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Abstract

The processing of near-earth satellite magnetometer dat,~ towards extracting an improved

lithosphere anomaly map is addressed. The two aspects of the data reduction route where

data quality has been compromised most by contemporary methods is researched, namely;

(1) correcting for th,e variable altitude of the <urvey platform and (2) removal of the iono-

spheric field effects. New algorithms are developed using computer simulations and are

successfully implemented on Magsat data. The altitude correction is based on a robust (rce-

dian) regression of the amplitude versus altitude. It also serves as a noise preprocessing filter

and requires no a priori assumptions of magnetisation, After removal of the core and ring

current field effects, using published procedures, application of the median regression filter

with different local time and geographical constraints produces two magnetic field maps, vis.:

(1) ionospheric and (2) ionosphere-contaminated lithospheric maps. The target lithospheric

signal is extracted with a new two-dimensional data adaptive filter where the ionosphere and

ionosphere-contaminated lithosphere signals are input. This process is applied for twc ")cal

times (dawn and dusk) and, to optimise noise cancellation, the two lithospheric maps are

input to a data adaptive filter structure which, using a method of converging operations,

results in the final lithospheric anomaly map.

The southern African region is selected to implement this new data. reduction approach

on Magsat data and the ensuing map is interpreted. This region is selected because (1) it

is a focal point of Gondwana reconstructions and (2) both continental and oceanic magnetic

anomaly types are present. The anomaly map is image-processed and composite images

(Magsat with Seasat and bathymetry data) are presented to aid the interpretation. This

anomaly map shows a marked inu-rovemeat on previously published maps in terms of reso-

lution and correlation with geological provinces. A north-south oceanic anomaly bordering

the west coast of southern Africa is now recognised. Continental anomalies are found to be

localised within major tectonic provinces. The increase in magnetisation is interpreted to

be the result of the Hopkinson effect of a thickened crust in a higher geothermal gradient.

The oceanic anomalies (i.e. the intense Walvis 'iUdge and Agulhas anomalies) are interpreted

to represent remanently magnetised (during Cretaceous Quiet 'rimes) thickened crust. The

Agulhas anomaly is the remnant 'scar' of the process that led to the fragmentation of Gond-



wana. It is hypothesised that Gondwana was fragmented by an upwelling of hotter than

normal asthenosphere centred directly below the Agulhas anomaly.
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Preface

The realisation of the digital geological map of Gondwana (de Wit et al., 1988) has given

impetus to the concept of creating a multidisciplinary geoscientific database of Gondwana

(Wilsher et al., 1989). It is a long-term objective of the Geological Department of the

University of Cape Town in collaboration with other institutions to achieve this goal by C~

registering geological, geochemical and geophysical datasets of Gondwana. This database

has been given the acronym of GO-GEOID (Gondwana~Veoscientific Indexing 12.atabase).

Two doctoral resea.rch theses were initiated as fundamental steps towards achieving this

end, na.nely: (1) "Distribution of selected transition elements within mineral deposits across

Gondwana, with geodynamic implications" by Wendy Wilsher of the University of Cape

Town and (2) this study, The latter research is motivated on the principle that satellite

altitude magnetometer data constitutes, in the short-term, a complete global dataset, albeit

oflow resolution, and can be co-registered with an equally complete gravity dataset (Geosat,

Seasat and regional continental data). These datasets will serve as precursors to later, higher

resolution, magnetic and gravity compilations for a Gondwana Atlas.

The thesis addresses the processing of satellite-borne magnetometer measurements to-

wards extracting an improved signal orginating from remanent and induced magnetisation in

rock forming minerals of the crust. Magnetometer measurements made from a satellite-based

platform constitute a total response of signal components originating from various sources,

viz.: (1) the earth's core, (2) the magnetosphere and (3) the target crustal magnetisation.

Although, the signal separation has been achieved s'nce 19i5 (Regan et al., 1975), ~here are

several aspects of the data. reduction which compro nises data resolution and quality and

these are addressed in this study.

This thesis is structured so as to encapsulate the broad spectrum of topics which require

to be covered. Chapter 1 provides the background and research objectives while Chapters

2 and 3 review the geomagnetic field and external fields, respectively. Chapter 4 addresses

the problem of the variable altitude of the survey platform and presents an effective, simple,

robust, linear regression technique, as an adequate solution to the problem. Removal of mag-

netic field effects originating from the ionosphere are investigated in the following Chapter.

Here a novel data adaptive filter is developed to facilitate separating the ionospheric field

xvi



from the target crustal field. All algorithms Were developed using synthetic data. In Chapter

6 the newly developed procedures are implemented using a selected Magsat dataset of the

southern African region. The resultant magnetic anomaly map is image-processed and inter-

preted in Chapter 7. These results provide II. new insight into magnetisation of continental

and oceanic crust and, into geodynamic processes.

A preliminary interpretation of the Agulhas Magsat anomaly from previously processed

Magsat data was presented by the author on August 3 at the IAGA, 6th. Scientific Assembly,

Division I (Geophysical anomalies of Gondwana), Exeter, 1989. A paper was subsequently

submitted to Tectonophysics for a special issue of the proceedings. 'The paper is co-authored

with A.B. Moyes whose contribution is to the geology of Antarctica and to the reconstruction

of Gondwana; and which is, in part, incorporated in Chapter 7. As a consequence of the

newly p~ocessed results the interpreted remanent polarisation vector of the probable source

of the Agulhas Magsat anomaly has changed but not the inferred geodynamic processes.

Aeknowledgemunts

Iwish to thank friends and colleagues whose contributions helped in the successful completion

of this work. I express my appreciation for the help, guidance and criticism offered by my

supervisors Branko Corner, Masrten de Wit and Deon Kuhn.

I thank Artur Cichowicz, Cas Lotte!', Ray Durrheim and Gordon Cooper for sharing many

hours of enlightening discussions.

Tiens Hattingh introduced me to data adaptive filters and their uses. I am gra' eful for

his help and for reviewing those aspects of the thesis.

To Paul Versnel and Alistair Lamb many thanks for their help and cheerful co-operation

with the image-processing. This processing was performed on the I:lS image-processing fa-

cility of Gold Fields of S,A. to whom I am grateful.

I express my appreciation to Peter Sutcliffe for his review of the external fields section.

Lastly, but not least, I thank Ingrid Turton, Sonia Bunge and again Gordon Cooper for

their help with the many computing problems.

xvii



Chapter 1

Introduct.ion

Satellite observation of the earth's magnetic field began in 1958 with the Sputnik 3 satel-

lite. Since then several satellites Were launched to study the neat-earth geomagnetic field,

for example: Vanguard 3 (1959), OGO-2, 4 and 6 (1967-1971) (Taylor et a1., 1983). The

most recent of the near-earth magnetometer satellites is Magsat, launched in 19·{9. The

Magsat d. .e unique in that for the first time three-component vector measurements were

made. To augment the three-axis fluxgate magnetometer data, a Caesium vapour magne-

tometer was also included for high resolution scalar measurements. Unfortunately, this scalar

magnetometer malfunctioned and could only be used for in-flight calibeation purposes.

Magnetic measurements made from satellite-based platforms were orig\ir,.ally directed to--

wards magnetospheric studies. First confirmation that crust or lithosphere magnetic anoma-

lies could be detected from satellite magnetometer data was made by Regan et al, (1973)

with the identification of, the now well known, central African Bangui anomaly. The first

global crustal magnetic anomaly map was published by Regan et at. (1975), processed from

POGO (OGO-2,4 & 6) satellite measurements. The successful generation of crustal anomaly

maps from POGO was a strong motivating force for the undertaking of the Magsat mission.

Magsat was specifically designed for optimum main field modelling and for crustal magnetic

anomaly detection. Following the successful completion of the mission there has been a.

steady stream of publications mostly related to crustal magnetic field studies (Langel and

Benson, 1987). More than half of the research from the Magsat data is directed towards

crustal studies, while some 30 % is equally spread in external field and main field studies.

These publications bear testimony to Magsat having met its objectives.
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The term lithosphere will be used, in preference to crustal, for discussion of satellite-

derived magnetic anomaly maps. The reason for the choice is to conform with present usage,

since it is now belng argued that a substantial part of the 'crustal' signal may originate

from the subcrustal part of the lithosphere (although this point is still contentious). More

importantly the term 'lithosp ere' gives a perspective of the spatial resolution of present

near-earth satellite data which is, at best, a wavelength of 250 km (Sailor et aI., 1982).

This work addresses the processing of near-earth satellite magnetometer data towards

extracting improved lithospheric anomaly maps. It was decided to use Magsat data in this

work because it is a superior dataset and because it has been adopted by most investiga-

tors. Results may therefore readily be compared with other studies. This Chapter discusses

mission design, spatial resolution of near-earth satellite data and briefly outlines existing

processing routes towards generating magnetic anomaly maps. With this background the

research objectives are presented.

1.1 The Magsat mission

Magsat was placed into a twilight, sun synchronous, ncar-polar orbit with an inclination of

96,76°. The orbit's apogee and perigee, from the earth's surface, were 561 krn and 352 km

respectively. The near-polar orbit was designed to provide an almost complete geometrical

coverage of the earth for main field modelling and for the preparation of lithospheric anomaly

maps. The satellite was placed into orbit on 30 October, 1979 and remained in orbit until11

June, 1980. An explicit account of the mission, design, instrumentation and data acquistion

is given in Langel et a1. (1981 and 1982b). This information is summarised here for the sake

of completeness and continuity

The instruments were designed and constructed as two separate modules; a base module

and an instrument module. The instrument module consisted of: (1) the attitude determi-

nation systems for the satellite and for the vector magnetometer and. (2) the magnetometer

sensors fixed to a platform on all extended 6 m magnetometer boom. The base module

contained all the supporting systems. The scalar magnetometer was a Ceasium vapour type

with an accuracy of 1,5 nT. However, this magnetometer malfunctioned soon after launch

and was rendered unusable other than for in-flight calibration of the vector magnetometer.

2



error source scalar "(tiT) vector (nT)
instrument 1,5 3,0
position and time 1,0 1,0
digitisation 0,5 0,5
attitude control 4,8
spacecraft fields 0,5 0,5
r.s.s. 1,96 5,8

Table 1.1: Magsat survey noise. (After Langel et al., 1982b).

The vector magnetometer was a three-axis fluxgate type. with an accuracy of 3 nT in each

axis. This instrument showed a slight drift of some 20 nT over the (", r<" mission. The

sampling rates fi.>rthe scalar and vector magnetometers were 8 and 16 samples per second,

respectively.

Magsat's survey specifications required that the magnetic field orientation be known

within 20 arcsec, Fine attitude control was achieved with the use of two star cameras, a

sun sensor, a pitch gyro and the attitude transfer system. Survey specifications of the satel-

lite's position required a tracking accuracy of less than 60 m radial and 300 m horizontal to

maintain an error below 1 nT.

The survey noise fur the vector data is approximately 6 nT r.s.s. as detailed in Table 1.1.

1.1.1 The data set

The Magsat data that were employed in this study, to produce the anomaly map of the

southern African region, were obtained from a suite of tapes containing a culled data set,

the INV-B format, provided by NASA (Langel et al., 1981; Abrams and Gilson, 1982). The

INV-B tapes contain a five second sample interval, In addition, some necessary and useful

information are included. vis.: geocentric position, a mean value from samples within the 5

s interval, predicted fields from the spherical harmonic model MGST 4/81, the MGST 4/81

model coefficients, the Kp magnetic activity index, dip latitude, universal time, magnetic

local time and Dst coefficients.
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1.2 Magnetic lithosphere signal resolution

It is important to take note of system limitations so that the significance of interpretations

of lithos pheric anomaly maps -nay be assessed in context. A substantial amount of magnetic

Jata has been acquired on the earth's surface ann at aircrart altitudes ranging from several

metres to some 1 to 2 krn. If one considers marine surveys then magnetic observations have

been extended to source-to-sensor separations of up to 6 km, There is a total defficiency

of magnetic data in the large gap between these terrain clearances and those of near-earth

satellite data (ca 400 km), Some successful attempts have been maJe to fill this gap with

atmospheric balloon surveys at altitudes of 40 km (Cohen et al., 1986). The Geopotential

Research Mission (GRM) is intended to fill this gap with an intended survey altitude of

150 km (Taylor et al., 1983; Yionoulis and Piscane, 1985; Webster et al., 1985: Teylor et

al., 1989). The limiting factor to resolve magnetic signatures of structures is the altitude of

observations; in this respect Magsat data suffer the coarsest resolution of the above datasets,

The ability to resolve magnetic signatures may be considered in several ways, for example,

Sailor et al, (1982) determined from the Magsat data, using spectral analysis, the wavelength

passband of lithospheric anomalies. Webster et al, (1985) define resolution "as the ability

to distinguish, as separate entities, t.wo bodies of equal magnetisation and shape separated

and surrounded by material of different rnagnetisation". Sailor et al, (1982) have shown

that an absolute minimum resovable along-track wavelength of 250 km may be obtained

from Magsat data. Coherence analysis, for the Southeast Indian Ocean region, showed that

Magsat data al'e repeatable for track-to-track wavelengths greater than 700 km; therefore a

spatial resolution in the order of one (along-track) to four (track-to-track] degree spherical

tesserae may be deduced for this region.

Webster et al, (198'-) through forward modelling attempt to quantify resolution. They

consider a model comprising two 200 by 200 km crustal blocks (40 km thick) separated by

150 km having a magnetic susceptibility contrast. of 0,0005 in a 57000 nT ambient field (cgs

units). The resolution parameter R is quantified as

R= (A.l +A'}.)/2 - B (1.1)
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where Al and A~ are the peak anomaly amplitudes while B is the trough amplitude separating

the anomaly peaks (Fig. 1.1).

The emphasis of their work was to demonstrate that the most dominant effect on res-

olution is the altitude of observation. Figure 1.1 serves to illustrate that anomalies from

geological structures, such as the given model. are at the limits of the resolving capabilities

of Magsat. Also, the effect of increased scurce to sensor sera ration is to provide an integrated

(bulk) magnetisation image of the crust/lithosphere.

1.3 Processing of near-earth magnetometer data

The total magnetic field as observed by a near-earth satellite magnetometer comprises sev-

eral contributing sources, vis.: (1) the main core field produced by t!le geodynamo, (2) the

lithospheric field HOUl ..be distribution of induced and remanenc magnetisation in rock form-

ing minerals, (3) t,l;e external magnetic fields originating from the magnetosphere and the

ionosphere and, (4) the internal induced magnetic fields from electromagnetic induction of

the lower mantle by temporal variations of the external fields. The contributory sources and

relative signal strengths ace summarised schematically in figure 1.2.

The target component field in this study IS the Iithospheric field. The processing route

since the early work of Regan et al. (1913), towards extracting the lithospheric anomaly

field, has not deviated fundamentally from the following generalised procedures, namely:

$ A main field model is defined by a truncated (degree and order 13) spherical harmonic

series of the global data set,

• The main field model is subtracted from the total field. The residual from this operation

contains ring current, ionospheric and lithospheric components.

• A ring current model is defined by a first-degree zonal harmonic [unction, This function

takes into consideration the internal induced component.

• The ring current model is subtracted. The remaining signals contain primarily iono-

spheric and lithospheric contributions.
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• Hereafter, the procedures to separate the remaining signals differ widely amongst in-

vestigators. The most common practice is to fit and remove, arbitrarily, a 'regional'

from each satellite track.

In detail, the processing route has evolved according to specificneeds and requirements.

Not mentioned in the above outline are the effectsof variation of sensor altitude during data

acquisition. Some investigators ignore the effect while others correct for this variation.

The above processing steps are discussed seperately below.

1.3.1 Removal of the core field

Separation of the core from the lithospheric fieldsremains a difficult and an unresolved prob-

lem. Analyses of the spherical harmonic power spectra show a distinct change in slope at

degree 13. This discontinuity in the power spectrum has generally been interpreted as repre-

senting the change from dominance of core field (below degree 14) to a domin=v - -" .ustal

field (see e.g, Langel and Estes, 1982). Although there are numerous spherical harmonic

models, the only viable solution to date for the core-crustal field separation is to truncate

the spherical harmonic series at the point of change in slope (degree and order 13; Langel

et al., 1982). The problem, however, is in the spectral overlap of the contributory compo-

nent fields (e.g. Marner, 1986; Benton and Alldredge, 1987). This approximate separation

creates a problem in long-wavelength anomalies in the wavelength-band around 3000 km.

There is a conflict of opinion, on mineralogical grounds, as to whether or not upper-mantle

is magnetised (Wasilewski, 1987; Toft ant1 Haggerty, 1988). The debate is fueled by the

inversion problem, which in many cases requires that upper-mantle be magnetic, and may

well be closelyassociated to the question of spectral overlap. Most Magsat investigators have

standardised to the truncated model MGST 4/81 (Langel et al., 1981) and it Wasdecided to

adopt the same standard in this study,

1.3.2 Removal of ring current field effects

The effectof the equatorial ring current manifests as a subtsntial (30nT) V-shaped response,

symmetrical about the dip equator. It is assumed that the gross latitude-dependent geometry

of the response is due to the ring current and that the perturbations from this shape are
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Figure 1.2: Schematic illustration of the contributory source regions of field components
observed by a near-earth satellite magnetometer. Relative field strengths of each source are
also indicated.
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related to the lithospheric anomaly field and the ionospheric field. The ring current can

be approximated by a simple zonal harmonic function which considers both the external

as well as the internal induced components (Langel and Sweeney, 1971). This correction

has been adopted by most investigators, the coefficients l)f which are given in the INV-B

tapes. Alternative tlchniques consist of fitting a quadratic function or band-pass filtering

(e.g. Arkani-Harned et al., 1985). The standard correction is however inadequate for the

southern African region. An improved solution is achieved by fitting the function for dip

latitudes calculated at 3 RE rather than those at the satellite's altitude (Zaaiman and Kuhn,

1986).

1..3,3 Removal of ionospheric field effects

Satellite data, corrected lor the main field and ring current, show str ug path-to-path incon-

sistencies, It is assumed that this reflects ionospheric Sq effects contaminating the sought

aft('f lithospheric anomaly field. Mayhew (19i9) had noticed this effect in POGO data and

although the Magsat polar, twilight orbit was designed to remove the Sq effects, this was

not achieved. This path-to-path inconsistency is manifest as a long-wavetengtb trend III in-

dividual passes. Removal ·)f the trend is made (by most workers) with the use of arbitrary

linear, quadratic or higher order polynomial functions and is known as t1 t: pat li-to-pat h cor-

rection, Yanagisawa and 1\0110 (lOg;)) introduce the concept of defining a mean ionospheric

field determined by a process where dIP lithospheric field component is treated as random

w,;~e [I.lId produces a wore objertive and repeatable correction. Taylor and Frawley (1987)

arioj)t a differeut approach, Only dawn and dusk pasSi'S which intersect are selec ted. In

ord,~r to minimise intersection point discrepancies, they adjusted these profiles by solving for

the coefficients of a ret of polynomials (one polynomial for each orbit) using a, generalised

least-squares method,

1.3.4 Correcting for altitude variaticns

In order to provide a lithospheric anomaly map from a moving platform of variable altitude it

is necessary to fix an altitude datum, Many attempts have been made to broach this problem

with as many resultant solutions, This reduction is usually incorporated as a final step for

the display of the anomaly maps and may preceed, follow or be combined with the gridding
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p. )cedures (the details of which are given in Chapter 4). For example, the most popular

method is the equivalent source technique ( .':ayhew, 1979) where preprocessing is required

(i.e. gridding; data within a particular cell is averaged to give a mean value and respective

mean altitude) and an assumption must be made that magnetisation is entirely induced.

Because (If the global nature of the data, the final total-field anomaly map will contain

a variable anomaly response, that is dependent on geographical position, as a result of the

varying ambient-induced polarising field. Radial reduction to the pole is sometimes applied

to provide an easier interpretation map (e.g. von Frese et al., 1987).

