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Abstract 

Gold mining has always played a major role in the South African economy. 

Unfortunately, workers’ health could be at risk as exposure to respirable quartz could 

cause silicosis. Silicosis has no cure or treatment and the only means to prevent 

silicosis is to reduce exposure to as low a level as possible. This study tested the 

effectiveness of a high-pressure water spray system as an engineering control 

measure, to reduce respirable dust and respirable quartz concentrations. This 

intervention produced a mean personal respirable quartz concentration reduction of 

87% (p-value of 0.00003). In addition, a reduction of 53% (p-value of 0.04) was 

observed in the mean static dust concentration measurements taken upstream and 

downstream of the control measure. Significant improvement in respirable dust and 

respirable quartz concentrations was observed after the introduction of the high-

pressure water spray system. The results from this study indicate that the health risk 

to underground mine workers could be reduced by implementing a high-pressure 

water spray system as an engineering control. 
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1 INTRODUCTION 

“It is health that is real wealth and not pieces of gold and silver.”- Mahatma Gandhi 

Gold mining has played a major role in the economy of South Africa since 1886 

when the first large gold mining company, Witwatersrand Gold Mining Company, 

was established (1). In 2013, the mining sector directly contributed 8.3% of the 

Gross Domestic Product (GDP) of South Africa, totalling R280 billion (2). Although 

lower than the industry peak value of 21% during 1970, mining still provides a 

valuable contribution to South Africa’s GDP. The mining sector has contributed 

R2 401 billion to South Africa’s GDP over the past decade (2).  

The South African mining industry employed a total of 510 099 workers during 

2013 (2). During the same time, South African gold mines employed 131 591 

workers, a reduction over the years from 179 964 during 2004 (2).  

Unfortunately, gold mining does not come without risks to workers’ safety and 

health. Among these risks, a major concern is the health risk of exposure to 

respirable crystalline silica or also referred to as respirable quartz. As a naturally 

occurring substance in rock and sand, exposure is very likely during mining 

operations. Depending on the level of exposure, such exposure could have a 

negative impact on worker health (3).  

An important health risk for exposure to respirable quartz is silicosis. A study 

conducted in the United States of America indicated that, with an increase in 

cumulative dose of exposure to respirable quartz, the risk of silicosis also 

increases (4).  

A study conducted by Hnizdo and Sluis-Cremer [1993] considered the risk of 

silicosis amongst a cohort of white gold mine workers. The study found that if 

workers are exposed to respirable quartz at a concentration of 0.1 mg/m³ over a 

period of 20 years, this exposure equates to a cumulative exposure of 2 mg/m³-

years and the cumulative exposure curve indicates a less than 10% risk of 

silicosis. If the respirable quartz concentration is increased to 0.2 mg/m³, the 

cumulative exposure increases to 4 mg/m³ and the cumulative exposure curve 

indicates a silicosis risk of greater than 50% (5). 

The South African Department of Labour’s National Programme for the Elimination 

of Silicosis states that dust control programmes are inadequate in the mining 
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sector, as well as in the rest of industry (6). It furthermore states that a large 

burden of silicosis exists within previously exposed industry workers, and that 

silicosis is common in the industry especially in the gold mining industry (6). 

A SIMRAC report (SIM020603), stated that during 1999 the National Centre for 

Occupational Health published data on 26 000 underground dust measurements 

from 48 gold mines in South Africa; of the 48 mines, only eight (17%) had an 

estimated time weighted average below the OEL of 0.1 mg/m³ (7). In view of the 

burden to health, the researchers concluded that more effective control measures 

are required to reduce quartz concentrations in mines, other industries and 

particularly in gold mines.  

Furthermore, the Mine Health and Safety Council (MHSC) presented new 

milestones for the mining industry related to preventing occupational diseases 

during the 2014 Mine Occupational Health and Safety Summit (8). 

The milestone for the prevention of silicosis states that, “by December 2024, 95% 

of all exposure measurement results will be below the milestone level for 

respirable crystalline silica of 0.05 mg/m3 (these results are individual readings and 

not average results).” In addition, the milestone specifies that, “using present 

diagnostic techniques, no new cases of silicosis will occur amongst previously 

unexposed individuals (previously unexposed individuals are those unexposed to 

mining dust prior to December 2008 i.e. equivalent to a new person who entered 

the industry in 2009)” (8).  

1.1 LITERATURE REVIEW 

1.1.1 Dust and crystalline silica (quartz) 

Exposure to silica during mining operations is very likely as silica can be present in 

almost every mineral deposit and rock type. The silica content in rock may differ 

greatly; in some rock types such as sandstone and quartz it can be as high as 

90% and more (9). 

Airborne dust particulates are generated by various mining activities. Below are a 

few of these activities specific to underground mining operations (9): 

1) Drilling and blasting of rock 

2) Scraping and sweeping of ore 
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3) Barring and making safe 

4) Primary and secondary support 

5) Loading, transport and tipping of ore 

6) Rock crushing, conveyor transport of ore and hoisting of ore 

7) Backfill placement and spillage 

1.1.2 Particle sizes 

Figure 1 shows the ISO/ACGIH/CEN curve used internationally to classify 

particulate sizes in three categories (10).  

 

Figure 1: ISO/ACGIH/CEN sampling conventions [ISO 1995] (10). 

Particulate sizes are categorised in three broad categories: 

1) Inhalable particulate fraction has a 50% cut-point of 100 µm. Inhalable 

particulate is normally deposited in the nose, throat and trachea (10). 

2) Thoracic particulate fraction has a 50% cut-point of 10 µm. Thoracic particulate 

can penetrate the lungs’ airways (10). 

3) Respirable particulate fraction has a 50% cut-point of 4 µm and is considered 

to be most dangerous as they can pass into the gas exchange region of the 

lungs (10).  
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1.1.3 Health risk 

The Health and Safety Executive (UK) explains that extended periods of exposure 

to respirable quartz can cause fibrosis of lung tissue and lead to loss of lung 

function. Silicosis may have a significant impact on health, depending on severity. 

