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ABSTRACT 

 

Background: Environmental and anthropogenic disturbances have a variety of direct and 

indirect impacts on wildlife. Various methods have been proposed to identify and quantify 

stressors that negatively impact wildlife. 

Objectives: In this review, we examined the physiological stress response elicited during 

capture, confinement, and immobilisation on the acute phase response (APR), and immune 

and haemostatic responses in the impala.  

Method: Blood- and faecal-centric approaches were used to determine: (1) the hypothalamic-

pituitary-adrenal (HPA) axis activity by measuring cortisol in blood using a 

radioimmunoassay (RIA) and faecal glucocorticoid metabolites (FGM) using an RIA for 

corticosterone validated in many species, (2) the innate immune activity by measuring the 

circulating levels of leukocytes using manual white blood cell (WBC) counts and a 

haemocytometer, and leukocyte coping capacity (LCC) in response to challenges using 

reactive oxygen species (ROS) assay, (3) the secretion of acute phase proteins (APP) by 

measuring circulating levels of haptoglobin (Hp) and serum amyloid A (SAA) using an 

enzyme-linked immunosorbent assay (ELISA), and (4) the coagulation potential by 

measuring the intrinsic pathway using an activated partial thromboplastin time (aPTT) assay, 

the extrinsic pathway using a prothrombin time (PT) assay, fibrinogen conversion using a 

thrombin time (TT) assay, and fibrinogen concentration using a fibrinogen assay.  

Results: In response to the chronic effects of confinement and the repeated stress of 

immobilisation we observed an initial increase in HPA activity and common coagulation 

pathway activity, and resultant depletion in body reserves. There was a decline in HPA 

activity as the trials progressed and corresponding immunesuppression. Thereafter, as 

animals habituated to stressors, we found that several of the parameters measured in the 

impala showed recovery to initial levels (including body weight and condition, FGM 

concentration, ROS generating capability of whole blood, and coagulability). In response to 

30 min of immobilisation the impala showed decreased HPA activity and coagulability, and 

immune-enhancement. 
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Conclusion: These results demonstrate the feasibility of using physiological examinations to 

progress the understanding of short- and long-term impacts of anthropogenic disturbances on 

wildlife fitness, and improve animal welfare during conservation interventions.
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1 INTRODUCTION 

 

As the number and diversity of animal species meriting conservation intervention increases, 

improved understanding of the impact of human-induced disturbance events on animal 

survival and reproduction (i.e. fitness) is essential (Dickens et al. 2010). Immobilisation, 

capture, relocation and confinement represent important components of conservation 

management (Teixeira et al. 2007). In terms of conservation, the capture and confinement of 

animals has various objectives, including: wound treatment from injuries, relocation, 

management of breeding stock within small enclosures, introduction of new genetics, sales of 

individual animals, veterinary emergencies, management work such as fitting radio collars or 

microchips, disease control, etc. (Moueix 2015). Physiological changes associated with the 

stress of capture/restraint have consistently been observed in studies conducted on non-

domestic species (Dehnhard et al. 2001, Goymann et al. 1999, Terio et al. 1999, Turner et al. 

2002). Despite widespread recognition that these and other anthropogenic disturbances are 

linked to circumstances due to the effects of physiological stress, understanding of the 

comprehensive impact on wildlife species is limited (Teixeira et al. 2007).  Irrefutably, the 

wellbeing of individual animals during conservation interventions is well considered, but 

within published literature it is apparent that physiology is often underrepresented as a feature 

of direct concern (Chown & Gatson 2008, Cooke & O’Connor 2010, Tarszisz et al. 2014, 

Wikelski & Cooke 2006). A higher degree of consideration is essential to identify previously 

neglected or concealed conservation issues, and to better manage the impact of human-

induced disturbance events on wildlife.  

 

When applied to conservation management stress physiology, the measurement of stress 

metrics provides vital data on the causal mechanisms that underlie the current problems 

associated with intervention programs (Dantzer et al. 2014, Tarszisz et al. 2014). Current 

literature in the field of stress physiology reveals that while most studies have examined 

hormonal stress response activation, few have addressed the physiological consequences of 

adapting to these stressors (Teixeira et al. 2007). Few researchers have also had the 

opportunity to address the effects of short- (acute) and long-term (chronic) stress in wildlife, 

and consider both the adaptive and pathophysiological nature of elevated physiological 

“stress mediators,” particularly the glucocorticoids (GC). An additional limiting factor of the 

application of stress physiology in conservation management is interspecies variation in the 

stress response. The physiological response to environmental conditions is both inter- and 
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intra- specific. Species-specific data in regard to the stress response is therefore required to 

overcome this limitation. Impala were specifically selected for this study to address the 

necessity of species-specific data, and to build on the existing knowledge of the physiological 

response to stress for the purpose of improving the welfare of these, and other antelope 

species, exposed to stressful events.  

 

In this study we examined the physiological stress response elicited during capture, 

confinement and immobilisation on the acute phase response (APR), and immune and 

haemostatic responses in impala. We argue that a detailed understanding of physiological 

stress through measurements of stress indices plays a pivotal role in interpreting studies 

focused on stress and animal welfare by aiding in our understanding of the mechanistic 

consequences of anthropogenic disturbances. In order to evaluate immobilisation, capture, 

relocation and confinement in this context, blood- and faecal-centric approaches were used to 

measure stress metrics related to the APR, and immune and hemostatic parameters in animals 

which have experienced a capture event, as well as short- and long-term captivity and 

repeated immobilisation and handling. Our objective was to investigate the physiological 

stress response in impala during the course of both acute stress and chronic challenges. 

 

1.1 Defining Physiological Stress 

 

The concept of stress was originally proposed by Hans Selye (1936) in connection to his 

“general adaptation syndrome” (GAS), as the general term used to describe physiological 

accommodation to environmental demands. Elevated activity of the hypothalamic-pituitary-

adrenal (HPA) axis and the autonomic nervous system (ANS), in particular the sympathetic-

adrenomedullary (SAM) axis, has most frequently been measured in studies conducted on 

stress and the stress response (Mormède et al. 2007, Teixeira et al. 2007). However, it is 

important to note that interpreting the activation of these systems is multifaceted (Mormède 

et al. 2007).  

 

Stressors are perceived by an animal through vision, hearing, olfaction, and touch or pressure 

to the skin. These stimuli are assembled primarily in the hypothalamus and then project into 

the limbic system and neocortical level of the brain (Spraker 1993). Impulses then activate 

two arms of the acute stress response: the fast fight-or-flight response and the slower GC 

response.  
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The immediately-initiated fight-or-flight response is mediated by the activation of the SAM 

axis, which stimulates the adrenal medulla and results in the release of catecholamines (e.g. 

epinephrine and norepinephrine) (Dickens et al. 2010, Spraker 1993). Initiation of the fight-

or-flight response allows for quick reaction to the stressor and includes elevation in heart rate 

(HR), vasoconstriction of vessels of the kidney, digestive system, connective tissues, and 

skin, and a corresponding vasodilation of vessels to the brain, skeletal muscle, heart, and 

lungs (Dickens et al. 2010, Spraker 1993). Catecholamines are catabolic and cause lipolysis 

and gluconeogenesis, facilitating the mobilisation of energy sources to the central nervous 

system (CNS) and somatic muscle. Epinephrine and norepinephrine also inhibit 

gastrointestinal motility and secretions (Dickens et al. 2010, Spraker 1993). The fight-or-

flight response is then followed by the slower hormonal stress response, in which the adrenal 

gland secretes GC hormones as an end result of a hormonal cascade along the HPA axis 

(Dickens et al. 2010). The HPA axis begins with the stimulation of the hypothalamus, which 

signals the pituitary to secrete adrenocorticotropin hormone (ACTH). ACTH triggers the 

adrenal gland to release GC (i.e. cortisol) (Dickens et al. 2010, Seaward 2012, Spraker 1993). 

GC elevations increase the immediate availability of energy that can be used to resolve 

stressful situations by redirecting resources (Creel 2001). Negative feedback quickly 

suppresses GC release once the stressor diminishes or ceases (Dickens et al. 2010, Ganzel et 

al. 2010, Spraker 1993).  

 

In spite of the widespread recognition of the activation of these systems in response to a 

stressor, a shortfall in scientific literature pertaining to stress lies in the current lack of a 

universally accepted definition of the term “stress” itself. Its overuse in popular culture has 

resulted in the term having connotations that makes it less useful in understanding how the 

body copes with psychosocial, environmental, and physical challenges (McEwen 2000, 

McEwen 2006). Many definitions are tautological. For instance, there is a tendency to 

consider any change in the HPA and SAM axes as a response to a stressful situation; however 

changes can also reflect their involvement in the homeostatic metabolic processes which are a 

natural part of life for all animals (Creel 2001, Mormède et al. 2007). Living organisms have 

regular patterns and routines that involve making the necessary preparations (i.e. the 

acquisition, utilisation, and storage of energy reserves) to carry out predictable life history 

stages such as breeding, migrating, moulting, and hibernating (McEwen & Wingfield 2003). 
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Predictability and control are important aspects to be considered when defining the 

physiological stress response.   

 

The combined actions of the acute stress response make up the “Emergency Life-History 

Stage”, whereby physiological and behavioural processes are functionally diverted 

throughout the body to focus on immediate survival needs, suspending otherwise normal life-

history functions (e.g. reproductive physiology and immunological system maintenance) 

(Dickens et al. 2010, Martin 2009). In the short term, these responses are crucial for adaption, 

maintenance of homeostasis, and survival. However, the duration and intensity of the 

stimulus plays a pivotal role (Martin 2009). There is an inherent paradox whereby if a 

stressor persists or a series of acute stressors initiate multiple consecutive stress responses, an 

animal becomes chronically-stressed. Chronic stress has traditionally been thought to 

represent a dysregulation of the HPA axis (McEwen 1998, McEwen & Seeman 1999), 

primarily caused by a loss of negative feedback in which chronic stress decreases the number 

of GC receptors in key regulatory parts of the brain (e.g. the hippocampus and hypothalamus) 

(Romero 2004, Romero et al. 2009, Sapolsky et al. 1984). Chronically stressed individuals 

tend to experience a larger cumulative exposure to GC and, subsequently, harmful 

consequences, including immuno- and reproduction suppression and loss of muscle mass 

(Creel 2001, McEwen and Wingfield 2003, Sapolsky 2005, Sapolsky et al. 1986). The acute 

stress response therefore no longer aids in survival and instead can lead to detrimental 

physiological and behavioural consequences, potentially resulting in pathological conditions 

(Dickens et al. 2010, McEwen 2000, Teixeira et al. 2007). This subjective experience of 

stress, with physiological mediators being associated with both adaption and 

pathophysiology, further promotes the ambiguity of the term “stress”. To better conceptualise 

acute versus chronic stress we will review the emerging concept of allostatic load, which was 

proposed as a means of augmenting the concept of “general adaptation syndrome” in 

response to stressors. 

 

1.1.1 Allostasis and Allostatic Load 

 

Allostasis, which literally means “maintaining stability through change” (McEwen 1998, pp. 

171), has the potential to replace homeostasis as the core model of physiological regulation 

(Sterling 2004). The concept was originally introduced by Sterling & Eyer (1988) and refers 

to the active process of adaptation to acute stress, involving the output of stress hormones 
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which act to restore homeostasis (Korte et al. 2007, McEwen 2000, McEwen 2004, McEwen 

& Wingfield 2003).  In response to either a predictable or unpredictable perturbation, an 

individual will enter an allostatic state, wherein they will have altered and sustained activity 

levels of primary mediators (i.e. catecholamines and GC), in an attempt to restore 

homeostasis within a range around a norm required for physiological functioning (McEwen 

2004, McEwen & Wingfield 2003).  Allostatic states can be sustained for limited periods if 

food intake and/or stored energy (i.e. fat) can fuel homeostatic mechanisms (McEwen 2004, 

McEwen & Wingfield 2003). Under most circumstances, the organism copes adequately with 

environmental stimuli by means of this coordinated plasticity, and continues along its life-

history path. Allostatic load and allostatic overload refer to the cumulative result of an 

allostatic state (McEwen 2004, McEwen & Wingfield 2003). Within limits, routines which 

cause allostatic load involve adaptive responses to seasonal and other demands. However, if 

the additional load of unpredictable events in the environment (e.g. anthropogenic 

disturbances) is superimposed, then allostatic load can increase dramatically to become 

allostatic overload (McEwen 2004, McEwen & Wingfield 2003). Stress then becomes 

distress, whereby it incurs a biological cost so large that the animal needs to divert biological 

resources away from normal biological functions (e.g. the immune system) to cope with the 

stressor (Teixeira et al. 2007). Allostatic overload results in wear and tear on the regulatory 

systems in the brain and body, and predisposes the individual to various pathologies 

(McEwen 2004, McEwen & Wingfield 2003).  

 

The concept of allostasis provides a more restricted and precise definition of the phenomena 

previously set out by the broad concept of stress. “Allostasis forms a continuum between 

events of the normal life cycle and unpredictable perturbations with clear transition points 

and outcomes” (McEwen & Wingfield 2003, pp. 12). Further, it provides a link between the 

essential protective and adaptive, and the damaging effects of physiological stress mediators 

(McEwen 2000, McEwen 2004, McEwen 2006, McEwen & Wingfield 2003).  

 

1.2 Defining the Link between Stress, Capture and Confinement, and Immobilisation  

 

Human influence on natural systems is increasing continuously. As a result, the capacity to 

understand what aspects of human influence cause stress in animals warrants increasing 

consideration (Wikelski & Cooke 2006). Where capture, confinement and immobilisation 

represent prominent emergency conversation interventions in wildlife, the challenge of stress 
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is centrally important to validating the feasibility of these practises. The capture of animals in 

the wild is normally a relatively rapid process, and one that is likely only to cause acute 

stress. Evidence from studies indicate that animals typically begin mounting a response via 

the HPA and SAM axes immediately upon capture and prior to direct human interaction, with 

elevated levels of catecholamines and GC, the primary stress mediators, consistently being 

seen (Dickens et al. 2010, Ganzel et al. 2010, Möstl & Palme 2002, Spraker 1993, Teixeira et 

al. 2007). In the short term, these acute stress responses serve the adaptive purpose of 

protecting an individual. However, the confinement of formerly free-ranging animals may 

cause chronic stress since it exposes individuals to both persistent stressors and consecutive 

acute stress responses. In confined animals, prolonged activation of the HPA and SAM axes 

no longer aids in survival and instead can increase an individual’s risk of pathogenesis 

(Dickens et al. 2010, McEwen 2000, Teixeira et al. 2007). Information on stress responses to 

immobilisation is limited, however studies suggest that immobilisation has the potential to 

induce a substantial stress response and disturb normal regulatory systems, resulting in 

undesirable side effects (Kumar et al. 2002, Siegal-Willott et al. 2009, Taylor 1989). 