1.4 Objectives

It is the aim of this thesis to research aspects of processing of near-earth satellite magne-

tometer data towards generating improved lithospheric anomaly maps. Altnough, the core

field and ring Current corrections are not entirely satisfactory. the procedures are standard

amongst investigators and accepted as reasonable epproximatioi-s. The process of path-to-

path reductions are however arbitrary, subjective and non-repeatable. Also, the altitude

reduction procedures fail ill several respects, in that they are either applied after some pre-

proce=ang 01 ,':ith an a priori assumption of the magnetisation and, often, both are applied

or assumed,

In salient form this thesis aims to:

s Introduce an ionospheric field correction that may be applied ubiquitously and objec-

t.ively,

II Consider an altitude reduction that attempts to minimise preprocessing and a priori

assumptions of the magnetisation .

• Test these algorithms on synthetic data,

II Process Magsat data over a selected geographical region (southern Africa) using existing

procedures which are deemed suitable, together with the newly developed algorithms

for those procedures prone to inaccuracy and ambiguity; the aim being to create an

improved dataset better suited to quantitative interpretation.

10



• Assess the derived Magsat anomaly map in terms of previously published work and

conduct a qualitative and quantitative interpretation.
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Chapter 2

The geomagnetic field

Magnetometer measurements made from ground- or satellite-based observations in a source-

and disturbance-free environment will comprise contributing components from the earth's

fluid core, solid crust and from large-scale c-rrrent 3J~t .\~

of the magnetosphere, in the magnetotail and in ~\"

t.o exist ~t the boundaries

\~(\t (ring current) (see

e.g. Regan and Rodriguez, 1981), In addition til rge-sc.."le external fields there are

smaller, localised fields f'''om the equatorial and :~uror;::lelectrojets and fi·Ad-aligued current

concentrations.

The ground state or baseline magnetosphere is to a certain degree all elusive concept

(Stern, 1988). The external fields are mostly studied by their temporal variation, particularly

in times of strong magnetic activity, while the baseline magnetosphere is defined by selecting

magnetically quiet days in the analysis of the geomagnetic field (see Campbell, 1987).

For a near-earth satellite the total-field measured by the magnetometer is assumed to

be in a. source free region! such that the divergence and the curl is zero. The field may be

derived from a potential function that satisfiea Laplace's equation, viz.

\j2V::;: 0 (2.1)

The spherical harrronic expansion

v = a ~ f, {[g;r cOS1h¢+ h:r sinm¢] (;) nH + [q~ cosm¢ + s~ sin m¢) G) n} P;(' (0)

(2.2)
IThls assumption is not strktly valid since the satellite is orbiting within a low density plasma.
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is one solution to Laplace's equation (Langel and Sweeney, 1971), where: a is the mean

earth radius. r is the geocentric satellite altitude, 0 and ¢ are respectively, the colatitude and

longitude, and p:;t (0) are Schmidt quasi-normalised Legendre functions. The magnetic field

is represented by the gradient of the potential

(2.3)

The terms comprising the g and h coefficients describe fields of an internal origin with

respect to the satellite's orbit. The converse holds for the terms comprising tbe sand q coeffi-

cients. The external fields, being strongly time-varying in nature, lll{1y induce currents within

the conductive portions of the lower mantle and thus contribute to the internal coefficients.

The common problem faced by both the solid- and liquid-earth geomagnetists is the

separation of the two internal component fields. Either of these fields (i.e. the core or

lithospheric] are regarded as contaminants to the external source-field under investigation

and vice versa. In this Chapter modelling of the geomagnetic field is discussed, considering

the problem of the core/lithospheric field component separation, followed by a discussion

of rock magnetism pertinent to satellite altitude data, Because we are able to separate

the geomagnetic field model into internal and external components and because the physics

is subsantially different we will treat the external field effects separately in the proceeding

Chapter.

2.1. 'I'he geomagnetic spectrum

Modelling of the internal components of the geomagnetic field is generally approached by

selecting a suitable data set over several magnetically quiet days to minimise external field

effects, Data from the high latitudes (~ 50P) are rejected t.) avoid field-aligned currents that

distort the field (Meyer et al., 1983; Langei and Estes, 1982). A global geomagnetic field

model (MGST le/S1) to degree and order 23 was derived by Langel and Estes (1982) from

Mags,a.t data for the purpose of analysing the power spectrum.

The spatial power spectrum (Lowes 1966, 1974) is the mean square value of the topology

of the geomagnetle field intensity produced by harmonics of a given degree nand is expressed.
as
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Rn = (n+ 1) i: [(Ul1m)2 + (hnm)2]
m::;O

Figure 2.1 is the power spectrum for model MGST 10/81. The dominant feature of this

(2.4)

spectrum is the linear decay with increasing n and a sharp 'knee' around n = 14. The dipole

term stands alone (asterisk in Fig. 2.1). Langel and Estes (1982) interpret the turn in the

spectrum to reflect data originating from separate sources and not noise; a generally accepted

interpretation (see e.g, Lowes, 11:)74;Hahn et al., 1984; Morner, 1986; Benton and Alldredge,

1987; Cain et al., 1989a).

Benton and Alldredge (1987) compared spectra from two separate high-degree Magsat

models (one of which is the MGST 10/S1) and found good agreement to n = 15. Although,

the agreement between the spectra remains uncertain towards the higher harmonics, an

analysis of the noise, and primary and secondary spectral features led, the authors to reject

the possibility that the high-degree flat region of the spectrum reflects a dominating influence

of error in model determination. They then tested the hypothesis that the break-in-slope

of the spectrum reflects dominance of core sources over lithospheric sources b:y modelling

the spectrum using simple arrays of dipoles and current loops. Two ranges of source depths

were found to adequately model the spectrum (one crustal the other core) and consequently

support the hypothesis.

2.2 Core-lithosphere separation

The complexity of separating the component fields originating from the core and the litho-

sphere lies in the spectral overlap. Benton and Alldredge (1987) show by modelling that the

shallow lithospheric sources contribute significant power in the lower harmonics. Similarly,

the power spectrum contains a significant contribution from the deep core sources in the

higher harmonics (n = 16 - 18). The point in the spectrum where the energy densities of

the core and lithospheric components are equal is ,at n ::: 14,2 (Cain et al., 1989b); a value

obtained from a high degree spherical harmonic analysis (up to n = 63). Lithospheric field

components completely dominate the spectrum for n ~ 15 (see figure 2.1). For this and the

above reasons, it is accepted amongst Magsat investigators to separate the field components

by defining the core field with a truncated spherical harmonic model of degree and order 13

14
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, (MGST 4/81, Langel et al., 1981).

Use of a degree and order 13 spherical harmonic model as an approximation to the cote

field is not entirely satisfactory. Harrison et al, (1986), using spherical harmonic coefficients

above degree 13 in two different representations to approximate the lithospheric field, have

shown that there is little latitudinal variation of magnetic signatures. A latitudinal variation

is expected if the lithospheric rnagnetisaticn is entirely induced. This may reflect the fact

that they never test the stability properties of their solution such that the corresponding vari-

ance may completely mask any latitudinal variations (von Frese, pets. comm.l.In addition,

an expected continent/ocean contrast in magnerisation was not observed. By progressively

using the higher degree coefficients latitudinal variation became evident as well as an increase

in contrast between continental and oceanic crust. The conclusion reached is that the inter-

mediate wavelength signal believed to be of lithospheric origin may in fact reflect an origin

within the core and that the lithospheric portion of the signal is limited to harmonics between

n = 19 and n = 53 (see also Arkani-Hamed and Strangway, 1985). At present, however, there

is no clear alternative method to the truncation of the spherical harmonic series at a. degree

and order 13.

2.3 The lithospheric geomagnetic field

The term lithospheric is being used in preference to crustal to impress that magnetisation

within the solid upper regions of the earth is not necessari':: constrained to the crust but

may be sub-crustal. Morner (1986) describes the lithospheric field in terms of permanently

locked, temporarily locked and induced components (see figure 2.2). The permanently locked

component is the remanent magnetisation which will not change with time unless by tectonic

reorientation, overprinting or stress-induced piezomagnetic variations in intensity (see e.g.

Counil and. Achache, 1987). Temporarily locked magnetisation originates in regions where

thermal changes and phase boundary transitions lock and unlock magnetisation in response

to various geodynamic changes.

As discussed in section 1.2 the limiting factor in resolving the magnetic signature of

structures in the crust and lithosphere is the altitude of observation. At satellite altitude the

effective observed magnetisation is a bulk magnetisation subject to the system resolution.
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Thus, when interpreting satellite altitude magnetic data the system limitation to resolve

r•. 'b'ietic structures must in turn limit the frame of reference. For example, two dipoles

separated by two degrees in mid-latitudes (200 - 300 km) cannot be resolved at an altitude

of 400 km.

2.3.1 What is the base of the magnetic crust ?

While Harrison et aI. (1986) and Arkani-Harned and Strangway (198.5) postulate that higher

degree harmonics (~ 13) are dominated by field components originating from the core, Morner

(1986) postulates that lower degree harmonics are dominated by a long-wavelength Iitho-

spheric "fieldcomponent whose source is sub-Moho. Wasilewski et al, (1979) postulate that

the Moho is also a magnetic boundary. By analysing mantle-derived xenoliths (of dunite,

peridotite and eclogite) and reviewing the literature they provide evidence that metals and

primary Fe3 04 are absent and that complex Cr, Mg, AI, Fe spinels dominate the oxide miner-

alogy. These spinels would be non-magnetic at mantle temperatures. The crust/upper-mantle

transition is thus interpreted as a magnetic mineralogy transiticn where the mantle contains-

non-magnetic refractory spinels and the crust the FeTi spinels. According to Wasilewski et

al, (1979) and Wasilewski (1987) the base of the magnetic crust is the crust-mantle boundary,

where it exists as a magnetic mineralogical discontinuity, except where the Curie isotherm

(''oJ 5500e, Buddington and Lindsley, 1964) is above the Moho.

In contrast, Toft and Haggerty (1988) also analysing mantle derived xenoliths propose,

for magnetic modelling of cratonic lithosphere, that magnetisation should not be confined

to depths shallower than the Moho. Msgnetisation could eztend to 95 km depth but most

probably to upper-mantle depths of 70 krn, ThIS conclusion is based on a debatable point

as to the abundance of metal phases in the upper-mantle. Magnetic susceptibility and NRM

ate due to ::; 0,1 vol. % of fine-grained metal derived from the decomposition of garnet and

ilmenite plus magnetite, possibly as a result of metal oxidation. The model includes T and

P transitions of magnetite and iron metal, along with silicate equilibria, oxidation states,

and geothermal gradients (see figure 2.3). The native iron concentrated at crystal edges and

cracks is believed by the authors to reflect a ubiquitous low oxidation state for the lower-crust

and upper-mantle generally. This free iron, with a high Curie temperature (7iOOC), may be
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a source of' the long-wavelength lithospheric anomalies.

Griffin and O'Reilly (1987) propose that the Moho and the crust-mantle boundary may

rarely coincide in cratonic areas. These authors used high-pressure xenoliths to construct

geotherms and stratigraphic profiles as lithological and physical parameter constraints for

the interpretation of geophysical data. In areas of high heat flow the Moho, as defined by

seismic refraction data, may lie deeper th an the crust-mantle boundary. Clearly, the question

of "what constitutes the base of the magnetic crust ?", remains an important point in the

mterpretation of the lithospheric anomaly field, and is as yet unresolved.

2.3.2 Magnetisation of crustal rocks

Magnetisation of ~he crust above the Moho is perhaps slightly better understr-od. The few

kilometers of the upper-crust, including supracrustal rocks and crystalline basement may

contain an original remanent rnagnetisation modified by thermal overprints producing vari-

able remanent vector orientations. With increasing depth, conditions for coherent regional

magnetisation are enhanced (Wasilewski et al., 1979). Viscous remanent magnetis ...t.ion is

enhanced with increasing temperature, and pressure provides additional viscosity enhance-

ment. Also, susceptibility increases with increasing temperature particularly in the region

100 - 150°0 below the Curie point2• These aspects of crustal magnetisation according to

Wasilewski et al. (1979) account for anomalous magnetisation of the middle-to lower-crust.

The thickness of crust above 4000G and below the Curie isotherms may vary in thickness

from 5 to 20 km. This region of the crust could be the most magnetic and the thickness of this

layer could provide the source of the long wavelength anomalies (Vfasilewski and Mayhew,

1982).

Several uplifted terranes are regarded as unique crust-on-edge sections exposing deep

crustal rocks (for example; Ivrea Zone, Italy; Lofoten and Ve;;f' ~len, Norway; Kapuskasing,
1-/

Canada; Vredefort, South Africa and; the Vems, lract'LIt::. Hlantic). Few of these

sections, however, extend in equivalent crustal depths ht~yond 25 km, and are thus more

2The Hopkinson effect on studies of high-grade metamorphic samples Iro.,~Lofoten and Vesteralen in-
dicate that magnetic susceptibility is neatly constant, gently lncreasing with temperature by 5% near the
Curie temperature. Schlinger (1985) is of the opinion that this effect is not sn important phenomenon and
magnetisatlon enhancement at depth is probably not as a consequence of the Hopkinson effect. Results from
this study Wouldindicate tha.t the Hopkinson effect is important (see section 7.2.3).
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representative of mid-crustal sections. Further, with the exception of the last-cited example

all are continental sections. Nevertheless these represent a upi0w. access to de p crustal rocks

for petrophysical property studies. The oceanic Vema section (Auzende et al., 1989) is at

present a synthesised geological section only (oceanic crust and upper-mantle from samples

collected and visual observat'ons made using the French submersible Nautile).

The most comprehensive petrophysical/petrographic study of one of these terranes is that

of Schlinger (1985) of the Archean and Proterozoic gneisses and intrusive reeks of northern

Norway. This study portrays the lower-crust as an extensive and highly magnetic region of

the crust which is defined by granulite facies metamorphic grade and by a Curie isotherm of

575°C (magnetite). The magnetisation is parallel to the polarising geomagnetic field because

significant NRM is mostly viscous. The average susceptibility is 4 X 10-2 (S1) while in the

deepest high-grade region it is 6 x 10-2 (51). Granulite facies rocks have, on ave.=ce, five

times higher susceptibility and NRM than their amphibolite facies equivalents. Most of the

NRM is viscous II: nature.

2.4 Conclusion

The general model, for the magnetisation of crustal rocks, gained from the literature is that

magnetisation increases from mid- to lower-crust (with increasing metamorphic grade). Most

of this magnetisation probably originates from mafic and ultramafic rocks of the lower-crust

and may have total magnetisations in up to 5 Aim (for granulites, Schlinger, 1985). This

i::; consistent with the interpretation of long wavelength anomalies of stable continental crust

(e.g, Schnetaler and AlIenby, 1983; Corner and Cooper, 1989). Hahn et al, (1984) provide a

magnetic model of the earth's crust for modelling the Magsat lithospheric anomaly field. 'The

model consists of 16 crustal types in columns of 2° by 2° tesserae. Crusts] ser+ions consist

of two or three layers with assigned magnetisations according to surfcce geoJt\gy end seismic

inforrnaticn. The resultant crustal model does not fit the Magsat anomaly field satisfactorily,

They found that the average model magnetisations were insufficient to account for the Magsat

anomalies (by a factor of 2). Thes- authors postulate that the discrepancy may be due to

layer-like magnetic units in the crust with lateral extents in excess of 2{)OOkm. These units

should be regarded as quasi-homogenous part of the total mi).~hetisation of the earth's crust
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in a particular area.

The discrepancy between modelled "'.,.,ologicalsections with assigned rnagnetisations and

the observed magnetic field from satellite altitudes continues to manifest itself. For example,

Mayhew et al. (1985) could not model the C.S.A. Kentucky body alone when using Magsat

anomaly data and had to introduce an extensive magnetic source region with rnagnetisations

of 4,2 Aim through most of the crustal thickness. The problem of magnet isat ion defficiency (if

known magnetisations are assigned to geological units) with respect to the observed satellite

anomaly field is thus currently dealt with in several ways, vis.: (1) by assuming magnetisation

of the upper-mantle (e.g, Toft and Haggerty, 1988) or (2) by introducing remanent magnet i-

sation (e.g, Fullerton et al., 198fJa). A solution to this problem could perhaps be found

by the careful analysis and interpretation of the magnetisation contrast (the lack thereof)

between continental and oceanic crust in satellite altitude anomaly data. With the exception

of a. few localities on the globe, published satellite anomaly maps do not show a contrast in

magnetisation between oceanic and contiuental crust. This could be closely related to the

problem Ot spectral overlap and the core-lithospheric field separation procedure (Hayllng,

unpublished preprint: Harrison et al., 19Se}. Hayling (unpublished preprint) used several

magnetisation models to simulate the lithospheric anomaly field at Magsat altitude over the

North and South Atlantic Ocean. The three models arc given in figure 2.4 which assume:

(1) induced magnetisation and TRM or (2) induced with viscous remanent magnetisation or

(3) induced magnetisation plus TRM and a magnetised upper-mantle. A subjective compar-

ison was made of the various simulations, from which he concluded that the last model of a

magnetised upper-mantle best explained the observed Magsac anomaly field.

This debate, on whether or not the upper-mantle contributes to the total integrated

magnetisation as obserzed at satellite altitudes, will continue. The problem is closely inter-

linked to the truncation of the spectrum in the core/lit hosphere separation procedure (e.g.

Arkani-Hamed and Strangway, 1985; Motller, 1986),
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Chapter 3

External magnetic fields

Definition of the baseline magnetosphere is difficult because of the strong temporal nature of

the observed field effects. The geomagnetic field interacts with the solar wind and becomes

stretched into an almost cylindrically shaped region extending into interplanetary space.

This interaction creates a large, rather complex, maguetohydrodynarnie electrical generator.

There are several current systems that ate created which in turn generate magnetic fields. The

general structure of the magnetosphere and related current systems is described, focussir.g on

those fields that affect the near-earth satellite-borne magnetometer measurements, A major

proportion of the material of this Chapter was obtained from Hones (1986). Hargreaves

(1979), Parkinson (1983) and, Regan and Rodriguez (19tH). Because of the review nature of

the Chapter and the frequency of use, these sources are acknowledged here in preference to

citing them specifically ,

In addition to the direct effects of the temporal variations of the external fields strong

inductive responses also result from the interaction with the electrically conductive regions

of the earth. It is necessary, therefore, to also consider the electrical structure of the earth

and the effects thereof pertinent to near-earth satellite magnetometer measurements,

3.1 The magnetosphere

The geometry of the magnetosphere is modified by the solar wind (and resultant current

systems) as it moves away from the BUll and collides with the geomagnetic field. The magne-

tosphere hegins at the magnetopauso where a current system is established (rnagnetopause

current, see Figs 3.1 and 3.2). The compressed, sunward side of the magnetopause is situ-
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ated some 10 RS (earth radii) from the earth while the leeward side is stretched downstream

(some 1000 Re) to form the magnetotail (diameter of approximately 50 Re). This magne-

totail consists of two oppositely magnetised lobes. In til .. mid-plane region where oppositely

polarised field lines meet there is a narrow zone of zero field, termed the neutral sheet. This

same zone is the locus for the sheet current that flows across the mid-plant' and loops around

both the north and south lobes.

Plasma regions

Some of the solar-wind plasma penetrates the magnetosphere's sunward regions (mostly at

the polar cusps) some of which is found to accumulate in the surface regions of the tail

(plasma mantle). In terms of plasma density the magnetosphere call be devided into two

regions. The inner 4 Rs region comprises relatively cold, low energy plasma and is known as

the plasmasph.erf. The plasmasphere rotates with the earth and is comparatively protected

from interference from the solar wind. The boundary, the plasmapause, varies in postion

from 3,5 Rs for disturbed conditions to 6 Re for quiet conditions. Outside the plasmasphere

the plasma is considerably lower in density, hotter and of higher energy. This plasma drifts

through the lobes to concentrate in the mid-plane known as the plasma. sheet. There are also

l:.. few very energetic particles forming what is known as the Van Allen belt or the trapped

radiation belt. They exist inside as well as outside the plasrnasphere. The plasma is strongly

affected by interaction with the solar wind which is one of the factors that can contribute to

sudden changes in plasma density across the plasmasphere,

Within the plasmasphere the plasma is trapped by those magnetic field lines that rotate

with the earth and are confined to '" tP.!1;ionfairly close to the earth. Magnetic field lint'S

beyond the 'plasmapause ate controlled by convection caused by interaction with the solar

wind. The magnetic field lines are dragged ill to the magnetotail and by their interaction with

tbp interplanetary magnetic field (IMF) lose plasma. This process results in a one way flew

df plasma from the higher latitudes away from the earth, termed the polar wind.



