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.i\..1:)1sicr act

Organ function is often charactezised using imaging techniques. In particular a

tracer is often used which does not react with tissue, is low ;,n concentration, follows

body fluid flows a~"d is distinguishable from the observed system and thus measur-

able. ']['1;'.e5erequirements ensure linear eharacterlstics of the tracer, In thill:; thesis,

these linear charac teristics are used to develop a generalised mathematical theory

to detenmine orgar function from imaged tracer experiments. The theory 'is based

on anatomical and physiological Infonnation for single and multiple input organs,

Linear tracer characteristlcs allow one to deconvolve tracer concentration/time curves

obtained from an imaged ergan and the: in.put/inputs to the organ, The thesis shows

that the deconvolution of such data is related to the residence: time and internal age

density functions (R".':'Dand lAD) of the imaged organ. TIllis non-parametric de-

convorution of experimental <lata is performed using methods which do not involve

a pri(lri information, eg., matrix based and Fourier transform methods, However,

even with significant da;\<~filtering, noise on the deconvolved curves hampers the

determination of accurate results and hence the Identification of organ physiology.

This !.sfurther complicated m multiple input systems where :l.t is difficult to associate

changes tn the deconvolved curve with specific anatomical and physiological changes.

As a means to elucidate this informatlon from the deconvolved curves, mathemat-

ical models of the flow in the lddllEIY, spleen and liver have been developed. The

modelling approach based on probability density functions <Illowsthe organ tracer

response to he characterised in terms I~fanatomical structure and phyaiological blood

How.

Parametric deconvolution eliminates the necessity to remove noise (and perhaps



ill

other information) from the data with strenuous filtering techniques. Parametric

deconvolution is performed by simulating a flowmodel of an organ with the mea-

sured input to the organ and comparing the result to the measured organ data..

Non-parametric deconvolution is used to provide initial estimates of the model pa-

rameters. These parameters are further refined by iterative non-linear Ieast squares

estimation techniques which minimise the error between the measured experimental

data and that provided by the model.

Negative artifacts are visible in many non-parametric deconvolution studies. Resi-

dence time density theory places limits on the behaviour of the deconvolved data.

This thesis shows that the deconvolution of tracer concentration/time curves must

give rise to a probability density that cannot be negative. It is proposed that uncer-

tainty in identifying a suitable aorta measurement accounts for a significant com-

ponent of the negative artifacts reported in the literature. An explanation for this

phenomenon is provided and a technique forminimising this effect is suggested. This

explanation is extended to identify suitable organ backgrounds.

99mTc_DTPA scintigraphic imaging atuuies have been used to obtain experimental

results to identify organ perfusion. The mathematical theory has been applied to

healthy subjects and to those with pathology. Results indicate that the values of

some of the calculated parameters correspond to those measured and published

in the literature. In particular for twelve healthy kidneys the model of the renal

parenchyma identifies the normal renal filtration fraction as 0.217±0.017. The model

of the liver applied to eight healthy livers identifies the portal blood flowfraction as

0.752 ± 0.022, the splenic blood flow fraction as 0.180 ± 0.023 and the liver mean

transit time as 11.4 ± 1.7 seconds. It thus appears that RTD techniques adequately

describe the :flowin imaged organs and that parametric identification based on organ

RTD models also provides clinically useful anatomical and physiological information

which in turn can be used to identify organ pathology. The quantitative values of

the parameters available from these studies on individuals could prove useful in

characterising organ function. This might enable medical personnel to make useful

clinical deductions that were not previously possible, so that suitable corrective

action can be taken in the early stages of kidney, spleen and liver pathology.
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}i'rom a Thorn

An idea, nothing ...

Time, fau\.y and a see:.l divine, divide.

Growth slowly, cautiously,

Buds and branches form from passion semi-formed,

Stubborn hunger spawned, driven.

Hours, minutes, irritations and frustrations,

(Barbs; the inexperienced forewarned)

And in the morn,

When dusk has dwindled to the dawn,

The cards as awesome as to black,

Warn of truth coerced from haste.

Perseverance, patience, mentor, mastered.

AU things, all equal,

Raise a blossom from a thorn.

David Fine, 1994.
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Chapter 1

Previous Analysis of Irnaged

Radioactive Tracer Studies

1.1 Introduction

The amount of literature on quantification of organ function from radioactive tracer

experiments is very large. The clinical evaluation of these tests has a past which

is both subjective and qualitative since there has been limited means of quantify-

ing the contribution of various organ tissues on the measured data. Consequently,

imaged radioactive tracer procedures have not had the desired diagnostic precision.

Investigators have sought to improve this precision by developing more objective

criteria for data interpretation. illgeneral these methods have used a mathematical

description of the tracer interaction in the organ under investigation to interpret

the data. Most of these mathematical techniques have not gained widespread use

because they still do not yiell the basic parameters of organ physiology which are

of interest to the clinician.

This chapter attempts to review the literature that is specifically related to the

mathematical description of tracer interactions within an organ.
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1.2 Compartmental Modelling

A large number of published articles in the literature use compartmental modelling in

an attempt t« explain imaging data. It is for this reason that a detailed explanation

of compartmental modelling is provided,

Compartmental systems consist of a finite number of homogeneous, well mixed,

lumped subsystems (Termed Continuous Stirred Tank Reactors, CSTR's, in the

chemical engineering literature] which exchange with one another (GODFREY, 1983).

This means that the time dependent quantity or concentration within each compart-

ment may be described by a first order differentlal equation. The assumptions made

in this analysis are that;

Q Each compartment represents a chamber of constant volume, V, with constant

flowrates into and out of the compartment.

" There is instantaneous and complete mixing of the input to the compartment.

• The rate limiting step in any process is not mixing dependent. For instance

this assumption would probably be a reasonable approximation in the case

of the subcutaneous (below the skin) administration of a pharmaceutical and

Its subsequent concentration as a function of time in the blood. Under these

circumstances it would take a long time for the pharmaceutical to diffuse

through the various tissues into the blood. The blood and the subcutaneous

deposit could then be approximated as perfectly mixed since the concentration

within each compartment would be approximately uniform with time.

e The initial impulse into some compartment imust he known. A blood com-

partment is often defined where the trace! is introduced as an impulse at zero

time. The vascular cavity is in practice not well mixed and one expects that

the time lags in the vascular compartment would often disqualify such a sim-

plification.
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The general form for w compartments is given by:

(1.1)

where
fu :-Mafia flow to compartment i from compartment j (GOD-

FItE,Y, 1983)

Wj ;- Amount of material in compartment i

For a. dosed system 101 = 0 (i = 1,2,. ,.,10). In the case where the flowrates are di-

rectly proportional to the quantity in the donor compartment (Donor Compartment

must be CSTR), a proportionality rate constant kij "an been defined such that:

(1.2)

where
'Ul(t) :~ The initial input mMS flowrate, lio

kjj, kji !- Fractional transfer' coefficient: (JACQUEZ, 1972) ie., the

fraction that has left the donor compartment

If reaction (01' adsorption] occurs then the number of compartments is increased

according to the number of possible mechanisms, thus a first order reaction A ~ B

would require two compartments, one for A and another for B, with a fractional

transfer coefficient equal to the rate constant.

Compartmental modelling problems solve the w systems of equations of equation 1.2

by matrix manlpulatlons. Equation 1.2 can be written in matrix form:

or in matrix notation:

(1.4)
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where
A :.. Fractional transfer coefficientmatrix

B :- Matrix of inputs to the w compartmental system

i: :-Derivative of a; with respect to time

The general solution of equation 1.4 is given by:

(1.5)

where
A1 •.• Ap :- The eigenvalues from the solution of AI - A :; 0

n11 ••• mp :- The eigenvectors from the solution of AI - A = 0

Cl ••• cp :- Constants of integration obtained from the initial conditions

of a compartmental system

Figul'€ 1.1 shows the effect of mixing on a first order reaction, A -+ B, in a constant

volume, constant flowrate system. A fixed concentration is fed into the system

and the figure shows the output concentration from such a system as a function

of residence time within the system. The output concentration is plotted for a

completelymixed system or CSTR and for an unmixed system which is often termed

a "Plug" :flowsystem. In a plug flow system, material that enters together, stays

together and leaves together. It is clear from Figure 1.1 that the effect of mixing

can be aignificant. This in turn implies that compartmental modelling may describe

reaction phenomena poorly.

In compartmental modelling a model structure is generally tried and then is changed

or tailored to the observations (GODFltEY, 1983). This is termed black box mod-

elling and suffers from the disadvantage that the model parameters often have no

physical meaning. The most serious limitation of compartmental modelling is that

a system may have areas of complete mixing and others that are unmixed. An ex-

ample of such a system would be blood flowinside a vessel with lateral diffusion. In

such a case, the benefits of compartmental analysis are difficult to define (GoDFREY,

1983) and an approach focussing on input output relationships is preferable,

Various approximations have been made to try and use compartmental analysis in

unmixed systems. Plug flow is particularly applicable to blood flow ill individual
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10
Completely mixed system

Unmixed system
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\
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\
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Residence Time ('t)

Figure 1.1: The effect of mixing on the reaction A -+ B with first order reaction

kinetics in equal volume systems.

capillaries. BURTON (1966) has shown that capillaries act like rigi<.ltubes over a

wide lange of pressures. PRO'l'HER() AND BURTON (1961) have shown that flow ill.

capillaeies is 1J\lugflow in nature where the red cells act as moving plugs, and the

interstitial plasma is perfectly mixed. This is shown in Figure 1.2. Compartmental

approximatim s for plug flow are based essentially on:

• Infinite number of interacting compartments in series .

• Infinite batch systems with no interaction (Figure 1.2).

Once a model configuration has been chosen, equation 1.5 is then be fitted to the

experimental data. In general a sum of exponential terms is sufficiently flexible

to fit almost any data, although the solution of the characteristic equation for the

eigenvalues is not necessarily straightforward (JACQ UEZ, 1972). It is also possible to

obtain imaginary eigenvalues which are not physically meaningful although they may

fit the data well. Coupled with these problems is t1e fact that even a large number

of CSTIt's will never completely approximate a single plug flow system. Ideally one
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H
Figure 1.2: Mixing in a Blood Capillary

needs a better modelling theory that is flexible enough to describe mixing and flow

in various organs. The theory must:

• Cover a complete spectrum of mixing states from a completely mixed system

to an unmixed one.

~ Allowreaction and diffusionmechanisms to occur.

• Should allow the development of the model to proceed according to the physical

properties of the system.

Compattmental rnodelling (without making approximations and spurious assump-

tions) in general fails to provide adequate fiexibility as far as these criteria are

concerned.

1.3 The Kidney

Models of the kidney have been primarily compartmental in nature (DEGRAZIA et

ol., 1974; OPPEHlillIM AND ApPLEDORN, 1978). These models generally have a

large parameter spare 1. Recirculation is accounted for by adding an extra com-

partment which 10not effective (see NAOR ei al., 1972 for the effect of recirculation

on linear flow modelling). The models also fail to address the length distribution

of the cortical and juxtamedullary nephrone, The formulation of these models for

imaging radioactive tracers has not been sllfficient1yaddressed by these authors (see---:---------_._----
lDEGR.AZIA ei al.'s (1071) model has eleven parameters and OPPENHEIM'S &; ApPLEDOR.N'S

(1978) model has even more,
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Chapter 3). The compartmental approach has been discussed in section Lz and.has

been found to be deficient for flowmodelling.

1.4 The Spleen

There are very fewmathematical models of the spleen in the literature. Those models

that have been published are primarily compartmental in nature (HEYNS et ol.,

1980; PETERS et al., 1980). The compartmental models are either oversimplified 2

or complex with a number of compartments and many parameters (SWEETLOVE,

1990). The compartmental modelling approach has been discussed in section 1.2

and has been found to be problematical for physiological modelling.

1.5 The Liver

1.5.1 Computational Fluid Dynamics (CFD)

One approach for analysing tracer flow though the liver is using eFn techniques,

where a finite element grid is fitted to the liver anatomy and fluid momentum and

continuity equations are then applied to the system (LEE & RUBINSKY, 1990).

The paper by LEE & RUBINSKY (1990) provides an example of how such a technique

has been implemented. There are various anatomical constraints that limit the

analysis. Often simplifications have to be made. For example LJ:1E & RUBINSKY

(W90) neglect the hepatic arterioles which enter all along the venous sinusoid where

mixing of high pressure arterial blood and lowpressure venous blood occurs through

small sphincter like structures (RAPPAPORT & SCHNEIDERMAN, 1976). As a result,

the modelling approach fails to describe an important component of blood flowin

the liver. Combined with these problems is the large computation time associated

with finite element analysis, This limits the clinical application of such techniques.

2HEYNS et at 1. t"i(980) model consists of a. two compartmental model with one blood compart-

ment and one spleen compartment.
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In general to solve such problems one has to have measures of physical properties

such as porosity, fluid and tissue density, average length and diameter of venous

sinusoid, viscosity and pressures in the various vessels that enter the liver. The

effect of variation of these properties between individuals is not accounted for.

An adequate mathematical description of blood flow through the hepatic arterial

and portal venous systems is necessary for the in vivo application of CFT)modelling.

Thus while CFD techniques can often be applied to idealised in vitro conditions, they

are impractical for routine clinical application.

1.5.2 Distributed and Convective Dispersion Models (CDM)

These models fall within the scope of residence time density (RTD) modelling (LEV-

ENSPIEL (1972) provides a detailed reviewof RTD modelling). There are essentially

three models that are discussed in the literature, the undistt eibuted sinusoidal

perfusion model, distr-ibuted sinusoidal perfusion model and the convective-

dispersion model. A review of these models is given in a, paper by BASS et al,

(1987). These models have primarily been applied to data from reactive tracers

which are injected into the hepatic artery of isolated livers. The models assume that

there is unidirectional flow through independent tubes.

In the undistributed sinusoidal model each liver sinusoid has a common arterial

input with an initial concentration of substrate. The concentration of substrate is

depleted along the tube as it flowswith the blood to the venous end of the sinusoid.

Each tube is modelled as a plug flow system. The outputs in the undistributed

system are all the same for any sinusoid.

In the distributed sinusoidal model there are differencesin the sinusoidal outputs

because of the length distribution of the venous sinusoids. The outputs of all the

sinusoids are then averaged in an appropriate manner to represent the mixing of all

the individual sinusoidal outputs. The mixing is achieved by taking the flowweighted

mean of the outputs. Sinusoidal perfusion models do not allow intermixing between

sinusoids and no account is taken of the portal venous blood.
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Convective dispersion models introduce 8, dispersion coefficient to allow inter-

mixing between parallel sinusoids to occur. The interpretation of the dispersion

coefficient becomes difficult from a physiological standpoint and it is difficult to

describe how the dispersion coefficient changes with hepatic blood flow. Again no

account is made of the interaction of portal venous and hepatic arterial blood. BASS

et al. (1987) tried to relate the convective dispersion model to the sinusoidal per-

fusion model in an attempt to characterise the dispersion coefficient. These authors

approximated the dispersion model by putting a number of distributed sinusoidal

systems in series. While this may give rise to the same residence time density, the

approximation is not valid if the model is being used to describe systems in which re-

actions with non-linear reaction kinetics occur (ZWlB'£ERING, 1959). The only way

that the dlstrlbntod sinusoid ..\! model can approximate the axial dispersion model is

if there is cross mixing between all possible plug flows so that material of different

ages can move forward or backward in residence time. The cross mixing scenario

is shown in Figure 1.3 and it is clear from this figure that the derivation of an an-

alytical exprescion for such a system is problematical. This in turn means that all

interpretation of the dispersion coefficient from a physiological perspective will in all

!lli.....lihood remain obscure. While the conveetive dispersion models do allow mixing

between the different slnusolds, there is some question as to whether this analysis

characterises the length distribution of sinusoids sufficiently.

<,

<,

<,
-,
"-II

-

Figure 1.3: True distributed sinusoidal model approximation of the axial dispersion

model.
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1.6 Length Distributed Vessel Beds

Many theoretical formulations have been used to explain the shape of peripheral

indicator dilution curves (WAR.NElt, 1962; THOMPSON ei al., 1964; EVANS, 1959).

In such experiments a tracer is injected into the right atrium of the heart or the

pulmonary artery and the peripheral arterial blood is continuously sampled and

the tracer concentration measured. THOMPSON et al. (1964) applied the gamma

density function to the results of a large number of subjects and showed statistically

that this density could be used to represented tracer flow from the heart to the

peripheral circulation. The gamma density function is given by equation 1.6 where

z affects the skewness of the density and r"( is related to the mean of the density by

equation 1.7.
f"(t) := __ l__ t{z _ l)e-t/T'Y

r~r(z)
(1.6)

where

(1.7)

One might expect that the length distribution of vessels between the heart and the

periphery is greater than the length distribution of vessels within most organs. It

is thus likely that the gamma density would characterise the behaviour of a tracer

within an organ which contains a length distributed vascular system. It is for this

reason that the Gamma density has been used in this t.hes1s to model vascular flow

in tissue. Based on THOMPSON ei al.'s (1964) results, the value of z should be less

than four and greater than one. In this thesis a value of z = 2 has been chosen for

systems which are assumed to have relatively small length distributions and z := 3

for larger length distributions. z = 1is not generally useful as this implies that the

fraction of vessels of zero length is a maximum. The relationship between a length

distributed system and a probability density such as the gamma density is derived

in Appendix C.1.
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Chapter 2

General Experimental Procedure

2.1 99mTechnetium-dieth:>1enetriaminepentaacetic acid

:- A Suitable Radioactive Tracer

To measure plasma and urine flow a radioactive tracer is often used which does not

react with tissue (has l10 physiological Interaction), is low in concentration, follows

the plasma and urine flow and is distinguishable from the observed system and thus

measurable.

2.1.1 The Kidney

The choice of radioactive tracer to determine renal function depends on whether

one wants to investigate tubular function or glomerular filtration, transit times and

renal blood flow. In this thesis the latter was investigated. 99mTc-DTPA has

been used as a tracer as it follows plasma and urine flow and is filtered in the

glomerulus in the same way inulin with only minimal cortical retention (McAFEE

et al., 1981). 99mTc-DTPA is not reabsorbed in the tubular system of the kidney

and flows with urine to the bladder. This also means that 99mTc_DTPA has a short

biological half life because it is actively excreted from the body. Another advantage

of 99ml'c_DTPA is that is forms very few complexes with plasma proteins which is

a problem associated with other tracers like 99mTc-GIIA, 99mTc~AC, 99mTc~DMSA,

99mTc-MDP, 99mTc_IIEDP, 99mTc_PPi (McAFEE et al., 1981). Renal extraction
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of 9SmTc~DTPA is also higher than any of the other technetium agents (McAFEE

et al., 1981). Thus the radioactive tracer 99mTc~DTPA has been used for all the

renal investigations presented in this thesis.

2.1.2 The Liver and Spleen

The choice of radioactive tracer for the determination of spleen and liver function is

somewhat easier than that for the kidney. The criteria for an ideal tracer included:

• No reaction with hepatic or splenic tissue.

• Short biological half life.

• Low radiation dose.

• Rapid bolus injection (approximation of a Dirac oCt) function) possible.

The first criterion eliminates the extractable radiolabeled colloid materials which in-

teract with the spleen and liver tissue (WRAIGHT et al., 1982). The last criterion ex-

eludes labelled red blood cells because rapid injections damage these cells which then

adhere and react with the spleen and liver parenchyma. Pertechnetate (99mTc 0;1)
was first shown to be a suitable non-interacting tracer for hepatic and splenic proce-

dures by SARPER.et at (1981). Later 99m.Tc-DTPA was also shown to be a suitable

non-interacting tracer (GIANPAOLOet al., 1989). 99mTc-DTPA has a biological res-

idence time that is about seven times less than that of Pertechnetate (ROEDLER,

1qS1). It is for these reasons that the radioactive tracer 99mTc~DTPA has been

used for the splenic and hepatic studies presented in this thesis.

2.1.3 Effects of Low Level Radiation

A large body of literature has found no evidence of increase in human malignancy

or other harmful effects, as a consequence of ionising radiation, even at cumula-

tive exposures comparable to those of natural background or even ten-times higher

(YALow, 1981). The National Academy of Sciences Committee on the Biological
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Effects oi Ionising Radiation (BEIR) provides an average natural background radia-

tion level (USA) as 184mrem per year (BEIR, 1980). ROEDJJElt (1981) has shown

that a 5mCi 99m.Tc-DTPA experiment contributes 150mrem to a patient, Thus a

10mCi intravenous 991l'1Tc-DTPAexperiment contributes 300mrem. If the average

yearly background and experimental dose are added together, then the total yearly

dose is increased to 484mrem. The National Council on Radiation Protection and

measurements (NCRP) provide guidelines for radiation protection. The maximal

safe radiation dose per year is given as 5000mrem (WRENN et al., 1982). It is clear

that typical natural background counts combined with the amount administered in

a 10mCi intravenous 99mTc-DTPA injection. falls well below this value.

2.2 Theory of Dynamic Scintigraphy

The energy and ',v",velengthof, photons is given by:

(2.1)

where
E :- Photon energy

1/1 ~., Planck's constant

v :- , radiation frequency

c :- Speed of light in a vacuum

A :- , radiation wavelength

,~radiation has sufficient energy to p=netrate the body tissue and be measured. 1-

radiation can be measured using a scintillation camera which consists of essentially

four components:

Collimator: The purpose of this device is to ensure that photons which pass

through the collimator are all parallel. Thus radioactivity that passes through

a,particular part of the collimator is from tissue directly beneath it. ':rhe colli-

mator in essence consists of a lead plate with small holes drilled through it. The

thickness and hole density ate chosento maximise resolution or sensitivity. The
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collimator used in this thesis was a low energy, medium resolution Elscint™

COL A1PC~3S (Haifa, Israel) collimator. This collimator provides sufficient

image resolution while maintaining reasonable radioactive count rates.

Sodium-Iodide Crystal eNaI(Tl)): Converts the "'I-ray into visible light photons

by the scintillation process. The crystal which has a 'I'halium impurity is

transparent and the flashes of light can be measured. The intensity of light is

directly related to the "'I-photon energy.

PhotomulHpliers: Light emitted from the N aI-cqstal is amplified and converted

to an electrical pulse. The intensity of the electrical pulse is proportional to

the light intensity.

Threshold Counter: A threshold. is used to determine whether a pulse lies in

the correct energy range. Multiple events and background isotopes are thus

excluded. The energy window for 99mTc was set at ±10% of the 140keV

maximum "'I photon energy associated with the decay of 99mTc.

2.2.1 Activity/time curves from a Region of Interest (ROI)

Data that is collected using a scintillation camera is generally displayed as a number

of images on a computer screen. Each image represents trp. number of radioactive

counts over the imaged area within a time interval. Typical unages detailing the flow

of a radioactive tracer through the body are shown in Figure 2.1. Image process-

ing ';echniques can be used to enhance these images and thus visualise the physical

location of various structural components of tho body. Once these structural com-

ponents have been located, the image processor allows one to draw a region on the

computer screen, and then to count the radioactivity within that region as a func-

tion of time. 'I'hese regions are termed Regions of Interest (ROI's). The data. from

this procedure is normalised with respect to tle time interval between frames and

the ROI area. A plot of this normalised data against time has a dependent vari-

able (Y-axis) with units of Oounts.pixel=Ls'"! and an independent variable (X-axis)

with units of seconds. If the concentration of radioactive tracer is low enough (in

this thesis this is always the case), then such a graph is analogous to the average
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concentration within the ROI as a function of time. The choice of a suitable ROI

for a particular organ is addressed below.

Figure 2.1: 99mTc-DTPA Tracer study :- 128 X 128 pixels grouped in 10 second

intervals.

2.2.1.1 Aorta

The input to the various organs under investigation in this thesis was taken from

a rectangular Region of Interest (ROI) drawn on the descending aorta which was

clearly observed in the first 15 seconds.

2.2.1.2 Kidney

Tissue anterior and posterior to the kidney accounts for significant background pho-

ton counts. Several organs superimpose in the regions of interest of the kidney and

contribute to renal background. These organs include: the liver, the sj_.lleen,the

adrenals in the upper poles of the kidneys, t")e large vessels 411dthe duodenum a,t

the medial border, the gut at the lateral border, the skin, muscle and fat layers and

other ~'.. sues anterior and posterior of the kidney (FLEMING, 1988). In attempts

to obtain representative background ROI's, proposed backgrounds have included:

the liver, a one pixel width perirenal area (PIEPSZ et al., 1977), the inter-renal
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area (FLEMING, 1988); a ROI round the external border of the kidney (BI,AUFOX,

1H89iRoSENTHA.tL et al.. 19R1), and a subrenal area (GA'rES, 1983). None of these

ROI's appeared to adequately account for the background radiation contribution.

In order to work within the constraints of the available experimental information, a

semi-theoretical approximation of renal background was determined. This approxi-

mation uses the activity/time curve obtained from a region of interest inferior to the

lower pole of the kidney. The determination of this renal background is discussed in

section 5.4.1.

The selection of regions of interest of the renal parenchyma have been a major

source of error in renal studies (FLEMING 1988; PIEPSZ ei al., 1990). In this

thesis, the most satisfactory parenchymal ROI was found to be the lateral subrenal

ROI described by BLAUFOX (1989).

2.2.1.3 Spleen and Liver

The liver and spleen ROI's were drawn so as to exclude contribution from the lower

poles of the lungs, the kidneys and the descending aorta.

The extreme lateral situation of f:e spleen and the large transaxial cross section

of the liver within the abdomen, precludes the necessity to account for anterior

01' posterior tissue which would otherwise account for significant background tissue

radiation.

?.3 Experimental Protocol

2.3.1 General

Normal volunteers wers selected for organ imaging according to the criteria accepted

by the Committee for Research on Human Subjects (medical) of the University of

the Wltwatersrand I, Informed consent was obtained in all cases. Patients were

lProtocol Ref:14/49, Ref:02/8/92
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selected on the basis that:

• There was no prior history of chronic renal, hepatic, splenic or cardlopul-

mcnary disease,

• The volunteers had not undergone any major surgery in the cardiothoracic or

abdominal regions.

2.3.1.1 Kidney

The twelve normal kidneys selected for the study were obtained from a data h..se

of renal donor subjects admitted for renal function evaluation ;'1,t the Department of

Nuclear Medicine, University of the Witwatersrand. Approval from the Committee

for Research OIl Ruman Subjects (medical) of the University of the Witwatersrand

was obtained to use the data from these studies. The procedure for all subjects was

identical. The subjects were placed in the supine position and an intravenous dose

of (lOmei (370MBq)) was injected into the right antecubital vein as a bolus. All

the subjects were hydrated by oral administration of 300ml of W('I,tE-;rhalf an hour

before the study, and venous administration of Iml/mln of saline during the study

(COSGRIFF ET AL., H(92). Image acquisition was performed using an Elscint™

Apex 409M (Haifa, Israel) scintillation camera .. Data was collected posterlorly using

a 128 x 12Rpixel matrix: at 1 second per frame for the first 120 seconds followed by

10 seconds per frame for the remaining 1680 seconds. The total scanning time was

30 minutes.

Two additional patients with suspected renal arterial stenosis were selected to deter-

mine whether the parametric deconvolution technique could identHy the 'I'"thology.

2.3.1.2 Spleen and l'.iver

The experimental procedures were performed at 7:30am. The volunteers were re-

quired to abstain from all fluids and solid foods from 11:00pm the previous evening.

This was to ellsure fastint~ blood perfusion of the spleen and liver. The volunteers
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were placed in the supine position and an injection or lOmCi of 99mTc-DTPA was

administered as a bolus into the antecubital vein. Image acquisition was performed

using an Elscint™ Apex 409M (Haifa, Israel) scintillation camera. Anterior scinti-

graphic imaged were acquired on a 128 x 128 pixel matrix at a rate of 2 frames

per second for the first minute, and a rate of one frame per second for another five

minutes. This was to allow enough time to ensure complete perfusion of the spleen,

gastrointestinal tract and liver.

Experimental data for two portal hypertensive patients was chosen from a database

or subjects referred to the Department of Nuclear Medicine, University of the Wit-

watersrand.

2.3.2 Data Analysis

It is known that tracer count rates are subject to random errors associated with de-

tection of ~vents from radioactive sources. This noise Can be characterised by Poisson

statistics. 'l'he non-linear data-bounding technique proposed by DIFFY & COR.FIELD

(1976) aSSUI11eSa Poisson noise distribution. According to DIFFY & COR.FIELD

(1976), the data bounding approach may be regarded as a non-linear, non-stationary

operator which ei'fectively filters the high frequency components present in the data.

Thin technique proved to be more useful than conventional linear filtering methods,

although the gamma-camera renogram has counts that are moderately large and the

error distribution could be regarded as essentially gaussian in nature.

In this thesis, all non-parametrle deconvolution was performed using the fast

Fourier transform (FFT) method (NIMMON et al., 198J.; Appendix ILl) with data

bounding (DIl'FY & COP'FIEI,D, 1976) and filtering (FLEMING, 1988). The aorta,

kidney, spleen and liver <lata for parametric deconvolution was not altered. The

experimental data for the renal, splenic and hepatic studies appears in Appendix S.l.

An data analysis was performed on a 486 IBM compatible computer using Matlab™,

(MOLER. et al., 1987), with the associated signal processing and optimisation tool-

boxes.
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2.3.3 Statistics

2.3.3•.t Model Parameters

All model parameters obtained by analysing the data from normal subjects in Chap-

ters 5, 6 and 8 were assumed to be normally distributed (CnATFIELD,1978) 2. A

parameter value from an organ pathology was significantly different from the nor-

mal value if that value fell outside two standard deviations from the normal subject

mean, or in other words, within the 95% confidence interval (P < 0.05).

2.3.3.2 X2 Goodness-of-Fit Test

The X2 goodness-of-fit test was used in this thesis to determine whether the mathe-

matical models derived in Chapters 5, 6 and 8 represented the distribution function

of the experimental data (CUATFIELD,1978). X2 is determined by:

(2.2)

where
N ;- Number of observations

Ei :- Experimental observation i

Pi :- Predicted value i

The degreesof freedom (DFE) are determined by taking the number of observations

minus the number of unknown model parameters, M, minus one. In this thesis

P < 0.05 was chosen as the X2 test statistic. All the model curves displayed in

Appendices Q.l and R.l were found to represent the diatribution function of the

experimental data (P < 0.05).

2As N -+ 10, one generally tends to the normal dist\\ibution itt biological systems where N is

the number of random samples,
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Chapter 3

Deconvolution and Imaged Single

Input Organs

3.1 Introduction

In this chapter, the theory of residence uime and internal age densities is ieviewed

and the results are then applied to experimental data obtained. by im~.gin~single

input organs in a time-invariant, recirculating system. General results are presented

which relate the deconvolved data to the internal age density. Bounds are placed

on the deconvolved curves. In developing the concepts of mixing we consider steady

flow (time-invariant) systems with constant density fluids.

3.2 Theory of Residence Time and Internal Age Den-

sities

Each particle in the outflow from a system possesses a previous history. The res-

idence time or transit time of the particle within the system can be defined in

statistical terms. Each distribution of residence times can be associated with a

function pet) where this function represents the fraction of particles possessing a

residence time of t or less in the system (ZWIETEltING, 195~). pet) is a nondecreas-

ing function of t with a value of zero at t := 0 and which tends asymptotically to
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one as t -~ 00. P{t) can also be interpreted in statistical terms as the probability

of a single particle staying in the system for time t or less (NAOR. AND SHMNAR,

1963 ). The density function associated with this probability function is termed the

Residence Time Density (RTD), h(t), and is the derivative of F(t):

h(t) == d~?l (3.1)

h(t)dt represents the fraction of part ides which spend time between t and t + dt in

the system, or the probability of a residence time being found between t and t+dt in

the system. h(t) is often termed the Transit Time Spectrum (TTS) in the medical

literature. This terminology does not however reflect the statistical properties of the

function and consequently this terminology is not used. in thi;:)thesis.

3.2.1 Residence Time Density, h(t)

Using the above definitions it is possible to deflne the mean residence time or IDI"an

transit time (MTT), 1', and variance of ages, a, of the molecules by:

.MTT = r =: 1000 th(t)dt

(1"2 =: 1000(t - 1')2h(t)dt

(3.2)

(3.3)

How does one relate the mean age of the molecules to volumes and flowrates of a

physical system? Consider an experiment where a perfect tracer is injected as an

impulse (Mathematically called a Dirac Delta (8») into a steady state system and

the output concentration is measured. Tho exit concentration will vary according

to the flowrate and the degree of mixing in the system. LEVENSPIEL (1972) has

shownby conservation of mass for a steady state system, that h(t), is related to the

exit concentration, Cout(t), by:

I ( ) CaUl),
t t := JoooCo(t)dt ~ 0

Now for a system where all the material that entered the system must eventually

(3.4)

leave:

1000 h(t)dt =: 1 (3.5)
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Equation 3.5 is consistent with the definition of h(t) as probability density function.

