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Synopsis 
The increase in the degradation of water sources and stringent environmental 

regulations have greatly motivated industries to explore means of utilizing water 

efficiently. Batch processes are known to generate highly contaminated wastewater 

that is toxic to the environment. A holistic approach to design which emphasizes the 

unity of the process, process integration (PI), can be used to reduce both the 

wastewater generated and the level of contamination while maintaining the 

profitability of the chemical plant.  Process integration techniques for wastewater 

minimization in batch processes include water reuse, recycle and regeneration. 

Most mathematical formulations for wastewater minimization in multipurpose batch 

processes presented in literature determine the amount of water required for washing 

operations by only looking at the task that has just occurred in a unit. However, the 

nature of the succeeding task can influence the amount of water required for the 

washing operation between consecutive tasks in a processing unit. In paint 

manufacturing, for example, more water will be required for the washing operation if 

the production of white paint follows the production of black paint and less water will 

be required if the black paint follows the white paint. The amount of wastewater 

generated in batch processes can, therefore, be reduced by simply synthesizing a 

sequence of tasks that will generate the least amount of wastewater.  Presented in this 

work are wastewater minimization formulations for multipurpose batch processes 

which explore sequence dependent changeover opportunities for water minimization 

simultaneously with direct and indirect water reuse and recycle opportunities.  

The presence of continuous and integer variables, as well as bilinear terms, rendered 

the model a Mixed Integer Nonlinear Program (MINLP). The developed MINLP 

model was validated using two single contaminant illustrative examples and a 

multiple contaminant example. A global optimization solver, Branch and Reduce 

Optimization Navigator (BARON), was used to solve the optimization problems on a 
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General Algebraic Modeling System (GAMS) platform. Exploring multiple water 

saving opportunities simultaneously has proven to be computationally intensive but 

can result in significant water savings. For instance, two different scenarios saved 

65% and 61% in freshwater use respectively. 
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Chapter 1  
INTRODUCTION 

 

 

 

 

 

1.1. Background 

The global water crisis was ranked as the highest risk in 2016 by the World 

Economic Forum (WEF) and it is one of the biggest threats facing the planet over the 

next decade (WEF, 2016). The United Nations 2030 Agenda for Sustainable 

Development, which was drafted to address urgent global challenges, includes 

ensuring availability and sustainable management of water (United Nations, 2016). 

The second edition of the National Water Research Strategy (NWRS) which responds 

to the vision of South Africa for 2030, as articulated by the National Development 

Plan (NDP), recognized that the socio-economic growth will be restricted if water 

security and associated water management issues are not resolved in time (NWRS, 

2013). According to the WEF (2016), South Africa is the 30th driest country in the 

world and has less water per person than countries widely considered to be much 

drier, such as Namibia and Botswana. Industrial processes consume up to 17% of the 

available water in South Africa, and as a result, significant responsibility for 

conservation lies with process industries (Council for Scientific and Industrial 

Research, 2010).  
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Besides water consumption, industrial processes also degrade water sources. Many 

industries dispose their wastewater directly into rivers. Water sources that appeal to 

life on earth are safe, contain no harmful chemical substances and are stable in terms 

of corrosion. According to Rand Water (2017), freshwater in South Africa is 

decreasing in quality because of the increase in pollution caused by mining, 

manufacturing industry, agriculture, etc. Industries produce wastewater that affects 

the pH of the water, amount of nutrients (causing eutrophication), temperature 

(impacting temperature-sensitive organisms), and increases murkiness (blocking fish 

grills, hindering photosynthesis and causing diseases). Wastewater with chemicals 

that are not found naturally in the environment, or are found in very small amounts, 

end up poisoning plants, animals and people. 

Batch processes have become a popular mode of manufacturing due to their 

adaptability to volatile conditions that have characterized recent times. Market 

demands have changed significantly and high value-added products are required in 

small volumes. Pharmaceutical products, detergents, paints, deodorants, etc., are 

examples of products that are manufactured using batch plants. Batch processes 

follow a series of discrete tasks and are getting attention due to their ability to allow 

for the production of a variety of products that follows different production recipes in 

one production facility. The nature of batch manufacturing allows for batches of 

different tasks to share processing units. Washing operations are essential in batch 

processes since the integrity of each batch needs to be preserved. These washing 

operations are the major source of wastewater in most batch processes. Although 

most batch plants generate fewer quantities of wastewater compared to their 

continuous counterparts, effluents from batch facilities are mostly toxic (Majozi, 

2010). The need for investigating water saving measures for batch manufacturing 

industries was triggered by a combination of the recent public awareness of the 

impact of industrial pollution on water sources, stringent environmental regulations, 

and the scarcity of freshwater as a natural resource. 
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Most production facilities make use of the end-of-pipe treatment as a means of 

handling wastewater. An end-of-pipe treatment is when all the generated wastewater 

is sent to a treatment facility. Depending on the nature of the contaminant in the 

wastewater, treatment methods are divided into physical, chemical and biological. 

Water is treated such that it meets the required contaminant levels before it is 

discharged to the environment. Significant financial investment is required for this 

approach and the cost is highly influenced by the amount of wastewater to be treated. 

It is therefore logical to explore wastewater minimizing opportunities before sending 

the wastewater for end-of-pipe treatment. Process integration is an approach for 

process optimization through emphasizing the unity of the process, environmental 

issues and process objectives such as profitability (El-Halwagi, 1998). This approach 

looks at the whole manufacturing process as an integrated system of interconnected 

processing units as well as utilities and waste streams. Process integration techniques 

for wastewater minimization in multipurpose batch processes presented in the 

literature include direct reuse or recycle, indirect reuse or recycle, and regeneration 

reuse or recycle (Gouws et al., 2010). In this work, multiple water saving 

opportunities will be explored simultaneously. 

1.2. Motivation 

Most mathematical models, in literature, for wastewater minimization in batch 

processes determine the amount of water required for washing operations by only 

looking at the task that has just taken place in a unit. However, the amount of water 

required for washing operations can depend on the sequence of tasks in a unit. The 

amount of water required for washing operations should, therefore, be determined by 

looking at both the task that takes place in a unit and its successor. As shown in 

Figure 1.1, the amount of water required for washing the unit when task B follows 

task A is not the same as the amount that is required when task A follows task B. A 

practical example will be a multipurpose unit that processes black paint and white 

paint. Due to the sensitivity of the white paint, more water will be required for the 
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washing operation if the white paint follows the black paint and less water will be 

required if the black paint follows the white paint. Sequence dependent changeover 

opportunity for water minimization can, therefore, be explored by simply 

synthesizing the sequence of tasks that optimizes the trade-off between the production 

and the amount of wastewater generated. 

B A

A B
Sequence 1

Sequence 2

Time
Sequence

1 2

W
at

er
 re

qu
ire

m
en

t
Figure 1.1 Sequence dependent washing water requirement 

Adekola and Majozi (2017) developed a mathematical model for simultaneous 

optimization of batch production scheduling and water use in a multipurpose batch 

plant in which the water requirement is determined by the sequence of tasks in units. 

Since a sequence dependent parameter is required, the formulation presented by 

Adekola and Majozi (2017) explores sequence dependent opportunities for water 

minimization in multipurpose batch processes by fixing sequence dependent 

changeover times. To successfully incorporate sequence dependent constraints, their 

formulation is able to successfully determine a task that immediately follows the task 

that has just occurred in a unit. However, the work of Adekola and Majozi (2017) did 

not explore water reuse and recycle opportunities. 

This work aims to develop a mathematical model for the simultaneous optimization 

of batch scheduling and wastewater minimization where sequence dependent 

changeover opportunities are explored simultaneously with direct and indirect water 

reuse and recycle in the presence of a central reusable water tank. 
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1.3. Objectives 

The objectives of the study are as follows: 

• To develop mathematical models that explore sequence dependent water saving 

opportunities. 

• To develop mathematical models that explore sequence dependent water saving 

opportunities simultaneously with direct and indirect water reuse and recycle in 

the presence of a central storage water tank. 

• To validate the developed mathematical formulations using illustrative examples. 

 

1.4. Problem statement 

The problem addressed in this study can be stated as follows 

Given: 

(i) Scheduling data, i.e. product recipe, capacities for different units and suitability, 

storage capacities, task processing times, time horizon, value of raw materials, 

products and utilities; 

(ii) Water usage data, i.e. concentration of processed material that remains in the unit, 

inlet and outlet contaminant concentration limits, flowrates, and capacity of 

central water storage; 

(iii)  Sequence dependent changeover parameters.  

It is required to determine the optimum sequence of tasks in each unit that generates 

the least amount of wastewater within the time horizon of interest, the minimum 

amount of freshwater use, the maximum product throughput, and water reuse 

network. 
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1.5. Dissertation structure 

Chapter 1 introduces the research study by presenting the background followed by the 

motivation of the study. In this chapter, the problem statement and the scope of the 

study are stated. The background upon which the research was conducted and the 

models built, is provided in Chapter 2 through a review of relevant literature. Chapter 

3 is model development where the relevant models are presented in detail. Chapter 4 

shows results obtained when the developed formulations were applied to two single 

contaminant illustrative examples and a multiple contaminant example. The 

limitations of the model are discussed in Chapter 5 together with the 

recommendations that may influence future research. Conclusions made are presented 

in Chapter 6. 

1.6. References 
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Chapter 2  
LITERATURE REVIEW 

 

 

 

 

2.1. Introduction 

This chapter presents a review of the literature that forms the basis of the conducted 

research. A brief outline on process integration is given, followed by a review of 

batch processes and scheduling techniques since the two are inherently linked to each 

other. This chapter also assesses previous studies conducted on wastewater 

minimization in batch processes and ways of handling sequence dependent 

changeovers. A background work on mathematical optimization and linearization of 

different nonlinear terms is presented to usher understanding of how complex 

mathematical problems can be solved. 
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2.2. What is process integration? 

Process integration is a holistic approach that emphasizes the unity of a process with 

the aim of making efficient use of process equipment, energy, water and other utilities 

in order to optimize value (El-Halwagi, 2012). This approach for efficient 

management of resources is useful in industrial processes where raw materials, 

utilities, products, and effluents are often linked in one way or the other. This 

observation cannot be explored by analytical approaches that optimize units 

individually, and this makes process integration approaches superior. 

Process integration techniques can be explored during the design stage of a process 

plant in order to develop a more sustainable design with efficient energy and water 

systems (Huang et al., 1999). The performance of an already existing processing plant 

can also be improved through process integration techniques. When focusing on 

wastewater minimization in production industries, process integration techniques 

which can be considered include water reuse and recycle.  

Process integration techniques are implemented in conjunction with optimization 

techniques such as graphical techniques, heuristic methods, and mathematical 

optimization. Graphical techniques are two-dimensional and therefore can only be 

used for single contaminant problems and cannot handle time as a variable. In 

heuristic methods, some of the parameters defining a mathematical problem are 

random.  Heuristic methods are considered as a shortcut and do not guarantee 

optimality. Even though mathematical programming can sometimes yield 

computationally intensive models; they can, however, handle more complex 

problems including those with multiple contaminants and where time is treated as a 

variable. 

According to Edgar and Himmelblau (1989), mathematical optimization problems are 

formulated such that they consist of two essential parts i.e. the process model and at 

least one objective function. The following demonstrates a structure of a 

mathematical optimization problem:  
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Objective: Minimize f(x) 

Subject to:  g(x)≤0 

  H(x)=0 

The objective function is an expression to be minimized or maximized subject to 

various variables and constraints described in the process model. The process model 

describes the physical laws and the interrelationships of the key variables that apply 

to a specific problem. Mathematical programming is used as a tool to achieve the 

desired objective by exploring process integration techniques. 

2.3. Introduction to batch processes 

Batch processes have been receiving attention in recent decades because of the 

increased market demands of high value-added products and specialty chemicals. 

Well established design techniques have been developed for continuous processes 

and most batch processes have been poorly designed (Smith, 2014). Techniques for 

continuous processes cannot be directly adopted for batch processes due to the 

additional time dimension that makes batch processes more complex. 

A manufacturing process where a recipe, i.e. a predefined sequence from raw 

materials to desired products, follows a series of discrete tasks is called a batch 

process (Majozi, 2010). A batch reactor is distinct from a continuous reactor because 

it is characterized by the discreteness of tasks, as illustrated in the Figures 2.1(a) and 

2.1(b). Features of a batch recipe include the amount to be processed by a discrete 

task as well as the duration of the task. Batch processes are generally used for the 

production of low volumes of a variety of high value-added products using limited 

resources; hence production scheduling is of great essence in batch production. 
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Feeding Reactants Reaction Discharging Products

t1 t2 t3

Feeding Reactants + Reaction + Discharging Products

(a)

(b)

t

 

Figure 2.1 (a) Batch reactor (b) Continuous Reactor 

Batch processes can be classified according to process layout into single and multiple 

stage processes. The sequence of stages that a batch process adopts is informed by the 

batch/product recipe. Each stage can have a single unit or multiple units operating in 

parallel. Multiple stage batch processes can be further classified into two categories; 

multiproduct and multipurpose. Multiproduct batch processes are appropriate for 

manufacturing products with identical and fixed recipes; see Figure 2.2(a). 

Multipurpose batch facilities are appropriate for the manufacturing of products 

characterized by a variation of production recipes as illustrated in Figure 2.2(b). 
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TA ~ ~ ~ ~

H

Set of raw 
materials

Set of 
products

TB Tn TN

TA ~ ~ ~ ~

H

Set of raw 
materials

Set of 
productsTB Tn TN

(a)

(b)

Figure 2.2 (a) Multiproduct batch process (b) Multipurpose batch process 

The discrete nature of batch processes brings with it a feature that is easily suppressed 

in continuous processes, i.e. time. The capturing of this extra dimension is the reason 

why scheduling of batch processes is more complex. Methodologies designed for 

continuous processes cannot be directly applied to batch operations since they do not 

take into account the time dimension. Other challenges encountered when dealing 

with batch processes include product recipe representation, storage policies, 

changeover, etc. (Méndez et al., 2006). 

2.3.1. Recipe representation 

A production recipe of a batch operation has a significant influence when developing 

optimization models. The recipe presents the layout of the production line and 

includes information such as the sequence in which batches should be processed, 

mixing and splitting of operations, and material recycles. A recipe representation 

intends to describe the actual process of converting raw materials into desired 

products, unlike flowsheet representations that describe the actual plant. Different 

approaches for representing batch production recipes have been developed over the 

years. Kondili et al. (1993) proposed a State Task Network (STN) representation. As 
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portrayed in Figure 2.3(b), two types of nodes are included in the STN representation. 

These are the state nodes (circular in shape), representing the feeds, intermediate and 

final products; and the task nodes (rectangular in shape), representing different 

operations that transforms feed/s into product/s. Directed arcs between nodes 

represent task precedence. The STN representations explicitly show all feedstocks 

sent to a task and all states produced by a task. Most mathematical formulations 

based on an STN representation have sets of states and tasks as indices.  

Reaction 2Reaction 1

(a)

Fe
ed

Reaction 3

Pr
od

uc
t

Reaction 1S1 Reaction 2S2 Reaction 3S3 S4

S1 S2 S3 S4

(b)

(c)
	

Figure 2.3 (a) Process flowsheet (b) STN (c) SSN 

Pantelides (1994) proposed the Resource Task Network (RTN) representation. In 

addition to the STN, the RTN also includes utilities such as transportation, cleaning, 

etc. Types of resources in an RTN representation includes those that are consumed 

temporarily (e.g. units), those that are consumed or produced permanently (materials) 

and those with an availability profile (utilities). The RTN representations 

disaggregate tasks if multiple units are suitable. Most mathematical formulations 
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based on an RTN representation have sets of resources or utilities and tasks as 

indices. 

Smith (1996) proposed a representation that decomposes a process system into 

process materials and process equipment, the State Equipment Network (SEN). 

Equipment refers to physical devices that execute tasks. The construction of the SEN 

generally leads to a smaller combinatorial problem for the selection of equipment 

(Yeomans and Grossmann, 1999). For problems where every equipment is restricted 

to perform a single task, an SEN representation can be similar to an STN 

representation. In SEN representations, only one interconnection of state goes into an 

equipment and another one leaves the equipment, even when an equipment is suitable 

to process many tasks. The state definition is, therefore, not unique since properties of 

the streams will be determined by a particular task that the equipment performs. This 

means that the state definition will have to consider all the possible realizations of the 

streams that will originate from a certain task in an equipment, which can complicate 

the modeling stage (Yeomans and Grossmann, 1999). 

The State Sequence Network (SSN) was introduced by Majozi and Zhu (2001). As 

displayed in Figure 2.3(c), the SSN representation only has the state nodes, and the 

task occurring in a unit is represented implicitly. For example, a heating or boiling 

task and a unit where this task occurs will be implicitly represented if a node 

representing water in a liquid phase is connected to a node representing water in a 

vapor phase. This approach was developed by realizing that the usage of a state 

corresponds to the existence of a task and the production of another state. Also, the 

capacity of a unit in which a particular state is used or produced sets an upper limit on 

the amount of state used or produced by the corresponding task. By noting these 

realizations, one state can be chosen and other states can be represented in terms of 

the chosen state. The chosen state is called the effective state and it should remain 

consistent throughout the formulation. Effective states are considered when defining 

binary variables. Therefore, the resulting number of binary variables becomes a 

product of the number of effective states involved in the process and the total number 
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of time points used in the formulation. Task and unit binary variables are not required 

in SSN-based models as opposed to STN-based and RTN-based models.  

