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ABSTRACT

The work presented extends and contributes to research in Non-Intrusive

Load Monitoring (NILM), focussing on steady-state and transient power

measurement disaggregation techniques for circuits containing household ap-

pliances. Although previous work in this area has produced and evaluated a

wide range of NILM approaches, much of it has involved the use of datasets

captured from real-world household implementations. In such cases, the lack

of accurate ground truth data makes it difficult to assess disaggregation tech-

niques. In the research presented, three NILM techniques are comparatively

evaluated using measurements from typical household appliances assembled

within a laboratory environment, where accurate ground truth data could

be compiled to complement the measurements. This allows for the accu-

racy of the various disaggregation approaches to be precisely evaluated. It

is demonstrated that the correlation of transient event edges in aggregated

power measurements to individual appliance transient exemplars performs

better than the matching of steady-state power levels against individual ap-

pliance state combinations. Furthermore, the transient approach is shown to

be the most appropriate technique for further development.
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Chapter 1

OVERVIEW

1.1 Introduction

In South Africa, and many other emerging economies around the world, the

balance of electrical power provision is a constant challenge. This state of

affairs is only set to worsen, given both globally and locally expanding popu-

lation sizes and the resulting growth in commercial, industrial and residential

electricity demand. With increased public exposure to the shortfalls in elec-

tricity supply and the environmental consequences of electricity generation,

residential electrical power consumers are becoming increasingly aware of

the need to minimise their own consumption. Should they manage to reduce

their electricity usage, residents stand to make a positive social contribution

by limiting their demand on the national grid, as well as personally bene-

fiting by reducing their electricity expenses. Demand side management of

this nature offers a superior means by which to alleviate the stresses on na-

tional power grids, it being less costly to intelligently manage a load than to

build new generation capacity or energy storage [1]. The NILM techniques

investigated within this research are intended to contribute towards demand

side management by providing tools with which consumers may analyse and

modify their electricity consumption.
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However, the intelligent management of power consumption is a complex un-

dertaking. It requires that the contribution of individual appliances to the

total power consumption be determined, allowing for efficient appliance us-

age behavioural modifications to be enacted. As many household appliances

perform automated operations which are not directly controlled by the user,

often becoming active at unexpected times, it is difficult to ascertain the

contribution of each appliance via user observation alone. For example, a

geyser or a fridge may become active at any time in order to heat or cool

its contents. Detailed per appliance usage statistics allow for intelligent de-

mand management decisions to be made, such as the installation of timer

switches on geysers and fridges, the selection of economical appliance op-

erational modes or the replacement of power hungry appliances with more

moderate alternatives. However, most consumers are left with nothing more

than basic intuition and their monthly electricity bill as tools with which to

attempt to reduce their electricity consumption.

The desired level of per appliance electricity consumption information may

be obtained by installing power monitoring devices on every appliance con-

tained within a residence. However, this approach is financially infeasible

due to the large number of monitor units required. Furthermore, many ap-

pliances are physically located such that they may be difficult to access for

the purposes of monitor installation and data recovery. In contrast, NILM

techniques only require measurement of the total power being delivered to the

residence, which may be obtained via the installation of a single monitoring

device at the point of electrical connection between the internal circuitry of

the household and the outside transmission network. This is due to the fact

that NILM techniques take the total power generated by all of the appliances

active within the household at any time and disaggregate them in order to

determine which individual appliances contributed to the total power mea-

surements captured. Thus, NILM techniques offer a solution to the problems

associated with direct per-appliance monitoring, providing the most practical

and non-intrusive approach for recording the power consumption of individ-

ual appliances within a building.
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Many NILM techniques are currently being developed and implemented, as

reviewed in Chapter 2. Total power measurements can be complex to disag-

gregate, especially as increasing numbers of appliances become active within

the measured circuit. None of the techniques developed thus far have over-

come all of the challenges presented by complex appliance combinations and

hence no single solution has emerged that is sufficiently free of error to be

considered definitive. Thus it is of interest to continue research in this field,

investigating both new and old NILM techniques with a view to improving

their disaggregation performance.

In this particular piece of research, three NILM disaggregation techniques

are comparatively evaluated. The first of the techniques, Total Load Model

(TLM), is based upon the foundational NILM technique (of the same name)

developed by Hart, which utilises real power steady-state measurements to

make appliance identifications [2]. The second technique, Complex Power

Method (CPM), utilises both real and reactive power steady-state measure-

ments to refine the purely real power approach used in TLM. The third

technique, Event Edge Correlation (EEC), utilises transient event edges in

the total power measurement to identify appliances.

Real power TLM is a well researched technique, with the name ‘TLM’ being

drawn directly from the seminal work by Hart [2]. Whilst the basic principles

underlying both CPM and EEC have been previously investigated by many

researchers, including Hart, their specific conceptualisation and implementa-

tion within this research are unique [2]. The names ’Complex Power Method

(CPM)’ and ’Event Edge Correlation (EEC)’ are not known outside of this

research, having been created specifically to refer to these two disaggregation

techniques within this dissertation. By applying all three techniques to the

same set of data, it may be ascertained which of TLM, CPM and EEC offers

the best solution for disaggregating total power measurements.

3



1.2 Research Question

The comparative evaluation of TLM, CPM and EEC leads to the formulation

of the following research question: Does the use of steady-state level combi-

nations, involving both real and reactive power, or the use of real power event

edge correlations provide the best accuracy when disaggregating total power

measurements?

1.3 Research Area

The research is concerned with the problem of total power measurement dis-

aggregation in a domestic household context, where appliance usage patterns

may be determined by separating the total power consumption into its con-

stituent loads. Three disaggregation techniques are comparatively evaluated

such that it may be ascertained which is the most suitable for further devel-

opment. The research area and scope are discussed in Sections 1.3.1 to 1.4

below.

1.3.1 Disaggregation Techniques

All three disaggregation techniques, and their specific implementations in

this research, are presented in detail in Chapter 4. A brief description of

TLM, CPM and EEC follows below.

TLM: This technique compares all possible combinations of individual ap-

pliance steady state real power consumption levels against the measured total

real power steady-state levels in order to ascertain which appliances (or ap-

pliance states) might be active for each steady state observed within the total

power measurement. This requires that the steady state real power consump-

tion levels be known for each appliance within the circuit being monitored.
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CPM: CPM is an extension of TLM that utilises reactive power steady

state levels to provide an additional layer of information. As the majority

of household appliances are purely resistive, most circuits will only contain

a few appliances with reactive power components. By comparing all possi-

ble combinations of individual appliance reactive power steady state levels

against the measured total reactive power steady state levels, several appli-

ances may immediately be eliminated from the list of potential contributors

to the total real power consumption levels. The resulting rationalised com-

binations of appliances are then used with the TLM method to make final

identifications. This requires that both the real and reactive power steady

state consumption levels be known for each appliance within the circuit.

EEC: Total power measurements contain clearly defined edges, which rep-

resent appliance operational state changes within the measured circuit. EEC

compares such edges detected within the total real power measurements

against the individual waveforms of each appliance within the circuit being

measured. Correlation is utilised to find the closest match between the de-

tected rising and falling edges and the corresponding samples extracted from

individual appliance measurements such that the appliance state changes re-

sponsible for each edge in the measurements may be identified. The resulting

series of state change events may be utilised to ascertained which appliances

are active at any point within the measurement. This requires that the real

power waveforms be captured for each appliance within the circuit being mea-

sured, and that leading and trailing edge samples be extracted from these

waveforms.

All three techniques presented above may be implemented with standard

power measurement devices, as they do not require unusually high specifica-

tions in order to be utilised. Whilst other more advanced techniques, such as

frequency analysis, may offer good alternatives for investigation; they require

specifications that exceed the abilities of the measurement device used in this

research (see Section 3.1.2), along with the majority of measurement devices

that would commonly be used in real-world household implementations.
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1.3.2 Appliances Utilised in Laboratory Experiment

The appliances utilised in the laboratory experiment, presented in Chapter

3, are all relatively fundamental household appliances. This includes appli-

ances with heating elements and DC motors, but excludes more complex

appliances, such as fluorescent lights, computer power supplies or washing

machines, that may either contain power shaping electronics, or exhibit more

than three operational states. The appliances included in the laboratory ex-

periments were selected such that the complexity of the measurements be

reduced, allowing for effective comparative evaluation of the three disaggre-

gation techniques. It should be noted that a real-world household would likely

contain multiple instances of some of the appliances utilised in this experi-

ment. For example, several lighting devices might be expected to be found

within one household. However, only one of each appliance is utilised in this

experiment. This is done to reduce complexity and to focus on comparative

evaluation of the techniques, rather than attempting to directly simulate a

real-world household.

1.3.3 Machine Learning

Machine learning techniques, such as Fuzzy Logic, Pattern Recognition and

Artificial Neural Networks, are commonly researched in the context of the

NILM field, where they are used to improve upon the performance of un-

derlying disaggregation techniques such as TLM, as discussed in Chapter

2. Whilst this is a valid area of research, it often neglects consideration of

the fundamental disaggregation approaches upon which the machine learn-

ing techniques are employed. Should a NILM technique with poor accuracy

be used as the underlying method of disaggregation, its limitations will ad-

versely affect the results returned by the machine learning technique built

upon it.

This research does not involve any machine learning techniques, or other
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similar logic based approaches. Rather, it is focussed upon evaluating three

fundamental approaches to total power measurement disaggregation, in order

to determine which of them is the most suitable for further development.

The conclusions of this research could thus be of value to any researchers in

the machine learning field looking to determine the best underlying NILM

approach to which to apply machine learning techniques.

1.3.4 Processing Platforms

Many NILM systems intended for installation in the field require that pro-

cessing be performed on embedded platforms that are physically integrated

into a single unit and may be used to disaggregate total power measurements

on site. Under such conditions, processing power and data storage capacity

become fundamental considerations. Thus any NILM system being designed

with these constraints in mind will be limited by the need to be compu-

tationally efficient. The post-processing approach followed in this research

allows for the disaggregation techniques under investigation to be evaluated

without consideration of this limitation.

Given the constantly accelerating evolution of embedded processing plat-

forms, computational feasibility is gradually becoming less of a consequence

for systems of this scale, opening the door for research conducted in post-

processing contexts to be directly applicable to the field. Where consider-

ations of processing power may be neglected, there exists more room for

techniques and concepts to be researched in a more pure and directly scien-

tific manner, as attempted within this research.

1.4 Expected Challenges

The disaggregation of total power measurements is not a trivial undertak-

ing, due to the nature of the systems that produce the measurements. The
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following list contains a summary of the expected challenges.

• Similarity Between Appliances: Many appliances, or combinations thereof,

either consume similar power levels, or present similar characteristic features

in power measurements. This makes it problematic to differentiate between

appliance activities, where the characteristic being used to make identifica-

tions is not significantly varied between separate appliances, or appliance

combinations. TLM, CPM and EEC are all subject to this consideration,

where their disaggregation accuracies will be directly affected by the level of

differentiation in power characteristics found between appliances.

• Variability in Power Levels: The power consumption levels expected

for certain appliances, or appliance combinations, may vary considerably

from measurement to measurement, depending on the conditions in the cir-

cuit being measured and the presence of noise. Certain appliances may also

possess hidden states that are not detected in individual measurements, as

their appearance is either subject to the operation of other appliances, or

is affected by external factors that were not present during individual mea-

surements. This inconsistency makes it difficult for NILM techniques using

manual training schemes, as discussed in Section 2.3.1, to make accurate

appliance state identifications. This includes TLM, CPM and EEC, all of

which rely on manual training approaches, as presented in Chapter 4.

• Combinatorial Approaches: Any NILM technique based upon the gen-

eration of appliance state combinations will be subject to a high degree of

difficulty when attempting to search that combination for potential matches

for measured levels. This is due to the large number of combinations that

may be generated from a small collection of appliances. For example, the

14 individual appliance states presented by the 8 appliances included in the

laboratory experiment can produce 2048 possible combinations of appliance

states, as per TLM. Taken in combination with the challenges mentioned in

both of the above points, it is highly challenging to find accurate matches

if some mitigation of the size of the combination is not implemented, as per

CPM.
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The impact of these challenges upon the accuracy of each of the three tech-

niques is presented and discussed in Chapter 5 and Appendix G.

1.5 Research Methodology Overview

Figure 1.1: Overview of the research methodology.

An overview of the research methodology is presented in Figure 1.1. The

NILM approaches and concepts most relevant to the research area covered

in this dissertation are presented in Chapter 2. In order to have data with

which to comparatively evaluate the three disaggregation techniques, total

power measurements are required. Whilst datasets containing total power

measurements from real-world households are available, these lack accompa-
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nying ground truth information and hence are not appropriate for making

accurate assessments of disaggregation accuracies. To obtain total power

measurements and corresponding ground truth data, a circuit containing

household appliances must be assembled under laboratory conditions. This

allows for individual and combined appliance measurements to be performed,

as discussed in Chapter 3.

Implementation of the disaggregation techniques is performed in a post-

processing context, using the MATLAB software package [3]. The mechanics

of each of the techniques is presented in full in Chapter 4, along with the

MATLAB code written for their implementation. Underlying all three of

the techniques are a number of basic measurements processing functions,

created to provide the framework upon which each of the NILM implemen-

tations are built. Included amongst the processing tasks performed by these

functions are the detection of appliance operational state change events and

the determination of steady state power levels.

The results obtained from implementing TLM, CPM and EEC on the total

power measurements are presented and discussed in Chapter 5 and Appendix

G. EEC is the most promising of the techniques and the one that should be

preferentially considered for further development; especially where a large

number of appliances are contained within the circuit being measured. Fur-

thermore, CPM provides a marked improvement upon the accuracy of TLM.

A future research methodology for producing extensive information-rich data

is presented in Chapter 6, along with a system for using previous identifi-

cations to improve EEC accuracy via the logical elimination of appliance

states.

1.6 Research Justification

In the current global and local climate, where the demand for electricity often

outstrips the supply, the management of residential power consumption is of
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paramount importance. Residents have only very limited means by which

to determine the per-appliance electricity consumption for their households.

The observation of appliance usage behavioural patterns used in conjunction

with electricity bills is not effective, especially given that many appliances do

not conform to expected power consumption patterns; either running back-

ground operations when seemingly inactive or becoming active at unknown

times. A feasible method for determining per-appliance power consumption

would offer value to residents of households through utility bill savings, and

to society through the efficient management of this scarce resource.

As discussed in Section 1.1, it is infeasible to place individual power moni-

tors on every appliance within a household. NILM techniques offer a superior

solution, where a potentially inexpensive device may be utilised to measure

and disaggregate measurements taken from a single point of installation. The

benefits that this stands to offer electricity consumers makes it worthwhile

to conduct further research and development in the NILM field. Total power

measurement disaggregation is difficult to achieve with high accuracy, espe-

cially in cases where a large number of appliances are contained within the

circuits being measured. However, NILM systems have to provide accurate

results in order to be of value, as electricity consumers are unlikely to adopt

such systems if the appliance identifications that they produce are question-

able. Due to the considerable challenges that must be overcome in order to

accurately disaggregate total power measurements, the NILM field remains

an area of ongoing research.

1.7 Organisation of Dissertation

This dissertation contains a further six chapters and seven appendices. The

content of these chapters and appendices are presented in summarised form

below.

Chapter 2: A review of the NILM field is presented, with an emphasis on
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steady state and transient signature analysis as relevant to the three dis-

aggregation techniques being comparatively evaluated within this research.

Alternative NILM approaches are also briefly discussed.

Chapter 3: The entire measurement process is presented. This includes

discussion of the appliances that constitute the electrical circuit assembled

for the experiment, the individual and combined appliance measurements

captured and the measuring device utilised.

Chapter 4: The conceptual mechanics and software implementations of TLM,

CPM and EEC are presented, along with the underlying measurements pro-

cessing functions that provide the basic platforms required for the implemen-

tation of the disaggregation techniques.

Chapter 5: The results of applying the three disaggregation techniques to

the measurements are presented and discussed. This includes disclosure of

the scoring methods used for each set of results and their effect on the com-

parative evaluations. A set of observations pertaining to the performance of

each technique is condensed out of the results analysis.

Chapter 6: Recommendations for future work in the same research area are

made. This includes the proposal of an improved methodology for the mea-

surement process, and the use of previous identifications to refine accuracy.

Chapter 7: The conclusion of the dissertation is presented. This includes

a brief overview of the research process, a summary of the results of the

investigation and the observations that they gave rise to, along with recom-

mendations for future research.

Appendix A: Real and reactive power plots that support both the individ-

ual and combined appliance measurements are presented.

Appendix B: The ground truth data that accompanies the combined mea-

surements is presented.

Appendix C: A selection of the MATLAB functions developed for the im-

plementation of the disaggregation techniques are presented.
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Appendix D: The complete set of results produced by applying TLM to

the combined measurements are presented.

Appendix E: The complete set of results produced by applying CPM to

the combined measurements are presented.

Appendix F: The complete set of results produced by applying EEC to the

combined measurements are presented.

Appendix G: Detailed analysis and discussion of the results contained in

Appendices D through F is conducted.
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Chapter 2

BACKGROUND

A brief overview of NILM is conducted, followed by an introduction to ap-

pliance signatures and their components. Basic steady-state signature disag-

gregation techniques are discussed, including TLM and the concepts of man-

ual and automatic training. Challenges facing TLM and other steady-state

techniques are presented. Transient signature disaggregation is discussed, in-

cluding the features which may constitute transient waveforms and the NILM

technique of direct transient feature classification. This is followed by brief

discussions of alternative NILM techniques and disaggregation datasets.

2.1 NILM Overview

A single measurement point, usually located where electricity enters a house-

hold from the outside grid, may be used in order to perform an aggregated

measurement of all power being consumed within a residence. NILM involves

the disaggregation of this total power measurement such that the individual
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operations of appliances contained within the household may be identified.

This approach to per appliance power consumption monitoring does not re-

quire any additional sensors or measurement equipment beyond the single

device used to capture the total power measurements. In comparison to al-

ternative approaches, such as the direct observation of the appliance usage

behaviour of residents and the installation of separate power monitors on all

appliances, NILM is both less intrusive in nature and more physically feasible

to implement [4].

The cost effectiveness of NILM systems, and their single point of installation,

allows for researchers to access a larger sample of households for the same cost

and labour than other methods. The non-intrusive nature of NILM helps to

minimise any observation biases that might otherwise affect the power con-

sumption behaviour of residents taking part in research experiments. Thus

the data provided by NILM systems has the potential to be more relevant

to real-world households than that gathered using other experimental ap-

proaches, and may cover a larger sample of households across a wider range

of socio-economic strata.

There are three main processes that must be enacted within any NILM sys-

tem [5]:

• Measurement: Power measurements must be performed at the chosen

point of installation.

• Event Detection: Important events, features and characteristics must be

detected and extracted from the power measurement.

• Identification: The known qualities of previously measured appliances

must be utilised in order to identify these events, features and characteristics

such that they may be associated with a particular appliance.

Whilst measurement and event detection are fundamental components of

any NILM technique, the main differences between NILM techniques are
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found in the identification phase; where alternative approaches may be used

to match any events, features or characteristics detected within the power

measurement to the operations of individual appliances.

2.2 Appliance Signatures

The various events, features and characteristics that may be found in total

power measurements make up appliance ‘signatures’ that may be attributed

to the operation of each of the appliances contained within a household. For

example, variations in power consumption (real and reactive) and current

harmonic characteristics are closely linked to the nature of the load, and this

information may be used to identify loads from out of the aggregated data [6].

There are two broad categories of signatures that may be considered, steady-

state and transient [7]. Steady-state signatures are constantly present in the

measurements whilst appliances are operational, whereas transient signatures

only appear for short durations; such as the transitions between appliance

operational states (e.g: when switching appliances between ‘on’ and ‘off’

states) [8]. When a signature has been extracted from a power measurement

it may be broken up into the following components, all of which can be used

for identification purposes [9], [10]:

• Levels: The steady-state power levels that exist between appliance opera-

tional state changes where no other features or events are found in the power

measurement.

• Edges: The edges of the signature, which are seen when the appliance

changes operational states. These may be step changes, or could come in

a variety of different shapes, depending on the internal electronics and the

physical operations of the appliance in question.

• Sequences: The sequence of power level changes observed between edges.

This indicates that an appliance is passing between a number of different
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states (e.g: on a washing machine; the wash, drain and spin cycles). With

some appliances these may vary with different iterations of usage. For exam-

ple, residents may have to choose between a variety of settings, or automatic

controls might respond to some form of feedback, such as temperature.

• Trends: Changes in power levels that are not edges between operational

state changes. Expected shapes include transient peaks, pulses, oscillations,

vibrations and slopes. They are distinct from edges in that they either don’t

clearly connect two steady-state power levels, or are of a significant duration

to represent more than a transition in operational state.

• Time: The time and date, as well as the duration, of the appearance of an

appliance signature in the power measurement. Many appliances have fixed

operational periods, which can aid in their identification. Furthermore, the

specific times at which appliances become operational can also offer clues

to assist in identifying their contribution to the total power measurement

(e.g: a large power consumption increase seen during cooking times could be

attributed to the activation of an oven).

• Electrical Circuit: Knowledge of which electrical circuit the particular

measurement comes from can assist in the identification process, provided

that it is known where in the household each appliance is installed. Unfortu-

nately this requires the installation of further sensors, one for each circuit on

the distribution board. The gathering of information on the installation loca-

tions of individual appliances and the use of multiple measurement points is

a violation of the underlying principles of NILM. Thus this factor would not

be included for consideration in a pure NILM system. Furthermore, many

appliances are regularly moved around to different locations within the house-

hold (e.g: hair-dryer), making the use of a predefined set of circuit-appliance

assignments problematic.

A variety of different techniques may be employed in order to extract these

components from total power measurements and make appliance identifica-

tions. Such techniques utilise either the steady-state or transient power char-
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acteristics of the appliances contained within the circuit being measured, the

basic principles of which are discussed in sections 2.3 and 2.4 respectively.

2.3 Steady-State Signature Disaggregation

The steady-state signature of an individual appliance is the pattern of its

steady-state property of interest (e.g: power consumption level) during ap-

pliance operation, be it for purely ‘on/off’, or multiple state appliances [11].

This includes periods of consistent operation and transitions between states,

the latter being identified via the presence of edges or ramps within the total

power measurement. The more distinct the transitions are, separating the

measured data into a series of easily distinguishable step change events, the

more reliably it may be determined which particular loads are present in the

total measurement at any point in time [12]. Steady-state events are far sim-

pler to capture than transients, as they are present in power measurements

for longer periods of time. Furthermore, they are intuitively additive, mak-

ing two overlapping signatures far easier to disaggregate than simultaneously

occurring transient features [2].

However, the use of steady-state signatures does not come without problems.

They can be difficult to distinguish in cases where they either overlap am-

biguously or change state in rapid succession, making disaggregation of the

total measurement virtually impossible [13]. Consequently, their use may

need to be supplemented with other techniques if an accurate disaggregation

solution is to be obtained.

2.3.1 Total Load Model (TLM)

The version of TLM discussed in this chapter is the most basic, concentrating

only on real power levels. Hart did develop TLM further, to include both real

and reactive power, as discussed in his 1989 and 1992 papers [8], [2]. However,
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the exclusive consideration of real power allows for this cornerstone of steady-

state approaches to be explored at a fundamental level. The technique is

primarily focussed on step changes in the total real power measurement,

which may be used to determine the combination of appliance operational

states responsible for each measured total power level. In order to simplify

the process, Hart originally considered only two states per appliance, limiting

all appliances to ‘on’ and ‘off’ modes and avoiding multi-state appliances.

Within any household being measured, each appliance will be wired in par-

allel to the incoming power bus as shown in Figure 2.1.

Figure 2.1: Sample household circuit layout with NILM system installation.

Due to this parallel configuration, the total power measurement is constituted

by the sum of the power consumed by all of the appliances connected within

the household. The total load model can be mathematically expressed as

shown in Equation 2.1 [2].

P (t) =
n∑
i=1

ai(t)Pi + e(t) (2.1)

Where:
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P (t) is the total power measured at any time t.

ai(t) is an n-component Boolean vector containing the ‘on/off’ state

(represented by 0 or 1) of each appliance at any time t.

Pi is the vector of the power consumed by each appliance when in the

‘on’ state.

e(t) is the error or noise present in the system at any time t.

From this model the operational state of every individual appliance in the

household may be estimated, given that its power consumption is known. In

order to ascertain this, the appliance state combination vector needs to be

populated. This vector is the combination of operational states that results

in |e(t)| being at a minimum, which can be expressed as shown in Equation

2.2 [2].

â(t) = argmina|P (t)−
n∑
i=1

aiPi| (2.2)

Where:

â(t) is the optimised, or ‘best-fit’, ‘on/off’ appliance state vector at any

time t.

P (t) is the total power measured at any time t.

ai is an n-component Boolean vector containing the ‘on/off’ state

(represented by 0 or 1) of each appliance.

Pi is the vector of the power consumed by each appliance when in the

‘on’ state.

n is the number of appliances included in the system.

To find where appliance states have changed, significant positive and negative

step changes within the total power measurement must be detected [8]. When

each new steady-state level is reached, the optimal state vector must be found

that satisfies Equation 2.2. This process allows for every step change in the

total power measurement to be assigned to a state switching event for one of

the appliances within the household, producing a time-line of appliance state
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transitions. In order to find the optimal vector after each switching event,

the power consumption levels of each appliance state must be known. It is

not sufficient to rely upon rated power values, as these are given only in terms

of real power and are often approximations. Thus new measurements must

be made in the context of the installed NILM system, whereby the effect

of each appliance state on the total power measurement may be recorded.

This process is known as ‘training’, and may be performed via manual or

automatic methods.

Manual Training

Manual training requires that all of the appliances within the circuit being

measured are individually activated and deactivated, so that the effects of the

state transitions of each appliance on the measured total power measurement

may be observed and recorded. Due to error and noise (e(t)), the step changes

observed when repeatedly switching the same appliance ‘on’ may not be

the same for each iteration. Thus statistical clustering analysis techniques

may be applied to the results in order to identify distinct regions on the

complex power plane that conform to each of the appliances connected to

the circuit. From these regions, a lookup table can be generated that allows

for identification of appliance state changes during normal operation of the

measurement system [8]. Whilst this process violates the NILM philosophy

by virtue of being fundamentally intrusive, it is a once-off operation that

could be considered to be part of the installation process. Once completed,

the system can begin performing its function without further intrusions being

required.

Automatic Training

Under the automatic training scheme proposed by Hart, the system is in-

stalled and measurements are taken without performing any sort of prepara-

tory process [2]. Once data has been collected over a sufficient period of
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time for all appliances within the household to have been operated, statis-

tical methods are used to identify steady-states. These steady-states must

then be assigned to a particular appliance by determining which load class or

consumption level best fits its power characteristics. Where complex power

is considered, certain appliances include power factor correcting elements

(e.g: fluorescent bulb) that are incorporated in order to reduce their reac-

tive power. Since this makes them appear purely resistive, it could lead to

them being classified incorrectly [14]. The time at which each steady-state is

measured may also be factored into the identification process. For example,

a kettle would likely not be utilised outside of waking hours, yet a geyser

might be active intermittently over a 24 hour period. Similarly, duty cycle

data may be used to aid in the discrimination process, as many appliances

switch ‘on’ and ‘off’ periodically in order to control some factor, such as tem-

perature [8]. Using such information, of which the power consumption level

is paramount, the initial automatic training set of data may be employed to

build a lookup table for appliance identifications during normal operation.

Additional information notwithstanding, the automatic training approach is

still likely to lead to considerable levels of identification inaccuracy where

appliances with similar reactance, power magnitude and timing characteris-

tics are concerned. This expected error must be balanced against the non-

intrusive nature of the method when deciding whether to adopt it ahead

of the manual alternative. Certainly, the automatic approach embodies the

philosophy of NILM far more closely and this alone may be reason enough

to pursue it preferentially. The automatic training approach described in the

1992 paper by Hart is only partially automatic, as it requires a manual anal-

ysis of the initial data in order to populate the lookup table [2]. However,

the potential does exist to automate this process via the use of predefined

classes, which would render it fully automatic in nature. The remaining

problem with this training approach is that residents may not utilise all of

their appliances within the initial period. This would mean that those ap-

pliances would not be included when attempting to optimise the appliance

state vector, introducing further error into the results.
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2.3.2 TLM Shortcomings

TLM features a number of shortcomings that impede its ability to provide

an effective solution for real-world applications, as listed below. These same

shortcomings also affect other steady-state techniques that operate upon the

same underlying principles as TLM, including CPM.

• Similar Power Consumption Levels

• Reliance on Steady-States

• Optimisation Processing

• Addition of Appliances

• ‘Best Fit’ Approach

• Multiple Appliance States

• Appliance States Transitions

• Continuously Variable Appliances

• Simultaneous Events

• Negative Real Power

• Non-Linearity

Similar Power Consumption Levels

Different loads may exhibit almost identical power consumption levels, re-

gardless of their load class and function. This makes them difficult to distin-

guish from one another, especially in the context of noise within the circuit

being measured. Furthermore, an appliance may consume a certain amount

of power under one set of conditions in the circuit, but a slightly differ-

ent amount under another, contributing to the difficulty. As the number of

appliances with similar power consumption levels increases, so the task of

distinguishing between them becomes more challenging.
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Reliance on Steady-States

TLM relies on the existence of steady-state periods between state switching

events, where appliance behaviour is constant and no other appliances un-

dergo transitions. However, it is not a given that such periods will be found

between every appliance state change event. This is especially so when a large

number of appliances are contained within the household, bearing in mind

that their power consumption behaviour may include ramps, ripples, oscil-

lations and other features that reduce the likelihood of experiencing steady-

state periods. Furthermore, some appliances can take long periods to make

transitions, in the order of seconds or minutes (e.g: a large fan speeding up

to final velocity), whereas others may never reach a steady-state at all (e.g:

a variable speed drive).

Optimisation Processing

The combinatorial optimisation problem expressed by the total load model

may only be solved if n is small, otherwise the amount of processing required

to test all combinations is impractical. Hart recommends the use of heuristic

algorithms for this application [2]. However, whilst this approach may be

practical in the context of a manual training scenario where the exact number

of appliances is known, it is more problematic under the automatic training

paradigm with unknown n. In addition, should multiple appliance states

(more than binary) be considered, the processing requirements are further

increased.

Addition of Appliances

Once the training approach is completed, be it either manual or automatic,

the operation of any new appliances that are added into the household will be

interpreted by the optimisation algorithm to be a combination of other known
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appliances [2]. Given that this is a feasible event in real-world households,

the inability of the system to ‘learn’ any further appliances without manual

intervention is problematic and could introduce unacceptable levels of error

into the results.

‘Best Fit’ Approach

A further issue concerns the optimisation technique used to find the ‘best

fit’ appliance state vector. In many cases this method can lead to unrealistic

results, as illustrated in the following example taken from the 1992 paper by

Hart [2]:

In a household that contains four appliances, at time t the power (considering

only real power in this example) for each appliance is:

P1 = 100W P3 = 300W

P2 = 200W P4 = 401W

For a total power measurement value of 500W, this gives a best fit of: â(t) =

[0, 1, 1, 0]

However, if the power has changed at time t+ ∆t to 501W, then the best fit

becomes: â(t+ ∆t) = [1, 0, 0, 1]

This implies that there has been a simultaneous change in the operational

state of all the appliances, which is improbable. Rather, the change is more

likely to be expressed by some noise, in this case: e(t+ ∆t) = 1

In order to minimise the number of erroneous assignments made in this

fashion, thresholds need to be set such that the most probable appliance

combination is not recalculated unless the total power change exceeds the

maximum expected noise level. This approach compensates for noise related

errors without resulting in incorrect appliance state determinations, provided

that the noise remains within the predefined thresholds. However, the use of
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thresholds may lead to the exclusion of appliances that only consume very

low levels of power (e.g: a cellphone charger) from the list of appliances that

the system can identify.

Multiple Appliance States

Many appliances have multiple operational states, not just ‘on’ and ‘off’

(e.g: a washing machine), for which this disaggregation method does not

cater. Each of the multiple operational modes is characterised by a partic-

ular level of power consumption, thus there are many more potential ap-

pliance combinations that could accompany every steady-state total power

level than catered for by the binary (‘on/off’) approach. If all of the possible

appliance states are included, the resulting number of potential combinations

may make the a(t) vector so long that it may not be feasible to process it.

Furthermore, the probability of erroneous conclusions being reached by the

algorithm when considering so many possibilities becomes too high for the

system to be effective.

Appliance State Transitions

Not only do many appliances have multiple operational states, but transi-

tional stages may also be found to occur between steady-state conditions.

For example, Figure 2.2 shows the power consumption for a purely resistive

toaster that switches between three heat settings; warm (low heat), crispy

(medium heat) and burnt (high heat).

During such transitional stages, new appliance state vector combinations

will be calculated every time the power level exceeds the threshold set for

the identification of appliance state transitions. However, the appliance in

question is still undergoing a transition at this point, not yet having reached

the new steady-state. This results in a series of erroneous appliance state

combinations being assigned to that transitional section of the measurement.
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Figure 2.2: Steady-state power consumption and state transitions for a
toaster with three settings.

Continuously Variable Appliances

Continuously variable appliances never settle into distinct states, except

when ‘off’, and thus cannot be catered for by the model. As the power con-

sumption levels for such appliances never reach a steady-state, this causes

the same problems experienced with state transitions. Whenever a continu-

ously variable appliance is introduced into a circuit, its operation increases

the error levels considerably. Given that many households contain these sorts

of appliances (e.g: a power drill), the inability of the model to compensate

for their use is problematic.

Simultaneous Events

If two or more appliances are activated simultaneously, it could appear as

if a single appliance with a larger power consumption level has become op-

erational. The system may not be able to discern between the two loads

and could instead ascribe the event to a single appliance possessing the sum
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of the power consumption of the actual appliances involved [14]. In or-

der to minimise this error, there should be a significant steady-state power

period between appliance state transitions that allows for individual appli-

ance activation events to be distinguished. The minimum length of such a

period may be determined using statistical algorithms, filtering, differenti-

ating or peak detection [5]. The sampling rate used to perform the total

power measurement will influence the probability of simultaneously events

being found, where the higher the sampling rate, the lower the probability of

events appearing to be simultaneous. As sampling rates approach infinitely

high speeds, so the probability of encountering simultaneous events tends

towards zero.

Negative Real Power

An intrinsic assumption of the total load model is that the operating real

power consumption of every appliance is never negative, i.e: that no appli-

ances generate power [2]. Whilst this may seem to be a reasonable assump-

tion to adopt for households, it does not hold in cases where renewable energy

sources are included in the system. Recent years have seen increased inter-

est in renewable energy and microgrid implementations within households,

posing a further challenge to the real-world applicability of TLM.

