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ABSTRACT

Real-life decision-making problems can often be modelled by mathematical programs (or
optimization models). It is common for there to be uncertainty about the parameters of
such optimization models. Usually, this uncertainty is ignored and a simplified
deterministic program is obtained. Stochastic programs take account of this uncertainty by
including a probabilistic description of the uncertain parameters in the model. Stochastic
programs are therefore more appropriate or valuable than deterministic programs in many
situations, and this is emphasized throughout the dissertation. The dissertation contains a
development of the theory of stochastic programming, and a number of illustrative
examples are formulated and solved. As a real-life application, a stochastic model for the
unit commitment problem facing Eskom (one of the world's largest producers of electricity)
is formulated and solved, and the solution is compared with that of the current strategy
employed by Eskom.
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Chapter 1

Int.roduction

This chapter provides an Introduction to stochastic programming by describing mathematical

programming models and showing how these can be generalized to become stochastic program-

ming models. An overview of the literature on stochastic progranaxing is provided and practical

applications of stochastic programming are discussed. The relationship between stochastic pro-

gramming models and other related models is described, and a.simple example of a stochastic

program follows. The chapter concludes with a formal discussion of how stochastic programs

can be shown to be valuable.

1.1 MathematicalProgramming

Many decision problems CIlU be modelled by mathematical programs, which seek to maximize

or minimize some objective function which is a function of the dec.sion variables. The decision

variables may be constrained by limits in resources, minimum tt:~!uirements and maximum

requirements. The decision variables may be, for example, non-negative, unrestric ~ed, integral

or binary. The objective function and the constraints are functions of the variables snd the

problem data, or parameters. Examples of parameters are unit costs, production rates, sales

and capacities.
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1.1.1 Linear Programtulng Models

Amongst the most common models used are linear programs of the form

(1.1)

min C1X1 + C2X2 + ... + CnXn

subject to

anXI + a12x2 + + alnXn = b1

0·21X1 + a22X2 + + a2nXn = b2

Using matrix notation, with capital letters for matrices and boldface small letters for vectors,

(1.1) becomes

s.t.
cTX }
AX, =b
X;::: 0

(1.2)
min

where x= ( Xl X2 '" xn f
all a12 e1n

A.=
a21 a22 a2n

am! am2 amn

Despite the appearance of (1.1) and (1.2), these models do not restrict us to th« use of equality
n

constraints and minimization only. Any inequality constraint of the form L a;jxj S; Vi can
j;=;1

11

be converted into the equality constraint L Q;jXj + s; = b; by adding the non-negative slack
j;=;1

11

variable Si ;::: 0 to the left-hand side. Similarly, the inequality constraint L UijXj ;::: bi can
j=1

n
be converted into the equality constraint L' aijXj - Si = bi by subtracting the non-negative

j=1
surplus variable Si ;:::0 from the left-hand side. Models that involve maximization of the

objective can be converted by rewriting the objective max cTx as - min (-cTx) . Furthermore,
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it is possible to include free variables (i. e. variables that are unrestricted in sign) in the model.

A decision variable !J that is unrestricted in sign can be included in the model by rewriting it

as the difference y+ - y- of the two non-negative decision variables y+, u: ?:: O. For further

background in linear programming, see Appendix A.2.

1.1.2 More General Mathematical Programming Models

In model (1.1) the coefficients Cj , aij and bi are assumed to have fixed known real values

and we are left with the task of finding an optimal combination of the values for the decision

variables Xij that satisfy the given constraints. Model (1.1) can only provide a reasonable

representation of a real-life problem when the functions involved are linear in the decision

variables, or approximately so. If this condition is substantially violated, we should use the

following more general form to model the problem

s.t.
go (x) }
9i(X) ~ 0, i = 1, ... ,m

x E X S;;]I['"

(1.3)

min

The form presented in (1.3) is known as a mathematical programming problem, and includes

both linear and nonlinear programs. The set X as well as the functions gi : ]R1n -). ]1[, i =

1, ... ,m are given by the modelling process Model (1.3) does not exclude equality constraints,

"greater than" constraints, or maximization models. Constraints of the form 9i(X) ?:: 0 can

be rewritten as -gi(X) ~ 0, and constraints of the form 9i(X) = 0 can be included as 9i(X) ::;

o and -9i(X) ::; O. The model does not exclude non-zero right-hand sides either, since the

constraint m(x) s c can be rewritten as 9i(X) -- c S 0, where c is a constant. The objective

max 90(X) of a maximization model can be converted to - min (-90 (x) ) .

Definitions of convex sets, convex functions, convex polyhedral sets and other related concepts

are contained in Appendix A.1. Depending on the properties of the functions 9i and the set X,

program (1.3) is classified as

1. Linear if the <;jctX Js convex polyhedral and the functions gil i= 0, ... ,m are linear.

2. Nonlinear if at least one of the functions gi, i= 0, ... ,m is nonlinear, or X is not a convex

3



polyhedral set. Amongst nonlinear programs, we classify a program as

(a) Convex if the feasible set B := X n{x I gi(X) :::;0, i:: 1, ... ,m} is a convex set and

the objective function gO is a convex function.

(b) Noncotiuex if B is not a convex set or the objective function go is not convex.

For further background in nonlinear programming, see Appendix A.3. Mixed integer programs

arise if the set X requires some of the variables Xi to take integer values only. A development

of integer programming is contained in Appendix A.4. Note that linear programs are convex,

but mixed irteger programs are not. The following proposition gives a sufficient condition for

the feasible set to be convex.

Proposition 1 If the junctions gi, i = 1, ,m are convex and X is a convex set, tl.. L the

feasible set B = X n {x [gi(X) :5 0, i == 1, ,m} is a conVex set.

Proof. Let Xl X2E {x I gi(X) :5 0 j i= 1, ... ,m} and let x = AXl+ (1->')X2 where .A E (0, I).

Thon by convexity of gi, i = 1, ... ,m, it follows that

for i= 1, ... 1m, s'nce gi(Xl) :5 0 and gi(X2) :::;U.Therefore x E {x Igi(X) :5 0, i == 1, ... ,m},

implying that {x Ig;(x) :::;0, i= 1, •.. ,m} is a convex set. It. follows immediately that B is a

convex set since it is an intersection of convex sets (see Appendix A.l) .•

Corollary 1 The constraint gi(X) :;:::0 defines a convex feasible set if9i(-) is a concave function

of x and the constraint gi(X) = 0 defines a convex jeasible set if gi(') is an affine function of x.

Proof. The constraint gi(X) :;:::0 k equivalent to -gi(X) :::;0 which defines a convex set if -g;

is a convex function, i.e. if gi is a concave function. The constraint gi(X) = 0 is equivalent

to the constraints gi(X) :::;0 and -g;(x) :5 0 which define a feasible set if both g; and -g; are

convex functions. This is only true if gi is an affine function. •
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1.1.3 The Importance of Convexity

Definition 1 (Local Minimum) Program (1.3) is saul to attain a relative minimum or local

minimum at some point x ifihere is a neighbourhood U ofx such that go (Jc) :::; go(y) 'r/y E UnB.

Definition 2 (Global Minimum) Program (1.3) is said to attain a global minimum at some

point x (f go (x) :::;go(y) 'r/y E B.

The following lemma shows that convex programs have the useful property that any local

mmimum will also be a global minimum. We try to avoid nonConvex programs whenever

possible, since it is difficult in general to find the global minimum of a nonconvex program.

This is because many different stationary points (in the form of local minima, local maxima

and saddle points) may exist, and when one is found, there is often no easy way to tell whether

it is in .act a global minimum. Moreover, for programs with nonconvex feasible sets, one

may move out of the feasible set when interpolating between two feasible points. This can be

problematic when designing an optimization algorithm.

Lemma 1 If problem (1.3) is a COnvex program, then any local minimum is a global minimum.

Proof. If x is a local minimum of problem (1.3), then x belongs to the feasible set 13 :=

X n {x I g.(x) :::;0, i == 1, ... ,m}. Furthermore, there exists an co » 0 such that for any ball

Kg := {x I !Ix - xII :::;s}, 0 < e < co, we have that go(x) :::;[.Io(x) 'r/x E Kg n B. We now show

that go(x) ::;[laCy) for any feasible y outside Kg n B, which implies that x is a global minimum.

Choosing an arbitrary y E B, y =f. x, we may choose e > 0 such that e < IIy - xII and e < co,

so that y lies outside [{e' The line segment xy intersects the surface of the ball Kg at a point

x such that x = ax + (1 - a)y for some a E (0,1). Note that x E 13 since 13 is a convex set,

and that go (x) :::; ago (x) + (1 - a)ga(Y) since the objective go is a convex function. Now

go(x) ::; go(x) since x E Ke n 13 and hence ga(x) ::; agO (x) + (1 - a)ga(Y), which implies that

ga(x) :::;ga(y). III

1.1.4 Uncertainty in Mathematical Programs

In many modelling situations it is unreasonable to assume that the coefficients Cj , aij and bi in

problem (1.1) or the functions gi in problem (1.3) are deterministically fixed. These coefficients
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can often be modelled as uncertain parameters that are at best characterized by probability

distributions. Thus, depending on the situation that is being modelled, problems (1.1) or

(1.3) may not describe appropriately the problem we want to solve. It is in such situations

that stocbo-tic programming models can be appropriate. Stochastic programming therefore

broadens '~h"scope of mathematical modelling.

1.2 What is Stochastic Programming?

The aim of stochastic programming is to find optimal decisions in problems that involve un-

certain data. The underlying premise of stochastic prozramming is that the future cannot be

perfectly forecast but instead should be considered random or uncertain. In this terminology,

stochastic is opposed to deterministic, while programming refers to the modelling and optimizing

of the problem as a linear or nonlinear mathematical program.

Under deterministic programming, it is assumed that the parameters of the given problem are

known accurately (i.e. with certainty). However, for riany actual problems, the parameters

cannot be known accurately, due to various reasons. Tle first reason is due to lack of reliable

data or simple measurement error. The second and more fundamental reason is that some data

represent information about unobserved events or future events (e.g. product demand or price

in the future) and simply cannot be known with certainty. Stochastic programming aims to

take this uncertainty into account.

In some instances, no harm will come from ignoring these uncertainties, and one may rely

upon best estimates and parametric sensitivity analysis. However, there are a number of sit-

uations where proceeding in this manner produces solucions whose implementation could lead

to disaster. For example, designing a production plan without taking into account the inherent

uncertainty about future markets may leave the manufacturer exposed to large losses if the

evolution of the market does not closely match the predictions.

Stochastic programs are mathematical programs where some of the coefficients or parameters

incorporated into the objective function or constraints are uncertain, Uncertainty is usually

characterized by probability distributions for the parameters, although in practice, the uncer-

tainty can often be modelled more simply as a few scenarios (i. e. possible sets of values of
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the parameters). When uncertainty is modelled into mathematical programs, changes in the

decision process occur and new difficulties are brought in. Furthermore, not all problems are

solvable. When some of the parameters an'! random, the solution and optimal objective value

of the problem will also be random. A distribution of optimal decisions is generally unimple-

meritable. Ideally, we would like one decision and one optimal objective value.

Several different stochastic models can be built, depending on the type of uncertainty and the

time at which decisions must be taken. 'I'here is a variety of stochastic programming models

in terms of the objective of the decision process, the constraints on the decisions and the

relationship to the random elements. Stochastic programs can generally be classified either as

recourse problems or as chance-constrained problems. Under both types of problems, we are

required to make the de before we can observe the outcome of the random parameters.

This is known as a here-and-now solution, as opposed to a wait-and-see solution where we can

observe the outcome of the random parameters before making our decision. Recourse problems

require that we make one decision now and minimize the expected costs of the consequences of

that decision. In fact, it is impossible under uncertainty to find a solution that is ideal under

all circumstances. This is because the decision taken may turn out, after observation of the

random parameters, to be the wrong one (i.p• the constraints may be violated, or the cost

not minimized). Such violai ions of the constraints imply penalty costs that depend upon the

magnitude of the constraint violations. On the other hand, chance-constrained models try to

find a decision which ensures that a set of constraints will hold with a certain probability. The

pru~abilistic constraints may be required to hold jointly with a certain probability, or separately,

each with an associated probability.

1.3 Overview of the Literature

Stochastic programming is not a very well known subject in the operations research community,

largely due to the relative scarcity of the literature and the complex nature of the subject. It is

mentioned in few text books on optimization 01 operations research, e.g. Taha [44],but even then

only a very brief introduction is given. Textbooks devoted solely to stochastic programming

started coming out in the 1970s, such as those by Vajda [46], Sengupta [41] and Kall [27].
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Dantzig's classic reference on linear programming [14]contains a chapter devoted to uncertainty.

Unfortunately, these books display vast differences in terminology, notation and theoretical

approach. This was recognized by Dempster [18] in his volume on stochastic programming.

However, [18] concentrated on the state of the art and is only understandable to those already

familiar with the subject.

Finally, Kall & Wallace [28]brought out a basic textbook with the aim of making the subject

accessible not only to mathematicians, but also to students and other interested parties who

could not or would not approach the field via the journals. Their book contains a theoretical

development of stochastic programming as well as algorithms and references. Unfortunately,

however, the book contains few simple examples or references to practical applications and

implementations.

Recently, Birge & Louveaux [10]published a textbook that provides a wide-ranging first course

in stochastic programming suitable for both students and researchers. The book discusses mod-

elling issues, theoretical properties, solution methods and algorithms, approximation techniques

and sampling techniques, and contains exercises, worked examples and a case study. All in all,

it provides a good introduction to the subject, and many references are provided.

The field of stochastic programming, which is also known as optimization under uncertainty,

is currently developing rapidly with contributions from many disciplines including operations

research, economics, mathematic , probability and statistics. The development of the theory

of stochastic programming can be followed through articles that appear in various academic

journals devoted to operations research or optimization. These journals also contain many

articles devoted to the application of stochastic programming.

1.4 Applications of Stochastic Programming

Practical problems that require stochastic programming are abundant, since whenever a math-

ematical programming model seems to be plausible for a real life problem, some randomness

of parameters or functions is likely to occur. In fact, there are few practical decision problems

where the modeller is not faced with uncertainty about the values to assign to some of the pa-

rameters. For example, in a production problem, the productivities, capacities, inflows, prices,
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costs, returns, and demands for goods, energy or transportation may be random variables, and

these are reflected in the optimization model by random coefficients or parameters. In most

practical applications these uncertainties are ignored, even though the consequences of doing

so are generally unknown.

One of the first applications ..stochastic programming was in airline planning. In the airline

fleet assignment problem, a decision on the allocation of aircraft to routes is required, subject to

unknown demand for seating [21]. A recourse formulation is used, with penalties being incurred

for lost passengers.

The capacity expansion problem concerns the optimal choices of the timing and levels of invest-

ments to meet unknown future demands of a given product. It has been applied in power plant

expansion for electricity generation [10].

The unit comnitment problem is one of the most important problems in electrical power gen-

eration. It involves finding an optimal schedule, and a production level, for each generating

unit of an electrical utility over a given period of time. The unit commitment decision indicates

which generating units are to be in use at each point in time over a scheduling horizon [45]. A

South African Case study is preserr' ~.in Chapter 6 where the scheduling horizon is 24 hours

and demand is uncertain over th' .iod,

Financial decision-making models are often modelled as stochastic programs and represent

one of the largest application areas of stochastic programming. Stochastic programming is

applicable to financial decision making since the incorporation of risk into investment decisions

is the essence of financial planning. Manv references can be found in [49]. Some examples of

the application of stochastic programming in finance are:

" Portfolio selection in general insurance [2]

• Project selection and various other economic applications [18J

" Bank asset and liability management [30J

• Management of pension funds through asset-liability modelling [13]

Further applications of stochastic programming have been made in:
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• Production planning [20J

• Water resource management [18], [IS}

• Forestry planning [22J

• Hospital staffing [29J

• Energy planning [33J

.0 Natural gas planning [37]

• Governmental policy for carbon dioxide emission [81

1.5 General Formulationof Stochastic Programs

Random parameters in (1.3) may lead to the problem

s.t.
90 (x,~) }
9i (x,~) :::;0, i = 1, ... ,m .
xEXS;;;:IRTI

(1.4)

"min"

(_ _)T
where e = el,.·.,ek is a random vector varying over a set 8 S;;;:IRk. Formally, we assume

that a family :F of events (i.e. subsets of 3) and the probability distribution P on :F are

given. Hence for every subset A C 3 that is an event, i.e. A E :F, the probability peA) is

known. Furthermore, we assume that the functions 9i (x, .) : 3 ~ :IRVx , i are random variables

themselves, and that the probability distribution P is independent of x . See Appendix B.l for

a background in probability measure theory.

For a particular value of x in problem (IA), the constraints may or not be satisfied, and the

objective mayor may not be minimized, depending on the realization of ~. Problem (1.4) is

therefore not a well-defined mathematical program, since the meanings of the objective and the

constraints are unclear when We must take a decision on x before knowing the realization of ~ .

We must therefore revise the modelling process, thus leading to deterministic equivalents for

(1.4).
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For a given decision x and realization e ofe , the ith constraint of (1.4) is violated if gi (x,~) > O.

For each constraint, we can provide a recourse or second-stage activity Vice), that is chosen after

observing the realization S, to compensate for the constraint's violation (ifit is indeed violated),

by satisfying gi (x, 1;) - Yi (~) SO. However, such extra activity is assumed to cause an extra

cost or penalty of qi per unit. The additional cost, known as the recourse cost, amounts to

Q (x, 1;) = ~n {~qiYi (e) IYi (1;) ~ gi (x, 1;) ,Vi (e) ~ O} (1.5)

The total cost fa (x, 1;) for a given realization I; is made up of the first-stage cost go (x), which

is independent of';, and the recourse (or second-stage) cost Q (x, 1;), which depends on 1;. Thus

fa (x,';) = go (x) +Q (x, e) f1.6)

Suppose that (1.4) models a factory producing Tn products, with gi (x,,;) being the difference

between demand and output of product i. If gi (x, e) > 0 then there i'l a shortage in product i,

relative to the demand. Assuming that the factory is committed to cover the demands, problem

(1.5) can be interpreted as buying the shortage Yi of product i in the market, at a price of qi

per unit. This model has exactly one recourse variable for each constraint. The solution to

(1.5) is

Yi (1;) =max (g, (x, e), 0) Vi (1.7)

This situation is known as simple recourse since a closed form solution exists for the recourse

variables and the recourse function is called linear since it is linear in the recourse variables

Vi. If we think in more general terms, some or all of the recourse variables could be associated

with each constraint. This leads us to the general recourse program

Q (x,';) =miyn{q(y) I hi(Y) :::::gi (x,';) , hi(Y) :::::0, i= 1, ... ,m} (1.8)yE

wh Lt' t:Joi:l recourse vector y(e) E Y £::; ~n consists ofr;; recourse variables, and q :~n -t ~ and

(/, : Rn -t ~ are given functions.

Provided that it is meaningful and acceptable to the decision maker to minimize the expected

11



value of the total costs (i.e. first-stage and recourse costs), we consider instead of problem

(1.4), its determinlstic equivalent, the two-stage stochastic praqram. with recourse

;?JJf {90 ex)+E~ [Q (x, e)] } (1.9)

In general, any stochastic program may be written in the form

min Ed/o (x,e)]
s.t. E"{ [Ii (x, e)] ::;0, i= 1, ... ,m

E{ [Ii (x,e)] = 0, i=m+ 1,... ,m
x EX S:;;lRn

(1.10)

where the Ii are constructed from the objective and the constraints in (1.4). Formally; the

deterministic equivalent (1.10) is a mathematical program .. In the two-stage recourse problem

(1.9), 10 represented the total costs and h , ... , 1m could be used to describe the first-stage

feasible set X. However, the general formulation (1.10) includes other types of deterministic

equivalents (such as chance-constrained problems) for the stochastic program (1.4), depending

on how the functions Ii are constructed from the problem functions 9j.

1.6 Relationship to Other Decision-Making Models

Although the general form of a stochastic program can apply to virtually all decision-making

ucblems with unknown parameters, there are certain characteristics that typify stochastic

programs. Stochastic programs are generalizations of deterministic mathematical programs in

whic't some of the uncontrollable data or parameters are not known with certainty. Some typical

features of stochastic programs ate,

• Many decision variables with (possibly infinitely) many potential values

.. Decisions taken at discrete times

• Expectation functionals used for the objective

• Probability distributions known or partially known

12



The relative importance of these features contrasts with similar areas, such as statistical decision

theory, decision analysis, dynamic programming, Markov decision processes, and stochastic

control.

The aim of optimal statistical decision theory is to determine the best levels of variables that

affect the outcome of a random experiment. With the decision variables x in some set X, the

random outcomes w in the experiment's sample space n, the associated probability distribution

F(w) , and the reward or loss function r(x,w) associated with the experiment under outcome

wand decision x, the basic problem is

max s; [r(x,w) IF] = max1r(x,w) dF(w)
xEX xEX w

(1,11)

Problem (1.11) is also the fundamental form of a stochastic program. The major differences

between the fields lie in the underlying assumptions about the relative importance of different

aspects of the problem.

In statistical decision theory, a heavy emphasis is placed on changes in. F to some u, dated
distribution Fx•w that depends on the choice of x and observations ofw. It is implicitly assumed

that this part of the analysis dominates any solutir. orocedure. In stochastic programm'ing, on

the other hand, one assumes that finding th" optima, value x and the expectations with known

distributions are far more difficult than finding the form of the function r and the changes in

the distribution F. The emphasis is on finding a solution after a suitable problem staterr .t

has been formulated.

Decision analysis is part of optimal statistical decision tJ..~OIy.The emphasis is on acquiring

information about possible outcomes, evaluating the utility associated with various outcomes,

and defining a lim-ted set of possible actions, usually in the form of a decision tree.

Dynamic programming and Markov decision processes are an important part of stochastic op-

timization. In these models, optimal actions are sought at generally discrete points in time.

The actions are influenced by random outcomes and carry from some state at stage t to an-

other state at stage t+ 1. Low-dimensional, finite spaces in time, state and action are usually

identified and a Markovian structure is assumed, so that actions and outcomes depend only on

the current state. A backward recursion equation is formed, resulting in an optimal decision
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for each state at each stage. With large state spaces, tlris approach can become computation-

ally intractable, although it does form the hasis of many algorithms for multistage stochastic

programs - see Section 3.5.8. Another approach is to consider an infinite time horizon and to

establish a stationary policy so that only an optimal decision for each state is needed for any

stage.

Stochastic programming is the study of optimal decision making under uncertainty. Tlie term

stochastic programming emphasizes its relation to mathematical programming and algorithmic

optimization procedures. These considerations dominate application and research in the field

and distinguish stochastic programming from other fields of study.

1.7 Example: The NewsVendor Problem

A well-known elementary example in statistical decision theory is the news vendor problem.
In this section, I show how this problem can be formulated as a two-stage linear stochastic

program with simple recourse and show by means of a numerical example how the stochastic

model offers an improvement over the deterministic model. The concepts of the value of the

stochastic solution (VSS) and the expected value of perfect information (EVPI) are also intro-

duced through the example. These concepts are formally defined in Section 1.8. The problem

can be stated as follows.

1.7.1 Statistical Decision Theory Formulation

A news vendor goes to the publisher every morning and buys x newspapers at a price of

c per paper. The number of papers available to the vendor is bounded above by the limit u,

representing either the news vendor's purchase power or a limit set by the publisher. The vendor

then tries to sell as many newspapers as possible at the selling price q, where q > c. Any unsold

newspapers can be returned to the publisher at a return price r, with r < c. The news vendor

must decide how many newspapers x to buy every rnornh.g, The demand for newspapers "aries

daily and is described by the random variable ~ with non-negative support S s;:;. R+. The news

vendor cannot return to the publisher during the day to buy more newspapers.

We define y as the number of newspapers sold during the day and w as the number of newspapers
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returned to the publisher at the end of the day. In statistical decision theory, the solutions y*

of y and w* of w for a given decision x and realization ~ are usually presented immediately as

y*(~) == minCe,x)

w*(~) == max(x-e,O)

(1.12)

(1.13)

with the following justification. The news vendor tries to sell all rna-v papers as possible

(::::;.max y), br t sales can never exceed the demand (::::}y :::;~) or the number of newspapers

available (:::}y :::;x), so that the number of papers sold is (1.12). The remaining x -y* = (1.13)

papers are returned at the end of the day. Returns only occur when demand is less than the

number of newspapers purchased by the vendor (s.e, e < x). For a given decision x, the

expected value of the news vendor's revenue from sales and returns is -Q(x) where

Q(x) == E~[-qmin(e,x) -rmax(x -e,G)) (1.14)

The news vendor aims to maximize profit, or equivalently to minimize loss,which equals pur-

chase costs less revenue. The problem is therefore to seek the optimal x in

min cx+ Q(x)
s.t, 0:::; x:::; u

(1.15)

where Q(x) is described by (1.14).

1.7.2 Formulation as a Stochastic Program

The buying decision x must be taken before the demand e is observed. The buying decision thus

corresponds to a first-stage decision. The number of newspapers sold and returned can then

be determined after the decision x has been taken and the demand e has been observed. The

decisions on y and ware therefore second-stage decisions and depend on the observed demand

e. For given values of x and~, the optimal values of y and w can be formulated as solutions to
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the linear program

Q(x,~) = min -qy{~) - rw(~)

{ yCel se
s.t. y(~) +w(~) Sx

y(e) , w(e) ~o

(1.16)

Problem (1.16) leads to the solutions (1.12) and (1.13) provided that q ~ 7' which has already

been assumed since q > c> r . The news vendor problem can therefore be written in the form

of a two-stage stochastic linear program with simple recourse as (1.15) where

(1.17)

and Q(x,~) is given by (1.16). The problem is a stochastic linear program because both the

first-stage problem

min cx
05"'::;u

and the second-stage problem (1.16) are linear programs. "Va have simple recourse because

explicit optimal solutions can be obtained for the second-stage variables, as in (1.12) and (1.13),

Suppose that Z is a continuous random variable wit II support on [0,00) , cumulative distribution

function FO and probability density function fO, Then

Q(x) ('" [-q~ - r (x·_ ~)lf(~) d~+ ['Xl -qx!(f,) d~Jo .Ix
-(q - r) fo'" ~ f(~) d~ - qx + (q - r)xF(x)

On integrating by parts, we find that

/'" ~ f(~) d~= x F(x) - l:L F(~) d~, provided that lim ~F(~) == 0Jo Jo e....o
which is satisfied for continuous distributions with non-negative support, since F(O) = 0 =

lim~.....o Fee). It follows that

(1.18)
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The first derivative of Q(x) is

QI(X) = -q + (q - r) F(x) (1.19)

and its second derivative is

Qff(X) = (q - 7~)J(x) (1.20)

Now QI/(X) ;::: a Vx E (O,u) since q > 7' and J(x) ;::: a Vx as it is a p.d.f. ThereforeQ(x) is

convex and twice continuously differentiable on [0,u], provided that J(x) is continuous on [0, uJ.
In fact, for any two-stage linear stochastic program with recourse, the second-stage function

Q(x) is convex and continuous in x, and is also differentiable when e is a continuous random

vector - see Chapter 3.

We wish to minimize z(x) = ex+ Q(x) on the interval 0::; x S; u. The function z(x) is convex

since ex is linear and Q(x) is convex. Hence the minimum will be attained at J;* = a if .z'(~') > a
=? c - q + (q - r)F(O) > a or at x* = u if z'(u) < 0::;· e - q + (q - r)F(u) ,~o. Otherwise, the

minimum will be at a point x* "atisfying z' (x*) = a =? c - q + (q - r )F(x¥) = O. The news

vendor's optimal solution is therefore

if F(O) > ~ 1
if F(u) < ~
otherwise

(1.21)

where x = F-1(c,) {:}a = F(x) and the minimal expected loss is

r'z* = z(x*) = -(q - c)x* + (q - r) 10 F(~) d~

If the support of e is the interval [a, b] C lRwhere b ;:: u then Q(x) :::::-qx + (q -1') J: F(~; d~

instead of (1.18) since F(a) = O. The derivatives (1.19) and (1.20) remain unchanged and hence

the optimal solution (1.21) remains unchanged. However, (1.20) will have a discontinuity in

(0,1£) at a if a E (0, u) and lim J(~) > 0, and hence z(x) will no longer be twice continuously
e!u

differentiable but will remain continuously differentiable.
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Numerical Example

Suppose that the cost price is R1.00, the selling price is R2.50, the return price is RO.50, the

upper limit on papers is 150, and the demand is uniformly distributed between 50 and 150

papers. Working in cents, we are given c ::::;100, q = 250, r = 50, u = 150 and e rv U(50,150)

with the c.d.f,

{

0 if ~ < 50 1
F(e) = sw~o if 50 ~ e s 150

1 if e 2: 150

Now ~ ,,:::0.75 and F(O) = a < ~ and F(u) = 1> ~. We therefore solve F(x") = 0.75 to

obtain the optimal decision x* = 125. For any decision x, the expected loss is given by

{
-15x if 0 < x < 50 1z(x) = - -

. 0.lx2 - 25x +250 if 50 ~ x s 150

The news vendor's minimal expected loss is z(125) = -13125, corresponding to an expected

daily profit of R131.25 .

1.'7.3 Deterministic Formulation

Suppose that, instead of using the above stochastic model with recourse, we simply use a

detennlnlstic model where we assume that the demand is known and £.xed as e. If the news

vendor "ys x newspapers at a cost of ex, he will sell y = min(x,e) and return w = max(x-

e,0) , resulting in a loss of

z(x) = ex -qy -TW;:: ex - qmin(x,e) -rmax(x - ~,O)

= { { ~(~~};:(q-r)~ ::;~:~: 1 jf~<U 1
-(q - c)x on 0 ~ x :::;u if'; 2: '1/,
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Under the deterministic model, which is simply a relaxation of the stochastic model and is also

known as the expected value problem, the loss is minimized by the deterministic solution

x=min(~ju) (1.23)

with the minimal loss under the deterministic model being

z(x) = -(q- c)min(~,.u) (1.24)

The news vendor will sell min(~, u) papers and return none, an ideal situation.

Coming back to our numerical example, the deterministic solution is x = 100 and the minimal

loss under the deterministic model is z (100) = -(250 -100) X 100 = 15000 , corresponding to a

profit of R150.00, which is greater than that of the stochastic model! The deterministic model

seems to produce a better objective value (i.e. higher profit) than. the stochastic model. This,

however, is misleading since the deterministic model ignores the uncertainty that is inherent

in the problem. Under the stochastic model) we aimed to minimize the expected loss z(x) (as

shown in Figure 1-1) of taking the decision x, which resulted in the optimal decision x* =" 125

and the minimal expected loss 2(X*) == -13125. If we use the deterministic solution x = 100 in

the presence of uncertainty that actually exists, the expected loss will be z(:v) = -12500 which

is greater (i.e. worse) than the expected loss that arises when the stochastic solution is used.

Clearly the stochastic solution will be better in the long run than the deterministic solution.

The amount by which it is better is known as the value of the stochastic solution or VSS, and

in this case is -12500 - (-13125) = 625, .corresponding to an increase in profit for the news

vendor of R6.25 per day. In percentage terms, the stochastic solution offers an improvement of

625/12500 = 5% over the deterministic solution. Figure 1-1 shows the graph of the expected

loss that we are seeking to minimize and the difference VSS in expected loss between using the

stochastic solution and the deterministic solution.

1.7.4 Perfect Information

Suppose that we knew in advance what the demand for the day would turn out to be. This

situation is known as J1avingperfect information. The problem would then be exactly as the
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Figure 1-1: The Value of the Stochastic Solution

150

deterministic formulation, with ~ replaced by~. Our optimal decision for a given e would be to

buy and sell min(e,u) papers and to return none, yielding a loss of (c- q)nlin(~,u). Thus the

average loss under perfect information is

l"~(c - q)min(~, u)f(~)de

which in our example amounts to

r (100- 250)e(O.0l)d~ = -15000
50

(1.25)

corresponding to an expected profit of R150.00, which is better than expected profit in the

situation where "ve are only given distributional information on the demand. The difference

between the expected loss under perfect information and the expected loss when we are only

given distributional information (and take the stochastic solution) is known as the expected
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value of perfect informatiot: or EVPI. In our example, EVPI = --13125 - (-15000) = 1875,

corresponding to an expected increase in daily profit of R18.75, or 1875/13125 = 14.3%. In

reality, however, it is not possible for the news vendor to have perfect information about the

demand, and therefore perfect information is a purely theoretical concept, The best that the

vendor can do in reality is to +ake the stochastic solution.

The average decision taken under perfect information is

1150

E~ [x(e)) = E~ [mines,u)) = O.D1sds = 100
50

which in this case is the same as the deterministic solution x. In this example, if we take this

decision under uncertainty instead of the stochastic solution, we will be no better off than if we

take the deterministic solution. I Gallthis solution as the average wait-and-see solution.

1.8 The Value of Stochastic Programming

1.S.1 Alternatives to Stochastic Programming

Stochastic programs are reputedly computationally difficult to solve. The result of this is that

when faced with a real-world problem, many people are inclined to a solve simpler 'Jersions of

the problem, such as the deterministic relaxation obtained by replacing all the random variables

by their expected values. Another commonly used approach is to solve several deterministic

programs, each of which corresponds to a particular scenario, and then to combine these different

solutions by some heuristic rule.

An alternative approach is to assume pessimistic (i. e. unfavourable) values for all of the random

variables in the model, a process known as the inclusion of fat or slack in the model- see Chapter

25 of Dantzig [14). Tho solution that results is a conservative solution called a fat solution. It

is hoped that the fat will act as a shock absorber that will prevent recourse actions having to

be taken for nearly all possible realizations of the random variables. Fat solutions tend to have

high first-stage costs but very small second-stage costs - see Sections 3.7.3 and 3.7.11 for an

example of a fat solution that illustrates this point.

The question arises as to whether these approaches are nearly optimal or whether they are
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totally inaccurate. The value of the stochastic solution (VSS) and the expected value of perfect

information (EVPI) provide an answer to this question.

1.8.2 The Expected Value of Perfect Information

The expected value of perfect information, or EVPI, measures the maximum amount that a

decision maker would be prepared to pay in return for complete and accurate information about

the future. The concept of EVPI is often presented in the context of Bayesian decision analysis

in statistical decision theory. In the setting of stochastic programming, we define EVPI· as

follows. Suppose that the uncertainty can be modelled by a number of scenarios, corresponding

to the various possible realizations of the random vector e; and that the objective z(x, -E) of

the problem is to be minimized and depends on both the realization e and the decision vector

xE X slRn.

This section provides a number of definitions of concepts that are used to show the value of

stochastic programming and perfect information. In the literature, these definitions do not

appear to he completely standardized and confusion can result. This is particularly true for

the term "wait-and-see solution" , which in Kall & Wallace [28Jis used to describe a solution of

the wait-and-see problem, while in Birge & Louveaux [10], it is used to describe the expected

optimal objective value when the wait-and-see approach is used. Although the former definition

makes sense, the latter definition appears to be illogical since the expected objective is not a

solution at all. Due to this disparity in the literature, the following section contains precise

definitions of these concepts, even though SOIM of the definitions may seem redundant.

Definition 3 (Wait-and-See Problem) The wait-and-see problem fo'r a particular 'realiza-

tion'; of e is the mathematical program

min z(x,e)
xEX

(1.26)

Definition 4 (Wait-and-See Solution) Let x(.;) be an optimal solution to the wait-and-see

problem (1.26) for a given realization';. It is known as the wait-und-see solution for realization

e and satisfies

(1.27)
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In a scenario approach, one might be interested in finding the optimal solution x(.;) V'; (i.e.

for all scenarios) and the associated optimal objective values z (x(.;) , .;) V';. This is known

as the distribution problem since it involves finding the distributions of the random solution

vector x(e) and the random objective z (x(e),~).

Definition 5 (WS) The expected value of the optimal objective function of the wait-and-see

problem (1.26) can be called the expected uiaii-orui-see objective, is denoted WS and is defined

as

(1.28)

I propose a solution that I call tl ..e average wait-and-see solution and show by means of examples

in this text that this solution is not only difficult to calculate, but is often even worse than the

deterministic solution.

Definition 6 (Average Wait-and-See Solution) I define the average wait-and-see solution

as Sf. [x(~)]and the expected result of using the average wait-and-see solution as AWS =

Ee [z (Ee [x(~)],~)].
A here-and-now solution is one that must be taken before the realization of a random vector

~. This is opposed to a wait-and-see solution where the decision can be taken after ~ has

been realized. The optimal here-and-now solution corresponds to the solution of the recourse

problem. The essential difference between the wait-and-see approach and the here-and-now

approach is in the order of operations. Under the wait-and-see approach, one first optimizes

and then takes expectations, while ill the here-and-now approach, one first takes expectations

and then optimizes.

Definition 7 (Recourse Problem) The recourse problem is the mathematical program

(1.29)

Definition 8 (Recourse Solution) The optimal solution x" of the recourse problem (1.29)

is called the optimal here-and-now solution, the stochastic solution or the recourse solution and

satisfies

(1.30)
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·Definition 9 (RP) The optimal objective value of the recourse problem, which can also be

called the expected here-and-now objective, is denoted RP and is defined as

RP = ;?j~Ee [z (x,e)] = Ee [z (x",e)] (1.31)

Definition 10 (EvPI) The expected value of perfect information or EVPI is defined as the

expected difference between the here-and-now objective and the umii-ond-see objective, i.e.

EVPI==RP-WS (1.32)

EVPI measures the extent of suboptimality caused by taking the here-and-now solution as

opposed to a wait-and-see solution. In reality, however, the best solution to take is often the

here-and-now solution, since waiting and seeing may not be possible, or perfect information

may not be available at any price.

1.8.3 The Value of the Stochastic Solution

The wait-and-see approach delivers a set of solutions instead of one solution that would be

implernentable. Such a set of solutions is not only unimplementable, but requires much compu-

tational effort. It is tempting to solve a much simpler problem: the one obtained by replacing

all the random variables by their expected values. This problem is known as the expected value

problem, mean value problem or deterministic relaxation.

