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ABSTRACT 

 

One gram amounts of a commercial iron based catalyst were loaded into three 

reactors and reduced with syngas, hydrogen and carbon monoxide respectively. 

Fischer Tropsch experiments on the three reactors in parallel with the same 

operating conditions, namely 60 mL(NTP)/min, 1 bar gauge and 250 °C, were then 

conducted for extended periods and the gaseous products analysed.  

Initially (for about 150 hours) the three catalysts had quite different carbon 

monoxide conversions. After this until about 1000 hours the conversions were 

similar. However the distribution of products for the differently reduced catalyst 

was significantly different. This suggested that permanent changes had been done 

to the catalysts by the different reducing conditions.  

To try to understand what the differences during the reduction process might be, a 

thermodynamic analysis of the solid phases after reduction was done. 

Unfortunately because all the thermodynamic data for the possible carbides was 

not available this analysis was of limited value. However it did suggest that 

hydrogen reduced catalyst might contain more oxides and the carbon monoxide 

reduced catalyst might contain more carbides. Some electron microscope and 

XRD experiments supported these ideas and might account for the different 

selectivities of the differently reduced catalysts.  

Runs after about 5000 hours were done at different flowrates (60, 30 and 15 

mL(NTP)/min) of syngas and again the big effects were on differences between 

the selectivities, the big effects being when going to the lowest flowrate. 

After about 12000 hours regeneration of the catalysts was then done by oxidation 

and then the same syngas reduction on all the catalysts. Runs were then done at 

different pressures (1, 10 and 20 bar gauge) and again selectivities were the 

biggest effects that remained, clearly showing the initial reduction had made 

permanent changes. 
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In the final section some novel plots were used to try to make more sense of the 

results. It was shown that for all the catalysts the Olefin to Paraffin ratios were tied 

to each other under all conditions and that they were mainly a function of the 

conversions with much higher values at low conversions. 
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CHAPTER 1  

 INTRODUCTION 

 

1.1 Short background on Fischer Tropsch synthesis 

In the Fischer Tropsch synthesis (FTS) process, a mixture of predominantly CO 

and H2 (synthesis gas/syngas) obtained from feedstocks such as natural gas, coal 

and biomass, is catalytically converted to hydrocarbons. Any carbon containing 

material can potentially be converted to syngas via a combination of gasification, 

reforming or partial oxidation. The FT process yields a wide spectrum of products, 

the most desirable ones being paraffins, olefins and oxygenates (De Klerk, 2011; 

Jalama, 2008; Ojeda & Rojas, 2012; Van de Loosdrecht et al., 2013). According to 

these researchers, the FT process requires a syngas with a H2/CO ratio close to 

2:1(Aasberg-Petersen et al., 2004; de Klerk, Li, & Zennaro, 2013; Kuo, 1984; 

Schijndel et al., 2011). The syngas is converted into hydrocarbons of various 

molecular weights according to the following reaction equations: 

nCO + (2n + 1)H2      →      CnH2n+2  + nH2O     (1.1) 

nCO + 2nH2       →      CnH2n + nH2O       (1.2) 

nCO + 2nH2    →       CnH2n+2 O + (n - 1)H2O      (1.3) 

A variety of transition metals (Fe, Co, Ni and Ru) can be used as catalysts in FTS 

(Botes et al. 2013; Lee & Yoo, 2014; Tada & Iwasawa, 2009). Iron based catalysts 

have been widely used because of their low cost and lower methane selectivity 

(Kritzinger, 2002) and their ability to operate over a wide temperature range (220 

to 350 oC) and at pressures from 10 to 60 bar (Huo et al. 2009).  

Fischer Tropsch synthesis (FTS) has been identified as a pivotal unit in the coal to 

liquid (CTL), biomass to liquid (BTL) and gas to liquid (GTL) operations, whose 

performance defines the profitability of the whole process, and thus it has been 
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accorded more research attention in recent years. Surprisingly, the research into 

the operating conditions continues to be of critical importance on the acquisition of 

information that can help in understanding FT operations by running at low 

pressure. This is based on account of a widely held belief that FT operations are 

expensive to set up and the success correlates with the reactor capacity and 

operating pressure. It is also of importance to have smaller or mobile units using 

the same technology that can be used in remote areas. 

1.2 Research problem statement 

The increasing focus by Fischer Tropsch (FT) practitioners in the syngas 

conversion technology to minimize operation cost has created a strong impetus to 

re-examine and optimize the process. The FT is a downstream process of 

gasification whose performance is of paramount importance to economies of many 

countries (South Africa included), and as such research attention is justified. 

Surprisingly, the researches into the FT operating conditions process have been 

on the decline, and the publicly available information is inadequate to fully 

understand performance at all conditions.  

FT operations are usually optimized to maximize the production of preferably 

higher molecular weight liquid hydrocarbon products. In the FT reactor, the primary 

components collected include waxes, hydrocarbon condensate, tail gas, and 

reaction water. A fundamental prerequisite to begin the design of FT is a 

determination of the operating conditions and the catalyst type. This, in turn, is a 

function of feed (its CO/H2 ratio) noting that an iron catalyst tends to further alter 

this ratio via the water gas shift reaction. The determination of the catalyst to be 

used takes into account the price, nature of the feed, availability and estimation of 

time of operation (Chinchen, Logan & Spencer, 1984; Kuo, 1984; Lappas & 

Heracleous, 2010; Newsome David S., 1980; Rhodes, Hutchings & Ward, 1995). 

The reduction of the catalyst precursor is an important stage during FT reaction, 

and reducing gases tend to influence the activity, the selectivity and the catalyst 

life span. During FT synthesis an iron catalyst precursor, in the form of hematite 

(α-Fe2O3), is introduced into the reactor and subjected to an activation treatment to 
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obtain the actual FT catalyst. The activation process involves passing through 

reducing agents such as H2, CO and/or syngas over a catalyst precursor to yield 

an active catalytic state. The exact mechanism resulting in the differences in the 

selectivities of these catalysts is not clearly understood, but the effect is clearly 

recognizable after a long time on stream. Moreover, the need to understand the 

above phenomena has led to this research to ascertain how differently reduced 

catalysts respond to operation condition changes. 

1.3 Research justification 

Although major breakthroughs have been made towards commercializing the 

highly efficient FT process, the costs are still high compared to competing 

technologies. Major cost components are the FT reactors that can withstand high 

pressures and the additional hydrogen or carbon monoxide plants for catalyst 

reduction, and these parts are at the heart of the FT technology. Since the 

gasification process is normally done at ambient pressure, such as in biomass 

gasification, the operational cost could be reduced if the reaction is to be carried 

out at almost similar conditions of low pressure. Furthermore the use of the same 

syngas that will be used for the synthesis to reduce the catalyst will greatly reduce 

the capital costs as the hydrogen or CO plant will not be necessary (see mini-scale 

FT plant in Figure 1.1). As a result, the cost of the technology could perhaps be 

lowered below the conventional power generating systems despite the benefits of 

higher efficiency and cleaner environment.  
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Figure 1.1: Generic block diagram of the FT plant process including syngas 

product and FTS. Parts in red show areas for potential savings. 

The focus of this work is to experimentally explore the behaviour of the catalyst 

reduced with different gases (H2, syngas and CO) at low pressure in FT synthesis. 

The low pressure conditions can be useful in process down-scaling and cost 

reduction, as the operation can be carried out at almost ambient pressure. 

Currently, no studies investigating simultaneously the effect of three reducing 

agents (syngas, H2, and CO) at almost ambient pressure have been reported. In 

this study the FT synthesis was carried out at 1 bar gauge, a value which is far 

below the normal FT runs at 20–40 bars in an attempt to achieve a less expensive 

process. 

Furthermore, significant funds and time are usually consumed during spent 

catalyst replacement in an FT operation plant. Such disturbances are inevitable 

during operation since the catalyst deactivates, and ways to maintain the yield at 

reasonable cost to enable the plant to run continuously for a long time may be 

required. The prolonged operation ensures that maximum achievable profit can be 
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obtained. A systematic control system can be used by altering the operating 

parameters to maintain the conversion (product formation). The choice of the right 

parameters, either individual or in combination, could maintain the yield, and the 

need to replace the catalyst can be delayed. Fortunately, it appears possible to 

reactivate the catalyst to approach the level (in terms of activity) of a freshly 

equilibrated catalyst by changing the parameters such as flowrate and pressure.  

In this research, the FTS reaction was studied over a long period of time (more 

than 19 months), during which a number of operating condition changes were 

made and possible catalyst deactivation was observed. It was anticipated that 

differently reduced catalysts would yield different selectivities to products. In 

addition, the work is expected to contribute towards a better understanding of the 

conditions causing iron catalyst deactivation. The study found that these conditions 

could be tailored to yield a durable catalyst with excellent activity and better 

selectivity. And as such data were obtained, this research work provides a strong 

basis for further work on the durability of the catalyst and on the development of an 

appropriate reduction model that can be used, not only for the optimization of the 

overall reduction process but also for the investigation of the effect of reducing 

gases during the catalyst reduction process. 

1.4 Research objectives 

This thesis seeks to obtain clear and deeper understanding of the dynamic 

behaviour of differently reduced catalysts in a fixed bed reactor, and to transform 

the data obtained into valuable information that would aid FT operators in timely 

decision-making with regard to FT run time and performance. 

This aim would be achieved via the following outlined activities and objectives: 

 To study the effect of reducing gases, such as CO, H2, and syngas on the 

stability, activity and selectivity with Time-on-Stream (TOS) of impregnated 

iron catalyst in FT synthesis using a tubular fixed bed reactor. 
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 To gain an in-depth understanding of catalysts speciation during reduction 

by means of thermodynamics 

 To study the effect of varying operating conditions of differently reduced 

catalyst. 

 To study the regenerability of differently reduced catalyst after a long TOS. 

 To use newly introduced plots to depict product distribution 

The experimental work included constructing the FT rig, reducing the iron catalyst 

at atmospheric pressure, 250 oC, and flow of 60 mL(NTP)/min, with different 

reducing gases. The actual FTS was carried out mainly at similar operating 

conditions as those employed for the reduction of the catalyst. 

1.5 Thesis outline 

The work presented in this thesis is organised in nine chapters based on the 

nature of the investigations. The current chapter has presented the background, 

problem statement, research justification, research objectives and scope (outline) 

for the research work to follow.  

Chapter 1 gives a short background on FTS, the research problem, the aims and 

objectives, and the scope and outline of the research. 

Chapter 2 presents a review of the literature on Fischer Tropsch synthesis at 

various operating conditions and the progress made to date. The areas where 

information is still lacking are highlighted. Hence, this chapter provides a context 

for the research work to follow. 

Chapter 3 starts with a brief overview of the literature on in situ characterization 

during catalyst reduction, some thermodynamic calculations to show the speciation 

pathway of the catalyst precursor during reduction, and the mechanism of 

reduction with different reducing agents. 
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Chapter 4 describes the experimental equipment and the measuring system 

components used in the work undertaken for the research as well as the programs 

involved and the methodology applied.  

Chapter 5 presents results obtained at low pressure. Analysis of the data revealed 

some useful information that can be potentially utilized to reduce capital cost. 

Chapter 6 dwells on the results obtained by alteration of operating conditions. This 

information can be potentially utilized for process control. 

Chapter 7 is dedicated to the study of in situ catalyst regenerability using the feed 

gas (syngas). Fundamental information relating to the pathway of regeneration is 

formulated that might be useful in reactivating the catalyst that was showing 

reduced activity. But despite this progress, some challenges still remain with 

regard to the extension of the technique to an industrial setup.  

Chapter 8 presents two types of plots (called Yao plots and Lu plots after the 

inventors) describing the data discussed in chapters 5–7. These two novel 

methods are proposed to describe product distributions in FT. Once accurately 

calibrated, the two plots could provide a simple means of estimating the product 

distribution. 

Chapter 9 which completes the thesis, presents the main conclusions drawn from 

the work described in this thesis, and offers suggestions for future work.  

This thesis thus provides invaluable information relating to low pressure FT and 

the manipulation of operation variables to tailor the product yields and plausible 

regeneration pathways. The usefulness of this is towards developing best 

strategies for effective FT runs and performance optimisation. Recommendations 

for future work are included in the same chapter. Lastly, the list of referenced 

material and appendices are given. 
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CHAPTER 2  

 LITERATURE REVIEW 

 

2.1 Introduction 

The ultimate objective of this study is to investigate the effects of reducing Fischer 

Tropsch (FTS) iron catalyst with different reducing agents. In the FT process, 

catalyst reduction is of paramount importance as it transforms the catalyst 

precursor to the catalyst proper. Many researchers have studied and documented 

the effective use of H2 as a reducing agent, whereas the use of CO and syngas 

has received less attention. These reducing agents effect phase changes to the 

catalyst precursor yielding active catalyst with fascinating properties. The 

speciates have different reactions to catalyze, and as such, the product distribution 

could then depend on the extent of reduction and the reducing gas used. 

The main problems with any of the anything-to-liquids (XTL) technologies are that 

capital costs and the operational costs are extremely high. An XTL technology 

encompasses the conversion of gas-to-liquids (GTL), coal-to-liquids (CTL) and 

biomass-to-liquids (BTL) (Ojeda and Rojas 2012; Aasberg-Petersen et al. 2004; 

Dry and Steynberg 2004; van Steen and Claeys 2008; Rauch et al. 2013). As a 

result, securing a cheap feedstock supply can also reduce the capital costs of the 

whole hydrocarbon synthesis. Coal and biomass as solid feeds are converted to 

syngas in a gasifier, and natural gas is converted in a reformer, and typical 

examples are the partial oxidation, autothermal reforming or steam methane 

reforming. These and other technologies available for synthesis gas generation 

are discussed more extensively by Aasberg-Petersen et al. (2004).  

The catalyst precursor, upon reduction, speciate to give different phases of varying 

stability depending on the reducing gas used. A thorough look into this speciation 

is given in chapter 3. This literature review includes information on speciation 

during reduction with different reducing agents. Reducing condition methods which 
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are in use are reviewed. A review of the reducing gases used is included. The 

factors affecting the reduction extent are examined. The discussion highlights a 

possible transformation mechanism to convert the precursor catalyst into the 

desired metallic iron or iron carbides. The literature review provides information 

that will help in elucidating a possible production route of the catalyst that is most 

effective. 

2.2 Conventional FT synthesis  

In the Fischer Tropsch process, a mixture of predominantly CO and H2 (synthesis 

gas or syngas) obtained from feedstocks such as natural gas, coal and biomass, is 

catalytically converted to hydrocarbons (Lappas and Heracleous 2010; Van 

Ommen and Grievink 2014). In essence, any carbon-containing material can be 

potentially converted to syngas via a combination of gasification and reforming or 

partial oxidation (Bharadwaj and Schmidt 1995). The FT process yields a wide 

spectrum of products, the most desirable ones being paraffins, olefins and 

oxygenates, and large quantities of water are also produced as a by-product (De 

Smit and Weckhuysen 2008; De Smit et al. 2010)..  

nCO + (2n + 1)H2      →      CnH2n+2  + nH2O    (2.1) 

nCO + 2nH2       →      CnH2n + nH2O     (2.2) 

nCO + 2nH2    →       CnH2n+2 O + (n - 1)H2O    (2.3) 

FT synthesis has been reviewed by several authors (Pretorius and de Klerk 2013; 

Van de Loosdrecht et al. 2013; Rauch, Kiennemann, and Sauciuc 2013; de Klerk, 

Li, and Zennaro 2013) revealing the diversity of the conventional Fischer Tropsch 

synthesis. Several publications also discuss the pros and cons of various 

operating conditions. The operating conditions usually employed in FT typically 

range from 220 to 250 °C and pressure of 20 to 60 bars (Hunpinyo et al. 2013; Y. 

Liu et al. 2007; Branislav Todic et al. 2016). In practice, the operating conditions 

are usually tailored depending on product distribution required, the catalyst used 
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and the reactor type (Hossein Atashi et al. 2015; Farias, Fernandes, and Sales 

2010; Farias et al. 2007a). 

2.3 Effects of operating conditions 

Selectivity relates the yield of a particular product with respect to a particular 

reactant and this relation is mostly influenced by the process conditions (Soled et 

al. 1990). The influence of process conditions on the product selectivity has been 

investigated and well documented. Several review papers (Abelló and Montané 

2011; Basha et al. 2015a; Sarkari, Fazlollahi, and Atashi 2012a; Mohanty et al. 

2014) have been published highlighting the effects of changing flowrate, pressure, 

temperature and the catalyst on the product distribution. The effect of pressure, 

temperature, flowrate, time on stream and reduction of the catalyst are discussed 

briefly.  

 Pressure in Fischer Tropsch synthesis 2.3.1

In gas-to-liquids (GTL) plants, compromises must be made between product 

selectivities and yield, and the FT capital costs and operating conditions (Petersen 

et al. 2015; Sims et al. 2010). The economies of scale are used to justify the use 

of high operating pressures as this yields high conversions and helps control the 

heat removal (Kshetrimayum et al. 2015) and the possibility of recycling the tail 

gas in the FT reactors (Yao, 2011). In most cases, FT  plants operate at high 

pressure, the maximum commissioned in 1987 was 45 bar by Sasol with Arge 

tubular fixed bed reactors (TFBR’s) for LTFT synthesis (Espinoza et al. 1999a).  

Increasing total pressure has in general the effect of increasing both the extent of 

conversion and the chain length of the products. Studies by  Farias et al. (2008) 

showed that high pressures (25 to 30 atm) favoured the production of waxes, while 

greater direct selectivity towards diesel was favoured by low pressure (20 atm) 

when using iron based catalysts. In other pressure studies, by Todic et al. (2016a) 

using an iron based catalyst, increasing pressure resulted in the reduction of 

methane production and increase of C5+ products. Studies by Liu et al. (2007) 
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reported the same observation when an iron based catalyst promoted with 

manganese was used.  

To date, an economical FT plant design which operates at low pressure and 

demands less operating expertise has not been developed for small plants. The 

emphasis on simplicity and minimized capital cost definitely affects the efficiency 

of the process. 

 Effects of temperature on product selectivity 2.3.2

The effect of temperature for iron based catalysed FTS reaction has been reported 

many times in the literature (Farias et al. 2007b; H. Atashi et al. 2015; Meshkani F. 

and Rezaei M. 2015; Espinoza et al. 1999b; Yuan et al. 2011). The consensus is 

that increasing temperature increases the rate of reaction but decreases the chain 

length of the products. Koeken, Ruitenbeek and De Jong (2011) reported a 

positive effect on the amount of light hydrocarbons produced whilst the heavy 

ones decreased. The current study will only be limited to the effect of pressure and 

flowrate, though temperature also plays a major role in FT production. 

 Flowrate effect on Fischer Tropsch synthesis 2.3.3

Gas flowrate affects the conversion and probably the product selectivities; that is,  

the higher the flowrate the lower the conversion, and the lower the flowrate the 

higher the conversion (Yaghobi 2013). The influence of flowrate on selectivity is 

still not well studied in the literature, and studies done thus far are not conclusive 

since the partial pressure of reactants is affected with this variation (Panahi and 

Skogestad 2011;  Boyer et al. 2016); Hunpinyo et al. 2013).  

The influence of the feed flowrate or residence time on product selectivity has 

been investigated and results are mostly depicted as a ratio of olefins and 

paraffins (Copperthwaite et al. 1987). Studies by Kuipers et al. (1996) showed an 

increase of the olefin to paraffin ratio with increasing space velocity (thus a 

decrease of the conversion) on a poly-crystalline cobalt foil. In another study, 

Iglesia, Reyes, and Madon (1991) reported an increase of the average molecular 
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weight of the products with decrease of the space velocity and also a decrease in 

the methane and olefin selectivities with a decrease of the space velocity, while 

the selectivity towards paraffins remains unchanged. The effect of the space 

velocity is mainly on the secondary reactions of olefins to paraffins (hence the 

significance of the ratio). The α-Olefins, which are primary Fischer Tropsch 

products, are known to participate in secondary reactions during 

the synthesis process (Novak, Madon, and Suhl 1982; Lu, Hildebrandt, and 

Glasser 2015). These conclusions suggest that readsorption and secondary 

reaction of the initially produced α-olefins is an important pathway leading to the 

formation of large molecular weight hydrocarbons during Fischer 

Tropsch synthesis. This is generally agreed upon by  many researchers (Dwyer 

and Somorjai 1979; Iglesia, Reyes, and Madon 1991b; Snel and Espinoza 1989). 

The current work will explore how the differently reduced catalysts respond to 

changes in the feed flowrate. 

 Time on stream 2.3.4

Time on stream (TOS) in Fischer Tropsch is basically the period of time from when 

the reaction is started after catalyst reduction (initial period of synthesis) to the 

point the reaction is stopped (Sarup and Wojciechowski 1984; Karre et al. 2013; 

Vo, Nguyen, and Adesina 2010). It is well documented that catalyst deactivation 

happens with increase in TOS as many deactivating phenomena take place such 

as carbon deposition, sintering, poisoning and oxidation (Meng, Xu, and Gao 

2007; C. Wang, Ma et al. 2015; Luo and Davis 2001; Raje et al. 1997). Studies 

have also been done to ascertain deactivation as a function of potassium promoter 

loading for precipitated iron catalyst (Pendyala et al. 2014). 

The degree of deactivation varies with TOS and hence the product distribution 

varies accordingly. Very few researchers have reported the effects of time on 

stream on their product distribution though this parameter cannot be used alone 

explaining catalyst deactivation (Sarup and Wojciechowski 1984; Karre et al. 2013; 

Vo, Nguyen, and Adesina 2010).  Donnelly and Satterfield (1989) reported that the 

average molecular weight of products from a commercial Ruhrchemie catalyst 
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decreased with time-on-stream and, at the same time, oxygenate production 

increased substantially after a period of 1300 hours’ time on stream. In the same 

study, Donnelly and Satterfield (1989) observed that in contrast 

a precipitated iron catalyst with neither potassium nor silica showed stable 

selectivity but decreasing activity for 2000 hours-on-stream. The behaviour of the 

differently reduced catalyst after a long time on stream (about 14 000 hrs) under 

laboratory conditions has never been looked at to the best of our knowledge. This 

helps us have an insight into which reducing agent yields a catalyst with better 

stability for long TOS.   

 Fischer Tropsch catalyst 2.3.5

Fischer Tropsch catalysis is a growing area of research, as seen by an 

exponential increase in the publication activities on the topic. Iron and cobalt are 

the mostly used transition metals (de Klerk 2011; Mark E. Dry 1983a). Iron based 

catalysts have been widely used because of their low cost and availability; it is 

reported that iron is the most abundant element, by mass, in the Earth, constituting 

about 80% of the inner and outer cores of Earth (Frey and Reed 2012). The 

potential impact of other metal additives on these metals (Fe, Co) on their catalytic 

activity is gaining momentum. Pure components can be used as catalysts, but with 

continuing research multicomponent catalysts are studied and are now commonly 

used in FT technology to fulfil economic, and environmental demands. Several 

hybrid FT catalysts with additive metals are reported by a number of  researchers 

(Ryu et al. 2015; B. Li et al. 2015; Qin et al. 2016; T. Lu et al. 2016a; Mosayebi 

and Haghtalab 2015; Mosayebi, Mehrpouya, and Abedini 2016). These hybrid 

catalysts tend to have selectivies towards a  specific range of products; so, for 

instance, the hybrid catalysts of Cu-Zn-Al/Co-Hβ at low reaction temperature (290 

°C) tend to yield C3-C5 hydrocarbons (T. Lu et al. 2016b). In the study by Wang et 

al. (2015), the catalytic conversion of syngas into hydrocarbons 

over hybrid catalysts consisting of a methanol synthesis catalyst and Pd 

modified zeolites (PdZSM-5, Pdβ, and PdY), promotes the formation of 

C4+ hydrocarbons supposedly due to the large pores and cavities of Pdβ and 

PdY. A process with Pt/ZSM-5 (Pt 2% (w)) catalyst to produce toluene and para-
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xylene through the alkylation of benzene with syngas, was also reported by Zhong 

et al. (2016).  The nature of these studies contributes significantly to the 

development of efficient catalysts for production of hydrocarbons from syngas. 

 Water gas shift reaction 2.3.6

The water-gas shift (WGS) reaction is a competitive process in FT synthesis in 

which carbon monoxide reacts with water produced during the FT reaction to 

produce carbon dioxide and hydrogen (Meshkani and Rezaei 2015a; Meshkani 

and Rezaei 2015b; Bukur et al. 2015; Martos, Dufour, and Ruiz 2009). According 

to Bukur et al. (2015) this reaction is essential to increase hydrogen production 

and to decrease the CO in the FT process. The water-gas shift (WGS) reaction is 

reversible and moderately exothermic, and it is thermodynamically limited at high 

temperatures (Newsome David S. 1980; Rhodes, Hutchings, and Ward 1995). 

Figure 2.1 shows the variation of the log of equilibrium constant Log (kp) for the 

water-gas shift reaction with temperature (°C).  In general, low temperature FT of 

190–250 °C favours greater equilibrium conversions to carbon dioxide (Rhodes, 

Hutchings, and Ward 1995). Consequently, in industrial plants, the WGS is usually 

carried out in two stages: a high-temperature stage (HTS) at 350–500 °C and a 

low-temperature stage (LTS) at 190–250 °C (Rhodes, Hutchings, and Ward 1995).  
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Figure 2.1: Variation of the logarithm of equilibrium constant Log (Kp) for the 

water-gas shift reaction with temperature (°C). 

A measure of WGS activity is the amount of CO2 formed in the reactor. The WGS 

reaction, which is known to be catalysed by magnetite (Newsome David 1980), 

can be presented as: 

CO + H2O ↔ CO2 + H2       (2.3) 

Usage ratio (UR), defined by equation 2.4, is a useful property to look at when 

studying WGS (B. Todic et al. 2016b).  

𝑈𝑅 =  
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐻2 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶𝑂 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
        (2.4) 

The WGS reaction balances the H2: CO ratio and this phenomenon is commonly 

observed in the case of coal-derived syngas, which has a H2/CO ratio of less than 

2. The stoichiometric ratio of the feed H2/CO should preferably be about 2 to 

produce hydrocarbons according to equations 2.1, 2.2 and 2.3. In the absence of 

the WGS reaction, the usage ratio remains approximately 2. In the case of high 

WGS activity, where all water produced by FTS is consumed by the WGS 

reaction, the usage ratio would be less than 2 and the selectivity to CO2 would be 

more than 50% assuming that CO is only consumed by the formation of  

hydrocarbons and WGS (D.B. Bukur, Todic, and Elbashir 2015).  
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In FT synthesis the catalyst precursor is mainly hematite (a-Fe2O3) which is 

reduced in situ to produce magnetite (Fe3O4) which is found to be the active phase 

(Chinchen, et al. 1984; Martos, et al. 2009). It is this magnetite that is known to 

catalyze the water gas shift reaction in Fischer Tropsch synthesis. So 

understanding the conditions that favour the formation of this phase in FT would 

be beneficial to FT practitioners. 

 Effect of catalyst composition on the performance and selectivity 2.3.7

of the catalyst 

Different oxides (ZnO, MnO, Al2O3), metals (Cu, Ru), and alkali (K, Na, Cs, Rb) 

metals have been used to increase the activity and the structural integrity of the FT 

catalysts (Wang and Spivey 2015; Jermwongratanachai et al. 2014; Jacobs et al. 

2014a). Among them, copper and potassium are widely used, and these additives 

play an important role in determining the FTS product distribution and life span of 

the catalyst. 

In addition, adding of promoters such as Cu and K to precipitated iron-based 

catalyst has been found to have significant influences on the crystallographic 

structure, morphological and physical properties of iron-based catalysts, as well as 

stability and selectivity performances during FT synthesis (Özkara-Aydinoĝlu et al. 

2012). Dopants such as ZnO, Cu, and K compounds have been reported to 

increase FTS rates on precipitated Fe2O3 precursors (Li et al. 2001). 

Furthermore, studies by Das et al. (2013) indicate that increasing K loading 

decreases gaseous hydrocarbon formation and shifts selectivity to heavy 

hydrocarbons. Das et al. (2013) also observed that the K suppresses of the 

hydrogenation activity of the Fe-Cu/SiO2 catalyst, leading to higher olefin yield in 

the products. Further studies by Ding et al. (2015) studied the impacts of K 

promoter on microstructures of a precipitated Cu-Fe based catalyst using N2-

physisorption (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer 

(XRD) and hydrogen temperature-programmed desorption/reduction (H2-

TPD/TPR). The study indicated that incorporation of K in the Cu-Fe based catalyst 
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reduced the surface area of the particles and promoted the migration of bulky iron 

species to surface layers and strengthened the interaction of surface Fe-Cu. In 

addition, the increase of K concentration facilitated the formation of heavy 

hydrocarbons (M. Ding et al. 2015). 