Sufferers of severe silicosis will experience shortness of breath, and will tire 

quickly. Affected individuals often become unable to work and even confined to 

their homes and beds. Premature death may occur (11).  

The National Institute for Occupational Health and Safety (USA) describes three 

types of silicosis: 

1) Simple chronic silicosis can occur after long-term exposure (20 years and 

more) to low concentrations of respirable quartz. This could cause swelling in 

the lungs and chest lymph nodes. Diseased persons may have difficulty with 

breathing. This is considered to be the most common form of silicosis (3). 

2) Accelerated silicosis results from higher concentration exposure to respirable 

quartz over shorter exposure periods (5 - 15 years). Symptoms such as 

swelling in the lungs and others present faster than in simple chronic 

silicosis (3). 

3) Acute silicosis results from very high concentration exposures to respirable 

quartz over short exposure periods. The lungs can become inflamed and also 

fill with fluid. Diseased persons could experience severe shortness of breath 

and also have low blood oxygen levels (3). 

1.1.4 Prevalence of silicosis 

During 2000 and 2001, a study was conducted amongst a sample of 520 black 

gold mine workers in South Africa. The study indicated that a high prevalence (18 -

 19%) of radiological silicosis existed among gold mine workers still in-service and 

over the age of 37 years (12). 

During 1975, three percent (3%) of deceased gold mine workers were found to 

have silicosis at autopsy (13). This proportion increased to 32% in 2007 (13). 

However, silicosis is not the only health risk associated with respirable quartz 

exposure. Silicosis is known to substantially increase the risk of contracting 

tuberculosis (14). In addition, tuberculosis is associated with respirable quartz 

exposure, even in the absence of silicosis (15). 
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There is no treatment available for silicosis. In the absence of treatment or a cure, 

silicosis can only be controlled by preventing exposure to respirable quartz (3). 

1.1.5 Controls for the reduction of respirable crystalline silica exposure 

The hierarchy of controls is summarised by the Centres for Disease Control and 

Prevention (CDC) as follows (16). 

1) Elimination and Substitution 

As quartz is part of the ore being mined in the gold mining industry, the elimination 

and substitution are not considered viable options in controlling quartz exposures 

in the South African mining industry. The next level of control to be considered is 

engineering controls (9). 

2) Engineering controls 

Engineering controls should be considered as the most important control measure, 

as these can play a major role in controlling and reducing quartz exposures. These 

controls include measures such as dust dilution by ventilation, dust filtration 

systems, local exhaust ventilation systems, water spray systems, dust scrubber 

systems and air-conditioned cabins for mechanised equipment (9). 

3) Administrative controls 

Administrative controls such as worker training and education, removal of workers 

from workings during blasting times and limiting of exposure time also assist in 

controlling and reducing exposure to respirable quartz (9). 

4) Personal protective equipment 

Personal protective equipment such as respirators can also play an important role 

in controlling respirable quartz exposures, but the effectiveness of respirators also 

depends on various factors that have to be managed. Respirators are considered 

to be the last line of defence and should only be considered once all else fails (9). 
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1.1.6 Use of water sprays as an engineering control measure 

Water sprays are among the oldest and most commonly used methods of dust 

control. The principle of operation is that as the fine dust becomes wet, the weight 

increases and prevents dust from becoming airborne or airborne dust will settle 

from the air (17). 

The effectiveness of water spray systems depends on factors such as nozzle type, 

spray pattern, nozzle placement, droplet size, water pressure, water quality, water 

and airflow rates and maintenance of equipment (17). 

Smaller water droplet size is more efficient as it comes into contact with the dust 

particle. If water droplets are much greater than dust particles, dust particles do 

not make contact with water droplets and just flow around the water droplets. 

Figure 2 illustrates this concept. 

 

Figure 2: Airflow around large and small water droplet (18). 

A study conducted in a gold mine during 2008 evaluated the effectiveness of a 

high-pressure water spray system installed at a tipping point. The study concluded 

that an improvement of between 89% and 91% was observed in respirable quartz 

concentration (19). 
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The water spray system evaluated during this study, sprayed water into the 

airstream to suppress and remove the dust and quartz from the air. The system 

comprised nine spray heads, each spray head was fitted with seven spray 

nozzles. The water flowrate was 0.3 litres per second at 30 bar, thus 160 litres per 

minute. Figure 3 shows the spray heads utilised for this system. 

 

Figure 3: Spray heads utilised for the spray system. 

1.2 STUDY MOTIVATION 

In order to reduce respirable quartz exposures, effective control measures will be 

required to assist in bulk scrubbing of intake air to mine workings. This study was 

designed to evaluate a control measure being considered in reducing respirable 

quartz exposures. 

This study was conducted to review data collected during an experimental study, 

conducted during 2010; the data comprises pre- and post-intervention personal 

and static gravimetric measurements for respirable dust and respirable quartz. The 

intervention is a high-pressure water spray system installed in a major intake 

airway and evaluated for its effectiveness, as a possible dust suppression 

engineering control. 

Should this system be sufficiently effective in reducing respirable dust and 

respirable quartz concentrations, it could be installed in mine intake airways within 



Hendrik JJ Senekal [Student number 678572] Page 17 

the mining and especially the gold mining industry, as part of a respirable quartz 

control strategy. Ultimately, the system has the potential to reduce worker 

exposure to respirable quartz and eventually reduce the incidence and prevalence 

of silicosis. 

1.3 OBJECTIVES 

The aim of this study is to assess the effectiveness of a high-pressure water spray 

system, as a possible respirable quartz engineering control. To achieve this aim, 

four objectives were identified: 

1) To describe the respirable quartz exposures among workers in the sub-shaft 

bank area of a gold mine during 2010. 

2) To assess the effectiveness of the engineering control measure by comparing 

pre- and post-control personal respirable quartz exposures at the sub-shaft 

bank area in a gold mine during 2010. 

3) To assess the effectiveness of the engineering control measure by comparing 

pre-and post-control static respirable quartz concentrations at the sub-shaft 

bank area in a gold mine during 2010. 