Definition 11 (Expected Value Problem) If we denote the expectation of the random vec-

tor e by e 1 the expected value problem is the mathematical program

min z(x,~
xEX 'OJ (1.33)

Definition 12 (EV) The optimal objective of the expected value problem (1.33) is denoted EV

and is defined by

EV =min z (x,e)
xEX

(1.34)
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Definition 13 (Expected Value Solution) The optimol solution x(~) to the expected value

problem (1.33) is culled the expected value solution or deterministic solution and satisfies

z (x(~),e) =min z (x,e)
xEX

(1.35)

Definition 14 (EEV) The expected result of using the deterministic solution is denoted EEV

and is defined by

(1.36)

If there is uncertainty inherent in the problem, it could be unwise to implement the deterministic

solution x(e) instead of the stochastic solution x", as there is no guarantee that x(e) will be

close to x* or, more importantly, that EEV will be close to RP. The quantity EEV measures

how the deterministic solution performs, by fixing the first-stage decisions as x(e) and allowing

the second-stage decisions to be chosen optimally as functions on~(e) ad, e for each possible

realization of e.
Definition 15 (VSS) The value of the stochastic solution ot' VSS can be defined as the «d-

ditional expected loss that arises from using the deterministic solution [i.e. the expected value

solution) as opposed to the stochastic solution (i.e. the TeI:oursesolution).

VSS=EEV-RP (1.37)

VSS is the cost of ignoring uncertainty in choosing a decision. It measures how good or how bad

the deterministic decision x(e) is under the recourse model (1.29). An alternative interpretation

is that VSS measures the extent of sub optimality caused by taking the deterministic decision

as opposed to the stochastic decision.

1.8.4 Properties of VSS and EVPI

Proposition 2 For any stochastic progmm,

WS-:;'RP -:;,EEV

EVPI;::: 0

(1.38)

(1.39)
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,'S ~ 0 (1.40)

Proof. z (x(e-), e) ~ z (x·, e) v~ since x(e) minimizes (1.26). Taking expectations of both

sides yields Ee [z (x(~),e)] ~ Ee [z (x"~)] -:=> WS s RP which proves the first inequality

of (1.38). It follows directly that RP·- WS ;:::0 -:=> EVPI ;:::0 by (1.32), thus proving (1.39).

Since x" minimizes (1.29), it follows that Ee [z(x*,~)] ~ Ee [z(x(e),~)] -:=> RP s EEV
which proves the second inequality of (1.38). Once again, it follows directly that EEV - RP ~
0<9 VSS ;:::0 by (1.37), thus proving (1.40). II

The proposition shows that EVPI and VSS are both non-negative, as would be reasonably

expected. Examples exist where EVPI = 0 and VSS > 0 and other examples exist where

EVPI> 0 and VSS == O. See Section 4.4 in Birge & Louveaux [10Jfor such examples. There

is no simple rule to relate the two quantities. It would be very useful to know when EVPl

and VSS take on large values and when they take on small values, as we would then know

precisely when stochastic programming should or shouldn't be used. Only 't.ic programs

with a large VSS would require the solution of a stochastic program, while .~; programs with

a large EVPI, it would be worthwhile to find closer-to-perfect lnformcdon on the uncertainty,

if possible.

Intuitively, one feels that using stochastic programming is more relevant when there is more
randomness in the problem. For example, one might expect that for a given problem, EVPI and

VSS would increase when the variances of the random variables increase. However, this is not

always true. I conjecture that stochastic programming is likely to be relevant when some of the

important parameters in the problem huve large coefficients of variation, 'i.e. the uncertainty

in the parameters is large relative to their estimated or expected values.
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Chapter 2

Probabilistic Programming

In Vajda [46], the terms probabilistic programming and stochastic programming are used inter-

changeably. However, Birge & Louveaux [10] use the term probabilistic programming to refer

to stochastic programs where the description of recourse variables is avoided through modelling

with chance constraints or probabilistic objectives. The latter definition is used in this chap-

ter. Nevertheless, the distinction is not entirely clear since models with chance constraints and

recourse variables can be devised, as in the example at the end of the chapter.

The chapter starts with the derivation and properties of probabilistic programs in general.

Linear chance-constrained problems are examined in detail, along with an example. A discussion

of solution methods follows and the chapter concludes with an illustrative example in water

resource management, in which alternative possible models are formulated, solved and compared

under different distributional assumptions.

2.1 Models in Probabilistic Programming

In probabilistic programming, some of the constraints or the objective are expressed as prob-

abilistic statements about first-stage decisions. The description of second-stage or recourse

actions is thus avoided. This is particularly useful when the costs or benefits of second-stage

decisions are difficult to quantify. Most of the results in probabilistic programming concentrate

on converting the probabilistic problem into an equivalent deterministic problem, and on the

convexity properties of these deterministic equivalents.
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The objective is usually an expectation (the E-model), but it may also be the probability of some

occurrence (the P-model) or even the va.riance of some result (the V-model). Most probabilistic

programs are chance-constrained programs that optimize an expected value subject to chance

constraints, which are often called probabilistic constraints. Chance constraints are constraints

that do not need to hold with certainty (as is always the case in deterministic mathematical

programming) or almost surely, but instead must hold with some specified probability level,

known as the reliability level.

2.2 Derivation of ProbabHisticPrograms

In Section 1.5 we stated that any stochastic program could be written in the form (1.10).

T.l this section we show how probabilistic programs with job," chance constraints or separate

chance constraints, and problems with probabilistic objectives fit into the general stochastic

programming formulation (1.10).

2.2.1 Joint Chance Constraints

In terms of (1.10) we define

fo(x,~) =90(X,e)

~ {.:
(2.1a)

if 9i(X,e) ~ 0, Vi = 1, ... ,m 1
otherwise

(2.1b)

where O! E [O,lJ . Now, with the vector-valued function g(x, e) = [ gl (x, e) .• , 9m(x, e) ] T,

= .r fl(x,e)dP(e) = r. . Ca -l)dP(e) + r. O!dP(e)is i{g(x,e)~o} i{g(x,€);60}

CO! - :)Pr [g(x,e) :5 0] + aPr (g(x,e) i 0] = a - Pr [g(x,e) ~ 0]

Therefore
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and hence (1.10) becomes the stochastic program with joint chance constraints

min

(2.2)s.t,

2.2.2 Separate Chance Constraints

In an analogous way to the above, we define in terms of (1.1.0),

fa (x, e)

li(x,e)

(2.3a)

if gi(X, e) ::; c ] ... for 2 = 1,... ,Tn
otherwise

(2.3b)

where ati E: [0, IJ Vi. Now for i = 1, ... ,Tn

C fi(X, e)dP(e) = r (eq - l)dP(e) + l CXidP(e)
J'E, J{Yi(x,e)~a} i{Yi(x,e»o}

= (CXi - 1)Pr [gi(X, e) s o}+ CXiPr [gi(X, e) > 0] = CXi - Fr [g;(x, e) s 0]

Therefore

and hence (1.10) becomes the stochastic program with separate chance constraints

min Ee[go (x,e)] }
s.t, Pr[gi(x,e)::;O];:::ai,Vi=I, ... ,m.

xEX

(2.4)
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2.2.3 Probabilistic Objectives

It is also possible to use indicator functions to express a probabilistic objective in a form that

is consistent with (1.10). Consider an event A(x) c: :3 that depends on x. Let

(. ) {1, ifeEA(x) 1fo x,e =
0, ife\iA(x)

The objective of (1.10) then becomes

minEe [fa (x, ~)] = min Is ja(x, e)dP(e)

= min { t 1dP(e) + r OdPW}
}'EA(x) }~¢;A(X)

== minP(el';t2A(x))=minP(A(x))

Such an objective has the form of a P-modeL

2.3 General Properties of Chance Constraints

(2.5)

In this section, which is based on Section 1.5 of KaU & Wallace [28},we show that while chance

constraints do not in general define convex feasible sets, it is possible under certain conditions

to assert convexity and closedness of the feasible region.

2.3.1 Possible Nonconvexity

Consider the joint probabilistic constraints of the form

A point x is feasible iff the set

S(x) = {~I g(x, e) ~ oj
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has a probability measure P(S(5C») of at least a. Alternatively, if 9 c :F is the collection of all

events of :F such tha.t peG} ;:::i:Y.VG E 9 then 5Cis feasibl~ iff we can find at least one event

G E 9 such that g(x,~) ~ 0 VeE G. Formally, x is feasible iff there exists G E 9 such that

x E n {x I g(x, e) s o}
eEG

(2.8)

Now because the general point x is feasible iff (2.6) is true, it follows that the feasible set R(a)
for a given level of a can be written as

8(0') = {x I P ({e I g(x, e) ::; o}) ~ a}

== U n{xlg(x,e):::;O}
GEgeEG

(2.9)

(2.10)

since the feasible set R(a) is the union of all vectors x that are feasible according to (2.8).

Although an intersection of convex sets is convex, a union of convex sets is not necessarily

convex. Hence we cannot, in general, expect 8(0') to be convex, even if the sets [x I g(x,e)::; o}

are convex W;'E 3. In fact, simple examples exist where chance-constrained problems define

nonconvex feasible sets - see Section 1.5 in K· 11& Wallace [28J for such an example.

2.3.2 Conditions for Convexity

Although chance constraints can easily define nonconvex feasible sets, it is possible to assert

convexity of the feasible region 8(0:) for general a under appropriate assumptions on g and the

probability measure P.

Definition 16 (Quasi-Concave Probability Measure) The probability measure Pis quasi-

concave iffor any convex .;lei:>51, 52 E :F,

P ("\51 + (1- >')52) ;:::min [P(Sl),P(52)J V>.E [0,1] (2.11)

Proposition 3 If g(.,.) is jointly convex in (x, e) and P is quasi-concave, then the feasible set

8Ca) :::::[x IP ({e Ig~x,e) ::; o}) ;::o} is convex Vll E (0,1].
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Proof. Define Sex) := {e Ig(x,g) s oj. so that B(et) = {x IP(S(x)) c a}. We first show

that Sex) is a convex set and then show that B(a) is a Convex set. Let e(l), g(2) E Sex). Then

since g(x,·) is convex in g by assumption. This implies that

and therefore Sex) is a convex set.

Let xt,x2 E 8(a) , gl E S(xl) , e2 E S(x2) and>" E [0,1]. Then for x= >..x1+ (1- >..)x2and

e = >..gl+ (1- >..)g2, it follows by the joint convexity ofg in (x,g) that

Therefore e E Sex) and hence

since every element of>..S(xl) + (1 ~ >")S(x2) is an element of Sex). Therefore

P (S(x) ;::: P (.\ S(Xl) + (1- ),)S(x2):

;::: min [p (S(xl») ,P (S(..:;2))] 2: u

since P is a quasi-concave probability measure and the sr.':s Sexl) and S(x2) are convex, as

. shown above. Also Xl,x2 E 8(0:) :::} P (S(xl)) ;:::a & P (S(x2)) ;_:a. It follows that x E SeQ)

and therefore B(Q) is a convex;set Vo:E [0,1)...

We have shown that for the class of quasi-concave probability measures, the feasible set is

convex for appropriate g. Next, we introduce the class of log-concave probability measures,

and show that it is a subclass of quasi-concave probability measures.
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Definition 17 (Log-Concave Probability ::'.1easure) The probability measure P is log-concave

if for any convex sets 8b 82 E :F it satisfies

(2.12)

Lemma 2 If the probability measure P on :F is log-concave then P is also quasi-concave.

Proof. Let 81,82 E :F be convex sets such that P(8i) > 0, i::::; 1,2.1Now, since we ',e given

that P is a log-concave probability measure, we have that for any AE [0,1],

Since the logarithm function is monotonic, if follows that

InP (,\ 81+ (1- .>.)S2) C: >.InPeSl) + (1-,\) InP(S2)

C: min [lnP(Sl), InP(S2))

since any point on the line segment between two !paints must be at least as high as the lower

of the two points. Hence

P (.>. 81 + (1- /\)82) C: exp (min [lnF(81),In P(82)]) = min [P(81),P(S2)J

and therefore P is a quasi-concave probability measure. fill

The following proposition answers the question of when a probability measure is log-concave

or, more generally, quasi-concave. It is stated without proof because an advanced knowledge of

measure theory is required - see Prekopa [38J and Borell [I1J.

Proposition 4 Let the iJrobabilitymeasure P on S= ~:'c be of the continuous type with proba-

bility density function t- Then P is a log-concave measure iff f is a log-concave function (i.e.

In f is a concave junction)i and P is a quasi-concave measure iff 1-1/" is a convex Junction.

10thetwine, i.e. if P(Sl) == 0 or P(S2) :=: 0, the proof is trlvlnl since minlP(81),P(S2)] :;: 0 :=:;
P (>' 81 +- (1 - >.)82) ',' P(8) ~ 0 V8 E :P.
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2.3.3 Distrfbutlons that Can Lead to Convexity

We can now state the statistical distributions that have the desirable property of leading to

a convex feasible set under appropriate assumptions on g. They are distributions with quasi-

concave probability measur'es, such as those given in the following examples.

Example1 Utuiforrti Distribution. For the k-dimen~ional uniform distribution on a convex

bodyS C jRk with natural mwsure Jl-(S)> 0 (see Appendix B.2,1), we have

which is a cOnvex function in e and therefore the uniform distribution has a quasi-concave

probability meaS1Lreby Proposition 4.

Example 2 Exponential Distribution. For the exponential distribution (see Appendix B.2.2),

the logarithm of the density

{

-00 if~ <01Inf(~) =
InA - >.e iH?:. 0

is a concave function in e, implying that the probability measure of the exponential distribution

is log-concave (by Proposition 4) and hence quasi-concave (by Lemma 2).

Example 3 Multivariate Normal Distribution. For the muliiuariate normal distribution

(see Appendix B.2.3), the logarithm of the density

is a concave function 'in e since n and hence its inverse ~-l are positive definite (refer to

Sections 5.3 and 6.5 in Marlow [35}). Therefore the probability measure of the multivariate

normal distribution is log-concave and hence quasi-concave.

It is mentioned in Section 3.2 of Birge & Louveaux [10Jthat the multivariate t distribution and

the multivariate F distrlbucion also have quasi-concave probability measures.
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2.3.4 Closed Feasible Set

The following proposition, which is proved in Section 1.5 of Kall & Wallace [28], proves the

closedness of the feasible set provided that g(., .) is jointly continuous in (x, 1;). This is important

since for mathematical programs in general, we cannot assert the existence of solutions if the

fp:,sible sets are not known to be closed. The extreme value theorem (see Section 7.1 in Marlo-

(351)states that when the feasible region is closed and bounded (i.e. compact), and the objective

function is continuous, then a solution exists. When the feasible region is closed, it contains all

limits of infinite sequences of points in the region, which is important when establishing global

convergence of algorithms - see Chapter 6 in Luenberger [3'1J.

Proposition 5 If g : lHtn X :=: -e+ lHtTn is continuous then the feasible set B( 0:) is closed.

2.4 Linear Chance-Constrained Problems

2.4.1 Linear Formulation

The chance-constrained problems (2.2) and. (2.4) are classified as linea.'!'chance-constrained

problems if the functions 9i(X, e) are linear in x, and the set X is convex polyhedral. If

we denne 90 (x, ;) := c(elx, where cce) = (Cl(e), ... ,en(e)l , then the objective function

becomes

(2.13)

where c = Ee [c(e)]. This shows that when we are optimizing the expected value of a linear

objective with uncertain coefficients, the objective coefficients can always be replaced by their

expected values. If we define 9i(X, e):= hi(e) - Ti(e)X for i = 1, ... ,m, where hie!;) is 1 x 1,

nee) is 1 x n, and X := {x E ]Rn l .4x = b , x ~ OJ, then problem (2.2) becomes the stochastic

linear program with joint chance constraints

(2.14)
s.t. Ax= b

Pr. [T(e)x ~ h(e)] ~ Ct

x~O
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where 110 and 17,;(.) denote the ith row of TO and the ith component of h(·) respectively, so

that T(.} is m x nand. h(·) is m x 1. Problem (2.4) becomes the stochastic linear progmm 'with

separate chance constraints

min cTx

(2.15)
s.t. Ax= b

Pr [Ti(~)X;::: hi(~)] ;:::ai, i = 1, ... ,m

x;::: 0

2.4.2 Properties of Linear Chance-Constrained Programs

Returning to Proposition 3, the assumption of joint convexity of g(.,.) is so strong that it

is not even satisfied in the linear cases (2.14) and (2.15) in general (since no assumption is

made on the nature of the dependence on .;), and hence Proposition 3 cannot be used to prove

convexity of their feasible sets. In fact, problems (2.14) and (2.15) do not in general define

convex feasible sets, although convexity can be asserted in special cases, as is shown in the

following two propositions and in Sections 2.4.3 and 2.4.4.

Proposition 6 The feasible set

B(l) = {x J p({e IT(e)x;::: h(';)}) = I} = {x IT(e)x;::: hC';) c.s.]

is convex.

Proof. Assume that x,y E 8(1) and >. E (0,1), so that T(e)x ;:::h(e) a.s. and T(';)y ;:::h(';)

a.s. Let z = AX+ (1 - A)y. Then T(e)z = AT(';)x + (1 - >')T(e)y ?: >'h(e) + (1 -- '-\)h(e)

a.s. Thus T(e)z ?: h(e) c.s. and therefore Z E 8(1). III

Proposition 7 Let ~ have a finite discrete distl iouiion. described by Pr [e == ej] = Pj J j =
r

1, •.. ,r, where LPi = 1 and Pj> 0 Vj. Then for 0:> 1 - mjn{pj}, the feasible set
j=1 3

8(0:)= {x I pete IT(e)x?: h(';)})?: o:}

is convex.
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Proof, The support of the distribution is the fiuite set S :::: {e1, ••• j gr}. Therefore we C8

write B(l) = [x IT(~)x 2: h(~) "Ie E s}. Consider an event A satisfying peA) == I-min{pj}. 0

Pk =,,, min{Pj} then A =U#k~j = S:--{el:}. Hence any event A' satisfying peA') > 1-nin{:t.

must be A' = A u {ek} = S, sincee is the only remaining realization with positive probabils: i.

Therefore for a> 1- min{pj}, B(a) = {x IT(~)x 2: h(e} "Ie E 2} = B(l) and hence B(Oi. is

convex by Proposition 6. II

Theabove propositions show that stochastic linear programs with joint chance constra. ts

and discrr ce distributior-i, where the reliability levels are chosen sufficiently high, have c. ex

feasible sets. T!.· 3 if, ('~;,,'li .polv to stochastic linear programs with separate cl: ace

'h, co..straint is chosen sufficiently high.constraints where the r 'j.,

2.4.3 Randomness i::.. ''';.",,.; -le Only

We now consider th,.. case wl "x is fixed and there is randomness 1the

right-hand side only, i.e. T(~) == T and hte) == .... nth the ith row of T(~) and the ith e: ment

and h(e') being Ti(e) == nand hi (e) == ~i respectively. For programs of the form (2.1 ), the

joint chance constraints can be written as

(2.16)

where F~Ois the c.d.f of e. Loosely speaking, ~hefeasibility of x is equivalent to Tx I ing in

an upper (1- a) confidence region for e.
Proposition 8 Suppose that T is ['!Xedand e has an associated quasi-concave probabilit ' mea-

sure .. Then the feasible set of (2.14) is closed and convex.

Proof. In this case, g(x, e) = e - Tx: which is continuous and linear in both x and ; and

hence jointly convex in (x, e). Therefore the feasible set is conver by Proposition 3 and ilosed

byProposition 5. II
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Proposition 9 Suppose that '1' is fixed and the components {i of l are independent random,

variables with distribution functions Pi. Then the feasible set Can be written as

SeQ) = {x I ;;=lnFi(71x) ~ lnc;r} (2.17)

Furthermore, if the density Junctions Ii are log-concave, the feasible set is convex and closed.

Proof. By the. independence of the Zi' Pr ['1'x ~ e] = IT. Pr [T;x ~ ei] = ITi Fi(71x), so

that Pr [Tx;::: e] ~ Q '* IlFi(Tix) ;:::Q =? L:ilnFi(71x) ~ Ina, implying that B(Q) =
f'"( I L:i In Fi(TiX) ~ In c ' If lni; is concave Vi, it follows that L:i In fi ;s a concave function

so that ITi ii is a log-concave • -nction, Therefore the probability measure associated with e
is log-concave by Proposition 4, since its density function (which is 11i fi by independence of

the ei) is log-concave. Hence the feasible set is convex and closed by Proposition 8, since the

probability measure is quasi-concave by Lemma 2. III

For problems of the form (2.15), each separate chance constraint Can be written in the form

(2.18)

where Pi is the o.d.f, of Zi' Each chance constraint thus reduces to a linear constraint, and the

deterministte equivalent of (2.15) is simply a linear program.

2.4.4 Normal Model for Separate Chance Constraints

In this section we show that for separate linear chance constraints, when the parameters in each

constraint have a multivariate Normal distribution and are independent across constraints, the

constraints lead to a convenient form and define a convex feasible set, so that the problem call

be solved by convex nonlinear programming methods. Consider (2.15) with separate chance

constraints of the form

(2.19)
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and where ~i\== Ti(e), hi :::;1Li(~), i-t'J'l = E ('rr) , VT, :::; Cov (TT) ,}-Lit. :::; E (hi) , (j~. ='

Var (hi) and VT;h. = Cov (Tf,hi)' We define the random variable

(2.20)

Since (i is a linear transformation of a random vector with a lUU!' ariate Normal distribution,

(i itself has a Normal distribution, with mean

(2.21)

and variance

'I'he chance constraint (2.19) can then be reformulated as

Pr [TiX2 hi] 2 Qi::} Pr [Ci 2012 Qi

::} pr[~i- 11ti(X) > -rni(x)] >Qj::} 1- W (-mi(X») > O:i
O'i(X) - ai(X) . - 0'; (X) -

::} iP (;:t?) 2 O!j ::} ;:f:] 2 iP-1(ai), since 1 - cDC -z) == <li(z)

"* O'i(x)qi-l(aj) - mi(x) ::;0 (2.23)

Proposition 10 The standard deviation O';(x) is a convex functIOn of x,

Proof. We prove that O'i(X) is convex in x by proving that g(x) = vX1' 'E x is co. • in x,

where I:> O. Since E is real symmetric and positive definite, it can .be diagonalized as
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where D. = diag (th, ... ,On), 0; > 0 Vi and D.1/2 = diag (.yOj", ... ,~) . Now by the Cauchy-

Schwartz inequality,

vxf LJxl vxfLJx2 = VXf (D,.1/2U)T (6..1/2U) Xl Vxf (Al/2U)T (AI/2U) X2

== IIA1/2UXlllllD,.I/2Ux211 ~ (Al/2UXlf (D,.1/2UX2) =xfEx2

Therefore for any ,\ E (0,1),

2'\(1- '\)vxfLJXl vxfLJx2 ~ 2,\(1-'\)x['Ex2

LHS = ,\2x[ EX1 + (1- ,\)2xI L;X2 + 2"\(1- ).)Vxi' L;Xl VXf L;X2

= ,\2 [g(X1)]2 +(1- ,\)2 [g(X2)j2+ 2).(1- ,.\)g(Xl)g(X2) = ['\9(X1)+ (1- '\)9(X2)?

and

RHS = ).2xf L;Xl+ (1- A)2xf L;X2 + ).(1- ,\)xf L;X2 + .\(1- ).)xf L;Xl

== ('\X1 + (1- '\)x2f L; (AX1+ (1- '\)X2) = [g (AX1+ (1- '\)X2)]2

Therefore 9 (AX1+ (1- A)X2) :5 ).9(X1) + (1 - '\)0(X2) since g(.) is always non-negative, and

(~ _)T
hence 9 is a convex function of x. Since the vector Ti, hi is normally distributed, its

variance-covariance matrix is required to be positive definite (see Appendix B.2.3), and hence

it follows that O"i(X} is a convex function ofx, II

The constraint (2.19) defines a convex feasible set if the LHS of (2.23) is convex in x, Since

mi(x) is affine in x and O"i(X) is convex in x by the above proposition, the LHS is convex iff

W-1(ai) ~ 0 which is true iff ai ~ 0.5. Thus we have, under the assumption of normality

and ai ~ 0.5 'Vi, a determinlsti- convex program that Can be solved by standard methods of

nonlinear programming.
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Table 2 I: Mean and Variance Functions
i 1ni ar Cl!i
1 2Xl + 3X2 + 5X3 - 10 9xf + 4x~ + 16x~ + 12x1X3 0.95
2 7Xl + 5X2 + X3 - 60 25 0.90

Example

Consider the stochastic linear program with two separate chance constraints

min 5Xl + 3X2 +X3

S.t. Pr [e1Xl +e2X2 +e3X;l ~ 10) ~ 0.95

Pr [7X1 + 5X2 + X3 ~ ~4]2: 0.9
X1,X2,X3 ~ 0

(2.24)

wher UJ - N, ( [ : H; : 1: 1)Md(, - N (60, 25) independently The prob-

lem has mean and variance functions as given in Table 2.1, so that its deterministic equivalent

is the Convex program

(2.25)

min z = 5Xl + 3;1;2 +X3

s.t, y9xi + 4x~+ 16x~+ 12xIX3 <Q-l(O.95) - (2X1 + 3X2 + 5X3 - 10) :::;0

5<Q-1(0.90) - (7Xl + 5X2 + X3 .- 60) :::;0

with the optimal solution obtained by MATLAB (see Appendix A.5) as

z· = 42.004805"

(2.26)
xi =0
x~= 12.2014764

Xs == 5.4003759
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Table 2 2' Comparison of Solutions
PI P2 z

Stochastic solution 0.95 0.90 42.0048051
Deterministic solution 0.8606698 0.5 36

If we had ignored the variability in the problem, we would have solved the deterministic LP

(2.27)

min z = 5Xl + 3X2 + X3

s.t, 2Xl + 3:1:2 + 5X3 ;::: 10

7Xl + 5X2 +:Z:3 ;:::60

which leads to the deterministic solution

z* = 36

(2.28)
xi =0
x~= 12

xa =0

At first sight, the deterministic solution appears to be better since it leads to a lower value

of the objective. However, when we calculate Pi = Pr [ith constraint is satisfied] for i = 1,2,

as shown in Table 2.2, we see that the deterministic solution leads to much lower reliability

levels. In fact, the probability that the deterministic solution satisfies both constraints is only

0.8606698 x 0.5 ~ 43%, while the reliability of the stochastic solution is 0.95 x 0.90 = 85.5%.

The stochastic solution improves reliability at the expense of the Objective. Note that both of

the constraints are active at the stochastic solution. This example clearly indicates that when

reliability is an important criterion (in addition to the cost in the objective), the stochastic

solution must be used.

2.5 Solution Methods

As has been shown in Sections 2.3 and 2.4, chance-constrained problems such as (2.2), (2.4),

(2.14) or (2.15) may define smooth convex mathematical programing problems, at least under
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appropriate assumptions. Sometimes these programs have a special form and thus standard

methods of nonlinear Or even linear programming can be used. In general, however, if we wanted

to solve these problems by standard nonlinear programming methods, we would have to ob-

tain gradients and evaluations for functions involving expectations and probabilities, such as

El [90 (x,e)] and p({e I g(x,e)::; D}) ~ 0:. Each evaluation of these functions requires mul-

tivariate integration, which usually cannot be computed exactly and may even be numerically

intractable for problems of moderate dimension, i.e. problems with several random variables.

In practice, however, it is fairly common for problems of high dimension (i.e. with hundreds or

~llousands of random variables) to arise, and therefore many chance constrained problems are

not efficiently solvable, except under sim=lifying assumptions. Various computational methods

have been devised that try to avoid the exact evaluation of the multivariate integration that

appears in these problems. See, for example, the PROOONprocedure in Section 4.1 of Kall &

Wallace [28] that solves programs of the form (2.14) with T fixed orid h normally distributed.

A further problem in solving chance-constrained programs is that chance constraints can easily

define a nonconvex feasible set. This leads to severe computational problems in finding a global

optimum. Proposition 7 also shows that in solving chance-constrained problems, we cannot

expect the approach of approximating a continuous distribution by successively refined discrete

distributions to be successful. This is because successive refinements of the discrete distribution

would eventually imply that min{Pi} < 1-0: I so that the approximating problems could become

nonconvex, even if the original problem (with its continuous distribution) were convex. And,

of course, solutions methods should not entail replacing convex problems by nonconvex ones.

2.6 Example: Water Resource Management

This section provides an illustrative example in water resource management that was adapted

from an exercise at the end of Chapter 1 of Birge & Louveaux (10]. The example illustrates

various alternative stochastic models that can be formulated, such as a P-model, a recourse

model and a chance-constrained model. It is also shown that for this problem, deterministic

models do not aid decision making. The solutions and relative merits of the various models are

compared under different distributional assumptions.
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2.6.1 The Water LevelProblem

Consider the water level in a dam, which can be controlled by releasing 'Water through .he

sluices. In this manner, it is possible to lower the level of the dam by at most 200 mm per

month. HO\, . Jr, the level of the dam is affected by other important factors that increase the

water level, such as rainfall, and factors that lower the water level, such as evaporation and

estm: .. (for consumption). Suppose that evaporation and extraction together account for

a lowen •.E, of the water level at a constant rate of 50 mm per month. This is a simplifying

assumption, since evaporation depends on temperature, humidity and cloud cover which are all

random, and the amount extracted depends on the consumer demand for water. We assume,

however, that the rainfall over the next month is not known with certainty, as the weather in

the catchment area is variable.

Suppose th~j' the water level in the dam is currently 150 rnm below the flood level and 100 mm

above 'Jrtage level. If flooding occurs, damage will be caused to properties and towns

below c.; zam wall. This damage is assessed at RlO,OOO per mm above the flood level. On

the contrary, a shortage leads to the costly importation of water. The cost of this importation

is estimated at R.5,000 per mm below the shortage level. We assume that the cost of releasing

water through the sluices is negligible.

2.6.2 Modelling the Problem

We are trying to decide how much water to release over the next month. A balance is sought

between releasing too much water which Can result in a shortage, and releasing too little water

which can result in flooding. Our goal could be to minimize the expected costs arising from

flooding or shortage, or to minimize the probability of a flood or shortage. Our decision variable

is It and the uncertainty in the problem is characterized by the random variable ~, where we

define

x == the amount (in mm) by which the water level should be lowered during the next

month, restricted to 0 :::;x :::;200

~ == the amount (in mm) of rainfall during the next month, 0 :::;~ < be

F(.) = the c.d.f. of e
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It is estimated that the distribution of rainfall over the next month has mean B(,) == 188 and

variance Var(') == 12996. We compare the results obtained using four different distributions for

the rainfall, each of which has the same mean and variance (see Appendix B.2).

1. The Gamma distribution, , I'V G (r = 2.719606, A = 0.01446599)

2. The Lognormal distribution, '''' LN (f.L = 5.079877, (}2 = 0.3131307)

3. The Weibull distribution, , '" W (a = 1.697216, f3 = 210.6809)

4. A mixture of the Point distribution at e = 0, with probability 1/8 and the Weibull distribu-

tion on e E (0,00), with probability 7/8. Therefore, tv ~Pt(O)+~W (2.401723, 242.3673).

This distribution has the mass and density function

(mass) 1
if e > 0 (density)

(2.29)
ife =0

and the distribution function

(2.30)

The first three distributions are standard contin lOUS distributions with non-negative support.

They all have continuous distrihution functions and continuous density functions, with f(O) =

F(O) == O. The fourth distribution has been used as a realistic distribution to model rainfall

in [16). This distribution assumes that there is a positive probability of having zero rainfall in

the month and that the amount of rainfall has a Weibull distribution given that there is some

rainfall in the month. Its distribution and density functions both have a discontinuity at e == o.

2.6.3 P-model

The water level at the end of the month will have increased by e - x-50, where e is the

realization of Z. A flood will occur if this increase is greater than 150 mm and a shortage will

occur if the decrease is gr 'J.terthan or equal to 100mm, We adopt the convention that flooding
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Occurs if the flood level is exceeded, while shortage occurs if the shortage level is equalled or

"exceeded". Therefore

Pr [Flooding] = Pr. [e - x-50> 150] = Pr [e> x + 200] = 1- F (x + 200) (2.31)

Pr [Shortage] = Pr ~ - x-50':::'; -100J =Pr [e .:::.;X-50] =F(a; - 50) (2.32)

We.could minimize the probability of flooding to obtain

min 1- F (x + 200) => max (x + 200) => x = 200
0:0;"'$200 0$:t$200

or minimize the probability of shortage to get

min F ex - 50) => 0 < x < 50, since Feu) = 0 \:Iu < 0
0$x::>200 ..-

but unfortunately, minimizing the probability of flooding maximizes the probability of shortage

and vice versa. We therefore create a model that minimizes the probability of flooding or

shortage. Since Pr [Flooding or Shortage] = Pr [Flooding] + Pr [Shortage], our model becomes

min P(x) =1-F(x + 200) +Fex - 50)
0$"'$200

(2.33)

We are minimizing a function of one variable on the closed interval x E [0,200], and therefore

the minimum is attained either at x* = 0 or ~OO! or at a point x· that satisfies

PI(X) = f(x....:.· 50) - f(x + 200) = 0 => f(x· ~ 50) = f(a;* + 200) (2.34)

where fO is the p.d.f. of e, provided that P is continuously differentiable on [0,200J. However,

this is not true for all of the distributions, since if F(~) has a discontinuity at ~ = 0, P(x)

will have a discontinuity at x = 50, and if f(~) has a discontinuity at ~ = 0, P(x) will not be

differentiable at x = 50. Since we only consider distributions with potential discontinuities at 0,

the. minimum will be attained at either e" E {O, 50, 200} or x* satisfying (2.34). The functions

P(x) for each distribution are illustrated in Figure 2-1 and the computational results for the

P-model (which were obtained by 11'fATLAB - see Appendix A.5) are given in Table 2.3. We
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Figure 2-1: P-Model Objective for each Distribution

denote the optimal decision under the P-rnodel as xp .

2.6.4 E-lVIodel

Table 2.3: Compu ational Results for the Pvmodel

Instead of using the probability of flooding or shortage as our objective, we could minimize the

expected cost of flooding or shortage. The amount of flooding is ma.x(~ - x-200, 0) causing

damage to the value of 10ma ..,,(~ -;1; -200, 0) and the amount of shortage is max(;t; - e - 50,0)

incurring an importation cost of 5max(x - f - 50,0), where we work in units of HI. 000. If we

r Distribution Optimal a:p Pr[Shortage1 Pr[Flood1 P(xp) = minP(;r) ma.xP(;z;)
Gamma 84.763 17.57% 2.52% 20.08% 49.30% at 200
Lognormal 96.580 13.69% 1.34% 15.03% 50.24% at 200 ,
Weibull 79.077 19.96% 3..11% 23.37% :18.12%at 200
Mixture 128..104 10.99% 18.13% 29.12% j16.58%~~



define E( x) as the expected cost of flooding or shortage (which we want to minimize) associated

with decision e, we obtain the program

min E(x) = lOE, [ma:x:(e~ a: - 200, 0)] + 5E, .[ma:x:(x- e - 50, 0)] (2.35)0::;",::;200 ~ . ~

Program (2.35) has the form of an E-mor1el without chance constraints. In fact, it is a simple

recourse model where the recourse variables are the amount of flooding and shortage respectively

(see Chapter 3), and the penalty costs are the damage and importation costs. Note that to

form such a model it was necessary to quantify these penalty costs. Now

E(x) = 10 1
00

max(~ - x - 200,O)f(~)d~ + 51
00

max(x - ~ - 50,r')f(~)d~

{
10 .r:z:":;.200(~ - x - 200)f(~)de if 0 < x < 50 1
10 J:Z:":;.200(~ - a: - 200)f(~)~ + 5J:-50(x - e -'-50)fCe)de if 50 ~ a: ~ 200

(2.36)

The function ECx) is continuous on [0,200] for all four distributions, After using Leibnitz's rule

for differentiation under the integral sign2 and simplifying, we obtain

E'(x) = { 10F(x + 200) -10 if 0 < x < 50 1 (2.37)
, 10F(z + 200) - 10+ 5F(x - 50) if 50 < z ~ 200

and differentiating again,

E"(x) = { 10lCx + 200) if 0 < x < 50 1
\ lOf(x +200) + 5f(x - 50) if 50-< x ~ 200

(2.38)

The expressions (2.37) and (2.38) also apply for E'(50) provided that FeD) = a and for E"(50)

provided that f(O) = O. This is true for the three continuous distributions but not for the

mixture distribution. Therefore E(:1.") has a non-differentiable point for the mixture distribution

at x =' 50, while for the other distributions E(x) is twice continuously differentiable on [0,200).

For all four distributions, E(x) is convex since E"ex) > a "Ix E [0,200] and E'(x) has a jump
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Table 2.4: Computational Results for the 1'-model
Distribution Optimal :rE E(xE) = minE(;r)
Gatnma 1:11.517 120.323
Lognormal 14-1.803 117.818
\Veibull 139.977 118.750
Mixture 156.823 66.383

increase at x = 50 for the mixture distribution. Consider the interval 0 ::::;;' < 50. Since

E'(O) = 10F(200) -10 < 0 and E'(50) = 10F(250) -Ie < 0 and E(J.,) is a convex function of x

on [0,50), the minimum of E(x) cannot be attained on this interval. Next, consider the interval

50 ::::;x ::::;200. The minimum of E(:r.) on [50, 200J will occur at x* = 50 or ;1;* = 200 or at ;r*

satisfying E'(x*) = O. The functions E(x) for each distribution are plotted on x E [50,200} in

Ql
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Figure 2-2: E-Model Objective for each Distribution

Figure 2-2 and the computational results for the E-model (wl.l.-h were Obtained by I\'IATLAB)

are given in Table 2.4. We denote the optimal soluticn under the E-model as xE .



