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ABSTRACT 

____________________________________________________ 

The production of liquid transportation fuels and chemicals by the Fischer-Tropsch (FT) 

synthesis continues to garner attention due to its economic and environmental benefits. This 

interest is also compounded by the flexibility to use readily available materials as feedstocks 

for synthesis gas production, with coal, natural gas, biomass and recently shale gas being 

used. Although this process is over 90 years old, challenges still remain. In this study, we 

have attempted to understand several FT synthesis challenges by exploring the use of carbon 

spheres as a model support for Co, Fe and Fe-Co FT catalysts. Thus the synthesis, 

characterization and application of carbon spheres with distinct architectures are described.   

 

The synthesis of solid carbon spheres using a sucrose precursor yielded materials that were 

mono-dispersed (600 nm) and adopted a necklace-like accreted conformation. Upon further 

investigation, it was demonstrated that annealing is useful for tuning the properties of the as-

prepared materials to have high surface areas (> 500 m
2
/g), good thermal stability (>660 °C) 

and a mesoporous (> 2 nm) pore structure. Deposition of a Fe-Co bimetallic catalyst yielded 

oxides of the monometallic species with relatively small crystallites, with sizes in the range 

7.9 – 14.4 nm. Reduction of the bimetallic samples was monitored by using in situ PXRD and 

TPR techniques, which revealed that a Co-Fe type-alloy is one of the phases formed on Co-

rich samples at T > 450 °C. Interestingly, high relative abundances of this alloy did not 

correlate with high C5+ selectivities in Fischer-Tropsch synthesis; instead Co-rich/Fe-poor 

catalysts gave the best selectivity. 

 

The effect of the support morphology in heterogeneous catalysis was investigated by using 

high surface area solid and hollow carbon spheres (>560 m
2
/g) prepared from a resorcinol-

formaldehyde precursor as support material. Loading the Co and Fe precursors on these two 

supports was shown by TEM and PXRD to result in smaller and well dispersed metal 

particles on the hollow support material. This corresponded with high activities and C5+ 

selectivities for the Co and Fe catalysts supported on the hollow carbon spheres. TEM studies 

revealed that the Co and Fe particles tended to sinter significantly when dispersed on a 

material with a solid architecture. 
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Post-synthesis N-doping using a melamine precursor was shown by XPS to incorporate high 

quantities of nitrogen (up to 13%) on to the surface of the 30 nm thick shells of the hollow 

carbon spheres. On further investigation, N-doping by this method was shown to have 

minimal effects on the thermal stability and crystallinity of the materials. The N-doped HCSs 

were shown to be good anchors of Co particles as displayed by the good dispersion, activity 

and minimal sintering tendency of catalysts supported on N-doped HCSs.  

 

Studies conducted herein have demonstrated the versatility of carbon spheres as a model 

support, and how their properties can be tailored to suit the desired specifications by simply 

adjusting the synthesis parameters. We have also highlighted how the chemical inertness of 

these materials allows for studies on metal-metal interactions at elevated temperatures for 

bimetallic catalyst systems. The monodisperse, morphology-tunable aspects of carbon 

spheres were particularly useful in modelling the effect of the support morphology in Fischer-

Tropsch synthesis. It is believed that the versatility of CSs demonstrated in this study can also 

be exploited in other heterogeneous catalytic systems.  
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“We do not need magic to change the world,  

we carry all the power we need inside ourselves already:  

we have the power to imagine better” 

J. K. Rowling  
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Scope of the study - Overview 

Crude oil, discovered in 1859 in the United States of America, has been the mainstay source 

of energy upon which the modern global economy has been built. It was the relatively low 

price and the perceived long term availability of crude oil that made the world so dependent 

on oil. However, the high demand for oil over recent years has put a strain on the world’s 

crude oil reserves and has led many to predict that the oil production is peaking throughout 

the world. Fears of a limited supply of oil coupled with the ever increasing demand driven by 

rapid expansion in South East Asia and the perceived political unrest in the major oil-

producing nations such as Saudi Arabia, Iran, Iraq, Venezuela and Nigeria has resulted in 

unstable oil prices in the last 10 years. The demand for oil-derived products has created an 

overwhelming push for alternative sources of fuels. Fischer-Tropsch synthesis (FTS) stands 

out as the most promising and proven technology that has the potential to revolutionize the 

fuel industry.   

 

Fischer-Tropsch end products (chemicals and fuels) compete directly with their equivalents 

produced from crude oil, hence the price of crude oil is an important factor in determining the 

viability of the Fischer-Tropsch process. Previous estimates on the viability of commercial 

FT synthesis predicted that the process should be feasible at crude oil prices ~ US$20 per 

barrel.
[1]

 But this value increases yearly as production and overall plant running costs 

continue to escalate. The oil price has been well over this value in the past decade. Recently, 

the oil price has been unstable. For example, the price increased to US$141/bbl in June 2008 

due to fears of reduced oil supply, before it plunged to US$ 28.50/bbl in January 2016. At the 

time of compiling this thesis the cost of oil was US$48/bbl (Fig. 1).
[2]

 Thus, the FT process is 

an attractive technology for countries with huge reserves for natural gas, shale gas, or coal. 

 

Fischer-Tropsch synthesis provides an alternative and promising route for the production of 

synthetic lubricants and synthetic fuels from a variety of carbon-containing feed-stocks such 

as coal, biomass and natural gas. In FTS, syngas, a mixture of CO and H2, is catalytically 

converted through a surface polymerisation reaction into a wide spectrum of hydrocarbons. 

Different transition metals have been found to be active in promoting this hydrogenation of 

CO, namely ruthenium, cobalt, iron and nickel. Most industrial processes have focused on 

Co- and Fe-based catalyst. Cobalt based catalysts are preferred for the synthesis of long-chain 

linear paraffins due to their high activity and selectivity towards C5+ hydrocarbons and low 

activity for the water-gas shift (WGS) reaction. Iron catalysts are generally less expensive 
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and they are used for the production of gasoline, hydrocarbons and linear alpha-olefins, as 

well as a mixture of oxygenates, such as alcohols, aldehydes and ketones. Fe catalysts also 

produce excessive amounts of carbon dioxide due to their high WGS activity. Catalysts 

which have been studied to a lesser extent in FTS are Fe-Co bimetallic systems. The use of 

bimetallic catalysts has been shown to influence the observed product distribution and 

selectivity, instead of simply giving the additive properties of the individual metals.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Crude oil prices recorded monthly for the period 1946‒2016.
[2]

 

 

Typically, an FT catalyst is dispersed on a support in order to enhance its catalytic 

performance. Metal oxides such as Al2O3, TiO2, SiO2 and MgO have been used as support 

materials for FT catalysts. However, the challenge with the use of these supports is that they 

can generate a strong metal-support interaction with the FT catalyst. This can lead to the 

formation of irreducible mixed compounds which are not active in the reaction, thus resulting 

in a loss of the expensive catalyst. Carbon-based materials, especially carbon spheres, 

promise to be an alternative support material for Fischer-Tropsch catalysts. 

 

 

 

 

 

 

 
 



 3 

Thesis outline 

The aim of this thesis was to use carbon spheres as a model support material for Co and/or Fe 

Fischer-Tropsch catalysts. Properties of the synthesized carbon spheres were tuned to make 

them ideal for application in the Fischer-Tropsch (FT) process. A break-down of the thesis 

chapters is given below: 

 

Chapter 1 gives a short introduction to the basic concepts related to Fischer-Tropsch 

synthesis. Effects associated with the reactor design, active phase composition and the type of 

support material used have been highlighted. Finally, an overview on the use of carbon 

spheres (CSs) as a support for FT catalysts has been summarized. 

 

Chapter 2 focuses on the different CS morphologies that are possible. Their synthesis by 

various approaches and their subsequent application in heterogeneous catalytic reactions has 

been reviewed. 

 

Chapter 3 gives an overview of the experimental procedures involved in the synthesis of the 

various carbon spheres, the preparation and characterization details of the support materials 

and catalysts used in this study. Finally, the conditions at which catalytic evaluations were 

done have been given. 

 

Chapter 4 demonstrates how the properties of solid hydrothermal carbon spheres can be 

tuned by a thermal treatment procedure. After establishing optimum conditions for producing 

the carbon spheres, the materials were then evaluated as a support for Fe-Co bimetallic FT 

catalysts. 

This chapter was published as; MW Dlamini, DO Kumi, TN Phaahlamohlaka, AS Lyadov, 

DG Billing, LL Jewell, NJ Coville, Carbon spheres prepared by hydrothermal synthesis – a 

support for bimetallic iron cobalt Fischer-Tropsch catalysts, ChemCatChem 2015, 7, 3000 – 

3011. 

 

Chapter 5 explores the use of hollow carbon spheres as a support for cobalt Fischer-Tropsch 

catalysts. Furthermore, details on the N-functionalization of these materials by a post-

synthesis procedure are described. 
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Chapter 6 describes an investigation of the effect of the support morphology on the 

performance of a Co Fischer-Tropsch catalyst. Solid and hollow carbon spheres with 

comparable properties were used as the model support materials in this study. 

 

Chapter 7 compares the use of a hollow carbon sphere and solid carbon sphere support in the 

preparation of a supported Fe FT catalyst. 

 

Chapter 8 provides a summary and conclusion on the use of hydrothermal carbon spheres as 

a model support material for Fe and/or Co Fischer-Tropsch catalysts. 
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CHAPTER 1 

INTRODUCTION - Fischer-Tropsch synthesis 

1.1 Background 

The Fischer-Tropsch (FT) process has recently become a subject of renewed interest 

particularly in the context of exploitation of large reserves of stranded gas, 

diversification of carbon sources for transportation fuels and environmental concerns 

triggered by the presence of pollutants such as aromatic compounds or sulfur in crude 

oil.
[1-2]

 Carbon sources such as coal, biomass or natural gas can be converted to 

mixtures of CO and H2 (synthesis gas) by processes such as partial oxidation or steam 

reforming. The syngas can subsequently be converted to hydrocarbons in the FT 

process. For economic and logistic reasons, such energy conversions are best carried 

out in large scale projects. Therefore, the catalysts used in the FT process are required 

to have good activity, product selectivity as well as a long life span. 

 

When iron catalysts are used, the FT product stream consists of large amounts of 

linear alpha olefins as well as long chain linear paraffins and oxygenates.
[3]

 

Sometimes it is desirable to shift the selectivity of the process during production to 

maximize the fabrication of chemicals rather than producing large quantities of the 

lower value gasoline fuel. Notably, straight-run FT gasoline has a low octane rating 

and low cold-flow properties since it is predominantly linear; hence require upgrading 

in downstream hydro-isomerization and hydrocracking refinery operations.
[4-5]

 

Maximizing the gasoline yield is usually achieved by the oligomerization of the 

gaseous unsaturated FT products typically performed by using non-selective acid 

catalysts such as phosphoric acid, followed by hydrogenation to yield branched 

paraffinic products which are characterized by high octane numbers.
[6-7]

 This 

procedure is particularly useful for high temperature FT synthesis because of the high 

yield of unsaturated hydrocarbons in the C3-C5 fraction. 

 

By contrast, FT-derived diesel fuel has a high cetane number (> 70 whereas the 

requirement is ~ 45).
[7]

 This is because FT products are mainly linear paraffins, 

particularly when Co-based catalysts are used. To achieve a maximum diesel yield, 

the production conditions are set to favour the fabrication of waxes. For example, the 

use of Fe or Co catalysts at temperatures higher than 210 °C yields a product stream 
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rich in C20+ hydrocarbons. The heavy hydrocarbons are subsequently cracked to yield 

over 80% diesel which is free from contaminants such as CO, NOx and particulates.
[8]

  

 

Historically, discoveries associated with the Fischer-Tropsch (FT) reaction started in 

Germany nearly nine decades ago. As early as 1902, Sabatier and Senderens reported 

the formation of a hydrocarbon (methane) from the reaction of CO and H2 over a 

nickel or cobalt catalyst at atmospheric pressure.
[9]

  In 1913 the Badische Anilin und 

Soda Fabrik (BASF) of Ludwigshafen, Germany, discovered the production of 

methanol at technical scale from syngas at high temperatures and pressures.
[10]

 

Subsequently, in 1923 Franz Fischer and Hans Tropsch achieved the production of a 

synthol from synthesis gas at the Kaiser Wilhelm Institut für Kohlenforschung (now 

Max Plank Institute) in Mülheim, Germany. Synthol is a mixture of aliphatic 

oxygenated compounds, and was obtained over base-promoted iron chips at 150 

atmospheres pressure and in the temperature range 400 – 450 °C.
[11-12]

 The synthol 

produced this way was then converted into synthine, a mixture of hydrocarbons, 

which was later distilled for possible use as a transportation fuel. Evaluation of the 

fractionated distillate on a motorbike carrying two persons suggested that this product 

was comparable, if not better than a crude oil-derived reference fuel.
[13]

 This invention 

later proved to be a key invention and the process was subsequently named the 

Fischer-Tropsch process in their honour. Soon thereafter, it was realised that the use 

of a cobalt-based catalyst in the Fischer-Tropsch process allowed for the process to be 

performed at much lower reaction temperatures and pressures.
[14]

  

 

1.2 Industrialization of the Fischer-Tropsch process 

After the establishment of the FT process, scientists started unravelling the 

engineering aspects of the invention. The early large-scale FT plants were all used in 

Germany. Developments in reactor technology by Ruhrchemie yielded the first 

commercial FT plant at Oberhausen, Germany in 1936. The total production capacity 

from the 52 reactors of this small scale-plant was 1 400 barrels per day (bbl/day). By 

the close of 1938, a total of nine FT plants were operational in Germany, having a 

combined production capacity of about 14 000 bbl/day.
[15]

 All nine plants used Co-

based catalysts for their production and operated at atmospheric pressure. This large 

scale production ability proved to be useful at the time because it allowed Germany to 

use its FT-derived fuels during the Second World War. Production at these plants 
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ceased after the war following the discovery of additional crude oil reserves. 

However, interest in the FT process remained amid fears that crude oil reserves would 

soon be depleted. 

 

After World War II, Ruhrchemie and Lurgi developed a large-scale 

Arbeitsgemeinschaft (ARGE) process for wax production over iron catalysts. Around 

the same time, a technology based on a circulating fluidized bed reactor was 

developed at Kellogg. At this time, discoveries of large natural gas reserves in the 

United States of America together with declining crude oil reserves triggered interest 

in the Fischer-Tropsch process. Subsequently, a commercial gas-to-liquids (GTL) 

plant with a capacity of 7 000 bbl/day of primary product was commissioned by the 

Hydrocarbon Research Inc. at Brownsville, Texas. This plant utilized synthesis gas 

produced from the partial combustion of natural gas, and synthesis was performed in a 

fixed fluidized bed reactor using an iron catalyst.
[6]

 This plant was soon shut down 

(1956) though because the cost of natural gas had increased sharply while crude oil 

became cheaper and was more readily available.
[16]

 

 

 

In South Africa, Sasol had been tasked with exploiting the large coal deposits present 

in the country and to convert them to gasoline, diesel and chemicals using the 

German-developed Fischer-Tropsch process. In 1951 Sasol received five proposals on 

available reactor technologies for their planned coal-to-liquids plant. A decision was 

made to settle for two of the proposed designs; a circulating fluidized-bed (CFB) 

reactor submitted by M. W. Kellogg, and an ARGE fixed-bed system by Arbeit-

Gemeinschaft Lurgi and Ruhrchemie. In 1955, Sasol started operating a large-scale 

FT synthesis plant at their Sasol I site in Sasolburg, South Africa, utilizing ARGE 

fixed-bed reactor and CFB reactor technologies. Two-thirds of the available synthesis 

gas was to be converted to synthetic fuels by using the Kellogg CFB system, while the 

ARGE fixed bed technology was used to convert the other third (at the time).
[17]

 The 

catalyst used in the ARGE reactor consisted of iron supported on silica and had 

copper and an alkali as promoters. Unsupported iron fine powder was used as a 

catalyst in the CFB reactor.  

The early 1970s saw drastic increases in crude oil prices and this resulted in increased 

profitability in operations at the Sasol I site. Thus as decision was taken to construct 
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two larger additional coal-to-liquid (CTL) plants in Secunda, South Africa.  These 

were commissioned in 1980 and 1982 (Sasol II and Sasol III, respectively). The Sasol 

II and Sasol III plants initially used CFB reactors but these were later upgraded to 

newly developed Sasol advanced synthol (SAS) reactors which had diameters of 8.0 

m (11 000 bbl/day) and 10.7 m (22 000 bbl/day). Production at these sites was geared 

up towards the synthesis of transportation fuels as they were built to counter the oil 

crisis which was prevalent at the time. These plants continue to be profitable due to 

their large-scale capacity. After these developments there followed a period in which 

cobalt FT catalysts were “rediscovered”. These catalysts were found to be more 

suitable for the conversion of stranded natural gas to fuels in low temperature gas-to-

liquid (GTL) FT synthesis. Soon the construction of two GTL plants started; in 

Mossel Bay (South Africa) and Bintulu (Malaysia), and were both commissioned in 

1993. The Mossgas plant (presently PetroSA) has a capacity of 20 000 bbl/day 

whereas the Shell Bintuli plant produced 15 000 bbl/day of synthetic hydrocarbons 

using the Shell middle distillate synthesis (SMDS) process. 

 

More recently, a joint venture between Sasol (49%) and Qatar Petroleum (51%) 

resulted in the construction of the $900 m Oryx GTL plant in Ras Laffan, Qatar. It 

was commissioned in 2006 and operated on Sasol slurry phase distillate (SPD) 

technology. The initial capacity for the plant was 34 000 bbl/day of hydrocarbons 

(24000 barrels of diesel, 9000 barrels of naphtha and 1000 barrels of liquefied 

petroleum gas), and used about 330 000 ft
3
/day of natural gas.

[18]
 Planned future 

expansions on this facility are expected to increase its capacity to a projected 450 000 

bbl/day of synthetic hydrocarbons. In Qatar, Shell built the Pearl GTL plant which 

became fully functional in 2012, using experience gained at the Bintulu operations 

(Malaysia). With a total capacity of 140 000 bbl/day, this facility has about 10 times 

the capacity of the Bintulu plant. Just like the predecessor plant, the Pearl GTL 

operates on the Shell middle distillate synthesis (SMDS) process.
[18]

 In 2014 another 

GTL plant was inaugurated in Escravos, Nigeria, and is owned by Chevron (75%), 

Sasol (10%) and the Nigerian National Petroleum Company (NNPC, 25%). This 

facility converts 325 million ft
3
/day of natural gas to about 34 000 bbl/day of 

synthetic fuels, and uses the Sasol SPD and the Chevron ISOCRACKING 

technologies.
[19-20]

 Many other companies are involved in the development of 

technologies associated with the FT process, such as ExxonMobile, ConocoPhillips, 
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BP, Eni/IFP, Syntroleum and Rentech. Some recent developments in FT plant 

operation by various companies are listed in Table 1.1. 

 

Table 1.1 Summary of recent developments on major FT plants.
[21]

  

 

Year 

 

Company or companies 

 

Technology 

Production level 

(bbl/day) 

 

Country 

1955 

 

 

1980 

 

 

1982 

 

 

1993 

 

 

1993 

 

 

 

2006 

 

 

2012 

 

 

 

2014 

  

Sasol 

 

 

Sasol 

 

 

Sasol 

 

 

PetroSA 

 

 

Shell 

 

 

 

Sasol and Qatar Petroleum 

 

 

Shell and Qatar Petroleum 

 

 

 

Chevron, Sasol and 

Nigerian National 

Petroleum Company 

Sasol I 

 

 

Sasol II 

 

 

Sasol III 

 

 

Sasol’s slurry phase 

technology 

 

Shell middle distillate 

synthesis (SMDS) fixed-

bed technology 

 

Sasol slurry phase 

distillate (SPD) 

 

Shell middle distillate 

synthesis (SMDS) fixed-

bed 

 

Sasol slurry phase 

distillate (SPD) 

500 

 

 

11 000 (later 

20 000) 

 

11 000 (later 

20 000) 

 

20 000 

 

 

15 000 

 

 

 

34 000 (expected: 

450 000) 

 

140 000 

 

 

 

34 000 

  

South 

Africa 

 

South 

Africa 

 

South 

Africa 

 

South 

Africa 

 

Malaysia 

 

 

 

Qatar 

 

 

Qatar 

 

 

 

Nigeria 

  

  

1.3 Fischer-Tropsch chemistry 

The chemistry taking place in the FT reactor is complex because it involves a variety 

of competing reactions.
[22]

 The main reactions in FT synthesis are summarized in 

equations 1.1 to 1.3 as shown: 
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Paraffin formation: 

  nCO  +  (2n + 1)H2  →  CnH2n + 2  +  nH2O   (1.1) 

Olefin formation: 

  nCO  +  2nH2  →  CnH2n  +  nH2O     (1.2) 

Water-gas shift (WGS) reaction: 

  CO  +  H2O  ↔  CO2  +  H2     (1.3) 

 

where n is the carbon number. Several other reactions that occur include the formation 

of oxygenates, the Boudouard reaction, catalyst oxidation/reduction and carbide 

formation which have been discussed in detail elsewhere.
[21]

 The FT process is a 

kinetically controlled reaction and the basic kinetics involves a step-wise chain 

growth process, which is essentially the polymerization of CHx (x = 1, 2, or 3) groups 

on a catalyst surface to produce a broad spectrum of hydrocarbons. Chain growth 

during FT synthesis is still a subject of discussion; two proposals are at the forefront 

of this debate. The first proposal, called the carbide mechanism, involves the cleavage 

of the C–O bond followed by partial hydrogenation to form CHx,ads groups, which 

then polymerize to yield heavy hydrocarbons. The second proposal, called the 

Pichler-Schulz mechanism, describes chain growth by the insertion of CO into a 

metal–methyl or metal–methylene carbon bond which is subsequently hydrogenated 

to an alkene or alcohol.
[23]

 Selectivities towards certain products are influenced by the 

ability of the catalyst used to promote either chain propagation versus chain 

termination reactions. The distribution of hydrocarbon products formed in the process 

is normally predicted using the Anderson-Schulz-Flory (ASF) model, which can be 

expressed as follows: 

Wn/n = (1‒α)
2
α

n-1 

where Wn is the weight fraction of hydrocarbon molecules containing n carbon atoms, 

α is the probability of chain growth (i.e. the probability that a molecule will continue 

reacting to form a larger chain). Generally, the value of α is determined by the 

characteristics of the catalyst and the specific process conditions.
[24]

 

 

1.4 Fischer-Tropsch reactors 

The Fischer-Tropsch reaction is well known for its high exothermicity (ΔHR = -165 

kJ/molCO).
[25]

 It is therefore important that reactor design ensures that the heat 

generated during the reaction is removed efficiently from the catalyst bed. Excessive 
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temperatures at the catalyst surface result in high methane yields and deactivation of 

the catalyst due to carbon deposition and sintering. At present, reactor types utilised in 

commercial FT synthesis include: tubular fixed-bed reactors, slurry phase reactors, 

fluidized bed reactors and circulating fluidized bed reactors. Only fixed-bed reactors 

have been discussed in this section because of their relevance to the study.  

 

1.4.1 Fixed bed reactors 

Modern fixed bed reactors are of a multi-tubular type and consist of many narrow 

tubes placed vertically with a cooling medium (typically water) in the outer shell of 

the tubes. The catalyst is placed inside the tubes and the narrow size of the tubes 

ensures efficient heat removal during FT synthesis. An example of a multi-tubular 

fixed bed reactor currently in operation at the Sasolburg plant in South Africa is the 

ARGE reactor developed by Ruhrchemie and Lurgi (Germany). This type of reactor 

consisted of an overall diameter of 3 m, and contained 2050 tubes which had a 5 cm 

internal diameter and were 12 m long (Fig. 1.1).
[16, 22]

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A schematic representation of a multi-tubular fixed bed reactor.
[22]

 

 

Multi-tubular fixed-bed (MTFB) reactors can be operated easily as the separation of 

the liquid wax products and the catalyst does not require any additional 

instrumentation. The liquid products simply collect in ports at the bottom of the 

reactor. Another advantage of this type of reactor is the relative ease at which it can 
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be up-scaled to industrial scale and still perform similar to predictions made using a 

pilot scale reactor which consists of the use of a single tube. Additionally, the set-up 

in this reactor allows for minimal deactivation of the catalyst as a result of poisons in 

the feed gas. Poisoning of the catalyst only occurs in the top sections of the tubes 

while the rest of the catalyst remains active. 

 

The tubes in a MTFB reactor are made with a narrow diameter to ensure efficient heat 

removal but this often presents challenges in the operation of the reactor. For instance, 

narrow tubes increase the gas compression costs which arise from trying to eliminate 

pressure drops across the narrow reactor tubes.
[26]

 Furthermore, loading and unloading 

the catalyst can be challenging due to the narrow size of the tubes. Weak catalyst 

pellets tend to break under the high pressures used. Other drawbacks of multi-tubular 

fixed bed reactors are the high capital costs, insufficient heat transfer and the high 

mass-transfer limitations.
[27]

 

 

1.5 Fischer-Tropsch catalysts 

The FT product selectivity towards transportation fuels and chemicals is tunable by 

the careful selection of catalyst properties; hence catalyst design is important in 

optimizing the FT process. The process of selecting the active metal to be used in a 

particular catalyst formulation is dependent on a number of factors. These include the 

syngas composition (H2/CO ratio), the price and availability of the active metal, and 

the desired end product. To simplify these factors, the “triangle concept” has been 

proposed as a suitable approach for the design of FT catalysts as it takes account of 

the catalytic, mechanical and chemical/physical properties (Fig. 1.5) of the 

catalysts.
[28]

 For the FT process, Ni, Co, Fe and Ru catalysts are known to have 

sufficient performance for industrial application. It is generally agreed that nickel is 

not an appropriate catalyst for FT synthesis. Nickel is too hydrogenating, and 

produces high yields of the generally undesired methane. Furthermore, Ni forms 

highly toxic nickel carbonyls (volatile) at low temperatures, which results in the loss 

of the catalyst from the reactor.
[29]

 Ru displays the highest activity and selectivity for 

heavy hydrocarbon products in FT synthesis at temperatures as low as 140 °C.
[30-31]

 

However, the low reserves for Ru worldwide and its high cost, eliminates its use for 

large-scale FT applications. This leaves cobalt (Co) and iron (Fe) as the only catalysts 



________________________________________________ 13 

used commercially. Details on Co, Fe and Fe-Co bimetallic catalysts are discussed in 

the next sections due to their relevance to this study. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 A representation of the “triangular concept” for catalyst design.
[28]

 

 

1.5.1 Iron catalyst 

Fe catalysts are useful in FT synthesis because of their flexibility, low cost, high 

abundance and low CH4 selectivity. They are predominantly used for the production 

of alpha olefins as well as a mixture of oxygenated products such as ketones, 

aldehydes and alcohols. Apart from their high activity in the FT reaction, iron-based 

catalysts also produce large quantities of CO2 due to their high water-gas shift (WGS) 

activity. This makes them unsuitable for use on natural gas derived synthesis gas 

because of environmental concerns regarding CO2. However, they are suitable for the 

production of hydrocarbons from synthesis gas derived from coal or biomass, which 

inherently has low H2 to CO ratios (H2/CO ~ 1).  Thus the WGS reaction is useful for 

the internal generation of H2 during FT synthesis.
[32-33]

 Furthermore, Fe catalysts 

typically contain chemical promoters such as copper to promote catalyst reducibility, 

potassium to improve CO dissociation, and structural promoters like silica or zinc 

oxide to improve the catalyst dispersion.
[34]

  

 

Fisher-Tropsch synthesis has two operating regimes divided according to the 

operating temperatures. The low temperature Fischer-Tropsch (LTFT) reaction 

typically operates in the range 190‒260 
o
C while the high temperature Fischer-

Tropsch (HTFT) reaction operates at 300‒350
 o

C. Fe-based catalysts are suitable for 

operation at both LTFT and HTFT conditions. In the HTFT process Fe-catalysts are 
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used for the production of both C1‒C15 hydrocarbons and α-alkenes, while long-chain 

linear alkanes are produced from the LTFT processes.
[35]

 

 

During FT synthesis, a complex mixture of iron phases co-exist; metallic iron (α-Fe), 

iron oxides and iron carbides are present.
[36]

 Iron carbides are essentially α-Fe species 

with carbon dissolved in their interstitial vacancies. Unlike Co catalysts, iron carbides 

are easily formed from Fe catalysts under FT working conditions. Niemantsverdriet 

and van der Kraan have attributed this to the low activation energy of iron carbide 

formation (43.9‒69.0 kJmol
-1

) compared to cobalt carbide formation (~145 kJmol
-

1
).

[37]
 Commonly reported carbide phases include θ-Fe3C (cementite), χ-Fe5C2 (Hägg 

carbide), ε-Fe2C and ε'-Fe2.2C (hexagonal carbides). Due to the intricacy of the iron–

oxygen–carbon system, the identity of the active phase(s) on Fe-based catalysts is 

contentious.
[38]

 Several studies have suggested that α-Fe, bulk and surface iron 

carbides or Fe3O4 are the active phases during the FT reaction.
[39]

 Literature also 

suggests that the formation of iron carbides results in a high FT synthesis activity, and 

that magnetite (Fe3O4) is the most active phase for the WGS reaction.
[40-42]

 One of the 

major challenges of iron catalysts in FT is their high deactivation rate and inherently 

their relatively short catalyst life-time.   

 

 

1.5.2 Cobalt catalysts 

Cobalt is much more expensive than Fe hence Co-based catalysts are usually 

supported on high-surface area materials to improve their dispersion. Cobalt FT 

catalysts are preferred for the conversion of synthesis gas (syngas) derived from 

natural gas because of their higher per pass conversion, high intrinsic activity, 

selectivity for heavy hydrocarbon products and long lifetime relative to Fe 

catalysts.
[43]

 Syngas derived from natural gas has high H2 to CO ratios, typically ~2. 

Due to its high hydrogenation capability, Co catalysts allow for the production of 

paraffinic waxes which are then hydrocracked to make lubricants and diesel fuel with 

excellent cetane ratings. Large-scale plants which use Co catalysts have been in 

operation for over 10 years now in Qatar (Oryx GTL) and in Malaysia (Shell).  

 

For cobalt catalysts, it is generally accepted that metallic Co is the active phase in FT 

synthesis. Metallic cobalt (Co
0
) can exist in two different crystalline forms, namely 
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the hexagonal close packed (hcp) structure and the face centred cubic (fcc) structure. 

The phase formed usually depends on the conditions (gas composition, temperature) 

at which the calcined materials are reduced, and the type of cobalt species formed 

after activation affects the FT synthesis performance. Elbashir et al. observed that the 

nature of the support also determines the eventual phase; Co fcc was preferred on 

SiO2, whereas the Co hcp structure was the main phase on Al2O3 supported catalysts 

after reduction.
[44]

 In FT synthesis, higher CO conversions and C5
+
 selectivities have 

been measured on Co hcp catalysts relative to Co fcc samples (Table 1.2).
[45]

 This 

could be associated with the larger quantity of surface defects (corners, edges) on the 

Co hcp structure than found on the cubic stacking (Co fcc). 

 

Table 1.2 FT data for hcp and fcc phases of Co/SiO2 catalysts. Reaction conditions: T 

= 220 °C, P = 20 bar, H2/CO = 2/1 and syngas flow rate: 3.0 sl h
-1 

gcat
-1

.
[45]

 

 

Catalyst 

 

TOS (h) 

CO conv. 

[%] 

Selectivity  

TOF (s
-1

) CH4 C5+ 

Co hcp 

 

 

Co fcc 

 

16 

450 

 

13 

492 

63.1 

55.5 

 

45.1 

32.1 

3.5 

4.2 

 

6.4 

7.2 

88.2 

90.2 

 

86.1 

82.9 

0.095 

0.068 

 

0.092 

0.049 

 

 

From thermodynamic calculations, predictions show that the oxidation of bulk cobalt 

to CoO or Co3O4 during realistic FTS conditions is not possible. However, Co can 

possibly form mixed compounds such as cobalt aluminate upon interacting strongly 

with the support material.
[46]

 Even though bulk oxidation of cobalt metal is not 

feasible thermodynamically, it has been shown from calculations that cobalt particles 

in the nano-regime can oxidise under typical FT synthesis conditions.
[47]

 Visagie et al. 

attributed this observation to the surface energy of cobalt particles that are in the 

nanometre size range which contributes to overall oxidation process. On this basis it 

was determined that the oxidation of cobalt crystallites with sizes between 4 and 5 nm 

is viable under typical FT conditions, i.e. PH2O/PH2 = 1-1.5. In similar studies, Iglesia 

found that the oxidation and deactivation of cobalt crystallites below 6 nm occurs 

rapidly under realistic FT conditions.
[48-49]
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1.5.3 Iron-cobalt bimetallic catalysts 

As highlighted in earlier sections, Co has a high activity and selectivity to heavy 

hydrocarbon products but low WGS activity, whereas Fe is known to be active for the 

WGS reaction but its kinetic FT rate is postulated to be adversely affected by the 

partial pressure of water. However, when Fe and Co are used together, reports have 

indicated that they do not simply give the additive properties of the constituent 

metals.
[50-52]

 Thus, a supported iron-cobalt (Fe-Co) bimetallic catalyst would seem to 

be a viable proposition for the conversion of syngas into fuels and commodity 

chemicals.  

 

Several advantages of Fe-Co bimetallic systems have been highlighted in the 

literature. By studying co-impregnated catalysts, Holmen et al. observed that alloying 

Co with moderate amounts of Fe improved the FT activity of Co catalysts without a 

corresponding increase in the WGS activity. Hence it was concluded that the increase 

in the activity was due to a higher FT activity of the Fe-Co mixtures when compared 

to pure Co catalysts.
[53]

 Many other studies have also reached the same conclusion.
[54-

56]
 It has also been reported that the use of a mixture consisting of Fe and Co has 

generated FT products with high yields of olefins and oxygenated products such 

alcohols, compared to individual Fe or Co catalysts.
[57]

 For these systems, it is thought 

that the metallic Fe-Co alloy (formed upon reduction bimetallic precursor) is active 

phase in FT synthesis,
[58]

 but this area still warrants further study because in situ 

characterization of these systems has been limited. 

