked for 5 minutes in 0.5 pg/ml ethidium 

bromide solution in 1xTAE buffer (Appendix B2-1) prior to viewing on a UV 

transilluminator. Successfully cloned plasmids were sequenced using the 

Sequenase™ Version 2.0 Kit (USB, OH, USA) to confirm the fidelity of sequence 

(Appendix A5-1). The resulting cassettes produce transcripts from the 

cytomegalovirus (CMV) immediate early promoter/enhancer. Transcripts derived 

from pHBx:Rz1 1473, pHBx:Rz1*u73 and p/-/Bx:At1 i473 contain complementary 

sequences to HBV ayw co-ordinates 1465-1481; similarly, the HBx:Rz2 16si and 

HBx: Rz2* 1651 and HBx.At21651 RNAs include sequences complementary to co

ordinates 1643-1661 (GenBank® accession number J02203) (Figure 2.1).

2.3.2 Target and reporter plasmids

Plasmids pBS-X and pCI neo HBx have been previously described (Capovilla et 

al., 1997). In summary, DNA encoding HBx from HBV strain ayw was amplified 

using PCR. The sequence was cloned into the EcoRI and BamHI sites of the 

pBluescript II™ KS(+) (pBSII KS[+J; Stratagene, CA, USA) multiple cloning site to 

produce pBS-X. The HBx sequence was then excised from pBS-X and inserted 

into the mammalian expression vector pCI neo (Promega, Wl, USA) to produce 

pCI neo HBx. In this plasmid, HBx expression is under control of the constitutively 
active CMV promoter.
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Figure 2.1 The catalytic sequences for hammerhead ribozymes HBx:Rz11473 and 
/-/Bx:Rz2i65i and hybridisation sequences for antisense RNAs HBx:At11473 and 
HBx:At2165i. A) and C) The HBV ayw sequences targeted by HBx:Rz11473and 
HBx:Rz2i65i are indicated with the pairing ribozyme sequences of the helix I 
and helix III domains. HBx:Rz11473 is complementary to HBV ayw bases from 
co-ordinates 1465 to 1481 and HBx:Rz21651 is complementary to bases 1643 
to 1661. The 5' GUC 3' cleavage motifs are shaded and the arrows indicate 
the sites of cleavage. The ribozyme catalytic cores are located within the helix 
II domains. The underlined U residue of the HBx:Rz11473 cleavage motif is 
substituted for a C in HBV subtype adw. Circled G and A bases are 
substituted for A and C residues respectively in the sequences encoding 
catalytically inactive ribozymes HBx;Rz1*i473and HBx: Rz2*i65i- B)and D) The 
HBV ayw sequences targeted by antisense control molecules HBx:At11473 and 
HBx:At2165i. These sequences both lack ribozyme helix II domains and thus 
exert their inhibitory activity by hybridisation (antisense effects).



Plasmid pHBV adw HTD has been described previously (Blum et at., 
1991b), and is a HBV replication competent plasmid that comprises a head-to-tail 

dimer of the entire HBV genome (strain adw) cloned into pGEM 7F+ (Promega, 

Wl, USA). The plasmid p(3-actin (3-gal contains an expression cassette with the p- 

galactosidase reporter gene under control of the p-actin promoter (Wang and 

Stiles, 1994). The reporter plasmid pCI neo GFP expresses the gene for 

Enhanced Green Fluorescence Protein (EGFP) under constitutive control of the 
CMV promoter (Passman et ai, 2000; Weinberg et a i, 2000).

2.3.3 In vitro transcription and cleavage

The /-/Bx-encoding plasmid, pBS-X, ribozyme plasmids p/-/Bx:Rz1 1473 and 

pHBx:Rz2165i and their catalytically inactive counterparts pHBx:Rz1*u73 and 

p/-/Bx:Rz2*-i65i were linearised by digestion with Xba\. Linearised DNA templates 

were eluted from a 1% agarose gel, and extracted using phenol/chloroform as 

described in 2.3.1 and Appendix A4-1. DNA pellets were resuspended in H20  to 

a final concentration of 1 ju.g/ju.1. Radiolabelled target HBx RNA was transcribed 

from Xbal-linearised pBS-X. The reaction mixture contained 2 pg of template 

DNA, 10 mM dithiothreitol, 40 mM Tris-HCI (pH 8.0), 8 mM MgCI2, 2 mM 

spermidine, 20 U RNasin (Promega, Wl, USA), 0.5 mM ATP, 0.5 mM TTP, 0.5 

mM UTP, 12.5 pM GTP, 25 pCi of a-32P GTP (3000 Ci/mmol; NEN du Pont, 

USA), and 20 U of T3 RNA Polymerase (Promega, Wl, USA) in 20 pi. After 

incubating at 37°C for 1 hour, 20 U of DNase I (Promega, Wl, USA) were added 

to the reaction mixture for 20 minutes at 37°C. RNA fragments were purified 

using the Qiagen RNeasy (Qiagen, CA, USA) RNA purification kit according to 

the manufacturers instructions. In vitro transcription reactions for ribozymes and 

their catalytically inactive controls were performed at 37°C for 1 hour in a 20 pi 

reaction mixture containing 2 pg of template DNA, 10 mM dithiothreitol, 40 mM 

Tris-HCI (pH 8.0), 8 mM MgCI2, 2 mM spermidine, 20 U RNasin (Promega, Wl, 

USA), 0.5 mM NTPs (0.5 mM each ATP, TTP, UTP and GTP), 20 U of T7 RNA 

Polymerase (Roche, Germany). Similarly, 20 U of DNase I (Promega, Wl, USA) 

were added to the reaction mixture for 20 minutes followed by RNA purification
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indicated.



as above. The cleavage reaction was carried out in a 40 pi reaction mixture 

containing a five-fold molar ratio of ribozyme to radiolabelled target RNA in the 

presence of 20 mM MgCI2, 50 mM Tris-CI (pH 8.0) and incubated at 37°C. 

Aliquots (10 pi) were removed after incubation for 5 and 60 minutes and then 

added to 3 pi of RNA loading buffer (see Appendix B2-3). Samples were resolved 

on a 6% polyacrylamide, 7 M urea denaturing gel at 60 W (until the bromophenol 

blue dye front reached the end of the gel) and autoradiographed.

2.3.4 Cell Culture

PLC/PRF/5, Chang and Huh7 cell lines were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% foetal calf serum (FCS), 

penicillin (50 lU/ml) and streptomycin (50 pg/ml) (Gibco BRL, UK). Primary 

cultures of malignant hepatocytes were prepared from a resected tumour of a 

HBV chronic carrier patient with hepatocellular carcinoma. The patient’s serum 

was positive for HBsAg but negative for HBeAg on testing with Ausria and Axsym 

kits (Abbott Laboratories, IL, USA). After resection, the tissue was rinsed in 

HEPES buffered saline containing collagenase (0.025% collagenase, Sigma 

grade I; 0.075% CaCI2.2H20; 161 mM NaCI; 3.15 mM KCI; 0.7 mM Na2HP04; 33 

mM HEPES, pH 7.65). To dissociate the cells and remove fibrous material, the 

tissue was teased and passed through a fine stainless steel mesh. The cells 

collected after this treatment were washed and cultured in Ham’s F12 medium 

(and plated at 90% confluency) supplemented with 10% foetal calf serum (FCS), 

penicillin (50 lU/ml) and streptomycin (50 pg/ml).

2.3.5 Transfection and detection of HBx mRNA in cultured cells

On the day prior to transfection, Huh7 cells were seeded at one fifth of their 

confluent density. Transfections were performed according to the calcium 

phosphate method (Graham and van der Eb, 1973) (Appendix A7-1). Cells in 100 

mm diameter culture dishes were co-transfected with a combination of 20 pg of 
pCI neo HBx and 10 pg of either p/-/Bx:Rz11473, p/-/Bx:Rz1*-|473 pHBx:Rz2165i, 

pHBx:Rz2*165i or pCI neo. Similar quantities (10 pg) of the reporter plasmid pCI 
neo GFP were also included in each transfection. Prior to RNA extraction,



equivalent transfection efficiencies were verified by fluorescence microscopy that 
detected similar numbers of EGFP expressing cells in each culture dish 

(Appendix C2). Seventy-two hours after transfection, total cellular RNA was 

isolated from the cells using the Guanidinium Thiocyanate method (see Appendix 

A3) (Schaller and Fischer, 1991a).

To detect HBx mRNA using reverse transcriptase (RT) and PCR, first 

strand cDNA synthesis was performed at 42°C for 1 hour in a 20 pi reaction 

mixture containing 1 pg of total cellular RNA, 0.8 pg oligo (dT)i5 (Promega, Wl, 

USA), 1 mM each of dATP, dCTP, dTTP and dGTP, 2.5 mM MgCI2, 10 mM Tris- 

HCI (pH 8.3), 50 mM KCI, 5 U RNase inhibitor (Roche, Germany) and 4 U AMV 

Reverse Transcriptase (Promega, Wl, USA). Aliquots (4 pi) of the cDNA reaction 

mixture were used to amplify HBx and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) sequences separately. The PCR reaction mixtures 

included 2.5 pCi of a-32P dATP (3000 Ci/mmol; ICN, CA, USA), 50 mM KCI, 10 

mM Tris-HCI (pH 9 at 25°C), 0.1% Triton X-100, 1.5 mM MgCI2, 0.2 mM each of 

dATP, dCTP, dTTP and dGTP, 10 pmol each of forward and reverse primers, 

and 2.5 U of REDTaq™ DNA polymerase (Sigma, MO, USA). Sequences of 

forward and reverse GAPDH and HBx primers are given in Table 2.3.

Table 2.3 Forward and Reverse primers for G A P D H  and H Bx.

G APDH  F 5' CCCTTCATTGACCTCAACTACATG 3'

G APDH  R 5' CATGCCAGTGAGCTTCCCGTTCAG 3'

H B x  F 5' CCCTT CATT G ACCT CAACTACAT G 3'

H B x  R 5’ CATGCCAGTGAGCTTCCCGTTCAG 3'

After an initial denaturing step at 92°C for 3 minutes, thermal cycling reactions 
were conducted at 92°C for 30 seconds, 57°C for 30 seconds and 72°C for 1 

minute. Aliquots were removed from the PCR reaction mixtures during the



exponential phase of amplification after 15 and 25 cycles. Samples were resolved 

using 8% polyacrylamide gel electrophoresis for ± 1.5 hours at 100 V and then 

subjected to autoradiography overnight.

2.3.6 Transfection and detection of p-galactosidase activity

On the day prior to transfection of PLC/PRF/5 and Chang liver cells, 

approximately 2x105 cells were seeded at one tenth of their confluent density. 

Primary cultures of malignant hepatocytes were plated at 90% confluence. All 

cells were seeded in 35 mm diameter culture dishes. Transfections, as described 

in section 2.3.5, were carried out with a combination of 2 pg reporter plasmid (p 

p-actin p-gal), 8 pg of a target plasmid (pCI neo HBx or pHBV adw HTD) and

Principle of HBx frans-activation assay

HBx trans-activation p-galactosidase mRNA

NO HBx trans-activation

&

Figure 2.3 Principle o f the HBx tra n s -activation assay. HBx activates the p-actin prom oter 
inducing an increased expression o f the dow nstream  p-galactosidase gene. 
Thus, the presence o f HBx can be m easured by assaying fo r p-galactosidase 
activ ity using histochem ical staining techn iques (X-gal is the chrom ogenic 
substra te fo r p-galactosidase).



8 jug of ribozyme (p/-/Bx:Rz11473 and/or pHSx:Rz2165i) or control plasmid (pCI 

neo). Seventy two hours after transfection, the cells were fixed and stained with 
X-gal solution (Sanes et al., 1986) (see Appendix B1-9).

Cells that had a dominant blue colouration on microscopic examination 

were assessed as positive. The number of positive cells was counted from an 

entire dish and verified by an independent observer. Duplicate transfections were 

performed on the primary cultures. The means and standard errors of the means 

(SEM) were calculated from the data of six independent transfections of 

PLC/PRF/5 and Chang cells. The analysis of variance was calculated using 

Dunnett’s multiple comparisons test with the number of p-galactosidase-positive 

cells detected in the transfections with pp-actin p-gal and pCI neo HBx without 

ribozyme as the control for comparison. This value was normalised to 100%.

2.4 Results

2.4.1 The selection of conserved regions of the HBx ORF for 
hammerhead ribozyme and antisense RNA hybridisation

Of the possible twelve 5' GUC 3' hammerhead ribozyme cleavage triplets in the 

HBx ORF of HBV strain ayw (Figure 2.4B), two sites were selected as candidate 

target regions for complementary hammerhead ribozymes and antisense RNAs. 

These include regions 1465-1481 and 1643-1661 for hammerhead ribozyme 

HBx:RZI1473 and HBx:Rz2i65i (or antisense RNA HBx:At1u 73 and HBx:At2165i) 

respectively. The hammerhead ribozyme cleavage triplet sites 1473 and 1651 

correspond to the position 3' of the 5' GUC 3' cleavage triplet on the HBx ORF of 

HBV ayw. The RNA folding program, Mfold® (Genetics Computer Group, Wl, 

USA) was used to predict the putative secondary structure of the HBx ORF to 

ascertain accessible regions for the annealing of complementary ribozyme and 

antisense sequences. The HBx sequence appears to conform to a highly 

structured secondary structure and the sites indicated in Figure 2.4A were only 

modestly accessible for nucleic acid hybridisation in the secondary structure 
predictions of the HBx ORF RNA sequence. As a result, the target cleavage sites 

were primarily selected on the basis of their relative position in conserved regions



within the HBx coding sequence (Appendix C3). Hammerhead ribozyme 
HBx:Rz1 1473 cleaves within a region shared by both HBx and P ORFs, while 

HBx:Rz2i65i cleaves within the BCP/Enh II sequence on the HBV genome.

2.4.2 Design of hammerhead ribozyme, antisense RNA and target 
vectors

Two eukaryotic expression vectors, p/-/Bx:Rz11473 and pHBx:Rz2i65i, encoding 

ribozyme sequences that hybridise to targets surrounding 5' GUC 3' cleavage 

motifs within HBx, were constructed (Figure 2.1). The ribozymes included 8 

(p/-/Bx:Rz1 1473) or 10 (pHBx:Rz2i65i) complementary bases in helix I, while in 

both ribozymes there were 8 complementary bases in the helix III domain. 

Sequence changes in the helix II domain were introduced to propagate the 

enzymatically inactive control vectors. To inhibit HBx expression, the eukaryotic 

expression vectors were generated to express hammerhead ribozyme RNA 

sequences under control of the constitutively active CMV immediate early 

promoter/enhancer (Figure 2.1 A and C). Moreover, these sequences were cloned 

between T3 and T7 RNA promoters for preparation of ribozyme RNA in vitro. 

Equivalent vectors encoding catalytically inactive ribozymes (Figure 2.1 A and C) 

and antisense RNAs (Figure 2.1B and D) were also generated. Plasmids 

expressing the target HBx sequences are depicted in Figures 2.2A and 2.2B. 

Plasmid pCI neo HBx contains the HBx sequence from HBV strain ayw cloned 

downstream of the CMV immediate early promoter/enhancer. pHBV adw HTD is 

a replication competent HBV plasmid that contains two head-to-tail copies of the 

entire HBV genome (adw strain). In this plasmid, HBx gene expression is similar 

to that of replicating HBV. The triplet cleavage motif of HBx:Rz1 1473 is substituted 

with a 5' GCC 3' sequence in pHBV adw HTD.

2.4.3 Ribozyme-mediated cleavage of HBx RNA in vitro

To test the endonucleolytic cleavage activities of the two designed hammerhead 
ribozymes in vitro, ribozyme and target RNAs were transcribed from linearised 

templates using T7 and T3 RNA polymerase respectively. A 584 nt substrate



HBx ORF (HBV ayw) - RNA secondary structure 
Mfold' (Genetics Computer Group, Madison, Wl)

Figure 2.4 The accessibility of HBx RNA sequences for hammerhead ribozyme and antisense RNA hybridisation. A) The most energetically 
favourable (8G) secondary structure of the HBx RNA ORF sequence (HBV ayw, GenBank® accession number: J02203) obtained using 
Mfold®. The 12 twelve 5' GUC 3' cleavage triplets are shown (bold). Cleavage sites (arrows) and hybridisation regions are annotated. 
B) HBx ORF RNA sequence showing all twelve 5' GUC 3' cleavage triplets. Underlined are the hybridisation sites for both hammerhead 
ribozyme and antisense RNA sequences.



RNA encoding the HBx ORF was subjected to cleavage by both hammerhead 

ribozymes HBx:Rz1 1473 and HBx\Rz2i65i under single turnover conditions (a five

fold molar excess of ribozyme over substrate RNA). Ribozyme and target RNA 

were incubated for up to 60 minutes under standard physiological conditions. 

Both ribozymes cleaved their target substrate at the predicted cleavage sites 
(Figure 2.5A and 2.5B). These results indicate that both ribozyme target sites are 

accessible for cleavage in vitro and that the designed ribozymes are able to 

display their wild-type phenotypic behaviour.

Hammerhead ribozyme HBx:Rz1 i473 cleaved the 584 nt target RNA 

yielding products of 168 and 416 nt in length. Similarly, HBx:Rz2i65i generated 

cleavage products of 350 and 234 nt in length (Figure 2.5A). No cleavage was 

observed for the catalytically inactive ribozyme counterparts for both 

hammerhead ribozymes HBx:Rz1 1473 and HBx:Rz2165i. Helix II bases G5 and Ai4 

(nomenclature according to Hertel et al., 1992) are substituted for A and C residues 

respectively in the sequences encoding catalytically inactive ribozymes 

HBx:Rz1*i473 and HBx:Rz2*-i65i. The mutant ribozymes theoretically retain the 

ability to hybridise by the complementary base-pairing of helices I and III, while 

being catalytically inactive. Both ribozymes cleaved their respective target 

sequences while the catalytically inactive ribozyme variants were ineffective in 

vitro. Hammerhead ribozyme HBx:Rz2-i65i appears to be less effective than 

ribozyme HBx:Rz1 i473, which may be more accessible for ribozyme cleavage due 

to a favourable secondary structure conformation of the substrate RNA in vitro.

For all ribozyme reactions, 5'-end cleavage products were present in 

greater abundance than 3'-end products. This is likely the result of an inefficient 

transcription reaction in vitro, which can produce truncated transcripts containing 

variable 3' ends. Incomplete transcription of the substrate RNA may also be due 

to a lack of unradiolabelled GTP during the T3 RNA polymerase reaction. 

Moreover, there did appear to be some degradation of the RNA throughout the 

incubation. This was particularly evident for reactions involving the defective 

ribozyme species.
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Figure 2.5 Hammerhead ribozyme-mediated cleavage of an in vitro transcribed HBx RNA 
substrate (HBV strain ayw). A) In vitro cleavage of HBx RNA by ribozymes 
and their catalytically inactive counterparts. The cleavage reaction was 
carried-out as a 5:1 molar ratio of ribozyme to target. The lengths in bases of 
the substrate and cleavage products are annotated to the right of the 
autoradiograph. B) Schematic representation of T3 RNA polymerase 
generated run-off transcripts encoding HBx. The expected cleavage products 
for hammerhead ribozymes /-/Bx:Rz11473 and HBx:Rz2165i are shown on a 
cleavage map.



2.4.4 Inhibition of HBx trans-activation by hammerhead ribozymes and 
antisense RNAs in cell culture

Transcriptional activation of the p-actin promoter and increased expression of p- 

galactosidase mediated by HBx were used to mark cells expressing the viral 

protein. The cells shown in Figure 2.6 were co-transfected with a combination of 

either pCI neo and pp-actin p-gal or pCI neo HBx and pp-actin p-gal (Figure 2.3). 

When co-transfected with pCI neo HBx, the number of cells that was 

histochemically positive for p-galactosidase expression was consistently 8 and 20 

fold higher in Chang and PLC/PRF/5 liver cells respectively (Figure 2.6). Thus, 

under the assay conditions, not all cells transfected with pCI neo and pp-actin p- 

gal were positive for p-galactosidase activity, and the number of positive cells 

increased significantly as a result of trans-activation by HBx. Histochemically 

detectable p-galactosidase-positive cells in the transfections with pCI neo in the 

absence of HBx may reflect an increase in the intracellular copy number of pp- 

actin p-gal in these cells. Uptake of vector molecules by individual cells during 

calcium phosphate transfection is variable. In cells where the intracellular copy 

number of the marker plasmid is high, p-galactosidase expression would be 

sufficient to produce histochemically positive cells without p-actin promoter trans- 

activation by HBx. To enable comparison of the ribozyme effects on PLC/PRF/5 

and Chang liver cell lines, the mean number of positive cells in the series 

transfected with pCI neo HBx (positive control) has been normalised to 100%. 

This corresponds to an average of 255 p-galactosidase-positive PLC/PRF/5 cells 

and 184 p-galactosidase-positive Chang cells per dish of transfected cells. This 

indirect histochemical method of detecting cells expressing p-galactosidase and 

HBx appears to be more specific and sensitive than immunohistochemical 

detection of HBx. The effects of transfecting the ribozyme vectors on the number 

of Chang and PLC/PRF/5 cells that are histochemically positive for p- 

galactosidase activity are depicted graphically in Figure 2.7 and 2.8. After co

transfection of Chang cells with either p/-/Bx:Rz1 1473 or pHBx:Rz2165i, the number 

of positive cells diminished significantly when compared with the cells expressing 

HBx without ribozyme (P<0.01) (Figure 2.7A). The inhibitory effect of 

p/-/Bx:Rz1 1473 was more marked than that of p/-/Bx:Rz2165i.
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Figure 2.6 Representative low power microscopic field of p-galactosidase positive PLC/PRF/5 (A and B) and Chang (C and D) cells transfected with 
pP-actin p-gal and pCI neo (A and C) or pp-actin p-gal and pCI neo HBx (B and D).



Transfection of Chang cells with p/-/Bx:Rz1-i473 and p/-/Bx:Rz2165i in combination 
had a similar effect to that of pHBx:Rz1 1473 alone. Furthermore, there was no 

significant difference (P>0.01) between the number of p-galactosidase-positive 

cells detected in the negative control (pCI neo with pp-actin p-gal) and in the co

transfections with pHBx:Rz11473 alone or together with p/-/Bx:Rz2165i- In 

PLC/PRF/5 cells (Figure 2.7B), pHBx:Rz2165i alone or in combination with 

pHBx:Rz1-i473 diminished the number of p-galactosidase positive cells 

significantly (P<0.01) and p/-/Bx:Rz2165i was more effective than p/-/Bx:Rz1 1473. 

The number of positive cells detected after co-transfection with pHBx:Rz2165i or 
the two ribozyme plasmids together was not significantly different to the number 

detected in the negative control (reporter plasmid with pCI neo) (Figures 2.8A 

and B). Co-transfection of the pCI neo backbone vector with pCI neo HBx and the 

reporter did not change the number of positive cells (not shown). These data 
indicate that both ribozyme expressing plasmids inhibit FIBx trans-activation in 

transfected PLC/PRF/5 and Chang cells.

The inhibitory effects of both antisense encoding plasmids, 

p/-/Bx:At1 1473 and p/-/Bx:At2165i were compared in similar co-transfection 

experiments in PLC/PRF/5 cells (Figure 2.8A and B). Unlike the ribozyme- 

encoding plasmid p/-/Bx:Rz1 1473, p/-/Bx:At1 1473 did not reduce the number of p- 

galactosidase-positive cells. However, the addition of pHBx:At2165i reduced the 

number of positive cells to the levels detected for the negative control (Figure 
2.8A). This observation suggests that an antisense effect generated by 

pWBx:At2-i65i is equally as effective as the ribozyme-encoding sequence 

counterpart, p/-/Bx:Rz21651. Without being able to determine cleavage conditions 

in vivo, it cannot be ruled out that the ribozyme-encoding sequences are 

generating their inhibitory effects through an antisense mechanism alone. 

However, there is a clear difference between the effects of pHBx:Rz1 1473 and 

p/-/Bx:At1 1473, which may indicate that ribozyme cleavage is directly responsible 

for the greater inhibitory power of p/-/Bx:Rz1 1473.