2.6.5 Deterministic Models

The deterministic .crsions of the P~model and E-mouel can be obtained by putting ~ ;: 188

with probability 1, i.e. eN Pl(188), with the c.d.f

(0 if e < 188 J'FCe) ;: <l 1 if C~188
(2.39)

It follows that P(x) = 1 - F(x + 200)+F(x - 50) = 1- 1+ 0 =: 0 \Ix E [0,200]. The P-model

thus becomes degenerate in this case, as no value oi c: can lead to flooding or shortage. In the

E-model, the amount of flooding is max(188 - x -- 200,0) =max( -x - 12,0) = 0 'r/x E [0,200]

and the amount of shortage is max(x - 188 - 50,0) = max(x - 238,0) = ° 'r/x E [0,200].

Therefore E(x) = 0 'r/x E [0,200], so that th.e E-model is also degenerate in this case. In

these deterministic models, any decision all x is optimal. Clearly, this is misleadlng and in this

example, deterministic models have absolutely no value in helping us to determine a decision.

2.6.6 Chance-Constrained Model

So far we have considered a P~model that minimizes the probability of a disaster (i.e. flooding

or shortage) occurring without regard to the cost of the disaster. We also considered an B-

model in the form (If a pure recourse model that minimizes the expected cost of disaster without

regard to its probability of occurrence, In this section, we create a chance-constrained model

that lies somewhere between these two models. It minimizes the expected cost of disaster,

subject. to the constraint that the probability of a. disaster occurring must be below a certain

level 0:. In the sense of probabilistic programming, this modelis an .E-model with a chance

constraint.

min E(x) - E~ [lOmax(e ~ x - 200,0) +5max(x -z -50,0)]

s.t, pea:) 1 - F(a; -j- 200) +F(x - 50) $ 0:

° S X S 200

(2.40a)

(2.40b)
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Table 2.5: Computational Results for the Chance-Constrained Model
Distribution Xe Xu x* E(xc) P(xc)o
Gamma 27.392 142.270 141.517 120.323 29.78%
Lognormal 15.578 154.606 144.803 117.818 25.90%
Weibull 35.031 133.182 133.182 119.431 30%
Mixture 108.660 148.416 148.416 67.2:J8 30%

Note that E(x) is the same as (2.35) and P(x) is given by (2.33). We choose a = 0.30 and

refer to Figure 2-1. For the three continuous distributions: P(x) decreases from P(O) to a

minimum P(xp) and then increases to P(200). For the mixture distribution, P(x) decreases

from P(O) towards P(50) but does not cross the level 0.30. There is a jump increase to P(50)

and the function then exhibits the same behaviour as for the other distributions. Therefure,

for each distribution, the chance constraint P(x) :::; 0.30 leads to the constraint Xe :::; x :::; Xu,

so that the chance-constrained model is equivalent to minimizing E(x) over an interval. We

denote the solution to the chance-constrained problem as xc' The computational results for

the chance-constrained model (which were obtained by MATLAB)are given in Table 2.5. Note

that Xc == xE when the chance constraint is inactive, i.e. when P(xc) < 0.30.

2.6.7 Sensitivity to Changes in a

In this section, we show how to calculate the value of Xc for different values of O! E [0,1], and

illustrate the results. For the three continuous distributions, the chance constraint P(x) :::;a

impiies x£(O!) :::;x:::; xu(a). We follow these steps to calculate Xl(O!) and xu(a):

1. If a < P(xp) then Xe and Xu do not exist and there is no feasible solution Xc

2. If O! = P(xp) then xe = Xu = xp

3. If a > P(:rp) then Xe and Xu are calculated as follows:

(a) if O!;:::: P(O) then Xc = 0, otherwise xe solves P(xe) = O! j 0 < Xe < xp

(b) if O!;::: P(200) then Xu = 200, otherwise Xu solves P(xu) = a, xp < Xu < 200
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Once we have found ;re(a:) and xu((t), we calculate ;l'c as

* { :re
Xc '= arg min (E(a:e), E(;ru))

if J:e E tXt, xu] ].
otherwise

(2..11)

Note that we utilized the optimal solutions ;vp and xe from the P-mod('l and the E-model.

This indicates that the three models are very closely related. For the mixture distribution, the

procedure to calculate a~tand ;.ru changes slightly. In this case, the solution once again cannot

occur in [0,50) and so we follow the same procedure as above, replacing the interval [0,200] by

[50,200]. Figure 2-3 plots the value of ;t·c against (1 for each distribution. The graph shows

that the solution Xc remains constant (at a:e) once (t reaches a cert;>;~ level, which is P(a:e).

In other words, the chance constraint becomes inactive Va ~ P(x'E), leading to the constant

decision Xc = x'E for all values of a on this interval.

Chance-Constrained Model
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Figure 2-3: Sensitivity of the Solution to Changes in (Ie
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Table 2.6: Comparison of Solutions under Different Models
Distribution PCxp} P{x'E) P(xc) E(xp) E(x'E) E(x'C)
Gamma 20.08% 29.78% 29.78% 167.837 120.323 120.323
Lognormal 15.03% ~5.90% 25.90% 151.740 117.818 117.818
Weibull 23.37% 31.53% 30% 174.318 118.7 J 119.431
Mixture 29.12% 30.87% 30% 76.148 66.383 67.228--

2.6.8 Comparison of Models

Which solution do we use? Table 2.6 shows the value of the optimal solution of each model

for each distribution in terms of expected cost and probability of disaster. There is no solution

that is optimal for all of the models. When we minimize PCx) or E(x), we are using different

criteria and different optimal solutions result. The optimal decision xj, under the P-model is

suboptimal under the E-model and the optimal decision x'E under the E-model is suboptimal

under the P-model. The chance-constrained model seeks a balonce between the two but is often

suboptimal under both models.

The best decision really depends on the preferences of the decision maker. There is no mathe-

matical reason to prefer one model to the next. The decision maker must decide which criteria

are the most important.
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Chapter 3

Stochastic Linear Programming with

Recourse

This chapte:r contains a development of two-stage stochastic linear programs with recourse.

Multistage problems are mentioned but not discussed in detail. The chapter begins with R

discussion of the concept of recourse and recourse models. The formulation and properties of

linear recourse programs are then described. Solution methods and issues are discussed and a.

worked example is provided in which solution methods and alternative models are compared.

The chapter concludes with a comparison between recourse models and chance-constrained

models in general.

3.1 Recourse Problems

Stochastic linear progrartis are linear programs in wl- .ch some of the problem data or parameters

are uncertain. Recourse programs are mathematical programs in which decisions or recourse

actions can be taken after the uncertainty has been disclosed. In this context, data uncertainty

means that the problem data can be expressed in terms of random variables. We assume

that an accurate probabilistic description of these random variables is available in the form of

distribution- or density functions, The particular values that the random variables take on can

be seen 8., the set of possible results of a random experiment. With respect to this random

experiment, the set of decisions to be taken can be classified into two groups:
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• Decisions that must be taken before the random experiment. These decisions, denoted by

x, are called J~rst-stage decisions and the period during. which they are taken is called the

first stage.

• Decisions that must be taken after the random experiment. These decisions, denoted

by y, are called second-stage decisions and the corresponding period is called the second

stage.

If the result of the random experiment is wEn where n is the sample space of the experiment,

the sequence of decisions and events can be represented diagrammatically as

x --+ eCw) --+ yew, x)

This shows that the second-stage decisions are functions of the outcome o[ the random ex-

periment and of the first-stage decision. It is important to understand that the deflnitious of

first stage and second stage refer only to whether the decisions precede or follow the random

experiment, and thus stages can include periods of time where sequential decisions are taken.

Many practical decision problems involve a sequence of decisions which react to outcomes that

evolve over time. These problems cannot simply be modelled as two-stage stochastic programs.

If a sequence of random vectors can be observed at different times in the study horizon, and a

sequence of decisions is taken in reaction to these observations, then the problem has the form of

a multistage stochastic program. The transition between stages is made when a new observation

of a random vector is made. Stages can therefore be periods of time that are very different in

length. The concept of nonanticipativity in multistage programs requires that decisions made

at .a certain stage:

• can depend on decisions that have already been taken and 0.'1 the outcomes of random

vectors that have already been observed, but

• must be independent of decisions that are yet to be taken. and independent of outcomes

of random vectors that are yet to be observed.

The sequence of actions in a multistage problem with t stages is as follows:
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• Take the first-stage decision xl

• Observe the random vector .;1

• Observe the random vector g2

• Take the third-stage decision x3 = x3 (.e ,.;2 ; xl, x2)

• Observe the random vector et-1

In the two-stage recourse problem, we need to choose x before we know the realized value of

f. and once we know this value, we cannot just change x accordingly. Ideally, we would like to

choose the optimal value of x once we knew the realized value of e, so that the best possible

decision could be made. Such a decision is known as a wait-and-see solution. Unfortunately,

wait-and-see solutions are not what we need. 'Ve have to decide x under uncertainty and take

what is known as a here-and-now decision.

3.2 Formulation of Two-Stage Linear R "COUl'seProblems

It was discussed in Section 1.5 that a stochastic program of the form

x2::0

(3.1)
s.t. Ax=b

TCe)x::: hCe)

is not a well-defined mathematical program. Ideally, we want to satisfy the constraints T(e)x =

h(e) but this cannot be done without knowledge of the realization of e. We therefore introduce

the recourse variables y(';) such that the linear combination Wy(e) of the recourse vauebles

56



describ the violation h(~) - TC~)x of these constraints. The penalty associated with the

violatio= )f the constraints is qCe)Tyce).

In otQE'J:words, Wehave a set of first-stage decisions x to be taken without full information on

some random events. Later, fuil information is received on the random events in the form of a

realization e of a random vector. Then, second-stage or corrective actions (known as recourse

actions) y(e) are taken. For a given first-stage decision x, the second-stage decision y depends

on the realization e. Formally, by setting

go (x) = cTx

Q(.c,e) (3.2)

in (1.9), we obtain the general form of the two-stage stochastic linear program with recourse

[ -1

}
min cTx+E,,€ Q(x,e)J

S.t. Ax=b

x;?: 0
(3.3)

where the recourse function is

Q(x,e) = {

min
y(e)

s.t.

qce)Ty(e) 1
Wy(e) = h(e) - TCe)x

y(e) ;?: 0

(3.4)

=nd c and b are known vectors in ]Rnl and ]Rml respectively, and A and Ware known matrices

of size ml x nl and m2 x n2 respectively. The matrix W is called the recourse matrix and

we assume it is fixed, in order to yield properties of the feasibility set that are convenient for

computation - see Section 3.3.1. For a given realization e, the problem data q(e), ~ .:) and

Tee) become known. For each e, q(e) is n2 ~: 1, h(e) is m2 x 1 and T(e) is m2 Xnl. We call

T(e) the technology matrix. The first-stage decisions are represented by the nl x 1 vector x and

the second-stage decisions for a given realization e are represented by the T£2 x 1 vector y(e).
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We also denote by B ~ ~k the support of ~, i.e. the smallest closed subset in IRk such that

P(B) =1.

The dependence of y on ~ is completely different from the dependence of the other parameters

on';. It is not a functional dependence but simply indicates that the decisions yare typically

different under different realizations of e. Formally, the decisions y(';) are chosen such that the

constraints in (3.4) are satisfied almost surd'!,'. i.e. with probability one.

A more condensed formulation of the problem is the deterministic equivalent

min cTx+ Q(x)

}s.t. Ax=b
x~O

(3.5)

where we define the expected recourse function

Q(x) =Be [Q(x, .;)] (3.6)

The deterministic equivalent (3.5) is known as the implicit representation of the recourse prob-

lem because the recourse function is represented implicitly. If the expected recourse function

(3.6) can be expressed explicitly, then (3.5) has the form of an ordinary nonlinear program.

3.3 Feasibility Sets

3.3.1 Induced Constraints

In linear recourse problems, we adopt the convention that if a decision x leads to an infeasible

second-stage problem (3.4) for any realization'; (or set of realizations) with positive probability,

then that decision is suboptimal. Inother words, we reject any decision that could lead to an

undefined recOUrse action, even if that decision induced an infinitely low cost function for other

realizations. Thus for a decision x to be feasible, we require the second-stage program (3.4)

to 'be feasible Ve E B. (Strictly we only require this condition to hold almost surely and not

necessarily VI;E S.)

Depending on the recourse matrix Wand the support B, this is not necessarily true for all first-
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stage decisions x E X, and it may become necessary to impose, in addition to x E X, further

restrictions on our first-stage decisions, called induced constraints. The induced feasibility set

K is defined as

K:= {x I Q(x) < oo} (3.7a)

or

K := [x IVI; E S, :lye!;) 2:': 0 s.t. Wy(!;) = h(l;) - T(I;)x} ~3.8)

provided that the two definitions coincide. This happens when e has finite second moments - see

Theorem 3 in Section 3.1(b) of Birge & Louveaux {lQ]. The first-stage decisions are restricted

to x E X n K, so that (3.5) may be redefined as

s.t.
(3.9)

min

An alternative definition of the induced feasibility set when e has finite or countable support

(i.e. when e is discrete) is

J(:::::: n ](1;)
\~ES

(3.10)

where we define the elementary feasibility set for e 'is

[(e) := {x l:lyCI;) 2:': 0 S.t. I{ly(l;) = h(l;) - T(~')x} == {x I ;J(x, 1;) < co} (3.1l)

The following propositions show that K is a closed convex set and that K is a convex polyhedral

set when the support is a finite set or a convex polyhedron.

Proposition 11 When e has a discrete distribution or a continuous distribution with finite

second moments, the induced feasibility set K is closed and convex;

Proof. Suppose that e has a discrete distribution. Then for each I; , the constraints Wy(l;) =

heel - T(e)x, yet;) 2:': 0 are linear .. Since the feasible set of any linear program is convex

polyhedral and closed, the set in {x, y(l;)} that satisfies these constraints, and hence K(I;), is

convex polyhedral and closed. Therefore the set K = neEsK(I;) is closed and convex since it

is an intersection of closed COIlV,''_ sets. It is proved in Theorem 4(a) in Section 3.].(b) of Birge
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& Louveaux [10] that when e has a continuous distribution with finite second moments, J( is

closed and convex. III

Proposition 12 If the support is a finite set E = {e, ... ,~r}1 then the induced feasibility set

is.a convex polyhedral set and hence X nK is a convex polyhedral set.

Proof. From the proof of the previous proposition, each Kcei) is a convex polyhedral sat.

Therefore K is convex polyhedral since it is the intersection of a finite number of convex

polyhedral sets. Also, X is convex polyhedral and therefore X nK is convex polyhedral. EI

Proposition 13 If the support is a convex polyhedron S = conv{e\ ... ,er}, and hCe) and

T(~) are linear functions of the elements oft; =CEl, ... ,Ekf, i.e.

TCe) = Tl +E1T1 + + EkTk

hCe) hO+elh1 + + {khk

where the T are fixed m2 x nl matrices and the hi are fixed m2 x 1 vectors, then the induced

feasibilzty set K is a convex polyhedral set.

Proof. We show that K corresponds to (3.12) and hence K is a convex polyhedral set by the

previous proposition. Since the support S is a convex polyhedron, it can be written as

Consider the seiK' := {x I '<Ij = 1, ... ,1', 3y(ei);:::0 s.t. Wy(ei) = hW}- T(ei)x} ;2 K
where K is given by (3.8). Note that J(' corresponds to (3.12). For any x EK' and for any

.; c S, it follows that
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T

= .l:>'j (ho +~ih1+ ... +~{hk -TOx-~{T1X_ ... -~{TkX)
j=l
r T r

LAj (hW) -TW)x) = LAjWyWJ= WLAjy(el)
j:=l j=l j=l

Thus for x EK' and for all e E S, there exists y(e) = 2:j=l Ajy(f/) 2:: 0 such that Wy(';) =
h(';) - T(t;)x. Therefore x EK and K' ~ K and hence K' =K. II

In the previous section, we stated that the recourse matrix W was fixed. One of the reasons

for this should now be apparent. If we allowed W to depend on e, then Wee) could have one

or more rows of zeros for some realization e. In this case, it would be impossible to find a

feasible y{e) 2:: 0 that satisfied Wy(e) = he.;) - T(e)x if the appropriate elements of the right

hand side were nonzero. This kind of difficulty rarely occurs for programs with a fixed recourse

matrix and never occurs when the second moments of e are also finite. Another problem chat

can occur when the recourse matrix is not fixed or e does not have finite second moments is

that the sets K = {x IQ(x, e) < 00, 'tie E S} and {x I Q(x) < oo} might not coincide.

3.3.2 Relatively Complete Recourse

Computational advantages are obtained when the recours. matrix W has certain properties.

One of these is the property of relatively complete recourse where every possible first-stage

decision x E X leads to a feasible second-stage problem. This implies that X ~ K and hence

we need only consider the first-stage feasibility set X. In other words, the problem of induced

constraints does not exist.

Definition 18 (Relatively Complete Recourse) A linear recourse program with a fixed re-

course matrix VV 28 said to have relatively complete recourse if

h(~) -T(';)x E posW, 'tie E E, x E X (3.13)

where pos W denotes the positive hull of the columns of W (see Appendix A.i).

However, relatively complete recourse can be difficult to identify. An easier property to identify

is that of complete recourse, where any possible t E ]Rm2 for the right hand side of the second-
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stage problem {Wy = t, t 2: O}leads to a feasible y.

Definition 19 (Complete Recourse) A linear recourse program with a {i:I;edrecourse matrix

W is said to have complete recourse if posW = ~m2.

Complete recourse implies that K = ~m2 and clearly it also implies relatively complete recourse,

The following proposition enables us to recognize complete recourse matrices.

Proposition 14 A fixed m2 x nz matrix W a complete recourse ttiairia:iff it has rank(vV) =
m2 and, assuming without loss oj generality that its first: m2 columns ~~1,W2, .•• , VV:on:1 are

linearly independent, the linear constmints

Wy::::O }
Vi 2: 1, i = 1,... ,m2

y2:0

(3.14)

have a feasible solution.

Proof. (Necessity) W is a complete recourse matrix iff [z Iz =Wy, y 2: O} = ~m2. In order

for W to form a basis in ~m2, it follows from standard results in lim '1.' algebra (see Anton

[31i for example) that rank(W) = m2 must necessarily hold. Assume tl.at W is a complete

recourse matrix. For z = - 2::;1 Wi E ~m2, the second-stage constraints IVy = z, y;::::0 have

a feasible solution y 2: 0 such that

TTt2 112 1712

IVy == L.:WiYi+ L.: WiY;= - _EWi = Z
;=1 i=m2+1 ;=1

Nov if we define
iii+1, for i= 1, ... , m2 1

for i= m2 + 1, ... ,n2

then
m2 n2 m2

Wy = EWi (Yi + 1) + L.: Wiy; = Wy+ 2:vVi =Wy-z= 0
;=1 i=m2+1 .=1

and Vi 2: 1, fat i = 1, ... ,m2 SCIthat y 2: 0 satisfies (3.14), i.e. the constraints (3.14) are

necessarily feasible.
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(Sufficiency) Given that the constraints (3.14) have a feasible solution, say y, w, must show

that a feasible solution y ~ 0 exists to vVy = z, for an arbitrary z E Rm2. Since the columns

WI, ... ,Wm2 are linearly independent, the system of linear equations E~l VViYi = z has a

unique solution 'iiI, ... ,Ym2. If Vi ~ 0 for i = 1, ... ,m2 then y is a feasible solution to Wy:::: z
where. we define 'iii :== 0 for i=m2+1, ... ,n2' Otherwise, we define 7 :=min {Vl> ... .;iim2} < 0

and
for i = 1, ... ,m2 1
for i = m2 + 1, ... ,n2 .

Them

m2 "2 m2 n2

Wy =2:vV; (Vi - IiJi) + E Wi (-liJi) = L Wiih - I LVV;iJi =z - I x 0
i=l i=-l i=l

Now Yi ~ "ih - I ~0 for i = 1, ... ,m2 since -'Y > 0 and iii ~ 1 lor i = 1, ... ,m2. Also,

Yi ~ 0 for i > m2 since iJi ~ 0 V~.Therefore y ~ 0 is a feasible solution to Wy = Z. III

3.4 Properties of the Recourse Function

Proposition 15 For a stochastic program with fixed recourse, the second-staqe function for d,

particular realization ~, Q(x,~) == min {qTY IWy = h - Tx, x ~ o] I is

(a) a piecewise linear convex function in x for all x E X (1K;

(b) a piecewise linear convex }unction in (h, T) i

(c) a piecewise linear concave junction in q.

Proof. Consider two different vectors Xl,X2 E X n K and let x == AXI + (1- A)X2 where

.>. E (0,1). Note that x E X n J( since X n J( is a convex set. Let Yj, Y2 and y* be optimal

solutions of the associated problems, so that Q(Xl'~) = qTyi, Q(X21~)= qTy? and Q(XI~) =

qr y*. Now ,\yi + (1 - A)Y2 is a feasible solution to min {qTy IWy = h - Tx, y ~ O} since

W (\'1'i + (1- '>')Y2) = XvVyi + (1- A)WY2 = A(h - TXl) + (1- >.) (h - TX2) = h - Tx and

hence it follows that

Q(x,e)
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and therefore Q(x, e) is a convex function in x for fixed e.
Let j(h, T) = rniny {qT Y !Wy = h - Tx, y ~ o} for fixed q and x, i. e. Q(x, e) viewed as a

function of hand T (which in turn are functions of e). For different (hloTl) and (h2,T2), let

(il,T) = >.(h1,Tl) + (1- '>')(h2,T2) where X E (0,1). Let yi, Y2 and s: be optimal solutions

of the associated problems, so that j(hl,T1) = qTYl , j(h2' T2) = qTYz and /(11, T) = qT yo..
Since '>'Yi+ (1- .>.)yz is a feasible solution to min {qTy IWy = 11- Tx, y 2': o} it follows that

f(il, T) = qTY':5 qT (.>.y!+ (1- ).)y2) = .>.qTyi + (1- .>.)qTY2
.>.f(hhTl) + (1 -.>.) j(h2' T2)

and therefore f(h, T) and hence Q(x, e) are jointly convex in (h, T).

Let g(q) = min {qTy ItVy = h - Tx, y 2': o} for fixed h,T and x, i.e. Q(x,e) viewed as a

function of q (which is a function of e). For different ql and q2 , let q = >'ql+ (1- >')q2 where

.>. E (0,1). Let yi, yz and y* be optimal solutions of the associated problems, such that

g(q1) = qfYi, g(q2) = qIyz and g(q) = qTy •. Then

g(q) qTy* = (;\qI + (1- .>.)qI)y* = ]\qI y' + (1- >.)qIy'

2': ).qIyi + (1- /\)qI Y2 = Ag( ql) + (1- '>')g(Q2)

and therefore g( q) and hence Q(x, e) are concave in q.

The objective function qTY of Q(x, e) varies linearly in q for each basis. Each linear piece

or facet corresponds to a basis. The basis changes at the facet boundaries, and the objective

function changes in a continuous manner at these boundaries. The function Q(x, e) is therefore

piecewise linear in q. Alternatively, Q(x, e) can be expressed in terms of the dual problem as

Q(x, e) = max {7rT (h - Tx) IWT7f :5 q}. It follows similarly that the objective is a linear

function of x and (h, T) for each basis and therefore Q(x, e) is piecewise linear in x and (h, T).

II
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In the above proposition, h, T and q can be functions of F.. The following corollaries (which

follow immediately from the proposition) show that Q(x, e) is also piecewise linear and convex

or concave in e when hand T or q are affine functions of e.
Corollary 2 If q(e) ~ qo is fixed and T(e) and h(e) are affine functions of e, i.e. TCe) =

To+L:i Tif;i and h(e) = ho+L:i hiei' then Q(x, e) is piecewise linear and convex in e for fixed

x.

Corollary 3 If hand T are fixed and q(e) is an affine function of e, i.e. h(e) - T(e)x ~

ho - Tox and q(~) ~ qo + L:i qiei' then Q(x, e) is piecewise linear and concave in e for fixed

x.

Proposition 16 For a stochastic program with fi:ced recourse where e has finite second mo-

ments,

(a) Q(x) is a convex function and is finite on K.

(b) If e has finite support, then Q(x) is piecewise linear.

(c) If F(e) is continuous, then Q(x) is differentiable on K.

Proof. Q(x) is a convex function since it is a positive-weighted average of the functions

Q(x, e) which are convex in x by the previous proposition. The finite second moments ensure

convergence of the weighted average. The weighted average Q(x) is also finite on K since each

Q(x, e) is finite on K by the definition of K. When e has finite support, Q(x) is piecewise

linear since it is a finite weighted average of the functions Q(x, e), each of which is piecewise

linear in x by the previous proposition. For a proof of differentiability when e has a continuous

distribution, see Proposition 19 in Chapter 4 of this dissertation and Remark 1.2 in Section 1.4

of Kall & Wallace [28J. II

In the following example, we calculate closed form expressions for a typical recourse function

Q(x) in the case of a Normal distribution and a Poisson distribution, and illustrate that in

these cases Q(x} has the properties asserted in the previous proposition.
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Example

T"et·;z; represent the first-stage production of a given good. Let ~ be the demand for the same

good. A typical second stage would consist of selling as much as possible, namely min(';,;z;)

for a given realization S, If we were minimizing the objective, the expected recourse function

wou;J be Q(x) =. -Ee [min (~,x)].

Q(:z;)

The expected recourse function (3.15) is both convex and differentiable in x, since the

density of a Normal distribution is continuous. Figure 3-1 illustrates Q(x) for a N(/-L =

4, (J2 == 4) distribution. Note that the objective function z is the sum of the first-stage

objective ex (which is an increasing function of o: for c > 0) and the expected recourse

function Q(x) (which is a decreasing funcfion of x). This means that the objective z :::;

ex +Q(x) is not necessarily minimized by making x as large as possible, as one might be

tempted to think whilst looking at the graph of the expected recourse function.

2. If ~'" PC>") then

l:cJ e-)..)./ 00 e-)..).} lxJ e-)..>/
Q(x)= ~ '2)--.,- - L x-., - = I)x -j)-.,- -x, for x 2:: 0

j""O J. j=lxJ+l J. j=O J.
(3.16)

where LxJ denotes Roor(x), i.e. the smallest integer less than or equal to x. The expected

recourse function (3.16) is piecewise linear and convex in x, as we might expect since Z
has a discrete distribution with countable support rather than finite support. Figure 3·2

illustrates Q(x) for a P(>. ""' 4) distribution. Note that this distribution has the same

mean and variance (both of which are equal to 4) as the Normal distribution above.
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Fig:...•.; 3-1: Recourse Function for a Normal (fl. == 4,0"2 = 4) Distribution

3.5 SolutionMethods

3.5.1 Difficultieswith Continuous Random Variables

It was shown in the Proposition 16 of the previous section that when the random vector is

characterized by a continuous distribution, the second-stage value function Q(x) is differentiable

and convex, pre vided that the distribution has finite second moments and a continuous density

function. This is not a restrictive condition since there are many continuous distributions that

have these properties. Standard nonlinear programming techniques can then be applied to

solve the recourse problem (3.5) if we can find an analytic expression for Q(x) , such as the

expressions that were found in our example. However, analytic expressions can only be found

(without great effort) for small second-stage problems and for problems with a very specific

structure.

In general, Q(x) can only be computed by numerical integration of Q(x, e) over e for a given

value of x, Most nonlinear programming methods also require the gradient of Q(x) which

also involves numerical integration. Since numerical integration produces an effective compu-

tational method only when the random vector is of small dimensionality, the practical solution

of stochastic programs having continuous random variables is, in general, a difficult problem.
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Figure 3-2: Recourse FUnction for a Poisson (A =4) Distribution

The most common approach is to approximate the continuous random variables by discrete ones,

and to let the discretization become more and more refined, thus hoping that the solutions of

the successive problems (with successively refined discrete distributions) will converge to the

optimal solution of the original problem (with the continuous random variables). When the

random variables have a finite distribution, Q(x) is piecewise linear and convex by Proposition

16 and the feasibility set X nK is convex polyhedral byProposition 12. Although Q(x) is

computable as a finite sum, nonlinear programming methods that require gradients still cannot

be used since Q(x) is no longer differentiable. However, efficient computational methods based

on decomposition methods in linear programming have been developed to solve linear recourse

programs with finite support.

3.5.2 Block Structure for Finite Distributions

When the random vector has a finite number r of realizations ~l, ... ,er with corresponding
r

probabilities PI"" ,Pr where .L: Pi = 1, Pi ~ 0 Vj, we show that the full deterministic
j=1

equivalent linear program can always be formed. The expected recourse function Q(x) in (3.5)

becomes
t'

Q(x) =I)jQ(x, ej)
i'=l

(3.17)
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where

Q(x,ei) == min {q(eilyW) IWyW) == h(ei) -T(ei)x, y(.;i);::: o} (3.18)
y(~1) '.

and the. recourse problem (3.5) can be written in the following deterministic equivalent form,

known as the extensive form,

r
min cTx+ 2:::>iq(';i)Ty(.;i)

;=1

{

A:x=b

s.t. TW)X+W~W)=hW), .i=l, ... ,r
x2::0, y(eJ)2::0,j=1, ... ,r

(3.19)

provided that program (3.19) leads to the correct optimal values of x and y(ei) Vj. We now

show that this is always the case. All the constraints involving y(.;i) are separate from all

the constraints involving y(.;k) for j =f k and the terms in the objective are also separable in

y(.;i) and therefore for a fixed first-stage decision x E X, (3.19) automatically leads to the

correct optimal values y(ej) of each second-stage program (3.18). Since we choose the optimal

x E X, (3.19) produces the same optimal solution as (3.5) and hence the programs are always

equivalent. Using the sub::,- t j to denote dependence on the realization e. the extensive

form (3.19) can be writter

r

min cTx+ I>jqJ Yj
j=l

s.t.
r A:x=b

lijx +WYj = hj , j = 1, ,r
x 2::0, Yj ;:::0 , j = 1, .r

(3.20)
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The extensive form (3.20) is a linear program with the following special block structure that is

called a dual decomposition structure.

Variable x Yl Y2 Yr RHS
Objective L~ Iplqrl Ip2Qrl IPrq;1
1st stage GIJ m

2nd stage e1 @TI [RJ ~ (3.21)

2nd stage e @] [RJ ~

2nd stage er 8D Iwl ~

In designing algorithms to solve stochastic programs with recourse, it has proved especially

beneficial to take advantage of this structure and this has been the focus of much algorithmic

work in stochastic programming. The structure (3.21) is amenable to decomposition methods

such as the L-shaped method of Van Slyke & Wets [48j which is the subject of the next sec-

tion. Other methods that exploit this structure include inner linearization methods and basis

factorization methods.

3.5.3 The L-ShapedMethod

In lirear programming terms, the L-shaped method is a cutting plane technique that corre-

sponds to a Dantzig-Wolfe decomposition [15] of the dual problem or a Benders decomposition

[5) of the primal problem ..The method extends these decomposition procedures by taking Care

of the induced feasibility constraints that must be satisfied in stochastic programming.

Consider formulation (3.5). The expected recourse function Q(x) in the objective is a nonlinear

term that involves the solution of all the second-stage recourse programs. Since this term is

clearly very expensive to compute, we aim to avoid evaluating it exactly. Furthermore, we must

ensure that solutions lie within the induced feasibility set K, so that we are really solving (3.9).
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It can easily be seen that the program

min cTx+B

}x,(J

s.t. B 2: Q(x)
xEXrlI(

(3.22)

produces the same optimal solution x" as (3.9) with B* = Q(x*), since B should be chosen

as its lower bound Q(x) when minimizing the objective. We aim to build a master linear

program over a number or steps that is ultimately equivalent to (3.22) by sequentially adding

constraints. The condition x E X is immediately enforced by including the linear constraints

A.x= b, x 2: O. The conditions x E K and B 2: Q(x) are however, more difficult to enforce. The

condition x E K is enforced by introducing a number of constraints known as feasibility cuts,

while e 2: Q(x) is enforced by adding constraints that are linear approximations to Q, called

optima.lity cuts. At each step of the L-shaped method, either a feasibility cut or an optimality

cut is added. It can be shown that the method either shows infeasibility or converges to a

global optimum in a finite number of steps.

In the L-shaped method, 'weproceed by adding a constraint at each step so that our problem

becomes increasingly constrained until ultimately we have all the constraints in place that

are necessary to solve the recourse problem. Therefore, jf the problem is infeasible at any

intermediate stage, the original recourse problem is infeasible and we stop. For a given solution

XV of the vth master problem (defined below), we test to see ifx" leads to a feasible second-stage

program for ell realizations. If it does, we test for optimality, otherwise we add a feasibility cut

and start again on the updated master problem. If XV is optimal we stop, otherwise we add

an optimality cut and return to the updated master problem. For a full development of the

L-shaped algorithm, see Section 5.1 in Birge & Louveaux [10] or Section 3.2 in Kall & Wallace

[28].

r .0 Is-shaped Algorithm

':3hlP 0 Set s = t = v =O.
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Step 1 Set v = u+ 1. Solve the master linear program (3.23) - (3.25).

(3.23)

s.t.Ax=h

'"'lEX ~ oe, R. = 1, ... , s (3.24)

(3.25)f3R.x+B ~ at, R. = 1, ... ,t

x~O, OE~

The constraints (3.24) are called feasibility cuts and the constraints (3.25) are called

optimality cuts. Let (x", 0") be an optimal solution. If no optimality cuts are present,

set 0" = -00 and do not include 0 in the computation of x",

Step 2 For j = 1, ... ,r solve the linear program

s.t.
Wi = eTy+ + eT-r: }
lVy + 1m2y+ + 1m2y- = hi - TjX"

y ~ 0, y+ ~ 0, v: ~0

(3.26)

min

where eT = (1, ... ,1), until for some i, the optimal value wi> O. In this case, let 0"" be

the associated m2 x 1vector of simplex multipliers (see Appendix A.2.3). Define

(3.27)

and

(3.28)

and add the feasibility cut 'Ys+lx ~ os+! to the constraint set (3.24). Set s = s + 1 and

return to Step 1. If Wj = 0 for all j, go to Step 3.
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Step 3 For i = 1, ... ,r solve the linear program

min q]y }s.t. Wy=hj-TjxV

y2:0

(3.29)

Let 7r'f be the m2 X 1 vector of simplex multipliers associated with the optimal solution

of the jth problem of type (3.29). Define

r

f3t+l = LPj (rr'f)T Tj
j=l

(3.30)

and
r

at+1 = LPj (7r'ff hj
j=l

(3.31)

If"ev 2: at+1 - f3t+1xv then stop, XV is an optimal solution. Otherwise, s.;;tt = t+ 1, add

the optimality cut 82: at+! - f3t+1x to the constraint set (3.25), and return to Step 1.

3.5.4 Enhancements to the I.-shaped Method

Step 2 of the L-shaped method (h~termir~eswhetb-r a first-stage decision x E X is also second-

stage feasible, i.e. x E I<, and involves introducir ~ .asibility cuts. This step can be extremely

time-consuming, as it may require the solution of up to r problems of the form (3.26). Moreover,

this process may have to be repeated several times for different potential solutions. Howev ", if

the recourse problem has the property of complete recourse or relatively complete recourse as

defined in Section 3.3.2, the second stage will alr ays be feasible. Step 2 can then be omitted

from the L-shaped method altogether, resulting in a large computational saving. This is a

significant obser v .tion since many (or most!) well-modelled practical problems have relatively

complete recourse. In some cases, a good understanding of the problem may make it possible to

derive the necessary induced constraints beforehand and thus the feasibility step can be omitted

from the L-shaped algorithm.

In Step 3 of the L-shaped method, all of the r second stage programs are solved in order to

obtain their optimal simplex multipliers. These multipliers are then aggregated in (3.30) and
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(3.31) to produce one optimality cut. Birge & Louveaux [fi] proposed the multicut version of

the L-shaped algorithm in which several optimality cuts (one per realization) are placed in

each iteration of Step 3 instead of one. By sending disaggregate optimality cuts, more detailed

information is given to the first stage. The number of returns to Step 1 is expected to decrease,

although the master program grows rapidly as many more cuts are added. Whether the rnulticut

version is more effective than the standard L-shaped method depends on the problem under

consideration.

The L-shaped method involves the solution of many similar linear programs. For example, the

programs may differ in the right-hand side and objective only and thus the same basis may

produce solutions for several realizations. Bunching methods have been designed that avoid

computational inefficiencies such as repetition in the calculations. These methods are useful in

particular when the objective coefficients are deterministic, i.e. q(e) == qQ. See Section 5.4 in

Birge & Louveaux [10] for details on bunching methods.

3.5.5 Bounds and Approximations

Lower and upper bounds can be found on the expected value of the optimal objective function,

i e. the expected value of the wait-and-see solution. A straightforward application of this is

that bounding methods can be used to bound the expected recourse function Q(x) in two-stage

linear recourse programs. Using the Jensen lower bam -:1 and the Edmundson-Madansky upper

bound or a piecewise linear upper bound, the expected recourse function can be approximated

within any given tolerance. Such approximation methods are based on partitioning the support

and refining the partitioning. SeeSections 3.4 and 3.5 in Kall & Wallace [28J for details,

The L-shaped method can be adapted to utilize bounds and approximations. Instead of creating

cuts that approximate Q(x), cuts ate generated on a lower bound .cCx), while the stopping

criterion is provided by an upper bound U(x) and a tolerance e.

These methods are useful mainly When there are many random variables and the deterministic

equivalent problem becomes so large that even deco-nposition methods fail. Approximation

methods calculate an approximate solution by replacing the exact deterministic equivalent

problem by a smaller deterministic approximating problem through simplification of the distri-
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bution.

3.5.6 SimulationMethods

So far the methods that have been discussed, such as the L-shaped method, are deterministic

methods. When these algorithms are repeated with the same input data, they will produce

the same results each time. The opposite is true of stochastic methods, which usually do not

produce the same results in two runs, even with the same input Jata. These methods have

stopping criteria that are statistical in nature. Most of these methods operate on samples

that are obtained by Monte Carlo simulation, rather than on an possible realizations of the

distribution. One usually resorts to sampling methods (or bounding methods as discussed

above) when the exact problem cannot be solved. The disadvantage of sampling approaches is

that effort may be wasted on optimizing when the approximation is not accurate. This problem

can be avoided to an extent by not optimizing completely.

The stochastic decomposition method of Higle & Sen [25J uses one stream of sample values to

derive many cuts that eventually drop away as the number of iterations increases. A small.

number of sample values is generated before new cuts are added. The method only applies

under relatively complete recourse.