2.3.2. Storage policies and wait times 

The storage policies are classified according to the availability and capability of 

storage for storing final products and/or intermediate products in a batch process. In 

Finite Intermediate Storage (FIS) policy, intermediate products are stored in a storage 

tank of limited capacity. Unlike in FIS, the availability of storage for intermediate 

products is guaranteed in Unlimited Intermediate Storage (UIS) policy. Common 

Intermediate Storage (CIS) policy involves the sharing of storage tanks by various 

tasks within the plant. Washing of storage tanks is therefore required to avoid the 

contamination of products. FIS, UIS and CIS operational philosophies are illustrated 

in Figure 2.4. Sometimes an unused processing unit can be used to store final 

products and/or intermediate products and this is referred to as Process Intermediate 

Storage (PIS) operational philosophy.  Mixed Intermediate Storage (MIS) policy is 

the one that includes a combination of two or more of the above-mentioned policies. 

(a) (b) (c)

Figure 2.4 (a) FIS (b) UIS (c) CIS 

Storage tanks occupy a significant area in facilities where the operational space is of 

essence. No Intermediate Storage (NIS) operational philosophy allows intermediate 
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products to wait in the same units they were produced in (post-processing unit-wait 

times) and/or in the unit that will do the further processing (pre-processing unit-wait 

times) (Majozi et al., 2015). In post-processing unit-wait times, intermediate products 

are allowed to wait in a unit that produced them while waiting for the next unit to be 

ready for further processing. In pre-processing unit-wait times, a state is stored in a 

unit that will do further processing while waiting for other feed states, i.e. a task that 

requires more than one intermediate state, and this is called non-simultaneous 

material transfer. When dealing with unstable intermediate products that need to be 

sent to the next task as soon as they are formed; the Zero Wait (ZW) policy is 

adopted. Less sensitive intermediate products can be allowed to wait for a limited 

period of time under the Finite Wait (FW) policy. Highly stable intermediate products 

can be allowed to wait for a long period of time under a policy called the Unlimited 

Wait (UW). 

2.3.3. The time dimension 

The nature of batch processes require optimization models to take time into 

consideration since discrete tasks are processed at different times across the time 

horizon of interest. In the early stages of development of this research area, handling 

time when modeling batch processes were through Time Average Models (TAMs). 

This approach fails to truly represent batch processes since it treats batch operations 

as pseudo-continuous operations (Majozi, 2010). Another approach involves treating 

time as a known fixed parameter with no opportunity to change within the desired 

time horizon. This approach deprives the model of solving to true optima. An 

alternative approach would, therefore, be to allow time to be flexible and vary across 

the desired time horizon. This, however, brings with it another challenge of how the 

time horizon of interest is represented. 

Based on how time is represented across the time horizon of interest, optimization 

models for batch processes can be classified into discrete and continuous-time 

formulations. The former evenly divides the time horizon of interest into a finite 
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number of time intervals of known duration; see Figure 2.5(b). The starting and 

finishing times of tasks are then allowed to happen only at the boundaries of these 

intervals. Kondili et al. (1993) presented an MILP framework, based on the 

discretization of the time horizon into a finite number of equal intervals of known 

duration. The time horizon of interest was discretized into uniform time intervals that 

coincided with the beginning and/or end of a particular task. The inflexibility in the 

timing decisions generated infeasible and/or suboptimal production schedules. Also, 

the accuracy of discrete models increases with the number of time intervals. For some 

problems, for example those with duration of task that has decimals, the number of 

required intervals can be very large. A scheduling problem with a task that has a 4.2 

hour duration will have many uniform time intervals of 0.2 hours. The large number 

of time intervals would result in an explosive binary dimension of the problem which 

will be computationally expensive to solve. Avoiding this by rounding off the 

duration of tasks with decimals into whole numbers, for example rounding 4.2 hours 

into 4 hours, will yield inaccurate results.  

Shah et al. (1993) provided an examination of the computational issues encountered 

by Kondili et al. (1993). They proposed complementary measures of modifying both 

the formulation and the branch and bound solution procedure in order to reduce the 

computational time. Their technique included reformulating allocation constraints in 

order to tighten the LP relaxation of the MILP so that it can be solved within fewer 

LPs. They also examined ways in which the size of the relaxed LP can he reduced 

significantly by eliminating binary variables and a large proportion of the constraints 

from the LP relaxation of the MILP, thus resulting in a much smaller problem to be 

solved at each node of the branch-and-bound procedure. These measures are however 

specific for the solution of the resulting model. In cases where a reasonable number 

of intervals is sufficient to obtain the desired problem representation, optimization 

models based on discrete time representation have proven to be efficient, adaptable, 

and convenient for a range of industrial applications (Méndez et al., 2006). 
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Figure 2.5 (a) Uneven and (b) Even time discretization 

The drawbacks of discrete time formulations can be avoided by using continuous-

time representation. In these formulations, the time horizon of interest is unevenly 

divided into a finite number of unknown intervals using variables that capture the 

exact time at which a task starts or finishes; see Figure 2.5(a). The number of 

variables is therefore significantly reduced and the flexible timing decisions can lead 

to feasible solutions.  

Continuous-time formulations involve alternative event representations for network 

batch processes i.e. global and unit-specific event-based. Global event-based use 

unknown uniform events where the time associated with events is common across all 

units. In other words, the beginning and the finishing times of the set of batch tasks 

are linked to specific time points. In contrast to global time points, the time associated 

with the events can be different across all units in unit-specific representation. In 

other words, different tasks are allowed to start and/or finish at different times for the 

same event point. Formulations based on global time points or unit-specific time 

events strongly depend on the number of time or events points predefined. Since this 

number is unknown a priori, it can be determined through an iterative procedure 
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where the number of time points or events is increased by 1 until there is no 

improvement in the objective function. Continuous-time formulations are generally 

more complex and have a higher integrality gap which indicates a poor 

approximation ratio. They have, however, proven to better capture the time 

dimension in batch processes. 

2.3.4. Introduction to scheduling of batch processes 

Scheduling refers to the allocation of resources to processing tasks over time. This 

includes determining what task to execute, where to process tasks, which sequence to 

follow, when to execute tasks, and sometimes a number of raw materials that should 

be processed in each task. This information is important when designing process 

operations and/or optimizing production performance. Production scheduling is very 

crucial in operating batch processes in a sustainable way, yet it is a challenging task 

especially in flexible batch facilities that allows the production of different products 

within the same facility (Floudas and Lin, 2004).  

Traditionally, production scheduling was performed manually by trained personnel 

using practices recorded from previous experiences. Manual scheduling became 

extremely challenging due to increased production volumes, alternative production 

recipes, volatile production orders and the need to save energy, water and minimize 

other operating costs (Harjunkoski et al., 2014). The ideal way of considering the 

aforementioned and other factors when developing a profitable production schedule is 

through optimization. Optimization solutions achieve both economic and 

environmental benefits. 

Scheduling models are based on concepts of arranging events of a schedule over time 

with the aim of guaranteeing that the maximum capacity of the shared resources is 

not exceeded. Types of production schedule formulations according to the considered 

time horizon are; short-term (in days), medium-term (in weeks), and long-term (in 

months) (Majozi et al., 2015). The corresponding models deal with the allocation of a 

set of limited resources over time to manufacture one or more products following a 
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batch recipe (Méndez et al., 2006). The studies reported a wide range of scheduling 

problems that have been solved using different optimization approaches such as 

graphical techniques, mathematical modelling (LP, MILP, and MINLP), heuristic 

methods, artificial intelligence methods, and evolutionary algorithms. Most of these 

methods are often presented in literature from a purely modeling point of view and 

tested only on small-scale examples (Harjunkoski et al., 2014).  

2.4. Recent continuous-time scheduling formulations 

Excellent reviews on scheduling have been presented by various authors (Méndez et 

al., 2006; Floudas and Lin, 2004; Harjunkoski et al., 2014). Major challenges in the 

development of scheduling formulations include achieving global optimality, the 

reduction of binary variables and computational times. 

Schilling and Pantelides (1996) presented a continuous-time scheduling formulation 

based on the RTN representation of Pantelides (1994). In their formulation, the 

overall scheduling time horizon was demarcated into time intervals of unknown 

lengths, and the boundaries of each time interval coincided with the start and/or finish 

of a particular task/s. A single binary variable was used to describe units (j) and tasks 

(i) at any point in time t, i.e. yijt. 

Ierapetritou and Floudas (1998) applied the model of Schilling and Pantelides (1996) 

to a simple process where a single product is produced through three stages: mixing, 

reaction and separation. Given the simplicity of the process, the formulation of 

Schilling and Pantelides (1996) was observed to have a large number of constraints 

(220), continuous variables (157), binary variables (46) and intergrality gap (138%). 

Ierapetritou and Floudas (1998) presented a formulation that, when applied to the 

above example, had smaller number of constraints (108), continuous variables (105), 

binary variables (15) and intergrality gap (28%). 

Ierapetritou and Floudas (1998) achieved the above results by introducing unit-

specific event-based models. They proposed a continuous time formulation for short 
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term scheduling of multipurpose batch processes based on the STN process 

representation of Kondili et al. (1993). In trying to avoid a large number of binary 

variables (with a dimension of i × j × t) which may result when a single binary 

variable yijt is used, Ierapetritou and Floudas (1998) separated units and task events 

by assigning corresponding binary variables vjn and win, respectively. This lead to a 

much smaller number of binary variables for processes with several tasks and units. 

However this model initially predicts a large number of binary variables, in situations 

where stages involve several units, that can later be reduced by exploiting one-to-one 

correspondence between tasks and units. This reduction procedure can however be 

complicated for large problems. 

To achieve the least number of binary variables without using the variable reduction 

procedure, Majozi and Zhu (2001) eliminated the need for task and unit binary 

variables by introducing the State Sequence Network (SSN). Only states are 

considered and a single variable ysp is used throughout the formulation. Majozi and 

Zhu (2001) also introduced the aggregate model where the number of binary 

variables is reduced by treating multiple units in a stage as one. This can be done 

when the units involved in a particular stage have the same performance and when 

the process in a stage are operated in phase.  

Janak et al. (2004) proposed an enhanced unit-specific event-based formulation for 

short-tern scheduling of multipurpose batch processes. Their work expanded on the 

work of Ierapetritou and Floudas (1998) by incorporating features such as storage 

policies (UIS, FIS, NIS, and ZW), resource constraints, variable batch sizes and 

processing times, batch mixing and splitting, and sequence-dependent changeover 

times. In their formulation, Janak et al. (2004) defined new tasks for the storage of 

states and the utilization of resources. They also introduced two binary variables, i.e. 

wsin indicating whether or not a task starts at each event point and wfin indicating 

whether or not a task ends at each event point. 
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Sundaramoorthy and Karimi (2005) argued that the de-coupling of a 3-index binary 

variable (yijt) into two 2-index binary variables (vjn and win) does not reduce the 

overall number of binary variables as suggested by Ierapetritou and Floudas (1998). 

They demonstrated that decoupling of tasks from units increases the number of 

binaries by increasing the number of tasks, and at the same time decreases them by 

eliminating the v-variables, but the net effect of these two actions is zero on the 

number of binary variables. They added that the only difference between the 3-index 

y-variables and the 2-index w-variables is that the former display the unit information 

explicitly in terms of j, while the latter hide the same behind i. A formulation 

presented by Sundaramoorthy and Karimi (2005) is a slot-based continuous-time 

formulation that does not decouple tasks from units. When compared with unit-

specific event-based models, however, their model gave suboptimal results and 

increased computational time. 

Shaik et al. (2006) presented a comparative study where they assessed the 

performance of different continuous-time models when applied to several benchmark 

example problems in literature. The comparison was with respect to the problem size 

(in terms of the number of variables and constraints), computational times (on the 

same computer), and number of nodes taken to reach zero integrality gap. They 

concluded that unit-specific event based models require less events and they perform 

better than global event based models and slot-based models. This was because they 

observed that both the slot-based and global event-based models always require the 

same number of event points, while the unit-specific event-based models require less 

event points to solve a problem to global optimality. Due to heterogeneous locations 

of event points used, unit-specific event-based approach is considered the most 

general and most rigorous representation of time used in short-term scheduling 

models. 

Janak and Floudas (2008) proposed a framework for reducing, and sometimes even 

closing, the integrality gap experienced by many complex unit-specific continuous-

time formulations for short-term scheduling problems. Their methodology involve 
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four steps: analysing the STN representation of the problem in order to determine its 

practical limitations (e.g. when tasks cannot take place and which unit will be the 

bottleneck of the process); considering new constraints (e.g. tightening constraints 

and bounds on the sums of key variables); solving supporting problems in order to get 

tighter values for the bounding constraints and to determine the minimum number of 

event points; and lastly introducing the reformulation-linearization technique (RLT) 

to provide tighter problem formulations. The RLT was developed by Sherali and 

Adams (1994) and it consists of a reformulation phase and a linearization phase. In 

the reformulation phase, selected constraints and binary variables are multiplied and 

the resulting new constraints are added to the original problem. Then the nonlinear 

model is then linearized during the linearization phase. Janak and Floudas (2008) 

argues that the addition of these new inequalities gives a higher dimensional 

representation of the feasible region for the problem and thus yields a tighter LP 

relaxation.  

Janak and Floudas (2008) and Shaik and Floudas (2009) demonstrated that not 

allowing tasks to span over multiple event points might yield suboptimal solutions in 

some cases. Shaik and Floudas (2009) established that both the original model of 

Ierapetritou and Floudas (1998), and their improved models, may give suboptimal 

solutions because they do not allow tasks to occur over multiple events. Shaik and 

Floudas (2009) also established that the formulation of Janak et al. (2004) which was 

developed to address a more general has weak LP relaxation and requires a large 

number of constraints, nonzeros, and CPU time. To reduce the complexity and 

improve the efficiency of the model of Janak et al. (2004), Shaik and Floudas (2009) 

proposed a novel unified model that allows tasks to occur over multiple event points. 

Their model requires an extra set of iterations that control the number of event points 

that a task is allowed to span. When analyzing the limitations of unit-specific event-

based models, Li et al. (2010) confirmed that the work of Shaik and Floudas (2009) 

indeed addressed the limitations of previous models by allowing a task to span 

several event points. 
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Susarla et al. (2010) presented models that use unit specific slots that allowed tasks to 

span over multiple slots and also allow non-simultaneous transfer of material into a 

unit to get a better schedule. This means that for a task that requires more than one 

intermediate materials, it is possible for some materials to be stored in a unit that is 

processing that task while waiting for the other intermediate materials. The model of 

Susarla et al. (2010), and all other unit-specific event-based models in literature at 

this stage, assumed unconditional sequencing. This means that different tasks in 

different units are always aligned without monitoring the actual material flows. These 

models assume that consumption tasks at event n + 1 are always aligned with 

production tasks at event n irrespective of whether the material produced from a 

production task is actually used or not. 

Seid and Majozi (2012) introduced conditional sequencing where producing and 

consuming tasks of an intermediate state are aligned only when a consuming task 

actually uses the material from a producing task. Using the SSN recipe 

representation, Seid and Majozi (2012)  presented a formulation where each task 

starts and finish at a particular unit specific slot. Their model requires less 

computational time to reach global optimality when compared to existing 

formulations in literature at this stage. However, Vooradi and Shaik (2013) argued 

that the model Seid and Majozi (2012) used partial conditional sequencing since it 

aligns a production task with all consumption tasks even if a single consumption task 

uses material from that production task. 

The formulation of Vooradi and Shaik (2013) had rigorous conditional sequencing. 

This means that production and consumption tasks are aligned by accurately 

monitoring the material flow from each production task to each consumption task. 

When compared with partial conditional sequencing, rigorous conditional sequencing 

further reduces the number of events required. The scheduling formulation of 

Vooradi and Shaik (2013) can also effectively handle cases with non-simultaneous 

material transfer through proper handling of pre-processing and post-processing unit 

wait times. 
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2.5. Recent wastewater minimization formulations 

Manufacturing industries contribute significantly to the generation of wastewater that 

pollute the environment. Industries responded to the wastewater problem, as outlined 

in chapter 1, by sending the generated effluent to treatment plants. Depending on the 

characteristics of wastewater, treatment methods are classified into physical, chemical 

and biological methods (Tchobanoglous et al., 2014). High capital investments are 

required for these treatment facilities, and the operating cost of the treatment 

operations depend on the amount of wastewater as well as the nature and the 

concentration of the contaminants. As a result, industries are trying to find techniques 

of minimizing the amount of wastewater as well as controlling the toxicity of the 

wastewater.  

Most of the early research studies on water minimization were developed for 

continuous processes (Chwan and Foo, 2009). This was because continuous 

manufacturing processes generated larger volumes of wastewater and they were very 

popular. Batch processes, on the other hand, were less popular and more complex due 

to the existence of the time dimension. Batch processes have gained more attention 

due to the increased demand for various low-volume high-value-added products. 

