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ABSTRACT 

Dinocephalians form an important part of the Upper Permian therapsid faunas of South 

Africa and Russia, and have also recently been reported from China and Brazil, and even 

more recently a diverse dinocephalian fauna has been described from Zimbabwe. This 

thesis reports a new primitive tapinocephalid dinocephalian, NHMB 1556, from the Upper 

Madumabisa Mudstone Formation in Zimbabwe. NHMB 1556 is considered to be closely 

related to Avenantia and it possesses primitive tapinocephalid characters, but is more 

derived than Tapinocaninus, the most primitive tapinocephalid dinocephalian known. 

NHMB 1556 is distinguished from other tapinocephalines by having a groove on the 

squamosal below its dorsal contact with the parietal, a low squamosal-parietal suture on 

the posterior border of the temporal fenestra, a vomer which extends posteroventrally and 

forms the anterior margin of the interpterygoidal vacuity and basisphenoid, which is 

semi-circular anteroventrally. 
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CHAPTER 1: INTRODUCTION 

1.1 THERAPSID ORIGINS 

The Dinocephalia, together with the clades Biarmosuchia, Eotitanosuchia, Anomodontia 

(including Dicynodontia), Gorgonopsia, Therocephalia and Cynodontia constitute the 

Therapsida (Hopson 1991; Hopson and Barghusen 1986; Hotton 1991; Kemp 1988). 

Therapsids are considered to have arisen from sphenacodont "pelycosaurs" during the early 

Late Permian and to be the lineage leading to mammals (Hopson 1967, 1991; Hopson and 

Barghusen 1986; Kemp 1982; Kermack and Kermack 1984; Rowe 1988; Sidor and Hopson 

1998). A great deal of research on therapsid origin, diversification and biogeography has 

been undertaken and their remains have been found on every continent (Anderson and 

Cruickshank 1978; Colbert 1986; Hopson 1991; Hopson and Barghusen 1986; Kemp 1982, 

1988; King 1988; Olson 1986; Parrish, Parrish and Ziegler 1986; Romer 1970; Sigogneau

Russell 1989). 

Biarmosuchids and eotitanosuchids are considered to be the most basal therapsids (Hopson 

1991; Hopson and Barghusen 1986; Kemp 1988). Most of the advanced therapsids have a 

wide distribution and have a well-preserved fossil record. In contrast, the basal therapsids 

have a limited distribution and a poor fossil record and hence their evolutionary history is 

vague as compared with their descendants. 

The earliest therapsid faunas include biarmosuchids, eotitanosuchids, dinocephalians, non-



2 
dicynodont anomodonts, gorgonopsians and therocephalians, and are known only from South 

Africa (Boonstra 1963a, 1963b, 1969; Brinkman 1981; King 1988; Modesto, Rubidge and 

WeIman 1999; Modesto and Rubidge 2000; Rubidge, Kitching and van den Heever 1983; 

Rubidge and Hopson 1990, 1996; Rubidge 1991, 1994), Russia (Ivakhnenko 1994, 1996; 

Olson 1962; Sigogneau and Chudinov 1972) China (Cheng and Li 1997; Li, Rubidge and 

Cheng 1996), Zimbabwe (Bond 1973; Boonstra 1946) and Brazil (Langer 1998). Olson 

(1962, 1986) gave a detailed account of the Late Permian terrestrial vertebrates of the San 

Angelo Formation of the United States of America in which he erected the therapsid 

infraorders Eotheriodontia and Eutheriodontia ofthe suborder Theriodontia, Eodinocephalia 

and Eudinocephalia of the suborder Dinocephalia, and Venjukovioidea of the suborder 

Anomodontia. Parrish et al. (1986) recognised Olson's early therapsids from North America 

but because of poor preservation he doubted their taxonomic affinities. Recent examination 

by Sidor and Hopson (1995) has confirmed their "pelycosaurian" status. 

Dinocephalians, anomodonts, gorgonopsians and therocephalians have been found in the 

Lower Beaufort Group of South Africa (Boonstra 1963a, 1963b, 1969, 1971; Brinkman 

1981; King 1988; Kitching 1977; Modesto c( af. 1999; Rubidge 1987, 1988, 1991, 1994 

1995; Rubidge and Hopson 1990, 1996; Rubidge et af. 1983; Smith and Keyser 1995). In 

addition to dinocephalians, anomodonts, gorgonopsians and therocephalians, eotitanosuchids 

have been recognised in the Russian Ocher (Zone I) and Isheevo (Zone II) deposits 

(Anderson and Cruickshank 1978; Chudinov 1965; Hopson and Barghusen 1986; King 1988; 

Olson 1962; Parrish et af. 1986; Sigogneau and Chudinov 1972). Biarmosuchids and 
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dinocephalians have been found in China, and only the latter have been recognised in 

Zimbabwe and Brazil (Bond 1973; Boonstra 1946; Cheng and Li 1997, Langer 1998; Lepper, 

Raath and Rubidge 2000; Li et al. 1996; Macgregor 1946). In each of these countries (South 

Africa, Russia, China, Zimbabwe and Brazii), dinocephalians are an important element of 

early therapsid faunas. They dominated their contemporaries in body size and taxonomic 

diversity (Boonstra 1963a, b). 

Dinocephalians and non-dicynodont anomodonts (venjukovioids and "dromasaurs") are 

important taxa in tracing the evolutionary history of early therapsids because they have a 

restricted stratigraphic range, occurring only in the Kazanian and Tatarian deposits of Zone I 

and Zone II of Russia, and the Eodiocynodon and Tapinocephalus Assemblage Zones of 

South Africa, thus making them more helpful taxa for global correlation (Li et al. 1996). 

Currently the phylogeny of the Gorgonopsia and Therocephalia is not well established and 

these clades cannot therefore be relied upon for global correlations (van den Heever 1994; 

Modesto et al. 1999). The therapsid fauna from the Zone I of Russia was at one stage 

considered to be more primitive than the oldest therapsid fauna from the Tapinocephalus 

Assemblage Zone of South Africa (Boonstra 1969; Chudinov 1965; Rubidge 1993, 1995b; 

Sigogneau and Chudinov 1972; van den Heever and Grine 1981). The "dromasaurs" from 

Southern Africa and venjukovioids from Eastern Europe were previously not regarded as 

monophyletic and the latter group was considered more basal (Brinkman 1981, Hopson and 

Barghusen 1986; King 1994). Hopson and Rubidge (1990, 1996) recognised that non-

dicynodont anomodonts belonged to the same clade and said that the most basal form of this 
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clade, Patranomodon, came from South Africa. Later Modesto et al. (1999) and Modesto and 

Rubidge (2000) described an even more basal form (Anomocephalus) from South Africa. 

Now with Patranomodon and Anomocephalus, the two most basal anomodonts known from 

South Africa, it has been proposed that anomodonts originated in Gondwana (Modesto et al. 

1999). Southern Africa has also produced the most basal dinocephalian forms, 

Australosyodon and Tapinocaninus, as compared with the Russia forms Ulemosarus and 

Syodon (Rubidge 1991, 1993, 1994), suggesting a southern African origin for this grou p of 

therapsids as well. 

1.2 HISTORICAL REVIEW OF DINOCEPHALIAN TAXONOMY 

Dinocephalians are an important component of the earliest therapsid faunas ofthe Ocher and 

Isheevo complexes in Russia (Chudinov 1965, 1968; King 1988; Olson 1962). They also 

form a large component of the therapsid faunas of the Eodiocynodon and Tapinocephalus 

Assemblage Zones, the lowermost and oldest biozones of the Beaufort Group in South Africa 

(Boonstra 1963a, 1963b, 1968, 1969; Haughton and Brink 1954, Keyser and Smith 1978; 

King 1988; Kitching 1977; Loock Brynard, Heard, Kitching and Rubidge 1994; Rubidge 

1987, 1988, 1991, 1994, 1995a; Smith and Keyser 1995). The Xidangu Formation at Yumen, 

China (Cheng and Li 1997; Li et al. 1996), Madumabisa Mudstone Formation in the Middle 

Zambezi Karoo Basin, Zimbabwe (Bond 1973; Boonstra 1946; Lepper et at. 2000; 

Macgregor 1946), and Rio do Rasto Formation, Parana Basin, Brazil (Langer 1998), have 

also yielded dinocephalians. Although dinocephalians were among the earliest therapsids to 
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be collected and studied, there are still numerous uncertainties in the literature with regard to 

their taxonomy (King 1988; Rubidge pers. comm.). 

Boonstra (1969) gave a detailed account on the earliest collection, acquisition and taxonomic 

classification of dinocephalians from the Karoo in the 1 i h century by various people including 

C.H. Crisbrook, F. De Klerk, A.G. Bain, R. Broom, R. Owen, H.G. Seeley, L.D. Boonstra, H.W. 

Oakley and others. Among the earliest dinocephalian material from the Tapinocephalus 

Assemblage Zone, Owen (1879) and Seeley (1892) figured Tapinocephalus atherstonei, 

Titanosuchus ferox and Delphinognathus conocephalus. Seeley (1888, 1889) discussed and 

figured the Russian forms Deuterosaurus and Rhopalodon, and placed them into the suborder 

Deuterosauria. The suborder Dinocephalia was eventually erected in 1894 by Seeley for the 

genera Delphinognathus and Tapinocephalus, and was considered to belong to the order 

Anomodontia. 

Broom (1903) placed Titanosuchus into the family Titanosuchidae of the order Therocephalia, 

excluding Delphinognathus and Tapinocephalus arguing that they were imperfectly known. 

Deuterosaurus and Rhopalodon of the family Deuterosauridae were also included by Broom 

(1903) in the order Therocephalia. 