 

1.3 Evaluating the Adaptive vs. Damaging Effects of Stress 

 

As aforementioned, the nature of stress can be both protective in response to acute stressors 

and damaging in the long-term. The effects of this phenomenon have been observed 

throughout the body, however, for the purpose of this review we will be examining the 

effects of capture and confinement, and immobilisation on the APR, and immune and 

haemostatic responses (for those unfamiliar with the details of the APR, and immune system 

and haemostasis, we will provide a brief overview). 

 

1.3.1 The Immune Response 

 

The mammalian immune system functions to protect an animal’s body from the invasion of 

antigens (e.g. pathogens) with layered defences of increasing specificity. Innate immunity 

provides an immediate, but non-specific response to an antigen. If the antigen successfully 

evades the innate response, vertebrates possess a second layer of protection, 

adaptive/acquired immunity, which is activated by the innate response and is antigen-

specific. Both innate and adaptive immunity depend on the ability of the immune system to 

distinguish between self and non-self-molecules. The innate immune response involves 
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physical and chemical barriers, and it also includes cellular defences. It provides the first line 

of defence, which is not concerned with ‘what’ the antigen is, it merely prevents the antigen 

from entering body or destroys it before identifying it. Cells involved in innate immunity do 

not provide defence against any particular antigen, rather they function as all-purpose cells 

that can attack various different antigens and do so in a relatively short time frame when 

required (Segerstrom & Miller 2006).  Phagocytic cells are the largest group of cells involved 

in innate immunity. If an antigen passes through the epithelial barrier, phagocytes such as 

neutrophils and macrophages ingest the antigens into vesicles and chemically destroy those 

(Abbas & Lichtman 2009). “The generalized response mounted by these cells is 

inflammation, in which neutrophils and macrophages congregate at the site of injury or 

infection, release toxic substances such as oxygen radicals that damage invaders, and 

phagocytose both invaders and damaged tissue” (Segerstrom & Miller 2006, pp. 3). In 

addition, these phagocytes and other cell types of the innate immune system, such as 

dendritic cells, secrete communication molecules called cytokines. Macrophages, in 

particular, secrete cytokines that stimulate inflammation and lymphocyte responses, in 

addition to other broad effects on the organism (Abbas & Lichtman 2009, Segerstrom & 

Miller 2006).  These proinflammatory cytokines include interleukin(IL)-1, IL-6, and tumor 

necrosis factor alpha (TNF-α) (Segerstrom & Miller 2006).  Further, these cells form an 

important link between innate and adaptive immunity: macrophages and dendritic cells act as 

antigen-presenting cells, which activate cells of the adaptive immune system (Abbas & 

Lichtman 2009).  Other granulocytes of the innate immune system (e.g. mast cells, basophils 

and eosinophils) are important mediators of allergic responses (Minai-Fleminger & Levi-

Schaffer 2009, Schroeder 2009).   

 

Natural killer (NK) cells are another cell type involved in innate immunity. These NK cells 

detect stressed/infected cells or cells with DNA damage and lyse these cells by releasing 

toxic substances (Abbas & Lichtman 2009, Segerstrom & Miller 2006). Natural killer cells 

play a significant role in limiting the early phases of infection, before adaptive immunity 

becomes effective, and in removing self-cells which have become malignant (Segerstrom & 

Miller 2006).  

 

Many circulating proteins bind antigens and help to eliminate them. Important among these 

are the proteins of the complement system, which bind to and are activated by antigens, and 

up-regulate phagocytosis and inflammation (Chaplin 2010). The complement system is also 
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activated by antibodies, and thus functions as part of adaptive immunity as well (Abbas & 

Lichtman 2009, Segerstrom & Miller 2006).  

 

Adaptive immunity is characterised by antigen specificity and immunologic memory, 

however, the greater specificity of the response results in a slower onset than the innate 

immune system. Three types of lymphocytes mediate specific immunity: helper T (Th) cells, 

cytotoxic T cell (Tc) cells, and B cells (Segerstrom & Miller 2006). Lymphocyte receptors 

provide pathogen-specific recognition. Further, there are two types of adaptive immune 

responses: cell-mediated immunity, mediated by T lymphocytes, and humoral immunity, 

mediated by antibodies produced by B lymphocytes.  

 

Tissue dendritic cells are activated by ingesting antigens at the site of infection. This induces 

their migration to local lymphoid tissues and their maturation into highly effective antigen-

presenting cells (Janeway et al. 2001). Once in the lymphoid tissue, dendritic cells present, by 

means of a major histocompatibility complex (MHC) located on their surface, processed 

epitopes for cognate interactions with recirculating antigen-specific T cells (Bai et al. 2003, 

Steinman 2006). When activated, these naive T cell clones proliferate and differentiate to 

create a population of cells that can defend against a specific threat (Segerstrom & Miller 

2006). Effector Tc cells divide to form numerous cloned Tc cells with the correct receptors. 

Some portion of these cells are active and will recognise body cells displaying epitopes of 

foreign antigen on their surface and induce apoptosis of those cells, while others are inactive 

memory cells that persist long term in the host to respond faster and more potently in case of 

re-exposure to that specific antigen (Abbas & Lichtman 2009, Obar & Lefrancois 2010).  

Effector Th cells are critical in coordinating and amplifying the activity of the immune 

response. Through the secretion of cytokines they stimulate the non-specific immune 

response to continue, and strengthen appropriate specific responses (Segerstrom & Miller 

2006).  Activated Th cells also help to recruit NK cells and phagocytes, and further activate 

Tc cells (Alberts et al. 2002, Obar & Lefrancois 2010). Further, when an antigen-presenting 

B cell interacts with an activated Th cell with the same specificity, the B cell is activated to 

differentiate into a plasma cell, proliferate and secrete large amounts of antibodies (Abbas & 

Lichtman 2009). Collectively immunoglobulin (Ig) -A, -E, -M, -G and -D function to: bind to 

free antigens to prevent their entry into cells, neutralise toxins associated with the relative 

infection, and opsonise (Segerstrom & Miller 2006).  

 

https://en.wikipedia.org/wiki/Epitopes
https://www.boundless.com/biology/definition/phagocyte
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The Acute Phase Response 

 

Local inflammation is the first response of the immune system that an animal will mount 

upon exposure to trauma, infection, stress, immunological disorders and neoplasia (Ceciliani 

et al. 2012, Cray et al. 2009). When local defences are overwhelmed by noxious stimuli, the 

organism will respond by activating the APR, a complex systemic response intended at 

restoring tissue homeostasis and regulating the inflammatory response (Cray et al. 2009). 

Throughout evolution, the APR has been preserved as a core part of the innate immune 

response and is observed across all animal species (Petersen et al. 2004).  

 

In response to an inflammatory stimulus, activated immune cells (particularly monocytes) 

generate cytokines (Petersen et al. 2004). This non-specific immune response involves 

various organs, distant from the site of inflammation, and is accompanied by a host of 

behavioural, physiological, biochemical and nutritional changes (Ceciliani et al. 2012). The 

most evident phenomena include pyrexia, leukocytosis, and the quantitative and qualitative 

modification of APP (Ceciliani et al. 2012, Ceciliani et al. 2002, Dantzer et al. 2008, Martin 

et al. 2011, Murata et al. 2004).  Pro-inflammatory cytokines act as messengers, stimulating 

hepatocytes and peripheral tissues to synthesize acute phase proteins (APP), subsequently 

activating the APR (Bertelsen et al. 2009, Krogh et al. 2013, Piñeiro et al. 2007, Petersen et 

al. 2004). During the APR, the serum concentration of the APP changes significantly. In 

particular, the APP produced by hepatocytes, which are present at substantially different 

concentrations in the blood. They can be classified according to the magnitude of their 

increase (positive APP; e.g. haptoglobin (Hp), serum amyloid A (SAA), and C-reactive 

protein (CRP)) or decrease (negative APP; e.g. albumin) in serum concentration during an 

APR (Ceciliani et al. 2012, Petersen et al. 2004, Piñeiro et al. 2007). Acute phase proteins are 

thought to play a significant role in several aspects of the systemic inflammatory response, 

including the opsonization of several pathogens, the detection of potentially toxic substances 

and the overall regulation of different stages of inflammation (Ceciliani et al. 2012).  

 

SAA is a major APP produced in large quantity predominantly by hepatocytes during the 

APR to inflammatory stimulus (Sato et al. 2016). Although information is limited on the 

precise role that SAA plays during the course of inflammation, it has been suggested that it 

may have a homeostatic role (Ye & Sun 2015). One specific mechanism in which it functions 

to maintain homeostasis is through its association with high-density lipoprotein (HDL), 
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whereby it enhances the antioxidant potential of these molecules (Sato et al. 2016). Hepatic 

production is also responsible for the synthesis of Hp as a part of the APR (Cray et al. 2009). 

The primary function of Hp is to prevent the loss of iron by binding with free haemoglobin in 

the blood to form exceptionally stable complexes (Laurel & Nymann 1957). Haptoglobin is 

thus believed to have a bacteriostatic effect by restricting the availability of iron necessary for 

bacterial growth (Bullen 1981, Petersen et al. 2004).  

 

Capture and Confinement 

 

“Conceptualizations of the nature of the relationship between stress and the immune system 

have changed over time.” (Segerstrom & Miller 2006, pp. 5). Early studies supported the 

initial model in which stress was interpreted as being broadly immunosupressive (Borysenko 

& Borysenko 1982, Cohen et al.1991, Fox 1981, Khansari et al. 1990, Kort 1994, Maier et al. 

1994). The heightened susceptibility of chronically stressed individuals to infectious and 

neoplastic diseases was assumed to be as a result of diminished immune responses (Andersen 

et al. 1994, Cohen & Williamson 1991). The first models for how stress and immunity are 

related were substantiated by various hypotheses, including: that immunity is diminished 

during stress responses to redirect resources to processes that are more critical to survival, 

further that immune suppression may represent the catabolization of immune cells and tissues 

to provide protein and glucose for more immediately valuable activities (Sapolsky et al. 

2000), and the minimisation of autoimmune damage (Martin 2009). Despite the established 

and continued support for the global immunosuppression model, it has recently been 

challenged by the concept that relations between stress and the immune system should be 

adaptive, particularly within the context of fight-or-flight stressors, and the more recent 

interest in the balance between humoral and cellular immunity (Segerstrom & Miller 2006). 

A broad decline in immune function that the initial model predicts in response to all stressors 

is not an evolutionary adaptive characteristic in life-threatening circumstances (Dhabhar & 

McEwen 1997). Down-regulation of the immune system to provide resources for more 

valuable processes does not occur rapidly enough for this to be a viable explanation (Råberg 

et al. 1998). Some of the proposed mechanisms for immunosuppression (e.g. apoptosis of 

leukocytes) also expend rather than conserve energy (Sapolsky et al. 2000). Further, it makes 

little sense that organisms would suppress a system that could be integral to recovery from 

stressors (Dhabhar & McEwen 1997, Wingfield et al. 1998). Consequently, Dhabhar and 

McEwen (1997, 2001) proposed a more refined interpretation of stress-immune interactions: 
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a biphasic model in which acute stress enhances and chronic stress suppresses the immune 

response (Martin 2009, Segerstrom & Miller 2006). In a series of experiments with mice, 

they found that in response to acute or short-term stress neuroendocrine-immune pathways 

mediate immuno-enhancement. This includes; the redeployment of leukocytes from the blood 

to organs (e.g. skin and lymph nodes) where they are needed to fight an infection or other 

challenge, increases in innate immunity, pathogen presentation, effector T cell function, 

antibody production, and cytokine production (Dhabhar & McEwen 1997, Martin 2009, 

Segerstrom & Miller 2006). Conversely, in response to chronic or long-term stress, 

immunosuppression may be mediated by mechanisms involving inhibition of T cell 

activation, pathogen presentation, activation of lipocortins, induction of lymphocyte 

apoptosis, or suppression of effector T cell function (Dhabhar & McEwen 1997, Martin 2009, 

Segerstrom & Miller 2006).  

 

An addendum to the biphasic model posits that acute stress enhances parameters of innate 

immunity, while diminishing adaptive immunity (Segerstrom & Miller 2006). This is based 

on innate immune responses being better able to manage the potential consequences of life-

threatening situations than adaptive immune responses. Innate immunity requires only 

minimal time and less energy to be diverted from other bodily systems that support the fight-

or-flight response, and are subject to fewer inhibitory constraints. Conversely, adaptive 

immunity is time and energy demanding, proliferation in particular (Segerstrom & Miller 

2006).   

 

Further, stress hormones (particularly GC) are integral to immune regulation (Sternberg 

2006), although interactions are complex and dynamic (Martin 2009).  During periods of 

stress, increased circulating levels of GC are known to occur due to the activation of the HPA 

axis (Dhabhar & McEwen 1997, Shanks et al. 1994). Circulating pro-inflammatory cytokines 

further instigate the release of GC (Glaser & Kiecolt-Glaser 2005). During an acute response, 

circulating GC levels typically rise several fold, but return to basal levels hours after the 

stressor is removed. However, in the case of a stressor persisting for days or weeks, 

individuals can exhibit elevated baseline GC, a stronger acute increase in plasma GC 

following an environmental challenge and a reduced ability to terminate the stress response 

(Dickens and Romero 2013, Sapolsky 2002, Sapolsky et al. 1986). Many in the scientific 

community speculate that chronic levels of high stress disrupt the delicate feedback balance, 

resulting in the failure of feedback inhibition to operate, and the continued release of cortisol 
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(Creel 2001, Sapolsky et al. 1986). These adrenal hormones have inhibitory effects on a 

broad range of immune responses (Acevedo-Whitehouse & Duffus 2009). The 

immunosuppressive effects of GC include the regulation of lymphocyte maturation, selection 

and proliferation (Griffin 1989). Further, by way of an inhibitory feedback mechanism, GC 

foster the down regulation of lymphocyte function, particularly of pro-inflammatory and 

cellular responses (Elenkov 2004, Martin et al. 2011, Sternberg 2006). Inflammation is 

particularly sensitive to cortisol (Glaser & Kiecolt-Glaser 2005), and GC actions have 

traditionally been regarded as anti-inflammatory. Glucocorticoids suppress inflammation by 

multiple mechanisms that impact both the innate and adaptive immune responses (Busillo & 

Cidlowski 2013). This includes inhibitory action on the production of various cytokines (e.g. 