Non-Linearity

TLM is theoretically only applicable to linear appliances. Whilst it may be

generalised for non-linear appliances, as shown in Equation 2.3, Hart found

that the linear version of the model (with β = 2) still produced the best

results in field trials [2].

Pnorm(t) =

(
230

V (t)

)β
P (t) (2.3)
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Where:

β is the order of linearity (e.g: β = 2 is linear).

V (t) is the RMS voltage measured at any time t.

P (t) is the total power measured at any time t.

Pnorm(t) is the normalised power at any time t.

If separate exponents are included for the real and reactive components of

the load, the normalised power signatures can be statistically clustered such

that each of the resulting clusters may be identified based upon its real and

reactive power consumption, as discussed in Section 2.3.1 [2].

This concludes the discussion of TLM shortcomings, all which affect steady-

state techniques based upon similar principles as TLM, including CPM.

None of the appliances incorporated into the laboratory experiment generate

power, thus the negative power (Section 2.3.2) shortcoming is not applicable

to this research. Furthermore, the post-processing approach utilised for the

implementation of TLM and CPM also makes the optimisation processing

issue (Section 2.3.2) non applicable, as discussed in Section 1.3.4. However,

these two shortcomings remain relevant to the discussion of TLM, CPM, and

other similar steady-state techniques, as they may be present in other NILM

implementations.

2.3.3 Steady-State Event Detection

Rapid changes in the variables of interest (e.g: power consumption) produce

defined edges in the measurement, which may be taken to denote appliance

state transitions. Before each edge may be classified as representative of a

state transition event, it must be ascertained whether it is truly a waveform

edge, rather than a peak in the noise. In order to perform statistically verified

event detection, the distribution of the most recent measurements must be

compared to that of those captured in the previous iteration of sampling [15].

Alternatively, event detection thresholds may be used in order to disregard
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any steady-state level change events that fall below selected minimum values.

This prevents any fluctuations occurring beneath these levels from being

treated as events, minimising the impact of noise on the effectiveness of

the system. Threshold values may be chosen either nominally (based on

system expectations), or during the course of the training process. This

threshold based approach to event detection does pose a problem with regard

to low power consumption appliances (e.g: a cellphone charger), which may

fall below the threshold values and thus be excluded from the possibility of

identification.

The Generalised Likelihood Ratio (GLR) is sometimes used to identify edges

in steady-state time-series data, especially under conditions of noise and other

distortions [16]. GLR algorithms calculate a decision statistic that utilises

probability distributions applied to the data recorded both before and after

a potential change in mean (i.e: across a window), in order to rule whether

or not a state transition actually occurred [16].

This concludes the discussion of steady-state signature disaggregation tech-

niques as they apply to the research presented in this dissertation. A similar

discussion is conducted for transient signatures techniques in Section 2.4 be-

low.

2.4 Transient Signature Disaggregation

The transient behaviour of loads may be defined as the effect that their oper-

ation has on the electrical waveforms that pass through them. Peculiarities

of the design and operations of appliances, as well as the electrical compo-

nents that they contain, introduce distinguishing features into the waveforms

which may be used to identify the operation of individual appliances [17]. For

example, the transients produced when a laptop computer is activated will

be significantly shaped by the charging of the capacitors in its power sup-

ply, whereas a heating element with no added electronic components will
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introduce a different set of features into power measurements.

Transients may vary between measurements, and are affected by the point

in the voltage cycle where appliance state changes occur, making them chal-

lenging to analyse [2]. Switches, both mechanical and electromechanical, are

a common source of transients due to the physical manner in which their con-

tacts interact during opening and closing operations. Wherever switches are

used, they have the potential to introduce bouncing, rocking, sliding or other

deformations into the power measurement [18]. Given that most appliance

operational state changes will be accompanied by switching of some nature,

the detection of transients can provide valuable information to aide in the

identification of individual appliances and their various state transitions.

Whilst transient signatures are more difficult to detect than steady-state

alternatives, and may provide information that is less directly relevant to

per appliance power consumption, they can be very useful when used in

conjunction with steady-state signature techniques [11]. Furthermore, some

appliances continuously produce transient features during the course of their

normal operation, by which they may be identified (e.g: the commutator of

a motor) [18].

2.4.1 Transient Features

Transients may be characterised according to their size, duration, time con-

stants and parametric variables. Four categories of transients that may be

observed in power measurements are identified by Hart in his 1992 paper, as

listed below [2].

• Ripple, Ramp and Edge

• Short Variable

• Starting Plateau

• Starting Peak
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Ripple, Ramp and Edge

The current waveforms produced when appliances are activated may contain

a combination of ramps, ripples and other features that precede steady-state

operation [12]. These features can be processed into regions of ramps (slopes),

ripples and edges, such as those shown in Figure 2.3. This allows for steady-

state characteristics to be ignored and the series of transient features used

to identify the unknown appliance by comparing them against a library of

exemplars.

Figure 2.3: Original and processed power waveform showing edge and ramp
features.

The peak of the leading edge of the appliance waveform is usually higher

than the steady-state level that follows. Thus, if edge, ripple and ramp

transients are extracted from power measurements, they may be processed
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such that they match up intuitively, producing a series of features that return

the system to the original level of power consumption, as shown in Figure

2.3 [19]. Different load classes exhibit particular operational trends which

are reflected in the features constituting the processed appliance waveform.

Where these trends are identified, they may be used to classify the appliances

that produced them. In many cases the specific identity of the responsible

appliance may be ascertained.

For example, consider an appliance that winds a spring slowly. As the tension

increases, so does the current drawn by the motor. Thus a gradual ramp in

power consumption is seen over the winding period, providing insight as to

the nature of the appliance. Hart uses a washing machine to illustrate how

transient feature sequences can offer clues to the identity of the appliances

that produce them [2]:

• The appliance creates a ripple during the agitation process, due to the

reversed movements of the drum required for the washing action.

• Ramps and edges would be witnessed as the various motors within the

machine are activated, such as the drum and pump motors.

• An ascending ramp may occur during filling cycles, where a head of water

accumulates above the pump, requiring more pressure as the process contin-

ues.

• The sequence of these features should be consistent with the cycles followed

by the machine, such as the wash, drain and spin cycles.

Short Variable

Short variable transients, with periods that are complete within one or two

cycles of the voltage, are found to occur across the appliance classes. They in-

clude surges and decays in current, which accompany state switching events,

and can be found to occur in any number of appliances due to the particulars
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of their internal circuitry. An example would be the short peaks, or surges,

that result from the heating up of incandescent light bulb filaments when

initially switched on. Many appliances, regardless of their load class, contain

reactive electronic components that produce distinctive short variable tran-

sients when switching events occur. These can provide useful signatures for

identifying appliance activities in the total power measurements.

Starting Plateau

Appliances containing motors often posses a coil which provides starting

torque, but is then switched ‘off’ once the motor is under way. This produces

a transient with a flat character, a plateau, that corresponds to the power

consumed by the starting coil. This power level rapidly steps down to the

steady-state power level once the motor has entered normal operation.

Starting Peak

Other motor variants draw increasing levels of power, either in discrete incre-

ments or smoother curves, as the shaft overcomes inertia and begins rotation.

Once the desired speed has been reached, power consumption decays expo-

nentially as the motor enters normal operation. This behaviour is reflected

in power measurements as a smooth or stepped peak that indicates that such

an appliance has initiated operation or changed state, requiring additional

torque.

This concludes the discussion of transient features. Such features have partic-

ular bearing on EEC, and any disaggregation techniques which use transient

events to identify appliance operations within total power measurements.

Once transient features have been extracted from the measurements, they

may be identified via comparison to libraries of individual appliance exem-

plars, as discussed in Section 2.4.2 below.
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2.4.2 Direct Transient Feature Comparison

Transient features may be identified by means of direct comparison, where

their curves are matched against a library of exemplars on a point-by-point

basis. When selecting sampling rates for use with direct transient feature

comparison, the primary consideration is the level of detail to be reproduced

in the measurements; where higher sampling rates will capture greater levels

of detail. However, higher sampling rates have greater data processing and

storage requirements, and thus a balance of sampling rates and data specifi-

cations must be found that is most appropriate for each NILM system being

developed. For direct transient feature comparison to produce accurate re-

sults, the individual appliances in the circuit being disaggregated must have

distinctive transient patterns, so that they may be distinguishable from one

another. A large and complex database of exemplars is required, given that

transient features can be quite varied and thus need a substantial library in

order to be accurately matched [13]. However, this does offer the advantage

of allowing individual appliances to be more precisely identified than may be

done under many other classification schemes, where signatures are merely

assigned to general load classes.

There are three main methods by which transients are commonly classified

or identified. In the first approach, every point on the measured transient

curve is directly matched against a pre-compiled database until the ‘best

fit’ exemplar waveform is found. The second method is more sophisticated,

involving the comparison of each measured transient to the most complicated

exemplars before proceeding to the simpler alternatives. This is done to

ensure that a series of small sample waveforms from the library are not

matched to separate sections of a measured transient, when the whole curve

might be better matched to a single exemplar. By proceeding in this manner,

a single transient event may be prevented from being erroneously classified as

a series of distinct appliance state transitions [6], [7]. The third approach is

to evaluate all of the exemplars in the database and short-list any that match

sections of the measured transient. Once this process has been completed,
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various combinations of the short-listed library samples can be evaluated

against one another for best-fit to the measured feature [6], [7]. This ensures

that sufficient classification possibilities are considered, rather than having

the algorithm settle on the first acceptable match found. Whilst the second

and third approaches are more exhaustive than the first approach, they have

the disadvantage of requiring greater computational resources, which makes

them less feasible to implement in real-world NILM systems.

The actual timing of transient events can prove problematic for classifica-

tion techniques, especially where significant feature overlaps occur, as co-

incident transient waveforms are difficult to distinguish [6]. In their 2003

paper, Laughman et al present a method for separating overlapping tran-

sients; each library exemplar is cropped into multiple sections which are

individually matched to the incoming data, where time shifts, offsets and

gains are calculated using the least squares criterion [17]. This is a sensible

approach, given that the overlapping waveforms are an accumulation of in-

dividual curve sections. However, the number of possible combinations that

must be considered in order to determine the composition of each waveform

introduces error into the classification results. In addition, such routines

are computationally expensive, and thus problematic for real-world NILM

system implementations.

2.4.3 Transient Event Detection

In comparison to the detection of steady-states, transients are easy to detect

given that they are events or features in power measurements. Edges are

the primary transient of interest in terms of event detection, as they are

commonly found to accompany appliance state transitions. Edges may be

easily detected, given that they are rapid changes in power consumption that

appear as near vertical features in the total power measurement, followed

either by a new steady-state power level or other transient feature.

Ramps are more complex to detect, as they must be approximated from the
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conclusion of an edge until a stable steady-state power region is reached.

Ramps may have extended durations (e.g: a gradually accelerating motor),

making their detection challenging in cases where other state transitions or

transient features occur within the same period, introducing steps or gradient

changes into the slope. Transient event detection algorithms need to be

designed such that they do not misidentify ramps as a series of other features.

Where edge detection is employed to supplement transient waveform extrac-

tion, it is possible to distinguish appliance state-change transients from other

features in the power measurement. This can prove advantageous, given that

the power transients that accompany appliance state transitions represent the

expected nature of the appliances that produced them, and thus are more

easily matched or analysed [20]. Such an approach also reduces both the

required size of the exemplar library and the computational burden posed by

the classification process.

2.5 Other NILM Approaches

Many disaggregation techniques have been used within the NILM field. A

selection of techniques that have not been covered earlier in this chapter

are briefly presented below. Pure classification processing approaches, such

as Statistical Clustering, Artificial Neural Networks, Nearest Neighbour and

Fuzzy Logic techniques are not included in this list.

Higher Harmonics: Higher harmonics are generated by distortions, non-

linearities or power electronics contained within loads. The presence of higher

harmonics in the total power measurement can provide insight into which ap-

pliances are operational, as the distribution of harmonics may be associated

with particular load classes or specific appliances [17]. Higher harmonics are

found by decomposing power measurements into their frequency components

using techniques such as Fourier and Wavelets Transforms.
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Feature Recognition: Various current waveform factors can be calculated

from transients, providing a set of parameters that allow the total power

measurement to be compared to individual appliance exemplars. The factors

of interest may include peak, average and RMS current, crest and form factors

and peak to average ratios [21].

Instantaneous Admittance Waveforms (IAW): Appliances are typically

connected into household circuits in parallel, making their admittances ad-

ditive in terms of the total measurement. Individual appliance IAW may be

differentiated by the oscillations, peaks and distortions that they contain,

allowing for identification of the appliances that generate them [22].

Phase Shift: The degree of inductance or capacitance contained within a

load is expressed by the phase shift that is found in the power measurement,

where positive and negative shifts indicate inductive and capacitive reac-

tances respectively [23]. This information may be used to identify appliances

based on prior knowledge of their characteristics.

Eigenvalue Analysis: If sections of the measured total power data are ar-

ranged in matrix form, eigenvalues may be found via singular value decompo-

sition [24]. Every edge or steady-state in the power measurement, depending

on the disaggregation approach being applied, may thus produce an eigen-

value that can be used to associate it with a particular appliance based on

values captured during manual training.

Pattern Recognition: The shape of the variations in steady-state power

levels resulting from the operation of individual appliances produce patterns

within the total power measurement [11], [25]. Pattern recognition techniques

may be used to extract these patterns from the total power measurement,

indicating the presence of whichever appliance is associated with the pattern

detected.

VI Trajectories: Symmetrical ‘trajectories’ are produced by plotting in-

stantaneous current and voltage measurements captured during the opera-

tion of an appliance. Various parameters of the shape of each trajectory
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contain information that may be used to describe the nature of the load be-

ing measured, providing a means by which appliance identifications may be

made [26].

For each of the techniques presented above, the electrical characteristic of

interest is affected by the simultaneous operation of appliances. This results

in the same combinatorial problems faced by TLM and CPM, and thus the

additional techniques offer no clear advantage when used alone. However, if

any of these approaches were to be implemented in combination with TPM

and CPM, benefit might be gained via the addition of layers of information

which could supplement the combinatorial optimisation process.

2.6 Basic Load Classes

A number of basic load classes may be defined for household appliances,

based on their power consumption behaviour, and may be useful for aiding

in the identification of appliance operations within total power measurements

[27], [10].

Resistive: Appliances that are purely resistive, e.g: kettle. These are char-

acterised by no switch-on transient (or a very short transient, smaller than

the 50Hz period of the current signal) and no harmonic content contained

within the current.

Pump: Appliances containing electric motors that drive a pump, e.g: wash-

ing machine. Such devices are characterised by substantial reactive power,

long switch-on transients and odd-numbered harmonic currents.

Motor-Driven: Appliances containing electric motors that are not being

used to drive pumps, e.g: drill. These feature smaller turn-on transients

than the pump class.
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Electronically Fed: Appliances that operate at a low level of power con-

sumption, e.g: television. Such devices are characterised by short, high-

amplitude switch-on transients and contain many harmonic components within

the current.

Electronic Power Control: Appliances whose operation is electronically

controlled in order to operate as desired, e.g: halogen lights. Their char-

acteristics often vary with the power level at which the appliance operates,

making them difficult to consolidate within a single class.

Fluorescent Lights: Fluorescent light bulbs. These are characterised by

a long two-step switch-on transient, a very high amplitude third harmonic

current and a significant phase shift between the voltage and current.

Another set of categories based on a slightly different set of behavioural

aspects may also be considered [27]:

Permanent: Appliances that are constantly on, e.g: alarm systems.

On/Off: Appliances that feature only two power consumption states, namely

’on’ and ’off’ with minimal features or events occurring between the state

transitions, e.g: toaster (similar to resistive class above).

Finite State: Appliances that pass through more than a single state of

power consumption during operation, e.g: washing machine (wash, drain

and spin).

Continuously Variable: Appliances that feature variable power consump-

tion that does not change in discrete steps, e.g: drill.

These categories are useful for performing the classification of measured sig-

nals, where each event or feature within the data may be assigned to one of

the above classes based upon its characteristics.
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2.7 Disaggregation Datasets

A number of household electricity consumption datasets exist that may be

used in preference to the gathering of unique data via an experimental pro-

cedure. A few key datasets pertaining to the research area covered in this

dissertation are presented below, along with discussion of their drawbacks

in the context of this research, providing justification for the measurement

process discussed in Chapter 3.

BLUED: The Building-Level fUlly-labelled dataset for Electricity Disaggre-

gation (BLUED) consists of aggregated voltage and current measurements

from a single domestic household, sampled at 12kHz over the period of a

week [28]. The operational state transitions of each appliance are recorded

individually via the use of plug-level meters, environmental sensors and cir-

cuit panel meters. The inclusion of this ground truth data should make the

BLUED dataset valuable for the effective evaluation of total power disaggre-

gation techniques. However, the ground truth data was only collected at an

estimated 95% level of accuracy, due to incorrect circuit tracing, appliance

relocations and appliance additions during the experiment. Furthermore, ap-

proximately 25% of the appliances in the household did not register events

due to low power consumption or short operational durations [28]. These in-

accuracies limit the value of the dataset significantly, especially in the context

of the research presented in this dissertation, where absolute ground truth

data is required for the accurate assessment of all appliance identifications

performed.

REDD: The Reference Energy Disaggregation Dataset (REDD) contains

high frequency total current and voltage measurements from six households

sampled at 15kHz over a period of several months, with an inventory of ap-

pliances included for each residence [29]. Whilst this is a fantastic resource

for testing disaggregation techniques, it does not allow for the effective evalu-

ation of identification accuracies as no ground truth data is incorporated into

the dataset. Low frequency measurements sampled at 1Hz from 16 different
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locations within each household provide an additional layer of information to

assist in the disaggregation process. However, appliances are combined into

vague groupings across these 16 measurement points (e.g: ‘lighting’, ‘miscel-

laneous’ and ‘kitchen outlets’), making it difficult to use them to approximate

ground truth data. If the low frequency measurements were recorded at ev-

ery individual appliance within the household, as per direct per-appliance

monitoring, the dataset would be more useful for total power disaggregation

technique evaluations.

AMPDS: The Almanac of Minutely Power Dataset (AMPDS) consists of

energy consumption measurements taken over the period of a year in a sin-

gle house, producing data that includes electricity, gas and water usage [30].

Whilst this is of some potential interest due to the combination of electrical

power and other forms of energy that it contains, the low frequency of sam-

pling (measurements taken once per minute) makes it inappropriate for use

in the majority of NILM research. Certainly, the dataset is not applicable

to the techniques investigated in this dissertation, especially as it lacks any

form of accompanying ground truth data.

The use of a dataset compiled under real-world household conditions could be

advantageous, whether used in combination with the laboratory experiment

conducted in this research, or as the only source of measurements. Unfortu-

nately, none of the datasets currently available meet the data requirements

of this research, and are not appropriate for evaluating the accuracy of disag-

gregation techniques as they do not include accurate ground truth data. This

highlights the need for high quality total power data measured from within a

real-world household, with accompanying 100% accurate ground truth data.

This concludes the literature review and discussion of the NILM field as it

pertains to the research area. The measurements process, including the labo-

ratory experiment and the individual and combined appliance measurements

process, are presented in Chapter 3.
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Chapter 3

LABORATORY

MEASUREMENTS

An overview of the measurement process is conducted, including presentation

of the laboratory experiment. The device used to make the measurements

is discussed, along with the electrical characteristics recorded, the choice of

sampling and calculation rates and the normalisation of the resulting output.

The indivual and combined appliance measurements are presented and dis-

cussed.

3.1 Measurements Overview

A series of measurements is necessary to generate total power measurements,

and corresponding ground truth observations, for the implementation and

comparative evaluation of TLM, CPM and EEC. Individual appliance mea-

surements must be taken, from which libraries of exemplars can be compiled
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for manual training. Combined measurements must also be taken, where

appliances are operated in various combinations and sequences, creating to-

tal power measurements for the implementation of the disaggregation tech-

niques.

To perform these measurements, eight common household appliances were

assembled in the laboratory, namely; a toaster, microwave oven, sandwich

maker, kettle, refrigerator, lamp, heater and fan. These appliances were con-

nected to a multi-plug fed directly from the laboratory mains at the national

standard of 230V and 50Hz. A single power measurement device was in-

stalled between the multi-plug and the wall socket, such that total power

could be measured in accordance with standard NILM practice. A visual

overview of the experimental setup is presented in Figure 3.1.

Figure 3.1: Overview of laboratory experiment.

This setup allows for measurements to be made in accordance with 100%

accurate ground truth data, such that the accuracy of each technique can

be properly assessed. The electrical circuit to which the laboratory exper-

iment multi-plug was connected did not offer any isolation from the effects

of other equipment operating within the building, or from variations of the
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national grid. Whilst the power supplied by the national utility does fluctu-

ate slightly in terms of voltage and frequency, initial measurements captured

featured a minimal degree of noise and thus the electrical supply was deemed

appropriate for the purposes of the experiment.

3.1.1 Measurements Terminology

The following terminology is used to describe the measurements throughout

the remainder of the dissertation,as listed below and illustrated in Figure 3.2.

Figure 3.2: Measurements terminology presented in the context of an appli-
ance waveform.

Positive Edge: The leading edge of the waveform, accompanied by a rapid

positive change in measured power levels, where an event is detected in the

total power measurement.

Negative Edge: The trailing edge of the waveform, accompanied by a rapid

negative change in measured power levels, where an event is detected in the

total power measurement.

Null State: A steady-state real power consumption level of approximately

0W, or 0VAR for reactive power, where no appliances are active.
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The lengths of the positive and negative waveform edges, or the number of

data points for which they extend away from the event edges in the power

measurements, are determined by the parameters utilised for sample extrac-

tion, as discussed in Section 4.5.1.

3.1.2 Measurement Device and Sample Rate

The measurements were performed using a Yokogawa CW240 power meter,

capable of recording RMS values at up to per-cycle speeds for a 50Hz electri-

cal system. This device was installed between the laboratory wall socket and

multi-plug, as shown in Figure 3.1, such that the total power consumed by

the individual and combined operation of all the appliances could be mea-

sured. The power meter measured the current, voltage and power factor, in

addition to the real, reactive and apparent power at the measurement point.

Of these values, the real and reactive power are the main measurements of

interest for TLM, CPM and EEC.

Many NILM applications feature lower sampling rates than used in this re-

search, with RMS values commonly reported at 1Hz (or per-second). This

requires a higher sampling rate (above 1Hz) for the capture of the instan-

taneous voltage and current measurements, from which the RMS values are

calculated. This use of a high RMS reporting rate, and hence an even higher

sampling rate, allows for transients in the power waveform to be captured

in greater detail than possible at lower rates. For EEC, transient features

accompanying state transitions need to be captured in as much detail as

possible. High sample rates are not problematic for TLM and CPM, pro-

vided that steady-states in the measurement may still be identified accu-

rately. Thus the power meter was set to report RMS values at per-cycle

intervals, as illustrated in Figure 3.3.

The Yokogawa CW240 samples the instantaneous voltage and current signals

at 128 samples per AC cycle, or 6.4kHz, using an ADC with a 16 bit resolu-

tion, as illustrated in Figure 3.3 [31]. The per-cycle RMS voltage and current
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Figure 3.3: Relationship between the sampling rate and the calculated RMS
measurements.

values reported by the measurement device are calculated from these sam-

ples, as shown in Equations 3.1 and 3.2, performing the required integrations

at the end of each cycle. The length of a cycle is not held to a fixed value,

but rather constantly adjusted to match the true frequency by monitoring

zero crossings of the voltage waveform. This is preferable to using a fixed

frequency value, which can lead to aliasing errors affecting the accuracy of

the RMS values reported.

Vrms =

√
1

T

∫ T

0

v(t)2dt =

√√√√ 1

T

T∑
t=0

v(t)2 (3.1)
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Irms =

√
1

T

∫ T

0

i(t)2dt =

√√√√ 1

T

T∑
t=0

i(t)2 (3.2)

Where:

Vrms and Irms are RMS voltage and current respectively.

v(t) and i(t) are the instantaneous voltage and current measurements.

T is the total number of instantaneous measurements that make up a

single cycle of the AC waveform.

A combination of RMS and instantaneous values are utilised to calculate the

real and apparent power values, as shown in Equations 3.3 and 3.4. Reactive

power is calculated using real and apparent power, according to the power

triangle, as shown in Equation 3.5. This is a commonly employed approach

for accurately measuring the absolute value of reactive power, which requires

that polarity be determined separately using Equation 3.6.

P =
1

T

∫ T

0

{v(t)× i(t)}dt =
1

T

T∑
t=0

{v(t)× i(t)} (3.3)

S = Vrms × Irms (3.4)

Q =
√
S2 − P 2 (3.5)

Q =
1

T

∫ T

0

{v(t)× i(t+
T

4
)}dt =

1

T

T∑
t=0

{v(t)× i(t+
T

4
)} (3.6)

Where:
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P , Q and S are real, reactive and apparent RMS power respectively.

Vrms and Irms are RMS voltage and current respectively.

v(t) and i(t) are the instantaneous voltage and current measurements.

T is the total number of instantaneous measurements that make up a

single cycle of the AC waveform.

The alternative reactive power calculation shown in Equation 3.6 is less accu-

rate than Equation 3.5, but does return the polarity with sufficient accuracy

for it to be assigned to the reactive power value obtained from the power

triangle approach.

3.1.3 Normalisation of Measurements

The voltages provided by power utilities are not necessarily constant in value,

as is confirmed by the voltages measured in the laboratory experiment. In

South Africa, the voltage is allowed to fluctuate within a range 10% to either

side of the declared 230V level [32], [33]. These variations are aggravated

by the operation of loads connected at other points within the electrical net-

work, which can cause drops in voltage when switching events occur [34].

As the instantaneous voltage measurements affect the calculated RMS val-

ues, normalisation was universally applied to the RMS current and power

measurements using Equation 3.7.

Yn =

(
230

Vm

)2

(Ym) (3.7)

Where:

Yn is the normalised quantity.

Ym is the measured quantity.

Vm is the measured voltage at the time of interest.
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3.2 Individual Measurements

The laboratory experiment contained eight appliances that are commonly

found in households. These appliances are listed below, along with a brief

description of their features and the manner in which they were operated

during the experiment:

1. Two-Slice Toaster, rated 800W, hereafter referred to as ‘toaster’.

2. ‘Whistling’ Kettle, rated 2000W, hereafter referred to as ‘kettle’.

3. Desk Lamp, rated 60W, hereafter referred to as ‘lamp’.

4. Oil-Filled Radiator Heater, rated 1500W, hereafter referred to as

‘heater’.

5. Sandwich Maker, rated 700W, hereafter referred to as ‘snackwich’.

6. 30cm Desk Fan, rated 35W, hereafter referred to as ‘fan’.

7. Microwave Oven, rated 1200W, hereafter referred to as ‘microwave’.

8. Refrigerator, rated 150W, hereafter referred to as ‘fridge’.

The majority of these appliances fall into the resistive appliance category,

as discussed in Section 2.6, namely; the toaster, kettle, lamp, heater and

snackwich. The fan falls into the motor-driven category, the microwave-

oven into the electronic power control category and the fridge into the pump

category.

Each appliance was operated on its own with the power meter activated, such

that individual measurements could be produced for manual training. The

measurements obtained from this process, and the appliance characteristics

that they reveal, are presented in Sections 3.2.1 to 3.2.8.

TLM and CPM utilise steady-state power levels in order to disaggregate

the total power measurements, as discussed in Chapter 4. The real and

reactive power steady-state levels extracted from the individual appliance

measurements, using the technique presented in Section 4.2.2, are shown in

Table 3.1.
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Table 3.1: Real and reactive power steady-state levels for each appliance.

Appliance Real Power (W) Reactive Power (VAR)

Toaster 731.31 –
Kettle 2002.39 –
Lamp 58.05 –
Heater-Low 522.00 –
Heater-Medium 772.68 –
Heater-High 1291.06 –
Snackwich 689.39 –
Fan-Low 25.81 –
Fan-Medium 29.65 –
Fan-High 37.56 –
Microwave-Front 205.81 654.34
Microwave-Back 1063.30 384.41
Microwave-Inactive 38.73 31.39
Fridge 119.07 155.69

Table 3.1 shows that many potential appliance steady-state combinations will

have real power levels that are similar in value. For example, the toaster and

heater-medium states. Or the combination of the snackwich and fan-high

states and the toaster on its own. Such similarities between steady-states

means that slight variations in measured power levels will cause appliances,

or combinations thereof, to resemble one another. This could prove problem-

atic when attempting to disaggregate the measurements using steady-state

techniques such as TLM and CPM. Due to this consideration, the choice

of appliances included in total power disaggregation experiments can have

a marked effect on the accuracies exhibited by steady-state disaggregation

techniques.

This factor can also affect the accuracy of direct transient feature comparison

NILM techniques, such as EEC, where two edges may appear more alike in

shape if they possess similar levels. The degree to which this affects the

disaggregation process is dependent upon the position relative to the edge

events that each sample begins, as discussed in Section 4.5. In contrast

to the real power steady-states, the non-zero reactive power steady-state
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levels exhibit less potential for similarity and thus should be less subject to

error when CPM is applied to total power measurements that contain the

microwave or fridge.

3.2.1 Two Slice Toaster (‘Toaster’)

The toaster features a ‘level’ knob, which is used to control the degree to

which the bread is toasted. This is a continuous control that would be

expected to have no effect on the power consumption levels, affecting only

the duration of the toasting process. To verify this, initial measurements

were performed at two toasting levels, 50% and 100%. These were found to

be identical in all respects other than the duration of their activity. Thus

the cooking level selected during the performance of the experiments is of no

consequence. The toaster was manually activated and deactivated via the

use of a switch located on its side. The shape of the real power waveform is

shown in Figure 3.4.

Figure 3.4: Real power waveform for toaster.

Figure 3.4 shows that maximum power is consumed upon activation, followed

by a 5s curved ramp that leads down to a steady-state. The negative edge

of the waveform is approximately square, with no significant features. The
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reactive power plot, contained in Appendix A.1, shows that the toaster is

purely resistive, the only reactive power features being the inductive tran-

sients accompanying the appliance state switching events.

3.2.2 Whistling Kettle (‘Kettle’)

This appliance is a very simple stainless steel kettle of 1.5 litre capacity.

There is no switch built into the appliance, instead the kettle is activated or

deactivated by plugging in and out its power cord. This plug insertion action

can produce a transient peak in power consumption when the connection is

made, due to inrush current. When the water within the kettle approaches

boiling point, the device begins to emit a whistling sound from its spout. At

this point the user must physically unplug it from mains power in order to

stop the boiling process, as the kettle features no thermostat. The shape of

the real power waveform is shown in Figure 3.5.

Figure 3.5: Real power waveform for kettle.

Figure 3.5 shows that maximum power consumption occurs when the kettle

is initially plugged in, followed by a 10s ramp descending to a steady-state

that is sustained until the user unplugs the kettle. No significant features

accompany the negative edge of the waveform. The reactive power plot,
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contained in Appendix A.2, shows that the kettle is purely resistive with

inductive transients accompanying the plugging in and out of the cord.

3.2.3 Desk Lamp (‘Lamp’)

This appliance is a simple desktop lamp containing a 60W bulb. A standard

contact switch is installed along the power cord, providing the means by

which the lamp is activated and deactivated. The bulb is a bayonet fixture

of the incandescent tungsten type. The shape of the real power waveform is

shown in Figure 3.6.

Figure 3.6: Real power waveform for lamp.

A transient power consumption peak reaching 200% of the steady-state power

level may be seen when the lamp is switched on, reflecting the current flow

into the filament to heat it up. The subsequent steady-state is reached

within 0.5s of the appliance being activated. This remains constant until

the negative waveform edge, which exhibits no significant transient features.

The reactive power plot, contained in Appendix A.3, shows that the lamp

is purely resistive with capacitive transients accompanying state switching

events, most notably the positive edge.
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3.2.4 Oil-Filled Radiator Heater (‘Heater’)

The heater features three heat settings, low, medium and high, each of which

is selected using dedicated switches. Each setting draws significantly different

levels of power, and thus the settings are treated as separate appliance states.

In addition to these settings, a rotational dial is used to make finer temper-

ature adjustments. This dial was set to 50% for all of the measurements,

so that it would be consistently placed for each of the heat settings, low to

high. A thermostat built into the heater controls the element by activating

and deactivating it in order to maintain the selected temperature. The shape

of the real power waveform is shown in figures 3.7 to 3.9 for all three heat

settings, which will hereafter be referred to as ‘heater-low’, ‘heater-medium’

and ‘heater-high’.

Figure 3.7: Real power waveform for heater-low.

The real power waveform shows approximately square positive and negative

edges for all three heat settings, with no significant transients. Some noise

may be seen in the steady-state consumption, but this is not of a level that

it might be described as a specific feature such as an oscillation or ripple.

The reactive power plots, contained in Appendices A.4 through A.6, show

that the appliance is purely resistive for all three of the heat settings, with

inductive and capacitive transients accompanying state switching events.
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Figure 3.8: Real power waveform for heater-medium.

Figure 3.9: Real power waveform for heater-high.

3.2.5 Sandwich Maker (‘Snackwich’)

The snackwich is an enclosed toasting appliance with a casing that is heated

during operation, sealing the bread as it cooks. It contains a thermostat

that informs the user when the appliance has reached the optimal toasting

temperature, which is signalled using green and red LEDs. Once this level

is reached, current flow to the element is suspended until the temperature of

the casing has dropped to a specified minimum level and the element may
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be engaged again. The shape of the real power waveform is shown in Figure

3.10.

Figure 3.10: Real power waveform for snackwich.

The snackwich never reaches a steady-state condition, a constant descending

ramp being found from the point of maximum power consumption at the

positive edge until either the user or thermostat disengages the element.

This means that the appliance must be assigned the mean of power values

measured between each edge in order to approximate a steady-state, which

is required for TLM and CPM to be applied to measurements in which it is

incorporated. The reactive power plot, contained in Appendix A.7, shows

that the appliance is purely resistive with inductive transients accompanying

state switching events.

3.2.6 30cm Desk Fan (‘Fan’)

This appliance is a standard portable fan intended for personal cooling. It

contains two DC motors, one used to spin the blades and another to rotate the

head through a 60◦ arc. However, the head was secured in a single position

during all measurements for the sake of consistency. The fan features three

speed settings, low, medium and high, each of which draws a different power
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level. Thus each speed settings is treated as a separate state. The shape of

the real power waveforms are shown in figures 3.11 to 3.13 for all three speed

settings, which will hereafter be referred to as ‘fan-low’, ‘fan-medium’ and

‘fan-high’.