 

Much of what is known about the activation process or the catalytic species in 

bimetallic systems has mainly been inferred from indirect experimental evidence. 

This has been done by the post-analysis of spent or reduced-then-passivated samples. 

This indirect approach often results in inconclusive or contradicting reports because 

of the complex phase transformations that occur in such systems. For example, the 

formation of an alloy on these systems is still uncertain.
[59]

 The analysis of reduced or 

spent catalysts by many authors has revealed the presence of reflections that 

correspond to the Fe2Co, Co7Fe3 or Co/Fe alloys.
[60-63]

 While elsewhere, studies have 

reported not detecting any features associated with alloy formation.
[64]

 Tavasoli et al. 

have linked the formation small quantities of the alloy to an increase in alcohol 
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selectivity during FT synthesis.
[57]

 Thus visualizing the reduction processes as they 

occur is key for a better understanding and development of bimetallic catalysts. 

 

It is generally accepted that monometallic Co has a higher FT activity than Fe 

catalysts. However, for bimetallic Fe-Co systems it appears that several factors 

determine the activity of a catalyst and these include; the precursors of Fe and Co, the 

preparation method, the nature of the support material used, the metal addition 

sequence and the ratio of Co to Fe in the catalyst. For example, Vannice et al. showed 

that intermediate CO conversions and hydrocarbon selectivities were obtained from 

Fe-Co systems prepared from metal carbonyl clusters [Fe3(CO)12 and Co2(CO)8] as 

precursors.
[65]

 The effect of the metal addition sequence has been reported by 

Duvenhage et al. on Fe-Co/TiO2 catalysts prepared by the sequential impregnation of 

Co then Fe nitrate precursors. XPS analysis of the calcined and reduced samples 

revealed that the surface was richer in Fe content, indicating that the Fe had 

segregated from the Fe-Co system either during calcination or the reduction steps. Not 

surprisingly, the FT performance of this bimetallic system was comparable to that of a 

monometallic Fe/TiO2 catalyst.
[50]

 

  

1.6 Supports for Fischer-Tropsch catalysts 

Although more than eight decades have passed since the first application of iron-

based catalysts in the Fischer–Tropsch process, studies to understand and improve 

factors that affect the activity, selectivity and stability of a catalyst are still ongoing. 

The type of material used as a support for the active catalyst is critical in the FT 

process as it can directly influence the performance of a catalyst. Support materials 

are expected to play the following roles in heterogeneous catalysis: 1) to provide high 

surface areas for the catalytically active species; 2) to immobilize the active phase and 

thus minimize sintering; 3) to maintain the mechanical integrity of the material and to 

facilitate the mass or heat transfer in a diffusion-limited or exothermic reaction.
[36]

 It 

is also desirable that surface area and pore volume of the support material be high 

enough to allow for a good dispersion of the active phase and eliminate mass transfer 

limitations. Additionally, a balanced chemical interaction must be maintained 

between support and the active phase. Too weak an interaction may lead to a poor 

dispersion of the active phase, whereas if the interaction is too strong it can cause 

difficulty in the reduction of the active phase precursor.
[66]

 For example, Khodakov et 
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al. observed a decline in the ease of reduction from larger (20 nm) to smaller (6 nm) 

Co3O4 particles supported on silica. This effect was attributed to the differences with 

which large and smaller particles interact with the support.
[67]

  

 

FT catalysts are typically dispersed on metal oxides that include SiO2, TiO2, Al2O3 

and MgO. The chemical nature of the support material has been shown to influence 

FT performance. Studies on Co catalysts supported on these oxide materials by Reuel 

and Bartholomew found that the turnover frequency (TOF) in FT synthesis declined 

as follows; Co/TiO2 > Co/SiO2 > Co/Al2O3 > Co/MgO.
[68-69]

 This is attributed to the 

presence of a strong metal-support interaction (SMSI) with the classical FT catalysts, 

Fe and Co. The strong interaction of these catalysts with the oxide supports has been 

shown to result in the formation of mixed compounds such as Co2SiO2,
[35, 70]

 

Co2AlO4,
[71-72]

 CoTiO4,
[73]

 Fe2SiO4
[38]

 or FeO-MgO,
[74-75]

 which can only be reduced 

at elevated temperatures. An alternative approach to overcome challenges associated 

with SMSIs is to use carbon-based supports. Carbon is relatively inert hence it has a 

moderate interaction with the active phase particles when it is used as a catalyst 

support. 

 

  1.7 Carbon as a catalyst support 

Carbon, the sixth element in the periodic table, has unique properties. It can form 

stable bonds with itself as well as most elements due to the different hybridization it 

can undergo; sp, sp
2
 and sp

3
.
[76]

 And as expected, the different C-C bonding 

configurations possible result in materials with varying properties. For example, 

diamond is one of the hardest materials known to mankind, whereas graphite is a 

slippery material and it is used as a solid lubricant. At present, carbon materials that 

have been synthesized include activated carbon (AC), carbon nanotubes (CNTs), 

carbon spheres (CSs), glassy carbon (GCs), carbon dots (CDs) and carbon nanofibers 

(CNFs). These materials possess different characteristics because the properties of 

carbon materials are strongly influenced by their morphology. Hence, the ability to 

selectively fabricate carbon materials of a particular morphology is very important for 

their various applications. Amongst these materials, CSs stand out because of their 

unique properties and has become an attractive research field due to its potential 

applications, e.g., in catalyst supports, confined nano-catalysis, lithium-ion secondary 

batteries, drug delivery, and as an energy storage medium.
[77-79]
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1.8 Carbon spheres as a catalyst support 

As a model catalyst support, advantages of CSs use are associated with their ease of 

synthesis which is possible without the use of catalysts, the ability to control their 

physical properties (size, purity, porosity), and the high yields of pure materials that 

can be synthesized. Due to their high surface-to-volume ratios, excellent structural 

stability, low electrical resistance, along with the possibility to modify their surfaces 

and interiors by coating and doping, CSs are well suited to be used as catalyst 

supports. Carbon spheres (CSs) can have different morphologies; solid, hollow, core-

shell or yolk-shell/rattle-kind structure. Illustrations of the different morphologies are 

displayed in Fig. 1.6. Carbon spheres were used as a model support for Fischer-

Tropsch catalysts in this study. Details on the synthesis and subsequent use of carbon 

spheres as a support in heterogeneous catalysis are given in chapter 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Different kinds of CS morphologies that can be fabricated; a) solid CSs, b) 

hollow CSs, c) core-shell CSs and d) yolk-shell CSs.
[80]
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1.9 Aims and objectives 

The use of carbon-based materials as a model support for Fischer-Tropsch catalysts 

still comes short when explaining some phenomena that are actually observed in the 

reaction when metal oxide supports are used. This is partly because of the inability to 

fabricate carbons with flexible/tunable properties. These properties include surface 

area, pore structure, thermal stability and surface chemistry. These challenges 

prompted us to explore the use of hydrothermal carbon spheres as an alternative 

model support (to TiO2, SiO2, Al2O3) for FT catalysts, addressing issues on the 

control of their properties.   

 

The specific objectives of the study were; 

(i) To tailor the synthesis conditions of carbon spheres prepared by the 

hydrothermal method to yield materials which have high surface areas for 

use as model catalyst supports.  

(ii) To exploit advantages related to carbon spheres in understanding phase-

activity relationships for Fe-Co bimetallic systems which could be 

important for improving catalyst performance and efficiency.   

(iii) Determine the feasibility of using hollow carbon spheres as a model 

support for Fischer-Tropsch catalysts. Issues on their robustness and 

surface functionalization were to be addressed.  

(iv) Understanding the effect of the catalyst support morphology in FT 

synthesis by utilizing morphology-tunable carbon spheres as a model 

system.  

(v) To prepare Co, Fe and Fe-Co catalysts supported on carbons and then 

characterize them by using TEM, SEM, BET, TGA, XRD, FTIR, XPS and 

Raman spectroscopy.  

(vi) To study the reduction behaviour of the catalysts under realistic reaction 

conditions by using in situ powder X-ray diffraction (PXRD) and 

temperature programmed reduction (TPR) techniques. 

(vii) To evaluate the catalytic performance of the prepared materials in the 

Fischer-Tropsch synthesis.  
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This chapter is still to be submitted for publication as a review article. 

CHAPTER 2 

 

LITERATURE REVIEW: Recent advances in the synthesis and application of spherical 

carbons in heterogeneous catalytic reactions 

 

2.1 Introduction 

The future development of material science hinges on the ability to control the synthesis of 

nanomaterials with distinctive morphologies and functional properties.
[1]

 Carbon chemistry is 

an integral part of the recent revelations seen in nanotechnology for several reasons. These 

include its abundance and its ability to form many allotropes like diamond, graphite, 

nanotubes or graphene which exhibit different physical and chemical properties.
[2-3]

 Carbon, 

the sixth element in the Periodic Table, is unique in the number and variety of ways in which 

it can bond, leading to a wide range of carbonaceous structures with quite different 

properties. Carbon has the ability to form long chains of interconnecting C–C bonds and can 

form covalent bonds with other elements, which are strong and stable. Carbon can have 

different hybrid orbitals sp, sp
2
, and sp

3
, which allow it to form pentagonal, hexagonal, and 

heptagonal carbon rings. These distinctive and diverse arrangements allow carbon to form an 

almost infinite number of compounds and build up to form various shaped carbon 

materials.
[4]

 Among these materials are an intriguing set of spherical nanostructures called 

carbon spheres (CSs). The tunable diameter, structural architecture, surface functional 

groups, porosity and thermal stability of carbon spheres has attracted much attention from 

material scientists because of their potential applications in catalysis, as adsorbents, and in 

drug delivery, gas storage and as electrode materials. 

 

Carbon spheres can essentially be thought of as a 0D material composed of curling graphitic 

flakes with a random twist,
[5]

 with subsequent layers deposited in a manner that follows the 

curvature of the sphere (Fig. 2.1). The spherical curvature within a layer is due to the 

different carbon ring sizes that coexist. While flat regions are composed of hexagonal rings, 

pentagonal or heptagonal carbon rings result in inward positive curvature (+60°) or outward 

curvature (-60°) respectively.
[6]

 However, the layers within a CS are not closed. This 
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arrangement gives CSs many applications in catalysis due to the presence of surface 

defects.
[7]

 Studying the application of carbon spheres in heterogeneous catalysis is 

particularly interesting because about 90% of the world’s chemical manufacturing processes 

involve a heterogeneous catalyst in their synthesis methodology. Examples of products from 

heterogeneous catalytic processes are plastics, polymers, agricultural products, 

pharmaceuticals, synthetic fibres, paper products, materials for energy production, modern 

building materials and its well documented use for environmental protection such as in 

DeNOx catalysts, filters for diesel engines or in photo-catalysis for the treatment of pollutants 

in wastewater.
[8]

  

 

Typically, the active phase of a heterogeneous catalyst is dispersed on a porous carrier to 

enhance its surface area. The nature of the support material is an essential component of a 

heterogeneous catalyst. It provides mechanical integrity and stabilizes the dispersed catalyst 

precursor nanoparticles. The use of metal oxides such as TiO2, SiO2, MgO or Al2O3 as 

catalyst support materials both industrially and in academia is well documented. However, 

these oxides possess a strong metal-support interaction which results in the formation of 

irreducible compounds and therefore attenuates catalyst performance.
[9-11]

 Recent focus has 

been turning to the use of carbon-based supports because of their relative chemical inertness 

and the ability to tailor their properties to suit the intended use.  

 

In this section, recent method developments in the synthesis of CSs with various architectures 

are described. Particular attention has been paid to summarize how synthesis methods of the 

CSs can be tailored to maximize their potential applications in catalytic systems either by; (1) 

controlling the size and pore structure, (2) improving their surface chemistry through 

functionalizing, or (3) improving their thermal stability and degree of graphitization. 
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Figure 2.1 Scheme for the formation of a large carbon sphere.
[5]

 

 

Carbon spheres can generally be categorized using the following criteria: 

(a) Their architecture can either be solid, core-shell, yolk-shell or hollow. 

(b) The spatial arrangement of the carbon layers can be radial, concentric or consist of 

random layers. 

(c) The sphere diameter: less than 2 nm (fullerenes), 2 – 20 nm (well graphitized 

spheres), 50-1000 nm (less graphitized spheres) while those larger than 1000 nm are 

called carbon beads.  

(d) Average diameter (d) of pores in their structure: microporous (< 2 nm), mesoporous 

(2<d<50 nm) or macroporous (> 50 nm). 

(e) The method used in CS fabrication. 

 

While these different methods are used for CS classification, it is generally believed that the 

architecture of CSs influences its properties since the other methods of classification are 

tunable. Hence CSs have been classified according to their architecture in this work but the 

other classes of classification have also been discussed. 
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2.2 Synthesis approaches for the different architectures 

2.2.1 Solid carbon spheres 

Numerous methods have been developed for the synthesis of solid CSs, including chemical 

vapour deposition (CVD),
[12-13]

 pyrolysis of organic compounds,
[14-15]

 ultrasonic treatment,
[16]

 

a solution plasma process,
[17]

 arc-discharge,
[18]

 polymerization,
[19]

 a microwave-assisted 

method
[20]

 and hydrothermal synthesis.
[21-22]

 The hydrothermal carbonization method is one 

of the common approaches for synthesizing monodispersed solid carbon spheres. The 

hydrothermal synthesis route can be considered to be similar to the natural processes 

involved in the formation of coal.
[23]

 It involves the decomposition of cheap carbon-

containing precursors from the carbohydrate family (e.g. glucose, sucrose, and fructose) or 

raw lignocellulosic biomass using autogenic pressure and mild reaction temperatures (100 –

300 °C) with subsequent conversion of the carbon source into carbonaceous materials in 

high-pressure reaction vessels. The synthesis is considered to be “green” as it does not 

incorporate the use of any organic solvents, catalysts or surfactants.
[24]

 The reaction 

mechanism for the formation of the carbon spheres involves the dehydration of the 

carbohydrate into a furan-like molecule (furfural aldehyde and/or 5-(hydroxymethyl)-2-

furaldehyde)
[25-26]

 followed by polymerization
[27]

 and carbonization steps. Typically, the 

prepared materials are hydrophilic in nature as they have several surface functionalities (vide 

infra).  

 

Ouzzine et al. prepared solid CSs by the hydrothermal treatment of three carbohydrates; 

glucose (a monosaccharide), sucrose (a disaccharide) and cellulose (a polysaccharide). The 

CS size (0.72 μm – 12 μm) was shown to be dependent on the carbohydrate concentration. 

They found that activation by H3PO4, KOH, NaOH and CO2 all improved the textual 

properties of the carbons, with specific surface areas higher than 3,100 m
2
/g.

[28]
 These 

findings were in agreement with previous reports.
[29-30]

 

 

The pyrolysis of carbon-rich polymer spheres is also a popular method among scientists for 

the fabrication of solid CSs. High-temperature carbonization converts the polymer analogues 

to carbon when performed under inert reaction conditions. For instance, Liu et al. reported 

the synthesis of monodisperse CSs via an extension of the well-established Stöber method 
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used in the preparation of colloidal silica spheres. Their approach involved the initial 

synthesis of resorcinol-formaldehyde (RF) resins by a sol-gel procedure which used ammonia 

as a catalyst. Subsequently, carbonization done at 600 °C for 4 h converted the polymer 

resins to high surface area (> 500 m
2
/g) carbon spheres with tunable sizes (200 – 1000 

nm).
[19]

 Additionally, support materials with large pore sizes are normally required for 

heterogeneous catalysis applications as they allow smooth diffusion of large reagent 

molecules through the catalyst bed.
[31-33]

 In the past, nitrogen-doped solid CSs with large 

mesopores (~16 nm) were synthesized by the self-polymerization of dopamine and the 

spontaneous co-assembly of polystyrene-block-poly(ethylene oxide) [PS-b-PEO] micelles 

(Fig. 2.2). These N-doped carbon materials possess high electrocatalytic activity and stability 

which is comparable to Pt/C catalysts.
[34]

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 (a) Scheme for the formation process of N-doped solid CSs with large pores, and 

SEM images of (a) PDA/PS173-b-PEO170 composite spheres before carbonization, (b) N-

doped solid CSs after thermal treatment at 800 °C.
[34]

 

 

Solid CSs are also synthesized by the CVD method which involves the decomposition of a 

carbon source at high reaction temperatures. This method is non-catalytic hence the products 
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are of high purity and contain no metal impurities.
[35]

 Qian et al. reported the synthesis of 

solid CSs by non-catalytic pyrolysis of toluene to produce carbon materials with diameters in 

the range 60 nm to 1 μm. The sizes of these CSs were controlled by changing the flow-rate 

and carrier-gas composition.
[36]

 Jin et al. have shown that CVD synthesis of CSs can use a 

range of hydrocarbons as carbon precursors, such as styrene, toluene, benzene, hexane, 

cyclohexane or ethene and all produce significant quantities of CSs (diameter: 50 nm to 1 

μm) without the use of a catalyst.
[15]

 It has also been proposed that high temperature 

treatment of CVD-synthesized CSs can alter their properties. For instance, annealing them at 

2,800 °C was observed to change their spheroidal morphology into a well-defined polyhedral 

shape which possess long-range order (Fig. 2.3).
[37]

 Recently, studies investigating the 

feasibility of large-scale (pilot plant scale) production of solid CSs have been described by 

Jiménez and co-workers. They successfully generated up to 43 g sample per run by the 

pyrolysis of benzene in the absence of a catalyst. The CSs also displayed good thermal 

stability and crystallinity, however, they had low surface areas (< 7 m
2
/g) and low pore 

volumes (< 0.1 cm
3
/g).

[38]
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Figure 2.3 SEM images of (a) as-synthesized (CVD) CSs, (b) annealed CSs. Also displayed 

are HRTEM images of (c) edge of as-prepared CS, (d) edge of annealed CS, (e) coalescence 

region of two as-prepared CSs, (f) coalescence region of two annealed CSs.
[37]

 

 

2.2.2 Hollow carbon spheres 

The field of hollow structures, which consist of a large interstitial void surrounded by a 

permeable shell, has been extensively pursued by several research groups because of their 

unique properties. These include their low density, high surface area and the large variable-

sized inner voids. Consequently, these materials find applications in many fields, such as 

drug storage and delivery,
[39]

 catalysis,
[40]

 energy storage,
[41]

 lithium-ion batteries,
[42]

 water 

treatment,
[43]

 fuel cells,
[44-45]

 confined synthesis
[46]

 and in optics and electronics.
[47]

 In 

particular, hollow structures made of carbon, hollow carbon spheres (HCSs), are interesting 

to synthesize for use as supports for heterogeneous catalyst supports.  
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For the synthesis of HCSs, templating or scaffolding is the most frequently adopted approach. 

Synthesis of nanomaterials via the templating approach requires (1) production of the 

template should be reproducible and be of low cost; (2) simple modification of the surface of 

the templates; (3) accurate encapsulation of the template by the shell precursor to ensure a 

uniform layer; and (4) a facile method for the selective removal of the template.
[46, 48]

 

Fabrication of HCSs by the template approach is done using either the soft- or hard-template 

routes as illustrated in Fig. 2.4. 

 

 

 

 

 

 

Figure 2.4 Scheme illustrating the differences between (A) hard templating and (B) soft 

templating approaches. 

 

2.2.2.1 Soft-templating approach 

This is a bottom-up synthesis route that uses soft matter, that is, organic molecules or 

amphiphilic supramolecules such as surfactants and block copolymers which can form 

vesicle structures that act as templates during synthesis. Vesicle structures typically form 

through hydrogen bonding and hydrophilic/hydrophobic interactions in aqueous media.
[49]

 

The ability of these organic structures to self-organize into a range of supermolecular 

structures allows for easy manipulation of the pore structure of the nanomaterials. 

Cooperative interaction between suitable carbon precursors around the supermolecular 

structures gives a well-defined organic-organic structure.
[50-51]

 The soft template can then 

either be consumed at later stages of the synthesis or removed by extraction or calcination 

procedures. It is also possible that the organic molecules can make emulsion droplets which 

can act as the template in a procedure called self-templating. The latter scenario does not 

require an additional template removal step.  
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In the past, reports showed that HCSs in the size range 50 nm to 3 μm can be prepared by the 

hydrothermal treatment of glucose in the presence of sodium dodecyl sulfate (SDS) as the 

anionic surfactant.
[52]

 However the synthesized HCSs were polydispersed. Yang and co-

workers reported a hydrothermal fabrication of HCSs with a tunable size (200 - 400 nm) and 

shell thickness (50 - 80 nm) from α-cyclodextrin as a carbon precursor and Pluronic F127 as 

a soft template.
[53-54]

 The HCSs were found to be mesoporous and had high surface areas 

(>400 m
2
/g) and a high specific charge capacity (>450 mAh/g) when applied as an anode 

material in lithium ion batteries. Elsewhere, small-sized (~20 nm) HCSs also called carbon 

dots (CDs) have been prepared in a one-step procedure involving mannose as the carbon 

precursor, octadecene as a non-coordinating solvent and oleylamine as a capping agent.
[55]

 

The authors believe that water vapour-generated nanobubbles are the soft template in this 

procedure. Xu et al. have fabricated uniformly small HCSs (69 nm) with exceptionally high 

surface areas (3022 m
2
/g) by using Triton X-100 surfactant as a template and utilizing aniline 

and pyrrole as co-monomers (Fig. 2.5). The large surface areas measured on these HCSs were 

obtained by carbonizing the polyaniline-co-polypyrrole (PACP) intermediate for 20 h, which 

simultaneously reduced the outer diameter from 106 nm (PACP) to 69 nm.
[56]

 

 

 

 

 

 

 

 

  

Figure 2.5 Scanning and transmission electron microscopy images of (a, d) PACP 

intermediate and (b, e) HCSs after a 20 h carbonization procedure. The outer and inner 

diameters of the HCSs are displayed in (c) and (f) respectively. Scale bars: 500 nm (a, b), 100 

nm (d) and 200 nm (e).
[56]

 

 

 

 

 

 

 



____________________________________________________  34 

 

General advantages of soft-templating are that it does not require the use of hazardous 

chemicals such as HF or NaOH for template removal and it also has less synthesis steps 

which enhances its scalability prospects. The major drawback associated with this approach 

is the lack of reproducibility when synthesis is done in large quantities. 

 

2.2.2.2 Hard-templating approach 

The hard templating technique involves prior preparation of solid particles which are used as 

a template. This approach requires an additional synthesis step for the removal of the 

sacrificial template after the formation of the carbon shells around them. This is achieved via 

dissolution, etching or calcination procedures. Properties of the HCSs such as their diameter, 

dispersity and morphology are inherited from the template hence controlling these properties 

usually requires tuning the synthesis conditions for the hard template.  

 

Monodispersed silica spheres with a size range of 50 to 2000 nm
[57]

 have been widely used as 

a solid template for HCS synthesis. These spheres are typically fabricated using the Stöber 

method or with slight variations, to gives silica spheres which are uniform in size and 

monodispersed. The method is highly reproducible. In the Stöber method, colloidal silica 

spheres are produced through the hydrolysis of silicon alkoxides such as tetraethyl 

orthosilicate (TEOS) in an ethanolic solution (water-ethanol) by utilizing ammonia as a 

catalyst (Eq. 2.1) and the concurrent condensation of silanol groups to produce siloxane 

bonds (Si─O─Si) and the by-products which are alcohol (Eq. 2.2) and water (Eq. 2.3).
[58]

 Not 

only does ammonia catalyze the hydrolysis and condensation steps of this sol-gel synthesis, it 

also inhibits aggregation of the silica particles by forming a positively charged layer of NH4
+
 

ions on their surface. 

 Hydrolysis:  ≡Si─OR  +  H2O      ≡Si─OH  +  ROH   (2.1) 

Alcohol condensation: ≡Si─OR  +  HO─Si≡      ≡Si─O─Si≡  +  ROH  (2.2) 

Water condensation: ≡Si─OH  +  HO─Si≡      ≡Si─O─Si≡  + H2O  (2.3) 

   where R is an alkyl group, CnH2n+1 
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Varying the sizes of silica spheres produced this way entails changing the water-to-alcohol 

ratio, TEOS and ammonia concentration or the chain length of the alcohol used. For example, 

Malay et al. compared the use of methanol, ethanol, propanol and butanol as the alcohol in 

colloidal silica fabrication. After monitoring the particle sizes using dynamic light scattering 

(DLS) they were able to demonstrate that the diameter of the particles increased with an 

increase in the molecular weight of the alcohol solvent.
[59]

 

   

Encapsulation of the silica with a carbon precursor can be done using one of these methods; 

hydrothermal synthesis, polymerization or chemical vapour decomposition. Here, the most 

commonly used carbon precursors include hydrocarbons such as toluene, benzene or styrene 

and low molecular weight polymeric mixtures of formaldehyde like phloroglucinol-

formaldehyde (or PF resin), phenol-formaldehyde (or resol) and resorcinol-formaldehyde (or 

RF resin).  Recently, Tang et al. synthesized N-doped HCSs with large mesopores (~20 nm) 

via a dual-template approach involving colloidal silica and the amphiphilic block copolymer 

polystyrene-b-poly(ethylene oxide) [PS173-b-PEO170].
[60]

 These materials present new 

potential applications in heterogeneous catalysis because of their large and tunable pore sizes 

(Fig. 2.6). 

 

 

 

 

 

 

 Figure 2.6 Schematic illustration of the preparation of N-doped HCSs with large 

mesopores.
[60]
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It is often desirable to functionalise the surface of the template in order to tailor specific 

surface area, pore size and the pore structure of the final nanostructure. In 2011, Chen et al. 

functionalized silica spheres with a mesoporous layer of silica to form a SiO2@m-SiO2 

template (Fig. 2.7). The procedure utilized the surfactant CTAB (cetyltrimethylammonium 

bromide) as a structure directing agent. The authors observed two effects associated with 

CTAB use; first it promoted carbon deposition onto the silica template which led to higher 

yields, and secondly, it resulted in high surface area (771 m
2
/g) mesoporous hollow carbon 

spheres which had a pore structure identical with that of MCM-41.
[61]

   

  

 

 

 

 

Figure 2.7 TEM images of (a, b) SiO2@m-SiO2 and (c) mesoporous HCSs.
[61]

 

  

2.2.3 Core-shell carbon spheres 

Core-shell structures involve the innovative encapsulation of a core by a shell which is 

chemically different and therefore allows for the fabrication of materials with multiple 

functionality such as hydrophilic/hydrophobic amphiphilicity. Uniform core–shell 

nanoparticles with different functional compositions are being widely investigated because of 

their potential applications in drug delivery, catalysis, photonic crystals, bio-diagnostics and 

energy storage.
[62]

 The interest in core-shell structured materials arises due to the advantages 

which result from having the encapsulated cores being of different chemical compositions 

from the polymeric or inorganic shell. Core-shell mesoporous spheres comprising of an 

active metal precursor as the core and a mesoporous shell are a suitable candidate for 

nanoparticle immobilization in catalysis because the porous shell prevent particle 

agglomeration and their thin shells ensures a short diffusion distance of reagent molecules.
[63]

 

The use of carbon-based shells to encapsulate metallic cores is particularly interesting 

because of carbon’s relative chemical inertness and its tunable pore structure. 
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Fabrication of core-shell structures involves the carbon-encapsulation of pre-formed metallic 

cores (M) by polymerization of carbon precursors such as polydopamine,
[64]

 resorcinol-

formaldehyde,
[65]

 or polystyrene, poly(acrylic acid).
[66]

 The formed composites (referred to as 

M@polymer) are then carbonized at high temperature to give the M@C core-shell 

nanostructures. For instance, Zhang and co-workers reported the synthesis of monodisperse 

Fe3O4@C spheres via the polymerization of a resorcinol-formaldehyde carbon source on the 

surface of pre-formed Fe3O4 particles as shown in Fig. 2.8.
[67]

 The uniform carbon shell’s 

thickness on these spheres was tunable (20 – 100 nm) by a simple variation of the Fe3O4 to 

RF ratio. 

 

 

 

 

 

 

 

 

Figure 2.8 Representation of the mechanism for the fabrication of Fe3O4@C core-shell 

spheres.
[67]

 

 

Elsewhere, core-shell spheres of the form M@C (M = Au, Pt, Pd) have been fabricated via a 

one-step synthesis method involving a 30 minutes reflux of an aqueous mixture composed of 

the metal precursor, carbon source and ammonia as the catalyst (Fig. 2.9). The authors 

reported increased shell thickness (~20 nm to ~150 nm) by controlling the carbon source 

concentration, while the metal core size (28 nm - 53 nm) was shown to be related to the 

amount of the ammonia catalyst added during the synthesis.
[68]

 The proposed method was 
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shown to be versatile as it worked uniformly irrespective of whether the core metal particles 

were for Au, Pt or Pd. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 TEM images of M@RF and M@C core-shell spheres, (a-b) Au@RF and Au@C, 

(c-d) Pt@RF and Pt@C, (e-f) Pd@RF and Pd@C.
[68]

 

 

2.2.4 Yolk-shell (or rattle-type) carbon spheres  

For nanostructures with a core-shell morphology, the core materials are compactly stuck to 

the shell materials, and therefore their catalytic performance compromised to some extent. 

Structures with a yolk-shell architecture promise to be a solution to this challenge.
[69]

 Yolk-

shell structures (also called rattle-type structures) are a special type of the core-shell 

morphology, the distinction being that they possess tunable interstitial spaces between the 

metallic core and the porous carbon shell. The cores of such novel materials can be 

considered to be “moveable” hence they are also referred to as rattle-type structures (Fig. 

2.10). 
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Yolk-shell structures are an innovative and promising approach for making stable catalysts, 

and are based on the incorporation of the metal nanoparticles into a porous shell thus limiting 

particle leak and sintering during high temperature reactions.
[8]

 The properties of the shell can 

then be engineered accordingly for improved performance in their applications. These 

include: (1) to have high porosity, (2) have a specific pore structure, and (3) be stable at the 

temperatures at which the reactions will be conducted. For example, Fang and co-workers 

showed the efficient use of mesoporous carbon@mesoporous silica rattle-like nanospheres 

for loading anticancer multidrug-based combination therapy systems. The advantage of this 

architecture was that the hydrophobic mesoporous carbon cores were found to have good 

affinity with water-insoluble drugs, whereas the biocompatible hydrophilic mesoporous silica 

shell had good affinity with water-soluble drugs.
[70]

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Representation of yolk-shell nanoparticles with different structures: (A) structure 

with a single core, (B) structure with multiple cores, (C) structure with multiple shells, and 

(D) structure with a raspberry-like core.
[71]

 

 

Synthesis of yolk-shell carbon-based materials can be done either by the selective etching 

(dissolution method) or by the bottom-up approach which uses soft templating. The selective 
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etching method is the more common of the two. In this process, a pre-synthesized metal core 

is encapsulated by two chemically different layers, the inner layer is typically silica while the 

outer layer is carbon (represented as metal@silica@C). This three-layered structure has an 

egg-like composition similar to the ‘yolk, egg white, and eggshell’.
[72]

 Subsequently, the 

inner silica layer (i.e. the egg white) is selectively etched out using an appropriate solvent or 

by calcination to yield the rattle-type 0D material which is represented as metal@C structure. 

The outer carbon shell on this type of architecture serves as a barrier for preventing 

nanoparticle leak and coalescence during high temperature reactions. By using this approach, 

Liu et al. fabricated Ag@C yolk-shell nanoparticles by the carbonization of a resorcinol-

formaldehyde composite (i.e. Ag@SiO2@RF) followed by the selective etching of silica.
[73]

 

This one-pot synthesis approach is made possible by the by the different polymerization rates 

of silica and resorcinol-formaldehyde even when performed under identical reaction 

conditions (similar solvents, room-temperature synthesis, ammonia catalyst).
[74]

 Silica 

quickly polymerises to form a Ag@SiO2 core-shell structure, while the polymerization of 

resorcinol-formaldehyde to form Ag@SiO2@RF is a slower process. Wang et al. also used a 

similar approach to prepare rattle-structured Fe3O4 spheres by selectively etching out silica 

from a Fe3O4@SiO2@RF hybrid structure.
[75]

 

 

The selective etching method has also been employed in the synthesis of rattle-type materials 

by evaporation of the inner (egg white) layer. Hong and Kang recently proposed the 

fabrication of Sn@C hybrid structures by a simple two-step method which included the 

evaporation of Zn which was embedded in the core of the material.
[76]

 They first prepared 

core-shell SnO2-ZnO@C spheres by a one-pot spray pyrolysis process which were later 

transformed into yolk-shell Sn@C microspheres by heat-treatment at 1000 °C under reducing 

conditions. The vaporization of reduced Zn metal generated a large void between the carbon 

shell and the Sn metal (Fig. 2.11). 
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Figure 2.11 Schematic representation of the formation mechanism of yolk-shell Sn@C 

carbon spheres.
[76]

 

 

Synthesis of yolk-shell structures can also be achieved via the bottom-up approach which 

utilizes soft templates. Kao et al. have demonstrated a facile approach to prepare such rattle-

type nanomaterials in which Ag nanoparticles are the core enclosed in a carbon shell.
[77]

 They 

first encapsulated the Ag nanoparticles (31 ± 5 nm) in a sodium dodecyl sulphate (SDS) 

surfactant to form a Ag@SDS core-shell structure. A layer of carbon was then introduced to 

the Ag@SDS composite by the hydrothermal treatment of a glucose carbon precursor. The 

size of the interstitial void in the yolk-shell Ag@C hybrid structure was determined by the 

concentration of the SDS anionic surfactant.   

 

Carbon-based core-shell nanostructures can also be fabricated to possess multiple core 

particles per hollow carbon sphere. For instance, Zheng et al. reported the synthesis of core-

shell carbon spheres with multiple cores of the form M@carbon (M = Sn, Pt, Ag, Fe–FeO 

nanoparticles) via ultrasonic spray pyrolysis of aqueous solutions containing sodium citrate 

and corresponding inorganic metal salts.
[78]

 The mechanism involves first the generation of 
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metal nanoparticles by reduction of the metal salts using hot sodium citrate, followed by the 

formation and subsequent carbonization of sodium citrate to form the outer carbon shell. 