3.5.7 Special Cases

The special structure of some stochastic programs provides computational advantages. One

of the most important special structures in stochastic programming is simple recourse, which

is discussed in Section 3.6. See the production planning example in Section 3.7 for another

example where the structure of the problem is exploited to find an exact solution and to create

and compare efficient solution techniques.

Network problems are specially structured linear programs. Stochastic network problems arise

when there are random elements in the network. Efficient solution methods exist for determin-

istic networks and similarly, efficient methods have been devised to solve stochastic networks -

see Chapter 6 in Kall & Wallace [28J.
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3.5.8 Methods for Multistage Programs

Although the multistage stochastic linear program with a finite number of possible future

realizations has a deterministic equivalent linear program (see Section 3.5 in Birge & Louveaux

[10]), the structure of this problem is more complex than that of the two-stage problem. These

deterministic equivalents tend to expand in size extremely quickly. Solution methods for two-

stage methods can be generalized to the multistage case but result in additional complications

and can be difficult to implement. Nested decomposition methods, such as the nested L-shaped

method .for multistage stochastic linear programs (see Section 7.1 in Birge & Louveaux [10)),

have been implemented successfully by Gassmann [23J, for example.

3.6 Simple Recourse

A simple recourse problem is a linear recourse program of the form (3.3) where

W = (.1, -IJ}.
T(e)::; T

h(e) == e
(3.32)

in the second-stage program (3.4). To correspond with W we partition y and q as

In other words, in simple recourse we assume that the technology matrix T and objective

coefficients q are fixed and that there is randomness in the right-hand side only. Furthermore,

W is a complete recourse matrix. The recourse variables y+ represent the positive elements of

the right-hand side e - Tx, while t!-.erecourse variables v: represent the negative elements of

the right-hand side. Thus the recourse variables (and hence the penalties) are defined for every

possible value of the right-hand side. By duality in linear programming (see Appendix A.2.3),

we have for the recourse function
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(3.33)

The dual formulation (3.33) clearly has a solution if and only if q+ ;:: -q- and therefore we

make the necessary assumption that q++ q" ;:: 0 which is equivalent to solvability of the

second-stage problem. If we define

X:=Tx (3.34)

and Xi :=1ix as the ith element of X (where Ti is the ith row of T). then the solution 71'* of

the dual

Q(x.t;) = max{Ct;~X)T7I' I-q- ~ 71' ~ s"}

= max {~Cei - Xi)T'If; I -qi ~ 'lfi '5 qt, i= 1, ..• ,m2}· (3.35)
,==1

is clearly

. {qt1f; =
-qi

(3.36)

The equality case ei - Xi ;= 0 is not important since it adds zero to the summation and we can

choose any 11": E (-qi. qil By convention we choose 11"; = -qi. 'I'heret .tl

1n2

Q(x, t;) =LQi (Xi , ei)
;==1

where

(3.37)

The expected recourse function is

Q(x) = E~ [Qcx,e)] =L Q(x,t;)f'eCI;)dt; = ~ isQi(Xi,ei)!eCI;)dt;

= ~ {qt h.>Xi Cei- Xi) Je(t;)dt; - qi t.~):i(el - Xi) f'{(t;)dt; }

m2

:::: LQi(Xi)
i=1

(3.38)
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where

(3.39)

Expression (3.39) shows that the marginal distributions ft(.) o€ each of the right-hand side

elements ~, are sufficient to evaluate the expected recourse function, since the other variables

(i.e. all the elements of e except for ei) ate integrated out over their support. Furthermore,

(3.38) shows that Q(x) is a separable function in the Xi'

These properties of simple recourse can be extremely useful in developing efficient computational

methods, or even in solving the problem exactly. The property of separabaity is particularly

useful in evaluating the multiple integral or multiple summation when calculating Q(x). For

simple recourse problems with continuous distributions, problem (3.5) can be solved by non-

linear programming methods, where Q(x) is treated explicitly as a nonlinear function, or as a

sum of nonlinear functions according to (3.38) and (3.39). See Section 3.6 in Kall & Wallace

[28] and Sections [5.7 and 6.4 in Birge & Louveaux [10] for further development of methods

pertaining to simple recourse.

3.7 Production Planning Example

The aim of this section is to illustrate the concepts of stochastic linear programming with re-

course by moans of an example, which was taken from Section 1.2 of Kall & Wallace [28]. Kall

& Wallace solved the problem by approximating the distribution using a. questionable simula-

tion procedr 'e, but gave no indication of the accuracy of their solution. In this section, the

structure of the recourse problem is exploited to find the exact solution by analytic methods

and to devise efficient methods of solution by numerical integration and by discretization. The

solution methods are compared with each other and it is shown that the solutions appear to

converge towards the exact solution, while the method of Kall & Wallace yields inaccurate

results. The results also provide some insight into the accuracy of the solution obtained from

a given level of refinement of the approximating distribution. Deterministic models for the

problem are solved and compared with the stochastic model, and the value of the stochastic so-

lution and the expected value of perfect information are calculated. The wait-and-see solutions

and the average wait-and-see solution are also investigated. Chance-constrained models with
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joint chance constraints and separate chance constraints are formulated and compared with the

recourse model.

3.7.1 An OilRefinery's Production Problem

• 11 oil refinery wants to decide the cheapest production plan for the forthcoming week. The

producer must decide how many barrels Xi of crude oil to purchase at the beginning of the

week from country i = 1,2. A total of at most 100 barrels can be purchased. The costs of the

barrels are $20 and $30 per unit respectively. Two different products - petrol and fuel oil - are

produced simultaneously from the crude oil. The weekly demand of the refinery's customers

for the two products varies randomly and can be modelled as 180+ el and 162+ e2 units of

petrol and fuel oil respectively, where el rv N(0,144) and e2 '" N(0,81) independently. The

customers expect their actual demands for the week to be met, even though the producer does

not know in advance what it is going to be. Due to the nature of the production process and

the quality of the crude oil, each barrel of crude oil from the first country always produces 3

units of fuel oil and each barrel of crude oil from the second country always produces 6 units

of petrol. However, the other productivities vary randomly as follows. Each barrel of crude

oil from the first country produces 2+e3 units of petrol and each barrel of crude oil from the

second country produces 3.4 - e4 units of fuel oil, where e3 rv U( -0.8, 0.8) and e4 '" Exp(2.5)

independently of each other and of el and e2' The actual productivities are only observed

during the production process itself. The production plan must be decided at the beginning of

the Week and cannot be changed during the week. The producer is thus faced with the problem

s.t.

2Xl + 3X2

Xl +X2:S 100

(2 + e3)XI + 6X2 ;:::180+{I
3Xl + (3.4 - Z4)X2 ;:::162+Z2
Xl;::: 0, X2;::: 0

(3.40)

"min"

where the objective (the cost function) is in units of $10, and where el tv NCO,144), e2 rv

NCO,81), ~3 rv U(-0.8,0.8) and Z'i rv Exp(2.5), all independently. However, this is not a

well-defined mathematical program, as was explained in Section 1.5.
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.3.7.2 Deterministic Formulation

Since E(el) = E(e2) .::= E(~3) = 0 and Ea4) = 0.4, the expected value problemis

min z = 2XI + 3X2

s.t. Xl + X2 ~ 100

2X1 + 6X2 ~ 180

3X1 + 3X2 ~ 162

Xl ~ 0,:1:22: 0

(3.41)

with the optimal solution

xi = 36 }
x2=18

z* = 126

(3.42)

This woulcl be the optimal production plan if no variability was inherent in the problem.

3.7.3 Fat Solution

We can obtain confidence intervals for the unknown parameters as

el E (-30.909952,30.909952] 2.sided 99% C.I.

e2 E [-23.182464, 23.182464J 2·sided 99% C.L

e3 E [-0.8, 0.8J 100% C.L
(3.43)

e4 E [0,1.842068) Lsided 99% C.L

The producer may want to look for a safe or conse1'Vative production plan, i.e. one that would

be feasible for nearly all possible realizations of the parameters. Such a production plan is called

a fat solution (refer back to Section 1.8) and reflects total risk aversion of the decision maker.

The fat solution is determined by assuming pessimistic realized values for all of the parameters

which, in this example, is equivalent to assuming high demands and low prcductivities. This

corresponds to choosing ~1'~2 and ~4 at their upper limits and ~3 at its lower limit. The linear
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program then becomes

(3.44)

S.t. Xl +X2 ::; 100

1.2Xl + 6X2 ~ 210.909952

3Xl + 1.557932x2 ~ 185.182464

which yields the solution

xi = 48.511349 }
x2 = 25.449389

z* = 173.370865

(3.45)

The objective value z*!:::: 173 is far more expensive than the objective z* = 126 of the expected

value problem. A problem with fat solutions in general is that they are rather expensive in the

first stage. However, they are usually very cheap in the second stage, as we will see in Section

3.7.11.

3.7.4 Recourse Formulation

It may well be possible for the producer to find a cheaper production plan and still meet the

demands of the clients if it is possible to set up an emergency (overtime) production plan or to

buy the shortage in the market. Suppose that the products can be purchased in the market at

a price of 7 and 12 per unit respectively. We can then formulate the second-stage program for

given decisions Xl and X2 and realization e as

min 7YI(e) + 12Y2(e)

s.t. (2+ ~3)Xl + 6X2 +YIce) ~ 180+~I
3Xl + (3.4 - ~4)X2 +Y2Ce) ~ 162 +';2
YI(e) ;:::0, Y2(e) ~ 0

(3.46)
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which immediately yields the optimal solution

viCe) = max (180 +Sl - (2 +S3)Xl - 6X2, 0) }

Yz(e) = max. (162 + S2 - 3X1 - (3.4 - S4)X2, 0)
(3.47)

Hence we get the two-stage recourse program

(3.48)

where

and viCe) and Y2ce) are given by (3.47). The recourse problem (3.48) involves continuous

distributions and can be solved by any of the following methods:

1. Exact solution by analytic methods.

2. Accurate calculation of Q(Xl, X2) by numerical integration, and accurate optimization by

nonlinear programming methods.

3, Approximate calculation of Q(Xl,X2) by discretization and summation, and accurate op-

timization of the approximate problem by nonlinear programming methods.

4. Discretization of the distribution and exact optimization of the approximate Problem by

the L-shaped method.

In Sections 3.7.5 - 3.7.7, the recourse problem (3.48) is solved by these methods, and the results

and computational effort are compared. Methods 3 and 4 produce the same solution for the

same discretization, provided that the nonlinear methods are sufficiently accurate.

3.7.5 Exact Solution

The expected recourse function can be written as

(3.49)
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where

and

We solve (3.48) as an unconstrained problem and hope that the constraints will be satisfied.

At an unconstrained optimum, the conditions

(3.50)

must be satisfied. Using Leibnitz's rule for differentiation under the integral sign, and evaluating

the resulting integrals, we obtain the partial derivatives

jo.8100
.-5v!z . [ ~I]= 7 -- (2 + ((3) exp -_. d(l de3

-0.8 6x?-180+(2+e3)Xl 192.J1f . . 288

= -14 26.25 (-6 180 2 8) [. (6X2 -180 + 2.8Xl)2]+ y"27fxi . X2 + +. Xl exp 288

_ 26.25.. (-6· 180 1 2) [(6X2 - 180+ 1.2X1)2]y"27fXI X2 + +. Xl exp 288

;- 8~i (-16272 + 3.92xr + 1080X2 - 18x~) cI? (6:Z;2- 1~~+ 2.
8Xl)

_~.5 (-16272 + 0 72:z;r+ 1080x2 _ 18x~) cI? (.6:1;2 - 180 + 1.2Xl)
8xI' 12

.n 8100 -5v!z [~I ]= 7j --exp -- dt;ld~3
-0.8 6X2-180+(2+ea)Xl 32.J1f . 288

= -42+ ;~l ( exp [ (6X2 - 1~~:2.8X1f]- exp [

+26.25 (2.8 + 6X2 ~ 180) iJ? (6~ 2 - 1~~+ 2.8Xl)

(6X2 -180+ 1.2Xl)2].)
288

83



See Appendix B.3 for the integrals that were used in these calculations. Using MAPLE (see

Appendix: A.5) to solve (3.50) yields the optimal solution

:r;i = 39.1712930 }.
x2 = 22.8577789

RP = z (xi, x2) = z" = 153.8547495

(3.51)

The expected value of the deterministi- solution under the stochastic model is

EEV = z(36, 18) = 239.0644924

so that the value of the stochastic solution is

VSS =EEV - RP = 239.0644924 -153.8547495 = 85.2097429
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Table 3.1: Numerical Results using Numerical Integration
cl e2 Xl X2 Z

10 -:J 10 -:.! 39.1917 22.8576 153.854204
10-4 10-2 39.181533 22.855198 153.853623
10-3 10-3 39.178710 22.848018 153.853758
10-4 10-4 39.179642 22.847782 153.853599
10-5 10-5 39.170322 22.858769 153.853607
10-6 10-6 39.170327 22.858765 153.853607

which corresponds to a reduction in expected cost of 85.2097429/239.0644924 = 35.6%.

In practice, this approach of finding the exact solution would hardly ever be used because an

excessive amount of work is involved (especially in evaluating the integrals analytically), even

in a small problem such as this. In other problems, the integrals may well be impossi. .le to

evaluate analytically.

3.7.6 Solution by Numerical Integration

As shown in (3.49), the expected recourse function can be written as the sum of two double.

integrals. These integrals can be calculated numerically, and therefore (3.48) can be solved by

nonlinear programming methods. The accuracy of the optimal solution obtained by this method

will depend on both the tolerance el of the numerical integration procedure and the tolerance

e2 of Xl and X2 in the optimization procedure. As Cl -T 0 and C2 -T 0, we expect the solution to

approach the exact optimal solution (3.51). Table 3.1 gives numerical results that were obtained

using MATLAB 1 for different tolerances. The numerical solution is close to the analytical one,

especially when the tolerances are small. However, it becomes increasingly difficult to get

answers for smaller tolerances. As a rough observation, I found that the computing clme

changed by orders of magnitude as the tolerances changed by orders of magnitude. Also, it

appears that only limited accuracy can be obtained by the particular numerical integration

procedure that was used (especially when integrating ovei an infinite range), and hence the

accuracy of the optimization procedure is limited.

IThe procedure QUAD2DG from the Numerical Integration Toolbox was used. It implements a Gaussian
quadrature integration scheme.
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3.7.7 Solution by Discretization

If the random vector ~ is discretized into S possible realizations ';' with associated probabilities
s

po = Pr [e = .;sJ for 8 = 1, ... , S j where L: Po = 1, then the recourse problem (3.48) can be
,:=1

written as the linear program

s
min 2(1:1 + 3X2 + l:p,{7Yt(e') + 12Y2(e")}

.=1
s.t. 1:1 + X2 .:5 100

(2 + e3)xd' 6X2 + Y1W) ;::::180+ eL 'Vs

3X1 + (3.4 - WX2 +Y2(.;") ;::::162+ e~, 'Vs
Xl;:::: OJ X2 ;:::: °
Y1(e') ~ 0, Y2(.;");:::: 0, 'Vs

(3.52)

'This linear program has the block structure (3.21) and can be solved by ,

However, since the second-stage program is always feasible with the salt.

shaped method.

we can apply the Lshaped method without Step 2, as was discussed in Section 3.5.4. An

alternative method is to exploit the separability of the expected recourse function Q(X1,X2)

in (Sl' e3) and (S2, e4) to calculate it explicitly for !\ given Xl and X2. Note that the value

of Q(Xl, X2) calculated in this away is only approximate because the discretized distributions

approximate the continuous distributions. Q(Xl' X2) can thus be approximated as

s s
Q(Xl, X2) "" 2:)PoY,t(sf, m+2: 12p';Y2(S~, W

,=1 8=1
(3.54)

The recourse problem (3.48) can then be solved within a given L,' irance by nonlinear program-

ming methods. Since the random variables are indr pendent, they can be discretized separately,

so that the realizations of the random vector are obtained by running through all possible real-

izations of each variable with the others fixed. I compare the results that were obtained using

two different methods of discretization.
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Table 3.2: Numerical Results for Discretization by Simulation
81 82 8a 84 8 tc I Xl x2 Z

5 7 9 11 3465 10,000 I 37.610033 23.495563 150.62Q475
15 15 15 15 50625 1<;'1, 000 , 37.763390 23.469839 150.968494
100 100 100 100 108 200,000 38.152242 23.118031 151.023148

Discretization by Simulation

In Section 1.2 of (28J, Kall & Wallace describe a method to discretize the random variables

by simulation. Their method involves truncating the distributions at their upper and lower

confidence limits, Any simulated values that fall outside these limits are ignc sd. The remaining

finite interval is divided up into equal partitions. The probability assigned to each interval

is the observed relative frequency and the abscissa representing the interval is the observed

conditional expectation. The problem with this method i.3 that the discretized distribution does

not converge towards the continuous distribution because of the truncation. Also, simulation is

rather inefficient as accurate results can only be obtained for a very large number of simulations.

Let 8i be the number of realizations of the ith variable in the discretized distribution and

let J( be the number of simulations that were run for each distribution. Table 3.2 shows

numerical results that were obtained by MATLA13 using this method of simulation. Note that

this solution method is a stochastic method, since two runs of the method with the same number

of realizations and simulations will most probably not produce the same results. It can be seen

that little benefit is derived from the very refined discretization. Even when each variable is

approximated by 100 realizations that were obtained by 200,000 sl-nulations (so that in total

the random vector has 108 realizations), the solution obtained is still quite far away from the

true solution.

Theoretically-Based Discretization

If more accurate results are required, a more theoretically correct method of discretization

should be used, in the sense that the discretized distribution should converge towards the con-

tinuous distribution. Suppose that we want to discretize the continuous distribution of the

random variable e into 8 points ei with associated probabilities Pi, for i == 1, ... ,8. Most

methods of discretization use either intervals of equal length or intervals with equal probabil-
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Hies. The following procedure (which Uses class intervals of equal length) is just one of many

discretization methods that could be used.

Divide the support into S intervals, with the S + 1endpoints

ao < al < ... < as

which ate chosen as follows:

., For finite support, a < e < b, choose ao = a, as = b, ai = a+ ~(b - a) for i .= 1, ... ,S ~ 1.

e For non-negative support, 0 < e < 00, choose ao = 0, as-l = Ft (1- 16s) , as = 00,

ai ::::;S~las-l for i = 1, ... , 8 - 2.

• For infinite support, -00 < e < 00, choose ao = -00, as = 00, al = .P·t (16s) , as'-l =
Ft (1- 168)' ai = a1+ S~l (as-l -a1) for i = 2, ... ,8 - 2.

The rationale behind the Tis is simply to ensure that the extreme points of the discretized

distributions are sufficiently far into the tails of the distributions to.at they approximate, and

to ensure that they move into the tails at a faster rate than if ~ was used. The 8th interval

is given by as-l < e < as. The discretized distribution is then given by the probabilities

ps = pI,' [as-1 <~< as] and the conditional expectations es = E ~ I as-l <~< as]. See

Appendix B.2 for these probabilities and conditional expectations for the Normal, exponential

and uniform distributions. Table 3.3 shows numerical results obtained by MAT LAD for increas-

ingly refined discretlzatlons, where each variable has 8 realizations, and the random vector has

S4 realizations.

Comparison of Discretization Methods

Figure 3-3 shows that the solutions obtained using the theoretically-based discretization appear

L converge to the correct solution quite rapidly, while for the same number of realizations, the

solutions obtained by the simulation method suggested by Kall & Wallace are not even close to

the correct values. This shows that the solutions obtained when using a discrete approximation

to the continuous distribution are highly dependent on the discretization process.
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Table 3.3: Numerical Results for Theoretically-Based Discretization
S 84 Xl X2 Z

5 625 39.648711 22.626918 153.153383
10 10,000 39.589350 22.347282 153.508986
15 50,625 39.435144 22.617298 153.663762
25 390,625 39.179875 22.873445 153.787340
50 6.25. x 106 39.152679 22.879152 153.836740
100 1.0 X 108 39.166394 22.855076 153.848200
200 1.6 X 109 39.173765 22.855958 153.852739
500 6.25 x 1010 39.171546 22.857749 153.854457
002 oo 39.171293 22.857779 153.854750

Comparison with Numerical Integration

Figure 3-4 shows that the solutions obtained using the theoretically-based diacretization are

comparable with the solutions obtained by numerical integration. The solutions from the

theoretically-based discretization which were plotted in Figure 3-3 are replicated in Figure 3-4,

but on a scale that shows more detail. Both methods obtain solutions that Se(')111to converge

to the correct solution, as one would expect. However, the numerical Integratlon method

became slower and slower as more accuracy was required (as mentioned previously), while the

theoretical discretization procedure was easy to apply and solve for many realizations, since each

step simply involved the summation of more terms. The discretization method seems to be the

best to apply in practice, particularly since for many variables, numerical integration becomes

intractable, and many techniques are available for discretized distributions. The discretization

method also requires far less effort than exact solution by analytical techniques.

2E:X:act solution
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Figure 3-3: Comparison of Discretization Methods

3.7.8 Wait-and-See Solutions

The wait-and-see problem for a given e is

s.t. Xl + :r2S 100

(2 + ';3):Q + 6:1;2 ~ 180 +~l

3Xl + (3.'1 - ~4)X2 ~ 162+ ~2

;f,1, X2 ~ a J

Q·,I··,·I,,
1,
1:
1
1

:
1
1
1:.

40

(3.55)

with the corresponding wait-and-sec solution x(';) = (Xl(';),X2(';)), We want to find z =
E [z(e)] = W8 and the average wait-and-see solution x = (Xl.X2) = 15 [x(e)]. Note that

there arc no second-stage variables, and that there are some values of .; for which tlm problem

is infeasible (e.g. when at least one of ~1 and ~2 is extremely large), although the probability of
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Figure 3-i1: Comparison between Numerical Integration and Discretization

this occurring is minute. The expectations can be estimated by discretizing the distribution of

e or by simulation. First! we Use the same theoretically-based discretization that was used in

the previous section. If S' denotes the number of realizations created for each random variable,

the random vector will have 8'1 different realizations. Table 3.4 shows the values of z and

X that were calculated by MATtAB for different values of S, while the different wait-and-see

solutions are plotted. in Figure 3-5. Note that the wait-and-see solutions appear to be scattered

in a systematic way, and convergence of Xl, X2 and z appears to occur, Alternatively, we can

simulate a number of independent realizations of the random vector. Let S denote the total

number of simulations. Table 3.5 shows the values ofz and x that were calculated by MATLAB

for different numbers of simulations, and the wait-and-see solutions are plotted in Figure 3-6.

Note that the wait-and-see solutions seem to be randomly scattered, while convergence of Xl,

X2 and z appeal's to be slower than when the theoretically-based discretization was used, Thus
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Table 3.4: Average Wait-and-See Solutions using Theoretical Discretization
8 84 xl X2 z
5 625 36.283333 17.594259 125.349442
10 10,000 36.287524 17.583349 125.325096
20 160,000 36.287535 17.581078 125.318303
30 810,000 36.287288 17.580754 125.316836
40 2,560,000 36.287126 17.580670 125.316263

8 Xl X2 Z

100 36.425164 17.997990 126.844294
1,000 36.802746 17.213568 125.246196
10,000 36.341603 17.555148 125.348648
100,000 36.272115 17.596776 125.334559
1,000,000 36.281538 17.584998 125.318071

Table 3.5: Average Wait-and-See Solutions Calculated by Simulation

WS z ~ 125.316

x ~ (36.287,17.581)

we estimate

1,0 that

EVPI:= RP - WS ~ 153.855 -125.316 = 28.539

Recall that VSS ~ 85.210, so that perfect information offers much less of an improvement

over the stochastic solution than »he stochastic solution offers over th~ deterministic solution.

Now AWS = z(36.287, 17.581) = 247.5933> EEV ~ 239.064. Thus i;he average wait-and-see

solution has a higher expected cost than the deterministic solution, even though it is far more

difficult to compute. Although the average wait-and-see solu..on might seem intuitively like

a good solution to use for the recourse problem, it has been shown 'L0 be a poor approach in

terms of both computational effort and expected cost.

3.7.9 Model with Joint Chance Constraints

Suppose that the producer cannot simply buy the shortage of products in the market if the

demand exceeds production, and thus when demand exceeds production, some demand will
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Figure 3-5: Wait-and-See Solutions for Theoretically-Based Discretization

have to go unmet. In order to maintain the client base, the producer may find it important to

meet the clients' demands with a high reliability of, say, 95%. The producer is therefore faced

with the chance-constrained problem

By independence of the ~i ,

min 2:r.1 +3X2

s.t. Xl +X2 S 100

[
(2+~3)Xl +6X2 2180+~1 j.

~ >Q%
3Xl + (3..1 - ~4):n2 2 162+~2 -

Xl 20, X2 2 0

(3Ji6)
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Figure 3-6: Wait-and-See Solutions Calculated by Simulation

Pr [(2 +'~3)Xl +6;7;2~ 180+~l]Pr [3X1 + (3.4 - ~4)X2 ;::: 162+~2]
Pr [~l - a::l~a::;2Xl+ 6X2 - 180] Pr [~2+X2Z4 :s 31'1 + 3.4;r2 - 162]

We obtain the distributions of j\ := Z i - Xl~3 and 112 :=~2+X2Z4 by transformation. For fixed

Xl and X2, the density and distribution functions of Yl are

and

f ( ).= _1 .{<I> (YI +~..8Xl) -<I> (·YI-O.8Xi).}
I YI 1.6;t:1· 12 12

7.5 [¢ (Vi +O.8Xl)·. _ ¢ (Vl - ?8Xl)]
Xl 12 \ 12
+7.5 (VI +0.8X1) <I> (Yi + 0.8;r;l) _ 7.5 .(Yl- O,SXl) <I> (Vi - O,SXl)

Xl 12 12 Xl 12 12
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for -00 < Y1 < 00 and, for fixed Xl and X2 the density and distribution functions of 1'2 are

f () 2.5 [253.125 2.5Y2];r, (X2Y2 - 202.5)2Y2 =-exp ------ 'J!
X2 x~ X2 9X2

'l.l1d

for -00 < Y2 < 00. If we denote

and

then the reliability R of a given decision (X1,X2) can be written as

so that the problem with joint chance constraints becomes the nonlinear program

min z = 2X1 + 3X2

s.t. Xl + X2 ::; 100

F1 (2X1 + 6X2 - 180 j Xl) F2 (3X1 + 3.43:2- 162; X2) ~ 0.95

Xl ~ 0, X2 ~ 0

(3.58)

The program (3.58) was solve,' by nonlinear programming methods using MATLAB to yield

xi = 38.337403 lx2 = 24.538709
(3.59)

z* = 150.290934

Rexi, x2) = 0.95 J
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Note that the joint chance constraint is active at the solution. Figure 3-7 plots the feasible

region and the solution of the above problem.
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N 50x
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0
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Figure 3-7: Feasible Region and Solution for Model with Joint Chance Constraints

60
x1

3.7.10 Model with Separate Chance Constraints

It is quite likely that the producer will have different client bases for the different products.

The clients of one product will not be concerned about the reliability level of the other product.

The producer may thus require a high reliability level for each of the products, separately. The
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problem can then be formulated as a program with separate chance constrair .s.

min z = 2X1 + 3X2

s.t. Xl +X2 :5 100

FI (2Xl + 6X2 - 180; Xl) 2:: 0.95
F2 (3Xl + 3.4x2 - 162; X2) 2:: 0.95
Xl 2:: 0 , X2 2:: 0

"Ve define the reliability levels Rl and R2 of the two products as

Fl (2Xl + 6X2 - 180; Xl)

F.." "i:c] + 3.4X2 - 162; X2)

The program (3.60) " ,.; '" Tramming methods using MATLAB to obtain

X2 = 22.918456

z* = 146.053047

Rl(xi, xi) = 0.95

R2(xi, xi) == 0.95

R(xi, x2) = 0.9025

Note that both chance constraints are active at the optimal solution. The feasible region for

the problem with separate chance constraints looks very similar to the feasible region for the

problem with joint chance constraints, which was plotted in Figure 3-7.

3.7.11 Comparison of Solutions

We now have six different solutions: the expected value solution, the fat solution, the average

wait-and-see solution, the recourse solution, and the solutions of the joint chance-constrained

problem and the problem with separate chance cc.zstraints. We expect the soluf ins to the

deterministic problems (i.e. the expected value solution and the fat solution) to be inferior

when stochasticity is taken into account. We compare these solutions in Table 3.6 by evaluating

97

(3.60)

(3.61)

(3.62)

(3.63)



Table 3.6: Comparison of Solutions
Solution Xl X!l Z(Xl, X2) Rl(Xl,X2) R2(Xl,XZ) R(Xl,X2)
Expected value solution 36 18 239.064 0.5 0.5259 0.2630
Fat solution 48.511 25.449 173.562 0.9998 0.9985 0.9982
Average W&S solution 36.287 17.581 247.593 0.4671 0.5102 0.2383
Recourse solution 39.171 22.858 153.855 0.9522 0.9572 0.9114 J
Joint CCP solution 38.337 24.538 155.159 0.9867 0.9628 0.95
Separate CCP solution 38.649 22.918 153.918 0.95 0.95 1),9025

their expected cost under the recourse problem and their reliability levels. The table shows

that the solutions obtained by the stochastic models (i.e. the recourse model and the chance-

constrainad models) are good in terms of both expected cost and reliability. There is no solution

that is optimal under the recourse model as well as the chance-constrained models, although

the solutions are similar.

The recourse solution and the solutions to the chance-constrained problems (CCP solutions)

are not similar purely by accident. In fact, if the minimum reliability levels of either of the

chance-constrained models were chosen to be equal to the reliability levels resulting from the

recourse solution, then the solution to that chance-constrained problem would be very close to

the recourse solution. This is ber "use the recourse solution would then be a point somewhere

along the boundary of the feasible region of the chance-constrained problem, and the recourse

objective (curved) and chance-constrained objective (linear) would be :ikely to produce similar

optima. In this example, the recourse solution is closer to the separate CCP solution than the

joint CCP solution since the recourse solution and separate CCP solution have reliability levels

that are more similar.

The expected value solution and the average wait-and-see solution are very similar and 'itt> poor

with respect to both expected cost and reliability. On the contrary, the fat solution leads to very

high reHabilhy and a reasonable expected cost which is due mainly to a negligible second-stage

cost. The fat solution was calculated from a simple deterministic model and is thus quite a good

solution with regard to the computational effort involved, It was not as bad as we expected

and was actually better than the expected value solution.
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3.8 Recourse Models uersus Chance-Constrained Models

Fm~1ia mathematical point of view, neither model is superior to the other. The more appro-

priate model is determined by the situation facing the decision maker and the preferences of

the decision maker.

Recourse models are often favoured because more is known about them and the'r solution

methods are well developed, while large chance-constrained models can be difficult to solve.

Recourse models are justified when second-stage actions with their associated costs can be

clearly defined and quantified. This is often possible. Recourse models bear no regard to how

often the constraints 'ire violated - they are only interested inthe cost thereof.

Chance-constrained models on the other hand pr- • no indication of the size of possible

constraint violations and corresponding penalty COots.Nevertheless; there are many practical

situations involving decision-making where reliability is regarded as +he most important issue.

This may be because it seems impossible to quantify a penalty, because of ethical reasons or to

maintain an image. In such situations, a chance-constrained model ma-ybe the only appropriate

model.
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Chapter 4

Stochastic Nonlinear Programming

This chapter is concerned with the general form of a stochastic pr.ogram - the stochastic non-

linear program. The chapter starts with the nonlinear formulation of stochastic programs with

recourse and moves on to some basic properties of stochastic nonlinear programs. Solution

methods and scenario modelling arc then briefly discussed. The chapter ends with two worked

examples of how stochastic nonlinear programs can be solvable and valuable.

4.1 Nonlinear Formulation

As stated in Section 1.5, the general two-stage stochastic nonlinear program with recourse can

be written in the form

~~iJt{gO (x) +E ~ [Q (x,e) ]} (4.1)

where the recourse function Q (x, e) is defined as

Q(x, €)::::; miyn{q(y) Ihi(Y) ;::;gi (x, e) , hi(Y) ? a , i = 1, ... ,m } (4.2)yE

We call x E X ~ l!ll.n the decision vector and go(x) the first-stage cost, where gO : lRn ~ R

The recourse vector yee) E Y ~ lRn consists of n recourse variables, and q : lRn ~ lR? and

hi : ]Rn -e+ lRare given functions. Note that (4.1) .nd (4.2) are identical to (1.9) and (loS) which

are repeated here for clarity. Once again, the recourse or second-stage decision y is typically
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different for each realization e, and it is therefore denoted y(e). An alternative formulation is

min {gO(x) + Q (x)}
xEX

(4.3)

where Q (x) denotes the expected recourse function

(4.4)

The form (4.1) is known as additive recourse, which is an appropriate model provided that it

is meaningful and acceptable to the decision maker to minimize total expected costs, i.e. the

sum of first-stage and expected recourse costs. Other forms of the objective Can be devised,

such as objectives with multiplicative recourse. We only consider additive recourse since it is a

realistic description in most situations.

A general model could include recourse as well as probabilistic constraints. Probabilistic con-

straints can be converted into equivalent deterministic constraints (which are usually nonlinear)

by using the distribution functions of the constraints, as shown in Chapter 2. We assume that

they are added to the constraint section of the recourse model so that we need only consider

our general recourse model. Note, however, that the probabilistic constraints can easily define

a nonconvex feasible region, as was discussed in Chapter 2.

4.2 Nonlinear Properties

4.2.1 Convexity

The following propositions show that stochastic programs with recourse lefine convex programs

under fairly general conditions.

Proposition 17 If go(') is conveX in x, Q(., e) is convex in x ve E S, and X is a COnvexset,

then the two-stage recourse progra.m (4.1) is a convex program.
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Proof. For Xl! X2 E X and x := AXI + (1 ~ ).) x2 where A E (0,1) we have, by the convexity

of 90(') and Q(.,t;),

which implies

and therefore (4.1) is a convex program since the objective is convex in x and X is a convex

set. III

Proposition 18 If go(') is convex in x, X is a convex set and in (4.2), q(.) is convex in y,

9i(" e) is convex in x ve E B for i = 1, ... ,m, and hi(') is concave in y for i == 1, ... ,m, then

(4. I} is a convex program.

Proof. Let Xl, x2 E X and assume that yl and y2 solve (4.2) for xl and x2 respectively, at

some realization $" so that Q (x\e) = q(yl) and Q (x2,e) = q(y2). Then, by the convexity of

9i and the concavity of hi for i == 1, ... ,m, we have for any>. E (0,1),

9i (>.x!+ (1 ~ A) x2, e) :::; >'9;(xl, e) + (1 - A)g; (x2, e)

:::; >.h;(yl) + (1 - >')hi(y2)

:::; hi (Ayl + (1- A)y2)

Hence y := ).yl + (1 - >.)y2 ~ 0 is feasible in (4.2) for x :=Axl + (1 - A) x2! and therefore we

have, by the convexity of q,

Q (x, t;) :::; q(y) = q CAyl+ (1 _ >.)y2)

:::; Aq(yl) + (1 - A)q(y2) = AQ (xl, e) + (1 ~ >.)Q (x2, e)

which shows that Q("';) is convex in x vt;. Hence (4.1) is a convex program by the previous

proposition, since go(') is convex in x and X is a convex set. II
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4.2.2 Smoothness

For stochastic linear programs with recourse, discrete distributions induce a non-differentiable

expected recourse function Q(x), and therefore we cannot expect differentiability of Q(x) in

the general nonlinear case. However, the smoothness of recourse problems, or more precisely

partial differentiability of the expected recourse function Q(x), can be asserted when e has a

continuous distribution and certain conditions are satisfied.

Proposition 19 If Q(x, e) is partially differentiable with respect to Xj at some x almost surely

(i,e. for a.lle except possibly those belonging to an event N5 E :F with peNs) =: 0), if its pa·rtial

derivative 8C2J:.'~) is integrable and if the residuum Pj (x t;; h) satisfies
J

lim -hI r Pj (x, t;; h) dP(t;) == 0
h .....O .Is

then 8Q(il;) exists as well (i.e. Q(x), is partially differentiable at x with respect to x3.) and8x; . .

jth position

Proof. Let ej =: (0, ... , 0, ""1' ,0, ... , O)T. By the definition of partial differentiability,

the recourse function Q(x, t;) is partially differentiable with respect to Xj at (x,e) if there is a

function 8~(~.'€) such that
-3

with the residuum Pj (x, e; h) satisfying

Provided that Q(x, e) is partially differentiable at x almost surely, we get

Q(x + hej) - Q(x)
h

=: r Q(x +hej, t;) - Q(x, t;) dP(~)
.Is h
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where No E:F and P(No) = o.. nee the partial derivative of Q with respect to Xj is obtained

by taking limits on both sides, i.e.

Q(x) = r 8Q(x,e) dP(e) + lim r pj(X,eih) dP(e)
}3-N6 8xj h-:O}S-N6 h

it follows that Q is partially differentiable at x if J~-N6 llCJj~,e)dP(e) exists (i.e. ll~~~,e) is

integrable), and the residuum satisfies limh-->O~ fS-N5 Pj (x,';j h) dPCe) ::::;O .•

It is often possible to decide whether the recourse function is partially differentiable almost

surely and whether the f'~rHi\l derivative is integrable. However, the requirement that the

residuum be integrable " mtegral converges to zero faster than h can be difficult to check.

Recalling that in the IiI".;u..: .ase, Q(x) is differentiable if the distribution is of continuous type

(i.e. tne cumulative distribution function is continuous), one may conjecture that nonlinear

stochastic programs with continuous distributions are likely to be differentiable.

4. ? Sol ution Methods

One of the simplest ways of solving a stochastic nonlinear program is to form the deterministic

equivalent program and to solve it by nonlinear programming methods. This is often possible

for programs where the distribution has a small number of realizations or scenarios. In some

cases, it may be possible to work with the continuous distribution, if a closed form expression

is available for Q(x) or if Q(:,:c:)is computable for a given x.

