
Agent Based Simulation of the

Dial-a-Flight Problem

D.T. Reddy

A dissertation submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for

the degree of Master of Science in Engineering.

Johannesburg, May 2018



Declaration

I declare that this dissertation is my own, unaided work, except where otherwise

acknowledged. It is being submitted for the degree of Master of Science in

Engineering in the University of the Witwatersrand, Johannesburg. It has not been

submitted before for any degree or examination at any other university.

Signed this 24th day of May 2018

D.T. Reddy

1



Acknowledgements

I would like to thank the following people:

• Dr Ian Campbell and Dr Joke Buhrmann, for supervising and guiding me through

this process.

• My Mother for all her love and support.

• My Father for his motivation and insight.

i



Abstract

Agent based simulation and modelling (ABSM) has been noted as a novel method in

solving complex problems. This dissertation makes use of the ABSM method in con-

junction with a Genetic Algorithm to find good solutions to the dial-a-flight problem.

The task is to generate a schedule for a heterogeneous fleet of aircraft, with the ob-

jective to reduce operational cost but maintain customer satisfaction. By making use

of booking list data from an air taxi business, operating in the Okavango Delta, two

agent based models were designed, the first makes use of multi-criteria decision analysis

(MCDA) and the other a method proposed by Campbell [7], to test their effectiveness

against either upper bound or manual solutions. The solution quality varied between

tests, with booking list sizes between 10 and 200 requests producing improvements to

the upper bound and manual results with a mean improvement from the benchmarks

of 1.61%. The method could also be refined further by adopting improvement mech-

anisms to final schedules or by making use of retrospective decision making aided by

self learning techniques.

ii



Contents

Declaration 1

Acknowledgements i

Abstract ii

Contents iii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Purpose of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Wilderness air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Objectives and research questions . . . . . . . . . . . . . . . . . . . . . 5

1.6 Dissertation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

iii



2 Literature Review 7

2.1 Multi-vehicle routing problems . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Pick up and delivery problems (PDP) . . . . . . . . . . . . . . . 7

2.1.2 The dial-a-ride problem (DARP) . . . . . . . . . . . . . . . . . 9

2.1.3 The dial-a-flight problem (DAFP) . . . . . . . . . . . . . . . . . 10

2.1.4 DAFP formulation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Parameters used to model the DAFR . . . . . . . . . . . . . . . 15

2.2 Agent based simulation and modelling (ABSM) . . . . . . . . . . . . . 16

2.3 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Deliberate agents . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Utility based agents . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Hybrid agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Agent environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Application of ABSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Applications in operational behaviour . . . . . . . . . . . . . . . 25

2.5.2 Applications in optimisation . . . . . . . . . . . . . . . . . . . . 26

2.6 Current models and software . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Agentology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Ant colony optimisation (ACO) . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Genetic Algorithms (GA) . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



2.11 Multi-criteria decision analysis (MCDA) . . . . . . . . . . . . . . . . . 37

3 Methodology 39

3.1 The Dial-a-flight problem . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Wilderness air problem description . . . . . . . . . . . . . . . . 39

3.1.2 Benchmarking and manual schedules . . . . . . . . . . . . . . . 43

3.2 ABSM design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Agent perception and action . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.4 Environment of the DAFP . . . . . . . . . . . . . . . . . . . . . 50

3.3 Model design and global structure . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Global structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Agent selection strategies . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Drop off function . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4 Pick up function . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.5 Relocate Function . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.6 Monte Carlo sampling and utility functions . . . . . . . . . . . . 62

3.3.7 GA weight factor optimisation . . . . . . . . . . . . . . . . . . . 64

3.4 Model descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Observations and Results 69

v



4.1 Testing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Genetic algorithm testing . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Utility function tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Model A tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Model B tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Discussion 89

6 Conclusions and Recommendation 95

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A MatLab Code 103

A.1 Main code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Drop off function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Fly function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.4 Pick up function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.5 GA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.6 Repeatability Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.7 Utility test Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



B Sample calculations 127

B.1 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2 Multi criteria decision analysis sample calculation . . . . . . . . . . . . 130

C Booking lists 132

C.1 Fleet of aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

D ABSM generated schedules 156

E List of cities 169

vii



List of Figures

1.1 An example of a multi-vehicle DAFP many-to-many problem visualisation. 3

1.2 Wilderness air Cessna 206 G [50]. . . . . . . . . . . . . . . . . . . . . . 4

1.3 Wilderness air Cessna 208 B Grand Caravan [50]. . . . . . . . . . . . . 4

2.1 Schematic of the single vehicle dial-a-ride problem [6]. . . . . . . . . . . 10

2.2 Key events from the perspective of the aircraft [14]. . . . . . . . . . . . 12

2.3 Generalised Agent Structure [42]. . . . . . . . . . . . . . . . . . . . . . 18

2.4 Framework for deliberate agents [42]. . . . . . . . . . . . . . . . . . . . 20

2.5 A schematic of horizontal layering [42]. . . . . . . . . . . . . . . . . . . 22

2.6 A schematic of vertical layering - One Pass [42]. . . . . . . . . . . . . . 22

2.7 A schematic of vertical layering - Two Pass [42]. . . . . . . . . . . . . . 23

2.8 Netlogo representation of the ant colony optimisation by Jose Vidal [48]. 26

2.9 CVRP ABS program structure by Vokrinel et al. [49]. . . . . . . . . . . 29

2.10 Agent model development method proposed by Salamon [42]. . . . . . . 32

2.11 Co-operative behaviour in ACO [11]. . . . . . . . . . . . . . . . . . . . 34

viii



2.12 Analogy between a numerical genetic algorithm and biological genetics

[21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Destination layout of the cities visited by the aircraft in the DAFP. . . 41

3.2 Problem 1 visualisation of a DAFP with two aircraft. . . . . . . . . . . 44

3.3 Problem 2 visualisation of a DAFP with two aircraft. . . . . . . . . . . 45

3.4 Flight leg description in a time space diagram. . . . . . . . . . . . . . . 47

3.5 Reactive conceptualisation of DAFP agents. . . . . . . . . . . . . . . . 49

3.6 A illustration of a simplified program structure for the ABSM. . . . . . 52

3.7 An illustration of a simplified drop off function. . . . . . . . . . . . . . 56

3.8 An illustration of a simplified pick up function. . . . . . . . . . . . . . 58

3.9 An illustration of a simplified relocate function. . . . . . . . . . . . . . 61

3.10 Utility Functions used to map attractiveness of pick ups and relocations. 64

3.11 Genetic algorithm used to optimise model weights. . . . . . . . . . . . 66

4.1 Costs generated by the GA for a booking list with 99 requests. . . . . . 70

4.2 Mean solutions and best solutions for a booking list with 99 requests. . 70

4.3 Results profile of model A on a booking list with 99 requests. . . . . . . 73

4.4 Results profile of model B on a booking list with 99 requests. . . . . . . 74

4.5 Short run normal distributions of ABS model testing a booking list of

10 requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Long run normal distributions of ABS model testing a booking list of

40 requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



4.7 Long run frequency distributions of ABS model testing a booking list of

40 requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Frequency distribution of short run Model A test of a booking list with

39 requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Geographic illustration of short run Model A test of a booking list with

39 requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Time space network of short run Model A test of a booking list with 39

requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.11 Percentage error of respective schedules against benchmarks. . . . . . . 84

4.12 Mean result of each schedule under each test. . . . . . . . . . . . . . . 85

4.13 CPU time of each short run test. . . . . . . . . . . . . . . . . . . . . . 85

4.14 CPU time of each long run test. . . . . . . . . . . . . . . . . . . . . . . 86

4.15 Customer wait time for each schedule. . . . . . . . . . . . . . . . . . . 86

4.16 Normal distribution of all tests for schedule 10. . . . . . . . . . . . . . 87

4.17 Normal distribution of all tests for schedule 139. . . . . . . . . . . . . . 87

x



List of Tables

2.1 The mechanisms of complex adaptive systems [42]. . . . . . . . . . . . 16

2.2 The characteristics of agents [30]. . . . . . . . . . . . . . . . . . . . . . 17

3.1 An example of a 10 Request booking list. . . . . . . . . . . . . . . . . . 40

3.2 Set of aircraft specification. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Fleet used for booking lists S10, S40 and S102. . . . . . . . . . . . . . . 41

3.4 The benchmarks to the DAFP. . . . . . . . . . . . . . . . . . . . . . . 45

3.5 The DAFP aircraft characteristics. . . . . . . . . . . . . . . . . . . . . 46

3.6 Defined GA chromosome structure. . . . . . . . . . . . . . . . . . . . . 65

4.1 GA factors applied to different booking lists. . . . . . . . . . . . . . . . 71

4.2 Final chromosomes for all booking lists. . . . . . . . . . . . . . . . . . . 72

4.3 Reduced cost and CPU time produced by the GA as applied to the

ABSM fitting function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Average cost generated through testing of each utility function for each

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Performance of utility functions for each model. . . . . . . . . . . . . . 74

xi



4.6 Final Costs for Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Final schedule of a booking list with 39 requests using Model A. . . . . 78

4.8 CPU time for all test problems in seconds using Model A. . . . . . . . 79

4.9 Percentage improvements and deviations from respective benchmarks

using Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Final Costs for constrained tests using Model B. . . . . . . . . . . . . . 81

4.11 Percentage improvements and deviations from respective benchmarks

using Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.12 CPU time for all test problems in seconds using Model B. . . . . . . . . 82

4.13 Average customer wait times using Model B. . . . . . . . . . . . . . . . 82

4.14 Final schedule of a booking list with 39 requests using Model B. . . . . 83

4.15 Utility of each aircraft under deterministic long run tests using Model B. 83

4.16 Summary of results of Model A and Model B. . . . . . . . . . . . . . . 88

B.1 Example Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.2 Values of attractiveness for each group . . . . . . . . . . . . . . . . . . 129

B.3 Monte Carlo Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.1 S10 booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2 S39 booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2 S39 booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.3 S40 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.3 S40 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



C.4 S99 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.4 S99 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.4 S99 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.4 S99 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.5 S102 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.5 S102 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.5 S102 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.5 S102 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.6 S139 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.6 S139 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C.6 S139 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.6 S139 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.6 S139 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.7 S200 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.7 S200 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.7 S200 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.7 S200 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.7 S200 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.7 S200 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.7 S200 - booking list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.8 Fleet for booking list S10, S40 and S120. . . . . . . . . . . . . . . . . . 152

xiii



C.9 Fleet for booking list 39. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.10 Fleet for booking list S99. . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.11 Fleet for booking list S139. . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.12 Fleet for booking list S200. . . . . . . . . . . . . . . . . . . . . . . . . . 155

D.1 Schedule S10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D.2 Schedule S39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D.2 Schedule S39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.3 Schedule S40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.3 Schedule S40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

D.4 Schedule S99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

D.4 Schedule S99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

D.4 Schedule S99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D.5 Schedule S102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

D.5 Schedule S102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

D.5 Schedule S102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.6 Schedule S139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.6 Schedule S139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D.6 Schedule S139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.7 Schedule S200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.7 Schedule S200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

D.7 Schedule S200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xiv



D.7 Schedule S200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

E.1 List of Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.1 List of Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xv



Nomenclature

Abbreviation Description

ABSM Agent based simulation and modelling

ACO Ant colony optimisation

C206 Cesna 206

C208 Cesna 208

CAS Complex adaptive systems

CMVRPTW Capacitative multi-vehicle routing problem with time windows

CVRP Capacitative vehicle routing problem

CVRPTW Capacitative vehicle routing problem with time windows

DAFP Dial-a-flight problem

DARP Dial-a-ride problem

EDT Early departure time

GA Genetic algorithm

ILP Integer linear programe

LAT Late arrival time

MARS Modelling autonomous cooperating shipping companies

MCDA Multi-criteria decision analysis

MCNF Multi-commoditiy network flow

MIP Mixed integer programe

PDP Pick up and delivery problem

TSP travelling salesmen problem

VRP Vehicle routing problem

xvi



1 Introduction

This research investigates the use of agent based simulation and modelling (ABSM) in

solving the dial-a-flight problem (DAFP). No significant results using ABSM have been

achieved without the use of a complementary heuristic technique as seen in the work

of Campbell [7]. In this Chapter the purpose, background, motivation and objectives

for this research are presented.

1.1 Purpose of the study

Agent based models are a tool used to solve complex problems in operations research.

These models have been employed to study air traffic control systems, distributed

vehicle monitoring tasks and to solve vehicle routing problems [26]. In Campbell’s

research he used ABSM to generate better time nodes and flight legs for the DAFP

that are constrained by a traditional integer linear program (ILP). This significantly

reduced the number of variables to solve the dial-a-flight problem and thus makes

finding a good solution faster. He then ran the newly formulated model with time

discretions generated by the ABSM with a mixed integer program (MIP) to generate a

result. This research aims to use ABSM to generate final solutions to the DAFP that

are close to academic benchmarks as a continuation of Campbell’s work.

1.2 Background

The airline industry has been at the forefront of information systems. They have

employed the use of many optimisation tools and throughout the years the technology

has moved forward with the industry. The next phase shift in the aviation industry is

1



the air taxi business model [13]. These businesses make use of light aircraft to transport

passengers on demand from location to location. These locations are usually very close

geographically. The complexity associated with this business model makes it difficult

to effectively schedule the fleet of aircraft and keep the operational costs of the fleet

low. This task requires either an expert in scheduling aircraft or an optimisation tool.

The method of optimisation used in this research was that of ABSM. This method

has generally been used in sociological studies [42], but the method’s fast execution

and use of autonomous behaviour makes it a good candidate for finding good solutions

to complex vehicle routing problems. The work conducted on vehicle routing prob-

lems thus far has focused predominantly on the capacitative vehicle routing problem

(CVRP)[49], or has used the method as a complementary algorithm to conventional

optimisation techniques [7].

The DAFP and other static vehicle routing problems have come to the forefront of

the field of vehicle routing and have placed a lot of focus on the development of ef-

ficient algorithms to solve them. Figure 1.1 shows a many-to-many vehicle routing

problem visualisation. The DAFP came about due to the need for an optimal method

of scheduling aircraft. The key challenge for this particular problem is to develop a

scheduling engine. The engine could be developed and tested using agent based sim-

ulation and modelling (ABSM). This methodology has been considered as a new and

alternate method to solve problems that are highly constrained [7].

The DAFP falls into a class of problems known as the many-to-many static capacitative

multi-vehicle routing problem with time windows (CMVRPTW) [6]. Many-to-many

problems are characterised as having a set of nodes that constitute both pick up and

drop off points. In the case of the DAFP, the vertices of the network represent airports.

Algorithms have been largely aimed at the optimisation of single vehicle problems, but

research into multi-vehicle routing has proven to be more valuable. This is because the

results can be translated into real-world scenarios. This is especially true with regards

to static pick up and drop off problems. These can be applied to many door-to-door

transportation systems (such as the travelling salesman problem) as well as courier

operations.

ABSM finds its roots in the study of adaptive systems [42]. It was traditionally used in

examining system behaviours. Such simulations have been implemented in studies of

bacterial spread, modelling pandemics, human social interaction as well as predicting

2



Figure 1.1: An example of a multi-vehicle DAFP many-to-many problem visualisation.

factors that influence failure. This method has made its way into the fields of economics,

modelling fluctuations in stock and labour markets and industrial engineering, with the

main focus on vehicle routing. This research aims at addressing the DAFP using this

technique, by finding feasible solutions to this problem and comparing the solutions to

academic benchmarks and manually generated schedules.

1.3 Wilderness air

The data used to conduct this research comes from an air taxi airline operating in

the Okavango delta called Wilderness Air. Their primary target group are tourists.

These tourists request transport to and from the 100 tourist camps the airline services.

Wilderness air operates in Namibia, Zimbabwe, Zambia and South Africa. The organi-

sation is based in Botswana, servicing approximately 49,000 passengers per year in this

region alone. They are based at the Maun international airport [50]. This is essentially

the hub of the operation since the majority of the flights arrive and depart from there.

Typically tourists will visit the many safari camps in the area, but may also want to

visit other natural attractions the region has to offer.

3



Figure 1.2: Wilderness air Cessna 206 G [50].

Figure 1.3: Wilderness air Cessna 208 B Grand Caravan [50].

Wilderness air currently use two types of light aircraft, namely the Cessna 206 G (C206)

(Figure 1.2) and the Cessna 208 B Grand Caravan (C208) (Figure 1.3). The use of

light aircraft makes the business cost effective and allows it to operate as an air taxi

service. The Cessna 206 seats 5 passengers with the pilot and the Cessna 208 seats 11

with the pilot.

Currently, Wilderness Air employs experienced schedulers who compile the schedule

and route the aircraft a few days in advance. These manual schedules are considered

to be low cost. This poses a risk for the airlines since if these schedulers become

unavailable it would take time to train new schedulers and the business would risk

4



operational cost at the expense of optimally scheduled aircraft. Since the passengers

place requests a day or so in advance of the flight, the problem can be defined as a

static DAFP [7] [43] [10].

1.4 Research motivation

Agent based simulations have the ability to model complex vehicle routing problems

quickly and without the use of a complementary heuristic technique. Increased com-

plexity and the need to relax assumptions in order to gain a better understanding of

the problems means that ABSM is a viable option for researchers in the field of vehicle

routing [7].

Vehicle routing problems pose interesting challenges in the logistics and transport in-

dustries. The dial-a-flight problem has significant implications for air taxi and air

ambulance services [38]. There is a need to find optimal routes for vehicles to use,

so as to reduce the operational cost and increase customer satisfaction [6]. Relatively

fast computational time means that the method can be implemented on other types of

vehicle routing problems that are more dynamic in nature.

The task was to develop a model in order to find solutions to the dial-a-flight problem.

Given the test data and benchmarks provided by the University of the Witwatersrand

[8], the results of this analysis should then be compared to benchmarked solutions

and manually generated solutions provided by Wilderness Airlines. This will prove

whether the use of agent based simulation of a multi-vehicle many-to-many problem is

suitable for these problems. The analysis should also show what program structures,

parameters and utility functions need to be investigated further to fully optimise the

DAFP using this technique.

1.5 Objectives and research questions

The main aim of this research is to find good solutions to the DAFP. The solutions

produced by the models will be judged against either the upper and lower bounds

or the manual schedule provided from Wilderness Air. Good solutions are defined as

solutions that have solution qualities near any of the benchmarked solutions.

5



The objectives are:

1. To develop an agent based simulation to produce schedules for the DAFP of high

solution quality. Solutions to the problems must be an improvement or at worst

within a range of 5-20% from the upper bound or manual solutions. This is the

range of deviation found in literature pertaining to ABSM when applied to the

DAFP [49][3].

2. To suggest methods of improvement for the agent based simulation so that full

optimisation can be achieved.

This research aims to answer the following research questions:

1. What ABSM program structure best suits the agent model when applied to VRP?

2. What utility functions applied to the agent decision making faculties will produce

the best results?

3. Once a successful model has been built, the solving time should be compared to

similar problems.

1.6 Dissertation overview

This dissertation is structured in the following way. In chapter 1 the purpose,background

and objectives of the study, as a continuation of the work conducted by Campbell [7],

are discussed. The literature survey is discussed in chapter 2. The survey includes

applicable multi-vehicle routing problems, agent based simulation and modelling and

heuristic decision making techniques that can be used to solve the dial-a-flight prob-

lem. The method used to design the agent based models and the formulation of the

dial-a-flight problem are presented in chapter 3. The models presented in chapter 3

are formulated using both ideas put forward by Campbell as well as make use of new

techniques to solve the problem. The testing procedure as well as results and obser-

vations of the model are presented in chapter 4. In chapter 5, the findings from the

experimentation as they relate to the research objectives are discussed. In chapter 6,

a summary of the key conclusions and recommendations of this work are presented.

6



2 Literature Review

In this chapter a review of literature is conducted to give the reader context of the

methods and techniques used in this paper. Firstly, multi-vehicle routing problems

such as the pick up and delivery problem, the dial-a-ride problem and the dial-a-flight

problem are defined. Secondly the subject of agent based simulation and modelling are

discussed in terms of its application and use in vehicle routing problems. Lastly differ-

ent heuristic techniques such as multi-criteria decision making, Monte Carlo methods

and genetic algorithms are discussed.

2.1 Multi-vehicle routing problems

Multi-vehicle routing problems (MVRP) fall into a class of well known combinatorial

optimisation problems. The aim of these problems are to route a set of vehicles through

a graph in order to optimise a set of conditions (usually to minimise distance travelled

or operational cost). This paper will focus on three MVRP’s, the standard pick up and

delivery problem, the dial-a-ride problem and the dial-a-flight problem.

2.1.1 Pick up and delivery problems (PDP)

Pick up and delivery problems (PDP) constitute a class of vehicle routing problems that

require an algorithm to optimise the pick up and delivery of objects in a system. They

can be divided into static and dynamic problems. In static problems the demand from

the customers is known before the schedules are developed. In the dynamic version of

the problem the requests for pick up are generated as the simulation progresses.

7



Static PDPs can be defined in a general framework put forward by Berbeglia [6]. The

framework is as follows:

Let

G = (V,A) (2.1)

be a complete and directed network with vertex set

V = {0, ..., n} (2.2)

where node 0 represents the depot and the rest of the nodes represents customers or

positions. The set of arcs are represented by:

A = {(i, j) : i, j ∈ V, i 6= j}. (2.3)

Each arc (i, j) ∈ A has a non-negative cost associated with it. For PDPs distance can

be used as the cost.

At each node there has to be some set of commodities that require transport. Let:

H = {1, ..., p} (2.4)

where H represents the set of commodities that require transportation. Each node

can either be a demand or supply commodity node. Lastly the amount of commodity

supplied or demanded can be defined by a commodity matrix D = (dih) where a positive

dih represents the amount of commodity h supplied by the node i and a negative dih

represents the amount of commodity h required at node i. For the system to be

balanced the sum of the supply and demand has to be in equilibrium:∑
i∈V

dih = 0

for each h

. (2.5)

For the multi-vehicle problem, there has to be a set that represents the available set of

vehicles to solve the problem. This can be represented by:

K = {1, ...,m}. (2.6)

Any route can be defined by a circuit over a set of nodes starting and ending at the

depot. The PDPs consist of at maximum m routes such that:

8



• All demand in the system is satisfied.

• The capacity of a vehicle is never exceeded.

• No transshipment of commodities occur.

• The sum of route costs / distance covered is minimised.

Depending on how the problem is structured, each vehicle may have defined variable

costs such as distance per kilometre, idling costs or lateness penalties. The objective

function is then defined as the minimisation of these costs, but may include multiple

objectives if customer satisfaction constraints are included in the problem definition.

2.1.2 The dial-a-ride problem (DARP)

The Dial-a-Ride problem (DARP) can be considered a special case of the vehicle routing

pickup and delivery problem. The problem consists of a set of customers who request

pickup and drop off’s from a taxi service [9]. The problem has additional constraints

related to:

• Time windows, and

• Maximum ride times

The DARP was developed to solve problems in door-to-door transport systems with

its main aim to reduce transportation costs. There are two forms of this problem,

single vehicle and multi-vehicle (generally seen as a homogeneous fleet of vehicles).

Both problems are aimed at finding the compromise between customer satisfaction

and minimisation of operational costs. The satisfaction constraints are dependent on

two major factors, the first being delivery time deviation and second excess ride times.

In the past heuristic methods have been the most popular choice when solving these

problems with the use of local search heuristics [24] and tabu search [10] proving to be

effective in finding solutions to the problem. A schematic of the problem can be seen

in Figure 2.1. Other methods such as dynamic programming are suitable in finding

optimal solutions but are generally not suited to large problems [6].

9



Figure 2.1: Schematic of the single vehicle dial-a-ride problem [6].

In the multi-vehicle problem, the assignment of requests for the vehicles must be done

in conjunction with the design of the overall schedule taking into consideration that the

vehicles may be starting from the same depot. For multi-vehicle routing, the solution

space of the problem is much larger and thus more difficult to solve [6]. In a survey

conducted by Cordeau et al. [9] it was noted that emphasis in literature has been

placed on solving the DARP. Excellent heuristic techniques exist. The decomposition

algorithm is a viable option for solving the larger instances of the problem. No mention

was made of an agent based method.

2.1.3 The dial-a-flight problem (DAFP)

The dial-a-flight problem (DAFP) falls into the same class of problem as the multi-

vehicle DARP. It was formulated as a way of optimising air taxi services [13]. Between

the DARP and DAFP, there are a few differences to take into consideration. These

differences are [4]:

• The request for the service from an air taxi business would occur in advance so

the schedule can be developed using a static framework.

• Usually the request for a service means multiple destination pairs. Travellers who

book flights will usually expect to return to their original location.

10



• The set of pick-up and drop-off points is relatively small compared to that of the

DARP since only a finite number of airports can be considered.

• The model should take into account regulations for aircraft use such as:

– number of hours each aircraft can be in flight,

– how many flights each pilot can service, and

– aircraft maintenance.

Due to the on-demand nature of the problem, the service provider may also reject or

alter the requests at some cost to the company. The services are measured by how

many flight legs the passenger is on before they reach their final destinations, how

many plane changes are required and lastly how long they wait before they reach their

final destinations.

Each aircraft can occupy two states;

1. In flight: refers to an aircraft that is currently on route to a destination.

2. Idle: refers to an aircraft that is on the ground waiting for arriving customers.

The idle time also includes the turnaround time of the aircraft. The turnaround time

refers to the amount of time the aircraft needs to get ready to take off, having landed

at a destination. Espinoza et al. [14] gave a flow chart of the key events from the

perspective of the aircraft (Figure 2.2).

Espinoza et al. [14] approached the problem by formulating an integer multi-commodity

flow model as well as a parallel local search. They found optimal solutions to 23 in-

stances provided by an air taxi service provider [14] [15]. These schedules were un-

available for this research. The solutions are accurate, however, due to the nature of

the problem the algorithms used are not flexible or fast. Since the DAFP is NP-hard,

construction heuristic techniques to solve the problem is the next logical step in this

field of research.

Campbell [7] made contributions by providing size reduction heuristics such as group

aggregation and geographic heuristics. Campbell also introduced a composite variable

formulation and lastly agent routing variable generation. Campbells work on agent

11



Figure 2.2: Key events from the perspective of the aircraft [14].

routing variable generation is the platform for the research conducted in this disserta-

tion. In this section of his work Campbell used agent based simulation to reduce the

number of variables in each model. The aircraft in his simulation were designed to find

good time nodes as well as good flight legs to use in a MIP to find good solutions to the

DAFP. Using this method Campbell found 13% deviation from the optimal solution

and reduced the number of variables from 177 718, in a standard multi-commodity

network flow (MCNF) ILP to 52 172 using the agent based method.

