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Synopsis

The increase in the degradation of water sources and stringent environmental
regulations have greatly motivated industries to explore means of utilizing water
efficiently. Batch processes are known to generate highly contaminated wastewater
that is toxic to the environment. A holistic approach to design which emphasizes the
unity of the process, process integration (PI), can be used to reduce both the
wastewater generated and the level of contamination while maintaining the
profitability of the chemical plant. Process integration techniques for wastewater

minimization in batch processes include water reuse, recycle and regeneration.

Most mathematical formulations for wastewater minimization in multipurpose batch
processes presented in literature determine the amount of water required for washing
operations by only looking at the task that has just occurred in a unit. However, the
nature of the succeeding task can influence the amount of water required for the
washing operation between consecutive tasks in a processing unit. In paint
manufacturing, for example, more water will be required for the washing operation if
the production of white paint follows the production of black paint and less water will
be required if the black paint follows the white paint. The amount of wastewater
generated in batch processes can, therefore, be reduced by simply synthesizing a
sequence of tasks that will generate the least amount of wastewater. Presented in this
work are wastewater minimization formulations for multipurpose batch processes
which explore sequence dependent changeover opportunities for water minimization

simultaneously with direct and indirect water reuse and recycle opportunities.

The presence of continuous and integer variables, as well as bilinear terms, rendered
the model a Mixed Integer Nonlinear Program (MINLP). The developed MINLP
model was validated using two single contaminant illustrative examples and a
multiple contaminant example. A global optimization solver, Branch and Reduce

Optimization Navigator (BARON), was used to solve the optimization problems on a

ifi



General Algebraic Modeling System (GAMS) platform. Exploring multiple water
saving opportunities simultaneously has proven to be computationally intensive but
can result in significant water savings. For instance, two different scenarios saved

65% and 61% in freshwater use respectively.
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INTRODUCTION

Chapter 1
INTRODUCTION

1.1. Background

The global water crisis was ranked as the highest risk in 2016 by the World
Economic Forum (WEF) and it is one of the biggest threats facing the planet over the
next decade (WEF, 2016). The United Nations 2030 Agenda for Sustainable
Development, which was drafted to address urgent global challenges, includes
ensuring availability and sustainable management of water (United Nations, 2016).
The second edition of the National Water Research Strategy (NWRS) which responds
to the vision of South Africa for 2030, as articulated by the National Development
Plan (NDP), recognized that the socio-economic growth will be restricted if water
security and associated water management issues are not resolved in time (NWRS,
2013). According to the WEF (2016), South Africa is the 30™ driest country in the
world and has less water per person than countries widely considered to be much
drier, such as Namibia and Botswana. Industrial processes consume up to 17% of the
available water in South Africa, and as a result, significant responsibility for
conservation lies with process industries (Council for Scientific and Industrial

Research, 2010).
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INTRODUCTION

Besides water consumption, industrial processes also degrade water sources. Many
industries dispose their wastewater directly into rivers. Water sources that appeal to
life on earth are safe, contain no harmful chemical substances and are stable in terms
of corrosion. According to Rand Water (2017), freshwater in South Africa is
decreasing in quality because of the increase in pollution caused by mining,
manufacturing industry, agriculture, etc. Industries produce wastewater that affects
the pH of the water, amount of nutrients (causing eutrophication), temperature
(impacting temperature-sensitive organisms), and increases murkiness (blocking fish
grills, hindering photosynthesis and causing diseases). Wastewater with chemicals
that are not found naturally in the environment, or are found in very small amounts,

end up poisoning plants, animals and people.

Batch processes have become a popular mode of manufacturing due to their
adaptability to volatile conditions that have characterized recent times. Market
demands have changed significantly and high value-added products are required in
small volumes. Pharmaceutical products, detergents, paints, deodorants, etc., are
examples of products that are manufactured using batch plants. Batch processes
follow a series of discrete tasks and are getting attention due to their ability to allow
for the production of a variety of products that follows different production recipes in
one production facility. The nature of batch manufacturing allows for batches of
different tasks to share processing units. Washing operations are essential in batch
processes since the integrity of each batch needs to be preserved. These washing
operations are the major source of wastewater in most batch processes. Although
most batch plants generate fewer quantities of wastewater compared to their
continuous counterparts, effluents from batch facilities are mostly toxic (Majozi,
2010). The need for investigating water saving measures for batch manufacturing
industries was triggered by a combination of the recent public awareness of the
impact of industrial pollution on water sources, stringent environmental regulations,

and the scarcity of freshwater as a natural resource.
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INTRODUCTION

Most production facilities make use of the end-of-pipe treatment as a means of
handling wastewater. An end-of-pipe treatment is when all the generated wastewater
is sent to a treatment facility. Depending on the nature of the contaminant in the
wastewater, treatment methods are divided into physical, chemical and biological.
Water is treated such that it meets the required contaminant levels before it is
discharged to the environment. Significant financial investment is required for this
approach and the cost is highly influenced by the amount of wastewater to be treated.
It is therefore logical to explore wastewater minimizing opportunities before sending
the wastewater for end-of-pipe treatment. Process integration is an approach for
process optimization through emphasizing the unity of the process, environmental
issues and process objectives such as profitability (El-Halwagi, 1998). This approach
looks at the whole manufacturing process as an integrated system of interconnected
processing units as well as utilities and waste streams. Process integration techniques
for wastewater minimization in multipurpose batch processes presented in the
literature include direct reuse or recycle, indirect reuse or recycle, and regeneration
reuse or recycle (Gouws et al, 2010). In this work, multiple water saving

opportunities will be explored simultaneously.

1.2. Motivation

Most mathematical models, in literature, for wastewater minimization in batch
processes determine the amount of water required for washing operations by only
looking at the task that has just taken place in a unit. However, the amount of water
required for washing operations can depend on the sequence of tasks in a unit. The
amount of water required for washing operations should, therefore, be determined by
looking at both the task that takes place in a unit and its successor. As shown in
Figure 1.1, the amount of water required for washing the unit when task B follows
task A4 is not the same as the amount that is required when task 4 follows task B. A
practical example will be a multipurpose unit that processes black paint and white

paint. Due to the sensitivity of the white paint, more water will be required for the
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INTRODUCTION

washing operation if the white paint follows the black paint and less water will be
required if the black paint follows the white paint. Sequence dependent changeover
opportunity for water minimization can, therefore, be explored by simply
synthesizing the sequence of tasks that optimizes the trade-off between the production

and the amount of wastewater generated.

Sequence 2

Water requirement

Sequence 1

v
v

Time 1 2
Sequence

Figure 1.1 Sequence dependent washing water requirement

Adekola and Majozi (2017) developed a mathematical model for simultaneous
optimization of batch production scheduling and water use in a multipurpose batch
plant in which the water requirement is determined by the sequence of tasks in units.
Since a sequence dependent parameter is required, the formulation presented by
Adekola and Majozi (2017) explores sequence dependent opportunities for water
minimization in multipurpose batch processes by fixing sequence dependent
changeover times. To successfully incorporate sequence dependent constraints, their
formulation is able to successfully determine a task that immediately follows the task
that has just occurred in a unit. However, the work of Adekola and Majozi (2017) did

not explore water reuse and recycle opportunities.

This work aims to develop a mathematical model for the simultaneous optimization
of batch scheduling and wastewater minimization where sequence dependent
changeover opportunities are explored simultaneously with direct and indirect water

reuse and recycle in the presence of a central reusable water tank.
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1.3. Objectives

The objectives of the study are as follows:

* To develop mathematical models that explore sequence dependent water saving
opportunities.

* To develop mathematical models that explore sequence dependent water saving
opportunities simultaneously with direct and indirect water reuse and recycle in
the presence of a central storage water tank.

* To validate the developed mathematical formulations using illustrative examples.

1.4. Problem statement

The problem addressed in this study can be stated as follows
Given:

(1) Scheduling data, i.e. product recipe, capacities for different units and suitability,
storage capacities, task processing times, time horizon, value of raw materials,

products and utilities;

(i) Water usage data, i.e. concentration of processed material that remains in the unit,
inlet and outlet contaminant concentration limits, flowrates, and capacity of

central water storage;
(ii1) Sequence dependent changeover parameters.
It is required to determine the optimum sequence of tasks in each unit that generates
the least amount of wastewater within the time horizon of interest, the minimum

amount of freshwater use, the maximum product throughput, and water reuse

network.
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INTRODUCTION

1.5. Dissertation structure

Chapter 1 introduces the research study by presenting the background followed by the
motivation of the study. In this chapter, the problem statement and the scope of the
study are stated. The background upon which the research was conducted and the
models built, is provided in Chapter 2 through a review of relevant literature. Chapter
3 is model development where the relevant models are presented in detail. Chapter 4
shows results obtained when the developed formulations were applied to two single
contaminant illustrative examples and a multiple contaminant example. The
limitations of the model are discussed in Chapter 5 together with the
recommendations that may influence future research. Conclusions made are presented

in Chapter 6.
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Chapter 2
LITERATURE REVIEW

2.1. Introduction

This chapter presents a review of the literature that forms the basis of the conducted
research. A brief outline on process integration is given, followed by a review of
batch processes and scheduling techniques since the two are inherently linked to each
other. This chapter also assesses previous studies conducted on wastewater
minimization in batch processes and ways of handling sequence dependent
changeovers. A background work on mathematical optimization and linearization of
different nonlinear terms is presented to usher understanding of how complex

mathematical problems can be solved.
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LITERATURE REVIEW

2.2. What is process integration?

Process integration is a holistic approach that emphasizes the unity of a process with
the aim of making efficient use of process equipment, energy, water and other utilities
in order to optimize value (El-Halwagi, 2012). This approach for -efficient
management of resources is useful in industrial processes where raw materials,
utilities, products, and effluents are often linked in one way or the other. This
observation cannot be explored by analytical approaches that optimize units

individually, and this makes process integration approaches superior.

Process integration techniques can be explored during the design stage of a process
plant in order to develop a more sustainable design with efficient energy and water
systems (Huang et al., 1999). The performance of an already existing processing plant
can also be improved through process integration techniques. When focusing on
wastewater minimization in production industries, process integration techniques

which can be considered include water reuse and recycle.

Process integration techniques are implemented in conjunction with optimization
techniques such as graphical techniques, heuristic methods, and mathematical
optimization. Graphical techniques are two-dimensional and therefore can only be
used for single contaminant problems and cannot handle time as a variable. In
heuristic methods, some of the parameters defining a mathematical problem are
random. Heuristic methods are considered as a shortcut and do not guarantee
optimality. Even though mathematical programming can sometimes yield
computationally intensive models; they can, however, handle more complex
problems including those with multiple contaminants and where time is treated as a

variable.

According to Edgar and Himmelblau (1989), mathematical optimization problems are
formulated such that they consist of two essential parts i.e. the process model and at
least one objective function. The following demonstrates a structure of a

mathematical optimization problem:
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Objective: Minimize f(x)
Subject to:  g(x)<0
H(x)=0

The objective function is an expression to be minimized or maximized subject to
various variables and constraints described in the process model. The process model
describes the physical laws and the interrelationships of the key variables that apply
to a specific problem. Mathematical programming is used as a tool to achieve the

desired objective by exploring process integration techniques.

2.3. Introduction to batch processes

Batch processes have been receiving attention in recent decades because of the
increased market demands of high value-added products and specialty chemicals.
Well established design techniques have been developed for continuous processes
and most batch processes have been poorly designed (Smith, 2014). Techniques for
continuous processes cannot be directly adopted for batch processes due to the

additional time dimension that makes batch processes more complex.

A manufacturing process where a recipe, i.e. a predefined sequence from raw
materials to desired products, follows a series of discrete tasks is called a batch
process (Majozi, 2010). A batch reactor is distinct from a continuous reactor because
it is characterized by the discreteness of tasks, as illustrated in the Figures 2.1(a) and
2.1(b). Features of a batch recipe include the amount to be processed by a discrete
task as well as the duration of the task. Batch processes are generally used for the
production of low volumes of a variety of high value-added products using limited

resources; hence production scheduling is of great essence in batch production.
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0

Feeding Reactants Reaction Discharging Products

n H . H .

(a)

-

Feeding Reactants + Reaction + Discharging Products

t

(b)

Figure 2.1 (a) Batch reactor (b) Continuous Reactor

Batch processes can be classified according to process layout into single and multiple
stage processes. The sequence of stages that a batch process adopts is informed by the
batch/product recipe. Each stage can have a single unit or multiple units operating in
parallel. Multiple stage batch processes can be further classified into two categories;
multiproduct and multipurpose. Multiproduct batch processes are appropriate for
manufacturing products with identical and fixed recipes; see Figure 2.2(a).
Multipurpose batch facilities are appropriate for the manufacturing of products

characterized by a variation of production recipes as illustrated in Figure 2.2(b).
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Figure 2.2 (a) Multiproduct batch process (b) Multipurpose batch process

The discrete nature of batch processes brings with it a feature that is easily suppressed
in continuous processes, i.e. time. The capturing of this extra dimension is the reason
why scheduling of batch processes is more complex. Methodologies designed for
continuous processes cannot be directly applied to batch operations since they do not
take into account the time dimension. Other challenges encountered when dealing
with batch processes include product recipe representation, storage policies,

changeover, etc. (Méndez et al., 2006).
2.3.1. Recipe representation

A production recipe of a batch operation has a significant influence when developing
optimization models. The recipe presents the layout of the production line and
includes information such as the sequence in which batches should be processed,
mixing and splitting of operations, and material recycles. A recipe representation
intends to describe the actual process of converting raw materials into desired
products, unlike flowsheet representations that describe the actual plant. Different
approaches for representing batch production recipes have been developed over the

years. Kondili et al. (1993) proposed a State Task Network (STN) representation. As
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portrayed in Figure 2.3(b), two types of nodes are included in the STN representation.
These are the state nodes (circular in shape), representing the feeds, intermediate and
final products; and the task nodes (rectangular in shape), representing different
operations that transforms feed/s into product/s. Directed arcs between nodes
represent task precedence. The STN representations explicitly show all feedstocks
sent to a task and all states produced by a task. Most mathematical formulations

based on an STN representation have sets of states and tasks as indices.

Product }‘—|

E ‘

Reaction 1 Reaction 2 Reaction 3

(2)

(s S1 Reaction 1 —>@—> Reaction 2 —>@—> Reaction 3 —P@
(b)
(s1 >(S2 »(S3 >@

Figure 2.3 (a) Process flowsheet (b) STN (c) SSN

Pantelides (1994) proposed the Resource Task Network (RTN) representation. In
addition to the STN, the RTN also includes utilities such as transportation, cleaning,
etc. Types of resources in an RTN representation includes those that are consumed
temporarily (e.g. units), those that are consumed or produced permanently (materials)
and those with an availability profile (utilities). The RTN representations

disaggregate tasks if multiple units are suitable. Most mathematical formulations
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based on an RTN representation have sets of resources or utilities and tasks as

indices.

Smith (1996) proposed a representation that decomposes a process system into
process materials and process equipment, the State Equipment Network (SEN).
Equipment refers to physical devices that execute tasks. The construction of the SEN
generally leads to a smaller combinatorial problem for the selection of equipment
(Yeomans and Grossmann, 1999). For problems where every equipment is restricted
to perform a single task, an SEN representation can be similar to an STN
representation. In SEN representations, only one interconnection of state goes into an
equipment and another one leaves the equipment, even when an equipment is suitable
to process many tasks. The state definition is, therefore, not unique since properties of
the streams will be determined by a particular task that the equipment performs. This
means that the state definition will have to consider all the possible realizations of the
streams that will originate from a certain task in an equipment, which can complicate

the modeling stage (Yeomans and Grossmann, 1999).

The State Sequence Network (SSN) was introduced by Majozi and Zhu (2001). As
displayed in Figure 2.3(c), the SSN representation only has the state nodes, and the
task occurring in a unit is represented implicitly. For example, a heating or boiling
task and a unit where this task occurs will be implicitly represented if a node
representing water in a liquid phase is connected to a node representing water in a
vapor phase. This approach was developed by realizing that the usage of a state
corresponds to the existence of a task and the production of another state. Also, the
capacity of a unit in which a particular state is used or produced sets an upper limit on
the amount of state used or produced by the corresponding task. By noting these
realizations, one state can be chosen and other states can be represented in terms of
the chosen state. The chosen state is called the effective state and it should remain
consistent throughout the formulation. Effective states are considered when defining
binary variables. Therefore, the resulting number of binary variables becomes a

product of the number of effective states involved in the process and the total number
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of time points used in the formulation. Task and unit binary variables are not required

in SSN-based models as opposed to STN-based and RTN-based models.
2.3.2. Storage policies and wait times

The storage policies are classified according to the availability and capability of
storage for storing final products and/or intermediate products in a batch process. In
Finite Intermediate Storage (FIS) policy, intermediate products are stored in a storage
tank of limited capacity. Unlike in FIS, the availability of storage for intermediate
products is guaranteed in Unlimited Intermediate Storage (UIS) policy. Common
Intermediate Storage (CIS) policy involves the sharing of storage tanks by various
tasks within the plant. Washing of storage tanks is therefore required to avoid the
contamination of products. FIS, UIS and CIS operational philosophies are illustrated
in Figure 2.4. Sometimes an unused processing unit can be used to store final
products and/or intermediate products and this is referred to as Process Intermediate
Storage (PIS) operational philosophy. Mixed Intermediate Storage (MIS) policy is

the one that includes a combination of two or more of the above-mentioned policies.