An efficient solution method exists for stochastic quadratic programs where both the first-stage

and second-stage objective functions are quadratic. The method is a generalization of the L-

shaped method. This can be compared to the way in which deterministic quadratic programs

can be solved by a generalization of the simplex method. See Section 6.2 in Birge & Louveaux

[10J for details of the algorithm.
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Convex stochastic programs can be solved by a stochastic quasi-gradient method. The method

generates a sequence of points [x"] that converges to an optimal solution of (4.1). The method

uses search directions that depend on randomly r:enerated samples. Stochastic quasi-gradient

methods are stochastic methods and will produce a different sequence {XV} each tim€: the

algorithm is executed. See Section 3.9 in Ka11& Wallace [28] Or Section 10.3 in Birge &

Louveaux [10J for details on stochastic quasi-gradient methods.

State-of-the-art methods for solving stochastic nonlinear programs based on Lagrangians aim to

avoid the expensive evaluation of gradients of Q(x), which can dominate a solution procedure.

Such methods can solve large stochastic nonlinear programs and include the progressive hedging

algorithm of Rockafellar &. Wets (39] and the basic Lagrangian dual ascent method. Refer to

Section 6.3 in Birge & Louveaux [10J for a development of these methods.

4.4 Scenario Modelling

The example in the next section shows that by constructing a fairly trivial statistical distribution

using a small number of scenarios, the resulting stochastic model can offer an improvement over

deterministic models. The major advantage of such scenario modelling is that the models can

usually be solved without great difficulty, since the deterministic equivalent problem is not too

large. Scenario modelling can often be useful when it is difficult to construct a meaningful

statistical distribution objectively, or when a model that has many realizations (scenarlos) is

difficult to solve. Scenarios are often based on "expert" guesses or opinions that are subjective

in nature.

4.5 Example in Kinematics

The problem in this section comes from an unsolved exercise at the end of Chap' 1 in Birge &

Louveaux [10]. It provides an illustrative example in motor racing kinematics, where scenario

modelling with three scenarios is useful in creating a stochastic model that has value over the

corresponding deterministic model. The value of the stochastic solution and the expected value

of perfect information are calculated and it is shown that in this case, the stochastic solution

is almost as valuable as having perfect information.
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4.5;1 HowLate can you Brake?

iOm lL_~ • _

200m

Finish

as~

30m

Figure 4-1: Opening Straight and Right-Hand 'Iurn at "Suzuka"

A~ter qualifying in pole position at a motor race at "Suzuka", you are trying to determine

the quickest way to get through the first right-hand turn, which begins 200 metres from the

start on a track that is 30 metres wide - see Figure 4-1. You aim to stay 10 metres inside the

barrier or, the opening straight and accelerate as fast as possible until a point dl metres from

the end of the straight. At this point, you start to brake as hard as possible and take the turn

in a circular arc at the current velocity that is reached at some point d2 metres from the end

of the straight. You take the turn with the tightest possible radius given your velocity and

traction. A well-known equation in kinematics states that this radius is given by the square

of the velocity divided by maximum lateral acceleration. Once you are through the turn you

start once again to accelerate as fast as possible down the following straight. The section under

consideration finishes 100 metres past the beginning of this straight.

The problem is that you cannot be sure of the combination of speed and traction that your car

has on the track until you start braking at point d1• For simplicity, we refer to this combination

as track speed. At that point, you can tell whether the track is fast, medium or slow, and you

can then determine the point d2 where you enter the turn. You suppose that the three kinds of
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Table 4.1: Parameters for Different Track Speeds
Random Variable Fast (8 = 1) Medium (s = 2) Slow (s =:: 3) Expected Value
Acceleration ~i - 27 m/s2 24 m/s2 20 m/s'l. 23.6 m/s'l.
Deceleration ~2 45 m/s2 42 m/s2 35 m/s2 40.6 m/s2
Max lateral acceleration e3 17.5 m/s2 16 m/s2 14 mjs2 15.83 m/s2

track speeds are equally likely. You want to minimize your expected time through this section.

You also hope that if you follow an optimal strategy, other competitors will not throw you out

of the race. The track speeds correspond to scenarios that we denote by s = 1,2,3. The random

variables that depend on the scenarios are acceleration Zll deceleration Z2 and maximum lateral

acceleration e3 (all measured in m/ s2) and hence only take on three possible values each, as

given in Table 4.1.

4.5.2 Wait-and-See Model

To create a model, we divide the motion of the car into four sectors:

1. Acceleration from the start to d1

2. Deceleration from dl to d2

3. Circular turn through 90~ at constant velocity

4. Acceleration after the turn to the end of the straight

Let to = time taken (in seconds) for the ith sector, i = 1,2,3,4

Vi = instantaneous velocity (in metres/second) at point dj, i= 1,2

r = radius of turning arc

For the sectors with motion in a straight line, we use the well-known equations of motion

V = U+AT

V2 = U2+2AD

(4.5)

(4.6)

where U = initial velocity, V = final velocity, A = (constant) acceleration, D = displacement,

and T = time taken. The parameters and constraints for these sectors are summarized in Table

4.2. Note that we define V3 as the final velocity in the fourth sector.
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Table 4.2: Parameters. and Constraints for Sectors with Straight-Line Motion
First Sector Second Sector Fourth Sector

Initial velocity U 0 --
VI v2

Final velocity V VI V2 V3
Acceleration A el -(2 (1
Displacement D 200-di dl-d2 110-1'
Time taken T tl t2 t4
Equation (4.5) VI = eltl V2 =vl -e)h V3 = V2+e1t4
Equation (4.6) v~ = 2el (200 - dl) v~ =vi - 2e2(dl - li2) v5 = v~ + 2';1 (110 - r)

The third sector must be treated differently. The sector time is ta, the circular velocity is V2 and

as described above, the radius of she turning circle is r· 7J~ /';3' Since the Car turns through

an arc of 90°, the distance travelled is ~71T which is equated with V2t3, to get the constraint

v2t3 ::: ~'IlT. We must also ensure that the entire turning arc lies on the track It can be shown

by (analytic) geometry that this condition is enforced by the constraint

d~+ 100 - 20.,. :$ 0 (4.7)

In addition, the constraint 0 :$ 'I' - d'}, :$ 30 ensures that the car ends up on the track for the next

straight. In creating the model, further constraints are 0 :$ d2 :$ dl :S 200 and non-negativity

t, ;::;0 , Vi ;::: 0, r ;:::O. The wait-and-see model for a given realization I; is the nonlinear program

min z = ti + ta + t3 + t4

s.t, VI = e1tl , vi = 2~1(200 - dl)

V2 = VI -- e2t2 , V~ =-: vi - 2';2(dl - d2)

V2t3 ::: ~rrr , l'= V~ /';3

4 +100 - 20r:S 0

Vs = V2 +';lt4, v5 =v~ +2';1(110 -r)

o :S r - d2 s 30 , 0:$ d2 :S dl s 200

(4.8)

J
in the decision variables dl and d2. For any given decision on dl and d2, the other variables

(viz. r, tl , t2 , t3 , t4, VI , V2, V3) follow automatically as functions of dl and d2. The expected

value problem is equivalent to the wait-and-see problem (4.8) with the realization e = E({) ...
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Table 4.3: Solutions to the Wait-and-See Problems,_---.
Fast Track Medium Track Slow Track Expected Value

z 7.836220 8.238503 8.914473 8.294105
d1 88.72139 86.86101 86.47013 87.44365
d2 34.49490 34.49490 34.49490 34.49490
r 64.49490 64.49490 64.49490 64.49490

I-:- - 3.070545 3.369419tl 2.871038 3.084121
t2 0.976055 0.989753 1.066846 1.009060
t~j 3.015529 3.153716 3.371464 3.170272
i'~ 0.973598 1.024489 1.106744 l()30651
VI 77.58103 73.69309 67.38839 72.99087
'U2 33.59555 32.12348 30.04877 31.9557.5
'U3 59.88269 56.71123 52.18364 56.34782

The wait-and-see problems f')r each scenario and the expected value problem Weresolved using

LINGO (see Appendix A.5) and the solutions a' e listed in Table 4.3.

Note that the widest possible turning radius (of l' = 64.4J490 metres) is chosen in each

scenario. Another (suboptimal) local minimum to the expected value prol-',m exists vath

z::::; 8.428050, r = 9.356536, dl = 78.32423, d2 = 9.33438. This is a totall~' di. rent line that

involves braking later, turning much later with a very sharp radius, and finishing on the op-

posite side of the track. The difference in time is only 8.428050 - 8.294105 = 0.13395 (i.e.

13 hundredths of a second), even though the lines are totally different. Figure 4-2 illustrates

the optimal wait-and-see points dl and d2 under each scenario for the optimal line, and also

illustrates the aforementioned suboptimal line that the car can take. Note that the optimal

line is the same under all scenarios, and that the braking points are so close together that it is

difficult to distinguish between them when looking at the graph.

4.5.3 RecourseFormulation

We now develop the recourse problem. "Vemust decide on di in advance but we can observe .;

before deciding on d2 and r. Although the decision dl must be taken before observation of e
(i.e. before braking), the time taken tl to reach d1 still depends on~, since the acceleration up
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Waif-and-8ee Solutions·

- Optimal line J
- - - Suboptimal line
o Braking poirlt on fast track
o Braking. poi'" an medium !rOOk]
() Braking point on slow track

Figure ·1-2:Optimal Braking Points under each Scenario

Finish

to that point depends on e, even though it cannot be observed. The 1'e<'Ol11'$eproblem is

a
mir- z;::: ~ :L(t1+ t~+ t~+ tV

8,,,1

s.t. tIt;::: e~tf I (IJf)2;::: 2eH200 - dl), V~

v~ == VI - e~t~, (u~)2 == (vV2 - 2~Hdl - d~), v.~
'VSt" - 1."./.. 7.9- (.v8)2! (:S \48. 2 '3 - 2" • - 2 <'3' v,

(d~)2 + 100 - ::!Ot·B SO, 'r/s

v~= 1)~ +e~ti.(l!~)2= (l!~)2+ 2~i(1l0 - )''''), 'tis

o S 1'" - d~ :::;30, 0 :::;d~S dl ~ 200 I Vs
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Table 4.4: Optimal Second-Stage Decisions for the Recourse Problem..
Fast (8 = 1) Medium (8 = 2) Slow (8 = 3)

dS 25.79183 33.73613 34.494902
rS 38.26093 63.73613 64.49490
tf 2.899934 3.075845 3.369419
tS 1.164939 0.997293 1.0668462
t~ 2.322023 3.135110 3.371464
ta 1.538123 1.041289 1.106744
TS 7.925619 8.249537 8.914473
vf 78.29823 73.82028 67.38839
v~ 25.87598 31.93396 30.04877
v~ 67.40531 56.92490 52.18364

with the optimal objective and first-stage solution obtained by LINGO being

RP = z* ::::;8.363210 }

di = 86.47013
(4.10)

4
Define th'" total time taken under scenario s as TO := L: tf. The optimal second-stage solutions

i==l
to (4.9) are given in Table 4.4. The optimal decision is to brake at the same point at which you

would brake if you knew the track was slow. On a slow track, the decision is there-fore optimal.

On medium and fast tracks, you brake for a longer time (and distance) and take the corner

with a tighter radius than you would if you knew the track speed. The optimal braking point

and lines to take under the recourse problem are illustrated in Figure 4-3. Note that the lines

for the medium and slow traekn are very close together and in fact correspond for part of the

final straight. so that in the graph the blue line is hidden by the green line.

4.5.4 The Value of the Scenario Model

The expected value of perfect information can be calculated as

ws ~(7.836220 + 8.238503 + 8.914473) ::::;8.329732

EVPI == RP - WS::::;8.363210 - 8.329732::::; 0.033478
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Recourse Problem
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-- Line on fast track
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- LIne on slow track

Finish

Figure 4-3: Optimal Braking Point and Lines under the Recourse Problem

so that perfect information is expected to improve the time through the section (relative

to the recourse solution) by 33 thousandths of a second, which is a reduction in time of

0.033478/8.363210= 0.4%.

In order to evaluate the expected result of using the expected value solution, fix the first-

stage decision dl = 87.44365 and choose the second-stage decisions optimally to calculate

EEV = 8.492229. The value of the stochastic solution is therefore

VSS:;: EEV - RP = 8.492229- 8.363210= 0.129019

corresponding to a reduction in time through the section (relative to the exj ected value so-

lution) of 129 thousandths of a second, or 0.129019/8.492229 = 1.52%. Note that in this

example, V88 ~ 4 EV P I and therefore using the stochastic solution is almost as good as

having perfect information. Table 4.5 shows the total time through the section under each
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Table 4.5; Total Times under each Scenario for each Solution
Fast Track Medium Track Slow Track Average Time

Expected Value Solution 7.870619 8.402066 9.204002 8.429229 =EEV
Recourse Solution 7.925619 8.249537 8.914473 8.363210 = RP
Difference -0.055000 0.152529 ( _1l9529 0.129019 = VSS
Recourse Solution 7.925619 8.249537 8.914473 8.363210 = RP
Wait-and-See Solution 7.836220 8.238503 8.914473 8.329732 = vVS
Difference 0.089399 0.01lOR4 0.000000 0.033478 =EVPI.

scenario for the wait-and-see solutions, the recourse solution and the expected value solution.

The recourse solution is slightly worse than the expected value solution when the track is fast

but is significantly better for slow and medium tracks. When compared with the wait-and-see

solutions, the recourse solution is optin-al for a slow track, slightly suboptimal for a medium

track, and rather more suboptimal for a fast track, yet it is fairly good under all three scenarios.

Note that in practice, however, we cannot take the w.Jt-and-see solutions, but must make one

decision here and now. This example clearly shows that the recourse solution is robust across

all scenarios - it is the best solution that we can take on average given the information that we

have.

The average wait-and-sec solution for dl is lil=!(88.72139 + 86.86101 + 86.47013) = 87.35084

and has an expected total time of AWS = 8.474030. Note that in this example, RP <AWS <
EEV, so that the average wait-and-see solution is betel' than the expected value solution (but,

of course, worse than the recourse solution).

4.6 Example in Manufacturing Design

This section provides a worked example of a nonlinear stochastic program with nonlinear re-

course and a continuous distribution that depends on the decision taken. The example was

published in [7) and subsequently in Section 1.4 of Birge & Louveaux [10] as an example to

illustrate the value of a stochastic program. However, I found that the published value of EEV

was incorrect", and this led to a gross underestimation of VSS, the value of the stochastic so-

lution. The example has been used with permission from Prof. John R. Bir of the University

lSee http://www-personal.umich.edujCjrbh·ge/book.html for errata to [101.
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of Michigan, U.S.A.

4.6.1 Design of an Axle

Consider the design of a go-cart axle. The designer must determine the length wand diameter

.; of the axle, both of which are measured in inches. Together, these quantities determine the

performance characteristics of the product. The goal is 'to determine a combination that gives

the gr' est expected profit.

However, when the axle is produced, the actual dimensions are not exactly those that were

specified. We suppose that the length w can be produced exactly, but that the diameter'; h a

random variable e-(x) that depends on the setting x on a machine that is used in the production

process. Note that this differs from our usual assumption in stochastic programming that the

random vector e- is independent of the decision taken x.

4.6.2 Recourse Model

We assume a symmetric triangular distribution for Z(x) on [0.9x,1.Ix]. This distribution has

the density function

{

~ (.; - O.9x) if 0.9x s C:::; x 1
fC';ix) = ~ eLlx -.;) if x $'; $1.1x

a otherwise

(4.11)

The decisions wand x are subject to certain limits, w $Wmax and x :::;Xmax• We assume that

all the axles produced can be sold. From marketing studies, it has been found that the selling

price depends on the length wand can be expressed as

(4.12)

where r is the selling price of a very long axle. An axle of length wand diameter'; has volume

7r (~) 2w. We assume, however, that the cost of producing the axles ls determined by the setting

x on the machine (rather than bye) because material is acquired before the actual machining
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process. The manufacturing cost is therefore

(4.13)

where c is the cost per unit volume of the material.

Other costs, known as quality lozses, are incurred after the product is made due to warranty

claims and potential future sales 10':;8es from pi luct defects. In our model, these costs are the

recourse costs. The go-cart will perform poorly if the axle becomes bent or broken due to excess

stress or deflection. From well-known results in physics, it follows that the stress limit for an

axle that is made of steel with a breaking stress of 10, OOOlbs/in2 and a maximum ceutralload

of 100 lbs, is
we ::;39.27 (4.14)

For deflection, we use a maximum speed of 2000 r.p.m. (corresponding to a speed of roughly

60 km/h for a typical 15 em wheel) and a maximum deflection of 0.1 in. Once again, it can be

shown from well-known results in physics that this leads to the equation

3
:!!!_ < 63 169~4 - , (4.15)

When either of these constraints is violated, the axle deforms. The cost for not meeting these

constraints is assumed proportional to the square of the violation. We express it as

Q(W,X,~) = 'f~~{CJy21 '& -y ::; 39.27, ;: - 300y::; 63,169} (4.16)

where y is the maximum of stress violation and (to maintain similar units) 3~O of the deflection

violation. This is an unusual way to define the recourse function. A more obvious way to

define the recourse function would be to define one recourse variable Yl corresponding to the

stress violation and another recourse variable Y2 corresponding to the deflection violation. The

recourse function would then be described as a function of these two recourse variables. The
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expected recourse cost, given w and z, is

Q(w, x) = i:Q(w,x,~)f(~jx)d~

q {X (.?-02,0)(~_ 0.9x) [max{o, ~ _ 39.27, w
3

4 _ 210.563}] 2 dt;
}O.9", X ~ 3001;

+q 11.1'" (:20) eLlx _~) [max {o, f - 39.27, 3~~4 - 210.563}] 2d~
Our aim is to maximize expected profit per item, which equals total revenue per item less

manufacturing cost per item less expected future cost per Item, Mathematically, we obtain the

nonlinear deterministic €quivaient program

max z(w,x) = 7'(1_[0.1<1) _c(w:x
2
) - Q(w,x)

s.t. 0 :5 w ~ wrnax, 0 :5 x $ xmax

For our problem, let Wmax = 36, Xmax = 1.25,? = 10, c = 0.025 and q = 1. The program (4.18)

can be solved by standard methods of nonlinear programming, provided that we can evaluate

Q(w,x). The calculation of Q(w, x) would be greatly simplified if the expression involving the

maximum of three quantities could be' expressed as the maximum of two quantities. In order

to do this, we assume that the deflection constraint (4.15) is satisfied in the neighbourhood of

the optimal solution. This implies that 3~~4 - 210.563 $ 0 for 0.9x $ I; $1.1x for all (w,x) in

the neighbourhood ofthe optimal solution (w*,x"), =nd hence

{
W 10

3
• } {'* - 39.27max 0, e --39.27, 3001;4 - 210.563 = ~ 0

where t,' = ~. We then solve the recourse program under assumption (4.19) and check

that the assumption is satisfied. It is shown later that this assumption is indeed satisfied in the

neighbourhood of the stochastic solution, but not in the neighbourhood of the deterministic

solution - this might be why Birge [7) erred in his calculation of EEV. In order to obtain a

simple closed form expression for Q(1O,x), we must consider the two cases 0.9x $ e :5 x and
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a: < :S 1.1;&separately. We first consider the case

0.9x:S ~I :S x (4.20)

Then

Q(w,x) = {~'.(10
2
0) (~-0.9x) (~ _39.27)2 d';+ (l.l:nOd{h~ x .e . k
w2/3 . w2 . W w1/3

= 30032.885-2 - 7.62078956 - 4363.3'3 - 73499.297-· - + 62456.382
:>; x x x

The solution to r4.18) was obtained by LINGO as

z* = 8.935328 }
w* ;:::33.46394

x* == 1.037378
(4.21)

Now 3~~;4- 210.563 is a decreasing function of ~ and is therefore maximized by e = 0.9x*,
-3 •

when 3~~.4 - 210.563 ;::: -46.163793 < O~ By perturbing w* and x* we can see that the

deflection constraint (4.15) is indeed satisfied for all e for (w,x) in the neighbourhood of the

optimal solution (4.21), i.e. assumption(4.19) is satisfied. Furthermore, assumption (4.20) is

satisfied since ~' = 0.948066 and 0.9x· = 0.933640 < e' < 1.037378 = x·. Since both of these

assumptions are satisfied, (4.21) is at least a local minimum of (4.18) and therefore we do not

bother to consider the case x < e' :::;1.1x , since it is unlikely that this esse will yield an optimal

solution.

4.6.3 Deterministic Relaxation

Consider the expected value problem where the random variable e is replaced by its mean x to

obtain the deterministic problem

( - (-O.lw) (W7l'X2) [ f W . w3 . }] 2max z w, x,.;) = r 1- e - c -4- - max lO, x3 - 39.27, 300x4 - 210.563 .

s.t. 0 :S w:::; Wmax, 0::; x:S Xmax (4~22)
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Note that (4.22) allows for violations of the stress and deflection constraints. Any violations

of these constraints are penalized accordingly. Models that allow for eonsiraint violations are

therefore not unique to stochastic programming. However, (4.22) ignores the randomness inher-

ent in the problem. It is the inclusion of randomness in the model that distinguishes stochastic

models from deterministic models.

Problem (4.22) was initially solved using LINGO, but the solution differed slightly from the

solution obtained frem MATLAB.By experimenting with different tolerances in the MATLAB

solver, I noticed it was difficult to find an accurate solution to (4.22), since the problem seems

to be badly scaled - this may be caused by the way in which the recourse function (4.16) was

defined. We can, however, be sure of the following digits, obtained by MATHEMATICA(see

Appendix A.5) and confirmed by MATLAB.

~= 9.0615995 }

w = 34.9702

x= 0.962039

(4.23)

It may appear at first glance that this solution obtains a better expected profit than the sto-

chastic solution, since z > z". Once again, this is simply because the deterministic problem

paints an overly optimistic picture of the actual situation.

4.6.4 The Value of the Stochastic Model

The main difficulty in finding EEV is in evaluating Q(w,x). The value of EEV was calculated

incorrectly as 5.88 in [7] and [10]. Assumption (4.19) does not hold (i.e. the deflection constraint

does not always hold) in the neighbourhood of the deterministic solution and therefore the

maximum of the three quantities must be considered as follows.

w
'3 - 39.27 > 0 => ~ < 0.9620827
~

and
-3W •
--4 - 210.563 > 0 => ~ < 0.9070842
300(
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Also,

- -3W W . ~ 3
e. - 39.27 > 300e - 210.563 ::} 51388.:;· + 300w~ - w > 0 =? ~ > 0.89'15455

We are interested in the range 0.9x <~< l.lx, i.e. 0.8658351 < f. < 1.0582429 and therefore

max { 0, ~ - 39.27,3:'" - 210.563} ee {

-3 ..
3;;'o{:4 - 210.563

F -39.27

o

if 0.865'''' < ~S; 0.89754.55 ].
!f 0.8975455 < { S; 0.9620827

if 0.9620827 < ~< 1.0582429

We can now calculate Q(w,x) as

Q(w,x) =
100 1·0.$975455 . ( uP .) 2
-=2' (e - 0.9x) ~ - 210.563. ell;
x 0.8658351 300E;
100 1°·962039 / W ) 2

+-=2 . (~- 0.9x) f a - 39.27 dt
x 0.8975455 \ ~

10010.9620827 (- )2+ -2·. (l.1x - e) . ~ - 39.27 d~
x 0.962039 ~

= 33.364116

and hence

z(w,x) = r (1- e-O.1W) - c (W:X2) - Q(w,x) = -24.302488 =EEV

which is vastly different from the published value of 5.88. The value of the stochastic solution

is

VSS = RP - EEV = z* - z(w, x) = 8.935328 - (-24.302488) = 33.237816

In this case, the stochastic formulation causes an improvement from a large loss under the

deterministic solution to an actual profit. In the sense of proportionate improvement, the

stochastic solution has infinite value relative to the deterministic solution. The expected value

of perfect information (EVPI) was not calculated for this example.
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Chapter 5

Stochastic Integer Programming

This chapter provides a brief overview of stochastic integer programming. It starts with the

standard formulation of stochastic integer programs and their properties. Some of the difficulties

associated with stochastic integer programming are discussed, and so are solution methods. A

simple example illustrates that stochastic integer programs can be solvable and valuable. The

example also illustrates how two-stage recourse can be used to model a repetitive long -term

problem, and a discussion of this concludes the chapter. See Appendix A.4 for background in

deterministic integer programming.

5.1 Integer Formulationof the Recourse Problem

Stochastic integer programs with recourse are stochastic recourse programs where some or all

of the decision variables are integers. When referring to stochastic integer programs, it is

normally understood that we f.re referring to stochastic integer linear programs, although of

course stochastic nonlinear programs can have integer decision variables too. The standard

form of the stochastic integer program

(5.1)

where

Q(x,e) == min, {q(ef y lW"y= hCe) - T(e)x}yEY
(5.2)
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is the same as the standard form of the stochastic linear program (3.3) and (3.4) except that

the sets X and Y are now defined as

X';»: [x IAx = b , x ~ 0, Xi E Z Vi E Ir}
y ;= {y Iy 2: 0 , Yi E Z'v't E 12}

(5.3)

where II is the set of subscripts of first-stage variables with integer restrictions and 12 is the

set of subscripts of second-stage variables with integer restrictions. The set Y can also contain

further linear constraints. Thus in the formulation of stochastic integer programs, the sets

X and Y can place integrality restrictions and binary restrictions on the variables x and y,

in addition to linear constraints. The definitions of c, b, A, e, W, T, and h are exactly as in

Section 3.2. The program can also be written as the deterministic equivalent problem

(5.4)

by representing the second-ntage problem implicitly as the expected recourse function

Q(x) == Ee [Q(x,';)] (5.5)

When the sets X and Yare defined as

X= {x IAx=b, xE Z~l}

Y = !l~2
(5.6)

where Z+ denotes the set of non-negative integer'>, we have a stochastic pure integer program.

Of course, :t is not necessary for all the decision variables to be integers. We could have a

mixture of continuous and integer variables - such a situation is known as a stochastic mixed

integer program,

5.2 Properties and Difficulties

Exactly as for linear recourse programs, we define the second-stage feasibility set or induced fea-

sibility set K = {x IQ{x) < oo}, and the second-stage feasibility set K(e) = {x IQ(x,';) < oo]
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for a given realization ~. Now if integrality restrictions feature in X, but there are none in Y,

the properties of Q(x) and K are clearly the same as in the continuous case. However, when

integrality constraints are present in the second-stage problem, the properties of Q(:x:) and K

change and become very undesirable. The following proposition shows that such stochastic

integer programs do not, in general, have the desirable properties of convexity at :l. continuity.

'I'he proposition is illustrated in Section 3.3 of Birge & Louveaux [10] by means of examples,

Proposition 20 The recourse function Q(x, e) and hence the expected recourse function Q(x)

of a stochastic integer :programwith second-sf J'; integrality restrictions is, in general, nonconvex

and discontinuous. Furthermore; the second-stage feasibility sets K(e) and hence K are, in

general, nonconvex sets.

Since K is the intersection of a number of generally nonconvex sets KCe), it is also, in gen-

eral, nonconvex, Discontinuity of Q(x, e) occurs in jumps corresponding to changes in the

second-stage variables from one integer to the next. Discontinuity of Q(x) follows for finite

distributions SJK3 Q(x) is a weighted average of a finite number of discontinuous functions.

The discontinuity of these functions immediately implies their nonconvexity, However, it can

be shown (see Stougie [42]) that when the random variable is of continuous type, the expected

recourse function Q(x.) is continuous, yet it remains nonconvex in general.

5.3 Solution Methods for Integer Problems

It is often possible to solve the deterministic equivalents of small stochastic integer programs

using standard methods of-integer programming. Integer programs start to become compu-

tationally intractable when there are more than about 100 integer variables, Problems can

therefore arise in solving the deterministic equivalent when there are integer second-stage vari-

ables, because a different integer variable is required for each second-stage decision.

The sets X and Yare immediately nonconvex if they contain integrality constraints. Thus,

with reference to the previous section, it can be seen that stochastic integer programs do not

possess ideal properties (such as convexity or even continuity) for designing an efficient algorith-

mic procedure. Noverthelers, algorithms to solve stochastic integer programs can be devised
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by combining principles from integer programming (such as branch-and-bound and cutting-

plane techniques) with methods for solving stochastic linear programs with continuous decision

variables. Such an algorithm is an extension of the L-shaped method, known as the intege7'

L-shaped method, and solves stochastic integer programs with first-stage integer variables. At

each stage of the integer Lshaped algorithm, the current problem

min z

s.t. Ax b

"YiX ~ 8£,£=1, ,$

f3ex+() ~ CXe f.= 1, ,t

x ~ 0, ()EJR

(5.'1')

(5.8)

is solved. The current problem is obtained by:

" Relaxing the integer constraints x{l} E: fl~ll on the first stage variables.

• Relaxing the induced constraints x EK on the first stage variables and representing these

constraints by feasibility cuts of the form (5.7) .

• Relaxing the exact representation of Q(x) by an approximate polyhedral representation

involving () using optimality cuts of the form (5.8).

The integrality constraints are ultimately enforced by branching and bounding in the algorithm.

When integrality is not satisfied, two problems are created by branching, or special feasibility

cuts called integrality cuts are added when branching and cutting. At each iteration, the current

problem becomes a more accurate representation of the exact problem (over a smaller subset

of the feasible region), until either the node is fathomed or further branching occurs. By

relaxing the integrality constraints, a linear program (approximately representing the stochastic

program) is solved at each node. In the algorithm, it is assumed that for fixed x, Q(x) is

computable in a finite number of steps.

Integer Is-Shaped Algorithm

Step 0 Set s = t = u = 0, Z = 00. The value of () is set to -00 or to an appropriate lower bound
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and is ignored in the computation until optimality cuts are added. A list is created that

initially contains only a single pendant node corresponding to the initial subproblem.

Step 1 Select some pendant node in the list as the current problem; if none exists, stop.

Step 2 Set v = V +L Solve the current problem. If the current problem has no feasible solution,

fathom the current node as infeasible and go to Step 1. Otherwise, let (XV, e") be an

optimal solution.

Step 3 Check for any relaxed constraint violation. If one exists, add one feasibility cut (5.7), set

S = 3 + 1, and go to Step 2. If cTXV + r]V > z, fathom the current problem as bounded

a..id go to Step 1.

Step 4 Check for integrality restrictions. If a restriction is violated, create two new nodes by a

branch-and-bound procedure. Append the new nodes to the list of pendant nodes, and

go to Step 1.

Step 5 Compute Q( XII) and ZV = cTXV + Q(XV). If ZV < Z 1update z = ZV.

Step 6 If ev 2:: Q(XV), then fathom the current node and return to Step 1. Otherwise, impose

one optimality cut (5.8), set t = t + 1, and return to Step 2.

The optimality cuts and feasibility cuts are the same as those in the standard L-shaped method.

A multicut approach is often preferred. When there ate integer restrictions in the second stage,

feasibility and optimality cuts based on second-stage branch-and-bound can be added when the

random variable is discrete. See Section 8.1 in Birge & Louveaux [10]for a full development of

the integer. L-shaped method.

5.4 Airline Planning Example

The example in this section comes from an unsolved exercise at the end of Chapter 1 of Birge &

Louveaux [10j. This example illustrates how a stochastic integer program with a few scenarios

can be modelled and solved and that it is more valuable than the corresponding deterministic

model. It also illustrates a situation where a two-stage stochastic program provides a solution

to a long-term problem, as is explained in Section 5.5.
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5.4.1 Partitioning an Aeroplane into Seating Classes

An airline is trying to decide how to partition a new plane for its new route. The plane can

seat 200 economy class passengers. A section can be partitioned off for first class seats but each

of these seats takes the space of two economy class seats. A business class section can also be

included, but each of these seats takes as much space as 1~ economy class seats. The profit

on a first class ticket is, however, three times the profit of an economy ticket. A business class

ticket has a profit of two times an economy ticket's profit. Once the plane is partitioned into

these seating classes, it cannot be changed and it therefore corresponds to a first-stage decision.

Let the first-stage decision variables be

Xl = number of first class seats

X2 = number of business class seats

X3 = number of economy class seats

The airline knows that the plane will not always be full in each section. It has predicted that

three scenarios (denoted by 8) will occur with about the same frequency, and hence we assume

each scenario to be equally likely:

1. Weekday morning and evening traffic (s = 1)

2. Weekend traffic (8::::: 2)

3. Weekday midday traffic (8 = 3)

Let ef = demand for first class seats under scenario 8

;~ :::::demand for business class seats under scenario 8

;3 = demand for economy class seats under scenario 8

Table 5.1 gives the demand for tickets for each seating class under each scenario, as well as the

mean demand for each seating class.

5.4.2 Two-Stage Integer Recourse Model

The airline wants to maximize its profits from this plane over a long period of time, such as E,l,

year. The probabilities of the scenarios correspond to the long-term relative frequencies of the

scenarios. The second-stage decisions variables are
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Table 5.1:Seating Demand under each Scenario
Seating Class 8=1 8=2 8=3 Mean
First Class ~1 20 10 5 11.6
Business Class ~~ 50 25 10 28.3
Economy Class ~~ 200 175 150 175

Table 5.2:Optimal Decisions to the Recourse Problem
Seating Class x'!' y;* y'f* y'i*,
First Class (i = 1) 10 10 10 5
Business Class (i == 2) 20 20 20 10
Economy Class (i ::::3) 150 150 150 150

yf = no. of first class tickets sold under scenario 8

y~ = no. of business class tickets sold under scenario 8

y~ == no. of economy class tickets sold under scenario s

The airline does not allow overbooking, so that the number of tickets sold is limited by the

number of seats available in each section. The recourse model can be written as

3

min z = -~I:(3: If + 2y~ +yD
8=1

yt :::;Xi , yt ::;~f, Vi, s
Xi E Z+ Vi, y[ E Z+ Vi, 8

(5.9)s.t. 2X1 + 1.5x2 +X3 :::;200

with the optimal objective z' = -208.3. The optimal decisions for the recourse problem were

obtained using LINGO (see Appendix A.5) and are given in Table 5.2.Note that in solving (5.9),

the second-stage integrality constraints yf E Z+ can be ignored since the optimal second-stage

decisions are automatically integral. This is because the solver chooses yf'" =ma.x(xi, ~i),which

is non-negative and integral since Xi, e: E Z+ .
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5.4.3 Deterministic Model and Solution

The expected value problem is

min z == -3Yl - 2Y2 - Y3

s.t. 2Xl + 1.5X2 + xa :::;200

Yi :::;Xi , Yi :::;~i' Vi

Xi, Yi E Z+ Vi

(5.10)

and the optimal solution to the expected value problem by calculated using LINGO a~

z =EV== -225

Xl =Yt == 11

X2 =Y2 = 28

X3 = Y3 == 136

(5.11)

In solving this problem, the second-stage integrality constraints cannot be ignored, since not

all ei E Z+ .

5.4.4 Value of the StochasticModel

We fix the first-s: age decisions as the optimal solutions to the expected value problem Xl =

11, X2 = 28, X3 = 136 in (5.9) to get EEV :::::-204. The value of the stochastic solution is then

VSS == EEV - RP = -204 - (-208.3) = 4.3

corresponding to an increase of 4.3/204 == 2.1% over the profit under the deterministic solution.

Of course, this figure relies on the assumption that the three scenarios explain the variation in

demand reasonably accurately.

5.5 Two-Stage Recourse in a Different Context

There is a subtle difference between the above example and the previous examples in this text

which were modelled by two-stage recourse problems. In the above example, the randomness
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does not correspond to a single observation of a S" 'mario (as in the other examples), hut to

a series of observations of scenarios. Each of the scenarios occurs with a relative frequency

that does not change over time. It may even be known before each observation exactly which

scenario will occur. The first-stage decision can be taken with regard to the scenarios that will

occur, but it is a decision that must be reused many times. In the above example, the same

seating arrangement must be used for every flight and cannot be changed between flights even

though we know what the demand is going to be. The two-stage recourse model is entirely

valid In this situation.

However, the concept of perfect information as we know it is no longer meaningful. This

is because even if we knew exactly when each scenario would OCC1.)f, we would still have to

take the same first-stage decision every time. In other words, even though we have perfect

information, we cannot take perfect decisions (i.e. the wait-and-see solutions). We must take

one decision here and now, and once it has been made, it cannot be changed in response to the

scenario that occurs. The optimal decision we can take is therefore the decision that is the best

in the long run. {i.e. the best on average}, and this corresponds to the recourse solution. Thus

"perfect information" in this sense effectively enables us to take a recourse decision.
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Chapter 6

A Real-Life Application: The Unit

Commitment Problem

This chapter provides a real-life application of stochastic programming in unit commitment.

Eskom - one of the worl s largest electricity producers - is faced with the unit commitment

problem on a daily basis. A slightly simplified version of Eskom's problem for a period of one

day is modelled first deterministically and then by a stochastic program. The models are solved

and the value of the stocha model 'over both the deterministic model and Eskom's current

strategy is determined. I' to acknowledge Dr John Dean [17) of Eskom (National Control)

for providing data and information.

6.1 Background in Unit Commitment

Suppliers of electricity aim to mee, the continuous demand for electricity by generating a

sufficient ~upply of electricity using their generating units. These units may be thermal, such

as coal-fired and nuclear power stations, or hydro-electric. Reserve generating units, such as gas

turbines or pumped storage, can also be used. If demand exceeds supply, a low system frequency

situation will arise and eventually demand will be unmet. This is undesirable due to possible

damage to electrical equipment, loss of potential income, safety and security considerations,

opportunity cost to the consumer and loss of goodwill. The unit commitment problem is the

problem of scheduling which of the generating units should be operated and their respective
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output levels during a certain time period, The generating units should meet the demand for

electricity at each point in time, at the lowest total production cost, without violating their

technical constraints (12).

