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Abstract

The work done in this thesis on finite planning horizon inspection models
has demonstrated that with the advent of powerful computers these days it
is possible to easily find an optimal inspection schedule when the lifetime
distribution is known. For the case of system time to failure following a uni-
form distribution, a result for the maximum number of inspections for the
finite planning models has been derived. If the time to failure follows an
exponential distribution, it has been noted that periodically carrying out in-
spections may not result in maximization of expected profit. For the Weibull
distributions family (of which the exponential distribution is a special case),
evenly spreading the inspections over a given finite planning horizon may not
lead to any serious prejudice in profit.

The case of inspection models where inspections are of non-negligible du-
ration has also been explored. The conditions necessary for inspections that
are evenly spread over the entire planning horizon to be near-optimal when
system time to failure either follows a uniform distribution or exponential
distribution have been explored.

Finite and infinite planning horizon models where inspections are imperfect
have been researched on. Interesting observations on the impact of Type I
and Type II errors in inspection have been made. These observations are
listed on page 174.

A clear and easy to implement road map on how to get an optimal inspec-
tion permutation in problems first discussed by Zuckerman (1989) and later
reviewed by Qiu (1991) for both the undiscounted and discounted cases has
been given. The only challenge envisaged when a system has a large number
of components is that of computer memory requirements - which nowadays
is fast being overcome. In particular, it has been clearly demonstrated that
the impact of repair times and per unit of time repair costs on the optimal
inspection permutation cannot be ignored.

The ideas and procedures of determining optimal inspection permutations
which have been developed in this thesis will no doubt lead to huge cost
savings especially for systems where the cost of inspecting components is
huge.



Key words: false negative, false positive, Inspection permutation, long-
run average reward, mixed non-linear integer programming, net-income-rate,
non-linear integer programming, optimal inspection times, optimality crite-
rion, optimal planning horizon, stochastic deterioration.
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Chapter 1

Introduction

1.1 Introduction

Deciding how long it is most profitable to operate a system (which deterio-

rates over time) and when to schedule inspections is critically important in

business. Since the pioneering work on inspection policy models for deterio-

rating systems by Barlow et al. (1963) 1, a lot of research resulting in a wealth

of publications has evolved. The major contributors to system degradation

are wear, corrosion, erosion, fatigue and crack generation (Clifton, 1974).

Initially the system will be in a perfect working state and it is possible that

over time the system can be in one of several states of degradation as the

efficiency of the system progressively decreases (e.g. Ohnishi et al. (1986a),

1The main focus of this thesis is on inspection and replacement models; one cannot,
however, omit the classical paper that laid the foundation of this direction in modern
reliability theory by Barlow and Hunter (1960)

1



Ohnishi et al. (1986b), Milioni and Pliska (1988), Hontelez et al. (1996), Yeh

(1997), Li and Pham (2005), Wang et al. (2014)). System failure occurs if

the degradation level exceeds a particular level.

A reliability inspection problem inevitably exists whenever equipment such

as machinery is running over a specified time horizon which may be finite or

infinite. Mangalam and Feo (2006) give examples of equipment and items

where public safety laws relating to inspection (in Canada) give birth to in-

spection models; these include amusement devices, elevating devices, boilers

and pressure vessels, fuels, upholstery and stuffed articles 2. Inspection mod-

els may also be needed for human beings such as operating engineers, aircraft

pilots, drivers of heavy vehicles and operators of heavy duty equipment for

purposes of re-licencing from time to time as it is a fact that things like visual

impairment in people increase with age in general.

Where inspection and replacement policies are at work, the underlying idea

is that there is need for scheduled inspection of facilities, equipment, etc.

2according to the https://www.ontario.ca/laws/statute/90u04 website, an “upholstered
or stuffed article” means an article with any part which contains stuffing e.g. mattresses,
beds, upholstery, pillows, plush toys, teddy bears etc.

2



during operation to ensure that devices continue to operate not only safely

but also in an optimal way.

Durango-Cohen and Madanat (2008) point out the importance of inspec-

tion models by citing the United States’s (US) recent shift in policy on in-

frastructure investment. They say that the US has placed more emphasis

on maintenance as opposed to new construction as reflected by the rising

proportion of the budget that is channeled towards maintenance and reha-

bilitation. In their introductory section they say “the critical issue facing

public works agencies today is how to allocate the limited resources available

for maintenance and rehabilitation so as to obtain the best return for their

expenditure”. Further evidence of the importance of maintenance at national

level is given by Christer and Lee (1999); in their paper, Christer and Lee

mention that some 14% of the Netherlands’s Gross Domestic Product (GDP)

is consumed by maintenance activities.

Thomas et al. (1991) say that inspection involves examining deteriorating

systems to try to identify their state, in order to effect some repair, replace-

ment and maintenance action. They go on to say that in most inspection

3



policy models, one is able to monitor the system at no extra cost and with no

interference to the system (resulting in a costless inspection process) while

in other inspection policies, inspection involves stopping the normal running

of the system to carry out some costly procedures.

1.2 Some Related Classes of Inspection Poli-

cies

Inspection policies vary a lot depending on the underlying assumptions. For

instance, there are inspection policies

1. where time to failure denoted by T , has a known probability distri-

bution function (e.g. Savage (1962), Barlow et al. (1963), Munford

and Shahani (1972), Munford and Shahani (1973), Luss and Kander

(1974) , Tadikamalla (1979), Kabir and El Tamimi (1988), Chelbi and

Ait-Kadi (1999) and more recent papers such as Wang (2009), Tan

et al. (2010), Ahmadi and Newby (2011), Wang (2011), Wang (2013),

Caballé et al. (2015), Sheu et al. (2015), etc.) on one hand and in-

spection policies such as the ones discussed by Derman (1961) where

4



T ’s distribution is completely unknown on the other. Beichelt (1981)

extends the work by Derman and researched on the case of the mean of

the lifetime distribution being known. Roeloffs (1963), Roeloffs (1967),

Kander and Raviv (1974) and Beichelt (1981) separately looked at the

case where T ’s distribution is partially known (only one percentile of

T being known).

2. where an inspection is assumed to be instantaneous (this is the case

with most models) on one hand and models where the duration of

checking or inspecting and the duration of repair are assumed to be

(a) of non-negligible fixed duration (e.g. Luss and Kander (1974),

Parmigiani (1993), Zuckerman (1989)),

(b) non-negligible stochastic variables (e.g. Fang and Liu (2006)).

3. where an inspection gives a perfect diagnosis of the state of the system

(e.g. Barlow et al. (1963)) on one hand and those where an inspection

may give a diagnosis that may be erroneous on the other hand (e.g.

Morey (1968), Christer (1988), Kaio and Osaki (1988), Milioni and

Pliska (1988), Devooght et al. (1990), Parmigiani (1993), Hontelez et al.

(1996), Ghasemi et al. (2008), Flage (2014)). Devooght et al. (1990)

5



develop models where an inspection may be imperfect as a result of

a combination of any of the following: human error, instrumentation

failure and incomplete information. Where inspection errors occur, the

errors may arise as follows: a) an inspection may erroneously declare

a normally operating system faulty (error of the first kind or Type I

error) or b) an inspection may fail to detect that the system is in a

failed state (error of the second kind or Type II error).

4. where the objective may be any of the following:

• to minimize expected cost per unit of time of running the sys-

tem in cases where the planning horizon is infinite (e.g. Barlow

et al. (1963), Luss and Kander (1974), Anbar (1976a), Nakagawa

(1976), Luss (1977), Zuckerman (1978), Nakagawa (1984), Badia

et al. (2001), Wang (2009), Zhao et al. (2010), Wang (2013), Flage

(2014), Wang et al. (2014), Caballé et al. (2015));

• to maximize revenue (e.g. Ahmadi and Newby (2011)) or the ex-

pected profit per unit of time (for the case of a planning horizon

that is infinite). This criterion though has received relatively little

attention in the construction of inspection and replacement mod-

6



els. (e.g. Savage (1962), Luss (1983), Mohandas et al. (1992) and

Zuckerman (1989) are some of the few authors who have looked

at maximization of expected profit per unit of time as the opti-

mization criterion in their work;

• to minimize the costs of operating the system (for a system that

will be operated over a finite length of time (e.g. Usher et al.

(1998) have discussed the case of a finite planning horizon with

minimization of costs as their objective function);

• to minimize the cost per cycle3 (e.g. Taghipour et al. (2010) have

used this criterion to determine an ideal inter-inspection time);

• to maximize safety (e.g. Kabir and El Tamimi (1988) discuss

inspection models based on specified fractional dead time - the

proportion of time for which the system is in the failed state while

Christer and Lee (1999) discuss the case of delay-time-based pre-

ventative maintenance (PM) inspection models which account for

the downtime incurred at failures over a PM inspection period;

their decision criterion is the minimization of expected downtime

per unit time). Christer (1988) looks at organizations maintaining

3the length of a cycle is the time between two successive replacements

7



major civil engineering structures such as bridges and dams and

explores the case of two competing objectives: 1) reduction of risks

to users due to failures and 2) to control the cost of inspection and

maintenance;

• minimization of expected present value of total cost (e.g. Yun and

Nakagawa (2010) developed periodic replacement models using

this optimization criterion);

• etc.

Remark 1.1 The cornerstone of all research works that have used their cri-

teria as minimization of expected value of cost per unit of time or maximiza-

tion of expected value of profit per unit of time is the well-known result from

Renewal Theory which states that the expected value of cost/profit per unit of

time (for the case of an infinite planning horizon) is obtained by dividing the

expected cost/profit per cycle by the expected cycle time (refer to page 203 of

Karlin and Taylor (1975) or Vlasiou (2010) or Wang (2009)).

Other papers use the minimization of cost per cycle4 to determine the

ideal inter-inspection times (e.g. Munford and Shahani (1972), Munford

4the length of a cycle is the time between two successive replacements

8



and Shahani (1973), Luss and Kander (1974), Tadikamalla (1979), Mun-

ford (1981), Sheu et al. (2015)); in the case of Luss (1983), the criterion is

maximization of expected profit per cycle. Butler (1979) has developed in-

spection models where the criterion is the maximization of the expected life

of the system. More recently, Yun and Nakagawa (2010) developed periodic

replacement models with minimal repair and used minimization of expected

present value of total cost as their optimization criterion.

A good number of policies assume that an inspection does not affect the state

of the system; some policies assume that an inspection itself may induce fail-

ure (e.g. Butler (1979), looks at inspection models where an inspection is

potentially harmful to the “device” under consideration; he gives the exam-

ple of a cancer patient who has to be treated with X-rays and argues that

exposure to X-ray radiation itself may actually cause cancer. The objective

in Butler’s Hazardous Inspection Model is to determine inspection policies

which maximizes the expected lifetime of the system or device.) Earlier on

Wattanapanom and Shaw (1979) had developed a model for failure detection

where tests hasten failures.

9



Replacement policies is another class of policies that have been ex-

tensively researched on by many researchers and they form the basis of this

PhD works. Replacement policies specify the time when a system should be

replaced regardless of whether it has failed or not; there are no scheduled in-

spections. A lot of publications on replacement models have been churned out

by many researchers; the list includes the pioneers: Taylor (1923), Hotelling

(1925), and more recent research papers by Taylor (1975), Nakagawa (1976),

Zuckerman (1978), Boland and Proschan (1983), Gottlieb (1982), Aven and

Gaarder (1987), Lai and Yuan (1993), Beichelt (2001a), Beichelt (2001b) and

Tan et al. (2010).

Other works that have combined the element of inspection with replace-

ment to form Inspection and Replacement Policies include Zuckerman

(1980), Kawai (1984), Parmigiani (1993), Yeh (1997), Ghasemi et al. (2008),

Scarf et al. (2009), Golmakani and Fattahipour (2011). A sub-class of in-

spection and replacement policies which take the age of a system as the most

critical factor, called Age-based Inspection and Replacement Policies,

have also been developed; according to Geurts (1983), the rule for this sub-
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class of policies is that a unit is replaced by a new one if it has survived a

certain age (preventive replacement) or has failed (corrective replacement),

whichever occurs first. Yet another sub-class of policies which is a rival

of Age-based Inspection Policies, called Condition Based Replacement

Policies have been developed. Geurts (1983) says “condition based replace-

ment is gradually becoming a feasible alternative to age replacement, es-

pecially with the advent of more varied and more sophisticated condition

monitoring equipement”.

There are other interesting dimensions of inspection and replacement policies

that have been explored. For instance, Lee and Rosenblatt (1987) develop

an inspection model for a machine used in a production process by fusing

the classical ideas of an Economic Production Model and the classical ideas

of Inspection Models. In a typical production process, there are production

cycles and each cycle lasts a time T ′. Each cycle has an associated set-up or

start-up cost and it consists of two phases: the production phase (lasting an

amount of time T and the “selling phase” where depletion of stock takes place

at a steady and uniform demand rate and there is no production taking place

so that T ≤ T ′. At the beginning of a production cycle, the machine starts
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off in the “in-control” state and after a period of production (which is a ran-

dom variable following an exponential distribution) the machine gets into the

“out-of-control” state. During the time the machine is in-control, no defec-

tives are produced while its being in the “out-of-control” state is accompanied

by some proportion of defectives being produced. The total costs incurred by

the production system has the following components: set-up costs, holding

costs, costs of inspections and the cost of defective items. The objective in

Lee and Rosenblatt (1987) is that of determining an optimal production run

time T ∗, the optimal number of inspections, n∗ and the associated inspec-

tion schedule (i.e. specifying inspection times τo < τ1 < · · · < τn ≤ T which

minimize the total costs incurred by the production system.

1.3 Basic Theory and Notation for Inspec-

tion Models

Most inspection models assume that the system to be inspected deteriorates

over time and its time to failure may be modelled by a known (or unknown)

probability distribution function F (t) and probability density function f(t).

Some models deal with systems with non-self announcing failures so that

detection of a failed unit only occurs after inspection while for other models
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failure may be noted at the very instant when it occurs. The net utility func-

tion in most situations is the overall cost of running the equipment whose

components may include cost of inspections, cost associated with undetected

failure and idleness of the system, etc.

The following common notation will apply throughout this thesis:

• cI = cost of a single inspection (assumed fixed);

• cF = cost per unit of time when the system is not working properly or

is idle;

• CS - salvage value of the system upon disposal;

• RT (.) - system reliability function (or survival function) so that

RT (t) = P (T > t).

1.4 Statement of the problem

Nowadays it makes business sense to dispose of a system when it malfunctions

either because the cost of repairing it is astronomical or the system is simply

not repairable. Examples of typical systems which come to mind include

• an electronic gadget/component which is disposed off once it is found to
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no longer function - a new and perfectly functioning gadget/component

replaces it

• a battery which is sent for recycling once it starts malfunctioning - a

new and perfectly functioning battery is put in its place

• a machine bearing which is sent for re-cycling once it starts malfunc-

tioning - a new and perfectly functioning bearing is put in its place

• an electric iron or kettle once it packs up; a new and perfectly func-

tioning iron or kettle is brought in to fill the void

• a building which is demolished once it has been condemned, etc.

Some systems may be operated for a finite length of time and may require

inspections to be carried out during the course of operation and the need

to plan on how long operation of such a system should be becomes imper-

ative. Other systems may be operated in such a way that in addition to

inspections being carried out at planned times, minimal repairs are done at

certain recommended times. From a business perspective, if malfunctioning

of a gadget is not life-threatening, then maximization of profit becomes the

default objective function. The recommended length of time over which a

system is planned to be operated is called the finite planning horizon.
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Research on finite planning horizon models has been fairly scarce. Research

on extensions of finite planning horizon models which take into account the

fact that inspections are not instantaneous (i.e. they take time) are even

more scarce. Also, models which deal with inspections that are imperfect are

hard to come by. This research is an attempt to fill the void.

Another pool of inspection models (called Hierarchical Inspection Models)

is discussed in this thesis. Like in the paper by Anbar (1976a), this pool

of inspection models deals with a system that has a number of components

whose times to failure are independent and identically distributed random

variables. The difference with most other inspection models will be that the

issue at stake is not the times at which inspections need to be scheduled but

rather to specify the order in which inspections should be carried out in the

event of the system being in the failed state.

1.5 Aims and objectives

The main aim in this work is to identify some gaps in literature on inspection

and replacement models and develop new models that address some of the
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gaps. Identifying the gaps has involved reviewing methods used at arriving

at optimal solutions, especially given the ever improving computer technol-

ogy.

In this PhD project, the objectives are:

1. to develop new models to complement the rich pool of inspection and

replacement models available;

2. to derive mathematical results related to the models derived;

3. to develop computer programs (in Mathematica) to address the prob-

lem of arriving at optimal solutions that was faced in the past because

of lack of computer technology with capacity to help solve the problem;

and

4. where appropriate, to compare the performance of existing models and

the models that have been developed in this study.

1.6 Layout of the thesis

The rest of the thesis is arranged as follows. Chapter 2 gives a survey of all

the relevant literature reviewed. Chapter 3 looks at the development of some
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finite planning horizon inspection and replacement models with inspections

that are instantaneous while Chapter 4 discusses finite planning inspection

and replacement models with inspections that take up time. Chapter 5 ex-

plores finite planning inspection and replacement models with imperfect in-

spections. Chapter 6 explores the problem of Hierarchical Inspection Models;

as discussed earlier on, this is a class of models which has not been extensively

researched on. Chapter 7 gives the conclusions and recommendations.

1.7 Milestones and novelty of this thesis

The author of this thesis has contributed new results in the subject of Relia-

bility Theory; specifically in the area of Inspection and Replacement Models.

He has published two papers in the Applied Stochastic Models in Business

and Industry journal (an ISI accredited journal): Chipoyera (2016a) (based

on Chapter 3) and Chipoyera (2016b) (based on Chapter 6). He envisages

publishing two other papers (one based on Chapter 4 and another based on

Chapter 5 material) in ISI accredited journals in 2017. The work done in

this thesis is likely to be readily embraced in the engineering world because

it has obvious applications in engineering.
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The work done in Chapter 3 was presented at the The Eighth International

Conference on Mathematical Methods in Reliability (MMR2013) held in Stel-

lenbosch in 2013 and the work done in Chapter 6 was presented at the Twen-

tieth International Conference of the International Federation of Operational

Research Societies held in Barcelona in 2014. The work done in Chapter 5

will hopefully be presented at the 21st International Conference of the Inter-

national Federation of Operational Research Societies to be held in Quebec

City in July 2017.

The work in Chapter 2 and Chapter 6 was also presented separately in semi-

nars in 2013 and 2016, respectively, in the School of Statistics and Actuarial

Science, University of the Witwatersrand seminar series.
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Chapter 2

Literature Review

This chapter gives a detailed review of some of the research papers which are

closely related to the work in this thesis. The review covers papers which go

way back to the pioneering works by Barlow et al. (1963).

2.1 Pioneering works - Barlow et al Inspec-

tion Model

For convenience purposes, the model by Barlow et al. (1963) will sometimes

be referred to as XBP policies. The ideas discussed in chapters 3, 4 and 5

are given birth to by the ideas in the paper by Barlow et al. (1963).

2.1.1 Introduction to XBP policies

In their paper, Barlow et al. (1963) focus on a system whose deterioration

is stochastic and whose condition may only be known upon inspection or
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checking because the systems are assumed to have non-announcing failures.

The assumptions they make follow:

1. if the system has a problem, the problem ends at the point of inspection,

2. checking does not degrade the system, and

3. the system cannot fail while being checked

Each check is accompanied by a fixed cost cI while the cost per unit

time when the system is not working properly is cF . An optimum inspection

policy would involve specifying checking or inspection times x∗1, x
∗
2, · · · , which

minimize the expected total cost of inspections. The total cost of operating

the system comprise of 1) cost of carrying out inspections and 2) cost incurred

during the time the system is in a faulty state. The system will be in the

faulty state from the time it becomes faulty up to the time when the next

scheduled inspection reveals that it is indeed faulty. The total cost for a

given time interval [0, t] can be viewed as a loss function L:

L = cI [N(t) + 1] + cFγt (2.1)

where N(t) is a random variable denoting the number of inspections before

and up to time t and γt is the time to the next inspection (when the faulty

state of the system is detected) if the system fails at time t.
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2.1.2 Key Results of XBP Policies

The key results derived in the paper are given in this section.

1. If inspections prior to time t are carried out at times

x1 < x2 < · · · < xk and one more inspection is conducted at time xk+1

given that the system failed at time t such that xk < t ≤ xk+1, the cost

incurred would be cI(k + 1) + cF (xk+1 − t); hence, the expected loss

would be:

E[L] =
∞∑
k=0

∫ xk+1

xk

[cI(k + 1) + cF (xk+1 − t)]dF (t). (2.2)

Barlow et al. (1963) define a checking procedure that minimizes the

expected loss (or objective) function E[L] as an optimum checking pro-

cedure.

2. If the failure distribution F (x) is continuous with a finite mean µ,

there exists an optimum degenerate checking procedure. A necessary

condition that a sequence {xk} be a minumum cost checking procedure

is that

∂E[L]

∂xk
= 0; for all k (2.3)
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and consequent of (2.3) and (2.2)we have

xk+1 − xk =
F (xk)− F (xk−1)

f(xk)
− cI
cF
. (2.4)

Also if the failure density f is a Polya frequency function of order 2

(abbreviated PF2) and f(x) > 0 for x > 0, the optimum checking

intervals δ∗k = x∗k+1 − x∗k are non-increasing.

3. For a system that is known to fail within a finite time interval, some-

times a single check may be adequate. Let F (t) = 1 for t ≥ T . If

F (t) ≤ 1

1 + (cF/cI)(T − t)
for 0 ≤ t ≤ T,

then the optimum checking policy will consist of a single check at time

T. Conversely, if

F (t) >
1

1 + (cF/cI)(T − t)
for 0 ≤ t ≤ T,

for some 0 ≤ t ≤ T , then the optimum checking policy will require, in

addition to the check at time T , at least one more check before time T .

4. In their paper, Barlow et al. (1963) present the tool that may be used

for estimating the sequence of checking times {x∗k} in the XBP policy

(to any degree of accuracy desired) as Theorem 6 on page 1091. It
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reads as follows: “Let the failure density f be PF2, f(t) > 0 for t > 0,

and not of the form aebt for any interval 0 < t1 < t < t2. Then for

(a) x1 < x∗1, ∆δn = δn − δn−1 > 0 for some positive integer n and

(b) for x1 < x∗1, δn < 0 for some positive integer n”.

5. For a system whose time to failure follows an exponential distribution,

the optimal inspection policy has inter-inspection times which are con-

stant; that is, checking times are periodic. Suppose the failure density

of a system is f(t) = θe−θt.I[0,∞)(t) and that the system is subjected to

an inspection after every x units of time. If the system fails at time t

such that kx < t ≤ (k + 1)x,

the cost incurred is

L = cI(k + 1) + cF [(k + 1)x− t]

and the expected loss is

E[L] =
∞∑
k=0

∫ (k+1)x

kx

[(k + 1)cI + cF{(k + 1)x− t)}]dF (t)

=
cI + cFx

1− e−θx
− cF

θ
. (2.5)

Equation (2.5) gives us an expression for the optimum periodic checking
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policy with inter-check times x∗ as a solution of

eθx
∗ − θx∗ = 1 +

θcI
cF
. (2.6)

6. For a failure distribution with a large mean (or small θ),

x∗ ≈
√

2cI
θcF

. (2.7)

2.1.3 Identified Gaps in XBP Policies

1. Many authors who have reviewed the paper by Barlow et al. (1963)

lament that finding an optimal inspection schedule is not a tractable

process (e.g. Munford and Shahani (1973), Nakagawa and Yasui (1980),

Kaio and Osaki (1989)); Kaio and Osaki (1989) say, “ ... the algorithm

by Barlow et al. (1963) is complicated to execute, because one must

apply trial and error to find the first inspection time t1, and the as-

sumption on f(t) is restrictive”. The author contends that the advent

of more powerful computers these days should go a long way in making

the process much simpler. To this end, it would undoubtedly be useful

if computer programs (in a software like Mathematica) for XBP poli-

cies for a number of commonly used distributions for modelling time

to failure such as the Weibull and Gamma distributions were to be

developed.
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2. The assumption of inspection times being instantaneous certainly holds

for some systems and of course breaks down for many other systems.

An extension of XBP policies in which inspection times are taken as

non-negligible random variables is worth exploring.

3. The assumption of inspections giving perfect diagnosis of the state of

the system whenever conducted, just like the assumption of inspections

being instantaneous, may not hold true for some systems. Chapter 5

addresses the case where this assumption breaks down.

2.2 Xp Inspection Policies

Munford and Shahani (1972) pioneered the work on this class of inspection

policies. In their paper, State 0 is defined as a state in which a system is in a

working state and State 1 as the state in which a system will have failed. It

is assumed that the transition from State 0 to State 1 can only be detected

through inspection of the System (because system failure is assumed to be

non-announcing). Also, the system may not move from State 1 back to State

0 on its own accord - it can only do so through repair.
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2.2.1 Xp inspection policies explained

Definition 2.1 Let a system be such that its time to failure has probability

density function f(t) = fT (t) and failure distribution function

F (t) = FT (t) = P (T ≤ t) and let p ∈ (0, 1) be some constant. Then an Xp

inspection policy has inspection times x1, x2, · · · such that

FT (xi)− FT (xi−1)

1− FT (xi−1)
= p, i = 1, 2, · · · . (2.8)

An optimal Xp inspection policy is one such that the inspection times

Xp = X∗p = (x∗1, x
∗
2, · · · ) minimize the expected cost of running the system.

Just like XBP policies, the costs incurred in running the system comprise of

the cost of inspections and cost due to system idleness when the system is in

State 1.

Remark 2.1 FT (xi)−FT (xi−1)
1−FT (xi−1)

is the probability of transition from State 0 to

State 1 in the interval (xi−1, xi) given that the system was in State 0 at time

xi−1. Also, xo = 0 and FT (xo) = 0 so that F (x1) = p. Further, from

Equation (2.8), we have

F (xi) = p [1− F (xi−1)] + F (xi−1) (2.9)

and it can easily be deduced that

F (xi) = 1− (1− p)i = 1− qi (2.10)
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where p = 1− q.

2.2.2 Determination of optimal Xp inspection policy

If the transition from State 0 to State 1 occurs at time t such that

xi−1 < t ≤ xi, and the total cost until a failure is detected at time xi, C:

C = icI + cF (xi − t). (2.11)

Remark 2.2 An optimal Xp policy is one which results in the minimization

of the expected cost function

E[C] = E[cIi+ cF (xi − t)] = cIE[N ] + cFE[System idleness time]. (2.12)

where N is the random variable denoting the number of inspections required.

To proceed with the minimization of E[C], one needs to know the results for

E[N ] and the expected value of the system idleness time.

Munford and Shahani show that

1. Result for E[N ]: For the event N = i to occur, that means a transi-

tion from State 0 to State 1 during the time interval (xi−1, xi]), mean-

ing State 0 is preserved in time interval (0, x1), (x1, x2), · · · , (xi−2, xi−1)
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with probability qi−1.

P (N = i) = qi−1p, i = 1, 2, 3, · · · ⇒ E[N ] =
∞∑
i=1

iqi−1p =
1

p
. (2.13)

2. E[System idleness time]:

E[System idleness time] =
∞∑
i=1

∫ xi

xi−1

(xi − t)f(t)dt

=
∞∑
i=1

xi [F (xi)− F (xi−1)]−
∫ ∞

0

tf(t)dt

=
∞∑
i=1

xi
[
(1− qi)− (1− qi−1

]
−
∫ ∞

0

tf(t)dt

=
∞∑
i=1

xiq
i−1p− E[T ] (2.14)

Thus, combining equations (2.12), (2.13) and (2.14) we get:

C(p) = E[C] =
cI
p

+ cF

[
∞∑
i=1

xiq
i−1p− E[T ]

]
. (2.15)

Remark 2.3 E[C] may be denoted by C(p) to emphasize that the expected

cost is a function of p; consequently, the problem of minimizing C(p) is es-

sentially reduced to that of finding the value of p that minimizes C(p).

2.2.3 Xp inspection policies for some distributions

Munford and Shahani (1972) wind up their paper by drawing a comparison

of Xp policies and X
¯BP

policies and make the following observations:
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1. Just like XBP policies, for a failure distribution with a monotonic in-

creasing failure rate r(t) = f(t)/(1−F (t)), the inter-inspection intervals

δi = xi − xi−1 are monotonic decreasing.

2. for the exponential distribution with parameter θ (i.e. the distribution

where r(t) is a constant),

(a) the inspection times are equally spaced and δi = −1
θ

ln q.

(b) the optimal inter-inspection time, δi = δ, just like with XBP mod-

els, is a solution of the equation

eθδ − θδ = 1 + θ
cI
cF
.

3. for the case of a system with a normally distributed time to failure, i.e.

T ∼ N(µ, σ2), the XP policy yields

E[C] = σcF

[
cI
σpcF

+
∞∑
i=1

(
xi − µ
σ

)
qi−1p

]
= σcF

[
γ

p
+
∞∑
i=1

ziq
i−1p

]
(2.16)

where γ = 1
σ
cI/cF and zi = (xi − µ)/σ. The authors try out different

combinations of γ and p when comparing expected cost for the XBP

and XP policies; in all instances explored, the ratio of the expected

cost was more than 0.9 leading them to conclude that XP policies are

just marginally more expensive compared to XBP policies.
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In a follow up paper, Munford and Shahani (1973) focus on XP policies where

the time to failure, T follows a Weibull distribution so that the probability

density function of T , fT (t) is given by

fT (t) =
β

α

(
t

α

)β−1

exp

{
−
(
t

α

)β}
.I(0,∞)(t), α > 0, β > 0 (2.17)

where α is a scaling parameter and β is the shape parameter. They deduce

that the value of p = popt which minimizes the function g(p):

g(p) =
cI

αcFp
+ {− ln(1− p)}1/β p

∞∑
i=1

i1/β(1− p)i−1 (2.18)

is key to finding the optimal Xp inspection schedule. They propose the use of

a nomogram (a graph) in finding popt and contend that the use of a method

outlined by Lyle (1954) usually lead to quite accurate nomograms.

