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-Abstraiézt

_ Drgan; function is often charactevised uslng inaging techniques. In particular a
" tracer .is often nsed which does not .'1'_eact with tigsue, is low in concentration;, follows
“body fluid flows aid is distinguishable from the observed system and thus ‘measur-
able, ’Ii{li.ese requiriments ensyre lineay ;marac{;'eristics of the tracer, In this thesis,
“these lii_w'a.r characteristics are used to.‘u.’_x_evelogu a genera]iised mathematical theory
to deter#line orgat function from imagg}ﬁ;"tracéw e}.f.perimehts. The theory ‘& based
- on, anétmmical a.ndhphysiological informﬁtioﬁ for single and multiple input ni'gans.

-'J_Linea.r' qracer charag beristics allow one to deconvalve tracer éono'antra.tion/ tim:s curves
obtaingd from an i'mhged ergan and the iﬁput /mj:ﬁts to the organ, The thests shows
that the deconvolution of Bﬁch data is related to the ‘r_gsidelnoe time and interial age
. density functions (R7D and IAD) of_the' imaged orgsn. This non-parametiic de-

convolution of experinrentsl data is pve';i'formed wting methinds which do not involve |
G priﬁri information, ey, matrix based and Fourier transforin methods. Howéver,
even f#ith significant data filtering, noise on the deconvoivd curves hampers the
determination of accuraie results and. hence the identiﬁcatiqin of organ p‘x‘wsiology.
This is futher complicated 1 multiple inpiit systems where it is difficult to associate
changes in the deconvolved curve with specific anatomical and phystological changes.
As a means ta elucidate thig ﬁni‘ommaiaion from the deconvolved cu;:\“'es, mathemat-
ical models of the flow in the kidney, spleen and liver havé- beon developed. The
modeﬁing spproach based on probability density functions allows the organ tracer
response to be characterised in terms ixf anatomical structure ;md physiologinal blond

piivih

Parametric deconvolution eliminates the necessity to remove nojse (and perhups



i

other information) from the data with strenuous filtering techniques, Parametric
deconvolution is performed by simulating a flow model of an organ with the mea-
sured input fo the 6rga.n and comparing the result to the measured organ date.
Non-parametric deconvolution is used to provide initial estimates of the model pa-
rameters. These parameters are further rafined by iterative non-linear least squares
estimation {echniques which minimise the error between the measured experimenial
data and that provided by the model,

Negative artifacis are visible in many non-parametric deconvolution studies. Resi-
dence time density theory places imits on the behaviour of the deconvolved data.
Thia thesis shows that the deconvolution of tracer concentration/time curves must
give rise to a probabi]ity density that cannot be negative. It is proposed that uncer-
| tainty in identifying a suitable aorta measurement accounts for a significant com-
ponent of the negative artifacts reported in the literature. An explanation for this
phéﬁomar.oﬁ is provided and a technique for minimising this effect is suggested, This
explanation is extended to identify suitable organ backgrounds.

99mTe.DTPA sciniigraphic imaging stud:es have been used to obtain experimental
results to identify organ perfusion. The mathematical theory has heen applied to
healthy subjects and to those with pathology. Results indicate that the values of
some of the calculated parameters correspond to those measured and published
in the literature, In particular for twelve healthy kidneys the miodel of the renal
parenchyma identifies the normal renal filtration fraction as 0.21740.017. The model
of the liver applied to eight healthy livers ideﬁtiﬁes the portal blood flow fraction as
0.752 + 0.022, the splenic blood flow fraction ag 0.180 £ 0.023 and the liver mean

transit time as 11.4 £ 1.7 seconds, It thus appears that RTD techniques adequately |
describe the flow in imaged organs and that parametric identification based on organ
RTD models also provides elinically useful anatomical and physiological information
which in turn can be used to identify organ pathology. The quantitative values of
the parameters available from these studies on individuals could prove useful in
characterising organ function. This might enable medical personnel to make useful
clinical deductions that were not previouéiy possible, go that suitable corrective

action can be taken in the eatly stages of kidney, spleen and Liver pathology.
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~ From a Thorn

An idea, nothing ...

Time, fancy and a seed divine, divide,

Growth slowly, cautiously, |

Buds and branches forma from passion semi-formed,

Stubborn hunger spawned, driven.

Hours, minutes, irritations and frustrations,
(Barbs; the nexperienced forewarned)

And in the morn, '

 When dusk hes dwindled to the dawn,

The cards as awesome as to black,

Warn of truth coerced from haste.
Persoverance, patience, mentor, magtered.

| All things, all equal,

Raise & blossom from a thorn,

David T'ine, 1994,
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- Chapter 1

Previcjus Analysis of Imaged

Radioactive Tracer Studies

1.1 Introduction

‘The amount of literature on quantification of organ function from radioactive tracer
experiments is very large. The clinical evaluation of these tests has a past which
iz both subjective and qualitative since there has been limited means of guantify-
ing the contribution of vaziouns orgh.n tissues on the measured data. Consequently,
imaged radioactive tracer procedures have not had the desired diagnostic precision.
Imrestiga.toré have sought to imximve this precision by developing more objective
eriterfa for data interpretation. In general these methods have used a mathematical
description of the tracer interaction in the organ under investigation to interpret
the data, Most of these mathemafical techniques have not gained widespread use
because they still do not yield the basic parameters of organ physiology which are
of interest to the clinician. '

This chapter attempts to review the literature that is speciﬁcajly related to the

mathematical description. of tracer interactions within an organ.



1.2 Compartmental Modell'ing

Alarge pumber of published articles in the literature use compartwental moﬂe]liné in
an atiempt t&_explain imaging data. It is for this reason thai a detailed explana.tzon B

of compartmental modeliing is provided.

Compartmenial systems consist of a finite number of homogenecous, well mixed,

lumped subsystems (Termed Continuons Stirred Tank Reactors, CSTR’s, in the

chemical enginsering literature} whick eacahanga with one another {GODFREY, 1983).
This means that the time dependent quantity or concentration within each compart-
ment may he described by a first order diﬁ‘erent}iﬂ equation. The assumptions made
in this analysis are that: i '

# Each compartment represents a chamber of constant volume, V, with constant

* flowrates into and out of the zompartment.
» There is instantaneous and “omplete mixing of the input to the compartment.

o The rate HEmiting step in any process is not mixicg dependent. For instance
this assumption would probably be a reasonable approximation in the case
of the subcutaneous (below the skin) administration of a pharmacentical and

.lts subsequent conceniration as a function of time in the blood. Under these
circumstances it would take a long time for the pharmaceutical to diffuse -
‘through the various tissues into the blood. The blood and the subrutaneous
deposit could then be approximated as perfectly mixed since the concentration
within each compartment would be approximately uniform with time.

e The initial impulse into some compartment ¢ must be known, A blood com-
partment iz ofien defined where the tracer is introduced as an impulse at zero
time. The vascular cavity is in practice not well mixed and one expects that
the time lags in the vascular compartment would often disqualify such a sim-
plification.
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The general form for w compartments is given by:

%:ﬁwgm-gﬁm’m_ (1)

J# ?Iaﬁl

where
fis +- Mase flow to compartmeni ¢ from compartment § (Gob-

FREY, 1983)

2; - Amount of material in compa.rtmeht t

For a closed system fo; =0 (4= 1,2,...,w). In the case where the flovrates are di-
rectly proportional to the quantity in the doaor compartment (Doxor Compariment
must be CSTR), a proportionality rate constant ky an been defined such that:

dﬂ-‘,‘ w 1w
i 2 T ijixg — koizi -+ u; (1) (1.2)
i i

where.
%(t) :» The initial input mass flowrate, fio

ks Ryt =~ Fractional ransfer coefficients (JACQUEZ, 1972) je., the
fraction that has left the donor compartment

If reaction {or adecrption) occurs then the number of compartments is increased
according to the number of possible mechanisms, thus a first order reaction A — B
would require two compartments, one for A and another for B, with a fractional

transfer coefficient, equal to the rate constant,

Compartmental modelling problems solve the w systems of equations of equation 1.2

by mairix manipulations, Equation 1.2 can be written in matrix form:

&1 iy e Gy 1 bz v b L0

13 ) . » L] ]
= o I - : (1.3)
By Gy Gy T bui v buw Uy

or in matrix notation:
= AF+Bil (14)
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where _
A i Practional transfor coefficient matrix

B - Matrix of inputs to the w compertmental system

& + Derivative of  with respect to time

The general solution of equation 1.4 is given by:

= oyl + 026y + .. e, (1.5)

where
A1 ... Ap - The eigenvalues from the solution of AL~ A =0

fity .. .9y - The eigenvectors from the solution of AT~ A = 0
¢1 ... ¢y - Constants of integration obtained from the initial conditions

of a compartmental system

Fignre 1.1 shows the effect of mixing on a fixst order reaction, 4 — B, in a consfant
volums, constant flowrate system. A fixed concentration is fed into the sysiem
and the figure shows the output concentralion from such a syétem ag a function
of residence time within the system. The output concentration is plotted for a
complately mixed system or CSTR and for an unmixed system which is often termed
a “Plug” flow system. In 2 plug flow system, material that enters together, stays
together and leaves together. Tt is clear from Figure 1.1 that the effect of mixing
can be vignificant. This in turn implies that compartmental modelling may describe

reaction phenomena poorly.

In compuartmental modelling, a model structure is generally tried and then is changed
or tailored to the observations (GODFREY, 1983). This is termed black box mod-
elling and suffers from the disadvantage thai the model parameters often have no
physical meaning. The most serious limitation of compartmental modelling Is that
a system ma& have areas of complete mixing and others that are unmixed. An ex-
ample of such a system would be blood flow inside = vessel with lateral diffusion. In
such a case, the benefits of compartmental analysie are difficult to define {GODFREY,
1983) and an approach focassing on input output relationships is preferable.

Various approximations have been made to try and use compartmental ana]ysw n

unmixed systems, Plug flow is particularly applicable to blood flow in individual
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—— Completely mixed system
8t v e [ntnixed system

Concentration

Residence Time (7)

Figure 1.1: The effect of mixing on the reaction A — B with first order vexction

kinetics in equsl vohune systems.

capillaries, BURTON (1966) has shown that capillaties act like rigid tubes over a
wide 12nge of pressures. PROTEERN AND BURTON {1961) have shown that flow ju
capillaries is plug flow in nature where the red cells act as moving plugs, and the
interstitial plasma, is perfectly mixed. This is shown in Figure 1.2, Compartmental

approximatior s for plug flow are based essentially on;

¢ Infinite number of interacting compartments in series.

o Infinite batch systems with no interaction (Figure 1,2),

Once a model configuration has been #hosen, equation 1.5 is then be fitted to the
experimental data. In general a sum of exponential terms is sufficiently flexible
to fit almost any data, although the solution of the characteristic equation for the
eigenvalues js not necessarily straightforward (JacQUuEz, 1972). It is also possible to
obtain imaginary eigenvalues which are not physically meaningful although they may
fit the data well. Coupled with these problems is the fact that even a large number
of CSTR's will rever completely approximate a single plug fow system. Ideally oﬁe
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Y=DR

Tigure 1.2: Mixing iz a Blood Capillary

needs & hetter modelling theory that is flexible enough to describe mixing and fiow

in various organs. The theory must:

» Cover a complete spectrum of mixing states from a completely mixed system

to gn unmixed one,
¢ Allow reaction and diffusion mechanisms to occur.

* Should allow the development of the modei to proceed according to the physical
properties of the system.

Compartmental modelling (without making approximations and spurious assump-
tions) in general fails to provide adequate fiexibility as far as these criterla are

concerned.

1.3 The Kidney

Medels of the kidney have been primarily compartmental in nature (DEGRAZIA et
al, 1974; OPPENLEIM AND APPLEDORN, 1978), These models generally have 4
large parageter space 1. Recirculation ia accounted for by adding an extra com-
partment which ie not effective {see NAOR et al., 1972 for the effect of recirculation
on linear flow modelling}, The models also fail to address the length distribution
of the cortical and juxtamedullary nephrons, The formulation of these models for

imaging radioactive tracers has not been sufficiently addressed uy these anthors (see

IDEGRAZIA ef al’s (1974} model has cleven paramoters and OPPENHEIM'S & APPLEDOAN'S
(1978) model hag even mere, '
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Chapter 3). The compartmental approach has been discussed in section 1.2 and has
been found to be deficient for flow modelling,

1.4 The Spleen

There are very few mathematical models of the spleen in the literature, Those models
that have been published are primarily compartmental in nature (HEYNS et al,
1980; PETERS et al., 1980). The compartmental models are either oversimplified 2
or complex with a number of compartments and many parameters (SWEETLOVE,
1990), The compartmental modelling approach has been discussed in section 1.2
and has been found tb be problematical for physiological modelling,

1.5 The Liver

1.5.1 Computational Fluid Dynamics (CFD)

One approach for analysing tracer flow though the liver is using CFD techniques,
where a finiie element grid is fisted to the liver anatomy and fluid momentum and
continuity equations are then applied to the system (LEE & RUBINSKY, 1880).

The paper by LEE & RuBINSKY (1990) provides an example of how such a technique
has been implemented. There are various anatomical constraints that limit the
analysis. Often simplifications have to be made. For example LER & RUBINSKY
{1990) neglect the hepatic artericles which enfer alt along the venous sinusoid where
mixing of high pressure arterial blood and low pressure venous blood occurs through
gniall sphincter Like structures (RAPPAPORT & SCHNEIDERMAN, 1976). As a repult,
the modelling approach fails to describe an important component of blood flow in
the liver. Combined with these problems is the large computation time associated
with finite element analysis. This limits the clinical application of such techniques.

2HEYNs et al. s.. ;'i 880) odel consists of a two compartmental model with one blood compart

ment and one splsen compaxtment,
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In general fo solve such problems one has to have measures of physical properties
such ns porosity, fluid and tissue density, average length and diameter of venous
sinusold, viscosity and pressures in the various vessels that enter the liver. The

effect of variation of these properties between individuals is not accounted for.

An adequate mathematical description of blood flow through the hepatic arterial
and portal venous systems is necessary for the in vive application of CFD modelling.
Thus while CFD techniques can often be applied toidealised in vitro conditions, they

are impractical for routine clinical application,

1.5.2 Distributed and Convective Dispersion Models (CDM)

These models fall within the scope of residence tima density (RTD) modeliing {LEv-
ENSPIEL (1972) provides a detailed review of RTD modelling). There are essentially
three models tha.t are discussed in the literature, the undistributed sinusoidal
perfusion model, digtribuied sinusoidal perfusion model and the convective-
dispersion model. A review of these models is given in a paper by Bass ef al.
(1987). These models have primarily been applied to data from reactive tracers_.
which are injected into the hepatic artery of isolated livers, The models assume that
there is unidirectional flow through indeperdent tubes,

In the undistributed sinusoidal model ¢ach liver sinusold has a common arterial
Input with an initial concentration of gubstrate. The concentration of substraie is
depleted along the tube ag it flows with the blood to the venous end of the sinusoid.
Fach tube is modelled as a plug fow system, The outputs in the undistributed

system are all the same for any sinusoid.

In the distributed sinusoidal model there are differences in the sinusoidal outputs
becanse of the length distribution of the venous sinusoids, The outputs of all the
sinusoids ate then averaged in an appropriate manner to represent the mixing of all
the individual sinusoidal outpuis. The nﬁxing is achieved by taking the flow weighted
mean of the outputs. Sinusoidal perfusion models do not allow intermixing between

sinusoids and no account is taken of the portal venous blood.
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Convective dispersion models introduce 3 dispersion coefficient to allow inter-
mixing between pa.ra]lel sinusoids to occur. The interpretation of the dispersion
coefficient becomas difficult from a physiological standpoint and it is difficult to
describe how the dispersion coefficient changes with hepatic blood flow. Again no
account is made of the interaction of portal venous and hepatic arterial blood. Bass
et al. (1987) tried to relate the convective dispersion model to the sinusoidal per-
fusion model in an attempt to characterise the dispersion coeflicient. These authors
approximated the dispersion model by putting a number of distributed sinusoidal
systems in sepies, While this may give rise to the same residence time density, the
approximation ig not valid if the model is being used to describe systeme in which re-
actions with non-linear reaction kinetics oceur (ZwirTERING, 1859). The only way
thai the distribnted sinuscidal model can approximate the axial dispersion model is
if there is cross mixing between all possible plug flows so that material of different
ages can move forward or béc.kwa,rd in residence time, The cross mixing scenario
is shown in Figure 1.3 and it is clear from this figure that the derivation of an an-
alytical expression for such a system is problematical. This in turn means that an
interpretation of the dispersion coefficient from a physiological pérspectiva will in all
Litihood remain obscure. While the convective dispersion models do allow mixing
between the different sinusoids, there is some question as to whether this analysis
characterises the length distribution of siwusoids sufficiently.

O A

Figure 1.8: True distributed sinusoidal model approximation of the axial dispersion
model,
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1.6 Length Distributed Vessel Beds

Many theoretical formulations have been used to explam the shape of peripheral
indicator dilution curves (WARN=R, 1962; THOMPSON ef al., 1964; Evans, 1959).
In such experiments a tracer is injected into the right atrium of the heart or the
pulmonary artery and the peripheral arterial blood is continuously sampled and
the tracer concentration measured. THOMPSON ef el. (1964) ai)pﬁed the gamma
density function ’bb the results of a large number of subjects and showed statistically
that this density counld be used to represented tracer flow from the heart to the
peripheral circulation. The gamma density function is given by equation 1.6 where
# affectr the skewness of the density and 7, is related to the mean of the density by

equation 1.7.

LKD) = T;;(z)‘(” ~ e~t™ (1.6)

where
I :- Gamma function, I'(a) = J§° e~t*~1d¢

;-
T3T(2)

MEAN, = ./:n t tlz - Ve ™dt = 2, (1.7)

One might expect that the length distribution of vessels between the heart and the
periphery is greater than the length distribution of vessels within most organs, It
is thus likely that the gamma density would characterise the behavicur of a ‘tracer
within an'orga.n which contains a length distributed vascular system, It is for this
reason that the Gamma density has been used in this thesis to model vascular flow
in tissue. Based on THOMPSON et al.’s (1064) results, the value of z should be less
than four and greater than one. In this thesis a value of z = 2 has been chosen for
systems which are agsumed to have relé.tively small length distributions and 2 = 3
for larger length distributions. z = 1 is not generally useful as this implies that the
fraction of vessels of zero length is a maximum. The relationship between & length
distributed system and a probability densivy such as the gamma density is derived
in Appendix C.1.



Chapter 2
General Experimental Procedure

2.1  9mTechnetinm-diethy lenetriaminepentaacetic acid

= A Suitable Radioactive Tracer

To measure plasma and uvrine flow a radioactive tracer is often used which does not
react with tissue (has no physiological interaction), is low in concentration, follows
tha plasma and urine flow and is distinguishable from the observed system and thus

meagurable.

2,1.1 The Kidney

The choice of radicactive tracer to determine renal function depends on whether
one wants to investigate tubular function or glomerular filtration, wransit times and
renal blood flow, In this thesis the latter was lnvestigated. %"Tc-DTPA has
been used as a tracer as it follows plasma and urine flow and is filtered in the
glomerulus in the same way inulin with only minimal cortical retention (MCAFEE
et al, 1981). ®®™Tc-DTPA is not reabsorbed in the tubular system of the kidney
and flows with urine to the bladder. This also means that *®*T¢-DTPA has a short
biological half life because it is actively excreted from the body. Another advantage
of ¥™Tc.-DTPA is that is forms very few complexes with plasma proteins which is
a problem associated with other tracers like #¥™Tc-GHA, 9 Tc-AC, ™ Tc-DMSA,
99mTe. MDP, ¥m e HEDP, %™ Tc-PPi (McAREE et al, 1981). Renal extraction
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of ¥ Te.DTPA is also higher than any of the other technetium agents (MCAFEE
~ et al., 1981), Thus the radioactive tracer ®®™T¢-DTPA has been used for all the
renal investigations presented in this thesis. '

2.1.2 The Liver and Spleei:'

The choice of radioactive tracer for the determination of spleen and Hver function is

somewhat easier than that for the kidney. The criteria for an ideal tracer included:

¢ No reaction with hepatic or splenic tissue.
e Short biological half life.
» Low radiation dose.

¢ Rapid bolus injection {approximation of a Dirac 8(t) function) possible.

The first criterion eliminates the extractable radiolabeled colloid materials which in-
teract with the spleen and liver tissue (WRAIGHT et al,, 1982). Thelast criterion ex-
cludes labelled red blood cells because rapid injections damage these cells which then
adhere and react with the spleen and liver parenchyma. Pertechnetate (*®™T¢ 0)
was first shown o be a suitable non-interacting tracer for hepatic and splenic proce-
dures by SARPER et al. {1981)., Later #=Tc.-DTPA was also shown to be a suitable
non-interacting tracer (GIANPAOLO et al., 1989). #*™Tc-DTPA has a biological res-
idence time that is about seven times less than that of Pertechnetate (ROEDLER,
- 1981). It is for these reasons that the radioactive tracer #*™Tc.-DTPA has been
used for the splenic and hepatic studies presented in this thesis,

2.1.3 Effects of Low Level Radistion

A large body of Lterature has found no evidence of increase in human malignancy
or other harmful effects, a5 a consequence of jonising radiation, even at cumula-
tive exposures comparable to those of natural background or even ten-times higlier
(Yarow, 1981). The National Academy of Sciences Committes on the Biclogical
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Effects of Tonising Radiation (BEIR) provides an average natural background radia-
tion level (USA) as 184mrem per year (BEIR, 1980). RoEDLER (1081) has shown -
that & 5mCi 9¥mTe DTPA experiment contributes 150mrem to a patient. Tl:_ms a
10mC intravenous %" Te-DTPA experiﬁlent contributes'swn;rem. If the a.vefage
yearly background and experimental dose are added fogether, then the total yearly
dose is increased to 484mrem. The National Council on Radiation Protection and
measurements .(N CRP) provide guidelines for radiation protection. The maximal
safe radiation dose per year is given as 5000mrem (WRENN et al,, 1982). Tt is clear
that typical natural bar:kgronnd counts combined with the amouni administered in
a 10mC intravenous ™ Tc-DTPA injection falls well below this value.

2.2 Theory of Dynamic Scintigraphy

The enargy and wauvelength of 4 photons is given by:

E.z.w:% | | o (23)

whera _
E :- Photon energy

4 + Planck’s constant
v - 4 radiation frequency
¢ - Speed of light in a vacuum

A - 7 radiation wavelength

v-radiation has sufficient energy to psuetrate the body tissue and be measured. -
radiation can be measured using a scintillation camera which consists of essentially

four components:

Collimator: The purpose of this device is to ensure that photons which pass
through the collimator are all parallel. Thus radioactivity that passes through
a particular part of the collimator is from tissue directly beneath it. The r.ol]i;
mator in essence consists of a lead plate with small holes drilled throﬁgh it. The
thickness and hole density are chosen to maximise resolution or sensitivity, The
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collimator used in this thesis was a low energy, medium resolution Elscint™
COL APC-35 (Htﬁfa., Israel) collimator. This collimatur provides sufficient

image resolution while maintaining reasonable radioactive count rates,

Sodium-Yodide Crystal (NaI(T1)): Converts the 7-ray into visible light photons

by the scigti]la.tion process, The crystal which has a Thalium impurity is

B tramapa.reﬁf and the flashes of light can be measured. The intensity of light is
directly related to tﬁe Taphoton' energy.

Photomultipliers: Light emitted from the Naf-crystal is amplified and converted
to an electrical pulse. The intensity of the electrical pulse is proportional to
the light intensity. '

Threshold Counter: A threshold is used to determine whether a pulse lies in
~ the correct energy range. Multiple events and background isotopes are thus
excluded. The energy window for ™ Tc was set at +10% of the 140keV

maximum + photon energy associated with the decay of 22" Te.

2.2.1 Activity/time curves from a Region of Interest (ROI)

Data that is collected using a scintillation camera is generally displayed as a number
of images on a computer scteen. Each image représents tha number of radioactive
counts over the imaged area within a time .inter.val. Typical images detailing the flow
of a radioactive tra.czw through the body are shown in Figure 2.1. Image process-
ing ‘echniques can be used to enhance these images and thus visnalise the physical
location of various siructural components of the body. Once these structural coin-
ponents have been located, the image processor allows one to draw a region on the
computer screen, and then to count the radicactivity within that region as a func-
tion of time. These regions are texmed Regioas of intetest (ROY’s). The data from
this procedure is normalised with respect to tte time interval belween frames and
the ROI area. A plot of this normalised data against time has a dependent vari-
able (Y-axis) with units of Counts.pixel~!.s~! and an independent vaziable (X-axis)
with units of seconds. If the concentration of radioactive tracer is low enough (in.

this thesis this is always the case), then such a graph is analogous to the average



Chapter 2 ' _ _ 15

concentration within the ROI as a function of time. The choice of a suitable ROI
* for a, particular organ is addressed below.

Figure 2.1: ¥ Te.DTPA Tracer study :- 128 x 128 pixels groupad in 10 second
intervals. '

2.2.1.1 Aorta

The input to the various organs under investigation in this thesis was taken from
a rectangular Region of Interest (ROI) drawn on the descending aorta which was
clearly observed in the first 15 seconds.

2.2.1.2 Kidney

Tissue anterior and posterior fo the kidney accounts for gignificant background pho-
ton vounts. Several organs superimpose in the regions of interest of the kidney and
contribute to renal 'backg'ruund. These organs include: the liver, the spleen, the
adrenals in the upper p})les of the kidneys, the large vessels wnd the duodenum at
the medial border, the gut at the lateral border, the skin, muscle and fat layers and
other <. sues anterior and posterior of the kidney (FLEMING, 1988). In attempts
to obtain representative bmkground ROI's, proposed backgrounds have inciuded:
the liver, a one pixel width perirenal area (PIEPsz et ¢l., 1977), the inter-renal |
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area (FLEMING, 1988), a ROI round the external border of the kidney (BLAUFOX,
1989; ROSENTEALL et al., 1981}, and a subrenal area (GATES, 1983). None of these
ROY’s appeared to adequately account for the background radiation contribution.
In order to work within the constraints of the a.véila.ble experimental information, a
serni-theoretical approximation of renal background was determined. This approxi-
mation uses the activity /time curve obtained from a region of interest, inferior to the
{ower pole of the kidney. The determination of this renal background is discussed in

section 5.4.1.

The selection of regions of interest of the renal parenchyma have been a major
source of error in renal studies (FLEMING 1988; PiEesz ef al, 1990). In this
thesis, the most satisfactory parenchyraal ROI was found to be the lateral subrenal
ROI described by Bravrox (1989).

2.2,1.3 Spleen and Liver

The liver and spleen ROI's were drawn so 38 to exclude contribution from the Jower

poles of the lungs, the kidneys and the descending aorta.

The extreme lateral situation of tl:e spleen and the large transaxial cross section
of the liver within the abdomen, precludes the necessity to account for anterior
or posterior tissue which would etherwise account for significant background tissue
radiation.

2.3 Experimental Protocol

2.3.1 General

Normal volunteers wer: selected for organ imaging according to the criveria accepted
by the Committee for Research on Human Subjects (medical) of the University of

the Witwatersrand 1, Informed consent was obtained in all cases. Patients were

'Protocol Ref:14/49, Ref:02/8/92
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seiected, _oil the basis thai:

» There was no prior history of cheonic renal, hepaiic, splanic or cardiopal-

monary disease,

» The volunteers had not undergone any major surgery in the cardiothoracic or

abdominal regions,

2.3.1.1 Kidgey

The twelve normal kidneys selected for the study were obtained from a data huse
of reral donor subjects admiited for renal function evaluation at the Department of
Nuclear Medicine, University of the Witwatersrand. Approval from the Committee
for Research on Human Subjects (medical) of the University of the Witwatersrand
was obtained to nse the data from these studies, The procedure for all subjects was
identjcal. The subjects were placed in the supine position and an intravenous dose
of (10mCi (370MBq)) was injected into the right antecubital vein as.a bolus. All
the subjects were hydiated by oral administration of 300m! of water half an hour
before the study, and venous administration of 1ml/min of saline during the study
(Cosagirr =T AL., 16D2). Image acquisition was performed using an Elsc.intTM
Apex 409M (Haifa, Texzel) acintiflation camera. Data was collected posteriorly using
a 128 x 128 pixel matrix at 1 second per frame for the first 120 seconds followed by
10 seconds per framo for the remaining 1680 seconds. The tot:l scanning tire was

30 minutes.

Two additional patients with suspected renal arterial stenosis were selected to deter-

mine whether the paramwetric deconvolution technique could identify the rathology.

2.3.1.2 Spleen and Tiver

The expeﬁmental procedures were petformed at 7:30am. ‘I'he volynteers were re-
quired to abstain from all finids and solid foods from 11:00pm the previous evening,
This was to ensure fasting blood perfusion of the spleen and liver. The volunteers
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were placed in the supine position and an injection of 10mCi of ™ Tc-DTPA was
administered as a bolus into the antecubital vein. Image acquisition was performed
using an Elscint™ Apex 404M (Haifa, Israel) scintillation camera. Anterior scinti-
graphic images were aéqldred on a 128 x 128 pixel matrix at a rate of 2 frames
per second for the first minute, and a rate of one frame per second for another five
minutes. This was to allow enough time to ensure complete perfusion of the spleen,

gastrointestinal tract and liver.

Experimental data for fwo portal hypertensive patients was chosen from a database
of subjects veferred to the Department of Nuclear Medicine, University of the Wit-

watersrand.

2.3.2 Data Analysis

It is known that tracer count rates are sub ject to random errers associated with de-
tection r;f svents from radioactive sources. This noise can ba charatterised by Poisson
statistics. ;i‘}he non-linear data-bounding technique proposed by DiFry & CORFIELD
(1976) assumes a Poisson moise distribution. According to DiFry & CORFIELD
(1976), the dafa. bounding approach may be regarded ag a non-linear, non-stationary
operator which effectively filters the high frequency compenents present in the data.
This technique prﬁ\\red {0 be more usefu] than conventional linear filtering methods,
although the gaminé\ca,mera renogram has counts that are moderately large and the

error distiibution could be regarded as essentially gauseian in nafure.

In this thesis, all non-parametric deconvolution was performed using the fast
Fourier transform (FFT) method (NivuMoxn et al., 1981; Appendix H.1) with data
bounding (Dirry & CorwieLp, 1976) and filtering (FiEMING, 1988). The aorta,
kidney, splean and Jiver data for parametric deconvolution was not altered. The

experimental data for the renal, splenic and hepatic studies appears in Appendix 5.1,

AR data analysis was performed onr a 486 IBM compatible computer using Matlah™,
{MoLgr et al.,, 1987}, with the associated signal processing and optimisation tool-

boxes,
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2.8.3 Statistics
2.3.3,.+ Model Parameters

All model parameters cbiained by analysing the data from normal subjects in Chap-
ters 5, 6 and 8 were assumed to be normally distributed (Cuar¥FieLp, 1978) . A
parameter value from an organ pathology was significantly different from the nor-
mal value if that value fell outside two standard deviations from the normal subject
mesn, or in other words, within the 95% confidence interval (P < 0.05). |

2.3.3.2 x* Goodness-of-Fit Test

The »* goodness-of-fit test was used in. this thesis to determine whether the mathe-
matical models derived in Chapters 5, 6 and 8 represented the distribution function
of the experimental data (CEATFIELD, 1978). x? is determined by:

N ...—. By :
x“:Z-(—‘?—‘-f,;&‘): (2.2)

f=1

where .
NN umb:_gr of ohservations

E; - Experimental observation ¢
P; :- Predicted value ¢

The degrees of freedom (DFE) are determined by taking the number of observations
minug the number of unknown model parameters, M, minus one, In thiz thesis
P < (.08 was chosen as the x? test statistic. All the model curves displayed in
‘Appendices Q.1 and R.1 were found to represent the distribution function of the
experimental data (P < 0.05). |

*Aa N — 10, one generally tends to the normal distyibution in biological systewms where N is
the number of random samples,
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Chapter 3

Deconvolution and Imaged Single

Input Organs

3.1 Intraduction

Tn this chapter, the theory of residence vime and internal age densities is 1eviewed
and the results are then applied to experimental data obtained by imoging single
inbut organs In a time-invariant, recirculating system. General repults are presented
which releta the decomvolved data to the internal age densliy. Bounds axe placed
on the deconvolved curves. In developing the concepis of mixing we consider steady

flow (time-invariant) systems with constant density fluids,

3.2 Theory of Residence Time and Internal Age Den-

sities

Each particle in the outflow from a syetem poéses‘ses a pravious history. The res-
idence time or transit time of the particle within the system can be defined in
statistical terms. Each distribution of residence times can be associated with a
function FY(3) where this function represents the fraction of particles possessing a
residence time of ¢ or less in the system (ZWIETERING, 1953), F(#) is 2 nondecreas-
ing function of ¢ with a value of zero at ¥ = 0 and which tends asymptotically to
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one 88 § = 00, F(t) can also be interpreted in statistical terms as the probability
of a single particle staying in the system for time i or less (NAOR AND SHISNAR,
1963 )« The density function a;;sociated with this probability functior is termed the
Residence Time Density (RTD), k($), and is the derivative of F(£):

h(t) = i%ﬂ ' (3.1)

h(t)dt represents the fraction of particles which spend time between ? and &+ d¢ in
the system, or the probability of a residence time being found between # and ¢-+di in
the system. h(t) is oiten termed the Transit Thne Spectrum (TTS) in the medical
literature. This terminology does not however reflect the statistical properties of the
function and consequenily this terminology is not used in this thesis.