The m<>.antransit time, T, of a system described by h( t) can be related to the total

volume of the system, V, and the volumetric flowrate, Q by (ZWIETER.ING, 1959):

(3.6)

The variance, (J'2, of h{ t) can be used to provide information about the degree of

mixing in a system.

3.~.2 Internal Age Density (lAD), J(t)

The probability density of ages of molecules within a ...ystem, let), can be related

to F(t) and h(t). For a small time interval, dt, and a given fluid density, p , a mass

Qpdt enters the system, while a fraction, F(t) leaves. The amount of remaining

molecules is therefore Qp(l - F(t»dt. The total mass of molecules present in the

system is Vp and thus the fraction ofmoleculeswith age between t and t+dt, l(t)dt,
is given by:

l(t)dt = '~(1 - F(t))d' (3.7)

let) is thus found to be:

l(t)::: 1- F(t) :::1- JJ h(t)dt
l' T

(3.8)

It is easily shown that (Appendix A.1):

•
let) ~ 0 (3.9)

•
1000 I(t)dt::: 1 (3.10)

•
1

1(0)::: -. T (3.11)

T is the mean residence time of the system as a whole and is the sum of

residence times for systems ir.: ;',r.:dl~~~,;> f, wp.ightedsum of residence times

fot systems in parallel.
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• I(t) must be a monotonically decreasing (NIMMON et ol., 1981) functlon from

1(0) == liT to 1(00):::: O•

• An ideal J(t) need not be smooth, nor continuous which for instance is demon-

strated by I(t) of a plug flow system (pure delay) in Figure 3.4.

3.2.3 Conservation of Mass and Convolution in Recirculating Sys-
tems

Tracer 1experiments in time-invariant, recirculating systems have been shown to be

linear in concentration (NAOlt et ol., 1972; LEVENSPIEL, 1972). The relationship

between some arbitrary tracer concentration of a stream flowing into a system, Cin,

and the measured concentration of a stream flowing out of the system, Cout, is given

by (LEVENSPIEL, 1972):

Cout(t) = lot Cjn(t - t')h(t')dt' = Gin * h(t) (3.12)

where
* :-Convolution ie. a * b == JJ a( t - t')b( tf)dtl
t' :- Integration variable

Equation 3.12 is in general only valid for a time invariant system. Although the

assumption of time invariance is often violated (due to physiological variances ego

pelvo-uretic contractions) these effects are likely to have a small influence on the

tracer measurements. This is supported by the fact that deconvolution studies on

many normal organs yield similar results. A frequency-time plot of typical scinti-

graphic data rn FiJ.~ure3.1 shows thai; the frequency components of the data are

constant with 1ime. This is further evidence that the assumption of time lnvarlance

is acceptable. As a result, the organs under investigation can be approximated as

time-invariant with an small error that manifests itself as experimental noise. In

this tllesis, this assumption of tlme-invarlance is made for all the organs studied.

1A tracer does not chemically interact with the body, is low in concentration, follows plasma

and urine flow (bulk or diffusional), does not saturate transport mechanisms and is distinguishable

from the body and thus measurable,
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Figure 3.1: Frequency time plot of typical scintigraphic experimental data

NAOR. ei al. (1972) have extended the convolution arguments to recirculating sys-

terns, where the input to the system is not independent of the output. If Gin and

Gout aremeasured at two different points in a recirculating system (vascular system) I

then equation 3.12 sr" applies.

3.2.4 Dynamic Imaging and I(t)

To relate h(t) and let) to data obtained from dynamic imaging equipment we exam-

ine a single input organ, where a perfect tracer is injected into the input of the organ

in an arbitrary manner. We assume that the organ lies within a recirculating system.

A diagram of such a system is shown in Figure 3.2. At any time, conservation of

mass holds and thus:

Mass In of Tracer - Mass Out of Tracer = Accumulated Mass of Tracer (3.13)

Thus in some small time interval:

l' V
QGin.dt - QGout.dt::: 1 C( v, t + dt)dv -1 C( v, t)dv (3.14)
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'V V r dv

------~--~.i'--------------ll-----~--Organ -~
~n ~~

Figure 3.2: A single input organ in a recirculating system.

where
dv ;- Volume element

fer C( v, t)dv :-Amount of tracer in the system at time t

Dividing by dt and taking limits as dt -+ 0 gives:

(3.15)

Time-invariance implies that Q and V are time independent (section 3.2.3) and

substituting equations 3.6, 3.8 and 3.12 into equation 3.15 and simplifying (Ap-

pendix A.1) we get:
Gin * J(t) ::::fer C(t, v)dv

V
(3.16)

This equation says that the convolution of the transient input to the qystllm with

the internal age density of the system gives the volume averaged concentration in

the system. The volume averaged concentration is analogous to the area normalised

histogram obtained from dynamic imaging (Appendix B.1). For example if this

analysis was applied to the kidney then the deconvolution of the renal curve with

the aorta data would give the renal internal age density. The above result is only

derived from conservation of mass for constant density, time-invariant systems and

is thus devoid of other a priori information.

3.2.5 RTD Modelling of Mixed and Unmixed Systems

A physiological and thus functional interpretation of the deconvolved data (equa-

tion 3.16)may be enhanced by the development of theoretical models of the internal
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age density. The RTD and thus IAD (equation 3.8) can be determined by solving

the dynamic mass balance for a tracer in a system with a carrier flowrate, Q, equal

to that of the bulk fluid flowrate and the system volume, V. h(t) for a Continuous

Stirred Tank Reactor 2 (CSrrR) and a plug flow or unmixed system is given by

(LEVENSPIEL, 1972):
1 -t

hCSTR(t) = -err (3.17)

(3.18)hpLUG(t) = o('t - r)

where
hCSTR(t) :- Residence time density (RTD) of a CSTR, 8-1

hpLUG(t) :- Residence time density (RTD) of a plug flow or unmixed

system, 8-1

Equations 3.17 and 3.18 are shown graphically in Figure 3,3. The IAD's corre-

sponding to equations 3.17 and 3.18 are shown in Figure 3.4. Flow in individual

CSTRj h(t)CSTF "" exp(;t/r)

h(t)

Plug Flow; h(t)PLUG = o(t - r)

o ~------~'---~--:--=---.-------------
Time

Figure :1,.3: Plug Flow and CSTR residence time density functions

capillaries Is closely approximated by plug flow (BURTON, 1966).

2Sometimes termed a. compartment
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_1_
Tc.tr CSTRj I(t)CSTR = e){p(~tIT)

_1_ 1-'1----.....,
Tplug He )

Plug Flow; I(t)PLUG = 1- /-r
let)

o '-- ...L~_-•..;;;.-:;::::--""-.._. _

Time

Figure 3.4: Plug Flow and CSTR internal age density funcdcns

3.3 Impulse Response Functions and RTD Theory

The resultant curves from deconvolution studies in the medical literature are typ-

ically termed Impulse Response Functions. This terminology is misleading, as it

can be applied to both the deconvolution of input-output measurements, as well

as the deconvolution of input-content measurements obtained using imaging tech-

nology. The deconvolution of input-output data in the medical literature has been

described as the Transit Time Spectrum (TTS). As discussed section 3.:~,the TTS is

the same as the Residence Time Density, h(t). The deconvolution of input-content

data in the medical literature is often termed the Impulse Retention Function. In

the past, the term Impulse Retention Function (IRF) has been used to describe both

types of deconvolution (NIMMON et ai., 1981j BRITTON & NIMMON j 1989).

Typically, non-parametric deconvolution techniques need not distinguish between

input-output and input-content measurements, even though the result am ves

have very different properties and units. However, in order to perform parametric

deconvolution the reladonships between h(t), let) and the IRF need to be carefully

analysed. Defining H(t) as Impulse Retention Function:

R(t) t:. 1- lot h(t) (3.19)=
let) A H(t2 = 1- JJ h(t)dt (3.20)= r T
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where

~ :- Denotes a definition

Thus from Equation 3.16,

Cin* H(t) = J:i C(t,v)dv_
r V (3.21)

It is important to note that the units in equation 3.21 are consistent. In the liter-

ature, l' is left out of equation 3.21 and the units are then inconsistent (FLEMING

AND GODDAR.D, 1974; NIMMON et ol., 1981; VAN HUFrEL et al., 1987; BR.ITTON

AND NIMMON, 1989).

The properties of h(t), H(t) and let) appear in Table 3.1 below, and. are properties

of the conservation of mass constraints.

Table 3.1: Properties of h(t), D(t) and let)

Name Residence Time Impulse Retention Internal Age

Density Funciiot: Density

Abbrev, RTD/T1'~ IRF (ambiguous) IAD

Symbol h(t) H(t) ;;::1- F(t) let)
Distribution I probability density probability probability density

Units sec-1 dimensionless sec-1

Constraints: h(t) ~O R(t) ~O let) ~o
h(O) =0 H(C) :'!.~ 1 1(0) = l/r

h(oo) =0 H(oo) =0 1(00) =0
1000h(t)dt =1 1000H(t)dt =r Irf l(t)dt =1

Shape any positive monotonically monotonically

value decreasing decreasing

let) is a probability density and thus once deconvolution is performed, the resultant

curve he., to be normalised with respect to the area. under the curve, The effect

of uniform attenuation, or changes in the dose of radioa, t.ve tracer (provided the
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concentration is kept low enough) are removed by this normalisation. Furthermore,

I( t :::0) corresponds to the total mean transit time of tracer through the organ, T. l'

can thus be determined without knowing the system volume or volumetric flowrate.

3.4 Deconvolution and Experimental Noise

The above analysis showed that the deconvolution of experimental data obtained

by dynamic imaging gives rise to the IAD (equation 3.16). It thus appears from

Figure 3.4 that in principle we cr .1 find all the information 011 the mixing of a tracer

in a system by examining the plateaus and decays in the lAD. This is often imprac-

tica; bee ...use of noise in the experimental data and the noise generating nature of

deconvolution. Filtering of noise is often employed to reduce these effects (FLEMING,

1S88) and Figure 3.5 shows the effect of filtering on the deconvolution of measured

splenic activity /tirue data with aorta activity/time data. Figure 3.5 (a) shows the

noise generating nature of deconvolution. In Figure 3.5 (b), there may be plateau

l~ke regions although the Identificution of such regions is subjective, Figure 3.5 (c)

shows the effect of over filtering. The plateaus have been removed along with most

ofthe important mixing characteristics inherent in the data. The constraints on let)

in Table 3.1 are clearly violated in Figures 3.5 (a.b,c),

It might thus be preferable to develop mathematical models and to :fit these models

to the eXperimental data. By minimising the sum of squares between the model

and experimental data, ill an objective m=vner, we can. obtain model parameter

values with a statistical confidence interval. Obviously such models should have the

following desirable «haracteristicsr

• They should approximate the real 'behaviour of the system. The specific objec-

tive in this thesis has been to develop models based on the structural anatomy

and mechanistic physiology. 'I'his constrains the choke of possible models and

should in principle (if the anatomy and physiologies are adequately described)

yield the actual mixing behaviour observed using independent experiments.

• The variation ill the model parameters between normal individuals should be
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(a)

0.2

\I\IIJ (b)let) 0

.().20!:-------·---~·

0.2

(c)l(t)O~"

<~L-Time

Figure 3.5: Deconvolution of splenic activity/time curves with aorta activity time

curves obtained by dynamic imaging of 99mTc-DTPA (equation 3.16). (a) No

filtering (1)) Filtering according to FLEMING (1988) (c) Overfiltered
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small.

• The number of model parameters should be kept to a minimum.

• The model parameters should be physically meaningful. In this thesis an at-

tempt has been made to relate model parameters to physiological mechanisms

and anatomical structure. If successful, defects in either anatomy or physiology

should be illuminated by the parameters in the mathematical model.

~ The models should be based on RTD theory because deconvolution of scinti-

graphic data, from imaging radioactive tracers should give rise to curves which

have properties related to RTD theory.

Such a model can be fitted to the experimental data in two ways:

Deconvolutiom The deconvoluted organ data can be compared to the model RTD

representation. The disadvantage with this method is that one has to strenu-

ously filter the experimental data in order to determine the deconvoluted curve.

In the case of a single input system in a time-invariant, recirculating system,

the deconvolution of experimental data gives the lAD of the organ. We recall

that an lAD must be a monotonically decreasing, non-negative function. A

noisy deconvolved curve is not necessarily monotonically decreasing and thus

may violate the conditions of the IAD. The strenuous :filtering techniques may

also remove important information on the mixing in the particular organ.

Simulation: An alternative method is to simulate the model with the measured

experimental input to the organ, and to compare the result with the measured

organ data. For example one would convolute the aorta with the renal model

IAD and compare the output from this to the measured renal parenchymal

activity /time curve. It is not necessary to filter either the aorta nor the renal

data. This latter approach has been chosen on the basis that the less processing

of the experimental data required, the better. Using this technique the useful

information Is retained.
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3.4.1 Modelling the Input Curve for Non-Parametric Deconvolu-

tion

One of the deconvolution techniques discussed in the literature is that of the Laplace

Transform (LT) technique of FLEMING AND GODDARD (1974). In order to discuss

this technique we define the Laplace transform, C{u(t)}, and inverse Laplace trans-

form, C-l{u(s)} of function u as:

C{u(t)}

.c-1{u(s)}
(3.22)

(3.23)

where
u(t) ;- Arbitrary fnnction which is defined for all t ~ 0 and whose

integrals in equations 3.22 and 3.23 converge

u( s) :- Laplace transform of '1/,(t)
s :- Arbitrary complex variable

w :. Largest al pole of the Laplace transform in the complex

plane

j :-Square root of -1

Taking the Laplace transform of equation 3.16 and rearranging gives:
v -

l(s) = fo C~' v)dv /CU\(s) (3.24)

FLEMING AND GODDARD (1974) and VAN STEKELENBURG (1978) applied a com-

partmental model approximation to the measured input curve, Cin(8) and then ex-

pressed I( t) as integrals and derivatives of the measured organ activity /thue curve,

f~'C(s,v)d'v/V. After the input curve is modelled the measured data is discarded.

Renal deconvoluted curves using this Laplace transform technique have no negative

component which is a feature of both the FFT and Matrix deconvolution methods

(FLEMING AND GODDARD, 1974; VAN STEKELENBURG, 1978). The removal of this

negative component probably arises from the fact that the compartmental model of

the input curve contains certain constraints and a pr'iori information which has not
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been addressed.by the authors. A thorough analysis of this negative component of

deconvolved curves is discussed in Chapter 4.

3.4.2 The Method of Appending Curves for Non-Parametric De-

convolution

JUNI et al. (1988) appended a smooth exponential curve to the measured aorta

and organ activity Itime curves. They then performed the deconvolution l)f these

curves and the resultant curve was then truncated to the original sample time.

To analyse the validity of this technique, we consider an input function, i(t) and

an output function, oCt) which are related by some arbitrary probability density

function, Yet), by the convolution integral, ie,

oCt) == lot i(t - i)Y(i)di (3.25)

If we append exponential curves to the data for some experimental time, 'I', then

equation 3.25 becomes :

(

(l-1-l(t - T»O(t») (1- '}i(f - T»i(t) )
-I- = lot -I- yet - £)d£

1i(t - T)[(lexP( -tire) fi(f - T)l(2exp( -tire)

(3.26)

where
1i(t - a) :~Heaviside function with delay a

[(1 :~Scaling factor for the output curve oCt)
](2 :- Scaling factor for the input curve i(t)
Te :- Time constant of the exponential curves appended to i( t)

and oCt)

By taking the Laplace transform and simplifying for Yes),

Y:::: ~ + ( Te) ( exp( -Ts) _) (J(1 - J(2Y)
i Tes+1 l-exp(-TS) i (3.27)

In order for appended, deconvolved curvet; to approximate the unappended decon-

volved curves, the second term on the right hand side of equation 3.27 must be
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small. The second term tends to zero only when Te -+ 0, T -r 00 (infinite experi-

mental time), if 1(2 ~ J(lY(t) which depends on a priori information, or ifY(t) is

a constant. If yet) is constant in the case of a single input organ. then the organ

is completely obstructed. It is important to note that convolution. implies that any

point in the output curve depends in some way on every point in the input curve.

It is thus clear that appending a curve to the input and output curves is very prob-

lematic except under Very specific conditions. Furthermore, a tracer's concentration

in a circulating system will tend to a non-zero concentration (NAOR. et al., 1972).

Thus although the technique of appending curves might appear to reduce the noise

associated with the Gibbs phenomena in the FFrr, this technique is based on dubi-

ous mathematical and physical principles which may give limited confidence in the

deconvolved curve.

3••1.3 Simulation for Performing Parametric Deconvolution

RTD models are typically non-linear in their parameters, and it is almost impossible

to find an analytic solution for each parameter. Numerical algorithms have to be

used to iteratively search for the best parameters.

The approach chosen for the parametric deconvolution was that of the the prediction-

error identification meth(ld (PEM), (LJUNG 1987). Figure 3.6 shows the prediction-

System

Model
'--'7-~--IJ: Ccalc( i; v )dv IV

Figure 3.6: Prediction-error approach to parametric deconvolution
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error configuration. In general, the input Gin excites the system and produces the

measured organ activity/time curve J.r Gmeas(t,v)dv/V. This response may be cor-

rupted by unmeasured noise ny(t). The measured input Gin is passed through a

parametric model of the system to produce a calculated organ activity/time curve

J.r Ccalc( t, v )d1J IV. The error between the measured and approximate activity/time

curve, e, determines how well the model approximates the system. The model pa-

rameters are then adjusted to minimise e.

Typically parametric deconvolution of singleinput organs comprises four parts. The

experimental aorta activity/time data is modified to account for the background

tissue radioactive contribution (Chapter 4). Vascular background iii then removed

from the measured organ activity curve. The modified aorta data, Gin, is then

convolvedwith the organ ll\.D (Equations 3.8, 3.16) to produce an estimate of the

content of the organ, J.r CcDlc(t,v)dv/V where the elmulated curve has been st:l\lt.d

so that the measured and simulated curves have identical area, i.e.

roo f.r Ccalc(t,v)d'l!.dt ~ roo J.r Gmeas(t,v)dV dt
Jo V Jo V

(3.28)

The error between the system and the model can be calculated by the conventional

least square criterion,

(3.29)

In this thesis the optimum model parameters were found by using the Levenberg-

Marquard (MOLERet al., 1987) technique to minimise e. This method was chosen as

it convergesrapidly to the minimum. The programs for the various organs discussed

in this thesis are presented in Appendices L.l, M.1 and N.1.

3.5 Conclusion

Equation 3.16 is general for any imaging experiment of a single input organ and

provides a framework for researchers to include other models of organ perfusion, Any

parametric model of an organ must implicitly embody all the constraints associated

--- -----~---
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with h(t), let) and H(t) and this in turn places limits c.. th deconvolution behaviour

according to a model of tracer transport.

The method of modelling the measured input curve to facilitate deconvolution (sec-

tion 3.4.1) has not been implemented because of the assumptions and constraints

that are associated with the technique. The negative component seen in many de-

convolution studies is absent in the deconvolved CUrV(1Swhich use this technique.

The absence of the negative component is probably a result of the assumptions and

a priori information inherent in the model of the in.'ut curve (section 3.4.1). An

alternative way to handle the negative component associated with the deconvolution

of imaging data is addressed in Chapter 4

The noise generating nature of deconvolution has been shown to be a major problem

and the Prediction Errol Hm.!.tification Method (PEM) has rather been chosen to

compare the experimental data with data predicted by mathematical models. The

predicted data. is obtained by simulating the model with the measured input to the

organ. This data can then be compared to the measured organ data. This method

is affected by noise to a far lesser extent than non-parametric deconvolution.
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Chapter 4

Identification of an Aorta Background

for Organ Scintigraphic Studies

The previr us chapter showed that the deconvolution (J: dynamic imaging curves of

the aorta and any single-input organ Was related to the organ internal age density

(IAD). Conservation of mass and residence time density (RTD) theory was used to

place limits on the behaviour of the organ IAD and thus the deconvolved experi-

mental data.

In particular it was shown that:

• let) ~ 0, fer J(t)dt = 1, 1(0) = ~.
• let) must be continuous (not necessarily smooth), monotonically decreasing

and bounded from 1(0) = liT to ((00) = o.

A number of renal deconvolution studies exhibit a negative component in the IAD.

This is typically attributed to noisy data (JUNI et al., 1988; VAN HUFFEL, 1992).

The purpose of this chapter is to investigate this issue more carefully.

4.1 Aorta Background

To address the negative component in deconvolved curves one has to analyse the

implicit assumptions that have been made with respect to radiation and photon
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counts from tissue background and the removal of this background contribution

from experimental results of organ imaging. Background tissue radiation or photon

count correction assumes that:

~ One can find a region which has t~ssue similar to that found anterior and

posterior of the imaged aorta. Tissue background can then be measured and

subtracted from the aorta data .

• There is no venous blood supply above or below the imaged aorta.

• Blood flow in the aorta behaves in a "plug flow"manner with zero transit time

(Iaorta(t) :;;: 1, or haortn.(t) :;;:8(t)). Thus from equation 3.16, Cin equals the

aorta activity ftime data. In general the fluid velocity profile in large vessels

is parabolic in nature. The dispersive effects.in these vessels is however likely

to be small relative to that in other organs and thus the effect of this velocity

profile on the aorta measurement is not addressed in this thesis.

Using equation 3.21 we can define the aorta background by:

C~lea$ured = C!ctual + (C!ctual * I'Iess(t) (4.1)

where
C~e&Sured :~Experimentally measured aorta activity ftime curve,

mol.m="

C:ctual :~Tracer within the aorta, mo1.m-3

( ;- Fraction of tracer within the aorta that flows through back-

ground tissue, dimensionless

Ivess( t) :~Internal age density (IAD) of tissue anterior and posterior

of the imaged aorta. One can consider the tissue to be an

imaged single input system with the aorta as input to this

system, 8-1

In principle given ( and Ivess(t) we could use equation 4.1 and perform deconvolu-

tion to determine C!ctual' This turns out to be numerically difficult because of the
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discontinuities in C:nea.,ured and Ivess(t) and the noise generating nature of deconvo-

lution. The rest of this chapter is devoted to determining functional forms of ( and

lvess(t) and the use of these functions to approximate C!ctual'

In order to simplify the discussions in the next two subsections, consider Figure 4.1

which represents a trans axial section through the abdomen. In this figure, a ra-

dioactive tracer is initially introduced into the aorta, in the cardio-thoracic region

and shortly afterward the trace! can be observed within the aorta in the abdomen,

As time progresses, the tracer can also be observed in other arterioles within the ab-

dominal cavity. At even later times, tracer can be observed in. the aorta, arterioles

and venules of the abdominal cavity and in vessels outside the abdominal cavity.

From Figure 4.1 it is clear that a camera imaging the aorta would observe the tracer

in the aorta as well as tracer in the background tissue. The measurements would

show more material in the aorta than is actually present in the aorta,
, Cam.era

A A A...__/ Arteriole
/

Venule

t=O+ t=smaU t=large

Figure 4.1: A tracer experiment where tracer is introduced into the aorta in the

cadio-thoracic cavity and then monitored at a trans axial section through the ab-

dominal cavity. The camera images all the tracer below it.

4.1.1 A Proposed Model of Background Tissue

Background tissue activity /tiille curves typically rises rapidly in the same manner

as the aorta activity as shown in Figure 4.2. This is expected since any background

tissue region has an arterial supply. As discussed above) shortly after the radioactive

tracer leaves the left ventricle of the heart, the tracer may be found primarily within

t~Leaorta. Thus the tissue background contribution in the aorta is likely to be small
\

at the beginning of the experiment. As the experiment progresses: tracer material



Chapter 4 40

moves into tissue anterior and posterior of the aorta and the tissue background con-

tribution to the measured aorta increases. It is in principle very difficult to measure

a true tissue background activity/time curve because any background tissue oho-

sen near the aorta contains large arterioles which have similar characteristics to the

aorta. One might then postulate a suitable, aorta background curve of equation 4.1

as:

C~casured ::: C~ctual+ J( * (1 - exp( - t ))
Tc

(4.2)

where
J( :~Background activity contribution from tissue anterior and

posterior of the Imaged aorta, mol.m-3

Tc :- Mean confidence time of the aorta measurement, s

Equation 4.2 represents a small tissue background contribution to the aorta mea-

surement at early times which then increases to an asymptote as time progresses.

The above model is probably the simplest one that has these characteriasics, The

values of Tc and J( can be determined according to the procedure outlined below in

section 4.2. The effects of this adjustment on a typical deconvolved curve is shown

Counts/
pixel.s

--- Aorta
.-------. Snbrenal Background

Time
Figure 4.2: A comparison of measured aorta anti tissue background activity/time

curves

in Figure 4.3.
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Renal

I(t)

...... RTD Model

--- Asymptotic Model

-- Raw Deconvolution

Time

Figure 4.3; The effect of three methods of aorta correction on a typical renal de-

convolution study. J~ooI(~)dt:= 1for all curves. An Internal Age Density must be a

monotonically decreasing function. The large initial dip in the internal age density

of Figure 4.2 violates this constraint and is a result of vascular background in the

organ concentration/time curve. This issue is addressed in Chapter 6.

4.1.2 A RTD M'~~lelof Tissue Background

We could alsL attempt to model the background tissue taking into account the

anatomy. Consider Figure 4.1 where a tracer is introduced as a perfect dirac 8 into

the aorta in th~ cardio- thoracic region. If we were to plot the fraction of tracer that

came through the cross section in the abdomen as a function of time, then we would

probably see the curve shown in Figure 4.4. In a radioactive imaging experiment

of the aorta, we observe all the tracer in Figure 4.4 as the aorta. This is however

erroneous since only tracer within the aorta enters an organ. The measurements

show more tracer in the aorta than is in the vessel. One way to deal with this

phenomena is to propose a RTD f9r the blood vessels anterior and posterior of the

aorta. We can then convolute C:Ctual with this RTD using equation 4.1. In this way

we generate an a01ta background representation. We choose a gamma density for

Ivess(t) (see section 1.6). Thus l~ess(t) is given by:

1- J/ tn-1 e-t/1bt dt
I (t) _. 0 'f'l:1 cn=nrvess -

7bt
(4.3)

,-------------,-------------.--~--.~~.. ~. ,,-.~
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GCt)

where
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Aorta

Tissne Vessels

°O~ __ l~llWWW~UU~UL~WWWWWW~~~

Time

Figure 4.4: Venous Return Histogram

n :-The skewness of the density and is chosen as n = 3 because

there is likely to be a large length distribution of blood ves-

riels (Section 1.6)

7bt :- Mean transit time of the background tissue (Section 1.6)

Ivess is valid for a recirculating system (Chapter 5). To perform the calcu.atlon

we recall that the aorta measurement should be accurate at the beginning of the

experiment ie, C~('asured ~ C~ctual for small t. If T is large, then:

(,'!etual * Ivess{'t) ~ C~easured ~I Ivess(t) (4.4)

We now substitute equations 4..4 and 4.3 into equation 4.1 to determine C8,ctual.

The values of 7bt and ( are determined according to the procedure outlined below

in section 4.2. This has been done with renal activity/time data and the result is

shown in Figure 4.3. Tissue background determined by this method is illustrated in

Figure 4.5.
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Counts/
pixel.s RTDModel

Asymptotic Model

Time
Figure 4.5: A comparison of aorta backgrounds

4.2 Determlnauion of Background Tissue Model Pa-

rameters

The parameter values associated with the functional forms of, and Ivflss(t) above

are determined in this thesis by:

1. Deconvolvlng the observed activity/time data of an organ under investigation

with the measured aorta activity/time data.

2. Adjusting the functional forms of, and lvess(t) to minimise negative compo-

nent of the deconvolved curve.

In the liver and spleen experiments this technique is applied to the spleen and G!ctual

is then used for both the spleen and the liver. In th- kidney, the healthiest kidney is

chosen for this procedure and C:ctual is then applied to both kidneys. The programs

to perform the aorta adjustment appear in Appendix P.l.

4.3 Conclusion

The negative artifact seen in organ deconvolution studies seems to be due to inac-

curacies in the aorta measurement. In particular, due to background tissue activity,
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more material is measured in the aorta. than is actually present. This is compounded

by the fact that no background region can be chosen that represents the tissue an-

terior and posterior of the imaged aorta since any background tissue is vascular in

nature and thus contains small arteries which have similar characteristics to the

aorta. The unthinking subtraction of such background data from the aorta can re·

move accurate information from the beginning of the aorta curve while removing an

insufficient background contribution which is present in the latter part of the curve.

Two differentmethods for handling this problem have thus been presented that take

account of the negative artifact and both effectively arrive at the same result. The

second method suggests that the choice of the gamma density for flow in capillary

and vessel beds is a valid choice which supports the results of TnoMPsoN et al.

(1964). The programs to perform the aorta adjustment appear in Appendix P.l.
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Chapter 5

An Anatomical and Physiological

Medel of the Kidney

5.1 Introduction

Renal radioactive tracer studies have been used as non-invasive means of identi-

fying renal pathologies. Renal function is then characterised by the activity/time

curves obtained from dynamic imaging of the aorta and kidney. Typically, the tracer

9!)mTc_ diethylenetriamlnepentaacetlc acid (99mTc-DTPA ) has been used to iden-

tify glomerular function abnormalities. This substance behaves as an ideal tracer:

does not chemically interact with the body, low in concentration, follows plasma

and urine flow \bulk or diffusional) and is dlstlnguishable from the body and thus

measurable.

As shown in Chapter 3, the deconvolution of measured aorta and kidney activ-

ity /time curves produces an impulse response termed the internal age density. This

internal age density can then be used to calculate transit times which indicate organ

function (FLEMING, 1988, BRITTON & NIMMON, 1989).

Several non-parametric, renal deconvolution techniques reported in the literature

contain assumptions and drawbacks which have prevented their routine clinical use

as reported by JUNI, et al. (1988). The matrix method has the disadvantage in

that errors in the early data points are reflected throughout the entire curve (JuNI ei
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ol., 1988). The uncertainty in the calculation of transit times can only be reduced

if random noise is filtered out (FI,EMING, 1988). Fitting of an arbitrary function to

the deconvolved curves, requires a prior knowledge of the expected result (JUNI et
al., 1988). JUNI ei al. (1988) extended the input and response curves by appending

a smooth curve with a gradual taper to zero. This produced smoother deconvolu-

tion results however this technique is theoretically questionable (section 3.4.2). In

initial attempts to obtain kidney parenchymal transit times, the methods of BRIT-

TON AND NIMMON (1989) were used. However, random noise appeared to be a

major problem and even with data bounding (DIFFY AND CORFIElD, 1976) and

filtering (FLEMING, 1988) there was limited confidencein the minimum transit time

(Min'I'T) estimation. D dative methods could not be used to determine the time

of the end of the plateau of the renal retention function (BLAUFOX, 198H), as the

noise present caused significant fluctuations in the gradient evaluations.

In this chapter a physiological and anatomical flowmodel of the kidney is developed

to investigate parametric deconvolution. The parametric approach is adopted in an

attempt to reduce the noise magnification effects that appear to be inherent in most

non-parametric deconvolution techniques (JUNI ei al., 1988) which in turn obscure

physiological information. The model provides the basis for the Identification of

physiological and anatomical parameters from experimental data. The model pro-

vides transit time, reabsorption rate and the filtration fraction information for an

individual kidney.

5.2 Development of Parametric Model

We wish to model the renal internal age density from a physiological and anatomi-

cal perspective using the tracer 99mTc-DTPA• This should allow us to identify the

specificphysiological flowmechanisms within a typical nephron. We begin by exam
ining the anatomical representation of a nephron with collecting ducts as shown in

Figure 5.1. Blood with tracer enters the kidney through the renal artery which then

splits into the various renal arterioles. The concentration at each split point is the

same and if we assume that the lengths of the arterioles are approximately equal,
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and the flow velocity is relatively high, then the concentration of the tracer : a

function of time for every afferent arteriole will be roughly the same. If the lengths

differed substantially and the flowrate was small, then each glomerulus would have

an input that differed from the next by some delay time.

Dlota! Tubule Proximal

1~.rIlUbular

,_. ~"Pilliarle.