Figure 3.11: Real power waveform for fan-low.

Figure 3.12: Real power waveform for fan-medium.

The real power waveforms for each of the speed settings feature similar

shapes, all of which begin with a pronounced transient peak that descends

to a steady-state within 4s, 2.5s and 1.5s for fan-low, fan-medium and fan-

high respectively. The negative edges of the waveforms exhibit no significant

58



Figure 3.13: Real power waveform for fan-high.

transient features. As might be expected, the higher the fan speed setting,

the greater the power consumed. The reactive power plots, contained in Ap-

pendices A.8 through A.10, show that the appliance is purely resistive dur-

ing operation with capacitive and inductive transients accompanying state

switching events. A series of inductive transients with 4VAR peaks may be

seen during operation of the highest fan setting, particularly during the first

70s. This transient activity is reactive power noise; being too transient, and

of too low a magnitude, to constitute a reactive power component for this

appliance state.

3.2.7 Microwave Oven (‘Microwave’)

The microwave used in this experiment is a simple appliance, featuring no

additional functionality beyond basic cooking. A rotational timer dial is

used to set the cooking time and to begin microwave operations. A glass

plate contained within the appliance cavity rotates steadily during cooking

to aid in consistent heating of the meal. Five cooking settings are available,

ranging from low to high. However, in reality the appliance only has a

single operational state, during which the magnatron is active and a set
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level of power consumed. The highest cooking level activates the magnatron

throughout the cooking period, whilst each lower setting alters the duty cycle

of its activation accordingly. This means that microwave operation may be

characterised by a single steady-state level and set of edges, all of which

represent activation of the magnatron, regardless of the chosen duty-cycle.

The real power waveform of the microwave is shown in Figure 3.14 for a series

of magnatron activations, as expected to be found during any cooking level

below the highest.

Figure 3.14: Real power waveform for microwave low power setting.

The real power waveform shows a two stage positive edge. A transient peak

of inconsistent magnitude, ranging between 300W and 850W, is followed by a

1s ramp that descends from the transient peak to the 165W level. From this

point, a 1s ascending ramp rises 900W to reach a noisy steady-state, 3s in

length, which contains a series of ripples throughout. The negative waveform

edges are approximately square, not being characterised by any significant

transient features. The reactive power plot, contained in Appendix A.11,

shows that the magnatron operations are not purely resistive, but have a

strong reactive power component. Each magnatron activation event draws

upon both real and reactive power across the same period, as shown in Figure

3.15.
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Figure 3.15: Real and reactive power waveforms for microwave low power
cooking setting.

Figure 3.15 shows variation between the waveforms produced by each acti-

vation of the magnatron. Thus an average waveform must be generated that

best represents this event, from which exemplar steady-state power levels

and edges may be extracted. To achieve this, individual measurements of

the microwave were conducted at the low, medium and high cooking lev-

els, the results of which were averaged into a single waveform, as discussed

in Section 4.5.2. This process was only followed for the real power compo-

nent, as reactive power transients are not processed by TLM, CPM or EEC.

However, an average of the magnatron reactive power steady-state levels was

formulated for use with CPM, which requires this data.

The positive edges of the magnatron activation events consist of two distinct

sections that may be considered as separate states. Splitting the positive

edges into two sections assists the edge detection algorithm in accurately

detecting the magnatron activation events, as discussed in Chapter 4. Both

front sections of an averaged microwave exemplar waveform are shown on

the same plot in Figure 3.16, where the boundary between the two is given

by the vertical line. Figure 3.17 shows the entire magnatron waveform and

the steady-states that correspond to each section.
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Figure 3.16: Microwave waveform front sections.

Figure 3.17: Microwave magnatron event exemplar showing the levels pro-
duced by the steady-state transformation process, namely; ‘Front’, ‘Back’
and ‘Inactive’.

The microwave features an additional non-zero power consumption state that

may be found where the appliance is operating, but the magnatron is not

activated. This is due to a combination of electronic activity controlling the

magnatron and the rotation of both the timer dial and rotating plate. It

would be expected that the weight of the meal being cooked might affect

the power consumed during this state, due to the size of the load on the
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motor driving the rotation of the plate. For the sake of consistency, the

microwave was run without a cooking load for all measurements. The real

power waveform exemplar for this additional state, which was generated using

the same approach used to generate the magnatron exemplar, is shown in

Figure 3.18.

Figure 3.18: Real power waveform exemplar for microwave-inactive.

The real power waveform shows no notable transient features on either the

positive or negative edge, with a consistent steady-state found between the

two. The reactive power plot contained in Appendix A.12 shows that this

state has a significant reactive component of approximately 31VAR.

Due to the nature of the magnatron waveform positive edges and the exis-

tence of an intermediate operational state, three appliance states which must

be considered for the microwave (see Figure 3.17), namely:

Front: This refers to the section of waveform that lies between the first and

second magnatron positive edges.

Back: This refers to the section of waveform that lies between the second

magnatron positive edge and the magnatron negative edge.

Inactive: This refers to the section of waveform found when the magnatron

is not active but the microwave is still operational. This often lies between
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a magnatron negative edge and the next magnatron positive edge. However,

in some cases this state will start or end the measurement, as the microwave

does not always energise the magnatron immediately upon activation of the

appliance.

These three states will hereafter be referred to as ‘microwave-front’, ‘microwave-

back’ and ‘microwave-inactive’. They are utilised with TLM, CPM and EEC,

and apply to both the real and reactive power waveforms that accompany

microwave operations.

3.2.8 Refrigerator (‘Fridge’)

This appliance is a rudimentary combination freezer and refrigerator, fea-

turing no additional functionality such as an ice-maker or internal light. It

consumes a single level of power when active, not being equipped with a

thermostat to manage its temperature by altering the degree of cooling ap-

plied. Initial measurements were performed over extended periods of time in

order to confirm the manner in which the fridge operates, it being divergent

from that of many other similar appliances. The fridge has no switches to

facilitate its activation or deactivation, and hence must be controlled by the

user at the wall socket level. The shape of the real power waveform is shown

in Figure 3.19.

A transient peak may be seen at the positive edge of the real power waveform,

arising from the inrush current that occurs when the appliance is plugged

into the mains electricity. Within 0.1s, a noisy steady-state is reached and

maintained until the user disconnects the fridge from the electricity supply.

The magnitude of the initial transient peak varied considerably in repeated

measurements, but is always present when the fridge is activated. Sampling

rates may have a large effect upon the measured values of these sorts of

transients, as slower rates may miss the peak values for some iterations and

catch them on others. In this research, the measurement device is sampling
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Figure 3.19: Real power waveform for fridge.

at 6.4kHz, as discussed in Section 3.1.2. This means that for each transient

peak produced by the fridge, 640 samples are taken. These samples are used

to produce five RMS values covering the duration of the transient, and thus

the reported values may be considered accurate. The reactive power plot

contained in Appendix A.13 shows that the fridge is not purely resistive, fea-

turing an inductive steady-state of approximately 160VAR during operation.

Apart from an inductive transient accompanying activation of the fridge, no

significant features may be seen in the reactive power waveform.

This concludes the presentation and discussion of the individual measure-

ments taken for each appliance. With this phase of the measurement process

completed, combined total power measurements featuring combinations of

appliance operations could be generated, as presented in Section 3.3 below.

3.3 Combined Measurements

In order to evaluate TLM, CPM and EEC, total power measurements fea-

turing various combinations of the appliances presented in Section 3.2 were

made. Ground truth data schedules were created for nine experiments,
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featuring combinations of appliance activities that might realistically occur

within a real-world household. The ground truth data was rigorously enacted

using the laboratory experiment. Due to human error, slight discrepancies

may be found between the timing of events in the ground truth data and

those detected in the measurements. These timing discrepancies, in the or-

der of one to two seconds, are small enough to be of no consequence when

evaluating the accuracy of TLM, CPM and EEC.

Where appliances are equipped with a variable selector, the related parameter

only serves to affect the time of engagement or duty-cycle. This is the case

for the toaster, heater and microwave, as discussed in Section 3.2 Thus, each

appliance referenced in the ground truth data could theoretically be operated

with any combination of settings without compromising the applicability

of the individually extracted exemplars to the total power measurements.

However, the same appliance settings used to generate the exemplars were

used throughout all nine of the combined measurements, in accordance with

good experimental practice.

Each combined measurement contains a varied number of appliances, from

a minimum of two, up to a maximum of four. However, where multi-state

appliances are involved, the availability of multiple operational states for a

single appliance allows for additional complexity to be introduced into the

total power measurements. The degree of complexity reached with even such

low numbers of appliances is sufficient to severely test the disaggregation

techniques, as demonstrated by the results in Chapter 5. Thus it was deemed

unnecessary to perform further combined measurements with larger numbers

of appliances.

The combined measurements are briefly presented and discussed in sections

3.3.1 to 3.3.9 below. The reactive power plots for the combined measurements

1 through 9 are contained in Appendices A.14 to A.22 respectively. The

tables of ground truth data corresponding to each combined measurement

may be found in Appendices B.1 to B.9.
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3.3.1 Combined Measurement 1: Fan and Toaster

Figure 3.20: Combined Measurement 1 real power plot.

The real power waveform shown in Figure 3.20 shows the overriding power

consumption of the toaster, which is 1824% greater than that of the fan-

high state. Whilst each of the three fan settings feature different levels of

power consumption, these differences appear minimal in the context of the

toaster waveform. The fan-low, fan-medium and fan-high waveform positive

edges may be found at 20s, 40s and 60s respectively. As is consistent with

the individual toaster measurements discussed in Section 3.2.1, a descending

ramp may be found between the toaster and fan-low waveform positive edges

found at 10s and 20s respectively. The steady-state power level calculated for

this section of the measurement, and for the subsequent fan-low and toaster

combination, exceed the expected levels due to this ramp, introducing error

into the associated TLM and CPM disaggregation accuracies.

As both appliances are purely resistive, the reactive power waveform shown

in Appendix A.14 contains only inductive and capacitive transients where the

toaster is switched on and off, as is consistent with the individual appliance

measurements.
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3.3.2 Combined Measurement 2: Toaster and Microwave

Figure 3.21: Combined Measurement 2 real power plot.

A series of microwave magnatron events may be seen throughout the mea-

surement, shown in Figure 3.21, with waveform positive edges at 9s, 41s,

91s and 121s. The distinctive shape of these edges may be easily distin-

guished from the relatively featureless toaster waveform positive edge found

at 19s. In this measurement the shapes of the magnatron event waveform

edges are not significantly altered where they are found in combination with

the toaster, due to the relatively square nature of the toaster waveform. The

combination of two irregularly shaped waveforms will produce a combined

waveform that is more difficult to relate back to the individual appliances

that produced them than is the case in this measurement. A 40W drop in

power consumption may be observed between 59s and 79s due to the com-

plete deactivation of the microwave, which removes the microwave-inactive

state from the measurement, leaving the toaster to operate alone for 20s.

As the microwave is the only appliance included in this measurement that

has a reactive power component, it dominates the reactive power measure-

ment shown in Appendix A.15. Inductive and capacitive transients may

also be seen where state switching events occur for both appliances. Whilst

the reactive power measurement is largely consistent with expectations aris-
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ing from the individual microwave-state measurements, as discussed in Sec-

tion 3.2.7, there are sections in the measurement where levels of approx-

imately 0VAR are measured when a microwave-inactive state of approxi-

mately 31VAR should be measured. This occurrence may be observed in

Appendix A.15 from; 19s to 41s, 47s to 59s, 79s to 91s, and 96 to 99s.

The toaster is the only other appliance active during these sections of the

measurement, which would suggest that some combination of both appli-

ances has lead to the introduction of a negative reactive power component

(capacitive) into the measurements. It is known that the toaster is purely

resistive, thus this decrease in reactive power must be due to some physical

property of the laboratory experiment circuit that is external to the appli-

ances themselves. Alternatively, it could be ascribed to a measurement error,

perhaps due to the combination of methods used by the Yokogawa CW240 to

determine the reactive power magnitude and polarity, as discussed in Section

3.1.2.

It is expected that this type of inconsistency be found within total power

measurements obtained from real-world NILM system implementations, es-

pecially where the measurement devices utilised offer inferior performance to

the Yokogawa CW240 and complex power networks are involved. Thus the

presence of this error in the combined measurements presents an opportu-

nity to test the performance of CPM under such conditions. Of the reactive

power appliance states, the microwave-inactive state is the most likely to be

adversely affected by such inconsistencies, as its low steady-state power level

of 30VAR is the closest to another state in the reactive power appliance com-

bination vector, namely the null state. Thus, due to its low reactive power

consumption, any reductions in the total measured reactive power are more

likely to lead to the microwave-inactive state being incorrectly identified as

a null than for any other state, depending on the levels of reactive power

reduction power being experienced. Two separate variants of CPM, focussed

around the microwave-inactive state, were developed to determine whether

low power appliance states should be included in the reactive power matching
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stage of CPM under such conditions, as discussed in Sections 4.4 and 5.3.1.

3.3.3 Combined Measurement 3: Toaster and Microwave

Figure 3.22: Combined Measurement 3 real power plot.

This combined measurement, shown in Figure 3.22, contains the same ap-

pliances as Combined Measurement 2. However, it features a higher degree

of complexity due to the sequence of appliance operations enacted during

the measurement process. Six magnatron events may be seen, with positive

waveform edges at 32s, 61s, 122s, 150s, 180s and 210s. The length of the

magnatron events varies noticeably in each case, due to the use of both the

low and medium microwave cooking settings; where the low setting produces

6s magnatron events (e.g: from 32s to 38s) and the medium setting produces

16s magnatron events (e.g: from 61s to 77s). The last medium cooking level

magnatron event, which starts at 210s, is reduced to only 9s in length due

to the deactivation of the microwave at 219s. The toaster is active for two

periods within the measurement, initially being operational between 19s and

129s, and then appearing again between 169s and 199s.

As with Combined Measurement 2, the reactive power components of each

microwave state dominate the reactive power measurement, shown in Ap-
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pendix A.16. Inductive and capacitive transients may also be seen where

appliance state switching events occur. The same microwave-inactive state

reactive power measurement error discussed in Section 3.3.2 may be found

where the toaster and microwave-inactive state are simultaneously active.

This is shown in Appendix A.16, in the sections of the reactive power mea-

surement from; 19s to 32s, 38s to 50s, 59s to 61s, 77s to 89s, 109s to 122s,

127s to 129s, 169s to 180s and 196s to 199s.

3.3.4 Combined Measurement 4: Lamp and Snackwich

Figure 3.23: Combined Measurement 4 real power plot.

The power consumption of the snackwich is 1088% greater than that of the

lamp, and 1713% greater than that of the fan-high state. Thus the operation

of the snackwich, occurring between 9s and 144s, dominates the real power

plot for Combined Measurement 4, as shown in Figure 3.23. The lamp is

found twice within the measurement; firstly being active between 29s and

190s, and appearing again between 210s and 271s. Both of the waveform

positive edges that accompany the lamp activation events feature a transient

peak of 0.1s in duration, with magnitudes of 80W and 110W for the first and

second events respectively.
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The remainder of the waveforms visible in the measurement are due to the

three fan states, with their recognisable waveform positive edges being found

at 49s, 89s, 130s and 230s for the states fan-low, fan-medium, fan-high and

fan-medium respectively. The negative edge of the snackwich waveform may

be seen at 144s, followed by the smaller negative edges of the fan-high state

waveform at 149s and the lamp waveform at 190s. The series of steps down

to a 0W level of power consumption that result from this sequence of events

were created by the snackwich thermostat deactivating the appliance during

a period of fan-high and lamp operation. Despite being an automated state

change, this event has been accurately captured in the ground truth data

contained in Appendix B.

The reactive power plot for this combined measurement, shown in Appendix

A.17, contains only inductive and capacitive transients, which are found

where appliance state switching events occur. This is as expected, given

that all three appliances included in the measurement are purely resistive.

3.3.5 Combined Measurement 5: Fan, Lamp and Heater

Figure 3.24: Combined Measurement 5 real power plot.

Of the three heater heat settings available, only the heater-low state was
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utilised for this combined measurement. Thus only six appliance state com-

binations are contained within the real power plot shown in Figure 3.24,

namely; heater-low, fan-low, fan-medium, fan-high, lamp and null. The ex-

pected real power consumption for the heater-low state is 1274% greater than

that of the fan-high state, and 800% greater than that of the lamp. Thus the

heater-low waveform is the most prevalent feature in Figure 3.24, initially

being active between 10s and 170s, and appearing again between 250s and

310s. The lamp is activated twice, with positive waveform edges being found

at 30s and 210s, each of which features a 90W transient of 0.1s duration. The

fan is operated four times, with positive waveform edges located at 50s, 90s,

130s and 230s for the states fan-low, fan-medium, fan-high and fan-medium

respectively. Where the heater is deactivated at 170s it does not return to a

0W steady-state level due to the lamp waveform, which continues until 190s.

Only transients, both inductive and capacitive, are found in the reactive

power plot for Combined Measurement 5, as shown in Appendix A.18. As

the heater, fan and lamp are all purely resistive, this is consistent with expec-

tations. The transients seen in Appendix A.18 may be ascribed to appliance

state switching events.

3.3.6 Combined Measurement 6: Fridge, Heater and

Microwave

The first feature found within the real power plot for this combined mea-

surement, shown in Figure 3.25, is a 1850W transient peak that accompanies

the activation of the fridge at 10s. The next readily recognisable waveforms

within the measurement are produced by magnatron events, with waveform

positive edges found at 80s, 107s, 137s, 179s, 218s, 248s and 278s. The third

appliance appearing in Figure 3.25 is the heater, which is operated on the

medium and high settings. Heater-medium states may be found between 59s

and 100s, and between 219s and 259s. A heater-high state may be found

between 119s and 159s.
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Figure 3.25: Combined Measurement 6 real power plot.

Two of the microwave magnatron events are interrupted by the operations

of other appliances, splitting the waveforms into two distinct sections. The

first occurs at 119s, where the heater-high state becomes active during the

magnatron event found between 107s and 124s. The second occurs at 219s,

where the heater-medium state interrupts the positive edge of the magnatron

event waveform found between 218s and 223s. This event illustrates one of

the fundamental flaws in the assumption, commonly made in NILM research,

that no appliance operations occur simultaneously. Whilst it is certainly

unlikely that a user activates two appliances at the same time, automatically

controlled state transitions may well take place concurrently with manual

ones.

Both the fridge and microwave have reactive power components which feature

in the reactive power measurement, shown in Appendix A.19. In addition to

the steady-state levels, inductive transients are found where appliance state

switching events occur. Similarly to the reactive power measurement error

discussed in Sections 3.3.2 and 3.3.3, the microwave-inactive state is affected

whilst being operated concurrently with the heater. Between 124s and 137s

the approximately 31VAR expected for the microwave-inactive state is not

present in the measurement, where the heater-high and fridge states are also
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active. Between 223s and 239s, the microwave-inactive state appears not to

be present in the measurements, where the ground truth data reflects that

the microwave is active concurrently with the heater-medium state. This

indicates the presence of the same inconsistency observed in Combined Mea-

surement 2, where a certain combination of appliances leads to a reduction

in the measured reactive power levels. Between 140s and 159s, where the

fridge is operating concurrently with the heater, a disparity of approximately

30VAR be again be seen between the measured and expected reactive power

levels. This disparity disappears when the heater is deactivated at 159s. As

the heater is known to be purely resistive, as presented in Section 3.2.4, this

supports the discussion conducted in Section 3.3.2. Further variations on this

inconsistency may be found throughout the reactive power measurement.

3.3.7 Combined Measurement 7: Lamp, Heater and

Toaster

Figure 3.26: Combined Measurement 7 real power plot.

All three heat setting states for the heater are included in this combined

real power measurement, shown in Figure 3.26. A heater-low state may be

found between 29s and 70s, a heater-medium state between 90s and 100s and
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a heater-high state between 149s and 210s. The toaster waveform positive

edges, with the readily recognisable ramp from peak to steady-state discussed

in Section 3.2.1, may be found at 50s and 190s. The lamp is activated

twice, being operational between 10s and 129s, and between 169s and 249s.

Apart from a 100W transient of 0.1s in duration that accompanies the lamp

waveform positive edge at 169s, the toaster is the only appliance to exhibit

a distinctive transient feature on its waveform positive edges. The rest of

the appliance state transitions in Figure 3.26 are square in shape, with no

distinctive transient features.

As all three of the appliances are purely resistive, the reactive power measure-

ment contains only inductive and capacitive transients, as shown in Appendix

A.20. These are found wherever appliance state transitions occur.

3.3.8 Combined Measurement 8: Fridge, Kettle and

Lamp

Figure 3.27: Combined Measurement 8 real power plot.

Similarly to Combined Measurement 6, the positive edge of the fridge wave-

form found at 9s is the first significant feature of this combined measurement,

as shown in Figure 3.27. The kettle is the highest rated power appliance of
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all of those included in the laboratory experiment, consuming 1582% more

power than the fridge, and 3352% more than the lamp. Where it becomes

active at 39s and 84s, the power level rises by 2030W. The fridge is not deac-

tivated until 100s, the three smaller power consumption events between 49s

and 95s being due to operation of the lamp. The lamp positive waveform

edges, located at 49s, 64s and 89s, exhibit the same 0.1s transients discussed

in Section 3.3.7, ranging between 80W and 120W in magnitude. Unlike the

other combined measurements, the final steady-state shown in Figure 3.27

is not a null state, as the kettle was not deactivated before the end of the

measurement.

The fridge is the only appliance included in this combined measurement that

has a reactive power component, and hence it is the sole source of the reactive

power steady-states shown in Appendix A.21. The expected inductive and

capacitive transients may be found accompanying appliance state switching

events throughout the measurement. For all of the reactive power measure-

ments where the kettle is active, namely from 39s to 79s and from 84s to

the end of the measurement, an approximately 50VAR discrepancy between

the measured and expected reactive power steady-state levels may be seen.

However, this discrepancy is not seen where the kettle is deactivated between

79s and 84s. The kettle is purely resistive, as presented in Section 3.2.2, and

thus this occurrence may be considered to be a variation on the same reactive

power measurement inconsistency discussed in Section 3.3.2.

3.3.9 Combined Measurement 9: Toaster, Microwave,

Heater and Lamp

This is the sole combined measurement to include four appliances, and thus

might be expected to feature the highest levels of complexity. However, there

is no point in time where all four appliances are simultaneously operational.

Thus the measurement contains more variety in terms of appliance states,

but it does not contain a greater complexity of appliance state combinations.
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Figure 3.28: Combined Measurement 9 real power plot.

The toaster waveform positive edge, located at 10s, is the first feature to

be found in the measurement, as shown in Figure 3.28. The expected ramp

may be seen descending from the toaster positive edge, until it is interrupted

at 30s by a microwave magnatron event. Figure 3.28 contains four further

magnatron events, with waveform positive edges found at 80s, 160s, 180s and

230s.

The lamp is activated three times, being operational for two 5s periods start-

ing at 90s and 110s, and for a 20s period starting at 240s. Each lamp

waveform positive edge features a 0.1s transient, ranging between 100W and

120W in magnitude. The heater is the only appliance included in this com-

bined measurement that does not have a significant transient accompanying

its waveform positive edges. The three heater heat setting states are ac-

tive during the following time periods; heater-medium between 40s and 60s,

heater-high between 120s and 170s, and heater-low between 190s and 280s.

The microwave is the only appliance included in this combined measurement

that has a reactive power component. Thus all of the steady-states in the

reactive power measurement may be attributed to its operations, as shown

in Appendix A.22. Both inductive and capacitive transients may be found
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accompanying appliance state switching events. Similarly to Combined Mea-

surement 6, the microwave-inactive state may be seen to be affected by the

presence of the heater wherever the two are active at the same time, namely

from; 167s to 170s, from 197s to 210s, and from 247s to 260s. For these

steady-states in the measurement, the measured reactive power level is ap-

proximately 30VAR lower than expected. This discrepancy between the mea-

sured and expected reactive power levels is consistent with the observations

made for the microwave-inactive and toaster appliance state combination in

Sections 3.3.2 and 3.3.3. Between 210s and 230s, where the heater-low state

is active alone, an unexpected 18VAR of reactive power may be found. As the

heater is purely resistive, this measured reactive power level may be ascribed

to noise.

This concludes the presentation of the measurements process, including dis-

cussion of both the individual and combined appliance measurements. The

fundamental mechanics and software implementations of TLM, CPM and

EEC are presented in Chapter 4.
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Chapter 4

IMPLEMENTATION OF

TECHNIQUES

An overview of the system developed for the implementation of TLM, CPM

and EEC is conducted, followed by discussion of the underlying processes re-

quired in order for each of the three disagreggation techniques to be applied

to the measurements. The implementations of TLM, CPM and EEC are

presented, both in the form of conceptual overview and through more specific

discussion of the key functions from which they are constituted. Throughout

the chapter, reference is made to relevant samples of implementation code,

all of which are contained in Appendix C.

4.1 System Overview

Before implementing TLM, CPM and EEC, as discussed in Sections 4.3, 4.4

and 4.5 respectively, the power measurements must be processed using the
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steps presented in Section 4.2. All measurements processing and disaggrega-

tion technique implementations are performed in MATLAB [3].

Figure 4.1: System overview showing relationship between fundamental mea-
surements processing functions and disaggregation technique components.

Figure 4.1 provides a visual overview of the system created within MAT-

LAB, showing how a few basic functions provide a platform for each of the

components comprising TLM, CPM and EEC to be implemented. In the re-

mainder of this chapter the fundamental measurements processing functions

are presented, followed by the main disaggregation techniques.

4.2 Underlying Processing Approaches

The most fundamental of all the preparatory steps is the transfer of the in-

dividual and combined measurements data from the power meter into MAT-

LAB, where it is captured into vectors for further use. During this process

all data is normalised, using the equations presented in Section 3.1.3. All

three disaggregation techniques require that every appliance state transition

contained within the total power measurement be identified, although they

utilise this information in different ways.

EEC uses the appliance state transition information directly, extracting sam-

ples from around edges that were detected in the measurement. However,

81



TLM and CPM require that the measurement be broken down further into

a series of steady-states, which requires an additional measurements pro-

cessing stage referred to as ‘steady-state transformation’ in this dissertation.

The event detection and steady-state identification functions are discussed

in more detail in Sections 4.2.1 and 4.2.2 respectively.

4.2.1 Event Detection

The MATLAB code for this function, eventDetection, may be seen in

Appendix C.1. As illustrated in Chapter 3, every appliance state transi-

tion features a distinct edge which may be observed in both the individual

and combined measurements. Whilst it may theoretically be possible for an

appliance state change to be characterised by gradual ramps instead of a

defined edge, this is not the case with any of the appliances included in the

experiment. Even where start-up ramps are involved and such a waveform

may be expected, such as for the slow acceleration from standstill of a wash-

ing machine drum shown in Figure 4.2, a marked edge still accompanies the

start and end points of the state transitions.

Figure 4.2: Washing machine spin cycle real power plot.

The event detection algorithm compares all adjacent data points in the mea-
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surement, assigning edge status wherever a rapid change in power consump-

tion is found that exceeds a 15W threshold. The direction of the change

is also noted, so that it may be known whether the edge is constituted by

a positive or negative change. This is important for EEC, where positive

and negative edge samples are compared separately, as discussed in Section

4.5. To ascertain the optimum threshold level, a range of plausible options

were tested until a value was found that resulted in perfect edge detection

for all of the individual and combined measurements. Due to the experimen-

tal approach used to determine this threshold value, it may only be deemed

to be optimal for the experiments and measurements conducted within this

dissertation.

A measurement, containing several fan waveforms, which has been processed

using the event detection algorithm is shown in Figure 4.3, where the direc-

tion of the triangle markers indicate the direction assigned to each detected

edge.

Figure 4.3: Event detection applied to multi-state fan measurement.

Many edges in the power measurements occur over a number of data points,

thus the potential exists to incorrectly classify a single dramatic power change

as a series of edges. To counter this problem, averaging windows and other

similar smoothing techniques were initially included in the algorithm. How-
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ever, these were ultimately discarded in favour of a simpler approach that

yielded better results. Once an edge has been identified, the algorithm is

disabled for the next 50 data points. To avoid error, this value has to be be-

low the minimum time occurring between any two appliance state transition

events across all nine combined measurements, which is 51 data points.

Event detection is only ever applied to the real power waveform. For CPM,

where reactive power steady-states are required, the real power waveform is

used to find the locations in the total power measurements where appliance

state transitions occur. These points in time are then transposed across to

the reactive power measurements, rather than performing a separate event

detection pass. This is necessitated by the magnitudes of the transients

that accompany appliance state switching events, as discussed in Chapter

3. These transients require that very high event detection threshold levels

be set, which in turn leads to smaller appliance edges going undetected.

However, the location of edges in the reactive power measurements almost

exactly mirror those found in the real power measurements and thus this

transposition is not problematic.

4.2.2 Steady-State Transformation

The MATLAB code for this function, ssTransformation, may be seen

in Appendix C.2. The steady-state transformation process takes the edges

found by the event detection function and finds the mean of the real or re-

active power values lying between them, transforming the original waveform

into a sequence of steps, as shown in Figure 4.4, where the grey plot shows

the steady-state identification output. This transformation of the power mea-

surements is required by both TLM and CPM, where the series of steady-

states that comes to represent each of the combined measurement must be

compared against possible combinations of power levels.

In some cases, the transient features within an appliance waveform lead to

the calculation of mean values that do not match the expected steady-state
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Figure 4.4: Steady-state transformation applied to multi-state fan measure-
ment.

levels. For example, sections of waveform containing ramps may not reach

a steady-state before the next appliance state transition occurs, resulting in

the calculation of steady-state levels that are considerably higher than should

be calculated for the appliances in question. This serves to illustrate the

fundamental problem that transients pose to steady-state NILM techniques,

namely that many appliances are not steady-state in nature and thus do

not fit into such models as might be expected. Steady-states in the power

measurements could be detected independently of event edges, by identifying

sections of the waveform where power levels do not change dramatically.

However, under such schemes, any regions in the measurements containing

transients would be excluded from the output, resulting in a large number of

appliance activities being ignored. Thus, event edge based approaches offer

superior performance and should be adopted ahead of such techniques.

4.3 TLM Implementation

TLM consists of two major phases. The first is the generation of a vector of

all feasible combinations of the individual appliance steady-state real power
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levels, as extracted from the individual measurements using the steady-state

transformation function. The second phase takes the combined measurement

real power waveforms after they have been processed by the steady-state

transformation function and compares every discrete level against the entries

in this vector. In each case the closest match between the two values is taken

to indicate the combination of appliances that are operational for the section

of combined measurement in question. Phases one and two of the TLM

implementation are discussed in Sections 4.3.1 and 4.3.2 respectively.

Figure 4.5: TLM implementation overview.

4.3.1 TLM Combination Generator

The MATLAB code for this function, TLMCombGenerator, may be seen

in Appendix C.3. Generating a vector of combinations from the individ-

ual appliance power consumption levels is complicated by the presence of

multi-state appliances in the laboratory experiment. For example, the fan

may not be operating at all three speed settings simultaneously. To handle

this problem, multi-state appliances were represented by vectors of exclusive

values when generating the combinations, as may be observed in Appendix

C.3. The application of this function to the input data produces a vector

containing 2048 possible unique appliance state combinations, including the

null state where no appliances are operational. This is a substantial num-
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ber of combinations, introducing a high potential for error in the matching

process, especially given the similar power consumption levels exhibited by

many of the appliances.

Given the size of the vector that the TLMCombGenerator function pro-

duces, it is not trivial to conclude which appliances contribute to the power

consumption levels matched to the combined measurement steady-states.

Thus some other technique is required for the purposes of providing an iden-

tifying label for each entry in the vector. The TLMCharGenerator function

shown in Appendix C.4 does exactly this, following the same combinatorial

process as TLMCombGenerator, but using alphabetical characters in place

of values.

A unique character is assigned to each appliance state, such that a vector pop-

ulated with various letter combinations is produced by TLMCharGenerator.

For example, using a feasible combination of characters taken from the TLM-

CharGenerator function shown in Figure C.4, the characters ‘a’, ‘d’ and

‘g’ may be combined to produce the string ‘adg’. As may be seen from the

TLMCombGenerator function shown in Appendix C.3, this corresponds to

a combination of entries 1, 4 and 7 from the ‘initMx’ vector, or appliance

states fan-high, heater-high and microwave-front. Thus, this approach allows

for any steady-state level in the appliance combination vector to be easily

related back to the appliances from which it was generated.

4.3.2 TLM Level Matcher

The MATLAB code for this function, TLMLevelMatcher, may be seen in

Appendix C.5. Once the steady-state identification approach has been ap-

plied to the total power measurement, the unique steady-state levels that

are produced must be compared against the 2048 individual appliance com-

binations generated by the combinator. The TLMLevelMatcher function

does this by finding the difference between each steady-state level and com-

bination vector entry, where the lowest difference is taken to be the closest

87



match. The function outputs a sequential list of the individual appliance

combination vector row numbers that provided the best matches, which is

then used to identify the corresponding appliance combinations by using the

alphabetical character vector. A sample of the compRes array produced by

the TLM process is shown in Table 4.1.

Table 4.1: TLM combination generator output array sample.

Data
Point
Index

Measured
Steady-
State

Closest
Match

Difference Corresponding
Appliance

Combination

1 1.48 0.00 1.48 null
495 752.62 753.62 1.00 fnL,ht1,mwF
995 765.45 765.37 0.07 fnH,ht1,mwF
1495 731.57 731.31 0.27 tst
1995 762.18 760.95 1.23 fnM,tst
2502 728.64 728.76 0.11 fnM,ht1,frg,lmp
2996 766.65 767.49 0.84 fnM,ht1,mwI,frg,lmp
3535 725.77 724.92 0.85 fnL,ht1,frg,lmp
11341 0.00 0.00 0.00 null

4.4 CPM Implementation

CPM operates upon the same basic principles as TLM, where steady-state

levels extracted from the total power measurement are compared against

all possible combinations of individual appliance measurements. The size

of the 2048 entry appliance state combination vector that is produced has

an adverse effect on the accuracy of the matching process, due to the large

number of potential matches that may be available for any measured steady-

state power level. In addition to real power measurements, CPM utilises

reactive power measurements to obtain an additional layer of information

that can be used to refine the appliance state vector, potentially improving

disaggregation accuracy.
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As discussed in Section 3.2, only two of the appliances included in the labo-

ratory experiment possess reactive power components, namely the fridge and

the microwave. The majority of household appliances are purely resistive,

containing heating elements and DC motors that typically have power factors

of 1 (e.g: the toaster and fan in the laboratory experiment). Between the

fridge and the microwave, five reactive power states are available from which

to generate the reactive power appliance steady-state vector; null, fridge,

microwave-front, microwave-back and microwave-inactive. As the three mi-

crowave states are mutually exclusive, this results in CPM generating a re-

active power vector with only eight entries, as discussed in Section 4.4.1.

