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ABSTRACT 
 

 
Alzheimer’s disease (AD) is the most prevalent and progressive neurodegenerative disorder 
(ND). It is characterized by a progressive decline of cognitive function, complete loss of memory, 
deterioration of visual capacity and the inability to function independently. According to the World 
Health Organization (WHO) it is estimated that about 26 million people suffer with AD worldwide. 
Although the etiology of AD is not fully understood, the aggregation of β-amyloidal (A) peptides 
that are associated with the formation of extracellular neurotoxin senile plaques and 
neurofibrillary tangles comprising hyperphosphorylated tau proteins have been recognized as the 
primary constituents that play a crucial role in AD. Several potential neurotherapeutic agents that 
can improve the management of AD such as metal chelators and alkaloid drugs have been 
approved by the US Food and Drug Administration (FDA) and European Medicines Agency 
(EMA). Metal chelators [e.g. histidine, Ethylenediaminetetraacetic acid (EDTA) and zinc acetate 
(ZnAc)] are the main therapy used for modulating Aβ peptide aggregation with biological metals 
(such as zinc and copper ions) which is associated with promoting neurotoxicity in AD. While 
alkaloid drugs, such as donepezil, galantamine and rivastigmine, are used to inhibit the enzyme 
acetylcholinesterase (AChE); memantine is used to block the N-methyl-D-aspartate (NMDA) 
receptors associated with pathological activation. Despite the availability of these indispensable 
drugs, the clinical utility of these drugs is hampered by their poor retention and difficulty in 
bypassing the highly restrictive Blood Brain Barrier (BBB). Therefore this study aimed at 
developing novel nanoliposomes (NLPs) surface-engineered with chelating and synthetic 
peptides that are capable of crossing the BBB thus improving delivery efficacy and modulating 
the extracellular neurotoxicity associated with β-Amyloid aggregates of AD. Furthermore, since 
this system was designed for a chronic condition, a temporary depot-based polymeric system 
was integrated for further enhancement of the liposomal half-life, storage and prolonged drug 
delivery over a period of 50 days. The surface-engineered NLPs produced were spherical in 
shape, 100-149±28nm ~ size, with a zeta potential range of -9.59 to -37.3mV and a 
polydispersity index (PdI) of 0.02-0.2. A Box-Behnken experimental design was employed for 
maximizing the ligand coupling efficiency (40-78%) and drug entrapment efficiency (DEE) that 
ranged from 42-79%. The optimized peptide-based ligand NLP formulation showed sustained 
drug release (30% of drug released within 48 hours). Chelating ligands on the surface of NLPs 
showed 50-68% modulation of neurotoxicity on PC12 neuronal cells induced by ZnAβ (1-42) or 
CuAβ (1-42) aggregates. When drug-loaded functionalized NLPs were embedded within the 
temporal hydrophilic hydrogel network/scaffold as an implantable nano-enabled bio-robotic 
intracranial device (BICD), the physicomechanical and physicochemical dynamics showed 
improvement of liposomal structure such as the stability, and homogeneity in distribution of the 
liposomes within the internal core of the hydrogel networks and post-lyophilized scaffold. In vitro 
studies in simulated cerebrospinal fluid (CSF) showed prolonged release behavior of the drug-
loaded functionalized NLPs from the BICD with 50-70% released over 50 days. Scanning 
Electron Microscopy (SEM) and confocal microscopy confirmed intact liposomal structures within 
the temporal polymeric scaffold/depot post-fixation and post-lyophilization. Ex vivo studies 
confirmed cell proliferation and a low level of lactate dehydrogenase (LDH), which is associated 
with cell membrane damage/injury, after PC12 neuronal cells were exposed to the BICD. In 
addition, when PC12 neuronal cells were exposed to the BICD high accumulation of galantamine 
(GAL) into these PC12 neuronal cells was observed post-cultivation. This outcome indicated that 
the released drug-loaded functionalized NLPs from the BICD were still in their intact form and 
capable of serving as bio-robotic markers for the delivery of GAL into the neuronal cells in 
response to AD. Furthermore, intracellular activity validated that the synthetic peptide has the 
potency for targeted delivery of the drug-loaded NLPs post-release of the BICD in ex vivo 
studies. Overall, results from this study revealed that the BICD device had superior 
cytocompatibility and may be suitable for application as a prolonged and targeted delivery 
system for GAL into neuronal cells to treat AD. 
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CHAPTER 1 

BACKGROUND AND RATIONALE FOR THIS RESEARCH  

 

      

1.1. Introduction 

 

Neurodegenerative Disorders (NDs) are a group of chronic, progressive disorders 

characterized by the gradual loss of neurons in discrete areas of the Central Nervous 

System (CNS) (Gao and Hong, 2008). NDs such as Parkinson Disease (PD) and 

Alzheimer’s Disease (AD), CNS neoplasms (brain tumors), and AIDS Dementia 

Complex (ADC) are still challenging NDs in terms of treatment efficacy (Iversen et 

al., 1995;  Fleming et al., 2005; Fernandes et al., 2007;  Riemenschneider and 

Reifenberger, 2009). The current study focused on advancing the neuroprotection in 

NDs, specifically in AD.  

 

1.1.1. Background of Alzheimer’s disease 

  

AD is the most common disease of the CNS marked by decline in memory and 

cognitive performance, and defects in visual and motor coordination (Cummings, 

2004; Hauptmann et al., 2004).  A study by Brookmeyer and co-workers (2007) 

reported that AD is becoming a significant disease, which is spontaneously affecting 

many individuals around the world, including in developing countries. AD is declared 

epidemic with an estimated about 33.9 million people suffering with AD worldwide. In 

the United States of America alone, about 5.2 million people are living with AD today. 

According to the World Health Organization (WHO), the prevalence and risk for AD 
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is reported to be rise up, with estimation that there will be 65,7 million people with AD 

worldwide by 2030 (Perry, 2008). Since AD is disease of aging, many studies report 

that the prevalence of AD increases exponentially with aging from 65-100 years, with 

estimated incidence rates as follows: 0.4-2% in people aged between 65-69 years, 

10-12% in people aged around 90 years old and about 40% of those over age 100 

years (Barnes and Yaffe, 2011; Corrada et al., 2011).  

 

Although the etiology of AD is not fully understood, AD is still the most common form 

of dementia. The disease is characterized by an accumulation of extra-cellular β-

amyloid (Aβ) plaques and intracellular neurofibrillary tangles composed of tau 

amyloid fibrils (Kowalska., 2004). On one hand, there is considerable evidence that 

the Aβ peptide has to undergo a process of polymerization in order to produce 

neurotoxic forms of amyloid (Selkoe, 1994; Selkoe, 2002). In the case of Aβ plaques, 

many studies evidently reported that senile plaques are caused by 40 or 42 amino 

acid peptides which are generated by the proteolytic cleavage (β and γ secretase 

enzymes) of the Aβ precursor glycoprotein (APP) (Figure 1.1a). These Aβ peptides 

are known to act as a pathogenic seed for Aβ aggregation and amyloid plaque 

formation because they are more hydrophobic compared to the shorter amyloid 

peptides (De Strooper and Annaert, 2000). On the other hand, there is considerable 

evidence that the extracellular soluble Aβ peptide has to undergo a process of 

aggregation with biological metals ions (such as zinc and copper ions) in order to 

form insoluble Aβ peptide, which is substantiated to promote neurotoxic Aβ peptide 

forms of plaques in AD (Figure 1.1b) (Daxiong et al., 2008). In the case of 

intracellular neurofibrillary tangles, many studies also evidently reported that amyloid 

fibrils are formed when the tau protein (which is composed of a microtubule 
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structure) beginnings to become unstable and their filamentous start to aggregate in 

a principal component of paired helical filaments (Figure 1c) (Goebert and Crowther, 

1991). 

                  
 
Figure 1.1: Possible etiology associated with AD; a) extra-cellular β-amyloid (Aβ) 
plaques, b) β-amyloid aggregation with biological ions, and c) intraneuronal 
neurofibrillary tangles (Goebert and Crowther, 1991; Kowalska, 2004; Daxiong et al., 
2008). 
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1.1.2. Current neuroprotectants used for the management of Alzheimer’s 

disease  

The cholinesterase inhibitors (ChEIs) such as donepezil, rivastigmine and 

galantamine (GAL) are first-line neuroprotectants for the management of AD 

(Masuda, 2004). Donepezil, rivastigmine and GAL are selected as drugs of choice 

based on their capability to inhibit acetylcholinesterase whereas rivastigmine inhibits 

the enzyme butyrylcholinesterase (Stahl, 2000). Another added neuroprotectant for 

AD is memantine that acts as N-methyl-D-aspartate (NMDA) receptor antagonist by 

blocking the pathological activation (Danysz and Parsons, 2003) (Figure 1.2). The 

evidence suggests that the NMDA receptor is induced by excessively high synaptic 

levels of glutamate (Reisberg et al., 2003; Lipton, 2005). A recent study 

demonstrated significant effects when memantine and donepezil were combined for 

AD management (Atri et al., 2013). Supplementary agents include antioxidants, such 

as Vitamin C, Vitamin E, and beta-carotene, which can also be considered as anti-

aging therapy to provide protection against oxidative damage in AD patients (Frei, 

1994; Gella and Durancy, 2009). 

       

Figure 1.2: The structure of donepezil, rivastigmine, galantamine and memantine, 
being the drugs for treating AD conditions. 
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1.1.3. Challenges associated with current neuroprotectants for Alzheimer’s 

disease  

 

One of the current challenges for the effective treatment of NDs is the need to bridge 

the gap between the indispensable drug therapies that are available and the 

improvement in the mode of drug delivery to ensure minimal drug toxicity, improved 

efficacy and a superior quality of life for patients challenged with NDs (Popovic and 

Brundin, 2006). The treatment of NDs following systemic drug administration is still 

challenging due to the existence of the highly restrictive Blood-Brain Barrier (BBB) 

(Popovic and Brundin, 2006). According to Wang and co-workers (2002), the BBB 

restricts the entry of substances entering the brain based on particle size and 

endothelial permeability. The BBB is composed of tight cell junctions and ATP-

dependent efflux pumps that restricts the delivery of drug molecules into the brain, 

thus making the therapy of NDs via the systemic route significantly difficult (Abbott 

and Romeo, 1996; Wang et al., 2002; Alavijieh et al., 2005). Although lipophilic 

molecules, peptides, nutrients and polymers may satisfy penetrability requirements, 

these molecules are associated with the inability to access and penetrate targeted 

regions within the brain, or are inherently non-specifically taken up by sensitive 

normal tissues and cells (Popoviv and Brundin, 2006). 

 

1.2. Novel drug delivery systems for the treatment of Alzheimer’s disease  

 

Intracranially implantable devices engineered from biodegradable or non-

biodegradable polymers have been previously investigated for the treatment of brain 

tumors and NDs (Iversen et al., 1995; Wang et al., 2002; Benoit et al., 2000). 
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Various systems, including drug-loaded microparticles and disc/rod-shaped devices 

may be used to control the drug release rate and optimize the concentration of the 

drug at the site of action in the brain over prolonged periods of time (Siepmann et al., 

2006). The advantages of using such implantable polymeric devices is that a single 

intracranial implant would be sufficient to provide neuroprotectant drug levels at the 

site of action over a prolonged period of time and improve patient compliance due to 

a significant reduction in drug dosing frequencies and peripheral side-effects 

(Haesslein et al., 2006; Siepmann and Gopferich, 2001). However, in order to 

effectively overcome the impediments posed by the BBB, functionalized or site-

targeting nanoliposomes (NLPs) may be designed with the ability to deliver drugs at 

the desired site of action (either within specific regions of brain tissue or at the 

surface of targeted cells within the CNS) that can provide higher localized 

concentrations of the drug for uptake into target cells (Forssen and Willis, 1998).  

 

Pharmaceutical nanotechnology is known to involve the creation and utilization of 

polymeric materials, devices or systems on the nanometer scale such as 

nanospheres, nanocapsules, nanobubbles, nanotubes and nanofibres (Siepmann 

and Gopferich, 2001; Sahoo and Labhasetwar, 2003). Nano-enabled drug delivery 

systems provide great promise for the improvement of the pharmaceutical and 

therapeutic properties of neuroprotectant drugs (Pillay et al., 2009). Nanostructures 

(such as NLPs) have the following advantages; 1) they are small in size, which 

allows them to cross the BBB, 2) they are able to be embedded in a polymeric or 

lipoid matrix, thus offering significant versatility for achieving site-specific CNS drug 

delivery, and 3) they are capable of releasing the incorporated drug in a passive pre-

determined or active programmable manner over a prolonged period of time. In 
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addition, by utilizing the strategy of direct intracranial implantation of a nano-enabled 

device, the neuroprotectant drug bioavailability may be significantly improved and 

the side-effects (the majority of which are peripherally induced) and/or the toxicity 

profile of the drug may be drastically minimized due to the lower doses and more 

targeted drug delivery approach.  

 

1.3. Approaches to the problem 

 

The development of novel strategies for the enhancement of the CNS drug delivery 

to a specific region of brain tissue/cells directly from an intracranially implanted 

polymeric device is of great interest (Olivier, 2005). Newer synthetic molecular 

design strategies for targeting neuroprotectant drugs or other biomolecules to a 

specific region of the CNS is attractive due to the potential to allow the administration 

of potent therapeutic agents only to diseased tissues or cells, thereby enhancing 

drug efficacy and minimizing side-effects. The design of a nano-enabled drug 

delivery device comprising of NLPs conjugated with targeting ligands that bind to 

receptors which are common or specific to certain NDs may provide an ingenious 

solution to improving the treatment of NDs. Permutter and co-workers (1990), 

identified a candidate receptor known as the Serpin enzyme complexes Receptor 

(Sec-R) domain of A1 elastase on the surface of hepatocytes, glial cell mono-layers 

and neutrophils for recognition of α1 AT-elastase. Sequence motifs bearing 

homology with this pentapeptide domain were found in the Aβ peptide common in 

AD (Joslin et al., 1991; Boland et al., 1995). Sec-R is also shown to mediate 

internalization of Aβ-peptide in neuronal cell-lines (PC12) (Boland et al., 1995). A 

previous study performed by Ziady and co-workers (1997) demonstrated how 
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synthetic peptide (C1315) coupled within the surface of poly-L-lysine for advance 

gene transfer into heptoma cell-lines via the Sec-R. However, another study by 

Boland and co-workers (1995), demonstrated that the Aβ(25-35) peptide (insoluble) 

was not recognized at all by Sec-R and retained its full toxic/aggregating properties. 

In another study by Paula-Lima and co-workers (2009), it was demonstrated that 

human apolipoprotein A-I (ApoA-I) sequence motifs shared homology with the Aβ 

peptide. The study also demonstrated binding between Apol A1 to Aβ peptide and 

preventing Aβ peptide from inducing neurotoxicity that is commonly found in AD. 

Therefore, in order to surmount these restrictions, an implantable device 

encapsulating functionalized NLPs with targeting ligand (with Apol A1 sequence) for 

delivering neuroprotectant drug to a specific receptor (Sec-R) was developed in this 

study.  

 

This study attempts to develop a Bio-robotic Intracranial Device (BICD), which would 

be capable of delivering alkaloid drugs particularly galantamine (GAL) to a specific 

site in the neurodegenerative brain and control the release of drugs over a prolonged 

period of time after direct implantation into the frontal lobe of the brain. The GAL was 

previously rendered unsatisfactory for management of ADs in terms of 

neuroprotectant efficacy, bioavailability, long-term pharmaceutical stability, targeted 

drug delivery, reduction in severe peripheral side-effects and frequent drug dosing 

intervals, which result into poor patient compliance. The BICD will possess the 

intrinsic capability to respond to NDs (including disease states, injury and/or 

inflammation). The system will be designed on pharmaceutical nanotechnology 

principles comprising biodegradable and biocompatible polymeric NLPs fixated 

within a neuro-compliant scaffold, incorporating drugs selected on the basis of 
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pharmaceutical product prototyping and/or the treatment of NDs particularly AD. The 

NLPs will be functionalized with synthetic peptide and also act as drug reservoirs for 

precise drug targeting. Targeting ligands (of the synthetic peptide type) will be 

designed that will bind to Sec-R receptors, and will be conjugated onto the surface of 

NLPs, to serve as bio-robotic markers for selected NDs. 

 

Numerous approaches for the utilization of site-directing ligands have been 

developed for liposomes / microbubble targeting (Eniola and Hammer, 2005; Weller 

et al., 2005).  Examples of several classes of such ligands include, 1) antibodies, 2) 

carbohydrates, 3) peptides, 4) other polysaccharides and, 5) oligonucleotide 

aptamers (Forssen and Willis, 1998; Shihorkar and Vyas, 2001). Various types of 

coupling strategies for conjugating liposomes or microbubbles with targeting ligands, 

employing covalent or non-covalent binding have been developed, and include 

biotinylated PEG-phospholipid and a streptavidin-conjugate antibody (Schnyder et 

al., 2004) and protein to pegylated phospholipids by cleavable or metabolically stable 

linker strategies (Olivier, 2005; Schnyder and Huwyler, 2005).  

 

The BICD was designed in a multi-component manner. The first component would 

employ a modified “intelligent” polymeric scaffold based on previous engineering 

approaches in our laboratories that would be able to release NLPs in a passive or 

actively pre-programmed manner. The second component would be in the 

development of the NLPs for specific site-targeting and delivery of drugs within 

specific regions of the brain tissue in close proximity to degenerative neurons. The 

NLPs would function in response to stimuli that subsequently target molecular 

markers of NDs, such as the β-amyloid plaques commonly found in AD.  
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The structure of the NLPs was conceptualized as follows: 1) the GAL would be 

incorporated into the core of the NLPs, 2) inert sulfur hexafluoride (SF6) were 

entrapped into the core region of the lipid monolayers, and 3) site-directing ligands 

were conjugated onto surface of the NLPs for binding or interacting with specific 

cellular receptors such as Sec-R. These strategies should allow the NLPs to be 

sustained over a prolong periods within degenerative tissues or at sites of 

inflammation within the brain that are often seen with the neuropathology of NDs 

such as PD, AD, ADC and brain tumors such as PCNSL.  

 

The BICD provides an improvement to the GAL delivery into the brain for AD 

management. In vitro and ex vivo studies were tested on the BICD, the following 

were determined; the potential of synthetic peptide on target delivery of GAL-loaded 

NLPs into PC12 neuronal cell via Sec-R, and physicomechanical and 

physicochemical behaviour of cross-linked CEP hydrogel and/or scaffold. In addition, 

the BICD should ensure prolonged delivery and/or uptake and cytocompatibility of 

GAL-loaded functionalized NLPs in a simulated cerebrospinal fluid (sCSF) condition 

and PC12 neuronal cell environment. 

 

1.4. Aim and objectives of this research 

 

The aim of this study was to break the frontiers in CNS drug delivery by designing a 

nano-enabled BICD that was capable of delivering GAL into a specific region of the 

brain in response to the presence of specific NDs. The BICD should be able to 

prolong release of GAL-loaded functionalized NLPs over a period of 50 days in a 

sCSF condition. The following were proposed as the objectives of this study: 
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1. To review current composite liposomal technologies based on integration of the 

liposome-based and polymeric-based technologies that are capable to act as a 

temporal depot for prolonged drug release in vitro, ex vivo and in vivo. 

2. To perform a preformulation study on surface engineered drug-loaded NLPs 

with chelating ligands that are proposed for modulating of neurotoxicity 

associated with β-amyloid aggregates of AD. 

3. To design unique biocompatible and bio-robotic NLPs that are composed of 

targeting ligands of the synthetic peptide-type, poly (ethylene glycol) (PEG), and 

GAL-entrapped within the phospholipid core structure through remote loading in 

the presence of ammonium sulphate.  

4. To optimize constructed drug-loaded functionalized NLPs with synthetic peptide 

employing the Artificial Neural Networks (ANN) approach. 

5. To assess ex vivo cytotoxicity and biocompatibility of the drug-loaded 

functionalized NLPs.  

6. To assess the feasibility of employing targeting ligands to bind and facilitate 

uptake of drug-loaded NLPs through the specific receptor Sec-R that is over 

expressed in AD. 

7. To design a nano-enabled BICD that meets several criteria dictated by vague 

concept of the disease or disorder or inflammatory conditions within the brain 

through a rigorous approach. 

8. To investigate the biomechanical and physicochemical dynamics of the BICD in 

both the hydrogel state and lyophilized state, during pre- or post-fabrication of 

the nano-enabled structure.  

9. To visualize the morphological architecture of the BICD, stability and distribution 

of drug-loaded functionalized NLPs post embedded in the temporal polymeric 
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depot of scaffold of the BICD, employing Scanning Electron Microscopy (SEM) 

and imaging microscopy system such as ultrasound imaging, real-time 

flouorescence imaging (Cellvizio) and optical flourence imaging (Microscope).  

10. To explore and examine of the BICD for prolonged release of the drug-loaded 

functionalized NLPs in their intact form in simulated cerebrospinal fluid (sCSF) 

over 50 days. 

11. To assess PC12 neuronal cells membrane damage/injury and cytotoxicity post 

treatment with BICD. 

12. To validate the potency of the functionalized NLPs with synthetic peptide for 

targeted delivery post-escape from the lyophilized BICD ex vivo. 

13. To develop non-transgenic Sprague dawley rats model of AD for the 

assessment of the BICD performance in vivo. 

 

1.5. Overview of this thesis  

 

Chapter 1 outlined the problem identification and rationale for selection of the drug 

delivery system for this research. The study protocol provides current challenges for 

the effective treatment of the AD, the need to bridge the gap between the 

indispensable drug therapies and break the frontiers in CNS drug delivery to ensure 

minimal drug toxicity, and to provide improved efficacy and a superior quality to life 

for patients challenged with NDs specifically AD.   

 

Chapter 2 provided a comprehensive literature review of the current liposome-based 

and polymeric-based technologies, as well as the integration of liposome-based 

technology within a temporary depot polymeric-based technology for sustained or 
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prolonged drug release. This section provides detailed approaches, advantages and 

disadvantages on different types of liposome-based technology and depot polymeric 

scaffold technologies, various methods for embedding drug-loaded liposomes within 

a depot polymeric-based technology, and various approaches to enhance prolonged 

drug release within a temporal depot polymeric-based technology.  

 

Chapter 3 described the pre-formulation, chemometric molecular modeling and 

surface engineering drug-loaded NLPs with chelating ligands aimed at modulation of 

neurotoxicity associated with Aβ aggregates of the AD. Ethylenediaminetetraacetic 

acid (EDTA), histidine and zinc acetate (ZnAc) as a chelating ligands surface 

engineered on the surface of NLPs employing either covalent or non-covalent 

bonding provided evidence of resolubilized ZnAβ (1-42) or CuAβ (1-42) aggregates 

in vitro. Ex vivo results elucidated the effectiveness of chelating ligand-bound NLPs 

for prevention of CuAβ(1-42) or ZnAβ(1-42) aggregate buildup associated with 

neurotoxicity in PC12 neuronal cells, as well as promotion of intracellular uptake in 

the presence of Cu(II) or Zn(II) metal ions. Furthermore, in silico molecular 

mechanistic studies were also employed to corroborate the experimental findings by 

exploring the spatial disposition of energy minimized molecular structures. 

 

Chapter 4 described the development and optimization of the synthetic peptide 

ligand for functionalized GAL-loaded NLPs for targeted delivery into PC12 neuronal 

cells for to managing AD. A Box-Behnken experimental design optimized the 

fabricated NLPs, which were constructed with synthetic phospholipids [(1, 2 

distearoyl-sn-glycero-3-phosphocholine (DSPC) and phosphatidylethanol-

aminedistearoyl-methoxy polyethyleneglycol conjugate (DSPE-mPEG2000)] and 
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cholesterol that lead to significant maximum drug entrapment efficiency and the 

synthetic peptide, Lys-Val-Leu-Phe-Leu-Ser conjugated onto the surface of the NLPs 

to provided effective intracellular delivery of an GAL into PC12 neuronal cells. 

Furthermore, ex vivo results revealed that the functionalized NLPs had superior 

cytocompatibility and post-engineering of peptides onto the surface of drug-loaded 

NLPs enhanced high GAL accumulation into PC12 neuronal cells through the sec-R 

in a mediated manner. 

 

Chapter 5 described and evaluated the feasibility of entrapment of GAL-loaded 

functionalized NLPs into the polymeric-based technology, which in this research was 

a hydrogel network. Distribution and morphological architecture of embedded 

functionalized NLPs into hydrogel networks were validated in vitro employing bio-

imaging such as fluorescence and ultrasound imaging. Nano-enbled structure 

stability was validated by characterization of physicochemical and 

physicomechanical properties of the developed nanocomposite hydrogel produced 

by merged liposome-based and polymeric-based technologies in the presence of 

cross-linking agents.  

 

Chapter 6 explored and examined the biocompatibility of the nano-enabled BICD for 

prolonged GAL release in a simulated cerebrospinal fluid (sCSF). In vitro studies in 

sCSF showed prolonged release behavior of the drug-loaded functionalized NLPs 

with 50-70% GAL release over 50 days. In an ex vivo study, BICD provided a 

platform to act as a bio-robotic marker for the precise delivery of the drug into the 

brain cells in response to AD.  High GAL accumulation within PC12 neuronal cells 

post-cultivation indicate that the targeting moeites (of the synthetic peptide type) still 
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had potency for targeted delivery of the drug-loaded NLPs post-escape from 

lyophilized BICD. 

 

Chapter 7 examined the induction of amyloid-like deposits into the brain tissues of 

non-transgenic Sprague dawley rats post intra-cisterna magna (ICM) administration 

of aggregated Aβ(25-35) peptide. In vitro self-assembly and aggregation of Aβ(25-

35) peptide and the morphological structure was validated employing Transmission 

Electron Microscopy (TEM) and Immunofluorescence microscopy. Histopathological 

examination of the neuroparenchyma, blood vessels and leptomeninges morphology 

was evaluated on the brain sections, which was stained with hematoxylin and eostin 

stain. The formation of amyloid-like deposits at day 14 post-ICM administration with 

aggregated Aβ(25-35) peptide was validate employing thioflavin T and Congo Red 

staining. 

 

Chapter 8 presented the overall the conclusive remarks on the smart BICD, as well 

as recommendations for future studies in animal models of AD and in chronic 

patients with the AD. 
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CHAPTER 2 

A LITERATURE REVIEW ON COMPOSITE LIPOSOMAL TECHNOLOGIES FOR 

SPECIALIZED DRUG DELIVERY  

 

 

2.1. Introduction 

 

Over the past few decades, liposomes have received widespread attention as a 

carrier system for therapeutically active compounds, due to their unique 

characteristics such as capability to incorporate hydrophilic and hydrophobic drugs, 

good biocompatibility, low toxicity, lack of immune system activation, and targeted 

delivery of bioactive compounds to the site of action (Mastrobattista et al., 2002; 

Schnyder and Huwyler, 2005; Immordino et al., 2006; Chen et al., 2010). 

Additionally, some achievements since the discovery of liposomes are controlled 

size from microscale to nanoscale and surface-engineered polymer conjugates 

functionalized with peptide, protein, and antibody (Bangham and Miller, 1974; 

Yousefi, et al., 2009). Although liposomes have been extensively studied as 

promising carriers for therapeutically active compounds, some of the drawbacks of 

liposomes used in pharmaceutics is the rapid degradation by the reticuloendothelial 

system (RES) and inability to achieve sustained drug delivery over a prolonged 

period of time (Torchilin, 2005). New approaches are needed to overcome these 

challenges. Two polymeric approaches have been suggested thus far. The first 

approach involves modification of the surface of liposomes with hydrophilic polymers 

such polyethylene glycol (PEG) while the second one is to integrate the pre-

encapsulated drug-loaded liposomes within depot polymer-based systems 

(Immordino et al., 2006). A study conducted by Stenekes and co-workers (2000) 
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reported the success of using temporary depot of polymeric materials to control the 

release of the loaded liposomes for pharmaceutical applications. This achievement 

leads to new applications, which requires collaborative research between 

pharmaceutics, biomaterials, chemistry, molecular, and cell biology. Numerous 

studies in this context have been reported in the literature dealing with temporary 

depot delivery system to control the release of pre-encapsulated drug-loaded 

liposomes (Hara and Miyake, 2001; Wallace and Rosenblatt, 2003; Chung and Tsai, 

2006; Mulik and Murthy, 2009). The proposed system was developed to integrate the 

advantages while avoid the disadvantages of both liposome-based and polymeric-

based systems. The liposome-based systems are known to possess limitations such 

as instability, short half-life, and rapid clearance. However, they are more 

biocompatible than the polymer-based systems (Mahato, 2005). On other hand, the 

polymer-based systems are known to be more stable and provide improved 

sustained delivery compared to liposome-based systems. However, one of the major 

setbacks is poor biocompatibility which is associated with loss of the bioactive (i.e., 

the drug) during fabrication conditions such as heat of sonication or exposure to 

organic solvents (Chung et al., 2006; Immordino et al., 2006). The benefits of a 

composite system, however, include improvement of liposomes stability, the ability of 

the liposome to prolonged drug release, and preservation of the bioactiveness of the 

drugs in polymeric-based technology. In addition, increased efficacy may be 

achieved from this integrated delivery system when compared to that of purely 

polymeric-based or liposome-based systems. The aim of this Chapter therefore, is to 

review the current liposome-based and polymeric-based technologies, as well as the 

integration of liposome-based technology within temporary depot polymeric-based 

technology for sustained drug release. The discussion will focus on different types of 
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liposome-based technology and depot polymeric scaffold technologies, various 

methods for embedding drug-loaded liposomes within a depot, and diverse 

approaches reported to control the rate of sustained drug release from depot 

systems over a prolonged period. 

 

2.2. Liposome-based technology 

 

A liposome is a tiny vesicle consisting of an aqueous core entrapped within one or 

more natural phospholipids forming closed bilayered structures (Figure 2.1) 

(Bangham et al., 1974). Liposomes have been extensively used as potential delivery 

systems for a variety of compounds primarily due to their high degree of 

biocompatibility and the enormous diversity of structures and compositions (Vasir et 

al., 2005; Fang et al., 2006). The lipid components of liposomes are predominantly 

phosphatidylcholines derived from egg or soybean lecithin’s (Fang et al., 2006). 

Liposomes are biphasic a feature that renders them the ability to act as carriers for 

both lipophilic and hydrophilic drugs. It has been observed that drug molecules are 

located differently in the liposomal environment and depending upon their solubility 

and partitioning characteristics, they exhibit different entrapment and release 

properties (Fang et al., 2006; Zucker et al., 2009). Lipophilic drugs are generally 

entrapped almost completely in the lipid bilayers of liposomes and since they are 

poorly water soluble, problems like loss of an entrapped drug on storage are rarely 

encountered. Hydrophilic drugs may either be entrapped inside the aqueous cores of 

liposomes or be located in the external water phase. Noteworthy is that the 

encapsulation percentage of hydrophilic drugs by liposomes depends on the bilayer 

composition and preparation procedure of the liposomes (Manconi et al., 2002; 
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Johnsson and Edwards, 2003). Since liposome discovery by Bangham and co-

workers (1974), several different embodiments of liposome-based technology have 

been developed to meet diverse pharmaceutical criteria (Torchilin, 2005). Liposome-

based technology has progressed from the first generation “conventional vesicles,” 

to stealth liposomes, targeted liposomes, and more recently stimuli-sensitive 

liposomes (Immordino et al., 2006; Bharali et al., 2009). Essentially, liposomes are 

classified according to their size range, being 50-5000nm in diameter. This resulted 

into two categories of liposomes namely multilamellar vesicles and unilamellar 

vesicles (Bharali et al., 2009). Unilamellar vesicles consist of single bilayer with a 

size range of 50-250nm while multilamellar vesicles consist of two or more lipid 

bilayers with a size range of 500-5000 nm (Harashima et al., 1999; Immordino et al., 

2006). 

 

2.2.1. Conventional liposomes 

Conventional liposome-based technology is the first generation of liposome to be 

used in pharmaceutical applications (Abra et al., 2002; Cattel et al., 2004; Immordino 

et al., 2006). Conventional liposome formulations are mainly comprised of natural 

phospholipids or lipids such as 1, 2-distearoryl-sn-glycero-3-phosphatidyl choline 

(DSPC), sphingomyelin, egg phosphatidylcholines, and monosialoganglioside. Since 

this formulation is made up of phospholipids only, liposomal formulations have 

encountered many challenges; one of the major ones being the instability in plasma, 

which results in short blood circulation half-life (Senior and Gregoriadis, 1982; Frank, 

1993; Rich´e et al., 2004; Torchilin, 2005). Liposomes that are negatively or 

positively charged have been reported to have shorter half-lives, higher toxicity, and 

are rapidly removed from the circulation (Senior and Gregoriadis, 1982; Nishikawa et 
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al., 1990; Soenen et al., 2009). Several other attempts to overcome these challenges 

have been made, specifically in the manipulation of the lipid membrane. One of the 

attempts focused on the manipulation of cholesterol. Addition of cholesterol to 

conventional formulations reduces rapid release of the encapsulated bioactive 

compound into the plasma (Damen et al., 1981). Furthermore, studies by Tran and 

co-workers (2009) demonstrated liposome stability after addition of “helper” lipids 

such as cholesterol and 1, 2-dioleoyl-snglycero-3-phosphoethanolamine (DOPE). 

Harashima and co-workers (1994) demonstrated that phagocytosis of liposomes 

were dependent on the size of the liposome formulation. Larger size or multilamellar 

liposomes with a size range of 500-5000nm are the first to be eliminated from the 

systemic circulation. Nanosized liposomes or small unilamellar vesicles with a size 

range of 20-50nm are only eliminated later (Gabizon and D. Papahadjopoulos, 1988; 

Harashima et al., 1994; Torchilin, 2005). The following commercial products: 

Ambisone, Myocet and Daunoxome, and drug such as Daunorubicin have received 

clinical approval using conventional liposome technologies (Mondal et al., 2010; 

Allen and Martin, 2004; Veerareddy and Vobalaboina, 2004). Although small 

unilamellar liposomes were reported to have potential for a decreased macrophage 

uptake, insufficient drug entrapment is still a major disadvantage. On the basis of 

these studies, the success of cholesterol and other phospholipids did not completely 

overcome the major challenges. 

 

2.2.2. Stealth liposomes 

Stealth liposome technology is one of the most often used liposome-based systems 

for delivery of active molecules (Cattel et al., 2004; Immordino et al., 2006). This 

strategy was developed to overcome most of the challenges encountered by 
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conventional liposome technology such as the inability to evade interception by the 

immune system, toxicity due to charged liposomes, low blood circulation half-life, 

and steric stability (Torchilin, 2005; Cattel et al., 2004; Soenen et al., 2009). The 

stealth liposome strategy was achieved simply by modifying the surface of the 

liposome membrane; a process that was achieved by engineering hydrophilic 

polymer conjugates (Li and Huang, 2010). The employed hydrophilic polymers were 

either natural or synthetic polymers such polyethylene glycol (PEG), chitosan (CHT), 

silk-fibroin, and polyvinyl alcohol (PVA) (Gobin et al., 2006; Nakano et al., 2008; 

Wang et al., 2010; Ruizhen et al, 2011). Several properties that would add 

advantages to the polymeric conjugate include such as high biocompatibility, non-

toxicity, low immunogenicity, and antigenicity (Immordino et al., 2006; Ruizhen et al, 

2011). Although the majority of hydrophilic polymers meet the above criteria, PEG 

remains the most widely used polymer conjugate. It is specifically employed to 

increase the hydrophilicity of the liposome surface via a cross-linked lipid (Allen et 

al., 2002; Atyabi et al., 2009). PEGylated liposomal doxorubicin (DOXIL/Caelyx) is 

the exceptional example of stealth liposome technology to be approved by both the 

USA Food and Drug Administration (FDA) and Europe Federation (Krown et al., 

2004). Although prominent results were achieved from this model such as reduction 

of macrophage uptake, long circulation, and low toxicity, passive targeting is still a 

major disadvantage since liposomes can deliver active molecules not only to 

abnormal cells but also to sensitive normal cells (Scherphof et al., 1985).   

 

2.2.3. Targeted liposomes 

Targeted liposome based system was suggested after conventional stealth liposome 

failed to evade uptake of active molecules by sensitive normal cells or nonspecific 
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targets in vivo (Sapra and Allen, 2003; Medina et al., 2004). Unlike stealth 

liposomes, site-specific targeting liposomes have been engineered or functionalized 

with different types of targeting moieties such antibodies, peptide, glycoprotein, 

oligopeptide, polysaccharide, growth factors, folic acid, carbohydrate, and receptors 

(Torchilin, 2008; Li et al 2009; Song et al., 2009; Shmeeda et al., 2010; Takara et al., 

2010; Ying et al., 2010). In addition, targeted ligand can further increase the rate of 

liposomal drug accumulation in the ideal tissues/cells via over expressed receptors, 

antigen, and unregulated selectin (Stewart et al., 2008; Hossen et al., 2010; Simonis 

et al., 2010; Yu et al., 2010. Hua et al., 2011).  

 

Peptides, protein, and antibodies have been most extensively studied as ligands for 

directing drug-loaded liposomes to sites of action, due to their molecular structures, 

which are essentially composed of known amino acid sequences. Furthermore, it 

has been reported that ligands can be conjugated onto pegylated liposomes via 

different types of coupling methods, such as covalent and non-covalent binding. 

Covalent coupling occurs when novel ligands are indirectly engineered on the 

surface of liposome through a hydrophobic anchor via thioether, hydrazone bonds, 

avidin-biotin interaction, cross-linking between carboxylic acids and/or amines (Nobs 

et al., 2004). Non-covalent coupling is observed when novel ligands are directly 

added to the mixture of phospholipids during liposomal formulation (Fang et al., 

2006). Li and co-workers (2009) attempted to generate dual ligand liposome 

conjugates aimed at targeting multiple receptor types on the cell surface receptors. 

Ex vivo studies demonstrated the success of the dual ligand approach in improving 

the selectivity when compared to a single ligand approach. In another study, Ying 

and co-workers (2010) formulated dual targeted liposomes with various targeted 
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moieties such as p-aminophenyl-α-D-manno-pyranoside (MAN) and transferrin (TF). 

The study was conducted both ex vivo (in C6 glioma cells) and in vivo (in C6 brain 

glioma-bearing rats). The following were compared: free daunorubicin, daunorubicin 

liposomes, daunorubicin liposomes modified with MAN, and daunorubicin liposomes 

modified with TF as the controls, and daunorubicin liposomes modified with MAN 

and TF. Daunorubicin liposomes modified with dual ligands such as MAN and TF 

showed a more significant increase in neuroprotectant efficacy, when compared with 

the drug alone, drug-loaded liposome, or single ligand modified surface of the 

liposome. However, the efficacy of these approaches faces limitations because 

protein circulation and gene expression cannot be sustained for long periods of time 

(Torchilin, 2005).  