Wastewater produced by batch processes is generally more toxic than the wastewater 

produced by continuous processes. Wastewater minimization techniques for 

continuous processes cannot directly apply to batch facilities due to the extra time 

dimension. Techniques for water minimization in batch processes have gained 

attention in the past decade. Techniques for minimizing water in batch plants are 

classified into graphical and mathematical programming. 

Washing of equipment, when changing over from one task to the other in the same 

unit, is the major source of wastewater in most multipurpose batch facilities. In some 

batch operations, water is used as a medium for solvent extraction which is then 

dispensed at the end of the process. Minor sources of wastewater exist which may 

include floor washing. Wastewater generated in batch processes is mostly composed 
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of toxic concentrations of contaminants. Techniques for water minimization in batch 

processes need to, therefore, satisfy both the contaminant concentration constraints as 

well as the time constraints, which makes them more complex than their continuous 

counterparts. Some models fix the outlet contaminant concentration and leave the 

amount of wastewater as a variable to be minimized; while other models fix the 

amount of wastewater and leave the contaminant concentration as a variable to be 

minimized (Majozi, 2005b). 

Popular process integration methodologies for wastewater minimization include 

direct, indirect and regeneration reuse and recycle. Direct reuse is when an outlet 

stream from a washing operation becomes an inlet stream to a washing operation in a 

different unit. Direct recycle is when an outlet stream from a washing operation 

becomes an inlet stream to a washing operation in the same unit. Direct reuse and 

recycle are illustrated in Figure 2.6(a). Two requirements need to be satisfied for 

direct reuse and direct recycle to occur: the time requirement (the finishing and the 

starting times of the washing operations must coincide) and the contaminant 

concentration requirement (the outlet contaminant concentration of the outlet streams 

need to be less than the maximum allowable contaminant concentration in the inlet 

stream). Indirect reuse and indirect recycle attempts to relax the time requirement by 

allowing water to be stored before it can be reused or recycled; see Figure 2.6(b). 

Regeneration reuse and regeneration recycle relaxes the contaminant concentration 

requirement by allowing water to be treated before it can be reused or recycled; see 

Figure 2.6(c). Regeneration is achieved with the aid of a water treatment technology. 

Buabeng-Baidoo et al (2017) achieved 85% reduction of wastewater generation by 

exploring multiple water reuse opportunities, including regeneration reuse by means 

of a reverse osmosis membrane, in the cleaning in place process of a large scale milk 

continuous processing plant. 
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Figure 2.6 (a) Direct reuse and recycle (b) Indirect reuse and recycle (c) 

Regeneration reuse and recycle 

Mathematical formulations are often based on a superstructure. The superstructure is 

presented as a diagram that represents all sources and sinks in a unified manner while 

considering all possible interconnections between various processes. The role of the 

optimization model is therefore to synthesize the best set of connections from the 

superstructure.  

2.5.1. Insight based techniques 

Wang and Smith (1994) presented a design methodology that aims to minimize water 

reuse between continuous water using operations. The first graphical technique for 

water minimization in batch processes, through the exploration of water reuse and 

recycle opportunities, was presented by Wang and Smith (1995b). Their targeting 

procedure includes dividing the problem into concentration intervals and time 
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subintervals where the boundaries are set by the end-points of individual processes. 

Streams that are available for water reuse are then grouped in each time interval. 

Water available in each concentration interval is reused in the time subinterval. The 

surplus is reused in the subsequent time subintervals or stored for reuse in the 

subsequent concentration interval. Surplus water is neither allowed to be reused in 

lower concentration intervals nor in lower time subintervals. Freshwater is used after 

reuse opportunities are exhausted and the eventual surplus becomes effluent. 

However, the technique by Wang and Smith (1995b) demonstrated semi-batch 

behavior by allowing the reuse of water to occur between two units that are active. 

Majozi et al. (2006) improved on the work of Wang and Smith (1995b) and presented 

a graphical technique for water minimization in completely batch operations.  

The technique by Majozi et al. (2006) is able to determine the water network and the 

minimum amount of freshwater that can be achieved by exploring reuse and recycle 

opportunities for strictly batch processes. The following information is required: the 

contaminant mass load, fixed water requirement, starting and finishing times of each 

batch operation, as well as the maximum inlet and outlet concentration. The issue of 

product mixing is however excluded since it is assumed that the considered processes 

are compatible and therefore product integrity is not compromised. Time is taken as a 

primary constraint. This technique recognizes that discrete amount of water is 

available either at the beginning and/or the end of the concentration or time interval. 

A hypothetical example can be used to illustrate the technique by Majozi et al. 

(2006). 

The example involves the production of agrochemicals A, B, and C; in completely 

batch reactors. Sodium Chloride (NaCl) is formed in each of the three reactions as a 

byproduct and it is then removed through a liquid-liquid extraction product-washing 

stage where water is the aqueous phase. In the case of A, water is used solely for 

washing NaCl since the reaction took place in a solvent that is highly immiscible with 

water. In the case of B and C, water was used as a solvent and also for product 

washing. Table 2.1 summarizes the specification of the described problem. Duration 
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of each task is given, together with the load of salt that should be removed, the 

amount of water required, as well as the contaminant concentration limits of water for 

different tasks (Cin,max and Cout, max).  

Table 2.1 Problem specification 

Process Time (h) Cin,max (Kg 

Salt/ Kg 

Water) 

Cout,max (Kg 

Salt/ Kg 

Water) 

Water 

(Kg) 

Salt 

load 

A product 

washing 

0.3 0 0.1 1000 100 

Reaction B 0.4 0.25 0.51 280 72.8 

B product 

washing 

4.5.5 0.1 0.1 400 0 

Reaction C 2.6 0.25 0.51 280 72.8 

C product 

washing 

6.7.5 0.1 0.1 400 0 

Total    2360 245.6 

Figure 2.7 provides the graphical representation of the example. Figure 2.7 also 

shows the concentration intervals: 0 to 0.1, 0.1, and 0.25 to 0.51 kg of salt per kg of 

water. 
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Figure 2.7 Graphical representation of the specified problem 

Figure 2.8 shows targeting at the first concentration interval, 0 to 0.1, where washing 

of product A is the only operation. As presented in Table 2.1, 1000kg of water is 

required for operation A. The required amount will be freshwater since there is no 

reusable water available in this interval.   



LITERATURE REVIEW  CHAPTER 2 

 

2-24 
 

3

1000

Time (h)

W
at

er
 d

em
an

d 
(k

g)

 

Figure 2.8 Targeting interval 0 to 0.1 kg of salt per kg of water 

Figure 2.9 presents targeting at the concentration boundary of 0.1 kg of salt per kg of 

water. Productions B and C lie in this boundary as the concentration of water remains 

constant since no load is removed from the products. According to the Table 2.1, the 

combined water demand at this concentration boundary is 800kg. It is however 

evident from Figure 2.7 that both B and C starts after the completion of A wash. The 

outlet concentration from A wash corresponds to the required boundary concentration 

of 0.1. Waste from A wash can, therefore, be reused in B and C since both the time 

and contaminant concentration requirements for water reuse in batch processes are 

met. A water storage tank is needed to store water from the A wash since there is a 

time gap between the end of the A wash and the start of B and C wash. 
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Figure 2.9 Targeting boundary 0.1 kg of salt per kg of water 

Figure 2.10 represents the targeting at the interval 0.25 to 0.51 kg of salt per kg of 

water. This interval has the B and C reactions with the overall demand of 560kg as 

illustrated in figure 2.7. There is no reusable water available for these reactions since 

they both start before the completion time of A wash, hence freshwater is required. 
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Figure 2.10 Targeting interval 0.25 to 0.51 kg of salt per kg of water 

In this example, the total freshwater demand is 1560kg. This implies that 34% of 

freshwater was saved when using the proposed graphical technique. The work of 

Majozi et al. (2006) accommodated for completely batch operations by ensuring that 

water is only available or required at the end or the beginning of intervals and in 

discrete amounts. 

Insight based techniques for water minimization provide insights by determining 

minimum freshwater targets and are useful when the time is treated as a fixed 

parameter in batch processes. Additionally, they are also limited to single 

contaminant problems. The aforementioned drawbacks can be overcome by using 

mathematical modeling techniques since they can address complex batch problems. 

Mathematical techniques for water minimization in batch processes are classified into 

those that are based on a predefined fixed schedule and those based on the variable 

schedule. Time is treated as a parameter on the former and as a variable on the latter. 
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2.5.2. Fixed schedule mathematical programming 

Formulations for water minimization where the schedule is predefined are regarded as 

simpler to solve compared to those that determine the schedule as part of the 

algorithm. Almató et al. (1997) proposed a mathematical model for water 

minimization in batch processes, based on a predefined fixed schedule. They explored 

indirect water reuse opportunities by allocating storage tanks for reusable water. This 

means that water could be stored and used by a task that occurs at a later time. Direct 

water reuse opportunities were, however, not explored. Kim and Smith (2004) 

proposed a model that explored both direct and indirect water reuse opportunities 

where each unit producing wastewater was allocated a storage tank to avoid mixing. 

They urged that allowing wastewater mixing reduce opportunities for reuse due to 

higher contaminant concentrations.  

A model by Majozi (2005a) explored direct water reuse for a fixed outlet 

concentration scenario. The formulation included sequencing constraints that ensure 

that the starting time for the water using unit coincide with the finishing time of the 

water producing unit for direct reuse to occur. Bilinear terms, comprising of 

continuous and binary variables, were linearized exactly using Glover transformation 

(Glover, 1975) and the resulting model was MILP. A formulation proposed by Li and 

Chang (2006) determines the number and sizes of storage tanks, the configuration of 

pipeline network as well as the operating policies of water flows. Buffer tanks were 

incorporated to provide opportunities for indirect water reuse and to equalize the flow 

and concentration of wastewater before entering the treatment systems. Chen et. al 

(2008) analyzed the impact of central storage facilities on freshwater reduction and 

their model synthesizes water-using networks with the minimum freshwater 

consumption. Recently, Lee et al. (2014) presented a fixed schedule model that 

simultaneously targets minimum water and wastewater flow, storage capacity, and 

interconnections for multi-contaminant cyclic batch operations. Their formulation is 

capable of identifying the water source or sink to be reduced or eliminated, predicting 

the amount of external water required, water source to be reused, recycled, 
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regenerated, or discharged and determine the minimum storage tank capacity and 

interconnection configurations.  

Assuming an optimum fixed schedule limits the water minimization model from 

finding more water reuse/recycle opportunities. For example, if the finishing time of a 

water-producing operation does not coincide with the starting time of the water-using 

operation and they are both fixed, direct reuse will not happen. Whereas if time was 

treated as a variable, the water minimization model might have shifted the operations 

within the time horizon of interest, such that the finishing and the starting times of the 

operations coincide and the direct water reuse opportunity is explored. 

2.5.3. Variable schedule mathematical programming 

Mathematical techniques for water minimization based on an optimization scheduling 

platform can be further classified into discrete and continuous-time formulations. 

Cheng and Chang (2007) presented a discrete time formulation that simultaneously 

optimizes the schedule, water reuse opportunities and wastewater treatment by 

incorporating all three optimization problems in one platform. The nature of discrete 

models results in large model sizes that require more time to solve hence continuous 

time models are preferred.  

Majozi (2005b) presented a continuous time variable schedule mathematical model 

for wastewater minimization in batch processes, built on a scheduling platform 

presented by Majozi and Zhu (2001) which is based on a State Sequence Network 

(SSN). Their model explored four scenarios: fixed outlet concentration without 

reusable water storage, fixed water quantity without reusable water storage, fixed 

water concentration with reusable water storage, and fixed water quantity with 

reusable water storage. The first two scenarios explored direct reuse and recycle 

opportunities and the last two scenarios explored indirect reuse and recycle using a 

central reusable water storage tank. Majozi and Gouws (2009) presented a model that 

explores direct and indirect water reuse and recycle with central reusable water 

storage tank for multi-contaminant problems.  
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Water can also be minimized between multiple processing plants that are grouped in 

different geographical locations through interplant water integration. Chew et al. 

(2008) explored direct and indirect interplant water integration through pipelines and 

centralized utility hub. Optimization approaches for water minimization, insight-

based and mathematical optimization, can be combined and this provides the 

opportunity to use targets obtained beforehand to generate alternative networks 

(Oliver et al., 2008). Gouws et al. (2010) reviewed earlier formulated water 

minimization models. 

A method presented by Li et al. (2010) simultaneously optimized production and 

water network. They incorporated regeneration that reduces the contaminant 

concentration of wastewater in order to improve indirect reuse opportunities. Adekola 

and Majozi (2011) expanded on the work of  Majozi and Gouws (2009) by 

incorporating a black box regeneration unit that treats water and increases reuse and 

recycle opportunities. A model by Chen et al. (2011) simultaneously optimized the 

production schedule and the water network for periodic operations. Their model was 

built on an RTN scheduling framework of Chen and Chang (2009). Nonyane and 

Majozi (2012) presented a variable schedule model for water minimization that can 

handle longer time horizons.  

Grundemann et al. (2012) conducted an experimental investigation aimed at reducing 

cleaning related wastes, including wastewater, by transferring macro batch to micro 

continuous campaign manufacturing. Their three-step approach to design and 

optimizing a micro-continuous process starts by exploring how fouling and deposits 

can be avoided by choice of equipment. The frequency of cleaning is then minimized 

by exploring how batch production can be transferred to micro-continuous production 

through equipment dedication and proper production scheduling. They also argue that 

increasing the batch size reduces product frequency in a sequence which leads to 

fewer changeover procedures and less cleaning waste. The last step focuses on the 

optimization of the cleaning cycle by taking advantage of the small hold-up of the 

micro-continuous plant.  
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Variable schedule optimization models that incorporate heat and water minimization 

in one unified framework with an optimization scheduling model are also presented 

in literature (Seid and Majozi, 2014). In the work of Halim and Srinivasan (2011), the 

optimization problem is decomposed into the scheduling part, the heat integration 

part and the water reuse optimization part. The optimization problem was then solved 

sequentially starting with scheduling. However, the unified approach of optimizing 

resources simultaneously give better economic performance when compared to the 

sequential approach. Recent advances include a formulation by Chaturvedi and 

Bandyopadhyay (2014) that uses multi-objective functions for simultaneously 

minimizing freshwater requirement and maximizing production. The formulation was 

solved by repeatedly optimizing one objective while fixing others.  

2.6. Handling changeovers 

In batch processing, the changeover is a process of converting a unit or a production-

line from processing one task to another. Changeover operations occur between tasks 

in a unit; for example washing, sterilization, equipment set-up, material transfer, etc. 

Research on changeovers was incentivized by two main factors: the loss of valuable 

production time since a unit is not operational during the changeover; and the cost of 

the changeover activities. Changeover can either be sequence dependent or sequence 

independent. Changeover time and/or cost will depend on both the task just 

completed and the task that is about to be processed if the changeover is sequence 

dependent. When the changeover is sequence independent, changeover time and/or 

cost is not influenced by the sequence of tasks in a processing unit. Sequence-

independent changeovers are often found in situations where batches being processed 

have similar equipment set-up, operating conditions, etc.; and they can be easily 

modeled. For example, Li and Floudas (2010) incorporated sequence independent 

changeover or setup times into their scheduling model by lumping them into the 

processing time of batches.   
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Due to the common time grid for units, discrete time formulations can easily 

incorporate sequence dependent changeovers (Doganis and Sarimveis, 2007). 

Discrete-time formulations are not desirable to account for changeovers due to small 

changeover times that require finer time discretization leading to large model sizes 

and excessive computational times. Cerda et al. (1997) and Méndez et al. (2001) used 

a concept of order of precedence to handle changeovers in single stage multiproduct 

batch plants. Precedence relationships can either be global or immediate. However, 

precedence based formulations are not time grid-based and are suited for 

multiproduct batch plants that follow a linear process. 

This review will explore continuous-time formulations that address sequence 

dependent changeover time and/or cost in multipurpose batch processes.  Continuous 

time grid-based models overcome the drawback of discrete time formulations and are 

also suited for multiproduct batch processes. However, continuous time models 

require iterations when deciding the number of event points or slots and may result in 

higher integrality gaps. 

Maravelias and Grossmann (2003) presented a continuous time scheduling model for 

multipurpose batch processes that incorporates sequence dependent changeover time 

into sequencing constraints of different tasks in the same unit. Their model used an 

STN representation and it made use of global time points. Janak et al. (2004) 

presented a similar scheduling model which made use of unit specific event based 

presentation which proved to be computationally better than the formulation by 

Maravelias and Grossmann (2003). Both these models explore changeovers of tasks 

that occur between consecutive time slots and place the unused time slots as the last 

slots in the time period. A model by Shaik and Floudas (2008) allows for changeover 

even in situations where the consecutive task does not occur in the next time slot, as 

long as there is no other task/s processed between the tasks involved in the 

changeover. In their respective work, Shaik and Floudas (2008) and Shaik and 

Vooradi (2013) handled sequence time by using equation 2.1. 
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The above literature did not consider changeover cost. The requirement of accounting 

for sequence dependent changeover cost is the ability to determine a task that 

immediately follows the task that has just occurred in a unit. Erdirik-Dogan and 

Grossmann (2008) accounted for changeover cost in their scheduling model of 

multiproduct batch processes by introducing a binary variable tlmkiZ ,,,, . This binary 

variable, as defined by equation 2.2 to 2.4, becomes active when product i , assigned 

to slot l , is followed by product iʹat slot 1+i  on unit m at time period t . Their model 

places empty or unused slots as last slots in the time period. 