2.1.4 DAFP formulation

As stated by Campbell [7] and Espinoza [14] the dial-a-flight problem can be formulated

as an integer linear program with the use of discreet time step increments. Here the

time dimensions are split into time steps of 10 minutes. Nodes are located at all

passenger departure and arrival times. Campbells formulation of the problem is stated

as follows [7].

Decision variable definitions: Set of flight variables: xijf ∈ X ∀i, j, f where each xijf

corresponds to a specific flight leg. Each flight leg has an associated fleet f ∈ F a

starting node iut ∈ N and ending node jvt ∈ N . Where u and v are elements in the

set of locations C and t is the respective arrival and departure times. These variables

are integer.

12



Set of ground variables: Defined as sijf ∈ S ∀i, j, f , where f corresponds to the fleet

type as an element of F . Where iut and jut correspond to the start and end node at the

same location u ∈ C . These variables are referred to as ground arcs and are integer.

Set of passenger flight variables: Defined as yxg ∈ Y ∀x, g where x corresponds with a

flight leg and g is a group of passengers within the set G. These variables are binary

and indicate if a group of passengers are taking the flight or not.

Set of passenger ground variables T: Defined as tijg ∈ T ∀i, j, g where g corresponds

to the groups of passengers in G and connects iut to jut (where u ∈ C). This variable

indicates whether a group of passengers is on the ground. They are referred to as

passenger ground arcs.

The objective function given in Equation 2.7 is to minimise the operational costs:

min
∑
x∈X

Cxxijf (2.7)

Where Cx is the cost associated with the flight leg xijf ∀i, j, f .

Conservation of flow constraints:

These constraints ensure that fleet flow and passenger group flow at evey node are

conserved and are defined in Equation 2.8 and Equation 2.9

For aircraft: ∑
i∈N

xinf + s(n−1)nf =
∑
j∈N

xnjf + sn(n+1)f ,∀n ∈ N, ∀f ∈ F (2.8)

For passengers:∑
i∈N

yxinfg + t(n−1)ng =
∑
j∈N

yxnjfg + tn(n+1)g,∀n ∈ N, ∀g ∈ G (2.9)

The passenger groups are bound by the capacity of the aircraft Equation 2.10.

∑
y∈Y

yxgSg ≤ xWx,∀x ∈ X (2.10)

13



where Sg is the number of people within group g and Wx is the capacity of the aircraft

associated with the flight leg x.

There has to be a constraint set to ensure the number of aircraft of all fleet types are

correct at the start of each day. Therefore at the starting node for each location u ∈ C,

the ground arc s for each fleet type f must be set to equal the number of aircraft of

that type at the starting location. This must also be done for the number of passenger

groups at each location:

snif = vuf ,∀f ∈ F, ∀u ∈ C (2.11)

Where snif is the ground arc for the fleet type f going into the first node of location

u and vuf is the number of aircraft of type f at location u at the start of the day.

tnig = bug,∀g ∈ G,∀u ∈ C (2.12)

where tnig is the passenger ground arc with node corresponding to the first node at

location u and bug is binary, either 1 or 0 depending on whether u is the origin of g.

Constraints must be included to ensure the time windows of each of the passenger

groups are not broken.

tneg = 1,∀g ∈ G (2.13)

where tneg is the passenger group arc with end node corresponding to the expected

departure time (EDT) and origin location of passenger group g.

tnlg = 1,∀g ∈ G (2.14)

where tnlg is the passenger ground arc with start node corresponding with the late

arrival time and destination of passenger group g.

It is important to note that this formulation by Campbell [7] allows passenger groups

to swap aircraft during multi-leg journeys. The author states that preventing this

14



effect would require extra variables and would slow down the computational time of

the model. This also means that this formulation would result in large waiting times

for passengers. Therefore a constraint set was formulated to limit the amount of time

a passenger could spend on the ground.

2.1.5 Parameters used to model the DAFR

The aircraft in the model need to make decisions about where to fly, which passengers

to collected and what time to depart. These decisions are based on a set of criteria.

These criteria are dependent on both internal factors as well as environmental fac-

tors.Campbell [7] makes mention of nine parameters that influence agents decisions in

his research. The factors are as follows:

1. Consideration of the geographical distance.

2. A factor that prioritises on board groups for delivery before the late arrival time.

3. Consideration of the size of the group.

4. A factor that increases the attractiveness of groups on the ground going to the

same destination as groups on board.

5. A factor that increases attractiveness of destinations which are the same as the

destinations of groups on board.

6. A factor to increase the chance of leaving a destination after picking up a group

of passengers.

7. A factor increasing the attractiveness of a destination based on the time urgency

of the groups on board the aircraft.

8. A factor increasing the attractiveness of candidate groups by assessing the time

closeness to their early departure times.

9. A factor that increases the attractiveness of waiting groups that share destina-

tions with on board groups.

These factors represent some numeric value and can be combined to form a single

number to represent the utility of the next move the agent makes. All parameters

15



concerned with the candidate groups are therefore the utility associated with the pickup

function and all parameters concerned with candidate locations are associated with the

relocate function.

2.2 Agent based simulation and modelling (ABSM)

Agent based simulation and modelling (ABSM) is considered to be a new paradigm

shift in information technology. As mentioned in section 1.2 ABMS finds its roots in

complex adaptive systems (CAS). The field of CAS asks the question of how complex

behaviour arises. The mechanisms of CAS can be seen in Table 2.1. ABMS tends to

be a descriptive method of simulation and therefore is suited to the analysis of the

natural behaviour of a system rather than seeking the optimal behaviour [30].

Table 2.1: The mechanisms of complex adaptive systems [42].

Mechanisms of Complex Adaptive Systems

Aggregation

Non-Linearity

Transfer of information

Diversity (Allows different behavior)

The use of software agents to uncover patterns and gain insight into systems is growing.

It provides a means to represent economic, social, ecological and other similar systems

in a software environment. There is an abundance of research in this field but a lack

of practical application, especially when using the approach in its operational capacity

[42].

Agents are generally employed when the need for a distributed approach to problem

solving is required. This is a problem that can be solved by a number of modules.

They generally have some need for co-operation or evolutionary requirements. This

makes ABSM a versatile technique [26].

The need for ABSM arises from various sources. Literature suggests that the suitability

of the method comes from the world’s movement to understand more complex systems.

Macal and North [30] suggest that because of these increases in complexity traditional

methods of simulation fall short. This could be due to the relaxation of assumptions

16



that could have been used to simplify more traditional simulation techniques. Lastly,

the ABMS becomes a powerful tool when used to analyse big data sets [42].

2.3 Agents

Before a model can be developed, the definition of agents and their distinction from

conventional simulation entities have to be defined. According to Salamon [42] the

term agent has many definitions, the one that was most pertinent to this research was

that ’An agent is a computer system that is suited in some environment, and that

is capable of autonomous action in this environment in order to meet its designed

objective’. This definition can only be used when defining artificial agents because, by

the true definition of agent, they are not only observed and evaluated in a software

environment. For instance any autonomous entity by definition can be considered an

agent, such as robots and animals. For an agent to be considered an agent it must

meet some basic criteria. These can be found in Table 2.2.

Table 2.2: The characteristics of agents [30].

Agents Characteristics

Attributes

Behavioural Rules

Memory

Resources

Decision Making Sophistication

Rules to Modify Behaviour

Wooldridge and Jennings [17] state that in order for a software component to be con-

sidered an agent it has to meet some criteria :

• Autonomy: Agents operate without direction or intervention from humans or

others and have complete control of their actions.

• Social abilities: Agents must be able to interact with other agents or humans via

some agent communication.

• Reactivity: Agents must be able to perceive their environment and respond to

changes.

17



• Pro-activity: Agents should not simply act within their environment, but exhibit

goal oriented behaviour.

A software agent is a component of the program they operate within. Agent based

models can, therefore, be described in two components. The first being the agent itself

and second the environment it falls into. The decision-making components of agents can

be formulated using three major techniques, namely deliberate agency (that generally

rely on the use of conditional statements such as ’if-statements’), utility based agents

that make use of defined utility functions to differentiate an agents choices and lastly

hybrids between the deliberate agents and utility based agents. Generally if an entity

in a simulation has the ability to adapt its behaviour, communicate with other entities

and perceive its environment, it can be considered to be an agent [30]. Figure 2.3 shows

the general agent structure and the relationship agents have with their environments

and other agents.

Figure 2.3: Generalised Agent Structure [42].

2.3.1 Deliberate agents

There are two important paradigms when describing the mechanisms of software agents.

The first and simplest are deliberate or reactive agents. The idea of reactive agents was

put forward by Rodney Brooks [42]. The reactive architecture consists of decentralized

competence modules that are usually associated with the behaviours of the agents.

These behaviours are then organised into the global structure of the agents. Reactive

agents form part of a subsection of agents called deliberate agents. Deliberate agents

18



are the quintessential intelligent, rational agent. Deliberate agents are characterised

by the factors below:

• they do not solely react to the environment they exist in,

• they peruse objectives,

• they co-operate,

• they have the capability to mimic behaviour, and

• they can model highly complex systems.

This general architecture can be seen in Figure 2.4. The functions of the general

framework are defined below:

1. The inputs (see (1) in Figure 2.4) are fed into the system and are updated by the

statement below:

input : E → Inp

Where E represents the environment and Inp represents the input.

2. The state of the agent (see (2) in Figure 2.4) updates by means of a process

function.

process : Inp× S → S
′

Where S represents the agents current state and S
′

which represents the agents

future state.

3. Lastly the effector (see (3) in Figure 2.4) operates by means of an action function,

this function performs the action the agent chooses (this process is dependent on

the state S of the agent)

action : S → Ac

Where Ac is the action the agent takes and is dependent on the state S of the

agent. The goals or objectives are built into this function.

19



Figure 2.4: Framework for deliberate agents [42].

2.3.2 Utility based agents

Utility based agents form the second type of agent as described by Salamon [42]. Utility

essentially is a measure of satisfaction. There are two categories for utility. Cardinal

utility refers to an exact measurement of utility (such as money). The other form of

utility is ordinal utility. This form of utility is implemented when the utility cannot be

measured. Rather, it is a comparative method. Utility based agents are designed to

maximise their respective cardinal utility. The utility of an agent is determined using a

utility function. This can be built into the inference function of the agent. The utility

function maps the possible states of the world and returns a real number corresponding

to the utility of the move.

u : O → <

Where O is a set of real options < that represent the final state of the agents. The

agents will attempt to choose the states that provide the best utility. When the system

provides perfect information, it is then possible to assume that the environment is

accessible and deterministic. However, this is not always the case. The possible options

represent the perception of the agents and in some cases agents will not always maximise

their utilities.

The agents have an idea of what the probability of reaching a particular state given by

st+1 ∈ O where s represents the state a agent will occupy given that it takes a action,

represented by a. The probability can then be calculated using what is known as a

utility function given as T (st, a, st+1). The sum of these probabilities over the set of

available options are equal to 1 (see Equation 2.15).

20



∑
st+1∈O

T (st, a, st+1) = 1 (2.15)

The expected utility of the move can then be defined as:

E[st, a, u] =
∑

st+1∈O

T (st, a, st+1)u(st+1) (2.16)

Where u(st+1) represents the utility of reaching state st+1. The agent will always seek

to maximise its respective utility, (Equation 2.17).

Max
a∈A

(E[st, a, u]) (2.17)

2.3.3 Hybrid agents

Hybrid agents are a combination of reactive agent and utility based agents as defined

in subsection 2.3.1 and subsection 2.3.2 respectively. The hybrid agents use both

sets of mechanics in order to achieve the agents sets of goals. These mechanisms are

arranged in the program by means of layers. There are two predominant forms of

layering, horizontal and vertical. Horizontal layering is when all software components

are directly connected to the agents sensors and each layer acts as a sub-agent that

gives the agent an idea of what to do next (Figure 2.5). Vertical layering allows the

input information to pass through each layer. The interlayer exchange is much simpler,

however layering the program in this fashion means that the simplicity is traded off

for overall system performance. Because information passes through the entire system

there is a greater chance for errors to increase. There are two main types of vertical

layering namely:

• One-pass: the input information passes through the system one way (see Fig-

ure 2.6).

• Two-pass: the input information passes through the system both ways (see Fig-

ure 2.7).

21



Figure 2.5: A schematic of horizontal layering [42].

Figure 2.6: A schematic of vertical layering - One Pass [42].

The main advantage of using the concept of a hybrid agent is the ability to choose

various agent architectures. This means that the model can be developed for a variety

of applications. Literature suggests that when implementing hybrid agents there is no

set methodology. Their design is always based on the application [42].

22



Figure 2.7: A schematic of vertical layering - Two Pass [42].

2.4 Agent environments

Before describing the decision making procedures of the agents, their environments

have to be discussed in more depth. The basis of how these environments work and

behave determines how the simulation will perform. There are six major dimensions

to agent environments put forward by Salamon. They are as follows [42]:

• Accessible vs. Inaccessible

– If the environment is accessible then the agent has the ability to gather

information from the environment.

• Deterministic vs. Non-Deterministic

– If the agents have defined paths and their actions lead to predictable results

then the environment can be considered deterministic. If the model behaves

stochastically then the model is non-deterministic.

• Static vs. Dynamic

23



– If the agents are the only entities that affect the environment then the model

can be considered static. If the environment the agents act in alters from

one state to another then the model can be considered dynamic.

• Discrete vs. Continuous

– Depends on whether the number of outcomes in the environment are finite

or infinite. If there are a certain number of options the agent can act upon

then the environment is discrete, otherwise it is continuous.

• Episodic vs. Non-episodic

– If the model is episodic in nature then the agents only operate in segments

of the environment. If the agents are able to fully access their surroundings

then the model can be considered non-episodic.

• Dimensional vs. Dimensionless

– If spatial factors are of importance to the agents then the system has di-

mension.

2.5 Application of ABSM

Since its conception, there have been many different applications of agent based tech-

nologies. Due to the autonomous nature of an agent [42], ABSM can be applied in a

variety of fields. The most predominant field applicable to ABSM is traditional simula-

tion. According to Wooldridge and Jennings [25] agent systems can be applied to solve

problems that are beyond the capabilities of traditional methods. This is because agent

simulations can be set up with fewer assumptions. This paper will focus on the appli-

cations of agent based systems as they apply to vehicle routing problems. However the

literature also covers the application of ABSM in analysing system behaviour. In this

research the expected emergent behaviour should be close to academic benchmarks.

24



2.5.1 Applications in operational behaviour

For the most part, the research that has been undertaken in the field of ABSM in

operations research has been focused solely on the emergent behaviour seen in opera-

tions. Researchers focus on creating a realistic view of a current system to understand

failures or inefficiency that arise due to the behaviour of the entities in the simulation.

Once this has been uncovered they attempt to change the decision criteria of the agents

(essentially designing a new system) to uncover a method of solving these problems.

In a study done by Knapen et al. [28], they undertook the task of discovering the

incentives and inhibitors of carpooling using ABSM. The model tried to understand

what incentives were required in order to encourage the use of carpooling. This was a

classic example of how ABSM is traditionally implemented.

In another study done by Vanek [46], they sought to understand the behaviours of

pirate ships in the Indian ocean and what strategies could be implemented by cargo

ships in order to react to these threats. What can be seen in both of these cases was

that the models uncovered the behaviours of the systems. In the carpooling case, they

were trying to see how to encourage users to carpool and in the piracy case they tried

to optimise the strategies implemented by the shipping companies.

The most pertinent study conducted, with respect to this research, was that by Archer

et al. [1]. They conducted an analysis of an air taxi operation from a system of systems

point of view, explored using ABSM. Their main focus was on aircraft selection and

validated that the use of ABSM is suitable for industrial use and shows flexibility.

Grether et al. [19] developed an agent based simulation of air transport technology,

the aim of the study was to evaluate the method’s ability to forecast the behaviour

of actors in the transport system. This speaks to the methods ability to study real

systems. There have been other studies on collective transportation systems. Ciari [16]

developed a multi agent traffic simulation framework to show how the method can be

used to explore new solutions to urban traffic problems.

From the findings, different strategies can be tested and the optimal behaviours could

be uncovered. This is different from finding optimal routes in a VRP, but the structures

of the models and the approaches taken are of value because when a model is designed

25



there may be emergent optimal behaviour and this is important to understand when

designing for optimality.

2.5.2 Applications in optimisation

In the field of vehicle routing the use of ant colony optimisation (ACO) has been

abundant. This particular algorithm has been popular in solving problems sunch as

the traditional travelling salesman problem (see Netlogo representation of this problem

in Figure 2.8 [48]) and other VRPs. This algorithm can be considered a form of agent

based simulation since the ants (effectively agents) in the system behave autonomously,

but lack the full complement of ABSM characteristics such as memory. As with the

test bed developed by Certicky et al. [47], the models developed are aimed at utilising

ABSM with some algorithm built into the agent’s decision engine [47]. Reed [39]

illustrated the use of ACO in multi-compartment vehicle routing, essentially solving

a capacitative vehicle routing problem. He found that this application of ACO was

suited to the application. Thus, ACO in conjunction with ABSM could prove to be

suitable for solving problems such as the DAFP and DARP.

Figure 2.8: Netlogo representation of the ant colony optimisation by Jose Vidal [48].

Shah [44] gives an overview of the different approaches to multi-agent systems in the

vehicle routing space. There have been three predominant architectures that have been

used, MARS, JABAT and the ant system. The main reason for the use of agent systems

in this field is because multi-agent systems behave autonomously and, therefore, will

26



provide better approaches to dynamic versions of the problems, but the most attractive

feature of the method is that it flexible. Flexibility allows users to change aspects of

the problems with ease.

The MARS system was developed for a shipping company called the Modelling Au-

tonomous CoopeRating Shipping Companies (MARS). It was used predominantly for

planning and scheduling dynamically. JABAT is middle-ware using multi-agents to

solve VRPs. It is capable of solving combinatorial problems using a set of intelligent

agents, each representing a set of improvement algorithms. The ant system devel-

oped by Dorigo [12], derived from the natural foraging behaviours of ants, uses swarm

intelligence to solve VRPs see section 2.8.

Thangiah et al. [45] state that the use of ABSM to solve VRPs is a result of the need

for a decentralised construction heuristic. They also states that there is a need for

flexible models that allow for easy integration of traditional techniques. Dexterity of

using the algorithms is also important so that they can solve many variations of the

problem with minimal changes to the algorithm, thus making it a viable alternative to

the Clark-Write method.

This report seeks to use traditional ABSM to solve VRP problems rather than im-

plementing proto-agents to do so. Campbell [7] provides more depth into the use of

ABSM to find feasible solutions to the DAFP. The method put forward resembles that

of ACO, but lacks the pheromone update used for learning. The model relies on the

fact that the dial-a-flight problem presented is highly constrained. Therefore, simple

Monte Carlo techniques coupled with effective utility functions should provide good

solutions. By applying an optimising linear program on the good nodes and legs of the

route, optimal solutions to the problem are generated. The finding suggest the method

is flexible and provides good quality solution for tightly constrained problems. In this

report a utility function will be used to control the decision making of the agents.

Campbell [7] proposed the use of an exponential distribution (see Equation 2.18) to

determine the attractiveness of the next move.

u(s + 1) = 1/ed/F1 (2.18)

Where d is the factor that influences decisions (such as distance or time urgency) and F1

represents the weights that determine the importance of the factor. He also suggested

27



the exploration of linear and Gaussian function, when determining the utility of the

next move.

Another approach taken by Ziddi et al.[53], was the use of a multi-agent system based

on a multi-objective simulated annealing model to solve the DARP. The results were

competitive, considering the approach taken was new. There were also considerable

improvements in process times. The model created was versatile in that it could be

adapted to solve other multi-vehicle routing problems.

The use of ABSM without the use of an assisting heuristic has also proven positive.

Barbucha [3] proposed an agent based model to solve the VRP and concluded it was

a viable method but produced inferior results to that of the tabu search algorithm. In

this work Barbucha et al. [3] make use of the A-Team structure, which is essentially

a collection of software agents that co-operate to solve a problem. The proposed

algorithm has the following structure:

1. Generate the initial population of solutions,

2. apply a solution improvement algorithm from the initial population,

3. replace the selected solution with the improved solution, and

4. continue the cycle of reading - improving - replacing until some stopping criterion

has been met.

The use of an improvement agent means that this method is different from that used

in Campbells’ research [7]. It resembles that of a traditional heuristic technique, and

provides a more decentralised approach to solve the problem. The method does prove

to be effective showing deviations from the optimal of around 5% [3].

In a study done by Vokrinek et al., ABSM was applied in solving the capacitative

vehicle routing problem CVRP [49]. The results were optimistic, with an average of

19% error on 115 benchmarked problems. The architecture used for this problem was

similar to that of Barbucha et al. [3] in that it makes use of improvement agents that

had control of the population. Vokrinek et al. [49] suggests the use of three main

agents types that make up the architecture of the program:

1. Task agent: process the demands of passengers and initiate the allocation of a

customer.

28



2. Allocation agent: maintains the allocation of tasks to vehicles, and improves the

overall solutions.

3. Vehicle agent: represents a single vehicle and is responsible for planing and opti-

mising the routes.

The generalised architecture for this model can be seen in Figure 2.9.

The method allows for different strategies to be tried and tested and it successfully

minimised the number of vehicles routed. This method was shown to be able to solve

the capacitative vehicle routing problem with time windows (CVRPTW) by Kalina

et al. [27]. The method proposed involved not only improvement agents but also

negotiation strategies, and proved successful in achieving an average error of 3.2%.

The negotiation takes place between the vehicle agent and the allocation agent and is

broken up into four main processes; estimation of the cost of committing to a given

task, estimating the gain from dropping some commitment, identifying the most costly

task and committing or abstaining from a given task.

Figure 2.9: CVRP ABS program structure by Vokrinel et al. [49].

29



There have also been instances of using similar architectures for solving the dynamic

versions of the CVRP. Maciejewski et al. [31] used the MatSim platform to simulate

the dynamic vehicle routing problem (where passenger demand varies throughout the

simulation) with the use of a multi-agent system. It is worth noting that the algorithm

used incorporated evolutionary algorithms to aid the simulations. The approach taken

takes factors that contribute to the search for optimality such as traffic in urban areas.

The real question that has to be asked is whether or not ABSM can compare favourably

with the conventional techniques. There have been a few comparative studies, such as

the comparison between ABSM and on-line optimisation for a drayage problem with

uncertainty by Mahr et al. [32] The key finding was that the ABSM outperforms the

conventional technique when uncertainty is high. This is probably due to the reactive

behaviour of the agent, being able to react directly to changes in the problem. The

study also suggests that ABSM can be very effective when applied to highly constrained

problems.

What is noticeable from the literature was that the ABSM are suitable in solving

constrained problems, or problems that contain some stochastic properties. However,

there does not seem to be much literature on the use of the method to solve the DAFP

other than the method proposed by Campbell [7]. There are new movements in ABSM.

Researchers are now focused on the cooperative and learning aspects of ABSM [27],

[2].

2.6 Current models and software

There are many open source software packages available to model systems using ABSM.

NetLogo [37] is a robust package that allows the user to create an agent based simulation

with ease however the reporting capabilities of the package are not up to the quality of

conventional software packages. Designing complex custom models is tedious. Other

programs have been developed to exploit this new field of research such as AnyLogic

and SWARM.

Not many platforms have been developed to use the ABSM to solve VRP’s. In 2014

Certicky et al. [47] developed a test bed for the analysis of the DARP using ABSM.

Essentially the test bed allows the users to evaluate the performance of multi-agent on

demand transport schemes for both static and dynamic cases. This is useful since the

30



test bed works in conjunction with Google Earth and can provide real test scenarios

for the modellers. This design makes the implementation of agent based models easier

for real world applications.

The majority of the models developed towards ABSM in solving VRPs have used

standard programming languages such as Java, C++ or Matlab. These programs

allow the users to fully customise and design the structure of the models as well as

allow them to incorporate other heuristics methods into their simulations.

2.7 Agentology

The approach used in the development of the ABSM in this report is based on the

generalised methodology put forward by Tomas Salamon [42]. Salamon suggests that

due to the rise in demand for agent based models, a formalised method is required to

develop these simulations. This methodology is called agentology. Agentology con-

stitutes the steps in the development of such models. It is important to note that

agentology has been predominantly developed for use in social sciences and applying

this method to conventional operations research has rarely been done. This method

was used to develop models to solve variations of the DAFP defined in subsection 3.1.1.

Salamon describes the development of agent models in a nine step process that can be

grouped into four phases. These are defined as (also see Figure 2.10):

1. Task formulations: In this case before the model can be developed the DAFP

must be formulated. The identification of the main objectives of the problem,

the processes involved with the system and the identification of the agents are

done at this phase.

2. Task evaluations: This can be seen as a critical stage in the development of the

model. The understanding of the task has to be continuously assessed in order

to develop a suitable model. Here the agents physiology is uncovered. In the

case of the dial-a-flight problem the agents are hybrid, taking advantage of both

reactive and utility based decision tools.

3. Conceptual modelling: This involves transforming the task into a conceptual

model that consists of a set of understandable diagrams.

31



Figure 2.10: Agent model development method proposed by Salamon [42].

4. Consistency check: This is considered to be a recurring step since at every stage

in the model development from this point the consistency of the model has to be

evaluated, so that the accuracy of the results improve as the model is developed.

32



5. Selection of a development platform: In the case of this work Matlab was chosen

as the development platform. It has extensive programming capabilities and

heuristics can easily be incorporated.

6. Transformation: Transformation of the conceptual model to a working program.

7. Platform-specific model: For this report this step is irrelevant and only applies

to models that are platform dependent. Because the conceptual model of the

DAFP has been transformed directly into code the need to develop the platform

is non-existent.

8. Development: This involves debugging and testing the models.

9. Model Evaluation: Here the results of the simulation will be evaluated against

benchmarks to the problem.

2.8 Ant colony optimisation (ACO)

Ant colony optimisation (ACO) can be considered as one of the most successful vehicle

routing algorithms. It is fast, accurate and can handle many different types of problems

[5]. It is based on the self-organising principles of an ant colony. This allows for highly

coordinated behaviour to occur, essentially using co-operative agents to solve complex

problems. The main focus of research into ACO has been on foraging behaviour, the

division of labour, brood sorting and co-operative transport of ants. These algorithms,

like most algorithms for VRPs, deal with discreet problems [12].

ACO has the ability to solve travelling salesmen problems (TSP) quickly. It does this

by mean of co-operative agents, that work in unison to achieve the target objectives.