Addition of both Cu and K to the catalysts showed a highly significant decrease of 

the catalyst deactivation rate and greatly enhanced the CO and H2 conversion, 

82% and 44% from 35% and 30% obtained with non-doped catalyst, respectively 

(Blanchard and Abatzoglou 2014). Similar conversion effects were observed by 

Pendyala et al. (2014). Increasing copper loading suppressed lower hydrocarbon 

(methane and C2-C4) selectivities and favoured higher hydrocarbon (C5+) 

selectivity (Pendyala, Jacobs, et al. 2014). 

Copper has traditionally been added to precipitated iron catalysts to aid reduction 

of Fe2O3 to metallic iron by lowering the reduction temperature  (Cairns et al. 2006; 

Tang et al. 2009; O’Brien and Davis 2004). This lowering of reduction temperature 

is of particular importance when activating with hydrogen since the formed metallic 

iron is prone to sintering if the temperature is too high; however, it is not as critical 

when activating with carbon monoxide or syngas because iron carbides are 

formed and they are not as susceptible to sintering (O’Brien and Davis 2004). Cu 

and K compounds have been reported to favour the water-gas shift (WGS) activity, 

a reaction that occurs concurrently with FTS on Fe-based catalysts (Ma et al. 

2014). 

 Effect of the nature of reducing gases during catalyst activation 2.3.8

The difference in pretreatment method causes the catalysts to exhibit significant 

differences in their catalytic activity for CO hydrogenation (Shroff et al. 1995a; D. 

B. Bukur et al. 1995). During FT synthesis hematite (α-Fe2O3), an iron catalyst 

precursor, is introduced into the reactor and subjected to an activation treatment to 

obtain the actual Fischer Tropsch catalyst. The activation process involves 

passing through gases such as H2, CO or syngas over a catalyst precursor to give 

highly active catalytic state. During the reduction stage the catalyst precursor 
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hematite (α-Fe2O3) is known to be converted to magnetite (Fe3O4) regardless of 

the activation gas used for pretreatment (Herranz et al. 2006). The fate of the 

intermediate magnetite will then be determined by the nature of the reducing 

agent, temperature and pressure.  

In the FTS reaction, the CO-activated catalyst is reported to give comparatively 

higher initial activity than the H2 and syngas-reduced catalysts, and the trend 

remained unchanged in the activity following the transformation of iron carbides to 

Fe3O4 (M. Ding et al. 2011). The nature of the reducing gases determines the 

initial phase of the catalyst after reduction stage. These phase differences are well 

explained in section 2.6.2.1 for CO reduction, section 2.6.2.2 for H2 reduction and 

section 2.6.2.3 for syngas reduction. 

The literature suggests that magnetite has negligible catalytic activity for FT 

synthesis (van der Laan and Beenackers 2000) whereas carbide formation is 

necessary before the catalyst becomes active (Park et al. 2015). The extent of 

transformation into carbide correlates well with catalyst activity during the 

activation step (Shroff et al. 1995b). 

 The degree of reduction depends on several factors, including iron catalyst 

precursor, support material and its pretreatment; pore diameter, pore volume and 

available total surface area; method of impregnation or deposition; drying and 

calcination conditions; and reduction conditions (Lee and Yoo 2014; Porosoff, Yan, 

and Chen 2016; Iglesia 1997; Jacobs, Ma, and Davis 2014b; Boellaard, Van der 

Kraan, and Geus 2002). This in turn affects the number of active sites on the 

catalyst. 

 Effect of CO reduction on FT catalyst 2.3.9

Reduction has been reported to occur in four steps, with iron carbides being the 

ultimate phase. The reduction kinetics of the first step (Fe2O3 → Fe3O4 ) is 

reported to be faster whilst the reduction kinetics of Fe3O4 → FeO is reported to be 

the rate-limiting step (Zhu et al. 2015) 
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Fe2O3 → Fe3O4 → FeO → Fe → FeyCx 

3Fe2O3 + CO                                             2Fe3O4 +CO2            ΔG250  = -69.45 kJ                    (2.4) 

Fe3O4    + CO                                            3FeO + CO2              ΔG250   = +8.76 kJ                     (2.5) 

FeO      + CO                                               Fe + CO2                     ΔG250  = -7.29 kJ                       (2.6) 

6Fe       + 2CO                                              2Fe3C + O2         ΔG250  = +344.15 kJ                (2.7) 

Summing these reactions gives the reduction of hematite to iron carbides 

1.5Fe2O3 + 6.5CO                                    2Fe3C + 5.5CO2        ΔG250  = -113.20kJ                 (2.8) 

Wüstite is meta-stable at temperatures below 570 °C, so this reduction will appear 

as if its 3 stages with magnetite reducing directly to metallic iron without first being 

converted to wustite (Ferdous and Demirel 2010). Equation (8) reportedly takes 

place readily at typical FT reaction temperature because of the low apparent 

activation energy of this reaction (Ferdous and Demirel 2010).  

The use of CO as a reducing agent has received attention from the researchers 

though at varying conditions. For instance activating with CO was tested at 270 ˚C 

for 24 hours at a gas pressure of 1.3 MPa and this was shown to yield active 

Fe5C2 (Pendyala et al. 2010), and this activation gas is reported to give high active 

and stable catalyst (O'Brien et al. 1996). CO activation has been reported to form 

large amounts of iron carbides (χ-Fe2.5) and carbonaceous species on the surface 

of magnetite (Ding et al. 2011; Pham et al. 2014). 

 Effect of H2 reduction on FT catalyst 2.3.10

Reduction with H2 is similar to the one with CO and has been reported to go via 3 

steps Fe2O3 → Fe3O4 → FeO → Fe (Masina et al. 2015; Lin, Chen, and Li 2003). 
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Hydrogen is the most used reducing agent in the literature, with researcher varying 

conditions according to the TPR results of the catalyst used (de Smit et al. 2009; 

(D. B. Bukur et al. 1995; H. Wang et al. 2009; Shimokawabe, Furuichi, and Ishii 

1979; Dİlmaç, Yörük, and Gülaboğlu 2015).The reduction reaction occurs in three 

steps from hematite with iron carbides as the ultimate phase. Carbide formation is 

most unlikely in hydrogen reduction (in terms of mass balance. 

3Fe2O3 + H2                                       2Fe3O4 +H2O         ΔG250  = -49.93 kJ                         (2.8) 

Fe3O4    + H2                                          3FeO + H2O            ΔG250  = +28.28 kJ                        (2.9) 

FeO      + H2                                          Fe + H2O                      ΔG250  = +12.23 kJ                      (2.10) 

Summing these reactions gives the reduction of hematite to metallic iron. A fully 

reduced iron metal catalyst shows no activity for Fischer Tropsch synthesis, but 

becomes active along with its conversion into carbides 

Fe2O3 + 3H2      2Fe + 3H2O    ΔG250  = +26.68 kJ                            (2.11) 

From a delta G viewpoint, CO reduction is generally better than hydrogen. 

 Effect of syngas reduction on FT synthesis 2.3.11

Often a mixture of CO and H2 is used as a reducing gas with the ratio of CO/H2 

varying dependent on source of the syngas available. Studies by Shroff et al. 

(1995) demonstrated that the partial pressure of hydrogen in the activating gas 

has a significant effect on the performance of the catalyst. 

The catalyst reduction pathway proceeds in two steps that involve reduction of 

hematite into magnetite and magnetite carbidisation into iron carbides. Syngas has 

been used in different ratios: H2/CO = 0.7/1.0 mixture (Shroff et al. 1995).  

Hydrogen has a superior diffusion coefficient and adsorption capacity hence the 

H2 improves the reduction rate (Yoshioka et al. 2008). There are other factors 
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influencing reduction, such as catalyst particle size, porosity, reducing pressure 

and temperature (Rytter et al. 2007; Azzam et al. 2014; Zamaniyan et al. 2013; 

Merino et al. 2016). Chernavskii et al. (2015) reported that the reduction of 

hematite to magnetite proceeds with similar rates in syngas and pure carbon 

monoxide, while magnetite can be carbidized more rapidly in carbon monoxide. 

Chernavskii et al. (2015) also observed that the concentration of iron carbide was 

approximately three times higher in CO activated relative to syngas activation.  

When syngas with low partial pressure of H2 or CO is used as a pretreatment gas, 

iron carbides are produced (Mingyue Ding et al. 2014; Dragomir B. Bukur et al. 

1995).The nature of the resulting Fe phase formed during pretreatment depends 

on the duration of exposure to the reactant feed, the feed makeup (composition of 

the feed), the reactor system and the activation conditions (temperature and 

pressure) as stated by Shroff et al. (1995).  

2.4 Catalyst speciation products 

Insight into the speciation of the iron catalyst precursor during reduction has been 

obtained using in situ techniques. Analyses have been made of catalyst phases 

that exist during catalyst reduction by several authors to identify the most-

persistent catalyst phase (Zhang and Schrader 1985; van der Kraan, Boellaard, 

and Crajé 1993; Rochet et al. 2011; Saib et al. 2006). These phases were 

measured using improved in situ methods. Supporting evidence for iron catalyst 

speciation during synthesis was found in tight correlations between activity (more 

carbides) and catalyst deactivation (more iron oxides) (Moodley et al. 2009a; 

Bartholomew 1984; Butt 1984). Metallic iron has previously been recognized 

during catalyst activation although the thermodynamics of its formation says 

otherwise (see Chapter 3). There is a need for more information on the importance 

and behaviour of catalysts during FT synthesis. Chapter 3 dwells more on the 

thermodynamics of these speciations and gives a brief review on the topic. 
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2.5 Catalyst deactivation 

FT catalyst deactivation can be defined as the loss over time of the catalytic 

activity or selectivity (Polinski, Rao, and Stencel 1984; Bartholomew 1984; Istadi et 

al. 2011). This is a problem of great concern to FT practitioners. The costs to 

industry for process shutdown to replace the catalyst are high.  

The catalyst stability is an important factor though it has received comparatively 

less attention than catalyst activity and selectivity. There two types of deactivation 

during reaction, mostly due to the physical degradation and/or chemical or phase 

change (Bartholomew 2001; Van Berge et al. 2000; De Smit and Weckhuysen 

2008). Catalyst deactivation during the conversion of syngas to liquid fuels is an 

inevitable problem of great and continuing concern, and models and mechanisms 

of deactivation have been developed (Moodley et al. 2009a; Argyle, Frost, and 

Bartholomew 2014; van de Loosdrecht et al. 2007; Sadeqzadeh et al. 2013).  

Phenomena such as product selectivity and catalyst deactivation are known to be 

highly dependent on reaction conditions, thus temperature and pressure. Under 

FT working conditions, the iron based catalyst is known to speciate to iron oxides 

and iron carbides (Bartholomew 1984; Moodley et al. 2009a). The activities of 

these speciation products in FT synthesis remain controversial. The majority of the 

available literature has suggested that iron carbides are perhaps the active phases 

in iron Catalysed FT reactions (Gnanamani et al. 2013; Herranz et al. 2006; 

Mingyue Ding et al. 2014; Shroff et al. 1995) whereas the iron oxides are regarded 

as catalytically inactive (De Smit et al. 2010). The commonly reported carbides 

formed during FTS are έ-Fe2.2C, ε-Fe3C, Ɵ-Fe3C, χ-Fe5C2, and Fe7C3 (De Smit 

and Weckhuysen, 2008). Shroff et al. (1995) observed a correlation between the 

carbide content and the Fischer Tropsch activity, while Herranz et al. (2006) 

observed the formation of Cementite (Ɵ- Fe3C) and Hagg (χ- Fe2.5C) after CO and 

syngas pretreatment, respectively, and further stated that the cementite species 

are less active during FT synthesis, and under FT reaction conditions they tend to 

evolve into the more active Hagg carbide. Nevertheless, the exact role of each 

carbide phase in the catalytic reaction remains unclear. 
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2.6 Deactivation phenomena 

Catalyst deactivation has been defined as the loss over time of catalytic activity or 

selectivity (Bartholomew 2001). According to Bartholomew 2001, the major 

deactivating mechanisms of catalysts have been reported as due to poisoning, 

fouling, and oxidation. Catalyst poisoning refers to the partial or total deactivation 

of a catalyst caused by exposure to a range of chemical compounds, and in FT 

synthesis, iron and cobalt are mainly poisoned by  H2S, COS, As, NH3 and metal 

carbonyls (Bartholomew 2001; Sparks et al. 2013; Zhao-Tie, Jing-Lai, and Bi-Jiang 

1994). Basically, fouling is the physical deposition of species from the fluid phase 

onto the catalyst surface, which results in activity loss due to blockage of sites 

altering pore geometry and affects how a chemical process proceeds (Mann, El-

Kady, and Marzin 1985). In the advanced stages of FT synthesis, deposits of 

carbon and coke in the pores of the catalyst also render the catalyst inactive and 

plugging of the reactor voids. The coke formed may vary from primarily carbons 

such as graphite to high molecular weight hydrocarbons (Moodley et al. 2009b; 

Saib et al. 2010). 

The oxidation of supported Fischer Tropsch catalysts by means of water has also 

been studied in detail. In general, water is one of the Fischer Tropsch reaction 

products, and can probably cause oxidation and deactivation of a reduced catalyst 

(van Berge et al. 2000).  

2.7 Ways of catalyst regeneration 

The loss of catalytic activity with increasing TOS in FT synthesis is inevitable. 

When the activity has declined to a critical level, the activity of the catalyst will 

need to be restored. Deactivation of FT catalysts is a problem that causes loss of 

catalytic activity with time and coking is one of the main deactivating mechanisms 

(Argyle and Bartholomew 2015a). Carbon can be deposited on the catalyst or the 

reactor tube (Figueiredo 1982) and this carbon exists in different morphologies: 

carbon whiskers, well ordered graphitic deposits, and non-oriented deposits 

(Figueiredo and Pereira 2012; Tsou et al. 2003; Samant et al. 2004; Ermakova et 

https://en.wikipedia.org/wiki/Catalyst
https://en.wikipedia.org/wiki/Chemical_compound
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al. 2001). Studies in the literature have already looked at some restoration 

pathways (Pretorius and de Klerk 2013; Argyle and Bartholomew 2015b; Jacobs, 

Ma, and Davis 2014c; Van De Loosdrecht et al. 2016). Regeneration allows 

reaction of FT catalysts and results in less downtime during catalyst replacement 

by re-using the catalyst that is already in the reactor. In-situ regeneration has been 

studied by some authors and oxidative regeneration of catalyst was the main 

chemistry of reactivation. 

This oxidative regeneration of carbon deactivated catalyst involves removing coke 

by burning it off, thereby generating CO and CO2 as by-products  which are 

purged out of the reactors by the pressure gradient (Yoshimura and Furimsky 

1986). The oxidation also converts metal carbides to corresponding metal oxides, 

which are their inactive form. 

Catalysts undergo chemical and physical changes during FT synthesis processes, 

and hence require periodic chemical treatments to maintain and/or restore their 

catalytic performance. In fact, FT catalysts lose their activity with time, and their 

relatively high costs drive FT practitioners to regenerate them to restore their 

activity, which has been done ex situ (Marafi, Stanislaus, and Furimsky 2010; Butt 

1984). System downtime is of great concern during ex situ regeneration. Ex situ 

regeneration is generally quite time-consuming as the process involves 

dismantling the reactor. In addition, the catalyst may be exposed to contamination 

due to handling. However, in situ regeneration has proved to give good activity 

recovery, almost close to the initial activity as in the current study (80% activation); 

this percentage regeneration tends to vary with the nature of the initial reducing 

agent and can also be affected by factors such as uneven gas flow. Moreover, 

portions of the catalyst bed remain unregenerated, while other parts are subjected 

to excessive regeneration. 

2.8 The effect of water on the stability of reduced catalyst 

Water is produced during the Fischer Tropsch synthesis and tends to be present in 

varying quantities during synthesis, depending on the reactor system and the 
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nature of the catalyst (Fischer et al. 2015; Meshkani and Rezaei 2015a; 

Sadeqzadeh et al. 2013; Bezemer et al. 2010). The effect of water on FT depends 

on the type of support (pore size and type), metal nature, loading (dispersion and 

cluster size), additives and preparation procedures (Botes 2007). Water is a main 

product of the Fischer Tropsch synthesis and the concentration increases with 

increasing conversion, and the partial pressure of water in the reactor determines 

the state of the catalyst (Pendyala et al. 2010). 

Iron catalysts suffer from product inhibition due to the product water produced in 

the pathways, shown by equations 2.1, 2.2 and 2.3, which makes the gas phase 

more oxidizing. Studies have shown that FT reaction rates decrease with an 

increase in the partial pressure of water (Thüne et al. 2012). A reversible decrease 

of the catalyst activity has been observed by Satterfield et al. (1986) after addition 

of 12 and 27 mol % water to the feed gas. In the same study the author (Satterfield 

et al. 1986) studied the effect of added H2O on both the product distribution and 

the catalyst through the use of Mossbauer spectroscopy, and observed an 

increase in olefin to paraffin ratio and decrease of reaction rate after addition of 

water. Iron based catalyst tends to get re-oxidized at high partial pressure of 

water, and this is dependent on the ratio of hydrogen and water partial pressure in 

the reactor. Pendyala et al. (2010) studied the effect of water on the performance 

of potassium promoted iron catalyst during FT synthesis and observed a decrease 

in CO conversation and deactivation of the catalyst. 

2.9 The effect of carbon dioxide formed and its formation pathways 

Carbon dioxide (CO2) is another undesirable FT synthesis by-product which can 

limit carbon utilization efficiency (Istadi et al. 2011). As for water formation, the 

removal of adsorbed oxygen formed in CO dissociation steps includes reaction 

with adsorbed hydrogen to form H2O and with adsorbed CO to form CO2. Another 

pathway is a water-gas shift (WGS) reaction which is comparatively more 

pronounced on iron-based catalysts than cobalt-based catalysts, due to high WGF 

activity for iron catalysts. Yao et al. (2011) studied the effect of CO2 on an iron-

based catalyst during low-temperature FTS and observed that CO2 may be 
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converted to hydrocarbons only when the composition of the co-feed CO2 has a 

value higher than that set by the equilibrium constraints. The CO2 addition to 

synthesis gas does not influence CO2 forward rates, as explained by Visconti et al. 

(2016) but rather increases the rate of their reverse steps in the manner predicted 

by kinetic analyses of reversible reactions using non-equilibrium thermodynamic 

treatments.  

CO(gauge) + H2O(gauge)   →   CO2(gauge)+ H2 (gauge)            ∆H = -9.374 cal/K                  (2.12) 

The Gibbs free energy for the WGS reaction is negative under FT temperatures. 

The ∆H value decreases as the temperature is increased. 

2.10 Product distribution 

 Anderson – Schulz – Flory (ASF) model 2.10.1

FTS follows a polymerization type mechanism with the products described by the 

Anderson–Schulz–Flory (ASF) model (Liu et al. 2011; Van Santen et al. 2014; 

Dieter et al., 2015). This model is able to describe lighter products of carbon 

number less than 10, while the higher carbon number products can deviate from 

linearity (Donnelly et al. 1988; Liu et al. 2011). The majority of the reported ASF 

plots showed a nearly straight line only in the C4–C12 region (Tavakoli et al. 2008). 

A number of authors have determined the growth factor from the straight-line 

portion of the ASF plot. This made the experimental determination of the alpha (α) 

value somehow arbitrary (Puskas and Hurlbut 2003). 

An analytical extension of the classical ideal Anderson–Schulz–Flory (ASF) 

distribution for the products of Fischer Tropsch reactions was reported by Förtsch, 

Dieter, et al. (2015). This model was capable of describing real distributions with 

the known deviations from the ideal ASF distribution for C1 and 

C2 components. The extended ASF model’s wide range of applicability is reported 

to have allowed simple and direct extraction of the relevant parameters from 

experimental data (Förtsch, Pabst et al. 2015). 
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The chain-length-dependent desorption model for the iron-based low-temperature 

Fischer Tropsch (Fe-LTFT) synthesis was proposed by Botes (2007). The model 

could successfully describe the olefin and paraffin distributions in the C3+ range, 

and the total C2 formation rate was predicted almost perfectly, though the methane 

formation rate was described adequately. In an attempt to provide a better 

descriptive model, Lu plots and Yali plots were developed. These plots have also 

been used to describe product distribution in FT with success (Muleja et al. 2016; 

X. Lu et al. 2012; Yao et al. 2012). 

2.11 Nature and type of FT reactors 

In Fischer Tropsch synthesis (FTS), the reactor plays an important role. The 

nature of the reactor used is governed by the operating conditions and the 

products desired. For instance, researchers aiming to produce lighter cuts such as 

gasoline and diesel opt for higher temperature Fischer Tropsch (HTFT) processes. 

Several reviews provide an overview of recent and past research activities in the 

field of catalyst development and reactor design (Basha et al. 2015b; Sarkari et al. 

2012c; Hulet et al. 2009; Babita 2011; Saeidi et al. 2014b; Kolb 2013; T. Wang et 

al. 2007). 

For many years there have been studies and improvements on different operating 

conditions to make the existing reactors more efficient. Recent studies have seen 

the use of new configurations such as a dual-type membrane reactor and a 

coupling configurations reactor, which improved the performances of the FT 

process (Saeidi et al. 2014b). The use of the slurry reactor has been reported with 

advantages of simple construction, excellent heat transfer performance, online 

catalyst addition and withdrawal, and a reasonable interphase mass transfer rate 

with low energy input, which make it very suitable for gas-to-liquid processes 

(Wang et al. 2007). Several reviews have also surveyed the use of fixed bed 

reactors with plug flow hydrodynamics (Fleisch et al. 2002; Khodakov et al. 2007; 

Sarkari et al. 2012b). For example, Shell, who happens to be a major player in this 

field, uses a tubular fixed bed reactor (Fleisch,et al. 2002). These three main types 
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of reactors used for FT reaction (Davis 2002; Sie and Krishna 1999) are briefly 

described below. 

a) Fixed bed reactors which are used by Sasol (Pvt) Ltd to produce high value 

linear waxes at low temperatures (225 °C) (Espinoza et al. 1999b; Mark E. Dry 

1983b). The catalyst is loaded in 5 cm internal diameter tubes. Heat removal is 

achieved by converting water circulating outside of the tubes into steam (Jalama 

2008; A. Steynberg 2004; A. P. Steynberg 2004). 

b) Fluidised bed reactors with either a fixed or a circulating bed. The main 

difference between the two types of reactors is that in the fixed fluidised bed 

reactor (FFD) the catalyst bed remains stationary and the gases pass upward 

through the bed, while in the circulating fluidised bed reactor (CFB) the catalyst is 

entrained in the fast moving stream (Sie and Krishna 1999; Jalama 2008). 

c) Slurry bed reactors in which gas is bubbled through a suspension of finely 

divided catalyst in a liquid which has a low vapour pressure at the temperature of 

operation (Dry and Steynberg 2004; Jalama 2008).  

Typical industrial FTS processes with fixed-bed reactors normally produce 

complex mixtures consisting of hydrocarbons ranging from methane to wax. In 

fixed-bed reactors, pressure drop has been reported, and facilitated heat removal; 

catalyst particles of a few millimetres in size are generally used in fixed-bed 

reactors (Gadalla, Vallee, and Jia 2013; Yakovenko et al. 2015), contributing to the 

existence of intra-particle pore-diffusion limitations (Sie and Krishna 1999). In a 

study by Gadalla et al. (2012), the catalyst was crushed and sieved, retaining 

particles ranging in size from 75 to 125 μm.  

Additional theoretical details and practical aspects often used in selecting and 

designing FT reactors can be found in the literature (Steynberg and Vogel 2006; 

Martelli et al. 2012; Stelmachowski and Nowicki 2003; Deckwer et al. 1980; 

Martínez, Prieto, and Rollán 2009; Yamin and Fatemi 2005). Furthermore, the 

Material and Process Synthesis Group of UNISA has also conducted a 

considerable amount of research using fixed bed and continuously stirred tank 
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reactors (Yao 2011; Muleja et al. 2016; X. Lu et al. 2011; Jalama 2008). In situ 

regeneration studies in fixed-bed reactors are therefore of significant importance. 
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CHAPTER 3 

 IN SITU STUDIES 

 

3.1  Preview 

In this chapter the researcher interrogates the literature on in situ characterization 

during catalyst reduction. From in situ studies conducted so far, it is agreed that 

during activation, the catalyst precursor hematite is converted to magnetite 

regardless of the activation gas used for the pretreatment. The use of CO gas is 

reported to yield iron carbides, while the use of H2 gas yields metallic iron. The in situ 

characterization of syngas reduction is scarce in the literature; no prior research on 

this topic was available. 

The researcher also conducted some thermodynamic calculations to show the 

speciation pathway of the catalyst precursor during reduction. The formation of iron 

carbides is thermodynamically feasible when CO gas is used. When H2 gas is used, 

the hematite to magnetite is thermodynamically feasible, while the formation of 

metallic iron is thermodynamically disfavored. The formation of metallic iron observed 

from thermodynamic calculations is or could be attributed to high H2/H2O ratios. The 

speciation of the catalyst precursor when syngas is used is governed by the CO/H2 

ratio, and assuming the ideal conditions a mixture of iron carbides and metallic iron 

are presumed to be present. 

3.2 The literature on in situ characterization 

The last three decades have seen a dramatic rise in the number of applications of 

spectroscopy for Fischer Tropsch (FT) catalysis research. This useful technology is 

now being applied to understand the catalyst precursor speciation pathways during 

reduction and FT synthesis. Spectroscopy has been successfully used and 

investigated in the past to understand FT catalyst activation pathways (Dumesic and 

Topsøe 1977). Various papers have been published on this aspect (Raupp and 
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Delgass 1979; van der Kraan, Boellaard, and Crajé 1993; Niemantsverdriet et al. 

1980a; Jacobs et al. 2013). Despite all the work that has been done, studies to 

establish the changes in phase (in operando) with time on stream of the catalyst still 

require more attention. This will shed light on the mode of catalyst activation, 

deactivation and regeneration in the FT process. 

In situ characterization refers to the study of the catalytic material in its reaction 

vessel under real working conditions, owing to which it enjoys a number of 

advantages over ex situ techniques which are prone to sample handling 

complications (Tada and Iwasawa 2009a; Tada and Iwasawa 2009b). Real time 

sample analysis, increased accuracy, real operating conditions and avoidance of air 

oxidation and handling contamination are a few advantages that the in situ 

characterization technique offers in FT studies. Heterogeneous catalysis is a 

multiphase system, and an understanding of the predominant phases at different 

conditions and the interplay between the phases is important. Therefore, it is 

important to explore the applicability of spectroscopy, itself an area that needs 

considerable attention, to expand the domain of spectroscopy especially in-situ 

characterization. 

From in situ studies conducted so far, it is agreed that during activation, the catalyst 

precursor hematite (α-Fe2O3) is converted to magnetite (Fe3O4) regardless of the 

activation gas used for pretreatment (Yaming Jin and Datye 2000a; Hao et al. 2008; 

Zhang et al. 2004). The fate of the intermediate magnetite is determined by 

parameters such as the nature of the reducing agent, temperature and pressure (De 

Smit and Weckhuysen 2008). If H2 gas is used, metallic iron Fe will be formed, while 

iron carbides are formed when CO gas or syngas is used. Wang et al. (2009) used in 

situ Mossbauer effect spectroscopy to study catalyst phase changes and reported 

that reduction of precipitated iron based catalyst with H2 gas proceeds via the 

magnetite intermediate and then to metallic iron. Amelse et al. (1978) examined the 

iron catalyst by Mössbauer spectroscopy at various stages of calcination and 

reduction, and after use as a synthesis catalyst. The results supported Wang’s (2009) 

findings that the iron in the initial oxide (α-Fe2O3) was reduced to α-Fe in H2 gas. 

Subjected to the FT reaction conditions, the catalyst was carburized within 90 min to 
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the extent that no metallic iron could be detected in the Mössbauer spectra  (Amelse, 

Butt, and Schwartz 1978). The two-stage reduction of hematite, (α-

Fe2O3 →  Fe3O4 → Fe) has been postulated at reduction temperatures less than 570 

°C, whereas the three-stage reduction mechanism 

(3Fe2O3 → 2Fe3O4 → 6FeO → 6Fe) was observed at temperatures higher than 

570 °C (Lin, Chen, and Li 2003a; Mondal et al. 2004; Dİlmaç et al. 2015; Jozwiak et 

al. 2007b). Datye (2000) used high resolution transmission electron microscopy 

(HRTEM) and X-ray diffraction (XRD) methods  to study the CO reduction of iron 

catalyst, and reported two stages of phase transformation, from hematite to 

magnetite and magnetite to iron carbide. In the second stage, some carbon 

deposition accompanying further carburization was reported (Dayte 2000). In 

addition, Luo, Hamdeh, and Davis (2009) also studied the CO reduction of iron 

catalyst using Mossbauer analysis, and reported the same pathway of reduction.  