Coll.ellllg
Duel

Loop of Henle

Figure 5.1: Anatomical Structure of the Nephron (Redrawn from Smith: The Kid-

ney: Structure and Function in Health and Disease., Oxford University Press, 1951)

The blood in the afferent arteriole enters the glomerulus and a fraction of the plasma,

f 1, is filtered. The rest of the blood flows through the efferent arteriole and into the

peritubular capillaries. The perltubular capillaries have a broad length distribution

and the blood mixes in a "segregated') manner (also called macromixing). Segregated

mixing implies that elements of tracer of different ages meet at a common point

(ZWIETER.ING, 1959; GLASSER. AND JACl{SON, 1984). Appendix C.1 shows that the

RTD associated with this mixing is a result of the length distribution of capillaries,

g(L). If we assume that the length distribution of these vessels is not large then

we can approximate the length distribution by the gamma density for the reasons

discussed in section 1.6. A. value of z = 2 has 'been chosen for this density with time

lTypically called the "filtration fraction", :1:19% (GUYTON, 1986, pp 398)
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constantv r, 2 (see equation 1.6). The renal blood flow RTD is thus given by:

hblood(t) = t ~.t/Tb (5.1)·-e
'r2b

MTTb
loo, te-t/1b (5.2)= t --2 -dt = 2n,
o Tb

where
hblood :- Residence time density (RTD) associated with blood flow

through the kidney, 8-1

MTTII :- Mean transit time of the blood in the renal parenchyma, s

Let us examine the tracer inside the glomerulus as it moves down the proximal

tubule. The tracer, 99mTc-D'fPA , does not move out ofthe tubule in any substantial

quantity and is thus carried by the fiowrate of water/urine inside the tube. It can

be shown that if the net water flow is always out of the tubules, then this system

can be modelled as a series combination of plug flow systems (LEVENSPIEL, 1972)

given by:

htubule(t) = oCt - Tp) * oCt - Td~H) * SCt - TaLH) * o(t - Td) (5.3)

where
htubule :- Renal tubular residence time density (RTD), 8-1

Tp :- Proximal tubule mean transit time, s

TdLH :- Descending loop of Henle mean residence time, s

TaLlI :- Ascending loop of Henle mean residence time, s

Td :- Distal tubule mean residence time, s

* :- Convolution

Combining the above residence times into a single parameter, Tbl) gives:

htubule(t) = o(t - Ttll) (5.4)

The parameter, Ttn, represents the mean residence time of tracer from the point of

entry at the glomerulus, to the exit point of a nephron. We note that the flowrate

in the descending loop of Henle changes because of the reabsorption of water into

2A physically measured distribution could be substituted if available
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the peritubular capillaries. From Appendix D.L, TdLH = ~ln[QHo~:~dLH] where QHo

is the initial loop of Henle flowrate, VLH is the descending loop of Henle volume

and a is the net flow out the loop of Henle and into the interstitial space per unit

volume. Thus in principle, the model includes a parameter, a, which could be

used to determine whether this reabsorption mechanism functions properly. We also

note that a similar analysis to that in Appendix D.l could be used to identify the

residence time density of a tracer which is actively secreted by the proximal tubular

system. This however falls outside the scope of this thesis.

Segregated mixing occurs at the points where the distal tubules meet the collect-

ing duct and where the urine meets in the inner calyces. In addition, there is a

length distributions of the two nephrone of the kidney (cortical and juxtamedullary

nephrone), It is assumed that the gamma density with z = 2 in equation 1.6 should

characterise the behaviour of this system. The time constant associated with this

gamma density is represented by Tee 3. The collecting duct and inner calyces mean

transit time associated with Tce can be determined from equation 1.7 and is given

by:

MTTec = 2Tcc (5.5)

There is also a small delay time associated with flow down the shortest collecting

duct, 'red, Combining these terms, the model of the parenchymal RTD is given by

equation 5.6. A flow representation of equation 5.6 is shown in Figure 5.2. In deriv-

ing equation 5.6, the approximation has been made that mixing in the peritubular

capillaries and collecting dncts/Inner calyces are similar for both types of nephrone,

The filtration fraction, i, is also assumed to be the same for both nephrone as it is

related to blood pressure.

hpl'1l'enehyma(t)= f (( )) te-t/'r'ec ( f) te-t/'I"ba {j t - rte + Ted * ~- + a 1- ~+
co b

( )f C(' )) te-t/'I"cc I ( )(" f) tc-t/'I"b1- aut - (rtj + red * --;;:r- T 1- a 1_- --::r-
'Tee 1"&

(5.6)

3A physically measured density could be substituted
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where
hparanchyma( t) :~Residence time density (RTD) of the renal parenchyma with

both the cortical and. juxtamcdullary nephrone, 8-1

a :-Fraction of renal blood which flows to the cortical nephrons

and as opposed to the juxtamedullary nephrons (1 - a),

dimensionless

Ttc ;- Cortical nephron tubule transit time, s

Ttj :- Juxtamedullary nephron tubule transit time, s

The combination of nephrons with collecting ducts and inner calyces is termed the

renal parenchyma. We note that in deriving equation 5.6 we have made a large num-

Gin(t

1~·L te-t/Tb r---=r:
CORTICAL NEPHRON

f ,_18(t- (Ttc+Ted))~ tet/Tec I-----2-
Tee

a
.\
I

i-I te-t/Tb __..rr
1- a

JUXTAMEDULLAR.Y NEPHR

f IcCt - (Ttj +Ted))~ te-tlTee :-------:rr-

ON

Figure 5.2: A flow representation of equation 5.6.

ber of assumptions about the flow in various sub-systems. Some of these assumptions

have not really been tested, but if not made the number of model parameters would

become excessive. One could of course have mode other assumptions and the ap-

proach that has been taken allows ather researchers to try other alternatives. In the

end though it is not reasonable to try and extract too many parameters from the
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measurements. Even this equation probably has too many parameters as it stands.

We can now use equation 3.8 to determine the shape of the parenchymal internal

age density. The IAD for the parenchyma is shown in Figure 5.3 with the associated

parameters and is related to the renal impulse retention function discussed in the

medical literature using equation 3.20 (NIMMON ei al., 1981; BRITTON & NIM-

MON, 1989). The minimum transit time through the renal tubular system, Tte+Tcdl

is primarily affected by the cortical nephron. Geh~h&'J.lythe noise in scintigraphic

experimental data obscures the juxtamedullary minimum transit time, Ttj+Ted (Fig-

ure 5.7). The clinical significance of this part of the curve thus becomes subject to

a large error. It is for this reason that the model represented by equation 3.8 has

been simplified by setting O! ::.~ 1. This decreases the number of parameters and

essentially fits the nephron with the minimum transit time. The approximation

may imply that the calculated mean transit time of the renal parenchyma may be

associated with a small error. This is also the case when performing non-parametric

deconvolution since the juxtamedullary nephron is not accounted for (NIMMON et

al., 1981; BRITTON & NIMMON, 1989). The JAD of a single nephron CO! = 1)

is shown in Figure 5.4 and corresponds to deconvolutions typically observed in the

literature. Figure 5.7 indicates that the single nephron model seems to sufficiently

characterise the dominant behaviour of the kidney.

I(t)

Time
Figure 5.3: Internal Age Density of Medullary and Juxtamedullary Nephrone in

parallel
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Time

Figure 5.4: Internal Age Density for a single nephron

By combining the delay components of the nephron and taking the limit as a -+ 1}

equation 5.6 reduces to:

, te-t/Tcc te-t/Tb
hcombined(t) = feet - Tt)-~ + (1 - f)--2-

7ce Tb
(5.7)

where
Tt :~Mean transit time through.the shortest nephron and shortest

length of collecting duct ie. Tte + Ted, S

hcombined(t) :~ Residence time density (R.TD) of the average renal

parenchyma, 8-1.

The distribution of nephron lengths is lumped into parameter Tee. Tee also includes

the segregated mixing effects associated with the points where the distal tubules

meet the collecting duct and where the urine meets in the inner calyces.

Based on equation 5.7, the simplified flowrepresentation of the parenchyma is pre-

sented in Figure 5.5.
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VASCULAR. COMPONENT

1__f

PARENCHYMAL COMPONENT

Figure 5.5: Simplified Flow Representation of the Parenchyma

5.3 Clinical Parameters and Indices

The mean transit time of the parenchymal model, including the vascular compo-

nents, may be calculated uslng equation 3.21 as follows:

KMTTt ...tal = 1000 t hcombined(t)dt (5.8)

= 1-; f F" t2e-t/Tbdt + ~ I" t(t _ Tt)e-(t-Tt)/-rccd,t (5.9)
Tb 10 Tee 10

= 2(1 - f)Tb + I( Tt + 2Tee) (5.10)

As we are only interested in the mean parenchymal transit time, the contribution of

the vascular component may be removed by setting f = 1 in the above equations.

It therefore follows that,

= T't+ ~ITTcc

(5.11)

(5.12)

KMTTpa.ren = Tt + 2 X Tee

As defined by BRITTON et al. (1987), the Minimum Transit Time (MinTT) corre-

sponds to the length of the plateau in the renal retention function. This corresponds

to Tt as derived previously in the model. Recall that Tt is the transit time through

the shortest nephron and shortest length of collecting duct.

BRITTON ei al. (1987) also defines the parenchymal transit time index, PTTI, as:

PTTI = KMTTparen - MinTT (5.13)
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As outlined by BRITTON et al. (1987), the MinTT is removed from the mean

parenchymal transit time, to account for variations in urine flow between patients.

equation D.5 in Appendix D .. demonstrates the non-linear relationship between

urine flow and minimum parenchymal transit time.

The PTTI can be calculated from the model parameters using equation 5.13,

PTTI = Tt + 21"cc -- Tt = 2 x Tcc

= MTTcc

(5.14)

(5.15)

The published results indicate that prolongation of PTTI is a sensitive indicator

of the presence of obstructive nephropathy (BRITTON et al., 1979). A common

interpretation of a raised PTTr is that it indicates not only prolongation of transit

time, but also an increase in the spread of these transit times. From equation 5.14,

it appears as if the PTTI is independent of the prolongation of transit time. Any

prolongation of transit time will be incorporated into the model parameter, 'ft.

This result differs from the conventional interpretation of the PTTI, and raises the

question of the PTTI'$ validity as a measure of the tubular transit time prolonga-

tion. In the initial stages of obstructive uropathy, the rate of reabsorption can be

assumed to be approximately com ,Lt for all nephrons and the PTTI will be within

the normal range. As the disease progresses and tubular dysfunction develops, there

will be a distribution of reabsorption rates in the nephrons. This distribution of re-

absorption rates wiHmanifest itself as all increase in the spread of transit times, The

model parameter, Tcc, will reflect this increase as an apparent change in the length

distribution of nephrons and mixing points (Appendix D.1). The PIT! described

by equation 5.14 will then indicate an obstructive nephropathy.

From equations 5.6 and 5.7, the rena] modelcontains information about the filtration

fraction, f. The glomerular filtration rate (GFR) (GUYTON 1986, PP 398) is 'the

quantity of glomerular filtrate formed each minute in all nephrons of both kidneys',

i.e. the sum of the individual kidney glomerular filtration rates:

GFR = GFRleft + GFRrigllt (5.16)
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The individual glomerular filtrafion rates GF.Rlert and GFRrlght can be related to

the respective filtration fractions, fleft and frlght, by the renal arterial flowrates to

each kidney. GUYTON (1986, PP 395) defines the normal renal fraction (NRP)

as the fraction of cardiac output (CO) that flows to both kidneys (approximately

21%). Assuming an equal split of renal arterial blood flow, the GFR may thus be

approximated by equation 5.17.

GFR == CO x N~F X (Jieft + fright) (l.min-1) (5.17)

5.4 Data Pre-Processing

5.4.1 Renal Background Elimination

Chapter 4 showed that typical background activity/time curves behave in a similar

manner to aorta activity/time curves. One can then pose the question whether the

aorta curves cannot be used to determine renal background. This assumes that the

tissue above and below the imaged parenchyma is vascular in nature. If this is true,

then the arguments of Chapter 4 can be used to determine a background measure

for renal studies. This is done for a particular l;;dney according to the following

steps:

1. 'J he aorta curve is time shifted so that the peak in the aorta and subrenal

background activity/time cur ,~s correspond. This accounts for the fact that

it takes a certain amount of time for the tracer to flowto the background tissue.

'Thepeak in the subrenal tissue activity/time curve contains this information.

2. The time shifted aorta is scaled so that the average of this curve corresponds

to the average of the measured background histogram. This scales the val-

ues of the time shifted aorta activity/time CUrveso tha t they have a similar

radioactive contribution to the subrenal background tissue.

3. 75%of the time shifted, scaled aorta is used as background. The value of 75%

results from the fact that in the lateral snbrenal region, the thickness of the
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body is approximately Itlcm, while the kidney is approximately 2.5cm thlck

(THIBODEAU, 1987).

The aorta and background peak at different times. This implies that there is a delay

time associated with the flowof blood from the aorta to the afferent arterioles. This

time delay, Tdela.y has to be included in the model of the renal parenchyma. The

adjustment to equation 5.7 is made by:

hadjusted(t) ;: hcomhined(t) * c(t - Tdela.y) (5.18)

The value of TJelay is determined from experimental background data.

5.4.2 Parameter Estimation

To obtain the initial model parameter estimates, conventional non-parametric de-

convolution was performed 4 to approximate the renal retention function. Initial

estimates of the model parameters I, 7b, Tee and Tt were calculated as follows,

• The filtration fraction, I, is typically 19% (GUYTON, 1986, pp 398).

• The blood time constant, Tb, was estimated at 4s.

• Tt (Min'l'T), was estimated by detecting the end of the plateau in the renal.

retention function.

• The parenchymal time constant, TCCI was found using the result that the Mean

Parenchymal Transit Time KMTTparen= Tt+2 X Tee, and the KMTTparenwas

estimated as the time at which the plateau reached half its initial height,

The non-parametric deconvolution method does not to have to be very accurate, as

the initial estimates provide only a rough starting point for the model parameters.

In this case, a filtered fast Fourier transform (FFT) method (NIMMON et al., 1981)

was selected to perform the non-parametric deconvolution.

4According to the techniques outlined ill section 2.3.2
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5.5 Results

The simulation of the model described by equations 3.16 and 5.7 was performed

according to the techniques outlined in section 3.4.3. The clinical indices were de-

termined using MinTT = it and equations 5.11 and 5,14. A typical fit of the

simulated model is shown in Figure 5.6 and the corresponding parameters for the

case studies are shown in Table 5.1. The simulated model fit to all the subjects

tabulated in Ta.ble 5.1 is displayed in Appendix Q.1. The X~ goodness-of-fit test

(section 2.3.3) shows that the renal model represents the distribution function of

all the data displayed in Appendix Q.l (P < 0.05). The parenchymal lAD from

equation 3.16 is compared to the lAD obtained from the non-parametric deconvo-

lution ofthe parenchymal activity/time curve with the background corrected aorta

activlty/timfl curve in Figure 5.7. The mean absolute correlation matrix for the

fitted model parameters is shown in Table 5.2. An attempt was made to try and

Counts/
Pixel.s

zoe 30(1

Time (s)

Figure 5.6: Typical fit of the model to the experimental renal parenchymal activ-

ity/time curve. _ Model, 0 EXperimental data

scale the renal activity/time data. in a similar manner to that performed on the liver

activity /time data (section 8.5). These attempts were unsuccessful (Appendix G.l).
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Table 5.1: Renal parameter values for twelve normal kidneys and four diseased

kidneys. "Significantly different from normal, P < 0.05. SEM represents the

standard error of the mean.

Fitted Parameters Calculated Parameters

Normal Tee Tt MTTb f MinTT KMTTpa:ren PT'1'I

(s) (s) (s) (s) (s) (s)

1 12.9 112.3 7.2 0.228 112.3 138.1 25.8

2 19.2 ni.a 8.8 0.230 111.4 149.9 38.5

3 24.9 38.2 4.3 0.117 38.2 88.0 49.9

4 16.7 68.0 7.9 0.216 68.0 101.4 33.4

5 17.2 93.4 2.3 (..164 93.4 127.8 34.3

6 34.9 69.2 2.1 0.143 69.2 139.1 69.9

7 37.7 43.7 8.3 0.208 43.7 uu.i 75.4

8 16.8 62.7 5.9 0.286 62.7 ~6.2 33.6

9 13.6 141.7 6.6 0.293 141.7 168.9 27.1

10 13.3 135.5 8.2 0.305 135.5 162.0 26.6

11 14.8 122.7 6.6 0.206 122.7 152.2 29.5

12 14.5 125.7 6.1 0.211 125.7 154.7 29.0

Mean 19.71 93.70 6.18 0.2171 93.70 133.13 39.42

SEM 2.439 10.43 0.642 0.0168 10.43 7.739 4.877

P < 0.05 (±) 1~.89 72.;32 4.45 0.1164 72.32 53.62 33.79

% Variation 12.,1 11.1 10.4 7.7 11.1 5.8 12.4

Fitted Parameters Calculated Parameter~

Pathology Tee 7't MTTb f MinTT KMTTpareu PTTI

(s) (s) (s) (a) (s) (s)

Left 1 21.5 63.7 18.0* 0.139 63.7 106.7 43.0

Right 1 60.8* 65.9 15.4* 0.12f1 t>5.9 187.5* 121.6*

Left 2 23.4 107.3 20.8* 0.145 107.3 154.1 46.8

Right 2 00* 00* 35.6* 0.000* 00* 00* 00*
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Figure 5.7. Model Internal Age Density (IAD) compared to Experimental IAD._

Model let), 0 Filtered and deconvolved experimental data

Table 5.", The mean absolute correlation matrix of the four independent fitted model

parameters Tee, Tt, MTTb and f respectively, for the values in Table 5.1, together

with the corresponding standard error of the mean for each matrix component Tij.

1 ± 0 0.949 ± 0.000 0.173 ± 0.002 r.269 ± 0.008

0.949 ± 0.000 l±O 0.282 ± 0.003 0.382 ± 0.015

0.1'13 ± 0.002 0.282 ± 0.003 1±0 0.443 ± 0.019

0.269 ± 0.008 0.382 ± 0.015 0.443 ± 0.019 l±O
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5.6 Discussion

60

For the purposes of the discussion, the important renal parameters listed inTable 5.1

are graphically displayed in Figure 5.8.

DNonnal • Right 1 • Left 1 IIIDllRight 2 r#.l Left 2

PTTIMTIb MinTT MTT f
6±O.6 94±10.4 133±7.7 39±4.9 O.217±O.OI68
(s) (s) ($) ($)

Figure 5.8: Some of the important renal parameters tabulated in Table 5.1.

"Significantly different from normal, P < 0.05, Error bars indicate the standard

error of the mean for the normal subjects, The other results are for the patients

with known pathologies.

5.6.1 Normal Subjects

Figures 5.6 and 5.7 show a reasonable correlation between the parametric model

and the experimental data. It is likely that the discrepancies between the model

and the deconvolved curve in Figure 5.7 are due to the Gibbs phenomenon of the

FFT and the noise in the experimental data since there has been an attempt to

to account for uncertainty in the aorta and parenchymal backgrounds (Chapter 4).

This indicates that the flow and mixing in the renal parenchyma can be adequately

described by equations 3.16 and 5.7. The variation between the individual kidneys

for the parameters displayed in Table 5.1, while quite large, are likely to represent

normal variation between individuals.
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The correlation matrix is a measure of a model's sensitivity to parameter variation

and a measure of the association between variables. The correlation matrix of fitted

parameters in Table 5.2 seems to indicate that the values in Table 5.1 are relatively

accurate since all of the off diagonal elements do not exceed 0.9 (BECK & ARNOLD,

1977; Appendix 1.1). This suggests that a four parameter model is adequate and

hence reinforces the likelihood that equations 3.16 and 5.7 adequately describe the

renal parenchyma.

From examination of the correlation matrix element Tn == 0.949, it is clear that

there is a relatively high degree of correlation between the collecting duct and inner

calyces mean transit time parameter, Tee (MTTee == 2 * Tee), and the mean transit

time through the shortest nephron and shortest length of collecting duct, Tt. The

correlation between these parameters is also apparent if one examines the first two

columns of Table 5.1; As T(;e increases, Tt decreases and vice versa. There is there-

fore a functional relationship between these parameters. If one examines the model

structure it is clearly evident why these parameters are likely to be related. The

mean transit time through the parenchymal component of the model, KMTT parens

(Figure 5.5) is the sum of the mean transit time through the shortest nephron and

shortest length of collecting duct, Tt, and the collecting duct and inner calyces mean

transit time parameter, Tee(equation 5.11). Thus while the estimates of these two

parameters may change, KMTTparcn is likely to be relatively invariant. The data in

Table 5.1 reflects this effect where the % variation of KMTTpaTen within the normal

population is almost half that of Tee and Tt. This indicates that KMTTparcn is likely

to be a relatively accurate parameter, Tee is related to the parenchymal transit time

index, PTTI, by equation 5.14 and thus any uncertainty in Tee is reflected in the

PTTJ. Although there is less confidence in PTTI and Tt than in KMTTparom the val-

ues of PTTI are consistently smaller than the values of Tt. This is in agreement with

the values reported in the literature using non-parametric deconvolution (BRITTON

& NIMMON, 1989). Thus while Teeand Tt (and thus PTTI and MinTT) are useful

parameters which have an anatomical significance, the estimates of these parameters

are strongly correlated and so they should be used in conjunction with KMTTparcn

for the diagnosis of pathology using the techniques discussed in. this thesis.

The other values of the correlation matrix are relatively small. This implies that
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there is very little correlation between the parameters which describe the parenchy-

mal component of the renal model and the vascular component. Thus changes in the

parenchymal model parameters have little effect on the vascular mode] parameters.

Similarly,the changes in both the parenchymal and vascular parameters of the renal

model have little influence on the filtration fraction. All these facts imply that the

filtration fraction, the parenchymal component and the vascular components of the

model are independent of one another. This is reflected in the the data tabulated

in Table 5.1. Thus MTTb, KMTTparelland f are independent of one another and

are likely to be relatively accurate estimates.

The ideal objective is to derive physiologicalparameter values by applying the math-

ematical model of the renal parenchyma to experimental data. In order to decide

whether the model described above satisfies this requirement, we examine the normal

value of the renal filtration fraction. The rena] filtration fraction is a physlological

parameter that represents the fraction of plasma in the afferent arteriole that is

filtered, This parameter can be directly associated with the anatomical structure

of the glomerulus and its pathology. 'The normal value of tho filtration fraction is

quoted in the literature as f = 0,19 (GUYTON, 1986 pP398). This value is compa-

rable to the normal mean value of f presented in Table 5.1. Thus the model of the

renal parenchyma described above appears to have physiological significance. Thi!l

necessary requirement ofmodel allowsone to postulate that any significant deviation

from the normal parameter values is likely to indicate renal pathophysiology,

There is some disagreement as to the normal values ofthe parenchymal mean transit

time, KMTTplU'em and the parenchymal transit time index, PTTI, discussed in the

literature and the values displayed in Table 5.1. The normal range for PTTI dis-

cussed in the literature is 10-156s (BltlTTON & NIMMON, 1989) while the normal

range for KMTTpareuis 40-240s (BRITTON & NIMMON, 1989). The normal ranges

for PTTI and KMTTparellfrom Table 5.1 are 6-73s and 80-1878 (P < 0.05). Ac-

cording to the .PTTI and KMTTparencriteria discussed in the literature (BRITTON

& NIMMON, 1989) the pathologies displayed in Table 5.1 fall within normal values.

The values that have been determined in the literature use non-parametric decon-

volution which may have a subjective component to the analysis (Chapters 3 and

4). This may explain the discrepancy between the normal range of values reported



Chapter 5 63

in the literature and those displayed in Table 5.1. The blood transit time param-

eter, MTTb, has not been measured or discussed in the literature. It is however

possible to postulate how this parameter might change with pathology and the next

subsection explores this issue in further detail.

The twelve normal kidneys in Table 5.1 represent six different people and the

paired nature of the parameters is evident. Height and weight information were

not recorded for the subjects that were selected for renal evaluation (section 2.3)

and it was therefore not possible to determine whether a relationship existed between

transit time and height or mass. It is likely that such a relationship exists and an

investigation on a large sample of subjects has already started. The hypothesis for

such a study is that the amount of renal :filtration is likely to be directly related

to blood volume. There are many empirical relationships in the literature between

blood volume and height/weight data. The effect of sex on renal parameter values

has not been investigated in this thesis. This issue is likely to be resolved when the

effect of blood volume on renal parameter values is investigated.

5.6.2 Renal Pathology

The parameters associated with the pathologies in Table 5.1 have been obtained

by applying the above techniques to two renal hypertensive patients with possible

renal hypertension. When the renal artery is partially obstructed as in the case

of renal hypertension, the flow and pressure of blood to the glomerulus decreases.

The decrease in renal perfusion pressure stimulates renin release and the generation

of intrarenal angiotensin II. This in turn causes the vasoconstriction of the efferent

arteriole which further reduces renal blood flow. Furthermore, the constriction of

the efferent arteriole increases the resistance to outflow from the glomerulus and thus

raises the glomerular filtration rate. This control mechanism attempts to maintain

normal glomerular filtration rate. The decreased blood flow to the kidney increases

the transit time of blood within the renal vasculature. During the initial stages of

renal hypertension, the filtration fraction increases.

As a consequence of increased filtration, the plasma. colloid osmotic pressure within
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the glomerulus increases (since none of the plasma proteins are filtered by the

glomerulus). The increased colloid osmotic pressure directly decreases the glomeru-

lar filtration rate and a progressive pathology develops where the arterial obstruction

increases, the osmotic pressure across the tubular membrane cells increases and the

glomerular filtration rate and filtration fraction ultimately decrease. The increased

osmotic pressure across the tubular cells with decreased blood flow eventually causes

necrosis of the tubular cells. Scar tissue forms which obstructs the nephrons, These

changes in the anatomical structure of the kidney should manifest themselves as

changes in the model parameters displayed in Table 5.1.

The renal blood transit time, MTTb, is significantly prolonged (P < 0.05) in all the

renal hypertensive patients. The change in this parameter is consistent with the

above discussion where renal vascular obstruction and efferent arterial constriction

combine to reduce the flowrate and thus increase blood transit time through the

kidney. The change in MTTb is thus consistent with the changing pathophysiology.

The parenchymal transit time index. PTTI, is related to the collecting duct and inner

calyces time constant, Tee. This parameter also accounts for the length distribution

of nephrons, As the renal hypertension pathology progresses, a number of nephrons

become obstructed both partially and completely. The transit time within such

nephrone is likely to increase and this in turn is likely to be reflected as an apparent

increase in the length distribution of nephrons, The elevated PTTI of the right

kidneys of the patients is significantly elevated (P < 0.05) and is thus consistent

with these arguments. The left kidneys still appeal' to have some normal function

and the small change in the PTTI of these kidneys reflects this function. The change

in P'l'TI is thus consistent with the changing pathology of the nephrons while also

addressing the altered physiology of these nephrons.

The minimum transit time, MinTT, corresponds to the minimum time that it takes

for the tracer to flow from the glomerulus through the shortest nephron and section

of collecting duct ie. MinTT= Tt. During the development of the renal pathology,

it is likely that there exists a nephron whose function is essentially normal. The

minimum transit time Is thus unlikely to be a sensitive measure of renal hypertensive

pathology unless the kidney is completely obstructed. It is thus not surprising that
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the values for all the active diseased kidneys are within normal limits. The most

obvious value of the above techniques is to aid and assess the pathophysiology of

early pathology since the identification of gross pathology is often obvious. The

assessment of early renal pathology using the minimum transit time is thus likely to

have limited benefit.

According to the above discussion, the filtration fraction, f, should increase in early

renal hypertensive patients and decrease as the pathology develops. In the active

diseased kidneys, the filtration fraction is on the low side of normal. This already

indicates that the pathology of the renal hypertensives is sufficiently :.1dva.n::~1. It is

possible that patients may not present with clinical symptoms of renal hypertension

until there is significant renal tissue damage and a decreased filtration fraction. Thus

f in conjunction with MTTb may be very important indicators of impending renal

disease. One might postulate that diabetics may benefit substantially by regularly

monitoring f and MTTb. If the filtration fraction rises above normal and then

steadily declines in such patients then perhaps preventative action could be taken

to avert permanent renal tissue damage. The application of the above techniques to

such a group of subjects is an area of future research. The significant change of the

filtration fraction obtained using the renal model is consistent with the pathology

as outlined above, This is further evidence that the renal model developed in this

chapter has physiological consistency,

The value of f for kidney 3 in Table 5.1 is relatively low. Further investigation

revealed that the subject had a below normal glomerular filtration rate. This is

also evidence that the renal model appears to predict normal and abnormal cases

adequately.

5.7 Conclusions

The chapter proposes a parametric model for the study of the renal retention func-

tion. This parametric model is less perturbed by noise artifacts which may be present

in deconvolved data than previous models and therefore has the potential benefit

of providing more accurate clinical indices. The technique may also improve the
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understanding of the physiology and pathology of the renal process. ~~heparametric

model of the renal parenchyma appears to consistently describe both normal and

abnormal pathophysiology. The model response corresponds to both the measured

and deconvolved renal data.

The filtration fraction, j, is likely to be sensitive to renal background subtraction.

The values of j obtained from the experimental data, corresponds with those re-

ported in the literature. For this reason, the renal background determined from

the aorta activity /tirrle curve appears to be a reasonable approximations as it does

not underestimate the intravascular background within the rs J. parenchymal activ-

ity/time curve (section 2.2.1). The renal blood transit time parameter, MTTbl has

been. shown to be a potentially useful clinical index for the determination of renal

vascular disease.

'I'he parenchymal transit time index, PTTI, mean parenchymal transit time, KMTTparen,

filtration fraction, t,and mean blood transit time, MTTb, all appear to be sensitive

measures of organ pathology. Diagnostic Information obtained using the PTTI must

however be correlated with KMTTt:!~.::ell' The minimum transit time, MinTT, has

been shown to be a poor indicator of renal pathology,

In conclusion, parametric deconvolution of the renal retention function has been

shown to be robust and provides consistent physiological information not provided

by the conventional non-parametric methods. Further clinical research is however

required to validate the use of the model parameters as clinical indices. In addition,

clinical \,''lrk is required to refine the estimate of the ratio of background tissue

thickness to organ tissue thickness.
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Chapter 6

An Anatomical and Physiological

Model of the Spleen

6.1 Introduction

Hepatic function can be characterised hy the activity /titne C.WI'V'1l;1 obtained from

dynamic imaging of the spleen, liver and aorta. In this chapter, anatomical and

physiological information is used to determine a model for the Internal Age Density

(IAD) of the Spleen. The modelling approach characterises the spleen in terms of

anatomical and physiological parameters. The model is fitted to experimental data

obtained from eight normal, healthy 'Volunteers. Statistical methods are then used

to verify the model.

6.2 Anatomy and Physiology of the Spleen

Consider a section though the spleen as shown in Figure 6.1. Blood with tracer

enters the spleen through the splenic artery which then branches into the trabecular

arteries. The trabecular arteries follow the connective tissue trabeculae. Central

arteries then branch off into the spleen parenchyma and are surrounded by a sheath

of lymphocytes 1. The concentration at each trabecular artery split point is the same

and if we assume that the Iength distribution of branch vessels is small, ar he flow

lAlso termed white pulp arteries
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velocity is relatively high, then the concentration of the tracer as a function of time

for every central artery will be roughly the same. If the lengths differed substantially

anti the flowrate was small then each central artery would have an input that differed

from the next by a delay time (Chapter 3). Thus we may consider a series of parallel

systems S11Chas the unit shown in Figur- 6.1.

Trabecular
artery

:Marginalzone sinuses Open Circulation

Figure 6.1: A section through the Spleen; S, Venous sinuses; PWP, peripheral white

pulp; PALS, perlaeterlal lympharic sheath. (Redrawn from Greep R.O., W 'ss L.:

Histology, 3rd ed, McGraw-Hill, 1973)

There are two types of blood circulation in the spleen parenchyma namely:

Open Cir-culation Blood leaves the vascular compartment. Blood can move from

the central artery and open into the peripheral white pulp (referred to as

whitu pulp hereafter), marginal zone sinuses or the red pulp. Blood percolates

from the white pulp of lymphatic tissue into the marginal zone sinuses where

macrophagea engulf foreign material. The blood then percolates through the

red pulp into the venous sinuses.

Closed Circulation Blood remains within ill the blood vessels. In tills case the

blood in the central arteries empties directly into the venous sinuses.
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The venous sinuses join to form the trabecular 'Veinswhich empty into the splenic

vein.

6.3 Flow in the Spleen

A flow representation of the proposed model of the spleen is shown in Figure 6.2. A

blood fraction, q, remains in the closed circulation. The rest of the blood flows into

the open circulation, A fraction of open circulation blood" fI" flows into the white

pulp while the rest flows into the red pulp, The open and closed circulation meet in

the sinusoid where mixing occurs. The parallel sinusoids join the trabecular veins.