4) To assess to what extent, the respirable quartz exposures have been reduced 

(at the sub-shaft bank area in a gold mine during 2010), by comparing 

respirable quartz exposures to national and international limits of exposure. 
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2 METHODOLOGY 

2.1 STUDY DESIGN 

The study is a secondary analysis of data collected from an experimental study 

concluded during 2010, with pre- and post-intervention personal and static 

gravimetric measurements for respirable quartz exposures. Results from the 

previous study were reported only as descriptive statistics with minimums, 

maximums and means. 

For this review of data, results for pre- and post-intervention measurements were 

compared to establish if the reduction in both the personal and static respirable 

quartz exposures observed is statistically significant.  The intention was to assess 

if the dust suppression engineering control measure was effective by comparison 

to baseline exposure, as well as to national and international limits. 

2.2 STUDY SETTING 

The primary study was conducted at a gold mine in the West Witwatersrand area 

close to Carletonville during September 2010. The workplace identified for this 

study was the sub-shaft bank area. This specific workplace was suggested by the 

mine because there were concerns about high respirable quartz exposures. 

Measurements conducted prior to this study confirmed that this workplace did 

indeed pose a high risk in terms of respirable quartz exposures. 

This area serves as a major intake of fresh air to the rest of the mine as 

approximately 160 m³/s of air passes through this area. Any contamination of this 

fresh intake air could affect the rest of the mine, exposing the rest of the workforce 

to high levels of respirable dust and respirable quartz. The high concentration of 

respirable dust and quartz is generated by shaft activities such as rock hoisting 

and backfill spillages, which then contaminates the intake air. 

A high-pressure water spray system was installed on the bank of the rock and 

ventilation shaft, in the intake air to the rest of the mine. The purpose of the 

system was to scrub hazardous respirable quartz from the intake air. See Figure 4 

for a pictorial representation. 
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Figure 4: Indicating the position of the water spray system, sampling positions of 
static sampling and position of workers sampled. 

The 10 m³/s of air from position 3 was considered to have little effect on the total 

160 m³/s at position 4; in fact, from the results observed during measurement the 

mean dust load from position 3 was higher (0.1 mg/m³) than that of position 4 

(0.068 mg/m³); indicating that the expected reduction in respirable dust and 

associated respirable quartz across the water spray system might be even greater. 

2.3 SAMPLING STRATEGY 

There were five employees working at the sub-shaft bank area. All employees 

were fitted with personal samplers in this working area. Sampling was conducted 

for six full shifts, thus a total of 30 samples for pre-intervention/control 

measurements were taken. The same procedure was followed for the post-

intervention/control measurements. A total of 60 personal samples were collected 

for measuring respirable quartz exposure. 

In addition to the personal sampling, static (area) samples were also collected. 

Static sampling consisted of four samples being taken over six shifts; thus, a total 

of 24 samples were collected for the pre-control measurements. The same 

procedure was carried out for the post-control measurements. Thus, a total of 48 

static (area) respirable quartz concentration samples were collected. 

2.4 MEASUREMENT PROCEDURES 

Sampling was conducted as per national and international standards i.e. the 

Department of Mineral Resources Guidelines and the Health and Safety Executive 
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(HSE) Methods for the Determination of Hazardous Substances (MDHS) 

14/4 (20). 

Full shift personal gravimetric sampling was conducted to determine respirable 

quartz exposures. Calibrated gravimetric sampling pumps were issued to workers 

at the working place at the start of the shift, and collected at the end of the shift. 

Gravimetric samplers were attached to the worker within the breathing zone of the 

worker for a full shift. Figure 5 shows how the pump is attached to the worker. 

 

Figure 5: Worker with sampling pump and filter unit in the breathing zone (21). 

Full shift static (area) gravimetric sampling was conducted to determine respirable 

quartz concentrations. Calibrated gravimetric sampling pumps were placed at 

identified positions by a competent person, in possession of a Certificate in Mine 

Environmental Control. Pumps were placed at the start of the shift and collected at 

the end of the shift. 

Filters used for sampling were weighed before and after sampling to establish the 

weight and calculate the Time Weighted Average (TWA) for the respirable quartz 

concentration. Analysis for silica was performed, using X-Ray Diffraction (XRD). 

2.5 QUALITY CONTROL 

All gravimetric samplers’ flow rates were calibrated to 2.2 (± 5%) litres per minute 

before sampling, and all gravimetric samplers’ flow rates were checked after 
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sampling to be within ± 5% of the calibrated value. All calibrations were conducted 

with a calibrated Gilibrator within its calibration interval. 

All calibration was conducted by a competent person, in possession of a 

Certificate in Mine Environmental Control. Flow rates from calibrations and checks 

were recorded and used to assess measurements’ validity and accuracy. 

Filters used for sampling were weighed before and after sampling by a South 

African National Accreditation System (SANAS) accredited laboratory. Sample 

Analysis for silica was performed at the same accredited laboratory, using X-Ray 

Diffraction (XRD) analysis. XRD analysis was performed as prescribed in Health 

and Safety Executive (HSE) Methods for the Determination of Hazardous 

Substances (MDHS) 101/2 (22). 

The detection limit for XRD analysis was determined as three times the standard 

deviation of the response of 145 unused filters and was calculated as 8 µg. This 

method represents a 99% confidence level. 

2.6 DATA ANALYSIS 

All data obtained from the primary study was captured in Microsoft Excel. This 

study also utilized Microsoft Excel 2016 and the added data analysis tool pack to 

analyse data and produce box and whisker graphs, as well as tables to summarize 

and graphically present the results. All other tests such as F-tests and T-tests 

were also done in Microsoft Excel 2016. 

2.6.1 Objective one 

Workers’ respirable quartz time weighted average exposures were assessed and 

compared to the South African Occupational Exposure Limit (OEL) of 0.1 mg/m³ to 

establish the extent of worker exposure. Measurements were categorised in 

ranges relative to the South African Occupational Exposure Limit.  