ACO is limited by the types of problems it can solve. This is what is relevant in terms

of adapting this thinking towards agent based simulations. This is because the DAFP

makes use of a heterogeneous fleet and thus one generic ant cannot be formulated. Thus

an intelligent ant without the swarm intelligent component would be better suited to

these types of problems.

The mechanics behind the ants co-operative behaviour is very simple (Figure 2.11) [11]:

33



1. Ants are sent out of the nest to search for food. They will choose routes at

random. each ant lays down pheromone. This pheromone lets all the other ants

know where it has been. The pheromone will evaporate after some period of time.

2. Ants populate the search space, and will most likely choose paths that have

stronger pheromone trails. This is because as more ants use a specific path, the

pheromone levels on that path will increase and attract more ants. The paths

that are less frequently used will have less pheromone, because less ants will chose

to use the path and the excess pheromone will eventually evaporate.

3. As the pheromone levels on the bad trails drop, due to less frequent visits by the

ants, an optimal route through the environment will form.

Figure 2.11: Co-operative behaviour in ACO [11].

The application of ant colony optimisation to the travelling salesman problem by Dorigo

[11] in 1997 has opened the door for its use in more complex VRPs. Dorigo found that

the algorithm is flexible and produced good solution quality when applied to symmetric

problems [11]. Since then the algorithm has been adapted to solve other versions of

the VRP, such as the multi-compartment vehicle routing problem [39], the vehicle

allocation problem [36], the general vehicle routing problem [5] and the vehicle routing

problem with time windows [12].

34



2.9 Genetic Algorithms (GA)

Genetic algorithms (GA) are a branch of heuristics that involve using an evolutionary

approach to solve combinatorial problems. These problems generally require a method

for searching through large amounts of solutions until an optimal or near optimal is

found. The adaptive nature of GA means that it can be used to quickly find solutions

without resorting to brute force [35] and thus provide an alternative method in solving

large computational problems. The thinking behind this method comes from the pro-

cess of natural selection, where, as generations of a population progress through time

the genetic characteristics of the offspring resemble the most successful characteristics

of the parents [21] (see Figure 2.12).

Figure 2.12: Analogy between a numerical genetic algorithm and biological genetics

[21].

The genetic algorithm can be broken down into six steps:

1. Generation of the initial population

2. Find cost for each chromosome against some fitting function

35



3. Select mates

4. Mating of parent chromosomes

5. Mutation of children chromosomes

6. Convergence check or termination

The chromosome is a string of values that contain the decision variables for the function

the user wishes to optimise. The model should start with an initial population of chro-

mosomes. The population size should be carefully considered since a small population

stands the risk of not effectively covering the search space and a large starting popu-

lation may be a computational burden [40]. From the starting population, the best fit

chromosomes are selected as parents and are mated using a crossover method. Each

gene within the chromosome is subject to some mutation, defined by some mutation

rate which states the probability of any gene being changed. Next is a convergence test

or some stopping criteria. Here the solutions from the resulting children are checked

against previous results. If the number of iterations has exceeded some predefined

number, the algorithm is to be stopped, otherwise the process is restarted [23].

According to Reeves [40], there are five main advantages of using a genetic algorithm:

• Generality: this method can be formulated in a variety of programming languages

and can be designed to solve a wide variety of problems.

• Non-linearity: the method does not rely on any assumptions of linearity, con-

vexity or differentiability. All that is required is some method of calculating the

performance which can be complex and non-linear.

• Robust: the models have been able to solve large computational problems. They

can be applied to a wide variety of problems without major changes to the for-

mulation of the algorithm.

• Ease of modification: GA’s are easy to modify to solve any variations in the

selected problem.

• Parallel nature: due to the repetitive nature of the model, this means that the

selection and mating processes can be solved in parallel, increasing the speed of

the algorithm.

36



2.10 Monte Carlo methods

Monte Carlo is a type of simulation that relies on selecting unknown outcomes using

random sampling. The method resembles random experimentation where the outcomes

will be unknown but can be represented by some distribution. The input data is

modelled using some predefined distribution. The outcomes are then sampled from

that distribution. Within the field of simulation the outcomes represent some step

forward in the simulation, in the case of vehicle routing this could mean a choice to

move to some location, drop off a passenger or pick up a passenger. The method is

simple and provides an autonomous means of decision making [33].

The Monte Carlo method provides an easy way to sample from a probability distribu-

tion and can be used to design and test rudimentary simulations. Its ease of use makes

it a good candidate for decision making. In ACO Monte Carlo sampling is utilised to

assist ants in making choices in the graph. The pheromone update is used to update

the probability distribution and Monte Carlo is used to sample this distribution [12].

This is technique can also be see in research conducted by Campbell [7], it is used to

route aircraft through the day as well as assist the aircraft to choose passengers to

pick up. This method has also been applied to local branching algorithm for the single

vehicle routing problem with stochastic demand [41].

This method proves to be a suitable candidate to rout vehicles through a cost network.

2.11 Multi-criteria decision analysis (MCDA)

Multi-criteria decision analysis (MCDA) is a tool used by operations researchers to

analyse different factors that contribute to making a decision. The method is highly

dependent on the the context in which it is applied as well as the expertise of the

people involved in designing the models. The method’s popularity stems from the

need to take into account multiple dimensions to a problem and consider each of the

factors as a whole when making a final decision. The main steps of the multi-criteria

decision making as defined by Ramon and Mateo [34] are as follows:

37



1. Defining the problem: Here the context of the problem should be uncovered.

Clearly defining the parameters and the expectations of the stakeholders. Alter-

natives, objectives, constraints and any points of conflict should be examined.

2. Assigning weights: For each factor that influences a decision a weight should be

assigned that represents the respective importance of the factor.

3. Construction of the evaluation matrix: The MCDA model can be expressed in

matrix form:

Criteria: [C1, C2, · · · , Cn]

Weights: [W1,W2, · · · ,Wn]

Alternatives:


A1

A2

...

Am




x11 · · · x1n

...
. . .

...

xm1 · · · xmn


where xij is the numeric value given to the the ith alternative with respect to the

jth criterion. wj is the weight of criteria j, n is the number of criteria and m is

the number of alternatives.

4. Selection: A method of selecting the alternatives must be chosen. The data and

the level of uncertainty should be taken into consideration when deciding the

method.

5. Ranking: The alternatives are ranked and the best one is proposed as the solution

to the problem.

There are several advantages to using the MCDA method. It allows for investigation

into multiple fields, it is capable of dealing with highly complex problems and is well

known in the field of operations research [34]. Its most attractive feature is its ability

to compare factors that have different units and it can deal with both qualitative and

quantitative values [52]. It has been applied in manufacturing, environmental science,

agriculture and medicine [22],[20],[29],[34].

38



3 Methodology

In chapter 2 the literature pertaining to multi-vehicle routing problems, ABSM and

heuristic techniques were discussed. In this chapter the DAFP is defined, benchmarks

to the instances tested are provided and the design of the ABSM model is presented.

3.1 The Dial-a-flight problem

This dissertation uses sets of instances (S10, S39, S40, S99, S102, S139 and S200) of

the DAFP provided by Wilderness Air, these instances represent booking lists require

scheduling. The data sets listed in the literature from Espinoza [15], [14] only provided

aggregated results and so were not included or tested in this paper.

3.1.1 Wilderness air problem description

The version of the dial-a-flight problem in this work was defined using real data from

an airline operating in the Okavango Delta shuttling tourists between 30 of 100 des-

tinations. The airline is Wilderness Air services, the destination layout can be seen

in Figure 3.1 [7]. Seven booking lists (see Appendix C) were supplied by Wilderness

Air. Each booking list contains requests from groups of people. Each booking list is

comprised of five dimensions. The earliest departure time and latest departure time

are given in minutes and are essentially the time window that the aircraft must pick

up and drop-off a passenger. The origin and destination gives the city reference num-

ber for which the passengers are requesting travel and people in the group states the

number of passengers in the group. A booking list with 10 requests can be seen in

Table 3.1. From this schedule one can see that there may be similar requests from

39



multiple customers. To reduce the amount of variables, an agent could combine the

requests from group number two and seven to form one request that has the same

time window and three passengers within the group. Doing this reduces the problem

size making it easier for the program to find solutions, however optimality could be

compromised because it eliminates possible solutions from the search space.

Table 3.1: An example of a 10 Request booking list.

Early departure time (min.) Late arrival time (min.) Origin Dest. No. in group

360 1080 6 8 1

360 1080 7 5 1

360 1080 4 7 1

360 1080 8 5 1

360 1080 7 8 1

360 1080 4 5 1

360 1080 7 5 2

660 930 5 8 2

660 900 5 6 5

815 870 21 20 11

The aircraft are currently manually scheduled to meet these requests and to minimise

the overall cost of operations, as well as maximise customer satisfaction. These booking

lists were supplied by Wilderness Air and are subsequently referred to as ’manual

booking lists’. Customer satisfaction is defined as the aircraft being available for take

off within the desired departure windows, minimise flight times and minimal number

of flight legs per journey.

There are two types of aircraft that are used in order to service the requests, the Cessna

206 and Cessna 208. The specifications of the aircraft are given in Table 3.2. Each

aircraft has a specified starting location, so regardless of the route the starting point

of the routes must abide by this condition. An example of the fleet can be seen in

Table 3.3. There are five type 1 aircraft and nine type 2 aircraft in the fleet.

Table 3.2: Set of aircraft specification.

Aircraft Fleet type Speed (km/hr) Seating capacity Cost (Rands /hr)

C208 1 260 11 R3910

C206 2 210 5 R1385

40



Table 3.3: Fleet used for booking lists S10, S40 and S102.

Plane No. Type Starting Location Ending Location

1 1 7 7

2 1 7 7

3 1 7 7

4 1 4 17

5 1 18 3

6 2 3 7

7 2 7 7

8 2 7 7

9 2 7 7

10 2 7 17

11 2 17 3

12 2 3 3

13 2 8 12

14 2 19 16

Figure 3.1: Destination layout of the cities visited by the aircraft in the DAFP.

The aircraft are then expected to navigate to origin nodes to pick up customers and

deliver them to the destination nodes. Each node represents a destination in the

41



area and each has an x and a y coordinate that is located in Euclidean space. The

parameters of the problem are as follows:

1. Turnaround time of the aircraft is 10 minutes. This value was chosen since it

provides enough time for the aircraft to drop off its current passengers and fetch

new passengers, and is the value currently used by Wilderness Air.

2. Turnaround times do not contribute to the overall cost of operations. The only

cost that will be considered are costs incurred by aircraft in flight.

3. Aircraft fly at a constant speed throughout the flight leg. Take off, landing,

boarding and disembarking are assumed to be included in the turnaround time.

4. The pick up convention was assumed to be that the aircraft would have to be

able to service a full group of travellers at a time. This means that no group

splitting can occur.

Two version of this problem are solved in this research. The differentiating factor are

what constraints are applied to the aircraft.

Problem 1 constraints:

• Vehicles can only carry passengers equal to or less than their maximum capacity.

• Passengers can only be picked up and dropped off during their available time

windows.

• No swapping of aircraft may occur. This is an inconvenience to the passenger

and thus reduces customer satisfaction.

• All demand must be satisfied.

Problem 2 constraints:

• Vehicles can only carry passengers equal to or less than their maximum capacity.

• Passengers can only be picked up and dropped off during their available time

windows.

42



• No swapping of aircraft may occur. This is an inconvenience to the passenger

and thus reduces customer satisfaction.

• All demand must be satisfied.

• Passengers request to not stay on board the aircraft for longer than 3 flight legs.

In order to approach the problem, the network was visualised for both problems, in-

cluding how the agents (in this case the aircraft) navigate the system. Both Figure 3.2

and Figure 3.3 show two aircraft with starting nodes at 1 and 8 and destination nodes

at 5 and 9 respectively. Each aircraft can only carry their maximum capacities, and,

therefore, the aircraft will have to pick up and drop off according to how many pas-

sengers are available. Pickups given by the positive letters represents the groups of

people that require pickup and the negative letter represents the required drop off.

Unlike in the dial-a-ride problem, nodes act as both pickup and drop off points, and

aircraft do not have a centralised depot. Each aircraft has a local starting position,

and may have an ending position too. In this illustration of the problem, each aircraft

has predetermined starting locations at 1 and 8 respectively and no required end of day

destination. Figure 3.2 shows passenger a able to stay on board the aircraft for more

than three flight legs and Figure 3.3 shows that passengers a and b are only allowed to

stay on board the aircraft for three flight legs.

Two models were developed, each with unique design to solve these problems respec-

tively. Model A was designed to solve problem 1 and Model B to solve problem 2.

3.1.2 Benchmarking and manual schedules

There were seven booking lists supplied from Wilderness Air. They range in size from

10 to 200 requests. In order to measure the performance of the model, final costs are

compared to given benchmarks. Some manual schedules were also supplied by Wilder-

ness Air. For booking lists sized between 10 and 99 the results of the ABSM model

were compared to the upper bound solutions from a mixed integer programme. The

cost function used to calculate these costs are given in Equation 2.7 in subsection 2.1.4,

the actual costs per aircraft are derived by multiplying the flight time of an aircraft by

the cost per hour given in Table 3.2.

43



Figure 3.2: Problem 1 visualisation of a DAFP with two aircraft.

Booking lists 102 to 200 were manually generated solutions by Wilderness air. The

benchmarks can be found in Table 3.4. Both problem 1 and 2 solutions were compared

to these given benchmarks [8], [51]. This dissertation uses sets of instances (S10,

S39, S40, S99, S102, S139 and S200) of the DAFP provided by Wilderness Air, these

instances represent booking lists that require scheduling.

3.2 ABSM design

The agents in the DAFP will be referred to as aircraft. The aircaft required by both

problems need to be able to decide the routes that will minimise their operational

costs. They will seek to minimise the overall distance travelled and maximise customer

satisfaction. This means that there will have to be a utility, which is the value of

attractiveness, associated with each move. However aircraft can only make decisions

44



Figure 3.3: Problem 2 visualisation of a DAFP with two aircraft.

Table 3.4: The benchmarks to the DAFP.

Lower Bound Upper Bound Manual

S10 - R 12 826 -

S39 R 17 343 R 20 856 -

S40 R 25 035 R 34 531 -

S99 R 50 407 R 96 395 -

S102 - - R 63 270

S139 - - R 49 346

S200 - - R 81 740

based on the current information, such as their capacity and current demand. It was

because of these two considerations that the model developed utilise the hybrid agent.

Agents share characteristics of both reactive agents and of utility based agents. The

45



agent characteristics are given below in Table 3.5. The only characteristic that these

aircraft do not possess the ability to modify behavioural characteristics.

Table 3.5: The DAFP aircraft characteristics.

Agent Characteristics

Attributes

Behavioral Rules

Memory

Resources

Decision Making Sophistication

3.2.1 Agent perception and action

The aircraft interact with the environment by means of three main functions:

• The drop off function, that allows passengers to disembark and records late ar-

rivals and waiting times.

• The pickup function, that assesses all the available passengers at the aircraft’s

current location and decides which passengers should board the plane.

• Lastly the relocate function which decides where the aircraft should fly to next.

These functions have all the reactive rules built within them and are expected to pro-

duce emergent behaviour that produces good solutions without violating the problems

constraints. These three functions are at the heart of the agent. After each aircraft

has commenced, it will have produced one full flight leg, where drop offs and pick ups

occur at the current location of the aircraft. The flight legs are defined by the reloca-

tion of an aircraft from one location to the next. A flight leg can be described using a

time space diagram (see Figure 3.4). This figure shows the two states an aircraft can

occupy; in flight, and idle. It also illustrates the ten minute turnaround time allocated

to account for passenger boarding and disembarking. The dotted line shows how the

turnaround times are included in the flight time. This becomes useful when checking

if any given location is a viable option.

46



Figure 3.4: Flight leg description in a time space diagram.

3.2.2 Reactivity

Aircraft can do one of three things in the system. They can pick up a group of

passengers, they can drop off a group of passengers or they can choose to remain

idle (if the aircraft has passengers on board it can remain idle as long as it does not

violate the late departure time constraint). This decision is based on the capacity of

the aircraft at that point in time, the demand still left over in the system, the time

difference between the aircraft and the passengers in the system and the passengers on

the aircraft. These choices are then structured using the one pass vertical layering [42]

see Figure 2.6. The reactive structure can be seen in Figure 3.5. This structure can be

explained using five main reactive prompts the agents must be able to recognise:

1. Demand for pick ups are equal to zero and the capacity of the aircraft is greater

than zero.

• This means that there are no more passengers left in the system but there

are passengers on board and they have to be dropped off.

2. Demand for pick ups are not equal to zero but the capacity of the aircraft is at

its maximum.

47



• This means that no new passengers can be taken on board and so the agent

will be forced to drop passengers off. In this case the aircraft should not

remain idle.

3. Demand for pick ups are not equal to zero and the aircraft has capacity between

zero and its maximum.

• This means that the aircraft can either pick up more passengers, or drop off

the passengers it has on board.

4. Demand for pick ups are not equal to zero but the capacity of the aircraft is equal

to zero.

• This means that the aircraft is free to fetch passengers in the system but

cannot drop off passengers since there are no passengers on board.

5. Demand for pick ups are equal to zero and the capacity of the aircraft is equal

to zero.

• This means that all the demand has been satisfied. Therefore the aircraft

should remain idle.

The aircraft should also have the choice to remain idle for each of the reactive state-

ments above, except when the aircraft is full. There are two methods of ensuring that

this reactive behaviour is met; the first is to hard code the reactive statements into

the aircraft, and base all subsequent decisions on the capacity and the demand in the

system, the second is to design the utility functions in such a way that the reactive

statements are not broken, i.e. reduce the attractiveness of a move to zero if any of

the capacity or demand constraints are broken. The first method is utilised in Model

A and the second method in Model B.

3.2.3 Utility

Even though the agents have the reactive ability to gauge the demand in the system

and compare that with the capacity of the aircraft, the aircraft still have to make

individual choices about which passengers to on-board and which locations to fly to.

Once the reactive function has been activated a set of available options are shown and

the agent has to make a single choice from all of these available options. The choice

48



Figure 3.5: Reactive conceptualisation of DAFP agents.

selected will be made by means of Monte Carlo sampling. For aircraft to make a good

choice there is a utility associated with each move.

At any given stage in the simulation, one of three outcomes can occur. Either the

aircraft has to pick a group up, it has to drop off a group or chooses to remain idle.

Only in one state can the aircraft decide between picking up people, dropping off people

or remain idle. This is when its capacity is between zero and its maximum. In this

case, agents can either pick up or drop off, depending on the outcome of the Monte

Carlo selection procedure. When the aircraft has to fetch or drop off a group, the

indicators taken into consideration are as follows:

• The distance between the agent current location and the candidate location.

• The early departure time.

• The late arrival time.

• the size of the group being collected.

In order for the agents to make a firm decision a utility function has to be implemented.

Campbell suggests the use of exponential, linear and Gaussian functions as a extension

to the research he conducted on ABSM[7]. This research tests all three methods to

49



determine if changing the utility function results in better decision making by the

aircraft.

3.2.4 Environment of the DAFP

The agent environment is created by using the information from the booking list ( see

example in Table 3.1). At the beginning of the simulation, each aircraft has access

to the information supplied by this environment and as each pickup is serviced the

environment is updated sequentially. All aircraft can view this updated environment

when they are about to make a decision. The environment contains information such

as the pick up and drop off locations of groups, the number of passengers at those

locations and the time windows associated with each of the groups. This means that

the environment has some basic properties. These are as follows:

• The environment can be considered to be accessible since all the agents can gather

information.

• The environment can be considered as deterministic. Aircraft can only service

the pick ups and relocate for drop offs. Actions to the environment are always

the same because only aircraft that have picked up a group of passengers affect

the environment and aircraft that have relocated affect the environment.

• Since only agent behaviour influences the environment and demand is fixed at

the start of the simulation, it can be considered to be static.

• The amount of possible actions that can be taken by the agents are always finite

(it is completely dependent on the number of requests at the location of the

aircraft) thus the environment is discrete.

• Agents operate using information from the entire environment, therefore the en-

vironment is non-episodic in nature.

• The environment contains the information about passengers at each location.

Each aircraft has to be able to gauge where they are and where they are going.

Therefore the environment has dimension.

50



3.3 Model design and global structure

This section covers the ABSM in detail. In order to design the different routing func-

tions, a model was designed. The global structure in subsection 3.3.1 describes the

general architecture of the model and shows how changes can be made to the model

that effect the way aircraft make decisions and allows one to change the constraints of

the problem. The structure of the model includes the design of the aircraft, environ-

ment and decision-making considerations. In subsection 3.3.2, the selection criteria of

aircraft is discussed. The aircraft decisions will then be discussed in detail in sections

subsection 3.3.3, subsection 3.3.4 and subsection 3.3.5. These cover how the aircraft

chooses destinations and passengers. The Monte Carlo sampling procedure and utility

function are discussed in subsection 3.3.6. Lastly the development of a genetic algo-

rithm to optimise the weights of the decision factors is discussed in subsection 3.3.7.

The code was written in MatLab 2014b and can be found in Appendix A.1.

3.3.1 Global structure

An ABSM was developed to test different pick up, drop off and relocate strategies.

This design holds the general framework of the agent design. The model is illustrated

in Figure 3.6. This diagram is a simplification of the complete model. It illustrates

the most important features. These features can be described in five sections namely;

initialisation, selection agent, routing decisions, environment update and stopping cri-

teria.

The descriptions of each of the sections are as follows:

1. Initialisation: This involves reading the booking information and aircraft infor-

mation from the data. This information is then used to set up the agent and

environment variables in the program. The agent memory contains all the in-

formation about all the aircraft, such as the number of aircraft, the starting

locations, the type, selection number, maximum speed and maximum capacity.

Memory is initialised for each agent in the simulation. The environment contains

information taken from the booking list, such as the group pick up points, drop

off points and the number of passengers in each group.

51



Figure 3.6: A illustration of a simplified program structure for the ABSM.

2. Selection Agent: Once the aircraft and environment have been defined by the

program, the user will have to decide what routing method will be used. There

are three main ideas for the routing method:

(a) Vehicle by vehicle routing: Where a single aircraft is selected and is routed

from the start of the day to the end of the day. After it has completed

routing the next aircraft is selected.

(b) Discreet event simulation: Here aircraft are routed in parallel by selecting

the next event that occurs in time. Even though this was designed, it

was not used in this research as preliminary testing showed poor results in

comparison to the other selection mechanisms. This was potentially due to

the poor utilisation of aircraft in comparison to the other methods.

52



(c) Monte Carlo: Where the aircraft to be repositioned next is selected based on

a number of parameters such as the time the aircraft occupies, the number

of groups on board and the type of aircraft.

These methods will be discussed further in subsection 3.3.2.

3. Routing decisions: After an aircraft has been selected it must be routed through

one flight leg. The perspective of the aircraft was loosely based on the conceptual

perspective put forward by Espinoza et al. [14] as seen in Figure 2.2. The decision

is split into three parts, the drop off function that allows passengers to disembark,

the pick up function that selects the passengers that will board and the relocate

function that ultimately decides where the aircraft will fly to next. There were

two methods used to model these routing functions. These methods were tested

in this research. The models will be discussed in section 3.4 and functions will

be discussed further in subsections 3.3.3, 3.3.4 and 3.3.5.

4. Environment update: This is the main means of communication between aircraft.

After the aircraft has dropped off a group of passengers it will update the global

demand letting all the other planes know that that group is no longer in the

system. Likewise as a plane picks up a group of passengers, it must make it clear

that no other plane can service that group. The aircraft will also communicate

via the environment their current locations.

5. Stopping criteria: Lastly the simulation requires some stopping criteria. The

aircraft are halted once there are no more passengers in the environment or on

board any of the aircraft. Some passengers may be unserviced throughout the

entire simulation. In this case if all the aircraft occupy a time that is later than

the latest late arrival time then the simulation is stopped. There is no penalty

associated with passengers that have not been serviced throughout the simulation.

3.3.2 Agent selection strategies

Aircraft in the simulation have to know when they are in a position to relocate or

remain in the same location. This is achieved by means of a selection agent. The

selection agent, as seen in Figure 3.6, is positioned before the relocate, pickup and

drop off functions. Only an aircraft that has been chosen by the selection agent is then

in a position to make decisions.

53



The selection agent assesses all the aircraft in the system, and chooses an aircraft that

best suits the current state of the system. This agent decides the best aircraft using the

following criteria; capacity, type of aircraft and the time that aircraft occupies. This

information can be sampled using a Monte Carlo procedure. This makes the selection of

aircraft a stochastic process. In this way more combinations of aircraft can be explored

and thus the search space is covered more thoroughly. The weights of each parameter

are shifted towards aircraft with lower capacities, cost and earlier times. Low capacity

means an aircraft can house more passengers, with the aim to increase the utility of

the aircraft. The same reasoning applies to the weights parameter of larger aircraft.

Lastly the earlier the aircraft is the more potential it has to fetch passengers. The

weights were chosen from preliminary testing.

This method is useful, since it can be easily modified so that users can implement

different selection strategies. Apart from the method described above one could imple-

ment a vehicle by vehicle method, where each aircraft is routed from the start of the

day till the end of the day. Only until an aircraft has completed a full day can the next

aircraft be chosen and routed. One could also route the aircraft by only selecting an

aircraft that has moved the least in time. This idea always ensures the next aircraft

selected is in the most effective position to fetch passengers placed further in time, as

well as reduce the number of aircraft required to solve the problem [7]. The downside

to this method is that it may not always minimise the amount of aircraft used in the

simulation. Preliminary testing of this method showed a increases the overall cost per

hour. Because of these downsides the vehicle-by-vehicle selection was used in this re-

search to test the DAFP. The alternate methods should be explored in more detail in

further research.

3.3.3 Drop off function

The first major function the agent uses is the drop off function. It comes first so that

the aircraft can always make space on board before any new passengers were taken on.

As Figure 3.7 shows the aircraft needs to firstly assess all the passengers on board and

determine who is due to disembark at the current location. Then the agent removes

each passenger group one by one and adjusts the capacity. As a precaution, to ensure

that all passenger groups are dropped off at their destinations before the late arrival

time elapses, the agent will calculate how late the passengers are. If there are late

passenger groups a penalty cost of R100 per minute is added and the group is then

54



recorded as being late. This penalty does not apply to passengers who have not been

serviced at all, and only to passengers who have boarded the aircraft and are dropped

off at their location after the late arrival time. Lastly the agent tells the environment

that the group in question has been dropped off, thus communicating the fact to all

other aircraft in the system.

55



Figure 3.7: An illustration of a simplified drop off function.

56



3.3.4 Pick up function

The pick up function behaviour is similar to a bin packing algorithm (see Figure 3.8).