We assume that there is a large length distribution of trabecular veins before they

all combine to form the splenic vein.

hWhite pulp -

OPEN CIRCULATION

.----~--.
+-----+..-o-l hm&rgill"l aOile! 11-- __

red t>ulp r(1 - q).(l - ~) '-- .......

~.(1-q)

1 - q CLOSED CIRCULATION

q
hc..pill ..rl••!

sinusoid

Figure 6.2: Flow Model of the Spleen
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6.3,1 Flow in the Open Circulation

Blood that enters the white pul1\)percolates between the cells into the marginal zone

sinuses. The marginal zone sinuses essentially define a border between the white

pulp and the red pulp. Blood from the central artery also empties into the marginal

zone cinuees and mixes with the blood from the white pulp, The mixing and bypass

has not been included in the model because of increased complexity which would add

more parameters to the model. Instead, it is assumed that marginal zone sinuses are

the point of distinction between the white and red pulps and ;;hat no appreciable

mixing occurs here. Thus blood that flows into the marginal zone sinuses from the

central artery is assumed to behave in the same manner as blood from branches of

the central artery that terminate in the red pulp.

6.i ..2 Flow Fractions in the Spleen

To develop bounds on the split fractions, q and K, we consider blood flow in the

open circulation. One conceptually expects that blood flow through the white pulp,

into the marginal sinuses and then through the red pulp must encounter a greater

resistance to flow than blood flowing through the red pulp only. It is thus likely that

q > 0.5 and tV < 0.5.

6.4 Mixing in the Spleen

I.EVENSPIEL (1972) has shown that flow in a packed bed system (a column of

particles) can be approximated by plug flow with a small amount of dispersion. In

such a system the fluid flows through a tortuous path in the packed column. The

degree of dispersion depends on the diameter of the bed, the fraction of volume

unoccupied. by solid material and the flowrato into the system. In this thesis, we

assume that blood flow through the red and white pulp tissue of the spleen closely

approximates the flow of fluid in packed beds. Thus we assume th~1t the splenic

tissue is arranged like particles of solid and that the blood percolates through this

structure in close contact with the splenic tissue. The degree of dispersion is assumed
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to be small and the flow of blood through the splenic tissue is approximated as plug

110win nature. Thus (Chapter 3):

hmz~rp(t) = 8(t - 7"mr)

h!llp~rp(t) = Set - 7"w)

(6.1)

(6.2)

where
Set) :- Dirac's delta

7"mr :. Blood transit time through the red pulp of the spleen

7"w :- Blood transit time through white pulp of the spleen

hm~~rp :- Residence time density (RTD) of blood flow through the red

pulp of the spleen, S-1

hwp-+rp :- Residence time density (RTD) of blood flow through the

white pulp of the spleen, 8-1

All the blond meets in the venous sinusolds where mixing occurs in the veMUS

capillary network because of the length distribution ot vessels. Thus the mixing

in the verLOUSsinusolds coupled with the mixing effects associated with the length.

distribution of trabecular veins is modelled by the gamma distribution (equation 1.6)

with z = ~:,thus:

(6.3)

where
7"s :- Time constant associated with blood flow in the venous si-

nusoids and trabecular veins of the spleen

h~,"pUla.ri"/(t) :- Residence time density (RTD) of blood mixing in the venous
$inu$old

sinus and venous capillary network of the spleen, 8-1

Blood in the closed circulation is r.a;sumed to bypass the splenic white and red pulp

and flow directly into the venous sinuses (Figure 6.2). Combining equations 6.1, 6.2

and 6.3 according to Figure 6.2 gives:

(r.{l- q)S(t - Tw) * SCt - Tmr) + (1- q)(1- K)S(t - Tmr)) * t2e;~1"
hspleen(t) = I r.

L t2e-~ 1'.

'rq~
(6.4)
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where * denotes convolution. The mean transit time for the spleen can be determined

using equation 3.6 which gives:

7"spleen = J.j t hspleen(t)dt

= (1- q)(k7"w + 7"mr) + 37"s
(6.5)

As discussed above, the deconvolution of splenic activity/time curve .. with aorta

activity/time curves (Chapter 4) gives the lAD of the spleen (equation 3.16). The

relationship between hs.t>leell(t) and the Isplecll(t) is discussed in Chapter 3.

6.5 Results

The simulation of the model described by equations 6.4 was performed according

to the techniques ontlined in section 3.4.3. A typical fit of the spleen model to the

experimental data is shown in Figure 6.3. The model parameters determined from

the minimisation of the sum of squares between the model and experimental data

are tabulated in Table 6,1. The simulated model fit to all the subjects tabulated in

Table 6.1 is displayed in Appendix R.t. The X2 goodness-of fit test (section 2.3.3)

shows that the spleen model represents the distribution function of all the data dis-

played in Appendix R.1 (P < 0.05). The spleen model IAD from equation 6.4 is

compared to the experimental spleen IAD (deconvolution of.the spleen activity fUme

curve with the background corrected aorta activity/time curve (Chapter 4» in Fig-

ure 6.4. The mean absolute correlation matrix of fitted parameters for the normal

subjects is shown in Table 6.2. An attempt was made to try and scale the spleen

activity/time data in a similar manner to that performed on the liver activity /time

data (section 8.5). 'I'hese attempts were unsuccessful (Appeudix G.l).

6.6 Discussion

hi the purposes of the discussion, the important splenic. parameters listed in Ta-

ble 6.1 are graphically displayed in Figure 6.5.
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Pixel

60
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Figure 6.3: Typical fit of the model to the experimental spleen activity/time curve.

_ Model, 0 Experimental data

let)

_,
60

Time (s)

Figure 6.4: Model Internal Age Density (lAD) compared to Experimental lAD. _

Model I(t), 0 Filtered and deconvolved experimental data



Chapter 6 74

Table 6.1: Spleen parameter values for eight normal healthy volunteers and two

diseased spleens. "Significantly different from normal, P < 0.05. SEM represents

the standard error of the mean.

Fitted .~arameters Calculated Parameters

Normal q K. Tmr Tw Tspleen

(5) (s) (5)

1 0.52 0.33 1.7 12.2 4.8

2 0.48 0.13 8.8 20.2 7.9

3 0.47 0.12 6.6 8.5 6.0

4 0.62 0.27 8.2 12.3 6.3
5 0.86 0.09 6.8 20.4 3 .).....

6 0.66 0.20 6.4 9.1 4.8

7 0.70 0.11 5.9 35.6 4.0

8 0.93 0.18 4.9 12.5 2.5

Mean 0.656 0.179 6.17 16.3 5.07

SEM 0.069 0.034 0.888 3.67 0.701

P < 0.05 (±) 0.340 0.169 4.35 18.0 3.43

% Variation 10.6 19.2 14.4 22.5 13.8

!itted Parameters I Calculated Parameters

Pathology q K. Tmr Tw Tsplcell

(s) (s) (s)

1 0.39 0.27 5.8 36.1'" 11.3'"

2 0.14* 0.48* 13.0'" 40.0'" 29.8*
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Table 6.2: The mean absolute correlation matrix of the four independent fitted

model parameters q, K., 1'llU' and l'w respectively, for the values in Table 6.1, together

with the corresponding standard error of the mean for each matrix component Tij.

1.000 ± 0.000 0.398 ± 0.121 0.838 ± 0.032 0.291± 0.114

0.398 ± 0.121 1.000 ± 0.000 0.423 ± 0.124 0.693± 0.052

0.838 ± 0.032 0.423 ± 0.124 1.000± 0.000 0.239± 0.133

0.291 ± 0.114 0.693 ± 0.052 0.239 ± 0.133 1.000± 0.000

o Normal IIPathology 1 II Pathology 2

q k "C...
0.66:1: 0.07 0.18:1: 0.03 6.2:1: 1.0

(s)

"C,.
16.3:1:3.7

(s)

'1:",1
9.1 :1:0.7

(s)

Figure 6.5: Some of the important splenic parameters tabulated in Table 6.1.

"Significantly different from normal, P < 0.05. Error bars Indicate the standard

error of the mean for the normal subjects. The other results are for the patients

with known pathologies.
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6.6.1 Normal Subjects

The closefit between the parametric model and the experimental data in Figures 6.3

and 6.4indicate that the flowand mixing in the spleen is adequately described by the

IAD corresponding to equation 6.4. The discrepancies between the model and the

deconvolvedcurve in Figure 6.4 are likely due to the Gibbs phenomenon of the FFT

(the oscillations and the discontinuity at t = 0) and the noise in the experimental

data sincethe uncertainty in aorta and parenchymal tissue backgrounds have largely

been accounted for (Chapter 4). The variation between the individual spleens for

the parameters displayed in Table 6.1 appears to represent normal variation between

individuals.

The correlation matrix is a measure of a model's sensitivity to parameter variation

and a measure of the association between variables. The correlation matrix of fitted

parameters in Table 6.2 seems to indicate that the values in Table 6.1 are relatively

accurate since all of the off diagonal elements do not exceed 0.9 (BECK & AR.NOLDS,

1977;Appendix 1.1). This reinforces the likelihood that the four parameter model

of equation 6.4 adequately describes the splenic parenchyma.

Upon closer examination of the correlation matrix element r31 := 0.838, it is clear

that there is evidence of some correlation between the fraction of blood that flows

through the closed circulation of the spleen, q, and the blood transit time through

the red pulp of the spleen, 1'11).1" The correlation between these parameters is visible

if one examines the first and third columns of Table 6.1; As most of the values of

1'11).1' increase, q decreases and vice versa. If one examines the relationship between

these parameters and the experimental data it is clearly evident that these two

parameters affect the early part of the splenic activity/time curve, while the blood

transit time through the white pulp of the spleen, 1'w, affects the latter part of

the curve. The fraction of blood that flows through the white pulp of the open

circulation of the spleen, t:., affects the relative contribution of the red and white

pulp to the different parts of this curve. Thus whlle q and Tilll' are correlated, t:.

and 1'w are not strongly correlated to either of these parameters. The mean transit

time through the spleen, 1'spleenl is the sum of the relative amounts of transit time

through the closed circulation and the red and white pulps of the open circulation
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(equation 6.5). Thus Tspleen is likely to be relatively well estimated. The transit time

data in Table 6.1 reflects this effectwhere the % variation of T~pleell within the normal

population is less than that of TDlr and Tw. This indicates that 1"spleen is likely to be a

relatively accurate parameter. Although there is less confidence in Tmr and Tw than

in TsPleelll the values of Tmr are consistently smaller than. the values of Tw' This is in

agreement with the arguments presented above. Furthermore, the normal values of

q and K, from Table 6.1 agree with the arguments presented in section 6.3.2. Thus

while Tutt, Tw, q and K, are useful parameters which have a physiological significance,

these parameters should in all likelihood be used in conjunction with Tspleen for the

diagnosis of pathology.

The % variation of Tw and K, in Table 6.1 are significantly higher than the other

tabulated parameters. As discussed above the value of K, determines the amount of

blood that flows through the open circulation as opposed to the closed circulation.

The actual fraction of total splenic blood flow that flows through the white pulp of

the spleen is K,(1 - q) which has an average value of 0.117 ± 0.02. Thus only about

12% of the total blood flow through the spleen flows through the white pulp. The

value of -r.w is thus determined using a fairly small component of the experimental

data and it is likely that this parameter might have a larger error than other pa-

rameter values. This is reflected in Table 6.1. The splenic transit time values are

not excessivelylarge.

An attempt was made to try and correlate the parameter variation in Table 6.1 with

weight and/or sex. There was no obvious relationship. This in itself is surprising

because of the scaling relationship determined for the hepatic vascular system in

Chapter 8, Figure 8.3. This provides some evidence that the explanation for the

scaling relationship of hepatic vascular system is to be found elsewhere.

The ideal objective of the mathematical model of the spleen is to derive physiological

parameter values from the experimental data. There appear to be no measurements

in the literature of splenic transit time or the relative blood flow through open and

dosed circulations. It is thus difficult to decide whether the model of the spleen

is physiologically sound. It is however possible to postulate how these parameters

might change with pathology and the next subsection explores this issue in further
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detail.

6.6.2 Splenic Pathology

The closed circulation blood flow fraction, q, is reduced in the first pathology and

significantly decreased in the second portal hypertensive patient (P < 0.05). It thus

appears that more blood flows through the open circulation than the closed circu-

lation in portal hypertensive spleens. This in turn suggests an enlargement of open

circulation. The fraction of open circulation blood that flowsinto the white pulp, ~,

is also elevated in the first portal hypertensive subject and significantly elevated in

the second subject (P < 0.05). Thus more blood "appears" to flowthrough the white

pulp in the portal hypertensive spleens than in the normal subjects. The increase

in the value of ,..suggests a greater enlargement of the white pulp as opposed to the

red pulp in the portal hypertensive spleens. The white pulp mean transit time, Tw,

is significantly elevated in both portal hypertensives (P < 0.05) and the marginal

zone and red pulp transit time, Tmr, are not elevated in the first portal hypertensive

while it is significantly elevated in the second subject (P < 0.05). The spleen mean

transit time Tspleen appears to be a sensitive measure of spleen abnormality in the

two portal hypertensives.

In portal hypertension the spleen demonstrates the histologic features of flbrocon-

gestive splenomegaly (GRIFFITH & JANNEY, 1990). The red pulp is expanded with

areas of fibrosis and the sinuses may be open and dilated or narrowed in areas of

dense fibrosis (GR~FFITH & JANNEY, 1990). The increase in the values of q and

Tntr would be consistent with an increased red pulp size. The white pulp is often

atrophic because expansion of the red pulp and fibrosis of the marginal zone sinuses

is often present (GRIFFITH & JANNEY, 1990). Th-ts blood flow out of the white

pulp is likely to be obstructed with an increased Tw. If the volume of white pulp

decreases and Tw increases, then the flowrate of blood through the white pulp should

decrease and the value of ~ should decrease. The value of ~ has however increased in

the portal hypertensive subjects. The apparent discrepancy in this parameter can

be explained and conceptually defended on the grounds that the model of the spleen

is based on normal spleen tissue. It is thus likely that the increased value of ~ and
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Tw in the portal hypertensive subjects may reflect a combination of flow through the

white pulp and the increasing fibrosed regions of the red pulp.

In order to really be able to say more about these pathologies, more work on both

normal and pathological spleens will need to be done.

6.7 Conclusions

The flow and mixing in the spleen is adequately described by the lAD correspond-

ing to equation 6.4. The spleen parameter values for the first portal hypertensive

indicate a developing progression of the observed pathology, The spleen parameter

values for the portal hypertensive subjects concur with the degree of splen, p .agaly

observed clinically. The fraction of blood that flows through the closed circulation

of the spleen, q, the fraction of blood that flows through fJ.e white pulp of the

open circulation of the spleen, n; the blood transit time through the red pulp of

the spleen, Tmr, the Mood transit time through white pulp of the spleen, Tw, and

the mean transit time through the spleen, Tspleen all appear to be relatively sensitive

measures of organ pathology, Diagnostic information obtained using q, ~, 7inr and

Tw must however be correlated with Tspleen.

The transit time parameters indicate that the hepatic vascular obstruction associ-

ated with portal hypertension has reduced the total flow through the spleen.
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Chapter 7

Deconvolut.ion and Imaged Multiple

Tnput Organs

7.1 Introduction

Chapter 3 showed that the deconvolution of single-input organs gave rise to the IAD

of the organ. Unfortunately the deconvolution of liver activity /tiI'1e curves with

aorta activityitime curves does not give rise to the internal age density (lAD) of

the liver because it has multiple inputs. It is thus necessary to extend the analysis

of Chapter 3 to account for multiple input, imaged systems.

7.2 Dynamic Imaging of the Liver

Chapter 3 introduced the use of residence time density theory for tracer imaging

experiments. The chapter examined single input systems and derived. equation 7.1,

describing the relationship between the input to a systen: and the measured organ

activity /time curve. ill other words, the con. )lution of the transient input to the

system with the internal age density of the system gives the volume averaged con-

centration or the measured area normalised organ activity/time curve (Chapter 3).
v I

Cin*I(t)= fo C~,v)dV ;7..1)

As discussed above, the liver is a multiple input system; the hepatic artery and
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portal vein both enter the liver. The hepatic artery is essentially fed from the aorta

with a delay as it flows towards the liver. The portal venous supply contains blood

that has already circulated from the aorta, through the gut and spleen. 1... schematic

representation of this system is shown in Figure 7.1. The relative amounts of blood

from the portal vein and the hepatic artery is given by the split fraction, r, In the

following analysis, the gut/spleen RTD will be represented by hgs•

o

Figure 7.1: The Hepatic Vascular System; HA Hepatic Artery, PV Portal Vein,

HV Hepatic Vein, Q denotes Volumetric Flowrate, C denotes concentration, r is

the fraction of QO that flows to the spleen and GIT, p is the portal blood flow (Q')

that flows through the spleen, hha is the RTD of the hepatic artery (section 8.3).

We begin the analysis in the same way as Chapter 3. In a recirculating system, at

any time, mass balance holds and so:

Mass In of Tracer - Mass Out of 'Iracer ::; Accumulated Mass of Tracer (7.2)

We perform a mass balance for the tracer flowing into the liver in Figure 7.1. Thus

in some small time interval, t -+ I' + dt:
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where
Q*G~ :- Mass flow into the Jive! by the hepatic artery

Q'Gfn ;- Mass flow into the liver by the portal vein

QGCout :- Mass flow out of the liver by the hepatic vein

f[ C (v, t)dv :- Mass of tracer in the system at time t (imaged)

QO :_ Total blood flow into the liver, m3.s-1

Dividing by dt and taking limits gives:

Q*cf:t +Q'Ck - QOGOllt = ~ {IoV
O(t,V)dV} (7.4)

But by mass balance for constant density, p (Chapter 3):

Q* = (1- r)Qo (7.5)

Qf = rQo (7.6)

a' = Gin * hgs(t) (7.7)in

G!' = Gin * hba(t) (7.8)m

where
hgs ~-Residence time density (RTD) of the splenic and gastroin-

testinal regions (equation 8.3), 8-1

r :- Fraction of blood that flows into the liver through the portal

vein, dimensionless

p :- Fraction of portal blood that flows through the spleen as

opposed to the gastrointestinal tract, dimensionless

hha(t) :- R'rn of the hepatic artery (section 8.3), .9-1

* :-Denotes convolution

Similarly, by mass balance over the whole hepatic vascular system in Figure 7.1:

(7.9)
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where
hhvlI(t) :~Residence time density of the hepatic vascular system in

Figure 7.1 (hepatic artery, spleen and gastrointestinal tract),

,.;-1

Gin :- Concentration of tracer flowing into the hepatic vascular sys-

tem through the aorta

Cout :- Concentration of tracer flowing out the hepatic vascular sys-

tem in the hepatic vein

By substituting equations 7.5, 7.6, 7.7, 7.8 and 7.9 into equation 7.4 and solving

(Appendix E.1) we find:

J fJ [(1 - r )hila. + Thgs - hhvs] dt} * Gill = fJ' G_Ct, 11)dv
l 1liver Vliver

where
7liver :- Volume of the liver divided by the total volumetric flowrate

into the liver (VUver/QO), s

oCt) :- Dirac's delta

(7.10)

Equation 7.10 is general for imaging any tracer in the liver. The equation is valid for

a time-invariant recirculating system (Chapter 3). The extension of equation 7.10 for
imaging systems with any number of system inputs would follow the above analysis,

We define the Liver Probability Density Function, LP DF(t) as:

LP DF(t) = {f~((1- r)hlll~ -: rhgs - hhvs] dt}
7liver

(7.11)

The RTD, hhvs(t) depends on the anatomy and physiology of the liver, spleen and

gastrointestinal tract. Equation 7.10 represents the relationship between the mea-

sured liver activity/time curves and the measured aorta time/activity curve. The

result is derived only from mass balance. From Appendix E.1:

lim{I~[(1-- r)hha. -I- rhgfl - hllVs] dt} = 0
t-+o 7liver

lim {f~[(1 - r )hha, -I- rhgs - hlw8] dt} == 0
t-co '7liver

fJ [(1 - r )hha + rhgrs - hlws] dt ~ 0

(7.12)

(7.13)

(7.14)
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and,

= 1
(7.15)

where
111a :- Transit time of blood travelling down the hepatic artery (sec-

tion 8.3), s

The numerator of equation 7.15 corresponds to the liver mean transit time, LMTT

ie.

LMTT = 11.iver = (1ltVII - 1lta) - '1'(Tgs - 'Tha) (7.16)

It is clear from equation 7.10 that the deconvolution of liver activity/time curves give

rise to a complex combination of splenic, gastrointestinal and liver dependencies.

Unlike the single input systems described above, there is no obvious correlation

between types of mixing and the effect it has on the deconvolved curve. The only

direct information that one can glean by deconvolution is the time at which tracer

first appears in the liver, 11111., and the mean transit time.

Thus a. parametric flow model of the portal and hepatic vascular systems becomes

desirable (~s a means to explain and quantify the deconvolved hepatic activity/time

curve). The rest of this thesis is devoted to the development of such models and the

application of these models to experimental data.

7.3 Conclusion

The relationship between the aorta and organ activity/time measurements was in-

vestigated for multiple input organs, in particular the liver. This analysis provides

a mathematical framework describing the deconvolution of imaged multiple input

organs. It was shown that deconvolution of liver activity/time curves gives rise to

a complex combination of splenic, gastrointestinal and liver dependencies. Unlike

single input systems (Chapter 3), it was shown that there is no obvious correlation

between the type of mixing and the effect it has on the liver deconvolved c: ve.
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Furthermore, the only direct information that one can glean from such a curve is

the time at which tracer :first appears in the liver and the mean transit time of the

combined system.

A parametric flow model of the portal and hepatic vascular systems thus become

desirable as a means t,,) explain and quantify the deconvolved hepatic activity/time

curve.
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Chapter 8

An Anatomical and Physiological

Model of the Liver

8..1 Introduction

Various researchers (FLEMING ei al., 1983; GIANPAOLO et al., 1989; O'CONNOR et
al., 1992) have used various methods of processing scintigraphic imaging data in an

attempt to identify hepatic blood supply abnormalities. The methods make broad

assumptions in relating the hepatic arterial perfusion time to the peak time of the

ronal or splenic activity/time curves. There appears to be 1,0 experimental evidence

to confirm these assumptions. Other researchers (ACKR.OYD et al., 1986j CARLISLE

ez al., 1992; DOl et al., 1988; HORN et ol., 1990) have used doppler ultrasound

techniques to measure portal and hepatic arterial flows. These techniques have to

determine a vessel cross sectional area to convert the measured bleed velocities to

flowrates. The measurements vary depending on the technical ability of the operator

and as a result, the accuracy of blood flowrate measurements vary widely (PAUL.SON

et al., 1992). Compartmental modelling approaches have also been used (GAMBHIR

ct al., 1989) however they have difficulty in characterising unmixed systems and

many pitfalls exist when extending compartmental flowmodels to include non-linear

reaction kinetics (ZWIETERING, 1959).

As has been mentioned before, imaging techniques such as scintigraphic imaging

suffer from noise in the experimental <lata. This gives rise to noisy deconvoluted
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curves. Many researchers have used filtering techniques to reduce the effect of noise,

but this in turn may obscure physiological information. Furthermore, the deconvo-

lution of liver activity/time curves gives rise to a complex curve where there is no

obvious correlation between the type of hi"l)d flow in the liver and the deconvolved

curve. It is the purpose of this chapter to develop an anatomic and physiologically

based theory as a In. ans of understanding hepatic blood flow from the deconvolved

liver curve.

R.2 The Gastrointestinal Tract (GIT) and Portal Sys...

tem

The identification of the GIT residence time density is impractical using scintillation

techniques 1, Anatomical information suggests that the blood supply of the GIT

consists of a large distribution of blood vessels. If the distribution of vessels is large

J in equation 1.6) and the time constant of this system is Tgh then the GIT

.ience time density is given by:

t2et/Tsi
hgi = 2 3

Tgi

The mean transit time of the GIT can be determined from equation 3.6 ie.:

lo
oc t2e-t/Tgi

MTTgi:;:: t 2 3 dt = 31'gi
o Tgi

(8.1)

(8.2)

where
hgi :~ Gastrointestinal tract residence time density (RTD), 8-1

MTT gi :~Mean transit time of the GIl'

The portal vein has a large diameter and we expect the velocity of blood in the

vessel to be relutively low. For this reason, a delay time for flow up the portal

vein is introduced, 1'p.', Combining this information with equation 8.1, hi5pleen from

Chapter 6 and the information in Figure 7.1, hgs is given as:

[
t2et/Tgl]

hgs:::: phspleen + (1 - p) 3, * cCt - Tpv)
Tgl

(8.1)

lOther imaging techniques with better resolutions could be better determinants of the OlT

residence (lme density,
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where
p :~Fraction of portal blood that flows through the spleen as

opposed to the gastrointestinal tract

The mean gastrointestinal/splenic transit time can be determined using equation 3.6:

Tgs = Jooot hgs(t)dt
= (rspleen - 3 rgl - Tpv) P + 3 rgi+ Tpv

(8.4)

and Tspleen is given in equation 6.5.

8.3 Anatomy and Flow Physiology of the Liver

There are different structural interpretations of liver tissue. The actual choice of

structural unit for flow modelling is unimportant, however the liver lobule represen-

tation has been chosen in this thesis to analyse the flow. A typical liver lobule is

shown in Figure 8.1.

Venous blood from the portal vein breaks up into small portal venules, The portal

blood carried in these vessels enters the liver lobule at the beginning of the liver

sinusoid (Figure 8.1). The blood flows down the liver sinusoids which are passages

Ilned with hepatocytes. We postulate that blood flows slowly down the sinusoid in

order for a reasonable transfer of material between blood plasma and hepatocyte to

occur. Experimental evidence suggests that this is the case. Post mortem studies

in orally poisoned patients indicate a marglnalisation of the hepatocytes along the

liver sinusoid (WILLIAMS et al., 1989). If the flow was fast, one would expect a

uniform disease state of hepatocytes along the sinusoid. Blood at the end of the

sinusoid enters the central vein which joins the sublobular vein. Many sublobular

veins combine to form the hepatic vein.

Blood can also enter the liver 10bu1(>through an arterial supply. The hepatic artery

branches off into hepatic arterioles, These enter the liver sinusoids and mix with

the portal blood. The hepatic arterioles enter it sinusoid laterally all along from the

origin of the slnusokl up to Zone III (RAPfAPORT &; SCHNEIDERMAN, 1976; RASE

& BRIM, 1966; MCCUSKEY, 1g66) aad it has been reported that hepatic arterial
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Figure 8.1: Anatomical Structure of the Liver Lobule. (Redrawn from Bourne G.:

An Introduction to Functional Histology, Churchill, 1953
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blood may enter the sinusoids even up to the central vein (ELIAS & PETTY, 1953)0

The blood then follows the same pathway as the venous blood described above.

The pressure in the hepatic artery is much greater than the pressure in the portal

vein. The pressure where the venous and arterial blood mix must be equal. This is

accomplished by muscular tissue which lines the hepatic arterioles. These muscles

contract or relax to control hepatic arterial pressure (and thus flow) by changing

vascular resistance. As the portal flowrate and pressure change, hepatic arterial

blood supply can be manipulated (RAPPAPORT & SCHNEIDERMAN, 1976). RAP-

PAPORT and SCIINEIDERMAN (1976) visualised arteriolar sphincter like structures

that permitted intermittent spurts of arterial blood to pass into the sinusoids of the

liver. Thus blood in the hepatic artery may not flow unimpeded through the liver,

and this in turn suggests a delay time for blood as it flows down the hepatic artery.

For this reason hh8o(t) in equation 7.10 is given by:

(8.5)

where
7)180 :- Transit time of blood travelling down the hepatic artery (seo-

tion 8.3), s

A flow representation of the liver lobule is given in Figure 8.2. The liver lobule is

represented by venous blood in plug flow (Chapter 3) with lateral arterial flow along

the sinusoid.

8.4 Development of the Model of the Liver

Equation 7.10 related the gastrointestinal tract RTD, the hepatic vascular RTD,

hhv8' and the measured aorta activity/time curve to measured hepatic activity/time

curves, To determine a parametric form. for hlws(t), consider the anatomical rep-

resentation of the liver lobule shown in Figure 8.1. Blood with tracer enters the

liver through the hepatic artery and portal vein. These two vessels branch off into

arterioles and venules respectively. The length distribution of arterioles and venules
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Figure 8.2: A Flow and Mixing Model of the Liver Lobule; HA Hepatic Artery,

PV Portal Vein, HV Hepatic Vein, r is the fraction of blood that enters the liver

from the portal vein, r/> is the flow per unit volume of sinusoid that enters from

the hepatic artery, hgs represents the Residence Time Density of the splanchnic and

gastrointestinal systems,

is assumed to be small. If the lengths differed substantially, each lobule would Lave

an input that differed from the next by some time delay,

From Figure 8.1, the blood from the portal venules "flowsthrough the venous sinu-

soids into the central vein. Hepatic arterial blood also mixes with the portal blood

supply along the length of the sinuses. We thus postulate from the anatomy that the

hepatic flowinto the sinusoids behaves like the maximum mixedness system of ~~WI-

ETERING (1959). Now the central veins of many lobules eventually join together

to form hepatic venules and ultimately the hepatic vein. There is a distribution

of lengths of the venous sinusoids, central veins and hepatic venules before th flyall

combine to form the hepatic vein. The RTD of the length distributed system is given

by the gamma density (THOMPSON et ai., 1964). We define hcy(t) to be this density

with time constant, rell' A value of z := 2 has thus been used in equation 1.6 2. Thus:

te-t/TCY
hev(t) := 2

rcv
(8.6)

A blood flow and mixing representation of the liver lobule is shown in Figure 8.2.

It is now necessary to determine hl1V8 for equation 7.10. We begin by assuming that

the fiowrate of portal blood to the hepatic sinusoid is QI and that the hepatic arterial

2A physically measured density could be substituted
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blood flow per unit length of lobule sinusoid is constant,,p. The mathematical

statement is given as (Figure 7.1):

dQ = ¢
dv

Q( '11 == 0) == Q' == rQo

(8.7)

(8.8)

We perform a transient mass balance of the tracer in the sinusoid with the sinusoid

volume, V, and volume flowrate, Q(v). The notation used is that associated with

Figures 8.2 and 7.1. Consider equation 7.2 and some volume element dv:

(8.9)

Dividing by dv and taking the limdv-I-O gives:

_ aQc -I.. "'G!' = ao
{)v • 'I' "'111 at (8.10)

From equation 8.7 and equation 8.8:

Q(v) = Q' -: ¢v (8.11)

By substituting equation 8.11 into equation 8.10 we get:

_ Qac _ C"'+ sc: = ac
()v 'I' 'I' In at (8.12)

The boundary and initial conditions for this equation are:

'''(t=O,v) == 0

G(t,1) ::::0) :::: ctn:::: Gill * hga

(8.13)

(8.14)

To solve the equation, we make the substitution:

y == In(Q' + 4>'11) (8.15)

Thus:
dy dv- = -=-:-----:~y QI + 4>'11

(8.16)
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By substituting equations 1.8, 7.9, 8.5 and 8.16 into e~/uation 8.12 and solving

using the boundary and initial conditions of equation 8.13 md equation 8.14 we get

(Appendix F.1):

hhvs(t) =

rhgs * o(t - frsin.us/(l- r)]ln(l/r»

(l_r)e-t(l-r)/r.inu. * o(t _ )-
T.inu. Tha

(8.17)r(l_:-)e-t(l-r)/,..in". *S(t-([T&ill!:j!(l-r»)ln(l/r)+ .• , 11.+
T~inU5

where

rainus :~ Mean transit time of the hepatic sinusoid IV~~,), s

The mean hepatic vascular system transit time can be dete rmmed using equation 3.6:

'Thvs = fooo t hhvs(t)dt

- ( '71111. + 2rcv)\ 1 - r) + ""sin11d+ r( :igs + 2rcv}
(8.18)

Equations 8.17 and 8.18 can now be used h equations 7.10 and 7.16 respectively

to examine the liver activity/time data. The LPDF can be o~iained using equa-

tion 3.16.

8.5 Results

The liver activity/time data has been scaled hy both the t:me at which the maximum

in the data occurs (tmax) and the maximum value. The efl'ect of this scaling is shown

in Figure 8.3 and the modification of equations 7.10, 8.1." and 8.3 to analyse scaled

data is discussed in Appendix. J.1. This scaling techniqu-i did not appear to apply

to the spleei '>1' the reD'..].parenchysna activity/time curvus (Appendix G.l).