 

Commercially available liposomes were surface engineered with monoclonal 

antibody and are now commercially available (Lukyanov et al., 2004). The overall 

advantage of this model of liposome is an increase in active molecules or drug reach 

targeted cells via endocytosis (Torchilin, 2005). In another study, Nallamothu and co-

workers (2006) demonstrated the usefulness of Combretastatin A4 as novel 

antivascular agent. This compound portrays its anticancer activity by inducing 

irreversible vascular shutdown in solid tumors (Zoldakova et al., 2010). Despite its 

anticancer potential, the drug has been shown to have several undesirable side 

effects to the underlying normal tissues (Young and Chaplin, 2004). These problems 

may be alleviated by targeting the drug specifically to the solid tumor vasculature. 

Studies have shown that certain cell adhesion molecules such as αvβ3 integrin 

receptors are overexpressed on actively proliferating endothelium of the tumor 

vasculature (Kumar et al., 2000; Hynes. 2002). These surface markers discriminate 
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tumor endothelial cells from the normal endothelial cells and they can be used as a 

target for antivascular drug delivery (Nollamothu et al., 2006). Nallamothu and co-

workers (2006) could demonstrate that peptides with Arginine-Glycine-Aspartine (A-

G-A) amino acid sequence constrained in a cyclic polyethylene-glycol (PEG)-based 

liposome framework can bind to the αvβ3 integrin receptors. Based on this analogy, 

they could design a targeted liposome delivery system for combretastatin A4 with 

cyclic (RDG) peptides as targeting ligands (Figure 2.2). Targeting of combretastatin 

A4 to irradiated tumors using this delivery system resulted into significant tumor 

growth delay (Figure 2.3) (Nollamothu et al., 2006). 

 

 

Figure 2.1: Schematic representation of liposome-based systems. (a) Conventional 
liposomes. (b) Stealth liposomes coated with a polymeric conjugate such as PEG. 
(c) Stealth liposomes coupled with a functionalized ligand, (d) liposomes with a 
single ligand and antibody, (e) Duplicated ligand with repeated peptide sequence, (f) 
liposomes loaded with perfluorocarbon gas (adapted from Zucker et al., 2009). 
 

 

 

a)

f)e)d)

c)b)
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2.2.4. Additional diverse liposomes types 

 

2.2.4.1. Virosomes and stimuli-responsive liposomes 

Liposomal technologies, such as conventional, stealth, and targeted liposomes have 

already received clinical approval (Kim et al., 2001; Goyal et al., 2005). New 

generation types of liposomes have been developed to increase bioactive molecule 

delivery to the cytoplasm by escape endosome (Liu et al., 2006; Pradhan et al., 

2010). New approaches that employ liposomes as pharmaceutical carriers are 

virosomes and stimuli-type liposomes. The stimulating agents in this case include 

pH, light, magnetism, temperature, and ultrasonic waves. A virosome (Figure 2.4) is 

another type of liposome formulation. It comprises non-covalent coupling of a 

liposome and a fusogenic viral envelop (Kaneda, 2000). A stimuli-sensitive liposome 

is a type of liposome that generally depends on different environmental factors in 

order to trigger drug, protein, and gene delivery. A study conducted by Schroeder 

and co-workers (2009), Liu and co-workers (2006), and Lentacker and co-workers 

(2009) demonstrated that the exposure of the liposome loaded with perfluorocarbon 

gas to ultrasound waves triggered drug and gene delivery into the cytoplasm of the 

targeted cells through cell membrane pores. Their data demonstrated that the 

liposome-loaded magnetic agents triggered drug delivery to the specific site in vivo, 

using an externally applied magnetic field. The enhancement of endosomal release 

of drug-loaded liposome into the cytoplasm was reported to be influenced by the 

utilization of pH-sensitive liposomes or by attachment of pH-sensitive fusogenic 

peptide ligands (Anabousi et al., 2006; Bellavance et al., 2010). Most recently, a 

review article published by Chen and co-workers (2010) described the generation of 
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stable liposomes utilizing lyophilization techniques, which may be used for future 

production of more models for liposome 

. 

                                

Figure 2.2: Schematic depicting a stealth PEGylated liposome (adapted from Rai et 
al., 2008). 

                             

Figure 2.3: A schematic representation of the targeted liposome delivery system 
depicting the cyclic RGD peptides that targets the αvβ3 integrin receptors on 
vascular tumor cells (adapted from Nallamothu et al., 2006). 
 

A-G-A Peptide
PEG
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2.2.4.2. Gene-based liposomes  

The characterization of human genome coupled with recombinant DNA technology 

has created opportunities for gene therapy that never existed before (Uchegbu, 

1999). Candidate diseases for such technology include cancer (Dass and Choong, 

2006), arteriosclerosis (Feldman and Steg, 1997), cystic fibrosis (Griesenbach et al., 

1998), haemophilia, sickle cell anaemia, and other genetic diseases. Ideally, the 

administration of the gene of interest should result in the expression of the 

therapeutic protein. However, the delivery of the large anionic bioactive DNA across 

cell has been one of the most difficult endeavours. DNA is easily degraded by 

circulating and intracellular deoxyribonucleases. Notwithstanding, it must also be 

delivered intact across the cell and nucleolar membranes to the nucleus (Uchegbu, 

1999).  

 

Liposomes have thus proved to achieve efficient intracellular delivery of DNA (Smith 

et al., 1997; Kim et al., 2009). Such liposomes are prepared from phospholipids with 

an amine hydrophilic head group. The amines may be either quaternary ammonium, 

tertiary, secondary, or primary, and the liposomes prepared in this way are 

commonly referred to as cationic lipsomes, since they possess a positive surface 

charge at physiological pH. The use of cationic liposomes as gene delivery systems 

was firstly enforced in the late 1980s when in vitro studies by Felgner and co-

workers (1987) could demonstrate that the complexation of genes with liposomes 

may promote gene uptake by cells in vitro. Since then, cationic liposomes of varying 

description have been used to promote the cellular uptake of DNA with resultant 

therapeutic protein expression by various organs in vivo. Figure 2.5 is a schematic 

representation of a DNA-liposome complex. Although the experimental data have 
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demonstrated that cationic liposomes can facilitate the transfer of DNA into live 

mammalian cells, there are still major problems that need to be overcome. These 

include a reduction in the rapid clearance of cationic liposomes and the production of 

efficiently targeted liposomes. At the cellular level, the problems may be overcome 

by improving receptor-mediated uptake employing appropriate ligands. The 

endowment of liposomes with endosomal escape mechanisms, coupled with more 

efficient translocation of DNA to the nucleus and the efficient dissociation of the 

liposome complex just before the entry of free DNA into the nucleus might provide an 

optimal cornerstone solution to the problem. This proposition is depicted in Figure 

2.6. 

 
Figure 2.4: A schematic representation of a virosome (source: Pevion Biotech Ltd. 
2010). 

                                       

Figure 2.5: A schematic representation of a DNA-liposome complex (adapted from 
Uchegbu, 1999). 
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2.3. Temporary depot polymeric-based systems for liposomal coupling 

Polymer-based systems, such as hydrogel or prefabricated scaffolds have been 

used as depots for drugs, regenerative cells, protein, growth factor, and pre-

encapsulated drug loaded liposome for sustained release (Meyenburg et al., 2000; 

Stenekes et al., 2000; Peptu et al., 2008; Mulik et al., 2009; Wolf et al., 2009; Kojima 

et al., 2009; Hafeman et al., 2010). Various polymers have been researched for this 

application based on their fundamental properties such as biodegradability, 

biocompatibility, non-toxicity, and the noninflammatory tendency. Natural and 

synthetic biodegradable polymeric systems such CHT, collagen, gelatin, fibrin, 

alginate, dextran, carbopol, and polyvinyl alcohol have been employed as temporary 

depot-forming agents since they meet most of the above requirements (Kawakami et 

al., 2001; Berger et al., 2004; Chung et al., 2006; Kojima et al., 2009). 

 

 

Figure 2.6: A schematic depicting the optimization of liposomal gene delivery 
(source: Uchegbu, 1999). 



 

30 
 

2.3.1. Injectable polymeric scaffolds 

The strategy for generating an ideal depot for an active compound or bioactive 

molecule-loaded liposome with the benefit of local drug retention and sustained 

release over prolonged time has recently received much attention in both 

pharmaceutical and bioengineering research (Exner and Saidel, 2008; Hafeman et 

al., 2010). The in-situ forming injectable polymer was among the most successful 

models, since it was able to encapsulate protein and/or bioactive molecules or 

function as a pre-encapsulated drug-loaded liposomal formulation that was in liquid 

form (Patel et al., 2010; Paleos et al., 2004). This solution or suspension mixture 

could then be injected into the target organ with a needle to form a semisolid scaffold 

and finally an implant. The success in shifting from liquid formulation to semisolid 

and finally to an implant was a result of various desirable polymeric properties and 

stimulating agents such as water, light, temperature, and pH, that facilitated such 

processes within the polymer such as precipitation, cross-linking, and polymerization 

(Exner and Saidel, 2008; Ta et al., 2008; Lee et al., 2009; Deligkaris et al., 2010).  

 

Since the majority of hydrogels were composed of natural or synthetic biodegradable 

polymers, bioactive molecules were released via passive diffusion, matrix pore 

formation, or polymeric degradation (Holland et al., 2005; Yu, et al., 2008; Bhattarai 

et al., 2010; Krebs et al., 2010). Furthermore, semisolid implant formation was 

reported as being dependant on the polymeric state such as phase inversion, low-

glass transition temperature, or on hydrogels that formed by the aid of cross-linking 

reagents and chemo- or thermal sensitization (McHugh et al., 2005; Zhang et al., 

2010). In addition, the system could deliver drug directly or indirectly to the targeted 

sites, through subcutaneous injection and/or intratumoral injection (Figure 2.7) (Ta et 



 

31 
 

al., 2008). Overall, the semisolid temporary depots offer several advantages such as 

enhanced local drug retention, sustained release, and potential for long-term 

storage. However, repeated injections and passive drug release are still a factor that 

limits their use as ideal pharmaceutical carriers.  

 

2.3.2. Prefabricated polymeric scaffolds 

Prefabricated polymeric scaffolds have gained a lot of attention as depots for 

delivery of bioactive molecules, regenerative cells, growth factors, and pre-

encapsulated bioactive loaded liposome (Narita et al., 2009; Tabesh et al, 2009). 

Unlike injectable in situ scaffolds in which a semisolid scaffold is achieved after 

injection, prefabricated polymer scaffold solid depot materials are formed outside the 

body, and then surgically implanted (Chung and Park, 2007). In additional, pre- 

fabrication polymeric scaffold can be designed to meet the required characteristics of 

an ideal scaffold. Desirable attributes of an ideal scaffold are: three-dimensional 

structure, appropriate surface chemistry, fabrication from materials which are 

biodegradable or bioresorbable, should not induce any adverse response, scaled 

pore capacity, and highly reproducible shape and size (McHugh et al., 2005; Tabesh 

et al., 2009).  Different fabrication techniques have been used to achieve the above 

criteria, such as fiber bonding, emulsion freeze drying, solvent casting, high-pressure 

processing, gas foaming, and electrospinning (Chung and Park, 2007; Bhardwaj and 

Kundu, 2010; Salerno et al., 2010; Sin et al., 2010). Various polymers that have 

been researched for this application are either biodegradable or nonbiodegradable, 

synthetic or natural, or a combination of the two (Hara and Miyake, 2001; Ghaffari et 

al., 2006). The major challenge of prefabricated polymeric scaffolds is that a 

nonbiodegradable polymeric device requires surgical removal at the end of 
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treatment, which is associated with pain (Eglin and Alini, 2008).  However, the 

benefit on sustained or prolong release for the pre-encapsulated drug-loaded 

scaffold has been reported and declared successful (Krebs et al., 2010). Stenekes 

and co-workers (2000) demonstrated that liposome embedded inside a 

biodegradable depot polymeric scaffold was able to sustain drug release over a 

prolonged period of time (Figure 2.8). In addition, the released liposome was found 

intact after many days of storage within the inside depot polymeric scaffold. 

 

 

Figure 2.7: Schematic depicting drug delivery from pre-encapsulated drug-loaded 
liposomes incorporated within an injectable hydrogel-based system (adapted from 
Ta et al., 2008). 
 

2.4. Natural product-based liposomal drug delivery systems 

 

2.4.1. Collagen-based liposomal drug delivery systems 

Collagen is a major natural protein component in mammals that is fabricated from 

glycine-proline-(hydroxy) proline repeats to form a triple helix molecular structure 

(Kojima et al., 2009). So far, nineteen types of collagen molecules have been 

isolated, characterized, and reported in both medical and pharmaceutical 
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applications (Holladay et al., 2009; Chen and Shana, 2010; Parenteau-Bareil et al., 

2010). Collagen has been widely used in pharmaceutical applications due to the 

fulfilment of many requirements of a drug delivery system such as good 

biocompatibility, low antigenicity, and degradability upon implantation (Yang et al., 

2004). Furthermore, collagen gels are one of the first natural polymers to be used as 

a promising matrix for drug delivery and tissue engineering (Weiner et al., 1985). 

Biodegradable collagen-based systems have served as 3D scaffold for cell culture, 

survival of transfected fibroblasts, and gene therapy (Holladay et al., 2009; Wolf et 

al., 2009). In this case, collagen scaffolds were fabricated through introducing 

various chemical cross-linking agents (i.e., glutaraldehyde, formaldehyde, 

carbodiimide) or by physical treatments (i.e., UV irradiation, freeze-drying, and 

heating) (Kikuchi  et al.,  2004; Lu et al., 2009; Tierney et al.,  2009;  Chen and 

Shana, 2010;  Davidenko et al., 2010).  

 

The combination of liposomes and collagen-based technologies has been long 

achieved since the early 80s (Weiner et al., 1985). In this case, drugs and other 

bioactive agents were firstly encapsulated in the liposomes and then embedded 

inside a depot composed of collagen-based systems, including scaffolds and gels. 

The combination of these two technologies (i.e., liposomes and collagen-based 

system) has improved storage stability, prolonged the drug release rate, and 

increased the therapeutic efficacy (Tabandeh et al., 2003; Pederson et al., 2003; 

Kojima et al., 2009). In addition, a study that was conducted by Marston and co-

workers (2005) demonstrated that temperature sensitive liposomes and collagen 

thermally trigger the release of calcium and phosphate salts. Multiple collagen-based 

systems for pharmaceutical carrier applications are currently available for clinical 
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purposes (Kang et al., 2010). Figure 2.9 is schematic representation of collagen-

based liposome. 

 

Figure 2.8: Schematic depicting drug delivery from fabricated polymeric based depot 
system incorporated within drug-loaded liposomes, with eventual entry through a cell 
membrane (adapted from Stenekes et al., 2000). 
 

 

Figure 2.9: A schematic representation of a collagen-based liposome (source: Kang 
et al., 2010). 
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2.4.2. Gelatin-based liposomal drug delivery systems  

Gelatin is a common natural polymer or protein, which is normally produced by 

denaturing collagen (Hao et al., 2009). It has been used in pharmaceutical and 

medical applications due to its outstanding properties such as biodegradability, 

biocompatibility, and low antigenicity (Narita et al., 2010). In addition, gelatin can be 

easy to manipulate due to its isoelectric point that allows it to change from negative 

to positive charge in an appropriate physiological environment or during the 

fabrication, a property that has found it being very attractive to many pharmaceutical 

researchers (Young et al., 2005). Gelatin is one of the natural polymers used as 

support material for gene delivery, cell culture, and more recently tissue engineering. 

Gelatin-based systems have the ability to control release of bioactive agents such as 

drugs, protein, and dual growth factors (Holland et al., 2005; Narita et al., 2009; 

Ofokansi et al., 2010).  

 

It has been reported that it is possible to incorporate liposome-loaded bioactive 

compounds into PEG-gelatin gel, which function as porous scaffold gelatin-based 

temporary depots with controlled drug release over prolonged periods of time 

(DiTizio et al., 1998; Burke et al., 2007).  

 

However, some setbacks have been identified, and they are said to be associated 

with the use of gelatin-based systems in pharmaceutical applications. These 

setbacks include poor mechanical strength and ineffectiveness in the management 

of infected sites (Parenteau-Bareil et al., 2010). A combination of a collagen-based 

system with liposomes has been proposed to achieve the stability of the system and 

controlled release profiles of the incorporated compounds. The success of these 
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formulations, (i.e., gelatin, hydrogel, and scaffolds) was enhanced by cross-linking 

agents such as glutaraldehyde, sugar, and enzyme transglutaminase. It was also 

discovered that the cross-linking density of gelatin was able to affect the rate of 

degradation and rate of bioactive agents release from gelatin vehicles or from 

liposomes embedded inside gelatin-based systems (Samad et al., 2009; Zhang et 

al., 2010; Kuwahara et al., 2010; Cheng et al., 2011). Another study by Peptu and 

co-workers (2008) reported a controlled release of liposome-encapsulated calcein 

fluorescence dye or calcein labeled with rhodamine from temporary depot of gelatin-

based system, which is made up of gelatin carboxymethyl cellulose films. In the 

same study, the release rate of loaded liposomes were found to depend mostly on 

the quantity of liposomes entrapped inside the films, degree of swelling of the film, 

film network density, and the film geometry, which was supported by glutaraldehyde 

cross-linking agents. In a similar study, DiTzio and co-workers (1998), demonstrated 

the success of prevention of bacterial adhesion to catheters by ciprofloxacin-loaded 

liposomes. In this, ciprofloxacin-loaded liposomes entrapped inside a poly(ethylene-

glycol) gelatin hydrogel prior characterized in vitro. Another study by Burke and co-

workers (2007) demonstrated that there was a successive release of oxidizing 

reagent (sodium periodate) from thermal liposome entrapped inside a stimuli-

responsive gelatinous derivative hydrogel. In general, the combination of collagen 

with liposome has been reported to improve liposome stability and the controlled 

release of incorporated bioactive agents within liposome formulations. 

 

2.4.3. Chitosan-based liposomal drug delivery systems  

CHT is a natural linear bio-polyaminosaccharide polymer obtained by N-

deacetylation of chitin, which is fabricated from the exoskeleton of marine 
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crustaceans such as shrimps, crabs, prawns, and fungi (Berger et al., 2004; Pillai et 

al., 2009). It has been broadly investigated in pharmaceutical applications as a 

bioactive molecule delivery method or as depot of pharmaceutical carriers due to its 

desirable properties such as muco-adhesiveness, biodegradability, biocompatibility, 

and non-toxicity (Prabaharan, 2008; Kean and Thanou, 2010; Mao et al., 2010; Park 

et al., 2010).  

 

The combination of CHT with liposome technologies is considered as being a 

promising approach in the drug delivery arena. More recently, CHT technology has 

been reported as being a depot for liposomal drug delivery systems in the form of 

porous hydrogel or scaffold. CHT-based hydrogels were generated with or without a 

cross-linking agent such as glutaraldehyde or by interacting with different types of 

divalent and polyvalent anions (Hejazi and Amiji, 2003; Kas; 1997; Mulik et al., 

2009). Novel in situ gelling formulations of hydrogels such as thermosensitive and 

mucobioadhesive hydrogels have been recently been proposed as a depot for 

liposomes for sustained drug release over a prolong period of time (Ilum, 2003; Mulik 

et al., 2009). CHT scaffold matrix can be fabricated with unique structure by simple 

approaches such lyophilization technique, by use of crosslinked agents of CHT 

solution/hydrogels followed by incubation in the liquid nitrogen, or by employing 

liquid carbon dioxide, solid-liquid separation, and, most recently, supercritical 

immersion precipitation techniques (Chung et al., 2006; Chun et al., 2008; Duarte et 

al., 2010; Ji et al., 2010). A study conducted by Mulik and co-worker (2010) 

demonstrated that liposomes were able to encapsulate cytarabine after incorporation 

within CHT hydrogels for sustained drug release in vivo at body temperature (Mulik 

et al., 2009). 
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2.4.4. Fibrin-based liposomal drug delivery systems 

Fibrin is a biodegradable polymer obtained by polymerization of fibrinogen in the 

presence of thrombin enzyme (Nihouannen et al., 2006). The concept of developing 

fibrin-based technology as a temporary depot in both pharmaceutical and 

bioengineering fields has received considerable attention over the past decades 

(Meyenburg et al., 2000; Sasagawa et al., 2010). The unique properties of the fibrin-

based systems such biodegradability and non toxicity, have been reported to 

influence the delivery efficiency of growth factors, genes, proteins, various cells and 

drugs (Spicer and. Mikos, 2010; Huang et al, 2010; Des Rieux et al., 2009; 

Christman et al., 2004; Soon et al., 2010; Briganti et al., 2010; Lei et al., 2009). The 

fabrication of semirigid fibrin scaffold upon injection has been achieved under 

physiological conditions at the site of interest with rapid polymerization (Christman et 

al., 2004). Furthermore, fibrin scaffolds have also been used as temporary depots for 

drug delivery vehicles by incorporation of drug-loaded liposomes alone, or by 

incorporation of liposomes into a CHT matrix (containing bioactive agent molecules 

such as protein, drugs and genes) within the depot composed of the fibrin-based 

systems. The combination of two widespread devices, fibrin and liposome 

technologies, resulted in sustained bioactive agent release over prolonged periods of 

time (Chung et al., 2006; Wang et al. 2008; Des Rieux et al., 2009; Kulkarni et al., 

2009; Lei et al., 2009).  

 

2.4.5. Alginate-based liposomal drug delivery systems  

Alginate also serves as an example of a naturally occurring linear polysaccharide. It 

is extracted from seaweed, algae, and bacteria (Gombotz and Wee, 1998; Saude et 

al., 2002; Willerth and Sakiyama-Elbert, 2007). The fundamental chemical structure 
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of alginate is composed of (1-4)-b-D-mannuronic acid (M) and (1-4)-a-L-guluronic 

acid (G) units in the form of homopolymeric (MM- or GG-blocks) and heteropolymeric 

sequences (MG or GM-blocks) (Gao et al., 2009). Alginate and their derivates are 

widely used by many pharmaceutical scientists for drug delivery and tissue 

engineering applications due to its many unique properties such as biocompatibility, 

biodegradability, low toxicity, non-immunogenicity, water solubility, relatively low 

cost, gelling ability, stabilizing properties, and high viscosity in aqueous solutions 

(George and Abraham, 2006; Li et al., 2007). Since alginate is anionic, fabrication of 

alginate hydrogels has successively been achieved through a reaction with cross-

linking agents such as divalent or trivalent cations mainly calcium ions, water-soluble 

carbodiimide, and/or glutaraldehyde (Xu et al., 2003). The cross-linking methodology 

may be conducted at room temperature and physiological pH (Jeon et al., 2009). 

The success in fabricating highly porous 3D alginate scaffolds has been through 

lyophilization (Mohan and Nair, 2005).  

 

Thus far, alginate based systems have been successfully used as a matrix for the 

encapsulation of stem cells and for controlled release of proteins, genes, and drugs 

(Nixon and Yeung, 1989; Tilakaratne et al., 2007; Kong et al., 2008; Wang et al., 

2009; Khanna et al., 2010). In addition, alginate based systems have been used as 

depots for bioactive agent loaded liposomes, for slow drug release (Monshipouri and 

Rudolph, 1995; Hara and Miyake, 2001). Highly increased efficacy has been 

reported from these integrated delivery systems when compared to polymeric-based 

systems or liposome-based systems alone (Kaneda, 2000; Schroeder et al., 2009). 

Machluf and co-workers (1997) have reported radio labeled protein release from 

liposomes encapsulated within microspheres of the calcium-crosslinked alginate. 
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Another study by Hara and Miyake (2001) demonstrated the release of calcein 

(which is a fluorescent dye) and insulin from calcium alginate gel-entrapped large 

multilamellar liposomal vesicles in vivo. 

 

2.4.6. Dextran-based liposomal drug delivery systems  

Dextran is a natural linear polymer of glucose linked by a 1-6 linked-glucoyranoside, 

and some branching of 1, 3 linked side-chains (Mehta, 2000). Dextran is synthesized 

from sucrose by certain lactic-acid bacteria, the best-known being Leuconostoc 

mesenteroides and Streptococcus mutans. There are two commercial preparations 

available, namely dextran 40 kilodaltons (kDa) (Rheomacrodex) and dextran 70 

Kilodaltons (kDa) (Macrodex) (Hornig et al., 2009; Sun et al., 2010). In 

pharmaceutics, dextran has been used as model for drug delivery due to its unique 

characteristics that differentiate it from other types of polysaccharide. This includes 

water solubility, biocompatibility, and biodegradability (Shrivastava and Shrivastava, 

2010). In recent studies, dextran has been regarded as a potential polysaccharide 

polymer that can sustain the delivery of proteins, vaccines, and drugs (Van Tomme 

and Hennink, 2007; Jin et al., 2008; Bachelder et al., 2010; Qi et al., 2010).  

 

Interleukin-2, which is a highly effective anticancer drug, is among the success 

obtained in delivering a combination of drug-loaded liposome and injectable dextran 

hydrogel (De Groot et al., 2002). Injectable and degradable dextran based systems 

for drug delivery was generated by a cross-linking reaction with photo-polymerization 

or free radical polymerization (Maia et al., 2005). In another study by Yeo and 

Kohane (2008), it was demonstrated that it is possible to fabricate dextran-based 

hydrogel using dextran derivatives such as carboxymethyldextran derived by 
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aldehyde-modification or carboxymethylcellulose. In the same study, dextran-based 

systems were reported to inhibit peritoneal adhesions due to cytotoxicity. Cytotoxicity 

study was demonstrated in mesothelial cells and macrophages, and it is reported to 

be associated with a crosslinked agent (Yeo and Kohane, 2008). A study by 

Stenekes and co-workers (2000) demonstrated the successive encapsulation of a 

drug-loaded liposome depot into a dextran polymer-based system. The dextran 

polymeric-based systems were fabricated using a two phase system, the first phase 

was water and poly (ethylene glycol) and the second one water methacyrlated 

dextran. The slower degradation of dextran polymeric material resulted in sustained 

liposome release over a period of 100 days (Stenekes et al., 2000). Liposomes 

released from the depot were reported to be intact, and there was no significant 

change in liposomal size. In a gene therapy study by Liptay and co-workers (1998), it 

was reported that recombinant DNA (which contains chloramphenicol 

acetyltransferase) was successively encapsulated in cationic liposomes and then 

integrated within dextran. This system was reported to be a suitable delivery system 

since it could stop transfection efficiency within the colon epithelium wall in vivo 

(Liptay et al., 1998). 

 

2.5. Liposomal drug delivery systems based on synthetic polymers 

 

2.5.1. Carbopol®-based liposomal drug delivery systems  

Carbopol hydrogel formulation is a synthetic type of hydrogel, which is a polyacrylic 

acid derivative. Carbopol® 980, Carbopol® 974NF resin, and Carbopol® 940 have 

been widely used as pharmaceutical carriers due to their outstanding properties such 

as bioadhesivity, biocompatibility, and low toxicity (Durrani, 1992; Budai, 2007; Tang, 
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2007). Carbopol® can swell quickly in water and adhere to the intestinal mucus 

because the functional carboxylic acid groups (-COOH) can form hydrogen bridges 

to interpenetrate the mucus layer (Junginger and Verhoef, 1998; Rajput et al., 2010). 

Furthermore, Carbopol® can inhibit the activity of the dominant enzymes in the 

gastrointestinal tract due to the possession of carboxylic groups in its structure 

(Junginger and Verhoef, 1998). In a study that was conducted by Tang and co-

workers 2007), the formulation of Carbopol®-containing super porous hydrogel 

composites showed that swelling behaviour was influence by ionic strength in 

addition of the salt, at different pH values. In recent studies, Hosny (2010a; 2010b) 

reported the possibility of incorporating drug-loaded liposomes within a Carbopol® 

hydrogel-based system, which acted as a temporary depot. They conducted the 

study in vitro with the aim of improving low viscosity and poor sustainability of 

release over a prolonged period of time, which are associated with liposomal 

setbacks. The results suggested that the degree of encapsulation and prolongation 

of drug release rate of either drugs or drug-loaded liposomes in temporary depots of 

Carbopol® depends on the properties of the vesicles, such as charge and rigidity. In 

another study, ciprofloxacin and galifloxacin were also encapsulated within 

liposomes and thereafter integrated within the temporary depot of the Carbopol®-

based system. These studies revealed that loaded liposome integrated within a 

Carbopol-based system was a suitable model of drug delivery for both ocular and 

vaginal disorders (Paveli´c, 2005; Mourtas et al., 2007; Hosny 2010a; Hosny 2010b).  

 

2.5.2. Polyvinyl alcohol-based liposomal drug delivery systems 

Polyvinyl alcohol (PVA) is a water soluble highly hydrophilic synthetic polymer, with a 

molecular mass of 80 kilodaltons (KDa). PVA can be used in a widely range of 
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applications such industrial, medical, and food products (DeMerlis and Schoneker, 

2003; Macquarie and Hardy, 2005; Pan and Kopecek, 2005). In addition, PVA has 

gained a lot of attention in pharmaceutical applications due to some attractive 

properties such as low toxicity, excellent film-forming, biodegradability, emulsifying 

capacity, biocompatibility, and adhesive properties (Horiike et al., 2002; Bourke et 

al., 2003). PVA-based hydrogel or scaffolds have been fabricated using chemical 

cross-linking agents such as citric acid derivative, glutaraldehyde, and formaldehyde, 

or by physical cross-linking processes such as ultraviolet photo cross-linking, 

freezing-thawing, and radiation (Yang, et al., 2004; Abdelwahed et al., 2006; Burke 

et al; 2007).  

 

Various studies have been performed on the effects of PVA-based polymers on the 

release rate of pre-encapsulated drug-loaded liposomes. In these combination 

systems, PVA was postulated to enhance liposome viscosity, rendering them more 

stable and less permeable, thus providing a sustained release liposomal delivery 

system (Budai et al., 2007). A recent study conducted by Litvinchuk and co-workers 

(2009) demonstrated that the success of calcein-loaded liposome embedded inside 

a temporary depot was influenced by photo cross-linking. In the same study, the 

fluorescence intensity was reported to result in a sustained release effect as 

observed from day 0 to 120, in both phosphate buffer saline and blood plasma in 

vitro. Overall, the study demonstrated that PVA as a temporary depot offers several 

advantages to liposomal delivery systems. These include; liposome stability, 

viscosity, and prolong drug release. Ciprofloxacin, a synthetic chemotherapeutic 

antibiotic was reported to have been successfully integrated into liposome and PVA-

based delivery systems (Budai et al., 2007). 
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2.6. Techniques for embedding drug-loaded liposomes within depot Polymeric-

based systems 

Different techniques of loading the drug within temporary depot polymeric-based 

systems either by using natural or synthetic polymers have been reported by many 

researchers (Stenekes et al., 2000; Tabandeh et al., 2003; Chung et al., 2006; Budai 

et al., 2007;  Mulik et al., , 2009). However, several disadvantages were found to be 

associated with this approach such as loss of the efficacy of the drugs during the 

fabrication process due to the acidic, basic, and/or toxic effect of the solvents 

employed, heat of sonication, or biochemical interactions with polymeric-based 

materials such human fibrin gel (Sandor et al., 2002; Chung et al., 2006). To avoid 

these setbacks, new techniques were suggested by firstly pre-encapsulating the 

drugs within liposomes and then embedding the drug-loaded liposome into the 

temporary depot polymeric-based system. This approach attracted many 

researchers as it improved drug delivery and at the same time preserved drug 

bioactivity (Chung et al., 2006; Gobin et al., 2006; Budai et al., 2007; Wang et al., 

2008; Hosny, 2010a). The success of this technique was also reported after pre-

encapsulating drug-loaded liposomes into fibrinogen solution, then injecting the 

mixture into porous CHT films (Chung et al., 2006, Wang et al., 2008).  

 

Another approach using synthetic PVA was made in which thin films of liposomes 

were hydrated above their glass transition temperature together with PVA as the 

hydration solution in order to enhance liposomes entrapment into the temporary 

depot of PVA based system (Budai et al., 2007). A thermosensitive hydrogel was 

also investigated using a CHT derivative. In this case, drug-loaded liposomes were 

loaded in prechilled solutions of CHT solution until an iso-osmotic pressure was 
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achieved within the CHT solution (Mulik et al., 2009). In another study that was 

conducted by Gobin and co-workers (2006), it was demonstrated that drug-loaded 

liposomes were incorporated within a polymeric-based system with agitation and 

subsequent lyophilisation after being frozen overnight at -80◦C. Tabandeh and 

Aboufazelia (2003), suggested a nitrogen refrigeration approach. In this case, pre-

encapsulated drug-loaded liposomes were mixed together with collagen solution and 

then frozen in liquid nitrogen for 24 hours. Since soluble collagen was used in the 

study, adequate concentrations of collagen were suggested in order to facilitate the 

drug release and avoid the chain mobility associated with collagen.  

 

A more recent study has demonstrated an enhanced process of drug-encapsulated 

liposomes into Carbopol® hydrogel by using deionized water as a vehicle (i.e., 

employing a hydration approach) (Hosny, 2010a). This involved the development of 

an effective prolonged-release liposomal hydrogel formulation containing 

ciprofloxacin for ocular therapy. Drug delivery in ocular therapy has for long been a 

difficult task to accomplish because of the poor drug bioavailability that is mainly due 

to the precorneal loss factors. These factors include tear dynamics, insufficient 

residence time in the conjunctiva sac, and non-productive absorption (Sultana et al., 

2006; Budai et al., 2007). Thus far, fluoroquinolones have shown excellent activity 

against most of the frequently occurring Gram-positive and Gram-negative ocular 

pathogens (Hosny, 2010a). Earlier generations of fluoroquinolones (e.g., ofloxacin) 

often presented with a problem of developing resistance at a fast rate (Chaudhry et 

al., 1999; Jauch et al., 1999). Ciprofloxacin is active against a broad spectrum of 

aerobic Gram-positive and Gram-negative bacteria. In addition, resistance to this 

drug develops slowly and has shown to cause a minimal toxicity (Hosny, 2010a). 
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Ciprofloxacin is currently the drug of choice as an anti-infective ocular agent 

(Campoli-Richards et al., 1988; Appelbaum and Hunter, 2000). Efficacy of the 

marketed ophthalmic fluoroquinolone products, mostly aqueous solutions, is limited 

by poor ocular bioavailability, compelling the frequent dosing regimen, and 

uncompromised patient compliance (Lin et al., 1996; Wiechens et al., 1999). Thus, a 

prolonged release ciprofloxacin liposomal hydrogel has proven to be a suitable 

delivery system for ocular infections. 

 

2.7. Modulating drug release from liposomes within polymeric depot systems 

Sustained release of therapeutically active compounds loaded with liposomes in a 

depot incorporated into polymeric-based system offers the possibility of reducing the 

dosing frequency, which may lead to the reduction of side effects and therefore 

sustained drug action (Mulik et al., 2009). A study conducted by Machluf and co-

workers (1997) demonstrated that radio-labeled protein-loaded liposomes could be 

embedded within two membrane layers of a polymeric-based system such as 

calcium cross-linked alginate and alginate integrated with poly (l-lysine) for sustained 

release of radio-labeled bovine serum albumin both in vitro and in vivo. In another 

set of studies, it was postulated that the success of liposomes release from 

polymeric-based systems could be due to mesh size of the matrix, size of liposome, 

diffusion, chemical, pH, and/or enzyme factor (Weiner et al., 1985; Kibat et al., 1990; 

Meyenburg et al., 2000; Stenekes et al., 2000). In another study by Dhoot and 

Wheatley (2003), liposome release from barium-alginate depots was reported to be 

influenced by the cross-linking ions. Leakiness of liposomes during the 

encapsulation process was due to high lipid content (i.e., cholesterol) during 

liposomes fabrication for which a high liposomal escape was also observed. In study 
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by van Dijk-wolthuis and co-workers (1997) demonstrate sufficient drug release in 

the liposome embedded within degradable polymer-based system, while liposome 

embedded with non-degradable polymer-based system resulting into insufficient 

drug release. In addition, high release from degradable polymer-based system was 

shown to be governing by degradation of the polymeric matrix. 

 

Nixon and Yeung (1989) conducted a study together with Stenekes and co-workers 

(2000) in which they demonstrate that liposomes with low and high membrane 

fluidity were successfully released from a polymeric-based system in their intact form 

and with preserved size for approximately 60 days. Although pre-encapsulated drug-

loaded liposomes could show controlled drug release from the depot, the majority of 

these studies have shown that the obtained drug release profiles depended on the 

liposomal burst effect rather than the diffusion process (Machluf et al., 1997; Chung 

et al. 2006; Wang et al., 2008).  

 

2.8. The successes and challenges emerging from composite liposome and 

polymeric-based technologies 

The combination of liposome-based systems and polymeric-based systems for 

sustained release of therapeutically active compounds has been demonstrated to be 

successful in pharmaceutical applications. Sustained release profiles of different 

bioactive molecules such as genes, drugs, protein, and growth factor from liposomes 

encapsulated in either natural or synthetic biodegradable polymeric material have 

been obtained (Hara and Miyake, 2001; Dai et al., 2006; Mulik et al., 2009). The 

success of this drug delivery combination depends mostly on encapsulation efficacy 

and the type of drug release profile that is obtained. Efficiency in encapsulating drug-
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loaded liposomes was reported to be dependent on several techniques, such as 

cross-linking agents [glutaraldehyde (GA), formaldehyde, carbodiimide] or physical 

treatments (i.e., UV irradiation, freeze-drying), during the fabrication process (Jeon et 

al., 2009; Kulkarni et al., 2009). Sustained release kinetics of the pre-encapsulated 

drug-loaded liposomes depends most on the degradation rate of the polymeric 

materials. This combined system has added a remarkable advantage to both 

technologies (i.e., liposome-based and polymeric-based), though more so to the 

liposome technology since polymeric materials are more stable than liposomes.  

 

The following were achieved properties post embedment of the liposomes into a 

polymeric based system: (i) sustained release over prolonged periods of time, (ii) 

improved viscosity, (iii) stability of liposomes, and (iv) improved half-life for both the 

drugs and liposomes. In polymeric-based system incorporated with liposomes, drug 

delivery efficacy and preservation of drug bioactivity has been achieved. This is due 

to the fact that liposomes have a higher degree of biocompatibility when compared to 

polymeric materials (Stenekes et al., 2000; Gobin et al., 2006). Although this 

composite system demonstrated improved success, there are still some major 

challenges that need to be overcome. Incorporation of toxic organic solvent or high 

heat during the fabrication process can inhibit the activity of some bioactive 

molecules such as protein (Sandor et al., 2002; Chung et al., 2006). Furthermore, 

since drug-loaded liposome release profiles seem to depend most on degradation of 

polymeric materials, the majority of drug-loaded liposome may remain enmeshed 

within the depot, or insufficient initial release at commencement of treatment may be 

a problem. At the same time, overdose may occur during the high degradation 

period. In either case, degradable polymeric materials have demonstrated more 
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efficacy than nonbiodegradable polymeric material since, insufficient drug release 

was reported from the latter depot (van Dijk-Wolthuis et al., 1997). 