Broom (1905, 1910, 1911) later placed Delphinognathus, Tapinocephalus, Titanosuchus, 

Scapanodon, Pelosuchus, Archaeosuchus and Gorgonops into the Dinocephalia. The Russian 

forms Deuterosaurus and Rhopalodon were also considered likely to belong to the Dinocephalia, 



6 
although they were imperfectly known. They were later allied to dinocephalian therapsids by 

Watson (1914). 

In 1923 Broom divided the Dinocephalia into two suborders, Tapinocephalia and Titanosuchia. 

In South Africa the family Tapinocephalidae was later further subdivided by Gregory (1926) into 

the subfamilies Moschopinae (including the allied genera Delphinognathus, Moschops, 

Moschognathus, Taurops, Pnigalin and Lamiasaurus), and Tapinocephalinae (including 

Tapinocephalus, Mormosaurus and Struthiocephalus). 

Haughton (1929) established the name Styracocephalus platyrhynchus and placed it within the 

new suborder Styracocephalia. According to Haughton (1929), Styracocephalus possessed both 

gorgonopsian and dinocephalian characters, and also retained primitive ancestral features. Broom 

(1932) considered Styracocephalus to have affinities with the Gorgonopsia and referred it to the 

Burnetiamorpha, a classification adopted by Romer in 1956. 

Boonstra (1936a) subdivided the suborder Tapinocephalia, which then consisted of thirteen 

genera into the following families: 

Tapinocephalidae - Tapinocephalus, Taurops, Keratocephalus 

Moschopidae - Delphinognathus, Moschops, Criocephalus, Moschognathus, Pnigalin, 

?Lamiasaurus 

Mormosauridae - Mormosaurus, Taurocephalus, Struthiocephalus 

Moschosauridae - Moschosaurus 
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Boonstra (l936b) reiterated that Titanosuchia and Tapinocephalia were two suborders of the 

Dinocephalia, which diverged from each other at a stage represented more or less by the two 

forms Moschosaurus (tapinocephalid) and Rhopalodon (titanosuchid). Taxonomic identification 

keys were provided by Boonstra (l953b) for the Dinocephalia, Titanosuchia and Tapinocephalia. 

Romer (1956) and Watson and Romer (1956) classified dinocephalians into two suborders, 

Theriodontia and Anomodontia, with the corresponding infraorders, Titanosuchia and 

Dinocephalia. All the carnivorous forms were placed into infraorder Titanosuchia, which 

consisted of three families: Brithopodidae, Anteosauridae and lonkeriidae. The infraorder 

Dinocephalia was restricted to herbivorous forms only and was divided into the families 

Deuterosauridae and Tapinocephalidae. The characters used by Romer and Watson to define 

Titanosuchia and Dinocephalia were either primitive therapsid attributes, or features found in 

both forms (carnivorous or herbivorous), or not expressed consistently throughout in each group 

(King 1988). 

The carnivorous and herbivorous forms were later combined into the infraorder Dinocephalia of 

the suborder Anomodontia by Boonstra in 1963, and in South Africa the families Anteosauridae 

Titanosuchidae, Styracocephalidae and Tapinocephalidae were recognised. In addition to the 

South African families, two families, Brithopodidae and Estemmenosuchidae, were recognised in 

Russia (Boonstra 1963a). In South Africa the family Tapinocephalidae was further subdivided 

into 
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subfamilies Moschosaurinae, Riebeeckosaurinae, Moschopinae, Struthiocephalinae and 

Tapinocephalinae (Boonstra 1963b). 

Boonstra (1969) revised the classification of the dinocephalians from South Africa and 

recognised four families: Anteosauridae, Titanosuchidae, Tapinocephalidae and 

Styracocephalidae (Table 1). 

Table 1. Characteristic features of dinocephalian families (After Boonstra 1969). 

FAMILY CHARACTERS 
-Primitive carnivores with long intermeshing 

Anteosauridae InCISOrS 
-Primitive herbivores with a canine tooth. 
-Very strong incisor teeth with piercing talon 
and crushing heel. 

Titanosuchidae -Long series of postcanine teeth with spatulate 
crowns 
-Very little Qachyostosis 
-Advanced herbivores without a canine tooth 
-All teeth have a talon and heel at maturity 

Tapinocephalidae -Upper and lower teeth of the whole battery 
intermesh. 
-Moderate to very great pachyostosis 

Styracocephalidae -Advanced herbivores with moderate canine 
tooth 
-Prominent posteriorly directed tabular bosses. 

Moschosaurinae was no longer considered a subfamily of the Tapinocephalidae after 

Moschosaurus and Struthiocephalus were synonymised. Only four subfamilies of the 

Tapinocephalidae were considered valid, namely: Struthiocephalinae, Moschopinae, 

Tapinocephalinae and Riebeeckosaurinae (Table 2). 
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Table 2. Characteristic features ofthe Tapinocephalidae subfamilies (After Boonstra 1969) 

FAMILIY SUBFAMILY CHARACTERS 
Struthiocephalinae -Long fairly strong snout 

-Moderate pachyostosis 
Moschopinae -Medium body size 

-Short snout running onto frontal in an even curve 
-Moderate to very great pachyostosis 

Tapinocephal idae Riebeeckosaurinae -Very long and slender snout 
-Narrow intertemporal region 
-Moderate pachyostosis 

Tapinocephalinae -Large and massive body proportions 
-Moderate to short and weak snout 
-Either a prominent naso-frontal boss or swollen 
frontals 
-Great to very great pachyostosis 

In his morphological series I and II, Boonstra (1971) considered brithopodids to be the most 

primitive dinocephalians, and that they gave rise to anteosaurids and titanosuchids. No 

descendants of anteosaurids were identified but titanosuchids were considered to have been 

ancestral to styracocephalids, tapinocephalids and estemmenosuchids. 

Boonstra (1972) revised the classification of the Dinocephalia, where he recognised two 

suborders and five families. The Dinocephalia was considered to consist of the suborders 

Brithopia and Titanosuchia, with the families Brithopodidae, Anteosauridae, Titanosuchidae, 

Tapinocephalidae, Styracocephalidae and Estemmenosuchidae (Table 3). 
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Table 3. Classification of the Dinocephalia (After Boonstra 1972). 

ORDER SUBORDER FAMILY 
Brithopodidae 

Brithopia Anteosauridae 
Dinocephalia Titanosuchidae 

Tapinocephalidae 
Titanosuchia Styracocephalidae 

Estemmenosuchidae 

Although Boonstra provided a framework for the systematics of the Dinocephalia, it is 

argued that his classification lacked cladistic analysis and that many of the characters he used 

to define the taxa are primitive therapsid or synapsid features. Kemp in 1982 (Figure 1) 

produced the first cladogram illustrating phylogenetic relationships ofthe Dinocephalia, but 

it failed to provide specific characters relating to sister groups. Kemp adopted the 

classification scheme of Boonstra (1972), but removed the Estemmenosuchidae from the 

Titanosuchia and regarded it as the most primitive family of the Dinocephalia. 

In 1986 Hopson and Barghusen carried out the first full-scale cladistic analysis of the 

Therapsida, and three monophyletic groups were recognised: Dinocephalia, Anomodontia 

and Theriodontia. The Dinocephalia and Anomodontia were separated and the former was 

divided into two monophyletic subgroups, Anteosauria and Tapinocephalia, corresponding to 

the Brithopia and Titanosuchia respectively of Boonstra (1972). Because the affinities of 

Styracocephalus were uncertain, Styracocephalidae was considered to be an invalid family. 

The classification scheme of Hopson and Barghusen differed from that of Kemp (1982) on 

the position of the Estemmenosuchidae and Anteosauridae. Hopson and Barghusen 
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r-- BRITIIOPIA __ _ , 

Figure 1. Cladogram of the families of the Dinocephalia (From Kemp 1982). 

considered anteosaurids to be the most primitive whercas Kemp (1982) considered 

estemmenosuchids to be the plesiomorphic group. 

King (1988) lamented on the l;lCk of cladistic analysis in previous classification systems of 

the Dinocephalia, but she did Lot COlllmcnt on the cladistic classification of Hopson and 

Barghusen (1986). As was suggested by Watson (1948), Romer (1956) and Boonstra (1969), 

the Dinocephalia-Dicynodontia relationship was resurrected as Anomodontia. Two 
'1 

superfamilies ofDinocephalia (Estcml11enosuchidea and Anteosauridca) comprising of three 

families (Esteml1lenosuchidae, Brithopodidae and Titanosuchidae) wcre created. Because of 

poor preservation, Slyracocep/w/1Is was considercd to be incertae seelis. King (1988) 

considered the Brithopodidae to have the subfamilies Brithopodinae and Anteosaurinae, 
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\\hereas TitanosLlchidae was split into TitanoSLlchinae and Tapinocephalinae (Figure 2). 

Tapinocephalinae was further subdivided into the tribes Struthiocephalini, Tapinocephalini 

and Riebeeckosaurini. These corresponded with the subfamilies of Tapinocephalidae of 

Boonstra (1969; Table 4). 

Figure 2. Cladogral11 of the main groups of the Dinocephalia (From King 1988). 
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King combined the subfamilies Moschopinae and Tapinocephalinae of Boonstra (1969) into 

the single tribe Tapinocephalini on the grounds that "pachyostosis as a character is variable 

within the subfamily and not a foolproof guide to relationship" (King 1988: 10). In King's 

analysis the genus Struthionops was transferred from the Struthiocephalini into 

Tapinocephalini. 

Table 4. Characters of the tribes of the Tapinocephalinae (After King 1988). 