The simulation of the model described by equations 7.10, 8,17 and 8.3 was performed

according to the methods outlined by Chapter 3i, section 1~.4.3.

The splenic. parameter values obtained in Table 6.1 have ieen used in conjunction
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with equations 7.10, 8.17 and 8.3 to fit the hepatic vascular.model to the experi-

mental liver activity/time data. A typical fit of the model is shown in Figure 8.4.

The parameters determined from the minimisation of the sum of squares between

the model and experimental data are presented in Tables 8.1 and 8.2. The param-

eter 1ha ~sfixed from the deconvolution of the experimental live).'and background

corrected aorta activity/time (Chapter 4) curves as shown in Figure 8.5. The sim-

mated model fit to all the subjects tabulated in Tables 8.1 and 8.2 is displayed in

Appendix R.I. The X2 go(.•."uess-of-fit test (secdon 2.3.3} shows that the hepatic

vascular model represents the distribution function of all the data displayed in Ap-

pendix R.1 (P .( 0.05). The mean absolute correlation matrix of :fitted parameters

for the normal subjects is shown in Table 8.3.

The deconvolution of liver activity /timl? data with the background corrected aorta

activity/time curve (Chapter 4) is compared to the model I,PDF (equations 7.10

and 8.17) in Figure 8.5.

Counts
per
Pixel

Figure 8.3: Eight liver activity/time curves scaled according to the maximum value

and maximum time
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Figure 8.4: Typical:fit of the liver model to the experimental liver activity /time

curve. _ Model, 0 Experimental data
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Figure 8.5: Model Liver Probability Density Function (LPDF) compared to the

experimental LPDF (Deconvolution of liver activity/time data). _ Model, 0

Filtered and deconvolved experimental data
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Table 8.1: Liver time scaled parameter values for eight normal healthy volunteers

and two diseased livers. T</> == 1/</1and is related to rand T"inW! in Appendix F.1.

"Significantly different from normal, P < 0.05. SEM represents the standard error

of the mean.

Fitted Parameters Calculated Parameters

Normal r p TsinW! Tpv MTTgi 1ha 'r</> Tgs '1hvs LMTTtmax

(s)

0.72 0.28 0.157 0.137 0.503 0.0260.409 0.480 0.538 0.183 76

0.73 0.16 0.176 0.077 0.453 0.1360.476 0.474 0.604 0.221 44

0.88 0.1.0 0.259 0.046 0.495 0.0911.827 0.507 0.774 0.319 33
0.73 0.20 0.159 0.072 0.453 0.0370.430 0.443 0.530 0.196 54

0.78 0.19 0.216 0.124 0.509 0.081 0.762 0.528 0.699 0.270 3t
0.73 0.23 0.399 0.145 0.454 0.085 1.101 0.485 0.820 0.44;1, 47

0.73 0.16 0.158 0.131 0.453 0.1080.429 0.512 0.615 0.212 37

0.71 0.13 0.132 0.055 0.418 0.043 0.319 0.417 0.482 0.17.:1 47

1

2

3

4

5

6

7

8

Mean 0.7520.180 0.207 0.098 0.467 0.0760.719 0.480 0.633 0.252 47.9

SEM 0.0220.023 0.036 0.016 0.013 0.0160.210 0.015 0.050 0.037 5.6

P < 0.05 ex.) 0.109 0.113 0.175 0.079 0.064 0.0761.030 0.073 0.243 0.181 27.2

% Variation 2.9 12.8 17.2 16.5 2.8 20.4 29.2 3.1 7.8 14.6 11.8

Fitted Parametp.rs Calculated Parameters

Pathology r P TsinUB Tpv MTTgi 1111.\ 7</> Tgs 1hv8 LMTT tmax

(5)

1

2

0.64'" 0.20 0.231 0.061 0.691'" 0.010 0.412 0.657" 0.703 0.279 42

0.40* 0.12 0.821'" 0.059 1.117* 0.211 0.539 1.266* 1.581* 0.952* 15
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Table 8.2: Liver unsealed parameter values for eight normal healthy volunteers and

two diseased livers. 'r,p = 1/</> and is related to rand Tsinus in Appendix F.1.

"Significantly different from normal, P < 0.05. SEM represents the standard

error of the mean.

Fitted Parameters Calculated Parameters

Normal r p TsinU8 Tpv MTTgi 1Ita T,p Tgs 11wI!I LMTT

(s) (s) (s) (s) (s) (s) (6) (s)

1 0.72 0.28 11.9 10.4 38.2 2.0 31.1 36.5 40.9 13.9

2 0.73 0.16 7.7 ~L4 19.9 6.0 21.0 20.8 26.6 9.7
3 0.88 0.10 8.5 1.5 16.3 3.0 60.3 16.7 25.6 10.5

4 0.73 0.20 8.6 3.9 24.4 2.0 23.2 23.9 28.6 io.s
5 0.78 0.19 8.0 4.6 18.8 3.0 28.2 19.5 25.9 10.0

6 0.73 0.23 18.7 6.8 21.3 4.0 51.7 22.8 38.5 20.7

7 0.73 L.16 5.9 4.8 16.7 4.0 15.9 1,8.9 22.8 7.9

8 0.71 0.13 6.2 2.6 19.6 2.0 1.5.0 19.6 22.7 8.2

Mean 0.7520.180 9.44 4.74 21.93 3.25 30.80 22.36 28.93 11.44

SEM 0.022 0.023 1.71 1.13 2.880 0.567 6.798 2.52 2.~4 1.71

P < 0.05 (±) 0.109 0,113 8.37 5.53 14.11 2.78 33.3112.29 13.91 8.37

% Variation 2.9 12.8 18.1 23.8 13.1 17.5 22.1 11.2 9.8 14.9

Fitted Parameters~ Calculated Parameters

Pathology r p Tsinll8 Tpv MTTgi 1ha 1'4> Tgs 'Thvs LMTT

(s) (8) (s) (s) (s) (8) (s) (s)

1 a.64" 0.20 9:(' 2.6 29.0 0.4 17.3 27.6 29.5 11.7

2 0.40* 0.12 12.5 0.89 17.0 3.2 8.2 19.2 24.0 14.5-
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'Iable 8.3: The mean absolute correlation matrix of the five independent fitted model

parameters reinWIj Tpv, T, p, and. MTTgi respectively, for the values in Table 8.1, to-

gether with the corresponding standard error of the mean for each matrix component

1.000 ± 0.000 0.756 ± 0.079 0.696 ± 0.116 0.460 ± 0.127 0.696 ± 0.104

0.756 ± 0.079 1.000 .:I: 0.000 0.550 ± v,122 0.629 ± 0.137 0.582 ± 0.140

0.696 ± 0.116 O.MO ::f: 0.122 1.000 ± 0.000 0.496 ± 0.110 0.768 ± 0.086

0.460 ± 0.127 0.629 ::f: 0.137 0.496 ± 0.110 1.000 ± 0.000 0.552 ± 0.120

0.696 ± 0.104 0.582 ± 0.140 0.768 ± 0.086 0.552 ± 0.120 1.000 ± 0.000

8.6 Discussion

For the purposes of the discussion, the fitted hepatic vascular parameters and some

of the important calculated parameters listed in 'Table 8.1 are graphically displayed

in Figure 8.6.

8.6.1 Normal Subjects

Figures 8.4 and 8.5 show a reasonable correlation between the parametric model and

the experimental data. The discrepancies between the model and the deconvolved

curve in Figure 8.5 are probably due to the Gibbs phenomenon of the FFT (the

discontinuity in the model curve is evident at t = '11ta) and the poisson noise in

the experimental data since the uncertainty in aorta background has largely been

accounted for using the techniques in Chapter 4.

Thus the flow and mixing in the liver and portal system appears to be adequately

described by equations 7.10, 8.17 and 8.3.

The variation between individuals for the parameters displayed in 'Iables 8.1 and 8.2

is likely to represent the normal population variation.
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o Normal • Pathology 1 • Pathology2

Figure 8.6: Some of the important hepatic parameters tabulated in Table 8.1.

"Significantly different from normal, P < 0.05. Error bars indicate the standard

error of the mean for the normal subjects. The other results are for the patients

with known pathologies.

As discussed previously, the correlation matrix is a. measure of a model's sensitivity

to parameter variation and a measure of the association between variables. The

correlation matrix of fitted parameters in Table 8.3 indicates that the values in

Tables 8.1 and 8.2 are relatively accurate since all of the off diagonal elements do not

exceed 0.9 (BECK & ARNOLD, 1977; Appendix I.1). This reinforces the likelihood

that equations 8.17 and 8.3 adequately describe the hepatic vascular system.

Upon closer examination of the correlation matrix element 7"12 = 0.756, it is clear

that there is some degree of correlation between the mean transit time of the hepatic

sinusoid, T!linus (~), and the delay time for blood flow up the portal vein, Tpv.

'I'he correlation between these parameters is visible if one examines the third and

fourth columns of Table 8.li As Tt.'jnus increases Tpv increases and vice versa. If one

examines the model structure it is clearly evident why these parameters are likely to

be related, The mean transit time of the hepatic vascular system, 7)ws, is the sum

of the mean transit time through the hepatic arterial and portal components of the

hepatic vascular system. This parameter thus includes a lineal' combination of these
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two correlated parameters. Thus while Tsinull and '1pv may change) Tlws is likely to

be more accurate. The data',in Table ~.1 reflects this effect where the % variation

of Thvs within the normal population is more than half that of Teinus and 1'pv. This

indicates that 'Thvs is likely to be a relatively accurate parameter. Although there is

less confidence in Tainus and 'lhvs than in 'Thvs, the values of the Tsinus are consistently

larger than the values of Tpv. Thus while Tninus and Tpv are useful parameters which

have au anatomical significance, these parameters should be used in conjunction

with 11m for the diagnosis of pathology using the techniques discussed in this thesis.

There Is some correlation between the fraction of blood that enters the liver from

the portal vein, r, and the mean transit time of the gastrointestinal tract, MTTgi

(r3s :;: 0.768). The complexity of the model precludes the identification of the

relationship between these parameters, As will be seen in the next subsection, as

portal obstruction occurs, T decreases and MTT gl increases. r has do direct effect on

the modelling of early part of the experimental activity/time curve when.most of the

blood in the liver is derived from the hepatic arterial blood supply. MTTgi however,

affects the time at which the portal blood arrives at the liver and therefore affects

the modelling of the latter part of the experimental data. The mean transit time

of the hepatic vascular system, 'Thvs, is the sum of the mean transit time through

the hepatic arterial and portal components of the hepatic vascular system. This

parameter thus includes a linear combination of these parameters. This is further

evidence that 1}lV8 is likely to be an important diagnostic parameter that is more

accurate due to the correlation between the parameters. The % variation of rand

MTT gl within the normal population is small and this indicates that while these

parameter are to some extent correlated, they are likely to be relatively accurate

diagnostic parameters.

'I'he ideal objective of the mathematical model of the hepatic vascular system is

to derive physiological parameter values from the experimental data. In order to

decidewhether the model described above satisfies this requirement, we examine the

normal values of the fraction of blood that flows into the liver through the portal

vein, r, the fraction of portal blood that flows through the spleen as opposed to

the gastrointestinal tract, p, and the liver mean transit time, LMTT tabulated in

Table 8.2. The other parameter values tabulated in Table 8.2 have not traditionally
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been measured and reported in the literature.

The fraction of blood that enters the liver from the portr ' vein, r, describes the

relationship between the portal and hepatic arterial blood supplies to the liver.

The value of r, from Table 8.1 agrees with. experimental measurements reported

in the literature (GUYTON, 1986 :~ r ::: 0.76; PAULSEN& KLINTMALM, 1992 :-

r = 0.71 ± 0.02; Dor et al., 1988 :- r = 0.74 ± 0.02). Thus the model of the hepatic

vascular system described in this thesis appears to be physiological meaningful. 'I'his

requirement of the model allows one to suggest that any significant <leviationfrom

the normal parameter values is likely to indicate hepatic vascular pathology, The

development of the mathematical model of the hepatic vascular system based 011

anatomical information has thus yielded a physiological parameter value from the

experimental data.

The fraction of portal blood that flows through the spleen as opposed to the gas-

trointestinal tract, p, from Table 8.1 also agrees with experimental measurements

reported in the literature (GUYTON, 1986 :-p ::: 0.20). Thus the development of the

mathematical model of the hepatic vascular system based on anatomical information

has yielded another physiological parameter value from the experimental data. Ob-

structions or enlargements of the splenic or gastrointestinal systems are thus likely

to manifest themselves in a change in this parameter.

The liver mean transit time, LMTT, from.Table 8.2 is also hi agreement with exper-

imental measurements reported in the literature (GU'iTON, 1986 :~LMTT= 12.48

(Vo!ume=300mI, Volumetric Flowrate=1450mI/min)).

The above physiological parameters namely r, p and LMTT provide convincing

evidence that the hepatic vascular model based on anatomy is theoretically sound.

The above analysis indicates that both flow fraction and transit time parameters

have physiological significence. This suggests that r , p and LMMT are likely to

have important diagnostic and prognostic implications for the the management of

patients with portal pathology. An important component of the hepatic vascular

system is a satisfactory model of the spleen. The physiological significance of the

above parameter values indirectly implies a satisfactory physiological description of
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the spleen.

8.6.2 Hepatic Vascular Pathology

Figure 8.3 and Table 8.1 indicate the importance of scaling liver activity/time curves

using tmax• The unsealed mean transit times for the portal hypertensives in Table 8.2

do not differ significantly from the normal values. This is in stark contrast to the

mean transit times of portal hypertensives in Table 8.1. It thus appears that the

identification of hepatic abnormalities, based on transit time analysis, can only oe

performed using scaled hepatic activity/time curves. Thus the comparison of normal

and portal hypertensive transit times has been limited to the values in Table 13.1.

Transit times are related to the flowrate and volume of the system by equation 3.6.

In fact a transit time can be thought of as the reciprocal of the flowrate per unit

volume of the system. This implies that transit times associated with the liver might

be related to another physical parameter (eg. weight). An attempt was made to

try and correlate tmax with weight and/or sex, There appeared to be no obvious

relationship and the significance of this parameter as a physiological or pathological

index remains obscure. Chapter 6 showed that this scaling relationship did not

hold true for the spleen. An explanation for this scaling therefore lie...elsewhere.

The identification of such an explanation or the determination of other relationships

have not been addressed in this thesis and provides an interesting research topic for

further investigation. The scaling of data for the identification of hepatic pathology

using tracer studies has not previously been addressed in the literature.

The fraction of total hepatic blood flow through the portal vein, r, is significantly

decreased in both portal hypertensives (P < 0.05). The gastrointestinal tract mean

transit time, Tgh in Table 8.1 is significantly elevated in both portal hypertensive

subjects (P < 0.05) and the fraction of blood flow in the portal vein that flowed

through the spleen, p, is not significantly different. Also, the hepatic vascular mean

transit time, 1hVSI is significantly elevated in the second portal hypertensive subject

(P < 0.05). These results suggest that any obstruction is likely to be hepatic in

nature since the ratio of splenic blood flowto gastrointestinal blood flowis unaltered

while portal flow is reduced. This agrees with the mechanical obstruction of blood
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flow through the liver by fibrosis, thrombosis and nodular regeneration associated

with portal hypertension (LAMoNT & ISSELBACHER, 1971).

The hepatic arterial :flowrate per unit volume, rP ::.:: ;"" is increased (although not

very significantly) in the portal hypertensive subjects. This suggests th.at while the

portal :flowdecreases, hepatic arterial :flowmay increase. These results concur with

a number of authors who have reported small increases in hepatic arterial flow with

decreased portal :flow(ACKROYD et al., 1966; PRICE et al., 1965; Dor et al., 1988).

The other parameter values for the first portal hypertensive, namely Teinus, 7118and

LMTT in Table 8.1 are not significantly differer t from tho normal values. This in-

dicates that the first portal hypertensive subject has a. developing pathology which

supports the evidence indicated by the spleen parameter values discussed in Cb:""p-

ter 6.

The parameters values, Tsinus, 7ha and LMTT in Table 8.1 for the second portal

hypertensive are all significantly different from the normal values (P < 0.05). This

indicates advanced portal hypertension.

The portal vein delay time, 7pv is not sigJl~~calltly different in either portal hyper-

tensive. This may indicate that this parameter is not a sensitive measure of organ

pathology.

8.7 Conclusions

A hepatic vascular model has been developed in an attempt to quantify liver phys-

iology from imaging data. The model has been applied to a both normal subjects

and organ pathologies. The model parameters appear to describe normal physiol-

ogy and pathophysiology accurately. In particular the parameters T = 0.75 ± 0.02,

p = 0.18 ± 0.02 and LMTT = 13.4 :I.: 1.78 for normal subjects correspond to in

vivo measurements furnished in the literature. The physiological significance of 'r, p

and LMTT provide convincing evidence that the hepatic vascular model based on

anatomy is theoretically sound. Tb.is in turn implies that the model of the spleen

developed in Chapter Gis likely til)have physiological significance,
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The trends. of parameter </> in portal hypertension agree with experimental values

presented in'. the literature. The transit time parameters and flowfraction parameter

values indicate that the sinusoidal obstruction associated with portal hypertension

has reduced the total flowthrough the liver. These results are consistent with results

obtained in the previous chapter. A detailed clinical research program is however

required to ralldate the use of the model parameters as clinical indices.
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Cha.pter 9

Conclusions

9.1 Deconvolution and Imaged Single Input Organs

In Chapter 3, the relationship between the aorta a.nd organ activity/time measure-

ment was investigated for single input organs. Equation 3.16 was derived and shown

to be generally applicable for any imaging experiment of a single input organ in a re-

circulating system. Chapter 3 also developed the relationship between input-output

and input-content measurements of a syst zm.

The noise generating nature of deconvolution V/<:,S addressed and it was concluded

that a parametric model of an organ be used, without filtering, to determine the

organ IT"~rn(!JAge Density. The Prediction Error Identification Method (PEM) was

chosen "l compare experimental data with that predicted by mathematical models.

9.2 Identification of an Aorta Background for Organ

Scintigraphic Studies

In Chapter 4, the negative artifact seen ill many organ deconvolution studies was ad-

dressed. Itwas concluded that this negative artifact was probably due to background

tissue activity present in the aorta measurement. In particular) scintigraphic imag-

ing techniques measure more material as the aorta than is actually present within
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this artery. Itwas shown that no background tissue region could be chosen that rep-

resents the tissue anterior and posterior of the imaged aorta since any background.

tissue is vascular in nature and thus contains small arseries which have similar char-

acteristics to the aorta. Two theoretical models of tissue. background activity were

developedwhich removed this negative component. This analysis appears to explain

a discrepancy which has appeared in the literature for some time.

9.3 An Anatomical and Physiological Model of the

Kidney

In Chapter 5 a parametric model of the renal retention function was developed.

This parametric model was shown to be less perturbed by nolse artifacts which

are generally present in deconvolved data. Thus the parametric model provided a

more accurate estimation of clinical indices than those discussed in the literature.

The parametric model of the renal parenchyma appeared to consistently describe

both normal and pathop~~:;$iology.Normal parameter values such as the fllcration

fraction, t,were shown to correspond to independent measurements reported in the

literature. The filtration fraction for normal subjects was found to be 0.217± 0.017

The renal blood transit time parameter, Tb, was shown to be a potentially useful

clinical index for the determination of renal vascular disease. Further clinical re-

search is however required to validate the use of the model parameters as clinical

indices. In addition, further clinical work is required to remove the contribution of

renal background tissue inherent in the renogram.

9.4 An Anatomical and Physiological Model of the

Spleen

In Chapter 6 a parametric model of the spleen was developed. The parametric

model of the spleen appeared to adequately describe both normal and abnormal

physiologies. The spleen parameter values for portal hypertensives concurred with
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the degree of splenomegaly observed clinically. The spleen mean transit time Tlipleen

was shown to be a sensitive clinical measure of spleen pathology. It was thus shown

that the parametric model could facilitate in the diagnosrs of splenic disorders, where

flow k affected.

9.5 Deconvolution and Imaged Multiple Input Organs

In Chapter 7 the relationship between the aorta and organ activity/time measure-

ment Was investigated for multiple input organs, in particular the liver. This chapter

provided the first mathemacical descriptior, for the deconvolution of imaged multi-

ple input organs. It was shown that decoavolution of liver activity/time curves give

rise to a complex combination of splenic, gastrointestinal and liver blood flow de-

pendencies. Unlike the single input systems, it was shown that there is no obvious

correlation between the type of mixing and the effect it has on the liver decon-

volved curve. Furthermore, the only direct information that one can glean. from

such a curve, is the time at which tracer first appears in the livev. A conclusion of

this chapter was that a parametric :flowmodel of the hepatic vascular system was

desirable to explain and quantify the deconvolved hepatic activity It me curve.

9.6 An Anatomical and Physiological Model of the

Liver

InChapter 8 a parametric model of the hepatic vascular system was developed. The

parametric model of the hepatic vascular system appeared to adequately describe

both normal and abnormal physiologies. A number of parameters were found to

correspond to in vivo measurements reported in the literature. In particular the

portal flow fraction was determined as 0.752 ± 0.022, the splenic blood :flowfraction

was determined as 0.180 ± 0.023 and the liver mean transit time was determined

as 11.4 ± 1.7 seconds. It was concluded that the model was therefore an adequate

flow description of the hepatic vascula ...system.
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Itwas shown that the scaling of liver activity/time curves by both the time at which

the maximum in the curve occurred, tUlax~and the maximum value was fundamental

to the identification of organ pathologies. The parameters r,M.TTgh 'Thv., 7'ga, LMTT

and 7'", were shown to.b(>,sensitive and consistent measures of liver pathology when

the liver:data was scaled appropriately,

9.7 Conclusion

The physics of imaging radioactive tracers such as 99mTc_DTPA has been identified

and related to.residence time density theory (RTD). This theory permits the identifi-

cation of parameters that describe organ physiology from the deconvolution of aorta

and organ activity/time curves. Residence time density theory places linuts on the

behaviour of the deconvolved curves. These limits are related to. the properties of

probability density functions and conservation of mass. The RTD theory has been

applied to three major abdominal organs; the Kidney, the Spleen and the Liver. In

all three cases residence time density models have been developed in an. attempt to

quantify the organ physiology more accurately. These models have been applied to.

a reasonably large sample or normal subjects to determine normal parameter values.

The models have also been applied to a small number of organ pathologies. The

residence time density models appetlt to clearly identify the organ pathologies and

discriminate between the effect of these pathologies on the organ physiology.

In conclusion, parametric deconvolution of the kidney, Jiver and spleen has been

shown to be a robust technique which provides physlolo...'cal Information not pro-

vided by the conventional non-parametric methods. Further clinical research is

however required to. validate the use of the model parameters as clinical indices.
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Appendix A

A.I Tbe Internal Age Density and Imaged Single..Input

Organs

In this appendix, the relationship between an imaged single input organ and let) is

investigated. To do this we begin with Equation 3.15:

QCin - cc.; = :t {foV C(t,V)dV} (A.l)

Tr..king Laplace transforms with initial condition G( '11, t S 0) = 0 we get:

G\n(S) - Cout(s) = ~ IoV C(s, v)dv (A.2)

where
G\n(8) ~~Laplace transform of Gjn(t)

Coutts) :~Laplace transform of Gout(t)

Now by mass balance Equation 3.12 gives:

Gout(t) = lot Gin(t - t')h(t')dt' = Gin * h (A.3)

or in the Laplace transform domain

(A.4)

Substituting Equation A.4 into Equation A.2 gives:
V -lies) ==: 1- sJo C(s,v)dv
QGin(,'1) (A.5)
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But from Equation 3.8:

let) ::::fl(t) = 1- f~h(t)dt
T T

(A.6)

By taking Laplace transforms and rearranging this equation we get:

- - Vs-h(8) = 1-T81(8) = 1- "QI(s) (A.7)

Substituting Equation A.7 into Equation A.5 gives:

TI(s) = fer Cis, 1J)dv
QCin(S)

(A.S)

From Equation 3.6, T = ~ and substituting into Equation A.8 and taking inverse

Laplace transforms we finally get:

Cin* l(t) = Ier O(t,v)dv
V

(A.9)

Or in words, the convolution of the internal age density with the inlet concentration

Is equal to the volume averaged concentration.

If h(t) ~ 0 and I: h(t)dt = 1 (LEVENSPIEFJ, 1972) then from Equation 3.8, 1 -

foooh(t)dt ~ 0 and thus let) ;?: O. Also as t -> 00, f: h(t)dt -7 1 and 1- 1000 h(t)dt -7

O. Thus limHoo let) = O. We can. also consider the integral of let), foooI(t)dt. To

do this webegin by integrating Equation 3.8 to give:

I" l(t)dt = roo H(t) dt
Jo Jo T

(A. 10)

From ZWIETER.ING (1959), fri[H(t)]dt = T. Ifwe substitute this result into Eq11a-

tion A.10 then 1000l(t)dt ;::::1
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Appendix B

B.1 Attenuation and Concentration

Let:

C(:.c,y,z,t) = activity concentration within an organ, Mlsq/rnl

So = gamma camera sensitivity, cpsjMBq

p, = gamma ray attasuation coefficient,m-1

D(w, y, t) = image count density, cps/m2

Then,

oi«,71,t) = J s.r=ci», v. z, t)dz
and the total count rate from a region of interest is given by:

(B.I)

Organ Count Rate = J J tx«, v. t)clxdy (B.2)

= J J J Soe-P.zC(x,y,z,t)dwdydz (B.3)

= Soe-pd foV C( v, t)dv (B.4)

where
d :- Mean depth of the kidney and attenuation is assumed to be

approximately constant throughout the imaged organ

The organ count rate is thus directly proportional to the total amount of tra ~r

within the organ. The organ count rate is typically normalised with respect to the

region of interest area, A, and thus:

Area Normalised Organ Count Rate = S -ltd fri C(v, t)dv
oe A (B.5)
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Thus the Area Normalised Organ Count Rate is proportional to the average con-

centration within the organ, This normalised organ count rate is the same as the

average image count density, D(x, 11,t).
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Appendix C

C.l Flow in a Length Distributed Sysbern

Consider Figure C.l. If one has n parallel plug flow capillaries then the fraction of

particles that spend some mean residence time, Ti, or less in the system is given by:

(C.l)

,r---+l'IPlUg Flow nr--------.....,
1------..t.1= Plug Flow 2

.1 Plug Flow 1 I

Figure C.1: Parallel Plug Flow System

where
(Jj :- Fraction of material flowing through plug flow i

Set) ;- Dirac's delta (LEVENSPIEL, 1972))

'Tj :- Transit time associated with plug flow i

Since JoOO Set - Ti)dt = 1we find that:
n

H(00) =I:qi = 1
i=l

(c.2)
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Each qi is associated with some length 7'i = ~La, where Q is the flowrate in the

system and A is the cross sectional area of a capillary which is assumed to be

approximately constant for most capillaries (GUYTON, 1986). If the flowrate, Q,

through each plug flow is approximately the same (q;. ;=:..9._n ), and the cross sectional
tat

area of each plug flow system is similar then the fraction of molecules that spent

mean residence time 7'i in the system, H( 7'.), depends on the number of tubes with

length Li. A density function, geL), can then be defined as the length distribution

of capillaries and is analogous to the RTD of such a system.
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Appendix I)

D.l Descending Loop of Henle

Consider the side stream system shown in Figure D.l. This figure depicts movement

of Water in the descending loop of Henle where although the tracer remains in the

tubule, the carrier water medium is actively transported out of the tubule. We

assume a constant net flow out the tube per unit volume, a, and consider a mass

balance over volume element v to v + ~v.

Cin(t)....._ +---II-_--' Cout(t)

v 'o+~v

Figure D.1: Side stream system representing tracer in the loop of Henle and move-

ment of water out of the tubule

Mass In of Tracer - Mass Out of 'Iracer = Accumulated Mass of Tracer (D.1)

so

(D.2)
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Dividing and taking limits as 6.'1) ~ 0 gives:

8QG 8G
- a:;;- == at (D.a)

Similarly if the density of the fluid, p, is constant then we can perform a flowrate

balance which gives:
8Q
-=-a8v (D.4)

If we fix the initial and boundary condilr!ous as:

tI GCt, v = 0) = Gin(t)

• C(t, v = V) == Cout(t)

• C(t == 0, v) == 0

• Q(v = 0) == QHo

anti solving Equations D.3 and D.4 simultaneously with the initial and boundary

conditions, we find:

QO In[QP:v]
Cout(t) = Cin(t) * 'Q ~V8(t - -)O-a a (D.5)

Note that this is not the residence time density of water molecules in the t~l.b~because

this implicitly assumes that the tracer flows with the carrying fluid. Mass balance

is however conserved for the tracer in the tube because QHuGin:: (QHo - aV)Cout•

We also note that the tracer is delayed by some time ~ times the dimensionless time

scaling factor In[Q#o~Oav]' Thus the tracer is only delayed and no mixing of this

tracer occurs. Should a be described by a distribution of reabsorption rates across a

number of nephrone, this would manifest itself in an apparent change in the length

distribution of nephrons. The RTD of the descending loop of Henle can still be

defined in terms of some other constant flowing medium (RTD is still defined) and

is thus given by:

hLHCt) = Cill(t) * SCt - TLH) (D.6)

where
hLH :- Loop of Henle residence time density (RTD), 8-1

7l.H :- Loop of Henle mean transit time
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'TLE. is not the mean residence time of the water in the descending loop but we note

that as TLH becomes greater, the flowrate per unit volume, a must get larger. This

may be a useful clinical parameter for diagnosis.
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E.1 Dynamic Imaging of the Liver

Equation 7.4 gives:

Q*Gf~+ Q'Gfn - ec.; :;= !{joV G(t, ~1)dV}

and

Q* - (1- 1')Qo

Q' == t'Qo

a = Gin * hgs(t)ill

G!' -- Gin * hIlaIn

Gout == Gin * hhvs(t)

where
hhvs(t) :- Residenc-e time density of the hepatic vascular system in

Figure 7.1 (hepatic artery, spleen and gastrointestinal tract)

Gin ;- Input tracer concentration. of the aorta

Gout :- Output tracer concentration in the hepatic vein

hha(t) :- RTD of the hepatic artery (section 8.3), 8-1

* ;-D~.rotes convolution

Taking the laplace transform of equations E.l, E.4, E.5 and E.6, gives:

* -II 1-' 0 - {v -Q Gin + Q Gin·- Q Gout = 8 Jo G(8, v)dv

Ofn == Oinhgs

118

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

(E.7)

(E.8)
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cf:t = Ginhh&(S)

Gout = Ginhhv"(8)

(E.9)

(E.l0)

If we substitute equations E.2, E.3, E.8, E.9 and E.10 into equation E.7 we get:

(E.11)

We define a mean residence time of the liver as the volume of the liver divided by

the total volumetric flowrate into the liver ie.:

Vnver
'Tliver =: To (E.12)

If we substitute equation E.12 into equation E.ll for QO then:

{[(1- r)4h3(8) + rhgsl - hhvs}Gin = fri' 6(8, v)dv
'Tli"er8 'Vnver

(E.13)

Taking inverse laplace transforms finally gives:

{ fJ [(1- r)hlla + rh6S - hhvs]dt} c. _ it C(t, v)dv* In - .....,_~~-'--
'Tliver Vllver

(E,14)

The deconvolution of the liver activity/time curve with the aorta activity!tirne curve

thus gives:

'Tiiver
(E.15)

For simplicity we define, F(t) = 1 - H(t), F(O) :::.0, F(oo) = 1. F(t) is the

probability of a tracer particle spending time t Or less in a system. Thus as t -~ 0

equation E.15 gives:

lim {f~[(1 - r)hl1a + rhgs - hhvs) dt} = 0
t-O 'Tliver

(E.16)

and using the integral definitions listed above, as t -+ 00,

lim {fJ r(1 - r)hl1A + rhgs - hhv~]dt} = 0
t.....oo 'Tliver

(E.17)

The convolution of two positive functions is always positive. Since hgs, hhvs and

hha are positive, equation E.15 is positive when 0 ::s; r $ 1. r is a fraction and this

condition is always satisfied, thus:

f~(1 ._ r)hIla + rhgs - hhvs] dt :;..0
'Tiiver .-

(E.18)
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If equations E. Hi E.17 and E.IS hold, then the infinite integral should also be

defined. '1"'0 show this we integrate equation E.18 and use the information that

1000F(t)dt ;::1" (LEVENSPIEL, 1972). Integrating equation E.IS gives:

{'1O It [(1- r)hb+ rhgs -. hhvs] dt dt'
J« 'Tllvel'

= .I~tel - r )Fili~ + r Fgs -. FilVS]d~~

(E.19)

7livel'
_.It [(1- r)Fha+ "Fg, + r - r -. FilVf + 1- 1Jdt'

'Tllvel'
= 1000(1- r)(Flla - 1) - 1'(1- FSI!) + (1- FilV$)] dt'

1llvel'
= J1hv8 - 'iha) - 1'(1"$11 -. 7}:a)

7liver

(E.20)

(E.21)

(E.22)

(E.23)

The numerator of equation E.23 is equal to 7livel' and thus (equations 8.4 and 8.18):

100J~'(1- r)hha + Thgs - hllVs] dt dt' = 1
Jo '1liver

(E.24)
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F.1 Development of the Liver Parametric Model

From section 8.4, quation 8.12,

_ Q ~C _ a¢ + 4>C11 :::: ac
B» m at

with boundary conditions for this equation are:

G(t==o,v) == 0

G(t, v ::::0) :::: GIn:::: Cjn * hgs

We make the substitution:

y:::: In(Q' + ¢v)

and thus:
dy dv
-;p- :::: QI + ¢v

Substituting equation F.5 into equation F.l gives:

¢ac ¢C '/ eo- -- ...+"'0; ::::-ay 'I' m at

The laplace transform of equation F.6 gives:

aD
- ¢- - ¢J{5 + cPa!' ::::sea'll III

rearranging:
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(1?1)

(F.2)

(F.3)

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)
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Now the integration of equation F.8 gives:

_ [(8) ] {emp [(~ + 1) Y] _II }
C ::::;eep - ~ + 1 Y - ~ + 1 G.in +Al

where

Al :~Constant of integration

From the boundary condition of equations F.3,

C( 8, 'U == OJ Y ::::;In( Q')) ::::;Gin:::: Ginhgs

Substituting equation F.lO into equation F.9,

- - 1 -,~ [( 8)' , ]Ginhgrl == ~ + 1Cht + A1emp - ¢+ 1 In(Q)

also from equation E.9,

Thus Al is given by:

- ((8), (QI)] {- hha(8)}Al == CjnCxp. ';j+ 1 &n hgs - ~ + 1

We now define:

1
¢ == r",

~~inus VsillU8 r:~iI1U5-(jI =- rQo ::::;-:;:-

(F.9)

(F.lO)

(F.ll)

(F.12)

(.1<',13)

(F.14)

(F.15)

Substituting 10l.A into equation F.9, re-substltutlug for 11and simplifying gives:

lib? or 8 + 1(l_e-t.r.p.+l)ln)+'r.tnu. "'1'4J) I/> .