(a) (b) (©)

Figure 2.4 (a) FIS (b) UIS (c) CIS

Storage tanks occupy a significant area in facilities where the operational space is of

essence. No Intermediate Storage (NIS) operational philosophy allows intermediate
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products to wait in the same units they were produced in (post-processing unit-wait
times) and/or in the unit that will do the further processing (pre-processing unit-wait
times) (Majozi et al., 2015). In post-processing unit-wait times, intermediate products
are allowed to wait in a unit that produced them while waiting for the next unit to be
ready for further processing. In pre-processing unit-wait times, a state is stored in a
unit that will do further processing while waiting for other feed states, i.e. a task that
requires more than one intermediate state, and this is called non-simultaneous
material transfer. When dealing with unstable intermediate products that need to be
sent to the next task as soon as they are formed; the Zero Wait (ZW) policy is
adopted. Less sensitive intermediate products can be allowed to wait for a limited
period of time under the Finite Wait (FW) policy. Highly stable intermediate products
can be allowed to wait for a long period of time under a policy called the Unlimited

Wait (UW).
2.3.3. The time dimension

The nature of batch processes require optimization models to take time into
consideration since discrete tasks are processed at different times across the time
horizon of interest. In the early stages of development of this research area, handling
time when modeling batch processes were through Time Average Models (TAMs).
This approach fails to truly represent batch processes since it treats batch operations
as pseudo-continuous operations (Majozi, 2010). Another approach involves treating
time as a known fixed parameter with no opportunity to change within the desired
time horizon. This approach deprives the model of solving to true optima. An
alternative approach would, therefore, be to allow time to be flexible and vary across
the desired time horizon. This, however, brings with it another challenge of how the

time horizon of interest is represented.

Based on how time is represented across the time horizon of interest, optimization
models for batch processes can be classified into discrete and continuous-time

formulations. The former evenly divides the time horizon of interest into a finite
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number of time intervals of known duration; see Figure 2.5(b). The starting and
finishing times of tasks are then allowed to happen only at the boundaries of these
intervals. Kondili et al. (1993) presented an MILP framework, based on the
discretization of the time horizon into a finite number of equal intervals of known
duration. The time horizon of interest was discretized into uniform time intervals that
coincided with the beginning and/or end of a particular task. The inflexibility in the
timing decisions generated infeasible and/or suboptimal production schedules. Also,
the accuracy of discrete models increases with the number of time intervals. For some
problems, for example those with duration of task that has decimals, the number of
required intervals can be very large. A scheduling problem with a task that has a 4.2
hour duration will have many uniform time intervals of 0.2 hours. The large number
of time intervals would result in an explosive binary dimension of the problem which
will be computationally expensive to solve. Avoiding this by rounding off the
duration of tasks with decimals into whole numbers, for example rounding 4.2 hours

into 4 hours, will yield inaccurate results.

Shah et al. (1993) provided an examination of the computational issues encountered
by Kondili et al. (1993). They proposed complementary measures of modifying both
the formulation and the branch and bound solution procedure in order to reduce the
computational time. Their technique included reformulating allocation constraints in
order to tighten the LP relaxation of the MILP so that it can be solved within fewer
LPs. They also examined ways in which the size of the relaxed LP can he reduced
significantly by eliminating binary variables and a large proportion of the constraints
from the LP relaxation of the MILP, thus resulting in a much smaller problem to be
solved at each node of the branch-and-bound procedure. These measures are however
specific for the solution of the resulting model. In cases where a reasonable number
of intervals is sufficient to obtain the desired problem representation, optimization
models based on discrete time representation have proven to be efficient, adaptable,

and convenient for a range of industrial applications (Méndez et al., 2006).
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Figure 2.5 (a) Uneven and (b) Even time discretization

The drawbacks of discrete time formulations can be avoided by using continuous-
time representation. In these formulations, the time horizon of interest is unevenly
divided into a finite number of unknown intervals using variables that capture the
exact time at which a task starts or finishes; see Figure 2.5(a). The number of
variables is therefore significantly reduced and the flexible timing decisions can lead

to feasible solutions.

Continuous-time formulations involve alternative event representations for network
batch processes i.e. global and unit-specific event-based. Global event-based use
unknown uniform events where the time associated with events is common across all
units. In other words, the beginning and the finishing times of the set of batch tasks
are linked to specific time points. In contrast to global time points, the time associated
with the events can be different across all units in unit-specific representation. In
other words, different tasks are allowed to start and/or finish at different times for the
same event point. Formulations based on global time points or unit-specific time
events strongly depend on the number of time or events points predefined. Since this

number is unknown a priori, it can be determined through an iterative procedure
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where the number of time points or events is increased by 1 until there is no
improvement in the objective function. Continuous-time formulations are generally
more complex and have a higher integrality gap which indicates a poor
approximation ratio. They have, however, proven to better capture the time

dimension in batch processes.
2.3.4. Introduction to scheduling of batch processes

Scheduling refers to the allocation of resources to processing tasks over time. This
includes determining what task to execute, where to process tasks, which sequence to
follow, when to execute tasks, and sometimes a number of raw materials that should
be processed in each task. This information is important when designing process
operations and/or optimizing production performance. Production scheduling is very
crucial in operating batch processes in a sustainable way, yet it is a challenging task
especially in flexible batch facilities that allows the production of different products

within the same facility (Floudas and Lin, 2004).

Traditionally, production scheduling was performed manually by trained personnel
using practices recorded from previous experiences. Manual scheduling became
extremely challenging due to increased production volumes, alternative production
recipes, volatile production orders and the need to save energy, water and minimize
other operating costs (Harjunkoski et al., 2014). The ideal way of considering the
aforementioned and other factors when developing a profitable production schedule is
through optimization. Optimization solutions achieve both economic and

environmental benefits.

Scheduling models are based on concepts of arranging events of a schedule over time
with the aim of guaranteeing that the maximum capacity of the shared resources is
not exceeded. Types of production schedule formulations according to the considered
time horizon are; short-term (in days), medium-term (in weeks), and long-term (in
months) (Majozi et al., 2015). The corresponding models deal with the allocation of a

set of limited resources over time to manufacture one or more products following a

2-12



LITERATURE REVIEW

batch recipe (Méndez et al., 2006). The studies reported a wide range of scheduling
problems that have been solved using different optimization approaches such as
graphical techniques, mathematical modelling (LP, MILP, and MINLP), heuristic
methods, artificial intelligence methods, and evolutionary algorithms. Most of these
methods are often presented in literature from a purely modeling point of view and

tested only on small-scale examples (Harjunkoski et al., 2014).
2.4. Recent continuous-time scheduling formulations

Excellent reviews on scheduling have been presented by various authors (Méndez et
al., 2006; Floudas and Lin, 2004; Harjunkoski et al., 2014). Major challenges in the
development of scheduling formulations include achieving global optimality, the

reduction of binary variables and computational times.

Schilling and Pantelides (1996) presented a continuous-time scheduling formulation
based on the RTN representation of Pantelides (1994). In their formulation, the
overall scheduling time horizon was demarcated into time intervals of unknown
lengths, and the boundaries of each time interval coincided with the start and/or finish
of a particular task/s. A single binary variable was used to describe units (j) and tasks

(1) at any point in time t, 1.€. yj.

Ierapetritou and Floudas (1998) applied the model of Schilling and Pantelides (1996)
to a simple process where a single product is produced through three stages: mixing,
reaction and separation. Given the simplicity of the process, the formulation of
Schilling and Pantelides (1996) was observed to have a large number of constraints
(220), continuous variables (157), binary variables (46) and intergrality gap (138%).
Ierapetritou and Floudas (1998) presented a formulation that, when applied to the
above example, had smaller number of constraints (108), continuous variables (105),

binary variables (15) and intergrality gap (28%).

Ierapetritou and Floudas (1998) achieved the above results by introducing unit-

specific event-based models. They proposed a continuous time formulation for short
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term scheduling of multipurpose batch processes based on the STN process
representation of Kondili et al. (1993). In trying to avoid a large number of binary
variables (with a dimension of i x j x t) which may result when a single binary
variable yi; is used, lerapetritou and Floudas (1998) separated units and task events
by assigning corresponding binary variables vj, and wi,, respectively. This lead to a
much smaller number of binary variables for processes with several tasks and units.
However this model initially predicts a large number of binary variables, in situations
where stages involve several units, that can later be reduced by exploiting one-to-one
correspondence between tasks and units. This reduction procedure can however be

complicated for large problems.

To achieve the least number of binary variables without using the variable reduction
procedure, Majozi and Zhu (2001) eliminated the need for task and unit binary
variables by introducing the State Sequence Network (SSN). Only states are
considered and a single variable yg, is used throughout the formulation. Majozi and
Zhu (2001) also introduced the aggregate model where the number of binary
variables is reduced by treating multiple units in a stage as one. This can be done
when the units involved in a particular stage have the same performance and when

the process in a stage are operated in phase.

Janak et al. (2004) proposed an enhanced unit-specific event-based formulation for
short-tern scheduling of multipurpose batch processes. Their work expanded on the
work of Ierapetritou and Floudas (1998) by incorporating features such as storage
policies (UIS, FIS, NIS, and ZW), resource constraints, variable batch sizes and
processing times, batch mixing and splitting, and sequence-dependent changeover
times. In their formulation, Janak et al. (2004) defined new tasks for the storage of
states and the utilization of resources. They also introduced two binary variables, i.e.
wsip indicating whether or not a task starts at each event point and wfj, indicating

whether or not a task ends at each event point.
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Sundaramoorthy and Karimi (2005) argued that the de-coupling of a 3-index binary
variable (yjj) into two 2-index binary variables (vj, and wj,) does not reduce the
overall number of binary variables as suggested by lerapetritou and Floudas (1998).
They demonstrated that decoupling of tasks from units increases the number of
binaries by increasing the number of tasks, and at the same time decreases them by
eliminating the v-variables, but the net effect of these two actions is zero on the
number of binary variables. They added that the only difference between the 3-index
y-variables and the 2-index w-variables is that the former display the unit information
explicitly in terms of j, while the latter hide the same behind i. A formulation
presented by Sundaramoorthy and Karimi (2005) is a slot-based continuous-time
formulation that does not decouple tasks from units. When compared with unit-
specific event-based models, however, their model gave suboptimal results and

increased computational time.

Shaik et al. (2006) presented a comparative study where they assessed the
performance of different continuous-time models when applied to several benchmark
example problems in literature. The comparison was with respect to the problem size
(in terms of the number of variables and constraints), computational times (on the
same computer), and number of nodes taken to reach zero integrality gap. They
concluded that unit-specific event based models require less events and they perform
better than global event based models and slot-based models. This was because they
observed that both the slot-based and global event-based models always require the
same number of event points, while the unit-specific event-based models require less
event points to solve a problem to global optimality. Due to heterogeneous locations
of event points used, unit-specific event-based approach is considered the most
general and most rigorous representation of time used in short-term scheduling

models.

Janak and Floudas (2008) proposed a framework for reducing, and sometimes even
closing, the integrality gap experienced by many complex unit-specific continuous-

time formulations for short-term scheduling problems. Their methodology involve
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four steps: analysing the STN representation of the problem in order to determine its
practical limitations (e.g. when tasks cannot take place and which unit will be the
bottleneck of the process); considering new constraints (e.g. tightening constraints
and bounds on the sums of key variables); solving supporting problems in order to get
tighter values for the bounding constraints and to determine the minimum number of
event points; and lastly introducing the reformulation-linearization technique (RLT)
to provide tighter problem formulations. The RLT was developed by Sherali and
Adams (1994) and it consists of a reformulation phase and a linearization phase. In
the reformulation phase, selected constraints and binary variables are multiplied and
the resulting new constraints are added to the original problem. Then the nonlinear
model is then linearized during the linearization phase. Janak and Floudas (2008)
argues that the addition of these new inequalities gives a higher dimensional
representation of the feasible region for the problem and thus yields a tighter LP

relaxation.

Janak and Floudas (2008) and Shaik and Floudas (2009) demonstrated that not
allowing tasks to span over multiple event points might yield suboptimal solutions in
some cases. Shaik and Floudas (2009) established that both the original model of
Ierapetritou and Floudas (1998), and their improved models, may give suboptimal
solutions because they do not allow tasks to occur over multiple events. Shaik and
Floudas (2009) also established that the formulation of Janak et al. (2004) which was
developed to address a more general has weak LP relaxation and requires a large
number of constraints, nonzeros, and CPU time. To reduce the complexity and
improve the efficiency of the model of Janak et al. (2004), Shaik and Floudas (2009)
proposed a novel unified model that allows tasks to occur over multiple event points.
Their model requires an extra set of iterations that control the number of event points
that a task is allowed to span. When analyzing the limitations of unit-specific event-
based models, Li et al. (2010) confirmed that the work of Shaik and Floudas (2009)
indeed addressed the limitations of previous models by allowing a task to span

several event points.
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Susarla et al. (2010) presented models that use unit specific slots that allowed tasks to
span over multiple slots and also allow non-simultaneous transfer of material into a
unit to get a better schedule. This means that for a task that requires more than one
intermediate materials, it is possible for some materials to be stored in a unit that is
processing that task while waiting for the other intermediate materials. The model of
Susarla et al. (2010), and all other unit-specific event-based models in literature at
this stage, assumed unconditional sequencing. This means that different tasks in
different units are always aligned without monitoring the actual material flows. These
models assume that consumption tasks at event n + 1 are always aligned with
production tasks at event n irrespective of whether the material produced from a

production task is actually used or not.

Seid and Majozi (2012) introduced conditional sequencing where producing and
consuming tasks of an intermediate state are aligned only when a consuming task
actually uses the material from a producing task. Using the SSN recipe
representation, Seid and Majozi (2012) presented a formulation where each task
starts and finish at a particular unit specific slot. Their model requires less
computational time to reach global optimality when compared to existing
formulations in literature at this stage. However, Vooradi and Shaik (2013) argued
that the model Seid and Majozi (2012) used partial conditional sequencing since it
aligns a production task with all consumption tasks even if a single consumption task

uses material from that production task.

The formulation of Vooradi and Shaik (2013) had rigorous conditional sequencing.
This means that production and consumption tasks are aligned by accurately
monitoring the material flow from each production task to each consumption task.
When compared with partial conditional sequencing, rigorous conditional sequencing
further reduces the number of events required. The scheduling formulation of
Vooradi and Shaik (2013) can also effectively handle cases with non-simultaneous
material transfer through proper handling of pre-processing and post-processing unit

walit times.
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2.5. Recent wastewater minimization formulations

Manufacturing industries contribute significantly to the generation of wastewater that
pollute the environment. Industries responded to the wastewater problem, as outlined
in chapter 1, by sending the generated effluent to treatment plants. Depending on the
characteristics of wastewater, treatment methods are classified into physical, chemical
and biological methods (Tchobanoglous et al., 2014). High capital investments are
required for these treatment facilities, and the operating cost of the treatment
operations depend on the amount of wastewater as well as the nature and the
concentration of the contaminants. As a result, industries are trying to find techniques
of minimizing the amount of wastewater as well as controlling the toxicity of the

wastewater.

Most of the early research studies on water minimization were developed for
continuous processes (Chwan and Foo, 2009). This was because continuous
manufacturing processes generated larger volumes of wastewater and they were very
popular. Batch processes, on the other hand, were less popular and more complex due
to the existence of the time dimension. Batch processes have gained more attention
due to the increased demand for various low-volume high-value-added products.
Wastewater produced by batch processes is generally more toxic than the wastewater
produced by continuous processes. Wastewater minimization techniques for
continuous processes cannot directly apply to batch facilities due to the extra time
dimension. Techniques for water minimization in batch processes have gained
attention in the past decade. Techniques for minimizing water in batch plants are

classified into graphical and mathematical programming.

Washing of equipment, when changing over from one task to the other in the same
unit, is the major source of wastewater in most multipurpose batch facilities. In some
batch operations, water is used as a medium for solvent extraction which is then
dispensed at the end of the process. Minor sources of wastewater exist which may

include floor washing. Wastewater generated in batch processes is mostly composed
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of toxic concentrations of contaminants. Techniques for water minimization in batch
processes need to, therefore, satisfy both the contaminant concentration constraints as
well as the time constraints, which makes them more complex than their continuous
counterparts. Some models fix the outlet contaminant concentration and leave the
amount of wastewater as a variable to be minimized; while other models fix the
amount of wastewater and leave the contaminant concentration as a variable to be

minimized (Majozi, 2005b).