TRIBE CHARACTERS GENERA 
-Long and fairly strong snout Struthiocephalus 

Struthiocephalini -Moderate pachyostosis Struthiocephaloides 
Taurocephalus 

-Very long and slender snout Riebeeckosaurus 
Riebeeckosaurini -Narrow intertemporal region 

which forms a sagittal crest 
-Medium to large body size Delphinognathus 
-Moderate to short and weak Avenantia 
snout Moschops 

Tapinocephalini -Naso-frontal boss or swollen Criocephalus 
frontals in some forms Struthionops 
-Great to moderate Phocosaurus 
pachyostosis Mormosaurus 

Keratocephalus 
Tapinocephalus 

Hopson and Barghusen (1986) and Hopson (1991) questioned the relationship between 

dinocephalians and primitive dicynodonts. Anomodontia was considered a monophyletic 

group consisting ofDinocephalia and Dicynodontia (Boonstra 1969; Kemp 1988; King 1988; 

Romer 1967; Watson 1948) on the basis of: 

1. Loss of the coronoid bones. 

2. Non-terminal nostrils and long posterior spur of premaxilla 

3. Grooved or troughed palatal exposure of the vomers. 
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4. Reduction or loss of the internal trochanter of the femur. 

However coronoid bones have been reported in some dinocephalians and primitive 

dicynodonts and therefore character 1 is an invalid synapomorphy linking dinocephalians and 

dicynodonts (Boonstra 1962; Hopson and Barghusen 1986; Hopson 1991). Characters 2 and 

3 were shown to be invalid since nostrils are terminal in Estemmenosuchus while the long 

spur ofthe premaxilla and a vomer bearing a ventral groove are primitive therapsid features 

(Hopson 1991). Hopson (1991) also pointed out that character 4 was convergent. The 

Dinocephalia and Anomodontia (Dicynodontia) therefore should be considered as separate 

monophyletic groups (Hopson and Barghusen 1986; Hopson 1991). 

In 1997 Rubidge and van den Heever resurrected the Styracocephalidae, which was 

considered by Hopson and Barghusen (1986) and King (1988) as incertae sedis. 

Anteosauridae was again considered to be the basal dinocephalian group whereas 

Styracocephalidae was placed as the sister group of the Titanosuchidae and Tapinocephalidae 

(Figure 3). Kemp (1982), King (1988), Hopson and Barghusen (1986) and Rubidge and van 

den Heever (1997) differed on the phylogenetic position of the Estemmenosuchidae and 

Anteosauridae, since the first two authors considered the former family to be the most 

primitive while the rest proposed the latter to be the basal family. Rubidge (1991) and Li et 

al. (1996) noted the difference in the proposed positions of two families but did not discuss 

the issue. The phylogenetic position of the two families has no bearing on this study and 

therefore will not be discussed further. For this study the Anteosauridae and 

Tapinocephalidae will be considered as the most basal and derived dinocephalian families 
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Figure 3. CI~dograms of the Dinocephalia with the inclusion of Styracocephalidae and 

illustrating Anteosauridae as the most basal group (From Rubidge and van den Heever 1997). 

Anteosaurid dinocephalians are found in Russia, South Africa and China. Although 

anteosaurids have recently been recognised in Zimbabwe from fragmentary material (Lepper 

et al. 2000), no particular anteosaurid genus has yet been described from that country. The 

Russian anteosaurid dinocephalians include Archaeosyodon, Chthamaloporus, Brithopus, 

No tos)'odo 17 , Syodol1, Ti{({l1opliol1ells, Doliosollrisclls, Deulerosaurlls and Admefophonells 

(King 1988; Olson 1962; Tchudinov 1968), and in South Africa, the Anteosauridae consists 
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ofthree genera: Australosyodon, Paranteosaurus and Anteosaurus (BoonstraI954a, 1954b, 

1954c, 1963a, 1963b, 1969; Haughton and Brink 1954; van den Heever and Grine 1981; 

King 1988; Rubidge 1994, 1995a; Smith and Keyser 1995). Two anteosaurid genera, 

Sinophoneus and Stenocybus, have been described from China (Cheng and Li 1997; Li et al. 

1996). 

Estemmenosuchids are found only in Russia and the four genera (Estemmenosuchus, 

Molybodopygus, Anoplosuchus and Zopherosuchus) have been recognised (Chudinov 1965; 

Hopson and Barghusen 1986; King 1988; Olson 1962). 

Styracocephalid and titanosuchid dinocephalians have been reported from South Africa only. 

The former group is represented by single genus, Styracocephalus (Boonstra 1934, 1963b, 

1969; Broom 1932; Haughton 1929; Haughton and Brink 1954; Rubidge and van den Heever 

1997), while the latter consists of Jonkeria and Titanosuchus (Boonstra 1936b, 1953a, 1962, 

1963a, 1963b, 1969; Broom 1932, Haughton and Brink 1954; van den Heever and Grine 

1981; King 1988). 

Tapinocephalid dinocephalians are known from Russia, South Africa and Zimbabwe. 

Ulemosaurus is the only Russian tapinocephalid (King 1988), and all the other known 

tapinocephalids, apart from the Zimbabwean species of Criocephalus (Bond 1973; Boonstra 

1968, 1969; King 1988), are known only from South Africa. However the taxonomy of the 

Tapinocephalidae requires revision because many ofthe smaller and less pachyostosed forms 
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may, in fact, be juveniles (Boonstra 1969; King 1988; Rubidge pers. comm.). 

A relatively diverse dinocephalian fauna has recently been recognised at Hwange, Zimbabwe, 

and this includes anteosaurids and tapinocephalids (Lepper et al. 2000). So far Criocephalus 

is the only named and described tapinocephalid genus and comes from Gunyanka's Kraal, 

Zimbabwe (Bond 1973; Boonstra 1946, 1968,1969). The holotype of Criocephalus is 

missing and its description is limited to a few sentences and scant illustrations of the 

braincase (Boonstra 1968; King 1988). 

As a result of recent fieldwork, newtapinocephalid material from Zimbabwe is available and 

warrants description. The new dinocephalian material is of great importance as it may 

ultimately lead to biostratigraphic subdivision of the lithologically homogeneous 

Madumabisa Mudstone Formation and constrain the ages of the dinocephalian-bearing units. 

In addition, the dinocephalian fossils from Zimbabwe will contribute to greater 

understanding of the biogeographic distribution of the earliest therapsid faunas. 
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CHAPTER 2: GEOLOGICAL BACKGROUND TO THE STUDY AREA 

The study area is located in the northwest of Zimbabwe (Figure 4), and lies in the Middle 

Zambezi Karoo Basin. In Zimbabwe, Karoo sediments were deposited in the Zambezi and Sabi-

Limpopo basins which were located northwest and southeast of a major watershed which is 

believed to have been parallel to but 80 km southeast of the present watershed (Stagman 1978). 

The Zambezi Karoo Basin is divided into the Middle Zambezi Basin stretching from Victoria 

Falls to Lake Kariba, and the Lower Zambezi Basin extending from Lake Kariba into 

Mozambique. Correlations between sediments of the two major basins and within each basin, are 

difficult because each basin had several depocentres which differ in lithology and succession 

units. A prominent erosional contact, however, divides the basins into the Upper and Lower 

Karoo (Lepper 1992; Stagman 1978). 

Lower Karoo sediments and Escarpment Grit, a basal member of the Upper Karoo, are preserved 

in the study area. The rocks of the Lower Karoo sediments present are the Dwyka, Ecca and 

Madumabisa Mudstone (Lepper et al. 2000). The basal Dwyka glacial beds are overlain by the 

Ecca, which in turn underlies the Madumabisa Mudstone. An unconformity exists between the 

Madumabisa Mudstone and the Escarpment Grit. The latter unit is not completely preserved as 

the basal section is present capping the Madumabisa Mudstone on hilltops. 
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Figure 4. Locality map of study area showing fossil sites (From Lepper et al. 2000). 
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2.1 Dwyka (Ko) 

The Dwyka Group is the basal Karoo sedimentary sequence and lies uncoformably on Archaean 

strata (Lepper 1992). Dwyka deposits consist of glacial tillites, glaciolacustrine varvites and 

glaciofluvial outwash (Lepper 1992; Stagman 1978). The rocks of this Group have a patchy 

distribution and are discontinuous because they were deposited in valleys and depressions on the 

pre-Karoo floor (Bond 1952, 1970; Bond and Stocklmayer 1967; Lepper 1992). 

2.2 Ecca (KI
-
4
) 

In the study area rocks of the Ecca Group consist of the Black Shale and Coal Group, Fireclay, 

Upper Wankie Sandstone and Lower Madumabisa Mudstone (Lepper 1992; Lepper et al. 2000; 

Stagman 1978). The Lower Wankie Sandstone (Kl) Formation is widely distributed in the 

Middle Zambezi Basin, and is absent at Hwange (Lepper 1992). Black Shale and Coal Group 

(K2) Formation have a thickness that ranges between 0 and 90 m and consists of carbonaceous 

mudstones, shales and coal seams (Barber 1986; Figure 5). The shales are laminated to thick 

bedded whereas the mudstones are massive and homogeneous. Glossopteris and Gangamopteris 

leaf imprints are present in the shales (Bond 1965, 1968, Lacey 1961). 

Fireclay (K3
) Formation overlies the Black Shale and Coal Group Foramtion, and it is regarded 

as a regional marker horizon because it has a wide distribution throughout the basin (Lepper 

1992). It is silica and aluminium rich and is considered to be a lacustrine deposit or kaolinised 

ash bed resulting from acid volcanism (Lepper 1992). 
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Figure 5. Stratigraphic section at the Matura Hill, showing the horizon of dinocephalian fossils 

(From Lepper et al. 2000). 
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The Upper Wankie Sandstone (K4) Formation overlies the Fireclay and in tum underlies the 

Madumabisa Mudstone Formation (Figure 5). This succession is predominantly coarse-grained to 

gritty and its thickness varies between 0 and 100 m (Barber 1986; Lepper 1992). Pebbles are also 

present as intercalated conglomerate beds or lenses, as well as matrix-supported individuals. Thin 

lenses of fine and medium-grained sediments are interbedded in the succession, and the former 

layer is renowned for fossils of Gangamopteris and Glossopteris (Bond 1973; Lacey 1959, 

1961). Thin bedding, trough cross-bedding and graded bedding are the predominant sedimentary 

structures of the unit. The sedimentary structures, together with the coarse-grained sediments and 

pebbles, suggest a fluvial depositional environment (Lepper 1992). 