Residual water-soluble by-products are removed by a simple washing step. Fuertes et al. 

reported the synthesis of M@carbon (M = Fe2O3, Fe3O4, CoFe2O4, NiO, Cr2O3) by a simple 

impregnation of the inorganic precursors dissolved in ethanol into pre-synthesized hollow 

carbon spheres. 
[79]

 The generated core-shell materials had large surface areas (> 500 m
2
/g), 

high pore volumes (> 0.3 cm
3
/g) and the pore structure was mainly composed of mesopores. 

Recent studies by Hao and co-workers have also proposed a procedure for the synthesis of 

yolk-shell hybrid materials M@carbon (M = Cu, NiO) via a one-step co-pyrolysis method 

which utilized a metal-oleate complex and phenolic resin monomers as raw materials (Fig. 

2.12).
[80]

 

 

 

 

 

 

Figure 2.12 Schematic illustration for the preparation of Cu@C yolk-shell nanospheres with 

multiple cores.
[80]

 

 

Recently, the procedures for the fabrication of yolk-shell particles have been extended for use 

in the synthesis of nanostructured materials with multiple (two or more) shells and are 

expected to have better performances over their single-shelled counterparts for various 

applications. For example, Wang and co-workers synthesized multiple-shells of Co2SnO4 and 

SnO2 (Fig. 2.13) which have a mesoporous pore structure by annealing CoSn(OH)6 under 

inert conditions. These multiple-structured nanomaterials displayed superior activity for the 

degradation of organic pollutants since they are photocatalysts. This morphology increased 

the surface area of the material and thus the available active sites for adsorption of the 

organic pollutants, while the thin shells enhanced diffusion of electron-hole pairs which are 

generated on the surface of the photocatalysts.
[81]
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Figure 2.13 Transmission electron microscopy images of CoSn(OH)6 with multiple-shell 

hollow structures: (a, b) yolk–shell particles; (c, d) double-shelled structures; (e) SAED 

pattern of a double-shelled structures; (f, g) double-shelled structures with larger inter-shell 

cavities; (h) a triple-shelled structure; and (i) a quadruple-shelled structure.
[81]

 

 

2.3 Functionalization of carbon spheres 

The functionalization of spherical carbons is a vital step in tailoring their properties for their 

intended use. The widely used procedures for functionalizing CSs involve surface oxidation 

and heteroatom introduction which can be done during synthesis or via post-synthesis 

treatments. 

 

 2.3.1 Oxidative treatments 

This is a non-selective liquid-phase procedure for introducing various oxygen-containing 

groups such as carboxyl group, quinone, ether, phenol, lactone, acidic anhydride or ketones to 

the surfaces of the carbons. The presence of these oxygen-containing functional groups on 

carbon surfaces increases the surface acidity and adsorption ability.
[82-84]

   Due to the relative 
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chemical inertness of carbon, post-synthesis introduction of these functional groups is usually 

done under harsh reaction conditions using oxidizing agents like hot nitric acid, sulphuric-

nitric acid mixture, potassium permanganate or hydrogen peroxide. The one-pot 

hydrothermal synthesis of CSs yields materials with surface oxygen-containing functional 

groups and hence oxidative treatments are not required.
[85-86]

 

 

2.3.2 Heteroatom introduction (doping) 

The introduction of heteroatoms such as nitrogen, boron, phosphorous or sulphur into the 

carbon framework of carbons (called doping), continues to draw extensive attention, because 

it brings additional advantages such as creation of more active sites and allow the 

introduction of new properties such as increased electrochemical catalytic activity, 

hydrophilicity, electrical conductivity and higher selectivity towards selected catalysis 

applications.
[87]

 Interest in doping of carbons originates from the ability to modify the 

electron donor/acceptor characteristics of carbons and this results in the enhancement of the 

electro-chemical properties of carbon.   

 

Doping carbons with nitrogen endows the materials with additional surface nucleation sites 

which, in catalysis, can serve as anchorage sites thereby improving the dispersion of catalyst 

nanoparticles on the support material. Additionally, nitrogen-doped materials have a stronger 

metal-support interaction relative to pristine ones which can be advantageous as it enhances 

the stability of the catalyst for reactions done at elevated temperatures. These benefits are due 

to the attributes of nitrogen which include the strong electron donor behaviour of nitrogen 

which leads to enhanced bonding. The incorporation of N into a carbon lattice can take one of 

three common bonding configurations, i.e., quaternary (or graphitic), pyridinic and pyrrolic. 

Nitrogen-rich compounds such as acetonitrile,
[88]

 phenylenediamine,
[89]

 polyaniline,
[90]

 and 

melamine
[91]

  are typically used as precursors for the fabrication of N-doped nanomaterials. 

Generally, catalysts supported on N-doped CSs display improved activity and selectivity 

which has been attributed to: (a) the nitrogen functionalized surface influences particle 

deposition by altering nucleation and particle growth kinetics thereby resulting in smaller, 

more uniform nanoparticles which tend to be highly dispersed on the support material, (b) 

modified electron donor/acceptor characteristics on the surface on the material, and (c) 
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improved stability of the catalyst during the reaction because of the lone pair of electrons on 

N which acts as an anchor for the nanoparticles and minimizes sintering at high reaction 

temperatures.  

 

In the past, boron has also been suggested as a dopant for carbon materials because it is only 

one electron less than C, has a comparable atomic radius to carbon and can therefore be 

easily incorporated into the carbon framework. Doping carbons with boron is of interest 

because it improves the mechanical and electrical properties of carbon.
[92-95]

 During the 

interaction between a tri-coordinate boron centre and an adjacent π-electron system, the 

vacant pz B-orbital exerts a strong π-acceptor effect which results in an extension of the π-

conjugation pathway. The interaction is more pronounced in the ground state LUMO than the 

HOMO thereby resulting in a decrease of the HOMO-LUMO gap. This decrease renders the 

boron-doped carbon material a better electron acceptor.
[96-98]

 It has been shown using electron 

energy loss spectroscopy (EELS) that B-doped carbon materials have a lower Fermi energy 

level which creates new empty π states into which the 1s electrons can be excited.
[99]

 It is 

these exciting properties that have allowed boron-doped carbons to be utilized as an efficient 

metal-free electro-catalyst for the oxygen reduction reaction in fuel cells instead of the 

precious Pt metal.
[100]

  

 

Pioneering work by Mondal et al. proposed the synthesis of boron-doped CSs by non-

catalytic chemical vapour deposition (800 °C) using acetylene as a carbon source and boron 

trifluoride in methanol as the boron source. The B-doped materials which were prepared this 

way had significantly different electrical conduction properties relative to pristine carbon 

spheres.
[101]

 Subsequent work on the fabrication of boron-doped hollow carbon spheres has 

also been done via CVD injection method. This was achieved by the injection of a solution 

containing boron trichloride and heptane/toluene onto pre-synthesized Stöber silica spheres 

(900 °C). The boron-doped HCSs displayed enhanced thermal stability in oxidizing 

conditions relative to the undoped material.
[102-103]

      

 

While N-doping of carbon materials tends to decrease the thermal stability, B-doping has 

been shown to improve the thermal stability of the materials relative to the pristine ones. 
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Furthermore, Chen et al. compared DFT calculations of palladium adsorption on N- and B-

doped carbons. While it was observed that both doped materials displayed improved Pd 

adsorption, the authors found that the enhancement of Pd adsorption was more significant on 

B-doped support than it was for when nitrogen was utilized as the dopant under similar 

conditions.
[104]

 

 

2.4 Applications of CSs in catalysis 

Spherical carbons of varying architectures can be utilized in several heterogeneous catalytic 

reactions which vary in terms of complexity, selectivity towards products, liquid/gas phase 

reactions and as metal-free catalysts. For instance, Wang et al. recently reported a novel PtCo 

bimetallic yolk-shell catalyst with excellent catalytic performance for the hydrogenolysis of 

5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) (98% yield after 2 h), a 

biomass-derived liquid fuel.
[105]

 From the many applications of CSs in heterogeneous 

catalysis, particular attention has been given to Fischer-Tropsch synthesis, oxidative 

reactions, photocatalysis, reductive and hydrogenation reactions. 

 

2.4.1 Fischer-Tropsch (FT) synthesis 

 The use of carbon spheres as a support for FT catalysts is due to their advantages of minimal 

surface energies, controllable sizes and morphologies, tunable chemical properties and high 

mechanical stability of the CSs. Unlike conventional metal oxide supports like TiO2, SiO2 or 

Al2O3 which tend to react with the cobalt FT catalyst precursor to form the CoTiO4, Co2SiO2 

or Co2AlO4 complexes, the relative chemical inertness of carbon supports makes them ideal 

model supports for FT catalysts. CVD-synthesized solid carbon spheres have been shown to 

be a better support for Co FT catalysts than carbon nanotubes because they are easier to 

prepare and contain no metal impurities.
[106]

 Studies by Moyo et al. showed that oxidative 

treatment of the solid CSs using KMnO4 was superior to the traditional HNO3 treatment as it 

produced more functional groups on the carbon surface and these materials showed higher 

selectivities towards heavy hydrocarbons during FT synthesis.
[107]

 Recently, yolk-shell 

Ru@C catalysts were demonstrated to be highly active in FT synthesis. In this yolk-shell 

architecture the ruthenium nanoparticles are partially embedded in the carbon support thus 
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anchoring them. This minimizes sintering during the reaction as the mobility of the 

nanoparticles is reduced.
[108]

 

 

2.4.2 Oxidative reactions 

Solid carbon spheres have been successfully used as a catalyst support for several oxidative 

reactions. Han et al. have used low surface area solid CSs (d: 0.42 – 4.5 μm) to disperse Pd-

Fe bimetallic catalysts with good activity for low temperature CO oxidation. The authors 

demonstrated that the sphere diameter affected catalyst activity and a catalyst supported on 

smaller spheres achieved complete oxidation at 75 °C while larger spheres achieved it at 50 

°C.
[109]

 Hollow carbon sphere supports have also been utilized in oxidative reactions. For 

example, Ravat and co-workers showed that HCSs are excellent support materials for 

palladium catalysts for use in the solvent-free oxidation of benzyl alcohol into benzaldehyde 

because up to 90% conversions are possible. Additionally, doping the HCSs with boron was 

seen to improve the activity of the catalysts as complete conversion of benzyl alcohol was 

observed.
[102]

 Meanwhile Zhang et al. found that Pt supported on N-doped HCSs had better 

activity, CO tolerance and stability than Pt supported on N-doped porous carbon or a 

commercial Pt/C catalyst in the methanol oxidation reaction (MOR) for fuel cells 

application.
[110]

  

 

2.4.3 Photocatalysis 

 The spherical morphology of CSs combined with surface defects which are generated during 

synthesis make them suitable for use in photocatalysis. Mahajan et al. has used undoped solid 

spheres as a photocatalyst for the degradation of methylene blue dye which was used as a 

model organic pollutant under UV–vis light irradiation. This study was significant as it 

illustrated that CSs can quickly (5 h) degrade organic pollutants up to 65% without the use of 

costly noble metals as catalysts.
[111]

 In the past, CdS quantum dots (QDs) dispersed on N-

doped HCSs displayed superior activity and photostability in visible-light-induced H2 

production compared to other materials (e.g. CdS/SiO2).
[112]

 The authors attributed this 

behaviour to the promoted separation and mobility rate between the CdS QDs and the N-

HCSs. 
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2.2.4 Reduction reactions 

 In the past, transition metals supported on spherical carbons have been used to catalyse 

reduction processes. For example, Zheng et al. utilized Au-loaded solid CSs to catalyse the 

reduction of 4-nitroaniline into 4-phenylenediamine by NaBH4 with 100% conversions, while 

the unstable Au nanoparticles only resulted in 72% conversions (Fig. 2.14).
[113]

 Zhang et al. 

reported the use of a novel RGO@Pd@C yolk-shell structure to catalyse the reduction of 4-

nitrophenol to 4-aminophenol. These double-shelled structures are composed of reduced 

graphene oxide (RGO) as inner shell and a carbon (C) layer as the outer shell, and were used 

to encapsulate Pd nanoparticles. The use of RGO@Pd@C nanoparticles allowed the 

reduction process to be completed within 30 seconds even with only a 0.28 wt% loading of 

Pd.
[114]

 This reduction (4-nitrophenol to 4-aminophenol) has also been catalysed by Au@C 

yolk-shell nanoparticles and fast reaction kinetics were observed.
[62, 115]

 Core-shell structured 

carbon spheres have also been used to catalyse reduction reactions. For example, Kim et al. 

used Pd@C core-shell catalysts for the reduction of nitrobenzene to aniline in the presence of 

sodium borohydride. Higher nitrobenzene conversions were observed on the core-shell 

catalyst than on unsupported Pd particles due to improved catalyst dispersion.
[116]

 

 

 

 

 

 

 

 

Figure 2.14 (a) TEM image of Au-loaded solid CSs, (b) UV-vis spectra of the Au/CSs 

catalyzed reduction of 4-nitroaniline (380 nm) into 4-phenylenediamine (320 nm). Scale bar: 

200 nm.
[113]
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2.2.5 Hydrogenation reactions 

The excellent properties of CSs have also been exploited in hydrogenation reactions. For 

example, high surface area (445 m
2
/g) Pd@C yolk-shell nanoparticles have been employed to 

catalyse the industrially important hydrogenation of chlorobenzene to benzene. Conversions 

of around 72% were measure after 90 min, with complete selectivity for the benzene product. 

This material was very stable during the reaction as the chlorobenzene conversion rate and 

selectivity remained unchanged after 5 cycles. For comparison, a Pd catalyst supported on 

activated carbon was also evaluated under similar conditions. While the latter catalyst 

displayed a higher conversion rate for the first cycle (81%), the catalyst was unstable and a 

conversion rate of 58% was measured after 5 cycles.
[68]

  

 

2.5 Concluding remarks and outlook 

Recent years have seen tremendous growth in the understanding of (a) the controlled 

fabrication of carbon spheres with different architectures and properties, (b) surface 

enrichment of carbons through doping with heteroatoms or functionalization, and (c) the 

effect that the carbon spheres nanoarchitecture and properties has in the application of the 

materials in heterogeneous catalysis. This understanding has fast-tracked the use of carbon 

spheres as support materials or metal-free catalysts in several heterogeneous catalysis 

reactions.  However, challenges still exist in this area. For instance, while most properties of 

carbon spheres can be readily tuned for their intended application, this, however usually 

involves additional steps during their synthesis which makes large-scale production of these 

materials cumbersome. An example is the use of structure directing agents like surfactants for 

controlling the pore structure of hollow and yolk-shell carbon spheres requires several 

additional steps. The use of one-step or one-pot procedures which produces materials with the 

desired properties still remains unsolved.  

 

Advantages associated with doping carbon spheres have been well demonstrated both on the 

properties of the CSs and on their performance in catalysis reactions. Recent studies have 

shown that doping using a post-synthesis procedure is better than in situ doping when the 

materials are used for catalysis applications. Post-synthesis doping is still not well understood 

and still warrants further study. Moreover, many reports exist in the literature on the 
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application of carbon spheres with different morphologies in heterogeneous catalysis. These 

reports have been useful in understanding how changing the properties of the nanostructure 

can influence its catalytic performance. Nonetheless, effects associated with the use of one 

morphology over another have still not been explored in detail. This is a challenge because 

the various morphologies require different synthesis approaches which results in materials 

with dissimilar inherent properties, making comparative studies difficult.  In this study, we 

have used CSs to study certain important aspects of the FT reaction such as the Fe-Co 

bimetallic system. It is well documented that the activity of either Fe or Co in FT synthesis is 

dependent on the interfacial interaction with oxidic supports typically used. This metal-

support interaction is strong in nature hence the study of Fe-Co bimetallic catalysts on oxide 

supports is complex. Therefore the use of a relatively inert CS support is an ideal probe on to 

the phases that form during calcination and activation steps of these systems.  
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CHAPTER 3 

 

General Experimental Methods 

 

3.1 Introduction 

This chapter highlights the differences related to the preparation of the various carbon 

materials, the preparation and characterization of mono- and bimetallic catalysts, as well as 

their evaluation in the Fischer-Tropsch synthesis process. Noteworthy, synthesis of all the 

carbons used in this study was achieved by the hydrothermal process, although the 

procedures were slightly modified to fabricate the different morphologies. It was desirable to 

improve the properties of the as-synthesized materials, and this was achieved by annealing 

them under inert conditions. The conditions and optimization details of the annealing step are 

described in chapter 4. The optimized conditions were also used to fabricate the materials 

used in chapter 5, 6 and 7.  

 

3.2 Synthesis of carbon spheres (CSs) materials 

Carbon spheres with solid and hollow morphologies were fabricated in this study. Solid 

carbon sphere synthesis was achieved by the use of glucose and resorcinol-formaldehyde 

(RF) carbon precursors, while hollow carbon sphere synthesis was restricted to the use of a 

RF carbon source. 

 

3.2.1 Synthesis of solid carbon spheres from a glucose precursor (CSs)  

 The hydrothermal method was used to synthesize solid carbon spheres from a glucose carbon 

source (CSs).
[1, 2]

 In this method, a 0.3 M sucrose solution was added to a Teflon-lined 

stainless-steel autoclave maintaining a 90% filling ratio. The temperature of the autoclave 

reactor was slowly raised to 190 °C using a ramping rate of 1 °C/min, and was maintained at 

this temperature for 4 h. The recovered product was sequentially washed and centrifuged with 

distilled water and absolute ethanol to obtain a black powder. Subsequently, the black powder 
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was purified by utilizing Soxhlet extraction for the removal of polyaromatic hydrocarbons 

(PAHs). For this extraction procedure, toluene was used as the solvent. The CSs were then 

oven dried at 70 °C for 12 h. Then, the annealing of the carbons under inert conditions was 

evaluated as a method for tuning their properties. For annealing experiments, the temperature 

was maintained at 900 °C in the flow of N2 (20 mL/min), and the time was varied from 1 to 4 

h. 

 

3.2.2 Synthesis of solid carbon spheres from a resorcinol-formaldehyde precursor 

(SCSsRF) 

Solid carbon spheres were also fabricated by the extended Stöber method by utilizing a 

mixture of resorcinol and formaldehyde as the carbon source.
[3, 4]

 Typically, an ammonia 

solution (0.5 mL, 25%) was added to an ethanolic solution consisting of deionized water (60 

mL) and absolute ethanol (24 mL) and was stirred for 1 h. Subsequently, resorcinol (0.6 g) 

was added followed by a 30 min stirring period. Then, formaldehyde (0.84 mL) was added to 

the mixture and stirring was continued for 24 h at 30 °C, followed by a hydrothermal 

treatment step performed at 100 °C for 24 h in a Teflon-lined autoclave. The recovered 

brownish powder was purified by washing/centrifugation with water and ethanol, and was 

then dried at 70 °C for 48 h. Carbonization was performed at 900 °C for 4 h in the flow of N2 

(20 mL/min) to yield the SCSsRF support material. 

 

3.2.3 Synthesis of hollow carbon spheres (HCSs) 

Hollow carbon spheres were fabricated via the hard-templating approach, with the 

hydrothermal method employed to encapsulate the template with carbon. Silica spheres, 

made by the modified Stöber method, were employed as the solid template. To synthesize the 

template, tetraethyl orthosilicate (TEOS, 2.13 mL) was mixed with 37.5 mL of absolute 

ethanol. This solution was then added to a mixture containing ethanol (25 mL), deionized 

water (7.5 mL) and ammonia (5 mL). The contents were stirred for 1 h to allow for the 

formation of colloidal silica spheres. Subsequently, resorcinol (0.5 g) and formaldehyde (0.7 

mL) were added to the solution to form a core-shell (SiO2@RF) composite. This notation 

represents a structure whereby the SiO2 is the core, whereas RF is the outer shell. The 

solution was allowed to stir for 24 h at room temperature, and then transferred into a Teflon-
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lined stainless steel autoclave, and hydrothermally treated at 100 °C for 24 h. The brownish 

product obtained was purified by sequential washing in ethanol/water solvents, followed by 

centrifugation for 5 minutes, and was then dried at 70 °C for 12 h. The SiO2@RF composites 

were then carbonized at 900 °C for 1 h under N2 (20 mL/min), followed by etching of the 

silica core using a 10%  HF solution to give the HCS support.  

 

3.3 Catalyst preparation 

All the monometallic and bimetallic catalysts (Co, Fe, Co-Fe) prepared in this study were 

supported on carbon spheres (CSs, SCSsRF, HCSs, N-HCSs). For the metal precursors, nitrate 

salts [Fe(NO3)3·9H2O and Co(NO3)2·6H2O] were chosen in this study due to their good 

solubility in water which favoured simple deposition of easy-to-reduce cobalt and iron 

oxides.
[5]

 For the synthesis of monometallic samples, the homogeneous deposition technique 

and a metal loading of 10wt% were utilized.   

 

Synthesis of the bimetallic catalysts on CSs was achieved by the deposition co-precipitation 

method using urea as the precipitating agent. A series of bimetallic catalysts were prepared 

by varying the Fe-to-Co ratio, and the total metal loading was kept at 10 wt.%. Typically, the 

metal nitrate precursors and urea (1.5 moles urea per mole of metal) were dissolved in 

deionized water (50 mL) and then added drop-wise to the CSs support, which was dispersed 

previously in deionized water (150 mL) at 90 °C. The hydrolysis of urea was allowed to 

proceed for 12 h with stirring, followed by drying at 70 °C under vacuum. Calcination was 

performed at 300 °C for 4 h in N2 (20 mL/min). The bimetallic samples were denoted xFe-

yCo/SCSs, in which x and y were the wt% loadings of Fe and Co, respectively, in the 

samples. The values of x and y were 0, 0.5, 2, 5, 8 and 10 to give the catalysts 10Co/CSs, 

0.5Fe-9.5Co/CSs, 2Fe-8Co/CSs, 5Fe-5Co/CSs, 9.5Fe-0.5Co/CSs and 10Fe/CSs.    
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3.4 Characterization 

3.4.1 Raman spectroscopy 

The great versatility of carbonaceous nanomaterials arises from the strong dependence of 

their physical properties on the ratio of sp
2
 (graphite-like) to sp

3
 (diamond-like) bonds. This 

ratio was quantified by performing Raman spectroscopy in this study. Raman spectra were 

measured using a Jobin Yvon T6400 micro-Raman spectrometer which used an Ar ion laser 

(514.5 nm) as the light source and was fitted with a liquid nitrogen-cooled charge coupled 

device detector (Fig. 3.1). The DuoScan attachment was used for the analysis of samples that 

were sensitive to burning by the laser. Power at the sample was maintained at 0.2 mW. 

 

 

 

 

 

 

 

 

 Figure 3.1 A Jobin Yvon T6400 micro-Raman spectrometer. 

 

3.4.2 Transmission electron microscopy (TEM) 

TEM analysis of the samples was done to study the morphology and sizes of the support 

materials or the catalyst particles. The measurements were performed on bright field mode by 

using an FEI Tecnai T12 instrument which was operated at an accelerating voltage of 12 kV 

(Fig. 3.2). Preparation of samples for TEM analysis involved the dispersion of the fine 

powders in ethanol by ultra-sonication until a homogeneous suspension was formed (5 

minutes). In the liquid form, the samples were subsequently added drop-wise on to an SPI 

carbon-coated copper grid and the solvent was allowed to dry at room temperature before 
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introduction into the microscope. Analysis of TEM results was done using ImageJ 1.43u 

software. The sizes of the carbonaceous materials or the metal particles were extrapolated 

from histograms generated by the measurement of about 200 particles from representative 

TEM micrographs.    

 

 

 

 

 

 

   

 

 

Figure 3.2 An FEI Tecnai T12 transmission electron microscope. 

 

3.4.3 Scanning electron microscopy (SEM) 

The SEM technique was used to study the external surface properties of the samples. 

Preparation of the specimen for analysis involved mounting them on a stub using a double-

sided carbon tape. Before being introduced into the instrument, the samples were coated with 

successive thin layers of carbon (graphite) and gold/palladium alloy by using a sputter coater. 

Coating was done to ensure that the samples were electrically conductive, thus minimizing 

charging and other related imaging artefacts during analysis. SEM data were recorded on an 

FEI Nova Nanolab 600 microscope (Fig. 3.3) generally operated at 30 kV and 0.63 nA. 

However, the power was adjusted accordingly to improve data quality. 
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Figure 3.3 An FEI Nova Nanolab 600 microscope. 

 

3.4.4 Energy-dispersive X-Ray (EDX) spectroscopy 

EDX spectroscopy was used to map out the distributions of elements on the surface of the 

samples. These experiments were done on an FEI Nova Nanolab 600 SEM using the INCA 

Microanalysis Suit version 4.08 software package. 

 

3.4.5 Nitrogen physisorption 

Textual properties of the materials were determined by N2 physisorption experiments using a 

method proposed by Stephen Brunauer, Paul Emmett and Edward Teller, abbreviated as the 

BET method. Prior to measurements, about 200 mg of the samples were outgassed at 150 °C 

for 6 h in a flow of N2 by using a Micromeritics Flow Prep 060 unit (Fig. 3.4a). The samples 

were then transferred to a Micromeritics TriSta 3000 instrument for analysis (Fig. 3.4b). All 

N2 adsorption measurements were performed under isothermal conditions (-196 °C) 

maintained by using liquid N2, and surface area data were determined in the relative pressure 

range P/P0 = 0.05-0.30. Pore volumes were determined at a relative pressure of P/P0 = 0.995, 
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and pore size distributions were plotted from the desorption branches of the N2 isotherms 

using the Barrett-Joyner-Halenda (BJH) method.
[6]

  

 

 

 

 

 

 

 

 

Figure 3.4 (a) Micromeritics Flow Prep 060 outgassing unit and b) Micromeritics TriStar 

3000 instruments. 

 

A detailed analysis of the pore structures of the materials was obtained by performing a 

multi-point BET analysis. This procedure allows for the classification of the pore structure 

into 6 different types possible (Fig. 3.5a). Furthermore, if hysteresis is observed on the 

isotherms, it can be classified accordingly as shown in Fig. 3.5b.
[7]
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Figure 3.5 (a) types of physisorption isotherms possible and (b) a classification of the 

different types of hysteresis loops.
[7]

 

 

3.4.6 Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy 

FTIR measurements were done to determine the functional groups present on the various 

carbon materials. The analysis was conducted on a Bruker Tensor 27 spectrophotometer 

fitted with an attenuated total reflection accessory (Fig. 3.6). All spectra were collected in the 

range of 550-4000 cm
-1

 with a resolution of 4 cm
-1

 and an average of 64 scans per spectra.  
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Figure 3.6 The Bruker Tensor 27 spectrophotometer. 

 

3.4.7 Thermogravimetric analysis (TGA) 

The thermal stability of the samples was monitored by using a PerkinElmer STA6000 

analyser (Fig. 3.7). Each sample (~10 mg) was heated from 50 to 900 °C at a heating rate of 

10 °C/min in an oxidizing atmosphere maintained by flowing air (10 mL/min). The 

thermogravimetric analysis with differential thermal gravimetry (TGA-DTG) profiles were 

recorded from 10 mg samples without any prior treatment. TGA data provided a plot of the 

loss in sample weight as various components of the sample decomposed as a function of 

temperature, whereas DTG results allowed for an easy identification of the maximum 

temperature where the decomposition took place.  

 

 

 

 

 

 

Figure 3.7 A PerkinElmer STA6000 instrument. 
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3.4.8 Powder X-ray diffraction (PXRD) 

Ex situ PXRD measurements (low- and wide-angle) were performed on a Bruker D2 phaser 

which as operated at 30 kV and 10 mA (Fig. 3.8). The instrument was fitted with Ni-filtered 

CoKα radiation (λKα = 0.178897 nm) and a Lynxeye detector. The scan range was 2θ = 10-90° 

in 0.026° steps. The phases present on the measured PXRD patterns were identified by a 

comparison with data stored in databases by using the EVA software package. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 The Bruker D2 PXRD phaser. 

 

In situ PXRD experiments were performed to gain more insight on the reduction process as it 

occurred on the catalysts. These measurements were performed on a Bruker D8 Advance 

AXS diffractometer using a CuKα X-ray source (λKα = 0.154084 nm) and was operated at 40 

kV and 40 mA (Fig. 3.9). Data acquisition was done using a pseudo-parallel primary beam 

geometry achieved by fitting a Göbel mirror to the instrument. For analysis, the samples were 

placed in an Anton Paar XRK 900 reaction chamber and the reducing gas (5%H2, balance N2) 

was allowed to flow through at 20 mL/min. A step-wise temperature ramp from 150 to 550 

°C at increments of 50 °C was used. The PXRD profiles were measured from 2θ angles of 15 

to 80° by using a VÅNTEC position-sensitive detector, and the step size was kept at 0.026°. 
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Data analysis was done by full-profile fitting (Rietveld refinement) on the Topas 4.2 (Bruker 

AXS) software package, using analytical peak shape functions and starting structure models 

obtained from the Inorganic Crystal Structure Database.
[8]

 Parameters such the goodness of 

fit (χ
2
) and the weighted residual function (Rwp) were used to evaluate the quality of model 

used during the refinement procedure.  

 

 

 

 

 

 

 

 

Figure 3.9 A Bruker D8 Advance AXS diffractometer fitted with an Anton Paar XRK 900. 

 

3.4.9 Temperature programmed reduction (TPR) 

TPR profiles were recorded on a Micromeritics AutoChem II instrument fitted with a thermal 

conductivity detector (TCD) and three Brooks mass-flow controllers. The instrument used is 

displayed in Fig. 3.10. Before reduction studies, about 100 mg of the samples were outgassed 

to remove any physisorbed solvent molecules. Outgassing was done at 150 °C for 1 h in the 

flow of helium. Subsequently, TPR data was measured using 5%H2 balance Ar (45 mL/min) 

at temperatures between 50 and 900 °C at a ramping rate of 10 °C/min. The accurate control 

of reaction parameters on this unit was also exploited by studying the reduction kinetics of 

the different catalyst systems. For studies on reduction kinetics processes, the heating rate 

was varied while all other parameters were kept constant. 

 

 

 



___________________________________________________ 69 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Micromeritics AutoChem II instrument. 

 

3.4.10 X-ray photoelectron spectroscopy (XPS) 

Analysis of the surface functional groups on the carbons was achieved by the use of X-ray 

photoelectron spectroscopy (XPS). These measurements were performed on a SHIMADZU 

KRATOS analytical AXIS SUPRA
TM

 spectrophotometer which uses momochromatic Al Kα 

radiation (1486.6 eV) and a working pressure of 1.8x10
-8

 torr in the measurement chamber. 

These experiments were performed at the University of South Africa, Florida.  

 

3.5 Fischer-Tropsch (FT) synthesis 

All catalytic evaluations performed in this study used gases provided by African Oxygen 

(AFROX) Ltd and were of ultra-high purity (UHP) grade. The synthesis gas (syngas) used 

also comprised of nitrogen for accurate mass balance calculations. Thus the composition of 

the syngas was H2/CO/N2:0.6/0.3/0.1.  

 



___________________________________________________ 70 

3.5.1 FT reactor setup  

The schematic representation of the rig setup utilized is displayed in Fig. 3.11. The system 

allows for accurate gas pressure monitoring by the use of pressure regulators (PRs) installed 

on different locations; on the gas cylinders, before and after the reactor. The PR placed before 

the reactor ensured that the gas going into the reactor was of the required pressure at any 

given moment. Furthermore, the PR placed after the reactor also confirmed this pressure. The 

reactor is made up of a 16 mm stainless steel tube with a frit and has a fixed-bed 

configuration. A thermocouple was inserted into the catalyst bed for temperature regulation, 

and Swagelok fittings were used for all connections. During FT synthesis, all lines after the 

reactor were maintained at 150 °C to avoid blockages. Two downstream hot and cold traps at 

150 and 20 °C, respectively, were used to retain the generated wax and oil products. These 

products were subsequently analysed on an off-line GC-FID. For the analysis of gaseous exit 

products, two on-line gas chromatographs fitted with a TCD and an FID were used. Argon 

(20 mLmin
-1

) was used as a carrier gas for the two GCs and the data from the instruments 

was captured and analysed using the Clarity software package. Gas flow rates on the system 

were measured using a soap bubble flow meter. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 A schematic illustration of the rig reactor design. 
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3.5.2 Catalytic experiments  

Catalytic evaluations of the catalysts were conducted on a fixed-bed reactor loaded with 

about 0.5 g of sample which was suspended in a thin layer of quartz wool. Prior to FT 

synthesis, the catalysts were activated in situ at 350 °C for 18 h under the stream of H2 (45 

mL/min, 2 bar pressure) and a ramping rate of 1 °C/min was used. After reduction, the 

reactor was cooled to room temperature while still in the flow of H2. Then, synthesis gas was 

gradually introduced until a pressure of 10 bar and a flow rate of 20 mL/min were achieved. 

The reactor temperature was then increased at a ramping rate of 1 °C/min
 
to achieve the 

desired FT synthesis temperatures (220, 250, 257 °C), and was maintained at this temperature 

initially for 100 h. However, the reactions were found to be very stable after achieving 

steady-state hence the reaction time was reduced to 50 h.   

 

3.5.3 Instrument calibration and product analysis 

Calibration of the gas chromatographs involved the use of two gases; syngas and a six-gas 

mixture. The composition of the six-gas mixture was CH4 (2.5%), C2H4 (0.2%), C2H6 (0.5%), 

CO (10.0%), CO2 (5.0%) and balance Ar, whereas the syngas consisted of H2 (60%), CO (30 

%) and N2 (10%). Fig. 3.12, Fig. 3.13, Fig. 3.14 and Fig. 3.15 displays typical GC traces 

recorded from the TCD and FID detectors during calibration and FT synthesis. The peak 

areas measured for each analyte during calibration were used to compute the amount of that 

corresponding analyte in the FT product stream. The conditions at which the gas 

chromatographs (GCs) were operated are summarized in Table 3.1. 

 

 

 

 

 

Figure 3.12 A GC-TCD trace recorded during syngas calibration. 
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Figure 3.13 A GC-TCD trace recorded during a typical FT synthesis run. 

 

  

 

 

 

 

Figure 3.14 A GC-TCD trace recorded during calibration with the six-gas mixture. 