Popular process integration methodologies for wastewater minimization include
direct, indirect and regeneration reuse and recycle. Direct reuse is when an outlet
stream from a washing operation becomes an inlet stream to a washing operation in a
different unit. Direct recycle is when an outlet stream from a washing operation
becomes an inlet stream to a washing operation in the same unit. Direct reuse and
recycle are illustrated in Figure 2.6(a). Two requirements need to be satisfied for
direct reuse and direct recycle to occur: the time requirement (the finishing and the
starting times of the washing operations must coincide) and the contaminant
concentration requirement (the outlet contaminant concentration of the outlet streams
need to be less than the maximum allowable contaminant concentration in the inlet
stream). Indirect reuse and indirect recycle attempts to relax the time requirement by
allowing water to be stored before it can be reused or recycled; see Figure 2.6(b).
Regeneration reuse and regeneration recycle relaxes the contaminant concentration
requirement by allowing water to be treated before it can be reused or recycled; see
Figure 2.6(c). Regeneration is achieved with the aid of a water treatment technology.
Buabeng-Baidoo et al (2017) achieved 85% reduction of wastewater generation by
exploring multiple water reuse opportunities, including regeneration reuse by means
of a reverse osmosis membrane, in the cleaning in place process of a large scale milk

continuous processing plant.
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Figure 2.6 (a) Direct reuse and recycle (b) Indirect reuse and recycle (c)

Regeneration reuse and recycle

Mathematical formulations are often based on a superstructure. The superstructure is
presented as a diagram that represents all sources and sinks in a unified manner while
considering all possible interconnections between various processes. The role of the
optimization model is therefore to synthesize the best set of connections from the

superstructure.

2.5.1. Insight based techniques

Wang and Smith (1994) presented a design methodology that aims to minimize water
reuse between continuous water using operations. The first graphical technique for
water minimization in batch processes, through the exploration of water reuse and
recycle opportunities, was presented by Wang and Smith (1995b). Their targeting

procedure includes dividing the problem into concentration intervals and time
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subintervals where the boundaries are set by the end-points of individual processes.
Streams that are available for water reuse are then grouped in each time interval.
Water available in each concentration interval is reused in the time subinterval. The
surplus is reused in the subsequent time subintervals or stored for reuse in the
subsequent concentration interval. Surplus water is neither allowed to be reused in
lower concentration intervals nor in lower time subintervals. Freshwater is used after
reuse opportunities are exhausted and the eventual surplus becomes effluent.
However, the technique by Wang and Smith (1995b) demonstrated semi-batch
behavior by allowing the reuse of water to occur between two units that are active.
Majozi et al. (2006) improved on the work of Wang and Smith (1995b) and presented

a graphical technique for water minimization in completely batch operations.

The technique by Majozi et al. (2006) is able to determine the water network and the
minimum amount of freshwater that can be achieved by exploring reuse and recycle
opportunities for strictly batch processes. The following information is required: the
contaminant mass load, fixed water requirement, starting and finishing times of each
batch operation, as well as the maximum inlet and outlet concentration. The issue of
product mixing is however excluded since it is assumed that the considered processes
are compatible and therefore product integrity is not compromised. Time is taken as a
primary constraint. This technique recognizes that discrete amount of water is
available either at the beginning and/or the end of the concentration or time interval.
A hypothetical example can be used to illustrate the technique by Majozi et al.
(2006).

The example involves the production of agrochemicals A, B, and C; in completely
batch reactors. Sodium Chloride (NaCl) is formed in each of the three reactions as a
byproduct and it is then removed through a liquid-liquid extraction product-washing
stage where water is the aqueous phase. In the case of A, water is used solely for
washing NaCl since the reaction took place in a solvent that is highly immiscible with
water. In the case of B and C, water was used as a solvent and also for product

washing. Table 2.1 summarizes the specification of the described problem. Duration
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of each task is given, together with the load of salt that should be removed, the
amount of water required, as well as the contaminant concentration limits of water for

different tasks (Cinmax and Cout, max)-

Table 2.1 Problem specification

Process Time (h) Cin,max (Kg Coutmax (Kg Water Salt
Salt/ Kg Salt/ Kg (Kg) load
Water) Water)

A product 0.3 0 0.1 1000 100

washing

Reaction B 0.4 0.25 0.51 280 72.8

B product 4.5.5 0.1 0.1 400 0

washing

Reaction C 2.6 0.25 0.51 280 72.8

C product 6.7.5 0.1 0.1 400 0

washing

Total 2360 245.6

Figure 2.7 provides the graphical representation of the example. Figure 2.7 also
shows the concentration intervals: 0 to 0.1, 0.1, and 0.25 to 0.51 kg of salt per kg of

water.
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Figure 2.7 Graphical representation of the specified problem

Figure 2.8 shows targeting at the first concentration interval, 0 to 0.1, where washing
of product A is the only operation. As presented in Table 2.1, 1000kg of water is
required for operation A. The required amount will be freshwater since there is no

reusable water available in this interval.
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Figure 2.8 Targeting interval 0 to 0.1 kg of salt per kg of water

Figure 2.9 presents targeting at the concentration boundary of 0.1 kg of salt per kg of
water. Productions B and C lie in this boundary as the concentration of water remains
constant since no load is removed from the products. According to the Table 2.1, the
combined water demand at this concentration boundary is 800kg. It is however
evident from Figure 2.7 that both B and C starts after the completion of A wash. The
outlet concentration from A wash corresponds to the required boundary concentration
of 0.1. Waste from A wash can, therefore, be reused in B and C since both the time
and contaminant concentration requirements for water reuse in batch processes are
met. A water storage tank is needed to store water from the A wash since there is a

time gap between the end of the A wash and the start of B and C wash.
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Figure 2.9 Targeting boundary 0.1 kg of salt per kg of water

Figure 2.10 represents the targeting at the interval 0.25 to 0.51 kg of salt per kg of
water. This interval has the B and C reactions with the overall demand of 560kg as
illustrated in figure 2.7. There is no reusable water available for these reactions since

they both start before the completion time of A wash, hence freshwater is required.
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Figure 2.10 Targeting interval 0.25 to 0.51 kg of salt per kg of water

In this example, the total freshwater demand is 1560kg. This implies that 34% of
freshwater was saved when using the proposed graphical technique. The work of
Majozi et al. (2006) accommodated for completely batch operations by ensuring that

water is only available or required at the end or the beginning of intervals and in

discrete amounts.

Insight based techniques for water minimization provide insights by determining
minimum freshwater targets and are useful when the time is treated as a fixed
parameter in batch processes. Additionally, they are also limited to single
contaminant problems. The aforementioned drawbacks can be overcome by using
mathematical modeling techniques since they can address complex batch problems.
Mathematical techniques for water minimization in batch processes are classified into
those that are based on a predefined fixed schedule and those based on the variable

schedule. Time is treated as a parameter on the former and as a variable on the latter.
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2.5.2. Fixed schedule mathematical programming

Formulations for water minimization where the schedule is predefined are regarded as
simpler to solve compared to those that determine the schedule as part of the
algorithm. Almaté et al. (1997) proposed a mathematical model for water
minimization in batch processes, based on a predefined fixed schedule. They explored
indirect water reuse opportunities by allocating storage tanks for reusable water. This
means that water could be stored and used by a task that occurs at a later time. Direct
water reuse opportunities were, however, not explored. Kim and Smith (2004)
proposed a model that explored both direct and indirect water reuse opportunities
where each unit producing wastewater was allocated a storage tank to avoid mixing.
They urged that allowing wastewater mixing reduce opportunities for reuse due to

higher contaminant concentrations.

A model by Majozi (2005a) explored direct water reuse for a fixed outlet
concentration scenario. The formulation included sequencing constraints that ensure
that the starting time for the water using unit coincide with the finishing time of the
water producing unit for direct reuse to occur. Bilinear terms, comprising of
continuous and binary variables, were linearized exactly using Glover transformation
(Glover, 1975) and the resulting model was MILP. A formulation proposed by Li and
Chang (2006) determines the number and sizes of storage tanks, the configuration of
pipeline network as well as the operating policies of water flows. Buffer tanks were
incorporated to provide opportunities for indirect water reuse and to equalize the flow
and concentration of wastewater before entering the treatment systems. Chen et. al
(2008) analyzed the impact of central storage facilities on freshwater reduction and
their model synthesizes water-using networks with the minimum freshwater
consumption. Recently, Lee et al. (2014) presented a fixed schedule model that
simultaneously targets minimum water and wastewater flow, storage capacity, and
interconnections for multi-contaminant cyclic batch operations. Their formulation is
capable of identifying the water source or sink to be reduced or eliminated, predicting

the amount of external water required, water source to be reused, recycled,
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regenerated, or discharged and determine the minimum storage tank capacity and

interconnection configurations.

Assuming an optimum fixed schedule limits the water minimization model from
finding more water reuse/recycle opportunities. For example, if the finishing time of a
water-producing operation does not coincide with the starting time of the water-using
operation and they are both fixed, direct reuse will not happen. Whereas if time was
treated as a variable, the water minimization model might have shifted the operations
within the time horizon of interest, such that the finishing and the starting times of the

operations coincide and the direct water reuse opportunity is explored.

2.5.3. Variable schedule mathematical programming

Mathematical techniques for water minimization based on an optimization scheduling
platform can be further classified into discrete and continuous-time formulations.
Cheng and Chang (2007) presented a discrete time formulation that simultaneously
optimizes the schedule, water reuse opportunities and wastewater treatment by
incorporating all three optimization problems in one platform. The nature of discrete
models results in large model sizes that require more time to solve hence continuous

time models are preferred.

Majozi (2005b) presented a continuous time variable schedule mathematical model
for wastewater minimization in batch processes, built on a scheduling platform
presented by Majozi and Zhu (2001) which is based on a State Sequence Network
(SSN). Their model explored four scenarios: fixed outlet concentration without
reusable water storage, fixed water quantity without reusable water storage, fixed
water concentration with reusable water storage, and fixed water quantity with
reusable water storage. The first two scenarios explored direct reuse and recycle
opportunities and the last two scenarios explored indirect reuse and recycle using a
central reusable water storage tank. Majozi and Gouws (2009) presented a model that
explores direct and indirect water reuse and recycle with central reusable water

storage tank for multi-contaminant problems.
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Water can also be minimized between multiple processing plants that are grouped in
different geographical locations through interplant water integration. Chew et al.
(2008) explored direct and indirect interplant water integration through pipelines and
centralized utility hub. Optimization approaches for water minimization, insight-
based and mathematical optimization, can be combined and this provides the
opportunity to use targets obtained beforehand to generate alternative networks
(Oliver et al., 2008). Gouws et al. (2010) reviewed earlier formulated water

minimization models.

A method presented by Li et al. (2010) simultaneously optimized production and
water network. They incorporated regeneration that reduces the contaminant
concentration of wastewater in order to improve indirect reuse opportunities. Adekola
and Majozi (2011) expanded on the work of Majozi and Gouws (2009) by
incorporating a black box regeneration unit that treats water and increases reuse and
recycle opportunities. A model by Chen et al. (2011) simultaneously optimized the
production schedule and the water network for periodic operations. Their model was
built on an RTN scheduling framework of Chen and Chang (2009). Nonyane and
Majozi (2012) presented a variable schedule model for water minimization that can

handle longer time horizons.

Grundemann et al. (2012) conducted an experimental investigation aimed at reducing
cleaning related wastes, including wastewater, by transferring macro batch to micro
continuous campaign manufacturing. Their three-step approach to design and
optimizing a micro-continuous process starts by exploring how fouling and deposits
can be avoided by choice of equipment. The frequency of cleaning is then minimized
by exploring how batch production can be transferred to micro-continuous production
through equipment dedication and proper production scheduling. They also argue that
increasing the batch size reduces product frequency in a sequence which leads to
fewer changeover procedures and less cleaning waste. The last step focuses on the
optimization of the cleaning cycle by taking advantage of the small hold-up of the

micro-continuous plant.
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Variable schedule optimization models that incorporate heat and water minimization
in one unified framework with an optimization scheduling model are also presented
in literature (Seid and Majozi, 2014). In the work of Halim and Srinivasan (2011), the
optimization problem is decomposed into the scheduling part, the heat integration
part and the water reuse optimization part. The optimization problem was then solved
sequentially starting with scheduling. However, the unified approach of optimizing
resources simultaneously give better economic performance when compared to the
sequential approach. Recent advances include a formulation by Chaturvedi and
Bandyopadhyay (2014) that uses multi-objective functions for simultaneously
minimizing freshwater requirement and maximizing production. The formulation was

solved by repeatedly optimizing one objective while fixing others.
2.6. Handling changeovers

In batch processing, the changeover is a process of converting a unit or a production-
line from processing one task to another. Changeover operations occur between tasks
in a unit; for example washing, sterilization, equipment set-up, material transfer, etc.
Research on changeovers was incentivized by two main factors: the loss of valuable
production time since a unit is not operational during the changeover; and the cost of
the changeover activities. Changeover can either be sequence dependent or sequence
independent. Changeover time and/or cost will depend on both the task just
completed and the task that is about to be processed if the changeover is sequence
dependent. When the changeover is sequence independent, changeover time and/or
cost is not influenced by the sequence of tasks in a processing unit. Sequence-
independent changeovers are often found in situations where batches being processed
have similar equipment set-up, operating conditions, etc.; and they can be easily
modeled. For example, Li and Floudas (2010) incorporated sequence independent
changeover or setup times into their scheduling model by lumping them into the

processing time of batches.
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Due to the common time grid for units, discrete time formulations can easily
incorporate sequence dependent changeovers (Doganis and Sarimveis, 2007).
Discrete-time formulations are not desirable to account for changeovers due to small
changeover times that require finer time discretization leading to large model sizes
and excessive computational times. Cerda et al. (1997) and Méndez et al. (2001) used
a concept of order of precedence to handle changeovers in single stage multiproduct
batch plants. Precedence relationships can either be global or immediate. However,
precedence based formulations are not time grid-based and are suited for

multiproduct batch plants that follow a linear process.

This review will explore continuous-time formulations that address sequence
dependent changeover time and/or cost in multipurpose batch processes. Continuous
time grid-based models overcome the drawback of discrete time formulations and are
also suited for multiproduct batch processes. However, continuous time models
require iterations when deciding the number of event points or slots and may result in

higher integrality gaps.

Maravelias and Grossmann (2003) presented a continuous time scheduling model for
multipurpose batch processes that incorporates sequence dependent changeover time
into sequencing constraints of different tasks in the same unit. Their model used an
STN representation and it made use of global time points. Janak et al. (2004)
presented a similar scheduling model which made use of unit specific event based
presentation which proved to be computationally better than the formulation by
Maravelias and Grossmann (2003). Both these models explore changeovers of tasks
that occur between consecutive time slots and place the unused time slots as the last
slots in the time period. A model by Shaik and Floudas (2008) allows for changeover
even in situations where the consecutive task does not occur in the next time slot, as
long as there is no other task/s processed between the tasks involved in the
changeover. In their respective work, Shaik and Floudas (2008) and Shaik and
Vooradi (2013) handled sequence time by using equation 2.1.
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The above literature did not consider changeover cost. The requirement of accounting
for sequence dependent changeover cost is the ability to determine a task that
immediately follows the task that has just occurred in a unit. Erdirik-Dogan and
Grossmann (2008) accounted for changeover cost in their scheduling model of

multiproduct batch processes by introducing a binary variable Z; ; ,,;,. This binary

variable, as defined by equation 2.2 to 2.4, becomes active when product i, assigned
to slot /, is followed by product i"at slot i +1 on unit m at time period ¢. Their model

places empty or unused slots as last slots in the time period.

(i, k,m, 1 t)= Wi, m, 1t )+ wli,m, 1 +1,2) -1 22
wii,m,1,t)= z(i,k,m,1,t) 2.3
wi,m,l +1,¢)=z(i, k,m,1,¢) 2.4

Kabra et al. (2013) accounted for changeover cost on their short-term model for

multistage multiproduct batch process by introducing a binary variable wc .. This

i, \s5,m
binary variable, as defined by equation 2.5 to 2.7, becomes active when state s’ at
event n'is followed by state § at event 7 provided that there is no other task
occurring between n' and 7. The formulation allows for empty events to exist

between consecutive tasks. Changeover constraints of Kabra et al. (2013) are adapted

from Shaik et al. (2009) for continuous processes.

wc(i,s',s,n') < w(i,s',n') 2.5
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Washing operations during changeover are inevitable in multipurpose batch
processes. Adekola and Majozi (2017) presented a formulation that achieves
wastewater minimization by exploring the sequence of tasks in a unit. They proposed

a three index changeover binary variable xch(sm, >Sin, j> p) as well as a binary variable
)(I(sm Iz p) which becomes 1 when a task is the last task to be processed in a unit.

The changeover binary variable xch(sm, >Sin, j> p) becomes 1 when a tasks,, . at p is

in,j

followed bys;, ;at a later time point since the formulation allows for empty time

in,j
point between consecutive tasks in a unit. Equation 2.8 to 2.10 shows the relationship

between the changeover binary Variablexch(sm, >Sin, j> pland the binary variable

associated with the activeness of a task y(sl-n’ Iz ).

!

xch(Sin,jssin,jap)sy(Sin,jsp) 2.8

!

xch(sin,jﬂsin,jap,)sy(S;n,jap)+ ,2 Ey(sl{’n,j’p”) 29

!

xch(Sin,jﬁsl’n,jﬂp,)2 y(sin,jﬂp,)"' y(slfn’j,p)—l

( " ,,) 2.10
S S
P'<p'<pSiy i €Sin;
!
Exch(sin,jasin,j’p)SI 2.11
Sin,jESin,j
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’ Echh(Sin,jDSZ{n,jﬂp)+‘XI(Sin,jﬂp)=y(Sin,jﬂp) 2.12
Sin,jSOin,
> XLl p)sl 2.13
P Sin,jESin,j

Constraints 2.11 and 2.13 ensures that there can only be one immediate successor to
the current task and only one last task in a unit. Constraint 2.12 states that if a task
occurs in a unit, it can either be followed by another task or it is the last task in that

unit.