2.3 Madumabisa Mudstone (K5a
-
e
) 

The Madumabisa Mudstone Formation outcrops are best preserved in the western areas of the 

Wankie Colliery property, where they form the Matura and Madumabisa (Ndumebiza) Hills 

(Figure 4). At Matura Hill the thickness of the K5a
-
e unit is 270.82 m (Barber 1986). The Lower 

Madumabisa Mudstones (K5a
+

b
), relegated to the Ecca Group, is 52.14 m thick and consists of 

black-grey carbonaceous mudstones with minor coal seams, dark black-grey mudstones and 

siltstones (Barber 1986; Lepper 1992; Lepper et al. 2000; Figure 5). The formation is thin bedded 

to massive, and the mudstones are massive and homogeneous, being characterised by conchoidal, 

spherical and blocky to shardy disintegration (Lepper 1992). The sediments of this succession 

were deposited in a quiet lacustrine environment (Lepper 1992). 
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A gradational contact exists between the Upper and Lower Madumabisa Mudstone, and is 

considered to be at a point oflast occurrence of the dark-grey carbonaceous mudstones and the 

first appearance of limestones. Beside colour variation and presence or absence of calcareous 

nodules, the K5c, K5d and K5e units of the Upper Madumabisa Mudstones are indistinguishable. 

The mudstones in all units are massive and homogeneous without any internal structure, and are 

considered to have been deposited in a lacustrine environment (Lepper 1992). 

The Upper Madumabisa Mudstone Formation (K5C
-
e

) is assigned to the Beaufort Group, and 

consists oflight green, greenish-grey to brownish-grey and reddish brown sandy limestones, 

mottled green to greenish-grey calcareous and non calcareous mudstones (Barber 1986; Lepper 

1992; Lepper et af. 2000). Rocks of the Upper Madumabisa Mudstones are intercalated with beds 

of dark grey calcareous silstones and calcareous fine-grained sandstones (Barber 1986; Lepper 

1992; Lepper et af. 2000). Sandstones found mainly at the base of the siltstone layer, have a 

limited lateral extent and in some places have a well developed channel-lag deposit (Matura 

Bone Bed) at the base (Figure 5). The thickness and the stratigraphic range of the conglomerate 

layer (channel-lag deposit) vary between I and 2 m, and 800 and 840 m respectively. Mudstone 

intraclasts, bone fragments and wood are present in the conglomerate layer. 

Therapsid fossil remains, including the tapinocephalid dinocephalian described in this 

dissertation, are present in the channel-lag deposit (Matura Bone Bed) at various localities. The 

sites, which have yielded vertebrate fossils in the study area are presented in Figure 4. Because of 

the high-energy in-channel, nature of the depositional environment, skeletons are disarticulated 
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and many of the bones were damaged prior to deposition. In addition many of the bones have 

been weathered out of the channel-lag and have been transported down the slopes (Lepper et al. 

2000). As a result of both pre- and post-fossilisation damage to which these bones have been 

exposed, associations between different bone elements are difficult to establish. 

Elsewhere in the Middle Zambezi Basin, the Upper Madumabisa Mudstones have yielded 

therapsid, fish, amphibian, arthropod, plant and mollusc fossil remains (Bond 1965, 1973; Bond 

et al1970; Boonstra 1946; Macgregor 1946; NHMB records). Criocephalus gunyankaensis, the 

only described dinocephalian genus from Zimbabwe, was recovered from the K5c unit at 

Gunyanka's Kraal, Binga District (18°09/S, 27°50/E) (Boonstra 1946, 1968). As a result of this 

discovery the K5c unit was correlated with the Tapinocephalus Assemblage Zone of the main 

Karoo Basin in South Africa (Bond 1973). The overlying K5d unit at Chirisa (17026/44//S, 

Gokwe District, have yielded the following therapsids: Endothiodon, Prorubidgea, Dicynodon, 

Synostocephalus, Eurychororhinus, Tropidostoma, Cryptocynodon as well as other 

therocephalian and gorgonopsian species (Bond 1973; NHMB records). Cryptocynodon and 

Eurychororhinus have subsequently been considered incertae sedis (Cluver and King 1983; King 

1988). The therapsid genera found at Chirisa, Chidoma Hill and Sengwa Mine have been 

recorded from the Pristerognathus, Tropidostoma, Cistecephalus and Dicynodon Assemblage 

Zones of the Beaufort Group in South Africa. 

At this stage it is difficult to correlate the sites that have yielded vertebrate fossils in Zimbabwe 
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with biozones in South Africa, as collecting has been haphazard and sporadic. Such an exercise 

is beyond the scope of this project, but should be the subject of future investigation. As a result 

the stratigraphic relationship between the Hwange fossil beds and other "Beaufort" fossil sites in 

Zimbabwe could not be adequately addressed at this stage. However, based on the presence of 

dinocephalian therapsids, the Hwange and Gunyanka's Kraal sites can be correlated together and 

the rest appear to be younger. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Material 

Therapsids were first discovered in the Madumabisa Mudstones at Hwange in 1985, during routine 

coal exploration by Mr T Gumbi ofthe Wankie Colliery Company. Subsequent studies undertaken 

by T Gumbi in 1985-87, and by Raath, Plowes and Barber in 1985 and 1986, recorded a number of 

sites in addition of those found earlier. The fossil bed was brought to the attention of the 

Palaeontology Department at the Natural History Museum, Bulawayo, (NHMB), which is the only 

institution with the mandate to preserve palaeontological heritage in Zimbabwe. Messrs R. Matora 

and E. Lendwaba, the then curators, visited the study area in 1988. Rubidge and Lepper were also at 

the study area in 1997. 

As a result of the fieldwork undertaken at Hwange, a large number of therapsid fossil remains, 

including the specimen described below, were collected and reposited at NHMB. Emphasis was 

placed on collecting loose surface material that was considered vulnerable to erosion. The collection 

includes disarticulated skeletons with postcrania1 material being the most abundant, but because 

skulls are generally the most diagnostic part of the skeleton they are the only elements used in this 

study. 

The collection has been partially prepared at NHMB, and each individual bone element allocated a 

separate registration number regardless of its locality and association with other parts. As a result, in 

excess of600 specimens have been catalogued (NHMB1407-2003, NHMB2143-2146). The number 
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of catalogued entries could have been reduced if it were feasible to assign one number to all elements 

associated with an individual animal, a task that is not possible because of the disarticulated and 

scattered preservation of the bones. 

Of all the therapsid material collected from Hwange, only dinocephalians have been positively 

identified. The dinocephalian specimens present in the collection at the NHMB are: 

Anteosauridae 

NHMB2141 - Portion of the left maxilla bearing a large canine and the first postcanine 

(Lepper et al. 2000; Figure 6a). 

Tap inocephalidae 

NHMB 1556 - The best-preserved skull in the collection and the subject ofthis dissertation 

(Figures 7, 8, 9, 10). Both the snout and lower jaw are missing. The right lateral side was 

compressed during fossilisation and as a result the whole side is deformed. The ventral side 

was modified by abrasion after burial and is also poorly preserved. The dorsal and occipital 

regions are intact but have been greatly weathered. 

NHMB2002 - Posterior portion of a skull roof plus two badly damaged skull fragments. The 

preorbital region has been lost, and the ventral, occipital and left lateral sides are damaged. 

NHMB2146 - Dorsal portion of a tapinocephalid skull roof with pachyostosed postorbital 

bars (Lepper et al. 2000). 
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NHMB2142 - Anterior portion of the lower jaw with a pair of incisor teeth. All the teeth 

have a prominent heel and talon and the jaw belongs either to a tapinocephalid or a 

titanosuchid (Lepper et al. 2000; Figure 6b). 

NHMB2143 - A complete incisor tooth with a talon, heel and root of a tapinocephalid or 

titanosuchid dinocephalian (Lepper et al. 2000; Figure 6c). 

3.2 Methods 

3.2.1 Specimen Preparation 

NHMB 1556, which consists of an incomplete dinocephalian skull, was prepared using air and 

electric powered engravers, hammer, chisel and punches following the method described by Rixon 

(1976). The air-powered engraver (pneumatic tool) has a hard conical stylus fitted with a tungsten-

tip, which removes the matrix from the bone. The pneumatic tool operates with a reciprocal motion 

of the stylus and the rate of matrix removal is controlled by adjusting the amount of air, which in turn 

controls the number of reciprocal motions per unit time. For best results the stylus was held at an 

angle on or near the edge of the specimen being prepared rather than digging a hole in the centre of 

the matrix. A hammer, chisel and punches were used in the depressions where there was excess 

matrix to a point that the air and electric engraver could not produce satisfactory results, particularly 

in the temporal fenestra and orbit. During preparation, ethanol was used to wet the specimen in order 

to help to distinguish between bone and matrix, while Trinepon 6 was used as an adhesive to repair 
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breaks. 

Figure 6. Photographs of some the better preserved dinocephalian fossils from Hwange. A, left 

maxilla of an anteosaurid dinocephalian specimen NHMB2141 (stereopair); B, tapinocephalid 

specimen NHMB2142 showing dorsal view of anterior portion of lower jaw (stereopair), C, 

tapinocephalid or titanosuchid incisor tooth specimen NHMB2143. Abbreviations : t - talon; h 

heel. Scale bars =1 cm. (From Lepper et al. 2000). 
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Because of lack of definition between bone and matrix, it was found necessary to stain the bone in 

order to make the sutures stand out more clearly (Rubidge and van den Heever 1997). For this 

procedure the bone surface was etched with a 10% solution of hydrochloric acid and then rinsed 

thoroughly in running water. A solution of Alizarin Red S in 4% potassium hydroxide was then 

applied to the fossil and resulted in fossil bone assuming a deep purple colour. This procedure 

enhanced the contrast between bone and matrix, and facilitated tracing out sutures. Applying a weak 

hydrochloric acid solution and then rinsing in water could reverse the staining process. 