To determine the effects of pHBx:Rz2165i and p/-/Bx:At2i65i on HBx 

expressed in the context of normal HBV sequences, PLC/PRF/5 cells were co
transfected with the HBV replication competent plasmid, pHBV adw HTD (Figure 

2.2B). Relative to the baseline expression of reporter in the negative control
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Figure 2.7 Effect of ribozyme co-transfection on the number of p-galactosidase positive 
Chang cells (A) and PLC/PRF/5 cells (B). The data in each column are given 
relative to the mean number of p-galactosidase positive cells transfected with 
pP-actin p-gal and pCI neo HBx (positive control of 100%). The plasmids co
transfected with pp-actin p-gal are indicated below each column. The means 
and standard errors from six independent experiments are given in A and B.
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Figure 2.8 Effect of ribozyme and antisense co-transfection on the number of p- 
galactosidase positive PLC/PRF/5 cells (A and B) and hepatocytes derived 
from primary cultures of resected malignant liver tissue (C). The data in each 
column are given relative to the mean number of p-galactosidase positive cells 
transfected with pp-actin p-gal and pCI neo HBx (positive control of 100%). 
The plasmids co-transfected with pp-actin p-gal are indicated below each 
column. The means and standard errors from six independent experiments 
are given in A and B. The data in C represent the means from two 
independent transfections (the positive control consists of a mean value of 263 
histochemically positive cells per plate).



vector, pCI neo, the number of positive cells resulting from transfections with the 

vector pHBV adw HTD was approximately 60% that of pCI neo HBx (data not 

shown). Relative to the number of positive cells generated by the vector pHBV 

adw HTD (reflected as a positive control of 100% in Figure 2.8B), baseline cell 

numbers that were histochemically positive for p-galactosidase activity were in 

the order of 40%. This difference is expected since the CMV promoter is likely to 

be more powerful than the endogenous HBx promoter (Schaller and Fischer, 

1991a). Co-transfection of pHBV adw HTD with the vectors expressing 

p/-/Bx:Rz2i65i and pHBx:At2-i65i diminished the number of positive cells to a level 
similar to that of the negative control (pCI neo). Additionally, this result suggested 

that for p/-/Bx:Rz2165i and pHBx:At2165i, ribozyme and antisense-mediated effects 

are largely indistinguishable.
Co-transfection experiments were performed on a primary culture of 

malignant hepatocytes derived from a tumour resected from a patient who was a 

non-replicative chronic carrier of HBV (HBsAg positive, HBeAg negative, HBeAb 

positive). In these cultures, the number of histochemically positive cells 

transfected with pCI neo and the reporter plasmid was similar to the number from 

transfection with pCI neo HBx and pp-actin p-gal (Figure 2.8C). These data 

suggest that there is endogenous expression of HBx and are in keeping with the 

frequent finding of HBx and HBx RNA in HBV related HCC (Paterlini et al., 1995; 

Su et al., 1998). PCR analysis confirmed that HBx is integrated into the genome 

of these malignant cells (not shown, see acknowledgements). p/-/Bx:Rz1u73 and 

p HBx: Rz2 1651 each diminished the number of transfected cells expressing p -  

galactosidase to 35% and 45% of the transfections with pCI neo and/or pCI neo 
HBx. The two ribozyme plasmids in combination further decreased the number of 

cells that were positive for p-galactosidase activity.

2.4.5 Ribozyme-expressing vectors decrease HBx mRNA in transfected
cells

Total cellular RNA was extracted from transfected Huh7 liver cells to determine 
the effects of the two anti-HBx ribozymes on HBx mRNA expressed from 

transiently transfected pCI neo HBx. A sensitive method employing reverse
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Figure 2.9 Detection of HBx mRNA fom Huh7 cells transfected with ribozyme and HBx- 
encoding sequences. Reverse transcriptase (RT) and PCR amplification of 
HBx and GAPDH mRNA isolated 72 hours after transfection of Huh7 cells. 
Autoradiography of 8% polyacrylamide gels demonstrating representative 
amplified HBx and GAPDH fragments. Fragments produced during the 
exponential phase of amplification were analysed. Lane 1, RT-PCR using 
water as the amplification substrate. Lane 2, PCR amplification of RNA 
extracted from cells transfected with pCI neo HBx without RT treatment. RT- 
PCR of RNA isolated from cells transfected with pCI neo (lane 3), pCI neo 
HBx (lane 4), pCI neo HBx and pHBx:Rz1i473 (lane 5), pCI neo HBx and 
pHBx:Rz21651 (lane 6), and pCI neo HBx, pHBx:Rz11473 and pHBx:Rz2i65i 
(lane 7). Again equivalent transfection efficiencies were confirmed in each 
plate by detecting similar numbers of cells labelled with green fluorescent 
protein.



transcription and PCR was used to determine the effect of the ribozymes on the 
concentration of HBx mRNA. Radiolabelled HBx and standard GAPDH DNA 

fragments produced during the exponential phase of PCR amplification were 

compared and a representative example of the detected bands is given in Figure 

2.9. The amount of amplified HBx DNA relative to the GAPDH standards 

indicates that pHBx:Rz1 i473 and pHBx:Rz2i65i effectively decrease the HBx 

mRNA concentration in transfected cells (Figure 2.9, lanes 5 and 6). There is a 
further decrease in the amount of amplified HBx DNA when both ribozymes were 

transfected (Figure 2.9, lane 7). Although this result is only semi-quantitative, the 

data support previous observations, confirming the inhibitory effects of 

pHBx:Rz1 1473 and p/-/Bx:Rz2i65i on HBx fra/is-activation and indicating that the 
inhibitory effects are a result of post-transcriptional degradation of target HBx- 
encoding RNA.

2.5 Discussion and conclusions

The true accessibility of target RNA for hybridisation by small oligonucleotides is 

not easily determined in vivo since many factors play a role in the folding of RNA 

(see 5.2.1). As a result, the intracellular mechanism of action involving substrate 

cleavage by the ribozyme encoding vectors is often difficult to predict. The usual 

approach is to evaluate the target RNA sequences by computer-aided secondary 

structure predictions and in vitro cleavage assays (Bramlage et al., 1998; 

Thomson et al., 1997). Of the twelve 5' GUC 3' consensus sequences on the 

HBx ORF, the two sites selected for targeting were only moderately accessible 

for ribozyme cleavage using the computer program Mfold®, a program which is 

widely used to predict the putative secondary structure of RNA (see Figure 2.4A) 

(Matzura and Wennborg, 1996; Zuker and Jacobson, 1998). Although the 

hybridisation regions surrounding both cleavage triplets (Figures 2.1A and C, and 

2.4) represent conserved sequences that are unique to hepadnaviruses, the 

decision to target these specific two sites was largely guided by trial and error. 

The most important measure of ribozyme efficacy is achieved by inhibiting the 

function of the translation product of the target sequence, which in this case is the 
trans-activation function of HBx. The in vitro cleavage data serves more to 

confirm the functional properties of the designed hammerhead ribozymes.
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However, for evaluating the accessibility of target RNA for hammerhead 

ribozyme-mediated cleavage, data obtained through in vitro cleavage is usually 

more reliable than data generated by computer program predictions. To this 
effect, both hammerhead ribozymes generated in vitro were able to cleave their 

target sequences efficiently and specifically under standard physiological 

conditions in a cell-free environment (section 2.4.3 and Figure 2.5). Interestingly, 

computer predictions of the site cleaved by hammerhead ribozyme HBx:Rz2i65i 

(or the region hybridised by antisense RNA HBx:At2-|65i) indicate that it is 

localised within single-stranded or loop regions, thus making it theoretically more 

accessible for Watson-Crick hybridisation. However, the in vitro cleavage result 

suggests the opposite, since HBx:Rz1 1473 appears to cleave more efficiently. This 

discrepancy between in vitro cleavage data and computer-generated secondary 

structure predictions has been observed by others (Dropulic and Jeang, 1994) 

and points to limitations in the use of computer programs as a predictive method 

in designing target sites for hybridisation.

Ribozymes are thought to be more effective than antisense 

oligonucleotides at specifically inactivating target RNA since ribozymes possess 

catalytic activity. Yet the exact mechanism of ribozyme-mediated inactivation of 

target RNA is difficult to predict in the complex intracellular environment. 

Information regarding the activity of newly designed ribozymes is largely obtained 

from in vitro cleavage experiments. Since ribozyme activity in vitro is assessed in 

a synthetic environment, these experiments may not necessarily be applicable in 

vivo. Defining the activity of hammerhead ribozyme trans-cleavage in vivo has 

proved to be difficult. This is largely owing to the inefficiency of RNA-mediated 

catalysis in cells and the rapid degradation of reaction products by cellular 

nucleases (Sullenger and Cech, 1993). Northern blot and nuclease protection 

assays have been used to detect ribozyme cleavage products. These techniques 

are laborious and products are often observed close to the detection threshold 

(approximately 1 pg of RNA) (Bertrand et al., 1994; Sambrook et al., 1989). PCR- 

based methods are more sensitive and are often used to detect cleavage 

products (Cantor et al., 1993; Ramezani et al., 1997). However, PCR-based 

techniques are indirect and ribozyme-mediated cleavage efficiency has been 

difficult to quantify. Albuquerque-Silva et al. (1998) used a modified competitive 

RT-PCR technique, rapid amplification of cDNA ends (RACE), that results in the



amplification of unknown cDNA 3'-end sequences. In this technique, cDNAs 

representing 3' ribozyme cleavage products are tailed with a 5' homopolymeric 

sequence with terminal deoxynucleotidyl transferase prior to PCR amplification. 

Competitive RACE was used to detect approximately 10 fg (less than 1% of 

cleaved products) produced by endogenously expressed ribozymes directed to 

the mumps virus nucleocapsid mRNA in transfected cells (Albuquerque-Silva et 
al., 1998; Albuquerque-Silva etal., 1999).

A different method for determining the kinetic properties of intracellular 
hammerhead ribozyme catalysis was developed by Samarsky et al. (1999). In 

this system, a hammerhead ribozyme was localised to the yeast nucleolus by 

using the U3 small nucleolar RNA (snRNA) as a carrier. The snRNA:ribozyme 

hybrid (or "snorbozyme") generated cleavage products which, unlike most 

intracellular ribozyme products, are stable snRNA sequences that can be 

conveniently measured. This snorbozyme cleaved a target RNA sequence with 

nearly 100% efficiency in vivo in yeast (Samarsky et al., 1999). The methodology 

employed for this system, which uses a yeast model and snRNA sequences as 

products of ribozyme cleavage, is unlikely to be generally applicable.

Since the instability of most intracellular ribozyme cleavage products 
has hampered their direct detection in vivo, further alternative approaches have 

been adopted to distinguish between hammerhead ribozyme cleavage and 

antisense effects. Indirect measurements using catalytically inactive ribozyme 

sequences or antisense RNA sequences are used in most cases. Catalytically 

defective hammerhead ribozymes have sequence changes within the helix II 

region, which negatively affects catalytic activity. Helical arms I and III remain 

unchanged allowing complementary hybridisation to the substrate sequence. 

However, catalytically defective ribozymes/antisense RNAs are still capable of 

inducing the post-transcriptional inhibition of target RNA, although these effects 

are usually less pronounced than ribozyme-mediated effects (Dorai et al., 1994; 

Kintner and Hosick, 1998; Steinecke et al., 1992). In the present study, 

catalytically inactive ribozymes possessed no cleavage activity in vitro, yet 
antisense RNA expressed from p/-/8x:At21651, which targets the same region as 

pH8x:Rz2165i of the HBx ORF, induced significant inhibitory effects in transfected 
PLC/PRF/5 cells (Figure 2.8A and B). In contrast, antisense RNA generated by 
p/-/Bx:At11473 was an ineffective inhibitor of HBx frans-activation. It is not clear



why the antisense effects generated by p/-/Bx:At2-i65i (in combination with 
p/-/Bx:At1 1473) were better than p/-/Bx:At11473 alone in inhibiting HBx trans- 

activation function. It is known that maximal antisense effects usually require 

longer contiguous complementary sequences than the 17 nt present on both 

antisense molecules (Lieber et al., 1995). The differences may be explained by 

taking into account that the intracellular secondary and tertiary structure of HBx 

RNA may preferentially favour the binding of pHBx:At2165i and pHBx:Rz2i65i. 

Since p/-/Bx:Rz1u 73 has cleavage activity, this may account for its better 
inhibitory effect in vivo than the antisense counterpart p/-/Bx:AtlH73. Although 

inactivation of HBx mRNA is likely to be at the post-transcriptional level (Figure 

2.9), antisense effects are likely to play an important role in the observed 

inhibition of HBx frans-activation by both hammerhead ribozymes, especially for 

the ribozyme expressed by p/-/Bx:Rz2165i. Noticeably, there were slight variations 

in the efficiency of the two ribozyme-encoding vectors p/-/Bx:Rz1i473 and 

p/-/Bx:Rz2-i65i at inhibiting HBx trans-activation in Chang and PLC/PRF/5 cells. 

This can be explained by the fact that hammerhead ribozyme transcripts, which 

are expressed from a mammalian expression vector, include 5' and 3' vector- 

derived sequences. These additional sequences may affect the hybridisation of 

the ribozyme to target RNA, resulting in differing inhibitory effects within the 

intracellular environment of Chang and PLC/PRF/5.

In conclusion, hammerhead ribozymes, which were functionally active 

in vitro, successfully inactivated HBx mRNA and inhibited HBx trans-activation 

function in transfected liver-derived cells. By inhibiting the expression of HBx 

mRNA post-transcriptionally, hammerhead ribozymes possess the ability to block 

translation and decrease the intracellular concentration of HBx, thus 
concomitantly preventing HBx function in vivo. The precise mechanism, however, 

of ribozyme-derived inhibitory action in vivo remains unknown. Antisense 

hybridisation or antisense effects can elicit the specific degradation of target 

RNA. This mechanism may be largely responsible for the observed ribozyme- 

induced inhibitory effects in transfected cells. By inhibiting the function of HBx, 

which is required for natural viral infection, hammerhead ribozymes or antisense 

RNAs may interfere with the natural life cycle of the virus. It remains to be 

determined whether the targeted knockdown of HBx RNA, which must include 

other viral RNA species, will result in the inhibition of viral gene expression. Since



the HBx sequence is present within viral pregenomic RNA, viral replication and 

propagation may be directly inhibited with the degradation of this viral replicative 

intermediate.



3.0 HAMMERHEAD RIBOZYME-MEDIATED 
INHIBITION OF HBV GENE EXPRESSION IN Huh7 
HEPATOMA CELLS

3.1 Summary

The inhibitory activity of the two endogenously expressed hammerhead 

ribozymes and their catalytically inactive ribozyme controls on HBV gene 

expression and replication was assessed in Huh7 hepatoma cells. Ribozyme- 

encoding vectors were co-transfected with the replication-competent HBV vector, 
pHBV adw HTD. Northern blots performed on total cellular RNA extracted from 

co-transfected cells indicate that the two ribozymes were capable of inhibiting the 

expression of 2.1 kb preS1/S HBV mRNA species. By contrast, the relative 

inhibitory activities of the two catalytically inactive variants were significant. 

Moreover, ribozyme-induced reduction of the 2.1 kb preS2/S mRNA corroborated 

the measurements of HBsAg and HBeAg secretion from cell culture 

supernatants, which were obtained from the same plates used to detect viral 

RNA. This suggests that the two ribozymes p/-/Bx:Rz1-i473 and p/-/Bx:Rz2-t65i 
possess only a modest antireplicative ability and their inhibitory effects in vivo are 

likely to be generated largely by antisense hybridisation and not necessarily by 

ribozyme cleavage. When transfected together, the two ribozymes decreased the 

concentration of 2.1 kb viral RNA to undetectable levels and inhibit the secretion 

of viral antigens by up to 80%. Similar co-transfections were performed using the 

vector pCH-EGFP, in which the preS2/S ORF of the modified replication- 

competent HBV plasmid pCH-9/3091 was replaced by the EGFP ORF. Using this 

vector, both hammerhead ribozymes were able to reduce significantly the number 

of EGFP fluorescent cells when compared to inactive ribozyme controls. This 

novel system allowed for the rapid determination in situ of anti-HBx ribozyme- 

mediated inhibition of HBV replication in transfected Huh7 cells. These results 

were correlated by a reduction in HBsAg when using the replication-competent 
vector pCH-9/3091.



3.2 Introduction

Hammerhead ribozymes that are targeted to the HBx ORF of HBV should, in 

theory, be able to inactivate gene expression of all transcribed sequences, 

including viral pgRNA. On this account, ribozyme-mediated targeting of the HBx 

ORF may be applied therapeutically to abrogate viral replication and propogation 

in chronically infected individuals. In Chapter 2, the HBx sequence was 

successfully targeted by hammerhead ribozymes in vitro and by

ribozyme/antisense RNAs in a number of different transfected human hepatoma 

cell cultures (sections 2.4.3 and 2.4.4). The accessibility of two sites within the 

HBx RNA sequence was confirmed as targets for nucleic acid-based 

hybridisation. These results are in accord with studies using antisense 

ODNs/RNAs (Moriya et al., 1996; zu Putlitz et a i, 1999), hairpin ribozymes 

(Welch et al., 1997; zu Putlitz et al., 1998) and hammerhead ribozymes (Kim et 

al., 1999; Yim et al., 2000) (see section 5.1.1), which indicate the accessibility of 

the HBx sequence as a target for nucleic-acid hybridisation both in vitro and in 

cultured cells. However, the inhibitory effect of hammerhead ribozymes on HBV 

gene expression and replication has yet to be confirmed in an intracellular 
context.

Since little is known of the exact mechanism of ribozyme-induced 

inhibition in mammalian cells, most studies make use of antisense RNAs and 

catalytically inactive ribozyme variants as additional controls. These controls do 

not always reveal the exact kinetic mechanism of intracellular inhibition observed 

by the endogenously expressed ribozymes. It has been technically challenging to 

measure the actions of ribozymes in vivo since target instability after ribozyme 

cleavage makes detecting the products of ribozyme action difficult. In this 
chapter, the anti-HBV inhibitory activity of hammerhead ribozyme and inactive 

ribozyme variants was determined using cell culture models of HBV infection. 

Ribozyme-mediated effects were determined by measuring a decrease in viral 

gene expression and the secretion of viral products, HBsAg and HBeAg, into the 

culture medium. Although ribozyme cleavage activity was not determined in vivo, 

a method was developed for measuring the action of ribozymes targeted to the 
HBx ORF in situ in transfected cells. The coding region of EGFP was used to 

substitute part of the preS2/S ORF in an HBV-encoding vector that expresses all



HBV-derived transcripts. This study demonstrated that the number of transfected 
cells that express EGFP correlates with the secretion of HBsAg and is an index of 

the inhibitory effects of the vectors expressing ribozyme sequences. The results 

presented in this chapter pave the way for the development of improved 

therapeutic ribozymes that are targeted to the HBx ORF of FIBV.

3.3 Materials and Methods

3.3.1 Target vectors

The target vector pFIBV adw HTD and the ribozyme vectors have been described 

previously in sections 2.3.1 and 2.3.2. pCFI-9/3091 has been described 

previously (Nassal et al., 1990) and contains a greater-than-genome-length 

sequence of HBV subtype ayw. In this plasmid, the transcript derived from the 

CMV promoter generates a 3500 nt pregenomic transcript (Figure 3.1A). To 

generate pCH-EGFP, the preS2/S ORF of pCFI-9/3091 was replaced with a 

sequence encoding EGFP (Passman et a i, 2000) (Figure 3.1 B). The EGFP 

sequence was excised from pCI neo GFP (described in section 2.3.1) with Xho\ 

and Xba\ and inserted into the Xho\ and Spel sites of pCH-9/3091 to generate 
pCH-EGFP.

3.3.2 Northern blot

Fluh7 cells were transfected with pFIBV adw HTD together with control or 

ribozyme plasmids using a procedure similar to that described in section 2.3.3. In 

summary, cells in 100 mm diameter culture dishes were transfected with a 

combination of 20 pg of pHBV adw HTD and 10 pg of either p/-/Bx:Rz11473, 

p/-/Bx:Rz1*1473 pHBx:Rz2i65i, pHBx:Rz2* i65i or pCI neo. Similar quantities (10 

pg) of the reporter plasmid pCI neo GFP were also included in each transfection 

to control for equivalent transfection efficiencies. Seventy-two hours after 

transfection, total cellular RNA was isolated from the cells using the guanidinium 

thiocyanate method of extraction (see Appendix A3) (Schaller and Fischer, 

1991a). For northern blot analysis, 20 pg samples of total cellular RNA were 

separated by electrophoresis in 1.4% formaldehyde-agarose gels. A duplicate gel



was stained with ethidium bromide to ensure for similar amounts of RNA in each 
lane. Unstained gels were blotted overnight onto Hybond C-extra membranes 

(Amersham, United Kingdom) and RNA fixed to the membranes by baking for 2 

hours at 80°C. Hybridisation was performed in Quickhyb solution (Stratagene, 

Wl, USA) to a multiprime (Amersham, United Kingdom) labelled probe that 

encompassed the entire HBV genome. See section 3.3.2.1.
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3.3.2.1 Preparation of HB V-specific probe.

pHBV adw HTD was digested with EcoRI resulting in two fragments. The 3183 bp 

fragment encompassing the entire HBV genome was eluted from a 1% agarose 

gel and purified as described in Appendices A4-1 and A4-2. A multiprime random 

labelling kit (Megaprime DNA Labelling System; Amersham Pharamcia Biotech, 

England) was used to label the probe to a specific activity of 2.38 x 106 cpm/pg.

3.3.3 HBsAg and HBeAg secretion from transfected cells

Huh7 cells were transfected with pHBV adw HTD (described in section 2.3.2) 

together with control or ribozyme plasmids (section 3.3.1) in 100 mm diameter 

culture dishes. HBsAg and HBeAg secretion into the culture supernatants was 

measured daily for three days using Axsym (ELISA) immunoassay kits (Abbot 
Laboratories, IL, USA). The means of HBsAg and HBeAg immunoassay 

measurements were calculated from two independent transfections.

3.3.4 In situ detection of hammerhead ribozyme activity

Huh7 cells were grown, seeded and transfected as described in section 2.3.4 and 

2.3.5. Transfections were performed in 60 mm diameter culture dishes. Cells 

were co-transfected with a combination of 3 pg of pCH-EGFP and 6 pg of a 

ribozyme-encoding plasmid: pHBx:Rz1 1473, pHBx:Rz1*1473, pHBx:Rz2165i,

p/-/Bx:Rz2*i65i or pCI neo (ribozyme-negative control). Similarly, cells in 100 mm 

diameter culture dishes were co-transfected with a combination of 7 pg of pCH- 

9/3091 and 14 pg of a ribozyme encoding plasmid: p/-/Bx:Rz1i473, pHBx:Rz1*1473, 

pHBx:Rz2165i, pHBx:Rz2*-i65i or pCI neo. For the transfections using pCH- 
9/3091, equivalent transfection efficiencies were confirmed by co-transfection 

with 10 pg of pCI neo GFP followed by fluorescence microscopy (Appendix C2).

Cells labelled with EGFP were detected by fluorescence microscopy 

three days after transfection. The mean number of fluorescent cells as well as the 

standard error of the mean (SEM) was calculated from experiments performed in 

triplicate. HBsAg secretion into the culture supernatants for cells transfected with 
pCH-9/3091 was measured on three successive days post-transfection similarly



to 3.3.3. The means and SEMs of HBsAg immunoassay measurements were 
calculated from triplicate transfection experiments. Analysis of variance was 

calculated using Dunnett’s multiple comparisons test.

3.4 Results

3.4.1 Vectors expressing target sequences

The replication-competent HBV vector, pHBV adw HTD, was used to reconstitute 

HBV infection in transfected Huh7 cells, thus generating all viral mRNA species, 

including viral pgRNA. This vector was used to determine hammerhead ribozyme 

inhibitory effects on viral mRNAs, and the secretion of HBsAg and HBeAg into 

culture supernatants. A sequence encoding EGFP was used to substitute the 

preS2/S ORF and to generate pCH-EGFP. Transfection of cultured cells with 

pCH-EGFP allowed fluorescence microscopy to be used to detect marker gene 

expression in situ in living cells. The HBx region of HBV is common to naturally- 

occuring HBV transcripts as well as the mRNA species that are expressed in the 

target vectors used here. Ribozyme-mediated endonucleolytic cleavage thus 

includes target sequences on transcripts required for translation of EGFP and 

HBsAg in pCH-EGFP and pCH-9/3091 respectively.

3.4.2 The effects of ribozyme-expressing vectors on HBV RNA 

expression in transfected cells

HBV RNA was extracted from transfected Huh7 liver cells to determine the 

effects of the two HBx ribozymes on HBV gene expression. pHBV adw HTD in 

combination with pHBx:Rz1-i473 and pHBx:Rz2165i or their catalytically inactive 

counterparts were used to transfect the established liver cell line. RNA extracted 
from these cells was measured using northern blot hybridisation (Figure 3.2). The 

size of the detected RNA (approximately 2.1 kb) indicates that the dominant 

bands were from the group of transcripts derived from preS1 and preS promoters 

(Figure 1.2). This observation is consistent with results that suggest these
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Figure 3.2 Detection o f HBV RNA fom  Huh7 cells co-transfected with ribozym e vectors 
and an HBV replication com petent vector. Tw enty m icrogram s o f total 
ce llu lar RNA was isolated from  Huh7 cells, resolved e lectrophoretica lly and 
subjected to northern blotting w ith hybrid isation to a HBV genom ic probe. 
Cells had been untransfected (lane 1) and transfected w ith pCI neo GFP, 
pHBV a d w  HTD and e ither pCI neo (lane 2), pH Bx:R z11473 (lane 3), 
pH Bx:R z21651 (lane 4), pB B x:R z11473 and p/-/Bx:Rz2 165 i (lane 5), 
p/-/Bx:Rz1*1473 (lane 6) o r p/-/Bx:Rz2*165i (lane 7). A  duplicate gel was 
stained w ith e th id ium  brom ide to verify the presence o f sim ilar am ounts o f 
total ce llu lar RNA on each lane. Equivalent transfection  effic iencies were 
confirm ed by detecting sim ilar num bers o f transfected cells labelled with 
green fluorescent protein in each culture plate.



c/s-elements are the most active HBV transcriptional regulatory sequences 

(Schaller and Fischer, 1991a). Compared with p/-/Bx:Rz2-i65i, pHBx:Rz11473 is 

less effective at decreasing the concentration of HBV RNA (Figure 3.2, lanes 3 
and 4). This finding is consistent with a diminished effectiveness of p/-/Bx:Rz11473 

as a result of the altered base that is found at the target cleavage triplet of 
p/-/Bx:Rz1 1473 in transcripts from pHBV adw HTD. Together, p/-/Bx:Rz1 1473 and 

p/-/Bx:Rz2i65i decrease the detectable 2.1 kb mRNA to a concentration similar to 

that of the negative control (Figure 3.2, lane 5). Surprisingly, the catalytically 

inactive ribozymes were also found to decrease the concentration of HBV RNA in 

the transfected cells. However, this pronounced inhibitory effect was not a 

consistent observation and was not corroborated by the measurement of HBsAg 

and HBeAg secretion from transfected cells (see below). The inhibitory effects of 

p/-/Bx:Rz1*i473 and p/-/Bx:Rz2* i65i are likely to result from an antisense 

mechanism that destabilises HBV mRNA.