Due to the low number of vector levels available to be matched to measured

reactive power levels, the accuracy of the reactive power phase of CPM is

expected to be significantly better than that of the real power phase.

Once it has been ascertained which reactive power component appliances are

present for each steady-state section of the combined measurement, the in-

formation can be used to refine the real power appliance combination vector.

For example, if the microwave-inactive state is found to be present in the

total power measurement based on its reactive power characteristics, then it

is reasonable that the real power appliance state combination vector for that

steady-state should only contain appliance state combinations that include

the microwave-inactive state. In this case, it results in the generation of a

real power appliance steady-state combination vector that consists of only

257 entries, which naturally improves the likelihood of an accurate match

being made. Even when no reactive power components are present in the

total power measurement, an advantage is still offered by this approach, as

all of the reactive power appliances may be eliminated from the real power

combination vector.

As discussed in Section 3.3.2, the low reactive power level (approximately

30VAR) accompanying the microwave-inactive state often disappears where

other appliances are active concurrently. Given that the microwave-inactive

state has the lowest power level of the appliance reactive power components
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Figure 4.6: CPM implementation overview.

identified in the individual appliance measurements, it is the most commonly

affected by inconsistencies in the reactive power measurements. This will in-

troduce error into the CPM process wherever the microwave-inactive state

is mistakenly identified as being inactive, as the real power appliance state

combination vector that is generated will erroneously omit all appliance com-

binations containing any of the microwave states.

To address this challenge, two CPM variants were created, one that includes

the microwave-inactive state in the reactive power combination vector and

another that excludes it. Where it is excluded, the microwave-inactive state

must be identified on the basis of its real power component alone. Whilst

this addresses the problem of reactive power measurement inconsistencies, it

results in a more limited reduction of the real power appliance state combi-

nation vector generated for each steady-state, as discussed in Section 5.3.1.

Both CPM variants were applied to the combined measurements, with the

version that produced the best results being selected as the favoured method,

as discussed in Section 5.3.1. The main functions underlying both variants

of CPM are presented in the following two sections.
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4.4.1 CPM Combination Generator

The MATLAB code for this function, CPMCombGenerator, may be seen in

Appendix C.6. CPMCombGenerator operates very similarly to TLMComb-

Generator, but processes reactive power values instead of real power. As

with TLMCombGenerator, an alphabetical character vector is generated to

assist in interpreting the results. However, for the CPM method, both reac-

tive and real power steady-state appliance combinations must be generated.

The real power combinations do not feature all of the appliances, but are

refined versions as discussed in the previous section. Thus a series of refined

real power combinations, ten in total, must be generated that are employed

based upon the reactive power identifications made for each steady-state

in the total power measurement. Each of these combinations are created

separately using a series of dedicated functions, operating upon a similar ba-

sis to both the CPMCombGenerator and TLMCombGenerator functions,

and stored in vectors to be accessed as required by the CPMLevelMatcher

function presented in Section 4.4.2.

4.4.2 CPM Level Matcher

The MATLAB code for this function, CPMLevelMatcher, may be seen

in Appendix C.7. Again, this function performs in a similar manner to

TLMLevelMatcher, but factors in reactive power considerations along with

real power. As illustrated in Figure 4.1, CPMLevelMatcher performs a two

stage process for each steady-state detected in the total real power measure-

ment. Firstly the reactive power measurement, which has been processed

using the steady-state identification function, is compared to the reactive

power appliance combination vector such that the status of the reactive

power component appliances may be ascertained. Secondly, a real power

appliance combination vector is chosen based upon these findings, and each

unique steady-state in the aggregated real power measurement is matched to

an entry therein. The process used to perform this real power level matching
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is much the same as that employed by the TLMLevelMatcher function.

However, the CPMLevelMatcher output contains both the reactive and

real power appliance identifications for each steady-state, allowing for direct

observation of the effect of the former on the latter.

4.5 EEC Implementation

The third disaggregation technique under investigation, EEC, involves the

comparison of the shapes of the positive and negative edges detected within

the total power measurement against corresponding exemplars extracted

from the individual appliance measurements. The transient features that

characterise the edges of many of the appliance waveforms create distinctive

shapes that may be used to distinguish one appliance state transition from

another. EEC is performed using real power, as this component is common to

all of the appliances. Reactive power could be used to complement this tech-

nique. However, the implementation of EEC in this research is intended to

assess whether the real power measurement edges possess significantly char-

acteristic shapes to allow the technique to outperform the two steady-state

alternatives presented, TLM and CPM. Thus it is undesirable to include ad-

ditional layers of information, and the sole use of real power measurements

is appropriate.

An illustration of the EEC process is given in Figure 4.7. The event detection

function, discussed in Section 4.2.1, is employed to identify the edges in the

both the individual and combined real power measurements. Once the edges

are located, they are captured using the sample extraction function presented

in Section 4.5.1. When processing the individual appliance measurements,

the microwave sample extractions are handled separately to those performed

for the other appliances, using the EECMWSampleAverager function dis-

cussed in Section 4.5.2. Finally, the individual and combined measurement

samples are compared using correlation, where the highest coefficient indi-

cates the best match, as discussed in Section 4.5.3. The event detection
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Figure 4.7: EEC implementation overview.

function classifies positive and negative edges separately, which serves to im-

prove the accuracy of EEC. By creating two distinct exemplar libraries, only

half the number of edge samples have to be correlated with the total power

measurement edges in each case, reducing the potential for mismatches to be

made.

4.5.1 EEC Sample Extraction

Two separate functions are employed to extract the samples, one for the

individual measurements and another for the combined. The same basic

mechanics are used in both cases, with a few distinctions regarding the

manner in which the functions are applied to the signals and the results

are delivered due to the additional complexity involved in creating the in-

dividual appliance edge event sample library. The functions for the indi-

93



vidual appliance sample extraction process, EECExtractorIndividual,

EECExtractorGeneral and EECExtractorMW, are shown in Appen-

dices C.8 through C.10 respectively. All total power measurement sample

extraction is performed using a single function, EECCorrelator, as dis-

cussed in Section 4.5.3. Regardless of the specificities of the individual and

combined approaches, both versions of the process take the edge locations

in the measurements provided by the event detection function and capture

data points to either side of these positions. Four sample parameters must

be specified prior to the initiation of the extraction process, as presented in

Figure 4.8 and the list below.

Figure 4.8: Sample parameters presented in the context of an appliance
waveform.

Positive Edge Length: The number of data points to be extracted around

the position of each positive edge.

Negative Edge Length: The number of data points to be extracted around

the position of each negative edge.

Positive Edge Start Point: The number of data points in front of each

positive edge position that the extraction should begin.

Negative Edge Start Point: The number of data points in front of each

negative edge position that the extraction should begin.
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An experiment was conducted to determine the optimum sample parame-

ters, the outcome of which is discussed in Section 5.3.2. When deciding

upon potential parameters to trial, the time elapsing between each consecu-

tive appliance state transition events in the combined measurements is a key

consideration. On average, 14.5s (725 data points) lie between each event

edge, but a minimum of 1.02s (51 data points) is found in Combined Mea-

surement 6, where the fridge is switched off during a microwave-front event.

Whilst this is an extreme case, many other examples of intervals below 2s

(100 data points) may be found across all nine combined measurements, as

shown by the distribution of event gaps presented in Figure 4.9. Four in-

tervals of longer than 25s were excluded from Figure 4.9, being exceptional

outliers, with the maximum interval being 156.12s (7806 data points).

Figure 4.9: Distribution of intervals between events across all combined mea-
surements.

The samples should ideally be long enough to capture the individual charac-

teristic of each edge, but not to the extent that they include other edge events

or diminish the weight of any transients within the extracted waveform. How-

ever, due to the short intervals that are found between some appliance state

transition events, it is unlikely that all of these requirements will be satisfied

for each event edge.
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The sample start point may impact upon the accuracy of EEC by changing

the ratio of high to low amplitude data present in each sample. Where both

high and low amplitude data points are captured, they serve to include the

magnitude of the power consumption change in the extracted shape. This

could potentially enhance the distinctiveness of the samples captured for

each appliance state by incorporating the variation that exists between their

steady-state real power levels. Alternatively, it could reduce the weight of

the event edge transients in the context of the overall samples, making their

shapes more homogeneous. These considerations provided the conceptual

basis upon which the choices of positive and negative sample start points were

made during experimentation to determine the optimal sample parameters.

4.5.2 EEC Microwave Sample Averager

The MATLAB code for this function, EECMWSampleAverager, may be

seen in Appendix C.11. As discussed in Chapter 3, the individual mea-

surements for the microwave medium and low cooking levels contain several

magnatron events. None of the events are identical, and thus it is better to

construct positive and negative edge exemplars from a series of edge samples

than from a single magnatron event. Every time that samples are extracted

from the individual appliance measurements, the low, medium and high cook-

ing level microwave waveforms are all processed. This produces a series of

positive and negative edge samples for the microwave states which are av-

eraged together into single exemplars using the corresponding data points

in each waveform. These averaged microwave waveform edge exemplars are

intended to be more widely representative than each of the original state

transition edges from which they are compiled.
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4.5.3 EEC Correlator

The MATLAB code for this function, EECCorrelator, may be seen in

Appendix C.12. Once the sample extraction process has been completed

for each of the individual appliances, EECCorelator extracts a sample

at every event edge in the total power measurement that is identified by

the event detection process, using the same sample parameters. With each

extraction, the function correlates the resulting sample against the library

of individual appliance event edge samples. As discussed in Section 4.5,

positive and negative edges are processed separately to improve accuracy.

The appliance sample that scores the highest correlation coefficient in each

case is taken to be the best match, and hence indicates which appliance was

responsible for the event in the total power measurement. A sample of the

combP array produced by the concluded EEC process is shown in Table 4.2.

Table 4.2: EEC correlator raw output sample, showing data point indices,
edge directions and appliance correlation values.

Appliance +495 +995 -1495 +1995 -2502 +2996

Fan-High 0.8357 0.5967 0.9444 0.7251 0.9160 0.9561
Fan-Medium 0.9610 0.8015 0.9695 0.9925 0.9358 0.8234
Fan-Low 0.8617 0.9527 0.9704 0.8748 0.9522 0.5833
Heater-High 0.1210 -0.0463 0.7992 0.1172 0.7812 0.1030
Heater-Medium 0.1241 -0.0436 0.8101 0.1201 0.7913 0.1059
Heater-Low 0.1110 -0.0452 0.9664 0.1115 0.9345 0.0880
MW-Front-1 -0.8946 -0.8301 0.0000 -0.9707 0.0000 -0.6922
MW-Front-2 0.0947 0.4597 0.3441 0.1812 0.4206 -0.1595
MW-Inactive 0.4166 0.3853 0.9184 0.3465 0.8921 0.4965
Fridge 0.0295 0.1104 0.9656 -0.0045 0.9356 0.0387
Kettle 0.1829 0.0091 0.6872 0.1753 0.6755 0.1576
Lamp -0.0580 0.0775 0.9229 -0.0741 0.8966 -0.0361
Snackwich 0.1104 -0.0561 0.9670 0.1079 0.9387 0.0934
Toaster 0.9896 0.8348 0.9648 0.9507 0.9309 0.8757

Each correlation is performed using the MATLAB function corr, which tests

the degree of association between the two sample vectors being compared.
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A coefficient of 1 indicates perfect correlation, implying that the two edge

samples are identical. A coefficient of−1 indicates the same, but with a phase

shift of 180◦. As the coefficient tends towards 0, so the two sample vectors

being compared exhibit decreasing levels of similarity. As a default, the

corr function within MATLAB performs correlations using Pearson’s linear

correlation coefficient, with Kendall’s Tau and Spearman’s Rho available as

alternative options [35].

Table 4.3: Accuracies of correlation coefficient types for sample parameter
combinations ‘Par1’ and ‘Par2’.

Pears.
(Par1)

(%)

Kendl.
(Par1)

(%)

Spear.
(Par1
(%))

Pears.
(Par2)

(%)

Kendl.
(Par2)

(%)

Spear.
(Par2)

(%)

Comb. Meas. 1 75 13 13 75 13 13
Comb. Meas. 2 59 53 59 59 59 59
Comb. Meas. 3 55 52 52 38 45 55
Comb. Meas. 4 64 14 7 50 21 7
Comb. Meas. 5 38 0 0 38 0 0
Comb. Meas. 6 58 39 39 52 35 45
Comb. Meas. 7 7 14 14 14 14 14
Comb. Meas. 8 27 0 0 9 0 0
Comb. Meas. 9 43 37 43 27 33 40

The Pearson, Kendall and Spearman coefficients are all commonly employed

in performing correlations, their selection depending on the nature of the

data being compared. However, Pearson’s coefficient is the most widely used

as it is intended for application to normally distributed variables, whereas

the other two approaches are intended for non-normally distributed data [36].

To assess which would be the most appropriate for use with the edge sam-

ples, EEC disaggregation passes were conducted using all three correlation

approaches. Two well performing sets of sample parameters were used, both

featuring substantial positive and negative sample lengths. However, one set

contained a mixture of high and low amplitude data points, whereas the other

contained only high amplitude data. This was done in order to evaluate how

each of the correlation coefficient types performed when applied to the two
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different types of sample shapes.

Although not 100% consistently returning the best accuracy for each edge

sample correlation, Pearson’s coefficient produced the most accurate results

overall, as shown in Table 4.3, and hence was selected ahead of the Kendall

and Spearman coefficients.

This concludes the presentation and discussion of the TLM, CPM and EEC

implementations. The results obtained from applying the disaggregation

techniques to the measurements are presented in Chapter 5.
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Chapter 5

RESULTS AND

OBSERVATIONS

The results obtained from applying TLM, CPM and EEC to the combined

measurements are presented. The methods used to score the accuracy of each

technique are discussed, along with the CPM variant and EEC sample param-

eters selected for inclusion in the final results and the validity of comparisons

made between each technique. An overview of the results is presented, fol-

lowed by a series of key observations drawn out of the detailed results analysis

and discussion contained in Appendix G.

5.1 Results Process Overview

Before the final set of results may be produced for the comparative evaluation

of TLM, CPM and EEC, as presented in Section 5.5, a series of steps must be

followed; disaggregation scoring methods must be developed, the best CPM
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variant selected and the optimal EEC sample parameters determined. This

process is illustrated in Figure 5.1.

Figure 5.1: Overview of the remaining steps required to produce the final
results.

The scoring methods used for evaluating the accuracy of each disaggregation

technique need to be designed such that the final results produced by TLM,

CPM and EEC may be comparatively evaluated, as discussed in Section 5.2.

Due to the reactive power measurement inconsistencies discussed in Section

3.3, two variants of CPM were developed, as presented in Section 4.4. The

variant that includes the microwave-inactive state offers the best disaggre-

gation accuracy, and is thus selected for the production of the final results,

as discussed in Section 5.3.1. Furthermore, the optimal sample parameters

for EEC, as determined through experimentation, are presented in Section

5.3.2.

5.2 Scoring Methods

The scoring method used to interpret the EEC results must necessarily be

different from that used for TLM and CPM, due to the fundamental differ-

ences between transient and steady-state appliance signatures. Accordingly,

scoring methods were developed such that the disaggregation performances

of each of the three techniques may be directly compared, as discussed for

TLM and CPM in Section 5.2.1 and for EEC in Section 5.2.2.
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5.2.1 TLM and CPM Scoring

TLM and CPM are scored identically, utilising a binary approach. Under

this scheme, a score of either ‘1’ or ‘0’ is allocated to the disaggregation

outcome for each steady-state in the total power measurements, where ‘1’

represents a perfectly correct appliance state combination identification and

‘0’ an imperfect result. Should an outcome be only partially accurate, per-

haps correctly identifying one or more appliances in a particular steady-state

but incorrectly identifying the remainder, the score is still taken to be ‘0’.

Whilst this is a relatively strict approach to scoring that does not recog-

nise partially correct outcomes, the mechanism underlying TLM and CPM

identifications necessitates that only fully accurate results be rewarded.

Given the combinatorial matching technique used to perform TLM and CPM

identifications, any partially correct solution may be considered to be no

better than a completely erroneous one. When the wrong entry is selected

from the vector of appliance state combinations, any similarity between the

contents of the entry and actual appliance operations is incidental, as both

TLM and CPM consider only the total power ‘best fit’ for each steady-state,

with no capacity to discern between the actual constituent elements of the

measurement. Whilst the two layers of combinatorial matching used for CPM

could be considered grounds for the recognition of partial identifications, the

reactive power stage of the process only serves to alter the size and contents

of the second stage of matching, and thus partially correctly appliance state

identifications are still largely incidental.

EEC is evaluated using a binary scoring approach, as discussed in Section

5.2.2. Thus the use of binary scoring for CPM and TLM allows for the direct

comparison of all three disaggregation techniques, given the implementation

of the additional compatibility measures presented in Section 5.4.
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5.2.2 EEC Scoring

Two binary scoring methods are used for assessing the performance of all

EEC appliance state transition identifications, namely a ‘hard’ and ‘soft’

score. As EEC considers each event edge in the total power measurements to

be associated with a single appliance, a partially correct solution may not be

returned in the same manner as might be for TLM and CPM. However, given

that some of the appliances possess multiple operating states, it is possible

that an appliance be correctly identified, but the incorrect state attributed

to it. For example, activation of the fan may be accurately detected, but

the chosen motor speed may not be correctly recognised. The hard scoring

system only awards a ‘1’ where both the appliance and its operating state

are correctly identified, whereas the soft approach will assign a ‘1’ if the

appliance is identified, regardless of whether its operational state is accurately

recognised or not. Thus the use of the soft scoring system only impacts

upon the evaluation of multi-state appliances. For both approaches, a ‘0’ is

assigned wherever the criteria for a successful identification are not met.

Whilst a partially correct identification score is not valid for TLM and CPM,

as discussed in Section 5.2.1, it is justifiable for EEC. Although each state of

a multi-state appliance may have different magnitudes, the electrical compo-

nents and physical activities of the appliance produce event edge transients

that have similar characteristics, regardless of the state. For example, each

of the three fan speed setting states have a similar transient peak that ac-

companies their waveform positive edges, as shown in Section 3.2.6. Thus, it

is valid to credit EEC with a partially correct identification in cases where an

appliance is correctly identified, but assigned the incorrect operational state.

This is due the fact that the characteristic shape of the appliance waveform

event edge in question has been used to identify the appliance, regardless

of the assignment of the incorrect operational state, and thus the partial

identification is not a random outcome.

The hard scoring system is of primary interest here, being more relevant to
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the research being conducted than the soft approach, as the identification of

precise appliance multi states is more consistent with the initial aims of the

experiment. Furthermore, as a hard approach is utilised for scoring the TLM

and CPM results, it is appropriate that this be the main scoring method for

EEC, ensuring that any comparative evaluations of the scores remains valid.

However, the soft scoring method has been retained as an additional metric

for EEC, as it does offer an indication of how the technique might perform

in situations where it is not required to distinguish between appliance states.

5.3 Variants and Parameters Selected

As discussed in Section 4.4, two variants of CPM were developed, one of

which must be selected to produce the final results. Additionally, the optimal

parameters for extracted samples for EEC were ascertained via experimen-

tation, as per Section 4.5.1. Both of these processes, and their outcomes, are

presented below.

5.3.1 CPM Variant

Comparative results for the two CPM variants are shown in Table 5.1. Where

incorrect identifications of the reactive power component of the microwave-

inactive state occur, the variant that includes the microwave-inactive state

in the reactive power matching process will introduce error into the results.

However, it may be seen that this variant still either equals or outperforms

the alternative in all cases, except for Combined Measurement 9, and may be

considered the best performer overall, as shown in the bottom five entries of

Table 5.1. Thus this CPM variant is selected for the production of the final

results. This outcome is expected, given that the inclusion of the additional

state in the reactive power matching process allows for greater refinement

of the real power appliance combination vector; where the selected variant
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produces vectors with 257 entries, whilst the alternative variant produces

vectors with 513 entries, approximately double the size.

Table 5.1: Accuracy results for CPM variants.

Included (%) Excluded (%)

Comb. Meas. 1 50 38
Comb. Meas. 2 47 35
Comb. Meas. 3 38 28
Comb. Meas. 4 71 71
Comb. Meas. 5 100 100
Comb. Meas. 6 32 26
Comb. Meas. 7 64 43
Comb. Meas. 8 9 9
Comb. Meas. 9 32 42
Best of Nine 8/9 4/9
UWA 49 43
UWA excl 5 & 7 40 36
EWA 46 41
EWA excl 5 & 7 40 36

Table 5.2 shows the results for Combined Measurement 1 using CPM with the

microwave-inactive reactive power component excluded from the matching

process. It may be seen that the toaster and fan-high combination found

between 60s and 71s was only partially correctly identified, where the toaster

was mistaken for a combination of the microwave-inactive and snackwich

operational states. However, under the chosen CPM variant this was not

the case, as the microwave-inactive state was eliminated from the vector of

possible real power appliance state combinations through the reactive power

matching process.

As shown in Table 5.2, the combined snackwich and microwave-inactive real

power consumption steady-state level, found between 50s and 60s, is 728W

and the toaster consumes 731W alone. Such similar steady-state levels may

easily become confused, as discussed in Section 5.6. This makes any addi-

tional information that may be used to refine the appliance state combination

vector useful to the disaggregation process and validates the choice of CPM
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variant, despite the error that it introduces where the microwave-inactive

reactive power steady-state is incorrectly identified.

5.3.2 EEC Sample Parameters

Table 5.3 shows comparative results for a range of sample parameters used

with the EEC method. In each case, the length of the positive and negative

samples and their starting positions relative to the event edges within the

total power measurements have been varied in order to find the best per-

forming parameters, as discussed in Section 4.5.1. The following parameters

may be seen to return the best performance; positive edge length of 250 data

points, negative edge length of 200 data points and no time shift on either

the positive or negative event edge extraction points. An illustration of the

optimal sample parameters is presented in Figure 5.2.

Figure 5.2: Optimal sample parameters presented in the context of an appli-
ance waveform.

As shown in Table 5.3, the chosen sample parameters are marginally outper-

formed by other combinations of parameters for combined measurements 7

and 9. However, for combined measurement 7 all sample types performed

poorly, and thus the marginally poorer performance of the chosen parameters
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does not invalidate the choice made. In the case of combined measurement

9, the best performing sample parameters only marginally outperformed the

chosen set of parameters and thus this result also does not invalidate the

choice made. The chosen sample parameters either outperformed the alter-

native options or shared the same score in every other case, returning the

highest average score across all of the combined measurements. Whilst these

chosen parameters could well provide good results when applied to other

research, further experimentation with different data sets would have to be

conducted in order to consider them other than experiment specific.

This result is not expected, given that there is no ‘low’ data included in the

samples, due to the lack of time shifting around the event edges in the com-

bined measurements. The inclusion of ‘low’ data points might be expected to

make the samples more easily distinguishable from one another, as discussed

in Section 4.5.1. However, it may be seen from the results in Table 5.3 that

this is not the case, and that performance is enhanced by the inclusion of

‘high’ data points only.

5.4 Technique Comparison Considerations

By virtue of their similarity, and the scoring approaches used, the accura-

cies of TLM and CPM may be directly compared. However, EEC performs

appliance state identifications using a different characteristic than TLM and

CPM, and thus its results may not be directly compared to those of the

other two techniques without adjustments being made. TLM and CPM pro-

duce a new combination of appliance states for each steady-state found in

the combined measurements, with no reference to previous identifications.

In contrast, EEC identifies the appliance responsible for each transition be-

tween steady-states, without identifying the combination of appliance states

active after the edge has passed. Thus the key to allowing for inter-technique

comparisons to be made lies in the assumption that the sequence of EEC

identifications that has been made in the lead up to each new event edge
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in the total power measurements is 100% accurate. This means that each

new event processed by EEC may be considered to be a unique event and is

judged upon its individual merit, as is the case with both TLM and CPM.

For example, if a fridge negative edge is identified by EEC, then what is truly

being compared against the corresponding TLM and CPM identifications is

the steady-state condition that exists after the fridge has been deactivated.

Whereas TLM and CPM will produce a combination of devices that matches

this steady-state, the equivalent EEC result is considered to be the known

combination of appliances from the ground truth data, minus the fridge. If

the edge is not correctly identified, then the incorrect combination of appli-

ances will be considered to be operational after that negative edge, and is thus

equivalent to a poor TLM or CPM match for the same section of the measure-

ment. It is important to note that EEC is implemented on the assumption

that no appliances are active prior to the first detected event, which would

be a positive edge. To directly produce combinations of appliance states us-

ing EEC, memory of the edge identifications could be held throughout the

course of a disaggregation. Whilst this could be advantageous, where possi-

ble sample matches could be refined using logic, any incorrect identifications

made under such a scheme would permeate throughout the rest of the pro-

cess, introducing further error into the results, as discussed in Section 6.3.

Accordingly, EEC is evaluated on a case-by-case basis that allows for each

new event edge in the total power measurements to be treated as a unique

disaggregation, enabling direct comparison of its performance with that of

TLM and CPM.

All null states found within the combined measurements are correctly identi-

fied by TLM and CPM. This may not have been the case had the real power

noise levels in the laboratory experiment not remained below the 15W event

detection threshold throughout all nine combined measurements. The 100%

accurate identification of null states serves to bolster the reported accuracy of

the TLM and CPM methods, especially where multiple null states are found

in one combined measurement. Given that EEC does not directly recognise
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nulls, only the negative edges that precede them, the null states found at

the start of each of the combined measurements are discarded. This means

that any disaggregation scores occurring prior to the first event edge in the

total power measurement are excluded from the TLM and CPM results. All

other null states within the combined measurements were retained, as shown

in Figure 5.3 and its accompanying Table 5.4.

Figure 5.3: Example of interaction between steady-states, event edges and
null states, to accompany Table 5.4, featuring fictional appliances A through
D.

Table 5.4: Method of inclusion of steady-states and event edges in results,
to accompany figure 5.3.

Section TLM and CPM EEC Positive
Edge

EEC Negative
Edge

1 A is ON A turned ON –
2 Null state – A turned OFF
3 B is ON B turned ON –
4 B and C are ON C turned ON –
5 B is ON – C turned OFF
6 Null state – B turned OFF
7 D is ON D turned ON –
8 Null state – D turned OFF

In many of the combined measurements, certain appliance state combina-

tions are repeated, including null states. These repeated combinations are
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retained, regardless of the extent to which they may reoccur. This serves to

simulate real-world conditions, where repeated appliance state combinations

are to be expected, and to test the consistency of each technique being ap-

plied. Whilst there is significant merit in the idea of testing every possible

combination of appliances included in the laboratory experiment, this is a

time consuming undertaking that would likely be prone to considerable hu-

man error, given how extensive such an experiment would be. Accordingly,

the ground truth data was developed to simulate nine feasible sequences of

appliance state combinations, including repeats. An alternative approach

to the measurements methodology that could provide more extensive data,

including all possible appliance state combinations, is proposed in Section

6.2.

5.5 Overview of Results

This section contains a summarised analysis of the results obtained from the

application of TLM, CPM and EEC to the combined measurements. A more

detailed discussion of the performance of each technique for each combined

measurement may be found in Appendix G.

Table 5.5 shows that combined measurements 5 and 7 feature a combina-

tion of excellent results for TLM and CPM, and poor accuracy for EEC.

This is particularly so in the case of Combined Measurement 5, where TLM

and CPM both achieved perfect results. These may be considered as out-

lier performances that are not representative of the results in general, given

the reported TLM and CPM accuracies for the other combined measure-

ments. As these two combined measurements skew the results significantly,

the overall accuracies should be considered both with and without their in-

clusion. The results shown in Table 5.5 may be interpreted using a number

of approaches, each of which applies a different averaging method to the indi-

vidual disaggregation instances that constitute the combined measurements,

as discussed below.
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Table 5.5: Combined measurement accuracy results for TLM, CPM and
EEC.

TLM
(%)

CPM
(%)

EEC
Soft (%)

EEC
Hard (%)

Comb. Meas. 1 38 50 100 75
Comb. Meas. 2 12 47 59 59
Comb. Meas. 3 17 38 66 55
Comb. Meas. 4 57 71 79 64
Comb. Meas. 5 100 100 56 38
Comb. Meas. 6 16 32 61 55
Comb. Meas. 7 43 64 14 7
Comb. Meas. 8 9 9 27 27
Comb. Meas. 9 23 32 53 43
Best of Nine 1/9 3/9 7/9 6/9
Best of Seven 0/7 1/7 6/7 6/7
UWA 35 49 57 47
UWA excl 5 & 7 24 40 64 54
EWA 31 46 57 47
EWA excl 5 & 7 24 40 61 52

Best of Nine: This approach assigns a point to the disaggregation tech-

nique which performs the most accurately for each combined measurement.

In the case of a tie, both techniques are granted a full score. According to

this approach, EEC is the best performer, followed by CPM and then TLM.

With combined measurements 5 and 7 excluded, EEC leads even more com-

prehensively, followed by CPM and TLM.

Unequal Weighting Average (UWA): This approach takes the average

scores for each of the combined measurements and finds the overall aver-

age of those. Under this scheme, each combined measurement carries equal

weighting regardless of the number of identifications that it contains. Thus

each individual disaggregation is not equally weighted, with greater weighting

given to the accuracies of combined measurements containing fewer appliance

state change events. If the UWA is adopted, CPM emerges as the best of the

techniques, marginally ahead of EEC, and followed by TLM. However, with
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measurements 5 and 7 excluded, EEC takes the lead, followed by CPM and

TLM.

Equal Weighting Average (EWA): This is the average of all of the in-

dividual disaggregation attempts made across all of the combined measure-

ments, without any consideration being given to the particular combined

measurement within which each performance is contained. This results in

each individual disaggregation instance being weighted equally across the en-

tire set of results. Under this approach, EEC marginally outperforms CPM

in terms of accuracy, followed by TLM. However, with combined measure-

ments 5 and 7 excluded, EEC offers the best accuracy, followed by CPM and

TLM.

The most representative average is the EWA with 5 and 7 excluded, which

provides the most generalised probability that a correct outcome will be

gained for any single identification being performed. Thus two observations

may be drawn from these results; the first being that EEC is the best per-

forming disaggregation technique and the second that CPM provides an im-

provement on the accuracy of TLM. This may be extended to say that the

comparison of transient event edges in the total power measurements provides

a better disaggregation approach than the comparison of steady-state power

levels, and that the consideration of both real and reactive power data in the

context of steady-state power disaggregation is superior to the exclusive use

of real power data.

Analysis of the overall results leads to the auxiliary question; “Have any

of the techniques been useful in disaggregating the total power measure-

ments?” Whilst the results obtained do comparatively evaluate the three

disaggregation techniques, satisfying the primary aim of the research, all of

the techniques would need to be developed and refined further before being

implemented in any real-world NILM system. A high identification accuracy

is required for such systems, where instances of poor performance will neg-

atively affect user trust levels and hence reduce their willingness to engage
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with the system. However, as this study is purely comparative, the absolute

magnitude of the accuracies are of less interest than their relative values.

Of the three disaggregation techniques, EEC is the most promising for fu-

ture research and development. This conclusion is based upon the overall

accuracy results and the observations presented in Section 5.6. The addition

of appliances into the circuit under test will adversely affect the accuracies

of TLM and CPM, due to the high number of new combinations that must

be generated for comparison to each measured steady-state. Whilst the per-

formance of EEC will also be affected by the inclusion of further appliances,

the effect is relatively marginal as the technique does not utilise appliance

state combinations. This consideration serves to promote EEC further as

the most promising of the disaggregation techniques for further research and

development.

5.6 Observations Drawn from Results

The following sections contains observations drawn from the detailed results

discussion conducted in Appendix G.

Similarity of Power Consumption Levels

Wherever appliance states, or appliance state combinations, feature similar

power consumption levels, there is potential for them to be mistaken for one

another; especially given the variability observed in the total power mea-

surements. Many examples of the error introduced by this phenomenon,

perhaps the greatest impediment to the performance of the steady-state dis-

aggregation techniques, are evident in the results and discussion contained

in Appendices F and G respectively. When an incorrect match is made, the

techniques themselves are not truly at fault, as they have taken the measured

steady-state level and successfully found the mathematically closest match.
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Rather, it is the similarity in power levels of alternative matches in the ap-

pliance state combination vector that leads to the selection of a steady-state

combination that differs from the ground truth data and is thus deemed to

be incorrect.

Consequently, the lower the levels of similarity found between the various ap-

pliance state combinations contained within the circuit being disaggregated,

the more accurate the results are likely to be. This means that the perfor-

mance of these techniques is heavily dependent upon the power consumption

characteristics of the particular appliances included within the electrical cir-

cuit being measured. Under favourable conditions, where the appliance-state

combination vector values are widely and evenly spaced, good disaggregation

accuracies could be realised using TLM and CPM. However, real-world sce-

narios are unlikely to provide such a fortunate state of affairs, especially

where larger number of appliances are involved. This has an adverse affect

on the potential of either TLM or CPM to provide an accurate real-world

disaggregation solution.

Appliance Combination Vector Favourable Matching Regions

The accuracy of both TLM and CPM is linked to the magnitude of each

measured steady-state real power level, where the higher the magnitude of

the measured level, the lower the likelihood of an accurate identification

being made. The results contained in Appendix F bear out the observation

that lower steady-state real power levels are easier to correctly match than

higher values, showing that a favourable region for making identifications

exists towards the lower end of the vector of appliance state combinations.

Any particular combination of appliances within a circuit being measured

will produce ranges within the minimum and maximum possible combined

values (from 0W to 5992W for the laboratory experiment) that feature more

potential appliance state combinations than other ranges do. This means that

a measured level that falls into a sparsely ‘populated’ range is more likely to
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be accurately identified than one that falls into a densely ‘populated’ range,

given that the probability of error is increased when a measured level has

many potential matches of a similar value.

Favourable regions for matching should be expected to be found around the

lower and upper ends of the possible range of combined values. However, it

is unlikely that higher value favourable regions be reached as often as the

low valued ones, given that this requires that almost all of the appliances

be operational at one time. Thus, practically speaking, the main favourable

matching region of consequence would be expected to be located with the

lower end of the range, with accuracy worsening as measured power values

increase. Certainly, this has been found to be the case with the laboratory

experiment, a practical example of this effect being given in Appendix G.5.