Magnetic reconnection

Magnetic reconneciion or merging is the process by which regions of opposed magnetic field

lines come together. The magnetosphere's field lines interact with those of the IMF. As a

result of reconnect ion the magnetotail has three types of magnetic field lines, viz.:

• The field lines in the lobes connected to the earth (open field lines).

• The field lines on the earthward side of the neutral sheet where all field lines of the two

lobes have reconnected (closed field lines).

• The field lines on the distant leeward side of the neutral line that have reconnected but

are disconnected from the earth and are open downstream into interplanetary space

(interplanetary field lines).

Magnetic reconnection is one mechanism by which plasma. can be injected into the mag-

netosphere.

CUrrent systems

In the magnetosphere the magnetohydrodynamic (~1HD) process generates electricity at two

different locations. One of these arises as a consequence of magnetic reconaection at the

sunward side of the rnagnetopause. There the solar wind and 1M""encounters the the earth's

magnetic field, merge (this process is seemingly at random) and become earth-tied. The solar

wind plasma moving through this earth-tied magnetic field completes the basic elements of

the MHD generator. Polarised charges are deflected around the magnetopause establishing

a latera! electric field across the magnetosphere in the dawn to dusk direction. A current

system results across the neutral sheet. Th« circuit is completed over the surface of the tail,

so that the tail is confined within a pair of current solenoids.

The conductive ionosphere! constitutes a low-resistance external circuit. by which po-

larisation charge, from the solar wind, call flow. At low latitudes some solar-wind plasma

penetrates the closed lines of the earth's magnetic field. This plasma moving at right angles

IThe icnosphere is located at all altltude of some 91) to 400 km above the earth's surface. The upper
atmosphere is ionised by electromagnetk radiation of the sun. Once polarised charges are produced they
teud to recombine, however a minor net imbalance remains giving rise to the ionosphere.
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to the magnetic field creates conditions for MMD power generation with a polarisation dis-

charge path through the ionosphere. Lines of force, for a fixed observation point, maintain

their identity down to the ionosphere. Because the ionosphere rotates with the earth it causes

co-rotation of the low-latitude magnetic force lines. At the polar regions the open field lines

are fixed relative to the midnight meridian. In tnese latitudes two whorls of current termed

the field aligned currents are established through the discharge of polarisation currents. The

current pattern they produce constitutes ~ polar diurnal variation of the observed magnetic

field (S~).

An important current source results from the gradient of the magnetic field. The motion of

an ion "/111 circumscribe a circle in the equatorial plane whose radius is inversely proportional

to the magnetic flux. The orbit of this ion is a circle (only in a uniform field). The radius

of curvature of the path of the ion is greater away from the earth than closer to the earth.

This differential radius of curvature makes the positive ions drift westwards and the electrons

eastwards. This drift contributes to a net westward current known as the ring current which

occupies the equatorial regions of the near-dipolar field below 7-9 Re.

3.2 Magnetic disturbances

Through the MHD process the solar wind generates electric currents in the geomagnetic

field and shape the easth's magnetic field lines. These current systems produce magnetic

field perturbations that are additional to the main geomagnetic field and are manifested as

either regular or as impulsive temporal variations. Since the rnaguetopause current results

from the reconnection process of the IMF with the geomagnetic field variations in solar wind

pressure may alter the reconnection process resulting in the propagation of wave motions in

the magnetosphere. These effects can either be coherent oscillations of the magnetic field

with periods of seconds to minutes or impulsive with no distinct periodicity.

Such sudden major changes in solar wind pressure thus give rise to a magnetic storm,

which is a period of rapid, irregular, transient fluctuations of the magnetic field greater in

magnitude. more irregular, and of higher frequency than diurnal variations (Sheriff, 1984).

These storms occur all average about once or twice a month. Much more frequently there

occur intervals of' disturbance without all the manifestation of a storm and in which the
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Figure 3.1: Illustration of magnetic field lines and structure of the magnetosphere. (After
Parkinson, 1983).
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Figl\re 3.2: Schematic illustration of the structure of the magnetosphere, magnetospheric
regions and current systems. (After Regan and Rodriguez, 1981).
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strongest disturbance is confined to auroral latitudes. These are termed magnetic subs/oms.

Parkinson (1983) believes that the irregular fluctuations of a storm are, in part, simply a

series of subatorms. For this reason the generation of a magnetic substorm is discussed first.

3.2.1 Magnetic substorms

Magnetic substorms and associated aurora are believed to originate from instabilities in the

magnetotail neutral sheet current. At the onset of a. substorm a new neutral line is created

at a closer distance from the earth (of some 15 RS) because of extreme tail ward stretching of

magnetic field lines beyond 7 RE' This stretching results from an increased rate of field line

reconnection at the magnetopause, hence an increased transfer of energy from the solar wind

to the magnetotail. The new neutral line disrupts the sheet current, the cross-tail current is

reduced, the magnetic field lines ill response become less stretched and collapse earthward

becoming more dipolar in shape (see Fig.3.3). This collapse increases the injection of high

energy plasma into the polar regions of the ionosphere. This causes ionisation and increased

conductivity along the auroral oval. Also, atmospheric molecules are excited and result in

the auroral lights. The cross-tail current is short circuited by the field-aligned currents and

auroral oval tlws forming auroral electrojets.

At the sit~, of the new neutral line the newly merged magnetic field lines form shortened

closed field ~,nes. This results in a. form of a 'boudin' of magnetic field lines (they form closed

i60psrbetween the newly created neutral line and the pre-substorm position. This structure

of closed loop magnetic field lines enclosing hot plasma is knovn as a plflsmoid. After its

formation the open field lines of the lobes reconnect and propel the plasmoid downwind. The

new neutral line remains in its near-earth posit-on for a period of half an hour to two hours

before rapidly retreating to the original distant position.

3.2.2 Magnetic storms

The position of the magnetopause is determined by a balance between the kinetic solar wind

pressure and the magnetic pressure of the field of the magnetosphere. The pressure balance

equation, to a first approximation, is given by

J
(3.1)
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EARTH DISTANT MAGNETIC NEUTRAL LINE:
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NEUTRAL LINE

Figure 3.3: The magnetosphere model showing the merging of field lines and the creation
of a plasmoid. This is one way the megnetotall releases energy and one explana-ion of the
initiation of a substorrn, (After Hones, 1986).
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where B is the magnetic flux density, flo is the magnetic permeability of free space, K is a

constant, n is the density of solar wind particles, m is the particle mass and v is the particle

velocity.

An increase in either plasma density or solar wind velocity will manifest as an increase

in B; ertective1y compressing the entire magnetopshere, This compression has the effect

of increasing th-e measured horizontal magnetic component at the earth's surface or from

a near-earth satellite platform. A sudden compression of this type is known as a sudden

impulse (81). A Sl may start a period of increased disturbance leading to a substorrn or a

storm (which is believed to represent, in addition to complex rnagnet rhydrodynamic wave

reverberations propogated through the magnetosphere, a series of substorms), in which case

the 8I becomes a sse {sudden storm commencement).

Magnetic storms are manifested by substantial variations and irregular fluctuations in

the observed magnetic field intensities. Effects of magnetic distu)'b~nces ate best illustrated

using rnagnetograrns. For example, the magnetogram of figure 3.4 was recorded at the Her-

manus Magnetic Observatory (12-13 September, 1957) and shows a typical magnetic storm

in progress begining with a sse at 0047h UT.

There are several indeces available to allow a quantitative measure of magnetic distur-

bance. The most commonly used index and adopted for the Magsat INV-B tapes is t.he

planetary K-index (Kp) (Langel et al., 1981). This planetary magnetic activity index pro-

vides a measure of the average intensity of magnetic disturbance (of 12 observatories), on a

27 digit scale, in 3 hourly intervals. It is usually expressed in thirds of a unit on the scale of

a to 9, i.e. 00, L, 10, 1+,2_ .. , 9_, 90.

3.3 The ionospheric field

The previously discussed magnetic field perturbations encompass the irregular fluctuations of

impulsive origin and have sources originating from several magnetospheric and high-latitude

ionospheric current systems. In addition to these disturbances there are coherent diurnal fiu··

tuations of the external magnetic field which affect magnetic observations of satellite-based

platforms. The diurnal fluctuation of particular concem to near-earth satellite measurements

is that originating from a current system in the ionosphere, the solar-quiet (Sq) curre ,,(;sys-
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Figure 3.4: Magnetogrem from the Hermanns observatory showing principal temporal fea-
tures: the solar quiet day variation followed by a 301ar flare effect (1515h) and a magnetic
storm commencing at 0047h.
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tern.

Seasonal va tiations of ionospheric equivalent Sq current systems are given in figure 3.5

which show a variable but systematic pattern. The pattern consists of two current systems

of opposite directions centred in each hemisphere arising from the heating effect of the sun

on the ionosphere. The currents are focussed about the mid-latitudes of 30° and the summer

hemisphere currents are more intense. The foci remain almost, static with respect to the sun,

centred on 1200h LT. Magsat.'s sun-synchronous, twighlight, polar orbit, was designed so as

to rninimise-Sq effects, The 0600h and 1800h local times indicate the approximate Magsat

path with respect to this model.

In addition to the Sq system there is a secondary effect dU~1to atmospheric circulation

from the gravitational attraction of the moon. the L effect, The resultant field is small (by a

facto}' of 25 relative to Sq), difficult to isolate and complex since it depends on lunar phases

and seasons,

At the level of the magnetic dip equator there is a GOOkm wide belt of increased Cowling

conductivity (If the ionosphere, thereby channeling an eastward current within this region; the

equatoria! electrojet. The electrojet produces total field amplitude responses of 12 to 26 l:T of

near-earth satellite magnetcmeter observations (400 km altitude) (Cain and Sweeney, 1973).

Cain and Sweeney (1973), using POGO data, mapped the position of the electrojet which is

reproduced in figure 3.6. Although the electrojet follows the magnetic dip equator generally,

it does show small but significant excursions. They found that there were instances when

the equatorial electrojet was absent or weakly westward, Maeda et al, (1982) by analysing

Magsat data observed an anomalous variatiou in declination (not observed at ground-based

observatories), vis.: (1) it appear- '1 the low-latitude dusk side, (2) it is antisymrnetric about

the dip equator and (3) the amplitude of the response (5 to 25 nT) depends on longitude and

altitude, They ,concluder hat a meridional current system exists in the equatorial ionosphere

which is associated with the equatorial electrojet,

It should be noted that diurnal quiet variations also occur at high latitudes similar to Sq

but termed S~ (see section 3,1; field aligned currents).
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Figure 3.5: Equivalent current system of Sq variation at OOOOhUT for March equinox (a),
June solstice (b), September equinox (c) and December solstice (d). 0600h and 1800h local
times are Magsat's approximate twighlight path with respect to the Sq current system. (After
Perkinson, 1983).
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3.4 Modelling of External field effects

The above phenomenological synopsis gives an insight of the complexity of the structure of

external magnetic fields and their te.mporal behaviour. In order to model the geomagnetic

field and magnetospheric field, magnetic quiet days are selected. The magnetic potential may

be represented by the spherical harmonic series of equation 2.2 where the coefficients sand

q describe fields of external origins.

The strongest magnetospheric field effect that is manifest on the ground or from a

near-earth satellite at low to mid-latitudes is that of the equatorial ring current with lesser

contributions from other magnetospheric sources. The rill' ' ent and magnetospheric fields

may be represented adequately by the first-degree and zero-order zonal function of equation

2.2 (Langel and Sweeney, 1971). Because of temporal variations of Dst (the storm time field)

a siginiflcant internal contribution is obtained from inductive components within the earth.

Details of this model are dealt with explicitly in Chapter 6.

The ionospheric sources are modeled from ground-based observations using spherical har-

monic analysis. However, the problem for Magsat dat .erent in that the data are

restricted to dawn and dusk local times, which in theory \hh ."cant to eliminate ionospheric

field contributions. This proved not to he entirely correct, A method proposed by Yanagisaws

(1983) allows the determination of an average ionospheric field by simply stacking observa-

tions for a specific local time, Details of this problem are addressed explicitly in Chapters 5

and 6.

3.5 Conductivity structure of the earth

The temporal nature of the external ionospheric and magnetospheric source fields induce

eddy currents within the conductive regions of the earth, i.e. the oceans and lower mantle.

The spectral responses from these conductive regions are used to determine the underlying

electrical structure. Resistivities encountered in the crust range from less than 0,25 Ohm In

(the vahre of seawater) to 106 Ohm m or more for dry crystalline rocks. Most estimates of

global conductivity (using Sq and Dst variations) as a function of depth indicate a sharp rise

at a depth of 400 to 600 km (at the level of the mantle transition zone). The conductivity



below this depth can, for most purposes, be considered to be at the inductive limit; this global

conductive region is termed the coaductosphere. Figure 3.7 illustrates several conductivity

profiles determined over oceanic and continental crust. The main difference between the

oceanic and continental profiles seems to be that the dl .continuity is shallower below the

oceans.

With regard to near-earth satellite magnetometer observations the concern is to ascertain

the significance of the induced earth currents on the magnetic fields arising from the oceans

and the conductosphere. Hermance (1982) by model simulations addressed two important

questions, viz.: (1) are induction effects significant for near-earth satellite observations and

(2) what are the effects of lateral differences ill the gross conductivity structure of the earth

at satellite altitudes? He noted that for the distant magnetospheric sources the induced

component of a conductive mantle in a spherical earth may contribute as much as 34% of

the external source field amplitude; larger at satellite altitudes than the target lithospheric

magnetic anomalies. For short period fluctuations of the inducing field (200 s to 1 hr) the

response of the oceans is at the inductive limit. The induced contribution at satellite altitudes

may be as much as 42% of the source field.

Hermance (1982) then considered the position of the satellite (400 km) with respect to

the two possible inducing field sources, namely, magnetospheric ('" 3 Rs) and Ionospheric

('" 150 km). The total response (horizontal component) for magnetospheric sources above

the satellite is close to twice that of the source field strength. For sources beneath the

satellite the fields observed at, the satellite tend to cancel and the total field is almost zero. A

lateral conductivity change in the crust or lithosphere (e.g, continent to ocean contrast) may

generate a magnetic response of an order of magnitude smaller than the source field, whose

shape is compf -. ·ed by the position of the observation platform with respect to the primary

field. The anomalous response is significant lor sources originating below the satellite only

(i,e, the ionosphere). A disturbance :)f say 100 nT over a lateral resistivity change from :30

Ohm m to 15 Ohm m would manifest a.horizontal magnetic field inductive response of 5 nT,

which is well within the resolution of Magsat,

The study of Hermance (1982) serves to demonstrate that measurements made during

r iagnetlc disturbances could be used to investigate gross electrical properties of the litho-

38



200 600
KMS
800 1000 1200 1500

100

\0

,_.,, ,
larsen l l
(1975) -: :, ,

I I, ,
I I, ., ,, ,,,,,
I,
I
I

I,
,.----- ..--- I" ...-_ ..._--, ,, ,
, I
I I--i----.'", .

--..I :.. -too.,
FillouJ( ! i :
(1980) - .... : : : I

I
I : .._-_.., ., :

,. .. _J .., :

10-2 1 rt'~'~: ~·"r~~
: .S ~, " ......J .)2. ..3

VanyoI'! et 01
(1978)
t

1,

..,..
" Banks (1969)
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sphere as a useful complement to magnetic investigations. Didwall (1984) using a database

derived from POGO satellite magnetic measurements estimated an electromagnetic response

function. Best estimates of this response function indicate all upper-mantle conductivity of

10-2 Mho m"". For the purpose of generating lithospheric anomaly maps inductive effects

are minimised by selecting magnetically 'quiet' data, typically ,,·:th a magnetic activity index

of Kp ::; 2+2. In the final analysis the most significant contribution originates from the Dst

variations.

2A magnetic activity index of 3+ represents a disturbance, peak to peak, of 24 nT at ground level at the
Hermanus observatory (Kiihn and Zaaiman, 1986).
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Chapter 4

Altitude reduction

Processing magnetic measurements to account for the variable altitude of the satellite tracks

is an unresolved problem, to-date. Attempts towards a solution have and continue to be

made with varying degrees of success. The approach, rationale and methodology to correct

for the variable altitude covers a wide spectrum. In this chapter the various techniques that

have been used are reviewed and results of this researcu towards finding a solution to the

problem are presented.

4.1 Review of methods

Corrections to account for the variable altitude of the satellite tracks varies widely amongst

users. The effect of the variation of the satellite altitude is complex, because it is manifested

not only as a change in amplitude but also in a spatial sense. These effects are demonstrated

graphically in section 4.2. In many instances the problem is coarsely dealt wish, for example,

by simple stacking of magnetic data within selected cells. A mean magnetic amplitude and

altitude is thus obtained for the selected cells within the area under investigation (Coles et

al., 1982; Ritzwoller and Bentley, 1982). The supporting philosophy being that, although

the variation is still largely unaccounted for it is minimised, resulting in losses of both the

amplitude and detail of anomalies, but the gross features are maintained. This may be

acceptable for qualitative appraisals of t 'ie data but, not so, for quantitative interpretations.

Other more exacting methods have been considered to reduce satellite magnetometer

measurements to a common datum. A review of some of these procedures is given by Regan

(1979)j those and other methods are described below.
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4.1.1 Equivalent source

Inherent of potential fields is the ambiguity in describing the source distribution from field

values outside the source region, The magnetic potential due to a magnetic distribution

mea, (3, "'{) at a point P(;c, y, h) above the distribution is

lr·~'Ol°Ol°O m(a,j3,r)
U(x,y,h)='Vo 2" 2 dndtJdr

o -eo -00 rex - a) + (y - JY + (z - r) J~ (4.1)

where 'Vo is the directional derivative in the direction of magnetization (Gunn, 1975). The

concept provides a means of variable surface continuation of the magnetic field (Dampn :.

1969; Mayhew, 1979; Mayhew et al., 1980).

In practice the equivalent source method is performed by modelling the anomaly field

with respect to an arbitrary surface distribution (an array) of ,1ipoles. The anomaly field is

computed at discrete points

k

(lj = L:PiFij ,j = 1,2,3, ... , n
i==l

(4.2)

where It is the total number of dipoles and Pi is the magnetic moment of the ith dipole. Pij,

the dipole source function is given by Mayhew (1979).

The magnetic dipoles are ccnstrained to a regular latitude, longitude grid with an incli-

nation and declination defined by a degree 13 spherical harmonic expansion (Mayhew and

Galliher, 1982). A solution for the moments is made using lea-t squares. Having determined

the parameters. these may be used to compute the anomaly field at any position above the

equivalent source distribution.

4.1.2 Spatial gradients of the equivalent source

A method was presented by Bhattaeharyya (1977) where the spatial gradients of all equivalent

mc,gnetlc dipolar source distribution are used to perform a variable upward continuation of

the field. The formulation of the technique was developed by Bhattacharyya and Chan (1977)

and extended to take into consideration the spatial variation of the main field in the case of

satellite data.

The method is applied after some preprocessing. Arithmetic means of both amplitude

and altitude of measurement are calculated from a selected dataset for 10 by 10 longitude and

42



latitude cells. This procedure is based on the assumption that the amplitude of the magnetic

field at satellite altitudes decays linearly with respect to altitude.

Dipoles (of moment ,(:I per unit area) on the equivalent source surface S are assumed to

be polarised in a direction normal to S. The total field at a point P( x, u, h) above the surface

in a direction t defined by the direction cosines (l.m,n) may be expressed as

(f s 1
T= -) /-I--ds

, s 8n r
(4.3)

where /-I= (t. Vo)p, and represents the gradiont of r.iagnetisation along the direction t of the

geomagnetic field.