2.7. Background to mathematical modeling and
optimization

Mathematical optimization is an approach that seeks to find the best solutions for
problems defined mathematically through mathematical modeling. In the process
industry, mathematical optimization can be done to minimize the total cost of design,
optimize the operation (i.e. minimize operating cost and maximize profit), improve
plant performance (i.e. yield, selectivity, use of resources, etc.) or improve
environmental performance. Mathematical optimization problems consist of a process
model and at least one objective function. In production scheduling, the objective can
be to maximize or minimize the makespan, earliness, profits, inventory, cost, etc. A
feasible solution to an optimization problem is defined as a set of variables that
satisfy the constraint of an optimization problem. An optimum solution is the one that

has the best objective function amongst the feasible solution in a feasible region.

A process model is a representation built to purposefully exhibit features and
characteristics of an object, process or system. An optimization model consists of
design variables that are involved in the trade-off. An optimum value of the design
variable is desired since changing it may bring a benefit to one part of the design but
a misfortune on the other. The objective of optimization is to find the values of these

variables that yield the optimal value of the objective function.
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Interrelationships of variables are captured using mathematical constraints.
Constraints can be expressed as equalities or inequalities. A combination of
constraints forms a model that can be optimized if an objective function is included.
Models with 100, 400, and 1 000 000 constraints are considered as small, medium
and large-scale problems respectively. Factors that make an optimization problem
difficult to solve include the size of the model, types of variables and the nature of

nonlinearity.

Types of mathematical models include empirical, stochastic and deterministic models
(Dym, 2004). Empirical models attempt to describe the behavior of acquired data.
Stochastic models are inherently random, i.e. similar parameters and initial conditions
can lead to different outputs; whereas the output in deterministic models, which are
based on the dynamics of the system, is fully determined by the parameters and the
initial conditions. In operation research, deterministic models are used as process
models where the system or process is described using mathematical equations,

inequalities, and logical expressions.

The degree of freedom is determined as the difference between the number of
independent variables and the number of constraints in a model. The degree of
freedom of an optimization problem must be at least 1, meaning that there must be at
least one variable which is free to vary. The problem is a uniquely solvable
simulation problem when the degree of freedom is zero. The problem is over-
specified when there are more independent constraints than variables and some

constraints are therefore redundant.

Models can be built to describe the result of an observed system, to explain the
behavior of a system, and/or to predict future behaviors. In many fields, such as
engineering design, predictions by a validated and/or verified model influence
decision making. Cobelli and Carson (2001) highlighted critical questions that are
useful in general problem solving and also guides the process of building

mathematical models, see Figure 2.11. In order to build a model that best predicts the
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desired outcome, it is essential to be clear of what is already known (parameters) and
the assumptions that can be made. Before model predictions can be trusted, it is
important that the model is verified or the outcomes are validated. Though the two
can easily be confused, verification is different from validation. Model verification is
the process of confirming that the model accurately represents the conceptual
description of the system whereas model validation is done to ensure that the

predictions of the model represent the real-life cases.

System

What do we want to know?

A 4

How should the model look like? Model How can the model be improved?
What do we know? | Variabless (¢ —————————————————— |
What can we assume? | Parameters

What will the model predict?

v
Model

Predictions | valid: Are the predictions valid?
Verified: Are the predictions good?

Test

\ 4
Valid/Accepted
Predictions

Figure 2.11 An overview of the process of developing models

2.7.1. Model classification

Variables used to build mathematical models can be continuous, discrete or binary.
Continuous variables can take any value that is within the specified boundaries.

Discrete, also known integer variables, can only take discrete values e.g. the number
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of storage tanks. Binary variables can either take a value of 0 or 1 indicating, for

instance, the availability or unavailability of a processing unit at a particular time.

A mathematical model in which all the expressions in the process model and the
objective function are linear is referred to as a Linear Programming (LP) model.
Edgar and Himmelblau (1989) describe a linear expression as the one whose
independent variables or derivatives appear only to the first power; otherwise, they
are nonlinear. If at least one expression is nonlinear, that model is called a Nonlinear
Programming (NLP) model. LP models are, in order of magnitude, easier to
manipulate and solve than NLP models, hence there are techniques of linearizing
NLP models (Glover, 1975). Applications of optimization models might require some
variables to be whole numbers, integer variables. LP models consisting of a mixture
of integer and continuous variables are called Mixed Integer Linear Programming
(MILP) models (Williams, 1999). The NLP equivalent models are called Mixed
Integer Nonlinear Programming (MINLP) models. MILP models guarantee global

optimality and can be solved using the branch and bound technique.

2.7.2. Global optimization methods

Global optimization algorithms are used to solve mathematical optimization problems
and can be classified as either stochastic or deterministic. Stochastic approaches are
based on probability and often rely on physical analogues to guide the algorithm
towards the global optimum solution. Stochastic approaches are not rigorous and
have difficulty handling complex constrained problems. Deterministic algorithms
may guarantee finite convergence, within a specified level of accuracy, by taking
advantage of the mathematical structure of the optimization problem (Ryoo and
Sahinidis, 1996). When building mathematical models for manufacturing industries,
MINLP models usually surface. The following is a basic form of an MINLP

problem:

Objective: Minimize Z = f{x,y)
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Where x and y are continuous and discrete variables, respectively. Major
deterministic global optimization algorithms that can be used to solve MINLP
problems include branch and bound, branch and reduce, general benders

decomposition and outer approximation.
Branch and bound algorithm

Branch and bound algorithms are able to develop upper and lower bounds of the
optimum objective value in sub-regions within the feasible region. This algorithm
relaxes the discrete variables which then lead to a continuous NLP problem. The
solution of the NLP at the node becomes the lower bound for the optimal MINLP
objective function value which can be used to expand the nodes. Nodes can either be
expanded breadth-first or depth-first. The breadth-first approach selects a node with
the best value at each level and expands on all its successor nodes while the depth-
first approach performs branching on the most recently created node within the tree.
Branching occurs when the feasible region is being subdivided and bounding is the
estimation of the upper and lower bounds of the global optimum solution. According
to Ryoo and Sahinidis (1996), the depth-first approach requires less storage and can

find the optimal solution early in the procedure.

The performance of bounding at every node in the branch and bound algorithm can
be improved by pre-processing a global optimization problem using reduction
techniques (Sahinidis, 2000). The method allows some nodes to be excluded based on
the optimality and feasibility criteria. The resulting algorithm is called the branch and
reduce algorithm. BARON (Branch and Reduce Optimization Navigator) solver make

use of the branch and reduce method extended to continuous and discrete variables.

Generalized benders decomposition and outer approximation
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Generalized benders decomposition and outer approximation algorithms differ from
branch and bounds methods in that, for each major iteration, they solve an NLP
problem (when all discrete variables are fixed) and MILP master problem. The NLP
sub-problem provides the upper bound to the MINLP solution while the MILP master
problem predicts both the lower bound to the MINLP solution and the values for the
discrete variables for each major iteration. As the cycle of major iterations proceeds,
the predicted lower bounds would increase and the search will be terminated when

the lower bound coincide with the upper bound.

The general benders decomposition methods differ from the outer approximation
methods on how they define their respective NILP master problems. The generalized
benders decomposition method uses the optimal dual information to ensure that the
master program corresponds to an initially poorly constrained integer linear program
while the outer approximation algorithm uses the optimal primal information of the
sub-problems to define a mixed-integer linear master program (Duran and

Grossmann, 1986).

2.7.3. Convexity

The output of mathematical optimization can be a global optimum, the best solution,
or a local optimum, one of the best solutions. Unimodal functions have one extremum
which is a global minimum or maximum. Multimodal functions have multiple
extrema where the smallest is the global minimum, and biggest is the global
maximum, and the rest are local extrema. Whether the solution is local or global
minimum or maximum can also be influenced by convexity. A function is convex if a
line segment between any two points on the graph lies above or on the graph and
concave if the line segment lies below the graph, see Figure 2.12. Strictly convex and
concave functions have the line segment respectively above and below, and never on
the graph. As can be observed from Figure 2.12, strictly convex or concave functions

provide a single optimum. A global optimum solution can, therefore, be guaranteed
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for a convex function and not for a nonconvex function which may have multiple

local optimum solutions (Lundell and Westerlund, 2012).

A A

4
Jx) Jtx

v

v

*(a) x(b) x(@) x(b)

(a) (b)
Figure 2.12 (a) Convex function (b) Concave function

For a one-dimensional function, convexity can be proven by finding the second
derivative. A function is strictly convex or strictly concave if the second derivative is
strictly greater or lesser than zero respectively. If the second derivative is greater or
equal to zero, however, the function is convex though not strictly convex and if the
second derivative is less or equal to zero, the function is concave though not strictly
concave. To prove convexity for multivariable functions, a Hessian matrix is used to
represent the second derivative and conditions similar to the ones mentioned above
apply. However, there are convenient tests that can be made to establish the status of
a Hessian matrix for strict convexity: all eigenvalues of the Hessian matrix must be
positive, and all diagonal elements must be positive. For strict concavity: all
eigenvalues of the Hessian matrix must be negative, and all diagonal elements must

be negative.

MINLP formulations should, therefore, be convexified for the global optimum

solution to be obtained. Figures 2.13(a) and 2.13(b) are illustrating envelopes for
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convex underestimators and concave overestimators to nonconvex and nonconcave

functions respectively.

’
= = Envelope

v
v

(a) (b)

Figure 2.13 (a) Convex (b) Concave envelope

The following subsection will explore how nonlinearity caused by different bilinear
terms can be transformed to linearity. This is important since nonlinearity causes
models to be nonconvex which make it difficult to obtain and prove global

optimality.
2.7.4. Linearization of bilinear terms

Bilinear terms can be caused by a product of variables. In this section, the following
combinations will be discussed: product of two continuous variables, product of a

continuous and a discrete variable, and a product of two discrete variables.

Product of two continuous variables

A method proposed by Mccormick (1976) can be used to linearize a bilinear term of a
product of two continuous variables by deriving underestimator and overestimator

functions that can be incorporated into an optimization algorithm.

Let z in equation 2.14 be a product of two continuous variables, x and y.
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zZ=Xxy X, yER 2.14

Each continuous variable has a lower and an upper bound as illustrated by constraint

2.15 and 2.16.

X' sx<x 2.15

yE=sysyY 2.16

x-xt=0 2.17
xY =x=0 2.18
y-yl=0 2.19
yW-y=0 2.20

Constraint 2.21 to 24 are obtained by taking a product of different combinations of

constraints 2.17 to 2.20.

xy—xLy—ny+xLyL20 2.21
xy—ny—yUx+nyU20 2.22
xy—xLy—yUx+xLyU20 2.23
xy—ny—ny+nyL20 2.24

By substituting equation 2.14 and rearranging, we get constraints 2.25 to 2.28 which

are Mccormick (1976) overestimators and underestimators. This method replaces
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bilinear terms with linear constraints. It is however not an exact linearization

technique.

szLy+ny—xLyL 2.25
szUy+yUx—nyU 2.26
szLy+yUx—xLyU 2.27
szUy+ny—nyL 2.28

Product of discrete and continuous variables

Glover (1975) presented a method for linearizing a bilinear term due to a product of a

discrete and a continuous variable.

Let Z be a product of a discrete variable y and a continuous variable x, as shown in

equation 2.29.

Z =xy XER,y€E[0,1] 2.29

Z can, therefore, take the value 0 if y is 0 and take the value of x if y is 1. x is a

continuous variable with a lower and an upper bound as illustrated by constraint 2.30.

xL X xU 2.30

IA
IA

Constraint 2.31 is obtained by multiplying constraint 2.30 with the discrete variable y.
Constraint 2.32 is obtained by substituting equation 2.29 in constraint 2.31

xLysxysty 2.31
xty<z<xVy 2.32
x—xU(l—y)sst+xL(l—y) 2.33
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The lower and the upper bound are assumed to be known, therefore constraints 2.32
and 2.33 are linear in terms of x and y. Equation 2.29 can be linearized by replacing it

with constraint 2.32 and 2.33. This method is an exact transformation technique.

Product of discrete variables
Z2=Y1>2 )’1:)’2E[Oal] 2.34

A binary variable is an integer (discrete) variable that can only assume a value of zero
or one. In optimization formulations, binary variables can be used to model the
presence or absence of tasks. Table 2.2 shows possible outcomes of equation 2.34, a
product of two binary variables. This outcome shows the activity/inactivity of a task

that requires both y; and y; to be present.

Table 2.2 Product of two binary variables

i )2 V4
1 1 1
1 0 0
0 1 0
0 0 0

Nonlinearity exists in optimization formulations can be due to the product of binary
variables. If z is a product of two binary variables, the following set of linear

constraints can replace equation 2.34 (Maranas and Zomorrodi, 2016):

z <y 2.35
Z<y, 2.36
zzy+y,-1 2.37

Equation 2.35 and 2.36 provide the upper bound for z and also hold for all

combinations in Table 2.2. Equation 2.37 provides the lower bound for z. This exact
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linearization technique can be expanded for the product of any number of binary

variables. Z is a product of any number of binary variables, equation 2.38.

7/ = Vi 2.38

oS

The following set of general linear constraints can replace 2.38 (Maranas and

Zomorrodi, 2016):

Z=0 2.39

Z<y; vie{l,2,..,N} 2.40
N

ZzEy,-—(N—l) 2.41

~
Il
—_

2.7.5. Solution output

It is usual to obtain an unacceptable solution output when running a mathematical
model. An unacceptable solution output can include solver failure, infeasible
solution, unbounded solution and unsatisfactory optimal solution. Solver failure can
occur when a solver fails to cite numerical difficulties; when the unrealistically large
amount of resources (memory and time) are used to make little progress; and cycling
where a model lacks progress as it iterates excessively at a single point despite using
more resources. A solver can sometimes stop and indicate that the model is infeasible
or unbounded when attempting a model solution. Sometimes an optimal solution can
be reported while the values of variables are observed to be impractical. This
unsatisfactory optimal solution may be because of omitted variables or constraints,

errors in estimated parameters, algebraic errors, etc.

Solver failure can be alleviated by examining the model structure and input
coefficient location, by using a priori degeneracy resolution scheme (adding small

numbers to one side of the equation to avoid redundancy) and/or by rescaling the
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model to narrow the disparity between the magnitude of variable coefficients (Mccarl
and Spreen, 2011). These techniques should be applied before solving the model to
avoid solver failure. Unbounded solutions can be alleviated by imposing upper
bounds to variables that are taking undesirable outcomes. For infeasible solutions,
structural checking can be done to find obvious formulation defects or by using
artificial variables that make infeasible problems feasible by allowing the violation of
equality constraints. This then makes it easier to discover constraints casing

infeasibility.

2.8. Remarks

Rapid-changing markets have led to an increase in the use of batch manufacturing
processes. High water consumption and the degradation of water sources by
manufacturing industries contribute significantly to the water scarcity problem. This
has triggered the use of process integration techniques, such as direct and indirect
water reuse and recycle, to optimize the use of water in batch manufacturing
processes. Mathematical models, presented in literature, that use process integration
techniques to minimize wastewater in batch processes do not account for sequence
dependent changeovers. As a result, they determine the amount of water required for
washing operations by only looking at the task that has just taken place in a unit.
Incorporating sequence dependent changeover constraints can open an opportunity to
explore sequence dependent water saving opportunities. Presented in this work are
wastewater minimization formulations for multipurpose batch processes which
explore sequence dependent changeover opportunities for water minimization

simultaneously with direct and indirect water reuse and recycle opportunities.
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Chapter 3
MODEL
DEVELOPMENT

3.1. Introduction

This chapter presents the development of the optimization mathematical formulations
for water minimization in multipurpose batch plants. Four different scenarios are
considered: fixed water requirement with sequence dependent changeover
constraints, fixed outlet concentration with sequence dependent changeover
constraints, fixed water requirement with sequence dependent changeover constraints
and water reuse and recycle technique, as well as fixed outlet concentration with
sequence dependent changeover constraints and water reuse and recycle technique.
This is followed by designed superstructures, which are based on the problem
statement presented in Chapter 1. Assumptions made when developing the model are
presented as well as the nomenclature. Lastly, mathematical formulations are
presented for the scenarios under consideration together with the objective function

that maximizes the profitability of the process across the time horizon of interest.
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3.2. Explored scenarios

In order to incorporate sequence dependent changeover constraints in a mathematical
formulation, a sequence dependent parameter is required. In this work, four scenarios
based on sequence dependent parameter and the superstructures in Figures 3.1 and
3.2 were considered. The first scenario is based on fixed sequence-dependent
changeover water requirement of each washing operation while the outlet
concentration was allowed to vary. This scenario can be applied to both single and
multiple contaminant problems. In the second scenario, the outlet concentration is
fixed and the washing water requirement determined. The sequence-dependent
parameter is a fraction or percentage used to determine the additional amount of
water that must be used to rinse the processing unit depending the sequence of tasks
in the unit. The fixed outlet concentration scenario cannot be extended to multiple
contaminant problems. This is because the outlet concentrations of individual
components cannot all be set to a maximum, since contaminants cannot be limiting

simultaneously.