Both the TLM and CPM results are influenced by this consideration, as the

techniques utilise the same approach to real power matching in order to make

identifications. CPM improves on TLM primarily by reducing the size of the

vector of combinations to be matched. However, implicit in this refinement

is the expansion of the real power favourable matching region such that the

matching of higher measured levels is improved, as evidenced in the results.

Table 5.6 contains basic statistics for each of the combined measurements

for TLM and CPM. It may be seen that in most cases where there is an

improvement in the count of correctly identified entries from TLM to CPM,

a higher real power maximum level is accurately matched by CPM than TLM.

Whilst this is a function of the reduced appliance state combination vector,

it may be noted that the median value is exceeded by the highest matched

CPM real power level in all but one case. However, the TLM maximum

matched level is either less than or approximately equal to the median for

eight out of nine of the combined measurements. This provides an indication

of how the favourable region for accurate matching has been expanded by

CPM, allowing for higher measured real power levels to be correctly identified

than possible with TLM.
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Variability in Measured Power Levels

A combination of noise and hidden or variable states not encapsulated in

the individual measurements serves to introduce discrepancies between the

expected and measured power levels for each appliance state, or appliance

state combination. Whilst the noise level in the real power measurements

never exceeds 15W, there are still instances where an incorrect identifica-

tion may be directly attributed to noise. An example of such a case may be

seen between 210s and 230s in Appendix E.2 for the reactive power match-

ing stage of CPM, and the same issue affects real power matching for both

TLM and CPM. Furthermore, an appliance may unexpectedly switch into a

combination of hidden states that were not detected in the individual mea-

surements, introducing error into the disaggregation process. This state of

affairs could occur because the states in question are a rare event that did

not occur during individual measurement, or because the measured appli-

ance states contain some degree of variability that either went undetected or

could not be catered for adequately by the disaggregation technique in ques-

tion. The constant downward slope of snackwich real power consumption is

an example of such variability, where the period for which the snackwich is

active affects the steady-state power consumption level that is measured for

it, as discussed in Section 3.2.5. These inconsistencies between the measured

and expected steady-state levels make it difficult for TLM and CPM to make

correct identifications, especially when the measured power level is not in a

favourable matching region, as discussed in Section 5.6.

Another example of such steady-state variability may be found in Combined

Measurement 1, where the initial ramp following activation of the toaster

is interrupted by a fan-low state at 20s. The waveform section of interest

is shown in Figure 5.4, and the full combined measurement may be seen in

Section 3.3.1. As the toaster waveform did not have time to settle down

to the true steady-state, the calculated value for this section of the total

power measurement is significantly higher than would be expected when re-

ferring to the ground truth data. As a consequence of this, that particular
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Figure 5.4: Magnified section of Combined Measurement 1 waveform.

appliance state was incorrectly identified by both CPM and TLM. Figure

5.4 also includes fan-medium and fan-high waveforms, starting at 40s and

60s respectively, which can be seen to be located closer to the steady-state

section of the toaster waveform, and are both correctly identified by CPM.

Due to the variation in time lengths between peaks, the mean calculation

method used for the steady-state transformation of the measurements pro-

vides the best approach to the identification of steady-states. If steady-state

detection was used instead of this method, no steady-state would have been

found for this section and hence no appliance identification could have been

performed at all using TLM and CPM. Thus it may be seen that the time

between events also has an effect on the accuracy of steady-state power dis-

aggregation techniques, given that event edges often contain ramps, slopes

and transient peaks that take time to settle down to steady-state levels.

Variability in measured reactive power levels, as discussed throughout Sec-

tion 3.3, adversely affects the accuracy of CPM for combined measurements

2, 3, 6, 8 and 9. The error that such variabilities introduce into the reac-

tive power matching stage of CPM is carried through to the reduced size

real power appliance state combination vectors produced by the technique.

Matching of the microwave-inactive reactive power state was the most af-
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fected by these inconsistencies, due to the low reactive power level that it

consumes, prompting the investigation of CPM two variants aimed at im-

proving the accuracy of microwave-inactive state identifications, as discussed

in Section 4.4.

In real-world implementations, other external factors may introduce addi-

tional variability into the power measurement, further affecting steady-state

power consumption disaggregation techniques such as TLM and CPM. For

example, if a heavy object is placed in the microwave it may draw more power

than with a lighter load, due to the higher power level required to rotate the

internal tray. Whilst the microwave was operated without a cooking load

throughout this experiment, such variations in measured power consumption

make accurate steady-state power level matching even more problematic in

real-world implementations, providing additional motivation for the further

development of EEC ahead of TLM and CPM.

Distinctiveness of Event Edges

As discussed in Appendix G, microwave event edges are identified with a

high level of consistency throughout the EEC results. EEC outperforms

TLM and CPM for combined measurements 2, 3, 6 and 9, all of which fea-

ture microwave operations. Based upon the principles of the technique, it

might be reasoned that the distinctiveness of the microwave edge events is

responsible for the high accuracy exhibited in these cases. The toaster also

features a distinctive positive edge in the context of the appliances included

in the laboratory experiment. Whilst it is identified with 100% accuracy in

Combined Measurement 1, it is only identified with 50% accuracy in Com-

bined Measurement 7. This inconsistent accuracy may be ascribed to the fact

that toaster waveform positive edge is not as distinctive as the microwave

positive event edges, making it more problematic for EEC to identify toaster

activation events consistently.

In Combined Measurement 5, where the appliances utilised do not possess
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particularly characteristic edges, EEC only offers 38% accuracy, again point-

ing to the influence of this factor on the performance of the technique. Thus,

drawing upon the EEC discussions conducted throughout Appendix G and

the points mentioned above, it may be argued that the shape of appliance

edge events exert a major influence on EEC. This in turn means that EEC

will work better in cases where the appliances contained in a circuit feature

high variation in the shape of their event edges, leaving its performance sub-

ject to the characteristics of the appliances under test. This reliance on a

particular characteristic of each event provides a strong positive that may

be associated with EEC and similar transient techniques. It implies that

if the method of comparison or extraction of the shape characteristic is re-

fined further, such that the distinctiveness of each extracted edge sample is

emphasised, then the technique will return improved performances.

Variability may be found between different event edge samples generated by

the same appliance. For example, the microwave front exemplar samples had

to be compiled into an average sample in order to compensate for the dis-

parities between magnatron events occurring within the same measurement

period. This variability, combined with the effects of noise, adversely affects

the accuracy of EEC. The correlation figures presented in Appendix F illus-

trate the variation found between individual edge samples produced by the

same appliance, which might be expected to exhibit perfect correlation.

Similar Correlation Values

Two problems may be observed within the correlation values produced by

EEC, as contained in Appendix F. Firstly, there are many instances where

low correlation figures are found for all appliances being compared against

a particular event edge. In such situations, where a correct identification

is made, it is not done so with any measure of confidence. Rather, the

correlation figures indicate that none of the individual samples match the

captured edge, but that the chosen one is the best of the mismatches. This
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does not inspire confidence in EEC, even where the correct identification is

made, as the selection performed in such cases becomes an arbitrary choice

between poor candidates.

The second problem arises where a number of similar and high valued cor-

relation results are returned for a particular event edge in the total power

measurements. In such cases, EEC is indicating that more than one appli-

ance is closely matched to the captured edge sample and that it is difficult

to determine which is the best fit. Where the difference between correlations

may be as low as 0.001 in places, a correct identification may be consid-

ered to be a random outcome. However, as EEC still does limit the range

of likely appliance matches in such cases, any randomness contained in the

final assignment is reduced by the process of elimination that proceeds it.

Nonetheless, confidence in EEC would be encouraged by an increase in the

differences found between all of the correlation values returned for each event

edge, allowing for more definitive appliance identifications to be made.

This concludes the presentation and discussion of the results and observa-

tions. Recommendations for further work in this research area are presented

in Chapter 6.
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Chapter 6

FUTURE WORK

Proposals for future work in the research area covered within this dissertion

are presented and discussed. An alternative methodology for the measure-

ments process is outlined. Further refinements of EEC that could improve

the disaggregation accuracy of the technique are presented and discussed.

6.1 Future Work Overview

Three proposals for further work in this research area are presented in this

chapter. The first of these applies to future measurements that may be

performed, where a large number of appliance state combinations must be

measured in conjunction with accurate ground truth data. The develop-

ment of an automated measurement system for this purpose is proposed and

discussed in Section 6.2.

The results and observations presented in Chapter 5 reveal EEC to be the
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most suitable of the three disaggregation techniques for further development.

Thus a refinement to EEC is proposed in Section 6.3, wherein it is suggested

that the history of appliance identifications made earlier in a disaggregation

pass could be used to improve the accuracy of the remaining event edge

identifications via logical elimination.

As discussed in Section 5.6, any refinement of the sample extraction pro-

cess that emphasises the distinctiveness of the waveform edges captured in

the sample will result in improved disaggregation accuracy for EEC. Thus,

whilst it is not discussed further in this chapter, the sample extraction pro-

cess is also proposed as a potential avenue for future development of EEC.

Advances made in this area could be applied to any similar transient dis-

aggregation techniques that rely upon the distinctiveness of event edges in

order to identify appliance state transitions.

6.2 Automated Measurement System

For the research presented in this dissertation, pre-planned combinations of

appliance operations were enacted and measured in the laboratory, provid-

ing nine combined measurements that simulate possible real-world scenarios.

The resulting total power measurements do not include every possible combi-

nation of appliances, only those specified in the ground truth data. It would

be useful to be able to take measurements for every possible combination

and sequence of appliance states, producing a far larger and richer database

of ground truth data and corresponding measurements. This would allow for

disaggregation techniques to be more thoroughly and methodically tested.

A system that might be developed in order to obtain such data is presented

in Figure 6.1 and described in the following points.

1. An automated system must be devised that may be programmed to switch

the operational states of the appliances included in the experiment in a se-
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Figure 6.1: Automated appliance measurement system.

quence dictated by the researcher, whilst simultaneously producing accom-

panying ground truth data. Appropriate power measurements must be taken

throughout this process, in a manner that allows them to be synchronised to

the ground truth data at the end of each iteration of the experiment. Some

of the appliances may have to be physically altered such that the automated

system can directly control their operational states, or that manipulation of

their power supply is sufficient to activate and deactivate them as required.

2. As with the research contained within this dissertation, individual mea-

surements of all appliances included in the experiment must be taken by the

system to supplement the combined measurements. Once captured, these

individual measurements would have to be analysed by the researcher such

that they could be compiled into an exemplar library, the requirements of

which would depend upon the peculiarities of the disaggregation technique(s)

to be investigated.

3. When combined measurements are taken, the system must run through

every feasible combination of appliance operational states, activating each

state for a fixed period of time before moving onwards to the next set of states.

The sequence of events must be altered for each iteration of the experiment,

such that the disaggregation technique to be applied to the gathered data

may encounter different sequences of appliance states.

Producing a comparable data set by manual means would be a time intensive
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undertaking, potentially leading to a low limit being placed upon the number

of appliances included in the experiment and thus diminishing the value

of any associated research. Given that the eight appliances utilised in the

laboratory experiment presented in this dissertation produced 2048 possible

appliance state combinations, the time required for even a single manual

pass of the experiment covering all state combinations would be prohibitive.

Furthermore, the length of the process would lead to the introduction of

copious human errors, most likely appearing between the prescribed ground

truth data and the actual sequences of appliance operational states being

enacted. As researchers are unlikely to be able to perform appliance state

transitions at sub-second accuracy rates, an automated system would also

offer improved synchronisation between measurements and the corresponding

ground truth data.

It would be advantageous to be able to test any disaggregation techniques of

interest against several different iterations of the experiment, such that the

consistency of performances may be evaluated. Implementation of this auto-

mated approach would allow for accurate, tightly synchronised, extensive and

repeatable data sets to be relatively easily generated. Whilst the measure-

ment process followed in this research does simulate the real-world in many

ways, it repeats and excludes certain states and sequences, as discussed in

Chapter 5. Although the inconsistencies observed over repeated states within

the existing measurements are of interest in themselves, it would be prefer-

able to be able to sample every feasible combination of devices and state

change sequences, given that repeated states could certainly be included in

the ground truth data plan where desired.

6.3 Previous Identifications

EEC stores no memory of previous appliance state identifications, as dis-

cussed in Section 5.4. If such functionality were to be included, it would

introduce an element of logic into the technique, whereby infeasible state
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changes could be excluded from the comparison process. This would serve to

improve accuracy by reducing the number of appliance edge samples avail-

able to be matched to each event edge in the total power measurement. For

example, if an appliance positive edge has not been identified during the

course of a measurement, then its negative edge may not be considered for

comparison to any negative edges detected in the combined measurement.

This approach assumes that all appliances are inactive prior to the start of

the process. Or if an appliance has previously been determined to have be-

come active, and has not yet been deactivated, then its positive edge could

not be considered for matching to any positive edges detected in the total

power measurement. Under the correct conditions, such a scheme of logical

elimination could improve disaggregation accuracy.

However, the proposed system would rely heavily on the accuracy of previous

identifications in order to proceed without significant error. Where a disag-

gregation error is made, all subsequent identifications will be affected by the

erroneous application of the resulting logical elimination, until such point

that some fortunate series of appliance state changes allows for the original

error to be discarded. For example, if an appliance is erroneously identified

as becoming operational, all of the following event edge comparisons will

exclude that appliance even though it may be responsible. Thus, the orig-

inal error would be perpetuated through the disaggregation pass until the

incorrectly identified appliance becomes active, or the memory of previous

identifications is cleared. The use of previous identifications to supplement

EEC is of considerable interest, most definitely offering the potential to in-

crease its accuracy. However, it would be best implemented in the context

of improved performance of the principle mechanics of the technique, where

EEC has already been refined further using other methods.

This concludes the presentation and discussion of future work. The conclu-

sion of the dissertation, which draws upon all of the work contained within

the preceding chapters of this dissertation, is presented in Chapter 7.
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Chapter 7

CONCLUSION

Three disaggregation techniques are comparatively evaluated in this disser-

tation, namely; Total Load Model (TLM), Complex Load Method (CPM)

and Event Edge Correlation (EEC). ECC offers the best performance, with

an overall hard score accuracy of 52%, and soft score accuracy of 57%. CPM

achieved the next best performance, with an overall accuracy of 40%, and

TLM exhibited the worst performance of the three disaggregation techniques,

with an overall accuracy of 24%. All three of these accuracies were found

using the equal weighting approach, with the outlier combined measurements

5 and 7 excluded, as discussed in Section 5.5. If these two combined mea-

surements are included in the results, then the difference between EEC and

CPM is more marginal; EEC offers a hard score accuracy of 47% and a soft

score accuracy of 57%, CPM exhibits an accuracy of 46%, and TLM again

offers the worst accuracy at 31%. Motivation for the exclusion of the outlier

combined measurements 5 and 7 is given in Section 5.5.

These results may be generalised to say that the comparison of transient

event edges in the total power measurement provides a better disaggregation

approach than that of steady-state power levels. Furthermore, the considera-

tion of both real and reactive power data in the context of steady-state power

disaggregation may be considered to be superior to the exclusive use of real
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power data. Whilst EEC does not achieve sufficient levels of accuracy to be

directly implemented in a real-world NILM system, it should be considered

ahead of TLM and CPM for further development, which could refine it to the

point where it may deliver excellent accuracies. This is especially the case

for circuits containing larger numbers of appliances, as EEC stands to suffer

the least degradation of performance as the number of appliances included

in the measured circuit is increased.

Five key observations arise from analysis of the results. The first observation

is that the high number of similar valued power consumption levels found for

different appliance state combinations has an adverse effect on the perfor-

mance of TLM and CPM, which is consistent with the expected challenges

listed in Section 1.4. The second observation is that the degree of distinc-

tiveness of appliance waveform event edges has a direct positive effect on the

ability of EEC to distinguish them from those of other appliances, and hence

on the accuracy of the technique. This is an extension of the same expected

challenge mentioned for the first observation.

The third observation is the existence of favourable regions within the ap-

pliance state combination vector, where the probability of making accurate

matches is higher than for other regions of the vector. This makes it easier

to obtain accurate appliance identifications for some combinations of appli-

ance states than for others, depending on the position of the measured power

consumption level relative to the favourable matching regions. This is con-

sistent with the expected challenges presented by combinatorial approaches,

as discussed in Section 1.4.

The fourth observation is that the variability found in measured power levels

affects the accuracy of all three of the disaggregation techniques. A combina-

tion of variable appliance operations, hidden appliance states and the pres-

ence of electrical noise, cause discrepancies between measured and expected

power levels, introducing error into the appliance state identifications. This

observation is consistent with the expected challenges discussed in Section

1.4. Whilst TLM and CPM are more adversely affected by this factor than

130



EEC, variations in measured power levels can alter the shapes of appliance

waveform edges, and thus the accuracy of transient disaggregation techniques

such as EEC.

The final observation is that many of the correlation results returned by EEC

for each event edge in the combined measurements do not present definitive

identifications. In many cases, only low correlation values are produced for

an event edge, and thus the selected edge is not a good match to the event

edge in the power measurement, but rather the best out of a collection of

poor matches. Alternatively, a number of the correlation values produced

for a single event edge may indicate almost perfect correlation, and thus any

selection made between such values is not definitive. This observation did not

form part of the expected challenges, making it a new area for consideration

for EEC.

The results and observations lead to recommendations for future work to be

conducted in the same research area. An alternative measurements method-

ology is proposed, involving the development of an automated measurement

system that would be capable of running through large combinations of ap-

pliance operational states with high accuracy, whilst compiling associated

ground truth data. Such an automated system would be able to perform

measurements over extended time periods, without human error compromis-

ing the accuracy of the ground truth reporting, producing a definitive dataset

for the evaluation of total power disaggregation techniques.

Two further recommendations may be made, both of which relate to improv-

ing the accuracy of EEC and other similar transient disaggregation tech-

niques. The first is that the sample extraction process be refined, such that

the characteristic shape of the features contained within the samples pro-

duced for comparison are emphasised. This will increase their distinctive-

ness, and hence the accuracy with which EEC identifies them. The second

involves the use of previous identifications to refine the matching process via

logical elimination. However, the underlying accuracy of EEC would need to

be improved before the introducing such a system.
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Appendix A

REACTIVE POWER

MEASUREMENT PLOTS

This appendix contains reactive power plots that correspond to discussions

conducted in Chapter 3. Both individual and combined measurement reac-

tive power plots are included, in order to supplement the real power plots

contained within Chapter 3. Where appliances possess a reactive power com-

ponent, it may be utilised as an additional layer of information to aid in the

identification of individual appliance operations within total power measure-

ments. This is the case with CPM, where steady-state reactive power levels

are used to refine the disaggregation process.

As may be seen in the body of the appendix, the majority of the appliances

utilised in the laboratory experiment do not possess a reactive power com-

ponent. This is reflected in the combined measurement plots, where any

reactive power waveforms may be ascribed to the operation of those appli-

ances that do posses a reactive power component, namely; the fridge and

microwave. Throughout the plots, capacitive and inductive transient peak

events may be observed. These transients accompany appliance operational

state switching events, as discussed within Chapter 3.
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Figure A.1: Reactive power waveform for toaster.

Figure A.2: Reactive power waveform for kettle.
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Figure A.3: Reactive power waveform for lamp.

Figure A.4: Reactive power waveform for heater-low.
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Figure A.5: Reactive power waveform for heater-medium.

Figure A.6: Reactive power waveform for heater-high.
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Figure A.7: Reactive power waveform for snackwich.

Figure A.8: Reactive power waveform for fan-low.
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Figure A.9: Reactive power waveform for fan-medium.

Figure A.10: Reactive power waveform for fan-high.
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Figure A.11: Reactive power waveform for microwave low power cooking
setting.

Figure A.12: Reactive power waveform for microwave-inactive.
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Figure A.13: Reactive power waveform for fridge.

Figure A.14: Combined Measurement 1 reactive power plot.
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Figure A.15: Combined Measurement 2 reactive power plot.

Figure A.16: Combined Measurement 3 reactive power plot.
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Figure A.17: Combined Measurement 4 reactive power plot.

Figure A.18: Combined Measurement 5 reactive power plot.
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Figure A.19: Combined Measurement 6 reactive power plot.

Figure A.20: Combined Measurement 7 reactive power plot.
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Figure A.21: Combined Measurement 8 reactive power plot.

Figure A.22: Combined Measurement 9 reactive power plot.
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Appendix B

GROUND TRUTH DATA

This appendix contains tables of ground truth data for the combined mea-

surements, where Tables B.1 through B.9 correspond to each of the nine com-

bined measurements respectively. As some appliance actions are automated,

not all entries originally possessed ground truth data time stamps. These

additions to the underlying time-stamped ground truth data were made via

inspection of the measurements during post-processing.

The use of accurate ground truth data, where researchers are precisely aware

of the exact sequences of appliance operational state change events, allows

for the effective evaluation of total power measurement disaggregation tech-

niques. Thus, the data contained within this appendix is fundamental to this

research, as it presents the true sequence of appliance state change events to

which TLM, CPM and EEC were applied.

A legend to the appliance name abbreviations utilised in the tables contained

within this appendix is provided below.
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Appliance Abbreviation

Toaster tst
Kettle ktl
Lamp lmp
Heater-Low ht1
Heater-Medium ht2
Heater-High ht3
Snackwich snw
Fan-Low fnL
Fan-Medium fnM
Fan-High fnH
Microwave-Front mwF
Microwave-Back mwB
Microwave-Inactive mwI
Microwave-Low mwL
Microwave-Medium mwM
Microwave-High mwH
Fridge frg
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Table B.1: Combined Measurement 1 ground truth data.

Time (s) State Switching
Event

SS Combination
Following Event

10 tst ON tst
20 fnL ON tst,fnL
30 fnL OFF tst
40 fnM ON tst,fnM
50 fnM OFF tst
60 fnH ON tst,fnH
70 fnH OFF tst
227 tst OFF null
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Table B.2: Combined Measurement 2 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 mwL ON, mwF AUTO mwF
– mwB AUTO mwB
– mwI AUTO mwI
20 tst ON tst,mwI
– mwF AUTO tst,mwF
– mwB AUTO tst,mwB
– mwI AUTO tst,mwI
60 mwL OFF tst
80 mwL ON, mwI AUTO tst,mwI
– mwF AUTO tst,mwF
– mwB AUTO tst,mwB
– mwI AUTO tst,mwI

100 tst OFF mwI
– mwF AUTO mwF
– mwB AUTO mwB
– mwI AUTO mwI

140 mwL OFF null
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Table B.3: Combined Measurement 3 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 mwL ON, mwI AUTO mwI
20 tst ON tst,mwI
– mwF AUTO tst,mwF
– mwB AUTO tst,mwB
– mwI AUTO tst,mwI
50 mwL OFF tst
60 mwM ON, mwI AUTO tst,mwI
– mwF AUTO tst,mwF
– mwB AUTO tst,mwB
– mwI AUTO tst,mwI
90 mwM OFF tst
110 mwL ON, mwI AUTO tst,mwI
– mwF AUTO tst,mwF
– mwB AUTO tst,mwB
– mwI AUTO tst,mwI

130 tst OFF mwI
140 mwL OFF null
150 mwM ON, mwI AUTO mwI
– mwF AUTO mwF
– mwB AUTO mwB
– mwI AUTO mwI

170 tst ON tst,mwI
– mwF AUTO tst,mwF
– mwB AUTO tst,mwB
– mwI AUTO tst,mwI

200 tst OFF mwI
– mwF AUTO mwF
– mwB AUTO mwB

220 mwM OFF null
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Table B.4: Combined Measurement 4 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 snw ON snw
30 lmp ON snw,lmp
50 fnL ON snw,lmp,fnL
70 fnL OFF snw,lmp
90 fnM ON snw,lmp,fnM
110 fnM OFF snw,lmp
130 fnH ON snw,lmp,fnH
144 snw OFF lmp,fnH
150 fnH OFF lmp
190 lmp OFF null
210 lmp ON lmp
230 fnM ON lmp,fnM
270 lmp OFF fnM
290 fnM OFF null
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Table B.5: Combined Measurement 5 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 ht1 ON ht1
30 lmp ON ht1,lmp
50 fnL ON ht1,lmp,fnL
70 fnL OFF ht1,lmp
90 fnM ON ht1,lmp,fnM
110 fnM OFF ht1,lmp
130 fnH ON ht1,lmp,fnH
150 fnH OFF ht1,lmp
170 ht1 OFF lmp
190 lmp OFF null
210 lmp ON lmp
230 fnM ON lmp,fnM
250 ht1 ON lmp,fnM,ht1
270 lmp OFF fnM,ht1
290 fnM OFF ht1
310 ht1 OFF null
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Table B.6: Combined Measurement 6 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 frg ON frg
60 ht2 ON frg,ht2
80 mwM ON, mwF AUTO frg,ht2,mwF
– mwB AUTO frg,ht2,mwB
– mwI AUTO frg,ht2,mwI

100 ht2 OFF frg,mwI
– mwF AUTO frg,mwF
– mwB AUTO frg,mwB

120 ht3 ON ht3,frg,mwB
– mwI AUTO frg,ht3,mwI
– mwF AUTO frg,ht3,mwF
– mwB AUTO frg,ht3,mwB

140 mwM OFF frg,ht3
160 ht3 OFF frg
180 mwL ON, mwF AUTO frg,mwF
– mwB AUTO frg,mwB
– mwI AUTO frg,mwI

200 frg OFF mwI
– mwF AUTO mwF

220 ht2 ON, mwB AUTO ht2,mwB
– mwI AUTO ht2,mwI

240 frg ON frg,ht2,mwI
– mwF AUTO frg,ht2,mwF
– mwB AUTO frg,ht2,mwB
– mwI AUTO frg,ht2,mwI

260 ht2 OFF frg,mwI
– mwF AUTO frg,mwF

280 frg OFF mwF
– mwB AUTO mwB
– mwI AUTO mwI

300 mwL OFF null
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Table B.7: Combined Measurement 7 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 lmp ON lmp
30 ht1 ON lmp,ht1
50 tst ON lmp,ht1,tst
70 ht1 OFF lmp,tst
90 ht2 ON lmp,ht2,tst
110 ht2 OFF lmp,tst
130 lmp OFF tst
135 tst OFF null
150 ht3 ON ht3
170 lmp ON ht3,lmp
190 tst ON ht3,lmp,tst
210 ht3 OFF lmp,tst
230 tst OFF lmp
250 lmp OFF null
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Table B.8: Combined Measurement 8 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 frg ON frg
40 ktl ON frg,ktl
50 lmp ON frg,ktl,lmp
60 lmp OFF frg,ktl
65 lmp ON frg,ktl,lmp
70 lmp OFF frg,ktl
80 ktl OFF frg
85 ktl ON frg,ktl
90 lmp ON frg,ktl,lmp
95 lmp OFF frg,ktl
100 frg OFF ktl
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Table B.9: Combined Measurement 9 ground truth data.

Time (s) State Switching Event SS Combination
Following Event

10 tst ON tst
30 mwH ON, mwF AUTO tst,mwF
– mwB AUTO tst,mwB
40 ht2 ON tst,mwB,ht2
50 mwH OFF tst,ht2
60 ht2 OFF tst
80 mwH ON, mwF AUTO tst,mwF
– mwB AUTO tst,mwB
90 lmp ON tst,mwB,lmp
95 lmp OFF tst,mwB
100 lmp ON tst,mwB,lmp
105 lmp OFF tst,mwB
110 mwH OFF tst
120 ht3 ON tst,ht3
140 tst OFF ht3
160 mwM ON, mwF AUTO ht3,mwF
– mwB AUTO ht3,mwB
– mwI AUTO ht3,mwI

170 ht3 OFF mwI
– mwF AUTO mwF
– mwB AUTO mwB

190 ht1 ON mwB,ht1
– mwI AUTO mwI,ht1

210 mwM OFF ht1
230 mwL ON, mwF AUTO ht1,mwF
– mwB AUTO ht1,mwB

240 lmp ON ht1,mwB,lmp
– mwI AUTO ht1,mwI,lmp

260 lmp OFF ht1,mwI
270 mwL OFF ht1
280 ht1 OFF null
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Appendix C

MATLAB CODE

This appendix contains a selection of MATLAB functions for the implemen-

tation of TLM, CPM and EEC. Only code excerpts deemed to be relevant

to the implementation discussion have been included, as referenced from the

text in Chapter 4. Comments included in the code provide additional in-

formation pertaining to the functioning of each excerpt, and to the overall

MATLAB implementation system developed.

TLM, CPM and EEC were implemented entirely in a post-processing context.

Once the measurements process had been completed, the resulting data was

captured into data tables, upon which each of the disaggregation techniques

could be applied in the form of MATLAB functions.

Appendices C.1 and C.2 contain general measurements processing functions

that are used by multiple disaggregation techniques, as discussed in Section

4.2. Appendices C.3 to C.5 are specific to TLM, Appendices C.6 and C.7 to

CPM, and Appendices C.8 to C.12 to EEC.
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1 %declare variables

2 edgeDetP = zeros(length(P),1);

3 edgeDetPPos = zeros(length(P),1);

4 edgeDetPNeg = zeros(length(P),1);

5 edgeDetMask = 50; %minimum event gap mask

6 posEdgeVal = 15; negEdgeVal = 15; %sets bottom thresholds

7 arbLevel = 50; %arbitrary non−zero value used to denote edges

8

9 %replace 'NaN' values in real power signal with zeroes

10 noNaN = find(isnan(P)); P(noNaN) = 0;

11

12 for n = 1:edgeDetMask %applies minimum event gap mask

13 edgeDetP(n) = NaN; edgeDetPPos(n) = NaN; edgeDetPNeg(n) ...