3.2.1 Residence Time Deﬁsity, h(t)

Teing the above definitions it is possible to define the mean regidence time or mean
transit time (MTT), r, and variance of ages, o, of the molecules by:

MTT =71 = fo Tined | (3.2)

o = j:’ (¢ — 7)1 dt | (3.3)

How does one relate the mean age of the molecu]eé to volumes and flowrates of a
physical system? Consider an experiment where & perfect tracer is injected as an
impulse (Mathamatically called a Dira¢c Delta (6)) into a steady state system and
the output concentration is measured. The exit concentration will vary according
to the flowrate and the degree of mixing in the system. LEVENSPIEL (1972) has
shown by conservation of mass for o steady state system, that k{t), is related to the
exit concentration, Coui(%), by:

“f;""'%"”((t%ﬁ? >0 (84)
Now for a system where all the material that entered the system must eventually

h(t) =

ieave;
’ o0
fn Mit)de = 1 | (3.5)
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Equation 3.5 is consistent with the definition of i(t) as probability density fanction.
The m=gn transit time, 7, of a system descried by k() can be related to the total
* volurne of the system, V, and the volumetric flowrate, @ by (ZWIETERING, 1959):

= (3.6)

O

The variance, o2, of A(t) can be used to provide information about the degree of

mixing in a system.

3.2.2 Internal Age Density (IAD), I(2)

The probability density of ages of molecules within a .ystem, I(%), can be related
~ to F(t) and A(t). For a small time interval, dt, and a given fiuid density, p , a mass
Qpdt enters the system, while a fraction, F(t) leaves, The amount of remaining
molecules is thevefore Qp(1 — F(2))dt. The total mass of molecules present in the
system is Vp and thus the fraction of molecules with age between ¢ and -+ dt, I(t)di,

is given by:

I(t)dt = .?,:-'(1 - P& (3.7)
I(t) is thus found to be: :
1) = 1 :?'(t) _1- fgfh(t)dt 3.8)

It is sasily shown that (Appendix Al)

()20 (3.9)
fo CIa=1 (3.10)
1o)==+ (8.11)

+ is the mean residence time of the system as a whole and is the sum of
residence times for systems i suilee » 34 & weighted sum of residence times
for systems in parallel.

B i T R i T I A e ot el e A R
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¢ I{t) must be a monotonically decreasing (NIMMON et al., 1981) fuaction from
I{0) = 1/7 to I{e0) = 0. - '

o An ideal 7() need not be sﬁéoth, nor continuous which for instance is deraon-

strated by I(%) of a plug flow system (pure delay) in Figure 3.4.

'8.2.3 Conservation of Mass and Convolution in Recirculating Sys?

tems

- Trazer ! experiments in time-invariant, recirculating systems have been shown to be
linear in concentration (NAOR & al,, 1972; LEVENSPIEL, 1972). The relationship
between some arbitrary tracer concentration of a stream flowing into a system, Ciy,
and the measured concentration of a stream flowing out of the system, Cout, is given

by (LEVENSPIEL, 1972):

Coult)= [ * Ot — YR(E)E = Cou % h(2) (3.12)

where
+ 1- Convolution ie. axb = ff a(t — ¢')b(s')dt'

' « Integration variable

Equation 3.12 is in general only valid for a time invariant system. Although the
assumption of time invariance is often vioia.ted {(due to physiological variances eg.
pelvo-uretic contractions) these effects are likely to have a small influence on the
tracer measurements. This is supported by the fact that deconvolution studies on
many normal organs yield similar results. A frequency-time plot of typical scinti-
graphic data . Figure 3.1 shows that the frequency components of the data are
constant with 1ixae. This is further evidence that the assumption of time invariance
is acceptable. As a resuif, the organs under investigation can be approximated as
time-invariant with an small eryor that manifests itself as experimental noise. In

this thesis, this assumption of time-invariance is made for all the organs studied, -

1A tr,acef does mot chemically Interact with the body, ie low in concentration, follows plasma
and urine flow {bulk or diffusional}, does not saturate transport mechanisms and is distingwishable
from the body and thus measurable.
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Figure 3.1: Frequency time plot of typical scintigraphic experimental data

Naon et al. (1972) have extended the convolution arguments to recirculating sjrs-
teing, where the input to the system is not independent of the output. If Cp, and
Cout are measured at two different points in a recireulating syatem (vascular system),
then equation 3.12 st™ applies. -

3.2.4 Dynamic Imaging and I(2)

To relate k() and I(2) to data obtained from dynamic imaging equipment we exam-
ine a single input organ, where a perfect tracer is injected into the input of the organ
in an arbittary manner. We assume that the organ lies within a recirculating system,
A diagram of such a system is shown in Figure 3.2, At any time, conservation of
mass holds and thus:

Mass In of Tracer ~ Mass Qut of Tracer = Accurmulated Mass of Tracer (3.13)

Thus in soma small time interval:

: v v
QCindt — QCousudlt = fo Clv, -+ di)do — j; C(o, t)dv (3.14)
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v o dy

E— - Organ

Gin _ _ Cm.tt

Figufe 3.2: A single input organ in a recirculating systerm.

where
dv ;- Volume element

j'(,v C(w,t)dv - Amount of tracet in the system at time ¢

Dividing by d and taking limits as di — 0 gives:

QCin— QO = % { j; O(t,v)dv} (3.15)

- Time-invariance implies that ¢ and V are time independent (section 3.2.3) and
substituting equations 3.6, 3.8 and 3.12 into equation 3.15 and simplifying (Ap-
pendix A.1) we get:

Cin # I(t) = 4 (3.16)

C(t,v)dv
14

This equation says that the convolution of the transient input to the gystem with
the internal age density of the system gives the volume averaged concentration in
the system. The voiume avaraged concentration is analogous to the area normalised
histogram obtained from dynamic imaging (Appendix B.1}. For example if this
analysis was applied to the kidney then the deconvolution of the renal curve with
the aorta data would give the renal internal age density. The above result ig only
derived from conservation of mass for constant density, time-invariant systems and

is thus devoid of other & priori information,

3.2.5 RTD Modelling of Mixed and Unmixed Systems

A. physiological and thus functional interpretation of the deconvolved data (equa~
~ tion 3.16) may be enhanced by the development of theoretical models of the internal
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age density, The RT) and thus IAD (equation 3.8) can be determined by solving
the dynamic mass balance for a tracer in a system with a carrier flowrate, @, equal
to that of the bulk fuid flowrate and the system vohume, V.. h(t) for a Continuous
Stirred Tank Reactor 2 (CSTR) and a plug flow or unmixed sysiem is given by

(LEVENSPIEL, 1972):

hosrr(l) = —}e_?‘ (3.17) -
hprua(t) = 6(# - 1) (3.18)

where
hestr(?) - Residence time density (RTD) of a CSTR, &1

hipLug(t) = Residence time density (RTD) of a plug flow or snmixed

system, s™1

Equations 3.17 and 3.18 are shown graphically in Figure 3.3. The IAD’s corre-
gponding to equations 3.17 and 3.18 are shown in Figure 3.4. Flow in individeal

OSTR; h(f)corp — SRLHT)

T

Plug Flow; h{t)pLoa = 6(t —7)

h{z)

_ Figure 3.3: Plug Flow and CSTR residence time density functions

capillaties is closely approximated by plug flow (BurTON, 1966).

I5ometimes texmed a compartment
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?EI.T.-' \cs'm; I(t)osTR = E‘.E(-;.E»L'l
1 . .
-
. Plug Flow; I(f)erua = A2E4=r)
I(#)
LN
Time

Figure 3.4: Plug Flow and CSTR internal age density fun..iqns

3.3 Impulse Response Functions and RTD Theory

The resultant curves from deconvolution studies in the medical literature are typ-
jcally termed Impulse Response Functions. This terminology is misleading, as it
can be applied to both the deconvelution of input-output measurements, as well
as the deconvolution of input—content measurements obtained using imaging tech-
nology, The deconvolution of input-output data in the medical literature has been
described as the Transit Time Spectrum (TTS). As discussed section 3.2, the TTS is
the same a8 the Residence Time Density, A(2). The deconvolutien of input—content
data in the medical literature is often termed the Impulse Retention Function. In
the past; the term Impulse Retention Function (IRF) has been used to describe hoth
types of deconvolution (NIMMoON et al., 1981; BriTToN & NiMMoN, 1889).

Typically, non-parametric decopvolution techniques need not distinguiéh between
input-output and inpui-content 1neasurements, even though the resultans . ves
have very different pmﬁerties and units, However, in order to perform parametric
deconvolution the relavionships between hi(t), I(t) and the IRF aeed to be carefully
analysed. Defining H(%} as Impulse Retention Function:

") 2 1- f;h(t) (319

H) 1 [in(t)yae
r T

) & (3.20)
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where

a - Denotes a definition

Thus from Equation 3.16,

LE® 7 Ct,v)do

Cin T 14

(3.21)
It is important to note that the units in equation 3.21 are consistent. In the liter-
ature, v is left out of equation 3.21 and the units are then inconsistent (FLEMING
AND (GODDARD, 1974; NIMMON et al., 1981; VAN HUFrEL et al, 1987; BRITTON
AND NIMMON, 1989).

The pr.dperties of h(t), H(2) and I(t) appear in Table 3.1 below, and are properties

of the conservation of mass constraints.

Table 3.1: Properties of h(), H(f) and I(z)

' Name | Residence Time Impulse Retention Internal A&e
' Density Punction ~ Density
Abbrev. RTD/TTS IRF (ambiguous) IAD
- Symbol h(t) H(t) =1~ F(t) I($)
Distributioﬁ probability depsity probability pto‘babﬂity. density
Units sec™1 dimensionless sec™1
Constraints: Rt) 20 H@E) 20 Ity >0
R(0) =0 ) =1 I0) =1/r
h() =0 H(x) =0 I(o) =0
2 h@)d: =1 S Ht)dt =7  [JCI()dt =1
Shape ~any positive : mbnotdnica.lly moanotonically

value decreasing decreasing

I(t)is a probability density and thus once deconvolution is ﬁe;rformed, the resultant )
curve he, to be normalised with respect to the area under the curve, The effect

of nniform attennation, or changes in the dose of radioait.ve tracer (provided the
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concentration is kept low enough) are removed by this normalisation. Furthermore,
I(t = 0) corresponds to the total mean transit time of tracer through the oi‘gan, T 7

can thus be determined without kﬁowing_ fthe system volume or volumetric flowrate,

3.4 Dec_onvolut_imi and Experimental Noise

The above analysis showed that the deconvolution of experimenta_l data obtalned
by dynamic imaging gives rise to the IAD (equation 3.16). It thus appears from
Figure 3.4 that in principle we cza find all the information on the mixing of a tracer
in & system by examining the plateaus and decays in the IAD. This is often imprac-
ticai beeuuse of noise in the experimental data and the noise generating nature of
deconvojution. Filtering of noise is often employed to reduce these effects (FLEMING,
1588) and Figure 3.5 shows the effect of filtering on the deconvolution of measured
splenic activity/time data with acrta activity/time data. Figure 3.5 (a) shows the
Tnoise generating nature of deconvolution. In ¥igure 3.5 (b), there may be platean
ltke regions although the identificition of such regions is subjective, Figure 3.5 (z)
shows the effect of over filtering, The plateaus have been removed along with most
of the important mixing characteristics inherent in the data, The constraints on I(t)
in Table 3,1 are cleasly viclated in Figures 3.5 (a,b,c).

It might thus be preferable to develop mathematical models and to fit these models
to the experimental data, By minimising the sum of squares between the model
- and experimenta! data, in an objective m~nger, we can obtain model parameter
values with a statistical confidence interval. Obviously such models should have the

following desirabls characteristics:

s They shnuld approximate the real behaviour of the system. The specific objec-
tive in this thesis has heen to develop models based on the structural anatomy
and mechapistic physiology. This constrains the choice of possible models and
should in principle {if the anatomy and physiologies are adequately described)
yield the actual mixing behaviour observed using independent experiments.

 The variation in the model parameters botween normal individuals should be
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Figure 3.5: Deconvolution of splenic activity/time curves with aorta activity time
curves obtained by dynamic imaging of #"Tc-DTPA (equation 3.16). (a) No
filtering (b) Filtering according to FLEMING {1988) (c) Overfiltered
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small,

¢ The number of model parameters should be Lept to a minimum,

¢ The model parameters should be physically meaningful. In this thesis an at-
tempt has bean made to relate model parameters to physiological mechanisms -
and anatomical structure. If successful, defects in either anatomy or physiology

should be illuminated by the parameters in the mathematical model.

¢ The models should be based on RTT} theory because deconvolution of scinti-
graphic data from imaging radioactive tracers should give rise to curves which
have properties zelated to RTD theory, '

Such. a model can be fitted to the experimental data in two ways:

~ Deconvolution: The deconvoluted organ data can be compared to the model RTD
representution. The disadvantage with this method is that one has to strenu-
ously fitter the expetimental data in order to determine the deconvoluted carve.
Tn the case of a single input system in a time-invariant, recirculating system,
the deconvolution of experimental data gives the TAD of the organ, We recall
that an JAD must be a monotonically decreasing, non-negative function. A
noigy deconvolved curve is not necessaxily monotonically decreasing' and thus
‘may violate the conditions of the IAD. The strenuous filtering techniques may

also remove important information on the mixing in the particular organ.

Simulation: An alternative method i# to simulate the model with the measured
experimental input to the organ, and {0 compare the result with the meagured
organ data, For example one would convolute the aorta with the renal model
IAD and compare the output from this to the measured renal parenchymal
activity/time curve. It is not necessary to filter either the aorta nor the renal
data. This latter approach has been chosen on the basis that the less processing
of the experimental data required, the better. Using this technique the useful

information is retained.
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3.4.1 Modelling the Input Curve for Non-Parametric Deconvalu-

tion

One of the deconvolution techniques discussed in the literature is that of the Laplace
Transform (LT) technique of FLEMING AND GODDARD (1974). In order to discuss
this technique we define the Laplace transform, £{u(t)}, and inverse Laplace trans-

form, £-1{@(s)} of function u as: | |

L{u@®)} = u(e)= ]; * at)e~*tdt (3.22)
g'i{ﬁ(s)} = u(t) = -2-%; w_-.,,:o #(s)e"ds (8.23)

where
u(t) :- Arbitrary function which is defined for all ¢ > 0 and whose -

integrals in equations 3.22 and 3.23 converge
ii{s) - Laplace transform of u(t)
s i Arbitrary complex variable _
w - Largest ul pole of the Laplace transform in the complex
plana

J '~ Square root of —1

Taking the Laplace transform of equation 3.16 and rearranging gives:

I(s) = N Ci(;,v)dv

/Cin(8) (8.24)
FLEMING AND GODDARD (1974) and VAN STEKBLENBURG (1978) applied a com-
partmental model approximation to the measured input curve, Cin(s) and then ex-
pressed I(t) as integrals and derivatives of the measured organ activity /iitue curve,
JY C(s,v)dv/V. After the input curve is modelled the measured data is discarded.

Renal deconvoluted curves using this Laplace transform technique have no negative
component which is a feature of both the FFT and Matrix deconvolution methods
(FLeMminG AND GODDARD, 1974; VAN STEKELENBURG, 1978). The removal of this
negative component probably arises from the fact that the compartmental model of

the input curve contains certain constraints and a priord information which has not
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been addressed by the authors, A thorough analvsis of this negative component of

deconvolved curves is discussed in Chapter 4.

3.4.2 The Method of Appenﬂing Curves for Non-Parametric De-

convolution

JUNI et al. (1988) appended a smoath exponential curve to the measured aorta
and organ activity/time curves, They then performed the deconvolution of these
curves and the resultant curve was then truncated to the original sample time.
To analyse the validity of this technique, we consider an input function, i(%) and
sn output function, oft) which are related by some arbitrazy probability density
funetion, ¥ (1), by the convolution integi'al, ie.

o= | ‘i -y it - (3.25)

I we append exponential curves to the data for some ekperimenta.l time, 7", then

equation 3.25 becomes :

(1= (- T)oft) [ a-nE-Tice
+ =/ + |¥(t - £)af (3.26)
H( —~ T Kyexp(~1t/12) H(E - T K genp(—~tf7s)
where

H(t — a) :- Heaviside function with delay a
Ky :- Scaling factor for the output curve o(t)
K3 - Scaling factor for the input curve (%)
Te :- Time constant of the exponential curves appended to ¥(f)
and o(%)

By taking the Laplace transform and simplifying for Y (s),

Y= g"]- (1',::- 1) (1 312(;1325)) (K1 "{Kﬂ]?) 8.21)

In order for appended, deconvolved curves to approximate the unappended decon-

volved curves, the second term on the right hand side of equation 3.27 must be
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gmall. The setond term tends to zero only when 7, — 0, T ~ co (Infinite experl«
mental time), if Kq & K;Y(t) which depends on @ priord information, or if ¥'(¢) is
a consiant. If Y (£) is constant in the case of a siugle input organ then the organ
is completely obstructed. Tt is important to note that convolution implies that any
point in the output curve depends in some way on every pomt in the input curve.
It is thus clear that appending a curve to the inpud and outpui curves js very prob-
lematic except under very specific conditions. Furtherraore, a tracer’s concentration
in a circulating system will tend to a non-zero concentration (NAOR et al., 1972).
Thus although the techuigue of appending curvdés mighi appear to reduce the noise
agsociated with the Gibbs phenomena in the F¥'T, this technique is baged on dubi-
~ ous mathematical and physical principles which may give limited confidence in the

~ deconvolved curve.

8.4,3 BSimulation for Perfornriing Parametric Deconvolution

“ RTD models are typically non-linear in their parameters, and it is almost impossible
to find ‘an analytic sohstion for each parameter. Numerical algorithms have to be
uaed to iteratively search for the bast parameters.

The approach chosen for the parametric deconvolution was that of the the prediction-
error identification method (PEM), (LIUNG 1987). Figura 3.6 shows the prediction-

" ny(t)

Cin Jo Cuuens(t, v)dv/V
< System SR |

£

s O

Model
d

1 Contelt, v)d0/V

Figure 3.6: Prediction-error approach to parametric deconvolution
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error configuration. In general, the input Cj, excites the system and produces the
measured organ activity/time curve Y Cimeas(t, v)dv/V. This response may be cor-
rupted by unmeasured moise ny(t). The measured iuput Cip is passed through a
parametric model of the system to produce a calculated organ activity/iime curve
for Coale(t, v)}dv/V, The error between the measured and approximate activity/time
. curve, ¢, determines how well the model approximates the system. The model pa-

rameters are then adjusted to minimise &,

Typically parametric deconvolution of single input organs compﬁées four parts. The
experimental aorta activity/time data is modifiel to account for the background
tissue radioactive contribution {Chapter 4). Vascular background is then removed
from the measured organ activity curve., The modified aorta data, Cip, is then
convolved with the organ IAD (Fquations 3.8, 3.16) to produce an estimate of the
content of the organ, fy Coare(t, v)dv/V where the gimulated t_:uiva has been snnled

50 that the measured and simulated curves have identical area, i.e.

% [V Coatolt, v)dv e [V Cnens(t, v)do -
fo LT L 2 dt (3.28)

The error betwsen the system and the model can be calculated by the conventional

least square criterion,

| . 2
e= [0 (IJ’ C"“";;(*'”)d”—gc"d;’,(t’”)d") at (3.29)

In this thesis the optimum model parameters were found by using the Tevenberg-
Marquard (MOLER ¢t al., 1987) technigue to minimise £, This method was chosen as
it converges rapidly to the minimum, The programs for the various organs discussed
in. this thesis are presented in Appendices L.1, M.1 and N.1.

3.6 Conclusion

Equation 3.16 is general for any imaging experiment of a single input organ and
provides a framework for researchers to include other models of organ perfusion. Any

parametric model of an organ must implicitly embody all the constraints associated
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with A(2), I(£) and H (£) and this in turn places limits ¢.; 7+ deconvolution behaviour

according to a model of tracer transport.

The method of modelling the measured input curve to facilitate deconvolution (sec-
tion 3.4.1) has not been implemented because of the assumptions and constraints
that are associated with the techunique., The negative component seen in ma.ity de-
convolution studies is absent in the deconvolved curves which use this technique,
The absence of the negative component is probably a result of the assumptions and
a priori information inherent in the model of the input curve (section 3.4.1). An
alternative way to handle the negative component associated with the deconvolution
of imaging data is addressed in Chapter 4

The nolse generating nature of deconvolution has been shown to be a major prablem
and the Prediction Frron Tlentification Method (PEM) has rather been chosen to
compate the experimental data with data predicted by mathematical models, The
predicted data is obtained by simulating the model with the measured inpui to the
' organ.. This data can then be compared to the measured orgax data. This method

is affected by noise to a far lesser extent than non»pé;i*a-matric deconvolation.
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Chapter 4

Identification of an Aorta Background

for -Organ. Scintigraphic Studies

Tﬁe previcus chapter showed that the deconvolution of dynamic imaging curves of
the aorfa and any single-inpuf organ wus related to the organ internal age density
(IAD). Conservation of mass and residence time déﬂsity (RTD) theory was used to
place limits on the behaviour of the organ IAD and thus the deconvolved experi- '

mental data.
In particular it was shown that:

o IH)20, [RIMdt=1, I(0)=1i.

o I(t) must be continuous {not necessarily smooth}), monotonically decreasing
and bounded from I(0) = 1/7 to I(c0) = 0. |

A number of renal deconvolution studies exhibit a negative coniponent in the IAD.
TkLis is typically attributed to noisy data (JunI ef al., 1088; Van HurrEL, 1992).
The purpose of this chapter is to investigate this issve more carefully.

4.1 Aorta Background

To address the negative component in deconvolved curves one has to analyse the

implicit assumptions that have besn made with respect to radiation and photon
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counts from tissue background and the removal of this background contribution
from experimental resulis of organ imaging. Background tissue radiation or photon

count correction assumes that:

¢ One can find a region which has tissue similar to that found amterior and
posterior of the imaged aorta. Tissue background can then be measured and
subtracted from the aorta data.

» There is no venous blood supply above or below the imaged aorta.

¢ Bl.od flow in the aorta behaves in a “plug flow” manner with zero transit time
(ZTaorta(f) = 1, OF Raaria(t) = §()). Thus from equation 3.16, Ci, equals the
aorta a.ctivitj/tim_e data. In general the fluid velocity profile in large vessels
is parabolic in nature. The dispersive effects in these vessels is however Likely
1o be small relative to that in other organs and thus the effect of this velocity

profile on the aorta measurement is not addressed in this thesis.

Using equation 3.21 we can define the aorta background by:

Cohcasurt = Ot + (Cltuat  Fres(?) (4.1)

e C8 ppeured - Experimentally measured aorta 'activity/time curve,
mol.m™3 ' | '
€% iuat - Tracer within the aorta, mol.m=3
¢ :~ Fraction of tracer within the aorta that flows through back-
ground tissue, dimensionless
Loeas(t) - Internal age density (TAD) of tissue anterior and posterior
of the imaged aorta. One can consider the tissue to be an
imaged single input system with the aorta as input to this

system, s~1

In principle given { and Tyes(f) we could use equation 4.1 and perform deconvolu-
tion to determine CF, ;. This turns out to be numerically difficult because of the
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discontinuities in 8 o nsiwed A Foear{t) and the noise generating nature of deconvo-
lution. The rest of this chapter is devoted to determining functional forms of ¢ and

Fyess(?) and the use of these fanctions to approximate C% . 4.

In order to simplify the discussions in the next two subsections, consider Figure 4.1
which represents a transaxial section through the abdomen. In this figure, a ra-
dioactive tracer is iritially introduced into the aorta in the cardio-thoracic Tegion
and shortly afterward the tracer can be observed within the acrta in the abdomen.
As time progresses, the tracer can also be observed in other arterioles within the ab-
dominal caﬁty. At even later times, tracer can be observed in the aorta, arterioles
and venules of the abdominal cavity and in vessels ouiside the abdominal cavity.
From Figure 4.1 it is clear that a camera imaging the aorta would observe the fracer
in the acrta as well as tracer in the ba.ckgroﬁnd tissue. The measurements would

show more material in the aorta than is actusily present in the aorta.

t=0+ t = small § t=large

Figure 4.1: A iracer experiment where tracer is introduced into the aorta in the
cadio-thoracic cavity and then monitored at a transaxial section through the ab-
dominal cavity. The camera images all the tracer below it.

4.1.1 A Proposed Model of Background Tissue

Background tissue activity/time curves typically rises rapidl:," in the same manner
as the aorta activity as shown in Figure 4.2. This is expected since any background
tissue region has an a.rtena.l supply. As discussed above, shortly after the radioactive
tracer leaves the left ventricle of the heart, the tracer may be found primarily within

e aorta. Thus the tissue background contribution in the aorta is likely to be sm?ll
at the beginning of the experimient. As the experiment progresses, tracer material
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moves into tissue anterior and posterior of the aorta and the tissue background con-
tribution to the measured aorta increases. It is in principle very difficult to measure
a true tissue background activity/time curve because any background tissue cho-
sen near the aorta contains large arterioles which have similar charactetistics to the
aorta. One might then postulate a suitable, aorta background curve of equation 4.1

agy

- | » |
;wfsumd = G:cmal + K % (1 - .*‘-?»‘P(g)) _ (4'2)
o
v

where _
K i~ Background activity contribution from tissue anterior and

posterior of the imaged aorta, mol.m=3

Te ~ Mean confidence time of the aorta measvrement, s

Equation 4.2 represents & small tissue background contrihution. to the aorta mea~
surement at early times which then increaéés to an asymptote as time progresses.
The above modal is prob#bly the simplest one that has these charaéteris tics, The
‘values of 7, and K can be determined according to the procedure cutlined below in

section 4.2. The effacts of this adjustment on & typical deconvolved curve is shown

:
AR | Subrenal Background
Counts/ |
pixel.s
\';W“‘(“;W“‘n‘kwmﬂ\wx,wr'“
1]

*

Time :
Figure 4.2: A comparison of measured aorta and tissus background é.ctivity{time

curves

in. Figure 4.3.
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~ RTD Modal
-«- Asymptotic Model
— Raw Deconvolution

Renal
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Figure 4.3; The effect of three methods of aorta correction on a typical renal de-
convolution study. 5 {4)di = 1for all curves. An Internal Age Density must be a

monotonically dec_.rea'si.:lg--ﬁnction. The large initial dip in the internal age density
of Figure 4.2 violates this constraint and is a Tesult of vascular background in the

organ concentra.tion/time curve. 'This issue is addressed in Chapter 6.

4.1.2 A RTD M-~el of Tissue Background |

We could alse. attempt to model the background fissue taking into account the
anatomy. Con;liider Figure 4.1 where a tracer is introduced as a perfect dirac § into
the worta in tl‘le cardio-thoracic region. If we were to plot the fraction of tracer that
caine through the cross section in the abdomen as & function of time, then we would
probably see the curve shown in Figure 4.4. In a radioactive im.agin..g experiment
of the aorta, we observe all the tracer in Figure 4.4 as the aorta. This is however
erroneons since only tracer within the aorta enters an organ. The measurements
show more tracer in the aorta than is in the vessel. Ome way to deal with this
phenomena is to propose a RTD) for the blood vessels anterior and posterior of the
aorta, We can then convolute G2, , with t]ns RTD using equa.tlon 4.1, In this way
we generate an aociia background representation. We choosa a gamma density for
Tuess(t) (s00 sution 1.6). Thus Fyess(t) is given by: |

J.f s --tf;'bg
1" iﬂ- ﬂ .
Lyeas(t) = :_Lt (4.3)
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'I'issﬁe Vessels

Time

Figure 4.4: Venous Return Bistogram

where
# 3 The skewness of the density and is chosen as n = 3§ betause

there is likely to be a large length distribution of blood ves-
sels (Section 1.6)
Tot - Mear transit time of the background tissue (Section 1.6)

Tvess 15 volid for a recirculating system (Chapter §). To perform the calcustion
we recall that the aorta measurement should be accurate at the beginning of the

experiment je. C3 ... .q & C%y, for small £, If r is large, then:
£ s ¥ Tvess(t) ® Copprured ¥ Tvess(t) . (4.4)

We now substitute equations 4.4 and 4.3 into equation 4.1 to determine Cactual,
The values of 1, and ¢ are determined according to the procedure outlined below
in section 4.2. This has been done with renal activity/time data and the resulf is
shown in Figure 4.3, Tissue background determined by this method is lustrated in
Figure 4.5.
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Figure 4.5: A comparison of aorta backgrounds
4.2 Determination of Background Tissue Model Pa-

rameters

The parameter values associated with the functional forms of { and Jye.(t) above

are defermined in this thesiz by:

1. Deconvolving the observed activity/time data of an organ under investigation
with the measured aorta activity/time data.

2. Adjusting the functional forms of { and Jyes(t) to minimise negative compo-

nent of the deconvolved curve,

In the liver and spleen experiments this technique is applied to the spleen and CZ,,. 4
is then used for both the spleen and the liver. In th~ kidney, the healthiest kidney is
chosen for this procedure and €3, is then applied to both kidneys. The programs
to perform the aorta adjustment appear in Appendix P.1.

4.3 Conclusion

The negative artifact semn in organ deconvolution studies seems to be due to inac-

curacies in the aorta meagurement, In particular, due to background tissue activity,
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more material is mmeasured in the aorta than is actually present. This is compounded
by the fact that no background region can be chosen that represents the tissue an-
terior and posterior of the imaged aorta since any background tissue is vascular in
nature and thus contains small arteries which have similar chatacteristics to the
aorta. The unthinking subiraction of such background data from the aorta can re-
move accurate information from the beginning of the aorts curve while remaving an
insufficient background contribution which is present in the latter part of the carve.
Two different methods for handling this problem have thus been preseuted that take
account of the negative artifact and both effectively arrive at the same result. The
second method suggests that the choice of the gamma density for flow in capillary
and vessel beds is a valid choice which supports the results of THOMPSON ef o,
(1964). The programs to perform the aorta adjustment appear in Appendix P.1.
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An Anatomical and Physiological
‘Medel of the Kidney

5.1 Introdaction

Renal radioactive tracer studies have been used as non-invasive means of identi-
fying renal pathologies. Renal function is then characterised by the activity /time
curves obtained from dynamic imaging of the aorta and kidney. Typically, the tracer
9mTe. diethylenetriaminepentaacetic acid (®**™Tc-DTPA ) has been used to iden-
tify glomerular function abnormalities. This substance behaves as an ideal tracer:
does not chemically interact with the body, low in t:dncentra.tion, follows plasma
and urine flow {bulk or diffusional) and is distinguishable from the body and thus

 measurabla,

As shown in Chapter 8, the deconvolution of measured aorta and kidney activ-
ity/ time curves produces an impulse response termed the internal age density. This
internal age density can then be used to calculate transit times which indicate organ
function (FLEMING, 1988, BriTTON & NimMon, 1989).