At any time, some plants are on-line or committed (operating) j while others are off-line (i.e. not

operating - possibly undergoing maintenance or not required in meeting the demand). Plants

that are currently on-line may fail randomly or be taken out of service on a planned basis. It

is advisable that some units run below their maximum capacities so that the loading can be

increased if other units fail or the demand increases unexpectedly. The resulting excess system

capacity is called spinning reserve. The; thermal units are subject to operating constraints

such as minimum on-time (time spent on-line), minimum off-time (time spent off-line) and

maximum ramping (i.e. the maximum rate at which the plant's output can be increased up

to its maximum). Each of the thermal units must operate above its minimum capacity, below

which the unit cannot run unless it is off.

Consider meeting the demand for electricity over the next day. The demand for electricity

should be satisfied during each hour. We assume that demand is constant over each hour ~ this

is a standard assumption that is used in unit commitment models [12J. Each unit (power station)

has a number of sets (independent generators) that are identical. The decidons to switch sets

on or off are taken every 24 hours. For a period of 24 hours following these decisions, each set

will eituer remain off or remain on (assuming that it doesn't fail), and will operate at some

level between minimum and maximum capacity in the latter case.

According to the recent paper of Takriti, Birge & Long [45Jj previous models used for solving

the unit commitment problem were deterministic. These models assumed that the demand for

any time period Wasknown in advance, and this demand was obtained by forecasting. However,

such forecasts are subject to statistical error and hence it may be valuable to create a stochastic

model that allows for variable demand. The stochastic model in this chapter is based on [45J.

6.2 The Problem FacingEskom

Eskom is South Africa's national electricity utility and the world's fourth largest by capacity,

generating over half of the electricity in Africa. The majority of Eskom's generating units are
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coal-fired power stations. Eskom also possesses a nuclear power station, hydro-electric units,

gas turbines, a pumped storage scheme and interruptible load contracts.

We are interested in Eskom's unit commitment problem. In this study WI'! work with time units

of an hour, and we ignore ramping since Eskom's generating units can generally increase from

minimum to maximum loading within an hour. Operating costs for thermal units include fuel

costs and start-up costs. The fuel consumption of thermal units differs at various production

levels. The shut-down costs of Eskom's thermal units are negligible.

In practice, the majority of the demand is met by coal-fired power stations In fact, Eskom's

generating capacity is so large that the coal-fired power stations alone could usually meet the

demand without any of the other units being used. The model in this chapter includes all the

thermal units, i.e. the coal-fired power stations and the Koeberg nuclear power plant. Gas

turbines are used as reserve generating units. The hydro-electric plants and pumped-storage

schemes are not included, as I was not given d:;.t,,,,on these units. It must be pointed out,

however, that the generating capacity of these units is small compared to the capacities of the

thermal units, and thus the exclusion of these units does not lead to much simplification of the

actual problem under consideration. Interruptible load contracts are held with some industries

that utilize large amounts of electricity. Such contracts allow Eskom to cut the supply to these

industries at certain times (usually peak times), thus enabling it to meet the (now reduced)

demand that it could not otherwise meet. Tins is known as demand-side management as

opposed to supply-side management. Interruptible load is also excluded from the model, as it

is only available for about two hours per week at most.

6.3 Model Parameters

Let i index the units, i ::::1, ... , 12

ni ;::::number of sets in unit i

t index the hours, t;:::: 1, ... ,24

u~= number of sets in unit i that are on initially

9i = minimum operating level (in MW) for each set in unit i

Gi ::::maximum operating level (in MW) for each set in unit i

131



Table 6.1: Unit Constraint Data
Unit Name of Unit Number Initial Minimum Maximum Start-up
No. Unit Type of Sets State Load Load Cost
i

I

Gi hini ui gi
1 Arnot coal 3 2 200 330 35000
2 Duvha coal 6 4 350 575 59600
3 Hendrina coal 10 7 130 190 17500
4 Kendal coal 6 4 320 640 32100
5 Kriel coal 6 4 255 475 31400
6 Lethabo coal 6 4 375 593 47000
7 Matimba coal 6 6 360 615 60500
8 Matla coal 6 6 325 575 23100
9 Tutuka coal 6 6 275 585 25700
10 Majuba coal 2 0 306 612 44000
11 Koeberg nuclear 2 2 920 920 01
12 Gas Turbines reserve 6 0 0 57 02

hi = start-up cost (in R) of each set in unit i

Table 6.1 contains data on the constraints under which each unit must operate.

The cost functions are calculated from the following data.

Let ai = average heat rate (in GJjM\Vh) at maximum loading for each set in unit i

fi = incremental heat rate (in GJjMWh) for each set in unit i

{3i= no-load heat (in GJ/h) for each set in unit i

¢i = fuel cost (in R/GJh-1) for each set in unit i

As is shown in Figure 6-1, by equating two formulae for the heat rate at maximum loading, i.e.

GiO'.i= {3i + Gili' we obtain {3i as

(6.1)

The cost of operating a set of unit i at level x MW for one hour is then ({3i + 'YiX)¢i =

{3i¢i +'Yi¢iX , which is an affine function in z. For a unit that has tu (,pts on, the cost of running

that unit at the total output level Xi (i. e. Xi is the total over all sets of unit i) for an hour will

1Not applicable since it never shuts down.
2Reserve units have negligible start-up costs.
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Figure 6-1: Calculation of No-Load Heat

be the linear function in Ui and Xi

(6.2)

where Pi::: !3d); = fixed cost (iu Rfh) per set of unit i

lind 7i = lirPi =marginal cost (in RfT'. "Vb.) for unit i

Data on the operations of each uuit is given l.J. .eable 6.2.

6.4 Deterministic Formulation

Under the deterministic model or expected value problem, we assume that the demand for

each hour of the day is known accurately in advance, TIllS is not a realistic assumption but it

simplifies Cl~ modelling process. Eskom has a method of forecasting the demand and in the

expected value problem we assume that these forecasts are perfectly accurate. Table 6.3 shows

the demand forecasts that were obtained by Eskom for each hour of Monday, 15 January 1996,

where hour 1 represents the hour between midnight and 1 a.m, etc.

Let dt = demand forecast for hour t
Ui = number of sets in unit i that are on during the next 24-hour period
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Table 6.2: Unit Operational Data
Unit Name of Average Incremental No-Load Fuel Fixed Marginal
No. Unit Heat Rate Heat Rate Heat Cost Cost Cost
i (l:i 'Ii f3i rPi Pi T~
1 Arnot 10.57 9.51 349.80 0.733 270.40 7.35
2 Duvha 10.33 9.46 500.25 0.535 267.63 5.06
3 Hendrina 11.14 10.23 172.90 0.655 113.25 6.70
4 Kendal 10.36 9.42 60l.60 0.788 474.06 1.42
5 Kriel 10.22 9.17 498.75 0.801 3GO.50 7.35
6 Lethabo LO.06 9.56 296.50 0.981 2,:)0.87 \:J.38
7 Matimba 10.29 9.26 633.45 0.284 179.90 2.63
8 Matla 10.14 9.32 471.50 0.902 425.29 8.41
9 Tutuka 9,19 8.76 602.55 0.761 458.54 6.67
10 Majuba 10.87 10.04 507.96 2.710 1316.57 27.21
11 Koeberg 10.00 10.00 0 1.400 0 14.00
12 Gas Turbines 12.50 12.50 0 39.40 0 492.50

Table 6.3: Demand Forecasts
Hour Derr-md (MW) Hour Demand (MW)
t dt t dt
1 15527 13 20967 -
2 15386 14 ~0711
3 15250 15 20582
4 15348 16 20786
5 15653 17 20595
6 16882 18 20113
'7 18832 19 20205
8 20424 20 21096
9 21365 21 21281
10 21365 22 20155
11 21093 23 18756
12 21157 24 17708
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mit = output level (in MW) at which unit i operates during hour t (total over all sets)

The decision variables for the expected value problem are the Ui and the mit. AUthe parameters

of the model, including demand, are known at the start of the day and therefore the entire

schedule can be worked out at the start of the day. It is important to understand that since the

sets within each unit are identical, we can take the decisions Ui and Xit at the unit level. Once

these unit-level decisions have been taken, the deoisions at the set level within the units can be

scheduled automatically. Each Ui E {O, .. , ni} is an integer decision variable that is limited by

the number of sets available within the unit.

Each Xit is a non-negative decision variable. For any given Ui > 0, fjiUi ::; Xit :::; Gittj 'eft. If

Ui = 0, then this also holds since the condition :Cit ;= 0 is enforced.

(6.3)

The cost of switching or, the sets for unit i is

(6.4)

We define the variable Vi =: max(Ui - U~ ,0) for i= 1, ... ,12 so that the start-up cost of all the
12 10

units for the day Is 2: hiVi :::: E hiVi since hll =: h12 == 0 . The constraints
i==1 i=1

(6.5)

together imply that Vi == max(Ui - U~ , 0), since the only pxpression involving Vi that appears in

the objective function is E hil'. und the objective function is minimized.

The cost of running all the units for the 24-hour period is

12 2,1 10 12 24

.E.E (PiUi + TiXit) = 24.EPiUi + I::.E TiXit
;=1 t=1 ;",1 i=l t=1

(6.6)

since PH :::::P12 = 0 .

We formally include unmet demand as the 13th unit, indexed by i :::::13. It has a zero start-up
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cost, i. e. PI3 = 0 and a high, penalizing marginal cost of T13 = 10000, say. We also define the

parameters n13 = 1, a13 = 0 and G13= 00; and the decision variables

X13,t = amount of unmet demand during hour t, 0::::; X13,t < 00

U13= binary variable taking on the value 1 if there is any unmet demand and 0 otherwise.

There are some special constraints that must be taken into account. Both sets at Koeberg must

run and at least three sets at Tutuka must run. We define ii as the minimum number of sets that

must run at unit i, so that 'Ui E {ii,'" ,n;}. Therefore i9 '-= 3, Pll = 2 and Pi = 0 Vi tt {9, ll}.
The objective is to minimize the sum of the cost of starting up additional sets, the fixed costs of

running the sets, and the incremental production costs. The constraints are that demand must

be met3 and the operating levels are restricted by minimum and maximum levels, depending on

the 'Ui. The expected value problem may thus be written as the following mixed-integer linear

program:
10 10 13 24

min Z= Lhi'IJi+ 24LPiUi+ LLTiXit
;=1 i=l i=l t=1

s.t, Vi ~ 'Ui - u~ , vi ~ 0 , i = 1, ... , 10

g;ui ::::;Xu ::::;GiZ1i , "Ii, t
1.1

LXit ~dt, "It
i=l

Xit ~ 0, Vi,t

Ui E {Pi, ... ,ni} , Vi

(6.7)

The model has 10+13+13 x 24= 335 decision variables (of which 13 are integral and a further

10 automatically Integral) and 10+ 2 X 13 x 24+ 24 = 658 constraints.

6.5 Stochastic Formulation

Under the stochastic model or recourse problem, we assume that the demand vector is not

known in advance and is a random vector characterized by a discrete statistical distribution,

represented by a number of scenarios.

Let Ps :::::probability of occurrence of scenario s

30E which some may be allocated as unmet
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Table 6.4: Scenario Probabilities
z ¢(z) s P.
-2 0.053991 1 0.054489
-1 0.241971 2 0.244201
0 0.398942 3 0.402620
1 0.241971 4 0.2,44201
2 0.053991 5 0.054489
~ 0.990866 2:: 1.000000

dZ = demand (in M\Vh) during hour t under scenario s

iL;. = number of sets in unit ithat are on during the next 24-hour period

xlt = output level (in MW) at which unit i operates during hour t under scenario s

Note that 'lI'i is a first-stage variable that does uot depend on the scenario s, For the purpose

of simplicity, we decided to represent the 24-hour demand vector by a 5-point distributio». '\;\'"e

assume that the errors in the demand forecasts are multiplicative a...:l. perfectly autocorrelated

over the 24-hour period - this is not a totally realistic' 'umption but was chosen for simplicity.

It is estimated that the standard deviation of the error in each forecast is 2.5% of the mean of

the forecast. Therefore, actual demand for every hour is, as illustrated in Figure 6-::>~

'" two standard deviations lower than the forecast, under scenario 1, i.e. dt == 0.95dt Vt

• one standard deviation lower than the forecast, under scenario 2, i.e. dr = 0.975dt Vt

• equal to the forecast, under scenario 3, i.e. dt = dt Vt

• one standard deviation higher than the forecast, under scenario 4, i.e. dt = 1.025dt "It

.. two standard deviations higher than the forecast, under scenario 5, i,e. d~= 1.05dt "It

We obtain the scenario probabilities from the density function of the standard Normal distri-

bution by scaling up the ordinates c:jJ(z) of the density at z = -2, -1; 0, 1, 2 so that, they sum

to 1, as in Table 6.4. The rationale for using this discrete 5-point distribution was so that we

could. obtain probabilities for the values 0.95dt, O.975dt, (it, 1.025dt, 1.05dt. There is no other

theoretical foundation behind the distribution. It must be emphasized that this distribution

was chosen for simplicity and does not quite represent the true error structure accurately.
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Figure 6-2: Demand under each Scenario

The decision variables for the recourse problem are the 'Ui and the Xft. Once again, since

the sets within each unit are identical, we can take the decisions Ui and x}t at the unit level.

Each '(£f. is a decision that must be made before observation of the random vector (which is

the series of hourly demands) and hence ttj is a first-stage, integer decision variable that is

independent of demand. The hourly decisions to be made for each unit for each hour depend

011 the observed demand, and therefore each Xft is a second-stage, non-negative decision variable

that is dependent on the demand. In this model, df is known perfectly for all 24 hours at the

end of the first hour, after which the problem is deterministic, and merely involves finding the

optimal schedule for the sets that are already on-line. In this way, a 24-hour problem has been

collapsed into a two-stage problem.

The objective is to minimize the sum of the cost of starting up additional sets, the fixed costs of

running the sets, and the expected value of the incremental production costs. The constraints

are that demand must be met" under all possible scenarios and the operating levels are restricted

by minimum and maximur., levels, depending on the 'lli'S. The recourse problem may thus be

"'of which some may be allocated ItS unmet
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written as the following mixed-integer linear program:

10 10 5 13 24

min Z= EhiVi+24L:PiUi+ L:EEPsTiXlt
;=1 i=1 s=li=lt=l

s.t, Vi;:::Ui.- U~, Vi;::: 0 , i= 1, ... ,10

9iu; ::;x2t ::;GiUi , Vi, t, s
13

LXit ~ d~ , Vt,s
;=1

Xft ~ 0 , Vi, t, s

uiE{Pi, ... ,ni}, Vi

(6.8)

The model has 10+ 13+ 13 X 24 x 5= 1583 decision variables (of which 13 are integral and a

further 10 automaticaily integral) and lQ+ 2 x 13 x 24 X 5 + 24 X 5 = 3250 constraints.

6.6 ComputationalResults

The public domain mixed-integer linear programming application LP_SOLVE (see Appendix

A.5) was used to fine! the solutions to the above problems. The expected value problem (6.7)

was solved in about 2 seconds while the recourse problem (6.8) was solved in about 40 seconds

on a Pentium 166 MHz.

6.6.1 First-Stage Solutions

The solution to the expected value problem (i. e. the deterministic solution) is

BV = R3,447,117

i 1 2 3 4 5 6 7 8 9 10 11 12 13
U; 2 4 8 4 4 0 6 6 6 0 2 0 0

Note that only the optimal values of the Ui are given here. The optimal Vi and :tit are listed in

Appendix C.l.
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The optimal first-stage solutions to the recourse problem (i.e. the stochastic solution) is

RP= R3,479,971

i 1 2 3 4 5 6 7 8 9 10 11 12 13
Ui 2 4 7 4 4 2 6 6 6 0 2 1 0.-

The optimal second-stage solutions Xft are listed in Appendix C.2. Under the stochastic solution,

there is no unmet demand under any scenario, although gas turbines are used to a small extent

under scenario 5.

To find the expected result of using the deterministic solution (EEV) , we fix the values of

U1, ••• , un but not U12 and U13 since these do not actually form part of the first-stage decision

- they are really just indicator variables that indicate how many reserve generating sets may be

needed and whether there may be unmet demand. By fixing the above variables and rerunning

the recourse program, we obtain EEV =R 6,308,938 . The value of the stochastic solution is

therefore

VSS = EEV - RP = 6,308,938 -3,479,971:::: R2,828,967

which is a reduction of

vss /EEV = 2,828,967/6,308,938 = 44.8%

on the cost of using the deterministic solution. The second-stage variables under the EEV

problem are listed in Appendix C.3.

However, this does not give a true indication of the value to Eskom of using the stochastic

solution, since Eskom does not actually use the deterministic solution. Eskom's schedules are

obtained from a. package called COUGER5, which takes into account all the constraints mentioned

above, but assumes that the hourly demands are known with certainty. COUGER uses dynamic

programming to obtain a minimum cost solution for a utility over a time horizon of up to one

week [1). It does not, however, produce the deterministic solution as one might expect, since

5©1996 ABB Systems Control, a division of ABB Power T&D Co. InC.
http://www.abb.com/americas/usa/tnd_sc
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implicit allowance is made for demand uncertainty by allowing the user to define the minimum

spinning reserve. COUGER calculates the first-stage solution as

i 1 2 3 4 5 6 7 8 9 10 11 12 13

Ui 2 4 7 4 4 3 6 6 6 0 2 0 0

and has an expected cost of R 3,506, 658. The value of the stochastic solution over this solution

is

3,506,658 - 3,479,971 =R 26,687

or a percentage reduction of

26,687/3,506,658 = 0.76%

which is small because the solutions are very similar. The only differences between these two

solutions are that U6 == 2 and U12 = 1 in the stochastic solution and U6 = 3 and U12 = 0 in the

COUGER solution. The COUGER solution chooses to keep an extra set on at Lethabo so that

gas turbines (which have a high marginal cost) will not be needed under any scenario, nor will

there be unmet demand under any scenario. This works out slightly more expensive on average

than the recourse solution, due to the high fixed cost of running an extra thermal set. The

optimal second-stage solutions for the COUGER solu+on are listed in Appendix C.4.

6.6.2 SpinningReserves

A good way to present the second-stage solution is by illustrating the hourly spinning reserves,

since the unit commitment problem can be viewed as finding the optimal spinning reserves. On

the one hand, the spinning reserve must not be too high since there are high fixed costs and a

wastage of resources when units operate at a low output level- perhaps then they should rather

not operate at all; while on the other hand, the spinning reserve must not be too low since if

demand turns out to be higher than expected, high emergency costs will arise from running

expensive reserve generators and, ultimately, a low frequency situation or unmet demand will

incur extremely large penalties.

Let uK ;::: spinning reserve during hour t under scenario s
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For the purposes of illustration, we defir.e the spinning reserve as the excess capacity in the

thermal units after the demand has been met, i,e.

11 13

yt = LGiUi - Lxft
;=1 i=l

(6.9)

A negative spinning reserve between -342 (= 6 x 57) and 0 (corresponding to the area between

the dashed lines in the graphs) implies that gas turbines are used, while a spinning reserve less

than -342 (corresponding to the area beneath the dashed lines in the graphs) implies that there

is some unmet demand.

Figure 6-3 shows that when the stochastic solution is used, the spinning reserves are positive

(and quite large) for all hours of the day under scenarios 1-4, while under scenario 5 (i.e. very
high demand), the spinning reserve falls just below zero during the daily peak. The stochastic

solution leads to spinning reserves that are robust against all possible scenarios.
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Figure 6-3: Spinning Reserves under the Stochastic Solution

The deterministic solution is calculated under the assumpt.on that demand is equal to the

forecast, i.e. that scenario 3 occurs. Figure 0-'1 shows that this solution leads to a spinning
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reserve under scenario 3 that is as small as possible yet still positive at the daily peak. (In

fact, the spinning; reserves are optimal under this scenario). No problems are encountered if

scenarios 1 or 2 occur (i.e. low or very low demand), since the spinning reserve is always

positive. However, if scenarios 4 or 5 occur (i.e. high or very high demand), then the spinning

reserve becomes large and negative during certain parts of the day, which is very ex-pensive.

This is ;~'l makes the deterrainistic solution so expensive: it is ideal under scenario 3 and good

under seenano. 1 and 2, but very poor under scenarios i~ and 5. Infact, EgV is so high because

it depends on the arbitra'T'lJ and high marginal cost of unmet demand of RIO,OOO/;Vn\tl1. The

sensitivities of EEV and VSS with respect to this arbitrarily high marginal cost have not been

investigated, since Eskom is interested in the improvement over the CotH.m:a solution rather

than the improvement over the deterministic solution which it doesn't use anyway.
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Figure 6-4: Spinning Reserves under the Deterministic Solution

Figure 6-5 shows the spinning reserves under the COUGER solution. When this solution is

used, the spinning reserves are large and positive for all hours of the day under all scenarios.

This solution is slightly more conservative than the stochastic solution as it avoids all risk of a

negative spinning reserve ..which implies that reserve generators will never be used. However,



as mentioned above, this solution is slightly more expensive to implement on average than the

stochastic solution, since an additional thermal set is operated. COUGER does not use the

arbitrarily high marginal coet of RIO,OOO/MWhfor unmet demand. This is because it does

not allow for unmet demand - instead it uses the conservative approach of allowing the user

to define a minimum spinning reserve under the expected demand scenario. It is then hoped

that the user will choose a sufficiently high minimum value so that under other scenarios, the

spinning reserve will not be negative - in fact, this is exactly what happens with the minimum

spinning reserve value of 716 MW that Eskom currently uses.

Couger Solution9~r-~~----~--~~====~~--~..., -
8000

7000 -

._. Scenario 1
- - - Scenario 2
-Scenario3
- - • Scenario 4
-Scenario 5

l~ Bern
!:
~ 5000
(I)

::l4~
r:r
g> 3~
'c
c:
~ 2000

25
Hour

Figure 6-5: Spinning Reserves under the COUGER Solution

6.6.3 Reliability

We are interested in the probability PI that the on-line thermal units alone will be unable to

meet the demand, in which case the spinning reserve is negative and reserve gas turbines will

have to be used. We are also interested in the probability Pz that there will be some unmet

de .land. In a sense, PI and Pz could also be called "unreliability" levels. Associated with each

144



Table 0.5: Unreliability Levels
G PI P2

Deterministic Solution 21430 45.157% 22.303%
Stochastic Solution 22426 2.349% 0.431%
COUGER Solution 23019 0.098% G.D09%

solution is the total capacity (in MW)

11

0:= LGiui
i=1

(6.10)

of the on-line thermal units. It can be seen from Table 6.3 that the demand comes to a peak

during hours 9 and 10. There will be a negative spinning reserve if and only if the peak demand

exceeds the capacity. If we define e as the peak demand, it follow.., that

e rv N (fJ. = 21365, (72 = (0.025 X ')"'.365)2 = 534.1252)

since we assume that the standard deviation is 2.5% of the mean, as in Section 6.5 above. Thus

for any solution with capacity 0, the probability that gas turbines are used (i.e. that there is

negative spinning reserve) is

[-] (0 - 21365)
PI =Pr ~~ 0 == 1 ~ q, 534.125 (6.11)

and the probability that there is some unmet demand is

[- ] (0 - 21023)P2 = Pr ~ 2:: 0 + 342 = 1 - q, 534.125 (6.12)

Table 6.5 shows these probabilities for the deterministic solution, the stochastic solution and

the COUGER solution. Note that as G increases, PI and P2 decrease, so that to minimize

the probability of a negative spinning reserve or the probability of unmet demand, we simply

maximize the total capacity of the on-line thermal units. However, this approach becomes very

expensive in terms of operating cost, so simply minimizing these probabilities is not a sensible

criterion in practice.
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Note also that when the stochastic solution is used rather than the deterministic solution,

there is an increase in total capac'ty .. ~\~t1:54ao= 4.65%, while the reliability improves by

45.157% - 2.349% :;::42.808% for PI (,..nd by 21.872% for Pz. However, when the CODGER

solution is used r<•.ther than the stochastic solution, the total capacity increases by 2.64%,

while the rellabilities Pl and Pz only improve by 2.251% and 0.422% respectively. Thus for

comparable increases in capacity, the stochastic solution offers a significant improvement in

reliability (relative to the deterministic solution), whereas the COUGER solution offers only a

marginal improvement in reliability (over the stochastic solution).

6.7 Limitations and Extensions

6.7.1 Decision Frequency

The minimum on-time and minimum off-time of most of Eskom's units is 24 hours, so that the

decision-making period of 24 hours is ideal. A couple of the units have a minimum on-time

of 18 hours and a minimum off-time of 6 hours. These constraints at be violated if we

take decision'Severy 24 hours. It is difficult to include interruptible IOuq in the model as this is

available for at most 2 hours per week.

6.7.2 Generator Failure

This model ignores the possibility that a generating set may become unavailable for use at any

time due to mechanical or electrical failure or unscheduled maintenance. Takriti, Birge & Long

[45) suggest that it is possible to extend the model to include the possibility of such failure by

creating a set of scenarios where the demand is increased by the capacity of the failed generating

set. The proba bility of this set of scenarios is equal to the probability that the generating set will

fail. Different sets of scenarios can be created for different combinations of generator failures.

However, this approach is not necessarily valid, because if the failed generating set were not

being used anyway, the cost of its failure (excluding the cos" of repair) would be zero, in which

, case the scenarios should not reflect an increase in demand.

A more valid method suggested in [45J is to approximate the generating capacity loss over

a period of time. Once again, seenarlos are created with increases in demand to reflect the
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generating capacity loss,

An alternative way to model the problem of generator failure would be to model the ni as

random variables using, say, a binomial distribution for each i, Scenarios could be created

that included the different possible values of the ni. However, this would blow up the size of

the problem enormously. A conservative approach would be to solve the problem with a given

number of sets from specific units excluded. In other words, we assume that certain sets will

faiL

6.7.3 Nonlinear Formulation

The second-stage problem for a given scenario s and first-stage decision vector u can be written

as
13 :21

Q(u,s) = min LLl'iXit
;=1 t",l

Ig;~I::::; :ttt :::;G(Ui , 'Vi, t

s.t. Lxft ~ dt , Vt
i=1

Xlt ;::0, 'Vi, t

(6.13)

This is a linear program in 24 x 13= 312 variables, and can be solved by the following heuristic

method known as the economic dispatch routine:

• Rank all units that are on (obtained from the first-stage solution) in increasing order of

marginal generating costs rio

• Load all units at minimum load.

• Starting with the cheapest unit, increase the loading until either the unit is at maximum

loading or the demand is met.

o Continue loading each unit to maximum capacity until total generation equals demand.
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The recourse problem can then be rewritten as

ill ill S
mJn L:hi ma.x(ui - u~,0) +24r;PiUi +LPsQ(u, s)

i==1 ;=1 8:=1

s.t, £i :::;Ui ::; 11i , tti E Z , for i = 1, ... ,13
(6.14)

where S is the total number of scenarios, u = (1£1, ••• , u13)T and Q(u, s) is given by (6.13).

Problem (6.14) is a nonlinear integer program in the 13 variables Ui and can be solved by

nonlinear programming methods and branching and bounding. It has no constraints on the

variables other than simple lower and upper bounds and therefore should be a lot quicker to

solve than the mixed-integer LP formulation of the recourse problem which has thousands of

variables and constraints. Note that 1£11, '!L12 and 1.£13 do not feature in the first two summations

of the objective in (6.14), and feature only implicitly in the third summation. These variables

are required to ensure the feasibility of problem (6.13) for all scenarios, and thus affect the

objective by ensuring that Q(u,s) is finite.

6.7.4 MUltistage Dynamic Formulation

Eskom is a going concern and hence its time horizon is not just one day. It wants to find a

way of optimally scheduling its generating units so that costs will be minimized over a much

longer period of time, such as a year. The problem with the one-day model is that the cost is

minimized over the day with no regard to the final state that the system will end up in. In

this model the state is the vector u (the number of sets on at each unit) and can change only

once from day to day. The short-term time horizon of one day implies that merely applying the

same one-day model over a number of days does not necessarily lead to the cheapest schedule

over the entire period, since each day is considered independently. As the final state of one day

will be the initial state of the next day, (' multistage dynamic program can be formulated with

each stage being a period of one day, and the state being the vector u, The dynamic program

would involve solving a recourse problem for each possible state at every stage. Such a dynamic

program may well be tractable, particularly if the nonlinear formulation is used to solve each

recourse problem.

A massive simplification WOUldoccur if we assumed that demand had the same distribution
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on all days, independently, We could then obtain a steady-state solution by solving the one-

day problem defined by the first-stage variables 'tLi = 'tL~ 'Vi where the 'tL~ would no longer be

constants, but decision variables. However, this approach fails in practice si.nce the demand on

weekdays differs significantly from the demand on weekends. This difficulty can be overcome

by creating a steady-state multistage problem over a period of one week, assuming that weekly

demand patterns do not change from week to week, In this formulation, the Vi at the start

of the week would be the same as the 'tLi at the start of the next week. Decisions on unit

commitment would be made at the start of each day, as in the one-day model. Such a model

would involve eight stages (one for each day of the week from Monday through to Monday)

and may weil be tractable since once the 'tLi decisions have been made, the :eft decisions follow

automatically according to the economic dispatch routine of the previous section.
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Appendix A

Deterministic Mathematical

Programming

This appendix provides a background in the theory and methodology of deterministic mathe-

matical programming, including linear programming, nonlinear programming and integer pro-

gramming. The appendix starts with mathematical background (chiefly from convex analysis)

and ends with a section on computer software for mathematical programming.

A.1 Convex Analysis

This section provides definitions from convex analysis and set topology that are frequently

used in mathematical programming. Further mathematical background and proofs of unproved

claims can be found in Marlow [35) or Lay [31).

A.1.1 TopologicalConcepts

A neighbourhood of x of radius 8 > 0 is a set of the form {y Illy - xII < <5}. Such a set is also

known as an open ball of radius <5 centred at x, A set S C lll'!' is an open set if each of its

elements has a neighbourhood that lies entirely within the set. The 'interior of a set S c Rn is

the union of all the open sets contained in S. A set .'3 c Rn is a closed set if its complement

se = R'n - S is an open set. The closure of any set S C Rn is the smallest closed set containing

S. The boundary of a set is that part of the closure that is not in the interior. A set S c Rn is
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bounded if it is contained within a sphere of finite radius. A set is compact if it is both closed

and bounded.

A.1.2 Concepts of Convexity

A set is convex if the line segment joining any two of its elements lies entirely within the set.

Definition 20 (Convex Set) A set G c IRn is said to be a convex set if for every xl,x2 E G

and eueru )..E (0,1), the point Ax1 + (1 - )..)x2 E G.

The intersection of convex sets is a Convexset, while the union of convex sets is not, in general,

a convex set.

Deflnit.ion 21 (Convex Function) A function f : D c IRn ~:JR, where D is a convex set, is

a CO'1,vexfunction if

for every xl,x2 E D and euerf ): E (0,1).

The sum of two convex functions is a convex function, and a convex function multiplied by a

positive constant is a convex function.

A function f defined on a convex set D is said to be a concave function if - f is a convex

function. A linear function is a function of the form f(x) =bTx, while an affine functinn is a

function of the form f(x) = a + bT x, for some a E IRand b E 1Rt!.Linear functions and affine

functions are convex as well as concave;
r

A convex combination of the set X = {Xl, x2, ... , xr} C :JRt! is a linear combination x =2:::: AjXi,
i=l

r
where 2:Ai = 1 and )..i ~ 0 Vi.

i=l

Definition 22 (Convex Hull) The convex hull of f.he set of points X = {x1,x2, ••• ,xr} C

:JRn, denoted conv {xl, x2, ..• , x"] , is the unioti of X and the set of all convex combinations of
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pOints in X, i.e.

conv{xl,x2, ... ,xr} = {x I x = EAiXi, EAi = 1, Ai;::;: 0Vi} (A.l)
;=1 i=1

The convex hull of a finite number of points is called a convex polyhedron or a bounded convex

polyhedral set. A vertex of a convex polyhedron P is a point x E P such that the line segment.

connecting any two points in P, both different from x, does not contain x. Formally, x is a

vertex of P if

$y, z E P, y i x =f. z , >. E CO, 1), such that x = >.y+ (1...;. >.)z

A set C is a cone if x E C implies AX E C for all A ;::;:O. A set C is a convex cone if for any

two elements y, z E C, it follows that >.y+ J..LzE eVA, J..L;::;:O. A positive combination of the set
r

y = {y1,y2, ... ,yT} C ]Rn is a linear combination y =LA;yi , where Ai ;::;:0 Vi.
;=1

Definition 23 (Positive Hull) The positive hull of the set of points Y:= {yl,y2, •.. .v"} C

]R,n, denoted pos {yl, y2, ... ,yr} , is the union ofY and the set of all posiUl1e combinations of

points in Y, i.e.

pos {Y\ y2, ... ,v"} = {y Iy ==EA;yi , Ai ;::;:0Vi}
t=1

(A.2)

The positive hull of a finite number of points is called a convex polyhedral cone. Any element of

a convex polyhedral cone can be represented as a positive combinz rl")nof its generating elements

{yl, y2 , ... ,yr}. The algebraic sum of the sets P and C is the Sf"

{z Iz =x +y, x E P, y c C}

A convex polyhedral set is the algebraic sum of a convex polyhedron and a convex polyhedral

cone. The sides of a convex polyheciral set are called j!"t;ets.
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A.2 Linear Programming

The standard form of a lineal,' program (LF) was given in (1.2) as

(A.3)

where the vectors c E JR''', b E JRm and the m x n matrix A are given and the decision vector

x E JRn is to be determined. It was explained in Section 1.1.1 that any linear program can be

converted into the standard form (A.3). Linear programming is a well-developed BerJ and there

are many good references on the subject. For a detailed presentation of linear programming,

see Dai.tzig (14) or Luenberger (34]. This section gives a review of linear programming based

on Section 2.9 of Birge & Louveaux [10) and Section 1.6 of Kall & Wallace [28].

A.2.1 Feasible Sets and Solutions

We assume that m :::;nand rank(A) = m. A solution to (A.3) is a vector x that satisfies

Ax = h. A .feasible solution is a solution x with x ~ O.We define the feasible set as

l3;= [x lAx = b , x ~ O} (A.4)

An optimal solution x" is a feasible solution such that cTx" ::; cTx for all feasible solutions

x E B. A basis is a choice of m linearly independent columns of A. Associated with a basis

is a nonsingular m x m submatrix B of the corresponding columns, so that after a suitable

rearrangement, A can be partitioned into A = [B, NJ. We also partition xT = [xt,xt-J and

cT = ret, c~J to correspond to the basic columns E and nonbasic columns N or A. The system

of equations Ax = b can then be rewritten as

BXB+NxN=b (A.5)

or equivalently as

(A.6)
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If all n - m components of x not associated with the columns of B are set equal to zero, i. e.

XN = 0, then the solution to the resulting set of equations is said to be a basic Be f,ion with

respect to the basis B. The basic solution is

:CB =B-
1
b }

XN=O

z=c~B-1b

(A.7)

and if the condition B-1 b ~ 0 illsatisfied, then the solution is said to be a basic feasible solution.

A basis is said to be feasible (or optimal) if its associated basic solution is feasible (or optimal).

A basic feasible solution is called nondegenerate if B-1b > 0 and degenerate if B-1 b ..,.O.

Basic feasible solutions playa dominant role in describing feasible sets of linear programs. We

denote the basic feasible solutions as x(i), i = 1, ... ,r. It is shown in Section 1.6.1 of Kall &

Wallace (28) that

$ If B =1= 0 then there exists at least one basic feasible solution.

• If B f 0 and B is a bounued set, then J3 is the convex hull of the set of its basic feasible

solutions, i.e. B = conv {x(1) , ... ,x(r)}, and the basic feasible solutions coincide with the

vertices of B.

• The set C := {y IAy = 0, y ;:::D} is a convex polyhedral cone.

• The feasible set B =1= 0 is bounded iff C= {O}.

• The feasible set B is the algebraic sum of the convex polyhedron P .:= conv {X(l) , ... ,x(r) }

and the convex polyhedral cone C , and hence B is n. convex polyhedral set. This means

that every x E B can be represented as x = z +y , where z E P and y EC. Formally, we

write B = P +C .

• The linear program (A.3) is solvable iff B i= 0 and cTy ;:::0 Vy E C. Given that these

two conditions are satisfied, there is at least one basic feasible solution that is an optimal

solution.
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The optimal solution to a linear program is not necessarily unique. There may be more than

one basic feasible solution that is optimal. In this case, any convex combination of the optimal

basic feasible solutions will also be an optimal solution. The case of degeneracy is an example

of a situation where the optimal solution is not unique.

A.2.2 The Simplex Method

The above results imply that to solve a linear program, it is sufficient to consider only basic

solutions as candidates for the optimal solution. There are a finite number of basic solutions

and therefore an optimal solution can be obtained in a finite number of steps. The idea of the

(primal) simplex method is to proceed from one basic feasible solution to another, in such a

way as to decrease the value of the objective funcrior, each time, until a minimum is reached.

Starting with a basic feasible solution, the next basic feasible solution is obtained by selecting

an entering variable (any nonbasic variable whose increase leads to a decrease in the objective

value) and a leaving variable (the first to become negative as the entering variable increases).

The. entering variable is substituted for the leaving variable by pivoting. An optimal solution is

reached when no er.tering variable can be found.

A linear program is unbounded if an entering variable exists for which no leaving variable can

be. found. In some cases, a basic feasible solution is not immediately available. The two-phase

simplex method is then implemented. Phase one uses artificial variables to find a basic feasible

solution (if one exists) by minimizing the sum of the artificial variables. If a solution exists with

the sum of the artificial variables equal to zero, then the original problem is feasible and phase

two continues with the original objective function, starting with the.basic feasible solution given

by phase one. Ifthe optimal objective of the phase one problem is positive, then the original

problem is infeasible. It is shown in Section 1.6.2 of Ka11& Wallace (28Jthat

II A basic feasible solution is optimal iff ct - c~E-l N ;::OT,

II Under the assumption ofnondegeneracy of the basic feasible solutions, the simplex method

yields after finitely many steps either an optimal solution or the information that the

program is infeasible or unbounded.