3.2.2 Phylogenetic analysis 

Twelve genera of the Biarmosuchia, Dinocephalia and Gorgonopsia (Hopson and Barghusen 

1986; Hopson 1991; Kemp 1988; Rowe 1988) were used in a cladistic analysis. Because the 

interrelationships of the dinocephalian taxa were being investigated the following genera were 

used as the ingroup: Australosyodon, Jonkeria, NHMB 1556, Avenantia, Riebeeckosaurus, 

Struthiocephalus, Moschops, Criocephalus and Tapinocephalus. The dinocephalian genera used 

are the best-preserved representatives of the African families Anteosauridae, Titanosuchidae and 

Tapinocephalidae (Boonstra 1969). Styracocephalus, the only described genus of the 

Styracocephalidae, was not considered for the analysis because it is poorly preserved (Hopson 

and Barghusen 1986; King 1988; Rubidge and van den Heever 1997). Biarmosuchus, the most 

basal therapsid (Hopson and Barghusen 1986; Hopson 1991) was used as an outgroup. 

Characters were derived from specimen examination and from the literature. As indicated, only 
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cranial characters were utilised because "it is the only portion of the skeleton that is adequately 

known in most groups and it is the portion with which we have the greatest familiarity" (Hopson 

and Barghusen 1986:84). 

Specimens were examined at the South African Museum (SAM), Cape Town, and Bernard Price 

Institute for Palaeontological Research (BPI), Johannesburg. Although all the specimens under 

consideration were examined, there were some limitations because in some cases preparation was 

incomplete while other specimens were poorly preserved. In some specimens, the lower jaw, 

dentition, braincases, snout and occipital regions were either missing or poorly preserved. 

Characters were coded according to Wiley et al (1991) as: 

o primitive state 

derived state 

2 more derived 

3 most derived 

? not preserved or where figures and descriptions were inadequate to allow 

confident coding 

Twenty-six morphological characters were produced and a data matrix consisting of 

twelve taxa was constructed (Appendix I, 2). The characters were subjected to a 

maximum parsimony analysis using PAUP 3.1.1 (Wiley et al1991). Heuristic search 

algorithm and strict consensus were then applied. Character fitness and strength of the 
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hypotheses were tested by MacClade 3.07 and decay analysis respectively. 
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CHAPTER 4: DESCRIPTION OF SKULL NHMB 1556 

Of all the tapinocephalid dinocephalian skulls in the collection at the NHMB, specimen NHMB 1556 

is the most complete and best preserved, and is in fact the most complete dinocephalian skull so far 

collected from Zimbabwe. NHMB 1556 was therefore chosen for description and study because there 

is a stronger possibility to be able to compare it meaningfully with dinocephalians from other 

countries. 

The skull is almost complete lacking only the lower jaw and anterior tips of the snout and palate. 

Because of lateral compression, the right lateral side and left palatal region have been crushed 

medially to the extent that no skull part could be recognised. Although the braincase was preserved, 

it was badly damaged such that most of sutures could not be distinguished. Post fossilisation cracks 

are present on the occipital and left lateral sides, indicating that the specimen was exposed for a long 

period before it was collected. 

The shape of the cranial roof of NHMB1556 resembles those of the advanced tapinocephalid 

dinocephalians in that the intertemporal region is moderately wide and the posterodorsal portion of 

the skull roof is moderately pachyostosed. Because of the pachyostosis, weathering, deformation and 

abrasion, the sutures and surface features are not readily apparent, but as a result of staining and 

careful study it has been possible to trace some of these. 
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4.1 Skull roof 

The anterior portion ofthe snout that includes the septomaxilla and external nares is missing and the 

posterior parts of the premaxilla, nasal and maxilla are the only bones preserved in the preorbital 

region (Figure 7). Only the posterior-most part of the premaxilla is preserved and this is present as a 

thin pointed wedge extending down the midline between the nasals. This wedge pinches out 

posteriorly at a point in front of the orbit and at the same level where the maxilla, prefrontal and 

nasal meet, but it does not reach the frontal, just as in other tapinocephalid dinocephalians (Boonstra 

1969). 

The nasal extends as a relatively thin bone down the midline of the snout (Figure 7). On the 

anteromedial side, it is in contact with the premaxilla whereas laterally it forms a long sutural contact 

with the maxilla anteromedially and the prefrontal posteromedially. Posterodorsally it has a short 

anteromedially pointed suture with the frontal on the midline. From its posterior suture with the 

frontal, the nasal surface slopes gently anteriorly and then levels off on the snout, thereby defining a 

gentle slope on the cranial-facial transition. 

Because of erosion the surface texture of the maxilla could not be determined with certainty, 

although it was probably smooth. In lateral view, the maxilla forms most of the preorbital region of 

the skull (Figure 8). Dorsally, it has a long lateral contact with the nasal and it meets the prefrontal 

and jugal posteriorly just in front of the orbit. Posterodorsally, it sends a short, thin and tapering 

lappet between the nasal and prefrontal. The suture between the maxilla and lachrymal could not be 
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determined. 

Figure 7. Dorsal view ofNHMBI556. Seale bar =10 em 
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Figure 8. Lateral view ofNHMB1556. Scale bar =10 cm. 
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The prefrontal is a relatively large bone that makes up at least half of the dorsal border of the orbit 

(Figure 8). It is in contact with the nasal on its medial side and forms a curved suture with the frontal 

posteriorly from the centre of the dorsal border of the orbit. From the anterior margin of 

the orbit, the prefrontal extends anteriorly for short a distance to contact the maxilla and terminates 

in a blunt point. The suture with the lachrymal could not be determined with the result that it was not 

possible to ascertain the relationship between the prefrontal and lachrymal. 

The frontal and parietal constitute most of the skull roofin dorsal view (Figure 7). The frontal has an 

almost rectangular exposure on the skull roof, and together with its mate form a flat dorsal surface 

between the orbit and temporal fenestra. Anteriorly it forms an anteromedially pointed suture with 

the nasal on the midline. This suture continues laterally to the orbital margin in a semi-circle so that 

the prefrontal forms a rounded contact with the frontal. Dorsolaterally, most of the contact between 

the frontal and postfrontal is not clear but the former bone cuts off the latter from the rim of the 

temporal fenestra. A thin tongue ofthe frontal enters the dorsal border of the orbit and excludes the 

prefrontal from contact with the postfrontal. Posterodorsally, the frontal forms a posteromedially 

pointed suture with the parietal on the midline and it does not reach the pineal foramen. 

The parietal is a complex bone that forms the greater part ofthe intertemporal region including the 

posterior edge of the skull roof (Figure 7, 8). Anterodorsally it forms an anteromedially pointed 

suture with the frontal on the midline. From the anteriormost point on the midline, the two arms of 

the parietal form an almost flat surface, which slopes gently posterodorsally. As a result of 

weathering, the suture between the parietal and postparietal is not clear (Figure 7). Anteroventrally 
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the parietal meets the postorbital and postfrontal, and posteroventrally it underlies the squamosal. 

The parietal therefore is the dominant bone on the border of the temporal fenestra as it makes up 

more than half ofthe dorsal and posterodorsal margins. A pineal foramen is situated in the centre of 

the parietal just in front ofthe posterodorsal margin of the temporal fenestra (Figure 7). As a result of 

erosion on its rim it is not possible to ascertain whether it was situated on a ridge or boss as in 

Avenantia and Delphinognathus (Boonstra 1957, 1969; King 1988). 

Although the sutures of the postfrontal are not clear, it appears to meet the frontal dorsally, 

postorbital ventrally and to have a short contact on the parietal posteriorly. It also contributes to the 

posterodorsal border ofthe orbit, but the extent is uncertain as the suture with the postorbital could 

not be ascertained. 

The postorbital is a relatively thin bone when compared with other tapinocephalid genera (Boonstra 

1969; King 1988; Rubidge 1991), and it forms the posterior and anterior border of the orbit and 

temporal fenestra respectively (Figure 8). This bone extends almost vertically between the orbit and 

the temporal fenestra, and thins dorsoventrally. The dorsal section of the left postorbital was lost 

after fossilisation and its relationship with the postfrontal cannot be established. The right postorbital 

is the only bone that was not distorted by compression in that region and it meets the postfrontal in 

an almost horizontal suture halfway up the postorbital bar. Posterodorsally it meets the parietal on 

the dorsal margin of the temporal fenestra and ventrally it extends slightly below the orbit where it 

forms an anterodorsally curved suture with the squamosal and jugal (Figure 8). 
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The squamosal is a complex bone that forms the ventral, posterior and posterodorsal border of the 

temporal fenestra (Figure 8). A unique feature of specimen NHMB 1556 is the presence ofa groove 

on the squamosal immediately below its dorsal suture with the parietal. The groove is curved 

dorsoventrally and it extends into the temporal fenestra from the posterior edge of the cranial roof. 

From the anteroventral edge of the temporal fenestra the squamosal extends for almost 75% of the 

postorbital bar before it meets the jugal in a vertical suture (Figure 8). 

As a result of weathering, the anteroventral suture of the jugal with the maxilla could not be 

established with certainty. There are indications that it forms a short broad lappet anteromedially 

(Figure 8). Posteromedially it sends a short thin lappet along the suture between postorbital and 

squamosal. From the tip ofthe lappet, the jugal meets the postorbital dorsomedially up to the ventral 

margin of the orbit, and the squamosal ventromedially down to the lateral edge of the skull. The 

jugal makes up the entire ventral border of the orbit. Because the lachrymal could not be identified 

the relationship between the jugal and the former could not be determined. 