Considering the limiting case where the point P approaches the surface S along a normal to

S, equation 4.3 reduces to 3. Fredholm integra) of the second kind and relates the observed total

field T to the spatial gradients of magnet isat ion of an equivalent dipole source (Bha.ttacharyya

and Chan, 1977). The total field can thus be calculated for any point above S if the spacial

gradients of p(~, **) are known. Satisfactory results can be achieve ·l only if the direction

of the geomagnetic field that is used to compute (continue) a new point is in the same

direction as modelled by the gradients of the equivalent dipole source distribution surface ~

(Le induced magnetisation must be assumed).

4.1.3 Fouri er series modelling

The method proposed by Henderson and Cordell (1971) uses finite Fourier harmonic series

approximation to reduce variable altitude potential field data to a common datum. TIle

method may be applied to regular or irregularly spaced data in two- or three-dimensional

space.

The magnetic field may be approximated by a finite number of linear, independent bar-

monic functions of the form

M

T(x, y) =Ao/2 + 2::>2:rk(Z/'\).[Ak cos 27rk(x/>.) + Bk sin 21rk(x/ >.n + tM(X, z) (4.4)
1;:1

where ..\ is the fundamental wavelength, 21".1+ 1 is less than or equal to the number of da,

points and t.M(:Z:, z) 15 the error of approximation.This functional represents a finite Fourier

series if the data were on the plane z = 0 and were equally spaced. The proposed method

fits the fun~l-jGnto the data snd solves for the coefficients using least squares. The harmonic
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modelling technique has been used on satellite-borne magnetometer data by, for example,

Regan (1979).

4.1.4 Multiple linear regression

The method presented by Lotter et al., (1986) models the data as ill th- previous case but,

assumes a linear dependance of variables. The approximation is of the form

(4.5)

where T is the anomaly field, h the altitude of measurement and e,rj> are the respective

longitude and latitudes of measurement.

The coefficients So, S1 ... , Ss are solved for. using least squares (Lotter and KUhn, pers.

cornm.). The principal assumption is that, for satellite altitudes and for a cell of 10 by 10 01'

less the magnetic gradients may be regarded as linear.

4.1.5 Schwarz-Christoffel transformation

Wendorff (pers. comm.) developed the Schwarz-Cristoffel method (Parker and Klitgord,

1972) to correct satellite data to a common datum. If the measured field is on a level

plane, continuation to an irregular plane 1S straightforward (Henderson, 197U). The irregular

satellite track problem can be converted into che simpler form by using the theory of functions

of a complex variable. Let every point of a satellite's half orbit, be represented by a complex

number given by z = .v+ iy. The complex ~ domain is now mapped with an analytic function

into another complex region given by w = 1l+i· such that each point (,v, y) in the one domain

is represented by (u,!J) in the other (Fig. 4.1).

If an analytical function g(z) maps the satellite track onto a straight lint>in a domain

equivalent to the w domain, then the sought after simplification is achieved. To begin with,

the mapping between the z and w domains is implemented with (cf. Fig. 4.1)

. .;:+ 1
'W = 2---

::-1
(4.6)

where the satellite's position is given b,v the phase. Figure 4.2 illustrates this mapping for

Magsat half orbit 402. To utilise the inverse Schwarz-Cristoffel transformation! (SeT)

1The Schwarz-Cristoffel transform provides a simple means to map the region above and including the
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-4 -4-4 -3 -2 -1 0 2 3 ...._....4u

Figure 4.1: Example of a mapping between the complex regions (";;:;X+ 'ty (a) and w = u+ iv
(b). A satellite's half orbit D to C via B (z domain) maps onto the real axis of the w domain
(D'B'C:). After Wendorff (pers, comm.],
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g(w)::: c11w i.r {til - Ujt
j dw +C2

1110 j:::l

the satellite passes arc approximated by a polygonal track; the tolerance corresponding to

,-I < atj <-1 (4 .• ;

about lOkm at the earth's surface. Applying the inverse SCT, the polygonal curve L' is

transformed to L"(Fig. 4.3). Upward continuation is performed on this mapping (Fig. 4.4).

4.1.6 Discussion

The altitude corrections exploit two principles, namely:

1. Implicit modelling where a function is modelled to fit the anomaly field and COf-

rections applied by interpolation. This process endeavours to make the functional

respond implicitly to the behaviour of the potential field without (l priori knowl-

edge.

2. Explicit modelling where the knowledge of the field and of potential theory is used

either to model the source or to extrapolate the field by analytical means.

The Fourier series and linear regression methods attempt to conform to the- former ra-

tionale of implicit modelling. To successfully implement this method the variables must be

linearly independent. Also, it is assumed that the function is sufficiently flexible to represent

the topology of the field. The three-dimensional linear regression method makes an erroneous

assumption that the magnetic field decays linearly with altitude (Lotter et. al., 1986). A sim-

ilar assumption is made by Bhattacharrya (1977) at the preprocessing stage with regard to

the equivalent-source spatial gradients method, Both authors believe that this assumption

is reasonably valid for the altitude range ora near-earth satellite.

With respect to the latter principle, the equivalent source, the spatial gradients and the

Schwarz-Cristcffel transform methods are used to continue the magnetic. anomaly field with

a priori information. The ambiguity of the potential field to discriminate source distribution

is effectively exploited by the equivalent source methods. However, ill order to continue the

field to an altitude datum, it is assumed that the magnetic polarisation of the anomaly field

is parallel to the main field. Although this assumption is almost universally made there is

real w axis into the interior and edge of a polygon (I-' .rker 'lud Klitgord, 19(2).
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Figure 4.2: Example of the rna.ppin),;of Magsat half orbit 402 in the z (a) and W (b) domains
i.e, circle to plane, After Wendorfi' (pers, comm.].
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Figure 4.3: Example of the polygonised aatcllite track (a.) and the applied inverse Schwarz-
Cristoffel transformation (b). After We.ut!orff(pers, comm.).
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Figure 4.4: Results of upward continuation after SOT. The top curve is the original data,
the bottom the continued data. After Wendorff(pers. comm.).
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growing evidence that non-viscous remanent rnagnetisation? is observed at satellite altitudes

(Toft and Haggerty, 1986; Antoine, 1989). Remanent magnetisation components may be

combined vectorially to develop accurate equivalent point source operators (von Frese et,

al., 1981). The problem however, is to derive a suitable equivalent source distribution for

processing.

The advantages and disadvantages of implementing the various methods are far reaching

and need to be considered. The concept of implicit modelling is appealing, in that, no a pri-

ori mforrnation is required. The Fourier series three-dimensional regression method should

have superior qualities to the three- dimensional linear regression of Lotter et al., (1986) since

the latter method represents the anomaly field as a linear function. The approximation is

• partially valid for the horizontal gradients (for the scale at which it is implemented, i.e,

one degree cells) but erroneous in the case of the amplitude decay with respect to altitude.

Implementation of the Fourier series method however faces certain constraints. The devel-

opment of the method in a rectangular coordinate system is a limitation with satellite data.

The method W(;lS used by Regan (1979), over a central African region covering (Ill area of

20° in longitude and in latitude, arid produced reasonable results. Regan, however, showed

preference to the Bhattacharyya (1971) equivalent-source spatial gradients approach.

Bhattacharyya's technique, although meeting many of the theoretical reouirernents, will

produce errors in several regards: (1) the assumed linear decay of amplitude with altitude at

the preprocessing stage, (2) the process requires downward continuation (a. highly unstable

process) thus requiring additional low pass filtering, and (3) the continuation assumes induced

magnetisation. Similarly, the equivalent SQUACetechnique is implemented with some prepro-

cessing by simple stacking within selected latitude, longitude cells. Induced magnetisatlon

is most commonly assumed. The process is more stable since the continuation is away from

the source distribution. The equivalent source spatial gradients method is computationally

more efficient (Regan, 1979).

The Schwarz-Crietoffel transformation method although attractive as a variable continu-

ation tool, has substantial limitations for satellite applicatiorrs. To begin with. the process

assumes two-dimensionality of the source; an assumption that, is mostly not strictly valid.

2It is generally argued that,fof the purpose of inverting or interpreting satellite magnetic anomaly maps,
VRM predominates. On this basis, induced magnetlsation may be assumed [c.g. Johnson, 1985).
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The mapping procedures are in themselves passive. The analytical continuation also imposes

the problem of induced magnetisation. In a.ddition, the method is based on upward contin-

uation to the satellite orbit apogee. The process is also computationaly intensive (Wendorff,

pers. comm.).

4.2 Implicit modelling

The processing and digital manipulation of the data are not ends in themselves but first steps

in the process of model construct.ion and hypothesis testing (Mayhew and LaBrecque, 1987).

The emphasis here is to ameliorate the; reduction process towards improving data quality,

sU!Lt\blefor quantitative assessment. Because of the substantial limitations of the present

altitude reduction methods, it is necessary to test alternative methods. In order to achieve

the objective of improved data quality, model constraints should be kept at a minimum.

As previously c1iscussed, the process of fitting a function implicitly to the potential field is

appealing, particularly, if assumptions are kept to a minimum. The purpose is to interpolate,

from the irregularly sampled field, the representative value of that field for a fixed point in

space. If '1 numerical method is applied within a small sector say 10 by 10 latitude, longitude

cells it may be possible to achieve altitude reduction at a stage equivalent to the preprocessing

stages 'of the above mentioned techniques.

The weakness of most of the altitude corrections begins with the statistical averaging of

the randomly sampled data within a selected bin. The results, i.e. average amplitude and

altitude for the bin, are then used to apply the various altitude corrections. This process, in

all cases, assumes that the magnetic anomaly field decays linearly with respect to altitude, an

assumption which is shown to be invalid in figure 4.6. It is also assumed that the horizontal

gradients are linear, an assumption that is almost. correct for the' cell sizes used at satellite

altitudes. Finally, to implement satellite magnetometer data processing and reduction effec-

tively, procedures should be computationally efficient. Overall computational efficiency can

be improved by integrating the altitude correction with stochastic noise filtering at an early

stage in the processing route.
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h=600km

Figure 4.5: Mocha dipole anomaly field for various satellite altitudes. Magsat's perigee and
apogee was 350 and 561 km, respectively. 'I'he lowe.. right box shows the locality of selected
points used to illustrate the amplitude versus altitude graphs of figure 4.6.
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Figure 4.6: Graphs of magne-ic amplitude versus satellite altitude for selected points within
the near-field and far-field of the model dipole. The lower right box shows the locality of
points with respect to the dipole field of figure 4.5. Magsai.'s perigee and apogee was 350
and 561 krn, respectively.
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Figure 4.7: Graph of the logarithm of amplitude versus altitude for a location (position 2,
Fig. 4.6) ill the near field of the model dipole.
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Figure 4.8: Amplitude of the horizontal gradients over the dipole anomaly field for various
satellite altitudes.
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4.2.1 Quadratic least squares regression

The three-dimensional linear regression of Lotter et al., (1986), although it imposes a rigid

limitation on the function with respect to the morphology of the- field, has the essence of the

properties sought after in this research. As discussed above the horizontal gradients can be

regarded as linear if the scale at which the reduction is made is small with respect to the

wavelength of the anomaly field. The method is severely limited in the regions of change in

slope of gradients (troughs and peaks). The concept of p=rforming an altitude reduction at

an early stage, incorporated with stochastical noise filtering, is encapsulated in the tl.ree-

dimensional linear regression method of Lotter et al., (1986) and is tested in thi, study with

necessary modification to overcome the discussed j-roblerns of linear regression. ;-)hange in

slope direction of the horizontal gradients can be catered fer simply by increasing the order

of the polynomial.

A quadratic function of the form

was decided upon; where x, y, and II are. respectively, the latitude, longitude and altitude.

The reason for selecting a quadratic function rather than a higher order function is three-

fold, namely: (1) although the function is an imperfect representation of the altitude decay as

presented, it is not if the amplitude decay could be made approximately linear by assuming

logarithmic functionality, (2, the horizontal gradients at the scale at which it is to be im-

plemented (approximately one to four degree cells in mid latitudes) will be well represented

by a quadratic even in the regions of change in slope direction and, (3) the 'stiffness' of the

function will act as a smoothing function (additional noise filtering). The amplitude decay

for different sources have different fall off rates, usually obeying a power law, which may be

approximated by exponential decay with respect to altitude (see Fig. 4.Ci). By taking the

logaritluo the problem is approximately linearised (FigA.7); satisfying point (1) above. The

quadratic function is tested below. b~' computer simulations, with and without linearising

the amplitude decay.

A single dipole source at the earth's surface was used as a synthetic model to test the

validity of the reduction processes that are tested or implemented in this study. The dipole
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was chosen because it describes a three-dimensional anomaly field. Figure 4.5 illustrates

the dynamic spatial and amplitude'' range of the anomaly field, for a dipole source (in mid

latitudes) viewed from a fixed 100.0. by lOOn km window at various satellite altitudes. Figure

4.6 shows the decay of anomaly amplitude with respect to altitude for selected points in the

far-field and near-field of the dipole. Clearly, the assumption of linear decay is erroneous.

The horizontal gradients (scalar gradient) over the dipole field for typical satellite altitudes

are illustrated in Figure 4.8.

4.2.2 Least squares solution using singular value decomposition

The least squares solution of a quadratic function is a set of ten coefficients. Depending on

the cell size, rejection criteria and tile latitude of the cell, the number of data points may be

less than but in general will be greater than the number of coefficients Thus the problem

under consideration is that of an overdetermined (or rarely underdeterrnined) set of linear

equations. Also, for the routine application of the reduction algorithm, it is necessary that

the algorithm be robust. The singular value decomposition is a robust method to solve linear

least squares problems of this kind.

The problem may be formulated as a set of simultaneous equations

(4.9)

where x is the solution vector. The general least-squares solution is

(4.10)

Singular value decomposition may be defined as '~ny M x IV matrix A whose number

of rows M is greater than or equal to its number of columns N, and can be expressed as

the product of an M X N column-orthogonal matrix U, an N x N diagonal matrix W wit h

positive or zero elements and the transpose of all IV x N orthogonal matrix V

A ::;:U . IO}' • ~.'T (4.11 )

where U and V are eigenvector matrices.

3F'or the can' " renee of operating with the various graphic facilities and for general preseutation purposes
the dipole moment was chosen 50 Il.S to exagerate typical satellite anomaly amplitudes by IJ. factor of 10.
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The decomposition of equation 4.11 can always be made no matter how singular the matrix

is (Press et at, 1988). The robi'stness of the method is further exploited by the ability to

diagnose and rectify ill-conditioning or singularity of the matrix. For an underdeterrnined

set of linear equations the matrix A is simply augmented with zeros.

The inverse of the matrix A is

A-I::::: V. [diag.( ~~. )]. UT

J
(4.12)

Thus the least squares solution vector ;f is given by

x::::: [A2'Ar1 • AT . b :::::V . [diag.( f~j)] .UT . b (4.13)

where Wj are the squares of the eigenvalues of [ATAJ (Jackson, 1972).

4.2.3 Results of the quadratic regression

In order to test the response of the method with a fairly complex field morphology It was

first tested over an area t :000 by 1000 km) covering a dipole source at the earth's surface

with a range of altitudes as indicated by Figure 4.5. Depending on the results the method

would then be extended to the scale of implementation, that is, one to four degree cells.

In order to approximate the problems of variable altitude a set of some 45 data points of

random altitude (range, 200-600 krn) were selected randomly over the dipole source (Fig. 4.9

). The quadratic regression algorithm was then applied to that d.•ta and used to interpolate

the dipole field for specific altitudes (300,400 and 500 km) above the dipole source,

Figure 4.10 shows the results of the altitude reduction using the quadratic regression for

some 45 data points covering the dipole source (cf, Fig 4.9). These results are unsatisfactory.

The method shows a close prediction of anomaly amplitudes in the central region for the mean

altitude of 400 km only (Magsat's mean altitude}. The function does not, however, make

a fair attempt to follow the topology of the field. In comparison, a cubic function was also

tested on the same data. The results of that. trial, which are not included here, showed that

the interpolation was far too susceptible to sampling. The interpolated field morpholgy was

strongly controlled by the distribution of the sample points.

Although the results of the above experiment were not satisfactory, the next phase of

implementation was nevertheless attempted, i,e. simulating the 10 by 10 cells. This was
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undertaken on another synthetic data set. Here the area over the dipole source (1000 by

1000 km) was gridded on 20 km centres. The amplitude of the anomaly field is given by a

randomly generated altitude (in the range 200 krn to 600 krn) (Fig. 4.11). The quadratic

regression algorithm was then applied to a moving cell whose dimension (window) is larger

than the increments. The cell's midpoint is interpolated to the required altitude datum. The

resultant grid represents the altitude corrected dipole field.

Results of this work are disappointing. Several attempts were made using various window

sizes and increments with insignificant improvements. Figure 4.12 is at> example of the

altitude reduction (400 km) for a 120 by 120 km moving window with 60 km increments.

Clearly these results are unacceptable. By excluding the linearisation procedure (i.e, by not

taking the logarithm) of altitude decay from the algorithm its influence was assessed. This had

a marginal effect. The above tests serve to illustrate the inadequacy of quadratic regression.

They do, however, suggest, that the answer to an effective altitude reduction algorithm may

lie in the statistical modelling process rather than in manipulating the independent variables.

4.2.4 Median linear regression

Having established that the modelling by least. squares may be the reason in part" for the

poor results obtained with the linearlsed-decay surface quadratic function, an alternative

robust modelling method was attempted. For experimental data that, cannot he guaranteed

free from 'flyers', modelling in the Ll norm provides superior results than from those obtained

by the traditional least-squares method (Barrodale, 1968).

The horizontal gradients within the area in which the reduction is to be made are assumed

linear and the amplitude decay with altitude is linearised. The problem is thus simplified

from a surface quadratic function to a simple straight line regression. The approximation to

a straight line lends to efficient computation.

The problem may be expressed as

y(h) :-. a + bh (4.14)

where the amplitude of the anomaly field y(h) is given by the altitude.

Fitting of the line is achieved by minimising the [,1 norm

4 It is recognised that the source functlon used may also ill part be responsible for the poor results.
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Figure 4.9: Simulated effect of variable altisude over a dipole source. Data. points are repre-
sented by an asterisk. Amplitudes were calculated for altitudes randomly generated in the
range 200 km to 600 krn,
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Figure 4.10: Altitude reduction using the quadratic regression method over the dipole source.
From left to right. columns illustrate the original dipole anomaly field, the interpolated field
and residual, respectively. The rows indicate the appropriate altitudes of interpolation.
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Figure 4.11: Simulated variable altitude effect ofthe dipole anomaly field. The data are on a
20 km grid spacing. Amplitl.lQ.es are given by the altitude, in the range 200-600 km, ,"1ontour
interval is 25 nT. The anomaly field is far too noisy to annotate contours.
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"LIVi-a-bhd (4.1.5)

The simplification of the merit fun Son with respect to the least squares method is based

on the median. The median eM of a set of numbers C, is also that value which minimises

the sum of the absolute deviations

(4.16)

For a fixed slope b, the value which minimises 4.15 is

Q' = median{Vi - bXi} (4.17)

The local M-estimate for parameter b is

N

0= L;Jisign(Yi - a - bXi) (4.18)
i=~.

Replacing a by the implied function a(b) of 4.17 then 4.18 is an equation in a single variable

which may be solved by bracketing and bisection (Press et al., 1988; Sadovski, 1974).

4.2.5 Results of the median linear regression

The linear regression assumes that contributions of the anomaly field with respect to the

horizontal gradients are linear and that any variation in amplitude is controlled by the alti-

tude at which the observation was made. Thus the smaller the cell's window on which the

algorithm is applied, the better the approximation. The medias linear regression reduction

was tested on the same synthetic data as that used for the surface quadratic function, that

is, figure 4.9.

Results for a 160 by 160 km window moved in 60 km increments are given in figure 4.1:3.