Yaming Jin and Datye (2000b) used temperature-programmed reduction of an iron 

catalyst using both carbon monoxide (CO-TPR) and hydrogen (H2-TPR) to study the 

phase transformations in iron catalysts. The products of reduction, analysed using a 

high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction 

(XRD) methods, confirmed the three stages of phase transformation of the catalysts 

during the temperature-programmed reaction. Mauro et al, (2010) made use of an In-

Situ TPR-EXAFS/XANES technique to investigation of the Influence of group I alkali 

promoters on the local atomic and electronic structure of carburized Iron/Silica 

catalysts in FT synthesis. The results enabled them to measure the relative 

composition of the different compounds as a function of the carburization time, 

temperature, and atomic number of the group 1 promoter. 

3.3 Thermodynamic predictions 

Thermodynamic data on FT catalysis play an important role in the prediction of the 

phase changes during reduction and the subsequent reaction being catalysed, and 

also to corroborate the spectroscopic observation. The importance of understanding 

the thermodynamics of these phase changes is emphasized in this chapter. The 

chapter also contains a useful appendix on Gibbs energy of reaction data of the 
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catalyst phases of interest. However, the amount of data available at this time is 

limited as different carbides are yet to be assigned their catalytic duties in FT 

synthesis. A review by De Smit and Weckhuysen (2008) reported the formation of 

Fe7C3 , χ-Fe5C2 , ϴ-Fe3C and  ἐ-Fe2.2C phases, their crystallographic data, and their 

synthesis pathways during FT synthesis. 

Thermodynamic information is of paramount importance when one needs to optimize 

product yields by tailoring the conditions to favour the stability of desired catalytic 

phases.  

Mössbauer spectroscopy studies of an iron based catalyst were examined at various 

stages of calcination and reduction and after use as a synthesis catalyst (Amelse, 

Butt, and Schwartz 1978). The authors observed that about 90% of the iron in the 

initial oxide (α-Fe2O3) was reduced to α-Fe metal during 24 h reduction in H2 at 425 

°C. When subjected to the reaction conditions, the catalyst was carburized within 90 

min to form iron carbides, to such an extent that no metallic iron could be detected in 

the Mössbauer spectra. 

Iron carbides have been synthesized and tested for FT catalysis, for example, the 

synthesis pathway for Hägg carbide (χ-Fe5C2) as given by Park et al. (2015a). De 

Smit et al. (2010) observed that a catalyst containing mainly crystalline χ -Fe5C 2 was 

highly susceptible to oxidation during FT synthesis, while the catalyst containing θ-

Fe3C and amorphous carbide phases showed a lower activity and selectivity. 

Detailed discussion of the various iron carbide phases has been given  by many 

authors (Du Plessis, De Villiers, and Kruger 2007; Henriksson, Sandberg, and 

Wallenius 2008; Moodley et al. 2009; Leineweber et al. 2012). These authors made 

use of ab initio calculations, diffraction experiments and Rietveld refinement, to 

determine crystal structure for different carbides. Based on the formation energy (Ef) 

of iron carbides calculated by Henriksson, Sandberg, and Wallenius (2008), the order 

of stability from the lowest to highest stable is given  as follows : 

 Fe7C3  <  χ-Fe5C2  < ϴ-Fe3C.    
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This ordering of stability for the iron carbides is consistent with the experimental 

findings by Eckstrom and Adcock (1950) that the Fe5C2 occurs as a precursor 

to Fe3C. In recent years, there had been growing interest in these types of carbides, 

mainly because of the role they may play in the FT catalytic process (Park et al. 

2015b; Pham et al. 2015; Herranz et al. 2006; Xu et al. 2014). Under reaction 

conditions in FT catalysis, the catalyst composition is generally represented as FexCy 

and researchers seek the variation of x and y with time-on-stream (TOS). Such TOS 

data are particularly important as they affect the product distribution. For instance, 

studies by de Smit et al. (2009) reveal that catalyst containing χ-Fe5C2 is catalytically 

more active whereas the ϴ-Fe3C is found in deactivating catalyst. Cementite (ϴ-

Fe3C) phase was also reported by Herranz et al. (2006b) to be less active in the 

Fischer Tropsch synthesis. The use of e-Iron carbide (έ-Fe2.2C and ɛ-Fe2C) was 

reported to be effective at low-temperature Fischer Tropsch synthesis (LTFTS) at 443 

K (Xu et al. 2014). 

Despite the large amount of work and the assortment of technologies employed to 

examine catalyst speciation during reaction and reduction, the exact definition of the 

role of the carbide phases is still controversial. It is probably fair to say that nowhere 

in these examples has it been established without query that iron carbide, in any of 

its many forms, provides directly an active site for the synthesis that can be 

associated with the formation of a particular product or class of products.   

During synthesis, the catalyst itself is in equilibrium with the FT reactants and 

products that surrounds it (Karimi, Rahmani, and Moqadam 2012). Therefore, the 

catalyst changes phases based on the gas composition and pressure, indicative of 

an equilibrium response (Marano and Holder 1997; Quan et al. 2014; Kun et al. 

2009). The catalyst remains active, but the activity changes depending on 

temperature, pressure, the ratios of PH2/PH2O and PCO/PCO2, and other deactivating 

factors (Po¨hlmann et al. 2013; Borg et al. 2006). An active FT iron catalyst rarely 

exists as a pure substance, and this is because it is usually diluted with precursors 

such as hematite, magnetite and wüstite (Niemantsverdriet et al. 1980; Kazak et al. 

2015; De Smit and Weckhuysen 2008). This dilution reduces the effect of the catalyst 

on carbon monoxide (CO) conversion as the active catalyst phase speciate to non-
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catalytic phases. According to Cairns and Tevebaugh (1964), the equilibrium theory 

is able to determine the stable phases of a catalyst that are in equilibrium with a gas 

of a PH2/PH2O or PCO/PCO2 composition during reduction.  

3.4 Stability diagrams for iron catalyst during reduction 

The systems of Fe –CO –CO2 and Fe –H2 –H2O can be of high technical importance 

in explaining catalyst reduction or activation. In situ catalyst activation has been done 

using H2, CO and syngas (Luo, Hamdeh, and Davis 2007; Chernavskii et al. 2016; 

Bukur et al. 1995; Shroff et al. 1995). Preliminary calculations based on the Gibbs 

free energy of reaction supports that iron carbides are the most probable species to 

be formed during activation with syngas or carbon monoxide. All of these 

observations demonstrate that equilibration in the gas phase is key for iron catalysts 

speciation. It must be emphasized at this point that the analyses that follow while 

useful in describing what might happen, are not complete as the thermodynamic data 

for all the different carbides that are postulated to be present and be active for FT 

catalysis are not available. However the results as mentioned above do have some 

limited value and also suggest that it would be useful to try to obtain these values or 

at least estimates of them. 

The phase stability diagrams given in Figures 3.1 and 3.2 (generated by HSC 6 

software. The name of the program is based on the fact that calculation modules 

automatically utilize the same extensive thermochemical database which contains 

enthalpy (H), entropy (S) and heat capacity (Cp) data) gives us an estimation of 

prevailing phases at given partial pressures of gases based on the assumption that 

solids are immiscible. In these diagrams, the stability areas of different catalyst 

phases under theoretical conditions help us tailor the conditions that favour the 

formation of certain phases. A precise measurement of gaseous components and the 

corresponding catalyst composition help us understand the conditions necessary for 

catalyst reduction. Reducing gases give different initial catalyst phases that will 

further change as the syngas is introduced for FT synthesis. For instance, in situ 

catalyst reduction with hydrogen yields metallic iron, and this is supported by the 

stability diagram shown in Figure 3.3. As shown in Figure 3.1, catalyst activation 
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with CO gas or syngas with low H2 partial pressure at FT conditions yields mainly iron 

carbides, which are active catalysts. 

 CO reduction prediction 3.4.1

The thermodynamics of reduction can be of interest over the entire composition 

range for the various PH2/PH2O and PCO/PCO2 ratios of reduction. The approach of 

reducing the catalyst at atmospheric pressure and running the reaction at almost 

atmospheric pressure requires knowledge of catalyst thermodynamics at low 

temperatures and low pressures. Under these conditions, carbonaceous deposits 

sometimes occur due to the boudouard reaction shown in Reaction 3.3, and the 

presence is detrimental to catalyst effectiveness (Düdder et al. 2014; Jahangiri et al. 

2014). As a result, knowledge of the conditions under which carbon deposits can 

form is therefore important.  

 

Figure 3.1: Stability diagram of an iron based catalyst in equilibrium with 

PCO/PCO2 during reduction at 1 atm. 
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Figure 3.2: Gibbs free energy versus temperature for possible speciation pathways 

of the iron catalyst precursor under CO activation.   

The researcher has expounded all the possible pathways that hematite may take 

during reduction and reaction (see Figure 3.2). In addition, plausible pathways for 

hematite to magnetite and magnetite to iron carbide were reported in the literature 

(O’Brien et al. 1996; O’Brien et al. 1996; Niemantsverdriet et al. 1980b; Jozwiak et al. 

2007c; De Smit E. and Weckhuysen B.M. 2008). As shown in Figure 3.2, the 

likelihood of reaction 3.1 increases with temperature, while reaction 4.2 only has a 

negative Gibbs Free Energy in the temperature range of up to 660 °C. The formation 

of iron carbides happens at any CO/CO2 ratio. 
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2 3 3 4 23 2Fe O CO Fe O CO           (3.1) 

During CO reduction the Fe3O4 formed may be converted directly to iron carbides 

without further formation of FeO and Fe.  

3 4 3 23 6 5Fe O CO Fe C CO             (3.2) 

The Boudouard reaction that forms carbon dioxide and carbon from the 

disproportionation of carbon monoxide tends to occur at temperatures lower than 695 

°C. The formation of carbon is called sooting or coking, and this can cause serious 

and irreversible damage to catalysts and catalyst beds (Düdder et al. 2014; Jahangiri 

et al. 2014). The boudouard reaction is known to be influenced by the presence of 

alkali metals (Y. K. Rao and Adjorlolo 1984; Van Niekerk, Dippenaar, and Kotze 

1986; Kaczorowski, Lindstad, and Syvertsen 2007). The Boudouard reaction has the 

stoichiometric equation. 

2CO  →C +CO2           (3.3) 

Carbon monoxide disintegration and carbidization are expected to occur 

simultaneously (Sawai, Iguchi, and Hayashi 1998; Ding et al. 2014) as evidenced by 

almost the same standard enthalpies of formation.  
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 H2 Reduction prediction 3.4.2

 

 

Figure 3.3: Gibbs free energy versus temperature (oC) for possible speciation 

pathways of the iron catalyst precursor under H2 activation  

Figure 3.3 shows that the reduction of hematite using H2 yields magnetite as the final 

product of reduction. The formation of metallic iron is thermodynamically unfavored at 

FT temperatures of 200–350 °C as shown in Figure 4.3. This observation is not in 

line with what is in the common literature (Wang et al. 2009a; Van der Kraan, 

Boellaard, and Crajé 1993; Raupp and Delgass 1979; K. R. P. M. Rao et al. 1996; 

Yaming Jin and Datye 2000b; Jozwiak et al. 2007b). For example, activation of Fe2O3 

with H2 is known to take a two stage reduction step with metallic iron as the final 
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product (Shimokawabe, Furuichi, and Ishii 1979; Colombo, Gazzarrini, and 

Lanzavecchia 1967). The conversion of hematite to magnetite is favoured as shown 

with the delta ΔG values in Figure 3.3, whereas the formation of metallic Fe from 

magnetite only happens when a certain H2/H2O ratio is reached as shown from the 

plotted stability diagram Figure 3.4. For each mole of hydrogen consumed a mole of 

H2O is produced, so the formation of metallic Fe is a function of the H2/ H2O ratio. 

3Fe2O3 +H2 → 2Fe3O4 +H2O         (3.4) 

Fe3O4 +4H2 → 3 Fe +4H2O          (3.5) 

 

Figure 3.4: Stability diagram of an iron based catalyst in equilibrium with PH2/PH2O 

during reduction at 1 atm. 

In situ studies prove the existence of metallic iron after reduction with H2 (Luo, 

Hamdeh, and Davis 2009; Wang et al. 2009; Jin and Datye 2000; Jozwiak et al. 

2007a), but the observations by these authors are at variance with thermodynamic 

calculations carried out in this study. (Figure 3.3 G > 0). Tiernan, Barnes, and Parkes 

(2001) came to the conclusion that reduction of hematite to magnetite happens via a 
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phase boundary, while that of magnetite to free iron was via random nucleation. 

Other researchers such as Lin, Chen, and Li (2003b) and Pineau, Kanari, and 

Gaballah (2006) came to the same conclusion. 

The rapid reduction of hematite to magnetite reported by Wang et al. (2009) is in 

agreement with the negative ∆G values of reduction for both CO and H2. Jozwiak et 

al. (2007) reported the appearance of wustite (FeO) phase as an intermediate of 

hematite reduction in hydrogen only above 570 °C using the in situ XRD method. The 

observation made by Jozwiak et al. (2007) agrees with thermodynamic calculations 

shown in Figure 3.2. 

The reduction profile in hydrogen is reported to be a two stage process of α-Fe2O3 

through Fe3O4 to metallic iron (Leith and Howden 1988 ; Ding et al. 2014). Meshkani 

and Rezaei (2015) observed the same pattern and assigned the two peaks to 

reduction of α-Fe2O3 to Fe3O4 and the broad peak to Fe3O4 to FeO and metallic iron.  
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The above schematic representation depicts the sequential phase modifications from 

precursor up to active catalysts depending on the activation gas used (Pérez De Berti 

et al. 2016).  

3.5 Gaseous components in equilibrium with iron and its speciation 

products during reduction and reaction with syngas 

To better understand iron catalyst speciation during reduction with syngas and 

synthesis of hydrocarbon, thermodynamic equilibria involving gaseous and solid 

system were evaluated. 

Thermodynamic calculations have to take into account the gaseous components in 

equilibrium with different speciation products. The species O2, CO, CO2, H2, H2O, 

CH4 and other low hydrocarbons are produced in equilibrium with solid phases, Fe3C, 

Fe2C and Fe3O4.  

Thermodynamics dictates that as the partial pressure of CO2 and H2O increases, the 

environment becomes more oxidizing, resulting in the formation of iron oxides. The 

stability diagrams depict that iron catalysts are a mixture of magnetite and iron 

carbides. For increased concentration of H2O, carbides are converted to iron oxide. 

Oxidation of the catalyst by H2O is favoured and not favoured thermodynamically by 

CO2. 

Fe3C + 6H2O →Fe3O4 + CO2 + 6H2       (3.6) 

Fe3C + 5CO2→ Fe3O4 + 6CO        (3.7) 
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Table 3.1: Variation of ∆G of reactions 3.6 and 3.7 with temperature 

 

Temperature (˚C) ∆G for rxn 3.6 
(Kcal) 

∆G for rxn  3.7 
(Kcal) 

150 

200 

250 

300 

350 

400 

-10.755 

-9.955 

-9.240 

-8.623 

-8.100 

-7.671 

22.883 

20.832 

18.756 

16.642 

14.491 

12.301 

 

 

 Catalyst oxidation 3.5.1

During catalyst activation or FT synthesis the interaction of reducing agents or 

syngas with Fe-based catalyst results in the formation of several gaseous 

components (e.g. CO, H2, CO2, H2O, CH4). The partial pressure of each gaseous 

component determines the predominant state of the catalyst. Catalyst speciation 

happens due to different partial pressures of the gaseous components, hence the 

stable iron phases formed during FT synthesis are those that are in equilibrium with 

the gas composition. Gaseous H2 and CO are reducing whereas H2O and CO2 are 

oxidizing. The ratio of PH2/PH2O and PCO/PCO2 or the partial pressure of water and 

carbon dioxide does not have an appreciable deactivating effect (by oxidation) on the 

FT reaction rate over Co catalysts, while for iron based catalysts it deactivates by 

oxidation (see Figure 3.5). These calculations are also in agreement with the work 

done by Espinoza et al. (1999). 
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Figure 3.5: Graph showing the ability of oxygen to oxidize Co, Fe and FeC 

The maximum allowable oxygen partial pressure during catalyst activation according 

to the diagram above is 10^ -45 bar according to thermodynamics of the FT system. 

Iron oxidation by H2O and CO2 is known to be dependent on the PH2/PH2O and 

PCO/PCO2 ratio. The oxygen producing Fe –CO –CO2 and Fe –H2 –H2O reactions 

such as 

Fe  +  
1

2
 O2   →  FeO          (3.8) 

The oxygen concentration can be given by  Log PO2  =  -log K(T).       

 CO  +   
1

2
 O2  →  CO2          (3.9) 

The oxygen concentration can be given by Log PO2 = 2log (PCO2/PCO) - log Kco . 
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H2   + 
1

2
 O2  → H2O          (3.10)        

The oxygen concentration can be given by Log PO2  =  2log (PH2/PH2O) + log KH2 .       

NB: the oxygen partial pressure is therefore dependent on the PH2/PH2O, PCO2/PCO  

ratios and the equilibrium constants. Plots of O2 partial pressure against H2, CO and 

CO2 partial pressure predict the stability of different species.  
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CHAPTER 4 

                       EXPERIMENTAL METHODOLOGY 

 

4.1 Introduction 

In this chapter, the writer sets out a detailed description of the experimental 

procedures followed in order to obtain the laboratory-scale results that form the 

basis of discussion in the subsequent chapters. The first part of this description 

comprises a brief overview of the experimental conditions, the gases used, the 

catalyst, and the reactors selected for this investigation. The second part explains 

how the researcher set up the rig, and provides a diagram of the process and the 

instrumentation, to aid readers to follow the sequence that connects the 

experimental units. Lastly, the author outlines the procedures required to run the 

Fischer Tropsch (FT) system, collect the data, and analyse them with gas 

chromatography instruments. 
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4.2 Experimental conditions 

For his FTS experiments, the researcher opted for mild operating conditions, that 

is, a low running pressure (1 bar gauge) after reducing the catalyst at atmospheric 

pressure. The FT process temperature was also set at a relatively low 250 oC. The 

reasons for this choice were to simplify the whole FT process, to reduce the 

eventual capital cost of applying this research industrially, and to prolong the 

lifespan of the catalyst if possible.  

The three gases selected were hydrogen, carbon monoxide and synthesis gas. 

This enabled the author to investigate and compare the effects of reducing gases 

in FTS. He conducted a series of long-term (about 14 000 hours) FTS runs, 

starting with a low pressure (1 bar gauge), and altering both the pressures from 1 

to 10 and 20 bar gauge and the flow rates from 15 mL(NTP)/min to 30 

mL(NTP)/min and 60 mL(NTP)/min. The aim was to test the responses of the 

catalyst to different reduction conditions. The results were meant to identify the 

best reducing agent in terms of activity, stability and resistance to deactivation. 

The general steps involved in this FT synthesis work were: (i) rig building, ii) 

catalyst characterization, iii) loading the catalyst into the reactors, iv) reducing the 

catalyst, (v) performing FT reactions at different conditions and vi) regeneration of 

the catalyst.  

4.3 Gases used  

The gases required for FT synthesis, which were supplied by African Oxygen 

(AFROX Ltd), in standard gas cylinders (40 Kg) for use in the laboratory, included 

the carrier gases and the auxiliaries (argon, helium, hydrogen and air) used for 

gas chromatography (GC) operations, which required ultra-high purity (UHP) 

grades ( > 99.9997%). Three kinds of catalyst reducing gases were used for the 

catalyst activation: (1) UHP H2; (2) UHP CO; (3) syngas, which is a mixture of 

H2/CO/N2. The same syngas was also used for the FT reactions. The researcher 

calibrated the online GC by means of a gas mixture comprising H2, CO, CO2, N2, 
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CH4, C2H4, and C2H6. The components of the syngas and calibration gases are 

given in Table 4.1. 

Table 4.1: Component and mole percentage of the calibration gases 

used in the study 

 

 

Component 

Mole percentage (% mol) 

Syngas (mole %) Calibration gas (mole %) 

H2 

CO 

N2 

CO2 

CH4 

C2H4 

C2H6 

60 

30 

10 

 

53.2 

28.8 

9.8 

5.0 

2.5 

0.2 

0.5 

 

The author used UHP He and Ar (baseline) gases to calibrate the thermal 

conductivity detector (TCD), and Air Instrument Grade (AIG zero), H2 (UHP) and 

the carrier gas Ar (baseline) for the flame ionization detector (FID) used during the 

sample analysis with the GC. The cylinders were fitted with pressure regulators, 

and the gases were sent to the FT rig via high pressure lines. Nitrogen gas was 

used for various purposes, including leak testing and purging the system. 
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4.4 Catalyst  

An iron-based FT catalyst (FeCuKSiO2) manufactured and commercially supplied 

was used throughout the FT experiments. 

4.5 Catalyst characterization  

Characterization, which involves the investigation and measurement of a material 

in terms of its structure and properties, is critical to understanding the nature of the 

catalyst that is to be used in the experiments. The properties, which include its 

chemical composition, surface area, pore volume and morphology, are in turn 

responsible for the catalyst’s selectivity, and hence affect the distribution of the FT 

product (Niemantsverdriet et al. 1980; Reymond, Mériaudeau, and Teichner 

1982). The researcher used various characterization techniques to determine the 

structural and chemical characteristics of the chosen iron catalyst. For example, 

powder X-Ray diffraction (XRD) was employed to assess the crystallinity of the 

iron loaded, and to verify the phases of iron in the catalyst; whereas electron 

microscopy was used to determine the particle morphology and iron crystallite 

size. The physicochemical characteristics of catalysts were determined by means 

of the Brunauer-Emmett-Teller (BET) and X-ray diffraction (XRD) analysis 

methods. The characterization techniques used in this study were similar to those 

reported other researchers. 

 X-ray diffraction (XRD) 4.5.1

X-ray diffraction (XRD) measurements were performed to obtain information 

concerning the phase composition and the crystallite size distribution. Prior to the 

analysis, samples were loaded into the holder. The tube voltage and current of the 

instrument were set at 40 kV and 30 mA respectively. The XRD instrument, which 

operated on a rhodium tube, had a K-beta filter mounted on it. The samples were 

run in a Rigaku XRD instrument equipped with a scintillation counter detector. The 

powder samples were scanned in the 0o–75o 2θ range at the rate of 0.2o/min. 
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 Brunauer-Emmet-Teller (BET) 4.5.2

The BET analysis, which measures the specific surface area and the pore volume 

of the iron catalyst, required a preliminary procedure. The sample was out-gassed 

under vacuum overnight, at 80–100 oC to drive away any moisture in the samples. 

The surface area and porosity of the sample were measured with a Micromeritics 

TriStar II - Surface Area and Porosity analyser. 

 High Resolution Transmission electron microscopy (HTEM)  4.5.3

A technique referred to as High Resolution transmission electron microscopy 

(HRTEM) was used to study the structure of the iron catalyst.  

Samples were prepared by drop-coating one drop of specimen solution onto a 

holey carbon coated nickel grid. This was then dried under a Xenon lamp for about 

10 minutes, where after the sample coated grids were analysed under the 

microscope. Transmission electron micrographs were collected using an FEI 

Tecnai G2 20 field-emission gun (FEG) TEM, operated in bright field mode at an 

accelerating voltage of 200 kV. Energy dispersive x-ray spectra were collected 

using an EDAX liquid nitrogen cooled Lithium doped Silicon detector.  

4.6 FTS Reactors 

The reactor system and specification have been detailed in a previous report [Yao 

(2011)]. A brief description is provided below. Three fixed bed reactors were used 

in this study. Figure 4.1 shows the disassembled reactor with screwed end fittings. 

The reactor is made of a stainless steel tube (A) with dimensions tube length 204 

mm and internal diameter of 8 mm, with screwed end fittings (B and C). 

 

Figure 4.1: Photograph of the disassembled reactor. 
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4.7 Catalyst loading into the reactor 

Prior to the catalyst loading, the FT rig was tested with nitrogen gas for any 

possible leaks. Once all the fitting joints and lines were tight, the reactor was 

detached from the rig. Each of the reactors was then disassembled in order to load 

the catalyst. Figure 4.2 depicts a schematic representation of a loaded FT reactor 

with steel balls, iron catalyst and a thin layer of quartz wool. Measurements were 

done to locate the middle part of the reactor, then stainless steel balls were added 

to the middle of the reactor, and the thin layer of quartz wool was then pushed 

down the reactor shaft 6.35 mm (¼ inch). Thereafter one gram of catalyst was 

loaded followed by another thin layer of quartz wool. Additional stainless steel 

balls were inserted in the reactor tube to occupy the remaining volume, and then a 

final layer of quartz wool. 

 

Figure 4.2: Representation of the FT reactor loaded with catalyst 

Steel balls were used to keep the catalyst bed in position (in the middle of the 

reactor) and enhancing the gas distribution and flow patterns inside the reactor; 

the steel balls also preheated the syngas to the required experimental 

temperature, and they occupied all the tube length not taken up by catalyst. This 

also contributed to maintaining isothermal conditions along the entire length of the 
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reactors. Quartz wool was positioned at the catalyst–balls interfaces above and 

below the catalyst bed to prevent the catalyst from being blown out of the reactor 

tube. The temperature along the reactor tube was measured by a moveable 

thermocouple (K type of 1/16” OD thermocouple which was placed centrally in an 

axial position within the thermopot (1/8” OD thermopot). The temperature profile 

along the reactor before and during reaction was then measured. After loading the 

catalyst, all three reactors were mounted back to the FT rig. Then, leakage testing 

was conducted again for the three reactors to make sure there was no leakage for 

the entire reactor system. The reactors were then insulated with a thermal blanket 

to prevent heat loss. The middle part of each reactor was heated with heating coils 

which were placed around the reactor and the top and bottom parts, forming the 

heating sheath. Temperature controllers were used to enable the setting of desired 

temperatures. These three zones (top, middle and bottom of the reactor) were 

monitored by the same kind of temperature controllers. 

4.8 Experimental set-up 

The experimental set-up (Figure 4.3) was designed and built with three fixed bed 

reactors in a parallel configuration to achieve the aim of this study. An important 

aspect of the parallel concept is the possibility to share the same feed cylinder, 

nitrogen and analysis equipment, thereby reducing the possibilities of errors.  

The same feed (synthesis gas) was distributed to the three reactors using the 

Brooks mass flow controllers (Brooks Instrument 5850). A non-return valve was 

mounted after each mass flow control (MFC) channel to prevent the products from 

flowing back to the MFC. Besides feeding the system with syngas, other channels 

were available to supply other gases such as nitrogen and reducing gases to the 

reactors. Back pressure regulators were manually controlled to keep the reactor 

pressure at desired set point. All the experiments were conducted in a laboratory 

scale fixed bed reactor set-up, as shown in Figure 4.3. 
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Figure 4.3: Flow scheme of the laboratory scale Fischer Tropsch rig with three 

fixed reactors in parallel 
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4.9 Experimental method  

 Catalyst reduction procedure 4.9.1

One gram of the iron based catalyst was loaded in each of the three reactors. 

Three kinds of reducing agents (H2, CO and syngas) were used for the catalyst 

reduction in these three reactors, respectively: syngas for the catalyst reduction of 

reactor 1 (Reac-Syn), H2 for that of reactor 2 Reac-H2 and CO for that of reactor 3 

(Reac-CO).  

Before catalyst reduction, the catalyst in each of the reactors was dried under the 

flow of nitrogen at 60 mL(NTP)/min, at the temperature of 120 °C, and at 

atmospheric pressure, for 2 hours, to get rid of the moisture which might have 

accumulated during catalyst loading.  

After the drying, the same catalyst reduction procedure was performed on the 

three reactors. The only difference was the reducing agents: the catalyst in reactor 

1 (Reac-Syn) was reduced with syngas, the catalyst in reactor 2 (Reac-H2) was 

reduced with hydrogen and the catalyst in reactor 3 (Reac-CO) was reduced with 

carbon monoxide. The three kinds of reducing gases were introduced into the 

three reactors, respectively, at a flow of 60 mL(NTP)/min, at atmospheric pressure, 

and the temperature was increased from 120 (drying temperature) to 250 °C 

(reduction temperature) at a heating rate of 1 °C/min. The system was left at 250 

oC in the atmosphere of reducing agents for 48 hours prior to running the FT 

reaction. 