Several non-parametric, renal deconvolution techniques reported in the literature
contain assumptions and drawbacke which have prevented their routine clinical use
ag reported by Junl, et al. (1988). The matrix method has the disadvantage in
that errors in the early data points are reflected throughout the entire curve (JUNT &t
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al., 1988). The uncerﬁainty in the calculation of traneit thnes can only be reduced
if random noise is filtered out (FLEMING, 1988). Fitting of an zrbitrary function to
the deconvolved curves, requires a prior kuowledge of the expected result (JUNT ef
al., 1988). Juni ef al. (1988) extended the input and response curves by appending
& smooth curve with a gradual tapei' to zero. This produced smoother deconvolu-
tion resulis however this technique is theoretically questionable (section 3.4.2). In
injtial attemﬁts to obtain kidney parenchymal transit times, the methods of BriT-
TON AND NIMMON (1989) were used. However, random noise appeared to be a
major problem and sven with data bounding {D1rry AND CoORFIELD, 1976) and
filtering (FLEMING, 1988) there was limited confidenca in the minimum transit time
{MinTT) estimation. I} .vative methods could not be used ta deterraine the time
of the end of the plateau of the renal reteation function (BLAUFOX, 1980), a5 the

noise present caused significant fluctuations in the gradient evaluatiors,

In this chapter a physiological and anatomical flow model of the kidney is developed
to investigate parametric deconvolution. The ﬁaramétric approach is adopted in an
attémpt to reduce the noise magnification effects that appear to be inherent in most
non-parametric deconvolution techniquas (Juni et al., 1988) which in turn obscure
physiological information. The model provides the basis for the ideatification of
physioiogical and anatomical parameters from experimental data. The model pro-
vides transit time, reabsorption rate and the filtration fraction information for an
individual kidney.

5.2 Development of Parametric Model

‘We wish to model the renal internal age density from a physiological and anatomi-
cal perspective using the tracer *»Tc.DTPA . This should allow us to identify the
specific physiological flow mechaaisms within a typical nephron. We begin by exam.
ining the anatomical representation of a nephron with collecting ducts as shown in
Figure 5.1. Blood with tracer enters the kidney through the renal a.rtery.which then
splits into the various renal arterioles. The concentration at each split point is the

same and if we assume that the lengths of the arterioles are approximately equal,
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and the flow velocity is relatively high, then the conceniration of the tracer :a
function of time for every afferent arteriole will be ronghly the same. If the lengths
differed substantially and the flowrate was small, then each glomerulus would have
an input that differed from the next by some delay time,

Diatal Tubule Proximal
. Tubule

Glormerius

Afferent
Arterfole

Loop of Betile

Figure 6.1: Anatomical Structure of the Nephron (Redrawn from Smith: The Kid-
ney: Structure and Fanction in Health and Disease,, Oxford University Press, 1951)

The blood in the afferent arteriole enters the glomerulus and a fraction of the plasma,
F1, s filteyed. The rest of the blood flows through the efferent arteriole and into the
perituﬁula?r capillaries, The peritubular capillaries have a broad length distribution
and the blood mixes in a “segregated” manner (also called macromixing). Segregated
mixing implies that elements of fracer of different ages meet at a common point
(ZWIETERING, 1959; GLASSER AND JACKSON, 1984). Appendix C.1 shows that the
RTD associated with this mixing is a result of the length distribution of cepillaries,
g(L). I we assume that the length distribution of these vessels is not large then
we can approximate the length distribution by the gamma density for the reasons
discussed in section 1.6, A value of z = 2 has been chosen for this density with time

Typically called the “filtration fraction”, ::19% (GuUYTON, 1986, P¥ 398)
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constant, 7 2 (see equation 1.6). The renal blood flow RTD is thus given by:

fpooa(t) = j——e' A | (5.1
- ie”‘”"’b
MTT; = / t gt =2 (5.2)

where '
hplood - Residence time density {(RTD) associated with blood flow

through the kidney, s~*
- MTT, :- Mean transit time of the blood in the renal parenchyma, s

Let us exumine the tracer inside the glomerulus as it moves down the proximal
tubule. The tracer, %™ Tc-DTPA , does not move out of the tubule in any substantial
quantity and is thus carried by the flowrate of water/urine inside the tube. Tt can
be shown thé.t if the net water flow is always out of the tubules, then thiz system
can be modelled as a series combination of plug flow systems (LeveNsPiEL, 1972)
given by:

Brnte(t) = 6(2 — 73) # 8(t — raem) * 8(t — rarm) * 6(f — 7a) (5.3)

whete
Riubule & Renal tubular residence time density (RTD), s~1

T - Proximal tubule mean transit time, s
rdLy ¢~ Descending loop of Henle mean residence time, s
7oLy i Ascending loop of Henle mean residence time, s
73 - Distal tubule mean residence time, s

¥ «. Convolution

Corhbining the above residence times into a single parameter, 7, gives:
Batnie(t) = (2 ~ Ten) (6.4)

The parameter, 7y, represents the mean residence time of tracer from the point of
entry at the glomerulus, to the exit point of a nephron. We note that the flowrate
in the descending loop of Henle changes because of the reabsorption of water into

1A physically messured distribution could he substituted if available
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the pesitubular capillaries. From Appendix D.1, Tarss = in[gusy—1] where Qo
is the initial loop of Henle flowrate, Viy is the descending loop of Heule volume
and ¢ is the net flow out the loop of Henle and into the interstitial space per wnit
volume.  Thus in principle, the model includes a parameter, a, which could be
used to determine whether this reabsorption mechanism functions properly. We also
note that a similar analysis fo that in Appendix D.1 could be used to identify the
residence time density of a tracer which is actively secreted hy the proximal tubutar

system. This however falls outside the scope of thiz thesis,

Segregated mixing occurs at the points where the distal tubules meet the collect-
~ ing duct and where the urine meets in the inner calyces. In addition, there is a
length distributions of the two nephrons of the kidney (cortical and juxtamedullary
nephrons). It is assumed that the gamma density with z = 2 in equation 1.6 should
characterise the behaviour of this system. The time constant associated with this
gamms density is represented by 7. 2. T]Jé collecting duct and inner calyces mean
transit time associzted with 7. can be determined from equation 17 and is given
by: | _

MT T = 27ec (5.5)

Thers I8 also a small delay time associated with flow down the shortest collecting
duct, 7eq. Combining these terms, the model of the parenchymal RTD is given by
equation 5.6. A flow representation of equation 5.6 is shown in Figure 5.2, In deriv-
ing equation 5.6, the approximation has been made that mixing in the peritubular
capillaries and collecting ducts/inner calyces are similar for both types of nephrons.
The filtration fraction, f, is also assumed io be the same for both nephrons as it is
related to blood pressure,

psendema(t) = 0f8(8 = (e + ) + B - a1 - )B4

(1= @)t — (ry + 7)) # B2 4 (1 - @)(1 - )™
' (5.6)

3 A physically messured density could be substitnted
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where - _
hypasanchyma(t) - Residence time density (RTD}) of the renal parenchyma with

both the cortical and juxtamedullary nephrous, s™1
o :- Fraction of renal blood which fiows to the cortical nephrons
and as aopposed fo the juxtamedullary nephrons (1 — «),
dimensionless
- Tye 3= Cortical nephron tubule transit time, s
7y - Juxtamedullary nephron tubule transit time, s

) :
The comibination of nephrone with collecting ducts and inner calyces is termed the
renal parenchyma. We note that in deriving equation 5.6 we have made 2 large num-

1o f N I .

3

CORTICAL NEPHRON

!, 6(t — (Tec + o)) [ *’t':” —
o T
o () I—
1~ f et
I ]
l-a
IUXTAMEDULLARY NEPHRON

¥ PRI L -

Figure 5.2: A flow representation of equation 5.6.

ber of assumptions about the flow in various sub-systems, Some of these assumptions
have not really been tested, but if not made the numbet of model parameters would
becoms excessive. One could of course have made other assumptions and the ap-
proach that has been taken allows ciher researchers to try other alternatives. In the

end though it is not reasonable to try and extract too many parameters from the
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measurements, Even this equation probably has too many parameters as it stands.

We can now use equatior 3.8 to determine the shape of the parenchymal internal
age dengity. The IAD for the parenchyma is shown in Figure 5.3 with the associated
parameters and is related to the renal impulse retention function discussed in the
medical literature using equation 3.20 (NmuMox et al., 1981; BrirToN & Niu-
MON, 1989). The minimum trapsit time through the renal fubular system, 7. +Teds
is primarily affected by the cortical nephron. Geuezm:ﬂy the noise in scintigraphic
experimental data obscures the juxtamedullary minimum transit time, 74 +7eq (Fig-
ure 5.7). The clinical significance of this part of the curve thus becomes subject to
a large error. It s for this reason that the model represented by equation 3.8 has
been simplified by setting a =~ 1. This decreases the number of pé.ra.meters and
eésentia]ly fits ihe nephron with the minimum trsnsit time. The approximation
may imply that the calculated ;:nea-n transit time of the renal parenchyma may be
agsociated with a small error, This is also the case when performing non-parametric

" deconvolution since the juxtamedullary nephron is not accounted for (NiMMoN el
al., 1981; Brirron & Nimsmon, 1989). The TAD of a single nephron (o = 1)
is shown in Figure 5.4 and correspords to deconvolutions fypically observed in the
literature, Figure 5.7 indicates that the single nephron model seems fo sufficiently
characterise the domina.nt behaviour of the kidney. '

1747

I(t) |

0o Tt Tt
Time |
Figure 5.3: Internal Age Density of Medullary and Juxtamedullary Nephrons in
parallel
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Figure 5.4 Internal Age Density for a single nephron

By combining the delay components of the nephron and taking the limit as & — 3,
equation 5.6 reduces to:

e~ te=tlm

‘ffng
ZtA-5

hoombined(t) = fo(t—n) (8.7)

'rf,‘
where
7; = Mean transit time through the shortest nephron and shortest
length of collecting duct ie. Tiq -+ 7oa, 8
hcombined(t) - Residence time density (RTD) of the average renmal

parenchyma, s~1

The distribution of nephron lengths is lumped into parameter Tee, Tee also includes
the segregated mixing effects associated with the points where the distsl tubules

meet the collecting duct and where the urine meets in the inner calyces.

Based on equation b.7, the simplified flow representation of the parenchyma is pre-
sented in Figure 5.5,
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1~ te=t/m
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G A R

Figure £.5; Simplified Flow BRepresentation of the Parenchyma.

5.3 Clinical Parameters and Indices

The mean transit time of the parenchymal model, including the vascular compd
nents, may be calculated ﬁaiing eanation 3.21 as follows:

KMTTy 0 = fo ¥ hoombined(t)dt - (5.8)
_1=-f[®a b j_. * _ ~{t=T)/Tee
= L 24T dt 4 ) j; it —r1)e dt (5..9)
= 21~ F)n+ f(m + 270) (5.10)

As we are only interested in the mean parenchymal transit time, the contribution of
the vascular component may be ramoved by sefting f = 1 in the above equations.
It therefore follows that,

!

= 73+ MTTe (5.12)

Asg defined by BrITTON ef al. (1987), the Minimum Transit Time (MinT'T) corre-
gponds to the length of the plateaun in the renal refention function. This corresponds
to 7y as derived previously in the model. Recall that 7 is the transit time through
the shortest nephron and shortest length of collecting duct.

BrrrroN et al, (1987) also defines the parenchymal transit time index, PTTI, as

PTTI = KMT Tparen ~ MinTT (5.13)
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. As outlined by BRITTON et al. (1987), the MinTT is removed from the mean
parenchymal transit time, to account for variations in urine flow between patienta.
~ equation D.5 in Appendix D . demonstrates the non-linear relationship ‘between

urine flow and minimum parenchymal transit time.

The PTTT can be calculated fiom the model parameters using equation 5.13,

PITI = 734 2Tec— Tt =2 X Teg . (5.14)
= MTTe (5.15)

The published resulis indicate that prolongation of PTTI is a sensitive indicator
of the presence of obstructive nephropathy (BRITTON et al., 1979). A common
interpretation of a raised P'T'TI iz that it indicates not only iar-alongation of transit
time, but also an increase in the spread of these transit times. From equation 5.14,
it appears as if the PTTY is independent of the prolongation of transit time. Any
prolongation of transit time will be incorpdra.ted into the model parameter, 7:.

This result differs from the conventional interpretation of the PTTT, aﬁd raises the
question of the PTTI.’S validity as a measure of the tubular transit time prolonga-
tion. In the initial stages of obstructive uropathy, the rate of reabsorption can be
assumed to be approximately cont  «t for all nephrons and the PTTI will be within
the normal ra.nge.. 4&3 the disease progresses and tubular dysfunction develops, there
will be a distribution of reabsorption rates in the nephrons. This distribution of re-
abgorption rates wili manifest itself as an increase in the spread of transit times. The
model parameter, Teo, will reflect this increase as an apparent change in the length
distribution of nephrons and mixing points {Appendix D.1). The PTTI described
by equation 5.14 will then indicate an obstructive nephropathy,

From equations 5.6 and 5.7, the renal model*tontains information about the fitration
Iraction, f. The glomerular filtration rate (GFR) (GuyToN 1986, Pr 398) is ‘the
qua;ntity of glomerular filtrate formed each minute in all nephrons of both kidneys’, -
i.e. the sum of the individual kidney gloi:nerula.fﬁltration rates:

GFR = GFRu + GFRugn © (5.18)
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The individual glomeruler ﬁltraa':fion rates GFRjeq and GFRyene can he related to
the respective filiration fractions, fierr and frgnt, by the renal arterial flowrates to
each kidney. GuyTowN (1986, PP 305) defines the normal renal fraction (NRF)
a6 the fraction of cardiac output (CQ) that flows to both kidneys (approximately
21%). Asswmning an equal split of renal arterial blood flow, the GFR, may thus be
approximated by equation 5.17. | |

" GFR = CO x _I:‘f_l;_-F_ X (fuots + fusgne) (Lmin™) (517)

5.4 Data Pre-Processing

5.4,1 Renal Background Elimination

Chapter 4 showed that typical background activity /time curves behave in a similax
manner to aorta activity /time cnrves. One can then pose the question whether the
aorta curves cannot be used to detennine renal background. This assumes that the
 tissue above and balow the imaged parenchyma is vascuiar in nature. If this is frue,
then the arguments of Chaptes 4 can he used to determine a background measure
for renal studies. This is done for a particular }idney according to the following

stepa:

1. T he aorta curve is time shifted ro that the peak in the aorta and subrenal
background activity/time curas correspond, This accounts for the fact that
it takes a certain amouni of time for the tracer to flow to the background tissue.

The peak in the subrenal tissue activity/time curve containa this information.

2. The time shifted aorta is scaled so that the average of this curve corresponds
to the average of the measured backgrouns histogram. This scales the val-
ues of the time shiffed aorta activity/thne curve so that they have a similar

radioactive contribution to the subrenal background tissue.

3. 76% of the time shifted, scaled aorta is used as background. The value of 75%
results from the fact that in the lateral subrenal region, the thickness of the
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body is approximately 10cm, while the kidney is approximately 2.5cm thick
(THIBODEAU, 1987).

The sorta and background peak at different times, This implies that there is a delay
time associated with the flow of blood from the aorta to the afferent arterioles, This
time delay, ragsy has to be included in the model of the renal parenchyma. The
adjustment fo equation 5.7 is made by: '

 Badjustea(t) = Roumbinea(t) * 6(t — Taelay) (5.18)

The value of 74y it determined from experimental background data.

5.4.2 Parameter Estimation

To obtain the initial model parameter estimates, conventional non-parametric de-
convolution was performed 4 o approximate the renal retention fanction, Initial

estimates of the model parameters f, 75, 1o and 7¢ were calculated as follows,

» The filiration fraction, f, is typically 19% (GuyToN, 1986, Pr 398).
¢ The blood time constant, 15, was estimated at 4s.

s 7 (MinTT), was estimated by detecting the end of the plateau in the renal

retention functibn.

¢ The parenchymal time constant, 7., was found uSing the result that the Mean
Parenchymal Transit Time KMT Tyaren = Tt +2 X Tee, ad the KMT Ty a0 Was
estimated as the time at which the plateau reached half its initial height,

The non-parametric deconvolution method does not to have to be very accurate, as
the initial estimates provide only a rough starting point for the modsl parameters.
In this case, a filtered fas; Fourier transform (FFT) method (NiMMoON ef al., 1981)

was selected to perform the non-parametric deconvolution.

* According to the techniques outlined in section 2.3,2
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5.5 Results

The simulation of the model deseribed by equations 3.16 and 5.7 was performed
according to the techniques outlined in section 3.4.3. The clinical indices were de-
termined using MinTT = 7, and equations 5.11 and 5.14. A typical fit of the
 simulated model is shown in Figure 5.6 and the corresponding parameters for the
case studies are shown in Table 5.1, The simulated model fit to all the subjects
tabulated in Teble 5.1 is displayed in Appendix Q.i. The x* goodness-of:fit test
(section 2.3.3) shows that the renal model represents the distribution function of
all the data displayed in Appendix Q.1 (P < 0.05). The parenchymal 1AD from
equation 3,16 is compared to the 'IAD. obtained from the non-parametric deconvee
lution of the parenchymal activity/time curve with the background correcied aorta
acl;ivitf/tima curve in Figure 5.7. The mean absoluie correlation matrix for the
fitted model parameters is shown in Table 5.2. Axn attempt was made to try and

Counts/ |
Pixel.s

Figure 5.6: Tyﬁical fit of tiie model to the exparimental renal parenchymal activ-
ity/time curve. —— Model, o Experimental data

scale the renal activity/time data in & similar manner to that performed on the liver
activity/time data (section 8.5), These attempts were unsuccessful (Appendix G.1).
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Table 5.1: Renal parameter values for twelve normal kidneys and four diseased
kidneys, *Significantly different from normal, P < 0.05. SEM represents the

gtandard error of the mean.

- Eitted Parameters |  Caleulated Parameters
Normal Tw T MTT, f  MinTT EKMTTimen PTTI
| (8) () () () (s) (s)
1 128 1123 7.2 0228 1123 138.1 25.8
9 19.2 1114 88 0230 1114 149.9 38.5
3 249 382 43 0117 382 88.0 45.9
4 167 680 7.9 0216 680 101.4 334
b 172 934 23 164 934 127.8 34.3
6 349 602 21 0148  69.2 139.1 69.9
7 377 437 83 0208  43.7 1191 75.4
8 168 627 59 0286 627 082 33.6
9 136 1417 645 0203 1417 168.9 27.1
10 133 1355 8.2 0306 1355 162.0 26.6
11 148 1227 6.6 0206 1227 152.2 20.5
12 145 1287 61 0211 1257 154.7 20.0
Mean 1971 9370 618 02171 93.70 133.13  39.42
SEM 2439 1043 0642 00168 1043 7,739 4.877
P <005 () 1880 7232 445 01164 72.32 53.62 3379
% Variation 124 111 104 77 11.1 5.8 124

Fitted Parameters | I Calcnlated Parameters
Pathology Tee 7« MTT, f MinTT EKMTTpawen PTTI
B & (s) (s) (s)
Left 1 21,5 637 18.0* 0130 637 106.7 43.0
Right 1 60.8* 689 154* 0.120 659 187.5*  121.6*
Loft 2 234 1073 208* 0.145 1073 154.1 46.8
Right 2 oo* oo 0.000*  oo* oo* oo™
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Figure 5.7. Model Internal Age Density (IAD) compared to Experimental IAD, ——.
Model I(t), o Filtered and deconvolved experimental data

Table 5., The mean absolute correlation matrix of the four independent fitted model
parameters T, Tt, MTTy and f respectively, for the values in Table 5.1, together

with the corresponding standard error of the mean for each matrix component ry.

1£0 0.949 £ 0,000 0.173 x 0.002 0.269 =& 0.008
0.949 % 0.000 10 0.282 + 0.003 0.382 £ 0.015
0.173 £ 0.002 0.282 4 0.003 140 0.443 + 0.019
0.269 = 0,008 0.382 + 0015 0.443 £ 0.019 140
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5.6 Discussion
Fuf the purposes of the discussion, the important renal parameters listed in Table 5.1
are graphically displayed in Figure 5.8.

CINormal MERight1 MRLeft 1 OO Right2 EZALeft 2
A

MIinTT MTT
944104 14307 449 217200168
{s) (s) {s}

Flgure 5.8: Some of the important renal parameters tabulated in Table 5.l.
*Significantly different fromx normal, F < 0.06. Lrror bars indicate the standard
error of the mean for the normal subjects, The other results are for the patients

with known pathologies.

5.6.1 Normal Subjects

Figures 5.6 and 5.7 show a reasonable correlation between the parametric model
and the experimental data, It is likely that the discrepancies between the model
and the deconvolved curve in Figure 5.7 are due to the (libbs phenomenon of the
FFT and the noise in the experimental data since there has been an attempt to
fo account for uncertainty in the aorta and parenchymal backgrounds (Chapter 4).
This indicates that the flow and mixing in the renal parenchyme can be adequately
deactibed by equations 3.16 and 5.7, The variation between the individual kidneys
far the parameters displayed in Table 6.1, while quite large, are likely to represent

normal variation between individuals,
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The correlation matrix is a measure of a model’s sensitivity to parameter variation
and a measure of the association between variables. The correlation matrix of fitted
parameters in Table 5.2 seems to indicate that the values in Table 5.1 are relatively
accurate since all of the off diagonal elements do 1ot exceed 0,9 (Beck & ARNOLD,
1977; Appendix L1}, This suggests that a four parameter model is adequate and
hence reinforces the likelihood that equations 3.16 and 5.7 adequately describe the

renal parenchyma,

From examination of the correlation mairix element 7z = 0.948, it is clear that
there is a relatively Ligh degree of correlation between the collecting duct and inner
calyces mean transit time parameter, 7cg (MTTo; = 2 * 7o), and the mean {ransit
time throngh the shortest nephron and shortest length of collecting duct, 7. The
correlation between these parameters is also apparent if one examines the first two
columns of Table 5.1; As 7., increases, 1 decreases and vice versa. There is there-
fore a fnctional relationship between these parameters. If one examines the model
structure it is clearly evident why these pazameters are likely to be related. The
mean transit time through the parenchymal component of the model, KMTTparon,
(Figure 5.5) is the sum of the mean transit time through the shortest nephron and
shortest Jength of collecting duct, 7, and the collecting duct and inner calyces mean
transit time parameter, 7o (equation 5.11), Thue while the estiziates of these two
parameters may change, KMTTpuren i3 Likely to be relatively invariant. The data in
Table 5.1 reflects this effect where the % variation of KMTTypren Within the normal
population is almost half that of 7 and 7. This indicates that KMT Tparen is ]ikely
to be a relatively accurate parameter, 7o is related to the parenchymal transit time
index, PTTI, by equation 5.14 and thus any uncertainty in 7, is reflected in the
PTTI. Although there is less confidence in PTTI and 7 than in KMTTyaren, the val-
ues of PTTT are consistently smaller than the values of 73 This is in agreement with
the values reported in ﬂle literature using non-parametric deconvolution (BRITTON
& Nimmon, 1989). Thus while 7. and 7 (and thus PTTI and MinTT) are useful
parameters which have an anatomical significance, the estimates of these ﬁarameters
are strongly correlated and so they should be used in conjunction with KMTTpuen
for the diagnosis of pathology using the techniques discussed in this thesis.

The other values of the correlation matrix are relatively. small. This implies that
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there is very little correlation between the parameters which desctibe the parenchy-
mal component of the renal model and the vascular component, Thus changesin the
parenchymal model parameters have little effect on the vascular model parameters.
Similarly, the changes in both the parenchymal and vascular parameters of the renal
model have litile influence on the filtration fraction. A]l these facts imply that the
filtration fraction, the parenchymal component and the vascular components of the
model are independent of one another, This is reflected in the the data tabula.ted,
in Table 5.1, Thus MTTy, KMTT,4ren and f are independent of one another and

ate likely to be relatively accurate estimates,

The ideal objective is to derive physiological parameter values by applying the math-
emafical model of the renal parenchyma to experimental data. In order to decide
whather the model descxibed above satisfies this requirement, we examine the normal
value of the renal filtration fraction. The renal filtration fraction is a physiological
parameter that represents the fraction of plasma in the afferent arteriole that is
filiered. This parameter can be directly associated with the anatomical structure
of the glomerulus and its pathology. Tha normal value of the filtration fraction is
quoted in the literature as f = 0,10 (GUYTON, 1986 PP398). This value is compa-
rable to the normal mean value of f presented in Table 5.1. Thus the model of the
renal parenchyma described above appears to have physiological significance. This
necessary requirement of model allows one to postulate that any significant deviation
from the normal parameter values is likely to indicate renal pathophysiology.

There is some disagreement as to the normal values of the parenchymal mean transit
time, KMTTpavem; and the parenchymal transit time index, PTTI, discussed in the
Yiterature and the values digplayed in Table 5.1. The normal range for PTTI dis-
cussed in the literature is 10-1568 (BriTroN & NiMMON, 1989) while the normal
range for KMT Tpaeen is 40-240s (BrirroN & NiMmor, 1989). The normal ranges
for PTTI and KMTTyaren from Table 5.1 are 6-73s and 80-187s (P < 0.05). Ac-
vording to the PTTI and KMTTporen criteria discussed in the literature (BrerToN
& NIMMON, 1989) the pathologies displayed in Table 5.1 fall within normal values.
The values that have been determined in the literature use non-parametric decon-
volution which may have a subjective component to the analysis (Chapters 3 and

4). This may explain the discrepancy between the normal range of values reported
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in the literature and those displayed in Table 5.1. The blood transit fine param-
eter, MTTy,, has not been measured or discussed in the literature. It is however
possible to postulate how t]ns parameter might change with pathology and the next
subsection explores this jssue in further detail. |

The twelve normal kidneys in Table 5.1 represent six different people and the
paired nature of the parameters is evident. Height and weight information were
- not recorded for the subjects that weze selected for renal evaluation (section 2.3}
and it was therefore not possible to determine whether a relationship existed between
transit time and height or mags. Ii is likely that such a relationship exists and an
investization on a large sample of subjects has already started. The hypothesis for
such a study is that the amount of renal filtration is likely to be directly related
to blood volume. There are many empirical relationships in the literature between
blood volume and height /weight data. The effect of sex on renal parameter values
has not been investigated in this thesis. This issue is Iikely to be resolved when the

effect of blood volume on renal parameter values is investigated,

5.6.2 Renal Pathology

The parameters associated with the pathologies in Table 5.1 have been obtained
hy applying the above techniques to two renal hypertensive patients with possible
renal] hypertension. When the renal artery is partially obstructed as in the case
of renal hypertension, the flow and pressure of blood to the glomerulur ducreases.
The decrease in renal perfusion pressure stimulates reniu release and the generation
of intrarenal angiotensin IL This in turn causes the vasoconstriction of the efferent
arteriole which further reduces renal blood flow. Furthermore, the constriction of
the efferant arteriole increases the resistance to outflow from the glomerulus and thus
raises the glomerular filtration rate. This control mechaniom attempts to maintain
normal glomerular filtration rate. The decreased blood flow to the kidney increases
the transit time of blood within the venal vasculature, During the initial stages of
renal hypertension, the filtration fraction increages.

As a consequence of increased filtration, the plasma colloid osmotic pressure within
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the glomerulus inereases (since none of the plasma proteins are filtered by the
glomerulus). The increased colloid osmotic presswre directly decreases the glbm.eru—
lar filiration rate and a progressive pathology develops wheie the arterial obstruction
increases, the osmotic pressure across the tubular membrane cells increases and the
glomerular filtration rate and filiration fraction ultimately decrease, The increased
osmotic pressure across the tibular cells with decreased blood flow eventually cauées
necrosis of the tubular cells, Scar tissue forms which obstructs the nephrons, These -
changes in the anatomical structure of the kidney should manifest themselves as
changes in the model parameters displayed in Table 5.1.

The renal blood transit time, MTT, is significanily prolonged (P < 0.05) in all the
renal hypertensive patients. The change in this parameter is consistent with the
above discussion where renal vascnlar obstruction and efferent arterial comstriction

combine fo reduce the flowrate and thus increase blood tramsit time through the
| kidney. The change in MTT;, is thus consistent \;.'ith the changing pathophysiology.

The parenchymal transit time index, PTTI, is related to the collecting duct and inner

~ calyces time constant, 7oe. This parameter also accounts for the length distribution
of nephrons. As the renal hypertension pathology progresses, a; number of nephrons
become obstructed both partially and completely. The transit time within such
nephrons is likely to int::rease and this in tmen is likely to be reflected as an apparent
increacge in the length distribution of nephrons. The elevated PTTI of the right
kidneys of the patients is significantly elevated (P < 0,05) and is thus consistent
with these arguments. The left kidneys still appear to have some normal function
and the small change in the PTTI of these kidneys reflects this function. The change
in PTTI is thus consistent with the changing pathology of the nephrons while also
addressing the altered physiology of these nephrons.

The minimum transit time, MinTT, corresponds to the minimum time that it takes
for the tracer {o flow from the glomeruius through the shortest nephron and section
of collecting duct ie. MinT'T= 7. During the development of the renal pathology,
it is likely that there exists a nephron whose function is essentially normal. The
minimum transit time is thus unlikely to be a sensitive measure of renal hypertensive

pathology unless the kidney is completely obstructed. It is thus not surprising that
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the values for all the active diseased kidneys are within normal limits. The most
obvious value of the above techniques is to aid and a.ssesé the pathophysiology of
early pathology since the identification of gross pathology is often obvious. The
assessment of early renal pathology nsing the minimum transit time is thus likely to
have limited benefit,

According o the above discussion, the filiration fraction, f, should increase in easly
renal hypertensive patients and decrease as the pathology develops. In the active
diseased kidneys, the filtration fraction is on the low side of normal. This already
indicates that the pathology of the renal hypertensives is sufﬁcienﬂy advanse 1 It is
possible that patients may not pregent with clinical symptome of renal hypertension
until there is 'signiﬁcant renal tissue damage and a decreased filtration fta.cﬁon. Thus
£ in conjunction with MTTy, may be very important indicators of impending renal
dizease. One might postulate that diabetics may benefit substantially by regularly
monitoring f and MTTy. If the filiration fraction rises above normal ard then
stea.dilj declines in such patients then perhaps preventative action could be taken
to avert permanent renal tissue damage. The application of the above techniques to
such a group of subjects is an area of future research. The significant change of the
filtration fraction obtained using the renal model is consistent with the pathology
as outlined above. This is further evidence that the renal model developed in this
chapter has physiological vonsistency,

The value of f for kidney 3 in Table 5.1 is relatively low. Further investigation
revealed that the subject had a below normal glomerular filtration rate. This is

also evidence that the renzl model appears to predict normal and abnormal caser
adequately.

5.7 Canclusions

The chapter proposes a parametric model for the study of the renal retention func-
tion. This parametric modei is less perturbed by noise artifacts which may be present
in deconvolved data than previous models and tharefore has the potential benefit
of providing more accurate clinical indices. The technique may also improve the
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nnderstanding of the physiology and pathology of the renal process. The parametric
- model of the renal pa.renchyma appears o consistently describe both normal and
abnormal pathophysiclogy. The model response corresponds to both the measured
and deconvolved renal data.

The filtration fraction, f, is likely to ba sensitive to renal background subfraction.
The values of f 0bi;a.inéd. from the experimental data, corresponds with those re-
ported in the literature. ¥or this rea.soﬁ, the renal background determined from
the aorta act_ivity {time curve appears to be a reasonable approximation, as it does
not underestimate the intravascular background ﬁithjn there . parenchymal activ-
ity/tims curve (section 2.2.1). The renal blood transit time parameter, MTT;, has
 been shdwn to be a potentially useful dinical index for the determination of renal
vascular disease. o

The parenchymal transit time index, PTTY, mean parenchymal transit time, IQI‘I"I‘M,
filtration fraction, f, and mean blood transif time, MTT}, all appear to be sensitive
 messures of organ pathology. Dxaglmstic mforma.tmn obtained nsing ‘the PTTI must
however he correlated with KMTTMW. The mintmum trassit time, MinTT, has
been shown to be a poor indicator of renal pathology.