For each group on the ground at the aircraft’s location, it must decide who to take on

board. It does this by firstly assessing how attractive each group is. Then each group

must go through a series of reactive statements to remove attractiveness from choices

that will result in infeasible solutions. The parameters used to asses the attractiveness

of the groups waiting at the same location as the aircraft for pickup are the capacity

of the groups Cw and the number of groups on board going to the same destination as

the group under consideration M2.

The reactive statements are then used to remove attractiveness from groups that will

cause the problem to be infeasible, such as the overloading of the aircraft or if they

cause other on-board groups to run late. The first is a checking function that ensures

that the group in question can be loaded on board and the aircraft will still be able to

deliver all the other groups it has on board without being late. If the group cannot be

delivered or any of the on board groups cannot be delivered then the agent will reduce

that group’s attractiveness to zero. The second reactive statement asks if the group

can fit on board. If it cannot then its attractiveness will also be reduced to zero. Next

a group will be selected for pick up. In the pre-testing only the group with the highest

attractiveness is picked up and the new capacity of the aircraft is calculated. Next

there is a reactive statement that asks if the aircraft wishes to leave without fetching

any more passengers, this is done by generating a random number and if that number

is less than the parameter PW for early departure (see subsection 2.1.5 factor six as

per Campbells research [7]) then the aircraft leaves without assessing any more groups.

This parameter is defined as:

PW =
1

−e
TW
FW

Where TW is the amount of time the aircraft has to wait on the ground before it is

able to take off. Otherwise, the aircraft will recalculate the attractiveness of the groups

on the ground and continue the sampling process until it is told to leave, there are no

more feasible groups at the given location or the aircraft is at capacity.

57



Figure 3.8: An illustration of a simplified pick up function.

58



3.3.5 Relocate Function

The relocate function decides where the aircraft will fly to next. The first thing the

aircraft must check is if there are any passengers on board that need to be prioritised.

If there is a group or groups that need to be delivered immediately the aircraft auto-

matically routes itself to that location. If the groups need to be delivered immediately

and have conflicting locations one of the groups will be delivered whilst violating the

groups late arrival time constraint. It does this by calculating the urgency of each of

the groups on board:

Tu = |Lw − Taw|

Where Tu is the time urgency of the group, Lw is the late arrival time of group w and

Taw is the arrival time at the location of group w if the aircraft were to leave at its

current time. If

Tu < Tu1 × Fu2

were Tu1 is the parameter for urgency, and Fu2 is the factor associated with early

departure. The group should be prioritised if this statement is true, the aircraft should

fly directly to that groups destination of group w. This is to ensure that the group

arrives at its desired location before the late arrival time expires.

If there are any groups on board that have been on board for two flight legs, that group

is then prioritised and the aircraft will route itself to that group’s location. This is to

ensure no group is on board for more than three flight legs. If there are no priority

groups, then the aircraft must assess all locations by assigning them levels of attrac-

tiveness (see subsection 3.3.6). The parameters used to determine the attractiveness of

a given location are as follows; The capacity of the group Cw, the distance between the

current location and the location under consideration Dij, the number of passengers

on board the aircraft going to the location j, the urgency of the groups Tu1 on board:

Tu1 =
1

e
Tu
Fu

were, Fu is the weight of the urgency factor, the number of groups at the locations that

have matching destinations M2, the time closeness Tcl of the groups at the location:

Tcl =
1

e
|Ei−Tl|

Fcl

were, Fcl is the factor associated with the time closeness parameter, Tl is the arrival

time at the prospective location and Ei is the early departure time of the group under

59



consideration at the prospective location. These equations where developed from the

equations governing decision making for agents by Campbell [7].

If a location has no pick ups or drop offs then it would make no sense for the aircraft to

be routed there, so its attractiveness is set to zero, since the problem does not stipulate

set end destinations for the aircraft. If the aircraft is full, then it should only be routed

to destinations of the passengers on board. All locations that are still attractive must

be checked to see if the aircraft can be routed there and still deliver all of the on

board passengers on time. If going to a location means the aircraft cannot meet all

of its engagements then that locations level of attractiveness is set to zero. The next

destination is then chosen by means of Monte Carlo sampling (see subsection 3.3.6)

and the selected location is the next destination. Note that the agent time changes

with its change in location, as seen in Figure 3.4.

60



Figure 3.9: An illustration of a simplified relocate function.

61



3.3.6 Monte Carlo sampling and utility functions

Monte Carlo methods are used to allow agents to make decisions. The agents designed

in this research can make sense of the environment by looking at the factors that

influence their decisions. These factors can be aggregated into a numerical value that

can then be sampled using a Monte Carlo sampling technique. A sample calculation

is provided in Appendix B. This method relies on agents being able to effectively

distinguish between good choices and bad choices. To aid in this process before any

sampling takes place, the values of attractiveness are sent to a utility function that

will boost the attractiveness of good choices and reduce the attractiveness of bad

choices. The proposed utility function can be seen in Equation 3.1 and Equation 3.2.

Equation 3.1 is the utility function that assigns attractiveness to groups waiting to be

fetched and Equation 3.2 is used to assign attractiveness to locations considered by

the aircraft. Once the attractiveness of all available moves is calculated the agent then

makes a firm decision. u(s→ a) is the attractiveness of the group under consideration

from state s to state a and is calculated as follows:

u(s→ a) = CwFc + M2FM2 (3.1)

Where:

s is the current state of the agent.

a is the next state.

Fc is the factor that adjusts the attractiveness of a groups capacity.

M2 is the number of matching destinations between the groups on the aircraft and the

groups on the ground.

FM2 is the factor that adjusts the matching groups attractiveness.

The attractiveness of a location is calculated as follows:

u(s→ a) =
1

e
Dl
Fd

+
M1

Fm1

+

M1∑
j=1

1

e
|Lj−Taj|

Fu

+
n∑

i=1

M2i

Fm3

+
1

e
|Ei−Tal|

Fcl

+ CwFc (3.2)

Where:

Dl is the distance from the current location of the aircraft to the location under con-

sideration.

62



Fd is the factor that influences the attractiveness of distance.

M1 is the number of groups on board the aircraft going to the location under consid-

eration.

Fm1 influences the attractiveness of number of groups on board the aircraft going to

the location under consideration.

Lj is the late arrival times of the groups on board going to the location under consid-

eration.

Fu is the factor influencing how attractive urgent destinations are.

M3 is the number of matching destinations between the on board passengers and the

group under consideration at the location under consideration.

Fm3 is the factor that influences the attractiveness of M3.

Ei is the early departure time of a group under consideration at the location under

consideration.

Fcl is the factor that influence how attractive a group is based on how close they are

to the aircraft in terms of time.

It can be seen in Equation 2.18 that some of the components in Equation 3.2 make use

of an exponential function proposed by Campbell [7]. This work will not only look at

the use of exponential functions but also Gaussian and linear (see Figure 3.10). These

functions all degrade at different rates and so should provide variations in results.

This means that the level of attractiveness will vary for the same decision in different

models and provide a view of which function generates the best overall solution. In

order to test these different distributions, a second method of calculating utility values

was devised making use of a multi-criteria decision method applied in Model A (the

sample calculate can be found in section B.2). This method makes all factors that

influence an agent’s decision equal in weight by first scaling the values to an interval

between 0 and 1, then summing the values and applying the values to each utility

function. Lastly, these values make up the distribution representing the attractiveness

of choosing a group to pick up or a destination to fly to. This distribution is then

sampled using the Monte Carlo process given above. This test should provide enough

information to decide which of the three utility functions perform best. Since the

best factors that influence decisions are unknown, a genetic algorithm was developed

to optimise the factors for each booking list. This algorithm will be covered in more

detail in subsection 3.3.7.

63



Figure 3.10: Utility Functions used to map attractiveness of pick ups and relocations.

3.3.7 GA weight factor optimisation

A genetic algorithm was devised in order to optimise the weights of each of the factors.

The method takes the agent routing functions and uses them as a fitting function. The

weights are then used as the genes within the chromosome (see Table 3.6). Each gene

in the chromosome is a weight that is applied to each decision factor. These weights

will determine what level of priority is given to each of the factors that influence a

agents decisions. The GA principal of operation is shown in Figure 3.11. In the figure

the algorithm starts by generating a starting population of ten random chromosomes,

then uses the agent based routing functions as fitting functions and assesses each of the

solutions. The seven best solutions are kept as part of the next generation’s population.

Two of the five worst and four of the best five chromosomes are sampled. These six

new chromosomes are then sampled using Monte Carlo sampling and are paired in

twos as parent chromosomes. These paired parents are crossed over at a random point

on the chromosome producing three children (they can produce six children each but

to keep the initial population constant the first child of each parent is chosen). Each

gene in the three children’s chromosome are then subject to mutation, defined by a

mutation rate Rm. After this process, the children rejoin the main population and the

cycle starts again until the number of predefined iterations has been met.

Because the routing functions are stochastic they would not be suitable as a fitness

function for the genetic algorithm. In order to optimise the weights, all Monte Carlo

sampling that had occurred in each of the functions had to be removed and the agent

64



is forced into selecting the best options only. In terms of the agent selection process,

none of the strategies described in subsection 3.3.2 could be used. Instead, aircraft

are selected one by one and routed from the start of the day to end of the day only

selecting the best choice to the routing functions and their weights. This means that

it could not be expected that the results would be of high quality, but they should

produce good weights. Also, it is not expected that the final weights would be the

same for each schedule. Different schedules will have different requests and thus agents

may need to prioritise groups differently.

The genetic algorithm was used to optimise the weights of each of the factors of influence

so as to reduce the cost of the schedules generated. The main aim here was to firstly

determine the best weights, and secondly determine if they are the same for all booking

lists. If they are the same then it means that no matter how the requests are structured

within a booking list the level of attractiveness can always be described and calculated

in one way.

Preliminary tests show that solutions would converge after three hundred iterations of

the model and so this number of iterations is used to conduct the weight optimisation.

Table 3.6: Defined GA chromosome structure.

Factor Description

Fu Influences how attractive urgent destinations are

Fd Attractiveness of distance

Fcl Associated with the time closeness parameter

Fc Attractiveness of a groups capacity

Fm3 Attractiveness of matching destinations between on board and ground groups

Fm1 Attractiveness of the number of groups on the aircraft going to a location

FM2 Factor that adjusts the matching ground groups attractiveness

FW Influences the amount of time the aircraft waits on the ground before take off

Fu2 Associated with the attractiveness of early departure

65



Figure 3.11: Genetic algorithm used to optimise model weights.

66



3.4 Model descriptions

There were two models designed and tested in this research. They both use the same

general architecture as discussed in subsection 3.3.1, but make use of two different

techniques to route the aircraft through the system. For reference in this paper they

will be referred to as Model A and Model B.

Model A:

Model A, makes use of the multi criteria decision analysis (MCDA) as its means of

making decisions. In this model, the agents are subject to tight reactive constraints.

The aircraft make decisions, by assessing all options available, eliminating ones that

violate the constraints of the DAFP, and then applying a MCDA to make a final

decision. The model also allows both deterministic and stochastic decision making

processes. This means that aircraft can be told to only make the best choices or they

can apply a Monte Carlo process to select an option. In this research, Model A is only

tested against the DAFP with constraints stated in subsection 3.1.1 however it can be

applied to other versions of the problem.

The testing of Model A consist of short runs of 100 iterations and long runs with 1000

iterations each tested twice with and without Monte Carlo sampling. The model would

also produce a frequency distribution (see Figure 4.8) to show the probability of a given

output as well as generate a geographical plot (see Figure 4.9) and time-space network

(see Figure 4.10) to illustrate the route the aircraft would take. Lastly, the models

produce a schedule indicating the departure and arrival times see Table 4.7.

Model B:

Model B, is based on a method put forward by Campbell [7]. In this model, the reactive

nature of the aircraft are slightly relaxed, this means that agents view all options

available to them and then assign a value of attractiveness. If the option violates any

of the DAFP constraints, then the aircraft will assign the option no attractiveness.

These values of attractiveness are calculated by means of a utility function, and are

discussed further in subsection 3.3.6. The model also allows both deterministic and

stochastic decision making processes. This means that aircraft can be told to only

make the best choices or they can apply a Monte Carlo process to select an option.

In this research, Model A is only tested against the DAFP with constraints stated in

67



subsection 3.1.1, but a flight leg constraint is also included such that no passenger can

stay on board the aircraft for more than three flight legs.

The model B tests take the standard DAFP and add a flight leg constraint. Passengers

desire as few flight legs as possible so each aircraft prioritises a passengers when the

number of legs travelled is one less than the maximum allowed. As with the uncon-

strained tests (see section 4.5), each booking list is tested on a short and long run

with 100 and 1000 iterations respectively. They are tested with both Monte Carlo

sampling and without. The same outputs are then produced by the model, frequency

distribution, geographic illustration, time space network and final schedule.

Both models are compared to the academic benchmarks and manual schedules as stated

in subsection 3.1.2.

The testing procedure will order the best utilities first and sample them by means

of a Monte Carlo process. The best factor to use cannot be predicted and will be

optimised by means of a genetic algorithm, the design of which is covered in subsec-

tion 3.3.7. These factors essentially provide the goal-orientated nature of the agents.

They influence the agent’s decisions towards good moves.

68



4 Observations and Results

The ABSM was designed and tested on the seven booking lists provided given in

Appendix C. This section provides the results of the seven booking lists and also

illustrates the effectiveness of the model by giving examples of the final schedules.

4.1 Testing procedure

The test procedure is broken up into five main parts. These are as follows:

1. GA tests, to minimise weights against the ABSM fitting function for all booking

lists.

2. Utility function tests, using the un-weighted and weighted model to find the most

effective utility function.

3. Repeatability test, for practical use of the model in industry one has to know

whether the models can produce similar results consistently and so the repeata-

bility of a test has to be examined.

4. Model A testing, using both the unweighted model and weighted model.

5. Model B testing, adding the flight leg constraint and testing all booking lists.

4.2 Genetic algorithm testing

The GA terminates after 300 iterations for each booking list. The cost vs. genera-

tion graph for the booking list with 99 requests can be seen in Figure 4.1. The graph

69



shows each generation of new chromosomes (across 300 iterations of the model) and

the resulting final cost of the ABSM. From this figure it can be seen that the objec-

tive function is reduced from the first generation. It also shows variations from the

minimised value due to the genetic variations induced by mutation. This variation is

illustrated by Figure 4.2 which shows the best cost and mean cost over 300 iterations

of the model. This figure shows that the function reduces costs and the mean cost

fluctuates showing a continual search for better solutions. The results from this test

shows an improvement in solution quality for the deterministic model. To show that

the new factors have a significant effect on the stochastic model, further tests were

conducted.

Figure 4.1: Costs generated by the GA for a booking list with 99 requests.

Figure 4.2: Mean solutions and best solutions for a booking list with 99 requests.

70



The resulting chromosomes for all booking lists can be seen in Table 4.2. These numbers

represent the weights for the nine factors that influence an aircraft decision in the

simulation.

A further test was conducted to see if the reduced weights had similar effects in reducing

costs in other schedules. Table 4.1 shows the resulting weights applied to other booking

lists, where ’X’ indicates no improvement to the current best solution and ’-’ indicates

the best solution produced. This was done to ensure the solutions produced by the GA

did not find local solutions for each of the booking lists. There is only one instance

where another booking lists weights (the final factors produced by S40 F) found the

best solution when applied to a different booking list (S10). Other than this finding,

there is no clear trend from the data so this means that the agents favour different

parameters when approaching different booking lists. For example the booking list

with 99 requests shows a greater emphasis on the size of the candidate groups than the

booking list with 10 requests. The same variations can be seen for all other booking list

sizes. This is an interesting phenomenon since it suggests a need for a more dynamic

means of adjusting the weighted parameters.

Table 4.1: GA factors applied to different booking lists.

Weights S10 S39 S40 S99 S102 S139 S200

S10 F - X X X X X X

S39 F X - X X X X X

S40 F - X - X X X X

S99 F X X X - X X X

S102 F X X X X - X X

S139 F X X X X X - X

S200 F X X X X X X -

The time taken to solve each booking list is 85 minutes (see Table 4.3). The solution

quality was comparable with other research conducted [47], with small to medium

sized booking lists producing results within 16% and 42% percent of the upper bound.

Larger booking sizes showed worst results with deviations within 36% and 57% of the

upper bound.

71



Table 4.2: Final chromosomes for all booking lists.

Weights

Weight S10 S39 S40 S99 S102 S139 S200

Fu 8,52 23,32 5,41 39,73 17,33 44,14 24,46

Fd 24,75 32,29 28,11 90,64 71,95 24,19 73,17

Fcl 13,21 1,73 6,49 9,23 26,60 8,85 31,03

Fc 0,00 0,21 0,02 0,91 0,14 0,43 0,56

Fm3 3,16 9,24 1,37 6,39 1,39 6,76 8,03

Fm1 4,76 3,47 2,37 1,03 2,21 1,09 2,60

Fm2 0,42 0,13 0,80 0,96 0,54 0,67 0,54

Fw 45,23 44,18 7,49 36,67 29,56 13,77 40,28

Fu2 42,40 30,73 27,47 44,38 24,98 28,77 30,79

Table 4.3: Reduced cost and CPU time produced by the GA as applied to the ABSM

fitting function.

Booking list Cost (R) Benchmark (R) Deviation Run Time (Sec.)

S10 15310,62 12826 19,37% 1116

S39 24100,90 20856 15,56% 1532

S40 60158,47 34531 74,22% 1998

S99 76300,53 96395 -20,85% 4709

S102 147730,35 63270 133,49% 6692

S139 110223,11 49346 123,37% 10834

S200 128060,54 81740 56,67% 8511

72



4.3 Utility function tests

The utility function determines the final attractiveness of all the available choices the

aircraft can make given in Equation 3.2. It is, therefore, imperative to discover which

type of function performs the best so that it can be incorporated into the final model.

As stated in subsection 3.3.6, three functions could be used, namely Gaussian, linear

and exponential functions. In Campbell’s [7] work, it has been seen that the exponential

function performs well when applied to this method.

The agent routing function is run for 100 iterations using the exponential function,

then the Gaussian and lastly the linear function. The results are then arranged from

highest to lowest forming a profile. These profiles are then easily comparable and one

can determine visually which of the functions performed the best. Model A and Model

B were tested in this sequence. For Model B, were the weights of each of the functions

had been optimised using the GA in subsection 3.3.7.

Figure 4.3: Results profile of model A on a booking list with 99 requests.

From Figure 4.3 it can be seen that the utility functions have no effect on the result

profile of the Model A. This is true for all the booking lists tested. The reason for this

is that since all the factors are scaled between zero and one, before they are sent to

the utility function they are already ordered from best to worst. This means that the

functions have little to no effect on the outcomes. From Figure 4.4 it is clear that, for

Model B, the linear function performed the worst and the exponential and Gaussian

functions are on par with one another. This is true for all the booking lists tested.

73



Figure 4.4: Results profile of model B on a booking list with 99 requests.

From these results, it was decided that for all further tests (in section 4.5 and sec-

tion 4.6) the exponential function will be used since the result profile showed the most

promising results in terms of solution quality.

Table 4.4: Average cost generated through testing of each utility function for each

model.

Model A Cost (R) Model B Cost (R)

Booking list Linear Gaussian Exp. Linear Gaussian Exp.

S10 14726,06 14444,67 14553,74 16745,62 13382,26 13277,12

S39 26869,10 27050,09 27322,59 36496,39 33122,97 33030,12

S40 43927,61 44521,01 43030,28 62016,21 56266,38 55218,54

S99 91446,88 93726,71 92764,86 127366,11 97736,47 96530,09

S102 106485,64 105180,32 99063,05 190981,85 150182,59 154816,59

S139 107820,92 108646,88 106802,51 189972,69 142236,14 131147,30

S200 187225,63 185223,39 189460,07 215793,92 176384,80 188084,84

Table 4.5: Performance of utility functions for each model.

Number of times lowest result reached

Model A Model B

Linear Gaussian Exp. Linear Gaussian Exp.

2 2 3 0 2 5

74



4.4 Repeatability

Due to the fact that this method has no improvement mechanism it is of importance

to see if the models results can be repeated. To do this, each of the booking lists are

tested repeatedly over short runs (test 1 - 100 iterations) and long runs (test 2 - 500

iterations). The normal distributions are then compared to see if they differ.

Figure 4.5: Short run normal distributions of ABS model testing a booking list of 10

requests.

Figure 4.6: Long run normal distributions of ABS model testing a booking list of 40

requests.

From Figure 4.6 and Figure 4.7 it can be seen that over long runs the model produces

a normal distribution that is almost identical to that of the previous runs. This means

that when the chance of the best result being repeated when the model is repeated is

75



Figure 4.7: Long run frequency distributions of ABS model testing a booking list of 40

requests.

very high. This result can be seen when the experiment is repeated using all seven

booking lists. Under short runs the result varies. As seen in Figure 4.5, on shorter

runs the chance of repeating the results are significantly less as seen in the change in

shape of the normal distributions in subsequent tests. This means that the only way

to ensure the repeatability of any given result is to run the models for longer periods

of time.

4.5 Model A tests

This section covers the use of ABSM when applied to the DAFP without the flight leg

constraints. Model A was applied to all seven booking lists and the full set of results

can be seen in Table 4.6.

All final costs were compared to both the respective upper bound and manual schedule

costs Table 3.4. However, the solution quality significantly reduced as the size of the

schedule increased. For the smaller schedules (size 10 to 99) the solutions were, in

the best cases, far below the upper bound of the fully constrained models and in the

worst cases only deviated from the upper bounds by 5%. This shows promise ,in small

booking lists, for the method and since the model relies on the constraints to formulate

decisions, it is expected that by adding more constraints the solution quality should

76



Table 4.6: Final Costs for Model A.

Short Run Long Run

Schedule Monte Carlo Deterministic Monte Carlo Deterministic

S10 R 11 452,77 R 11 420,99 R 10 732,37 R 10 369,94

S39 R 23 873,60 R 23 663,26 R 22 676,56 R 22 077,02

S40 R 35 074,25 R 33 945,87 R 32 801,76 R 32 349,11

S99 R 79 758,02 R 78 001,81 R 77 705,33 R 74 630,80

S102 R 73 059,51 R 74 150,45 R 73 092,28 R 70 241,03

S139 R 125 929,77 R 109 453,49 R 124 632,26 R 104 822,03

S200 R 133 433,60 R 112 164,08 R 130 983,24 R 112 008,26

Figure 4.8: Frequency distribution of short run Model A test of a booking list with 39

requests.

increase, this is because this will allow the aircraft to eliminate more options that will

violate constraints, effectively reducing the search area.

Table 4.8 shows the CPU run time to execute the agent based model. From this it can

be said that the time taken is far longer than other heuristic techniques [3] [53] [47].

Table 4.9 shows the percentage deviation from the benchmarks. Positive deviations

mean that the result was worst than the academic benchmark and negative deviations

mean the result was an improvement on the academic benchmark (see Table 3.4).

77



Table 4.7: Final schedule of a booking list with 39 requests using Model A.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2

7 390 10 416 5 10 8

10 660 7 686 3 8 19

7 686 11 727 4 8 11

11 727 8 745 1 8

2
11 390 17 410 0

17 660 4 712 2 22

1
7 390 26 423 0

26 423 3 481 8 23

1 7 870 8 910 7 9

2

8 660 17 684 5 16 14 15

17 684 11 704 4 16 14

11 704 10 733 3 16 20

10 733 7 759 1 20

7 865 4 921 4 7

4 921 10 961 0

10 961 7 987 5 18

2

4 390 3 451 3 3

3 610 11 703 4 2 1

11 703 7 744 2 1

7 744 3 839 2 4

1 7 870 17 909 6 12

2

4 390 8 428 0

8 775 11 793 1 17

11 793 4 836 4 17 21

2
7 390 4 446 5 5 6 13

4 446 26 475 1 13

78



Table 4.8: CPU time for all test problems in seconds using Model A.

Short Run Long Run

Schedule Monte Carlo Deterministic Monte Carlo Deterministic

S10 264,13 152,28 2388,86 2222,49

S39 215,43 187,36 2154,10 1846,67

S40 236,75 244,12 2603,75 2256,94

S99 386,59 383,89 1017,87 961,23

S102 674,73 545,89 1838,57 1732,91

S139 751,48 1242,51 2589,64 3753,58

S200 764,92 893,74 2145,17 2797,08

Table 4.9: Percentage improvements and deviations from respective benchmarks using

Model A.

Short Run Long Run

Schedule
Monte

Carlo
Deterministic

Monte

Carlo
Deterministic Benchmark

S10 -10,7 -11,0 -16,3 -19,1 Upper bound

S39 14,5 13,5 8,7 5,9 Upper Bound

S40 1,6 -1,7 -5,0 -6,3 Upper Bound

S99 -17,3 -19,1 -19,4 -22,6 Upper Bound

S102 15,5 17,2 15,5 11,0 Upper Bound

S139 155,2 121,8 152,6 112,4 Manual

S200 63,2 37,2 60,2 37,0 Manual

79



Figure 4.9: Geographic illustration of short run Model A test of a booking list with 39

requests.

Figure 4.10: Time space network of short run Model A test of a booking list with 39

requests.

4.6 Model B tests

The final cost from these schedules is then compared to the respective benchmarks to

determine the success of the method. As per the results from section 4.2 and section 4.3,

each schedule was tested using the exponential utility function and the weights from

the respective GA test. The final costs can be seen in Table 4.10. The deviations from

the respective upper bound and manual schedules can be seen in Table 4.11. The CPU

80



time can be seen in Table 4.12. The average wait time can be seen in Table 4.13. Lastly

the average utility of each aircraft for each booking list can be seen in Table 4.15.

The full schedules can be found in Appendix D. An example of a schedule produced

by this method can be seen in Table 4.14.

Table 4.10: Final Costs for constrained tests using Model B.

Short Run Long Run

Schedule Monte Carlo Deterministic Monte Carlo Deterministic

S10 R 10 279,43 R 9 942,19 R 9 942,19 R 9 942,19

S39 R 25 733,83 R 25 355,67 R 24 142,95 R 23 671,74

S40 R 46 824,43 R 42 780,11 R 37 080,99 R 40 352,49

S99 R 86 820,71 R 79 577,76 R 78 810,76 R 74 804,91

S102 R 90 946,13 R 74 416,20 R 76 423,58 R 73 359,65

S139 R 108 975,96 R 108 482,41 R 107 230,09 R 102 267,51

S200 R 128 980,51 R 123 074,85 R 125 125,73 R 114 259,34

Table 4.11: Percentage improvements and deviations from respective benchmarks using

Model B.