 

 

 

 

 

 

 

 Figure 3.15 A GC-FID trace recorded during calibration with the six-gas mixture. 
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Table 3.1 Specifications of the GC operating conditions 

Gas chromatograph (on-line) 

Make 

Detector 

Detector temperature 

Column type 

Stationary phase 

Sample valve temperature 

Carrier gas 

Oven temperature 

PYE  Unicam (Series 204) 

Thermal conductivity detector (TCD) 

220 °C 

Packed, stainless steel, 2 m x 2.2 mm, O.D. =1/8ʺ 

Carbosieve, S-II, 60-80 mesh 

150 °C 

Ar, 20 mL/min  

250 °C (isothermal)  

Gas chromatograph (on-line) 

Make 

Detector 

Detector temperature 

Column type 

Stationary phase 

Sample valve temperature 

Carrier gas 

Oven temperature  

Hewlett Packard 5890 

Flame ionization detector (FID) 

220 °C 

Packed, stainless steel, 2 m x 2.2 mm, O.D. =1/8ʺ 

ZB-5, 80/100 mesh 

150 °C 

Ar, 20 mL/min 

250 °C (isothermal)  

Gas chromatograph (off-line) 

Make 

Detector 

Detector temperature 

Column type 

Stationary phase 

Sample valve temperature 

Carrier gas 

Oven temperature program 

Varian 3700 

Flame ionization detector (FID 

350 °C 

30 mx 5 μFT, O.D. = 0.53 mm 

ZB-1 

250 °C 

N2, 20mL/min 

Heat to 300 °C (ramping rate: 10 °C/min), and hold 

at this temperature for 3 h.   
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3.5.4 Mass balance calculations 

The strategies used for the calculations are similar to those utilized by Bahome,
[9]

 Hexana,
[10]

 

Phadi
[11]

 and Muleja.
[12]

 The fraction of carbon monoxide that was converted to hydrocarbons 

was calculated using data recorded on the TCD, and was expressed as a percentage as 

follows; 

% CO conversion =    {
𝐶𝑂𝑖𝑛−𝐶𝑂𝑜𝑢𝑡𝑋[

𝑁2,𝑖𝑛
𝑁2,𝑜𝑢𝑡

]

𝐶𝑂𝑖𝑛
}  x 100%    Eqn. 3.1 

where COin and N2,in are the calibration peak areas for CO and N2, respectively. 

 COout and N2,out are the peak areas measured for for CO and N2 during FT synthesis. 

 

The inlet feed flow rate was calculated from the measured outlet flow rate (using a soap flow 

meter) and the gas contraction factor as follows; 

Fin = {
𝑋𝑁2,𝑜𝑢𝑡

𝑋𝑁2,𝑖𝑛
} x Fout       Eqn. 3.2 

where 𝑋𝑁2,𝑖𝑛
 and 𝑋𝑁2,𝑜𝑢𝑡 are the mole fractions of N2 in the calibration gas and the FT      

synthesis run, respectively. Fin and Fout are the total inlet and exit flow rates, respectively, and 

are expressed in mols/s.  

 

Mass balance calculations were only conducted on carbon and oxygen, and the obtained 

results were deemed acceptable if within the range 100 ±5% in each case. By using the inlet 

feed flow rate (Eqn. 3.2), the total number of carbon moles in the entire mass balance time 

could be calculated as follows; 

  NC,in = Fin · t · XCO,in         Eqn. 3.3 

  where NC,in are the total number of carbon moles fed into the reactor 

   Fin is the total feed flow rate (mol/min). 

   t is the overall mass balance time. 
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   XCO,in is the CO mole fraction of the synthesis gas. 

  

The rate of CO conversion (mol/min/gcat) can be computed as follows; 

   −𝑟𝐶𝑂 =
𝐹𝐶𝑂,𝑖𝑛−𝐹𝐶𝑂,𝑜𝑢𝑡

𝑚𝑐𝑎𝑡
      Eqn. 3.4 

where FCO,in and FCO,out are the molar flow rates (mol/min) of CO fed into the reactor or 

exiting the reactor, respectively. 

mcat is the mass (g) of the catalyst.  

 

For the gaseous products, the selectivity for a given carbon number was given by; 

  𝑆𝑒𝑙(𝜃) =
[𝑛𝑐]𝜃

−𝑟𝐶𝑂∙𝑡∙𝑚𝑐𝑎𝑡
       Eqn. 3.5 

  where [𝑛𝑐]𝜃 are th moles of carbon in product θ.  

 

The selectivity towards heavy hydrocarbons (𝐶5+) was calculated based on the moles of 

carbon as follows; 

𝑆𝑆5+ = 100 − ∑(𝑆𝐶𝐻4 + 𝑆𝐶2 + 𝑆𝐶3 + 𝑆𝐶4)       Eqn. 3.6 

where 𝑆𝐶𝐻4 is the selectivity for methane, and 𝑆𝐶2, 𝑆𝐶3, 𝑆𝐶4 are the selectivities for 

hydrocarbons in the C2-C4 product range.  
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CHAPTER 4 

 

Carbon spheres prepared by hydrothermal synthesis - a support for bimetallic Fe Co 

Fischer-Tropsch catalysts 

 

4.1 Introduction 

As a gas-to-liquid reaction, the Fischer-Tropsch (FT) synthesis is a key technology in the 

transformation of various non-petroleum carbon resources such as natural gas, coal, or 

biomass into clean hydrocarbon fuels as well as valuable chemicals.
[1, 2]

 These carbon sources 

provide alternative non-crude oil routes for the synthesis of petrol, diesel and chemicals. FT 

synthesis thus continues to receive attention from researchers, which has led to many 

technical advances in the FT process.
[3]

 It is not surprising, therefore, that research in this area 

encompasses chemistry, chemical engineering and materials science. Recently, there has been 

renewed interest in the design of new FT catalysts as well as many attempts to understand 

and explain how catalyst composition affects the FT reaction. In most studies on FT catalysts, 

the focus is on monometallic catalysts, promoted to give enhanced activities and selectivities. 

Bimetallic systems have been investigated in detail over many decades but much less work 

has been expended on these systems. Developments in the characterization of catalysts has 

led to a more detailed understanding of these catalysts and, together with a new generation of 

support materials, a better understanding of these systems has become possible. Bimetallic 

Fe-Co systems are particularly promising as they have been shown to influence both the FT 

product distribution and the product selectivity.
[4-7]

 However, details of the Fe-Co-support 

interaction at the microscopic level remain unclear. The design of an improved bimetallic 

catalyst is, therefore, a challenge as it requires an understanding of the metal-metal 

interactions as well as the effect that this interaction has on the catalytic properties of the 

catalyst.  

 

A bimetallic FT catalyst can be influenced by many factors. Industrial FT catalysts typically 

use Fe- or Co-based monometallic catalysts due to their high activity, selectivity and cost. 
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Co-based catalysts are suitable for the production of long-chain paraffins because of their 

high selectivity towards C5+ hydrocarbons. The comparatively less expensive Fe catalysts are 

suitable for the conversion of syngas with a low H2/CO ratio because of their unique water-

gas shift (WGS) reactivity, that is, they also catalyze the reaction between carbon monoxide 

and water to form hydrogen and carbon dioxide (CO + H2O ↔ H2 + CO2).
[8, 9]

 Additionally, 

Fe-based catalysts can be tuned to offer a wide range of FTS products, which include 

paraffins, olefins and oxygenates. 

 

Several studies have shown that bimetallic Fe-Co systems do not possess additive properties 

related to the constituent monometallic Fe or Co catalysts, but have unique characteristics.
[5, 

10-13]
 Tavasoli et al. observed increased alcohol selectivity from bimetallic Fe-Co/carbon 

nanotubes (CNTs) catalysts compared to that of monometallic Co or Fe, which was attributed 

to the formation of a Co-Fe alloy.
[10]

 Duvenhage and Coville investigated the effect of the 

metal precursor used to prepare supported bimetallic catalysts and compared metal nitrates 

with metal carbonyl complexes as precursors. Both Fe-Co/TiO2 systems had similar activities 

in FT synthesis, but superior olefin selectivity and WGS activity was observed with the 

catalysts from the carbonyl systems.
[14]

 More recently, X-ray absorption spectroscopy (X-ray 

absorption near edge structure, extended X-ray absorption fine structure), X-ray 

photoelectron spectroscopy and in situ powder X-ray diffraction (PXRD) using synchrotron 

radiation were used to illustrate the formation of Fe-Co species in Fe-Co/Al2O3 systems.
[5]

 

 

The performance of Fe-Co systems has been shown to depend on the type of support material 

used. Ma et al. observed that the order for CO conversion for samples that contained 18wt% 

total Fe-Co catalyst loading was 9Fe-9Co/SiO2 > 9Fe-9Co/active carbon (AC) > 9Fe-

9Co/Al2O3.
[15]

 Furthermore, studies on bimetallic Fe-Co catalysts supported on refractory 

oxides are often challenging due to complications associated with strong metal-support 

interactions. Support materials like TiO2, SiO2, Al2O3 and MgO have been shown to react 

with Co (or Fe) catalysts to give CoTiO4, Co2SiO2, Co2AlO4 and FeO-MgO during catalyst 

preparation, thermal pre-treatment or catalytic reaction.
[16-18]

 Unfortunately these mixed 

compounds are not active in FT synthesis
[19-21]

 as they are only reducible at high 

temperatures. Carbon-based materials provide an alternative model support for FT catalysts 

because of their unique properties, which include high purity, high mechanical strength, high 
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electrical conductivity, high thermal stability and high effective surface area along with a 

weak interaction with the active phases.
[22]

 As a result of their relative inertness, carbon 

materials are ideal to study metal-metal interactions in bimetallic systems because of their 

weak interaction with the active phases. Regardless of these distinct advantages, the study of 

carbon materials as supports for bimetallic FT catalysts remains limited.
[23]

  

 

Most carbon supports that have been used in FT reactions are based on CNTs and carbon 

nanofibers (CNFs), typically made by chemical vapour deposition (CVD) procedures.
[24]

 

These carbons tend to be highly graphitic and hydrophobic. Thus, in nearly all studies, acid 

functionalization of the carbons is required before metal loading. The same applies to the 

study of carbon spheres (CSs) made by CVD.
[25-27]

 The hydrothermal method is an alternative 

process to prepare spherical carbon materials as it uses cheap carbon sources, mild reaction 

conditions and is totally “green” as it involves no organic solvents, catalysts or surfactants.
[28, 

29]
 The most important advantage of CSs synthesized by the hydrothermal route is that they 

are hydrophilic and have useful surface functionalities, which facilitates chemical-surface 

modifications, a task that is challenging if CVD-synthesized carbon materials are used.
[30, 31]

 

In addition, CSs synthesized by the hydrothermal route do not need to be acid treated prior to 

metal loading. 

 

In this study, we investigated the versatility of CSs synthesized by the hydrothermal method 

as supports for the FT reaction. We have probed the use of high-temperature treatment 

(annealing) as a tool to tune and improve the properties of the pristine CSs before metal 

loading. Furthermore, we report for the first time the application of hydrothermal carbon 

spheres as a model support for bimetallic Fe-Co Fischer-Tropsch catalysts. Particular 

attention was paid to investigate the phases formed during the reduction of the bimetallic 

catalysts by both temperature programmed reduction (TPR) and in situ PXRD. This was done 

so that the metal phases formed during reduction could be correlated to the performance of 

the catalysts in FT synthesis.   
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4.2 Results and Discussion 

4.2.1 Synthesis of carbon spheres (CSs) 

The carbon support was synthesized by the hydrothermal treatment of a sucrose solution at 

190 °C for 4 h,
[32, 33]

 which resulted in the formation of a black powder. Then, the black 

product was purified by Soxhlet extraction to give the as-prepared CSs. Typical TEM and 

SEM images of CSs synthesized in this study are shown in Fig. 4.1. The images illustrate that 

the as-synthesized carbon materials (Fig. 4.1a-b) are spherical in morphology with an average 

diameter of 600 nm (Fig. 4.1e). The synthesized CSs were relatively uniform in size, mono-

dispersed and tended to adopt a necklace-like accreted conformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 TEM and SEM images of a and b) pristine CSs, c and d) CSs annealed for 4 h at 

900 °C and e) CS size distribution after annealing. 
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4.2.2 Effect of annealing the carbon support 

Pristine carbon spheres (CSs) were annealed for 4 h at 900 °C under N2 to enhance their 

properties. The morphology of the pristine and the annealed CSs was investigated by both 

TEM and SEM (Fig. 4.1). After annealing the samples at 900 °C for 4 hours under inert 

conditions, the diameter of the CSs remained constant, and an average sphere diameter of 600 

nm was measured again. Notably, the surface of the as-synthesized spheres is normally 

smooth and well defined. However, annealing introduces some roughness on the surface of 

the CSs (Fig. 4.1d). This roughness is consistent with the high surface area that was recorded 

after the annealing step (vide infra). 

 

The differences in the pore structure and crystallinity between the pristine and annealed 

samples are illustrated in Fig. 4.2. The adsorption-desorption isotherms recorded on the 

pristine CSs and the annealed CSs are compared in Fig. 4.2a. It can be seen that the pristine 

CSs display no significant increase in N2 uptake with increasing relative pressure (P/Po), 

which reveals that the surface of the as-prepared material is non-porous (type II isotherm). 

Correspondingly, small surface areas were recorded from the pristine material (SABET ~ 1 

m
2
/g). After heat treatment for 4 h, the CSs exhibit a type IV isotherm (Fig. 4.2a) with a large 

hysteresis loop at P/Po = 0.4-0.7. This indicates the presence of well-defined mesopores in the 

sample, and consequently, the surface area of the annealed sample was found to be 452 m
2
g

-1
. 

The pore size distributions were calculated by the BJH method and are plotted in Fig. 4.2b. 

From the distributions it was also confirmed that the as-synthesized CSs were non-porous, 

whereas the annealed CSs were mesoporous with an average pore size of 3.4 nm. 

 

Low-angle PXRD (Figure 4.2c) studies were performed to determine the arrangement of the 

pores in the carbon material after the high temperature treatment. Broad diffraction patterns 

were recorded before and after annealing for 4 h, which suggests that the pores are generally 

disordered and depict a wormhole-like structure that has short-range mesoporosity.
[34]

 Wide-

angle PXRD profiles of the as-prepared CSs (Fig. 4.2d) display a broad diffraction peak at 2θ 

= 23.0°, which indicates that the pristine sample had a high content of amorphous carbon. 

Broad diffraction peaks suggest the lack of long-range order and are characteristic of 

amorphous materials. Annealing improved the degree of local order in the CSs, as shown by 
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sharpening of peaks at 2θ =26.3 and 50.7°, which correspond to the characteristic (002) and 

(100) planes of graphitic carbon (Fig. 4.2d). The (002) reflection is caused by inter-layer 

reflection, and the (100) peak is caused by in-plane scattering and is characteristic of a 

turbostratic-type carbon.
[31, 35]

 The improved crystallinity induced a slight shift in 2θ for the 

(002) plane because of decreases in the inter-atomic distances. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Comparisons of as-synthesized and annealed CSs; (a) Adsorption-desorption 

isotherms, (b) pore size distributions, (c) low-angle XRD, (d) wide-angle XRD patterns. 

  

Fourier transform infrared spectroscopy (FTIR) was performed to determine the functional 

groups present on the surface of the CSs. FTIR spectra recorded from the as-prepared CSs 

and CSs that were annealed for 4 h are shown in Fig. 4.3. CSs synthesized by the 

hydrothermal method have functional groups such as hydroxyl groups evidenced by O–H 

bending vibrations (ῦ = 1169 cm
-1

), carboxyl anhydride groups (ῦ = 1297 cm
-1

), lactone 

groups (ῦ = 1365 cm
-1

), C=C stretching of aromatics (ῦ = 1602 cm
-1

), carbonyl groups (ῦ = 
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1703 cm
-1

), C‒H stretching (ῦ = 2915 cm
-1

) and hydroxyl groups (ῦ = 3430 cm
-1

).
[29, 36, 37]

 

These groups are lost upon heat treatment to give the annealed material. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 FTIR spectra of as-prepared CSs and annealed CSs (4 h). 

 

Thermogravimetric analysis with differential thermal gravimetry (TGA-DTG) profiles of 

pristine CSs and CSs that were annealed for 4 h are shown in Figure 4.4, and both 

measurements were performed under an oxidizing atmosphere. Two notable decomposition 

peaks were observed for the pristine CSs (Fig. 4.4a). The low temperature decomposition 

peak at 344 °C is attributed to the decomposition of oxygen-containing functional groups, 

and the peak at 509 °C is caused by the bulk oxidation of the carbon matrix to CO2. The 

annealed sample (Fig. 4.4b) only displayed one decomposition peak at 664 °C, which is 

caused by the oxidation of the carbon support to CO2. It is evident that annealing the carbon 

spheres under inert conditions improved their thermal stability significantly. The oxidation 

temperature of the carbon matrix increased from 509 to 644 °C upon heat treatment because 
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of improved graphitization. This result is in agreement with the wide-angle PXRD 

observations. Notably, the residual weight after oxidation at 900 °C is ≈ 0% for both the as-

prepared and the annealed CSs, which illustrated that carbon spheres synthesized using the 

hydrothermal method are of high purity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 TGA-DTG profiles of a) pristine CSs and b) CSs annealed for 4 h. 
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The effect of the annealing time was also investigated, and the data obtained is presented in 

Fig. 4.5 and Fig. 4.6. Adsorption-desorption isotherms recorded after 2 and 3 h annealing 

periods under similar conditions are presented in Fig. 4.5a. The textual properties of the CSs 

as a function of the annealing period are summarized in Table 4.1. Significant N2 uptake 

occurs at low P/Po values for both samples after 2 and 3 hours annealing times (Fig. 4.5). This 

high N2 uptake indicates that the carbon matrix develops pores after these thermal treatment 

periods. This observation suggests that some micro-channels were opened in the carbon 

matrix upon heating, which could be because of the burning of char-like materials. The 

opening of the channels in the carbon matrix resulted in the generation of high surface areas 

of 511 and 492 m
2
g

-1
 for samples annealed for 2 and 3 h, respectively. The BET surface area 

decreased with continued annealing, and the average pore size increased from 2.0 to 3.4 nm. 

This is a significant observation as it demonstrates that the pore structure of CSs prepared by 

hydrothermal synthesis can be tuned by a simple variation of the duration of the thermal 

treatment. This could offer significant advantages in catalyst preparation as it allows for the 

elimination of micropores in the support material, which can cause mass-transfer limitations 

during Fischer-Tropsch synthesis.
[2]
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Figure 4.5 a) N2 adsorption-desorption isotherms of CSs that were annealed for 2 h and 3 h 

under inert conditions. Adsorption isotherms are shown as solid symbols while desorption 

isotherms are shown as open symbols, and b) Pore size distributions.  
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Table 4.1 Textual properties of the CSs as a function of the annealing time.  

Annealing 

time 

Surface AreaBET 

[m
2
g

-1
] 

Pore volume 

[cm
3
g

-1
] 

Pore diameter 

[nm] 

0 h 1.3 0.0045 14.7 

2 h 511 0.26 2.1 

3 h 492 0.25 2.0 

4 h 452 0.29 3.4 

 

 TGA was used to study the effect of the annealing time on the thermal stability of the CSs, 

and the TGA-DTG plots recorded are presented in Fig. 4.6. The carbon decomposition 

temperature increases from 649 to 652 and finally to 664 °C after 2, 3 and 4 h of annealing, 

respectively. This increase in stability is attributed to improvements in crystallinity of the 

carbon framework as also seen from wide-angle PXRD data. The 4 h annealing period was, 

therefore, chosen and for all subsequent work in this study samples were annealed for 4 h. 
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Figure 4.6 TGA-DTG profiles of a) pristine CSs, and CSs that were annealed for b) 2 h, c) 3 

h and d) 4 h.  

 

In some previous studies, CSs have been employed as FT catalyst supports. The reported CS 

supports were either synthesized by chemical vapour deposition (CVD)
[25]

 or the 

hydrothermal method but without annealing.
[26]

 Consequently, the reported support materials 

had low BET surface areas (< 5 m
2
g

-1
). Thus, generally low FT activities were reported on 

these support materials even after functionalizing by KMnO4 or nitrogen doping. Yu et al. 

demonstrated that highly active FexOy@CSs can be fabricated by the hydrothermal treatment 

of a glucose solution that contained iron nitrate.
[38]

 More recently, Davis et al. utilized 

graphitized (1900 °C) CSs prepared hydrothermally as supports for Pt-promoted Co/CS 

catalysts. However, the carbon support was seen to break during FT synthesis.
[27]

 In this 

study, annealing at an intermediate temperature (900 °C) was used to tune the surface area, 

crystallinity and thermal stability of the carbon support. 
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4.2.3 Catalyst characterization 

All the catalysts studied here were prepared by the homogeneous deposition of nitrate 

precursors onto carbon spheres that were annealed for 4 h. The BET surface area, pore 

volume and the average pore size of the different catalysts are summarized in Table 4.2. The 

introduction of the catalyst precursors onto the CSs decreases the surface area from 452 to 

402 m
2
g

-1
 for the 10Fe/CSs sample. According to the results, the average pore sizes were in 

the range 2.4 – 2.9 nm, which shows that the samples maintain their mesoporous pore 

structure even after the addition of 10% of the metal precursors. 

 

PXRD patterns of the calcined mono- and bimetallic catalysts are shown in Figure 4.7, and 

the diffraction pattern of pure CSs is also shown for reference. After calcination, the 

10Co/CSs sample displays diffraction lines at 2θ = 21.9, 36.2, 42.5, 52.2, 70.0 and 77.2° 

which correspond to the (111), (220), (311), (400), (511) and (440) characteristic peaks of 

face-centered cubic (fcc) Co3O4 [PDF No. 00-043-1003]. Similarly, peaks typical of the α-

Fe2O3 phase were recorded for the monometallic Fe sample (10Fe/CSs). For the bimetallic 

systems, the samples that contained only a small amount of the second metal (0.5Fe-

9.5Co/CSs and 9.5Fe-0.5Co/CSs) displayed diffraction patterns that correspond to the 

monometallic samples of the more abundant metal. Crystallites of the second metal, present 

at low concentrations in these samples, could not be detected by the PXRD technique. This 

observation is in agreement with energy-dispersive X-ray (EDX) mapping results that 

confirmed that both metals were present on the carbon support. The bimetallic samples with 

more second metal (2Fe-8Co/CSs, 5Fe-5Co/CSs) were composed of mixtures of the Co3O4 

and α-Fe2O3 phases. It is possible that a solid solution of (FexCoy)O4 was formed.  
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Figure 4.7 Ex situ PXRD patterns of the calcined mono- and bimetallic catalysts: (a) CS 

support, (b) 10Co/CSs, (c) 0.5Fe-9.5Co/CSs, (d) 2Fe-8Co/CSs, (e) 5Fe-5Co/CSs, (f) 9.5Fe-

0.5Co/CSs and (g) 10Fe/CSs. The Co3O4 and α-Fe2O3 phases are marked with the symbols ◊ 

and ● , respectively. (X-ray source: Co, λKα = 0.179 nm) 

 

The Co3O4 [or (FexCoy)O4 solid solution] and α-Fe2O3 crystallite sizes in the mono- and 

bimetallic catalysts were estimated using Scherrer’s equation and are presented in Table 4.2. 

Crystallite sizes of 7.9 and 12.9 nm were obtained for the monometallic cobalt and iron oxide 

catalysts, respectively. Generally, the addition of the second metal increased the crystallite 

size of the dominant metal oxide. This could be caused by the formation of the solid solution. 
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Table 4.2 Nitrogen physisorption data and crystallite sizes for the metal oxides. 

 

Sample 

 

BET surface 

area [m
2
g

-1
] 

 

Pore volume 

[cm
3
g

-1
] 

 

Pore size 

[nm] 

Crystallite size 

[nm]
[a]

 

Co Fe 

CS support 

 

10Co/CSs 

 

0.5Fe-9.5Co/CSs 

 

2Fe-8Co/CSs 

 

5Fe-5Co/CSs 

 

9.5Fe-0.5Co/CSs 

 

10Fe/CSs 

452 

 

423 

 

415 

 

417 

 

411 

 

409 

 

402 

0.29 

 

0.28 

 

0.21 

 

0.22 

 

0.24 

 

0.22 

 

0.22 

3.4 

 

2.9 

 

2.8 

 

2.8 

 

2.4 

 

2.7 

 

2.8 

- 

 

7.9 

 

10.3 

 

9.5 

 

12.6 

 

- 

 

- 

- 

 

- 

 

- 

 

- 

 

14.4 

 

13.1 

 

12.9 

[a]
Crystallite sizes were estimated using the Scherrer equation.  

 

The deposition precipitation technique used in the catalyst preparation was shown to be a 

reproducible method for synthesizing well dispersed metal particles on the carbon support 

materials. By employing urea as a precipitating agent, this technique allows for gradual pH 

changes during metal deposition, which promotes small catalyst particles with a narrow 

particle size distribution. Representative microscopic images of the calcined catalysts are 

shown in Fig. 4.8. The monometallic 10Fe/CSs and 10Co/CSs catalysts (Fig. 4.8a-b) show 

highly dispersed metal particles on the outside of the CS support. A representative SEM 

image of the bimetallic 0.5Fe-9.5Co/CSs sample is shown in Fig. 4.8c, and the corresponding 

elemental maps for Fe and Co recorded from this image are shown in Fig. 4.8d-e, 

respectively. Notably, the Fe particles in this sample were dispersed uniformly even though 

this sample has a very small ratio of Fe to Co. EDX data (Fig. 4.8f) confirmed that the 

catalyst contains both Fe and Co. 
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Figure 4.8 Representative TEM images of a) 10Fe/CSs and b) 10Co/CSs, and c) SEM image 

of the 0.5Fe-9.5Co/CSs. Representative 2D elemental maps for d) Fe and e) Co obtained 

from the 0.5Fe-9.5Co/CSs sample. f) EDX spectrum for the 0.5Fe-9.5Co/CSs sample.  

 

The addition of catalyst particles onto the support material alters the thermal stability of the 

carbon. TGA was used to monitor the temperature at which oxidation (C  +  O2  →  CO2) 

occurs on the calcined catalysts. A general decrease in the thermal stability of the carbon 

support after the addition of catalyst particles was observed (Fig. 4.9). The oxidation 

temperature of the carbon support decreased from 664 °C observed on the annealed carbon 
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support to 342 °C recorded for 10Co/CSs. This decrease in thermal stability is attributed to 

the ability of the metal particles to catalyze carbon oxidation.
[25]

 From the TGA profiles in 

Fig. 4.9, it can be seen that Co-rich samples catalyze carbon oxidation more readily than Fe-

rich catalysts. Carbon oxidation over bimetallic samples occurred at intermediate 

temperatures. The residual weight noted at 900 °C in the TGA plots is caused by Co/Fe oxide 

particles and confirmed that the metal loading was approximately 10 wt% in all of the 

catalysts.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 TGA profiles of the CS support and the calcined catalysts (measured in air). 

 

4.2.4 Catalyst reducibility 

TPR profiles of the various calcined samples are shown in Fig. 4.10. The monometallic Co 

sample displays two reduction peaks (4.10a). These peaks in the 252 – 360 °C range are 

caused by the stepwise transformation of Co3O4 to metallic cobalt (Co3O4→CoO→Co
o
).

[39, 40]
 

The low temperature peak at 252 °C is rather small because of the ability of the carbon 

support to partially auto-reduce the cobalt oxide phase.
[41]

 The monometallic Fe sample 
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displays two distinct reduction peaks at 331 and 501 °C. Generally, the reduction of iron 

oxides proceeds as follows: Fe2O3→Fe3O4→FeO→Fe. The FeO phase is thermodynamically 

unstable hence it converts quickly to metallic Fe and, therefore, is not normally detected by 

the TPR instrument.
[42]

 The low-temperature peak at 331 °C can, therefore, be assigned to the 

transformation of Fe2O3 to Fe3O4, whereas the broad high-temperature peak indicates the 

reduction of Fe3O4 to metallic Fe (presumably via FeO; Fig. 4.10f).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 H2-TPR profiles of the mono- and bimetallic catalysts: a) 10Co/CSs, b) 0.5Fe-

9.5Co/CSs, c) 2Fe-8Co/CSs, d) 5Fe-5Co/CSs, e) 9.5Fe-0.5Co/CSs and f) 10Fe/CSs. 

  

The addition of small quantities of cobalt (0.5 wt. %) to pure Fe2O3 produces no significant 

changes in the reduction profile (Fig. 4.10e). Conversely, the addition of a similar quantity of 

Fe to a Co-rich sample has a significant effect on the reducibility of the catalyst (Fig. 4.10b). 

The cobalt reduction peaks shift to higher temperatures on the 0.5Fe-9.5Co/CSs sample 

relative to the monometallic Co sample, and remarkably, an additional reduction peak is 
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observed at 297 °C. This peak can be associated with an alloy which is formed by reduction 

of a well-mixed metal Fe/Co oxide (solid solution) at high temperatures (see below). More 

complex H2 consumption profiles were observed for the 2Fe-8Co/CSs (Fig. 4.10c) and 5Fe-

5Co/CSs (Fig. 4.10d) because of the reduction of the different bimetallic oxide phases 

present. For the 2Fe-8Co/CSs sample, the peak at 252 °C is attributed to the transformation of 

Co3O4 to CoO, whereas the broad peak from 297 to 466 °C is caused by both the reduction of 

CoO and a Co/Fe oxide mixture, which is formed at high temperatures. The 5Fe-5Co/CSs 

sample mainly shows the reduction of the Co-Fe mixed oxide at 326 °C. This oxide mixture 

is assumed to be well mixed (a solid solution) and different from the Co-Fe core-shell 

structure reported recently.
[7, 43]

 

  

Unlike typical metal oxide supports, TPR profiles of the catalysts supported on CSs display a 

broad negative peak at temperatures above 600 °C caused by the gasification of the carbon 

material (C + 2H2 → CH4). Generally, Fe-rich samples catalysed the methanation reaction 

better than their Co-rich analogues, as displayed by the lower gasification temperatures for Fe 

samples. The 10Fe/CSs and 10Co/CSs samples showed gasification minima at 698 and 809 

°C, respectively. The bimetallic samples had intermediate minima temperatures at 805, 815, 

731 and 719 °C for 0.5Fe-9.5Co/CSs, 2Fe-8Co/CSs, 5Fe-5Co/CSs and 9.5Fe-0.5Co/CSs, 

respectively. Fe catalysts have better methanating ability than Co catalysts, hence the more 

facile gasification in the Fe-rich samples. 

  

The reducibility of the catalysts was also monitored in situ using PXRD in an Anton Paar 

XRK 900 reactor chamber. Non-ambient PXRD studies lead to a set of closely related 

diffraction patterns, measured as a function of temperature, pressure, chemical environment 

or even time. This technique can afford a remarkable amount of chemically and physically 

meaningful data concerning the properties and behaviour of the samples under 

investigation.
[44]

 The reduction patterns of monometallic Co and Fe samples as a function of 

temperature are displayed in Fig. 4.11. Cubic Co3O4 was the dominant phase at low 

temperatures (T < 250 °C) in the Co sample (Fig. 4.11a). At higher reduction temperatures, 

peaks at 2θ = 36.4, 42.3 and 61.2° were seen, which correspond to the characteristic (111), 

(200) and (220) peaks of CoO [PDF No. 01-070-2856]. At temperatures above 350 °C, the 

CoO phase was further reduced to fcc metallic Co [PDF No. 01-089-4307]. For the 
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monometallic Fe sample, the α-Fe2O3 to Fe3O4 transformation started from 350 °C (Fig. 

4.11b), and the Fe3O4 to metallic Fe conversion was only seen after 9 h at 550 °C (data not 

shown). The trends in the reduction behaviour observed for the monometallic samples by in 

situ PXRD experiments are consistent with our TPR results and other literature reports.
[45, 46]

 

Slightly higher reduction temperatures were observed from the PXRD data than the TPR data 

because of the differences in the methodologies (for example, ramping and flow rates) used 

in these techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 In situ PXRD patterns of the monometallic samples, a) 10Co/CSs and b) 

10Fe/CSs samples. (X-ray source: Cu, λKα = 0.154 nm)  

 

The four in situ PXRD reduction profiles of the bimetallic samples are displayed in Fig. 4.12. 

Notably, the addition of small quantities of Fe to the Co-rich sample (0.5Fe-9.5Co/CSs) 

introduced changes in the reduction behaviour compared to the monometallic Co sample 

(Fig. 4.12a). The final reduction step (CoO → Co) was shifted to a higher temperature (400 
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°C), and remarkably, a shoulder appeared at a 2θ = 44.9°, which corresponds to the (110) 

plane of the CoFe alloy, wairauite [PDF No. 00-044-1433]. The formation of this alloy phase 

at 550 °C was unexpected at such a low Fe ratio in the sample. For samples with increased 

iron ratios (Fig. 4.12b-c), the peak at 2θ = 44.9° was even more pronounced and an additional 

characteristic Co-Fe alloy peak at 2θ = 65.2° (200) was seen. For the 5Fe-5Co/CSs sample, 

the Co-Fe alloy formation was favoured over the formation of either metallic Co or Fe at high 

reduction temperatures. In this sample, a residual Fe3O4 diffraction peak at 2θ = 35.6° was 

also observed at the end of the experiment (Fig. 4.12c). The residual Fe3O4 was estimated to 

be approximately 0.68% using Rietveld refinement. This observation was unexpected as the 

alloy formed has a 1:1 ratio of Fe to Co and the sample contains equal amounts of the two 

metals. This could suggest that the alloy adopts a core-shell type of structure that has a higher 

Fe content in the shell.
[13, 14]
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Figure 4.12 In situ PXRD patterns of the bimetallic samples, a) 0.5Fe-9.5Co/CSs, b) 2Fe-

8Co/CSs, c) 5Fe-5Co/CSs and d) 9.5Fe-0.5Co/CSs samples (X-ray source: Cu, λKα = 0.154 

nm). 
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The relative abundances of the Co-Fe alloy in the reduced bimetallic samples after in situ 

PXRD experiments were estimated using Rietveld refinement (Table 4.3). The relative 

abundance of the alloy in the samples was noted to increase as the Fe/Co ratio approached 

5:5. 

 

Table 4.3 Relative abundances of Co-Fe, Co, CoO and Fe3O4 on reduced bimetallic samples. 