IL-1, IL-6, and TNF-α) (Elenkov 2004, Martin et al. 2011, Sternberg 2006), and histamine 

secretion thereby regulating the activation of inflammatory cells (Griffin 1989). However, 

emerging evidence suggests that GC also can exert pro-inflammatory effects in response to 

stress (Sorrells & Sapolsky 2007). Glucocorticoids are known to stimulate the hepatic 

production of APP, including SAA, independent of the actions of pro-inflammatory cytokines 

(Jain et al. 2011). It has been consistently observed that in conjunction with the dysregulation 

of the GC hormone, often accompanying captivity, a pro-inflammatory state exists in the 

animals due to the impaired coordination of the attenuation and resolution of the 

inflammatory response (Martin et al. 2011). Recently, the potential application of APP has 

been suggested for diagnosis, prognosis, and assessment of animal health (Cray et al. 2009). 

Several studies have already demonstrated the utility of major APP quantitation in monitoring 

neoplasia and stress, with regard to animal welfare (Bernal et al. 2011, Eckersall et al. 2000, 

Murata et al. 2004, Piñeiro et al. 2007, Stanton et al. 2013). Piñeiro et al. (2007) conducted a 

study aimed at characterizing the response in swine following prolonged transport by road 

under commercial conditions. Elevated serum APP concentrations were observed in two 

groups of boars immediately after arrival at a destination farm compared with within-animal 

control samples obtained one month later. The first group of pigs were transported under 

average conditions (Transport 1, 24 hrs), while the second group was transported for a longer 

time period (Transport 2, 48 hrs) but in superior transport conditions. The effects on serum 

APP concentrations were more pronounced in the first group. From these result Piñeiro et al. 

concluded that, “Independent of the cause of the APP response that follows transport, 

whether due to tissue damage or not, it is clear that the increase in APP levels reflect 

compromised animal welfare” (2007, p 673).  
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Various mechanisms have been put forward to interpret how chronic stress is associated with 

the body losing its ability to regulate the inflammatory response. Cohen et al. (2012) 

proposed a model wherein prolonged psychological stress results in glucocorticoid receptor 

resistance (GCR) that, subsequently, results in the failure to down-regulate the inflammatory 

response. Specifically, immune cells have decreased tissue sensitivity to cortisol. Without 

sufficient GC regulation, the duration and/or intensity of the inflammatory response increases 

(Cohen et al. 2012). Thus, although chronically stressed individuals experience a higher 

cumulative exposure to GC hormones, Cohen et al. (2012) suggest that it is not the level of 

the hormones which matter, but rather how the target tissue responds to cortisol.   

 

From a physiological perspective, a causal relationship has been proposed between excessive 

adipose tissue, and the pro-inflammatory state and overproduction of cytokines observed in 

captive animals (Schook et al. 2015). In response to an acute stressor, GC stimulate the rapid 

immobilisation of energy reserves, to allow the body to adaptively cope with adverse 

conditions (McEwen 2000, McEwen & Wingfield 2003). Blood glucose is elevated by 

increased lipid and protein catabolism, and hepatic gluconeogenesis (Arnemo & Caulkett 

2007, Spraker 1993). Several reviews have suggested a correlative relationship between 

inflammation and insulin resistance (Rajala & Scherer 2003, Ramos et al. 2003, Xu et al. 

2003). Inflammatory cytokines play an essential regulatory role in insulin/glucose 

homeostasis by inhibiting insulin signalling and cellular uptake of glucose, resulting in 

further hyperglycemia and compensatory hyperinsulinemia (Hotamisligil et al. 1996, Lang et 

al. 1992, Spraker 1993). Concomitantly, high glucose has been seen to have a stimulatory 

effect on the transcription factor NF-κB in hepatocytes, resulting in the expression of pro-

inflammatory APP (e.g. CRP, SAA), further up-regulating the inflammatory response 

(Iwasaki et al. 2007). Furthermore, GC increases appetite for food and food seeking 

behaviour by action on the brain (McEwen 2000, McEwen & Wingfield 2003).  While stress 

hyperglycaemia is an essential survival response, chronically elevated cortisol and insulin 

leads to the storage of energy as fat in the adipose tissue, with the net effect of increased body 

fat deposition at the expense of tissue proteins (McEwen 2000, McEwen & Wingfield 2003). 

Schook et al. (2015) conducted a review on black rhinoceros (Diceros bicornis) living in 

zoos, wherein they proposed that the captive environment contributes to increased 

inflammation and decreased insulin sensitivity, and an associated increase in morbidity and 

mortality in the species.   
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Also worth consideration, is the increasing evidence that points to an extensive cross-talk 

between inflammation and coagulation (Engelmann & Massberg 2013, Levi et al. 2004). 

“Activation of coagulation and fibrin deposition as a consequence of inflammation is well 

known and can be viewed as an essential part of the host defence of the body against, for 

example, infectious agents or non-identical cells, in an effort to contain the invading entity 

and the consequent inflammatory response to a limited area” (Levi et al. 2004, pp. 2698). 

However, recent evidence suggests that not only does inflammation lead to activation of 

coagulation, but coagulation also has a considerable effect on inflammatory activity. There 

have been many in vitro observations of coagulation proteases not only interacting with 

coagulation protein zymogens but also with specific cell receptors to induce signalling 

pathways and result in the up-regulated expression of pro-inflammatory mediators (Jones & 

Geczy 1990, van der Poll et al. 2001). Further, there is mounting evidence that the protein C 

pathway is functionally important in the modulation of the inflammatory response (Esmon 

2002). Activated platelets also play an essential role in inflammation, particularly in chronic 

inflammation (Wagner & Burger 2003). Platelets contain and are capable of releasing high 

concentrations of CD40 ligand, a pro-inflammatory mediator. These mediators then increases 

inflammatory cytokines, such as IL-6 and IL-8 (André et al. 2002, Henn et al. 1998), and 

induces tissue factor (TF) synthesis (Miller et al. 1998, Pendurthi et al. 1997). Fibrinogen and 

fibrin have been observed to directly stimulate the expression of pro-inflammatory cytokines 

(e.g. TNF-α and IL-β) and induce production of chemokines (e.g. IL-8 and MCP-1) (Szaba & 

Smiley 2002). 

 

1.3.2 The Haemostatic Response 

 

In mammals, an advanced haemostatic surveillance system has evolved that protects animals 

from excessive blood loss and infection by almost instantaneously sealing damaged vessel 

walls (Engelmann & Massberg 2013, Gentry 2004, Hussein et al. 2010, Lukas 2010). The 

coagulation pathway, which mediates haemostasis, generates a clot that prevents blood loss 

following vascular injury and eventually restores endothelial integrity in the host (Engelmann 

& Massberg 2013, Gentry 2004, Hussein et al. 2010, Lukas 2010). “Haemostasis is a 

fundamental defence mechanism of all vertebrates and involves two complementary 

processes: the formation of a blood clot, or thrombus, to stem blood loss from a damaged 

vessel and the process of thrombus dissolution, or fibrinolysis, once endothelial repair has 

occurred” (Gentry 2004, pp. 238). The basic mechanism is similar in all species, and involves 
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both activated cells and plasma proteins that participate in highly complex and interdependent 

events localized to the site of trauma (Gentry 2004, Hussein et al. 2010, Smith 2009), 

culminating in the conversion of a soluble protein into an insoluble polymer (Iwanaga 1993, 

Theopold et al. 2002).  

 

Haemostasis is maintained in the body via the following key mechanisms: (1) initial 

vasoconstriction, (2) platelet activation plug formation, (3) assembly and activation of the 

coagulation cascade factors, (4) fibrin clot formation at the site of injury, and (5) dissolution 

of the clot and vascular repair (Gentry et al. 1997). For the purpose of this review we will be 

discussing a simplified model of the haemostatic mechanism. Numerous reviews are 

available that describe the haemostatic process in more detail (Crawley et al. 2007, Gentry et 

al. 1997, Hoffman & Monroe 2007, Hopper & Bateman 2005, Seré & Hackeng 2003). 

 

The endothelium not only functions as a selectively permeable barrier between blood and 

underlying tissue, but also plays a crucial physiologic role in maintaining homeostasis of 

circulation (Gentry et al. 1997). The endothelial cells of intact vessels regulate blood flow by 

providing an antithrombotic surface, which inhibits platelet aggregation and the coagulation 

cascade, through the expression of heparan sulphate, prostacyclin, nitric oxide, 

thrombomodulin and tissue plasminogen activator (t-PA) (Ando & Kamiya 1993, Cines et al. 

1998, Colvin 2004, Gentry et al. 1997). Perturbations, such as those that occur at sites of 

vessel damage, disrupt these activities and induce endothelial cells to generate a 

prothrombotic and antifibrinolytic microenvironment (Ando & Kamiya 1993, Cines et al. 

1998, Colvin 2004, Gentry et al. 1997). Vasoconstriction, produced by the contraction of 

vascular smooth muscle cells, is the initial response of blood vessels to injury. Vascular 

spasm is a brief autonomic neurogenic reflex, initiated by local receptors of the sympathetic 

nervous system (SNS) and the action of catecholamines that temporarily reduces the amount 

of blood flow through the area of trauma, helping to limit the amount of blood loss (Cines et 

al. 1998, Gentry et al. 1997, Lukas 2010). Endothelial cells further function in haemostasis 

by synthesizing and activating agents and expressing receptors (e.g. von Willebrand factor 

[vWF], collagen and TF), enhancing coagulation (Lukas 2010). The endothelium also 

facilitates leukocyte extravasation, whereby circulating leukocytes (particularly monocytes 

and neutrophils) are rapidly recruited to the site of trauma and bind by means of specific 

adhesion molecules expressed on the surface of the endothelial cells (Engelmann & Massberg 

2013, van Hinsbergh 2012). Monocytes and neutrophils are subsequently incorporated into 
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growing intravascular clots during thrombus development (Engelmann & Massberg 2013). In 

parallel with these processes, the endothelium participates in fibrinolysis by releasing 

anticoagulant agents (e.g. t-PA) (Lukas 2010).   

 

Primary haemostasis involves the process of platelet activation, adhesion, and aggregation. In 

mammals platelets are small, disc-shaped anucleate cells that circulate in the blood and 

function as sentinels of vascular integrity (Engelmann & Massberg 2013). When vascular 

injury occurs, inactive platelets circulating in the blood are recruited to the damaged site and 

adhere to endothelial connective tissue by interacting with collagen, vWF and platelet 

glycoprotein binding sites (Colvin 2004, Engelmann & Massberg 2013). The subsequent 

aggregation of platelets forms a fragile plug to help stem haemorrhage from the vessel 

(Colvin 2004, Lukas 2010). Adherent platelets are activated by collagen, and release their 

granule contents, including adenosine diphosphate (ADP), thromboxane A2, and serotonin 

(Colvin 2004, Engelmann & Massberg 2013, Gentry et al. 1997, Lukas 2010). Substances 

released from platelets mediate continued platelet activation and aggregation, and further 

enhance vasoconstriction of the blood vessels (Lukas 2010).  

 

“Whereas platelet aggregation provides a provisional closure of the wound, coagulation 

ensures that it remains mechanically stable, sealing the defect using the glue-like substance 

fibrin, which is the major end product of the coagulation cascade” (Engelmann & Massberg 

2013, pp. 35).  Historically, the two arms of secondary haemostasis have been described in 

literature as the intrinsic and extrinsic coagulation pathways. As the role of the various 

proteins involved in the coagulation cascade has been elucidated, the classical model of 

thrombin generation and fibrin formation has been revised. More recently these pathways are 

referred to as the contact activation (intrinsic) and TF (extrinsic) pathways (Gentry 2004, 

Gentry et al. 1997). As indicated in Figure 1.1, the pathways differ in the mechanisms by 

which they are initiated and following subprocesses but converge to form a common pathway 

at the point of factor (F) X activation (Lukas 2010, von Känel et al. 2001a). FXa and co-

factor FVa form the prothrombinase complex, which activates prothrombin (FII) to thrombin 

(FIIa) (Engelmann & Massberg 2013, Gentry 2004, Gentry et al. 1997, Levi et al. 2004). 

Thrombin’s most significant physiological function is the conversion of soluble fibrinogen 

(FI), via soluble fibrin monomers, into the insoluble fibrin (Engelmann & Massberg 2013, 

Epstein & Brainard 2011, Gentry 2004, Levi et al. 2004, von Känel et al. 2001a). Fibrin is 
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subsequently stabilised by cross-linking with FXIIIa, to form a blood clot or thrombus 

(Epstein & Brainard 2011, von Känel et al. 2001a).   