 FT synthesis  4.9.2

After reduction, Reac-Syn (syngas reduced) was maintained at the same 

temperature and flow rate but the pressure was increased from atmosphere to 1 

bar gauge for FT synthesis (FTS) run. The temperature of Reac-H2 and Reac-CO 

(reduced by hydrogen and carbon monoxide respectively) was reduced to 100 °C 

before introducing syngas feed so as to avoid any temperature runaways once the 

FTS reaction was initiated. Similarly, the pressure of Reac-H2 and Reac-CO was 
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increased from atmospheric to 1 bar gauge (2 bar absolute) and the temperature 

was raised gradually from 100 oC to 250 °C. The FTS experiments were carried 

out under the reaction conditions (Table 4.2) for 1000 hours of time on stream 

(TOS) without changing the operating conditions for all three reactors. The results 

obtained from these FTS runs are presented and discussed in Chapter 5. A 

summary of the operating conditions used during our FT experiments is shown in 

Table 4.2. The FT experiments continued and operating conditions, specifically 

the reactor pressure and flow rate, were varied for the rest of the FT reactions. 

The effects of varying the operating conditions for the FT reactions appeared 

different and depended on the reducing agents. The results from these 

investigations are detailed and discussed in Chapter 6. 

The syngas feed composition was 60% H2, 30% CO and 10% N2 for all the 

reactors, and this corresponded to partial pressures of PH2 = 1.2, PCO = 0.6 and 

PN2 = 0.2 bar within the reactor. The syngas flow rate was set at 60 mL(NTP)/min 

and at this flow rate, the space velocity at normal temperature and pressure was 

60 mL(NTP)/min/g Fe. 

Table 4.2: Initial reaction conditions for the FT synthesis 

 

 Reac-Syn Reac-H2 Reac-CO 

Reducing gas Syngas Hydrogen Carbon 
monoxide 

Catalyst weight (gauge) 1 1 1 

Temperature (°C) 250 250 250 

Flowrate mL(NTP)/min 60 60 60 

Pressure (bar gauge) 1 1 1 
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 Regeneration studies 4.9.3

The catalytic activity decreased noticeably with TOS but also due to unplanned 

power supply outages to the FT rig. The researcher therefore devised a way of 

regenerating the catalyst step by step, as described below. This is an oxido-

reduction process. The same regeneration steps were conducted for all the three 

reactors starting with Reac-Syn, followed by Reac-CO and finally Reac-H2.  

• The flow of syngas to the reactor was stopped, which was set at 60 

mL(NTP)/min, whilst nitrogen was introduced into the system at the same flowrate.   

• The back pressure regulator was fully opened and the system was run at 

atmospheric pressure. 

• The temperature was increased from 250 to 270 °C at a rate of 1 °C/min. 

• The reactor was then left under the flow of nitrogen at 60 mL(NTP)/min, at 

atmospheric pressure and at 270 °C, overnight. 

• Then the temperature was decreased from 270 to 100 °C and a mixture gas 

of 4.9 % O2 in 94.1 % helium was introduced to the reactor at a flowrate of 30 

mL(NTP)/min whilst the flow of N2 60 mL(NTP)/min) was kept passing through the 

reactor overnight. 

• After that, the reactor temperature was increased to 180 °C at a rate of 20 

°C in 10 mins and maintained there for one hour, then increased another 20 °C in 

10 mins until it reached 200 °C. 

• While at 200 °C the flow of N2 was stopped and the flow of O2/He remained 

at 30 mL(NTP)/min overnight. 

• N2 was then re-introduced at 60 mL(NTP)/min whilst the flow of O2/He was 

slowly reduced to zero, resulting in the end of catalyst oxygenation.  
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The catalyst oxidation process was then followed by the reduction pathway where 

the temperature was reduced to 120 °C and kept there for 2 hours. This was 

followed by the reduction of the catalyst under the same conditions (250 °C, 60 

mL(NTP)/min at atmospheric pressure for 48 hours) as done previously, but this 

time syngas was used as the reducing agent for all the reactors. This was the end 

of regeneration. After regeneration, the researcher reverted to normal FT runs 

where the reactor pressure was increased to 1 bar gauge and the flow rate was 

maintained at 60 mL(NTP)/min and the temperature at 250 °C. The data obtained 

from the regeneration investigation are reported and discussed in Chapter 7. 

 Product separation and analysis 4.9.4

FT main products exiting the reactor are usually grouped into three categories: 

gases, liquids and solids. This classification is based on the length of the carbon 

chain. The solid products (waxes) were collected in the hot trap kept at 150 °C. 

The liquid products were trapped further down in the cold trap kept at room 

temperature. The gaseous components went to the GC for analysis and/or vented. 

Product analysis was attained through three detectors. The tail gas from each of 

the reactors was analysed by an online GC which was equipped with two Thermal 

Conductivity Detectors (TCDs) and both used argon as the reference gas. The 

integrated peaks areas from these chromatograms were used to monitor the 

conversion levels of the reactants (hydrogen and carbon monoxide). The GC was 

also equipped with Flame Ionization Detector (FID) which detected and separated 

organic compounds from C1 to C5. Samples from the gaseous stream were taken 

every 83 min via sample valves from the sampling loop and analysed by the online 

GC, and the excess gas from the sampling loop passed through a bubble meter to 

the vent. It was not an obstacle to analyze samples from the three reactor 

configurations of this experimental set-up. This was because products from the 

three reactors were analysed in a cyclic manner (reactor 1- 2-3:1-2-3 cycles).  

The gaseous inorganic compounds CO, H2, N2, CO2, and hydrocarbons C1-C5 

were analysed using an online DANI 1000 GC instrument equipped with both FID 
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and TCD. The GC used in this study was similar to the one reported by Yao 

(2011). The GC was equipped with three multiple sampling valves which were 

heated at 150 °C and the detectors at 220 °C. The mechanism of sampling of the 

GC is reported in the Yao thesis (2011). Details about the GC settings and 

columns in the present research are summarized in Table 4.3 below. The 

inorganic components (H2, CO, CO2, and N2) were separated on a Teknokroma 

Porapack Q column and the hydrocarbon products were separated on a Varian 

capillary column.  

To properly quantify the product amounts, calibration was done using a premixed 

gas with known molar fractions. The percentage composition of the calibration 

cylinder is given in Table 4.1. The amounts of the products will then be given by 

determining the relationship between the size of a peak for a known amount of 

analyte in a standard against the amount of that analyte in a sample of unknown 

concentration. The quantities of C1 and C2 hydrocarbons were determined directly 

and the remaining hydrocarbons in the gas phase were calculated using the 

calibration for C2 and the corresponding response factors (Table 4.4). 
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Table 4.3: Summary of the online GC settings and columns used 

On-line GC  DANI GC 1000  

Oven temperature programme 50 °C - 8 °C /min  - 200 °C  

Detector 1 FID, T - 220 oC 

Column 1  Varian capillary column (Cp-Poraplot Q-HT), 

12.5m*0.53mm* 20μm  

Sample valve temperature  150 °C  

Carrier gas  UHP Ar with flow rate of 30 mL (NTP)/min  

Product analysis  C1- C5 

Detector 2  TCD - A, T = 220 °C  

Column 2  Teknokroma, porapack Q (Tmax: 250 °C), 80/100 

mesh, 2m*1/8''*2.1mm  

Column 3  Teknokroma, molecular sieve 13X (Tmax: 400 

°C), 80/100 mesh, 2m*1/8''  

Sample valve temperature  150 °C  

Carrier gas  UHP Ar with flow rate of 30 mL(NTP)/min  

Oven temperature programme  Hold at 50 °C for 8 min, heat to 200 °C at 8 °C 

/min, hold at 200 °C for 45 min  

Product analysis  CH4, CO2, N2, CO  

Detector 3  TCD_B, T=220 °C  

Column 4  Teknokroma, molecular sieve 5A ( Tmax: 400 °C), 

80/100 mesh, 1.5m*1/8''  

Sample valve temperature  150 °C  

Flame gas  Air with flow rate of 20 mL(NTP)/min and UHP H2 

with flow rate of 200 mL (NTP)/min  

Carrier gas  UHP He, 30 mL (NTP)/min  

Oven temperature programme  Hold at 50 °C for 8 min, heat to 200 °C at 8 °C 

/min, hold at 200 °C for 45 min  

Product analysis  H2  
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Products from the two hot and cold traps were collected and sent to the Offline gas 

chromatography for analysis. Typical chromatograms from the TCDs and FID are 

given in Figures 4.4 to 4.6, respectively.  

 

Figure 4.4: Typical online analysis of the syngas (red line from TCD detector and 

blue line from that of FID).  

 

Figure 4.5: Typical online analysis of the calibration gas (red line from TCD 

detector and blue line from FID)  
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Figure 4.6: Typical online analysis of the tailgas (red line from TCD detector and 

blue line from FID)   

4.10 Product storage  

The solid and liquid products were collected in glass vials sealed with paraffin 

paper, labelled with stickers and stored in a refrigerator awaiting analysis.  

4.11 Calculations  

The data collected from the on-line were quantitatively processed. Nitrogen (10 vol 

% of N2) contained in syngas feed of FT experiments was used as the internal 

standard for the measurements of TCD data. Once the molar flow rates of the 

various reactants and products had been determined, further calculations were 

then performed. Mass balance calculations including the conversion of reactants 

CO and H2 were determined using the equations below. These calculation are 

similar to those used by the previous researchers (Bahome 2007; Mokoena 2005; 

Yao 2011; Lu 2012; Jalama 2008; Yao 2011; Lu 2012). The experimental 

procedure used dates back to decades (Duvenhage, 1994). 
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% 𝐶𝑂 =  
𝐹𝑖𝑛𝑋𝑐𝑜,𝑖𝑛−𝐹𝑜𝑢𝑡𝑋𝑐𝑜,𝑜𝑢𝑡

𝐹𝑖𝑛𝑋𝑐𝑜,𝑖𝑛
                                                           (4.3) 

Where: 

  𝑋𝑐𝑜,𝑖𝑛 is the molar fraction of CO in the reactor inlet gas feed;  

and 𝑋𝑐𝑜,𝑜𝑢𝑡 is the molar fraction of CO in the  reactor outlet gas  stream. 

The CO consumption rate is calculated as follows: 

𝑟𝑐𝑜 =  
𝐹𝑜𝑢𝑡𝑋𝑐𝑜,𝑜𝑢𝑡−𝐹𝑖𝑛𝑋𝑐𝑜,𝑖𝑛

𝑚𝑐𝑎𝑡
        (4.4) 

where: 

 𝑟𝑐𝑜  is the rate of CO consumption, mol/(min.gcat) 

𝑚𝑐𝑎𝑡 is the mass of the catalyst used in this reaction, in grams. 

The formation rate of gas a product 𝜃𝑖, mol/(min.gcat) is given by: 

𝑟𝜃𝑖
=  

𝐹𝑜𝑢𝑡𝑋𝜃𝑖,𝑜𝑢𝑡

𝑚𝑐𝑎𝑡
         (4.5) 

Where: 

 𝑋𝜃𝑖,𝑜𝑢𝑡
 is the molar fraction of 𝜃𝑖 in the reactor outlet gas stream. 

The product selectivity was calculated on the moles of carbon basis, as follows: 

𝑆𝑒𝑙 (𝜃) =  
[𝑛𝐶]𝜃

−𝑟𝑐𝑜×𝑡 ×𝑚𝑐𝑎𝑡
         (4.6) 

where: 
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𝑆𝑒𝑙 (𝜃) represents the selectivity of product 𝜃 and [𝑛𝐶]𝜃 represents the moles of 

carbon contained in the product 𝜃. 

The response factors as reported by (Dietz 1967) were used to correct 

hydrocarbons based on the known areas of C2H4 (olefin) and C2H6 (paraffin) in the 

calibration. 

Table 4.4: Response factors for hydrocarbon products 

 

Carbon number Olefin Paraffin 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 

0.7 

0.55 

0.47 

0.4 

0.35 

0.32 

0.28 

0.24 

0.21 

0.19 

0.18 

0.17 

0.15 

1 

0.74 

0.55 

0.47 

0.4 

0.35 

0.32 

0.28 

0.24 

0.21 

0.19 

0.18 

0.17 

0.15 

 

 Olefin/paraffin ratio  4.11.1

Olefin/paraffin (O/P) ratio was calculated as follows, considering the relative molar 

amount for the same carbon number in the outlet stream: 
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𝑂𝑛

𝑃𝑛
⁄ =  

𝑁𝐶𝑛𝐻2𝑛

𝑁𝐶𝑛𝐻2𝑛+2

⁄         (4.7)  

 Olefin/paraffin ratio  4.11.2

Olefin/olefin (On/On-1) ratio looked at the relative molar amount for the immediate 

neighbouring olefins in the outlet stream, which was calculated as follows:  

𝑂𝑛
𝑂𝑛−1

⁄ =  
𝑁𝐶𝑛𝐻2𝑛

𝑁𝐶𝑛−1𝐻2(𝑛−1)
⁄        (4.8)  

It is important to note the time scales for the whole FT run for all the different 

reactors and Table 4.5 presents the events for the whole duration of the study. 

Detailed accounts of the actual work performed to evaluate FTS are presented in 

the respective sections that follow. The focus of the thesis was on light 

hydrocarbons monitored by the online GC only, though liquid and solid (wax) 

hydrocarbons were obtained. It is worth noting that the hydrogen conversion is not 

reported due to analysis limitations. The graphs plotted in Figure 4.7 depict the 

conversion against the time on stream presented in the thesis. 
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Table 4.4: Reaction and feed conditions for the FTS experiment. Note 

that 1 g of iron based catalyst was loaded into the reactor and 

this catalyst was not changed during the experiment. 

 

Time on Stream in 
Hours (TOS) 

Experimental Conditions Activity 

0-1000 FT Synthesis 

60 mL(NTP)/min, 250°C, 
1 bar 

The results obtained are 
presented in chapter 5 

1000-5000 Nitrogen flowing 

60 mL(NTP)/min, 250°C, 
1 bar 

 

Shortage of syngas. 

Results not presented in 
this thesis 

5000-7000 FT Synthesis, Effect of 
flow rate investigated from 

60, 30 and 
15mL(NTP)/min. 

At 1 bar, 250°C 

These results are 
presented in chapter 6 

7000-11800 Nitrogen flow 

60mL(NTP)/min, 1 bar 

Shortage of syngas 

11800-13000 Ft synthesis 

60mL(NTP)/min, 250 °C, 
1 bar 

Regeneration studies. 
Results presented in 

chapter 7 

13000-14600 FT synthesis 

Effect of pressure 
investigated from 1,10 

and 20 bar. At 
60mL(NTP)/min, 250 °C 

Results presented in 
chapter 6 

 

The time run recorded was from 0 to about 14500 hours’ time on stream as 

highlighted in Table 4.5. The graphs in Figure 4.7 only show the section reported 

in the thesis. The idea was to report section with minimal or no interruptions such 

as shortages of syngas and power outages. 
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Figure 4.6: Graphs of conversion again time on stream for the whole FT run periods considered in this thesis (a) Reac-Syn, (b) 

Reac-H2 and (c) Reac-CO 
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CHAPTER 5 

A COMPARATIVE STUDY ON THE GAS PHASE FISCHER 

TROPSCHS PRODUCTS OF REDUCING AN IRON CATALYST 

WITH THREE DIFFERENT REDUCING GASES 

The material in this chapter has been written in a paper format and is ready for 

submission. Some of the data were accepted for a poster presentation at AIChE annual 

meeting 2015. 

 

Abstract 

 

In this chapter, the effect of running the FT synthesis process, at a pressure of 1 

bar gauge, using an iron catalyst that has been reduced by three different reducing 

gases was investigated. In order to achieve this task, the three reactors were set 

up in parallel and each of them loaded with the same quantity of the iron catalyst 

(FeCuKSiO2). After loading, the catalyst in the first reactor was reduced with 

synthesis gas (a combination of carbon monoxide and hydrogen). The catalyst in 

the second reactor was reduced using hydrogen (H2) gas, while that in the third 

reactor was reduced with carbon monoxide (CO) gas. A typical FT reaction 

experiment was conducted for a total of 1000 hours in all the three reactors, under 

the same operating conditions such as flow rate, pressure and temperature. In this 

study only the gas-phase products leaving the reactors were analysed and 

compared. 
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5.1 Introduction 

The dependency of Fischer Tropsch synthesis (FTS) product distribution on 

operating conditions has been studied (Patel and Lang 1990; Donnelly and 

Satterfield 1989). The process conditions are reported to have an effect on the 

overall product selectivity of FTS (Todic et al., 2016). The interplay between the 

kinetics and thermodynamics of various parallel reactions, under different process 

conditions, determines the overall selectivity to FTS products. It is further reported 

that total pressure has a positive effect on the FTS reaction rate (Dinse et al., 

2012). Research done by Dinse et al (2012), showed that increasing pressure 

results in a decrease in methane production, and an increase in the C5+ for a Mn 

promoted Co/SiO2 catalyst. Furthermore, studies on iron catalyst have shown that 

pressure has a negligible effect on FTS selectivity (Botes et al. 2013; Dry 2004). 

Generally in the case of an FT process, the catalyst is reduced in situ with 

hydrogen, CO or syngas to yield an active catalyst. Several studies have been 

done to ascertain the effect of pressure during reduction. For example, Hao et al. 

(2009) observed that catalyst activity decreases with an increase in reduction 

pressure, and this was attributed to the decrease in the iron carbide content as 

activation pressure increased. After the catalyst has been reduced, it is introduced 

to the new environment where syngas is added and it undergoes further 

speciation. The complexity of iron catalyst speciation during the FT catalyst 

reduction process has been investigated by many authors using spectroscopic 

studies (Bukur et al., 1995; O’Brien et al., 1996; Farias et al., 2010; Zamaniyan et 

al., 2013; Braconnier et al., 2013; Pineau et al., 2006; Colombo et al., 1967; Rao 

et al., 1996; Bukur et al., 1995; Jozwiak et al., 2007; Ding et al., 2014; Lin et al., 

2003). Nevertheless, the literature on low pressure FT synthesis is scarce. 

However, based on Hao et al. (2009) reduction studies with syngas, low pressure 

FT runs may presumably increase the catalyst life span. 

FT might be expensive when conducted at high pressures. For example, current 

commercial FT processes operate at 20-40 bars and this makes the process 

highly complex and expensive to run (Liu et al. 2013; Choi et al. 1997). As a result, 
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the possibility of lowering the reaction pressure might simplify the process, 

especially in a small to medium scale Biomass to Liquid process. The kinetics of 

low operation pressure predict lower CO conversion, and hence lower yields, and 

this may not be a viable move from an industrial point of view (Ma et al. 2014). The 

main objective of this work was to experimentally explore the behaviour of low 

pressure on catalyst reduced with different gases in FT synthesis. This can be 

useful in process down-scaling and cost reduction as the operation will be at 

almost ambient pressure. Currently, no studies investigating simultaneously the 

influence of three reducing agents (syngas, H2 and CO) at almost ambient 

pressure have been reported. The current study performed FT synthesis at 1 bar 

gauge, a value which is far below the normal FT runs at 20–40 bars in an attempt 

to achieve a less expensive process. 

5.2 Experimental  

 Catalyst and catalyst reduction 5.2.1

FTS experiments were performed with three differently reduced catalysts in three 

different fixed bed reactors. One gram of the iron based catalyst was loaded in 

each of the three reactors. Three kinds of reducing agents (Syngas, H2, and CO) 

were used for the catalyst reduction in these three reactors, respectively: syngas 

for the catalyst reduction of reactor 1 (Reac -Syn), H2 for that of reactor 2 (Reac -

H2) and CO for that of reactor 3 (Reac – CO).  

Before catalyst reduction, the catalyst in each of the reactors was dried under the 

flow of nitrogen at 60 mL(NTP)/min, at the temperature of 120 °C, and at 

atmospheric pressure, for 2 hours, to get rid of the moisture which might have 

accumulated during catalyst loading.  

The temperature was increased from 120 (drying temperature) to 250 °C 

(reduction temperature) at a heating rate of 1 °C/min. All the reactors were left at 

250 oC in the atmosphere of reducing agents for 48 hours prior to running the FT 

reaction.   
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 FT synthesis 5.2.2

After reduction, Reac-syn (syngas reduced) was maintained at the same 

temperature and flow rate but the pressure was increased from atmosphere to 1 

bar gauge for FT synthesis (FTS) run. The temperature of Reac-H2 and Reac-CO 

(reduced by hydrogen and carbon monoxide respectively) was reduced to 100 °C 

before introducing syngas feed so as to avoid any temperature runaways once the 

FTS reaction was initiated. Similarly, the pressure of Reac-H2 and Reac-CO was 

increased from atmospheric to 1 bar gauge (2 bar absolute) and the temperature 

was raised gradually from 100 oC to 250 °C. The FTS experiments were carried 

out under the reaction conditions for 1000 hours of time on stream (TOS) without 

changing the operating conditions for all three reactors. A summary of the 

operating conditions used during our FT experiments is shown in the Table 5.1. 

Table 5.1: Summary of experimental conditions for FTS for differently 

reduced iron based catalysts 

 

 Reac-Syn Reac-H2 Reac-CO 

Reducing gas Syngas Hydrogen Carbon 

monoxide 

Catalyst weight 

(gauge) 

1 1 1 

Temperature (°C) 250 250 250 

Flowrate  mL(NTP)/min 60 60 60 

Pressure (bar gauge) 1 1 1 

 

5.3 Results  

 CO (gas) conversion 5.3.1

The CO (gas) conversions of the FT reactions for the three differently reduced 

reactors (Reac-Syn, Reac-H2 and Reac-CO) were measured against the TOS for 
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1000 hours. The results from the effects of reducing gases were compared in 

Figure 1. The Reac-syn showed a sharp initial increase in the CO conversion, 

whereas the magnitude of this spike was not that pronounced in the Reac-H2 and 

Reac-CO tests. This initial sharp increase can be attributed to the increase in the 

reactant partial pressures as the reactor pressure was increased from ambient to 1 

bar gauge during transition from the reduction to reaction period, and probably due 

to the saturation of the active sites as the liquid products are still building up in the 

catalyst pores. As a result, the reaction at this stage was probably not diffusion 

controlled through the liquid, as reported by Rytter and Lualdi ((Rytter et al. (2007); 

(Lualdi et al. 2011a)), through the liquid. The difference in the catalyst activity 

shown in Figure 5.1 was only apparent at the initial stages of 150 hours after the 

syngas was introduced to Reac-H2 and Reac-CO, as opposed to Reac-syn where 

the syngas was kept flowing through the catalyst from the reduction process. In 

this case, the steady state was then reached after about 150 hours of time on 

stream (TOS) when all the reactors in the system have reached a period having 

the same reaction rate.  

It is evident from Figure 5.1 that the long term CO conversion from the differently 

reduced catalysts attained the same value of about 14.5% (14.5% is the steady 

state conversion) under the reaction conditions investigated for 1000 hours TOS. 

The Reac-Syn does seem slightly higher but this difference is small enough not to 

be sure that it is a real effect.  
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Figure 5.1: Influence of reducing gases (syngas, hydrogen and carbon 

monoxide) on the catalyst stability (CO conversion) under the FT 

reaction conditions: 250 ᶛC, 1 bar (gauge), 60 mL(NTP)/min and 

mass of the catalyst of 1 g. 

 Effects of low pressure on reactant consumption rates 5.3.2

5.3.2.1 Reactant and FT rates at 1 bar gauge reactor pressure 

The effect of reducing gases (syngas, hydrogen and carbon monoxide) on the 

activity of the Fe catalyst during FT synthesis was determined for the period of 

1000 hours TOS. The results for the CO consumption rates were compared and 

are presented in Figure 5.2. 

The Reac-syn displayed an initial increase in terms of the reaction rate at the 

beginning of the FT reaction for about 150 hours from exposure to the synthesis 

gas, reaching a CO consumption rate of 2.64 × 10-4 mol/min/.gcat. On the other 

hand, the Reac-H2 and Reac-CO reduced showed an increase but with a lesser 

magnitude, followed by a gradual decrease in activity. The initial increase in the 

rate may be attributed to a high initial activity of the catalyst when the catalyst 
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surfaces are still fresh, while the steady state rate of 1.173 × 10-4 mol/min/.gcat 

was attained after approximately 150 hours. This observed phenomenon signifies 

that, irrespective of the reducing agent used, effectively the same overall reaction 

rate is eventually achieved. 

 

Figure 5.2: Influence of reducing gases: CO consumption rate versus time on 

stream at 1 bar gauge and 250 °C. 

The effect of the three reducing agents in the form of syngas, hydrogen and 

carbon monoxide on the FT rate (ɤCO – ɤCO2) was also measured and the 

results are shown in Figure 5.3. 
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Figure 5.3: Influence of reducing gases on FT rate (ɤCO – ɤCO2): FT rate versus 

time on stream at 1 bar gauge and 250 °C. 

The FT selectivity (defined by equation 5.1) of the differently reduced catalysts 

recorded at steady state operation for the three reactors were approximately the 

same. Taking into account the experimental error of ±5%, no significant difference 

was observed in terms of the selectivity. 

FT selectivity =  
ɤ𝐶𝑂 – ɤ𝐶𝑂2

ɤ𝐶𝑂
                                        (5.1) 

Where ɤ𝐶𝑂 is the rate of CO consumption and ɤ𝐶𝑂2 is the rate of CO2 accumulation 
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Figure 5.4: Fischer Tropsch selectivity for the three differently reduced catalysts 

The FT selectivity did not show any change from the startup and from this 

observation it can be inferred that the ratio of ɤCO2/ɤCO is a constant regardless 

of the actual change in the overall reaction rate of CO and H2. This suggests that 

when the consumption rate of the reactants spikes and decreases, both the FT 

reaction rate and water gas shift reaction rate respond accordingly.  
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5.3.2.2 Methane and carbon dioxide formation rates 

 

 

Figure 5.5: Influence of reducing agents on methane production rate (at 250 °C, 1 

bar gauge, 60 (NTP)mL/min and mcat = 1 g) 

Methane and carbon dioxide formation rates were calculated for the three reactors 

and the results are shown in Figure 5.5 and Figure 5.6, respectively. It is 

noticeable that the Reac-CO had a higher methane production rate, followed by 

the Reac-syn, and lastly the React-H2. This observed trend was maintained for 

long TOS and no initial spikes were observed, which is very different from the 

overall reaction rate as shown in Figure 5.1. 

 

 



 

116 
 

 

Figure 5.5: Influence of reducing agents on CO2 production rate (at 250 °C, 1 bar 

gauge, 60 mL/min and mcat = 1 g) 

Figure 5.6 shows the influence of reducing gases on CO2 production rates in the 

first 1000 hours. It shows that reducing iron oxide with hydrogen appears to 

produce less carbon dioxide than syngas and carbon monoxide during startup. But 

the trends are not that clearly conclusive at long TOS. The ɤCO2 followed a similar 

pattern as the ɤCO. This indicates that reducing gases did not to give rise to a 

major difference in CO2 production rates. It is noted that the CO2 rates showed 

similar spikes at early TOS, which corresponds to the overall reaction rate. When 

looking at the formation rates for the products reported in this work, it is clear that 

the high reaction rate of the reactant mainly resulted from high CO2 formation rates 

and not of other products. CH4 and CO2 are gases which are generally undesired 

products in a FT synthesis process that aims to maximize the reactant conversion 

to valuable hydrocarbon. The results, graphed in Figures 5.5 and 5.6, indicate that 

reducing agents have significant influence on the production of these undesirable 

products under the reaction conditions implemented in this study. 
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5.3.2.3 Olefin formation rates 

The olefin (C2 to C5) product formation rates were also measured to see if 

reducing gases affect their distribution and the results are illustrated in Figure 5.7 

(a-d).  

Figure 5.7a shows the olefin (ethylene) formation rate as a function of time on 

stream of 1000 hours. From Figure 5.7a, it is shown that for all three different 

reducing agents, the formation rate experienced an initial spike for the first 150 

hours. The ethylene formation trends were similar to the CO conversion trend 

observed in Figure 5.1, while the other olefin formation rates obtained in the 

experiments showed similar behavior to that of CH4. This may suggest that the 

formation rates of hydrocarbons other than C2H4 is not linked to the overall 

reaction rate. The results (Figure 5.7 a-d) show that Reac-CO (reactor reduced 

with carbon monoxide) produces more olefins than Reac-Syn and Reac-H2 

throughout the experiment. 
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Figure 5.7: Olefin production rate against time on stream under the following conditions: 250 °C, 1 bar gauge, 60 mL(NTP)/min 

and mass of catalyst 1 g  
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The Reac-Syn and Reac-H2 gave almost the same olefin formation rates with 

graphs in Figure 5.7a-d superimposed on each other for about 650 hours TOS. 