 

Sample 

Relative abundance [%] Rwp
[a]

 

(χ
2
)
[b]

 Carbon Co-Fe Co CoO Fe3O4 

0.5Fe-9.5Co/CSs 

 

2Fe-8Co/CSs 

 

5Fe-5Co/CSs 

88.7 

 

90.6 

 

91.28 

1.70 

 

2.76 

 

8.40 

9.47 

 

5.83 

 

0.12 

0.13 

 

0.81 

 

- 

- 

 

- 

 

0.18 

1.17 (1.50) 

 

1.32 (1.50) 

 

1.78 (1.82) 

  
[a]

Rwp is the weighted residual function.   
[b]
χ

2
 is the goodness of fit.  

 

Alloy formation on bimetallic Fe-Co FT systems has long been proposed in the literature. 

Reports differ on the exact nature of the alloy formed presumably because of the limited in 

situ or in operando characterization of the bimetallic FT catalysts. Bragança et al. reported the 

formation of a mixed metal oxide (Co-Fe2O4) on Fe-Co/SBA-15 and Fe-Co/HMS catalysts 

after calcination at 400 °C in air.
[47, 48]

 Other alloys that have been reported on Fe-Co systems 

include Fe2Co, Co7Fe3 and Co/Fe supported on CaCO3, SiO2 and TiO2, respectively.
[11, 49-51]

 

It appears that the nature of the support material used could influence the exact structure of 

the resultant alloy. To the best of our knowledge, there have been no literature reports on the 

in situ characterization of Fe-Co systems supported on carbons. Studies have been limited to 

PXRD characterization of samples that were reduced ex situ at elevated temperatures. 

Consequently, contradictory findings have been reported. Guerrero-Ruiz and co-workers 

reported that no features associated with an alloy were observed by PXRD on Fe-Co/C 

samples that were reduced ex situ at 400 and 450 °C.
[52]

 Elsewhere, a Co/Fe alloy was 

observed on Fe-Co/CNTs catalysts that were reduced and passivated prior to PXRD 
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analysis.
[10]

 A detailed analysis of the challenges associated with ex situ versus in situ 

reduction has been reported.
[53]

 Notably, pure Fe (bcc) and Co-Fe alloy have similar 

diffraction patterns. Hence, the assignment of diffraction peaks in a bimetallic sample that 

was reduced ex situ can be challenging since both of these phases could be present. In this 

study, Fe3O4 was the dominant phase at 550 °C during the in situ reduction of monometallic 

Fe samples. Therefore the Fe-Co alloy peaks could be assigned unambiguously. The PXRD 

measurements performed in this study showed that wairauite (Co-Fe and possibly CoxFey) 

was the alloy formed during the reduction of bimetallic Fe-Co/CSs catalysts. 

 

4.2.5 Fischer-Tropsch reactor studies 

The catalytic performance of the xFe-yCo/CSs catalysts reduced at 350 °C for 18 h were 

evaluated by using a fixed-bed reactor under a set of similar conditions (220/250 °C, 10 bar, 

H2/CO = 2, gas hourly space velocity (GHSV) = 2400 L kgcat
-1

 h
-1

). Two reaction 

temperatures (220, 250 °C) were used as these are typical reaction temperatures used for 

monometallic Co or Fe catalysts, respectively. The CO conversions of the catalysts as a 

function of time on stream are presented in Fig. 4.13. It was observed that all the catalysts 

investigated in this study were stable at both reaction temperatures for the time frame (100 h) 

used. For the monometallic catalysts, 10Co/CSs had a higher CO conversion than 10Fe/CSs 

catalyst under similar reaction conditions. This trend has also been reported elsewhere.
[10, 48]

 

The addition of small amounts of Fe to a Co-rich sample improved the CO conversions, and 

the 0.5Fe-9.5Co/CSs sample had higher conversions than all the other catalysts both at 220 

and 250 °C. The increase in the activity of this bimetallic catalyst was not accompanied by 

any significant change in CO2 selectivity as would be expected for an Fe catalyst. This result 

suggests that the bimetallic catalyst has different catalytic properties from its constituents, 

that is, it does not possess additive properties of Fe and Co. This observation is in agreement 

with conclusions drawn from other literature studies. A further increase in the Fe ratio in the 

samples had a negative effect on the FT conversion. CO conversions recorded over 2Fe-

8Co/CSs and 5Fe-5Co/CSs were even lower than that measured on the monometallic Fe 

sample. Notably, the addition of small quantities of Co to a predominantly Fe-based catalyst 

did not yield any drastic effects on the performance of the catalyst. Thus a similar catalytic 

behaviour was observed between 9.5Fe-0.5Co/CSs and 10Fe/CSs. These observations are 
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also in agreement with our TPR results, in which similar reduction profiles were recorded for 

these two samples. 

 

The steady-state CO conversions and product selectivities of the different samples in FT 

synthesis are summarized in Table 4.4. A plot of C5+ hydrocarbons as a function of the 

reaction temperature and the catalyst composition is shown in Fig. 4.14. Relatively high C5+ 

selectivities (77 – 87%) were displayed by the Co-rich samples at 220 °C. An increase of the 

reaction temperature to 250 °C generally resulted in a significant decline of C5+ hydrocarbons 

for all the Co-rich samples in favour of lighter hydrocarbon products. Consequently, methane 

selectivity for the 10Co/CSs sample increased from 10 to 23% at the higher reaction 

temperature. Monometallic cobalt catalysts are typically (industrially) evaluated in the 

temperature range 220 – 240 °C to achieve a high selectivity towards heavy hydrocarbons. In 

the present study, a reaction temperature of 250 °C was also evaluated to allow a  comparison 

with Fe-rich samples that generally require higher reaction temperatures. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 CO conversions as a function of time in FT synthesis for the mono- and 

bimetallic catalysts (P = 10 bar, H2/CO = 2). 
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Table 4.4 FT performance data of the different catalysts.  

Sample T  

[°C] 

CO 

conversion [%] 

Hydrocarbon selectivity [%]  

CO2 C1 C2-C4 C5+ 

10Co/CSs 

 

 

0.5Fe-9.5Co/CSs 

 

 

2Fe-8Co/CSs 

 

 

5Fe-5Co/CSs 

 

 

9.5Fe-0.5Co/CSs 

 

 

10Fe/CSs 

220 

250 

 

220 

250 

 

220 

250 

 

220 

250 

 

220 

250 

 

220 

250 

29 

51 

 

32 

60 

 

21 

29 

 

24 
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As expected, Fe-rich samples exhibited comparatively lower C5+ hydrocarbon selectivities 

than Co-rich samples. Fe catalysts are typically promoted with an alkali metal like potassium 

to enhance selectivity towards long chain hydrocarbons.
[54]

 Remarkably, the intermediate 

samples (2Fe-8Co/CSs, 5Fe-5Co/CSs) had the highest selectivity towards C5+ products at the 

lower temperature, that is, 87 and 80% respectively.  As expected, these samples were also 

sensitive to the reactor temperature as significant declines in C5+ selectivity were observed 

with increased temperature. For example, the selectivity towards the heavy hydrocarbons 

decreased from 87 to 72% and from 80 to 74%, respectively. A corresponding increase in the 

methane fraction was also observed for these samples at 250 °C and intermediate WGS 

activity was seen for these samples. A more detailed analysis of the product distributions for 

selected hydrocarbons was obtained using off-line GC (Fig. 4.15). 
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Figure 4.14 C5+ product selectivities calculated at 220 and 250 °C for the different catalyst 

compositions. 
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Figure 4.15 Liquid hydrocarbon product distributions obtained over the indicated catalysts.  

 

4.2.6 The spent catalysts 

Analysis of the spent catalyst was performed after FT synthesis to determine which phases 

had formed on the catalyst during the reaction. Ex situ PXRD patterns of selected spent 

catalysts, 10Co/CSs, 2Fe-8Co/CSs and 5Fe-5Co/CSs, are shown in Fig. 4.16. Two diffraction 

peaks at 2θ = 52.4 and 77.3° were observed on the spent bimetallic catalysts (2Fe-8Co/CSs 

and 5Fe-5Co/CSs), which correspond to the (110) and (200) diffraction planes of the Co-Fe 

(or CoxFey) alloy (wairauite) [PDF No. 00-044-1433]. These data confirm that a Co-Fe alloy 

was present under FT conditions. It could be that the alloy formed during the prolonged 

reduction (18 h) before FT synthesis. However, alloy formation during FT synthesis cannot 

be ruled out. The Co-Fe alloy has been previously reported on spent Fe-Co/SiO2 catalysts.
[55, 

56]
 Diffraction peaks due to the alloy were absent on the monometallic Co sample (10Co/CSs; 

Fig. 4.16). Other phases which were observed on the spent catalysts include CoO, metallic 

Co, Co3C and Fe2C.  
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Figure 4.16 Ex situ PXRD patterns of selected spent catalysts. (X-ray source: Co, λKα = 

0.197 nm).     

 

4.2.7 Influence of the alloy on the CO conversion and selectivity 

Findings made in this study indicate that the Co-Fe (or CoxFey) alloy is not observed before 

reduction of the bimetallic precursors, that is, on the calcined samples. Characterization by 

different techniques provided insight into the conditions that favour alloy formation. TPR, 

TGA and in situ PXRD show that the alloy forms 1) at high temperatures and/or 2) under 

reducing conditions. In situ PXRD data illustrate that the relative abundance of the alloy 

increased as the Fe/Co ratio of the reactants tended to unity.   

  

The data summarized in Table 4.4 show that the presence of the Co-Fe alloy reduces the FT 

CO conversion relative to the monometallic Co catalysts; little change relative to pure Fe 

catalysts is seen. These results are in agreement with findings reported elsewhere.
[48, 57]

 

Braganҫa and co-workers also reported that 10Fe-14Co/HMS and 13Fe-15Co/SBA-15 
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catalysts prepared by incipient wetness impregnation had lower CO conversions than the 

corresponding 23Co/HMS and 24Co/SBA-15 monometallic catalysts.
[48]

  

  

The CO conversions recorded at 220 °C all lie within the range 26 ± 5%. In this study (using 

similar reaction conditions) both Co and Fe catalysts showed a higher-hydrocarbon 

selectivity. The addition of 2% Fe to the Co catalyst enhanced the C5+ selectivity but further 

addition resulted in a lower C5+ selectivity. This behaviour is consistent at both reaction 

temperatures (220, 250 °C; Fig. 4.14).  

 

The data thus indicates that the 1:1 FeCo alloy is not a key component to enhance the 

selectivity (or activity) of the catalysts. Rather, it appears that an alloy with a ratio closer to 

that of Co2Fe is important. This data suggests a surface rich in Co; possibly with a structure 

similar to the core shell Fe@Co catalyst reported recently.
[7, 43, 58]

 

 

4.3 Conclusions 

We have synthesized solid carbon spheres (CSs) successfully by the hydrothermal method. It 

was found that the properties of the CSs can be tuned to make them model catalyst support 

materials by a simple high-temperature treatment under inert conditions (900 °C, 4 h, N2). 

The results show that the surface area, pore size, thermal stability and crystallinity of the 

carbon support can be tuned by annealing for different periods. We have demonstrated that 

the CSs synthesized hydrothermally can be tuned to have higher BET surface areas and pore 

diameters than most reported CSs, which are typically synthesized by chemical vapour 

deposition. The annealing of the CSs allowed for the preparation of high-surface-area mono- 

and bimetallic catalysts with high dispersions. In situ powder XRD of the bimetallic Fe-Co 

catalysts showed that a Co-Fe-type alloy (wairauite) formed. Furthermore, the bimetallic 

catalysts with > 2 % Fe exhibited the best C5+ selectivity in Fischer-Tropsch synthesis, which 

suggests that the Co-rich and Fe-poor alloy formed during reduction favours the production 

of higher-hydrocarbon products. However, the relative abundance of the alloy is not 

correlated directly to the selectivity towards C5+ products. Notably, the alloy was formed 

under reducing conditions. Characterization of the calcined bimetallic catalysts in an 
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oxidizing atmosphere showed intermediate properties between Fe and Co. However, 

completely different properties were seen under reducing conditions, which confirmed the 

formation of a Co-Fe-type alloy. The use of the relatively inert hydrothermal CS support was 

particularly advantageous in this regard as it allowed in situ monitoring of the different phase 

transformations without forming complex mixed compounds with the bimetallic catalysts, 

which is normally the case with metal oxide supports. Additionally, it appears that the 

versatility of hydrothermal CSs can be exploited in the study of other complex bimetallic 

systems.  

 

4.4 Experimental Section 

4.4.1 Synthesis of carbon spheres (CSs) 

The hydrothermal method was used for the synthesis of solid carbon spheres, and sucrose 

was used as the carbon precursor. Typically, a 0.3 M sucrose solution was added to a 100 mL 

Teflon-lined stainless-steel autoclave (filling ratio; 90%). The autoclave was heated to 190 °C 

at a heating rate of 1 °Cmin
-1

, and synthesis was continued at this temperature for 4 h. The 

obtained powder was successively washed and centrifuged with water and absolute ethanol. 

Subsequently, purification of the product was performed by Soxhlet extraction to remove 

polyaromatic hydrocarbons (PAHs). For this extraction procedure, toluene was used as the 

solvent. The CSs were then dried at 70 °C for 12 h.  As-prepared carbon spheres were then 

annealed under inert conditions to improve their properties. Annealing was performed at 900 

°C under N2 (20 mLmin
-1

), and the annealing time was varied from 1 to 4 h. 

 

4.4.2 Catalyst preparation 

All catalysts in this study were supported on annealed CSs. Preparation of monometallic 

catalysts (10Fe/CSs, 10Co/CSs) was achieved by the homogeneous deposition precipitation 

method and the metal loading of 10 wt% was used in the synthesis. Nitrate precursors 

[Fe(NO3)3·9H2O and Co(NO3)2·6H2O] were used as Fe and Co sources, respectively. Urea 

(Sigma) was used as the precipitating agent. 
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The bimetallic Fe-Co/CSs catalysts were also synthesized by the deposition co-precipitation 

technique using urea as the precipitation agent. A series of bimetallic catalysts were prepared 

by varying the Fe-to-Co ratio, and the total metal loading was kept at 10 wt%. Typically, the 

metal nitrate precursor(s) and urea (1.5 moles urea per mole of metal) were dissolved in 

deionized water (50 mL) and then added to the CS support, which was dispersed previously 

in deionized water (150 mL) at 90 °C. The hydrolysis of urea was allowed to proceed for 12 h 

with stirring, followed by drying at 70 °C under vacuum. Calcination was performed at 300 

°C for 4 h in N2 (20 mLmin
-1

). The bimetallic samples are denoted xFe-yCo/CSs, in which x 

and y are the wt% loadings of Fe and Co, respectively, in the samples. The values of x and y 

were 0, 0.5, 2, 5, 8 and 10, to give the catalysts 10Co/CSs, 0.5Fe-9.5Co/CSs, 2Fe-8Co/CSs, 

5Fe-5Co/CSs, 9.5Fe-0.5Co/CSs and 10Fe/CSs.   

 

4.4.3 Characterization 

Transmission electron microscopy (TEM) analysis was carried out using an FEI Tecnai T12 

Spirit operated at an accelerating voltage of 120 kV. Scanning electron microscopy (SEM) 

and energy-dispersive X-ray spectroscopy data were collected by using a FEI Nova Nanolab 

600 instrument. Low- and wide-angle ex situ powder X-ray diffraction (PXRD) patterns were 

recorded by using a Bruker D2 diffractometer, which used Co Kα radiation (λKα = 0.178897 

nm) and a Lynxeye detector. The scan range was 2θ = 10-90° with 0.026° steps. Surface area 

and porosity data were measured from 200 mg samples by using a Micromeritics TriStar 

3000 instrument operated at -196 °C. Before analysis, samples were degassed at 150 °C in N2 

for 6 h. The specific surface area was calculated by the BET method from N2 adsorption data 

in the relative pressure range P/Po = 0.05-0.30. Total pore volumes of the samples were 

calculated at a relative pressure of P/Po = 0.995. The Barrett-Joyner-Halenda (BJH) pore size 

distributions were calculated by analysing the desorption branches of the N2 isotherms. 

Thermogravimetric analysis (TGA) was performed under oxidizing conditions by using a 

PerkinElmer STA6000 analyser. Analysis was performed in the temperature range 50-900 °C 

using a 10 °Cmin
-1

 heating rate.  

 

The reduction behaviour of catalysts was monitored both by H2-temperature programmed 

reduction (TPR) and in situ PXRD techniques. TPR profiles of the catalysts were recorded by 
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using a Micromeritics AutoChem II unit fitted with a thermal conductivity detector (TCD). 

The TPR reactor was heated from RT to 900 °C at a heating rate of 10 °Cmin
-1

 in a flow of 

reducing gas (5%H2/95%Ar) at flow rate of 45 mLmin
-1

. In situ PXRD experiments were 

conducted by using a Bruker D8 Advance AXS diffractometer with Cu radiation (λKα = 

0.154084 nm) fitted with a Göbel mirror to produce a pseudo parallel primary beam and 

operated at 40 kV and 40 mA. For these experiments, samples were placed in an Anton Paar 

XRK 900 reaction chamber and diffraction patterns were collected in the range of 2θ = 15-

80° using a VÅNTEC position-sensitive detector. Reduction was performed under a flow of 

H2 (5%H2, balance N2) using a step-wise temperature ramp from 150-550 °C with increments 

of 50 °C. The temperature was then maintained at 550 °C for 2 h, and the catalyst phase 

composition was monitored.  Analysis of the in situ PXRD data by the Rietveld refinement 

method was performed by using the TOPAS 4.2 (Bruker AXS) software package, using 

analytical peak shape functions and starting structure models obtained from the Inorganic 

Crystal Structural Database.
[59]

 The quality of the model used for refinement was evaluated 

using the goodness of fit (χ
2
) and the weighted residual function (Rwp) parameters. 

   

4.4.4 Fischer-Tropsch synthesis 

Before the FTS reaction, the catalysts (0.5 g) were suspended on a plug of quartz wool in a 

tubular fixed-bed stainless-steel reactor (i.d. = 16 mm). Reduction was performed in situ 

using ultra high purity H2 gas (45 mLmin
-1

). Catalyst reduction was performed at 350 °C 

(ramping rate: 1 °Cmin
-1

) for 18 h and 2 bar pressure. Subsequently, FT synthesis was 

performed at two reaction temperatures (220, 250 °C) using a synthesis gas flow rate of 20 

mLmin
-1

 and a total pressure of 10 bar. Synthesis gas with a H2/CO ratio of 2 was used and 

10% N2 was used as the internal standard. Exit-gas products were analysed by two online gas 

chromatographs fitted with a thermal conductivity detector (TCD) and a flame ionization 

detector (FID). Two hot and cold traps kept at 150 and 20 °C, respectively, were used to 

collect wax and oil products. The composition of the liquid hydrocarbons was determined 

using an off-line GC-FID. 

 

 

 



___________________________________________________ 

Dlamini et al. ChemCatChem  2015, 7, 3000 – 3011.    110 

Acknowledgements 

This work was financially supported by the DST-NRF Centre of Excellence in Catalysis 

(c*change) and the University of the Witwatersrand. We also wish to thank the Microscopy 

and Microanalysis Unit (MMU) at the University of the Witwatersrand for assistance with 

microscopy studies. 

  

References 

[1] Y. Liu, J. Luo, M. Girleanu, O. Ersen, C. Pham-Huu, C. Meny, J. Catal. 2014, 318, 179-192. 

[2] S. Sartipi, K. Parashar, M. Makkee, J. Gascon, F. Kapteijn, Catal. Sci. Technol. 2013, 3, 572-

575. 

[3] S. Sartipi, M. Makkee, F. Kapteijn, J. Gascon, Catal. Sci. Technol. 2014, 4, 893-907. 

[4] T. Das, G. Deo, J. Phys. Chem. C 2012, 116, 20812-20819. 

[5] A. Griboval-Constant, A. Butel, V. V. Ordomsky, P. A. Chernavskii, A. Y. Khodakov, Appl. 

Catal., A 2014, 481, 116-126. 

[6] S. Lögdberg, D. Tristantini, Ø. Borg, L. Ilver, B. Gevert, S. Järås, E. A. Blekkan, A. Holmen, 

Appl. Catal., B 2009, 89, 167-182. 

[7] V. R. Calderone, N. R. Shiju, D. Curulla-Ferré, S. Chambrey, A. Khodakov, A. Rose, J. 

Thiessen, A. Jess, G. Rothenberg, Angew. Chem. 2013, 125, 4493-4497. 

[8] Y. Yang, H. Xiang, R. Zhang, B. Zhong, Y. Li, Catal. Today 2005, 106, 170-175. 

[9] E. de Smit, B. M. Weckhuysen, Chem. Soc. Rev. 2008, 37, 2758-2781. 

[10] A. Tavasoli, M. Trépanier, R. M. Malek Abbaslou, A. K. Dalai, N. Abatzoglou, Fuel Process. 

Technol. 2009, 90, 1486-1494. 

[11] D. J. Duvenhage, N. J. Coville, Appl. Catal., A 1997, 153, 43-67. 

[12] R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, J. CO2 Util. 2013, 3–4, 102-106. 

[13] V. R. Calderone, N. R. Shiju, D. C. Ferre, G. Rothenberg, Green Chem. 2011, 13, 1950-1959. 

[14] D. J. Duvenhage, N. J. Coville, J. Mol. Catal., A 2005, 235, 230-239. 



___________________________________________________ 

Dlamini et al. ChemCatChem  2015, 7, 3000 – 3011.    111 

[15] X. Ma, Q. Sun, F. Cao, W. Ying, D. Fang, J. Nat. Gas Chem. 2006, 15, 335-339. 

[16] J. Li, G. Jacobs, T. Das, Y. Zhang, B. Davis, Appl. Catal., A 2002, 236, 67-76. 

[17] M. Boudart, A. Delbouille, J. A. Dumesic, S. Khammouma, H. Topsøe, J. Catal. 1975, 37, 

486-502. 

[18] T. Mochizuki, T. Hara, N. Koizumi, M. Yamada, Appl. Catal., A 2007, 317, 97-104. 

[19] A. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 2007, 107, 1692-1744. 

[20] B. Jongsomjit, J. Panpranot, J. G. Goodwin Jr, J. Catal. 2001, 204, 98-109. 

[21] A. Tavasoli, R. M. Malek Abbaslou, A. K. Dalai, Appl. Catal., A 2008, 346, 58-64. 

[22] Y. Liu, O. Ersen, C. Meny, F. Luck, C. Pham-Huu, ChemSusChem 2014, 7, 1218-1239. 

[23] B. Sun, K. Xu, L. Nguyen, M. Qiao, F. Tao, ChemCatChem 2012, 4, 1498-1511. 

[24] H. Xiong, L. L. Jewell, N. J. Coville, ACS Catal. 2015, 5, 2640-2658. 

[25] M. Moyo, M. A. M. Motchelaho, H. Xiong, L. L. Jewell, N. J. Coville, Appl. Catal., A 2012, 

413–414, 223-229. 

[26] H. Xiong, M. Moyo, M. A. Motchelaho, Z. N. Tetana, S. M. A. Dube, L. L. Jewell, N. J. 

Coville, J. Catal. 2014, 311, 80-87. 

[27] U. M. Graham, G. Jacobs, M. K. Gnanamani, S. M. Lipka, W. D. Shafer, C. R. Swartz, T. 

Jermwongratanachai, R. Chen, F. Rogers, B. H. Davis, ACS Catal. 2014, 4, 1662-1672. 

[28] M.-M. Titirici, M. Antonietti, Chem. Soc. Rev. 2010, 39, 103-116. 

[29] Z. Chen, L. Ma, S. Li, J. Geng, Q. Song, J. Liu, C. Wang, H. Wang, J. Li, Z. Qin, S. Li, Appl. 

Surf. Sci. 2011, 257, 8686-8691. 

[30] M.-L. Sham, J.-K. Kim, Carbon 2006, 44, 768-777. 

[31] L. Yu, C. Falco, J. Weber, R. J. White, J. Y. Howe, M.-M. Titirici, Langmuir 2012, 28, 

12373-12383. 

[32] S. Tang, Y. Tang, S. Vongehr, X. Zhao, X. Meng, Appl. Surf. Sci. 2009, 255, 6011-6016. 

[33] S. Tang, S. Vongehr, X. Meng, Nanotechnology 2012, 23, 095603. 



___________________________________________________ 

Dlamini et al. ChemCatChem  2015, 7, 3000 – 3011.    112 

[34] P. R. Karandikar, Y.-J. Lee, G. Kwak, M. H. Woo, S.-J. Park, H.-G. Park, K.-S. Ha, K.-W. 

Jun, J. Phys. Chem. C 2014, 118, 21975-21985. 

[35] L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.-M. Titirici, 

Carbon 2010, 48, 3778-3787. 

[36] P. E. Fanning, M. A. Vannice, Carbon 1993, 31, 721-730. 

[37] R. Demir-Cakan, N. Baccile, M. Antonietti, M.-M. Titirici, Chem. Mater. 2009, 21, 484-490. 

[38] G. Yu, B. Sun, Y. Pei, S. Xie, S. Yan, M. Qiao, K. Fan, X. Zhang, B. Zong, J. Am. Chem. 

Soc. 2010, 132, 935-937. 

[39] R. Phienluphon, L. Shi, J. Sun, W. Niu, P. Lu, P. Zhu, T. Vitidsant, Y. Yoneyama, Q. Chen, 

N. Tsubaki, Catal. Sci. Technol. 2014, 4, 3099-3107. 

[40] H. Zhang, C. Lancelot, W. Chu, J. Hong, A. Y. Khodakov, P. A. Chernavskii, J. Zheng, D. 

Tong, J. Mater. Chem. 2009, 19, 9241-9249. 

[41] H. Xiong, M. Moyo, M. K. Rayner, L. L. Jewell, D. G. Billing, N. J. Coville, ChemCatChem 

2010, 2, 514-518. 

[42] H. Wang, Y. Yang, B.-S. Wu, J. Xu, M.-Y. Ding, H.-L. Wang, W.-H. Fan, H.-W. Xiang, Y.-

W. Li, J. Molec. Catal., A 2009, 308, 96-107. 

[43] V. R. Calderone, N. R. Shiju, D. Curulla-Ferré, S. Chambrey, A. Khodakov, A. Rose, J. 

Thiessen, A. Jess, G. Rothenberg, Angew. Chem. Int. Ed. 2013, 52, 4397-4401. 

[44] D. G. Billing, A. Katrusiak, Acta Cryst., B 2014, 70, 399-400. 

[45] Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, Y. Sun, Catal. Sci. Technol. 2014, 4, 717-728. 

[46] M. K. Rayner, D. G. Billing, N. J. Coville, Acta Cryst. 2014, B70, 498-509. 

[47] L. F. F. P. G. Bragança, R. R. Avilez, M. I. P. d. Silva, Colloid. Surf., A 2010, 358, 79-87. 

[48] L. F. F. P. G. Bragança, M. Ojeda, J. L. G. Fierro, M. I. P. da Silva, Appl. Catal., A 2012, 

423–424, 146-153. 

[49] N. Chiwaye, L. L. Jewell, D. G. Billing, D. Naidoo, M. Ncube, N. J. Coville, Mater. Res. 

Bull. 2014, 56, 98-106. 



___________________________________________________ 

Dlamini et al. ChemCatChem  2015, 7, 3000 – 3011.    113 

[50] S. Ali, N. Mohd Zabidi, D. Subbarao, Chem. Cent. J. 2011, 5, 68. 

[51] V. A. de la Peña O’Shea, M. C. Álvarez-Galván, J. M. Campos-Martin, N. N. Menéndez, J. 

D. Tornero, J. L. G. Fierro, Eur. J. Inorg. Chem. 2006, 2006, 5057-5068. 

[52] A. Guerrero-Ruiz, A. Sepúlveda-Escribano, I. Rodríguez-Ramos, Appl. Catal., A 1992, 81, 

81-100. 

[53] F. Huber, Z. Yu, S. Lögdberg, M. Rønning, D. Chen, H. Venvik, A. Holmen, Catal. Lett. 

2006, 110, 211-220. 

[54] M. E. Dry, G. J. Oosthuizen, J. Catal. 1968, 11, 18-24. 

[55] X. Ma, Q. Sun, W. Ying, D. Fang, J. Nat. Gas Chem. 2009, 18, 354-358. 

[56] X. Ma, Q. Sun, W. Ying, D. Fang, J. Nat. Gas Chem. 2009, 18, 232-236. 

[57] J. A. Díaz, H. Akhavan, A. Romero, A. M. Garcia-Minguillan, R. Romero, A. Giroir-Fendler, 

J. L. Valverde, Fuel Process. Technol. 2014, 128, 417-424. 

[58] T. Asefa, ChemCatChem 2013, 5, 1698-1700. 

[59] A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, Acta Cryst., B 2002, 58, 364-369. 

 

 



___________________________________________________ 
This chapter is still to be submitted for publication. 
 

CHAPTER 5 

 

Post-synthesis nitrogen doping of a hollow carbon sphere support for 

improved cobalt catalyst stability in Fischer-Tropsch synthesis 

 

5.1 Introduction 

Crude oil-derived liquid fuels are the overwhelming source of energy in the current 

transportation structure. However, the price of crude-oil is inherently unstable and is also 

influenced by economic and political factors.
[1]

 The Fischer-Tropsch (FT) synthesis is an 

alternative route for producing clean transportation fuels and building-block chemicals from 

non-petroleum carbon resources such as coal, natural gas or biomass. Because of the 

economic significance of the FT process, it still receives world-wide attention from 

researchers in an attempt to improve its efficiency and profitability. Industrial catalysts for 

the process typically consist of Fe or Co particles dispersed on metal oxides like TiO2, Al2O3 

or SiO2 which provide excellent thermal stability and mechanical integrity.
[2]

 Supported 

cobalt remains the catalyst of choice for the FT reaction due to its high per pass activity, high 

C5+ selectivity, longer catalyst lifetime, low oxygenate and CO2 selectivity and at present it 

accounts for a combined estimated production capacity of 250 000 barrels per day.
[3-6]

 In 

contrast, iron catalysts are active in the water-gas-shift reaction and also favour the 

production of by-products like oxygenates and isomers. 

 

Recently, carbon-based materials have been successfully employed as model support 

materials for cobalt FT catalysts due to their unique properties, such as a tunable surface area, 

high thermal stability and tailorable surface chemistry. Their potential applications in 

catalysis, gas/energy storage, as adsorbents, and sensors have been reported.
[7]

  The properties 

of carbon materials are strongly influenced by their morphology,
[8]

 currently reported 

morphologies include carbon spheres, carbon nanotubes, carbon nanofibers, carbon 

nanocoils, carbon nanowires, graphene, bamboo-like carbon and diamond like carbon. 

Hollow carbon spheres (HCSs) are particularly interesting because of their porous structure, 
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high surface area and low densities. The low densities of HCSs coupled with the high surface 

to volume ratios make them ideal support materials for the synthesis of highly dispersed 

catalysts. Additionally, the relatively inert carbon framework provides an ideal platform for 

studies on metal-support interactions, catalyst size effects and surface functionalization.   

 

The surface chemistry of carbon materials can be tailored by doping them using a heteroatom 

such as nitrogen or oxygen. Nitrogen doped carbons are more interesting as they have 

displayed superior activity when compared to oxygen functionalized carbons when used as 

supports for Fischer-Tropsch catalysts. It has been reported that nitrogen-doped carbons 

generate a favourable metal-support interaction, resulting in improved catalyst performance. 

Three effects are believed to result in the improved performance of N-doped catalyst 

supports: (1) modified nucleation and growth kinetics during catalyst nanoparticle deposition, 

which favours the formation of smaller catalyst particle sizes and therefore gives increased 

dispersion, (2) increased the metal-support interaction which led to improved catalyst 

stability during the reaction, and (3) modification of the electronic structure of the catalyst 

nanoparticles, which might enhance intrinsic catalytic activity.
[9]

 N-doping has been shown to 

increase the catalytic performance of FT catalysts supported on CNTs,
[10-11]

 CSs
[12]

 and more 

recently graphene.
[13]

 However, most of these carbons were functionalized via in situ N-

doping. Maldonado and Stevenson have demonstrated that in situ N-doping of CNFs can 

decrease the thermal stability of N-CNFs by ~90 °C relative to the pristine material due to 

increased disorder of the carbon framework.
[14]

 

 

Recently, N-doped carbons in which the doping was done by a post-synthesis methodology 

have been shown to be a superior support material. This is attributed to the better mechanical 

and thermal stability of the post-doped carbons. In a typical post-doping procedure, carbon 

materials are treated with a nitrogen-containing precursor, such as ammonia or melamine at 

high temperatures, which decomposes the precursor to give free radicals like NH2, NH, 

atomic nitrogen and hydrogen. The free radicals then attack the carbon matrix to form 

nitrogen-containing functional groups such as –CN, -NH2, pyrrolic and quaternary 

nitrogen.
[15]

 In this study we have explored the robustness of hollow carbon spheres by using 

them as a support material for Co FT catalysts under harsh reaction conditions (high 

temperature, pressure). Furthermore, the surface properties of hollow carbon spheres were 
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modified by a post-synthesis nitrogen doping procedure which led to N-HCSs. The effect of 

this surface functionalization procedure was studied by comparing pristine HCSs with 

nitrogen doped N-HCSs as a support material for a cobalt Fischer-Tropsch catalyst.    

 

5.2 Experimental methods 

5.2.1 Chemicals: Tetraethyl orthosilicate (TEOS, Sigma-Aldrich), ammonia solution (25%), 

absolute ethanol (99.6%), resorcinol (Merck), formaldehyde, hydrofluoric acid (HF, 10%), 

melamine, methanol, cobalt nitrate (Sigma-Aldrich), urea (Promark Chemicals) were 

obtained from the sources listed and used as received.  

  

5.2.2 Synthesis of hollow carbon spheres (HCSs) 

Hollow carbon spheres were synthesized by the hydrothermal method, utilizing a solid silica 

template as the core. The solid template was made using a modified Stöber method.
[16-17]

  

HCS synthesis started with the fabrication of core-shell SiO2@RF composites. In a typical 

synthesis, 2.13 mL TEOS was mixed with 37.5 mL of absolute ethanol. This solution was 

then added to a mixture containing ethanol (25 mL), deionized water (7.5 mL) and ammonia 

(5 mL). The contents were stirred for 1 h to allow for the formation of colloidal silica spheres 

which were used as a template. Subsequently, resorcinol (0.5 g) and formaldehyde (0.7 mL) 

were added make the core-shell structures. The solution was allowed to stir for 24 h at room 

temperature, and then transferred into a Teflon-lined stainless steel autoclave, hydrothermally 

treated at 100 °C for 24 h. The product was washed/centrifuged successively with water and 

ethanol, followed by drying at 70 
o
C for 12 h. Carbonization of the SiO2@RF composites was 

done at 900 
o
C for 1 h under N2 (20 mL/min), followed by etching of the silica core using a 

10%  HF solution to give pristine HCSs.   