2.6.2 Objectives two and three 

Descriptive statistics were used to describe the personal respirable dust and 

respirable quartz exposures of the exposed workers. This includes pre- and post-

control measurement data. The same statistical analysis was applied to the static 

measurements collected during this study. 
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In addition to the basic descriptive statistics (mean, minimum and maximum) of 

data described in the 2010 study, the following statistics were also calculated and 

described: 

 Number of samples 

 Minimum 

 Maximum 

 Geometric Mean 

 Geometric standard deviation 

 Inter-quartile range 

 90th percentile 

Box and whisker graphs were used to indicate descriptive statistics such as 

means, minimums, maximums and inter-quartile range to compare pre- and post-

control measurement data. 

For objective two, the descriptive statistical data for the personal respirable dust 

and respirable quartz exposures was used to establish if the difference between 

pre- and post-control data was statistically significant. This was done by means of 

a T-Test by comparing the pre- and post-control data sets. The null hypothesis 

assumed that there is no difference in comparing the means from pre- and post-

control data sets, and an alpha value of 0.05 was used. The alternate hypothesis 

is that there is a difference in comparing the means from pre- and post-control 

data sets, and an alpha value of 0.05 was used. An F-test was conducted to 

establish equal or unequal variance of the data set. 

For objective three, the descriptive statistical data for the static respirable dust 

concentrations was used to establish if the difference between pre- and post-

control data was statistically significant. This was done by means of a T-Test by 

comparing the pre- and post-control data sets. The null hypothesis assumed that 

there is no difference in comparing the means from pre- and post-control data 

sets, and an alpha value of 0.05 was used. The alternate hypothesis is that there 

is a difference in comparing the means from pre- and post-control data sets, and 

an alpha value of 0.05 was used. An F-test was conducted to establish equal or 

unequal variance of the data set.  
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2.6.3 Objective four 

To assess the extent of the control measure effectiveness for respirable quartz, 

the descriptive statistical data was compared to national and international limits of 

exposure. The specific limits are listed below: 

 South African Occupational Exposure Limit (OEL) of 0.1 mg/m³ (23), 

 The National Institute for Occupational Safety and Health’s (NIOSH) 

Recommended Exposure Limit (REL) of 0.05 mg/m³ (24), and 

 The American Conference of Industrial Hygienist’s (ACGIH) Threshold 

Limit Value (TLV) of 0.025 mg/m³ (25). 

2.7 STUDY LIMITATIONS 

One limitation not considered during the study is other sources of respirable 

quartz downstream of the control measure. It is hypothesised that this does not 

play a major role, as activities in this area remained similar during the pre- and 

post-control measurements. 

Another limitation for the study was the fact that real-time dust measurements 

could not be collected. For this reason, gravimetric sampling was conducted over 

a full shift of 8 hours. This is in fact an averaged measurement over a full shift of 

8 hours. 

In addition, only one test site was available, it would have been helpful if the 

study could have been repeated at other sites.  

As this study is a secondary data analysis of a primary study conducted during 

2010, the site cannot be revisited to answer any unanswered questions. 
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3 RESULTS 

3.1 SUB-SHAFT BANK AREA WORKERS EXPOSURES 

Table 1 contains data of respirable dust and respirable quartz exposures obtained 

from personal measurements of workers at the sub-shaft bank area. Measurements 

were done before any engineering control measure was introduced, and they were 

conducted over all shifts (morning, afternoon and night). Respirable dust and 

respirable quartz exposures are expressed as a Time Weighted Average over 8 

hours (TWA,8h) expressed in units of mg/m³.  

Respirable quartz exposure measurements indicated in red exceed the South African 

Occupational Exposure Limit of 0.1 mg/m³. An interesting observation is that all the 

respirable quartz exposures that exceeded the South African Occupational Exposure 

Limit were measured during afternoon and night shifts. These are normally the shifts 

when most rock hoisting is conducted.  
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Table 1: Respirable dust and respirable quartz exposure measurements of workers 

at the sub-shaft bank area. 

Occupation Shift Respirable Dust 

Exposures 

[TWA,8h] (mg/m³) 

Respirable Quartz 

Exposures 

[TWA,8h] (mg/m³) 

Banksman Morning 0,076 0,013 

Assistant Morning 0,047 0,016 

Assistant Morning 0,038 0,017 

Assistant Morning 0,038 0,015 

Assistant Morning 0,056 0,017 

Assistant Morning 0,302 0,060 

Banksman Morning 0,271 0,066 

Assistant Morning 0,336 0,089 

Assistant Morning 0,281 0,078 

Assistant Morning 0,297 0,089 

Onsetter Afternoon 0,290 0,056 

Banksman Afternoon 0,283 0,064 

Assistant Afternoon 0,097 0,015 

Assistant Afternoon 0,270 0,059 

Assistant Afternoon 0,137 0,026 

Banksman Afternoon 0,389 0,077 

Assistant Afternoon 0,660 0,122* 

Assistant Afternoon 0,781 0,166* 

Onsetter Afternoon 1,662 0,302* 

Assistant Afternoon 1,637 0,277* 

Banksman Night 0,801 0,121* 

Onsetter Night 0,858 0,122* 

Assistant Night 0,835 0,125* 

Assistant Night 0,747 0,111* 

Assistant Night 0,839 0,153* 

Banksman Night 0,088 0,009 

Assistant Night 0,114 0,010 

Assistant Night 0,077 0,008 

Assistant Night 0,142 0,013 

Onsetter Night 0,086 0,008 

* Values exceeding the South African Occupational Exposure Limit (OEL) of 0.1 mg/m³ indicated in 

red. 
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A total of 30 measurements were obtained. The mean respirable quartz exposure 

TWA was 0.076 mg/m³; this is greater than 50% of the South African Occupational 

Exposure Limit of 0.1 mg/m³. The 90th percentile of 0.154 mg/m³ exceeded the South 

African Occupational Exposure Limit by approximately 50%.  