155



A.2.3 Duality

The concept of duality was used in developing the L-shaped algorithm in Section 3.5.3. Given

the primal program (A.3), the dual program is formulated as

(A.S)

The dual of any linear program Can be found by writing the program in the standard form

(A.3) and then converting to the dual program (A.S). The dual of the dual program is the

primal program. The variables u are called dual variables and are also known as dual prices,

shadow prices or multipliers. One dual variable is associated with each constraint of the primal

program. The dual variable Ui can be interpreted as the marginal value of an increase in

resource bi. When the primal constraint is an equality, the dual variable is free.

We define the feasible set of the dual program as

(A.9)

and adopt the convention that

min cTx= 00XEB
max bTU = -00uE'D

ifB=0 }

if'D=0
(A.10)

The weak duality theorem of linear programming states that

(A.H)

and hence min cTx ;:::max bTu. The strong duality theorem of linear programming states thatxE13 uE'D
if either !3 =f 0 or 'D =f 0 (i.e. either the primal program or the dual program is feasible) then

it follows that

min cTx =max bTuxEB UE'D (A.12)

If the dual problem is unbounded, then the primal problem is infeasible. Similarly, if the primal

problem is unbounded, the dual problem is infeasible. It is also possible for both problems to
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be infeasible simultaneously. The primal program has an optimal solution x" if a:..d only if the

dual program has an optimal solution u", and when this happens, cTx" = bTu and the primal

and dual solutions satisfy the complementary slackness conditions:

(Ai.X* - bi)ut = 0 for i= 1, .. ",m }
(A~u*-cj)x;=O forj=l, ... ,n

(A.13)

where Ai. is the ith row of A and A.i is the jth column of A. The conditions (A.13) imply that

Ai.X* = bi or ut = 0 or both, for i = 'I, ... ,m, and that A~u" = Cj or xj = 0 or both, for

j == 1, ... ,n. Thus the optimal solution of the dual problem can be recovered from the f'nUmal

solution of the r cimal ; ,{ vice versa.

-1 finds the leaving variable (one that is strictly

that would become negative in the objective

ion to the primal problem that is optimal

The dual simple:r 'Tf': r

method would be o.

"'r; l-'r~m'llproblem what the iterations of the simplex

negative), then the entering va,

line). The dual simplex m

but infeasible, and works towards feasroility, .ris contrasts with the primal simplex method,

which starts with a feasible solution and works towards optimality.

A.3 Nonlinear Programming

Nonlinear programming, like linear programming, is a well-developed field and there are many

good references on the subject" such as Luenberger [34]. For an introductory text, see Taha [44].

This section briefly reviews aspects of nonlinear prcgrammiug that are relevant to stochastic

programming.

A.3.1 Standard Form

The general form of a mathematical program was stated in (1.3) as
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where the functions gl, .i = 0, ... ,m. are given. In this section, we use a ;lighdy different

standard form for the nonlinear program (NLP) , viz.

min
)C<;:x

s.t
f(x) }
g;(x) ::::;0, i:=; 1, ,m .

hj(x) = 0, j :=; 1, ,p

or equivalently, with g(x) := (91 (x), . " , grn(X))T and hex) :== (h1 (x), ... , hp(x))'l',

min {f(x) Ig(x) ::::;0, hex) :=; 0, x € X}

(A.1'1)

(A.15)

Once again. we assume that the functions j : )R11. -f JR, g : )R11. ..... )Rm., h: lR" -) lRPare given,

and that we must de-ermine the decision vector x E )R11.. In this overview, we assume (unless

stated otherwise) that X is a convex set, the functions f and 9i, i :=; 1, .. ,m are convex In x

and the functions hj, j = 1, ... ,p are affine in x, so that (A.14) is a convex program according

to Proposition 1 and Corollary 1 of Section 1.1.2. Furthermore, we assume that the functlons

j, g and h have continuous partial derivatives, so that (A.15) is a smooth convex program.

An inequality constraint 91(X) ::::;0 is said to be active at x if g·i(X) == 0 and inactive at x if

[Ji(X) <O.

A.3.2 Kuhn-Tucker Conditions

We convert each inequality constraint m(x) ::; 0 into tJw equality constraint m(x) + s[ = 0 by

adding the non-negative slack variable sr ;:::0 for i :::1, ...• m, and define s = (091,.'" SnSr
and 52 == (si, ... ,s~)T. We then create the Laymngian function

TIl P

.c(X,S,A,71') = lex) + 2::>i (ai(X) + 8;) +E'/I"jltj(X)
i~l j~l

(A.16)

where ,\ = (;'1,"" Amf 1::,the vector of Lagra~ge mulL-pliers associated with the inequality

constralnts and 71' = (71'1, ... , 7l'p)T ie the vector of Lagrange multipliers associated with the
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equality constraints. At all points (x, s) where E is stationary with respect to >.. and 11',

:fi =: m(x) + sf =: 0 =? 9i(X) 5 0, for i == 1, ... ,'in (A.17)

and

aa£. =:lLj(x) = 0, for j == 1, ... ,p
7rj

and therefore any polnt x that is a stationary point of .c with respect to >.. and 11' is a feasible

(A.18)

point. Note that:

• 'T'h., Lagrangian function is convex in x if>. ? 0 and 11' is unrestricted in sign, since we

assume that the functions I and g are convex and h is affine.

• The Lagrangian function is convex in s iff >.? 0 .

•• For any feasible point x ~ B :== {x I g(x) ::; 0, hex) == O}, the Lagrangian function re-

duces to .r:(::~,s,>.,11') == I(x) Y>',1l'.

Solving the program (A.15) with respect to x is then equivalent to minimizing the Lagrangian

function (A.i6) with respect to x and 5, subject to the Lagrangian function being stationary

with respect to >. and 11'. At a mlnlmum, it is necessary that

(A.19)

and
ac .~. == 2AiSi = 0, for ~== 1,as, (A.20)

Provided that>. ? 0, the conditions (A.19) and (A.20) are also sufficient for the point (x.s)

to be a minimum of (A.15) because then £. is convex in x ".ld 5, for fixed >., 11'. The equations

(A.20) reveal that:

• If Ai > 0 then Si = 0 (and hence 9i(X) == 0). This means that the corresponding resource

is scarce, and consequently it is exhausted completely and the constraint is active.

• If 1>7 > 0 (and m(x) < 0) then A; == O.This means that the corresponding resource is not

scarce, and consequently the constraint is inactive and does not affect the value of I.
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Conditions (A.17) and (A.20) thus imply that Ai9i(X) = 0 Vi, or equivalently,

m

I::Aj9i(X) = 0
j=l

since Xi ;:::0 Vi and 9i(X) ::; 0 Vi.lt is shown in Section 1.7.1 of KaU & Wallace [28J that jf the

regularity condition

3xs.t. 9j(X) < 0, i = 1, ... ,m (A.21)

(which is called the Slater condition) holds, then the feasible point x" ~ J3 is a global optimum

of (A.15) if and only if there exists ).* ;:::0,71"*such that the Kuhn-Tucker conditions

m p

'V f(x*) +LAt'V 9i(X*) +L7fj'Vhj(x*) :;:: 0
;=1 j=l

(A.22a)

m

LXt9i(X*) = 0
;=1

(A.2:2b)

are satisfied at X·. If the Slater condition is not satisfied (i. e. there is no feasible point that

lies strictly within the interior oi 8), then the Kuhn-Tucker conditions do not necessarily hold

at an optimum.

It is also shown in Section 1.7.1 of Kall & Wallace [28] that when a more general regularity

condition holds, the Kuhn-Tucker conditions are necessary, but not sufficient, for optimality

of a nonlinear program that is not necessarily convex. Second-order necessary and sufficient

optimality conditions are derived in Section 10.6 of Luenberger [34J.

A.3.3 Solution Methods in Nonlinear Programming

Unlike linear programs, nonlinear programs cannot generally be solved ill a finite number of

steps. This is because an infinite number of potential solutions must be considered. Most non-

linear programming algorithms involve -itemtive procedures that aim to converge to a solution

of the nonlinear program.

Primal methods of solution work on the original problem directly by searching through the

feasible region for the optimal solution. The solution at each iteration is feasible and the value

of the {,l :rctive decreases at each Iteration. If the procedure is terminated early, the solution
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obtained will always be feasible and may be close to an optimal solution. Most primal methods

are not dependent on a special problem structure, such as convexity. However, it can be difficult

to find an initial feasible solution. Descent direction methods ate primal methods that take

steps through the feasible region of the form

where xCV) is the solution at the vth iteration, d(v) is a direction vector and a;(v) Is a non-

negative scalar that's chosen to minimize f (x(V+1») subject to x(v+1) being feasible. Examples

of descent methods include the feasible direction method, the gradient projection method and

the reduced gradient method. See Chapter 11 of Luenberger [34J for details on primal methods.

Penalty methods and bar1'iermethods approximate constrained probl, -ms of the form (A.14) by

unconstrained problems (i.e. problems with an objective but no constraints). Penalty methods

add a term to the objective function that allocates a high cost for violation of the constraints,

while barrier methods add a term to the objective that favours interior points of the feasible

region as opposed to points near the boundary. See Chapter 12 in Luenberger [34J for details

on penalty and barrier methods.

Cutting plane. methods can be used to solve convex programs. These algorithms replace the

original problem by a series of ever-improving approximating linear programs. The approxi-

mating linear programs represent the original problem rr ore and more accurately so that the

solutions of these linear programs converge to the solution of the original problem.

Note that if the optimal Lagrange multipliers .\* and 71"" in (A.16) were known, solving the non-

linear program woulI be relatively easy, as we would simply have. to solve the equations (A.19)

and (A.20). Dual methods tackle an alternate problem, the dual problem, whose unknowns are

the Lagrange multipliers of the Original problem. See Chapter 13 of Luenberger [34] for details

on cutting plane methods and dual methods.

The augmented Lagrangian method combines a Lagrangian approach with a penalty method to

create an unconstrained problem with a modified objective function - see Section 1.7.4 in Ka11

& Wallace [28].
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Suppose that, in solving a nonlinear program, we knew which constraints were active at the

optimal solution, and which were inactive. We would then only need to include the active

constraints in our formulation and solve the problem as a nonlinear program subject to equality

constraints (the active constraints). The inactive constraints cart be ignored since they do not

affect the solution - they are satisfied without being enforced. The concept of identification

of the set of active constraints is used in sequential quadratic programming methods, amongst

others.

Sequential quadratic programming (SQP) methods have been shown to be highly efficient and

accurate methods of nonlinear programming (40). These method" approximate the Lagrangian

function of the original problem by a quadratic function. At each major iteration, an approxi-

mation is made of the Hessian matrix of second derivatives of the Lagrangian function. This is

then used to generate a quadratic programming subproblem whose solution is used to form a

search direction for a line search procedure. The quadratic subproblem is obtained by lineariz-

ing the nonlinear constraints and can be solved by efficient methods of quadratic programming.

See the MATLAB Optimization Toolbox User Guide [36] or Gill et at. [24J for details on SQP

methods.

Sometimes nonlinear programs arise in which the functions are not. differentiable or have discon-

tinuous derivatives. Optimality conditions must then be written in terms of subgradl " 9 and

sUbdifferentials and methods of non-differentiable or non-smooth optimitation must be used -

see Lemarechal [32]. A difficulty in stochastic programming is that discrete distributions ofte

lead to a non-differentiable expected recourse function, and thus standard methods of nonlit

programming cannot be used. This is one of the reasons why special algorithms are developed

to solve stochastic programs.

A.4 Integer Programming

The phrase integer programming normally refers to integer lineal' programming, i.e. linear

programming where some of the variables are restricted to be integers. A detenniaistio integer
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programming problem can be formulated as

s.t. Ax= b

x;'::: 0
Xi E Z, Vi E I

(A.23)

where it: is the set of integers and I is the set of subscripts of variables with integer restrictions.

More general integer nonlinear programs can obviously be formulated. This section gives a brief

overview of two fundamental methods in integer linear programming, viz. branch-and-bound

and cutting plane methods. The development in this section is based on Section 3.7 in Ka11&

Wallace [28]. For further information on integer programming, see Taha [43).

A.4.1 Branchand Bound

To simplify the presentation, we assume that all the variables have integer restrictions of the

form Xi E {ai, ai+1, ... ,bi} where {ai, •.. j b;} is the set of all integers from a, to bi. The branch

and bound procedure is based on replacing Xi E {ai,"" bi} by ai $ Xi $ bi Vi and solving

the corresponding relaxed linea?' program to obtain the optimal solution x. If x happens to be

integral, we have the optimal integer solution, since integrality occurs without being enforced.

If x is not integral, we have obtained a lower bound ff= cTX on the true optimal objective value)

since when a minimization problem becomes less constrained, the optimal objective cannot be

higher than it originally was.

Ifx is not integral, we continue b~rpicking the branching variable Xj and an integer dj. Normally

we ch, ose Xj as a variable that was non-integral in the relaxed LP solution and choose dj :::::LXjJ.

We then branch by replacing the original problem

min cTx

}s.t, Ax=b (A.24)

Xi E {ai, ... , bi} Vi
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by the two problems
min c1'x

1s.t. Ax=b

Xi E {ai, ... ,bi} Vi =f.j jXj E {aj, ... ,dj}

and
min cTx

s.t. Ax=b

Xi E {ai, ... , bi} Vi =f. j

Xj E{dj+t, ... ,bi}

(A.25)

(A.26)

Each time we branch, we replace the original problem by two similar problems that each inves-

tigate their own part of the solution space. The idea behind branching is to continue to branch

until it is no longer necessary to branch, and the branch is fathomed. When we solve problems

(A.25) and (A.26), we relax the integrality constraints to obtain the relaxed linear programs

(A.27)

and

min{cTxIAx=b a·<x·<b·Vid:.J· d·+l<X·<b·}. )1_.'l._1. '·"3 '-J-J (A.28)

respectively. The two new problems are now put into a collection of waiting nodes, or pendant

nodes. We continue to work with the problem in one of these waiting nodes, which we call

the present problem or current problem. When working witl the current problem, one of the

following situations will occur:

1. The current problem may be infeasible. In this case, no amount of further branching (i. e.

further constraining) can bring the problem back to feasibility, and hence the problem is

fathomed as infeasible.

2. The current problem might have an integral optimal solution x, If so, we compare c'rSc

with the best-so-lar objective value :z (which was initiated at 00). If the new value is better

(i.e. cTSc < z), we store ~ as the best-so-fa; solution and update z so that z == !;Tx. The
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current problem is thus either fathomed as currently optimal or fathomed as non-optimal.

3. The current problem may have a non-integral solution x with cTx ~ z. In this case, the

current problem cannot possibly contain an integral solution x with cTx < z, since the

integer program is more constrained and cannot have a lower optimal objective value.

The problem is thus fathomed as bounded.

4. The current problem may have a non-integral solution x with c'Z'x < z. In this case, an

optimal integral solution may exist, and hence we branch, creating two child nodes, which

we add to the collection of pendant nodes.

As branching proceeds, the interval over which we solve the LP relaxation will eventually

contain only one point. Therefore, sooner or later, we will come to the situation where either

the problem is infeasible, or we are faced with an integral solution. Hence the algorithm will

eventually stop (assuming the feasible space is bounded), yielding either the optimal integral

solution or the information that no such solution exists.

Kall &Wallace [28)state that much research has been done on how to pick the correct variable

Xj for branching, how to pick the branching value dj, how to formulate the problem so that

branching becomes simpler, and how to obtain a good initial integral solution so that z < co.

A.4.2 Cutting Plane Methods

When we relax an integer program to obtain a linear program, we increase the solution space.

However, all the points we add are non-integral. Cutting plane methods aim to add constraints

to the relaxed LP to cut off some of these non-integral solutions, namely those that are not

convex combinations of feasible integral points (and hence cannot contain any feasible integral

points). These cuts are usually added in an iterative manner.

A cutting plane method runs through so major steps. The first step is to solve a relaxed LP,

the second step is to evaluate the solution, and if it is not integral, to add cuts that cut away

non-integral points, including the present solution. These cuts are then added to the relaxed

LP, and the cycle is repeated. See 'Iaha [43) for further details on cutting plane methods.
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A.5 Software for Mathematical Programming

A wide range of commercial software is available for solving linear and nonlinear programs.

Although the commercial software packages are very efficient and easy to use, they are usu-

ally restricted to solve problems up to a certain size, and their price depends on this size.

This means that commercial software can be prohibitively expensive in solving determinis-

tic equivalents of stochastic programs, since stochastic programs tend to become very large

in size, particularly when there are many possible realizations of the random vector. Mod-

elling languages are specially designed for formulating mathematical programs (linear programs,

nonlinear programs and integer programs) in much the same way as they are written on pa-

per. The modelling language then converts the formulation into a format that is accepted

by a solver, which implements algorithms to solve the problem. Examples of such modelling

languages are LINGO (see http://www.lindo.com),AMPL(see http://www.ampl.com/ampl).

MPL (see http)/www.ma.".>{imal-usa.com). CAMS (see http://www.gams.com) and ArMMs (see

http://www.paragon.nl). Well-known linear programming and integer programming solvers are

CPLEX (see http://www.cplex.com),LINDo(see http://www.lindo.com) and XA (see http://

www.sunsetsoft.com), Examples of nonlinear solvers are LINGO, CONOPT (see http://www.

modeling.com), and LOQo (see http://www.princeton.edurrvdb). Spreadsheet solvers such as

WHAT'S BEST (see http://www lindo.com) and those by Frcntline Systems (see http://www.

frontsys.com) are becoming increasingly popular. Demo versions of some of these progrr ns

(SUch as LINGO, MPL and AIMMS)are available on the Internet. The motor racing example

in Chapter 4, the stochastic formulation of the manufacturing design example in Chapter 4,

and the airline planning example in Chapter 5 were solved using the student version of LINGo,

which is capable of solving linear, nonlinear and integer programs with up to 100 constraints

and 200 variables.

Public domain software for mathematical programming is far more limited. These programs

generally tend to be less user friendly, and are often only available on Unix platforms. Most of

these programs require input of the linear program in the form of MPS files (see ftp://plato.la.

asu.edu/pub/rnpe jformat.txt), a standard format that is accepted by most linear program

solvers. One of the most powerful public domain programs for solving linear programs and
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mixed integer programs is LP _SOLVE (see ftp://ftp.es.ele.tue.nljpubjlp_solve), which WM

used to solve the unit commitment problem in Chapter 6.

General purpose mathematical software can also lie useful in mathematical programming. The

Optimization Toolbox [36] in MATLAB(see http://www.mathworks.com) contains several pro-

cedures for optimization. The CONStn. procedure solves constrained nonlinear programs by

sequential quadratic programming (see Section A.a.a) and was used to solve the water re-

source management problem in Chapter 2 and the production planning example in Chapter

3. The LP procedure was used in simulating the wait-and-see solutions in Chapter 3. All

of the graphs in this dissertation were produced by MATLAB. Programs such as l\':IAPLE(see

http://www.maplesoft.com) and MATHEMATICA(see http://www.wolfram.com) are very good

at solving simultaneous equations to an arbitrary degree of accuracy, and were also used to

calculate various integrals. The MATHEMATICAfunction FindMinimum was used to solve the

deterministic formulation of the manufacturing design problem j,'j Chapter 4.

Not much software is available specially for stochastic programrr;' '~, The IBM Optimization

Subroutine Library (OSL - see http://www.research.ibm.comjosl) has a number of procedures

for solving stochastic linear programs with recourse. These procedures must be linked with C

or FORTRANprograms. AMPLhas introduced a "scenario" command to aid "he description of

stochastic programs. Generally, stochastic programs can be solved by solving the deterministic

equivalent problem with a standard linear or nonlinear program solver. This approach fails

when the size of the deterministic equivalent problem is too large.~ the solver in question. As

an alternative, you can always ;, lite your own algorithms!
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Appendix B

Statistical Background

B.! Probability Measure Theory

In order to derive some of the results in stochast! c programming (particurae.y those concerning

chance constraints - see Chapter 2), a basic knowledge of probability measure theory is required.

This section provides an overview of probability measure theory based on Section 1.3.1 in Kall

& Wallace [28).

Inprobability measure theory, we assume that we have d. sample space n of outcomes w (e.g. the

results of random experiments), a collection:F of subsets F S;; n called events, and a probability

measure (or probability distribution) P assigning to each F E :F the probability P(F) with

which it occurs. It is required that

1. n E :P, and F E :F => n- F E :F (i. e. n is an event, and if F is an event, then so is its

complement. )

oo
2. If Fi. E :F, i= 1,2, ... , then U F; E :F (i. e. The countable union of eve, is an event.)

i=l

3. 0:::; P(F) :::;1 \IF E :F and pen) = 1 (i.e. The probability of any event lies between zero

and one" and the sample space has a probability measure of one.)

4. If Fi E:F, i = 1,2, ... , and Fi nFj = 0 for i i= i. then P (0 Fi) = E P(Fi) (i.e.
i=l i=l

the probability of a countable union of mutually exclusive events equals the sum of the

probabilities of the events.)
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Definition 24 (Probability Space) The triple CD, F, P) with the above lJroperiies is called

a probability space.

The concept of natural meas'l:re in measure theory is a generalization of the length of a set in

one dimension, the area of a set in two di.nensions and the volume of a set in three dimensions.

A point (a zero-dimensional object) has a length of zero, a line (a one-dimensional object has

an area of zero, and a plane (a two-dimensional object) has zero volume, Similarly, any set that

can be adequately described in a certain number of dimensions has a zero natural measure in

higher dimensions. Natural measure is really just a measure of the size (i.e. "hypervolume")

of a set. We say that a set is naturally measurable if the "hypervolume" of the set is unique

and can be measured by integrating unity (i.e. the constant 1) over tho set, even if the result is

infinite. An example of a set that is not naturally measurable is a set with qualitative elements

rather than quantitative elements. We define A as the collection of all naturally measurable

sets in ]Rk.

In probability theory, we find random variables e and random vectors e.
Definition 25 (Rando ..1Vector) A random vector is a vector-valued function

e:D --+]Rk such that VA A, r1 (A) := {w I e('lJ) EA} E:F (B.1)

This reouires the "inverse" of any measurable set in jRk to be an event in n.Note that a random

vector e: D --+ Rk induces a probability measure Pe on A according to

(B.2)

Consider a random vector e with the set SEA such that, {w IZ(w) E S} == ' • Not, that

S =]Rk always satisfies this, but there may be smaller sets in A that do so.

Definition 26 (Support) The support S of the pr-obability measure P is the smallest closed

set S ~]Rk such that PeeS) == 1.

With F = {B I B =AnS, A E A}, instead of the abstract probability space (D,F,P) we may

equivalently consider the induced probability space (3,F,p) which we henceforth denote as
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(2.,:F,P).

Definition 27 (Almost Surely) For a probability space (S,;F,P), if there is an eventN6 E F

with P(N6) = 0 s1Lchthat 0. property holds on 8 - No, 'ilIe say that the property holds almost

surely (a.s.).

Definition 28 (Expectation) Consider a function 1/1 : 8 ~ JR. The espectaiioti of 1,b(e) is

given by the integral of the junction 7{J(e) over the support 8 oje with respect to the probability

measure P induced by ike random vector e, i.e.

In probability theory, the probability measure P of a probability space (8,:P, P) in IRk is

equivalently described by the distribution function.

Definition 29 (Dlstribution Function) The cumulative dist:ibution function (c.d.f) or

distribution junction Fe is defined by

F~ (x) = P({~ Ie:5 x}) ,x E]Rk

Definition 30 (Density Function) If there exists a function Ie : 8 ~ JR such that the dis-

tribution function can be represented as

then f,€ is called the probability densUy function (p.d.f) of P and the distribution is called of

continuous type.

B.2 Statistical Distributions

In this section, we give the probability density function [p.d.f.) and the cumulative distribution

function (c.d.f.) for the various statistical distributions that were used in this dissertation.

The mean and variance of each distribution ate also given. The conditional expectations of
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the truncated versions of the uniform, exponential and normal distributions were used in the

discretization procedure of Section 3.7.7.

B.2.1 Uniform Distributions

If ~ has the Uniform distribution, ~ tv U(a, b) where -co < a < b < co, then ~ has p.d.f,

a
ifa:::;e:::;b]
otherwise

(B.3)
1

b-a

and c.d.f.
o
0::
b-a

ife:::;a j
ifa.::;e::;b.

if e;:=: b1

with mean

E (-=.) a+b~ =-_.
2

and variance

(
-) (b - a)2

Val' e.=-~
The uniform distribution has support on the finite interval [a, bJ. More generally, we can define

the k-dimensional uniform distribution on a convex body S C Rk (with natural measure f,L(S) >
0), given by the density

f(~) = {Jl(~} if e E S ]
a ife~S

(B.4)

Consider truncating the uniform distribution U(a, b) on the left at A and on the right at

B i where a :::;A < B ::;b. Then

and hence

_1_
B-A

o
if A::; e s B 1
otherwise
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o
{-A
B-11

ife5A ]
ifA~e5B

ife ~B1

A+B
2

In other words, (e IA s{~B, e rv U(a,b)) "" U(A, B).

:8.2.2 Exponential Distributions

IfZ has the Exponential distribution, ~N Exp()..) where ,\ > 0, then e has p.d.f,

(B.5)

and c.d.f,

with mean

and variance

Var (~) == :2
The exponential distribution has non-negative support. Consider truncating the exponential

distribution Exp()..) on the left at A and on the right at B where 0 ~ A < B < co. Then

and hence

~ { Ae->'·
e-XA_e >.B

o
ifA~e5B 1
otherwise
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F(';IA~';:SB)

(B.6)

B.2.3 Normal Distributions

If e has the Normal distribution, {"" N(/1-, 0-2) where -co < Jl < 00 and 0-2 > 0, then ~ has

p.d.f,

1 [ 1 (S-p,)2] 1 (S-J-L)fee) = .J2ii0- exp -2" -;- =;reP --0:-.. , -00 < e < 00 (B.7)

where

(B.S)

and c.d.f,

where

(B.9)

The Normal distribution has support on the real line, and has mean E(e) = J.L and variance

Var(e) =0"2.

More generally, if e has a Multivariate Normal distribution ~ rv Nk (t-t, I:) , where /.1. E ]FRk and

I: > 0 (i.e. B is a positive definite! k x k matrix), then e has the p.d.f.

(B.10)

where IBI = det(B). The distribution has mean B(e) = t-t and variance-covariance matrix

Cav(e) =B. It is well known that a linear transformation of a multivariate normal distribution

1A real symmetric matrix ~ is said to be posiiio» definite (denoted by ~ > 0) ifxTEx > 0 for every x:f: O.
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also has a multivariate normal distribution, i.e.

(B.ll)

where A is an m x k matrix.

Consider truncQ,ting the normal distribution N(/-t, (72) on the left at A and on the right at

B.: here-co < A <B < 00. Then

and hence

(B.12)

B.2.4 Gamma Distribution

If Z has the Gamma distribution Z", GCr,>.)where 7' > ° and>. > 0, then Z has p.d.f,

(B.13)

where r(.) is the gamma function defined as r(r) = 1000tr-1e-tdt. The gamma distribution

has positive support and has mean

(
-) 7'E e = >:
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and variance

Var (e) = ;2
B.2.5 Lognormal Distribution

If ehas the Lognormal distribution e ,....,LN(/-L, 0-2) where -00 < /-L < oo and 0-2 > 0, then e has

p.d.f

if ~ > 0]
if ~ :;; 0

and c.d.f,

{

<Q (l!!..b±)
F(~) = a

o
where <Q(.) is given by (B.9). The lognormal distribution has positive support and has mean

and variance

B.2.6 1VeibullDistribution

Ife has the Weibull distribution e,...., W(a:,.B), where a:> 0 and /3 > 0, then e has p.d.f.

and c.d.f.

{
1- exp [- (.€.)"'J

F(~) == {3
o

i£~>. 0]
if ~ ~ 0

The Weibull distribution has positive support and has mean
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and variance

B.2.7 Point Distribution

If Z has the Point distribution Z '" pte c), where -00 < C< 00, then Z has the probability mass

function (p.m.f.)

f(~) = { ~ ;f~=c ]

if ~ i= C

and c.d.f

F«) ~ { :
if ~ <c ]
if ~ ~ C

The distribution has mean E(e) ::::c and vt .rance Var(e) = O.The Point distribution is a degen-

erate distribution and has support at one discrete point only. It is essentially a "deterministic"

distribution.

B.2.8 Poisson Distribution

If e has the Poisson distribution Z rv P(;'), where .\ > 0, then e has p.m.f.

f(~) = {e-.\* if ~ =0,1, ... ]
o elsewhere

(B.16)

and c.d.f.

if~<Ol
ire 2 0

The distribution has mean E(e) = ,\ and variance Var(e) = A. The Poisson distribution is a

discrete distribution with support on the non-negative integers.

176



'9.3 Standard Integrals

,!,·.tJ.efollowing integrals were obtained with the aid of MATHEMATICA and were used in the

calculations of Section 3.7.5.

J -CX..1_ 1 -ex x -ex kxe ua; = --e - -e +.
c2 c

J xe-c:r~(ax + b)dx 1 r 1 2 ) 1 2 2] 1+ ex -ex ( b)---. exp l--b - (ab+c x - -a x - --.-e ~ax+ ,acy'2i[ 2 2 c2

+ (.!:. _l -~)exp [~ (2ab + c)] ~ (ax + b+ !:) + k
~ ~ ~ ~ a
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Appendix C

Solutions to t.he Unit Commitment

Problem
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Appendix C.1 Solution to EV Problem
i 1 2 3 4 5 6 7 8 9 1') 11 12 13

Unit Arnot Duvha Hendrin Kendal Kriel Lethabo Matimba MaUa Tutuka Majt;ba Koeberg Gas Unmet Sum
u'(Q 2 4 7 4 4 4 6 6 6 C 2 0 0
uri) 2 4 8 4 4 0 6 6 6 0 2 0 0
veil 0 a 1 a a a a 0 a 0 0 0 0

g(i)u(i) 400 1400 1040 1280 1020 0 2160 1950 1650 0 1840 0 0 Capacity
G(l)u(i) 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 0 eo 21430

.' x(1,t) x(2,t) x(3,t) x(4,t) x(S,f) x(6,t) x(7,t) x(8,t) x(9,t) x(10,t) x(11,t) x(l2,t) x(13,t) yet)--~r- 400 2300 1040 1280 1020 0 3690 1950 2007 a i840 0 0 5903
2 400 2300 1040 1280 1020 0 3690 1950 1866 0 1.840 0 0 6044
3 400 2300 1040 1280 1020 C 3690 1950 1730 0 1840 0 0 6180
4 400 2300 1040 1280 1020 0 3690 1950 1828 0 1840 a 0 6082
5 400 2300 1040 1280 1020 0 3690 1950 2133 0 1840 0 0 5777
6 400 2300 1040 1280 1020 0 3690 1950 3362 0 1840 0 0 4548
7 660 2300 1520 1462 1900 0 3690 1950 3510 a 1840 0 0 2598
8 660 2300 1520 2560 1900 0 3690 2444 3510 0 1840 0 0 1006
9 660 2300 1520 2560 1900 a 3590 3385 3510 0 1840 () 0 65
10 660 2300 1520 2560 1900 0 3690 3385 3510 0 1840 0 0 65
11 660 2300 1520 2560 1900 0 3690 3113 3510 0 1840 0 0 337
12 660 2300 1520 2560 1900 0 3680 3177 3510 0 1840 0 0 273
13 660 2300 1520 2560 1900 0 3690 2987 3510 0 184P 0 0 463
14 660 2300 1520 2560 1900 0 3690 2731 3510 0 1840 0 0 719
15 660 2300 1520 2560 1900 0 3690 2602 3510 a 1840 0 0 848
16 660 2300 1520 2560 1900 0 3690 2806 3510 0 1840 0 0 644
17 660 2300 1520 2560 1900 0 3690 2615 3510 0 1840 '0 0 835
18 660 2300 1520 2560 1900 0 3690 2133 3510 0 1840 0 0 1317
19 660 2300 1520 2560 1900 0 3690 2225 3510 0 1840 0 0 1225
20 660 2300 1520 2560 1900 0 3690 3116 3510 0 1840 0 0 334
21 660 2300 1520 2560 1900 0 3690 3301 3510 0 1840 0 0 14l:J

22 660 2300 1520 2560 1900 0 3690 2175 3510 0 1840 0 0 1275
23 660 2300 1520 1386 1900 0 3690 1950 3510 0 1840 0 0 2674
24 400 2300 1520 1280 1218 0 3690 1950 3510 0 1840 0 0 3722

Switch-on cost 0 0 17500 0 0 0 0 0 0 0 0 0 0 117500 -
Fixed cost 12979 25693 21744 45510 38352 0 25906 61242 66030 0 {1 0 0 297455
Marginal cost 103064 279373 225142 372692 291148 a 232899 502255 507350 0 618240 0 0 13132162
Tctal unit cost 116043 305066 264386 418202 329500 0 258804 563497 573380 a 618240 0 0 3447117



AppendixC.2

.....
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Solution10 Recourse Problem Page 1 of4
i 1 2 3 4 5 6 7 8 9 10 11 12 13

Um1 Arnot Duvha Hendrina Kendal Kriel Letnabo Matimba Matla Tutuka Majuba Koeberg Gas Unmet Sum
u'(i) 2 4 7 4 4 4 6 6 6 0 2 0 0
uri) 2 4 7 4 4 2 6 6 6 0 2 1 0
v(Q 0 0 0 0 0 0 0 0 0 0 0 1 0

g(i)u(i) 400 1400 910 1280 1020 750 2160 1950 1650 0 1840 0 0 Capacity
G(i)u(i) 660 2300 1330 2560 1900 1186 3690 3450 3510 0 1840 57 0() 22426

Switch-oncost 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fixedcos! 12979 25593 19026 45510 38352 13962 25906 61242 66030 0 0 0 0 308699

Scen<?~io1 0.054489
1 x(1,t,1) )<,(2,1,1) x(3, I, 1) x(4,1,1) x(5,1,1) X(6,1,1) x(7,1,1) x(8,t,1) x(9,1,1) x(10,1,1) x(11,1,1) x(12,/,1) x(13,t,1) y(I,1)
1 400 1400 910 1280 1020 750 3551 1950 1650 0 1840 0 0 7675
2 400 1400 910 1280 1020 750 3417 1950 1650 0 1840 0 0 7809
3 400 1400 910 1280 1020 750 3288 1950 1650 0 1840 0 0 7939
4 400 1400 910 1280 1020 750 3381 1950 1650 0 18~O 0 0 "7845
5 400 1400 910 1280 1020 750 3670 1950 1650 0 164C 0 0 7556
6 400 2300 910 1280 1020 750 3690 1950 1896 0 1840 0 a 6388
7 400 2300 1150 1280 1020 750 3690 1950 3510 0 1840 0 0 4536
8 660 2300 1330 1473 1900 750 3690 1950 3510 0 1640 0 0 3023
9 660 2300 1330 2367 1900 750 3690 1950 3510 0 1840 0 0 2129
10 6EO 2300 1330 2367 1900 750 3690 1950 3510 0 1840 0 0 2129
11 660 2300 1330 2108 1900 750 3690 1950 3510 0 1840 0 0 2388
12 660 2300 1330 2169 1900 750 3690 1950 3510 0 ',840 0 0 2327
13 660 2300 133D 1989 1900 750 3690 1950 3510 0 1840 0 0 2507
14 660 2300 1330 1746 1900 750 3690 1950 3510 0 1840 0 0 2751
15 660 :::300 1330 1623 1900 750 3690 1950 3510 0 1840 0 0 2873
16 660 2300 1330 1817 1900 750 3690 1950 3510 0 1840 0 0 2679
17 660 2300 13:')0 1635 1900 750 3690 1950 3510 0 1840 0 0 '2861
18 557 2300 1330 1280 1900 750 3690 1950 3510 0 1840 0 0 3319
19 645 2300 1330 1280 1900 750 3690 1950 3510 0 1840 0 0 3231
20 660 2300 1330 2111 1900 750 3690 1950 3510 0 1840 0 0 2385
21 660 2300 1330 2287 1900 750 3690 1950 3510 0 1840 0 0 2209
22 597 2300 1330 1260 1900 750 3690 1950 3510 0 1840 0 0 3279
23 400 2300 1078 1280 1020 750 3690 1950 3510 0 1840 o 0 4608
24 400 2300 910 1280 10:::0 750 3690 1950 2683 0 1640 0 0 5603

Uni!supply 13319 50700 28549 39051 37660 18000 87416 46800 72501 0 44160 0 0 438175
Marginalcost 97914 256598 191294 289875 276766 168610 2291)"'1 393431 483314 0 618240 0 0 3006132

Scenario2 10.244201
t x(1,t,2) x(2,1,2) x(3,t,2) X(4,t,2) x(5,t,2} x(6 ',2) x(7,t,2) x(8, 1,2) x{9,t,2) x(10,1,2) x(11,1,2) x(12, I. 2) x(13,1,2} y(t.2)



,.. ~
8 660 2300 1330 1983 1900 750 3690 1950 3510 0 1840 0 0 2513
G 660 2300 1330 2560 1900 750 3690 2291 3510 0 1840 0 0 1595
10 660 2300 1330 2560 1900 750 3690 2291 3510 0 1840 0 0 1595
11 660 2300 1330 2560 1900 750 3690 2026 3510 0 1840 0 0 1860
12 660 2300 1330 2560 1900 750 3690 2088 3510 0 1840 0 0 1798
13 660 2300 1330 2513 1900 750 3690 1950 3510 0 1840 0 0 1983
14 660 2300 1330 22€'3 1900 750 3690 1950 3510 0 1840 0 0 2233
15 660 2300 1330 2138 1900 750 3690 1950 3510 0 1840 0 0 2359
16 660 2300 1330 2336 1900 750 3690 1950 3510 0 1840 0 0 2160
,- 660 2300 1330 2150 1900 750 3690 1950 3510 (I 1840 0 0 2346II

18 660 2300 1330 1680 1900 750 3690 1950 3510 0 1840 0 0 2816
19 660 2300 1330 1770 1900 750 3690 1950 3510 0 1840 0 0 2726
20 660 2300 1330 2560 1900 750 3690 2029 3510 0 1840 0 0 1857
21 660 2300 1330 2560 1900 750 3690 2209 3510 0 1840 0 0 1677
22 660 2300 1330 1721 1900 750 3690 1950 3510 0 1840 0 0 2775
23 400 2300 1330 1280 1237 750 ~590 1950 3510 C 1640 0 0 4139
24 400 2300 910 1280 1020 750 3690 1950 3125 0 1840 0 0 5161