 

5.2.3 Synthesis of nitrogen-doped hollow carbon spheres (N-HCSs) 

N-HCSs were prepared following a post synthesis procedure. The core-shell SiO2@RF 

composites were fabricated as explained above and were then mixed with melamine which 

was used as the nitrogen precursor. In particular, 2.82 g of melamine was allowed to dissolve 
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in methanol (200 mL) and then 4.7 g of SiO2@RF composites were added to the solution 

under stirring. The mixture was allowed to stir at room temperature and the methanol allowed 

to evaporate. Subsequently, the SiO2@RF-melamine composites were then carbonized under 

N2 (20 mL/min) for 1 h. Carbonization was done at two temperatures; 600 and 900 °C. The 

samples were then etched using a 10% HF solution to give N-doped HCSs which are labelled 

as N-HCSs600 and N-HCSs900 in accordance with the 600 and 900 °C carbonization 

temperatures used. 

 

5.2.4 Catalyst preparation 

Cobalt Fischer-Tropsch catalysts supported on carbon materials (10% Co loading) were 

prepared in this study. Three different carbon supports were used; pristine hollow carbon 

spheres (HCSs), N-doped hollow carbon spheres carbonized at 600 °C (N-HCSs600) and N-

doped hollow carbon spheres carbonized at 900 °C (N-HCSs900). The corresponding cobalt 

catalysts prepared from these supports have been labelled as 10Co/HCSs, 10Co/N-HCSs600 

and 10Co/N-HCSs900. All the catalysts were prepared by the homogeneous deposition 

precipitation method utilizing urea as the precipitating agent and cobalt nitrate 

[Co(NO3)2.6H2O] as the cobalt precursor. In a typical synthesis, the prepared carbon support 

was dispersed in 200 mL deionized water in a round-bottom flask and the temperature was 

raised to 90 °C. A solution composed of calculated amounts of the cobalt precursor and urea 

dissolved in deionized water (20 mL) was then added drop-wise under stirring. The 

hydrolysis of urea was allowed to proceed under these conditions for 12 h, after which the 

solvent was removed under vacuum on a rotary evaporator at 70 °C. Subsequently the 

catalyst was dried and then calcined at 300 °C for 4 h under N2.  

 

5.2.5 Catalyst characterizations 

Powder X-ray diffraction (XRD) measurements were done using a Bruker D2 phaser with Co 

Kα radiation (λ = 0.178897 nm), scan range 10-90° (2θ) with 0.026° steps. The instrument 

was operated at 30 kV and 10 mA. Scanning electron microscopy (SEM) and energy 

dispersive X-ray spectroscopy (EDX) analysis was done on an FEI Nova Nanolab 600 

instrument. Sample preparation for transmission electron microscopy (TEM) analysis was as 

follows: the powder sample was dispersed in ethanol by sonication for 5 minutes. 
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Subsequently, the sample was added drop-wise to a carbon coated copper grid prior to 

analysis. Bright-field TEM images were recorded on a CCD detector fitted on a FEI Tecnai 

T12 Spirit operating at an accelerating voltage of 120 kV. 

 

Nitrogen adsorption measurements were carried out on a Micromeritics Tristar 3000 analyser 

operated at -196 °C. Prior to analysis, samples were degassed at 150 °C under N2 flow for 12 

h. Pore size distributions were determined by the BJH (Barrett-Joyner-Halenda) method 

while pore volumes were calculated at a relative pressure of 0.995 (P/Po) by assuming that the 

pores were filled with the condensate in the liquid state. Raman spectroscopy analysis was 

carried out on an InVia Raman spectrometer fitted with a DuoScan attachment. The spectra 

were recorded at a laser wavelength of 514.5 nm and the power at the sample was 0.2 mW. 

X-ray photoelectron spectroscopy (XPS) measurements were done on a SHIMADZU 

KRATOS analytical AXIS SUPRA
TM

 XPS system with monochromatic Al Kα radiation 

(1486.6 eV). The working pressure in the measurement chamber was kept at 1.8 x 10
-8

 torr.  

 

H2-temperature programmed reduction (TPR) experiments were done on a Micromeritics 

Autochem II instrument fitted with a thermal conductivity detector (TCD). Samples were 

outgassed in Ar at 150 °C for 30 minutes prior to the analysis with 5% H2 bal. Ar in the 

temperature range 50-900 °C. Brooks mass flow controllers were used to maintain the flow 

rate at 45 mL/min during the the analysis. The reducibility of the catalyst was also monitored 

by the in situ PXRD technique. A Bruker D8 Advance AXS diffractometer fitted with an 

Anton Paar XRK 900 reaction chamber was used for data collection. The diffractometer was 

operated at 40 kV, 40 mA and used a Cu radiation source (λKα = 0.154084 nm). Variable 

temperature measurements were done in the range 150-550 °C using 50 °C step-wise 

increments; subsequently the temperature was maintained at 550 °C for 2 h. Phase 

information was recorded on a VÅntec position sensitive detector in the 2 theta range 15-80°.  

The Rietveld refinement method incorporated in the TOPAS 4.2 (Bruker AXS) software 

package was used to analyse the in situ PXRD data. 
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5.3 Results and discussion 

5.3.1 Synthesis and doping of hollow carbon spheres (HCSs) 

Shown in Fig. 5.1 are TEM and SEM images of the SiO2 spheres, SiO2@RF composites and 

HCSs made in the study. Highly uniform and spherical silica templates were synthesized 

which had an average sphere diameter of 320 ± 20 nm (Fig. 5.1a-b). It was observed that the 

surface of the silica sphere was smooth and well defined. A carbon-coating process which 

involved resorcinol and formaldehyde as carbon precursors resulted in the formation of a 

SiO2-resorcinol-formaldehyde composite, denoted as SiO2@RF. The composite was then 

carbonized at 900 °C under N2 to convert the polymeric RF to a layer of carbon.  It can be 

seen from Fig. 5.1c-d that the composite consists of a silica core which is uniformly 

encapsulated by a carbon shell with a thickness of 30 ± 5 nm. In the final synthesis step, the 

silica template was etched out using a 10% HF solution to yield monodispersed pristine HCSs 

(Fig. 5.1e-f). The HF etching process did not affect the carbon shell thickness, as expected. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 TEM and SEM images of (a,b) stöber silica spheres, (c,d) core-shell SiO2@RF 

composites and, (e,f) hollow carbon spheres. The insert in Fig. 5.1e shows a single HCS. 
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Synthesis of N-doped HCSs was achieved through a similar protocol as that used to make the 

pristine HCSs but with slight variations. After the synthesis of the SiO2@RF composite, 

melamine (dissolved in methanol) was added to functionalize the outer surface on the carbons 

with nitrogen. The materials were then carbonized in N2 at either 600 or 900 °C to yield N-

HCSs600 and N-HCSs900, respectively. CHNS elemental analysis was used to quantify the 

total nitrogen content on the materials after the carbonization steps and the results are 

presented in Table 5.1. The samples that were carbonized at 600 °C had a nitrogen content of 

13.1% while a lower N content of 5.4% was recorded after the 900 °C heat treatment 

procedure. The reduced nitrogen content at higher temperatures is attributed to the cleavage 

of C-N bonds at the higher temperature.
[18-19]

 

 

Raman spectroscopy is a useful and non-destructive technique for studying the structure and 

quality of carbonaceous nanomaterials.  Analysis of the D band versus the G band intensities 

(ID/IG) from the Raman spectra of HCS, N-HCSs600 and N-HCSs900 allowed an investigation 

of bonding features of the carbon spheres. It can be seen from the spectra that the ID/IG ratio 

increased with the nitrogen content in the samples (Table 5.1, Fig. 5.2), consistent with the 

increase of defects within the carbon framework after N-doping. Correspondingly, the D-

band position shifted to higher wavenumbers with an increase in the nitrogen content. The G-

band peak positions remained relatively unchanged even after N-doping. 
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Figure 5.2 Raman spectra of the pristine and the N-doped hollow carbon spheres. 

 

Table 5.1 Elemental nitrogen content and Raman spectroscopy data. 

Sample % N content 

(CHNS) 

I
D
/I

G 
 D band  

position (cm
-1

) 

G band 

position (cm
-1

) 

HCSs 

  

N-HCSs600 

 

N-HCSs900 

 - 

 

13.1 

 

5.4 

 0.98 

 

1.01 

 

1.00 

 1345 

 

1369 

 

1356 

1593 

 

1593 

 

1593 

 

Effects associated with post-synthesis N-doping on the thermal stability of the carbon 

supports were studied using thermogravimetric analysis (TGA). The synthesized pristine 

HCSs were seen to be highly stable in an oxidizing environment with a single decomposition 

peak at 596 °C (Fig. 5.3). This peak is attributed to the oxidation of carbon to carbon dioxide. 

The N-doped carbon materials also displayed good thermal stabilities with major 

decomposition peaks at 596 and 563 °C for the samples with 5.4 and 13.1% nitrogen 
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contents, respectively. It is to be noted that the major decomposition peak on the N-doped 

samples demonstrates the absence of residual melamine in the materials. The lower thermal 

stability of the N-HCSs600 sample can be associated with two effects; (i) increased defects in 

the carbon framework due to nitrogen incorporation as also determined from Raman 

spectroscopy studies, and (ii) the lower carbonization temperature (600 °C) utilized during 

the preparation of this material. It was interesting to note that the N-HCSs900 had a similar 

decomposition temperature as found for the pristine HCSs. This is a benefit associated with 

the post-synthesis procedure for N-incorporation as the nitrogen precursor is only introduced 

when the carbon framework is already formed. Furthermore, it was noted that all three 

samples had c.a. 0% residue after TGA experiments, and confirmed that the silica template 

was completely etched out using HF acid giving carbons with high purity. In summary, TGA 

experiments confirmed that these materials would be stable at Fischer-Tropsch synthesis 

reaction temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 (a) TGA and (b) DTA profiles of the pristine HCSs, N-HCSs600 and N-HCSs900. 
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The doping of carbon materials has been shown to improve the performances of supported 

catalysts. The common structural compromise for materials doped in situ with N is reduced 

thermal and mechanical stability. The thermal stability of N-CNTs, N-CNFs and N-CSs 

doped during synthesis has been shown to decrease by up to 90 °C relative to their pristine 

counterparts due to increased defects within the carbon framework.
[14]

 In this study we found 

that because the dopant is only introduced after the carbon spheres are already formed 

minimum defects are introduced on the carbon structure. The overall change in the ID/IG 

ration was found to be 0.03, which is very small for samples containing a 13% difference in 

the heteroatom content. As a consequence of the minimal defects introduced only a small 

decrease (33 °C) in thermal stability was observed even though a relatively high N content 

(13.1%) was incorporated into the surface of the carbon material. 

 

5.3.2 X-ray photoelectron spectroscopy (XPS) analysis 

Data measured from X-ray photoelectron spectroscopy (XPS) experiments was used to 

determine the elemental compositions and bonding configurations of nitrogen, carbon and 

oxygen on the carbon supports. As shown on the wide scans in Fig. 5.4a, the spectra 

confirmed the presence of N, C and O on the N-doped samples while N was not detected on 

the pristine HCSs as can be expected. High resolution N 1s spectra were recorded to 

characterize the bonding configurations of the nitrogen atoms. The N 1s spectra of the N-

HCSs were deconvoluted by fitting four Gaussian peaks at 398.36, 400.87, 401.65 and 

403.40 eV.
[20-22]

 These peaks are due to pyridinic nitrogen, pyrrolic nitrogen, graphitic or 

quaternary nitrogen and oxidized nitrogen or pyridine oxide, respectively. It is worth noting 

that the N atom in pyridinic nitrogen has sp
2
 hybridization with two neighbouring C atoms, 

while the N atom in pyrrolic nitrogen is substituted into a five-membered carbon ring. For the 

peaks with high binding energies, the N atom in quaternary nitrogen has sp
3
 hybridization 

with three C atoms attached to the N because it is incorporated into a graphene layer, while 

the N atom in oxidized nitrogen is attached to two C atoms and one O atom.   

 

Table 5.2 summarises the percentage contributions for the different nitrogen bonding 

configurations after deconvolution of the N 1s spectra which are presented in Fig. 5.4. It was 

observed that increasing the carbonization temperature from 600 to 900 °C changed the 
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bonding configurations of nitrogen atoms on the surface of the hollow carbon sphere support 

materials. For instance, the pyridinic nitrogen content decreased from 35.8 to 27.1% at 

elevated temperatures. The ratios of pyrrolic, graphitic and oxidized nitrogen increased in the 

N-HCSs900 sample relative to data measured for the N-HCSs600 support material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 XPS data measure from the samples, (a) wide scan spectra, and high resolution N 

1s spectra of (b) N-HCSs600 and (c) N-HCSs900. 
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Table 5.2 XPS N 1s spectral parameters from the deconvoluted peaks 

 

Sample 

 Nitrogen bonding configurations (%)  

R
2
 value Pyridinic-N Pyrrolic-N Graphitic-N Oxidized-N 

N-HCSs600 

 

N-HCSs900 

 35.8 

 

27.1 

33.2 

 

34.8 

24.0 

 

28.2 

7.0 

 

9.9 

0.989 

 

0.984 

 

High resolution XPS spectra were also analysed to investigate the effect of post-synthesis 

nitrogen doping on the bonding configurations of the surface carbon and oxygen atoms. Fig. 

5.5a-c shows C 1s spectra of the different carbon supports. The spectra were deconvoluted 

into three peaks with maxima at 284.64, 285.37 and 287.07 eV, corresponding to various 

carbon functional groups (Table 5.3).
[23]

 The peak at 284.64 eV is attributed to pure graphitic 

carbon sites (C=C, C-C, C-H), the peak at 285.37 eV is due to carbon atoms with sp
2
 

hybridization (C-O, C-N), while the peak with a maxima at 287.07 eV is designated to the 

O=C-O and O=C-N surface functional groups. As shown in Table 5.3, the N-doped samples 

display a significant decrease of pure graphitic carbon sites and an increase in the amount of 

carbon with sp
2
 hybridization. The sp

2
 hybridized sites contain nitrogen groups and this 

confirms the incorporation of N into the carbon network. This observation is in agreement 

with Raman data where a slight increase in the sp
2
 content was seen. The higher quantities of 

Type 2-C and Type 3-C on the N-HCSs600 sample relative to the N-HCSs900 sample are 

related to the total N content on these materials. 

 

A similar approach was also adopted to deconvolute the high resolution O 1s spectra into 

three peaks corresponding to the following functional groups; -C=O (531.02 eV), C-O-C 

(531.95 eV) and O-C=O (533.01 eV).
[24]

 The contributions of these functional groups to the 

total O content are listed in Table 5.4. It can be observed from the Table that post-synthesis 

N-doping favours the C-O-C (Type 2-O) and O-C=O sites, whereas the pristine HCSs display 

a higher –C=O content (i.e. Type 3-O). 
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Figure 5.5 High resolution C 1s spectra for the (a) HCSs, (b) N-HCSs600, (c) N-HCSs900 and 

O 1s data for (d) HCSs, (e) N-HCSs600 and (f) N-HCSs900. 

 

 

 

 

 

 

 

 

 

 

 

 



___________________________________________________ 127 

Table 5.3 C 1s spectra analysis 

 

Sample 

Bonding configurations (%)  

R
2
 value Type 1-C 

(C=C, C-C, C-H) 

Type 2-C 

(C-O, C-N) 

Type 3-C 

(O=C-O, O=C-N) 

HCSs 

 

N-HCSs600 

 

N-HCSs900 

55.6 

 

21.3 

 

26.0 

30.2 

 

48.9 

 

45.8 

14.2 

 

29.8 

 

28.2 

0.998 

 

0.998 

 

0.995 

 

 

Table 5.4 O 1s spectra analysis  

 

Sample 

Bonding configurations (%)  

R
2
 value Type 1-O 

(-C=O : 531 eV) 

Type 2-O 

(C-O-C : 532 eV) 

Type 3-O 

(O-C=O : 533 eV) 

HCSs 

 

N-HCSs600 

 

N-HCSs900 

44.5 

 

28.4 

 

22.3 

45.3 

 

49.1 

 

52.1 

10.2 

 

22.5 

 

25.6 

0.978 

 

0.982 

 

0.962 

  

 

5.3.3 Textual properties of the support materials 

Specific surface areas of the carbon supports were measured by the BET method and the 

results are tabulated in Table 5.5. The carbon supports were found to have large surface areas 

(> 400 m
2
/g) which are in agreement with TEM measurements that showed that these 

materials possess a large inner void. For instance, the pristine hollow support had a specific 

surface area of 507.1 m
2
/g. Furthermore, incorporation of the nitrogen precursor on the outer 

surface of the carbons was noted to slightly decrease the surface area, possibly through pore 

blockage. The pore structures of all the materials displayed mesoporous characteristics as 

their average pore sizes were greater than 2 nm.  
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5.3.4 Catalyst characterization 

5.3.4.1 Microscopic analysis 

Fig. 5.6 shows TEM images for the 10Co/HCSs and 10Co/N-HCSs900 catalysts and the 

corresponding particle size distributions. It can be seen that the cobalt nanoparticles 

supported on the pristine HCSs have a slightly larger average particle size (7.7 nm) while the 

particle size distributions are similar. For the samples supported on the N-doped HCSs, it was 

observed that the average particle sizes were inversely proportional to the nitrogen content on 

the support. Hence the 10Co/N-HCSs600 sample had the smallest particles followed by the 

10Co/N-HCSs900 with average particle sizes of 5.7 and 6.4 nm, respectively. Generally small 

cobalt oxide particles were seen on all the supports and this is attributed to the low density of 

the hollow carbon spheres which provides a large surface for the metal precursor deposition. 

However, the particles appeared to be slightly better dispersed on the N-doped supports as 

determined from the microscopy images (Fig. 5.6d). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 TEM images and the corresponding Co particle size distributions for (a, b) 

10Co/HCSs and (c, d) 10Co/N-HCSs900 samples. 

 



___________________________________________________ 129 

 

5.3.4.2 Thermal stability of catalysts 

Thermogravimetric analysis (TGA) of the catalysts was also carried out to study the influence 

of cobalt nanoparticles on the thermal stability of the hollow carbon supports. A plot of the 

TGA derivative curve allowed for the identification of points where maximum weight loss 

occurred during the experiments. Fig. 5.7 depicts TGA/DTA profiles of the catalysts which 

were measured in a flow of air using a heating rate of 10 °C/min. As can be seen from the 

derivative curves in Fig. 5.7b, the decomposition temperature was less than 480 °C for all the 

carbon supports after loading cobalt oxide. This is in contrast to oxidation temperatures 

greater than 560 °C recorded prior to loading the catalyst precursor. The decrease in thermal 

stability is attributed to cobalt nanoparticles catalizing the oxidation of carbon to carbon 

dioxide. The decomposition trend of the catalysts was similar to that observed prior to 

loading the active phase precursor, with the 10Co/N-HCSs600 sample having the lowest 

stability. Meanwhile, a residue of about 16% was noted after the TGA experiments and is due 

to Co3O4 which was loaded onto the supports. This percentage residue corresponds to 11.7% 

Co which was close to the theoretical Co loading of 10wt.% added onto the hollow carbon 

spheres. 
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Figure 5.7 (a) TGA and (b) DTA profiles for the 10Co/HCSs, 10Co/N-HCSs600 and 10Co/N-

HCSs900 samples. 

 

5.3.4.3 Powder X-ray diffraction (PXRD) 

Ex situ PXRD data of the calcined samples is shown in Fig. 5.8. The peaks at 2θ positions of 

28.2 and 50.6° were present in all the patterns and are attributed to the (002) and (100) 

diffractions of graphitic carbon.
[25]

 The 10Co/HCSs, 10Co/N-HCSs600 and 10Co/N-HCSs900 

samples all displayed peaks at 2θ positions of 21.9, 42.5, 70.0 and 77.2° which are typically 

indexed as the (111), (311), (511) and (440) diffraction planes of face-centred cubic Co3O4 

[PDF No. 00-043-1003]. It was therefore concluded that surface nitrogen functionalization 

did not affect the crystallographic phase of the metal precursor as the spinel phase of cobalt 
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oxide was detected in all three samples. Subsequently, the cobalt oxide crystallite sizes were 

estimated from line broadening analysis using the Scherrer equation and are listed in Table 

5.5. The Co oxide crystallite sizes were seen to vary as a function of the nitrogen content on 

the carbon support. As can be seen in Table 5.5, the pristine support had the biggest 

crystallites with a size of 8.2 nm. The catalyst precursor crystallite sizes decreased with an 

increase in the nitrogen content of the carbon support. For instance, the sizes for the 10Co/N-

HCSs600 sample were estimated to be 5.0 nm on average. The decrease in Co size with an 

increase in heteroatom content is consistent with surface nitrogen atoms influencing the 

nucleation sites for catalyst deposition on the carbon support. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Ex situ PXRD patterns of the calcined cobalt catalysts supported on pristine and 

N-doped HCSs. (Carbon: @, Co3O4: #). 

 

5.3.4.4 BET analysis of catalysts 

Listed in Table 5.5 are the surface areas, pore volumes and pore sizes of the calcined cobalt 

on carbon samples as determined by the BET technique. It was observed that the specific 

surface areas decreased upon loading the metal precursors. This trend is to be expected 

because the metal precursors are loaded on the outer surface of the hollow supports and could 
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thus block some of the mesopores. However, all the measured surface areas are still relatively 

high (> 250 m
2
/g) and thus ideal for FT catalysts. It was interesting to note that the 

mesoporous nature of the materials was retained on the catalysts as pore sizes greater than 2 

nm were again measured on all the samples.   

 

Table 5.5 Summarized textual properties of the carbon supports and the calcined catalysts. 

a
Cobalt oxide crystallite sizes were estimated from XRD data using the Scherrer equation. 

 

5.3.4.5 Catalyst reducibility 

The effect of N-functionalization on the stepwise reduction of cobalt oxide was monitored by 

TPR and in situ PXRD techniques. TPR profiles of cobalt nanoparticles on the hollow carbon 

supports are displayed in Fig. 5.9 and the observed peak positions are given in Table 5.6. All 

samples show the characteristic reduction features of cobalt oxide which are ascribed to the 

Co3O4 → CoO and CoO → Co
0
 transformations (Eqn. 5.1 and 5.2).

[26]
 The first reduction 

step (Co3O4 → CoO) occurred at T < 400 °C, with reduction at temperatures around 282, 357 

and 296 °C for the 10Co/HCSs, 10Co/N-HCSs600 and 10Co/N-HCSs900 samples, respectively. 

This reduction step evidently occurs at higher temperatures for the catalysts dispersed on N-

doped hollow spheres which were determined to be smaller in size. A similar behaviour was 

again displayed during the CoO → Co
0
 reduction step with the pristine-supported Co 

showing the lowest reduction temperature (414 °C) while Co on the N-doped substrate had 

the higher reduction temperatures, with reduction at 506 and 413/495 °C for the N-HCSs600 

 

Sample name 

Textual properties  

Co3O4 

size (nm)
a
 

Surface area 

(m
2
/g) 

Pore volume 

(cm
3
/g) 

Pore diameter 

(nm) 

HCSs 

N-HCSs600 

N-HCSs900 

 

10Co/HSCs 

10Co/N-HCSs600 

10Co/N-HCSs900 

507.1 

411.0 

436.2 

 

332.2 

266.1 

294.5 

0.406 

0.427 

0.360 

 

0.350 

0.348 

0.363 

3.20 

4.58 

3.30 

 

4.62 

4.08 

3.61 

- 

- 

- 

 

8.2 

5.0 

5.9 
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and N-HCSs900 supports. For this reduction step, the peak for the 10Co/N-HCSs900 sample 

was split into two peaks in the 413 – 495 °C region. The signal for the lower temperature 

could be due to cobalt nanoparticles which are not in direct contact with N atoms, while the 

peak at 495 °C can be assigned to nanoparticles that are in direct contact with N atoms on the 

support. The differences in cobalt nanoparticle proximity to N-rich sites are to be expected 

due to the lower nitrogen content on the N-HCSs900 substrate.  

  Co3O4  +  H2  →  3CoO  +  H2O   (Eqn. 5.1) 

      CoO  +  H2  →  Co
0
  +  H2O   (Eqn. 5.2) 

It is apparent that N-surface functionalization influenced the reduction characteristics of 

supported cobalt oxide nanoparticles, with reduction profiles shifting to higher temperatures 

with an increase in the nitrogen content. This is attributed to the strong interfacial electronic 

interaction between cobalt oxide nanoparticles and the N-rich hollow carbon sphere surface. 

The interaction promotes the transfer of electrons from the N-doped HCSs to the Co oxide 

particles making them harder to reduce (i.e. the reduction peaks shift to higher T).
[27]

 

 

The post-synthesis functionalization procedure also affected the methanation characteristics 

of the carbon supports. The signals for the N-doped materials appeared to be shifted to higher 

temperatures corresponding with the doped nitrogen content. As a result, the pristine HCS-

supported catalyst had the lowest methanation temperature (ca. 653 °C). 
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Figure 5.9 H2-TPR profiles for cobalt nanoparticles on various hollow carbon sphere 

supports, (a) 10Co/HCSs, (b) 10Co/N-HCSs600 and (c) 10Co/N-HCSs900.   

 

Table 5.6 Peak positions for various transformations in TPR analysis 

 

Catalyst 

Reduction temperatures (°C) Methanation 

temperature (°C) Co3O4  →  CoO CoO  →  Co
0
 

10Co/HCSs 

 

10Co/N-HCSs600 

 

10Co/N-HCSs900 

282 

 

357 

 

296 

414 

 

506 

 

413, 495 

653 

 

798 

 

750 
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The reducibility of cobalt oxide dispersed on a pristine support and when also loaded onto 

hollow carbon spheres with a high nitrogen content was monitored by in situ PXRD 

measurements. Data collection was done in the temperature range 150-550 °C with 50 °C 

intervals between successive measurements. Fig. 5.10 depicts in situ PXRD reduction 

patterns for 10Co/HCSs and 10Co/N-HCSs600 samples. Both sets of data show that the spinel 

phase of cobalt oxide (Co3O4) was the stable phase at T < 250 °C. Reduction of Co at higher 

temperatures followed the well-established stepwise transformation of cobalt oxide: Co3O4 → 

CoO then CoO → Co
0
. However, the transformations were noted to occur at different 

temperatures for the two samples. Both reduction steps appeared to be delayed on the 

10Co/N-HCSs600 catalyst. As an illustration, the CoO to Co
0
 reduction step has been circled 

to highlight the lower reduction temperature seen on the pristine HCSs-supported 

nanoparticles. The CoO → Co
0 

transformation commenced at T = 550 °C for the 10Co/N-

HCSs600 sample while it was seen to start occurring at 500 °C for the 10Co/HCSs catalyst. 

Furthermore, the CoO → Co
0 

reduction was still not complete on the 10Co/N-HCSs600 

catalyst at the end of the in situ studies as traces of the CoO phase are still visible (Fig. 

5.10b). The higher reduction temperatures for the catalysts supported on N-doped carbons 

was also observed during TPR studies and this is attributed to the presence of a stronger 

metal-support interaction between the nanoparticles and the nitrogen functionalized hollow 

carbon spheres.  
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Figure 5.10 In situ PXRD patterns of (a) 10Co/HCSs and (b) 10Co/N-HCSs600. 

 

5.3.5 Fischer-Tropsch evaluation 

All the calcined catalysts were reduced in situ with pure H2 (UHP grade) at 350 °C prior to 

Fischer-Tropsch catalytic tests at 220 and 250 °C under a similar set of reaction conditions: P 

= 10 bar, H2/CO = 2. Evidently all the catalysts had stable activities at both reaction 

temperatures as shown by the steady CO conversions for the entire period that this study was 

conducted (Fig. 5.11, Table 5.7). It is assumed that the catalysts maintained their structural 

integrity during the reaction (vide infra for details on the spent catalysts). The catalysts 

supported on nitrogen-doped hollow carbon spheres (10Co/N-HCSs600, 10Co/N-HCSs900) 

displayed higher CO conversions than the catalyst supported on the undoped support 

(10Co/HCSs). This trend was consistent under both reaction temperatures and can be 

attributed to the smaller particle sizes present on the doped supports as observed by both 

TEM and PXRD techniques. Further, as a consequence of the small cobalt oxide particle 

sizes on N-doped HCSs, the catalysts had a higher dispersion as confirmed by SEM and TEM 

analysis. It was noted that the presence of any strong metal-support interactions on the N-

doped supports was compensated for by the size of cobalt particles on these catalysts hence 
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they had better activities than the undoped catalyst. For the catalysts supported on 

functionalized supports, it was observed that a higher nitrogen content did not necessarily 

yield the highest activity. It is evident that the strong metal-support interactions seen during 

TPR studies resulted in a lower activity for the 10Co/N-HCSs600 catalyst. In addition, the 

activity of this catalyst could be lower because the average particle size for this catalyst was 

smaller than 6 nm which has been shown to be a critical Co size for Fischer-Tropsch 

catalysis.
[4]

          

 

 

 

 

 

 

 

 

 

 

Figure 5.11 CO conversions for the Co catalysts supported on pristine and N-doped supports; 

(a) 10Co/HCSs, (b) 10Co/N-HCSs600, and (c) 10Co/N-HCSs900, (P = 10 bar, H2/CO = 2).  

 

Previous studies comparing FT activities for catalysts dispersed on N-doped and undoped 

carbons reported a continuous decrease in activity with time on stream for the sample 

supported on the pristine carbon support.
[10]

 This behaviour was ascribed to significant 

catalyst sintering which occurred at high reaction temperatures on pristine carbon materials. 

In contrast in this study, catalysts dispersed on the pristine support displayed a stable activity 

with time on stream which was attributed to the unique properties of hollow carbon spheres. 

HCSs possess a low density and a high surface area which allows for higher dispersions of 
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the catalyst particles on the support which consequently minimizes catalyst agglomeration 

and favours stable CO conversions during FT synthesis. 

 

Table 5.7 depicts the hydrocarbon selectivities for the different catalysts evaluated at 220 and 

250 °C. Comparison of the product selectivities for the catalysts at 220 °C revealed that the 

Co supported on the pristine hollow carbon spheres had highest C5+ selectivity and a low C1 

selectivity. As expected, there was a significant decrease in the C5+ selectivity when FT 

synthesis was carried out at 250 °C for this sample. It must be noted that typical Co FT 

synthesis is done in the 220 – 240 °C temperature range, but a 250 °C reaction temperature 

has been evaluated in this study to accelerate possible catalyst sintering. On the N-doped 

samples, comparatively lower C5+ values were obtained while the selectivity towards C1 

increased. It was interesting to note that the C5+ selectivity did not decrease drastically at 250 

°C for the N-doped samples, and the C1 fraction showed a slight increase at the elevated 

reaction temperature. 

 

Previous studies by Borg et al. on Co/γ-Al2O3 catalysts have also shown that there tends to be 

an increase in the C5+ product fraction with an increase in the Co particle size, with the 

highest C5+ values possible in the 7 – 8 nm size range.
[28]

 In another study similar conclusions 

were drawn on the Co particle size effect using Co/δ-Al2O3 and Co/θ-Al2O3 catalysts.
[29]

 In 

agreement with these reports, the 10Co/HCSs catalyst had the highest C5+ product fraction in 

this work and the average Co particle size was determined to be 7.7 nm by TEM analysis. It 

was observed that the C5+ selectivities on the studied catalysts were generally low due to fact 

that these samples were unpromoted and also possibly due to the pore structure of the hollow 

carbon supports utilised. By comparing cobalt catalysts dispersed on γ-Al2O3 supports with 

narrow pores (7 nm) and wide pores (13 nm), Rytter and co-workers demonstrated that wide 

pores favour higher C5+ selectivities.
[30]

 The pore sizes for catalysts in this study were less 

than 5 nm (Table 5.5). Due to the smaller size of hydrogen relative to carbon monoxide, H2 

tends to diffuse much more quickly than CO in the reactor which yields higher H2/CO ratios 

in certain parts of the catalyst. A higher H2 to CO ratio favours chain termination over chain 

propagation resulting in a lower C5+ selectivity. Furthermore, the higher methane fraction 

measured in this work on the N-doped samples is in agreement with conclusions made by 

Bezemer on C1 selectivity for small Co nanoparticles.
[4]
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 Table 5.7 FT product selectivities for the different catalysts. 

Catalyst Temp. 

(°C) 

% CO 

conversion 

Hydrocarbon selectivity (%) 

C1 C2-C4 C5+ 

10Co/HCSs 

 

 

10/N-HCSs600 

 

 

10/N-HCSs900 

220 

250 

 

220 

250 

 

220 

250 

26 

33 

 

30 

36 

 

34 

48 

13.4 

22.8 

 

18.5 

21.9 

 

15.7 

26.2 

7.9 

29.9 

 

18.3 

18.5 

 

8.5 

21.0 

78.7 

47.3 

 

63.2 

59.6 

 

75.8 

52.8 

 

5.3.6 The spent catalyst 

Catalyst sintering is an important phenomena in FT synthesis and has been proposed as one 

of the major deactivation mechanisms in the FT process, alongside poisoning, reoxidation, 

catalyst surface rearrangement, carbon effects (e.g. carbidization, coking or fouling), attrition 

and the formation of metal-support compounds.
[31-32]

 Several studies have observed the loss 

of catalytically active cobalt surface area due to particle growth under realistic FT reaction 

conditions. The tendency of smaller particles to sinter and form bigger ones is driven by 

thermodynamic principles associated with the lower surface energy of larger particles. 