Tadikamalla (1979) explores Xp policies when the time to failure is a Gamma

distributed random variable. He laments the problem of the non-existence

of a closed form of the cdf of a gamma distribution; a key component in

finding an accurate value of popt. He however uses an approximation given

by Goldstein (1973) for finding the inverse of the cdf F, F−.
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2.2.4 Gaps and Criticism of Xp policies

The author (of this thesis) has reservations about the use of nomograms

as means to determining optimal inspection schedules, especially given that

they (Munford and Shahani) mention that nomograms do not always yield

accurate results but rather usually give accurate results. The author contends

that one can write simple computer program (in a software like Mathematica)

which takes advantage of the fast convergence of
∑∞

i=1 i
1/β(1− p)i−1, a term

in (2.18), to calculate the value of popt to any desired degree of accuracy,

given values of the parameters β, α, cI , cF , etc.

2.3 Inspection Models for System with Com-

ponents Connected in Parallel

2.3.1 Introduction

Anbar (1976b) develops an inspection and replacement model for a system

with n identical items/components connected in parallel. The respective

lifetimes of the n items, T1, T2, · · · , Tn are identically and independently dis-

tributed random variables following an exponential distribution with an un-

known parameter θ; i.e. FTi(t) = P (Ti ≤ t) = FT (t) = 1− e−θt where t > 0,

θ > 0.
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The assumptions of the model are as follows:

1. Failures are non-announcing and are only detected through inspection

(and we use the notation cF for the cost incurred per unit of time owing

to a component being idle as a result of failure)

2. all units are inspected when an inspection takes place and all failing

units are replaced by new ones so that the system becomes “new”

immediately after an inspection is complete (and we use the notation cI

for the cost of inspecting a single unit so that total cost of an inspection

of the system each time is ncI)

3. Inspection and replacement are instantaneous (and the replacement

cost of a failed unit is Co)

2.3.2 Key Results from Anbar’s Model

Anbar’s model policy is that the time between successive inspections is a

constant, τ , i.e. inspections are periodic. The net utility function in the

model is the expected cost per unit of time c(τ) given by

c(τ) =
1

τ
E

[
ncI + cF

n∑
i=1

(τ − T )+ + CoN(τ)

]
(2.19)
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where N(τ) is the random variable denoting the number of failures per cycle

and

(τ − T )+ =


τ − T, if τ − T > 0

0, otherwise.

Anbar deduces that

c(τ) =
n

τ

[
cI + cF

(
τ − F (τ)

θ

)
+ CoF (τ)

]
(2.20)

and defining η(x) = (x+ 1)e−x, x ≥ 0, Anbar notes the following:

1. A necessary condition for τ ∗ to minimize c(τ) is that it is a solution of

the equation

(1 + θτ ∗)e−θτ
∗

= 1− cI
cF/θ − Co

(2.21)

2. A finite value of τ ∗ exists if and only if

0 < θ < cF/(cI + Co); (2.22)

if θ > cF/(cI + Co), the optimal inspection schedule is a no inspection

schedule.

3. Assuming Equation (2.22) holds, the optimal inter-inspection interval,

τo:

τ ∗ =
1

θ
η−1

(
1− cI

cF/θ − Co

)
(2.23)
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Remark 2.4 The major pitfall with Anbar’s model is that the value of θ is

assumed unknown and hence a direct calculation of τo is not possible. Anbar

suggests an iterative method based on a stochastic approximation procedure

developed by Albert and Gardner (1967) that circumverts this pitfall. Essen-

tially, the method hinges on the fact that if {θ̂n}∞n=1 is a sequence of random

variables that converge to θ with probability 1, then the sequence {τ ∗n}∞n=1 such

that

τ ∗n =
1

θ̂n
η−1

(
1− cI

cF/θ̂n − Co

)
(2.24)

simultaneously converges to τ ∗ provided θ̂n > cF/(cI + Co) with probability 1

for all n.

Anbar then utilizes Theorem (2.1) and Lemma (2.1) to develop an algorithm

that can help one iteratively arrive at the optimal inspection schedule for the

Anbar Inspection Models pool.

Theorem 2.1 Let an, N ≥ 1 be a nonnegative Fn measurable random vari-

able such that

a)
∑

an =∞ and
∑

a2
n <∞ (2.25)

with probability 1.

34



Let θ1 be an F1 measurable random variable. For j ≥ 1 define

θj+1 = [θj − aj(θ1, · · · , θj)[Fj(θj)−Nj/n]]ba. (2.26)

where Fk(x) = max(0, 1 − e−xτk), N1, N2, · · · is some sequence of random

variables and

[x]ba =


a, if x ≤ a
x, if a < x < b
b, if x ≥ b

Then θn → θ with probability 1.

Lemma 2.1 Suppose that there are two constants a and b such that a < b

and 0 ≤ a ≤ θ ≤ b ≤ cF
Co+cI

. If A and B are defined as follows:

A =
1

bθ

(
1− cI

cF/a− Co

)
and B =

1

aθ

(
1− cI

cF/b− Co

)

then 0 < A < τ < B <∞.

The algorithm

The algorithm works as follows:

1. Calculate an initial estimate of θ, θ̂1.

2. Using θ̂1, calculate an initial estimate of τ , τ1:

τ1 =
1

θ̂1

η−1

(
1− cI

cF/θ̂1 − Co

)
.
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3. Sequentially generate estimates of θ and τ as follows. For k ≥ 1,

θ̂k+1 = [θ̂k − ak(θ̂1, · · · , θ̂k)[Fk(θ̂k)−N(τk)/n]]ba (2.27)

and

τk+1 =
1

θ̂k+1

η−1

(
1− cI

cF/θ̂k+1 − Co

)
(2.28)

bearing in mind that the sequences {θ̂k} and {τk} converge to θ and τ ,

respectively, with probability 1.

Challenges in implementing the Anbar Algorithm

Anbar (1976b) concedes that the major challenge when it comes to the imple-

mentation of his algorithm relates to the choice of the sequence {ak} and he

asserts that he does not have an adequate answer for this. He only mentions

that the form ak = Dk−1 yields what he terms some interesting numerical

results. To this end, Anbar says that when one restricts themselves to this

choice of {ak}, then perhaps an appropriate choice of D, Dopt (where Dopt

may depend on the ratio cF/(cI + Co) would have to be settled on; cost

minimization would be of paramount importance in doing so.

2.3.3 Matters Arising from Anbar’s Model

1. Models with a system having n identical components connected in par-

allel (like in Anbar’s case) whose times to failure are iid random vari-
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ables following some other distribution other than the exponential dis-

tribution beg to be developed. Typical distributions that come to mind

include the more versatile Weibull and Gamma distributions.

2. A similar inspection and replacement policy for a complex system with

n components that are not identical is mooted here. The difference

with Anbar’s approach is that for the system under consideration, the

times to failure Ti, · · · , Tn need not be independent and identically

distributed random variables. An example that comes to mind is that

of a circuit board with a number of different components.

2.4 Hierarchical Inspection Model for a Sys-

tem With Components Connected in Se-

ries

Zuckerman (1989) explores the case of a system/machine with n compo-

nents/units (presumably connected in series) whose times to failure are inde-

pendent exponentially distributed random variables. By virtue of them being

connected in series, the machine breaks down the moment any one of the N

components fails and machine failure is attributed to just that component

which will have failed.
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2.4.1 Introduction

The basic assumptions in Zuckerman’s model are:

1. When in operation, the system/machine generates income at a rate of

I rand1 per unit of time.

2. The machine has N units such that the lifetime of the ith unit, Si ∼

Expo(θi), i = 1, · · · , N and the random variables S1, · · · , SN are stochas-

tically independent.

3. The system’s status is observed continuously at zero cost (by a con-

troller) and a failure is due to exactly one component having failed.

In the event of a breakdown, a series of inspections (in a hierarchical

manner and one unit at a time) is performed in order to identify the

failed unit. Once the failed unit has been identified2, it is repaired and

immediately thereafter the machine starts working again. The cost of

inspecting the nth unit is Cn rand per unit of time and the inspection

time for the nth unit is Tn while the expected repair time for the nth

unit is Zn and the expected repair cost for the unit is denoted by Rn.

1or some other appropriate monetary unit
2the inherent assumption is that two or more units may not fail simultaneously
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Remark 2.5 The objective in Zuckerman’s model is the formulation of an

optimal inspection permutation or strategy (i.e. the order in which the N

units are inspected) in order to maximize either the long-run average net

income or total discounted net income. An inspection permutation

σ = (σ(1), · · · , σ(N)) spells out the order in which the units are inspected so

that σ(j) is the jth unit of the machine to be inspected.

2.4.2 Main results in Zuckerman (1989)

Zuckerman (1989) uses the notation Eσ[.] and Pσ(.) to refer to the expectation

and probability, respectively, when an inspection strategy σ is used.

Letting θ =
∑N

i=1 θi, the main results from Zuckerman (1989) are:

1. If a machine has broken down, the probability that the breakdown is

due to the nth unit, Pn is given as:

Pn = P

(
Sn = min

1≤i≤N
{Si}

)
=
θn
θ
. (2.29)

2.

E[ min
1≤i≤N

{Si}] =
1

θ
. (2.30)

Letting C be the accumulated inspection cost over a cycle and T be

the time to identify the failed unit (total inspection time per cycle), we
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have

Eσ[C] =
N∑
i=1

Pσ(i)

[∑
j≤i

Cσ(j)Tσ(j)

]
(2.31)

and

Eσ[T ] =
N∑
i=1

Pσ(i)

[∑
j≤i

Tσ(j)

]
(2.32)

resulting in the long run average net income3 for inspection strategy σ

being

ψ(σ) =
I
λ
− Eσ[C]−

∑N
n=1 PnRn

1
θ

+ Eσ[T ] +
∑N

n=1 PnZn
. (2.33)

3. Zuckerman goes on to give a result (listed as Theorem 1 in his paper)

which is deemed critical for determining the optimal inspection permu-

tation for the undiscounted case; it says that in the undiscounted

case, the units are inspected in an increasing order of the indices

ej =
TjCj + ψ∗Tj

Pj
, j = 1, 2, · · · , N, (2.34)

where ψ∗ = maxσ ψ(σ) is the optimal net-income-rate.

Remark 2.6 Zuckerman laments that since ψ∗ is unkonwn, his procedure

is not tractable as the indices e1, · · · , eN cannot be computed explicitly. He

proposes a graphical computational procedure for the optimal inspection per-

mutation which is quite involved!

3a result arrived at by invoking the Renewal Reward Theorem
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Zuckerman’s works are then reviewed by Qiu (1991); Qiu suggests that

some of the results (results for the discounted case ) arrived at by Zuckerman

are not correct.

2.4.3 Main results in Qiu (1991)

Qiu looks at the simplified case where the repair times and repair costs are

assumed to be negligible. He denotes the inspection cost rate at time t

by C(t) and denotes the obtaining continuous discount factor by α. Both

Zuckerman and Qiu give the total discounted net income per cycle when an

inspection strategy σ is adopted as

η(σ) =

I
λ+α
− λ

λ+α
Eσ

[∫ T
0
C(t)e−αtdt

]
1− λ

λ+α
Eσ[e−αT ]

(2.35)

Letting η∗ = max η(σ) and Qi = 1 − Pi, Zuckerman states that an optimal

inspection strategy would inspect the units in an increasing order of the

indices gi:

gi =
(η∗ + Ci/α)(1− exp(−αTi))

1−Qi exp(−αTi)
. (2.36)

Qiu disputes Result (2.36) and uses a counterexample to demonstrate that

result is not correct. He ends his paper by giving necessary conditions for an

inspection strategy to be optimal.
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2.4.4 Identified Gaps in Zuckerman and Qiu’s works

1. It must be stressed that while the results obtained by Zuckerman (1989)

and Qiu (1991) are appealing in that they deal with commonly encoun-

tered practical important problems, implementation is unfortunately

not easy. In particular, the fact that one has to resort to linear graphs

in order to arrive at the optimal hierarchical inspection permutation.

The models are also a departure from the classical inspection models

in the sense that the objective here is not to recommend times as to

when inspections should take place but rather to set out an order or

hierarchy in which the components of a machine may be inspected in

the event of a failure.

2. In this PhD thesis, a Mathematica program which makes use of (2.33)

(for the undiscounted case) and (6.12) (for the discounted case) makes

it easy to obtain an optimal inspection strategy for the Zuckerman-

Qiu policies are developed (see Appendix A.2). The procedure involves

simply computing income per cycle values for all possible inspection

permutations.

3. For the same system, it appears it would be very useful to develop
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an inspection schedule which outlines times at which the system needs

to be inspected in line with classical inspection policies where system

failure is non-announcing and can only be detected the next time an

inspection of the system takes place.

2.5 Replacement Models

2.5.1 Introduction

Taylor (1923) is credited with being the pioneer on Replacement Models.

Taylor’s approach takes into account the cost of a new system/machine,

C, the average operating expenses per year of the system/machine, O the

average repair costs per year, R and the average number of units output

per year, I as well as the obtaining interest rate, i (for purpose of factoring

depreciation of the machine over time) as well as salvage value of the machine

after N years to derive the average cost of production over N years, CN . The

recommendation then becomes that the machine should be replaced after

No years where No is the value of N that minimizes CN . Hotelling (1925)

published a follow up paper to Taylor’s works where the objective function

is based on profit considerations (maximization of the present value of the

machine’s out minus its operating costs) and uses the notion of continuously
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compounded interest and some continuous functions in his derivations.

Remark 2.7 One apparent weakness in Taylor and Hotelling’s works is that

they assume that the machine’s life is indefinite. This is obviously not real-

istic and recent works have tried to address this anomaly.

Ever since the pioneering works of Taylor and Hotelling, many research pa-

pers have been published. More recent works have tended to focus on re-

placement models for a machine that is subjected to shocks over time. The

justification for the increased attention is provided by Nakagawa (1976) who

says “it is of great importance to avoid a failure of an item when its fail-

ure during operation is costly and/or dangerous”; he lists tyres and railway

lines as items that are ideal candidates for this pool of models. According

to Nakagawa, degradation of a system may occur in the form of any one of

the following: wear, fatigue, corrosion or erosion. Summaries of the papers

reviewed are given in subsequent sections.

Remark 2.8 The term control limit policy applies to any replacement

policy where the system is replaced with a new one upon reaching a specified

age T or failure, which ever comes first. This normally applies for situa-

tions where replacement after failure is far much more expensive compared

to replacing before failure.
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2.5.2 Replacement Models by Taylor

Taylor (1975) develops a cumulative damage model for system failure where

shocks occur to the system or machine in accordance with a Poisson process

having rate λ; each shock causes a random amount of damage or wear and

the damage a system incurs accumulates additively. The amounts of damage

Y1, Y2, · · · are assumed to be independent and identically distributed random

variables. Replacement is recommended either when failure occurs or when

the cumulative damage first exceeds a critical control level, ε∗. In his paper,

Taylor explores

1. Optimal Planned Replacement Model - the cumulative damage

process up to failure time ζ is a Markov process {X(t); 0 ≤ t < ζ} and

a controller is allowed to institute planned replacement at Markov time

T < ζ. This model assumes that replacement is instanteneous. The

long run average cost per unit of time if the replacement time is T , ψT :

ψT =
c+ CoPr(T = ζ)

E[T ]
(2.37)

The objective then becomes that of finding T ∗ such that

ψ∗ = ψT ∗ = inf ψT .

45



2. The Threshold Model - (Taylor says that this is the cumulative

damage model that has received the most attention.) For this model

replacement is again assumed to be instantaneous and system failure

occurs when cumulative damage z first exceeds a fixed threshold of size

L, so that the survivor-ship function

r(z) =


1, for 0 ≤ z ≤ L

0, for z ≥ L
(2.38)

Given F (z) = P (Yk ≤ z), the renewal function

M(z) =
∑∞

n=0 P (Y1 + Y2 + · · · + Yn ≤ z) =
∑∞

n=0 F
(n)(z) (where F (n)

denotes the n-fold convolution of F ) is used to derive results for the

optimal strategy.

3. More General Cost and Income Model - The model deals with

the case of a system that requires a non-negligible amount of time to

carry out the replacement job and during the replacement process, a

cost is incurred as a result of lost income. Letting I denote the mean

rate of income accrued per unit of time when the system is operating,

τf be the downtime associated with a failure replacement and τp be

the downtime associated with a planned replacement, the long-run net
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income per unit of time ∆T :

∆T =
IE[T ]− c− CoPr(T = ζ)

E[T ] + τpPr(T < ζ) + τfPr(T = ζ)
. (2.39)

All efforts are then directed at finding the value of ε, ε∗ which results

in ∆∗ = supT ∆T .

4. A More General Failure Model - The assumptions of this model

are:

• shocks occur to a machine or production system in accordance

with a Poisson process, {N(t); 0 ≤ t < ∞}, having a known rate

λ.

• the system survives k or more shocks with a known probability

Pk, k = 0, 1, 2, · · · where {Pk} is a decreasing sequence of proba-

bility values such that
∑∞

k=0 Pk <∞.

• the shocks, when they occur, are observable by the controller, and

a decision for replacement is only made number of shocks have

reached a control limit No that will have occurred.
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The system survival probability function, i.e. the probability that the

system failure time ζ > t, P (ζ > t):

Pr(ζ > t) =
∞∑
k=0

λt)ke−λt

k!
Pk (2.40)

and the mean time to failure

E[ζ] =

∫ ∞
0

Pr(ζ > t)dt =
1

λ

∞∑
0

Pk <∞;

the Markov process {N(t); 0 ≤ t < ζ} is a terminating pure birth

process. If replacement is to take place at any Markov time T < ζ, the

long run average cost per unit time, ψT :

ψT =
c+ CRPr(T = ζ)

E[T ]
= (c+ CR(1− PNo)) /

(
1

λ

A−1∑
k=0

Pk

)
(2.41)

The only outstanding issue involves a search for the optimal value of

No, N
∗
o the value that results in inf ψT .

2.5.3 Nakagawa’s Replacement Models

The work done by Nakagawa (1976) is very much similar to what Taylor

(1975) did when he developed his Optimal Planned Replacement Model dis-

cussed above.
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2.5.4 Zuckerman’s Works

The approach taken by Zuckerman (1978) in his paper is not very different

from Taylor’s approach only that in Zuckerman’s case, the damage process is

an increasing one with stationary independent increments - it is a one-sided

Levy Process. The system fails when the accumulated damage first exceeds

V , a random variable which has a known absolutely continuous distribution

B (called the killing distribution). Denoting the accumulated damage in time

[0, t] by Z(t) and the time to failure by ζ we have:

ζ = inf{t ≥ 0, Z(t) ≥ V }.

The long-run average associated with a Markov (replacement) time T , ψ(t):

ψT =
c+ cRP (T = ζ)

E[T ]
(2.42)

In another paper on inspection and replacement models, Zuckerman (1980)

explores inspection and replacement policies where the status of a system

or device can only be determined by a physical inspection; upon detection

of failure, the system is replaced by a new identical one and a failure cost

is incurred. The time between two successive inspections τ is a constant;

an optimal inspection and replacement policy is achieved by finding a value

of τ and replacement time T ∗ which result in the minimization of the total
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long-run average cost per unit of time.

2.5.5 Gottlieb’s Replacement Model

Gottlieb (1982) studies the problem of a device which is subjected to a series

of shocks which arrive as a non-negative and non-decreasing semi-Markov

process {Zt, t ≥ 0}; unlike in the case of Taylor (1975) and Nakagawa (1976),

no assumption is made about the monotonicity of the failure rate or possible

times of replacement; the only assumption in his model is that failure only

occurs at times of jumps of Zt. The following are assumed: Zo = Xo, To = 0,

Yo = 0 and Sn = ZTn . (Figure 2.1 is meant to make it easy to appreciate

the notation used here.) If time to failure is denoted by ζ, and its assumed

 

Figure 2.1: Illustration of Semi-Markov Shock Process Notation

that failure occurs at the nth shock, then the objective is to find τ ∗ which

50



minimizes the long-run average cost of a replacement policy (if replacement is

recommended after time τ from the time a new cycle begins or upon failure),

ψτ :

ψτ =
c+ cRP (τ ≥ ζ)

E[min(τ, ζ)
(2.43)

where the calculation of P (τ ≥ ζ) can be achieved using

P (ζ > Tn|Xo, X1, · · · , Xn, Yo, Y1, · · · , Yn) =
n∏
i=0

r(Si) (2.44)

and r(x) is the probability that a functioning device will survive a shock

which increases the cumulative damage to x. Gottlieb asserts that the prob-

lem of finding an optimal τ ∗ can be viewed as a Markov decision process.

He winds the paper by outlining an algorithm for computing an optimal

replacement policy.

2.5.6 Aven and Gaarder’s Replacement Model

Aven and Gaarder (1987) model is very similar to the planned Replacement

Model discussed by Taylor (1975); the only difference is that in Taylor’s work,

shocks occur at any time wheareas in Aven and Gaarder’s model shocks occur

at discrete times n = 1, 2, · · · . The failure time is denoted by ζ. In the model,

replacement is again assumed to be instantaneous and replacement is done

at the integer-valued stopping time N ≤ ζ; if replacement is done before
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failure, a cost c is incurred whilst if replacement is a post-failure exercise,

the cost will be c+ cR. Essentially, the optimal replacement policy is arrived

at by finding the stopping time N∗ which minimizes the expected cost per

replacement cycle, ψN :

ψN =
c+ cRPr(N = ζ)

E[N ]
, N ≤ ζ. (2.45)

r(z) =


1, for 0 ≤ z ≤ L

0, for z ≥ L
(2.46)

2.5.7 Beichelt’s Replacement Model

In his paper, Beichelt (2001a) focuses on determining cost-optimum replace-

ment times for complex technical systems. One interesting policy developed

in his paper is the repair cost limit replacement policy where the policy says

“a system is replaced after failure by a new one if the corresponding repair

cost reaches or exceeds a certain level”. He says that a common replacement

policy for technical systems involves replacing a system by a new one after

its economic lifetime is reached.
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2.5.8 Some Recent Works on Condition Based Main-
tenance

A good treatise of research done in the area of Condition Based Maintenance

as applicable to inspection and replacement models is given by Ghasemi et al.

(2008).

2.5.9 Gaps identified in Current Replacement Models

Nakagawa’s observation that it is of great importance to avoid a failure of an

item when its failure during operation is costly and/or dangerous needs to be

taken very seriously especially when one ponders the ramifications of failure

of a critical component for an aeroplane flying in mid-air or a space aircraft

in space; one can argue that the same applies for a country’s missile defence

system - the list is essentially endless. One way of reducing the incidence of

failure is to have parallel connection of two or more of the critical components.

An inspection and replacement model where this parallel connection is in

place will prove useful.
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Chapter 3

Scheduling of Inspection Times
over a Finite Planning Horizon

3.1 Introduction

The focus on inspection and replacement models has mainly been confined to

the infinite planning horizon because of the fact that the majority of papers

dealing with inspection and replacement models, according to Berrade et al.

(2013), assume that systems are required indefinitely and the major concern

is that of cost of running the system. Another reason why many papers have

focused on maintenance of systems for an infinite span as opposed to a finite

span, according to Nakagawa and Mizutani (2009), is that the latter are the-

oretically more difficult to study.

Nakagawa and Mizutani (2009), however, point out that finite planning hori-
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zon models are particularly useful for such things as power plants which are

becoming obsolete in Japan. Other systems cited in their paper which are

good candidates for the application of the latter models include public in-

frastructure which encompass bridges, railroads, water supply and drainage

in advanced nations. Wang and Christer (1997) extend earlier works which

assume an infinite planning horizon and makes use of asymptotic results from

Renewal and Renewal Reward processes to arrive at pertinent results for the

finite planning horizon case. They assert that in practice, the time horizon

over which a component or system may be used is finite and they give the

need to move to upgraded systems from time to time to support their as-

sertion. Other research work that has focused on a finite planning horizon

include

1. Morey (1968) who researched on finite planning horizon models using

minimization of cost of operating the system as his criterion. He has

derived results for determining when it is prudent to carry out at least

one inspection over a finite planning horizon for the case of imperfect

inspections.

2. Usher et al. (1998) who discussed the case of a finite planning horizon

with minimization of costs as their objective function.
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3. Nakagawa et al. (2004) who discussed the application of basic inspec-

tion policies over a finite time span to five models: back-up for a hard

disk, checkpoint for double modular redundancy, job partition, garbage

collection and network partition.

4. Nakagawa and Mizutani (2009) who developed three replacement poli-

cies for a one-unit system; for the replacement policies, n identical units

are sequentially replaced over a finite period [0, L] in accordance with

some set rules.

5. Taghipour et al. (2010) who proposed a model to find the optimal peri-

odic inspection interval on a finite time horizon for a complex repairable

system. The system has components which can experience “hard fail-

ures” (which are detected as and when they occur) and “soft failures”

which are only detected when an inspection is carried out.

6. Ahmadi and Newby (2011) who use a new approach (which they defined

as the intensity control model) at determining an optimal inspection

schedule over a production run of finite length L with the sole objective

of minimizing overall costs.
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7. Berrade et al. (2013) who researched on periodic inspections being con-

ducted on a system over a finite planning horizon of length L. The

inspections in their paper are imperfect and the criterion they use is

minimization of total cost over the planning horizon.

In this chapter, the optimization criterion used is maximization of profit

(similar to the paper by Antelman and Savage (1965)) and the goal of mod-

els discussed in this thesis is that of determining procedures to answer the

questions:

1. what is the ideal planning horizon (denoted by L in this thesis) for

operating the system? How many inspections should be carried out

over this ideal planning horizon and at which points in time should the

inspections be scheduled?

2. when is it prudent to evenly spread inspections over the planning hori-

zon?

As has been discussed in Chapter 2, Barlow et al. (1963) showed that in-

spection times that are equally interspaced (over a planning horizon that is

not finite) generally do not result in minimization of per unit of time mainte-

nance costs; in their work they state that for the class of lifetime distributions
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which are Polya frequency functions of order two (PF2), it only happens for a

system whose lifetime distribution is an exponential distribution. One would

ask the question: is it also the case for models where the planning horizon

is finite, i.e. would periodic inspections result in maximization of profit for

a system that is operated over a finite planning horizon when the system

lifetime distribution is an exponential distribution? The works of Nakagawa

(1984) and Taghipour et al. (2010) are somewhat similar to what is done in

this thesis when dealing with inspections that are evenly spread across the

entire planning horizon.

3.2 A simple finite planning horizon inspec-

tion model

3.2.1 The model

This model applies to a situation where one plans to operate a system (whose

purchase price is Co) over a finite period of time, call it a finite planning

horizon of length L. During this period, there are no planned inspections or

n ∈ N planned inspections at times x1, x2, · · · , xN such that

0 < x1 < x2 < · · · < xn < L.
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Assumptions

It is assumed that at the start of operation, the system is in a working state

(i.e. functioning perfectly) and producing products that are of acceptable

quality and will continue to do so at a steady rate (thus enabling the owner

or company which owns the system to generate income at a steady rate) until

it gets into a failed state. The system’s time to failure T is a continuous ran-

dom variable with probability density function and cumulative distribution

function fT (t) and FT (t), respectively. Like in most papers listed in Section

1.2, in this thesis we assume that T ’s distribution is completely known. The

assumptions of the model are:

1. when working, the system generates or brings in revenue at a constant

rate of cR per unit of time,

2. the time it takes to complete each and every inspection is negligible

and each inspection costs an amount of cI - this is a common assump-

tion in most papers on inspection replacement models that have been

published. As will be seen in Chapter 4, Luss and Kander (1974), Luss

(1977), Stadje and Zuckerman (1990), Badia et al. (2001) and Wang

(2009) are some of the few papers which work on the premise that
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inspections are of non-negligible duration.

3. no inspections or a finite number of inspections n ∈ N are scheduled to

be done at times x1, x2, · · · , xn such that 0 < x1 < x2 < · · ·xn < L; the

notation xjn, j = 1, · · · , n or xj,n, j = 1, · · · , n is used to emphasize that

xjn is the time at which the jth inspection out of a total of n inspections

is to be conducted. Any scheduled inspections after the system has gone

into the failed state are not done and the owner of the system only pays

for those inspections which will have been done. When n inspections

have been scheduled at times x1, x2, · · · , xn as described above, the

actual number of inspections done in a cycle NC is therefore a random

variable which depends on T and

P (NC = k) = P (xk−1 ≤ T ≤ xk) =


FT (xk)− FT (xk−1), k = 1, 2, · · · , n− 1

RT (xk−1), k = n

0, otherwise
(3.1)

where xo = 0.

4. if the system fails during operation, this is only detected at the next

scheduled inspection at which point in time the project will be de-

commissioned and the system is sold (as scrap) to a recycling plant at
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a salvage value of CS
1. Other examples of such systems which come

to mind may include a) a system whose main and critically important

component is a battery, b) a system whose main and critically im-

portant component is a bearing, c) a refrigerator where the main and

critically important component is the compressor, d) an electric circuit

which has one or more components which burn out when it gets into a

failed state and are therefore not repairable, etc.