3.4.3 Measurements of HBsAg and HBeAg secretion in co-transfected 

Huh7 cells

Since HBx is common to all HBV transcripts, p/-/Bx:Rz1-i473 and pHBx:Rz2165i 
should therefore encode ribozymes that act on preC/pregenome, surface as well 

as HBx mRNAs (Figures 1.1,2.2 and 3.1). As with cellular mRNA, the first ORF is 

translated most efficiently from HBV transcripts (Schaller and Fischer, 1991a). 

Translation initiated from the preC initiation codon of the preC/pregenome 

transcript generates a precursor protein that is modified by proteolysis and is 

secreted as the HBeAg. The HBsAg is translated from the surface ORF of the 

preS2/S transcripts. As well as being indicators of translation from 

preC/pregenome and preS2/S transcripts, HBeAg and HBsAg production are 

markers of HBV replication in HBV-infected individuals. Therefore the effects of 

p/-/Bx:Rz1-i473 and p/-/Bx:Rz2i65i, as well as their catalytically inactive 
counterparts, pHBx:Rz1*1473 and pHBx:Rz2*1651, on the secretion of HBeAg and 

HBsAg from transfected Huh7 cells were investigated (Figure 3.3). During a 

period of three days after transfection, p/-/Bx:Rz1-i473 and p/-/Bx:Rz2165i 

decreased the secretion of HBeAg and HBsAg into the culture supernatant.
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Figure 3.3 Secretion of HBsAg and HBeAg into the culture supernatant after 
transfection of Huh7 cells. HBsAg (A) and HBeAg (B) concentrations in the 
culture supernatants were measured using the Axsym immunoassay 
protocols each day and for three days. The mean (n = 3) values of HBsAg 
and HBeAg were calculated as the sample to noise ratio (HBsAg) or sample 
to cutoff ratio (HBeAg) according to the supplier’s instructions (SEM not 
shown). Huh7 cells were untransfected (- control) or transfected with pHBV 
adw HTD and pCI neo (+ control), pHBx:Rz11473, p/-/Bx:Rz2165i, 
p/-/Bx:Rz1i473 and pHBx:Rz2165i, p/-/Bx:Rz1*1473 or pHBx:Rz2*1651. 
Equivalent transfection efficiencies were confirmed in each culture plate by 
detecting similar numbers of cells labelled with green fluorescent protein.



pHBx:Rz1-i473 was slightly more effective than p/-/Bx:Rz2165i despite the altered 5' 

GUC 3' cleavage motif in the pHBV adw HTD vector which renders p/-/Bx:Rz11473 

catalytically inactive (Figure 2.1). This observation confirms the results obtained 

using antisense RNAs and suggests that an antisense effect of these ribozyme 

sequences, without substrate cleavage, may be an important mechanism of their 
action (see section 2.4.4). In combination, the two ribozyme-encoding vectors 

further inhibited HBsAg and HBeAg secretion to a level that is only slightly higher 
than that of the negative control. Plasmids p/-/Bx:Rz1*i473 and p/-/Bx:Rz2* i65i 

exerted modest inhibitory effects on HBsAg and HBeAg secretion. Interestingly, 

pHBx:Rz1i473 should not be capable of cleaving transcripts derived from pHBV 

adw HTD, yet its effects are diminished by the helix II mutations of 

p/-/Bx:Rz1*i473- The reason for this may be a significantly altered secondary 

structure of pHBx:Rz1*1473. Helix II is a conserved sequence in hammerhead 

ribozymes, and mutations in this region are likely to compromise the availability of 

helix I and helix III sequences for binding to their complementary target bases. 

This would diminish antisense effects of the anti-HBx ribozymes that have helix II 

mutations. Taken together with section 3.4.2, the data suggest that the ribozyme 

sequences inhibit HBV gene expression. However, a dominant antisense effect 

that results from compromised helix II mutations cannot be excluded.

3.4.4 In situ detection of ribozyme activity in transfected Huh7 cells
3.4.4.1 Ribozyme modulation of EGFP marker gene expression

The effect of ribozyme sequences on expression from pCH-EGFP was measured 

in situ by quantitation of fluorescent transfected cells expressing EGFP (Figures

3.4 and 3.5). The cells shown in Figure 3.4 are representative fluorescence

microscope fields of co-transfections with combinations of pCH-EGFP and pCI 
neo, p/-/Bx:Rz1 1473 or p/-/Bx:Rz1*H73. The mean and SEM of the number of cells 

expressing EGFP were calculated at day three from triplicate experiments. The 

mean of the positive control (cells co-transfected with pCH-EGFP and pCI neo) 

was normalised to 100% and represents a figure of 972 fluorescent cells per 

culture dish (Figure 3.5B). The mean percentage of fluorescent cells was 

significantly decreased when p/-/Bx:Rz11473 (25.5 ± 5.3%, p<0.01) or

pHBx:Rz2i65i (13.3 ± 3.4%, p<0.01) was co-transfected with pCH-EGFP.



Substitution of the catalytically inactive counterparts, p/-/Sx:Rz1*i473 or 

pHBx:Rz2*i65i, resulted in a diminished inhibitory effect on expression of EGFP in 

transfected cells. Once again, the inhibition by the catalytically inactive vectors 

may be due to an antisense mechanism that involves hybridisation of helix I and 

helix III domains to complementary HBx sequences. The more marked effects of 

p/-/Bx:Rz1 i473 and p/-/Bx:Rz2i65i suggest that the ribozymes encoded by these 
vectors operate by intracellular cleavage of the HBx-containing substrates. The 

effect of pHBx:Rz1 i473 was more marked than that of p/-/Bx:Rz2i65i and indicates 

a more favourable interaction between ribozyme and target sequence.

pCH-EGFP + pCI neo pCH-EGFP + pHBx:Rz1*i473

pCH-EGFP + p HBx: Rz1 M73 Untransfected

Figure 3.4 Combined phase contrast and fluorescent microscopic field of Huh7 cells 
transfected with pCH-EGFP and either pCI neo (A), p/-/Bx:Rz1*1473 (B), 
pBBx:Rz1 1473 (C) as well as untransfected cells (D).
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Figure 3.5 Effect of ribozyme co-transfection on HBsAg production (A) and on the 
number of EGFP positive Huh7 cells (B). HBsAg measurements are given 
as a mean percentage of the positive control with SEM indicated. The 
plasmids used in the transfection are indicated below each column. The 
data are given as the mean sample to noise ratio from experiments 
performed in triplicate.



Ribozyme effects detected in situ and HBsAg secretion measurements in co

transfected Huh7 cells

HBsAg concentration in the culture supernatants was measured from cells 

transfected with pCH-9/3091 together with ribozyme (pHBx:Rz11473 and 

pHBx:Rz2i65i) or control vectors (pCI neo, pHBx:Rz1* i473 and p/-/Bx:Rz2*165i)- A 
vector constitutively expressing EGFP (pCI neo GFP), which is not susceptible to 

anti HBx ribozyme cleavage, was included to confirm equal transfection 

efficiencies in each of the culture plates. The mean and SEM were calculated 

from triplicate experiments and the results are depicted in Figures 3.5A and 3.6. 

In Figure 3.5B, the mean of the positive control has been normalised to 100% to 

enable comparison to the effects of p/-/Bx:Rz1-i473 and p/-/Bx:Rz2i65i on HBsAg 
secretion. At day 3, HBsAg secretion is significantly lower in the culture plates 

transfected with p/-/Bx:Rz1-i473 (84 ± 2.1%, p<0.01) and pHBx:Rz2i65i (78.3 ± 

2.8%, p<0.01) when compared to the positive control transfected with pCI neo

- Control ♦  
pHBx:Rz1*i473 •  
pHBx:Rz2*i65i ■ 
pHBx:Rz1i473 ■

p/-/Bx:Rz2i65i •

Figure 3.6 Effect of ribozyme co-transfection on HBsAg production from plasmid 
pCH-9/3091. Three day time course of HBsAg secretion from transfected 
Huh7 cells. The data are given as the mean (n = 3) sample to noise ratio 
from experiments performed in triplicate (SEM not shown).



and pCH-9/3091. Daily measurements of HBsAg secretion (Figure 3.6) confirm 
that the effects of the ribozyme and control vectors follow a similar trend with 

time. The inhibitory effect is lower in the catalytically inactive vectors and, as with 
the effect on EGFP expression, p/-/Bx:Rz2165i inhibits FIBsAg secretion more 

effectively than does p/-/Bx:Rz1-i473.

The inhibitory effect of the ribozymes on HBsAg secretion is less 

marked than on EGFP expression detected in situ. However, ribozyme-induced 

inhibition of HBsAg secretion is less pronounced than earlier results in section 

3.4.3. The differences in HBsAg secretion may be a result of using the CMV 

promoter rather than endogenous HBV promoters to drive the expression of viral 

mRNA in the vector pCH-9/3091. The correlation between the effects of each of 

the ribozyme-encoding sequences on HBsAg secretion and EGFP expression 

demonstrate that in situ detection of EGFP expression using the vectors 

described is an index of HBV gene expression.

3.5 Discussion and conclusions

Ribozyme and antisense therapies, which are based on nucleic acid 

hybridisation, are potentially effective therapeutic agents for the treatment of 

chronic HBV infection. The selection of therapeutic and target HBV sequences can 

be determined by measuring efficiently the intracellular action of ribozymes. 

However, the development and discovery of novel treatment regimens for HBV, 

including the use of therapeutic hammerhead ribozymes, has been hindered by 

the lack of cell culture models of viral infection. Most hepatoma cells are not 

readily receptive to HBV infection. Although primary hepatocytes do respond well 

to being infected, these cells must remain in the differentiated state (Galle et al., 

1989). Since it has been technically difficult to culture primary hepatocytes that 

are receptive to HBV, alternative in vitro systems for the study of HBV replication, 

utilising continuous cell lines, have been developed. Human HCC cells are 

transfected with vectors encoding tandem repeats of the viral genome. 

Expression cassettes that generate greater-than-genome-length HBV RNA 

sequences result in transient or persistent HBV expression (Sells et al., 1987; 

Tsurimoto et al., 1987). In HBV-infected hepatocytes, cleavage of pgRNA would 

prevent the amplification of viral cccDNA. Nevertheless, HBV-encoding vectors,



which continuously produce viral pgRNA via foreign promoters or from a 
replicating plasmid template, represent artificial models of infection. Establishing 

a cell line capable of being infected by HBV remains important for the 

development of new therapeutic agents. Existing transfection-based cell culture 

models of viral infection do, however, offer valuable information regarding the 

principle and efficacy of new antiviral strategies.

The inhibition of HBV gene expression that was demonstrated in cell 

culture models of HBV infection is an indicator of promising efficacy of 

endogenously expressed hammerhead ribozymes in vivo. The approach used in 

this study has been to develop an assay for measuring the inhibitory effects of 

ribozymes targeted to the HBx ORF in situ in transfected cells. A modified HBV- 

derived plasmid, where the preS2/S region is replaced by DNA encoding EGFP, 
allowed for the in situ measurement of hammerhead ribozyme-mediated effects 

in transfected cells. Since the HBx ORF is present downstream of the EGFP 

coding region on three of the four major viral transcripts, the hammerhead 

ribozymes presented in this thesis probably inhibited all EGFP-expressing 

transcripts. Moreover, ribozyme-modulation of EGFP marker gene activity in situ 

was corroborated by measurements of viral HBsAg and HBeAg secretion 

generated by transfection with a replication-competent HBV vector. This in situ 

assay may thus be a useful marker of the antireplicative effects of ribozymes 

targeted to the HBx ORF. It should be noted that the results presented here 

reflect an indirect assessment of the inhibition of viral replication in cell culture by 

hammerhead ribozymes. Ideally, the antireplicative effects of these hammerhead 

ribozymes should be determined in cell culture systems that permit a complete 

HBV replication cycle such as, inter alia, primary tuapaia hepatocyte cultures and 

human HepaRG cells.

In conclusion, results presented in this study indicated that 
hammerhead ribozymes targeted to the HBx ORF of HBV were capable of 

significantly inhibiting viral gene expression and markers of viral replication in an 

intracellular environment. Once again catalytically inactive ribozymes were shown 

to be modestly effective in inhibiting viral gene expression and replication in 

cultured cells. Catalytically-defective ribozyme controls were designed specifically 

to negate the effects of ribozyme catalytic activity as a means of inactivation. 

However, since hammerhead ribozymes appear to function under single-turnover



conditions in vivo, these ribozyme-inactive variants may merely behave like 
competitive inhibitors and their effects may be largely indistinguishable from their 

catalytically active counterparts. In fact, the nucleases responsible for antisense 
effects in vivo may be as efficient as ribozyme-mediated endonuclease activity.

Taken on their own, the two ribozyme-expressing vectors do not 

sufficiently inhibit viral gene expression to the extent necessary for their 

therapeutic application. Before applying these ribozymes clinically, improvements 

are needed to increase their intracellular efficacy and specificity. Of particular 

interest is the fact that ribozyme vectors transfected together do have an additive 

effect. This suggests that the appropriate therapeutic approach is to target 

simultaneously more than one sequence using different ribozymes. This may 

have the dual effect of 1) increasing the intracellular ribozyme concentration, thus 

improving their efficacy; and 2) preventing the emergence of ribozyme-resistant 

viral mutants. There are numerous practical constraints that need to be 

addressed in order to successfully apply different ribozyme-encoding genes 

simultaneously. These are dealt with in the next chapter.



4.0 MULTIMERIC C IS- AND TR A N S -ACTING 
HAMMERHEAD RIBOZYMES THAT TARGET THE 
HBV H B x  OPEN READING FRAME

4.1 Summary

Vectors were generated to encode multiple hammerhead ribozyme units that 

simultaneously target three different sites on the HBx ORF. The rationale of this 
study was to improve the inhibitory effects of hammerhead ribozyme in vivo by 

increasing their intracellular concentration; and to prevent the emergence of 

ribozyme-resistant escape mutants. Each multimeric unit comprises a 

hammerhead ribozyme sequence flanked by an adjacent upstream 

complementary ribozyme target sequence and was designed to cleave 

intramolecularly (in c/s) and produce 5'- and 3'-processed hammerhead 

ribozymes that are free to function in trans.

Transcripts containing 4-mer, 8-mer and 24-mer c/s- and frans-cleaving 
ribozyme units efficiently cleaved in c/s to produce individual processed 

hammerhead ribozyme monomers in vitro that were able to cleave efficiently 

target HBx RNA in trans in a site-specific manner. Expression vectors encoding 

multimeric hammerhead ribozymes were tested for their antireplicative potential 

in transfected cell culture models of HBV infection. The inhibition of HBsAg and 

HBeAg secretion was measured along with the inhibition of EGFP fluorescence in 

situ. Vectors expressing 8-mer multimeric c/s- and frans-cleaving hammerhead 

ribozymes were more effective than their single-unit counterparts at reducing viral 

HBsAg and HBeAg levels. The 24-mer multimeric ribozyme expression vector, 

pCI-/W24/-/Bx:Rz1,2&3, containing 8-mer units of each of the three anti-HBx 

ribozymes, reduced EGFP fluorescence by ± 92% and viral antigen secretion by 

± 60%. This suggests an additive inhibitory effect when each of the three different 

ribozymes is targeted simultaneously. Since the multimeric ribozymes are more 

effective than previously described ribozymes at inhibiting markers of viral 

replication in transfected cells, these therapeutic agents have a greater potential 
to be used for the treatment of chronic HBV infection.



4.2 Introduction

The data in previous chapters demonstrate that the HBx region of HBV is 

accessible to hammerhead ribozyme hybridisation. These hammerhead 

ribozymes were successfully applied to inhibit HBx function and suppress HBV 

gene expression and replication in cultured cells. To date, a number of nucleic 

acid hybridisation strategies targeting different regions of the virus have been 
applied in vitro and in cell culture investigations with varying success (Beck and 

Nassal, 1995; Feng et ai, 2001a; von Weizsacker et al., 1992; zu Putlitz et al.,

1999). However, within the scope of cell culture models of viral infection, 

limitations regarding the efficacy of hammerhead ribozymes have emerged that 

make these agents, as they presently stand, unsuitable for clinical application. 

Since hammerhead ribozymes behave similarly to antisense RNA in vivo (Birikh 

et al., 1997b), approaches that are aimed at improving the intracellular inhibitory 

activity of hammerhead ribozymes remain an important medical objective. Since 

the hybridisation of ribozymes to their complementary target sequence is rate- 

limiting in vivo, hammerhead ribozyme-mediated inhibitory effects may be 

improved by generating a greater molar excess of ribozyme over target RNA. 

Moreover, as is evidenced by the data in Chapter 3, a combination of different 

ribozymes expressed simultaneously may improve their inhibitory efficacy in vivo.

Applying many ribozymes simultaneously may be advantageous in 

other ways. Mutations within the target RNA, especially within the hammerhead 

ribozyme cleavage triplet sequence, may prevent ribozyme-mediated cleavage, 

or less severely, affect the accurate hybridisation of ribozyme annealing arms 

with its target complementary sequence. There have been reports of ribozyme 

escape mutants generated for HIV-1 infections in cultured cells (Bertrand and 
Rossi, 1996; Dropulic et al., 1992). Although HBV is far less mutable than HIV, it 

replicates using the error-prone reverse transcriptase (RT), which lacks a proof

reading function (Preston et al., 1988). Thus, by targeting a single site for 

ribozyme-mediated cleavage, there exists the real possibility of generating HBV 

replication variants capable of evading the therapeutic action of ribozymes.

To overcome the problem posed by the mutability of HBV, several 
ribozymes can be applied to target simultaneously different sites on the HBV 

sequence. One approach is to use multiple hammerhead ribozyme units that are



joined together and expressed on the same transcript (Bai et al., 2001; Chen et 
al., 1992; Ramezani et al., 1997). But, this method lends itself to steric hindrance 

between connected ribozymes (Ohkawa et al., 1993a). Various groups have 

developed systems in which connected ribozymes on the same transcript are 

liberated through intramolecular ribozyme cleavage (c/'s-cleaving ribozymes) in 

order to generare trans-acting ribozymes (Ohkawa et al., 1993a; Price et al., 

1995; Ruiz et al., 1997). This is achieved by using separate c/'s-cleaving 

‘processing ribozymes’, which flank the trans-acting ribozyme (Altschuler et al., 
1992; Ohkawa et al., 1993a); or by introducing a ribozyme recognition sequence 

between connected ribozymes such that each ribozyme first cleaves in c/'s before 

cleaving in trans (Ruiz et al., 1997). Since the same ribozyme can be copied 

many times, and multiple ribozymes can be connected together and expressed 

from a single transcript, these approaches have the advantage of increasing the 

intracellular ribozyme concentration.

This chapter describes the construction and application of eukaryotic 

expression cassettes that encode multiple c/'s- and trans-cleaving hammerhead 

ribozyme sequences. Transcripts expressed from a multimeric hammerhead 

ribozyme cassette were designed to consist of many ribozyme units bound head- 

to-tail. Each unit contains a ribozyme target recognition sequence and an 

upstream complementary ribozyme sequence. From within an expressed 

transcript, hammerhead ribozymes are theoretically capable of cleaving in c/'s 

(Figure 4.1 A) to generate therapeutic trans-acting ribozymes with processed 5' 

and 3' ends (Figure 4.1 B). The aim was to modify the two previously described 

ribozymes and to introduce a third hammerhead ribozyme targeted to a different 

site within the HBx ORF. Vectors were generated to include multiple copies of the 

three selected hammerhead ribozyme-encoding sequences (Figure 4.1C). These 

were tested to inhibit viral gene expression and markers of viral replication in cell 
culture models of HBV infection.



4.3 Materials and Methods

4.3.1 Plasmid vectors encoding multimeric ribozyme sequences
4.3.1.1 Plasmids containing single cis- and trans-cleaving ribozyme units

The M1HBx:Rz1 1 4 7 3, M1HBx:R z2 i 6 5 i and M1HBx:R z 3 -i6o7  single-unit cis- and 

trans-cleaving hammerhead ribozyme sequences respectively encode the 

catalytic and annealing sequences of ribozymes HBx:R z l- 1 4 7 3 , HBx:Rz2i65i and 

HBx:Rz3i607 as well as a downstream target sequence recognised by each 

ribozyme for cis-cleavage. For hammerhead ribozyme M1HBx:Rzl-1473, 5' and 3' 

flanking arms represent hammerhead ribozyme helices I and III respectively and 

span regions 1466 to 1479 for internal cis-cleavage and regions 1461 to 1484 for 

trans-cleavage. Hammerhead ribozyme M1HBx:Rz2i65i is complementary to 
HBV ayw co-ordinates 1644 to 1658 for cis-cleavage and co-ordinates 1639 to 

1663 for trans-cleavage. Similarly, 5' and 3' flanking arms of M1 HBx:Rz3i6o7 span 

regions 1600 to 1613 for cis-cleavage and regions 1595 to 1618 for trans- 

cleavage (HBV ayw sequences: GenBank® accession number J02203) (see 

Figures 4.1 and 4.2).

With the exception of pBS-M7/-/Bx;Rz2-i65i, the construction of each 
single-unit cis- and trans-cleaving multimeric ribozyme-encoding plasmid 

proceeded in two separate cloning operations, since mutant clones were often 

observed when annealing chemically synthesized fragments larger than 60 nt.

Plasmid pBS-M7/-/Bx:Rz2ir<si

Two complementary 70-nucleotide oligodeoxynucleotides encoding sense and 

antisense sequences were synthesized by standard phosphoramadite chemistry 
using a DNA synthesizer (Ranson Hill, USA). The annealed, dsDNA fragment 

contains Xba\ and Spel cohesive ends and encodes a single unit cis- and trans- 

cleaving hammerhead ribozyme along with its respective downstream cis- 

cleavage recognition sequence and 5' GUC 3' cleavage site. Sense (S) and 

antisense (A) oligonucleotide sequences for the single cis- and trans-cleaving
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Figure 4.1 The principle of multimeric hammerhead ribozyme cis- and trans-cleavage action. A) C/s-cleavage reaction showing both the cis- 
acting ribozyme sequence (blue) and its c/s-recognition sequence (red) with a 5' NUH 3' cleavage triplet (shaded). B) Ribozyme 
trans-cleavage of HBx-encoding RNA (red). The lengths of helices I and III are longer for the frarrs-cleavage reaction. C) A 
precursor transcript comprising several cis- and trans-cleaving hammerhead ribozyme units. Single-unit ribozymes are released 
through internal cis-cleavage and retain their frans-cleaving function to cleave three sites within an HBx-encoded RNA sequence.



Single-unit cis- and trans-cleaving hammerhead ribozyme- 
encoding oligonucleotide sequences

M1HBx\ Rz1 1473
Trans-ribozyme Cis-cleavage 

recognition sequence

C/'s-ribozyme
h- H h- H

Spe l/Xbal
X£,a\ Helix I Helix II Helix III fusion

5' CTAGAACCAGTCCCAAGCTGATGAGTCCGTGAGGACGAAACCCCGAGAAGGACTAGATCGGGGTCGCTTGGA 3’
3' TTCTCAGGGTTCGGACTACTCAGGCACTCCTGCTTTGGGGCTCTTCCTGATCTAGCCCCAGCGAACCTGATC 5'

Spel

72 bp

M1 H8x:Rz21650 Trans- ribozyme C/s-cleavage
i__________________________________________________________ i recognition sequence

C/s-Ribozyme 1

Xfra\ Helix I Helix II Helix III
5' CTAGACCTCTTATGTAACTGATGAGTCCGTGAGGACGAAACCTTGGGCAATGGTTCCAAGGTCTTTACATA 3’
3’ TGGAGAATACATTGACTACTCAGGCACTCCTGCTTTGGAACCCGTTACCAAGGTTCCAGAAATGTATGATC 5'

Spel

• 70 bp

M1 HBx:Rz3w07
Trans- ribozyme

i----------------------------------------------------------- 1
C/'s-ribozyme

i----------------------------------------------- 1

Cis-cleavage 
recognition sequence

4
Spel/Xbal

Xba| Helix I Helix II Helix III fusion
5 ’ CTAGAAGGTCTCCATGCCTGATGAGTCCGTGAGGACGAAACGTGCAGAGGTACTAGATGCACGTCGCATGGA 3'
3' TTCCAGAGGTACGGACTACTCAGGCACTCCTGCTTTGCACGTCTCCATGATCTACGTGCAGCGTACCTGATC 5’

Spel

72 bp

Figure 4.2 Plus- and minus-strand sequences of a full-length cis- and frans-cleaving 
multimeric unit of ribozymes: HBx: Rz11473 and HBx.Rz21651 and 
A7Bx :R z 3 1607. The restriction sites used for cloning into a pBluescript™ II 
KS(+) vector are depicted at both 5' and 3' ends. Trans- and cis- 
hybridisation arms (for helices I and III) are annotated and bases shown in 
blue. The sequence length for each c/s-cleaving hammerhead ribozyme unit 
is shown. The construction of full-length single-units of cis- and trans- 
cleaving ribozymes HBx:Rz11473 and HBx:Rz31607 proceeded in a two step 
cloning operation. The cis- and trans-cleaving hammerhead ribozyme- 
encoding sequences were cloned separately from the ribozyme recognition 
sequence.



multimeric hammerhead ribozyme unit M1HBx:Rz2-i65i are represented in Table 
4.1.