Notably, sintered catalysts have lower surface concentrations of the catalytic Co phase and 

thus display poor performances in FT synthesis. This phenomenon of sintering is believed to 

occur by two mechanisms:  coalescence and Ostwald ripening. Coalescence involves the 

random movement of intact particles on the support surface. These movements occur until the 

particles collide to form a single, larger nanoparticle. On the contrary, Ostwald ripening is the 

diffusion of atoms from smaller particles onto bigger ones as a result of differences in the 

chemical potentials of the particles.
[33-35]

  

 

After catalytic evaluations under Fischer-Tropsch conditions, the samples were subsequently 

studied to infer changes which might have occurred during the reaction. Fig. 5.12 shows 

TEM images and corresponding particle size distributions measured on the spent catalysts 
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after 100 h on stream. It can be seen that the hollow carbon sphere support maintains its 

structural integrity even after a 100 h exposure to the high pressures and temperatures used 

during the FT process. Carbon breakage or fracturing was not detected on the pristine and 

nitrogen doped support materials. This demonstrates the robustness of the hollow carbon 

spheres despite that they have a thin 30 nm carbon shell. It was also interesting to note that 

the N-doped materials demonstrated equally good robustness under FT conditions. This 

observation also confirms that post-synthesis N-doping only introduced marginal defects or 

structural changes on the carbon framework, and is in agreement with Raman spectroscopy 

and XPS data discussed earlier. 

 

The Co particle size distributions on the spent catalysts were also measured and are displayed 

in Fig. 12b and Fig. 12d. It was noted that the average Co particle size increased for all the 

samples indicating that sintering had occurred during the catalytic reaction. However, it was 

observed that all the catalysts displayed a generally smaller propensity to sinter as shown by 

the small average particle increases on the spent samples. This effect is attributed to the 

hollow carbon supports which offer more accessible surface per unit mass relative to 

conventional support materials. For example, the average particle size on the 10Co/HCSs 

sample increased from 7.7 to 10.2 nm after 100 h on stream. The insert in Fig. 5.12a shows 

that the sintered particles formed a core-shell structure with the reduced cobalt being 

encapsulated by an outer shell which is composed of oxidized cobalt. 

 

The catalysts supported on N-doped HCSs displayed reduced sintering behaviour. For 

instance the average Co particle size increased from 6.4 to 8.9 nm on the 10Co/N-HCSs900 

spent catalyst (Fig. 5.12d). The smaller particle growth seen for the catalysts supported on the 

N-doped carbons is consistent with conclusions made in other reports that nitrogen atoms (or 

the C-N bonds) act as anchoring sites and this immobilizes the catalyst particles even at high 

reaction temperatures. Noteworthy, the N-HCSs-supported cobalt also had a narrow size 

distribution even on the spent catalyst with most particles being less than 15 nm, while 

pristine HCSs-supported cobalt displayed a wider size distribution on the spent catalyst with 

a significant percentage of crystallites with sizes greater than 20 nm.  
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Figure 5.12 TEM images of spent catalysts, (a) 10Co/HCSs, (c) 10Co/N-HCSs900. The 

corresponding particle size distributions are displayed in (b) and (d). (Insert) A high 

magnification image of the spent Co catalyst supported on pristine hollow carbon spheres i.e. 

10Co/HCS sample.  

 

TEM analysis of the spent samples revealed that there was general particle growth which 

confirmed that sintering of the supported Co particles did occur during Fischer-Tropsch 

synthesis (Fig. 5.12). It was also noted that the overall cobalt dispersion decreased in the 

spent samples. However, particle size distributions from these catalysts show only a gradual 

increase in the average Co particle sizes. These observations indicate that Ostwald ripening 

was most likely the predominant sintering mechanism at the synthesis conditions. It would 

have been expected that large particle size increases would be seen if particle migration (i.e. 

coalescence) had been the predominant sintering mechanism. Furthermore, Co particles 

supported on N-doped HCSs displayed less sintering behaviour which is also consistent with 

the Ostwald ripening sintering mechanism. Sintering by a coalescence mechanism can be 

completely ruled out on the N-doped samples and is in agreement with nitrogen immobilizing 
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the nanoparticles. However, particle growth by the coalescence mechanism cannot be 

completely ruled out for the catalyst supported on pristine HCSs as much larger particles 

were measured. It is also possible that the wider particle size distribution on this sample could 

be associated with both particle growth mechanisms occurring simultaneously. 

 

5.4 Conclusions 

In this study we have used hollow carbon spheres as catalyst supports and shown that they are 

a suitable model support material for cobalt Fischer-Tropsch catalysts. Synthesis of these 

materials via a solid template approach was shown to yield uniform and monodispersed 

HCSs with high specific surface areas and good thermal stabilities. More interestingly, a 

strategy for the surface N-functionalization of the materials by a method which involves the 

addition of a nitrogen source onto an already prepared carbon framework has been 

demonstrated. This simple procedure provided a unique material which is favourable for use 

as a carbon support for several reasons; (1) it has more catalyst anchoring sites, (2) its 

thermal stability is comparable to those for the pristine material hence its mechanical strength 

is not compromised, and (3) it immobilized the catalyst nanoparticles during the reaction 

leading to minimized particle agglomeration. Results from this study also showed that the 

surface properties of materials produced by this strategy are dependent on the carbonization 

temperature. These surface properties were shown to influence the metal-support interactions 

on the prepared catalysts. Thus the carbonization temperature can be used to tune the strength 

of metal-support interactions in such materials. N-functionalization effects were also evident 

in FT synthesis and yielded catalysts with improved activities and stabilities. We believe that 

the catalyst stabilizing effect produced by the post-synthesis melamine introduction to 

already prepared carbons can also be used to anchor other types of catalysts on carbon 

supports synthesized using a similar approach.  
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This chapter is still to be submitted for publication. 

      CHAPTER 6 

 

Morphological effects in heterogeneous catalysis: comparison of solid and hollow 

carbons as model supports for cobalt Fischer-Tropsch catalysts 

 

6.1 Introduction 

The Fischer-Tropsch (FT) synthesis is of great academic and industrial interest because it has 

proven to be the most efficient process for the production of hydrocarbons from synthesis gas 

(H2/CO mixtures) generated from carbon sources such as coal, natural gas, biomass and shale 

gas.
[1, 2]

 Among the transition metals used to catalyse the process, cobalt-based catalysts are 

ideal for low-temperature industrially FT applications because of their high intrinsic activity, 

high per single pass feed conversion, and better longevity when compared to iron-based FT 

catalysts.
[3, 4]

 The need to disperse the Co catalyst on a support material arises frequently in 

FT synthesis, as it maximises the surface area, performance and stability of the active phase. 

However, during the reaction cobalt is known to form hard-to-reduce complexes such as 

Co2SiO4, CoTiO4 or Co2AlO4 if the catalyst was dispersed on conventional oxides such as 

SiO2, TiO2 and Al2O3. This is attributed to the strong interaction of these support materials 

with the catalyst precursor.
[5-7]

 As an alternative, carbon-based materials have been shown to 

be excellent support materials for FT catalysts partly because of their chemical inertness. 

Thus carbonaceous materials such as carbon nanotubes, carbon fibres, carbon spheres, carbon 

nano-onions, graphene and reduced graphene oxide have been utilized as supports for FT 

catalysts.
[8-11]

 Despite the variation in the morphology of these carbons, their application in 

heterogeneous has been with varying degrees of success. Therefore, a holistic approach on 

understanding the effect of the support architecture in heterogeneous catalysis is still required 

for a better design and development of new catalysts.  

 

A versatile approach for studies on morphology-based effects could involve the use of carbon 

spheres as model supports. Unlike the other carbonaceous materials which are restricted to 

one form, carbon spheres (CSs) can form several morphologically distinct structures. The 

morphology of carbon spheres can be easily manipulated by a simple variation of the 
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synthesis conditions, to give materials with morphologies such as solid, hollow, core-shell 

and yolk-shell.
[12]

 This, therefore, makes CSs an attractive material for investigating support 

architecture-based effects in heterogeneous catalysis. For such studies though, it is critical 

that the materials be synthesized from identical carbon precursors and using similar 

preparation methods. It has been demonstrated that the carbon precursor and the preparation 

method plays a key role in the properties on the final carbon material
[13, 14]

 and should 

therefore be carefully selected. For example, Cheng et al. demonstrated the differences in the 

pore structures of mesoporous carbon synthesized using starch and cyclodextrin carbon 

sources. The use of starch as a precursor yielded materials with a broad pore size distribution 

(PSD) with an average pore size of  9 nm, whereas the use of a cyclodextrin source resulted 

in a narrow PSD with an average pore size of 4 nm.
[15]

 In another study, Xu et al. showed that 

the use of alkali propiolates carbon precursors (HC≡CCO2M, M = Li, Na, K) resulted in 

highly porous carbon spheres with morphologies such as Janus, jellyfish and bowl-like being 

observed, and the architecture of the obtained product was influenced by the precursor used. 

Furthermore, using mixtures of these propiolate precursors yielded carbon spheres with 

different micro-structures.
[16, 17]

 Recently, Xiong et al. demonstrated that N-doped carbon 

spheres prepared by chemical vapour deposition and hydrothermal synthesis methods had 

different properties.
[18]

 

 

In this study, we explore the effect of the support morphology in heterogeneous catalysis by 

comparing the use of carbon materials with distinct architectures (solid and hollow) as model 

supports for Co FT catalysts. The solid carbon spheres (SCSsRF) and the hollow carbon 

spheres (HCSs) used were prepared by the hydrothermal synthesis method using a resorcinol-

formaldehyde carbon precursor. The synthesis conditions for these materials were tuned such 

that the properties of the final materials were similar, so that any differences observed in the 

catalyst performances can be attributed to the architectures of the support materials involved. 

 

6.2 Experimental methods 

6.2.1 Synthesis of solid carbon spheres (SCSsRF) 

Fabrication of solid carbon spheres from resorcinol and formaldehyde precursors (SCSsRF) 

was achieved by the extended Stöber method.
[19, 20]

 In a typical synthesis, an ammonia 
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solution (0.5 mL, 25%) was added to an ethanolic solution consisting of deionized water (60 

mL) and absolute ethanol (24 mL) and was stirred for 1 h. Subsequently, resorcinol (0.6 g) 

was added followed by a 30 min stirring period. Then, formaldehyde (0.84 mL) was added to 

the mixture and stirring was continued for 24 h at 30 °C, followed by a hydrothermal 

treatment step performed at 100 °C for 24 h in a Teflon-lined autoclave. The recovered 

brownish powder was purified by washing/centrifugation with water and ethanol, and was 

then dried at 70 °C for 48 h. Carbonization was performed at 900 °C for 4 h in the flow of N2 

(20 mL/min) to yield the SCSsRF support material. 

 

6.2.2 Synthesis of hollow carbon spheres (HCSs) 

The HCS support was also fabricated from resorcinol and formaldehyde carbon precursors 

via the hard-templating approach, and the hydrothermal method was employed in the 

encapsulation of the template with carbon. Stöber silica spheres were employed as the solid 

template. For the template synthesis, tetraethyl orthosilicate (TEOS, 2.90 mL) was mixed 

with 37.5 mL of absolute ethanol. This solution was then added to a mixture containing 

ethanol (25 mL), deionized water (7.5 mL) and ammonia (6 mL). The contents were stirred 

for 1 h to allow for the formation of colloidal silica spheres. Subsequently, resorcinol (0.5 g) 

and formaldehyde (0.7 mL) were added to the solution to form a core-shell (SiO2@RF) 

composite. This notation represents a structure whereby the SiO2 is the core, whereas RF is 

the outer shell. The solution was allowed to stir for 24 h at room temperature, and then 

transferred into a Teflon-lined stainless steel autoclave, and hydrothermally treated at 100 °C 

for 24 h. The brownish product obtained was purified by sequential washing in ethanol/water 

solvents, followed by centrifugation for 5 minutes, and was then dried at 70 °C for 12 h. The 

SiO2@RF composites were then carbonized at 900 °C for 1 h under N2 (20 mL/min), 

followed by etching of the silica core using a 10%  HF solution to give the HCS support.  

 

6.2.3 Catalyst preparation 

The Co catalysts were prepared by the homogeneous deposition precipitation method using 

Co(NO3)2·6H2O  as the metal precursor, SCSsRF and HCSs materials were used as the catalyst 

supports. For the catalyst deposition, urea (1.5 moles urea per mole of metal) was used as the 
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precipitating agent and urea hydrolysis was done for 12 h at 90 °C. The samples were then 

dried overnight at 70 °C, followed by calcination at 300 °C for 4 h under N2.  

 

6.2.4 Characterization 

Transmission electron microscopy (TEM) images were taken on FEI Tecnai T12 microscope 

operated at 120 kV. Scanning electron microscopy (SEM) images were recorded using a FEI 

Nova Nanolab 600 instrument. Thermogravimetric analysis with differential thermal 

gravimetry (TGA-DTG) profiles were obtained on a PerkinElmer STA6000 analyser. 

Typically, the samples were heater from room temperature to 900 °C in an oxidizing 

atmosphere using a ramping rate of 10 °C/min. Powder X-ray diffraction (PXRD) 

measurements were performed at room temperature on a Bruker D2 phaser emitting CoKα 

radiation (λKα = 0.178897 nm). Pore structure analysis was achieved by performing cryogenic 

nitrogen sorption measurements under isothermal conditions (-196 °C) on a Micromeritics 

TriStar 3000 analyzer.  

 

6.2.5 Catalytic evaluations 

Fischer-Tropsch reactor studies were performed in a 16 mm i.d. stainless steel fixed-bed 

reactor. Prior to measurements, the catalyst (~0.5 g) was activated in situ using a stream of 

pure hydrogen (UHP grade) at 350 °C for 18 h (ramping rate: 1 °C/min). FT synthesis 

measurements were conducted at 220 and 250 °C using syngas with the composition: 0.6H2, 

0.3CO, bal. N2. A total gas pressure of 10 bar and a flow rate of 20 mL/min were used during 

the analysis. The rig was equipped with two online GCs to monitor the composition of the 

gaseous products, a GC-TCD and a GC-FID. An offline GC-FID was used to analyse liquid 

products. 

 

6.3 Results and discussion 

6.3.1 Characterization of the carbon supports 

Properties of the prepared solid and hollow carbon supports were analysed by using TEM, 

SEM, Raman spectroscopy, TGA and N2 sorption techniques. 
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 6.3.1.1 Support morphology characterization 

Electron microscopy analysis was performed to verify the architectures of the synthesized 

solid and hollow carbon spheres (Fig. 6.1). In particular, TEM showed that the SCSsRF had a 

rigid core whereas the HCSs possessed a large inner void created by the empty core. 

Consequently, when these materials were analysed by SEM, and it was observed that the 

instrument beam could penetrate through the HCSs but not through the SCSsRF carbons. Thus 

electron microscopy verified that the materials had the designed architectures. The prepared 

solid carbon materials were spherical in shape and monodispersed (Fig. 6.1a-b). The average 

diameter of these spheres was calculated to be approximately 565 nm (Fig. 6.1c). For the 

hollow carbon spheres, the materials displayed a uniform size distribution and were also 

monodispersed (Fig. 6.1d-e). The hollow carbon spheres were slightly smaller than the solid 

support materials and had an average sphere diameter of 550 nm (Fig. 6.1f), while their shell 

thickness was ~30 nm. It was noted that the hollow carbon materials displayed a significantly 

narrow size distribution than the solid carbon spheres. This is because the preparation of the 

HCS material involved the use of Stöber silica sphere template which is characterized by a 

uniform distribution. 

 

 

 

 

 

 

 

 

 

Figure 6.1 TEM and SEM images of (a,b) solid carbon spheres, and (d,e) hollow carbon 

spheres, the inserts show single carbon spheres of the respective morphologies. The outer 

carbon sphere diameters of (c) solid and (f) hollow carbon spheres, are also presented.  
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6.3.1.2 Raman analysis 

Raman spectra of the solid and hollow CSs were recorded to study the degree of 

graphitization and the presence of defects within the carbon framework of the two types of 

supports (Fig. 6.2). Both spectra depict two peaks at about 1341 and 1581 cm
-1

, 

corresponding to the D and G bands, respectively. The D band is characteristic of a disorder-

induced mode of carbon while the G band is due to the high frequency E2g first order mode. 

The intensity ratio of the D and G band (ID/IG) is a useful parameter for estimating the degree 

of graphitization in the solid and hollow CSs, and was determined to be 0.90 and 0.96 for the 

solid and hollow materials in this study as indicated in Fig. 6.2. These values are very similar 

and therefore indicate that these two carbon materials have closely related carbon structures. 

This is to be expected since the materials were prepared by a similar method and from using 

the same carbon precursor. 

 

 

 

 

 

 

 

 

 

Figure 6.2 Raman spectra of solids and hollow carbon spheres materials. 

 

6.3.1.3 Surface area analysis 

N2 adsorption-desorption isotherms were recorded to quantify the surface textual 

characteristics of the carbonaceous support materials (Fig. 6.3). The cryogenic N2 sorption 

isotherms display similar physisorption characteristics which suggest that the materials 
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possess similar pore systems. The curves are characterized by a steep slope at low relative 

pressures, followed by steady rise which also contains a small hysteresis loop on the 

desorption plot in the range P/P0 = 0.3–0.7 and P/P0 = 0.0.4-0.6 for the SCSsRF and the HCSs 

materials, respectively (Fig. 6.3a, Fig. 6.3c). This behaviour shows that the materials possess 

combined characteristics of type I and Type IV materials.
[21]

 This is consistent with materials 

that are largely mesoporous but also contains micropores, correspondingly, the solid and 

hollow supports were found to have average pore sizes of 2.7 and 2.8 nm, respectively. 

Finally, the isotherms also display a rapid increase in the quantity of adsorbed N2 at high 

relative pressures (Fig. 6.3a,c). This could be associated with the presence of macropores in 

the materials which arise from the presence of large interparticle voids. 

  

The textual properties of the materials are summarized in Table 6.1 and it can be seen that 

both support architectures exhibit high surface areas (> 560 m
2
/g) and were therefore found to 

be ideal for use as support materials. The comparable porosity of these materials allow for a 

good comparison between solid and hollow materials when they are utilized as model support 

materials. Similar pore size distributions (PSD) plots were recorded from both support 

materials (Fig. 6.3b and Fig. 6.3d). In these plots, the PSD for the desorption isotherm data 

displayed a kink at a pore size of 3.5 nm which is due to an error associated with N2 

desorption. 
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Figure 6.3 N2 adsorption-desorption isotherms and the corresponding pore size distributions 

for (a, b) SCSsRF and (c, d) HCSs.  

 

6.3.1.4 Thermogravimetric analysis (TGA) 

Fig. 6.4 compares the thermal stabilities of the solid and hollow carbon supports in an 

oxidizing environment. Both profiles show a single decomposition peak which is due to the 

oxidation of the carbon material to carbon dioxide. It can be seen that the support materials 

are characterized by high thermal stabilities as the onset of oxidation for both samples is at T 

> 550 °C in air. It was noted that the decomposition of the solid carbon spheres occurred over 

a wider temperature range due to the much thicker carbon layers on this material (Fig. 6.4a). 

Decomposition of the hollow support occurred over a narrower temperature range and had a 

Tmax at 592 °C (Fig. 6.4b). The sharp decomposition peak is associated with the thin carbon 

layer (~30 nm) in this material. Additionally, the residue at the end of both TGA experiments 

was negligible (c.a. 0%) which also verified that the carbon spheres were of high purity. This 
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observation is particularly useful on the hollow support material as it confirmed that the silica 

template was completely etched out using hydrofluoric acid. Notably, the onset of carbon 

oxidation occurs at high temperatures for both support materials, allowing for their use in the 

preparation, calcination and subsequent evaluation of Fischer-Tropsch catalysts under normal 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 TGA/DTA profiles of (a) solid and (b) hollow carbon spheres. 
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 6.3.2 Catalyst characterization 

6.3.2.1 Transmission electron microscopy (TEM) 

Bright-field TEM studies were performed to visualize the distribution of Co nanoparticles on 

the carbon supports (Fig. 6.5). Analysis of the TEM images verified that the metal particles 

were generally well dispersed on the outer surface of the support materials. This good particle 

dispersion is to be expected as catalyst loading was achieved through the homogeneous 

deposition precipitation, and is consistent with other literature reports. However, different 

particle sizes were obtained on the two catalyst systems; 9.4 nm versus 6.7 nm for the 

10Co/SCSsRF and the 10Co/HCSs samples, respectively. Because of the chemical similarities 

in the surfaces of the support materials used, it can be assumed that the differences in catalyst 

particle size relate to the properties of the two different morphologies of the support 

materials. The HCS support is significantly less dense than its solid counterpart, allowing for 

a higher available surface area for catalyst deposition per mass of the support material. 

 

 

 

 

 

 

 

Figure 6.5 TEM images of (a) 10Co/SCSsRF and (b) 10Co/HCSs catalysts. 

 

6.3.2.2 BET surface area analysis 

The calcined catalysts were found to have surface areas of 369.9 and 377.3 m
2
/g for 

10Co/SCSsRF and 10Co/HCSs, respectively. The surface area declined when compared to the 

support materials indicating that some pore of the support material were blocked by the metal 

particles. After loading the metal precursor and calcination, the samples also displayed 
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decreases in pore volumes and pore diameters relative to the support materials. The pore 

volumes decreased by about 22% and 28% for 10Co/SCSsRF and 10Co/HCSs, respectively. 

The decreases in pore diameters were marginal as they were quantified to be less than 6% for 

both catalyst systems.  

 

Table 6.1 Properties of the samples 

 

Sample 

N2 physisorption data  Co3O4 and CS sizes 

Surface area 

[m
2
/g] 

Pore volume 

[cm
3
/g] 

Pore size 

[nm] 

PXRD
a 

[nm] 

TEM
b
 

[nm] 

SCSsRF 

HCSs 

10Co/SCSsRF 

10Co/HCSs 

565.2 

562.8 

369.9 

377.3 

0.315 

0.389 

0.245 

0.280 

2.71 

2.76 

2.65 

2.60 

 - 

- 

9.1 

7.2 

565 

550 

9.4 

6.7 

a
Co3O4 crystallite sizes were estimated from PXRD patterns using the Scherrer equation. 

b
Co3O4 and CS particle sizes were estimated from TEM images. 

 

 

 6.3.2.3 Powder X-ray diffraction (PXRD)  

PXRD patterns of the carbon supports had similar features, displaying a broad peak at 25.0° 

and another peak at 50.7°, and are attributed to the (002) and (100) reflections of graphitic 

carbon (Fig. 6.6). The absence of any additional peaks on the support diffraction patterns also 

highlighted the purity of the prepared support materials, and is in agreement with our TGA 

data. After loading the metal precursors and calcination, the samples displayed additional 

diffraction peaks at 21.9, 36.2, 42.5, 52.2, 70.0 and 77.2° which can be assigned to the (111), 

(220), (311), (400), (511) and (440) reflections of face-centred cubic (fcc) Co3O4. Identical 

Co oxide phases (Co3O4) were observed on both the solid and hollow carbon sphere support 

materials. The crystallite sizes of the Co3O4 on carbons were computed from the full width at 

half-maximum (FWHM) of the most intense peak at a 2θ value of 42.5° together with the 

Scherrer equation and are presented in Table 6.1. It can be seen that the prepared samples had 

crystallites in the range 7 – 10 nm. It was found that the catalyst preparation method and 

support architecture influenced the sizes of the Co catalyst precursor. The homogeneous 

deposition precipitation technique produced smaller crystallites for both types of carbon 
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while the hollow support also gave significantly smaller crystallite sizes relative to their solid 

counterparts. These observations were also in agreement with those findings made by 

electron microscopy. 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 PXRD profiles of the carbon support, and the 10Co/SCSsRF and 10Co/HCSs 

samples. 

 

6.3.2.4 Thermogravimetric analysis-differential thermal gravimetry (TGA-DTG) 

Thermal stabilities of the calcined catalysts were determined by the TGA technique. Fig. 6.7 

shows the recorded TGA profiles (black) and the corresponding DTG curves (blue). For the 

10Co/SCSsRF sample, two carbon oxidation peaks ( C + O2 → CO2) were observed. The 

small peak at 320 °C is related to the decomposition of the less-graphitic amorphous carbon 

in the SCSRF support, whereas the peak at 396 °C is due to the bulk decomposition of the 

more graphitic carbon. Only one major decomposition peak was associated with the 

10Co/HCSs catalyst, and was attributed to the Co-catalyzed oxidation of bulk carbon. 

Notably, the carbon decomposition temperatures were lower fow the catalysts than on the 

pristine supports (>550 °C). The presence of the metal particles catalyzes the oxidation 

reaction, allowing it to occur at lower temperatures. 
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Figure 6.7 TGA-DTG profiles of (a) 10Co/SCSsRF and (b) 10Co/HCSs. 

 

6.3.2.5 Temperature programmed reduction (H2-TPR) 

The influence of the support morphology on the reducibility of the cobalt oxide reduction 

characteristics was monitored using temperature programmed reduction. The profiles display 

multiple peaks as a result of the interaction of hydrogen with cobalt oxide and the carbon 

support (Fig. 6.8). For the 10Co/HCSs sample, Co oxide reduction was seen to proceed as 

follows; Co3O4 → CoO, followed by the CoO → Co
0 

transformation,
[2, 22]

 with the reductions 

peaks observed at 282 and 414 °C, respectively. For the 10Co/SCSsRF sample, similar 

reduction trends were seen but the reduction of the various phases was observed at higher 

 



___________________________________________________ 
 158 

temperatures relative to the 10Co/HCSs sample. For instance, the Co3O4 → CoO 

transformation occurred at 309 °C and the subsequent conversion of CoO to metallic Co was 

seen in the 370 – 570 °C temperature range on this sample. The shift to higher reduction 

temperatures on the 10Co/SCSs sample is attributed to the bigger cobalt oxide particles 

measured on both TEM and XRD techniques. It was interesting to see a relatively small peak 

for the Co3O4 → CoO transformation on the 10Co/HCSs sample and could be associated with 

the ability of carbon to partially auto-reduce the cobalt oxide. This effect was not observed on 

the 10Co/SCSsRF sample presumably because of the cobalt particle sizes present on this 

catalyst. See chapter 7 for the effect of the support morphology on the catalyst reduction 

kinetics. 

 

The hydrogenation of the carbon support to methane was observed as negative peaks during 

TPR experiments. For the 10Co/HCSs sample, the methanation peak appeared at 653 °C as a 

narrow negative peak. This peak was seen to be broader on the 10Co/SCSsRF sample with 

Tmax at 760 °C. The difference in the methanation characteristics observed on the two 

supports is believed to be due to two effects; (1) the thickness of the carbon layer, and (2) the 

sizes of the cobalt oxide particles. The differences in morphology results in a narrow 

methanation peak on the hollow carbon sphere support, while the same effect results in a 

broader peak on the solid carbon sphere support. Furthermore, a cobalt catalyst is known to 

catalyse the hydrogenation of the carbon support (see Chapter 4). Thus the methanation of 

carbon on the 10Co/HCSs sample was observed at a lower temperature because the particles 

were better dispersed on this support and were smaller in size. 
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Figure 6.8 H2-temperature programmed reduction profiles for the 10Co/HCSs and 

10Co/SCSsRF samples. 

 

6.3.3 Fischer-Tropsch catalytic performance evaluation 

The effect of the support architecture in heterogeneous catalysis was investigated in Fischer-

Tropsch synthesis at 220 and 250 °C, 10 bar and H2/CO = 2.0. Fig. 6.9 shows changes in the 

CO conversion as a function of the time on stream for the two catalyst systems. The 

stabilities of the catalysts in FT synthesis were monitored up to 100 h on stream and the 

catalysts displayed steady activities at both reaction temperatures for this reaction period, 

irrespective of the support morphology used. The stable activities illustrate that the catalysts 

maintain good structural integrity during the FT experiments. Notably, the 10Co/HCSs 

catalyst displayed consistently higher FT activities under both reaction temperatures studied 

than the 10Co/SCSsRF catalyst. This behaviour could be attributed to the good dispersion of 

Co particles on the hollow support as seen on TEM results. Due to the good metal oxide 

dispersion, the 10Co/HCSs catalyst was characterized by smaller Co particles which can be 

expected to be more active in FT synthesis.
[23]

 Furthermore, it appears that the hollow support 

morphology of the 10Co/HCSs sample favours the efficient removal of products from the 

catalytic sites, thus allowing for a higher throughput.  
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Figure 6.9 FT catalytic activity on the metal oxides dispersed on solid and hollow support 

morphologies. 

 

Hydrogenation of carbon monoxide on both cobalt catalysts led to the formation of 

hydrocarbons and water. The hydrocarbon selectivities calculated under the different 

conditions are summarized in Table 6.2. Generally, high C5+ selectivities were recorded on 

both systems at typical FT conditions (220 °), with slightly higher values possible on the 

HCS-supported catalyst. When the reactor temperature was increased to 250 °C, a large drop 

in the C5+ product fraction were measured for both catalyst systems. These large decreases in 

the heavy hydrocarbon products and the corresponding increase in methane selectivity were 

expected because a reaction temperature of 250 °C is too high for Co FT synthesis. However, 

it was still interesting to see that the 10Co/HCSs sample still recorded a higher C5+ yield even 

at the high reaction temperature when compared to the 10Co/SCSsRF catalyst. A similar trend 

on the undesirable increase of the methane fraction was also seen. The high C5+ and low CH4 

selectivities on HCSs-supported catalyst suggest that the architecture of the support 

influences the product distribution. Even though most properties (size, porosity, stability) of 

the two distinct support materials were similar, the different morphologies affect the mass 

transfer properties of the catalysts which results in different product selectivities. 
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 Table 6.2 FT product selectivities for the catalysts. 

 

Sample 

Temp.  

(°C) 

%CO 

conversion 

Activity 

(mol CO/gCo.sec) 

Hydrocarbon selectivity (%) 

C1 C2-C4 C5+ 

10Co/SCSsRF 

 

 

10Co/HCSs 

220 

250 

 

220 

250 

16.4 

22.6 

 

21.7 

29.2 

1.66x10
-5

 

2.29x10
-5

 

 

2.22x10
-5 

2.96x10
-5

 

19.1 

26.6 

 

12.8 

21.4 

6.9 

25.6 

 

6.7 

13.9 

74.0 

47.8 

 

80.5 

64.7 

 

 

6.3.4 The spent catalysts 

After FT synthesis the spent catalysts were analysed using TEM and the representative 

images obtained are presented in Fig. 6.10. Upon analysis of the images, it was evident that 

the Co particles had sintered during the reaction. For the 10Co/HCSs sample, the metal 

particles were still general well dispersed on the carbon support even after the high-

temperature reaction. Sintering was only observed in isolated regions as highlighted with 

arrows in Fig. 6.10b, and an average metal particle size of 11.5 nm was measured on the 

spent sample which reflects a 73% increase relative to the fresh catalyst. A much higher 

sintering behaviour was observed for the 10Co/SCSsRF sample (Fig. 6.10a). The average 

particle size on this sample was determined to be 28.3 nm, which corresponded with a 201% 

particle size increase when compared to the fresh catalyst. Thus, the spent catalysts verified 

the differences in properties of particles dispersed on hollow and solid support morphologies. 

The spent samples also confirmed that the HCS support enables a better metal dispersion than 

the solid materials, and this reduces the tendency for metal particles to sinter during high-

temperature reactions.  
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Figure 6.10 TEM images of the spent (a) 10Co/SCSsRF and 10Co/HCSs samples. 

 

6.4 Conclusions 

In summary, we have demonstrated a simple hydrothermal route for the synthesis spherical 

carbon materials. We have described how the synthesis conditions of this method can be 

tuned to allow for the preparation of solid (SCSsRF) or hollow carbon spheres (HCSs). On the 

basis of TEM, SEM, TGA, BET and Raman spectroscopy, it can be concluded that we 

successfully tailored the physicochemical properties of the solid and hollow materials to be 

similar, allowing for an effective comparison in the study of support architecture effects in 

heterogeneous catalysis. Notably, the HCSs are characterized by a low density due to their 

hollow morphology. Thus they have a larger outer volume for the same mass of sample when 

compared with their solid counterparts. This difference resulted in a better metal dispersion 

on the calcined samples, following metal loading by the homogeneous deposition 

precipitation method.  

 

Due to the morphology differences and the inherent differences in the particle properties, the 

catalyst supported on the solid and hollow morphologies possessed different characteristics. 

These include their high-temperature stabilities, reducibility and catalytic activity. The 

Co/HCSs catalyst was more readily reducible using hydrogen, and also displayed higher 
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activities and selectivities for heavy hydrocarbon products in Fischer-Tropsch synthesis. The 

differences in the catalytic properties were seen to be two-fold. Firstly, its because of the 

smaller metal particles possible on the HCS support, and secondly, due to the differences in 

mass transport resistance of the two support materials. Analysis of the spent FT catalysts 

allowed us to verify the better metal dispersion possible on the Co/HCSs, and the minimal 

sintering tendency achievable on this catalyst system. On this basis, it appears that the hollow 

support morphology enables a better catalyst performance than the conventional solid support 

materials.  
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This chapter is still to be submitted for publication. 

CHAPTER 7 

 

Iron Fischer-Tropsch synthesis on solid and hollow support morphologies – a 

comparative study 

 

7.1 Introduction 

Carbon spheres (CSs) possess unique characteristics which set them apart from other 

carbonaceous materials such as carbon nanotubes, carbon nanofibers or activated carbon, in 

that they have inherent advantages of both carbon materials and spherical colloids.
[1]

 As a 

result they have tunable particle sizes, controllable pore structures, high stability in both 

acidic and basic environments, good electrical conductivity and allow for easy recovery of 

precious metals by simply burning off the carbon after the deactivation of the supported 

catalysts. Thus the synthesis of nanoporous CSs has been of increasing interest. To date, CS 

have been fabricated from a wide variety of carbon sources by employing methods such as 

the non-catalytic chemical vapour deposition (CVD), hard templating with silica spheres as 

the templates, soft templating approaches by organic-organic self-assembly, hydrothermal 

treatment of sugars, and more recently by the modified Stöber method.
[2-5]

 Recent interests 

are focusing on the fabrication of different morphologies of CSs as the dissimilar 

architectures tend to possess unique characteristics, and can potentially be used in a wide 

range of applications. 