 
Contact Activation Pathway (Intrinsic System) Tissue Factor Pathway (Extrinsic System) 

                         Surface Contact               Tissue Factor 

                           
 
 

      FXII                  FXIIa                  FIX              FVII         FVIIa 
 
 
 
  FXI  FXIIa    FIXa      
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      FX           FXa 
 
 
 
           
      FV             Prothrombinase complex 
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                 I  Ia             Fibrin 
 
 
 
       
                
Figure 1.1 Schematic diagram of the coagulation cascade. The initiation of blood clot formation occurs 

following vascular injury and the exposure of TF to circulating blood. Activation of both intrinsic and extrinsic 

pathways leads to the fibrin clot formation in the common pathway. The majority of proteins are designated as 

factors (F) and Roman numerals. [aPTT: activated partial thromboplastin time, PT: prothrombin time, TT: 

thrombin time, FIB: fibrinogen concentration]. (Adapted from Gentry 2004, pp. 239). 
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Thrombin also initiates several positive feedback reactions to sustain its own formation and 

facilitate the rapid growth of thrombus (Dahlbäck 2005, Engelmann & Massberg 2013, 

Gentry 2004, Gentry et al. 1997, Levi et al. 2004). A dynamic equilibrium exists between the 

sequential and co-ordinated interactions of the procoagulant proteins that initiate and amplify 

thrombin generation, and a group of circulating anticoagulant proteins (e.g. tissue factor 

pathway inhibitor [TFPI], vitamin K-dependent protein C and antithrombin) (Engelmann & 

Massberg 2013, Esmon 2005, Gentry 2004). These inhibitory proteins function to ensure that 

thrombin formation is confined to the site of vascular trauma, thereby preventing 

uncontrolled or disseminated coagulation which can prove life-threatening (Engelmann & 

Massberg 2013, Esmon 2005, Gentry 2004, Gentry & Downie 1993).   

 

Capture and Confinement 

 

Extensive research conducted on the haemostatic response suggests that short-term arousal 

activities (e.g. acute stressors, acute exercise) concurrently activate coagulation and 

fibrinolysis within a physiological range, resulting in net hypercoagulability (Austin & 

Patterson 2013, Lukas 2010, Thrall et al. 2007, von Känel et al. 2001a, Womack et al. 2003). 

Through a series of experiments conducted in the first half of the 20th century, Walter B. 

Cannon was the first to effectively demonstrate that stimulation of the splanchnic nerve, pain, 

fear and enragement all shortened blood clotting times (Cannon 1953). Cannon’s 

evolutionary interpretation of these observations was that stress-hypercoagulability protects a 

healthy organism from excess bleeding should injury occur in fight-or-flight situations 

(Cannon & Mendenhall 1914, Lukas 2010, von Känel et al. 2001a). A number of naturalistic 

studies to assess the short-term effects of mental arousal on coagulation activity have been 

conducted throughout the 20th century (Dreyfuss 1956, Kast & Zweibel 1954, Latner 1947, 

MacFarlane & Biggs 1946, Macht 1952, Ogston et al. 1962, Truelove 1951, Urano et al. 

1990).  Despite the use of insensitive markers and quality concerns in early studies, the 

concomitant activation of coagulation and fibrinolysis by mental arousal in naturalistic 

studies is in keeping with recent findings in standardized laboratory stress protocols (Davis 

1999, Jern et al. 1989, Jern et al. 1991, Larsson et al. 1990, Muldoon et al. 1995, Musumeci 

et al. 1987, Palermo et al. 1989, Quartarone et al. 1978). 

 



19 
 

Regarding individual haemostasis molecules, increased activity has consistently been 

observed for procoagulant factors XIII (Jern et al. 1989, Steptoe et al. 2003) and VIII (Jern et 

al. 1989), fibrinogen (Davis 1999, Jern et al. 1989, Steptoe et al. 2003), vWF (Jern et al. 

1989, Musumeci et al. 1987, Steptoe et al. 2003), and platelets (Brydon et al. 2006, Camacho 

& Dimsdale 2000). In addition, acute mental stress also elicits an increase in profibrinolytic 

factors, including t-PA (Jern et al. 1989, Jern et al. 1991, Palermo et al. 1989, Womack et al. 

2003). The more sensitive markers of coagulation activation, fibrin D-dimer and TAT, were 

also elevated in plasma after acute mental stress (von Känel et al. 2003, von Känel et al. 

2001b). The observed increase in D-dimer in particular supports the conclusion that, despite 

the concurrent activation of coagulation and fibrinolysis in response to acute stress, 

procoagulant mechanisms exceed anticoagulant forces (von Känel et al. 2001a). Healthy 

individuals that experienced acute mental stress also demonstrated vasoconstriction or 

alleviated vasodilation (Ghiadoni et al. 2000, Gottdiener et al. 2003, Sarabi & Lind 2001).  

 

From a review of the literature on this topic, it can be observed that a relationship exists 

between acute stress-induced activation of the SAM axis and a hypercoagulable state (Austin 

& Patterson 2013, Lukas 2010, von Känel 2015, von Känel et al. 2001a). Positive 

associations between stress-induced catecholamine spill-over, accelerated blood clotting time, 

and stimulated fibrinolysis have been reported in a variety of laboratory and real-life 

situations (Larsson et al. 1990, Sidorenko & Revenko 1992, von Känel et al. 2001a). 

Elevated plasma epinephrine levels dose-dependently stimulate vascular endothelial β(2)-

adrenergic receptors, subsequently triggering vascular spasm and the release of procoagulant 

FVIII, haemostatically active vWF and profibrinolytic t-PA into circulation (von Känel & 

Dimsdale 2000). Additionally, catecholamines stimulate hepatic release of FVIII and affect 

hepatic clearance of t-PA, and likely D-dimer (Austin et al. 2013). Circulating t-PA is further 

increased in response to a stressor by sympathetic nerves in artery walls (Hao et al. 2005). 

Catecholamines also activate platelets by stimulating α(2)-adrenergic receptors (von Känel & 

Dimsdale 2000).  

 

Acute stress-induced hypercoagulation is further facilitated by the effects of 

haemoconcentration. In a healthy individual, the increase in blood pressure (BP) 

accompanying acute stress results in the net efflux of intravascular fluid through capillary 

pores into interstitial spaces, with a resulting increased concentration of non-diffusible large 
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(i.e. 69 kDa) haemostatic molecules (Allen & Patterson 1995, Austin & Patterson 2013, 

Austin et al. 2013). 

 

It has been proposed that in healthy subjects, stress-induced procoagulant responses showed 

an inability to adapt or habituate to repeated stressors of the same type (Hamer et al. 2006, 

Lukas 2010, von Känel 2015, von Känel et al. 2004). Von Känel et al. conducted an 

investigation based on this premise, through which they confirmed that; “the magnitude of 

stress-induced changes and subsequent recovery showed no habituation in any coagulation 

variable” (2004, pp. 1333).  An evolutionary paradigm has been posited to support this 

observation, in which a hypercoagulable state during and after stress protected our ancestors 

from exaggerated bleeding when injured as a part of the fight-or-flight response (Preckel & 

von Känel 2004, von Känel 2015, von Känel et al. 2001a, von Känel et al. 2004). Therefore, 

habituation of the coagulation response across stress repetitions would confer a disadvantage 

rather than a benefit with regard to survival of the human species (von Känel et al. 2004). 

Although normal haemostasis physiology is an important biological process mediated by 

elevated coagulation and fibrinolytic potentials that exist in a balanced equilibrium to prevent 

bleeding after vessel injury (Dahlbäck 2005, Gaffney et al. 1999), haemostatic variables and 

the prothrombotic tendency they bring about can also be associated with thrombosis. 

Thrombosis is considered to be a pathological deviation of haemostasis and is characterised 

by intravascular thrombus (clot) formation and vessel occlusion (Engelmann & Massberg 

2013). Various investigations have shown that the effect of acute stress on haemostatic 

parameters is modulated by other risk factors, such as chronic stress (Lukas 2010, von Känel 

et al. 2001a). Chronic stressors are related to an increase in procoagulant factor VII, D-dimer, 

and VWF; and impaired fibrinolytic potential (indicated by increased plasminogen activator 

inhibitor-1 [PAI-1] and t-PA) (Lukas 2010, von Känel et al. 2001a). “Thus, the balance 

between coagulation and fibrinolytic activity consequently changes with chronic stress and 

promotes a hypercoagulable state which, moreover, exceeds the physiologic net 

hypercoaguability in healthy individuals observed during acute stress” (Lukas 2010, pp. 60). 

The exaggerated hypercoagulability because of dampened fibrinolytic activity associated 

with chronic stress (Austin et al. 2013, von Känel et al. 2003, von Känel et al. 2001a), has 

been observed to result in aberrant coagulation.  

 

As aforementioned, there is ample evidence that coagulation and inflammation are intricately 

related processes that may considerably affect each other (Borissoff et al. 2011, Engelmann 
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& Massberg 2013, Levi et al. 2004, von Känel 2015). Inflammatory mediators have been 

shown to elevate platelet count and reactivity, down-regulate anticoagulant mechanisms, 

initiate the coagulation system, facilitate propagation of the coagulant response and impair 

fibrinolysis (Esmon 2005, Levi et al. 2004). Probably the most notable contribution of 

inflammation to thrombin generation is the induction of TF expression on the cell surface of 

leucocytes, in particular monocytes (Lindmark et al. 2000, Parry & Mackman 1998). If 

negatively charged PLs are exposed on activated monocytes, TF contributes significantly to a 

procoagulant state (Esmon 2005).  Another significant contribution of inflammation is 

elevated fibrinogen concentrations. In addition to the role of fibrinogen as an APP in the 

inflammatory response, it also functions as a pivotal precursor in the coagulation cascade. 

Increased fibrinogen concentrations are consistently observed in response to inflammation 

(Epstein & Brainard 2011, Factor 2007, Hantgan et al. 2001), which have, subsequently, been 

associated with an increased risk of thrombus (Esmon 2005). Elevated plasma concentrations 

of CRP, an acute phase reactant, have also been seen during the systemic inflammatory 

response (Esmon 2005). CRP has been shown to facilitate monocyte-endothelial cell 

interactions (Han et al. 2004), and aid in the formation of PAI-1 and TF (Cermak et al. 1993, 

Devaraj et al. 2003). Further, CRP mediates the activation of the complement system, thereby 

increasing the available membrane surfaces on which initiation and amplification aspects of 

coagulation can proceed (Wolbink et al. 1998). Both platelet count and reactivity have been 

shown to increase in response to inflammatory mediators, such as IL-6 (Esmon 2005). In 

addition to increased platelet production, newly formed platelets brought about by 

inflammatory mediators tend to be more thrombogenic (Burstein 1997). Platelet responsive, 

and thus the rate of platelet thrombi generation, can also be indirectly increased by 

inflammatory mediators (e.g. histamine, TNF-α, IL-8 and IL-6), which lead to the release of 

ultra-large vWF multimers from the endothelium (Bernardo et al. 2004). Diminished activity 

of anticoagulant pathways have also been observed in response to inflammation, including 

decreases in antithrombin concentration and the concentration of vascular heparin-like 

molecules (Esmon 2005, Klein et al. 1992, Levi et al. 2004). The protein C pathway appears 

to be especially sensitive to down-regulation by inflammatory mediators (Esmon 2005, Levi 

et al. 2004).   

 

In the extreme, inflammatory mechanisms that cause an exaggerated or insufficiently 

controlled haemostatic response, can lead to a situation in which coagulation and thrombosis 

become pathological. Disseminated intravascular coagulation (DIC) is one such coagulation 
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disorder that is considered to result from severe haemostatic imbalance, where an increase of 

coagulation potential occurs (Johnstone et al. 1986, Morris et al. 1988, Welch et al. 1992). 

DIC is a pathological process characterised by the widespread intravascular activation of the 

coagulation cascade that results in thrombi formation in small to medium-sized blood vessels 

throughout the body, and ultimately leads to organ dysfunction (Taylor et al. 2001, Wada 

2004, Wada et al. 2014). Various investigations have been conducted on the occurrence of 

DIC in colic horses (Dolente et al. 2002, Monreal et al. 2000, Stokol et al. 2005, Welch et al. 

1992). Diagnosis of DIC is based on a primary condition capable of initiating DIC, clinical 

signs of haemorrhage or thrombosis, and irregular results of various laboratory tests of 

haemostasis (e.g. platelet count, coagulation assays) and fibrinolytic markers (Calverley & 

Liebman 2000, Dallap 2004, Morris 1988). Recently, there has been increasing interest in the 

use of FDPs and D-dimer as sensitive indicators of excessive fibrinolysis due to DIC (Stokol 

et al. 2005). Due to its dual role in coagulation and inflammation, changes in fibrinogen can 

be related to abnormalities in both processes. From the inclusion of fibrinogen in a complete 

coagulation panel, decreased fibrinogen with increased FDPs or D-dimers is an indication of 

activation and consumption of coagulation factors consistent with DIC (Benson et al. 2008, 

Dallap 2004, Dolente et al. 2002, Epstein & Brainard 2011, Stokol et al. 2005, Welch et al. 

1992). 

 

The incidence of DIC is further facilitated by an increase in core and peripheral body 

temperature associated with stress (Bouchama et al. 1996, Rosenthal et al. 1971, Strother et 

al. 1986, Weber & Blakely 1969). Stress-induced hyperthermia in mice has been extensively 

reviewed (Groenink et al. 2009, van der Heyden et al. 1997, Zethof et al. 1994).  Despite the 

relationship between hyperthermia and haemostasis being widely acknowledged, the precise 

mechanisms responsible for DIC are still incompletely defined (Diehl et al. 2000).   

As is previously discussed, a relationship of mutual causality has been suggested between a 

pro-inflammatory state and overproduction of cytokines, and hyperglycaemia and 

hyperinsulinemia (Hotamisligil et al. 1996, Lang et al. 1992, Schook et al. 2015, Spraker 

1993). Iwasaki et al. (2007) have suggested that glucose is responsible for the activation of 

inflammation/coagulation-related protein expression, mediated in part by the generation of 

oxidative stress.  Therefore hyperglycaemia, in addition to other risks factors (e.g. 

hyperinsulinemia, obesity, elevated cytokine levels), contributes to a pro-inflammatory state 

as well as hypercoagulability (Bruno et al. 1996, Festa et al. 1999, Iwasaki et al. 2007). This 

is as a result of the stimulatory effect of high glucose on NF-κB-dependent transcription in 
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hepatocytes. In response to inflammation, pro-inflammatory cytokines activate the 

transcription factor NF-κB in hepatic cells, leading to the immediate expression of APP (e.g. 