Complementary oligonucleotides M1HBx:Rz2165i S and M1HBx:Rz2165i 
A were annealed by heating an equimolar mixture (1.3 nmol of each 

oligonucleotide in 10Ojal H20) to 95°C for 5 minutes followed by gradual cooling to 

room temperature. Once cooled, samples were quantified spectrophotometrically 

at A26o (Appendix A4-3) and brought to a final concentration of 30 pmol/pl.

Table 4.1 Complementary oligonucleotides for single-unit c/'s-cleaving hammerhead ribozyme 
cassette M1HBx.-Rz21651

M 1HBx: Rz21651 S
5' CTAGACCTCTTATGTAACTGATGAGTCCGTGAGGACGAAAC 
CTTGGGCAATGGTTCCAAGGTCTTACATA 3'

M 1HBx: Rz21651 A 5' CTAGTATGTAAGACCTTGGAACCATTGCCCAAGGTTTCGTCCT 
CACGGACTCATCAGTTACATAAGAGGT 3'

XbaI and SpeI cohesive ends, which flank the 5' and 3' ends of the annealed 

fragments, were used to introduce the single-unit ribozyme cassette into the Xba\ 

site of cloning vector pBSIIKS(+) to generate plasmid pBS-M'/HBx:Rz2165i. Both 

Xba\ and Spel share compatible cohesive ends resulting in bi-directional insertion 
into an Xbal-linearised vector.

Plasmid pBSIIKS(+) was initially digested with Xba\ and the linearised 

fragment was excised from a 1% agarose gel and eluted (Appendix A4). A 

ligation reaction containing a 150:1 fragment to vector molar ratio (30 pmol 

M1HBx: Rz2 1651 fragment insert to 0.158 pmol vector backbone) was conducted at 

room temperature for 1 hour in a 20 jul total volume that comprised 20 U T4 DNA 

ligase (New England Biolabs, MA, USA). A 10 pi volume was used to transform 

100 pi of competent E.coli DH5a, which was plated on ampicillin positive, X-gal, 

IPTG positive, LB agar plates for a-complementation (Appendix B3-3). Clones 

were selected and screened by restriction enzyme digestion with Xho\ and Xba\ 

and compared to a 100 bp molecular weight ladder (Promega, Wl, USA). Positive 

orientation candidate clones were then manually sequenced to determine their 
sequence fidelity (Appendix A5-2).



Plasmids pBS-M7/-/Bx:Rz1i473 and pBS-M1 /-/8x:Rz3i607

Plasmids pBS-M1 HBx.Rzl-|473 and pBS-/Wf/-/Bx;Rz3i607, each were derived from 
vectors that contained ‘short’ and ‘long’ segments of the complete cis- and trans- 

cleaving unit. The pBSIIKS(+)-derived plasmids, pBS-M1 /HBx/Rzl 1473 and pBS- 

M1lHBx:Rz3i607> encoded the ‘long’ HBx:Rz1 1473 and HBx:Rz3-|607 cis- and trans- 
cleaving hammerhead ribozyme sequence inserts respectively. Similarly, 

plasmids pBS-/W'/s/"/Bx;Rz11473 and pBS-/WfsHBx:Rz3i607 encoded the ‘short’ 
complementary cis- target recognition sequence of HBx:Rz1-i473 and HBx:Rz3 i6o7 

respectively (fora schematic illustration of the cloning, see Appendix C1-1).

Two sets of complementary 28-nt oligonucleotides encoding a ‘short’ 

ribozyme target sequence for HBx:Rz1 1473 and HBx:Rz3i6o7 were synthesized. 

The complementary oligonucleotide sets are designated: M1sHBx:Rz1 1473 S and 

M1 sHBx;Rz1 1473 A; and M1sHBx:Rz3-i607 S and M1sHBx:Rz3i607 A (see Table 
4.2). Similarly, two sets of complementary 52-nt oligonucleotides encoding the 

‘long’ hammerhead ribozyme region for HBx:Rz1 1473 and HBx:Rz3i6o7 were 

synthesized. The complementary oligonucleotide pairs are designated: 

M1lHBx:Rz1i473 S and M1LHBx:Rz1U73 A; and M fLHBx:Rz3i6o7 S and 

M1 L/-/Bx:Rz3i607 A (see Table 4.2). Sequences for both M1L and M1S 
complementary oligonucleotide pairs are represented in Table 4.2.

Xba\ and Spel restriction sites flank each end of both annealed 

oligonucleotides sets allowing for their introduction into the cloning vector 

pBSIIKS(+). Annealed dsDNA fragments M1sHBx:Rz1 i473 and M1 sHBx:Rz3:qo7 
were cloned into the Spel site of pBSIIKS(+), whilst fragments M1LHBx:Rz1 i473 

and M1lHBx:Rz3 16o7 were cloned into Xbal site of pBSIIKS(+). The construction 

of vectors pBS-/W’//_/-/Bx:Rz1 1473, pBS-/W7lHBx;Rz3i607 and pBS-A4fsHBx:Rz1i473, 

pBS-Mfs/-/Bx;Rz3i607 follows the same method as the construction of pBS- 
M1HBx:Rz2i65i> as mentioned above. Clones were screened for the correct insert 

by digestion with Xho\ and Xbal and resolved along with 37 pmol of annealed 

fragments M1sHBx:Rz1 1473 and M1LHBx:Rz1 1473 on a 8% non-denaturing 

polyacrylamide electrophoretic gel for approximately 1 hour at 100 V. Candidate 

positive orientation clones were, as mentioned previously, sequenced manually 
to determine the sequence fidelity (Appendix A5-2).



Table 4.2 Complementary oligonucleotide sequences for ‘long’ and ‘short’ multimeric 
hammerhead ribozyme units of both /-/Bx;Rz1 1473and HBx:Rz3 1607

M 1 sH B x : Rz11473 S 5' CTAGATCGGGGTCGCTTGGACTAGTCCA 3'

/I47sWBx ;Rz11473 A 5' CTAGTGGACTAGTCCAAGCGACCCCGAT 3'

M 1 lH B x :Rz11473 S 5' CTAGAAGAGTCCCAAGCCTGATGAGTCCGTGAGGACGAAA 
CCCCGAGAAGGA 3'

M 1 lH B x :R z '\ 1473 A 5' CTAGTCCTTCTCGGGGTTTCGTCCTCACGGACTCATCAGGC 
TTGGGACTCTT 3'

M 1 sH B x :R z 3 igQ7 S 5' CTAGATGCACGTCGCATGGACTAGTCCA 3'

M 1 sH B x : Rz31607 A 5' CTAGTGGACTAGTCCATGCGACGTGCAT 3'

M 1 lH B x :R z 3 A6Q7 S 5' CTAGATGGTCTCCATGCCTGATGAGTCCGTGAGGACGAAA 
CGTGCAGAGGTA3'

M 1 lH B x :Rz31607 A 5' CTAGTACCTCTGCACGTTTCGTCCTCACGGACTCATCAGG 
CAT GG AG ACCTT 3'

An additional Spel digestion site was present in both M1S annealed 

fragments due to an oversight in the original design of the annealed 

oligonucleotides. To remove the 8 bp sequence from pBS-M1 sH8x:Rz1 1473 and 

pBS-M7s/-/Bx:Rz3-i607, plasmids were digested with Spel, heat inactivated at 65°C 
for 30 minutes, and allowed to re-ligate for 20 minutes at room temperature. 

Transformed colonies were again screened and manually sequenced (Appendix 

A5-2). The resulting shortened (or truncated) plasmids were named pBS- 

M 1 StH B x :RZI1473 and pBS-M7srHBx:Rz3i607 respectively. Both these plasmids 

were constructed from a correct-orientation fusion of fragments containing the 

ribozyme catalytic domain (M1L) and its corresponding downstream target 

sequence. The construction of these vectors is illustrated in Appendix C1-1. To 

generate pBS-M7/-/Bx:Rz1 1473 and pBS-M 1 HBx.Rz31607 containing complete 
single unit self-cleaving hammerhead ribozyme cassettes, plasmids pBS-



/W?SrHBx:Rz1 i473 and pBS-/W'/srHBx:Rz3i607 were digested with Seal and Xba\ to 

produce two fragments* of 1863 and 1112 bp. The 1863 bp fragments contain the 

target-encoding sequence of both ribozyme M1 S7F/Bx;Rz1-i473 and

M 1 StH B x :Rz3i607- Each fragment was eluted from a 1% agarose gel and purified. 

Plasmids pBS-M7LP/Bx:Rz1i473 and pBS-M7i.HBx:Rz31607 were digested with 
Seal and Spel resulting in two fragments of sizes 1170 and 1843 bp. The 1170 

bp fragment containing the hammerhead ribozyme-encoding sequence for both 

ribozyme M1LHBx:Rz1 1473 and M1LHBx:Rz3i6o7 was similarly eluted and purified. 

M 1 st  and M 1 L fragments were ligated in a 20 pi reaction mixture containing an 

equimolar ratio of both fragments (2 pg of each fragment). Following ligation at 

room temperature for an hour, 10 pi of the ligation mixture was used to transform 

competent E.coli DH5a, which were plated on ampicillin positive LB agar plates. 

Clones were screened by Spel and Xba\ digestion followed by agarose gel 

electrophoresis.

4.3.1.2 Multimeric cis- and trans-cleaving hammerhead ribozymes

The construction of multimeric cis- and trans-cleaving hammerhead ribozymes is 

illustrated in Appendix C1-2. Plasmids pBS-M7/-/Bx:Rz1 1473, pBS-/W7/-/Bx;Rz21651 

and pBS-/V/f/-/Bx;Rz3i607 were each placed into two separate reaction mixtures. 

Xba\ and Seal restriction enzymes were used in the first reaction to yield two 

fragments of 1112 and 1921 bp for pBS-/W7/-/Bx:Rz1 i473 and pBS-/WfHBx:Rz3i607 

respectively (1112 and 1919 bp for pBS-/W7/-/Bx;Rz2165i) (See Table 4.3). Spel 

and Seal restriction enzymes were used in second reaction to yield fragments of 

1190 and 1843 bp for pBS-/W7HBx;Rz1i473 and pBS-A47/-/Bx:Rz3-i607 respectively 
(1188 and 1843 bp for pBS-A47HBx:Rz2i65i). Fragment 1190 bp (1186 bp) from 
the Spe\/Sca\ digest and fragment 1921 bp (1919 bp) from the Xba\/Sca\ digest 

were eluted from a 1% agarose gel. Each eluted fragment contains a single 

multimeric hammerhead ribozyme unit. Two micrograms of both eluted fragments 

(for pBS-/W7HBx:Rz1i473, pBS-M7HBx;Rz2i65i and pBS-/W7 /-/Bx:Rz3i6o7

* Initially, pBS-/W7srHBx:Rz1 1473 would not digest with X ba I due to unexpected methylation of the 
Xba\ site following the excision of a 8 bp Spel fragment. The plasmid was then transformed into a 
DNA adenine methylase negative (dam') E.coli strain that restored the integrity of the Xba\ site. 
Competent E.coli GM2929 were transformed with pBS-M7STHBx:Rz'\ 1473 resulting in successful 
cleavage byXbal following plasmid preparation.



respectively) were ligated in a 20 pi reaction volume. Following ligation at room 

temparature for an hour, 10 pi of the ligation mixture was used to transform 

competent E.coli DH5a, which was plated on ampicillin positive LB agar plates. 

Ten colonies from each plate were grown overnight followed by miniprep plasmid 

preparation (described in Appendix A2-1). Clones were screened by digestion 
with Spel and Xba\ and resolved on 2% agarose gels. Positive clones containing 

two multimeric cis- and trans-cleaving ribozyme units (dimer or 2-mer) were 

named pBS-/W2/-/Bx;Rz1 U73, pBS-/W2HBx;Rz2i65i and pBS-/W2/-/Bx:Rz3i607 
respectively. These dimer-containing vectors were again manually sequenced 

(Appendix A5-2). The same cloning strategy* was employed to construct 

plasmids bearing tetramer (4-mer) and octomer (8-mer) multimeric cis- and trans- 

cleaving hammerhead ribozyme units. The 4-mer constructs were named pBS- 

/W4HBx;Rz1 1473, pBS-M4/-/Bx:Rz2i65i and pBS-M4HBx:Rz3i607 while the 8-mer 
constructs were named pBS-M8/-/Bx:Rz1 1473, pBS-M8/-/Bx;Rz2i65i and pBS- 

M8HBx;Rz3i607- A 16-mer construct, pBS-/W76;Rz1 ,Rz2, containing 8-mer units 

of both hammerhead ribozymes HBx:RZI1473 and HBx:Rz2i6si was similarly 
constructed using the enzyme combinations Xba\/Xho\ and Spe\/Xho\ on 

plasmids pBS-M8/-/Bx;Rz1 i473 and pBS-/W8/-/Bx;Rz2i65i respectively. Employing 
the same strategy, pBS-/W24:Rz1,Rz2,Rz3, a 24-mer construct containing 8-mer 

units of hammerhead ribozymes HBx:Rz1i473, HBx:Rz2i65i and HBx:Rz3i6o7 was 

constructed by combining the 8-mer fragment of plasmid pBS-/V/8/-/Bx:Rz3i607 
with the 16-mer fragment of pBS-M76;Rz1,Rz2. (Table 4.3 and Appendix C1-2).

4.3.1.3 Eukaryotic expression vectors producing multi-unit cis- and trans- 

cleaving ribozymes

Expression vectors pCI-M8/-/Bx:Rz1 i473, pCI-M8/-/Bx:Rz2i65i and pCI- 
A48/-/Bx:Rz3i607 were constructed containing 8-mer cis- and trans-cleaving 

ribozyme units for hammerhead ribozymes HBx:Rz1h 73, HBx:Rz2i65i and

* T h is  c lo n in g  te c h n iq u e  e x p lo its  th e  fa c t th a t fra g m e n ts  p ro d u c e d  b y  d ig e s tio n  w ith  S p e l a n d  X b a I 
g e n e ra te  c o m p a tib le  c o h e s iv e  e n d s . H o w e v e r, a fte r  lig a tio n  o n ly  X b a \/X b a \ o r  S p e l/S p e l lig a tio n s , 
a n d  n o t X b a \/S p e \ o r  S p e \IX b a \ l ig a tio n s  a re  re -c le a v e d  b y  e ith e r  e n z y m e . T h is  fa c il ita te s  c lo n in g  
a n d  s c re e n in g  o f m u ltip le  fra g m e n ts  in s u c c e s s io n  s in c e  o n ly  h e a d -to -ta il ta n d e m s  g e n e ra te  
c o r re c t fra g m e n ts  u p o n  d o u b le -d ig e s tio n  w ith  X b a \ a n d  S p e l.



Table 4.3 pBSIIKS(+)-derived multimeric c is -  and trans-cleaving hammerhead ribozyme 
vectors

Starting plasmids Enzymes
Fragment 
sizes prod- 
uced(bp)a

Fragments 
eluted and 
ligated (bp)

Resulting plasmid 
constructs

pB S -M 1 stH B x iRz I  1473 X ba l, Seal 1112, 1863 1863
pBS-/W f H B x :R z1 1473

pB S -M 1LH B x :R z1 u73 Spel, Seal 1170, 1843 1170

pBS-/W fsrHSx:Rz3i607 X ba l, Seal 1112, 1863 1863
pBS-/W IHBx;Rz3i607

pBS*M f/.H8x.'Rz3i607 Spel, Seal 1170, 1843 1170

pB S -M 1 H B x:R z1 U73
X ba\, Seal 1 1 1 2 ,1921 1921

pB S -M 2H B x :R z11473
Spel, Seal 1190, 1843 1190

pB S -M fH B x :R z2 i6 5 i
X ba l, Seal 1 1 1 2 ,1919 1919

pBS-/W 2HBx;Rz2i65i
Spel, Seal 1188, 1843 1188

pB S -M 1 H B x :R z 3'\go7
X ba l, Seal 1 1 1 2 ,1921 1921

pBS-/W2HBx;Rz3i607
Spel, Seal 1190, 1843 1190

pB S -M 2H B x :R z1 i 473
X ba l, Seal 1 1 1 2 ,1999 1999

pBS-/W4H B x ;R z1 i 473
Spel, Seal 1268, 1843 1268

pB S -M 2H B x;R z2 i65 i
X ba l, Seal 1 1 1 2 ,1995 1995

pB S-/W 4H Bx:R z2 i65i
Spel, Seal 1263, 1843 1264

pBS-/H2HBx;Rz3i607
X ba l, Seal 1 1 1 2 ,1999 1999

pBS-M 4HBx:Rz3i607
Spel, Seal 1268, 1843 1268

pBS-/W4H B x ;R z1 i 473
X ba l, Seal 1112, 2155 2155

pB S -M 8 H B x:R z11473
Spel, Seal 1424, 1843 1424

pB S -M 4H B x :R z2165i
X ba l, Seal 1112, 2147 2147

pB S-M 8H Bx;R z2 i65 i
Spel, Seal 1416, 1843 1416

pBS-/W4HBx;Rz3i607
X ba l, Seal 1 1 1 2 ,2155 2155

pBS-M 8HBx;Rz3i607
Spel, Seal 1424, 1843 1424

pB S -M 8H 8x.'R z11473 Spel, X bo l 56, 3523 3523
p B S -M f6 ;R z1 ,R z2

pBS-/W 8HBx;Rz2i65i X ba l, Xbol 664, 2899 664

p B S -M 8H B x : R z31607 Spel, X bo l 56, 3523 3523
pB S -M 24:R z1,R z2,R z3

pBS-/W f6:R z1,R z2 X ba l, Xbol 1288, 2899 1288

fragm ents selected for cloning are shown in italics.



HBx:Rz3i607 respectively (Figure 4.3). A mammalian expression vector containing 

24-mer (8-mer of each ribozyme), c/'s- and frans-cleaving units for ribozymes 

HBx:Rz1 1473, HBx:Rz2i65i and HBx:Rz3i6o7 was also contructed. Plasmids pBS- 

M8HBx: Rz1 1473, pBS-M8HBx;Rz2i65i > pBS-A//8HBx:Rz3i607> arid pBS-
M24HBx:Rz‘\ ,Rz2,Rz3 were digested with Xho\ and Xba\. Fragment inserts were 

separated from vector backbone by elution from a 1% agarose gel (Appendix 

A4). pCI neo was digested with Nhe\ and Xho\ yielding a large vector backbone 

which was similarly eluted from a 1% agarose gel. A ligation reaction containing a 

50:1 annealed fragment to vector molar ratio (30 pmol annealed fragment insert 

to 0.6 pmol vector backbone) was conducted. Following tranformation, overnight 

growth and plasmid purification (Appendix A2-1), correct plasmid clones were 
identified by digestion with BglW and Spel.

4.3.2 In vitro transcription and and ribozyme cleavage
4.3.2.1 Preparation of transcription template

pBSIIKS(+)-derived c/'s- and trans-cleaving mutlimeric ribozyme plasmids 

carrying 1-mer, 2-mer, 4-mer and 8-mer units for ribozymes HBx:Rz11473, 

HBx:Rz2 1651 and HBx:Rz3i6o7 were linearised by digestion with Psfl. Single-unit 

vectors pBS-/\41lHBx:Rz1i473 and pBS-/W1/.HBx:Rz3i607, as well as multimeric 
c/'s- and trans-cleaving vectors pBB-MIdHBx'.Rz^ ,Rz2 and pBS-M24 

Rz1,Rz2,Rz3 were also linearised with Psfl. To generate control antisense 

transcripts, the above plasmids were also separately linearised by digestion with 

XbaI. Linearised DNA templates were then eluted from a 1% agarose gel and 

extracted using chloroform/phenol and precipitated with ethanol (Appendix A4-1, 

A4-2). Pellets were resuspended in H20  to a final concentration of 1 pg/pl.

4.3.2.2 Multimeric ribozyme cis-cleavage

Radiolabelled c/'s-cleaving RNA was transcribed at 37°C for 1 hour in a 20 pi 

reaction mixture containing 2 pg of template DNA, 10 mM dithiothreitol, 40 mM 

Tris-HCI (pH 8.0), 8 mM MgCI2, 2 mM spermidine, 20 U RNasin (Promega, Wl, 

USA), 8 mM ATP, 8 mM TTP, 8 mM UTP, 12.5 pM GTP (Roche, Germany) and
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Figure 4.3 A schematic illustration of the general structure of a multimeric cis- and trans- 
cleaving hammerhead ribozyme expression cassette. Transcript sequences 
encoding multiple ribozymes are under transcriptional control of the CMV 
promoter/enhancer. The expressed transcript cleaves in cis to release 5' and 
3'-trimmed monomeric trans- cleaving hammerhead ribozymes. The 
hammerhead ribozyme sequence is displayed. N refers to any base, which 
forms part of the annealing helices I and III, while X refers to non-annealing 
bases. The conserved bases of helix II are shown.



20 jaCi of a-32P GTP (3000 Ci/mmol; NEN du Pont, USA) and 20 U of T7 RNA 

Polymerase (Promega, Wl, USA). 20 U of DNase I (Promega, Wl, USA) were 

added to the reaction mixture for 10 minutes at 37°C. RNA fragments were 

purified using the Qiagen RNeasy (Qiagen, CA, USA) RNA purification kit 

according to the manufacturer’s instructions. The cleavage reaction was carried 

out in a 40 pi reaction mixture containing radiolabelled c/'s-cleaving multiribozyme 

transcript RNA. The mixture contained 20 mM MgCI2and 50 mM Tris-CI (pH 8.0), 

and was incubated at 37°C. Aliquots (10 pi) were removed after incubation for 0, 

5 and 60 minutes and added to 3 pi of RNA loading buffer (Appendix B2-3). 

Samples were resolved by 6% denaturing polyacrylamide electrophoresis until 

the bromophenol blue dye front reached the end of the gel. Gels were subjected 

to autoradiography for 1 to12 hours at -70°C.

4.3.2.3 Multimeric ribozyme trans-cleavage

Transcription of radiolabelled target RNA (Xbal-linearised pBS-X) was performed 

as described for the multimeric ribozymes above using T3 RNA polymerase. In 

vitro transcription reactions for the multiribozyme templates were performed 

similarly to that of the single-unit ribozymes. Antisense control pBS-X target RNA 

was transcribed using T7 RNA polymerase (Promega, Wl, USA) from an Xho\- 

linearised pBS-X template. The cleavage reaction was carried out in a 10 pi 

reaction mixture containing a molar ratio of ribozyme to radiolabelled target RNA 

of 5:1 in the presence of 20 mM MgCI2 and 50 mM Tris-CI (pH 8.0), and 

incubated at 37°C. The reaction was stopped after 1 hour with the addition of 3 pi 

of RNA loading buffer (Appendix B2-3). Samples were resolved as described in 

section 4.3.2.2.