In conclusion, parametric deconvolution of the renal retention function has been
shown to be robust and provides consistent physiojogical information not provided
by the conventional non-parametric methods. Further clinical research is however
required to validate the use of the model parameters as clinical indices. In addition,
clinical work is required to refine the estimate of the ratio of background tissue
thickness to organ tissue thitkness.
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Chapter 6

~An Anatomical and Physiblogical.
- Model of the Spi{een

6.1 Imtroduction

Hepatic fanction can be characterised by the activity/titme curves ohtained from
dynamic imaging of the spleen, liver and aorta. In this chapter, anatomical and
physiological information is used to determine a model for the Internal Age Density
(IAD) of the Spleen. The modelling approach characterises the spleen in terms of
anatomical and physiological parameters. The model is filted fo experimental data
abtained from eight normal, healthy volunteers. Statistical methods are then used
to verify the model.

6.2 Anatomy and Physiology of the Spleen

Consider a section though the spleen as shown in Figure 6.1. Blood with tracef
enters the spleen through the splenic artery which ihen branches into the trabecular
arteries. The trabecular arteries follow the comnective tissue trabeculae. Central
arteries then branch off into the spleen parenchyma and are surrounded by a sheath
of lymphocytes 1, The concentration at each trabecular artery split point is the same
and if we assume that the length distzibution of branch vessels is small, ar.. ke flow

1Als0 termed white pulp arteties
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velacity is relatively high, then the concentration of the tracer as a function of time
for every central artery will be roughly the same. If the lengths diffared substantially
and the flowrate was small then each central artery would have an input that differed
from the next by a delay time (Chupter 3). Thus we may consider a series of parallel

systems such as the unit shown in Figurs 6.1,

Marginal zone sinuses Open Circulation

Figure 6.1: A section through the Spleen; S, Venous sinuses; PWP, peripheral white
prlp; PALS, periarterial lymphasic sheath. (Redrawn from Greep R.O., W *s8 L.t
Histology, 3rd ed, McGraw-Hill, 1973)

There are two types of blood circulation in the spleen parenchyma namely:

Open Circulation Blood leaves the vascular compartment. Blood can move from
the central artery and open into the peripheral white pulp (referred to as
white pulp hereafter), marginal zone sinuses or the rad pulp. Blood percolaies
from the white pulp of lymphatic tissue into the marginal zone sinuses where
mactophages engulf foreign material. The blood then percolates through the

red pulp into the venous sinuses,

Closed Circulation Blood remaine within in the Llood vessels. In this case the

blood in the central arferies empties direcily into the venous sinuses.
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" The venous sinuses join o form the trabecular veins which empty into the splenic

vein.

6.3 Flow in the Spleen

A flow representation of the proposed model of the spleen is shown in Figure 6.2, A
blood fraction, g, remains in the closed circulation. The rest of the blood flows into
the open circulation, A fraction of open circulation blood, %, flows into the white
pulp while the rest flows into the red pulp. The open and closed cireulation meet in
the sinusoid where mixing oceurs. The parallel sinusoids join the trabecular veins.
We assume that there is a large length distrilsution of trabecular veins before they

all combine to form the splenic vein.

Byhite puip
| OPEN CIRCULATION
%1 -4q)
hﬂlll‘ L. ona
(i e ial
(1—g)(1-%)

1—g¢ CLOSED CIRCULATION

Gilt) K
— ) Peapitsis L2

Figure 6.2: Flow Model of the Spleen



Chapter 6 ' _ 70

6.3.1 Flow in the Open Circulation

Blood that enters the white puly percolates between the cells into the marginal zone
ginuses. The marginal zone sinuses essentially define a bdrder between the white
~ pulp and the red pulp. Blood from the central artery also empties into the Iﬁaxgina.l
zone Sinuges and mixes with the blood from the white pulp. The mixing and bypass
has not been inclnded in the model because of increased complexity which would add
more parameters to the model. Instead, it is assumed that marginal zone sinuses are
the point of distinction between the white and red pulps and, that no appreciable
mixing occurs here. Thus blood that flows into the marginal zone sinuses from the
central artery is assumed to behave in the same mannsr as blood from branches of
the central artery that terminate in the red pulp.

6.5.2 Flow Fractions in the Spleen

To develop bounds on the split fractions, g and k we consider blood .ﬂuw in the
open circulation. One conceptually expects that blood flow through the white pulp,
into the marginal sinuses and then through the red pulp must encounter a greater
resistance to flow than blood flowing through the red pulp only. It i thus likely that
g > 0.5 and 5 < 0.5,

6.4 Mixing in the Spleen

LevENSPIEL (1972) has shown that flow in a packed bed system (a column of
particles) can be approximated by plug flow with a small amount of dispersion. In
such a system the fluid flows through a tortuons path in the packed column. The
degree of dispersion depends on the diameter of the bed, the fraction of volume
unoccupied by solid material and the fiowrate into the system. Inm this thesis, we
assume that bluod flow through the red and white pulp tissue of the spleen closely
apprOMates the flow of fluid in packed beds. Thus we aseume that the splenic
tissue is arranged like particles of solid and that the blood percolates through this
structure in close contact with the splenic tissue. The degree of dispersion is assumed
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to he small and the flow of blood through the splenic tissue is approximated as plug
fiow in natare. Thus (Chapter 3):

ma—srp(t) = 6(2 ~ Tir) (6.1)
Puprrp(t) = 8(t — ) (6.2)

where
8(t) - Dirac’s delta

Tine - Blood transit time through the red pulp of the spleen -
Tw i~ Blood transit time thiough white pulp of the spleen
Ronpesen Residence time density (RTD) of blood flow through the red |
pulp of the spleen, 572
huwpmsrp - Residence ti:he density (RTD) of blood flow through the
white pulp of the spleen, s~ '

All the blond meets in the venous sinusoids where mixing occurs in the femus
capillary network because of the length distribution of vessels. Thus the mixing
in the venous sinusoids coupled with the mixing effects associated with the length
distzibution of trabecular veing is.modelled by the gamma distribution (equation 1.6)
with z = £, thus: .

ottt ()= o567 | (63)

where
73 - Time constant associated with blood flow in the venous si-
nusoids and trabecular veins of the spleen
Freapttariens {t) - Residence time density (RTD} of blood mixing in the venous

. alnueld
sinus and venous capillary network of the spleen, s—!

Blood in the closed circulation is nasumed to bypass the splenic white and red pulp
and flow directly into the venous sinuses (Figure 6.2). Combining equations 6.1, 6.2
and 6.3 according to Figure 6.2 gives: '

(+(L = )3t — 1) ¥ 66 = Tine) + (1 = 0)(1 = K)B(t = Teae)) # L5
+ gt

hpleen(t) =

(6.4)
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where x denotes convolution. The mean transit time for the spieen can be determined

using equation 3.6 which gives:

il

J5° t Bapleen(t)dt
= (1= q)(kTw + Tour) + 37

Topleen (6.5)

As discussed above, the deconvolution of splenic activity/time curves with aorta
activity /time curves (Chapter 4) gives the IAD of the spleen (equation 3.16). The
relationship between hypleen(t) smd the Jypieen(t) is discussed in Chapter 3.

6.5 Results

The simvalation of the model described by equations 6.4 was performed according
to the techniques ortlined in section 3.4.3. A. typical fit of the spleen model to the
experimental data is chown in Figure 6.3. The model parameters determined from
the minimisation of the sum of .squarea betwsen the model and experimental data
are tabulated in Table 6.1. The simulated model fit to all the subjects tabulated in
Table 6.1 ia displayed in Appendix R.1. The x? goodness-of fit test (section 2.3.3)
shaws that the spleen model represents the distribution function of all the data dis-
played in Appendix R.1 (P < 0.06). The spleen model IAD from equation 6.4 is
comnpared to the experimental spleen IAD (deconvolution of the spleen activity/time
curve with the background corrected aoria activity/time corve {Chapter 4)) in Fig-
ure 6.4. The mean absolute correlation matrix of fitted parameters for the normal
vabjects is shown in Table 6.2, An attempt was made to try and scale the spleen
activity/time data in a similar manner to that performed on the liver activity/time
data (section 8.5). These attempts were unsnccessful (Appendix G.1).

6.6 Discussion

I:a the purposes of the discussion, the Important splenic parameters lsted in Ta-
ble 6.1 ate graphically displayed in Figure 6.5,
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Counts
per
Pixel

Figure 6.3: Typical fit of the model to the experimental spleea activity/time curve.
s Model, o Experinental data

Figure 6.4: Model Internal Age Density (IAD) compared to Experimental IAD, .
Model I(t), o Filtered and deconvolved experimental data
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Table 6.1: Spleen parameter values for eight normal healthy volunteers and two
diseased spleens. *Significantly different from normal, P < 0.05. SEM represents

the standard error of the mean.

[

T mﬁﬁi&-ﬂlﬁﬂﬁﬂlﬂ | Calculated Paryameters
Normal i K Tiar T Tapleen
® & @
1 0.52 033 Ly 122 4.8
2 048 013 88 202 7.9
3 047 012 6.6 8.5 6.0
4 062 027 82 123 6.3
b 0.86 0.09 68 204 3.2
6 0.66 020 64 9.1 4.8
7 0.70 011 - 59 358 4,0
8 0.93 018 49 . 125 2.5
Mean 0.656 0.179 617 16.3 5.07
- SEM 0.069 0.034 0.888 3.67 0.701
P <0.05() 0340 0189 435 180 3.43
% Variation 106 192 144 225 13.8
Bitted Eﬁrg,metora | Caleulated Parameters
Pathology q kT Tw Tapleen

& (@ )

1 0.39 027 §8 36.1" 11.3*
2 0.14* 048" - 13.0* 40.0 29.8*
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Table 6.2: The mean absolute correlation matrix of the four independent fitted
model parameters ¢, K, rm; and Ty respectively, for the values in Table 6.1, together

with the corresponding standard error of the mean for each matrix component .

1.000 £ 0.000
0.398 + 0.121
0.838 & 0.032

0.398 4= 0.121

1.000 : 0.00G
0.423 + 0.124
0.693 + 0.052

0.838 & 0.032
0.423 £ 0.124
1.000 * 0.000
0.239 £ 0.133

0.291 k 0.114
0.693 = 0.052
0.239 £ 0.183

- 1.000 = 0.000

0.291 &+ 0.114

(I nNormal  HE Pathology 1

| 4

o.ss*omr 018:&003 52*10 16.31"37 911:"'07
= 1] U]

Figure 6,5: Some of the important splenic parameters tabulated in Table 6,1.
*Significantly different from normal, P < 0.06. Error bars indicate the standard
error of the mean for the normal subjects, The other results are for the patients

with known pathologies.
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6.6.1 Normal Subjects

The close fit between the parametric model and the experimental data in Figures 6.3
and 6.4 indicate that the flow and mixing in the spleen is adequately described by the
IAD corresponding to equation §.4. The discrepancies between the model and the
deconvolved curve in Figure 6.4 ave likely due to the Gibbs phenomenon of the FFT
(the oscillations and the discontinuity at ¢ = 0) and the noise in the experimental
data since the uncertainty in aorta and parenchymal tissue backgrounds have largely
been accounted for (Chapter 4). The variation between the individual spleens for
the parameters displayed in Table 6.1 appears to represent normal variation between,
individuals. '

The correlation matrix is a measure of a model’s sensitivity to parameter variation
" and a measure of the association between variables. The correlation matrix of fitted
parameters in Table 6.2 seems to indicate that the values in Table 6.1 are relatively
accurate since all of the off diagonal elements do not exceed 0.9 {BEcK & ARNOLDS,
1977; Appendix 1.1). This reinforces the likelihood that the four parameter model
of equation 6.4 adequately describes the rplenic parenchyma.

Upon closer examination of the correlation maitrix element r3; = 0.838, it is clear
that there is evidence of some correlation between the fraction of blood that .ﬂows
through the closed circulation of the spleen, g, and the blood transit time through
the red pulp of the spleen, 7y, The correlation between these parameters is visible
if one examines the first and third columns of Table 6.1; As most of the values of
Tmr Increase, ¢ decreases and vice versa. I one examines the relationship between
these parameters and the experimenta.l data it is clearly evident that these two
parameters affect the early part of the splenic activity/time curve; while the blood
transit time through the white pulp of the spleen, 7y, affects the latter part of
the curve. The fraction of blood that flows through the white pulp of the open
circulation of the spleen, k, affocts the relative contribution of the red and white
pulp to the different parts of this curve. Thus while ¢ and 7y are correlated, »
and 7y are not strongly correlated to either of these parameters. The mean transit
time through the spleen, Tapieen, i3 the sum of the relative amounts of transit time
through the closed circulation and the red and white pulpe of the open circulation
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{equation 6.5), Thus Typleen i5 likely to be relatively well estimated. The transit time
data in Table 6.1 reflects this effect where the % variation of 7ypjeen Within the normal
population is less than that of Toar 804 7. This indicates that #upleen i# likely to be a
relatively accurate parameter. Although there is less confidence in Tiny and 7y than
In Tepleen; the values of 7, arve consistently smalier than the valnes of 7y,. This iz in
agreement with the arguments presented above. Furthermore, the normal values of
g and & from Table 6.1 agree with the arguments presented in section 6.3.2. Thus
while Tyr, Tw, g and & are useful parameters which have a physiological sigﬁiﬁca.nce,
thése parameters should in all ikelihood be used in conjunction with Tupjeen for the
diagnosis of pathology. '

The % variation of 7, and % in Table 6.1 are significantly higher than the other
tabulated parameters, As discussed above the value of & determines the amount of
blood that fiows through the open circulation as opposed to the closed circulation.
The actual fraction of total splenic blood flow that flows through the white pulp of
the spleen is #(1 — ¢) which has an average value of 0.117 &= 0.02. Thus only about
12% of the total blood flow through the spleen flows through the white pulp. The |
value of 7 is thus determined wsing a fairly small component of the experimental
data and it is likely that this pa.f#meter might have a larger error than other pa-
rameter values. This is reflected in Table 6.1. The splenic transit time values are
not excessively large.

An attempt was made to try and correlate the parameter variation in Table 6.1 with
weight and/or sex. There ﬁa.s no obvious relationship. This in jtself is surprising
because of the scaling relationship determined for the hepatic vascular system in
Chapter. 8, Figure 8.3.  This provides some evidence that the explanation for the
scaling relationship of hepatic vascular system is to be found elsewhere.

The ideal objective of the mathematical model of the spleen is to derive physiological
parameter values from the experimental data. There appear {o be 20 measurements
in the literature of splenic transit time or the relative blood flow through apen and
closed circulations. It is thus difficult to decide whether the model of the spleen
iz physiologically sound. It is howaver possiblé to postulate how these parameters
might change with pathology and the next subsection explores this issue in further
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detail,

6.8.2 Splenic Pathology

The closed circulation blood flow fraction, g, is reduced in the firet pathology and
significantly decreased in the second portal hypertensive patient (P < 0.05). It thus
appears that more blood flows through the open circulation than the closed circu-
lation in portal hypertensive spleens. This in turn suggests an enlargement of open
circulation. The fraction of open circulation blood that flows into the white pulp, &,
is aleo elevated in the first portal hypertensive subject and significantly elevated in
the second subject (P < 0.05). Thus more blood “appears” to flow through the white
pulp in the portal hypertensive spleens than in the normal subjects. The increase
in the value of & guggests a greater enlargement of the white pulp as opposed to the
red pulp in the portal hypertensive spleens, The white pulp mean trangit time, Ty,
is significantly elevated in both portal hypertensives (P < 0.05) and the marginal
zone and red pulp transit time, Ty, are not elevated in the first portal hypertensive
while it is significantly elevated in the second subject (P < 0.05). The spleen mesn
transit time Typleon appeats to be a sensitive measure of spleen abnormality in the

two portal hypertensives.

In portal hypertension the spleen demonstrates the histologic features of fibrocon-
gestive splenomegaly (GRIFFITE & JANNEY, 1990). The red pulp is expanded with
areas of fibrosis and the sinuses may be open and dilated or narrowed in areas of
dense fibrosis (GRIFFITE & JANNEY, 1890). The increase in the values of ¢ and
o WoUld be consistent with an increased red pulp size. The white pulp is often
atrophic becatse expansion of the red pulp and fibrosis of the marginal zone sinuses
is often present (GRIFFITH & JANNEY, 1990}, Thws blood fiow out of the white
pulp is likely to be obstructed with an increased 7. If the volume of white pulp
decreases and 7, increases, then the flowrate of blood through thé white pulp should
decrease and the value of & should decrease. The value of x has however increased in
the portal hypertensive subjects. The apparent digcrepancy in this parameter can
be explained and concepinally defended on the grounds that the model of the spleen
is baged on normal spleen tissue, Ii is thus likely that the increased value of x and
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Ty in the portal hypertensive subjects may reflect a combination of flow through the
white pulp and the increasing fibrosed regions of the red pulp.

In order o really e able to say more about these pathologies, more work on both
normal and pathological spleens will aeed to be done,

6.7 Conclusions

The flow and mixing in the spleen is adequately descrihed by the IAD correspond-
ing to equation 6.4, The spleen i)arameter values for the first portal hypertensive
indicate a developing progression of the observed pathology. The spleen parameter
values for the portal hypertensive subjects concur with the degree of splem i 2galy
observed clinically. The fraction of blood that flows through the closed circulation
of the epleen, g, the fraction of blood that flows through tie white pulp of the
open circulation of the spleen, x, the blood transit time through the red pulp of
the spleen,. fm;, the b‘;bod transit time through white.pulp of the spleen, 7, and |
tlie mean transit tiwe through the spleen, Tagleen all appear o be relatively sensitive |
measures of organ pathology. Diagnostic information obtained using g, £, Tmr 2nd
Tw must however be ceirrelated with Typleen.

The transit time pa.raniheters indicate that the hepatic vascular obstruction associ-
ated with portal hyperiension has reduced the total flow through the spleen.
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Chaptef 7

Deconvolution and Imaged Multiple

| Input Organs

7.1 Introduction

Chapter 3 showed that the deronvolution of single-input organs ga.vé rise to ﬂxe IAD -
of the organ. Unfortunately the deconvolution of liver astivity/time curves with
aorta activity/time curves does not give rise to the internal age density (IAD) of
the liver because it has multiple inputs. It is thus necessary to extend the analysis
of Chapter 3 to account for multiple input, imaged systems, '

7.2 Dynamic Imaging of the Liver

Chapter 3 introduced the use of residence time density theory for tracer imaging
experiments, The chapter exainined single input systéms and derived equation 7.1,
describing the relationship befween the input to a systex and the measured organ
activity/time curve. In other words, the con slution of the transient input to the
gystem with the intetnal'a,ge density of the system gives the volume averaged con-
centration or the measured area normalised organ activity/time rurve (Chapier 3}.

C(t,v)dv
vV

Gt I(t) = 12 72)

As discussed above, the liver is a multiple input system; the hepatic artery and
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poztal vein both enter the lver. The hepatic artery is essentially fed from the aorta
with a delay as it Hows towards the liver, The portal venous supply contains blood
that has already c¢irculated from the a.ori;a, through the gut and spleem. 2 schematic
representation of this system is shown in Figure 7.1. The relative amounts of blood
from the portal vein and the hepatic artery is given by the split fraction, ». In the
following analysis, the gut/spleen RTD will be represented by hyg,.

Ao,
L@ =(1-nge |Cn
HA ' Q = rQ°
» 1-p
L Spleen GIT

o

Cout d,,

Figure 7.1: The Hepatic Vascular System; HA Hepaiic Artery, PV Portal Vein,
HYV Hepatic Vein, @ denotes Volumetric Flowrate, C' denotes concentration, « is
the fraction of g° that Hows to the spleen and GIT, p is the portal blood fow (Q')
that flows through the spleen, Aps is the RTD of the hepatic artery (section 8.3),

We begin the analysis in the same way as Chapter 3. In a recirculating system, at

any time, mass balance holds and so:

Mass In of Tracer — Mags Nut of Tracer = Accumulated Mass of Tracer (7.2)

We perform a mass balance for the tracer flowing into the liver in Figure 7.1. Thus
in some small time interval, ¢~ ¢ + di:

* 1t it o — v Al
QChedt o Q'Clodt = Q°Coudt = [ Clort+dtdv~ [ Clo,tMy (13)
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where
- @*CY - Mass flow into the liver by the hepatic artery

@'CY, - Mass flow into the liver by the portal vein
Q°Cou: = Mass flow out of the liver by the hepatic vein
fOV C(v, t)dv - Mass of tracer in the system at time ¢ (imaged)
Q° :- Total blood flow into the liver, m3.s—1

Dividing hy dt and taking limits gives:

: d v
QCh+Q'Ch~QCom =% { fo ot fu)dv} - (14)

But by mass balance for constant density, p (Chapter 3);

¢ = 1-ng (7.5)
Q" = r@° . (7.6)
Ch = Cin*hglt) o @n
o = Cin # (1) . : (7.8)

where
hgs - Residence time density (RTD) of the splenic and gastroin-

testinal regions (equation 8.3), s~*
r :- Fraction of blood that flows inio the liver through the portal
vein, dimensionless |
p - Fraction of portal blood that flows fhrough the spleen as
opposed to the gastrointestinal tract, dimensionless
hna($) - RTD of the hepatic artery (section .8.3)-, st

* = Denotes convolution

Similazly, by mass balance over the whole hepatic vascular system in Figure 7,1:

Cont = Cin * hawva(t) (7.9)
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where o
-h;'m(t) i~ Residence time density of the hepatic vascular gystem in

Figure 7.1 (hepatic artery, spleen and gastrointestinal tract),
a1
Cin - Concentration of tracer flowing into the hepatic vascular sys-
tem through the aorta _
Cout - Concentration of tracer flowing out the hepatic vascalar sys-

tem in the hepatic vein

By substituting equations 7.5, 7.6, 7.7, 7.8 and 7.9 into equation 7.4 and solving
{Appendix E.1) we find: | |

[ Jo 12 = r)hna T: rhgs = B ‘“} % Cip = .f{%@.‘fﬂ (7.10)

where _ '
Tiver == Volume of the liver divided by the total volumetric flowrate

into the liver (Viier/@°), 5
é(¢) - Dirac’s delta '

Equstion 7,10 is general for imaging any tracer in the liver, The equation ié valid for
a time-invariant recizculating system (Chapter 3). The extension of equation 7.10 for
fmaging systems with any number of system inputs would follow the above anslysis.
We define the Liver Probability Density Function, LPDF(#) a8

J3 11 = )ha + Thes = hivs] dt}
Niver

LPDF(t) = { (7.11)

The RID, hyys(t) depends on tha.a.na.tomy and physiology of the Hver, spleen and
gastrointestinal tract. Equation 7.10 represents the relationship between the mea-
sured lver activity/time cinves_ and the meagured aorta time/activity curve. The
result is derived only from mass balance. Irom Appendix E.1:

H
liy {fo [( = 1)lipn + rhen = Pisee] “*} =0 - (r12)
— Tiver '
3
Jim {f_q[(i = 7Y t Thgs = It “‘} =0 (7.13)
b OO mm

f(: [(1 =~ r)hna+ Phygs ~ Bnys} i
' Miver

A
o

(7.14)



Chapter 7 84

and,

i

’ : . {Muvs~Tha )P (Tgsmp)
J5° I3 11 = vYima + rhgs = Brgs] dtdt e (1.18)

where ' .
ha ¢ Transit time of blood travelling down the hepatic artery (sec-

tion 8.3), s

The numerator of equation 7.15 corresponds to the liver mean transit time, LMTT
fe.

LMTT = Tiiver = (Thays — Tha) = M(Tgs ~ Tha) (7.16)

It is clear from equation 7.10 that the deconvolution of liver activity/time curves give
rise to a complex combination of splenic, gastrointestinal and liver dependencies.
Unlike the single input systems described above, there i no obvious correlation
between tj!pes of mixing and the effect It has on the deconvolved curve. The only
divect information that one can glean by Jeconvolution is the time at which tracer

first appenrs in the liver, Tha, and the mean transit time.

Thus a parametric flow model of .the portal and hepatic vascular systems becomes
desirable (as a means to explain and quantify the deconvolved hepatic activity /time
curve), The rest of this thesis is devoted to the development of such models and the
application of these models to experimental data.

7.3 Conclusion

The relationship between the aorta and organ activity/time measurements was in-
vestigated for multiple input organs, in particular the liver. This analysis provides
a mathematical framework deecribing the decomvolution of imaged multiple input
organs, Tt was shown that deconvolution of liver aciivity/time curves gives rise to
a complex combination of splenic, gastrointestinal and liver dependencies, Unlike
singlé input systems (Chapter 3), it was shown that there is no obvions correlation

between the type of mixing and the effect it has on the liver deconvolved ¢ ve.



Chapter 7 | B o

Furthermore, the only direct information that one cun glean from such a curve is
the time at which tracer first appears in the liver and the mean transit time of the

combined system,

A parametric flow model of the portal and hepatic vascular systemas thus become
desirable as a means £~ explain and quantify the deconvolved hepatic activity/time

curve.
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| Chapter 8

An Anatomical and Physiological
Model of the Liver |

8.1 Introduction

Various researchers (FLEMING el al.,, 1083; Granraoro et gl., 1989; O’CoNNOR ef
al., 1992} have used various methods of processing scintigraphic imaging data in an
attempt to identify hepatic blood supply abnormalities, The methods make broad
assumptions in relating the hepatic arterial perfusion time to the peak time of the
il or splenic activity/time ¢urves, There appears to be 1o experimental evidence
%o confirm these assumptions, Other researchers {AGKROYD et al., 1086; CARLISLE
et al,, 1992; Dor et al,, 1988; Horwn ¢f al., 1990) have used doppler ultrasound
technigues 1o measure portal and hepatic arterial flows. These technigues have to
determine a vessel cross sectional area to convert the measured bluod velociilus to
flowrates, The measurements vary depending on the technical ability of the operator
and as a result, the accuracy of blood Howrate measurements vary widely (PAULSON
et al., 1992). Compartmental modelling a.pprdaches have also been used { GAMBHIR
et al, 1989) however they have difficulty in characterising unmixed systems and
many pitfalls exist when extending compartmental flow models to inclade non-linear
reaction kinetics (ZWIRTERING, 1059).

Ag has been mentioned before, imaging techniques such as scintigraphic imaging

gsuffer from. noise in the experimental data. This gives rise to noisy deconvoluted
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curves, Many researchers ha.Ve used filtering techniques to reduce the effect of noiss,
but this in turn may obscure physiological information. Furthermore, the deconvo-
lution of liver activity/time curvés gives rize ioa complex curve where there is no
obvious vorrelation between the type of b;oﬁrl flow in the liver and the deconvolved
curve, It is the purpose of this chapter tv develop an anatomic and physiologically
based theory as a . ans 6f understanding hepatic blood flow from the deconvolved

Liver curve.

8.2 The Gastrointestinal Tract (GIT) and Portal Sys-

tem

The identification of the GIT residence time density is impractical using scintillation
techniques *, Anatomical information suggests that the blood supply of the GIT
conaists of a large distribution of blood vessels, If the distribution of vessels is large

3 in equation 1.6) and the time canstant of this system is 7y, then the GIT
.. Jence time density is given by:

The mean transit time of _the GIT can be determined from equation 3.6 ie.:
: . oo ﬁe—i{r‘[
MTTg = j; g dt =ty (8.2)

where
hgi - Gastrointestinal traci residence time density (RTD), 51

MTTy :- Mean transit time of the GIT

The portal vein has a large diameter and we expect the velocity of blood in the
vessel to be relatively low. For this reason, a delay time for flow up the portal
vein is introduced, #p,. Combining this information with equation 8.1, hspleen from

Chapter 6 and the information in Figure 7.1, hg is given as:

frgn = [thlm-i-(l —p)"z‘fg”] “(i—T) (83)

*Qther imaging techniques with better resolutions could be betier determinants of the GIT
residence ““'me density.
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wheare
p - Fraction of portal blood that flows through the spleen as

npposed to the gastrointestinal tract

The mean gastrointestinal/splenic transit time can be determined using equation 3.6:

T = [0t hgs(t)dt | (5.4)
= (Tupleen = 3Tgi — Tpv) P+ 3Ty + T

and Typleen 18 given in equation 6.5.

8.3 Anatomy and Flow Physiology of the Liver

There are different structural interpretations of liver tissue, The actual choice of
structural unit for flow modelling is unimportant, however the liver lobule represen-
tation has been chosen in this thesis to analyse the flow. A typical liver lobule is
shown in Figure 8.1.

Venous blood from the portal vein bieaks up into small portal venules. The portal
blood carried in these vessels enters the liver lobule at the beginning of the liver
sinugoid (Figure 8.1). The blood flows down the Lver sinusoids which are passages
lined with hepatocytes. We postulate that blood fows slowly down the sinusoid in

order for a reasonable transfer of material between hlood plasma and hepatocyte to |
occur. Experimental evidence suggests that this is the cage. Post mortem studies
in orally poisoned patients indicate a marginalisation of the hepatocytes along the
liver sinusoid (WrLLiaMs et al, 1989). If the flow was fast, one would expect &
uniform disease state of hepatocytes along the sinnsoid. Blood at the end of the
sinusold enters the ceniral vein which joins the sublobular vein. Many subiobula-r

veing combine to form the hepatic vein,

Blood can also enter the liver lobule through ar arterial supply. The hepatic artery
branches off into hepatic arterioles. These enter the Liver sinusoids and mix with
the portal blood, The hepatic arterioles enter a sinusoid laterally all along from the
origin of the sinusold up to Zone III (RAPFAPORT & SCHNEIDERMAN, 1976; HASE
& BriM, 1966; McCuskey, 1966) aud it has been reported that hepatic arterial
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Hepatic artery
— BiloDuct

Fortal vein

Sinusoid

Central vein Sublobular vein

Figure 8,1: Anatomical Structure of the Liver Lobule. (Redrawn from Bourne G.:
An Introduction o Functional Histology, Churchill, 1953
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blood may enter the sinusoids even up to the central vein (Eilas & PrrrY, 1953).

The blood then follows the same pathway as the venous blood described above.

The pressuré in the hepatic artery is much. greater than the pressire in the portal.
vein, The pressure where the venous and arterial blood mix must be equal. This is
accomplished by musculat tissue which lines the heputic arterioles. These muscles
contract or relax to control hepatic arterial pressure (and thus flow) by changing
vascular resistance. As the portal flowrate and pressure change, hepatic arterial
blood supply can be manipulated (RAPPAPORT & SCHNEIDERMAN, 1976). RaP-
PAPORT and SCHNEIDERMAN (1976) visualised a.rteﬂola.r.sphincter like structures
that permitted intermittent spurts of arterial blood to pass into the sinusoids of the
liver, Thus blood in the hepatic artery may not flow uni:ﬁpeded through the liver,
and this in turn suggeste a delay time for blood as it flows down the hepatic artery.
For this reason hpa(2) in equation 7.10 is given by:

hia(£) = 6(t ~ 1) | (8:5)

where
Tha i~ Transit {ime of blood travelling down the hepatic artery (sec-

tion 8.3}, s

A flow representation of the liver lobule is given in Figure 8.2. The liver lobule is
represented by venous blood in plug flow (Chapter 3} with lateral arterial flow along

the sinusoid.

8.4 Development of the Model of the Liver

Equation 7.10 related the gastrointestinal tract RTD, the hepatic vascular RTD,
Ihvay and the measured aorta activity /time curve to measured hepatic activity/time
curves, To determine a parametric form for Jyy,(2), consider the anatomical rep-
resentation of the liver lobule shown in Figure 8.1. Blood with tracer enters the
liver through the hepa.fic artery and portal vein. These two vessels branch off into
arterioles and venules respectively, The length distribution of arterioles and venules
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-1 A

¢
L he | PV enous Sinusoid
Cout
Central |_,
Vein | HY

Cout

Figure 8,2: A Flow and Mixing Model of the Liver Lobule; HA Hepatic Artery,
PV Portal Vein, HV Hepatic Vein, r is the fraction of blood thaf enters the liver
from the portal vein, ¢ is the flow per unit volame of sinusoid that enters from
the hepatic artery, hg, represents the Residence Time Density of the splanchnic and

gastrointestinal systems,

i sssumed to be small. If the lengths differed substantially, each dobule would Lave
an input that differed from the next by some time delay.