5. inspections will accurately report on the state of the system; i.e. there is

no error on the part of inspections whereby a system that is functioning

perfectly may be reported as being in a failed state (i.e. false positive)

or a failed system being reported as functional (false negative). As

will be seen in Chapter 5, Morey (1968), Badia et al. (2001), Wang

(2009), Berrade et al. (2013), Wang et al. (2014) and Flage (2014) are

some of the researchers who have developed models which deal with

imperfect inspections. Badia et al. (2001) says that an inspection that

erroneously reports that a non-faulty system is faulty commits a Type I

error while an inspection that erroneously reports that a faulty system

1In this chapter CS does not affect the optimal inspection schedule; it would, however,
be an important factor in the case of a financial environment where the discount factor is
non-zero
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is not faulty commits a Type II error.

6. the system cannot fail while being checked and in addition, checking

does not degrade the system. This assumption is in contrast to the

works of Wattanapanom and Shaw (1979) and Butler (1979) who have

separately worked on the case of systems where inspections may destroy

or damage the system. Flage (2014) too has developed models with

imperfect inspections that are in addition, failure-inducing.

7. if the system operates until the planned horizon L, it is de-commissioned

and sold (as scrap) to a recycling plant at a salvage value of CS,

8. the company or owner of the system incurs a cost of cF for each unit

of time the system is idle so that the cost associated with the system

being idle for a time period of γt is cFγt. Munford (1981) has developed

a novel model which requires that the entire produce in a cycle where

failure occurred needs to be reworked so that the cost associated with

the downtime when the system was in a failed state discovered at the

kth inspection is cF (xk − xk−1).

Remark 3.1 The rules for decommissioning the system (given in Assump-

tions 4. and 7.) are very similar to the replacement rules in the papers
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by Zuckerman (1980) and Sheu et al. (2015) as well as the conditions for

retiring the system in Berrade et al. (2013). Rangan and Grace (1989)’s

“Replacement Policy T” rules for replacing a system are somewhat similar

to the replacement rules used in this chapter.

Remark 3.2 If there exists at least one finite value to such that FT (to) = 1,

then models discussed in chapters 3, 4 and 5 assume that the planning horizon

L ≤ to.

Notation

The following is a comprehensive list of the notation used in this thesis:

cF - per unit of time cost of system idleness

cI - cost of carrying out an inspection

Co - cost of buying and installing the system

cR - rate at which revenue accrues per unit of time

CS - salvage value of the system upon disposal

T time to failure of the system

fT (.) - probability density of system time to failure T
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FT (.) - cdf of system time to failure T

RT (.) - system reliability function (or survival function) and

RT (t) = P (T > t)

HT (.) - hazard function (or failure rate function) for the system.

L - length of a finite planning horizon2 (L = xn+1)

xin - ith (i = 1, · · · , n) inspection time when n inspections have been sched-

uled

τ - time between two successive inspections when inspections are equidis-

tant and evenly spread across the planning horizon 3

Theoretical results

If no inspection is planned and the system is to be operated up to a planning

horizon of L, the expected value of the profit GE.0
4:

GE.0 = (cR + cF )

[∫ L

0

tfT (t)dt− LFT (L)

]
+ cRL− (Co − CS) (3.2)

2no inspection is scheduled at time L = xn+1 as such
3when n inspections are evenly spread over the planning horizon of length L, then

L = (n+ 1)τ .
4in this chapter, Co − CS does not impact on the optimal solution; it would, however,

affect the optimal solution if there was a non-zero discount rate
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Defining xo = 0, the cost of operating the system up to the time it fails,

T (if it fails before time L) or for the maximum time period of L (if it does

not fail by time L, i.e. if T > L), C(x, T, L):

C(x, T, L) =


icI + cF (xi − T ) + (Co − CS), xi−1 ≤ T < xi, i = 1, 2, · · · , n
ncI + cF (L− T ) + (Co − CS), xn ≤ T < L
ncI + (Co − CS), T ≥ L

(3.3)

The revenue generated, R(T, L):

R(T, L) =

{
cRT, T < L
cRL, T ≥ L

(3.4)

The net profit if the system fails after a time T , thus, G(x, T, L):

G(x, T, L) =


cRT − icI − cF (xi − T )− (Co − CS), xi−1 ≤ T < xi, i = 1, 2, · · · , n
cRT − ncI − cF (L− T )− (Co − CS), xn ≤ T < L
cRL− ncI − (Co − CS), T > L

(3.5)

The expected profit for the simple finite planning horizon inspection

model,

GE.n = E[G(x, T, L)], thus, is such that:

GE.1 = (cR+cF )

[∫ L

0

tfT (t)dt− LFT (L)

]
+cF (L−x1)FT (x1)+cRL−cI−(Co−CS)

(3.6)
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(i.e. for the case where only one inspection is scheduled) and

GE.n = (cR + cF )

[∫ L

0

tfT (t)dt− LFT (L)

]
+ cF (L− xn)FT (xn)

+
n−1∑
i=1

[cI + cF (xi+1 − xi)]FT (xi) + cRL− ncI − (Co − CS)(3.7)

for the case where at least two inspections are scheduled.

3.2.2 Properties of GE.n

The following four properties of GE.n, given as Lemmas (3.1) to (3.4), hold

for a given value of n and any finite inspection times x1, x2, · · · , xn such that

0 < x1 < · · · < xn < L.

Lemma 3.1 limL→0+ GE.n = CS − Co − ncI .

Proof:

As L→ 0+, FT (L)→ 0, and FT (xi)→ 0, i = 1, · · · , n. Thus,

limL→0+ GE.n = −(C0 − CS + ncI).

Lemma 3.2 If the time to failure has a finite mean µT and n inspections

are scheduled at specific finite times x1, · · · , xn, then limL→+∞ GE.n = −∞.
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Proof:

GE.n = (cR + cF )

∫ L

0

tfT (t)dt− cFL [FT (L)− FT (xn)] + cRL [1− FT (L)] + κ(x1, · · · , xn)

(3.8)

where

κ(x1, · · · , xn) = −cFFT (xn)+
∑n−1

i=1 [cI+cF (xi+1−xi)]FT (xi)−ncI−(Co−CS)

is finite. Now, since

limL→∞[FT (L)− FT (xn)] = 1− FT (xn) > 0 we have

limL→∞ cFL[FT (L) − FT (xn)] = +∞ while limL→∞ cRL [1− FT (L)] = 0.

Thus, limL→∞ GE.n = −∞.

Lemma 3.3

∂GE.n
∂L

= −cF [FT (L)− FT (xn)] + cR [1− FT (L)] (3.9)

and since limL→0 FT (L) = limL→0 FT (xn) = 0, we have

lim
L→0

∂GE.n
∂L

= cR. (3.10)

Remark 3.3 For any given number of inspections n taking place at specific

fixed times

0 < x1 < x2 · · · , < xn < L, initially the expected profit increases as the

planned horizon L for operating the system increases.

67



Lemma 3.4 For any given number of inspections n taking place at specified

fixed times 0 < x1 < x2 · · · , < xn < L, there exists a unique planning

horizon5 L∗ which maximizes the profit function GE.n which is given by

L∗ = F−1
T

[
cR + cFF (xn)

cR + cF

]
(3.11)

Proof: From Equation (3.9),

∂GE.n
∂L

= −cF [FT (L)− FT (xn)] + cR [1− FT (L)] = 0 when L = L∗

⇒ F (L∗) =
cR + cFF (xn)

cR + cF

⇒ L∗ = F−1

[
cR + cFF (xn)

cR + cF

]

Further,
∂2GE.n
∂L2

= −(cF + cR)fT (L) < 0 when L = L∗.

Remark 3.4 If n inspections are planned at specific fixed times x1n, · · · , xnn,

the length of the optimal planning horizon L∗n depends only on the time at

which the very last inspection takes place and the time to failure distribution.

Bearing in mind the properties of GE.n discussed above, it is imperative to

formulate the following as objectives in the search for a scenario that will

maximize profit:

5provided FT (t) is a strictly monotonic increasing function of t
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1. For each n ∈ N, to find the n optimal inspection times x∗1n, x
∗
2n, · · · , x∗nn

such that 0 < x∗1n, x
∗
2n, · · · , x∗nn and optimal planning horizon L∗n which

maximize GE.n (see Section 3.2.4.

2. For a pre-set value of L > 0, to find the optimal number of inspection

times, n = n∗ and the inspection times 0 < x∗1n∗ < x∗2n∗ , · · · < x∗n∗n∗

which maximize GE.n; the algorithm for finding n∗ and the accompany-

ing inspection times involves starting off with 0 inspections and com-

puting GE.0; next consider 1 inspection and calculate GE,1 and compare

with GE.0; of the two, opt for one that results in a higher profit. If

1 inspection has been found to be better, calculate GE.2 and compare

with GE,1 and so on. The process is repeated iteratively until n is such

that GE.n > GE.n+1 or for some ε > 0, |GE.n+1−GE.n| < ε in the case of

GE.n being a monotonic increasing function of n.

3. To find the values n = n∗∗, L = L∗∗, x1 = x∗∗1 , x1 = x∗∗1 , · · · , xn = x∗∗n∗ ,

which jointly result in the global maxima of GE.n.

4. To assess the impact of evenly spreading inspections across the planning

horizon on profit. When inspections are evenly spread across the plan-

ning horizon, the ith inspection takes place at time xi = iτ, i = 1, · · · , n
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where L = (n+ 1)τ .

Remark 3.5 From Equation (3.7), it can be deduced that for equally inter-

spaced inspections such that xi − xi−1 = τ (i = 1, · · · , n) and L = (n+ 1)τ

GE.n(L) = (cR + cF )

[∫ L

0

tfT (t)dt− LFT (L)

]
+

cFL

n+ 1
FT

(
nL

n+ 1

)
+

(
cI +

cFL

n+ 1

) n−1∑
i=1

FT

(
iL

n+ 1

)
+ cRL− ncI − (Co − CS)

(3.12)

3.2.3 Optimal inspection times and optimal planning
horizon

Using differential calculus and Equation (3.2) we deduce that the optimal

planning horizon when no inspection is scheduled is of length L∗0:

L∗0 = F−1
T

(
cR

cR + cF

)
. (3.13)

From Equation (3.6), we see that when a single inspection is to be scheduled,

the optimal inspection time x∗11 and optimal planning horizon L∗1 are solutions

of system of equations (3.14):

L∗1 = x∗11 +
FT (x∗11)

fT (x∗11)
[1]

FT (x∗11) =
(cR+cF )FT (L∗1)−cR

cF
[2]

}
(3.14)

Lemma 3.5 The optimal planning horizon when no inspection is scheduled

is shorter than the optimal planning horizon when a single inspection is sched-

uled, i.e. L∗0 < L∗1.
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Proof:

x∗11 > 0 ⇒ FT (x∗11) > 0⇒ (cR + cF )FT (L∗1)− cR
cF

> 0

⇒ FT (L∗1) >
cR

cR + cF
= FT (L∗o)⇒ L∗1 > L∗0.

In the general case of n ∈ N (n ≥ 2) inspections being scheduled, the optimal

inspection times x∗1n, · · · , x∗nn and optimal planning horizon L∗n are solutions

of the system of equations (3.15) (the equations arise from the n+ 1 partial

derivatives of GE.n in Equation (3.7) with respect to x1, · · · , xn and L being

set to 0 each):

x∗2n = x∗1n +
FT (x∗1n)

fT (x∗1n)
− cI

cF
, [1]

x∗k+1,n = x∗kn +
FT (x∗kn)−FT (x∗k−1,n)

fT (x∗kn)
− cI

cF
, k = 2, · · · , n− 1 [2]− [n− 1]

L∗n = x∗nn +
FT (x∗nn)−FT (x∗n−1,n)

fT (x∗nn)
[n]

FT (x∗nn) = (cR+cF )FT (L∗n)−cR
cF

[n+ 1]


(3.15)

The results arrived at in this thesis are somewhat similar to those arrived at

by Barlow et al. (1963) (see Equation (7) in their paper) and Munford (1981)

in the section entitled “Optimal Inspection Policy, Model 2”. The latter two

papers look at a continuous production process where inspections take place

at certain designated times over an infinite planning horizon.

Remark 3.6 Just like in the papers by Barlow et al. (1963), Luss (1977) and
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Luss (1983), Equations (3.14) and (3.15) do not present tractable solutions

for determining optimal inspection times and the corresponding optimal plan-

ning horizon for a specified number of inspections n. Two methods (which

rely on computer programs) for determining optimal inspection times and the

optimal planning horizon are suggested in this thesis (see Section 3.2.4 and

Section 3.2.5).

3.2.4 Method 1 - Iterative procedure for calculating
optimal inspection times

The iterative procedure suggested in this chapter (which makes use of Equa-

tion (3.15) for determining estimates of the optimal inspection times and

optimal planning horizon for a given number of inspections) is as follows:

Step 1 : Start with a guesstimate of x∗1n, call it χ
(1)
1n and use it in Result [1]

of Equation (3.15) to calculate an estimate χ
(1)
2n of x∗2n which in turn

is used to calculate estimates χ
(1)
3n , · · · , χ

(1)
nn and Ln of x∗3n, · · · , x∗nn and

L∗n, respectively, by making use of results [2] to [n] of Equation (3.15).

Step 2 : Using the value of Ln found in Iteration 1, determine a new estimate

χ
(2)
nn of x∗nn using Equation (4.23):

FT (χ(2)
nn) =

(cR + cF )FT (Ln)− cR
cF

(3.16)
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and then calculate the difference ∆ = χ
(2)
nn − χ(1)

nn . If ∆ ≈ 0, then the

guesstimate of x∗1n, χ
(1)
1n as well as estimates of x∗3n, · · · , x∗nn and L∗n are

acceptably good. If ∆ < 0, go back to Step 1 and use a larger value of

the guesstimate χ
(1)
1n . On the other hand, If ∆ > 0, go back to Step 1

and use a smaller value of the guesstimate χ
(1)
1n .

The algorithm is summarized diagramatically using a flowchart in Figure 3.1.
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Figure 3.1: An algorithm for calculating optimal inspection times and the
optimal planning horizon

Remark 3.7 If one starts with a guesstimate χ
(1)
1n which is too small in com-

parison to x∗1n, i.e. χ
(1)
1n −x∗1n << 0, Equation (4.23) will be infeasible because

the value of (cR+cF )FT (Ln)−cR
cF

will be negative. On the other hand, a guessti-

mate χ
(1)
1n which is too large in comparison to x∗1n, i.e. χ

(1)
1n − x∗1n >> 0

results in some values of χ
(1)
jn , j > 1 approaching infinity and computation of

χ
(2)
nn being rendered impossible.
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3.2.5 Method 2 - Nonlinear optimization procedure for
calculating optimal inspection times

The second method hinges on the formulation of the problem as a non-

linear optimization problem with the usual non-negativity constraints as in

Equation (3.17):

Maximize GE.n = (cR + cF )

[∫ xn+1

0

tfT (t)dt− xn+1FT (xn+1)

]
+ cF (xn+1 − xn)FT (xn)

+
n−1∑
i=1

[cI + cF (xi+1 − xi)]FT (xi) + cRxn+1 − ncI − (Co − CS)

subject to: xi − xi+1 ≤ 0; i = 1, · · · , n (3.17)

3.3 Applications and Examples

In this section, the theoretical results and examples applicable to time to

failure following a continuous uniform distribution or being a member of the

Weibull family of probability distributions are explored.

Remark 3.8 Barlow et al. (1963) have stated the following (Theorem 5 of

their paper) with proof (for the case of an infinite planning horizon where the

cost per unit of time is the optimization criterion): If the failure density

f is a Polya frequency function of order 2 (PF2), and fT (t) > 0 for

t > 0, then the optimal checking intervals are non-decreasing.

75



3.3.1 Time to failure following a continuous uniform
distribution

For the case T ∼ U [0, Lo] (i.e. T being uniformly distributed over the interval

[0, Lo]), if inspections are evenly spread across a preset planning horizon

L < Lo, from Equation (3.12) we have:

GE.n(L) =
ncFL

2

(n+ 1)2Lo
+
n(n− 1)

(
cI + cFL

n+1

)
L

2(n+ 1)Lo
−ncI+cRL−

(cR + cF )L2

2Lo
−(Co−CS)

(3.18)

Remark 3.9 It does not make business sense to have a planning horizon L

which is longer than the maximum possible length for which the system may

operate and hence if T ∼ U [0, Lo], we consider the scenario L < Lo only.

Lemma 3.6 The optimal number of inspections for this sub-class of inspec-

tion models is the least integer n such that

n ≥

√
cFL2

cI(2Lo − L)
− 4Lo

2Lo − L
+

9

4
− 3

2
(3.19)
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Proof:

GE.n(L)−GE.n+1(L) =
[2(n2 + 3n+ 2)Lo − (n+ 3)nL] cI − cFL2

2(n+ 1)(n+ 2)Lo

and GE.n(L)−GE.n+1(L) ≥ 0

⇔ 2(n2 + 3n+ 2)Lo − (n+ 3)nL ≥ cF
cI
L2

⇔ n ≥

√
cFL2

cI(2Lo − L)
− 4Lo

2Lo − L
+

9

4
− 3

2
.

For the case where the planning horizon is not preset, the optimal planning

horizon when n inspections are to be evenly spread, Lopt(n):

Lopt(n) =


2(n+1)cRLo+n(n−1)cI

2(cF+(n+1)cR
, if n ≤

√
2 cF
cI
Lo + 1

4
+ 1

2

Lo, if n >
√

2 cF
cI
Lo + 1

4
+ 1

2

(3.20)

Remark 3.10 It does not make any business sense to schedule more than√
2 cF
cI
Lo + 1

4
+ 1

2
inspections if the time to failure T ∼ U [0, Lo].

Example 3.1 Suppose a system is such that its time to failure follows a

continuous uniform distribution over the interval [0, 100]. Other attributes

of the system are: Co = $10000, CS = $2500, cR = $1000, cF = $200 and

cI = $400. The optimum inspection schedules and optimal planning horizon

(found with the aid of a Mathematica program similar to the one in Appendix

A.1) are given in Table 3.1.
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What is interesting is that for a given number of inspections n, the op-

timal planninng horizon and the optimal planning horizon for the case of

uniformly spread inspections are approximately equal. The global optimal

inspections schedule requires that 7 inspections be done at optimal times

19.07, 36.15, · · · , 91.51. For the subclass of inspection models where inspec-

tions are evenly spread over a finite planning horizon, the optimal inspection

model requires that 6 inspections be carried out at unformly interspaced

times 14.01, 28.02, · · · , 84.05. For any specified number of inspections, the

frequency of inspection rises with the ageing of the system (consistent with

Remark 3.8 made by Barlow et al. (1963)) .

Barlow et al. (1963) say that in the case of time to failure being a uni-

formly distributed random variable over the interval [0, τo] and the criterion

being minimization of costs, the optimal number of inspections is the largest

integer n∗ such that n∗(n∗ − 1) < 2cF τo/cI ; thus, n∗ would have been 10

- which is different when the optimization criterion is maximization of ex-

pected profit. However, the inspection schedules for the two models when

the number of inspections is n = 10 are almost the same.

78



T
ab

le
3.

1:
O

p
ti

m
al

in
sp

ec
ti

on
ti

m
es

an
d

th
e

op
ti

m
al

p
la

n
n
in

g
h
or

iz
on

w
h
en

ti
m

e
to

fa
il
u
re

is
u
n
if

or
m

ly
d
is

tr
ib

u
te

d

 

n
 

In
sp

ec
ti

o
n

 t
im

es
 w

h
ic

h
 a

re
 o

p
ti

m
al

ly
 s

ch
ed

u
le

d
/ 

In
sp

ec
ti

o
n

 t
im

es
 w

h
ic

h
 a

re
 e

ve
n

ly
 s

p
re

ad
 

O
p

ti
m

al
 P

la
n

n
in

g 
h

o
ri

zo
n

 
Ex

p
ec

te
d

 P
ro

fi
t 

fo
r 

O
p

ti
m

al
 

sc
h

ed
u

lin
g/

Ex
p

ec
te

d
 p

ro
fi

t 
fo

r 
U

n
if

o
rm

ly
 s

p
re

ad
 in

sp
ec

ti
o

n
s 

0 
- 

83
.3

3 
34

16
6.

70
 

- 
83

.3
3 

34
16

6.
70

 

1 
45

.4
6 

90
.9

1 
37

55
4.

55
 

45
.4

6 
90

.9
1 

37
55

4.
55

 

2 
32

.6
2,

 6
3.

25
 

93
.8

8 
38

70
2.

75
 

31
.2

9,
 6

2.
58

 
93

.8
8 

38
70

0.
10

 

3 
26

.3
8,

 5
0.

76
, 7

3.
14

 
95

.5
2 

39
21

6.
19

 

23
.8

8,
 4

7.
76

, 7
1.

64
 

95
.5

2 
39

20
5.

20
 

4 
22

.9
2,

 4
3.

85
, 6

2.
77

, 7
9.

69
 

96
.6

2 
39

46
6.

77
 

19
.3

2,
 3

8.
65

, 5
7.

97
, 7

7.
29

 
96

.6
2 

39
43

9.
57

 

5 
20

.9
0,

 3
9.

81
, 5

6.
71

, 7
1.

61
, 8

4.
52

 
97

.4
2 

39
58

7.
74

 

16
.2

4,
 3

2.
47

, 4
8.

71
, 6

4.
95

, 8
1.

18
 

97
.4

2 
39

53
4.

40
 

6 
19

.7
2,

 3
7.

44
, 5

3.
17

, 6
6.

89
, 7

8.
61

, 8
8.

33
 

98
.0

6 
39

63
9.

40
 

14
.0

1,
 2

8.
02

, 4
2.

02
, 5

6.
03

, 7
0.

04
, 8

4.
05

 
98

.0
6 

39
54

8.
00

 

7 
19

.0
7,

 3
6.

15
, 5

1.
22

, 6
4.

29
, 7

5.
37

, 8
4.

44
, 9

1.
51

 
98

.5
9 

39
65

3.
75

 

12
.3

2,
 2

4.
65

, 3
6.

97
, 4

9.
29

,  
61

.6
2,

 7
3.

94
, 8

6.
26

 
98

.5
9 

39
51

0.
30

 

8 
18

.7
8,

 3
5.

57
, 5

0.
35

, 6
3.

13
, 7

3.
91

, 8
2.

70
, 8

9.
48

, 9
4.

26
 

99
.0

4 
39

64
9.

57
 

 
11

.0
0,

 2
2.

01
, 3

3.
01

, 4
4.

02
, 5

5.
02

, 6
6.

03
, 7

7.
03

, 8
8.

04
 

99
.0

4 
39

43
8.

00
 

9 
18

.7
5,

 3
5.

49
, 5

0.
24

, 6
2.

98
, 7

3.
73

, 8
2.

47
, 8

9.
22

, 9
3.

96
, 9

6.
71

 
99

.4
5 

39
63

9.
10

 

 
09

.9
5,

 1
9.

89
, 2

9.
84

, 3
9.

78
, 4

9.
73

, 5
9.

67
, 6

9.
62

, 7
9.

56
, 8

9.
51

 
99

.4
5 

39
34

1.
50

 

10
 

18
.8

9,
 3

5.
79

, 5
0.

68
, 6

3.
57

, 7
4.

46
, 8

3.
36

, 9
0.

25
, 9

5.
14

, 9
8.

04
, 9

8.
93

 
99

.8
2 

39
63

1.
07

 

 
09

.0
7,

 1
8.

15
, 2

7.
22

, 3
6.

30
, 4

5.
37

, 5
4.

45
,6

3.
52

, 7
2.

60
, 8

1.
67

, 9
0.

75
 

99
.8

2 
39

22
7.

40
 

79



3.3.2 Time to failure an exponentially or Weibull dis-
tributed random variable

Sun et al. (1993) and Smith and Naylor (1987) say that the Weibull distri-

bution 6 (WD) is perhaps the distribution that has the widest acclaim in

Reliability Theory owing to its flexibility which makes it able to fit a wide

range of life-time data.

Time to failure exponentially distributed

In the case of T following an exponential distribution with parameter θ,

fT (t) = θe−θt.I(0,∞)(t) and FT (t) = (1− e−θt).I(0,∞)(t).

Example 3.2 Suppose the time to failure of a system follows an exponen-

tial distribution with θ = 0.05 year−1. The machine has Co = $10000,

CS = $2500, cR = $1000, cF = $200 and cI = $400. Using a Mathematica

program, the various optimal inspection times and optimal planning horizons

for different values of n are given in Table 3.2 below.

The observations made are

• From Table 3.2, one observes that as the number of inspections in-

creases, the expected profit obtained by evenly scheduling inspections

6the exponential distribution is a special case of the Weibull distribution
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over the planning horizon and the expected profit obtained from opti-

mally scheduled inspections converge.

• Figure 3.5 gives an illustration of the typical variation of GE.n with L

for a fixed number of inspections (n = 3) which are evenly spread over

the planning horizon for a system whose time to failure follows an ex-

ponential distribution. The graph of GE.n versus L (for an exponential

distribution) follows the same pattern in the case of optimal inspection

policies.

• Figure 3.2 demonstrates the typical dependence of GE.n on the inspec-

tion time and planning horizon if a single inspection were to be sched-

uled; the values of x1 and L which jointly maximize the profit function

are unique and the origin can be used as an initial feasible solution

when trying to find the values of the variables which jointly maximize

the profit using non-linear programming.

• Figure 3.3 illustrates the fact that a larger planning horizon will cer-

tainly result in a larger value of GE.n provided an optimum and higher

number of inspections at optimally set inspection times are done. What

is observed is that the net gain of increasing the planning horizon by
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1 unit of time, however, progressively diminishes with larger values of

L and this translates to GE.n converging to its supremum when values

of L and n are appropriately increased. From this observation, it may

be prudent to recommend that, for some desirable ε > 0, an optimal

value of n is the least value of n such that GE.n+1 − GE.n < ε

0

20

40
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40
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0
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Gn

Figure 3.2: Profit when a single in-
spection is scheduled
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Figure 3.3: Maximum of GE versus
n and L∗(lifetime exponentially dis-
tributed)

• Also from Figure 3.3 the impression one gets is that shorter plan-

ning horizons have a lower number of inspections per unit of time (i.e.

n∗/L∗) compared to longer planning horizons; initially L∗ versus n has

a higher slope which appears to stabilize as L∗ (or n) increases.

• higher values of cI favour fewer and relatively more evenly spread in-
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spections.

Figure 3.3: The dependence of optimal inspection times on θ
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• Inference drawn from Figure 3.3 is that the time between successive

inspections increases progressively over time for low values of θ (i.e. for

systems which generally have a longer survival time). A reverse trend

(whereby the inter-inspection time progressively decreases) occurs for

systems with much larger values of θ (i.e. systems whose time to failure

are generally shorter).

• For systems with shorter time to failure (i.e. higher values of θ), evenly

spreading the inspections over the planning horizon, if the number of

inspections is large, will not result in much lower profits compared to

the optimal inspection schedule 7.

7a comparison of the first few rows and last row of Table 3.2 attest to this observation
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Example 3.3 Suppose a system is such that its time to failure follows an

exponential distribution with θ = 0.05 year−1. Other attributes of the system

are: Co = $10000, CS = $2500, cR = $1000, cF = $200 and cI = $400.

The optimum inspection schedules when it is planned that the system will be

operated a) for 100 and b) for 200 time units are illustrated in Figures 3.4.
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Figure 3.4: Optimal inspection schedules when L = 100 and 200 time units

What is observed (see Figure 3.4) is that for a given fixed planning horizon,

• if the number of inspections is small, the time between successive in-

spections starts off small and progressively increases with time and

most of the inspections are crammed in the beginning. On the other
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hand, if the number of inspections is large, the time between two succes-

sive inspections starts off large and progressively gets diminished over

time such that a lot of inspections are crammed in the time interval

leading up to the planning horizon.

• if the optimal number of inspections is used, the inspections appear to

be somewhat evenly spread over the planning horizon.

Time to failure following a Weibull distribution (WD)

If the lifetime of a system follows a Weibull distribution with parameters θ

and k 8, i.e. T ∼ WD(k, θ), its pdf and cdf, respectively are

fT (t; θ, k) = kθ(θt)k−1e−(θt)k .I(0,∞)(t) and

FT (t; k, θ) =
(

1− e−(θt)k
)
.I(0,∞)(t) (3.21)

where the indicator function I(0,∞)(t) =

{
1, t > 0
0, t ≤ 0

The dependence of GE.n on the planning horizon for k = 1 and k = 7 (when

inspections are evenly spread) are separately illustrated in Figure 3.5(a) and

Figure 3.5(b). In particular, it is observed that for low values of k, e.g. k = 1

8a random variable T ∼ WD(1, θ) is essentially a t-distributed random variable with
parameter θ
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(i.e. when the time to failure is an exponential distribution), there is one

distinct peak for the graph of GE.n versus L while for higher values of k,

it is observed that GE.n initially increases with increasing values of L to a

certain local maxima; from this point on the pattern is rugged and a couple

of local maximas are observed after which the expected profit then starts the

downward trend as expected profits decline with increasing values of L.
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G
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Figure 3.5: (a)GE.n vs L for evenly
spread inspections (when n = 3) and
T ∼ WD(1, 0.05))
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Figure 3.5: (b)GE.n vs L for evenly
spread inspections (when n = 3) and
T ∼ WD(7, 0.05)

Example 3.4 Suppose the time to failure of a system follows a Weibull dis-

tribution with θ = 0.05 year−1 and k = 5. The machine has Co = $10000,

CS = $2500, cR = $1000, cF = $200 and cI = $400.