4.3.3 In situ detection of multimeric hammerhead ribozyme activity

Huh7 cells were cultured, seeded and transfected as described in sections 2.3.4 
and 2.3.5. In a similar manner to that described in section 3.3.2, transfections 

were carried out in 100 mm culture dishes and contained a combination of 3 pg of



4 . 0 C 4

2.4Kb
Pre S2 /s

t
HBx: Rz2i65i

HBx: Rz3i607
HBx: Rz 11473

B

• X Promoter

Enhancer 1 
S Promoter

• Pre S1 Promoter

m Poly(A) signal

t Basic core promoter/ 
Enhancer II

1 Direct repeats 
DR1 and DR2

pHBV adw  HTD
HBx:R Z 3 1 6 0 7  H 6 x :R z 2 i 651 HBx: R z3 1607 HBx: R z 2 1651

+ + + +
X --------► X --------►

Pre S2/S------------------------►
Pre S1-------------------------- ►

Pre C/Pregenome

_ X I HBV adw HBV adw

t
EcoRI 0

t
EcoRI 3182/0

t
EcoRI 3182

pCH-EGFP HBx: R z3 i 607
H Bx:R z1i473  I HBx :Rz 2 i 651

Core/GFP U "
PreS/GFP

GFP
X

-------- IC M V  > 1  C o re  1------- | P r e S l |  EGFP |------|~ ~ X

I --- ---------

Figure 4.4 Sequences targeted by three hammerhead ribozymes HBx:Rz1 1473, HBx:Rz216si, and HBx:Rz31607. A) Organisation of the hepatitis B 
virus genome (strain ayw) showing sites targeted by all three hammerhead ribozymes. B) The pHBV adw HTD plasmid is a HBV 
replication-competent vector and includes a head-to-tail dimer of the HBV adw genome. The HBV transcripts (blue arrows) as well as 
the targets for ribozymes HBx:Rz3i607 and BBx:Rz2165iare indicated (black arrows). C) Plasmid constructs pCH-EGFP showing their 
open reading frames, respective transcripts and sites targeted by ribozymes HBx:Rz11473, HBx:Rz2i6si and HBx:Rz3-|6o7- The disrupted 
polymerase ORF is indicated as a light blue box.



pCH-EGFP (Figure 4.4C) and 6 pg of plasmids p/-/Bx:Rz1 1473, pHBx:Rz1*-|473, 

p/-/Bx:Rz2165i, p/-/Bx:Rz2*165i, pCI-M8HBx:Rz11473, pCI-M8/-/Bx:Rz2i65i, pCI- 
/W8/-/Bx:Rz3i607, pCI-/\z/24/-/Bx:Rz1 ,Rz2,Rz3 or pCI neo. Cells labelled with EGFP 

were detected by fluorescence microscopy three days after transfection. The 
mean number of fluorescent cells as well as the standard error of the mean 

(SEM) was calculated from experiments performed in triplicate.

4.3.4 HBsAg and HBeAg assays

Similar to the method described in sections 2.3.2 and 3.3.5, Huh7 cells in 100

mm diameter culture dishes were transfected with a combination of 7 pg of pFIBV 

adw HTD (Figure 4.4B) and 14 pg of p/-/Bx:Rz1i473, p/-/Bx:Rz1*1473, 

p/-/Bx:Rz2165i, p/-/Bx:Rz2*165i, pHBx:At1 1473, p/-/Bx:At2165i, pCI-/W8/-/Bx:Rz1i473, 
p CI-M8HBx: Rz2 165i , pCI-M8HBx:Rz3i607, and pCI-M24HBx:Rz1 ,Rz2,Rz3.
Following transfection into Huh7 cells, HBsAg and HBeAg secretion into the 

culture supernatants was measured daily for three days using Axsym (ELISA) 

immunoassay kits (Abbot Laboratories, IL, USA). The means of HBsAg and 

HBeAg measurements were calculated from three independent transfections.

4.4 Results

4.4.1 Multimeric hammerhead ribozyme vectors

Cloning vectors, which contain the pBluescript II KS(+) backbone, were 

generated to encode single-unit and multiple-unit c/'s- and trans-cleaving 

hammerhead ribozyme-encoding sequences for hammerhead ribozymes 

HBx:Rz1 1473, HBx:Rz2165i, and HBx:Rz3 i607- The construction of head-to-tail 

multiples of each cis- and trans-cleaving hammerhead ribozyme sequence was 

facilitated by the presence of Spel and Xba\ cohesive ends for each cloned 

fragment insert. Figure 4.5 shows fragments resolved on agarose gels following 

digestion with Spel and Xba\ (Figure 4.5A) and Spel alone (Figure 4.5B). The 

digest results in different size fragment inserts for each of the multimeric
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Figure 4.6 DNA sequences of dimer series pBSKSII(+)-derived c/'s- and trans-cleaving 
hammerhead ribozyme vectors: pBS-/W2HBx:Rz11473, pBS-M2HBx:Rz2165i 
and pBS-/W2/-/Bx:Rz31607. The 5' hammerhead ribozyme-encoding 
sequence (blue) is shown along with its respective cleavage recognition 
sequence (red) for each vector sequence. Annotated to the left of each 
sequence are the Xba\ and Spel restriction sites and all Xba\ISpe\ fusion 
knockout sites.



hammerhead ribozymes. The 5' ends produced by digestion with XbaI and Spel 

are complementary to each other. However, the re-ligation of Spel-generated 5' 

ends with Xba\-generated 5' ends resulted in sites that are not re-cleaved by 

either enzyme (Figures 4.5 and 4.6). This approach allowed for the use of both 

Xba\ and Spel restriction enzymes to generate vectors encoding up to 24 

multimeric ribozyme units bound sequentially head-to-tail (Figures 4.6, 4.7B and 

Appendix C1).

4.4.2 Proof of multimeric ribozyme efficacy
4.4.2.1 In vitro transcription and ribozyme cleavage

Each multimeric ribozyme transcript contains multiples of four (4-mer), eight (8- 

mer) and twenty-four (24-mer) c/s-cleaving hammerhead ribozyme units targeted 

to the three unique HBV sites HBx:Rz1 i473, HBx:Rz2165i, and HBx:Rz3-i6o7- To 

determine the c/s-cleaving activity of each c/s- and frans-cleaving hammerhead 

ribozyme unit, RNAs encoding multimeric ribozyme tandems were transcribed in 

vitro from linearised pBluescript II (KS+)-derived vector constructs. Free 

magnesium ions present in the transcription buffer stimulated ribozyme c/s- 

cleavage during transcription. For all transcripts generated from in vitro 

transcription, c/s-cleavage was very efficient, resulting in 100% monomeric 

cleavage products before a separate designated cleavage reaction step (Figure 

4.7A). To diminish ribozyme c/s-cleavage during transcription, the ribonucleotide 

concentration was increased to absorb free Mg2+ in the transcription buffer. 

Nevertheless, no full-length transcripts were detectable after transcription (Figure 

4.7A) and c/s-cleavage resulted in approximately 80% single-unit cleavage 

products. The c/s-cleavage reaction observed in Figure 4.8A appears to be more 

efficient than reactions reported by other c/s-cleaving hammerhead ribozyme 

constructs (Ohkawa et ai, 1993b; Ruiz et al., 1997). Dimer, trimer and tetramer 
cleavage products were the only remaining multimeric units following in vitro 

transcription (Figure 4.8A). These products underwent further c/s-cleavage 

following additional 60 minutes incubation during the cleavage reaction.

The addition of vector-derived sequences, present at the 5' terminus of 

each transcript, produced single monomer cleavage products of 107 nt in length
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for c/s-cleaving ribozyme constructs containing 4-mer, 8-mer units of ribozymes 

HBx:R zl-1473 and HBx:Rz3-i6o7, and 98 nt in length for constructs containing 4-mer 

and 8-mer units of ribozyme HBx:Rz2165i (Figures 4.7B and 4.8B). The 107 nt in 

length monomeric cleavage product generated by the 24-mer multimeric 

ribozyme transcript, is similar to the sequence at the 5' terminus of the 8-mer 

multimeric construct of ribozyme HBx:Rz114/3. This unique 107 nt fragment, 

produced only once per transcription cycle, can serve as an internal control, 

enabling a quantitative comparison of products generated by different c/s- 

cleaving multimeric ribozyme templates. The most abundant cleavage products 

were monomer units of individual ribozymes with trimmed 5' and 3' termini. These 

were observed as a 78 nt band for ribozymes /-/Bx:Rz11473 and HBx:Rz3i6o7, and 

as a 76 nt band for ribozyme /-/Bx:Rz21651. Multimeric constructs containing eight 

cis-cleaving hammerhead ribozyme units (8-mer constructs) produced, as 

expected, a more intense 78 nt (or 76 nt for HBx:Rz21651) band of monomer units 

when compared to the 4-mer constructs. The autoradiograph in Figure 4.7A 

shows the difference in the concentration of monomeric units generated between 

8-mer and 4-mer multmeric ribozyme transcripts for hammerhead ribozymes 

HBx.Rzl -I473 and HBx:Rz3i607- This result is also shown for all three ribozymes in 

Figure 4.8A. The 24-mer transcript, which includes multiples of each of the three 

hammerhead ribozymes, produced, in addition to the 78 nt and 76 nt monomer 

units, single monomers of 69 and 85 nt in length. These single cleavage products 

represent respectively the junction between 8-mer units of ribozymes 

HBx.Rzl 1473 and HBx.’Rz2-i65i> and between ribozymes HBx:Rz2i65i and 

HBx:Rz3i607- Other cleavage products include an array of incomplete reaction 

intermediates. One such intermediate, visible as a 103 nt product, represents a 

78 nt self-cleaved monomer of ribozyme HBx:Rz3-i607 with 24 nt of attached, 

uncleaved 3' terminal vector sequence. These results suggest that cis-cleavage 

is highly efficient and specific for all ribozyme species and that independent 
liberated ribozymes can be generated to act in trans.



4.4.2.2 In vitro trans-cleavage activity of 5 - and 3-trimmed monomeric 

ribozymes generated by cis-cleavage

Cis-cleaved 5'- and 3'-trimmed monomeric hammerhead ribozyme units were 

prepared for a trans-cleavage reaction. The processed ribozymes were 

generated from transcripts containing 1, 2, 4 and 8-mer ribozyme units as 

described in sections 4.3.1.1 and 4.3.1.2. Sense and antisense target HBV RNA 

was produced by T7/T3 RNA polymerase using a linearised pBluescript-derived 

vector, pBS-X, as template. Plasmid pBS-X encodes the HBx ORF of HBV. To 

determine the trans-cleavage activity of monomeric ribozymes generated by cis- 

cleavage of a multimeric transcript, target transcript RNA was cleaved in trans by 

each individual processed ribozyme. All multimeric units of each of the three 
ribozymes were able to cleave target RNA in trans to generate two cleavage 

products: 173 and 411 nt for ribozyme HBx:Rzl-1473; 351 and 233 nt for ribozyme 

HBx:R z 2 1651; and, 306 and 278 nt for ribozyme HBx:Rz3-i607 (Figures 4.9A and 

4.9C). Antisense HBx template RNA (587 nt), produced by T7 RNA polymerase, 

was not cleaved by any single-unit or multimeric hammerhead ribozyme (Figure 

4.9B). Ribozyme /-/Bx:Rz3i607 proved to be significantly more efficient at cleaving 

target substrate than both ribozymes HBx:Rz1 1473 and HBx:Rz2i65i. This can be 

deduced from the intensity of the cleaved products and the lack of substrate 

RNA, represented by a 548 nt band. A 16-mer of HBx.:Rz1i473 and HBx:Rz2165i 

and a 24-mer containing each of the three ribozyme species also produced all the 

expected cleavage products (Figure 4.10A).

4.4.3 Multimeric ribozyme inhibitory effects on HBV gene expression in 

transfected liver-derived cells

In order to observe the effects of the cis- and trans-cleaving multimeric ribozymes 

in transfected Huh7 cells, all 8-mer and the 24-mer ribozyme constructs were 

cloned into the mammalian expression vector pCI neo under control of the 

immediate/early CMV promoter. This resulted in 8-mer vectors pCI- 

M8HBx:Rzl-1473, pCI-A48/-/Bx:Rz2165i and pCI-M8/-/Bx:Rz3-i607, as well as the 24- 
mer, pCI-M24HBx:Rz1,Rz2,Rz3.
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4.4.3.1 The inhibitory effects of multimeric ribozymes in situ

The cells shown in Figure 4.11 are representative fluorescence microscope fields 

of co-transfections with combinations of pCH-EGFP and both single-unit and 

multimeric cis- and frans-cleaving hammerhead ribozyme expression vectors. 

The mean and SEM of the number of cells expressing EGFP were calculated at 

day three from triplicate experiments. The catalytically-inactive ribozyme control 

pHBx:Rz1 1473 (cells co-transfected with pCH-EGFP and p/~/Bx.Rz1 1473) 

produced a mean of 130 ± 15 fluorescent cells per culture field. Since plasmid 

p/-/Bx:Rz1*i473 was the least effective vector at reducing the number of 

fluorescent cells per field, it was regarded as the negative control. Relative to 

p/-/Bx:Rz1*1473 both single-unit ribozymes pHBx:Rz1u 73 and pHBx:Rz2i65i 
significantly inhibited fluorescence by 42% and 55% respectively. The 

catalytically inactive ribozyme p/-/Bx:Rz2* i65i modestly inhibited (35 ± 7.6%, 

p<0.01) the expression of EGFP in transfected cells. These results correlate with 

those observed in section 3.4.4 taking into account the possibility that plasmid 

pHBx:Rz1*i473 has contributed to some antisense effects. Multimeric ribozyme 

expression vectors, pCI-M8/-/Bx:Rz1 i473, pCI-/W8/-/Bx:Rz21651 and pCI-

M8HBx: Rz3 1607 express transcripts that cleave in cis to generate eight (8-mer) 

individual monomer trans-cleaving hammerhead ribozyme units. Apart from pCI- 

M8HBx\Rz2i65i, these multimeric vectors were more effective than their single

unit counterparts in inhibiting the number of fluorescent cells per field (Figure 

4.12). Compared to the inhibitory effects of p/-/Bx:Rz1*H73, plasmid pCI- 

M8HBx: Rz3 1607 inhibited fluorescence by ± 60%. Plasmid pCI-

M24HBx\Rz1,Rz2,Rz3, which expresses 8-mer units of each of the three 

ribozyme species, proved to be the most effective vector and inhibited 

fluorescence by ± 92% (Figure 4.12). These results suggest that both cis and 

trans cleavage is taking place in cultured cells. Moreover, the data demonstrate 

that these multimeric cis- and trans-cleaving ribozymes are more effective than 

previous constructs in preventing HBV gene expression, and are thus likely to 

possess significant antireplicative activities.
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Figure 4.11 In situ ribozyme modulation of EGFP activity in co-transfected Huh7 cells. Combined phase contrast and fluorescence microscopy 
of Huh7 cells transfected with pCH-EGFP and either single-unit inactive ribozyme controls or various ribozyme-expressing 
constructs.



In situ modulation of GFP activity

Figure 4.12 An in situ quantitative comparison of the number of EGFP-positive Huh7 
cells modulated by the transfection of various ribozyme-encoding 
expression vectors. Cells were counted from fluorescence microscopy 
fields of Huh7 cells transfected with pCH-EGFP and either single-unit or 
multimeric ribozyme-expressing constructs. Single-unit ribozyme-inactive 
variants were used as negative controls. The data are the mean ± SEM of 
thee separate transfections.

4.4.3.2 Effects of multimeric ribozyme on HBV antigen secretion in cell culture

supernatants

To assess the effects of single-unit hammerhead ribozymes and multimeric self

cleaving ribozymes on HBsAg and HBeAg secretion, Huh7 cells were co

transfected with ribozyme-encoding vectors and a replication-competent HBV 

vector, pHBV adw HTD (this vector is described in section 2.3.2). Cell culture 

supernatants were analysed three days after transfection for the secretion of 

HBsAg and HBeAg (Figure 4.13). All transient co-transfections were performed in 
triplicate (mean and SEM are indicated) and were normalised to 100% of the 

positive control. Plate-to-plate variations in transfection efficiencies were
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Figure 4.13 Measurement of HBsAg and HBeAg secretion from Huh7 cells co-transfected with single-unit and multimeric ribozyme vectors (as 
well as antisense RNA) and a replication-competent HBV vector, pHTD adw HBV (Figure 4.4). HBs/HBeAg measurements are 
given as a mean percentage of the positive control (pHTD adw HBV only) with standard error of the mean (SEM). The plasmids 
used in the transfection are indicated below each column. The data is given as the mean from experiments performed in triplicate 
and is compared to 100% for the control.



determined by assessing the relative expression of EGFP in each plate (see 
Appendix C2). As expected, single-unit ribozymes p/-/Bx:Rz1-i473 and 

pHBx:Rz2-i65i decreased the secretion of HBeAg and HBsAg into the culture 

supernatant (Figure 4.13). The catalytically inactive ribozyme control 
p/-/Bx:Rz1*i473 had only a modest inhibitory effect on HBsAg and HBeAg 

secretion whilst the inactive ribozyme control p/-/Bx:Rz2*i65i was completely 

ineffective. These results are similar to those obtained in section 3.4.3, 

suggesting that single-unit ribozymes are only moderately efficacious. Once 

again, p/-/Bx:Rz1 1473, which cannot cleave RNA sequences generated by the 

pHBV adw HTD vector (see section 3.4.3), was slightly more effective than 

pHBx:Rz2165i. To confirm the results observed in the previous chapters, that 

antisense-effects play a dominant role in inhibiting HBV replication, antisense 

plasmids p/-/Bx:At1-|473 and pHBx:At2i65i were included in this study. The results 

for both antisense plasmids are similar to each respective single-unit ribozyme. 

Comparisons between the inactive ribozymes and antisense RNAs suggest that 

the catalytically inactive ribozymes are not necessarily true antisense controls. 

The catalytically inactive ribozymes cause only a modest reduction in antigen 

levels and may only partially elicit the antisense effects seen when using full- 

length antisense RNA sequences.

Multimeric ribozyme plasmids expressing 8-mer self-cleaving ribozyme 

units of hammerhead ribozymes HBx:Rz1 1473, HBx:Rz2i65i and HBx:Rz2165i were 

largely more effective than their single-unit counterparts in decreasing HBeAg 

and HBsAg levels (Figure 4.13). pCI-A//8/-/Bx:Rz3-i607 reduced both HBsAg and 
HBeAg secretion levels by approximately 75 and 70% respectively. Moreover, 

pCI-M8/-/Bx:Rz3i607 proved to be more effective than either a combination of all 
three 8-mer plasmids or the 24-mer plasmid, pCI-A424/-/Bx:Rz1,Rz2,Rz3, which 

simultaneously expresses eight units of each of the three ribozymes. Unlike the 
results obtained in section 4.4.2, pCI-/W24HBx:Rz1 ,Rz2,Rz3 reduced the 

secretion of HBsAg/HBeAg levels by approximately 60%. In conclusion, these 

results indicate that multimeric ribozymes are more effective at inhibiting viral 

gene expression than single-unit ribozymes, and implies some degree of 

ribozyme-mediated cleavage. It is unlikely that multiple, tethered antisense 

sequences targeting the same site will be more effective than single-unit 

sequences as multiple antisense sequences are likely to be hindered by steric



effects and competition for the same trans target sites and/or c/'s-recognition 
sequences. However, it may be that cis-cleavage is active whilst trans-cleavage 

is ineffective. In vivo, hammerhead ribozyme cis-cleavage has been shown to be 

more efficient than trans-cleavage (Dropulic et ai., 1992; Xing et ai., 1995) as 

both ribozyme and target sequences are co-localised. A molar excess of 

independent antisense RNA monomers (a situation where c/'s-cleavage takes 

place but not trans-cleavage) could generate similar results to those observed for 
the multimeric cis-cleaving ribozymes. Nevertheless, the results for the multimeric 

ribozyme constructs in general are encouraging and represent an improvement 

on previously constructed hammerhead ribozymes. These constructs are capable 

of significantly inhibiting HBV gene expression and replication in cell culture and 

are viable agents for further testing in animal models of chronic HBV infection.

4.5 Discussion and conclusions

Most studies to date suggest that ribozyme cleavage activity is relatively 

inefficient in vivo (Castanotto et ai., 2000). At present ribozyme research is 

restricted by a limited understanding of the catalytic activity of hammerhead 

ribozymes in an intracellular or in vivo environment. Few models exist which 

allow for the design ex novo of ribozymes or antisense RNA sequences for use in 

a clinical setting, let alone for use in treating chronic HBV infection. A number of 

unresolved issues include the identification of the optimal sequences which need 

to be targeted, the effect of inhibiting viral and cellular factors, subcellular co

localisation of therapeutic and target sequences, the appropriate length of the 

hybridising sequences and the efficient delivery of therapeutic sequences to the 

infected hepatocytes (explored in a detailed discussion, see Chapter 5). Anti-HBV 

ribozymes produced by others (Beck and Nassal, 1995; Feng et ai., 2001a; Feng 

et ai., 2001b; Kim et ai., 1999; Welch et ai., 1997) confirm the results presented 

in Chapters 2 and 3 that ribozymes appear less effective when expressed 

endogenously in transfected cells than in cleavage reactions in vitro. Since many 

factors govern the interactions between RNA molecules in the intracellular 

physiological environment, improving the efficacy of ribozymes in vivo is the 

primary focus of therapeutic ribozyme development.



Ribozymes are distinguished from antisense RNAs in their ability to 

undergo multiple reactions. They may be applying their therapeutic effects sub- 
optimally by acting mostly as antisense RNAs in vivo. The hammerhead ribozyme 

catalytic efficiency (kcat) is several orders of magnitude lower in vivo compared to 

in vitro (James and Gibson, 1998), and single-turnover conditions prevail. As a 

result, a greater concentration of hammerhead ribozymes is needed to improve 

their intracellular efficacy. This has been confirmed by previous studies which 

indicate that a molar excess of ribozymes over its target substrate RNA is 
necessary in order to exert an inhibitory biological effect in vivo (Cameron and 

Jennings, 1989; Cotten and Birnstiel, 1989). One of the aims of this study was to 

increase the number of ribozymes present in vivo for cleavage. Various elaborate 

hammerhead ribozyme constructs have been tested with the specific aim of 

increasing the number of ribozyme catalytic units per cell, and thereby increasing 

the intracellular ribozyme concentration. DNA sequences, encoding single 

transcripts harbouring different ribozymes bound head-to-tail on the same strand, 

have been constructed to target various sites on BCR/ABL mRNA (Leopold et at., 

1995), HIV (Bai et al., 2001; Chen et al., 1992; Ohkawa et a i, 1993a; Ramezani 

et al., 1997) and HBV (von Weizsacker et al., 1992). For these ribozymes, 

cleavage efficiency was shown to be directly proportional to the number of 

ribozyme units present on the transcript RNA. However, there is a limit to the 

number of bound ribozymes which can exert maximal cleavage activity in vitro. 

No increase in cleavage efficiency was observed by adding more than three 

ribozyme units to the same transcript (Ohkawa et al., 1993a). Ribozymes bound 

together within a single transcript are catalytically constrained. However, the 

kinetic mechanism of bound ribozyme units has not been verified in vivo.

Ribozymes bound within a single transcript can be released from the 

parental chain through the action of flanking c/'s-cleaving hammerhead ribozymes 

present on both the 5' and 3' ends of a frans-cleaving ribozyme (Yuyama et al., 

1992). Released individual ribozyme monomers are capable of cleaving target 

RNA in trans (Ohkawa et al., 1993a; Ohkawa et al., 1993b; Yuyama et al., 1992; 

Yuyama et al., 1994). Trans-cleaving ribozymes processed from a single 

transcript are more efficient catalytically than the frans-cleaving action of 

ribozymes bound together on the same transcript (Ohkawa et al., 1993a). Later 

studies have used several different ribozymes that release themselves from a



single transcript (Taira’s “shotgun” ribozymes) (Ohkawa et al., 1993b). In this 

system, 5' and 3' processed frans-cleaving multimeric ribozymes were capable of 

inhibiting target HIV RNA expression when expressed from retroviral vectors 

transduced into cultured cells (Xing et al., 1995), but were no more effective than 

single-unit ribozymes in cell culture.

Taira’s shotgun multimeric ribozyme method (Ohkawa et a!., 1993a) 
has been simplified to include multimeric units of both c/s- and trans-cleaving 

hammerhead ribozymes (Ruiz et al., 1997). In this system each hammerhead 

ribozyme unit present on the transcript RNA includes a cis-cleaving ribozyme 

recognition sequence. Cis-cleaved individual monomeric ribozyme units are then 

capable of retaining their function to cleave a target RNA in trans. The Ruiz 

model was applied successfully in the present study to target multiple cis- and 

trans-cleaving hammerhead ribozymes to different sites of the HBx ORF. 

Although, Ruiz et al. (1997) applied their multimeric construct to cleave HBV core 

RNA sequences in vitro, their study made use of a transcript that comprises 

multiple copies of one hammerhead ribozyme. Moreover, the efficacy of the 

multimeric ribozymes at inhibiting gene expression in transfected cells was not 

assessed. The cis-cleavage reaction of Ruiz’s pentameric hammerhead ribozyme 

transcript was inefficient and contrasted with the data in Figures 4.7 and 4.8 that 

show highly efficient cis-cleavage using 4-mer, 8-mer and 24-mer ribozyme 

transcripts. For the in vitro transcription/c/s-cleavage reaction described in 4.4.2.1 

(Figure 4.8), efficient cleavage was achieved despite the presence of an 

increased nucleotide concentration, which sequesters free Mg2+ ions during 

transcription. This implies either that the hammerhead ribozymes chosen in 

Chapter 2 show a high specificity for their target, or that the HBx ORF is more 

accessible to the hybridising effects of the ribozyme annealing helices I and III. 

Since neither ribozyme kinetic studies nor a systematic comparison between 
different cleavage sites on HBV were performed, any discussion on comparative 

ribozyme efficiencies must remain speculative.