From Figure 8.1, the blood from the portal venules flows through the venous sinu-
soids into the central vein, Hepatic arterial blood also mixes with the portal blood
supply along the length of the zinuses, We thus postulate from the anastomy that the
hepatic flow inte the sinusoids behaves like the maximum mixedness system of Zwi-
ETERING (1959), Now the central veins of many lobules eventually join together
to form hepatic venules and iultimately the hepatic vein. There is a distribution

of lengths of the venous sinusoids, central veins and hepatic venules before thay all

combine to form the hepatic vein. The RTD of the length distributed syster is given
by the gamma density (THOMPSON et al., 1964). We define Aey(2) to be this density

with time constant, 7oy A value of z = 2 has thus been used in equation 1,6 2. Thus:

~tfroy
hey(t) = e

. (85)

A blood flow and mixing reprusentation of the liver lobule iy shown in Figure 8.2.

Tt is now necessary to determine gy, for equation 7.10. We begin by assuming that
the flowrate of portal blood to the hepatic sinusoid is ¢! and that the hepatic arterial

2 A physically measured density could be substituted
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blood Sow peér unit length of lobule sinusoid is conmstant, ¢. The mathematical
statement is given as (Figure 7.1): R

"“’3 = ¢ (8.7)
Q(ﬂ =) = Q' = rig° - (8.8)

We perform a transient mass balance of the tracer in the sinusoid with the sinusoid
volume, V, and volume flowrate, Q(¢}. The notation used is that associated with

Figures 8.2 and 7.1. Consider equation 7.2 and some volume element dv:
ac

QCI‘U chﬂ-l-dv +¢dvcﬂ = do—— Dt . (8.9)
Dividing by dv ana taking the Hmyy .o gives: ‘
3QC‘ n _ OC '
+ POy, = sy (8.10)
From equation 8.7 and equation 8.8:
Qo)=q'=dw (11)
By substituting equation 8.11 into equation 8.10 we get:
ac
- Q——- - Co+ $Ci; = b (8.12)
The boundary and initial conditions for this equation are:
i=0,v) = 0 (8.13)
Clt,v=0) = Cf =Cin*hg (8.14)
To solve the equation, we make the gubstitution:
y=n(Q + ¢v) - (848)
Thus:
') -
&y _dv 8.16)

¥y Q@+



Chapter 8 | o 93

By substituting equations 7.8, 7.9, 8.5 and 8.16 into equation 8.12 and solving
using the boundary and initial conditions of equation 8.13 _ md equation 8.14 we get
(Appendix F.1): ' '

r Iy

(1-—7‘)3"‘(1"’” ‘.-liﬂlll

Talnus * é(t - ‘T]m)‘- .
r(l—r)s""{l-f-)!ﬁin.u wbli{lrapnes (1= L/ o . 1=t Jrer
Fbve(t) = 4 e ’gm. { g_ + b - (8.17)

F

Thys * (8 — [Tainus/ (1 = r)]in(1 /) a

where ‘=

Tainus o~ Mean transit time of the hepaiic sinusoid 11’5‘#'), 8

The mean hepatic vascular systen: transit tims can be detve[;rmined using equation 3.6:

Thve = fﬁm 1 hh\fl(t)dt

_ (8.18)
= (M + 2oy J{1 = 1)+ Totias + 1{irgs + 2Tav)

Equations 8.17 and 8.18 can now be used b equatiors 7.10 and 7.16 respectively
to examine the liver activity/time data. The LPDF cin be obtained using equa-

tion 3.16. y S
b

8.5 Results

The liver activity/time data has been scaled Wy both the t!me at which the maximum
in the dats occurs (bmax) and the maximnum value, The efibct of this scaling is shown
in Figure 8.3 and the modification of equations 7.10, 8.1*' and 8.3 to analyse scaled
data is discussed in Appendix J.1. This scaling tec.hniqn-; did not appear to apply
to the splesa o the ren«l parench;.na activity /time curvie (Appendix G.1).

The simulation of the model described by equations 7.10, 817 and 8.3 was performed
according to the methods outlined by Chapter 3, section '.4.3.

The splenic parameter values obtained in Table 4.1 have .)een used in conjunction

i
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with equations 7.10, 8.17 and 8.3 to fit the hepatic vascular model to the experi-
mental liver activity/time data, A typical fit of the model is shown in Figre 8.4.
The parameters determined from the minimisation of the sum of squares between
tha model and experimental data are presented in Tables 8.1 and 8.2. The param-
eter 7y, 46 fixed from the deconvelution of the experimental liver and background
corrected aorta activity/time (Chapter 4) curves as shown in Figure 8.5, The sim-
ulated model fit o all the subjects tabulated in Tables 8.1 and 8.2 is displayed in
Appendix R.1. The x* goc*ness-of-fit test (seciion 2.3.3) shows that the hepatic
vaécular model represepts the distzibution fanction. of all the data displayed in Ap-
pendix R.1 (# < 0.05). The mean absolute correlation matrix of fitted parameters
for the normal subjects 1s shown in Table 8.3.

The deconvolution of liver activity/time data with the background corrected aorta
activity/time curve {Chapter 4) is compared to the model IPDF (equaiions 7.10

aad 8,17) in Figure 8.5.

Counts
per
Pixel

Figure 8.3: Eight liver activity/time curves scaled according to the maximum value

and maximum time
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Counts |
per
Pixel

Figure 8.4: Typiral fit of the liver model to the experimental liver activity/time
Model, o Experimental data S '

curve,

LPDF

Fignre 8.5: Model Liver Probability Density Function (LPDTF) compared to the
experimental LPDF (Deconvolution of liver activity/time data). we—mw Model, o
Fitered and deconvolved experimental data
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Table 8.1: Liver time scaled parameter values for eight normal healthy volunteers
and two diseased livers. 74 = 1/¢ and is related to » and Tymus in Appendix F.1.
*Significantly difforent from normal, P < 0.05. SEM represents the standard error

of the mean.

e~

_ Fitted Parameters ‘[  Coleulated Parameters |
Normal * P Taimw Tpy MITg Tha 73 7o Thve LMTTigey

(s)

——— -

0.72 0.28 0.157 0.137 0.503 0.026 0.409 0.480 0.538 0.183 76
0.73 0.16 0.176 0.077 0.453 0.1360.476 0.474 0.604 0.221 44
0.88 0.10 0.259 0.048 0.495 0.0911.827 0.507 0.774 0.319 33
0.78 0.20 0.159 0.072 0.453 0.0370.430 0.443 0.530 0.196 54
0.78 0.19 0.216 0.124 0.509 0.0810.762 0.528 0.699 0.270 37 .
0.73 0.23 0.399 0.145 0.454 0.0851.101 0.485 0.820 0.44: 47
0.73 0.16 0.158 0.131 0.453 0.1080.429 0.512 0,615 0.2i2 37
0.71 0.13 0.132 0.056 0.418 0.0430.319 0417 0.482 0.174 47

O =~ & O B G b3 =

Mean 0.7520.180 0.207 0.098 0.467 0.0760.719 0.480 0.633 0.252 47.9
SEM 0.022 0.023 0.036 0.016 0.013 0.0160.210 0.015 0.050 0.037 5.6
P < 0.06 {+)0.109 0.113 0.175 0.079 0.064 0.076 1.030 0.073 0.243 0.181 27.2
% Variation 2.9 128 17.2 165 28 204 202 31 7.8 146 118

Fitted Parameters culated Parameters
Pathology TP Tinw Tov MTTg e T Tgs  Twe LMTT tnax

(s)

0.64* 0.20 0.231 0.081 0.691* 0.0100.4120.657* D.703 0.279 42
2 0.40* 0.12 0.821* 0.059 1.117* 0.2110.589 1.266* 1.581* 0,952 15

T

— e rr—

T ——
re—
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Table 8.2; Liver unscaled parameter values for eight normal healthy volunteers and
two diseased livers. 7y = 1/¢ and is related to r and mys in Appendix F.1.
*Significantly different from nmormal, P < 0.05. SEM represents the standard

error of the mean,

Fitted Parameters . | Calculated Paga.mate_r,_g,.

Narmal r P Tainus r,,{ MTTg Tha 73 T .1'1“,. ILMTT

G & & 6 & & & 6

0.72 0.28 11.9 10.4 382 2.0 31.1 365 40.0 130
0.73 0.6 7.7 34 199 6.0 21.0 208 266 9.7
0.88 0.10 85 1.5 163 3.0 60.3 16.7 256 105
073 020 8.6 3.9 244 20 23.2 239 285 108
0.78 0.19 8.0 46 188 3.0 282 105 259 10.0
0.73 0.23 187 6.8 213 4.0 517 228 385 207
0.73 .16 5.9 48 167 4.0 159 189 228 7.9
071 0.13 62 26 196 2.0 150 106 227 82

O~ & O = ) b

Mean 0.762 0.180 9.44 4.74 21.83 3.25 30.80 22.36 28.93 11.44
SEM 0.022 0.023 1.71 1.13 2,880 0,567 6.798 2.62 234 1.71
P < 0.05 (£) 0.109 0.113 8.37 5.68 14.11 2.78 33.31 12.20 13.91 8.37
% Variation 2.9 128 181 238 13.1 175 221 112 9.8 149

Eﬁjgﬁlme{ers | Calenlated Parameters
Pathology r P Toinus Tov MITg e 73 Te  Thve LMIT

) 6) (&) (& (8) (5) () (o)

1 0.64* 020 97 2.6 200 04 17.3 27.6 29.5 11.7
2 0.40* 0.12 125 0.89 170 32 82 192 240 145

e e e T Sk et e AL el AL iiieemg e ey s
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Table 8,3: The mean absolute correlation matrix of the five independent fitted model
Parameters Tsinuss Tpvs Ty Py and MT Ty respectively, for the values in Table 8.1,_'to-

gether with the corresponding standard error of the mean for each matrix component
m'

1.000 £ 0.000
0.756 &+ 0,079
0.696 & 0.118
0.460 & 0,127
0.696 + 0.104

0.756 x 0.079
1,000 - 6.000
0.550 = 0.12%

0.629 £ 0.137

0.582 4 0.140

0.696 £ 0.116
0.560 & 1122
1,000 : 0,000
0.496 £ 0.110

0.460 £ 0.127
0.620 + 0.137
0.496 = 0.110
1.000 = 0.000
0.552 + 0,120

0.696 X 0,104
0.582 & 0.140
0.768 = 0.n86
0.562 + 0.120
1.000 £ 0,000

0.768 & 0,086

8.6 Discussion

For the purposes of the discussion, the fitted hepatic vascular parameters and some
of the important caleulated parameters listed i Table 8.1 are graphically displayed
in Figure 8.6. |

8.6.1 Normal Subjects

Figures 8.4 and 8.5 show a reasonable correlation hetween the parametric model and
the experimental data. The discrepa.ncies.between the modei and the deconvoived
curve in Figure 8.5 are probably due to the Gibbs phenomenon of the FFT (the
discontinuity in the model curve is evident at ¢+ = m,,) and the polsson noise in
the experimental data since the uncertainty in aorta backgronnd has largely been
accounted for using the technigques in Chapter 4.

Thus the flow and mixing in the liver and portal system appea.r.t!- to be adequately
described by equations 7,10, 8.17 and 8.3.

The variation between individuals for the parameters displayed in Tables 8.1 and 8.2

is likely to represent the normal population variation.
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Figure 8.6: Some of the important hepatic parameters fa.bulated in Table 8.1,
*Significantly ditferent from normal, P <« 0.05. Error bars indicate the standard
error of the mean for the normal subjects. The other results are for the patients

with known pathologies.

As discussed previously, the correlation maitzix is a measure of a model’s gensitivity

to parameter variation and a measuze of the association between variables. The

correlation maftrix of fitted parameters in Table 8.3 indicates.tha.t the values in

Tables 8.1 and 8.2 are rela.tivély accurate since all of the off diagonal elements do not

exceed 0.9 (BecK & ARNoLD, 1977; Appendix 1.1). This reinforces the likelihood
that equations 8.17 and 8.3 adequately describe the hepatic vascular sysfem.

Upon closer examination of the corvelation matrix element riz = 0.766, it iz clear
that there is some degree of correlation between the mean transit time of the hepatic
sinusoid, Tunus (Yg}".;“), and the delay time for blood flow up the portal vein, 7.
The correlation between these parameters iz visible if one examines the third and
fourth columns of Table 8.1; As Tye increases Ty incréa.ses and vice versa. If one
examtines the model structure it is clearly evident why these pararncters are likely 1o
be related, The mean transit time of the hepatic vascular system, Thys, I8 the sam
of the mean transit time through the hepatic arterial and portal components of the

hepatic vascular system. This parameter thus includes a linear combination of these
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two corrdlated parameters. Thus while Tanus a:a.ci Tpv May change, Thys is likely to
be more accurate. The data in Table 8.1 reflects this effect where the % variation
of Thys Within the normal population is more than half that of Tyyms a6d 7y, This
indicates that m,y, is likely to be a relatively. accurate parameter, Although there is
less confidence in Taimes 304 Thys than in My, the values of the Tymus ate consistently
larger than the values of 75y. Thus while 7y, and 7y, are useful parameters which
have a;ﬁ anatomical significance, these parameters should be used in conjunction

with Ty for the diagnosis of pathology using the techniques discussed in this thesis,

There is some correlation between the fraction of blood that enters the liver from
the portal vein, r, and the mean transit time of the gastroinfestinal tract, MTTy;
(rss = 0.768). The complexity of the model precindes the identification of the
relationship between these parameters. As will be seen in the next subsection, as
portal obsiruction occurs, r decreases and MTT,; increases. r has a direct effect on
the modelling of early part of the experimental activity/time curve when maost of the
blood in the liver is derived from the hepatic art_erial. blood supply. MTTg; however,
affects the time at which the portal blood arxives at the liver and therefore affects
the modelling of the latter part of the experimental data. The mean transit time
of the hepatic vascular system, Ty, is the sum of the mean transii: time fhrough
the hepatic arterial and portal components of the hepatic vascular system. This
parameter thus includes a linear combination of these parameters. This is further
evidence that Ty, is likely to be an important diagnostic parameter that is more
accurate due to the correlation between the parameters. The % variation of ¥ and
MTT; within the normal population is small and this indicates that while these
parameter are to some extent correlated, they are likely to be ielatively accurate

diagnostic parameters.

The jdeal objective of tha mathematical model of the hepatic vascular system is
to derive physiological parameter values from the experimental data. In order to
decide whether the model described above satisfies this requirement, we examine the
rormal values of the fraction of blood that fiows into the liver through the portal
vein, r, the fraction of portal blood that flows through the spleen as opposed to
the gastrointestinal tract, p, and fhe Hver mean transit time, LMTT tabulated in
Table 8.2. The other parameter values tabulated in Table 8,2 hiave not traditionally
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" been measured and reported in the literaturs,

The fraction of blood that enters the liver from the port:™ vein, r, describes the
relationship between the portal and hepatic arterial blood supplies to the liver.
The value of r, frora Table 8.1 agrees v:iﬂlt experimental mesasurements reported
in the literature (GuyToN, 1986 ~ r = 0.76; PAULSEN & KLINTMALM; 1992 :-
r=0.71 & 0.02; Dot et al,; 1988 ;- r = 0.74 &£ 0.02). Thus the model of the hepatic
vascular system described in this thesis appears to be physiological meaningful. This
Tequirement of the model allows one to suggest that any significant deviation from
the normal parameter values is likely to indicate hepatic vascular pathology. The
develoPmenf of the mathematical model of the hepatic vascular system based on
anatomical information has thus yielded a physiological parameter value from the

experimental data.

- The fraction of portal blood that flows through the spleen as opposed to the gas-
trointestinal tract, p, from Table 8,1 also agrees with experimental measurements
reported in the literature {GuyTON, 1986 :- p = 0.20), Thus the development of the

- mathematical model of the hepatic vascular system based on anatomical information

has yielded another physiclogical parameter value from the experimental data. Ob-

structions or enlargements of the splenic or gastrointestinal systems are thus likely

to manifest themselves in a change in this parameter,

The liver mean transit time, LMTT, from Table 8.2 is also in agreement with expei-
imental measurements reported in the literature (GuyToN, 1986 : LMTT= 124s
(Volume=300ml, Volumetric Flowrate=1450ml/min}).

The above physiological parameters namely r, p and LMTT provide convincing
evidence that the hepatic vascular model based on anatomy is theoretically sound.
The shove analysis Indicates that both flow fraction and transit time parameter
have physiological significonce. This suggests that r, p and LMMT are likely to
have important diagnostic and prognostic implications for the the managemenﬁ of
patients with portal pathology. An important component of the hepatic vascular
system ia a satisfactory model of the spleen. The physiological significance of the
above parameter values indirectly implies a sa.tisfactor}r physiclogical description of
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the spleen.

8.6.2 Hepatic Vascular Patholegy

Figure 8.3 and Table 8.1 indicate the importance of scaling Liver activity /time curves -
USIng tmax. The unscaled mean transit times for the portal hypertensives in Table 8.2
do not differ significantly from the normal values. This is in stark contrast to the
mean transit times of porial hypertengives in Table 8.1, It thus appears that the
identification of hepatic abnormalities, based on transit time analysis, can only be
performed u'éing scaled hepatic activity/time curves. Thus the comparison 0f normal
aud portal hypertensive transit times has been limited to the values in Table 2.1.
Transit times are related to the flowrate and volume of the sysiem by equation 3.6.
In fact a transit time can be thought of as the reciprocal of the flowrate per unit
volume of the system. This implies that transit times associated with the liver might
be related to another physical parameter (eg. weighi;). An attempt was made to
try and correlate fymay with weight ;:.nd/or sex.- There appeared to be no obvious
relationship and the significance of this parameter as a physiological or pathological
- index remains obscure. Chapter 6 showed that this scaling relatioﬁship did not
hold true for the spleen. An explanstion for this scaling therefore lies elsewhere.
The identiication of such an explanation or the determination of other relationships
have not been addressed in this thesis and provides an interesting research fopic for
further investigation. The scaling of data for the identification of hepatic pathology

using tracer studies has not previously been addressed in the literature.

The fraction of total hepatic blood flow through the portal vein, r, is significantly
decreased in both portal hypertensives (P < 0.05). The gastrointestinal tract mean
transit time, 74, in Table 8.1 is significantly elevated in both portal hypertensive
subjects (P < 0.05) and the fraction of blood flow in the porial vein that flowed
through the spleen, p, is not significantly different. Also, the hepatic vascular mean
transit time, 7hys, is significantly elevated in the second portal hypertensive subject
(P < 0.05). These resulis suggest that any obstruction is likely to be hepatic in
nature since the ratio of splenic blood flow to gastrointestinal blood flow is unaltered
while portal flow is reduced. This agrees with the mechanical obstruction of blood
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flow through the liver by fibrosis, thrombosis and nodular regeneration associated
with portal hypertension (LAMoNT & ISSELBACHER, 1977).

The hepatic arterial flowrate per unit volume, $ = 1—};, is increased (although not
very significantly) in the portal hypertensive subjects. This suggests that while the
portal flow decreases, hepatic arterial flow may increasé.. These results concur with
a xnumber of authors who have reported small increases in hepatic arterial flow with
decreased portal flow (ACKROYD et al., 1966; PRICE ¢t al., 1965; Doi et al., 1988).

The other parameter values for the first portal hypertensive, namely 7uumsy 7ha and
LMTT in Table 8.1 are not significantly differe-t from the normal values. This in-
dicates that the first portal hypertensive subject has & developing pathology whick -
supports the evidence indicated by the spleen parameter values discussed in Chup-
ter 6.

The parameters values, Tgnus, ﬁ,a and ZMTT in Table 8.1 for the second portal
hypertensive are all significantly different from the normal values (P < 0.05), This
indicates advanced portal hypertension.

The pertal vein delay time, 7y is not sign'Scantly different in either portal hyper-
tensive. This may indicate that this parameter is not a sensitive mensure of organ
pathology.

8.7 Conclusions

A hepatic vascular model has been developed in ar attempt to quantify liver phys-
jology from imaging data. The model has heen applied to a both normal subjects
and organ pathologies, The model j)ammeters appear to describe normal physiol--
ogy and pathophysiology accurately. In particular the parameters r = 0.75 £ 0.02,
p=10.18 £ 0.02 and LMTT = 13.4 & 1.7s for normal subjects correspond to in
vivo measurements furnished in the literature. The physiological significance of r, p
and LMTT provide convincing evidence that the hepatic vascular model based on
anatomy is theoretically sound. This in turn implies that the model of the spleen
developed in Chapter 6 is likely to have physiological significance.
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The trends of parameter ¢ in portal hypertension agree with experimehtal values
presented ir. the literature, The transit time parameters and flow fraction parameter
values indic;_-h,te that the sinusoidal obstruction associated with portal hypertension
has reduced :;t_the total. flow thmugh the liver. These results are consistent with results
obtained in the previous chapter. A detalled clinical research program is however
required to validate the usé of the model parameters as clinical indices.
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Chapter 9
Conclusions

9.1 Deconvolution and Imaged Single Input Organs

In Chapter 3, the relationship between the aorta and organ activily/tims measure-
ment was investigated for single input organs. Equation 3.16 was derived and shown
to be generally applicable for any J.ma.gmgexpenment of a single input orgar in a re-
circulating system. Chapter 3 also develbped the relationship between iﬁput-output

and mput-content measurements of a systum.

The noise generating nature of deconvolution was addressed and it was concluded
that a parametric model of an orga,ﬁ be used, without filtering, to determine the
organ Ir ~tnal Age Density. The Prediction Error Identification Method (PEM) was
choser f compare experimental data with that predicted by mathematical models.

9.2 Identification of an Aorta Background for Organ
Scintigraphic Studies -

In Chapter 4, the negative artifact seen m many organ deconvolution studies was ad-
dresséd. It wag concluded that this negative artifact was probab]y due fo background
tissue activity present in the aorta measurement. In particular, scintigraphic imag-
ing techniques messure more material as the aorta than ié actually present within
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this artery, It was v;hufwn that nb background tissue region eould be chosen that rep-
resents the tissve anterlor and posterior of the imé,ged aorta since any background
tigsue is vasewlar in nature and thus contains small arteries which have similar char-
acteristics to the aorta. Two theoretical models of tissue backgiound activity were
devdoped which removed this negative component. This analysis appears to explain
a discrepancy which bas appeared in the iterature for some time. |

9.3 An Anatomical and Physiological ‘Model of the
Kidney | "

Tn Chapter 5 a paxa.metﬁ"::_: model of the venal zetention function was developed.
This parametric model was shown to be less perturbed by noise artifacts which
are generally present in deconvolved data. Thus the parametric model provided a
more aceirate estimation of cllmcalt indices than those discussed in the literaturo.
The parametric model of the renal parenchyma appeared to consistenily describe
both normal and pathop..ysiclogy. Normal parameter values such as the filiration
fraction, f, were shown to currespuhd to independent measurements reported in the
literature. The filtration fraction for normal subjects was found to be 0.217 1 0.017

The renal blood transit time parameter, 7, was shown io be a potentially useful
clinical index for the determination of renal vascular diseasc. Further clinical re-
" search is however required to validate the use of the model parameters as clinical
indices. In addition, furtber clinical work is required to remove the contribution of

renal background tissue inkerent in the renogram.

9.4 An Anatomical and Physiological Model of the

I Chapter 6 a parametric model of the spleen was developed. The parametric
model of the spleen appeared to adequately describe both normal and abnormal
physiologies. The spleen parameter values for portal hypertensives concurred with
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the degree of splenomegaly ohserved clinically. The spleen mean transit time Typleen
waa shown to be a sensitive clinical measure of spleen pathology. It was thus shown
that the parametric model could facilitate in the diagros’s of splenic disorders, where
flow i affected. |

9.5 Deconvolution and Imaged Multiple Input Organs

In Chapter 7 the relationship between the aorta and organ activity/time measure-
ment was investigated for multiple input organs, in particular the liver, This chapter
provided the first ma.theméuical descﬁptio_;_a for the deconvolation of imaged multi-
ple input organs, It wag shown that decoyvolution of liver aciivity/time curves give
rise to a complex combination of gplenic, gastrointestinal and Liver biood flow de-
pendencies, Unlike the gingle input systems, it was shown that there is no obvious
correfation between the type of mixing and the effect it has on the liver decon-
volved curve. Furthermore, the only direct information that one can glean from
such a curve, is the time at which tracer first appears in the liver. A conclusion of
this chapter was that a parametric flow modal of the hepatic va.scuiar system was
desirable to explain and quantify the deconvolved hepatic activity/i:me curve.

9.6 An Anatomical and Physiological Model of the

Liver

In Chapter 8 a parametric model of the hepatic vascular system wa.a daveloped. The
parametric model of the hepatic vascular system appeared to adequately describe
both normal and abnormsl physiologies. A number of parameters were found to
correspond 0. én vivo messurements reported in the literature. In particular the
portal flow fraction was determined as 0.752 + 0.022, the splenic blood flow fraction
was defermined as 0.180 X 0.023 and the liver mean transit time was determined
as 11.4 £ L7 seconds. Ii wag concluded that the model was therefore an adequate
fiow description of the hepatic vascular gystem. |
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It was shown that the scaling of liver activity/time curves by both the fime at which
the raaximum in the curve occurred, fmax, and the maximum value was fandamental
to the identification of organ pathologies. The parameters r, MT T, Thvw, Tevs LMTT
and 74 were shown to be sensitive and consistent measures of liver pathology when

the liver data was scaled appronriately,

9.7 Conclusion

The physics of imaging radioactive tracéys such as ®mTe.DTPA has been idéntiﬁed
and relaied to residence time density theory _(RTD). This theory permits the identifi-
cation of parameters that describe organ physiology from the decoxiﬁrolution of acrta
and organ activity/time curves. Residence time density theory places limits on the
hehaviour of the deconVoli_’ed curves, These lireits are related to the properties of
probability density functions and conservation of mass, The RTD theory has been
applied to three major abdominal organs; the Kidney, the Spleen and the Liver, In
all three cases residence time density models have been developed in an attempt to
 quaatify the organ physiclogy more accurately. These models have been applied to
a reasonably large sample or normal subjects to determine normal parameter values.
The models have also been applied to a small number of organ pa,thologies. The
. residence time dtméity models aﬁper,’g to clearly identify the organ pathologies and
discriminate between the effect of these pathologies on the organ physiology.

In conclusion, parametric deconvolution of the kidney, liver and spleen has heen
shown to be a robust technique which prov"ides. physiolo_‘cal information not pro-
vided by the conventional non-parametric methods. Further cIinic.al research is
however required to validate the use of the model parameters as clinical indices,
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Appendix A

A.1 The Internal Age Density and Imaged Single-Input

. Organs

In this appendix, the relationship between an imaged single input organ and I(t) is
investigated, To do this we begin with Equation 3.15:

QCia — QCont = % { fu ct, v)dv} - A

Teking Laplace transforms with initial condition C(v,t < 0) = 0 we get:

Culs) = Coul) = 5 ¥ (s, v)dv 49

where '
Cin(s) ~ Laplace transforin of Cp,(t)

Com(s) = Laplace transform of Cou(t)

Now by mass balance Bquation 3.12 gives:

Cout(t) = j: Cialt = )R jdt' =Cimth | (A.3)

or in the Laplace transform domain

Cout(s) = Cim(s)R(s) (A4)

Substituting Equation A.4 into Equation A.2 gives:

gjgv C(s,v)dv

We)=1- @Cin(s)

(A.5)
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But from Equation 3.8:

1) = Hf) 1= jgfh(t)dt (A6)

By taking Laplace transformas and rearranging this equation we gei:

Ms)=1-rsl(s) =1~ %Ef(s) . {A.T)

Substituting Equation A.7 into Equation A5 gives:

fgv C(s,v)dv

ri(s) = To%E)

(A.8)
From Equation 3.8, 7 = % and substituting into Equation A.8 and taking inverse
Laplace transforms we finally get:
: 4
Giux 1(3) = £ C0) (A.9)
Or in words, the convolution of the internal age density with the iulet concentration

is equal to the volume averaged concentration.

i A(t) > 0 and [3° h(t)dt = 1 (LEVENSPIEL, 1972) then from Equation 3.8, 1 —
Jo© k(t)dt > 0 and thus () > 0, Also as ¢ — oo, J° A(2)dt ~+ 1 and 1~ f7° h(t)di —
0. Thus limyosco £(£) = 0. We can also consider the integral of (t), [ I(t)dt To
do this we begin by integrating Equaition 3.8 to give: '

‘é > I(t)dt = fu > %@d; (A.10)

From ZwieTERING (19560), [F°[H(t)]dt = . If we substitute this result into Equa-
tion A.10 then [ I(f)dt = 1 | |
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Appendix B

B.1 Attenuation and Concentration

Let:

C(z,¥,2,t) = activity concentration within an organ, MBq/ml
S, = gamma camera sensitivity, cps/MBg
4 = gamma ray atteruation coefficient, m~!

D(z,y,t) = image count density, cps/m?

Then,
D(z,y,8) = f See” "0z, y, 2y 1)z (B.1)
and the total count rate from a region of interest is given by: |
Organ Count Rate = | j f D(z,y, t)dedy (B.2}
= f j f Soe™ (2, y, 2, )dudydz (B.3)
_ v
= Spemrd fo C (o, t)du (B.4)

where
d - Mean depth of the kidney and attenuation is assumed to be

approximately constant throughout the imaged organ

The organ count rate is thus directly proportional to the total amount of tra v
within the organ. The organ count rate is typically normalised with respect to the
region of interest area, A, and thus: '

v
Area Normalised Organ Count Rate = S,e"“d-‘[g-—gg%—-»w (B.5)
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S,de~# [V O(v,#)dv
d 14

Thus the Area Normalised Organ Count Rate is propottional to the wverage con-
centration within the ozgan. This normalised organ count rate is the same as the

(B.6) |

average image rount density, D(=,y,1).

4,

h
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Appendix C

C.1 Flow in a Length Distributed System

Consider Figure C.1. If one has n parallel plug flow capillaries then the fraction of

particles that spend some mean residence time, r;, or less in the system is given by:

a@w) = [ émﬁ(t“n)dt - (©1)

-—'|-- Plog Flow ni ' —

[ PhgFlow2 |
—_— Plug Flow 1 L. —

Figure C.1: Paralle! Plug Flow System

where
& - Fraction of material flowing through plug flow ¢

(%) + Dirac’s delta (LEVENSPIEL, 1972))
71 i Transit time associated with plug flow ¢

Since [3° 6(F — 73)dt = 1 we find that:

Ho)=3 g =1 (9)

f=1
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Each ¢; s associated with some length 7 = #1;, where @ is the flowrate in the

gystermn and A is the cross sectional area of a capillary which is assumed to be

approximately constant for most capillaries (GuyTON, 1986). If the ﬂovﬁta.te, Q
tﬁrough each plﬁg flow is approximately the same (g; = ;_%), and the cross sectional

area of each plug flow system is similar then the fraction of molecules that spent

mean residence time 7; in the system, H(r;), depends on the number of tubes with
length ;. A density fmiction, g(L), can thea be defined as the length distribution

of capillaries and iz analogous to the RTD of such a systexﬁ.
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Appendix D

D.1 Descending Loop of Henle

Consider the side stream system shown in Figure D.1, This figure depicts movement
of water in the descending loop of Henle where although the tracer remains in the
tubule, the carrier water medium is actively transported out of the tubule. We
assume a constant net flow out the tube per anit volume, a, and consider a mass

Bala.noe over volume element; v to v 4 Av.