The third and the fourth scenarios respectively expand on the first and second
scenarios by exploring sequence-dependent changeover opportunities for water
minimization simultaneously with water reuse and recycle. One of the major
challenges in mathematical optimization is obtaining the accurate data to feed into the
model in order to obtain reliable predictions. Developing formulations that explore
the same concept with a similar objective but require different data increases the

chances of benefiting from that concept.
3.3. Superstructure representation

Figure 3.1 represents a superstructure for sequence-dependent changeover where
different tasks can be processed in a multipurpose unit j. The amount of water
required for a washing operation differs with the sequence of tasks. For instance,
W, (Snj»Sin;) amount of water is required when task s, follows tasks,,;,
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w, (84>57,;) amount of water is required when task sj, follows task s;,;, and
w, (S} »8},;) amount is required when task s;,; follows task s;,;. Within a given

time horizon of interest, the model must synthesize a sequence of tasks that will
generate the least amount of wastewater. A trade-off, therefore, exists between

production and wastewater minimization.

2V

v

Figure 3.1 Superstructure for sequence dependent changeover opportunity for water
minimization

Figure 3.2 is a superstructure for a water minimization problem with a central water
storage illustrating both direct and indirect water reuse and recycle opportunities.

Water required for washing operation j is not only freshwatermw (Sl-nj, p) but could
also be indirectly reused or recycled from the central reusable storage tank as
mw;’“t(sl-,y-, p)and/or directly reused from other washing operations in other

processing units j’. Similarly, the outlet stream from a washing operation can be

disposed of as effluentmw,(s;;,p), can be sent to the reusable water tank as
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mw;”(sinj, p)and/or directly reused to another washing operation in other process

. .y /
units j - asmw,. (Sinj,Sl‘nj'ap)'

ut ]
ng (Sinjap) lesn (sinj’p)
Storage Tank

MW ¢ (Sinj» P) mwW' (s, ., p) m“?ut(sm,j,P) MW (Sinj > P)
) S e

J

Emwr (Sinj'>Sinj > P) N E MW (S »Sinj' > P)
Sinj' ] J ‘Sinj’
Lo
S

J

Figure 3.2 Superstructure for direct and indirect water reuse and recycle
3.4. Assumptions

The following assumptions were made when developing the proposed mathematical

model:

* The entire mass load in a unit is removed when the washing operation is
complete.

* The mass load does not become difficult to wash if left in a unit for a period of
time.

*  Washing operations are required after processing the last task in a unit.

* The inlet and outlet contaminant concentrations parameters are the maximum

allowable.
¢ Freshwater has no contaminants.

* Sequence independent changeovers are lumped in the processing time of tasks.
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* The changeover time is the duration of changeover washing operations.

3.5. Nomenclature

A list of sets, parameters and variables used by the developed mathematical
formulations are presented below:

Sets
S {s | s Any state}
P { p| p Time point}
J { J | J Processing unit}
S { $in | sinjEffective state representing a task performed in a
mn .
/ unit}
Sp {Sp |SpPr0duct}
K { k | kK Contaminants}
Parameters
L Lowe.r bound in capacity of a given unit that processes the
Sinj effective state s;,;
U Upper bound in capacity of a given unit that processes the
Sinj effective state s;,;
VJU Maximum capacity of unit j
sc Portion of state s consumed by a task that processes the
Sinj effective state s;,;
sp Portion of state s produced by a task that processes the
Sinj effective state s;,;
Constant coefficient of processing time of task that processes
a(Siny) the effective state s,,;
) Variable coefficient of processing time of task that processes
BlSing the effective state s,,;
W (Sing Sz{nj) Amount of water required to wash unit j when task s}, j follows

task s;, j
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Wy, (Sinj)

WR(S 1 »Sn;)

inj

L(s,, . k)

inj»
U
w (Sin,j)

Cvlv] (Sinjak)

Cy' (k)

in
s

oY

SP(s )

cost
Wy

Binary variables
Z(Sinj ’Sl{nj Pt 1, p)

h(sinj»p)

Amount of water required to wash unit j when s;,; is the last

task to be processed in that unit.
A fraction of water required to clean unit j that will be added

for rinsing when task s, ; follows task s,

Contaminant concentration of state that will be left in a unit
after processing a task s;,;

Upper bound of the amount of water for cleaning unit ;

Upper bound of the allowable contaminant concentration

Initial contaminant concentration of water in the storage

Initial amount of water in the storage tank

Maximum storage capacity

Selling price of state s

Cost of freshwater

Cost of wastewater

Density of water

Volumetric flowrate of cleaning sprays

Time horizon of interest

Binary variable for the changeover fromss,,;at ptos;,;at p+1

Binary variable indicating thats;,, ;is the last task to occur in

unitjat p.
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y(sinj>p)
Yr (Sinj7sinj”p)
yén(sinj’p)

out

Vs (Sinj . D)

Continuous Variables

mw'" (Sini>P)
mw! (Sinj> P)
mw ¢ (S > P)
mw!" (Sinj> P)
mwgut (Sinj s p)
mw,] (Sinj>P)
MW, (Sinj> P)
mw'" (Sinj»> P)
mwg”’(sinj .P)
MW, (S >Sini'> D)
C"szn (Sinjs p)

t
cholu (Sinj > p)

Binary variable associated with the usage of state s in unit ; at

p.

Binary variable for the transfer of water from unit j to unit ;'

atp.

Binary variable for the transfer of water from unit j to storage

atp.

Binary variable for the transfer of water to unit j from storage

atp.

Mass of water into unit j at time point p

Mass of water from unit j at time point p

Mass of freshwater into unit j at time point p

Mass of water into unit j at time point P at stage A of the

washing operation

Mass of water into unit j at time point P at stage A of the

washing operation

Mass of freshwater into unit j at time point p at stage A of

the washing operation

Mass of effluent from unit j at time point p

Mass of water transferred to storage from unit j at time

point p

Mass of water transferred from storage to unit j at time

point p

Mass of water transferred from unit j to unit ;' at time point

P

Inlet concentration to stage A of the washing operation

Outlet concentration to stage A of the washing operation
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W (S5 K5 D)
W™ (51K, D)
cs(p, k)

95 (Sinj> P)
m(S,;>k, p)

sr (s, p)
mu(S;,;» P)
Wy (Sinj> P)
W (Siys D)

t Wout

(Sinj>P)
" (Sinj> P)
wi! (Sinj> D)
tu(Sjyj> P)
tp(Sinj> P)
VW(Sjyj> D)

XW(Sinjap)

XC(Sinj» P)

Contaminant concentration of water into unit j at p

Contaminant concentration of water from unit j at p

Contaminant concentration of water in the storage tank at
time point p

Amount of water in the storage tank at time point p

Contaminant load to be removed by a washing operation in
unit j at p

Amount of state stored at time point p

Total mass of material processed in unit j at time point p

The duration of a washing operation in unit j at time point
p

The starting time of a washing operation in unit j at time
point p

The finishing time of a washing operation in unit j at time
point p

The time at which water is transferred to storage from unit
jat time point p

The time at which water is transferred from storage to unit
j at time point p

The starting time of a process task in unit j at time point p

The finishing time of a process task in unit j at time point
p

Volume of water into unit j at time point p

Combined mass of water for cleaning and rinsing unit; at
time point p

Contaminant concentration of xw(s;,;, p)
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3.6. Mathematical model

Figure 3.3 illustrates the different sub-models that make up the overall structure of
the presented models. Mathematical formulations of considered scenarios have
different combinations of the following sub-models: scheduling sub-model, sub-
model for sequence dependent water saving opportunity, and the sub-model for water
reuse and recycle technique with a central water storage tank. Formulations for
scenarios 1 and 2 have the scheduling and the sub-model for sequence dependent
water saving opportunity. Formulations for scenarios 3 and 4 combine all three sub-

models.

[, \

4 4 4
Sequence Water reuse and
Scheduling dependent water recycle process
Model saving integration
opportunities technique
J J

. 7

Figure 3.3 Elements of the proposed formulations

3.6.1. Scheduling

True optimality in batch process formulations can only be realized if the production
schedule is allowed to vary (Gouws et al., 2008). A scheduling model by Seid and
Majozi (2012) was used as a platform when developing variable schedule
formulations for all four scenarios. This was because it gave better objective values in
a less computational time when compared to other scheduling models in literature.
The model of Seid and Majozi (2012) used unit-specific time slots and continuous-
time representation and it is based on a State Sequence Network (SSN) that makes
use of effective states since they render an opportunity to reduce the number of binary

variables (Majozi and Zhu, 2001). Each time slot in the developed model, therefore,
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represents an unknown duration in which a process task and a washing operation

occCur.
Allocation constraint

Constraint 3.1 allows only one task to be active in a processing unit j at a given time

point p.

Ey(smj,p)sl, VYV peEP, Sinj ESinj

Sinj

3.1

Capacity constraint

Constraint 3.2 ensures that the amount of batch processed in a unit is within the lower

and the upper bounds, Vf andVV respectively.

inj Sinj

Vsijy(sinjap)s mu(Sinj’p) V(l{y y(Sinjsp)y v pEP, Sinj ESinj 3.2

Material balance for storage

Constraint 3.3 calculates the amount of material, excluding products, in storage at a
given time point as the amount that was there at a previous time point adjusted by the
difference between the amount used at a current time point and the amount produced
at the previous time point. Constraint 3.4 calculates the amount of product in storage
at a time point as a sum of what was available at the previous time point and what is

produced at the current time point.

q,(s. p) = q,(s. p - 2 5 mulsyy.p)+ Ep s,y p-1)
i i 33
VSES, pEP,s;, €S, j J

>inj
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g, (sp,p)= qs (sp,p - 1)+ E,O;iju(sinj,p),VpEP,sp ESp,smj S\ 34

Sinj
Duration constraint: Duration as a function of batch size

Equation 3.5 describes the duration of a task, consisting of a fixed and a variable

term, added to the starting time of a task when calculating the finishing time of a task.

tp(Sinjap)Ztu(Sinj’p)-'-a(sinj)y(sinj’p)'i-ﬁ(sinj)’nu(smj’p)
VpEP, s5;,ES

3.5

inj
Sequence constraints
Sequencing same task in the same unit

Constraint 3.6 ensures that a task starts in a unit after the previous task is completed.

This constraint applies to similar tasks in a unit.

tu(sinjap)ztp(sinjap_l),vpepa SinjESinj 3.6
Sequencing different tasks in the same unit

Constraint 3.7 also ensures that a task starts in a unit after the previous task is

completed. This constraint applies to different tasks that are processed in a unit.

!’ ! !
Ly (Sinjap)z Ip (Sinjap - 1),V PEP, Sini = Sinj» Sinj>Sinj € Sinj 3.7

Sequencing different tasks in different unit if an intermediate state is produced from

one unit
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Constraint 3.8 ensures that an intermediate state produced in a unit should not exceed
the allowed storage if it is not consumed in another unit (t( s p) =0). However, if the
intermediate state is consumed in another unit (¢(;, p)=1), then the amount stored is

less than the amount produced. Constraint 3.9 ensures that the starting time of the
consuming task is greater than the finishing time of the task producing the

intermediate state.

IOSp mU(Sm,j,p _1)5 qs(sap)+ I/jUt(]ﬂp))V]EJ’ pEP’ Sinj ESZS’Z 3.8

Sinj

tu(sinj'ap)ztp(Sinjap_1)_H(2_y(sinjap_1)_t(jap))
VJEJ, PEP, SinjsSinj € Siyj

3.9

Sequencing different tasks in different unit if an intermediate state is produced from

more than one unit

Constraint 3.10 allows the state used by a task at time point p to come from other
units that produced the same state at a previous time point. Constraint 3.11 ensures

that a task consuming a state occurs after the completion of the producing tasks.

S -

S, el iy )=l p =10 3 o7 muls =140
Sinj inj 3.10

VJjEJ, pEP, s, €S

inj

Ly (Sinj"p)z fp(Sinjsp - 2)‘ H(l B y(Sinjap - 2)) 311
Vp EP, Sinj’sinj' ES!I’I]
Constraints for FIS policy

Constraint 3.12 ensures that the produced state is immediately consumed or not

produced at all if there is no storage capacity available. Constraint 3.13 ensures that
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the finishing time of the producing task coincides with the starting time of the

consuming task.

Epjijmu(sinjap_l)-l- QS(Sap_l)s QSU + EVJU(I_X(S’p))
J

Sinj

3.12
VjEJ, pEP,SES,s;,; Sy,
Z, (Sinj'ﬂp)s tp(Sinj,p —1)+ H(z—y(sinjr,p)—y(smj,p _1))_'_ H(X(S,p))
VPEP, 57,55, ESpyjs SES 3.13

Storage constraints when idle unit stores material produced previously

Constraint 3.14 ensures that material produced can be stored in a storage unit with a
maximum capacity and/or in a processing unit that produced it if that unit is not
processing a task in the next time point. Constraint 3.15 ensures that materials are
stored for consecutive time points in a processing unit. Constraint 3.16 prevents the

processing unit from starting a task at the time point when materials are stored.

45(5.p)= 05V + Sulssy. ) vpeP, $1j € Siyi»SES

Sinj

3.14

u(sl-nj,p)s p;ijmu (Sl-nj,p —1)+ u(smj,p —1),V PEPL, sy €Syi 315

u<sinj’p)s VjU —-{1- Ey(sinj’p) ,VJEJ, pEP,s;,; €S,y 3.16
3

inj

Time horizon constraints

Constraint 3.17 and 3.18 ensures that all tasks are processed within the time horizon

of interest.
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tu(Sinj:p) H NpEP, s;,;, €Sy 3.17

tp(sinj,p) < H Vp€EP,s;, €S, 3.18

3.6.2. Scenario 1: Fixed water requirement with sequence dependent
changeover constraints

The formulation for this scenario is based on the superstructure in Figure 3.1.

Changeover constraints

A changeover binary variable z(sl-nj,slfn j» D +1, p)takes the value of 1 when task s, ;
occurs at time slot p is followed by tasks;, 7t pt1 in the same unit, as ensured by
constraint 3.19. The changeover variable is declared as a continuous variable and can
only assume a value of 0 or 1 since it is determined from binary variables as

presented in constraint 3.19. Constraint 3.20 ensures that if 5;,; occurs at a time slot,

nj
it can either be followed by a task in the next time slot or it is the last task to occur in

that unit. Constraint 3.21 ensures that at any given process unit j, there can only be

one last task in a unit.

Z(Sinjﬂs;nj’p + 17 p) = y(Sinjﬁp)y(S;njﬂp + 1)anEPaSinj’S;njESinj 3.19

EZ(SZIZ]’ ll’l]’p+1 p)+h(Sm],p) y(Sm]’p) VPEP’Sm]’ nj S inj  3.20
Sinj
¥ Y hisiy ) =1 NpEP,s;,; ES,,; 3.21

P S,

inj
Figure 3.4(a) illustrates that a changeover exists between two consecutive tasks in a
unit and Figure 3.4(b) illustrates that a task is considered the last if no other task is

processed after it in a unit.
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P M W
(a)

a=
_") S
(b)

Figure 3.4 (a) First or intermediate task (b) Last task

Constraint 3.19, which consists of a product of two binary variables, is nonlinear and
can be linearized by using constraints 3.22, 3.23 and 3.24 (Maranas and Zomorrodi,

2016). Equations 3.22, 3.23 and 3.24 are linear and will ensure that

Z(Sinjasz(nj’ p+1, p)takes a value of 1 when task Sin, joccurs at time slot p is

!
followed by task Sin j atp+1.

Z(Sinjﬂsz{njap + l,p) = y(sinjap),VpEP’SinjaSz{njESinj 3.22

Z(Sinjasl{njap +1,p) < y(Sz,'njp + 1),VPEPaSinj>Sz{nj ESinj 3.23

Z(SinjsSini» P+ 1, D) = Y(Sinj» )+ Y(Spj, p +1) =1
VDEP, 87,51, € Siyj

inj»°inj

3.24

Water balance constraints

Constraints 3.25 and 3.26 respectively ensure that all the water used for washing is
freshwater and wastewater is disposed of as effluent. Constraint 3.27 is the law of
conservation of mass, to ensure that the water that goes into a washing operation
equals to water leaving the washing operation. Constraint 3.28 chooses the amount of

water to be used for washing operations depending on the sequence of tasks.
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mWin(Sil’lj’p) = mwf(Sinj’p)anEP’Sm] ES 395
mwout(sin,j,p) = mwe(sin,j,p),vpep, Sinj ES 3.26
mw'" (Siyj> P) = W’ (5,5, p), YPEP, 5, €S, 3.27

me(Sznjap) EW (Sznp zn])Z(Sln]’ ln]’p +1 p) + Wh(sln])h(sznj’p)
mj

VpEP,s, .,s: Sy

inj»2inj

3.28

Contaminant balance constraints

Constraint 3.29 determines the amount of load to be removed by the washing
operation. The binary variables are included when consecutive tasks or the last task
does not require a washing operation. For instance, washing may not be required
when two consecutive batches of the same task are processed in a unit if the residual
material will not contaminate the succeeding batch. Constraint 3.30 ensures that the
entire load in a unit is removed by the washing operation and the contaminant
concentration of the wastewater is determined. This is because, in this scenario, the
fixed water requirement is fixed by constraint 3.28. Constraint 3.31 ensures that the
contaminant concentration of the outlet stream does not exceed the maximum
allowable. The model reduces the batch size to ensure that the amount of load
determined by constraint 3.29 does not result in a contaminant concentration that

violates constraint 3.31.