In the present study, the flanking arms in helices I and III (hybridisation 

arms) for the cis-cleavage reaction span approximately 14 nt of the 

complementary target sequence. The optimal length of ribozyme-substrate 
complementary sequences varies between 7 and 20 (Thomson et a!., 1997). As, 
the affinity of the c/s-cieaving ribozyme for its downstream recognition sequence



is high, ribozyme specificity and catalytic efficiency is less likely to be dependent 
on hybridisation conditions. Consequently, c/'s-cleavage proceeds optimally under 

multiple turnover conditions. The trans-cleaving hammerhead ribozymes have 

hybridisation arms which span approximately 24 complementary nt instead of the 

16-18 nt used for the same single-unit ribozymes in Chapters 2 and 3. Longer 

flanking arms were specifically designed to improve intracellular ribozyme 

specificity. Since the annealing reaction in vivo is the rate-limiting step, longer 

annealing arms often improve the inhibitory effects of the ribozymes (Bertrand 

and Rossi, 1996). However the higher affinity decreases the catalytic rate constant 

(kcat) and impedes the cleavage of multiple substrates by a single ribozyme (Hertel 

et al., 1994). The data generated from cell culture transfections (4.4.3) were not 

sufficiently sensitive to measure any differences in ribozyme-mediated inhibition 

due to the length of the annealing arms (see sections 5.2.1 and 5.2.2 for a 

detailed discussion).
It has been suggested that an alternative reason for the inefficiency of 

hammerhead ribozymes in vivo is the presence of non-hybridising sequences, 

which are found 5' and 3' of the ribozyme catalytic core sequence (Bramlage et 

al., 1998; Ohkawa et al., 2000). These auxiliary sequences are usually vector- 

derived and may interfere with the correct ribozyme secondary structure 

conformation, resulting in a catalytically compromised ribozyme (He et al., 1993; 

Ventura et al., 1993). Alternatively, these additional sequences may decrease 

ribozyme specificity, preventing the annealing arms from hybridising to target 

complementary sequences. The multimeric cis- and trans-cleaving hammerhead 

ribozyme system described in this study has the advantage of generating trans- 

cleaving monomers with defined 5' and 3' ends, thus minimising the presence of 

additional sequences both upstream and downstream of the ribozyme catalytic 

core. One serious concern for this multimeric ribozyme system is the question of 

ribozyme stability post-cleavage. The presence of exposed 5' and 3' ends makes 

these cleaved ribozyme molecules susceptible to nuclease degradation. It 

appears, however, that processed ribozyme monomers survive long enough to 
ensure that they exert their therapeutic effects in an intracellular environment.

In conclusion, the multimeric cis- and trans-cleaving hammerhead 

ribozymes are more effective at inhibiting cell culture models of HBV replication 

than the hammerhead ribozymes described in the previous chapters. There are



several advantages associated with using cis-and trans-cleaving multimeric 

ribozymes for the future treatment of chronic HBV infection:

1) Multimeric cis- and trans-cleaving hammerhead ribozymes increase the 

intracellular concentration of hammerhead ribozymes.

2) Ribozyme cis-cleavage generates trimmed 5' and 3' flanking 

sequences, thereby removing non-hybridising sequences that may 

interfere with the stability and antisense action of ribozymes in vivo.

3) Any number of different individual ribozyme units may be expressed on 

a single transcript. Simultaneous targeting of different sites within the 

HBV genome has the advantage of preventing the development of 

escape mutants (Appendix C3). Viral quasi-species that evade action 

of single ribozymes are easily selected due to the sensitivity of 

ribozymes to single base changes within the cleavage recognition 

sequence.

4) Since some cleavage sites within the target RNA remain inaccessible 

to both ribozyme and antisense action, an approach whereby a number 

of different sites are targeted simultaneously may prove to be 

synergistic. The cleavage of an accessible site may make a previously 

inaccessible region available for targeting.

The results of this study provide a compelling argument for the therapeutic 

application of these ribozymes in animal models of HBV infection. However, 

many factors need to be overcome in order to apply ribozyme-encoding genes in 

a clinical setting. These and other design considerations are discussed in detail in 

Chapter 5.



5.0 GENERAL DISCUSSION AND CONCLUSION

The studies presented in this thesis add significantly to the growing body of 

research on ribozymes targeted to HBV. In most cases, ribozymes have been 

shown to be specific to their target RNA sequence and are efficient inhibitors of 

both viral gene expression and replication in cell culture models of HBV infection. 

The clinical application of hammerhead ribozymes and other therapeutic 

ribozymes as future therapeutic agents for the treatment of HBV hinges on 

overcoming two important obstacles. Firstly, since hammerhead ribozymes are 

expressed endogenously from DNA-encoding sequences, ribozyme expression 

cassettes need to be effectively delivered to the HBV-infected liver. Secondly, as 

antiviral agents, therapeutic hammerhead ribozymes must be clinically efficacious 

and non-toxic in vivo. Prospects for overcoming these hurdles are dealt with in 

the following sections. In addition, important principles for the design of 

therapeutic hammerhead ribozymes are included.

5.1 Hammerhead ribozymes and HBV

5.1.1 Hammerhead ribozymes targeted to the HBx ORF

Since the trans-activation function of HBx is regarded as a potential risk factor in 

the development of HBV-associated carcinogenesis, the inactivation of HBx is 

likely to be important for future approaches to therapy of chronic HBV infection. 

Hammerhead ribozymes presented in this thesis inhibited endogenous HBx 

trans-activation in primary hepatocellular carcinoma cells, indicating that they 

have imminent therapeutic potential as agents capable of preventing HBV- 
associated hepatocellular carcinoma.

Two studies conducted contemporaneously have corroborated the 
inhibitory effects of hammerhead ribozymes targeted to the HBx ORF of HBV 

described in Chapter 2. Yim et at. (2000) generated a yeast expression vector 

containing a hammerhead ribozyme in cis with an HBx-lacZ fusion construct 

under transcriptional control of the yeast copper-inducible chelatin promoter 
(Cl/P1p). The hammerhead ribozyme, when expressed in transient transfected 

yeast cells, was able intermolecularly to cleave the target sequence, thus



disrupting the HBx-LacZ fusion mRNA. This resulted in histochemically negative 

(white) colonies on agar plates stained with the chromogenic substrate X-gal. 

This system, in which both ribozyme and target sequences are present on the 

same RNA strand, cannot, however, be used to infer the efficacy of hammerhead 

ribozyme-mediated trans-cleavage in vivo. In addition, as described earlier for 

snorbozymes, the intracellular environment of the yeast may be substantially 

different to that of the hepatocyte. Nevertheless, an interesting feature of this 
study is the fact that various catalytically inactive ribozyme variants, including an 

antisense RNA, were able to inhibit lacZ expression effectively with results similar 

to those for the active hammerhead ribozyme (Yim et al., 2000). All these 

hammerhead ribozyme and antisense RNA variants correspond to the same 

region as the catalytically active ribozyme. The results in yeast independently 

suggest that an antisense mechanism without substrate cleavage may be 

responsible for inhibiting target RNA.

In a very similar experiment to that described in 2.4.3, two 

hammerhead ribozymes, which target different cleavage sites on the HBx ORF to 

those described here, successfully cleaved target HBx RNA in vitro (Kim et al., 

1999). However, a 100:1 molar ratio of ribozyme to substrate was needed in 

order to cleave 75% of the substrate in a one-hour reaction under standard in 

vitro cleavage conditions. In this same study, a reporter plasmid pSV2CAT was 

constructed expressing chloramphenicol acetyl-transferase (CAT) under control 
of the SV40 early promoter, which is susceptible to frans-activation by HBx (Twu 

and Robinson, 1989). The ribozymes constructed by Kim et al. (1999) were able 

to inhibit HBx frans-activation function (by reducing CAT activity) in transiently 

transfected HepG2 human hepatoma cells. This study did not, however, correlate 
a decrease in HBx trans-activation with variations attributed to differences in 

transfection efficiencies between culture plates. Nevertheless, these results are in 

agreement with the data presented in sections 2.4.3 and 2.4.4.

5.1.2 Hammerhead ribozymes as antiviral agents

Of the two early studies using hammerhead ribozymes targeted to HBV, only 
Beck and Nassal have tried, albeit unsuccessfully, to observe the in vivo effects 

of hammerhead ribozyme-mediated cleavage of HBV pgRNA (Beck and Nassal,



1995; von Weizsacker et al., 1992). Since in vitro experiments are usually devoid 

of cellular factors, there is little value in studies aimed at developing therapeutic 

ribozymes strategies without studying the effects of hammerhead ribozymes in an 

intracellular environment. Ribozyme activity has been shown to differ remarkably 

in vitro and in cultured cells, often yielding conflicting results (see section 5.2) 

(Beck and Nassal, 1995; Crisell et al., 1993; Homann et al., 1993; Tabler et al.,

1994).

Three studies, which were performed contemporaneously with those 

presented here, have tried to observe the antireplicative effects of hammerhead 

ribozymes targeted to HBV. Ribozymes have been targeted to the core region 

(Feng et al., 2001a), the polyadenylation signal sequence (Feng et al., 2001b) 

and different sites within the HBx ORF (Kim et al., 1999). A hammerhead 

ribozyme was successfully targeted to the RNA sequence encoding the carboxy- 

terminus of the core protein in HepG2 cells that were transiently co-transfected 

with a ribozyme vector, its catalytically inactive counterpart, and a vector 

containing a replication-competent head-to-tail dimer of HBV (subtype adr) (Feng 

et al., 2001b). Viral DNA extracted from lysed cells and from HBV particles in the 

culture medium was reduced by approximately 50% by the ribozyme-encoding 

vector. These results were reflected in similar inhibitions in HBsAg and HBeAg 

secretion. The inactive ribozyme control showed a 25% reduction in both viral 

DNA and antigen levels (Feng et al., 2001b). In another study, the same authors 

targeted the polyadenylation signal region of the viral pgRNA for cleavage using 

a similar approach to that described for the anti-core ribozyme (Feng et al., 

2001a). This hammerhead ribozyme inhibited the production of intracellular viral 

RNA and DNA levels by approximately 70% compared to a 50% inhibition by the 
catalytically inactive ribozyme control (Feng et al., 2001a).

The hammerhead ribozymes produced by Feng et al. (2001a) are 
similar in efficiency to those presented in Chapters 2 and 3 as well as by others 

using hairpin ribozymes, proving that other sites of the viral genome can be 

targeted successfully in cultured cells to inhibit viral replication. Generally, 

however, the specificity of hammerhead ribozymes targeted to HBV is low. The 
multimeric cis- and trans-cleaving ribozymes described in Chapter 4 represent a 

significant improvement on existing HBV ribozymes.

A serious concern for the development of any future antiviral strategy,



including the use of ribozymes, is the possibility of developing HBV mutant 
strains that are resistant to treatment. As was noted for lamivudine and other 

nucleoside analogues, the HBV genome is flexible enough to sustain substitution 

changes necessary for the development antiviral-resistant HBV strains. The 

effects of hammerhead ribozymes are no exception. The ease with which single 

base substitutions can confer resistance to ribozyme therapy must be a worrying 

factor for their clinical implementation. A single change withing the catalytic site 

(the 5' GUC 3' cleavage triplet, for instance) can render the ribozyme functionally 

impotent. Targeting several sites on the HBV genome simultaneously (as was 

done in Chapter 4) may be the solution since the selective pressure of generating 

HBV strains that are resistant to a multi-faceted attack is likely to be too great a 

burden on any replicating virus. Clearly the latter approach represents a suitable 

option for clinical evaluation of hammerhead ribozymes in vivo in animal models 

of HBV infection.

5.2 Designing therapeutic hammerhead ribozymes

5.2.1 The effects of ribozyme flanking sequences

Hammerhead ribozyme specificity is determined by the flanking sequences of 

helices I and III, which hybridise to substrate RNA prior to cleavage. 

Theoretically, the hammerhead ribozyme annealing arms should be long enough 

to provide structural stability, specificity, and an adequate association rate (Birikh 

et al., 1997b). Yet the annealing arms must be short enough to ensure 

reasonable catalytic turnover. Generally, for short unstructured substrate 

sequences, 7 to 8 nucleotides for each flanking arm provide the most favourable 

result (Lieber and Strauss, 1995). These ribozymes have been shown to function 

equally well both in vitro and in vivo (Bertrand and Rossi, 1994). The 

hammerhead ribozymes of this study were designed with the intention of 

ensuring maximal specificity and catalytic turnover.

Hammerhead ribozymes with short hybridising arms are less likely to 

anneal to sequences with single base changes and thus have a greater potential 

to discriminate target sequences. Long flanking sequences lack the 
discriminatory power to distinguish mismatches (Hertel et al., 1996). Should the



position of the mismatch be close to the cleavage triplet, ribozyme-target 

association could be completely obstructed (Werner and Uhlenbeck, 1995). This 

was observed for ribozymes with hybridising arms of six nucleotides each that 
target the tat gene of HIV-1 in two different strains of the virus. Hammerhead 

ribozymes targeted to the mutant strain containing an adenosine 3' of the 

cleavage triplet significantly inhibited viral replication. No such effect was 
observed for the HIV-1 strain with a guanosine at the same site (Sun et a!.,

1995).

The length of ribozyme helix III (the 3' arm) is more critical than helix I 

(5' arm). Asymmetrical hammerhead ribozymes have been constructed with only 

three nucleotides for helix I and over 100 for helix III. These ribozymes were 

shown to be effective at cleaving HIV-1 RNA (directed to the long terminal repeat- 

gag region) both in vitro and in transfected cells (Tabler et al., 1994).

Some groups have reported that hammerhead ribozymes containing 

annealing arms greater than 30 nucleotides show effective and rapid cleavage in 

vitro and strong inhibition of target RNA expression in cultured cells (Crisell et al., 

1993; Homann et al., 1993; Tabler et al., 1994). The trans-cleaving ribozymes of 

section 4.4.1.2, which have 5' and 3' annealing arms that span 24 nt, produced a 

greater inhibitory effect than the equivalent ribozymes with shorter arms (16-18 

nt). However, it is unclear to what extent the observed inhibition is due to an 

increased intracellular ribozyme concentration. These latest results appear to 

conflict with the results of Lieber and Strauss (1995). The rate-limiting step in vivo 

for ribozyme-catalysed reactions is known to be the annealing of the ribozyme 

arms to complementary sequences on the target RNA. Since single-turnover 

conditions govern ribozyme action in the intracellular environment, the greater 

inhibitory power of ribozymes over antisense RNAs lies in their ability to cleave 

their target once annealed. It appears that target RNA is largely inaccessible in 
an intracellular environment. Since RNAs in vivo are found in varying secondary 

and tertiary conformations, Bertrand and Rossi (1996) suggest that cellular 

proteins may facilitate the annealing of ribozymes with long hybridising arms 

(discussed in section 5.2.2.2). Hammerhead ribozymes which were designed to 
target the HBV encapsidation signal indicate that longer ribozyme arms facilitate 

binding by interacting with single-stranded regions that are near the ribozyme 

cleavage site and which are not accessible to binding with ribozymes comprising



shorter flanking arms (Beck and Nassal, 1995). This is supported by the 
observation that single-stranded cognate sequences are indispensable for 

successful recognition of ribozyme hybridising arms for the substrate mRNAs 

(Rittner et al., 1993). At present, there are no clear rules governing the length of 

annealing arms for intracellular ribozyme action, and each system needs to be 

determined empirically.

5.2.2 Finding suitable target sites for ribozyme cleavage

For long, structured target RNA molecules, which undergo secondary or tertiary 

folding, the kinetic rate-limiting step is often the association of ribozymes with 

their target RNA. The RNA secondary structure may hide accessible cleavage 

sites and prevent effective ribozyme binding, which possibly explains why 
ribozymes targeted to different sites on the same mRNA strand in vitro show 

varying cleavage activities (Hendrix et al., 1996).

There appears to be an additional disparity between the observed 

ribozyme effects in vitro, and ribozyme function in vivo (in cell culture or animal 

models). Irrespective of these discrepancies, most therapeutic approaches first 

test newly constructed ribozymes in a chemically isolated environment. 
Experiments that test ribozyme cleavage parameters in vitro still represent the 

gold standard for ribozyme selection. In vitro cleavage experiments may yield 

important information regarding the catalytic properties of the constructed 

ribozymes, but often they offer little insight into the intracellular effects of 
ribozymes on their target RNAs.

Generally, a trial and error approach, although laborious, is often the 
most effective method to determine which sites will be best suited for ribozyme 

cleavage (Usman and Stinchcomb, 1996). However, for long mRNA substrates or 

for target mRNAs suspected of concealing ribozyme-accessible sites, several 

combinatorial screening techniques have been devised to determine ribozyme- 

accessible regions and effective cleavage sites.



5.2.2.7 Probing RNA secondary structure using computer algorithms

RNA folding programs, such as Mfold® (Genetics Computer Group, Wl, USA) and 

RNAdraw™ (Matzura and Wennborg, 1996), are used to predict RNA secondary 

structures based on global free-energy calculations (Matzura and Wennborg, 

1996; Zuker and Jacobson, 1998; Christoffersen et al., 1994; Sczakiel and 

Tabler, 1997). However, these programs are still in their infancy and, although 

they predict certain structural properties of RNA, they are currently inept at 
accurately predicting the correct RNA secondary folding, let alone determining 

accessible ribozyme cleavage sites. In some cases, predictions generated by 

such programs contrast directly with experimentally verified sites reported to be 

susceptible to ribozyme cleavage (Dropulic and Jeang, 1994). Most importantly, 

these programs fail to predict the secondary and tertiary RNA structure generated 

by associations with proteins and other factors in vivo. Although Mfold was used 

to determine HBx RNA secondary structure (Chapter 2), the program was unable 

to predict accurately accessible regions for nucleic acid hybridisation. 

Hammerhead ribozyme HBx:Rz3i6o7 targeted one of the least accessible sites on 

the HBx ORF and yet proved to be the most effective ribozyme in vitro and in cell 

culture transfections.

5.2.2.2 The accessibility of target RNA for ribozyme cleavage in vivo

RNAs within the cell associate with an array of proteins. Within the nucleus, 

heterogeneous nuclear proteins (hnRNPs) and small nuclear proteins (snRNPs) 

are often complexed to mRNAs. Whilst in the cytoplasm, mRNAs readily combine 

with hnRNPs, rRNAs and proteins associated with the translation complex. These 

proteins may either facilitate or inhibit ribozyme binding (Casas-Finet et al., 1993; 

Khan and Giedroc, 1992; Portman and Dreyfuss, 1994). Proteins such as a 

peptide polymer derived from the consensus sequence of the carboxy-terminal 

domain of the hnRNP A1 protein (Herschlag et al., 1994) and HIV-1-encoded 
NCp7 (Tsuchihashi et al., 1993) were shown to bind non-specifically to RNA. The 

proteins possess unwinding activity allowing, in some cases, a 1000-fold increase 
in the hybridisation rate (Bertrand and Rossi, 1994; Herschlag et al., 1994). For 

the most part, however, proteins associated with mRNAs in vivo prevent the



annealing of ribozymes to target sequences and represent a hurdle for the 

development of effective inhibitory endogenous ribozymes. Recently, Kato et al. 

(2001) developed a ribozyme expression vector, which includes an RNA motif 

with RNA helicase binding ability linked to a 5' ribozyme-encoding sequence. The 

unwinding of secondary structures inherent in intracellular target RNA molecules 

was shown to improve the catalytic efficiency of the designed ribozyme (Kato et 
al. 2001).

5.2.2.3 Combinatorial screening techniques for finding ribozyme cleavage sites

Ribozyme activity can be selected from a large ribozyme library with randomised 

substrate binding sequences (helices I and III for hammerhead ribozymes). A 
random pool of ribozymes, or ribozyme library, is challenged in vitro to cleave 

target RNA in order to determine susceptible cleavage sites (Lieber and Strauss, 

1995). The sites are often selected within an entire transcript and no prior 

knowledge of the transcript sequence is needed. Cleavage products generated 

by a random ribozyme library can be tailed, amplified by RT-PCR, and cloned 

into vectors. Clones can be sequenced to identify the most efficient cleavage 

sites. Ribozymes discovered using this approach efficiently cleaved human- 

growth hormone mRNA in vitro and strongly inhibited target mRNA expression in 

transduced cell cultures (Lieber and Kay, 1996; Lieber and Strauss, 1995). An 
adaptation of this technique was used by zu Putlitz et al. (1999) to generate a 

random hairpin ribozyme library targeted to HBV pregenomic RNA (see section 
1.4.3).

Another screening technique utilised a random oligodeoxynucleotide 

(ODN)-library to probe RNA folded in its secondary structure conformation (Birikh 

et al., 1997a; Christoffersen et al., 1994). RNase H can be employed to degrade 

any RNA hybridised to specific ODN probes. The resulting fragments are 

resolved and identified on denaturing polyacrylamide gels. The fragments 

generate an RNase H digestion pattern, which is compared to appropriate 

markers. This technique is a lot simpler than that used by Lieber and Strauss 

(1995) but reveals only broad hybridisation regions and not necessarily sites 

specific to ribozyme action.



A similar screening technique was used to determine accessible 

ribozyme cleavage sites in cellular extracts from target RNAs produced 
endogenously (Castanotto et al., 2000; Scherr and Rossi, 1998). This allows for 

screening of RNAs in their ‘native’ state. These target RNAs are folded into 

secondary structure conformations along with associated cellular proteins. Briefly, 

antisense ODNs, designed to hybridise to potential ribozyme cleavage sites, can 

be added to cellular extracts containing exogenously expressed target mRNA. 

Both RNA-DNA hybrids and ODNs undergo nuclease degradation and the 
resulting RNA fragments are amplified and quantitated using primers specific for 

the target mRNA. A direct correlation exists between the degree of antisense 

ODN-induced target RNA degradation and the accessibility of the respective 

target site for hammerhead ribozyme cleavage (Scherr et al., 2001; Scherr et al.,

2000).

Screening techniques for accessible sites in vitro do not necessarily 

result in improved cleavage in vivo. Although Birikh et al. (1997) have shown that 

their method represents a 150-fold improvement on predictions using the Mfold 

program, target accessibility screening procedures need to incorporate factors 

that may influence RNA folding in vivo.

5.2.3 Factors governing in vivo ribozyme activity

In addition to the accessibility of the target mRNA for ribozyme cleavage, there 

are a number of other important factors that influence the ability of ribozymes to 

inhibit the expression of target RNAs in vivo. An important determinant for the 

optimal endogenous ribozyme production is the nature of the expression system 

or cassette, which should include elements for regulating intracellular ribozyme 

concentration and persistence (Yu et al., 1993). The cassette should ensure the 

correct ribozyme structure and stability in vivo (Rossi and Sarver, 1990). 

Elements within the cassette can also facilitate co-localisation of ribozyme and 

target RNA in the same cellular compartment (Bertrand and Rossi, 1996; 

Castanotto et al., 2000; Kawasaki et al., 2000). Since the intracellular 

concentration appears to be a vital factor for endogenous ribozyme efficacy, the 

choice of promoter used for RNA expression is a crucial component of the design 

of a ribozyme expression cassette.



Promoters that constitutively express ribozyme-encoding RNAs are 
obviously desirable since such elements generate an abundance of intracellular 

RNA. The RNA polymerase II (Pol II) system produces mRNAs necessary for 

translation into proteins, but has also been widely used for the expression of 

ribozymes. The cytomegalovirus (CMV) promoter has been used previously to 

express ribozymes (Weerasinghe et al., 1991) and was used in expression 

vectors described in this thesis to ensure an equal and persistent expression of 

ribozyme and target genes in transfected cells. Some Pol II promoters have the 

advantage of being tissue specific and can be induced or regulated. Other Pol II 

promoters used to express endogenous ribozymes include retroviral promoters 

(Leopold et al., 1995), the simian virus 40 (SV40) promoter (Weerasinghe et al., 

1991), the p-actin promoter (Ojwang et al., 1992) and the U1 snRNA promoter 

(Bertrand et al., 1997). Pol ll-derived transcripts have ancillary sequences at both 

5' and 3' ends, namely 5' and 3' untranslated regions, a 5' m7GpppG cap 

structure and a 3' poly(A) tail. These additional sequences ensure mRNA 

stability, significantly prolonging mRNA intracellular half-life. Moreover, these 

sequences may be necessary for cytoplasmic localisation, and for functional 

recognition by the translation machinery. The multimeric cis- and trans-cleaving 

ribozymes produce 5'- and 3'-trimmed RNA monomeric units from a CMV-derived 

transcript. These ribozymes survive long enough to inhibit target RNA more 

efficiently than single-unit ribozymes, which possess non-annealing flanking 

sequences. Thus the stabilising effects of Pol ll-derived transcripts appear not to 

be critical and may in fact hinder ribozyme action in vivo. Ancillary nucleotide 

sequences, which are often hundreds of nucleotides long, may obstruct ribozyme 

trans cleavage by masking hybridisation sequences necessary for the annealing 

of the ribozyme with its target RNA. Additionally, factors of the riboprotein 

complex may also bind to Pol ll-derived mRNAs, resulting in encumbered 
transcripts that are less likely to interact freely with target RNAs in vivo.

Polymerase III promoters naturally drive the expression of small RNAs 
such as tRNAs, 5S rRNA and most snRNAs. Transcript expression levels for Pol 

III promoters are significantly higher (Cotten and Birnstiel, 1989) than for Pol II 
promoters and only short ancillary sequences are added to each transcript. Pol 

III promoters have thus been suggested as the optimal promoter choice for the 
generation of endogenous ribozymes (Kawasaki et al., 2000). However,



questions remain concerning the intracellular stability and half-life of Pol Ill- 

derived transcripts.