—t——

Cin(?)| _ Cow(?)
v w4+ Ap

Figure D.1: Side styeam system representing tracer in the loop of Henle and move-
ment of water out of the tubule

Mass In of Tracer — Mass Qut of Tracer = Accumulated Mass of Tracer D1}

80

QC |y ~QC lopav= m%";l (D.2)
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Dividing aud taking limits as Av — 0 gives:

8QC _ 8C _
Ty B (D.3)

Similarly if the density of the fluid, p, is constant *.:hen.we can perform a flowrate
balance which gives: | -
| 2o . (D4)

If we fix the initial and boundary conditvus as:

e Ot v =0) = Ciu(t)

» C(t,u=V)=Coult)
o Ct=0,v)=0

» Qlv=0)= Q"

and solving Equations D.3 and D.4 simultaneously with the initial and boundary

conditions, we find:

Cont8) = Cinlt)+ g5 202 - ‘“[z’f'“"]) (D-5)
the that thiz is not the residence time deﬁsity of water molecules in the tibe because
this inip]icitly assumes that the tracer flows with the carrying fluid. Mass balance
1s however conserved for the tracer in the tube because QZ°Chy, = (QH° — V)Cous.
‘We also note that the tracer is delayed by some time % times the dimensionless time
scaling factor In[aﬁf_—:‘v]‘ Thus the tracer is only delayed and ne mﬁ::ing of this
tracer occurs, Should 4 be described by a distribution of reabsorption rates across a
number of nephrons, this would manifest itself in an apparent change in the length
distribution of nephrons. The RID of the descending loop of Henle can stili be
defined in terms of some cther constant flowing medium (BTD is still defined) and
is thus given by: |

hza(t) = Cw(t) + 5t — ) (D-6)

where
hin :- Loop of Henle residence time density (RTD), s™1

7h - Loop of Henle mean transit time
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7o 5 not the mean residence time of the water in the descending loop but we note
that a8 7,57 becomes greater, the Bowrate per unit volume, ¢ must get larger. This

may be a useful clinical parameter for diagnosis,
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Appendix E

E.1 Dynamic-Imaging of the Liver

Equation 7.4 gives:

QI+ QO —Q°Cen =24 [ Ct, )0 E.l
- @GR+, - @ m_;l_t'/b (¢, v)do (B.1)
and
@ = (1-r)Q° | (E2)
Q = rq° - (B3)
Gl = O hg(t) - (B4
CPt = Ch+hps . (E.B)
Cout = C* hlws(t) (E.6)
where

Ps(t) = Residence time density of the hepatic vascular system in
Figure 7.1 (hepatic artery, spleen and gastromtestinal tract)
Ciy - Input tracer concentration of the aorta
Cous = Output tracer concentration in the hepatic vein -
hpa(t) - RTD of the hepatic artery (section 8.3), s~1

% 1= D-uotes convolution

Taking the laplace transform of equations E.1, E.4, E.5 and E.6, gives:

QCL+QCL -0 Con = 3ﬁvé(s,v)dv . {B.7)

O = Cuhg (E.8)
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O = Cinhna(s) (E.9)

Ot = C'jnﬁh“(s) (E.30)

If we substitute equations E.2, E.3, E.8, E.9 and E.10 into equation E.7 we get:
o B ) ] - v

{101 = 7)hua(8) + Pigs] — s} Cim = -é‘f; fo (s, v)dv (B.11)

We define a mean residence time of the liver as the volume of the liver divided by

the total volumetric flowrate into the Lver ie.:

Viiver : E
T]I -"'r gl L] 2
ver Qo ( 1 )

Tt we substitute egnation F.12 into equation E.11 for Q° then:

{{(2 — rYhna(8)  rhgs] — Bws} O = M (E.13) |
: TNivers Viiver

Taking inverse laplace transforms finally gives:

{ ST = P)hna o+ higs = Bava) dt} * o = Jo C(t,v)dv .(E.14) |

The deconvolntion of the liver activity/time carve with the aorta. activity /time curve

thus gives: ‘
36 (1 ~ *)hka + Thys — Bis) di
Tliver
For simplicity we deflne, F(#) = 1 - H(t), F(0) = 0, F(oo) = 1. F(t) is the
probability of a tracer particle spending time ¢ or less in a system. Thus as ¢ — 0

(E15)

equation B.15 gives:

£
and using the integral definitions listed above, as ¢ — oo, _
trg .
*lim {fﬁ [(1 T)h;ll + rhgs hlws] dt} - 0 (E-IT)
—+03 Tliver

The convolntion of two positive functirms is always positive. Since g, hnes and
hna are positive, equation E.15 is positive when 0 £ r € 1. » is a fraction and this
condition is always satisfied, thus:

JR(L = r)hna + Phgs = hues) di
' Tliver

20 (E.18)
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If equations E,16 E.17 and E.18 hold, then the infinite integral should also be
defined. To show this we integrate equaiion E.18 and use the information that
Jo° F(i)dt = r (LEvENSPIER, 1972). Integrating equation E.18 gives:

f; B~ ) Jv;hp-hml dt | (E.19)
oo~ r)FLaJ ;Fsa — Pyl 4t/ (E.20)
Joo 10 = ) Fha + r Py :i' v:‘r =1 = Fowet 1= 1]d (B:21)
£52 (1 = )P ~ 1) '";f:, m P+ (A Bw)]d gy
{Thve = Tn) =~ 7(Tn = Then) (E.23)

THver

The numerator of equation E.23 is equal to Tiver and thus (equations 8.4 and 8.18):

e 5o KLt gy = Pl (E24)
0 Niver
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F.1 Development of the Liver Parametric Model

From section 8.4 . fuation 3.12,

oc _ v . 9C

with boundary conditions for this equation are:

C(t=0,v) G

Ii

Clhiv=0) = O =Cun¥hg

We make the substitution:
Y= ln(Q‘ + ¢v)
and thus:
' dy  dv

b Gt ev

Substituting equation F.5 into equation F.1 gives:

9 _ iy son o C
bgo ~ 90 +4Ch = 5

~ The laplace transform of equation F.6 gives:

8 4. n -
' "¢:9?*¢C'+¢C{:‘= a0

Tearranging:
- §Q+(£+_1)a=cff
Oy \¢ -

121

L (F1)

(F2)
(F.3)

(F4)

(F.5)
(£.6)

(F.7)

(F.8)
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* Now the integration of equation F.8 gives:

e e I

3+1

~ where

. Az :- Constant of integration

From, the boundary condition of equations F.3,

Cfoy0 =053 = 1n(@)) = Gl = Ciahy (¥.10)

Substituting equation ¥.10 into equation F.9,

Cinhen = ﬁTég + dreap |- (3+1) 1n(@)] (F.11)
also from equation E.9,
3l = Cluale) (F.12)
Thus Ay is given by:
A 8 W[z Fna(s)
4y = Opesp [( : +1) n(Q )] {hs. ey +1} (F.13)
Wae now define:
*;1'-5' = T4 (F.14)
Vainus _"ﬁhw _ Talnus
o= o=  (R.15)

Substituting for A into equation F.9, re-substituting for ¥ and simplifying gives:

' 1

E L ol
(1—3"‘-'&""1)"#‘*‘"-!“. i"f¢)) T$s + 1

Ris = m‘#"ﬂi‘i“ﬂ = ¢ X » (F.16)

in : +
hogee™ FosH Lot Tainun frg)

.

Inverting the laplace transform and ve-organising:
s""'i"é # hppa — ra-tlfo*a(t-(mln(l-i-ﬁ:nmtrv‘,ﬂﬂgﬂ ¥

T, *T¢+HTalnue
s (2) = (¥.17)

rrgphgawS(tryin{lttuinne [r74))
T+ Talnus
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The mixing in the central vein ia not included and thus the true residence time

density of the hepatic vascular system is:

_ 1Tl (elrgin(i e freg)dmad)

et
_ T¢ * h]m *7ebTednes te—i ey
huys(2) = ' * ~—g— (F.18)
T3,
?‘1’!}&‘!*5! t—Tﬁﬂ! 1-+Tiinus é ks !! . i
rrgtTainuy

where

Tev 3 Mean transit time of the blood in the central vein

The fraction of hepatic arterial relative to portal flow is not directly available from
the model, To include this relationship, we consider s flowrate balance ! in Fig-

nre 8.2.

Now by mass balance with, constant density:
(1~r)Q° = ¢Viinus (F.19)
or re-arranging for » and substituting equation F.14,
| | - Vs |
re=l- 7G° (¥.20)

and so substituting equation F.15 into equation F.20 and re-arranging for 7y

ry = L (F.21)

Equations F.21 and 8.5 can be substituted into equation F.18 to finally give:

* L

(1mer e t=)/%inus

Teluua * §(t - ﬂm) =

hh“(t) =T r(l—-r)e—l(l—rJlfsim*E(t-{(f!t!.!lﬂl-—r]|l‘n!1[r!i_nmn 4P t_i“ifm (F-ﬂ)

Toinus ) 'rgv

k Phgs % 8(t — [Tainus/(1 — r)in{1/7))

' Constant density of blood is asswmed
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Appendix G

G.1 Scaling of _the Spleen and Kidney Activity/Time

Curves

Counts|
per |i
Pixel

Figure G.1: Eight Kidney activity/time curves scaled according to the maximum

value and maximum time
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Appendiz G

I”
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e, .
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Figure G.2: Eight Spleen activity /time curves scaled according to the maximum

value and mayximum time
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Appendix H

H.1 Fast Fourier Transforms (FFT) and Deconvolu-

tion

The discreet fast fourier transform of some vector, ¥, of length A is given as:
Fgy = V (H.1)
V) = Soiufroe (52)
=1
where the A-th root of unity is given by,
wyr = 3N - (H.3)
and j is the root of minus one (v=1).

The Inverse Fast Fourier Transforms (IFF'T) is then defined as, ‘:

vu>=(1/~))f’:vtk)w:f“*"“‘"" (H.4)

k=l

Convolution of two vectors in the time domain gives rise to a product of vectors in

the fourier domain ie. (KrEYSZIG, 1988),

F{axb}= 4B - (H5)
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Appendix I

I.1 The Correlation Mairix

The formulations that appear in this appendix can be found in BECK AND ARNOLD
(1977).

Wa define the sensitivity coefficient, X;, for some model parameter, §;, as,

851, 8)
X;= ~oh (L1)

where
X +~ Sensitivity vector for parameter 4 {Appendix 1.1)

t : Independent variable for model f

We can then define the sensitivity matrix, X, by

Xll LI X ] le
Xa v X
x=|"" » (1.2)
R Xml tee me |

X;k() Is the sensitivity coefficient for the jth dependent variable in in f(#, 8), for
the kth parameter at the ith time. H ¢ has length ten, and there are three model
parameters, thers X has dimensions 10 x 3.

For ordinary least squares (OLS), the covariznce matrix can be approximated as
{BECK AND ARNOLD, 1977)

P = cov(f) » (XTX) " & (L3)
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where '
8?5 Approximate constant variance of measurement errors (Ap-
pendix 1.1) | |

0LS .
= 14

OLS can be obtained from $'S Equation 3.28, n is the number of experimental data

Por

points and p is the number of model parameters,

The approximate correlation matrix of fitted parameters can be determined from
this variance covariance matrix, The ij element of the correlation matxix is given
by '

T = N (L5)

.
Pais Y

The diagonal elements of ¢ are all unity and the off diagonal elemienis lie in the

Whenever all the off diagonal elements exceed 0.9 in magnitude, the parameter
estimates are highly correlated and tend to be inaccurate (BECK AND ARNOLD,
1977). The correlation matrix also provides informaiion about correlation between
pairs of parameters. The closer an element of the correlation matrix is to urity, the
higher the correlation between the pair of parameters associated with that element
- of the corrdlation matrix (BECK AND ARNOLD, 1977). When the correlation be-
tween. parametess is small, the minimisation of & should converge rapidly near the
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Appendix J

J.1 Scaling Residence Time Density Models

Given a RTD, k(t), which needs to be :reformnla,ted“'\i,n terms of a variable & where
8 = t/ty, and iy, is a constant. By mass balance, the fraction of material that spends
 time between ¢ and ¢+ dt in the system must be equal to the fraction of material
that that spends between @ and 8 + d6,

h(£)dt = h(0)db | (3.1)

Substituting 8 for ¢,
F{(8t Y 08 = h(B)d0 (3.2)

Simplifying thie equation gives:

ho = twhe(Om) (3.9)
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Appendix K

K.1 Private Communications

Received: from shannon.es.wits.ac.za by witsvma.wits.ac.za
(IBM VN SMTP VZR1) |
with TCP; Thu, 20 Aug 92 12:04:35 RSA
Received: by shannon.ee.wits.ac.za (/\==/\ Smail3.1.22.1 #32.3)
id <mOmL9Ag-DOOOVRC@shanmon.ee. wits.ac.zs>; Thu, 20 Aug
92 11:61 EET _
Received: From WITS_EE2/WORKQUEUE by cerberus.ee.wits.ac.za
via Charon 3.4 with IPX id 100.920820114266.320;
20 Aug 92 11:43:18 40200
Moszage~ID: <MAILQUEUE-101.920820114245.304@0die>

To: 004£induitsvma.wits.ac.za

From: "Roy Eric Lurle® <LURIECcdie.ee.wits.ac.za>
Date: 20 Aug 92 11:42:45 SAT '
Subject: Reply for Sabine van Huffcl

X-pmrqc: 1

X-mailer:  Pegasus Mail v2.3 {R2).

David,

Here is the reply from Sabine van Huffel. This basically confirms that no-one really
knows why the deconvolution goes negative, We should probably reference this in

our paper as "Personal communications®
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- RO}'

------- Forwarded Message Follows -—---—-~
Date: Thu, 20 Aug 92 09:57:40-01Q0
From: vanhuffefesat.kuleuven.ac.ba
To: _ lurioQodis.es.wits.ac.za
Dear Roy,

I jusi veceived your e-mail. I will give you a quick answ  since I am very busy for
the moment and do net have time to treat your questions morve carefully.

The fact that the concentration of tracer can bet me negative is of course an artifact
of the background subtraction. This is just a consequ~ace of the fact that you don’t
work with exact data but with noisy data and hence we work with some statistical
agsumptions that are never satisfied exactly but only on average. The problem thet
the retention finction may become negative is a due to the fact that the real-lifo
data do not fit the model assumptions and the fact that the background noise can
not be measured exactly. You can impose coustrainis and require that the solution

ig nonnegative but I don’t think more explanstion can be given to this phenomenon.

Concerning SVD techniques for background subtraction: Iknow there are some pa~
pers in image processing that use SVD in order to restore the image and subtract
the background noige but I don’t find the references ﬁght now. What I mean is that
you can put the data of the nuclear images in a matrix, perform the SVD and lower
the rark of this matrix appropriately and then work with the rank-reduced images.

'If done appropriately, the rank reduction should correspond with ba.ckground suh-

traction. Influencing parameters are the matrix size, correcting the singular values,

o TAidu’t ey it out for the computation of the renal retention funciion.

Sabine

=aww RFC 822 Headers
Date: Thu, 20 Aug 92 10:57:10 +0200
Meosgage~Id: <9208200857.AA082420celine.esat.kulouven.ac.ba>
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Appendix L

L.l Renal Computer Programs in Matlab™ for Windows™

L.1.1 Renal Global Program

%

% XIDYEY.M (Non-parameric modal)

% )

% This fils

% 1) Leads and Cleans the data ¥-um the ascii #ile

% 2} Bounds the data using BOUNU .M

3) Interpolates the data to 1 ssconds

4) Daconvolves the data uaing : Filteved FFT Hethod

B) Fita the renal model to the expsrimental data

6) Displays the resnlts and compares the model IAD with the
deconvolved data

A
Y%
%
%
%
%
¥ 0,R Fine and R.R.Lurie 2{-07-93

% Prompt the user for the fila name of +he data to be

% sanalysed. Tha data is assumed to be ;

%

% file namal = Left Parencema O -~ 120 gec in 2 sec intervals

% rame2 = Right Parencama 0 ~ 120 sec in 2 mec intervals

% apmed = Aorta 0 ~ 120 ga¢ in 2 sec intervala

% nanel = Left Parencema 120 - {780 ®ec in 15 sec intervals
% name2 » Right Parencema 120 - 1780 gec¢ in 1B sec¢ invervals
% nama3 = Aorta : 120 - 1780 suc in 15 sec inbtervala
% Cleax tha Workspac

clear '

clear global

pack

format compact

tle

clg

global Pathname
acho olf
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¥Get the Prement Dirsctery
¢ldpath = ped; '

% Got the Tile name
Fnams = 0}
while Fname==0,

[Foome,Pathname] = nigatfile(’#,asc’,’Select a Data File’);
end, _ _
Faame = Fname(1:findotr(lower{Fname),’.asc’)-1);
Fname(£ind((Fname>='0’ }&(Fname<=8?)}) = [J;

% Get Left Pprenchyma Data

eval([’load ’,Frame,’i.asc’]);

eval(['Joad ' ,Fname,'10.a8¢'3); '
Yoval{[¥T = [’,Fname,*1(:,2} ; ' ,Fnawe,’10(:,231:'3);
eval([‘TL = *,Fname,*1(:,2};’1};

eval(LiT2 = !, Faame, 110(:,2);%1);

7= [T1; T21;

decl = T2(2) - Ti(1);

dec2 = T2(2) - T2{i);

lentil = [length(T1) length{12)];

eval({’L = E’.Fname,'i(i.a) ; ' ,Fname, *¥10(:,3)];'1);
eval({[’clear ’,Fname,’1+]);
qval{[’clear ’,Fnama,’10']);

% Get Laft Parenchyma Background Data

sval({[’lead *,Fname,'8.a8¢'1);

oval{{'load !,Fnane,'17,08c?]);

eval{{’Lbg = [’ ,Fnoame,’8(:,8) ; ’ ,¥name,?17(:,3}1;'1);
sval([?¢clear *,Fname,?8']);

eval({[’clear ?,Fname,’17]);

% det Right Parenchyma Data

aval{[’load ’,Fname,’2.a8c']);

eval([*load *,Fname,’il.nsc']);

eval([’R = [? ,Pnome,?2(:,3) ; ? ,Fname,*11{:,3)1;'1);
eval([’¢lenx ! ,Fname,?2']);

eval([’clear !,Fname,?11*]1);

% Get Right Parenchyma Background Data
eval{['load ’,Fneme,’'8.asc']);
aval([’lead *,Fname,'i8.a86°]);
eval{[’Rbg = L?,Fname,?9(:,3) ;
eval{[’¢loar ',Fname,'9']);
eval([iclear *,Fnama,‘t18']);

¢+ ,Fname,’18(:,3)1;'1);

% Get Acrta Parsnchyma

aval([‘load !,Fnams,’3.asc']);

eval([?load *,Fname,*12.a8¢°3); _
eval([’A = [' Fname,'3(:,3) ; * ,Fname,’12(:,3)]1;'1);
eval{{'elsax ',Fuome,’3]);

eval{f'clear ',Fname,*12°]);

cd(oldpath);
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retu = [‘retur=1i;’];

% Interpolate 4s second data to i and decimate all the data to 2»
Y% Marginally filter the data using the techniqus of Diffy and

% <orfield (1978)

[az, $t] = decinter{T,aa,8,5,2,[deci dec2 41, 'Aorta’,lentil);

11 = decinter(T,11,8,5,3,[decl dec2 4], 'Left’,lenfil);

xr = dacinder(T,rr,8,5,3,[decl dec2 4], Right’,lenfil);
1bg = decintex(T,Lbg,8,5,3, [deci dec2 41, Right’,lentil);
hg = decinter(T,Rbg,8,6,3, [decl dec2 41, *Right’ ,lenfil);

% Truncate Data

hold off

plot{tt,aa, b6, 1lsmax(an) /max(ll) , 5t, rremax (aa) /max(xx) , *EvaseModa’, ‘none’)
title(’Select Experiment END point *)
[x,y] = ginpat(1); .
[r..emp,maxind] = min{{tt-x)."2);

an = aa{l:maxind);

r = zr{imexind);

11 = 11(i:maxind);

tt = t5(irmaxing);

1bg=1bg(1:maxind) ;

rhparbg (1 tmaxind);

% Plot all the data and save the interpolated and decimuted data
clg

hold off

it = ["Beslthy = M1 '];

rft = [Healthy o *ip1231];

blnk = [* *];

hold off _
plot{tt,1lsmax(aa) /max(il), '=* b5, rr*max(za) /max(rr), == ,%t,an, ' ~. 7,
‘EraseMode?, 'none'}, grid, titla{’Interpolated and Data Bounded :
CHOOSE THE HBALTHY KIDNEY {“Cont" to continue}*),
xlabel(*Seconds?), hold omn, drawncw
uicontrol("nitse’, 'normal?, 'Position’ ,[.B1 .9 .08 .08],?String’,Cont?,
'callback’,retn)
nicontrol('Units?, ‘normal’, ‘Position’,[.91 .6 ,08 ,08], Styring’,’Left’,
feallback? ,184)
uicontrol{'Units’, 'normal’, *Position? , [.61 .4 .08 .08], 'String!, 'Right?
2 'oallback? ,rtt)
while retur == 0 , weitforbuttonpress; end
uwicontrol('Units’, *noxmal’, *Position’ ,[.52 .6 ,08 .061,’String?,’?,
'callback?,blnk)
uicontrol('Unita’, 'normal’, 'Position’, [.01 .4 .08 ,06],*String*,!?,
_ Tgallback?’,blnk)
ratur = O
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aval([*save !,Pathname, ’kidbound an 11 rr tt?])

% Minimise the morta background and determine the initial gnesses using
% filterad FFT Method. Alsc detexrmine the amount of renal background
% trom the sorta curve

len=length(aa);

options(1) = 0; % Do not print the results aftar sach itteration

optiona(8) = 1; ¥ Termimation c¢criteria for minimised function

options(i4) = 20; ¥ Maximur number of iterations

bgiactor = 0.25;

{val maxal=max(aa);

hold off

plot(tt,an,tt, Ihginax(as) /aex{lbg) ), title(!Belect the Loxta
Paak and Corresponding BXG Psak’),drasmow

maxbg = ginput{2);

blooddelay = maxbg(2,1)-maxbg(l,1};

[val diracl=min{(tt-blooddelay). 2);

lbg={zeron(dirac,1); aa{:)};

1bg=1bg(1:length(an) ysmean(Lbg) /wean(an);

rhg=lzeros(dirac,1); aa(:)];

rbgrrbg(l:length{an) J¥mean(Abg) /mean{an);

A = £25(na);
fL = 225 (21<1bgébgtactor);
2R, = £t {xy~rbgrbgtactor);
HLf262 = 2i11(real(ifft(2L./14)),10);
HREE62 = 241i(real(ifft(4R./14)),10);
hold off
it Healthy == 1/
tactor = max{il)/max(an);
11 = 11/factor:
xr =n yx/factor;
ibg = lbg/factor;
hg & rbg/factox;

Aoxtatix = 100;
bgndasymp = 0.96687+an{len);
indi s min{find (HLLL42<0));
Iminy ind2) = min{(tt-1.5+t4{indl)),"2);
plot(4t,BLIZL2/Tactor, Yoo’ , 'Erasenode’, 'none’), axis(axis), grid,
yiabael(*Le®t?), xlabel('Seconds’), title('Filtexed FFT’),hold on
Plothandle = plot(bt,ELLLE2/factor, ty-?, 'Erasedode’, 'xor?);
x=log{[Aortatix,bgndasympl); _
x = fminu(’aortamin?,x,optivns, [1,11,2a,tt,Plothandla, {indl ind21);
alea : - :
tactor = max{xrr)/max{as);

11 = 1l/tactor;
xr = rr/factor;
Tbg = lbg/factor;
rhg = rbg/factor;

dortatix = 100;

bgndagymp = 0,666T+aa{len);

indi = min(find(HREL£2<0) );

Iminy i0d2] = min{(tt-1.B#uu(indd)) . ~2);
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plot(tt HRIL42/factox, "o’ , 'Evananode’, *xor?), axislaxis), grid, .
ylabel(’Left'), xlabel(’Saconds’), title(’Filtered FFT'},hold on
Plothandle = plot(tt,HRIfE2/factor, ’y~’ , *Eraselfiode’, *xor? )}
x=Log( [Aoxtatix,bgndasymp] );
x = fminu(’acrtamin’,x,optiens, [1,rr,2a,tt,Plothandla, [indd ird42]);
Qnd .
Aortatix = exp(x(1));
bgadasynp = exp(x(2));
aanew=aa~{i-exp{~tt?’/hortatix) yxbgndasymp;
bgiactor = 0.75;
11 = 11l-1bgrbgfactor;
b v o s rr~rhg¥bgiactor;
131 = fixup(tt,ll,aa, 'Leftt);
xr = fixup(tt,rr,an, 'Rightt);
eval([’save ’,Pathname, 'kidbound aa 11 rr %))
sval([’save ’,Pathnsme,’acrtapara Aortafix bgndasywp’l)
14 = Ft(annew)}
BLtt2 = £il1(zeal{df2u(LL./LA)),10);
ERE£62 = £i11(real{iftt(IR./14)),10};
meanlTT = calcmean{th,HLELt2, 'Lett?); -
uicontrel(’Unite?, ‘noxmal’, 'Position’. .91 .8 ,08 .08], ’String’
’Cont’,’callbaﬂk'.ratu) -
while retur == 0 , waitforbutheapress; end, retur = 0;
meanRTT = calempan{tt,HRIrt2, *Rightt);
nicontyol(*Uni/is’, ‘normal’, *Position’, .91 .8 .08 .06], 'Stxing’,
ont?, 'aallback',retu}
while retur == 0 , waltforbubtbonpresa; end, ret;ur = O

eval{{’save ! ,Pathname, ’means neanulTT meanRTT:))
eval({’save ’,Pathnane, ’ret HLE££2 HALFE2'])
% Fit the model to the experimental data

% Setup the optimisation parameters _

optionse(l) = 0; % Do not print the results after sach jtteration
optiona(3) = ie-4; ¥ Termination criteria for minimised function
options(14) = 40; % Maximum aumber of itexations .

sval(f'load ?,Pathnama, *kidbound?])

eval{[‘load ’,Pathname,. 'meane’])

11=13{1:1en);
1bg=lbg(1tlen);
xxeer{iilen);
rbgerbg(iiden);
tt=tt(i:lan):
aa=aaliilen};

len = length(tt);

hold oif
eval([*load ’,Pathname, acrtapara’l)

- Initiel objective function value
Erxor = 1a12;

sval{['save ', Pathnane, 'errLeft Rrrov?])
PP = X}
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atring = ‘Left?’;

%Initial Guesaes
fraction = 0,20;
mintteat=T75}
tanblood=3;
taupara~23;

x = {aupara minttest taublood fractionl; % initial gness=

eval(['save !,Pathnama,’ansleft x'])

x = Jog(x);

hold off

plot (14,11, *co?, *ErasaMude’, *rone?’) , axis(axis) , titla(string),
xlabel{ Tine’},ylaball Activity’),hold on

Plothandle = plot{tt,)l,’y-?, ‘EraseNode’, *xor’};

{val iind] = max{aa);

iind=[1ind blooddelay];

% Call the minimization routine
x = fninu(*jeffloop(x,P1,P2,P8,P4,P5,P8,P7,P8)’ 2, 0ptions, [1,
tt,8a,pp, bgndasynp, doxtatix,string, Plothandle, 1ind) ;
s = ['load !, ,Pathpame, 'ansleft, x = log(x); x =
tminul’? jetflooplx,Pl,P2,P3,P4,P8,P8,P7,P8) 7!,
x,options, [1,tt,4a,pp, bgndasymp, Aortatix, atring,
Flothandle,idind); *1;
uicontxol ("Unite?, ‘normalt, 'Position’ ,[.91 .2 .08 .OB],’String’,
*Agaiat, callback’,s)
sy = ['save !,Pathname, ‘ans?,stringl;
nicontrol('Units?, *normal?, 'Position’,[.01 .4 .08 ,06],'String’,
. *Sava’, *callback’ ,gv) T
pr = Dprintd; '
uicontrol( Unita’, *nornal’, *Pogition?,[.81 .8 .08 .06],’String'
. 'Print?, fcallback?,pr)
wicantrol(’Unita’, ‘normal?, *Position’, [.91 .9 .08 .06], 'String’
» *Cont?, Yeallback? ,retu)
whils retur == 0 , vaitforbuttonprese; end, retur = 0;

Exrvoy = lell;

eval([’save ’,Pathuame,’arrRight Exror'])
PP & T}

string = *Right’;

% Initial Guessed
Traction = 0,20
faublood=3}
‘taupare~235;
minttest=75;

x = [taupara wintteat taublood fraction]; ¥ indtial gness

eval([*save *,Pathname, *ansRight x°1)

x = log(x); .

hold off :

plet(tt,rr,’co’, 'Eragedode’ , 'none’ ), axis(axin) ,title(atring),
¥1abel (*Time!),ylabel(’ Activity®) ,hold on

Plothandle = plot{st,rr, ty~!, 'Eragedode’, *xox? )}
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x = fwinu(tjaftloop(x,Pi,P2,P3,P4,P5,P8,PT, P8}’ ,x, 0options,[],
th, 88, pp , hgndasyep, Aortatix, string,Plothandle, iind) ;

8 = ['load ?,Pathnane, 'snpright, x = log(x);

% & tmine(?’jettloop(x,P1,P2,P3,P4 PE,P6,PT,P8) ", x, options,
[1,%t,aa,pp, bgndasynp, Aortatix, string,Plothandle,iind); ’];

.uicontrol('Units!, ‘normal’, 'Position?  [.91 .2 ,08 ,06),'String’,
‘Again’', 'callback!,s)

sv = ['save ?,Pathname,’ans?®,stringl;

nicontrol(*Units?, 'normal’, 'Pogition’, [.91 .4 .08 .06], *String'
‘Sarp?, ’callback’,sv)

wicontrol( *Unitn?, normal’, "Pogition’,[.01 .6 .08 ,08], 'String’,
"Print?,’callback’,pr)

nicontrol( Unitis’, 'normal’, *Position’,[.91 .9 .08 ,08],’String’,

_ 'Cont’, ' sallback’ ,retu}

vhila retur == 0 , waittarbu#tonprcss; ond, retur =

%

% Evalnata the PARAMETRIC vs NON-PARAMETRIC kidney reponse

aval([*load ',Pathnama, ’kidbound':l) % Load non~parametric time data

eval([’load *,Patlnane, *ret’]) % Louad non-parametric retention funcs

eval([’load ! .Pa.i_;lmme, 'gartapara’]} % Load assymtote

% Lett kidney
sval(['laad ? yPathnamne, anslett?])