The observations made are

• from Figure 3.8 (when a single inspection is to be done) profit initially

increases with both increasing L and inspection time x1. The origin is
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not a suitable initial feasible solution as the graph of GE.1 versus x1 and

L has more than one local maxima. Figure 3.8 clearly demostrates that

there exist optimal values of L and x1 which together jointly maximize

the profit.

• The shape of the plot in Figure 3.9 is similar to the one in Figure

3.2. Just like in the case of the exponential distribution, Figure 3.9

illustrates the fact that a larger planning horizon will certainly result

in a larger value of Gn.L provided an optimum and higher number of

inspections at optimally set inspection times are done. It is again

observed that the net gain of increasing the planning horizon by 1

unit of time progressively gets diminished with larger values of L and

this translates to GE.n converging to its supremum when values of L

and n are appropriately increased. From this observation, it is again

appropriate to recommend that for some desirable ε > 0, an optimal

value of n is the least value of n such that GE.n+1 − GE.n < ε
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Figure 3.8: GE.n vs L and inspection
time (x1) for T ∼ WD(5, 0.05))
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Figure 3.9: GE.n vs L and n for op-
timally placed inspection times when
T ∼ WD(5, 0.05)

Optimal inspection schedules for different forms of Weibull distri-
butions

An investigation of the dependence of optimal inspection schedule on the form

of the Weibull distribution (specifically for different coefficient of skewness,

α3 values) was carried out with the aid of Example (3.5) below. According to

Lindsay et al. (1996), the coefficient of skewness of the Weibull distribution

depends on k and

α3 =
Γ
(
1 + 3

k

)
− 3Γ

(
1 + 1

k

)
Γ
(
1 + 2

k

)
+ 2Γ3

(
1 + 1

k

)[
Γ
(
1 + 2

k

)
− Γ2

(
1 + 1

k

)] 3
2

(3.22)

When k ≈ 3.6, α3 ≈ 0 and the pdf of T is near symmetrical; the distribution

is positively skewed when k has lower values while larger values of k entail

negative skewness.
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Example 3.5 Suppose the time to failure of a system follows a Weibull dis-

tribution with θ = 0.05 year−1 and k > 1. The machine has Co = $10000,

CS = $2500, cR = $1000, cF = $200 and cI = $400. The optimal inspection

schedules for n = 1 and n = 3 are given in Table 3.3 below.

Table 3.3: Optimal inspection schedules for different forms of the Weibull
Distribution
k µT σ2

T α3 x1 L Optimal x1 x2 x3 L Optimal
value of value of
GE.1 GE.3

0.5 40.00 8000.00 6.619 37.86 200.68 $15879.20 16.95 70.59 189.32 474.03 $23798.10
1 20.00 400.00 2.000 20.53 56.37 $7993.31 12.35 27.44 47.98 83.81 $9629.41
2 17.72 85.84 0.631 18.20 32.37 $8021.60 14.59 22.23 29.40 39.76 $8442.28
3 17.86 42.13 0.168 18.23 27.32 $8755.01 16.48 21.84 26.01 31.72 $8880.45
3.6 18.02 30.91 0.00056 18.35 25.87 $9111.24 17.30 21.86 25.10 29.51 $9149.23
10 19.03 5.24 -0.6376 19.16 21.87 $10745.60 20.22 21.94 22.62 23.59 $10592.70
20 19.47 1.46 -0.868 19.54 20.904 $11375.40 20.59 21.44 21.66 22.00 $11242.10
30 19.64 0.67 -0.953 19.69 20.60 $11605.70 5.21 6.75 19.69 20.60 $10805.70

Distribution is near symmetrical when k = 3.6

With the exception of the first row, the mean for all other rows is robust -

lying between 17.72 and 20.00. The variance and skewness progressively de-

crease as k increases. When the distribution is near symmetrical, the inspec-

tion times appear to be somewhat evenly spread over the optimal planning

horizon.

Other time to failure distributions

Other distributions touted as good for modelling time to failure include

the lognormal distribution (see http://www.weibull.nl/weibullstatistics.htm

website), generalized gamma distribution (see Khodabin and Ahmadabadi

(2010)), log-logistic distribution (see Kus and Kaya (2006) and Rao et al.
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(2009)), inverse Gaussian distribution (see Folks and Chhikara (1978)) and

Log-EIG distribution (see Saw et al. (2002)).
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Chapter 4

Finite planning horizon models
with inspection times that are
of non-negligible duration

4.1 Introduction

As has been noted in the last three chapters, inspection models are developed

with the sole goal of deciding when it is most ideal to schedule inspections of

a system that is known to deteriorate over time and ultimately fail at some

point in time, T . The time to failure is a random variable and if the system

were to be operated continuously until it fails at time T , then T is assumed

to be having a probability density function (pdf) fT (t) and cumulative dis-

tribution function (cdf) FT (t) (which may be known or unknown).

Most of the research papers that have been cited in the first three chapters
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make the assumption that inspections are instantaneous. The assumption

may indeed hold for many systems and may not hold for many others. An

inspection may actually turn out to be a process which takes up a non-

negligible fixed amount of time to complete as noted by Luss and Kander

(1974), Zuckerman (1989), Thomas et al. (1991), Parmigiani (1993), Chris-

ter and Lee (1999), (and a few others) or may infact be of a non-negligible

duration which is a stochastic variable as discussed by Fang and Liu (2006).

Some inspections may indeed be carried out while the system is operational

whilst for others, an inspection may require that the system be switched off

during the period that an inspection is carried out. In this chapter, like in the

previous chapter, we discuss the case of a system which generates revenue at

the rate of cR per unit of time during the time that it is non-faulty; from the

time it fails until the next scheduled inspection when it is detected that the

system is faulty, the system incurs a cost at the rate of cF per every unit of

time it is in the faulty state. The optimization criterion used is maximization

of profit (similar to the papers by Antelman and Savage (1965) and Fang and

Liu (2006). An attempt to give a solution to the following questions is made

this chapter:

1. how many inspections and when should the inspections be scheduled
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for a given planning horizon (denoted by L in this thesis) in such a way

that profit is maximized?

2. what are the conditions necessary for evenly spread inspections to be

near-optimal?

4.2 Assumptions and notation for finite plan-

ning horizon inspection models with in-

spection times that are of equal and fixed

duration

The models apply to situations where one plans to operate a system (whose

purchase price is Co) over a finite period of time, call it a finite planning

horizon of length L; each inspection takes a fixed amount of ∆i units of time

to complete. During this period, there are n planned inspections at times

x1, x2, · · · , xN such that 0 < x1, x1 +∆i < x2, x2 +∆i < x3, · · · , xn−1 +∆i <

xn, xn + ∆i < L.

The notation and assumptions of the model are essentially the same as the

assumptions made in Section 3.2.1 with only a few more assumptions added

and some slight modification of one or two of the assumptions:

1. when working, the system generates or brings in revenue at the rate of
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cR per unit of time,

2. The time it takes to complete each and every inspection is ∆i and each

inspection costs an amount of cI ,

3. An inspection does not affect the level of degradation; i.e. it is neither

failure hastening nor otherwise,

4. if the system fails during operation, this is only detected at the end of

the next scheduled inspection at which point in time the project will

be de-commissioned and the system is sold to a recycling plant at a

salvage value of CS,

5. if the system’s lifetime exceeds L then it is operated until the end of

the planning horizon L whereupon it is de-commissioned and sold to a

recycling plant at a salvage value of CS,

6. the owners of the system only pay for the actual inspections done as

opposed to the inspections scheduled, and

7. the company incurs a cost of cF for each unit of time the system is idle

so that the cost associated with the system being idle for a time period

of γt is cFγt.
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4.3 Theoretical results

If no inspection is scheduled over the planning horizon and the system fails

at time T , the net profit will be

Go =

{
cRT − (Co − CS), T < L
cRL− (Co − CS), T ≥ L

(4.1)

Thus, expected profit for the finite planning horizon inspection model

with no inspections, GE.o is given in Equation (4.2).

GE.o = (cR + cF )

[∫ L

0

tfT (t)dt− LFT (L)

]
+ cRL− (Co − Cs) (4.2)

4.3.1 Modeling inspections which take place when the
system is running

If the plan is to have only one inspection taking place during the time interval

(x1, x1 + ∆i), then the net profit if failure occurs at time T is

G1 =


cRT − cI − cF (x1 + ∆i − T )− (Co − Cs), T < x1 + ∆i

cRT − cI − cF (L− T )− (Co − Cs), x1 + ∆i ≤ T < L
cRL− cI − (Co − Cs), T ≥ L

(4.3)

and the expected value of the net profit GE.1:

GE.1 = (cR + cF )

[∫ L

0

tfT (t)dx− LFT (L)

]
+ cF (L−∆i − x1)FT (x1 + ∆i) + cRL

−cI − (Co − Cs) (4.4)

97



The optimal commencement time for a single inspection when the plan-

ning horizon is preset at L, thus, is such that

∂G
∂x1

= cF (L−∆i − x1)
∂F (x1 + ∆i)

∂x1

− cFFT (x1 + ∆i) = 0

⇔ (L−∆i − x1)f(x1 + ∆i)− FT (x1 + ∆i) = 0. (4.5)

Remark 4.1 The optimal inspection time for the single inspection when the

planning horizon is preset at L depends on the length of the planning horizon

and the probability distribution of T only.

Lemma 4.1 When the planning horizon is a variable, the joint optimal in-

spection time and optimal planning horizon are a joint solution to the pair

of equations (4.6):

L∗1 = x∗11 + ∆i +
FT (x∗11+∆i)

fT (x∗11+∆i)
[1]

FT (x∗11 + ∆i) =
(cR+cF )FT (L∗1)−cR

cF
[2]

}
(4.6)

If the system has been set to operate over a finite planning horizon L with

n (n ∈ N such that n ≥ 2) inspections scheduled in time intervals

(x1, x1 +∆i), (x2, x2 +∆i), · · · , (xn, xn+∆i), then the net profit if the system
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fails after a time T , G(x, T, L):

G(x, X, L) =


cRT − cF (x1 + ∆i − T )− cI − (Co − CS), 0 ≤ T < x1 + ∆i

cRT − cF (xi + ∆i − T )− icI − (Co − CS), xi−1 + ∆i ≤ T < xi + ∆i;
i = 2, 3, · · · , n

cRT − cF (L− T )− ncI − (Co − CS), xn + ∆i ≤ T < L
cRL− ncI − (Co − CS), T ≥ L

(4.7)

Thus, if n (n ∈ N and n ≥ 2) inspections are scheduled such that each

inspection lasts a time of ∆i time units and can be conducted while the

system is running, the expected profit GE.n = E[G(x, T, L)]:

GE.n = (cR + cF )

[∫ L

0

tfT (t)dt− LFT (L)

]
+ cF (L− xn −∆i)FT (xn + ∆i)

+
n−1∑
i=1

[cI + cF (xi+1 − xi)]FT (xi + ∆i) + cRL− ncI − (Co − Cs)

(4.8)

In the general case of n ∈ N (n ≥ 2) inspections being scheduled, the optimal

times at which the inspections should commence x∗1n, · · · , x∗nn and optimal

planning horizon L∗n are solutions of the system of equations (4.9) (the equa-

tions arise from the n + 1 partial derivatives of GE.n in Equation (4.8) with

99



respect to x1, · · · , xn and L being set to 0 each):

x∗2n = x∗1n +
FT (x∗1n+∆i)

fT (x∗1n+∆i)
− cI

cF
, [1]

x∗k+1,n = x∗kn +
FT (x∗kn+∆i)−FT (x∗k−1,n+∆i)

fT (x∗kn+∆i)
− cI

cF
, k = 2, · · · , n− 1 [2]− [n− 1]

L∗n = x∗nn + ∆i +
FT (x∗nn+∆i)−FT (x∗n−1,n+∆i)

fT (x∗nn+∆i)
[n]

FT (x∗nn + ∆i) = (cR+cF )FT (L∗n)−cR
cF

[n+ 1]


(4.9)

Remark 4.2 If one defines yi, i = 1, · · · , n as the time at which the ith

inspection ends, the results in 4.6 and 4.9 trivially become the same as the

results in 3.14 and 3.15, respectively and therefore the process of obtaining

an optimal inspection strategy is the same as that in the case of Simple Finite

Planning Horizon Inspection and Replacement Model discussed in Chapter 3.

4.3.2 System is shutdown when inspections take place

The assumptions in Section 4.2 apply; the only two additional assumptions

for this model are:

1. whenever there is need for carrying out an inspection, the system must

be completely shut down during the inspection period and

2. an inspection does not affect the level of degradation of the system.
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Remark 4.3 The implication of the shutdowns is that if the pdf and cdf

of the time to failure is fT (t) and FT (t) (i.e. had the system operated un-

interrupted until it fails at time T ), respectively, then the cdf and pdf of the

actual time to failure with inspections scheduled at times {xi} (denoted by

HX(.) and hX(.), respectively):

HX(x) =


FT (x), 0 ≤ x < x1

FT (xi), xi ≤ x < xi + ∆i; i = 1, · · · , n
FT (x− (i− 1)∆i) , xi−1 + ∆i ≤ x < xi; i = 2, · · · , n
FT (x− n∆i), xn + ∆i ≤ x
0, otherwise

(4.10)

hX(x) =


fT (x), 0 ≤ x < x1

fT (x− (i− 1)∆i) , xi−1 + ∆i ≤ x < xi; i = 2, · · · , n
fT (x− n∆i), xn + ∆i ≤ x
0, otherwise

(4.11)

If the plan is to have only one inspection taking place during the time interval

(x1, x1 + ∆i), then the net profit if failure occurs at time X is

G1 =


cRX − cF (x1 −X)− cI − (Co − Cs), X < x1

cR(X −∆i)− cF (L−X)− cI − (Co − Cs), x1 + ∆i ≤ X < L
cR(L−∆i)− cI − (Co − Cs), X ≥ L

(4.12)

and the expected value of the net profit GE.1:

GE.1 = (cR + cF )

[∫ L−∆i

0

xfT (x)dx− (L−∆i)FT (L−∆i)

]
+cF (L− x1 −∆i)FT (x1) + cR(L−∆i)− cI − (Co − Cs)

(4.13)
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The optimal commencement time for a single inspection when the planning

horizon is preset at L, thus, is such that

∂G
∂x1

= −cFFT (x1) + cF (L− x1 −∆i)fT (x1) = 0

⇔ (L−∆i − x1)f(x1)− FT (x1) = 0. (4.14)

Lemma 4.2 When the planning horizon is a variable, the joint optimal in-

spection time and optimal planning horizon are a joint solution to the pair

of equations (4.15):

L∗1 = x∗11 + ∆i +
FT (x∗11)

fT (x∗11)
[1]

FT (x∗11) =
(cR+cF )FT (L∗1−∆i)−cR

cF
[2]

}
(4.15)

If the system has been set to operate over a finite planning horizon L

with n (n ∈ N such that n ≥ 2) inspections scheduled in time intervals

(x1, x1 +∆i), (x2, x2 +∆i), · · · , (xn, xn+∆i), then the net profit if the system

fails at time X, G(x, X, L):

G(x, X, L) =


cRX − cI − cF (x1 −X)− (Co − CS), 0 ≤ X < x1

cR(X − (i− 1)∆i)− icI − cF (xi −X)− (Co − CS), xi−1 + ∆i ≤ X < xi;
i = 2, 3, · · · , n

cR(X − n∆i)− ncI − cF (L−X)− (Co − CS), xn + ∆i ≤ X < L
cR(L− n∆i)− ncI − (Co − CS), X ≥ L

(4.16)

If n (n ∈ N and n ≥ 2) inspections are scheduled such that each inspection

lasts a time of ∆i time units, the expected profit GE.n = E[G(x, T, L)]:
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GE.n = (cR + cF )

[∫ L−n∆i

0

xfT (x)dx− (L− n∆i)FT (L− n∆i)

]
+cF (L− xn −∆i)FT (xn − (n− 1)∆i)

+
n−1∑
i=1

[cI + cF (xi+1 − xi −∆i)]FT (xi − (i− 1)∆i)

+cR(L− n∆i)− ncI − (Co − Cs) (4.17)

In the general case of n ∈ N (n ≥ 2) inspections being scheduled, the

optimal times at which the inspections should commence x∗1n, · · · , x∗nn when

the planning horizon is preset at L are solutions of the system of equations

(4.18) (the equations arise from the n partial derivatives of GE.n in Equation

(4.17) with respect to x1, · · · , xn being set to 0 each):

x∗2n = x∗1n + ∆i +
FT (x∗1n)

fT (x∗1n)
− cI

cF
, [1]

x∗k+1,n = x∗kn + ∆i +
FT (x∗kn−(k−1)∆i)−FT (x∗k−1,n−(k−2)∆i)

fT (x∗kn−(k−1)∆i)
− cI

cF
, k = 2, · · · , n− 1

[2]− [n− 1]

L = x∗nn + ∆i +
FT (x∗nn−(n−1)∆i)−FT (x∗n−1,n−(n−2)∆i)

fT (x∗nn−(n−1)∆i)
[n]


(4.18)

In the general case of n ∈ N (n ≥ 2) inspections being scheduled, the optimal

times at which the inspections should commence x∗1n, · · · , x∗nn and optimal

planning horizon L∗n are solutions of the system of equations (4.19) (the

equations arise from the n+ 1 partial derivatives of GE.n in Equation (4.17)
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with respect to x1, · · · , xn and L being set to 0 each):

x∗2n = x∗1n + ∆i +
FT (x∗1n)

fT (x∗1n)
− cI

cF
, [1]

x∗k+1,n = x∗kn + ∆i +
FT (x∗kn−(k−1)∆i)−FT (x∗k−1,n−(k−2)∆i)

fT (x∗kn−(k−1)∆i)
− cI

cF
, k = 2, · · · , n− 1

[2]− [n− 1]

L∗n = x∗nn + ∆i +
FT (x∗nn−(n−1)∆i)−FT (x∗n−1,n−(n−2)∆i)

fT (x∗nn−(n−1)∆i)
[n]

FT (x∗nn − (n− 1)∆i) = (cR+cF )FT (L∗n−n∆i)−cR
cF

[n+ 1]


(4.19)

For n ≥ 2 inspections that are evenly spread over the planning horizon such

that the first inspection commences at time τ − 1
2

and any two successive

inspections have their midpoints being τ units of time apart and L = (n+1)τ ,

the profit is a function of one variable, τ :

GE.n(τ) = (cR + cF )

[∫ (n+1)τ−n∆i

0

xfT (x)dx− {(n+ 1)τ − n∆i}FT ((n+ 1)τ − n∆i)

]

+cF (τ − 1

2
∆i)FT

(
n(τ −∆i) +

1

2
∆i

)
+

n−1∑
i=1

[cI + cF (τ −∆i)]FT

(
i(τ −∆i) +

1

2
∆i

)
+cR [(n+ 1)τ − n∆i)]− ncI − (Co − Cs). (4.20)

For a single inspection scheduled before the end of the planning horizon,

the optimal inspection time τ = τ ∗ is a solution of Equation (4.21)

dGE.1(τ)

dτ
= −2(cR + cF )FT (2τ −∆i) + cFFT (τ) + cF (τ −∆i)fT (τ) + 2cR = 0

(4.21)
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while for n ∈ N such that n > 1, the optimal inter-inspection time τ = τ ∗

is a solution of Equation (4.22)

dGE.n(τ)

dτ
= −(n+ 1)(cR + cF )FT ((n+ 1)τ −∆i) + cFFT ((n+ 1)τ −∆i)

+ncF (τ −∆i)fT (nτ − (n− 1)∆i)) + cF τ
n−1∑
i=1

FT (i(τ −∆i) + ∆i)

+ [cI + cF (τ −∆i)]
n−1∑
i=1

ifT (i(τ −∆i) + ∆i) + (n+ 1)cR = 0

(4.22)

Remark 4.4 The solutions to Equations (4.21) and (4.22) provide a good

starting point in the search for a global optimal inspection schedule and op-

timal finite planning horizon. Approximate solutions to the equations are

easily obtainable through the use a software such as Mathematica.

4.3.3 Proposed methods for calculating optimal inspec-
tion times when shutdowns are necessary for in-
spections

Just like in Chapter 3, two methods explained below are explored.

Method 1 - Iterative procedure for calculating optimal inspection
times

The iterative procedure suggested in this chapter (which makes use of Equa-

tion (4.9) and has already been summarized diagramatically by means of the
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flowchart in Figure 3.1) for determining estimates of the optimal inspection

times and optimal planning horizon for a given number of inspections) is

essentially the same the procedure discussed in Section 3.2.4:

Step 1 : Start with a guesstimate of x∗1n, call it χ
(1)
1n and use it in Result [1]

of Equation (4.9) to calculate an estimate χ
(1)
2n of x∗2n which in turn is

used to calculate estimates χ
(1)
3n , · · · , χ

(1)
nn and Ln of x∗3n, · · · , x∗nn and

L∗n, respectively, by making use of results [2] to [n] of Equation (4.19).

Step 2 : Using the value of Ln found in Iteration 1, determine a new estimate

χ
(2)
nn of x∗nn using Equation (4.23):

FT (χ(2)
nn) =

(cR + cF )FT (Ln)− cR
cF

(4.23)

and then calculate the difference ∆ = χ
(2)
nn − χ(1)

nn . If ∆ ≈ 0, then the

guesstimate of x∗1n, χ
(1)
1n as well as estimates of x∗3n, · · · , x∗nn and L∗n are

acceptably good. If ∆ < 0, go back to Step 1 and use a larger value of

the guesstimate χ
(1)
1n . On the other hand, if ∆ > 0, go back to Step 1

and use a smaller value of the guesstimate χ
(1)
1n .

Remark 4.5 If one starts with a guesstimate χ
(1)
1n which is too small in com-

parison to x∗1n, i.e. χ
(1)
1n −x∗1n << 0, Equation (4.23) will be infeasible because
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the value of (cR+cF )FT (Ln)−cR
cF

will be negative. On the other hand, a guessti-

mate χ
(1)
1n which is too large in comparison to x∗1n, i.e. χ

(1)
1n − x∗1n >> 0

results in some values of χ
(1)
jn , j > 1 approaching infinity and computation of

χ
(2)
nn being rendered impossible.

Method 2 - Nonlinear optimization procedure for calculating opti-
mal inspection times

The second method hinges on the formulation of the problem as a non-

linear optimization problem with the usual non-negativity constraints as in

Equation (4.24):

Maximize GE.n = (cR + cF )

[∫ xn+1−n∆i

0

tfT (t)dt− (xn+1 − n∆i)FT (xn+1 − n∆i)

]
+cF (xn+1 − xn −∆i)FT (xn − (n− 1)∆i)

+
n−1∑
i=1

[cI + cF (xi+1 − xi −∆i)]FT (xi − (i− 1)∆i)

+cR(xn+1 − n∆i)− ncI − (Co − CS)

subject to: −xi + xi+1 ≥ ∆i; i = 1, · · · , n (4.24)

4.4 Applications

The applications of the results derived in Section 4.3 for the case of time to

failure T following a continuous uniform distribution (i.e. T ∼ U [0, Lo]) or

an exponential distribution are discussed in this section.
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4.4.1 Time to failure following a uniform distribution

Lemma 4.3 If the time to failure T ∼ U [0, Lo] and the planning horizon

L is fixed such that L < Lo, then the optimal time at which the inspection

should commence if a single inspection is planned is

x∗1 =
1

2
(L−∆i). (4.25)

Proof: From Equation (4.14), since fT (x1 + ∆i) = 1
Lo

and

FT (x1 + ∆i) = x1+∆i

Lo
,

(L−∆i − x1)

Lo
− x1

Lo
= 0

⇒ x1 =
1

2
(L−∆i).

Remark 4.6 If a single inspection is to be done, the midpoint of the sched-

uled inspection coincides with the halfway mark of the planning horizon.

Lemma 4.4 If T ∼ U [0, Lo] and ∆i ≈ cI
cF

,

1. then x∗kn ≈ kx∗1n, k = 2, · · · , n, i.e. the time between any two inspec-

tions is a constant

2. and in addition, if ∆i ≈ 0 the optimal inspections are almost evenly

spread over the planning horizon.
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Proof:

1. From 4.19, if If T ∼ U [0, Lo] and ∆i ≈ cI
cF

,

x∗2n ≈ x∗1n +
x∗1n/Lo
1/Lo

= 2x∗1n

x∗k+1,n ≈ x∗kn +
(x∗kn − x∗k−1,n)/Lo

1/Lo
⇒ x∗k+1,n − x∗kn = x∗kn − x∗k−1,n, k = 2, · · · , n− 1 and

2. L∗n ≈ x∗nn +
(x∗nn−x∗n−1,n)/Lo

1/Lo
⇒ L∗n − x∗nn ≈ x∗nn − x∗n−1,n and

L∗n ≈
cF x
∗
nn+cRLo
cF+cR

.

4.4.2 Time to failure following an exponential distri-
bution

The Maclaurin series expansion of g(x) = e−θx,

g(x) = 1− θx+
∞∑
k=2

(−θx)k

k!

is used to prove Lemma 4.5 below.

Lemma 4.5 The condition necessary for the inter-inspection times to be

approximately constant are ∆i ≈ 0 and cI
cF
≈ 0; if both the latter conditions

hold, then as θ → 0, the optimal inter-inspection times approach a constant

and

x∗in ≈ ix∗1n.
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Proof:

From Equation 4.19, if ∆i ≈ cI
cF

,

x∗2n ≈ x∗1n+
FT (x∗1n)

fT (x∗1n)
= x∗1n+

1− e−θx∗1n
θe−θx

∗
1n

= x∗1n+
1−

(
1− θx∗1n +

∑∞
k=2

(−θx∗1n)k

k!

)
θ

→ 2x∗1n

as θ → 0.

x∗i+1,n = x∗in +
e−θx

∗
i−1,n − e−θx∗in
θe−θx

∗
in

= x∗in +
eθ(x

∗
kn−xi−1,n) − 1

θ

= x∗in +

(
1 + θ(x∗in − x∗i−1,n) +

∑∞
k=2

(θ(x∗in−x∗i−1,n))
k

k!

)
− 1

θ
, i = 2, · · · , n− 1

Clearly, x∗i+1,n → 2x∗in − x∗i−1,n as θ → 0 or x∗i+1,n − x∗in → x∗in − x∗i−1,n as

θ → 0.

Similarly, L∗n = x∗nn +

(
1 + θ(x∗nn − x∗n−1,n) +

∑∞
k=2

(θ(x∗nn−x∗n−1,n))
k

k!

)
− 1

θ

and L∗n − x∗nn → x∗nn − x∗n−1,n as θ → 0.

4.5 Conclusions and Recommendations

In this chapter, a solution to the problem of scheduling inspections which are

of fixed non-negligible duration has been proffered. The conditions necessary

for inspections that are evenly spread over the entire planning horizon to be
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near-optimal have been found for a system whose time to failure either fol-

lows a uniform distribution or an exponential distribution. Admittedly, this

only a preliminary treatise of the problem.

Any discussion of the problem which falls short of looking at the case of

time to failure following other distributions like the Weibull distribution and

others mentioned in Section 3.3.2 can be considered incomplete. The dis-

cussion (in this chapter) also falls shy of looking at infinite planning horizon

models with inspection times that are of non-negligible duration.
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Chapter 5

Finite and Infinite Planning
Horizon Models with Imperfect
Inspections

5.1 Introduction

According to Devooght et al. (1990), an inspection may be imperfect as a

result of a combination of any of the following: human error, instrumentation

failure and incomplete information. Where inspection errors occur, the errors

may arise as follows: a) an inspection may erroneously declare a normally

operating system faulty (error of the first kind or Type I error) or b) an

inspection may fail to detect that the system is in a failed state (error of

the second kind or Type II error). Some of the few papers published on

the subject of inspection and replacement models with imperfect inspections

include the following.
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1. Morey (1968) has researched on finite planning horizon models using

minimization of cost of operating the system as his criterion. His work

focuses on models with a finite planning horizon when inspections are

imperfect and the time to failure of the system has a known probability

distribution. The models have a provision for one type of error - an

inspection wrongfully saying a failed system is not faulty (commonly

referred to as the Type II error or false negative error). His work is

limited in scope in that the major result given in his thesis only gives a

condition when it is meritorious to conduct at least a single inspection

as opposed to no inspection.

2. Kaio and Osaki (1986) deal with a system whose time to failure follows

an exponential distribution. They start off on the premise that two

errors may occur when an inspection takes place. The errors may

arise as follows: a) An inspection may erroneously declare a normally

operating system faulty (error of the first kind or Type I error) or b)

an inspection may fail to detect that the system is in a failed state

(error of the second kind or Type II error). In their paper, the optimal

inspection policy is one which minimizes the total expected cost up to

the detection of system failure. Their work deals with the case of an
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infinite planning horizon and inspections are carried out periodically.

3. Yun and Bai (1988) develop a replacement policy with minimal repair

cost limit. The problem studied by Yun and Bai (1988) is radically

different from the problem studied in this thesis in the sense that the

inspections are done only when the system goes into the failed state and

the purpose of each inspection is to determine an estimate of the repair

cost to have the system up and running again. If the estimated cost

does not exceed a cost limit L, the system is made to undergo minimal

repair, otherwise it is replaced. The assumption in their paper is that

the inspections are imperfect and therefore repair cost of a failed system

cannot be accurately determined.