Anti-HBV hairpin ribozymes generated by zu Putliz et at. (1999) made 

use of both Pol III- and Pol ll-derived promoters without any significant difference 

observed in ribozyme expression or efficacy in Huh7 cells. Similarly, 

hammerhead ribozymes generated by Beck and Nassal (1995) were derived from 

a Pol III promoter system and although expression was high, no clear 
improvement of ribozyme efficacy was observed. In the Beck and Nassal study, 

increased ribozyme expression was not seen as the reason for failed ribozyme 

efficacy in transfected cells.

Ribozyme inhibition of gene expression is greatly facilitated by 

localising both ribozymes and their target RNA to the same intracellular 

compartment (Arndt and Rank, 1997; Castanotto et at., 2000; Sullenger and 

Cech, 1993). Each ribozyme application is different, however, and the nature of 

the target mRNA needs to be carefully studied prior to establishing a co

localisation strategy. Directing target mRNA and ribozymes to the same 

subcellular region is often achieved by utilising auxiliary sequences which are 

often promoter-derived. These sequences include: viral packaging signals (Pal et 

at., 1998; Sullenger and Cech, 1993), and either nuclear localisation signals 
(Michienzi et at., 2000; Michienzi et at., 1998) or signals which allow co

localisation of ribozymes and their pre-mRNA targets (Lee et at., 1999).

Signals which direct the trafficking of target pre-mRNAs can be 

attached to ribozymes, enabling co-localisation in the same subcellular 

compartment. This is best illustrated by the introduction, within the U1 snRNA 

coding region, of ribozymes that have 3'-end attached sequences which are part 

of the 3' untranslated regions (UTR) of certain mRNAs. Such ribozyme-encoding 

transcripts were channelled to 5' splice sites of targeted HIV-1 rev pre-mRNAs 

(Michienzi eta!., 1996).

The promoter used to drive expression of ribozyme encoding 
transcripts can be exploited for its localisation potential (some examples were 

given in section 1.2.2.3). HIV-1 utilises a tRNALys3 as a specific primer for reverse 

transcription. Ribozymes incorporated within the tRNALys3 coding region were 
able to generate a chimeric ribozyme-tRNALys3 transcript which co-packages 

along with HIV-1 into proviral particles and cleaves HIV RNA simultaneously with



reverse transcriptase priming (Welch et ai, 1997). Similarly, tRNAVal (Yuyama et 
al., 1992) and Adenoviral VAI (Prislei et ai, 1997) Pol III promoters embed 

regulatory elements within their naturally transcribed regions. Ribozyme 

sequences can be inserted within stem-loop structures of either tRNAVal or 

Adenoviral VA1 promoter systems to achieve high-level expression, ribozyme 

structural stability, and either nuclear or cytoplasmic ribozyme localisation.

5.2.4 Summary

Presently, the engineering of hammerhead ribozymes as therapeutic molecules 

represents a challenge with many variables. There are several design constraints 
when developing therapeutically effective hammerhead ribozymes in vivo. 

Hammerhead ribozymes, which are specifically designed and developed to 
inactivate the expression of target viral or cellular RNA, must be selected by 

addressing the following fundamental properties:

1) Hammerhead ribozymes should be present in higher molarity than their 

target RNA within the cell and must possess a functional and stable 

conformation under intracellular physiological conditions.

2) Hammerhead ribozymes must be specific to accessible target sites on the 

substrate mRNA for efficient cleavage and, if possible, possess catalytic 
turnover.

3) Endogenous hammerhead ribozymes should be constitutively and 

persistently expressed and directed to the same cellular compartment as 
their target mRNAs.

4) Presynthesized ribozymes or ribozyme-encoding sequences must be 

efficiently delivered to a large percentage of the target cell population.

5.3 Delivery of ribozymes

One of the most important requirements for all nucleic acid-based therapeutic 

strategies remains that of an efficient delivery mechanism. In order to function as 

therapeutic agents, ribozymes must be efficiently delivered to the appropriate 
tissue and cell type. Once inside the cell, ribozyme-encoding genes or



presynthesized ribozyme sequences should downregulate their respective target 

RNA and have pharmacologically significant effects. With regard to hammerhead 

ribozymes, there are two general methods employed for delivery into target cells 
in vivo. Firstly, ribozymes can be chemically presynthesized as 

oligoribonucleotides and delivered directly as exogenous agents. Secondly, 

ribozymes can be encoded as a DNA sequence, incorporated into an expression 

cassette, and delivered to target cells for endogenous ribozyme gene expression.

Direct or exogenous delivery of presynthesized ribozymes is an 
attractive therapeutic option. Concerning their pharmacological properties, 

presynthesized ribozymes are chemotherapeutic agents and in relation to other 

antiviral agents are considered to possess low cytotoxicity and high target 

specificity. Nevertheless, these ribozymes need significant chemical 

modifications in order to function therapeutically. Generally, direct delivery of 

unmodified RNA is problematic owing to the instability of RNA in bodily fluids. For 

example, unmodified RNA exhibits a typical half-life of approximately 0.1 to 20 

minutes in serum (Beigelman et al., 1995). Presynthesized ribozymes, whether 

chemically modified or not, are either administered naked or as a conjugate 

within cationic lipid vesicles. In contrast, endogenous expression of ribozyme- 

encoding genes usually makes use of a viral vector. Various vector systems, both 

viral and non-viral, have been utilised to deliver ribozyme-encoding cassettes 

within cells. Endogenous strategies rely on a biological approach towards 

achieving effective therapeutic action. Genes are native to any cellular 

environment and exploit the molecular machinery of the host cell irrespective of 

their biological origin. Thus, ribozyme-encoding genes can be constructed, 

produced and tested through the application and malleability of recombinant 

technology. Additionally, unlike the expression of protein-encoding genes, 

ribozyme-encoding genes can be expressed from any of the three cellular RNA 

polymerases. This specifically fine-tunes their intracellular expression and 

localisation. Irrespective of the present risks associated with the delivery and 

expression of gene sequences, gene-based approaches offer greater potential as 

future therapeutic agents owing to their specificity and low toxicity.

At present, delivery strategies for endogenous gene expression are 

less established for clinical application than exogenous delivery approaches. 
Significant progress in presynthesized ribozyme research, which utilises a more



orthodox pharmacological approach to therapy, has streamlined these ribozymes 
for clinical development. Nevertheless, significant progress is being made in 

developing suitable delivery strategies for gene therapy applications. Most 

notable is the research conducted in generating cationic liposomes as carriers of 

expression vectors. Presynthesized ribozymes remain an important component of 

hammerhead ribozyme therapeutics and deserve further mention prior to a 

discussion of delivery strategies aimed at endogenous ribozymes.

5.3.1 Presynthesized hammerhead ribozymes

Presynthesized ribozymes, if chemically modified, can remain free from 

nucleolytic attack for several days in serum, and for several hours in nuclear 

extracts (Heidenreich et ai, 1994; Heidenreich et at., 1996). In order to retain 

ribozyme catalytic activity and improve stability, three types of modifications are 
necessary (Usman and Blatt, 2000; Usman and Stinchcomb, 1996). These 

include 2'-sugar modifications (Hendry et at., 1992; Perreault et a i, 1990), 

phosphate backbone modifications (Ruffnerand Uhlenbeck, 1990; Shimayama et 

al., 1993) and base change modifications (Grasby et a i, 1993; Usman and 

Stinchcomb, 1996). Terminal (3'-end) stem-loop structures, present on 

unmodified ribozyme transcripts, have been shown to limit exonuclease 
degradation in vivo (Sioud et a i, 1992; Sioud et a i, 1994). However, these latter 

modifications were tested in cell culture and not in serum. The aim in developing 

optimally designed synthetic hammerhead ribozymes is to generate these agents 

with the minimum number of chemical modifications to ensure their increased 

serum longevity and therapeutic efficacy.

There have been two reported clinical trials using nuclease-resistant 
synthetic hammerhead ribozymes (Usman and Blatt, 2000). A synthetic ribozyme 

has been developed to inhibit the mRNA of Flt-1 (VEGF-R1), a high-affinity 

receptor for Vascular Endothelial Growth Factor (VEGF) that is involved in 

tumour angiogensis (Pavco et ai, 2000). This ribozyme may be useful in 

preventing tumour progression and is thus applicable for the treatment of several 

different cancers. Synthetic ribozymes have also been targeted to the 5'-UTR of 

the RNA genome of hepatitis C virus (HCV) for treatment of chronic HCV 

infection (Macejak et a i, 2000). Although the trials conducted thus far showed



promising results, there are some concerns regarding the safety of these agents. 

Their general toxicity following prolonged treatment remains to be determined. 
Moreover, since synthetic ribozymes are much larger (macromolecules) than 

conventional pharmacological agents, they possess relatively poor 

pharmacokinetic properties in vivo. These additional drawbacks really need to be 

overcome for synthetic ribozymes to be used widely as novel therapeutic agents 

(Usman and Blatt, 2000).

5.3.2 Viral-mediated delivery of ribozyme expression cassettes

Efficient delivery of ribozyme-encoding sequences relies on advances made in 

the development of viral vectors for gene therapy applications. A number of viral 

vectors have been studied regarding their ability to introduce genes into target 

cells (Morgan and Anderson, 1993). Each system has both advantages and 

disadvantages in their therapeutic application. Discussed below are some of the 

viral models used thus far for delivery of endogenous ribozymes to target tissues 

and cells. Viral-mediated delivery of anti-HBV hammerhead ribozymes is included 

in the discussion.

5.3.2.1 Retroviral vectors

Retroviral vectors are by far the most widely studied viral delivery vehicle for 

endogenous ribozyme expression. Retroviruses transduce a plethora of different 

cell types with high efficiency, and can stably integrate into the host cell genome. 

Persistence of ribozyme expression can be ensured owing to the maintenance of 

any introduced genetic material in progenitor cells. Consequently retroviruses are 

ideally suited for a range of different therapeutic applications (Morgan and 

Anderson, 1993). The shortcomings of retroviral therapy, however, include the 

inability to infect non-dividing cells (with the exception of lentiviruses). There are 

additional concerns regarding the safety of retroviral-delivery strategies since 

random retroviral integrants may elicit oncogenesis. Retroviruses are known to 
activate the host immune system by eliciting complement pathways. These 

pathways may in turn inactivate any transduced retroviruses. Additionally, there 

exists the possibility of reconstituting an active virus through recombination



events within packaging cell lines. These cells are tailored to reconstitute 
replication-incompetent recombinant retroviruses.

A number of infectious or acquired diseases, such as HIV (Bai et ai,

2001) and Moloney murine leukaemia virus infection (Lowenstein and Symonds, 

1997; Sun et ai, 1994), as well as various cancers (Funato et ai, 2000; Halatsch 

et a i, 2000; Kobayashi et a i, 2001; Shore et ai, 1993) have been targeted using 

different ribozyme-encoding retroviral vectors. One of the most promising 

applications of retroviral-delivered ribozyme therapy is for HIV infection, where 

progenitor T cells are stably transduced with ribozyme-expressing sequences 

that target HIV RNA. These T cells are then tested for their resistance to HIV 

infection. Thus far, practical efficacy in a clinical setting has been achieved for the 

ex vivo transduction of ribozyme-encoding sequences into T cells or bone 

marrow stem cells. These transformed cells, when reintroduced into patients 
infected with HIV, significantly reduce levels of viraemia in those patients for up to 

a year post-transplantation (Bertrand and Rossi, 1996). Although these studies 
are encouraging, ex vivo retroviral delivery of ribozymes for chronic HBV infection 

is not an option. Moreover, since hepatocytes (including those infected with HBV) 

are largely quiescent, retroviral applications in general are unlikely to prove 

efficacious. Retroviruses are unsuitable vectors for the delivery of c/'s- and trans

acting multimeric ribozyme cassettes since self-cleavage prior to virion packaging 

would render the construct unviable.

5.3.2.2 Adenoviral vectors

Adenoviruses represent a popular alternative to retroviral-mediated delivery of 
ribozymes. This viral vector system has the advantage of infecting a wide variety 

of dividing and non-dividing cells without integrating into the host cell genome. 
Importantly, adenoviral vectors have a propensity for uptake by the liver (Smith et 

ai, 1993). Adenoviruses are present extrachromosomally as epigenetic elements 

within transduced cells. However, a serious limiting factor for sustained 

adenoviral therapy remains the transient expression of virally-encoded genes. 

The intracellular adenoviral vector is diluted-out as a result of repeated cellular 

division. Repeated administration of adenoviruses fails due to the effects of an 

efficient immune system clearance of adenoviruses in serum. Both a humoral and



cell-mediated response are launched against viral proteins, severely restricting 
the efficacy of adenoviral gene therapy approaches (Chirmule et al., 1999). In 

addition, there are concerns regarding the toxicity of adenoviral-mediated delivery 

approaches.
A number of studies have shown the in vivo effects of ribozyme- 

encoding recombinant adenoviruses (Huang et al., 1997; Patricia et al., 2001; 

Usui et al., 2001). Ribozyme-expressing adenoviral vectors were infused by vein 

injection into mice that were transgenic for human growth hormone (hGH). 
Ribozymes directed against hGH mRNA were able to eliminate 96% of the 

expressed mRNAs in this model (Lieberand Kay, 1996).

A recent application of ribozyme-encoded adenoviral gene therapy 

involved the use of U1 snRNA-ribozyme chimaeras that targeted the inhibition of 

the multifunctional growth factor (scatter factor/hepatocyte growth factor 

[SF/HGF]) and its receptor c-met. These have been implicated in multiple human 

malignancies, including gliomas. Both adenoviral and liposome vectors carrying 

endogenous ribozymes were able to inhibit the growth of intracranial glioma 

xenografts in infected/transfected rats, thus prolonging survival (Abounader et al.,

2002).

5.3.2.3 Adeno-associated viruses (AA Vs) and other viral systems

In addition to the two vector systems described above, viral vectors such as the 

adeno-associated virus (AAVs) and hepatitis delta virus (HDV) (Hsieh and Taylor,

1992) have also been used to transduce ribozyme-encoded expression 

cassettes. Unlike adenoviruses, AAVs have the advantage of integrating into a 

specific site on chromosome 19, leading to stable transduction of infected cells. 

Furthermore, AAVs do not elicit inflammation or a cell-mediated immune 
response (Hernandez et al., 1999). AAVs are limited to a packaging insert of 

4500 nt, which makes them ideally suited for ribozyme gene therapy, since 

ribozymes occupy a relatively small amount of sequence space. Nevertheless, 

relative to other viral delivery models, ribozyme-encoding AAVs have only 

recently been applied. This may be a result of the technical difficulties reported to 

date in establishing stable packaging cell lines since AAVs usually require co



infection with helper-like adenoviruses or herpes virus. Additionally, producing 

high titres of recombinant AAVs for further use is inherently difficult.
AAV-encoding ribozymes have been shown to represent a potentially 

effective therapeutic strategy for dominantly inherited diseases that arise from 

malfunctional or misfolded protein (Lewin and Hauswirth, 2001). Such is the case 

for autosomal dominant retinitis pigmentosa (ADRP), which is most commonly 

associated with mutations in the gene encoding rhodopsin. Seminal studies were 

conducted using AAVs encoding ribozymes directed to the P23H mutation of 

rhodopsin. Ribozymes cleaved mutant rhodopsin mRNA and prevented 
photoreceptor degeneration in transgenic rats (LaVail et al., 2000; Lewin et al.,

1998). Ribozyme treatment protected functional vision in these transgenic rats for 
periods of up to eight months following AAV-ribozyme injection (LaVail et al.,

2000).

Ribozymes expressed from AAVs have been tested in cultured cells 

targeting HIV (Horster et al., 1999) and HCV (Welch et al., 1998). AAVs have 

also been targeted, in ex vivo studies, to both E6 and E7 genes of human 

papilloma virus (HPV), whose continued expression represents an oncogenic risk 

factor in HPV-induced human cancers (Kunke et al., 2000).

Other DNA-based viral vectors currently under consideration for the 

delivery of ribozyme-encoding genes are the herpes simplex virus (HSV) and 

simian virus 40 (SV40). These vectors may be potentially useful for the delivery 

of antiviral hammerhead ribozymes to HBV-infected hepatocytes. Although HSV 

infects quiescent cells and can include a large insert, it has an erratic life cycle. 

HSV has the propensity to lyse the host cell or enter into a latent phase of 

infection (Krisky et al., 1998a; Krisky et al., 1998b). SV40 is a relatively new viral 

vector and has yet to be tested completely for safety and efficacy. Nevertheless, 

SV40 can transduce a broad range of cell types, including quiescent cells. 
Although SV40 can accommodate only a 5000 nt insert, this may suit future 

application involving the delivery of ribozyme-encoding genes (Goldstein et al., 

2002; Jayan et al., 2001; Strayer, 2000).



5.3.3 Cationic liposomes and non-viral delivery strategies

Most non-viral delivery strategies employ a transfection-based approach for 

delivery into mammalian cells. Both presynthesized ribozymes as well as 

ribozyme-expressing vectors require carrier molecules since naked nucleic acids 

are either easily degraded or inefficiently transfected. Various cationic liposome 

formulations have been extensively studied as exogenous and endogenous 
ribozyme delivery systems. These include cationic lipids for transfecting 

presynthesized ribozymes (Duzgunes and Feigner, 1993), antisense- and 

ribozyme-encoding DNA (Akhtar et a i, 2000; Castanotto et al., 1997), and 

antisense RNA (Malone et al., 1989) into mammalian cells. For presynthesized 

ribozymes, other non-viral delivery strategies can be used, such as the 

conjugation of oligonucleotides to cholesterol or poly-L-lysine (Leopold et al., 
1995).

Various methods have been employed to direct cationic liposomes to 

target cells by conjugating the liposomes to ligands that interact with receptors on 

the target cell (Remy et al., 1995). Flepatocyte-specific receptors such as the 

asialoglycoprotein receptor (Ashwell and Harford, 1982) and the remnant 

receptor of Apolipoprotein E (Mahley, 1988) may be targeted using appropriate 

ligand-liposome conjugates for the delivery of anti-HBV therapeutic nucleic acids. 

However, there have been a number of drawbacks in studies aimed at targeting 
the asialoglycoprotein receptor (Rensen et al., 1996). These include the 

preferential uptake of lactosylated particles by the galactose receptor on Kupffer 

cells, and the decreased density of asialoglycoprotein receptors on hepatocytes 

of chronically-infected HBV individuals (Sawamura etal., 1984).

Notably, there are additional complications arising from the use of 

cationic liposomes in general. Nucleic acid-liposome complexes (lipoplexes) are 

often sequestered into endosomes on entry into target cells, thus diminishing 

their therapeutic effect. To prevent this, pH-sensitive liposomes are used in 

addition to membrane-disrupting peptides (Duzgunes et al., 2001) and are 

incorporated into cationic liposomes in order to disrupt the endosomal membrane 
and release liposomal contents into the cytoplasm of the target cell. Questions 

still remain regarding the overall therapeutic efficacy of liposome-based 

exogenous delivery techniques. At present, cationic liposomes do not efficiently



target a particular tissue or cell type and inefficient target non-dividing cells 
(Duzgunes et al., 2001). This raises concerns regarding their application as 

delivery vehicles targeting the liver, which is largely composed of quiescent cells. 

In addition, lipid formulations may have undesirable toxic effects. Although, as 

yet, non-viral delivery systems lack the cellular specificity of viruses, viral delivery 

systems are unlikely to be widely used for therapeutic purposes in the near future 

owing to concerns regarding their safe implementation. Thus, non-viral delivery 

systems may well prove to be more effective delivery vehicles for anti-HBV 

hammerhead ribozyme expression vectors. Further refinements are clearly 
necessary, however, for liposomes to be used successfully in a clinical setting.

5.4 Conclusion

The discovery of the catalytic nature of RNA challenges the conception that 
nucleic acids are merely inert repositories of information. RNA enzymes, or 

ribozymes, profoundly affect fundamental biochemical processes within the cell. 

This has prompted the theory of an ancient role for RNA in the evolution of life. 

Most naturally-occurring RNA catalysts function alongside proteins and other 

cellular factors. However, a number of small ribozymes discovered in unique 

organisms can function as independent RNAs and usually only require metal ion 
cofactors for catalysis.

The group of small ribozymes, which include the hairpin and 

hammerhead variety, are readily designed to hybridise to a complementary RNA 

sequence for the site-specific endonucleolytic cleavage in trans of the substrate 

phosphodiester backbone. Cleaved RNAs are thus rendered inactive. Since 

engineered ribozymes are specific for a target RNA sequence and can inhibit the 

phenotypic expression and/or the propagation of downstream products of RNA, 

they are applicable as therapeutic molecules for gene “knockdown” applications. 

Viral diseases in particular, which replicate and/or express unique RNA 

sequences, represent ideal targets for the use of therapeutic ribozymes.

Treatment of chronic HBV infection is a global medical objective and 

since most chemotherapeutic approaches used to date have only a modest effect 
on clearing viral infection, there exists a need for novel antiviral therapeutic 

agents. At present, patients treated with existing agents continue to be at risk for



cirrhosis and HCC. Future developments of novel nucleoside or nucleotide 

analogues may prove to be beneficial (Zoulim and Trepo, 1999). However, the 

emergence of nucleoside analogue-resistant strains of HBV remains a concern 

should prolonged treatment be necessary for removal of viral infection (Delaney 

et a/., 2001).
In the present study, the HBx ORF of HBV was selected as a sequence 

for the targeting action of endogenously expressed hammerhead ribozymes 

owing to: 1) the role of HBx in HBV-associated HCC; 2) the presence of HBx- 

encoding sequences within all viral transcripts, including the viral pregenome; 

and 3) the multifunctionality of HBx-encoded sequences, which overlap with 

polymerase and a number of viral c/'s-elements. Hammerhead ribozymes that 

efficiently cleaved HBx RNA in vitro significantly inhibited the trans-activation 

function of HBx when produced from an expression cassette in transfected liver- 

derived cell cultures. This included the inhibition of endogenous HBx trans- 

activator function in primary HCC cells. Apart from preventing the expression of 

the viral oncogene, HBx, these ribozymes behaved as general antiviral agents 

and were able to inhibit viral gene expression and markers of viral replication in 

cell culture models of HBV infection. Use was made of a plasmid containing a 

modified HBV sequence in which the preS2/S region was replaced by DNA 

encoding EGFP, thus allowing for the sensitive in situ measurement of ribozyme 

action in transfected cells. Ribozyme-modulation of EGFP activity in situ was 

accurately corroborated by measurements of viral HBsAg and HBeAg secretion. 

However, the exact mechanism of the ribozyme-induced inhibitory effects 

remains unclear. Both ribozyme cleavage and antisense-mediated effects may be 

responsible for the action of hammerhead ribozymes in cultured cells. Different 

ribozymes when applied simultaneously have an additive effect on the inhibition 

of viral gene expression. This feature was exploited by a multimeric ribozyme 
design that produces independent hammerhead ribozyme molecules from a 

single expressed transcript. The increased inhibitory effect observed by the 
introduction of multimeric ribozymes in vivo was either a result of an increase in 

ribozyme concentration or due to the simultaneous targeting of different sites on 

the target RNA. Additionally, independent processed ribozymes possessed 

trimmed 5' and 3' termini, which may, if uncleaved, interfere with the action of 

ribozymes in vivo. The most elaborate multimeric hammerhead ribozyme



construct, which contained twenty-four cis- and trans-cleaving hammerhead 

ribozyme units (24-mer), was highly effective at reducing markers of viral 

replication in cell culture. The 24-mer, multimeric ribozyme system, represents a 

significant improvement on previously constructed single-unit ribozymes or 

antisense RNAs and can be considered for application in gene therapy clinical 

trials.
The knowledge obtained from using ribozymes as antiviral agents may 

add value to other gene-based therapeutic strategies such as the development of 

dominant-negative mutants and DNA vaccines. The therapeutic potential of 

hammerhead ribozymes has been clearly shown in vitro and in transfected cells. 

However, it remains important to determine the efficacy of these agents in 

experimental or established animal models of infection, such as in DHBV, WHV 

or in transgenic mice. Factors that can be evaluated in these animal models 

include: the specificity of ribozyme gene therapy for the targeted gene; the 

stability and potential toxicity of the therapeutic expression cassette and its 

delivery to, and expression in, infected and non-infected hepatocytes. Moreover, 

since viral cccDNA has a long intracellular half-life (Whalley et al., 2001), the 

duration of antiviral therapy required to eradicate viral infection remains unknown. 

These factors must be addressed when choosing a suitable delivery vehicle.

Throughout the last decade, hammerhead ribozymes have been 

extensively applied as therapeutic molecules for the inhibition of gene expression 

in cell culture (Agrawal and Zhao, 1998; Lewin and Hauswirth, 2001). For the 

treatment of HBV chronic infection, hammerhead ribozymes presented in this 

thesis may well slow the progression of liver disease and improve the quality of 

life of chronic carriers by blocking viral gene expression. Additionally, by 

decreasing the viral load and/or by eliminating the presence of viral proteins such 

as HBx in infected hepatocytes, the onset of cirrhosis and HCC may be 
prevented. The delivery of hammerhead ribozyme-encoding genes, however, 

remains a significant hurdle. The lack of an effective delivery strategy has 

hampered the application of hammerhead ribozymes in vivo in animal models of 

HBV infection. Nevertheless, many ribozyme applications have, using existing 

viral and non-viral delivery vehicles, reached clinical evaluation and novel 

delivery systems continue to be discovered. Once shown to be safe and 
efficacious in living animals, hammerhead ribozyme gene therapy of HBV



infection may act alone or complement existing or future therapeutic strategies, 
such as interferon alpha, nucleoside/tide analogues, dominant negative mutants 

and peptide or DNA vaccines. The results presented in this thesis are 

encouraging and auger well for the future development of therapeutic 

hammerhead ribozymes for the treatment of chronic HBV infection.