+

Inverting the laplace transform and re-organising:

{

e-;~1'.p* hha _ 1',-'I".'(t-{%:J~~I~~:lIU./1'7ip)ntill + }
hllVlI(t) ::::

1'T",hgl...5(t-T ",171(1+T.lnu./ 1'T"'»
'rT<I>+T.il\u.

(F.16)

(F.17)
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The mixing in the central vein is not included and thus the true residence time

density of the hepatic vascular system is:

".,,(t) = {
rT.phg.*S(t-r 1)n(1+T.lnu./rT .p))

rr",+r.inu.
}

te-t/Tev
* 2 (F.18)

Tev

where

Tev :- Mean. transit time of the blood in the central vein

The fraction of hepatic arterial relative to portal :flowis not directly available from

the model. To include this relationship, we consider a flowrate balance 1 in Fig-

ure, 8.2.

Now by mass balance with constant density:

(F.19)

or re-arranging for r and substituting equation F ,14,

(F.20)

and so substituting equation F.15 into equation F.20 and re-arranging for T.p:

TsinU8
T¢ = ---1-1' (F.21)

Equations F.21 and 8.5 can be substituted into equation F.18 to finally give:

'1'(1-'1' }e-t(l-r)/.,..inu. *S(t-[(1'.tuu./(1-'I')11n(1Lrl±ThJl +
'T'ainua

te-t/TCV* --2- (F.22)
Tev

rhgs * 6(t - [Tsinus/(l- r)}ln'(l/r))

lConstan.t density of blood is assumed
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Appendix G

G.l Scaling of the Spleen and Kidney Activity/Time

Curves

Counts
per
Pixel

o

o O.!I U.22.51S !.!!><f .JJl.1.I

tltmax

Figure G.1: Eight Kidney acti'.ity/time curves scaled according to the maximum

value and maximum time
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Counts
per
Pixel

12

Figure G.2: Eight Spleen activity jtime curves scaled according to the maximum

value and maximum time
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Appendix H

H.1 Fast Fourier 'l:l-ansfornls (FFT) and Deconvolu-

tion

The discreet fast fourier transform of some vector, v, of length N is given as:

Y{V} - if
N

V(k) = 2:v(i)wx.-1)(k-l)
i=l

(H. 1)

(H.2)

where the N'-th root of unity is given by,

(R.3)

and j is the root of minus one (A).

The Inverse Fast Fourier Transforms (IFFT) is then defined as,

.N'
v(.i) = (liN) 2:V(k)w)j-(i-l)(k-l)

k:::::l

(H.4)

Convolution of two vectors in the time domain gives rise to a product of vectors in

the fourier domain le, (KREYSZIG, 1983),

(H.5)
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Appendix I

1.1 The Correlation Matrix

The formulations that appear in this appendix can be found in BECK AND ARNOLD

(1977).

We define the sensitivity coefficient, Xi, for some model parameter, fJh as,

X' _ 8f(t,{3)
, - 8fJi (1.1)

where
Xi :- Sensitivity vector for parameter i (Appendix 1.1)

t :- Independent variable for model f

We can then define the sensitivity matrix, X, by

Xn Xlp

x= X21 X2p

Xml Xmp

(1.2)

X:ik(i) is the sensitivity coefficient for the jth dependent variable in in f(t,{3), for

the kth parameter at the ith time. If t has length ten, and there are three model

parameters, then X has dimensions 10 X 3.

For ordinary least squares (OL8), the covariance matrix can be approximated as

(BECK AND ARNOLD, 1977)

P = cov(fJ) ~ (XTX)-l 82 (I.3)
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where
82 :~ Approximate constant variance ofmeasurement errors (Ap-

• < •

pendix 1.1)

2 OLB
8 ~---

n-p
(1.4)

OLS can be obtained from S S Equation 3.29, n is the number of experimental data

points and p is the number of model parameters.

The approximate correlation matrix of fitted parameters can be determined from

this variance covariance matrix. The ij element of the correlation matrix is given

by

(1.5)

The diagonal elements of r are all unity and the off diagonal elements lie in the

interval [-1,1].

Whenever all the off diagonal elements exceed 0.9 in magnitude, the parameter

estimates are highly correlated and tend to be inaccurate (BECK AND An.NOLD~

1977). The correlation matrix also provides information about correlation between

pairs of parameters. The closer an element of the correlation matrix is to unity, the

higher the correlation between the pair of parameters associated with that element

of the correlation matrix (BElCK AND ARNOLD, 1977). When the correlation be-

tween parameters is small, the minimisation of s should converge rapidly near the

minimum,
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Appendix J

J.1 Scaling Residence Time Density Models

Given a RTD, h(t), which needs to be reformulated ~'\l terms of a variable (J where

() == t/tm ana. tm is a constant. By mass balance, the fraction ofmaterial that spends

time between t and t + dt in the system must be equal to the fraction of material

that that spends between (}and ()+ dO,

h(t)d·t ::: h( O)dO (J.1)

Substituting ()for t,
(J.2)

Simplifying this equation gives:

(J.3)
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Appendix K

K.l Private Communications

Received: from shannon.ee.wits.ac.za by witsvma.wits.ac.za
(IBM VM SMTP V~Rt)

with TCP; Thu, 20 Aug 92 12:04:35 RSA
Received: by shannon.ee.wits.ac.za (/\==/\ Smai13.1.22.1 #22.3)
id <mOmL9Ag-OOOOvRCCilshannon.ee.wits.ac.za>; Thu, 20 Aug

92 11:51 EET
Received: From WITS_EE2/WORKQUEUE by cerberus.ee,wits.ac.za

via Charon 3.4 with IPX id 100.920820114256.320;
20 Aug 92 11:43:18 +0200

Message-ID: <MAILQUEUE-101.920820114245.3040odie>
To:
From:
Date:
Subject:
X-pmrqc:
X-mailer:

David,

004fin0witsvma.wits.ac.za
"Roy Eric Lurie" <LURIE0odie.ee.wits.ac.za>
20 Aug 92 11:42:45 SAT
Reply for Sabina van Huff~l
1

Pegasus Mail v2.3 (R2).

Here is the reply from Sabine van Huffel. This basically confirms that no-one really

knows why the deconvolution goes negative. We should probably reference this in

our paper as "Personal communications"
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- Roy

------- Forwarded Message Follows -------

Date: Thu. 20 Aug 92 09:57:40-0100
From: vanhv.ffelQesat .kul.euven , ac ,be

To: lurie~odie.ee.vits.ac.za

Dear Roy,

I just received your e-mail. I will give you a quick answ since I am very busy for

the moment and do not have time to treat your questions more carefully.

The fact that the concentration of tracer can bel. "me negative is of course an artifact

of the background subtraction. This is just a conseqi, 'nee of the fact that you don't

work with exact data but with noisy data and hence we work with some statistical

assumptions that are never satisfied exactly but only on average. The problem tht:t

the retention function may become negative is a due to the fact that the real-life

data do not fit the model assumptions and the fact that the background noise can

not be measured exactly, You can impose constraints and require that the solution

is nonnegative but I don't think more explanation can. be given to this phenomenon.

Concerning SVD techniques for background subtraction: I know there are some pa-

pers in image processing that use SVD in order to restore the image and subtract

the background noise but I don't find the references right now. What I mean is that

you c....'l. put the data of the nuclear images in a matrix, perform the SVD and lower

the rank of this matrix appropriately and then work with the rank-reduced images.

If done appropriately, the rank reduction should correspond with background sub-

traction. Influencing parameters are the matrix size, correcting the singular values,

... I ilidn't try it out for the computation of the renal retention function.

Sabine

================"="" RFC 822 Headers =========== ..=:;:===""
Date: Thu, 20 Aug 92 10:57:10 +0200
Message-Id: <9208200857.AA08242~celina.esat.kuleuven.ac.be>
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Received: by celine.esat.kuleuven.ac.be Thu, 20 Aug 92 10:57:10

+0200

-----------------------.-----------"~------~-----------~--------

(011.)716-5406 (j)')

(011)403-1929 (fax)

J
J

J
J

Control Department

Electrical Engineering

'University o:f ~itwatersrand

South Africa 2050

Roy Eric Lurie

lurielDodie.eEl.wits.ac.za
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Appendix L

L.l Renal Computer Programs in Matlab'" for Wind:[)ws™

L.l.1 Renal Global Program

y. ----~-----------------------------------------~------~--.~----------y. K!DNEY.M(Non-p~americ model)
%
% This :tile
% 1) Loads and Cleans the data ""om t:he ascii file
Yo 2) nound~ the data using BOUhu.M
% 3) Interpolates the data to 1 seconds
y. 4) D"convolvea the data using : Filte.:red F'FT Method
Yo 5) Fits the ::enal model to the experimental da.ta
y. 6) Displays the results and compares the model IADwith the
Yo deconvolved data
y.
'l D.R Fine and R.E.Lurie 21-07~'93

Yo Prompt the user tor the tile name ot the data to be
% analysed. The data is assumed to be :
%
% tile name1 :;: 1.e:tt Par'encema 0 - 120 $6(; in 2 sec intervals
% name2 = Right Parencll'lma0 - 120 SEI() in 2 sec intervals
% !'lameS= Aorta 0 - 120 lllec; in 2 sec intervallil
% nal\\e1 = Lett Parencema 120 - 17~0 sec in 11j S$C intervals
Yo name2 ;:::Rigl\t Parencema 120 - 1780 sec in 15 sec intervals
Yo name3 = Aorta 120 - 1780 sec in 1S see intervals

Y. Clear the Workspace
clear
clear global
pack
:format compact
clc
elg
global Patlmame
echo ott
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%Get the Present Direct~ry
oldpath :: p~dj

% Get the tile name
Fname = 0;
while Fname===O,

[Fname,Patb.name] = uigetfile( '*.asc ' ,'Select a Data File');
end,
Fname ==Fname(1:tindstr(lower(Fname),'.asc')-1);
Fname(tind«Fname>='O' )tr;(Fname<=='9'») = 0;

% Get Lett Parenchyma Data
a\'al( ['load I ,Fname, l1,ascl]);
eval([lload ',Fname,'10.asc'J);
Y.eval(["f = [',Fname,'1(:,2) ; , ,Fname,'10(:,2)];'];;
eval(['T1 = ',Fname,'1(:,2);']);
eval«(lT2 = , •Fname• '10(: ,2); ']) ;
T = [T1; T2];
dec! = T1(2) - T1(1);
dec2 = T2(2) - T2(1);
lenfil = [length(T1) length(T2)];

eval(['L = [',Fname,'1(:,3) ; , ,Fnama,'10(:,3)];']);
eval(['clear ',Fname,'1']);
eval([lclear ',Fname,'10']);

Yo Get Lett Parenchyma Background Data
eval(t'load ',Fname,'8.asc']);
eval(['load ',Fname,'17.asc']):
eval(['Lbg'" [',Fnathe,'S(:,3) , ,Fname,'1'7(:,3)]j']);
ev~l(['cloar ',Fname,'8']);
eval( [' clear ' ,Fnanle, '17'J);

% Get Right Parenchyma Data
eval(['load ',Fname, '2.asc']);
eval(['load ',Fname,'11.asc']);
eval(t'R. = [',r'nalUe,'2(:,3) ; , ,Fname,111(:,3)]i']);
eval(['(\lear ',Fname.'2']);
eval(['c16ar ',Fname,'11'])j

% Get Ri~~ht Parenchyma Background Data
eval( ['load' ,Fname, '9. ascI]) ;
eval(['load '.Fname,'18.asc']);
eval(['R.bg = ['.Fname,'9(:,3) '.Fnrutle.':l.8(:.3)];']);
eval( [I clear 1,Fname. '9']);
eval(['clear ',Fname.'18'J);

% Get Aorta Parenchyma
eval( ['load ',Fnams. '3. asc I]) ;
eval([lload ',Fname,'12.asc'J);
eval(['A -= [',Fname,'3(:.3) j I,Fname.'12(:,3)];']);
Elval«'clear ',Fname. '3'])j
eval(t'clear ',Fname,'12'])j

cd(oldpath)j
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hold otf

aa '" Ai
11 = L;
rr :.::Rj
tt :.::T;
re·t;ur :.::0;
retu = ['retur=1; 'J ;

% Interpolate 413 ~econd data to is and decimate all the data to 28
Yo )~arginally filter the data using the technique of Diffy and
Yo 'Cor:field (1976)
[aa, ttl = decinter(T,aa,6,S,3.[dec1 dec2 4J,'Aorta',lenfil):
11 = decinter(T ,11,6,5,3, [dec1 dec2 4J ,'I.eft' ,lenfil) j

rr :.::decinter(T,rr.6,5,3.[dec1 dec2 4J.'Right'.lenfil);
Ibg = decinter(T,Lbg,6,S,3,[dec1 dec2 41,'Right',lenfil)i
rbg :.::decinter(T,Rbg,6,5,3,[dec1 dec2 41,'Right',lenfil);

Yo 'frul'I.cate Data
hol.d off
pll:>t(tt ,aa. tt,ll*max(aa)/max(ll) J tt,:rr*max(aa)/max(rr), 'EraseModtl' • "none')
tiUe ( 'Select Experin.ent END point ')
[x,y) :::ginput(1):
[r,.emp,maxind] = min«tt-x). ~2);
an:.:: aa(1:maxind);
rr = rr(1 :1Ua.x:t""d);
11 :::11(1:maxind);
tt :.::tt(1:maxind);
Ibg=lbg(1:maxind);
:rhg:::rbg(1:maxind);

Yo Plot all the data and sa.ve the interpolated and decima.ted data.
clg
hold off
ltt = ['Healtlhy => "1"; IJ;
r1!t = ['Healthy::: , 'r"; 'J i
blnk ::: [, ']:

hold oft
plot(tt,ll*max(aa)!max(ll) , '_I,tt,rr*max(a.a)!max(rr) ,'--' ,tt,aa,'-.',

'EraseMode', 'none'). grid, title('Inte:rpolated and Data Bounded
CROOSETHEH:BALTHYKIDNEY(HCont" to continue)') f

xlabel(' Seco:nds'), hold on, drawnow
uicontrol( 'Uni'ts' ,'normal', 'Position', [.91 .9 .08 .06J. 'String' ,'Cont'.

,cal:Lback' ,retu)
llicontrol('Uni1;s'.'nQrmal', 'Position', [.91 .6 .OS .061,'Stl'ing','Left',

, callback' .Ut)
uicontrol('Uni't:s','n()rmal','Position', [.91 .4 .08 .06J I 'String','Right'

.'callback',rtt)
while retur =::: 0 , waitforbuttonpress; end
uicontrQl('Units'.'normal','Position',[.91 .6 .08 ,06J,'String',",

, callback' •blnk)
uicol\trol( 'Unitt", 'normal', 'Position', [.91 .4 .08 .06J ,'String' ,",

, callback' •bInk)
r")tur = 0;
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eval(C'save ',Pathname,'kidbound aa 11 rr ttl)

Yo - ... ------------------ .... -------- •• -------------------------------------
Y. Minimise the aorta background and determine the initial guesses using
Yo filtered FFT Method. Also determine the amQunt ot renal background
Yo trom the ~orta curve

len=length(aa);
optiQns(1) ..0; Yo Do not print the results aiter sach itteration
options(3) = 1; r. Termination e~iteria tor minimised function
options(14) = 20; r. MaximUl!'num'ber of iterations
bgfactor = 0.25;
[val maxaJ~max(aa);
hold oft
plot(tt,aa,tt,lbg*max(aa)/mU',(lbg», title( 'Select the Aorta

Peak and CorrespC)nding BKGPeak'), dra'linow
maxbg = ginput(2);
blooddelay = ma~bg(2.1)-maxbg(1,1);
[val diracJ=min«tt-blooddelay).~2);
lbg=[zeros(dirac,1); aa(:»);
Ibg=lbg(1:length(aa»*mean(Lbg)/mean(atl);
rbg=[zeros(dirac,1)j aa(:»);
rbg~rbg(1:1ength(aa»*mean(Rbg)/mean(aa);
fA = fft(aa)i
tL ..fft(ll-lbg*bgtactor)j
fR. = ttt(rr-rbg*bgfactor);
BLftt2 ..:fil1(real(ittt(fl.'/fA», 10);
HRfft2 ~ fi11(real(iitt(:fR./fA».10);

hold off
it Healthy ::~ Il'

factor = m~(ll)/max(aa):
11 ::11/tactor;
rr = rr/iactor;
lbg ~ lbg/factor,
rbg ;:rbg/factor;
Al)rtafix :::100 i
bgndasymp = O.6667*aa(len);
ind1 ;:lI\in(find(HLf:ft:a<O»j
(minv ind2] ::min«tt-1. S*tt(:i.nd1».~2);
plot (tt ,HLfft2/:factor I) co) •'l:rasemode','nollS')I t\xis(axis) I grid,

ylabel( lLeft') I xlabel( 'Seconds I), title( 'Filtered FFTI) ,hold on
Plothandle ::plot(tt,HLfft2/1actor,ly-'.'BraseMod~'.'xor');
x:::log([Aortatix,bgndasymp])i
X ~ tminu()aortamin).x,opti~ns,[J.ll.aa,tt,P1Qthandle,Lind1 ind2J):

else
factor = ma.x(rr)/max(aa);
11 ::ll/factorj
rr ..rr/factorj
lbg = lbg/taetorj
rbg ..rbg/faetorj
Aortafix = 100;
bgndasymp = O.6667*aa(1~n);
ind1 = min(find(HRfft2<O):
[minv ind2J ::min«tt-1.5*tt(ind1».~2);
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plot(tt,H~ltt2/factor,'co'.'Erasemodet,'xor'), axis(axis), grid,
ylabel( 't.ett'). xlabel( 'Seconds') I titl@('Filtered FFT') ,hold all.

Plothandle = plot(tt,HRttt2/faetor,'y-' ,'EraseMode' ,'xor');
x=log([Aortatix,bgndasjmp);
x = fminu( 'aortami:n' ,x,options. [],r:r,aa..tt,Plothandle, [ind1 ix.d2j);

end
Aortatix :: exp(x(1»j
bgndasynlp :: exp(x(2»;
a.anew=aa.-(1-exp(-tt'/Aortafix»*bgndasymp;
bgtactor :: 0.75;
11 :: ll-lbg*bgfactor;
rr :;rr-,rbg*bg:tactor;
11:: fixup(tt,ll,aa,'Left');
rr = tixup(tt,:rr,aa,'Right');
eval(['aave ',Pathname,'kidbound aa 11 r:r tt'])
eval(t'save •,Pathn.ue,'ao:rtapara Aortat:i.xbgndasymplJ)
fA = ttt(aanew);
HLtft2 = fi11(real(iftt(fL./fA»~10);
HRftt2 ::til1(r&al(ifft(fR.!fA».10)j
meanLTT = calcmean(tt,HLfft2,'Left');
uic:ont:rol( 'Units' , 'no;rmalI , 'Position', r.91 .9 .08 .06), 'String' ,

ICant' , Icallbar.)t',ret11)
while retur == 0 • waittorbutt~Ap:ress; end, retur = OJ
meanRTT :: calcl1",ean(tt.Hkttt2, 'Right I) j

u;i.control(1Unif!s','norllla.l'•'Position' ,r.91 .9 .08 .06J. IString ,•
'Cont','callback',retu)

while r~tUr ~= 0 • waitfo:rbuttonpressj end, retu:r = 0:
IIIval([lsave ',Pathnue, 'mealls meanLTT meanR'lT;)
eval(['save >,Pathname,'ret HLttt2 HRttt2'J)
y. --~----------------------------------~---------~-------------------
Yo Fit the llIodelto the experimental data

Yo Setup the optimisation paramoters
options(1) = 0; % Do not print the results after each itteration
options(S) = 1e-4: % Termination criteria for minimised function
options(14) = 40j Yo Maximum number of iterations
eval(['load ',Pathname,'kidbound'J)
eval(t'load I,Pathname.'lneans'J)

ll=ll(:l:len)j
lbg=lbg(1:1en);
rr::rr(1:len) i
rbg;:rhg(1:1en)j
tt=tt(1:l.en):
aa=aa(1:1en)j

len::: l$ugth(tt) i

hold ott
eval(['load ',Pathname,'aortapara'J)

o. :tnitial obj er,ti'Ie function value
error :: 1812;
~val(t'save ',Pathname,'errLeft Erro~'J)
pp = U;
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string = 'Lett';

Y.Initial Guesses
traction;: 0.20j
minttest:::75;
taublood=3;
taupara"'23;

x = [taupara minttest taublood fraction]; % init!al guess

eval(['save ',Pathname.'anstett XI)

x'" log(x);
hold ott
plot(tt,ll,'co'.)EraseMude','none'),axis(axis),title(string).

xlabel( 'Time') ,ylab$l(' Activity') ,hold on
Plothandle ::::plo·t(tt ,11, 'y-' , 'Eras sMode '» Jxor' ) i
(val iind] = max(aa)j
iind=[iind blooddelay];

Yo CaJ.l the llIinimization routine
x = :fminu('je:ftloop(x,P1,P2.P3,P4.PS ,P6,P7 .pa)' ,x ,options •[J ,

tt,aa,pp,bgndasymp,Aorta:fix,string,Plothandle,iind);
s :: ('load I ••Pa·t;hname,'ansle:ft, x :::log (x); x :::

tminu(I'je:f~10op(x.Pi.P2,P3,P4.PS,P6,P7,P8)",
x,options.O~tt)aa,pp.bgndasymPIAorta:fix,string.
Plothandle,iind);'];

uieontrol('Units'. 'normal'. 'Position', [.91 .2 .08 .06],'String',
'Agai~J,'ca11backJ.s)

sv :;::['save I ,Pathname, lana' ,string];
uicontrol('Unitsl,'normal','Position',[.91 .4 .08 .06J,'String',

'Save','callback',av)
pr::: ['print'];
uicontrol( 'Units','norltlall, 'Position', [.9j .6 .08 .06J, 'St:ring'

,'PrintJ• 'callback' ,p:r)
uicontrol('Units' ,'normal', 'Position'. (.91 .9 .08 .06J.'String'

, ICont J I Icallback' ,retu)
while retur == 0 • waittorbuttonpress; end, retur = 0;

Error::: 1e12;
eval ([ I saVe J. Pathname, I errRight Error' J )
pp ::rr;
string = 'Right';

Yo Initial Guessed
traction::: 0.20:
taublood=3:
taupara=23:
llIinttest::1S:

x = Ctaupara mintteat taublood tra~tionJ j Yo initial gueas
eval(['save ',Pathname,'ansRight xlJ)
x = 10&(x):
hold otf
plot(tt ,rr. 'co' •'BraseModel I 'ltoILe'),axis(axi8), titl~(8tring),

xlabel('Time') ,ylabel('Activity') ,hold on
Plothandle = plot(tt,rr, 'Y-' ,'EraseMode' ,'xor'):
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x = fminu('jeftloop(x,P1,P2,P3.P4,PS,P6,P7,PS)',x,options,[],

tt,aa.pp,'I)gndasymp,Aortatix,string,Plothandle,iind):
s = ['load ',Pathname,'anBright, x = log(x)i

X = tminu("jettloop(x,P1,P2,P3,P4,PS,P6,P7,PS)'I,x,options,
[],tt,aa,pp,bgndasymp,Aortatix,string,Plothandle,iind);']j

uicontrol( 'Uni1~s', 'nol'llIal','Position', [.91 .2 .08 .06J, 'String',
,Aga:Ln', , callback' ,s)

BV = ['save' ,l?a.thname, 'ans',$tring];
uicontrol( 'Uni'hs', 'normal', 'Position', [.91 .4 ,(')8 .06J, 'String',

'Savl~l, 'callback' ,sv)
uicontrol(lUni'~s),'norlllal'.'Position'J[.91 .6 .08 .06].'String',

'Pril~t I • ' callback.' .pr)
uicontrol('Unii:s,l, 'normal', 'Position', (.91 .9 .08 .06], 'String',

'Cont','callback',retu)
while retur == 0 , waitforbuttonpressj end, retur = 0;
Yo ------------- - ........ '---------- .... ---------------------------------------
Yo Evaluate the l~A:ttAMETRICVB NOH-PARAMETRICkidney reponse

eval(['load ' ,Patlilltame, 'kidbound'J) ~ Load non-parametric time data
eval( [Il.oa.d I,Pa:bhnama. 'ret I]) Yo Load. non-parametric retention func:\!
eval ( [Il"ad J. Pai,lullame.Iaortapara']) Yo Load assymtote

1. Left kidney
eval ( ['load I. Pathn.\Une, Ianaleft 1J )

pp :; 11;
len =1 length('~t);
Tau! ~ x(1);
Delay1 = x(2);
Tau2 ~ xeS);
q ~ x(4);
Tsarnple1:: tt(2)-tt(1);
len = :length(tt);
$tdl\g :: ILe:ft' j

Yo Parenchemal Time Const
% PareAChemal Delay Const
% Blood Time Const
% Fixed vascular split factor
Yo Sample Tillie
% Vector Length

Yo Build norm,~l system:,

Yo Parenchemal. 2nd orde~r ,~ysttnl\ 'I1'ith delay
[A1,B~/C1,D1J = tf2ss(q,tl,eomr([Tau:!. 1J,2»;
[:Ad1,Bdl,Cdl,l?d1] = c2dt(.u,II1,C1,Tsamplel,

Delay1+bl.ooddelay):

Yo Parenchemal model

Yo Discrete

Yo Vascular 2nd order syst~m without delay

~um2 = 1-q;
Den2 = nconv([Tau2 1],2);
[A2.B2.C2,n~J = tt2ss(Num2,D")l\2); Yo Blood model
[Ad2.Bd2,Cd2,Dd~) :: c2dt(A2,a2,r.2,Tsample1,blooddelay): Yo Discrete

[Ad,Bd,Cd,DdJ :: parallel(Ad1,Bd1,Cd1,Dd1,Ad2.Bd2,Cd2.Dd2,1,1,1.1)j

Yo Conva:r:t to Intern,a.l Age distribution

Yo Invert sign of Mat~ix
Cdd = -Cd;
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Ddd == '-Dd;
Yo 1 in state space
Done'" 1;
EA:ret,B:cet,Cret,DretJ :;paralbl(Ad,Bd,Cdd,Ddd,O,O,O.Done,1,1,l,1);
% Integrate (ie. multiply by '1/8')
[Aint,Bint,Cint,DintJ :;tf2ss(l,[1 OJ);
[Aint.BintJ :;c2d(AintpBint,Tsamplei):
Y. Connect
EAret,Bret,Cret,Dret] :;series(Aret,Bret.Cret,Dret,Aint,Bint,

Cint,Dint,l,l);

% Remove aorta background function
aane~=aa-(l-exp(-tt)/Aortafix»*bgndasymp;

% Simulate Retention function
yret :;dlsim(Aret,Bret,Cret,Dret,aanew)j

Yo Calc Impulse Retention functiolt
yretimp :;dimpulse(Aret. Brat ,.Cre1;,Drat I l,len) ;

Yo Calc Output Retention Function
youtimp = dimpulse(Ad,Bd,Cd,Dd,l,len)j

K :; f:lUl1I(yret)/sum(pp);
IntR == integ(yretimp,Tsamplel);
IntR:; integ(yretimp,Tcamplel):
Index = find(HRfft2<=O);
if ~iflempty('J .tex).

Index; min(Index);
else
Index = length(HLfft2);
end,
IntF'" integ(HLfft2(1:!ndex),Tsample1);
IntR = IntR(len);
IntF = IntF(Index);

hold oft
clg
plot (tt,yret, ,_,,tt,pp*K, 'x', 'EraseMode', Inone'), titlE'([ string J

, Parenchema : Parametric Model']},
xt ::max(tt}/3j
yt = max(yret)/3j
text(xt.1.16*yt,('Tau1:: 'num2str(~(1»', Delay =

I num2str(x(2»])
text(xt,l.0*yt,['Tau3 u • num2str(x(3) I, GFF =

) num2str(x(4»),hold on, drawn ow
uicontrol('Units', 'normal', 'Positionl,[.91 .6 ,08 .0eJ.'String'.

IPrint'~'ca11back'.pr)
uicontrol(1Urdts'. 'normal'. 'Positionl, [.91 .9 .08 ,06] ,'String',

'Con . Ic8.1lbackI•retu)
while retur == ° , wait'forbuttonpressj end, retur = OJ

hold oU
plot (tt ,yretimp/IntR, '_l 1tt ,HLf:tt2/Illtll,'o'•'EraseMode I. 'none I).
title('Internal Age Distibutions'). hol~ on, drawnowj
uicontrol('Units' ,'normal', 'Position' ~(.9':'.6 .08 .06].
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~String',IPrint',lcallback'.pr)
uicontrol('Units','normal','Position',[.91 .9 .08 .06],

'String','Cont','callback',retu)
while retur == 0 , ~aitforbuttonpress: end, retur = OJ

eval«('save ',Pathname,'lftrprt3 tt K IntR IntF pp yret
yretimp youtimp HLfft2'])

% Right kidney
eval(['load ).Pathname. 'ansright'])

pp = rr:

len = length(tt):
Taui = xCi);
Delay1 = x(2);
Tau2 = x(S):
q = x(4)j
tsa~plel = tt(2)- t(l):
Ian = length(tt);
string = 'Right·;

r. Parenchemal Time Consf;
Yo Parenchemal Delay Const
% Blood Time Const
Yo Fixed vascular split factor
Yo Sample Time
% Vector Leng'ch

Yo Build normal system

Yo parenchemal 2nd order system with delay

(A1,B1,Ci,Dl] .:::tt2ss(q,nconv([Tall11],2»);
[Adl,Bd1,Cd1,Ddl] ~ c2dt(Al,B1,Cl.Tsamplel

,Delayl+blooddelay);

Yo Parenchemal model

Yo Discrete

Yo Vascular 2nd order system without delay
Mum2 = l-q;
Den2 = conv([Tau2 1], [Tau2 1J);
[A2,B2,C2,D2] = tf2as(Nmn2,Den2): Yo Blood model
[Ad2,Bd2,Cd2,Dd2] = c2dt(A2.B2,C2.Tsamplel,blooddelay):% Discrete

[Ad,Bd,Cd,Dd] :::parallel(Ad1,Bdl,Cd1,Ddl,Ad2,Bd2,Cd2,Dd2,l,l,1,1)j

% Convert to Internal Age diatribution

Y. Invert sign ot Matrix
Cdd = -Cd;
Ddd = -Dd;
Yo 1 in state space
Done = 1;
(Aret,Brr.t,Cret,Drat] = parallel(Ad,Bd,Cdd.Ddd,O,O.O,Done,l,1,1,1)j
Yo Integrate (ie. multiply by 'l/sl)
tAint,Bint,Cint,Dint] = tf2ss(1,[l 0);
[Aint,Bint] = c2d(Aint,Bint,Tsample1)j
% Connect
[Aret,Bret,Cret,DretJ = series(Ar8t,B~et,Cret,Dret,

Aint,Bint,Cint,Dint.l.1)j

Y. Remove aorta background :function
aanev=aa-(1-exp(-tt'/Aortatix»*bgndasymp:
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% Simulate Retention :function
yrat = dlsim(Aret,Bret,Crat,Dret.aane~);

Yo Calc Impulse Retention function
yretimp = dimpulse(Aret,Br~t,Cret,Dr6t,1,len);

Yo Calc Output Retention Function
youtimp = dimpulse(Ad,Bd,Cd,Dd.l,len);

K:; sum(yret)/sum(pp);
IntR = integ(yretimp,Tsamplel);
Index:; ~ind(HRfft2<:;O)j
if ~isempty(Index).