4. Badia et al. (2001) deal with models where inspections (which are im-

perfect) are periodically conducted. In their work, whenever an inspec-

tion reveals that the system has gone into the failed state, corrective

maintenance is done to restore the system into the good as new state.

The inspections are assumed to be non-negligible in duration. They

deal with the case of an infinite planning horizon and their objective

function is the cost per unit of time; they make use of the Renewal
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Reward Theorem in Stochastic Processes theory to appropriately de-

termine the objective function. Their work focuses on systems whose

time to failure follow an exponential distribution or Pareto distribution.

5. Wang (2009) has researched on the problem of a production process

which has two types of inspections: minor inspections (which are car-

ried out periodically) and major inspections (which are carried out

periodically and less frequently in comparison to minor inspections).

The major inspections are not perfect and have a finite probability for

correctly identifying a defect. The paper deals with the case of an infi-

nite planning horizon. The objective in Wang’s paper is to determine

the optimum time intervals between two successive minor inspections

as well as major inspections.

6. Berrade et al. (2012) who have researched on the problem of imperfect

inspections with particular application in a beverage manufacturing

process. There are two phases of inspections with inspections in each

phase being carried out periodically. They discuss two models: a) a

model in which an alarm is further investigated to check if it is a false

positive, and if it is detected that the alarm is a false positive, the
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system is put back into operation and b) a model in which an alarm

leads to the renewal of the system without any interrogation to establish

whether the alarm was a false positive or not.

7. Berrade et al. (2013) who have researched on periodic and aperiodic

inspections being conducted on a system over a finite planning horizon.

The inspections in their paper are imperfect and the criterion they use

is minimization of total cost over the planning horizon. In the paper,

two types of inspections are considered: a) one where a positive inspec-

tion (i.e. an inspection saying that the system is faulty) results in the

system being summarily retired and b) where a positive inspection is

followed by a check to verify the authenticity of the inspection result

(at an additional cost) and if the system is certified to be non-faulty it

is put back in operation, otherwise it is immediately retired. For the

finite planning horizon case, in their paper, they have an additional

penalty being the cost incurred if the system is retired rather prema-

turely (i.e. before the planning horizon) and this cost is proportional to

the downtime period up to the planning horizon. This additional cost,

they argue, may be for instance the cost of leasing a system to fill in

the void left by the system that would have been retired. An example
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given in the paper is that of a company running a train service; if a

train is retired, there would obviously be a need to lease a train for

the rest of the time up to the end of the planning horizon. A similar

situation would apply to a power generating utility in the event of a

power generating unit being retired prematurely.

8. Flage (2014) discusses the case of periodic inspections which are im-

perfect and in addition, are also potentially failure-inducing where an

inspection may either introduce new failure modes or affect the time

to system failure. The system is assumed to start off in the perfectly

functioning state and then progressively move into the defective state

and then failed state with time. The duration of the perfectly func-

tioning state (denoted by X) and the duration of the defective state

(denoted by Y ) are independent random variables. Y is defined as the

delay time. The failed state is assumed announcing while the other

two states are not, i.e. if the system gets into the failed state, this is

immediately detected. The system is correctively replaced upon failure

or preventatively replaced at the N th inspection time or when an in-

spection reveals that it is defective. Thus the errors which may occur

as a result of an inspection are: Type I error which occurs when the
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system which is perfectly functioning is identified as defective and Type

II error which occurs when a system which has gone in the defective

state is identified as perfectly functioning. The planning horizon for

the models discussed in the paper is infinite. The problem in the mod-

els discussed by Flage is that of finding the optimal periodic inspection

interval and optimal preventive age replacement limit.

Remark 5.1 The work done in this chapter is very close to work done in the

paper by Berrade et al. (2013); in particular, to the first case where a positive

inspection means an automatic and immediate retirement of the system.

This chapter discusses inspection models with imperfect inspections for

both the finite and infinite planning horizons.

5.2 A finite planning horizon inspection model

with imperfect inspections

5.2.1 The model

This model applies to a situation where one plans to operate a system (whose

purchase price is Co) over a finite period of time, call it a finite planning

horizon of length L. In the general case, there are n planned inspections at

times x1, x2, · · · , xn such that 0 < x1 < x2 < · · · < xn < L. In this thesis,
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xo = 0.

5.2.2 Assumptions

It is assumed that at the start of operation, the system is in a working state

(i.e. functioning perfectly) and producing products that are of acceptable

quality and will continue to do so at a steady rate until it gets into a failed

state. The system’s time to failure T is a continuous random variable with

probability density function and cumulative distribution function fT (t) and

FT (t), respectively, and the reliability function is denoted by RT (t). As

mentioned earlier on, we assume that T ’s distribution is completely known.

The notation and assumptions of the model are:

1. When working, the system generates or brings in revenue at a constant

rate of cR per unit of time,

2. The time it takes to complete each and every inspection is negligible

and each inspection costs an amount of cI ,

3. The results of the inspections are independent events,

4. This work follows in the footsteps of Morey (1968)1, Badia et al. (2001),

1Morey (1968) only deals with one type of error - an inspection wrongfully saying a
failed system is ok
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Berrade et al. (2013) and Flage (2014) in that the inspections are not

perfect. Inspection errors may arise as follows: 1) a system that is

functioning perfectly may be reported as being in a failed state (i.e.

false positive) or 2) a failed system being reported as functional (false

negative). If an inspection says that a properly functioning system is

faulty then it is said to have committed a Type I error; an inspection

which reports that a malfunctioning system is ok, on the other hand,

is said to have committed a Type II error. The probability that an

inspection will confirm that a system is in good working condition

is 1 − α and hence, the probability of a “false positive” is α. The

probability of an inspection detecting that a faulty system is faulty is

1− β and hence, the probability of a “false negative” is denoted by β,

5. The system cannot fail while being checked,

6. For the finite planning horizon models, the system is decommissioned

immediately after the first inspection that says it is faulty (regardless

of whether it is indeed faulty or not) or at the latest at the end of the

planning horizon L (on condition all the n inspections have each inde-

pendently reported that the system is ok). When it is decommissioned
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it is sold (as scrap) to a recycling plant at a salvage value of CS. This

is similar to an age replacement policy described by Jiang (2009) and

Rangan and Grace (1989); the difference between the work done in the

latter papers and what is done in this chapter is that in the latter two

papers, there are no inspections carried out whilst in this chapter there

is a provision for inspections being carried out,

7. In the case of the infinite planning horizon models, the system is re-

placed by a new one immediately after the first inspection that says

it is faulty (regardless of whether it is indeed faulty or not) or at the

latest at the end of the cycle of length L (on condition all the n inspec-

tions have each independently reported that the system is ok). Upon

replacement, it is sold (as scrap) to a recycling plant at a salvage value

of CS. The work done by Flage is similar when the planning horizon

is infinite; in Flage’s paper, the system is correctively replaced upon

failure or preventatively replaced at the N th inspection time or when

an inspection reveals that it is defective,

8. The company or owner of the system incurs a cost of cF for each unit

of time the system is idle so that the cost associated with the sys-
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tem being idle for a time period of γt is cFγt. This is unlike in the

paper by Berrade et al. (2013) where the cost per unit of time due

to system unavailability pre-retirement and the cost of unavailability

post-retirement are different.

5.2.3 Notation

Ii - event of a false positive error at the ith (i = 1, · · · , n) inspection; thus,

I ′i is the event of the ith inspection correctly detecting that the system

is not in the failed state

II i - event of a false negative error at the ith inspection; thus, II ′i is the

event of the ith inspection correctly detecting that the system is in a

failed state

Aj - event of system failure occurring in interval [xj−1, xj), j = 1, · · · , n+1

ψj - probability of event Aj occurring (ψj = P (Aj) = FT (xj)− FT (xj−1))

An+2 - event of system lifetime being greater than L = xn+1 so that

ψn+2 = P (An+2) = RT (L); RT (.) is the system reliability function

ψ - an (n+ 2)-dimensional vector such that ψ = (ψ1, · · · , ψn+2)T
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Bi - event of the system being decommissioned2/replaced3 at the ith in-

spection time xi, i = 1, · · · , n+ 1

pi - the probability of event Bi occurring

α - the probability of a false positive inspection occurring - α is the con-

ditional probability that an inspection says that the system is not ok

when the system is ok; i.e α = P (Bk|Ai), k < i

β - the probability of a false negative inspection occurring −β is the

conditional probability that an inspection says that the system is ok

when the system is not ok; i.e β = P (Bk|Ai), k > i

cF - per unit of time cost of system idleness

cI - cost of carrying out an inspection

Co - cost of buying and installing the system

cR - rate at which revenue accrues per unit of time

CS - salvage value of the system upon disposal

T - time to failure of the system

2for finite planning horizon models
3for infinite planning horizon models
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fT (.) - probability density of system time to failure T

FT (.) - cdf of system time to failure T

RT (.) - system reliability function (or survival function) and

RT (t) = P (T > t)

HT (.) - hazard function (or failure rate function) for the system.

L - length of a finite planning horizon4 or length of cycle if no inspec-

tion declares the system faulty in the case of infinite planning horizon

models

5.2.4 Theoretical results

If no inspection is planned and the system is to be operated up to a planning

horizon of L, the expected value of the profit GE.0

GE.0 = (cR + cF )

[∫ L

0

tfT (t)dt− LFT (L)

]
+ cRL− (Co − CS) (5.1)

From the assumptions of the model, the system can be decommissioned at

any one of the times x1, x2, · · · , xn, xn+1 (in the case of a finite planning hori-

zon) or replaced (in the case of an infinite planning horizon). Denoting the

event that the system is decommissioned at time xi, i = 1, · · · , n + 1 by Bi

4no inspection is scheduled at time L = xn+1 as such
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and the event that T ∈ [xj−1, xj), j = 1, · · · , n + 1 by Aj and P (Aj) = ψj

and the event that T > xn+1 by An+2 so that P (An+2) = ψn+2, the Law of

Total Probability can applied to get an expression for P (Bi).

If a single inspection is planned at time x1 which is before the end of the

planning horizon, decommissioning can take place at either x1 (Event B1) or

L = x2 (Event B2) with probabilities α+(1−α−β)ψ1 and 1−α−(1−α−β)ψ1,

respectively. The net profit will depend on the time the system fails as well

as the result of an inspection at x1. The expressions for conditional expected

profit are given in Table 5.1.

Table 5.1: Conditional expected profit when n = 1 inspection is scheduled
Time to Conditional expected profit E[G1|T ] Conditional
failure probability

0 ≤ T < x1 cRT − cI − cF (x1 − T )− (Co − CS) 1− β
cRT − cI − cF (L− T )− (Co − CS) β

x1 ≤ T < L cRT − cI − cF (L− T )− (Co − CS) 1− α
cRx1 − cI − (Co − CS) α

L ≤ T cRx1 − cI − (Co − CS) α
cRL− cI − (Co − CS) 1− α

The expected profit for the finite planning horizon inspection model with

a single imperfect inspection scheduled at time x1, GE.1:
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GE.1 = E[E[G1|T ]]

= (cR + cF )

(∫ x1

0

tfT (t)dt+ (1− α)

∫ L

x1

tfT (t)dt

)
− (1− β)cFx1ψ1 − βcFx2ψ1

+αcRx1ψ2 − (1− α)cFx2ψ2 + αcRx1ψ3 + (1− α)cRx2ψ3 − cI − (Co − CS)

= (cR + cF )

(∫ L

0

tfT (t)dt− α
∫ L

x1

tfT (t)dt

)
− ψT

1
Φ1x1 − cI − (Co − CS)

(5.2)

where ψ
1

= (ψ1, ψ2, ψ3)T , x1 = (x1, L)T and φ1 is a 3× 2 matrix:

Φ1 =

 cF (1− β) βcF
−αcR, (1− α)cF
−αcR −(1− α)cR

 (5.3)

Remark 5.2 Substitution of α = β = 0 in Equation (5.2) gives an expres-

sion of GE.1 that is the same as the one for an inspection model with a finite

planning horizon when inspections are perfect (see Equation (3.6)!).

Remark 5.3 The partial derivatives of GE.1 with respect to α and β given

in Equation (5.4) and (5.5), respectively, present a very interesting scenario.

∂GE.1
∂α

= −(cR + cF )

∫ L

x1

tfT (t)dt+ cRx1ψ2 + cFx2ψ2 + cRx1ψ3 − cRx2ψ3

(5.4)

∂GE.1
∂β

= cF (x1ψ1 − x2ψ2) = cFx1ψ1

(
1− x2ψ2

x1ψ1

)
(5.5)
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When a single inspection is scheduled at a fixed time x1 for a system operated

over a fixed planning horizon L = x2, one observes that

1. for a fixed value of α, if x2ψ2

x1ψ1
> 1 then ∂GE.1

∂β
< 0 and GE.1 is a monotonic

decreasing function of β, i.e. an increase in β is accompanied by a lower

value of GE.1

2. for a fixed value of β, an increase in α is not necessarily accompanied

by a lower value of GE.1.

If n inspections (n ≥ 2) are scheduled within a planning horizon of length L

at times x1, · · · , xn, the expected profit conditional on the event A1 having

occurred:

Gn|A1 = cRT − cF

[
n∑
k=1

(1− β)βk−1(xk − T ) + βn(xn+1 − T )

]

−cI

[(
n∑
k=1

k(1− β)βk−1 + nβn

)]
− (Co − CS)

= (cR + cF )T − cF

[
n∑
k=1

(1− β)βk−1xk + βnL

]

−cI

[
n∑
k=1

k(1− β)βk−1 + nβn

]
− (Co − CS) (5.6)

while the expected profit conditional on the event Ai, i = 2, · · · , n having
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occurred:

Gn|Ai =
i−1∑
k=1

α(1− α)k−1 [cRxk − kcI − (Co − CS)]

+
n∑
k=i

(1− α)i−1βk−i(1− β) [cRT − cF (xk − T )− kcI − (Co − CS)]

+(1− α)i−1βn−i+1 [cRT − cF (L− T )− ncI − (Co − CS)]

= (cR + cF ) (1− α)i−1 T

+

[
i−1∑
k=1

cRα(1− α)k−1xk −
n∑
k=i

cF (1− α)i−1βk−i(1− β)xk − cF (1− α)i−1βn−i+1L

]

−cI

[
i−1∑
k=1

k(1− α)k−1α + (1− α)i−1

(
n∑
k=i

k(1− β)βk−i + nβn−i+1

)]
− (Co − CS)

(5.7)

and the conditional expected profit given events An+1 and An+2 are:

Gn|An+1 =
n∑
k=1

α(1− α)k−1 [cRxk − kcI − (Co − CS)]

+(1− α)n [cRT − cF (L− T )− ncI − (Co − CS)]

= (cR + cF ) (1− α)n T +

[
n∑
k=1

cRα(1− α)k−1xk − cF (1− α)nL

]

−cI

[
n∑
k=1

k(1− α)k−1α + n(1− α)n

]
− (Co − CS) (5.8)
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and Gn|An+2 =
n∑
k=1

α(1− α)k−1 [cRxk − kcI − (Co − CS)] + (1− α)n [cRL− ncI − (Co − CS)]

=

[
n∑
k=1

α(1− α)k−1xk + cR(1− α)nL

]

−cI

[
n∑
k=1

k(1− α)k−1α + n(1− α)n

]
− (Co − CS),

(5.9)

respectively.

Thus, if n inspections (n ≥ 2) are scheduled within a planning horizon of

length L at times x1, · · · , xn, the expected value of the profit GE.n:

129



GE.n =
n+1∑
i=1

∫ xi

xi−1

(Gn|Ai) fT (t)dt+

∫ ∞
xn+1

(Gn|An+2) fT (t)dt

= (cR + cF )

∫ x1

0

tfT (t)dt− cF

[
n∑
k=1

(1− β)βk−1xk + βnL

]
ψ1

−cI

[
n∑
k=1

k(1− β)βk−1 + nβn

]
ψ1 − (Co − CS)ψ1

+
n∑
i=2

(cR + cF )(1− α)i−1

∫ xi

xi−1

tfT (t)dt

+
n∑
i=2

[
i−1∑
k=1

cRα(1− α)k−1xk −
n∑
k=i

cF (1− α)i−1βk−i(1− β)xk − cF (1− α)i−1βn−i+1L

]
ψi

−
n∑
i=2

cI

[
i−1∑
k=1

k(1− α)k−1α + (1− α)i−1

(
n∑
k=i

k(1− β)βk−i + nβn−i+1

)]
ψi

−
n∑
i=2

(Co − CS)ψi

+(cR + cF ) [(1− α)n]

∫ L

xn

tfT (t)dt

+

[
n∑
k=1

cRα(1− α)k−1xk − cF (1− α)nL

]
ψn+1

−cI

[
n∑
k=1

k(1− α)k−1α + n(1− α)n

]
ψn+1 − (Co − CS)ψn+1

+

[
n∑
k=1

cRα(1− α)k−1xk + cR(1− α)nL

]
ψn+2

−cI

[
n∑
k=1

k(1− α)k−1α + n(1− α)n

]
ψn+2 − (Co − CS)ψn+2

= (cR + cF )
n+1∑
i=1

[
(1− α)i−1

∫ xi

xi−1

tfT (t)dt

]
− ψT

n
λn − ψTnΦnxn − (Co − CS) (5.10)

130



where λi =


cI

[
α
∑i−1

k=0 k(1− α)k−1 + (1− β)(1− α)i−1
∑n

k=i kβ
k−i
]

+ncI(1− α)i−1βn−i+1, i = 1, · · · , n

cI
[
α
∑n

k=0 k(1− α)k−1 + n(1− α)n
]
, i = n+ 1, n+ 2

(5.11)

and Φn = {φij} is an (n+ 2)× (n+ 1) matrix such that

and φij = (Φn) =



−α(1− α)j−1cR, 1 ≤ j < i ≤ n
cF (1− α)i−1(1− β)βj−i, 1 ≤ i ≤ j ≤ n
cF (1− α)i−1βn−i, j = n+ 1, 1 ≤ i ≤ n
−α(1− α)j−1cR, i = n+ 1, n+ 2, 1 ≤ j ≤ n
cF (1− α)n, i = n+ 1, j = n+ 1
−(1− α)ncR, i = n+ 2, j = n+ 1

(5.12)

Remark 5.4 The expression for GE.n in Equation (5.10) when α = β = 0

is the same as that for GE.n in Equation(3.7) when inspections are perfect.

5.3 Optimal inspection times and optimal plan-

ning horizon

Definition 5.1 For a given fixed number of inspections n, an inspection

schedule which results in the maximization of the expected profit GE.n (for the

finite planning horizon case) or the maximization of the ratio of the expected

profit per cycle and expected cycle length (as espoused by the Renewal Reward

Theorem) is called the optimal inspection schedule under n.
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5.3.1 Optimal inspection schedule for finite planning
horizon

The optimal planning horizon when no inspections are scheduled L∗0 is given

in Equation (5.13):

L∗0 = F−1
T

(
cR

cR + cF

)
. (5.13)

From Equation (5.2), we see that when a single inspection is to be scheduled,

the optimal inspection time x∗11 and optimal planning horizon L∗1 are solutions

of the system of equations (5.14) (on condition α + β < 1):

L∗1 = x∗11 +
(

(1−β)cF+αcR
cF (1−α−β)

)
FT (x∗11)

fT (x∗11)
− αcR

cF (1−α−β)fT (x∗11)
[1]

FT (x∗11) =
(cR+cF )FT (L∗1)−(1−α)cR

cF (1−α−β)
[2]

}
(5.14)

In general, when n ≥ 2 inspections are scheduled at times x1, x2, · · · , xn

over a finite planning horizon of length L, the optimal inspection schedule

x∗1n, · · · , x∗nn and optimal finite planning horizon L∗n for given error sizes α

and β are solutions of the non-linear optimization problem:

Maximize GE.n = (cR + cF )
n+1∑
i=1

[
(1− α)i−1

∫ xi

xi−1

tfT (t)dt

]
− ψT

n
λn − ψTnΦnxn − (Co − CS)

subject to xi−1 ≤ xi; i = 1, · · · , n+ 1. (5.15)

If n inspections (n ≥ 2) are scheduled within a finite planning horizon of

length L at times x1, · · · , xn, the probability that the system is decommis-
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sioned at time xi (i = 2, · · · , n+ 1), pi:

pi =


(1− β)

∑i
k=1(1− α)k−1βi−kψk

+α(1− α)i−1
∑n+2

k=i+1 ψk, i = 1, · · · , n

(1− β)
∑n+1

k=1(1− α)k−1βn+1−kψk
+(1− α)nψn+2, i = n+ 1

(5.16)

5.3.2 Optimal inspection schedule for infinite planning
horizon case

If no inspection is planned and a system is replaced by a new one after a

fixed length of time L so that the planning horizon is infinite, the optimal

value of L is found as follows. Let

G ′E.0 =
GE.0
L

, (5.17)

the optimal value of L, L∗0 is a solution of the equation

∂G ′E.0
∂L

=
−(cR + cF )

∫ L
0
tfT (t)dt− cRL+ (Co − CS)

L2
= 0 (5.18)

so that L∗0 is such that

(cR + cF )

∫ L∗0

0

tfT (t)dt+ cRL
∗
0 − (Co − CS) = 0 (5.19)

For the case where n ≥ 1 inspections being scheduled, if a system is replaced

by a new one each time a failure occurs (and failure is detected through

inspection), then the planning horizon is infinite. If the length of a cycle
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when n inspections have been scheduled is denoted by Wn, the expected

length of a cycle when a single inspection is scheduled (i.e.e when n = 1) is

E[W1] = (ψ1, ψ2, ψ3)

 1− β β
α 1− α
α 1− α

( x1

L

)
. (5.20)

while when n ≥ 2,

E[Wn] =
n+1∑
i=1

xipi = ψT
n
Anx (5.21)

where An is an n+ 2× n+ 1 matrix such that

and aij = (An) =



α(1− α)j−1, 1 ≤ j < i ≤ n
(1− α)i−1(1− β)βj−i, 1 ≤ i ≤ j ≤ n
(1− α)i−1βn−i, j = n+ 1, 1 ≤ i ≤ n
α(1− α)j−1, i = n+ 1, n+ 2, 1 ≤ j ≤ n
(1− α)n, i = n+ 1, j = n+ 1
(1− α)n, i = n+ 2, j = n+ 1

(5.22)

Remark 5.5 If all inspections are perfect, then

E[W1] = ψ1x1 + (1− ψ1)L (5.23)

and

E[Wn] =
n∑
j=1

ψjxj +

(
1−

n∑
j=1

ψj

)
L (5.24)

Remark 5.6 Using the Renewal Reward Theorem, if n inspection are sched-

uled, the optimal inspection times and maximum cycle length L = xn+1 under
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n are solutions of the non-linear programming problem

Maximize G ′E.n =
GE.n
E[Wn]

=
GE.n

ψT
n
Anx

(5.25)

subject to xi < xi+1; i = 1, · · · , n (5.26)

5.4 Impact of sizes of errors

In this section, a preliminary examination of the impact of error sizes α and

β on the expected profit and distribution of inspections and optimal planning

horizon is carried out. Only the cases of time to failure following a continuous

uniform distribution or an exponential probability distribution are explored.

5.4.1 Impact of sizes of errors on the optimal expected
profit when a fixed number of inspections is planned

For the case T ∼ U [0, Lo] (i.e. T being uniformly distributed over the interval

[0, Lo]), it has already been argued that it is not prudent to have a planning

horizon L > Lo. The impact of values of probabilities of error in inspections,

α and β are explored with the aid of Example (5.1) and Example (5.2) below.

The impact of changing values of α and β on 1) the maximum expected profit

(for the finite planning horizon case) and maximum expected profit per unit

of time (for the infinite planning horizon case), 2) the optimal inspection

times and the optimal planning horizon (for the finite planning horizon case)
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when the number of inspections is (n = 4)5 is seen in Table 5.26 and Table

5.3 as well as Figure 5.1 and Figure 5.2.

Example 5.1 (T following a uniform distribution) Suppose a system

is such that its time to failure follows a continuous uniform distribution over

the interval [0, 100]. Other attributes of the system are: Co = $10000, CS =

$2500, cR = $1000, cF = $200 and inspections are imperfect with cI = $400.

Example 5.2 (T following an exponential distribution) Suppose a sys-

tem is such that its time to failure follows an exponential distribution with

parameter θ = 1
50

. Other attributes of the system are: Co = $10000, CS =

$2500, cR = $1000, cF = $200 and inspections are imperfect with cI = $400.

5This behavior is also the same for any other number of inspections
6expected profit of operating the system until the optimal planning horizon for the

finite planning horizon case is at the top while the profit per unit of time for the infinite
planning horizon case is at the bottom
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Table 5.2: Optimal profit values and per unit of time profit for different
values α and β for uniformly distributed system time to failure
α β

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.0 39467 39128 38748 38321 37837 37281 36637 35883 34986 33902 32567

712.40 699.78 686.56 672.59 657.72 641.74 624.39 605.35 58416 560.22 535.62
0.1 36958 36584 36195 35784 35343 34865 34342 33778 33205 32791 32624

689.16 675.41 661.01 645.86 629.78 612.59 594.12 574.29 553.72 538.47 536.46
0.2 35957 35586 35215 34840 34455 34058 33653 33264 32986 32824 32657

667.81 653.05 637.82 622.00 605.52 588.38 570.85 554.13 543.56 541.61 539.61
0.3 35354 35000 34657 34322 33991 33668 33639 33154 33014 32852 32686

648.70 633.20 617.54 601.68 585.73 570.19 556.11 547.99 546.31 544.36 542.36
0.4 34937 34603 34290 33996 33719 33472 33296 33177 33038 32876 32710

631.90 615.90 600.23 585.01 570.70 558.47 551.79 550.37 548.69 546.74 544.74
0.5 34625 34312 34032 33780 33565 33417 33316 33198 33058 32897 32731

617.17 600.93 585.75 572.03 560.84 555.03 553.82 552.40 550.72 548.77 546.77
0.6 34381 34091 33845 33647 33517 33433 33333 33215 33076 32914 32729

604.21 588.02 574.01 563.10 557.74 556.74 555.54 554.11 552.43 550.48 548.48
0.7 34184 33918 33719 33600 33531 33447 33347 33229 33090 32929 32763

592.71 576.98 565.36 560.00 559.17 558.16 556.96 555.53 553.86 551.91 549.90
0.8 34021 33788 33668 33611 33542 33459 33359 33240 33101 32940 32755

582.40 568.01 561.84 561.17 560.34 559.34 558.13 556.70 555.03 553.08 551.07
0.9 33884 33722 33677 33620 33551 33468 33368 33250 33111 32950 32765

573.07 563.35 562.80 562.12 561.30 560.29 559.09 557.66 555.98 554.04 552.03
0.99 33767 33730 33684 33628 33559 33476 33376 33257 33119 32958 32773

565.40 564.05 563.51 562.83 562.00 561.00 559.79 558.37 556.69 554.74 552.74
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Table 5.3: Optimal profit values and per unit of time profit for different
values of α and β for exponentially distributed system time to failure

β
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.0 37346 36479 35523 34466 33295 31997 30555 28953 27171 25188 23214
650.14 631.35 611.97 591.79 570.57 548.08 524.00 497.98 469.56 438.17 406.76

0.1 33698 32768 31775 30703 29541 28281 26925 25499 24107 23207 23040
621.59 600.93 579.69 557.65 534.60 510.30 484.58 457.44 429.77 409.63 406.72

0.2 31494 30472 29436 28367 27258 26120 24992 23790 23402 23239 23072
593.68 571.32 548.61 525.37 501.50 477.05 452.49 432.46 415.43 412.58 409.66

0.3 29910 28818 27770 26743 25741 24798 24005 23569 23430 23267 23101
567.27 543.51 519.90 496.39 473.15 450.87 431.42 420.48 418.02 415.17 412.24

0.4 28670 27534 26508 25569 24733 24064 23712 23593 23454 23291 23125
542.94 518.14 494.35 471.75 451.00 433.86 424.83 422.73 420.27 417.41 414.47

0.5 27648 26494 25533 24735 24134 23832 23732 23613 23474 23312 23145
520.90 495.50 472.44 452.25 436.41 428.54 426.76 424.66 422.20 419.33 416.38

0.6 26777 25636 24793 24206 23933 23849 23749 23630 23491 23329 23162
501.09 475.62 454.56 438.95 431.65 430.17 428.40 426.29 423.82 420.95 417.97

0.7 26017 24934 24286 24016 23947 23863 23763 23644 23505 23343 23176
483.31 458.59 441.59 434.24 433.02 431.53 429.75 427.65 425.17 422.30 419.34

0.8 25342 24397 24083 24027 23958 23874 23774 23665 23516 23354 23187
467.29 444.95 436.37 435.37 434.14 432.66 430.87 428.76 426.28 423.41 420.44

0.9 24735 24138 24092 24036 23967 23884 23783 23665 23525 23363 23197
452.77 438.10 437.29 436.29 435.06 433.57 431.79 429.67 427.19 424.31 421.35

0.99 24235 24145 24099 24043 23974 23890 23790 23671 23532 23370 23204
440.78 438.78 437.97 436.97 435.77 434.25 432.46 430.35 427.87 424.98 422.01

138



The following observations are made:

• For a fixed value of α, the maximum achievable expected value of profit

GE.4 decreases monotonically with increasing β while the same cannot

be said about varying α when β is fixed. When β is fixed, as α is

increased from zero to 1 − β, GE.4 monotonically decreases to some

minima and then starts to slowly increase.