The distribution in range of the measurements, compared to the South African 

Occupational Exposure Limit, is shown in Table 2. 

Table 2: Range distribution of exposure measurements. 

Range  Percentage of measurements 

Greater than 100% of SA OEL 30% (9 measurements) 

Greater than 50%, but less than 100% of SA 

OEL 

30% (9 measurements) 

Greater than 10%, but less than 50% of SA 

OEL 

30% (9 measurements) 

Less than 10% of SA OEL 10% (3 measurements) 

Note: The South African Occupational Exposure Limit (OEL) for respirable quartz is 0.1 mg/m³.  
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3.2 PERSONAL RESPIRABLE DUST AND RESPIRABLE QUARTZ EXPOSURES 

Table 3 and Table 4 include descriptive statistics to summarise the data for personal 

respirable dust and respirable quartz exposure, for pre- and post-control 

measurements. Respirable dust and respirable quartz exposures are expressed as a 

Time Weighted Average over 8 hours (TWA,8h) expressed in units of mg/m³.  
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Table 3: Personal respirable dust exposure including pre- and post-control measurements taken for all shifts. 

  All Shifts Morning Shift Afternoon Shift Night Shift 

  Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Number of samples 30 27 10 9 10 9 10 9 

Minimum (mg/m³) 0,038 0,009 0,038 0,019 0,097 0,019 0,077 0,009 

Maximum (mg/m³) 1,662 0,009 0,336 0,019 1,662 0,019 0,858 0,009 

Geometric mean (mg/m³) 0,418 0,061 0,174 0,050 0,621 0,057 0,459 0,075 

Geometric standards deviation 

(mg/m³) 

0,436 0,044 0,131 0,023 0,582 0,019 0,378 0,070 

Inter-quartile range (mg/m³) 0,635 0,029 0,243 0,029 0,478 0,019 0,732 0,128 

90th percentile (mg/m³) 0,841 0,137 0,305 0,073 1,639 0,071 0,841 0,159 

P value 0,0001 0,0159 0,0058 0,0104 

Percentage reduction of mean 85% 71% 91% 84% 
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Table 4: Personal respirable quartz exposure including pre- and post-control measurements taken for all shifts 

  All Shifts Morning Shift Afternoon Shift Night Shift 

  Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Number of samples 30 21 10 8 10 8 10 5 

Minimum (mg/m³) 0,0076 0,0076 0,0133 0,0076 0,0155 0,0076 0,0076 0,0076 

Maximum (mg/m³) 0,3018 0,0076 0,0892 0,0076 0,3018 0,0076 0,1529 0,0076 

Geometric mean (mg/m³) 0,0768 0,0096 0,0460 0,0076 0,1165 0,0076 0,0679 0,0160 

Geometric standards deviation 

(mg/m³) 

0,0750 0,0043 0,0332 0,0001 0,1012 0,0000 0,0624 0,0051 

Inter-quartile range (mg/m³) 0,1025 0,0001 0,0583 0,0000 0,0981 0,0000 0,1122 0,0021 

90th percentile (mg/m³) 0,1542 0,0173 0,0890 0,0077 0,2794 0,0076 0,1281 0,0200 

P value 0,00003 0,00524 0,00364 0,02804 

Percentage reduction of mean 87% 83% 93% 77% 
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Based on the descriptive statistics, a series of box and whisker graphs were 

prepared to compare pre- and post-control measurement data. 

Box and whisker graphs describe and indicate the distribution of a dataset. The two 

boxes represent 50% of the data set (2nd and 3rd quartiles), with the median indicated 

by the line between the two boxes. The mean is indicated by the “X”, and the 

whiskers (lines extending from the boxes) represent the 1st and 4th quartile 

respectively. The outer limits of the lines indicate the minimum and maximum values 

for the data set. The box and whisker graphs also include the number of quantifiable 

measurements (n) and the number of measurements below the detection limit (BDL). 

Figure 6 compares the workers’ level of exposure to respirable dust during all shifts, 

and includes pre- and post-control measurements. A reduction in mean respirable 

dust exposure concentrations of 85% was noted, from 0.418 mg/m³ to 0.061 mg/m³ 

(p-value of 0.0001).  

Figure 7 compares the workers’ level of exposure to respirable quartz during all 

shifts, and includes pre- and post-control measurements. A reduction in mean 

respirable quartz exposure concentrations of 87% was noted, from 0.0768 mg/m³ to 

0.0096 mg/m³ (p-value of 0.00003).  

Figure 8 compares the workers’ level of exposure to respirable dust during morning 

shift, and includes pre- and post-control measurements. A reduction in mean 

respirable dust exposure concentrations of 71% was noted, from 0.174 mg/m³ to 

0.050 mg/m³ (p-value of 0.01). 

Figure 9 compares the workers’ level of exposure to respirable quartz during 

morning shift, and includes pre- and post-control measurements. A reduction in 

mean respirable quartz exposure concentrations of 83% was noted, from 

0.0460 mg/m³ to 0.0076 mg/m³ (p-value of 0.005). 

Figure 10 compares the workers’ level of exposure to respirable dust during 

afternoon shift, and includes pre- and post-control measurements. A reduction in 

mean respirable dust exposure concentrations of 91% was noted, from 0.621 mg/m³ 

to 0.057 mg/m³ (p-value of 0.005). 
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Figure 11 compares the workers’ level of exposure to respirable quartz during 

afternoon shift, and includes pre- and post-control measurements. A reduction in 

mean respirable quartz exposure concentrations of 93% was noted, from 

0.116 mg/m³ to 0.007 mg/m³ (p-value of 0.003).  

Figure 12 compares the workers’ level of exposure to respirable dust during night 

shift, and includes pre- and post-control measurements. A reduction in mean 

respirable dust exposure concentrations of 84% was noted, from 0.459 mg/m³ to 

0.075 mg/m³ (p-value of 0.01). 