The temporal fenestra is relatively large as compared with that of most advanced tapinocephalid 

dinocephalians, where it has been secondarily reduced by pachyostosis (Boonstra 1969,1971; Kemp 

1982). The fenestra is spherical with the dorsoventral diameter slightly larger than the 

anteroposterior diameter. As a result of a relatively large temporal fenestra, the intertemporal region 

is narrow. The squamosal, parietal and postorbital provide a large area for muscle attachment of the 

adductor jaw musculature when compared with the corresponding bones of most other 

tapinocephalid dinocephalians. 
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4.2 Occiput 

The section on the right side of the occiput consisting of the squamosal, quadrate and 

opisthotic is not preserved. As preserved the occipital plate is roughly semi-circular and is 

twice as broad as high (Figure 9). As in most tapinocephalid dinocephalians, the dorsal edge 

ofthe occipital plate lies further posteriorly than the ventral edge and as a result the occipital 

plate slopes anteroventrally. The sutures between bones at the centre of the occiput are 

indistinguishable, as is the situation in most other tapinocephalid dinocephalians, but in this 

specimen the problem is compounded by the intensive erosion suffered by the occipital 

regIon. 

The squamosal and parietal have been described in the skull roof section but as both bones are 

partly visible in the occipital view (Figure 9), they are briefly described here. The squamosal 

and parietal meet in a zig-zag suture and contribute equally to the lateral edge ofthe occiput. 

A thin and shallow, dorsoventrally oriented triangular external auditory meatus is situated in 

the lower part of the squamosal extending dorsally as far as the region above the posttemporal 

fenestra. Ventrally the squamosal is in contact with the lateral and dorsal surface of the 

quadrate, but its relationship with the quadratojugal could not established as the latter is not 

preserved. The squamosal meets the opisthotic ventromedially and the tabular dorsomedially. 

Together with the opisthotic, quadrate and basioccipital, the squamosal forms the ventral edge 

of the occipital plate. 
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Figure 9. Occipital view ofNHMB1556. Scale bar = 10 cm 
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From its ventral suture with the squamosal the parietal forms the dorsolateral edge of the 

occiput. As a result of extensive erosion its relationship with other bones other than the 

squamosal could not be established. The only determinable sutures of the tabular are those 

between it and the squamosal ventromedially and parietal dorsomedially, and as a result its 

relationship with other bones could not be established. A posttemporal fenestra lies on the 

tabular along its ventral suture with the opisthotic medial to the squamosal. 

The basioccipital is relatively large as compared to other tapinocephalid dinocephalians (Boonstra 

1969). It is more visible in the palatal region and described more fully later. 

The sutures of the opisthotic, basioccipital, exoccipital, supraoccipital, parocciptal and postparietal 

are indeterminable and therefore the relationship of each bone with others could not be established. 

Although the sutures of the bones occupying the centre of the occipital plate are indeterminable, 

ridges and depressions are prominent. A median ridge runs dorsoventrally from the dorsal edge of 

the occipital plate until it meets the foramen magnum. On either side ofthe ventrally oriented central 

ridge, which extends from the dorsal occipital edge to the foramen magnum, is a triangular 

depression oriented transversely from the dorsolateral occipital edge to the foramen magnum. A 

second ridge, broader than the central one, extends transversely from the dorsolateral edge of the 

parietal down to the foramen magnum. Ventral to the second ridge lies a shallow depression oriented 

horizontally and extending from the ventrolateral side of the squamosal to the foramen magnum. 
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4.3 Palate 

The anterior tip of the palate medial to the internal naris is not preserved and the 

anteroventral parts present are the incomplete maxilla, palatine and vomer (Figure 10). The 

vomers are paired elongated and flattened bones separated by a suture on the longitudinal 

ridge extending the entire length of the preserved section down the midline. Each vomer 

forms the medial and posterior border of the internal naris, and continues posteriorly from 

the posterior margin of the internal naris down to the interpterygoidal vacuity, underlying 

the palatine and pterygoid respectively in the process (Figure 10). Posteriorly the vomer 

forms the anterior margin of the interpterygoidal vacuity whereas in most other 

tapinocephalid dinocephalians it does not meet the interpterygoidal vacuity as its posterior 

suture with the pterygoid lies anterior to the interpterygoidal vacuity (Boonstra 1936, 1957, 

1969; Rubidge 1991). 

The left palatine is crushed such that it was not possible to ascertain its relationship with other bones. 

The right palatine is a complex bone, which is in contact with the vomer, maxilla, pterygoid and 

ectopterygoid. From its posteroventral suture with the pterygoid and ectopterygoid, the palatine 

extends forward along the medial surface of the maxilla to form the lateral border of the internal 

naris (Figure 10). It continues posteriorly from the posteroventral margin of the internal naris until it 

meets the pterygoid medially where it ventrally overlies the vomer. A raised surface is present on the 

posteroventral region of the palatine towards the midline ofthe palate, indicating that a palatine boss 

may once have been present but because of the extent of bone erosion it is impossible to ascertain 
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whether the raised surface was dentigerous. Palatine bosses are present in all described 

dinocephalians but in tapinocephalid dinocephalians palatine teeth have been found only in 

Struthiocephalus and Tapinocaninus (Boonstra 1936,1953, 1957; Rubidge 1991). 

Figure 10. Ventral view ofNHMBI556. Scale bar =10 cm. 



., 

48 

v-------"tI'-_+ 

iptv----,f:..--__ ~ 

-+-=-t--- pal 

-I----mx 

" "...":: \ ,-
-=.---:<',--,-, -/-W" b---- I pt 

I . 
. ' .. I . . ':: 

'. 
-t.-i---ect 

-"'r;-- sq 

...... 
. ; ,', : ..... :. 

: .' .. ;;.,. .. .:.., . ..;,..'~. L...L...O-.......+-c--'-'!~-""T-"-<"'-: .. " . 
...... ·t-·:-.···:.....:...-'-""~-I 

fmag boc fjug op earn 

Figure 10. Ventral view ot'NHMBI55G. Scale bar = 10 em. See page xii for abbreviations. 



49 
The maxilla has been described under the skull roof, but a small portion of it is preserved in the 

ventral region (Figure 10). It is in lateral contact with the palatine anteromedially and ectopterygoid 

posteromedially. Its posteroventral relationship with other bones could not be detennined although it 

ends in sharp point, medial to the ectopterygoid. 

The ectopterygoid is a small bone bounded anteroventrally by the palatine and laterally by the 

pterygoid and maxilla towards the centre and lateral margin ofthe palate respectively (Figure 10). Its 

posteroventral suture is indeterminable and as a result its relationship with the jugal could not be 

established. 

The left pterygoid is crushed with the result that its configuration and relationship with other bones is 

indeterminable. The anterior process of the right pterygoid meets the palatine just in front of a raised 

surface. The lateral flange of the pterygoid stretches transversely across the palate to meet the 

ectopterygoid anterolaterally. The suture between the pterygoid and ectopterygoid is not clear but it 

appears that the former bone forms the entire lateral contact ofthe latter. The quadrate ramus of the 

pterygoid was not preserved and, as a result of weathering the surface features of the pterygoid 

posterior to the lateral process are indeterminable. A moderately wide interpterygoidal vacuity is 

present on the anteroventral midline of the palate and it extends anteriorly into the vomer. 

Posteroventrally, the pterygoid has a curved anteroventral and lateral suture with the basisphenoid. 
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4.4 Braincase 

The ventral surface of the basicranium has been damaged and much of the original bone surface has 

been removed. The basisphenoid is a relatively large semi-circular bone, and it meets the pterygoid 

laterally and anteroventrally and the basioccipital posteriorly (Figure 10). A prominent transverse 

suture behind the posterior border of the fenestra ovalis marks the contact of the basisphenoid with 

basioccipital (Figure 10). 

The spherical fenestra ovalis lies on the posterolateral side ofthe basisphenoid medial to the ventral 

orbital foramen (Figure 10). From the margin of the basisphenoid, the fenestra ovalis extends 

obliquely posteriorly to the posteroventral suture ofthe basisphenoid. As a result the basisphenoid 

forms more than half of the margin of the fenestra ovalis, the basioccipital forming the remaining 

portion. 

The basioccipital forms the ventral portion of the occipital condyle from where it extends 

anteroventrally to meet the basisphenoid in a transverse suture halfway along the fenestra ovalis 

(Figure 10). Its lateral relationship with other bones could not be established. A foramen jugularis is 

present on the posterolateral side of the basioccipital and it is orientated laterally. 

Because of weathering the detailed relationship of the opisthotic, prootic, paroccipital and 

supraoccipital could not be discerned. From its lateral contact with the basioccipital, however, 

the opisthotic can be seen to extend transversely to meet the squamosal posterolaterally and 
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quadrate anterolaterally. Its relationship with the quadrate ramus of the pterygoid could not be 

established because the latter bone was not preserved. Anteroventrally the opisthotic meets the 

pterygoid medial to the fenestra ovalis. 

The sutures of the bones that enclose the posterior wall of the braincase are not discernible. The 

basioccipital forms most of the ventral margin of the foramen magnum. The exoccipital, 

paroccipital, and opisthotic contribute to the ventral and lateral borders of the foramen magnum 

but the level of contribution of each bone could not be established with certainty because of 

weathering. 