The results are provided for several. interpolated altitudes and shows remarkable recovery

of the original dipole field, both spatially as well as in amplitude. The reduction algorithm

was tested with various window sizes and increments. There are marginal improvements

in the statistics (least squares per cent fits and r.m.s.) with the increase in window size,

which incidently, cannot be discerned qualitatively. The marginally improved statistics with
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Figure 4.12: Results of the altitude reduction using the quadratic regression method. A
window of 120 by 120 km was employed and, moved in 60 km increments.
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window size may be attributed to the increase in the data points rather than in the process.

Intuitively the increase in window size should have an opposite effect because of the failing

assumption 01' linearity of the horizontal gardients, The effect of increased windov size is

cotlntl"r":_"tlJ.by an increase ix, data and thus maintains a constant statistical response.

The above example tests the ability of the algorithm to recover the randomly sampled

(altitude) source field in a noise free environment. In order to test the algorithm's noise

rejection capabilities sero-mean white noise is added to the same data set. A peak to peak

noise amplitude of 100 nT and 200 nT is used; these amplitudes represent, respectively,

approximately 100 per cent and 200 per cent of the dipole field value at an altitude of 400

krn, Results are given in figures 4.14 and 4.15 and, illustrate the remarkable recovery of the

dipole source field even with extreme signal corruption.

These results demonstrate the ability of the median linear regression technique to reduce

a variably sampled (if. space) dataset to any selected datum accurately. Inherent in the

technique is also an effective noise rejection capability. It is thus possible to apply the method

immediately after the core and ring current corrections at the preprocessing stage of the

equivalent source techniques, for example. The application of the algorithm also results in a

gridded dataset. The median linear regression technique encapsulates the following desirable

properties, viz.: (1) the modelling is implicit, i.e. no a priori information of magnetisation is

required, (2) effective noise rejection, (3) simplicity of use and (4) computational efficiency.

An immediate extension of the median linear regression method would be to develop the

altitude-dependent surface quadratic, which was unsuccessfully implemented here, using Ll

norms.ee
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h=30Qkm

h=400km

h .. SOOkm

Figure 4,13: Altitude reduction for several reference datums using the median linear regres-
sion algorithm on the variable altitude data set of figure 4.10. A cell size of 160 by 160 km
was used and moved in 60 km increments. The left hand column presents the expected dipole
field for the respective altitudes while the right hand column is the recovered dipole field.
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h=400kon

b

Figure 4.14: Altitude reduction to 400 km (a) recovered from variable altitude data with
zero-mean noise (peak to peak 100 nT) (c). A residual analysis of the recovered dipole with
respect to the expected field (b) results in a least squares per cent fit of 89% and an r.m.s.
of 13 nT (peak to peak anomaly amplitude is 150 nT).
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c

Figure 4.15: Altitude reduction to 400 km (a) recovered from variable altitude data with
zero-mean noise (peak to peak 200 nT) (c). A residual analysis of the recovered dipole with
respect to the expected field (b) results in a least squares per cent fit of 75% and an r.m.s of
21 nT (p~l;J.k to peak anomaly amplitude is 150 nT).
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Chapter 5

Ionospheric field correction

The removal of ionospheric field contributions from the total magnetic field. as measured by

a near-earth satellite magnetometer is not stanuardised and varies widely amongst investiga-

tors. With the exception of the work ofYanagisawa and 1(0.10 (1985) the effects of the various

ionospheric current systems are removed. subjectively, Magsat's twilight, sun-synchronous,

polar orbit. was designed to minimise and possibly exclude effects of the Sq current system.

Sugiura and Hagan (1979) anticipated that strong ionospheric field effects would be present

in Magsat data and that due consideration should be given to correct for these effects. It

soon became clear that the effects were present at both dawn and dusk meridians (see e.g.

Maeda et al., 1982).

Ionospheric field corrections are made after the main field and the external ring current

and induction reductions have been applied. The effect of the ionospheric fields has been

noted mainly as a path-to-path inconsistency. The correction comprises fitting and removing

an arbitrary low-order function from each pass (trend rem-val) which :5 commonly refered to

as the path-to-path correction (e.g. Mayhew, 1979; Singh et al.. 1986; Kuhn and Zaaiman,

1986).

The first attempt towards a more rigorous procedure for correcting ionospheric field effects

on dawn asd dusk data for the purpose of generating anomaly maps is that of Yanagisawa

(1983). He attempts to model the ionospheric field for dawn and dusk meridians and then uses

this model as a correction (the mean ionospheric field correction, MIFC). In this Chapter

a brief review is made of the mean ionospheric field correction. This is followed with the

introduction of a. new data adaptive filter as a means of improving the derivation of the
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ionospheric field (IF) by the method of conveTging operations (Garner et al., 1956). The IF

is separated from the Sq contaminated lithospheric signal in this process.

5,,1 Mean ionospheric field correction

'The mean ionospheric field correction was developed (Yanagisawa, 1983) in order to accom-

mod ate the morphology of the field in an objective manner rather than the more subjective

approach of the track-to-track corrections. Incorrect application of any of these corrections

will result in lithospheric pseudo-anomalies or in the distortion of genuine anomalies, mak-

ing quantitative interpretations highly questionable. Yanagisawa (1983, 1984) demonstrates

that the zonal harmonics describing the external ring current and induction fields are in-

dependant of the Dst and Kp disturbance indices above the first degree expansion. The

latitude-dependent perturbations at 0600 and 1800 local times are therefore present as a

result of persistent electric currents in the ionosphere.

Assuming that the ionospheric fields are zonal, the lithospheric anomaly field is ran-

demised by stacking meridians (in the longitudinal range 4> :1: 30°) for C:300 and 1800 local

times as a function of latitude". The result of this stacking provides a description of a mean

ionospheric field (MIF)j averaged over the satellite's altitude range, longitudes and time. This

MIF is then used to reduce (MIFC) the dawn and dusk data sets to obtain the lithospheric

anomaly map The resultant dawn and dusk anomaly maps were shown by Yanagisawa

(1984) to have good correlation and are all improvement on the other detrending methods,

IIIChapter 4 an altitude correction alLvdthm (median linear regression) is developed wit':

an effective, robust method to reject uncorrelated noise. The primary objective of that algo-

rithm is to cancel, in addition to the altitude perturbations, uncorrelated noise resulting from

survey acquisition, system, attitude control and disturbance effects. This same algorithm, ill

the author's opinion, could be used to correct for the ionospheric field by processing randomly

II I''''1e) the satellite passes over a selected geographic region. This approach is comparable

e procedure of randomising the lithospheric field to derive the MIF (Yanagisawa, 1983).

The method ofYanagisawa is adopted in this study because Magsat's sun-synchronous orbit

lYanagisawaand Kono (19f.!.l)define tbe MIF in terms of dip latitude. However, dip latitudes art' anoma-
lous in the southern African region and prove to be problematical if used lIS a coordinate system. The
ionospheric field is neither a simple function of geographic latitude nor dip latitude but intermediate to the
two systems [Perkinson, 1983i Maeda, 11)53). Geocentric latitude is used to define the MIF here.
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restricts data to a narrow local time window, resulting in a' insufficient data spread needed

to randomise local time. Instead, the median linear regression algorithm is exploited to derive

the MIF and thereby introduce a necessary altitude correction. Yanagisawa and KOllO (1985,

Hl84) averaged the MIF over the satellite's altitude range and made no correction for the

altitude variation which was found to be significant. The approach adopted in this 5' i'dy is

thus felt to be far more robust than any previous attempts at altitude and MIF corrections.

5.2 A data adaptive filter approach

The ionospheric field is independent of magnetospheric disturbance effects and has a well

defined ambient morphology (Yanagisawa, 1983 and 1984; Yanagisawa and Kono, 1984 and

1985). Satellite magnetic data for a specific geographic region, after removal of core and

magnetospheric field effects, may be viewed after separation for either 0600 or 1800 local

times, as a deterministic signal (i.e. the lithospheric anomaly field, LF) corrupted by an-

other deterministic signal (the ionospheric Sq current systems, IF); termed the contaminated

lithospheric field (CLF). The IF may be regarded as a single deterministic signal while the

Sq contaminated lithospheric field (eLF) may be viewed as two interfering deterministic sig-

nals. In addition, both datasets (i.e. the MIF and the CLF) are corrupted by minor white

noise. The ionospheric signal, is correlated between data sets whereas the lithospheric signal

is uncorrelated. The implementation of data adaptive filters is particularly suited to this

form of signal corruption (Widrow and Stearns, 1985; Hattingh, 1988). By making use of a

data adaptive filter it is possible to improve on the derivation of a noise free- IF by extracting

the correlated signal from two indepeudantly derived data sets.

5.2.1 The adaptive least mean square algorithm.

A data adaptive filter is one whose structure is adaptable in such a way that. its performance

improves with time (or space). The process of adaptation is achieved by a dynamic filter

whose weights vary with time in response to the monitored error from a reference channel

as depicted schematically in figur€-5.1. The output is the required response resulting in the

cancellation of uncorrelated noise.

The principal element of the data adaptive filter is the adaptive linear combiner which
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Figure 5.1: Schematic representation of an interference cancelling data adaptive structure.



is illustrated in figure 5.2 in the form of a single-input tapped delay line (TDL) structure

(Widrow and Stearns, 1985). The signal may be represented by

(5.1)

where SI; is the information component and nk the noise at the k'lh sampling instant. These

quantities are assumed to be vector valued and the scalar output Yk is generated by

L

Yk = L: WII.:Xk_1 = vvl XI;
1:0

(5.2)

where

(5.3)

is the weighting vector and

'\' • 'iT
"~k = l 'Ok, Xlk,··· I Xk-LJ (5.4 )

the input vector.

The weighting vector is formed so M to minimise the mean square error between Yk and

the scalar reference channel dk• The error signal is

(5.5)

Substituting 5.2 into 5.5 yields the expresssion

(5.6)

The mean square error is given by

(5.7)

where E is the expectation, P = E [dk,lk] is the ClOSS correlation, and R = E [.rkXrJ is the

autocorrelation matrix. It is clear from the above expression that the mean square error

describes a quadratic function of the weight vector v,,'k.
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The optimum weight vector W': is obtained by solving the gradient of 5.i to find the

global minimum of the performance surface,

6~~rk :::;:-2P + ZRWk :::;:0

and the optimum weight vector, sometimes called the Wiener weight vector, is

(5.8)

(5.9)

This optimum Wiener filter requires knowledge of the autocorrelation matrix R and cross

correlation vector P. These quantities: are seldom known a priori. To overcome this diffi-

culty the unknown quantities are estimated from the observed data, or through the use of

predetermined test signals. The least mean square (LMS) algorithm is a simple recursive im-

plementation based on searching the performance surface by the method of steepest descent

using estimated gradients. The LM5 algorithm is expressed as

(5.10)

where IL is a factor indicating the rate of convergence and stability (Widrow and Stearns,

1985; Widrow et al., 1976). Once the algorithm has converged the output, Uk. is the best

least square estimate of the reference channel, dk.

5.2.2 Two-dimensional medial! hybrid adaptive filter

Adaptive filters have desirable proper tiles towards signal extraction. The adaptive filter struc-

ture is such that noise between two channels (one being the reference or desired response)

may be cancelled. This noise may either be stochastic or may be a detenuinistic signal. We

described above how the total magnetic field, after reduction for the main and magneto-

spheric field effects, m&oybe processed to approximate this condition closely, yielding viz.:

(1) a MIF map by randornising the lithospheric field contribution and (2) an ionospheric

field map contaminated by the lithospheric anomaly field (eLF). Because the lithospheric

anomaly field is not zonal it is necessary to consider implementation of the data adaptive

filter ill two-dimensions.
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'the pseudo two-dimensional adaptive median hybrid (2DAMH) filter presented here is

the end product of numerous trials of various adaptive filter structures. The choice of the

most appropriate algorithm was based principally on the best. signal recovery from synthetic

data sets. The central algorithm of the various adaptive filter structures tested is the LMS

implemented in the form of a single-input TDL structure (see Fig. 5.2).

In order to implement an adaptive filter structure in two-dimensions. array structures

were first considere-' (see e.g. Monzingo and Miller, 1980; Hudson, 1981; Justice et al., 1985)

which generated poor results. A pseudo two-dimensional structure (as discussed below)

was then attempted with improved results. The pseudo two-dimensional aspect is a simple

implementation of the single-input linear combiner where first the rows of the grid are filtered

followed by a second pass on the orthogonal columns. Outputs from this filter had some

undesired 'herring bone', To resolve this problem another approach was developed where the

rows and columns are filtered alternately.

Nieminen et al. (1987) introduce an adaptive median hybrid (AMH) filter where the

advantageous properties of median-type filters (makes for a more robust filter) are combined

with the also advantageous properties of the adaptive filter structure. This structure is more

suited for filtering signals with rapidly varying cheracteristics. The TDL filter can be used

either as a forward adaptive predictor (FA) as illustrated in figure 5.2 or for backward pre-

diction (SA). This median hybrid structure is exploited in the 2DAMH filter. The algorithm

uses the FA predictor twice, L,~. in tne forward direction and then 111 the reverse direction

fot the BA predictor. Both ,FA and BA predictor outputs are stored. The median is then

obtained from the two FA and BA predictions and the original signal values.

A further modification to the 2DAMH filter was attempted by introducing an orthogo-

nalisation scheme. Orthogonalisation of the inputs to the adaptive weights can result in a

more rapid adaptation than is possible with LMS alone, particularly, when there is a wide

eigenvalue spread of the data auto-correlation matrix (Narayan and Peterson, 1981; Widrow

and Stearns, 1985). 'the orthogonalisation scheme that was used is based on the discrete

Fourier 'transform (DFT) of Narayan and Peterson (1981). The implementation is made

by introducing on the TDL an FF'T (see Fig. 5.3). Used in this manner the FFT may be

considered as a bank of band-pass filters uniformly spaced in frequency between zero and
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Figure 5.2: Structure of the adaptive tapped delay line (TDL) filter (also known as the
adaptive transversal filter).
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the Nyquist. The FFT outputs are complex discrete functions of the sampling index, k, and

are approximately uncorrelated with each other, being in different frequency bands. These

are weighted with complex adaptive weights to produce Yk which is also complex. The refer-

ence channel of the adaptive filter is treated as a real complex value and the resultant error

is complex. Although Yk is complex its imaginary part will be small in general since the

reference signal's imaginary part is zero. In the LMS algorithm the weights are adapted as

complex weights.

Results of this wavenumber domain algorithm Werevirtually identical to the space domain

algorithm. There are two main disadvantages in the implementation of the wavenumber

domain algorithm compared with the space domain version (adopted in this study), viz.: (1)

computationally intensive and (2) the filter's length (L) is constrained to a radix 2 value to

accomodate the FFT requirements.

Although the LMS algorithm is numerically stable and converges to the true minimum

mean square, this is strongly dependent on the the appropriate choice of the parameter p.

(Cioffi, 1987). The convergence factor p. must be bounded by 0 and ALr' where ..\max is the

maximum eigenvalue of the input correlation matrix (Rang and Fransen, 1987). In the past.

Il was chosen empirically. Mikhael et al. (1984) demonstrate that an optimum convergence

factor m. be obtained by

L

P.k = 0.25/ I:drk-I) (5.11)
1=1

This is used in the present 2DAMH algorithm. Further stability can be insured by introducing

tap leakage (Long et al., 1987) such that 5.10 becomes

(5.12)

where 0 < a < 1; typically, a ;::0.997 - 0.999.

5.2.3 Computer simulations and discussion

Synthetic data representative of the MIF and of the IF contaminated lithospheric field (CLF)

were generated to test the various adaptive filters. The computer simulations were adopted

to approximate as realistically as possible the data and processing route. Several forms of

77



(',1

Figure 5.3: Structure of the wavenumber domain LMS adaptive filter.
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corrupting signals were tested to ascertain the filter's limitations. In all cases the !\fIF is

approximated by a zonal sinusoidal signal with some random line to line inconsistencies, viz.:

(1) random phase shifts between lines (small) and (2) random signal amplitude changes (up

to 40%). The lithospheric field was represented by a dipolar field.

Figure 5.4 is an example of the signal separation that is possible with the space-domain

2DAMH filter. A dipolar field is added to the MIF (see figure 5.4 b). The MIF is extracted

from the combined fields of figure 5.4 b (see figure 5.4 c) using the MIF of figure 5.4 (a) as

the reference signal. In this, worst case, example the MIF and the dipole fields are made to

be of almost identical wavelength and are in-phase. The filter may be made to cancel white

noise (typically ~10 to -15 dB; see e.g, Mikhael and Hill, 1988) from a signal if the reference

and signal channels are the same (Fig. 5.4 d).

Note that the filter was designed to cope with signals of varying characteristics such that

data integrity is maintained. This important facet of the filter is exemplified in figure 5.4

where sharp features of small amplitude of the desired signal are preserved.

It was originally hoped that an adaptive filter structure could be designed such that the

coherent signal (lithospheric) from two separate MIr contaminated lithospheric maps (for ex-

ample, from the dawn and dusk meridian maps) could be extracted. This approach contrasts

with that of Arkani-Hamed and Strangway (1985) where they extract the lithospheric signal

by averaging band pass filtered dawn and dusk datasets, All data adaptive filter structures

tested to date have been unable to achieve this goal. The use of the adaptive filter in deriv-

ing the MIF meets two objectives. Although the MIF is already isolated , it. is preferable to

extract the IF from two independent signal sources (i.e, the MIF and CLF); which is where

this process differs funadmentally from Yanagisawa (1983). The data sets are derived by a

similar procedure but assume different spatial and statistical definitions. Conclusions made

from evidence from two independent experiments, i.e. the MIF and the IF contaminated

lithospheric maps (for specific local times), is much less likely to be artifactual or rest on

faulty assumptions than from one experiment only. The adaptive filter also serves as all

independent means to verify the postulate that the IF is present in the Sq contaminated

lithospheric maps. :'f the IF were not present then the filter output would be corrupt and

would not approximate the reference signal.
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Figure 5.4: Results of computer simulations of the space-domain 2DAMH filter: (a) is the
simulated MIF signal with minor white-noise, (b) is a dipolar field (400 km reference alti-
tude) contaminated with the MIF and corrupted with minor white-noise, and (c) is the MIF
extracted using the data aptive filter where (b) and (a) are the signal and reference channels,
respectively. (d) serves as an example of noise cancellation on the MIF (a) (i.e. the MIF (a.)
is used as both reference and signal channels). Horizontal axes are in km and contours are
in nT.
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Chapter 6

Data. processing

The southern subcontinent of Africa is selected to test the newly developed data reduction

procedures. The objective, to reiterate, is to produce an anomaly map with the best possible

resolution and data integrity. Only then can interpretation be contemplated with respect

to correlations with known tectonic features, Procedures used to reduce the total-field mea-

surements of a near ..earth satellite for the purpose of generating lithospheric anomaly maps

are not standard as is outlined in Chapter 1. Implementation of two new algorithms in

this study, i.e. for altitude and ionospheric corrections, has led to a significant improvement

on previously published lithospheric anomaly maps of the region thus meeting the above

objective.

In summary, magnetic observations made from a near-earth satellite platform will com-

prise a total-field response from several contributing sources, viz.: (1) the main field, (2)

the external ring current and induction fields, (3) the ionospheric field and (4) of particular

interest in this study, the lithospheric field. In addition, the data will suffer from inherent

survey noise. The processing route endeavours to separate the various contributing com-

ponent magnetic fields observed by the satellite magnetometer. This Chapter details the

procedures used to generate the lithospheric and ionospheric maps of southern Africa. Two

new techniques, discussed III Chapters 4 and 5, have been introduced in the processing of

satellite magnetometer d!lta in favour of previously published algorithms I namely, the median

linear regression algorithm as an altitude correction and the two-dimensional data adaptive

algorithm for improved signal separation of the lithospheric field from the ionospheric field

or, simply, noise cancellation from maps,
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The results are presented as relevant ionospheri, and lithospheric maps and a synopsis

given.

6.1 Data selection

To begin with, the INV~B tapes were scanned for suitable data. Rejection of satellite passes

in the region of interest (OOE to 50° E and 0° S to 50° S) was based on, namely; (1) passes

that had a magnetic activity index .Xp , 2:: 3_ and (2) passes with local times outside the

0530-0630 and 1730-1830 meridians. Selected passes were stored, respectively, in dawn and

dusk files. Data for each half orbit were retained over the latitude range 600N to 600S. Each

such ha.lf orbit is corrected for the core, ring current and induction fields. Therealter altitude

and IF corrections are applied.