CRP, SAA), procoagulants (e.g. fibrinogen and FVIII), and fibrinolysis inhibitor PAI-1 

(Begbie et al. 2000, Bing et al. 2000, Cha-Molstad et al. 2000, Fuller & Zhang 2001, Ruan et 

al. 2001).  Although beneficial in the acute phase of inflammation (Gabay & Kushner 1999), 

the chronic overproduction of these proteins is known to cause hypercoagulability with 

resultant coagulopathies. The concurrent occurrence of hyperglycaemia, hyperinsulinemia 

and elevated cytokine levels has been shown clearly, in recent clinical data, to produce an 

increase in plasma PAI-1 and fibrinogen, leading to enhanced coagulation and impaired 

fibrinolysis, with a resultant increase in the risk of cardiovascular events (Pandolfi et al. 

2001, Schneider et al. 1993). Furthermore, recent studies suggest that adipose tissue produces 

TNF-α and other cytokines (Matsuzawa et al. 1999), which also stimulate NF-κB-dependent 

transcription.  

 

Another mechanism which has been suggested to represent an initial stage in the 

development of DIC is the recently introduced concept of immunothrombosis. 

Immunothrombosis designates an innate immune response induced by the formation of 

thrombi in blood vessels (Engelmann & Massberg 2013). The physiological process of 

immunothrombosis is initiated and maintained by fibrin generation and the local 

accumulation of innate immune cells (particularly monocytes and neutrophils) and platelets 

(Engelmann & Massberg 2013). Recent findings show that immunothrombosis in 

microvessels impedes the dissemination and tissue invasion of pathogens and enhances 

bacterial killing, thereby protecting host integrity (Massberg et al. 2010).  Immunothrombosis 

represents a mechanism of intravascular antimicrobial defence, that is considered to be a 

consequence of the evolutionary conserved link between blood coagulation and innate 

immunity (Dushay 2009, Li et al. 2002, Loof et al. 2011, Theopold et al. 2002).  Although 

immunothrombosis is suggested to support pathogen recognition and host defence, the 

dysregulation of immunothrombosis is likely to constitute a decisive biological basis for the 

development of thrombotic disorders, including DIC. Similar to immunothrombosis DIC, 

which occurs in micro vessels, is induced in response to systemic infections, and is activated 

and sustained by thrombosis-specific molecules (e.g. TF) (Engelmann & Massberg 2013). 

Therefore, DIC may be triggered when immunothrombosis becomes inundated, impairing its 

ability to prevent the spread of pathogens and/or damaged cells. Resulting in the unrestricted 

formation of microvessel thrombi and the excessive activation of inflammation, which is 
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further aggravated by the ability of coagulation and inflammation to potentiate each other 

(Esmon 2005).  

 

1.3.3 Immobilisation 

 

Capture and Confinement 

 

While information on stress responses to immobilisation is limited, studies suggest that it has 

the potential to induce a substantial stress response and disturb normal regulatory systems, 

resulting in undesirable side effects (Arnemo & Caulkett 2007, Colucci et al. 2013, Kumar et 

al. 2002). The extent of the effects of the immobilisation is dependent on the type of drug, 

combination, and dosage used. 

 

The administration of immobilising agents may produce direct and indirect effects on the 

functional and regulatory components of the immune response. Immobilisation has been 

reported to modulate the stress response by inhibiting the ACTH-stimulated production of 

GC (Marana et al. 2010, Sakai et al. 1995). Thus, part of the effect of immobilising agents on 

the immune system would be due to the immunomodulatory action of GC (Colucci et al. 

2013). These actions include the alteration of both the count and functionality of leukocytes. 

Immobilising agents generally induce an increase in leukocyte counts (Cocelli et al. 2012, 

Elena et al. 2003, Inada et al. 2004). There has also been a reported depression in bactericidal 

activities, including: inhibition of phagocytosis and respiratory burst by neutrophils and 

mononuclear phagocytes (Heine et al. 2000, Lisowska et al. 2013, Rizzo et al. 2011), the 

decreased proliferation of lymphocytes (Colucci et al. 2013), and decreased cytotoxic activity 

of NK cells (Colucci et al. 2013, Kumar et al. 2002, Moudgil 1986). Opiates have also been 

found to decrease B-cell proliferation and antibody production (Lisowska et al. 2013). 

Further, several studies have observed that immobilisation can adversely affect both T-cell 

and B-cell responsiveness, as well as nonspecific host resistance mechanisms (Colucci et al. 

2013, Kumar et al. 2002, Moudgil 1986, Stevenson et al. 1990). Immobilisation affects the 

inflammatory response by suppressing or releasing different cytokines (Colucci et al. 2013). 

The induced depression of the immune system is short-lived and reversible, however this 

depression may influence morbidity and mortality in susceptible individuals (Moudgil 1986).  
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Although immobilisation has been reported not to have a direct effect on haemostasis 

(Odoom 1995), several studies have demonstrated that opioids present in the blood decrease 

the viscosity of blood plasma and influence the smooth muscle of the vessels, resulting in 

vasodilation (Beilin et al. 2006, Binici et al. 2015, Odoom 1995, Reinhart 1995). Further, 

immobilisation has reportedly been associated with platelet function inhibition (Binici et al. 

2015, Faraday 2002, Odoom 1995).  However, the mechanism responsible for the inhibitory 

effect on platelet aggregation is unknown. The inhibition of platelet function and decreased 

blood viscosity serves to reduce the prevalence of thrombosis (Odoom 1995).  

 

 From the above review several hypotheses could be established. Firstly, it was proposed that 

HPA activity, as measured by blood cortisol and FGM excretion, would decline over time as 

a response to habituation to the boma conditions. Secondly, immune function, as indicated by 

WBC count and ROS activity, would decrease as a consequence of continued stress exposure. 

Thirdly, circulating levels of APP Hp and SAA would increase in response to stress. 

Fourthly, the APR response would enhance the coagulation potential, as screened with assays 

of aPTT, PT, TT and fibrinogen concentration. It was further proposed that HPA activity, 

immune function, APP concentrations and coagulation potential would also change in 

response to a 30 min immobilisation period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

2 MATERIALS AND METHODS 

 

This study provided the opportunity to conduct a longitudinal study on the stress responses 

associated with repeated immobilisation and handling in impala. The extent and impact of 

these stressors was examined with regards to: (1) body wei ght and body condition score, (2) 

HPA activity, (3) ROS generating capability of whole blood, (5) secretion of APP, and (6) 

coagulation potential of the blood. All procedures were approved by the Animal Ethics 

Screening Committee of the University of the Witwatersrand (AESC 2017/10/66/B).  

 

2.1 Experimental Design 

 

Impala (Aepyceros melampus) were designated for use in a separate trial of the immobilising 

agent thiafentanil oxalate (A3080) that was undertaken to provide clinical data for the 

Medicines Control Council (MCC). The purpose of this trial was to allow thiafentanil to be 

registered for use in impala. Prior to the commencement of the trial, the animals were caught 

in the wild using mass capture techniques (Laubscher et al. 2015) and then confined in bomas 

at Ngongoni Lodge (Karino, Nelspruit; Mpumalanga). The trial protocol required that the 

impala be held in bomas and immobilised with different doses of thiafentanil at two-weekly 

intervals.  

 

2.2 Experimental Procedure 

 

Using mass capture techniques, 13 wild impala were obtained from a nearby game farm and 

transported to the Ngongoni Lodge (Karino, Nelspruit; Mpumalanga). Prior to the 

commencement of the trial, the animals were confined in bomas on site for a period of 14 

days. Throughout the trial the impala were kept in bomas, each measuring 6 x 7 m (± 10 

animals/boma) (Fig. 2.1), and provided with food (pellets and lucerne) and water ad libitum.   

 

Thiafentanil (A3080, Wildlife Pharmaceuticals, White River, South Africa) was used 

independently as the immobilising agent. No additional sedatives or tranquilisers were used 

as the objective of the principle trial was to assess the optimal dose of thiafentanil for use in 

impala. The A3080 was formulated as a sterile injectable solution in multidose vials. The 

delivery system was a CO2-powered remote injection device delivering a 3 ml air-pressurised 

plastic dart with a 40 mm collared needle (Dan-Inject, South Africa) to ensure a deep  
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Figure 2.1  Layout of bomas on site at Ngongoni Lodge. Impala were kept in bomas each measuring 6 x 7 

m (± 10 animals/boma), and provided with food and water ad libitum throughout the trial. 
 

intramuscular injection. The impala were individually darted within the bomas at a 5 – 10 m 

range.  

 

At two-weekly intervals animals were immobilised with different doses of thiafentanil (i.e. 40 

µg.kg-1, 80 µg.kg-1 or 100 µg.kg-1). To assess the effects of confinement and the response to 

repeated immobilisation and handling, blood samples were collected from each animal within 

3-5 min of recumbency. Further, faecal samples were obtained using digital removal from the 

rectum. A Cardell® Monitor was used in Trials 3, 4 and 5 (T3, -4 and -5) to monitor all 

animals for a further 30 min in regards to HR, respiratory rate (RR), ECG, blood pressure 

(BP), oxygen saturation of arterial haemoglobin (%SpO2), and body temperature. In addition 

to the Cardell® Monitor, parameter measurements were verified manually. Arterial blood 

samples were also collected from each impala to determine arterial blood gas levels, using an 
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i-STAT handheld blood analyser (Abbott®). Further measurements made on each animal at 

every immobilisation event included body weight (BW) and body condition. A digital 

hanging scale (AE Adam®) was used to record BW. Body condition was scored on a scale of 

0-10 by subjective assessment of the tissue cover in the lumbar region (Balmford et al. 1992). 

To assess the acute effects of 30 min immobilisation we collected further blood samples from 

each animal after the 30 min monitoring period. Intravenous injection of naltrexone 

hydrochloride (naltrexone) was used to reverse the effects of immobilisation. The 

experimental procedure is schematically outlined in Figure 2.2.  
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Figure 2.2  Experimental procedure outline for project conducted at Ngongoni Lodge. [HR: heart rate, 

RR: respiratory rate, BP: blood pressure, %SpO2: oxygen saturation of arterial haemoglobin]. 

 

Mass capture from wild (13 impala)

Transport to Ngongoni Lodge

Boma confinement period (14 days)

•Blood and faecal samples collected upon immobilisation.
•Animals ear-tagged, weighed and body condition scored.

Trial 1: Impala immobilised (etorphine dart, 1 mg)

Recovery period (10 - 14 days) 

•Blood and faecal samples collected upon immobilisation.
•Animals weighed and body condition scored.

Trial 2: Impala immobilised (thiafentanil dart, 40 µg.kg-1)

Recovery period (10 - 14 days)

•Blood and faecal samples collected upon immobilisation.
•30 min monitoring (HR, RR, BP, ECG, %SpO2, body temp., arterial blood gas).
•Animals weighed and body condition scored.
•Blood sample collected after 30 minutes.

Trial 3: Impala immobilised (thiafentanil dart, 80 µg.kg-1) 

Recovery period (10 - 14 days)

•Blood and faecal samples collected upon immobilisation.
•30 min monitoring (HR, RR, BP, ECG, %SpO2, body temp., arterial blood gas).
•Animals weighed and body condition scored.
•Blood sample collected after 30 minutes.

Trial 4: Impala immobilised (thiafentanil dart, 100 µg.kg-1) 

Recovery period (10 - 14 days)

•Blood and faecal samples collected upon immobilisation.
•30 min monitoring (HR, RR, BP, ECG, %SpO2, body temp., arterial blood gas).
•Animals weighed and body condition scored.
•Blood sample collected after 30 minutes.

Trial 5: Impala immobilised (thiafentanil dart, 80 µg.kg-1)

Recovery period (10 - 14 days)

•Blood and faecal samples collected upon immobilisation.
•Animals weighed and body condition scored.

Trial 6: Impala immobilised (thiafentanil dart, 40 µg.kg-1)
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2.3 Sample Collection 

 

Venous blood samples were obtained from each animal by venipuncture of the jugular vein. 

At each sampling event, blood was collected into three blood collection tubes 

(VACUETTE®), namely: (1) lithium heparin (to determine hormone concentrations and 

innate immune activity), (2) 3.2 % sodium citrate (to determine coagulation potential), and 

(3) serum separator clot activator (to determine APP concentrations). The sodium citrate and 

serum tubes were centrifuged at 3500 rpm for 10 min each. Following the appropriate amount 

of whole blood being drawn out for use in determination of WBC counts and the ROS 

generating capability of whole blood, the lithium heparin tubes were centrifuged at 3500 rpm 

for 10 min each. The serum or citrated plasma from each tube was then pipetted into separate 

cryotubes and frozen on site at -20 °C. 

  

Individual faecal samples were obtained from each animal by manual removal from the 

rectum (to determine FGM), and placed in polypropylene containers. Based on the 

observation that a negative relationship exists between faecal sample mass and FGM 

concentration (Goymann 2005, Millspaugh & Washburn 2004), we collected relatively large 

faecal samples (i.e. 50 ml) from each individual. Well-mixed samples were then frozen on 

site at -20 °C.  

 

Following transport of the processed blood and faecal samples back to the university in 

Johannesburg they were stored at -80 °C and -20 °C respectively. .  

 

2.4 Sample Processing 

 

Measurements of HPA activity (cortisol and FGM), APP (SAA and Hp) and coagulation 

potential (aPTT, PT, TT and fibrinogen concentration) were done at the University of the 

Witwatersrand’s School of Physiology on previously frozen and appropriately stored 

samples. Before each assay samples were thawed at room temperature.  Measurements of 

ROS capability and WBC measurements were done in a laboratory on site at Ngongoni 

Lodge within 8 and 24 hours respectively after the blood sample was collected. 

 

2.4.1 HPA Activity 
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To determine the HPA activity in response to capture, confinement, and immobilisation we 

measured: 

 

Cortisol in Blood 

 

Cortisol in plasma samples were measured using a commercially available Cortisol Coated 

Tube radioimmunoassay (RIA) kit (Beckman Coulter, AEC-Amersham SOC Ltd) (Stevenson 

2015). Serum samples were diluted 1:10 with the manufacturer’s steroid diluent and assayed 

according to instructions specified by the manufacturer. 