Index:; min(Ind.x);
else
Index:; l.ongth(HLf:ft'1)j
end,
IntF:; intag(HRfft2(1:Index),Tsamplel);
IntR:; IntR(len);
IntF = !ntF(!ndox);

hold off
plot(tt,yret/K,'-',tt,PP.'x','EraseMode','none'),

title «( string i ' Parenchema : Parametrie Modell]);
xt :;max(tt)/3:
yt = max(yret)/3j
text(xt,1.1a*yt,['TaUl = 'num2str(x(1»', Delay = , num2str(x(2»])
text(xt,l.0*yt,('Tau3 = I num2str(x(S» , GFF =' num2str(x(4»)

,hold on, drawno~
uicontrol('Units','normal','¥osition',[.91 .6 .08 .06],'String',

'Print','ca11bar~',pr)
"icontrol( 'Units', 'normal' •'Position' ,[.91 .9 .08 .06J. 'String',

'Cont'.'callbackl,retu)
while retur == 0 , waitforbuttonpress; end. retur = 0;

hold off
plot(tt,yretimp/Int~.'-'.tt.HR£tt2/IntF,'o',IEraseMode','none'),
title( 'Internal Age Dist:i.butions$), hold on, draw:uowj
uicontrol('Units',':uormal','position',[.91 .6 .08 .OS],

IString'~'Print',lcallbackl,pr)

eval([lsave I.Pathna~me,lrghrprt3 tt K IntR IntF pp yret yretimp
youtimp HRfft2'J)

eval([lsave ',Pathname,'blooddelay'])
Yo -------------~.-----------------------------------------------------

L.l.2 Renal Objective Function

Yo -------------------------------------------------------------------function Error = jeffloop(x,tt,aa,pp,bgndasymp,Aortafix,
string,Plothandle,iind);

% The file K!DLOOP determines the summ of squareD between the kidney
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% model and the experimental data
%
% D.R. Fine and R.E.Lurie 21-07-93

x=exp(x):

if x(2) < 0
x(2) ::: 2;

en.d
it x(2) > 200

keyboard;
end

global Pathname

len :::length(tt):
Ta,ul ::x(1):
Delay1 :::x(2)i
Tau2 :::X(3):
q ::: x(4);
Tsample = tt(2)-tt(i)j

% Parenchymal Time con.st
% Pa:renc.t.ymalDelay Const
Yo Bl~~d Time Const
Yo Fixed vascular split factor

% Sample Time

eval (t 110ad I, Panhname , 'err I. string] );
La.-;tex'ror:;Error;

% Duild normal system

YoParenchymal 2nd order system with delay

[U,Bl,Cl,D1] = t:f2ss(q,nconv([Taul1],2»: %Parenchymal model
[Adl,Bdl,Cd1,DdlJ :::c2dt(Al,Bj,Cl,Tsample,Delay1+iind(2»:Yo Discrete

Yo Vascular 2nd order system ~ithout delay

Num2 '" l-q;
Den2 :::nconvf [Tau2 1] .2) i
[A2,B2.C2,D2J ; tf2ss(~um2,Den2): YoBlood model
[Ad2,Bd2,Cd2,Dd2J = c2dt(A2,B2,C2,Tsample,iind(2»: Yo Discrete

[Ad,Bd,Cd,Dd] :::parallel(Ad1,Bdl.Cdl.,Ddl,Ad2,Bd2,Cd2,Dd2,l,l, 1,1);

% Convert to Internal Age distribution

Y. Invert sign of Matrix
Cdd::: -Cd:
Ddd :::-Dd;
% 1 in state space
Done = 1:
[Aret,Bret,Cret,Dret] :::parallel(Ad,Bd,Cdd,Ddd,O,O.O.Done,l,l,l.1);
% Integrate (ie. multiply by '1/a')
[Aint,Bint,Cint,Dint] '"tf2ss(l,[1 OJ);
[Aint,Dint] = c2d(Aint,Bint,Tsample);
YoCQnnect
[Aret,Bret,Cret,DretJ = series(Aret,Bret.Cret,Dret,Aint,Bint,

Cint,Dint,1,1);
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% R.emove aorta background 'function
aa=aa-(1-exp(-tt'/Aorta1ix»*bgndasymp;

Yo Simulate Retention :function
y e dlsim(Arot,Bret,Cret,Dret,aa);

%1nt1;: integ(y(iind(1}:len),Tsample):
%1nt1 = Intl(length(Int1»;
%Int2 = integ(pp(iind(l):len),Tsample):
%I••t2 = Int2(length(1nt2»:
%K = Int1/1nt2;

K = sum(y)/sum(pp);

% Calculate the S'UJ1\ ot squares
Error = y/K - PPi
Error = Error(:)'*Error(:);

xt = max(tt)/3;
yt ;:max(y)!3;
srt(Plothandle.'ydata'.y/K)
dra\lnofl

it (Error < Lasterror)
eval ([)save " Pathname, )err) ,string,' F.rror)]);
eval(['sa11e ',Pathname, 'Ans',string,' x']);

end
% ------------------------------------------~------------------~-----

L.1.3 Interpolate and Decimate Data

Yo -------------------------------------------------------------------function [data, tt] = dacinter(Time,indata,looptimes.Q,n,decitactor,
string,lenfil) ;

%tunction [data, ttJ = decinter(Time,indata,looptimes,Q,n,decitactor,
% string,lentil):

ind = tind(indata<=O):
indata(ind) = O.OOl*ones(length(ind) ,1):
data = indata;
hold oft
cig
plot (Time,indata, 'co', 'EraseMode' ,'none').axis(uis), title( [IDat~ Beund ,

Interpolate and Decimate: ' string]),
xlabel( 'Time' ).ylabel(' Activity') ,hold on

Plothandle = plot(Time.indata,'y-'.'EraseMode'.'xor');

Yo Ditty and Corfield (1976) Data Bounding Technique
fox i = 1:1coptimes:
data = bound,indata,Q,n);
set(Plothandle,'ydata',data)

drawnow
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q = Q/2j
end,

data: [interp(data(1:1entil(1»,decitactcr(1» :-
interp(data(lentil(1)+1:1entil(1)+lentil(2»,d~~itactor(2»);

data = decinate(data,decitactor(3),'FIR'):
t:O:length(data)-1;
tt = decifactor(3)*t;X --- t~ - __ - ~'(_ ... __ .... __ - .... ------ --------------------

L.1.4 Data Bounding Technique

% ~--------~----------------------------~----------------- .'. ---.-------
function [data, ttJ = deeinter(Timo,indata,looptimes,Q.n,deciiactor,

string,lenfil):
Y.function [data, ttJ := decinter(Tillle,indata,looptimes.Q,n,decitactor,
}i string,lenfil):

ind = find(indata<=O);
indata(ind) = O.001*onea(length(ind),1)j
data = indata:
hold (\ft
clg
plot(Time,indata. •co' •'r:"r-aseMode','none') ,axis (axis) •title( ['Data.nound,

Interpolate and Decimate : ' str.ing]).
~label('Time'),ylabel('Activityl),hold on

Plothandle := plot(Time.indata., 'y-', 'Eras('Mode','xor');

Yo Ditty and Corfi~ld (1976) Data Bounding Technique
tor i = 1:1ooptimes;
data = bound(indata.Q.n):
set(Plothandle.'ydata' ,data)

drawnow
Q = Q/2j
end,

data" [interp(data(1:1en'fiJ.(1»,decifactor(1) :
inh:rp(data(len:fil(1)+1 :lenfil(1)+len:fil(2) .deci:factor(2»1 ;

data = decimate(data,deci:factor(a),'FIR'):
t=o: length(data)-'1 j
tt = deci:factor.(3)*tj% H " •• ••
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M.l Spleen Programs in Matlab ..386™

M.1.1 Process the Raw Spleen Data

y. -------------------------------------------------------------------% SPLEEN1 p~ocesses the ra~ spleen and aorta data
%
Yo This tile
Yo 1) Loads and Cleans the data from the ascii tile
/.2) Bounds the data using BOUND.M
% 3) Interpolates the data to 1 seconds
Yo 4) Deconvolves the data us~ng : Filtered FFT Method
Yo
Yo D.R. Fine 20-04-93

% Get Aorta
eval( [Il,oad Aorta1. aSc1]);
eval(['load Aorta2.asc']):

Yo Get Spleen info
eval(['load Spleen1.asc'])j
eval([lload Spleen2.asc'])j

To;:[Spleen1 (:1.2),Spleen2 (: ,2») i
A~[Aortal(:,S);Aorta2(:,3)J;
S=[Spleen1(:,3)jSpleen2(:,3»)j

hold ott
clg
sU'bplot(211)
plot(T,A), grid, title(['Aorta : I, Pate]);, xlabel('Socondc')
plot(T ,S)' grid. title( [IOriginal Data: I, Da.te]). xlai.>el('Seconds I)

!JaVa SPLEEN

% use BOUND.M to l'lI)n-linea:r:filter the data to remoVe poisson noiu.

aa ,..Ai

146



Appendix M 147

sa ::::Sj
tt = T~

% Shift the data to remove the pre~injection data.
sUbplot (111)
c.i.g
hold off
blen=120:
plot(tt(l :blen) ,aa(l :blen), tt(i: blen) ,ss(l:blen) > ,'+')
title(ISele~t Experiment BEGIN point I)
[x,1J ::::ginput(l);
Untemp,minindJ = min«tt-x).~2);

Yo Decimate the initial O. 5a per :frame data' to 1s data
deci:facto:r.~ 2;
aa = [decimat~(aa(minind:121).decitactor,IFIR') aa(122:1ength(T»J;
ss = [deci~ate(s$(minind:i21),deci:factor,IFIR) Ss(122:1ength(T»);
tt=O:1000j
tt = tt(1:1eng~h(aa»;

%TJse i:heDitty and Corfield (1976) techniquo to bound the data.
looptilUes = 6:
keyboard
Q :; Sj Yo Initial s+andard deV'iatioli.
ind ~ find(aa<=O);
aa(ind) = O.OOl*onss(length(ind),1)i

len;::length(aa);
aney=aaj
:tor i = 1:1ooptimes;
anew = bound(anew,Q.3)I
plot(tt,aa,tt,anew). title(IAorta Data Bounding').
Q = Q/2:
end,

Q :;:Sj
ind ::::find(ss<=O);
ss(ind) = O.OOl*ones(length(ind),l):
snew"'ssi
tor }. :; 1:loopt:i.llles;
snew = bound(snew,Q,S);
plot(tt,ss,tt,snew), title('Splean Data Bounding').Q = Q/2j
end,

clg
subplot (211)
plot(tt.aa» 'v. •,tt,an"lw)>>titl'.e('Aorta: Data Bounding')
plot(tt)s~,'w.l.tt.snew), title('Splaen : Data Bounding') ,pause

aa = anew;
ss = snrsv;

% S~lect the background tissue component L~ the spleen data
$ubplot(111)
clg
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hold oft
plot(tt(1:30),aa(1:30),tt(1:30),ss(1:S0»
titIe('Seleet Subtract Poiht')
[xtY] = ginput(1);
[ival,iind] = ~ax(aa);
(seal,sind] = lllin«tt-x). -2);
maxind=l~ngth(Qa);

save iind iind sind

aa = aa(1:maxind);
ss = ss(1:maxind)-ss(sind)i
tt = tt(1:maxind);
aa(1)=O;
$s(1)=0:
ind=tind(ss<O) ;
sa (il\d}=eps*ones(length (ind) .1) j

hold ott
cIg
subplot (211)
plot(tt~aa). grid, title(['Aorta : '. Date]);, xlabel('Seconda')
plot(tt,SS.'_'). grid. title(['Interpolated and Data Bounded '.

Date) )• :xlabel('Seconds I ») pause

save SplnboUl\d aa ss tt

Yo Perfo~m the Non-Parametric Deconvolution using the filtered FFT Method
1.A = fit(aa).
fS = :fft(u);

HSftt2 = ii11(real(ifft(fS.!fA»,4);

hold off
clg
plot (tt,nStft2) I grid, yla.bel ( IALL I) I xla.bel( ISeconds I ) I

title('Filtered FFT'),

save Sr.at HSfft2
mindy. --- __ --r ..,.._ ..... ..... .....- ... _ .... __

M.1.2 Fit Spleen Model to Experimental Data

y. ---------"-----------------------~---------------------------------
Yo SPLEEN2 tits the model of the spleen to the experimental
% data
Yo
Yo n.R, Fine and R.E.Lurie 21-07-93

clear
pack
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options (1) :::0; % Do not print the results after each itt'<lration
Qptions(3) :::S; % Termination criteria fox' minimised function
opti.ons(14) :::10Ql % Maximum number of iterations
options (6) :::1; % B:r~yden-Fletcher-Gol:faJ;'b'~Shannoalgorithm
options (7) :::1; % Cubic Interpolation

load splnbound
load iind
load aortapara

% Initial Guesses. The parruneters are described in the figures within tho
Yo thesis.
q
t
Tau_s
Tau_p
Tau_1np

:::0.80;
:::0,20;
::: 2;
::: S~
:::lS;

xO :::(q f Tau_p Tau_mpJ; % initial guess
loll. :::length(tt)
% Initial function v~lue
Error ~ 1e6;
saVe eT.rSpleen Error
keyboard
xO : log(xO)j
factor :::max(ss)/1nax(aa):
saVe param xO l$n Aortatix factor bgndasymp
SS :::sS(1:len)/ta.ctor;
tt = tt(l:len);
aa :::aa(l:lon)j
string :::'Spleen';

X := tminu( 'splnloop(x,Pl,P2,PS,P4,PS,PG,P7 ,pa) I .xo ,options ,O,tt.
aa,ss,bgndasymp,string,Tau_s,iind,Aorta:fix);

% -----------~.------~-------------------------~---------------------

M.l.3 Objective Function for Model Fitting Program

% ---~--------------------~"-----~-------------~~--------------------tunetion Error = 2plnloop(x,tt.aa,Pp,u~ndasymp,string,Tau_s,
i:tnd,AOl'tati..):

%tunction Error = splnloop (x, tt. aa .PP,bgndasymp. st1·ing.'l'au_IiI,
iilld,Ao:rta:fix):

Yo
% The :Cile SPLNLOOP detex-mines the SUInm of squares between the spleen
Yo 1nodel and the experi1n6ntal data
Yo
% D.A. Fine 20-04-93

len = len~t~(tt);
x = exp(x);
q = x(1):
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1.
Tau_p
Tau_mp
Tsample

= X(2)j= x(s):
:::x(4):
= tt(2)-tt(1)j % Sample Time

eva1(['load err' ,string]);
Lasterror~ norm(Error):

% Remove aorta background using the aorta p~ameters
aa = as.- (i-,tlXp (-tt 'IAortatix» *bgnda.aymp;

G1 = «2*x(1) - 1»-100;
G2 = «2*x(2) ~ 1»-100:

% Put Marginal Zone Plug Flow
[Am,Bm.Cm,DmJ=tf2ss«1~q)*f,nconv«(Tau_s/3 1),3»;
[Am,Bm,Cm,DmJ=c2dt(Am.Bm,Cm, TSal\'Iple,Tau_mp+Tau_p);

Yo Put Cental Artery in the system
[Ac,Bc,Cc,Dc]=tt2ss(q,neonv«(Tau_s!31J,3»;
(Ac,Bc,Cc,DcJ=c2dt(Ac,Bc,Cc,Tsample,O);

% Put Red Pulp
(Ar,Br,Cr,Dr]=tt2ss«1-t)*(1-q),nconv«(Tau_s!a 1),3):
(Ar,Br,Cr,Dr]=c2dt(Ar,Br,Cr,Tsampla,Tau_p);

% put the :~yst(lmsin parallel
[A1 ,B1.C1.Dl)=parallel(Am,Bm,Cm,Cm,!C' .Be.Q~,Dc ,1,1,1,1):
[As,Bs,Co,Ds)=pars.llel(A1,B1,Cl,D1,Ar,Br,Cr,Dr,1,1,1,1)i
Yo Convert to Internal Age dis~~ibution

% Invert sign of Matrix
Cdd = -Cs;
Ddd = ""DSl

% 1 il\' state space
Dcne = 1;
tAret.Bret,Cret,Dret] = parallol(Aa,B~,Cdd,Ddd,O,O,O,Done.1,1.1,1):

% Integrate (ie. multiply by '1/a')
[Aint,Bint.Cint,Dint] = tt2s$(1,[1 0);
[Aint,BirltJ = c2d(Hnt.Bint,Tsample);

% Conn6ct
[Aret,Bret,Cret,Dret] = series(Ar~t,Bret,Cret,Dret,

Aint ,BintIOint,Dint,1,1) i
y~dlsim(Aret,Bret,Cret,Dret,aa):
IntY=integ(y(iind:len),Tsample)j
XntP=integ(pp(iind:len),Tsample);
K = IntY(len-iind)!IntP(len-iind);

to Determine the summ of squares
Error = norm(y(iind:len)-pp(iind:len)*K,2):



~ppendi:c M

hold oft
clg
111t.bplot(111)
plot(tt,y, ._, ,tt,pp*K, 'X'), title([ string ,

I Parenchema : ~arametric Model']);
xt ,.max(tt)!3j
yt = max(y)/Sj
text(xt,l.1S*yt,['q : I num2str(q) .~ f = I num2str(f)])
text(xt,1.00*yt,['Tau_p = I num2str(Tau_p)])
text(xt,O.86*yt,['Tau_mp = • num2str(Tau_mp) "

Aortafix =' num2str(Aortaiix)])
text(xt,066*yt,['Error = I num2st:r(norm(Error» "

Last Error = I num2str(Laaterror)])

it (nurm(Exror) < Lasterror)
eval(['save err~,string.' Error']),
eval([I~ave Ansi ,string, , XI]);

end,
% -----~----~-----------~----~-----------------~---------------------

M.l.4 Displays Model Fit to Experimental Data

r. ---- .....-- ....---- ....-------- ....---.- ....------ ....------ ....--- ....---- ....-- ...----- ...- .....------
X SPLBEN3disph\ys the :model :fit to the flxperilllantal data
Yo
r.
Yo D.R. Fine 20-04-Q3

load spln.bound
load Sret
load Anupleen
load pal~am
load iind
load a.ortapara

len
keyboaxd
tt = tt(1:1en)i
aa :::aa(1:1en)i
ss = ss(1:1en)!tactor;
q ::: :x(1);
f '" x(2);
Tau_s = 2;
Tau"p = x(3) i
Ta.u_mp:::x(4);
Tsample ~ tt(2)-tt(1); X Sample Time

Yo Remove aorta background uadng the aorta pa:r:aiMlters
aa. = aa - (l-exp(-ttI/Aortafi~»*bgndasympi

save aorta aa

% Put Marginal Zone Plug Flow
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[Am,Bm.Cm,Dm]=tt2ss«1-q)*f,nconv([Tau_s/a 1J,3»;
Y.[Am,Bm,CI1l,ta]=tf2ss«1-q)*t, conv([TaU.,llIp1J ,ncIJX!,v([Tau_s/S 1J ,3»);
Y.CAm,BI1l,ClU,DmJ=c2dt(Am,Bm,Cm,Tsample,Tau_p)i
[Am,Bm,Cm,Dm]=c2dt(Am,BlU,Cm,Tsample,Tau_mp+Tau_p);

% Put Centa1 Artery in the system
[Ac,Bc, Cc,DcJ=tt2ss(q,nconv([Tau_s/3 1J ,3»,
[Ac.Bc,Cc,De]ec2dt(Ac.Bc,Cc,Tsample,O);

% Put Red Pulp
[Ar,Br,Cr,DrJ=tt2ss«1-f)*(1-q) .ncol\.v([Tau,~s/31] ,3»;
[Ar,Br,Cr,Dr]=c2dt(Ar,Br,Cr,Tsample,Tau_p);

Yo put the systems in par~l 1
[A1,Bi,C1,D1]=parallel(Am,Bm,Cm,Dm,Ac,Bc,Cc,Dc,1,1,1,1);
[As,Bs,Cs,Ds)=parallel(A1,Bt,C1,D1,Ar,Br.Cr,Dr,1,1,1,1);

% Convert to !nterna:'A' distribution

% Invert sign ot Matrix
Cdd = -Cs;
Ddd = -Ds;% 1 in state space
Done :0: 1;
[A:ret,Bret,Cret,Dret] = parallel(Aa,Bs,Cdd,Ddd,O.O,O,Done,i,1,1.1);
Yo Integrate (ie. multi,oly by l1/s')
[Aint ,Dint ,Cint ,Dint] ~s(1.[1 OJ);
[Aint ,Bin'tJ = c2d(Ain,. •Tsample) i
Yo Connect
[Arot ,Brat, eret ,DratJ = series.(Aret, Brat, Cret, Dret,

Aint,Bint,Cint,Dint,1,1):

y=dlsim(Aret,Bret,Cret,Dret,aa):
IntY=integ(y(iind:len),Tsample):
IntP=integ(ss(iind:len).Tsample)i
K:::: IntY(len·iind)/IntP(len-iind)i

Yo Generate RTD, E(t)

E=dimpulse(As,Bs,Cs.Da,l.1en);
Intl=integ(E,Tsample);
E=E/lnt1(length(E»);
Yo 1-B(a)
Ca=-Cs;
Da=-Dsj
Aone = OJ
Bone = 0:
Cone:. 0;
Uc.lle t:: 1;
[AlB,B1E,C:1.E,D1E)=parallel(As.Bs,Ca,Da,Aolle.Bone.Cone,Done,1.1.1,1);

% 1/1;].
[Us, Bls J'hl J i:: j l"t..":~f;~~(.t, [1 OJ):
tUs,lH,. ~tb ,Dh:::"';,llll;l.,Als,Bls,Cis, 'l'sOlllph,O);
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Yo 1!e(1-E(s»
[AI,BI,CI ,DIJ=series (Ala I.B1s,C1s ,D1s ,A1E,B1E,C1E,D1E, 1,1) j

Yo I(t)
I=<1implllse(A!,BI,CI,DI,1,len):

Yo norm ...lise the area and plot the curves
Int2=integ(I,Ts~~ple);
I=I/Int2(lengl:h(I»;

Yo normalise the Mon.-Parametric curve

'fA ;; tft(aa);
fS ;; fft(ss);
HStft2 = til1(real(ifft(tS./fA),4);
ind=len-20i
Int3=integ(HSfft2(1:ind),1sample):
HSfft2=HSfft2!Int3(length(Int3»;

y. **********************************************************
hold off
dg
l3ubplot(Ui)
plot(tt,E) ,pause;
title(~Spleen E(t)'):
xlabel('Time (s)'):
ylabel( 'E(t) I) i
!del E_t.lIlet
lIletaE_t

plot(tt,y,'-',tt,ss*K,'w.'), title([ISpleen Parametric Model']);
xlabel(ITime (2)');
ylabel('CountS!pX.8'),pausei
Idel Spleen.met
meta Spleen

plot(tt(2:1en-1) ,I(2:1en-1) ,tt(2:1en.-10),HSfft2(2:len- 10),'w.'):
title('I(t): Parametric vs 50n-Parametricl);
xlabel(ITime (13)1);
ylabel('I(t) I) i
xt = max(tt)+30:
yt = max(I)!2j
text(xt,1.0*yt,['q ;; , num2str(q) " f

::: 1 num2str(f)J)
text(xt,:l..4*yt,[ITau_s ;; I 11\Ull2str(Tau._s} Tau._p

= I nu.m2str(Tau_p»))
text(xt,1.8~yt,[ITau_mp ~ J num2str(Tau_mp) I, Aortatix

= J num2str(Aortatix»))

Id'll I_t..met
met ...I_t

save Allspleen
y. ---,..._ ........_------_ ....._----------- ...- -------------_ .....,..---_ ....._---------------
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N.1 Liver Programs ill Matlab-386™

N.l.l Process the Raw LiverData

% ------- .....-----_ ... _------.-------------- ....._-------------------------- ... --
% LIVER1 processes the raw liver
%
% This :tile
Yo 1) Loads and Cleans the data from the aB~\i file
Yo 2) BOlxnds the data using BOUHP.M
Yo 3) Interpolates the data to 1 seconds
1. 4) Deconvolves the data using : Filtered FFT Method
Yo
% D.R. Fine 20-04-93

load Splnbound
load AltSl:!pleen
load param
load mind
load aorta
len = length(aa);

Yo Get GIT info
eval(C'load Liver1.asc']);
eval(['load Liver2.asc'])i

= (Liver1(:.3);Live~2(:)3)]i
T = [Liver1(:,2);Liver2(:,2)];
11 = L:

L

save LIVER L

hold off
clg
sUbplot (111)
plot(T ,L) I grid
titlo«('Original LiveX' Data: " Date]), xlabel('Seconds')
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Yo use BOUND.M to non-linear tilte~ the data to remove poisson noise.
Yo minind is determined in spleen1.m

(lecifactl)r::2;
11 = [decimate (11(minind: 12',).decifactor, 'FIR') 11(122 :length(T»] i
tt ::();iOOO;
tt ~ tt(l:length(ll»;

looptimes ::6; % See Splsan

Q = 5:
ind = find(ll<::O);
ll(ind) ::O.001*ones(length(ind).1);
lnew=ll;
tor i ::1:1ooptimes;
lnew ::bound(lnew,Q.5):
plot(tt,n,tt,lnew). title('Li'ver Data Bounding I ).

Q ::Q/2;
end,

clg
subplot (11:1)
plot(tt .11, 'Iii'. ' •tt ,lna..). title( 'Liver Data Bounding') ,pause
subplot (111)
11 :: Inew;
ll=11(1~len)i
tt=tt(1:1en):
sUbplot (111)
clg
hold off
plot(tt(1:30),aa(1:30),tt(1:30),ll(1:30»
Yo RemoVe the initial liver background activity
title( 'Select.Subtract Point I)
[x,yJ : ginput(1)i
[seal ,sind] ::min«tt~x).~2);

11 :: 1l(1:1en)-1l(llind);
11(1)=0 ;
ind=find(ll<O)j
11(ind)=eps*ones(length(ind),1):

Yo Scale the liver data by the maximum value and the time at which
Yo this maximum occurs
[lmax ,lma."CiIld)=max (11) ;
ll=ll/lnlax1
t_max=tt(lmaxind)i
tt=tt/1:_max;

hold off
clg
subplot (111)
plot(tt,ll, '-'), grid, title«('Interpolated and :Data Bounded

Datel). xlabel (ISeconds '), pause
) •

save Liverbound aa 11 tt t_max
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% Perform the Non-Parametric Deconvolution using the filtered FF'i' Method
fA = fft (aa) ;
fL = ftt(ll);
fAs = fft(aa(1:1en));

HLftt2 = til1(real(itft(tL./tA».~);

hold ott
clg
subplot (111)
plo·t(tt.HLfft2). grid, ylabel{lEquivqlent I I). xlabel( 'Seconds').

title( 'Filtered FFT').

save I.ret HLtft2
Yo ------------------ •• ------------------------------------------------

N.l.2 Fit Liver Model to Experimental Data

Yo --------------------------------------------------------.-----------
Yo LIVER2 :tits thE!model of the liver to ·the expe:dmental
Yo data
Yo
Yo D.a. 1"l;o.e 20-04-93

clear
pack

load splnbound
load live:t'bound
load ansspleen
load iind
load aorta

len = length(aa)
keyboard;
Error = 1a6;
sa(~e errLiver Error
11 ;::11(1:1en);
aa = aa(1:1en);
tt ;:: tt(1:1en):
tt=tt(:) ;
11"'11(:);
pp=11:
clear Error
clear sSi

Yo Spleen Mo 'Jl Parameter determined '.Jy Spleen2.m
q = x(1);
:f = x(2):
Tau_s = 2/t_max;
Tau_p ;::X(3)/t_max;
tau_mp ~ x(4)/t_max;
xsp = tq t Tau_p Tau_mpTau_s]: Yo Spleen Parameter Vector
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YoXnitial Guesses
Tau_dl = 0.2; Y.Liver DGlay time in the sinusoids
Delay_pv = O.1j %Central Vein Delay.
r = 0.75j %0.76Fraction to the Portal System
p = 0.2; %0.2 Fraction to the Spleen
Yoiguases.m alows one to choose the hepatic arterial delay time
Delay_ah = iguesses(tt,len,t_max); Yohepatic arterial delay time
Tau_gi = 0.5; YoMixing in the GIT
Tau_cv = 2ft_max; YoCentral Vein Mixing Constant

xO = (l'au_dl Delay_pv:r p Tau~gi]; Yoinitial guess
keyboard
xO=log(xO) ;
save Del.ay_ah Delay_ah
string = 'Liver';

global aa xsp string iind Tau_cv Delay_ah 11
Time = tt;
)?p = 11;
clElartt

YoLevenberg-M~ quart to get Final Estimates
[fullcVal,.lC,var, iter, Corl.cllation,stdJ:::leasqr(Time,pp,x().'livloop2' ,

1e-4,20)
Yo---------~.------------------------------------------------------ ••-.•

N.l.3 Objective Function 1 for Model Fitting Program

y. --------------------- ...-------------- •.,------------------------_-----
function F1Ulceva1 = livloop(x,tt,aa.ll,xsp,string,iind,Tau_cv,

Delay_ah,Delay_pv)i
);function Funceval = livloop(x, tt ,aa,ll,xsp.string, iind, Tau_cv.
% Delay_ah,Delay_pv)j
Yo
% The till!!LIVLOOPi determines the summ of squares between th~ liver
Yomod.el and the experimental data. :for tIle simplex algorithm.
%
% D.R. Fine 20-04-93

len = length(tt);
YoThe spleen values obtained from spleen2.m
q = xsp(1)j
f = xsp(2);
Tau_s = xsp(S);
Ta'l_p = xsp(3) j

Tau_mp = xsp(4):
% Ensures th~t the values of x are always positive
x=exp(x):

Tau_dl = x(1):
Delay_pv = x(2);

YoLiver Delay time in the sill.usoids
Y.Central Vein Delay.
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r
p
Tau_gi
Tau_ha

= x(3):= x(4);
= x(6);= r*Tau_dl/(l-r);

%0,76 Fraction to the Portal System
%0.2 Fraction to the Spleen
%Mixing in the GIT
Y.Residence tim~ associated ~ith
%tha Hepatic Artery Flo~
% Sample Time'l'sample = tt(2)-tt(1);

evala'load err' ,st:l;'ing]);
Lasterror=norm(Error);

:t. --------------------------Begill of Spleen--~---- --------- .•---------
Y. Put Marginal Zone Plug Flow
(Am,Bm,Cm,Dm]=tt2ss(p*(1-q)*t,uconv((Tau_s/31],3»:
(Am,Bm, Cm,DmJ =c2dt (Am,Bm, Cm,Tsample ,Tau_mp+Tau_p+Delay_pv) ;

% Put Cental Artery in the system
[Ac,Bc,Cc,Dc]=tf2ss(p*q.nconv([Tau_s/31],3»);
[Ac,Bc,Cc,DC]=c2dt(Ac,Be,Cc, Tt.,ample,Delay_pv) i

Yo Put Red Pulp
[Ar,Br ,Cr,Dr] =t:f2ss(p*(l-f)*(l"q) ,nconv( [Tau_s/3 lJ ,3»;
[Ar,Br ,Cr,DrJ=e2dt(Ar,llr, Cr,T(lample,Tau_p+Delay_pv) ;

Yo put the systems in parallel
Co! i,Bl,C! ,D1]=parallel(.uu,BII'"Cm,Dm,Ae .se, ee .ne,1,1,1,1);
[As,Bs ,Cs,Ds]=parallel(Al,B1, Cl,D1,Az',Br, Cl',Dr,1,1,1, i);
% -------------~ -···---------End of Splaen---·---------------------·--- ...