 

2.9. Future perspective 

Significant development has been reported with regard to the combination of the 

liposome-based technology with temporary depot polymeric-based technology in 

sustaining drug release over prolonged period. However, the combination of both 

drug delivery technologies into a single model of drug delivery has been reported to 

be associated with inadequate drug release. Since both materials can be easily 

manipulated, design of a novel temporary depot of the polymeric-based technologies 

to enhance therapeutic efficacy or improve the drug release profile is of a great 

interest. Integration of the more advanced types of liposome-based technologies 

such as targeted- or stimuli-sensitive liposomes in this system can enhance 

therapeutic efficacy. In addition, targeted liposomes formulations, with targeted 

moieties such as antibodies, peptide, glycoprotein, polysaccharide, growth factors, 

carbohydrate, and receptors may increase liposomal drug accumulation in the 

tissues/cells via overexpressed receptors, antigen, and unregulated selectin. 

Sensitivity of liposomes to pH, light, magnetism, temperature, and ultrasonic waves 

can enhance therapeutic efficacy. Some polymeric systems have demonstrated 

some disadvantages in this application such as non biodegradability that results in 

insufficient drug release. The use of a combination liposomal-based system with 

natural and/or synthetic polymeric biodegradable and/or nonbiodegradable polymers 

may add strength to the depot while improving the liposomal release profile. 

Although organic solvents are normally added during fabrication, non toxicity should 

be rigorously assessed in ex vivo studies. In summary, the combination system, as a 
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model of sustained release of drug-loaded liposomes from temporary polymeric 

depots, has been declared successful but system improvements are demanded. 

Since this system is implantable, it may be useful in future for the management of 

chronic diseases such as Aid Dementia Complex, Tuberculosis, Cancer, or 

Neurodegenerative disorders, such as Parkinson’s and Alzheimer’s disease, which 

normally require regular doses over prolonged periods of time. 
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CHAPTER 3 

DEVELOPMENT OF SURFACE-ENGINEERED NANOLIPOSOMES FOR 

MODULATING THE NEUROTOXICITY ASSOCIATED WITH β AMYLOID 

AGGREGATES IN ALZHEIMER’S DISEASE 

 

 

3.1. Introduction 

 

Different hypotheses associated with Alzheimers disease (AD) etiology have been 

reported. This includes considerable evidence that extracellular soluble Aβ peptide 

has to undergo a process of aggregation with biological metals ions (such as zinc, 

copper and iron ions) in order to form insoluble Aβ peptide, which is substantiated to 

promote neurotoxic Aβ peptide forms of plaques in AD (see Chapter 1, Section 

1.1.1) (Small and Bornstein, 2001; Citron, 2002; De Felice et al., 2004; Lublin and 

Gandy, 2010). This condition is greatly influenced by a breakdown in the 

homeostatic mechanisms, resulting in abnormal or overexpressed biological 

transition metal ions, such as zinc and copper ions and thereafter established 

amyloidogenic form or cytotoxic Aβ aggregation post reacting with soluble Aβ (1-40) 

and Aβ (1-42) (Lovell et al., 1998; Dong et al., 2003; Bush and Tanzi, 2008; Duce et 

al., 2010). A study by Feaga and co-workers (2006) postulated that neurotoxicity of 

the Aβ aggregation is associated with oxidative damage. In addition, the study also 

evidently elucidated that monomeric or soluble Aβ peptide binds to copper in a linear 

bis-His geometry, thereafter they undergo a complexed reaction with reactive oxygen 

species. The binding between copper and Aβ (1-16) peptide is strongly 
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demonstrated to be modulated by histidine residue-coordination via the imidazole 

ring (Ma et al., 2006).  

 

Several neuroprotectant metal chelators or chelating agents (such as 5-chloro-7-

iodo-8-hydroxyquinoline (clioquinol) (CQ), Ethylenediaminetetraacetic acid (EDTA), 

histidine residues and zinc acetate (ZnAc) that can restore biometal homeostasis 

and prevent/reverse Aβ aggregation, have been explored in both in vitro and in vivo 

studies (Bush and Tanzi, 2008; Zatta et al., 2009). A study conducted by Opazo and 

co-workers (2005) demonstrated that the beneficial effects of CQ is that it is able to 

reduce the size and number of Aβ plaques in transgenic AD in mice. In another study 

by Bush (2002), it was revealed that CQ restored intracellular zinc and copper ions 

levels through ionophore processes in which CQ: Cu or CQ: Zn complexes mediated 

the transport of metal ions into the cell. The study also confirmed that CQ: Cu or CQ: 

Zn intracellular complexes induced the up-regulation of matrix metalloproteases 

ultimately promoting the digestion of amyloid oligomers.  

 

EDTA is most widely used as a chelating agent due to its claw-like molecular 

structure that binds to transition metals with a high affinity constant to form EDTA 

complexes (such as Cu-EDTA and Zn-EDTA) (Conway et al., 1999). Chelation 

therapy with EDTA has been approved by the US Food and Drug Administration 

(FDA) for the management of symptoms associated with cardiovascular disease, 

more recently with AD (Seely et al., 2005; Liu et al., 2009). In another chelation form 

of therapy, histidine residues were demonstrated to have copper binding or zinc 

binding activity in AD (Nair et al., 2010). In a study conducted by Chikha and co-

workers (2002) it was demonstrated that surface engineered lipid-based carriers with 



 

53 
 

histidine-rich peptide or protein improved transition metal bindings. In addition, the 

chelating ligand zinc acetate (ZnAc) has been validated as being the compound of 

choice for the treatment and management of Wilson’s disease (WD) (Marcellini et al., 

2005). ZnAc accomplishes its effectiveness as a chelating ligand by means of 

blocking copper absorption, which ultimately induces hepatic metallothione in 

synthesis thus resulting in the alleviation of the toxic effects of copper in intestinal 

mucosal cells (Shimizu et al., 1999). In other countries particularly the United States 

and a few European countries, ZnAc is currently available as prescription medicine 

for WD under the tradename Galzin® and Wilzin® respectively (Squtti and Zito, 

2009).  

 

Despite these potential chelating agents (i.e. histidine, EDTA and ZnAc), clinical 

improvement or management of diseases in the CNS such as AD is hampered by 

poor absorption, toxic side-effects and the difficulty to bypass the highly restrictive 

Blood-Brain Barrier (BBB) thus hindering further investigation (Popovic and Brundin, 

2006).  In order to avoid these disadvantages while improving delivery efficacy and 

reducing toxicity associated with side-effects, sterically stabilized nanoliposomes 

(NLPs) have been developed as potential delivery vehicles for such CNS conditions 

(Cui et al., 2005; Schnyder  and Huwyler, 2005; Liu et al., 2006; Atyabi et al., 2009; 

Modi et al., 2010). NLPs are prominent candidates due to their unique characteristics 

such as low toxicity and capability of crossing the BBB (Chikha and Li, 2002; 

Kamidate et al., 2002; Kizelsztein et al., 2009; Liu et al., 2009; Yigit et al., 2009; 

Phachonpai et al., 2010;  Ying et al., 2010). This unique approach of chelating ligand 

delivery systems utilizing NLPs may significantly advance the efficacy of chelating 

agents in the management of AD.  
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The research described in this Chapter was to develop novel NLPs that were 

surface-engineered with chelating ligands such as EDTA, histidine and ZnAc. The 

chelating ligands conjugated on the surface of NLPs using either covalent or non-

covalent procedures were validated. In addition, the possibility of the modified 

chelating ligand-bound NLPs to resolubilize or disaggregate ZnAβ(1-42) or CuAβ(1-

42) aggregates using a Label Guard™ Microliter Cell Nano-Photometer™ (Implen 

GmbH, Munich, Germany) was investigated via quantifying the concentration of 

proteins. In addition, this Chapter was also attempting on validate that novel modified 

chelating ligand-bound NLPs (EDTA, histidine and ZnAc) could rendered 

resolubilization of the ZnAβ (1-42) or CuAβ (1-42) aggregates in vitro. Ex vivo, 

experiments have demonstrated that ZnAβ(1-42) or CuAβ(1-42) aggregates induced 

neurotoxicity to PC12 neuronal cells. Furthermore, it was confirmed that the 

neurotoxicity associated with Aβ aggregates was reversed after employing the 

modified chelating ligand-bound NLPs. The modified NLPs assessed in terms of the 

chelating ligands (EDTA, histidine and ZnAc) facilitate intracellular delivery with the 

influence of Cu(II) and Zn(II) metal ions ex vivo. Molecular Mechanics Energy 

Relationships (MMER) was employed to corroborate the experimental findings by 

exploring the spatial disposition of energy minimized molecular structures. 

 

3.2. Materials and Methods 

 

3.2.1. Materials 

The following chemical phospholipids (1, 2 distearoyl-sn-glycero-3-phosphocholine) 

(DSPC), cholesterol (CHOL), phosphatidylethanolaminedistearoyl-methoxy 

polyethyleneglycol conjugate (DSPE-mPEG2000), phosphatidylethanolamine -
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rhodamine-B triethylamine salts (Rh-DSPE), fluorescein isothiocyanate (FITC), 

ethylenediaminetraacetic acid (EDTA), L-histidine, β-amyloid (1-42) synthetic 

peptide, N, N′-dicyclohexylcarbodiimide (DCC) and N-hydroxysulfosuccinimide 

(NHS) were purchased from Sigma-Aldrich (St. Louise, MO, USA). Zinc acetate 

(ZnAc), copper acetate (CuAc), copper chloride (CuCl2) and zinc chloride (ZnCl2) 

were purchased from Saarchem (Pty) Ltd. (Brakpan, South Africa). Membrane filters 

(0.22μm) were purchased from Millipore® (Billerica, MA, USA). The CytoTox-Glo™ 

Cytotoxicity Assay, which measures cell viability, was purchased from Promega 

Corporation (Madison, WI, USA). All other chemicals used in the experiments were 

of analytical grade and were employed as received. 

 

3.2.2. Preparation of the nanoliposomes 

NLPs were prepared using an adapted reverse-phase evaporation technique 

developed by Suzuki and co-workers (2007). Briefly, DSPC, CHOL and DSPE-

mPEG conjugate (with rhodamine or FITC labeled markers) were dissolved in an 

organic solvent phase of chloroform/methanol (9:1). Pluronic F68 (5%w/v) was then 

added as a surfactant (Table 3.1). The mixture was then blended with a probe 

sonicator (Sonics & Materials, Inc., CT, USA) followed by solvent removal by rotary 

evaporation (Rotavapor® RII, Büchi Labortechnik AG, Switzerland) maintained at 

60°C to obtain a thin lipid film. The appropriate volume of phosphate buffered saline 

(PBS) (preheated to 60°C) was added and the vessel vigorously agitated on a rotary 

mixer to produce multilamellar vesicles (MLVs). The MLVs were then sonicated at 

60°C for 5 minutes to produce unilamellar liposomes. Size distribution was obtained 

by gradually extruding through a 0.22μm pore size polycarbonate membrane filter 
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and the samples obtained were allowed to stabilize at 4°C in a refrigerator until 

further analysis. 

 

 
Table 3.1. Compositions of nanoliposomes formulations with chelating ligand 
  

F# DSPC/CHOL/DSPE/P68 
CuAc 
(mM) 

ZnAc 
(mM) 

 His 
(mM) 

EDTA 
(mM) 

 
(m/m/m/m) 

    1 55/62.5/12.5/5 0 0 0 0 

2 55/62.5/12.5/5 50 0 0 0 

3 55/62.5/12.5/5 0 82 0 0 

4 55/62.5/12.5/5 0 0 65 0 

5 55/65.5/12.5/5 0 0 0 34 

 
F#: Formulation  

 

3.2.3. Surface modification of the nanoliposomes using chelating ligands 

NLPs with DSPE-mPEG-COOH were used to conjugate the chelating ligand using 

either covalent or non-covalent conjugation procedures (Yagi et al., 2000; Janssen et 

al., 2003; Verma et al., 2003; Zhua et al., 2007). Briefly, activated NLPs (with 

45mg/mL NHS and 60mg/mL DCC) and chelating ligands (65mM of histidine and 

34mM of EDTA) were conjugated using a covalent procedure. A non-covalent 

conjugation procedure was employed for surface modification of NLPs with ZnAc 

(50mM) and CuAc (82mM) in PBS buffer at pH 7.4. The reaction was allowed to 

agitate continuously overnight at room temperature. Organic solvents were removal 

by rotary evaporation by rotary evaporation (Rotavapor® RII, Büchi Labortechnik 

AG, Switzerland) maintained at 60°C for 3 hours. Finally, the reactions mixtures 

either covalent or non-covalent conjugated were extensively dialyzed against PBS at 

pH7.4 for 48 hours to remove unconjugated chelating ligands. 



 

57 
 

3.2.4. Evaluation of the conjugation efficiency of chelating ligands on the 

nanoliposomes surface 

Evaluation of the conjugation efficiency of chelating ligands (CuAc, EDTA, histidine 

and ZnAc) on the surface of NLPs was conducted using a NanoPhotometer™ 

spectrophotometer (Implen GmbH, Munich, Germany). Briefly, 2mL of 1% Triton 

x100 in methanol was added to 4mL solution of modified NLPs. The suspensions 

were allowed to react for 2 hours at 45°C in a laboratory oven. The absorbance of 

the final solution was read on a NanoPhotometer™ at λmax=220-245nm (230nm for 

CuAc and histidine, 220nm for ZnAc and 245nm for EDTA) against a blank sample 

of unmodified NLPs. The conjugation efficiency (CE) was used to confirm the total 

quantity of chelating ligands coupled or conjugated onto the surface of NLPs and 

was calculated using equation (Eq. 3.1). 

 

CE% =
Actual quantity of chelating ligand on NLPs

Theoretical quantity of chelating ligand employed 
 x100 … … … … … … … … Eq. 3.1 

 

3.2.5. Determination of size and zeta potential of the modified nanoliposomes 

Determination of the average particle size, polydispersity index (Pdi) and zeta 

potential of unmodified NLPs and modified NLPs (with chelating ligands) were 

analyzed using a Zetasizer NanoZS instrument (Malvern Instruments (Pty) Ltd., 

Worcestershire, UK) at 25°C. All NLPs particle size and zeta potential measurements 

were performed in the same manner, whereby each sample was diluted (1 in 10) 

with deionized water using disposable cuvettes for each run (quartz cuvettes). Each 

test was performed in triplicate and the average value in each case was reported 

accordingly. 
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3.2.6. Chemical structure analysis of the modified chelating ligand-bound 

nanoliposomes 

FTIR spectroscopy was performed on the modified NLPs in order to characterize the 

potential interaction between the chelating ligands and the surface-conjugated NLPs. 

Samples were compressed into 1x13mm disks using a Beckmann Hydraulic Press 

(Beckman Instruments Inc., Fullerton, USA), and then analyzed at high resolution 

with wavenumbers ranging from 4,000-400cm-1 on a Nicolet Impact 400D FTIR 

Spectrophotometer coupled with Omnic FTIR research grade software (Nicolet 

Instrument Corp., Madison, WI, USA). 

 

3.2.7. Evaluation of the surface morphology and architecture of the modified 

nanoliposomes 

 

3.2.7.1. Scanning Electron Microscopy examination  

Scanning electron microscopy (SEM) (Jeol JSM-120, Tokyo, Japan) was undertaken 

to reveal the surface morphology of the NLPs. A small quantity of lyophilized NLPs 

and modified chelating ligand-bound NLPs were secured on a metallic sample stub 

and sputter-coated with a layer of carbon. Each sample was viewed under varying 

magnifications at an accelerating voltage of 20 kV.  

 

3.2.7.2. Transmission Electron Microscopy examination 

Unmodified NLPs and modified chelating ligand-bound NLPs (with CuAc, EDTA, 

histidine or ZnAc) dispersions were diluted approximately 1:10 with PBS buffer at 

pH7.4 and deep inside sonication bath at 37°C for 5 minutes. One drop of the diluted 

sample was placed on a carbon-coated copper grid for 5 minutes followed by 
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removal of the excess liquid that was carried using a filter paper and air-dried. The 

films on the copper grid were examined using Transmission Electron Microscopy 

(TEM) (Jeol 1200 EX, Japan) at 10,000x magnification.  

 

3.2.8. In vitro studies on the formation of Aβ(1-42) aggregates  

To assess the effect of Cu(II) or Zn(II) metal ions on the formation of Aβ aggregates, 

in vitro analysis was performed as previously described (Chikha et al., 2002). Briefly 

5mM of Aβ(1-42) peptide was incubated with CuCl2 (20mM) and ZnCl2 (20mM) in 

25mM Tris/150mM NaCl buffer (pH7.4; 37°C) for 24 hours. Samples were then 

centrifuged (Optima® LE-80 K, Beckman, USA) at 10,000 rpm for 20 minutes. The 

supernatant aliquots were directly analyzed using a Nano-Photometer™ 

Spectrophotometer (Implen GmbH, Munich, Germany) at a λmax 280nm for total 

soluble Aβ(1-42) peptide percentage computation. All experiments were performed 

in triplicate.  

 

3.2.9 Assessment of the effect of the modified chelating ligand-bound 

nanoliposomes on resolubilization of Aβ (1-42) peptides 

To determine the resolubilization percentage of Aβ(1-42) peptides through chelation 

of the modified NLPs, CuAβ(1-42) or ZnAβ(1-42) aggregates were incubated with 

either unmodified or modified chelating ligand-bound NLPs (82mM CuAc, 34mM 

EDTA, 65mM histidine and 50mM ZnAc) for 24 hours. Thereafter reaction mixtures 

in 0.5% Triton X-100 (for induce lysing to liposomal structure) in methanol were 

vortexed briefly and incubated at 45°C in a laboratory oven for 2 hours. The samples 

were then centrifuged (Optima® LE-80K, Beckman, USA) at 10,000 rpm for 20 

minutes. The supernatant aliquots were then analyzed using the Label Guard™ 
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Microliter Cell of the NanoPhotometer™ (Implen GmbH, Munich, Germany) for 

computation of the protein concentration as a percentage. The total percent of Aβ(1-

42) in the soluble fraction was determined in triplicate. 

 

3.2.10. PC12 neuronal cells culture studies 

PC12 neuronal cells were purchased from the Health Science Research Resources 

Bank (HSRRB, Osaka, Japan) (Greene and Tischler, 1974). The cells were cultured 

in RPMI-1640 media (with L-glutamine and sodium bicarbonate) supplemented with 

5% fetal bovine serum, 10% horse serum (both heat inactivated) and 1% 

penicillin/streptomycin (Sigma-Aldrich; St. Louise, MO, USA). The cells were then 

maintained in an incubator (RS Biotech Galaxy, Irvine, UK) with a humidified 

atmosphere of 5% CO2 at 37°C. 

 

3.2.10.1. Ex vivo neurotoxicity assay of metal Ions and Aβ1-42 aggregates 

Neurotoxicity on PC12 neuronal cells was detected by a CytoTox-Glo™ Cytotoxicity 

assay (Promega Co. Madison, USA). Since CytoTox-Glo™ cytotoxicity reagents 

contain the AAF-Glo Assay™ substrate and rLuciferase that cannot cross intact cell 

membranes, only external release protease (normal from dead cells) may cleave the 

proluminescent substrate which generated a luminescent signal from luciferase 

(Zhang et al., 2009). Briefly, PC12 neuronal cells were incubated with ZnAβ (1-42) or 

CuAβ (1-42) aggregates at 37°C in a CO2 incubator (RS Biotech Galaxy, Irvine, UK) 

for 24 hours. An appropriate quantity of CytoTox-Glo™ reagent containing the 

substrate was added to each well as per the Promega Co. protocol. The cytotoxicity 

assay was performed by incubation of the CytoTox-Glo™ substrate with treated cells 

at room temperature for 15 minutes. The supernatant was collected through 
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centrifuging (Optima® LE-80 K, Beckman, USA) at 1,800 rpm for 20 minutes. For 

cell viability studies, the pellet was further lysed with CytoTox-Glo™ buffer, which 

was followed by incubation at room temperature for 15 minutes. Dead and live cell 

signals were measured by a luminometer (Victor™X3, Perkin Elmer Inc., USA). 

 

3.2.10.2. Neurotoxicity analysis of the modified chelating ligand-bound 

nanoliposomes 

The effect of modified chelating ligand-bound NLPs on neurotoxicity associated with 

Aβ aggregates was determined by the CytoTox-Glo™ Cytotoxicity assay as 

previously describe Cho and co-workers (2008). Briefly, PC12 neuronal cells were 

first exposed for 24 hours to CuAβ (1-42) aggregates or ZnAβ (1-42) aggregates 

which is associated with neurotoxicity, the after treated with filtered sterile 

unmodified NLPs and modified chelating ligand-bound NLPs (82mM CuAc, 34mM 

EDTA; 65mM histidine and 50mM ZnAc) in RPMI 1649 media for 24 hours at 37°C. 

Dead and live cell signals were analyzed using a luminometer (Victor™X3, Perkin 

Elmer Inc., and USA). 

 

3.2.10.3. Ex vivo uptake of the modified chelating ligand-bound nanoliposomes 

by PC12 neuronal cells 

The ex vivo uptake of the modified chelating ligand-bound NLPs was investigated on 

PC12 neuronal cells using Confocal Laser Scanning Microscopy (CLSM, Leica 

Microsystems, Wetzlar, Germany). PC12 neuronal cells were seeded at a density of 

10,000 cells for 24 hours in a 96 cells/well culture plate. The cells were thereafter 

incubated with 20mM CuCl2 solution or 20mM ZnCl2 solutions in RPMI media for 2 

hours at 37°C in a CO2 incubator. The ex vivo uptake capacity was performed on 
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50μL of fluorescent-labeled unmodified NLPs and 50μL of fluorescent-labeled NLPs 

surface modified with chelating ligands (CuAc, EDTA, histidine and ZnAc) in RPMI 

1640 free FBS. Cells were cultured in identical condition as previously described in 

Chapter 3, section 3.2.10 of this thesis. After 4 hours of incubation, cells were re-

suspended in fresh RPMI 1640 media supplemented with 10% FBS and 5% Horse 

serum. At 0, 6, 12, 18 and 24 hours of incubation at 37°C under CO2, the cells were 

washed four times with culture medium. The intracellular delivery efficiency was 

detected by a fluorometer filter (Victor™X3 Perkin Elmer Inc. USA) at excitation and 

emission wavelengths of 450nm and 482nm, respectively. CLSM visualized the 

bound fluorescent-labeled modified NLPs with PC12 neuronal cells. 

  

3.2.11. Static Lattice Atomistic Simulations 

All modelling procedures and computations, including energy minimizations in 

Molecular Mechanics (MM+), were performed using HyperChemTM 8.0.8 Molecular 

Modelling software (Hypercube Inc., Gainesville, FL, USA) and ChemBio3D Ultra 

11.0 (CambridgeSoft Corporation, UK). DSPC and DSPC-PEG polymers were drawn 

using ChemBio3D Ultra in their syndiotactic stereochemistry as 3D models whereas 

the structure of Aβ10-21 was built using the Sequence Editor Module on HyperChem 

8.0.8. The structure of EDTA and CHOL were built with natural bond angles as 

defined by the software algorithm. The models were initially energy-minimized using 

MM+Force Field and the resulting structures were energy-minimized using the 

AMBER 3 (Assisted Model Building and Energy Refinements) Force Field. The 

conformer having the lowest energy was used to create the polymer-polymer and 

protein chelators complexes. A complex between molecules was assembled by 

disposing the molecules in a parallel way, and the same procedure of energy-
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minimization was repeated to generate the final models: DSPE-PEG/DSPC/CHOL, 

Aβ10-21-Cu (II), Aβ10-21-Cu (II)-EDTA, Aβ10-21-Zn (II) and Aβ10-21-Zn (II)-EDTA. 

Full geometrical optimization was performed in vacuum employing the Polak-Ribiere 

Conjugate Gradient algorithm until an RMS gradient of 0.001kcal/mol was reached. 

Force Field options in the AMBER (with all H-atoms explicitly included) and MM+ 

(extended to incorporate non-bonded limits, restraints, and periodic boundary 

conditions) methods were set as defaults (Kumar et al., 2011). 

 

3.3. Results and Discussion  

 

3.3.1. Conjugation efficiency of chelating ligands on the surface of the 

nanoliposomes 

The conjugation efficiencies of the modified chelating ligand-bound NLPs for CuAc, 

ZnAc, histidine and EDTA were determined using a NanoPhotometer™ 

spectrophotometer (Implen GmbH, Munich, Germany). Results indicated that the 

coupling efficiencies of the NLPs surface modified with ZnAc, histidine and EDTA 

were 65%, 76%, and 68%, respectively (Table 3.2). Comparably, the NLPs surface-

modified with CuAc had a conjugation efficiency of 30%. These results justify the 

desirable formation of the modified NLPs with chelating ligands, which is suitable for 

enhancing the delivery of chelating agents into brain cells associated with AD. 

 

3.3.2. Physicochemical properties of the targeted nanoliposomes 

Physicochemical characterization of the surface-modified NLPs (with CuAc, ZnAc, 

histidine and EDTA) such as the average particle size and zeta potential was 

measured using Dynamic Light Scattering (Zetasizer NanoZS, Malvern Instrument, 
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UK). Table 3.2 shows the average particle size obtained for the unmodified NLPs. 

For the modified NLPs, the results were as follows: i) 178nm for CuAc-modified 

NLPs; ii) 130nm for EDTA-modified NLPs; iii) 125nm for histidine-modified NLPs and 

vi) 127nm for ZnAc-modified NLPs. The Pdi value of the modified NLPs with 

chelating ligands (EDTA, histidine and ZnAc) ranged between 0.235-0.445, while the 

Pdi value for CuAc was 0.920. The zeta potential values were highly negative on all 

NLPs. For the unmodified NLPs, the zeta potential value was -28.7mV while for 

modified NLPs it was -37.3mV. NLPs modified with ZnAc had a zeta potential of -

9.59mV while for NLPs modified with histidine and EDTA the zeta potential values 

were -35.8mV and -36.1mV respectively (Table 3.2). Worth noting is that when NLPs 

were modified with CuAc, the zeta potential decreased from been a highly negative 

charge toward a more neutral charge (-9.59mV) (closer to neutrality). Overall, the 

results indicated that NLPs modified with chelating ligands contributed towards the 

increase of a net negative charge for the zeta potential value and a relative increase 

in particle size. Thus, the zeta potential (range from -28.7 to -37.3) of NLPs modified 

with chelating ligands such as EDTA, histidine and ZnAc, conclude that the produced 

negative charge NLPs will have better storage stability than CuAc. 

aDynamic Light Scattering (DLS) 
 

Table 3.2. Physicochemical characterization of the unmodified and modified NLPs 

F# DLSa size Polydispersity Zeta Potential  Conjugation 

 
(nm) Index (0-1) (mV)     Efficiency (%) 

Unmodified  
NLPs  100 0.217 -28.7 - 

1 178 0.92 -9.59 30 

2 127 0.445 -37.3 65 

3 125 0.235 -35.8 76 

4 130 0.251 -36.1 68 
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3.3.3. Assessment of the modified nanoliposomes chemical structure 

variations 

FTIR spectra is one of the most powerful chemical analytical techniques used for 

analyzing IR spectra, vibration, and characteristics of chemical functional groups of 

phospholipids (Weers and Scheuing, 1991). FTIR spectra were generated to 

characterize the potential interactions of the NLPs and chelating ligands. As clearly 

depicted in Figure 3.1, FTIR spectroscopy confirmed that there were molecular 

structural changes in the modified NLPs compared to the unmodified NLPs with 

chelating ligands. The FTIR spectra of modified NLPs displayed characteristic bond 

formations at the following band widths respectively, 1194.09cm-1 (histidine), 

1734.84cm-1 and 1624.62cm-1 (ZnAc), 1243.61cm-1 (EDTA) and 1672.00, 

1779.00cm-1 as well as at 3222.85cm-1 (CuAc). These peaks were absent in FTIR 

spectra of the unmodified NLPs. Overall, results showed that there were interactions 

between the NLPs and chelating ligands, which culminated into the formation of the 

novel modified NLPs that were surface-engineered. 

 

 

Figure 3.1: Contd. on pg 66 
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Figure 3.1:  FTIR spectra of the (a) native CuAc, ZnAc, histidine and EDTA and (b) 
unmodified NLPs and surface-modified NLPs with histidine, ZnAc, EDTA and CuAc. 
 

3.3.4. Morphological characterization of the modified nanoliposomes 

TEM micrographs of modified chelating ligand-bound NLPs (with ZnAc, CuAc, 

histidine and EDTA) are shown in Figure 3.2. TEM images revealed homogeneity 

and uniformity of the, a) unmodified NLPs and modified NLPs with chelating ligand 

(b) ZnAc, c) CuAc, d) histidine and e) EDTA. The images also indicated that the 

unmodified NLPs and modified NLPs produced were of a nanosize range and were 

spherical in shape. Typical SEM image of the modified NLPs chelating ligand 

presented with uniform surface morphology (Figure 3.3). Results also confirmed that 

chelating ligands were surface-engineered onto the NLPs by either covalent or non-

covalent bonding that contributed to the surface morphology. 
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Figure 3.2: TEM micrographs of the a) unmodified NLPs and modified NLPs with 
b) ZnAc, c) CuAc, d) histidine and e) EDTA. 
 

             

Figure 3.3: Typical SEM image of the modified NLPs synthesized (Magnification 
x12000). 
. 

3.3.5. In vitro metals Ions and Aβ(1-42) resolubilization assay 

The modified chelating ligand-bound NLPs modulated with ZnAβ(1-42) or CuAβ(1-

42) aggregates were confirmed in vitro (Strozyk et al., 2009). As shown in Figure 

3.4a, the percentage of soluble Aβ(1-42) peptide achieved by resolubilization of 

ZnAβ(1-42) aggregates with unmodified NLPs was 30%, while with modified NLPs 
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this value increased to 40% for CuAc modified NLPs, 50% for ZnAc-modified NLPs, 

70% for histidine-modified NLPs and 82% for EDTA-modified NLPs. Figure 3.4b, 

shows the percentages of soluble Aβ(1-42) achieved by resolubilization of CuAβ(1-

42) aggregates with modified chelating ligand-bound NLPs. Unmodified NLPs 

showed 30% resolubilization while modified NLPs were 42% for CuAc-modified 

NLPs, 69% for ZnAc-modified NLPs, 60% for histidine-modified NLPs and 80% for 

EDTA-modified NLPs. Unmodified NLPs and CuAc modified NLPs did not show any 

significant effect on resolubilization of either ZnAβ(1-42) or CuAβ(1-42) aggregates 

after a 24 hours reaction at 37°C. The high percentages of soluble Aβ(1-42) peptide 

confirmed that the surface-engineered NLPs with chelating ligands were effective in 

resolubilization/disaggregation of ZnAβ(1-42) and CuAβ(1-42) aggregates.  

 

                 

Figure 3.4: Contd. on pg 69 
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Figure 3.4: Resolubilization of the (a) ZnAβ(1-42) aggregates and (b) CuAβ(1-42) 
aggregates by modified NLPs. NLPs surface modified with chelating ligand 
(F1,CuAc), F2, ZnAc; F3, histidine and  F4, EDTA. 
 
 
3.3.6. Ex vivo neurotoxicity assay of metals ions and Aβ1-42 aggregates 

The neurotoxicity profiles of metal ions Zn(II) and Cu(II)], Aβ (1-42) peptide and 

ZnAβ(1-42) or CuAβ(1-42) aggregates on PC12 neuronal cells are shown in Figure 

3.5a. Cu(II) and Zn(II) ions showed low or no significant effect on cell viability when 

compared to untreated PC12 neuronal cells. At 5mM of the Aβ(1-42) peptide 

concentration, a small decrease in cell viability was observed. However, when PC12 

neuronal cells were exposed to ZnAβ(1-42) or CuAβ(1-42) aggregates this resulted 

in a 60-70% decrease in PC12 neuronal cells viability. These results confirmed that 

both ZnAβ(1-42) and CuAβ(1-42) aggregates induced neurotoxicity when exposed to 

PC12 neuronal cells. Metal ions such Cu(II) and Zn(II) as well as soluble Aβ (1-42) 

peptides showed no effects during ex vivo studies. This suggested that the metal 

ions and soluble Aβ(1-42) peptide have low cytotoxicity or stimulate low neurotoxicity 

on PC12 neuronal cells.  
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3.3.7. Effect of modified chelating ligand-bound nanoliposomes on the 

modulation of neurotoxicity 

Figure 3.5b-c depict the analytical data obtained for the determination of the effect of 

modified NLPs on the modulation of neurotoxicity of PC12 neuronal cells induced by 

ZnAβ(1-42) or CuAβ(1-42) aggregates. The analysis revealed non-restoration of cell 

viability after exposure to toxic ZnAβ(1-42) aggregates and subsequent treatment 

with CuAc-bound NLPs (38% cellular survival). In addition, the data showed an 

increase in cellular survival after treating neurotoxic PC12 neuronal cells with ZnAc-

bound NLPs (50% cellular survival), 66% for histidine-bound NLPs and 68% for 

EDTA-bound NLPs in ex vivo studies (Figure 3.5b). Figure 3.5c showed an increase 

in cell survival after exposure to cells with toxic CuAβ(1-42) aggregates and 

subsequent treatment with modified chelating ligand-bound NLPs. Treatment with 

ZnAc-, histidine- and EDTA-bound NLPs resulted in 75% cellular survival. However, 

when CuAc-bound NLPs were used to modulate neurotoxicity associated with toxic 

CuAβ (1-42) aggregates, it did not show any significant effect (30 % cellular survival) 

on the restoration of cell viability. The data displayed the same trend as the in vitro 

study, which confirmed that the modified chelating ligand-bound NLPs, particularly 

ZnAc, histidine and EDTA were able to modulate both toxic CuAβ (1-42) and ZnAβ 

(1-42) aggregates in vitro and ex vivo. 
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Figure 3.5: Contd. on pg 72 
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Figure 3.5: Effect of ZnAβ(1-42) and CuAβ(1-42) aggregates on cell viability, (b) 
effect of the modified NLPs on reversing neurotoxicity of ZnAβ(1-42) aggregates and 
(c) effect of the modified NLPs on neurotoxicity induced by CuAβ(1-42) aggregates. 
NLPs surface modified with chelating ligands (F1,CuAc), F2, ZnAc; F3, histidine and  
F4, EDTA. 
 
 

3.3.8. Ex vivo uptake of modified chelating ligand-bound nanoliposomes 

To investigate the effect of the chelating ligands (EDTA, histidine and ZnAc) on 

mediated NLPs internalization, ex vivo samples were characterized by CSEM and 

fluorescence imaging (Victor™X3 Perkin Elmer Inc., USA). Analysis was performed 

in the presence of the metal ions Cu(II) or Zn(II) ions and results are shown in 

Figures 3.6 and 3.7. Results depicted cellular uptake by the labeled NLPs in the 

presence of Cu(II) after 24 hours. Modified NLPs (EDTA, histidine and ZnAc) were 

most efficiently taken up by PC12 neuronal cells in the presence of Cu(II) from 6-24 

hours (Figure 3.6a). Figure 3.6b shows that modified NLPs (with EDTA, histidine and 

ZnAc) were most efficiently taken up by PC12 cells when compared with unmodified 

NLPs in the presence of Zn(II). Unmodified NLPs and CuAc-bound NLPs showed no 
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significant fluorescence activity in the presence of either Zn(II) or Cu(II). Confocal 

images did not show any significant difference on the uptake of modified NLPs by 

the cells since the results were field dependent (Figure 3.7). Overall, these studies 

demonstrated that the modified chelating ligand bound NLPs had a greater cellular 

uptake in the presence of either Zn(II) or Cu(II) ions. This data also indicated that 

intracellular uptake of NLPs was mediated by the surface engineered chelating 

ligands on the NLPs.  

                   

Figure 3.6: Cellular uptake profiles of modified NLPs in the presence of (a) Cu (II) 
ions and (b) Zn(II) ions. NLPs surface modified with chelating ligand (F1, CuAc), F2, 
ZnAc; F3, histidine and F4, EDTA 
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Figure 3.7: Contd. on pg 75  
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Figure 3.7: Light and fluorescent microscopy analysis of PC12 cell line incubated 
in for 24 hours (a1-2) with labeled FITC or rhodamine NLPs; (b1-2) surface 
engineered with CuAc; (c1-2) surface engineered ZnAc, (d1-2) surface engineered 
EDTA and (e1-2) surface-engineered histidine (Magnification 100x). 
 
 

3.3.9. Molecular mechanics energy relationship (MMER) analysis 

MMER, a method for analytico-mathematical representation of potential energy 

surfaces, was used to provide evidence of the contributions of valence terms, non-

covalent Coulombic terms, and non-covalent van der Waals interactions for chelation 

and nanostructure formation. The MMER model for potential energy in various 

molecular complexes can be written as shown in Eq. 3.2.  

 

Emolecule/complex = V∑ = Vb + Vθ + Vφ + Vij + Vhb + Vel  ...........................................Eq.3.2 

 

Where, VΣ is related to total steric energy for an optimized structure, Vb corresponds 

to bond stretching contributions, Vθ denotes bond angle contributions, Vφ represents 

torsional contribution arising from deviations from optimum dihedral angles, Vij 

incorporates van der Waals interactions due to non-bonded interatomic distances, 

Vhb symbolizes hydrogen-bond energy function and Vel denoted the electrostatic 

energy (Choonara et al., 2011). In the present study, the global energy relationships 
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for the various complexes derived after assisted model building and energy 

refinements are shown in Eqs. 3.3-3.13  

EDSPE-PEG = 57.33V∑ = 2.49Vb + 17.35Vθ + 42.18Vφ - 4.68Vij - 0.005Vh …………Eq.3.3 

EDSPC = 19.31V∑ = 0.91Vb + 6.30Vθ + 4.26Vφ + 7.85Vij - 0.0007Vhb ……………..Eq.3.4 

EDSPE-PEG/DSPC = 49.36V∑ = 2.43Vb + 16.32Vθ + 39.76Vφ + - 8.96Vij - 0.19Vhb ….Eq.3.5 

ΔE = -27.273kcal/mol 

ECHOL4 = 152.984V∑ = 7.56Vb + 45.76Vθ + 56.68Vφ + 42.97Vij …………………...Eq.3.6 

EDSPE-PEG/DSPC/CHOL = 149.83V∑ = 9.65Vb + 62.29Vθ + 102.22Vφ - 24.29Vij –  

0.032Vhb ………………………………………………………………………………..Eq.3.7 

ΔE = -79.786kcal/mol 

EAβ10-21 = -131.39V∑ = 3.26Vb + 58.04Vθ + 15.17Vφ - 18.41Vij - 4.22Vhb –  

185.23Vel ……………………………………………………………………………….Eq.3.8 

EAβ-Cu(II) = -133.51V∑ = 3.24Vb + 58.12Vθ + 15.14Vφ - 20.52Vij - 4.25Vhb –  

185.24Vel ……………………………………………………………………………….Eq.3.9 

ΔE = -2.122kcal/mol 

EAβ-Zn(II) = -137.07V∑ = 3.23Vb + 58.15Vθ + 15.07Vφ - 24.13Vij - 4.24Vhb –  

185.15Vel ……………………………………………………………………………..Eq.3.10 

ΔE = -5.683kcal/mol 

EEDTA = 6.13V∑ = 0.42Vb + 1.27Vθ + 2.79Vφ + 1.65Vij ……………………………Eq.3.11 

EAβ-Cu(II)-EDTA = -140.79V∑ = 3.63Vb + 59.46Vθ + 16.30Vφ - 31.30Vij - 4.27Vhb - 

184.61Vel ……………………………………………………………………………..Eq.312 

ΔE = -13.406kcal/mol 

EAβ-Zn(II)-EDTA = -135.42V∑ = 3.59Vb + 59.87Vθ + 18.66Vφ - 27.79Vij - 4.43Vhb - 

185.32Vel ……………………………………………………………………………..Eq.3.13 

ΔE = -4.476kcal/mol 

 

3.3.10. Formation of the nanoliposomal system 

It is evident from the energy computations (Eqs. 3.3-3.7) that the nanoliposomal 

system was stabilized in terms of respective steric or potential energy factors. The 

preferred orientation of the polymers in the presence and absence of surfactant 

molecule is depicted in Figure 3.8. Starting with a DSPE-PEG/DSPC binary system, 

the miscibility behavior of PC and DSPE-PEGs are known to be controversial for the 

formation of spherical particles since they are completely immiscible at all relevant 

pressures and compositions (Lozano and Longo, 2009). In this Chapter, we used 1, 

2 distearoyl-sn-glycero-3-phosphocholine with DSPE-PEG in order to form a 
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stoichiometric condensed complex, DSPE-PEG/DSPC that is miscible with an 

energy stabilization of ΔE0−27.273 kcal/mol (Eqs. 3-5). The energy was mainly 

stabilized in terms of bond angles and torsional contributions (bonding energies) as 

well as London dispersion forces and H-bonding (nonbonding interaction). Among 

these forces, H-bonding stabilization was 40 times (due to the presence of the 

glycerol functionality) greater than the combination, which led to a stabilized 

molecular entity. Although, the blend was miscible, the formation of a liposomal 

system was still a challenge. To further increase the stabilization of the system, 

cholesterol (in excess) was introduced to act as filler in the space lattice of the binary 

system as shown in Figure 3.8. This ternary system led to a super-stable molecular 

structure, with a further decrease in constituent energies (Eqs. 3.6-3.7; ΔE0 −79.786 

kcal/mol) mainly in the form of van der Waals forces compared to H-bonding. This 

change in stabilization from H-bonding to van der Waals forces was due to 

hydrophobic interactions arising from the inclusion of cholesterol (over powering the 

glycerol induced hydrophilic forces) leading to the formation of NLPs in excess of 

phosphate buffered saline. 