 

Faecal Glucocorticoid Metabolites  

 

Because FGMs may not be evenly distributed throughout the faecal mass, samples were 

homogenized prior to subsampling (Millspaugh & Washburn 2003, Sheriff et al. 2011). To 

eliminate variation in the moisture content between samples, a subsample of about 2.0 g 

(±0.001 g) was taken of each sample and oven-dried in an aluminum tin boat at 60 °C for 24 

hrs. The dry faecal mass was then weighed for subsequent calculation of metabolite 

concentration.  

 

The glucocorticoid metabolites in the faeces were extracted by adding 10 ml of methanol (80 

%) to well-mixed 2.0 g (±0.001 g) subsamples (Möstl & Palme 1997) in 15 ml conical 

centrifuge tubes. Each sample was vortexed until the solution was homogenized, rotated on a 

vertical plane for 12 hrs and then centrifuged at 2300 rpm for 15 min. The supernatant was 

transferred to cryotubes and these FGM extractions were then stored at -20 °C until assayed.  

 

Cortisol metabolites were measured in faeces using a commercially available double-

antibody 125I Corticosterone RIA Kit (MP Biomedicals LLC, Thermo Fisher Scientific), that 

has been validated for several species (Chinnadurai et al. 2009, Millspaugh & Washburn 

2004, Wasser et al. 2000) including South African herbivores (Franceschini et al. 2008). 

Although validation and antibody specificity was not determined in this experiment, several 

studies have concluded that the double-antibody RIA for corticosterone shows a better 

performance in the detection of FGMs in different non-domestic species because of its high 

cross-reactivity with different metabolites (Graham & Brown 1996, Möstl & Palme 2002, 
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Terio et al. 1999, Wasser et al. 2000, Wielebnowski et al. 2002). The FGM extractions were 

diluted 1:10 with the manufacturer’s steroid diluent and assayed according to instructions 

specified by the manufacturer, except for one important consideration which is a critical 

detail noted by my supervisor Dr. Pitts. The six corticosterone calibrators in the kit (0-1000 

ng.ml-1) are pre-diluted to account for the 1:200 dilution prescribed for rat plasma 

corticosterone measurement. This means that the actual concentration of each calibrator is 

200 times lower than stated, so our calibration range extended from 0 ng.ml-1 to 5 ng.ml-1.  

The FGM concentrations thus determined were then corrected for dilution ratios and water 

content of the faeces and the results expressed as ng.g-1 dry faeces. Serial dilutions of selected 

samples gave slopes of r2 > 0.98 which remained parallel to the standard curve. 

 

2.4.2 Reactive Oxygen Species Generating Capability of Whole Blood 

 

To determine the ROS generating capability of whole blood in response to capture, 

confinement and immobilisation we measured: 

 

White Blood Cell Count  

 

The circulating level of leukocytes was measured using manual WBC counts in 1 mm3 of 

blood using a modified Neubauer haemocytometer chamber (Hawksley Crystalite). 360 μl 

Turks solution was added to 40 μl whole blood in 12 x 75 mm polypropylene test tube. Turks 

is an acid solution that lyses erythrocytes and retains leukocytes and platelets, as well as 

stains the nuclei of WBCs, allowing for easy identification and counting. Turks solution was 

prepared by adding 3 ml glacial acetic acid, 1 ml aqueous gentian violet and 96 ml distilled 

water. Tubes were capped and mixed by inversion for 2 min. A cover slip was placed over 

the Neubauer chamber, which was then loaded with an appropriate amount of mixture by way 

of capillary action. The fully loaded haemocytometer was incubated at room temperature for 

3 min to allow cells to settle. Under 10x magnification WBCs were then counted and 

recorded.  

 

Reactive Oxygen Species Generation  

 

We examined the capacity of leukocytes to produce a respiratory burst after a stressful event  

by measuring stimulated chemiluminescence levels in whole blood in vitro using PMA 
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(Fandos Esteruelas et al. 2016, McLaren et al. 2003). To measure an individual animal’s 

LCC response three 12 x 75mm polypropylene test tubes were prepared for each sample. To 

each tube containing 500 μl of phosphate buffered saline (PBS), 100 μl of heparinised whole 

blood was added, to which 100 μl of luminol (5-amino-2.3-dihydrophthalzine) was added. 

Tubes were mixed by gentle shaking. Luminol chemiluminesces produce a low intensity light 

reaction when combined with an oxidising agent (Whitehead et al. 1992). All tubes were 

incubated at 37 °C for 5 min. Following incubation, 100 μl of PMA at a concentration of 10-5 

mol L-1 was added to two tubes. The PMA solution was prepared in advance by diluting 5 mg 

of PMA in 500 ml of dimethyl sulfoxide, which was then diluted to a concentration of 10-5 

mol L-1 in PBS buffer. The third tube served as an unstimulated control and the PMA was 

substituted with 100 μl of PBS. For each tube, we measured and recorded chemiluminescence 

in relative light units (RLU) using a portable single tube luminometer (UNI-LITE NG2, 

Biotrace®) every 5 min for a total of 45 min. When not in the luminometer, tubes were 

continually incubated at 37 °C. 

 

2.4.3 Secretion of Acute Phase Proteins 

 

To determine the secretion of APP in response to capture, confinement and immobilisation 

we measured:  

 

Haptoglobin 

 

The circulating concentrations of Hp in the impala were examined using a commercially 

available, colorimetric method based on peroxidase activity (Tridelta Development Ltd.) 

(Cooke & Arthington 2013, Wells et al. 2013). Haptoglobin can be quantitated, based on its 

universal reactivity with hemoglobin (Petersen et al. 2004, Tecles et al. 2007). Validation of 

this cross species assay for Hp was described in Crawford et al. (2013). Serum samples were 

assayed according to instructions specified by the manufacturer.  

 

Serum Amyloid A 

 

The circulating levels of SAA in the impala were examined using a commercially available, 

multi species enzyme-linked immunosorbent assay (ELISA) (Tridelta Development Ltd.) 

(Bernal et al. 2011, Petersen et al. 2001, Piñeiro et al. 2007, Wells et al. 2013). Serum 
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amyloid A was quantitated as it appears to be conserved within mammalian species (Hol & 

Gruys 1984, Jacobsen et al. 2006) and it has also been reported to be a likely major APP in 

non-domesticated mammals (Stanton et al. 2013). Serum samples were diluted 1:10 with 

steroid diluent and assayed according to instructions specified by the manufacturer. 

 

2.4.4 Coagulation Potential 

 

To determine the coagulation potential in response to capture, confinement and 

immobilisation we measured aPTT, PT, TT and fibrinogen concentration using the manual 

tilt-tube method (Bai et al. 2008, D’Angelo et al. 1989). After adding factors to promote 

activation of the relevant clotting cascade, tubes were tilted regularly back and forth against a 

light source until the first fibrin clot was visible. Clotting time was recorded in seconds. 

Duplicate determinations were made for each sample.  

 

Activated Partial Thromboplastin Time 

 

We examined the activity levels of the extrinsic pathway (including factors II, V, VII, X, and 

fibrinogen) using an activated partial thromboplastin time (aPTT) assay (Randox 

Laboratories Ltd) (Benson et al. 2008, Hussein et al. 2010, Siroka et al. 2011). The aPTT 

reagent was pre-warmed at 37 °C. 0.1 ml of each sample was transferred to a 12 x 75 mm 

polypropylene test tube, to which 0.1 ml of pre-warmed aPTT reagent was added. Tubes were 

incubated at 37 °C for 3 min. We added 0.1 ml of calcium chloride reagent to each tube 

singly, and started timer simultaneously.  

 

Prothrombin Time 

 

The activity levels of the intrinsic pathway (including factors II, V, VIII, IX, X, XI, XII, and 

fibrinogen) were examined using a prothrombin time (PT) assay (Randox Laboratories Ltd) 

(Benson et al. 2008, Hussein et al. 2010, Siroka et al. 2011). The PT reagent was pre-warmed 

at 37 °C. 0.1 ml of each sample was transferred to a 12 x 75 mm polypropylene test tube, and 

pre-warmed at 37 °C for 2 min. We added 0.2 ml of pre-warmed PT reagent to each tube 

singly, and started timer simultaneously.  

 

Thrombin Time 
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The rate of fibrinogen conversion was examined using a thrombin time (TT) assay (Randox 

Laboratories Ltd) (Benson et al. 2008, Hussein et al. 2010, Siroka et al. 2011). We 

transferred 0.2 ml of each sample to a 12 x 75 mm polypropylene test tube, and pre-warmed 

at 37 °C for 3 min. We added 0.1 ml of reconstituted thrombin time reagent to each tube 

singly, and started timer simultaneously. 

 

Fibrinogen 

 

The fibrinogen concentration was determined using a modified Clauss method (Randox 

Laboratories Ltd) (Benson et al. 2008, Hussein et al. 2010, Siroka et al. 2011). In the 

presence of a high concentration of thrombin the time required for formation of the clot in 

diluted plasma is inversely proportional to the fibrinogen concentration.  We diluted 0.1 ml of 

controls and samples in 0.9 ml of imidazole buffered saline. In 12 x 75 mm polypropylene 

test tubes, 0.2 ml of each dilution was incubated at 37 °C for 1 min. We added 0.1 ml of 

reconstituted thrombin reagent to each tube singly, and started timer simultaneously.  

 

2.5 Data Processing and Statistical Analysis 

 

Data was analysed using the GraphPad Prism (Version 5.0.4) statistical software package (La 

Jolla, California, USA). The significance level for all comparisons was established as P < 

0.05, and all testing was two-tailed. Normality testing was conducted to assess if all 

parameters were normally distributed. To analyse the chronic effects of confinement and 

response to repeated stressors, repeated measures one-way analyses of variance (ANOVAs) 

were conducted for each variable that was normally distributed. Bonferroni post hoc tests 

were conducted on column data indicated to be parametric. For non-parametric data the 

Friedman statistic was calculated and Dunn’s tests used to compare columns. Data are 

expressed as box plots with median and 95% confidence levels. Upper and lower limits of the 

box represent the 75% and 25% percentiles respectively. To analyse the response to 30 min 

of immobilisation paired t-tests were conducted for each parameter. Data are expressed as 

mean ± SD (standard deviation). 
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3 RESULTS 

 

3.1 Confinement and Repeated Immobilisation 

 

The following are the results obtained from the blood and faecal samples collected from each 

animal upon immobilisation, for the purpose of assessing the effects of confinement and the 

response to repeated immobilisation and handling.  

 

3.1.1 Body Weight and Condition  

 

In response to confinement and repeated immobilisation we observed a significant decline in 

body weight (Fig. 3.1A) in the impala from T2 to T3 (P ≤ 0.05) and T4 (P ≤ 0.01). 

Thereafter, a significant increase in body weight was observed at T6, such that the animals 

had returned to their initial average body weight at T1. Concurrently, we observed a 

significant decrease in body condition (Fig. 3.1B) from T2 to T3 (P ≤ 0.01) and T4 (P ≤ 

0.01), followed by a significant increase in body condition at T6, which corresponds with the 

recovery of body weight to the initial conditions.   
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Figure 3.1  Body weight and condition in response to confinement and repeated immobilisation in impala. 

(A) Impala body weight, and (B) impala body condition. Data are expressed as box plots with median and 95% 

confidence levels. Upper and lower limits of the box represent the 75% and 25% percentiles respectively. 

Significant difference (P < 0.05) between immobilisation events was determined using one-way ANOVA 

followed by Bonferroni post hoc tests. Columns in either A or B with the same letter (a, b, c, d or e) are 

significantly different from each other respectively. 

 

The health characteristics of the 11 impala that completed our trials suggest that our sample 

was in reasonably good health. Subjects that did not complete the trials included two animals 

that were euthanised due to a broken leg and fetlock respectively, sustained during the boma 

darting procedures T4. 

 

3.1.2 HPA Activity 

 

Cortisol in Blood  

 

No significant difference in cortisol concentration in response to darting after a period 

confinement and repeated immobilisation was observed in the impala (P = 0.056).  
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Figure 3.2  Cortisol response to confinement and repeated immobilisation in impala. Data are expressed 

as box plots with median and 95% confidence levels. Upper and lower limits of the box represent the 75% and 

25% percentiles respectively. Significant difference (P < 0.05) between immobilisation events was determined 

using one-way ANOVA followed by Bonferroni post hoc tests. No significance was observed (P = 0.056).  

 

Faecal Glucocorticoid Metabolites  

 

In the impala we observed a significant increase in FGM concentration from T1 to T3 (P ≤ 

0.01) in response to confinement and repeated immobilisation. Thereafter the FGM 

concentration declined to below that which was recorded at T2 and T3. 
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Figure 3.3  Faecal glucocorticoid metabolite responses to confinement and repeated immobilisation in 

impala. Data are expressed as box plots with median and 95% confidence levels. Upper and lower limits of the 

box represent the 75% and 25% percentiles respectively. Significant difference (P < 0.05) between 

immobilisation events was determined using one-way ANOVA followed by Bonferroni post hoc tests. Columns 

with the same letter (a, b, c, d, e, f or g) are significantly different from each other respectively. 

 

3.1.3 Reactive Oxygen Species Generating Capability of Whole Blood  

 

White Blood Cell Count 

 

No significant difference in WBC count was observed in response to confinement and 

repeated immobilisation in the impala (P = 0.4066).  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  White blood cell responses to confinement and repeated immobilisation in impala. Data are 

expressed as box plots with median and 95% confidence levels. Upper and lower limits of the box represent the 

75% and 25% percentiles respectively. Significant difference (P < 0.05) between immobilisation events was 

determined using one-way ANOVA followed by Bonferroni post hoc tests. No significance was observed (P = 

0.4066).  

 

Reactive Oxygen Species Assay 

 

In response to confinement and repeated immobilisation a significant decline in leukocyte 

respiratory burst activity in the impala was observed from T2 to T4 (P ≤ 0.05). This was 

followed by a significant increase from T4 to T6 (P ≤ 0.05), which showed recovery to initial 
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levels. The decline in ROS generating capability in the absence of a significant decline in 

WBC count indicates that there is a functional decline in these cells.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  Reactive oxygen species generating capability of whole blood in response to confinement and 

repeated immobilisation in impala. Data are expressed as box plots with median and 95% confidence levels. 

Upper and lower limits of the box represent the 75% and 25% percentiles respectively. Significant difference (P 

< 0.05) between immobilisation events was determined using one-way ANOVA, followed by calculation of 

Friedman statistic and Dunn’s post hoc tests. Columns with the same letter (a or b) are significantly different 

from each other. 