M8k, p) = mu(S;,;, PYL(S;,5)| 1= EZ(Sinj’SlI'njap +1Lp)+h(s;y, P) 1
Sinj :

VPEP, S5 Sins ESiyj

ll’l]’
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mwO”t(Sznj’p)C 0ut(Smj,k, p) =m(sy,,k, p), VpEP,st S 3.30

U
e (Sm] k,p)=C,, (Sm] . k)y(Sm] , D), VpEP, Sinj ES 3.31
Sequencing constraints

The duration of washing operations is directly linked to the amount of water required
using a fixed volumetric flowrate of the high-pressure water sprays that are used to
clean the processing units. Constraint 3.32 determines the duration of washing
operations based on the required amount for washing. Constraint 3.33 determines the
finishing time of a washing operation by adding the duration of washing to the
starting time of the sequence dependent changeover washing operation. Constraint
3.34 states that for a processing task to start in a unit at a time slot, the washing
operation that occurred at the last time slot should be complete. Constraint 3.35 states
that for a washing operation to occur in a unit at a time slot, the processing task that
occurred in the same time slot must be complete. Constraints 3.36 and 3.37 ensure

that all washing operations are completed within the time horizon of interest.

Wy (Sinjsp)Rt (]) = mwout(sinjsp) ’VpEP, Sinj ES 3.32

twout(sinjﬂp) = twm(sinjap) +iwy (Sinj’p) Ez(sinjﬂsl{nj’p + lap) + h(Sinjap)

3.33
Sinj
VpEP,sm], m]ES-nj
ty (Sinj> D) = W (5}, p=1) ,IPEP, 537,87, ESpy 3.34
th(Sinjap)th(Sinjap),VpepasmjES 3.35
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W (s ,p)=H VpEP,s,;ES,, 3.36

inj

W (5,5, p) < H , WDEP, 83, €Sy 337

3.6.3. Scenario 2: Fixed outlet concentration with sequence dependent

changeover constraints

The formulation for this scenario is also based on the superstructure in Figure 3.1.
Figure 3.5 illustrates that the washing operations in this scenario explicitly occur in
two stages, A and B. Stage A is responsible for removing most of the load and stage
B is where rinsing occurs for quality assurance purposes. The outlet contaminant
concentration for stage A is fixed to a maximum, and the formulation determines the
amount of water required for removing the load such that the maximum concentration
is not exceeded. The amount of water required for rinsing in stage B is determined as
a fraction or percentage of the amount used in stage A. And because the intensity of
rinsing depends on the nature of the products involved in the sequence, the additional

rinsing fraction is given as the sequence dependent value in this scenario.
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. th (Sinj ’ p) ,
) 1
mw;n (Sinj ’ p) mwll)n (Sinj ’ p)
cwézn (Sinj > p) Cwll)n (Sinj > p)
A B
t t
mwg" (S P) - MW" (87, D)
out
Cwa (Sm]:p) ngut (Slnj’p)
out
mw™" (Sii> P)

CWOM[ (Sinj s p)

Figure 3.5 Two stages involved in the cleaning operation

Water balance constraints

Constraint 3.38 ensures that the water used in stage A is freshwater. Constraints 3.39

and 3.40 respectively ensure that water in stage A is conserved and does not exceed
the maximum allowable. Equation 3.41 determines mwout(sinj , p)which is a

combination of the amount used in stage A and the amount of freshwater required for
rinsing the processing unit in stage B. Constraint 3.42 ensures that all the water used

in both stages is disposed of as effluent.

MW (075 P) = mWY, (S35 ), VPEP, 5,5, €Sy o

] t 3.39
mwzzn(sinjsp) = mwj" (Sinj» ), VPEP,s,,; €Sy

3-19



MODEL DEVELOPMENT

: U 3.40
mwz:n(sinj’p) /4 (Sinj)y(sinjsp), VPEP’ Sinj ESinj
mwout(sinjap) = mwén(sinj:p)
+ mwfzn(sinjap)EAW(Sm]’ inj )C(Sln]’ ln]’p +1 p) 3.41
inj
VPEP, s;, 5 ESinj
3.42

mwout(Sinjsp) = mwe(sl-nj,p),VpEP,smj ES

Contaminant balance constraints

Constraint 3.29 still hold in this scenario. Constraint 3.43 is the contaminant balance
around stage A stating that the load in the tank is removed by the washing water.
Constraint 3.44 replaces constraint 3.31 by setting the outlet contaminant

concentration to a maximum. Constraint 3.45 simply determines the contaminant

. out
concentration CW (Sinjs p).

out( out(

Sinj> p)c Sinj> p) = m(sl-nj, p),VpEP, Sinj € Sinj 3.43

U 3.44
OW(Sm]sp) C (Sm])y(sln]’p) VPEP’SWES
mw (5,5, DY (815, D) = MW" (81, DI (S00is D) 345
VpEP,s;,, €S,y
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3.6.4. Scenario 3: Fixed water requirement with sequence dependent

changeover constraints and water reuse and recycle

The formulation for this scenario simultaneously explores sequence dependent
changeover opportunity for water minimization with water reuse and recycle
opportunities in a multipurpose batch process. The constraints for this scenario are

based on both superstructures in Figures 3.1 and 3.2.
Water balance constraints

Constraints 3.27 and 3.28 still hold in this scenario. Constraint 3.46 states that the
inlet stream to a washing operation is a combination of freshwater, water from
reusable storage and water directly reused from washing operations in other process
units. Constraint 3.47 ensures that the outlet stream can be disposed of as effluent,
sent to a reusable storage or directly reused to a washing operation in other process
units. Constraints 3.48 to 3.50 set the upper bounds for the direct water reuse streams,
and streams to and fro the reusable water tank, respectively. Constraint 3.51 ensures

that water is not sent to a storage tank at the last time slot.

] t
mwm(sin'ap)=mw (Sin'ap)‘i'mwgu (Sin"p)+ mWr(Sz{n"Sin"p)
y S \inj y Yoy 3.46
Sinj

inj?Szn]

; .
mw™ (Sinj’p) = mwe(sinj’p) + mw;n(sinj’p) + Emwr(sinﬁsl{nj’p)
Sinj

3.47

U 348
MW, (Sinis P) S W (Sipi ) Vi (Sing» Sii'> P VpEP, Sinj ESinj
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4 3.49
mwfvn(sinjsp) = Qg (Sznjap) VpEP, Sing ES
3.50
out(Sm]’p) W (Sl}’l] )yom(sinjap) ) VPEP’SUU ES
3.51

me(Sm],p) OVp ‘P|’Sll’l]

Contaminant balance constraints

Constraint 3.29 still holds in this scenario. Constraint 3.52 determines the
contaminant mass load of the inlet stream to a washing operation. Equation 3.53 is
the contaminant mass balance around a processing unit. It states that the mass of
contaminant in the outlet stream is a combination of the contaminant in the inlet

stream and the load in the processing unit.

mwin(sinjap) ( m]ﬂk p) mwom( injap)cs(pak)'l'Emwr(sz{njasinjap)cwom(sz{njakap)
Sinj 3.52

VpEP,s; Shym

inj» l}’lj

out(

mwout(smyp)c Sll’lj’k p) mwm(smj,p)c (Sm]?k p)+m(Sm],k p) 3.53

VpEP,s;,; ESyy;

Storage tank constraints

Constraints 3.54 and 3.55 determine the amount of reusable water in the storage tank
at the first time slot and any other time slot, respectively. Constraint 3.56 states that
the amount of water in the tank must never exceed that maximum allowable amount.
Constraint 3.57 ensures that the reusable water storage tank is empty at the last time

point.
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j t
q,(p) = Q;n - Emwg’“ (Sinjap),VpEP,p =1,5;,; €Sy 3.54

Sinj

45(P) =as(p=1)= 3 mw{" (55, p) + > mw (535, P =1)

“ “ 3.55
VpEP,s;,; €S,
U 3.56
q,(p)=Qy ,VpEP
3.57

QS(p) = Oan = P|

Storage contaminant balance constraints

Constraints 3.58 and 3.59 determine the contaminant concentration of the reusable
water in the storage tank in the first time slot and any other time slot, respectively.
Constraint 3.59 considers the reusable water in the stank as well as the water that

entered the tank from the previous time slot.

cy(p,k)=Cl(k),Vp =1 3.58

qs (p _l)cs (p _Lk) + Emw;n (Sinjop _l)cwout(sinjokop _1)

S, .
cs(p.k) = in.J _
g, (p-D+ E mwg' (S, P =1 3.59

Sinj

VpEP,s;,; ESyyj

inj

Sequencing constraints
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Constraints 3.32 to 3.37 still hold for this scenario. Constraint 3.60 and 3.61 ensure
that the starting time of the washing operation receiving water coincide with the

finishing time of the washing operations generating the wastewater being reused.

twm(smj,p) = tw Out(Sz{njap) —H(l _yr(Sinj’S;nj’p))

3.60
VpEP,Sm], m]ESj
tWin(Sinjap) Stwout(sl{njsp) +H(1_yr(si”j’sl{”j’p)) 3.61
VPEPaSm]a m]ESJ

Constraints 3.62 and 3.63 ensure that the time at which a stream is transferred to the
reusable storage coincides with the finishing time of the washing operation.
Constraints 3.65 and 3.66 ensure that the time at which a stream is transferred from
the reusable storage coincide with the starting time of the receiving washing
operation. Constraints 3.64 and 3.67 ensure that for water to be transferred to and

from storage, respective washing operations should be active in the same time slots.

£ (Sipys 2) 2 W (55, D) = H(l Vs (Smpp))

3.62

VpEP,s;,; €S,y

in out in 3.63
1 (5 ) = 00 (5307, ) + L= 37 (5307, ) VPEP.53 €S,

. 3.64
Vs (Sinjs D) < V(Siy» P), YD EP, 55, €Sy

out out
L ( m]’p)—tw (Sm]ap) H(l Vs (Sinjap)), 3.65
VpEP,s;,i €Sy
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3.66
(9 (55072 2) W (537, 9) + HL= 50 (5002 )| YPEP 53, €Sy

out( 3.67

Sinjop) = y(Sinjop),VpEP’Sm] ES
Constraint 3.68 states that the time at which water is transferred from the reusable
water storage tank to a washing operation at any given time slot is later than the time
at which water was transferred at the previous time slot. Constraint 3.69 is similar but
applies to water transferred to a storage tank, i.e. it ensures that the time at which
water is transferred from a unit to the reusable water storage tank at a time slot is later
than the time at which water was transferred at a previous time slot. Constraint 3.70
ensures that the time at which water is transferred from the reusable water storage
tank at a time slot is later than the time at which water was transferred to the reusable

water tank at a previous time slot.

(S22 " S 1) = H2 = 57 S ) = 7 (3P =)
VpEP,s, €Sy

inj» m]

3.68

1 (0> P) 21" (8,07, P = 1) ‘H(Z =~ (Sinjs D) = V" (S P _l)) 3.69
VpEP,s, ' E Sy

inj>Sinj'

(2 (53 P) 2 8 53 D =) = HR = 52 (350 2) = Y53 =D) 50
VpEP,s, €Sy

inj» m]

Constraints 3.71 and 3.72 work together to ensure that the water transferred from the
reusable tank to different washing operations in different units at the same time slot is

transferred at the same time. Constraints 3.73 and 3.74 work together in a similar way
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but for water transferred from different washing operations to the reusable water tank

in the same time slot.

1 (Sij> D) 2 8" (830 ) — Hl2- V& (Sinjs D) - y‘””(smjr,p))
VpEP,s €Sy

inj» m]

3.71

tsout( lnjap)<t0ut(slnj 9p)+H(2 yout(Slnjﬂp) yout(sinj'ap)J 3.72
VpEP,s, E Sy

inj» m]

tén(Sinjap)Zt;n(sinj"p)_H(z_y (Slnj’p) y (SmJ’p)) 3.73
VpEP,s, E Sy

inj» m]

1 (Sij> ) 2 1 (St p) — H (2 = 1" Sij> P) = 1" (St p)) 3.74
VpEP,s; ' E Sy

inj» m]

3.6.5. Scenario 4: Fixed outlet concentration with sequence dependent

changeover constraints and water reuse and recycle opportunity

The constraints for this scenario are based on both superstructures in Figures 3.1 and
3.2.Storage constraints 3.54 to 3.59 and sequencing constraints 3.32 to 3.37 and 3.60
to 3.74 hold for this scenario.

Water balance

In this scenario, constraints 3.39 to 3.41 and 3.47 to 3.51 still hold. Constraint 3.46 is
replaced with 3.75 to ensure that freshwater, reused water, and water from the storage

tank is utilized in stage A of the washing operation.
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in out !
mwy (Sinj’p) = mwf(sinj’p) +mw (Sinj’p) + Emwr(sinj’sinj’p)
Sinj 3.75
VDEP, 817580 ESinj

Contaminant balance

Contaminant balance constraints 3.29, 3.44 and 3.45 still hold in this scenario.
Constraint 3.76 replaces 3.43 by ensuring that the contaminant load in the outlet
stream from stage A includes both the mass the load in the unit and the load in the

inlet stream determined by constraint 3.77.

OMI( Out(

Sll’lj’p)c Sinjsp) = mwén(smj,p)c%”(smj,p) + m(Sinjap)
VpEP,s;,; €S, 3.76

inj

MWy (87> PYWg' (1075 P) = mWS™ (815 D) (D)

' out 1
+ 2 mw, (Sinjasinjap)cw (Sinjap) 3.77
Sinj
VDEP, 811251 € S

Tightening constraint

To tighten the model, constraint 3.73 ensures that every activity occurs within the

time horizon of interest.

(81 )Y (Sinjs P) + B8 )t (7, D)

33 |

+1iwy (Sinj’p) Ec(sinjasinjap +1,p)+ a(sinjap) 3.78

S

VpEP,s;,; ESyy;

inj

inj
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3.6.6. Objective function

The objective is to maximize the profitability of a batch plant over the stipulated time
horizon of interest. The objective function is made up of three components i.e.
revenue, the cost of freshwater and cost of wastewater. However, each of the three

components qualifies to be an objective function on its own.

Any of the objective functions, 3.79 to 3.82, can be chosen for any of the explored
scenarios. Objective 3.79 maximizes revenue, 3.80 minimizes the cost of freshwater,
3.81 minimizes the cost of disposing of the effluent, and 3.82 maximizes profit, i.e.

revenue minus water costs.

Revenue = Eqs(Sp,P)S‘P(Sp) 3.79
$pESp
Cost of freshwater = CFW E Emwf (Sinjap) 3.80
8injSSinj PEP
Cost of Effluent = CFE E Emwe (Sjnjap) 3.81
SinjSSinj PP
Objective = Revenue — Cost of Freshwater — Cost of Effluent 3.80
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Chapter 4
MODEL VALIDATION

4.1. Introduction

This chapter demonstrates the applicability of the formulations developed in the
previous chapter. Two single contaminant illustrative examples and a multiple
contaminant problem were examined. The two case studies were respectively
presented by Kondili et al. (1993) and Maravelias and Grossmann (2003) for short-
term scheduling of batch processes. In this work, the case studies have been adopted
for wastewater minimization where sequence dependent water saving opportunities
are explored. The illustrative example of Kondili et al. (1993) was also adopted for a

multiple contaminant problem.

All four scenarios presented in the previous section are observed in both case studies.
Scenarios 1 and 3 were validated separately from scenarios 2 and 4 since they require
different sequence dependent changeover parameters, i.e. sequence dependent
changeover washing water requirement and sequence dependent changeover rinsing
fraction, respectively. Results were compared with a base case where no water saving

opportunity was explored.

The resultant MINLP formulations were solved using a BARON solver in GAMS
24.3.2 in a computer with the following specifications: Windows 7 Professional,

Intel(R) Core ™ 17.4770 CPU @ 3.40GHz, 8.00 GB RAM, and 64-bit Operating
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System. Results are summarized in tables and production schedules are illustrated in

Gant Charts. Objective function 3.82 was used for all scenarios in the formulations.

4-2



MODEL VALIDATION

4.2. Illustrative example 1

4.2.1. Illustrative example description

The production recipe presented in Figure 4.1 shows that two chemical products,

Product 1 and 2, are produced from three raw materials; Feed A, B and C. The

production facility consists of four process units; a heater, two multipurpose reactors,

and a separator. Both reactors (R) are suitable for processing reactions (Rxn) 1, 2 and

3.