( ) ( ) ( ) 1,1,,,,,,,,, −++≥ tlmiwtlmiwtlmkiz  2.2  

( ) ( )tlmkiztlmiw ,,,,,,, ≥  2.3  

( ) ( )tlmkiztlmiw ,,,,,1,, ≥+  2.4  

Kabra et al. (2013) accounted for changeover cost on their short-term model for 

multistage multiproduct batch process by introducing a binary variable nssiwc ʹʹ ,,, . This 

binary variable, as defined by equation 2.5 to 2.7, becomes active when state sʹ at 

event nʹ is followed by state s  at event n  provided that there is no other task 

occurring between nʹ  and n . The formulation allows for empty events to exist 

between consecutive tasks. Changeover constraints of Kabra et al. (2013) are adapted 

from Shaik et al. (2009) for continuous processes. 

( ) ( )nsiwnssiwc ʹʹ≤ʹʹ ,,,,,  2.5  
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Washing operations during changeover are inevitable in multipurpose batch 

processes. Adekola and Majozi (2017) presented a formulation that achieves 

wastewater minimization by exploring the sequence of tasks in a unit. They proposed 

a three index changeover binary variable ( )pssx jinjinch ,, ,, ʹ  as well as a binary variable

( )psXL jin ,,  which becomes 1 when a task is the last task to be processed in a unit. 

The changeover binary variable ( )pssx jinjinch ,, ,, ʹ  becomes 1 when a task jins ,  at p is 

followed by jins ,ʹ at a later time point since the formulation allows for empty time 

point between consecutive tasks in a unit. Equation 2.8 to 2.10 shows the relationship 

between the changeover binary variable ( )pssx jinjinch ,, ,, ʹ and the binary variable 

associated with the activeness of a task ( )psy jin ,, .   

( ) ( )psypssx jinjinjinch ,,, ,,, ≤ʹ  2.8  

( ) ( ) ( )∑ ∑
<ʹ́<ʹ ∈ʹ́

ʹ́ʹ́+ʹ≤ʹʹ
ppp Ss

jinjinjinjinch
jinjin

psypsypssx
,,

,,,, ,,,,  2.9  

( ) ( ) ( )
( )∑ ∑

<ʹ́<ʹ ∈ʹ́

ʹ́ʹ́−

−ʹ+ʹ≥ʹʹ

ppp Ss
jin

jinjinjinjinch

jinjin

psy

psypsypssx

,,

,

1,,,,

,

,,,,

 2.10  

( ) 1,,
,,

,, ≤ʹ∑
∈ʹ jinjin Ss

jinjinch pssx  2.11  
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 2.12  

( ) 1,
,,

, ≤∑ ∑
∈p Ss

jin
jinjin

psXL  2.13  

Constraints 2.11 and 2.13 ensures that there can only be one immediate successor to 

the current task and only one last task in a unit. Constraint 2.12 states that if a task 

occurs in a unit, it can either be followed by another task or it is the last task in that 

unit. 

2.7. Background to mathematical modeling and 

optimization 
Mathematical optimization is an approach that seeks to find the best solutions for 

problems defined mathematically through mathematical modeling. In the process 

industry, mathematical optimization can be done to minimize the total cost of design, 

optimize the operation (i.e. minimize operating cost and maximize profit), improve 

plant performance (i.e. yield, selectivity, use of resources, etc.) or improve 

environmental performance. Mathematical optimization problems consist of a process 

model and at least one objective function. In production scheduling, the objective can 

be to maximize or minimize the makespan, earliness, profits, inventory, cost, etc. A 

feasible solution to an optimization problem is defined as a set of variables that 

satisfy the constraint of an optimization problem. An optimum solution is the one that 

has the best objective function amongst the feasible solution in a feasible region.  

A process model is a representation built to purposefully exhibit features and 

characteristics of an object, process or system. An optimization model consists of 

design variables that are involved in the trade-off. An optimum value of the design 

variable is desired since changing it may bring a benefit to one part of the design but 

a misfortune on the other. The objective of optimization is to find the values of these 

variables that yield the optimal value of the objective function. 
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Interrelationships of variables are captured using mathematical constraints. 

Constraints can be expressed as equalities or inequalities. A combination of 

constraints forms a model that can be optimized if an objective function is included. 

Models with 100, 400, and 1 000 000 constraints are considered as small, medium 

and large-scale problems respectively. Factors that make an optimization problem 

difficult to solve include the size of the model, types of variables and the nature of 

nonlinearity. 

Types of mathematical models include empirical, stochastic and deterministic models 

(Dym, 2004). Empirical models attempt to describe the behavior of acquired data. 

Stochastic models are inherently random, i.e. similar parameters and initial conditions 

can lead to different outputs; whereas the output in deterministic models, which are 

based on the dynamics of the system, is fully determined by the parameters and the 

initial conditions. In operation research, deterministic models are used as process 

models where the system or process is described using mathematical equations, 

inequalities, and logical expressions.   

The degree of freedom is determined as the difference between the number of 

independent variables and the number of constraints in a model. The degree of 

freedom of an optimization problem must be at least 1, meaning that there must be at 

least one variable which is free to vary. The problem is a uniquely solvable 

simulation problem when the degree of freedom is zero. The problem is over-

specified when there are more independent constraints than variables and some 

constraints are therefore redundant. 

Models can be built to describe the result of an observed system, to explain the 

behavior of a system, and/or to predict future behaviors. In many fields, such as 

engineering design, predictions by a validated and/or verified model influence 

decision making. Cobelli and Carson (2001) highlighted critical questions that are 

useful in general problem solving and also guides the process of building 

mathematical models, see Figure 2.11. In order to build a model that best predicts the 
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desired outcome, it is essential to be clear of what is already known (parameters) and 

the assumptions that can be made. Before model predictions can be trusted, it is 

important that the model is verified or the outcomes are validated. Though the two 

can easily be confused, verification is different from validation. Model verification is 

the process of confirming that the model accurately represents the conceptual 

description of the system whereas model validation is done to ensure that the 

predictions of the model represent the real-life cases.   

System

Model
Variables

Parameters

Model
Predictions

Valid/Accepted
Predictions

What do we want to know?

Test
Valid: Are the predictions valid?
Verified: Are the predictions good?

What will the model predict?

How should the model look like?
What do we know?

What can we assume?

How can the model be improved?

 

Figure 2.11 An overview of the process of developing models 

2.7.1. Model classification 

Variables used to build mathematical models can be continuous, discrete or binary. 

Continuous variables can take any value that is within the specified boundaries. 

Discrete, also known integer variables, can only take discrete values e.g. the number 
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of storage tanks. Binary variables can either take a value of 0 or 1 indicating, for 

instance, the availability or unavailability of a processing unit at a particular time. 

A mathematical model in which all the expressions in the process model and the 

objective function are linear is referred to as a Linear Programming (LP) model. 

Edgar and Himmelblau (1989) describe a linear expression as the one whose 

independent variables or derivatives appear only to the first power; otherwise, they 

are nonlinear. If at least one expression is nonlinear, that model is called a Nonlinear 

Programming (NLP) model. LP models are, in order of magnitude, easier to 

manipulate and solve than NLP models, hence there are techniques of linearizing 

NLP models (Glover, 1975). Applications of optimization models might require some 

variables to be whole numbers, integer variables. LP models consisting of a mixture 

of integer and continuous variables are called Mixed Integer Linear Programming 

(MILP) models (Williams, 1999). The NLP equivalent models are called Mixed 

Integer Nonlinear Programming (MINLP) models. MILP models guarantee global 

optimality and can be solved using the branch and bound technique. 

2.7.2. Global optimization methods 

Global optimization algorithms are used to solve mathematical optimization problems 

and can be classified as either stochastic or deterministic. Stochastic approaches are 

based on probability and often rely on physical analogues to guide the algorithm 

towards the global optimum solution. Stochastic approaches are not rigorous and 

have difficulty handling complex constrained problems. Deterministic algorithms 

may guarantee finite convergence, within a specified level of accuracy, by taking 

advantage of the mathematical structure of the optimization problem (Ryoo and 

Sahinidis, 1996). When building mathematical models for manufacturing industries, 

MINLP models usually surface.  The following is a basic form of an MINLP 

problem: 

Objective: Minimize Z = f(x,y) 
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Subject to:  gj(x,y) ≤ 0 j ∈ J 

  X ∈ X, y ∈ Y 

Where x and y are continuous and discrete variables, respectively. Major 

deterministic global optimization algorithms that can be used to solve MINLP 

problems include branch and bound, branch and reduce, general benders 

decomposition and outer approximation. 

Branch and bound algorithm 

Branch and bound algorithms are able to develop upper and lower bounds of the 

optimum objective value in sub-regions within the feasible region. This algorithm 

relaxes the discrete variables which then lead to a continuous NLP problem.  The 

solution of the NLP at the node becomes the lower bound for the optimal MINLP 

objective function value which can be used to expand the nodes. Nodes can either be 

expanded breadth-first or depth-first. The breadth-first approach selects a node with 

the best value at each level and expands on all its successor nodes while the depth-

first approach performs branching on the most recently created node within the tree. 

Branching occurs when the feasible region is being subdivided and bounding is the 

estimation of the upper and lower bounds of the global optimum solution. According 

to Ryoo and Sahinidis (1996), the depth-first approach requires less storage and can 

find the optimal solution early in the procedure. 

The performance of bounding at every node in the branch and bound algorithm can 

be improved by pre-processing a global optimization problem using reduction 

techniques (Sahinidis, 2000). The method allows some nodes to be excluded based on 

the optimality and feasibility criteria. The resulting algorithm is called the branch and 

reduce algorithm. BARON (Branch and Reduce Optimization Navigator) solver make 

use of the branch and reduce method extended to continuous and discrete variables. 

Generalized benders decomposition and outer approximation 
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Generalized benders decomposition and outer approximation algorithms differ from 

branch and bounds methods in that, for each major iteration, they solve an NLP 

problem (when all discrete variables are fixed) and MILP master problem. The NLP 

sub-problem provides the upper bound to the MINLP solution while the MILP master 

problem predicts both the lower bound to the MINLP solution and the values for the 

discrete variables for each major iteration. As the cycle of major iterations proceeds, 

the predicted lower bounds would increase and the search will be terminated when 

the lower bound coincide with the upper bound.  

The general benders decomposition methods differ from the outer approximation 

methods on how they define their respective NILP master problems. The generalized 

benders decomposition method uses the optimal dual information to ensure that the 

master program corresponds to an initially poorly constrained integer linear program 

while the outer approximation algorithm uses the optimal primal information of the 

sub-problems to define a mixed-integer linear master program (Duran and 

Grossmann, 1986). 

2.7.3. Convexity 

The output of mathematical optimization can be a global optimum, the best solution, 

or a local optimum, one of the best solutions. Unimodal functions have one extremum 

which is a global minimum or maximum. Multimodal functions have multiple 

extrema where the smallest is the global minimum, and biggest is the global 

maximum, and the rest are local extrema. Whether the solution is local or global 

minimum or maximum can also be influenced by convexity. A function is convex if a 

line segment between any two points on the graph lies above or on the graph and 

concave if the line segment lies below the graph, see Figure 2.12. Strictly convex and 

concave functions have the line segment respectively above and below, and never on 

the graph. As can be observed from Figure 2.12, strictly convex or concave functions 

provide a single optimum.  A global optimum solution can, therefore, be guaranteed 
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for a convex function and not for a nonconvex function which may have multiple 

local optimum solutions (Lundell and Westerlund, 2012).  

 

Figure 2.12 (a) Convex function (b) Concave function 

For a one-dimensional function, convexity can be proven by finding the second 

derivative. A function is strictly convex or strictly concave if the second derivative is 

strictly greater or lesser than zero respectively. If the second derivative is greater or 

equal to zero, however, the function is convex though not strictly convex and if the 

second derivative is less or equal to zero, the function is concave though not strictly 

concave. To prove convexity for multivariable functions, a Hessian matrix is used to 

represent the second derivative and conditions similar to the ones mentioned above 

apply. However, there are convenient tests that can be made to establish the status of 

a Hessian matrix for strict convexity: all eigenvalues of the Hessian matrix must be 

positive, and all diagonal elements must be positive. For strict concavity: all 

eigenvalues of the Hessian matrix must be negative, and all diagonal elements must 

be negative.  

MINLP formulations should, therefore, be convexified for the global optimum 

solution to be obtained. Figures 2.13(a) and 2.13(b) are illustrating envelopes for 
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convex underestimators and concave overestimators to nonconvex and nonconcave 

functions respectively. 

 

Figure 2.13 (a) Convex (b) Concave envelope 

The following subsection will explore how nonlinearity caused by different bilinear 

terms can be transformed to linearity. This is important since nonlinearity causes 

models to be nonconvex which make it difficult to obtain and prove global 

optimality. 

2.7.4. Linearization of bilinear terms 

Bilinear terms can be caused by a product of variables. In this section, the following 

combinations will be discussed: product of two continuous variables, product of a 

continuous and a discrete variable, and a product of two discrete variables. 

Product of two continuous variables 

A method proposed by Mccormick (1976) can be used to linearize a bilinear term of a 

product of two continuous variables by deriving underestimator and overestimator 

functions that can be incorporated into an optimization algorithm.  

Let z in equation 2.14 be a product of two continuous variables, x and y. 
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xyz =                                                                Ryx ∈,  2.14 

Each continuous variable has a lower and an upper bound as illustrated by constraint 

2.15 and 2.16. 

UL xxx ≤≤  2.15 

UL yyy ≤≤  2.16 

Constraints 2.17 to 2.20 can be obtained from constraint 2.15 and 2.16. 

0≥− Lxx  2.17 

0≥− xxU  2.18 

0≥− Lyy  2.19 

0≥− yyU   2.20 

Constraint 2.21 to 24 are obtained by taking a product of different combinations of 

constraints 2.17 to 2.20. 

0≥+−− LLLL yxxyyxxy  2.21 

0≥+−− UUUU yxxyyxxy  2.22 

0≥+−− ULUL yxxyyxxy  2.23  

0≥+−− LULU yxxyyxxy  2.24  

By substituting equation 2.14 and rearranging, we get constraints 2.25 to 2.28 which 

are Mccormick (1976) overestimators and underestimators. This method replaces 
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bilinear terms with linear constraints. It is however not an exact linearization 

technique.   

LLLL yxxyyxz −+≥  2.25 

UUUU yxxyyxz −+≥  2.26  

ULUL yxxyyxz −+≥  2.27  

LULU yxxyyxz −+≥  2.28  

Product of discrete and continuous variables 

Glover (1975) presented a method for linearizing a bilinear term due to a product of a 

discrete and a continuous variable. 

Let Z be a product of a discrete variable y and a continuous variable x, as shown in 

equation 2.29.  

xyZ =                                                                ]1,0[, ∈∈ yRx  2.29  

Z can, therefore, take the value 0 if y is 0 and take the value of x if y is 1. x is a 

continuous variable with a lower and an upper bound as illustrated by constraint 2.30. 

UL xxx ≤≤  2.30  

Constraint 2.31 is obtained by multiplying constraint 2.30 with the discrete variable y. 

Constraint 2.32 is obtained by substituting equation 2.29 in constraint 2.31  

yxxyyx UL ≤≤  2.31  

yxZyx UL ≤≤  2.32  

)1()1( yxxZyxx LU −+≤≤−−  2.33  
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The lower and the upper bound are assumed to be known, therefore constraints 2.32 

and 2.33 are linear in terms of x and y. Equation 2.29 can be linearized by replacing it 

with constraint 2.32 and 2.33. This method is an exact transformation technique. 

Product of discrete variables 

21yyz =                                                         ]1,0[, 21 ∈yy  2.34  

A binary variable is an integer (discrete) variable that can only assume a value of zero 

or one. In optimization formulations, binary variables can be used to model the 

presence or absence of tasks. Table 2.2 shows possible outcomes of equation 2.34, a 

product of two binary variables. This outcome shows the activity/inactivity of a task 

that requires both y1 and y2 to be present.  

Table 2.2 Product of two binary variables 

y1 y2 z 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

Nonlinearity exists in optimization formulations can be due to the product of binary 

variables. If z is a product of two binary variables, the following set of linear 

constraints can replace equation 2.34 (Maranas and Zomorrodi, 2016): 

1yz ≤  2.35 

2yz ≤  2.36  

121 −+≥ yyz  2.37 

Equation 2.35 and 2.36 provide the upper bound for z and also hold for all 

combinations in Table 2.2. Equation 2.37 provides the lower bound for z. This exact 



LITERATURE REVIEW  CHAPTER 2 

 

2-45 
 

linearization technique can be expanded for the product of any number of binary 

variables. Z is a product of any number of binary variables, equation 2.38. 