• a fixed increase in α is more lethal to profit compared to the same

increase in β

5.4.2 Optimal inspection times for different sizes of er-
rors when the number of inspections is fixed

The data in Table 5.4 below relate to Example 5.1 while the data in Table

5.5 relate to Example 5.2. In both examples, a fixed number of inspections

(n = 4) need to be scheduled. In Example 5.1 the system time to failure

follows a uniform distribution (i.e. T ∼ U(0, 100)) while in the case of

Example 5.2, the time to failure follows an exponential distribution.

It is observed that for both the infinite planning and finite planning hori-

zon cases,

• When α is small and fixed, increasing the value of β results in a delay
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Table 5.4: Optimal inspection times for different values of α and β when
system time to failure follows a uniform distribution (n = 4 inspections)

Planning α β Optimal Inspection times Optimal Profit
horizon planning

horizon
Finite 0.0 0.0 22.92 43.85 62.77 79.69 96.62 39466.80

0.4 27.53 42.63 56.86 70.24 93.49 37836.50
0.8 36.67 42.89 48.89 54.67 88.00 34986.20

0.4 0.0 71.22 92.01 98.02 99.43 99.91 34936.50
0.4 77.80 83.60 87.86 90.94 94.98 33719.30
0.8 83.07 83.07 83.07 83.07 83.07 33038.00

0.8 0.0 80.71 96.34 99.37 99.88 99.99 34936.50
0.4 83.21 83.21 83.21 83.21 83.21 33719.30
0.8 82.77 82.77 82.77 82.77 82.77 33101.40

Infinite 0.0 0.0 13.23 26.02 38.37 50.29 62.20 712.40
0.4 14.52 22.90 31.07 39.05 52.57 657.72
0.8 17.48 20.69 23.84 26.94 43.57 584.16

0.4 0.0 24.90 43.76 58.12 69.23 78.67 631.90
0.4 29.96 36.97 43.29 48.99 57.86 570.70
9.8 37.35 37.35 37.35 37.35 37.35 548.69

0.8 0.0 33.10 55.27 70.12 80.03 86.98 582.40
0.4 36.51 36.51 36.51 36.51 36.51 560.34
0.8 36.51 36.51 36.51 36.51 36.51 555.03
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in starting inspections

• For a fixed value of α, increasing the value of β results in a shorter opti-

mal planning horizon with the net effect that inspections are scheduled

over a smaller and smaller range

• When β is small and fixed, increasing the value of α results in a delay

in starting inspections and a longer planning horizon

• When β is large and fixed, increasing α is accompanied by a shorter

optimal planning horizon

• Larger values for both α and β result in optimal inspections which are

chronologically very close and comparatively shorter planning horizons.
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Table 5.5: Optimal inspection times for different values α and β for system
time to failure that follows an exponential distribution (n = 4 inspections)

Planning α β Optimal Inspection times Optimal Profit
horizon planning Profit per unit of time7

horizon
Finite 0.0 0.0 23.77 52.20 88.50 139.84 229.42 37345.80

0.4 28.59 47.20 68.50 93.42 161.31 33295.10
0.8 34.65 40.96 47.49 54.26 111.38 27170.80

0.4 0.0 67.15 134.37 201.99 272.23 361.82 28669.80
0.4 75.46 90.50 105.54 120.60 149.72 24732.50
0.8 89.33 89.33 89.33 89.33 89.33 23453.50

0.8 0.0 83.79 167.58 251.38 335.31 424.90 25341.80
0.4 89.46 89.46 89.46 89.46 89.46 23957.90
0.8 89.02 89.02 89.02 89.02 89.02 23515.90

Infinite 0.0 0.0 11.28 23.47 36.80 51.61 68.85 650.14
0.4 12.12 19.57 27.37 35.59 51.69 570.57
0.8 14.43 17.09 19.76 22.46 39.54 469.56

0.4 0.0 20.13 40.38 60.96 82.35 106.32 542.94
0.4 24.95 31.96 38.98 45.99 58.64 451.00
9.8 32.74 32.74 32.74 32.74 32.74 420.27

0.8 0.0 28.08 56.15 84.24 112.39 141.73 467.29
0.4 31.76 31.76 31.76 31.76 31.76 434.14
0.8 31.94 31.94 31.94 31.94 31.94 426.28

Again, it is observed that when system time to failure follows an expo-

nential distribution, just like when it follows a uniform distribution, for both

the infinite planning and finite planning horizon cases,

• When α is small and fixed, increasing the value of β results in a delay

in starting inspections;

• For a fixed value of α, increasing the value of β results in a shorter opti-

mal planning horizon with the net effect that inspections are scheduled

over a smaller and smaller range;
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• When β is small and fixed, increasing the value of α results in a delay

in starting inspections and a longer planning horizon; and in addition

• When β is large and fixed, increasing α is accompanied by a shorter

optimal planning horizon

• Larger values for both α and β result in optimal inspections which are

chronologically very close and a comparatively shorter planning horizon

5.4.3 Impact of sizes of errors on the optimal num-
ber of inspections and global optimal inspection
times

An investigation of the impact of sizes of errors on the optimal inspection

times was conducted. Tables B.1 to C.4 in Appendices B and C were compiled

from this exercise.

The following observations were made:

• the times at which the first inspection and a few subsequent inspections

are to be done are not very sensitive to changes in the the number of

planned inspections; in fact, beyond a certain threshold number of

inspections, the time at which the ith inspection has to be done hardly

changes as the number of inspections is increased.
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• When the time to failure of a system follows a uniform distribution,

i.e. for T ∼ U(0, Lo), large values of n will result in more and more

inspections being crammed towards the time Lo.

• for a given number of inspections per cycle (for the case of an infinite

planning horizon) or planning horizon (for the case of a finite plan-

ning horizon), the cycle length is substantially shorter than the finite

planning horizon.

• For the case where T follows a uniform distribution, the inter-inspection

times get shorter and shorter over time

• The optimal number of inspections decreases with an increase in α

and/or β.

• For the time to failure following an exponential distribution, the inter-

inspection times for the infinite planning horizon case are almost con-

stant while for the finite planning horizon case they very gradually

get close to being a constant when a larger number of inspections is

planned.
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Figure 5.1: Impact of α and β on maximum expected profit for a fixed number
of inspections
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Figure 5.2: Impact of α and β on optimal inspection times (n = 4 inspections)
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Chapter 6

Hierarchical Inspection Models

6.1 Introduction

The problem that most classical inspection and replacement models seek to

address is that of finding ideal times when inspections of a stochastically

deteriorating system should be scheduled 1. The problem2 discussed in this

paper are a departure from the latter school of models.

The problem discussed in this thesis was first explored by Zuckerman (1989)

who looked at the case of a system with N components/units (presumably

connected in series) whose times to failure are independent exponentially

distributed random variables. By virtue of them being connected in series,

1see also a detailed literature survey by Beichelt and Tittmann (2012)
2this problem has apparently been somewhat ignored as only a handful of papers cite

the two pioneering papers. Only Levner (1994) and Qiu and Cox Jr (1994) have researched
on problems bearing some similarities to the problem discussed in the pioneering paper
by Zuckerman (1989) which was reviewed by Qiu (1991)

147



the system fails the moment any one of the N components fails and sys-

tem failure is attributed to just that component which will have failed. The

model discussed by Zuckerman assumes that the system’s status is observed

continuously at zero cost (by a controller) and a failure is due to exactly one

component having failed. In the event of a breakdown, a series of inspec-

tions (in a hierarchical manner with one unit being inspected at a time) is

performed in order to identify the failed unit. Once the failed unit has been

identified, it is repaired and immediately thereafter the system starts work-

ing again. Both the processes 1) of inspecting the units and 2) of repairing

the failed unit will result in costs being incurred as explained in Section 6.1.1.

The order in which the N units are to be inspected is called an inspec-

tion permutation or strategy; there are a total of N factorial (N !) distinct

inspection permutations and the one that results in the maximum long run

average net income per unit of time or total discounted net income per unit

of time is called the optimal inspection permutation/strategy.

Remark 6.1 In this thesis, from this point on, the term inspection permu-

tation is consistently used to refer to an inspection permutation or strat-

egy. Also, the term net-income-rate is used in place of long-run average net
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income-rate.

A detailed literature search apparently suggests that Levner (1994) and

Qiu and Cox Jr (1994) are the only two research works which have looked at

problems which are similar to the one discussed in this thesis. Levner (1994)

researched on a system with N independent stochastically failing modules.

When system failure occurs, the decision-maker has to perform a series of

sequential inspections. For the problem that Levner looks at, the decision-

maker is given a chance to inspect a module infinitely many times because

inspections are not perfect. The inspection process ends when the failed

module is identified and repaired.

Qiu and Cox Jr (1994) researched on a coherent multi-component system

with units that have constant failure rates and operate independently of

each other. Their works are very similar to Zuckerman (1989) in that when

the system is working, it produces revenue at a constant rate and the system

ceases to work if and only if all components in one of its cut sets fail. The

difference between the problem of Zuckerman (1989) and Qiu (1991) and the

problem of Qiu and Cox Jr (1994) is that in the former two papers only

one failed unit may trigger failure of the system while in the latter paper
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(by Qiu and Cox Jr (1994)) more than one failed unit may trigger failure

of the system. Their paper (Qiu and Cox) presents a heuristic approach

for determining an optimal inspection permutation of such general coherent

systems.

Remark 6.2 The inspection models discussed in the latter three papers are

clearly a departure from the classical inspection models such as the ones in the

works of Barlow et al. (1963), Munford and Shahani (1972), Luss and Kan-

der (1974), Anbar (1976b), Butler (1979), Wattanapanom and Shaw (1979),

Nakagawa and Yasui (1980), Zuckerman (1980), Beichelt (1981), Kawai

(1984), Milioni and Pliska (1988), Christer (1988), Teramoto et al. (1990)

Devooght et al. (1990), Chelbi and Ait-Kadi (1999), Ghasemi et al. (2008),

Scarf et al. (2009), Wang (2009), Ahmadi and Newby (2011), Golmakani and

Fattahipour (2011), Golmakani and Moakedi (2012), Wang (2013), Wang

et al. (2014), Flage (2014) and many others in the sense that the objective

here is not to recommend times as to when inspections should take place but

rather to set out an order or hierarchy in which the components of a system

may be inspected in the event of a system failure.
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6.1.1 Assumptions

The basic assumptions in Zuckerman’s model are:

1. When in operation, the system generates income at a rate of I dollars3

per unit of time.

2. The system has N components whose lifetimes are stochastically in-

dependent random variables which follow exponential distributions so

that the lifetime of the jth unit, Sj ∼ Expo(θj), j = 1, · · · , N and the

cumulative distribution function of the lifetime of the jth component

FSj(t) =

{
1− e−θjt, t > 0
0, otherwise

3. The cost of inspecting the jth unit is $Cj per unit of time and the

inspection time for the jth unit is Tj while the repair time for the jth

unit is Zj and the expected repair cost for the unit is denoted by $Rj.

Remark 6.3 The objective in Zuckerman’s model is the formulation of an

optimal inspection permutation (i.e. the order in which the N units are

inspected - or rather an optimal inspection permutation for the units) in order

to maximize either the net-income-rate or total discounted net income. An

3or any other monetary unit as applicable
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inspection permutation σ = (σ(1), · · · , σ(N)) specifies the order in which the

units are inspected so that σ(j) is the jth system to be inspected.

6.1.2 Main results in Zuckerman (1989)

The notation Eσ[.] and Pσ(.) refer to the expectation and probability, respec-

tively, when an inspection permutation σ is used.

Letting θ =
∑N

j=1 θj, the main results from Zuckerman (1989) are:

1. If a system has gone into the failed state, the probability that the

breakdown is due to the jth unit, Pj:

Pj = P

(
Sj = min

1≤n≤N
{Sn}

)
=
θj
θ
. (6.1)

2. The time the system operates, S = min1≤n≤N{Sn} is an exponentially

distributed random variable with parameter θ;

i.e. S ∼ Expo(θ) (6.2)

and E[S] = 1
θ
.

Letting C be the accumulated inspection cost over a cycle and T be

the time to identify the failed unit (total inspection time per cycle), we

have (for the undiscounted case)

Eσ[C] =
N∑
n=1

Pσ(j)

[∑
n≤j

Cσ(n)Tσ(n)

]
(6.3)
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and

Eσ[T ] =
N∑
j=1

Pσ(j)

[∑
n≤j

Tσ(n)

]
(6.4)

resulting in the net-income-rate for inspection permutation σ being

ψ(σ) =
I
θ
− Eσ[C]−

∑N
j=1 PjRj

1
θ

+ Eσ[T ] +
∑N

j=1 PjZj
. (6.5)

3. Zuckerman goes on to give a result (listed as Theorem 1 in his paper)

which is deemed critical for determining the optimal inspection permu-

tation for the undiscounted case; it says that in the undiscounted

case, the units are inspected in an increasing order of the indices

ej =
TjCj + ψ∗Tj

Pj
, j = 1, 2, · · · , N, (6.6)

where ψ∗ = maxσ ψ(σ) is the optimal net-income-rate.

Remark 6.4 Zuckerman laments that since ψ∗ is unknown, his procedure

is not tractable as the indices e1, · · · , eN cannot be computed explicitly. He

proposes a graphical computational procedure for the optimal inspection per-

mutation which is quite involved!

Remark 6.5 Zuckerman’s assertion that the optimal inspection permutation

does not depend on the repair times and repair costs is not correct; this is

shown with the aid of a counter-example (see Example (6.2)). This then casts
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doubt on the role of Result (6.6) in being the cornerstone of determining an

optimal inspection permutation.

Zuckerman’s works are then reviewed by Qiu (1991); Qiu suggests that

some of the results (results for the discounted case ) arrived at by Zuckerman

are indeed not correct.

6.1.3 Main results in Qiu (1991)

Qiu looks at the simplified case where the repair times and repair costs are

assumed to be negligible. He denotes the inspection cost rate at time t by

C(t) and the obtaining continuous discount factor by α. Both Zuckerman

and Qiu give the total discounted net income per cycle when an inspection

permutation σ is adopted as

η(σ) =

I
θ+α
− θ

θ+α
Eσ

[∫ T
0
C(t)e−αtdt

]
1− θ

θ+α
Eσ[e−αT ]

(6.7)

Letting η∗ = max η(σ) andQn = 1−Pn, Zuckerman states that an optimal

inspection permutation would inspect the units in an increasing order of the

indices gn:

gn =
(η∗ + Cn/α)(1− exp(−αTn))

1−Qnexp(−αTn)
, n = 1, · · · , N. (6.8)
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Qiu disputes Result (6.8) and uses a counter-example to support his argument

that the result is not correct. He completes his paper by giving necessary

conditions for an inspection permutation to be optimal.

6.2 Limitations of Zuckerman and Qiu’s works

Just like in Zuckerman’s case, Qiu’s paper falls short of giving a clear roadmap

which outlines how to obtain an optimal inspection permutation with ease.

Further, one needs to be wary of Zuckerman and Qiu’s model assumptions

that the repair times and and repair costs are not important in finding an

optimal inspection permutation. It must be stressed that while the results

obtained by Zuckerman (1989) and Qiu (1991) are appealing in that they deal

with commonly encountered practical problems, implementation is unfortu-

nately not easy. In particular, the fact that one has to resort to linear graphs

in order to arrive at the optimal hierarchical inspection schedule makes their

works less appealing.

In this thesis Mathematica programs which make use of Result (6.5) (for

the undiscounted case) and Result (6.12) (for the discounted case) are used

to showcase that it is easy to obtain an optimal inspection permutation for
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the Zuckerman-Qiu policies. The procedure employed in both cases involves

simply computing net-income-rate values for all possible inspection permu-

tations and obtaining the optimal inspection permutation by inspection.

6.3 New results for the discounted case

For an inspection permutation σ = (σ1, · · · , σN), of an N-unit system with

inspection cost rates Cσi inspection times Tσi as well as repair times Zi and

repair costs of Ri, i = 1, · · · , N per unit of time, respectively, the total dis-

counted net income per cycle attributable to the jth unit inspected under

inspection permutation σ (i.e. when failure of the jth unit is what triggered

system failure), Gj(S, σ):

Gj(S, σ) =

∫ S

0

Ie−αtdt

−e−αS
[∫ Tσ1

0

Cσ1e
−αtdt+ e−αTσ1

∫ Tσ2

0

Cσ2e
−αtdt+ · · ·+ e−α

∑j−1
k=1 Tσk

∫ Tσj

0

Cσje
−αtdt

]
−e−α(S+

∑j
n=1 Tσn)

[∫ Zσj

0

Rσje
−αtdt

]
=

1

α

[
I
(
1− e−αS

)
− e−αS

j∑
n=1

Cσne
−αζn−1

(
1− e−αTσn

)
−Rσje

−α(S+ζj)
(
1− e−αZσj

)]
=

1

α

[
I
(
1− e−αS

)
− e−αSHj(σ)

]
(6.9)
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where ζσn =
∑n

k=0 Tσk and Hj(σ) =
∑j

n=1 Cσne
−αζσn−1

(
1− e−αTσn

)
+

Rσje
−αζσj

(
1− e−αZσj

)
and Tσ0 = 0.

A cycle involves an operating time S, an inspection time and a repair

time for the failed unit so that if the duration of a cycle is denoted by TC ,

the expected duration of a cycle E[TC ]:

E[TC ] =
1

θ
+

N∑
j=1

Pσj

(
j∑

n=1

Tσn + Zσj

)
=

1

θ

[
1 +

N∑
j=1

θj

(
j∑

n=1

Tσn + Zσj

)]
.

(6.10)

E[G(S, σ)|S] =
N∑
n=1

Gn(S, σ)Pσn =
1

α

[
I
(
1− e−αS

)
− 1

θ
e−αS

N∑
j=1

θjHj(σ)

]
and hence, the expected net discounted income per cycle, G(σ):

G(σ) =
1

α

∫ ∞
0

[
I
(
1− e−αs

)
− 1

θ
e−αs

N∑
j=1

θjHj(σ)

]
θe−θsds

=
1

α(α + θ)

[
αI −

N∑
j=1

θjHj(σ)

]
(6.11)

An optimal inspection permutation maximizes η:

η(σ) =
G(σ)

E[TC ]
=

1
α(α+θ)

[
αI −

∑N
j=1 θjHj(σ)

]
1
θ

[
1 +

∑N
j=1 θj

(∑j
n=1 Tσn + Zσj

)] =

(
I

α+θ
− 1

α(α+θ)

∑N
j=1 θjHj(σ)

)
[

1
θ

+
∑N

j=1
θj
θ

(∑j
n=1 Tσn + Zσj

)]
(6.12)

Theorem 6.1

lim
α→0+

η(σ) =
I
θ
− Eσ[C]−

∑N
n=1 PnRn

1
θ

+ Eσ[T ] +
∑N

n=1 PnZn
= ψ(σ).
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Proof:

dHj(σ)

dα
= H′j(σ) =

j∑
n=1

Cσn
(
(ζn−1 + ζn)e−α(ζn−1+ζn) − ζn−1e

−αζn−1
)

+Rσj

(
(ζj + Zσj)e

−α(ζj+Zσj ) − ζje−αζj
)

and lim
α→0+

H′j(σ) =

j∑
n=1

Cσnζn +RσjZσj

Applying the L’ Hospital’s rule:

lim
α→0+

G(σ) =

I
θ
−

∑N
j=1 θj limα→0+H′j(σ)

limα→0+(2α+θ)[
1
θ

+
∑N

j=1
θj
θ

(∑j
n=1 Tσn + Zσj

)]
=

I
θ
−
∑N

j=1
θj
θ

(∑j
n=1Cσnζn +RσjZσj

)
[

1
θ

+
∑N

j=1
θj
θ

(∑j
n=1 Tσn + Zσj

)]
= ψ(σ)

6.4 The ideal method for obtaining an opti-

mal inspection permutation

6.4.1 (The undiscounted case)

The numerical example given by Zuckerman is used to demostrate how the

proposed procedure works.

Example 6.1 Consider a system which is composed of N = 6 independent

units (call them a1, · · · , a6) and generates income at the rate of I = $20.

Assume the parameters given in Table 6.1. We discuss the case of Ri = 0
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and Zi = 0, for i = 1, · · · , 6, i.e. the case of a system with units that take a

negligible amount of time to repair in the event of failure.

Table 6.1: Costs and other constants associated with a system

Unit Ti Ci θi Pi = θi∑6
i=1 θi

a1 3 4 1
100

6
35

a2 2 3 1
150

4
35

a3 4 5 1
200

3
35

a4 6 3 1
150

4
35

a5 5 7 1
50

12
35

a6 4 4 1
100

6
35

To determine the optimal inspection permutation, the following steps are

taken:

Step 0 Assign a value to the rate at which income is generated, I as well as

define the vectors of repair costs and repair times R and Z using the

commands

I = 20;

R=Table[0,{i,1,6}];

Z=Table[0,{i,1,6}];

Step 1 Create an N !×N = 720× 6 matrix consisting of all the different 720

permutations (each row is a different permutation) using the command
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AA = Permutations [{a1, a2, a3, a4, a5, a6}] ; .

Step 2 Create a vector of inspection times denoted by T1, · · · , T6 using the

command

T = Table [Tk, {k, 1, 6}] /. {T1 → 3, T2 → 2, T3 → 4, T4 → 6, T5 → 5, T6 → 4} ;.

Also create a corresponding 720 × 6 matrix of permutations, TT of

T1, · · · , T6 using the command:

TT = Permutations[{T1,T2,T3,T4,T5,T6}];

and then use the replacement rule which sets T1 = 3, T2 = 2, · · · , T6 =

4 using the command

TT = TT/. {T1→ 3,T2→ 2,T3→ 4,T4→ 6,T5→ 5,T6→ 4};

Step 3 Create a vector of inspection cost rates denoted by C1, · · · , C6 using

the command

C = Table [Ck, {k, 1, 6}] /. {C1 → 4, C2 → 3, C3 → 5, C4 → 3, C5 → 7, C6 → 4}

Also create a corresponding 720 × 6 matrix of permutations, CC of

C1, · · · , C6 using the command:

CC = Permutations[{C1,C2,C3,C4,C5,C6}] and then use the replace-

ment rule which sets C1 = 4, C2 = 3, · · · , C6 = 4 using the command

CC = CC/. {C1→ 4,C2→ 3,C3→ 5,C4→ 3,C5→ 7,C6→ 4};
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Step 4 Calculate the probability of the ith unit (i = 1, · · · , 6) being the cause

of system failure

Step 5 Next calculate a matrix (of cumulative cost of inspections) V720×6 such

that

vij =
∑

k≤j Cσi(k)Tσi(k) using the command

V = Table[0.0, {720}, {6}];

For

[
i = 1, i ≤ 720, i++,For

[
j = 1, j ≤ 6, j++, V [[i, j]] = N

[
j∑

k=1

CC[[i, k]]TT[[i, k]]

]]]
;

V //MatrixForm;

and a vector (or list) of size 720 (call it ECost), whose elements

are the expected costs of the inspection permutations σ1, · · · , σ720,

Eσ1 , · · · , Eσ720 , respectively, using the commands

ECost = Table[0.0, {720}];

For

[
i = 1, i ≤ 720, i++,ECost[[i]] = N

[
6∑
j=1

V [[i, j]]PP[[i, j]]

]]
;

ECost//MatrixForm;

Step 6 Calculate an N ! × n (720 × 6) matrix of cumulative inspection times

Ecum; (under the ith inspection permutation σi, the jth, j = 1, · · · , 6

cumulative inspection time is
∑j

k=1 TTik). The following commands
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are used to compute Tcum:

Tcum = Table[0.0, {720}, {6}];

For

[
i = 1, i ≤ 720, i++,For

[
j = 1, j ≤ 6, j++,Tcum[[i, j]] = N

[
j∑

k=1

TT[[i, k]]

]]]
;

and then calculate the vector or list of expected values of inspection

times for all N ! = 720 inspection permutations (call it ETime) using

the commands

ETime = Table[0.0, {720}];

For

[
i = 1, i ≤ 720, i++,ETime[[i]] = N

[
6∑
j=1

Tcum[[i, j]] PP[[i, j]]

]]
;

ETime//MatrixForm;

Step 7 Calculate the vector or list of net-income-rate for each inspection per-

mutation ψ(σi), i = 1 · · · , 720 using the commands

ψ = Table[0.0, {720}, {1}];

For
[
i = 1, i ≤ 720, i++, ψ[[i]] = N

[
I
θ
−ECost[[i]]−

∑6
k=1 P [[k]]R[[k]]

1
θ

+ETime[[i]]+
∑6
k=1 P [[k]]Z[[k]]

]]
;

ETime//MatrixForm;

ψ//MatrixForm

Step 8 Merge the matrix of permutations AA with the list ψ so that each

permutation appears in the same row as its net-income-rate and then
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sort/reorder the resultant matrix so that the inspection permutations

are sorted by the magnitude of ψ. This is done by using the commands

Optsol = Transpose[Join[Transpose[AA], {ψ}]];

Optsol//MatrixForm;

Optsorted = SortBy[Optsol,Last];

Optsorted//MatrixForm

The results obtained for the sorted matrix are as follows:

Optsorted =



a3 a4 a6 a5 a1 a2 7.85403
a4 a3 a6 a5 a1 a2 7.86265
a3 a4 a6 a5 a2 a1 7.86409
a3 a4 a6 a1 a5 a2 7.86978
a4 a3 a6 a5 a2 a1 7.87270
. . . . . . .
. . . . . . .
. . . . . . .
a5 a1 a2 a6 a4 a3 10.1657
a2 a5 a1 a6 a3 a4 10.1998
a2 a1 a5 a6 a3 a4 10.2046
a2 a5 a1 a6 a4 a3 10.2055
a2 a1 a5 a6 a4 a3 10.2103


From the matrix Optsorted above, we deduce that the optimal inspection

permutation is to inspect the units of the system in the order (a2 → a1 →

a5 → a6 → a4 → a3) and the associated net-income-rate, ψ∗ = 10.2103 -

the same result obtained by Zuckerman. The worst inspection permutation

is (a3 → a4 → a6 → a5 → a1 → a2) and its associated net-income-rate of
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ψ∗ = 7.85403.

Example 6.2 Consider Example (6.1) discussed above with all repair times

and repair costs set at 0 except R2 and Z2.

Table 6.2: Some optimal inspection permutations for different inspection
costs
R2 Z2 Best strategy/ Net-income-rate

Worst strategy per unit of time
9 2279 (a2 → a1 → a5 → a6 → a4 → a3)/ 1.00030

(a3 → a4 → a5 → a6 → a1 → a2) 0.904568
10 2279 (a2 → a1 → a6 → a5 → a4 → a3)/ 0.999901

(a3 → a4 → a5 → a6 → a1 → a2) 0.904179
6242 2279 (a2 → a1 → a6 → a5 → a4 → a3)/ -1.46139

(a3 → a5 → a4 → a6 → a1 → a2) -1.51866
6243 2279 (a2 → a1 → a6 → a4 → a5 → a3)/ -1.46179

(a3 → a5 → a4 → a6 → a1 → a2) -1.51905

If Z2 is fixed at 2279 then the optimal inspection permutation, as R2

is increased from 0 upto a threshold value that is just below 10, remains

(a2 → a1 → a5 → a6 → a4 → a3). However, values of R2 beyond this

threshold upto a value between 6242 and 6243 dictate a different optimal

strategy - (a2 → a1 → a6 → a5 → a4 → a3); from a value just below 6243

on, the optimal strategy changes to (a2 → a1 → a6 → a4 → a5 → a3). Am

inspection of Table ** also reveals that changes in the worst strategy do not

occur simulataneously with changes in the optimal inspection permutation as

the value of the repair cost R2 increases. An interesting observation made
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from the first row and the third row of Table ** is that, unlike in rows 2

and 4, the worst strategy is not necessarily a result of reading of the optimal

strategy in reverse order.

Remark 6.6 What clearly stands out from Example (6.2) is that Zucker-

man’s assertion that the optimal inspection permutation does not depend on

repair costs and repair times is erroneous - inspection times and inspection

costs infact play a role in the determination of the optimal inspection permu-

tation!

6.4.2 Discounted case

Example 6.3 (The discounted case) Consider the system which is com-

posed of six independent units (call them a1, · · · , a6) and generates income

at the rate of I = $20. Assume the parameters given in Table 6.1. We

again look at the case of repair times and repair costs being negligible so that

R1 = · · · = R6 = 0 and the respective repair costs being Z1 = · · · = Z6 = 0.

Table 6.3 gives the results obtained using a Mathematica computer pro-

gram.
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Figure 6.1 contains plots of the discounted maximum and minimum net

income-rate. For low discount rates, the difference between the income as-

sociated with the optimal inspection permutation and the income associated

with the worst inspection permutation is large and progressively gets smaller

and smaller with increasing discount rate. The impression created is that

for low discount rates, one particularly has to insist on using an optimal in-

spection permutation; however, for high discount rates one may as well be

indifferent on what inspection permutation to use as the penalty for using a

non-ptimal inspection permutation becomes negligible.

Remark 6.7 Example 6.4 highlights the fact that optimal solutions of hier-

archical inspection problems are very sensitive to changes in per unit of time

repair costs and repair times of the units. In Zuckerman (1989) and Qiu

(1991), the impact of these per unit of time repair costs and inspection times

is downplayed.
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Figure 6.1: Plot of discounted maximum and minimum net-income-rate

Example 6.4 Consider the system which is composed of six independent

units (call them a1, · · · , a6) and generates income at the rate of I = $20.