 

Prior studies have reported the synthesis of CSs with solid, hollow, core-shell and yolk-shell 

morphologies. Mahajan et al. have fabricated solid carbon spheres with an average diameter 

of 43 nm by the MgO-catalyzed hydrothermal pyrolysis of acetone.
[6]

 Chen et al. prepared 

hollow carbon spheres by using pre-fabricated silica spheres as the solid template, and then 

encapsulating it with carbon.
[7]

 The silica spheres are typically made using the Stöber method 

which involves the base-catalyzed hydrolysis and condensation of alkoxysilanes such as 

TEOS. Recently, Liu and co-workers have shown that the Stöber method can be modified 

(extended) to allow for the synthesis of monodisperse solid carbon spheres.
[8]

 This extended 
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Stöber method approach also allows for the preparation of core-shell, yolk-shell and hollow 

carbon spheres when a template is used during the synthesis.
[9-11]

 

 

Recently, interest in the Fischer-Tropsch (FT) synthesis reaction has been revived because of 

instability in crude oil prices, and thus efforts are now directed towards diversifying energy 

sources. In the Fischer-Tropsch (FT) synthesis, syngas (CO + H2) derived from feedstocks 

such as biomass, coal, stranded natural gas or shale gas is converted to heavy hydrocarbons, 

the precursors for high-quality diesel, kerosene and commodity chemicals. The FT synthesis 

is industrially performed over cobalt or iron catalysts. Iron catalysts are preferred for the 

synthesis of hydrocarbons from CO-rich synthesis gas because of their water-gas-shift 

activity, low price, large reserves and low sensitivity to poisoning.
[12, 13]

 Furthermore, Fe 

catalysts produce a wider product spectrum than Co-catalysed reactions, the products include 

olefins, paraffins and oxygenates. Fe-based FT catalysts also have a flexible reaction 

temperature range as they can be operated under low or high temperature FT conditions. Thus 

the versatility of Fe catalysts still makes them favourable candidates for the conversion of 

synthesis gas and warrants further study in order to make better performing catalysts. 

 

Previous studies on Fe FT synthesis have been dedicated to investigating effects associated 

with chemical promoters,
[14, 15]

 Fe particle size,
[14, 16-18]

 Fe oxide reducibility,
[19]

 structure,
[20]

 

catalyst deactivation,
[21]

 metal-support interactions
[22]

 or the use of different types of catalyst 

support materials.
[23, 24]

 The morphology of the support material is also a critical aspect and 

its effects should be well understood in catalyst design. Effects related to the catalyst support 

morphology have been reported on the performance of fuel cells.
[25]

 However, the effects 

reported were detected by comparing carbon black with carbon nanotubes as supports for Pt 

catalysts, and these carbons possess different properties. Carbon spheres (CSs) are a versatile 

material which can be used to study morphology-related effects in heterogeneous catalysis. 

CSs can have morphologies such as solid, hollow, core-shell or yolk-shell structures, which 

are achievable by a simple variation of the synthesis conditions. The chemical inertness of 

these materials makes them suitable for studying effects associated with the support 

morphology in catalysis. In this study, we focused on studying the effects of using a solid or a 

hollow carbon support on the performance of Fe FT catalysts. The fabrication of the solid and 

hollow CSs was tuned so that they had comparable properties (size, surface area, pore 
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structure, thermal stabilities and crystallinity) and was also done from the same carbon 

precursor by using the hydrothermal method.  

 

7.2 Experimental procedures 

7.2.1 Synthesis of Solid carbon spheres (SCSsRF) and hollow carbon spheres (HCSs) 

Fabrication of the solid carbon sphere support was achieved using a procedure given in 

earlier section (6.2.1). Briefly, the synthesis was achieved by the room-temperature 

polymerization of a resorcinol-formaldehyde (RF) carbon precursor, followed by the 

hydrothermal treatment of the solution to yield a brown polymeric product. The polymeric 

material was then converted to carbon by a high temperature treatment (900 °C, 4 h) under 

the flow of nitrogen (20 mL/min). Unlike their solid analogues, the nanofabrication of hollow 

carbon spheres was performed by the use of a sacrificial silica sphere template. This scaffold 

was encapsulated with the polymeric material (RF) to give a core-shell SiO2@RF composite, 

which was then carbonized at 900 °C for 1 h to SiO2@C material. Removal of the template 

was achieved by etching it using a hydrofluoric acid solution. The prepared solid carbon 

spheres were abbreviated as SCSsRF, whereas the hollow carbon spheres are labelled as 

HCSs. 

7.2.2 Material characterizations 

Transmission electron microscopy (TEM) bright-field data was obtained on an FEI Tecnai 

T12 instrument operated at 12 kV. Scanning electron microscopy (SEM) analysis was 

performed on an FEI Nova Nanolab 600 operated at 30 kV and 0.63 nA. Prior to the analysis, 

the samples were coated with a thin layer of Au-Pd alloy in a sputter coater. Nitrogen 

physisorption measurements were done on a Micromeritics TriSta 3000 analyser. The 

average pore sizes were determined by the Barrett-Joyner-Halenda (BJH) method, and pore 

volumes were measured at a relative pressure of P/P0 = 0.995. Powder X-ray diffraction 

(PXRD) patterns were recorded on a Bruker D2 diffractometer operated at 30 kV and 10 mA, 

by using a Lynxeye detector. Thermogravimetric analysis with differential thermal 

gravimetry (TGA-DTG) analysis was performed with a PerkinElmer STA6000 instrument. 

Temperature programmed reduction (TPR) measurements were performed on a 

Micromeritics AutoChem II analyser equipped with a thermal conductivity detector (TCD) 

and Brooks mass-flow controllers. 



____________________________________________________ 168 

7.2.3 Catalyst preparation and catalytic testing 

Supported catalysts were prepared in this study, using SCSsRF and HCSs as the support 

materials. The homogeneous deposition precipitation method was used to load the metal 

particles on to the carbon supports. Precipitation was done using urea at 90 °C, and 

evaporation of the solvent (water) was done at 70 °C under vacuum. Drying was done at 70 

°C for 12 h, followed by calcination at 350 °C for 4 h. The calcined samples were tested on 

16 mm i.d. stainless steel fixed-bed reactor. Reduction of the catalyst (0.5 g) was done in situ 

at 350 °C for 18 h using pure hydrogen (UHP grade). Subsequently, FT synthesis evaluation 

was performed at 250 and 270 °C (50 h at each T) using synthesis gas H2/CO = 2 and a flow 

rate of 20 mL/min. Gaseous products were analysed with two online GCs fitted with a TCD 

and an FID detector. Liquid products were analysed using an off-line GC equipped with an 

FID detector. 

 

7.3 Results and discussion 

7.3.1 Electron microscopy analysis  

The morphology and properties of calcined catalysts were examined by using electron 

microscopy. Fig. 7.1 shows representative TEM and SEM images of the 10Fe/SCSsRF and 

10Fe/HCSs catalysts. It was clear that the iron oxide particles were mainly found on the outer 

surface of the carbon spheres on both catalyst systems, except for few isolated cases where 

they were also seen on the inside of broken hollow carbon spheres. Examples of broken 

hollow carbon spheres within the catalyst are shown in Fig. 7.1d. The metal particles were 

generally well dispersed on the carbon supports. Specifically, the 10Fe/HCSs catalyst 

displayed better dispersion of the metal oxide particles. The sizes of the particles were 

measured from the TEM images are the recorded size distributions are displayed in Fig. 7.1e 

and Fig. 7.1f. The average size of the particles was found to be 14.9 and 10.8 nm for the 

10Fe/SCSsRF and the 10Fe/HCSs samples, respectively. Because of their lower density, the 

HCS support offers more outer surface area for particle deposition than their solid analogues, 

hence the higher dispersions measured on this support material. For the same reason, the 

10Fe/HCSs catalyst was also seen to have a narrower particle size distribution. 
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Figure 7.1 TEM and SEM images of (a,c) 10Fe/SCSsRF and (b,d) 10Fe/HCSs. The 

corresponding particle size distributions are shown as (e) 10Fe/SCSsRF, (f) 10Fe/HCSs. 
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7.3.2 Energy-dispersive X-ray (EDX) spectroscopy  

Fig. 7.2 shows energy-dispersive X-ray (EDX) spectra measured from the catalysts. The 

results verified that both the 10Fe/SCSsRF and the 10Fe/HCSs samples contained carbon, iron 

and oxygen. The palladium and gold elements detected are due to the Au-PD alloy used to 

coat the samples prior to their introduction into the microscope. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 EDX spectra for the (a) 10Fe/SCSsRF and the (b) 10Fe/HCSs samples. 

 

7.3.3 Nitrogen physisorption studies 

Table 7.1 summarizes the textual properties of the samples. The BET results revealed that the 

surface areas of the catalysts decreased after the deposition of the iron oxide nanoparticles. 

The pore volumes and pore sizes of the calcined samples only displayed slight decreases, 

with measured differences of ~0.1 cm
3
/g and 0.3 nm, respectively. The decrease in these 

properties is mainly due to the partial blockage of some pores of the carbon supports during 

catalyst incorporation. However, the catalysts still possess sufficiently high surface areas for 
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their application in the CO hydrogenation reaction. Notably, the mesoporous pore structure of 

the materials was retained on the calcined samples. 

 

Table 7.1 Textual properties of the samples. 

 

Sample 

Surface area 

[m
2
/g] 

Pore volume 

[cm
3
/g] 

Pore size 

[nm] 

PXRD
a
 

[nm] 

TEM
b
 

[nm] 

SCSsRF 

 

HCSs 

 

10Fe/SCSsRF 

 

10Fe/HCSs 

565.2 

 

562.8 

 

381.9 

 

396.5 

0.315 

 

0.389 

 

0.245 

 

0.279 

2.71 

 

2.76 

 

2.46 

 

2.55 

- 

 

- 

 

15.6 

 

10.1 

- 

 

- 

 

14.9 

 

10.8 

a
Fe2O3 crystallite sizes were estimated from PXRD patterns using the Scherrer equation. 

b
Fe2O3 particle sizes were estimated from TEM images. 

 

7.3.4 Thermogravimetric analysis (TGA) 

In order to probe the effect of the support architecture on the thermal stability of the catalysts, 

TGA experiments were performed; all were done under the flow of air. Fig. 7.3 depicts TGA 

profiles (shown in black) and the corresponding differential thermal gravimetry curves 

(shown in blue) for the 10Fe/SCSsRF and 10Fe/HCSs samples. Two broad decomposition 

peaks with maxima at 580 and 687 °C were seen on the 10Fe/SCSsRF sample (Fig. 7.3a). 

These peaks are both due to the oxidation of carbon to CO2. The low temperature peak is 

attributed to Fe-catalyzed carbon oxidation, whereas the peak at 687 °C is due to the 

decomposition of bulk carbon which was not in direct contact with the metal particles. Unlike 

their solid analogues, the 10Fe/HCSs sample featured only one decomposition peak at 605 °C 

(Fig. 7.3b). This peak is narrow in width due to the thin carbon shells of the hollow support. 

Only one peak was seen on this sample because carbon decomposition was mainly Fe-

catalyzed. Furthermore, this carbon oxidation behaviour confirms the good dispersion of Fe 

nanoparticles on the carbon support. The non-zero residual weight after TGA-DTA 
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experiments is due to iron oxide which was about 20 wt% for both samples, and verified that 

the samples had similar metal loadings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 TGA profiles and derivative curves of (a) 10Fe/SCSs and (b) 10Fe/HCSs, analysis 

done in an oxidizing atmosphere.   

 

7.3.5 Powder X-ray diffraction (PXRD) 

The phases present on the calcined catalysts were identified by using the PXRD technique 

(Fig. 7.4). The diffraction peaks observed at 25.0 and 50.7° on both samples are attributed to 
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the (002) and the (100) signature peaks for graphitic carbon.
[12]

 The lower degree of 

crystallinity on the HCS support is related to the shorter carbonization time (1 h) used during 

the synthesis of this material and the hollow nature of this material. In addition to the carbon 

signals, both samples had peaks at 38.5, 41.4, 47.6, 57.6, 63.6, 73.9 and 76.0°, and 

corresponded with the (104), (110), (113), (024), (116), (214) and (300) signature peaks for 

α-Fe2O3 [PDF No. 01-089-0598]. It was observed that the 10Fe/SCSsRF pattern had more 

crystalline diffraction peaks, suggesting that the iron oxide crystallites could be larger on this 

sample. The sizes of the iron oxide crystallites were estimated using the Scherrer equation 

and are displayed in Table 7.1. The smaller crystallite sizes (10.1 nm) on the 10Fe/HCSs 

sample are attributed to the higher particle dispersion which is aided by the hollow 

architecture of the support material, and are in agreement with results obtained from electron 

microscopy studies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Powder X-ray diffraction patterns of (a) 10Fe/SCSsRF and (b) 10Fe/HCSs 

samples. 

 

 

 

 

 

 

 

 

 

 



____________________________________________________ 174 

7.3.6 Temperature programmed reduction (TPR) 

The reduction characteristics of the Fe oxide nanoparticles supported on solid and hollow 

carbon spheres were studied by the TPR technique. Fig. 7.5 shows reduction profiles of the 

10Fe/SCSsRF and 10Fe/HCSs samples measured using different heating rates (2, 5, 10, 20 

°C/min). The observed reduction temperatures are summarized in Table 7.2. For the 

10Fe/SCSsRF sample, the transformation of Fe oxide was seen to proceed via a two-step 

mechanism as follows; Fe2O3 → Fe3O4 followed by the Fe3O4 → Fe step.
[13]

 These reduction 

steps were seen as two distinct peaks in the 300 – 500 °C region during the activation 

process, and were present irrespective of the ramping rate utilized. Increasing the heating rate 

was observed to shift the transformations to higher reduction temperatures. Furthermore, the 

methanation of carbon, seen as a negative peak at T > 600 °C, also shifted to higher 

temperatures with increased heating rates.  

 

For the 10Fe/HCS sample, a similar reduction trend was observed as the Fe oxide 

nanoparticles were converted to metallic Fe (Fig. 7.5). However, the reduction peaks were 

not distinctive for this sample, but they were seen to overlap in the same temperature range 

(300 – 500 °C). The overlapping of the reduction peaks was observed even when very low 

heating rates (2, 5 °C/min) were used. Notably, methanation of the hollow carbon support 

consistently occurs at a lower temperature than the hydrogenation of the solid support 

material. This observation is due to two effects; 1) the thin carbon shells of this material are 

easily hydrogenated, and 2) the good dispersion and thus smaller metal particle sizes have a 

higher hydrogenation activity than the bigger metal particles characteristic of the 

10Fe/SCSsRF catalyst. The difference in the activation characteristics might be related to 

differences in support morphologies for these samples.  
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Figure 7.5 A comparison of TPR profiles for the 10Fe/SCSsRF and the 10Fe/HCSs catalysts 

that were measured using different ramping rates.  
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Figure 7.6 TPR profiles measured at different heating rates for the (a) 10Fe/SCSs and (b) 

10Fe/HCSs catalysts. 
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Table 7.2 Reduction temperatures recorded under different ramping rates. 

 

Ramping rate 

Temperature of occurrence [°C] 

Fe2O3 → Fe3O4 Fe3O4 →  Fe Methanation 

2 °C/min - SCSsRF 

2 °C/min – HCSs 

 

5 °C/min - SCSsRF 

5 °C/min – HCSs 

 

10 °C/min - SCSsRF 

10 °C/min – HCSs 

 

20 °C/min - SCSsRF 

20 °C/min – HCSs 

 

30 °C/min - SCSsRF 

30 °C/min - HCSs 

346.3 

364.1 

 

371.3 

367.0 

 

378.4 

370.9 

 

413.5 

377.9 

 

- 

379.0 

382.8 

412.3 

 

410.3 

413.9 

 

427.0 

423.8 

 

464.1 

426.9 

 

- 

429.8 

633.9 

581.1 

 

644.9 

583.5 

 

677.5 

587.1 

 

716.4 

589.7 

 

- 

588.6 

 

7.3.6.1 Effect of the support morphology on catalyst reducibility 

Fig. 7.5 and Fig. 7.6 shows TPR profiles for the reduction characteristics of iron oxide 

nanoparticles dispersed on a solid and a hollow carbon support analysed using different 

heating rates (2, 5, 10 and 20 °C/min). For the same support material, the reduction profiles 

exhibited similar trends. For example, the peaks shifted to higher temperatures and the signal 

intensity increased with an increase in the heating rate, as expected. However, the 10Fe/HCSs 

catalyst consistently displayed a marginal increase in the reduction peak maxima as the 

ramping rate was increased. This was also true for the methanation peaks (negative signal) at 

the different heating rates. On this basis, it is evident that the morphology of the support 

material plays a role in the reducibility of the catalyst. This is withstanding the fact that the 

carbon supports were synthesized from the same carbon source (RF) and  by using the same 

method (hydrothermal synthesis).  
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7.3.6.2 Reduction kinetics 

To examine the effects of the support morphology on the catalyst reduction kinetics, the 

evolution of different iron species in TPR experiments was monitored using different heating 

rates (2, 5, 10, 20 and 30 °C/min). The Kissinger method (Eqn. 7.1) has been extensively 

applied in the determination of activation energies (Ea) for various processes and is 

represented as follows:
[26]

  

 𝑙𝑛 (
𝛽

𝑇𝑚
2) = −

𝐸𝑎

𝑅𝑇
+ 𝑙𝑛 (

𝐴𝑅

𝐸𝑎
)       Eqn. 7.1 

where 𝛽 is the linear ramping rate (K/min), Tm is the reduction peak temperature (K), A is the 

pre-exponential factor (s
-1

) and R is the gas constant (Jmol
-1

K
-1

). Using Eqn. 7.1, a plot 

of 𝑙𝑛 (
𝛽

𝑇𝑚
2) vs 

1

𝑇
 results in a straight line for first order processes, and the activation energy 

can be determined from the slope (𝑚 = −
𝐸𝑎

𝑅
) of this line. Even though the Kissinger 

approach was originally used to determine activation energies of single-step first order 

kinetics, it has been extensively used to estimate the Ea for multi-step processes.  

 

Fig. 7.7 shows plots of 𝑙𝑛 (
𝛽

𝑇𝑚
2) vs 

1

𝑇
 for the reduction of the iron species on the 10Fe/SCSs 

sample. The kinetic plots for the transformation of Fe2O3 to Fe3O4 are shown in Fig. 7.7a, 

whereas Fig. 7.7b displays data for the Fe3O4 → Fe conversion. The slopes for these 

Kissinger plots were found to be -13.3 K and -12.3 K, respectively for this sample. The 

activation energies associated with these reduction processes were determined to be 110.3 

and 102.5 kJ/mol, respectively. These values are comparable to data reported for other 

Fischer-Tropsch catalysts. Fig. 7.8 shows of 𝑙𝑛 (
𝛽

𝑇𝑚
2) vs 

1

𝑇
 plots for reduction processes which 

occurred on the 10Fe/HCSs sample. This sample only displayed minimal increments in the 

peak temperatures with corresponding increases in the ramping rate. As a consequence, the 

Kissinger plots had slopes of -57.0 K and -73.7 K, for the first and the second reduction 

peaks, respectively. These values are significantly high, thus the activation energies could not 

be determined accurately for this sample by using the Kissinger method. However, it was 

clear that the two catalyst systems displayed different reduction behaviours. On this basis, it 

appears that the support morphology does influence the reduction kinetics of a catalyst. The 

origin of this effect could be two-fold; (1) the differences in gas transport characteristics on 
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the two supports, and (2) the inherent consequences of dissimilar iron oxide particle sizes. 

The surface chemistry of the carbon supports is believed not to play a major role in this as it 

is similar for the two materials. However, the different particle sizes of Fe oxide could 

interact differently with the carbon surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Thermokinetics of the reduction of (a) Fe2O3 → Fe3O4 and (b) Fe3O4 → Fe for the 

10Fe/SCSsRF catalyst.  
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Figure 7.8 Thermokinetics of the reduction of (a) Fe2O3 → Fe3O4 and (b) Fe3O4 → Fe for the 

10Fe/HCSs catalyst.  
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7.3.7 Fischer-Tropsch catalytic evaluation 

The FT catalytic tests were performed under the following conditions; T = 250, 275 °C, 10 

bar total pressure, H2/CO: 2, flow rate: 20 mL/min, catalyst weight: 0.5 g. Table 7.3 

summarizes the steady-state activity and selectivity data for the Fe catalysts dispersed on 

solid and hollow carbon spheres. Significant differences were observed on the catalytic 

properties of these samples. For example, at similar reaction temperatures, higher CO 

conversions were measured for the Fe/HCS than for the Fe/SCSsRF sample. This trend was 

maintained at both reaction temperatures used and was consistent with results measured for 

the Co/HCSs and Co/SCSsRF systems. Just like with the Co measurements, these differences 

in activity are related to the good metal dispersion on the hollow support, and the efficient 

mass transfer of products from the active sites when this support architecture is used. As 

expected, increasing the temperature improved the activity of the different catalyst systems. 

However, it was noted that a bigger percentage increase was measured on the Fe/HCSs 

catalyst (12.5%) versus 5.8% recorded for the SCSsRF sample. This is related to the higher 

sintering tendency of Fe particles dispersed on the solid support at higher reaction 

temperature. Vide infra for a characterization of the spent catalysts. 

 

Data on the product selectivity towards specific fractions is presented in Table 7.3. The 

Fe/HCSs sample had higher selectivity towards the C5+ product fraction than the Fe/SCSsRF 

sample at both reaction temperatures studied. It is evident that the two systems possess 

dissimilar properties as the differences in the C5+ selectivity measured were greater than 10% 

for similar analysis conditions. Furthermore, unlike the Co systems which displayed a large 

decrease in the C5+ fraction at a high reaction temperature, minimal changes (± 4%) were 

measured on these Fe catalysts. This is because of the flexibility of Fe as a low- and high-

temperature FT catalyst.  
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Table 7.3 Fischer-Tropsch synthesis performance of the catalysts. 

 

Sample 

Temp 

[°C] 

CO 

conversion [%] 

Product selectivity [%]  

CO2 C1 C2 – C4 C5+ 

10Fe/SCSsRF 

 

 

10Fe/HCSs 

250 

275 

 

250 

275 

20.3 

26.1 

 

25.9 

38.4 

15.1 

20.6 

 

11.8 

13.0 

22.5 

20.1 

 

14.4 

16.2 

62.4 

59.3 

 

73.8 

70.8 

16.7 

22.5 

 

21.2 

26.2 

 

 

7.3.8 Spent catalysts 

After a 100 h time on stream catalytic evaluation period, the spent catalysts were 

subsequently characterized with TEM (Fig. 7.9). The analysis of TEM images of the spent 

10Fe/SCSsRF catalyst revealed that there was a difference in the metal particle properties 

before and after the reaction. The metal particles were seen to have agglomerated on the spent 

sample, and the average parcel size was calculated to be 34.3 nm (Fig. 7.9a). This is a 

significant increase from the 14.9 nm particle size measured on the calcined fresh catalyst 

measured by the same technique (TEM). In the case of the Fe dispersed on hollow carbon 

spheres, the particles were also seen to have sintered. Thus the measured average particle size 

increased from 10.8 nm on the fresh catalyst to 21.1 nm after the reaction. It was observed 

that the tendency to sinter was lower for the 10Fe/HCSs catalyst than on the 10Fe/SCSs 

sample, owing to the better particle dispersion on the hollow carbon sphere support material. 

The insert in Fig. 7.9b depicts a metallic Fe species encapsulated in an amorphous iron oxide 

passivation layer, and is consistent with other reports.
[27]

  Furthermore, the spent samples 

displayed no structural collapse for both the solid and hollow CS-supported catalysts. This 

illustrated that the support materials used maintained their structural integrity under the 

hydrothermal conditions present during FT synthesis.  
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Figure 7.9 TEM images of the spent catalysts (a) 10Fe/SCSsRF and (b) 10Fe/HCSs. The 

insert shows a high magnification image of the 10Fe/HCSs spent catalyst. 

 

7.4 Conclusions 

The fabrication of solid and hollow carbon sphere support materials by similar synthesis 

procedures has allowed us to study and quantify the effects of the support architecture in 

heterogeneous catalysis. Catalysts prepared from these materials had mesoporous pore 

structures and high specific surface areas (> 380 m
2
/g), inherent from the CS supports used. 

The Fe particle sizes were seen to be well-dispersed and thus smaller on the hollow support 

(~10 nm) than on the solid carbon spheres (~15 nm). Furthermore, the carbon supports had 

high thermal stabilities despite being in contact with the catalytic metal particles. Performing 

TPR studies allowed us to study the differences in the reducibility of iron oxide particles 

supported on solid or on hollow CSs.  

 

From kinetic studies, it was observed that the reduction characteristics of the catalysts were 

different illustrating that they possessed dissimilar properties. Furthermore, the use of various 

heating rates resulted in different response trends in the TPR, providing new insights on the 

effect of the support architecture on the catalyst reduction kinetics. The catalytic properties of 

Fe particles dispersed on solid and hollow support materials were found to be different. The 
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Fe/HCSs catalyst generally displayed superior activity and selectivity for C5+ hydrocarbons 

both at 250 and 275 °C. Due to the higher metal dispersion on the hollow support, minimal 

sintering was detected.  
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CHAPTER 8 

General conclusions and recommendations 

 

8.1 General conclusions 

It has been demonstrated in the literature that the hydrothermal method could be used to 

prepare carbon spheres. This low-temperature synthesis approach usually yields reproducible 

materials with solid and hollow architectures. But the as-prepared materials are typically non-

porous, with surface areas of ~1 m
2
/g being commonly reported in the literature. In this study, 

we have shown that properties of carbon spheres (such as surface area, pore structure, thermal 

stability or crystallinity) can be improved by annealing the materials at 900 °C under inert 

conditions (N2, 20 mL/min). Tuning these properties involved a simple variation of the 

annealing period between 1 to 4 hours. The annealing procedure proved to be key in 

optimising the properties of the carbon materials to enable their use as model catalyst 

supports. 

 

The improved properties of the annealed carbon spheres prompted us to use them as a model 

support material for bimetallic Fe-Co FT catalysts. The relative inertness of this material was 

to be exploited in an endeavour to understand this complex system. From the literature, 

reports of a seemingly contradictory nature were found on various aspects of this catalyst 

system. These included the identity of phases present after calcination, the phases formed 

during catalyst activation and the role of a possible alloy on the overall performance of the 

catalyst. These aspects seemed to be heavily influenced by the support material used. On the 

inert carbon spheres, the calcined bimetallic catalysts were determined to consist of Fe and 

Co oxides (α-Fe2O3 and Co3O4). No alloy of the two metals was detected on the calcined 

samples. During the activation of these catalysts as monitored by the H2-TPR and in situ 

PXRD techniques, the relatively inert carbon support allowed for an insight on the 

transformations possible for such systems. Combining H2-TPR and operando PXRD data 

allowed us to trace for the first time the transformations as they occur and to relate the phases 

formed during reduction to the Fe to Co ratios used. Activation of Co-rich samples led to the 

formation of the alloy wairauite (Co-Fe and possibly CoxFey). When the Fe/Co ratio tended to 

unity, the relative abundance of the alloy increased. However, this specific alloy was not the 
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key component for improved catalyst activity or selectivity. Instead an alloy with a higher Co 

content closer to Co2Fe seems more important. 

 

In order to investigate the effect of the support morphology in heterogeneous catalysis carbon 

spheres were used as a model support. Carbon spheres were particularly useful in this regard 

because their architecture can easily be varied by simply changing the synthesis conditions. 

The conditions were chosen carefully to allow for the fabrication of carbon spheres with a 

solid or a hollow morphology. Synthesis of these materials with distinct morphologies was 

done by the hydrothermal method by using a mixture of resorcinol and formaldehyde as the 

carbon precursor in both instances. The synthesis conditions were tuned to enable the 

fabrication of solid and hollow carbon spheres with comparable properties such as their size, 

porosity and surface chemistry. Once optimized, the solid and hollow materials were then 

used as supports for monometallic Co and Fe catalysts. Conventional catalysts are typically 

dispersed on support materials with a solid morphology, while hollow materials have only 

recently found use as catalyst supports. Studies on the effects associated with the different 

support morphologies are still limited in the literature yet understanding this will be 

important in the rational design of the next generation of catalysts. 

 

Catalysts dispersed on solid and hollow carbon spheres had different properties, although 

similar trends were observed for similar support morphologies when either Co or Fe was 

used. The low-density HCSs enabled the preparation of catalysts with highly dispersed metal 

particles compared to its solid counterpart. The result of the good dispersion was evident in 

the catalytic performance of both Co and Fe supported on HCSs. The higher activities and 

heavy hydrocarbon selectivities recorded for the Co/HCSs and Fe/HCSs catalysts are related 

to the smaller metal particles on these systems after calcination and the ease of mass product 

transfer favoured heavy hydrocarbon products. Analysis of the spent catalysts by the TEM 

technique revealed that sintering was more pronounced for the particles supported on the 

SCSRF than on the HCS material, with increases in the average particle size of over 200% 

being possible on the solid sphere-supported catalyst.  
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The surface chemistry of the hollow carbon spheres was enhanced by doping them with 

nitrogen by using a post-synthesis procedure. This was achieved by the addition of aqueous 

melamine to SiO2@RF composites, followed by a carbonization step at 600 or 900 °C under 

inert conditions. The use of these two carbonization temperatures incorporated 13.1 and 5.4% 

N for the N-HCSs600 and the N-HCSs900 samples. Furthermore, the types of incorporated N 

species were determined by X-ray photoelectron spectroscopy (XPS). The lower temperature 

treatment favoured a higher content of pyridinic and pyrrolic nitrogen, whereas the 900 °C 

treated samples had a higher pyrrolic and graphitic nitrogen content. TGA analysis revealed 

that post-synthesis N-doping did not significantly compromise the thermal stability of the 

materials because they were determined to be similar to those measured for the pristine 

hollow material.  

 

PXRD and TEM data revealed that the Co particles deposited on the N-doped supports were 

significantly smaller in size than those dispersed on the pristine HCSs. The high N content of 

the doped materials was seen to result in a moderate metal-support interaction during the 

reduction of the catalyst precursors by the TPR and in situ PXRD techniques. However, this 

interaction was not too strong to inhibit the activity of the Co species in FT synthesis. Thus 

the highest FT performance (activity, selectivity) was recorded from the Co/N-HCSs900 and 

Co/N-HCSs600 samples. Analysis of the catalysts after FT synthesis revealed than the 

moderate metal-support interaction induced by N-doping promoted the anchoring of Co 

particles thus minimizing sintering at high temperatures.  

 

8.2 Recommendations  

It can be clearly seen from studies conducted in this work that the versatility of carbon 

spheres makes them ideal model support materials for investigating Fe, Co and Fe-Co 

catalyst systems. Further studies on the use of these materials are recommended but a carbon 

precursor alternative to resorcinol-formaldehyde is suggested because the porosity carbons 

synthesized from RF is harder to tune if the use of a surfactant is to be avoided. Secondly, 

additional studies are still required for a better understanding of bimetallic Fe-Co systems. 

For example, the use of promoters on such catalyst systems is still rarely reported. It is 

believed that this system would be better understood if a carbon support utilized, particularly 
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carbon spheres because of benefits associated with their tunability. Finally, the effect of the 

support morphology in catalysis still has to be explored on similarly-sized catalyst particles to 

eliminate particle size effects.  
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Appendix 1 – List of symbols 

The following is a list of abbreviations that were used in the thesis: 

ASF  - Anderson-Schulz-Flory 

BET  - Brunauer-Emmett-Teller 

CNTs  - Carbon nanotubes 

CSs  - Carbon spheres 

CVD  - Chemical vapour deposition  

EDX  - Energy dispersive X-ray spectroscopy 

FID  - Flame ionisation detector   

FTIR  - Fourier transform infrared spectroscopy  

FT  - Fischer-Tropsch 

GC  -  Gas chromatography  

GHSV  - Gas hourly space velocity  

HCSs  - Hollow carbon spheres 

N-HCSs - Nitrogen doped hollow carbon spheres 

PXRD  - Powder X-ray diffraction  

RF  - Resorcinol-formaldehyde  

SEM  - Scanning electron microscopy 

TCD  - Thermal conductivity detector  

TEM  - Transmission electron microscopy 

TEOS  - Tetraethyl orthosilicate  

TGA-DTA - Thermogravimetric analysis with differential thermal gravimetry 

TPR  - Temperature programmed reduction 

WGS  - Water gas shift  

wt.%   - Weight percentage  

XPS  - X-ray photoelectron spectroscopy 
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Appendix 2 - H2-TPR profile for the CS support material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1 – H2-TPR profile of the HCSs support sample. This profile illustrates that the 

negative peak observed at higher temperatures (methanation signal) was due to the carbon 

supports. 
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Appendix 3 – A summary of FT performance data of all the studied catalysts. 

 

Catalyst 

Temp. 

[°C] 

CO 

conversion [%] 

Hydrocarbon selectivity [%]  

CO2 C1 C2-C4 C5+ 

10Co/CSs 220 

250 

29 

51 

13 

23 

9 

8 

78 

69 

0 

6 

0.5Fe-9.5Co/CSs 220 

250 

32 

60 

17 

22 

6 

10 

77 

68 

0 

10 

2Fe-8Co/CSs 220 

250 

21 

29 

8 

18 

5 

10 

87 

72 

0 

15 

5Fe-5Co/CSs 220 

250 

24 

29 

11 

17 

9 

9 

80 

74 

0 

8 

9.5Fe-0.5Co/CSs 220 

250 

24 

33 

18 

19 

11 

13 

71 

68 

11 

17 

10Fe/CSs 220 

250 

25 

36 

18 

19 

12 

14 

70 

68 

9 

20 

10Co/HCSs 220 

250 

26 

33 

13 

23 

8 

30 

79 

47 

0 

0 

10Co/N-HCSs600 220 

250 

30 

36 

19 

22 

18 

19 

63 

60 

0 

0 

10Co/N-HCSs900 220 

250 

34 

48 

16 

26 

9 

21 

76 

53 

0 

0 

10Co/SCSsRF 220 

250 

16 

23 

19 

27 

7 

26 

74 

48 

0 

0 

10Co/HCSs 220 

250 

22 

30 

13 

21 

7 

14 

81 

65 

0 

0 

10Fe/SCSsRF 250 

275 

20 

26 

15 

21 

23 

20 

62 

59 

17 

23 

10Fe/HCSs 250 

275 

26 

38 

12 

13 

14 

16 

74 

71 

21 

26 

 