∏
=

=
N

i
iyZ

1
 2.38  

The following set of general linear constraints can replace 2.38 (Maranas and 

Zomorrodi, 2016): 

0≥Z  2.39  

iyZ ≤                                                             { }Ni ,...,2,1∈∀  2.40  

∑
=

−−≥
N

i
i NyZ

1
)1(  2.41 

2.7.5. Solution output 

It is usual to obtain an unacceptable solution output when running a mathematical 

model. An unacceptable solution output can include solver failure, infeasible 

solution, unbounded solution and unsatisfactory optimal solution. Solver failure can 

occur when a solver fails to cite numerical difficulties; when the unrealistically large 

amount of resources (memory and time) are used to make little progress; and cycling 

where a model lacks progress as it iterates excessively at a single point despite using 

more resources. A solver can sometimes stop and indicate that the model is infeasible 

or unbounded when attempting a model solution.  Sometimes an optimal solution can 

be reported while the values of variables are observed to be impractical. This 

unsatisfactory optimal solution may be because of omitted variables or constraints, 

errors in estimated parameters, algebraic errors, etc.  

Solver failure can be alleviated by examining the model structure and input 

coefficient location, by using a priori degeneracy resolution scheme (adding small 

numbers to one side of the equation to avoid redundancy) and/or by rescaling  the 
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model to narrow the disparity between the magnitude of variable coefficients (Mccarl 

and Spreen, 2011). These techniques should be applied before solving the model to 

avoid solver failure. Unbounded solutions can be alleviated by imposing upper 

bounds to variables that are taking undesirable outcomes. For infeasible solutions, 

structural checking can be done to find obvious formulation defects or by using 

artificial variables that make infeasible problems feasible by allowing the violation of 

equality constraints. This then makes it easier to discover constraints casing 

infeasibility. 

2.8. Remarks 
Rapid-changing markets have led to an increase in the use of batch manufacturing 

processes. High water consumption and the degradation of water sources by 

manufacturing industries contribute significantly to the water scarcity problem. This 

has triggered the use of process integration techniques, such as direct and indirect 

water reuse and recycle, to optimize the use of water in batch manufacturing 

processes. Mathematical models, presented in literature, that use process integration 

techniques to minimize wastewater in batch processes do not account for sequence 

dependent changeovers. As a result, they determine the amount of water required for 

washing operations by only looking at the task that has just taken place in a unit. 

Incorporating sequence dependent changeover constraints can open an opportunity to 

explore sequence dependent water saving opportunities. Presented in this work are 

wastewater minimization formulations for multipurpose batch processes which 

explore sequence dependent changeover opportunities for water minimization 

simultaneously with direct and indirect water reuse and recycle opportunities. 
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3.1. Introduction 

This chapter presents the development of the optimization mathematical formulations 

for water minimization in multipurpose batch plants. Four different scenarios are 

considered: fixed water requirement with sequence dependent changeover 

constraints, fixed outlet concentration with sequence dependent changeover 

constraints, fixed water requirement with sequence dependent changeover constraints 

and water reuse and recycle technique, as well as fixed outlet concentration with 

sequence dependent changeover constraints and water reuse and recycle technique. 

This is followed by designed superstructures, which are based on the problem 

statement presented in Chapter 1. Assumptions made when developing the model are 

presented as well as the nomenclature. Lastly, mathematical formulations are 

presented for the scenarios under consideration together with the objective function 

that maximizes the profitability of the process across the time horizon of interest.  
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3.2. Explored scenarios 

In order to incorporate sequence dependent changeover constraints in a mathematical 

formulation, a sequence dependent parameter is required. In this work, four scenarios 

based on sequence dependent parameter and the superstructures in Figures 3.1 and 

3.2 were considered. The first scenario is based on fixed sequence-dependent 

changeover water requirement of each washing operation while the outlet 

concentration was allowed to vary. This scenario can be applied to both single and 

multiple contaminant problems. In the second scenario, the outlet concentration is 

fixed and the washing water requirement determined. The sequence-dependent 

parameter is a fraction or percentage used to determine the additional amount of 

water that must be used to rinse the processing unit depending the sequence of tasks 

in the unit. The fixed outlet concentration scenario cannot be extended to multiple 

contaminant problems. This is because the outlet concentrations of individual 

components cannot all be set to a maximum, since contaminants cannot be limiting 

simultaneously.    

The third and the fourth scenarios respectively expand on the first and second 

scenarios by exploring sequence-dependent changeover opportunities for water 

minimization simultaneously with water reuse and recycle. One of the major 

challenges in mathematical optimization is obtaining the accurate data to feed into the 

model in order to obtain reliable predictions. Developing formulations that explore 

the same concept with a similar objective but require different data increases the 

chances of benefiting from that concept.  

3.3. Superstructure representation 

Figure 3.1 represents a superstructure for sequence-dependent changeover where 

different tasks can be processed in a multipurpose unit j. The amount of water 

required for a washing operation differs with the sequence of tasks. For instance, 

),( injinjz ssw  amount of water is required when task injs  follows task injs , 
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),( injinjz ssw ʹ́  amount of water is required when task injs ʹ́ follows task injs , and 

),( injinjz ssw ʹʹ́  amount is required when task injs ʹ́  follows task injsʹ . Within a given 

time horizon of interest, the model must synthesize a sequence of tasks that will 

generate the least amount of wastewater. A trade-off, therefore, exists between 

production and wastewater minimization. 

~~

~~

H

Ta
sk

injS

injS ʹ

injS ʹʹ

 

Figure 3.1 Superstructure for sequence dependent changeover opportunity for water 
minimization 

Figure 3.2 is a superstructure for a water minimization problem with a central water 

storage illustrating both direct and indirect water reuse and recycle opportunities. 

Water required for washing operation j is not only freshwater ),( psmw injf  but could 

also be indirectly reused or recycled from the central reusable storage tank as

),( psmw inj
out
s and/or directly reused from other washing operations in other 

processing units j’. Similarly, the outlet stream from a washing operation can be 

disposed of as effluent ),( psmw inje , can be sent to the reusable water tank as
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),( psmw inj
in
s and/or directly reused to another washing operation in other process 

units j’ as ),,( pssmw jininjr ʹʹ . 

Storage Tank

),( psmw injf

∑
ʹ

ʹ
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injjinr pssmw ),,( ∑

ʹ

ʹ
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Figure 3.2 Superstructure for direct and indirect water reuse and recycle 

3.4. Assumptions 

The following assumptions were made when developing the proposed mathematical 

model: 

• The entire mass load in a unit is removed when the washing operation is 

complete. 

• The mass load does not become difficult to wash if left in a unit for a period of 

time. 

• Washing operations are required after processing the last task in a unit.  

• The inlet and outlet contaminant concentrations parameters are the maximum 

allowable. 

• Freshwater has no contaminants. 

• Sequence independent changeovers are lumped in the processing time of tasks. 
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• The changeover time is the duration of changeover washing operations. 

3.5.  Nomenclature 
A list of sets, parameters and variables used by the developed mathematical 
formulations are presented below: 

Sets 

S  { ss | Any state} 

P  { p|p Time point} 

J  { jj | Processing unit} 

injS  { injinj ss | Effective state representing a task performed in a 
unit} 

pS  { pp ss | Product} 

K  { kk | Contaminants} 

Parameters 

L
sinjV  

Lower bound in capacity of a given unit that processes the 
effective state injs  

U
sinj
V  

Upper bound in capacity of a given unit that processes the 
effective state injs  

U
jV  Maximum capacity of unit j 

sc
sinj

ρ  
Portion of state s consumed by a task that  processes the 
effective state injs  

sp
sinj

ρ  
Portion of state s produced by a task that  processes the 
effective state injs  

)( injsα  
Constant coefficient of processing time of task that  processes 
the effective state injs  

)( injsβ  
Variable coefficient of processing time of task that  processes 
the effective state injs  

),( injinjz ssW ʹ  
 

Amount of water required to wash unit j when task jins ,ʹ follows 
task injs  
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)( injh sW  Amount of water required to wash unit j when injs is the last 
task to be processed in that unit. 

),( injinj ssWR ʹ  
A fraction of water required to clean unit j that will be added 
for rinsing when task injsʹ follows task injs  

),( ksL inj  
Contaminant concentration of state that will be left in a unit 
after processing a task injs  

)( , jin
U sW  Upper bound of the amount of water for cleaning unit j  

),( ksC inj
U
w  Upper bound of the allowable contaminant concentration 

)(kCins  Initial contaminant concentration of water in the storage 

in
sQ  Initial amount of water in the storage tank 

U
sQ  Maximum storage capacity 

)( psSP  Selling price of state s  

t
fW
cos  Cost of freshwater 

t
eW
cos  Cost of wastewater 

wD  Density of water 

tR  Volumetric flowrate of cleaning sprays 

H  Time horizon of interest 

Binary variables  

),1,,( ppssz injinj +ʹ  Binary variable for the changeover from injs at p to injsʹ at 1+p   

),( psh inj  
Binary variable indicating that jins , is the last task to occur in 
unit j at p . 
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),( psy inj  Binary variable associated with the usage of state s in unit j at
p . 

),,( pssy jininjr ʹ  Binary variable for the transfer of water from unit j to unit jʹ  
at p . 

),( psy inj
in
s  

Binary variable for the transfer of water from unit j to storage 
at p . 

),( psy inj
out
s  

Binary variable for the transfer of water to unit j from storage 
at p . 

Continuous Variables 

),( psmw inj
in  Mass of water into unit j at time point p  

),( psmw inj
out  Mass of water from unit j at time point p  

),( psmw injf  Mass of freshwater into unit j at time point p  

),( psmw inj
in
a  

Mass of water into unit j at time point p  at stage A of the 
washing operation 

),( psmw inj
out
a  

Mass of water into unit j at time point p  at stage A of the 
washing operation 

),( psmw inj
f
a  

Mass of freshwater into unit j at time point p  at stage A of 
the washing operation 

),( psmw inje  Mass of effluent from unit j at time point p  

),( psmw inj
in
s  

Mass of water transferred to storage from unit j at time 
point p  

),( psmw inj
out
s  

Mass of water transferred from storage to unit j at time 
point p  

),,( pssmw jininjr ʹʹ  Mass of water transferred from unit j to unit jʹat time point
p  

),( pscw inj
in
a  Inlet concentration to stage A of the washing operation 

),( pscw inj
out
a  Outlet concentration to stage A of the washing operation 
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),,( pkscw inj
in  Contaminant concentration of water into unit j at p  

),,( pkscw inj
out  Contaminant concentration of water from unit j at p  

),( kpcs  
Contaminant concentration of water in the storage tank at 
time point p  

),( psq injs  Amount of water in the storage tank at time point p  

),,( pksm inj  Contaminant load to be removed by a washing operation in 
unit j at p  

),( pssr  Amount of state stored at time point p  

),( psmu inj  Total mass of material processed in unit j at time point p  

),( pstw injd  
The duration of a washing operation in unit j at time point
p  

),( pstw inj
in  

The starting time of a washing operation in unit j at time 
point p  

),( pstw inj
out  

The finishing time of a washing operation in unit j at time 
point p  

),( pstw inj
in
s  

The time at which water is transferred to storage from unit
j at time point p   

),( pstw inj
out
s  

The time at which water is transferred from storage to unit
j at time point p  

),( pstu inj  The starting time of a process task in unit j at time point p  

),( pstp inj  
The finishing time of a process task in unit j at time point
p  

),( psvw inj  Volume of water into unit j at time point p  

),( psxw inj  Combined mass of water for cleaning and rinsing unit j  at 
time point p  

),( psxc inj  Contaminant concentration of ),( psxw inj  
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3.6. Mathematical model 
Figure 3.3 illustrates the different sub-models that make up the overall structure of 

the presented models. Mathematical formulations of considered scenarios have 

different combinations of the following sub-models: scheduling sub-model, sub-

model for sequence dependent water saving opportunity, and the sub-model for water 

reuse and recycle technique with a central water storage tank. Formulations for 

scenarios 1 and 2 have the scheduling and the sub-model for sequence dependent 

water saving opportunity. Formulations for scenarios 3 and 4 combine all three sub-

models.  

 

Figure 3.3 Elements of the proposed formulations 

3.6.1. Scheduling 

True optimality in batch process formulations can only be realized if the production 

schedule is allowed to vary (Gouws et al., 2008). A scheduling model by Seid and 

Majozi (2012) was used as a platform when developing variable schedule 

formulations for all four scenarios. This was because it gave better objective values in 

a less computational time when compared to other scheduling models in literature. 

The model of Seid and Majozi (2012) used unit-specific time slots and continuous-

time representation and it is based on a State Sequence Network (SSN) that makes 

use of effective states since they render an opportunity to reduce the number of binary 

variables (Majozi and Zhu, 2001). Each time slot in the developed model, therefore, 

Scheduling 
Model 

Sequence 
dependent water 

saving 
opportunities 

Water reuse and 
recycle process 

integration 
technique  
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represents an unknown duration in which a process task and a washing operation 

occur. 

Allocation constraint 

Constraint 3.1 allows only one task to be active in a processing unit j at a given time 

point p. 

( )∑ ≤
injs

inj psy 1, , injinj SsPp ∈∈∀ ,  
3.1 

Capacity constraint 

Constraint 3.2 ensures that the amount of batch processed in a unit is within the lower 

and the upper bounds, L
sinj
V and U

sinj
V  respectively. 

( ) ( ) ( )psyVpsmupsyV inj
U
sinjinj

L
s injinj

,,, ≤≤ , injinj SsPp ∈∈∀ ,  3.2 

Material balance for storage 

Constraint 3.3 calculates the amount of material, excluding products, in storage at a 

given time point as the amount that was there at a previous time point adjusted by the 

difference between the amount used at a current time point and the amount produced 

at the previous time point. Constraint 3.4 calculates the amount of product in storage 

at a time point as a sum of what was available at the previous time point and what is 

produced at the current time point.  

( ) ( ) ( ) ( )∑∑ −+−−=
inj

inj
inj

inj
s

inj
sp
sinj

s

sc
sss psmupsmupsqpsq 1,,1,, ρρ

injinj SsPpSs ∈∈∈∀ ,,  
3.3 
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( ) ( ) ( )∑+−=
inj

inj
s

inj
sp
spsps psmupsqpsq ,1,, ρ , injinj

pp SsSsPp ∈∈∈∀ ,,  3.4 

Duration constraint: Duration as a function of batch size 

Equation 3.5 describes the duration of a task, consisting of a fixed and a variable 

term, added to the starting time of a task when calculating the finishing time of a task. 

( ) ( ) ( ) ( ) ( ) ( )psmuspsyspstpst injinjinjinjinjuinjp ,,,, βα ++≥     

injinj SsPp ∈∈∀ ,  
3.5 

Sequence constraints 

Sequencing same task in the same unit 

Constraint 3.6 ensures that a task starts in a unit after the previous task is completed. 

This constraint applies to similar tasks in a unit. 

( ) ( )1,, −≥ pstpst injpinju , injinj SsPp ∈∈∀ ,  3.6 

Sequencing different tasks in the same unit 

Constraint 3.7  also ensures that a task starts in a unit after the previous task is 

completed. This constraint applies to different tasks that are processed in a unit. 

( ) ( )1,, −ʹ≥ pstpst injpinju , injinjinjinjinj SssssPp ∈ʹʹ≠∈∀ ,,,  3.7 

Sequencing different tasks in different unit if an intermediate state is produced from 

one unit  
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Constraint 3.8 ensures that an intermediate state produced in a unit should not exceed 

the allowed storage if it is not consumed in another unit ( ( ) 0, =pjt ). However, if the 

intermediate state is consumed in another unit ( ( ) 1, =pjt ), then the amount stored is 

less than the amount produced. Constraint 3.9 ensures that the starting time of the 

consuming task is greater than the finishing time of the task producing the 

intermediate state. 

( ) ( ) ( )pjtVpsqpsmu U
jsjin

sp
sinj

,,1,, +≤−ρ ,
sp
injinj SsPpJj ∈∈∈∀ ,,  3.8 

( ) ( ) ( ) ( )( )pjtpsyHpstpst injinjpjinu ,1,21,, −−−−−≥ʹ   

injjininj SssPpJj ∈∈∈∀ ʹ,,,  
3.9 

Sequencing different tasks in different unit if an intermediate state is produced from 

more than one unit 

Constraint 3.10 allows the state used by a task at time point p to come from other 

units that produced the same state at a previous time point. Constraint 3.11 ensures 

that a task consuming a state occurs after the completion of the producing tasks. 

( ) ( ) ( ) ( )∑∑ −+−≤
inj

inj
inj

inj
s

jin
sp
ss

s
inj

sc
s pjtpsmupsqpsmu ,1,1,, ,ρρ  

injinj SsPpJj ∈∈∈∀ ,,  

3.10 

( ) ( ) ( )( )2,12,, −−−−≥ʹ psyHpstpst injinjpjinu

injjininj SssPp ∈∈∀ ʹ,,  
3.11 

Constraints for FIS policy 

Constraint 3.12 ensures that the produced state is immediately consumed or not 

produced at all if there is no storage capacity available. Constraint 3.13 ensures that 
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the finishing time of the producing task coincides with the starting time of the 

consuming task. 