 

3.1.4 Secretion of Acute Phase Proteins 

 

In the impala no significant change in either the Hp or SAA concentrations in response to 

confinement and repeated immobilisation was observed, although increasing variability in the 

results was noted (P = 0.1354 and P = 0.167 for Hp and SAA respectively) (Fig. 3.6). 
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Figure 3.6  Secretion of acute phase protein responses to stress in the impala. (A) Haptoglobin 

concentration in blood, and (B) serum amyloid A concentration in blood. Data are expressed as box plots with 

median and 95% confidence levels. Upper and lower limits of the box represent the 75% and 25% percentiles 

respectively. Significant difference (P < 0.05) between immobilisation events was determined using one-way 

ANOVA, followed by calculation of Friedman statistic and Dunn’s post hoc tests. No significance was observed 

(Friedman P = 0.1354 and P = 0.167 for A and B respectively).  

 

3.1.5 Coagulation Potential 

 

Figures 3.7 show the effects of confinement and repeated immobilisation on aPTT, PT, TT 

and fibrinogen concentration in the impala. 
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Activated Partial Thromboplastin Time 

 

Activation of the intrinsic pathway, as measured by the aPTT, was noted to increase at T4 

(Fig. 3.7A). Thereafter there was a significant decline in the clotting time from T4 to T5 (P ≤ 

0.05) and T6 (P ≤ 0.01), which showed recovery to initial levels.  

 

Prothrombin Time 

 

In the impala a significant delay in activation of the extrinsic pathway was seen as an increase 

in PT was observed from T1 to T3 (P ≤ 0.001) (Fig. 3.7B). From T4 to T6 the clotting time 

showed recovery to initial levels (P ≤ 0.01).  

 

Thrombin Time 

 

The conversion rate of fibrinogen to the fibrin clot, as indicated by the TT assay, decreased 

significantly at T3 compared to levels at T1 (P ≤ 0.001) and T2 (P ≤ 0.001) (Fig. 3.7C). 

Thereafter the TT again increased over successive trials until it showed recovery to initial 

levels.  

 

Fibrinogen Concentration 

 

A significant increase in fibrinogen concentration was observed at T4 compared to levels at 

T1 (P ≤ 0.05) and T3 (P ≤ 0.01) (Fig. 3.7D). Thereafter, a significant decline was observed at 

T6 (P ≤ 0.01), which showed recovery to initials levels.  
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Figure 3.7  Coagulation potential 

responses to confinement and repeated 

immobilisation in impala. (A) Impala activated 

partial thromboplastin time, (B) prothrombin 

time, (C) thrombin time, and (D) fibrinogen 

concentration. Data are expressed as box plots 

with median and 95% confidence levels. Upper 

and lower limits of the box represent the 75% 

and 25% percentiles respectively. Significant 

difference (P < 0.05) between immobilisation 

events was determined using one-way 

ANOVA followed by Bonferroni post hoc 

tests. Columns in each block with the same 

letter (a, b, c, d or e) are significantly different 

from each other respectively. 
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3.2 30 Minutes of Immobilisation 

 

The following are the results obtained from the blood samples collected from each animal 

following the 30 min monitoring period (at T3, -4 and -5), for the purpose of assessing the 

acute effects of 30 min of  immobilisation.  

 

3.2.1 HPA Activity 

 

Cortisol in Blood  

 

As shown in Table 3.1 the cortisol concentrations in the impala significantly increased at T3 

(P = 0.009) and T5 (P = 0.0323) in response to 30 min of immobilisation. 

 

3.2.2 Reactive Oxygen Species Generating Capability of Whole Blood  

 

White Blood Cell Count 

 

No significant change in WBC count as a consequence of 30 min of immobilisation with 

thiafentanil was observed in the impala (Tab. 3.1). 

 

Reactive Oxygen Species Assay 

 

The ROS generating capability of whole blood in the impala showed a significant decrease 

over the 30 min of immobilisation at T4 (P = 0.0406) and T5 (P = 0.0188) (Tab. 3.1). 

 

3.2.3 Secretion of Acute Phase Proteins 

 

SAA and Hp were only measured at T4. No significant difference in concentration for either 

APP was observed after 30 min of immobilisation. 

 

3.2.4 Coagulation Potential 

 

aPTT and PT did not change significantly as a result of the 30 min of immobilisation. We 

observed a significant decrease in TT during T3 (P = 0.0002), T4 (P < 0.0001) and T5 (P = 
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0.0020) as a consequence of 30 min of immobilisation. The fibrinogen concentration 

decreased in response to 30 min of immobilisation at T3 (P = 0.0457) (Tab. 3.1). 
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Table 3.1  HPA activity, reactive oxygen species generating capability of whole blood, and coagulation potential responses to immobilisation by thiafentanil. Data are 

expressed as mean ± SD (standard deviation). Significant difference (P < 0.05) between initial immobilisation and after 30 min of immobilisation was determined for each 

parameter within each trial using paired t-tests. [WBC: white blood cell, RLU: reactive light unit, aPTT: activated partial thromboplastin time, PT: prothrombin time, TT: 

thrombin time].  

Parameter 

Trial 3 Trial 4 Trial 5 

Initial 

Immobilisation 

(0 min) 

30 min after 

Immobilisation 

P value Initial 

Immobilisation 

(0 min) 

30 min after 

Immobilisation 

P value Initial 

Immobilisation 

(0 min) 

30 min after 

Immobilisation 

P value 

Cortisol (nmol.l-1) 87.43 ± 31.41 51.65 ± 37.59 0.0009 83.37 ± 38.27 61.25 ± 45.09 0.1523 87.15 ± 23.13 59.55 ± 35.01 0.0323 

WBC (x 109.l-1) 342.5 ± 79.30 298.90 ± 61.09 0.1438 314.4 ± 113.6 295.2 ± 141.4 0.4633 259.40 ± 92.81 271.50 ± 99.06 0.5287 

RLU.WBC-1 (x 109.l-1) 16.20 ± 8.68 10.40 ± 8.56 0.1031 6.071 ± 5.62 8.80 ± 7.66 0.0406 7.11 ± 9.79 12.46 ± 15.42 0.0188 

aPTT (s) 29.27 ± 9.31 30.18 ± 3.39 0.7793 33.75 ± 5.55 32.29 ± 4.47 0.4410 25.73 ± 5.11 25.73 ± 5.33 0.9997 

PT (s) 33.57 ± 6.03 31.56 ± 3.02 0.4133 29.25 ± 6.49 26.02 ± 1.76 0.1096 24.55 ± 2.21 24.59 ± 2.390 0.9487 

TT (s) 9.96 ± 1.44 10.72 ± 1.46 0.0002 11.44 ± 1.12 13.48 ± 0.80 < 0.0001 12.33 ± 1.09 13.42 ± 1.05 0.0020 

Fibrinogen (mg.l-1) 161.40 ± 50.05 188.60 ± 48.49 0.0457 225.60 ± 60.65 208.60 ± 55.44 0.3298 183.60 ± 38.29 168.80 ± 51.21 0.1124 
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4 DISCUSSION 

 

The primary objective of this study was to improve the understanding of the impact of 

capture, confinement and immobilisation on specific physiological systems in impala. Impala 

are ideal for studying the responses of animals to events associated with these stressors due to 

the availability of data from other studies conducted on impala, and other similar ungulate 

species, which have included appropriate physiological measures (Cross et al. 1988, 

Delgiudice et al. 1990, Hattingh et al. 1988, Kock et al. 1987, Kock et al. 1990, Knox et al. 

1992, Peinado et al. 1993, Peinado et al. 1995, Morton et al. 1995, Wesson et al. 1979). In 

addition, their responsive nature and susceptibility to stress-related diseases, allow impala to 

act as sensitive indicators of events that might also elicit a reaction from other wild, semi-

wild, and domestic animals. 

 

With respect to the measurements made at the beginning of each new trial, body weight and 

condition of the animals declined significantly until T4, with recovery thereafter. Plasma 

cortisol did not show any change with the stress of repeated immobilisation, but the FGM 

results indicate that an increase in HPA activity did occur up to T3, but then declined to 

levels below that recorded at T1. Total WBC counts showed no change during the duration of 

the study, but the ability of whole blood to produce ROS when stimulated to do so declined 

significantly by T4 and T5. Concentrations of the circulating APR did not change over the 

course of the study, but the concentration of the blood protein fibrinogen increased 

significantly by T4. This increase resulted in a significant increase activity of the common 

coagulation pathway (as indicated by the decrease in the TT). The coagulation pathways 

measured by aPTT and PT were significantly slowed up to T3 and T4, but then recovered as 

body weight and condition improved.  

 

Throughout the duration of the present study the impala were provided with highly palatable 

food (pellets and Lucerne) ad libitum. Despite this fact, there was a significant decline in the 

average body weight and condition in the impala from T2 to T4. The body weight and 

condition subsequently recovered to initial levels observed in the impala. This phenomenon 

of recovery can perhaps be attributed to this species exhibiting habituation to confinement 

and repeated immobilisation. As was noted in Chapter 1, an organism adaptively responds to 

adversity by activating the neuroendocrine axis which results in the increased immediate 

availability of energy, to up-regulate physiological processes that are required for survival 



48 
 

(Creel et al. 2001, Dantzer et al. 2014, Guyre et al.1984, Sapolsky 2002). This response 

involves catecholamine-induced lipolysis and gluconeogenesis, and redirection of resources 

by circulating GC, thereby facilitating the mobilisation of energy sources to the CNS and 

somatic muscle (Creel et al. 2001, Dickens et al. 2010, Spraker 1993). In chronically stressed 

individuals a loss of muscle mass has been observed (Creel et al. 2001) as a result of the 

reduced efficiency of the negative feedback mechanism to suppress the HPA axis once the 

stressor diminishes or ceases (McEwen & Seeman 1999, Romero et al. 2009, Sapolsky et al. 

1984). Body weight and condition can therefore be expected to decline in response to 

prolonged stress exposure and can be considered as a standard biomarker of chronic stress 

(Dickens & Romero 2013). 

 

 

Glucocorticoids are considered classic mediators of the physiological stress response, and are 

fundamental to how animals integrate, respond and adapt to both predictable and 

unpredictable perturbations in their environment (Creel 2001, Dantzer et al. 2014). In the 

present study, the plasma cortisol concentration obtained at each immobilisation never 

differed significantly from the values obtained at the first immobilisation. In a similar study 

by Hattingh et al. (1988) the plasma cortiol concentration in blood obtained by manually 

restraining boma-kept impala, was compared to control values from headshot animals in the 

wild. Cortisol values were significantly greater in boma-kept animals (93 ± 21 nmol.l-1) than 

mean control values obtained for impala (19 ± 8 nmol.l-1) (Hattingh et al. 1988, Hattingh et 

al. 1990). Additonal repeated capture and handling of the boma-kept impala over a prolonged 

period of confinement resulted in statistically insignificant changes in cortisol level (Hattingh 

et al. 1988, Hattingh et al. 1990).  In agreement with this, we observed high blood cortisol 

levels in the impala which remained unchanged across all trials. These consistently elevated 

values can perhaps be attributed to the impala associating the presence of humans with 

discomfort, resulting in an anticipatory, conditioned response to the immobilisation procedure 

(Hattingh et al. 1988, Hattingh et al. 1990, Ramade & Baylé 1984). Inherent in such a 

reaction would be the animals mounting a hormonal stress response already prior to 

immobilisation at each capture event (Ramade & Baylé 1984). Due to the tendency of stress 

metrics, especially measurements taken from blood, to change rapidly and unpredictably 

(Dickens & Romero 2013, Lynn & Porter 2008, McLaren et al. 2003, Romero & Romero 

2002, Wingfield et al. 1982) this anticipatory response may result in a biased representation 

of cortisol secretion in response to the chronic effects of confinement and repeated 
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immobilisation, and possible adaptation. We suggest that cortisol in blood is, therefore, not a 

good indicator of stress in the assessment of welfare during conservation management.   

 

To overcome the inherent limitations associated with measuring GC in blood, we also used 

the noninvasive technique of measuring GC metabolites excreted in the faeces (Millspaugh & 

Washburn 2004). FGM measurement provides a more stable and accurate assessment of 

stress without the bias of capture-induced increases in GC (Harper & Austad 2000, 

Millspaugh et al. 2001, Touma et al. 2003). Furthermore, FGM assays reflect an integrated 

average of blood GC, and may therefore more closely reflect the cumulative exposure of 

individuals to GC, rather than a point sample, providing a more accurate assessment of long-

term GC levels (Goymann 2005, Harper & Austad 2000, Hirschenhauser et al. 2005, Ninnes 

et al. 2010, Sheriff et al. 2011). During an acute stress-induced response, circulating GC 

levels typically increase and primarily function to ensure  the immediate availability of 

energy that can be used to resolve stressful situations by redirecting resources and mobilising 

body reserves (Chinnadurai et al. 2009, Creel 2001, Teixeira et al. 2007). In the current 

study, the general tendency of the FGM concentration in the impala to significantly increase 

from T1 to T3 is consistent with a decline in body weight and condition. These results are 

indicative of increased HPA activity in response to the chronic effects of confinement and 

repeated stressors, and the resultant depletion of body reserves (Dickens & Romero 2013, 

Sapolsky 2002, Sapolsky et al. 1986). When analysing FGM, the concentration of hormone 

metabolites is indicative of the cumulative concentration of circulating hormones that have 

been secreted over a range of time (Goymann 2005, Hirschenhauser et al. 2005, Young & 

Hallford 2013). The subsequent significant decline in FGM levels observed in the impala 

may, therefore, be attributed to the inability of the HPA axis to maintain a response over a 24 

hr period. As the trials progressed, however, a significant restoration in body weight and 

condition was observed in the impala. Subsequently a restoration in FGM concentration was 

observed, to the point that FGM levels were lower than at T1. This observation suggests that 

the animals required less daily HPA secretion to survive, which is possibly due to the fact 

that (i) high quality feed was available and (ii) the animals were becoming habituated to the 

boma confinement.  