6.2 Main field correction

Separation of the main field is an unresolved problem as discussed in Chapter 2. Better,

higher degree and order spherical harmonic models are being developed regularly as in-

creased computing capabilities become available (see e.g. Schmitz et al., 1989; Cain et al.,

1989b). However, the problem is manifest in the spectral separation which to-date remains

unsolved. This problem is beyond the scope of this study. Since the most prominent Magsat

inveetig-uois use the MGST 4/81 (Langel et al., 1981) model provided with the INV-B tapes

it. seem'> sensible to standardise the present work to that model.

Tne main field model values are obtained from a truncated (degree and order 13) spherical

harmonic series and subtracted from the total-field response. This correction is applied

immediately to all selected passes. Once the selected data are corrected for th- core field

contribution and filed into their respective dawn and dusk meridians, the magnetospheric

and induction field effect'! are considered on a pass by pass basis.

6.3 Ring current correction

The geometry of the disturbance field msy be expressed by a potential fnnction of t''le form
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(6.1)

where a is the mean earth radius, r is the geocentric distance from the earth, 0 is the magnetic

colatitude and P1(rosO) is the first degree Legendre polynomial (Langel and Sweeney, 1971).

The coefucients E and I relate to the external and internal (inductive) components of the

field, respectively. Magnetic field intensity can be expressed as the gradient of the scalar

potential such that

b..B ::: -- \7V (6.2)

Correction for the disturbing external and induced internal fields is made bv fitting (in

a least squares sense) the function 6.2 to the data and subtracting this model to obtain the

residual. The coefficients E and I in the case of Magsat INV-B data are provided. However,

in the southern African region a preble ,1 arises where the model fit is unacceptable if the

given coefficients are used (Zaaiman and Kiilm, 1986). The problem relates to an anomalous

main field in this region which distorts dip latitudes. Zaaiman and Kuhn (1986) demonstrate

that this problem is almost entirely resolved if equation 6.2 is modelled using dip latitudes

defined at an altitude of 3 Re rather than at the observation altitude,

Figures 6.1 and 6.3 illustrate the poor model f.;.::. io, .;lip latitudes calculated at satellite

altitudes compared with those models where dip latitudes were calculated at equivalent ring

current altitudes of 3 Re (Figs 6.2 and 6.4). The effect is greatest on the dusk pass 211 (see

figures 6.3 and 6..1). This higher altitude ring current correction is not entirely satisfactory

on pass 211 but is an improvement. Note also that the 3 Re model does not differ from the

satellite altitude model other than in the region of anomalous dip latitudes.

The above results reaffirm the observations made by Zaaiman and Kiihn (1986). Since the

3 Re ring current model affects the anomalous region only and is an apparent improvement

on the given INV-B model, it was decided to apply this model in the processing of the

Magsat data. in the southern African region. New E and 1coefficients were calculated for

the selected passes. The coefficients of the INV-B ring current model were calculated for

the mid dip latitude range 0° to 45° to avoid effects from field-aligued currents in the polar
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Figure 6.1: INV-B ring current model for selected dawn passes. The solid line represents
the residual after core field subtraction, the dashed line the ring current model and the thick
dotted line the residual from the ring current correction.
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regions. Extrapolating the model to higher latitudes results in divergences. Because the area

of interest extends beyond the 45° latitudes the 3 RE model was derived to 60°.

Having removed the magnetospheric and related induction disturbance effects, the resid-

ual that remains represents the field responses from sources in the ionosphere and the litho-

sphere and, related altitude effects. The altitude effects are removed by applying the median

linear regression algorithm with different parameters in order to define: (1) a mean iono-

spheric field (MIF) and (2) an ionospheric contaminated lithospheric field (eLF). The two

fields (i.e. ionospheric and lithospheric) are then separated.

6.4 Mean ionospheric field and altitude reduction

The mean ionospheric field correction (MIFC) requires that a mean ionospheric field (MIF)

be derived and separated from the combined ionosphere-lithosphere residual after the core,

magnetosphere and induction field effects are removed. In Chapter 5 a means to derive the

mean ionospheric field is developed from the work of Yanagisawa (1983). The MIF derived

here differs from that work in that an altitude correction has been incorporated hy making use

of the median linear regression algorithm of Chapter 4. A MIF is derived by randomising the

Iitnospheric field component. This was achieved by stacking data for given local times 0600

and 1800 ±0030 in lacitude and longitude cells of 2° by 60'" respectiv-ly, These overlapping

bins ale moved in 0,5° increments to produce an equirectangular projection grid of half

degree centres.

Dip latitudes are commonly employed as a coordinate system in ionospheric studies. In the

southern African region dip latitudes are anomalous (dip latitudes asymptote to 65°). Using

these as a coordinate system becomes problematic, if not unusable, because of extreme shape

distortion of anomalies in the southwest Indian Ocean, All maps produced by Yanagisawa and

Kono (1984) exclude data in this region probably for this reason. The coordinate system for

the ionospheric field is neither geomagnetic nor geocentric! but intermediate. Consequently,

a geocentric latitude, longitude coordinate system was used to derive the MIF.

The structure of the Sq field not, only varies with respect to local time but also shows

lMaeda (1953) from a detailed spherical harmonic anelysis of the S'7 field introduced a new coordinate
system that appeared to be more suitable for the Sq field. this being somewhat intermediate between the
geomagnetic and geocentric systems.
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seasonal variation. The ionospheric current system is not fixed relative to the ecliptic but

moves slightly north and south in response to the (,ilt of the earth's rotational axis with respect

to the ecliptic. Consequently, it was thought prudent to derive MIFs on a seasonal basis.

Magsat data covers a period of seven months which spans the southern hemisphere's summer

solstice and autumn equinox. The data were processed over two periods of approximately

three months duration.

6.5 Contaminated lithospheric field and altitude reduc-
tion

Stacking data into small longitude-latitude bins (i.e. for a fixed geographical position) for a

specific local time will yield a lithospheric field value contaminated by the Sq field. together

with altitude variation effects and inherent survey noise. The median linear regression al-

gorithm is used to obtain an altitude corrected value. Because of the small periods used to

derive the fields it was necessary to increase the bin size to 4° by 4° in order to obtain a

sufficient number of data points for reliable results. These 4° by 4° overlapping bins were

moved in 0,5° increments to produce a half degree equirectangular grid compatible with that

of the MIF. The process is the same as that applied for the MIF. and differs in the statistical

and physical definitions discussed in section 6.4.

Both the MIF and the contaminated lithospheric field (Cl~F) were derived for two three-

month periods for their respective 0600 and 1800 local times. The MIF and the eLF are used

to obtain an improved ionospheric field separation with the use the adaptive filter discussed

in Chapter 5.

6.6 Ionospheric and lithospheric field separation

In Chapter 4 an improved ionospheric field separation was motivated by the method of

converging operations using data adaptive filters. Figure 6.5 illustrates the adaptive filter

structure employed to derive the ionospheric field (IF) for the different seasons and local

times.

The IFs are separated from the Cl.Fs to derive the respective lithospheric signals. These

signals are free from the ionospheric field components but contain white noise which differs for
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Figure 6.5: Schematic illuotration of the adaptive filter structure used to separate the iono-
spheric field from the contaminated lithospheric field maps.

90



each map produced. Adaptive noise cancellation from the two lithospheric maps is achieved

by the method of converging operations. The final seasonal lithospheric maps were prod: '"d

',/ith the adaptive filter structure sketched in figure 6.6.

6.7 Results and discussion

Figure 6.7 saliently summarises the data reduction route and procedures. Results of maps for

the various processing steps after the core, magnetosphere and induction field components

have been removed are given in detail for the first season (i.e. summer). Thereafter, the

relevant ionospheric and lithospheric field maps are presented for the autumn season. The

MIl' and eLF for the summer solstice '. cried at the respective local times (dawn and dusk)

are preicnted as figures 6.8 and 6.9.

Figures 6.10(a) and (b) are the dawn and dusk ionospheric fields extracted using the

adaptive filter structure of figure 6.5. The MIFs of figures 6.8 and 6.8 have had noise cancel-

lation applied for presentation purposes. It is encouraging to note that the respective MIFs

and IFs are nearly identical (see figures 6.8, 6.9, 6.10). This reinforces the original postu-

late of Yanagisawa (1983) that the IF is present as a contaminant within the contaminated

lithospheric signal (eLF) as defined here.

The ionospheric field maps are interesting in several respects, viz.:

• There is evidence for some non-zonal structure within these maps.

o More structure is present in the dusk map than in t.he equivalent dawn map.

~ The ambient amplitude of the dawn map is substantially higher (by approximately 3

nT) than that of the utlsk map.

o Several almost identical responses are present. in both dawn and dusk maps.

These aspects will be discussed below in the synopsis. The ionospheric fields of figure

6.10 are separated from the CLFs of figures 6.8 and 6.9 to produce the lithospheric maps of

figure 6.11. These two, are in turn, used to produce the final lithospheric map of figure 6.12

using the adaptive filter structure depicted in figure 6.6.
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Figure 6.8: Mean ionospheric field (a) and contaminated lithospheric field (b) dawn maps for
the Bummer solstice
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Figure 6.9: Mean ionospheric field (a) and contaminated lithospheric field (b) dusk maps for
the Summer solstice
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Figure 6.10: Sepatated dawn (a) and dusk (b) ionospheric field maps after adaptive filtering.
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Figure 6.11: Dawn (a) and dusk (b) lithospheric maps separated from the contaminating
ionospheric field.
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Figure 6.12: Lithospheric field map produced by the method of converging operations for the
summer solstice.
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Both dawn and dusk ionospheric field maps for the autumn equinox are presented in

figure 6.13. It is interesting to note that the topology of these Sq magnetic field maps is

almost identical. 'The lithospheric map for this season (Fig. 6.14) is, as required, a dose

approximation to the summer version (Fig. 6.12).

6.7.1 Synopsis of the ionospheric fields

Results of ionospheric field maps for dawn and dusk meridians for both seasons are com-

pelling. Both the summer solstice and autumn equinox, have produced very similar 10nO"

spheric field maps for the respective local times. The ionospheric fields however, differ in

regard to local time. In detail, there is some strong correlation of features between the dawn

and dusk maps, particularly, in the south.

These long-wavelength correlating ionospheric field signatures i.r the dawn and dusk maps

are suggestive of a non-ionospheric contributing source. If we assume that the method of

deriving the MIF does effectively randomise the lithospheric field component then these

correlating features represent residuals from the ring current model. The process of deriving

the MrF is primarily based on the zonal behaviour of the IF and so is the ring. current. The

ring current model is inadequate in the high latitudes (> 45°) where the effects of the polar

field aligned current system are present (see e.g. Figs 6.1, 6.2, 6.3 and 6.4). That these

signatures represent residuals from the ring current correction is supported by the fact that

the strongest effects are mostly manifested in the high southern latitudes. Although, these

rin;; current residuals Me ~"\trimental to Sq field analysis, their incorporation in the MIF

provides a useful means of -ext.:acting these from the target lithospheric field maps.

From the above' arguments it seems reasonable to assume that, the MIF preserves, in

addition to the ring current residuals, residuals from the core field separation. Thus, in

principle, the anomaly maps presented here are free from residuals from inaccuracies of the

ring current and core field models.

6.7.2 Synopsis of the lithospheric anomaly field

The lithospheric anomaly maps of figures 6.12 and 6.14 are almost identical and differ only in

minor contour details. These two maps call be used as a. measure of experimental precision.
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Figure 6.13: Dawn (a) and dusk (b) ionospheric field maps for the autumn equinox.
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Figure 6.14 Lithosheric field map for the autumn equinox.
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The r.m.s between the two maps is 0,94 nT which is substantially smaller than the system's

data accuracy of 5.8 nT (Langel et al., 1982).

The most dominant feature of the anomaly map I;; the northeast trending 'high' with a

contiguous (to the northwest) 'low' in the southeast quadrant of the map. This anomaly (the

Agulhas anomaly) is the focus or a detailed interpretation in Chapter 7. Another prominent

feature is the isolated 'high' situated in the northwest quadrant. This high coincides with the

Walvis Ridge. . ':I has recently been used as evidence for remanent magnetisation in Magsat

data (Fullerton et al., 19S9a).

An,» .I" amplitudes [i.e, the Walvis Ridge and the Agulhas) are somewhat reduced from

other published maps (e.g, Langel et al., 1982; tdlert.on et al., 1989aj Lotter, 1989). The

amplitude reduction is of the order of 3 nT with respect to Lotter (1989) and Langel et al,

(1982) maps. These discrepencies are possibly related to processing residuals removed with

the IF correction.
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Chapter 7

Anomaly map of southern
Africa

A long-term objective of this study is to compile satellite altitude magnetic anomaly data

for large continental reconstructions such as Gondwana. An important consideration in the

magnetic palaeo-reconstruction is whether or not magnetic responses should be incorporated

in that reconstruction, Since some magnetic anomalies are considerably younger than others

and are of oceanic origin. The southern African region was selected for the purpose of

assessing the new processing techniques and for interpretation, for two reasons, viz.: (Ij it

is a focal point in a Gondwana. reconstruction an-l (2) it is bordered by oceanic satellite-

altitude magnetic anomalies, such as the Walvis Rld:~e (Fullerton et <>01., 1989a), and the

Agulhas Plateau (Fullerton et al., 1989b; Antoine, 1989).

Magnetic signatures of continental southern Africa have been studied on several occasions

with differing results. For example, Lotter (1989) derived a crustal magnetisation model

from the total-field satellite anomaly measurements. This magnetisatvm map was compared

with the subcontinental geology and in particular with tectonic provinces. A high degree

of correlation was noted, although this was not. ubiquitous. Where disagreement occured,

it was attributed to an effective change in the magnetisation model due to variation in the

depth of the Curie isotherm, which was assumed constant in the model, Arnott, (1989)

compared the total-field satellite anomaly map with the heat flow regime deduced from

silicate geothermometry, Correlation between ~he ','at flow data for southern Africa (which

is presumed to be an indirect measure of the Curie isotherm; Mayhew, 1985; Johnson et al.,
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1986) and the Magsat anomaly map is not definitive. The most notable correlation between

datasets was noted between the heat flow data and a geanticlinal structure identified as

the Vredefort axis; whicu itself is inferred from regional aeromagnetic data (Corner et aI.,

1990). It is thus apparent that agreement between previously processed Magsat anomaly

data, geology and other geophysical parameters such as heat flow distribution are tenuous in

detail.

The most prominent oceanic anomalies bordering southern Africa. are the Walvis Ridge

and Agulhas anomalies. The Walvis Ridge anomaly has been studied through forward mod-

elling by Fullerton et al. (1989a). This anomaly is explained by the presence of substan-

tial thermal remanent magnetisation (3 Aim) in a crust thickened during Cretaceous Quiet

Times. Fullerton et a1. (198gb) in studying the Agulhas anomaly and its geomorphic con-

jugate, the Maud Rise (situated in the South Atlantic], propose that they are both oceanic

structures and correlate well with the areal extent of Cretaceous Q.liet Zone ocean floor.

Antoine (1989) interpreted the positive Agulhas anomaly to be the result of a reversely mag-

netised oceanic source because of the strong contiguous low situated to the north; the two

anomalies were interpreted to originate from a single body giving rise to a reversed polarity

pair. In order to explain the size of the source and the distinctive palaeomagnetic signa-

ture a. model was postulated in which a large volume of melt is generated in a geologically

short time span. Partial melting by decompression due to passive upwelling of hotter than

normal asthenosphere in a rifted continental lithosphere was postulated as an appropriate

mechanism.

7.1 The data set

The data reduction route and procedures are considered in the preceeding Chapters. The

summer solstice total-field dataset (Fig. 6.12) was selected for the interpretation. To obtain

maximum benefit from the dataset, it is displayed and enhanced using an (2S image processor.

Bathymetry and Seasat data were co-registered with the nIagsat, data. Figures 7.1, 7.2, 7.3

and 7.4 represent the Magsat, bathymetry and Seasat data, respectively, To enhance the

short-wavelength aspects of the image the horizontal gradients are sun-shaded to create a

shadowgram which, in turn, is coded as the intensity of the image while the hues of the image
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represent field amplitude (see e.g. Antoine et al., 1999). Figures 7.1 and 7.2 differ in that the

total-field values of figure 7.1 are coded linearly whereas thOl:>t:ai figure 7.2 are coded using

a stretched histogram.

As an additional interpretation aid, the Magsat data were combined with those of the

bathymetry a rd Seasat. Two images were produced in which image intensity is coded with:

(1) the bathymetry (Fig. 7.5) and, (2) the Seas at (Fig. 7.6) shadowgrams; while the hues are

coded with Magsat's total magnetic field. Severai shadowgrams were tested, the best results

were obtained for an illumination azimuth from the north with an elevation of 40°.

7.2 Interpretation

The principal features of figures 7.1 & 7.2 are: (1) .he intense rectangular-shaped Agulhas

anomaly oft' the southeastern coast of Africa, (2) the intense Walvis Ridge anomaly situated

off the west coast of Africa at the 20°5 latitude and, (3) the northerly trending lower-intensity

high off the southwestern coast of Africa. These features are clearly oceanic and will be the

focus of this interpretation. Several isolated, low intensity responses occur within the south-

ern African subcontinent and are also considered. The features in the extreme north of the

image are excluded because they are outside the area of interest. The northern most anomaly

is located ovec the Congo basin and constitutes the southern positive polarity shoulder of

the Bangui anomaly (see Hastings, 1982; Frey, 1982). The positive anomaly in the northeast

occupies the Comoros-Seychelles region of the Indian ocean. It has not been the focus of

specific interpretation although its response is used to support Frey's (1982) generalisation

that positive Magsat oceanic anomalies coincide with oceanic rises or plateaux.

1.2.1 Modelling

Several profiles ,,:,ere selected for forward modelling purposes, the results of which are given

in figures 7.7a,b and c. Because of the 3-D nature Qf the continental magnetic anomalies

the profiles were primarily selected to approximate principal profiles to the most prominent

oceanic features. A 2-D program, based on the Talwani algorithm (Talwani, 1965), was

used for the forward modelling. The shape and amplitude of the magnetic field may not be

perfectly represented by a model that uses a 2-D assumption of a body of limited strike length.
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Figure 7.1: Sunshaded image of Magsat total magnetic anomaly field. Hues are coded linearly.
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Figure 7.2: Sunshaded image of Magsat total magnetic anomaly field. Hues are coded using
a stretched histogram. The transparent overlay may be used to identify magnetic anomalies
and traverses that were extracted for modelling purposes. Anomalies are annotated as follows:
Walvis Ridge (WR.), Cuanza (C), Zambezi (Z), Mozambique (1\1Z), Kalahari (K). South em
Cape (SC), Southeast Atlantic (SEA), Agulhas (AG).,
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Fisure 7.3: Sunshaded image of ocean floor bathymetry and continehtal topography.
i

i
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Figure 7.4: Sunshaded image of Seasat gravity field.
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Figure 7.5: Sunshaded composite bathymetry-Magsat image. Image intensity is Lhe
bathymetry and ':,jpogt'aphy shadowgram; hues represen, Magsat magnetic total-field. The
transparent overlay outlines first order orogenic provinces.
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Figure 1.6: Sunshaded composite Seasat-Magsat image. Image intensity is the Seasat grav~
ity field shadowgram; hues represent Magsat magnetic total-field. The transparent overlay
delinertes ocean floor geomorphic and geophysical features.

]11



Generally, the amplitudes are the most affected. Amplitudes are strongly underestimated

with strike lengths below approximately 3 times the source to sensor separation, at which

point the amplitude attains a value of 80% of the true amplitude (Nettleton, 1976). For the

reference datum of 400 krn used in this study the 2-D assumption fails Ior bodies of strike

lengths below 1200 km, The Walvis Ridge anomaly (WR, Fig. 7.7c) has an anomaly half-

width of approximately 1200 km and is thus reasonably represented using the 2-D assumption.