From 650 hours onwards the Reac-H2 experienced a drop in the formation rate. 

5.3.2.4 Paraffin formation rates 

The paraffin (C2 to C5) product formation rates were also determined as a function 

of time on stream, and the graphs are displayed in Figure 5.8 (a-d). 

The figures show the variation of paraffin formation rates for the differently 

reduced reactors. The syngas reduced reactor (Reac-Syn) tends to be more 

inclined to the formation of paraffins. A similar trend is observed for C2, C3 and C5 

with an anomaly for C4 where Reac-H2 comparatively produced more C4 paraffin 

followed by Reac-Syn and lastly Reac-CO. 
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Figure 5.8: Paraffin production rate against time on stream under the following conditions: 250 °C, 1 bar gauge, 60 mL(NTP)/min 

and mass of catalyst 1 g 
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For all three reducing agents, the rate patterns increased gradually with time on 

stream for about 90 hours, where they attained an almost stable state for 1000 

hours. However, after 90 hours of TOS, the difference in the magnitude of the 

formation rate of paraffins becomes more pronounced (start to differ).  

The olefin formation rates (average data) as a function of carbon number were 

also analysed, and the results are shown in Figure 5.9. It is clear from Figure that 

Reac-CO (iron CO reduced) produced more olefins (C2 to C5), followed by Reac-

Syn (iron syngas reduced) and Reac-H2 (iron hydrogen reduced). In terms of the 

carbon number, propylene appeared to be the dominant form of olefin, followed by 

ethylene, butene and pentene. It is known that some of the pentene might be 

found in the liquid phase product, so this might explain the lesser amount recorded 

for pentene in the gas phase 

 

Figure 5.9: Effect of reducing agents (syngas, hydrogen and carbon monoxide) 

on the average steady state olefin production rate against carbon 

number for three differently reduced reactors (at 250 °C, 1 bar 

gauge, 60 (NTP)mL/min and mcat = 1 g)   

In summary, the differently reduced catalyst displayed significant initial increase of 

the olefin (C2 to C5) production rate, and then decreased before reaching an 

almost stable formation rate. The olefin production rate was significantly higher for 

Reac-CO for all the hydrocarbons (from C2-C5), followed by the Reac-Syn and 

lastly the Reac-H2. On the other hand, the production rate of the olefin increased 



 

122 
 

initially with increase in carbon number (from C2 to C3) and then decreased from 

C3 to C5 as shown in Figures 5.9. For such results, it is reported in the literature 

that factors such as reactivity, diffusivity and component size might cause the 

trend observed (Fiore et al. 2004a). 

The effect of reducing agents (syngas, hydrogen and carbon monoxide) on the 

paraffin (C2 to C5) was also determined as a function of carbon number (see 

Figure 5.10), in a similar manner to the olefins. The results show that the paraffin 

production rate Reac-CO and Reac-syn followed a similar pattern with Reac-H2 

displaying a sigmoidal pattern. The observed trend here is the opposite of what 

was observed in the olefin production rates, where the rates increased from C2 to 

C3. This behaviour could be attributed to the hydrogenation extent of the olefins 

(Fiore et al. 2004b). An anomaly is observed in the hydrogen reduced reactor 

where a cyclic pattern is observed. The results are not conclusive as to which 

reducing agent gave rise to a high production. However, Reac-H2 produced more 

butane than the other two reactors, whereas Reac-CO produced more ethylene 

and Reac-Syn more propane and pentane. 

 

 

Figure 5.10: Effect of reducing agents (syngas, hydrogen and carbon monoxide) 

on the average steady state paraffin formation rates as a function of 
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carbon number under the following conditions: 250 °C, 1 bar gauge, 

60 (NTP) mL/min and mass of catalyst 1 g    

 Product selectivity 5.3.3

The selectivities of the FT products obtained during the present experiments were 

calculated and are summarized in Table 5.2. Although the activity of FT based on 

the three reducing agents is similar (see Figure 5.2), the product formation rates 

are different (see Figures 5.7 and 5.8). From Table 5.2 it is evident that Reac-Syn 

(syngas reduced reactor) reveals the lowest methane selectivity, and Reac-H2 

(hydrogen reduced) reveals the lowest selectivity to carbon dioxide. Reac-CO 

(which has the CO reduced catalyst), has the highest selectivity to methane, and 

Reac-Syn, has the highest CO2 selectivity.  

To get some insight into the product distribution, the selectivities of the differently 

reduced catalyst were calculated using the equation below, and the percentages 

are provided in Table 5.2. 

Equation 5.2 was used for the determination of selectivity of the products. 

𝑆𝑒𝑙 (𝜃) =  
[𝑛𝐶]𝜃

−𝑟𝑐𝑜×𝑡 ×𝑚𝑐𝑎𝑡
         (5.2) 

where:  

𝑆𝑒𝑙 (𝜃) represents the selectivity of product 𝜃 and [𝑛𝐶]𝜃 represents the moles of 

carbon contained in the product 𝜃. 

Table 5.2: Selectivity to FT products for different catalyst reducing 

agents 

 Reducing 
agent 

% Selectivity 

 CO2  CH4  C2H4  C2H6  C3H6  C3H8  C4H8  C4H10  C5H10  C5H12 

 Reac-
Syn 

 21.41  7.02  1.82  0.96  5.45  0.50  3.93  0.68  3.48  1.01 

 Reac-H2  19.38  6.52  1.94  0.78  5.04  0.40  3.75  1.71  3.40  0.78 
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 Reac-CO  19.02  10.16  2.45  0.81  7.50  0.38  5.59  0.23  4.86  0.71 

 

The results tabulated are the calculated averages at steady state under the 

reaction conditions (1 bar, 250 °C). The results show that product selectivity is 

greatly influenced by the reducing gases. Reducing with different reducing gases 

resulted in catalysts with different selectivities to FT products. CO2 values are very 

high, and this is attributed to the WGS reaction. The syngas reduced reactor 

showed comparatively a higher selectivity to CO2 than the hydrogen and carbon 

monoxide reduced reactor. The CO2 selectivity is basically the amount of the 

carbon atoms in the feed that is converted to CO2 as the final product. 

The selectivities to CO2 and CH4 were found to be high in all the reactors and 

lower figures were obtained for C2-C5 hydrocarbon selectivity, and the trends 

observed for C2-C5 selectivity for the three differently reduced reactors were 

similar. The CO reduced reactor showed comparatively high selectivities to 

methane ((%CO converted to CH4)/(%CO converted to products other than CO2)) 

followed by the syngas and lastly the hydrogen reduced reactor. Methane 

selectivities of the three reactors showed a gradual increase (Figure 5.5). These 

data might be taken to suggest that methane selectivity is low on iron oxides, and 

is higher on carbided catalysts. The difference was observed in the product 

formation rates, as illustrated in Figures 5.7 and 5.8. 

 Olefin to paraffin ratio 5.3.4

The olefin to paraffin ratio (O/P ratio) as a function of time on stream (TOS) was 

calculated and the results are depicted in Figure 5.11 (a-d). As a general trend, 

reducing with CO yielded the most active catalyst in terms of olefin production. A 

common and intriguing feature is that all differently reduced catalysts seemed to 

attain stability after about 150 hours on stream. Anomalous behaviour was 

observed for the CO reduced catalyst for C4 hydrocarbons where the magnitude of 

the ratio was out of line with the results for the other hydrocarbons. 
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Figure 5.11: Effect of reducing agents (syngas, hydrogen and carbon monoxide) on the olefin to paraffin ratio as a function of 

time on stream: (a) for (O2/P2), (b) for (O3/P3), (c) for (O4/P4) and (d) for (O5/P5) under the following conditions: 

250°C, 1 bar gauge, 60 mL/min and mass of catalyst 1 g. O: olefin, P: paraffin and carbon number n: 2,3,4 and 5. 5. 
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5.4 Discussion 

The different level of activity of the catalysts was investigated in this study. From Figure 

5.1, it is clear that the initial activities (over 150 hours) of these catalysts differ. The 

Reac-Syn (syngas reduced one) had the highest initial activity and the Reac-H2 the 

lowest. Based on the thermodynamic analysis of the phase changes during reduction 

with H2, CO, and syngas, and the results reported in the literature, the H2 reduced Fe 

catalyst will in the first instance form mainly Fe3O4 and alpha-Fe (D. B. Bukur et al. 

1995; Shroff et al. 1995; van der Kraan, Boellaard, and Crajé 1993; De Smit E. and 

Weckhuysen B.M. 2008). The activity of the Fe3O4 and ɑ-Fe is reported lower when 

compared to FexCy. Therefore, a lower initial activity for the Reac-H2 is understandable 

as the extent of reaction increase as the catalyst is being carburised. When syngas and 

CO are used during the reduction stage, FexCy will form predominantly (Rochet et al. 

2011; Pham et al. 2015; Dumesic and Topsøe 1977). The presence of H2 in the syngas 

tends to facilitate the formation of Fe3O4 due to its comparatively high diffusivity value 

and the carburisation of F3O4 by CO to iron carbides is a thermodynamically favoured 

process (Hallac et al. 2015; Mogalicherla and Elbashir 2011; A. Zamaniyan et al. 2013; 

Lualdi et al. 2011b). However, FexCy will be the main active phases for the CO and 

syngas reduced catalyst in this study. In this study, the high initial activity of the CO and 

syngas reduced catalysts can be attributed due to the FexCy formed during the 

reduction stage.  It is also evident from the results that the activity of the CO reduced 

catalyst was slightly lower than the syngas reduced one. This may be attributed to two 

possible reasons. The first reason for the low activity may be that the number of active 

sites and the activity of these active sites may be different, and hence the CO reduced 

catalyst gave rise to a lower activity. The second possible explanation is linked to the 

effect of the product on the activity of the catalysts, should the intrinsic activities of these 

two reduced catalysts be close to each other. The FT reaction has taken place during 

the reduction stage when syngas was used. At this stage, presumably both long chain 

hydrocarbons and water built up slowly on the catalyst to form a layer or coating. A 

different composition of such a liquid layer could decide the overall activity of the 

catalyst, due to the slowing down of transportation of the reactants and the products.  
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Although the three catalysts presented different initial activity, the reaction rates of the 

three were close to each other after attaining the steady state. There are two important 

aspects to note for such change, firstly, the change itself, and secondly the levels where 

the rates are after the change. The change itself is arguably linked to the active phase 

change of the catalyst or the mass transfer limitation due to build-up of the products (Lu 

et al. 2011). Lu et al. [2011] reported that the liquid deposition decreased the reaction 

rate of a TiO2 supported cobalt catalyst to a large extent. Their flushing experiments 

prove that once the liquid layer has been removed from the catalyst surface, the activity 

of the catalyst could be returned to that when the catalyst was freshly loaded (the initial 

activity). The different active sites could have resulted in similar reaction rates. This 

suggests that the limitation for the reaction rate lies in some common factor. The 

researcher believes this common limitation may be because of the mass transfer of the 

reactants.  

The difference in the product selectivity supports this point of view. Although the 

reaction rates are similar, the product selectivities are quite different as shown in Table 

5.1. The Reac-CO gives the highest selectivities to olefins and the Reac-H2 gives the 

least. Once the operating conditions are the same and the partial pressures of the 

reactants are close enough, the different product selectivities are mainly caused by the 

different active sites of the Fe catalyst. FexCy has been reported as the most active 

phase in the Fe catalyst and it promotes the formation of olefins. This matches the 

results obtained in the present work. The Reac-CO obtained FexCy as the predominant 

active phase after reduction, and the Reac-H2 obtained the least active phases. 

Therefore, one should expect a higher reaction rate for the Reac-CO and a lower rate 

for the Reac-H2. This is true at the initial stage but not true when the initial stage has 

passed (as has been discussed above). This therefore suggests that the limitation for 

the reaction rate is because of the mass transfer limitation.  

It is also noticeable that the formation rates of paraffins on these differently reduced Fe 

catalysts have shown an interesting behaviour. For C2, C3, and C5 paraffins, the Reac-

CO and Reac-syn have given similar results and the Reac-H2 resulted in a higher rate. 
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This suggests that the Reac-H2 (with Fe3O4 and α-Fe) promoted the hydrogenation of 

the primary products, olefins. For the C4H10, these three catalysts have given entirely 

different results when compared to the other paraffins. Although the Reac-H2 reduced 

catalyst still gives the highest activity to C4H10, it is much higher than the other two 

catalysts. This is quite different from the other paraffins. In the meantime the syngas 

reduced one also gives a much higher C4H10. The researcher is not sure about these 

abnormal results, but they may suggest that the formation of C4 is promoted by the 

combination of two C2, especially on the H2 reduced Fe catalyst.  

When one looks at the results as a whole it appears surprising that after so long (a 1000 

hours) that the three catalysts show different selectivity behaviour. We know that the 

syngas is active as a reducing agent and irrespective of the initial reduction method all 

the catalysts are in contact with this same reducing gas. Thus after the initial period 

(about 150 hours) when different slow solid state reactions might be taking place, the 

overall reaction rates become constant and one might surmise that all the solids are the 

same. Clearly this is not the case and one might ask why.  

Now it is known (Lu et al (2011)) that a surface layer of liquid slowly builds up during a 

period of the order of 150 hours and because the rates are different during this period 

the liquid layer formed may be different in the three cases. If it is this liquid layer in 

contact with the solid surface that to some extent determines the solid composition one 

might surmise that the three systems maintain their different liquid compositions and 

hence different solid compositions and hence different selectivities. 

It is important to note that the catalyst used in this work is a commercial catalyst with the 

right dimensions to be used for fixed reactors and the operation conditions chosen are 

to be used in the low pressure FTS in a waste to liquid processes. Therefore, the results 

obtained in this work are of great importance for the design of such processes. 
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5.5 Conclusion 

When running three reactors under the same FT conditions for a 1000 h, the results 

obtained indicate that the initial use of different reducing agents (Syngas, CO and H2) 

does not have a large impact on the long term catalyst activity but does have an impact 

on long term selectivity. The experimental data demonstrated that the three reactors 

stabilize to about the same overall conversion of CO (reactivity) after about 150 hours; 

however, somewhat surprisingly, the selectivities in the three reactors are not the same.  

Methane selectivity showed the following trend, Carbon monoxide reduced > Syngas 

reduced > Hydrogen reduced. Methane selectivities of hydrogen reduced catalysts were 

significantly lower than those on the CO and syngas activated catalysts. Reducing with 

CO gives much more olefins than reducing with syngas and H2. The paraffin production 

rates are much more complicated with in particular C4 being particularly anomalous for 

the H2 reduced catalyst.  

Thus in conclusion while the rates after the initial period for all three reduction methods 

are essentially the same, the selectivity behaviour of the differently reduced catalysts 

are different and there does not seem to be a simple explanation for the behaviour. In 

some way the different initial behaviour seems to be carried over into the selectivity but 

not the overall rate.   
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CHAPTER 6 

RESPONSE OF GAS PHASE FT PRODUCTS OF DIFFERENTLY 

REDUCED CATALYSTS TO CHANGES IN OPERATING CONDITIONS 

The data contained in this chapter are written in a paper format and the manuscript is ready for 

submission 

Abstract 

The effect of operating conditions on Fischer Tropsch synthesis (FTS) on product 

selectivity of Gas Phase products was investigated in a fixed bed reactor with an 

industrial iron-based catalyst FeCuKSiO2 under reaction times on stream (TOS) 

representative of industrial practice. The study followed the experimental plan discussed 

in Chapter 4 and the results were analysed based on how the three differently reduced 

catalysts responded to pressure and gas flow rate changes. This chapter focuses on the 

response to changes in process conditions of the Fe-based catalyst initially reduced 

with different reducing gases. The responses were compared in terms of the 

conversion, the product selectivities and the ratios of main products (Olefin/paraffin 

ratio). Experiments were performed over a range of different reaction conditions, vis a 

vis three gas flow rates of 60, 30 and 15 mL/min, and three pressure ranges of 1, 10, 

and 20 bar based on one synthesis gas feed composition (H2/CO = 2) and temperature 

of 250 °C.  

These changes have an impact on the design of the small-scale biomass/waste to liquid 

process. When such a process is designed to run at low pressure (such as 1 bar(gauge) 

in this study), a higher conversion is desired to utilise the feedstock as much as it can. 

Therefore, a low flow rate needs be implemented. However, the experimental results 

obtained in this work suggest that the combination of a high conversion with low flow 

rate actually hinders the production of liquid products, therefore the carbon efficiency for 

the process will be very low. This will have a great impact on the economic viability for 

the biomass/waste to liquid projects that could be run at low pressure 
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6.1 Introduction  

Fischer Tropsch synthesis (FTS) is a well-known chemical reaction in which synthesis 

gas is converted to liquid fuels over a metal catalyst (Dry 1983; Maitlis & de Klerk 2013). 

Several transition metals, such as cobalt, iron, nickel and ruthenium, can be used in the 

FT process (Muleja et al. 2016). FTS plays a vital and central role in addressing the 

need for transportation fuels, and the technology has found industrial applications in 

most parts of the world including Germany, South Africa, China and the Netherlands.   

FT products are mainly linear hydrocarbons, predominately alkenes and alkanes (Maitlis 

& de Klerk 2013). The hydrocarbons are distributed between the vapour and liquid 

phases, with the lighter components preferentially concentrating in the vapour while the 

heavy oils and waxes preferentially concentrate in the liquid phase (Muleja et al. 2016). 

Various products such as methane (C1), petroleum gas (C2- C4), gasoline (C5- C11), 

diesel (C12- C20), and wax (C21+) are formed from the process. The wax can be further 

processed by cracking to produce gasoline and diesel (Rauch et al. 2013).  

Generally, the operating conditions of the FT process tend to influence these product 

distributions (Farias, Sales & Fernandes 2008a). For instance, pressure, flow rate and 

temperature are the main factors affecting the product selectivity and the CO conversion 

in FT synthesis. Recently, several publications have dealt in detail with the influences of 

these operating conditions on FT activity and selectivity (Atashi et al. 2015; Farias et al. 

2008a, 2008b; Todic et al. 2016). Furthermore, studies on the  effects of pressure and 

flow rate have also shown that total pressure has a positive effect on FTS product 

distribution (Dalai & Davis 2008; Todic et al. 2016a). 

The concept of varying parameters in FT is not new. In early studies, researchers have 

periodically reported noticeable beneficial effects of varying operating condition to yield 

a preferred product distribution (Atashi et al. 2015; Dinse et al. 2012; Farias et al. 2008; 

Farias et al. 2007). Studies on cobalt based catalyst (Co/SiO2) also revealed that the 

product distributions formed during FTS depend on the reaction pressure and promotors 

such as manganese (Dinse et al. 2012). 
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Bukur and Lang (1999) investigated the effect of both pressure and gas space velocity 

in a stirred tank slurry reactor using precipitated iron catalyst (FeCuKSiO2), and reported 

that catalyst productivity was increased by operating at higher synthesis pressure while 

maintaining a constant contact time in the reactor. In the same study, Bukur and Lang 

(1999 tested the catalyst at 15 bar (1.5 MPa) and obtained syngas conversion of 76–

80%, while further increase in pressure to 22 bar (2.2 Mpa) resulted in the decrease in 

syngas conversion down to 68%. Generally, most of the FT operations reported in the 

literature are carried out between 5 and 50 days in lab-scale reactors, and therefore 

may only address short-term effects of these parameter changes on the response of the 

catalyst. The pressure and/or the gas flow rate can be altered in order to counteract the 

effect of catalyst deactivation, which tends to reduce the FT product yield. In industrial 

operations catalyst deactivation, which happens during the first 6–18 months of 

operation, can cause 30–60% loss in catalyst activity in low-temperature Fischer 

Tropsch synthesis (LTFTS) (Rytter and Holmen 2015).  

On the other hand, large amounts of money and time are usually consumed during 

spent catalyst replacement in an FT operation plant. Such disturbances are inevitable 

during operation since the catalyst deactivates, and ways to maintain the yield at 

reasonable cost to enable the plant run continuously for a long time may be required. 

The prolonged operation ensures that maximum achievable profit can be obtained. A 

systematic control system can be used by altering the operating parameters to maintain 

the conversion (product formation). The choice of the right parameters, either individual 

or in combinations could maintain the yield, and the need to replace the catalyst can be 

delayed. Fortunately, it appears possible to reactivate the catalyst to approach the level 

(in terms of activity) of a freshly equilibrated catalyst by changing the parameters. In this 

study, the FTS reaction was studied over a long period of time (more than 19 months), 

during which a number of operating condition changes were made and catalyst 

deactivation was observed. The need for the above mentioned properties has led to this 

research to ascertain how differently reduced catalysts after operating for an extended 

period respond to operational condition changes. 
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6.2 Experimental work 

The experimental conditions selected consisted of reducing the catalyst (FeCuKSiO2) at 

low temperature (250 oC) and atmospheric pressure. The FT operating conditions were 

initially kept mild, reactor pressure of 1 bar gauge, temperature of 250 oC and syngas 

gas flow rate of 60 mL(NTP)/min for about 4000 hours of time on stream. For this 

lengthy run the catalyst showed a significant decrease in conversion. Thereafter various 

changes were made to the FT reactor parameters, such as pressure, gas flow rate and 

catalyst deactivation. These variations in operating conditions had an effect on the 

conversion. The operating conditions implemented at different time on streams (TOS) 

for three differently reduced reactors are depicted in Table 6.1. 
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Table 6.1: Operating conditions implemented at different time on streams 

(TOS) for three differently reduced reactors 

 

Typically, the three differently reduced catalysts were subjected to a series of parameter 

variations to enable the investigator to compare the catalyst response after a long time 

on stream. A series of long-term FTS runs (about 14 200 hours) were conducted. At 

various times as indicated in Table 6.1 flow rates from 15 mL(NTP)/min to 30 

mL(NTP)/min and 60 mL(NTP)/min and then pressures from 1 to 10 and finally 20 bar 

gauge were tested. The aim was to test the responses of the catalyst initially reduced 

with different gases, to changes in the operating conditions. The results were part of a 

series of tests meant to identify the best reducing agent in terms of long term catalyst 

activity, stability and resistance to deactivation. 

Reac-Syn

Flowrate (NTP)mL/min Pressure (bar) Temperature (°C) From TO

60 1 250 0.00 1100.00

60 1 250 5791.72 6061.57

30 1 250 6089.66 6277.58

15 1 250 6284.49 6816.84

60 10 250 13676.04 13982.51

60 20 250 13987.08 14340.29

Reac-H2

Flowrate (NTP)mL/min Pressure (bar) Temperature (°C) From TO

60 1 250 0.00 1143.66

60 1 250 5195.29 5889.17

30 1 250 5901.12 6051.85

15 1 250 6113.13 6630.27

60 10 250 13724.55 13979.95

60 20 250 13984.70 14132.18

Reac-CO

Flowrate (NTP)mL/min Pressure (bar) Temperature (°C) From TO

60 1 250 0.00 1019.00

60 1 250 5138.57 5355.36

30 1 250 5402.24 5567.91

15 1 250 5577.81 6084.79

60 10 250 13112.81 13382.26

60 20 250 13399.95 13636.04

Range TOS (hrs)

Range TOS (hrs)

Range TOS (hrs)
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6.3 Results  

 Effect of flow rate on the CO conversion 6.3.1

The effect of varying syngas flow rate on FTS catalytic activity was investigated. The 

CO conversion was plotted against time on stream (TOS) for different gas flow rates, 

namely 15, 30 and 60 mL(NTP)/min at a constant pressure of 1 bar gauge. The results 

are presented in Figure 6.1. The data show that the CO conversion increases with 

decreasing syngas flow rate from 60, 30 and 15 mL(NTP)/min at a constant reactor 

temperature of 250 ºC and pressure of 1 bar gauge.  

The three differently reduced catalysts responded positively to the effect of reducing 

flow rate. However, the responses were of different magnitudes, with Reac-Syn showing 

a highest, a 2.31-fold increase from 60 to 30 mL(NTP)/min, followed by Reac-H2 with a 

1.77-fold increase, and lastly Reac-CO with a 1.69-fold increase in terms of conversion. 

A further halving in flow rate did not yield quite as much difference in the conversion 

(see Figure 6.1 and Table 6.2). From 30 to 15 mL(NTP)/min the conversion of Reac-

Syn (the syngas reduced catalyst) increased from 9.86% to 17.20% (which is a 1.74-

fold increase), Reac-H2 (hydrogen reduced) increased from 12.35% to 20.97 % (a 1.70-

fold increase) and lastly Reac-CO (carbon monoxide reduced) increased from 7.34% to 

10.18 % (which is a 1.39-fold increase).  
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Figure 6.1: Conversions of differently reduced reactors with changing flow rate: (a) for 

syngas reduced (Reac-Syn); (b) for hydrogen reduced (Reac-H2) and (c) 

carbon monoxide reduced (Reac-CO). Reactor temperature was kept at 

250 °C and reactor pressure at 1 bar gauge. 
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Table 6.2: Conversion averages for the three reactors at different flow rates 

 

  
CO conversion (%) 

Flow Rate (mL/min Reac-Syn Reac-H2 Reac-CO 

  

60 6.03 6.99 4.36 

30 9.86 12.35 7.34 

15 17.20 20.97 10.18 

 

The results listed in Table 6.2 were obtained after 5 000 hours TOS, compared with the 

reaction rates presented in chapter 5 (for TOS of 1000 hours) where the CO 

consumption rates were higher for Reac-Syn and Reac-CO. It can be seen that the 

Reac-H2 has shown the highest reaction rate when the catalyst has been used for a 

long time (for more than 5000 hours in this study). This could be due to the different 

deactivation behaviour for the different active phases contained in these three catalysts 

caused by the reduction conditions (Collett & McGregor 2016; Sartipi et al. 2014).  

Thus one can see that the performance of the Reac-Syn reactor in terms of conversion 

is better than the Reac-CO but worse than the Reac-H2 as shown in Table 6.1. For long 

time synthesis run, the activity of the Reac-H2 is comparatively better in terms of 

performance. This suggests that H2 in the syngas has helped the catalyst to maintain a 

higher activity when compared to the catalyst initially reduced by CO only. 

The CO consumption rates of differently reduced reactors with changing flow rate: (a) 

for syngas reduced (Reac-Syn); (b) for hydrogen reduced (Reac-H2) and (c) carbon 

monoxide reduced (Reac-CO) are depicted in Figure 6.2. It can be seen that when the 

conversion is less than about 10% the reaction rates remain approximately the same as 

the flow rate is decreased from 60 to 30 mL(NTP)/min, but once the conversion gets 

above 10% the further decrease in flow rate from 30 to 15 mL(NTP)/min has a more 
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significant effect on the conversion. This is possibly because the average reactant gas 

composition in the reactor is now effectively smaller. 

 

Figure 6.2: CO consumption rates of differently reduced reactors with changing flow 

rate: (a) for syngas reduced (Reac-Syn); (b) for hydrogen reduced (Reac-

H2) and (c) carbon monoxide reduced (Reac-CO). Reactor temperature 

was kept at 250 °C and reactor pressure at 1 bar gauge. 
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 Effect of flow rate on the selectivity to the products 6.3.2

The effect of flow rate on the selectivity to the FT hydrocarbons was determined and the 

results are shown in Table 6.3 (a-c) for the light olefins, light paraffins and for both the 

light hydrocarbons and the heavy hydrocarbons for all three reactors: Reac-Syn 

(reduced with syngas), Reac-H2 (reduced with hydrogen) and Reac-CO (reduced with 

carbon monoxide). These results are only shown as averages in the tables rather than 

graphs as in Figures 6.1 and 6.2, as it can be seen that the averages are a simple and 

very good indicator of the results. 

The selectivity to paraffins was observed to increase with the decrease in flow rate, 

while the selectivity towards olefins followed the same pattern except for the 

dicreapancies of C2 olefin for  Reac-Syn and Reac-H2. In general, the lighter 

hydrocarbons increased in selectivity with decrease in the flow rate whereas the 

selectivity towards C5+ (heavy hydrocarbons) decreased with decreasing flow rates (see 

Tables 6.3). As with the conversion results for the flowrates from 60 to 30 mL(NTP)/min 

the change was relatively small compared to when the flowrates changed from 30 to 15 

mL(NTP)/min.  Therefore, the lower the  syngas flow for the lower amount of the higher 

than C5+ products formed. Clearly residence time, possibly because of changes in 

conversion, has an effect on the product selectivity. The results of the effect of flow rate 

on the the selectivity to C5+ for all three reactors are plotted in Figure 6.3.  