( ) ( ) ( )( )∑∑ −+≤−+−
j

U
j

U
s

s
inj

sp
s psxVQSpsqpsmu

inj
inj

,11,1,ρ    

injinj SsSsPpJj ∈∈∈∈∀ ,,,  
3.12 

( ) ( ) ( ) ( )( ) ( )( )psxHpsypsyHpstpst injjininjpjinu ,1,,21,, +−−−+−≤ ʹʹ

SsSssPp injjininj ∈∈∈∀ ʹ ,,,  
3.13 

Storage constraints when idle unit stores material produced previously 

Constraint 3.14 ensures that material produced can be stored in a storage unit with a 

maximum capacity and/or in a processing unit that produced it if that unit is not 

processing a task in the next time point. Constraint 3.15 ensures that materials are 

stored for consecutive time points in a processing unit. Constraint 3.16 prevents the 

processing unit from starting a task at the time point when materials are stored. 

( ) ( )∑+≤
injs

inj
U

s psuQSpsq ,, , SsSsPp injinj ∈∈∈∀ ,,  3.14 

( ) ( ) ( )1,1,, −+−≤ psupsmpsu injinju
sp
sinj inj
ρ , injinj SsPp ∈∈∀ ,  3.15 

( ) ( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−≤ ∑

injS
inj

U
jinj psyVpsu ,1, , injinj SsPpJj ∈∈∈∀ ,,  3.16 

Time horizon constraints 

Constraint 3.17 and 3.18 ensures that all tasks are processed within the time horizon 

of interest. 
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( ) Hpst inju ≤, , injinj SsPp ∈∈∀ ,                                 3.17 

( ) Hpst injp ≤, , injinj SsPp ∈∈∀ ,                      3.18 

3.6.2. Scenario 1: Fixed water requirement with sequence dependent 
changeover constraints  

The formulation for this scenario is based on the superstructure in Figure 3.1. 

Changeover constraints 

A changeover binary variable ),1,,( ppssz injinj +ʹ takes the value of 1 when task injs

occurs at time slot p is followed by task injsʹ at p+1 in the same unit, as ensured by 

constraint 3.19. The changeover variable is declared as a continuous variable and can 

only assume a value of 0 or 1 since it is determined from binary variables as 

presented in constraint 3.19. Constraint 3.20 ensures that if injs occurs at a time slot, 

it can either be followed by a task in the next time slot or it is the last task to occur in 

that unit. Constraint 3.21 ensures that at any given process unit j , there can only be 

one last task in a unit. 

)1,(),(),1,,( +ʹ=+ʹ psypsyppssz injinjinjinj , injinjinj SssPp ∈ʹ∈∀ ,,  3.19 

),(),(),1,,( psypshppssz injinj
s

injinj
inj

=++ʹ∑
ʹ

, injinjinj SssPp ∈ʹ∈∀ ,,  3.20 

1),( =∑∑
P

inj
S

psh
inj

, injinj SsPp ∈∈∀ ,  3.21 

Figure 3.4(a) illustrates that a changeover exists between two consecutive tasks in a 

unit and Figure 3.4(b) illustrates that a task is considered the last if no other task is 

processed after it in a unit.  
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Figure 3.4 (a) First or intermediate task (b) Last task 

Constraint 3.19, which consists of a product of two binary variables, is nonlinear and 

can be linearized by using constraints 3.22, 3.23 and 3.24 (Maranas and Zomorrodi, 

2016). Equations 3.22, 3.23 and 3.24 are linear and will ensure that 

),1,,( ppssz injinj +ʹ takes a value of 1 when task jins , occurs at time slot p is 

followed by task injsʹ at p+1. 

),(),1,,( psyppssz injinjinj ≤+ʹ , injinjinj SssPp ∈ʹ∈∀ ,,  3.22 

)1(),1,,( +ʹ≤+ʹ psyppssz injinjinj , injinjinj SssPp ∈ʹ∈∀ ,,  3.23 

1)1,(),(),1,,( −+ʹ+≥+ʹ psypsyppssz injinjinjinj

injinjinj SssPp ∈ʹ∈∀ ,,  
3.24 

Water balance constraints 

Constraints 3.25 and 3.26 respectively ensure that all the water used for washing is 

freshwater and wastewater is disposed of as effluent. Constraint 3.27 is the law of 

conservation of mass, to ensure that the water that goes into a washing operation 

equals to water leaving the washing operation. Constraint 3.28 chooses the amount of 

water to be used for washing operations depending on the sequence of tasks.  

S’
’ 

c=1 

c 

(a) 

(b) 

S 

S 

a=1 
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),(),( psmwpsmw injfinj
in = , injinj SsPp ∈∈∀ ,  3.25 

),(),( ,, psmwpsmw jinejin
out = , injinj SsPp ∈∈∀ ,  3.26 

),(),( psmwpsmw inj
o

inj
in = , injinj SsPp ∈∈∀ ,  3.27 

),()(),1,,(),(),( pshsWppsszssWpsmw inj
s

injhinjinjinjinjzinj
in

inj

∑
ʹ

++ʹʹ=

injinjinj SssPp ∈ʹ∈∀ ,,  

3.28 

Contaminant balance constraints 

Constraint 3.29 determines the amount of load to be removed by the washing 

operation. The binary variables are included when consecutive tasks or the last task 

does not require a washing operation. For instance, washing may not be required 

when two consecutive batches of the same task are processed in a unit if the residual 

material will not contaminate the succeeding batch. Constraint 3.30 ensures that the 

entire load in a unit is removed by the washing operation and the contaminant 

concentration of the wastewater is determined. This is because, in this scenario, the 

fixed water requirement is fixed by constraint 3.28. Constraint 3.31 ensures that the 

contaminant concentration of the outlet stream does not exceed the maximum 

allowable. The model reduces the batch size to ensure that the amount of load 

determined by constraint 3.29 does not result in a contaminant concentration that 

violates constraint 3.31. 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++ʹ−= ∑

ínjs
injinjinjinjinjinj pshppsszksLpsmupksm ),(),1,,(1),(),(),,(

injinjinj SssPp ∈ʹ∈∀ ,,   

3.29 



MODEL DEVELOPMENT  CHAPTER 3 

 
 

3-17 
 

),,(),,(),( pksmpkscwpsmw injinj
out

inj
out = , injinj SsPp ∈∈∀ ,  3.30 

),(),(),,( psyksCpkscw injinj
U
winj

out ≤ , injinj SsPp ∈∈∀ ,  3.31 

Sequencing constraints 

The duration of washing operations is directly linked to the amount of water required 

using a fixed volumetric flowrate of the high-pressure water sprays that are used to 

clean the processing units. Constraint 3.32 determines the duration of washing 

operations based on the required amount for washing. Constraint 3.33 determines the 

finishing time of a washing operation by adding the duration of washing to the 

starting time of the sequence dependent changeover washing operation. Constraint 

3.34 states that for a processing task to start in a unit at a time slot, the washing 

operation that occurred at the last time slot should be complete. Constraint 3.35 states 

that for a washing operation to occur in a unit at a time slot, the processing task that 

occurred in the same time slot must be complete. Constraints 3.36 and 3.37 ensure 

that all washing operations are completed within the time horizon of interest. 

),()(),( psmwjRpstw inj
out

tinjd = , injinj SsPp ∈∈∀ ,  3.32 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++ʹ+= ∑

ʹ

),(),1,,(),(),(),( pshppsszpstwpstwpstw inj
s

injinjinjdinj
in

inj
out

inj

injinjinj SssPp ∈ʹ∈∀ ,,  

3.33 

)1,(),( −ʹ≥ pstwpst inj
out

inju , injinjinj SssPp ∈ʹ∈∀ ,,  3.34 

),(),( pstpstw injpinj
in ≥ , injinj SsPp ∈∈∀ ,  3.35 
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Hpstw inj
in ≤),( , injinj SsPp ∈∈∀ ,  3.36 

Hpstw inj
out ≤),( , injinj SsPp ∈∈∀ ,  3.37 

3.6.3. Scenario 2: Fixed outlet concentration with sequence dependent 

changeover constraints 

The formulation for this scenario is also based on the superstructure in Figure 3.1. 

Figure 3.5 illustrates that the washing operations in this scenario explicitly occur in 

two stages, A and B. Stage A is responsible for removing most of the load and stage 

B is where rinsing occurs for quality assurance purposes. The outlet contaminant 

concentration for stage A is fixed to a maximum, and the formulation determines the 

amount of water required for removing the load such that the maximum concentration 

is not exceeded. The amount of water required for rinsing in stage B is determined as 

a fraction or percentage of the amount used in stage A. And because the intensity of 

rinsing depends on the nature of the products involved in the sequence, the additional 

rinsing fraction is given as the sequence dependent value in this scenario. 
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A B

),( psmw inj
in
a ),( psmw inj

in
b

),( psmw inj
out
a ),( psmw inj

out
b

),( pscw inj
in
a ),( pscw inj

in
b

),( pscw inj
out
a ),( pscw inj

out
b

),( psmw inj
out

),( pscw inj
out

),( pstw injd

 

Figure 3.5 Two stages involved in the cleaning operation 

Water balance constraints 

Constraint 3.38 ensures that the water used in stage A is freshwater. Constraints 3.39 

and 3.40 respectively ensure that water in stage A is conserved and does not exceed 

the maximum allowable. Equation 3.41 determines ),( psmw inj
out which is a 

combination of the amount used in stage A and the amount of freshwater required for 

rinsing the processing unit in stage B. Constraint 3.42 ensures that all the water used 

in both stages is disposed of as effluent.  

),(),( psmwpsmw inj
f
ainj

in
a = , injinj SsPp ∈∈∀ ,  3.38 

),(),( psmwpsmw inj
out
ainj

in
a = , injinj SsPp ∈∈∀ ,  

3.39 
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),()(),( psysWpsmw injinj
U

inj
in
a ≤ , injinj SsPp ∈∈∀ ,  

3.40 

∑
ʹ

+ʹʹ+

=

injs
injinjinjinjinj

in
a

inj
in
ainj

out

ppsscssAWpsmw

psmwpsmw

),1,,(),(),(

),(),(

injinjinj SssPp ∈ʹ∈∀ ,,  

3.41 

),(),( psmwpsmw injeinj
out = , injinj SsPp ∈∈∀ ,  

3.42 

Contaminant balance constraints 

Constraint 3.29 still hold in this scenario. Constraint 3.43 is the contaminant balance 

around stage A stating that the load in the tank is removed by the washing water. 

Constraint 3.44 replaces constraint 3.31 by setting the outlet contaminant 

concentration to a maximum. Constraint 3.45 simply determines the contaminant 

concentration ),( pscw inj
out . 

),(),(),( psmpscwpsmw injinj
out
ainj

out
a = , injinj SsPp ∈∈∀ ,  3.43 

),()(),( psysCpscw injinj
U

inj
out
a = , injinj SsPp ∈∈∀ ,  

3.44 

),(),(),(),( pscwpsmwpscwpsmw inj
out
ainj

out
ainj

out
inj

out =

injinj SsPp ∈∈∀ ,  

3.45 
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3.6.4. Scenario 3: Fixed water requirement with sequence dependent 

changeover constraints and water reuse and recycle 

The formulation for this scenario simultaneously explores sequence dependent 

changeover opportunity for water minimization with water reuse and recycle 

opportunities in a multipurpose batch process. The constraints for this scenario are 

based on both superstructures in Figures 3.1 and 3.2. 

Water balance constraints 

Constraints 3.27 and 3.28 still hold in this scenario. Constraint 3.46 states that the 

inlet stream to a washing operation is a combination of freshwater, water from 

reusable storage and water directly reused from washing operations in other process 

units. Constraint 3.47 ensures that the outlet stream can be disposed of as effluent, 

sent to a reusable storage or directly reused to a washing operation in other process 

units. Constraints 3.48 to 3.50 set the upper bounds for the direct water reuse streams, 

and streams to and fro the reusable water tank, respectively. Constraint 3.51 ensures 

that water is not sent to a storage tank at the last time slot. 

  

∑
ʹ

ʹ++=
injs

injinjrinj
out
sinjfinj

in pssmwpsmwpsmwpsmw ),,(),(),(),(

 injinjinj SssPp ∈ʹ∈∀ ,,  

3.46 

∑
ʹ

ʹ++=
injs

injinjrinj
in
sinjeinj

out pssmwpsmwpsmwpsmw ),,(),(),(),(

injinjinj SssPp ∈ʹ∈∀ ,,  

3.47 

),,()(),( pssysWpsmw jininjrjin
U

injr ʹʹ≤ , injinj SsPp ∈∈∀ ,  
3.48 
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),(),( psyQpsmw inj
in
s

U
sinj

in
s ≤ , injinj SsPp ∈∈∀ ,  

3.49 

),()(),( psysWpsmw inj
out
sinj

U
inj

out
s ≤ , injinj SsPp ∈∈∀ ,  

3.50 

0),( =psmw inj
in
s , injinj SsPp ∈=∀ |,|  

3.51 

Contaminant balance constraints 

Constraint 3.29 still holds in this scenario. Constraint 3.52 determines the 

contaminant mass load of the inlet stream to a washing operation. Equation 3.53 is 

the contaminant mass balance around a processing unit. It states that the mass of 

contaminant in the outlet stream is a combination of the contaminant in the inlet 

stream and the load in the processing unit.  

),,(),,(),(),(),,(),( pkscwpssmwkpcpsmwpkscwpsmw inj
out

s
injinjrsinj

out
sinj

in
inj

in

inj

ʹʹ+= ∑
ʹ

llllllllllllllllllllllll injinjinj SssPp ∈ʹ∈∀ ,,  

3.52 

),,(),,(),(),,(),( pksmpkscwpsmwpkscwpsmw injinj
in

inj
in

inj
out

inj
out +=

injinj SsPp ∈∈∀ ,  

3.53 

Storage tank constraints 

Constraints 3.54 and 3.55 determine the amount of reusable water in the storage tank 

at the first time slot and any other time slot, respectively. Constraint 3.56 states that 

the amount of water in the tank must never exceed that maximum allowable amount. 

Constraint 3.57 ensures that the reusable water storage tank is empty at the last time 

point. 
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∑−=
injs

inj
out
s

in
ss psmwQpq ),()( , injinj SspPp ∈=∈∀ ,1,  3.54 
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Storage contaminant balance constraints 

Constraints 3.58 and 3.59 determine the contaminant concentration of the reusable 

water in the storage tank in the first time slot and any other time slot, respectively. 

Constraint 3.59 considers the reusable water in the stank as well as the water that 

entered the tank from the previous time slot.  
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Sequencing constraints 
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Constraints 3.32 to 3.37 still hold for this scenario. Constraint 3.60 and 3.61 ensure 

that the starting time of the washing operation receiving water coincide with the 

finishing time of the washing operations generating the wastewater being reused. 
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Constraints 3.62 and 3.63 ensure that the time at which a stream is transferred to the 

reusable storage coincides with the finishing time of the washing operation. 

Constraints 3.65 and 3.66 ensure that the time at which a stream is transferred from 

the reusable storage coincide with the starting time of the receiving washing 

operation. Constraints 3.64 and 3.67 ensure that for water to be transferred to and 

from storage, respective washing operations should be active in the same time slots.  
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Constraint 3.68 states that the time at which water is transferred from the reusable 

water storage tank to a washing operation at any given time slot is later than the time 

at which water was transferred at the previous time slot. Constraint 3.69 is similar but 

applies to water transferred to a storage tank, i.e. it ensures that the time at which 

water is transferred from a unit to the reusable water storage tank at a time slot is later 

than the time at which water was transferred at a previous time slot. Constraint 3.70 

ensures that the time at which water is transferred from the reusable water storage 

tank at a time slot is later than the time at which water was transferred to the reusable 

water tank at a previous time slot. 
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Constraints 3.71 and 3.72 work together to ensure that the water transferred from the 

reusable tank to different washing operations in different units at the same time slot is 

transferred at the same time. Constraints 3.73 and 3.74 work together in a similar way 
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but for water transferred from different washing operations to the reusable water tank 

in the same time slot. 
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3.6.5. Scenario 4: Fixed outlet concentration with sequence dependent 

changeover constraints and water reuse and recycle opportunity 

The constraints for this scenario are based on both superstructures in Figures 3.1 and 

3.2.Storage constraints 3.54 to 3.59 and sequencing constraints 3.32 to 3.37 and 3.60 

to 3.74 hold for this scenario. 

Water balance 

In this scenario, constraints 3.39 to 3.41 and 3.47 to 3.51 still hold. Constraint 3.46 is 

replaced with 3.75 to ensure that freshwater, reused water, and water from the storage 

tank is utilized in stage A of the washing operation. 
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Contaminant balance 

Contaminant balance constraints 3.29, 3.44 and 3.45 still hold in this scenario. 