Unit supply 13500 51506 28980 45435 38188 1(1000 t:~539 48033 7336!f 0 44'160 0 (J 449706
Marginal cost 99242 260678 194185 337258 280500 1f:i&tl10 232843 403798 489080 0 618240 0 0 3084633

Scenario 3 0.40262
t x(1,t,3) x(2,t,3) x(3,t,3) x(4,t,3) x(5,t,3) x(6,t,3) x(7,t,3) x(B,t,3) x(9.t,3) x(10, t,3) x(11,t,3) x(12,t,3) x(13,t,3) y(t,3)
1 400 2037 910 1280 1020 750 3690 1950 1650 0 1840 0 0 6899.
2 400 1896 910 1280 1020 750 3690 1950 1650 0 1840 0 0 7040
3 400 1760 910 1280 1020 750 3690 1950 1650 0 1840 0 0 7176
4 400 1858 910 1280 1020 750 3690 1950 1650 0 1840 0 0 7078
5 400 2163 910 1280 1020 750 3690 1950 1650 0 1840 0 0 6773
6 400 2300 910 1280 1020 750 3690 1950 2742 0 1840 0 0 5544
7 400 2300 1330 1280 1782 750 3690 1950 3510 0 1840 0 0 3594
8 660 2300 1330 2404 1900 750 3690 1950 3510 0 1840 0 0 2002
9 660 2300 1330 2560 1900 750 3690 2825 3510 0 1840 0 0 1061
10 660 2300 1330 2560 1900 750 3690 2825 3510 0 1840 0 0 1061
11 660 2300 1330 2560 1900 750 3690 2553 3510 0 1840 0 0 1333
12 660 2300 1330 2560 1900 750 3690 2617 3510 0 1840 0 0 1~69

Appendix C.2

1 400 1649 910
2 400 1511 910
3 400 1400 910
4 400 1474 910
5 400 1772 910
6 400 2300 91(1
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13 660 2300 1330 2560 1900 750 3690 2427 3510 0 1840 0 0 1459
14 660 2200 1330 2560 1900 750 3690 2171 3510 0 1840 0 0 1715
15 660 2300 1330 2560 1900 750 3690 2042 3510 0 1840 0 0 1844
16 661) 2300 1330 2560 1900 750 3690 2246 3510 0 1840 0 0 1640
17 660 2300 1330 2560 1900 750 3690 2055 3510 0 1840 0 0 1831
18 I 560 2300 1330 2183 1900 750 3690 1950 3510 0 1840 0 0 2313
19 660 2300 1330 2275 1900 750 3690 1950 3510 0 1840 0 0 2221
2Q 660 2300 1330 2560 1900 750 3690 2556 3510 0 1840 0 0 1330
21 660 2300 1330 2560 '1900 750 3690 2741 3510 0 1840 0 0 1145
22 660 2300 1330 2225 1900 750 3690 1950 3510 0 1840 0 0 227123 400 2300 1330 1280 1706 750 3690 1950 3510 0 1840 0 0 3670
24 400 2300 968 1280 1020 750 3690 1950 3510 0 1840 0 0 4718

Unitsupply 13500 53414 29038 48857 39128 18000 88560 52408 74172 0 44160 0 0 461237
Mar9inalcost 99242 270334 194573 362664 287402 168810 232899 440575 494457 0 618240 0 0 3169196

Scenario4 0,244201
t x(1.t.4) x(2,t,4) x(3.I,4) x(4.t,4) x(5.t,4) x(6,t,4) x(7,t,4) x(8,t,4) x(9,I,4) x(10,t,4) x(11,{,4) x(12,t,4) x(13,t,4) y(I,4)
i 400 2300 910 1280 1020 750 3690 1950 1775 0 1840 a 0 6511
2 400 2281 910 1280 1020 750 3690 1950 1650 0 1840 0 0 6655
3 400 2142 910 1280 1020 750 3690 1950 1650 0 1840 0 0 6794
4 400 2242 910 1280 1020 750 3690 1950 1650 0 1840 0 0 6694
5 400 2300 910 1280 1020 750 3G90 1950 1904 0 1840 0 0 6382
6 400 2300 910 1280 1020 750 3690 1950 3164 0 '1840 0 0 5122
7 660 2300 1330 1373 1900 750 3690 1950 3510 0 1840 0 0 3123
8 660 2300 1330 2560 1900 750 3690 23'35 3510 0 1840 0 0 1491
9 660 2300 1330 2560 1900 750 3690 3359 351!J 0 1840 0 0 527
10 660 2300 1330 2560 1900 750 3690 3359 3510 0 1840 0 0 527
11 660 2300 1330 2560 1900 750 3690 3080 3510 0 1840 0 0 806
12 660 2300 1330 2560 1900 750 3690 3146 3510 0 1840 \.J 0 740
13 660 2300 1330 2560 1900 75C 3690 2951 3510 0 1840 0 0 935
14 660 2300 1330 2560 1900 750 3690 2689 3510 0 1840 0 0 1197
15 660 2300 1330 2560 1900 750 3690 2557 3510 0 1840 0 0 1330
'i6 660 2300 1330 2560 1900 753 3690 2766 3510 0 1840 0 0 1120
17 660 2300 1330 2560 1900 750 3690 2570 3510 0 1840 0 0 1316
18 660 2300 1330 2560 1900 750 3690 2076 3510 0 1840 0 0 1810
19 660 2300 1330 2560 11;00 750 3690 2170 3510 0 1840 0 0 1716
20 660 2300 1330 2560 1900 750 3690 3083 3510 0 1840 0 0 803
21 660 2300 1330 2560 11:;00 750 3690 3273 3510 0 1840 0 0 613
22 660 2300 1330 2560 1900 750 3690 2119 3510 0 1840 0 0 1767
23 660 2300 1330 1295 1900 750 3690 1950 3510 0 1840 0 0 3201
24 400 2300 1330 1280 1101 750 3690 1950 3510 0 1840 0 0 4275
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Unit supply 114020 54965 29400 50028 39521 18000 88560 59142 74974 0 44160 0 0 472769
Marginalcost 103064 278181 196999 371354 290286 168810 232899 497188 499800 0 618240 0 0 3256822

Scenario5 0.054489
t x(1,t,5) x(2,t,5) x(3,t,5) x(4,t,5) x(5,t,5) x(6,t.5) x(7,t,5) x(B,I,5) x{9,t,5) x(10,t,5) x(11,t,5) x(12,t,5) x{13,t,5) y{t,5)
1 400 2300 910 1280 10Z0 750 3690 195'1 2163 0 1840 0 0 6123
2 400 2300 910 1280 1020 750 3690 1950 2015 0 1840 0 0 6271
3 400 2300 910 1280 1020 750 3690 1950 1873 0 1840 0 0 6414
4 400 2300 910 1280 1020 750 3690 1950 1975 0 1840 0 0 6311
5 400 2300 910 1280 1020 750 3690 1950 2296 0 1840 0 0 5990
6 400 2300 986 1280 1020 750 3690 1950 3510 0 1840 0 0 4700
7 660 2300 1330 1844 1900 750 3690 1950 3510 0 1840 0 0 2652
8 660 2300 1330 2560 1900 750 3690 2905 3510 0 1840 0 0 981
9 660 2300 1330 2560 1900 1186 3690 3450 3510 0 1840 7 0 -7
10 660 2300 1330 2560 1900 1186 3690 3450 351.' 0 1840 7 0 -7
11 660 2300 1330 2560 1900 908 3690 3450 3510 0 1840 0 0 278
12 660 2300 1330 2560 1900 975 3690 3450 3510 0 1840 0 0 211
13 660 2300 1330 2560 1900 775 3690 3450 3510 0 1840 0 0 411
14 660 2300 1330 2560 1900 750 3690 3207 3510 0 1840 0 0 680
15 660 2300 1330 2560 1900 750 3690 3071 3510 a 1840 0 0 815
16 660 2300 1330 2560 1900 750 3690 3285 3510 0 1840 0 0 601
17 660 2300 1330 2560 1900 750 3690 3085 3510 0 1840 0 0 801
18 660 2300 1330 2560 1900 750 3690 2579 3510 0 1840 0 0 1307
19 660 2300 1330 2560 1900 750 3690 2675 3510 0 1840 0 0 1211
20 660 2300 1330 2560 1900 911 3690 3450 3510 0 1840 0 0 275
21 660 2300 ;330 2560 1900 1105 3690 3450 3510 a 1840 0 (l 81
22 660 2300 1330 2560 1900 750 3690 2623 3510 0 1840 0 0 1263
23 660 2200 1330 1764 1900 750 3690 1950 3510 0 1840 0 0 2732
24 400 2300 1330 1280 1543 750 3690 1950 3510 0 1840 0 0 3833

Unitsupply 14020 55200 29476 50967 39963 19796 88=';;0 65130 77012 0 44160 15 0 484299
Mar9inalcost 103064 279373 197509 378329 293538 185651 232899 547521 513392 0 618240 7141 0 3356656

Expecl-><:lmarginal 100311 269636 195052 355469 286175 169728 232721 448678 494873 0 618240 389 0 3171273
Tota cost 113290 295329 214078 400979 324527 183690 258627 509920 560903 0 618240 383 0 3479972
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; 1 2 3 4 5 6 7 8 9 10 11 12 13

Unit Amot Duvha Hendrina Kendal Kriel Lethabo Matimba Matla Tutuka Majuba Koeberg Gas Unmet Sum
u'(i) 2 4 7 4 4 4 6 6 6 0 2 0 0
uri) 2 4 8 4 4 0 6 6 6 0 2 6 1
v(i) 0 0 1 0 0 0 0 0 0 0 0 6 1

g(i)u(i) 400 1400 1040 1280 1020 0 2160 1950 1650 0 1840 0 0 Capacity
G(IJU(;J 660 2300 1520 2560 1900 0 3390 3450 3510 0 1840 342 co 21430

Switch-oncost 0 0 17500 0 0 0 0 0 0 0 0 0 0 17500
Fixedcost 12979 25693 21744 45510 38352 0 25906 61242 6EJ30 0 0 0 0 297455

Scenario1 0.054489
t x(1,t,1) x(2.t,1) x(3,t. 1) x(4,t,1) x(5,f,1) x(6,f,1) x(!'f,1) x(B,t,1) x(9,f,1) x(10,t,1) x(11,t,1) x(12,f,1) x(13,t,1) y(t, 1)
1 400 1881 1040 1280 1020 0 3690 1950 1650 0 1840 0 0 6679
2 400 1747 1040 12BO 1020 0 3590 1950 1650 0 1840 0 0 6813
3 400 1618 1040 1280 1020 0 3690 1950 1650 0 ~o40 0 0 6943
4 400 1711 1040 1280 1020 0 3690 1950 1650 0 1840 0 0 6849
5 400 2000 1040 1280 1020 0 3690 1950 1650 0 1840 0 0 6560
6 400 2300 1040 1"80 1020 0 3690 1950 2518 0 1840 0 0 5392
7 400 2300 1520 1280 1400 0 3690 1950 3510 0 1840 0 0 3540
8 660 2300 1520 2033 1900 0 3690 1950 3510 0 1840 0 0 2027
9 660 2300 1520 2560 1900 0 3690 2317 3510 0 1840 0 0 1133
10 660 2300 1520 2560 1900 0 3690 2317 3510 0 1840 0 0 1133
11 660 2300 1520 2560 1900 a 3690 2058 3510 0 1840 0 0 1392
12 660 2300 1520 2560 1900 0 3690 2119 3510 0 1840 0 0 1331
13 660 2300 1520 2549 1900 a 3690 1950 3510 0 1840 a a 1511
14 660 2300 1520 2306 1900 a 3690 1950 3510 a 1840 0 0 1755
15 660 2300 1520 2183 1900 0 3690 1950 3510 0 1840 0 0 1877
16 660 2300 1520 2377 1900 0 3690 1950 3510 0 1840 0 0 1683
17 660 2300 1520 2195 1900 a 3690 195D 3510 0 1840 0 0 1865
18 660 2300 1520 1737 1900 0 3690 1950 3510 0 1840 0 0 2323
19 660 2300 1520 1825 1900 0 3690 1950 3510 0 1840 0 0 2235
20 660 2300 1520 2560 1900 0 3690 2061 3510 0 1840 0 0 1389
21 660 2300 1520 2560 1900 0 3690 2237 3510 0 1840 0 0 1213
22 660 2300 1520 1777 1900 0 3690 1950 3510 0 1840 0 0 2283
23 400 2300 1520 1280 1328 0 3690 1950 3510 0 1840 a 0 3612
24 400 2300 1040 1260 1020 0 3690 1950 3303 a 1840 0 0 4607

Uni(supply 13500 52656 33120 45861 38369 0 88560 482G9 73741 0 44160 0 0 438175
Mar9inalcost 99L'~? 266496 221926 340425 281824 0 232899 405278 491581 0 618240 0 0 2957910

Scenario2 .10.244201
t x(1,t,2) x(2,f,2) x(3,t,2) x(4,t,2) x(5,t,2) x(6,t,2) x(7,t,2J x(8,f,2J x(9,t,2J x(10,t,2) x(11,t,2j x(12,(,2) x(13,t,2J y(t,2)
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1 400 2269 ~C.10 1280 1020 0 3690 1950 1650 0 1840 0 0 6291
2 400 2131 1040 1280 1020 0 3690 1.950 1650 0 1840 0 0 6429
3 400 1999 1040 1280 1020 0 3690 1950 1650 0 1840 0 0 6561
4 400 2094 1040 1280 1020 0 3690 1950 1650 o 1840 0 0 6466
5 400 2300 ,040 1280 1020 0 3690 1950 1742 0 1840 0 0 6168
6 400 2300 1040 1280 1020 0 3690 1950 2940 0 1840 0 0 4970
7 400 2300 1520 1280 1871 0 3690 1950 3510 0 1840 0 0 30(,9
8 660 2300 1520 2543 1900 0 3690 1950 3510 0 1840 0 0 ~517
9 660 2300 1520 2560 1900 a 3690 2851 3510 0 1840 0 0 599
10 660 2300 1520 2560 1900 0 3690 2851 3510 0 1840 0 0 599
11 660 2300 1520 2560. 1900 0 3690 2586 3510 o 1840 0 o 864
12 660 2300 1520 2560 1900 0 3690 2648 3510 0 1840 0 0 802
13 660 2300 1520 2560 i900 0 3690 2463 3510 0 1840 0 0 ser
14 66C 2300 1520 2560 1900 0 3690 2213 3510 0 1840 0 0 1237
15 660 2300 1520 2560 1900 0 3690 2068 3510 a 1840 0 0 1363
16 560 2300 1520 2560 1900 0 3690 2286 3510 0 1840 0 '1 1164
17 660 2300 1520 2560 1900 0 3690 2100 3510 0 1840 0 0 1350
16 .660 2300 1520 2240 19JO 0 3690 1950 3510 0 1e40 0 0 1820
19 660 2300 1520 2330 1900 0 3690 1950 3510 0 1640 0 0 1730
20 660 2300 1520 2560 1900 0 3690 2589 3510 0 1840 0 0 861
21 660 2300 1520 2560 1.900 0 3690 2769 3510 0 1840 0 0 681
22 660 2300 1520 2281 1900 0 3690 1950 3510 0 1840 0 0 1779
23 400 2300 1520 1280 1797 a 3690 1950 3510 0 1840 0 a 3143
24 400 2300 1275 1280 1020 0 3690 1950 3510 0 1840 0 0 4165

Unit supply 13500 54493 33355 49075 39308 0 de~CJ 52793 74462 0 44160 0 0 449706
Marginal cost 99242 275796 223502 364279 288726 0 232899 443813 496388 0 618240 0 0 3042884

Scenario 3 0.40262
t x(1,t,3) x(2,t,3) x(3,t,3) x(4,t,3) x(5,t,3) x(6,t,3) ari» x(8,t,3) x(9,t,3) x(10,t,3) x(11,t,3) x(12,t,3) x(13,t,3) y(t,3)
1 400 2300 1040 1280 1020 0 3690 1950 2007 0 1840 0 0 5903
2 400 2300 1040 1280 1020 0 3690 1950 1866 0 1840 0 a 6044
3 400 2300 1040 1280 1020 0 3690 1950 1730 0 1840 a a 6180
4 400 2300 1040 1280 1020 0 3690 1950 1828 0 1840 0 0 6082
5 400 2300 1040 1280 1020 0 3690 1950 2133 0 1840 0 0 5777
6 400 2300 1040 1280 t020 0 3690 1950 3362 0 1840 0 0 4548
7 660 2300 1520 1462 1900 0 3690 1950 3510 a 1840 0 0 2598
8 660 2300 1520 2560 1900 0 3690 .2444 3510 a 1840 0 0 1006
9 660 2300 1520 2560 1900 0 3690 3385 3510 0 1840 0 0 65
10 660 2300 1520 2560 1900 0 3690 33.85 35~0 0 1840 0 0 65
11 6GO 2300 1520 2560 1900 0 3690 3.13 3510 0 1640 0 0 337
12 660 2300 1520 2560 1900 0 3690 3177 3510 0 1840 a a 273
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13 660 2300 1520 2560 1900 0 3690 2987 3510 0 1840 0 0 463
14 660 2300 1520 256D 1900 0 3690 2731 3510 0 1840 0 a 719
15 660 2300 1520 2560 1900 a 3690 2602 351G 0 1840 a a 848
16 660 2300 1520 2560 1900 0 3690 2806 3510 a 1840 a a 644
17 660 2300 1520 2560 1900 0 3690 2615 3510 a 1840 0 a 835
18 660 2300 1520 2560 1900 0 3690 2133 3510 0 1840 a 0 1317
19 660 2300 1520 2560 1900 0 3690 2225 3510 0 1840 0 0 1225
20 660 2300 1520 2560 1900 0 3690 3116 3510 0 ~840 0 0 334
21 660 2300 1520 2560 1900 0 3690 3301 3510 0 1840 0 0 149
~2 660 2300 1520 2560 1900 (J 3690 2i75 3510 0 1840 0 0 1275
23 660 2300 1520 1386 1900 0 3690 1950 3510 0 1840 0 0 2674
24 400 2300 1520 1280 1218 0 3690 1950 3510 0 1840 0 0 3722

Unit supply 14020 55200 33600 50208 39638 0 88560 59745 76106 0 44160 0 0 461237
Marginalcost 103064 279373 225142 372692 291148 0 232899 5.02255 507350 0 618240 0 0 3132162

Scenario 4 0.244201
t x(1,t,4J x(2,I,4) x(3,t,4) x(4,t,4) x(5,t,4) x(6,t,4) x(7,t,4) x(8,I,4) x(9,t,4) x(10,t,4) x(11,t,4) x(12,t,4) x(13,t,4) y(t,4J
1 400 2300 1040 1280 1020 0 3690 1950 2395 0 1840 0 0 5515
2 400 2300 1040 1280 1020 0 3690 1950 2251 0 1840 0 0 5659
3 400 2300 1040 1280 1020 a 3690 1950 2111 0 1840 0 a 5799
4 400 2300 1040 1280 1020 0 3690 1950 2212 0 1840 0 0 5698
5 400 2300 1040 1280 ',02U 0 3690 1950 2524 0 1840 0 0 5386
6 400 2300 1314 1280 1020 0 3690 1950 3510 0 1840 0 0 4126
7 660 2300 1520 1933 1900 0 3690 1950 3510 0 1840 0 0 2127
8 660 2300 1520 2560 1900 0 3690 2955 3510 0 1840 0 0 495
9 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 127 -469
10 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 127 -469
11 660 2300 1520 2560 1900 0 3690 a450 3510 0 1840 190 0 -190
12 660 2aOO 'i521} 2560 1900 0 3690 a450 3510 0 1840 256 0 -256
13 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 61 0 -61
14 660 2300 1520 2560 1900 0 3690 3249 3510 0 1840 0 0 201
15 660 2300 1520 2560 1900 0 3690 3117 3510 0 1840 0 0 334
16 660 2300 1520 2560 1900 0 3690 3326 3510 0 1840 0 0 124
17 660 2300 1520 2560 1900 0 3690 3130 3510 0 1840 0 0 320
18 66ll 2300 1520 2560 1900 0 3690 2636 3510 0 1840 0 0 814
19 660 2300 1520 2560 1900 0 3690 27:;0 3510 0 1840 0 0 720
20 660 2300 1520 2560 1~OO 0 3690 3450 3510 0 '1840 193 0 -193
21 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 .342 41 -383
22 660 2300 1520 2560 1900 0 3690 267G 3510 0 1840 0 0 771
23 660 2300 1520 1855 1900 C 3690 1950 3510 0 1840 0 0 2205
24 400 2300 1520 1280 1661 0 3690 1950 3510 0 1840 0 0 3279
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Unit supply I 14020 55200 33874 51148 40081 0 88560 65520 S3 0 44160 1727 295 472768
Marginal cost 103064 279373 226978 379667 294400 0 232899 550806 !:. ,196 0 618240 850454 2952900 7009976

Scenario 5 0.054489
t x{1,t,5) x{2,t,5) x{3,t,5) x(4,1,5) x(5,I,5) x{6, f,5} x(7,I,5} x(8,1,5) x(9,I,5) x(10,t,5) x(11,1,5) x(12,t,5) x(13,i,5) y(t,5)
1 400 2300 1040 1280 1020 0 3690 1950 278:: 0 1840 0 0 5127
2 400 2300 1040 1280 1020 0 3690 1950 2635 0 1840 0 0 5275
3 400 2300 1040 1280 1020 0 3690 1950 2493 0 1840 0 0 5418
4 400 2300 1040 1280 1020 0 3690 1950 2595 0 1840 0 0 5315
5 400 2300 1040 1280 1020 0 3690 1950 2916 0 1840 0 0 4994
6 400 2300 1520 1280 1236 0 3690 1950 3510 0 1840 0 0 3704
7 660 2300 1520 2404 1900 0 3690 1950 3510 0 1840 0 0 1656
8 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 15 0 -15
9 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 661 -1003
10 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 661 -1003
11 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 376 -718
12 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 443 -785
13 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 243 -585
14 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 317 0 -317
15 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 181 0 -181
16 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 53 -395
17 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 195 0 -195
18 660 2300 1520 2560 1900 0 3690 3139 3510 0 1840 0 0 311
19 660 2300 1520 2560 1900 0 3690 3235 3510 0 1840 0 0 215
20 660 2300 1520 2560 1900 0 3690 3450 3510 0 1840 342 379 -721
21 660 2300 1520 2560 ~900 0 3690 3450 3510 0 1840 342 573 -915
22 660 2300 1520 2560 1900 0 3690 3183 3510 0 1840 0 0 267
23 660 2300 1520 2324 1900 0 3690 1950 3510 0 1840 0 0 1736
24 603 2300 1520 1280 1900 0 3690 1950 3510 0 1840 0 0 2837

U.,itsupply 14223 55200 34080 52087 40536 0 88560 68507 80112 0 44160 3444 3390 484299
Marginal cost 104559 279373 228358 386643 297745 0 232899 575911 534057 0 618240 1695973 33895000 38848758

Expected marginal 102004 277798 225190 371343 291202 0 232899 498569 508650 0 618240 300093 2567996 5993983
Total unit cost 114983 303491 264434 416853 329554 0 258804 559811 574680 0 618240 300093 2567996 6308938
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i 1 2 3 4 5 6 7 8 9 10 11 12 13

Unil Arnot Duvha Hendrina Kendal Kriel Lethabo Matimba Matla Tutuka Majuba Koeberg Gas Unmet Sum
u'(i) 2 4 7 4 4 4 6 6 6 0 2 0 0
uri) ;2 4 7 4 4 3 6 6 6 0 2 0 0
veil 0 0 0 0 0 0 0 0 0 0 0 0 0

g(i)u(i) 400 1400 910 1280 1020 1125 2160 1950 1650 0 1840 0 0 Capacity
G(i)u(i) 660 2300 1330 2560 1900 1779 3690 3450 3510 0 1840 0 00 23019

Switch-oncost a a 0 a 0 0 0 0 0 a a 0 0 0
Fixedcost 12979 25693 19023 45510 38352 20942 25906 61242 66030 a 0 0 0 315679

Scenario 1 0.054489
t x(1,1,1) )(2,1,1) )(3,t,1) x(4,1,1) )(5,1,1) x(6, I, 1) x(7.1,1) x(8,1,1) x(9,1,1) x(10,l,1) x(11,1,1) x(12,t,1) )(13,1,1) y(I,1)
1 400 1400 910 1280 1020 1125 3176 1950 1650 a 1840 a a 8268
2 400 1400 910 1280 1020 1125 3042 1950 1650 a 1840 a a 8402
3 400 1400 910 1280 1020 1125 2913 1950 1650 a 1840 a a 8U2
4 400 1400 910 1280 1020 1125 3006 1950 1650 a 1840 a a 8438
5 400 1400 910 1280 1020 1125 3295 1950 1650 0 ~~40 a a 8149
6 400 2173 910 1280 1020 1125 3690 1950 1650 a 1840 a a 6981
7 400 2300 910 1280 1020 1125 3690 1950 3375 0 1840 0 0 5129
8 478 2300 1330 1280 1900 1125 3690 1950 3510 a 1840 a a 3616
9 660 2300 1330 1992 1900 1125 3690 1950 3510 a 1840 0 a 2722
10 660 2300 1330 1992 1900 1125 3690 1950 3510 a 1840 a a 2722
11 660 2300 1330 1733 1900 1125 3690 1950 3510 a 1840 0 0 2981
12 660 2300 1330 1794 1900 1125 3690 1950 3510 a 1840 0 a 2920
13 660 2300 1330 1614 1900 1125 3690 1950 3510 0 1840 a a 3100
14 660 2300 1330 1371 1900 1125 3690 1950 3510 a 1840 a 0 3344
15 628 2300 1330 1280 19r)0 1125 3690 1950 3510 a 1840 0 0 3466
16 660 2300 1330 1442 1900 1125 3690 1950 3510 0 1840 a a 3272
17 640 2300 1330 1280 1900 1125 3690 1950 3510 a 1840 a a 3454
18 400 2300 1330 1280 1682 1125 3690 1950 3510 a 1840 0 a 3912
19 400 2300 1330 1280 1770 1125 3690 1950 3510 0 1840 0 0 3824
20 660 2300 1330 1736 1900 1125 3690 1950 3510 0 1840 0 0 2978
21 660 2300 1330 1912 1900 1125 3690 1950 3510 0 1810 0 0 2802
22 400 2300 1330 1280 1722 1125 3690 1950 3510 0 1840 0 0 3872
23 400 2300 910 1280 1020 1125 3690 1950 3303 0 1840 0 0 I 5201
24 400 2300 910 1280 1020 1125 3690 1950 2308 0 1840 0 0 6196

Unitsupply 12486 50573 28140 34785 37154 27000 85541 46800 71536 0 44160 0 0 438175
Mar9inalcost 91787 255955 188556 258209 272905 253216 224959 393431 476886 0 618240 0 0 3034143

Scenario 2 0.244201
I x(1,1,2) )(2,1,2) )(3,(,2) x(4,1,2) x(5,1,2) )(6,1,2) x(7,1,2) )(8,1,2) x(9,1,2) x(10,1,2) )(11,1,2) x(12,1,2) x(13,1,2) y(I,2)
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1 400 1400 9iO 1280 1020 1125 3564 1950 1650 0 1840 0 0 78802 400 1400 910 1230 1020 1125 3426 1950 1650 0 1840 0 0 8018
3 400 1400 910 1280 1020 1125 3294 1950 1650 0 11\40 0 0 8150
4 400 1400 910 1280 1020 1125 3389 1950 1650 0 J 0 0 8055
5 400 1400 910 1280 1020 1125 3687 1950 1650 0 1<140 0 o 77576 400 2300 910 128C 1125 3690 1950 1945 0 1840 0 0 65597 400 2300 1246 1280 1125 3690 1950 3510 0 1840 0 0 46588 660 2300 1330 1608 1900 1125 3690 1950 3510 0 1840 0 0 31069 660 2300 1330 2526 1900 1125 3690 1950 3510 0 1840 0 0 2188
10 660 2300 1330 2526 1900 1125 3690 19~O 3510 0 1840 0 0 2188
11 660 2300 1330 2261 1900 1125 3690 1950 3510 0 1840 0 0 2453
12 660 2300 1330 2323 1900 1125 3690 1950 3510 0 1840 0 0 2391
13 660 2300 1330 2138 1900 1125 3690 1950 3510 0 1840 0 0 2576
14 660 2300 1330 1888 1900 1125 3690 1950 3510 0 1840 0 0 2826
15 660 2300 1330 1763 1!;lOO 1125 3690 1950 3510 0 1840 0 0 2952
16 660 2300 1330 1961 1900 1125 3690 1950 3510 0 1840 0 0 2753
17 660 2300 1330 1775 1900 1125 3690 1950 3510 0 1840 0 0 2939
18 660 2300 1330 1305 1900 1125 3690 1950 3510 0 1840 0 0 3409
19 660 2300 1330 1395 1900 1125 3690 1950 3510 0 1840 0 0 3319
20 660 2300 1330 2264 1900 1125 3690 1950 3510 t) 1840 0 0 2450
21 660 2300 1330 2444 1900 1125 3690 1950 3510 0 1840 0 0 2270
22 660 2300 1330 1346 1900 1125 3690 1950 3510 0 1840 0 0 3368
23 400 2300 1172 1280 1020 1125 3690 1950 3510 0 1& a 0 0 4732
24 400 2300 910 1280 1020 1125 3690 1850 2750 0 1840 0 0 5754

Unilsupply 13500 50700 28738 41043 37680 27000 87470 46800 72615 0 44160 0 0 449706
Marginal cost 99242 256598 192565 304658 276766 253216 230032 393431 484080 0 618240 0 0 3108827,

Scenario 3 0.40262
t x(1,t,3) x(2, I,3) x(3,I,3) x(4,I,3) x(S,I,3) x(6,I,3) x(7,t,3) x(8,I,3) x(9,t,3j x(10,t,3) X(11,I,3) x(12,t,3) x(13,t,3) y(t,3)
1 400 1662 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 7492
2 400 1521 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 7633
3 400 1400 910 1280 1020 1125 3675 1950 1650 0 '1840 0 0 7769
4 400 1.483 910 1280 1020 1125 3690 1950 1650 0 1840 I) 0 7671
5 400 1788 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 7366
6 400 2300 910 1280 1020 1125 3690 1950 2367 0 1840 0 0 6137
7 400 2300 1330 1280 1407 1125 3690 1950 3510 0 1840 0 0 4187
8 660 2300 1330 2119 1900 1125 3690 1950 3510 0 1840 0 0 2595
9 660 2300 1330 2560 1!;)OQ 1125 3690 2450 3510 0 1840 0 0 1654
10 660 2300 1330 2560 1900 1125 3690 2450 3510 0 1840 0 0 1654
11 660 2300 1330 2560 1900 1125 3690 2178 3510 0 1840 0 0 1926
12 660 2300 1330 2560 1900 1125 3690 2242 3510 0 1840 0 0 1862
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13 660 2300 1330 2560 1901) 1125 3690 2052 3510 0 1840 0 0 2052
14 660 2300 1330 2406 1900 1125 3690 1950 3!i10 0 1840 0 0 2308
15 660 2300 1330 2277 1900 1125 3690 1950 3510 0 1840 0 0 2437
16 660 2300 1330 2481 1900 1125 3690 1950 3510 0 1840 0 0 2233
17 660 2300 1330 2290 1900 1125 3690 1950 3510 0 1840 0 0 242418 660 2300 1330 1808 1900 1125 3690 i950 3510 0 1840 0 0 2906
19 660 2300 13~0 1900 1900 1125 3690 1950 3510 0 1840 0 0 2814
20 660 2300 1330 2560 1900 1i25 3690 2181 3510 0 1840 0 0 1923
21 660 2300 1330 2560 1900 1125 3690 2366 3510 0 1840 0 0 1738
22 660 2300 1330 1850 1900 1125 3690 1950 3510 0 1840 0 0 2864
23 400 2300 1330 1280 ;331 1125 3690 1950 3510 0 1840 0 0 4263
24 400 2300 910 1280 1020 1125 3690 1950 3193 0 1840 0 0 5311

Unit supply 13500 51554 28980 46571 38378 27000 88545 49069 73480 0 44160 0 0 461237
Marginal cost 99242 260920 194185 345695 281893 253216 232859 412505 489844 0 618240 0 0 3188598

Scenario 4 0.244201
t x(1,I,4) x(2,I,4) x(3,:,4) >;,(4,1,4) x(5,I,4) x(6,I,4) x(7,I,4) x(8.I,4) x(9, 1,4) x(10, 1.4) x(11,I,4) x(12,I,4) x(13,I,4) y(I,4J
1 400 2050 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 7104
2 400 1906 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 7248
3 400 1766 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 738B
4 400 1867 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 7287
5 400 2179 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 6975
6 400 2300 910 1280 1020 1125 2690 1950 2789 0 1840 0 0 5715
7 400 2300 1330 1280 1878 1125 3690 1950 3510 0 1840 0 0 3716
8 660 2300 1330 2560 1900 1123 3690 2020 3510 0 1840 0 0 2084
9 660 2300 1330 2560 1900 1125 3690 2984 3510 0 1840 0 0 1120
10 660 2300 1330 2560 1900 1125 3690 2984 3510 0 1840 0 0 1120
11 660 2300 1330 2560 1900 1125 3690 2705 3510 0 1840 0 0 1399
12 660 2300 1330 2560 1900 1125 3690 2771 3510 0 1840 0 0 1333
13 660 2300 1330 2560 1900 1125 3690 2576 3510 0 1840 0 0 1528
14 660 2300 1330 2560 1900 1125 3690 2314 3510 0 1840 0 0 1790
15 660 2300 1330 2560 1900 1125 3690 2182 3510 0 1840 0 0 1923
16 660 2300 1330 2560 1900 1125 3690 2391 3510 0 1840 0 0 1713
17 660 2300 1330 2560 1900 1125 3690 2195 3510 0 1840 0 0 1909
18 66::1 2300 1330 2311 1900 1125 3690 1950 3510 0 1840 0 r 2403
19 660 2300 1330 2405 1900 1125 3690 1950 3510 0 1840 0 0 2309
20 660 2300 1330 2560 1900 1125 3690 2708 3510 0 1840 0 0 1396
21 660 2300 1330 2560 1900 1125 3690 2898 3510 0 1840 0 0 1206
22 660 2300 1330 2354 1900 1125 3690 1950 3510 0 1840 0 0 2360
23 400 2300 1330 1280 1800 1125 3690 1950 3510 0 1840 0 0 3794
24 400 2300 1036 1280 1020 1125 3690 1950 3510 0 1840 0 0 4868
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Unitsupply I 13500 53.168 29106 49310 39318 27000 88560 54128 74219 0 44160 0 0 472768
Marginalcost 99242 270607 195027 366025 288795 253216 232899 455030 494771 0 618240 0 0 3273851

Scenario 5 0.054489
t )((1,1,5) )((2,1,5) )((3,1,5) )((1,/,5) )((5,1,5) )((6,1,5))((7,1,5) x(8,1,5) )((9,1,5))((10,/,5) )((11,1,5)x(12,t,5) )((13,/,5) y(t,5)
1 400 2300 910 1280 1020 1125 3690 1950 1788 0 1840 0 0 6716
2 400 2290 910 1280 1020 1125 3690 1950 1650 0 1840 0 0 6864
3 400 2148 910 1280 102.0 1125 3690 1950 1650 0 1840 0 0 7007
4 400 2250 910 1280 1020 1125 3P"U 1950 1650 0 1840 0 0 6904
5 400 2300 910 1280 1020 1125 3690 1950 1921 0 1840 0 0 6583
6 400 2300 910 1280 1020 1121' 3690 1950 3211 0 1840 0 0 5293
7 660 2300 1330 1469 . 1900 1'125 3690 1950 3510 0 1840 0 0 3245
8 660 2300 1330 2560 1900 1125 3690 2530 3510 0 1840 0 (I 1574
9 660 2300 1330 2560 1900 W)3 3690 3450 3510 0 1840 0 0 586
10 660 2300 1330 2560 1GOO 119~ 3690 3450 3510 a 1840 0 0 586
11 660 2300 1330 2550 1.900 112a 3690 3233 3510 0 1840 0 0 871
12 660 2300 1330 2560 1900 1125 3690 3300 3510 0 1840 0 0 804
13 660 2300 1330 2560 1900 1125 3690 3100 3510 0 1840 0 0 1004
14 660 2300 1330 2560 1900 1125 3690 2832 3510 0 1840 0 0 1273
15 660 2300 1330 2560 1900 1125 3690 2696 3510 0 1840 0 0 1408
16 660 2300 1330 2560 1900 1125 3690 291C 3510 0 1840 0 0 1194
17 660 2300 1330 2560 1900 1125 3690 2710 3510 0 1840 0 0 1394
18 660 2300 1330 2560 1900 1125 3690 2204 3510 0 1640 0 0 1900
19 660 2300 1330 2560 1.900 1125 3690 2300 3510 0 1840 0 0 1804
20 660 2300 1330 2560 1900 1125 3690 3236 3510 0 1840 0 J 868
21 660 2300 1330 2560 1900 1125 3690 3430. 3510 0 1840 0 0 674
22 660 2300 1330 2560 1900 1125 3690 2248 3510 0 1840 0 0 1856
23 660 2300 1330 1389 19()O 1125 3690 1950 3510 0 1!!40 0 0 3~25
24 400 2300 1330 1280 1168 1125 3690 1950 3510 0 1840 0 0 4426

Unitsupply 14020 54988 29400 50217 39588 27136 88560 61178. 75050 0 44160 0 0 484299
Marginalcost 103064 278301 196999 372762 290784 254495 232399 514303 500312 0 618240 0 0 3362158

Expected marginal 99044 262907 193842 337346 282321 253285 231750 422739 489504 0 618240 0 0 3190978
Totalunitcost 112023 288599 212868 382856 320673 274228 257656 483982 555534 0 618240 0 0 3506657
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