It is worthwile to point out that the selectivity to the C5+ products dropped sharply when 

the the gas flow rate decreased to low values (from 30 to 15 mL(NTP)/min). This 

potentially has a big impact on the design of the small-scale biomass/waste to liquid 

process. When such a process is designed to run at low pressure (such as 1 bar(gauge) 

in this study), a higher conversion is desired to utilise the feedstock as much as . 

Therefore, a low flow rate needs be implemented. However, the experimental results 

obtained in this work suggest that the combination of a high conversion with low flow 

rate actually hinders the production of liquid products, therefore the carbon efficiency for 

the process will be very low. This could have a large impact on the economic viablity of 

the biomass/waste to liquid projects that is run at low pressure.  
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Table 6.3: Component selectivities at different flow rates (a) Olefin Selectivity (b) Paraffin Selectivity (c) 

Olefin + Paraffin and C5+ Selectivity 

 

(a) Olefin Selectivity (%) 

Component C2H4 C3H6 C4H8 C5H10 

Reactor Reac-Syn Reac-H2 Reac-CO 
Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO 

60 mL/min 4.92 4.23 5.03 9.84 6.87 6.52 7.69 6.09 5.03 6.51 5.14 3.81 

30 mL/min 3.78 4.25 5.64 9.82 8.16 8.36 7.50 7.15 6.30 6.57 6.28 4.75 

15 mL/min 3.20 3.47 6.59 10.14 9.28 11.69 7.34 7.40 8.44 6.47 6.46 6.45 

 

(b) Paraffin Selectivity (%) 

Component C2H6 C3H8 C4H10 C5H12 

Reactor 
Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO 

60 mL/min 1.15 0.45 0.41 0.51 0.24 0.18 0.42 0.76 0.18 0.83 0.33 0.22 

30 mL/min 1.43 0.75 0.72 0.59 0.32 0.31 0.48 0.99 0.23 1.17 0.59 0.34 

15 mL/min 1.68 1.29 1.47 0.75 0.51 0.45 0.56 1.39 0.34 1.71 1.15 0.78 

 

 

(c )

Component

Reactor Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO Reac-Syn Reac-H2 Reac-CO

60 mL/min 6.07 4.68 5.45 10.35 7.11 6.70 8.11 6.85 5.21 7.33 5.48 4.03 42.05 59.77 57.82

30 mL/min 5.22 5.00 6.36 10.41 8.48 8.67 7.98 8.13 6.53 7.74 6.87 5.08 34.15 45.38 43.39

15 mL/min 4.88 4.76 8.06 10.89 9.79 12.14 7.91 8.79 8.78 8.18 7.61 7.23 20.84 29.35 7.66

Hydrocarbons Selectivity (%)

C2 C3 C4 C5 C5+
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Figure 6.3: Selectivity to heavy hydrocarbons (C5+) for (a) Reac-Syn (syngas 

reduced, (b) Reac-H2 (hydrogen reduced), and (c) Reac-CO (Carbon 

monoxide reduced) under FT operating conditions: 250 °C, 1 bar 

gauge and various flow rates (15, 30 and 60 mL(NTP)/min) 
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The effect of flow rate on the selectivity to carbon dioxide and methane was also 

determined for all three reactors. The data are plotted against TOS and presented 

in Figure 6.4 (a) for Reac-Syn (syngas reduced), (b) for Reac-H2 (hydrogen 

reduced), and (c) for Reac-CO (carbon monoxide reduced reactor). The results 

show that the selectivity to CO2 was observed to increase with decrease in flow 

rate, while the selectivity towards methane remained virtually unchanged. 

The CO2 selectivity for the syngas and CO reduced catalysts increased to around 

65% when the flow rate was decreased from 30 to 15 mL(NTP)/min, and that of 

Reac-H2 was increased to around 40%. The Reac-H2 reduced Fe has shown a 

lower selectivity to CO2 when compared to the Reac-Syn and Reac-CO reactors. 

More importantly, when the operating pressure is low (1 bar(gauge) in this study), 

the CO2 selectivity would increase to unacceptable levels if there was an attempt 

to increase the conversion of the reactants by operating the reactor at a low flow 

rate. This result and the result above in the selectivity to C5+ products, strongly 

suggest that a combination of low pressure, low flow rate and a higher conversion 

is definitely not the design region for the biomass/waste to liquid processes. 

What might be happening as the residence time is increased (flowrate is lowered) 

is that the reaction extent to FT increases but this means more water and thus the 

WGS reaction increases even more than the the FT reaction and the main product 

is now CO2. This is clearly undesireable as we are turning feed carbon into a very 

undesireable product. If this assumption is correct then as one wants a high 

conversion of the CO to useful product it would probably be best to have a few 

reactors in series with intermediate knockout of the water. This should keep the 

average water concentration in the reactors lower and thus minimise the overall 

extent of the Water Gas Shift reaction. 
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Figure 6.4: Effect of flow rate on the selectivity to CO2 and CH4 under FT 

conditions of 250 oC, 1 bar gauge and various flow rate values of 15, 

30 and 60 mL(NTP)/min 
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 Effect of flow rate on the olefin to paraffin ratios 6.3.3

The olefin and paraffin ratios for the light hydrocarbons (C2 to C5) are plotted as a 

function of TOS in Figure 6.5 (a) to (c) for the Reac-Syn, Reac-H2 and Reac-CO 

reactors, respectively. The O/P ratio decreases with carbon number in all the 

systems, and this trend is also consistent with findings in the literature (Shi & 

Davis, 2005). The probability of a secondary reaction for olefins is said to increase 

with carbon number (Kuipers et al. 1996) and this could possibly explain the result. 

As said before, it is clear from these ratios that the CO reduced catalyst makes 

more olefin and has a much higher O/P than the others. Clearly changing the flow 

rate does not have a big effect on the O/P ratios for all the catalysts using the 

different reduction methods. 

For reasons that are not clear, the C4 O/P remains anomalously low for the 

hydrogen reduced catalyst. This is a very strange result and may bear further 

scrutiny at a later stage as it may give clues to what is happening on FT catalysts. 

Perhaps feeding in some n-butene possibly deuterated, might be a useful 

experiment to perform? 
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Figure 6.5: Effects of changing flow rates to olefin to paraffin ratio for (a) Reac-

Syn, (b) for Reac-H2, and (c) for Reac-CO under FT conditions of 

250 oC, 1 bar gauge and various flow rate values 15, 30 and 60 

mL(NTP)/min. 
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 Effect of pressure on the CO conversion 6.3.4

The CO conversion was measured as a function of time on stream (TOS) at 

different reactor operating pressures (1, 10 and 20 bar (gauge)) while keeping the 

flow rate (60 mL(NTP)/min) and temperature (250 oC) constant. The results are 

presented in Figure 6.6 (a) for the Reac-Syn, Figure 6.6 (b) for the Reac-H2 and 

Figure 6.6 (c) for the Reac-CO. Figure 6.6 shows that upon increasing the total 

pressure from 1 bar to 10 bar, the CO conversion of the three catalysts, syngas 

reduced (Reac-Syn), hydrogen reduced (Reac-H2), and carbon monoxide reduced 

(in Reac-CO), increased 2.54-fold, 3.81-fold and 5.39-fold, respectively. When the 

reactor pressure was further increased from 10 to 20 bar (gauge), the CO 

conversion increased 2.17-fold, 1.56-fold and 1.75-fold for the syngas, hydrogen 

and carbon monoxide reduced reactors, respectively (see Table 6.4).  

These data are interesting because the iron catalyst was loaded in these reactors 

(Reac-Syn, Reac-H2 and Reac-CO) and FT was carried out for over 12 000 hours 

under essentially similar conditions before the effect of pressure was tested. By 

this time after various experimental changes were made to the FT reactors the 

catalyst was already deactivated by more than 50% from the initial activity. The 

results in Figure 6.6 are useful as the catalyst activity still after more than 500 

days seemed to be correlated to the reducing gas which was initially used in the 

catalyst reduction. The performance in terms of activity followed these trends: 

Reac-Syn > Reac-CO > Reac-H2. This seems to suggest that the different 

methods of initial reduction gave rise to permanent changes to the catalysts that 

were not affected by subsequent FT reaction conditions. 
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Table 6.4: Summary of averaged conversions for a given TOS range 

 

 

Reac-Syn

Flowrate (NTP)mL/min Pressure (bar) Temperature (°C) From TO % Conversion

60 1 250 12168.03 12377.32 10.00

60 10 250 13676.04 13982.51 25.39

60 20 250 13987.08 14340.29 55.07

Reac-H2

Flowrate (NTP)mL/min Pressure (bar) Temperature (°C) From TO % Conversion

60 1 250 12861.45 13116.80 9.31

60 10 250 13724.55 13979.95 35.42

60 20 250 13984.70 14132.18 55.24

Reac-CO

Flowrate (NTP)mL/min Pressure (bar) Temperature (°C) From TO % Conversion

60 1 250 11908.21 11965.41 4.285

60 10 250 13112.81 13382.26 23.09

60 20 250 13399.95 13636.04 40.40

Range TOS (hrs)

Range TOS (hrs)

Range TOS (hrs)
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Figure 6.6: Effect of pressure on the CO conversion at various pressures: 1, 10 

and 20 bar gauge while keeping the temperature at 250 oC, flow rate 

at 60 mL(NTP)/min, feed ratio H2/CO = 2 and 1 g mass of the iron 

catalyst loaded in different reactors; (a) for Reac-Syn , (b) for Reac-

H2 and (c) for Reac-CO for  TOS between 12000- 13 800 hours 

The CO conversion increased with increasing pressure for all the differently 

reduced catalysts although the magnitude of increase was different. Most notably, 
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the increase in CO conversion from 1 to 10 bar had a comparatively higher 

magnitude than the increase from 10 to 20 bar. As shown by averaged values in 

Table 6.4, the CO conversion increased 2.54-fold, 3.81-fold and 5.34-fold for 

Reac-Syn, Reac-H2 and Reac-CO reduced reactors respectively from 1 to 10 bar 

gauge. From 10 to 20 bar the Reac-Syn had the largest increase of 2.17-fold 

followed by the Reac-CO reduced with a 1.75-fold and lastly Reac-H2 with a 1.56-

fold increase. 

The graphs of rates in Figure 6.7 depict the same pattern as the conversion, the 

rate of CO consumption increased with pressure. 
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Figure 6.7: Effect of pressure on the CO rates at various pressures: 1, 10 and 20 

bar gauge while keeping the temperature at 250 oC, flow rate at 60 

mL(NTP)/min, feed ratio H2/CO = 2 and 1 g mass of the iron catalyst 

loaded in different reactors; (a) for Reac-Syn , (b) for Reac-H2 and 

(c) for Reac-CO for  TOS between 12000- 13 800 hours 
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The effect of increasing pressure may be used to counteract the effect of catalyst 

deactivation by increasing the conversion, thus reducing the frequency of 

expensive regeneration of the catalyst. When the catalyst is reduced with different 

gases, the pathway of reduction may differ. Therefore, the kinetics of an Fe 

catalyst seems to depend on this initial treatment which possibly results in different 

active phases (Hallac et al. 2015; Mousavi et al. 2015; Nakhaei Pour et al. 2014; 

Okeson et al. 2016).  

 Effect of pressure on the selectivity to the products 6.3.5

The effect of pressure on the selectivity to the light products (C2 to C5) was 

determined, and the results are depicted in Figure 6.8 (a) for carbon number 2, 

Figure 6.8 (b) for carbon number 3, Figure 6.8 (c) for carbon number 4 and Figure 

6.11 (d) for carbon number 5 for all three reactors: Reac-Syn reduced with syngas, 

Reac-H2 reduced with hydrogen and Reac-CO reduced with carbon monoxide.  

Figure 6.8 (a) shows that the selectivity to C2 olefins decreased with the increase 

in the FT reactor pressure from 1 bar (gauge) to 10 bar (gauge) and from 10 bar 

(gauge) to 20 bar gauge for all three reactors, whereas the selectivity to C2 

paraffins increased with rise in the pressure. In Figure 6.8 (b), similar trends were 

observed for the selectivity to carbon number 3 hydrocarbons, with the exception 

noticed at 1 bar for the hydrogen reduced which yielded low C3 olefin selectivity. 

For the C3 paraffins, the selectivity increased with increasing pressure for all the 

differently reduced catalysts.  

Figure 6.8 (c) shows the selectivity to butene and butane. Upon increasing the 

total pressure from 1 bar to 10 bar, the syngas reduced and the hydrogen reduced 

showed an increase in the C4 olefin selectivity (from 4.30% to 5.74% and 2.73% to 

4.63%, respectively) with further increase of pressure to 20 bar gauge resulting in 

a noticeable decrease in selectivity to 3.94 % and 4.27 %, respectively. The C4 

paraffin selectivity maintained the incremental trend as with the C3 and C2 

paraffins. 
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In Figure 6.8 (d), the trends of the olefin selectivity observed for the syngas and 

hydrogen reduced reactors for C5 were similar to those for the individual C4, and 

C3 hydrogen reduced. For both reactors, the selectivity to C5 increased when the 

reactor pressure was adjusted from 1 bar to 10 bar and then decreased when 

pressure was further increased to 20 bar, whereas the selectivity to paraffins 

increased with increasing total pressure. 

For all the light hydrocarbons reported in this chapter, the Reac-CO reactor when 

compared to the Reac-Syn and Reac-H2 reactors, always showed a larger scale 

change in terms of selectivity to olefins and paraffins when the operating pressure 

was changed, . This may be due to the difference in the active phases in these 

three differently reduced catalysts. The CO reduced as the thermodynamics 

suggests is believed to have more iron carbides when compared to the other two 

(Sault & Datye 1993; Soled et al. 1990) (see also thermodynamic predictions in 

Chapter 3). It should also be noted that the selectivity to ethane is particularly high 

and to some extent for propane not for butane and a little bit for pentane for the 

syngas reduced catalyst. It is not at all obvious why this might be happening. 

The behaviour noticed was that the selectivity to olefins (C2 and C3) decreasing at 

the highest reactor pressure, while the selectivity to paraffins (C2 and C3) 

increasing with increasing reactor pressure could be attributed to the 

hydrogenation of olefins to paraffins (Todic et al. 2016b; Yan et al. 2014). In 

general, the results confirm that when the FT reactor pressure is increased, the 

product selectivity is more towards paraffinic products. Paraffinic product means 

more wax product, and this finding agrees with findings proposed by Farias et al. 

(2008b) where it is reported that high pressures (25 to 30 atm) favoured the 

production of waxes, while moderate pressure such as 20 atm showed selectivity 

towards the diesel. 
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Figure 6.8: Comparison of the selectivities to olefins and paraffins at different 

pressures 
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 Effect of pressure on the olefin to paraffin (O/P) ratio 6.3.6

The olefin and paraffin ratios for the light hydrocarbons (C2 to C5) are plotted as a 

function of TOS in Figure 6.9 (a) to (c) for the syngas (Reac-Syn), hydrogen 

(Reac-H2) and carbon monoxide (Reac-CO) reduced reactors, respectively. The 

results show that for all three differently reduced reactors, when the reaction 

pressure was increased, the O/P ratios decreased. However, the extent to which 

this change occurred was more pronounced when the pressure was increased 

from 1 to 10 bars, whereas from 10 to 20 bar the magnitude of the differences was 

not that high.  

The product (O/P) ratios are affected by the increase of the reaction pressure or 

conversion for the three reactors with differently reduced catalysts (Yan et al. 

2014). Figure 6.9 (a) to (c) reveal that at low pressure (1 bar gauge), the product 

distribution is most olefinic. From Figure 6.6 shows that the CO conversion was 

lowest at low pressure (1 bar gauge). It is generally known that at low conversion, 

the FT products are mostly olefinic (Muleja et al. 2016). These results could 

suggest that olefins are the primary product of the FTS in all three systems. On the 

other hand, with increasing pressure (high conversion), the selectivity to paraffins 

increased and the fraction of olefins decreased, but the extent to which this 

change occurred varied. When pressure is increased, the selectivity to olefins 

decreases whereas selectivity to paraffins increases (see Figure 6.8 (a) to (d)). 

When the pressure was at 1 bar(gauge), the H2 and CO reduced catalyst gave 

much higher O/P ratios than the syngas reduced one. Although the syngas 

reduced catalyst gave low O/P ratios, similar to the CO reduced one, both C3 and 

C4 O/P ratios were higher. However, when the operating pressure was increased 

from 1 bar to 10 bar, the O/P ratios for all three reactors decreased. When the 

pressure was increased further to 20 bar(gauge), the O/P ratio levels for the H2 

reduced one remained almost unchanged, whereas the syngas and CO reduced 

ones dropped further, and after dropping the levels were very comparable. These 

results observed in this work have not previously been noted. These differences 

could presumably be attributed to the different active phases in these three 
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different catalysts, as suggested in Chapter 3. Although the catalysts had been 

under the same operating conditions for more than 10000 hours, the selectivity to 

light hydrocarbons was still influenced by the condition of different reducing gases 

applied during the reduction. Dinse et al. (2012) have reported similar findings, 

that is, the O/P ratio of the products decreased with increasing pressure. However, 

in the current study, the data show that the original reducing gases tend to 

influence the O/P ratios at any given pressure.  
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Figure 6.9: Variation of olefin to paraffin ratio with pressure for syngas reduced 

catalyst: (a) to (c) for the syngas, hydrogen and carbon monoxide 

reduced catalysts, respectively 
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 Methane and CO2 production 6.3.7

The effect of pressure on the selectivity to methane and carbon dioxide was also 

measured for all three reactors. The results are displayed in Figure 6.10 (a) for 

Reac-Syn, Figure 6.10 (b) for Reac-H2 and Figure 6.13 (c) Reac-CO. The data 

show that with increasing pressure, CO2 selectivity increases slightly while the CH4 

selectivity remains almost the same, and alkane selectivity increases, while the 

olefin selectivity decreases overall. Statistical models based on experimental data 

by Atashi et al. (2015) are also in agreement with these patterns. 

The CO2 selectivity is a function of the extent of the water gas shift (WGS) 

reaction, and increasing pressure from 1 to 10 bar gave a slight but obvious 

increase in selectivity, whereas from 10 to 20 the magnitude of increase was 

insignificant. The CO2 selectivity increases slightly with pressure for all the 

reactors. Reac-H2 (reduced with hydrogen) showed a slight increase in selectivity 

from 1 to 10 bar gauge from 15.76% to 20.54%, a 1.30-fold increase.  And Reac-

CO gave a 1.23-fold increase in selectivity from 16.89% to 20.70% at the same 

pressure increase. Reac-Syn gave the lowest increase, of a 1.12-fold increase 

(from 16.25% to 18.19%).  

In the previous section on flowrate change, where there was a large increase in 

CO2 selectivity with residence time, it was surmised that this might be due to the 

presence of increased water (increased conversion) and hence more WGS 

activity. However these pressure results do not directly bear this out as there is 

large increase in conversion with increase in pressure and not the same increase 

in CO2 selectivity. It should however be further noted that as the pressure is 

increased the mean residence time is actually decreased. If the WGS activity is to 

some extent equilibrium limited then its activity could be somewhat independent of 

pressure whereas the FT activity could be strongly pressure dependent. This 

might help to explain the apparent discrepancy between the flowrate and the 

pressure results. 
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Figure 6.10: The effect of pressure on CO2 and CH4 selectivity for (a) Reac-Syn 

(syngas reduced), (b) Reac-H2 (hydrogen reduced) and (c) Reac-CO 

(carbon monoxide reduced) under FT conditions: 60 mL(NTP)/mL, 

250 oC pressure from 1 to 10 bar gauge and 10 to 20 bar gauge 
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Changes in methane selectivity with pressure are shown in Figure 6.10. Methane 

selectivity was quite high in all reactors (~ 20 %). As shown in Figure 6.10, 

methane selectivity was to some extent governed by the reducing gases, 

hydrogen reduction giving the lowest percentage selectivity, followed by syngas, 

and lastly carbon monoxide reduced giving highest selectivity. When the pressure 

was increased to 10 and then to 20 bar (gauge), the same selectivity to methane 

for the syngas and hydrogen reduced catalysts was obtained. The Reac-CO 

reactor was more selective to methane throughout the run, demonstrating that 

pretreatment procedure results in significant difference in the catalyst response to. 

This suggests that the iron carbides favoured the formation of methane (Huo et al. 

2009; Pérez De Berti et al. 2016). This prediction is supported based on the 

calculated reaction energies and effective barriers by Huo et al. (2009) using spin-

polarized density functional theory calculations that CH4 formation is more 

favorable on Fe5C2 and Fe2C. Studies done by Pérez De Berti et al. (2016) 

support this observation, those researchers showing clearly that activation with 

pure H2 leads to a catalyst more active and less selective to methane than that 

activated with syngas, and this they attributed to different active phases formed 

with different reduction steps. 

6.4 Discussion 

The effect of pressure on the FT process with iron catalyst reduced with syngas, 

hydrogen and carbon monoxide show that increasing total pressure from 1 bar to 

10 bar and to 20 bar led to an overall decrease in the formation of olefins and an 

increase in the formation of paraffins. The syngas reduced catalyst recorded the 

highest selectivities to C2, C3 and C5 paraffins. The trends observed support the 

assumption of olefins to undergo secondary hydrogenation to paraffins increases 

with increasing pressure (Farias et al. 2008b). The olefin and paraffin selectivities 

were also analysed individually, as illustrated in Figure 6.2. It can be seen that at 

low pressure which results in low CO conversion (due to low reactants partial 

pressures), the selectivity to olefins was higher for all the reactors and the paraffin 

selectivities were lower.  
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On the other hand, the effect of flow rate on the catalyst performance in the FT 

process is discussed below. The product selectivity (either olefinic or paraffinic) is 

a function of the process conditions, such as flow rate, temperature and pressure. 

Decrease in flow rate results in shifts towards the products that are saturated 

(paraffinic products). Several previous authors have described the effect of these 

parameters on the yield and selectivity of the FT process (Atashi et al. 2015; 

Denny & Twigg 1980; Farias et al. 2010; Farias et al. 2007). 

The influence of the flow rate of the synthesis gas on the selectivity has been 

investigated by Dinse et al. (2012), who observed a decrease in the olefin to 

paraffin ratio with increasing conversion. The CO conversion increases with 

decreasing flow rates due to increased residence time. These findings are 

consistent with what is in the literature. The general assumption is that the 

readsorption chances of the ɑ-olefins increase with contact time inside the pores 

(Kuipers et al., 1995). Kuiper et al. (1995) have also shown that paraffin selectivity 

decreases with increasing flow rate. This conclusion was reached after 

investigating four different flow rates (5, 10, 15 and 20 NmL/min). These findings 

support the statement that the olefin/paraffin ratio is not affected by the transport 

limitation only flow rate plays a significant role. The formed paraffins cannot 

undergo a secondary reaction under FT conditions of operation, whereas the 

olefins will undergo hydrogenation or be reinserted into the growing chain, hence 

the decrease in the olefin/paraffin ratio with increased residence time. 

6.5 Conclusion 

Effects of process conditions (reaction pressure and flow rate) on reactant 

consumption and product distribution were studied in a fixed-bed reactor during 

conventional FTS. It was found that olefin content decreased and paraffin 

increased with either increased pressure or decreasing flow rate, whereas 

methane selectivities were essentially independent of reaction conditions. 

Reduction in residence time retarded the secondary reaction that is paraffin 

formation, and reduction in the reactor pressure has the same effect. 
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There were still significant differences in the selectivities of the catalysts reduced 

in different ways after more than 12000 hours of similar operations. This suggests 

that the original reductions of the catalyst caused permanent changes in the 

catalysts. What these might be, are difficult to imagine. 
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CHAPTER 7  

GAS PHASE PRODUCTS FROM FISCHER TROPSCH 

EXPERIMENTS AFTER OXIDATIVE REGENERATION OF IRON 

BASED CATALYSTS 

The material in this chapter has been written in a paper format for submission to the 

Journal of Catalysis.  

 

Abstract 

This chapter reports on the regeneration of iron based catalysts used to convert 

synthesis gas (syngas) to hydrocarbons in a fixed bed reactor operated at a low 

pressure. As described in Chapter 4, the iron catalyst was loaded into three 

separate reactors, and then reduced using three different reducing agents, 

namely, syngas (in Reac-Syn), hydrogen (in Reac-H2) and carbon monoxide (in 

Reac-CO). The conditions in the reactors were kept at a constant temperature of 

250 °C, a flow rate of 60 mL(NTP)/min and a pressure of 1 atm for a period of 48 

hrs. The Fischer Tropsch reactions were then carried out using the reduced 

catalysts and under the same conditions of temperature and gas flow rate, but 

increasing the operating pressure to 1 bar. The activity, selectivity and degree of 

conversion by the catalysts were then measured and compared at different time 

intervals until the catalyst was deactivated. The spent catalysts were then 

regenerated in all the three reactors using syngas as the only reducing agent. 

After the regeneration step, Fischer Tropsch runs were conducted under similar 

conditions as those used before regeneration, and the activity, selectivity of the 

gas phase products and conversion were measured again and compared to the 

performance of the catalyst prior to regeneration. The objective was to investigate 

whether oxidative regeneration restored the catalyst performance to levels 

achieved prior to regeneration. 
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7.1 Introduction 

Fischer Tropsch synthesis (FTS) is a catalysed reaction that converts synthesis 

gas (syngas) to linear hydrocarbons, predominantly alkanes and alkenes. Cobalt 

and iron are the most used metal based catalyst in FTS reactors (Van de 

Loosdrecht et al. 2013; Rauch, Kiennemann, and Sauciuc 2013; de Klerk, Li, and 

Zennaro 2013; Lappas and Heracleous 2010; Van Ommen and Grievink 2014). 

Catalyst deactivation in the Fischer Tropsch reaction has been a topic of industrial 

and academic interest for many years (Polinski et al. 1984; Bartholomew 1984; 

Butt 1984; Moulijn et al. 2001; Istadi et al. 2011a; Hegedus and McCabe 1980; 

Butt 1982; Marafi et al. 2010a). In many cases it is difficult to trace the origin of 

catalyst deactivation. Bartholomew (1984) and Hegedus and McCabe (1980) 

reported that catalyst deactivation is a complex problem where several 

mechanisms contribute to the loss of activity and/or selectivity. 

In Fischer Tropsch synthesis, the progressive deactivation of catalysts is of major 

economic concern, and understanding the stability of catalysts has become as 

essential as controlling their activity and selectivity (Ahn and Bae 2015; Meshkani 

and Rezaei 2015; Brunner et al. 2015; Zheng et al. 2015). For these reasons, it is 

important to understand the catalyst deactivation or loss in selectivity, and to 

investigate possible efficient regenerative solutions. It appears that catalyst 

deactivation is an inevitable phenomenon in the Fischer Tropsch process and the 

results of this mechanism can be delayed and/or reversed during the regeneration 

(Marafi et al. 2010; Van Loosdrecht et al. 2008; Windawi and Katzer 1980).  

The literature on catalyst deactivation categorizes the deactivation process 

according to different types, such as chemical, thermal, and mechanical 

deactivation, and by mechanism, such as poisoning, fouling, thermal degradation, 

vapour formation, vapour–solid and solid–solid reactions, and attrition/crushing 

(Argyle and Bartholomew 2015a). 

The science of catalyst deactivation has received considerable interest from 

scientists, and extensive studies have been published in the form of  books, (Butt 
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1984; Raje et al. 1997; Bogdan et al. 1988; Denny and Twigg 1980; Zhang et al. 

2001),  comprehensive reviews on the subject (Bartholomew 1984; Argyle and 

Bartholomew 2015b; Ferdous and Demirel 2010), and journal articles (Moulijn et 

al. 2001; Hegedus and McCabe 1980; Butt 1982; Raje et al. 1997).  Argyle and 

Bartholomew (2015b)  reported with a more detailed description of the methods for 

renewing deactivated catalysts, that is, cleaning, rejuvenating, and regenerating 

(Argyle and Bartholomew 2015b). However, the focus of this chapter is to 

investigate the regenerability of the iron based catalysts. Argyle and Bartholomew 

(2015b) defined regeneration as a complete restoration of the catalytically active 

materials to bring the catalyst to its original state, or even achieving a higher 

catalytic activity through a series of relatively sophisticated treatments. 