 

The results obtained in the present study confirm that the MP Biomedicals 125I Corticosterone 

RIA is capable of measuring physiologically relevant changes in FGM levels in the impala. 

Our study supports the findings of other studies that have used this assay and shown FGM 
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analysis to be an efficient means of quantifying physiological stress in ungulate species 

(Chinnadurai et al. 2009, Millspaugh et al. 2002, Millspaugh et al. 2001, Wasser et al. 2000).  

 

Stress affects the immune system by altering the composition, quantity, activity and 

responsiveness of circulating immune cells (Dhabhar et al. 1995, Ellard et al. 2001). 

Leukocyte counts represent a particularly useful indicator of the characteristic changes 

elicited by increased GC hormones on the vertebrate immune system (Davis et al. 2008).  

Upon exposure to stress hormones a marked alteration in leukocyte count has consistently 

been observed in mammalian species (Dhabhar et al. 1995, Dougherty & White 1944, 

Gordon 1955). In the present study, the absence of a significant change in WBC observed in 

the impala can perhaps be attributed to stress-induced changes on leukocyte profiles, namely 

the increases in neutrophil numbers (neutrophilia) and decreases in numbers of lymphocytes 

(lymphopenia) (Davis et al. 2008).  In response to external stimuli, GC stimulate the influx of 

neutrophils into the blood from bone marrow, which aid in an individual’s ability to mount an 

immune response by releasing ROS (Davis et al. 2008, Ellard et al. 2001, Fandos Esteruelas 

et al. 2016, Montes et al. 2004).  In contrast, circulating lymphocyte numbers are reduced by 

glucocorticoid-induced alterations in the redistribution of lymphocytes from the blood to 

other body compartments (e.g. lymph nodes, skin), to help mount an immune response (Davis 

et al. 2008, Dhabhar 2002).  Extensive literature exists on the phenomenon of stress-induced 

neutrophilia and lymphopenia in a wide range of mammalian species (Dougherty & White 

1944, Frank et al. 2006, Gordon 1955, Kock et al. 1999, Noda et al. 2007, Obernier & 

Baldwin 2006).   

 

Recently, ecological studies have shown the significant impact of oxidative status on fitness 

components in wild animals (Beaulieu & Costantini 2014, Fandos Esteruelas et al. 2016, 

McLaren et al. 2003). ROS are produced as part of the normal aerobic metabolism of 

mitochondria (Beaulieu & Costantini 2014). In response to a stressor, leukocytes (in 

particular neutrophils) are activated and enhance the release of ROS via a process called 

respiratory burst (Ellard et al. 2001, Montes et al. 2004). However, prolonged secretion of 

stress hormones has consistently been observed to reduce the ability of leukocytes to produce 

oxygen free radicals in response to stimulation (Fandos Esteruelas et al. 2016, Gelling et al. 

2009, Honess et al. 2005, McLaren et al. 2003, Moorhouse et al. 2007, Valle et al. 2015). 

The significant decline in ROS production observed in the current study is consistent with the 

supporting literature. Additionally, the results obtained support the reinterpretation of stress-
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immune interactions proposed by Dhabhar and McEwen (1997, 2001), wherein chronic stress 

suppresses the immune response (Martin 2009, Segerstrom & Miller 2006). Since the ROS 

data is expressed relative to the number of circulating leukocytes, the data shows that 

capacity of whole blood to produce ROS is compromised. This result contradicts those of 

Fandos Esteruelas et al. (2016) and McLaren et al. (2003), who could attribute a decline in 

ROS production to a decline in leukocyte numbers. The significant increase in ROS 

production observed in the final trial (i.e. T6) of our study can perhaps be attributed to 

leukocyte reactivity being reestablished once the daily HPA activity, as shown by the FGM 

levels, began to decline. Furthermore, the initial decline and subsequent restoration of ROS 

production seen in the impala corresponds with the pattern of results observed for FGM 

concentration, and body weight and condition in this species, indicating the applicability of 

measuring LCC to assess the welfare of these animals.  

 

Nonspecific markers of systemic inflammation, APP, have been shown to provide an added 

sensitivity over traditional methods of assessing inflammation due to their rapid and high 

magnitude increase and short half-life (Cray et al. 2009, Eckersall & Bell 2010, Kjelgaard-

Hansen & Jacobsen 2011, Stanton et al. 2013). Recently, several studies have demonstrated 

the utility of APP quantitation in monitoring neoplasia and stress (Ceciliani et al. 2012, Cray 

et al. 2009, Piñeiro et al. 2007). In the present study acute phase proteins SAA and Hp were 

quantitated for the purpose of monitoring the APR. Serum amyloid A appears to be 

conserved within mammalian species and Hp can be quantitated based on its universal 

reactivity with haemoglobin (Hol & Gruys 1984, Jacobsen et al. 2006). Data from the present 

study demonstrates that the ability to mobilise these proteins is maintained in spite of the 

effects of acute and chronic stress, indicating the importance of preserving this response in 

the face of physiological adversity.  

 

The accumulation of several studies has resulted in the emergence of a fairly reliable 

coagulation and fibrinolysis pattern in response to stress exposure (von Känel 2015, von 

Känel et al. 2001a). A haemostatic equilibrium has been observed in healthy individuals 

between thrombosis and haemorrhage that it likely maintained within physiological range, 

resulting in net hypercoaguability in response to an acute stressor (Austin & Patterson 2013, 

Lukas 2010, Thrall et al. 2007, von Känel et al. 2001a, Womack et al. 2003). However, other 

risk factors, including chronic stress, have been observed to modulate haemostasis, altering 

the balance between coagulation and fibrinolytic potential (Lukas 2010, von Känel et al. 
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2001a). The review of haemostasis represents a valuable tool for monitoring physiological 

and pathological processes, and may offer the advantage of detecting early stage DIC before 

the onset of excessive and uncontrollable microthrombus formation, and bleeding tendencies 

(Siroka et al. 2011, Monreal et al. 2000). While considerable information is presently 

available on coagulation and fibrinolytic potential in wild ruminants (Hussein et al. 2010, 

Peinado et al. 1999, Vengušt et al. 2002), several studies have concluded that extensive 

quantitative differences in coagulation properties exist among mammalian species (Gentry 

2004, Hussein et al. 2010). The reference values obtained in this study address the need for 

species-specific data on haemostasis, and may be useful in the clinical and laboratory 

examination of impala.  

 

In the present study, the minimal significant change in aPTT in the impala indicates that the 

intrinsic system of the coagulation pathway was not substantially altered in response to the 

chronic effects of confinement and repeated stress of immobilisation. Unchanged aPTT after 

stress is consistent with what was observed by von Känel et al. (2004), who suggested that it 

was too crude a measurement to mirror changes in the other, more sensitive components, of 

the coagulation cascade. Small sample size and high variation can perhaps also be attributed 

to the lack of significance observed in aPTT.  

 

The more considerable significance observed in the PT of the impala in response to the 

effects of confinement and repeated immobilisation may be attributed to a more substantial 

alteration of the extrinsic coagulation pathway. Siroka et al. (2011) also reported an increased 

PT in fallow deer (Dama dama), which they attributed to the possible stress experienced by 

the animals. In addition, it may indicate that PT assays are more sensitive to show trends in 

coagulation potential. The PT increase also mirrors the FGM response and decline in body 

weight and condition. This suggests that secretion of factors important to the extrinsic 

pathway may have also been reduced.  

 

The significantly reduced TT in the impala suggests considerably increased activity of the 

common coagulation pathway in response to the chronic effects of confinement and repeated 

stress of immobilisation. From these observations we suggest that as the trials progressed and 

the physiological condition of the animals worsened, there was a significantly decreased 

clotting time in response to metabolic and psychological stressors. The hypercoaguable state 

fostered by chronic stress observed in the present study is consistent with the supporting 



53 
 

literature (Austin et al. 2013, Lukas 2010, von Känel et al. 2003, von Känel et al. 2001a). 

Further, these results are in line with the observations of Dr. Neville Pitts and Dr. Jacobus 

Raath, who have observed an increased prevalence of DIC in stressed animals (personal 

communication). We observed that TT in the impala adapted to the chronic effects of 

confinement and repeated stressors, as did other parameters (including body weight and 

condition, FGM concentration, and ROS generating capability of whole blood) measured in 

the impala during the course of the current study. This is not consistent with the findings of 

von Känel et al. (2004) and others, who proposed that stress-induced procoagulant responses 

showed an inability to adapt or habituate to repeated stressors of the same type (Hamer et al. 

2006, Lukas 2010, von Känel 2015).  

 

A significant factor associated with the reduced TT result is the increase in fibrinogen 

concentration observed in the impala as the trials progressed. Only once fibrinogen began to 

return to the initial concentration did the TT increase back to its initial result. This 

observation can perhaps be attributed to the dual role of fibrinogen as a pivotal precursor in 

the coagulation cascade, and as an APP in the inflammatory response. In the present study, 

the increased fibrinogen levels observed in response to heightened APR activity is consistent 

with the supporting literature (Epstein & Brainard 2011, Factor 2007, Hantgan et al. 2001). 

The significant decline in fibrinogen concentration observed in the impala as the trials 

progressed may be attributed to the down-regulatory activity of anti-inflammatory stress 

hormones (Acevedo-Whitehouse & Duffs 2009).  

 

For the purpose of this study we used thiafentanil oxalate (A3080) as the objective of the 

principle trial was to assess the optimal dose of thiafentanil for use in impala. Thereafter, 

naltrexone hydrochloride (naltrexone) was used to reverse the effects of immobilisation in the 

impala. The data obtained at immobilisation and then 30 min later represent the acute 

responses to immobilisation in this study. One potential limitation of the present study is that 

dose of the opioid was not considered in the model. 

 

The significant reduction in cortisol concentration in response to 30 min of immobilisation in 

the impala may reflect the modulatory action of immobilising agents on the neuroendocrine 

response, and the down-regulating effect on GC secretion (Marana et al. 2010, Sakai et al. 

1995).  
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The 30 min of immobilisation of the impala also increased the ROS generating capability of 

whole blood. This result is not consistent with the supporting literature, which reported a 

depression in bactericidal activity in response to other immobilising agents (Colucci et al. 

2013, Heine et al. 2000, Lisowska et al. 2013). However, there are many examples showing 

that not all opioid drugs share the same immune profile, some seem to have no effects on 

immune function, whereas other opioids tend to be immunosuppressive or 

immunostimulatory. Further, duration of immobilisation and dosage of opioid appear to be 

mitigating factors to how individual opioids affect the immune system, with short term/low 

dose administration of immobilising agents seeming to have a positive impact on the immune 

system (Liang et al. 2016).  

 

The significantly decreased activity of the common coagulation pathway observed in the 

impala in response to a 30 min immobilisation period indicates a significant effect of 

immobilisation on an individual’s ability to form a clot. Immobilising agents have been 

reported to inhibit platelet function and decrease blood viscosity, thereby reducing the 

prevalence of thrombosis (Beilin et al. 2006, Binici et al. 2015, Faraday 2002, Odoom 1995, 

Reinhart 1995).  

 

The significant increase in fibrinogen concentration observed in the impala in response to 

both the chronic effects of confinement and a 30 min immobilisation period can perhaps be 

attributed to the dual role of fibrinogen as a pivotal precursor in the coagulation cascade, and 

as an APP in the inflammatory response. In the present study, the increased fibrinogen 

concentration in response to heightened APR activity is consistent with the supporting 

literature (Epstein & Brainard 2011, Factor 2007, Hantgan et al. 2001).  

 

A major limitation is the limited data available for the parameters that were necessary to 

measure in this study, let alone for free-ranging, relatively undisturbed and healthy impala. 

This limitation makes it difficult to understand and interpret the full range of responses that 

can be expected in response to the initial confinement and later adaptation phases apparently 

shown by these animals. Since we were unable to collect all of the necessary samples at 

capture, this study also relies on the assumption that the animals were undisturbed in the 

bomas prior to the commencement of the trials.  
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5 CONCLUSION 

 

Current rates of biodiversity decline are unprecedented and to a large extent attributed to 

environmental challenge and anthropogenic influence. Given the scope and magnitude, 

conservation management interventions must maximise efficiency and efficacy. Effective 

wildlife research and management often requires the capture and handling of animals. 

However, the evaluation of immobilisation, capture, relocation and confinement effects on 

target animals is often disregarded, despite the high potential for significant stress. While 

some species habituate to human disturbance, others exhibit extensive psychological and 

physiological deficits, which can pose a challenge to animal husbandry and conservation as 

well as wild immunology.  

 

In the present study we measured HPA activity, the ROS generating capability of whole 

blood, secretion of APP, and coagulation potential to investigate the physiological stress 

response elicited during capture, confinement and immobilisation in impala. In response to 

the chronic effects of confinement and the repeated stress of immobilisation we observed an 

initial increase in HPA activity and common coagulation pathway activity, and resultant 

depletion in body reserves. There was a decline in HPA activity by T4, and corresponding 

immunesuppression. Thereafter, as animals habituated to stressors, there was a restoration in 

body weight and condition, and subsequent recovery of HPA activity to initial results. In 

response to 30 min of immobilisation the impala showed decreased HPA activity and 

coagulability, and immune-enhancement. 

 

The present study attempted to use new techniques, such as LCC and secretion of APP, to 

progress the understanding of short- and long-term impacts of anthropogenic disturbances on 

wildlife fitness, and improve animal welfare during conservation interventions. As a 

discipline, it is apparent that physiology may be undervalued, possibly due to the invasive 

nature of some physiological measurement techniques (e.g. sampling of body fluids). We 

propose that the utilisation of physiological indicators, in addition to animal health indices, is 

essential to indicate patterns of stress and coping in free-living vertebrates. We caution that 

there are limitations to this approach and that a considerable about of fundamental research 

remains to be done to understand their potential role when diagnosing disease, determining 

prognosis, and monitoring the health status of these animals. We urge more critical and 

thorough assessments and interpretations of measures of physiological stress to be undertaken 
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hence, particularly, in regards to physiological baseline data of organisms in their natural 

environment. Further studies should be undertaken to expand our knowledge of individual 

differences such as temperate, age and physiological status. Variation due to diurnal and 

seasonal changes should also be taken into consideration. 
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