             

Figure 3.8: Visualization of (a) geometrical preferences (color codes: C (cyan), O 
(red), N (blue, P (yellow) and H (white)); and (b) Connolly molecular electrostatic 
potential surfaces (color codes: DSPE-PEG (yellow), DSPC (blue) and CHOL (red)) 
in translucent display mode show casing the nanoliposomal after molecular 
simulation in vacuum 
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3.3.11. Energy transformations involving metal binding, aggregation and 

chelation 

To study the effect of chelating agents, Aβ protein was individually modelled in 

conjugation with Cu(II) and Zn(II) followed by treating the energy 

minimized/stabilized molecular structures with EDTA (a metal chelator) as the 

prototype (Figures 3.9 and 3.10). To increase the efficiency and selectivity of the 

computational process, we employed Aβ10-21 (YEVHHQ KLVFFA) containing the 

His13 and His14 residues as a theoretical model variant instead of Aβ1-42 (Morgan 

et al., 2002). Systematic combination of the ligand atoms were studied in several 

possible binding sites and modes for evaluating the optimum metal/protein energy 

minimized configurations of Cu(II)/Zn(II) binding to Aβ10-21. The metal ions form 

close van der Waals space interactions with the Aβ protein, as depicted in Figures 

3.10a and 11a for Cu-Aβ and Zn-Aβ, respectively. The main region of interaction 

with minimized energy was His13-Cu(II)/His13-Zn(II) (with no H2O molecules 

involved) which was in accordance with previously reported studies (Daxiong et al., 

2008). Although Zn(II) displayed a more stable protein complexation (Eqs. 3.8-3.10), 

both metal ions/protein interactions resulted in near equivalent minimization in 

potential energy (ΔECu-Aβ0-2.122 kcal/mol; ΔEZn-Aβ0-5.683 kcal/mol) which was 

due to the close proximity of these metals within the periodic table and similar van 

der Waals radius. This observation was supported by the MMER analysis (Eqs. 3.8-

3.10), where it was evident that London dispersion/van der Waals forces 

(hydrophobic interactions) led the entire energy minimization process. The effect of 

adding a chelating agent on resolubilization of the aggregated Aβ protein (metal-

induced aggregation) was modelled using EDTA as the prototype where a marked 

effect on the geometrical configuration of the metal/protein complex was observed. 
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As soon as the EDTA molecule was in proximity to the van der Waals radius of the 

metal ion, it engulfed the metal ion with the so called “acetic acid claws”. Interesting 

binding of the Aβ protein with EDTA in the case of Aβ-Cu (II)-EDTA confirmed the 

selectivity of Aβ towards the chelating agent in comparison to the metal ion, which 

led to resolubilization. The stabilization in energies was not comparable with ΔE0-

13.406 kcal/mol and ΔE0-4.476 kcal/mol in the case of Aβ-Cu(II)-EDTA and Aβ-

Zn(II)-EDTA, respectively (Eqs. 3.11-3.13), respectively. This difference in energy 

was attributed to a decrease in dispersion forces and increased non-bonding 

interaction in the case of Aβ-Cu (II)-EDTA with the formation of H-bonds. In addition, 

close examination of the geometrical conformations clearly depicted the preference 

of metal ions towards EDTA (i.e. the chelating agents successfully extracted the 

metal ions from the Aβ-Cu(II)/Aβ-Zn(II) complex). This corroborates well with the 

observed in vitro experimental results where chelating ligand-bound modified NLPs 

modulated CuAβ (1-42)/ ZnAβ (1-42) aggregates. 

 

         

Figure 3.9: Visualization of geometrical preferences of (a) Aβ(10-21)-Cu (II) and (b) 
β(10-21)-Cu (II)-EDTA after molecular simulation in vacuum. Color codes: c (cyan),O 
(red), N (blue), P (yellow), H (white) and Cu (violet). Dots represent the overlapping 
van der Waals radii and the ribbon represents the secondary structure. 
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Figure 3.10:  Visualization of geometrical preferences of (a) Aβ(10-21)-Zn(II) and (b) 
Aβ(10-21)-Zn(II)-EDTA after molecular simulation in vacuum. Color codes: C (cyan), 
O red), N (blue), P (yellow), H (white) and Zn (brown). Dots represent the 
overlapping van der Waals radii and the ribbon represents the secondary structure. 
 

3.4. Concluding Remarks 

The outcome of this Chapter addressed the production of a novel NLPs surface 

engineered with chelating ligands. The chelating ligands were successfully 

conjugating onto the surface of NLPs using either covalent or non-covalent 

conjugation procedures (Chapter 3, Section 3.2.4, Figure 3.1; Table 3.2). 

Modification of the NLPs did not have a significant effect on the size of the NLPs 

when compared with unmodified NLPs, which renders them suitable for crossing the 

BBB. In vitro studies confirmed that the incubation of Cu(II) or Zn(II) with Aβ(1-42) 

peptide stimulated Aβ-aggregation. Modified NLPs (with EDTA, histidine and ZnAc) 
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were suitable for resolubilization of CuAβ(1-42) and ZnAβ(1-42) aggregates in vitro. 

Furthermore, the high survival of PC12 neuronal cells after treatment with modified 

NLPs was influenced by inhibition of Aβ(1-42) aggregates, thereby protecting the 

cells from Aβ(1-42) aggregate related toxicity. High fluorescence microscopy also 

revealed that the modified NLPs in the presence of Zn(II) or Cu(II) was influenced by 

an ionophore process or macropinocytosis, which is non-receptor mediated 

endocytosis or a biological metal ion pathway. The surface modified NLPs were able 

to protect PC12 neuronal cells from insoluble Aβ-peptides associated with 

neurotoxicity in AD. The in vitro studies (as discussed in Chapter 3, section 3.3.5) 

were well corroborated by the in silico molecular mechanistic studies (as discussed 

in Chapter 3, section 3.3.10) thus further confirming the potential of NLPs/chelation 

therapy for AD. 
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CHAPTER 4 

FORMULATION OF THE LIGAND-FUNCTIONALIZED NANOLIPOSOMES FOR 

TARGETED DELIVERY OF GALANTAMINE IN ALZHEIMER’S DISEASE 

 

4.1. Introduction  

 

The development of novel targeted drug delivery systems that are capable of 

enhancing neuroprotectant efficacy for CNS disease management such as NDs has 

gained a lot of attention in recent years (Roney et al., 2005). AD is one of the fatal 

ND’s, characterized by the aggregation of β-amyloid (Aβ) peptides that accumulate 

into plaques and neurofibrillary tangles comprising hyperphosphorylated tau proteins 

(Kowalska, 2004; Delacourte, 2005; Marino et al., 2010). Currently, most neuroactive 

drug therapies against AD are associated with several disadvantages such as: i) 

being beneficial only in higher doses; ii) having limited bioavailability; iii) possessing 

poor absorption following systemic delivery; iv) severe peripheral side-effects due to 

higher uptake by normal cells; and v) difficulty in penetrating the highly restrictive 

BBB (Rubin and Staddon, 1999; Roney et al., 2005). Studies have shown that the 

BBB restricts the entry of large molecules into the CNS, while smaller lipophilic 

molecules, peptides and nutrients satisfy BBB penetration via endogenous 

transporters (Kroll and Neuwelt, 1998; Pardridge, 2003). Galantamine (GAL) is a 

neuroactive drug that is currently approved by the USA Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA) for the 

symptomatic treatment of AD due to its ability to moderate acetylcholinesterase 

inhibition in the CNS (Heinrich and Lee Teoh, 2004; Shytle et al., 2004). Its 

potentiating effects are derived from allosteric interaction with nicotinic acetylcholine 
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receptors (nAChRs) that enhance the sensitivity of the receptors to acetylcholine 

(Erkinjuntti, 2002). In a recent study, it has been demonstrated that GAL may also 

prevent Aβ aggregation and Aβ induction of neuronal apoptosis (Matharu et al., 

2009; Liu et al., 2010). However, the clinical utility of the drug is hampered by its 

poor retention in the CNS and the intricacy of transporting it across the BBB (De 

Boer and Gaillard, 2007; Ying et al., 2010). Several strategies employing liposomes 

have been developed in order to enhance the CNS bioavailability of neuroactive 

drugs (Bangham et al., 1974). Liposomes are vesicles comprising concentric bilayer 

phospholipid-based membranes that can incorporate hydrophilic or hydrophobic 

drugs and achieve targeted drug delivery to the CNS (Woodle and Lasic, 1992; 

Gabizon and Papahadjopoulos, 1988; Veerareddy and Vobalaboina, 2004; Torchilin, 

2005; Immordino et al., 2006; Drummond et al., 2008). However, liposomes have 

reduced blood circulation times due to high uptake by macrophage cells of the 

reticuloendothelial system (RES).  

 

Surface-modified liposomes with either polyethylene glycol (PEG), chitosan (CHT), 

silk-fibroin or polyvinyl alcohol (PVA) have shown to enhance the blood circulation 

half-life of liposomes (Allen et al., 2002; Gobin et al., 2006; Immordino et al., 

2006;Nakano et al., 2008; Yousefi et al., 2009; Wang et al., 2010; Ruizhen et al., 

2011). In addition, liposomal formulations have been approved by the US FDA for 

clinical use (Veerareddy and Vobalaboina, 2004; Immordino et al., 2006). A study 

conducted by Rousseau and co-workers (1999) demonstrated the successful 

localization of liposomes within the CNS. Although liposomes can satisfy BBB 

penetrability, they are associated with the inability to access and penetrate targeted 

regions within the CNS. This results in intracellular uptake of drug by normal cells as 
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well (De Boer and Gaillard, 2007). Various types of targeted liposomes have been 

developed in order to evade drug uptake by normal cells using targeting moieties 

such as glucose, folic acid, polysaccharides, antibodies, glycoproteins and peptide 

ligands to further enhance the drug delivery specificity and increase the therapeutic 

efficacy (Scherphof et al., 1985, Schnyder and Huwyler, 2005; Suzuki et al., 2008; 

Torchilin et al., 2008; Yamada et al., 2008). Antibodies, peptides and glycoproteins 

have been largely reported as drug markers due to their molecular constituency of 

known amino acid sequences, ease of engineering onto liposome surfaces, and 

binding with high affinity to specific cell-surface receptors (Mufamadi et al., 2011). In 

addition, targeted liposomes (with ligands) can further improve the specificity and 

efficacy in tissues or cells via over expressed surface receptors such as Serpin 

Enzyme Complex-Receptor (SEC-R), antigens and unregulated selectin (Boland et 

al., 1995; Ziady et al., 1997; Hossen et al., 2010; Simonis et al., 2010, Yu et al., 

2010). SEC-R has been reported to have a high affinity for binding with the α1-

antitrypsin domain (Perlmutter et al., 1990). A study by Boland and co-workers 

(1995) demonstrated SEC-R expressed on the surface of hepatoma and neuronal 

(PC12) cells and their interaction with soluble and non-toxic Aβ-peptides. Another 

study undertaken by Ziady and co-workers (1997) showed synthetic peptide Cl315  

was able to deliver genes to hepatoma cells via SEC-R. Furthermore, Patel and co-

workers (2001) reported that two synthetic peptides, namely polylysine antitrypsin 

and antitrypsin delivered DNA to hepatocytes cells via SEC-R.  

 

Therefore, the aim of this Chapter was to design optimized ligand-functionalized 

NLPs with maximum synthetic coupling of the peptide (Lys-Val-Leu-Phe-Leu-Ser-

NH2) onto the surface of the NLPs. In addition, the goal was also to achieve 
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maximum drug entrapment efficiency, desirable targeting, uptake and release of 

galantamine (GAL) specifically to neuronal cells. The optimized ligand-functionalized 

NLPs were further assessed for cytotoxicity and intracellular uptake on PC12 

neuronal cells via SEC-R in a mediated manner. The energetic profile for the 

nanonization of the liposomal system and the peptide-DSPE reactional profile was 

generated and corroborated with experimental and analytical data using Molecular 

Mechanics Energy Relationships by exploring the spatial disposition of energy 

minimized molecular structures. 

 

4.2. Materials and Methods 

 

4.2.1. Materials  

Phospholipids included distearoyl-sn-glycero-phosphatidylcholine (DSPC), 

cholesterol (CHOL), and 1,2-distearoyl-sn-glycero-3-phosphatidyl-ethanolamine-

methoxypolyethyleneglycol-2000 (DSPE). Flouresceinisothiocyanate (FITC), N-

hydroxysulfosuccinimide (NHS) and N,N′-dicyclohexylcarbodiimide (DCC) purchased 

from Sigma-Aldrich (St. Louise, MO, USA). Dimethylsulfoxide (DMSO), sodium 

hydroxide (NaOH) and potassium dihydrogen phosphate (KH2PO4) were purchased 

from Saarchem (Pty) Ltd. (Brakpan, South Africa). Membrane filters (0.22µm) 

purchased from Millipore (Billerica, MA, USA). Liquid nitrogen was purchased from 

Afrox Ltd., (Industria West, Germiston, South Africa). RPMI-1640 media (with L-

glutamine and sodium bicarbonate), fetal bovine serum (heat inactivated), horse 

serum (heat inactivated), 1% penicillin (100IU/mL) and streptomycin (100µg/mL) 

were used for the cell culture studies and were purchased from Sigma-Aldrich (St. 

Louise, MO, USA).The CytoTox-Glo™ Assay Kit was purchased from Promega 
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Corporation (Madison, WI, USA). All other solvents and reagents were of analytical 

grade and were used as received. 

 

4.2.2. Preparation of the nanoliposomes   

NLPs were prepared as previously described in Chapter 3, section 3.2.2 employing 

adapted reverse-phase evaporation technique describes by Suzuki and co-workers 

(2007). For preparing the FITC-labeled NLPs, the lipid film was hydrated in 48mM of 

FITC at 65°C for 30-40 min, thereafter cooled to 4°C to form multilamellar vesicles 

(MLV). For the GAL-loaded NLPs, 30mg of the lipid film and 1.5mg/mL of GAL was 

hydrated in 130mM ammonium sulfate and 4mL PBS buffer at pH7.4 for 30 min at 

65°C. Thereafter the mixture was cooled to 4°C and dialyzed against PBS buffer at 

pH7.4 or 5% w/v dextrose to remove the ammonia and residual drug (Haran et al., 

1993; Song et al., 2008; Ke et al., 2011, Accardo et al., 2012). Alternatively, residual 

drug and fluorescence were separated by centrifugation (Optima® LE-80K, 

Beckman, USA) in PBS buffer at pH7.4 (1000rpm; 30 min). Unilamellar NLPs were 

obtained by a freeze-thawing technique. Briefly, NLPs solutions were firstly frozen at 

-80°C using liquid nitrogen followed by thawing on a waterbath set at 37°C (N=6) 

(Yagi et al., 2000). Thereafter samples were placed in an ultrasonic bath at 50kHz 

for 5 min before being stored at 4°C. Particle size obtained by gradual extrusion of 

the NLPs formulation through a 0.22μm pore size polycarbonate membrane filter 

(Millipore, Billerica, MA, USA) (Verma et al., 2003; Zhua et al., 2007). 

 

4.2.3. Optimization of the ligand-functionalized nanoliposomes  

A Box-Behnken experimental design was constructed to produce experimental NLPs 

formulations for optimization of the formulation variables. The design comprised 15 
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experimental runs. DSPC (mg), CHOL (mg), and DSPE (mg) were selected as the 

independent formulation variables (Table 4.1) followed by determining the effects of 

the dependent formulation variables such as the particle size, zeta potential, 

polydispersity index (PdI), drug entrapment efficiency (DEE) and in vitro drug 

release. Optimization for the ligand-functionalized NLPs were subsequently 

undertaken on Minitab® V15 software (Minitab Inc., State College, PA, USA) (Table 

4.2). The peptide coupling efficiency (PCE) and DEE were maximized to ensure that 

maximum GAL was entrapped within the NLPs and that the functionalized moieties 

of the ligands were sufficiently engineered onto the surface of the NLPs. Drug 

release (in terms of the Mean Dissolution Time - MDT) were minimized to ensure 

that there was maintenance of adequate GAL levels by the ligand-functionalized 

NLPs over a prolonged period of time. 

 

Table 4.1. Box-Behnken experimental design template for producing the NLPs with 
quantity of DSPC, CHOL and DSPE used in each experimental formulation  

F# DSPC (mg) CHOL (mg) DSPE (mg) 

1 10 100 12.5 

2 100 62.5 20 

3 10 62.5 20 

4 55 62.5 12.5 

5 55 100 5 

6 100 100 12.5 

7 10 62.5 5 

8 55 62.5 12.5 

9 55 25 5 

10 100 25 12.5 

11 55 25 20 

12 55 62.5 12.5 

13 55 100 20 

14 10 25 12.5 

15 100 62.5 5 
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Table 4.2. Independent formulation variables and measured responses employed. 

Independent Variables  Level 

  High Current Low 

DSPC 100 63.3284 10 

CHOL 100 74.4749 25 

DSPE 20 6.5801 5 

  1 0 -1 

 

Measured Responses Objective 

Peptide Coupling Efficiency   Maximize  

Drug Entrapment Efficiency    Maximize  

Drug Release   Minimize  

Mean Dissolution Time   Minimize  

 
 

4.2.4. Surface-engineering of synthetic peptide ligands onto the 

nanoliposomes  

Peptides were synthesized by SBS Genetech Co. (Pty) Ltd. (Shanghai, China) 

employing Fmoc-chemistry with an HPLC purity > 98%. In order to synthesize the 

ligand-functionalized NLPs, native NLPs were allowed to react with 46mg of NHS in 

the presence of 87mg of DCC after dissolving in 100µL of methanol or DMSO and 

4mL of PBS buffer at pH 7.2. After maintenance at room temperature for 45 minutes, 

10mg/mL of synthetic peptide was added to the treated NLPs suspension and 

allowed to react for another 6 hours at room temperature (Figure 4.1). For 

comparison purposes three different ligands were investigated as shown in Figure 

4.1. Thereafter, solvents were removal by rotary evaporation, water bath with 

temperature maintained at 65˚C for 2-3 hours. This was followed by dialyzing the 

ligand-functionalized NLPs against PBS buffer at pH 7.4 using SnakeSkinTM Pleated 

dialysis tubing of (10,000 MWCO; Sigma-Aldrich, St. Louise, MO, USA) for 24 hours 

to remove excess DCC, NHS and uncoupled synthetic peptide ligands. The ligand-
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functionalized NLPs were further stabilized by a freeze-thawing technique and then 

stored at 4˚C for further use. The peptide coupling efficiency (PCE) onto the surface 

of the NLPs was measured by a NanoPhotometer™ spectrophotometer (Implen 

GmbH, Munich, Germany). Briefly, 2mL of 0.5% v/v triton X-100 in methanol was 

added to 2mL of the ligand-functionalized NLPs suspension and allowed to react for 

2 hours at 45˚C in a laboratory oven. The absorbance of the final solution was 

measured at λmax=285nm against native (non-functionalized) nanoliposomes. The 

PCE value was used to confirm the total quantity of synthetic peptide ligands 

coupled onto the surface of the NLPs and was computed using Eq. 4.1. 

 

PCE% =
𝐴𝑞

𝑇𝑞
 𝑥 100 … … … … … … … … … … … … … … … … … … … … … … … … … … … … . . Eq. 4.1 

 

Where Aq is the actual quantity of synthetic peptide ligand coupled onto the NLPs 

surface and Tq is the theoretical quantity of the synthetic peptide ligand utilized 

during the coupling reaction for synthesizing the ligand-functionalized NLPs. 

 

 

Figure 4.1:  Schematic representation of FITC or GAL-loaded ligand-functionalized 
NLPs showing; a) drug-loaded NLPs, b) GAL-loaded functionalized NLPs with ligand 
1, c) ligand 2 and d) ligand 3. 
 
 

a) b) c) d) 
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4.2.5. Determination of the drug entrapment efficiency of the ligand-

functionalized nanoliposomes   

In order to determine the entrapment efficiency of GAL within the ligand-

functionalized NLPs, samples solubilized into a sufficient volume of 0.5% v/v triton X-

100 in methanol solution. The drug content released from the ruptured NLPs was 

separated by centrifugation (Optima® LE-80K, Beckman, USA) at 10,000rpm for 20 

minutes. Thereafter the supernatant was used for UV absorbance measurement at a 

fixed wavelength of λmax=288nm and computed utilizing a standard linear curve of 

GAL in concentrations between 0.1-5.0µg/mL in PBS (pH 6.8; 37°C); R2=0.99). The 

DEE value used to validate the total GAL content within the NLPs and computed 

using Eq. 4.2. 

DEE % =
𝐴𝑞

𝑇𝑞
 x 100 … … … … … … … … … … … … … … … … … … … … … … … … … … … …  Eq 4. 2 

Where Aq is the actual quantity of GAL measured by UV spectrophotometry and Tq 

is the theoretical quantity of GAL added in the NLPs formulation. 

 

4.2.6. Physicochemical characterization of the ligand-functionalized 

nanoliposomes 

Physicochemical characterizations of the ligand-functionalized NLPs were 

undertaken, which were analyzed either as samples suspended in PBS buffer at pH 

7.4 or as a lyophilized powder (both GAL-loaded native and ligand-functionalized 

NLPs). A lyophilized powder of the formulation was pre-formed in the presence of a 

cryprotectant (0.5%w/v sucrose) that protected the NLPs membranes from 

destruction or leakage of the entrapped GAL due to mechanical stress during 

freezing and dehydration (Chen et al., 2010). Briefly, 2.5mL of cryprotectant (1.5%) 

in water was firstly mixed with 2.5mL of PBS buffer at pH 7.4 and thereafter added to 
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sample solutions (5mL) and subjected to both freeze-thaw and freeze-drying 

processes. 

 

4.2.7. Analyses of the molecular structural variation due to nanoliposomes 

formulation 

Fourier Transmission Infrared (FTIR) spectrophotometry of the ligand-functionalized 

NLPs was performed in order to characterize the potential molecular structural 

interactions of the synthetic peptide ligands and the NLPs comprising DSPE on the 

surface of the NLPs. Analyses was undertaken at high resolution with wavenumbers 

ranging from 400-4000cm−1 on a FTIR Spectrophotometer using PerkinElmer® 

spectrum quant software (Perkin Elmer Inc. MA, USA).  

 

4.2.8. Thermal characterization of the ligand-functionalized nanoliposomes 

Temperature Modulated Differential Scanning Calorimetry (TMDSC) analysis of 

native NLPs, GAL-loaded NLPs and GAL-loaded ligand-functionalized NLPs was 

undertaken (Mettler Toledo DSC1 STARe System, Switzerland) in order to 

determine the multiple glass transition temperature (Tg), endothermic melting 

temperature (Tm) and crystallization temperature (Tc) peaks that were consequences 

of irreversible heat flow corresponding to the total heat flow. Indium was used to 

calibrate the instrument and samples (5.2-6.5mg) were weighed in standard DSC 

aluminum pans and analyzed within a temperature gradient of 20-240°C under an 

8kPa nitrogen atmosphere. A bare pan served as a reference for all TMDSC scans. 

The instrument parameters and settings employed are shown in Table 4.3.  
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4.2.9. Particle size and distribution analysis of the ligand-functionalized 

nanoliposomes 

The average particle size and polydispersity index (PdI) of GAL-loaded ligand-

functionalized NLPs measured by Dynamic Light Scattering (DLS) measurements 

using a Zetasizer NanoZS (Malvern Instruments, Worcestershire, UK) at a fixed 

angle of 90°C and 25°C. Prior to measurement, the NLPs were diluted 1:10 with 

filtered PBS buffer at pH 7.4. Disposable cuvettes were used for particle sizing and 

measurements were undertaken in triplicate with multiple iterations for each run in 

order to elute size intensity profiles over time. The average value of three 

measurements was recorded. The PdI values measure of the distribution of the 

particulate population (Baek et al., 2009).   

 

Table 4.3. Temperature Modulated Differential Scanning Calorimetry settings 

employed for thermal analysis of the NLPs 

                        
                    Segment Type 
 

             Parameter Setting 
 

SINE PHASEa 
 

Heat rate                      20°C 

Amplitude                      1°C/min 

Period                       0.8°C 
 
 

LOOP PHASEb 
 Segment 1 

Increament 0.8°C 

End 240°C 

Count 436 
 

aSinusoidal oscillations, bOscillation period 
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4.2.10. Zeta potential analysis of the ligand-functionalized nanoliposomes 

In order to confirm the physical stability and surface charge of the GAL-loaded 

ligand-functionalized NLPs, samples were analyzed for their zeta potential using a 

Zetasizer NanoZS (Malvern Instruments, Worcestershire, UK). Prior to 

measurement, GAL-loaded ligand-functionalized NLPs were produced in accordance 

with the Box-Behnken experimental design template and were diluted with deionized 

water in a 1:10 ratio and extruded through a polycarbonate filter (0.22µm, Millipore 

Corp., Bedford, MA, USA). Disposable quartz cuvettes were used for analyzing the 

GAL-loaded ligand-functionalized NLPs surface charge (N=3). High absolute zeta 

potential values indicate a high electric charge on the surface of the GAL-loaded 

ligand-functionalized NLPs that may cause repulsion between particles to prevent 

aggregation of the ligand-functionalized NLPs. 

 

4.2.11. Morphological characterization of the nanoliposomes 

The morphology of the native NLPs, GAL-loaded NLPs and ligand-functionalized 

NLPs (suspensions in PBS pH 7.4) were examined using transmission electron 

microscopy (TEM) (JEOL 1200EX, Tokyo, Japan). The NLPs suspensions were 

dropped onto a carbon-coated copper grid, which was used as a sample holder. 

Eradication of excess liquid was achieved by blotting with filter paper and air-drying 

at room temperature for 5-10 minutes. The films on the copper grid were examined 

at 50x magnification. The TEM was operated at a voltage of 80kV.  
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4.2.12. Evaluation of the in vitro release of GAL from the ligand-functionalized 

nanoliposomes 

In vitro drug release studies of GAL-loaded ligand-functionalized NLPs were 

assessed in a shaking incubator set at 20,000rpm. The ligand-functionalized NLPs 

were immersed in 100mL PBS (pH 7.4) in a closed vessel and positioned in an 

orbital shaker bath maintained at 37°C. Samples were withdrawn (5mL) at specific 

time intervals, filtered through a 0.22µm membrane filter and the vessel was 

immediately replaced with an equal quantity of drug-free PBS medium. The samples 

were then centrifuged at 10,000 rpm for 30 minutes (Vaidya et al., 2011). Filtered 

supernatant was further analyzed for GAL release by UV spectrophotometry at 

λmax=288nm.  

 

The quantity of GAL released was assayed by the quantity of drug initially present in 

the NLPs compared to the quantity of drug retained in the NLPs  at each sampling 

point and computed from a standard linear curve (R2=0.99) of GAL in PBS (pH 7.4). 

Each experiment was performed in triplicate. The Mean Dissolution Time (MDT) 

values were computed for each sample employing Equation 4.3. 

 

MDT =    ∑ ti (
Mt

M∞   
)

n

i=1

… … … … … … … … … … … … … … … … … … … … … … … … … … . Eq. 4.3 

 

Where, Mt is the fraction of dose released in time ti=(ti+ti−1)/2 and M∞ corresponds 

to the loading dose. 
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4.2.13. Ex vivo cytotoxicity and cell uptake studies 

 

4.2.13.1. Neuronal cell culture and preservation 

PC12 neuronal cells line was maintained and cultured according to the method 

previously described in Chapter 3, section 3.2.10. 

 

4.2.13.2. Ex vivo cytotoxicity assay of the ligand-functionalized nanoliposomes  

PC12 neuronal cells were seeded into 96-well culture plates at a density of 10,000 

cells per well and grown at 37°C in the presence of 5% CO2 for 24 hours. The 

optimized non-functionalized GAL-loaded NLPs as well as the optimized GAL-loaded 

ligand-functionalized NLPs were added into 96-well culture plates. Cell viability was 

determined at 0, 12 and 24 hours intervals using a CytoTox-Glo™ Cytotoxicity Assay 

(Cho et al., 2008). Briefly, 50μL CytoTox-Glo™ Cytotoxicity assay reagent was 

added to each sample per well plate. The plates were instantaneously incubated at 

room temperature for 15 minutes and the dead cell signal measured using a 

Victor™X3 Perkin Elmer 2030 Luminometer Filter (Wellesley, Minnesota, USA). For 

cell viability, additional lysis reagent (50μL) was added to each well to achieve 

complete cell lysis. Subsequently the plate was incubated at room temperature for 

another 15 minutes and then analyzed for live cell signal. The cell viability 

percentages were computed using Eq. 4. 

 

Cell viability % =
Aq

Ac
 x 100 … … … … … … … … … … … … … … … … … … … … … … … … … Eq. 4.4 

 

Where Aq represent the average quantity of luminescence determined from PC12 

neuronal cells (treated, but not lysed) with the various NLPs formulations, and Ac is 
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the average quantity of luminescence detected for control PC12 neuronal cells (not 

treated, but lysed) at each time point.  

 

4.2.13.3. Ex vivo uptake of the ligand-functionalized nanoliposomes  

PC12 neuronal cells were placed into 96-well cell culture plates at an initial density of 

10,000 cells/well and grown for 48 hours under the conditions described earlier. For 

uptake studies, the PC12 neuronal cells were first exposed to native NLPs and 

ligand-functionalized NLPs labeled with fluorescent marker 28mM FTIC or GAL, 

which were maintained at 37°C in a CO2 incubator (RS Biotech Galaxy, Irvine, UK). 

Briefly, the cells were first incubated in serum free (FBS and horse serum) RPMI 

1640 medium (with L glutamine and sodium bicarbonate), and after 2 hours the cells 

were re-suspended in fresh RPMI 1640 media supplemented with 5% FBS and 10% 

horse serum. Samples were withdrawn at 0, 2, 4, 6, 8 and 24 hours and thereafter 

maintained at 37°C in a CO2 incubator (RS Biotech Galaxy, Irvine, UK). For the GAL-

load formulations, the uptake study by the PC12 neuronal cells was performed at the 

end of the incubation period (24 hours). At the end of incubation, the cells were 

washed thrice with ice-cold PBS (pH 7.4) and lysed in the lysis buffer (0.5% triton X-

100 in NaOH solution). The lysate was vortexed and thereafter centrifuged (Optima® 

LE-80K, Beckman, USA) at 10,000 g for 15 minutes at room temperature. The 

supernatant was collected and the quantity associated with the FITC fluorescent was 

measured with a Victor™X3 2030 Fluorometer Filter (Perkin-Elmer, Inc. USA) at an 

excitation wavelength of 450nm and emission wavelength of 482nm. GAL 

equivalents were measured by UV spectrophotometry at λmax=288nm. Each 

experiment was performed in triplicate. The percent drug uptake by the PC12 neural 

cells was computed using Eq 4.5. 
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Cell uptake Efficiency % =
Cq

Tc
 x100 … … … … … … … … … … … … … … … … … … … … … Eq 4.5 

 

Where Cq is the cumulative quantity of FITC or GAL in the supernatant eluted from 

the lysed PC12 neuronal cells and Tc is the total quantity of FITC or GAL added in 

the ligand-functionalized NLPs. 

 

4.2.13.4. Cellular uptake and intracellular localization of the ligand-

functionalized nanoliposomes 

Confocal microscopy was employed to further accessed cellular uptake and 

intracellular localization of fluorescent-labeled native NLPs and the ligand-

functionalized NLPs PC12 neuronal cells. Fluorescence activity was measured using 

Confocal Laser Scanning Microscopy (CLSM) (Zeiss LSM780, Oberkochen, 

Germany) at an excitation wavelength of 450nm and an emission wavelength of 

482nm after 24 hours incubation at 37°C in a CO2 incubator. The upper surface 

morphology of the PC12 neuronal cells were examined using Scanning Electron 

Microscopy (SEM) (Jeol JSM-120, Tokyo, Japan). 

 

4.2.14. Static lattice atomistic simulations for polymer-peptide interaction 

analysis 

All modelling procedures and computations, including energy minimizations in 

Molecular Mechanics (MM), were performed using HyperChemTM 8.0.8 Molecular 

Modelling (Hypercube Inc., Gainesville, FL, USA) and ChemBio3D Ultra 11.0 

(CambridgeSoft Corp., Cambridge, UK) software. DSPC and DSPE (without the 

aliphatic chains) were constructed in their syndiotactic stereochemistry as 3D models 

whereas the structures of the peptides were built using the Sequence Editor Module 
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on HyperChem 8.0.8. The structure of CHOL was built with natural bond angles as 

defined by the software. The models were initially energy-minimized using the MM+ 

Force Field and the resulting structures were once again energy-minimized using the 

AMBER 3 (Assisted Model Building and Energy Refinements) Force Field. The 

conformer having the lowest energy was used to create the polymer-polymer and 

peptide-polymer complexes. A complex of one molecule with another was 

assembled by disposing the molecules in parallel to generate the final models 

(including all three ligand types): DSPE/DSPC/CHOL, DSPE-ligand 1, DSPE-ligand 

2, and DSPE-ligand 3. Full geometry optimization was performed in vacuum 

employing the Polak-Ribiere conjugate gradient algorithm until an RMS gradient of 

0.001kcal/mol was reached. Force Field options in the AMBER and MM+ methods 

were used as defaults. To generate the final models in a solvated system, the MM 

simulations were performed for cubic periodic spaces with the polymer-polymer 

complex at the centre of the cubic space and the remaining free space filled with 

approximately 200 H2O molecules, and the same procedure of energy-minimization 

was repeated to generate the solvated models except that the Force Fields were 

utilized with a constant dielectric (epsilon) with no scaling. In addition, the Force 

Field options in the AMBER (with explicit solvent) were extended to incorporate limits 

to inner and outer options with the nearest-image periodic boundary conditions. The 

outer and inner limits ensured that there were no discontinuities in the potential 

surface. Furthermore, various molecular attributes involved in the molecular 

interactions between the polymer and peptides in the presence of water were 

computed. 
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4.3. Results and Discussion 

 

4.3.1. Characterization of the peptide-based ligand coupled onto the 

nanoliposomes surface 

The appropriate quantity of peptide coupled onto the surface of the NLPs was 

validated by a NanoPhotometer™. Table 4.4 lists the peptide coupling efficiency 

(PCE) values that ranged between 40-79% for the 15 Box-Behnken experimental 

design formulations after stirring the reaction mixtures at room temperature for 6 

hours. Additional results in this Chapter also revealed that the content of DSPE that 

constituted PEG 2000 did not alter the interaction of DSPE with the peptide, nor did it 

elicit any significant effect on the PCE value. The high quantity of peptide coupled 

onto the surface of the NLPs was due to the greater degree of covalent bonding via 

the DSPE free carboxyl (-COOH) group and the free amine (-NH2) group of the 

lysine residue within the peptide. 

 

4.3.2. Assessment of structural variations in the ligand-functionalized 

nanoliposomes 

FTIR spectra were employed to validate the covalent conjugation peptides onto the 

surface of the NLPs. Figure 4.2(a-c) shows a typical FTIR spectrogram of native 

NLPs, GAL-loaded NLPs and GA-loaded ligand-functionalized NLPs, respectively 

(Figure 4.2a). The FTIR spectrum for the native NLPs showed a broad band at 

wavenumber 3200-3600cm-1 and an absorption band at 1234cm-1 that indicated the 

presence of a free hydroxyl group. Two bands were visible at 2918cm-1 and 2850cm-

1 that were ascribed to -CH2 and -CH3 stretching vibrations. Further two bands were 
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observed at 1234cm-1 and 1054cm-1 due to the presence of carboxyl groups, 

vibration and absorption.  

 

After the embedded blending of GAL with the NLPs, the absorption bands at 

2850cm-1 disappeared. This was due to GAL interaction with the NLPs during the 

drug entrapment process (Figure 4.2b). GAL-loaded ligand-functionalized NLPs 

showed an absorption band at 1647cm-1 and a slight shift in the peak position to a 

low frequency of 1590cm-1. This indicated the formation of amide (-NH) bond which 

associated with bending vibrations during covalent attachment of the peptide (Figure 

4.2c). These results also revealed that there was an interaction between the -NH2 

group on the peptide and the -OH group of DSPE during formulation of the GAL-

loaded ligand-functionalized NLPs. This was an added advantage to the developed 

formulation since it would be beneficial in terms of enhancing the site specific 

delivery of GAL.   

 

Figure 4.2: Contd. on pg 101 
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Figure 4.2: Typical FTIR profiles of the NLPs showing; a) native NLPs, b) GAL 
loaded NLPs and c) GAL-loaded ligand functionalized NLPs. 
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4.3.3. Drug entrapment efficiency within the ligand-functionalized 

nanoliposomes  

The DEE (%) within the ligand-functionalized NLPs produced in accordance with the 

Box-Behnken experimental design is as shown in Table 4.4.The DEE values ranged 

between 42-79% as a result of the varying composition of the formulations based on 

the 3 independent formulation variables selected for the design. The results clearly 

indicated that formulations 4, 8 and 12 (centre points) produced from 55%w/w DSPC, 

65%w/w CHOL and 12.5%w/w DSPE resulted in stable ligand-functionalized NLPs with 

a desirable DEE% ranging between 75-79%. The results also showed that CHOL 

and DSPE had the same favorable effect during drug entrapment within the NLPs. 