Feed A
(s1)

Product 1
(s7)

40%

Intermediate AB

Separation

Impure E
(9)

(s8)
0, 0, 0,
Heating O 40% Reaction 2 60% O 10%
Hot A
(s5)
60% 80%
Intermediate BC
(s6)
0,
30% Reaction 1 Reaction 3 40
Feed B
(s2)
50% 20%
()
_/
(s3) Feed C (s4)

Figure 4.1 STN representation of the first illustrative example

90%

Product 2
(s10)

A superstructure is a representation of all possible solutions. The superstructure in

Figure 4.2 shows all possible sequences of tasks that can occur in both reactors 1 and

2. The mathematical model will, therefore, synthesize an optimal sequence of tasks

for both reactors, which will be a subset of Figure 4.2.
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2V

Reaction

Figure 4.2 Sequence dependent changeover superstructure for the first illustrative
example

The scheduling parameters for the Illustrative example are presented in Table 4.1.
This includes the capacity of the available processing units which can be used as the
upper bounds of the amount of material to be processed in that unit. The duration of
processing task has a fixed term and a variable term which is influenced by the batch

size. This means that the bigger the batch, the longer it will take to process it.

4-4



MODEL VALIDATION

Table 4.1 Scheduling parameters for the first illustrative example

Unit Unit capacity  Task Effective a;j (hr) B
(kg) states (h/kg)

Heater 100 H Sl 0.667 0.007
Reactor 50 Rxnl S21 1.334 0.027
I(R1)

Rxn2 Se61 1.334 0.017

Rxn3 S81 0.667 0.013
Reactor 2 80 Rxnl S22 1.334 0.027
(R2)

Rxn2 S62 1.334 0.017

Rxn3 S82 0.667 0.008
Separator 200 Sr S9 1.334 0.007

Contaminant concentration parameters for scenarios 1 and 3 as well as 2 and 4 are
presented separately in Table 4.2. Contaminant concentration of the water for
cleaning a unit after processing a task must not exceed the maximum inlet
concentration and the water leaving a unit after the washing operation must not

exceed the maximum outlet concentration.
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Table 4.2 Maximum allowable inlet and outlet water concentration, illustrative

example 1
Task Scenario 1 and 3 Scenario 2 and 4
(Symbol)

Max inlet conc. Max outlet Max inlet conc. Max outlet

(g/kg) conc. (g/kg) (g/kg) conc. (g/kg)

R1Rxnl 0.5 1 0.3 0.7
RI1Rxn2 0.01 0.2 0.3 0.7
R1Rxn3 0.15 0.3 0.7 1.2
R2Rxnl 0.05 0.1 0.7 1.2
R2Rxn2 0.03 0.075 0.5 0.8
R2Rxn3 0.3 2 0.5 0.8

Table 4.3 presents other important parameters required in the modeling of illustrative
example 1. This information that must be pre-determined include the time horizon of
interest (H), the concentration of processed material that remain in the process unit
(L), the selling price of products (SP), the cost associated with both freshwater (Cf)

and wastewater (Cw), and the flowrate of the pressure cleaner (Rt).
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Table 4.3 Other important parameters, illustrative example 1

Parameter Value
H (hr) 14

L (g/ke) 1.2
SP; (c.u./kg) 20
SP; (c.u./kg) 20

w oSt (c.ukg ) 0.1
et (cu/kg) 0.05
Rt (kg/hr) 1200

Table 4.4 presents the sequence dependent parameters for scenarios 1 and 3, where
the washing water requirement is fixed. For example, 140kg of water will be required
for the cleaning in place washing operation if reaction 2 follows reaction 1 in reactor
1, and 110kg will be required if reaction 1 follows reaction 2 in the same reactor. It is
assumed that the amounts specified in Table 4.4 are enough to remove the load and
rinse the unit, the resultant outlet concentration will then be determined by the model
even though it will not exceed the maximum outlet concentrations specified in Table
4.2. Sequence dependent washing requirement parameters for reactors 1 and 2 are

different since these reactors have different capacities according to Table 4.1.
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Table 4.4 Sequence dependent changeover washing water requirement in kilograms

for scenarios 1 and 3, illustrative example 1

R1Rxn1 R1Rxn2 R1Rxn3
R1Rxnl - 140 160
R1Rxn2 110 - 130
R1Rxn3 210 190 -

R2Rxn1 R2Rxn2 R2Rxn3
R2Rxnl - 260 240
R2Rxn2 200 - 180
R2Rxn3 330 310 -

Table 4.5 presents the sequence dependent parameters that apply to both reactors for
scenario 2 and 4, i.e. the additional fraction of the amount used for cleaning that will
be used for rinsing. In scenarios 2 and 4, the contaminant concentration of the
wastewater generated from the washing operations is fixed to the maximum outlet
concentrations specified in Table 4.2. The model then determines the amount of water
required to remove the load. Values specified in Table 4.5 are the percentage of the
amount required for washing that must be used for rinsing the unit. For example, 85%
of the water used for rinsing reactor 1 or 2 must be used for rinsing if reaction 2

follows reaction 1; and 75% must be used if reaction 1 follows reaction 2.
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Table 4.5 Sequence dependent rinsing fraction for scenarios 2 and 4, illustrative

example 1

Reaction 1 Reaction 2 Reaction 3
Reaction 1 - 0.85 0.45
Reaction 2 0.75 - 0.95
Reaction 3 0.80 0.60 -

4.2.2. Results

Results for all scenarios are summarized in Tables 4.6 and 4.7 and graphically
presented in Gantt Charts (Figures 4.3 to 4.7). In the Gantt Charts, the available units
are on the vertical axis and the time horizon of interest is on the horizontal axis.
Blocks with texts represent the task that occurred in the unit and the amount
processed is written in brackets. Blocks with no texts represent washing operations

and the amount of water required is also presented in kilograms.
a. Scenarios 1 and 3

Table 4.6 summarizes the results for scenarios 1 and 3 where the sequence dependent
washing requirement was a parameter. The Gantt Charts for the base case, scenario 1
and scenario 3 are presented in Figures 4.3 to 4.5 respectively. These charts present
information such as the production schedule, water requirement, duration of washing
and the water network. When direct and indirect water reuse and recycle
opportunities for water minimization were explored alone, 34% of the water required
in the base case was saved. Scenarios 1 and 3 saved 53% and 66% of the total amount
required by the base case respectively. Scenario 1 saved water by simply synthesizing
a sequence of tasks that optimizes the trade-off between production and wastewater

minimization.
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Table 4.6 Results for scenarios 1 and 3, illustrative example 1

Base case Direct/indirect Scenario 1 Scenario 3
reuse
Objective (c.u) 5570.75 5680.99 5713.07 5755.07
Water (kg) 2196 1434 1020 740
Water saved - 33.89 52.97 65.88
(%)
CPU time (sec) 7 4440 44 4380
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Figure 4.3 is the Gantt Chart of the described problem when none of the water saving
opportunities are explored. Multipurpose reactors are being washed after processing
any task since the amount of water required for washing operation is determined only

by the task that has just been processed in the unit

Separator 80 116

240 192 320 192 320 192
12min 9.6min 16min 9.6min | \t: 16min 9.6min
Reactor 2 R1(80) R2(80) R3(80) R2(80) R3(80) R2(47)

Reactor 1 RI1(47) R2(40) I R1(50) R2(48) R3(36)
150 ( 120 )\ 150 120 200
7.5min 6min 7.5min 6min 10min

Heater 48 51 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (hours)

Figure 4.3 Base case for scenario 1 and 3, illustrative example 1

The Gantt chart in Figure 4.4 shows that scenario 1 favored the campaign mode or the
processing of successive batches of the same task since it did not require changeover
washing operations. Figure 4.4 also shows that reaction 3, which produces product 2,
was only processed in reactor 1. This setup is favored such that the sequence of

consecutive of the same task is maximized.
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Separator 80 112
260 180 320
13min 9min 16min
Reactor 2 R1(80) R2(80) R2(77) R3(80) | R3(68) |R3(44)
Reactor 1 R1(50) R1(50) R2(50) R2(50) R2(43) I

140 [T 2?)_\
7min 6min

Heater 100 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (hours)

Figure 4.4 Scenario 1, illustrative example 1

The Gantt chart in Figure 4.5 shows that direct and indirect water reuse and recycle
opportunities were found for scenario 3. Exploring multiple water saving
opportunities, i.e. sequence dependent changeover opportunities with water reuse and
recycle, resulted in even greater water savings. However, this also resulted in the
increase in the computational time for solving the optimization program due to the

increased model size and complexity.
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Freshwater source

Storage tank

Separator

Reactor 2

Reactor 1

Heater

3 Freshwater
—p Wastewater
3 Direct reuse/recycle

Indirect reuse/recycle

320

260 140 100 120120
R /\ Il
80
200 200
A 4
80
180
80 113
v 120 \ 4
R1(80) R2(80) R2(77) R3(80) R3(75) | R3(38)
140 180
40 120
R1(50) R1(50) R2(50) R2(50) R2(43)
100
100 25
1 2 3 4 5 6 7 8 9 10 11 12 13
Time (hours)

Figure 4.5 Scenario 3, illustrative example 1

b. Scenarios 2 and 4

Table 4.7 summarizes the results for scenarios 2 and 4 where the outlet contaminant

concentration was fixed to a given maximum and a total amount of water for cleaning

and rinsing during a washing operation was determined.

Scenario 2 synthesized a sequence of tasks that optimize production and wastewater

generation based on the sequence dependent rinsing operations. Scenario 4 expanded

scenario 2 by exploring both sequence dependent water saving opportunities with

direct or indirect water reuse and recycle opportunities simultaneously. 13% and 45%

of washing water required by the base case were respectively saved when water reuse

and recycle and sequence dependent changeover opportunities for water minimization

were explored separately.
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Table 4.7 Results for scenarios 2 and 4, illustrative example 1

Base case Direct/indirect Scenario 2  Scenario 4
reuse
Objective (c.u) 4277.13 4341.75 4802.38 4907.30
Water (kg) 3125.65 2693.84 1632.42 1458.91
Water saved (%) - 13.82 47.77 53.32
CPU time (sec) 5 5400 17 5400
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The Gantt Charts for the production schedule of the base case is presented in Figure
4.6. The amount of water required for a washing operation depends only on the task
that has just been processed in a unit. Water required by the base case can be reduced
by 13.82% by exploring direct and indirect water reuse and recycle. In scenario 2,
sequence dependent water saving opportunities were explored and 47.77% of water
required for washing operations was saved (Figure 4.7). 53.32% was saved in
scenario 4 where scenario 2 was expanded by simultaneously exploring direct or

indirect water reuse and recycle opportunities (Figure 4.8).

Separator 80 97
400 564 599 g 599 38
20min 28min 30min l 2min 30min 2min
Reactor 2 RI1(33) R2(35) R2(37) R3(80) R2(37) R3(64)
Reactor 1 R1(50) R2(46) R1(50) R2(50) (21§ R2(16)
60 279 60 300 84 \( 94
3min 14min 3min 15min | 4min 5min
Heater 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (hours)

Figure 4.6 Base case for scenario 2 and 4, illustrative example 1
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Separator 50 76

569 30 321

28min 2min ) 16min
Reactor 2 R1(80) R1(33) 3(31 R2(67) R2(61) R2(20)
Reactor 1 R1(36) R2(50) R2(50) R3(43) | R3(50) | R3(45) R3(13
79 ) 586 l 50 )
4min 29min 3min
Heater | 25 99

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (hours)

Figure 4.7 Scenario 2, illustrative example 1
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3 Freshwater
—p Wastewater
-3 [ndirect reuse/recycle
Freshwater 1459
78 556 16 450 334| |25
> 35 Y
Storage tank S
Separator 64 50 62
39 J 20
y
\ 4 \
Reactor 2 R1(80) RI1(33) 37 R2(80) R2(55) R2(21)
| —
] 317, ¥36 16 334
Reactor 1 R1(35) R2(50) R2(38) @7) R3(50) R3(13) R3(50) R3(13
78 434 60
\ 4 v
Heater 67 25125

Time (hours)

Figure 4.8 Scenario 4, illustrative example 1

4.3. Illustrative example 2

4.3.1. Illustrative example description

Figure 4.9 shows a production recipe where each of the two products, P1 and P2, is
produced from one raw material and three tasks. The batch facility consists of two
processing units and storage tanks for each state. The process unit Ul is suitable for
processing task one of product one (T11), task one of product two (T21), task three of
product one (T13) and task three of product two (T23). Task two of product one
(T12) and task two of product two (T22) can be processed in processing unit U2.
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Fl P1
@ > T11 :@ > T12 :@ > T13 >@
F2 P2
@ > T21 t@ > T22 :@ > T23 :@
Ul u2 Ul

Figure 4.9 STN representation of the second illustrative example

Figure 4.10 represents two superstructures representing all possible sequence of tasks
that could occur in units Ul and U2 respectively. The formulation should, therefore,

synthesize an optimal sequence of tasks for each processing unit.

Task

® @ @

Task

®

H
Unit Ul Unit U2

Figure 4.10 Sequence dependent changeover superstructures for the second

illustrative example

Scheduling data, contaminant concentration limits and other relevant production data
for the second literature example are respectively presented in Tables 4.8, 4. 9 and
4.10. Tables 4.11 and 4.12 presents the sequence dependent data, i.e. fixed water

requirement (for scenarios 1 and 3) and fixed outlet concentration (for scenarios 2 and

4).
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Table 4.8 Scheduling parameters for the second illustrative example

Unit Min Max Task Effective a;j (hr) Bij (hr/t)
batch batch states
size (T) size (T)

Ul 2 5 T11 sl 0.5 0.40
T21 s21 0.75 0.60
T13 s61 0.5 0.40
T23 s81 0.5 0.40
U2 1.2 3 T12 s22 1.0 1.33
T22 s62 1.0 1.33

Table 4.9 Maximum allowable inlet ant outlet water concentration, illustrative
example 2

Task Max inlet concentration Max outlet concentration
(Kg/T) (Kg/T)
T11 0.5 1
T21 0.5 1
T13 1 2
T23 1 2
T12 0.5 1
T22 0.5 1
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Table 4.10 Other important parameters, illustrative example 2

Parameter Value
H (hr) 12

L (g/kg) 0.1
SP; (c.u./kg) 1

SP; (c.u./kg) 1

w oSt (c.ukg ) 0.5
et (cu/kg) 0.25
Rt (kg/hr) 1200

Table 4.11 Sequence dependent changeover washing water requirement in kilograms
for scenarios 1 and 3, illustrative example 2

T11 T21 T12 T22 T13 T23
T11 0 350 - - 300 310
T21 220 0 240 - 200 243
T12 - - 0 117 ; ;
T22 - - 121 0 ; ;
T13 300 320 - - 0 340
T23 200 240 ; ; 242 0
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Table 4.12 Sequence dependent rinsing fractions for scenarios 2 and 4, illustrative
example 2

T11 T21 T12 T22 T13 T23
T11 0 0.8 - - 0.6 0.7
T21 0.5 0 0.8 - 0.4 0.6
T12 - - 0 0.7 - -
T22 - - 0.5 0 - -
T13 0.4 0.5 - - 0 0.8
T23 0.4 0.6 - - 0.7 0

4.3.2. Results

a. Scenarios 1 and 3

Table 4.13 summarizes the outcomes for scenarios 1 and 3. A total amount of 2690kg
of water was required by the base case as represented in Figure 4.11. Exploring direct
and indirect opportunities resulted in 13% savings in freshwater. Sequence dependent
changeover opportunities for water minimization explored in scenario 1 resulted in
49% water savings, and the Gantt Chart is presented in Figure 4.12. 61% of the water
required in the base case is saved when sequence dependent opportunities for water
minimization were explored simultaneously with direct and indirect water reuse and

recycle (Figure 4.13).
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Table 4.13 Results for scenarios 1 and 3, illustrative example 2

Base case  Direct/indirect Scenario 1 Scenario 3
reuse
Objective (c.u) 7.223 7.474 8.522 8.687
Water (kg) 2690 2342 1372 1050
Water saved - 13 49 61
(%)
CPU time (sec) 12 5400 48 3790
175 121 121 121
| Sumin | 6min | 6min | | 6min |

Reactor 2 T12(2.1) T22(2.4) T22Q2.4) T22(2.3)

351 242 242 242 242 242 242

18min | 12min | | 12min | \12min |12min| |12min
Reactor 1 [T11(2.1 T21Q2.4) T21(2.4) ‘ T21(2.3) IT23(2 HNT232.HNT132.1PT23(2.3)

0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 16

Time (hours)

Figure 4.11 Base case for scenarios 1 and 3, illustrative example 2
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When incorporating sequence dependent changeover constraints, the formulation

favored the campaign mode, i.e. a sequence of similar batches of the same task. This

resulted in significant water savings since fewer washing operations are required.