In situ oxidative regenerations of the spent catalyst could be performed after a 

significant decrease in activity. For example, Pennline and Pollack (1986) reported 

on the deactivation and regeneration of FT catalysts in situ using an oxidative 

method. The authors observed that the oxidative regeneration did not succeed in 

returning the catalyst to its initial synthesis activity. Pour and Housaindokht (2013) 

also used the oxidative regeneration of an iron based catalyst with 10% (v/v) 

O2/N2 gas mixture, and reported that although the method was effective, 

the catalyst activity was different from the initial activity of the catalyst. Mikhailova 

et al. (2010) studied the in situ regeneration of 20% Co/Hβ cobalt-zeolite FT 

catalyst, and proposed that the regeneration with hydrogen was most effective at 

400 °C, even though the regenerated catalytic levels were lower than the initial 

values. 

Amongst the different deactivating modes, deactivation by coking seems to be the 

main cause, and has been extensively studied in the literature (Istadi et al. 2011b; 

Vogelaar et al. 2007; Meng et   al. 2007; Lin et al. 2007; Taufiqurrahmi et al.  2010; 

Nogueira et al. 2011). This mode is an important technological and economic 

problem in FT and other petrochemical industries. Studies have shown that 

remedies to counteract catalyst deactivation by coking can be achieved by 

modifying catalyst surface composition, such as the use of polymetallic catalysts 

and/or by manipulation of the reaction environment (Whaley and Veser 2010; 
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Jiménez-García et al. 2010). When the  catalyst activity reaches unacceptable 

limits, the regeneration by oxidative burning off carbon residues in the presence of 

a medium containing oxygen gas is usually carried out (Li and Wu 2014). 

However, Li and Wu pointed out that the burn-off must be carefully controlled to 

avoid overheating which may cause the catalyst to sinter. Therefore, dilution of the 

oxygen with inert gases such as nitrogen or argon may be more appropriate. 

Regeneration has been conducted both in situ and ex situ, and  the operation 

proved to be effective even done for multiple  cycles (Van Loosdrecht et al. 2008; 

Windawi and Katzer 1980).  

The rate of carbonaceous material removal from the spent catalysts during 

medium temperature oxidation was investigated by Lucchini et al. (2016) and 

Xianghai et al. (2001). From the temperature programmed burn-off, the major 

reactions occurring during burn-off are proposed to yield CO2, CO and H2O 

(Yoshimura and Furimsky 1986b). Reactions (7.1) to (7.3) represent the non-

catalytic burn-off, which has been used as a basis for development of models 

predicting temperature rise during early stages of burn-off of spent cracking 

catalysts. 

( ) 2( ) 2( )s g gC O CO                                              (7.1) 

( ) 2( ) ( )

1

2
s g gC O CO                   (7.2) 

2( ) 2( ) 2 ( )

1

2
g g gH O H O                                          (7.3) 

The probability of burn-off increases with increasing surface area, that is, the 

greater the loss of surface area due to coke deposition, the slower the burn-off. 

The rate of deposit removal during burn-off depends on their surface area, and the 

loss of surface area due to coke deposition was observed to reduce the rate of the 

burn-off (Yoshimura and Furimsky 1986a). Massoth and Menon (1969) measured 

the yield of H2O and carbon oxides produced during burn-off experiments, and 

observed that the removal of hydrogen from deposits was more rapid than that of 
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carbon, and the part of deposits that had a high H/C ratio were removed during the 

very first contact with oxygen. It is believed that in the coke distributed on outer 

parts of catalyst particles is converted to oxides first, followed by the coke 

deposited in pores or  before the coke deposited in catalyst pores is removed 

(Yoshimura and Furimsky 1986b). Yoshimura and Furimsky (1986b) proposed that 

the availability of oxygen in the pores may be affected by mass transfer. 

Unfortunately, there is not much information available on the long-term 

performance (≥ 8760 hours or 12 months) of iron catalyst at low pressure and its 

regeneration . Furthermore, most of the literature revealed that the in situ oxidative 

experiments were carried out at high pressure (≥ 10 bar) and temperature (≥ 300 

oC). Therefore, the aim of this chapter is to apply an oxidation-reduction method to 

regenerate the spent iron catalyst, evaluate the regeneration techniques, and 

suggest their applicability as methods of the regenerating an iron catalyst used 

over a long period of time. In addition, this chapter evaluates the in situ 

regeneration of commercial iron based catalysts which had operated for 13 000 

hrs’ time on stream (TOS) at low pressure (1 bar gauge) and medium temperature 

(250 oC) in a fixed bed reactor.  

7.2 Materials and methods 

The iron catalyst was acquired commercially, and contained Fe, Cu and K 

supported on silica. The catalyst was characterized for physical properties, and the 

results are depicted in Table 7.1. 
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Table 7.1: BET results of the iron catalyst 

 

Surface Area Values  

Single point surface area at P/Po = 0.199: 148.404 m²/g 

BET Surface Area: 153.521 m²/g 

BJH Adsorption cumulative surface area of pores    

between 1.7 nm and 300.0 nm diameter: 160.259 m²/g 

BJH Desorption cumulative surface area of pores    

between 1.7 nm and 300.0 nm diameter: 192.719 m²/g 

Pore Volume   

Single point adsorption total pore volume of pores    

less than 447.83 nm diameter at P/Po = 0.996: 0.416 cm³/g 

BJH Adsorption cumulative volume of pores    

between 1.7000 nm and 300.0000 nm diameter: 0.437 cm³/g 

BJH Desorption cumulative volume of pores    

between 1.7 nm and 300.0 nm diameter: 0.454 cm³/g 

Pore Size   

Adsorption average pore width (4V/A by BET): 10.828 nm 

BJH Adsorption average pore diameter (4V/A): 10.918 nm 

BJH Desorption average pore diameter (4V/A): 9.4310 nm 
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7.3 Fischer Tropsch synthesis 

Fischer Tropsch synthesis experiments were conducted according to the 

experimental procedure of Chapter 4. Three fixed bed reactors were each loaded 

(in the middle of the reactor) with 1 gram of a commercial iron catalyst. The 

catalyst was reduced with syngas for Reactor 1(names Reac-Syn), hydrogen for 

Reactor 2(Reac-H2), and carbon monoxide for Reactor 3(Reac-CO), at 250 °C, 

and gas flowrate of 60 mL(NTP)/min, for 48 hours at ambient pressure. The 

reactor pressure for the syngas reduced reactor (Reac-Syn) was adjusted to 1 bar 

gauge and the FT runs started. For Reac-H2, (H2 reduced) and Reac-CO (CO 

reduced), the flows for the H2 and CO were stopped after 48 hours and replaced 

with the syngas at 1 bar gauge and 60 mL(NTP)/min. The FT runs were performed 

for 1000 hours under the above mentioned operating conditions, and thereafter 

several other alternative conditions were applied until 12 000 hours of time on 

stream. When the catalyst showed a decrease in the activity of more than 50% in 

all the three reactors, in situ regeneration was initiated. The regeneration process 

comprized passing oxygen gas from a premixed cylinder of composition 4.9% O2 

in 94.1% helium through the catalyst. This cylinder was connected to the system 

and arranged such that flow during oxidation could be varied to the desired 

parameters. 

The procedure adopted was a modified oxidative regeneration process which has 

been applied in different systems (Saib et al. 2010; Pennline and Pollack 1986). 

The same regeneration steps were conducted for all the three reactors at a 

different time on stream (TOS) starting with Reac-Syn followed by Reac-CO and 

lastly Reac-H2 (the sequence of regeneration was arbitrary). The following steps 

were followed: 

 The flow of syngas to the reactor, which was set at 60 mL(NTP)/min, was 

stopped and   nitrogen gas was introduced into the system at the same flow 

rate.   



 

179 
 

 The back pressure regulator was fully opened to allow the system to be at 

atmospheric pressure. 

 The temperature was increased from 250 to 270 °C at a ramping rate of 1 

°C/min. 

 The reactor was then left under the flow of nitrogen at 60 mL(NTP)/min, at 

atmospheric pressure, and at 270 °C for 12 hrs . 

 Then the temperature was decreased from 270 to 100 °C and a mixture gas 

of 4.9% O2 in 94.1% helium was introduced to the reactor at a flow rate of 

30 mL(NTP)/min, whilst the flow of N2 (60 mL(NTP)/min) was maintained  

through the reactor. This was continued  overnight. 

 After that, the temperature of the reactor was increased to 180 °C at a 

ramping rate of 20 °C in 10 mins and maintained there for one hour, then 

increased another 20 °C in 10 mins until 200 °C. 

 While the temperature was still at 200 °C, the flow of N2 was stopped and 

that of O2/He remained at 30 mL(NTP)/min overnight. 

 N2 was then re-introduced at 60 mL(NTP)/min whilst the flow of O2/He was 

slowly reduced to zero; this marked the end of catalyst oxygenation.  

The catalyst oxidation process was then followed by the reduction pathway. The 

temperature was reduced to 120 °C and kept there for 2 hours in order to dry the 

moisture from the reactor. This was followed by the reduction of the catalyst under 

the same conditions (250 °C, 60 mL(NTP)/min at atmospheric pressure for 48 

hours) as done previously, but this time syngas was used as the reducing agent 

for all the reactors. This marked the end of regeneration. After regeneration, the 

researcher reverted to normal FT runs where the reactor pressure was increased 

to 1 bar gauge and the flow rate maintained at 60 mL(NTP)/min at a temperature 

at 250 °C. Throughout the FT runs the tail gas from the rig was monitored with a 

DANI GC fitted with a flame ionisation detector (FID) and two thermal conductivity 
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detectors (TCD A and TCD B). The monitoring was conducted in order to analyse 

both the inorganic and hydrocarbon gases in the gas phase. The data obtained 

after the regeneration were compared with the data obtained prior to regeneration. 

7.4 Results and discussion 

The catalyst activity measured by CO consumption rates and as a function of time 

on stream (TOS) during the steady-state period before regeneration, during 

reduction, and after regeneration for the three differently reduced reactors, is 

shown in Figures 7.1 (a), (b) and (c). Although the regeneration procedure 

employed was the same for all the reactors, the Reac-Syn (syngas reduced 

reactor) comparatively showed a significant increase in activity by 53.40% after 

regeneration (when compared to the activity before regeneration), whereas the 

Reac-H2 (hydrogen reduced reactor) increased by 1.18% and the Reac-CO 

(Carbon monoxide reduced reactor) by 6.25% on average. The underlying reasons 

for such a difference in the magnitude in percentage increase observed are not yet 

understood. The activity and stability during the post regeneration catalytic tests 

remained stable. 
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Figure 7.1: CO consumption rate before, during and after the regeneration under 

operating conditions: 250 oC, 60 mL(NTP)/min at 1 bar(gauge) for (a) 

Reac-Syn (syngas reduced), (b) Reac-H2 (hydrogen reduced) and (c) 

Reac-CO (carbon monoxide reduced reactors). 

Figures 7.2 (a – c) show the WGS which is the ratio of CO2 production to total CO 

consumption. FT selectivity was measured as a function of the CO converted to 

hydrocarbons and the CO conversion. The three graphed parameters showed an 

appreciable change after the regeneration procedure. The WGS reactions for all 

the differently reduced reactors show an increase of 78.26% for Reac-H2, 77.06% 

for Reac-CO and 74.29% for Reac-Syn reduced.  Surprisingly although the overall 

CO reaction rates are different, all three catalysts have shown similar increase in 

the CO2 selectivity. However, the differences among these three reactors is almost 

negligible. The FT selectivity values decline with an increase in WGS selectivity 

since these two reactions are antagonistic. The said selectivities did not vary much 

with time on stream or with the activation route. 
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Figure 7.2: CO conversion and FT selectivity before, during and after regeneration 

under operating conditions: 250 °C, 60 mL(NTP)/min at 1 bar gauge 

for (a) Reac-Syn, (b) Reac-H2 and (c) Reac-CO reactors. 

Regeneration period is indicated by dotted lines 
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During the regeneration procedure, the catalysts in the reactors were activated, as 

evidenced by an increase in the CO conversion and also a shift in the product 

distribution. Figure 7.3 (a) and (b) depict olefinic and paraffinic product 

selectivities before and after regeneration, respectively. The general trend 

observed on the olefinic products is that the selectivities increase in all the 

differently reduced reactors, though the increases are of different magnitudes. The 

least observed increase was exhibited by the Reac-H2 originally reduced catalyst 

for C2 and C3 olefins with percentage increases of 11.85% and 4.38%, 

respectively. The highly activated catalyst is the one which was originally reduced 

with CO (Reac-CO) which showed highest increase in the olefinic products C2 

(47.39%), C3 (70.74%), C4 (76.34%) and C5 (79.60%). 

The initially syngas reduced reactor after regeneration was more selective to the 

paraffinic products. Figure 7.3 (b) depicts changes observed before and after the 

oxidative regeneration to product selectivities. Reac-Syn and Reac-CO show a 

selectivity increase for all the components (both olefins and paraffins), whereas 

the hydrogen reduced exhibit a decrease in the paraffinic selectivities. The syngas 

reduced showed an average selectivity of 80.53% for C2–C5 paraffins. The 

hydrogen reduced exhibited a decrease in paraffin selectivity. This particular 

catalyst did not change significantly. 
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Figure 7.3: Selectivity to the light hydrocarbons before and after regeneration 

under operating conditions: 250 °C, 60 mL(NTP)/min at 1 bar gauge 

for average data (a) olefin, (b) paraffin for different reducing 

agents/reactors. 

Figure 7.4 depicts the selectivity to the carbon dioxide, methane and heavy 

hydrocarbon (C5+) as a function of reducing agent. The regeneration resulted in 

hydrocarbon distribution shifting to a lighter fraction, as noted by the decrease in 

the C5+ selectivity in all reactors. The methane selectivity increased for the syngas 

reduced by 50.37%, 71.53% for the CO reduced and the hydrogen reduced 

experienced a decrease of 5.91%. The WGS selectivity for all the reactors 

increased by almost the same magnitude of about 76.54%. 
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Figure 7.4: Selectivity to CO2, CH4 and C5+ before and after regeneration under 

operating conditions: 250 oC, 60 mL(NTP)/min at 1 bar gauge for 

average data (a) CO2, (b) CH4 and (c) C5+ for different reducing 

agents/reactors. 

(a) 

(b) 

(c) 
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In an endeavour to account for these differences, the fresh catalyst together with 

the spent catalyst from the three different reactors was subjected to HRTEM 

imaging. 

The catalyst samples (from the three reactors) were prepared by drop-coating one 

drop of specimen solution onto a holey carbon coated nickel grid. This was then 

dried under a Xenon lamp for about 10 minutes, where after the sample 

coated grids were analysed under the microscope. Transmission electron 

micrographs were collected using an FEI Tecnai G2 20 field-emission gun (FEG) 

TEM, operated in bright field mode at an accelerating voltage of 200 kV. Energy 

dispersive x-ray spectra were collected using an EDAX liquid nitrogen cooled 

Lithium doped Silicon detector. 
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Figure 7.5: HRTEM image of (a) fresh catalyst (b) Reac-Syn spent catalyst (c) 

Reac-H2 spent catalyst (d) Reac-CO spent catalyst 

The morphological differences of the supported iron catalyst reduced with different 

reducing agents were confirmed with HRTEM. Figure 7.5 shows the distribution of 

the iron particles on silica support after a long TOS of 14 000 hours. The 

corresponding electronic diffractograms is depicted. 

In all the cases, the growth of catalyst particles during the Fischer Tropsch 

reaction is evident. Hence, it can be inferred that the catalyst particle grows during 
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the synthesis. However the nature of this growth (chemical and morphological 

nature) is not understood and more studies are required. 

 

Figure 7.6: The corresponding electron diffractograms of the HRTEM images 

depicted in Figure 7.5 (a) fresh catalyst (b) Reac-Syn spent catalyst 

(c) Reac-H2 spent catalyst (d) Reac-CO spent catalyst 

Figure 7.6 shows the difference in the diffraction pattern, this is evident of the 

presence of different phases. The XRD spectra in Figure 7.7 show the differences 

in the phases and crystallographic planes existing in different catalyst. The fresh 

catalyst gave only one peak whereas the used catalyst indicated the presence of 

several phases hence several peaks. 
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Figure 7.6: XRD spectra of the fresh catalyst and the used ones from different 

reactors (After 14 000 hours TOS) 

7.5 Discussion 

The results obtained for the catalysts after regeneration are a great puzzle. The 

overall observation is that the success of regeneration really depends on the 

path(s) that the catalyst undergoes before the regeneration. As the catalysts have 

been originally reduced with three different gases, the active phases and 

composition of these active phases were different. Therefore, these three catalysts 

would go through different deactivation paths although the operation conditions 

were the same during reaction. The literature has reported that oxidation, 

sintering, and carbon deposition are the main reasons given for the deactivation of 

Fe catalysts in FTS. Under the operation conditions applied here, sintering and 

oxidation are the plausible reasons for the deactivation as no carbon deposition 

would be expected. Carbon deposition will cause a rapid deactivation of the 

catalyst, which was not observed during the experiments. It is understandable that 

Fe oxides, especially Fe3O4, exist during the reaction, as metallic Fe and FexCy 

could be oxidized in the presence of product H2O. Both the literature and the 
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present thermodynamic calculations support this point of view. However, the 

oxidation of FexCy to Fe3O4 depends on the partial pressure or the H2O/H2 ratio. A 

low H2O/H2 ratio will favour the presence of FexCy and suppress the formation of 

Fe3O4. The results reported in Chapter 6 and Figures 7.4 (a), (b) and (c) suggest 

that the CO2 selectivities were low before the regeneration of the catalysts, and 

this agrees with the low conversion of the reactants. Therefore, it seems that the 

deactivation of the catalyst is mainly due to the loss of the active sites but not due 

to the conversion of FexCy to Fe3O4. The characterization results show that the 

available active sites were limited before the catalysts were regenerated. The 

regeneration did bring back more active sites, especially the catalyst that was 

reduced by syngas originally. However, it also seems that the regeneration 

treatment did not increase the active sites by much for the two that were originally 

reduced by H2 and CO. The reason is that the way the catalyst loses its activity is 

mainly decided by the path of operation before the regeneration.            

Another important observation here is that the CO2 selectivities of all the catalysts 

have increased and the percentages are similar. Before regeneration, the CO2 

selectivities of three catalysts were actually at a low level, around 4-5%. After 

regeneration, the CO2 selectivity increased to around 17%. A low CO2 selectivity 

may suggest a low content of Fe oxide available in the catalysts. The data, after 

regeneration, suggest that both active Fe3O4 and FexCy were increased for the 

catalyst originally reduced by syngas, but those two originally reduced by CO and 

H2 only have Fe3O4 increased and that some of the FexCy was also converted to 

Fe oxide. It seems that the oxidation stage managed to convert FexCy to Fe 

oxides but the reduction did not manage to reduce the Fe oxides much. 

The third important observation here is the increase of olefin selectivity for all three 

catalysts. This result is contradictory, at a first glance, with the CO2 selectivity 

change discussed above. It is suggested that the regeneration of catalysts 

resulted a higher content of Fe oxide by converting some of the FexCy. This 

change of the active sites would actually suppress the formation of olefins. 

However, the results obtained in the present experiments were that the olefins 

increased. This may be linked with the availability of the promoter, K. In Chapter 5, 
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the CO reduced catalyst was observed to give the most olefins, and that was 

linked to the possible availability of the K. The regeneration treatment, especially 

the oxidation stage, may have caused the migration of K, and then the ratio of K 

and active sites may consequently have been altered. As reported in the literature, 

a higher K content in a precipitated Fe catalyst helps the selectivity to olefins, and 

the change of K/active sites ratio will result a change to the olefin selectivity. 

One would expect that the regeneration of a catalyst would increase active sites 

on the catalyst, in line with the results reported in the literature (Marafi, Stanislaus, 

and Furimsky 2010b; Yoshimura and Furimsky 1986a; Windawi and Katzer 1980); 

however, the results reported in this work suggest that it is not that straight 

forward. It depends on the availability of the reducible Fe oxides but not the overall 

amount of Fe oxides. In the meantime, the availability of the reducible Fe oxides is 

actually decided by the amount of Fe or Fe oxide that could be accessed by 

oxygen during the oxidation stage, and by reducing gas (CO and H2) during the 

reduction stage. It seems that the Fe oxide might have sintered for the two that 

were originally reduced by CO and H2, and the regeneration process did not 

manage to break such sintered particles. This could be because the regeneration 

only had an effect on the Fe compounds on the outer layer of the particles.  

7.6 Conclusion 

An oxidative regeneration process was adopted with the intent of hypothetically 

removing carbon deposition on the catalyst. The oxidative regeneration of 

differently reduced catalysts exerted a considerable effect on the subsequent 

catalytic selectivity. In this case, the regenerated samples exhibited an increase in 

the catalytic activity and a selectivity change. Regeneration with the syngas 

reduced was most effective: the conversion of the system in this case increased 

from 4.66% to 10.00%, which is a 53.40% increase. However, the researcher 

failed to obtain a high increase in conversions for the hydrogen reduced with the 

maximum of 1.18% and the CO reduced 6.25% after regeneration.  
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The results show that the activity was restored for the reactor which was initially 

reduced with syngas by 53.40% (CO conversion 4.65 to 9.99%), whereas the H2 

and CO reduced show little increase in conversion. Although the oxidative 

regeneration did not restore the catalytic activity to the initial CO conversion of 

16%, it is proven that the technique employed can be successfully used for 

regenerating the catalyst even after more than 1 year. The results could be useful 

for industrial application as industrial FT processes have required long time 

experiments. Consequently, the oxidative regeneration of the catalyst is possible, 

and conditions should be further optimized. 
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CHAPTER 8  

FURTHER ANALYSIS OF THE GAS PHASE FT EXPERIMENTAL DATA: 

P/O RATIOS, LU PLOTS AND YAO PLOTS 

The data contained in this chapter have been written in a paper format.  

 

Abstract 

Fischer Tropsch synthesis (FTS) is a catalysed chemical reaction in which synthesis 

gas (H2 + CO) is converted to clean fuels and chemicals.  The main products are 

paraffin and olefins. The paraffin to olefin ratio is an important factor which reflects the 

product distribution of FTS. In this study, two new approaches to FT product distribution 

are presented and compared using the experimental data obtained in three fixed bed 

reactors (each loaded with 1 gram of the same iron based catalyst, and reduced with 

syngas (CO/H2), H2 and CO, respectively)  over a wide range of FT reaction conditions. 

In the first approach, the researcher plotted P(n+1)/O(n+1) versus Pn/On with carbon 

number n = 2-5, which is called Yao’s plot. The results showed that although the P/O 

ratios are strongly dependent on the process conditions, such as reduction agents, flow 

rate and pressures etc., the plots of P(n+1)/O(n+1) against P(n)/O(n) yielded a nearly linear 

relationship though with different gradients for all the three reactors; these results 

indicate that the olefin and paraffin distributions are not independent. The current data, 

including the effect of the reducing agents on the catalyst performance, widen the range 

of the application of the Yao plot. Just like the classical Anderson-Schulz-Flory 

distribution model, this model has some deviations especially for n = 2. The second plot, 

referred to as the Lu plot, depicts the relationship between normalized mole fractions of 

On, On+1 and Pn. These plots show how the equilibrium points migrate with changes in 

the experimental conditions. These equilibrium point migrations seem to be due to 

changes in the conversion. 
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8.1 Introduction 

Fischer Tropsch synthesis (FTS) yields a plethora of products, with straight chain olefins 

and paraffins being the dominant products. FTS products display a clear inter-

relationship between the various products, whether gases, liquids or in wax form. These 

inter-relationships are mainly attributed to the step-wise growth nature of the FT 

mechanism (Biloen, Helle, & Sachtler, 1979; Carter, 2001). The chain growth 

mechanism still remains a bone of contention, but with many researchers agreeing on 

the proposed step-wise growth mechanism. 

Different models have been developed to compare and predict the hydrocarbon product 

distributions from Fischer-Tropsch synthesis. The Anderson-Schulz-Flory (ASF) model 

has been used by many researchers to describe the product distribution of 

hydrocarbons in FTS (Hillestad, 2015; Förtsch, Pabst, & Groß-Hardt, 2015; Liu, 

Hamasaki, Honma, & Tokunaga, 2011; Ma, Ding, Luo, Lin, & Lin, 2001; Van Santen, 

Ghouri, Markvoort, & Hensen, 2014; Zhang et al., 2012). 

The ASF plot and model predictions are given by equation 8.1:  

𝑊𝑛/𝑛=(1−𝛼)2𝛼(𝑛−1)         (8.1) 

where Wn is the mass fraction of a hydrocarbon, n is the number of carbon atoms in the 

molecule and α is the growth probability factor which is assumed to be constant.  

In this model α signifies the probability of the molecules to continue reacting to form 

longer chains. Thus, a plot of the logarithm of Wn/n versus n gives a straight line plot 

with the gradient giving the α value (as seen in Figure 8.1). This distribution model has 

been used by many researchers to explain the product distribution; however, some 

significant deviations from this ideal distribution have been observed. These deviations 

are observed regardless of the nature of the catalyst; both iron and cobalt catalysts 

have showed this deviation.  
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Figure 8.1: Typical ASF hydrocarbon product distribution plot (Bao, El-Halwagi, & 

Elbashir, 2010) 

A plethora of models have been developed in the past in an endeavor to describe the 

distribution of the products obtained in FT processes. Several researchers have 

modelled the influences of diffusion limitation (Becker, Güttel, & Turek, 2015; Hallac, 

Keyvanloo, Hedengren, Hecker, & Argyle, 2015; Zamaniyan, Mortazavi, Khodadadi, & 

Pour, 2013; Zohdi-Fasaei, Atashi, Farshchi Tabrizi, & Mirzaei, 2016) and this 

phenomenon has been reported to have an impact on the product distribution. It has 

been suggested that the olefin to paraffin ratio (O/P) is governed by the rate of diffusion 

which enhances the olefin readsorption, leading to secondary reaction (Iglesia, Reyes, 

& Madon, 1991).  

The patterns observed in the literature show that the P/O ratio increases much more 

slowly with carbon number (Y.-J. Lu, Zhang, & Zhou, 1999; Madon & Iglesia, 1993; 

Muleja, Yao, Glasser, & Hildebrandt, 2016). Moreover, most of the authors agreed that 

diffusion limitations for the olefin products and their subsequent re-incorporation as 

chain initiators do not make a major impact on the product distribution (Shi & Davis, 

2005; Wang, Hu, Rector, & Liu, 2007). 

Recently, the present researchers have seen the introduction of novel ways of plotting 

FT data, referred to as Yao plots and Lu Plots (Muleja, Yao, Glasser, & Hildebrandt, 
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2016). The Yao plots were developed by Yao, Liu, Hildebrandt, & Glasser (2012) while 

the Lu plots were developed by X. Lu, Hildebrandt, Liu, & Glasser (2012a). The plots 

are basically graphical techniques for representing the relationship between two FT 

products, for example olefin and paraffin. These graphs are a visual representation of 

the relationship between immediate neighboring carbon numbers of olefin/paraffin and 

lower olefin and higher olefin and/or lower paraffin and higher paraffin. These plots were 

designed in an endeavour to come up with a model that is relatively easy to use and 

gives better precision of the product distributions behaviour for a given set of process 

conditions. 

Yao plots show a linear relationship between P(n+1)/O(n+1) and P(n)/O(n) and this 

relationship holds regardless of the type of reactor used, the composition of the syngas, 

reaction conditions and the kind of catalyst (Yao, 2012). The relationship between  

P(n+1)/O(n+1) and P(n)/O(n) are shown in equation 8.2 for n > 2 and equation 8.3 for n = 2. 

𝑃(𝑛+1)/𝑂(𝑛+1)

𝑃𝑛/𝑂𝑛
|

𝑛>2
 ≈  𝜉𝑛>2        (8.2) 

𝑃3/𝑂3

𝑃2/𝑂2
|

𝑛=2
 ≈  𝜉𝑛=2         (8.3) 

For n > 2, the ξ values are always greater than 1 with small gradient variations caused 

by the type of catalysts, reactor types and operating conditions, whereas, for n = 2, the ξ 

values are always in the range between 1 and 0 .  
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Figure 8.2: The plot of the ratio of P(n+1)/O(n+1) as a function of the ratio of P(n)/O(n) for 

Fischer-Tropsch synthesis 

In the Yao plots, researchers developed two simple models: one is based on the 

assumption of vapour liquid equilibrium (VLE) and the other is based on quasi-reaction 

equilibrium to explain this unique experimental observation. This model showed a good 

ability to predict product distributions. Muleja et al. (2016) used the same plots and 

obtained similar patterns and mentioned that the linear phenomenon might be due to 

the combination of quasi reaction equilibrium and VLE.  