)~----·----------------·---·---Begin of GIT-----------------------------
Yo Put Marginal Zone Plug Flo~
CA, ,Bgi,Cgi,Pgi]=t:f2s$«1-p) ,nconv( [Tau_si 1J ,3» i
[Agi,Bgi,Cgi,Dgi]=c2dt(Agi,Bgi,Cgi,Tsample,Delay_pv);
% ---.------ -----------------E.'ld of GIT-------------------------------

Yo -----··--------------------Begill of Po:rtal------------------·--~,-----
% Put Spleen and GIT in Parallel
[Apv,Bpv,Cpv,Dpv]=paallel(As,Bs,Cs,Ds,Agi,Bgi.Cgi,Dgi,1,1,1,:1);
% -----------------------~--End ot Portal----------------------------

Yo -----.------------ ---------Begin ot LivElr----------------------~----
Yo Termi of formulation
[All,Bli,Cl1,D11J=tt2ss(1,[Tau_ha 1]);
[All,B11,C11.D11)=C2dt(A11.Bli,C11,Tsample,Delay_an):

% Term 2 ot :formulation
[A12,B12,C12,D12]=tf2ss(-r,[Tau_Aa 1]):
[A12,B12,C12tD12]=e2dt(A12,B12.C12.Tsample,Delay_~ +

Tau_ha*log(1!r»;

Yo Sum Term1 and. Term2
[A13,B13,C13,D13]=parallel(A11,Bl1,Cli,D11.A12,B12,C12,D12,1,1,1,1):

% TermS o:fformulation added to Terms 1 and 2
[A14,B14,C14,D14]=tf2ss(r,[le-81J):
[A14,B14, C14, D14J =e2dt (A14, in. \. Cl4:, TsamI,le,Tau_ha.*log( 1/r) ) :
[A14,ln4.C14,i)14]=series(Al~,B14,C14,D14.Apv ,Spv ,Cpv ,Dpv,1, 1);
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[A14.B14,C14,D14J=parallel(A14.B14,C14,D14;A13,B~.3,r.13,D13,1,1,1,1):
Yo C~mtral Vein Mixing in ser5 •.e!!! \liththe tormulation
[A1S,B1S.C1S,D15J=tt2ss(1.ncon~([Tau_cv/2 1],2»;
rA15,B15.C1S,Dl5J=c2dt(A15,B15,C15.Ts~ple.O);
CAt,BL,CL,DLl=series(A1S,B1S.C16,DlS,A14,B14,C14,D14,1,1);
Yo --·------------------------1::ndot Liver----------------------- ..·----
Yo Conve:l:'tto Internal Age distribution equivalent using multiple
Yo input sys·'em $quation
% !/s in state space
[Aint,Bint,Cint,Dint]=tt2ss(1,[10J);
[Aint,BiAt,Cint,Dint]=c2dt(Aint,Bint,Cint,Tsample,O);
[A1,B1,C1,D1]=sories(O,O.O,r,Apv,Bpv,Cpv.Dpv,1,1)i
(A2,B2,C2,D2)=tt2as(1-r,[1e-B 1]);
[A2,B2,C2,D2]=c2dt(A2,B2,C2,Tsample.Delay_ah)j
[A2.B2.C2,02]=parallel(A2,B2,C2,D2,A1,B1.C1.D1.1,1,1.1);
[A3 ,83, C3 ,P3) =pa:ral1el(A2 ,B2,C2.D2,At,Bt, -CL, -l)L,1,1,1, 1) j:

rA,B,C,D)~series(Aint.Dint.Cint.Dint.Aa~B3.C3.D3,1.1);
y=dlaim(A,B,C.D,aa);
Iy=inhg(y(iiil.d:J.en).Tsample);
Ip~integ(ll(iind:len),Tsample);
K ::Iy(len-iind)./Ip(len-iind)i
Yo Deterlnine the sum (It $quarea
Funceval :: 1-.lm( (, (1: len)-ll*K) ,2) ;

hold off
c:lg
subplot (U1)
plot(tt,y/K.~t,ll,lxJ);
title(1 Liver : P~ametric Model');
xt ::max(tt)/3;
yt ;:11Iax(1l)/3j
Error:: sum«(y(13:1eIl)/K _ 11(13:len».~2)./(y(13:1en)/K»;
text(xt,1.16*yt.['r ;: 'num2str(r) ',p ;:I num2str(p)])
text(xt,1.00*yt,['Tau_gi:: I num2str(Tau_gi) I. Tau_cv : I

num2str(Tau._cv)])
text(xt.(.l.~6*yt.tITau_dl.::::'num2str(Tau_dl) I. Delay_pv ::

, num2str(Delay_pv)])
text(xt,O.66*yt,['Delay_aA:: , nUl1\2str(Delay_ah)])
text(xt,O.46*yt.['Brror :: I num2str(norm(Error» I, Last Error

;: I num2str(Lasterror»))
it Error < Lasterror

eval([lsave err' ,string, , Error']);
eval(t'save Ans',string,' Xl])j

end,
return
r. .-------------------------~-----------------------------------------
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N.l.4 Objective Function 2 for Model Fitting Program

% -------------.,---------------------------------------- ...-------------
function Funceval = livloop(tt,x):
Y.tunction Funceval = livloop(tt,1~;
%
y. The file LIVLOOP2 determines the function value tor a given
% parameter space for the Levenberg-Marquart Algorithm
%
% D.R. Fine 20-04-93

len = length(tt).
% Tha spleen values obtai~ed from spleen2.m
q = xsp(1)j
t = xsp(2);
Tau_s = xsp(5);
Tau_p = xsp(~)j
Tau_mp = xsp(4):

YoEnsures that tho values of x ar(;lalways positive
x=exp(x) ;

Tau_dl = x(i):
Delay_pv = x(2);
r =x(3)j
p =x(4):
Tau_gi = xeS);
Tau_ha = r*Tau_dl/(1-r):

Y.Liver Delay 'time in the sinusoids
XCentral Vein Delay.
%0.76 Fraction to the Portal System
%0.2 Fraction to the Spleen
Y.Mixing in the OIT
YoResidence time associated ~ith
Y,the Hepatic Artery Flo~

Tsample = tt(2)-tt(1);

if Tau_dl > :2
Tau_cll = 1:
Tau_ha = r*Tau_dl/(i-r);

end

it Delay _pv <::co r>.

Delay_pv = eps;
end
if Delny_pv > 2

Delay _pv = i;
end

eval(t'load err' ,Col-.dng]);
Lasterror=norm(Error);

Yo -------------··------ ... -----Begin of Spleen----~·------------------_--
% Put Marginal Zone Plug Flow
[Am.Bm,Cm,Dm]=tf2ss(p*(1-q)*t,neonv([Tau_s/31J,3»j
[Am,Bm.Cm.Dm] =c2dt (Am,Bm, Cm ,Tsample, Tau_mp+Tau_p+Delay_p v):

X Put Cental Artery in the system
[Ac,Be,Cc,Dc:J=ti2111.(p*q,li.COIlv([Tau_s/3 1J ,3» j

tAc ,Be,Cc,Dc] "'c2dt,(Ac,:Sc.ce,Tsample ,i)elay_pV');
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% Put Red pulp
[Ar,Br,Cr,Dr]=tt2ss(p*(1-t)*(i-q).noonv([Tau_s/3 1J,3);
[Ar,Br.Cr,Dr]=e2dt(Ar.Br,Cr,Tsample,Tau_p+Delay_pv)i

% put the syst~ms in parallel
[A1,B1,Cl,D1J=parallel(Am,Bm,Cm,Dm.Ae,Bc,Cc,Dc,l,l,l.1):
[As,Bs.Cs,Ds]=parallel(Al ,Bl,Cl,Di.Ar ,Br,Cr ,Dr ,1,,1,1,1);
% --------------------------El)'d of Spleen--------,··-------------------

% --------------------------Begin of GIT--------------~--------------
% Put Marginal Zone Plug Flow
[Agi.Bgi,Cgi.Dgi]=tf2ss«1-p).nconv([Tau_gi 1J,3»;
[Agi.Bgi.Cgi,Dgi]=c2dt(Agi,Bgi,Cgi.Tsample,Delay_pv),
% --------------------------End of GIT-------------------------------
% ---·-- ...--------------------negin of Portal-------~---~,--------------
% Put Spleen and GIT in Parallel
(Apv,Bpv,CPv,DpvJ=parallel(As,Bs,Cs,Ds,Agi,Bgi,Cgi,Dgi,1,1,1,1);
% ----··---------------------End of Portal------------·-------··--------

% ------ ..,-- ...---------------.ABegin of Liver-~·-------,-----..------------
% Termi of formulation
[A11,B11,C11,D11J~tf2ss(1,(Tau_ha 1]):
[Al1,B11,Cl1,D11]=c2dt(A11,Bl1,Cll,Tsample,Delay_ah);

Yo Term 2 of formulation
[A12,B12,C12,D12J=tf2ss(-r,[Tau_ha 1])j
[A12,B12,C12,D12]=c2dt(A12.Bl2,Cl2.Tsample~Delay_ah +

Tau_ha*log(l/r»;

% SUll\ Term1 and Term2
[A13,B13,C13,Dl3]=parallel(A11,Bl1,Cll,D11,A12,B12,C12,D12,l,1,1,1);

% Term3 of formulation added to Terms 1 and 2
[A14.BJ.4,C14,D14]=tf2ss(r, [le-8 13);
[A14,B14, C14,D14] =c2dt (A14,B14,C14,Tsample ,Tau_ha*log(l Ir»;
[A14,B14,C14,D14]=series(A14,B14,C14,D14,Apv,Bpv,Cpv,Dpv,1.1}j
[U4,B14,C14,D14]=parallel(A14,B14,C14,D14,Al3,B13,Cl3,D13,1,1,1,1),

% Central Vein Mixing in seri~s with the formulation
[AlS,B1S,C15,D1S]=tf2ss(1,nconv([Tau_ov/21],2»,
[A1S,B15,C15,DlS]=c2dt(A16,B16,C15,Tsample.O);
(AL,BL,CL,DLJ=series(A16,BlS,ClS.D16,A14,B14,Cl4,D14,i,i);
% --------------------------End ot Liver·-----------------------··----
% Convert to Internal Age distribution eqUivalent using multiple
% input system equation

% 1/s in state space
tAint, Bint, Cint ,Dint] =tf2ss (1, [1 0]);
[Aint,Bint,Cint,Dint]=c2dt(Aint,Bint,Cint,Tsampl&,O)i

[A1.Bl,Cl,D1]=seri&s(O,O,O,r.Apv,Bpv,Cpv,Dpv,1,1);
[A2,B2,C2,D2]=tf2ss(1-r,[1e-81]);
[A2.B2,C2,D2]=c2dt(A2,B2,C2,Tsample,Delay_ah)j
[A2,B2,C2,D2J=paral1el(A2,B2.C2,D2,A1,Bi,C1.D1,1,1,1,1);
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[A3.B3.C3,D3]=parallel(A2.B2.C2.D2,AL.BL,-CL,-DL.1,i.1,1);
[A,B.C.D]=s~~i8s(Aint.Bint.Cint.Dint.A3.B3.C3,D3.i.i}j

y=:dlsim(A,B,C,D,aa);
Iy==integ(y(iind:len).Tsample);
Ip=integ(ll(iind:len),Tsample);
K = Iy(lell-iind) ./rp(lan-iind);
Yo Determine the function value
Funceval = y(1:16. )/Kj

hold oft
elg
subplot (111)
plot(tt .y/l<, tt ,11. ,~,);
titl.e(' !.J.ver : Parametric Model');

xt = max(tt)!3;
yt '" max(1l)!3;
F,.:'ror ==sum«{y(13:1en)/K - 11(:1.3: len) ).~2) .!(y(13:1en)/K»;
t,ext(xt.1.16*yt.[');' == 'num2str(r) '. p :: , :num2str(p)])
text(xt,l,OO*yt,['Tau_gi:: I uum2str(Tau_gi) ',Tau_cv

= ) llum2str(Tall_cv)])
text(xt,O.86*yt,['Tau_dl = 'num2str(Tflu_dl) ',Delny_pv= I num2str(Oelay_pv>J)
text(xt,O.66*yt,['Delay_ah = , num2str(Delay~ah)])
text(xt,O.46*yt.[IErro);' :: , nurn2str(norm(Error») " Last Error= ) num2str(Lasterro:r;)))
fl Error < Last.rror

Elva).( (I save err I • strillg,' Error' J ) j
e1tal([tsave An$',st:ring,' XI]);

end,
return
% ---_-~-------------~~--------------------_-------------------------

N.1.5 Displays Model Fit to Experimental Data

y. -----'- ....-----_ .....--------------"' ..- ....--------- ....-------_ ..._-------- .....- ........_-_,_ ....
Y. LIVERS displays the model iit to the experimental data
Yo
Yo
Yo n,R. Fin~ 20-04-93

load li varbcund
lo~d Lret
loali aorta
load Ansspleen
load iind
q = x(!);
f ;0 x(2) i
Tau_s = 2/t_ma.x;
Tau_p ==x(3)/t_max;
Tau",mp = x(4:)!t;_malli
len::lengtl\(aa)
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keyboard
tt=tt(i:len)i
aa=aa(i:len) ;
ll=:t.l(i:len);

load AnBliver
load Di!llay•.a.h
T!lI.u"dl "= X(i):
Delay_pv :: x(2);
r :: x(3);
p :: x(4);
Tau_g1 ::xes);

Y.LiverDelay tim'" it. tho s·,':.-.usoids
v.Central Veill Dela)
roO.76 Fl!'action to til.) Po:r-.~:~tSystem
roO.2 Fraction to thE! Sp:"~\'!).
%Mixingin the GIT
%Centra:l Vein Mixing Constant
%Ii.esidel1Ceti.me associated 'Ilith
roth'" Hepatic Ar1~..,ryF:Low

Tau ...cv
Tau_ha

:: 0.01;
= r*Tau~dl/(1-r):

Tsample :: tt(~)~ttC1); Y. Sample Time

1. ---~---"-----------~------Begin of Spleen-··------··-----------------
y. Put Marginal Zo~e Plug Flow
CAm,lhn,Cm,DmJ=tf2S13(p*(i-q)*:t •nconv([Ta.u_sl/3 1J, 3» ;
[Aul, Bm. Cm, Dm] =c2dt (Am, Bm, r,m, Tsample, Tau.,mp+Tau_p+Delay _1'\1) :

Yo Put Cental Artery in the &ystem
[Ae,Bc,Cc,Dc]=tf2sa(p*q,nconv( (Tau_siS 1J ,.3»;
(Ae,Be.Cc,tle] =c2dt(Ac, Be. cc t TSarlple,Delay •.pv);

Y. Put Red Pulp
(Ar,Br,Cr,Dr]=tt2ss(p*(1-t)*(:t-q) ,nco~LV([Tau_s/3 1J .3»;
(Ar,Br,Cr.,DrJ=c2dt(Ar,Br,Cr,Tsampl&,Tau_p+Delay_pv)j

Yo put the systems in parallel
[A1,B1.C1,&1J=paral18l(Am,Bm,Cm,Dm,Ac.Bc.C~,Dc.i.1.1,1);
(A$~Ba,Cs.Ds]=parallel(A1.B1.Cl.D1,AroBr.Cr,Pr,1,1,1,1);
Yo --------------------------End. of $pleell~-------------·---------------

Yo --------------------------Begin of GIT-------------- ..·--------------
Yo Put Harginal Zone Plug Flow
rAgi,Bgi,Cgi.Dgi]=tt2ss«(1-p),nconv([Tau_gi 1],3»:
[Agi, Bgi, Cgi. Dgi] =c2dt (Agi. Bgi. Cgi, TSllllIple.Delay _p,,) j

Y. -·---------------------··---End of GIT--~-------------·-- ...-----·-...-,----
% --------------------------Begin of Portal-----------·---------------
% Put Spleen and GIT in Parallel
[Ap'l,Bpv,Cpv,Dpv];;paraUel(As,Bs,Cs.Ds.Agi,Bgi,Cgi,Dgi,1,1,1,1);
Yo -------,---------- -----·----End01. Po:ttal-----------·_------------ ...---

% --------------------------Bagin of Liver---------------------------
Yo Termi of formulation
[Al1,Bl1,Cl1,Dli]=t:t2ss(1, [Tau_ha 1]);
[A11,Bli,C11.Dli]=c2dt(Ali,Bl1,C11,!sample,Delay_ah):

% Term 2 of formulation
(A12.B12,Cl2.Dl2]::tf2ss(-r,(Tau_ha 1])j
(A12,B12,Cl2,D12]=c2dt(A12,B12,C12,Tsample.Delay_ah +

Tau_ha*log(i/r);
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Yo SUl'IlTerm1 and T erm2
[A13,B13,C13,D1SJ=parallel(A11,Bll,C11,D11.A12,B12,C12,D12,1.1,1pl~j

Yo Tem3 o:t:formulation added to Tams 1 and 2
[A14,B14,C14.D14)=t:f2ss(r,(1e-S 1J);
[A14, B14, C14,D14] =c2dt (A14.B14,C14,Tsample,Tau_ha*log( 1/r»i
[A14,Bl4,Cl4,Dl4]=se~ies(Al4,Bl4.C14,Ol4,Apv.Bpv,Cp¥,Dpv,i,1);
[A14,B14,C14,D14]=pa:rallel(A14,B14.C14.Dl~.A::'3,B)'3.C13,D13,1,1,1,1);

Yo Central Vein Mixing in series with the :formulation
[US ,816.C16 .D15J=tf2ss(1,nconv( tTau_cv/2 1] ,2»;
[A16,B1S,Cl&,D1S]=c2dt(A1S,B15,CL5.Tsample,O)j
(AL,BL,CL.DLJ=series(~15.B1S,ClS,D1S.A14.B14.C14.D14.1,1);
Yo ----~--~------------------End of Liver------,----------------------
Yo Convert to Internal Age distribution equivalent using multiple
Yo j.nput system equation

Yo 1/s in state space
[Aint,Bint,Cint,Dint]=tt2ss(l,[10]);
[A~~t.Bint.Cint,DintJ:c2dt(Aint.Bint.Cint.Tsample,O)j

[Al,B1,C1,Dl]=series(O,O,O.r,Apv.Bpv,Cpv,DpV,l,l)i
[A2,B2,C2.D2J=tf2ss(1-r,[le-S 1])i
[A2,B2,C2.D2]=c2dt(A2,B2,C2.Tsample,Delay_ah);
[A2,B2,C2,V2J=para11el(A2,B2,C2,D2,A1,Bl,Cl,Dl,l,l,1.1);
[A3,D3,C3,D3]=parallel(A2,B2,C2,D2,AL,BL,-CL,-DL,1,1.l,1);
[A,B,C,DJ=series(Aint,Bint.Cint,Dint,A3.B3,C3,D3.1,1);

y=dlsim(A,B,C.D,aa)j
Iy=integ(y(iind:len),Tsample)j
Ip=integ(ll(iind:lan),Tsample);
K = Iy(len-iind)./Ip(len-iind)i

% Generate RTD
B=dimpulse(AL,BL,CL,DL.l,len);
Int1=integ(E.Taample);
E=E!Int1(lGn) j

subplot (1U)
plot(tt,E);
title(ILivor B(t)');
~label(l!ime (s)')j
ylabel('E(t)'),pause;
!del LE_t.met
meta LE_t

Yo Normalise the Non-Parametrie deconvolved curves
'fA = t'ft(aa);
fL = 'f'ft([zeros(11,l)jll(13)/2jll(13:1en)])j
HL1'ft2 = fi11(real(ifft(fL.ltA»,4)i

'1. Eb(1l)*I(t)
Et_It=dimpttlS$(A,B.C,D.l,len)~
subplot (111)
plot(tt.Et_It,tt,HL'ftt2*K/2);



Appendi~ N 165------._._-_ .._-------------_-------------
title('Li,ver a:ffec;tiveI(t)');
~label('Time (s)');
ylabel('E(t)*I(t)'),pause;
!del. Et_It.met
meta Et_It

plot(tt(1 :len-1) ,y(1 :len-1). ,..1,tt(1 :len-!) ,ll(1:1en-1)*K, 'x·);
title«('Spleen : Parametric Model)]);
xlabel('Tims (5)');
ylabel('Counts/px.s')
!del Liver.met
meta Liver
xt == max(tt)+30;
yt ::max(:r)/2;
chi_sq_d~ta == sum«(y(13:len)/X _ 11(13:1en».~2)./(y(13:1en)/R»;
c::hi_,lIq_actu== 20.'(1.l
text(xt,i.O*yt. [''1 == ) num2str(q) ), '!.

== ) num2str(f)])
text{xt» L4*yt, [ITau_s ::: 'llum2stX'(Tau_s) I, Tall_p

:: I num2str(Tau_p)])
text(xt,1.S*yt,['Tau_mp == ' num2str(Tau_mp) " Aortatix

== , num2str(x(S»)
y. -------------------------------------------_ ...------_.--------------_ ....
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0.1 Correlation Matrix Programs in Matlab...386™

0.1.1 Determination of the SensitivityMatrix

Yo ------------------------- •• -.-------------.~----.----------------------
% This matlab tile finds the sensitivity matrix o~ a model at the
Yo minimum of the objective tur.ction ot the liver. The same program
Yo is used for the other organs except the model is changed.
Yo
Yo
Yo D.lt. Fine 01-08-93

load splnbolll\d
load liverbound
load ansspleen
load iilld
load aorta

len. = length(aa)
keyboard:
Error = 1136;
save errLiver Error
11 = 1l(1:len):
aa = aa(1:len)i
tt = tt (1: len) ;

clear Error
clear SSj

Yo Spleen Values
q = x(i):
f = x(2);
Ta11._s = 2ft_max;
Tau_p = x(3)!t_max;
Tau_mp = x(4)!t_max;
xsp = [q f Tau_p Tau_mp Tau_a]; r. initial guess

Y.Initial Guesses
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~ \sliver
10 .1 Delay_ah
Tau_cv = 2ft_max;
Tau_dl : xCi);
Delay._pv = x(2);
r = xeS);
y = Tau_dl*r;
z = Delay_pv*r;
p ""Jt(4);
Tau_gi = x(S);
Tau_cv = 0.04;
xO: [y Delay_pv r p Tau_gi]:
string = 'Liver';
xold ::xOI
X:: OJ

%Central Vein Mixing Constant
%Liver Delay time in the sinusoids
Y.Central Vein Delay.
:;'0.76 Fraction to the Portal System

%0.2 Fraction to the Spleen
Y.Mixing in the GIT
%Central Vein Mixing Constant
Y.initial guess

Yo Calculate the derivatives of the function with respect to the parameters
Y. at the minimum. The model may be found using kidloop.m, livloop.m or
:;,splnloop.m with the appropriate parameter structure without determining
% the least squares estimate but just evaluating +.he function at the
r. minimum.
tor j :: 1:1ength(xO)

xO = xold;
:xO(j)=x/)ld(j)';0.99;
low = %O(J):
Xlow ::m6del(xO,tt,aa.~l,xsp.string,Delay_ah,iind,Tau_cv)/

(len-length(xO);
xO(j)= xold(j)*1.01;
high = xO{j);
Xhigh: model(xO,tt,aa,ll,xsp,string,Delay_ah,iind,Tau_cv)!

(len-length(xO)j
d = high - low;
X :: [X (Xhigh - Xlow)/ dJj

end
save sensitive X len
y. -----------------------------_-------------------------------------

0.1.2 Determination of the Correlation Matrix

% --------------------------------------------------~----------------
% Progratllto calculate the correlation matrix given the sensitivity
Yo and sum of squares values
Yo
Yo
Yo D.R. Fine 01....08-93

load sensitive
load liverbound
load summsq
omega = eye(len.len)i
psi = omega*summsq;
Cov ::inv(X'*inv(psi)*X);
save Covariance Cov
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tor i = 1:1ength(Cov(:.1»
tor j = 1:1ength(Cov(:.1»

Correlation(i,j) = Cov(i,j)*(Cov(i,i)*Cov~j.j»-(-G.5);
end

end

save Correlation Correlation
Eigen=eig(correlation)j
save Eigen Eigen
Yo --- •• ---------------------------------------------------------------
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Appendix P

P.l Aorta Background Correction Programs in Matlab-

386™

P.l.l Global Aorta Background Program

Yo -------------------------------------~-----------------------------% GETAORT! Dtermined the amount of ao~ta backgroung
Yor. This file
Yo 1) Determines th& aorta that minimizes the negative component in a
% decunvol~tion study. This program has bean used t~ determine the
% aorta for the aleen (and thus liver) but an analogous program has
Yo been used for ~he kidney.
Yo
Yo n.R. Fine 20-04-93

load splnbound Y. Load non-parametric time data
!en.=length(aa)
keyboard
factor = max(ss)/max(aa);
ss = ss(l:len)/tact;orj
tt = tt(1:1en)j
aa = aa(1:1en.);
Yo Estimate the amount of background in.t. orta as 1/3
bgndasymp = O.G661*aa(len.);
r. Estimate the confidence time interval as 100s
Aortatix = 100:
options(l) '"0; Yo Do not print the results after each itteratiol'i
options (3) = 1; Yo Termination crit~ria for minimised function
option.s(14)= 60i % Maximum iterations
xO=log([Aortafix,bgudasymp]);
HS:f:ft2 :::,.till (real (i:t:ft (fft(ss) '/:fft(aa») ,5) j

ind1 = min(find(HSfft2<O»;
Gminv ind2J = min«tt-2*tt(ind1» ~2);

x
Yo Levenberg-Marquard to minimize the negative ccnpcnenn

= fminu(, aortamin' ,xO,options, 0 •as ,aa,tt. [in(\iind2J);



Appendix P

Aortafix = exp(x(1»;
bgndasymp = exp(x(2»:
save aortapara A.orta:fixbgndasymp
Yo ----- ..... -----~,----- •• ---- .. ----------------------------- .• -------------

P.l.2 Objective Function for Aorta Background i\~inimisation

% -------------------------------------------------------,~--,----,-----
function Err = bgndasymp(x, as ,aa,t1.:, bound,~j
Y.tuncti0l"Err = bgndasyn\p(x.ss,aa,tt.bou'.l.~):
Yo The :fUe 7;tORTAMIlldetermines size ot the :tt~gat;i.vecomponent in the
% decoTLvoltfedspleen curve. See getaorta.m .
%
% D.~.Fine 20-04-93

x=exp(x);

len=length(aa);
if (aa(len) - (1"exp(-tt(len)/x(1»)*x(2}) < mean(ss(len-20:1en»*O.5

Err = 1e6:
return

end

~,Remove the aorta background
aanew=aa-(1-exp(-tt'/x(1»)*x(2):
% Perform the Non-Parametric Deconvolution using the filtered FFT
% Metl,Jd
fA = fft(aan~w)i
fL = £ft(ss):
HSfft2 = fili(real(ifft(fL./fA».S);
Err = min«mean(HSfft2(bound(i):bound(2») - O).~2);
plot(tt,HSfft2,tt,aanew*max(HSfft2)/max(aanew», grid,
ylabel(~Left!). xlabel(JSecondsl), title('Filtered FFT'),
xt = max(tt)/3j
yt = max(HSfft2)/3j
text(xt.1.iS*yt,[)Aorta1ix = I num2str(x(1» ), Bgndasymp = ,

num2str(x(2»);
end
% -------------------------------------.----------------~----------~-
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Appendix Q

Q.l Renal Model Compared with Raw Renal Data

The raw data displayed in this appendix appears on a 1.44MB magnetic disk which

may he found in Appendix S.1.
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Figure Q.l: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for kidney 1
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Figure Q.2: 'Iyplcal fit of the renal model to the experimental renal activity ftime

curve. _ Model, (1 Experimental data for kidney 2
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Figure Q.3: Typical fit of the renal model to the experimental renal activity ftime

curve. _ Model, 0 Experimental data for kidney 3



Appendix Q----~--------------------------------------------~

Counts
per
Pixel

500
t

Figure Q.4: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for kidney 4
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Figure Q.5: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for kidney 5



Appendix Q 174

Counts
per
Pixel

100 200 t 300 400 500o

Figure Q.6: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for kidney 6
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Figure Q.7: Typical fit of the renal model to the experimental renal activity/time

curve. _" Model, 0 .Gxperimentaldata. for kidney 7
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Figure Q.8: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for kidney 8
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Figure Q.9: Iypieal fit of the renal model to the experimental renal activity /tim.e

curve. _ Model, 0 Experimental data for kidney 9
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Figure Q.I0: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for kidney 10
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Figure Q.ll: Typical fit of the renal model to the experimental renal actlvlty /time

curve. __ Model, 0 Experimental data for kidney 11
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Figure Q.12: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for kidney 12
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Figure Q.13: Typical fit of the renal model to the experimental renal activity/time

curve, _ Model, 0 Experimental data for the left kidney of renal pathology 1
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Figure Q.14: Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for the right kidney of renal pathology 1
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Figure Q.15; Typical fit of the renal model to the experimental renal activity/time

curve. _ Model, 0 Experimental data for the left kidney or renal pathology 2
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Figure Q.16: Typical :fitof the renal model to the experimental renal activity /time

curve. _ Model, 0 Experimental data. for the right kidney of renal pathology 2
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R.l Spleen and Liver Models Compared with Raw

Liver and Spleen Data

The raw data displayed in this appendix appeals on a 1.44MB magnetic disk which

may be found in Appendix S.1.
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Figure R..1: Typical fit ofthe spleen model to the experimental spleen activity/time

curve. _ Model, • Experimental data for spleen 1
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Figure R.2: Typical fit of the spleen model to the experimental spleen activity/time

curve. _ Model) 0 Experimental data for spleen 2
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Figure R.3: Typical fit of the spleen model to the experimental spleen activity/time

curve. _ Model, • Experimental data for spleen 3
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Figure R.4: Typical fit of the spleen model to the experimental spleen. activity jtime

curve. _ Model, II Experimental data for spleen 4
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Figure R.5: Typical fit of the spleen model to the experimental spleen activity jtime

curve, _ Model, • Experimental data for spleen 5
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Figure R.6: Typical fit of the spleen model to the experimental spleen activity/time

r1JTVe. _ Model, • Experimental data for spleen 6
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Figure R.7: 'Iypical fit of tile spleen model to the experimental spleen activity/time

curve. _ Model, • Experimental data for spleen 7
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Figure: R.8: Typical:fit of the spleen model to the experimental spleen activity/time

curve. _ Model, • Experimental data for spleen 8
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Figure R.9: TYVical fit of the spleen model to the experimental spleen activity/time

curve. _ Model, • Experimental data for spleen pathology 1
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Figure R.10: Typical fit of the spleen model to the experimental spleen a(~tivitY/time

curve. _ Model, • Experimental data for spleen pathology 2
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Figure R.ll: Typical fit of the liver model to the experlmental Iiver activity/time

curve. _ Model, x Experimental data for liver 1
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Figure R.l2: Typical jit of the liver model to the experlmental liver activity/time

curve. _ Model, x Experimental data for liver 2
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Figure R.13: 'I'ypical flt of the liver model to the experimental liver activity /tim~

curve. _ Model, x Experimental data for liver 3
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Figure R.14: Typical fit of the liver model to the experimental liver activity/time

curve. _ Model, x Experimental data for liver 4
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Figure R.lo: Typical fit of the liver model to the experimental liver actlvlty/tirne

curve. _ Model, 'J( Experimental data for liver 5
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Figure R.16: Typical fit of the liver model to the experimental liver activity/time

curve. _ Modell x Experimental data for liver 6
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Figure 1t.17: Typical fit of the liver model to the experimental Iiver activity/time

curve. _ Model, x Experimental data for liver 7
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Figure R.18: Typical:fit of the liver mouel to the experimental liver activity/time

curve. _ Model, x Experlme \ital data for liver 8
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Figure R.19: Typical fit of the liver model to the experimental liver Mtivity/time

curve. _ Model, x Experimental data for liver pathology 1
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Figure R.20: Typical fit of the liver modal to the experimental liver activity/time

curve. _ Model, /( Experimental data for liver pathology 2
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Appendix S

S.l Experimental Organ Activity/Time Data Fi~es

The experimental data that is found on the magnetic disk may be accessed from

any MS·DOS computer which can read 1

this disk with further instructions.

disks. A "readme" file is located on
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