Short Run Long Run

Schedule
Monte

Carlo
Deterministic

Monte

Carlo
Deterministic Benchmark

S10 -19,9 -22,5 -22,5 -22,5 Upper Bound

S39 23,4 21,6 15,8 13,5 Upper Bound

S40 35,6 23,9 7,4 16,9 Upper Bound

S99 -9,9 -17,4 -18,2 -22,4 Upper Bound

S102 43,7 17,6 20,8 15,9 Upper Bound

S139 120,8 119,8 117,3 107,2 Manual

S200 57,8 50,6 53,1 39,8 Manual

4.7 Analysis of results

This section covers the analysis of the test results seen in section 4.5 and section 4.6.

The performance of the model was based on the percentage error from the respective

81



Table 4.12: CPU time for all test problems in seconds using Model B.

Short Run Long Run

Schedule Monte Carlo Deterministic Monte Carlo Deterministic

S10 107,2 127,5 653,5 1031,3

S39 109,1 77,7 1017,1 691,6

S40 137,7 194,3 1728,4 2083,5

S99 347,7 340,7 3634,7 3634,2

S102 608,6 551,3 2969,3 7951,8

S139 204,3 204,3 5357,0 4922,1

S200 848,6 648,0 6976,0 6577,1

Table 4.13: Average customer wait times using Model B.

Short Run Long Run

Schedule Monte Carlo Deterministic Monte Carlo Deterministic

S10 0,45 0,51 0,51 0,51

S39 2,09 1,11 2,30 1,47

S40 0,48 0,36 0,38 0,61

S99 1,74 1,54 1,87 1,71

S102 0,77 0,71 0,78 0,63

S139 1,94 1,57 2,04 1,64

S200 2,10 2,15 1,76 1,93

82



Table 4.14: Final schedule of a booking list with 39 requests using Model B.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2

11 390 7 431 4 20 21

7 431 4 487 5 4 21

4 487 3 547 5 3 4

3 610 7 705 4 2 1

7 705 11 746 5 11 2

11 746 7 787 0

7 865 4 921 5 5 7

4 921 7 977 0

7 977 8 1024 5 8 10

8 1024 10 1057 4 10

1 7 870 17 909 6 12

2 8 775 4 813 1 17

2
4 390 10 430 0

10 430 7 457 5 18

1 7 870 8 910 7 9

2
7 390 26 423 0

26 423 3 481 8 23

2
4 390 8 428 0

8 660 17 684 1 15

2

8 660 8 670 2 14

8 670 11 688 4 16 14

11 688 10 717 2 16

10 717 7 743 2 19

2 7 390 26 429 4 13 6

26 429 17 477 3 6

17 660 4 712 5 22 6

Table 4.15: Utility of each aircraft under deterministic long run tests using Model B.

S10 S39 S40 S99 S102 S139 S200

Utility 56,0% 61,5% 45,3% 65,5% 56,0% 66,8% 62,3%

83



benchmarks, the mean results the models produced and the time taken to solve the

problems. The average waiting time of customers is examined and lastly the effect of

the Monte Carlo processes on the model performance is evaluated.

Figure 4.11 shows the percentage deviation from the respective benchmarks. What is

interesting to note is that the ABSM performed well in small instances of the DAFP.

It showed below benchmarked results for the booking lists containing 10 requests by

22%, the only way this can be explained is that the ABSM uses time as a continuous

variable and does not include time discretions that the mixed integer program used by

Campbell. This means that better time nodes were found during the simulation [7].

These results are impressive and hold weight when arguing for the method’s use in

practical instances. Even though the models did not produce results that were optimal

the results are within a range that could be considered acceptable from the point of

view of the business. The model did not perform as well when applied to the larger

instances of the problem, booking list 139 was the worst performer only managing a

solution error of 107%. Booking list 139 shows there is a need for a more dynamic

method of routing, possibly one that includes learning mechanisms.

Figure 4.11: Percentage error of respective schedules against benchmarks.

In light of the best solutions produced by the models in this research, a reduction

in the number of individual requests reduced the mean solutions. This means that in

future work, the aircraft should seek to amalgamate groups more effectively, shortening

respective time windows if necessary in order to reduce the complexity of the problem.

84



Figure 4.12: Mean result of each schedule under each test.

Figure 4.13: CPU time of each short run test.

The CPU times for each test are presented in Figure 4.13 and Figure 4.14. Both

figures show that the time taken to solve each problem increases with the size of the

schedule, with the exception of S139. S139 results in a lower final cost, suggesting

that the customer requests are similar to each other meaning that more groups can be

amalgamated into one effectively making the problem size smaller than S102. Since

the problem can be reduced in size the solving time should be less than S102.

Even though customer waiting times did not form part of the cost function for the

model it was examined. The amount of time a customer waits on the ground for an

aircraft (from the early departure time till the time the aircraft picks up the passenger)

is a factor that contributes to the quality of service. These values were measured for all

tests and the resulting waiting times were graphed in Figure 4.15. The best schedules

85



Figure 4.14: CPU time of each long run test.

for all tests produced similar waiting times in this research. The models developed in

this research did not focus on minimising these waiting times. A reduction in waiting

times could result in a rise in operational costs. This is because if every passenger

transit has to be minimised, some of the groups will not be able to be merged due

to their differences in early departure times and late arrival times. This means the

aircraft will have to make more flights in order to service all of the customers.

Figure 4.15: Customer wait time for each schedule.

Figure 4.16 and Figure 4.17 shows the normal distributions for schedules 10, 139 and

200 respectively. It shows the distributions of the short and long runs with and without

Monte Carlo simulation. They all show a similar trend. The tests that included Monte

Carlo simulations showed that the models search the space more comprehensively, since

the range of results the model returned were much wider. However, they have a lower

86



probability of finding lower costs, this is not what is expected when searching for low

costs. Whereas the tests without Monte Carlo produce a better chance of finding low-

cost results as the range of results are smaller and have higher probabilities of returning

lower costs. This result is also evident in Figure 4.11. The long run tests without the

use of Monte Carlo simulation produced the best results, the longer run time with the

greater chance of finding lower costs all indicate the success of the method.

Figure 4.16: Normal distribution of all tests for schedule 10.

Figure 4.17: Normal distribution of all tests for schedule 139.

87



4.8 Summary of results

Table 4.16: Summary of results of Model A and Model B.

Model Schedule Benchmark (R)
Short Run Results Long Run Results

Best Result (R) Deviation %
Monte Carlo (R) Deterministic (R) Monte Carlo (R) Deterministic (R)

A

S10 12826,00 11452,77 11420,99 10732,37 10369,94 10369,94 -19,15

S39 20856,00 23873,60 23663,26 22676,56 22077,02 22077,02 5,85

S40 34531,00 35074,25 33945,87 32801,76 32349,11 32349,11 -6,32

S99 96395,00 79758,02 78001,81 77705,33 74630,80 74630,80 -22,58

S102 63270,00 73059,51 74150,45 73092,28 70241,03 70241,03 11,02

S139 49346,00 125929,77 109453,49 124632,26 104822,03 104822,03 112,42

S200 81740,00 133433,60 112164,08 130983,24 112008,26 112008,26 37,03

B

S10 12826,00 10279,43 9942,19 9942,19 9942,19 9942,19 -22,48

S39 20856,00 25733,83 25355,67 24142,95 23671,74 23671,74 13,50

S40 34531,00 46824,43 42780,11 37080,99 40352,49 37080,99 7,38

S99 96395,00 86820,71 79577,76 78810,76 74804,91 74804,91 -22,40

S102 63270,00 90946,13 74416,20 76423,58 73359,65 73359,65 15,95

S139 49346,00 108975,96 108482,41 107230,09 102267,51 102267,51 107,25

S200 81740,00 128980,51 123074,85 125125,73 114259,34 114259,34 39,78

88



5 Discussion

The ABSM design principals used to model the DAFP proved to be effective. The

aircraft in the system where able to service all the demand from all of the booking

lists. One pass vertical layering was the obvious choice in that it could incorporate

the defined rules of the DAFP, such as never exceeding the capacities of the different

aircraft and selection of suitable destinations. It also allowed the integration of utility

functions to further assist the aircraft in deciding which of the available destinations

to fly to as well as which of the available passengers to pick up. The down side of

using this method is that the aircraft have no hind sight, so that any decision they

make is final for the duration of the simulation. Weighted utility functions have to be

optimised in order to ensure the best choices can be made. These are two drawbacks to

the model structure, and could possibly be dealt with using two pass vertical layering.

This means every decision the aircraft makes will have to be checked and the aircraft

can take a retrospective approach to decision making. This way before an aircraft

makes a final decision, it can contemplate the effectiveness of the choice.

In this research the program architecture only makes use of two types of routing agent,

effectively the aircraft and a selection agent, used to assign which aircraft makes the

next move. One of the problems encountered in the simulations was the long waiting

times passengers endured on the ground (see Table 4.13 and Figure 4.15). An idea to

mitigate this is to design a passenger agent that can track and monitor the amount of

time the passenger waits. These agents should be able to communicate with both the

selection agent and the aircraft in the system to ensure that they are fetched between

the earliest departure time and latest arrival time. Even though the current model was

able to fetch and drop off all passengers within the given time windows it is important

to note that some passengers may require urgent pick ups and drop off. These are

especially true for passengers travelling directly to an airport, to catch a connecting

flight. The airlines staff members on the other hand would not require an urgent pick

89



up or drop off, unless they are needed on another flight, and so a passenger agent could

build all of these characteristics within their framework.

MatLab provided an adequate platform for the models, however the programming itself

could be optimised to reduce the run times of the simulations. What was noted was that

as the problem sizes increase there was also an increase in CPU time (see Figure 4.13

Figure 4.14). The solving times for the booking lists larger than 99 requests are still

higher than that of other heuristic techniques applied to VRP’s taking between one

and two hours to solve where literature suggests a solving time of between half an

hour one hour for 50 requests [18]. The main contributor is that the models require

multiple iterations to reach good solutions. This can only be resolved by implementing

optimisation heuristics within the agent structure, such as the models developed by

Barbucha [3] [2] and Certicky [47]. A more practical method would be to modify the

current technique in such a way that it can take advantage of a swarm optimisation

technique such as ant colony optimisation [11].

Model B’s performance is dependent on the weights of the decision parameters. Because

of this, the use of the GA in conjunction with the utility testing were crucial aspects of

the research. This method proved to be effective in setting the weighted parameters for

solving the DAFP using ABSM. It provided insight into how the problems parameters

change for different booking lists and suggests that more research has to be conducted

to further optimise the weights. The results showed that when the models are adjusted

to behave deterministically, the solution qualities are competitive compared to models

developed by Barbucha which was 5% mean relative error when applying ABSM to

the VRP [3]. This method has also opened the door to research into full optimisation

using the method to dynamically change the factors of influence as the agent based

model solves the DAFP. This was not done as it would mean the general structure

of both models would have to be changed and was out of the scope of this research.

This method could potentially be used to not only affect the way the aircraft picks up

passengers and flies to new locations but also influence the way aircraft are selected.

This, coupled with the agent model ability to solve problems in a distributive manner,

could prove to be valuable. Other methods such as simulated annealing and tabu

search could also be incorporated and could be used in further research to solve the

DAFP. This could be achieved by setting the decision weights as the objective function,

similar to the GA, and allowing the heuristic to solve for the minimised weights using

the agent model as a fitting function.

90



Once the GA minimised the deterministic model, each of the utility functions were

tested using the optimised weights. From these tests the most successful function

was the exponential function. This conclusion, similar to that found in research done

by Campbell is that the exponential function outperformed the Gaussian and linear

functions in most test cases [7]. Figure 4.4 shows the results profile using Model B

to solve for a booking list S99. The exponential and Gaussian function outperform

the linear function in Model B testing Table 4.5. What is interesting to note was

that when the same booking list was applied to the MCDA method in Model A, all

the utility functions performed equally well with the linear function outperforming the

other functions on two occasions, the Gaussian on two occasions and the exponential

on three occasions (see Table 4.5). The reason the Gaussian and exponential functions

outperformed the linear function could be due to the fact that they degrade at a faster

rate, where the linear function degrades at a constant rate. This fact means that even

when prospective passengers or locations are similar in attractiveness, they can be

distinguished more effectively based on the more attractive parameter of the decision.

The time-space network (Figure 4.10) produced for schedule 39 gives an indication

whether Model A was successful in finding a feasible solution to the problem. Each

coloured line in the network represents a different aircraft, the blue plus markers (’+’)

indicate early departure times and the red circles indicate late arrival times. These

graphs show that no aircraft exceeds the amount of time given in the day to complete

all the requests. They are also useful when comparing the manual schedules to the

schedules generated by the agent based model. One can also see that the aircraft

do not only have the option to pick up and drop off passengers but can also idle on

the ground if necessary. This means that the models are performing according to

their designed reactivity ( Figure 3.5). The geographic illustration of the flight paths

(Figure 4.9) can be used to determine the cities any given aircraft will service for that

schedule (see Figure 4.9). In this plot each aircraft is assigned a colour and the plus

(’+’) markers represent cities. The frequency distribution gives the users an idea of

how successful the model was in solving the problem. In Figure 4.8 there is only a 5

out of 100 chance of the model producing the best solution of between R23600 and

R24000. The figure shows that there is only a 10% chance that the model will beat

the upper bound solution to the problem. This result is completely dependent on the

size of the booking list. Larger booking lists produce frequency distributions with low

probabilities for results near the upper bound of the problem.

91



Model B produces competitive results and can generate schedules with the flight leg

constraint with reasonable costs see Table 4.10. The percentage deviation from the

benchmarks (see Table 3.4) can be seen in Table 4.11, where the model outperforms

the upper bounds for S10 and S99, while coming close to the upper bounds for booking

lists S39, S40 and S102. The reason the ABSM outperforms the benchmark solution

for the booking list with 10 requests, is that the mixed integer program relies on 10

minute time discretions and so there may be better solutions when time is continuous

variable. The larger schedules produce poor results compared to the manual schedules

provided by Wilderness air see Table 4.16. There is a negative correlation between the

size of the booking list and the quality of the result. CPU times are generally slow

taking at lowest 107.2 seconds for booking list 10 and 648.0 seconds for booking list 200

(see Table 4.12) this could be due to unoptimised programming and could be improved

by more effective coding techniques.

In some cases Model A outperformed Model B. The direct comparison between these

methods is slightly naive since Model B solved the DAFP with flight leg constraints, and

model A relaxed this constraint. Both methods produced results that ranged between

22,6% improvement from the upper bounds and 112% deterioration from the manual

solutions for all booking lists tested see Table 4.16. These are too inconsistent to be

implemented in any real world application unless the booking lists are smaller than

39 requests. The models produce inconsistent results for larger booking lists however

they can be applied as a substitute for any manual schedulers. From looking at the

schedules produced, four main routing issues can be seen (see Appendix D). These

issues can be directly related to the performance of the models.

1. The first is that the aircraft are duplicating flight legs. This is when an aircraft

leaves destination A, lands at B, and then flies back to destination A. Unless

constrained by the group’s time windows this is unnecessary, especially if the

aircraft is flying back to the original destination to fetch more passengers.

2. Secondly more than one aircraft will fly the same flight leg, within the same

time period. This is not optimal, since instead of boarding all passengers going

to a specific destinations, aircraft will split these similar passengers amongst

themselves.

3. Third is that the overall productivity of the aircraft are not maximised. This

means that the aircraft do not service as many passengers as they could. From

Table 4.15 the productivity of each aircraft in each of the tests never breach

92



66.8%, this means the aircraft on average is only 66.8% full. It suggests that

passengers are not being effectively loaded onto each of the aircraft.

4. Lastly, there needs to be a more effective way to minimise the number of aircraft

routed, so as to reduce the overall operational cost.

Table 4.9 and Table 4.11 show that the deterministic models produced the best results

in all cases except booking list S40 under the constrained testing. The only stochastic

element in those tests was the method in which aircraft were selected, therefore making

the best local decision at each move makes sense. This eliminated any outcomes where

bad local moves lead to further bad moves further in the simulation. The normal distri-

butions seen in Figure 4.16 and Figure 4.17 show that when the Monte Carlo method

is applied the search space increases and the aircraft go through a wider selection of

solutions. When the models are deterministic however, the normal distribution nar-

rows and the mean result is lessened i.e the result is more effective. This means that

the probability of finding better results in the Monte Carlo method is less than in the

deterministic version of the problem. This finding is logical as the deterministic model

focuses on better decisions and does not allow any poor choices to be made, and has

implications on further work in the field.

There are no visible relationships between the best results produced by the models

(see Figure 4.11). The results for booking lists of size 10 to 102 produced a range

of results between an improvement of 22.6% and deterioration of 16.9% from their

respective benchmarks. The booking lists larger than 102 requests produced results

39.78% deterioration from the benchmarks, see Figure 4.11. This speaks to some

fundamental issue with the models routing protocols since it is incapable of finding

good solutions to the larger instances of the problem. This suggests the search space for

larger instances of the problem are not constrained sufficiently by the routing functions.

Therefore in order to improve the result for larger schedules, the routing functions have

to be more selective of locations and passengers that will produce better results.

The amount of time taken to solve each problem is important to assess its viability

as a routing tool. As shown in Figure 4.13 and Figure 4.14 the time taken to solve

any given problem is proportional to the number of requests. Zidi [53]found a CPU

time of 840 seconds using a MOSA algorithm, 15180 seconds using a GA and 3077

seconds using a tabu search algorithm for the DARP wich consists of 8 vehicles and

108 customer requests. The closest problem to compare these times to was the DAFP

93



with 102 requests and 14 vehicles. The ABSM models in this dissertation solved the

problems in a time of 545.89 seconds for Model A and 551.3 seconds for Model B under

short run conditions. This shows that the method is competitive with conventional

routing algorithms for schedules that are smaller than 102 requests. The CPU times

do deteriorate with the size of the problem, taking up to 1242 seconds to solve S139

and 893 seconds to solve S200 in short run conditions. In long run testing, where

the most promising results are found, Model A took 2222,49 seconds to solve the S10

problem and Model B took 1031.3 seconds to solve the S10 problem. The long run

testing proved to be uncompetitive with the results presented by Zidi as the algorithm

takes longer to reach better solutions than the conventional techniques [53].

94



6 Conclusions and Recommendation

This dissertation has looked at the application of ABSM in solving variations of the

DAFP. Based on the results and discussion from chapter 4 and chapter 5, conclusions

are made with regards to the objectives set out in section 1.5. Next a list of possible

recommendations for future research are provided.

6.1 Conclusions

Based on the observations and results presented in chapter 4 as well as the discussion

from chapter 5, the following conclusions were found:

1. The solutions ranged from a 22,6% improvement to the benchmark to 107.2%

above the benchmark. The models were able to meet the objective of the research

for booking lists that have between 10 and 102 requests. The larger instances of

the problem could therefore not produce results within the expected range of a

maximum of 20% as specified in the objectives. This could be due to:

• The utility functions not being able to make clear distinctions between good

choices since there are more options available for each aircraft.

• Issues identified such as duplicated flight legs, poor utilisation and minimi-

sation of the number of aircraft are exacerbated by the sizes of the booking

list.

2. This research shows that significant results can be achieved using ABSM without

the use of a complementary heuristic. However there is room for improvement

in that expected results for booking list sizes over 102 were not in the expected

range.

95



3. One pass vertical layering proved to be an effective method in structuring the

agent model. The structure is easy to code and can accommodate hybrid agency.

4. The most effective utility function was the exponential distribution. Functions

that degrade at a fast rate prove to be most useful, but when applied to MCDA

models they had little to no effect on the outcomes.

5. Deterministic models produced the best results under long run testing. The

testing showed that deterministic models have a higher probability of achieving

solutions close to the given benchmarks.

6. In comparison to similar vehicle routing problems with the same number of re-

quests (such as the DARP) the ABSM method when applied to the DAFP proved

to have competitive CPU times for problems under short run testing.

7. This research has introduced seven instances of the DAFP (S10, S39, S40, S99,

S102, S139 and S200), making use of a heterogeneous fleet between 14 and 18

aircraft and has listed best known solutions in section 4.8.

6.2 Recommendations

One of the major improvement points is that the aircraft in the simulations only make

decisions based on the outcomes of the utility functions. A learning function that could

assist in the decision making process could be of great value. There are a few options

to consider, the first is the use of neural networks. A neural network could take the

place of the Monte Carlo simulations within each of the routing functions. The network

should take in each of the decision parameters and output the option the aircraft will

action. The only issue with implementing this method would be to develop a training

set, this could be achieved by setting up test scenarios that the agents could learn

from. These test scenarios would have to be MIP solutions to the DAFP. The second

option is the use of ant colony optimisation (ACO). ACO is essentially an agent based

system, the current model can already deal with the nature of the DAFP in terms of

the heterogeneous feet and capacity constraint. The models should be re-designed in

such a way that for each simulation the aircraft lay pheromone down and increase the

attractiveness of each route. From this we expect to see solutions improve on each

iteration. This implementation would not be easy since the DAFP has both routing

constraints for each aircraft and aircraft allocation problem, in selecting which type of

96



aircraft is used. There is still a large possibility for improvement in determining which

passengers board which aircraft.

To resolve the issue of passenger waiting time there are a few approaches one could

take. The first would be to include the minimisation of the amount of time a passenger

takes from the time his or her time window opens to the time he lands at his destination

as part of the objectives of the model. This can only be achieved by introducing a new

type of agent in the simulation. This agent should represent the groups of passengers

on the ground. These groups would have properties such as, if they are actively looking

for pick up, if they are running late, how urgent they are and if they are tourists or

Wilderness staff. The aircraft and passenger agents would communicate and help the

aircraft make better routing decisions based on negotiations between the two parties.

This method should improve the way passengers are grouped on board the aircraft as

well as reduce the amount of poor solutions.

Apart from the passenger agent, one could also investigate the use of other program

structures. Having a two pass vertical layering [42] instead of one pass vertical layering

could be useful. This structure involves allowing an agent to make decisions and

allowing the agent to reflect on its choices. This retrospective approach will allow an

agent to compare solutions in previous moves / simulations and make better choices in

context of what the other agents are doing in the system.

97



References

[1] Archer, JR, Black, AW, and Roy, S (2012) “Analyzing Air Taxi Operations from

a System-of-Systems perspective using Agent-based Modeling.” West Lafayette:

Purdue University pp. 1–15.

[2] Barbucha, D (2012) “Agent-based guided local search.” Expert Systems with

Applications vol. 39, no. 15, pp. 12032–12045.

[3] Barbucha, D and Je, P (2007) “An Agent-Based Approach to Vehicle Routing

Problem.” International Journal of Applied Mathematics and Computer Science

4.1 vol. 1, no. 2, pp. 36–41.

[4] Barnhart, C (2006) Handbooks in Operation Research and Management Science:

Transportation, 1st Edition. Elsevier Science & Technology.

[5] Bell, JE and Griffis, SE (2010) “Swarm Intelligence: Application of the Ant Colony

Optimization Algorithm To Logistics-Oriented Vehicle Routing Problems.” Jour-

nal of Business Logistics vol. 31, no. 2, pp. 157–175.

[6] Berbeglia, G, Cordeau, JF, Gribkovskaia, I, and Laporte, G (2007) “Static pickup

and delivery problems: a classification scheme and survey.” Top vol. 15, no. 1,

pp. 1–31.

[7] Campbell, I (2013) Construction Heuristics for the Airline Taxi Problem. Phd

thesis, University of the Witwatersrand.

[8] Campbell, I (2015) “Mixed interger solutions to dial a flight problem.” Email

correspondence from the University of the Witwatersrand containing the solutions

to booking list S10, S39, S40, S99 and S102.

[9] Cordeau, JF and Laporte, G (2003) “The Dial-a-Ride Problem (DARP): Variants,

modeling issues and algorithms.” 4OR - Quarterly Journal of Belgian, French and

Italian Operations Research Societies vol. 1, no. 2, pp. 89–101.

98



[10] Cordeau, JF and Laporte, G (2007) “The dial-a-ride problem: Models and algo-

rithms.” Annals of Operations Research vol. 153, no. 1, pp. 29–46.

[11] Dorigo, M and Gambardella, LM (1997) “Ant colonies for the travelling salesman

problem.” Biosystems vol. 43, no. 2, pp. 73–81.

[12] Dorigo, M and Stützle, T (2004) Ant Colony Optimization. Scituate, MA, USA:

Bradford Company.

[13] Dyson, E (2006) Visible Demand: The New Air-Taxi Market, Esther Dyson quar-

terly report, vol. 2, pp. 1-44. Tech. Rep. 2.

[14] Espinoza, D, Garcia, R, Goycoolea, M, Nemhauser, GL, and Savelsbergh, MWP

(2008) “Per-Seat, On-Demand Air Transportation Part I: Problem Description

and an Integer Multicommodity Flow Model.” Transportation Science vol. 42,

no. 3, pp. 263–278.

[15] Espinoza, D, Garcia, R, Goycoolea, M, Nemhauser, GL, and Savelsbergh, MWP

(2008) “Per-Seat, On-Demand Air Transportation Part II: Parallel Local Search.”

Transportation Science vol. 42, no. 3, pp. 279–291.

[16] Francesco, C (2009) “Simulation Framework.” In “Modeling collective taxis in

a multi-agent traffic simulation framework,” vol. 9. Zürich: Swiss Transport Re-

search Conference.

[17] Franklin, S and Graesser, A (1997) “Is it an Agent, or just a Program?: A Taxon-

omy for Autonomous Agents.” Intelligent agents III agent theories, architectures,

and languages vol. 1193, pp. 21–35.

[18] Golden, B, Raghavan, S, and Wasil, E (2008) The Vehicle Routing Problem: Latest

Advances and New Challenges, vol. 43 Information Systems Journal. Springer.

[19] Grether, D, Fürbas, S, and Nagel, K (2013) “Agent-based Modelling and Sim-

ulation of Air Transport Technology.” Procedia Computer Science vol. 19, pp.

821–828.

[20] Harpa, R (2008) “Applications of Multicriteria Analysis in Cotton Mill.” Textile

Research Journal vol. 78, no. 5, pp. 421–426.

[21] Haupt, RL and Haupt, SE (1998) Practical Genetic Algorithms. 2nd Edition. New

York: Wiley.

99



[22] Hayashi, K (2000) “Multicriteria analysis for agricultural resource management:

A critical survey and future perspectives.” European Journal of Operational Re-

search vol. 122, pp. 486–500.

[23] Hillier, F and Lieberman, G (2010) Introduction to Operations Research. 9th

Edition. McGraw-Hill Higher Education.