= NaN;

14 end

15

16 for n = (edgeDetMask+1):length(P) %detects and assigns edges

17 diff = P(n) − P(n−1);
18 if (all(isnan(edgeDetP(n−1:−1:n−edgeDetMask))))
19 if (diff > posEdgeVal)

20 edgeDetP(n) = arbLevel; edgeDetPPos(n) = ...

arbLevel; edgeDetPNeg(n) = NaN;

21 elseif (diff < −negEdgeVal)
22 edgeDetP(n) = arbLevel; edgeDetPNeg(n) = ...

arbLevel; edgeDetPPos(n) = NaN;

23 else

24 edgeDetP(n) = NaN; edgeDetPPos(n) = NaN; ...

edgeDetPNeg(n) = NaN;

25 end

26 else

27 edgeDetP(n) = NaN; edgeDetPPos(n) = NaN; ...

edgeDetPNeg(n) = NaN;

28 end

29 end

Figure C.1: eventDetection function.
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1 %call event detection function

2 eventDetection;

3

4 %declare variables and append '1' to front of vector

5 indSSP = find(˜isnan(edgeDetP));

6 indSSP(2:end+1) = indSSP; indSSP(1) = 1;

7 ssDetP = zeros(length(P),1);

8 ssDetQ = zeros(length(P),1);

9 ssDetResP = zeros(length(indSSP),2);

10 ssDetResQ = zeros(length(indSSP),2);

11

12 %average values to find steady−state
13 for i = 1:(length(indSSP)−1)
14 ssDetP(indSSP(i):indSSP(i+1)) = ...

mean(P(indSSP(i):indSSP(i+1)));

15 ssDetQ(indSSP(i):indSSP(i+1)) = ...

mean(Q(indSSP(i):indSSP(i+1)));

16 end

17

18 %populate real and reactive power steady−state vectors

19 for i = 1:length(indSSP)

20 ssDetResP(i,1) = indSSP(i);

21 ssDetResP(i,2) = ssDetP(indSSP(i)+3);

22

23 ssDetResQ(i,1) = indSSP(i);

24 ssDetResQ(i,2) = ssDetQ(indSSP(i)+3);

25 end

Figure C.2: ssTransformation function.
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1 %call alphabetical combinator function

2 TLMCharGenerator;

3

4 %declare variables

5 loopSize = 0;

6 endSize = 0;

7 catSize = 0;

8

9 %declare appliance state combination vectors

10 initVec{1} = [initMx(1) initMx(2) initMx(3)];

11 initVec{2} = [initMx(4) initMx(5) initMx(6)];

12 initVec{3} = [initMx(7) initMx(8) initMx(9)];

13 initVec{4} = initMx(10);

14 initVec{5} = initMx(11);

15 initVec{6} = initMx(12);

16 initVec{7} = initMx(13);

17 initVec{8} = initMx(14);

18

19 %full vector generator

20 for a = 1:length(initVec{1})
21 for b = 1:length(initVec{2})
22 for c = 1:length(initVec{3})
23 vecMx{c+loopSize,a} = [initVec{1}(a) ...

initVec{2}(b) initVec{3}(c) initVec{4:8}];
24 end

25 loopSize = loopSize+c;

26 end

27 loopSize = 0;

28 end

29

30 %brute force all combinations to populate appliance vector

31 for i = 1:size(vecMx,2)

32 for j = 1:size(vecMx,1)

33 for k = 1:8

34 combos = nchoosek(vecMx{j,i},k);
35 combosT = sum(combos,2);

36 combRes{j,i}{1,k} = combosT;

37 end

38 end
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39 end

40

41 for i = 1:size(vecMx,2)

42 for j = 1:size(vecMx,1)

43 for k = 1:8

44 combResCat(catSize+1:catSize

45 +length(combRes{j,i}{1,k}),1) = ...

combRes{j,i}{1,k};
46 catSize = length(combResCat);

47 end

48 end

49 end

50

51 %apply unique index to numerical data

52 resFinal = combResCat(indStr);

53

54 %append '0' to front of combMx

55 resFinal(2:end+1,:) = resFinal(1:end,:); resFinal(1) = 0;

Figure C.3: TLMCombGenerator function.
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1 %declare and populate alphabetical vectors

2 initVecStr{1} = ['a' 'b' 'c'];

3 initVecStr{2} = ['d' 'e' 'f'];

4 initVecStr{3} = ['g' 'h' 'i'];

5 initVecStr{4} = 'j';

6 initVecStr{5} = 'k';

7 initVecStr{6} = 'l';

8 initVecStr{7} = 'm';

9 initVecStr{8} = 'n';

10

11 %declare variables

12 loopSize = 0;

13 catSize = 0;

14

15 %full vector generator

16 for a = 1:length(initVecStr{1})
17 for b = 1:length(initVecStr{2})
18 for c = 1:length(initVecStr{3})
19 vecMxStr{c+loopSize,a} = [initVecStr{1}(a) ...

initVecStr{2}(b) initVecStr{3}(c) ...

initVecStr{4:8}];
20 end

21 loopSize = loopSize+c;

22 end

23 loopSize = 0;

24 end

25

26 %brute force all combinations and populate alphabetical vector

27 for i = 1:size(vecMxStr,2)

28 for j = 1:size(vecMxStr,1)

29 for k = 1:8

30 combosStr = nchoosek(vecMxStr{j,i},k);
31 combResStr{j,i}{1,k} = cellstr(combosStr);

32 end

33 end

34 end

35

36 for i = 1:size(vecMxStr,2)

37 for j = 1:size(vecMxStr,1)
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38 for k = 1:8

39 combResCatStr(catSize+1:catSize

40 +length(combResStr{j,i}{1,k}),1) = ...

combResStr{j,i}{1,k};
41 catSize = length(combResCatStr);

42 end

43 end

44 end

45

46 %Find unique index to apply to vectors

47 [resStrFinal, indStr, ic] = unique(combResCatStr);

48

49 %append '0' to front of combMx

50 resStrFinal(2:end+1,:) = resStrFinal(1:end,:);

51 resStrFinal(1) = cellstr('zero');

Figure C.4: TLMCharGenerator function.
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1 %import individual appliance real power data

2 load('comboPAll.mat');

3

4 %call steady−state transformation function

5 ssTransformation;

6

7 %declare variables

8 compMx = zeros(size(comboPAll{2},1),1);
9 diffMx = zeros(size(comboPAll{2},2),1);

10

11 %find individual and combined steady−state differences

12 for i = 1:size(ssDetResP,1)

13 compMx(1:size(compMx,1),i) = ...

abs(ssDetResP(i,2)−comboPAll{2}(1:size(compMx,1),1));
14 end

15

16 %locate minimum differences

17 for i = 1:size(compMx,2)

18 compRes{i,1} = indSSP(i);

19 compRes{i,2} = ssDetResP(i,2);

20 diffMx(i,1) = min(compMx(1:size(compMx,1),i));

21 ind = find(compMx(1:size(compMx,1),i) == diffMx(i,1));

22 for j = 1:length(ind);

23 compRes{i,3} = ind(j);

24 end

25

26 %include match, difference and string

27 compRes{i,4} = comboPAll{2}(ind);
28 compRes{i,5} = diffMx(i,1);

29 compRes{i,6} = comboPAll{1}(compRes{i,3},1);
30 end

31

32 %call string process function for compRes

33 strProcessorForTPM;

Figure C.5: TLMLevelMatcher function.
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1 %call alphabetical combinator function

2 TPMCharGeneratorElimMW3LevelsQ;

3

4 endSize = 0; catSize = 0; %declare variables

5

6 %declare appliance state combination vectors

7 initVecQ{1} = [initMxQ(1) initMxQ(2) initMxQ(3)];

8 initVecQ{2} = initMxQ(4);

9

10 %full vector generator

11 for a = 1:length(initVecQ{1})
12 vecMxQ{a,1} = [initVecQ{1}(a) initVecQ{2}];
13 end

14

15 %brute force all combinations to populate appliance vector

16 for i = 1:size(vecMxQ,1)

17 for k = 1:2

18 combos = nchoosek(vecMxQ{i},k);
19 combosT = sum(combos,2);

20 combResQ{i}{1,k} = combosT;

21 end

22 end

23

24 for i = 1:size(vecMxQ,1)

25 for k = 1:2

26 combResCatQ(catSize+1:catSize

27 +length(combResQ{i}{1,k}),1) = combResQ{i}{1,k};
28 catSize = length(combResCatQ);

29 end

30 end

31

32 %apply unique index to numerical data and append '0' to combMx

33 resFinalQ = combResCatQ(indStr);

34 resFinalQ(2:end+1,:) = resFinalQ(1:end,:);

Figure C.6: CPMCombGenerator function.
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1 %call functions

2 ssTransformation; %real and reactive power ss transformation

3 CPMProcessorQ; %process reactive power signal

4 strProcessorForPandQForQ; %process strings in compResQ

5

6 %find real power matches based upon reactive power results

7 for i = 1:size(compResQ,1)

8 switch compResQ{i,3}
9 case 1

10 %result contains no microwave or fridge

11 CPMProcessorPNoMwNoFrg;

12 cse{i,1} = 'NoMwNoFrg'; %error checking vector

13 case 2

14 %result must contain microwave−front, no fridge

15 CPMProcessorPAllMwFNoFrg;

16 cse{i,1} = 'AllMwFNoFrg';

17 case 3

18 %result must contain microwave−front and fridge

19 CPMProcessorPAllMwFAndFrg;

20 cse{i,1} = 'AllMwFAndFrg';

21 case 4

22 %result must contain microwave−back, no fridge

23 CPMProcessorPAllMwBNoFrg;

24 cse{i,1} = 'AllMwBNoFrg';

25 case 5

26 %result must contain microwave−back and fridge

27 CPMProcessorPAllMwBAndFrg;

28 cse{i,1} = 'AllMwBAndFrg';

29 case 6

30 %result must contain microwave−inactive, no fridge

31 CPMProcessorPAllMwINoFrg;

32 cse{i,1} = 'AllMwINoFrg';

33 case 7

34 %result must contain microwave−inactive and fridge

35 CPMProcessorPAllMwIAndFrg;

36 cse{i,1} = 'AllMwIAndFrg';

37 case 8

38 %result must contain fridge, no microwave

39 CPMProcessorPAllFrgNoMw;
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40 cse{i,1} = 'AllFrgNoMw';

41 otherwise

42 cse{i,1} = 'Error!';

43 end

44 end

45

46 %call function to process strings in compResP

47 strProcessorForPandQForP;

Figure C.7: CPMLevelMatcher function.
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1 %set sample parameters

2 posLen = 250; negLen = 200; posEdgeLen = −10; negEdgeLen = 10;

3

4 %pre−allocate crop sample vectors

5 cropPPos = zeros(posLen,1); cropSPos = zeros(posLen,1);

6 cropPNeg = zeros(negLen,1); cropSNeg = zeros(negLen,1);

7

8 for x = 1:size(loadArray,1)

9

10 load(loadArray{x,1}); %load in individual samples

11

12 %call event detection function and find edges

13 eventDetection;

14 indPPos = find(edgeDetPPos > 1);

15 indPNeg = find(edgeDetPNeg > 1);

16

17 %call general or special extractor functions

18 if (x == 10 | | x == 11 | | x == 13)

19 extractorMW;

20 else

21 extractorGeneral;

22 end

23 end

24

25 %average the microwave waveforms

26 MWWaveformAverager;

27

28 %generate the sampleArray files for correlation purposes

29 makeSampleCellArrayCorrelation;

30

31 %save sample parameters for further processing

32 lenInfo = zeros(4,1);

33 lenInfo(1) = posLen; lenInfo(2) = negLen;

34 lenInfo(3) = posEdgeLen; lenInfo(4) = negEdgeLen;

Figure C.8: EECExtractorIndividual function.
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1 %extract positive edge samples

2 for i = 1:length(indPPos)

3 for n = 1:posLen

4 cropPPos(n,i) = P(indPPos(i)+n−1+posEdgeLen);
5 end

6 end

7

8 %extract negative edge samples

9 for i = 1:length(indPNeg)

10 for n = 1:negLen %capture negative edges

11 cropPNeg(n,i) = P(indPNeg(i)+n−(negLen−1)+negEdgeLen);
12 end

13 end

14

15 %create variable name cell array

16 varCell{1,1} = [saveNames{x} 'PPos'];

17 varCell{2,1} = [saveNames{x} 'PNeg'];

18

19 %rename samples

20 eval([varCell{1,1},'= cropPPos;']);

21 eval([varCell{2,1},'= cropPNeg;']);

22

23 %save varCell variables to file

24 excluder = ['ˆ' saveNames{x}];
25 save(saveArray{x,1},varCell{:,1},'−regexp',excluder);

Figure C.9: EECExtractorGeneral function.
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1 %pre−allocate sample vectors

2 cropPPos1 = zeros(posLen,1);

3 cropPPos2 = zeros(posLen,1);

4 cropPNeg = zeros(negLen,1);

5

6 %call event detection function and find edges

7 eventDetection;

8 indPPos = find(edgeDetPPos > 1);

9 indPNeg = find(edgeDetPNeg > 1);

10

11 %extract front 1 edge samples

12 count = 1;

13 for i = 1:2:length(indPPos)

14 for n = 1:posLen %capture positive edges

15 cropPPos1(n,count) = P(indPPos(i)+n−1+posEdgeLen);
16 end

17 count=count+1;

18 end

19

20 %extract front 2 edge samples

21 count = 1;

22 for i = 2:2:length(indPPos)

23 for n = 1:posLen %capture positive edges

24 cropPPos2(n,count) = P(indPPos(i)+n−1+posEdgeLen);
25 end

26 count=count+1;

27 end

28

29 %extract negative edge samples

30 for i = 1:length(indPNeg)

31 for n = 1:negLen %capture negative edges

32 cropPNeg(n,i) = P(indPNeg(i)+n−(negLen−1)+negEdgeLen);
33 end

34 end

35

36 %create variable name cell array:

37 varCell{1,1} = [saveNames{x} 'PPos1'];

38 varCell{2,1} = [saveNames{x} 'PPos2'];

39 varCell{3,1} = [saveNames{x} 'PNeg'];
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40

41 %rename samples

42 eval([varCell{1,1},'= cropPPos1;']);

43 eval([varCell{2,1},'= cropPPos2;']);

44 eval([varCell{3,1},'= cropPNeg;']);

45

46 %save varCell variables to file:

47 excluder = ['ˆ' saveNames{x}];
48 save(saveArray{x,1},varCell{:,1},'−regexp',excluder);

Figure C.10: EECExtractorMicrowave function.
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1 %average front 1 edge samples

2 tempMean11 = mean(mwLPPos1,2);

3 tempMean12 = mean(mwMPPos1,2);

4 tempMean13 = mean(mwHPPos1,2);

5 tempMx1 = [tempMean11 tempMean12 tempMean13];

6 meanPPos1 = mean(tempMx1,2);

7

8 %average front 2 edge samples

9 tempMean21 = mean(mwLPPos2,2);

10 tempMean22 = mean(mwMPPos2,2);

11 tempMean23 = mean(mwHPPos2,2);

12 tempMx2 = [tempMean21 tempMean22 tempMean23];

13 meanPPos2 = mean(tempMx2,2);

14

15 meanPPos = [meanPPos1 meanPPos2]; %collate front edges

16

17 %average negative edge samples

18 tempMean31 = mean(mwLPNeg,2); tempMean32 = mean(mwMPNeg,2);

19 tempMean33 = mean(mwHPNeg,2);

20 tempMx3 = [tempMean31 tempMean32 tempMean33];

21 meanPNeg = mean(tempMx3,2);

22

23 %create variable name cell array:

24 varCell{1,1} = ['mwA' 'PPos'];

25 varCell{2,1} = ['mwA' 'PNeg'];

26

27 %rename samples

28 eval([varCell{1,1},'= meanPPos;']);

29 eval([varCell{2,1},'= meanPNeg;']);

30

31 %save varCell variables to file

32 saveFile = ['C:\****\****\****' saveFolder '\' 'mwA' '.mat'];

33 excluder = ['ˆ' 'mwA'];

34 save(saveFile,varCell{:,1},'−regexp',excluder);

Figure C.11: EECMWSampleAverager function.
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1 %call event detection function and find edges

2 indPPos = find(edgeDetPPos > 1);

3 indPNeg = find(edgeDetPNeg > 1);

4

5 %preallocate vectors for extracted edge samples

6 samplePos = zeros(posLen,1);

7 sampleNeg = zeros(negLen,1);

8

9 %pre−allocate matrix for edge correlation values

10 combP = zeros(size(sampleArrayP,1)+2,length(P));

11

12 %extract and correlate positive event edges

13 for i = 1:length(indPPos)

14 c = 1;

15 %extract samples from aggregated signal

16 for n = 1:posLen

17 samplePos(n) = P(indPPos(i)+n−1+posEdgeLen);
18 end

19

20 %correlate samples against library and store values

21 for a = 1:size(sampleArrayP,1)

22 for b = 1:size(sampleArrayP{a,1},2)
23 corrArrayPPos{1,i}(c,1) = ...

corr(samplePos,sampleArrayP{a,1}(:,b));
24 combP(1,indPPos(i)) = indPPos(i);

25 c = c+1;

26 end

27 end

28 combP(2:end,indPPos(i)) = corrArrayPPos{1,i};
29 end

30

31 %extract and correlate negative event edges

32 for i = 1:length(indPNeg)

33 c = 1;

34 %extract samples from aggregated signal

35 for n = 1:negLen

36 sampleNeg(n) = P(indPNeg(i)+n−(negLen−1)+negEdgeLen);
37 end

38
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39 %correlate samples against library and store values

40 for a = 1:size(sampleArrayP,1)

41 for b = 1:size(sampleArrayP{a,1},2)
42 corrArrayPNeg{1,i}(c,1) = ...

corr(sampleNeg,sampleArrayP{a,2}(:,1));
43 combP(1,indPNeg(i)) = −indPNeg(i);
44 c = c+1;

45 end

46 end

47 combP(2:end,indPNeg(i)) = corrArrayPNeg{1,i};
48 combP(8,indPNeg(i)) = 0;

49 end

50

51 %eliminate zero rows in combP matrix

52 combSlim = find(combP(1,:)˜=0);

53 combP = combP(:,combSlim);

Figure C.12: EECCorrelator function.
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Appendix D

DETAILED TLM RESULTS

This appendix contains tables of the results produced when TLM is applied

to the combined measurements, as referenced from Chapter 5. These results

are reported at the measurement-by-measurement level. TLM provided the

lowest overall accuracy of the three disaggregation techniques, as discussed

in the overview of results contained in Section 5.5.

TLM is a steady-state technique that considers only the real power compo-

nent of the measurements that it processes, as discussed in Section 1.3.1.

As the least sophisticated of the disaggregation techniques, it might be ex-

pected to offer the worst accuracy. The relative performance of TLM, CPM

and EEC is discussed comprehensively in Chapter 5 and Appendix G.

A legend to the appliance name abbreviations utilised in the tables contained

within this appendix is provided below.
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Appliance Abbreviation

Toaster tst
Kettle ktl
Lamp lmp
Heater-Low ht1
Heater-Medium ht2
Heater-High ht3
Snackwich snw
Fan-Low fnL
Fan-Medium fnM
Fan-High fnH
Microwave-Front mwF
Microwave-Back mwB
Microwave-Inactive mwI
Fridge frg

179



T
ab

le
D

.1
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

1.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

9.
9

75
2.

62
75

3.
62

fn
L

,h
t1

,m
w

F
ts

t
0

19
.9

76
5.

45
76

5.
37

fn
H

,h
t1

,m
w

F
ts

t,
fn

L
0

29
.9

73
1.

57
73

1.
31

ts
t

ts
t

1
39

.9
76

2.
18

76
0.

95
fn

M
,t

st
ts

t,
fn

M
1

50
.0

4
72

8.
64

72
8.

76
fn

M
,h

t1
,f

rg
,l
m

p
ts

t
0

59
.9

2
76

6.
65

76
7.

49
fn

M
,h

t1
,m

w
I,

fr
g-

lm
p

ts
t,

fn
H

0
70

.7
72

5.
77

72
4.

92
fn

L
,h

t1
,f

rg
,l
m

p
ts

t
0

22
6.

82
0.

00
0.

00
n
u
ll

n
u
ll

1
T

o
ta

l
(%

)
3
8

180



T
ab

le
D

.2
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

2.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

8.
92

20
1.

73
20

2.
93

fn
L

,f
rg

,l
m

p
m

w
F

0
10

.8
4

10
24

.7
2

10
24

.8
1

fn
M

,m
w

F
,l
m

p
,t

st
m

w
B

0
16

.5
6

39
.8

4
38

.7
3

m
w

I
m

w
I

1
19

.0
2

77
6.

92
77

7.
09

fn
M

,l
m

p
,s

n
w

ts
,m

w
I

0
41

.3
2

93
1.

96
93

2.
77

fn
H

,m
w

F
,s

n
w

ts
,m

w
F

0
43

.0
2

17
48

.7
0

17
49

.4
8

fn
M

,h
t2

,m
w

I,
fr

g,
lm

p
,t

st
ts

,m
w

B
0

46
.7

4
76

6.
41

76
5.

68
fn

H
,m

w
I,

sn
w

ts
,m

w
I

0
59

.2
8

72
7.

74
72

7.
81

h
t1

,m
w

F
ts

0
79

.0
2

76
4.

79
76

5.
37

fn
H

,h
t1

,m
w

F
ts

,m
w

I
0

91
.0

8
93

1.
06

93
1.

05
fn

L
,m

w
I,

fr
g,

lm
p
,s

n
w

ts
,m

w
F

0
92

.9
2

17
46

.3
2

17
45

.6
4

fn
L

,h
t2

,m
w

I,
fr

g,
lm

p
,t

st
ts

,m
w

B
0

96
.3

76
9.

18
76

8.
87

fn
H

,t
st

ts
,m

w
I

0
99

.3
36

.4
6

37
.5

6
fn

H
m

w
I

0
12

1.
08

20
2.

52
20

2.
93

fn
L

,f
rg

,l
m

p
m

w
F

0
12

2.
78

10
23

.9
6

10
24

.8
1

fn
M

,m
w

F
,l
m

p
,t

st
m

w
B

0
12

6.
48

37
.2

1
37

.5
6

fn
H

m
w

I
0

13
9.

26
0.

00
0.

00
n
u
ll

n
u
ll

1
T

o
ta

l
%

1
2

181



T
ab

le
D

.3
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

3.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

9
37

.1
1

37
.5

6
fn

H
m

w
I

0
19

78
4.

95
78

5.
00

fn
H

,l
m

p
,s

n
w

ts
t,

m
w

I
0

32
93

4.
25

93
4.

23
fn

L
,f

rg
,l
m

p
,t

st
ts

t,
m

w
F

0
34

18
12

.5
9

18
12

.7
7

fn
L

,h
t2

,m
w

F
,f

rg
,s

n
w

ts
t,

m
w

B
0

38
76

9.
66

77
0.

03
m

w
I,

ts
t

ts
t,

m
w

I
1

50
73

0.
14

73
1.

31
ts

t
ts

t
1

59
77

5.
83

77
5.

40
fn

H
,h

t1
,m

w
I,

fr
g,

lm
p

ts
t,

m
w

I
0

61
93

3.
56

93
4.

23
fn

L
,f

rg
,l
m

p
,t

st
ts

t,
m

w
F

0
63

18
42

.6
9

18
41

.1
9

fn
H

,m
w

F
,f

rg
,l
m

p
,s

n
w

,t
st

ts
t,

m
w

B
0

77
76

6.
46

76
5.

68
fn

H
,m

w
I,

sn
w

ts
t,

m
w

I
0

89
72

7.
53

72
7.

81
h
t1

,m
w

F
ts

t
0

10
9

76
4.

20
76

3.
65

fn
L

,h
t1

,m
w

I,
fr

g,
lm

p
ts

t,
m

w
I

0
12

2
91

8.
89

91
8.

75
fn

M
,m

w
I,

fr
g,

ts
t

ts
t,

m
w

F
0

12
3

17
75

.8
8

17
75

.2
3

fn
M

,m
w

F
,f

rg
,s

n
w

,t
st

ts
t,

m
w

B
0

12
7

75
9.

36
75

7.
77

fn
M

,m
w

I,
sn

w
ts

t,
m

w
I

0
12

9
36

.6
3

37
.5

6
fn

H
m

w
I

0
14

0
0.

17
0.

00
n
u
ll

n
u
ll

1
14

9
41

.7
0

38
.7

3
m

w
I

m
w

I
1

15
0

20
1.

17
20

2.
93

fn
L

,f
rg

,l
m

p
m

w
F

0
15

2
10

88
.7

6
10

89
.1

1
fn

L
,m

w
B

m
w

B
0

16
6

50
.1

9
58

.0
5

lm
p

m
w

I
0

16
9

77
8.

86
77

7.
09

fn
M

,l
m

p
,s

n
w

ts
t,

m
w

I
0

18
0

92
4.

45
92

4.
85

fn
M

,m
w

F
,s

n
w

ts
t,

m
w

F
0

18
1

18
09

.7
4

18
10

.7
4

m
w

B
,l
m

p
,s

n
w

ts
t,

m
w

B
0

19
6

76
5.

48
76

5.
37

fn
H

,h
t1

,m
w

F
ts

t,
m

w
I

0
19

9
37

.1
3

37
.5

6
fn

H
m

w
I

0
21

0
20

4.
04

20
2.

93
fn

L
,f

rg
,l
m

p
m

w
F

0
21

1
10

56
.2

7
10

56
.1

9
m

w
F

,f
rg

,t
st

m
w

B
0

21
9

0.
00

0.
00

n
u
ll

n
u
ll

1
T

o
ta

l
%

1
7

182



T
ab

le
D

.4
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

2.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

9
69

8.
23

69
9.

11
h
t1

,f
rg

,l
m

p
sn

w
0

29
75

3.
25

75
3.

62
fn

L
,h

t1
,m

w
F

sn
w

,l
m

p
0

49
77

8.
23

77
7.

09
fn

M
,l
m

p
,s

n
w

sn
w

,l
m

p
,f

n
L

0
69

74
5.

94
74

7.
44

lm
p
,s

n
w

sn
w

,l
m

p
1

89
77

4.
68

77
5.

40
fn

H
,h

t1
,m

w
I,

fr
g,

lm
p

sn
w

,l
m

p
,f

n
M

0
11

0
74

0.
42

73
7.

84
h
t1

,m
w

I,
fr

g,
lm

p
sn

w
,l
m

p
0

13
0

77
6.

55
77

7.
09

fn
M

,l
m

p
,s

n
w

sn
w

,l
m

p
,f

n
H

0
14

4
95

.8
8

95
.6

1
fn

H
,l
m

p
lm

p
,f

n
H

1
14

9
58

.0
0

58
.0

5
lm

p
lm

p
1

19
0

0.
11

0.
00

n
u
ll

n
u
ll

1
21

0
57

.7
5

58
.0

5
lm

p
lm

p
1

23
0

88
.9

3
87

.6
9

fn
M

,l
m

p
lm

p
,f

n
M

1
27

1
30

.5
6

29
.6

5
fn

M
fn

M
1

29
0

0.
00

0.
00

n
u
ll

n
u
ll

1
T

o
ta

l
%

5
7

183



T
ab

le
D

.5
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

5.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

10
52

2.
18

52
2.

00
h
t1

h
t1

1
30

57
9.

80
58

0.
05

h
t1

,l
m

p
h
t1

,l
m

p
1

50
60

7.
69

60
5.

86
fn

L
,h

t1
,l
m

p
h
t1

,l
m

p
,f

n
L

1
70

57
9.

25
58

0.
05

h
t1

,l
m

p
h
t1

,l
m

p
1

90
61

0.
76

60
9.

69
fn

M
,h

t1
,l
m

p
h
t1

,l
m

p
,f

n
M

1
11

0
57

9.
14

58
0.

05
h
t1

,l
m

p
h
t1

,l
m

p
1

13
0

61
7.

06
61

7.
61

fn
H

,h
t1

,l
m

p
h
t1

,l
m

p
,f

n
H

1
15

0
57

8.
56

58
0.

05
h
t1

,l
m

p
h
t1

,l
m

p
1

17
0

57
.3

9
58

.0
5

lm
p

lm
p

1
19

0
0.

08
0.

00
n
u
ll

n
u
ll

1
21

0
57

.5
4

58
.0

5
lm

p
lm

p
1

23
0

89
.0

6
87

.6
9

fn
M

,l
m

p
lm

p
,f

n
M

1
25

0
61

0.
01

60
9.

69
fn

M
,h

t1
,l
m

p
lm

p
,f

n
M

,h
t1

1
27

0
55

2.
25

55
1.

64
fn

M
,h

t1
fn

M
,h

t1
1

29
0

52
1.

19
52

2.
00

h
t1

h
t1

1
31

0
0.

00
0.

00
n
u
ll

n
u
ll

1
T

o
ta

l
%

1
.0

0

184



T
ab

le
D

.6
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

6.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

10
14

5.
31

14
4.

88
fn

L
,f

rg
fr

g
0

59
91

1.
60

90
8.

42
fr

g,
lm

p
,t

st
fr

g,
h
t2

0
80

10
99

.3
6

10
98

.1
3

fn
L

,m
w

F
,f

rg
,l
m

p
,s

n
w

fr
g,

h
t2

,m
w

F
0

81
20

10
.4

2
20

10
.1

0
fn

M
,h

t3
,s

n
w

fr
g,

h
t2

,m
w

B
0

94
94

6.
57

94
7.

15
m

w
I,

fr
g,

lm
p
,t

st
fr

g,
h
t2

,m
w

I
0

10
0

17
2.

23
17

7.
11

fr
g,

lm
p

fr
g,

m
w

I
0

10
7

32
0.

23
32

4.
88

m
w

F
,f

rg
fr

g,
m

w
F

1
10

8
12

17
.8

9
12

19
.9

3
fn

H
,m

w
B

,f
rg

fr
g,

m
w

B
0

11
9

25
47

.2
9

25
47

.9
1

fn
M

,h
t2

,m
w

F
,f

rg
,s

n
w

,t
st

h
t3

,f
rg

,m
w

B
0

12
4

14
64

.6
3

14
64

.7
9

fn
H

,h
t1

,m
w

I,
fr

g,
lm

p
,s

n
w

fr
g,

h
t3

,m
w

I
0

13
7

16
04

.2
8

16
04

.3
0

fn
L

,m
w

I,
fr

g,
sn

w
,t

st
fr

g,
h
t3

,m
w

F
0

13
8

22
62

.7
6

22
61

.7
6

fn
M

,h
t2

,m
w

I,
sn

w
,t

st
fr

g,
h
t3

,m
w

B
0

14
0

14
23

.1
9

14
25

.3
9

fn
H

,h
t3

,m
w

I,
lm

p
fr

g,
h
t3

0
15

9
12

9.
41

12
6.

42
fn

M
,m

w
I,

lm
p

fr
g

0
17

9
33

8.
10

35
0.

69
fn

L
,m

w
F

,f
rg

fr
g,

m
w

F
0

18
1

12
06

.0
0

12
08

.1
8

fn
L

,m
w

B
,f

rg
fr

g,
m

w
B

0
19

3
16

7.
34

15
7.

79
m

w
I,

fr
g

fr
g,

m
w

I
1

19
9

37
.5

3
37

.5
6

fn
H

m
w

I
0

21
8

18
2.

35
18

3.
60

fn
L

,m
w

I,
fr

g
m

w
F

0
21

9
17

37
.9

1
17

39
.4

5
fn

M
,h

t2
,m

w
F

,t
st

h
t2

,m
w

B
0

22
3

81
5.

94
81

5.
81

fn
M

,m
w

I,
lm

p
,s

n
w

h
t2

,m
w

I
0

23
9

98
1.

25
98

2.
90

fn
M

,m
w

F
,l
m

p
,s

n
w

fr
g,

h
t2

,m
w

I
0

24
8

11
07

.3
7

11
09

.8
8

fn
H

,m
w

F
,f

rg
,l
m

p
,s

n
w

fr
g,

h
t2

,m
w

F
0

25
0

19
42

.2
5

19
42

.7
0

h
t1

,s
n
w

,t
st

fr
g,

h
t2

,m
w

B
0

25
3

94
5.

84
94

5.
98

fn
H

,f
rg

,l
m

p
,t

st
fr

g,
h
t2

,m
w

I
0

25
9

16
8.

49
17

7.
11

fr
g,

lm
p

fr
g,

m
w

I
0

27
8

31
5.

37
32

4.
88

m
w

F
,f

rg
fr

g,
m

w
F

1
27

9
37

1.
93

36
2.

44
fn

H
,m

w
F

,f
rg

m
w

F
0

28
0

10
72

.3
9

10
72

.3
2

m
w

F
,f

rg
,l
m

p
,s

n
w

m
w

B
0

28
3

38
.3

0
38

.7
3

m
w

I
m

w
I

1
29

9
0.

00
0.

00
n
u
ll

n
u
ll

1
T

o
ta

l
%

1
6

185



T
ab

le
D

.7
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

7.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

10
58

.1
9

58
.0

5
lm

p
lm

p
1

29
58

0.
82

58
0.

05
h
t1

,l
m

p
lm

p
,h

t1
1

50
13

26
.1

3
13

28
.6

2
fn

H
,h

t3
lm

p
,h

t1
,t

st
0

70
79

0.
33

78
9.

35
lm

p
,t

st
lm

p
,t

st
1

90
20

79
.1

3
20

78
.6

7
fn

H
,m

w
I,

k
tl

lm
p
,h

t2
,t

st
0

11
0

78
7.

71
78

6.
17

m
w

I,
lm

p
,s

n
w

lm
p
,t

st
0

12
9

72
7.

51
72

7.
81

h
t1

,m
w

F
ts

t
0

13
5

1.
55

0.
00

n
u
ll

n
u
ll

1
14

9
12

93
.9

2
12

95
.2

5
fn

L
,h

t1
,l
m

p
,s

n
w

h
t3

0
16

9
13

50
.7

5
13

50
.0

8
h
t1

,m
w

I,
lm

p
,t

st
h
t3

,l
m

p
0

19
0

20
85

.0
8

20
86

.2
4

fn
L

,k
tl

,l
m

p
h
t3

,l
m

p
,t

st
0

21
0

78
7.

52
78

6.
17

m
w

I,
lm

p
,s

n
w

lm
p
,t

st
0

22
9

58
.4

2
58

.0
5

lm
p

lm
p

1
24

9
0.

00
0.

00
n
u
ll

n
u
ll

1
T

o
ta

l
%

4
3

186



T
ab

le
D

.8
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

8.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

9
16

3.
40

15
7.

79
m

w
I,

fr
g

fr
g

0
39

21
61

.6
0

21
60

.1
8

m
w

I,
fr

g,
k
tl

fr
g,

k
tl

0
49

22
12

.4
7

22
12

.0
7

fn
L

,h
t3

,m
w

F
,s

n
w

fr
g,

k
tl

,l
m

p
0

59
21

51
.5

2
21

51
.1

0
fn

M
,f

rg
,k

tl
fr

g,
k
tl

0
64

22
07

.5
4

22
08

.2
0

m
w

F
,k

tl
fr

g,
k
tl

,l
m

p
0

70
21

47
.1

5
21

47
.2

6
fn

L
,f

rg
,k

tl
fr

g,
k
tl

0
79

14
9.

70
14

8.
71

fn
M

,f
rg

fr
g

0
84

21
42

.0
2

21
41

.4
3

h
t3

,f
rg

,t
st

fr
g,

k
tl

0
89

22
01

.7
4

21
99

.4
8

h
t3

,f
rg

,l
m

p
,t

st
fr

g,
k
tl

,l
m

p
0

95
21

41
.6

2
21

41
.4

3
h
t3

,f
rg

,t
st

fr
g,

k
tl

0
10

0
20

03
.8

3
20

02
.3

9
k
tl

k
tl

1
T

o
ta

l
%

9

187



T
ab

le
D

.9
:

T
L

M
re

su
lt

s
fo

r
C

om
b
in

ed
M

ea
su

re
m

en
t

9.

T
im

e
(s

)
M

e
a
su

re
d

S
S

(W
)

M
a
tc

h
e
d

S
S

(W
)

O
u
tp

u
t

G
ro

u
n
d

T
ru

th
D

a
ta

S
co

re

10
74

5.
91

74
7.

44
lm

p
,s

n
w

ts
t

0
30

93
6.

25
93

7.
12

m
w

F
,t

st
ts

t,
m

w
F

1
32

17
69

.8
6

17
71

.3
9

fn
L

,m
w

F
,f

rg
,s

n
w

,t
st

ts
t,

m
w

B
0

40
25

67
.6

2
25

67
.8

6
fn

L
,m

w
B

,l
m

p
,s

n
w

,t
st

ts
t,

m
w

B
,h

t2
0

50
15

04
.9

6
15

04
.9

0
fn

M
,h

t1
,m

w
F

,l
m

p
,s

n
w

ts
t,

h
t2

0
60

72
8.

58
72

8.
76

fn
M

,h
t1

,f
rg

,l
m

p
ts

t
0

80
92

9.
55

92
9.

31
fn

H
,h

t2
,f

rg
ts

t,
m

w
F

0
82

17
57

.7
4

17
57

.3
9

fn
H

,h
t2

,m
w

I,
fr

g,
lm

p
,t

st
ts

t,
m

w
B

0
90

18
28

.0
8

18
28

.8
7

h
t2

,m
w

F
,f

rg
,t

st
ts

t,
m

w
B

,l
m

p
0

95
17

69
.0

4
17

67
.8

5
h
t2

,m
w

F
,l
m

p
,t

st
ts

t,
m

w
B

0
10

0
18

25
.7

9
18

24
.5

2
fn

H
,h

t2
,m

w
F

,f
rg

,s
n
w

ts
t,

m
w

B
,l
m

p
0

10
5

17
64

.6
0

17
63

.5
0

fn
H

,h
t2

,m
w

F
,l
m

p
,s

n
w

ts
t,

m
w

B
0

11
0

72
9.

51
72

8.
76

fn
M

,h
t1

,f
rg

,l
m

p
ts

t
0

12
0

20
18

.0
9

20
18

.0
1

fn
H

,h
t3

,s
n
w

ts
t,

h
t3

0
14

0
12

93
.3

3
12

92
.0

3
h
t1

,m
w

I,
ts

t
h
t3

0
16

0
14

94
.9

1
14

94
.9

6
fn

L
,h

t1
,m

w
I,

fr
g,

lm
p
,t

st
h
t3

,m
w

F
0

16
2

22
84

.7
3

22
86

.2
2

h
t3

,m
w

F
,l
m

p
,t

st
h
t3

,m
w

B
0

16
7

13
30

.2
7

13
30

.4
6

h
t1

,f
rg

,s
n
w

h
t3

,m
w

I
0

17
0

39
.2

7
38

.7
3

m
w

I
m

w
I

1
18

0
21

1.
54

21
4.

68
fn

H
,f

rg
,l
m

p
m

w
F

0
18

1
98

9.
96

99
0.

82
fn

H
,m

w
F

,l
m

p
,s

n
w

m
w

B
0

19
0

15
27

.0
3

15
26

.6
2

fn
L

,h
t2

,m
w

I,
sn

w
m

w
B

,h
t1

0
19

7
56

1.
47

56
0.

73
h
t1

,m
w

I
m

w
I,

h
t1

1
21

0
52

7.
88

52
2.

00
h
t1

h
t1

1
23

0
73

0.
92

73
1.

31
ts

t
h
t1

,m
w

F
0

23
2

15
08

.1
7

15
08

.3
9

fn
M

,l
m

p
,s

n
w

,t
st

h
t1

,m
w

B
0

24
0

15
78

.5
4

15
78

.4
9

m
w

I,
fr

g,
sn

w
,t

st
h
t1

,m
w

B
,l
m

p
0

24
7

61
8.