CHOL is known to increase the stability and reduce the permeability of 

nanoliposomal bilayers (Kirby et al., 1980; Liang et al., 2004). DSPE has been 

confirmed to enhance NLPs stability to other components used for the formulation of 

NLPs (Yousefi et al., 2009). In another similar study, it was shown that remote 

loading with ammonium sulfate at 130mM could improve drug-loading (Ke et al., 

2011). However, further increases in CHOL and DSPE concentration showed to 

have a potentially negative effect since it resulted in a decrease in the DEE value as 

well as NLPs membrane instability and an increase in drug leakage (Ali et al., 2010).  

 

4.3.4. Determination of the particle size distribution and zeta potential 

Table 4.5 shows the effect of the three (3) independent variables on the particle size, 

PdI and zeta potential of the 15 experimental NLPs formulations. The average 

particle size was in the range of 118-153nm (PdI=0.30-0.03; ZP= -18mV to -28mV) 

for the native NLPs; 124-163nm (PdI=0.32-0.03; ZP= -23mV to -20mV) for the GAL-

loaded non-functionalized NLPs and 127-165nm (PdI=0.39-0.03; ZP= -28mV to -
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36mV) for the ligand-functionalized NLPs. Figure 4.3 shows a typical size and zeta 

potential intensity profile generated for the GAL-loaded ligand-functionalized NLPs. 

Dynamic Light Scattering (DLS) measurements did not show any influence on zeta 

potential values because of GAL entrapment. However, the presence of peptide 

revealed an increase in zeta potential due to the negatively charged amino acid 

sequence. Overall, these results have shown that the presence of the peptide on the 

surface of the NLPs had a significant effect on their physical stability. 

 

Table 4.4. Characterization of the 15 formulations generated by the Box-Behnken 

experimental design 

Formulations 
Number 

Peptide Coupling 
Efficiency (%) 

DEE 
(%) 

Drug Release 
(t8 h) 

MDT 
(t8 h) 

1 55 46 0.29 2.9 

2 63 59 0.44 4.4 

3 46 42 0.41 4.1 

4 67 75 0.25 2.5 

5 72 67 0.32 3.2 

6 43 54 0.27 2.7 

7 46 44 0.30 3.0 

8 68 79 0.28 2.8 

9 56 60 0.34 3.4 

10 71 57 0.40 4.0 

11 58 48 0.43 4.3 

12 66 76 0.27 2.7 

13 78 63 0.33 3.3 

14 40 46 0.38 3.8 

15 58 70 0.34 3.4 
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Table 4.5. Particle size distribution, polydispersity index, and zeta potential of the 

15 Box-Behnken experimental design formulations evaluated. 

F# 

Native NLPs 

 
GAL-loaded NLPs 

 

GAL-loaded-
functionalized NLPs 

PSDa PdI ZPc 

 
PSD PdI ZP 

 
PSD PdI ZP 

1 140 0.02 -25 

 
145 0.03 -28 

 
149 0.24 -32 

2 129 0.18 -23 

 
134 0.28 -26 

 
139 0.2 -30 

3 139 0.23 -28 

 
141 0.26 -29 

 
143 0.3 -34 

4 124 0.02 -27 

 
126 0.21 -30 

 
133 0.13 -36 

5 137 0.17 -21 

 
141 0.23 -29 

 
144 0.29 -34 

6 127 0.24 -26 

 
132 0.17 -24 

 
138 0.18 -30 

7 153 0.12 -26 

 
163 0.31 -23 

 
165 0.39 -27 

8 119 0.02 -25 

 
124 0.22 -25 

 
127 0.27 -35 

10 152 0.3 -22 

 
159 0.3 -23 

 
163 0.21 -28 

11 145 0.09 -21 

 
159 0.34 -28 

 
162 0.03 -29 

12 123 0.12 -26 

 
131 0.21 -25 

 
135 0.32 -32 

13 125 0.03 -26 

 
132 0.13 -26 

 
133 0.23 -34 

14 132 0.22 -18 

 
140 0.27 -26 

 
143 0.13 -29 

15 118 0.05 -21   127 0.13 -28   134 0.14 -28 

 
F#: Formulation Number, aPSD: particle size distribution, bPdI: polydispersity index, 
cZP: zeta potential 
 

4.3.5. Characterization of the surface morphology of the ligand- functionalized 

nanoliposomes 

The surface morphology of the ligand-functionalized NLPs formulated as per the 

Box-Behnken design was characterized by TEM. Figure 4.4 shows typical TEM 

images of the native NLPs, GAL-loaded NLPs and the GAL-loaded ligand-

functionalized NLPs. Results revealed that the morphology of the native NLPs, GAL-

loaded NLPs and the GAL-loaded ligand-functionalized NLPs were uniformly 

spherical in shape with an intact/stable structure. Importantly, the morphology profile 
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of the GAL-loaded ligand-functionalized NLPs did not show any aggregation after 

GAL entrapment within the core and surface engineering of peptide onto the NLPs 

surface. The size distribution of the native NLPs, GAL-loaded NLPs, and GAL-

loaded ligand functionalized NLPs were within the nanoscale. These results also 

displayed a desirable correlation with the data obtained by DLS measurement. 

 

 

 

 

. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 4.3: Typical physical profile distributions showing; a) average particle size 
and b) zeta potential distributions of the GAL-loaded ligand functionalized NLPs. 
 
 
                  

                 

 

a) 

b) 
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Figure 4.4: Darkfield (1) and brightfield (2) TEM micrographs of NLPs showing a1-
a2) native NLPs, b1-b2) GAL-loaded NLPs and c1-c2) GAL-loaded ligand-
functionalized NLPs. 
 

4.3.6. Thermal behavior of the ligand-functionalized nanoliposomes 

Thermal behavior of the native NLPs, GAL-loaded NLPs and the GAL-loaded ligand-

functionalized NLPs were validated by TMDSC. The changes in glass transition 

temperature (Tg), endothermic melting temperature (Tm) and crystallization 

temperature (Tc) that occurred during formation of the NLPs are depicted in Figure 
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4.5a-c. Significantly large variation in the Tg, Tm and Tc peaks were observed 

between the native NLPs (Tg=25-38°C; Tm=55°C; Tc=153-180°C), the GAL-loaded 

NLPs (Tg=30-35°C; Tm=62°C, Tc=155-182°C) and the GAL-loaded ligand-

functionalized NLPs (Tm=80-95°C; Tc=140-160°C). The thermal behavior of the GAL-

loaded NLPs indicated that there was a strong hydrophobic interaction between GAL 

and the phospholipids during drug entrapment. The broadening Tm peak and the 

disappearing Tg in the GAL-loaded ligand-functionalized NLPs indicated a strong 

hydrophobic interaction between GAL and the ligand-functionalized NLPs (Ramana 

et al., 2010). The thermodynamic parameters also revealed an ideal transition 

enthalpy on both Fourier transform and non-reversing heat, which confirmed that the 

structure’s phase transitions (with varying heat flow) enhanced the physical stability 

of the NLPs; or alternatively the structure remained intact due to the presence of 

cryprotectant (0.5%) during lyophilization. 

 

     

Figure 4.5: Contd. on pg 108 
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Figure 4.5: TMDSC profiles for the NLPs showing; a) native NLPs, b) GAL loaded 
NLPs and c) GAL-loaded ligand functionalized NLPs. 
 

4.3.7. In vitro drug release from the ligand-functionalized nanoliposomes  

In vitro release behavior of the GAL-loaded functionalized NLPs was investigated in 

PBS (pH7.4, 37°C) over 48 hours. PBS (pH7.4) was used to increase the sensitivity 

of the analytical method and create pH conditions pertinent to a CNS environment 

(Chesler et al., 2003). Figure 4.6(a-c) demonstrates the cumulative fractional release 

profiles of GAL from the 15 experimental formulations as per the Box-Behnken 

experimental design. Based on the experimental design, the 3 independent 

formulation variables resulted in different GAL release rates. Formulations 2, 3, 10, 

11 and 14 exhibited similar release patterns of an initial burst at 8 hours followed by 

approximately 70-80% of GAL released within 48 hours. All other formulations (F1, 

F4, F5-F9, F12, F13 and F15) showed typical sustained release profiles, with less 

than 50% of GAL released from the ligand-functionalized NLPs over a period of 48 

hours. The rapid release of GAL at the initial burst phase may have been influenced 

by the hydration process in formulations that contained higher concentrations of 

DSPE (>10mg) with PEG2000, which together modified the surface of the NLPs 

(Yousefi et al., 2009).  Results also revealed that sustained release from the GAL-

loaded ligand-functionalized NLPs was influenced by the CHOL concentration. 



 

109 
 

CHOL is well-known to stabilize lipid bilayers by reducing the membrane fluidity, 

thereby restricting the movement of drug across the nanoliposomal membrane 

(Betageri and Parsons, 1992; Karki et al., 2009). The MDT value at 8 hours ranged 

between 2.5-4.4 demonstrating slower drug release rates achieved from different 

ligand-functionalized NLPs formulations (F1-F15) as per the Box-Behnken 

experimental design.  
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 Figure 4.6: Contd. on pg 110 
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Figure 4.6: Drug release profiles obtained from the ligand-functionalized NLPs 
formulated as per the Box-Behnken design template showing a) formulation 1-5, b) 
formulations 6-10 and c) formulations 11-15 in PBS (pH7.4; 37°C) over 48 hours. 
 

a) 

b) 

c) 
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4.3.8. Response optimization of the GAL-loaded ligand-functionalized 

nanoliposomes 

Statistical software (Minitab®, V15, Minitab Inc., PA, USA) was used to obtain the 

optimized formulation pertaining to the following formulation responses: Peptide 

Coupling Efficiency (PCE), Drug Entrapment Efficiency (DEE), Drug Release (DR) 

and Mean Dissolution Time at 8 hours (MDT8h). These responses were selected to 

attain maximum GAL-loaded ligand-functionalized NLPs desirability in terms of 

performance (Figure 4.7 and Table 4.6).  

 

Table 4.6 shows the comparative experimental and predicted values of the optimized 

ligand-functionalized NLPs. PCE, DEE, DR and MDT8h were computed to the 

converged desirability scores. The experimental values of PCE, DEE, DR and MDT8h 

were 68.29%, 69.68%, 0.26 and 2.53 respectively. The experimental values obtained 

from each individual response had desirable correlation with the fitted values (Figure 

4.7).  

 

The release profile of the optimized formulation is shown in Figure 4.8. The 

desirability plot describes the influence of each independent variable for formulating 

the optimized ligand-functionalized NLPs with the desired targeted responses (PCE, 

DEE, DR and MDT). 
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. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Desirability plots obtained for the optimized ligand-functionalized NLPs 
at each response. 
 

Table 4.6. Comparative experimental and fitted values of the optimized ligand-

functionalized NLPs 

Measured 
Responses Fitted Experimental % error 

PCE 65.7981 68.2886 -3.3647 
DEE 71.5598 69.675 2.70 

        DR 0.2596 0.2684 -3.2787 
MDT 2.5964 2.5317 2.5556 
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Figure 4.8: Drug release profile obtained for the optimized ligand-functionalized 
NLPs formulation in PBS (pH7.4; 37°C) over 48 hours. 
 
 

4.3.9. Ex vivo analysis of the ligand-functionalized nanoliposomes  

 

4.3.9.1. Ex vivo cytotoxicity assay of the ligand-functionalized nanoliposomes 

The cytotoxicity of the native peptides at different concentrations (0.1mg/mL, 

1mg/mL and 10mg/mL) as well as the optimized ligand-functionalized NLPs were 

compared employing PC12 neuronal cells. As shown in Figure 4.9, the effects of the 

peptides on PC12 neuronal cells were concentration dependent. When the ligand-

functionalized NLPs formulations were exposed to the PC12 neuronal cells at 

concentrations of 1mg/mL or 10mg/mL, there was no significant difference between 

the cytotoxicity of the native peptides and the ligand-functionalized NLPs after 24 

hours in a 5% CO2 incubator at 37°C. However, when 10mg/mL of ligand 3 was 

coupled to the NLPs, results revealed 25% of cell loss occurred compared with 

ligands 1 and 2. These results suggested that pegylated NLPs may have effectively 

reduced the cytotoxicity associated with ligand 3 on PC12 neuronal cells. The overall 
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findings in this Chapter demonstrated that there were no significant differences 

between the native peptides (at 1mg/mL or 10mg/mL) or the non-functionalized and 

ligand-functionalized NLPs formulated when compared with untreated PC12 

neuronal cells at the same conditions over a period of 24 hours.   

 

4.3.9.2. Ex vivo uptake of labeled ligand-functionalized nanoliposomes  

The ex vivo uptake of labeled ligand-functionalized NLPs was investigated to 

determine the intracellular fate of the NLPs. Figure 4.10 (a-b) show the quantification 

of fluorescence intensity measured at different times intervals in PC12 neuronal cells 

after being treated with NLPs formulations at different peptide concentrations 

(1mg/mL and 10mg/mL). The quantities of cellular uptake of the ligand-functionalized 

NLPs were higher compared with non-functionalized NLPs. The fluorescence 

intensity produced by ligand-functionalized NLPs was optimal and demonstrated that 

ligand-coupling led to increased cellular uptake of the NLPs. However, cellular 

uptake was increased with increasing time intervals over a period of 24 hours. Figure 

4.10b depicts weak uptake of ligand-functionalized NLPs when 10mg/mL of ligand 

was used for functionalizing the NLPs, which revealed that higher peptide 

concentration during the coupling process led to a decreased, if not delayed, cellular 

uptake. Figure 4.10c exhibited significant GAL uptake by PC12 neuronal cells after 

24 hours incubation. The intracellular uptake was 15% for free GAL, 23% for R1 and 

83% for R2 with a peptide concentration of 1mg/mL. The results also indicated that 

the uptake of GAL into PC12 neuronal cells was evidently increased when GAL-

loaded NLPs became ligand-functionalized. Figure 4.11 (a-b) depicts the confocal 

fluorescence microscopy images highlighting the difference between the intracellular 

uptake of the non-functionalized and ligand-functionalized NLPs. Figure 4.11 (a-b) 
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showed 2D histograms and 3D images representing the fluorescence intensity and 

distribution of the PC12 neuronal cells which had internalized with the ligand-

functionalized NLPs. Figure 4.11 [a (1a-4b)] histograms depict the fluorescence 

intensity for PC12 neuronal cells treated with non-functionalized (A1b) and ligand-

functionalized NLPs (A2b for R2, A3b for R3, A4b for R4). Figure 4.11b depicts a 

typical 3D profile that displayed a topographical image representing the fluorescence 

intensity and distribution in the z-direction of the PC12 neuronal cells internalizing 

with non-functionalized (B1) and ligand-functionalized NLPs (B2). In fact, confocal 

fluorescence microscopy images revealed that the ligand-functionalized NLPs were 

effectively localized within the PC12 neuronal cells. Non-functionalized NLPs 

showed weak or no FITC fluorescence activity, while PC12 neuronal cells treated 

with R2, R3 and R4 displayed intense and evident FITC fluorescence activity. These 

results suggested that the increase in fluorescence activity in PC12 neuronal cells 

may have been influenced by post-engineered peptides on the surface of the NLPs, 

which promoted intracellular uptake via SEC-R in a mediated manner. Furthermore, 

confocal microscopy imaging was well correlated with corresponding quantitative 

studies of fluorescence intensity measured. Figure 4.11c displays a typical SEM 

micrograph exhibiting the cell surface morphology. 
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Figure 4.9: Cytotoxicity profiles showing a) native ligands (S1, S2 and S3) and b) 
non functionalized NLPs (R1), functionalized NLPs with S1 is R2; R3, functionalized 
with S2; and R4, functionalized with S3 
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Figure 4.10: Contd. on pg 118 
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Figure 4.10: Ex vivo PC12 neuronal cells uptake of the ligand-functionalized NLPs 
with a) non-functionalized NLPs (R1) and R2-R4 coupled with 1mg/mL peptide, b) 
R2-R4 coupled with 10mg/mL peptide and c) GAL uptake by PC12 neuronal cells 
(R1-R4) after 24 hours of incubation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11: Confocal microscopy images representing the population of 
fluorescence PC12 neuronal cells associated with uptake of the NLPs with(A)2D 
images: 1a) R1, 2a) R2, 3a) R3 and 4a) R4 and histograms1b) R1, 2b) R2, 3c) R3, 
and 4d) R4; (B) Pseudo3D images of the topographical view of cells and it 
fluorescence intensity and  distribution after treatment with 1) non-functionalized 
NLPs and 2) ligand-functionalized NLPs and (C) SEM image exhibiting the cell 
surface morphology. 

c) 



 

119 
 

4.3.10. Molecular Mechanics Energy Relationship (MMER) analysis 

MMER was employed as a method for analytico-mathematical representation of the 

potential energy surfaces and provided supportive data regarding the contributions of 

valence terms, non-covalent Coulombic terms and non-covalent van der Waals 

interactions for peptide-linkage and NLPs formation. The MMER model for potential 

energy in various molecular complexes is shown in Eq 4.6. 

 

Emolecule/complex = V∑ = Vb + Vθ+ Vφ + Vij + Vhb + Vel .............................................Eq 4.6 

 

Where, V∑=total steric energy for an optimized structure, Vb= bond stretching 

contributions, Vθ=bond angle contributions, Vφ=torsional contribution arising from 

deviations from optimum dihedral angles, Vij=van der Waals interactions due to non-

bonded interatomic distances, Vhb=H-bond energy function and Vel=electrostatic 

energy (Choonara et al., 2011).  

 

4.3.11. In silico formation of nanoliposomal system 

In the present MM study, the global energy relationships for the various complexes 

derived after AMBER 3 are shown in Equations 7-13. 

 

ECHOL = 38.246V∑ = 1.890Vb + 11.442Vθ + 14.170Vφ + 10.7425Vij....................Eq 4.7 

EDSPC = 30.243V∑ = 0.424Vb + 27.475Vθ + 1.070Vφ + 1.271Vij..........................Eq 4.8 

EDSPE = 7.661V∑ = 0.139Vb + 2.677Vθ + 5.552Vφ - 0.706Vij...............................Eq 4.9 

ECHOL/DSPC= 56.565V∑ = 2.200Vb + 38.626Vθ+ 16.457Vφ - 0.718Vij-  

0.002 Vhb ..........................................................................................................Eq 4.10 

ΔE = -11.924kcal/mol 
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ECHOL/DSPE = 41.886V∑ = 2.282Vb + 18.539Vθ + 17.872Vφ + 3.337Vij 

 - 0.145Vhb.........................................................................................................Eq 4.11 

ΔE = -4.021kcal/mol 

EDSPC/DSPE = 25.023V∑ = 0.517Vb + 30.372Vθ + 6.234Vφ - 12.099Vij –  

0.001Vhb............................................................................................................Eq4.12 

ΔE = -12.881kcal/mol 

ECHOL/DSPC/DSPE = 59.964V∑ = 2.700Vb + 46.572Vθ + 21.143Vφ –  

9.948Vij - 0.503Vhb.............................................................................................Eq 4.13 

ΔE = -16.186kcal/mol 

The energy Equations 4.7-4.13 demonstrated that the nanoliposomal system 

composed of CHOL, DSPC and DSPE were stabilized in terms of respective bonding 

and non-bonding energy factors. The preferred orientations of the polymers as 

binary and ternary polymeric systems are depicted in Figure 4.12. The binary system 

modeled using phophatidyl-derivatives yielded energetically stabilized molecular 

complexes with energy of interactions equivalent to -12.881kcal/mol (DSPC/DSPE) 

suggesting desirable compatibility and miscibility. As reported by Lozano and co-

worker (2009) and Mufamadi and co-workers (2012), the addition of a third lipophilic 

agent such as CHOL further enhanced the stability of the binary system composed 

of cholines and enolines. For proof of concept, CHOL was modelled with DSPE and 

DSPC to form CHOL/DSPE and CHOL/DSPC with interaction energies of -

11.924kcal/mol and -4.021kcal/mol, respectively. In this Chapter, the ternary 

complex to quantify the final stoichiometric condensed complex, CHOL-DSPE-DSPC 

was modelled, where the components were miscible with an energy stabilization of 

ΔE=-16.186kcal/mol (Equations 4.7-4.9, 4.13). The complexes were stabilized by 

generalized energy times in terms of bond angles and torsional contributions as well 
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as London dispersion forces and H-bonding. Interestingly, introduction of CHOL 

introduced H-bonding into the binary and ternary systems with energy values ranging 

from -0.002kcal/mol to -0.503kcal/mol that led to a stabilized molecular entity. The 

van der Waals interactions further contributed to the stabilization and retrieved high 

negative values due to CHOL (in excess) acting as a filler in the space lattice of the 

binary and ternary systems (Figure 4.13). These non-bonding interactions, from H-

bonding to van der Waals forces, are due to the hydrophobic interactions arising 

from the inclusion of CHOL, which further led to the formation of NLPs in excess of 

PBS (pH7.4). 

 

4.3.12. Investigation of the amphiphilic properties involving polymer-peptide 

aggregation 

In order to investigate the cellular-internalization of peptide-conjugated systems, 

three ligands viz. (Ligand 1: Lys-Val-Leu-Phe-Leu-Ser), (Ligand 2: Lys-Val-Leu-

Phen-Leu-Thr) and (Ligand 3: Lys-Val-Leu-Phe-Leu-Met), differing by one amino 

acid group, were individually modeled with DSPE, where the peptides displayed 

clear preference to DSPE over DSPC. The modeling was performed in the absence 

and presence of H2O molecules corresponding to the lipophilic and hydrophilic 

phases, respectively. The more the complex was stabilized in vacuum the more 

lipophilic it was for penetrating the PC12 neuronal cells. Inversely, the more 

stabilized in H2O, the more hydrophilic the complex. For cellular-internalization, the 

passing of a polymer-peptide conjugate through the cell membrane requires a 

hydrophilic-lipophilic-balance with lipophilicity on the higher side. Eq 4.9 and 4.14 -

4.19 display the energy profiles of individual molecules as well as of the conjugates 

and it is evident that DSPE-ligand 1, DSPE-ligand 2, and DSPE-ligand 3 were 
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stabilized at -17.299kcal/mol,-11.738kcal/mol, and-14.427kcal/mol energies of 

interaction, respectively. These energy stabilization values proved that ligand 1 

provided more lipophilicity to DSPE followed by ligands 2 and 3. The changes in the 

conformational space lattice of the DSPE caused by the peptide chains also 

contributed to its lipid-soluble behavior as the London dispersion forces stabilized. 

EDSPE = 7.661V∑ = 0.139Vb + 2.677Vθ + 5.552Vφ - 0.706Vij...(4.9) 

E1 = -34.431V∑ = 1.653Vb + 8.010Vθ + 5.206Vφ + 3.119Vij –  

1.301Vhb - 51.119Vel.......................................................................................Eq 4.14 

E2 = -24.391V∑ = 1.228Vb + 6.775Vθ + 3.262Vφ - 1.778Vij –  

1.220Vhb - 32.658Vel.......................................................................................Eq 4.15 

E3 = -39.242V∑ = 1.529Vb + 9.824Vθ = 5.799Vφ + 0.814Vij –  

2.235Vhb - 54.975Vel......................................................................................Eq 4.16 

EDSPE-1 = -44.069V∑ = 1.715Vb + 11.218Vθ + 13.122Vφ - 13.331Vij –  

2.149Vhb - 54.644Vel......................................................................................Eq 4.17 

ΔE = -17.299kcal/mol 

EDSPE-2 = -28.468V∑ = 1.438Vb + 9.288Vθ + 11.881Vφ - 19.964Vij –  

1.460Vhb - 29.651Vel......................................................................................Eq 4.18 

ΔE = -11.738kcal/mol 

EDSPE-3 = -46.008V∑ = 1.657Vb + 12.204Vθ + 11.490Vφ - 14.210Vij – 

2.318Vhb - 54.832Vel......................................................................................Eq 4.19 

ΔE = -14.427kcal/mol 

EDSPE = -2988.489V∑ = 28.296Vb + 31.953Vθ + 8.961Vφ + 106.105Vij – 

 4.06Vhb - 3159.75Vel.....................................................................................Eq 4.20 

E1 = -2687.829V∑ = 25.278Vb + 36.626Vθ + 9.833Vφ + 82.198Vij –  

5.175Vhb - 2836.59Vel.....................................................................................Eq 4.21 
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E2 = -2742.775V∑ = 26.298Vb + 31.870Vθ + 11.748Vφ + 63.083Vij –  

7.719Vhb - 2868.06Vel ....................................................................................Eq 4.22 

E3 = -2679.527V∑ = 25.137Vb + 30.802Vθ + 9.693Vφ + 66.0426Vij –  

5.776Vhb - 2805.43Vel....................................................................................Eq 4.23 

EDSPE-1 = -2441.783V∑ = 22.532Vb + 33.053Vθ + 22.7071Vφ + 23.378Vij – 

7.377Vhb - 2536.08Vel ....................................................................................Eq 4.24 

ΔE = 3234kcal/mol 

EDSPE-2 = -2575.518V∑ = 25.944Vb + 37.039Vθ + 18.886Vφ + 24.375Vij – 

7.058Vhb - 2674.71Vel .......................................................................................Eq 4.25 

ΔE = 3155kcal/mol 

EDSPE-3 = -2467.305V∑ = 24.8047Vb + 37.451Vθ + 17.921Vφ + 23.641Vij – 

7.877Vhb - 2563.25Vel ....................................................................................Eq 4.26 

ΔE = 3200kcal/mol 

 

The effect of adding the solvated-phase to the reactional-profile and stabilization of 

the polymer-peptide aggregates was extracted via relative modeling of the peptide-

polymer complex under the same conditions. Referring to Eq 4.24-4.26, the 

energetic profiles of bimolecular complexes revealed that the conjugated systems 

represented stable systems with negative potential energies. However, in 

comparison to the cumulative energy profile of the individual constituent molecules, 

the complexes were highly destabilized in the following order: DSPE-ligand 2>DSPE-

ligand 3>DSPE-ligand 1 having energy of interactions ranging from ~3155kcal/mol 

through ~3200kcal/mol to ~3234kcal/mol, respectively. These high energies of 

destabilization were mainly due to electrostatic interactions (Vel) and partially to 

torsional constraints (Vφ) and H-bonding (Vhb), as evident from Eq 4.20-4.26. With 
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reference to the results from the vacuum and solvated system simulations, it is 

concluded that DSPE-ligand 1 displayed superior hydrophilic-lipophilic-balance 

(HLB) producing desirable cellular internalization efficiency compared to ligands 2 

and 3. These results are in corroboration with the ex vivo data discussed earlier. 

             

               

Figure 4.12: Visualization of geometrical preferences of a DSPE molecule in 
complexation with the ligands showing a) ligand 1, b) ligand 2 and c) ligand 3 after 
molecular simulations in vacuum. Color codes for  DSPE tube rendering: C 
(cyan), O (red), H (white), and P (yellow). Peptide molecules are rendered in stick 
mode (red) and thin ribbon secondary structures (yellow). The respective Connolly 
molecular electrostatic potential surfaces are in wire-mesh display mode. 

b) 

c) 
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Figure 4.13:  Visualization of geometrical preferences showing a) DSPE, b) DSPE-
ligand 1, c) DSPE-ligand 2, and d) DSPE-ligand 3 after molecular simulation in a 
solvated system consisting of 200 H2O  molecules (blue). The peptides (red-yellow) 
and DSPE (white) are rendered in tube displays. Color codes for figure a): C (cyan), 
O (red), H (white), P (yellow). 
 

4.4. Concluding remarks 

The data obtained in this Chapter showed that the ligand-functionalized NLPs 

enhance the delivery of the neuroactive drug GAL into PC12 neuronal cells as a 

model for AD. PC12 neuronal cells exhibit high surface SEC-R expression that 

mediated internalization of the ligand-functionalized NLPs (Perlmutter et al., 1990; 

Boland et al., 1995; Ziady et al., 1997; Patel et al., 2001). The results of the FTIR 

and TMDSC analysis revealed a change in molecular structure due to the presence 

of GAL entrapped within the NLPs and peptide conjugated to the NLPs surface. 
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Particle size analysis confirmed that the ligand-functionalized NLPs were spherical 

and within the nanoscale size range. TEM studies revealed that all formulations, 

namely native NLPs, GAL-loaded NLPs and the ligand-functionalized NLPs were 

stable with no aggregation observed (Kirby et al., 1980; Kim and Park, 1987). The 

Box-Behnken experimental design template and subsequent optimization process 

revealed the ideal concentrations of the 3 independent formulation variables selected 

and can be used successfully for producing the ligand-functionalized NLPs with 

desirable PCE, DEE and drug release properties. DEE and drug release behavior 

were dependent on the presence of DSPE and CHOL in the NLPs formulations (Ali 

et al., 2002). The optimized formulation comprised 63.32mg DSPC, 74.47mg CHOL 

and 6.6mg DSPE. The experimental data was well correlated with the fitted values 

generated by the experimental design. Post-engineering of peptides onto the surface 

of GAL-loaded NLPs proved to provide targeted delivery of GAL directly into PC12 

neuronal cells. Native GAL and non-functionalized NLPs showed no significant 

accumulation into PC12 neuronal cells after 24 hours of incubation due to non-

specific drug delivery. Overall, in vitro and ex vivo results revealed that the ligand-

functionalized NLPs produced in this Chapter have the potential of trapping GAL and 

are suitable for targeted drug delivery to neuronal cells in response to treating AD. 

Furthermore, this Chapter may serve as proof-of-concept that the ligand-

functionalized NLPs can offer an ingenious scientific solution for the current 

limitations in the neuropharmaceutical management of AD.  
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CHAPTER 5 

IN VITRO SYNTHESIS AND CHARACTERIZATION OF THE CROSS-LINKED 

CHITOSAN-EUDRAGIT RSPO-POLYVINYL ALCOHOL HYDROGEL FOR THE 

PREPARATION OF THE NANO-ENABLED BIO-ROBOTIC INTRACRANIAL 

DEVICE 

 

 

5.1. Introduction  

 

The development of a hydrogel that may enhance the mechanical stability and/or act 

as temporal polymeric depots of a liposomal drug delivery system has revolutionized 

the current state of formulation design in the pharmaceutical field (Stenekes et al., 

2000; Chung et al., 2006; Muluk et al., 2009; Mufamadi et al., 2011).  Liposomes are 

well researched because of their excellent capability to accommodate both 

hydrophilic and hydrophobic drugs (Yu et al., 2008; Deligkaris et al., 2010; Kulkarni 

et al., 2010). Liposomal drug delivery approaches, particularly in nanotechnologies, 

such as targeted nanoliposomes (NLPs) and nanobubbles (gas-filled) have gained 

attention in recent years (Ying et al., 2010; Du Toit et al., 2011).  

 

In addition, micro/nanocomposite liposomal devices have been developed by loading 

drug-loaded liposomes into hydrogel networks (Schexnailder et al., 2009; Epstein-

Barash et al., 2010; Mufamadi et al., 2011). In vitro studies of a microcomposite 

hydrogel seemed to influence the hydrogel strength in vivo (Martina et al., 2007; Van 

Raaij et al., 2011). As a depot, hydrogel networks possess essential physical 

properties that are equivalent to those of human tissue and can protect liposomal 
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drug delivery systems from surrounding inflammatory cells (Soppirnath and 

Aminabhavi, 2002; Epstein-Barash et al., 2010). A study conducted by Hennik and 

Van Nostrum (2002) reported that hydrogel structures are embraced by three-

dimensional cross-linked networks with hydrophilic domains comprised of high water 

adsorption properties. Furthermore, studies have shown that networks in hydrogel 

formulations are essentially attained through cross-linked structures from one or 

more natural and/or synthetic polymers employing either chemical or physical 

interactions post-reaction.  

 

Natural polymers, including chitosan (CHT), collagen, fibrin and dextran and 

synthetic polymers, including Eugradit® RSPO and polyvinyl alcohol (PVA), have 

been reported as the structural materials used in hydrogel networks (Hartwell et al., 

2011; Mufamadi et al., 2011; Li et al., 2012). Different cross-linking agents such as 

formaldehyde, glutaraldehyde (GA) and genipin have been reported to be successful 

for enhanced stability and suitability of hydrogel in drug delivery applications 

(Bhattarai et al., 2010). In numerous investigations, the hydrogel networks for 

pharmaceutical applications were selected based on their fundamental properties 

such as biodegradability, biocompatibility, non-toxicity and non-inflammatory 

tendency (Mufamadi et al., 2011). In addition, the advantage of injectable hydrogel 

networks is that they can deliver the drug directly or indirectly to the targeted sites 

through subcutaneous and intratumoral injections (Ta et al., 2008). Despite the many 

advantages, clinical limitations of hydrogels used in pharmaceutical applications are 

their poor mechanical and rheological properties (Gauvin and Berthod, 2010). In 

drug delivery systems, a poor structure may result in abnormal homogeneity on drug 

loading into the polymeric hydrogel/depot (Hoare and Kohane, 2008). These 
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shortcomings may be governed by mechanical or rheological dynamics of CEP 

hydrogel such as viscoelastic-like behavior [elastic modulus (G’) and viscous loss 

moduli (G”)], and Newtonian or non-Newtonian behaviors (such as viscosity, shear 

thinning and thixotropic behaviors) (Arguelles-Monal et al., 1998; Horn et al., 2011). 

Several attempts to evade these limitations have been made, including manipulation 

of the hydrogel viscosity or viscoelastic-like behaviors (Albu et al., 2009; Matricardi et 

al., 2009). However, the mechanical or rheological dynamics of CEP hydrogels have 

been shown to be governed by the temperature, pH, cross-linking agents and 

polymers used during the fabrication process (Weng et al., 2007; Karazhiyan et al., 

2009). A permanent covalent hydrogel network was reported to be associated with 

restricted gel mobility and low deformation (Armoškaitė et al., 2012). As a depot, this 

may result in undesirable drug dispersion during the embedding process and may 

lead to an early burst and release phase (Hoare et al., 2008).  

 

CHT is a natural linear biopolyaminosaccharide polymer obtained by N-deacetylation 

of chitin (Berger et al., 2004; Pillai et al., 2009). PVA is a highly hydrophilic polymer 

with a molecular mass of 80kDa and containing numerous reactive hydroxyl groups 

(DeMerlis and Schoneker et al., 2003). A study by De Souza and co-workers (2009) 

demonstrated the presence of enhanced mechanical properties such as tensile 

strength and electrostatic interaction in cross-linked CHT and PVA. In a similar 

study, Mansur and co-workers (2008) reported that the hydrolysis degree of PVA 

decrease as GA concentration increased. In yet another study by Jin and co-workers 

(Jin and Song, 2006), it was reported that cross-linking between CHT and 

polyethylene oxide (PEO) affected drug release behavior, whereby the drug release 

rate was decreased by increasing the cross-linking density. Eudragit® RSPO (EU) is 
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a copolymer containing acrylic and methacrylic acid esters (Lehman, 2001; Wittaya-

areekul et al., 2006). Ghaffari and co-workers (2006) have reported that blends of 

EU with natural polymers, such as CHT, can enhance and/or control the drug 

release rate. 

 

The novel technique of developing liposomes containing gaseous perfluorocarbons 

or sulfur hexafluoride into the cores of the lipid monolayers has revolutionized the 

current state of drug delivery technology (Unger et al., 2004). The presence of 

perfluoropropane gas has shown to induce cavitations in liposomes (Prentice et al., 

2005). Furthermore, the formulation of liposome gas-filled/loaded microbubbles and 

ultrasound has been reported to facilitate a fast uptake of both gene and drug (Liu et 

al., 2006; Suzuki et al., 2007; Willmann et al., 2010). In diagnostic applications, it has 

shown to facilitate the tracking of the development of cancer, AD and diabetes via an 

ultrasonic imaging system (Hernot et al., 2008). In addition, gas-filled liposomes can 

be used to visualize subcutaneous body structures and ultrasound contrast in a 

medium via traditional medical sonography (Van Raaij et al., 2011). Progressive bio-

imaging techniques such as micro-ultrasound imaging and fibered fluorescence 

microscopy have been currently initiated for further advanced tracking, employing 

both ultrasound contrast agents and co-localized bio-labeled markers such as 

Fluorescein Isothiocyanate (FITC), trypan blue and rhodamine (Ducongé et al., 

2004; Bharali., et al., 2005; Al-Gubory and Houdebine, 2006; Martina et al., 2007; 

Mufamadi, 2011; Van Raaij et al., 2011).  

 

Therefore the aim of this Chapter was to synthesize cross-linked CHT-EU-PVA or 

PEO (CEP) hydrogel for the preparation of a nano-enabled Bio-Robotic Intracrainal 
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Device (BICD). BICD was fabricated by embedding fluorescence-labeled 

functionalized NLPs or gas-filled functionalized NLPs within non-fluorescence or 

fluorescence-labeled CEP hydrogel. Functionalized NLPs were modified from 

previously constructed liposomal nanostructures presented in Chapter 4, section 

4.2.4 of this thesis (Mufamadi et al., 2013), via incorporating sulfur hexafluoride 

(SF6) gas into the core of the NLPs. The CEP hydrogels were fabricated by cross-

linking CHT, EU and PVA or PEO solutions using GA as a cross-linking agent. The 

CEP hydrogels were characterized of their biomechanical strength; such as non-

Newtonian viscosity and viscoelastic properties. The stability, morphology and 

distribution of gas-filled functionalized NLPs post-embedded within CEP hydrogel of 

the BICD were tracked employing real-time ultrasound imaging, whereas 

fluorescence-labeled functionalized NLPs were visualized employing real-time 

fibered fluorescence microscopy and optical Immunofluorescence Microscopy. 

 

5.2. Materials and Method   

 

5.2.1. Materials  

Natural and synthetic polymers that are commercially available such chitosan (CHT) 

[Medium Molecular Weight (Mw), viscosity 200, 000cps] and poly(vinyl alcohol) 

(PVA, Mw=146 -186kDa) were purchased from Sigma-Aldrich® (Steinhelm, 

Germany). Polyethylene oxide (PEO) (POLYOX™WSR 303 NF, Mw=7000kDa) from 

Dow Chemical Co. (Dow, New Jersey, USA). The co-polymer Eugradit® RSPO (EU) 

was purchased from Rohn Pharm (GmbH, Darmastadt, Germany). Fluorescein 

isothiocyanate (FITC), 4,6-Diamidino-2-phenylindole (DAPI) stain (blue) and trypan 

blue solution (0.4%) were purchased from Fluka Biochemika (St. Louis, MS, USA). 
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Membrane filter with 0.22µm was purchased from Millipore (Millipore, Billerica, MA, 

USA). Nitrogen (N2) and CO2 medical gases were purchased from African Oxygen 

(Afrox) Ltd, (Industrial West, Germiston, RSA). Sulfur hexafluoride (SF6, 99.75%) 

was purchased from Sigma-Aldrich® (St. Louise, MS, USA). EcoGel100™ultrasonic 

imaging gel (low viscosity, 35000-45000cps) was purchased from Eco-Med 

Pharmaceutics Inc (Mississauga, Ontario, Canada). All other chemicals used in the 

experiments were of analytical grade and were employed as purchased. 