117 121
|_6min | 6min |
Reactor 2 T12(2) T22(2.5) T22(3) T22(2)
351 200 341 242
| 18min) \10min | |17min | 12min |
Reactor1 |T11Q2) | T21(2.5) T21(4.9) T212) |T132) (IT23(2.5)| T23(3) |T23(2)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (hours)

Figure 4.12 Scenario 1, illustrative example 2
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=3 Freshwater
—3 Wastewater
P Direct reuse/recycle
Indirect reuse/recycle
Freshwater
1781 |79
162 v
Storage Tank 279 242
117
279
\ 4 Y
Reactor 2 T12(1.8) |T12(1.2) T12(3) T12(1.5) T22(2)
l 117 1121
350 200 42
A \ 4 v
Reactor 1 |T11(2) T11(4) T11(2) T21(2) TI13(5) [T13(2.5T23(2)
71 200, 29 242

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (hours)

Figure 4.13 Scenario 3, illustrative example 2

b. Scenarios 2 and 4

Table 4.14 summarizes the results for scenarios 2 and 4. A total of 2358 kg of water
was required by the base case which is represented by the Gantt Chart in Figure 4.14.
Sequence dependent changeover opportunities for water minimization explored in
scenario 2 resulted in 41% water savings, and the Gantt Chart is presented in Figure
4.15. This Gantt Chart also holds for scenario 4 since no reuse and recycle
opportunities were found when sequence dependent opportunities were explored

simultaneously with direct and indirect water reuse and recycle opportunities.
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Table 4.14 Results for scenarios 2 and 4, illustrative example 2

Base Direct/indirect Scenario 1 Scenario 3

case reuse
Objective (c.u) 7.651 7.797 8.458 8.458
Water (kg) 2354 1933 1402 1402
Water saved 18 41 41
(%)
CPU time (sec) 2 5400 105 5400

100 150 121 100
Suin | |7 Smin Gmn) (5w
Reactor 2 T12(2) T12(3) T22(2.42) T12Q2)
200 501 242 501 242 200
| 10min| 25min)  |13min) \25mit)  \13min ) |Omin |
Reactor 1 |T11(2) T11(5) T21(2.42) T13(5) 232420 T13(2)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (hours)

Figure 4.14 Base case for scenarios 2 and 4, illustrative example 2
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Reactor 2

Reactor 1 |T11(2)

.

T12(2) T12(2.35) T12(1.96) |T12(1.2) T22(2)
360 280 - 360 200
| 18min |  14min | | 18min | |10min |
T11(3.51) | T11Q2) T212) W T13Q2) T13(3.51) T13(2)|T23(2)|
o 1 2 3 5 6 7 8 9 10 11 12 13 14 15

4.4. Multiple contaminant example

Time (hours)

Figure 4.15 Scenario 2, illustrative example 2

An illustrative example, represented by an STN in Figure 5, was used to demonstrate

the application of the developed formulation on multiple contaminant problems. The

superstructure in Figure 6 and parameters in Table 4.1, 4.3 and 4.4 are still applicable.

However, the concentration limits and mass load fractions for the multiple

contaminant example are presented in Table 4.15 and 4.16 respectively. Using the

multiple contaminant parameters, formulations for scenarios 1 and 3 were applied.

Table 4.15 Concentration limits for the multiple contaminants example

Task Contaminant 1 (k1)

Contaminant 2 (k2)

Contaminant 3 (k3)

Max inlet Max outlet Max inlet  Max outlet Max Max
conc. conc. conc. conc. inlet outlet
g/kg) (g/kg) (g/kg) (g/kg) conc. conc.
(grkg)  (gkg)
RI1Rxnl 0.5 1 0.5 0.9 2.3 3
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RI1Rxn2 0.01 0.2 0.05 0.1 0.3 1.2
RIRxn3 0.15 0.3 0.2 1 0.35 1.2
R2Rxnl 0.05 0.1 0.2 1 0.05 1.2
R2Rxn2 0.03 0.075 0.1 0.2 0.2 1

R2Rxn3 0.3 2 0.6 1.5 1.5 2.5

Table 4.16 Mass load (L in g/kg) for the multiple contaminants example

Contaminant 1 Contaminant 2 (k2) Contaminant 3 (k3)

(k1)
R1Rxnl 0.051 1.021 0.126
R1Rxn2 0.045 0.072 1.082
R1Rxn3 0.200 0.052 0.947
R2Rxnl 0.400 0.089 0.711
R2Rxn2 0.100 0.533 0.567
R2Rxn3 0.259 0.519 0.421

Results of the multiple contaminant example are summarized in Table 4.17. Direct
and indirect water reuse opportunities saved 13% of the water used by the base case,
while scenarios 1 and 3 saved 31% and 42% respectively. Scenario 4 achieved higher
water savings by exploring sequence dependent water saving opportunities and reuse
and recycle opportunities, through a central storage tank, simultaneously.
Formulations that explore reuse and recycle water saving opportunities have high
nonlinearity and they required greater computational times. Figures 4.16, 4.17 and
4.18 are the Gantt Charts showing the graphical representation of the base case,

scenario 1 and scenario 3, respectively.

Table 4.17 Results for scenario 1 and 3, multiple contaminants example

Base Direct/indirect Scenario 1 Scenario 3
case reuse
Objective (c.u) 4805.59 4854.942 5509.042 5542.642
Water (kg) 2526 2196.92 1732 1471.9
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Water saved (%) - 13.02 31.43 41.73

CPU time (s) 3 10000 18 10000

Separator 65 109
| 240 | | 240 | 192 320 | 192 ) 320 ) 192 |
| 12min | | 12min |/ | 9.6min \16min / |9.6min/| 16min | |9.6min |

Reactor2 | RI1(41) I R1(80) I R2(36) IR3(65)I R2(36) IR3(59)| R2(20) I

Reactor 1 R1(33) I R2(50) I R2(49) I R2(50) IR3(50)I R2(17) I

(150 120 [ 120 ) 120 /200 \[ 120 )
| 7.5min | | 6min | | 6min | ' 6min' | 10min | 6min |
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Figure 4.16 Base case, multiple contaminants example
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Figure 4.17 Scenario 1, multiple contaminants example
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Figure 4.18 Scenario 3, multiple contaminants example
4.5. Discussion

Developed formulations were applied to two single contaminant problems, and a
multiple contaminant problem for fixed water requirement scenarios. Higher
percentages of water savings were achieved by scenarios that explored sequence-
dependent water saving opportunities simultaneously with water reuse and recycle.
The drawback, however, was that these scenarios result in more complex
formulations and it can happen that the water reuse and recycle opportunities are not
found, as observed in scenario 4 of illustrative example 2. Unfortunately, this can
only be observed after the computationally intensive model has been solved. Indirect
water reuse and recycle opportunities are often not found as a result of the
contaminant concentration limits since they inform constraints that ensure that the

concentration requirements are met.

When comparing scenarios that explore sequence-dependent water saving

opportunities and water reuse and recycle techniques separately, the former saved
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more water and took less time to solve in both illustrative examples. Scenarios that
explore sequence-dependent water saving opportunities saved more water by
synthesizing a sequence of tasks that minimize the number of required washing
operations. This was possible since the illustrative examples did not require washing

between consecutive batches of the same task.

The size of the central water storage tank that will be required when exploring
indirect water reuse and recycle opportunities was determined from the maximum
amount of water that in the tank over the time horizon of interest. Any vessel or
process unit that has a capacity equal to or greater than the one required, can be used

to facilitate the indirect water reuse and recycle opportunities.

In the first illustrative example, a complex formulation for scenario 3 solved faster
than a less complex model that only explored water reuse and recycle techniques. The
more complex base case and scenario 3 of the multiple contaminant example solved
faster than those of the less complex single contaminant illustrative examples 1 and 2.
This is due to the size of the search space for an optimum solution. Solution
algorithms and solvers, including BARON, take more time to find an optimum
solution if the search space is bigger. Therefore, as much as the formulations for
scenarios that explore sequence-dependent water saving opportunities simultaneously
with water reuse and recycle are larger, they have a smaller search space compared to
scenarios that only explore water reuse and recycle techniques. The reduced search

space is due to additional constraints or imposed variable bounds.

The toxicity of the wastewater generated from batch processes is a major concern in
batch manufacturing. The proposed formulation, however, is able to ensure that the
contaminant concentration of the wastewater to be disposed to the environment does
not exceed the maximum allowable concentration. The contaminant concentration
upper limit is imposed in scenarios 1 and 3, and the contaminant concentration is

fixed for scenarios 2 and 4.
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The proposed formulations were validated using two single contaminant problems
and a multiple contaminant problem for fixed water requirement scenarios. However,
multiple contaminant problems with fixed contaminant concentration may exist.
Formulations for fixed contaminant concentration presented in this work (scenarios 2
and 4) can only allow one contaminant concentration to be fixed. It is, however,
possible to represent multiple contaminant problems in a way that allows them to be
applied to single contaminant optimization models. Approaches to do this include
identifying a key contaminant and finding an aggregate or average contaminant

concentration.
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Chapter 5
LIMITATIONS AND
RECOMMENDATIONS

5.1. Introduction

The proposed mathematical formulations demonstrated promising results for
significant water savings in multipurpose batch plants. However, the presented model
has limitations or shortcomings. Presented in this chapter are the limitations of the
presented formulation as well as recommendations that might influence future
research. Discussed issues include accounting for data collection challenges,

computational time, and exploring other possible water saving opportunities.
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5.2. Multiple contaminants

The proposed formulations were validated using two single contaminant problems
and a multiple contaminant example for fixed water requirement scenarios. However,
multiple contaminant problems with fixed contaminant concentration may exist.
Formulations for fixed contaminant concentration presented in this work allows only
one contaminant concentration to be fixed. It is, however, possible to represent
multiple contaminant problems in a way that allows them to be applied to single
contaminant optimization models. Approaches to do this include identifying a key

contaminant and finding an aggregate or average contaminant concentration.
Identifying a key contaminant

This approach assumes that, from a stream with multiple contaminants, only one of
them is of significant quantity or have a greater impact on the environment and other
contaminants is negligible. This assumption is often justifiable in situations where
one contaminant is in abundance relative to the others. After identifying the key
contaminant, all parameters in the modeling will, therefore, be based on the identified

key contaminant (Savelski and Bagajewicz, 2003).

This method has its drawbacks. Sometimes choosing the key contaminant is not a
straightforward task. The key contaminant cannot be identified if the composition of
the stream is unknown. Also, not accounting for contaminants that are assumed to

have negligible effects can result in inaccuracies in the output of the model.
Average and aggregate contaminant concentration

This approach proposes a simple average of all contaminants involved in the stream.
A more popular option that follows a similar thinking will be to group contaminants
into aggregate properties such as total dissolved solids, total load, biochemical
oxygen demand, chemical oxygen demand, etc. Both these approaches consider all

contaminants involved, unlike the above approach that only considers one key
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contaminant. However, these approaches may still neglect the effect of individual

contaminants.

This simplification of complex multiple contaminant problems can lead to models
that do not accurately represent the real case or results that are impractical. Multiple
contaminants are more prevalent in industry than single contaminants (Majozi and
Gouws, 2009). Also, models formulated for multiple contaminant problems can be
easily adapted to single contaminant problem than trying to apply a multiple

contaminant problem to a model formulated for a single contaminant problem.

5.3. Model Validation

The quality of the input data is one of the very important factors that influence the
reliability of the output of an optimization model. Other factors may include the
relationship between variables, constraints, objective function, etc. The sequence
dependent changeover data required by the proposed formulations, for the sequence
dependent water saving opportunities to be explored, may be challenging to obtain.
For example, the fixed sequence dependent water requirement can be obtained after a
long investigation of observing cleaning in place operations and different batches of
different tasks being processed in the same unit. This means that for these
formulations to be implemented practically, significant efforts must be invested in

trying to obtain the required data.

The developed data was validated using illustrative literature examples. This work
can be extended further by validating the developed formulation using a real life

industrial plant.

5.4. Computational intensity

The proposed formulations were successfully solved for the illustrative examples
using the branch and reduce optimization navigator (BARON) solver. For some
scenarios, however, the optimization model took too much time to find an optimum

solution. This may prove to be a problem in facilities where production schedules
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need to be generated regularly. Factors influencing the computational time of an
optimization model include the model complexity and the search space. It was
observed that more complex models require larger computational times. The
complexity of an optimization model can be increased by adding more constraints
that consider more factors, by increasing the desired time horizon of interest, etc.
Computational challenges may be addressed by modifying the model or by adapting

the solution strategy.

Modifying the model may include reducing the number of bilinear terms by using
transformation techniques that were discussed in section 2.3.4. Reducing the problem
size by thoroughly inspecting the model for reducible constraints and variables can
lessen computational time. Introducing variable bounds may help decrease the search

space.

In this work, it was observed that exploring multiple water minimization techniques
simultaneously led to complex mathematical models, even though opportunities can
sometimes be found by one technique and not the other. For this reason, there might
be merit in exploring water minimization techniques one after another in series, as

opposed to exploring them simultaneously.

Adapting the solution strategy may include providing a better starting point for the
MINLP problem by using a solution from the relaxed model, RMINLP, can aid with
the convergence of the MINLP model. Furthermore, using hybrid solution techniques
may also prove to be beneficial. An example of a hybrid solution technique includes
that of Dakwala et al. (2014) who presented a combined graphical and mathematical
optimization technique to simultaneously optimize a water network along with the
energy requirement. In their work, the graphical technique was used to determine
values that were then used as parameters for the mathematical program. Hybrid
solution techniques can also be simulation-optimization (Sim-Opt), where a

simulation model is used to describe the system complexity Lau and Srinivasan

(2016).
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Due to the advancement in technology, parallel computing where multiple
calculations can be carried out simultaneously and web-based optimization platforms
can be explored. The computational power of this technology can result in reduced
computational times. The free Internet-based NEOS server has more than 60 solvers
for numerical optimization provides high-performance parallel computing services,
hosted by the Wisconsin Institute for Discovery at the University of Wisconsin, is an
example of advanced technologies that can reduce computational times for

optimization problems (Czyzyk et al., 1998).
5.5. Possible water saving opportunities

In this work, a central water storage tank is used to store water so it can be indirectly
reused or recycled as illustrated by the superstructure in Figure 3.2. Water from
different washing operations is allowed to mix in the central water storage tank. As a
result of mixing, the overall contamination of water may increase leading to a decline
in the number of indirect water reuse or recycle opportunities. Having storage tanks
dedicated to specific washing operations such that the wastewater can be indirectly
reused or recycled without mixing with wastewater generated from washing other
processing units may be worth exploring. This option can, however, prove to be

expensive in the short term.

The superstructure in Figure 3.2 also shows that the central storage tank can only
receive water from the cleaning in place washing operation and only discharge water
to other cleaning operations. The superstructure in Figure 5.1 allows freshwater to be
sent to the central storage tank. This can be done to decrease the contaminant
concentration in the wastewater, increasing more opportunities for indirect water
reuse and recycle. The storage central water tank in Figure 5.1 can also be used to
dilute the wastewater to decrease the contaminant levels before disposing it to the

environment.
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Figure 5.1 Suggested superstructure for indirect water reuse and recycle

One of the conditions that must be met for reuse or recycle to be allowed is that the
contaminant concentration from the wastewater producing unit must be less than that
of the water receiving unit. It is, therefore, safe to assume that more reuse or recycle
opportunities will be available if a regeneration unit that can treat the wastewater
before it can be reused or recycled is incorporated. A formulation that simultaneously
explores sequence dependent water saving opportunities simultaneously with other
wastewater minimization techniques such as regeneration reuse or recycle is therefore
recommended. The hypothesis is that greater water savings will be achieved if reuse

or recycle opportunities are increased.

Adekola and Majozi (2017) presented a formulation that explored water saving
opportunities using sequence dependent changeover times. A central water storage
tank or multiple storage tanks, and/or a regeneration unit can be incorporated in their
formulation so that it explores direct, indirect, and regeneration reuse and recycle
opportunities. Buabeng-Baidoo et al (2017) achieved 85% reduction of wastewater
generation by exploring multiple water reuse opportunities, including regeneration
reuse by means of a reverse osmosis membrane, in the cleaning in place process of a

large scale milk continuous processing plant.
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Chapter 6
CONCLUSIONS

Wastewater treatment options tend to be very expensive hence it is desired to explore
wastewater minimization opportunities in production facilities. As an attempt to
achieve wastewater minimization, most process integration formulations presented in
literature explores the direct or indirect water reuse or recycle without considering the
sequence of tasks when determining the amount of water required for washing
operations. In this work, the concept of sequence dependent changeover is explored
as a wastewater minimization opportunity in multipurpose batch processes. The
developed variable schedule continuous-time formulations are unit-specific slot
based. A process task and a corresponding washing operation occur in one active time

slot. Four scenarios were explored:

* Fixed water requirement with sequence dependent changeover constraints,

* Fixed outlet concentration with sequence dependent changeover constraints,

* Fixed water requirement with sequence dependent changeover constraints and
direct or indirect water reuse or recycle, and

* Fixed outlet concentration with sequence dependent changeover constraints and

direct or indirect water reuse or recycle.
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To validate and demonstrate the applicability of the developed formulations, two
illustrative examples with multipurpose batch processes were used. The resultant
optimization problems were mixed integer nonlinear program (MINLP) and were
solved using a branch and reduce optimization navigator (BARON) solver on the
general algebraic mathematical systems (GAMS) platform. A desktop computer with
the following specifications was used: Windows 7 Professional, Intel(R) Core ™

17.4770 CPU @ 3.40GHz, 8.00 GB RAM, and 64-bit Operating System.

All scenarios were applied to illustrative examples and results were compared against
the base case. It was found that mathematical formulations that simultaneously
explore multiple process integration techniques have a higher chance of achieving
significant water savings than those that explore a single technique. For example,
there are two formulations that explored sequence dependent changeover
opportunities for water minimization simultaneously with direct and indirect water
reuse and recycle opportunities that achieved 65% and 61% in water savings

respectively.
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