In lateral view, the postorbital obscures most of the lateral region of the braincase and little of the 

interorbital region is seen through the orbit. In the absence of parasagittal and sagittal sections, 

very little of the lateral and dorsal sections of the braincase is exposed. The portion exposed 

through the orbit has been damaged to an extent that most of the sutures cannot be observed. The 

bones that could be identified are the epipterygoid, sphenoidal complex, pterygoid, opisthotic and 

prootic. The epipterygoid descends probably from the orbitosphenoid to meet the pterygoid and 

basisphenoid above the fenestra ovalis. It meets the prootic dorsolaterally and the opisthotic 

ventrolaterally. It also meets the pterygoid ventrally and the frontal dorsally. The sutures of the 

bones of the sphenoid complex parasphenoid, presphenoid and septosphenoid could not be 

distinguished. According to Boonstra (1968), sphenoidal sutures of dinocephalian therapsids 

close at maturity and since this suture could not be distinguished it is probable that NHMB 1556 

was a mature animal when it died. 



52 
CHAPTER 5: DISCUSSION 

Several classification schemes of the Dinocephalia have been proposed but those of 

Boonstra (1969, 1972) and King (1988) have been considered to be the most useful 

for this study. King's (1988) classification scheme differs from other schemes (Boonstra 1963a,b, 

1969,1972; Hopson and Barghusen 1986; Kemp 1982) in the rank of taxa and number of 

families, subfamilies and tribes. The other schemes recognised five families (Anteosauridae 

including Brithopodidae, Estemmenosuchidae, Titanosuchidae, Styracocephalidae and 

Tapinocephalidae) and four tapinocephaline subfamilies (Struthiocephalinae, Moschopinae, 

Riebeeckosaurinae and Tapinocephalinae), but King (1988) considered three families 

(Estemmenosuchidae, Brithopodidae and Titanosuchidae), four subfamilies (Brithopodinae, 

Anteosaurinae, Titanosuchinae and Tapinocephalinae) and three tapinocephaline tribes 

(Struthiocephalini, Riebeeckosaurini and Tapinocephalini). While the classification scheme of 

King (1988) considered as invalid the families Tapinocephalidae and Styracocephalidae, and 

subfamily Moschopinae, and also reduced the rank of Boonstra's (1969) subfamilies to tribe, it 

retained most of the characters used by Boonstra (1969) to identify the taxa. Although King's 

(1988) classification is the most recent, Boonstra's (1969, 1972) classification schemes are the 

most preferred for this study because the former is considered to be restrictive. In this dissertation 

the Tapinocephalidae is therefore considered to have four subfamilies, namely: 

Struthiocephalinae, Moschopinae, Riebeeckosaurinae and Tapinocephalinae. 

As was pointed out in Chapter 1, the identification of dinocephalian families (Boonstra 1963b, 

1969, 1972; Hopson and Barghusen 1986; Kemp 1982; King 1988) is based on: 
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1. Presence and size of heels on the incisor and postcanine teeth 

2. Presence or absence of canine tooth. 

3. Intermeshing of teeth. 

4. Degree ofpachyostosis 

5. Anteroventral rotation of occiput 

Teeth and snout are not preserved in the Zimbabwean specimen and therefore characters 1 to 4 

could not be tested. 

As NHMB 1556 has a relatively wide intertemporal region, moderately pachyostosed 

posterodorsal portion of skull roof and a pronounced anteroventral rotation of the occiput, it is 

considered to be a tapinocephalid dinocephalian (Boonstra 1969; Hopson and Barghusen 1986). 

Boonstra (1969; Table 2) subdivided the Tapinocephalidae into four subfamilies 

(Struthiocephalinae, Moschopinae, Riebeeckosaurinae and Tapinocephalinae) based on: 

1. length of snout 

2. size of skull 

3. degree of pachyostosis 

4. width of intertemporal region 

As the snout ofNHMB 1556 is not preserved, no deductions could be derived from the first 

character. According to Boonstra (1969:33) "size of skull is a function of age and also sex". 

Similarly, pachyostosis as a character is variable within the subfamilies depending on age, 

normal or morbid physiological processes, and possibly sex (Boonstra 1957, 1969; King 1988). It 
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therefore follows that characters 2 and 3 cannot be reliably used. 

The subfamily Riebeeckosaurinae is characterised by a narrow intertemporal (Boonstra 1969; 

King 1988; Table 2,4), while all the others have a wide intertemporal region. As specimen 

NHMB 1556 has a relatively broad intertemporal region it is not considered to be a 

riebeeckosaurine. 

For the remaining tapinocephalid subfamilies (Struthiocephalinae, Moschopinae and 

Tapinocephalinae), characters in the literature (Boonstra 1969; Hopson and Barghusen 1986; 

King 1988) are not of use in order to assign NHMB 1556 a subfamily. Comparisons were 

therefore carried out between NHMB1556 and tapinocephalid dinocephalians in the South 

African Museum, Bernard Price Institute (Palaeontology) and National Museum in 

Bloemfontein, the only South African institutions which keep dinocephalian holotypes. 

Tapinocaninus, the most primitive tapinocephaline (Rubidge 1991), whose subfamily was not 

specified in the original description, was also considered in the comparative analysis. More 

recently, Ivachnenko (2000) has included Tapinocaninus together with Ulemosaurus in the 

family Ulemosauridae. 

As in Avenantia, Delphinognathus and Keratocephalus, the pineal foramen ofNHMB 1556 is 

anteriorly situated. This area is weathered in NHMB 1556, but in Delphinognathus and Avenantia 

the boss or ridge is so prominent (Boonstra 1957, 1969; King 1988) that one would expect to see 

a remnant in the Zimbabwean specimen if such a structure was once present. 
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Boonstra (1971 :21) stated "In the Tapinocephalidae the greatly varying pachyostotic thickening 

of the skull bones affects the nature of the temporal fenestra, the adductor chamber and the 

degree of participation of the bones forming the borders of the fenestra". The size and shape of 

the temporal fenestra and the bones that form its borders are therefore of diagnostic value. 

Avenantia, NHMB 1556, Delphinognathus and Struthionops have a slender postorbital which 

thins dorsoventrally in the last three genera, but in other tapinocephalid genera, the postorbital is 

broad and massive where it occupies most of the postorbital bar. Because the postorbital and 

posttemporal bars ofNHMBI556, Avenantia, Delphinognathus and Struthionops are relatively 

slender, the temporal fenestra of these genera has a relatively greater anteroposterior diameter 

than other tapinocephalines except Tapinoc(1l7inus (Boonstra 1953a, 1956, 1957, 1969; King 

1988; Rubidge 1991). Although Tapinocaninus has a broad postorbital, its temporal fenestra has 

a relatively large anteroposterior diameter (Rubidge 1991). In addition to having a temporal 

fenestra with a large anteroposterior diameter, the temporal opening ofNHMB 1556, 

Tapinocaninus, Avenantia, Delphinognathus and Struthionops is dorsally situated, resulting in a 

narrow intertemporal region. Because of the large temporal fenestra, narrow intertemporal region 

and reduced pachyostosis, there is a large area for muscle attachment. According to Hopson and 

Barghusen (1986), tapinocephalid dinocephalians with a large area for muscle attachment and 

narrow intertemporal region are considered to be primitive because the large area for muscle 

attachment was eliminated from the temporal roof in advanced tapinocephalines as the dorsal 

surface became more expanded due to pachyostosis. 

The degree of participation of the bones that form the posterior margin of the temporal fenestra 
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in NHMB 1556 differs from that of other tapinocephalid dinocephalians. In NMHB 1556 the 

suture between the squamosal and parietal medial to the posterior margin of the temporal fenestra 

is low as compared to other tapinocephalid dinocephalians. In Tapinocaninus the suture is 

slightly higher than that ofNHMB 1556 but lower than that of other tapinocephalines. Because of 

the low contact between the squamosal and parietal in NHMB 1556, the parietal occupies a large 

area (about 50%) of the dorsal and posterior borders of the temporal fenestra. 

The squamosal ofNHMB 1556 is unique among all the known tapinocephalines in that it 

possesses a groove below its dorsal contact with the parietal. The groove extends inside the 

temporal fenestra from the lower squamosal-parietal suture. 

As in all the described tapinocephaline genera, the occipital region ofNHMB 1556 slopes 

anteroventrally and is broader than high (Boonstra 1956, 1957; King 1988; Rubidge 1991). It is, 

however, more compressed laterally in Tapinocaninus, Moschops, Criocephalus and 

Tapinocephalus, and these genera have a deeper external auditory meatus as compared to NHMB 

1556. 

The vomer ofNHMB 1556 extends posteriorly as far as the interpterygoidal vacuity but in all 

known tapinocephalines the two arms of the pterygoid meet on the midline above the anterior 

border of the interpterygoidal vacuity, thereby separating the interpterygoidal vacuity from the 

vomer. As in Tapinocaninus, Moschops, Criocephalus, Tapinocephalus, the vomer ofNHMB 

1556 has a midline ridge. 
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The posteroventral and anteroventral region of the palatine and pterygoid respectively are on a 

raised surface indicating a possibility of a boss on both bones. Because of weathering it was not 

possible to determine whether the raised palatine surface bore teeth, as Tapinocaninus and 

Struthiocephalus (Boonstra 1953; Rubidge 1991). 

With reference to the braincase, the basisphenoid ofNHMB 1556 and Tapinocaninus is almost 

semi-circular anteroventrally whereas it is pointed in other tapinocephalid dinocephalians 

(Boonstra 1936, 1953, 1955,1957, Rubidge 1991). The shape of the basisphenoid of 

Tapinocaninus and NHMB1556 is however slightly different in that in the former it is narrow 

and there is a depression on the anteroventral midline in the latter. 

Based on these differences it appears that NHMB 1556 is a new type of tapinocephalid 

dinocephalian and it is considered to be a primitive form because of the characters: relatively 

narrow intertemporal region, large area for muscle attachment and reduced pachyostosis. 