PP = 11;

len # 1¢n3tk('tt):

Tanl = x{1); % Payenchemal Time Const
Delayt = x(2); % Parenchemal Delay Const
Tan2 = x(8); % Blood Time Conat

q = %{4); Y% Pixed vascular split factor
Tsamplel = tt(z)wbttn‘ % Sample Time

len = length{tt): ¥ Vector Length

string = ‘Left’;

% Build normal aystenm

% Parenchamal Znd order zystem with delay :
[A1,57,¢1,01] = t£2ss{q,nconv([Taut 1,2)); % Parenchsmal model

[Ad1,Bd1,Cd1,Ddi] = c2db{A1,B4,01, Tsampled,
Deluyitblooddelay) % Digerete

% Vascular 2nd order system without delay

Hum2 = i-q3

Den2 = nconv{[Tau2 11 $2);

fA2,B2,02,02] = tf2sa(Nun?2,Dond); % Blood model
[Ad2,Bd2,042,0d0] = c2dv{A2,82,02,Tsanpiel,blocddelay); % Discrete
{Ad,Bd,Cd,Dd} = parallel{Adi,Bdi,Cdi,Ddl,Ad2,Bd2,0d2,pd2,1,1,1,1);
% Convext to Imternal Ags distzibution

% Invers sign of Natrix
Cdd = -Cd
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bdd = ~Dd;
% 1 in state space
Dotis = 1}

firet,Brot,Crat,Dret] = parallel{id,Bd,Cdd,Ddd,0,0,0,Done,1,1,1,1};

% Intégrate (ie. multiply by *1/s’)

[Adnt,Bint,Cint,Dint] = t22se(1,[1 0]);

[Aint,Bint] = c2d{Aint ,Bint,Tsamplei);

% Connect

fAret ,Bret,Cret ,Dret] = series{Aret,Bret,Cret,Dres,iint,Bint,
Cint,Dint,1,1); :

% Bsmove aorta background Function
aanev=aa~(1-~exp{~tt’/Aortatix) ) ¥bgndasymp;

% Simulate Retention function
yrot = dlsim(Aret,Bret,Cret,Dret,aanew};

% Calc Impulse Retention funciion
yretimp = dimpulse(Avet,Bret,Cret:,Dret,i,1en);

% Calc Dutput Retention Fuaction
youbinp = dimpuise(id,Bd,cd,Dd,1,len);

K = sum(yret)/sum(pp);
IntR « integ{yretimp,Tsamplei);
IntR = integlyretimp, Teamplel);
Index = find(HRELER<=0);
if “imenmpty(™s lex),
Tndex = min(Index);
alsa
Index = length(BLIt2);
end, -
IntF = integ(HLfL42(1:Index),Toanplel);
IntR = Inth{len);
IntF = IntF(Indax);

hold off
clg

plot{tt,yret, '~?,tt,pp¥K, *x?, 'EraseNode’, 'nona’ ), title(l string ,

' Parenchama : Parametric Model'l);
2t = max(tt)/3;
yt = max{yxrat}/s;
text(xt,1,.18%yt, ["Taud = ¢ num2str{x(i)) ?, Delay =
' ! nwn2abr{x(2)}1)
toxt(xt,1.0%yt, [°Taud « * num2etr{x(3)) ', GFF =
' num2str{x{4))]),hold on, drawnow
uicontrol('nits?, 'noxrmal’, *Pogition’, [.01 .8 ,08 083.'51:::1:1.3'
~'Pring’,’callback?,pr)
uicantz‘ol(’lrnits".’normal’.’Positiun’,t.Qi .8 .08 061, Stxing’,
Ton * leallbisck?,vetn)
while retux == 0 , walbforbuttonpress; end, retur = 0;

hold oft

Plot(tt,yretinp/IntR, '~ 44, HLEL2/IntF, *o? , 'Eragedode’, 'none’),
title('Internal Age Distibutions’), hold on, drawnow;
uizontrel{*Unita’, 'normal’, ‘Position’, (.02 .8 ,08 .06],
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*String’, 'Print’, *callback’,pr)
uicontrol(*Unita?, 'normal’, ’Position?,[,81 .8 .08 .08],
*String’, *Conk?,? callback’,retu)
while retur = 0 , waitforbnttonpress; end, retur = 0;

eval({'save ?,Pathnans,’Iftrprt2 ¢t K IntR IntF pp yret
yretinp youtimp EL£££2'])

% Right kidney

svel(i’loed *,Pathname, *ansright’])

PP = Tr;

len length(tt);

Taul = x(1); ¥ Paranchemal Time Conatf:
Delayl = x(2}; % Parenchemal Delay Const
Tan2 = 2(3); % Blood Time Const

q = x(4); Y% Fixed vaseular split factor
Tsamplet = t4{2)- 5(1); % Sample Tima

ien = dength(tt); % Vector Length

sbring = 'Righs?; :

% Build normal system

% Parenchemal 2nd order system with delay

L41,B1,01,D4] = t#288{q,nconvl[Tant 11,2)): % Paranchenmal model

Cadz,Bd1,0d1,0d1] = c2dv{A1,B1,C1, Teamplel

,Dalayi+bleoddalay); . % Dimcrete

% Vascular 2nd order system without delay

W2 = 1-q; '

Den2 = conv{[Tauz 1],[Tan2 11);

[A2,B2,¢2,D2) = 44#2=8(Num2,Den2); % Blood model

[Ad2,Bd2,Cd2,Dd2) = c2dt{42,B2,C2,Tsanplel,blooddalay) % Discrete

{4d,Bd,Cd,0d) = parallel{Adi,Bdi,Cdi,Ddi,AdZ,Bd2,Cd2,Dd2,1,1,1,1);

% Convert to Internal Age distribution

% Invert sign of Matyix
€dd = ~Cd;

Ddd = ~Dd}

% 1 in state space
Done = 1}

[Aret,Brst,Crat,Dret] = parallel(Ad,Bd,Cdd,Dad,o,0,0,Done,1,1,1,1);

% Integrate (is. wultiply by ’i/s?)

[Adnt,Bint,Cint,Dint] = tf3ss(1,[t 01);

[Aint,Bint] = ¢2d(Aint,Bint,Tsamplel);

% Connect '

[Aret,Bret,Cret,Dret] = series(Aret,Bret,Crat,Dret,
Adng,Bint, Ciat,Dint,1,1);

% Remove acrta background Iunction
aanew=aa-(1-exp(-tH’ /Aortafix) }¥bgndagymp; -
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% simlate Retention function
yrat = dlsim(Aret,Bret,Cret,Dret,nanew);

% Cale Impulse Retentiom function
yrotimp = dimpulse{iret,Brut,lret,lres,1,len);

% Cale Dutput Retention Functien
youtinmp = dimpulse(Ad,Bd,Cd,Dd,1,len);

K = sum{yret)/sum{pp);
IntR = integ(yretimp,Tsanplel};
Tudex = “ind(HRE££2<=0);
it "isempty{Index),
Index = min(Index};
alse
Index = length(ALLL1Y);
- and,
IntF = integ(HRLLt2(1:Index), Tsamplel);
IntR = IntR(1en);
IntF = IntF(Index);

hold off
plot(tt,yret/K, '~ ,5,pp, '’ , ‘Erasetode’, 'none’),
sible([ string , ' Parenchema : Parametric Model’l]);
b = max{tt)/3;
yo = nax(yret)/8; -
vext{xt,1.16%yt,['Taul = ? amm2atr(x(1)) ’, Delay = ' numlstxr(x(2))1)
text(xt,1.0%y%, ['Taud = ' amm2etr(x(3)) ', GFF = ' mun2stx{x(4))1)
,hold on, drawmnow
disontrol{’Units?, ‘normal’, rosition’,{.91 .6 .08 .06] *String’,
Print!, ?callback’,pr)
vicontrol(’Units',’normal’,-’?osition’,[.si .8 .08 .08], 'String?,
1Cont’, ’callback’,retu)
while retur == 0 , waitforbujtonpress; end, retur = 0;

hold oft

plot(tt,yretinmp/IntR, -+, 4 HREL£2/IntF, '0?, *Eraselode’, 'none’),

title('Internal Age Distibutions®), hold on, drawnow;

uicontrel{’nits’, *normal?, ’Position?,[.01 .8 .08 .08l,
1String’, *Priat’, 'callback’ ,pr}

eval{['save ' ,Pathname, 'xghrprt3 tt X IntR IntF pp yret yretinmp
youtimp HRE£:2'])

eval(l'save !,Pathrame,'blooddelay’])}

% :

I.1.2 Renal Objective Function

%

function Error = je:l!'r.loop(x tt,a8,pp,bgndasynp, Aortsatix,
string,Plothandle,iind);

% The #ile KIDLOOP determines the sumn of squares between the kidney
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¥ model and the experimental data

%
% D.R., Fine and R.B.Luris 21-07-93

x=axp(x);

if »(2) < 0
z(2) = 2;

and

it x(2) » 200
kayboard;

end

global Pathnamne

Len = Length(tt); .

Tani = x(1); ¥ Parenchysal Time Const
Delayl = x(2); % Parenchymal Delay Const
Tau2 = x(3); % Blucd Time Conat

q = x{4); % Fixed vascular split factor

Toample = £6(2)-tt(1); ¥ Sample Time

eval({[?load ’,Pathname, ’err?,sgtringl);
Lastexror=Brror;

% Duild normal system
% Pa.rsnchymal 2nd oxder system with delay

[41,81,64,D4] = t£2s8(q,nconv(ITand 13,2)); EPa.ranchymal model
fadi,Bd1,¢d1,pdi) = c2dt(A1,B4,01, Teampla,Delayl+iind(2)) ;% Discrete

% Vagcular 2nd order system without delay

¥um2 = 1-q;

Den2 = nconv{[Tau2 11,2);

[Az,B2,02,D2] = t£2s4(Num2,Den2); % Blood moedel
[Ad2,Bd2,0d2,Dd2] = c2dt(A2,B2,02,Tsample,iind{2)); % Discrete

[Ad,Bd,¢d,Dd] = parallel(&di,Bdi,Cdl,Ddl,Ad2,Bd2,c42,0d2,1,1,1,1);
% Convert to Tnternal Age distribution

% Invert mign of Natrix

cdd = ~Cd;

Dda = -Dd;

% 1 in state space

Done = 1;

[Avet,Bret,Cret,Dret] = parallel(dd,Bd,Cdd,Ddd,0,0, 0,Done, i,1,1,1);

% Intagrate {ie, multiply by 'i/s?)

[Aint,Bint,Cint,Dint] = tf£2sa(1,[1 01):

[Aint,Bint] = c2d(Aint,Bint,Tsanple);

% Connect .

[Aret,Bret,Cret,Drot] = series{iret,Bret,Cret,Dret,iint,Bint,
Cint,Dins,1,1);
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% Rewove aorta background function
aazaa~(i-exp(~tt* fhortatiz)) +bgndazymp;

% Simulate Retention function
y = disim(Aret,Bret,Crat,Dret,an);

integ(y(iind(1}:1len),Teampla); |

%Ianti =
WInti = Inti{length(Inti));
¥Int2 = integ(pp(iind(1):len),Teample);

%T.t2 = Int2(length(Int2});
YK = Inti/Int2;

X = sun(y)/sum(pp);

% Caloulate the sum of squares
Errox = 3/K -~ pp;
Erzor = Erroxr(:)’%Error(:);:

xt = max{tt)/3;

yt = max(y)/3;
set(Plothandle, *ydata’ , #/K)
drawnow

if (¥yror < Lamtarrox) :
aval(l’'save ?,Pathnams, ‘err’, string,’ Frrox?])};
oval{l’'save ’,Pathname,’ins’, string,’ x*']);

and

%

L.1.3 Interpolate and Decimate Data

function [daba, tt] = decinter(Time,indata,locptimes,q,n,decifactor,
string,lentil);

Ytunction [data, +t] = decinter(Time,indata,looptimes,,n,decitactor,

% string,lentil);

ind = find(indata<=0);
indata(ind} = 0,001%ones(length(ind),1};
data = indata;
hold off
clg
plot(Time,indata, co?, 'EraseMode’, *none’),axis{axis), t:l.tla(['Dat::. Bcund,
interpolata and Decimate : 7 atringl),
x1label(*Time’), ylabel{’Activity*),hold on
Plothandle = plot{Time,indata,?y-*, 'Eraseiode’, xor’'};

% Diffy and Corfield (1878) Data Bounding Technique
for i = i:lcoptimes
- data = boundyindata,f.n);
sat{Plothandle, 'ydata’ ,data)
drawnow
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Q= g/2;
end,

data = [interp(data(l:lentil(1)),decifactor(l)) :
' interp{data(lentil (1)+1:1enfil(1)}+ientil(2)),decifactor(2))];

data = decinats(ﬁata deci:!actorts), IFIR');
%+0:length(data)-1;

tt = decifactor{3)+t:

Y -

L.1.4 Data Bounding Technique

%-
function [data, ] = dac:.nter(‘l‘:.mo uﬂa:l;a., looptimas,q,n decifactor,

string,lenfil); '
- ¥tunctisn [data, tt] = decinter(Time,indata,looptimes,f,n,decifactor,
k4  string,lenfil};

ind = find(indata<=0);

indata(ind) = O, 001*ones{1angth(ind) 1)

data = indata;

hold off

cig

plot(Time,indata, ?co?, *HraseModa’, 'none’),axis(aris)}, t:.txe([’nata Bound,

Interpolata and Decimate : * stringl),

x1abel{?Time’),ylabel(*Activity’),hold on

Plothandle = plot(Time,indata, 'y~*, ’Erasedode’, 'xox?);

% Diffy and Coxfield ¢ {1976) Data Bounding Technigque
for 1 = 1:looptimes;
datea = bound(indata,Q,n);
sat(Plothandle, 'ydata’ ,data)
drasaow
G =0/2;

snd,

data ** [interp(data(l:lenzil(1)),decitactor(1)) ;
interp(data(lentil (1)+1: 1en:til(:l)+1en1:i.1(2)) decifactor(2))1;

data = decimate({data,dscitactor(3), 'FIR’);
t=0; Length(data)-1;

-ttt = decifactor(3)%t:

% ; -

e

[

e



Appendix M

M.1 Spleen Programs in Matlab-386™

M.1.1 Process the Raw Spleen Data

SPLEENL processes the raw spleen and aorts data

This file

1) Loads and Cleans the data from the agcii file

2) Bounds the data using BOUND.M

3) Interpolates the data to 1 seconds

4) Dsconvolves the data using : Filterad FFT Mathod

LR o

" % D.R, Fine 20~04-p3

% Get aorta
oval{['load Acxrtal.asgc’));
oaval{['load Aorta2.asé’]);

% Get Spleen info
eval([*load Spleent.asc’l);
eval([’lcad Spleen2,asc’]);

T=[Splesnt(:,2) ;Spleen2(:,2)1;
A=[Aorta1(:,9);Aorta2{:,3)];
S=[Spleeni(:,3);Spleen2(:,3)];

hold off

clg

subplot{241) :

plot(T,A), grid, title(['Aerta : ', Dasel):, xlabell’'Scconds’)

plot(T,S), grid, title{[’Original Data: ’, Datel), xlabel(’Seconds')

gave SPLEEN

% wes BOUND,K to non-linear filter the data to Temovs poismon noise.

as = A}

146
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Bg = 8}
= T

% Shift the data to remeve the pre-injection data,
subplot (111)

cig

hold of?f

blen=120;
plot{tt(1:blen),aa(l:blon),t1{1:blen},ss8{2:blen), "+?)
title('Select Expariment BEGIN peint ')

Lx,y] = ginput{1);

Imtemp,minind] = min({tt~x)."2);

% Decimate the initial 0.5 per frame data o is data

docifactor = 2;

ea = [decimatu(aa(minind:12i) ,decifactor,’FIR’) ; aa{122:length(T))];
sz = [decixate(ss(minind:121),decifactor, *FIR*) ; us{122:1ength{T})];
+t=0:1000; -

% = tt{i:length{an));

%Use the Diffy and Corfield (1976) techniqua to bound the da‘ba
Looptines = 6;
ka;rboard '
= 5; % Initial s*andard dwia.tion
ind @ find{an<=0);
aa(ind) = 0,001%onaes(length(ind),1);

lenwlength(an);

anewsaa; _

tor 1 = 1:looptimes;

anaw = bound(anew,q,3);

plot(tt,an,tt,anen), vitle( Aorta ! Data Bounding’ Y,
Q= q/2

and »

Q= &

ind = find(sms<=0);

aa{ind) = 0,001*oner(length(ind),1);

snew:ss

for i = l:looptiman;

gnsw # beurd(snew,H,E};

plot(bt,en,%t,snew), title('s;plam : Data Bounding?),
Q = Q/2;

and,

clg

aubplot{211)

plot{tt,ma, tw. !, 4t ,anew}, bitie(’Aorta : Data Hounding?)
plot(tt,ss,'w.? , 4% ,snew), title(’Spleen : Data Bounding'),pauss

ap = anew;
88 = ENeV;

% Select the background tigsue componeat in the spleen data
anbplot(i11)
clg
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hoid oft

plot(tt(1:30),aa(1:30),46(1:30) ,2u(1:30))
titlea(’Select Subtract Poink'}

{x,5] = giaput(1);

(ival,dind] = gax(an);
(mcal,sind] = min{(tt-x}.~2);
waxind=Jength(aa);

save iind iind aind

aa = aal{l:maxind);

g5 = gs{i:mexind)-ss(sind);

tt = st(limaxind};

aa(1)=0;

ss(1)=0:

ind=find(g58<0);
ga{ind)seprtonss(length(ind),1);

heold off

clg

subplot(211)

plot(tt,aa), grid, title([’sorta : 7, Datsl);, xlabel(’Seconds!}

plot{tt,ps, =), grid, #itle{[’Interpolated and Data Bounded : *,
Pavel), xlabel{’Seconds’), pause

save Splnbound an ss tf

% Pexrfoxm the Hon—Paramst:ic Deconvolution using the filtered FFT Method
24 = 1#t{an);
23 = tit(ss);

HSE#%2 = 501 (real (itee(£5./24)),4);

heold off

clg

plot(tt, B3££42), grid, ylabel(’ALL’), xlabel(’Seconds?’),
title{'Filtered FFT!),

save Syet HSEILH2
ning
%

M.1.z Fit Spleen Model to Experimental Data

x .
% SPLEEN? fita the model of the splean to the experimental
Y% data

%

% D.R. Fine and R.E.Lurie 21-07-p3

claar
pack
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optiona{i) = 0; % Do not print the resulits after each ittaration
options{3d) = 3; Y Termination criteria for minimised function
options(id) = 1003 % Maximum number of iterations

options(8) = 1; Y Broyden-Fletcher-Golfarb-Shanno algerithm
optiona(7) = 1; Y% Caobic Interpolation

leud splnbound
load iind _
load acrtapara

% Initial Gueawsss. The parameters are described in the figures withiz the
% thesis. '

q = 0.80;
1 = 0.20;

Tan_s = 2

Teu_p = B

Tan_gp = 1B;

x0 = [q ¢ Taup Tav.wpl; % initial guesx
len » Llength(tt) -

% Initial function value

Brxozr = 186

Bave errSplesn Exrzor

keyboard

%0 = log{x0);

tactor = max(ss)/max{aa);
save param x0 len Aortafix factor bgndasymp

B = ga(l:len)/factor;
+t = t(1:1en);
aa, = gsa(ltlen);

string = 'Splaen’;

x = tminu{’eplnleop(x,P1,P2,P3,P4,P5,P8,P7 ,PB)’ ,x0, optiona, [],8t,
an, 88, bgndasymp, string, Taw, 4,iind, bortatix);
% .

M.1.3 Objective Function for Model Fitting Program

% : :
Tunction Exror = aplnloop(x,tt,sa,pp,lgndasymp,string,Tav g,
iind, Aoxtatin); .
%function Error = splaloop(x,tt,aa,pp,bgndasymp,string, Taw_ s,
iind,Aortatix);
,"' .
% The file SPLRLOOF determines the sum of squares betwesn the spleen
% model and the experimental data
%
x DuR- Fin. 20"04“93

len © lang*h(tf);
x = sxplx);
q = x(1);
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1 = x(2);

Taup - = x(3);

Taunp = x(4); '

Teomple = $5(2)-tt(i); % Sample Time

eval{[*load exxr’,string]);
Lasterror= norm(Error);

% Remove aorta background nsing the aorta pirametars
aa = aa - (1-exp(-tt’/lortatix))+*bgndasymp;

41 = ((2+x(1) - 1))~100;
62 = {(2*+x(2) ~ 1})~100;

% Put Marginal Zone Plug Flow
[im,Bm, Cit, Dp) =t 2288 {1~q)#L,nconv ([Tau_s/3 1]1,3));
[Am,Bm, Cra, Dl =c2dt { Am, B, O, Tupmiple, Tau_mp+Tau, p) ;

% Put Cental Artery in the systenm
[ic,Be,C0c,Del=tE28a{q,ncony([Tau_s/3 1] 3)),
[Ac,Bc,Cc,Dcl=c2dt (Ac,Bc,Cc, Taample,0)

% Put Red Pulp
fAr ,Br,Cr,Dr]l=t£2z8 ((1-2)+(i~¢) ,nconv([Tau_2/3 1],3));
CAr,Br,Cr,Driec2dt (Ar, Br, Or, Tsample, Tau_p) §

% put the aystems in parallel .
{A1,B1,C1,Di]wparallel (Am,Bm,Cu,Im,Ac,Be,0%,0¢,1,1,1,1)
[4s,Bs,Co,Ds]=parallel (A1,B2,01,D4,4r,Br,C2,0r,1,1,1,1}

»
»
»
»

% Convert te Internal Age dis*cibution

% Invert sign of Matriz
Cdd = ~Ca}
Ddd = ~Ds;

% 1 dn state space
Dona 2 114
[Aret,Bret,Crat,Dret] = paraliel(As,Bs,Cdd,Ddd,0,0,0,Dene,1,1,1,1);

% Integrate (ie. multiply by 'i/s’)
[Aint,Bing,Cint,Bint) = t2238(1,[1 01);
Lhing,Bint] = c2d(Aint,Bint,Tample);

% Comnect _
{Aret,Bzet,Cret,Dret] = serles{Axs+t,Bret,lret,Dret,
Aint,Bint,Cint,Dint,1,1};

yedlain{Aret ,Bret,Cret,Dzet,an);
IntY=integ(y(iind:1len) ,Tanmple);
IntP=integ{pp(iind;len) ,Taanple);
K = IntY(len-iind)/IntRF{lan-iind);

4 Detexmine the summ of aquares
Error = norm(y(iind:len)~pp{iind:Llen}+*K,2);
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hold off

clg
sebplot(i11)
plotltt,y, "= ,4t,pp*K, :x'), tivlell atxring ,
! parenchena : Paramstric Nodel']);
xt = max{ut)}/3;
yb = nax(y)}/3;
text{xt, 1, 18%yt,'g e ! numlstriq) *, ¥ = ¥ pum2str(f)])
text{xt,1.00%yt, [!Tan p = ’ numdstr(Tau, p)l;
toxt{xt,0.86%y%, L au_mp = ! numlstx(Taw, mp) ¢,

Aorbatix = pum2stxy (dortatix)])
toxt(xt,0. 68%yt, Erroxr = ' nun2stri{nom(Errer)) ’,
Lapt Exrror = ! numZetr{Lasterror}]) .

i? (norm(Brror) < Lasterror)
eval([’eave aryt,string,? Errort]);
eval(['save Ans’,string,’ x'1);

ond, .

%

M.1.4 Displays Model Fit to Experimental Data

4
% SPLEEN3 displays the model fit to tha axperimental data
%

x .
% D.R. Fine 20-04~23

 load aplinbound
load Sret

load Ausapleen
load param
load iind
loand nortapaxa

Keyboard
th
a3
Ba

4
4

tt(1shen);

aali:len);

sn(islen)/factor;

x(1);

2(2)3

Tau_ s 2:

Tavp = x{8);

Tau mp # x{4);

Tsample = t4({2)~t6(1); ¥ Sample Tima

N E & B R B

4 Remove aorta background using the aoxta rarsieters
aa *© aa ~ (1-exp(~tt*/Aortatix))+bgndanymp;

gave aoxrta an

% Put Marginal Zons Plug Flow
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[Am,Bm, O, Dol =t 2288 ({1~q)*f ,noonv([Tau_s/3 11,3));

Y% [Aw,Bm, Cm, L] =t£20m { (1-gq)*2, conv{ [Tau_mp 1],nconv{Tau_s/3 11,8)));
%LAn,Bn, O, Dl =c2d% (Ax , B, O, Tsample, Tau_p) ; '

CAz, B, G, D] =c2d% (Am, B, Cm, Tsample, Tan mp+Tau, p) ;

% Put Cental Artery in the system
[A&,Be,Cc,Del=t22u8{q,neonv(Tau_e/3 11,3));
[Ae,Be,Ce,Del=e2dt (Ae,Be,Ce, Tsanple,0) ;

% Put Red Pulp
 [Ax,Br,Cr Brlsti2ss ({1~2)«(1~q) ,nconv{[Tan_s/3 11,3));
[ir,Br,Cr,br]=¢2dt(Ar,Br,Cr, Taample, Tau_p);

% put the systems in paxal -1
Ea1,81,01,01]=pavallel {Am,Bn,Cn,Dn,he, Be,Cc,De,1,1,1,1);
{is,Be,Cs,Del=parallel(Ai,B81,01,01,Ay By, Cr,00n,1,1,1,1);

% Convert to Interma. - - distribution

% Invert sign of Matrix

¢dd = -Cs;

Bdd = ~Dg;

% 1 in state space

Done = i3

[Aret,Brat,Cret ,Dret] = parallel(ds,Be,Cdd,Ddd,0,0,0,Done,1,1,1,1);
% Integrate (ie. multiply by '1/s?)

[Aint,Bint,Cint,Dint] xs(1,[1 01);
[Aint,Bint] = c2d{din,, .Teampla);
% Connect

LAreot,Brat ,Cret,Dret] = sexies(Aret,Bret,Cret,Dret,

y=dlsim{Axet,Brat,Crat ,Dret,aa);
Int¥=integ({y(iind:len},Taampla};
IntPeinteg(as{iind:len),Toample);
K 2 IntY(len «iind)/IntP(Jen-iind};

% Generate RTD, E(t)

E=dimpulaa(ds,Ra,Cs,Dp,L,1en);
Intirinteg(E, Tsanple);
B=E/Int1{Length(E)};

% 1~E(e)

Ca=~Ca}

Da=-Da;

Aone =

Bone = 0;

Cone = O3

Lene = 13 ) i

[A1R,B4E,CAB, DiE] #=pavallel(As,Bs,Ca,Da, Aone, Bone, Cone, Dons, 1,1,1,1);

% /s
CAls,Bis 2 Bl tesrteald, T1 01);
[Als,Bia, O30, Dicl weleb(dds, Blxn,C1s, Yaampla,0);
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% 1/8(1-E(2))
[AT,BI,CT,DIl=serion(A1s,Bis,Cis,D1s, A1, BAE,C1E,DIE,1,1);

% I(s)
I=dimpulse(4I,BI,CI,DI,1,1en};

% nﬁrﬁnlisu the area and plot the surves
IntZeinteg (I, Taample);
I=1/Int2(length(I)};

% normalize the Non—Parametric curve

24 = £1t(an);

18 = ft{as);

HS££62 = £311(read (124625, /24)),4);
ind=len-20;
Tntazinteg(H5Lr42(11ind), Toampla};
HSLLE2=H82242/Int3 (length(Int3));

W koo Rk Aok Rk kA Rk R ARk R
hold off

clg

subplot{iil)

plos(tt,E) ,pause;

title(*Spleen BE{t)?);

xlabel('Yime {8)*);

ylabel(E{t)?);

tdel BE_t.mat

meta B_t

plot(et,y, =7 ,tt,89¢K, 'w. ), title(l'Splean : Parametric Model’]);
Xlabel{ Time {5)}');

yiabel{!Counta/px,.8'),panse;

tdel Splesn.mat

meta Spleen

plot{tt(2:2en-1},I(2:1len~1},t(2:1en~10) ,ESTLL2(2: 1an~10), 'w.?);

title('I{t): Pavametric vz Non-Parametric’};.

xlabel('Time (8)');

ylabel{I(t)*);

xt = max(tt)+30;

vt = max(2)/2;

taxt(xt,1.0%yt,['g = ¢ numdstr(q) 5, f
2 ' nu2str($)])

toxt{xt,i. 44yt ['Tan_s = ' ym2ste{Tau s) ', Tau_p
= ! num2ste(Tau.p)l)

toxt(xt,1,8+yt, ["Tau_mp = * numzstr(TauJup) ', Aortafix
= ! pum2str{kortalix)])

tdul I_t.met
metn It

save Allaplean

%
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A.ppendix N

N.1 Liver Programs in Matlab-386™™

N.1.1 Process the Raw Liver Data

% .
% LIVERi processes the raw liver

%

% This tile

% 1) Loads and Cleans the data from the azcil file
% 2) Bounds the data using BOUKD.M

% 3) Interpolates the data to 1 saconds

% 4) Deconvolves the data using ; Filtered FFT Method
%
%

D.R. Fine 20~04-03

lcad Splabound
- Lload Ansspleen
‘load param

“Load mind

load aortsa

lan = length(aa);

% Get GIT infe
eval({{*load Liveri.asc']);
oval{{’load Liver2.asc?]);

L = [Liveri{:,3);Liver2(:,3)];
T = [iiveri{:,2);Liver2(:,2)1;
11 = L;

sava LIVER I,

hold off .

clg

subplot{111)

plot(T,L), grid

title{['Original Liver Data: *, Datal), xlabel{’Seconds’)
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% nse BOUND.M to non=-linear filter the data to remove poilgson noime.
% minind is determined in splesni.m :

decifaetor = 2%

11 = [decimate{2l(minind: 121) decifactor, ‘FIR’) ; 11(122:length{T))];
tt = 0:1000;
tt = ft(1:1ength(11));

looptines = 6; ¥ See Splean

Q= B;

ind = Lind(11<=0);

11{ind)} = 0.001#cnea(length{iad), 1),

hﬁpu‘

foxr 1 = i:looptimes;

inaw = bound(lnew,q,5);

plot(tt,11,t6,Inew), title(’Liver : Data Bounding'),
Q= 0/2;

and,

clg
abplot(111)
plot(tt,11, 'w.?,b5,1new), title(’Liver : Data Bounding’),pause
mubplot(111)
il = lnew;
13=20(i:1en);
t=tt(1:1len);
aubplot(111}
clg
hold of#
piot(tt(1:30),aa(1:30),5t(1:30),12.(1:30))
% Remove tha initial liver background activity
title(’Select Subtract Poing')
[x,yl = ginput{1);
[acal,sindl = min{{tt~x).*2);

= 11(1:1en)-11(pind};
L1(1)=0;
ind=£ind(11<0);
11(ind)=epavones{length{ing},1);

% Scale the liver data by the maximum value and the time &t which
% this maximum ocours

Mmax , Imaxindi=mox(11) ;

11=11/Ymax;

t. maxstt {1maxind) ;

ot/ t_max;

hold off

elg

subplot{i11)

plot(bt,11,%~), grid, t:.tle(f’Interpolatad and Data Bounded : °,
Datel]), xlabal(’Seconds’), pause

save Liveirbound an 1l % Tt max
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% Perform the ¥on-Parametric Deconvolution using the filtered FFU Method
A = fFt:{aa);

21, = fr{il);

fAs = frt(aa(lilen));

HLIf42 = fili(real(isfL (L. /24)),4):

hold off

clg

subplot(111)

plot (66, BLEF£2), grid, ylabel(’Bguivqlent I?), xlabel{’Seconds’),
title{'Filtered FFI'),

save Lret HLff:2
A :

N.1.2 Fit Liver Model to Experimental Data

y _ _ -
% LIVER2 fits the model of the liver to the experimental
% data -

4

clear
pack

load splabound

load liverbound
load ansspleen

load iind

load aozrts

len = length(aa)
kayboard;

Error = laf;
save exrLiver Erzor
11 = AL{1:len);
aa = aa(lilen);
tt = te{irlen);
ttest(:):
11=01(:);

pp=ll;

clear Error .
clear sm;

% Spleen Mol Parameter determined by Spleen2.m

q = x(1);

1 = x(2);

Tau_s = 2/t_max;
Tau p = £(3)/t max;

Tau_mp = x{4)/t_max}
xsp = {q 2 Taw.p Taump Tau_sl; ¥% Spleen Paramster Vector
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%Initial Guesses

Teu dl = 0.2; YLiver Delay time in the sinusoids
Delay.pv = 0,17 %Contral Vein Delay.

T =0,76; %0.78 Fractioen to the Porial System
P =0.2; %0.2 Frsction to the Spleen

% igueses.m alows one to choose the hepatic arterial delay time
Delay_ah = ignesaes(tt,len,t_max); Yhepatic arverial delay time
Tan_gi = 0.5; ¥Mixing in the GIT

Tau_cv = 2/f_max; %Central Vein Mixing Conatant

x0 = [Toan_dl Delay_pv r p Tau_gil; ¥ initial guess
keyboard

x0=1og{x0};

suve Dalay_ah Delay_ah

egtring = Liver?;

giobal aa xsp string iind Tau_cv Delay_ah il
Time = ;.

wp = 1

clear tt

¥lLevenberg-H- mquart to get Final Batimates _
[funcval,x,var, iter,Correlation, std]=leasqr(Time,pp,x0, ‘1ivlicop?’,
is-4,20) :
x .