Constraint 3.76 replaces 3.43 by ensuring that the contaminant load in the outlet 

stream from stage A includes both the mass the load in the unit and the load in the 

inlet stream determined by constraint 3.77. 
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Tightening constraint 

To tighten the model, constraint 3.73 ensures that every activity occurs within the 

time horizon of interest. 
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3.6.6. Objective function 

The objective is to maximize the profitability of a batch plant over the stipulated time 

horizon of interest. The objective function is made up of three components i.e. 

revenue, the cost of freshwater and cost of wastewater. However, each of the three 

components qualifies to be an objective function on its own. 

Any of the objective functions, 3.79 to 3.82, can be chosen for any of the explored 

scenarios. Objective 3.79 maximizes revenue, 3.80 minimizes the cost of freshwater, 

3.81 minimizes the cost of disposing of the effluent, and 3.82 maximizes profit, i.e. 

revenue minus water costs. 

( ) ( )∑
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Effluent ofCost Freshwater ofCost RevenueObjective −−=  
3.82 
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Chapter 4  
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4.1. Introduction 

This chapter demonstrates the applicability of the formulations developed in the 

previous chapter. Two single contaminant illustrative examples and a multiple 

contaminant problem were examined. The two case studies were respectively 

presented by Kondili et al. (1993) and Maravelias and Grossmann (2003) for short-

term scheduling of batch processes. In this work, the case studies have been adopted 

for wastewater minimization where sequence dependent water saving opportunities 

are explored. The illustrative example of Kondili et al. (1993) was also adopted for a 

multiple contaminant problem. 

All four scenarios presented in the previous section are observed in both case studies. 

Scenarios 1 and 3 were validated separately from scenarios 2 and 4 since they require 

different sequence dependent changeover parameters, i.e. sequence dependent 

changeover washing water requirement and sequence dependent changeover rinsing 

fraction, respectively. Results were compared with a base case where no water saving 

opportunity was explored.  

The resultant MINLP formulations were solved using a BARON solver in GAMS 

24.3.2 in a computer with the following specifications: Windows 7 Professional, 

Intel(R) Core ™ i7.4770 CPU @ 3.40GHz, 8.00 GB RAM, and 64-bit Operating 
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System. Results are summarized in tables and production schedules are illustrated in 

Gant Charts. Objective function 3.82 was used for all scenarios in the formulations.
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4.2. Illustrative example 1 

4.2.1. Illustrative example description 

The production recipe presented in Figure 4.1 shows that two chemical products, 

Product 1 and 2, are produced from three raw materials; Feed A, B and C. The 

production facility consists of four process units; a heater, two multipurpose reactors, 

and a separator.  Both reactors (R) are suitable for processing reactions (Rxn) 1, 2 and 

3. 

Heating Reaction 2

Reaction 1 Reaction 3

Separation

Feed A
(s1)

Hot A
(s5)

Feed B
(s2)

Feed C

Impure E
(s9)

Intermediate AB
(s8)

Product 1
(s7)

Intermediate BC
(s6)

Product 2
(s10)

40%

40%

60%

60%

50%

80%

10% 90%

20%50%

(s3) (s4)

Figure 4.1 STN representation of the first illustrative example 

A superstructure is a representation of all possible solutions. The superstructure in 

Figure 4.2 shows all possible sequences of tasks that can occur in both reactors 1 and 

2. The mathematical model will, therefore, synthesize an optimal sequence of tasks 

for both reactors, which will be a subset of Figure 4.2. 
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Figure 4.2 Sequence dependent changeover superstructure for the first illustrative 
example 

The scheduling parameters for the Illustrative example are presented in Table 4.1. 

This includes the capacity of the available processing units which can be used as the 

upper bounds of the amount of material to be processed in that unit. The duration of 

processing task has a fixed term and a variable term which is influenced by the batch 

size. This means that the bigger the batch, the longer it will take to process it. 

 

 

 

 

   

 



MODEL VALIDATION  CHAPTER 4 

 
 

4-5 
 

Table 4.1 Scheduling parameters for the first illustrative example 

Unit Unit capacity 

(kg) 

Task  Effective 

states 

αij (hr) βij 

(h/kg) 

Heater 100 H S1 0.667 0.007 

Reactor 

1(R1) 

50 Rxn1 S21 1.334 0.027 

 Rxn2 S61 1.334 0.017 

 Rxn3 S81 0.667 0.013 

Reactor 2 

(R2) 

80 Rxn1 S22 1.334 0.027 

 Rxn2 S62 1.334 0.017 

 Rxn3 S82 0.667 0.008 

Separator 200 Sr S9 1.334 0.007 

Contaminant concentration parameters for scenarios 1 and 3 as well as 2 and 4 are 

presented separately in Table 4.2. Contaminant concentration of the water for 

cleaning a unit after processing a task must not exceed the maximum inlet 

concentration and the water leaving a unit after the washing operation must not 

exceed the maximum outlet concentration.  
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Table 4.2 Maximum allowable inlet and outlet water concentration, illustrative 

example 1 

Task 

(Symbol) 

Scenario 1 and 3 Scenario 2 and 4 

Max inlet conc. 

(g/kg) 

Max outlet 

conc. (g/kg) 

Max inlet conc. 

(g/kg) 

Max outlet 

conc. (g/kg) 

R1Rxn1 0.5 1 0.3 0.7 

R1Rxn2 0.01 0.2 0.3 0.7 

R1Rxn3 0.15 0.3 0.7 1.2 

R2Rxn1 0.05 0.1 0.7 1.2 

R2Rxn2 0.03 0.075 0.5 0.8 

R2Rxn3 0.3 2 0.5 0.8 

Table 4.3 presents other important parameters required in the modeling of illustrative 

example 1. This information that must be pre-determined include the time horizon of 

interest (H), the concentration of processed material that remain in the process unit 

(L), the selling price of products (SP), the cost associated with both freshwater (Cf) 

and wastewater (Cw), and the flowrate of the pressure cleaner (Rt). 

 

 

 



MODEL VALIDATION  CHAPTER 4 

 
 

4-7 
 

Table 4.3 Other important parameters, illustrative example 1 

Parameter Value 

H (hr) 14 

L (g/kg) 1.2 

SP1 (c.u./kg) 20 

SP2 (c.u./kg) 20 

t
fW
cos (c.u/kg ) 0.1 

t
eW
cos  (c.u/kg) 0.05 

Rt (kg/hr) 1200 

Table 4.4 presents the sequence dependent parameters for scenarios 1 and 3, where 

the washing water requirement is fixed. For example, 140kg of water will be required 

for the cleaning in place washing operation if reaction 2 follows reaction 1 in reactor 

1, and 110kg will be required if reaction 1 follows reaction 2 in the same reactor. It is 

assumed that the amounts specified in Table 4.4 are enough to remove the load and 

rinse the unit, the resultant outlet concentration will then be determined by the model 

even though it will not exceed the maximum outlet concentrations specified in Table 

4.2. Sequence dependent washing requirement parameters for reactors 1 and 2 are 

different since these reactors have different capacities according to Table 4.1. 
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Table 4.4 Sequence dependent changeover washing water requirement in kilograms 

for scenarios 1 and 3, illustrative example 1 

 
R1Rxn1 R1Rxn2 R1Rxn3 

R1Rxn1 - 140 160 

R1Rxn2 110 - 130 

R1Rxn3 210 190 - 

 
R2Rxn1 R2Rxn2 R2Rxn3 

R2Rxn1 - 260 240 

R2Rxn2 200 - 180 

R2Rxn3 330 310 - 

Table 4.5 presents the sequence dependent parameters that apply to both reactors for 

scenario 2 and 4, i.e. the additional fraction of the amount used for cleaning that will 

be used for rinsing. In scenarios 2 and 4, the contaminant concentration of the 

wastewater generated from the washing operations is fixed to the maximum outlet 

concentrations specified in Table 4.2. The model then determines the amount of water 

required to remove the load. Values specified in Table 4.5 are the percentage of the 

amount required for washing that must be used for rinsing the unit. For example, 85% 

of the water used for rinsing reactor 1 or 2 must be used for rinsing if reaction 2 

follows reaction 1; and 75% must be used if reaction 1 follows reaction 2.  
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Table 4.5 Sequence dependent rinsing fraction for scenarios 2 and 4, illustrative 

example 1 

 Reaction 1 Reaction 2 Reaction 3 

Reaction 1 - 0.85 0.45 

Reaction 2 0.75 - 0.95 

Reaction 3 0.80 0.60 - 

4.2.2. Results 

Results for all scenarios are summarized in Tables 4.6 and 4.7 and graphically 

presented in Gantt Charts (Figures 4.3 to 4.7). In the Gantt Charts, the available units 

are on the vertical axis and the time horizon of interest is on the horizontal axis. 

Blocks with texts represent the task that occurred in the unit and the amount 

processed is written in brackets. Blocks with no texts represent washing operations 

and the amount of water required is also presented in kilograms. 

a. Scenarios 1 and 3 

Table 4.6 summarizes the results for scenarios 1 and 3 where the sequence dependent 

washing requirement was a parameter. The Gantt Charts for the base case, scenario 1 

and scenario 3 are presented in Figures 4.3 to 4.5 respectively. These charts present 

information such as the production schedule, water requirement, duration of washing 

and the water network. When direct and indirect water reuse and recycle 

opportunities for water minimization were explored alone, 34% of the water required 

in the base case was saved. Scenarios 1 and 3 saved 53% and 66% of the total amount 

required by the base case respectively. Scenario 1 saved water by simply synthesizing 

a sequence of tasks that optimizes the trade-off between production and wastewater 

minimization. 
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Table 4.6 Results for scenarios 1 and 3, illustrative example 1 

  Base case Direct/indirect 

reuse 

Scenario 1 Scenario 3 

Objective (c.u) 5570.75 5680.99 5713.07 5755.07 

Water (kg) 2196 1434 1020 740 

Water saved 

(%) 

- 33.89 52.97 65.88 

CPU time (sec) 7 4440 44 4380 
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Figure 4.3 is the Gantt Chart of the described problem when none of the water saving 

opportunities are explored. Multipurpose reactors are being washed after processing 

any task since the amount of water required for washing operation is determined only 

by the task that has just been processed in the unit 

.

 

Figure 4.3 Base case for scenario 1 and 3, illustrative example 1 

The Gantt chart in Figure 4.4 shows that scenario 1 favored the campaign mode or the 

processing of successive batches of the same task since it did not require changeover 

washing operations. Figure 4.4 also shows that reaction 3, which produces product 2, 

was only processed in reactor 1. This setup is favored such that the sequence of 

consecutive of the same task is maximized. 
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Figure 4.4 Scenario 1, illustrative example 1 

The Gantt chart in Figure 4.5 shows that direct and indirect water reuse and recycle 

opportunities were found for scenario 3. Exploring multiple water saving 

opportunities, i.e. sequence dependent changeover opportunities with water reuse and 

recycle, resulted in even greater water savings. However, this also resulted in the 

increase in the computational time for solving the optimization program due to the 

increased model size and complexity. 
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100
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180

200

Separator

Indirect reuse/recycle

Freshwater
Wastewater
Direct reuse/recycle

200

Figure 4.5 Scenario 3, illustrative example 1 

b. Scenarios 2 and 4 

Table 4.7 summarizes the results for scenarios 2 and 4 where the outlet contaminant 

concentration was fixed to a given maximum and a total amount of water for cleaning 

and rinsing during a washing operation was determined.  

Scenario 2 synthesized a sequence of tasks that optimize production and wastewater 

generation based on the sequence dependent rinsing operations. Scenario 4 expanded 

scenario 2 by exploring both sequence dependent water saving opportunities with 

direct or indirect water reuse and recycle opportunities simultaneously. 13% and 45% 

of washing water required by the base case were respectively saved when water reuse 

and recycle and sequence dependent changeover opportunities for water minimization 

were explored separately. 
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Table 4.7 Results for scenarios 2 and 4, illustrative example 1 

  Base case Direct/indirect 

reuse 

Scenario 2 Scenario 4 

Objective (c.u) 4277.13 4341.75 4802.38 4907.30 

Water (kg) 3125.65 2693.84 1632.42 1458.91 

Water saved (%) - 13.82 47.77 53.32 

CPU time (sec) 5 5400 17 5400 
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The Gantt Charts for the production schedule of the base case is presented in Figure 

4.6. The amount of water required for a washing operation depends only on the task 

that has just been processed in a unit. Water required by the base case can be reduced 

by 13.82% by exploring direct and indirect water reuse and recycle. In scenario 2, 

sequence dependent water saving opportunities were explored and 47.77% of water 

required for washing operations was saved (Figure 4.7). 53.32% was saved in 

scenario 4 where scenario 2 was expanded by simultaneously exploring direct or 

indirect water reuse and recycle opportunities (Figure 4.8). 

 

Figure 4.6 Base case for scenario 2 and 4, illustrative example 1 
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Figure 4.7 Scenario 2, illustrative example 1 
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Figure 4.8 Scenario 4, illustrative example 1 

4.3. Illustrative example 2 

4.3.1. Illustrative example description 

Figure 4.9 shows a production recipe where each of the two products, P1 and P2, is 

produced from one raw material and three tasks. The batch facility consists of two 

processing units and storage tanks for each state. The process unit U1 is suitable for 

processing task one of product one (T11), task one of product two (T21), task three of 

product one (T13) and task three of product two (T23). Task two of product one 

(T12) and task two of product two (T22) can be processed in processing unit U2. 
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s1 s3 s5 s7T11 T12 T13

F1 P1

s2 s4 s6 s8T21 T22 T23

F2 P2

U1 U2 U1

 

Figure 4.9 STN representation of the second illustrative example 

Figure 4.10 represents two superstructures representing all possible sequence of tasks 

that could occur in units U1 and U2 respectively. The formulation should, therefore, 

synthesize an optimal sequence of tasks for each processing unit.   

T11

T21

T13

H

T12

T22

H

T23

Unit U1 Unit U2

Ta
sk

Ta
sk

Figure 4.10 Sequence dependent changeover superstructures for the second 

illustrative example 

Scheduling data, contaminant concentration limits and other relevant production data 

for the second literature example are respectively presented in Tables 4.8, 4. 9 and 

4.10. Tables 4.11 and 4.12 presents the sequence dependent data, i.e. fixed water 

requirement (for scenarios 1 and 3) and fixed outlet concentration (for scenarios 2 and 

4). 



MODEL VALIDATION  CHAPTER 4 

 
 

4-19 
 

Table 4.8 Scheduling parameters for the second illustrative example 

Unit Min 

batch 

size (T) 

Max 

batch 

size (T) 

Task  Effective 

states 

αij (hr) βij (hr/t) 

U1 2 5 T11 s1 0.5 0.40 

   T21 s21 0.75 0.60 

  T13 s61 0.5 0.40 

  T23 s81 0.5 0.40 

U2 1.2 3 T12 s22 1.0 1.33 

  T22 s62 1.0 1.33 

Table 4.9 Maximum allowable inlet ant outlet water concentration, illustrative 
example 2 

Task  Max inlet concentration 

(Kg/T) 

Max outlet concentration 

(Kg/T) 

T11 0.5 1 

T21 0.5 1 

T13 1 2 

T23 1 2 

T12 0.5 1 

T22 0.5 1 
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Table 4.10 Other important parameters, illustrative example 2 

Parameter Value 

H (hr) 12 

L (g/kg) 0.1 

SP1 (c.u./kg) 1 

SP2 (c.u./kg) 1 

t
fW
cos (c.u/kg ) 0.5 

t
eW
cos  (c.u/kg) 0.25 

Rt (kg/hr) 1200 

Table 4.11 Sequence dependent changeover washing water requirement in kilograms 
for scenarios 1 and 3, illustrative example 2 

 T11 T21 T12 T22 T13 T23 

T11 0 350 - - 300 310 

T21 220 0 240 - 200 243 

T12 - - 0 117 - - 

T22 - - 121 0 - - 

T13 300 320 - - 0 340 

T23 200 240 - - 242 0 
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Table 4.12 Sequence dependent rinsing fractions for scenarios 2 and 4, illustrative 
example 2 

 T11 T21 T12 T22 T13 T23 

T11 0 0.8 - - 0.6 0.7 

T21 0.5 0 0.8 - 0.4 0.6 

T12 - - 0 0.7 - - 

T22 - - 0.5 0 - - 

T13 0.4 0.5 - - 0 0.8 

T23 0.4 0.6 - - 0.7 0 

 

4.3.2. Results 

a. Scenarios 1 and 3 

Table 4.13 summarizes the outcomes for scenarios 1 and 3. A total amount of 2690kg 

of water was required by the base case as represented in Figure 4.11. Exploring direct 

and indirect opportunities resulted in 13% savings in freshwater. Sequence dependent 

changeover opportunities for water minimization explored in scenario 1 resulted in 

49% water savings, and the Gantt Chart is presented in Figure 4.12. 61% of the water 

required in the base case is saved when sequence dependent opportunities for water 

minimization were explored simultaneously with direct and indirect water reuse and 

recycle (Figure 4.13). 
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Table 4.13 Results for scenarios 1 and 3, illustrative example 2 

  Base case Direct/indirect 

reuse 

Scenario 1 Scenario 3 

Objective (c.u) 7.223 7.474 8.522 8.687 

Water (kg) 2690 2342 1372 1050 

Water saved 

(%) 

- 13 49 61 

CPU time (sec) 12 5400 48 3790 

 

 

 

Figure 4.11 Base case for scenarios 1 and 3, illustrative example 2 
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When incorporating sequence dependent changeover constraints, the formulation 

favored the campaign mode, i.e. a sequence of similar batches of the same task. This 

resulted in significant water savings since fewer washing operations are required. 