Figure 13 compares the workers’ level of exposure to respirable quartz during night 

shift, and includes pre- and post-control measurements. A reduction in mean 

respirable quartz exposure concentrations of 77% was noted, from 0.067 mg/m³ to 

0.015 mg/m³ (p-value of 0.02). 
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Figure 6: A “box and whisker” plot to summarise the personal respirable dust exposure for all shifts 

n = 5(BDL = 0) n = 18(BDL = 2) 
n = 4(BDL = 1) n = 27(BDL = 3) 

n = 6(BDL = 0) n = 20(BDL = 0) 

n = 4(BDL = 0) 

n = 30(BDL = 0) 
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Figure 7: A “box and whisker” plot to summarise the personal respirable quartz exposure for all shifts 

n = 6(BDL = 0) 

n = 5(BDL = 0) 

n = 20(BDL = 0) 

n = 13(BDL = 7) 

n = 4(BDL = 0) 

n = 4(BDL = 1) 

n = 30(BDL = 0) 

n = 21(BDL = 9) 
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Figure 8: A “box and whisker” plot to summarise the personal respirable dust exposure for morning shifts 

n = 2(BDL = 0) n = 8(BDL = 0) n = 10(BDL = 0) 

n = 2(BDL = 0) 

n = 5(BDL = 1) 

n = 2(BDL = 0) n = 9(BDL = 1) 
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Figure 9: A “box and whisker” plot to summarise the personal respirable quartz exposure for morning shifts 

n = 2(BDL = 0) n = 8(BDL = 0) n = 10(BDL = 0) 

n = 2(BDL = 0) n = 4(BDL = 2) n = 2(BDL = 0) n = 8(BDL = 2) 
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Figure 10: A “box and whisker” plot to summarise the personal respirable dust exposure for afternoon shifts 

n = 2(BDL = 0) 

n = 6(BDL = 0) 

n = 10(BDL = 0) 

n = 1(BDL = 1) 
n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 9(BDL = 1) n = 6(BDL = 0) 
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Figure 11: A “box and whisker” plot to summarise the personal respirable quartz exposure for afternoon shifts 

n = 2(BDL = 0) 

n = 6(BDL = 0) 

n = 10(BDL = 0) 

n = 1(BDL = 1) n = 1(BDL = 1) 

n = 2(BDL = 0) 

n = 8(BDL = 2) n = 6(BDL = 0) 
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Figure 12: A “box and whisker” plot to summarise the personal respirable dust exposure for night shifts 

n = 2(BDL = 0) n = 6(BDL = 0) n = 10(BDL = 0) 

n = 1(BDL = 0) 
n = 1(BDL = 0) 

n = 2(BDL = 0) 

n = 9(BDL = 1) n = 7(BDL = 1) 
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Figure 13: A “box and whisker” plot to summarise the personal respirable quartz exposure for night shifts 

n = 2(BDL = 0) n = 2(BDL = 0) n = 6(BDL = 0) n = 10(BDL = 0) 

n = 1(BDL = 0) n = 1(BDL = 0) n = 5(BDL = 5) n = 3(BDL = 5) 
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3.3 STATIC RESPIRABLE DUST CONCENTRATIONS 

Table 5 summarises the data for static respirable dust measurements collected at 

the selected measuring positions (Figure 4), for pre- and post-control measurements 

and expressed in units of mg/m³. 
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Table 5: Static respirable dust concentration measurements obtained from all shifts 

  Position 1 Position 2 Position 3 Position 4 

  Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Pre-

Control 

Post-

Control 

Number of measurements 6 6 6 5 5 6 6 6 

Minimum (mg/m³) 0,063 0,070 0,091 0,025 0,125 0,051 0,078 0,025 

Maximum (mg/m³) 2,141 0,196 1,463 0,108 1,752 0,195 1,883 0,110 

Geometric mean (mg/m³) 0,678 0,117 0,573 0,055 0,634 0,100 0,755 0,068 

Geometric standards deviation 

(mg/m³) 

0,742 0,055 0,535 0,032 0,639 0,052 0,663 0,031 

Inter-quartile range (mg/m³) 0,242 0,082 0,665 0,017 0,050 0,042 0,647 0,037 

90th percentile (mg/m³) 1,401 0,185 1,191 0,087 1,232 0,159 1,536 0,101 

P value 0,12 0,04 0,13 0,05 

Percentage reduction of mean 83% 90% 84% 91% 
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Figure 14 compares the static respirable dust measurements collected pre- and 

post-control. The graph contains results of measurements collected during morning, 

afternoon and night shift. 

At measurement position 1, a reduction in mean respirable dust concentration of 

83% from 0.678 mg/m³ to 0.117 mg/m³ was noted (p-value of 0.12).  

For measurement position 2, a reduction in mean respirable dust concentration of 

90% from 0.573 mg/m³ to 0.055 mg/m³ was noted (p-value of 0.04).  

For measurement position 3, a reduction in mean respirable dust concentration of 

84% from 0.634 mg/m³ to 0.100 mg/m³ was noted (p-value of 0.13).  

For measurement position 4, a reduction in mean respirable dust concentration of 

91% from 0.755 mg/m³ to 0.068 mg/m³ was noted (p-value of 0.05).  

Figure 15 compares the static respirable dust concentration measurements collected 

pre- and post-control. The graph contains results of measurements collected during 

morning shift. 

Figure 16 compares the static respirable dust concentration measurements collected 

pre- and post-control. The graph contains results of measurements collected during 

afternoon shift. 

Figure 17 compares the static respirable dust concentration measurements collected 

pre- and post-control. The graph contains results of measurements collected during 

night shift. 
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Figure 14: A “box and whisker” plot to summarise the static respirable dust concentration for all shifts 

n = 6(BDL = 0) 

n = 6(BDL = 0) 

n = 6(BDL = 0) 

n = 5(BDL = 1) 

n = 5(BDL = 1) 

n = 6(BDL = 0) n = 6(BDL = 0) 

n = 6(BDL = 0) 
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Figure 15: A “box and whisker” plot to summarise the static respirable dust concentration for morning shifts 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 
n = 2(BDL = 0) 

n = 2(BDL = 0) 
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Figure 16: A “box and whisker” plot to summarise the static respirable dust concentration for afternoon shifts 

n = 1(BDL = 1) 

n = 1(BDL = 1) 

n = 2(BDL = 0) 

n = 2(BDL = 0) n = 2(BDL = 0) 
n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 
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Figure 17: A “box and whisker” plot to summarise the static respirable dust concentration for night shifts 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 

n = 2(BDL = 0) 
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Table 6 summarises the data for static respirable dust concentration measurements 

collected at measurement positions 1 and 2 (Figure 4), during post-control 

measurements (with water spray system operating) and expressed in units of mg/m³. 