[24] Ho, SC and Haugland, D (2009) “Local search heuristics for the probabilistic

dial-a-ride problem.” OR Spectrum vol. 33, no. 4, pp. 961–988.

[25] Jennings, N and Wooldridge, M (1998) “Applications of intelligent agents.” Agent

technology pp. 3–28, Springer, Berlin, Heidelberg.

[26] Jennings, NR, Sycara, K, and Wooldridge, M (1998) “A Roadmap of Agent Re-

search and Development.” Autonomous agents and multi-agent systems vol. 38,

pp. 7–38.

[27] Kalina, P (2012) “Algorithm for Vehicle Routing Problem with Time Windows

Based on Agent Negotiation.” Proceedings of the 7th Workshop on Agents In

Traffic and Transportation, AAMAS .

[28] Knapen, L, Keren, D, Yasar, AUH, Cho, S, Bellemans, T, Janssens, D, and Wets,

G (2012) “Analysis of the Co-routing Problem in Agent-based Carpooling Simu-

lation.” Procedia Computer Science vol. 10, no. 270833, pp. 821–826.

[29] Kou, G and Wu, W (2014) “Multi-criteria decision analysis for emergency medical

service assessment.” Annals of Operations Research vol. 223, no. 1, pp. 239–254.

[30] Macal, CM and North, MJ (2008) “Agent-based modeling and simulation: ABMS

examples.” In “Proceedings of the 2008 Winter Simulation Conference,” pp. 101–

112.

[31] Maciejewski, M and Nagel, K (2012) “Towards Multi-Agent Simulation of the

Dynamic Vehicle Routing Problem in MATSim.” Parallel Processing and Applied

Mathematics vol. 7204, pp. 551–560.

[32] Máhr, T, Srour, J, de Weerdt, M, and Zuidwijk, R (2010) “Can agents measure

up? A comparative study of an agent-based and on-line optimization approach for

a drayage problem with uncertainty.” Transportation Research Part C: Emerging

Technologies vol. 18, no. 1, pp. 99–119.

100



[33] Mason, SJ, Hill, RR, Mönch, L, Rose, O, Jefferson, T, and Fowler, JW (2008)

“Introduction to monte carlo simulation.” In “Proceedings of the 2008 Winter

Simulation Conference,” pp. 91–100.

[34] Mateo, JRSC (2012) Multi criteria analysis in the renewable energy industry.

Springer Science and Business Media.

[35] Mitchell, M (1998) An Introduction to Genetic Algorithms. Cambridge, MA: MIT

Press.

[36] Negulescu, SC, Kifor, CV, and Oprean, C (2008) “Ant colony solving multiple

constrains problem: Vehicle route allocation.” International Journal of Computers,

Communications and Control vol. 3, no. 4, pp. 366–373.

[37] NetLogo (2011) “Netlogo.” URL https://github.com/NetLogo/NetLogo,

Accessed[9May2014].

[38] Pillac, V, Gendreau, M, Guéret, C, and Medaglia, AL (2013) “A review of dynamic

vehicle routing problems.” European Journal of Operational Research vol. 225,

no. 1, pp. 1–11.

[39] Reed, M, Yiannakou, A, and Evering, R (2014) “An ant colony algorithm for the

multi-compartment vehicle routing problem.” Applied Soft Computing vol. 15,

pp. 169–176.

[40] Reeves, CR (1997) “Genetic Algorithms for the Operations Researcher.” IN-

FORMS Journal of Computing vol. 9, pp. 231–250.

[41] Rei, W, Gendreau, M, and Soriano, P (2010) “A Hybrid Monte Carlo Local

Branching Algorithm for the Single Vehicle Routing Problem with Stochastic De-

mands.” Transportation Science vol. 44, no. December 2014, pp. 136–146.

[42] Salamon, T (2011) Design of Agent-Based Models : Developing Computer Sim-

ulations for a Better Understanding of Social Processes. Academic series. Repin,

Czech Republic: Bruckner Publishing.

[43] Savelsbergh, MWP and Sol, M (1995) “The general pickup and delivery problem.”

Transportation Science vol. 29, no. 1, pp. 17–29.

[44] Shah, MM (2012) “Artificial Intelligence : Vehicle Routing Problem and Multi

Agent System.” International Journal of Computer Applications (IJCA) Artificial

pp. 1–3.

101

https://github.com/NetLogo/NetLogo, Accessed [9 May 2014]
https://github.com/NetLogo/NetLogo, Accessed [9 May 2014]


[45] Thangiah, SR, Shmygelsaka, O, and Mennell, W (2001) “An agent architecture

for Vehicle routing problems.” In “Proc 2001 ACM Symposium on Applied Com-

puting,” pp. 517–521.

[46] Vanek, O, Jakob, M, Hrstka, O, and Pechoucek, M (2013) “Agent-based model

of maritime traffic in piracy-affected waters.” Transportation Research Part C:

Emerging Technologies vol. 36, pp. 157–176.

[47] Certický, M, Jakob, M, Ṕıbil, R, and Moler, Z (2014) “Agent-based Simulation

Testbed for On-demand Mobility Services.” Procedia Computer Science vol. 32,

pp. 808–815.

[48] Vidal, J (2014) “Multi-agent models.” URL http://jmvidal.cse.sc.edu/

netlogomas/,Accessed[3September2014].

[49] Voḱınek, J, Antońın, K, and Michal, P (2010) “Agents Towards Vehicle Rout-

ing Problems.” Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems vol. 1, no. 1, pp. 773–780.

[50] wilderness (2014) “Wilderness air.” URL http://www.wilderness-air.com/

about.html,Accessed[2October2015].

[51] Wildernesss-Air (2015) “Manual schedules of booking list s139 and s200.” Spread

sheets provided through email correspondence from the University of the Witwa-

tersrand containing schedule data.

[52] Xu, L and Yang, Jb (2001) “Introduction to Multi-Criteria Decision Making and

the Evidential Reasoning Approach.” Technical Working Paper , no. 0106, pp.

1–21.

[53] Zidi, I, Zidi, K, Mesghouni, K, and Ghedira, K (2011) “A Multi-Agent System

based on the Multi-Objective Simulated Annealing Algorithm for the Static Dial

a Ride Problem.” Proceedings of the 18th IFAC World Congress, 2011 vol. 18,

no. 1, pp. 2172–2177.

102

http://jmvidal.cse.sc.edu/netlogomas/, Accessed [3 September 2014]
http://jmvidal.cse.sc.edu/netlogomas/, Accessed [3 September 2014]
http://www.wilderness-air.com/about.html, Accessed [2 October 2015]
http://www.wilderness-air.com/about.html, Accessed [2 October 2015]


Appendix A MatLab Code

A.1 Main code

% Date: 26 August 2015

% Author: Daniel Reddy

% Agent Based Simulation of the Dial-a-Flight problem

% Version 9.1 - Constrained Model

%-------------------------------------------------------------------------%

clear

clc

%% Globals

global schedule Factz1 citys fleettype fleet cost LateCost UndelCost LateGroups Pen SFac PFac FFac LGTimes Gidle

schedule = xlsread('schedule R200.xlsx',1);

citys = xlsread('data.xlsx',1);

fleettype = xlsread('data.xlsx',2);

fleet = xlsread('Fleet200.xlsx',1);

Factz = xlsread('GeneticR.xlsx',1);

SolnKeeper = []; % Store all solutions here

[SS1,SS2] = size(schedule);

% Store the idle time of each group in this variable

Gidle = zeros(SS1,1);

%% 1st stratergy variables

% set the correct factors from the genetic algoritm

G = 7; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for ff = 1:8

Factz1(ff,1) = Factz(ff,G);

end

%% 2nd stratergy variables

SFac = [3/3 3/3 3/3]; % Weights for selection

PFac = [5/5 5/5 5/5 5/5 5/5]; % Weights for pick up

FFac = [5/5 5/5 5/5 5/5 5/5]; %Weights for flying

103



% Set the nest solution to be infinity

BestSoln = inf;

FRout = {};
%% Set the number of runs

tic

disp('Begining Simulation...')

for run = 1:1000

%% Set Environment

[Environment] = PopMyEnvironment;

%% Set up Agents/Aircraft

[Agents] = PopMyAgent;

[~,S1] = size(Agents);

%% Set Data storage variables

cost = 0; % Starting cost of the simulation

Pen = 0; % Starting penelty cost = 0 rands

LateCost = 100; % Lateness cost of 100 rand per minute

UndelCost = 10000; % Cost of every undelivered group is 10000 rand

UndelGroups = []; % All undelivered groups (i.e. not been fetched)

LateGroups = []; % All the late groups (i.e dropped off late)

LGTimes = [];

AgentData = {}; % This is used to store the final routes

Xkeeper = []; % This is used to store the x and y locations for plotting the agents paths

Ykeeper = [];

%% Set the demand stopping criteria && LAT stopping criteria

stop = sum(schedule(:,6)); % This is the demand in the system

MaxLAT = max(schedule(:,3)); % This is the latest LAT of all the groups

%% Set General stopping criteria

simrun = 1; % The simulation runs untill simrum = 0;

%% Start Simulation

while simrun ~= 0

%% Select Agent

[i] = select(Agents);

% Update the selection value

Agents(i).Selection = Agents(i).Selection + 1;

MoveNum = Agents(i).Selection;

%% Routing

if MoveNum == 1

% Pick up only

[Agents,Environment] = Pickup2(Agents,Environment,i);

%[Agents,Environment] = pickup(Agents,Environment,i);

capin = Agents(i).cap;

if capin == 0

% If no passengers are collected then the aircraft should

% move to a new location

104



Agents(i).Selection = Agents(i).Selection + 1;

MoveNum = MoveNum + 1;

end

end

if MoveNum > 1

% F--->P--->D

% Record the data at the origin node

Nc = Agents(i).location;

XX = citys(Nc,2);

YY = citys(Nc,3);

Td = Agents(i).Time;

Cf = Agents(i).cap;

Gob = Agents(i).gob;

% Fly

[Agents,Environment] = fly2(Agents,Environment,i);

%[Agents,Environment] = fly(Agents,Environment,i);

% Record the data at the destination

Nn = Agents(i).location;

Ta = Agents(i).Time;

% Join the data

Route = horzcat(Nc,Td,Nn,Ta,Cf,Gob');

% Drop off

[Agents,Environment,stop] = Dropoff2(Agents,Environment,i,stop);

% Pick up

[Agents,Environment] = Pickup2(Agents,Environment,i);

%[Agents,Environment] = pickup(Agents,Environment,i);

% Store the Leg

AgentData{MoveNum-1,i} = Route;

Xkeeper(MoveNum-1,i) = XX;

Ykeeper(MoveNum-1,i) = YY;

end

%% Check the Stopping conditions for Agent

TAgent = Agents(i).Time;

if TAgent >= MaxLAT

Agents(i).Stop = 1;

end

%% Check the stopping condition for the Simulation

% Stop the simulation if all passengers have been droped off

if stop == 0

simrun = 0;

end

% Stop the simulation if all the Agents occupie a time that is

% greater than the latest LAT

for j = 1:S1

105



Timecheck(j,1) = Agents(j).Time;

end

FTime = min(Timecheck);

if FTime > MaxLAT

simrun = 0;

end

end

%% END simulation

% Store the cost

SolnKeeper{run,1} = cost;

SolnKeeper{run,2} = stop;

SolnKeeper{run,3} = LateGroups;

SolnKeeper{run,4} = LGTimes;

SolnKeeper{run,5} = Pen;

SolnKeeper{run,6} = stop*UndelCost;

SolnKeeper{run,7} = SolnKeeper{run,1} + SolnKeeper{run,5} +SolnKeeper{run,6};
FCost = SolnKeeper{run,1} + SolnKeeper{run,5} +SolnKeeper{run,6};
FCostKeeper(run,1) = SolnKeeper{run,1} + SolnKeeper{run,5} +SolnKeeper{run,6};
% Get the Best solution

if FCost < BestSoln

BestSoln = FCost;

FRout = {};
FRout = AgentData;

Fx = [];

Fx = Xkeeper;

Fy = [];

Fy = Ykeeper;

FGidle = [];

FGidle = Gidle/60;

end

end

%% Analysis

disp('Disply graphs...')

% Plot the Time space Network

plotmyagents2(FRout)

%plotmyagents(FRout)

% Plot the route taken geographically

Geoplot(Fx,Fy)

% Box and wisker plot of the final costs

figure(3)

subplot(2,2,1)

boxplot(FCostKeeper)

title('Box plot of the output values')

xlabel('Data Set')

106



ylabel('Cost in Rands')

% Scatter plot of all the solutions

subplot(2,2,2)

plot(FCostKeeper,'+b')

title('Scatter plot of the output solutions')

xlabel('Itteration')

ylabel('Cost in Rands')

% Pareto of the solutions

Sorted = sort(FCostKeeper,'descend');

subplot(2,2,3)

bar(Sorted)

axis([0 run 0 inf])

title('Pareto chart of output solutions')

xlabel('Itteration')

ylabel('Cost on Rands')

% Plot the normal distribution to the set of data

subplot(2,2,4)

pd = fitdist(FCostKeeper,'Normal');

minval = pd.mu - 6*(pd.sigma);

maxval = pd.mu + 6*(pd.sigma);

Xval = minval:100:maxval;

Y = pdf(pd,Xval);

plot(Xval,Y,'LineWidth',2)

axis([minval maxval 0 inf])

title('Normal distribution of output values')

xlabel('Cost in Rands')

% Frequency distribution

figure (4)

hist(FCostKeeper,15)

%% Report

disp('Report...')

% Schedule number

disp('Schedule R200') % User input %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% time elapsed

toc

% Show the number of itterations

disp('Itterations:')

disp(run)

% Mean Waiting time of passengers

GMEAN = mean(FGidle);

disp('Mean passenger waiting times:')

disp(GMEAN)

% Best solution

disp('Best Solution:')

107



disp(BestSoln)

% Display the cost per group

CPG = BestSoln/200; % User input %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp('Cost per group:')

disp(CPG)

% Mean solution

disp('Mean:')

disp(pd.mu)

disp('Standard deviation:')

disp(pd.sigma)

% The deviation

disp('Deviation from Optimal:')

Best = 81740; % This must be specified by the user %%%%%%%%%%%%%%%%%%%%%%%%

E1 = ((BestSoln-Best)/Best)*100;

disp(E1)

%% Write to Excel

disp('Writing results to file...')

% Create a structured array of the results

Results.Size = 'Schedule R200'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Results.RunTime = toc;

Results.Itterations = run;

Results.Z = Best;

Results.CPG = CPG;

Results.BestSoln = BestSoln;

Results.Mean = pd.mu;

Results.Sigma = pd.sigma;

Results.Deviation = E1;

names = fieldnames(Results);

for ij = 1:length(names)

tempData{ij,1} = Results.(names{ij});
end

filename = 'Results.xlsx';

xlswrite(filename,names,1,'A1:A9')

xlswrite(filename,tempData,1,'B1:B9')

T1 = {'cost','stop','Late Groups','Late Time','Late Pens','Undel. Pens','Final Cost'};
xlswrite(filename,T1,2,'A1:G1')

xlswrite(filename,SolnKeeper,2,'A2')

disp('Process Completed...')

108



A.2 Drop off function

% We need a drop off function to ensure the timing of the program is

% correct.

function [Agents,Environment,stop] = Dropoff2(Agents,Environment,i,stop)

global schedule Pen LateGroups LateCost LGTimes

% Agent properties

GOB = Agents(i).gob;

Legs = Agents(i).legs;

Nn = Agents(i).location;

Cc = Agents(i).cap;

Tc = Agents(i).Time;

[s1,~] = size(GOB);

% We have the groups that are going to depart

G2D = Agents(i).depart;

DropoffG = Environment(Nn).DropoffG;

[s2,~] = size(G2D);

if s2 > 0

for i1 = 1:s2

g1 = G2D(i1,1);

LAT = schedule(g1,3);

c1 = schedule(g1,6);

Cc = Cc - c1; % Calculate final capacity

stop = stop - c1; % Remve the groups from the stop counter

mx1 = find(GOB(:,1) == g1);

[GOB,~] = removerows(GOB,'ind',mx1); % Remove the group from the aircraft

[Legs,~] = removerows(Legs,'ind',mx1);

% Remove the group from the drop off points

mx2 = find(DropoffG(:,1)==g1);

[DropoffG,~] = removerows(DropoffG,'ind',mx2);

% Calculate the penalties for late delivery

if Tc > LAT + 10

lateness = Tc - LAT;

Pen = Pen + lateness*LateCost;

[s3,~] = size(LateGroups);

LateGroups(s3+1,1) = g1;

LGTimes(s3+1,1) = lateness;

end

end

end

Agents(i).gob = GOB;

109



Agents(i).legs = Legs;

Agents(i).cap = Cc;

Agents(i).depart = [];

end

A.3 Fly function

% Here we are introducting a new fly function that will allow an agent to

% remain idle

function [Agents,Environment] = fly2(Agents,Environment,i)

global schedule citys cost Factz1

% The current node of the agent i s given by

Nc = Agents(i).location;

x1 = citys(Nc,2);

y1 = citys(Nc,3);

speed = Agents(i).speed;

% The agents capcity is given as

Cc = Agents(i).cap;

% The maximum capcity of the agent is given as

Cmax = Agents(i).maxcap;

% The current time of the agent is given as

Tc = Agents(i).Time;

% The groups on board the agent are given as

GOB = Agents(i).gob;

[s1,~] = size(citys);

Attract = zeros(s1,6);

Legs = Agents(i).legs;

[SLeg,~] = size(Legs);

if SLeg > 0

MaxLeg = max(Legs);

else

MaxLeg = 0;

end

[s3,~] =size(GOB);

mustgo = zeros(s1,1); % This is the variable that tells us if we have to go to a speciic destination

Destgob = [];

for i3 = 1:s3

g2 = GOB(i3,1); % This looks at all of the groups on board

Destgob(i3,1) = schedule(g2,5); %List of destinations of the groups

dest1 = Destgob(i3,1);

110



x2 = citys(dest1,2);

y2 = citys(dest1,3);

distance = pdist([x1 y1;x2 y2]);

ArrivalTime1 = Tc + (distance/speed)*60;

TU = abs(schedule(g2,3) - ArrivalTime1); %Gives the time urgencgy of the groups on board

TU1 = 1/exp(TU/Factz1(1,1));

Attract(dest1,2) = Attract(dest1,2) + TU1;

% Calculate if the group must be delivered

% Mustgo(Dest,1)

if TU<TU1*Factz1(9,1);

mustgo(dest1,1) = 1;

end

end

% Add attractivness for each move

for i1 = 1:s1

Nn = i1; % Nn = location under examination

% Check if we can go to this destination and still drop all our

% passengers off.

x2 = citys(Nn,2);

y2 = citys(Nn,3);

distance = pdist([x1 y1;x2 y2]);

Attract(i1,1) = 1/exp(distance/Factz1(2,1));

ArrivalTime = Tc + (distance/speed)*60;

% Get the groups on ground for each reqquest

GOG = Environment(Nn).PickupG;

[s2,~] = size(GOG);

for i2 = 1:s2

g1 = GOG(i2,1); % This will look at all the groups on the ground

dest1 = schedule(g1,5);

Destgog(i2,1) = dest1;

% Calculate the time closeness of the groups

TC = abs(schedule(g1,2) - ArrivalTime);

TC1 = 1/exp(TC/Factz1(3,1));

Attract(Nn,3) = Attract(Nn,3) + TC1;

% can the group fit on the aircraft

Cg = schedule(g1,6);

if Cc + Cg <= Cmax

Cap = Cg*Factz1(4,1);

Attract(Nn,4) = Attract(Nn,4)+Cap;

end

% Number of OB passengers sharing desinations with OG passengers

if s3 > 0

111



mx2 = find(Destgob(:,1) == dest1);

[s5,~] = size(mx2);

Attract(Nn,6) = Attract(Nn,6) + s5/Factz1(5,1);

end

end

if s3 > 0

% Number of passengers going to Nn

mx1 = find(Destgob(:,1) == Nn);

[s4,~] = size(mx1);

Attract(Nn,5) = s4/Factz1(6,1);

end

end

Fac = [1;1;1;1;1;1];

% Atrract table - [distance, TUgob,TCgog,Cap, Gob2Dest, A2Gmatch]

Attract1 = Attract*Fac;

% Attract =========> AttractF

% Apply logical filter

% Give zero attractivness to no PU and no DO points

for i4 =1:s1

PU = Environment(i4).PickupG;

DO = Environment(i4).DropoffG;

[pu,~] = size(PU);

[do,~] = size(DO);

if pu == 0 && do==0

% If there are no pick ups or drop offs set attractivness to zero

Attract1(i4,1) = 0;

end

true = 0;

for i6 = 1:s3

d1 = Destgob(i6,1);

if d1 == i4

true = 1;

end

end

if true == 0 && pu == 0

Attract1(i4,1) = 0;

end

end

% The agent should drop off if Cc == Cmax only look at the DO points

if Cc == Cmax

for city = 1:s1

true = 0;

for i5= 1:s3

d1 = Destgob(i5,1);

112



if d1 == city

true = 1; % Do not remove the attractivness

end

end

if true == 0

Attract1(city,1) = 0;

end

end

end

% Can we fly to each of the remaining locations and still drop off the

% groups on board before their LATs?

mx3 = find(Attract1 > 0);

[s6,~] = size(mx3);

for i6 =1:s6

c1 = mx3(i6,1); % The city under consideration

pu1 = Environment(c1).PickupG;

[SJ1,~] = size(Destgob);

if SJ1>0

mxd = find(Destgob(:,1) == c1);

[sj,~] = size(mxd);

else

sj = 0;

end

[s7,~] = size(pu1);

y = 0;

true = 0;

% true2 = 0;

for i7 = 1:s7

Gn = pu1(i7,1); % Group under consideration

% Calculate the arrival time at this location

Di1 = schedule(Gn,4);

xi1 = citys(Di1,2);

yi1 = citys(Di1,3);

DIS = pdist([x1 y1;xi1 yi1]);

Tarr = Tc + (DIS/speed)*60;

% This constraint stops the plane from fetching a group of

% passengers that are greater than 30min in the future.

% if Tarr <= 30 + schedule(Gn,2)

% true2 = 1;

% end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[y] = checkdrop2(Tarr,GOB,c1,Gn,speed);

if y == 1

true = 1;

113



end

end

if s7 == 0

true = 1;

% true2 = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

if sj > 0

true = 1;

% true2 = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

if true == 0

Attract1(c1,1) = 0;

end

% if true2 == 0

% Attract1(c1,1) = 0; % Apply the 30min delay constraint %%%%%%%%%%%%

% end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% If the max Leg counter has been activated then the aircraft must

% priorities that specific request.

% This prevents any passenger stayig on the aircraft for longer than 3

% flight legs.

if MaxLeg >= 2

ml1 = find(Legs(:,1) == 3);

ml11 = max(ml1);

gl1 = GOB(ml11,1);

destgl1 = schedule(gl1,5);

mustgo(destgl1,1) = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Check the must go variable

mg1 = find(mustgo(:,1) == 1);

[s8,~] = size(mg1);

if s8 == 0

on = 0; % 0 for no monte carlo, 1 to activate the monte carlo %%%%%%%%%

[Nn]=MonteCarlo(Attract1,on);

x2 = citys(Nn,2);

y2 = citys(Nn,3);

distance = pdist([x1 y1;x2 y2]);

ArrivalTime1 = Tc + (distance/speed)*60 + 10;

else

Nn = mg1(1,1); % has to fly to this destination

x2 = citys(Nn,2);

y2 = citys(Nn,3);

114



distance = pdist([x1 y1;x2 y2]);

ArrivalTime1 = Tc + (distance/speed)*60 + 10;

end

som = sum(Attract1);

if som == 0

Nn = Nc;

x2 = citys(Nn,2);

y2 = citys(Nn,3);

distance = pdist([x1 y1;x2 y2]);

ArrivalTime1 = Tc + (distance/speed)*60 + 10;

end

% Update the next destination

Agents(i).location = Nn;

% Update the x and y coordinates

Agents(i).x = citys(Nn,2);

Agents(i).y = citys(Nn,3);

% Update the time of arrival and add the TOT

Agents(i).Time = ArrivalTime1;

% Update the departure box

if s3 > 0

gdo = find(Destgob(:,1) == Nn);

[s9,~] = size(gdo);

for i8 = 1:s9

index = gdo(i8,1);

gdp = GOB(index,1);

depart(i8,1) = gdp;

end

if s9 > 0

Agents(i).depart = depart;

end

end

% Calculate the cost of this move and add it to the cost counter

IFC = Agents(i).cost;

COM = (distance/speed)*IFC ;

cost = cost + COM;

% Add a leg on each of the groups on board

if Nn ~= Nc

[s100,~] = size(Legs);

for j1 = 1:s100

Legs(j1,1) = Legs(j1,1) + 1;

end

Agents(i).legs = Legs;

115



end

end

A.4 Pick up function

% This is the pick up function

function [Agents,Environment] = Pickup2(Agents,Environment,i)

global schedule Gidle Factz1

Nc = Agents(i).location;

Tc = Agents(i).Time;

Cc = Agents(i).cap;

GOB = Agents(i).gob;

GOG = Environment(Nc).PickupG;

Cmax = Agents(i).maxcap;

speed = Agents(i).speed;

Legs = Agents(i).legs;

[a1,~] = size(GOG);

booked = [];

TOT = Tc;

while a1 ~= 0

% Get the destinations of the groups on board

[s2,~] = size(GOB);

Destgob = [];

for i2 =1:s2

g2 = GOB(i2,1);

Destgob(i2,1) = schedule(g2,5);

end

[s1,~] = size(GOG);

Attract = zeros(s1,2);

mintot = inf;

for i1 = 1:s1

g1 = GOG(i1,1);

d1 = schedule(g1,5);

Cg = schedule(g1,6);

edt = schedule(g1,2);

if edt < inf

mintot = edt;

end

if s2>0

116



mx1 = find(Destgob(:,1) == d1);

[s3,~] = size(mx1);

Attract(i1,1) = s3*Factz1(7,1); % Factor

end

Attract(i1,2) = Cg/Factz1(4,1); % Factor

y1 = 1;

if Cg + Cc > Cmax

Attract(i1,1) = 0;

Attract(i1,2) = 0;

y1 = 0;

end

% This constraint stops the plane from fetching a group of

% passengers that are greater than 30min in the future.