 

Figure 4.12 Scenario 1, illustrative example 2 
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Figure 4.13 Scenario 3, illustrative example 2 

b. Scenarios 2 and 4 

Table 4.14 summarizes the results for scenarios 2 and 4. A total of 2358 kg of water 

was required by the base case which is represented by the Gantt Chart in Figure 4.14. 

Sequence dependent changeover opportunities for water minimization explored in 

scenario 2 resulted in 41% water savings, and the Gantt Chart is presented in Figure 

4.15. This Gantt Chart also holds for scenario 4 since no reuse and recycle 

opportunities were found when sequence dependent opportunities were explored 

simultaneously with direct and indirect water reuse and recycle opportunities.  
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Table 4.14 Results for scenarios 2 and 4, illustrative example 2 

  Base 
case 

Direct/indirect 
reuse 

Scenario 1 Scenario 3 

Objective (c.u) 7.651 7.797 8.458 8.458 

Water (kg) 2354 1933 1402 1402 

Water saved 
(%) 

. 18 41 41 

CPU time (sec) 2 5400 105 5400 

 

 

Figure 4.14 Base case for scenarios 2 and 4, illustrative example 2 
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Figure 4.15 Scenario 2, illustrative example 2 

4.4. Multiple contaminant example 

An illustrative example, represented by an STN in Figure 5, was used to demonstrate 

the application of the developed formulation on multiple contaminant problems. The 

superstructure in Figure 6 and parameters in Table 4.1, 4.3 and 4.4 are still applicable. 

However, the concentration limits and mass load fractions for the multiple 

contaminant example are presented in Table 4.15 and 4.16 respectively. Using the 

multiple contaminant parameters, formulations for scenarios 1 and 3 were applied. 

Table 4.15 Concentration limits for the multiple contaminants example 

Task Contaminant 1 (k1) Contaminant 2 (k2) Contaminant 3 (k3) 
Max inlet 
conc. 
g/kg) 

Max outlet 
conc. 
(g/kg) 

Max inlet 
conc. 
(g/kg) 

Max outlet 
conc. 
(g/kg) 

Max 
inlet 
conc. 
(g/kg) 

Max 
outlet 
conc. 
(g/kg) 

R1Rxn1 0.5 1 0.5 0.9 2.3 3 
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R1Rxn2 0.01 0.2 0.05 0.1 0.3 1.2 

R1Rxn3 0.15 0.3 0.2 1 0.35 1.2 

R2Rxn1 0.05 0.1 0.2 1 0.05 1.2 

R2Rxn2 0.03 0.075 0.1 0.2 0.2 1 

R2Rxn3 0.3 2 0.6 1.5 1.5 2.5 

Table 4.16 Mass load (L in g/kg) for the multiple contaminants example 

  Contaminant 1 
(k1) 

Contaminant 2 (k2) Contaminant 3 (k3) 

R1Rxn1 0.051 1.021 0.126 
R1Rxn2 0.045 0.072 1.082 
R1Rxn3 0.200 0.052 0.947 
R2Rxn1 0.400 0.089 0.711 
R2Rxn2 0.100 0.533 0.567 
R2Rxn3 0.259 0.519 0.421 

Results of the multiple contaminant example are summarized in Table 4.17. Direct 

and indirect water reuse opportunities saved 13% of the water used by the base case, 

while scenarios 1 and 3 saved 31% and 42% respectively. Scenario 4 achieved higher 

water savings by exploring sequence dependent water saving opportunities and reuse 

and recycle opportunities, through a central storage tank, simultaneously. 

Formulations that explore reuse and recycle water saving opportunities have high 

nonlinearity and they required greater computational times. Figures 4.16, 4.17 and 

4.18 are the Gantt Charts showing the graphical representation of the base case, 

scenario 1 and scenario 3, respectively.  

Table 4.17 Results for scenario 1 and 3, multiple contaminants example 

  Base 

case 

Direct/indirect 

reuse 

Scenario 1 Scenario 3 

Objective (c.u) 4805.59 4854.942 5509.042 5542.642 

Water (kg) 2526 2196.92 1732 1471.9 
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Water saved (%) - 13.02 31.43 41.73 

CPU time (s) 3 10000 18 10000 

 

Figure 4.16 Base case, multiple contaminants example 
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Figure 4.17 Scenario 1, multiple contaminants example 
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 Figure 4.18 Scenario 3, multiple contaminants example 

4.5. Discussion 

Developed formulations were applied to two single contaminant problems, and a 

multiple contaminant problem for fixed water requirement scenarios. Higher 

percentages of water savings were achieved by scenarios that explored sequence-

dependent water saving opportunities simultaneously with water reuse and recycle. 

The drawback, however, was that these scenarios result in more complex 

formulations and it can happen that the water reuse and recycle opportunities are not 

found, as observed in scenario 4 of illustrative example 2. Unfortunately, this can 

only be observed after the computationally intensive model has been solved. Indirect 

water reuse and recycle opportunities are often not found as a result of the 

contaminant concentration limits since they inform constraints that ensure that the 

concentration requirements are met.  

When comparing scenarios that explore sequence-dependent water saving 

opportunities and water reuse and recycle techniques separately, the former saved 
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more water and took less time to solve in both illustrative examples. Scenarios that 

explore sequence-dependent water saving opportunities saved more water by 

synthesizing a sequence of tasks that minimize the number of required washing 

operations. This was possible since the illustrative examples did not require washing 

between consecutive batches of the same task.  

The size of the central water storage tank that will be required when exploring 

indirect water reuse and recycle opportunities was determined from the maximum 

amount of water that in the tank over the time horizon of interest. Any vessel or 

process unit that has a capacity equal to or greater than the one required, can be used 

to facilitate the indirect water reuse and recycle opportunities. 

In the first illustrative example, a complex formulation for scenario 3 solved faster 

than a less complex model that only explored water reuse and recycle techniques. The 

more complex base case and scenario 3 of the multiple contaminant example solved 

faster than those of the less complex single contaminant illustrative examples 1 and 2. 

This is due to the size of the search space for an optimum solution. Solution 

algorithms and solvers, including BARON, take more time to find an optimum 

solution if the search space is bigger. Therefore, as much as the formulations for 

scenarios that explore sequence-dependent water saving opportunities simultaneously 

with water reuse and recycle are larger, they have a smaller search space compared to 

scenarios that only explore water reuse and recycle techniques. The reduced search 

space is due to additional constraints or imposed variable bounds. 

The toxicity of the wastewater generated from batch processes is a major concern in 

batch manufacturing. The proposed formulation, however, is able to ensure that the 

contaminant concentration of the wastewater to be disposed to the environment does 

not exceed the maximum allowable concentration. The contaminant concentration 

upper limit is imposed in scenarios 1 and 3, and the contaminant concentration is 

fixed for scenarios 2 and 4.  
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The proposed formulations were validated using two single contaminant problems 

and a multiple contaminant problem for fixed water requirement scenarios. However, 

multiple contaminant problems with fixed contaminant concentration may exist. 

Formulations for fixed contaminant concentration presented in this work (scenarios 2 

and 4) can only allow one contaminant concentration to be fixed.  It is, however, 

possible to represent multiple contaminant problems in a way that allows them to be 

applied to single contaminant optimization models. Approaches to do this include 

identifying a key contaminant and finding an aggregate or average contaminant 

concentration. 
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5.1. Introduction 

The proposed mathematical formulations demonstrated promising results for 

significant water savings in multipurpose batch plants. However, the presented model 

has limitations or shortcomings. Presented in this chapter are the limitations of the 

presented formulation as well as recommendations that might influence future 

research. Discussed issues include accounting for data collection challenges, 

computational time, and exploring other possible water saving opportunities. 
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5.2. Multiple contaminants 

The proposed formulations were validated using two single contaminant problems 

and a multiple contaminant example for fixed water requirement scenarios. However, 

multiple contaminant problems with fixed contaminant concentration may exist. 

Formulations for fixed contaminant concentration presented in this work allows only 

one contaminant concentration to be fixed. It is, however, possible to represent 

multiple contaminant problems in a way that allows them to be applied to single 

contaminant optimization models. Approaches to do this include identifying a key 

contaminant and finding an aggregate or average contaminant concentration. 

Identifying a key contaminant  

This approach assumes that, from a stream with multiple contaminants, only one of 

them is of significant quantity or have a greater impact on the environment and other 

contaminants is negligible. This assumption is often justifiable in situations where 

one contaminant is in abundance relative to the others. After identifying the key 

contaminant, all parameters in the modeling will, therefore, be based on the identified 

key contaminant (Savelski and Bagajewicz, 2003).  

This method has its drawbacks. Sometimes choosing the key contaminant is not a 

straightforward task. The key contaminant cannot be identified if the composition of 

the stream is unknown. Also, not accounting for contaminants that are assumed to 

have negligible effects can result in inaccuracies in the output of the model. 

Average and aggregate contaminant concentration 

This approach proposes a simple average of all contaminants involved in the stream. 

A more popular option that follows a similar thinking will be to group contaminants 

into aggregate properties such as total dissolved solids, total load, biochemical 

oxygen demand, chemical oxygen demand, etc. Both these approaches consider all 

contaminants involved, unlike the above approach that only considers one key 
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contaminant. However, these approaches may still neglect the effect of individual 

contaminants.  

This simplification of complex multiple contaminant problems can lead to models 

that do not accurately represent the real case or results that are impractical. Multiple 

contaminants are more prevalent in industry than single contaminants (Majozi and 

Gouws, 2009). Also, models formulated for multiple contaminant problems can be 

easily adapted to single contaminant problem than trying to apply a multiple 

contaminant problem to a model formulated for a single contaminant problem. 

5.3. Model Validation 

The quality of the input data is one of the very important factors that influence the 

reliability of the output of an optimization model. Other factors may include the 

relationship between variables, constraints, objective function, etc. The sequence 

dependent changeover data required by the proposed formulations, for the sequence 

dependent water saving opportunities to be explored, may be challenging to obtain. 

For example, the fixed sequence dependent water requirement can be obtained after a 

long investigation of observing cleaning in place operations and different batches of 

different tasks being processed in the same unit. This means that for these 

formulations to be implemented practically, significant efforts must be invested in 

trying to obtain the required data.  

The developed data was validated using illustrative literature examples. This work 

can be extended further by validating the developed formulation using a real life 

industrial plant. 

5.4. Computational intensity 

The proposed formulations were successfully solved for the illustrative examples 

using the branch and reduce optimization navigator (BARON) solver. For some 

scenarios, however, the optimization model took too much time to find an optimum 

solution. This may prove to be a problem in facilities where production schedules 
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need to be generated regularly. Factors influencing the computational time of an 

optimization model include the model complexity and the search space. It was 

observed that more complex models require larger computational times. The 

complexity of an optimization model can be increased by adding more constraints 

that consider more factors, by increasing the desired time horizon of interest, etc. 

Computational challenges may be addressed by modifying the model or by adapting 

the solution strategy.  

Modifying the model may include reducing the number of bilinear terms by using 

transformation techniques that were discussed in section 2.3.4. Reducing the problem 

size by thoroughly inspecting the model for reducible constraints and variables can 

lessen computational time. Introducing variable bounds may help decrease the search 

space. 

In this work, it was observed that exploring multiple water minimization techniques 

simultaneously led to complex mathematical models, even though opportunities can 

sometimes be found by one technique and not the other. For this reason, there might 

be merit in exploring water minimization techniques one after another in series, as 

opposed to exploring them simultaneously. 

Adapting the solution strategy may include providing a better starting point for the 

MINLP problem by using a solution from the relaxed model, RMINLP, can aid with 

the convergence of the MINLP model. Furthermore, using hybrid solution techniques 

may also prove to be beneficial. An example of a hybrid solution technique includes 

that of Dakwala et al. (2014)  who presented a combined graphical and mathematical 

optimization technique to simultaneously optimize a water network along with the 

energy requirement.  In their work, the graphical technique was used to determine 

values that were then used as parameters for the mathematical program. Hybrid 

solution techniques can also be simulation-optimization (Sim-Opt), where a 

simulation model is used to describe the system complexity Lau and Srinivasan 

(2016). 
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Due to the advancement in technology, parallel computing where multiple 

calculations can be carried out simultaneously and web-based optimization platforms 

can be explored. The computational power of this technology can result in reduced 

computational times. The free Internet-based NEOS server has more than 60 solvers 

for numerical optimization provides high-performance parallel computing services, 

hosted by the Wisconsin Institute for Discovery at the University of Wisconsin, is an 

example of advanced technologies that can reduce computational times for 

optimization problems (Czyzyk et al., 1998).   

5.5. Possible water saving opportunities 

In this work, a central water storage tank is used to store water so it can be indirectly 

reused or recycled as illustrated by the superstructure in Figure 3.2. Water from 

different washing operations is allowed to mix in the central water storage tank. As a 

result of mixing, the overall contamination of water may increase leading to a decline 

in the number of indirect water reuse or recycle opportunities. Having storage tanks 

dedicated to specific washing operations such that the wastewater can be indirectly 

reused or recycled without mixing with wastewater generated from washing other 

processing units may be worth exploring. This option can, however, prove to be 

expensive in the short term. 

The superstructure in Figure 3.2 also shows that the central storage tank can only 

receive water from the cleaning in place washing operation and only discharge water 

to other cleaning operations. The superstructure in Figure 5.1 allows freshwater to be 

sent to the central storage tank. This can be done to decrease the contaminant 

concentration in the wastewater, increasing more opportunities for indirect water 

reuse and recycle. The storage central water tank in Figure 5.1 can also be used to 

dilute the wastewater to decrease the contaminant levels before disposing it to the 

environment.   
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Figure 5.1 Suggested superstructure for indirect water reuse and recycle 

One of the conditions that must be met for reuse or recycle to be allowed is that the 

contaminant concentration from the wastewater producing unit must be less than that 

of the water receiving unit. It is, therefore, safe to assume that more reuse or recycle 

opportunities will be available if a regeneration unit that can treat the wastewater 

before it can be reused or recycled is incorporated. A formulation that simultaneously 

explores sequence dependent water saving opportunities simultaneously with other 

wastewater minimization techniques such as regeneration reuse or recycle is therefore 

recommended. The hypothesis is that greater water savings will be achieved if reuse 

or recycle opportunities are increased. 

Adekola and Majozi (2017) presented a formulation that explored water saving 

opportunities using sequence dependent changeover times. A central water storage 

tank or multiple storage tanks, and/or a regeneration unit can be incorporated in their 

formulation so that it explores direct, indirect, and regeneration reuse and recycle 

opportunities. Buabeng-Baidoo et al (2017) achieved 85% reduction of wastewater 

generation by exploring multiple water reuse opportunities, including regeneration 

reuse by means of a reverse osmosis membrane, in the cleaning in place process of a 

large scale milk continuous processing plant.  
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CONCLUSIONS 

 

 

 

 

 

Wastewater treatment options tend to be very expensive hence it is desired to explore 

wastewater minimization opportunities in production facilities. As an attempt to 

achieve wastewater minimization, most process integration formulations presented in 

literature explores the direct or indirect water reuse or recycle without considering the 

sequence of tasks when determining the amount of water required for washing 

operations.  In this work, the concept of sequence dependent changeover is explored 

as a wastewater minimization opportunity in multipurpose batch processes. The 

developed variable schedule continuous-time formulations are unit-specific slot 

based. A process task and a corresponding washing operation occur in one active time 

slot. Four scenarios were explored:  

• Fixed water requirement with sequence dependent changeover constraints,  

• Fixed outlet concentration with sequence dependent changeover constraints,  

• Fixed water requirement with sequence dependent changeover constraints and 

direct or indirect water reuse or recycle, and  

• Fixed outlet concentration with sequence dependent changeover constraints and 

direct or indirect water reuse or recycle.  
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To validate and demonstrate the applicability of the developed formulations, two 

illustrative examples with multipurpose batch processes were used. The resultant 

optimization problems were mixed integer nonlinear program (MINLP) and were 

solved using a branch and reduce optimization navigator (BARON) solver on the 

general algebraic mathematical systems (GAMS) platform. A desktop computer with 

the following specifications was used: Windows 7 Professional, Intel(R) Core ™ 

i7.4770 CPU @ 3.40GHz, 8.00 GB RAM, and 64-bit Operating System.  

All scenarios were applied to illustrative examples and results were compared against 

the base case. It was found that mathematical formulations that simultaneously 

explore multiple process integration techniques have a higher chance of achieving 

significant water savings than those that explore a single technique. For example,  

there are two formulations that explored sequence dependent changeover 

opportunities for water minimization simultaneously with direct and indirect water 

reuse and recycle opportunities that achieved 65% and 61% in water savings 

respectively.  