The variable declination and inclination of the ambient polarising field along the profile is

ta.ren into consideration in the models. The inclination Over this region (i.e. from the Walvis.

Ridge southwards} varies marginally from -560 to -640 while the declination varies over a

range of some lbo, i.e. from -150 to 30° (see Parkinson, 1983; p72).

Magsat anomaly data cannot resolve the depth to top of causative sources in the range of

typical crustal depths Which represents, at a maximum, 10% of the sensor altitude. Similarly,

the depth extent, within this range, is an ambiguous parameter that cannot be resolved from

these data. The most diagnostic information available from Magsat anomaly data are the

lateral changes in maguetisation, Although, attempts have been made to generate magnetic

crustal type-sections, for both continental and oceanic crust [e.g. Hahn, et al., 1984; Hayling

and Harrison, 1986), the inverse problem remains ambiguous. For this reason it was decided

to model the profiles using 10km tabular sla'is for both continental and oceanic sources. The

resultant volume-integrated magnetisation may then be interpreted in context with the local

geology; this may require thining the slab with a resultant increase in magnetisation or vice

versa.

7.2.2 Continental anomalies

The continental anomalies, viz.: the Mozambique (MZ), Zambesi (Z), Cuanza (C) and the

Kalahari (K) (Fig. 7.2); are localised responses. These anomalies represent a lateral change in

the total integrated lithospheric magnetisation. This could represent all lncreass in magnetic

mineral assemblages or a variation ill thickness of the lithosphere; not necessarily mutually ex-

clusive. As a. generalisation, the continental anomalies appear i.o be localised within tectonic

provinces (e.g. the Southern Cape, Kalahari, Zambez] and Mozambique anomalies). This

correlation maybe seen by using the transparent overlay, to figure i.5, on which the orogenic
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Figure 7.7: Forward modemng of selected profiles A-A'(a), B-B'(b) and C-C'(c). The solid
line is the modelled field, the dashed line the observed field. The location of the profiles
is shown In figure 7.2 and 7.5. Bracketed values are the apparent magnetisation contrast
(A m-1 in. a 30000 n'I' field) and are within the ranges as given by Hayling (unpublished
reprint). All polarisation vectors are parallel to the ambient inducing magnetic field with the
exception of the Agulhas anomaly which yields a remanent inclination of _'12° (d. -64°).
Magnetic anomalies are annotated tiS follows: Walvis Ridge (WR), Kalahari (1\:), Southern
Cape (SC), Agulhas (AG), Southeast Atlantic (SEA), Zambezi (Z}. Mozambique (MZ).
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provinces are delineated. The local geology of the continental areas underly ing the satellite

magnetic anomalies differ considerably with respect to lithological assemblages, metamor-

phism and deformation. These areas are described, in brief, in order to ascertain whether

or not there is a. local or a common source for the apparent local increase in lithospheric

magnetisation.

It must be borne in mind, when viewing the magnetic anomaly images, that these are

representative of a 400 km reference altitude. The spatial influence of a single magnetic

dipole source at this reference altitude is equivalent to an area of 4° by 4°. Because of the

inherent errors of data acquistion and processing, the interpreted anomaly boundaries should

be viewed, in consequence, as being 'fuzzy'. The best possible spatial resolution given by

Sailor et al, (1982) is 250 km (approximately 2° at these mid-latitudes).

Southern Cape anomaly

In order to model the positive southeastern Agulhas anomaly (profile A-A'; see Figs 7.2 and

7.7a) satl's~torally, two contiguous sources were requited, i.e. a unit of low magnetisation

contrast in the\'ilorth (the Southern Cape anomaly, Se) and a unit of high apparent mag,

netisation cont:tast in the south (the Agulhas anomaly, AG). The high contrast source (AG)

required a polarisation vector with a remanent inclination of approximately -72° whereas

all other sources could be modelled for normal inducing field inclinations. An acceptable fit

could be obtained, in the modelling of the intense positive Agulhas anomalous signature, only

by incorporating the lower-contrast induced magnetisation immediately to the north (SC)l.

Because the signature of the anomaly is manifested as a change of the northern gradient of

the intense positive Agulhas response, it is not possible to discern this response on the images

and therefore indeterminable other than through modelling along the profile. This modelling

is in contrast to earlier preliminary interpretations of Antoine (1989), where remanence was

used to model both the positive and the northern contiguous negative response as an anomaly

pair.

Th3 Southern Cape anomaly occurs in the eastern region of the Cape Fold Belt and the

IThe uncertainties inherent in the anomaly map (see section 6.7.2) make alternative models possible
although the author is of the opinion that the remanent inclination required by the modelling is evident. to
a first order, in the data.
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Namaqua-Natal Belt. The Namaqna-Natal Belt borders the south and southwestern Kaap-

vaal Craton. Most of the southern central portion of this tectonic province is overlain by

Karoo sediments. It is exposed in the northwest and in the east. Basement rocks consist of

gneisses, schists and granitoids of amphibolite to granulite facies metamorphism. Contigu-

ous to, and south of the Namaqua, latal Belt is the Pan-African Damara-Gaciep-Malmesbury

Belt which irs associated with the Cape Fold Belt (a highly folded sequence of supra-crustal

rocks) (De Beer and Meyer, 1984). The basement rocks comprise metasediments, metavol-

canics a.nd granites of low metamorphic grade.

Although the boundary of the Namaqua-Natal Belt is mostly unexposed it is mapped by

means of a distinct gravity signature (De Beer and Meyer, 1984). This tectonic province is

distinguished by an anomalous electrical conductivity belt (Southern Cape Conductive Belt)

and by a strong regional magnetic anomaly (Beattie anomaly). De Beer and Meyer (1984)

interpreted several radial gravity profiles from the Kaapvaal Craton across the Narnaqua-

Natal Belt and consistently derived a thicker, denser crust for the tectonic province \"th

respect to the adjacent. Kaapvaal Craton.

Mozambique anomaly

The Mozambique anomaly extends II' a northwesterly direction from the eastern end of the

oceanic Agulhas anomaly. It overlies Mozambique and terminates within Zimbabwe at the

northern domain of the Limpopo Belt. The anomaly appears to be strongest in the north over

the mobile belt. The contribution to this source may be two fold, that is: (1) a contribution

from the speculative Cretaceous Oceanic crust Underlying Mozambique (3.D. Fairhead pel's.

cornm.) and (2) an origin within the Limpopo Belt.

The Limpopo Belt separates the Kaapvaal and Zimbabwe Cratons. Three zones are

recognised. The central zone contains large scale folding and interference structures and

consists of medium- to high-grade gneisses, metasediments and rnetavolcanics. The northern

and southern zones of the Limpopo Belt are characterised by high-grade, granulite fades.

rretamorphism of similar lithologies and by a consistent alignment of foliation of the gneisses

(Hunter and Pretorius, 1981). The etructure of the belt is asymmetric and has a large (400

g.u.) isostatic gravity anomaly over the southern marginal zone (Coward and Faiehead, 1980;
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De Beer and Stettler, 1988). Geoelectrical and gravity modelling by De Beer and Stettler

(1988) show that this isostatic anomaly is caused by dense middle- to lower-crustal material

in t.he upper 10 km of the crust.

Results of refraction and reflection seismic surveys, and gravity modelling by Barker (pers.

comm.) of a traverse from the Kaapvaal Craton across the Limpopo Mobile Belt suggests

that the data are consistent with a Moho depth of 45 km.

The western border of Mozambique has a distinctive, 700 krn, north-south trending vol-

canic belt (Lebombo line) which is associated with a pronounced isostatic gravity an=maly,

Darracott and Kleywegt (1974) interpreted gravity profiles across the Lebombo volcanic line

into Mozambique. In their interpretation they show that only part of the anomaly can be

accounted for by the basal basalts of the Lebombo monocline, and the remainder of the signal

to the east must be a crustal effect.

Kalahari anomaly

Another region of elevated apparent magnetisation occurs at. the intersection of the Irumide

and Namaqua-Natal orogenic belts. The anomaly is termed Kalahari because it is situated at

the edge of the Kalahari basin which extends eastwards into Botswana. In detail, the anomaly

is located at a complex intersection of several subprovinces, namely: Gordonia, Richtersveid

and Kheis (Stowe, 1986). The region comprises low metamorphic grade, metasediments and

metavolcanics. No geophysical studies of regional significance have been undertaken over this

anomaly. One of the radial gravity profiles studied by De Beer and Meyer (1984) intersects

this region. This profile shows no apparent change of the regional Namaqua-Natal Belt

signature.

Zamhesi anomaly

Bordering the western edge of the 7.imbabwe Craton. the Zambezi anomaly parallels the

Lomagondi Province and extends northward into the Zambezi Belt (at the intersection with

the Irurnide) and into the Lufilian arc (Cahen et al., 1984). The assemblage of rocks com-

prising the Zambezi tectonic Belt are broadly described by Cahen et at. (1084) as high grade

metamorphites, Within the Lufilian arc a sequence of strongly folded sediments become pro-
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gressively metamorphosed and intruded by granit. 3 southward. This palaeo-thermal increase

is reflected in northern Zimbabwe (Clifford, 1970). This region bears the imprints of several

late Precambrian tectono-thermal events.

Cuanza anomaly

The most prominent of the southern African continental anomalies is the Cuanza anomaly

in north Angola. This anomaly is located over the southern extension of the West Congolian

Belt. The Cuanza anomaly occurs over a granulite facies metamorphic terrain comprising

enderbrites, charnockites, kinzingites and granulite gneisses preserved in younger granite-

gneissic rocks (Cahen et al., 1984).

Darnara anomaly

North of the Kalahari anomaly, ,1artially overlying the Damara Belt, and bordering the

Namibian west coast, is a region of elevated magnetisation contrast. The Damara Belt, is a

complex orogenic unit comprising a coastal and an intracratonic branch. The coastal branch

is described as the Koakoveld orogen by Cahen et a1. (1984), which extends a!ung the coast

of northwest Namibia into Angola. The central zone of the northeasterly '.rending intracra-

tonic belt is the site of high-temperature medium pressure metamorphism, granitisation and

anatexis (Coward, 1983; Hartmann et al., 1983). The lithologies within the Damara and

Kaokoveld orogens consist mostly of metasediments and metavolcanics. Metamorphism in

the east of the Kaokoveld orogen is low-grade and increases westerward towards the coast

where it is high-grade.

Seismic refraction profiles indicate that the Damara orogen shows local crustal thickening

up to approximately 50 km (Green, 1983). Aeromagnetic data over the central zone record

st:r~')ngelevated magnetic responses from ncar surface supracrustal sources (Corner, 1983).

Electrical sounding studies in the area have confirmed observations of an earlier magneto-ne-

ter array study that a prominent conductive structure coincides with the Damara Belt. This

conductive structure has a probable minimum thickness of 20 km and occurs at a depth of

approximately 10 km (Van Zijl and De Beet, 1983).
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7.2.3 A tentative model for the continental anomalies

The broad picture that emerges from the above observations is that the positive Magsat

lithospheric apparent magnetisation contrasts are localised to orogenic belts. In detail the

individual areas are quite diverse in local lithological assemblages, tectonic history and struc-

ture. Their metamorphic grades are, in general, high.

Because the magnetisation contrast as observed by Magsat is representative of the total

volume-integrated magnetisation, any model for increased magnetisation must reflect either

an increase in the thickness of a uniformaly magnetic crust, or an increase in the concentra-

tion of magnetic mineral assemblages, or both. Since the modelling required neither excessive

magnetisations for the causative sources nor large regional contributions, it can be argued

that these results are congruent with the postulate of Wasilewski (198'1), '..hat the magnetic

and seismic Mohos are, equivalent, other than in regions where the Curie isotherm is shal-

lower. Further, It follows that an increase in crustal thickness and in rnagnetisation may be

responsible for the observed continental Magsat anomalies for the reasons given below.

Generally, the crustal thickness of young orogenic belts is considerably greater than that

of old Cratons (see e.g, Green and Durrheim, in press; Green, 1983; De Beer and Meyer,

1984; Reeves, 19'15: 'i'anner and Gibb, 1979). For example, the average Moho depths are

in the order of 32 km for the Kaapvaal Craton and 42 krn for the surrounding mobile belts

(Durrheim, 1990). In addition to the increased crustal thickness, these tectonic belts have

a higher heat flow than the Cratons, the ambient values being around 60 and 40 m Wm-2,

respectively (M.Q,W. Jones pers. comm.; Jones, 1988 and 1987). It can be hypothesised

that there is a direct correlation between heat flow (crustal temperature gradient), crustal

thickness and crustal rnagnetisation through the Hopkinson effect:!. This relationship is

illustrated in figure 7.8. Several typical geotherrns from the Namaqua-Natal Belt and from

the Kaapvaal Craton (Jones, 19l:)?lare represented. As indicated in the figure the maximum

Hopkinson effect occurs in the 1000 C broad region below the Curie isotherm. Moho depths

for the craton and for the mobile belts are also indicated, they serve to define an effective

2The effect of temperature on rock magnetism is to increase the magnetic susceptibility, With increasing
temperature the magnetic susceptibilty increases, reaches a maximum (Hopkinson peak, approximately 50° -
100°C below the Curie isotherm) and falls off rapidly just before the Curie temperature is attained. The
width and shape of the peak is related to the blocking temperature spectrum of the magnetic minerals. A
modest enhancement of susceptibility by a factor of 2 for crustal rocks is entirely feasible [Dunlop, 1974).
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increased magnetisation window as a result of the Hopkinson effect.

In addition to the postulated Hopkinson effect as a possible contribution to crustal mag-

netisation of tectonic belts there may be an additional contribution from serpentinisation of

the crust; which may be mutually exclusive. Some mobile belts have middle- to lower-crust

electrical conductivity anomalies (De Beer and Meyer, 1984; De Beer and Stettler, 1988;

Miller, 1983; Gough, 1989). These electrical conductivity zones are an indication of an in-

crease, at depth, in water COD ent within orogenic belts (see e.g. Hyndman and Shearer, 1989;

Varlyan and Shilovski, 1989). The presence of water may result in serpentinisation and con-

sequently an increase in magnetite content (Winkler, 1974; Turner, 1968). Serpentinisation

reaction curves from Winkler (1974) are indicated on figure 7.~. Because experimental data

do not extend into the high pressure regimes these curves are extrapolated in the diagram,

7.2.4 Oceanic anomalies

Oceanic anomalies bordering southern Africa are the Walvis Ridge (WR), the Southeast

Atlantic (SEA) and the Agulhas (AG) anomalies (Fig. 7.6). The Walvis Ridge anomaly is

three-dimensional in appearance, relatively intense (4,5 nT in amplitude) and is located just

off the Namibian coast at latitude 200S where the Walvis Rise meets the African continent.

The Southeast Atlantic anomaly is located off the west coast of southern Africa, South of

the Walvis Ridge anomaly and although parallels the coast, has a slight but persistent trend

that is some lOoE away from that of the continental margin southwards. Located off and

contiguous to the southeast coast of southern Africa, in the Souhtwest Indian Ocean, is an

intense an·j extensive positive magnetic response, the Agulhas anomaly.

The two profiles of figure 7.7(a) and (b) are an interpretation ofthe Agulhas and Southeast

Atlantic anomalies. In the case of the Agulhas anomaly a. total magnetisation vector with an

inclination of -720 was required by the modelling. Assuming a n-» tal induced magnetlsation

component of inclination -640 at 0.4 Aim (Hayling and Harrison, 1986) and a steeper

resultant vector of magnetisation 1.4 Aim (assuming the same declination for both vectors),

a remanent vector of inclination -760 and", 1,0 A/m intensity is estimated (for a 10 krn thick

crust in a .....30000 nT field). It is not possible tc'J establish the inclination of any remanent

magnetic vector from the Southeast Atlantic anomaly since the profile is essentially magnetic
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East-West; the presence of remanenc-e can only be inferred from anomaly amplitudes and

from its location in the ocean floor.

Ma.gnetisation of the oceanic crust differs considerably from that of the continents. Models

of oceanic crustal magnetisation comprise predominantly an average induced component of

some 0,4 Aim (over the entire 6 km thick crust) and a TRM (which may be as high as 6 A/m)

of the 2 km basal plutonic units and the top 0,5-1,0 krn basalt layer (Hayling and Harrison,

1985; Arksni-Hamed, 1988; Hayling, unpublished preprint; see also Chapter 2). With the

exception of the Jurassic and Cretaceous normal polarity epochs, the sea floor hal'; recorded

TRM as a regular and continuous alternation of polarity reversals of the geomagnetic field.

As a. working approximation, it may be argued that, the total TRM contribution of the

total anomaly field for the magnetically striped ocean floor will be zero at satellite altitudes.

In contrast, the periods of prolonged normal polarity of the geomagnetic field should be

manifested in the satellite total field anomaly data (Hayling and Harrison, 1986). In this

respect, the southern African continent is bordered by the Cretaceous Quiet Zone (KQZ) on

the west and southeastern coasts. In essence, the three magnetic oceanic anomalies (SEA,

AG and WR) correlate closely with the KTZ (Cande et al., 1989).

The Southeast Atlantic anomaly

In detail, the anomalies differ considerably, The Sou; ueast Atlantic anomaly has an amplitude

response that. is consistent with a magnetieation contrast. of 0,4 A/m. This must either reflect

a thickening (100%, assuming induced rnagnetisation) of the oceanic crust or an increase in

remanent magnetisation from the KQZ. The latter option seems more appropriate, since

there is 110 geophysical evidence (seismic Or gravity) for crustal thickening in this part of the

Atlantic ocean (Chave, 1979; Detrick and Watts, 1979). An aspect of the Southeast Atlantic

anomaly that is enigmatic at present, is til: NNE gross trend. The anomaly, in the extreme

South, terminates approximately at the Agulhas fracture zone; beyond which it appears to

branch.
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The Walvis Rid.ge anomaly

The Walvis Ridge anomaly has a rnagnetisation of 1,3 A/m and contrasts strongly with the

Southeast Atlantic anomaly, The Walvis Ridge is an aseismic oceanic rise and is composed

mostly of basalts (Detrick and Watts, 1979). It is generally accepted that such ridges (e.g.

Walvis, Rio Grande and Ninetyeast) are formed over 'hot spots' centered on or near mido-

cean ridges (Morgan, 1971). Chave (1979), studied the lithosphere structure along the Walvis

Ridge and neighbouring Cape basin using Rayleigh wave group velocity dispersion. He found

that the results for the Walvis Ridge were consistent with a crustal thickening to 12,5 km and

with an anomalous upper-mantle low shear-wave velocity (4,25 - 4,35 km/s to depths of 45

km). The seismic ray path adjacent to the ridge (south) showed no crustal thickening; e"n~

porting the above postulate that the SEA results primarily from increased KQZ remanence.

Detrick and Watts (1979) support this crustal thickening below the Walvis Ridge from an

analysis of isostasy. They also observe a difference in isostasy between the East and West

Walvis Ridge. The eastern Walvis Ridge is locally compensated by an overthlckening of the

crust in the order of 15~25 km. The western end of the rise was found to be morphologically

and structurally different having an effective elastic plate thickness of 5·8 km. Fullerton et

al. (1989a.) argue that the Walvis Ridge Magsat anomaly is the result of TRM (3 Aim, for

the entire layer 3) acquired during Cretaceous Quiet times (KQT).. Assuming that the 0,4

Aim magnetisatlon of the Southeast Atlantic anomaly (of this dataset) is representative of

KQZ TRM, the Walvis Ridge magnetisation of N 1,3 Aim (Fig. '/.7c) is consistent with the

observed crustal thickening of a factor of 2.

The Agulhas anomaly

The Agulhas anomaly is the largest and 11' ,_,t intense Magsat anomaly within the southern

African region. This anomaly is delineated by several ocean floor features, for example:

(I) the northern boundary coincides with the Agulhas Fracture Zone (in the west), which

follows the continental shelf in the east, into the Maputo embayment; (2) the eastern spur (of

the almost rectangular-shaped Agulhas anomaly) coincides with a similarly shaped Seasat

depression which is truncated in the extreme east by the Davie Ridge and; (3) the western

and southern perimeters roughly delineate the western and southern limits of the bathymetry
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and Seasat highs of the Agulhas and Mozambique Plateaux.