Table 6: Compare measurement position 1 and 2 during post-control measurements 

 Position 1 

 

Position 2  

 

 Post-Control 

 

Post-Control 

 

Number of measurements 6 

 

5 

Minimum (mg/m³) 

 

0,070 0,025 

Maximum (mg/m³) 

 

0,196 0,108 

Geometric mean (mg/m³) 

 

0,117 0,055 

Geometric standards deviation (mg/m³) 

 

0,055 0,032 

Inter-quartile range (mg/m³) 

 

0,082 0,017 

90th percentile (mg/m³) 

 

0,185 0,087 

P value 

 

0,04 

Percentage reduction of mean 

 

53% 

  



Hendrik JJ Senekal [Student number 678572] Page 48 

Figure 18 compares the static respirable dust concentration measurements collected 

post-control (after installation of water spray system). Results of measurements 

collected during morning, afternoon and night shift are included. When comparing 

dust concentration measurements between position 1 (after installation of water 

spray system as control measure) and position 2 (after installation of water spray 

system as control measure), a reduction in mean of 53% from 0.116 mg/m³ to 

0.054 mg/m³ was noted (p-value of 0.04).  

 

Figure 18: A “box and whisker” plot to summarise the static respirable dust 

concentration for positions 1 and 2 for all shifts (after introduction of the water spray 

system) 

  

n = 6(BDL = 0) 

n = 5(BDL = 1) 
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3.4 COMPARING EXPOSURE TO NATIONAL AND INTERNATIONAL LIMITS 

Figure 19 compares the measurement results to national and international limits of 

exposure. From this figure, it is evident that the mean pre-control personal respirable 

quartz exposure measurements in most cases exceed the majority of the limits of 

exposure, with the exception of the South African occupational exposure limit (OEL). 

This value was exceeded only during the afternoon shift. 

Mean personal respirable quartz exposure levels, measured post-control, however, 

did not exceed any of the limits of exposure. Mean personal respirable quartz 

exposure levels measured over all shifts were reduced by 90% to 0.010 mg/m³, 

which is 10% of the South African occupational exposure limit of 0.1 mg/m³. 
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Figure 19: Comparing personal respirable quartz exposures to limits of exposure 
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4 DISCUSSION 

The aim of this study was to assess the effectiveness of a high-pressure water spray 

system, as a possible respirable quartz engineering control. Four objectives were 

identified as mentioned earlier and the results will be discussed in this section. 

4.1 WORKERS EXPOSURE TO DUST AND QUARTZ 

Workers at the sub-bank area were exposed to high levels of respirable quartz. The 

mean personal respirable quartz exposure of 0.076 mg/m³ exceeded 50% of the 

South African Occupational Exposure Limit of 0.1 mg/m³. The 90th percentile of 

0.15 mg/m³ exceeds the South African Occupational Exposure Limit by 50%. This 

indicates that workers are exposed to respirable quartz concentrations exceeding the 

allowable limits and this provides a serious risk to the health and safety of the 

workers, not only in this area but also downstream as the sub-shaft area is part of 

the main intake air infrastructure.  

The current industry milestone states that, “by December 2024, 95% of all exposure 

measurement results will be below the milestone level of 0.05 mg/m³ for respirable 

crystalline silica”. 

4.2 EFFECTIVENESS OF ENGINEERING CONTROL 

In order to assess the effectiveness of the engineering control measure, pre- and 

post-control data sets were compared to establish if a statistically significant 

reduction in respirable quartz exposures was observed.  

During post-control measurements, the levels of respirable quartz exposure were 

found to have reduced significantly. The mean personal respirable quartz exposure 

of the workers reduced by 87% from 0.076 mg/m³ to 0.0096 mg/m³, less than 10% of 

the South African Occupational Exposure Limit of 0.1 mg/m³. The 90th percentile 

reduced from 0.15 mg/m³ to 0.017 mg/m³ reducing by a factor of 10 to approximately 

17% of the South African Occupational Exposure Limit. In comparing pre- and post-

control measurements for personal respirable quartz exposures, a significant 
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reduction in mean of 87% was achieved. This reduction is very significant and does 

seem to indicate that the system was highly effective. 

In addition, static measurements were also collected and compared. Although the 

objective stated that in order to assess the effectiveness of the high-pressure water 

spray system as a control measure, pre- and post-control respirable quartz 

concentrations would be compared, during the study it was decided to rather make 

use of respirable dust concentrations to assess the effectiveness of the control 

measure.  

The reason for this is that the respirable quartz concentration is dependent on the 

respirable dust concentration as dust contains quartz. Since the primary focus of the 

control measure implemented is to reduce dust concentrations, as a secondary 

effect quartz concentration will also be reduced. 

During the analysis of the results obtained from the static measurements, it was 

observed that there had been a change in the dust concentrations upstream of the 

sampling positions between the pre-control (before installation of the water spray 

system) and post-control (after installation of the water spray system) measurement 

periods. The reason for this reduction is unknown and we can only speculate on a 

possible cause for this observation.  

However, static measurements collected from measurement position 1 (upstream of 

the high-pressure spray system) support this hypothesis. With this measurement 

position being upstream of the high-pressure water spray system, it theoretically 

should not have been affected by the high-pressure water spray system.  