Differentiating features which characterise the specimen as a new genus are: squamosal 

possessing a groove below its dorsal contact with the parietal on the posterior border of the 

temporal fenestra, a low suture between the squamosal and parietal on the posterior border of the 

temporal fenestra, vomer forming the entire anterior border of the interpterygoidal vacuity, and a 

semi-circular basisphenoid with depression on the midline anteriorly. Because of the very 

incomplete nature of the skull it was not possible to assign NHMB 1556 to a tapinocephalid 

subfamily, and it was also decided not to erect a new genus until better material becomes 

available. 
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CHAPTER 6: PHYLOGENETIC ANALYSIS 

Several authors have attempted to address the phylogenetic relationships of the dinocephalian 

families. Boonstra (1936a) analysed the interrelationships of tapinocephalid dinocephalian 

families and their relationship with titanosuchid dinocephalians. In 1963b, Boonstra looked at the 

relationships of the different dinocephalian families, but also included the interrelationships of 

different genera. Several cladistic schemes have since been proposed (e.g. Kemp 1982; Hopson 

and Barghusen 1986; King 1988; Rubidge 1991; Rubidge and van den Heever 1997) but these 

have addressed only the dinocephalian families and subfamilies. Rubidge (1994) provided a 

hand-crafted cladogram suggesting possible relationships of various anteosaurid genera, but apart 

from this no phylogenetic analyses to obtain resolution within families have been undertaken. 

Earlier in this dissertation (page 16) it was pointed out that it appears that there may be too many 

tapinocephalid genera, and that the Tapinocephalidae requires taxonomic revision. During the 

course of this study I have been able to recognise several well-defined tapinocephalid genera, and 

as it appears that specimen NHMB 1556 is a new genus manifesting different characters it was 

decided to undertake a computer based phylogenetic analysis using P A UP 3.1.1. 

The maximum parsimony analysis recovered two trees (Figure lla,b) with a length of 54 steps, 

consistency index (CI) of 0.778, CI excluding uninformative characters of 0.769, homoplasy 

index (HI) of 0.222, HI excluding uninformative characters of 0.231, retention index (RI) of 

0.854 and a rescaled consistency index (RC) of 0.664. The strict consensus topology (Figure 11 c) 
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is the least preferred because there is no resolution on the phylogenetic positions of the derived 

taxa Struthiocephalus, Moschops, Criocephalus and Tapinocephalus. 

In both trees (Figure lla, b) NHMBl556 is closely related to Avenantia and both genera are 

considered the least derived tapinocephalid dinocephalians. All the tree topologies show that 

Anteosauridae and Tapinocephalidae are the most primitive and most derived dinocephalian 

families respectively, which agrees with literature (Boonstra 1969; Hopson and Barghusen 1986; 

Rubidge and van den Heever 1997). Australosyodon came out as the most primitive member of 

the Dinocephalia, but there are contrasting hypotheses on the most derived member as both 

Criocephalus and Tapinocephalus are jointly considered as the most derived. In regard to 

tapinocephalid dinocephalians, the analysis supported the view that Tapinocaninus is the most 

primitive (Rubidge 1991) and both Criocephalus and Tapinocephalus the most derived. 

Tree decay analysis (Bremer 1988) indicated that the hypothised phylogenetic positions of 

dinocephalians are reasonably supported, requiring at least two steps to break. The 

interrelationships among the tapinocephalines are however less stable, collapsing only after one 

step. The proposed phylogeny of the tapinocephalines can be improved with more taxa and 

characters. The increase in characters is largely limited by the poor state of preservation of the 

fossils. 
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Figure 11. Interrelationships of dinocephalian genera. A, first tree, B, second tree; C, consensus 

tree. 
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CHAPTER 7: CONCLUSION 

Although the tapinocephalid Criocephalus has been known from Zimbabwe more than half a 

century (Boonstra 1946, 1968, 1969; King 1988) only very recently has the presence of a diverse 

dinocephalian fauna from the Madumabisa Mudstone Formation of Zimbabwe been recognised 

(Lepper et al. 2000). The recognition of a primitive tapinocephalid dinocephalian in Zimbabwe is 

further proof of the existence ofa diverse dinocephalian fauna. Although the remains of this 

dinocephalian are fragmentary, further fieldwork will undoubtedly reveal more specimens and 

help to fill the biogeographic distribution gap, which exists between the dinocephalians of 

Gondwana and Laurasia. 

Cladistic analysis confirmed that Tapinocaninus is the most primitive tapinocephaline 

dinocephalian (Rubidge 1991), but there was no phylogenetic resolution on the advanced forms 

as Criocephalus and Tapinocephalus are jointly considered the most derived forms. The 

Zimbabwean specimen and Avenantia are more derived than Tapinocaninus but possess the 

following primitive tapinocephaline characters: narrow intertemporal region and large surface 

area for muscle attachment. However NHMB 1556 differs from other primitive forms in that its 

squamosal has a groove below its dorsal contact with the parietal on the posterior border of the 

temporal fenestra, the suture between the squamosal and parietal on the posterior border of the 

temporal is low, vomer forms the anterior margin of the interpterygoidal vacuity and the 

basisphenoid is semi-circular anteroventrally. 
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The available material strongly suggests that NHMB 1556 represents a new taxon, perhaps even 

at generic level. Because of the incomplete nature of the skull it was however decided not to 

assign NMHB 1556 to a tapinocephalid subfamily and was also considered undesirable to 

formally erect a new genus for it until more and better-preserved material becomes available. 

------------------......... 
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APPENDIX 1. LIST OF CHARACTERS USED IN CLADISTIC ANALYSIS 

/' 1. Pineal foramen situated on a boss or ridge: present (0), absent (1) 

./ 2. Caniniform teeth: present (0), absent (1) 

./ 3. Postorbital: thin (0), broad and massive (1) 

v 4. Teeth intermeshing: absent (0), incisors only (1), incisors and postcanines (2) 

~. 5. Intertemporal region: broad (0) narrow (1), secondarily widened because ofpachyostosis (2) 

/ 6. Anteroposterior diameter of temporal fenestra: small (0) large (1), reduced (2) 

"/7. Muscle attachment area outside skull roof: absent (0), present (1), reduced (2) 

v 8. Heels on teeth: absent (0), present on incisor only (1), present on incisor and postcanine (2) 

"/9. Frontal participation on the dorsal orbital border: large (0), small (1), absent (2) 

v~ 10. Pterygoid teeth: present (0), absent (1) 

v 11. External auditory meatus: vertical (0), sloping anteroventrally (1), horizontal (2) 

v' 12. Position of the jaw articulation: behind postorbital (0), below postorbital (1), in front of 

postorbital (2) 

'/13. Teeth on the palatine bosses: present (0), absent (1) 

./ 14. Vomers ventral surface: median trough (0), reduced median trough (1), flat (2) median ridge 

(2) 

15. Anterovental shape of basisphenoid: rounded (0), pointed (1) 

v 16. Vomer midline suture between nares: absent (0), present (1 

17. Squamosal- jugal suture: below temporal fenestra (0), between orbit and temporal fenestra 

(1), below orbit (2) 

/18. Squamosal meeting postorbital: absent (0), present (1) 
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-./ 19. Postorbital bar formed by: postorbital and jugal (0), postorbital and postfrontal (1), 

postorbital only (2) 

v20. Parietal! frontal ratio: parietal shorter than frontal (0), parietal equal or longer than frontal (1) 

/21. Position of transverse flange of pterygoid: beneath orbit (0), in front of orbit (1) 

./ 22. Frontal reaching dorsal border of temporal fenestra absent (0), present (1) 

~' 23. Skull height relative to width: low (0), equal (1) high (2) 

./ 24. Snout length! cranial length ratio: snout longer than cranial roof (0), snout shorter than 

cranial roof (1) same length (2) 

v25. Interorbital width! temporal width ratio: interorbital width half of temporal roof (0), 

interorbital width more than half of temporal (1), interorbital width secondarily reduced to 

half of temporal roof (2) 

/ 26. Pachyostosis of postorbital: absent (0), moderate (1), great (2). 
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APPENDIX 2. CHARACTER MATRIX 

1 2 3 4 5 6 7 8 9 
Biarmosuchus 0 0 0 0 0 0 0 0 0 
NHMB 1556 ? 0 ? ? 
Tapinocaninus 1 0 1 1 1 2 
Avenantia 0 0 2 1 1 2 
Struthiocephalus 0 1 2 2 2 2 2 
Moschops 2 2 2 2 2 
Criocephalus 2 2 2 2 2 
Tapinocephalus 2 2 2 2 2 2 
Riebeeckosaurus 2 1 2 
Jonkeria ? 0 0 0 
A ustralosyodon 1 0 0 1 0 
Gorgonopsian 0 0 0 0 0 0 

10 11 12 13 14 15 16 17 18 
Biarmosuchus 0 0 0 0 0 0 0 0 0 
NHMB 1556 ? 1 ? 2 0 
Tapinocaninus 1 0 0 
Avenantia 1 1 2 2 
Struthiocephalus 2 2 2 2 
Moschops 2 2 2 
Criocephalus 2 2 2 1 

Tapinocephalus 2 2 2 2 
Riebeeckosaurus 2 ? ? ? ? ? ? 
Jonkeria ? ? ? 1 1 1 
A ustralosyodon 0 1 0 0 0 1 0 0 
Gorgonopsian 0 0 0 0 3 0 0 0 

19 20 21 22 23 24 25 26 
Biarmosuchus 0 0 0 0 0 0 0 0 
NHMB 1556 ? 1 1 0 1 ? 
Tapinocaninus 0 0 0 0 1 2 
Avenantia 1 0 1 0 
Struthiocephalus 1 0 2 0 2 
Moschops 0 2 2 2 
Criocephalus 2 2 2 
Tapinocephalus 2 2 2 2 
Riebeeckosaurus ? ? 1 0 2 2 
Jonkeria 0 0 1 1 0 0 0 
A ustralosyodon 0 0 0 0 0 0 0 
Gorgonopsian 2 0 0 0 0 0 2 0 
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