 

5.2.2. Fabrication of the gas-filled or fluorescence-labeled functionalized 

nanoliposomes  

 

Gas-filled or fluorescence-labeled functionalized nanoliposomes (NLPs) were 

fabricated with multi-components (i.e. synthetic phospholipids, FITC, SF6 gas and 

site-directing ligand) via multiple steps. In brief, multilamellar vesicles (MLVs) were 

formed employing the previously described protocol in Chapter 4, Sections 4.2.2 and 

4.2.3 with appropriate amounts of DSPC, CHOL and DSPE-mPEG conjugate in the 

presence of FITC-labeled markers detailed in Tables 4.1 and 4.2 of this thesis. Small 

unilamellar vesicles (SUVs) of appropriate size distribution were obtained by 

gradually extruding (repeated 6 times) through a 0.22μm pore size polycarbonate 

membrane filter. Gas-filled functionalized NLPs are attained by SF6 gas entrapment 

in the core of liposomes. Briefly, 1mL of the NLPs in a 15mL tube was exposed to 

various gases (SF6, N2 and CO2) at a pressure of 100kPa for 30-45 seconds prior to 

analysis. 
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5.2.2.1. Particle size analysis of gas-filled functionalized nanoliposomes  

Particle size analysis and polydispersity index (Pdi) of the native functionalized NLPs 

and gas-filled functionalized NLPs were analyzed as described in Chapter 4, Section 

4.2.9 employing a Zetasizer NanoZS instrument (Malvern Instruments (Pty) Ltd., 

Worcestershire, UK). 

 

5.2.2.2. Morphological characterization of the gas-filled functionalized 

nanoliposomes  

The morphology of the native functionalized NLPs and gas-filled functionalized NLPs 

were examined as previous described in Chapter 4, Section 4.2.11 employing 

transmission electron microscopy (TEM) (JEOL1200EX, Tokyo, Japan). 

 

5.2.2.3. In vitro investigation of the stability of the gas-filled functionalized 

nanoliposomes 

In vitro investigations of the stability of the native functionalized NLPs and gas-filled 

functionalized NLPs were analyzed employing a Turbiscan Lab® Expert 

(Formulacrion Co., Eunion, France). In short, NLPs suspensions were transferred 

into a glass cylindrical cell, and thereafter analyzed via a light beam that is emitted 

from a near-infrared light source. Two synchronous detectors, namely a transmission 

(T) detector and a backscattering (BS) detector were scanned at 880nm every 5 

minutes over 1 hour, at room temperature. 
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5.2.3. Synthesis of the cross-linked Chitosan-Eudragit RSPO-Polyvinyl alcohol 

hydrogel  

CEP hydrogel was synthesized by reacting different ratios of CHT, EU and PVA or 

control PEO solutions, which were exposed to a cross-linking solution of GA 5% (v/v). 

In brief, a CHT solution was prepared by dissolving CHT in 0.2M of acetic acid. EU 

solution was optained by mixing different organic solvents such as acetone, 

methanol and isopropanol at a ratio of 2:1:1 v/v. PVA solution was obtained by 

dissolving PVA in deionized water (Milli-DI® Systems, Bedford, MA, USA) at 80°C. 

PEO solution was prepared by dissolving PEO in deionized water at room 

temperature. Six formulations consisting of various combinations of the polymers 

solution (CHT, EU, PVA and/or PEO) were blended together at different ratios; 3:3:1, 

3:2:2 and 3:1:3 (Table 5.1). The reaction mixtures were allowed to agitate until a 

homogenous mixture was obtained in the presence of a cross-linking solution of GA 

5% (v/v). Solvents used for synthesis of the CEP hydrogel were eliminated through 

rotary evaporation (Rotavapor® RII, BüchiLabortechnik AG, Switzerland) maintained 

at 60°C.  

 

Table 5.1. Compositions of CEP hydrogel cross-linked with 5% GA 

Formulation  CHT %w/v EU %w/v PVA %w/v PEO %w/v 

F1 3 3 1 0 

F2 3 2 2 0 

F3 3 1 3 0 

F4 3 3 0 1 

F5 3 2 0 2 

F6 3 1 0 3 
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5.2.3.1. Molecular structural transition of the cross-linked Chitosan-Eudragit 

RSPO-Polyvinyl alcohol hydrogel 

Fourier Transform Infra-Red (FTIR) spectroscopy was analyzed on native polymers 

(CHT, EU, PVA or PEO), the non-cross-linked, and cross-linked CEP hydrogel. FTIR 

spectra were generated to elucidate potential chemical interactions as a result of 

polymers blending and cross-linking process using Nicolet Impact 400D FTIR 

Spectrophotometer coupled with Omnic FTIR research grade software (Nicolet 

Instrument Corp., Madison, WI, USA).  

 

5.2.3.2. Rheological properties of the cross-linked Chitosan-Eudragit RSPO-

Polyvinyl alcohol hydrogel  

Rheological properties such as viscosity and viscoelasticity of the CEP hydrogel (F1-

6) were evaluated employing a Haake Modular Advanced Rheometer System 

(ThermoFisher Scientific, Karlsruhe, Germany). Yield stress and dynamic oscillatory 

frequency sweep tests were done on a CEP hydrogel. All tests were carried out with 

the following parameters: temperature of 37°C, a test time of 200s and a shear stress 

of 200Pa. The temperature was maintained by a recirculating bath connected to the 

cone-plate with a diameter of 35mm and a cone angle of 1º. The yield stress test 

was performed to determine the deformation or shear thinning behavior that may 

allow the evaluation of the shear stress (Pa) as a function of shear rate (1/s). On the 

other hand, the dynamic oscillatory frequency sweep test was to determine the 

viscoelastic properties (storage and loss moduli). The storage modulus G’ test was 

essentially for measuring the CEP hydrogel elastic behavior, which is associated 

with energy storage. The loss modulus G” test was conducted to measure the CEP 

hydrogel viscous behavior, which is associated with energy dissipation. The 
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oscillatory shear responses were determined at a single frequency of 10Hz (0-300 

rad/s).  

 

5.2.4. Fabrication of the Bio-Robotic Intracranial Device  

The BICD was engineered by embedding gas-filled or fluorescence-labeled 

functionalized NLPs into the CEP hydrogel. Gas-filled functionalized NLPs were 

fabricated as per protocol described in Chapter 5, section 5.2.2, while 

FITC/fluorescence-labeled functionalized NLPs as previously described protocol in 

Chapter 4, section 4.2.2. In addition, CEP hydrogel was synthesized as previously 

described protocol in Chapter 5, section 5.2.3. In brief, gas-filled or FITC-labeled 

functionalized NLPs were loaded into the CEP hydrogel at a ratio of 1:5 

(functionalized NLPs: CEP hydrogel). The gas-filled or FITC-labeled functionalized 

NLPs in suspension were added via drop-wise to the CEP hydrogel, and mixtures 

were also allowed to agitate until a homogenous mixture was attained under 

mechanical stirring at 37°C in the presence of a 5%v/v of the cross-linking solution of 

GA. Particle distribution within the BICD was characterized using real-time 

ultrasound, real-time fluorescence imaging (cell-viZio, Mauna Kea Technologies, 

Paris, France) and optical immunofluorescence imaging (Olympus IX71 

Immunofluorescence, Olympus Co., Tokyo, Japan).  

 

5.2.4.1. Real-time ultrasound imaging of the gas-filled functionalized 

nanoliposomes embedded within the Bio-Robotic Intracranial Device  

Real-time ultrasound imaging of the gas-filled functionalized NLPs embedded within 

a BICD was visualized using a high-frequency ultrasound scanner (Vevo® 2100, 

Visualsonics, Toronto, Ontario, Canada) with an MS-250 transducer. Native CEP 

hydrogel and intra-bubbles CEP hydrogel (bubbles induced by dynamic magnetic 
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stirring) were used as controls. The effect of different loading techniques for the gas-

filled functionalized NLPs into CEP hydrogel such as i) loading into the CEP hydrogel 

prior to cross-linking; ii) loading post cross-linking; and iii) loading using 1mL syringe 

injection were also characterized. In addition, the effect of PVA or control PEO as 

part of the hydrogel component was also characterized. EcoGel 100™ imaging 

ultrasonic gel was applied onto the surface of all samples prior to it being visualized. 

Real-time imaging was executed via an ultrasound transducer (Figure 5.1) (Foster et 

al., 2011).  

 

 

Figure 5.1: Schematic demonstrating ultrasound imaging analysis of the BICD, a) 
Vevo® 2100 Visual Sonics instrument; b1) EcoGel 100™, b2) latter device 
(ultrasound transducer); and b3) transducer array on top of EcoGel 100™ and BICD. 
 

5.2.4.2. Real-time fluorescence imaging of fluorescence-labeled functionalized 

nanoliposomes embedded within a Bio-Robotic Intracranial Device  

Real-time fluorescence imaging of FITC-labeled functionalized NLPs embedded 

within a BICD was visualized using Cell-viZio fluorescence microscopy (Mauna Kea 

Technologies, Paris, France). CEP hydrogel was stained with DAPI or trypan blue in 

order to elucidate its network-like structure and to visualize FITC-labeled 
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functionalized NLPs embedded within the polymeric-based depot. Proflex™ fibered 

imaging optic probe with a wavelength of 488nm was used for either topographical or 

interior region visualization imaging of the FITC-labeled functionalized NLPs, the 

CEP hydrogel stained with DAPI or trypan blue stain, and double-labeled BICD 

(Figure 5.2).  

 

 

Figure 5.2: Schematic demonstrating detection of the labeled-BICD employing Cell-
viZio™ imaging analysis via the optical proflex™ fiber probe. 
 

5.2.4.3. Optical fluorescence imaging of fluorescence-labeled functionalized 

nanoliposomes embedded within the Bio-Robotic Intracranial Device  

Fluorescence activities of the FITC or rhodamine-labeled functionalized NLPs 

embedded within the BICD, CEP hydrogel stained with DAPI or trypan blue and 

double-labeled BICD were further visualized using Olympus IX71 

Immunofluorescence Microscopy (Olympus Co., Tokyo, Japan). All samples were 

mounted directly on a glass slide and thereafter dried under a fume hood prior to 

examination. Fluorescence measurements were executed at a different excitation 

and emission spectrum; 450/525nm for FITC, 540-625nm for rhodamine, 540/585nm 
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for trypan blue stain and 350/470nm for DAPI stain. The images for all samples were 

viewed at 10X magnifications. 

 

5.3. Results and Discussion  

 

5.3.1. In vitro characterization of the gas-filled functionalized nanoliposomes  

 

5.3.1.1. Determination of the particle size distribution of the gas-filled 

functionalized nanoliposomes 

Table 5.2 shows the effect of SF6, CO2 and N2-filled functionalized NLPs on the 

particle size and PdI employing Dynamic Light Scattering (Zetasizer NanoZS, 

Malvern Instrument, UK). The average particle size was in range of 135-150nm with 

a PdI from 0.17-0.13 for the native functionalized NLPs, 154-165nm (Pdi = 0.19-

0.18) for the N2-filled functionalized NLPs, 152-154nm (Pdi = 0.18-0.14) for the CO2-

filled functionalized NLPs, and 158-168nm (Pdi = 0.17-0.12) for the SF6-filled NLPs. 

The particle size values validate that the presence of gases such SF6 or control N2 

or CO2 may have induced vesicle cavitations resulting in a larger particle size 

(Prentice et al., 2005, Liu et al., 2006, Suzuki et al., 2007). Figure 5.3 shows a typical 

particle size and zeta potential were, and TEM micrograph of gas-filled functionalized 

NLPs. The micrographs depicted uniformity within the nanosize range and spherical 

shape of the gas-filled functionalized NLPs in suspension.  
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Figure 5.3:  Physicochemical characterization of the functionalized NLPs, a typical  
a) particle size, b) zeta potential, and c) TEM micrographs, c1) 50x, c2) 100x 
magnification. 
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Table 5.2. The alteration in particle size of the functionalized NLPs following 
incorporation of various gases  

F# 
Functionalized 
Nanoliposomes     

Particle Size (nm) 
Polydispersity 

Index 

 
DSPC/CHOL/DSPE/Peptide 
              (mg) 

          1 63.3/74.5/6.5/1 
  

135±15 0.174-0.130 

      

 

Gas-filled 
Functionalized 
Nanoliposomes  
(mg/mg/mg/mg) 

Gas 
 

Particles Size 
(nm) 

Polydispersity 
Index 

2 63.3/74.5/6.5/1 N2 
 

154±11 0.190-0.185 

3 63.3/74.5/6.5/1 CO2 
 

152±04 0.188-0.149 

4 63.3/74.5/6.5/1 SF6 
 

158±10 0.170-0.129 

 

5.3.1.2. In vitro stability of the gas-filled functionalized nanoliposomes 

In vitro stability of the native (MLVs and SUVs) and gas-filled functionalized NLPs 

was analyzed using Turbiscan Lab® Expert (Formulacrion Co., Eunion, France). 

Figures 5.4a-c show typical transmission and backscattering profiles of the native 

and gas-filled NLPs. The y-axis in the diagram represents the percentage variations 

of transmitted light or backscattering behaviors, while the x-axis represents the 

height of the sample cell at different time intervals. Figure 5.4a depicts a poor 

transmission which appropriately corroborated with the digital image of the milky 

white suspension of the MLVs in glass cylindrical vials. Although a low percentage of 

transmission was reported, the suspension demonstrated a homogeneous state and 

stable system with a single backscattering variation along the entire hour of scanning 

the sample as previously reported by Mengual and co-workers (1999). The higher 

percentage of backscattering light may have been attributed to the bigger particle 

size and the density between organic solvent (such as chloroform and methanol at 

ratio 9:1) and phosphate buffer at a pH7.4 phase that is employed for the adapted 

reverse-phase evaporation technique for MLVs fabrication. A high transmission was 



 

142 
 

exhibited for the SUVs samples, native and gas-filled functionalized NLPs. The 

increase of the transmission (%) for native and gas-filled functionalized NLPs may be 

influenced by the size of the particles that allows a light beam to pass through easily. 

These results validate that SUVs, native and gas-filled functionalized NLPs were 

stable in vitro in the dispersion phase with low and/or poor sedimentation post 

scanning at λ=880nm over 1 hour at room temperature. 

 

 

Figure 5.4: Transmission and backscattering images of the functionalized NLPs 
obtained using Turbiscan LAb spectra. Samples scanned at λ=880nm every 5 
minutes for an hour, a) MLVs b), native NLPs and c) gas-filled functionalized NLPs. 
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5.3.2. Physicochemical characterization of the cross-linked Chitosan-Eudragit 

RSPO-Polyvinyl alcohol hydrogel  

 

5.3.2.1. Molecular structural transition of the cross-linked Chitosan-Eudragit 

RSPO-Polyvinyl alcohol hydrogel  

FTIR analysis revealed molecular structural transition during synthesis of the cross-

linked CEP hydrogel as depicted in Figure 5.5. Figure 5.5a-b shows the FTIR 

spectra for native CHT, EU, PVA and PEO, cross-linked CEP hydrogels (CHT-EU-

PVA-GA and CHT-EU-PEO-GA). Figure 5.5a1 and b1, revealed that all major bands 

that were essentially associated with native CHT at about 3500-3200cm-1, 

correspond to the hydroxyl group (OH) stretch vibration and amine group (NH) 

symmetrical vibration. The band of 2870cm-1 corresponded to CH stretch vibration, 

1649cm-1 to an amide I stretch vibration (acetylated amine), 1588cm-1 band to an 

amide II deformation (deacetylated amine), 1375 and 1317cm-1 to CH2 and CH3 

deformation, and the 1059 and 1024cm-1 band O-C stretch vibration (Yang et al., 

2004; Kim et al., 2007). Figure 5.5a2 and b2 displays the native EU characteristic 

band at 3445cm-1 for the OH stretch vibration; 2989, 2970 and 2950cm-1 were 

attributed to the stretching vibration of CH3, CH2 and CH, while the bands at 1724 

and 1000-1300cm-1 mainly corresponded to the C-O stretching vibration. The band 

lending from 1350-1470cm-1 and corresponded to CH2 and CH3 deformation while 

the 986cm-1 corresponded to -CH and -CH2 bend vibrations (Ammar et al., 2009).  

 

As depicted in Figure 5.5a3, native PVA characteristic bands appear at 3290cm-1(for 

OH stretch vibration); bands at 2970 and 2042cm-1 are associated with  C-H 

stretching vibration; 1738, 1229 and 1085cm-1 bands are assigned to C-O stretching 
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vibration; while 1423 and 1366cm-1 bands correspond to CH2 and CH3 deformation 

(Dos Reis et al., 2006). The native PEO characteristic bands at 2877 and 1466cm-1 

are attributed to the -CH2- stretching and bending vibrations respectively. The band 

at 1413cm-1 is assigned to C-H bending vibrations, while 1059 and 960cm-1 bands 

are associated with an ether C-O stretch vibration, O-C stretch vibration, -CH and -

CH2 bend vibration (Figure 5b3). Figure 5.5a4, displays the FTIR spectra of the 

cross-linked CEP hydrogel (CHT-EU-PVA-GA). The disappearance of the major 

vibration band at around 3400cm-1 may have indicated that there were no free -OH 

groups. This is possibly due to hydrogen bonding that occurred during polymer 

interactions. The shifting of amide (I and II) bands of the native CHT in cross-linked 

CEP hydrogel (CHT-EU-PVA-GA) from 1649cm-1 to 1655cm-1 (increase) and 

1588cm-1 to 1555cm-1 (decrease) indicates that there was a polymeric interaction at 

the position of the amino groups. In addition, the interaction may be enhanced by the 

presence of GA during the cross-linking reaction between the amine group of CHT 

and OH group of PVA or EU and aldehyde group of GA.  

 

Figure 5.5b4 showed the FTIR spectra of the cross-linked CEP hydrogel 

incorporating PEO (CHT-EU-PEO-GA). This spectrum showed almost an identical 

trend as cross-linked CEP hydrogel incorparting PVA (CHT-EU-PVA-GA). The 

following bands of the native CHT in cross-linked CEP (CHT-EU-PEO-GA) shifted: 

Amine bands were shifted from 1649cm-1 to 1650cm-1 (slightly), and 1588cm-1 to 

1560cm-1; C-H showed some stretching vibrations at a wavelength of around 

2949cm-1, while free OH disappeared. The appearance of these signals signifies that 

strong intermolecular and/or intermolecular hydrogen bonds occurred between the 
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polymers. In addition, the band shift in the amine position during formulation of CEP 

hydrogel confirmed that GA was successful cross-linking polymers. 

 

 

Figure 5.5: FTIR spectra of the cross-linked CEP hydrogels; a) cross-linked CEP 
hydrogel fabricated from, native polymers; 1) CHT, 2) EU, 3) PVA and 4) CHT-EU-
PVA-GA, b) cross-linked CEP hydrogel fabricated from native polymers: 1) CHT, 2) 
EU, 3) PEO and (4) CHT-EU-PEO-GA 
 

5.3.2.2. Rheological properties of the cross-linked Chitosan-Eudragit RSPO-

Polyvinyl alcohol hydrogel  

Fluid behaviors and/or viscosity of polymers appeared to be governed by many 

factors such as temperature, pH and polymer concentrations. As the concentration of 

viscous polymers increased, a high resistance to flow is created from Newtonian 

behavior to non-Newtonian behavior, which is known as shear thinning (Mohamed, 
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2004). The viscosity (slope of the curve) of shear thinning has been reported in many 

studies where it decreases with an increased shearing rate (Mohamed, 2004; 

Chacko et al., 2010).  The viscosity and viscoelasticity of the CEP hydrogel (F1-6) 

are depicted in Figures 5.6 and 5.7. F1-2 and F4-5 showed a great transition of 

hydrogel flow behaviors from low resistance to high resistance when EU 

concentration decreased from 3% to 1%w/v, and while PVA or PEO concentration 

increased from 1% to 3% w/v, at a constant CHT concentration of 3% w/v. F3 and F6 

showed the highest viscosity with low deformation as compared to the above 

formulations. For low deformation, a higher force is required for the sample to attain 

properties of a running fluid (Albu et al., 2009; Karazhiyan et al., 2009). These 

results may be influenced by an increase in the intermolecular interaction and/or 

entanglements between polymer chains (Karazhiyan et al., 2009). The flow curves of 

the typical cross-linked and non-cross-linked CEP hydrogels further highlighted 

strong shear-thinning behavior due to GA being a constituent for enhanced 

intermolecular interaction between polymers (Figure 5.6c). Furthermore, upon 

diluting CEP hydrogel with functionalized NLPs (at liquid state), results showed a 

decreased viscosity slope or lower shear thinning behavior and high deformation 

(Figure 5.6d). Overall, results suggest that the flow capability and/or deformation of 

the CEP hydrogel may have been governed by either polymer concentration or an 

entanglement between polymer chains in the presence of the GA as a cross-linking 

agent.  
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Figure 5.6: Flow behaviour of CEP hydrogels (F1-6) and the BICD. a) F1-3, b) F4-6, 
c) non-cross-linked and cross-linked CEP hydrogel, d) typical cross-linked CEP 
hydrogel and BICD. 
 
CEP hydrogels were further investigated on their elastic storage moduli (G’) and 

viscous loss moduli (G”) responses. The viscoelastic properties (liquid-like to solid-

like state) of the hydrogel networks (F1-6) were shown to be guided by the angular 

frequency and different polymer concentrations in the presence of a cross-linking 

agent (Figure 5.7). F1-2 and F4-5 demonstrated viscoelastic transition/behaviors as 

the EU concentration decreased from 3% to 2% w/v, while PVA concentration 

increased from 1% to 2% w/v, or PEO concentration increase from 1% to 2% w/v at 

a CHT concentration of 3% w/v. In addition, the increase in angular frequency (ω) 

seemed to cause a significant transition in G’ and G”. Furthermore, the nano-enabled 

embedment of these CEP hydrogel also showed a slight increase in rigidity, thus 

highlighting an entangled network of the polymer chains with the NLPs. A slight 
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increase in PVA concentration from 1-2% w/v or PEO concentration of 1-2% w/v 

resulted in the transition of the CEP hydrogel from a liquid state toward a gel-like or 

solid-like state. The G’ and G” crossover is an indication of relaxation time of the 

CEP hydrogel (Arguelles-Monal et al., 1998; Weng et al., 2007). F2 resulted in a 

relaxation time at ω≈3 rad/s (G’ and G”), while for F5 this occurred at ω≈10-40 rad/s. 

These results may be attributed to the decrease in CEP hydrogel mobility as 

entangled network forms. Additionally, early relaxation time after the increase in PVA 

concentration increase from 1-2% w/v depicted early gelation time, indicating a quick 

reaction or gel-like formation at the early phase of the oscillation process (Arguelles-

Monal et al., 1998). PEO showed gel-like formation at the late phase of the 

oscillation process, which depended solely on the angular frequency.  

 

F3 and F6 evidently demonstrated that a higher PVA concentration of 3% w/v or 

PEO concentration of 3% w/v exhibited a complete transition from liquid state to 

solid-like state. Furthermore, G’ and G” hardly show any alteration as angular 

frequency increases. These results may be due to stronger mechanical properties 

that increased the interconnection of the hydrogel such as covalent bonding and 

molecular entanglements interactions (Weng et al., 2007). Furthermore, this may 

also be attributed to the enhanced nano-enabled structural rigidity, molecular 

mobility, retardation and  long life span of the CEP hydrogel networks structure. The 

complex viscosity for all formulations was of the same trend and decreased as the 

oscillation frequency increased. These results depicted that there was an occurrence 

of a strong intermolecular, cross-linking reaction in the presence of GA and covalent 

bonds as previously described (in Chapter 5, section 5.3.2.1) confirmed by FTIR. 

These results showed a significant transition in the viscoelastic properties due to 
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polymer concentrations and the presence of GA as a cross-linking agent. Overall, 

these studies demonstrated that transformation from liquid state to solid state 

behavior occured, and cross-linked CEP hydrogel were predominantly elastic with 

G’>G”. 

 

 

 

                              

Figure 5.7: Contd. on pg 150 
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Figure 5.7: Viscoelastic moduli [G’ (  ), G’’ (  )] and complex viscosity (  ) of a) F(a1-
3), and  F(b4-6) at 37°C. 
 

5.3.3. Characterization of the Bio-Robotic Intracranial Device using imaging 

system 

 

5.3.3.1. Real-time ultrasound imaging of gas-filled functionalized 

nanoliposomes embedded within the Bio-Robotic Intracranial Device  

The use of real-time ultrasound imaging for the investigation of drug, gene 

transportation and organ imaging in vivo has continued to grow in recent years 

(Hernot and Klibanov, 2008; Mancini et al., 2009; Wanga et al., 2010, Tabakovi et 
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al., 2012). In this chapter, real-time ultrasound imaging was used to visualize the 

particle distribution and morphological architecture of gas-filled functionalized NLPs 

post-embedded in the BICD; results are presented in Figure 5.8a-d. Figure 5.8a 

show no sphere-like structure distribution within the CEP hydrogel. Figure 5.8b 

depict a larger sphere-like structure in the control (intra-bubbles) CEP hydrogel in 

which bubbles were induced through prolonged stirring or gas-filled within the CEP 

hydrogel. Figures 5.8c-d, shows homogeneity distribution, uniformity and small 

sphere-like structure of the gas-filled native and functionalized NLPs distribution 

within the BICD. The presence of the functional moiety did not show any effect on 

particle distribution post-embedded within CEP hydrogel. 

 

Figure 5.9 shows effect on particle distribution when different loading techniques 

used for embedded of gas-filled functionalized NLPs into CEP hydrogel of the BICD: 

a) loading into CEP hydrogel prior to cross-linking; b) loading post cross-linking; and 

c) loading using 1mL syringe injection. As shown in Figures 5.9a-c, homogeneity in 

particle distribution within the internal of the CEP hydrogel was achieved by loading 

prior to cross-linking, surface distribution occurred with loading post cross-linking, 

and regional distribution for loading through syringe injection. 

 

Figures 5.10a-b shows, the appearance of gas-filled functionalized NLPs distribution 

within CEP hydrogels composed of different polymeric components; a) cross-linked 

CEP hydrogels (CHT-EU-PVA-GA) and b) (CHT-EU-PEO-GA). Results showed no 

significant differences in particle distribution when either PVA or PEO was used as a 

component of the CEP hydrogel network. Overall, results showed that the BICD has 

a greater capability to act as a depot for gas-filled functionalized NLPs. In addition, 
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the study also demonstrated that gas-filled functionalized NLPs were still intact or 

stable post-embedding into the BICD. Ultrasound imaging technology, which is 

currently used for in vivo imaging, has also demonstrated to be a good qualitative 

technique for BICD visualization in vitro. 

                    
 
Figure 5.8:  Ultrasound images of the gas-filled functionalized NLPs embedded 
within the BICD, a) native CEP hydrogel; b) CEP hydrogel induced inter-bubbles, c) 
SF6-filled native NLPs d) SF6-filled functionalized NLPs.  
 

 

Figure 5.9:  Ultrasound images of the gas-filled functionalized NLPs embedded 
within the BICD employing different loading techniques: a) loading into CEP hydrogel 
prior to cross-linking; b) loading post cross-linked and c) loading using 1mL syringe 
injection. 



 

153 
 

           
   
Figure 5.10: Typical ultrasound images of SF6-functionalized NLPs embedded 
within CEP hydrogels fabricated out of different polymeric components. CEP 
hydrogels a) CHT-EU-PVA-GA and b) CHT-EU-PEO-GA  
 

5.3.3.2. Fluorescence imaging of the fluorescence-labeled Bio-Robotic 

Intracranial Device  

Fluorescence imaging technology in pharmaceutics has been the most-often-used 

technology for validating the capability of targeting of the gene or drug delivery 

system into a disease site (Martina et al., 2007; Wanga et al., 2010). In this chapter, 

fluorescence imaging was used for further validating BICD formation. Figures 5.11a-

c, shows two-dimensional (2D) fluorescence profiles of FITC-labeled functionalized 

NLPs embedded within the BICD, visualized using a Cell-viZio fluorescence 

microscopy (Mauna Kea Technologies, Paris, France). Figure 5.11a-c, shows the 

following: a) FITC-labeled, b) gas-filled FITC-labeled functionalized NLPs embedded 

within cross-linked CEP hydrogel (CHT-EU-PVA-GA), c) FITC-labeled, and d) gas-

filled FITC-labeled functionalized NLPs embedded within cross-linked CEP hydrogel 

(CHT-EU-PEO-GA).  

 

CEP hydrogel was stained with DAPI or trypan blue in order to elucidate its network-

like structure and to visualize the FITC-labeled functionalized NLPs embedded within 

the polymeric-based depot. In a simultaneously conducted fluorescence study on the 
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same formulation, it was evidently observed that surface topography fluorescence 

spikes correlated with those of the 2D fluorescence profile. The surface topography 

imaging illuminated the fluorescence intensity per fluorescent spot. 

 

Figure 5.12 depicts typical fluorescence profiles of the control native CEP hydrogel 

(unlabeled), CEP hydrogel stained with DAPI or trypan blue and double-labeled 

BICD. Figure 5.12a shows no fluorescence activity in the control CEP hydrogel 

(unlabeled). Figure 5.12b shows high fluorescence-labeled activity in 2D of the CEP 

hydrogel with network-like structure post-labeled or stained with DAPI or trypan blue. 

Figure 5.12c shows a typical doubled-labeled BICD. In addition, the co-existence of 

two fluorescence markers may indicate effectively co-localized gas-filled FITC-

labeled NLPs inside the CEP hydrogel. Furthermore, FITC-labeled functionalized 

NLPs exhibited an intact (arrows) or slight burst (spherical shape into smear-like 

morphology, see circles) of FITC-labeled functionalized NLPs post-embedded within 

the CEP hydrogel during BICD fabrication. This outcome could have been influenced 

by the structure disruption of the gas-filled functionalized NLPs during fabrication of 

the BICD. The surface topography fluorescence spikes were further matched to 

those of the 2D fluorescence image, where either fluorescence activity or surface 

topography activities were detected.  
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Figure 5.11: Cell-viZio images of FITC-labeled functionalized NLPs distribution 
within the CEP hydrogels of the BICD. a) FITC-labeled functionalized NLPs b) FITC-
labeled and gas-filled functionalized NLPs within the cross-linked CEP hydrogel 
(CHT-EU-PVA-GA), and c) FITC-labeled functionalized NLPs, d) FITC-labeled and 
gas-filled functionalized NLPs within the cross-linked CEP scaffold (CHT-EU-PEO-
GA).  
 

Figures 5.13a-c show typical fluorescence profiles of the rhodamine, FITC-labeled 

functionalized NLPs and CEP hydrogel stained with trypan-blue or DAPI examined 

employing the Olympus IX71 Immunofluorescence Microscopy (Yin et al., 2012). 

Figures 5.13a1-3 and b confirm the morphology of the rhodamine or FITC-labeled 

functionalized NLPs with a spherical shape, uniform and inertial cavitations with a 

shell-like structure throughout the surface structure, and a single hollow core. Figure 

5.13c further validates that the CEP hydrogel stained DAPI or Trypan blue depicts a 

network-like structure. Overall, results or fluorescence profiles exhibited a study 

correlated with the data obtained employing TEM, ultrasound and cell-viZio imaging 
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systems in particles distribution and morphology of FITC-labeled or gas-filled 

functionalized NLPs.  

                      

                      
 
Figure 5.12: Typical Cell-viZio profiles of the double fluorescence-labeled BICD. a) 
Control CEP hydrogel (unlabeled), b) CEP hydrogel stained with DAPI or trypan 
blue, and c) double fluorescence-labeled BICD.  
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Figure 5.13:  Typical fluorescence images of the BICD. a1-3) rhodamine, b) FITC-
labeled functionalized NLPs and c) CEP hydrogel stained with DAPI or trypan blue. 

 

5.4. Concluding Remarks 

The results obtained in this chapter evidently validate the development of the BICD 

fabricated by embedding fluorescence-labeled or gas-filled functionalized NLPs 

within cross-linked CEP hydrogen. Modified functionalized NLPs showed a slight 

effect on the particle size distributions of post gas-filled; SF6, control N2 and CO2 

within the core of the lipid bilayers. FTIR analysis revealed the presence of bands 

produced during molecular structural interactions or cross-linking of the polymers 

during the design of the CEP hydrogel. Furthermore, these results postulate that 

biomechanical properties must also be considered when designing the BICD drug 

delivery system. The non-Newtonian (shear thinning) behavior and viscoelastic 
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properties (G’ and G”) were both shown to be governed by polymer concentrations 

and GA. 

 

The results obtained in this chapter evidently validate the development of the BICD 

fabricated by embedding fluorescence-labeled or gas-filled functionalized NLPs 

within cross-linked CEP hydrogel. Modified functionalized NLPs showed a slight 

effect on the particle size distributions following filling with gas (SF6, control N2 and 

CO2 within the core of the lipid bilayers). FTIR analysis revealed the presence of 

bands produced during molecular structural interactions or cross-linking of the 

polymers during the design of the CEP hydrogel. Furthermore, these results 

postulate that biomechanical properties must also be considered when designing the 

BICD drug delivery system. The non-Newtonian (shear thinning) behavior and 

viscoelastic properties (G’ and G”) were both shown to be governed by polymer 

concentrations and cross-linker. The mechanical properties of the permanent CEP 

hydrogel were shown to be influenced by gel flow which was observed in solid state 

rather than liquid state. In this case, G’ was greater than G’’, indicating that strong 

intermolecular interactions were obtained during CEP hydrogel fabrication. TEM and 

imaging systems validated that the morphological architecture of the gas-filled 

functionalized NLPs were uniform and spherical in shape pre- or post-embedding 

into the BICD, respectively. In addition, gas-filled functionalized NLPs distribution 

within the internal core of the CEP hydrogel were shown to be associated with 

hydrogel flow behaviors and loading techniques used during generation of the BICD. 

Moreover, homogeneity and particle distribution within CEP hydrogel may have been 

influenced by NLPs stability in suspension with low sedimentation prior to embedding 

into the BICD. The presence of the functionalized moieties did not show any 
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significant effect on the gas-filled functionalized NLPs distribution post-embedding 

into the BICD. Fluorescence imaging studies exhibited a co-localization and burst-

like of the FITC-labeled NLPs post-embedding within the double-labeled BICD. 

Further studies are necessary to identify the BICD’s potential for diagnosis and/or 

targeted treatment for afflictions such as AD, since attached functionalized moieties 

have previously been shown to have the potential for guiding NLPs to targeted sites 

of AD (see Chapter 4, section 4.3.9.2). The findings in this chapter also validated 

that biomechanical dynamics and imaging techniques could be used as appropriate 

future techniques for characterization of track-labeled or gas-filled drug delivery 

vehicles post-embedded into a BICD. 
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CHAPTER 6 

EX VIVO CYTOCOMPATIBILITY ANALYSIS OF THE NANO-ENABLED BIO-

ROBOTIC INTRACRANIAL DEVICE FOR PROLONGED GALANTAMINE 

RELEASE  

 

 

6.1 Introduction 

The bio-construction of potential neuropharmaceutical devices that have capability to 

extend neuroprotectant drug efficacy over a prolonged period, particularly to 

Alzheimer’s disease (AD) has gained attention over the past few decades (Nowacek 

et al., 2009; Sahni et al., 2011). Liposomal-based systems are among other 

nanotechnologies that have showed potential in transporting drugs into the central 

nervous system (CNS) (Schnyder and Huwyler, 2005; Torchilin, 2005; Nowacek et 

al., 2009).   

 

Liposomes are fabricated using both natural and synthetic phospholipids (Johnsson 

and Edwards, 2003). The advantages of employing liposomal-based drug delivery 

systems for neuropharmaceutical applications includes the capability to incorporate 

hydrophilic and hydrophobic drugs, good biocompatibility and low toxicity, the ability 

to bypass BBB and target drug delivery (Abbot and Romero, 1996; Schnyder and 

Huwyler, 2005; Ying et al. 2010). However, liposomal-based systems are ineffective 

on clinical neuropharmaceutical applications because of the poor absorption 

following systemic delivery, which is associated with a rapid clearance in the 

presence of the reticuloendothelial system (RES) and short plasma half-life (Krown 

et al., 2004; Immordino et al., 2006; Li et al., 2009). To overcome or bypass these 

challenges associated with liposomal-based systems, the following studies were 
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done: liposomes were surface engineered with polymers that have good mechanical 

stability and/or liposomal-based system were amalgamated with polymeric-based 

systems/ temporal depots (Frank, 1993; Torchilin, 2005; Immordino et al., 2006; 

Nakano et al., 2008; Wang et al., 2010; Ruizhen et al., 2011).  

 

In addition, the temporal depots that are made up of polymeric-based systems such 

as  hydrogels and pre-fabricated polymeric scaffolds have also been reported to be 

suitable for prolonged drug release and/or cell seeding (Stenekes et al., 2000; Hara 

and Miyake, 2001: Chung et al., 2006; Mulik et al., 2009; Mufamadi et al., 2011). 

Both natural and synthetic polymers have been used as building block materials to 

create an ideal structure of the temporal depot of the pre-fabricated polymeric 

scaffold (Young et al., 2005; Kojima et al., 2009; Bhattarai et al., 2010). In 

neuropharmaceutics, an “ideal” temporal depot would exhibit the following desirable 

elements: ability to enhance local drug retention, mechanical stability, sustained/or 

prolonged drug release, ease of manipulation in vitro (particularly the shape of the 

structure and pore capacity), and having the capability for cell seeding on the surface 

of a bio-structure (Cheng et al., 2008; Wang et al., 2008; Bhattari et al., 2010). In 

addition, since temporal depots are fabricated with biodegradable polymers, the 

developed devices will not need further surgical removal post-implantation (Chung 

and Park, 2007). However, the development of the polymeric-based depot systems 

have been associated with poor biocompatibility due to organic solvents or 

sonication process that are used during fabrication (Hara and Miyake, 2001; Sandor 

et al., 2002; Chung et al., 2006). Therefore, the development of a bio-structure that 

can surmount the impediments posed by either nanoliposomal or polymeric scaffold 

systems is highly desirable.  
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A study conducted by Stenekes and co-workers (2000) demonstrated the success of 

employing a temporal depot fabricated with polymeric materials. In the same study, 

both storage and prolonged release of drug-loaded liposomes post-embedded within 

dextran-based microspheres over 25 days has been reported. The prolonged 

release kinetics was shown to be influenced by different factors such as degradation, 

size of liposomes and diffusion through pores on the surface structure. Another study 

by Budai and co-workers (2007) demonstrated the success of embedding liposomes 

into a pre-fabricated polymeric scaffold by using the hydration temperatures above 

the glass transition temperature of Polyvinyl alcohol (PVA). Furthermore, a study by 

Chung and co-workers (2006) also reported the success on an encapsulation of the 

drug-loaded liposomes into a chitosan (CHT) matrix by injection of drug-loaded 

liposomes into the porous surface structure of the CHT matrix followed by freeze-

drying.  