The results indicated that the mean respirable dust concentration levels reduced by 

83%, although not statistically significantly (P=0.12), between pre- and post-control 

measurements (at measurement position 1). This does complicate the study analysis 

and highlights concerns that the system may not be as effective as the personal 

respirable dust and respirable quartz exposure measurements indicate. 

Further analysis of the static respirable dust measurements, however, provided a 

positive indication of the control measure effectiveness. A direct comparison 

between static measurement positions 1 and 2 after the installation of the water 
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spray system (post-control) revealed that there was indeed a reduction in mean 

respirable dust concentrations. 

The reduction was observed when comparing the mean dust concentrations post-

control (after installation of the water spray system) between static measurement 

position 1 and static measurement position 2. With the high-pressure water spray 

system between these two points, this can provide a directly comparable variable to 

determine the system effectiveness.  

By comparing the mean respirable dust concentrations between static measurement 

positions 1 and static measurement position 2, a significant reduction in mean of 

53% was observed (P=0.04). Refer to Figure 18 for greater detail.  

4.3 NATIONAL AND INTERNATIONAL LIMITS OF EXPOSURE 

Results from the measurements obtained post-control introduction were compared 

against three limits of exposure, as listed below: 

 South African Occupational Exposure Limit (SA-OEL) of 0.1 mg/m³, 

 The National Institute for Occupational Safety and Health’s Recommended 

Exposure Limit (NIOSH-REL) of 0.05 mg/m³, and 

 The American Conference of Industrial Hygienist’s Threshold Limit Value 

(ACGIH-TLV) of 0.025 mg/m³. 

Mean pre-control personal respirable quartz exposures exceed the ACGIH-TLV and 

the NIOSH-REL across all shifts, as well as the SA-OEL during night shift.  

Analysis of the post-control personal respirable quartz exposures indicated that the 

mean respirable quartz exposure did not exceed any of the exposure limits listed 

above and used for comparison. The shift with the highest mean respirable quartz 

exposure was night shift, which was also below the ACGIH-TLV of 0.025 mg/m³.  

From this study conducted, indications are that the bulk scrubbing of intake air from 

shafts with high-pressure water spray systems does show potential. Significant 

improvement in personal respirable quartz exposures was observed after 

introduction of the high-pressure water spray system. This is also supported by the 
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decrease in respirable dust concentrations observed across the high-pressure water 

spray system.  

Other studies have also shown that significant reduction in dust and the associated 

quartz concentrations can be achieved by using water spray systems as an 

engineering control measure.  

A study by Jayaraman and Jankowski [1988] conducted full scale airborne capture 

tests on a continuous miner face of a coal mine. Results showed a reduction of 30% 

in respirable dust concentrations. This was achieved by fitting the continuous miner 

with a conventional water spray system operating at 100 Bar with a flowrate of 

72 litres per minute. When a high-pressure water spray system was used, the dust 

concentration also reduced by 30% but with a flowrate of only 11 litres per minute. 

When using the two systems together a reduction in respirable dust concentration of 

59% was observed (26). 

The National Institute of Occupational Safety and Health tested the effectiveness of 

water spray systems to reduce airborne dust concentrations in the breathing zone of 

construction workers while breaking concrete with jackhammers (27). Water sprayed 

by a nozzle at a flowrate of 0.3 litres per minute reduced airborne dust concentration 

between 69% and 71% (27). Reducing the water flowrate to 0.25 litres per minute 

reduced airborne dust concentrations by 42% and 43% (27).  

Studies conducted as part of the Mine Health and Safety Council Project on 

Engineering and Engineering Controls (SIM 030603 B), tested the effectiveness of 

water spray systems to reduce respirable quartz concentrations from identified 

sources of respirable dust and respirable quartz (28) 

Efficiency tests done at the shaft ore pass system indicated that respirable quartz 

concentration increase between upstream and downstream measurements (without 

a spray system as an engineering control) was 37%. Once the water spray system 

was introduced (as engineering control) the increase between upstream and 

downstream was reduced to 7.3% (28). 

Efficiency tests done at an underground stope indicated that respirable quartz 

concentration increase between upstream and downstream measurements (without 

a spray system as an engineering control) was 165%. Once the water spray system 
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was introduced (as engineering control) the increase between upstream and 

downstream was reduced to 1.6% (28). 

4.4 CONCLUSION 

Significant improvement in personal respirable dust and respirable quartz exposures 

was observed after the introduction of the high-pressure water spray system. This is 

also supported by the decrease in dust concentrations observed between upstream 

and downstream of the high-pressure water spray system. 

The results from this study and the results of the other studies discussed previously, 

indicate that the health risk to underground mine workers could be reduced by 

implementing a high-pressure water spray system as an engineering control 

measure. 

During this study the null hypothesis assumed that there was no difference in 

comparing the means from pre-control and post-control data sets, and an alpha 

value of 0.05 was used. The alternate hypothesis is that there was a difference in 

comparing the means from pre-control and post-control data sets, and an alpha 

value of 0.05 was used. The results from this report suggest that the null hypothesis 

can be rejected, as the p-values proved that there is a difference in the mean 

exposure values.  

Considering the information contained in this document, it is suggested that it would 

be worth introducing high-pressure water spray systems as an engineering control 

measure to reduce respirable dust and respirable quartz concentrations.  

Mines from all commodities should consider high-pressure water spray systems as 

engineering control measure. Particularly mines that have problems with 

contamination of intake air with high concentrations of respirable dust and respirable 

quartz, from especially (but not limited to) activities such as: 

 Loading, tipping and hoisting of ore. 

 Scraping, sweeping and cleaning of ore  

 Drilling and blasting of rock 

 Primary and secondary support 

 Rock crushing, conveyor transport of ore 
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 Backfill spillage in shafts 

Certain commodities (diamond mines) can, unfortunately, not use water as a dust 

control measure due to water and ore incompatibility concerns; Kimberlite is known 

to be hygroscopic and will absorb any water resulting in the decomposition of 

Kimberlite (29).  

This study did however not consider the cost effectiveness of the water spray system 

as an engineering control measure, and this should be considered before 

implementation.  
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