6.0 APPENDICES

A Standard Laboratory Methods

A 1 Bacterial transformation
A1-1 Preparing competent E.coli

200 ml LB medium (Appendix B3-1) was inoculated with glycerol stocks of E.coli 

strains: XL1-Blue, DH5a or GM2929, and allowed to grow until a 

spectrophotometric cell density of 0.4 at A6oo- Cells were placed on ice for 10 

minutes followed by centrifugation at 4000xg in 50 ml tubes (Nunc, Denmark). 

Pellets were resuspended in 5 ml sterile Transformation Buffer (Appendix B1-6), 

pooled into two tubes and placed on ice for 15 minutes. Samples were then 

centrifuged at 2000xg for 5 minutes. Pellets were resuspended in 0.5 ml 

Transformation Buffer each and pooled. 100 pi aliquots were stored at -70°C.

A 1-2 Transformation of competent E.coli

Competent E.coli were transformed as follows: 1 pi (0.5 pg) of plasmid DNA was 

added to 100 pi of competent bacteria (thawed on ice). Samples were incubated 

on ice for 20 minutes, followed by a 90 second heat shock at 42°C. Positive 

transformants were then selected by overnight growth (37°C) on ampicillin- 
positive LB agar plates (Appendix B3-2).

A2 Plasmid DNA preparation
A2-1 Plasmid DNA preparation: Alkali lysis and silica matrix adsorption

Glycerol stock solutions of plasmid-bearing E.coli strains, or single colonies from 

transformed plates, were used to inoculate flasks containing 250 ml ampicillin 

positive LB medium (flasks with 50 ml LB amp were inoculated for a mini plasmid 

preparation or “miniprep”). Cultures were grown by incubation and shaking for 24 

hours at 37°C. The culture medium was transferred into 250 ml polypropylene 

tubes (Beckman, CA, USA) and centrifuged at 2000xg for 20 minutes in a



Beckman J2-21 Centrifuge (Beckman, CA, USA). For the miniprep method, 50 ml 
culture samples were centrifuged at 3000xg for 10 minutes in a Heraeus Biofuge 

primo centrifuge (Heraeus instruments, NJ, USA). Cells were collected and 

resuspended in 5 ml Glucose Resuspension Solution (see Appendix B1-1). SDS- 

NaOH Denaturing Solution (10 ml) (Appendix B1-1) is then added and mixed 

thoroughly. Lastly, Potassium Acetate Renaturation Solution (7.5 ml) (Appendix 

B1-1) is added to form a precipitate. Each solution is added sequentially in a ratio 

of 1: 2: 0.75 respectively. The mixture was then centrifuged at 1500xg for 10 
minutes in a Biofuge primo centrifuge. The supernatant was filtered through 

cheesecloth (nylon cloth) and one volume of isopropanol was added and mixed 

before incubation at -20°C for 30 minutes. Samples were then centrifuged at 

4000xg for 10 minutes. Following recovery of the pellet, samples were 

resuspended in 400 pi H20  containing 0.1 pg/pl DNase-free RNase (Roche, 

Germany) in autoclaved 1.5 ml microfuge tubes (Eppendorf, Germany) and 

incubated for 60 minutes at 37°C. Following RNAse treatment, 2 volumes (800 pi) 

sodium iodide solution (Appendix B1-2) and 75 pi silica solution (Appendix B1-3) 

were added. The samples were left on ice for 10 minutes and then centrifuged 

briefly (2 to 3 seconds) at 10000xg. The pellet was washed twice with 1 ml 

Ethanol Washing Buffer (Appendix B1-4) prior the elution of plasmid DNA from 

the silica matrix by resuspending the pellet in 100 pi H20  (50 pi for the minprep) 

followed by 5 minutes incubation at 55°C. Samples were then centrifuged at 

10000xg for 30 seconds and the supernatant containing the plasmid DNA was 

retained. Further purification was sometimes necessary depending on the later 

application of the plasmid DNA (see Appendix A5 and C1).

A2-2 Plasmid preparation: Alkali lysis and PEG precipitation

This method was similar to Appendix A2-1 up to, and including, the incubation 

step with RNase A. Samples were then extracted with chloroform-phenol as in 

Appendix A4-1 prior to being incubated overnight in a 550 pi PEG solution 

(Appendix B1-11). After centrifugation for 10 minutes, the supernatent was 

decanted and 190 pi of H20  was added. The pellet was dissolved at 45°C for 

approximately 15 minutes followed by the addition of 200 pi of isopropanol.



Tubes were cebtrifuged for 15 minutes at 13000xg prior to removing the 

supernatant and air-drying the pellet. Samples were resuspended in 50 pi H20  

and quantified by UV spectrophotometry (Appendix A4-3).

A3 RNA extraction and purification
A3-1 RNA preparation: guanidinium thiocyanate method

Following the removal of the Huh7 cell culture medium, 1 ml Guanidinium 

Denaturing Solution (Appendix B1-5) was added to directly to each 100 mm dish. 

The lysate was passed through a syringe several times by continuous aspiration 

and was divided into two aliquots of 500 pi each into two 1.5 ml microfuge tubes. 

A 50 pi volume of sodium acetate (2 M, pH 4) was added and mixed followed by 

500 pi water-saturated phenol and 100 pi of 49:1 chloroform/isoamyl alcohol. The 

mixture was vortexed for 10 seconds and allowed to stand at 4°C for 15 minutes. 

Following centrifugation for two minutes at 10000xg at 4°C, the top aqueous 

phase was transferred to a new 1.5 ml microfuge tube. The RNA was precipitated 

by adding 500 pi (1 volume) of 100% isopropanol and incubated at -20°C for 30 

minutes. After centrifugation at 10000xg for 10 minutes, pellets from both tubes 

were pooled and resuspended in 300 pi Guanadinium Denaturing Solution. The 

RNA was precipitated again with 300 pi isopropanol (1 volume) and incubated for 

30 minutes at -20°C. Following centrifugation at 10000xg, the RNA pellet was 

resuspended in 100 pi 75% ethanol, vortexed, and allowed to incubate for 10 

minutes at room temperature. The samples were centrifuged at 10000xg for 5 

minutes and the pellets were air dried and dissolved in 150 pi distilled H20 

(RNase free) for immediate use. Samples were quantitated 

spectrophotometrically (Appendix A4-3).

A4 DNA/RNA purification
A4-1 Choroform/phenol extraction of DNA

The choloroform/phenol method of nucleic acid extraction was routinely used 
following the elution of fragment DNAs from agarose gels and for general 

purification purposes. Briefly, DNA solutions were brought to a volume of 500 pi



with distilled H20  in a 1.5 ml microfuge tube. A 500 pi volume of 1:1 

phenokchloroform, (1x volume), was added to the samples which were briefly 
vortexed for 10 seconds to form an emulsion. The mixture was then centrifuged 

for 15 seconds at 12000xg in a microfuge at room temperature. Approximately 

500 pi of the aqueous phase was transferred to a fresh tube followed by the 

addition of 1 volume of chloroform. The samples were mixed, briefly vortexed and 

centrifuged again for 15 seconds at 12000xg at room temperature. The aqueous 

phase was removed and subjected to further purification by precipitation with 

ethanol.

A4-2 Ethanol precipitation of DNA/RNA

Preparations of either DNA or RNA were precipitated using ethanol and further 

purified. Generally, 0.1 volume of 3 M sodium acetate pH 5.2 was added to the 

nucleic acid containing solution followed by the addition of 2.5 volumes of 100% 

ice-cold ethanol. Samples were incubated at -70°C for 30 minutes followed by 

centrifugation at 13000xg for 15 minutes at 4°C. The pellet was recovered and 

washed with 70% ethanol (80% for RNA). Samples were air-dried to remove 

residual ethanol and resuspended in sterile H20.

A4-3 DNA/RNA spectrophotometric quantitation

Plasmid DNA or RNA concentrations were determined by optical density 

measurements (Unicam 8625 UVA/IS Spectrometer) at a wavelength (A,) of 260 

nm (At A 26o ,1 absorbance unit *  50 pg/ml dsDNA and 40 pg/ml RNA). Protein 

contamination was determined at A = 280 nm. Generally, DNA (plasmid) or RNA 

quality was established by resolving samples on an agarose gel alongside 1 pg of 

commercially available molecular weight markers.



A5 Manual DNA sequencing
A5-1 Sanger sequencing -  standard method

Plasmids were prepared using the silica adsorption method described in 

Appendix A2-1. All components were supplied within the T7 Sequenase DNA 

polymerase Kit (Pharmacia Amersham, England). An amount of 0.5 pmol M13 

24-mer Forward primer: 5' CGCCACGGTTTTCCCAGTCACGAC 3' was added to 

a 10 pi final annealing reaction mixture. The reaction mixture included 1 pg 

pBSIIKS(+)-derived plasmid DNA (Stratagene, CA, USA) and 2 pi T7 Sequenase 

reaction buffer (5x concentrate). The annealing reaction took place for 2 minutes 

at 65°C followed by 30 minutes of slow cooling at room temperature. The 

labelling reaction was performed in a total volume of 15 pi by adding the following 

to the annealed template-primer: 1 pi 0.1 M dithiothreitol, 2 pi labelling mix, 0.5 pi 

(5 pCi) of a-35S dATP (NEN du Pont, MA, USA) and 3,25 U T7 Sequenase 

polymerase. The reaction continued for 3 minutes at room temperature. A volume 

of 3.5 pi of the labeling reaction was then transferred to tubes containing 2.5 pi of 

each dideoxy nucleotide termination mixture. Tubes were incubated for a further 

5 minutes at 37°C. The reaction was stopped by adding 4 pi of stop solution 

(provided by the manufacturer). After heating at 95°C for 5 minutes, 2 pi of each 

sample was loaded on to a 6% polyacrylamide denaturing gel containing 7 M 

urea and resolved at 60 W. Gels were fixed in a 10% methanol, 10% acetic acid 

solution and dried on a gel drier (Bio-rad, Hoefer Scientific Instruments, CA, 
USA). The dried gel was autoradiographed overnight at room temperature.

A5-2 Sanger sequencing -  cycle sequencing method

This technique made use of the SequiTherm EXCEL™ II DNA Sequencing Kit 

(Epicentre Technologies. Wl, USA). A “premix” reaction mixture was prepared 

initially and included: 7.2 pi of SequiTherm EXCEL II® Sequencing Buffer, 1.0 pi 

of SequiTherm EXCEL II™ Prelabeling Mix, 2 pmol of unlabelled primer (M13 24- 

mer Forward primer: 5' CGCCACGGTTTTCCCAGTCACGAC 3'), 0.5 pi (5 pCi) of 

a-35S dATP (NEN du Pont, MA, USA), 1 pg of pBS II KS(+)-derived plasmid DNA 

and 5 U of SequiTherm EXCEL II™ DNA Polymerase. The total reaction volume



was 17 jj-I. Primers were allwed to anneal to the template DNA by heating to 95°C 

for 5 minutes followed by cooling to room temperature for a further 5 minutes. 4 pi 

of the premix were then added to four 0.5 ml microfuge tubes containing 2 pi of 

each dideoxy nucleotide termination mixture. The annealed primers were 

extended by incubating the mixture for 5 minutes at 65°C. The thermal cycling 

reaction included 30 cycles of 30 seconds at 95°C and 1 minute at 70°C. A 3 pi 

volume of stop solution (prepared by the manufacturer) was added. Samples (2 

pi) were loaded onto denaturing polyacrylamide gels and resolved as described 

in Appendix A5-1.

A6 Histochemical assay using X-gal

A6-1 (3-galactosidase detection in transfected mammalian cell culture

Seventy two hours after transfection, PLC/PRF/5, Huh7, Chang as well as 

primary HCC cells were the fixed for 5 minutes with approximately 400 pi (per 35 

mm plate) of Fixer Reagent (Appendix B1-8). Cells were then rinsed twice with 

PBS (Appendix B1-7) prior to the addition of 1 ml X-gal solution (Appendix B1-9) 

to each plate. These were then incubated for 37°C overnight prior to fixing with a 

solution containing 1% formaldehyde, 0.5% glyceraldehyde in 200 ml PBS 

(Appendix B1-7). p-galactosidase positive cells (blue cells) were observed and 

counted at 10x magnification on a standard dissecting microscope.

A7 Transfections into mammalian cells
A7-1 The calcium phosphate method of transfection into mammalian cells

This method follows closely to that developed by Graham and van der Eb (1973). 

PLC/PRF/5, Huh7, Chang or primary FICC cultures were seeded at one-tenth 
their confluent density and allowed to grow overnight. Fresh medium was added 

to each culture dish approximately 1.5 hours prior to transfection. A transfection 

solution containing a volume of 1000 pi (or one-tenth the volume of medium in 

each plate) was prepared for each 100 mm dish. Briefly, appropriate volumes of 

each plasmid were added to 62.5 pi 2M CaCI2 and 500 pi 2X HEPES (Appendix 

B1-10) and made up to a final volume of 1 ml with distilled water. This was gently



dispensed onto the cells. The volumes were scaled-down by a factor of five when 

using six-well dishes. After 16 hours incubation with the DNA/Calcium phosphate 

precipitate, the spent medium was aspirated and replaced with fresh medium. 

Using fluorescence microscopy (Zeiss Axiovert 100M, fluorescent microscope, 

488 nm), equivalent transfection efficiencies were confirmed by the detection of 

comparable numbers of EGFP expressing cells in each culture dish (except when 

using the plasmid pCH-EGFP). Transfected cells were cultured for 24 hours 

before any medium was collected for further analyses. Cells were used for the 

extraction of RNA (Appendix A3-1) after three or four days post-transfection.

B Solutions, Reagents and Buffers

B1 Solutions
B1-1 Alkaline lysis buffers for plasmid preparations

Glucose Resuspension Solution: 50 mM glucose, 25 mM Tris-HCI (pH 

8.0) and 10 mM EDTA (pH 8.0).

Denaturing Solution: 0.2 N NaOH (from a 10 N stock) and 1% SDS 

(from a 10% stock). The solution remained stable at room temperature 

in a plastic bottle.

Renaturing Solution: 1 litre contains 600 ml of 5 M potassium acetate, 

115 ml glacial acetic acid and 285 ml distilled H20. The solution is 3 M 

with respect to potassium and 5 M with respect to acetate.

B1-2 Sodium Iodide Solution

Sodium Iodide Solution contains 180 mM sodium iodide (Nal) and 60 mM sodium 

sulphite (Na2S03). The saturated solution was filtered through filter paper to 

remove any un-dissolved constituents. A further 0.5 g Na2S03 was added. The 

solution was stored at 4°C in the dark.



B1-3 Silica Matrix Solution

Silica powder, 120 g, was resuspended in 400 ml H20  and stirred for 1 hour. The 

solution was allowed to settle for 30 minutes. The supernatant was centrifuged to 

recover the fine silica particles (800xg for 5 min). The pellet was resuspended in 

100 to 200 ml distilled H20, followed by the addition of 50% volume of nitric acid 

followed by heating (close to boiling) in a fume hood and washed 4 times with an 

excess of distilled water (800xg for 4 minutes). Lastly, the Silica Solution was 

stored as a 50% slurry in distilled H20  at 4°C.

B1-4 Ethanol Wash Buffer

Ethanol wash buffer consists of 10 mM Tris-CI (pH 7.5), 0.1 M NaCI, and 50% 

ethanol. The solution was stored at -20°C.

B1-5 Transformation Buffer

Transformation buffer consists of 100 mM CaCI2, 10 mM PIPES-CI (pH 7.0), and 

15% glycerol. The solution was stored at -20°C.

B1-6 Guanidinium Thiocyanate Denaturing Solution

A working solution contains 4 M guanidinium thiocyanate, 25 mM sodium citrate 

(pH 7), 0.1 M p-mercaptoethanol and 0.5% /V-laurylsarcosine (Sarkosyl). A stock 

solution was prepared without p-mercaptoethanol and was stored for up to 3 

months at room temperature. Working solutions were used immediately.

B1-7 Phosphate-buffered Saline (PBS) Solution

PBS contains: 8 g of NaCI, 0.2 g of KCI, 1.44 g of Na2HP04, and 0.24 g of 

KH2P04 in 1000 ml of distilled H20. The pH was adjusted to 7.4 with HCI. The 

solution was dispensed into 200 ml aliquots and autoclaved for 20 minutes at 15 
lb/in2 on the liquid cycle. Aliquots were stored at room temperature.



B1-8 Fixer reagent for staining cultured mammalian cells

The solution contains 1% formaldehyde and 0.5% gluteraldehyde in PBS 

(Appendix B1-7). 500 ml of fixer was prepared and stored at 4°C.

B1-9 X-gal Staining Solution for histochemical assays

X-gal Staining Solution contains 4 mM potassium ferrricyanide, 4 mM potassium 

ferrocyanide, 2 mM MgCI2 and 0.4 mg/ml X-gal (5-bromo-4-chloro-3-indolyl-p-D- 

galactopyranoside, Sigma, MO, USA) in DMSO. Typically, 50 ml X-gal Solution 

was prepared and stored at 4°C.

B1-10 2x HEPES Buffer

2x HEPES Buffer contains: 280 mM NaCI, 50 mM HEPES and 1.5 mM Na2HP04. 

The buffer was brought to a pH of 7.1 with NaOH and sterilised through a 0.22 

mm filter.

B1-11 PEG Solution

A PEG Solution consists of 13% Polyethylene Glycol 8000 and 1.6 M NaCI. The 

solution was prepared by heating at 56°C until dissolved followed by storage at 

4°C.

B2 Electrophoresis Buffers (Stock solutions)
B2-1 50x Tris Acetate EDTA Buffer (TAE)

A 50x stock solution of TAE buffer contains: 400 mM Tris-acetate (pH 7.6), 50 

mM Na2.EDTA

B2-2 10x Tris Boric Acid EDTA Buffer (TBE)

A 10x stock solution of TBE buffer contains: 900 mM Tris-borate (pH 8.3), 20 mM 

Na2.EDTA



B2-3 RNA Loading Buffer

A 2x stock solution of RNA Loading Buffer contains: 98% deionized formamide, 1 

mM EDTA (pH 8.0), 0.25% bromophenol blue and 0.25% xylene cyanol FF.

B3 Culture Media
B3-1 Luria-Bertani medium

10 g of bacto-tryptone (Oxoid, England), 5 g of bacto-yeast extract (Oxoid, 

England), and 10 g of NaCI in 1 litre distilled H20. The medium was sterilised by 

autoclaving for 20 minutes at 121 °C and 15 lb/in2.

B3-2 Luria-Bertani agar plates with ampicillin

15 g of bacto-agar (Oxoid, England) was added to 1 litre of dissolved LB medium 

and sterilised. For ampicillin-agar plates, 1 ml of a 1000x stock solution ampicillin 

(100 mg/ml made in a 50% ethanol) was added to the agar prior to solidification 

such that the final ampicillin concentration is 100 pg/ml. Plates were stored at 4°C 

for up to a month.

B3-3 Luria-Bertani agar plates with X-gal

A 40 jul volume of X-gal (20 mg/ml stock in dimethyl formamide; Sigma, MO, 

USA) and 4 pi of IPTG (200 mg/ml aqueous solution; Roche, Germany) were 

spread on LB agar (ampicillin positive) plates. Plates were air-dried at 37°C for 20 

minutes and stored at 4°C for up to a month.



C Other Appendices
C1 Construction of multimeric cis- and trans-cleaving vectors
C1-1 Constructing pBS-M1 series plasmids

Constructing plasmids: pBS-M 1  /-/Bx:Rz1i743 
and pBS-/Wf/-/Bx:Rz3i607

Constructing plasmid 
pBS-Mf HBx:Rz2i65i

*

S pel/Sca l
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pBS-M1 tHSx:Rz3i607
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Figure 6.1 A schematic illustration of the construction of a single-unit {M1 series) cis- 
and frans-cleaving hammerhead ribozyme cloning vector for each of the 
three hammerhead ribozymes. The construction of plasmid pBS- 
M1HBx:Rz11473 (A), pBS-MfHBx:Rz31607 (B), and pBS-/W7HBx;Rz2165i (C).



C1-2 Constructing pBS-M2 series plasmids

C o n s tru c tin g  p lasm ids : pBS-/W 2/-/Bx:Rz1i743 
and  pBS-/W 2HBx:Rz3i607

pBS-/WfH8x;Rz1i473

B C o n s tru c tin g  p lasm id  
pB S -A /f2H B x:R z2 i65 i

BssAill

Figure 6.2 A schematic illustration of the construction of a multiple-unit {M 2  series) c/'s- 
and frans-cleaving hammerhead ribozyme cloning vector for each of the three
hammerhead rihozymes.



C2 Determination o f equivalent transfection efficiencies

pHBV adw HTD pHBV adw HTD 
pHBx.Atl1473

pHBV adw HTD 
pHBx;At21651

pHBV adw HTD pHBV adw HTD
pCI-/W8HBx:Rz1 1473 pCI-/W8HBx:Rz2l651

pHBV adw HTD 
pCI-/W8/-/Bx:Rz31607

pHBV adw HTD pHBV adw HTD
pCI-M24HBx;Rz1 ,2&3 pHBx.Rzl1473

pHBV adw HTD 
PHBx.Rzl*

pHBV adw HTD 
p/-/Bx:Rz21651

pHBV adw HTD 
PHBx:Rz2*1651

pCI neo

Figure 6.3 An example of the number of EGFP-expressing Huh7 cells transfected with 
the plasmid pCI neo GFP for the determination of equivalent transfection 
efficiencies (transfection reported in 4.4.3.2).



C3 HBx sequence variation for hammerhead ribozyme hybridisation 
and cleavage

HBx.Rz11473

1460 ▼ 1485
Serotype ayw J 02203 CCUUCUCGGGGUCGCUUGGGACUCU 25
Genotype D L27106D CCUUCUCGGGGUCGCUUGGGACUCU 25
Genotype A V00866A CCCUCUCGGGGCCGCUUGGGACUCU 25
Genotype A M57663AP CCCUCGCGAGGCCGCUUGGGACUGU 25
Genotype B D00329B CCCUCCCGGGGCCGCUUGGGGCUCU 25
Genotype C X75656C CCGUCUCGGGGCCGUUUGGGGAUCU 25
Genotype E X75664E CCGUCUCGGGGUCGCUUGGGGAUCU 25
Genotype F X75663F CCCUCCCGGGGUCGCUUGGGGCUGU 25
Genotype G AF160501 G CCCUCCCGGGGCCGUUUGGGGCUCU 25

Serotype ayw J 02203

HBx: Rz21651

1638 ^  1663
AUUGCCCAAGGUCUUACAUAAGAGG 25

Genotype D L27106D CUUGCCCAAGGUCUUAUAUAAGAGG 25
Genotype A V00866A CCUGCCCAAGGUCUUACAUAAGAGG 25
Genotype A M57663AP CCUGCCCAAGGUCUUACAUAAGAGG 25
Genotype B D00329B CCUGCCCAAGGUCUUGCAUAAGAGG 25
Genotype C X75656C AUUGCCCAAGGUCUUGCAUAAGAGG 25
Genotype E X75664E CUUGCCCAAGGUCUUACAUAAGAGG 25
Genotype F X75663F UUUGCCAACAGUCUUACAUAAGAGG 25
Genotype G AF1 60 501G UCUGCCAAGGCAGUUAUAUAAG----- 22

HBx: Rz31607

1595 ^  1618
Serotype ayw J 0 2 2 0 3 ACCUCUGCACGUCGCAUGGAGACC 24
Genotype D L27106D ACCUCUGCACGUCGCAUGGAGACC 24
Genotype A V00866A ACCUCUGCACGUUGCAUGGCGACC 24
Genotype A M57663AP ACCUCUGCACGUUGCAUGGAGACC 24
Genotype B D00329B ACCUCUGCACGUCGCAUGGAGACC 24
Genotype C X75656C ACCUCUGCACGUCGCAUGGAGACC 24
Genotype E X75664E ACCUCUGCACGUCGCAUGGAGACC 24
Genotype F X75663F ACCUCUGCACGUCGCAUGGAGACC 24
Genotype G AF1 60 501G ACCUCUGCACGUUACAUGGAAACC 24

Figure 6.4 GeneDoc™ alignment of HBV variant RNA sense strand sequences 
(GenBank® accession numbers indicated) of genotypes A to G with HBV 
serotype ayw indicating hybridisation regions for ribozymes HBx.Rzl 1473, 
HBx:Rz21651 and HBx:Rz316o7. GUC cleavage triplet sequences are shaded in 
blue; GUU cleavage triplet sequences are shaded in green (cleavage position 
is indicated by an arrow). The sequences are numbered according to 1/3182 
for the EcoRI site of HBV serotype ayw (GenBank® accession no. J02203). 
The number of aligned nucleotides is indicated to the right of each sequence.
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