Assume the parameters given in Table 6.1 and a discount rate of α = 0.1.

We now examine the case of some repair times and repair costs being non-

negligible; Table 6.4 gives the results obtained using a Mathematica computer

program; all repair costs and repair times not mentioned in the table should

be assumed negligible.

The changes in the optimal solutions when changes in the repair times

167



and per unit of time repair costs take place are in line with the intuitive

reasoning that those units whose total repair costs are large should roughly be

inspected last. In the first row of Table 6.4, we see that Unit a2, according

to the optimal solution should be inspected first. In Row 2 of the table, Unit

2 is the only one with a non-zero total repair cost (a whooping total repair

cost of 100× 100=$10000) and in the optimal solution given in Row 2, it is

relegated to the last position. A similar change in the repair time and per

unit of time repair cost of Unit 1 (see Row 2) which is in first position also

results in it being relegated to the last position in the line up. Again similar

changes in the repair time and per unit of time repair cost of Unit 5 sees it

being similarly relegated to the last position in the line up.
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Table 6.3: Some optimal inspection permutations for different inspection
costs and varying discount rate (when repair costs and repair times are neg-
ligible)

α Worst inspection Net income Optimal Net income
permutation/ per unit of time inspection per unit of time

strategy of worst strategy permutation of optimal strategy
0.90 $0.59796 $0.73235
0.70 $0.66634 $0.81616
0.60 $0.86398 $1.05794
0.50 a3, a4, a6, a1, a2, a5 $1.01446 a2, a5, a1, a6, a3, a4 $1.24149
0.40 $1.22846 $1.50177
0.30 $1.55682 $1.90343
0.20 $2.12376 $2.59713
0.10 $3.33335 a2, a1, a5, a6, a3, a4 $4.09587
0.09 $3.53618 $4.34917
0.08 $3.76130 $4.63688
0.07 $4.01966 $4.96677
0.06 $4.31670 $5.34918
0.05 a3, a4, a6, a1, a5, a2 $4.66130 $5.79823
0.04 a3, a4, a6, a5, a1, a2 $5.06534 $6.33370
0.03 $5.54747 $6.98422
0.02 $6.13806 $7.79297
0.01 $6.88193 a2, a1, a5, a6, a4, a3 $8.83034
0.005 $7.33294 $9.46748
0.001 $7.74338 $10.05200
0.0001 $7.84281 $10.19420
10−13 $7.85398 $10.2103
· · · · · · · · · · · · · · ·

0.0000 $7.85403 $10.2103
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Table 6.4: Some optimal inspection permutations when some repair costs
and repair times are non-negligible
R1 Z1 R2 Z2 R5 Z5 Optimal strategy/ Net income

Worst strategy per unit of time
0 0 0 0 0 0 a2 → a1 → a5 → a6 → a3 → a4 4.09587

a3 → a4 → a6 → a1 → a2 → a5 3.33335
0 0 100 100 0 0 a1 → a5 → a6 → a3 → a4 → a2 2.72885

a2 → a3 → a4 → a6 → a1 → a5 1.81072
100 100 100 100 0 0 a6 → a5 → a4 → a3 → a1 → a2 1.74119

a2 → a1 → a3 → a4 → a6 → a5 0.72044
100 100 100 100 100 100 a6 → a4 → a3 → a1 → a2 → a5 0.89803

a5 → a2 → a1 → a3 → a6 → a4 -0.08414
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Chapter 7

Conclusions and
Recommendations

7.1 Finite planning horizon models

The advent of powerful computers these days has made it possible to demon-

strate that finding a finite optimal inspection model when the lifetime dis-

tribution is known is a process easily achievable by employing either the

iterative procedure given in Section 3.2.4 or the nonlinear optimization pro-

cedure in Section 3.2.5.

If the time to failure of a system follows a uniform distribution over the inter-

val [0, Lo], according to Remark 3.9, it does not make business sense to have a

planning horizon which is longer than the maximum possible time for which

the system may operate, i.e. having L > Lo is ruled out. It also may not
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make business sense to schedule n inspections such that n >
√

2 cF
cI
Lo + 1

4
+ 1

2

(see Remark 3.10).

If the time to failure follows an exponential distribution, it has been noted

that periodically carrying out inspections may not result in maximization of

expected profit. The recommended pattern of scheduling inspections for a

given number of inspections depends on the parameter θ; a high value of θ

(which in turn means the system at hand generally has a shorter time to

failure) will favour inspections that are“back loaded” while systems with a

lower value of θ will require inspections being“front loaded” for maximization

of expected profit to be achieved. When the number of inspections is large,

uniformly spreading inspections over a recommended planning horizon may

not be seriously prejudicial to the expected profit. For the Weibull distribu-

tions family (of which the exponential distribution is a special case), evenly

spreading the inspections over a given finite planning horizon may not lead

to any serious prejudice in profit.

For a system whose time to failure follows a Weibull distribution, Exam-

ple 3.2 and Example 3.4 demonstrated that an increase in the length of the
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planning horizon will result in an increase in the expected profit provided that

an optimal number of inspections which are at optimally set times are carried

out. There is, however, a saturation point to which the profit may asymptot-

ically converge if the planning horizon keeps increasing accompanied with an

optimal number of inspections which are also optimally scheduled. In view

of this, the recommendation given in Chapter 3 is that the number of inspec-

tions and corresponding optimal planning horizon may be deemed optimal if

for some desirable ε > 0, n is the least value such that |GE.n+1 − GE.n| < ε.

7.2 Inspection models with Inspection times

that are of non-negligible duration

Chapter 4 explores the case of inspection models where each inspection takes

a fixed amount of time. It is observed that

1. for a system whose time to failure follows a continuous uniform distri-

bution, the conditions necessary for inspections that are evenly spread

over the entire planning horizon to be near-optimal are 1) that the cost

of carrying out an inspection, cI is negligible in comparison to the per
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unit cost when the system is idle, cF and 2) ∆i → 0

2. for a system whose time to failure follows a an exponential distribution,

the conditions necessary for inspections that are evenly spread over

the entire planning horizon to be near-optimal are 1) that the cost of

carrying out an inspection, cI is negligible in comparison to the per

unit cost when the system is idle, cF and 2) ∆i → 0 and 3) the mean

of the time to failure E[T ]→∞.

The discussion in Chapter 4 is limited in that it does not look at the case of

time to failure following other distributions like the Weibull distribution and

others mentioned in Section 3.3.2. The discussion also falls shy of looking

at infinite planning horizon models with inspection times that are of non-

negligible duration.

7.3 Finite and infinite planning horizon mod-

els where inspections are imperfect

Chapter 5 deals with finite and infinite planning horizon models where in-

spections are imperfect. The following observations were made for this pool

of models:

1. increasing the value of a Type I error (i.e. increasing α) when the value
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of a Type II error (β) is held constant will result in the expected profits

initially plummeting. An interestingly anomalous observation is that

the expected profit curve reaches its minima when α + β = 1 and for

values of α greater than 1 − β, increasing α results in the expected

profit slowly increasing

2. increasing the value of β when α is held constant will result in the

expected profits consistently plummeting

3. When α is small and fixed, increasing the value of β results in a delay

in starting inspections

4. For a fixed value of α, increasing the value of β results in a shorter opti-

mal planning horizon with the net effect that inspections are scheduled

over a smaller and smaller range

5. When β is small and fixed, increasing the value of α results in a delay

in starting inspections and a longer planning horizon

6. When β is large and fixed, increasing α is accompanied by a shorter

optimal planning horizon

7. Larger values for both α and β result in optimal inspections which are
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chronologically very close and comparatively shorter planning horizons.

7.4 Hierarchical inspection models

Chapter 6 gives a clear and easy to implement road map on how to get an

optimal inspection permutation in problems first discussed by Zuckerman

(1989) and later reviewed by Qiu (1991) for both the undiscounted and dis-

counted cases; the only challenge envisaged when a system has a large number

of components is that of computer memory requirements - which nowadays

is fast being overcome. In particular, it has been clearly demonstrated that

the impact of repair times and per unit of time repair costs on the optimal

inspection permutation cannot be ignored.

The ideas and procedures of determining optimal inspection permutations

which have been developed in this thesis will no doubt lead to huge cost

savings especially for systems where the cost of inspecting components is

huge.
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7.5 Scope for further research

In the case of finite planning horizon models discussed in Chapter 3, the

author of this thesis notes that

1. An extension of the theoretical results given in this thesis which takes

on board actuarial considerations such as making CS a time-dependent

variable will no doubt lead to results with wider applications in in-

dustry. The dimension taken by Usher et al. (1998) whereby they de-

termined an optimal preventive maintenance schedule by considering

the time value of money in all future costs (and incomes when profit

maximization is the objective function) is worth exploring.

2. A possible avenue of research would involve developing finite planning

horizon models for a system whose time to failure follows a Bernstein

distribution. According to Ahmad and Sheikh (1984) the distribution

is useful in modeling life characteristics of machine components which

deteriorate according to a scheme of non-stationary linear wear pro-

cesses (such as cutting tools, slideways and rotating parts of machine

tools used in precision machining).

3. Other envisaged research works involve the development of finite plan-
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ning horizon inspection models applicable to systems that are sub-

jected to shocks of random magnitudes at random times as explained

by Finkelstein and Marais (2010).

4. Another interesting dimension is to develop a finite planning horizon

model based on three-stage failure process as done by Wang (2011).

The work done in Chapter 4 centered on finite planning horizon inspection

models where inspections are of non-negligible fixed duration using a similar

approach to the one taken by Luss and Kander (1974). In real-life, inspec-

tions may turn out to be random variables and the development of models

where inspection times are random variables may prove very useful.

Another limitation of the work done in Chapter 4 is that only the cases

of system time to failure following a uniform distribution or an exponen-

tial distribution are explored fully. Cases of time to failure following other

distributions like the Weibull distribution and others mentioned in Section

3.3.2 need to be explored. In particular, the generalized gamma distribution

which is a family of four distributions of which some have been discussed in

this thesis will most likely yield interesting results. The discussion also falls

shy of looking at infinite planning horizon models with inspection times that
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are of non-negligible duration. This is one area which the author hopes to

explore in future.

Chapter 5 deals with finite and infinite planning horizon models where in-

spections are imperfect. Extensions of the ideas discussed in the chapter to

encompass inspections that are failure inducing, just like in the paper by

Flage (2014) also need to be explored.

The Hierarchical inspection models discussed in Chapter 6 assume that the

system’s status is observed continuously at zero cost (by a controller) and

a failure is detected as and when it occurs. For most classical inspection

and replacement models, the system’s status (i.e. whether it is still function-

ing properly or it is in a failed state) is only known after an inspection has

been carried out. For classical inspection and replacement models scheduling

times at which the system needs to be inspected is therefore imperative. It

would be helpful if models that encompass both the specification of inspec-

tion cycles (to determine a system’s status) as well as the optimal inspection

permutation (for the units that make up the system) were developed for those

systems where continuous monitoring is not possible.
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Models of a similar nature where the time to failure of the units follow some

other distributions such as the Weibull distribution need to be developed.

Further research could also consider cases when the life time distribution is

either partially unknown or entirely unknown is also possible.

Other research work to be done would be on inspection and replacement

models for a system that is subjected to shocks over time. The literature in

Section 2.5.2 provide good ideas on how to proceed in this vain.
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+
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=
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=
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cF
(x
n

+
1
−
x
n
)

C
D

F
[u

d
is

t,
x
n
]+
∑ n−

1
i=

1
(C

i+
cF

(x
i+

1
−
x
i)

)
C

D
F

[u
d

is
t,
x
i]

+
(c

R
+

cF
)
( ∫ x n

+
1

0
tP

D
F

[u
d

is
t,
t]
d
t
−
x
n

+
1

C
D

F
[u

d
is

t,
x
n

+
1
]) +
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+
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0
,θ

6
→

1
/1

00
};

θθ
/
/
M

at
ri

x
F

or
m

;
θθ

/
/M

at
ri

x
F

o
rm

;
θθ

//
M

a
tr

ix
F

or
m

;

D
im

en
si

o
n

s[
θθ

];
D

im
en

si
on

s[
θθ

];
D

im
en

si
o
n

s[
θθ

];

C
le

a
r[
θv

];
C

le
ar

[θ
v
];

C
le

a
r[
θv

];

θv
=

T
ab

le
[θ
k
,{
k
,1
,6
}]

/.
{θ

1
→

1/
10

0,
θ 2
→

1/
15

0
,θ

3
→

1
/2

00
,θ

4
→

1/
15

0,
θ 5
→

1
/5

0,
θ 6
→

1/
10

0
};

θv
=

T
a
b

le
[θ
k
,{
k
,1
,6
}]

/.
{θ

1
→

1
/1

00
,θ

2
→

1
/
15

0,
θ 3
→

1/
20

0
,θ

4
→

1
/1

50
,θ

5
→

1
/
50
,θ

6
→

1
/1

00
};

θv
=

T
ab

le
[θ
k
,{
k
,1
,6
}]

/.
{θ

1
→

1
/
10

0,
θ 2
→

1/
15

0
,θ

3
→

1
/2

00
,θ

4
→

1/
15

0,
θ 5
→

1/
50
,θ

6
→

1/
10

0}
;

θv
;

θv
;

θv
;

θ
=

T
o
ta

l[
θv

];
θ

=
T

ot
a
l[
θv

];
θ

=
T

o
ta

l[
θv

];

θθ θ “P
ar

am
et

er
s

o
f

ex
p

on
en

ti
al

d
is

tr
ib

u
ti

on
li

fe
ti

m
es

”
“
P

a
ra

m
et

er
s
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ex

p
on

en
ti

al
d

is
tr

ib
u

ti
on

li
fe

ti
m

es
”

“
P

a
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m
et

er
s
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ex

p
on

en
ti

al
d

is
tr

ib
u

ti
on

li
fe

ti
m
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”
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P
=
θv
/θ

;
P

=
θv
/θ

;
P

=
θv
/
θ;

P
P

=
P

er
m

u
ta

ti
on

s[
{P

1,
P

2,
P

3,
P

4,
P

5,
P

6}
];

P
P

=
P

er
m

u
ta

ti
on

s[
{P

1,
P

2,
P

3,
P

4,
P

5,
P

6}
];

P
P

=
P

er
m

u
ta

ti
on

s[
{P

1,
P

2,
P

3,
P

4,
P

5,
P

6}
];

P
P

=
P

P
/
.{

P
1
→

6/
35
,P

2
→

4/
35
,P

3
→

3
/3

5,
P

4
→

4
/3

5,
P

5
→

12
/
35
,P

6
→

6/
35
};

P
P

=
P

P
/
.{

P
1
→

6
/3

5,
P

2
→

4
/3

5
,P

3
→

3
/
35
,P

4
→

4
/
35
,P

5
→

12
/3

5,
P

6
→

6
/3

5}
;

P
P

=
P

P
/
.{

P
1
→

6/
35
,P

2
→

4/
35
,P

3
→

3/
35
,P

4
→

4/
35
,P

5
→

12
/
35
,P

6
→

6/
35
};

P
P

/
/
M

at
ri

x
F

o
rm

;
P

P
//

M
a
tr

ix
F

or
m

;
P

P
/
/
M

at
ri

x
F

o
rm

;

D
im

en
si

o
n

s[
P

P
];

D
im

en
si

on
s[

P
P

];
D

im
en

si
o
n

s[
P

P
];

“
P

ro
b

a
b

il
it
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s
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m
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h

in
e

fa
il

u
re
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u
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d

b
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e

d
iff

er
en

t
u
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s”
“P

ro
b
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il

it
ie

s
o
f

m
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h
in

e
fa

il
u
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ca

u
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d
b
y

th
e

d
iff

er
en

t
u

n
it

s”
“
P
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b

a
b

il
it

ie
s
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m
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h

in
e

fa
il

u
re
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u

se
d

b
y

th
e

d
iff

er
en

t
u

n
it

s”

“
P

a
ra

m
et

er
s

of
ex

p
on

en
ti

al
d

is
tr

ib
u

ti
on

li
fe

ti
m

es
”

“P
ar

am
et

er
s

o
f

ex
p

on
en

ti
al

d
is

tr
ib

u
ti

on
li

fe
ti

m
es

”
“
P

a
ra

m
et

er
s

of
ex

p
on

en
ti

al
d

is
tr

ib
u

ti
on

li
fe

ti
m

es
”

“
P

ro
b

a
b

il
it

ie
s

of
m

ac
h

in
e

fa
il

u
re

ca
u

se
d

b
y

th
e

d
iff

er
en

t
u

n
it

s”
“P

ro
b

ab
il

it
ie

s
o
f

m
ac

h
in

e
fa

il
u

re
ca

u
se

d
b
y

th
e

d
iff

er
en

t
u

n
it

s”
“
P

ro
b

a
b

il
it

ie
s

of
m

ac
h

in
e

fa
il

u
re

ca
u

se
d

b
y

th
e

d
iff

er
en

t
u

n
it

s”

T
=

T
a
b

le
[T
k
,{
k
,1
,6
}]

/.
{T

1
→

3
,T

2
→

2
,T

3
→

4
,T

4
→

6
,T

5
→

3
,T

6
→

4
};

T
=

T
ab

le
[T
k
,{
k
,1
,6
}]

/.
{T

1
→

3,
T

2
→

2,
T

3
→

4,
T

4
→

6,
T

5
→

3,
T

6
→

4}
;

T
=

T
a
b

le
[T
k
,{
k
,1
,6
}]

/.
{T

1
→

3
,T

2
→

2
,T

3
→

4
,T

4
→

6
,T

5
→

3
,T

6
→

4
};

T
T

=
P

er
m

u
ta

ti
on

s[
{T

1,
T

2
,T

3
,T

4,
T

5,
T

6}
];

T
T

=
P

er
m

u
ta

ti
on

s[
{T

1,
T

2,
T

3,
T

4
,T

5
,T

6}
];

T
T

=
P

er
m

u
ta

ti
on

s[
{T

1
,T

2
,T

3,
T

4,
T

5,
T

6
}]

;

T
T

=
T

T
/.
{T

1
→

3,
T

2
→

2,
T

3
→

4,
T

4
→

6,
T

5
→

5,
T

6
→

4}
;

T
T

=
T

T
/.
{T

1
→

3,
T

2
→

2,
T

3
→

4
,T

4
→

6
,T

5
→

5
,T

6
→

4
};

T
T

=
T

T
/.
{T

1
→

3
,T

2
→

2
,T

3
→

4
,T

4
→

6
,T

5
→

5
,T

6
→

4
};

T
T

/
/M

at
ri

x
F

o
rm

;
T

T
//

M
a
tr

ix
F

or
m

;
T

T
/
/
M

at
ri

x
F

or
m

;

D
im

en
si

o
n

s[
T

T
];

D
im

en
si

on
s[

T
T

];
D

im
en

si
o
n

s[
T

T
];
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C
C

=
P

er
m

u
ta

ti
on

s[
{C

1
,C

2,
C

3,
C

4,
C

5
,C

6
}]

;
C

C
=

P
er

m
u

ta
ti

on
s[
{C

1,
C

2
,C

3
,C

4,
C

5,
C

6}
];

C
C

=
P

er
m

u
ta

ti
on

s[
{C

1,
C

2,
C

3,
C

4
,C

5
,C

6}
];

C
C

=
C

C
/.
{C

1
→

4,
C

2
→

3,
C

3
→

5,
C

4
→

3
,C

5
→

7
,C

6
→

4
};

C
C

=
C

C
/.
{C

1
→

4
,C

2
→

3
,C

3
→

5
,C

4
→

3
,C

5
→

7
,C

6
→

4
};

C
C

=
C

C
/
.{

C
1
→

4,
C

2
→

3,
C

3
→

5,
C

4
→

3,
C

5
→

7,
C

6
→

4}
;

C
C

//
M

a
tr

ix
F

or
m

;
C

C
/
/M

at
ri

x
F

o
rm

;
C

C
//

M
a
tr

ix
F

or
m

;

D
im

en
si

on
s[

C
C

];
D

im
en

si
o
n

s[
C

C
];

D
im

en
si

on
s[

C
C

];

A
A

=
P

er
m

u
ta

ti
on

s
[{
a

1
,a

2
,a

3
,a

4
,a

5
,a

6
}]

;
A

A
=

P
er

m
u

ta
ti

on
s

[{
a

1
,a

2
,a

3
,a

4
,a

5
,a

6
}]

;
A

A
=

P
er

m
u

ta
ti

on
s

[{
a

1
,a

2
,a

3
,a

4
,a

5
,a

6
}]

;

A
A

//
M

a
tr

ix
F

or
m

;
A

A
/
/M

at
ri

x
F

o
rm

;
A

A
//

M
a
tr

ix
F

or
m

;

D
im

en
si

on
s[

A
A

];
D

im
en

si
o
n

s[
A

A
];

D
im

en
si

on
s[

A
A

];

T
cu

m
=

T
a
b

le
[0
.0
,{

72
0}
,{

6}
];

T
cu

m
=

T
ab

le
[0
.0
,{

72
0
},
{6
}]

;
T

cu
m

=
T

ab
le

[0
.0
,{

72
0
},
{6
}]

;

V
=

T
a
b

le
[0
.0
,{

72
0}
,{

6}
];

V
=

T
ab

le
[0
.0
,{

72
0
},
{6
}]

;
V

=
T

ab
le

[0
.0
,{

72
0}
,{

6}
];

F
or
[ i

=
1,
i
≤

72
0,
i+

+
,F

or
[ j

=
1,
j
≤

6,
j+

+
,V

[[
i,
j]

]
=
N
[ ∑ j k

=
1

C
C

[[
i,
k
]]

T
T

[[
i,
k
]]
]]] ;

F
or
[ i

=
1,
i
≤

72
0
,i

+
+
,F

or
[ j

=
1,
j
≤

6
,j

+
+
,V

[[
i,
j]

]
=
N
[ ∑ j k

=
1

C
C

[[
i,
k
]]

T
T

[[
i,
k
]]
]]] ;

F
o
r
[ i

=
1,
i
≤

72
0,
i+

+
,F

or
[ j

=
1,
j
≤

6,
j+

+
,V

[[
i,
j]

]
=
N
[ ∑ j k

=
1

C
C

[[
i,
k
]]

T
T

[[
i,
k
]]
]]] ;

D
im

en
si

o
n

s[
V

];
D

im
en

si
on

s[
V

];
D

im
en

si
o
n

s[
V

];

V
/
/
M

at
ri

x
F

or
m

;
V

//
M

a
tr

ix
F

or
m

;
V

/
/
M

at
ri

x
F

or
m

;

F
o
r
[ i

=
1,
i
≤

72
0,
i+

+
,F

or
[ j

=
1,
j
≤

6
,j

+
+
,T

cu
m

[[
i,
j]

]
=
N
[ ∑ j k

=
1

T
T

[[
i,
k
]]
]]] ;

F
or
[ i

=
1,
i
≤

72
0
,i

+
+
,F

or
[ j

=
1,
j
≤

6
,j

+
+
,T

cu
m

[[
i,
j]

]
=
N
[ ∑ j k

=
1

T
T

[[
i,
k
]]
]]] ;

F
or
[ i

=
1,
i
≤

72
0,
i+

+
,F

or
[ j

=
1,
j
≤

6
,j

+
+
,T

cu
m

[[
i,
j]

]
=
N
[ ∑ j k

=
1

T
T

[[
i,
k
]]
]]] ;

T
cu

m
//

M
a
tr

ix
F

or
m

;
T

cu
m

//
M

a
tr

ix
F

or
m

;
T

cu
m

/
/M

at
ri

x
F

or
m

;
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E
C

os
t

=
T

a
b

le
[0
.0
,{

72
0
}]

;
E

C
o
st

=
T

ab
le

[0
.0
,{

72
0}

];
E

C
o
st

=
T

ab
le

[0
.0
,{

72
0
}]

;

F
o
r
[ i

=
1,
i
≤

72
0
,i

+
+
,E

C
os

t[
[i

]]
=
N
[ ∑ 6 j=

1
V

[[
i,
j]

]P
P

[[
i,
j]

]]] ;
F

or
[ i

=
1,
i
≤

72
0,
i+

+
,E

C
os

t[
[i

]]
=
N
[ ∑ 6 j=

1
V

[[
i,
j]

]P
P

[[
i,
j]

]]] ;
F

o
r
[ i

=
1,
i
≤

72
0
,i

+
+
,E

C
os

t[
[i

]]
=
N
[ ∑ 6 j=

1
V

[[
i,
j]

]P
P

[[
i,
j]

]]] ;

E
C

o
st

//
M

a
tr

ix
F

or
m

;
E

C
os

t/
/M
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ri

x
F

or
m

;
E

C
os

t/
/M

a
tr
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F

or
m

;

D
im

en
si

on
s[

E
C

os
t]

;
D

im
en

si
o
n

s[
E

C
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t]
;

D
im

en
si

o
n

s[
E

C
os

t]
;

M
a
tr

ix
Z

Z
of

re
p

ai
r

ti
m

es

M
a
tr

ix
R

R
o
f
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p
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r
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s

E
T

im
e

=
T
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le
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.0
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72
0
}]

;
E

T
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e
=

T
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le
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72
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];
E

T
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=

T
a
b

le
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72
0
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;

F
or
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=
1,
i
≤

72
0
,i

+
+
,E

T
im

e[
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]]
=
N
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1
T
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m
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P
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]]] ;
F

o
r
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=
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i
≤

72
0,
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+
,E

T
im

e[
[i

]]
=
N
[ ∑ 6 j=

1
T
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m

[[
i,
j]

]P
P

[[
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j]

]]] ;
F

o
r
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=
1,
i
≤

72
0
,i

+
+
,E

T
im

e[
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]]
=
N
[ ∑ 6 j=

1
T

cu
m
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i,
j]

]P
P
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i,
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]]] ;

E
T
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e/
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a
tr
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F
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m
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E

T
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/
M
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x
F

or
m

;
E

T
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x
F
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m

;
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n

g
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u
n
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ag
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n
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m
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n
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d
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e
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”

C
le

a
r[
ψ

];
C

le
ar

[ψ
];

C
le

a
r[
ψ

];

ψ
=

T
ab

le
[0
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,{
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0
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{1
}]

;
ψ

=
T

a
b

le
[0
.0
,{

72
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1}
];

ψ
=

T
a
b

le
[0
.0
,{

72
0
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}]

;

F
or

[ i
=

1,
i
≤

72
0,
i+

+
,ψ

[[
i]

]
=
N

[ c R θ−
E

C
o
st

[[
i]

]−
∑ 6 k=

1
P

[[
k
]]
R

[[
k
]]

1 θ
+

E
T

im
e[
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]]
+
∑ 6 k=

1
P

[[
k
]]
Z

[[
k
]]

]] ;
F

or

[ i
=

1,
i
≤

72
0
,i

+
+
,ψ

[[
i]

]
=
N

[ c R θ−
E

C
o
st

[[
i]

]−
∑ 6 k=

1
P

[[
k
]]
R

[[
k
]]

1 θ
+

E
T

im
e[
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]]
+
∑ 6 k=

1
P

[[
k
]]
Z

[[
k
]]

]] ;
F

o
r

[ i
=

1,
i
≤

72
0
,i

+
+
,ψ

[[
i]

]
=
N

[ c R θ−
E

C
o
st

[[
i]

]−
∑ 6 k=

1
P

[[
k
]]
R

[[
k
]]

1 θ
+

E
T

im
e[

[i
]]
+
∑ 6 k=

1
P

[[
k
]]
Z

[[
k
]]

]] ;

E
T
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e/

/
M

at
ri

x
F

or
m

;
E

T
im

e/
/M

a
tr

ix
F

or
m

;
E

T
im

e/
/
M

at
ri

x
F

or
m

;

ψ
//

M
a
tr

ix
F

or
m

;
ψ

/
/M

at
ri

x
F

o
rm

;
ψ

//
M

a
tr

ix
F

or
m

;
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C
le

a
r[

H
1
];

C
le

ar
[H

1]
;

C
le

a
r[

H
1
];

H
1

=
T

ab
le
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72
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6}
];

H
1

=
T

ab
le

[0
.0
,{

72
0
},
{6
}]

;
H

1
=

T
ab

le
[0
.0
,{

72
0}
,{

6}
];
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Appendix B

Optimal scheduling of
imperfect inspections for
different error sizes when
system time to failure follows a
uniform distribution
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Table B.1: Inspection times (for imperfect inspections) when time to failure
follows a uniform distribution: α = β = 0

 

𝜶,𝜷 Planning 
horizon 

n G Inspection times and planning horizon/cycle length 

0.0, 0.0 Finite  0 34166.67 L = 83.33  

1 35500,00 x1 = 50.00, x2 = 100.00  

2 36068.80 x1=38.125,x2=66.25,x3=94.375 

3 35833.33 x1=36.67,x2=63.33,x3=80.,x4=96.67 

4 35592.31 x1=37.6923,x2=65.3846,x3=83.0769,x4=90.7692,x5=98.4615 

5 35500.00 x1=40.00,x2=70.00,x3=90.00,x4=10.00,x5=100.00,x6=100.00 

10 35500.00 𝑥1 = 40.00, 𝑥2 = 70.00, 𝑥3 = 90.00, 𝑥4 = 100.00, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 = 100.00, 𝑥8 = 100.00, 𝑥9 =
100.00, 𝑥10 = 100.00, 𝑥11 = 100.00  