N.1.3 Objective Function 1 for Model Fitting Progrzain

A _ : .

funetion Funceval = livieop(x,tt,aa,1l,xsp,string,iind,Teu_ cv,
. Delay_ah,Delay pv);

Y¥tunction Fuiiceval = livloop(x,tt,aa,ll,xsp,string,1iind,Tau_cv,

% ' Delay_ah,Delay_pv);

%

% The f£ils LIVLOOPL detarmines the summ of squares between the liver

% model and the experimental data for the simplex algorithm,
% - '
% D.R. Fine 20-04-93

len = length{tt);

% The spleen values obtained from spleen2.m
q = xap(1);

f = xap{2};

Tau_e = xap(5):

Tan.p = xap(3);

Tau_mp = xap(4);

-% Engures that the values of x are alvays positive
x=axp(x);

Tan_dl = x(1); %Liver Delay time in the sinusolds
Delay_pv = x(2); ¥Central Vein Delay.
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T = x(3); %0.76 Fraction to the Portal Syetenm
P = x(4); %0.2 PFraction to the Spleen
Tau_gi = x(6); YMixing in the GIT

Tau_ha = r*Tan_ di/(i~r): YResidence time associated with

_ %tha Hepatic Artery Flow
Tsample = $t{2)-tt(1); Y% Sample Time

eval([’load err’,stringl);
Lasterror=norm{Error);

% Begin of Spleen
% Pub Kargmal Zone Plug Flow

Lam, B, Cm, Dul =t928s (pk{1~q) *f ,nconv{[Tan_s/3 13,3));

[Am,Bm, Cm, D] =c2dt {4m,Bm, Cm, Teampls, Tau_mp+Tan, piDelay. pv);

% Put Cental Artery in the system
[ic,Be,Ce,Del=ttdus (phg, neonv{ITau_=/3 1],3)};
[kc,Bc,0c,Del=c2dt {Ac,Be, Cc, Tianpls, Dalay_pv);

% Pnt Red Pulp
[Ar,Br,Cr, Dr]‘tﬂss(p*(i—f}*(iwq) ;oconv{[Tau_=/3 11,3));
{r,Br,Cr,Drl=c2dt (iz, 8z, Cr, Thamplae, Tau_p+Delay_pv)

% put the systemsz in parailsl
[41,B81,C1,D1]=parallel(im,Bm,Cn,Dm,4¢,8¢c,0¢,De,1,1,1,1);
Chs,Ba cs,bs]=para11a:.{u.31 Ci,b1,Ar,Br,Cr,Dr,1,1,1,1);
% End of Spleen

% Begin of GIT
% Put Marginal Zone Plug Flow

(2 ,Bgi,Cgi,Dgil=t£2sa({1-p),nconv( ['l'au..si 11,8));
L'thi Bgl,Cpi,Dgil=c2at(Agi,Bgi,lgl, Tsanple ,Delay_pv); -
% End of GIT

% Begin of Portal
% Put Spleen and GIT in Parallel

[Apv,Bpy,Cpv,Dpvl=perallel(in,Ba,0s,De, Agi , Bgi , Cgi, Dgi, 1, 1 1,1);
% End of Porbal

% . Begin of Liver
% Texrmi of formulation
[411,B11,C11,p11]=tL2sa(1, [(Tan_ha 1]1);
[A11,B11,C11,b11)=c2dt {ALL »B14,C14, Taanple,Delay_ah);

% Term 2 of formulation

[aiz,B12,012,012)=tf2ea (-, [Tau_aa 11};

{412,B12,012,01.2)=c2dt (412,812,012, Ts ample,Delay_sh +
Tau_hatlog{1/r)};

% Sum Terml and TermZ
[A13,B13,C13,D13] wparalliel(Ald,B14,011,011,422,812,012,012,1,1,1,1) H

% Term3 v? formudation added to Texms 1 and 2
[414,814,C14,014]=t1288(r, [ie-8 11);

[A1¢,B14,014,D14) =c2dt (414, F1 Y, Cl4, Tsanple, Tau harlog{1/x));
[414,D14,014,014] =series(4la,B14,014,D14, Apv,Bpv, Cpv,Dpv, 1,1) ;
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[A14,B14,C14,D14) =parallel(A14,814,C14,D14,413,518,013,013, 1,1,1,1);

% Contral Veiln Nirxing in series with the formulation
[ALB,B1E,CL15,D16] =t+2ex {1, nconr([Tan_ev/2 11,2));
[416,B15,016,D1E]=c244 (ALS, B15, 016, Teanple D)
[AL,BL,CL,DLI=aeries (415,815,C15, 118, A14,814,C14,D14,1,1);

% _ End of Liver
% Cohvert to Internal Ags distribution equivalent using multiple
¥ input syscem squation

% i/8 in state space
Laint,Bint,0int Dins]=t22as (1,1 0]);
[Aint,Biat,Cint,Dint)=c2dt{Aint,Bint, Cint , Taample,0);

[A1,B1,01,Di]mgariea(0,0,0,%, Apv,Bpv,Cpv,Dpv,1,1);
CA2,B2,02,02] wtedas{ir, [1a~8 13);

[A2,82,02,D027=¢23¢ (A2, 8%, 02, Taampla, Delay_ah);
[A2,82,02,02)=parallel (A2,B2,02,02,A1,B1,01,D1,4,4,1,1);
[A3,B3,03,D3]=parallel(A2,B2,02,02,AL,BL,~CL, -0, 1,1,1,1) ;
A,B, 0. Dlegerien{Aint, Dint, Cint,Dint,A3,83,03,D08,1,1);

y=disim(A,B,C,D,aa);
Iy=integ(y(iind:len) ,Teample);
Ip=integ(1i(iind:len),Teaxple};

K = Iy{len—~iind),/Tp{len—iind);

¥ Datermina the sum of myuarex
Funceval =;3J!n((y(1:lan}-lltk).2);

hold oft

clg

subplot(311)

plot{tt,y/K,vt,11, *x%);

title(? Liver : Parametric Nodel');

xt = max(tt)/3¢
¥yt = nex(11)/3; .
Exror = sum({(y(13:1en)/K ~ 22(13:2en}).72)./Cy{13:2an)/R));

toxt(xt, 1. 16%yt, ['r =z} num2gtr{r) ?, p = ' num2str(pil)

toxt(xt,1.00%ys, ['Tau.gi = ! numlstr(Tan. gl) *, Taw.cvy = !
num2etr{Tav_cv)])
text(xt,0.u8kyt, [#Tau dl = * pumetr{Tav.dl} ?, Delay_pv =
! num2sty(Delay _pv}l)
tert(xt,0.68%yt, [*Delay_ah = ’ num2sty(Delay. ah)]l)
text (xt,0,48%yt, [’ Exror = ¢ nun2strlnorm(Error))} ?, Last Error
_ = ! num2sty (Lastervor)])
if Errer < Lazterror
aval{['save erx’,stxing,’ Brrox’));
eval(['save Ans’,string,’ x'1);
and,
return

%
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N.L4 Objective Function 2 for Model Fitting Program |

%
function Funceval = Livleop(tt,x);
¥function Funceval = livicop(it,x);
% .
% The file LIVLOOP2 deteritines the function value for a given
% parameter space for the Levenberg-Marquart Algerithm

%
% D.R. Fine 20-04~-93

len = length(tt);

% The spleen valuss obtained from spleen2.m
g = xap{1);

1 = xap(2);
.Taw.s = xsp(E);

Tan p = xspla);

Taump = xup(4);

% Ensures that tho values of x are always positive

x=axp(x);

Tan dl = x(1); HLiver Delay time in the sinusoids
Delay. pv = 2(2); %Central Vein Delay.

r = x(3); %0.76 Fraction to tha Portal System
P = x(4a); %0.2 Fraction to the Splaen

Taugi = x(6); #Mixing in the GIT

Tan ha = xeTau d1/{1-r); %Besidence time associated with

%the Hepatic Artexy Flow
Teample = t4(2)-t4{1)};

if Tan 41 > 2

Teu_dl = 1;

Tai_ha = r*Tan_d1l/{i-r);
and

if Delay. pv <= "
Delay.pv = eps;

ond

if Delay pv > 2
Delay.pv = 1}

end

eval(['Lload arr’,scuingl);
Lasterror=norm{Error)}:

4 Begin of Spimen
% Put Marginal Zone Piung Flow

[Am,Bm, Cm,Dm] =t£288 {p* (1~q) ¢, nconv{[Tau_s/3 11,3));
(An,Bn,Cm,Dul=c2dt (Am,Bm,Cm, Teample, Tau_mp+Tan_p+Dalay. pv);

% Put Cental Artery in the system
[Ac,Be¢,Co,Del=t12s v {prg,nconv([Tau_s/3 1],3));
[Ac,Be,Cc,Dcl=c2dt{Ac,Be,Co, Tranple,Dalay_py);
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4 Put Rad Pulp
[Ar,Br,Cr,Drl=tf2ss{p+{i-1£)*(1~q) ,nconv{[Tau s/3 11,3}));
[ir,Bxr,Or,Dri=c2dt (Ar,Br,Cr, Teample, Tau, p+Delay_pv);

% put the systems in parallel
fa1,B4,04,D4]=parallel (Am,Bu, Cm,bn, Ac,Bc,Ce,De,1,1,1,1);
[A=,Bs,Ce,Da}=parallel(Ai,B1,01,D4,Ar,Br Cr Dy, 1,1,4,1);
% End of Spleen

% Begin of GIT
% Put Marginal Zome Plug Flow
[Agi,Bgi,Cgi,Dgil=tT2sa({1-p} ,neonv(Tan_gi 1],3));
[Agi,Bgi,Cgl,Dgil=c2dt(Agi,Bgi,Cgl, Taanple, Dela.y,_pv) H
% End of GIT

% Degin of Portal:
% Put Spleen and GIT in Parallel

[Apv,Bpv,Cpv,Dpv]=parellel(4e,Bs,Cs,De, gl ,Bgi,Cgi, Dgi,1,1,1,1);
% - End of Portal

% - Begin of Liver
% Termi of formulation

[AL1,B14,014,DL1] =t 2na(l, [Tan_ha 1]);
{A1%,B11,C31,D110=c2dt(A12,511,C11, Tsample, Delay_ah) ;

% Term 2 of formulation

[A12,B12,0612,012] =t12ss(-r, [Tau_ha 11};

[A12,B12,C12,D)2) =c2dt (412,812,012, Tsample Delay,_ah +
© Tau_ haslog( 1/::} ¥;

% Sum Terml and Term2
[A13,B13,013 ,D13]=pm1101(h11 »BL1,C14,D01,402,812,012,022,1,1,1,1);

% Term3 of formulation added to Termse 1 and 2
[414,B14,C14,D14)=t22an(x, [1e~8 1]);
[A14,B14,C14,D14)~c2d%(A14,B14,014, Teample, Tau haslog(1/x));
[Al4,B14,¢14,D14]=sexrien(A14,B14,C14,014,Apv,Bpv,Cpv,Dpy,1,1);
{414,B14,014,D14] =parailel(Al4,B14,C14,D14, A13,B13,C13,013,1,1,1,1);

% Centyal Vein Kixing in merirs with the formulation
LAYE,B1E, 015, D16] =t2288 (1, nconv( [Tau_ocv/2 11,2));
[A15,B185,C15,P16] =¢2dt (A15,B15,C15, Teanple, 0) ;
[&L,BL,CL,DL.I=series (415,B15,C15,D15,414,814,C14,D14,1,1);
% End of Liver

% Convert to Internal Age distribution equivalent using multiple
% inpux system eguation

% 1/ in state space
[Aint,Bins,Cint,Dint]etr2aa(1, 1 0);
[Aint,Bint,Cint,Dint]=c2dt(Aint,Bint,Cint, Toample,0);

[A1,B1,C1,D1i])=series(0,0,0,r,Apv,Bpv,Cpv,Dpv,1,1);
[A2,B2,02,D2]~t12as{1-x, [1&-8_ 11):
[A2,B2,02,02]=¢2dt (42,82, 02, TsanpLe,Delay _ah);
[A2,B2,02,D2] sparallel{42,82,C2,D2,41,51,61,D1,1,1,1,1);



Appendiz N

162

[43,B3,C08,D3]=parallel(A2,B2,0(2,02,4L,BL,-CL,-DL,1,1,1,1);
{4,8,C,D]l=saxiea(Aint, Bint, Cint,Dint , A8,83,03,03,1,1);

y=dlaim{A, B, 0,D,a8);
Iy=integ(y(iind:lan) ,Tsample);
Ip=integ(1l(iind:len), Tsample);
K = Ty(lep~iind)./Xp(len-iind);
% Datermina the function value .
Funceval = y(i:le, )/K;

hold oft

elg

dubplot(111)
plot(tt,y/K,tt,11, %2 );

title(? Liver : Paramebric Model?):

xt = aax{tt)/3;
yt = max{11)/3; .
Fivor = sum({{y(13:1en)/K - 11{i3:1en}),"2},/(y{13;:1en}/X));
tvext(xt,1. 104yt ,['x e numetr(x) ', p = * aum2atr(p)])
toxt{xt,,004yt, [*Tav_ gt = ' nuwdstr{Tau gi) ?, Tau_ cv :
: = ? aum2str(Tan_cv)l)
taxt (xt,0.86%yL, [*Tan dl = ! numlstr(Tou.dl) *?, Delay.pv
.= * punRatr(Dalay_pvil) :

taxt{xt,0.68%yt, [Dalay ah = 7 num2stxr(Delay ah)}])
text(xt,0.46%y%, [*Error = ' nm2str{norm(Errer)) ?, Last Error

_ = ¥ num2str{Lastezror)])
£ Brror < Lasterror
© aval{[’save ery!,stying,’ Erroxr'l};
+ eral{[’save Ang’,string,’ %'1);
endl,
Taturn
% .

N.1.5 Displays Model Fit to Experimental Data

y. .

% LIVER3 displays the model fit to the experimental data
%

%

% B.R, Fine 20-04-93

load livarbound
load Lret

Load aorta

load Ansapleen

load iind

q x(1);

4 *(2);

Tau_a 2/t nax;
Taun p = x{(8)/t_max;
Tau.mp = x(4)/6.max;
len=length{aa}

u#s



Appendiz N o | 163

keyhoard

te=tt(islen);
aasaa(islen);
11=11(1*1en);

lcad Analiver
loud Dalay,ah '
Taudl = x(1); YLiver Pslay tima jr the slimseids

Delay.pvy = x(2); YCantxal Vein Delauy.

T = x(3); %0.78 Fraction to thi Por.:al Syatem
P = x(4); %0.2 Fraction to the Spleun

Tau g1 = x(B); YMixing in the GIT

Tan.cv = 0.0%; %Central Vein Mixing Constant

Tau ha = rPan. dl/(i~r); YResidence time assccizted with

%the Hepatic Aryery Flow
Tsample = tt6(2)~tt(1); ¥ Sample Tiie

% . - Begin of Splaan~-
. % Put Marginal Zona Plug Flow

{Am, Bw, Ow, Dol =t2288 {p*{i—~q) %L, nconv{[Tan_a/3 11,3));

{im,Bm,Cm,Dm]=c2dt {4m,Bn, fm Tsanpil.s,l‘au_,mpﬂ'au_pwelay_pv).

% Put Centel Artery in the system
[Ac,Be,Ce,De]=t1283 (p*q,nconv( [Tan, 5/3 1] 3)),
[Ac,Bc,Cc,Del=c2dt (Ao, Be, Cc, Taanple, Delay. pv);

% Put Red Pulp
[ir ,Br,Cr,Drl=tf2ss (px(1-1)#{1-¢) ,neconv{[Tau_s/3 1],3));
{ar,Br,Cx,Drlac2dt (Ax, Br, Cr, Tsanple, Tau,_ptDelay_pv) ;

% put the systems in parallel
[A1,B4,064,B1]=parallel(Am,Bm,Cm, bm,Ac,Be, ¢, De,1,1,1,1);
[As,Bs,Ca,Da)=paralleliAl,Bi,¢1,D4,Ax Bx,0r,Dr,1,1,1,1);
% End of Spleen:

% : Begin of GIT:
% Put Harginal Zone Plug Flow

fagi,Bgi, i, Dgil=t12385{(1~p) ,nconv( [‘I‘au_gi 11,3));
[Agi,Bgl,Cgi,Dgil=c2dt (Agi,Bgi,Cgi, Teanple, Dala.y_pv).
% ; Tnd of QIT:

% Begin of Portal
% Pus Splean and $IT in Parallel

Lapv,Bpv,Cpv,Dpv]=parallel{4s,Bs,Cs,Ds,Agl,Bgi,Ogi,Dgi,1,1,1,1);
4 End of Poxtal

% Bagin of Liver

Y Terml of formulation

[411,B11,C11,D14]1=t22as{1, [Tan ha 11);
[A11,B11,C1%,011]=c2d%(A11,B14,C11,Tsample,Delay_ah);

¥ Texm 2 of formmlation

[A12,B12,C12,012] =t£28s (~r, [Tau_hs 11);

[412,112,C12,D12] =c2dt (412,812,032, Taample, Delay. ah +
Tam_haslog{1/r});
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% Sum Termi and Term2
[AJ.B,B:LS,613,D13]=paxa1191(z\11,311,611 JD11,412,812,012,012,1,1,4,1);

% Torm3 of formmletion added to Terma 1 and 2
[Al4,B14,C14,D14)=t12sa(xr, [1e-8 13);

[AY4,B14,014,014]) =c 24t (Al4,B14,C14, Teample, Tag_haslog(i/c)};
[A14,B14,C14,D14] =ssries{Al4,814,014,014, Apv ,Bpy, Cpv,Dpv, 1,1);
[A14,B14,C14,D014]=parallel(A14,814,014,D14,413 ,B13,013,013,2,4,1,1};

% Central Vein Mixing in series with the formulation

[415,816, 016,018 =tf28a {1 neonv{ [Tan_cv/2 13,2));
-{A18,B1E,C15,D1E] =c2dt (115,815, C1E, Tsanple, 0);
[AL,BL,CL,DL]=serias (A15,B15,G1E,D16,A14, 814,014,014, 1 1):

X End of Liver

A Convert to Inbexnal Age diatribution equivalent using multiple
% input system equation

% 1/z in atate space
faint ,Bing, Cint,Dint]=tt2as(1, [1 01);
[Aint,Bint,Cint, Dint]=c2dt(int,Bint,Cint, Tsanple,0);

[Ai,B1,C1,01)=series(0,0,0,x,Apv,Bpv,Cpv,Dpv,1,1};
[42,52,02,D2=t2288(1~x, [1e-8 11);
[A2,B2,02,02]=c2dt (A2,B2,02, Teaunple,Delay ah);
[42,82,02,02] ~parailel(A2,82,C2,02,A1,R1,01,D4,1,1,5,1);
[43,p3,C3,D31=parallel (A2,82,¢2,D2,AL,BL,~0L,~DL, 1,1,1,1);
[A,B,4,D)=paries(Aint,Bint, (int,Dint, 43,P2,08,D3,1,1);

y=dlsim(A,B,C,D,za);

Iy=integ(y(iind:len),Taample);
Ip=integ(11l(iind:len),Tsample);
E = Iy(len-iind)./Ip{len~iind);

% Genexrate RTD
E=dimpulsa{AL,BL,CL,DL,1,)en);
Inti=integ{E, Toampls);
E=E/Int1i{len);

subplot(111)
vlot (bt ,E);
tltle('Liver B(t}');
xlabel{*Time (s)*');
ylabel('B(t) )}, pause;
ldel LE_t.met

mete LE.$

% Hormalise the Non-Parametrie deconvelved curves
T4 = ttt(an);

2L = f24{lzeros{11,1);10(13)/2;11(13:1en)]);
BL2£%2 = £ili(zeal (it (£L./24)) ,4);

% Bh(v)*1(%)
Et, Jtedimpulae(A,B,C,D,1,1len);
subplot (111)
plot (bt Kb T, 6t HLLILIE2#R/2);



Appendiz N | a , | _ - - 165

fitlel 'Liver offective I(t)’);
xlabel('Time {8)’};
ylabel(’E(t)*L{t)?),pansge;
tdal Et_It.met

meta E3_It

plot('b‘h(i 1m—1).y(1'1m—1),’- 2y (irlan~1}, 11(1 len—i)*l{,'x‘). '
title([*Spleen : Parametric Model’]); T
xlizabal( 'Time (8)?);
ylabel(’Countis/px.s’)
Idal Liver.mat
meta Liver
xt = m(tfs)+30,
yt = m(I)/2.
chi_sq.data = sum({(y(13:1en)/K - 11(13: len)) *2)./(y(13:1en)/R));
chi_ag acta = 20.%1;
text{xt,1.00yt, [?q = ' numatrfg) LI 4

= ' num2str (L)1)
‘l:ext(xt Loy, {*"Tau_s = ’ num2etx{Tau_s) °*, Tan,.p

: = ¢ aum2str(Tau p)l)

taxt(xt,1.84yt, ['Taump = * aum2atr (Tan_mp) °, hortafix

= * namZstr(x(5))])
%
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Appendix O

0.1 Correlation Matrix Programs in Matlab-386TM

-0.1.1 Determination of the Sensitivity Matrix

Thiz matlab file finds the gensitivity matrix of o model at the
minfomm of the objective function of the liver. The same program
is uwsed for the other orgams except the model is changed.

o L E

% D.R., Fine 01-08-92

load splnbound
load livexbound
load ansspleen
Load iind

load acrta

len = length(aa)
keyboard; .
HExror = 1e8;

pave sirLiver Error
11 = 11(1:1em):

aa = aa(l:lsn);

tt = $t(1:den);

clear Erroxr
clear ss;

% Spleen Values

q = x(1);

4 = x{2);
Tau_s = 2/t_max;
Taun.p = x{3}/t.max;

Taump = x{4)/t_max;
xsp = [q # Taup Tau.mp Tau_.sl; % initial guess

%Initial Guesses
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3 wliver

lo & delay_ah .

Tau_evy = 2/t_max; ¥Central Vein Mixing Constant

Tau 8l = x(1); %Liver Dalay time in the minuscids
Delay. pv = x(2); YCantral Vein Delay.

r = x(3); %0.76 Fraction to tha Portal System
¥y = Tan_dl*r; ' .

z = Delay_pve#r;

P ==x(4); - %0.2 Fraction to the Spleen
Tau_gi. = x(6); Y¥ixing in the GIT '
Tam_,cv = 0.04; %Central Vein Mixing Constant

= [y Delay_pv r p Tau_gil; %initial guass
stnng = "Liver?;

% Calculate the derivatives of the function with respect to the parameters
% at the minimuom, The model may be found uzing kidlocp.m, livlocp.m ox
% spinloop.m with the appropriate parameter structure without determining
% the least sguares estimate but just evaluating the function at the
% minimom, '
for j = 1:length{x0)
x0 = xo0ld;
x0({j)= xnla(j)=»C.09;
low = x0{1);
Xlow = model{x0,tt,as,11,xsp,string,Delay_ah,iind, Tau_ cv)/
{len-length(x0));
xO(J}= xold(jl#1.01;
 high = x0{j); _
Xhigh= model(x0,%t,aa,1l,xsp,etring, Delay. ah,iind, Tau_ov)/
(lenwlength(xOJ ) ;
high ~ low;
[X (Xhigh - Xlow)/ dl;

d
b 4
end _
save sensitive I len

%

L

0.1.2 Determination of the Correlation Matrix

%
% Program to calculate the coxrelation matrix gi ven the sensiti\rity
% and sum of squares values

%

%

% D.B, Fine 01-08-93

load senpitive

load liverbound

load summuq

omega = eye(len,len);
Pei = omegataummsqg;

Cov = inv(X!*inv(psi)*X};
save Covariance Cov
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for i = 1:length{Cov(:,1))
for j = L:length{(Cov(:,1)) .
Gorrelation{i,j) = Cov(i,j)*(Cov(i, i)*Cmr;:] NI~ (-6.8);
end .
‘end

save Correlation Correlatiom
Bigen=eig(Correlation);

save Bigen Bigen

y .
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Appendix P

P.1 Aorta Background Correction Programs in Mat!lak -
386T™ |

P.1.1 Gicbal Aorta Background Program

GETADRTA Ptermined the smount of aoyta backgroung

This file

1) Determines the sorta that minimizes the negative component in a
docunvelution study. This program has been used tv determine the
aorta for the sleen {and thus liver) but an analogous program has
been used for the kidnay.

TSI LS

% D.R. Fine 20-04-93

load splnbomnd ¥ Load hon-paxametr:l.c time data

len=length(aa)

kayboard

factor = max(ss)/max(as);
8s = s8(1:1en)/factox;
L = t5(1:%en);

aa = an{i:len);

% Estimate the amownt of backg::ound in t.- orta as 1/3
bgndasymp = 0.6667+aa(len);
% Estimate the confidence time interval as 100s

Aoxtafiz = 100;

options{1) = 0; % Do not print the results after each itteration
- options(3) = 1; % Terminstion cxriteria for minimised funeticn

options(i4) = §0; % Maxisum iterations

x0=3og( [Aortasix, bgudasymp]); '

pibix £ 4 » 2111 (real (iftt (11t (as) . /26 {aa))), 5),

indi = min($ind (HST£42<0});

Iminv ind2] = min({tt-2ese{indl)} ~2);

% Levenberg-Marquard to minimize the negative ccﬁpunent
z = fminu(*aortanin’,x0,sptions, 185,22, %, [indi ind2]1);
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Aortafix = exp(x(1));
bgndasymp = exp(x(2));
save aortapara Avrtafiz bgndasymp
y _ ; .

P.1.2 Objective Function for Aorta Background }\{ginimisation
. SN

3

% .
Tunction EBry = bgndasymp(x,ss,an,tt,bound);

Ytunetion grx = bgndasymp(xz,se,aa,tt ,bou.m\-

% The 2414 AORTAMIN determines size of the ha;aﬁ;vo somponeat in the
% dacumrul#{ad spleen cnrve. Sce getacrta.m

% .

% D.R. Fine 20-04-93

' x&xp(x):

len=length{aa);

i (aallen) - (1-exp(-et(len)/x(i)})*x(z)) < nean{ss{len~20:L1en))*0.5
Erxr = 1a6;
return

and

% Remove the aorta background

aanew=aa-{i~axp(~tt* /x(1)))*x(2);

% Perform the Hon-l"arametric Decomfolut:.an 'as:-.ng the f:i.ltsrad FFT

% Method

4 = tft{aanew):

11, = f14(=28);

BSE£t2 = $ili(real(ift(LL./£A)), 5),

Err = min({mean(HS£Lt2(bound (1) :bound(2))) - 0).2);

plot(tt,HSLTL2, tt, aanewkmax (HS?1+2) /uax(aanew)), grid,

yla.bel(*l.a:tt'). xlabel(*Seconds’]), title(’Filtared FFT?),

xt = nax(it)/3;

¥yt = max(HSEL62)/3; _

text(xt,1.18%ys, [*dortafix = ' num2ety(x(1)) *, Bgndasymp = *
amZaty (x(2))1);

end

%
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Appendix Q

Q.1 Renal Model Compared with Raw Renal Data

The raw data displayed ir: this appendix appears on 8 1.44MB magpetic disk which .
may be found in Appendix S5.1.

. Counts
- per
Pixel

Figure Q.1: Typical fit of the renal model to the experimental renal activity/time

cuyve. Model, o Experimental data for kidney 1
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Counts |
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Pixel

100 200 300 400 &0
t

Figure Q.2: Typical fit of the renal model to the experimental renal activity/time
CUEVE, e Model, o Experimental data for kidney 2

Counts |
per |
Pixel |

Figure Q.3: Typical fit of the renal model to the experimental renal activity/time
CUTVE, s Model, o Experimental data for kidney 3
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Counis

Pixel

t

Figure Q.4: Typical fit of the renal model o the axperimental renal activity/time
cirve. ——- Model, o Experimental data for kidney 4

Counts -
per
Pixel

Figure Q.5: 'I‘ypical fit of the renal modsl to the experimental renal activity /time
CULVE. wmeme Model, ¢ Experimental data for kidney 5
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Counts |
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Figure .6: Typical fit of the renal model fo the expetimental renal activity/{ime
CULVS, o Model, o Experimental data for kidney 8

Counts |
per
Pixel

Figure Q.7: Typical fit of the renal model to the experimental renal 'a.ctivityj’tima
CULVE, wmwm Model, o Lixperimental data for kidney 7
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* Fignre Q.8: Typical fit of the renal model to the experimental renal a.ctmty/tlme
cntva — Model, ¢ Expemnental data for kidney 8
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Figure Q.9: Typical fit of the renal model to the experimental renal activity/time
CULVE: mocems Mo, ‘o Experimental data for kidney 9
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Figure Q.10: Typical fit of the renal mode! to the experimental renal sctivity /time
CUIVS, e Model, o Experimental data for kidney 10
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Figure Q.11: Typical fit of the renal model to the experimental renal activity/time
CUrve. —m-. Model, o Experimental data for kidney 11
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Figure Q.12: Typical fit of the renal model to the experimental renal activity/tihm
curve, —— Model, o Experimental data for kidney 12
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- Figure Q.13; Typical fit of the renal model to the experimental renal activity/time

CUIVE. wmemw Model, o Experimental data for the left kidney of renal pathology 1
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Counts |
per
Pixel

Figure Q.14: Typical fit of the renal model to the experimental renal activity/time
CUIVE. wemmee Mndel, o Experimental data for the right kidney of renal pathology 1

Figure Q.15: Typical fit of the renal model to the experimental renal activity/time
CUIVE, memmwe Model, o Experimental data for the left kidney of renal pathology 2 '
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Figure Q.16: Typical fit of the renal model to the experimental renal sctivity/time
CUrve, a—. Model, o Experimnental data for the right kiduney of renal pathology 2
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Appendix R

R.1 Spleen and Liver Models Compared with Raw

Liver and Spleen Data

The raw data displayed in this appendix appeats on a 1.44MB magnetic disk which
may be found in Appendix S.1.

Counts
per
Pixel

Figure R.1: Typical fit of the spleen model to the experimental spleen activity/time
curve. w—- Model, « Experimental data for spleen 1 '
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Figure B.2: Typical fit of the spleen model to the experimenizl spleen a.ctwity/txme
CUTVE. wmmmw Model, o Experimenta.l data, for spleen 2

Counts [
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Figure R.3: Typical fit of the spleen model to the experimental spleen activity/time
curve, —— Model, « Experimental data for spleen 3

R
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Counts
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Pixel

Figure R.4: Typical fit of the spleen model to the experimental spleen activity/time
CUIVE, wmwewe Model, » Experimental data for spleen 4

Counts |
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Figure R.5: Typical fit of the spleen model fo the experimenial spleen activity/time
CUTVE. muw Model, « Experimental data for spleen 5 '
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Figure R.6: Typical fit of the spleen model to the experimental spleen activity/time
e, e Model, « Experimental data for spleen 6

Counts '
per r
Pixel

ﬂl?

Figure R.7: Typical fit of tLe spleen model fo the experimsental spleen activity/time
curve. —— Model, « Experimental data for spleen 7
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F;g;urc R.8: Typical fit of the spleen model to the experimental spleen activity/time
curve. — Model, . Experimeﬁtal data for spleen 8
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Figure R.9: T¥pical fit of the spleen model to the experimental spleen é.ctivity_/ﬁmg.
CUTVE, mm— Model, « Experimental data for spleen pathology 1 '
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Figure R.10: Typical fit of the spleen model ta the experimental spleen activity /time
CUTVE, s Model, « Experitmental data for epleen pathology 2
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Counts}
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Figure R.11: Typical fit of the liver model to the experimental liver activity/time

eurve, ——.. Model, x Experimental data for liver 1

1

Counts
per |
Pixel i

Figure R.12: Typieal fit of the liver model to the experimental liver activity/iime
CUTVE, mmm Model, x Experimental data for Liver 2
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Figure R.13: Typical fit of the liver model to the experimental Jiver activity /time

CUTVE, wmeewe Model, x Experimental data for liver 3

Counts
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Figure R.i4; Typical fit of the liver model to the experimental liver activity/time
CULVe. —wume Model, x Experimental data for liver 4
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Figure R.15: Typical fit of the hver model to the expetimentzi liver a.ctmty/tlme
CUIVE: emme— Model, = Experiniental data for liver 5
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Figure R.16: Typical fit of the liver model te the experimental liver acﬁﬁty/time
CUIVE. memwmw Model, x Experimental data for liver 8 '
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Figure R.17: Typical fit of the liver model o the experimental Liver activity /time
eNLVe, —m— Model, x Experimental data for liver 7 '
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Figure R.18: Typical fit of the liver mouel to the experimental liver activity/time
CUTYD, memew Model, x Experimd_htal data for liver 8
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Figare R.19: Typical fit of the liver model to the experimental liver activity/time
curve, v Model, x Experimental data for liver pathology 1
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Figure R.20: Typical fit of the liver model to the experimental liver activity/time
CUTVE. meemwe Model, « Experimeatal data for liver pathology 2
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Appendix 8

S.1 Experimental Organ Activity/Time Data Files

The experimental data that is found on the magnetic disk may be aceessed from
any MS-DOS computer which can read .44B digks, A “readme” file is located on

Mi=

“Activity/Time

D R. PING
1934

oo
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