 

Many tissues engineering studies have demonstrated success of the various types of 

cell growth and proliferation on the surface of the three-dimensional scaffolds 

(Klapperich and Bertozzi, 2004; Budai et al., 2007; Autissier et al., 2010: Chatterjee 

et al., 2012). In the case of a drug delivery study, cell growth and proliferation on the 

scaffold could also be used to postulate the state of the functionalized liposomes 

ensuing their escape of the polymeric depot. The following could also be validated: 

1) an intact structure of liposomes and 2) ability of ligand/targeted moieties for 

targeting drug delivery. 

 

This Chapter aims to further investigate the potential of the constructed BICD for 

prolonged release of galantamine (GAL)-loaded functionalized NLPs (NLPs) over a 
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period of 50 days in simulated cerebrospinal fluid (sCSF) condition and PC12 

neuronal cell environment. The BICD was further characterized for the following 

attribute: the capability of the device to act as a platform for the bio-robotic marker 

for the precise delivery of GAL into the brain in response to AD. The surface 

morphology and porosity of the polymeric scaffold/depot (CEP scaffold) were also 

analysed using the scanning electron microscopy (SEM) and micromeritics. SEM 

micrographs further validated the surface morphology of the CEP scaffold and/or 

drug-loaded functionalized NLPs after embedding within the CEP scaffold, with 

subsequent freeze-drying for 48 hours at 25mTorr (Virtis®, Gardiner, NY, USA). The 

Karl Fisher titrator (Metrohm, Herisau, Switzerland) validated the residual amounts of 

water present post-lyophilization of the CEP scaffold.  

 

Mechanical properties of the CEP scaffold such as Matrix hardness, resilience, 

hydration and the swelling mechanism were assessed in a sCSF condition (0.1M 

PBS; pH7.4, 37°C). The in vitro study evaluated drug-loaded functionalized NLPs 

release kinetics from the BICD at sCSF conditions (in the form of pellet or 

supernatant samples). A pellet sample was used to quantify the intact drug-loaded 

functionalized NLPs, whereas the supernatant was used to quantify drug release 

occurring prior to drug-loaded functionalized NLPs escaping the BICD. Ex vivo 

studies were carried out to assess the viability of the PC12 neuronal cells seeded on 

the surface of the BICD. The cytotoxicity induced by the functionalized NLPs, CEP 

scaffold, and BICD was also assessed. In addition, ex vivo studies were further used 

to validate the uptake of FITC-labeled and/or drug-loaded functionalized NLPs post-

escape from the BICD.  
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6.2. Materials and Methods  

 

6.2.1. Materials  

The materials used for fabrication of the fluorescent-labeled or drug-loaded 

functionalized NLPs, CEP scaffold (Table 6.1) and BICD (Table 6.2) were identical to 

those used to fabricate cross-linked CEP hydrogel of the nano-enabled BICD, and 

can be found in Chapter 5, Section 5.2.1 of this thesis. 

 

6.2.2. Bio-construction of a nano-enabled Bio-Robotic Intracranial Device  

A BICD was constructed as previously described in Chapter 5, section 5.2.4. In brief, 

rhodamine or FITC labeled-functionalized or GAL-loaded functionalized NLPs (as 

described in Chapter 4, section 4.2.2) in an aqueous dispersion was loaded drop-

wise into the CEP scaffold prior to freeze-drying at a ratio of 1:5 v/v (NLPs: CEP 

scaffold) (Table 6.1 and 6.2). The functionalized NLPs were pre-treated with 0.5%w/v 

sucrose as a cryoprotectant prior to entrapment within the core of the CEP scaffold 

and thereafter freeze-dried employing a 25mTorr (Virtis®, Gardiner, NY, USA) for 48 

hours.  

 

The particle size and zeta potential of the GAL-loaded functionalized NLPs prior 

embedded within CEP scaffold (cross-linked or non-cross-linked CEP scaffold) of the 

BICD were analyzed employing a Zetasizer NanoZS instrument (Malvern 

Instruments (Pty) Ltd., Worcestershire, UK) as previously described in Chapter 3, 

section 3.2.5.  
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Table 6.1. Composition of the cross-linked CEP scaffolds formulations employing CHT, 
EU, PVA and GA as cross-linker.  

F# 
*CHT 
(%W/V) 

aEU 
(%W/V) 

bPVA 
(%W/V) 

Cross-linker GA 
(%V/V) 

Frozen at -80ºC / 
hours 

Lyophilized 

hours 

1 3 1 3 0 48 48 

 
3 1 3 5 48 48 

2 3 2 2 0 48 48 

 
3 2 2 5 48 48 

 3 3 3 1 0 48 48 

 
3 3 1 5 48 48 

#F: CEP scaffold formulation, *CHT: Chitosan, aEU: Eugradit® RSPO and bPVA: Poly 

(Vinyl alcohol). 

 

Table 6.2. Composition of the different BICD formulations (D1-D3) 

F# 

GAL-loaded 
Functionalized NLPs 

(v/v) 
 CEP Scaffold  
         (v/v) 

       Frozen     
at -80C/   

      hours 
Lyophilized 

hours 

D1 1 5 F1  (Non-cross-linked) 48 48 

 
   1 5 F1  (Cross-linked)     48 48 

D2 1 5 F2  (Non-cross-linked) 48 48 

 
1 5 F2  (Cross-linked) 48 48 

D3 1 5 F3  (Non-cross-linked) 48 48 

  1 5 F3  (Cross-linked) 48 48 
#F: BICD Formulation  

6.2.3. Thermal analysis of the cross-linked Chitosan-Eudragit RSPO-Polyvinyl 

alcohol scaffold 

 

6.2.3.1. Differential Scanning Calorimetry of the cross-linked Chitosan-Eudragit 

RSPO-Polyvinyl alcohol scaffold 

Thermal analysis of the native CHT, EU and PVA, non-cross-linked, and cross-linked 

lyophilized CEP scaffold were evaluated using differential scanning calorimetry 

(DSC) (Mettler Toledo DSC1 STARe System, Switzerland). The samples were 

weighed (5-8mg) and sealed in perforated aluminum pans. The samples were further 

scanned at a temperature gradient of 10-260°C, at a rate of 10°C/min under an 8kPa 

N2 atmosphere. An empty aluminum pan served as a reference for all DSC scans. 
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6.2.3.2. Thermogravimetric analysis of the cross-linked Chitosan-Eudragit 

RSPO-Polyvinyl alcohol scaffold  

Thermogravimetric analysis (TGA) of the native CHT, EU and PVA and the CEP 

scaffold was carried out by connecting the TGA software (PerkinElmer STA 6000, 

Beaconsfield, United Kingdom) to a Fourier transmission infrared (FTIR) 

spectrophotometer (PerkinElmer Spectrum 100, Beaconsfield, United Kingdom) to 

elucidate the chemical reactions and/or temperature changes that occurred when 

native polymeric components were blended together in the presence of GA as a 

cross-linking agent. The following parameters were employed for the analysis: heat 

from 30-450/500°C at a rate of 10°C/min and nitrogen gas (N2). The percentage 

mass loss was calculated using delta Y software against maximum decomposition 

temperature-initial decomposition temperature.  

 

6.2.4. Surface morphological characterization of the cross-linked Chitosan-

Eudragit RSPO-Polyvinyl alcohol scaffold   

Surface morphology, surface area and porosity of the CEP scaffold post-

lyophilization was evaluated by employing SEM (JEOL JSM-Japanese Electronic 

Optical Laboratories, Tokyo, Japan) and a porosimetry analyzer (ASAP 2020 

Micrometrics, Georgia, USA). Microscopic analysis of the surface of the nano-

enabled structure of the CEP scaffold was undertaken, by first lyophilizing the 

scaffold at 25mTorr (Virtis™, Gardiner, New York, USA). The sample was mounted 

onto double-sided tape attached to a metallic sample stand and sputter-coated with 

a layer of gold. Each sample was viewed under varying magnifications at an 

accelerating voltage of 20keV.  Surface properties of the CEP scaffold structure were 

validated using a porosimetry analyzer (ASAP 2020, Micrometrics Georgia, USA). 
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Each CEP scaffold sample was weighed (75-90 mg), inserted into the glass holding 

tube and closed with a glass filler rod in order to decrease the total free space within 

the tube. The samples were first degassed prior to analysis in order to eliminate 

surface moisture and gas particles. Degassing conditions included an evacuation 

and heating phase. Table 6.3 indicates the parameters employed for the 

porositometric analysis. 

 

Table 6.3. Evacuation and heating phase parameters employed during 
porositometric analysis of the CEP scaffold  

Parameter Rate/target 

Evacuation Phase  

  Temperature ramp rate  10°C/min 

 Target temperature  40°C 

 Evacuation rate   50.0mmHgs/s 

 Unrestricted evacuation from  30mmHg 

 Vacuum set point 500µmHg 

 Evacuation rate  60min 

 

 
Heating phase  

Temperature ramp rate  10°C/min 

 Hold temperature  30°C 

 Hold time  900min 

 

6.2.5. Physicomechanical characterization of the cross-linked Chitosan-

Eudragit RSPO-Polyvinyl alcohol scaffold 

The physicochemical and physicomechanical properties of cross-linked CEP scaffold 

were validated for description of the following: thermal properties (see Section 6.2.3), 

textural properties (Section 6.2.5.1), rate of dehydration (Section 6.2.5.3), swelling 

(see Section 6.2.5.4) and rate of erosion (Section 6.2.5.5). 
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6.2.5.1 Textural analysis of the cross-linked Chitosan-Eudragit RSPO-Polyvinyl 

alcohol scaffold 

Textural analysis was validated to elucidate the physicomechanical properties of the 

cross-linked CEP scaffold in terms of scaffold matrix resilience (MR), matrix 

hardness (MH), and deformation energy (DE). An analysis was conducted on the 

dehydrated and hydrated samples. A calibrated Texture Analyzer (TA XTplus; Stable 

Micro Systems, Surrey, UK) fitted with a cylindrical steel probe (50mm diameter for 

MR) and a flat-tipped steel probe (2mm diameter for matrix hardness and 

deformation energy) was employed. Data was captured at a rate of 200 points per 

second through Texture Exponent Software (Version 3.2). The parameter settings 

employed for the analysis are outlined in Table 6.4. Samples were analyzed for 

variations in MH (N/mm2), DE (J) and MR (%). 

 

Table 6.4. Textural parameters employed for determination of CEP scaffold matrix 

hardness, deformation energy and matrix resilience 

Parameters MHa(N/mm2) DEb (J) MRc (%) 

Pre-test 
speed 1.00 mm/s 1.00 mm/s 1.00 mm/s 

Test speed 2.00 mm/s 2.00 mm/s 2.00 mm/s 
Post-test 

speed 10.0 mm/s 10.0 mm/s 10.0 mm/s 

Target mode Force Force 10 % strain 

Target force 0.98067 N 0.98067 N - 

Trigger type Auto (force) Auto (force) Auto (force) 

Trigger force 0.04903 N 0.04903 N 0.04903 N 

Load cell 5 kg 5 kg 5 kg 
 

aMH: Matrix hardness, bDE: Deformation energy, cMR: Matrix resilience 
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6.2.5.2. Determination of the water content in cross-linked Chitosan-Eudragit 

RSPO-Polyvinyl alcohol scaffold  

The water content in the lyophilized cross-linked CEP scaffold (F1-F3) was 

determined using a Karl Fisher titrator (Metrohm, Herisau, Switzerland). Parameter 

settings and sampling procedures were instituted using an adapted protocol by 

Bruttell and co-worker (2003). All samples were weighed (~0.005g/sample) and 

measured in triplicate. 

 

6.2.5.3. Hydration study of the cross-linked Chitosan-Eudragit RSPO-Polyvinyl 

alcohol scaffold  

Hydration study of the CEP scaffold in a sCSF condition was characterized 

employing protocol a previously described by Ngwuluka and co-workers (2012). The 

lyophilized CEP scaffold was placed in the probe-tuning cell containing glass beads 

and images acquired over 24 hours with a Bench Top magnetic resonance digital 

MARAN-i system (Oxford Instruments Magnetic Resonance, Oxon, UK).  

 

6.2.5.4. Swelling characteristics of cross-linked Chitosan-Eudragit RSPO-

Polyvinyl alcohol scaffold  

Swelling characteristics of non-cross-linked and cross-linked CEP scaffolds (F1-F3) 

in a sCSF were expressed in terms of weight gain. The CEP scaffolds were weighed 

before and after immersion in 100mL of sCSF (0.1M PBS, pH7.4; 37°C) in a shaking 

incubator set to 20rpm (Harilall et al., 2013). The enlarged samples were removed at 

different time intervals and weighed, over 24 hours of incubation. Prior to weight 

measurements, excess media was removed by blotting the CEP scaffold with a filter 
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paper for 30 seconds. Swelling characteristics or mass gain of the CEP scaffold in 

sCSF was calculated using Eq. 6.1 

Swelling hydration (%) =
Swollen CEP scaffold weight − Dry CEP scaffold weight

Swollen CEP scaffold weight
 x 100 

 

6.2.5.5. Matrix erosion of the cross-linked Chitosan-Eudragit RSPO-Polyvinyl 

alcohol scaffold 

Matrix erosion (ME) of the non-cross-linked and cross-linked CEP scaffold was 

assessed in a sCSF condition over 50 days. In brief, CEP scaffold samples were 

added to 100mL of sCSF (0.1M PBS, pH7.4; 37°C) in a shaking incubator set to 

20rpm. At different immersion times (day 0, 5, 10, 15, 20, 25, 30, 35, 40 and 50), the 

samples were dried in a digital oven and weighed. The weight loss data of the CEP 

scaffold was a means of three determinations. The mass or weight loss percentage 

of the CEP scaffold in sCSF was calculated using Eq. 6.2. 

Weight Loss (%) =
iCEPw − eCEPw

iCEP w
 x 100 … … … … … … … … … … … … … … … … … . Eq 6. 2 

Where iCEPw is initial CEP scaffold weight and eCEPw is the eroding CEP scaffold 

weight. 

 

6.2.6. Morphology and structure characterization of the Bio-Robotic 

Intracranial Device  

The morphology and structure characterization of the BICD, engineered by 

embedding drug-loaded or rhodamine-labeled functionalized NLPs into the CEP 

scaffold, were examined using SEM (See Section 6.2.4) and confocal laser scanning 

microscopy (CLSM) (Zeiss LSM 780, Oberkochen, Germany). Confocal microscopy 

was employed to further characterized fluorescence activity or visualized localization 
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of rhodamine-labeled functionalized NLPs post-embedded within the BICD, at an 

excitation wavelength of 540nm and an emission wavelength of 625nm.  

 

6.2.7. In vitro release of drug-loaded functionalized nanoliposomes from Bio-

Robotic Intracranial Device  

In vitro release of drug-loaded functionalized NLPs from non-cross-linked and cross-

linked CEP of the BICD were validated in sCSF (0.1M PBS; pH7.4; 37°C). In brief, 

each BICD (D1-D3) was immersed in 100mL of the sCSF condition (0.1M PBS; 

pH7.4; 37°C), and thereafter closed in vials and placed in an orbital shaking 

incubator (Labex, Stuart SBS40®, South Africa) at 20rpm. At predetermined time 

intervals, 5mL samples were collected for analysis. An equal volume of the drug free 

sCSF medium was added to replace the quantity removed. The samples (NLPs) 

were centrifuged at 20,000rpm, and both supernatant and pellet were collected. The 

supernatant was collected to quantify the amount of GAL released prior to liposomal 

release from the nano-enabled structure, while the pellets were used to hypothesize 

the drug-loaded functionalized NLPs release in their intact state post-escape the 

BICD  structure. The pellets were first lysed with 0.5-1%v/v Triton X-100 in methanol 

solution prior to quantifying the amount of GAL associated with the loaded-NLPs that 

escaped in their intact form from the BICD. The amount of GAL was analyzed by UV 

spectroscopy at a maximum wavelength (ʎmax) of 288nm. The quantity of GAL 

released was computed from a standard linear curve (R2 = 0.98). Each experiment 

(F1-F3) was performed in triplicate. The amount of GAL released at day 10 was 

measured by the mean dissolution time (MDT) values using the Eq. 6.3. 

 



 

172 
 

MDT = ∑ ti (
Mt

M∞
) … … … … … … … … … … … … … … … . . … … . … … … … … … … … … Eq 6. 3

𝑛

𝑖=1

 

Where Mt is the fraction of dose released in time ti = (ti + ti - 1)/2 and M∞ corresponds 

to the loading dose. 

 

6.2.8. Ex vivo characterization of the Bio-Robotic Intracranial Device  

 

6.2.8.1 Cell seeding on the Bio-Robotic Intracranial Device 

The PC12 neuronal cells were maintained and cultured in an identical condition as 

described in Chapter 3, section 3.2.10 (Mufamadi et al., 2013). Prior to seeding cells 

on the surface of the BICD (D1-D3), D1-D3 samples were sterilized with either 75% 

ethanol or under UV light for ± 6 hours. To eliminate excess ethanol employed during 

sterilization, the BICD was washed twice with sterile RPMI media and thereafter 

rinsed in cell culture media (see Chapter 3, section 3.2.10). The D1-D3 samples 

were then added to 96 well-culture plates, PC12 neuronal cell seeded at a density of 

10,000 cells, and cells cultured for 28 days. At different time intervals (3, 7, 14, 21 

and 28), media (50µL) was collected for assessment of anti-proliferation and/or 

cytotoxicity, cell uptake and cell growth observed on the surface of the BICD. 

 

6.2.8.2. Morphological characterization of the Bio-Robotic Intracranial Device 

seeded with PC12 neuronal cells 

The surface morphology of the BICD seeded with PC12 neuronal cell was visualized 

using SEM (Jeol JSM-120, Tokyo, Japan). In brief, the BICD was removed from the 

growth media and air-dried, for 24 hours prior to the examination. Air-dried BICD was 

mounted onto a double-sided tape attached to a metallic sample stand thereafter 
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sputter-coated with a layer of gold and viewed using the protocol previous described 

in Section 6.2.4 of this thesis. 

 

6.2.8.3. Cytocompatibility of the Bio-Robotic Intracranial Device in the PC12 

neuronal cells 

Cytocompatibility was determined using a cytoTox 96® non-radioactive cytotoxicity 

assay (Madison, WI, USA). Briefly, drug-loaded functionalized NLPs, CEP scaffold 

and BICD were incubated within 100µL of PC12 neuronal cells at a density of 10,000 

cells/wells and grown as described previously in Section 6.2.8.1, over 28 days. The 

lactate dehydrogenase (LDH) release was quantified on 50μL of treated cells (drug-

loaded functionalized NLPs, CEP scaffold and BICD) and control untreated. LDH 

release activity hypothesized to be associated with membrane damage/injury and 

cytotoxicity (Cho et al., 2008). In addition, 50μL of the reconstituted substrate mix 

(Promega reagents) was added to each well, and the enzymatic reaction allowed 

occurring at room temperature for 30 minutes as per the promega protocol. Since the 

substrate is light sensitive, all experiments in this section were conducted under dark 

conditions in order to avoid substrate degradation as per promega protocol 

description. The enzymatic reaction stopped when stop solution (50μL/well, Promega 

reagent) was introduced to the reaction. The untreated control PC12 neuronal cells 

were lysed with the lysis buffer (0.5% triton X-100 in ethanol/NaOH solution) in order 

to attain LDH background and/or maximum release. At the wavelength of 490nm, the 

LDH activity was quantified employing a Victor™X3 Perkin Elmer microplate reader 

(Wellesley, MS, USA). The LDH release percentages were calculated using Eq 6.4. 

 

LDH release % =
A490nm of treated PC12 neuronal cells  

A490nm of untreated PC12 neuronal cells  
 x 100 … … . . … … …  Eq 6.4 
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Where treated PC12 neuronal cells with drug-loaded functionalized NLPs, CEP 

scaffold and BICD. 

 

6.2.8.4. Cell uptake of the FITC-labeled functionalized nanoliposomes post 

release from the Bio-Robotic Intracranial Device  

Ex vivo release and uptake of GAL-loaded or FITC-labeled functionalized NLPs 

embedded into the BICD were characterized by UV spectrophotometry and CLSM. 

At different time intervals, 50µL of growth media was aspirated. The aspirated cells 

were then washed twice with sterile PBS (pH7.4), and thereafter lysed with the lysis 

buffer (0.5% triton X-100 in ethanol/NaOH solution). The lysate was vortexed and 

subsequently centrifuged at 10,000×g for 15-20 minutes at room temperature. The 

supernatant was collected, and GAL quantity analyzed by UV spectrophotometry at 

λmax=288nm (N=3). The percentage drug uptake by the PC12 neuronal cells was 

calculated as previously described in Chapter 4, Section 4.2.13.3. Confocal 

microscopy was employed to provide evidence of cellular uptake and active FITC-

labeled functionalized NLPs released from the BICD into the cellular environment. 

Cell uptake of FITC-labeled functionalized NLPs post-release from the BICD was 

visualized as pseudo 3D images at day 3, 7, 14, 21 and 28 using CLSM. The 

topographical view of the fluorescence PC12 neuronal cells characterized the cell 

uptake intensity and intra-cellular localization. The results of the confocal microscopy 

were field dependent as previously addressed in Chapter 3, Section 3.3.8.  
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6.3. Results and Discussion  

  

6.3.1. Thermal properties of the cross-linked Chitosan-Eudragit RSPO-

Polyvinyl alcohol scaffold 

 

6.3.1.1. Differential Scanning Calorimetry analysis of the cross-linked 

Chitosan-Eudragit RSPO-Polyvinyl alcohol scaffold  

Figure 6.1 depicts DSC, glass transition (Tg), melt (Tm) and crystallization (Tc) 

temperature of native polymeric components (CHT, EU and PVA), the non-cross-

linked, and cross-linked CEP scaffold. In Figure 6.1a, native CHT exhibited 

endothermic peaks at 90°C and 125°C, which may be associated with the 

dissociation process of interchain hydrogen bonding of CHT as previously reported 

by Chuang and co-workers (1999). Native EU exhibited exothermic peaks at 70°C, 

melting peak of 182°C, and a temperature onset (T0) and the completion of melt (Tc) 

at a range between 175-185°C (Figure 6.1b). In Figure 6.1c, native PVA exhibited a 

Tg of 40°C and Tm peak of 223°C. When all native polymeric components (CHT, EU 

and PVA) were blended collectively in the absence of a cross-linking agent, a Tg was 

observed at 55°C, and Tm at 85°C (Figure 6.1d). The thermal shifting of the non-

cross-linked post-lyophilized CEP scaffold may have been influenced by polymer 

interaction (covalently and non-covalent interaction). In Figure 6.1e, the cross-linked 

CEP scaffold exhibit a broadening Tm peak temperature at 100°C, temperature onset 

(T0) and the completion of melt (Tc) at a range between 60-140°C, and a 

crystallization temperature (Tc) of 240°C. The results depicted that thermal dynamics 

of the lyophilized cross-linked CEP scaffold over 48 hours was still stable or covalent 
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bonds were attained as previously reported in FTIR (see Chapter 5, section 5.3.2.1) 

and rheological studies (see Chapter 5, section 5.3.2.2). 

 

 

                   

Figure 6.1: DSC profiles of the CEP scaffold; native a) CHT, b) EU, and c) PVA, d) 
non-cross-liked CEP scaffold and e) cross-linked CEP scaffold. 
 
 

6.3.1.2. Thermogravimetric analysis of the cross-linked Chitosan-Eudragit 

RSPO-Polyvinyl alcohol scaffold 

The stability and decomposition temperatures of native polymeric components (CHT, 

EU and PVA) and lyophilized cross-linked CEP scaffold were validated by TGA (see 

Figure 6.2). Each sample was analyzed for both the initial and maximum 

decomposition program temperature at 30-450/500°C at a rate of 10°C/minute and in 

the nitrogen gas (N2) atmosphere.  
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Figure 6.2a and Table 6.5 shows the highest thermal stability point of the native CHT 

at 230°C, with less than 2% weight loss. At 279.41°C, the CHT starts to decompose 

and its mass starts to deplete as it vaporized, and the maximum decomposition 

temperature was obtained at 350°C. Figure 6.2b and Table 6.5 represents thermal 

stability and decomposition temperature of native EU. The results exhibited the 

highest thermal stability of EU at 270°C. Initial decomposition temperature of EU was 

at about 293.88°C, and the maximum decomposition temperature was 374.29°C. 

About 66.31% of the mass was lost between the onset and offset range 

temperatures. Figure 6.2c and Table 6.5 also represent thermal stability and 

decomposition temperature of native PVA. The results exhibited the highest mass 

loss of about 95% at an initial temperature of 281.27°C and maximum temperature of 

318.70°C. The quick depletion of mass may have been influenced by loss of water 

and full decomposition or polymer degradation, which influenced the high 

evaporation state. Figure 6.2d and Table 6.5 depict a thermograph of the post-

lyophilized cross-linked CEP scaffold (weight loss curve is the solid line, and its first 

derivative is the dashed curve).   

 

The results also showed a remarkable stability when all native polymeric 

components (CHT, EU and PVA) were blended simultaneously in the presence of 

GA as a cross-linking agent to form the cross-linked scaffold. Decomposition and 

mass depletion only occurred at around 350°C. This may have been manipulated by 

the following: amalgamated physicomechanical properties of each native polymer, 

and strong intermolecular and intramolecular hydrogen bonds occurring between the 

polymers in the presence of GA as a cross-linking agent. The results also showed 

only single (slope)-stage decomposition which indicates high mass loss when the 
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degradation temperature is reached. The cross-linked CEP scaffold demonstrated a 

derivative temperature peak (Tp) at around 417.32°C; this observation could be 

attributed to a decomposition pattern associated with the highest amount of weight 

loss.  

 

 

 

Figure 6.2: Contd. on pg 179 
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Figure 6.2: TGA thermographs of the cross-linked CEP scaffold; native a) CHT, b) 
EU and c) PVA, and d) cross-linked CEP scaffold. 
 

Table 6.5. Decomposition temperature of native polymers (CHT, EU and PVA) 

components and cross-linked CEP scaffold.  

 
Decomposition points 

 
Derivative temperature 

Components 

Onset 
point 

*DT oC 

aDelta Wieght 
Loss (% 

Offset 
point 
DT oC 

Peak 
#Tp oC 

Inflection 
point oC 

Chitosan 279.41 54.28 350.00 377.67 349.39 

Eudragit RSPO 293.88 66.31 374.29 329.17 331.20 

PVA 281.27 95.24 318.71 298.18 298.85 
Cross-linked CEP 

scaffold 382.28 93.82 417.27 402.56 404.24 
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*DT= Decomposition temperature, aDelta Y= percentage weight loss from onset 

point until end point, #Peak Tp = First derivative peak temperature associated with 

highest rate of change on the weight loss 

 

6.3.2. Surface morphology of the cross-linked Chitosan-Eudragit RSPO-

Polyvinyl alcohol scaffold 

The morphology and bio-architecture of the CEP scaffold were examined employing 

SEM (Jeol JSM-120, Tokyo, Japan) (Figure 6.3). Figure 6a-c (1-2) depicts the 

porous morphology of the CEP scaffold formulations (F1-F3). The images reveal that 

developed structures have spherical interconnected pores with a random size 

distribution. The pore structures and size may have been manipulated by different 

parameters such as a hydrophilic polymer or cross-linking agents. In addition, the 

pore structure and size may be influenced by the diffusion of water molecules during 

evaporation or lyophilization procedures.  

 

Figures d1-2 and e1-2 show micrographs of the CEP scaffold at its edge and of its 

pore at high magnification. Porosity data accumulated by employing a micrometrics 

Analyzer displayed linear isothermal adsorption and desorption indicative of highly 

porous CEP scaffolds. Different percentages of porosity were obtained from F1-F3. 

The percentage porosity showed a decrease with increased EU concentration, being 

90% for CEP scaffold (F1), 85% for CEP scaffold (F2) and 80% for CEP scaffold 

(F3). Typical CEP scaffold formulation exhibited a type IV isotherm, which indicates 

microporosity (Figure 6.4).  The isotherm was near P/Po=1, which indicates the 

presence of macrospores. In addition, SEM micrographs further reveal a pore 

structure with a spherical shape, an interconnected pore system and random 
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distribution. Porosity distribution of the CEP scaffolds may have been influenced by 

the fabrication procedure, concentration of hydrophilic polymers (PVA and CHT), 

freezing temperature (-80°C, 48 hours) and freeze-drying (48 hours). The structure 

and architecture of developed porous CEP scaffold exhibited essential parameters 

that may add advantages to prolonged release when drug-loaded functionalized 

NLPs escape through diffusion post-embedded into the BICD. Furthermore, an 

interconnecting pore network of the CEP scaffold is even more important for 

cultivation and proliferation studies following PC12 neuronal cells being seeded on 

the surface of the CEP scaffold. 

   

   

 

Figure 6.3: Contd.on pg 182 
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Figure 6.3: SEM micrograph of the CEP scaffolds, a1-2) (F1), b1-2) F2, c1-2) F3, 
d1-2) scaffold edge and e1-2) magnified view of a pore of the CEP scaffold 
magnification 450-1000x.  
 

               

Figure 6.4: Typical Isothermal linear plot of the CEP scaffold  

 
 
6.3.3. Physicochemical and physicomechanical characterization of the cross-

linked Chitosan-Eudragit RSPO-Polyvinyl alcohol scaffold  

The textural properties, water contents, hydration, swelling characteristics and rate of 

erosion were characterized on the lyophilized cross-linked CEP scaffold post-

exposure to sCSF condition. 
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6.3.3.1. Textural properties of the cross-linked Chitosan-Eudragit RSPO-

Polyvinyl alcohol scaffold  

Textural properties of the cross-linked CEP scaffold such as MH, MR and energy 

absorbed were measured in the unhydrated and hydrated state in sCSF using a 

calibrated Texture Analyzer. Figure 6.5 and Table 6.6 indicate the force-time and 

force-distance profiles of the cross-linked CEP scaffold for determining a) 

deformation energy, b) MR and c) MH. The unhydrated cross-linked CEP scaffold 

showed high resilience at a range of 11.53-14.42%, F1-F3 respectively. However, 

when the cross-linked CEP scaffold was exposed to sCSF, the resilience force 

decreased, and ranged between 8.87-13.37%, for F1-F3 respectively. In the case of 

the hardness and deformation energy, the unhydrated showed high hardness (10.67-

12.76N/mm) and deformation energy (0.031-0.049J). However, the hydrated cross-

linked CEP scaffold showed a slight decline in hardness (7.97-9.65N/mm) and 

deformation energy (0.029-0.049J). This outcome could have influenced by 

hydrolysis or swelling behaviour of network structure in sCSF that resulting in a chain 

relaxation of the CEP scaffold. 

 

Table 6.6.Textural profile of the unhydrated and hydrated cross-linked CEP 
scaffold  

Unhydrated CEP scaffold  

F# Hardness Resilience (%) Deformation Energy (J) 

F1 10.67 11.53 0.031 

F2 12.07 12.81 0.039 

F3 12.76 14.42 0.049 

 

Table 6.6. Contd. on pg 184 
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                           Hydrated CEP scaffold  

 

Hardness 

Resilience (%) Deformation Energy (J)  (N/mm) 

F1 7.97 8.87 0.029 

F2 8.87 10.38 0.036 

F3 9.65 13.37 0.040 

F#: Formulation  

 

Figure 6.5: Typical textual profiles of the cross-linked CEP scaffold, deformation 
energy, matrix resilience and matrix hardness. 
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6.3.3.2. Water content of the cross-linked Chitosan-Eudragit RSPO-Polyvinyl 

alcohol scaffold 

The water contents of the lyophilized cross-linked CEP scaffolds (F1, F2 and F3) 

were determined by the Karl-Fisher titrator (Metrohm, Herisau, Switzerland). 

Different percentage water volumes or residual moisture/solvents in the post-

lyophilized cross-linked CEP scaffolds were observed, being 10% water content for 

F1, 9% for F2 and 7% for F3. A high amount of residual moisture/solvents in the 

lyophilized CEP scaffold may have been influenced by the concentration of the 

hydrophilic polymers or residual organic solvent. In the case of the BICD, it could 

also be influenced by cryoprotectant employed to preserve drug-loaded 

functionalized NLPs during the embedding process (Hashem et al., 2007; Chen et 

al., 2010).  

 

6.3.3.3. Magnetic Resonance Imaging and swelling characteristics of the cross-

linked Chitosan-Eudragit RSPO-Polyvinyl alcohol scaffold  

Magnetic Resonance Imaging and swelling characteristics of the CEP scaffold were 

assessed using benchtop-Magnetic Resonance Imaging (MRI) and following 

exposure to drug release conditions in an orbital shaking incubator (20rpm, 37°C), 

respectively, and are presented in Figure 6.6. Figures 6.6a-b depicts the swelling 

characteristics of the non-cross-linked CEP scaffold and cross-linked CEP scaffold. 

Figure 6.6c shows the three-dimensional network structure of the unhydrated cross-

linked CEP scaffold. Figures 6.6c-f shows the images of the cross-linked CEP 

scaffold post-hydration, outside the hydration medium, and at 30 minutes, 12 and 24 

hours. The three-dimensional matrix and/or network structure of the hydrated cross-

linked CEP scaffold was preserved post-hydration; however, the CEP scaffold size 
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increased as hydration increased. The arrows designate CEP scaffold erosion. The 

top arrow indicates possible erosion on the post-hydrated CEP scaffold, and the 

bottom arrow indicates eroded CEP scaffold residuals. The size of the CEP scaffold 

increase by one-third at equilibrium state. Uptake of the medium in both hydration 

and swelling studies may have been influenced by the surface architecture of the 

non-cross-linked CEP scaffold (Figure 6.6a) and cross-linked CEP scaffold (Figure 

6.6b), which are highly porous and sponge-like structures. Furthermore, the behavior 

of the CEP scaffold may have also been influenced by hydrolysis of the polymers in 

dissolution medium. Overall findings confirmed the changing physicochemical and 

mechanical dynamics of the CEP scaffold that may ensue on release of the post-

embedded drug-loaded functionalized NLPs in vitro, ex vivo and in vivo. 

 

 

Figure 6.6: Contd.on pg 187 
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Figure 6.6: Swelling profiles of the CEP scaffold (F1-F3) in sCSF condition over 24 
hours; a) non-cross-linked CEP scaffold, b) cross-linked CEP scaffold, c) CEP 
scaffold outside hydration medium, d) 30 minutes, e) 12 and f) 24 hours inside 
hydration medium.  
 

6.3.3.4. Matrix erosion of the cross-linked Chitosan-Eudragit RSPO-Polyvinyl 

alcohol scaffold  

ME of the CEP scaffold in a sCSF was investigated using an orbital shaking 

incubator (at 20rpm, 37°C) over 50 days. Figures 6.7a-b depicts the ME of the non-

cross-linked and cross-linked CEP scaffold. Figure 6.7a exhibits high ME on the non-

cross-linked CEP scaffold at about 65-80% weight loss over 50 days, for F1-F3 

respectively. On the other hand, Figure 6.7b exhibits low ME on the cross-linked 

CEP scaffold at about 41-59% weight loss over 50 days, for F1-F3 respectively. The 

low ME is due to crosslinking decreasing hydrolytic cleavage. In addition, the 

presence of the biodegradable polymers such as CHT and PVA as building 

components of the CEP scaffold may have added significant influence in erosion 

behaviors (Kean and Thanou, 2010). 
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Figure 6.7: Weight loss profiles of the CEP scaffolds (F1-F3) in sCSF condition 
over 50 days; a) non-cross-linked CEP scaffold and b) cross-linked CEP scaffold. 
 
 

6.3.4. Morphology characterization of the Bio-Robotic Intracranial Device   

Morphology of the BICD was characterized by confocal microscopy and SEM. Figure 

6.8 evidently depicts the morphology of the rhodamine-labeled and drug-loaded 

functionalized NLPs post-embedded into the CEP scaffold of the BICD. Figures 

6.8a1-2 and b shows the surface morphology of the BICD with intact drug-loaded 

functionalized NLPs. Drug-loaded functionalized NLPs evidently possessed a 

uniform spherical shape previously demonstrated in Chapter 5, Section 5.3.3.1 and 

Figure 5.8. Confocal microscopy further validates distribution of the labeled 

functionalized NLPs in the temporal polymeric-based depot systems as previously 

discussed in Chapter 5, Section 5.3.3.2. control native or unlabeled CEP scaffold 

depicts no rhodamine activities. Figure 6.8c depicts high distribution of rhodamine-

labeled functionalized NLPs on the surface and within the core region of the BICD. 

The overall data substantiates that drug-loaded functionalized NLPs remain intact 

post-lyophilization for 48 hours. The outcomes of these findings advise that 0.5% 

sucrose (see Chapter 4, section 4.2.6) as a cryoprotectant was adequate for 

liposomal nanostructure protection during freeze-drying.  
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Figure 6.8: Typical SEM micrographs and fluorescence images of the BICD a1-2) 
drug-loaded functionalized NLPs post embedded within the BICD at 50x 
magnification, b) high magnification 100x and c) fluorescence images of the control 
unlabeled CEP scaffold and d) rhodamine-labeled functionalized NLPs within the 
surface and core region of the BICD.  
 
 

6.3.5. In vitro drug release from functionalized nanoliposomes post-embedded 

from the Bio-Robotic Intracranial Device  

Accumulative release of the drug-loaded functionalized NLPs from temporal non-

cross-linked or cross-linked CEP scaffolds of the BICD (D1-D3) was investigated in a 

sCSF (0.1M PBS; pH7.4; 37°C) over 50 days.  

 

Figure 6.9 depicts the release profiles of the drug-loaded functionalized NLPs from 6 

different experimental formulations of the BICD (D1-D3, consist of either non-cross-

linked or cross-linked CEP scaffolds). Figures 6.9a-c exhibited the release profiles of 
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the drug-loaded functionalized NLPs from the BICD over 50 days. Figures 6.9a-b 

shows a release profile of drug-loaded functionalized NLPs from cross-linked CEP 

scaffolds of the BICD (D1-D2) with a percentage ranged from 60-70% over 50 days 

respectively, while cross-linked CEP scaffolds of the BICD (D3) reached only 50% at 

day 50. However, in case of the BICD formulations (D1-D3) consist of the non-cross-

linked CEP, about 70-90% drug-loaded functionalized NPLs were obtained at day 50 

in sCSF medium. The quantity of GAL released was detected in either supernatant 

or pellet (sample centrifuged at 20,000rpm thereafter lysed with 0.5-1%v/v Triton X-

100 in methanol) employing UV spectropotometry at λmax=288nm (Table 6.7). The 

quantity of GAL in a pellet hypothesize that the released drug-loaded functionalized 

NLPs were still in their intact form post-escaping the BICD, whereas GAL in 

supernatant might be the result of ruptured of the functionalized NLPs prior escape 

from scaffold structure of BICD. MDT5-10day ranged from 0.330-0.366 were obtained 

from the BICD (D1-D3, consist of non-cross-linked CEP scaffold) representing rapid 

release period. The MDT5-10day of the BICD (D1-D3, consist of cross-linked CEP 

scaffold) ranged from 0.107-0.174 representing prolongs release period. The rapid 

release of GAL-loaded functionalized NLPs from the BICD may have influenced by 

the properties of the non-cross-linked CEP scaffold such as structure chain 

relaxation state in sCSF medium. Other factors that may have influenced rapid 

release behavior could be by diffusion of the nanosize liposomal particles, porosity, 

hydration, erosion and swelling properties of the non-cross-linked CEP scaffold. 