Qualitatively, the Agulhas anomaly appears to have internal structure, namely, the eastern

spur is of lower intensity; the truncation of this spur occurs at the Prince Edward Fracture

Zone. Fullerton et al. (19S9b) believe that TRM , acquired during KQT, explains the large

magnetisation contrast of the Agulhas anomaly. The modelled profile (A-A' Fig. 7.7a)

confirms this postulate. The magnetisation contrast is 1,4 A/m as compared with 1,0 and

0,4 A/m for the Walvis Ridge and Southeast Atlantic anomalies, respectively. The Agulhas

magnetisation contrast is of the same order as the Walvis Ridge anomaly, By analogy,

therefore, it can be argued that the Agulhas Magsat anomaly reflects a thickened oceanic

crust. 1'h~lower-intensity spur of the anomaly may reflect, by comparing with the SEA, that

part of the KQZ ocean floor of normal thickness.

An increase in thickness of the oceanic crust in the Southwest Indian Ocean io consistent

with free-air gravity interpretations along a 21 km traverse by Graham ann Hales (1965) over

the Agulhas Plateau (north-south profile), and along a 27-31 km traverse by Doucoure and

Bergh (unpublished prep tint) over the Mozambique Ridge (east-west profile). 'Iucholke et al.

(1981) comment, from refraction lines over the Agulhas Plateau, that no mantle refractions

could be observed from refraction spreads a. largeas 72 km. This approximates a depth of

investigation of 17 km far average oceanic crust. aud upper-mantle velocities, i.e, 17 km is a

lower limit for the crustal thickness of the Agulhas plateau.

7.2.5 Implications to continental break-up of Gondwana

Although, the dispositions of the three oceanic Magsat anomalies broadly correlate with the

Cretaceous Quiet Zone, in detail these call be focussed to correlate with a zone within KQT

that is older than anomaly 34 (Fig. 7.6) (Cande et al., 1989). These n1(l~netisation anomalies

delineate oceanic floor for Aptian-Albian reconstructions (Fig. 7.9) (Unternehr et al., 1988;

Rabinowitz and Lallrecque, 1979). To account for the lack of magnetic anomalies in the KQZ

of the equatorial Atlantic, Hayling and Harrison argue that KQZ would not be observed from

satellite altitudes because of the amplitude and inclination of the polarising geomagnetic field.

This is not valid, because: (1) at t.1L geographic equator inclinations at" -250 ,Parkinson,

1983, p72) and (2) the oceanic anomalies terminate abruptly north of the Walvis Ridge.

o
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The distribution of magnetic ocean floor is consistent for an Aptian-Albian reconstruction.

The interpreted remanent magnetisation veetor (-760) for the Agulhas anomaly would also

be consistent for the southerly palaeolatitudes during KQT (see e.g. Smith et al., 1981;

Weijermars, 1989; Piper, 1988).

It follows, from the above, that these oceanic Magsat anomalies arise from a time frame,

between pre-fragmented Gondwana and the end of early Cretaceous, recorded as a contrast

in magnetisation of the oceanic crust. This contrast in magnetiaatien is attributed, in the

first instance, to remanent rnagnetisation acquired during the Cretaceous normal polarity

epoch and, in the second, due to local thickening of the crust.

It is opportune to view the Agulhas anomaly here within the framework of a reconstruction

of Gondwana (Fig. 7.10). This zeconstruction is based on de Wit et al. (1988) but. is

cognisant of the controversial nature of such reconstructions, particularly for West Antarctica.

The configuration of' microplates in figure 7.10 is presented as a compromise and is not

intended to imply preferred orientations at this stage. For example, the fit of southern Africa,

South America and the Agulhas Plateau is based upon the model of Martin and Hartnady

(1980), whereas East Antarctica and southern Africa are juxtaposed in a manner similar

to that proposed by Lawver and Scotese (198;). The overlap of western Drenning Maud

Land and tho coastal area, of Mozambique is based on geophysical and geological constraints

(Grantham et al., 1988; Corner, 1989; Hodgkinson, 1990). The position and orientation

of the Ellsworth-Whitmore Mountains microplate is probably the most contentious issue

currently being addressed in West Antarctica, anc is shown here as a compromise between

that proposed by Watts and Bramall (1981) and S..orey et al. (1988a). Haag Nunatak has

been fitted in a position similar to that of de ""it et at. \ 1988}. It is based on the geological

comparison of these rocks with other areas of East Antarctica and its apparent anomalous

position within West Antarctica (Storey et al., 1988a).

In the above reconstruction, the Agulhas anomaly apparently underlies a large portion of

Gondwana, encompassing part of \Vestern Drenning Maud Land, the Falklands and Agul-

has Plateaux and, the microplates of \Vest Antarctica (South Georgia, Ellsworth-Whitmore

Mountains, Haag Nunatak, Berkner and Filchner plates). Magmatism is widespread it) this

region and overlaps widely, in time, with the fragmentation history of Gondwana. For ex-
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ample, the extensive Karoo basalts of South Africa spanning a period of 220~130 Ma with a

peak at ca 190-180 Ma (de Wit et al., 1088). The Dufek intrusion (Fig. 7.10) has been asso-

dated with the voluminous basaltic rocks of the Ferrar Group, which occur throughout the

Transantarctic Mcuntains and are of middle Jurassic age (170-180 Ma) (Ford and Kistler,

1980). Mafic magmatism of similar age occurs in the Theron Mountains in Coats Land

(Brewer and Clarkson, 1987), and in western Drenning Maud Land in the Kirwanveggen

(Harris et al., 1987) and Vestfjella areas (Peters, 1989). In this region the topographically

defined Pencksokket is commonly interpreted as a failed rift (Barton et al., in press). Mid-to

late-J urassic rift-associated magmatism is also present in South Georgia, where the Drygalski

Fjord complex has been interpreted to result from continental thinning and the formation

of oceanic-type crust (Macfronald et al., h'J87). Granitic rocks in the Ellsworth-Whitmore

Mountains area have been dated at between 180-170 Ma and, have chemical signatures char-

acteristf vithln-plate granite types (Storey et al., 198Bb). He ascribes these granites to

have an origin from " large-scale underplating of mafic magma and crustal melting in response

to thermal disturbance in the Gondwanaland lithosphere related in some way to break-up of

the supercontinent" .

Antoine (1989). from previous Magsat data processed by the staff of the Hermanns Mag-

netic Observatory, interpreted the causative source of the Agulhas anomaly as an extensive

slab of reversely magnetised ocean crust (based on the nort-hern negative, southern positive

anomaly pair). In order to explain the size of the magnetic source, together with its dis-

tinct palaeomagnetic signature, a geological model was required to generate a large volume

of melt in a very short geological time span. The maximum reversed interval in the marine

palaeomagnetic record (last 180 Ma and excluding the norma) polarity epochs) is around 4

Ma (Hamson et al., 1986). Recent work by White et al, (1987) and White and McKenzie

(1989) has suggested that a model of partial melting due to decompression during upwelling

of hotter than normal asthenosphere may provide just such a mechanism. This model has

been used by White and McKenzie (1989) to explain the occurence of large volumes of rift

associated magmatism extruded over short (punctuated) time mtervals, For example, the

Deccan flood basalts in India and the flood basalts on the flanks of the Nor,", Atlantic Ocean.

The above model was favoured by Antoine (1989) as an appropriate mechanism in order
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to explain an almost spontaneous geological event required 1;.0 model the inferred ~.istinct re-

versed palaeomagnetic signature of the causative source. That interpretation was consistent

with independent geological, geomorphological (Cox, unpublished preprint) and geochemi-

cal evidence. Modelling in tl . present study contests the previously postulated reversely

magnetised source of Antoine (1989).

An alternative remanent magnetisation vector compatible with KQZ inclinations is now

modelled. The Southeast Atlantic anomaly is a newly recognised feature in Magsat anomaly

data. An analysis of the inter-relationship between the magnetisation contrasts of these

oceanic magnetic anomalies suggest that the Walvis Ridge and Agulhas anomalies may be

ascribed to thickening of oceanic crust. The postulate that the Walvis Ridge was created

by a hot spot Or plume is generally accepted (r',eee.g. Morgan, 1971). The eastern Walvis

Ridge is isostatically compensated at depth with a body of almost 2950 kg m-:':!, possibly

layer 3 (Goslin and Sibuet, 1975). Detrick and Watts (1979) believe that the presence of

the Airy-type compensation (with similar observations made on the Ninetyeast Ridge) are a

consequence of their formation on a lithosphere with little or no long-term bending strength;

on a hot spot, for example. The similarities between the Walvis Ridge and the Agulhas

Magsat anomalies suggest a common genesis.

It follows that the Agulhas Magsat anomaly may be the remnant 'scar' of an extensive re-

gion of the lithosphere with 'hotter' than normal asthenosphere, which initiated the break-up

of Gondwana in this region. It seems rather fortuitous that the anomaly on a reconstruction

of Gondwana underlies the most fragmented region at the triple junction of the South Amer-

ica, Africa and Antarctica plates. A model based on partial melting by decompression due t.o

passive upwelling of hotter than normal asthenosphere in a rifted continental lithosphere is

still favoured by the author 8.$ an appropriate mechanism. Such a model can account for: (1)

the basaltic origin of the oceanward dipping reflectors off the continental margin of Queen

Maud Land (Hinz and Krause, 1982), (2) the abundance of mafic and felsic magmatism (de

Wit et al., 1988), (3) anatexis of continental crust (Storey et al., 1988b), (4) uplift in this

region (unpublished apatite fission track ages 140·100 Ma from Drenning Maud Land and

southern Africa, R.L. Brown and A.B. Moyes pers, comm.), (5) presence of continental frag-

rnents such as the southern Agulhas Plateau (Tucholke et al., 1981) and the Mozambique
"
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Ridge (Doucoure and Bergh, 1990) and, (6) the thickening of the oceanic crust (Airy-type

compensation) .

Although the age of the Agulhas anomaly cannot be established directly, it has been

shown to represent early Cretaceous oceanic crust. Rifting began at approximately 120-130

".~;;.,e.g. Cande et al., 1989; Martin and Hartnady, 1986; Rabinowitz and LaBrecque, 1979;

Norton and Sclater, 1979) possibly as a consequence of uplift from a hotter than normal

asthenosphere disturbing continental lithosphere at around 170 Ma, which is expressed as a

major phase of magmatism, in this region, at that time. Smith and Drewry (1984) infer from

fission track data that crustal uplift attains a maximum, 50 Ma after a thermal disturbance.

This delayed response is consistent with the peak phase of magmatism in the region at ca 170

Ma and the begining of the separation of Gondwana at ca 120 Ma, It has also been shown in

section 7.2.3 that the perimeters of the anomaly approximate an age of e- 100 Ma, a period

j'lst before the eastern tip of the Falkland Plateau passed beyond southern Africa. It is

postulated that the Southwest Indian Ocean floor was created, from initial fragmentation to

approximately 100 Ma, from a mantle that had little to no elastic strength and in consequence

underwent Airy-type compensation. After ~" 100 Ma the Southwest Indian oceanic crust, no

longer thickens and appears to maintain elastic strength.

The trend of the Southeast Atlantic anomaly may have some implications of relative

motion between the South American and African plates during the early Cretaceous. It is

proposed that the slight NNE trend of this anomaly, and the lack of a magnetic anomaly to

the north of the Walvis Ridge anomaly, is consistent with a scissor-like opening of the South

Atlantic fulcrumed on the Walvis ridge (Fig.7.9). This motion terminated at the end of the

Albian (98 Ma) and assumed the present poles of rotation (see e.g, Norton and ScJater,

1979). A ridge jump is postulated by Barker (1919) at that time. Also, the Walvis Ridge

shows its first discontinuity at approximately that period (Goslin and Sibuet , 19i5) and it is

congruent with the age of the perimeter of the Agulhas anomaly.
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Chapter 8

Conclusions

The principal objectives of this thesis are (1) to research the processing of satellite mag-

netometer data towards extracting an improved lithospheric signal and, (2) to interpret the

derived lithospheric anomaly map for the southern African region and surrounding oceans. To

achieve the first objective, two aspects of the data reduction that have traditionally strongly

compromised d::..ta quality are considered, viz.: (1) the variable altitude of the sensor. and, (2)

extracting the ionospheric field effects. The new methods are developed on synthetic data

and later tested on Magsat data, The southern African region was selected for this purpose,

and the resultant anomaly map interpreted in order to achieve the second objective,

Processing

Removal of the main and ring current field components of Magsat data is almost standard

amongst investigators. Although these are not entirely satisfactory, th':Y !!rp adopted with

some modification while attention is focussed on the more subjective aspects of the data

reduction.

The main field component was removed using the truncated spherical harmonic model

MGST 4/81 (Langel et al., 1981) provided with the INY~B tapes. The reduction adopted

for the ring current effect was a first degree zonal spherical harmonic function (Langel and

Sweeney, 1971) but modified (after Zaalman and Kuhn, 1986) by using dip latitudes calcu-

lated for altitudes of 3Re rather than at the satellite's altitude. This approach was necessary

to improve the model in the southern African region where dip latitudes asymptote to 65°.

The 3RE model was an improvement but could be further improved. Coefficients for the
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ring current. model are based on a least squares solution. Solving for the ring current coeffi-

cients using a robi, 't technique would, in the writer's opinion, improve the model and should

constitute a basis for future research.

A solution has been found for the problem of the variable altitude and ionospheric field

reductions. A procedure based on a robust linear regression (median linear regression) of

amplitude versus altitude is developed (Iinearisation of the decay is achieved by taking the

logarithm of an assumed exponential decay). The method assumes data redundancy for

a given geographical location. This is achieved by considering a fairly large cell within

which it is assumed that the horizontal gradients are negligible. At satellite altitudes this

approximation is reasonable and is exploited. Computer simulations show that the algorithm

is able recover the orginal signal in a la.rge variable altitude range of 400 km (i,e. 200 - 600

km) even with additional severe signal corruption. This algorthim is utilised twice in data

reduction procedur.a, using different latitudinal and longitudinal filter constraints. The two

resultant maps are then used to remove ionospheric field effects using a two-dimensional data

adaptive filtering technique. The method is based on the mean ionospheric field correction of

Yanagisawa (1983) and is now ext» . ·,d to incorporate an altitude correction. Because the

ionospheric field is time dependent it is defined by using a time constraint in data selection.

The data are selected ,_r two specific local times (0600 and 1800 hours). The lithosphere

signal in comparison is defined geographically. Thus two sets of maps are generated, viz.:

• An ionosphere-contaminated lithospheric field. Achieved by applying the median linear

regression algorithm for a specific geographical location and local time .

• A mean ionospheric field. Obtained by using the median lineal.' regression algorithm

for a specific local time without a geographical constraint, The procedure essentially

zandomises the lithosphere signal.

A new two-dimensional data adaptive filter is developed to extract the dawn or dusk

lithosphere signals. The ionosphere-contaminated lithosphere and the ionosphere signals are

input t) the data adaptive filter. To optimise noise rejection the resultant. two lithospheric

field maps (i.e. dawn and dusk maps) are input t.o a data adaptive filter structure which

results, by a method of converging operations, ill a final lithospheric map.
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The resultant. dawn and dusk ionospheric field maps show unexpected correlation. This

correlation is of long-wavelength features and is interpreted to represent residuals from an

incomplete ring current correction. An added gain of the adopted processing procedures is

that the inadequacies of the ring current correction become manifested in the ionospheric

field map and are thus also removed from the contaminated lithosphere signal, The resultant

lithospheric signal is technically improved from previous products in that: (1) the data are

corrected to a common altitude datum by a procedure that makes no a priori assumptions of

magnetisation, (2) the ionospheric field correction is objective, repeatable and, in addition,

removes inadequacius of the ring current correction and, (3) greater structural detail and

new north-south trending features are now evident. Also, an added gain is that the .MIF

preserves residuals from the core field separation, therefore, allowing removal of partially

uncorrected core field effects. The reason for the lack of north-south structures in previously

published satellite altitude magnetic anomaly maps may be linked to the arbitrary track-to-

track corrections.

Interpretation

Southern Africa is surrounded by oceans and is a focal point in any reconstruction of Gond-

wana. For these reasons, this region was selected for analysis of the new processing techniques

and for interpretation. The interpretation of the southern African continental Magsat anoma-

lies shows a strong coincidence between these and tectonic provinces. The common geological

factors of the tectonic provinces that could account for an increase in the volume-integrated

crustal magnetisation, with respect to the Cratons, are: (I) an increase in crustal thickness

(typically 32 to 42 km) and, (2) au increase in heat 'Jow. Because the magnetic anomalies

could be modelled without necessitating excessive crustal magnetisation contrasts at depth,

being more consistent with expected values, the postulate of Wasilewski (1987), that. the

seismic Moho is also approximately the magnetic Moho other than where the Curie temper-

ature is shallower, was adopted. The increase in crustal. magnetisation by crustal thickening

is insufficient to account lor the observed magnetisation increase. However, crustal thicken-

ing coupled with a high heat flow places a large portion of the lower-crust into an effective

window of magnetisation increase by the Hopkinson effect. Furthermore, these continental
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tectonic provinces typically have deep-crustal electrical conductivity belts possibly due to

deep crustal fluids. These fluids are likely to invoke serpentinisation of the mafic crustal

rocks, hence an increase in magnetite.

The oceanic anomalies have provided an insight into the fragmentation history of Gond-

wana. To date there has been no evidence for an ocean to continent crustal magnetic contrast

....n the southwestern African coast, where, because of the presence of KQZ ocean floor, it would

be expected. This has been an artifact of past processing. The present anomaly map is now

able to confirm the presence of such a magnetisation contrast, which coincides with the early

Cretaceous ocean floor. The Walvis Ridge and the Agulhas anomalies are interpreted to rep-

resent remanent magnetisation, of a thickened oceanic crust. (20-30 km) assuming Airy-type

compensation. It is proposed that the Agulhas anomaly is the remnant 'scar' of the process

that led to the fragmentaion of Gondwana. A model of continental rifting in response to an

upwelling of hotter than normal asthenosphere is consistent with the geophysical, geological

and geochemical evidence.

Lastly, the trend of the Southeast. Atlantic anomaly is believed to reflect a scissor-like

opening of the South Atlantic, fulcrumed on the Walvis Ridge anomaly, which ended at

'" 100 Ma at which time poles of rotation between the South American and African plates

changed abruptly,

Recommendations

The outcome :Jf any research is, all too often, more work. Although, the processing of near-

earth satellite data to extract the lithospheric signal has been improved, further improvements

are possible, for example:

o An altitude correction using a median quadratic surface technique should improve the

met! od further.

• Modelling of the ring current could be further improved by using an alternative to the

least squares method.

More work is needed towards the problem of extracting the ionosphere signal. This can be

achieved with an improved ring current model and by further work with data adaptive filters.
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It must be emphasised that this study has focused on the scalar data and that some significant

information is contained within the vector component data which could be exploited by data

adaptive filtet structures.

Further geophysical investigations of the Agulhas and Southeast A~lantic anomalies, in

the form of surface wave dispersion and isostasy analyses (using long-wavelength filtering of

Seasat data), is recommended. This information is necessary to test the postualte that a

hotter than normal asthenosphere, centred on the Agulhas anomaly is responsible for the

fragmentation of Gondwana.

In conclusion, the results of this thesis have made a small but important contribution

both to the processing of near-earth satellite magnetometer data and towards understanding

crustal magnetisarion in the southern African region from such data. It must be reiterated

that the resolution of magnetic data is a direct function ()f the source to sensor altitude.

~iagsat has been an entirely successful mission for both the liquid- and solid-earth geophysi-

cists and has provided significant new input into the understanding of crustal magnetisation,

geological processes and geodynamics. A decade has past ~ince Magsat was launched. The

detaii that could be achieved by a lower altitude Magsat would revolutionise the geological

SCi ences in terms of an understanding of geodynamic processes, Motivatlons fOf another lower

altitude Magsat must continue unabated.
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