15 35500.00 𝑥1 = 40.00, 𝑥2 = 70.00, 𝑥3 = 90.00, 𝑥4 = 100.00, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 = 100.00, 𝑥8 = 100.00, 𝑥9 =
100.00, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 = 100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00  

20 35500.00 𝑥1 = 40.00, 𝑥2 = 70.00, 𝑥3 = 90.00, 𝑥4 = 100.00, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 = 100.00, 𝑥8 = 100.00, 𝑥9 =
100.00, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 = 100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00, 𝑥17 =
100.00, 𝑥18 = 100.00, 𝑥19 = 100.00, 𝑥20 = 100.00, 𝑥21 = 100.00  

Infinite 0 575.74 𝐿 = 35.36  

1   

2 619.1260 𝑥1 = 21.38, 𝑥2 = 40.32, 𝑥3 = 59.26  

3 618.0719 𝑥1 = 19.98, 𝑥2 = 37.51, 𝑥3 = 52.60, 𝑥4 = 67.68  

4 613.6636 𝑥1 = 19.37, 𝑥2 = 36.28, 𝑥3 = 50.74, 𝑥4 = 62.74, 𝑥5 = 74.73  

5 608.0905 𝑥1 = 19.23, 𝑥2 = 35.99, 𝑥3 = 50.28, 𝑥4 = 62.09, 𝑥5 = 71.42, 𝑥6 = 80.75  

10 592.2637 𝑥1 = 21.21, 𝑥2 = 39.89, 𝑥3 = 56.05, 𝑥4 = 69.69, 𝑥5 = 80.80, 𝑥6 = 89.39, 𝑥7 = 95.45, 𝑥8 = 98.99, 𝑥9 = 100.00, 𝑥10 =
100.00, 𝑥11 = 100.00  

15 592.2637 𝑥1 = 21.21, 𝑥2 = 39.89, 𝑥3 = 56.05, 𝑥4 = 69.69, 𝑥5 = 80.80, 𝑥6 = 89.39, 𝑥7 = 95.45, 𝑥8 = 98.99, 𝑥9 = 100.00, 𝑥10 =
100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 = 100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00  

20 592.2637 𝑥1 = 21.21, 𝑥2 = 39.89, 𝑥3 = 56.05, 𝑥4 = 69.69, 𝑥5 = 81.00, 𝑥6 = 89.39, 𝑥7 = 95.45, 𝑥8 = 98.99, 𝑥9 = 100.00, 𝑥10 =
100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 = 100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00, 𝑥17 = 100.00, 𝑥18 =
100.00, 𝑥19 = 100.00, 𝑥20 = 100.00, 𝑥21 = 100.00  
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Table B.2: Inspection times (for imperfect inspections) when system time to
failure follows a uniform distribution: α = 0, β = 0.2

 

𝜶, 𝜷  n G Inspection times and planning horizon/cycle length 

0.0,0.2  0 34166.67 𝐿 = 83.33  

 1   

 2 35128.07 𝑥1 = 39.04, 𝑥2 = 61.93, 𝑥3 = 92.63  

 3 34833.33 𝑥1 = 37.50, 𝑥2 = 59.17, 𝑥3 = 74.17, 𝑥4 = 95.00  

 4 34502.30 𝑥1 = 37.93, 𝑥2 = 59.94, 𝑥3 = 75.29, 𝑥4 = 83.97, 𝑥5 = 96.90  

 5 34254.90 𝑥1 = 39.46, 𝑥2 = 62.70, 𝑥3 = 79.26, 𝑥4 = 89.17, 𝑥5 = 92.41, 𝑥6 = 98.53  

 10 34156.07 𝑥1 = 41.48, 𝑥2 = 66.33, 𝑥3 = 84.51, 𝑥4 = 96.02, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00  

 15 34156.06 𝑥1 = 41.48, 𝑥2 = 66.33, 𝑥3 = 84.51, 𝑥4 = 96.02, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00  

 20 34156.06 𝑥1 = 41.48, 𝑥2 = 66.33, 𝑥3 = 84.51, 𝑥4 = 96.02, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00, 𝑥17 = 100.00, 𝑥18 = 100.00, 𝑥19 =
100.00, 𝑥20 = 100.00, 𝑥21 = 100.00  

 0 575.74 𝐿 = 35.36  

 1   

 2 591.1834 𝑥1 = 2130, 𝑥2 = 36.23, 𝑥3 = 55.43  

 3 587.1581 𝑥1 = 20.36, 𝑥2 = 34.52, 𝑥3 = 47.00, 𝑥4 = 63.12  

 4 581.0141 𝑥1 = 19.93, 𝑥2 = 33.73, 𝑥3 = 45.83, 𝑥4 = 56.22, 𝑥5 = 69.75  

 5 574.1031 𝑥1 = 19.83, 𝑥2 = 33.53, 𝑥3 = 45.52, 𝑥4 = 55.78, 𝑥5 = 64.33, 𝑥6 = 75.54  

 10 548.3949 𝑥1 = 21.82, 𝑥2 = 37.04, 𝑥3 = 50.48, 𝑥4 = 62.15, 𝑥5 = 72.03, 𝑥6 = 80.12, 𝑥7 = 86.44, 𝑥8 =
90.98, 𝑥9 = 93.73, 𝑥10 = 94.70, 𝑥11 = 96.48  

 15 547.2990 𝑥1 = 22.50, 𝑥2 = 38.27, 𝑥3 = 52.25, 𝑥4 = 64.45, 𝑥5 = 74.87, 𝑥6 = 83.50, 𝑥7 = 90.35, 𝑥8 =
95.41, 𝑥9 = 98.69, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 = 100.00, 𝑥14 =
100.00, 𝑥15 = 100.00, 𝑥16 = 100.00  

 20 547.2988 𝑥1 = 2250, 𝑥2 = 38.27, 𝑥3 = 52.25, 𝑥4 = 64.45, 𝑥5 = 74.87, 𝑥6 = 83.50, 𝑥7 = 90.35, 𝑥8 =
95.41, 𝑥9 = 98.68894293036743, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00, 𝑥17 = 100.00, 𝑥18 = 100.00, 𝑥19 =
100.00, 𝑥20 = 100.00, 𝑥21 = 100.00  
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Table B.3: Inspection times (for imperfect inspections) when system time to
failure follows a uniform distribution: α = 0.2, β = 0.0

 

𝜶,𝜷 Planning 
horizon 

n G Inspection times and planning horizon/cycle length 

0.2, 0.0 Finite 0 34166.67 𝐿 = 83.33  

1   

2 35128.07 𝑥1 = 39.04, 𝑥2 = 61.93, 𝑥3 = 92.63  

3 34833.33 𝑥1 = 37.50, 𝑥2 = 59.17, 𝑥3 = 74.17, 𝑥4 = 95.00  

4 34502.30 𝑥1 = 37.93, 𝑥2 = 59.94, 𝑥3 = 75.29, 𝑥4 = 83.97, 𝑥5 = 96.90  

5 34254.90 𝑥1 = 39.46, 𝑥2 = 62.70, 𝑥3 = 79.26, 𝑥4 = 89.17, 𝑥5 = 92.40, 𝑥6 = 98.53 

10 34156.07 𝑥1 = 41.48, 𝑥2 = 66.33, 𝑥3 = 84.51, 𝑥4 = 96.02, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00  

15 34156.06 𝑥1 = 41.48, 𝑥2 = 66.33, 𝑥3 = 84.51, 𝑥4 = 96.02, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00  

20   

Infinite 0 575.7359 𝐿 = 35.36  

1   

2 591.1834 𝑥1 = 21.30, 𝑥2 = 36.23, 𝑥3 = 55.43  

3 587.1581 𝑥1 = 20.36, 𝑥2 = 34.52, 𝑥3 = 47.00, 𝑥4 = 63.12  

4 581.0141 𝑥1 = 19.93, 𝑥2 = 33.73, 𝑥3 = 45.83, 𝑥4 = 56.22, 𝑥5 = 69.75  

5 574.1031 𝑥1 = 19.83, 𝑥2 = 33.53, 𝑥3 = 45.52, 𝑥4 = 55.78, 𝑥5 = 64.33, 𝑥6 = 75.54  

10 548.3949 𝑥1 = 21.82, 𝑥2 = 37.04, 𝑥3 = 50.48, 𝑥4 = 62.15, 𝑥5 = 72.03, 𝑥6 = 80.12, 𝑥7 = 86.44, 𝑥8 =
90.98, 𝑥9 = 93.73, 𝑥10 = 94.70, 𝑥11 = 96.48  

15 547.3000 𝑥1 = 22.50, 𝑥2 = 38.27, 𝑥3 = 52.25, 𝑥4 = 64.45, 𝑥5 = 74.87, 𝑥6 = 83.50, 𝑥7 = 90.35, 𝑥8 =
95.41, 𝑥9 = 98.69, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 = 100.00, 𝑥14 =
100.00, 𝑥15 = 100.00, 𝑥16 = 100.00  

20 547.2990 𝑥1 = 22.50, 𝑥2 = 38.27, 𝑥3 = 52.25, 𝑥4 = 64.45, 𝑥5 = 74.87, 𝑥6 = 83.50, 𝑥7 = 90.35, 𝑥8 =
95.41, 𝑥9 = 98.69, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 = 100.00, 𝑥14 =
100.00, 𝑥15 = 100.00, 𝑥16 = 100.00, 𝑥17 = 100.00, 𝑥18 = 100.00, 𝑥19 = 100.00, 𝑥20 =
100.00, 𝑥21 = 100.00  
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Table B.4: Inspection times (for imperfect inspections) when system time to
failure follows a uniform distribution: α = β = 0.2

 

𝜶,𝜷 Planning 
horizon 

n G Inspection times and planning horizon/cycle length 

0.2,0.2 Finite 0 34166.67 𝐿 = 83.33  

1 33166.67 x1 = 66.67, x2 = 100.00  

2 32972.88 𝑥1 = 65.33, 𝑥2 = 81.90, 𝑥3 = 95.61253561246455  

3 32702.04 𝑥1 = 66.06, 𝑥2 = 83.82, 𝑥3 = 91.22, 𝑥4 = 97.87  

4 32591.38 𝑥1 = 66.46, 𝑥2 = 84.87, 𝑥3 = 93.73, 𝑥4 = 96.21, 𝑥5 = 99.08  

5 32556.91 𝑥1 = 66.65, 𝑥2 = 85.36, 𝑥3 = 94.92, 𝑥4 = 98.97, 𝑥5 = 98.97, 𝑥6 = 99.74  

10 32550.45 𝑥1 = 66.71, 𝑥2 = 85.54, 𝑥3 = 95.35, 𝑥4 = 100.00, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00  

15 32550.44 𝑥1 = 66.71, 𝑥2 = 85.54, 𝑥3 = 95.35, 𝑥4 = 100.00, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00  

20 32550.44 𝑥1 = 66.71, 𝑥2 = 85.54, 𝑥3 = 95.35, 𝑥4 = 100.00, 𝑥5 = 100.00, 𝑥6 = 100.00, 𝑥7 =
100.00, 𝑥8 = 100.00, 𝑥9 = 100.00, 𝑥10 = 100.00, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00, 𝑥17 = 100.00, 𝑥18 = 100.00, 𝑥19 =
100.00, 𝑥20 = 100.00, 𝑥21 = 100.00  

Infinite 0 575.7359 𝐿 = 35.36  

1   

2 562.5062 𝑥1 = 26.52, 𝑥2 = 41.63, 𝑥3 = 59.46  

3 555.0774 𝑥1 = 26.74, 𝑥2 = 41.83, 𝑥3 = 53.92, 𝑥4 = 68.24  

4 549.1827 𝑥1 = 27.06, 𝑥2 = 42.29, 𝑥3 = 54.48, 𝑥4 = 63.99, 𝑥5 = 75.34  

5 544.8751 𝑥1 = 27.36, 𝑥2 = 42.77, 𝑥3 = 55.14, 𝑥4 = 64.87, 𝑥5 = 72.20, 𝑥6 = 81.05  

10 537.6207 𝑥1 = 28.07, 𝑥2 = 43.98, 𝑥3 = 56.94, 𝑥4 = 67.47, 𝑥5 = 75.96, 𝑥6 = 82.72, 𝑥7 = 87.95, 𝑥8
= 91.78, 𝑥9 = 94.23, 𝑥10 = 95.18, 𝑥11 = 96.74 

15 537.3690 𝑥1 = 28.13, 𝑥2 = 44.09, 𝑥3 = 57.13, 𝑥4 = 67.77, 𝑥5 = 76.42, 𝑥6 = 83.41, 𝑥7 =
89.01, 𝑥8 = 93.40, 𝑥9 = 96.71, 𝑥10 = 98.96, 𝑥11 = 100. , 𝑥12 = 100. , 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.  

20 537.3690 𝑥1 = 28.13, 𝑥2 = 44.09, 𝑥3 = 57.13, 𝑥4 = 67.77, 𝑥5 = 76.42, 𝑥6 = 83.41, 𝑥7 =
89.01, 𝑥8 = 93.40, 𝑥9 = 96.71, 𝑥10 = 98.96, 𝑥11 = 100.00, 𝑥12 = 100.00, 𝑥13 =
100.00, 𝑥14 = 100.00, 𝑥15 = 100.00, 𝑥16 = 100.00, 𝑥17 = 100.00, 𝑥18 = 100.00, 𝑥19 =
100.00, 𝑥20 = 100.00, 𝑥21 = 100  
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Appendix C

Optimal scheduling of
imperfect inspections for
different error sizes when
system time to failure follows
an exponential distribution
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Table C.1: Inspection times (for imperfect inspections) when system time to
failure follows an exponential distribution: α = β = 0

 

𝜶,𝜷 Planning 
horizon 

n G Inspection times and planning horizon/cycle length 

0, 0 Finite 0 24582.41 𝐿 = 89.59 

5 
 

30169.17 𝑥1 = 40.40, 𝑥2 = 81.33, 𝑥3 = 123.45, 𝑥4 = 168.29, 𝑥5 = 219.62, 𝑥6 = 309.21 

10 
 

30252.86 𝑥1 = 39.99, 𝑥2 = 79.98, 𝑥3 = 120.00, 𝑥4 = 160.06, 𝑥5 = 200.23, 𝑥6 = 240.63, 𝑥7 = 281.56, 𝑥8 = 323.68, 𝑥9 =
368.52, 𝑥10 = 419.85, 𝑥11 = 509.44  

15 
 

30254.39 𝑥1 = 39.98, 𝑥2 = 79.96, 𝑥3 = 119.93, 𝑥4 = 159.91, 𝑥5 = 199.90, 𝑥6 = 239.88, 𝑥7 = 279.88, 𝑥8 = 319.89, 𝑥9 =
359.96, 𝑥10 = 400.13, 𝑥11 = 440.53, 𝑥12 = 481.46, 𝑥13 = 523.58, 𝑥14 = 568.42, 𝑥15 = 619.75, 𝑥16 = 709.34  

20 
 

30254.42 𝑥1 = 39.98, 𝑥2 = 79.96, 𝑥3 = 119.94, 𝑥4 = 159.91, 𝑥5 = 199.89, 𝑥6 = 239.87, 𝑥7 = 279.85, 𝑥8 = 319.82, 𝑥9 =
359.80, 𝑥10 = 399.79, 𝑥11 = 439.77, 𝑥12 = 479.77, 𝑥13 = 519.78, 𝑥14 = 559.85, 𝑥15 = 600.02, 𝑥16 = 640.42, 𝑥17 =
681.35, 𝑥18 = 723.47, 𝑥19 = 768.30, 𝑥20 = 819.64, 𝑥21 = 909.22  

Infinite 0 452.42 𝐿 = 30.47  

5 456.69 𝑥1 = 23.47, 𝑥2 = 46.96, 𝑥3 = 70.47, 𝑥4 = 94.01, 𝑥5 = 117.60, 𝑥6 = 147.74  

10 456.89 𝑥1 = 23.45, 𝑥2 = 46.91, 𝑥3 = 70.36, 𝑥4 = 93.82, 𝑥5 = 117.28, 𝑥6 = 140.75, 𝑥7 = 164.23, 𝑥8 = 187.73, 𝑥9 = 211.27, 𝑥10 =
234.85, 𝑥11 = 264.97  

15 456.91 𝑥1 = 23.45, 𝑥2 = 46.90, 𝑥3 = 70.35, 𝑥4 = 93.80, 𝑥5 = 117.25, 𝑥6 = 140.70, 𝑥7 = 164.16, 𝑥8 = 187.61, 𝑥9 = 211.07, 𝑥10 =
234.53, 𝑥11 = 258.00, 𝑥12 = 281.48, 𝑥13 = 304.98, 𝑥14 = 328.51, 𝑥15 = 352.09, 𝑥16 = 382.22  

20 456.91 𝑥1 = 23.47, 𝑥2 = 46.93, 𝑥3 = 70.39, 𝑥4 = 93.86, 𝑥5 = 117.21, 𝑥6 = 140.82, 𝑥7 = 164.04, 𝑥8 = 187.36, 𝑥9 = 210.68, 𝑥10 =
234.08, 𝑥11 = 257.47, 𝑥12 = 280.80, 𝑥13 = 304.24, 𝑥14 = 328.24, 𝑥15 = 351.69, 𝑥16 = 375.41, 𝑥17 = 399.12, 𝑥18 =
422.44, 𝑥19 = 445.84, 𝑥20 = 468.85, 𝑥21 = 492.63  
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Table C.2: Inspection times (for imperfect inspections) when system time to
failure follows an exponential distribution: α = 0.0, β = 0.05

 

 

𝜶, 𝜷 Planning 
horizon 

n G Inspection times and planning horizon/cycle length 

0, 0.05 Finite 0 24582.4053 𝐿 = 89.59  

2 28619.6453 𝑥1 = 44.56, 𝑥2 = 90.91, 𝑥3 = 176.41  

3 29155.4019 𝑥1 = 42.16, 𝑥2 = 83.52, 𝑥3 = 129.89, 𝑥4 = 215.37  

5 29520.3712 𝑥1 = 40.53, 𝑥2 = 78.55, 𝑥3 = 117.62, 𝑥4 = 158.98, 𝑥5 = 205.35, 𝑥6 = 290.83  

10 
 

29623.1492 𝑥1 = 40.06, 𝑥2 = 77.16, 𝑥3 = 114.28, 𝑥4 = 151.45, 𝑥5 = 188.74, 𝑥6 = 226.26, 𝑥7 = 264.29, 𝑥8 = 303.36, 𝑥9 =
344.72, 𝑥10 = 391.09, 𝑥11 = 476.57  

15 
 

29625.66 𝑥1 = 40.05, 𝑥2 = 77.13, 𝑥3 = 114.20, 𝑥4 = 151.27, 𝑥5 = 188.35, 𝑥6 = 225.44, 𝑥7 = 262.53, 𝑥8 = 299.65, 𝑥9 =
336.8275295718677, 𝑥10 = 374.11, 𝑥11 = 411.64, 𝑥12 = 449.66, 𝑥13 = 488.74, 𝑥14 = 530.09, 𝑥15 = 576.46, 𝑥16 = 661.95  

20 
 

 𝑥1 = 40.05, 𝑥2 = 77.12, 𝑥3 = 114.20, 𝑥4 = 151.27, 𝑥5 = 188.34, 𝑥6 = 225.42, 𝑥7 = 262.49, 𝑥8 = 299.56, 𝑥9 =
336.64, 𝑥10 = 373.72, 𝑥11 = 410.80, 𝑥12 = 447.90, 𝑥13 = 485.02, 𝑥14 = 522.12, 𝑥15 = 559.48, 𝑥16 = 597.00, 𝑥17 =
635.02, 𝑥18 = 674.10, 𝑥19 = 715.45, 𝑥20 = 761.82, 𝑥21 = 847.31  

Infinite 0 452.4247 𝐿 = 30.47  

2 443.91 𝑥1 = 23.44, 𝑥2 = 45.25, 𝑥3 = 74.92  

3 442.70 𝑥1 = 23.57, 𝑥2 = 45.57, 𝑥3 = 67.44, 𝑥4 = 97.19  

5 441.63 𝑥1 = 23.68, 𝑥2 = 45.84, 𝑥3 = 67.95, 𝑥4 = 89.99, 𝑥5 = 111.90, 𝑥6 = 141.74  

10 441.06 𝑥1 = 23.75, 𝑥2 = 45.99, 𝑥3 = 68.23, 𝑥4 = 90.47, 𝑥5 = 112.69, 𝑥6 = 134.89, 𝑥7 = 157.06, 𝑥8 = 179.19, 𝑥9 = 201.24, 𝑥10 =
223.18, 𝑥11 = 253.06  

15 441.00 𝑥1 = 23.75, 𝑥2 = 46.01, 𝑥3 = 68.26, 𝑥4 = 90.52, 𝑥5 = 112.77, 𝑥6 = 135.02, 𝑥7 = 157.27, 𝑥8 = 179.51, 𝑥9 = 201.74, 𝑥10 =
223.96, 𝑥11 = 246.17, 𝑥12 = 268.34, 𝑥13 = 290.47, 𝑥14 = 312.52, 𝑥15 = 334.47, 𝑥16 = 364.35  

20 440.99 𝑥1 = 23.75, 𝑥2 = 46.01, 𝑥3 = 68.27, 𝑥4 = 90.52, 𝑥5 = 112.78, 𝑥6 = 135.03, 𝑥7 = 157.29, 𝑥8 = 179.54, 𝑥9 = 201.80, 𝑥10 =
224.05, 𝑥11 = 246.30, 𝑥12 = 268.55, 𝑥13 = 290.79, 𝑥14 = 313.02, 𝑥15 = 335.24, 𝑥16 = 357.45, 𝑥17 = 379.62, 𝑥18 =
401.75, 𝑥19 = 423.81, 𝑥20 = 445.75, 𝑥21 = 475.63  
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Table C.3: Inspection times (for imperfect inspections) when time to failure
follows an exponential distribution: α = 0.05, β = 0.00

 

 

𝜶,𝜷 Planning 
horizon 

n G Inspection times and planning horizon/cycle length 

0.05, 0.0 Finite 0 24582.41 𝐿 = 89.59  

5 28904.41 𝑥1 = 46.73, 𝑥2 = 93.69, 𝑥3 = 141.30, 𝑥4 = 190.63, 𝑥5 = 244.75, 𝑥6 = 334.34  

10 
 

28932.52 𝑥1 = 46.59, 𝑥2 = 93.18, 𝑥3 = 139.77, 𝑥4 = 186.38, 𝑥5 = 233.02, 𝑥6 = 279.74, 𝑥7 = 326.71, 𝑥8 = 374.31, 𝑥9 =
423.64, 𝑥10 = 477.77, 𝑥11 = 567.36  

15 
 

28932.72 𝑥1 = 46.59, 𝑥2 = 93.17, 𝑥3 = 139.76, 𝑥4 = 186.35, 𝑥5 = 232.93, 𝑥6 = 279.52, 𝑥7 = 326.11, 𝑥8 = 372.70, 𝑥9 =
419.31, 𝑥10 = 465.95, 𝑥11 = 512.68, 𝑥12 = 559.64, 𝑥13 = 607.24, 𝑥14 = 656.57, 𝑥15 = 710.70, 𝑥16 = 800.28  

20 
 

28932.73 𝑥1 = 46.59, 𝑥2 = 93.17, 𝑥3 = 139.76, 𝑥4 = 186.35, 𝑥5 = 232.93, 𝑥6 = 279.52, 𝑥7 = 326.10, 𝑥8 = 372.69, 𝑥9 =
419.28, 𝑥10 = 465.86, 𝑥11 = 512.45, 𝑥12 = 559.04, 𝑥13 = 605.63, 𝑥14 = 652.24, 𝑥15 = 698.87, 𝑥16 = 745.58, 𝑥17 =
792.50, 𝑥18 = 839.97, 𝑥19 = 889.03, 𝑥20 = 943.12, 𝑥21 = 1031.04  

Infinite 0 452.42 𝐿 = 30.47  

5 447.43 𝑥1 = 24.53, 𝑥2 = 49.04, 𝑥3 = 73.53, 𝑥4 = 97.99, 𝑥5 = 122.38, 𝑥6 = 153.24  

10 447.25 𝑥1 = 24.55, 𝑥2 = 49.09, 𝑥3 = 73.63, 𝑥4 = 98.18, 𝑥5 = 122.71, 𝑥6 = 147.24, 𝑥7 = 171.76, 𝑥8 = 196.26, 𝑥9 = 220.72, 𝑥10 =
245.18, 𝑥11 = 276.00  

15 447.24 𝑥1 = 24.55, 𝑥2 = 49.09, 𝑥3 = 73.64, 𝑥4 = 98.19, 𝑥5 = 122.73, 𝑥6 = 147.28, 𝑥7 = 171.83, 𝑥8 = 196.37, 𝑥9 = 220.91, 𝑥10 =
245.45, 𝑥11 = 269.98, 𝑥12 = 294.50, 𝑥13 = 319.00, 𝑥14 = 343.46, 𝑥15 = 367.87, 𝑥16 = 398.73  

20 447.24 𝑥1 = 24.55, 𝑥2 = 49.09, 𝑥3 = 73.64, 𝑥4 = 98.19, 𝑥5 = 122.74, 𝑥6 = 147.28, 𝑥7 = 171.83, 𝑥8 = 196.38, 𝑥9 = 220.92, 𝑥10 =
245.47, 𝑥11 = 270.02, 𝑥12 = 294.56, 𝑥13 = 319.11, 𝑥14 = 343.65, 𝑥15 = 368.19, 𝑥16 = 392.72, 𝑥17 = 417.24, 𝑥18 =
441.73, 𝑥19 = 466.20, 𝑥20 = 490.60, 𝑥21 = 521.47  
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Table C.4: Inspection times (for imperfect inspections) when time to failure
follows a exponential distribution: α = β = 0.05

 

𝜶,𝜷 Planning 
horizon 

n G Inspection times and planning horizon/cycle length 

0.05,0.05 
 

Finite 0 24582.4053 𝐿 = 89.59  

5 28225.88 𝑥1 = 46.73, 𝑥2 = 89.79, 𝑥3 = 133.41, 𝑥4 = 178.42, 𝑥5 = 226.96, 𝑥6 = 311.85  

10 
 

28261.95 𝑥1 = 46.58, 𝑥2 = 89.26, 𝑥3 = 131.95, 𝑥4 = 174.66, 𝑥5 = 217.40, 𝑥6 = 260.23, 𝑥7 = 303.29, 𝑥8 = 346.91, 𝑥9 =
391.92, 𝑥10 = 440.46, 𝑥11 = 525.35  

15 
 

28262.34 𝑥1 = 46.57, 𝑥2 = 89.25, 𝑥3 = 131.94, 𝑥4 = 174.62, 𝑥5 = 217.30, 𝑥6 = 259.98, 𝑥7 = 302.67, 𝑥8 = 345.36, 𝑥9 =
388.06, 𝑥10 = 430.81, 𝑥11 = 473.64, 𝑥12 = 516.70, 𝑥13 = 560.32, 𝑥14 = 605.33, 𝑥15 = 653.87, 𝑥16 = 738.76  

20 
 

 𝑥1 = 46.57, 𝑥2 = 89.25, 𝑥3 = 131.94, 𝑥4 = 174.62, 𝑥5 = 217.30, 𝑥6 = 259.98, 𝑥7 = 302.66, 𝑥8 = 345.34, 𝑥9 =
388.02, 𝑥10 = 430.70, 𝑥11 = 473.39, 𝑥12 = 516.07, 𝑥13 = 558.76, 𝑥14 = 601.47, 𝑥15 = 644.21, 𝑥16 = 687.04, 𝑥17 =
730.10, 𝑥18 = 773.72, 𝑥19 = 818.74, 𝑥20 = 867.28, 𝑥21 = 952.17  

Infinite 0 452.4247 𝐿 = 30.47  

5 432.03 𝑥1 = 24.77, 𝑥2 = 47.84, 𝑥3 = 70.82, 𝑥4 = 93.66, 𝑥5 = 116.27, 𝑥6 = 146.71  

10 431.20 𝑥1 = 24.87, 𝑥2 = 48.06, 𝑥3 = 71.25, 𝑥4 = 94.43, 𝑥5 = 117.59, 𝑥6 = 140.73, 𝑥7 = 163.81, 𝑥8 = 186.82, 𝑥9 = 209.69, 𝑥10 =
232.34, 𝑥11 = 262.84  

15 431.13 𝑥1 = 24.87, 𝑥2 = 48.08, 𝑥3 = 71.28, 𝑥4 = 94.49, 𝑥5 = 117.69, 𝑥6 = 140.89, 𝑥7 = 164.09, 𝑥8 = 187.28, 𝑥9 = 210.46, 𝑥10 =
233.63, 𝑥11 = 256.76, 𝑥12 = 279.85, 𝑥13 = 302.85, 𝑥14 = 325.73, 𝑥15 = 348.38, 𝑥16 = 378.89  

20 431.13 𝑥1 = 24.87, 𝑥2 = 48.08, 𝑥3 = 71.29, 𝑥4 = 94.49, 𝑥5 = 117.70, 𝑥6 = 140.90, 𝑥7 = 164.11, 𝑥8 = 187.32, 𝑥9 = 210.52, 𝑥10 =
233.72, 𝑥11 = 256.92, 𝑥12 = 280.12, 𝑥13 = 303.31, 𝑥14 = 326.49, 𝑥15 = 349.66, 𝑥16 = 372.79, 𝑥17 = 395.88, 𝑥18 =
418.89, 𝑥19 = 441.76, 𝑥20 = 464.41, 𝑥21 = 494.92  
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