Figure 6.10 shows a typical structure profile of drug-loaded functionalized NLPs with 

±100nm particles size and zeta potential of 34mV. The results also validate that the 

physicochemical properties of the liposomal structure, particularly the size 

distribution (±100nm), could also have added an influence on drug-loaded 
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functionalized NLPs release via a diffusion process of the porous structure of the 

CEP scaffold of the BICD possessing a pore size ~ 100µm.  

 

Overall, the results elucidate that the presence of cross-linking agent in the CEP 

scaffold contributed toward prolong release of the drug-loaded functionalized NLPs 

from the BICD. A high release of the drug-loaded functionalized NLPs was observed 

on a non-cross-linked CEP scaffold of the BICD; this may have been influenced by 

poor mechanical properties or weak interaction between polymers (CHT, PVA and 

EU). The presences of GA as a cross-linker add robustness to the developed CEP 

scaffold, extending the duration of drug-loaded functionalized NLPs release. In 

addition, D3 formulation further hypothesize that EU concentration could have 

contributed toward CEP scaffold stability or mechanical properties (Ghaffari et al., 

2006). The quantity of GAL in sCSF medium (pellet sample) further validated that 

released drug-loaded functionalized NLPs were still in their intact form post-escaping 

the BICD.   

                       

 
Figure 6.9: Contd.on pg 192 
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Figure 6.9: In vitro drug release from the functionalized NLPs post-embedded 
within the CEP scaffold of the BICD over 50 days in a sCSF condition a) D1, b) D2) 
and c) D3 (with non-cross-linked and cross-linked CEP). 
 
 

Table 6.7. In vitro drug release characterization of three BICD formulations  

    

Drug release from BICD 

MDT (t5-10 days) 

Collected from 
supernated 

Collected 
from Pellet  

F#   t10 day (%) t10 days(%) 

D1 Non-cross-linked  16 69 0.37 

 
Cross-Linked  06 49 0.17 

D2 Non-cross-linked  10 68 0.35 

 
Cross-linked  06 38 0.11 

D3 Non-cross-linked  10 66 0.33 

  Cross-linked  05 35 0.10 

 
 *MDT: Mean dissolution time  
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Figure 6.10: Typical drug-loaded functionalized NLPs profile showing (a) particle 
size (nm) and b) zeta potential (mV). 
 

6.3.6. Ex vivo characterization of the Bio-Robotic Intracranial Device  

 

6.3.6.1. Morphological characterization of the PC12 neuronal cells seeded on 

the surface of Chitosan-Eudragit RSPO-Polyvinyl alcohol scaffold 

Morphological characterization of the PC12 neuronal cells seeded on the surface of 

the cross-linked CEP scaffold of the BICD was examined using SEM and a 

stereomicrograph imaging system. PC12 neuronal cell attachment and proliferation 

on the surface of the cross-linked CEP scaffold over 28 days are visualized in Figure 

6.11. Figures 6.11a1, b1 and c1 depict micrographs of the control porous cross-

linked CEP scaffold that exhibit no activity on the PC12 neuronal cells. Figures 
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6.11a2-a3, b2-b3 and c2-c3 exhibit typical micrographs of PC12 neuronal cells 

seeded on the surface of the cross-linked CEP scaffold using SEM and a 

stereomicrograph imaging system. Figure 6.11a2 displays a typical SEM micrograph 

(insert image) of the PC12 neuronal cell surface morphology following the seeding 

process.  

 

Overall, the micrographs evidently validate that the cross-linked CEP scaffold and its 

architecture were suitable for promoting PC12 neuronal cell growth and proliferation 

post-seeding and cultivation in the ex vivo culture medium. In previous studies, it has 

been demonstrated that surface properties of natural polymers, particularly CHT, 

promote cell adhesion and proliferation (Li et al., 2012; Seonwoo et al., 2013). In 

addition, a study by Álvarez and co-workers (2012) exhibited satisfying cell growth 

on the surface of a CHT-PVA hydrogel; the following factors were hypothesized as 

enabling such dynamics: cross-linking, zeta potential (surface charges) and the 

presence of amide groups on the surface of CHT. 

 

 

Figure 6.11: Contd.on pg 195 
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Figure 6.11: SEM and stereomicrographs of ex vivo incubation of the BICD seeded 
with PC12 neuronal cells at day 28. SEM micrographs of a1) F1, a2) D1, b1) F2, b2) 
D2, c1) F3, c2) D3 and Stereomicrographs of a3) D1, b3) D2) c3 D3. 
 
 
6.3.6.2. Cytocompatibility of the Bio-Robotic Intracranial Device in the PC12 

neuronal cells  

The cytocompatibility and/or cytotoxicity of the functionalized NLPs, CEP scaffold 

and BICD in the presence of PC12 neuronal cells was evaluated using LDH leakage 

assay associated with cell membrane damage (Figure 6.12). An untreated PC12 

neuronal cell was used as a negative control and for indirect measurements of the 

LDH activity. Maximum LDH percentage (100%) from the cytoplasm was achieved in 

the intracellular medium after untreated PC12 cells were lysed with lysis buffer (9% 

v/v Triton® X-100 in sterile water/ethanol). Functionalized NLPs showed a low effect 
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on cell membrane damage or cytotoxicity (15-22% LDH) when compared to 

untreated PC12 neuronal cells, while the effect on the CEP scaffold (31%) and BICD 

(30-32%) were slightly higher. These results validate that functionalized NLPs, CEP 

scaffold and BICD have low effect on extracellular LDH release post-cultivation in a 

cellular environment (37°C in a CO2 condition) over 28 days. Slightly lower LDH 

levels in the presence of the functionalized NLPs may have been influenced by PEG 

engineered on the surface of the NLPs. A previous study conducted by Cho and co-

workers (2008) reported the success of PEG on reversing membrane injury/damage 

while reducing LDH leaking. In addition, the presence of CHT also demonstrated a 

significant effect on sealing cell membrane damage or restraining the large 

endogenous LDH enzyme through maintaining membrane integrity (Bhattarai et al., 

2005; Heinemann et al., 2009).  

 

 

 
Figure 6.12: LDH release profiles measured from PC12 neuronal cells treatment 
with functionalized drug-loaded NLPs, CEP scaffold and BICD. 
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6.3.6.3. Ex vivo uptake of the drug-loaded functionalized nanoliposomes post-

embedded within Bio-Robotic Intracranial Device  

Ex vivo uptake of the drug-loaded functionalized NLPs, previously discussed in 

Chapter 4, Section 4.3.9.2, have demonstrated the high GAL accumulation into 

PC12 neuronal cells. Additionally, the study further validates the bioactivity of the 

targeting moiety (synthetic peptide) on facilitating cell uptake as previously 

demonstrated in Chapter 4, Section 4.3.9.2.  

 

Figure 6.13 shows the cumulative activity of GAL at different time intervals in PC12 

neuronal cells post-exposure to three BICD formulations (D1-D3) over 28 days. 

Figure 6.13 shows high GAL accumulation in PC12 neuronal cells post-exposure to 

D1, D2 and D3. D1 showed the most efficacy, which may have been influenced by 

mechanical and physicochemical dynamics of the CEP scaffold of the BICD, such as 

high diffusion, high porosity and swelling kinetics. Over and above that, the high GAL 

uptake exhibited for D1 may be associated with high drug-loaded functionalized 

NLPs released post-embedment in the CEP scaffold as reported in the in vitro study 

in Section 6.3.5. On the other hand, a slightly lower GAL uptake was exhibited for 

both D2 and D3. This may have been influenced by the physicochemical properties 

of the liposomal structure (particularly particle size, ±100nm) and/or mechanical 

structure of cross-linked CEP scaffold of the BICD (particularly low porosity, 

intermediate hydration, low erosion and swelling properties). The in vitro study also 

demonstrated that the D1 had a rapid release of drug-loaded functionalized NLPs 

post-exposure to dissolution medium over 50 days in a sCSF (see Section 6.3.5). 

Therefore, high GAL uptake exhibited for D1 could have been influenced by a high 

quantity of intact drug-loaded functionalized NLPs outside culture medium ex vivo. 
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Figure 6.13: PC12 neuronal uptake of the post-embedded drug-loaded 
functionalized NLPs from within the BICD (D1, D2 and D3) over 28 days. 
 
 

Confocal microscopy imaging further validated intracellular localization of the FITC-

labeled functionalized NLPs post-release from the BICD ex vivo. Figure 6.14 depicts 

a topographical view of the fluorescence pseudo three-dimensional images of the 

PC12 neuronal cells. Confocal micrographs of the BICD post-seeding with PC12 

neuronal cells demonstrated an apt corroboration with GAL uptake over 28 days ex 

vivo. Both GAL and FITC intracellular activity confirm that the molecular structure of 

the synthetic peptide surface engineered on the surface of the NLPs was still intact 

post-lyophilization ensuring potency for targeted delivery post-escaping the BICD ex 

vivo.   
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Figure 6.14: Topographical view of fluorescence Pseudo 3D images of the PC12 
neuronal cells exposed to the BICD. Images were acquired at day a) 3, b) 7, c) 14, d) 
21 and e) 28 using confocal microscopy. 
 

6.4. Concluding remarks   

The fabricated BICD may provide an improvement to existing drug delivery systems 

and may render satisfactory management of AD in terms of neuroprotectant efficacy, 

long-term pharmaceutical stability, targeted drug delivery and less frequent drug 

dosing intervals. The morphology of drug-loaded functionalized NLPs post-

embedding into the CEP scaffold of the BICD evidently validated that the 

cryoprotectant agent was sufficient to preserve the nanoliposomal structure post-
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lyophilization. The polymeric materials and/or cross-linking agent used during the 

fabrication of the CEP scaffold seemed to facilitate the physical stability and/or 

mechanical properties of a nano-enabled structure under sCSF conditions. In vitro 

studies also showed that the BICD was suitable for prolonged release of drug-loaded 

functionalized NLPs in their intact form. Comparability release studies demonstrate 

that drug-loaded functionalized NLPs from the non-cross-linked CEP scaffold 

promoted a rapid release rate and high quantity of the free drug release prior to the 

functionalized NLPs escaping from the BICD, whereas cross-linked CEP scaffold 

promoted prolonged release behavior and a lower quantity of the free drug being 

released prior to the functionalized NLPs escaping from the BICD over 50 days. In 

addition, this study also validates that cumulative release of drug-loaded 

functionalized NLPs may have been influenced by both physicomechanical and 

physicochemical dynamics; these include the size of NLPs, institution of a cross-

linking agent, porosity, swelling and erosion properties of the CEP scaffold. Ex vivo 

studies further provided a clear indication that the CEP scaffold and BICD were 

suitable for PC12 neuronal cell growth and proliferation. High accumulation of GAL 

and low LDH level in the PC12 neuronal cells post-exposure to the BICD suggest 

that the device had superior cytocompatibility ex vivo. Overall findings in this chapter 

indicated that the BICD may be suitable for prolonged release of the GAL-loaded 

functionalized NLPs, and thus capable of acting as bio-robotic markers for the 

precise delivery of GAL into the brain cells to treat AD. 
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CHAPTER 7 

IN VIVO DEVELOPMENT OF THE PRE-CLINICAL MODEL FOR ALZHEIMER’S 

DISEASE USING NON-TRANSGENIC SPRAGUE DAWLEY RATS FOR THE 

ASSESSMENT OF THE BICD PERFORMANCE  

 

 

7.1. Introduction  

Amyloid β peptides (Aβ) are well researched and proven to be primary constituents 

that play a crucial role in the pathogenesis of Alzheimer’s disease (AD) (Miller et al., 

1993; Selkoe., 1999; Kowalska, A., 2004). Although the full-length Aβ peptide 

contains 1-42 amino acid residues, small fragments contain 1-28, 25-35 and 36-42 

amino acid residues and both share similarities such as biochemical and biophysical 

dynamics (Delobette et al., 1997, De Strooper, 2000). Numerous in vitro studies 

have exhibited the ability of soluble Aβ peptides (fragments 25-35 and 1-42) to 

undergo a process of self-assembly or aggregation when reacted with biological 

ions, particularly zinc and copper ions. Thereafter these form insoluble Aβ peptides 

that induce neurotoxicity (Pike et at., 1991; Pike et al., 1993; Lublin and Gandy, 

2010). Despite the success on the stimulation of neurotoxicity in vitro and in cell 

culture by employing aggregated Aβ peptides, in vivo or pre-clinical outcomes after 

administration of these aggregated Aβ peptides in rats or mice models are still 

challenges when one seeks to develop an appropriate model for AD (Delobette et 

al., 1997; Dong et al., 2010; Mufamadi et al., 2012). Previous reports had validated 

that intracerebroventricular (ICV) administration of aggregated Aβ(25-35) peptides 

induced amnesia in the rats and mitochondrial dysfunction (Delobette et al., 1997; 

Nakamura et al., 2001; Stephan et al., 2001; Lecanu et al., 2006). A study conducted 
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by Frautschy and co-workers (1992) is among the first studies to pave the way for a 

new non-transgenic animal model of AD. This study showed success in plaque 

formation into the cortex and hippocampus following administration of the purified 

amyloid plaques from human AD brains. Another study conducted by Delobette and 

co-workers (1997) demonstrated significant memory deficit 14 days after ICV 

administration of the aggregated Aβ(25-35) peptides. A study conducted by 

Nakamura and co-workers (2001) demonstrated the progressive brain dysfunction 

following ICV infusion of full Aβ(1-42) peptides. 

 

Despite the possibility of employing Aβ peptides when developing a new model of 

the AD, the CNS is associated with difficulties when administrating peptides into the 

brain through the Blood Brain Barrier (BBB). A recent study conducted by Frank and 

co-workers (2012) demonstrated how single dose of protein (IL-1RA) was 

administered employing intra-cisternamagna (ICM) injection, which resulted into a 

prolonged protein expression and detection in hippocampus post-ICM treatment. The 

outcome of the study opened a new door when one seeks to develop a new animal 

model or bypass the BBB, which was previously considered as one of the major 

setback. The histochemical stains such as thioflavin T and S and congo red are the 

among stains used to mark amyloid-like deposits or disease pathologies in AD brain 

tissues post-administration of the Aβ(25-35 and 1-42) peptides (Klunk et al., 2002; 

Bussie`re et al., 2004). In this chapter, an attempt on generation of the pre-clinical 

AD animal model using of non-transgenic Sprague Dawley rats was undertaken for 

the evaluation of in vivo performance of the BICD. The first attempt was to employ a 

novel ICM injection for a single dose of Aβ(25-35) peptides that effectively bypasses 

barriers posed by the BBB. Experimental animals were grouped into three groups, 
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(1) animals administered with 1μg/μL of the aggregated Aβ(25-35) peptides, (2) 

animals administered with 3μg/μL of the aggregated Aβ(25-35) peptides and (3) the 

control group where no aggregated Aβ(25-35) peptides were administered. The 

second attempt was the morphological characterization of positive amyloid-like 

deposits into brain tissues by employing traditional histochemical stains such as 

thioflavin T (ThT) and congo red.  

 

7.2. Materials and Methods  

 

7.2.1. Sprague Dawley rats and husbandry  

Adult female Sprague Dawley rats (300-350 grams, n=15) were obtained from 

University of the Witwatersrand Central Animal Services (CAS). Animals were 

housed in groups of five (5) per cage, with free access to food and water at all times. 

All animals were maintained in a temperature and humidity-controlled environment in 

a 12 h light/12 h dark cycle. They were weighed once a day to indicate their general 

state of well-being. All the animal procedures described in this chapter were in 

accordance with the guide for the care and use of laboratory animals of the 

University of the Witwatersrand CAS, prepared by qualified neurosurgeons and 

veterinarians. 

 

7.2.2. Preparation of aggregated Aβ(25-35) peptides and microscopy 

characterization  

Acetyl beta amyloid (25-35) peptide was purchased from Sigma-Aldrich (Sigma-

Aldrich Ltd., St. Louis, MO, USA). Self-aggregation Aβ(25-35)peptide (1mg) of was 

induced by dissolving in 0.2mL saline purchased from Sigma-Aldrich (Sigma-Aldrich 
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Ltd., St. Louis, MO, USA) and thereafter gently stirring at 37°C for 4 days (Delobette 

et al., 1996). TEM examination was conducted as previously described in Chapter 3, 

Section 3.2.7.2 of this thesis. The Confocal microscopy examination was conducted 

as previously described in Chapter 3, Section 3.2.10.3 of this thesis. 

 

7.2.3. Experimental design of non-transgenic rat model of Alzheimers disease 

Fifteen (15) adult female Sprague Dawley rats were randomly assigned into to the 

three groups. The first group of 5 rats each received 5-10μl of 1μg/μL of the Aβ(25-

35) peptides. The second group of 5 rats each received 5μl of 3μg/μL of the Aβ(25-

35) peptides and third group of 5 rats was the control group that did not receive the 

Aβ(25-35) peptide treatment.  

  

Figure 7.1: Schematic diagram representing the study design and number of 
Sprague Dawley rats used for the development of a model for AD for pre-clinical 
studies. 
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7.2.3.1. Intra-Cisterna Magna administration of aggregated Aβ(25-35) peptides 

The aggregated Aβ(25-35) peptides were delivered into the hippocampus after a 

single ICM administration using a 26-gauge needle (inserted into the cisterna 

magna) attached through a 58cm PE50 tubing (containing samples) to a 50μL 

Hamilton syringe. All instruments were disinfected prior to injection using 70% 

ethanol for 30 min thereafter flushed with distilled water or sterile saline. All 

experimental rats were briefly anesthetized with halothane. The heads of all 10 

experimental rats were shaved and swabbed with 70% ethanol. Five microliters 

(5μL) of the aggregated Aβ(25-35) peptides were delivered into cisterna magna 

through ICM injection as described by Frank and co-workers (2012). 

 

7.2.3.2 Euthanasia and brain tissue collection 

The amyloid deposits formation was validated at day 14 post-ICM treatment with 

aggregated Aβ(25-35) peptides. Both control and experimental animals were 

sacrificed by euthanasia for the study termination and the brain tissues were 

removed. The brains were then immediately stored in 50mL of 10% 

paraformaldehyde for further investigation.   

 

7.2.3.3. Histopathology of brain tissues  

Histopathology of brain tissues of the Sprague Dawley rats was conducted by 

hematoxylin and eosin stain in a reference laboratory (IDEXX Laboratories Inc., 

Pretoria, South Africa). The brain specimens were trimmed and cross sections from 

two levels in the cerebrum and one from the cerebellum were placed in a tissue 
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cassette and processed in an automated histological tissue processor (Pathcentre 

Enclosed Tissue Processor, Thermo Scientific, Johannesburg, South Africa). After 

overnight automated tissue processing, wax blocks were prepared and 6μm sections 

were cut on a HM450 Sliding Microtome (Thermo Scientific, Johannesburg, South 

Africa). The tissues were then stained with hematoxylin and eosin staining using a 

Shandon Varistain Gemini ES automatic slide stainer (Thermo Scientific, 

Johannesburg, South Africa). The following were evaluated: neuroparenchyma, 

blood vessels, and leptomeninges appearing on the brain tissues. The morphological 

findings on the brain sections stained with hematoxylin and eosin were graded and 

photographed with light microscopy.  

 

7.2.3.5. Histochemical stains on the brain section  

Histochemical stains on the brain sections of the Sprague Dawley rats were 

conducted in order to validate the formation of the amyloid deposits post-ICM 

treatment with aggregated Aβ(25-35) peptides by employing traditional Thioflavin T 

and Congo red staining (Sigma-Aldrich Ltd., St. Louis, MO, USA), with the 

assistance of a reference laboratory (IDEXX Laboratories Inc., Pretoria, South 

Africa). The morphological evaluation in the Congo Red stained section was 

observed under a light microscope (Olympus Co., Tokyo, Japan). The fluorescence 

images post-Thioflavin T staining were executed at fluorescence excitation (450nm) 

and emission wavelengths (480nm). Possible Thioflavin fluorescence associated 

with amyloid-like deposits were visualized employing Olympus IX71 

Immunofluorescence Microscope (Olympus Co., Tokyo, Japan). 
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7.3. Results and Discussion 

 

7.3.1. In vitro characterization of aggregation and fibril morphology of the  

Peptide 

 

7.3.1.1. Morphological examination by Tramission Electron Microscopy 

TEM micrographs of Aβ(25-35) peptide fragment and aggregated Aβ(25-35) 

peptides are shown in Figure 7.2. TEM images revealed the physical state of Aβ(25-

35) peptide, self-assembled and aggregated Aβ(25-35) peptides following in vitro 

incubation. Figure 7.2a1-2 depicts the monomer structure with a less compact 

Aβ(25-35) fragment. Figure 7.2b1-2-c1-2 depicts the irregularly shaped, dense, 

compact, and stable aggregates of the Aβ(25-35) peptides at concentrations of 

1μg/μL and 3μg/μL. Results also validated that the increased proportion of β-sheet 

structure was facilitated by the formation of aggregated Aβ(25-35) peptides. 

 

Figure 7.2: Darkfield and brightfield TEM micrographs of a1-2) Aβ(25-35) peptides, 
b1-2) aggregated Aβ(25-35) peptides at 1μg/μl concentration and c1-2) at 3μg/μl 
concentration. 
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7.3.1.2. Morphological examination by fluorescence microscopy 

Figure 7.3 depicts the morphology images of the ThT labeled-Aβ(25-35) peptides 

and aggregated Aβ(25-35) peptides visualized employing Immunofluorescence 

microscopy. Figure 7.3a shows a monomeric Aβ(25-35) peptide structure with low 

yield of ThT fluorescence. Figure 7.3b-c exhibits a high quantum yield of the 

polymeric β-sheet-like structure and fibril-associated ThT fluorescence which 

appeared to be facilitated by aggregated Aβ(25-35) peptides. The fibril-associated 

ThT fluorescence was observed at all concentrations (1μg/μL and 3μg/μL) of the 

aggregated Aβ(25-35) peptides after 4 days of incubation at 37°C in vitro. The 

structure also showed strong interconnection which could have been influenced by 

monovalency between ThT upon binding Aβ(25-35) peptides. The outcome of this 

study postulates a clear observation of the morphological structure of induced 

aggregated Aβ(25-35) peptide post-incubation in vitro employing a histochemical 

confirmation study and fluorescence microscopy examination. 

 

Figure 7.3: Fluorescent microscopy analysis of a) Aβ(25-35) peptides, b) 
aggregated Aβ(25-35) peptides at 1μg/μL concentration and c) at 3μg/μL 
concentration. 
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7.3.2. Brain tissues for paraffin wax embedding and mounting 

The brain tissues of the Sprague Dawley rats were harvested from the skulls, then 

processed with paraffin wax for tissue embedment. Thereafter they were mounted 

onto the glass slide for pathological characterization. Figure 7.4 depicts the brain 

tissues’ treatment post-embedment in the paraffin wax for all the different animal 

groups 1, 2 and 3. All brain tissues were sectioned using a HM450 Sliding Microtome 

and thereafter stained with hematoxylin and eosin, Congo red and ThT stain. A 

hematoxylin and eosin-stained slide was visualized with a red background, a ThT-

stained slide was visualized with a gray background, and congo red-stained slide 

presented with a blue background. Histopathological effects and validation on the 

formations of amyloid deposits were further investigated by employing light 

microscopy and fluorescence microscopy.     

 

7.3.3. Histopathology examinations  

The histopathology was evaluated on fifteen (15) brain sections at day 14 post-ICM 

treatment with aggregated Aβ(25-35) peptides. Table 7.1 exhibits the effects to the 

aggregated Aβ(25-35) peptides in experimental groups and the control group (no 

treatment) on the morphological pathology of the neuroparenchyma, blood vessels 

and leptomeninges. The histological evaluation on brain sections was assessed by 

employing hematoxylin and eosin stains. The histological examination showed no 

foreign material on the neuroparenchyma, blood vessels and leptomeninges 

morphology. All presented with morphological normality. This outcome postulates 

that aggregated Aβ(25-35) peptides with intra-cerebral ICM injection did not induce 

any inflammatory responses post-administration.   
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Figure 7.4: Digital images displayed wax embedded brain tissues sections and 
mounted section on the glass slide and stained (hematoxylin and eosin, ThT and 
congo red stain).   
 

Figure 7.5 showed detailed histological examination of the brain sections of the 

experimental animals post-ICM injection with aggregated Aβ(25-35) peptides, with 

normal morphology of the Cortex, Hippocampus, Cerebral white matter, Pia mater on 

cerebrum, Lateral verticle, Coroid in vertricle, White matter cerebrum, peduncle 

cerebel, Medulla oblongata, Cerebellum and Cerebel white matter.  
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Table 7.1. Morphological pathology of the brain tissues of the Sprague Dawley rats post-

ICM injection with aggregated Aβ(25-35) peptides    

GROUP 1 

β-AMYLOID 
PEPTIDE 

DOSAGE (25-35)  

MORPHOLOGICAL APPEARANCE 

NPa BVb LMc 

Rat 1 1μg/μL  Normal (-) Normal (-)  Normal (-) 

Rat 2 1μg/μL  Normal (-)  Normal (-) Normal (-)  

Rat 3 1μg/μL  Normal (-) Normal (-)  Normal (-) 

Rat 4 1μg/μL  Normal (-) Normal (-) Normal (-) 

Rat 5 1μg/μL  Normal (-) Normal (-) Normal (-) 

  
 

    
GROUP 2 

 
 

   Rat 6 3μg/μL  Normal (-) Normal (-) Normal (-) 

Rat 7 3μg/μL  Normal (-) Normal (-) Normal (-) 

Rat 8 3μg/μL   Normal (-) Normal (-) Normal (-) 

Rat 9 3μg/μL   Normal (-) Normal (-) Normal (-) 

Rat 10  3μg/μL  Normal (-) Normal (-) Normal (-) 

  
 

 
  

 
GROUP 3 

 
 

 
  

Rat 11 0μg/μL  Normal (-) Normal (-) Normal (-) 

Rat 12 0μg/μL  Normal (-) Normal (-) Normal (-) 

Rat 13 0μg/μL  Normal (-) Normal (-) Normal (-) 

Rat 14 0μg/μL  Normal (-) Normal (-) Normal (-) 

Rat 15 0μg/μL  Normal (-) Normal (-) Normal (-) 

 
aNP: Neuroparenchyma, bBV: blood vessels  and cLM: leptomeninges. All histological 

evaluation demonstrated normal morphology and no foreign body reaction [(-) 

(negative/none grade)] post-ICM treatment with aggregated Aβ(25-35) peptides. 
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Figure 7.5: Histological slides of the brain sections of the experimental animals post-
ICM injection with aggregated Aβ(25-35) peptides, a) Cortex, b) Hypocampus, c) 
Cerebral white matter, d) Pia mater on cerebrum, e) Lateral verticle, f) Coroid in 
vertricle, g) White matter cerebrum, h) peduncle cerebel, i) Medulla oblongata, j) 
Cerebellum and l) Cerebel white matter.  
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7.3.4. Amyloid deposits formations  

 

7.3.4.1. Thioflavin Stain 

To validate the outcome of the aggregated Aβ(25-35) peptides on inducing amyloid-

like deposits post-ICM injection into the brain of the Sprague Dawley rats, traditional 

ThT stain was used. Figure 7.6 depicts possible thioflavin positive amyloid-like 

deposits in the animal group that received ICM injection with either 1μg/μL (Group 1) 

or 3μg/μl (Group 2) of the aggregated Aβ(25-35) peptides. Figures 7.6a1-3 show 

little or no fluorescence intensity after being treated with 1μg/μL of the aggregated 

Aβ(25-35) peptides. Figures 7.6b1-3 did not exhibit any significant effect when a high 

concentration of 3μg/μL of the aggregated Aβ(25-35) peptides was delivered through 

the ICM injection into the brain of the Sprague Dawley rats. However, the amyloid-

like deposits, visualized in images for Group 1 and Group 2, depict amorphous 

plaque morphology. This outcome could be associated with the presence of different 

types of plaques as previously described by Bussie`re and co-workers (2004). The 

plaques that exhibited a spherical shape were claimed to be immature plaques. The 

amyloid-like deposits that displayed as a mesh-like stain were grouped as plaque 

type 1. This plaque type was associated with weak plaques of irregular shape and 

variable diameter; while those with strong and compressed fluorescence, a central 

dense core and homogenous amyloid-like deposits were identified as plaque type 2. 

Control group (3) of animals without ICM injection of the aggregated Aβ(25-35) 

peptides did not show any fluorescence activities following staining with thioflavin 

(Figure 7.6c1-3). To determine whether these fluorescence activities validated the 

formation of the amyloid-like deposits that mimicked the pathology observed in the 

brain of AD, additional pathological examinations have to be undertaken. A major 
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setback associated with thioflavin is that it is not perfectly specific for amyloid, which 

elicits the possibility of displaying false negative findings.  

 

 
 
Figure 7.6: Sprague Dawley rat brain sections representing the morphology of the 
amyloid-like deposits post ThT staining, a1-3) Group 1: animals received ICM 
treatment with 1μg/μL of the aggregated Aβ(25-35) peptides, b1-3) Group 2: animals 
received ICM treatment with 3μg/μL of the aggregated Aβ(25-35) peptides, and c1-3) 
Control group (3): animals without ICM injection (40x magnification). 
 

7.3.4.2. Congo Red Stain 

Although the ThT stain demonstrated the formation of the amyloid-like deposits, 

additional pathological examination is still essential in order to postulate success on 

development of an animal model for AD. A histochemical examination was further 

conducted on the brain sections by employing Congo red stain. Microscopic 
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examination of the brain sections stained with Congo red for the presence of 

amyloid-like deposits and related proteinaceous material did not demonstrate any 

Congo red positivity on light microscopy as per the pathology report (reference 

IDEXX Laboratories Inc., Pretoria, South Africa). Fluorescence visualized by 

employing Immunofluorescence microscopy also showed low intensity of 

congophilic-like material activity post-ICM injection with aggregated Aβ(25-35) 

peptides into the brain of the Sprague Dawley rats (Figure 7.7). Figures 7.7a1-3 

depict experimental group 1. This group showed only one (1) congophilic-like 

material post-ICM injection with 1μg/μL of the aggregated Aβ(25-35) peptides. 

Figures 7.7b1-3 depict experimental group 2. This group displayed few congophilic 

like materials post-ICM injection with 3μg/μL of the aggregated Aβ(25-35) peptides. 

Figures 7.7c1-3 depict the control group (3). This group did not show any 

congophilic-like materials on the brain sections post-staining with the Congo red 

stain.  

 

  

Figure 7.7: Contd. on pg 216 
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Figure 7.7: Sprague Dawley rats brain sections representing the morphology of the 
amyloid-like deposits post ThT staining, a1-3) group 1, animals received ICM 
treatment with 1μg/μl of the aggregated Aβ(25-35) peptides, b1-3) group 2, animals 
received ICM treatment with 3μg/μl of the aggregated Aβ(25-35) peptides and c1-3) 
control group (3), animals without ICM injection.  
 

7.4. Concluding Remarks 

The data in this Chapter postulates that the single dose of Aβ(25-35) peptides 

administered intra-cerebrally may not be sufficient enough for the generation of a 

pre-clinical AD animal model on  non-transgenic Sprague Dawley rats. In vitro results 

depict a basic structural morphology, and modality of the Aβ(25-35) peptide self-

assembly and aggregation. Both TEM and fluorescence images exhibit a fraction of 

the Aβ(25-35) peptides, with aggregation proceeding more as the concentration of 

peptide increases and after 4 days incubation at 37°C in vitro. The Aβ(25-35) peptide 

spherical aggregates labeled with thioflavin demonstrated the morphological 

transformation from non-coiled (monomers) into complex morphologies with twisted 

pairs and coiled structures, visualized employing fluorescence microscopy (Norlin et 

al., 2012). The histopathological examination portrayed that ICM 

injection/administration of aggregated Aβ(25-35) peptides intra-cerebrally did not 

alter the morphological pathology of the neuroparenchyma, blood vessels and 

leptomeninges, as observed in hematoxylin and eosin-stained brain sections. The 

concentration of aggregated Aβ(25-35) peptides (1μg/μL and 3μg/μL) did not exhibit 
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any significant effect on the formation of amyloid-like deposits, confirmed via both 

ThT and congo red staining. This outcome hypothesizes that neither dosage nor 

concentration of aggregates may be adequate for development of an animal model 

that mimics the pathology observed in the brain of AD.  

 

Although in vitro β-amyloid peptide (25-35) aggregation can be used to develop of 

the pre-clinical model or non-transgenic Rat model of AD, the outcomes is still 

associated with low level of the Aβ expression, no senile plaque formation and show 

very few congophilic-like materials deposition. To develop an effective model that 

can express all biological markers associated with AD such as SEC-R and that can 

be used for the assessment of the BICD performance in vivo, transgenic Rat Model 

of AD is recommended. Hogan and co-worker (1986) demonstrated how to 

development of the transgenic Sprague Dawley rat model of AD via manipulating 

microinjection of DNA from trangene plasmid into rat/mouse embryo.   
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CHAPTER 8 

CONCLUSION AND RECOMMENDATIONS 

 

8.1.   Conclusions          

 

Although alkaloid drugs have the potential to inhibit pathological activation while 

metal chelators are also capable for prevention of the β-amyloid aggregation in AD 

patients, the global brain drug market is still considered under-developed due to 

impediments associated with current systemic drug administration such as poor drug 

retention and the difficulty in bypassing the highly restrictive BBB of the CNS. The 

aim of the research was the design and development of a novel drug delivery system 

that is capable of improving or bridging the gap between the drug therapies that are 

available and the improvement in the mode of drug delivery to ensure minimal drug 

toxicity, improved efficacy and a superior quality of life for patients challenged with 

AD. Three unique drug delivery modalities that could potentially overcome current 

AD impediments were developed, being NLPs surface engineered with a chelating 

ligand, a synthetic peptide targeting ligand, and an implantable hydrogel for the 

ultimate design of a nano-enabled bio-robotic intracranial device (BICD).  

 

The in vitro reaction between biological metal ions and Aβ(25-35) peptide as one of 

the prerequisite conditions that promote development Aβ-aggregation in AD was 

elucidated. The presence of chelating ligands on the surface of NLPs was desirable 

for resolubilization of CuAβ (1-42) and ZnAβ (1-42) aggregates in vitro. In a cellular 

environment, the presence of chelating ligands on the surface of NLPs enabled 
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protection of PC12 neuronal cells post-exposure to CuAβ(1-42) and ZnAβ(1-42) 

aggregates, which is associated with neurotoxicity in AD.   

 

FTIR, DSC, TEM and SEM studies on the surface engineered NLPs with either 

chelating or synthetic peptide ligands were extensively validated in order to elucidate 

their chemical structure variations, nano-morphology and physicomechanical 

characteristics. Ex vivo uptake studies revealed that the presence of the NLPs post-

engineering of ligands may have influenced restoration of intracellular zinc and 

copper ion levels through an ionophore process or macropinocytosis in the presence 

of biological metals. When synthetic peptide was employed for targeted delivery, 

high accumulation of GAL was exhibited. Low intracellular activities in PC12 

neuronal cells post-exposure to native GAL and non-functionalized NLPs further 

validated that the uptake was mediated through high surface SEC receptor 

expression. In addition, the results indicate that functionalized NLPs may act as a 

bio-robotic marker for the delivery of GAL into the neuronal cells in response to AD. 

 

The novel BICDs were subjected to vigorous physicochemical, physicomechanical, 

and biocompatibility for ascertainment of prolonged drug release in a simulated CSF 

and neuronal cellular environment. Physicomechanical and physicochemical 

dynamics, including; size and zeta potential of the nanoliposomes, porosity, 

hydration rate, swelling properties and degradation of the BICD, were evidently 

validated to be responsible for prolonged release of GAL-loaded functionalized NLPs 

post- embedding into the CEP scaffold over 28-50 days in both a simulated CSF and 

neuronal cellular environment. The intracellular activities of the functionalized NLPs 

with synthetic peptide following escape from the BICD validated that the 
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nanostructure was still intact post-lyophilization while maintained their potency for 

targeted delivery.  

 

Overall results obtained in this study indicated that novel BICD may provide an 

improvement to current impediment associated with existing systemic GAL 

administration or brain drug delivery systems. In vitro study provide clear evidence 

that the BICD may render satisfactory management of AD in terms of therapeutic 

efficacy and long-term pharmaceutical stability over 50 days in sCSF condition, while 

ex vivo further validated that BICD may be used on targeted drug delivery of GAL 

into the PC12 neuronal cells in response to AD. In addition, high accumulation of 

GAL and low LDH level in the PC12 neuronal cells post-exposure to the BICD 

suggest that the device had superior cytocompatibility ex vivo. Furthermore, if 

implantated in vivo, BICD may render less frequent drug dosing, may maintain drug 

concentrations above therapeutic level and may deliver drugs to a specific site of the 

brain and neurons in response to AD condition.  

 

However, the amyloid-like deposits associated with ThT and Congo red fluorescence 

did not provide substantial indication that could validate effective development of an 

animal model that could mimic the pathology observed in the brain of AD patients. In 

addition, this outcome made it difficult to further pre-clinical studies for the 

assessment of the BICD efficacy following implantation in vivo. 

 

8.2. Recommendations         

Despite the fact that the developed BICD posed notable benefits toward overcoming 

impediments associated with current drugs for the management of AD such as 
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prolonged half-life of GAL, localization and targeted delivery, scientific obstacles still 

have to be overcome to establish a suitable pre-clinical animal model of AD prior to 

progression to human clinical trials. 

 

Since the BICD was fabricated from natural and synthetic polymers (all of which are 

biodegradable), it is still important to further investigate post-implantation activities 

such as degradability, and the requirement for surgical removal. In addition, since 

the BICD exhibited a degree of hydration response in a simulated CSF environment, 

it is therefore important to further investigate the possibility of inducing an immune 

response post-implantation.  

 

When the BICD was exposed to PC12 neuronal cells, the data exhibited a low LDH 

activity, which is associated with a low degree of cytotoxicity, cell membrane 

damaged, and/or injury. Future in vivo studies in a suitable animal model would be 

important for conducting a histological examination of brain tissue samples in order 

to further confirm any toxicity or an inflammatory response that could be induced by 

the BICD following implantation. 

 

Although AD is a disease at cellular level and our study significantly elucidated the 

potential to suppress a major causative factor associated with AD, it is still necessary 

to validate pharmacodynamics in an appropriate animal model of AD in order to 

maximize the BICD biocompatibility prior to clinical evaluation. A transgenic mouse 

model of AD is ideal since it can express all other biological markers associated with 

AD such as surface receptors that can facilitate uptake when the drug-loaded 

functionalized NLPs are employed. However, the transgenic mouse model of AD 
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requires a special laboratory facility, with an elevated level of maintenance, which is 

only available at a high cost.  

 

In addition, due to an overlap in the neuropathological symptoms of common 

neurodegenerative disorders the BICD may also have the potential to incorporate 

multiple drugs for the combinatory management of NDs. Since HIV/AIDS is a leading 

cause of death in South Africa, the BICD has been recommended for the design of 

future polytherapy for the management of patients that have HIV-associated AD and 

NDs.  
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