% if TOT <= 30 + schedule(g1,2)

% y1 = 0;

% end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if y1 == 1

[y] = checkdrop2(TOT,GOB,Nc,g1,speed);

else

y = 0;

end

if y==0

Attract(i1,1) = 0;

Attract(i1,2) = 0;

end

end

Attract1 = Attract*[1;1];

isit = sum(Attract1);

% Calculate the chance of leaving

Twait = mintot-TOT;

x =1-1/exp(Twait/Factz1(8,1)); % Factor

if x < 0.01

x = 0.01;

end

true = 0;

if isit > 0 %Picking group up

on = 0;

[choice]=MonteCarlo(Attract1,on);

Gc = GOG(choice,1);

% Add the group to the booked vector

booked = vertcat(Gc,booked);

% Remove the chosen group from GOG

mx1 = find(GOG(:,1) == Gc);

117



[GOG,~] = removerows(GOG,'ind',mx1);

% Add the chosen group to GOB

GOB = vertcat(Gc,GOB);

Legs = vertcat(0,Legs);

% add to the capcity of the craft

Cc = Cc + schedule(Gc,6);

true = 1;

edt1 = schedule(Gc,2);

% Move the take off time for each of the groups collected

if edt1>TOT

TOT = edt1;

end

Gidle(Gc,1) = Tc - edt1; % Stores the idel times of each of the passengers

if Gidle(Gc,1) < 0

Gidle(Gc,1) = 0;

end

end

a1 = a1 - 1;

% Ask to leave

r = rand;

if r<x && true ==1

a1 = 0;

end

end

% Update the variables

Agents(i).gob = GOB;

Agents(i).legs = Legs;

Agents(i).booked = booked;

Agents(i).cap = Cc;

Agents(i).Time = TOT;

Environment(Nc).PickupG = GOG;

end

118



A.5 GA Code

% This is the genetic algorithm that will support the optimisation process.

% It will take the initial set of weights for each of the 8 factors of

% infuence and manipulate them to give an optimal set of results.

% Author: Daniel Reddy

% Date: 11 October 2015

%%

clc

clear

global Facz schedule citys fleettype fleet

schedule = xlsread('schedule R200.xlsx',1);

citys = xlsread('data.xlsx',1);

fleettype = xlsread('data.xlsx',2);

fleet = xlsread('Fleet200.xlsx',1);

Zf = inf;

Fxii = 3;

%% Generate the initial population

for i = 1:10 % Calculate for 10 chromosomes

C1(1,1) = 1 + (100-1)*rand;

C1(2,1) = 1 + (100-1)*rand;

C1(3,1) = 1 + (100-1)*rand;

C1(4,1) = rand;

C1(5,1) = 1 + (10-1)*rand;

C1(6,1) = 1 + (10-1)*rand;

C1(7,1) = rand;

C1(8,1) = 1 + (50-1)*rand;

C1(9,1) = 15 + (45-15)*rand;

Facz = C1;

CKeep(:,i) = C1;

[ZLow,FCostKeeper,SolnKeeper] = ABSM(Fxii);

ZmKeep(1,i) = ZLow;

end

%% Main Algorithm

% Select the five best and sample 4 of the five

disp('Begining Main Algorithm...')

tic

for run = 1:300

ZmKeep1 = ZmKeep';

ZmKeep1 = sort(ZmKeep1,'ascend');

% Store the initial 7 best solutions and chromosomes

for i1 = 1:7

119



mxi = find(ZmKeep1(i1,1) == ZmKeep(1,:));

mx1 = min(mxi);

ZmKeep2(1,i1) = ZmKeep(1,mx1);

Chromo1(:,i1) = CKeep(:,mx1);

end

% Get 5 best and 5 worst

for i2 = 1:5

BestKeep(i2,1) = ZmKeep1(i2,1); % Best solutions

end

for i3 = 6:10

WorstKeep(i3-5,1) = ZmKeep1(i3,1); % Worst solutions

end

on = 1; % Turns the monte carlo function on

% Sample 4 of the 5 best solutions

p(1,1) = MonteCarlo(BestKeep,on);

p(1,2) = MonteCarlo(BestKeep,on);

while p(1,1) == p(1,2)

p(1,2) = MonteCarlo(BestKeep,on);

end

p(1,3) = MonteCarlo(BestKeep,on);

while p(1,1) == p(1,3)

p(1,3) = MonteCarlo(BestKeep,on);

end

while p(1,2) == p(1,3)

p(1,3) = MonteCarlo(BestKeep,on);

end

p(1,4) = MonteCarlo(BestKeep,on);

while p(1,1) == p(1,4)

p(1,4) = MonteCarlo(BestKeep,on);

end

while p(1,2) == p(1,4)

p(1,4) = MonteCarlo(BestKeep,on);

end

while p(1,3) == p(1,4)

p(1,4) = MonteCarlo(BestKeep,on);

end

% Sample 2 of the 5 worst solutions

p(1,5) = MonteCarlo(BestKeep,on);

p(1,6) = MonteCarlo(BestKeep,on);

while p(1,5) == p(1,6)

p(1,6) = MonteCarlo(WorstKeep,on);

120



end

% pare the parents up

Pmatch = randperm(6);

for i4 = 1:6

t1 = Pmatch(1,i4);

if t1>=5

s1 = p(1,t1);

Zm1 = WorstKeep(s1,1);

Zmx = find(ZmKeep(1,:) == Zm1);

Zmx1 = min(Zmx);

PerantM(:,i4) = CKeep(:,Zmx1);

else

s1 = p(1,t1);

Zm1 = BestKeep(s1,1);

Zmx = find(ZmKeep(1,:) == Zm1);

Zmx1 = min(Zmx);

PerantM(:,i4) = CKeep(:,Zmx1);

end

end

% Make 3 babies

for i5 = 1:2:6

% Cross over point

rc = round(1+(8-1)*rand);

% Cross Over

for i6 = rc:8

PerantM(i6,i5) = PerantM(i6,i5+1);

end

end

% Here are the babies

MainChild(:,1) = PerantM(:,1);

MainChild(:,2) = PerantM(:,3);

MainChild(:,3) = PerantM(:,5);

% Mutation

% Mutation of the main Child

Rx =0.05; % Mutation variable

for i = 1:3

% For child one

for j = 1:9

ri = rand;

if Rx > ri

if j==1

MainChild(j,i) = 1 + (100-1)*rand;

end

121



if j==2

MainChild(j,i) = 1 + (100-1)*rand;

end

if j==3

MainChild(j,i) = 1 + (100-1)*rand;

end

if j==4

MainChild(j,i) = rand;

end

if j==5

MainChild(j,i) = 1 + (10-1)*rand;

end

if j==6

MainChild(j,i) = 1 + (10-1)*rand;

end

if j==7

MainChild(j,i) = rand;

end

if j==8

MainChild(j,i) = 1 + (50-1)*rand;

end

if j==9

MainChild(j,i) = 15 + (45-15)*rand;

end

end

end

end

% Store the three babies in the main population

CKeep = [];

CKeep = horzcat(Chromo1,MainChild);

for i = 1:3 % Calculate for 10 chromosomes

Facz = MainChild(:,i);

[ZLow,FCostKeeper,SolnKeeper] = ABSM(Fxii);

ZmKeepC(1,i) = ZLow;

end

ZmKeep = [];

ZmKeep = horzcat(ZmKeep2,ZmKeepC);

Zmean = mean(ZmKeep);

MKeep(run,1) = Zmean;

LKeep(run,1) = min(ZmKeep);

Gkeep(run,:) = ZmKeep(1,:);

ZZlow = min(ZmKeep);

mxi = find(ZmKeep(1,:) == ZZlow);

122



mx1 = min(mxi);

if ZZlow < Zf

Zf = ZZlow;

CHrF = CKeep(:,mx1);

end

end

toc

disp('Generating Graphs...')

figure (1)

plot(Gkeep,'d')

title('Generations Z value')

xlabel('Generation')

ylabel('Cost in Rands')

X = 1:1:run;

figure (2)

plot(X,MKeep,':',X,LKeep,'-')

legend('Mean Solution','Best Solution')

xlabel('Generation')

ylabel('Cost in Rands')

disp('Writing results to file...')

filename = 'GeneticR3.xlsx';

T1 = {'Factors 40'};
T2 = {'Z Value'};
T3 = {'Run Time'};
T4 = {'Iterations'};
xlswrite(filename,T1,1,'B1:B1')

xlswrite(filename,CHrF,1,'B2:B10')

xlswrite(filename,T2,1,'B12:B12')

xlswrite(filename,Zf,1,'B13:B13')

xlswrite(filename,T3,1,'B14:B14')

xlswrite(filename,toc,1,'B15:B15')

xlswrite(filename,T4,1,'B16:B16')

xlswrite(filename,run,1,'B17:B17')

disp('Process Completed...')

A.6 Repeatability Code

% Repeatability experiment

123



clc

clear

global Facz schedule citys fleettype fleet

schedule = xlsread('schedule R40.xlsx',1);

citys = xlsread('data.xlsx',1);

fleettype = xlsread('data.xlsx',2);

fleet = xlsread('fleet.xlsx',1);

Factor = xlsread('GeneticR.xlsx',1);

G = 3; % For the schedule you want to check

for i = 1:8

C1(i,1) = Factor(i,G);

end

Facz = C1;

NR = 2; % This is the number of comparisons we are making

% Make sure the monte carlos are turned on so that the results are not

% determinisic

for run = 1:NR

[ZLow,FCostKeeper,SolnKeeper] = ABSM;

ComCost(:,run) = FCostKeeper;

end

figure (1)

hist(ComCost(:,1));

hold on

hist(ComCost(:,2));

figure(2)

hist(ComCost,15);

% Plot the normal distribution to the set of data

figure (3)

pd = fitdist(ComCost(:,1),'Normal');

minval = pd.mu - 6*(pd.sigma);

maxval = pd.mu + 6*(pd.sigma);

Xval = minval:100:maxval;

Y = pdf(pd,Xval);

plot(Xval,Y,'LineWidth',2)

hold on

124



pd = fitdist(ComCost(:,2),'Normal');

minval = pd.mu - 6*(pd.sigma);

maxval = pd.mu + 6*(pd.sigma);

Xval = minval:100:maxval;

Y = pdf(pd,Xval);

plot(Xval,Y,'LineWidth',2)

axis([minval maxval 0 inf])

title('Normal distribution of output values')

xlabel('Cost in Rands')

A.7 Utility test Code

% Utility test model for Campbells method

clc

clear

%%

global Facz schedule citys fleettype fleet

schedule = xlsread('schedule R200.xlsx',1);

citys = xlsread('data.xlsx',1);

fleettype = xlsread('data.xlsx',2);

fleet = xlsread('Fleet200.xlsx',1);

Factz = xlsread('GeneticR.xlsx',1);

Factz2 = xlsread('GeneticR2.xlsx',1);

%% 1st stratergy variables

% set the correct factors from the genetic algoritm

G = 7; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for ff = 1:9

Facz(ff,1) = Factz(ff,G);

Facz2(ff,1) = Factz2(ff,1);

end

% Functions:

% Exponential = 1

% Gaussian = 2

% Linear = 3

for i = 1:3

Fxii = i;

if Fxii == 3

Facz(:,1) = Facz2(:,1);

end

[ZLow,FCostKeeper,SolnKeeper] = ABSM(Fxii);

125



FCost(:,i) = FCostKeeper;

end

for i = 1:3

BestSoln(1,i) = min(FCost(:,i));

end

figure(1)

Sorted = sort(FCost(:,1),'descend');

Sorted2 = sort(FCost(:,2),'descend');

Sorted3 = sort(FCost(:,3),'descend');

plot(Sorted,'+b')

hold on

plot(Sorted2,'*r')

hold on

plot(Sorted3,'og')

legend('Exponential','Gaussian','Linear')

title('Pareto chart of output solutions')

xlabel('Itteration')

ylabel('Cost on Rands')

savefig('UT2S200.fig')

126



Appendix B Sample calculations

B.1 Monte Carlo methods

This section will provide a sample calculation to illustrate the use of the Monte Carlo

sampling as well as the use of linear, Gaussian and exponential utility functions as

applied in both the method proposed by Campbell [7] and a multi criteria decision

analysis. The calculation is as follows:

Let the environment conditions be:

Let the set of locations be:


L1 L2 L3 L4

Ta1 Ta2 Ta3 Ta4

Dist1 Dist2 Dist3 Dist4


Where:

Li represents the set of locations.

Tai is the calculated time of arrival of the aircraft.

Disti is the calculated distance from the current location to locations in question.

Let the agents initial conditions be:

Aircraft current location: Nc = L4

and on board group details are:


g1 g2 g3 g4

d1 d2 d3 d4

LAT1 LAT2 LAT3 LAT4


Where:

Nc is the current location of the aircraft.

127



gi is the group in question.

di is the associated destination.

LATi is the late arrival time of the associated group.

Let the groups on the ground at L4 be:



w1 w2 w3

dw1 dw2 dw3

EDTw1 EDTw2 EDTw3

LATw1 LATw2 LATw3

Cw1 Cw2 Cw3


Where:

wi are the groups on the ground.

dwi is the destination of the associated group wi.

EDTwi is the early departure time

LATwi is the late arrival time.

Cwi is the number of people in the group.

To then calculate the attractiveness of each group on the ground Equation B.1 is used.

u(s→ a) = CwiFc + M2FM2 (B.1)

Where:

u(s→ a) is the attractiveness of the group under consideration.

Fc is the factor that adjusts the attractiveness of capacity.

M2 is the number of matching destinations between the groups on the aircraft and the

groups on the ground.

FM2 is the factor that adjusts the matching groups attractiveness.

Let:

dw1 = d1 = d2 = d4 = dw1 = L1

dw2 = dw3 = d3 = L3

Cw1 = 1

Cw2 = 3

Cw3 = 2

128



and the factors are set to:

Fc = 1/20

FM2 = 1/2

It is now possible to calculate the attractiveness of the groups on the ground.

Table B.1: Example Data

M2i Cwi

w1 1 1

w2 2 3

w3 2 2

Using Equation B.1 its possible to calculate the atractivness of each group (see Ta-

ble B.2).

Table B.2: Values of attractiveness for each group

u(s→ a)

w1 0,55

w2 1,15

w3 1,1

A probability distribution can then be formulated (see Table B.3) and sampled from

using a Monte Carlo method.

Table B.3: Monte Carlo Process

Group u(s→ a) Cum. Utility Cum. Probability Range

w1 0,55 0,55 0,20 0 - 0.19

w2 1,15 1,7 0,61 0.2 - 0.6

w3 1,1 2,8 0,22 0.61 -0,99

If the random number produced falls within the range of a specific group that group

is then selected for pick up.

129



B.2 Multi criteria decision analysis sample calcula-

tion

Let P be the matrix containing the criteria for identifying candidate passengers.

P =


Tw1 Tu1 G2G1 Dist1

Tw2 Tu2 G2G2 Dist2
...

...
...

...

Twn Tun G2Gn Distn


Let F be the vector containing the weights for each of the factors of influence.

F =


f1

f2
...

fn


For each value of Pij, scale the values between 1 and 0 using Equation B.2.

x′ = x′min +
x− xmin

xrange

· x′range (B.2)

The initial utility’s are then calculated:

U =


Tw1 Tu1 G2G1 Dist1

Tw2 Tu2 G2G2 Dist2
...

...
...

...

Twn Tun G2Gn Distn

 ·


f1

f2
...

fn

 (B.3)

Each value of U is sent to a utility function, either exponential, Gaussian or linear, to

calculate the final utility of each of the potential moves.

u(s→ a) =
1

eui
(B.4)

130



These values are then sampled using Monte Carlo sampling and the selected passenger

or destination is chosen.

131



Appendix C Booking lists

Table C.1: S10 booking list.

Group No. EDT LAT Origin Destination No. of people in group

1 360 1080 4 7 1

2 360 1080 4 5 1

3 660 930 5 8 2

4 660 900 5 6 5

5 360 1080 6 8 1

6 360 1080 7 5 1

7 360 1080 7 8 1

8 660 930 7 5 2

9 360 1080 8 5 1

10 815 870 21 20 11

Table C.2: S39 booking list.

Group No. EDT LAT Origin Destination No. of people in group

1 390 1065 10 7 1

2 390 1065 10 7 1

3 390 1065 7 3 1

4 390 1065 7 10 1

5 390 1065 7 3 1

6 390 1065 7 10 1

7 390 1065 7 10 1

8 390 1065 10 7 1

9 390 1065 10 7 1

10 390 1065 7 10 1

132



Table C.2: S39 booking list.