A Lu plot is a triangular diagram inspired by Residue Curve Maps in distillation and 

reactive distillation (Muleja, 2016) which displays the proportion of three variables that 

sum to a constant 1 (X. Lu, Hildebrandt, Liu, & Glasser, 2012b). This plot depicts the 

relationship between the olefin and paraffin products in an FT reaction as shown in 

Figure 8.3. The normalized molar amounts of On, Pn and On+1 are made to add up to the 

constant value of unity and n can assume any number from 2 onwards.  Every point on 

a triangular plot represents a different composition of the three components.  

Note that the pure components are at coordinates (0; 0) for pure Pn and pure On is at 

(1;0) and pure On+1 at coordinates (0;1) as Lu (2012b) has elaborated. 
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The chain growth and hydrogenation of CnH2n can be simply written as follows: 

CnH2n  + CO + 2H2 → Cn+1H2(n+1) + H2O      8.4 

CnH2n + H2 → CnH2n 2        8.5 

 

Figure 8.3: The Lu plot: A plot of the normalised mole fractions On+1 versus On 

Olefins and paraffins behave differently depending on their reactivities in FTS, with 

olefins more prone to secondary reactions. They also behave differently due to the 

difference in their solubility and diffusivity coefficients (Naghsh et al, 2012; Staudt-Bickel 

& Koros, 2000). The olefin to paraffin ratio has been reported to vary with catalyst 

particle size in FTS. Nakhaei & Housaindokht (2013) showed that the olefin/paraffin 

ratio decreased with decreasing the catalyst particle size. The O/P ratio also depended 

on the impact of the solubility of the produced hydrocarbons (vapour–liquid equilibrium). 

The variation of paraffin to olefin ratio as a function of carbon number has also been 
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studied by many researchers and all showed that the P/O ratio increases much more 

slowly with carbon number (Buchang Shi & Davis, 2005; Fu, Jiang, Lv, & Li, 2013; X. 

Lu, Hildebrandt, Liu, & Glasser, 2012c; A. Nakhaei Pour & Housaindokht, 2013; Nawaz, 

Baksh, Zhu, & Wei, 2013; Schon, Lau, Min, Thomas, & Wu, 2013; Todic, Olewski, 

Nikacevic, & Bukur, 2013). 

8.2 Experimental work 

The experimental procedure employed in this chapter is similar to the methods 

presented in previous chapters. It is briefly explained. Three fixed bed reactors (FBR), 

each loaded with 1 gram of the same iron based catalyst (Fe/Cu/K/SiO2), were set in 

parallel and reduced, with syngas (CO/H2) for reactor one (Reac-Syn), H2 for reactor 

two (Reac H2) and CO for reactor three (Reac-CO), respectively, for 48 hrs at 250 oC, at 

atmospheric pressure and a flow rate of 60 mL(NTP)/min. Then, the temperatures of 

Reac-H2 and Reac-CO were cooled to temperatures below 100 oC. Next, the same 

syngas used in Reac-Syn was introduced to Reac-H2 and Reac-CO. Then, the 

temperature for Reac-H2 and Reac-CO was gradually increased back to 250 oC.  

Thereafter, the three different reactors were subjected to a series of parameter 

variations to enable the investigator to compare the catalyst response after a long time 

on stream for FT reactions. Various changes were made to the FT reactor parameters, 

such as pressure and gas flow rate, to get different conversions. 

A series of long-term FTS runs (about 14 200 hours) were conducted, starting with a 

low pressure (1 bar gauge), and altering both the pressure, from 1 to 10 and finally to 20 

bar gauge, and the flow rate, from 15 mL(NTP)/min to 30 mL(NTP)/mL/min and 60 

mL(NTP)/min. The aim was to test the responses of the catalyst, initially reduced with 

different gases, to changes in the operating conditions. The FT reaction conditions for 

the three reactors are summarised in Table 8.1. 
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Table 8.1: Summary of the FT reaction conditions for the three reactors 

Reac-Syn     Range TOS (hrs) 

Flowrate mL(NTP)/min Pressure (bar) Temperature (°C) From TO 

60 1 250 0.00 1100.00 

60 1 250 5791.72 6061.57 

30 1 250 6089.66 6277.58 

15 1 250 6284.49 6816.84 

60 10 250 13676.04 13982.51 

60 20 250 13987.08 14340.29 

  
      
    

Reac-H2 

  
Range TOS (hrs) 

Flowrate mL(NTP)/min Pressure (bar) Temperature (°C) From TO 

60 1 250 0.00 1143.66 

60 1 250 5195.29 5889.17 

30 1 250 5901.12 6051.85 

15 1 250 6113.13 6630.27 

60 10 250 13724.55 13979.95 

60 20 250 13984.70 14132.18 

  
      
    

Reac-CO 

  
Range TOS (hrs) 

Flowrate mL(NTP)/min Pressure (bar) Temperature (°C) From TO 

60 1 250 0.00 1019.00 

60 1 250 5138.57 5355.36 

30 1 250 5402.24 5567.91 

15 1 250 5577.81 6084.79 

60 10 250 13112.81 13382.26 

60 20 250 13399.95 13636.04 
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8.3 Results  

 The olefin to paraffin ratio 8.3.1

Figure 8.4 depicts the P/O ratio for gaseous components (C2 to C5) for the three 

differently reduced reactors under reaction conditions shown in Table 8.1. Table 8.2 

displays the P/O ratio for the average data of gaseous components (C2 to C5) for all 

three differently reduced reactors. It also shows the average for the CO conversion 

under the experimental conditions summarized in Table 8.1. Although the effects of the  

reducing agents on the O/P ratios were different, the O/P ratio increased with 

decreasing flowrate from 60 through 30 to 15 mL(NTP) /min for all the three reactors 

(see Table 8.2). The decrease in flowrate resulted in the increase in conversion as well.  

Increasing pressure had the same effect on the P/O ratio. Generally the response of 

P/O ratio is consistent with what is in the literature (Ali Nakhaei Pour & Housaindokht, 

2013b). It is worth noting that the different P/O ratios were obtained even with the same 

reaction conditions but at different times on stream for all the three reactors (see the 

results at 60 mL(NTP) /min, 1 bar and 250 oC in Table 8.2). In addition, with different 

reduction agents, the P/O ratios differ and the following trend was obtained Reac-Syn > 

Reac-H2 > Reac-CO reduced catalyst under most of the FT reaction conditions 

conducted, excluding P4/O4 (P4/O4 is much higher for Reac-H2 than that for Reac-Syn 

and Reac-CO). 
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 Table 8.2: Paraffin to Olefin ratios (P/O) at different conditions  

Reac-Syn     Range TOS (hrs)   Averaged P/O ratios 

Flowrate  
mL(NTP)/min Pressure (bar) 

Temperature 
(°C) From TO 

% 
Conversion C2 C3 C4 C5 

60 1 250 0.00 1100.00 15.23 0.523 0.092 0.175 0.289 

60 1 250 5791.72 6061.57 4.27 0.234 0.052 0.054 0.126 

30 1 250 6089.66 6277.58 9.86 0.379 0.060 0.063 0.178 

15 1 250 6284.49 6816.84 17.20 0.527 0.074 0.076 0.264 

60 10 250 13676.04 13982.51 34.50 2.391 0.335 0.354 0.813 

60 20 250 13987.08 14340.29 55.07 5.705 0.600 0.616 1.369 

  
        

  

  
        

  

Reac-H2 

  
Range TOS (hrs) 

 
Averaged P/O ratios 

Flowrate  
mL(NTP)/min Pressure (bar) 

Temperature 
(°C) From TO 

% 
Conversion C2 C3 C4 C5 

60 1 250 0.00 1143.66 13.07 0.398 0.078 0.364 0.230 

60 1 250 5195.29 5889.17 6.99 0.107 0.035 0.125 0.065 

30 1 250 5901.12 6051.85 12.35 0.176 0.040 0.138 0.094 

15 1 250 6113.13 6630.27 20.97 0.371 0.055 0.188 0.178 

60 10 250 13724.55 13979.95 35.42 1.048 0.153 0.561 0.303 

60 20 250 13984.70 14132.18 55.24 1.514 0.180 0.675 0.316 

  
        

  

  
        

  

Reac-CO 

  
Range TOS (hrs) 

 
Averaged P/O ratios 

Flowrate  
mL(NTP)/min Pressure (bar) 

Temperature 
(°C) From TO 

% 
Conversion C2 C3 C4 C5 

60 1 250 0.00 1019.00 13.94 0.329 0.050 0.042 0.145 

60 1 250 5138.57 5355.36 4.36 0.082 0.028 0.035 0.058 

30 1 250 5402.24 5567.91 7.34 0.128 0.037 0.037 0.071 

15 1 250 5577.81 6084.79 10.18 0.224 0.038 0.041 0.121 

60 10 250 13112.81 13382.26 23.09 2.175 0.181 0.232 0.503 

60 20 250 13399.95 13636.04 40.40 6.297 0.651 0.657 1.198 
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8.4 Yao Plots 

Table 8.2 shows that the P/O ratios for FTS are strongly dependent on the 

operation conditions, such as flowrate, pressure, time on stream and the catalyst 

activation agents. Most often, the trend of the O/P ratio is not easy to summarize 

and predict. The author now used a new way which may show some interesting 

behaviour that is not apparent from the typical way in which data is presented.  

As mentioned in the introduction section, a graph of P(n+1)/O(n+1) against P(n)/O(n) is 

called the Yao plot in this chapter. In order to investigate the relationship among 

O/P ratios with different chain lengths, Yao plots are plotted with the carbon 

number n = 2-5 for the three reactors. Figure 8.4 shows that the plots of 

P(n+1)/O(n+1) against P(n)/O(n) yielded a nearly linear relationship, though with 

different gradients for all three reactors.  

In particular, the data used in Figure 8.4 cover the effect of reduction agents, 

flowrate, pressure, and reaction time.  From the graphs depicted in Figure 8.4, the 

gradients are tabulated in Table 8.3. For n = 2 the values for Reactors 1, 2 and 3 

are far less than 1 (<<<1). These values are similar to the values obtained by Yali 

(2012) ranging from 0.04 – 0.181 for different reaction conditions, and Muleja 

(2016) reported a value of 0.0698.  

In order to obtain a clear image of all the data and for comparison, the data for 

each reactor with the same chain length have been plotted as one set of data, and 

the results from the ratios are presented graphically in Figure 8.5. Similar slopes 

were obtained for the plots P3/O3 vs P2/O2 for the three differently reduced 

catalysts (Figure 8.5 (a)). Based on these graphs in Figure 8.5, one can argue 

that the gradient for n = 2 is a constant which is not affected by the reduction 

agents, flowrate, pressure and reaction time. With n = 3–5, the gradient values are 

similar and greater than 1 for Reac-Syn and Reac-CO. However, an essentially 

linear relationship for P(n+1)/O(n+1) against P(n)/O(n) were obtained for each of the 

carbon numbers (Figure 8.4), but the gradients for Reac-H2 are far from Reac-Syn 



 

213 

 

and Reac-CO as shown in Figure 8.5, which is due to the P4/O4 for Reac-H2 being 

far higher than for Reac-Syn and Reac-CO (see Table 8.2).  

The trends demonstrated in the current work are consistent with the previous 

findings by Yao et al. (2012). However, the gradients with different carbon 

numbers are slightly different; for instance, Yao found that when n > 2, the slopes 

with different n were quite similar, with an average slope of 1.39. Muleja et al. 

(2016) used the same plots and obtained similar patterns to this work (straight 

lines with different gradients). Yao et al. introduced two models, one based on 

quasi-reaction equilibrium and the other based on vapour liquid equilibrium (VLE) 

to explain the linear relationship. Muleja et al. (2016) also mentioned that the linear 

phenomenon might be due to the combination of quasi reaction equilibrium and 

VLE. Although the Yao’s and Muleja’s data covered a wide range of reaction 

conditions, the catalysts were only reduced by H2. The current data includes the 

effect of the reducing agents on the catalyst performance; thus it enlarges the 

range of the application of the Yao’s plot. 
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Figure 8.4: The paraffin to olefin ratio P(n+1)/O(n+1) as a function of Pn/On for FTS over iron based catalysts. Reac-Syn (reduced by 

syngas), Reac-H2 (reduced by H2) and Reac-CO (reduced by CO) and the reaction condition as shown in Table 8.1.
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Table 8.3: Gradients obtained at different n values 

Carbon number (n) Reac-Syn Reac-H2 Reac-CO 

2 0.118 0.138 0.102 

3 1.070 3.729 1.033 

4 2.147 0.543 1.863 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: The paraffin to olefin ratio P(n+1)/O(n+1) as a function of Pn/On for FTS 

over the iron based catalyst: (a) n = 2, (b) n = 3 and (c) n = 4 for 

differently reduced reactors (Reac-Syn, Reac-H2 and Reac-CO) 
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8.5 Lu Plots 

These plots indicate the existence of “equilibrium” points where reactant 

conversion rate as well as the product formation rate are at a steady state. Any 

perturbation to the system is believed to change/move this “equilibrium” (Muleja, 

2016) as the conversion rates are changed. This phenomenon if presented on Lu 

plots is analagous to a reactive distillation map with a stable point. From the plots 

hereunder (Figure 8.6) unlike the results of Lu the steady state (“equilibrium 

points”) points migrate as the system is perturbed by varying reaction parameters 

to yield high conversions. This migration of steady state points is towards lower 

olefins moving from On+1 to On. This kind of migration presumably means more On 

hydrogenation to Pn (equation 8.5) and suppression of formation of the immediate 

higher olefin by -CH2- insertion (equation 8.4). Figure 8.6 clearly depicts this 

migration of the so-called “equilibrium” points and this varies with increase in 

conversions. 

This study was limited to the light hydrocarbons, due to analysis limitations 

(accuracy of the online GC). The normalized mole fractions for CnH2n, CnH2n+2, and 

Cn+1H2(n+1) when n = 2,3 and 4 are plotted in Figures 8.6–8.8 using the averaged 

steady state values obtained at different conditions.  

In the Lu experiments, the data points migrated as a function of time. For instance, 

in the C3H6 ,C3H8, C4H8 and C4H8 ,C4H10, C5H10 scenario, he observed that at the 

beginning of the experimental run, the data points were situated far from the point 

(0,0), which means the paraffin fractions were low and the olefin fractions were 

high. As the reaction time increased the paraffin (C3H8, C4H10) fractions increased, 

as could be seen from the data points, which approached the pure paraffin point 

(0, 0) in both plots. As explained above, the closer the data are to point (0,0), the 

higher the paraffin fraction.  

In the present study, variation in the experimental conditions resulted in data point 

migration in the Lu Plots. These variations resulted in the data migration being a 

function of conversion. What is of interest is that all the differently reduced reactors 
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showed a similar kind of trend. The direction of arrows indicates the direction of 

decrease in conversion. For n = 2 a clear trend is observed (see Figure 8.6); for 

these results the steady state points migrated towards C2H4 as the conversion 

decreased. This observed trend is similar in all the reactors (Reac-Syn, H2, CO). 
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Figure 8.6: Normalized mole fraction for C2H4, C2H6, and C3H6 for the three 

differently reduced reactors 
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Figure 8.7: Normalized mole fraction for C3H6, C3H8, and C4H8 for the three 

differently reduced reactors 
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Figure 8.8: Normalized mole fraction for C4H8, C4H10, and C5H10 for the three 

differently reduced reactors 
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Using the same normalized mole fraction concept, novel plots of CnH2n+1, CnH2n, 

and Cn+1H2(n+1), that is paraffin n, olefin n and paraffin n+1, when n = 2, 3 and 4, 

are plotted and depicted in Figures 8.9 to 8.11. It is intriguing to note that a linear 

trend is also observed, which mostly runs towards the olefinic corner. The direction 

of the arrow shows the steady state point migration with increase in conversion. 

The slope of the lines for the differently reduced catalysts is somewhat different. 

This observed phenomenon is in agreement with the P/O ratios observed in Table 

8.1 which shows an increase in the ratio with conversion. 
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Figure 8.9: Normalized mole fraction for C2H6, C3H6, and C3H8 for the three 

differently reduced reactors 
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Figure 8.10: Normalized mole fractions for C3H8, C4H8, and C4H10 for the three 

differently reduced reactors 
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Figure 8.11: Normalized mole fractions for C4H10, C5H10, and C5H12 for the three 

differently reduced reactors 
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8.6 The olefin to paraffin ratio as a function of CO conversion 

As the previous results suggest the O/P ratio may be determined by the 

conversion it is useful to plot the results as a function of conversion. The 

dependence of the olefins to paraffins ratio on conversion is depicted in Figures 

8.12. All differently reduced catalysts displayed the same exponential decrease in 

the O/P ratio with increase in conversion. This decreasing trend could be attributed 

to an increased olefin secondary reaction with increasing conversion. The CO 

conversion is increased by decreasing the flow rate and increasing the reaction 

pressure. Decreasing flow rate increases the reactant, intermediate product 

residence time, hence allowing olefins to undergo hydrogenation, which is a 

secondary reaction. Increasing pressure increases the partial pressure of 

hydrogen since the percentage composition of this component in the feed was 

60%, hence more hydrogen for secondary reaction, since the number of catalyst 

active sites remained the same. 
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Figure 8.12: Olefin/Paraffin ratio as a function of conversion for all differently reduced reactors 
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8.7 Conclusion 

With the aim of investigating the effect of the reducing agents and reaction 

conditions on the product distribution, three fixed bed reactors, each loaded with 1 

gram of the same iron based catalyst, were used in parallel, and they were 

reduced with syngas (CO/H2), H2 and CO, respectively. Then a series of Fischer 

Tropsch experiments were performed at 250 oC, pressures of 1, 10 and 20 bar 

(gauge) and flowrates of 15, 30 and 60 mL(NTP) /min for a total time on stream 

(TOS) of 15 000 hrs. 

The experimental results show that the olefin to Paraffin (O/P) ratios were strongly 

dependent on the catalyst activation agents, reaction conditions and the time on 

stream of the reaction. (1) With different reduction agents, the P/O ratios differ, 

and the following trend was obtained: Reac-Syn > Reac-H2 > Reac-CO reduced 

reactors under most of the FT reaction conditions which were conducted; (2) 

higher P/O ratios were measured for lower flow rate and higher pressure; (3) 

under the same reaction conditions but at different times on stream, the P/O ratios 

were also changed, which was difficult to summarize for the trend for all three 

reactors.  

In order to make sense of the data, two new ways were used to plot the data. 

Firstly, the researcher used the Yao plot; this is a plot introduced by a member of 

the research group: it is a plot of Pn+1/On+1 versus Pn/On where n is a carbon 

number from n = 2–5. The results show that although the P/O ratios changed with 

different reaction conditions, the linear relationship between P(n+1)/O(n+1) and 

P(n)/O(n) holds for a large number of experiments, which indicates that the olefin 

and paraffin distributions are related to each other. Compared with the previous 

research by Yao et al. (2012) and Muleja et al. (2016), the current phenomenon 

could reveal that the product distribution might be determined by quasi reaction 

equilibrium or vapour liquid equilibrium, or by a combination of the two factors.   

The significance of using different models to yield different graphical plots in FT is 

discussed, and these models are seen to support each other. The Lu plots clearly 
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show the movement of steady state points with conversion. Thus, the classical 

ASF model can be augmented with the newly introduced Lu and Yao Plots to aid 

in explaining the product distribution. The performance of three differently reduced 

catalysts confirmed the usefulness of these kinds of plots, though there were some 

deviations that are not easy to explain. 

The Lu type plots strongly suggested that the olefin to paraffin ratios were mainly 

determined by conversion and plots of these ratios versus conversion confirmed 

this hypothesis. The importance of this for practical purposes cannot be 

overemphasised as it strongly suggests that in order to get mainly olefinic products 

one needs low conversions and to get mainly paraffinic products one needs high 

conversions. Thus for instance making fuels one does not want olefins and so one 

should use reactors with high conversions.  

Also the constancy of the slopes in the Yao plots suggests that the paraffin to 

olefin ratios are not independent of each other but are determined by some sort of 

equilibrium type process between the species. Again a result of some practical 

importance. 
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS 

 

 

9.1 Conclusions 

The primary objective of the research undertaken for this thesis was to utilize the 

experimental findings to advance knowledge on the possibilities of simplifying the 

FT process, to validate the operating conditions, to reactivate the activity once the 

catalyst starts to deactivate, and to explore the possibilities of regenerating the 

catalyst in situ. Based on the results and discussions presented in the previous 

chapters (Chapters 3, 5-8), the major results and observations arising from the 

studies undertaken are summarized in this chapter. 

Substantial progress has been made in this thesis towards generating detailed 

knowledge on the effects of producing hydrocarbons at low pressure of 1 bar 

gauge for a very long time on stream of approximately 14 350 hours. Experimental 

investigations were performed at laboratory scale using an industrial iron catalyst 

at various pressures (1, 10 and 20 bar), and flow-rates (15, 30 and 60 

mL(NTP)/min) conditions and fixed reactor temperature of 250 oC, where 

invaluable data were successfully collected and analysed. Useful insights were 

acquired regarding the long term behaviour of the catalyst to parameter changes 

and long term response.  

The experimental work proved the possibility of reducing the iron based catalyst 

using different reducing agents (namely, H2, syngas, and CO), and operating the 

FT synthesis reaction at low pressure (1 bar) conditions. The experimental set-up 

was arranged in such a way that the syngas was fed in all three reactors from the 

same source while all other conditions were kept constant. The data obtained 

were analysed both qualitatively and quantitatively, in order to: (1) assess any 

emerging trends in the product distribution at low pressure, (2) assess new trends 

associated with changes in operating conditions, and (3) assess the trends before 
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and after the catalyst regeneration. The knowledge obtained by varying the 

experimental conditions could make available new possibilities for the effective 

use of FT process parameter changes to tailor the product distribution and to 

reduce the effect of catalyst deactivation during service. Based on the results and 

discussions presented in the previous chapters (Chapters 3, 5-8), the main 

conclusions can be drawn as follows. 

 Use of stability diagrams to predict catalyst speciation during 9.1.1

activation 

The use of stability diagrams was adopted in an endeavour to explain iron catalyst 

speciation during reduction. The speciation was shown at different partial 

pressures of the reducing gases. 

The thermodynamic study revealed the presence of certain stable phases only 

during reduction, but not during FT synthesis using an iron catalyst. . For instance, 

a review by De Smit and Weckhuysen (2008) reported on the formation of Fe7C3, 

χ-Fe5C2, ϴ-Fe3C and  ἐ-Fe2.2C phases while the catalyst is functioning. While these 

results appear to give some valuable insights into the behaviour of the catalyst, 

their direct value is somewhat limited, mainly because the thermodynamic data in 

the analysis is limited to only some of the major compounds for iron. 

Unfortunately, the thermodynamic data available thus far is insufficient to include 

all these phases in the analysis. Under these circumstances, while the analytic 

methods highlighted in Chapter 4 could prove very useful in appreciating the 

differences in the starting catalyst phases, the thermodynamic analysis results do 

not explain in detail on what is actually happening in the operating catalyst at this 

stage. However, the ratio of the partial pressures in the tail gas could be used to 

predict the phase of the catalyst in operation. 

 Low pressure FT runs 9.1.2

The experimental results obtained at low pressure conditions from the three 

differently reduced catalysts indicate that the use of different reducing agents does 
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not have a significant impact on the catalyst activity, but does have an obvious 

impact on the product selectivity. The experimental data obtained demonstrated 

that all the reactors reached a steady state in terms of conversion after about 150 

hours. Furthermore, methane selectivity shows the following trend, Reac-CO > 

Reac-H2 > Reac-Syn reduced. The methane selectivity of the hydrogen reduced 

catalysts was significantly lower than those on the CO and syngas activated 

catalysts, which could indicate the possible effects of different carbide phases. In 

other words, the selectivity to methane is lower on the catalyst which contains 

significant amounts of bulk iron oxides than on the partially carbided catalyst. The 

paraffin production rates were much more complicated, with the reduction with CO 

being observed to give much more olefins than the reduction using syngas and H2. 

 Effects of operating conditions 9.1.3

The response of the three differently reduced catalysts to variation of the FTS 

operating conditions (pressure: from 1 bar to 10 bar and then 20 bar gauge; Flow 

Rate: from 60 mL(NTP)/min to 30 and 15 mL(NTP)/min; and constant T: 250 °C) 

during a long TOS approximately 14 350 hours was also analysed. The results 

revealed that olefin content decreased with increasing pressure for all the reactors, 

with a significant decrease being observed from 1 bar to 10 bar while the decrease 

from 10 to 20 bar was of a lesser magnitude. This means the paraffin content 

increased with increasing pressure. The effect of decreasing flowrate resulted in 

the increase in the paraffin content (decrease in the olefin content). Thus, 

increasing pressure has got a synergistic effect to a decrease in the flowrate. On 

the other hand, the selectivity to methane was essentially independent of the 

reaction conditions. 

 Oxidative regeneration of the almost deactivated catalyst  9.1.4

An in-situ oxidative regeneration pathway of the catalyst was developed and 

tested using syngas as the reducing gas for all three reactors. The regeneration 

resulted in an increase in the catalytic activity and a selectivity change. 

Regeneration with the syngas reduced was most effective: the conversion of the 
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system in this case increased from 4.66% to 10.00%, which is a 53.40% increase. 

However, the researcher failed to obtain a high increase in conversions for the 

hydrogen reduced with the maximum of 1.18% and the CO reduced 6.25% after 

regeneration.  

 Use of plots to depict product distributions 9.1.5

It has been demonstrated that the use of models and/or plots including olefin to 

paraffin ratios is a promising approach for displaying product distribution in the FT 

process. The experimental results show that the paraffin to olefin (P/O) ratios were 

strongly dependent on the catalyst activation agents, reaction conditions, and the 

time on stream of the reaction: (1) With different reduction agents, the P/O ratios 

differ, and the following trend was obtained: Reac-Syn > Reac-H2 > Reac-CO 

reduced reactors under most of the FT reaction conditions which were conducted; 

(2) higher P/O ratios were measured for lower flow rate and higher pressure; (3) 

under the same reaction conditions but at different times on stream, the P/O ratios 

were also changed, with no observable or generalizable trend. 

The significance of using different models to yield different graphical plots such as 

Yao plots (Yao et al. 2012) and Lu plots (Lu et al, 2012; Xiaojun Lu, 2012) in FT 

was investigated, and these models are seen to support each other. The Lu plots 

clearly show the movement of steady state points with conversion. Thus, the 

classical ASF model can be augmented with the newly introduced Lu and Yao 

plots to aid in explaining the product distribution. The performance of three 

differently reduced catalysts confirmed the value of these kinds of plots, though 

there were some deviations. In this case/ study, the Yao plots and the Lu plots 

were applied to predict the product distribution behaviour. Based on the present 

laboratory data these plots (Yao and Lu) could be used to give reasonable 

predictions. This operational knowledge can be a valuable tool that would aid FT 

operators and process engineers in making timely decisions with regard to control 

and performance optimization of the FT process. The data collected in this project, 

though quite useful, remains valid only to the fixed bed type of reactors 

investigated. However, it is hoped that the project has given some impetus for 
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further research, and where the analysis is inconclusive, it provokes further 

thinking for improvements. Thus, this thesis is a contribution to the understanding 

of the FT process at low pressure and long term runs using an industrial iron 

based catalyst. 

9.2 Recommendations 

The research findings presented in this thesis has made significant progress in 

terms of low pressure FT runs and the possibility of reducing the FT catalyst with 

the syngas that will be used for reaction. Different reducing agents did not show 

much difference in terms of catalyst activity, and also showed negligible 

deactivation for long TOS of about 1000 hours. Based on the thermodynamic data, 

the formation of metallic iron on reduction with hydrogen is not likely at the 

reduction temperature used in this work, although the literature has reported its 

presence. 

In order to have an in-depth understanding of the catalyst speciation during 

reduction and reaction, and the catalyst response to low pressure runs and in-situ 

regenerability, the following recommendations for further work/research are 

suggested. 

 

1) There is need to develop probes that can be used to carry out in-situ 

catalyst characterization and to extract information on catalyst speciation 

pathways in realistic environments. In this case, the probes would give the 

catalyst phases at any particular instance. 

2) Perform rigorous low pressure tests of the method in different reactor types 

(such as fluidized bed type reactors) and compare against historical data 

acquired or available before scaling up to pilot studies. This would help to 

understand the applicability of low pressure conditions in different reactor 

types.  

3) While it has been demonstrated clearly that oxidative regeneration is 

effective for only the one reactor, there is need to gather more data to justify 
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whether the syngas reduction only results in these findings. A positive result 

in this regard would enhance the confidence required to use syngas as a 

reducing agent. 
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