79
61

8.
77

h
t1

,m
w

I,
lm

p
h
t1

,m
w

I,
lm

p
1

26
0

55
8.

87
55

9.
56

fn
H

,h
t1

h
t1

,m
w

I
0

27
0

52
1.

87
52

2.
00

h
t1

h
t1

1
28

0
0.

00
0.

00
n
u
ll

n
u
ll

1
T

o
ta

l
%

2
3

188



Appendix E

DETAILED CPM RESULTS

This appendix contains tables of the results produced when CPM is applied to

the combined measurements, as referenced from Chapter 5. These results are

reported at the measurement-by-measurement level. CPM provided the sec-

ond best overall accuracy of the three disaggregation techniques, improving

on the performance of TLM, as discussed in the overview of results contained

in Section 5.5.

CPM is a steady-state technique that considers both the real and reactive

power components of the measurements that it processes, as discussed in

Section 1.3.1. Due to the additional layer of information provided by the

inclusion of reactive power data, it might be expected to improve upon the

accuracy of TLM. The relative performance of TLM, CPM and EEC is dis-

cussed comprehensively in Chapter 5 and Appendix G.

A legend to the appliance name abbreviations utilised in the tables contained

within this appendix is provided below.
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Appliance Abbreviation

Toaster tst
Kettle ktl
Lamp lmp
Heater-Low ht1
Heater-Medium ht2
Heater-High ht3
Snackwich snw
Fan-Low fnL
Fan-Medium fnM
Fan-High fnH
Microwave-Front mwF
Microwave-Back mwB
Microwave-Inactive mwI
Fridge frg
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Appendix F

DETAILED EEC RESULTS

This appendix contains tables of the results produced when EEC is applied

to the combined measurements, as referenced from Chapter 5. These results

are reported at the measurement-by-measurement level. EEC provided the

best overall accuracy of the three disaggregation techniques, as discussed in

the overview of results contained in Section 5.5.

EEC is a transient technique that considers and compares real power wave-

form event edges found within the measurements that it processes, as dis-

cussed in Section 1.3.1. Due to the presence of unique identifying features

within appliance state change waveform event edges, EEC might be expected

to provide the best accuracy. The relative performance of TLM, CPM and

EEC is discussed comprehensively in Chapter 5 and Appendix G.

A legend to the appliance name abbreviations utilised in the tables contained

within this appendix is provided below. In each of the tables of results, posi-

tive or negative signs indicate the direction of the edge at each point in time

where an event is detected. The EEC implementation ensures that individual

appliance and combined measurement edge samples of opposing directions

are never correlated. Thus it may be assumed that a positive column denotes

the correlation value of a positive appliance edge sample, and a negative col-
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umn a negative edge sample. Note the special case of the microwave, where

the negative edge of a microwave magnatron event corresponds to a negative

edge for the second front section, the first section having no negative edge

associated with it.

Appliance Abbreviation

Fan-High fnH
Fan-Medium fnM
Lamp fnL
Heater-Low ht3
Heater-Medium ht2
Heater-High ht1
Microwave-Front1 mwF1
Microwave-Front2 mwF2
Microwave-Inactive mwI
Fridge frg
Kettle ktl
Lamp lmp
Snackwich snw
Toaster tst
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Appendix G

DETAILED DISCUSSION OF

RESULTS

This appendix contains detailed discussion and analysis of the results pro-

duced by TLM, CPM and EEC for each of the combined measurements. The

observations presented in Section 5.6 were drawn from the work contained

within this appendix and are summarised below:

• The appliance steady-state combination vectors utilised for TLM and CPM

contain favourable regions where the probability of obtaining a correct match

is higher than in other regions of the vector, reducing the reliability of the

results for these two techniques.

• The variability present in the measured total power levels has a signif-

icantly adverse impact upon the accuracy of the steady-state power level

identifications made by TLM and CPM.

• The degree of distinctiveness exhibited by each waveform event edge for

an appliance operational state change has a positive impact on the accuracy

of the identifications made by EEC.

• The correlation results returned by EEC may at times not be distinct
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enough for a definite ‘best match’ to a particular appliance operational state

change event edge to be made, adversely affecting the accuracy of the tech-

nique.

The results for the TLM, CPM and EEC approaches may be found in Ap-

pendices D to F respectively, and the accompanying ground truth data in

appendix B.
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G.1 Combined Measurement 1

G.1.1 TLM Performance: 3/8 - 38% Accuracy

The toaster activation event occurring at 10s is incorrectly identified by TLM,

being mistaken for a combination of three other appliances. The combined

sum of the expected real power consumption levels for those three appliances

differs from the measured steady-state by only 1W, whereas the expected

real power consumption of the toaster varies from the measured steady-state

by more than 21W. Thus it may be said that the TLM method has made a

reasonable assignment, given the expected and measured power consumption

levels. However a 21W discrepancy is not at all unprecedented. The mea-

sured power consumption levels may vary for a number reasons, ranging from

the behaviour of other devices in the system to noise, power supply fluctua-

tions and other usage dependent factors, such as resistivity and temperature

effects. This illustrates a major failing of the TLM method, in that one

combination of appliances can easily look like a another, a fact which is ex-

acerbated by even minor variabilities between expected and measured power

levels. The issue is further aggravated as more appliances are added into the

circuit being measured, as this increases the probability that appliance state

combinations with similar power consumption levels will be found.

All of the subsequent identification errors in the TLM pass may be ascribed

to the same problem, where incorrect appliance state combinations are found

to be closer to the actual measured level than those expected from the ground

truth data. Of note amongst the correct identifications is the toaster event

beginning at 30s. Here the appliance is correctly matched, yet it is misiden-

tified in three other instances of solo operation. This points once more to the

effects of the variability of measured power levels in situations that would

be expected to yield identical readings. Furthermore, where the toaster is

incorrectly identified, a different combination of appliances is assigned to the

steady-state in each case. The laboratory experiment contains only eight rel-
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atively simple appliances, yet sufficient potential power consumption matches

have been generated to adversely affect the accuracy of this disaggregation

approach. Given that any electrical circuit found within a household could

easily be populated with a larger number of appliances, this lessens the fea-

sibility of successfully implementing TLM in real-world NILM systems.

G.1.2 CPM Performance: 4/8 - 50% Accuracy

The CPM method performs better than TLM for this combined measure-

ment, improving it by one binary point via the correct identification of the

toaster and fan-high combination beginning at 60s. Whilst the solo toaster

steady-states are just as inaccurately matched as in the TLM pass, more con-

sistency is present in the incorrect identifications, with the same erroneous

combination being assigned at 50s and 71s. This provides an indication of

the reduction in the number of similar potential power consumption matches

available for each measured level, which may be attributed to the reactive

power phase refinement of the real power appliance state combination vec-

tor. However, the error that remains only serves to emphasise the problem

of similar levels discussed in Section G.1.1. Despite the reduced size of the

appliance state combination vector, the number of potential matches still

remains too high for steady-state techniques such as TLM and CPM to be

effective.

A partially correct identification may be considered to be entirely incorrect

in this context. For example, at 20s the combination of toaster and fan-

high is incorrectly selected ahead of the toaster and fan-low. CPM has not

truly recognised the presence of the toaster as a component in the steady-

state, as it is merely matching numbers with no other information attached.

Thus the presence of the same appliance in both the ground truth data and

the CPM output may be considered to be relatively coincidental. Certainly,

the two results are not completely disconnected, as the power consumption

of the toaster puts it within the right range for potential inclusion in the
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output. However, this connection is relatively insignificant given the number

of alternative appliance state combinations with similar power consumption

levels.

G.1.3 EEC Performance: 6/8 - 75% Accuracy (Hard),

8/8 - 100% Accuracy (Soft)

EEC provided the best performance of the three techniques for this com-

bined measurement, taking the hard score as the parameter of most interest.

The perfect soft score was attained through correct identification of the fan

in each instance, with some incorrect identifications of the various operating

speeds proving the difference between the two scores. Unlike the steady-state

techniques, EEC can be credited for these partially correct assignments, as

all three of the fan setting waveforms possess similar positive edges. Thus, a

characteristic particular to the appliance in question has been used to make

the identification and it cannot be considered to be random. The toaster

and fan waveforms have distinctive positive edges, which could well have

contributed to the relatively high accuracy attained for this combined mea-

surement. It may be noted that the two hard score errors occur on negative

edge events, and that the waveforms for both of the appliances involved fea-

ture approximately square and negative edges that lack significant transient

features. Thus this disaggregation pass presents an example of the effect of

waveform event edge distinctiveness upon the performance of EEC.

The EEC results also provide an opportunity to discuss how the use of mem-

ory, as presented in Section 6.3, could prove beneficial to the technique. At

50s a fan-medium state negative edge is found, which EEC mistakenly as-

cribed to the fan-low state. However, if it was known that the fan-low state

had not been activated previously, then that incorrect state could have been

eliminated as a possible choice. A similar error occurs at 71s. These two

instances serve to deprive the technique of a perfect hard score for this pass,

and thus the use of memory may be seen to have the potential to significantly
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improve EEC in such scenarios where the accuracy is already relatively high.

G.2 Combined Measurement 2

G.2.1 TLM Performance: 2/17 - 12% Accuracy

As with the previous TLM pass, discussed in Section G.1.1, appliance state

combinations within a similar range of real power consumption values are

confused throughout this set of results. For example, at 19s the toaster and

microwave-inactive states, with a combined value of 770W, are confused for

the fan-medium, lamp and snackwich states, with a combined value of 777W.

These sorts of incorrect identifications are a consequence of the variability of

measured power levels and the large number of potential matches within a

small range of power values. The 7W discrepancy found between the expected

and measured power level is minimal, only making up a very small percent-

age of the total range of power values, as presented in Table G.3. Thus this

TLM pass reinforces the observations drawn from the first combined mea-

surement, emphasising how difficult it is to make correct steady-state real

power matches under these conditions.

TLM scored 38% accuracy for Combined Measurement 1, yet it only man-

aged achieved 12% accuracy in this instance, a significant difference in perfor-

mance. This may be explained by variability in the measured power levels,

bearing in mind that TLM utilises the same appliance state combination

vector for all passes. Combined Measurement 1 must contain steady-states

that are closer to the individual measurement power levels than found in

Combined Measurement 2. However, it should also be noted that the former

consists of only 8 entries, compared to 17 in the latter. Thus any random

element of success will carry far more weight in the first combined measure-

ment than the second, and this factor may well have influenced the disparity

between accuracies seen for the two TLM passes. This unequal weighting
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of the individual disaggregation instances within each combined measure-

ment make it necessary to use the EWA evaluation approach, as discussed

in Section 5.5, if a clear picture of the overall technique accuracies is to be

gained.

G.2.2 CPM Performance: 8/17 - 47% Accuracy

The microwave, which features heavily in this combined measurement, has

a reactive power component that was only matched with 71% accuracy. All

of the reactive power errors occur where the microwave-inactive state is op-

erational at the same time as an appliance with medium to high real power

consumption levels, such as the toaster, resulting in a large reduction of the

measured reactive power level that leads to the steady-state being identified

as a null state. This phenomenon, discussed in Sections 3.3.2, 3.3.3, 3.3.6 and

3.3.9, led to the investigation of an alternative CPM variant that excluded

the microwave-inactive state from the reactive power matching phase. Sec-

tion 5.3.1 presents the findings that resulted in its retention. At each point

in time where this may be noted, such as at 19s, the microwave-inactive state

is misidentified as a null state and its real power equivalent is removed from

the appliance state combination vector. This prevents it from being right-

fully identified during the real power matching phase, and thus enforces a

incorrect identification for that steady-state period.

Despite this handicap, CPM still improves markedly upon the TLM score for

this combined measurement, increasing the number of correct identifications

by 6. Perfect scores are gained for every microwave state operating without

the presence of other appliances. In these cases, the correct microwave state

must be picked from a reduced real power appliance state combination vector

that will only contain combinations that include that particular microwave

state. Since the closest approximation to a null state in that vector will be

the microwave state in question, the probability of a correct identification is

vastly improved. These cases make up all of the additional 6 scores between
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the TLM and CPM passes. Thus CPM has failed to improve identification

accuracy when it comes to the more complex steady-states, providing a fur-

ther illustration of how the reduced appliance state combination vectors are

still too large for consistent accurate matching of levels to be realised.

G.2.3 EEC Performance: 10/17 - 59% Accuracy (Hard),

10/17 - 59% Accuracy (Soft)

The distinctive microwave positive edges are identified with 88% accuracy

in this combined measurement, with only a single edge being misidentified

at 93s. The high level of accuracy exhibited for this appliance contributes

to the overall performance of the technique, making up 64% of the correct

identifications for this pass. This reinforces the observation that the distinc-

tiveness of the waveform edge shape has a strong impact on the effectiveness

of EEC, as would be expected for such a transient edge event technique and

is discussed in Section 5.6.

However, the toaster also has a relatively distinctive positive edge compared

to the other appliances included in the experiment. The toaster waveform

edge is not obscured by any other appliance activities, with well over 1000

data points to be found between it and the nearest magnatron event. This

could provide a counter to the argument made above. However, it does not

hold much weight as the toaster only occurs once in this measurement, and

has a less distinctive shape than the microwave-front edges do. The toaster

is mistaken for the kettle where it becomes active at 19s. Whilst the two

appliances have very different peak amplitudes, they have moderately similar

shapes, both possessing a transient peak and gradual ramp down to steady-

state. This may have contributed to the kettle showing a higher correlation

value than the toaster for this event.

Microwave-inactive events are incorrectly attributed to both fan-low and fan-

high throughout the measurement. All three waveforms have relatively sim-
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ilar peak amplitudes and edge shapes. At 17s the microwave magnatron

negative edge is mistaken for the snackwich. Again, both have relatively

similar negative edge shapes, but the magnitude of the change in each case

is very different. All of the appliance waveform negative edges are relatively

square and featureless compared to the level of distinctiveness exhibited be-

tween the positive edges, as shown in Chapter 3.2. This should theoretically

lead to the accuracy of positive event edge identifications outperforming the

negative edge matches for all of the combined measurements. The values con-

tained in Table G.1 serve to confirm this, showing how positive edge EEC

identifications outperform negative edges throughout the vast majority of the

measurements.

Table G.1: Positive and negative event edge EEC accuracies for all combined
measurements, showing hard and soft scoring.

Hard
Positive

(%)

Soft
Positive

(%)

Hard
Negative

(%)

Soft
Negative

(%)

Comb. Meas. 1 100 100 50 100
Comb. Meas. 2 70 70 43 43
Comb. Meas. 3 78 89 18 27
Comb. Meas. 4 86 86 43 71
Comb. Meas. 5 50 75 25 38
Comb. Meas. 6 67 72 38 46
Comb. Meas. 7 14 29 0 0
Comb. Meas. 8 17 17 40 40
Comb. Meas. 9 72 78 0 15
Total 61 68 29 42
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G.3 Combined Measurement 3

G.3.1 TLM Performance: 5/29 - 17% Accuracy

This combined measurement contains a null state midway through the ground

truth data that is correctly identified, as are all null states found throughout

the measurements. This provides an ‘easy’ score for TLM, as the closest

appliance state level to the null found within the appliance state combination

vector is fan-low, at over 25W. Thus noise exceeding this level would have

to be present in the measurement in order for an incorrect identification to

be made. The toaster state operating alone is correctly identified at 50s, yet

TLM fails to match it accurately at 89 second. This provides another example

of the inconsistency of TLM disaggregation performances throughout the

combined measurement.

G.3.2 CPM Performance: 11/29 - 38% Accuracy

CPM improves significantly upon the TLM performance for this combined

measurement, making an additional 6 correct identifications. The reactive

power measurement contains multiple microwave events, which are matched

with 83% accuracy, failing only in the instances where the microwave-inactive

state is affected by the operations of other appliance. As discussed in Sec-

tion G.2.2, CPM exhibits high accuracy when an appliance with a reactive

power component is operating alone, given that this state becomes equiva-

lent to a null state within the real power appliance combination vector that

is produced, and is thus easy to match accurately.

An exception to this may be found at 152s, where the microwave-back state

was operating alone, but CPM identified the fan-low state as being active as

well. This indicates the presence of sufficient noise to raise the measured real

power level to a point that better approximated the fan-low and microwave-

back combination than the microwave-back state alone.
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G.3.3 EEC Performance: 16/29 - 55% Accuracy (Hard),

19/29 - 66% Accuracy (Soft)

As with Combined Measurement 2, the presence of the readily matchable

microwave-front edges in the combined measurement results in a better EEC

performance than exhibited by the two steady-state techniques. In this pass

the magnatron positive event edges were identified with 100% accuracy. The

first positive toaster event edge is misidentified at 19s, but the second ac-

tivation of the appliance at 169s is correctly identified. This reiterates the

inconsistency of identifications for the same appliance within a single com-

bined measurement, where the shape of the event edge of the appliance in

question is not particularly distinctive.

G.4 Combined Measurement 4

G.4.1 TLM Performance: 8/14 - 57% Accuracy

The commonly observed types of power level matching errors may be seen

in this set of results. For example, at 9s the snackwich is mistaken for a

combination of the fridge, lamp and heater-low, where a steady-state power

level of 698W is measured. The former has an individual steady-state level

of 689W, and the latter combination consumes an expected power level of

700W. The last six identifications prior to the final null state are made cor-

rectly, all of which involve low real power consuming appliances. The lower

the measured steady-state level, the less likely it is that a large number of

appliance state combinations will be found that have a similar power con-

sumption value, resulting in lower potential error when performing matches.

Earlier in the combined measurement, between 9s and 130s, the measured

power consumption levels are higher and the accuracy is far lower, with only

a single correct identification found at 69s. This observation leads to the

discussion of favourable matching regions within the appliance state combi-
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nation vectors that is conducted in Section 5.6.

G.4.2 CPM Performance: 10/14 - 71% Accuracy

As with Combined Measurement 1, no appliances with reactive power com-

ponents are found in the aggregated measurement. CPM still reduces the

size of the appliance state combination vector in such cases by eliminating

any states that include the fridge or microwave. As with the TLM pass, the

snackwich and lamp combination found at 69s is correctly identified. But

unlike the TLM pass, it is accurately matched again at 110s. A further

improvement is found at 9s where the snackwich state operating alone is cor-

rectly identified. However, the larger combinations of appliances, which draw

higher real power levels, remain misidentified. Thus whilst the reduction in

the number of possible appliance state combinations has led to increased

accuracy, the same underlying challenges facing TLM are still seen in the

results for this CPM pass.

G.4.3 EEC Performance: 9/14 - 64% Accuracy (Hard),

11/14 - 79% Accuracy (Soft)

For this combined measurement EEC performs worse than CPM, although

still offering better accuracy than TLM. This is the first of the combined mea-

surements where it has not been the best of the disaggregation techniques.

Of note in the results is the correct identification of both the snackwich pos-

itive and negative event edges. This appliance has a characteristic waveform

where no steady-state is reached, with a steady ramp falling from the front

to the back edges as shown in Section 3.2.5. This means that both edges are

relatively distinctive, which is unusual amongst the appliances included in

the experiment, most of which have waveforms with square and featureless

negative edges. Thus this characteristic may have assisted EEC in correctly

identifying both snackwich events, as seen at 9s and 144s.
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The lamp is activated twice within the combined measurement, first at 29s

and then again at 210s, with deactivation events following in each case. Only

one of the two positive edges is correctly identified and none of the negative

edges are matched to the right appliance. The positive edges of the lamp

waveform are not distinctive, although there is a small ramp found directly

after the initial edge, and the negative edges are square with no accompanying

features. This influences the performance of EEC for this appliance, where

only 25% of the edge events were accurately identified in this pass.

G.5 Combined Measurement 5

G.5.1 TLM Performance: 16/16 - 100% Accuracy

TLM turns in a perfect performance for this combined measurement, with

every match up being made correctly. Given the poor performance of the

technique for all of the previous combined measurements, this result is unex-

pected. However, a look at the power consumption levels of the appliances

featured in the combined measurement provides insight into the mechanics

behind the perfect accuracy. The heater-low state has the highest expected

consumption, at 522W. Whilst this is not in the bottom range of appliance

real power steady-state values, it is still only just above the mean for all

the appliance states and ranked the 8th lowest power consumer, as shown in

Table G.2. The lamp consumes 58W, and the fan states low through high

consume only 26W, 30W and 38W respectively. This places the four states

in the bottom 5 positions in terms of real power consumption.

The combination of appliances found in this combined measurement results

in the measured power levels being low, which means that matches are be-

ing made towards the lower end of the appliance state combination vector.

As discussed in Section 5.6, a favourable matching region in the appliance

state combination vector may be found below the median levels. If a higher
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Table G.2: Individual appliance steady-state real power consumption level
statistics.

Appliance SS Power
(W)

Ascending
Rank

Toaster 731.31 10
Kettle 2002.39 14
Lamp 58.05 5
Heater-Low 522.00 8
Heater-Medium 772.68 11
Heater-High 1291.06 13
Snackwich 689.39 9
Fan-Low 25.81 1
Fan-Medium 29.65 2
Fan-High 37.56 3
Microwave-Front 205.81 7
Microwave-Back 1063.30 12
Microwave-Inactive 38.73 4
Fridge 119.07 6
Mean 541.91
Median 363.91

heater level were used it could result in a lower accuracy being realised, as a

larger number of appliance combinations would be available to be mistaken

for the measured power level. Examples of this may be seen in combined

measurements 6, 7 and 8. Table G.3 shows the maximum measured power

level for each of the combined measurements, along with the highest correctly

matched power level for TLM and CPM.

Combined measurements 4 and 5 have the lowest measured steady-state lev-

els, and the best accuracies for both TLM and CPM. This relationship does

not hold for all of the measurements, but it is interesting to note the sig-

nificantly lower measured steady-state power levels and the corresponding

markedly superior accuracies in these two cases. The total expected power

consumption of the heater-low, fan-high and lamp states is 617W, which is

well below the closest expected individual appliance power level of 689W for
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the snackwich. The fridge and heater-low states give a combined level of

641W, which is still removed from 617W. The closest appliance state combi-

nation vector power level found below 617W is 459W, generated by the fridge,

microwave-front, fan-high and lamp states. Looking through the TLM re-

sults for all of the combined measurements, it may be seen that none of these

numbers are likely to be matched to one another.

This provides another illustration of the manner in which certain appliance

combination steady-state levels can sit in a region of the appliance state

combination vector where the probability of a correct match being made is

radically increased, due to the lack of similar levels in the vector. Section 5.6

contains further discussion of the existence of favourable matching regions,

the range of values of which are dependent on the power characteristics of

the appliances incorporated in the circuit being disaggregated.

G.5.2 CPM Performance: 16/16 - 100% Accuracy

As the CPM method may be seen to improve upon the TLM accuracy for

each of the combined measurements, it may be assumed that CPM would

score 100% for this measurement, being a refinement of the TLM method.

However, this assumption is false. Where an appliance state is incorrectly

matched in the reactive power phase of CPM, errors will be carried through

to the real power matching phase. Thus could lead to CPM exhibiting poorer

performances than TLM, although this is not the case for any of the combined

measurements. However, no errors are experienced in the reactive power

matching phase for this combined measurement, and thus CPM performs as

expected. If the unrefined TLM real power appliance state vector generated

by TLM performs at 100% accuracy, then the reduced version produced by

CPM would be expected to match that performance under these conditions.
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G.5.3 EEC Performance: 6/16 - 38% Accuracy (Hard),

9/16 - 56% Accuracy (Soft)

In this EEC pass, all of the fan-high, fan-medium and fan-low waveform pos-

itive edges are correctly identified. However, only 25% of the corresponding

negative edges are matched accurately. The positive edges of the fan wave-

forms are relatively distinctive, possessing small transient peaks followed by

ramps down to a steady-state, as presented in Section 3.2.6. As with the

majority of the appliances, the waveform negative edges are square and con-

ventional. Thus this performance of EEC is consistent with previous obser-

vations in terms of the disaggregation of fan events.

At 170s and 290s, both negative event edges, the true appliance state changes

are mistakenly attributed to the snackwich. Given that the snackwich is the

only appliance to feature a relatively distinctive negative edge, it is contrary

to expectation that it should be selected ahead of other appliances with more

conventionally shaped negative edges. A further unexpected error may be

found at 30s, where an activation of the lamp is attributed to the fridge.

The fridge has a very distinctive waveform positive edge, as presented in

Section 3.2.8, that markedly it from that of the lamp, making it a particularly

counter-intuitive match.

None of the lamp and heater-low waveform edges are correctly identified

where they are found in the combined measurement, regardless of their di-

rection of change. As they make up 50% of the detected events, this par-

ticular poor performance makes a significant contribution towards bringing

down the overall accuracy for this combined measurement. Both the lamp

and heater have unremarkable positive and negative waveform edges, which

may contribute to their repeatedly incorrect identification here.
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G.6 Combined Measurement 6

G.6.1 TLM Performance: 5/31 - 16% Accuracy

This combined measurement includes the states heater-medium and heater-

high, which have expected power consumption levels of 773W and 1291W

respectively. None of the steady-states containing either of these two appli-

ance states are identified correctly. The higher power consumption of these

two states most likely places the combinations that they are included in into

a densely populated range of the appliance state combination vector, mak-

ing it more difficult to obtain an accurate match. For example, at 80s the

ground truth data shows the following appliance combination; fridge, heater-

medium and microwave-front with a combined expected power consumption

of 1098W. However, the vector entry matched to this steady-state contains

the fan-low, microwave-front, fridge, lamp and snackwich states with the

same 1098W power consumption level, where the measured steady-state is

1099W. This provides a classic example of the fundamental flaw found in

TLM, that even a small number of appliances can generate similar or even

approximately identical steady-state power levels, making accurate matching

implausible under non-ideal conditions.

The few correct identifications made in this TLM pass feature combinations

of relatively low power appliances. Examples of this may be seen at 193s and

278s, where the measured steady-states levels are 167W and 315W respec-

tively. These successful identifications complement the favourable matching

region discussion conducted in Section 5.6. However, numerous other in-

stances of low measured power steady-states are incorrectly identified through-

out the measurement, such as the 38W level at 199s and the 168W level at

259s. Thus, whilst the concept of favourable matching regions still holds, a

low measured steady-state level is no guarantee of an accurate match being

made.
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G.6.2 CPM Performance: 10/31 - 32% Accuracy

As might be expected, CPM improves upon the TLM results for this disag-

gregation pass. The reactive power matching phase is performed with 90%

accuracy, where the 10% shortfall may be predominately attributed to the

incorrect identification of microwave-inactive states in the presence of large

real power consumption. A rare reactive power matching error not involving

the microwave-inactive state may also be seen at 181s , where the combina-

tion of fridge and microwave-back states is taken to be the microwave-back

alone. This could indicate the presence of high reactive power noise for this

steady-state period, or could be an occurrence of the same reactive power

measurement inconsistency discussed in Section 3.3.4.

Similarly to the CPM performance for Combined Measurement 3, the main

source of the improvement for this combined measurement comes from the

correct identification of the appliances with reactive power components when

operating without the presence of other purely resistive appliances. Thus the

reactive power matching phase serves to introduce easily matchable artificial

null states into the results, as discussed in Section G.3.2. The remaining

error for this combined measurement may be ascribed to the same steady-

state level identification difficulties discussed for TLM and CPM earlier in

this appendix.

G.6.3 EEC Performance: 17/31 - 55% Accuracy (Hard),

61% Accuracy (Soft)

This combined measurement contains microwave events, which are well iden-

tified by EEC. For this pass, 79% of the microwave positive waveform edges

are accurately assigned. The corresponding negative edges are only identi-

fied with 50% accuracy, as fits previous EEC passes containing this appliance.

The more distinctively shaped microwave positive edges are easier for EEC

to match than the square and conventional negative edges, complementing
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the discussion conducted in Section 5.6. This observation may be applied to

the relatively square heater edges, which lack distinctive transient features,

and are only identified with 33% accuracy in this combined measurement.

However, the fridge is not correctly identified at any point in the combined

measurement. Given the distinctive shape of the positive waveform edge

for this appliance, presented in Section 3.2.8, and the accuracy exhibited by

EEC when matching the similarly distinctive microwave positive edges, a rel-

atively high level of accuracy would be expected here. Throughout the com-

bined measurements, six fridge events may be found, which are split equally

between positive and negative edges. None of these events are correctly iden-

tified. This poor performance contradicts the fundamental underpinnings of

EEC, as the distinctively shaped edge event of the appliance has not led to

good identification performance.

This poor accuracy may be ascribed to two factors. Firstly, the large tran-

sient peak found on the positive edge is relatively short in duration and thus

may have minimal impact on the overall shape of extracted edge, depending

on the sample parameters utilised. Where EEC was applied using a positive

edge sample length of 75 data points, 30% of the length used here, a single

identification was performed correctly. However, the match was made for a

negative edge, and thus does not necessarily support the argument that the

shortening of the sample length emphasises the distinctiveness of the edge

event shape. Secondly, the fridge waveform negative edges are square and

conventional in shape. Thus the three positive edges found throughout the

combined measurements, with their pronounced transient peaks, are of the

most interest in the context of this discussion. This means that conclusions

drawn from the incorrect identifications of the fridge do not carry sufficient

weight to be extended to EEC as a whole, given that such a small sample

size could easily be subject to other random factors that might render its

performance anomalous.
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G.7 Combined Measurement 7

G.7.1 TLM Performance: 6/14 - 43% Accuracy

Two of the correct identifications made during this TLM pass are for the lamp

operating alone, at 10s and 229s, where this appliance state combination is

matched with 100% accuracy throughout the combined measurement. Whilst

this appliance has a low power consumption, 58W, it is surrounded by a few

close potential matches due to the fan consumption levels. For example,

a combination of the fan-low and fan-medium states consumes 55W, and

fan-high with fan-low consumes 63W. Thus the accurate matching of these

solo lamp states indicates the presence of low noise levels in this combined

measurement.

A null state may be found at 135s. The two null and lamp steady-states

featured in the combined measurement make up 4 out of 6 of the correct

identifications, a significant portion of the TLM score for this pass. TLM

identifies null states relatively easily, given that noise of over 13W would

have to be experienced in order for it to be mistaken for the fan-low level

of 26W. Whilst such a noise level would not be unprecedented, it is unlikely

to be found during a null state, as appliance operations are responsible for

much of the variation found between measured and expected power values.

G.7.2 CPM Performance: 9/14 - 64% Accuracy

This combined measurement includes no appliances with reactive power com-

ponents, thus CPM limits the appliance state combination real power vector

for all steady-states in the combined measurement to combinations of purely

resistive appliances. The TLM pass for this combined measurement included

many appliances with reactive power components in the identifications, each

of which were logically erroneous. Thus this limitation of the state combi-

nation vector must have positive implications for the disaggregation perfor-
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mance of CPM, as may be seen in the 21% increase in accuracy between

the TLM and CPM passes. Both the solo toaster and heater-high states, at

129s and 149s respectively, are misidentified. This reinforces the idea that

appliance steady-states featuring higher power consumption levels are more

difficult to match accurately, as they do not fall into the favourable matching

region discussed in section 5.6.

especially when considered alongside the TLM lamp identification perfor-

mance discussed in Section G.7.1.

G.7.3 EEC Performance: 1/14 - 7% Accuracy (Hard),

2/14 - 14% Accuracy (Soft)

The poor performance exhibited by EEC for this combined measurement is

sufficiently anomalous for it to be considered an outlier. Apart from the

toaster, none of the event edges produced by the appliance states operated

within this combined measurement are particularly distinctive. The heater

and lamp have approximately square and conventional positive edges, which

hinders the ability of EEC to distinguish between appliances accurately. As

discussed earlier in this appendix, none of the appliances have distinctive

negative edges except the snackwich, which is not included here. Thus the

poor performance of EEC for this pass fits in with the discussion of event

edge distinctiveness conducted in Section 5.6, given that the single correct

identification is for a toaster positive edge, found at 193s, which is the most

distinctive of the edges found in this combined measurement.

Another major problem hampering EEC performance throughout the com-

bined measurements is the similarity between correlation results returned for

many event edges. For example, at 90s the difference between the correlation

figures for the correct and incorrectly matched appliance states is only 0.001.

It is difficult to be confident about assignments made where the differences

are this low. However, it should be borne in mind that the field of options
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has already been significantly narrowed in these cases, so the final outcome

cannot be considered to be entirely random. Conversely, EEC sometimes

returns low correlation values for all appliance states at a particular edge.

An example may be found at 169s in this combined measurement, where the

highest correlation value was 0.43, the best of a number of bad matches. For

both of these extremes, a correct match does not inspire confidence. A more

convincing correlation value, differentiated from the rest of the field by a sig-

nificant margin, would present a far more definitive outcome in such cases,

as discussed further in Section 5.6.

G.8 Combined Measurement 8

G.8.1 TLM Performance: 1/11 - 9% Accuracy

This is the only combined measurement not to terminate in a null state.

As null states are easily identified by the steady-state disaggregation tech-

niques, this makes this combined measurement harder to aggregate for TLM

and CPM. However, despite this impediment, the final steady-state is cor-

rectly identified as the kettle operating alone. This is the single accurate

match made for this TLM pass. As the kettle is active for large portions of

the combined measurement, the measured power levels are elevated for the

majority of the steady-states. By virtue of being the highest power consum-

ing appliance, at 2002W, all matches including the kettle must be made a

relatively high power level within the state combination vector. This is asso-

ciated with a low level of disaggregation accuracy, as discussed throughout

this appendix, and in Section 5.6.

For example, at 49s the fridge, kettle and lamp are active with a combined

expected power level of 2180W. However, the measured level for that steady-

state is 2212W, and the resulting incorrect match is made at approximately

the same power level. There are sufficient appliance state combinations avail-
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able within that range for the measured level to be easily assigned to another

erroneous appliance state combination vector entry, as has occurred here,

where the 32W disparity between the measured and expected steady-state

power levels is to large for a correct match to be a feasible outcome.

The single correct identification made for the solo kettle state occurs where

the fridge is deactivated, as may be seen between 100s and the end of the

measurement. Given the poor performance TLM exhibits throughout the

combined measurements when matching the higher power consuming appli-

ances, the kettle might be expected to be among the misidentified appliances

in this pass. Taking this in mind, it is prudent to look at the fridge a little

closer. At 79s, the total measured steady-state level is 150W, which is 31W

higher than expected for the fridge when operating alone. This either means

that the measurement contains high noise levels at this point, or that the

fridge is simply consuming unexpected levels of power. It is possible that the

fridge entered some unanticipated mode of operation that was not present

during the initial measurements, resulting in the additional power consump-

tion. This raises a further concern involving the use of steady-state power

disaggregation techniques such as TLM and CPM; appliances may possess

hidden states that become active at unanticipated points in the total power

measurements, introducing error into the disaggregation process.