Group No. EDT LAT Origin Destination No. of people in group

11 390 1065 10 7 1

12 390 1065 7 26 1

13 390 1065 4 3 1

14 390 1065 4 3 2

15 420 630 26 3 8

16 390 1065 11 7 1

17 390 1065 7 11 1

18 390 1065 11 4 3

19 390 1065 7 8 1

20 390 1065 3 7 1

21 390 1065 3 7 1

22 390 1065 7 11 2

23 610 930 3 11 2

24 390 930 7 4 1

25 390 1065 7 4 1

26 390 1065 7 4 1

27 390 1065 7 4 1

28 390 1065 7 7 1

29 865 930 7 4 4

30 660 900 8 11 2

31 660 900 8 17 1

32 660 750 10 7 2

33 660 780 8 10 2

34 775 825 8 4 1

35 870 930 7 17 6

36 870 930 7 8 2

37 775 825 17 4 2

38 870 930 7 8 2

39 870 930 7 8 3

133



Table C.3: S40 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

1 360 1080 9 7 1

2 360 1080 7 8 3

3 770 920 7 4 2

4 445 540 8 7 2

5 765 930 7 9 4

6 360 1080 8 13 1

7 770 920 7 4 2

8 660 930 11 3 2

9 360 1080 11 7 2

10 360 1080 10 7 1

11 360 930 7 4 1

12 360 1080 7 8 1

13 660 1080 4 7 1

14 660 930 3 16 2

15 360 1080 8 13 1

16 360 1080 13 8 1

17 660 930 17 8 4

18 540 660 4 3 3

19 360 1080 13 14 1

20 660 930 4 3 2

21 360 1080 8 13 1

22 770 925 7 12 1

23 660 930 19 7 6

24 360 1080 7 8 1

25 750 930 7 17 2

26 360 1080 9 7 1

27 360 1080 8 13 1

28 770 930 7 14 2

29 745 840 16 7 2

30 360 1080 13 7 11

31 360 1080 7 4 1

32 660 930 4 3 2

33 660 900 1 2 1

134



Table C.3: S40 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

34 360 1080 7 3 1

35 360 1080 7 8 1

36 660 910 2 3 1

37 360 1080 6 7 1

38 660 930 10 4 2

39 660 930 4 8 2

40 660 900 1 2 1

Table C.4: S99 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

1 390 1065 7 9 1

2 390 1065 19 7 1

3 390 1065 19 7 2

4 390 930 7 19 1

5 390 1065 7 19 2

6 390 1065 7 10 1

7 390 1065 7 10 1

8 390 1065 7 10 1

9 390 1065 7 10 1

10 390 1065 7 2 1

11 390 1065 2 7 1

12 390 1065 2 7 1

13 390 1065 7 2 1

14 660 1065 26 7 1

15 390 1065 7 17 13

16 390 1065 7 9 4

17 390 1065 7 9 6

18 390 1065 7 9 1

19 390 1065 9 7 1

20 390 1065 7 9 1

21 390 1065 9 7 1

22 390 1065 9 7 1

135



Table C.4: S99 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

23 390 1065 17 7 1

24 420 630 6 3 9

25 420 630 6 3 2

26 420 630 6 3 2

27 420 630 6 3 1

28 420 630 6 3 1

29 420 630 3 6 9

30 420 630 3 6 2

31 420 630 3 6 2

32 420 630 3 6 2

33 420 630 3 6 1

34 390 1065 7 27 1

35 390 1065 7 27 1

36 390 1065 7 27 1

37 390 1065 7 27 1

38 390 1065 7 27 1

39 390 1065 7 27 1

40 390 1065 8 7 1

41 390 1065 7 2 1

42 390 1065 7 27 1

43 390 1065 8 7 1

44 390 1065 8 7 1

45 390 1065 7 27 1

46 390 1065 7 8 1

47 390 1065 11 7 1

48 390 1065 7 27 1

49 390 1065 7 2 2

50 390 930 11 7 1

51 390 1065 7 11 1

52 390 1065 7 27 1

53 390 1065 7 27 1

54 660 930 9 7 2

55 870 1005 7 19 3

136



Table C.4: S99 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

56 610 930 7 19 2

57 660 930 4 7 2

58 390 1065 7 4 1

59 390 1065 7 4 1

60 390 1065 7 4 1

61 390 1065 27 7 1

62 390 1065 7 7 1

63 390 1065 3 7 1

64 660 930 10 3 2

65 360 930 7 26 2

66 660 930 27 7 2

67 660 930 4 9 4

68 660 750 11 7 2

69 840 930 7 8 9

70 840 930 7 8 9

71 645 750 8 7 2

72 660 930 17 11 2

73 660 960 10 3 2

74 360 930 7 2 2

75 660 930 27 7 2

76 660 745 4 7 2

77 660 930 2 8 4

78 870 930 7 8 1

79 660 930 4 3 9

80 660 930 4 3 2

81 590 720 4 7 2

82 660 900 2 11 2

83 660 735 9 7 2

84 660 750 11 7 3

85 645 750 8 7 4

86 660 930 27 7 2

87 390 1065 7 4 3

88 660 930 4 11 2

137



Table C.4: S99 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

89 660 750 4 7 4

90 660 900 4 11 8

91 390 1065 7 19 2

92 660 900 19 11 4

93 660 710 11 7 4

94 600 755 19 3 2

95 585 720 27 7 2

96 660 750 4 3 2

97 850 1000 7 2 4

98 820 950 7 2 2

99 840 930 7 2 1

Table C.5: S102 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

1 945 1100 7 12 2

2 360 1080 7 2 4

3 360 1080 7 2 1

4 360 1080 2 14 1

5 360 1080 2 14 1

6 360 1080 13 7 11

7 360 1080 9 7 1

8 660 930 7 2 3

9 360 1080 8 7 1

10 360 1080 7 10 1

11 360 1080 7 10 2

12 360 1080 7 8 1

13 360 1080 11 7 2

14 360 1080 13 14 1

15 660 900 7 1 1

16 360 1080 7 3 1

17 360 1080 7 8 3

18 360 1080 7 11 1

138



Table C.5: S102 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

19 360 1080 7 8 1

20 360 1080 7 8 1

21 360 1080 7 8 1

22 360 1080 8 7 1

23 360 1080 8 7 1

24 360 1080 8 7 1

25 360 1080 8 7 1

26 360 1080 8 7 1

27 360 1080 8 7 1

28 360 1080 8 7 1

29 360 1080 8 7 1

30 360 1080 8 7 1

31 360 1080 8 7 1

32 360 1080 7 4 1

33 660 930 7 8 2

34 660 910 2 3 1

35 360 1080 4 7 1

36 360 1080 7 10 1

37 360 1080 10 4 1

38 360 1080 7 10 1

39 360 1080 10 4 1

40 360 1080 7 13 2

41 360 1080 3 3 1

42 360 1080 7 4 1

43 360 1080 7 3 1

44 770 930 7 23 4

45 600 930 3 18 2

46 660 930 15 9 2

47 660 930 15 9 2

48 660 930 15 9 1

49 660 930 9 11 2

50 660 930 4 11 2

51 660 930 2 8 2

139



Table C.5: S102 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

52 660 900 6 4 4

53 660 900 6 4 2

54 660 930 10 4 2

55 660 930 10 4 2

56 660 930 10 4 2

57 445 540 8 7 2

58 755 840 9 7 2

59 660 900 9 4 2

60 660 930 9 11 2

61 795 930 7 9 2

62 660 840 8 3 2

63 880 930 3 18 2

64 660 840 19 3 2

65 880 930 3 20 2

66 660 930 10 9 2

67 660 930 4 9 2

68 750 840 14 7 2

69 660 930 22 24 2

70 660 930 16 10 2

71 660 930 10 23 2

72 785 880 16 7 2

73 660 910 16 3 2

74 660 900 4 3 2

75 880 930 3 18 2

76 660 930 16 9 2

77 600 930 3 9 2

78 770 840 4 7 2

79 770 920 7 4 2

80 770 920 7 4 2

81 770 920 7 4 1

82 770 920 7 4 2

83 770 900 7 2 2

84 770 890 7 10 3

140



Table C.5: S102 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

85 630 930 7 9 2

86 745 840 16 7 2

87 660 900 4 3 2

88 750 930 3 20 2

89 660 930 11 2 2

90 795 930 7 9 3

91 760 840 25 7 2

92 660 930 1 4 3

93 660 930 1 4 2

94 660 930 1 4 1

95 660 930 2 1 4

96 660 930 2 1 1

97 540 660 4 3 3

98 840 895 3 18 3

99 540 660 4 3 3

100 840 895 3 18 3

101 540 660 4 3 1

102 840 895 3 18 1

Table C.6: S139 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

1 390 1065 3 7 1

2 390 1065 3 7 2

3 390 1065 19 7 1

4 390 1065 19 7 1

5 390 1065 19 7 1

6 390 1065 19 7 1

7 390 1065 19 7 1

8 390 1065 19 7 1

9 390 1065 4 7 1

10 390 1065 19 7 1

11 390 1065 7 19 5

141



Table C.6: S139 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

12 390 1065 7 19 8

13 390 1065 10 7 1

14 390 1065 7 10 1

15 390 1065 7 2 1

16 390 1065 2 7 1

17 390 1065 2 7 1

18 390 1065 7 2 1

19 390 1065 7 2 1

20 390 1065 8 7 1

21 390 1065 8 7 1

22 390 1065 8 7 1

23 390 1065 8 7 1

24 390 1065 9 7 1

25 390 1065 9 7 1

26 390 1065 7 9 1

27 390 1065 7 17 13

28 390 1065 9 7 2

29 390 1065 7 17 3

30 390 930 7 9 4

31 390 1065 7 9 5

32 390 1065 7 9 8

33 390 1065 7 9 1

34 390 1065 7 9 1

35 390 1065 7 9 1

36 390 1065 7 9 1

37 390 1065 17 7 1

38 390 1095 17 7 1

39 390 1065 9 7 1

40 390 1095 17 7 1

41 390 1065 7 9 1

42 390 1095 17 7 1

43 390 1065 9 7 1

44 390 1095 17 7 1

142



Table C.6: S139 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

45 390 1065 9 7 1

46 390 1065 7 9 1

47 390 1065 7 9 1

48 390 1065 7 9 1

49 390 1065 9 7 1

50 390 1095 17 7 1

51 390 1065 9 7 1

52 390 1065 7 9 1

53 390 1065 7 9 1

54 390 1065 9 7 1

55 390 1065 9 7 1

56 390 1065 7 9 1

57 390 1065 7 8 1

58 390 1065 7 8 2

59 390 1065 7 11 2

60 390 1065 7 11 7

61 390 1065 7 8 1

62 390 1065 7 11 1

63 390 1065 7 2 1

64 390 1065 7 8 1

65 390 1110 11 7 1

66 390 1065 2 7 1

67 390 1065 7 8 1

68 390 1065 7 11 1

69 390 1065 7 11 1

70 390 1065 2 7 1

71 390 1065 8 3 1

72 390 1065 19 7 1

73 390 1065 7 8 1

74 660 750 8 7 1

75 660 930 7 10 1

76 620 930 7 11 1

77 870 990 7 27 2

143



Table C.6: S139 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

78 660 780 9 8 1

79 390 1065 7 10 4

80 660 900 8 4 2

81 440 660 11 3 2

82 390 1065 4 7 1

83 390 1065 7 4 1

84 390 1065 7 4 13

85 390 1065 7 4 6

86 390 1065 7 4 7

87 390 1065 4 7 1

88 390 1065 7 4 1

89 390 1065 4 3 1

90 390 1065 4 3 1

91 390 1065 4 7 2

92 390 1065 4 7 1

93 390 1065 27 7 1

94 390 1065 7 7 1

95 390 1135 9 7 1

96 390 1065 4 10 2

97 660 780 4 3 2

98 360 840 3 18 2

99 660 930 8 3 2

100 870 930 7 8 4

101 360 840 3 18 2

102 660 930 8 3 2

103 480 810 8 28 8

104 360 985 7 27 2

105 660 930 17 7 2

106 660 750 9 7 2

107 660 750 4 7 2

108 360 930 7 4 4

109 660 930 27 7 4

110 605 930 7 8 2

144



Table C.6: S139 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

111 660 780 4 3 5

112 660 750 4 8 2

113 695 780 11 7 2

114 660 750 8 7 2

115 360 930 3 4 2

116 750 930 18 3 2

117 600 930 30 8 2

118 660 930 4 3 2

119 845 870 3 20 2

120 865 930 7 4 2

121 610 750 3 8 2

122 540 600 18 3 2

123 360 985 7 27 2

124 700 930 8 7 2

125 660 930 10 4 4

126 660 780 4 3 4

127 660 840 3 18 4

128 870 985 7 27 4

129 610 930 3 4 4

130 360 690 3 4 2

131 545 930 20 3 2

132 660 810 9 8 2

133 665 750 9 7 2

134 660 780 11 7 2

135 870 985 7 27 2

136 665 750 9 7 8

137 865 930 7 4 2

138 660 750 2 7 2

139 795 900 7 2 7

145



Table C.7: S200 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

1 650 750 19 7 1

2 390 1065 7 19 1

3 390 1065 7 19 1

4 390 1065 7 19 2

5 390 1065 10 7 1

6 390 1065 7 10 1

7 390 1065 7 10 1

8 390 1065 10 7 1

9 390 1065 7 10 2

10 390 1065 7 10 2

11 390 1065 2 7 1

12 390 1065 2 7 1

13 390 1065 2 7 1

14 390 1065 26 7 1

15 635 930 3 7 1

16 390 1065 7 17 13

17 390 1065 7 9 5

18 390 1065 7 17 1

19 390 1065 7 9 1

20 390 1065 7 9 1

21 390 1065 7 9 1

22 390 1065 17 7 1

23 390 1065 7 9 1

24 420 630 6 3 1

25 420 630 6 3 10

26 420 630 6 3 4

27 420 630 6 3 1

28 420 630 3 6 1

29 420 630 3 6 10

30 420 630 3 6 4

31 360 1065 7 8 1

32 390 1065 11 7 1

33 390 1075 7 8 1

146



Table C.7: S200 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

34 390 1065 7 8 1

35 390 1065 7 8 2

36 390 1075 7 8 2

37 390 1075 7 8 2

38 390 1065 4 7 1

39 390 1065 7 8 1

40 390 1065 7 8 1

41 390 1065 8 13 1

42 390 1065 13 8 1

43 390 1065 8 7 1

44 390 1065 8 13 1

45 390 1065 7 8 1

46 390 1065 7 8 1

47 390 1065 13 8 1

48 390 1065 8 7 1

49 390 1065 7 8 1

50 390 1065 8 7 1

51 390 1065 8 13 1

52 390 1065 13 8 1

53 390 1065 13 8 1

54 390 1065 8 13 1

55 390 1065 13 8 1

56 390 1065 7 8 1

57 390 1065 13 8 1

58 390 1065 8 7 1

59 390 1065 8 13 1

60 390 1065 13 8 1

61 390 1065 8 13 1

62 390 1065 8 13 1

63 390 1065 13 8 1

64 390 1065 13 8 1

65 390 1065 8 13 1

66 390 1065 7 8 1

147



Table C.7: S200 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

67 390 1065 7 8 1

68 390 1065 13 8 1

69 390 1065 8 13 1

70 390 1065 8 13 1

71 390 1065 7 8 1

72 390 1065 13 8 1

73 390 1065 8 7 1

74 390 1065 13 8 1

75 390 1065 8 13 1

76 390 1065 8 7 1

77 390 1065 11 7 1

78 390 1065 13 8 1

79 390 1065 8 13 1

80 390 1065 7 13 1

81 390 1065 8 13 1

82 390 1065 13 8 1

83 390 1065 7 8 1

84 390 1065 8 7 1

85 390 1065 13 8 1

86 390 1065 13 8 1

87 390 1065 8 7 1

88 390 1065 8 13 1

89 390 1065 7 8 1

90 390 1065 13 8 1

91 390 1065 13 8 1

92 390 1065 8 13 1

93 390 1065 13 8 1

94 390 1065 13 8 1

95 390 1065 8 13 1

96 390 1065 8 7 1

97 390 1065 8 13 1

98 390 1065 13 8 1

99 390 1065 7 8 1

148



Table C.7: S200 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

100 390 1065 8 13 1

101 390 1065 7 8 1

102 390 1065 8 7 1

103 390 1065 13 8 1

104 390 1065 13 8 1

105 390 1065 13 8 1

106 390 1065 8 13 1

107 390 1065 7 8 1

108 390 1065 8 13 1

109 390 1065 8 13 1

110 390 1065 13 8 1

111 390 1065 13 8 1

112 390 1065 8 13 1

113 390 1065 8 13 1

114 390 1065 8 7 1

115 390 1065 7 8 1

116 390 1065 8 7 1

117 390 1065 8 7 1

118 390 1065 8 13 1

119 390 1065 8 13 1

120 390 1065 7 6 1

121 390 1065 7 6 1

122 860 930 7 17 6

123 660 930 9 2 2

124 825 930 3 10 2

125 660 930 9 8 2

126 660 930 4 7 4

127 690 930 27 7 2

128 690 930 27 7 4

129 390 1065 7 4 1

130 390 1065 7 4 2

131 390 1065 7 4 2

132 390 1065 7 4 5

149



Table C.7: S200 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

133 390 1065 7 4 1

134 390 1065 7 4 1

135 390 1065 7 4 1

136 390 1065 7 4 1

137 390 1065 4 7 1

138 390 1065 4 7 1

139 390 1065 7 4 1

140 390 1065 4 7 1

141 390 1065 4 7 1

142 390 1065 4 7 1

143 390 1065 4 7 1

144 390 1065 7 4 1

145 390 1065 7 7 1

146 390 1065 7 6 1

147 390 1065 7 6 1

148 635 750 4 7 2

149 660 930 10 17 2

150 660 930 8 3 2

151 660 930 10 3 4

152 820 930 3 20 4

153 660 930 4 3 2

154 820 930 3 18 2

155 660 900 17 4 4

156 660 930 11 8 2

157 660 740 17 7 2

158 660 900 2 17 2

159 840 930 3 10 7

160 750 930 18 3 7

161 820 900 3 4 4

162 755 820 20 3 4

163 860 930 7 4 2

164 660 930 10 8 2

165 660 900 9 4 2

150



Table C.7: S200 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

166 660 900 14 11 4

167 660 930 9 8 2

168 660 900 8 4 2

169 645 750 8 7 2

170 660 930 4 3 6

171 820 930 3 18 6

172 660 780 4 3 2

173 610 930 3 8 2

174 360 930 8 17 2

175 610 930 3 8 3

176 540 930 18 3 3

177 720 780 8 7 3

178 660 900 17 11 2

179 700 930 11 19 2

180 650 755 11 7 2

181 660 900 19 4 1

182 660 930 8 11 4

183 660 930 4 9 2

184 610 750 3 8 4

185 660 910 4 26 2

186 660 900 19 9 2

187 800 900 3 4 2

188 750 930 18 3 2

189 660 780 8 3 4

190 840 930 7 9 3

191 700 930 11 19 2

192 665 750 9 7 2

193 660 930 9 8 1

194 810 930 7 8 2

195 870 985 7 27 4

196 650 755 11 7 2

197 660 755 8 7 2

198 660 900 2 4 2

151



Table C.7: S200 - booking list.

Group No. EDT LAT Origin Destination No. of people in group

199 840 1000 7 2 4

200 840 930 7 2 1

C.1 Fleet of aircraft

Table C.8: Fleet for booking list S10, S40 and S120.

Plane No. Type Starting Location

1 1 7

2 1 7

3 1 7

4 1 4

5 1 18

6 2 3

7 2 7

8 2 7

9 2 7

10 2 7

11 2 17

12 2 3

13 2 8

14 2 19

152



Table C.9: Fleet for booking list 39.

Plane No. Type Starting Location

1 2 7

2 2 11

3 2 3

4 1 7

5 1 7

6 2 8

7 2 4

8 1 7

9 1 7

10 1 7

11 2 4

12 2 8

13 2 3

14 2 7

Table C.10: Fleet for booking list S99.

Plane No. Type Starting Location

1 2 7

2 2 7

3 2 3

4 1 7

5 1 8

6 2 7

7 1 3

8 2 3

9 2 7

10 2 26

11 1 7

12 1 7

13 2 7

14 1 3

153



Table C.11: Fleet for booking list S139.

Plane No. Type Starting Location

1 2 17

2 2 7

3 2 7

4 1 7

5 2 7

6 1 7

7 2 3

8 1 7

9 1 7

10 1 7

11 2 7

12 2 7

13 2 3

14 2 17

15 1 7

16 1 7

17 1 7

18 1 7

154



Table C.12: Fleet for booking list S200.

Plane No. Type Starting Location

1 2 8

2 2 7

3 2 2

4 1 18

5 1 7

6 1 7

7 2 7

8 2 9

9 1 7

10 1 18

11 2 7

12 2 9

13 2 2

14 2 8

15 2 8

16 2 7

17 1 7

18 1 18

19 1 7

20 1 18

155



Appendix D ABSM generated schedules

Table D.1: Schedule S10.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

1
4 360 21 397 0

21 815 20 867 11 10

2

7 670 8 717 4 7 6 8

8 717 4 755 4 9 6 8

4 755 5 775 5 2 9 6 8

5 775 6 814 5 4

6 814 5 854 1 5

5 854 8 893 3 3 5

8 893 4 931 0

4 931 7 987 1 1

Table D.2: Schedule S39.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2

11 390 7 431 4 20 21

7 431 4 487 5 4 21

4 487 3 547 5 3 4

3 610 7 705 4 2 1

7 705 11 746 5 11 2

11 746 7 787 0

7 865 4 921 5 5 7

4 921 7 977 0

7 977 8 1024 5 8 10

8 1024 10 1057 4 10

1 7 870 17 909 6 12

156



Table D.2: Schedule S39.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2 8 775 4 813 1 17

2
4 390 10 430 0

10 430 7 457 5 18

1 7 870 8 910 7 9

2
7 390 26 423 0

26 423 3 481 8 23

2
4 390 8 428 0

8 660 17 684 1 15

2

8 660 8 670 2 14

8 670 11 688 4 16 14

11 688 10 717 2 16

10 717 7 743 2 19

2

7 390 26 429 4 13 6

26 429 17 477 3 6

17 660 4 712 5 22 6

Table D.3: Schedule S40.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

1
7 360 19 396 0

19 660 7 696 6 28

1

7 770 7 780 6 15

7 780 4 827 10 12 11 15

4 827 8 860 6 7 12 11

8 860 14 873 4 12 11

14 873 17 891 2 11

17 891 13 913 0

13 913 7 961 11 25

1

7 855 7 865 10 9 14

7 865 8 905 10 9 14

8 905 9 920 4 9

9 920 8 936 2 18

8 936 13 956 6 17 18

13 956 8 976 4 24 23 18

157



Table D.3: Schedule S40.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

8 976 7 1016 3 24 18

7 1016 14 1056 1 24

1 4 540 3 591 3 5

2

3 660 16 724 2 3

16 745 4 759 2 26

4 759 10 799 3 4 26

10 799 7 825 4 19 4 26

2

7 360 4 416 1 13

4 660 3 721 5 6 13

3 721 1 801 0

1 801 2 832 2 1

2
7 360 10 386 0

10 660 4 700 2 20

2 7 770 12 834 1 10

2
17 660 19 675 4 27

19 735 8 762 4 27

2

3 360 8 449 0

8 449 11 467 2 16

11 467 6 496 4 22 16

6 496 7 531 5 8 22 16

2

8 360 11 378 0

11 660 2 676 2 21

2 676 3 774 3 2 21

Table D.4: Schedule S99.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2

7 390 7 400 3 30

7 400 26 439 5 34 30

26 439 19 486 3 30

2

7 390 2 428 5 16

2 660 7 698 4 2

7 698 8 745 5 21 2

8 745 7 792 3 36

158



Table D.4: Schedule S99.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

7 850 2 888 5 18 19

2 888 7 926 2 1

7 926 10 952 5 28 27

10 952 7 978 1 28

7 978 7 988 4 32 28

7 988 19 1030 4 32 28

19 1030 11 1049 1 28

1

7 390 9 433 11 25

9 433 19 455 7 38 39

19 455 7 490 10 45 38 39

7 840 7 850 9 23

7 870 8 910 10 24 23

8 910 4 943 0

4 943 11 979 8 9

11 979 17 997 8 9

17 997 7 1036 9 43 9

1

8 360 4 393 0

4 660 3 711 11 7

3 711 4 762 6 5

4 762 6 789 10 10 5

6 789 9 821 4 10

1

3 360 4 411 0

4 411 11 448 10 11

11 448 7 482 11 41 42

7 482 10 506 6 20

10 660 4 695 10 40 20

4 695 3 746 4 40

2

3 390 7 485 1 6

7 485 7 495 4 31 26

7 495 19 537 4 31 26

19 600 9 625 4 47 26

9 625 4 669 2 47

4 669 3 729 4 12 47

2
7 360 6 395 0

159



Table D.4: Schedule S99.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

6 420 3 497 4 14

2

26 660 7 699 1 48

7 820 2 858 4 17 15

2 858 11 874 2 3

1

7 390 17 429 11 29

17 660 7 699 2 44

7 840 11 875 11 22 44

11 875 8 891 9 22

8 891 4 924 6 37

4 924 7 971 6 37

1

7 390 27 441 11 35

27 660 7 711 9 49 51 50

7 711 19 747 0

19 747 11 765 4 46

2

7 610 4 666 2 33

4 666 4 676 4 8 33

4 676 19 729 4 8 33

19 729 7 770 2 8

1

3 360 3 370 10 4

3 370 6 434 10 4

6 434 3 499 11 13

160



Table D.5: Schedule S102.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

1

7 780 4 827 11 38 28

4 827 9 864 8 16 15 38

9 864 11 883 10 43 15 38

11 883 23 905 6 51 38

23 905 2 930 2 51

2 930 7 962 2 3

7 962 8 1002 11 27 29 3

8 1002 4 1035 4 27 3

4 1035 14 1071 2 3

1

7 360 13 408 0

13 408 7 456 11 52

7 456 6 486 0

6 660 4 688 6 21

4 770 16 783 2 18

16 783 25 817 4 60 18

25 817 7 848 4 60 18

1

7 770 2 802 11 35 30 25 34 24

2 802 11 817 6 35 30 34

11 817 10 843 5 30 34

10 843 8 872 8 47 30

8 872 4 904 6 47

1

4 540 3 591 7 20

3 890 18 916 6 11

18 916 8 1004 0

8 1004 7 1044 11 39

1

18 360 3 386 0

3 840 3 850 7 13

3 850 3 860 8 7 13

3 860 18 886 7 13

2

3 600 16 664 2 9

16 785 9 825 4 57 9

9 825 7 876 2 57

7 876 22 903 0

161



Table D.5: Schedule S102.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

22 903 24 921 2 62

2

7 660 1 710 5 22 37 31

1 710 9 734 5 2 37 31

9 734 16 774 3 2 37

16 774 13 818 5 59 2 37

13 818 4 866 4 53 59 2

4 866 9 910 3 53 59

9 910 14 923 1 53

2

7 360 10 386 5 33

10 386 16 425 2 46

16 660 16 670 4 56 46

16 690 4 704 4 56 46

4 704 25 747 2 56

25 760 10 785 4 63 56

10 785 7 811 2 63

2

7 360 10 386 0

10 660 10 670 2 48

10 670 15 693 4 49 48

15 693 23 707 4 49 48

23 707 16 735 2 48

16 735 9 775 4 58 48

9 775 2 799 2 58

2 799 3 897 3 4 58

2

17 360 7 406 0

7 795 9 846 5 32

9 846 4 890 2 45

4 890 7 946 1 14

7 946 3 1041 2 26

2

3 360 15 442 0

15 660 9 688 5 55

9 755 14 769 2 44

14 769 25 790 4 54 44

25 790 7 826 4 54 44

2

8 445 9 462 2 40

162



Table D.5: Schedule S102.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

9 462 11 482 3 42 40

11 482 7 522 5 50 42 40

7 945 12 1009 2 36

2

19 660 2 676 2 61

2 676 8 700 4 5 61

8 700 16 734 4 41 61

16 734 3 798 4 41 61

3 880 20 912 4 10 8

Table D.6: Schedule S139.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2

17 360 7 406 0

7 870 8 917 4 22

8 917 9 934 4 42

9 934 7 984 5 47 42

2
7 360 2 398 0

2 660 7 698 2 2

2

7 360 11 401 0

11 440 18 551 2 53

18 551 3 580 4 59 53

1
7 390 8 430 7 21

8 480 28 663 8 45

2

7 660 10 686 5 28 16

10 686 2 715 4 16

2 715 7 753 4 1

7 753 9 804 4 24

1

7 620 11 655 11 32 31

11 660 9 678 5 54 55

9 678 7 721 7 48 54 55

2
3 360 4 421 4 5

4 660 8 698 2 14

1 7 360 4 407 10 20

1

7 390 4 437 11 19

163



Table D.6: Schedule S139.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

4 660 7 707 8 13 12

7 707 17 746 11 33

17 746 7 785 6 56

7 785 9 828 8 26

9 828 7 871 11 46

7 871 9 914 6 25

2

7 390 10 416 5 29

10 670 7 696 5 51 52

7 696 4 752 4 52

2

7 390 19 432 5 35

19 432 8 458 0

8 670 3 759 5 39

3 759 20 791 0

20 791 3 823 2 61

2

3 610 8 699 2 6

8 700 4 738 4 44 41

4 738 7 794 4 15 44

7 794 8 841 4 23 15

8 841 10 874 2 15

2

17 660 8 684 2 57

8 684 7 732 5 43 57

7 752 27 813 4 37

27 813 7 874 5 62

1

7 390 9 433 11 27

9 685 7 728 10 49

7 795 2 827 9 30 17

2 827 11 842 2 30

1

7 390 4 437 11 18

4 660 3 711 11 11

3 711 4 762 8 7 4

4 762 3 813 6 10 7

3 813 18 839 8 8 7

18 839 3 865 2 58

3 865 7 944 5 9 3

164



Table D.6: Schedule S139.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

7 944 20 1029 2 9

1 7 880 27 931 8 38

1

7 400 19 436 11 34 36

19 436 17 450 11 60 34

17 450 9 468 8 60

9 660 8 675 11 50 60

8 675 7 715 8 60

7 715 30 751 0

30 751 8 817 2 63

Table D.7: Schedule S200.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2

8 360 7 407 2 49

7 810 17 856 5 35 29 49

17 856 8 880 2 29

8 880 13 903 0

13 903 8 925 4 64

2

7 390 6 425 4 37

6 425 10 443 4 37

10 453 19 488 4 37

19 488 17 503 0

17 660 7 706 2 68

2 2 660 4 708 2 3

4 708 26 737 4 18 17

26 737 9 782 3 76 17

9 782 11 802 1 76

11 802 8 820 3 60 76

8 820 7 867 1 76

2 18 360 6 437 0

6 437 3 502 5 20

3 502 20 530 0

20 755 3 783 4 75

1 7 390 8 430 11 27

165



Table D.7: Schedule S200.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

8 430 7 470 11 42

7 470 17 509 11 34

17 660 8 682 7 66 69 67

8 682 11 698 11 45 66 69 67

11 700 4 737 11 58 61 66 67

4 737 7 784 11 14 58 61 66

7 784 7 794 10 32 61

7 794 10 817 11 33 32 61

10 817 19 847 7 57 33 61

19 847 8 870 3 57 33

8 870 13 890 1 33

1 7 390 6 420 9 30

6 430 9 461 9 30

9 665 14 678 2 52

14 678 11 693 6 65 52

11 693 7 728 6 59 52

2 7 360 3 455 0

3 455 6 533 4 6

2 9 660 8 677 5 53

8 720 7 767 5 41 44

7 860 4 916 2 24

1 7 390 8 430 11 26

8 430 13 450 11 46

13 450 8 470 11 62

8 660 3 734 6 39

3 820 18 846 8 10

1 18 750 3 776 9 71

3 825 7 904 10 7 9

7 904 10 927 9 9

2 7 850 9 901 5 28 31

9 901 8 917 2 28

2 9 670 14 684 4 51 50

14 724 2 745 4 51 50

166



Table D.7: Schedule S200.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

2 745 4 794 2 51

2 2 660 19 676 2 2

19 676 17 691 5 73 74 2

17 691 9 711 3 73 74

9 711 10 750 1 73

10 750 4 790 5 56 73

4 790 3 851 4 56

2 8 660 13 682 5 40 48

13 682 14 703 2 40

14 733 4 775 2 40

2 8 645 19 672 4 43

19 672 7 713 5 72 43

7 870 27 931 4 38

27 931 10 1008 0

10 1008 7 1034 2 54

2 7 840 2 878 5 21

2 878 7 916 3 1

7 916 4 972 5 22

4 972 7 1027 0

7 1027 6 1062 4 25

1 7 860 10 883 6 36

10 883 17 915 8 55 36

17 915 8 937 0

8 937 13 957 11 47

13 957 8 977 11 63

8 977 4 1010 0

4 1010 7 1057 7 12

1 18 540 3 566 3 70

3 610 4 661 9 8

4 661 8 694 11 13 8

8 694 14 707 2 13

14 707 7 747 2 13

7 747 27 798 0

27 798 7 850 6 77

167



Table D.7: Schedule S200.

Type Origin Departure Dest. Arrival Cap. at Origin Groups

7 850 14 890 0

1 7 390 4 437 11 23

4 670 3 721 10 16

3 800 4 851 6 4

1 18 360 3 386 0

3 420 6 484 11 5

6 484 3 549 11 19

3 820 20 848 4 11

168



Appendix E List of cities

Table E.1: List of Locations.

No. X - Coord Y - Coord Code Location Name

1 23,041 -18,771 XOR lechwe islan camp

2 22,737 -19,386 XIG xigere

3 25,163 -17,831 BBK chobe

4 23,644 -18,541 CBE linyanti

5 23,493 -18,272 KWD lianshulu

6 23,435 -19,197 SWI moremi tented camp

7 23,428 -19,973 MUB maun

8 22,815 -18,955 VUM vumburu south

9 22,597 -18,955 JAO jacana

10 23,377 -19,467 CTB chitabe trails

11 22,795 -19,209 MOM little mombo

12 25,151 -20,456 TSO jacks camp

13 22,424 -18,824 SRA seronga

14 22,703 -19,018 OMD duba plains

15 23,162 -19,111 SHN shinde camp

16 23,518 -18,57 SLI selinda

17 22,476 -19,276 HND tubu rr

18 25,819 -17,823 LVI river club

19 22,551 -19,415 ABU abu

20 25,845 -18,101 VFA vic falls

21 24,179 -17,635 MLO -

22 23,05 -19,549 XXB Eagle Island

23 23,283 -19,105 KWZ Kwara

24 22,789 -19,491 NXB Nxabega

169



Table E.1: List of Locations.

No. X - Coord Y - Coord Code Location Name

25 22,909 -19,311 PJO Chiefs camp

26 23,7501 -19,1245 BKA Banoka

27 24,02129 -21,4876 KHP Kalahari Plains

28 29,10615 -22,1872 TUI Tuli

29 27,46234 -21,1629 FRW Francistown

30 23,65011 -20,9751 DVL Deception Valley Lodge

170


	Declaration
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Purpose of the study
	Background
	Wilderness air
	Research motivation
	Objectives and research questions
	Dissertation overview

	Literature Review
	Multi-vehicle routing problems
	Pick up and delivery problems (PDP)
	The dial-a-ride problem (DARP)
	The dial-a-flight problem (DAFP)
	DAFP formulation
	Parameters used to model the DAFR

	Agent based simulation and modelling (ABSM)
	Agents
	Deliberate agents
	Utility based agents
	Hybrid agents

	Agent environments
	Application of ABSM
	Applications in operational behaviour
	Applications in optimisation

	Current models and software
	Agentology
	Ant colony optimisation (ACO)
	Genetic Algorithms (GA)
	Monte Carlo methods
	Multi-criteria decision analysis (MCDA)

	Methodology
	The Dial-a-flight problem
	Wilderness air problem description
	Benchmarking and manual schedules

	ABSM design
	Agent perception and action
	Reactivity
	Utility
	Environment of the DAFP

	Model design and global structure
	Global structure
	Agent selection strategies
	Drop off function
	Pick up function
	Relocate Function
	Monte Carlo sampling and utility functions
	GA weight factor optimisation

	Model descriptions

	Observations and Results
	Testing procedure
	Genetic algorithm testing
	Utility function tests
	Repeatability
	Model A tests
	Model B tests
	Analysis of results
	Summary of results

	Discussion
	Conclusions and Recommendation
	Conclusions
	Recommendations

	MatLab Code
	Main code
	Drop off function
	Fly function
	Pick up function
	GA Code
	Repeatability Code
	Utility test Code

	Sample calculations
	Monte Carlo methods
	Multi criteria decision analysis sample calculation

	Booking lists
	Fleet of aircraft

	ABSM generated schedules
	List of cities