G.8.2 CPM Performance: 1/11 - 9% Accuracy

In a rare state of affairs, CPM fails to better the reported accuracy of TLM

for this pass. The fridge, which is almost constantly present throughout the

combined measurement, possesses a reactive power component which is iden-

tified with 100% accuracy. This means that the appliance state combination

vector is reduced without introducing any error into the results, and thus this

CPM pass might well be expected to improve upon the TLM performance

significantly.

Whilst the scores are not improved, perhaps as a result of the high power
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levels and possible variability of fridge operational levels discussed for TLM in

Section G.8.1, the erroneously assigned state combinations do differ between

the TLM and CPM results. At 9s, 39s, 49s and 64s the combinations matched

by CPM to the measured levels are closer than seen in the TLM pass. Thus

CPM can be seen to have provided some form of improvement in this case,

however marginal.

G.8.3 EEC Performance: 3/11 - 27% Accuracy (Hard),

3/11 - 27% Accuracy (Soft)

Whilst EEC does outperform TLM and CPM here, it still delivers one of its

worst accuracies. The three successes arise from the correct identification

of the positive and negative edges of the kettle waveform, plus the negative

edge of the lamp waveform. None of these event edges are particularly dis-

tinctive, and thus they would not necessarily be expected to be candidates

for accurate matching. The fridge is the only appliance featured in this com-

bined measurement that might be expected to be readily correctly identified

by EEC, given its distinctive waveform positive edge. However, as discussed

in Section G.6.3, the positive and negative waveform edges of this appliance

are matched poorly throughout the combined measurements. Aside from the

notable exception of the fridge, the low accuracy realised when attempting

to apply EEC to the set of appliances included in this combined measure-

ment are a product of their lack of distinctiveness, as discussed earlier in this

appendix and in Section 5.6.
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G.9 Combined Measurement 9

G.9.1 TLM Performance: 7/31 - 23% Accuracy

Whilst this combined measurement contains the highest number of appli-

ances, there is no point in time where all four appliances are simultaneously

operational, as discussed in Section 3.3.9. A number of high power consump-

tion states are included amongst those present in the measurement, namely

the heater-high, microwave-back, heater-medium and toaster states, with ex-

pected consumption levels of 1291W, 1063W, 773W and 731W respectively.

These levels serve to push the measured real power steady-state values into

the mid to upper range on the appliance state combination vector, making

it hard for TLM to make accurate matches. Examination of the differences

between the measured and matched real power levels reveals that the ma-

jority of matches are close in value. This indicates that the large number of

appliance state combination levels available for matching in the higher ranges

of the state combination vector are largely responsible for the low level of

accuracy realised by TLM for this pass. This is in line with the related

discussions conducted throughout this appendix and in Section 5.6.

G.9.2 CPM Performance: 10/31 - 32% Accuracy

As might be expected, CPM improves on TLM for this combined measure-

ment by reducing the size of the appliance state combination vector. The

reactive power matching phase is only conducted with 87% accuracy, thus

some error is introduced into the process that prevents CPM from provid-

ing a greater improvement on TLM than the 9% reported here. The main

source of the error found amongst the reactive power identifications is the

erroneous identification of the microwave-inactive state as a null state, which

is a side-effect of the CPM variant chosen, see Section 5.3.1. However, a

variation on this commonly observed CPM error is seen at 210s, where the
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microwave-inactive state is identified as being present in the reactive power

measurement even though the ground truth data indicates that this is not

the case. The measured reactive power steady-state at this point in time is

18VAR, which is the cause of this error, and could be ascribed to noise or

some other variation in the reactive power measurement.

G.9.3 EEC Performance: 13/31 - 42% Accuracy (Hard),

16/31 - 52% Accuracy (Soft)

Whilst this is not a great performance for EEC, it nonetheless provides a

marked improvement on the accuracies of TLM and CPM. A big factor in this

success is the presence of the microwave in the combined measurement, with

100% of the distinctive microwave positive edges being identified correctly.

None of the microwave negative edges, which are approximately square and

without significant transient features, are accurately matched. This rein-

forces the observations drawn from the discussions of event edge distinctive-

ness conducted for EEC throughout this appendix and presented in Section

5.6. For the rest of the event edges in the combined measurement, the lack

of both distinctive transient features and definitive correlation results serve

to keep the each accuracy low.

With the microwave positive edge events removed from the combined mea-

surement, the overall accuracy falls to 5/23, or 22%. This highlights a pos-

itive attribute of EEC, as the performance is indicative of how reliant the

technique is upon the individual characteristics of the appliances included

in the total power measurement. Thus, any improvement introduced into

the detection of those characteristics, such as the extraction and emphasis of

the most distinctive shapes from the sampled edges of the appliance wave-

forms, will increase the accuracy of EEC for all of the appliance states that

it encounters.
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Appendix H

HCII2014 PUBLICATION

A paper covering early research into the development of an audio warning

system for power consumption in rural South African households, which pro-

vided the initial inspiration for the research contained in this dissertation,

was published in the HCII2014 conference proceedings and is presented in

this appendix.

The residences targeted by this research feature pre-paid power meters, con-

taining relatively low rated current breakers that frequently trip during peak

power usage periods. The use of audio cues is investigated as a means of dy-

namically notifying residents of their electricity usage levels, both preventing

failures and informing their power consumption behaviour.

A variety of audio characteristics, including tempo, rhythm, pitch and vol-

ume, are assessed; such that the best metrics may be established for designing

audio cues to be implemented in this context.
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Abstract. Low cost houses in South Africa are supplied with a pre-payment meter and 
a circuit breaker that trips at a low power level (about 20A, 4.5kW), resulting in many 
nuisance trips. Four categories of audio cues, each being able to represent five levels of 
power consumption, are assessed. A survey of 62 people was conducted. The numerical 
analysis of the results and the perceptions of the respondents both indicate that the use 
of changing tempo and texture is the most effective at conveying feedback information 
on the power consumption in the home. 

Keywords: audio cues, power demand feedback, low cost 

1   Introduction 

This paper addresses the issue of developing a design methodology for providing 
immediate and intuitive audio feedback about high power consumption, especially for 
periods when the power level is approaching the capacity of the main circuit breaker. 

On any electrical power system (national grid, microgrid or nanogrid) it is ex-
tremely important that the flow of power between generators and loads is balanced at 
any instant in time. This ensures stable operation of the system and avoids the disrup-
tion that will ensue if the grid is blacked out due to instability.  

Stability can be addressed from the generation side as well as the consumption 
side. An adequate reserve margin on the generation side (embodied in the kinetic 
energy of the spinning turbo-generators, or stored battery charge on microgrids) gives 
the grid operators the freedom to dispatch more energy from the generators to the load 
side at short notice. In particular, South Africa is facing severe generation constraints 
at the present moment in time.  The generation reserve margin of the national utility 
company (ESKOM) has been as low as 0.17% on 13 May 2013 [1]! 
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Load side response (better known as demand side management) is now coming to 
the fore, as it has been demonstrated that it can be more economical than expanding 
the generation side [2]. However, demand side response is challenging because it 
requires that a large number of consumers actively participate. In South Africa, na-
tional campaigns are in place to encourage households to swap incandescent lights for 
more efficient lighting solutions and consumers are being offered rebates on solar 
water heaters [3]. Furthermore, real time alerts are displayed on state-owned televi-
sion channels to reduce peak demand; this visual information system takes the form of 
a special graphical display at the bottom of the television screen that indicates the 
current demand status to households via the use of colours and bar charts. The scheme 
provides information to consumers about the state of the grid, and has been shown to 
have an impact at a national level [4], but does not tell consumers much about their 
own contribution to the total demand. This is a problem because many residents in 
rural areas often have their power consumption limited by pre-paid electricity meters, 
which are equipped with feed-in breakers that trip at a modest level of 20A [5], cut-
ting off the power supply with no warning. 

 

 
Fig. 1. A typical installation showing the pre-payment meter and 20A breaker. 

Although there is the occasional use of automation to disconnect hot water systems 
during periods of high power demand [6], this intervention is often not sufficient to 
prevent the breaker from tripping. Further intervention is frequently necessary, but the 
automation of additional household appliances becomes complex and is too expen-
sive, especially given that most residences equipped with prepayment meters and 
feed-in breakers are low-income households. 

However, site visits revealed that the combination of their low income and use of 
prepayment meters has made these residents both aware of their household energy 
usage and motivated to take action to reduce consumption and to prevent tripping of 
the breaker. As there is a strong intrinsic motivation amongst the community [7] this 
context presents an ideal case for integrating users into the demand management pro-
cess. The feedback about household electricity demand is thus explored as a mecha-
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nism for encouraging and enabling users to better manage their energy consumption 
and prevent power outages. 

This paper focuses on assessing the efficacy of cues on the user to enable them to 
manage their demand, via limiting high levels of energy consumption and prompting 
immediate action when the load approaches the trip level. Specifically, it addresses 
the question of which parameters within the audio cues produce consistent, accurate 
and meaningful responses from users. The work presented here does not include the 
deployment of any technologies into the field. 

This paper explores the relevant literature to determine key aspects in the design of 
effective feedback mechanisms for demand management. Section 2 concludes that, in 
general, user-centric design needs to fulfill four criteria. The specific requirement of 
the users considered in this paper is that they need to respond immediately to prevent 
power outages, and thus the case for an audio cue is made in Section 3. However the 
users also want to be made aware of high power consumption, therefore a suite of 
cues is required. The choice of the design of the suite is discussed in Section 4. The 
efficacy of the design options are explored via the use of a survey in Section 5. The 
results in Section 6 highlight that two modalities are more effective than one. 

2   Feedback as a Mechanism for Demand Management 

Feedback about energy consumption has been used over the past 40 years as an ef-
fective mechanism for encouraging management of energy demand. Feedback inter-
ventions are on the whole effective at encouraging users to reduce overall consump-
tion, and they are cost effective when compared to other interventions [8].  However, 
the way in which users respond to feedback about their consumption varies signifi-
cantly, and whilst feedback is effective on average, it is not so in all cases [9]. A more 
recent body of work in this space points to the importance of considering users when 
designing feedback interventions, particularly with regard to their interaction with the 
feedback technology [10,11]. 

Although the provision of energy consumption information is of considerable val-
ue, for the feedback system to be effective at bringing about the desired shift in ener-
gy behaviour it is important that the design process accounts for the way in which 
users interpret and respond to the feedback, as well as their behavioural and motiva-
tional psychological aspects in relation to energy use [12]. In addition, contextual 
constraints can limit a person’s ability to respond to feedback regardless of their mo-
tivation to act [13], and therefore careful consideration of the specific purpose of the 
feedback, the context in which energy is being consumed, and the Living Standards 
Measure grouping and cultural background of the target demographic is important. 

A key challenge is to develop a user-centric design of a system capable of provid-
ing households with real-time feedback about their consumption that meets the fol-
lowing four criteria: 

 (1) is appropriate to the specific context in which it is intended to be used,  
 (2) is interpreted consistently and accurately, 
 (3) provokes a response at the appropriate point in time, and  
 (4) does not overburden or confuse the user. 
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The context for this study is different from most feedback studies and therefore 
needs closer examination and is addressed in the next section. 

3   The Case for a Audio Cue 

Most feedback interventions are designed to encourage consumers to reduce their 
overall energy consumption, and are designed and evaluated accordingly. However, 
these systems are not appropriate when trying to encourage reductions in peak usage, 
where the main concern lies around the simultaneous use of three or more high power 
appliances leading to a power trip.  There are two significant implications. 

Firstly the user response has to be immediate. Energy consumption is a measure of 
power demand aggregated over time and hence the timing of the feedback to the user 
is not critical. For this case the user can ‘pull’ the feedback from the device.  However 
for peak power response the feedback must reach the user immediately, hence the 
device must ‘push’ the information to the user. 

Secondly all users in the home must be aware of the feedback, no matter where 
they are located within the home, as they may each cause the breaker to trip by in-
creasing the load. Hence the feedback must not be a point source of information but 
rather have a ubiquitous reach. 

A third issue is that the feedback needs to indicate the level power used, ranging 
from moderate to extreme. The reason for this is that, even at the moderate level (e.g. 
just the oven on), the addition of just a single further high power device (e.g. iron) and 
one medium power device (e.g. fridge) can lead to a trip. 

A fourth context related issue is that the target community is low paid, and there-
fore cost is a constraint on the implementation. 

Typically feedback is provided to users visually. A user information [13] unit has 
been trialled in South Africa where the user interface is a three colour (green, amber 
red) visual display.  The feedback is triggered both by local measurements and from 
information communicated from a central control room. The drawback of the visual 
display is that the user is not always facing the information unit, or is perhaps not 
even in the same room. The product is intended for the utility who will own and oper-
ate it to manage load/demand. 

Whilst visual displays have the potential to provide detailed information about 
electricity demand, they are not always located such that they are visible to the con-
sumer at the necessary point in time.  As users are often physically occupied with 
tasks that might increase their energy consumption, such as housework, they are un-
likely to pay constant attention to the display. However, an audio cue can offer a su-
perior alternative interface [14] that reaches a greater area of coverage in the house, 
and provides immediate notification of usage status to the consumer, thus addressing 
issues one and two. Issue three can be achieved through the use of a range of cues 
provided via interactive technologies, though care must be taken to ensure that they 
do not become a nuisance to users [15]. As audio devices are low cost, issue four is 
also solved. 

Therefore the authors propose that the most appropriate form of feedback applica-
ble to the specific context of power management (criterion 1) is that of a suite of au-
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dio cues. The next section explores the idea that appropriately designed audio feed-
back can improve the level of positive responses from the end users. In addition this 
paper investigates whether different sound symbols can be used to effectively warn 
end-users about power as well as energy constraint. It also tries to determine if the 
audio symbols can be used to communicate a sense of the urgency of the problem. 

4   Design Parameters of Use of Audio Cues 

For the audio cues to evoke their intended responses in users, they must be readily 
distinguishable from one another across the various levels of energy usage to which 
alarm signals have been allocated.  The implemented audio cue set must also be rela-
tively intuitive to respond to, requiring a minimal learning period for users to become 
accustomed to the scale of intensity contained within the batch of samples.  To 
achieve this the musical parameters are progressively increased corresponding to the 
increased power usage.   However, the individual parameters for variation must be 
carefully identified in order to accommodate both the distinguishability and intuition 
requirements of the design so as to meet criterion 2. 

When choosing audio parameters to investigate, it is crucial to consider the impact 
that they might have upon the user once introduced into their domestic environment.  
The audio samples utilised must induce sufficient annoyance at the critical end of the 
scale to bring about alterations to user behaviour, yet must also be benign enough to 
avoid excessive irritation for lower energy usage levels [16]. If the audio cues are too 
annoying at all energy usage levels, users will be inclined to eliminate the audio func-
tionality of the energy monitors entirely. In order to achieve this aim, the sound sam-
ples must increase in ‘urgency’ or irritation factor by changing certain properties as 
the level of energy usage increases. 

Although certain elements (such as melody, harmony and rhythm) may be used to 
impart levels of urgency, they offer consistent irritation levels to users and thus are 
not appropriate for this application.  For example if a major-harmony themed melody 
is repeated over a sustained period it may impart less urgency than a minor-harmony 
themed alternative [16]. However, the constantly looping phrase is likely to be equal-
ly irritating to the user regardless of the variant, quite possibly resulting in deactiva-
tion of the monitoring device entirely.  Accordingly, foundational musical elements 
that can be utilised with simple tones in order to create audio cues that feature high 
degrees of fundamental variation offer the best building blocks for the sonic elements 
required for this application. 

The pitch (or ‘frequency’) of a note is a fundamental musical property that can be 
varied with profound effect.  Some people struggle to recognise subtle fluctuations in 
tones all are capable of recognising substantial changes in pitch.  As lower pitched 
tones sit quite subtly amongst background noise and higher pitched tones tend to cut 
through more noticeably, variations in pitch are an ideal parameter to explore in this 
domestic context. 

Tempo (or ‘speed’) is one of the most basic musical devices, variations of which 
are instantly recognisable.  As tempo is entirely independent of pitch, it may be rec-
ognised and experienced by even the most ‘tone-deaf’ and musically-uneducated 
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amongst us.  Furthermore, different tempos are distinguishable from one another, 
making tempo a natural element to be exploited in this application.  Extremely slow 
tempos can result in long intervals between sonic elements, reducing the irritation and 
urgency factor associated with an audio cue. Fast tempos have the opposite effect, and 
hence its efficacy is further explored. 

Texture is the tactile quality that may be ascribed to a sonic element, an abstract 
concept that often leads to the use of adjectives such as ‘rough’, ‘smooth’, ‘round’ or 
‘thin’ in order to describe sounds.  It is a fundamental building block of music, and is 
easily distinguishable to the human ear, being entirely separate from harmony. Given 
that the textures of sounds can have effects on listeners that range from ‘soothing’ to 
‘jarring’, this element is a natural candidate for inclusion in the application in ques-
tion. However as the variations are more subtle, it was combined with changing tem-
po. 

In addition to such musically-oriented parameters, we are subjected to a diverse 
range of audio stimulus that effects our behaviour, such as the hooting of car horns, 
barking of dogs and so forth.   Accordingly, the use of such audio can be used in order 
to generate responses in people that are directly related to generic experiences of the 
world around us and do not require any level of musical abilities in order to distin-
guish.  This makes the use of non-musical sonic samples, recorded from the surround-
ing environment worthy of investigation. 

Thus the properties of pitch, tempo, texture and real-world association were chosen 
for evaluation in this application.  The sonic samples utilised for the real-world asso-
ciation category of audio cues were selected from within an animal theme, using fair-
ly generic animal sources.  The noises selected for use were deemed to be both fairly 
universal (mainly domestic animals) and to provide a subset of sounds to which the 
vast majority of users would have been exposed with relatively high frequency during 
their lifetimes. To see how users would react to the sounds a survey was conducted. 

5   Survey Methodology 

The purpose of the survey was to determine how effective each of the four catego-
ries can be distinguished to represent the following five levels of power consumption: 

(a) Moderate power usage: above average rate of consumption. 
(b) Moderate-high power usage: significantly above average. 
(c) High usage: energy consumption should not be increased further 
(d) Very high power usage: approaching trip level of main breaker, reduce usage as 

soon as possible. 
(e) Extreme power usage: about to trip main breaker, immediate action required. 
 A ten second sound sample was generated for each level. The musical properties 

of interest were incrementally increased for each sound representing the correspond-
ingly increasing power level. 

A set of 15 randomly selected sound samples per category was placed in a video. 
The first five samples randomly covered all 5 levels. We call this the ‘learning stage’ 
as this is the first time the person is exposed to the sounds. The next 10 samples ran-
domly covered each of the 5 levels twice. This latter data is evaluated for consistency 
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and accuracy. As each sample was played, the person was asked to identify which 
level they thought the sound represented.  

To avoid bias users were not told how the sounds may vary and the categories were 
randomly presented to the users. 

At the end of the survey, users were then asked two open questions: (1) which cat-
egory they thought the most effective and (2) at which point they would take action. 
Anonymous demographic information was also collected. 

6   Results 

There were 61 respondents (8 New Zealand, 21 Southern Africa, 32 UK; 19 female 
and 34 under the age of twenty and 10 over the age of 50). The mean time to complete 
the survey was 17 minutes. Three respondents that did not complete the survey were 
discarded. 

6.1   Criterion Two 

The second criterion is that the feedback cue is interpreted consistently and accu-
rately. To test this using the survey data, consistency is measured using the metric of 
the percentage of users whose second and third responses to the same sound level 
were identical, Fig. 2. Accuracy represented by the offset between the actual and the 
perceived level. The metrics used are the mean and standard deviations of this offset, 
Fig. 3. 
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Fig. 2. Consistency of user responses to second and third iterations of each audio cue level 

Pitch 
Consistency: Less than 66% of the respondents are consistent in 4 of the 5 levels. 

The exception is level (a) which has 90%. However, it should be noted that the low 
frequency sample used for this set of audio cues could not be heard clearly on many 
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laptop and cellphone audio-speakers, thus appearing as a change in volume and pitch, 
which can explain the high level of consistency. This category had the worst overall 
results for consistency. 
Accuracy: The standard deviation and offset plots show a distinct worsening of 

performance as the pitch is increased. At level (e) the offset is >-1.5 indicating that on 
average all the respondents severely underestimated the urgency.  This category again 
had the worst overall results for accuracy.  
 
Tempo 
Consistency: This category featured high consistency levels for the lower levels, 

with levels (a) and (b) better than 70%.  However, the performance drops off for the 
higher energy consumption levels’ samples, being the same or worse than for pitch.  
This provides an indication of the existence of a tempo-urgency threshold, beyond 
which users find all cues to indicate extreme energy usage and thus struggle to make 
consistent associations.  Accordingly some further method of differentiation may be 
required to make higher tempo sounds more distinguishable from one another. 
Accuracy: The standard deviation and offset plots show that the tempo cues per-

formed better than the pitch cues on both the bottom and top ends of the scale, espe-
cially the latter.  This indicates that increasing urgency can be imparted via the use of 
higher tempos, and that they also perform well in the lower range.  Given that all of 
the tones used in this test were of the same pitch, and thus could be reproduced with 
equal presence through all varieties of audio-speaker, it can be concluded that the use 
of tempo is likely considerably more effective for expressing lower urgency levels 
than pitch would be under good sonic conditions.  
 
Tempo and Texture 
Consistency: The introduction of the texture parameter significantly improves the 

consistency at level (c) and (e)  by  10% and 15% respectively, at the expense of level 
(b), down by 25%. This points to the conclusion that a full five levels of urgency may 
not be practical for an audio interface of this nature.  Rather, the use of a maximum of 
three notification levels would likely lead to better results, with users making the 
correct associations far more easily. This category is the most consistent for the ex-
treme low and high levels. 
Accuracy:  Levels (a) and (e) also show a small offset (<0.25) and a low standard 

deviation (<0.5).  The offset and standard deviation of levels (c) and (d) remain un-
changed when adding texture. This category is also the most accurate for the extreme 
low and high levels. 
 
Animal Themes 
Consistency: This set of audio cues yielded the highest consistent results overall 

(>70%), indicating that respondents found it easy to make associations between the 
sounds and energy consumption levels. 
Accuracy: The mean and standard deviation of the offset are the worst of the four 

categories. These sounds contain significant meaning making them easy to distin-
guish, but indicates that each user interprets the sound differently. If similarly com-
plex sounds samples can be found that generate more universal associations within 
users, then the approach could yield far more accurate results. 

259



The majority of respondents indicated that they would take physical action to re-
duce energy consumption around the audio cue level they had perceived to be associ-
ated with level (c) usage. Respondents may have interpreted this question to be an 
assessment of their own commitment to energy reduction, and may thus have chosen 
a moderate response level that they felt to be the appropriate response.  However, the 
responses tail off in both the high and low directions, providing at least some basic 
indication that the overall range of urgency covered in the tests is centered around a 
level where an active user response may be triggered. 
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Fig. 3. The mean and standard deviation of the offset between actual and perceived 
level for second and third instance of each audio cue 
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6.2   Criterion Three 

This criterion states that the feedback provokes a response at the appropriate point 
in time. As this test was not conducted in a live setting, users where instead asked at 
which level they would consider taking action. The results are shown in Fig. 4. 

Reduction in energy usage is a desirable outcome at any level of consumption. In-
deed a small number of people (3%) stated that would take action at level (a), and 
30% at level (b).  A significant number (77%) stated they would take action at level 
(c).  This result gives an optimistic outlook that there is a fair chance that this would 
happen in practice, but this cannot be conclusively stated at this stage of the research. 
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Fig. 4. Cumulative user perception of level at which action should be taken to re-
duce consumption 

6.3   Criterion Four 

This criterion states that the feedback does not overburden or confuse the user. 
This was assessed by analysing the responses to the question “Please tell us which set 
of three tests you thought were the most effective and why.”  and shown in Fig.5. This 
data indicates the users perception of the efficacy of the different categories of audio 
cues. 
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Fig. 5. User perceptions of test effectiveness by audio cue category 
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The combined tempo and texture category was perceived to be most effective 
(>30%). This result tallies with the analysis presented in sub-section 6.1. Respondents 
deemed the standalone tempo cues to be the next most effective, although considera-
bly less so, receiving 37% less positive feedback than the combined cues.  The 
standalone pitch and animal sound variants of the test were found to be the least effec-
tive, receiving 58% and 63% less positive feedback respectively than the combined 
tempo and texture test. 

The overwhelming majority of negative perceptions were aimed towards the ani-
mal themed audio cues, users finding them to be either high in annoyance factor or 
challenging to rank in terms of urgency (again backed up by the numerical analysis).  
It should be noted that many respondents acknowledged the tempo element of the 
tempo and texture audio cues as being a significant contributor to that test’s effective-
ness.  Thus, when considered in combination with the positive feedback recorded for 
the tempo and texture test, respondents can be considered to have found tempo to be 
the most effective parameter by a wide margin. 

Whilst this study has tested for four specific audio traits, it would be of considera-
ble interest to investigate a wider range of properties, such as rhythm, melody and 
harmony, as well as testing further cultural associations beyond animal themes.  
However, these would have to be applied in such a manner that they also featured low 
irritation indices for lower energy usage levels, perhaps via combined usage with 
tempo, volume or frequency of performance. 

7   Conclusion 

This paper addresses the issue of developing a design methodology for providing 
immediate and intuitive audio feedback about high power consumption, especially 
during periods when the power level is approaching the capacity of the main circuit 
breaker.  

The four criteria used in this study for the assessment of the efficacy of the feed-
back mechanism are that: it is appropriate to the specific context in which it is intend-
ed to be used; it is interpreted consistently and accurately, provokes a response at the 
appropriate point in time, and does not overburden or confuse the user.  

Due to the specific requirement for an immediate response is, independent of the 
location of the user, and that multiple levels of feedback are useful, a group of five 
audio cues were used.  Four categories of cues were developed - three based on fun-
damental musical properties: pitch, tempo and tempo-with-texture, and one based on 
complex sounds (animal noises).  

A survey of 61 respondents showed that the tempo-with-texture category best met 
the four requirements. 

262



References 

1. Paton, C.: Eskom Was ‘On the Brink of a Power Shutdown’. Business Day Live, May 20, 
2003. Retrieved February 1, 2014, 
http://www.bdlive.co.za/business/energy/2013/05/20/eskom-
was-on-the-brink-of-a-power-shutdown (2003) 

2. Zehir, M.A., Bagriyanik, M.: Demand Side Management by Controlling Refrigerators 
and its Effects on Consumers, Energy Conversion and Management, 64 (1). pp. 238–244 
(2012)  

3. Van Blommestein, K.C., Daim, T.U. Residential Energy Efficient Device Adoption in 
South Africa. Sustainable Energy Technologies and Assessments, 1 (1), pp. 13–27 (2013) 

4. Xia, X., Setlhaolo, D., Zhang, J.: Residential Demand Response Strategies for South Af-
rica. In: IEEE Power and Energy Society Conference and Exposition in Africa (PowerAf-
rica), pp. 1–6. IEEE (2012) 

5. Tewari, D., Shah, T.: An Assessment of South African Prepaid Electricity Experiment, 
Lessons Learned, and Their Policy Implications for Developing Countries. Energy Poli-
cy, 31 (9). pp. 911–927 (2003) 

6. CBi-electric Load Control Relay. Retrieved February 3, 2014, http://www.cbi-
electric.co.za/products_select.php?p=13#245 (2014) 

7. He, H. A., Greenberg, S., Huang, E. M.: One Size Does Not Fit All: Applying the Trans-
theoretical Model to Energy Feedback Technology Design. In: Proc. CHI’10, pp. 927-
936. ACM Press (2010) 

8. Allcott, H., Mullainathan, S.: Behavior and Energy Policy. Science, 327 (3). pp. 1204-
1205 (2010) 

9. Ehrhardt-Martinez, K., Donnelly K. A., Laitner, J. A.: Advanced Metering Initiatives and 
Residential Feedback Programs: a Meta-Review for Household Electricity-Saving Oppor-
tunities. American Council for an Energy-Efficient Economy, Washington (2010) 

10. Froehlich, J., Findlater, L., Landay, J.: The Design of Eco-Feedback Technology. In: 
Proc. CHI’10. pp. 1999-2008. ACM Press (2010) 

11. Fitzpatrick, G., Smith, G.: Technology-Enabled Feedback on Domestic Energy Consump-
tion: Articulating a set of design concerns. IEEE Pervasive Computing, 8 (1), pp. 37-44. 
IEEE (2009) 

12. Ford, R., Karlin, B.: Graphical Displays in Eco-Feedback: A Cognitive Approach. In: 
Proc. HCII’13. Springer (2013) 

13. Util Labs Low Voltage Smart System. Retrieved February 4, 2014, 
http://www.utillabs.com/sites/default/files/news-events-
downloads/lvss_brochure_final_web_2.pdf (2011) 

14. Walker, B. N.: Consistency of magnitude estimations with conceptual data dimensions 
used for sonification. Applied Cognitive Psychology, 21 (5) pp. 579–599, John Wiley & 
Sons (2007) 

15. Fogg, B. J.: A Behavior Model for Persuasive Design. In: Proc. International Conf. on 
Persuasive Technology, pp. 40-46, ACM Press (2009) 

16. Kallinen, K.: Emotional Responses to Single Voice Melodies: Implications for Mobile 
Ringtones. In: Human-Computer Interaction - Interact, pp. 797-800 (2003) 

263


	DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	NOMENCLATURE
	OVERVIEW
	Introduction
	Research Question
	Research Area
	Disaggregation Techniques
	Appliances Utilised in Laboratory Experiment
	Machine Learning
	Processing Platforms

	Expected Challenges
	Research Methodology Overview
	Research Justification
	Organisation of Dissertation

	BACKGROUND
	NILM Overview
	Appliance Signatures
	Steady-State Signature Disaggregation
	Total Load Model (TLM)
	TLM Shortcomings
	Steady-State Event Detection

	Transient Signature Disaggregation
	Transient Features
	Direct Transient Feature Comparison
	Transient Event Detection

	Other NILM Approaches
	Basic Load Classes
	Disaggregation Datasets

	LABORATORY MEASUREMENTS
	Measurements Overview
	Measurements Terminology
	Measurement Device and Sample Rate
	Normalisation of Measurements

	Individual Measurements
	Two Slice Toaster (`Toaster')
	Whistling Kettle (`Kettle')
	Desk Lamp (`Lamp')
	Oil-Filled Radiator Heater (`Heater')
	Sandwich Maker (`Snackwich')
	30cm Desk Fan (`Fan')
	Microwave Oven (`Microwave')
	Refrigerator (`Fridge')

	Combined Measurements
	Combined Measurement 1: Fan and Toaster
	Combined Measurement 2: Toaster and Microwave
	Combined Measurement 3: Toaster and Microwave
	Combined Measurement 4: Lamp and Snackwich
	Combined Measurement 5: Fan, Lamp and Heater
	Combined Measurement 6: Fridge, Heater and Microwave
	Combined Measurement 7: Lamp, Heater and Toaster
	Combined Measurement 8: Fridge, Kettle and Lamp
	Combined Measurement 9: Toaster, Microwave, Heater and Lamp


	IMPLEMENTATION OF TECHNIQUES
	System Overview
	Underlying Processing Approaches
	Event Detection
	Steady-State Transformation

	TLM Implementation
	TLM Combination Generator
	TLM Level Matcher

	CPM Implementation
	CPM Combination Generator
	CPM Level Matcher

	EEC Implementation
	EEC Sample Extraction
	EEC Microwave Sample Averager
	EEC Correlator


	RESULTS AND OBSERVATIONS
	Results Process Overview
	Scoring Methods
	TLM and CPM Scoring
	EEC Scoring

	Variants and Parameters Selected
	CPM Variant
	EEC Sample Parameters

	Technique Comparison Considerations
	Overview of Results
	Observations Drawn from Results

	FUTURE WORK
	Future Work Overview
	Automated Measurement System
	Previous Identifications

	CONCLUSION
	REFERENCES
	REACTIVE POWER MEASUREMENT PLOTS
	GROUND TRUTH DATA
	MATLAB CODE
	DETAILED TLM RESULTS
	DETAILED CPM RESULTS
	DETAILED EEC RESULTS
	DETAILED DISCUSSION OF RESULTS
	Combined Measurement 1
	TLM Performance: 3/8 - 38% Accuracy
	CPM Performance: 4/8 - 50% Accuracy
	EEC Performance: 6/8 - 75% Accuracy (Hard), 8/8 - 100% Accuracy (Soft)

	Combined Measurement 2
	TLM Performance: 2/17 - 12% Accuracy
	CPM Performance: 8/17 - 47% Accuracy
	EEC Performance: 10/17 - 59% Accuracy (Hard), 10/17 - 59% Accuracy (Soft)

	Combined Measurement 3
	TLM Performance: 5/29 - 17% Accuracy
	CPM Performance: 11/29 - 38% Accuracy
	EEC Performance: 16/29 - 55% Accuracy (Hard), 19/29 - 66% Accuracy (Soft)

	Combined Measurement 4
	TLM Performance: 8/14 - 57% Accuracy
	CPM Performance: 10/14 - 71% Accuracy
	EEC Performance: 9/14 - 64% Accuracy (Hard), 11/14 - 79% Accuracy (Soft)

	Combined Measurement 5
	TLM Performance: 16/16 - 100% Accuracy
	CPM Performance: 16/16 - 100% Accuracy
	EEC Performance: 6/16 - 38% Accuracy (Hard), 9/16 - 56% Accuracy (Soft)

	Combined Measurement 6
	TLM Performance: 5/31 - 16% Accuracy
	CPM Performance: 10/31 - 32% Accuracy
	EEC Performance: 17/31 - 55% Accuracy (Hard), 61% Accuracy (Soft)

	Combined Measurement 7
	TLM Performance: 6/14 - 43% Accuracy
	CPM Performance: 9/14 - 64% Accuracy
	EEC Performance: 1/14 - 7% Accuracy (Hard), 2/14 - 14% Accuracy (Soft)

	Combined Measurement 8
	TLM Performance: 1/11 - 9% Accuracy
	CPM Performance: 1/11 - 9% Accuracy
	EEC Performance: 3/11 - 27% Accuracy (Hard), 3/11 - 27% Accuracy (Soft)

	Combined Measurement 9
	TLM Performance: 7/31 - 23% Accuracy
	CPM Performance: 10/31 - 32% Accuracy
	EEC Performance: 13/31 - 42% Accuracy (Hard), 16/31 - 52% Accuracy (Soft)


	HCII2014 PUBLICATION

