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ABSTRACT 

Wetlands ecosystems are amongst the most diverse and valuable environments which provide 

a number of goods and services pertinent to human and natural systems functioning yet they 

are increasingly threatened by anthropogenic and climatic changes. This thesis, examines the 

impact of climatic trends and variations, and land use/land (LU/LC) cover changes on 

wetland extent within Mzingwane catchment, south-western of Zimbabwe. An attempt is 

made to establish how the two stressors (climate and LU/LC changes) modify areal extents of 

wetlands over time, grounded on the hypothesis that, climate and LU/LC related changes 

impact on wetland ecosystems resulting in their degradation, shrinking in size and in some 

cases overall loss.  

 

To achieve the broader objective of the study, a number of parametric and non-parametric 

statistical analyses were employed to quantify and ascertain climate variability and change in 

Mzingwane catchment through the use of historic and current climatic trends in rainfall and 

temperature (T). Remote sensing data was used for wetland change analysis for the period 

between 1984 and 2015as well as future land cover predictions based on CA-Markov Chain 

model. LU/LC changes on nested wetlands were modelled at catchment level. In addition the 

study simulated future rainfall and extreme events and their implications on wetland 

dynamics using Regional Climate Models derived from CORDEX data.  

 

Trends in annual Tmax significantly increased (p<0.05) at an average of 0.16 decade-1 in 80% 

of the stations. Results of extreme events indicate a statistically significant increase (p<0.05) 

in the occurrence of extreme dry periods since the 1980s. Rainfall variability results show 

that contemporary mean annual rainfall has not changed from that measured during the 

historic period of 1886-1906. However, the number of rainy days (>=1mm) has decreased by 
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34%, thus suggesting much more concentrated and increased rainfall intensity. A notable 

shift in both the onset and cessation dates of the rainy season is recorded, particularly during 

the 21st century, which has resulted in a significant reduction (p<0.05) in the length of the 

rainy season. Land change analysis results show a decline in woodland and wetland cover 

which could be resulting from both human and natural factors. Major conversions are from 

wetland cover to crop field, suggesting agricultural encroachment onto wetland areas. 

Wetland area thus significantly decreased by 60.16% (236, 52 ha) in the last 30 years (p < 

0.05). CA-Markov model results for the years 2025, 2035 and 2045 predicted an overall 

increase in the crop field areas at the expense of woodland and wetland areas. LU/LC 

modelling results suggest that LU/LC changes modify wetland hydrology which 

consequently influences wetland areal extent. Trend results for projected rainfall suggest a 

significant decreasing trend in future rainfall (2016-2100) at p<0.05. In addition, a general 

decreasing trend in the number of rainy days is projected for the future climate although the 

significance and magnitude varied with station location. Regional Climate Models 

projections suggest an increased occurrence of future extreme events particularly towards the 

end of this century. The findings are important for developing appropriate sustainable and 

adaptive strategies given climate changes as well as designing catchment level wetland 

management approaches aimed at sustaining wetland ecosystems for the current and future 

generations. Any future efforts towards protection of the remaining wetlands should be 

combined with developing a sustainable relationship between social and ecological systems 

which will enable communities to adapt to the effects of changing climates  
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Introduction 

Wetland ecosystems are the interface between the terrestrial and aquatic ecosystems (Ellery 

et al., 2010) and are globally valuable and fragile diverse environments which are sensitive to 

any environmental perturbations resulting from both natural and human activities. The 

Ramsar Convention of 1971 on global wetlands defined wetlands (in Article 1) as  

‘Areas of marsh, fen, peatland or water whether natural or artificial, permanent or 

temporary with water that is static and flowing, fresh or salty including areas of 

marine water’ (Kabii, 1996). 

Wetland ecosystems provide several functions ranging from flood attenuation, stream flow 

regulation, sediment trapping, phosphates, and nitrogen removal and toxicant cleansing, 

carbon storage and the general maintenance of floral and faunal biodiversity (Mitsch and 

Gossalink, 2000; Millennium Ecological Assessment, 2005; Ellery et al., 2010). Wetland 

ecosystems are thus referred to as the ‘kidney’ of the Earth (Rundquist et al., 2001) because 

of their important biogeochemical functions. However, despite these aforementioned valuable 

ecosystem services, wetlands are faced with numerous threats from human activities resulting 

in their shrinking, modification and overall degradation (Rundquist et al., 2001; Schuijt, 

2002; Malan and Day, 2005; Mitchell, 2013). Empirical evidence suggests a 60% loss in the 

global wetland area in the last 100 years (Burkett and Kusler, 2000; Moser, 2010 Junk et al., 

2013).  In Africa, 50% of the wetland areas have been degraded owing to human interference, 

particularly in countries such as South Africa, Mozambique, Zimbabwe, Malawi and Guinea 

(Wetland International, 2009). Consequently, wetland loss has increasingly become a major 

threat to biological diversity emanating from human-environment interactions such as 

agriculture, urbanisation, damming, road construction, and human settlement, among other 

activities (Ellery et al., 2016). The situation is further compounded by the increasingly 
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changing climatic conditions which are likely to alter catchment hydrology, leading to the 

modification of wetland ecosystems (Finlayson, 2016). 

 

 There is a growing consensus that climate change is an additional stressor likely to modify 

wetland ecosystems, which not only includes the reduction of wetland area, but also changes 

in structure, vegetation cover, inundation patterns, habitat fragmentation, and reduced water 

levels (Erwin, 2009; Herrera et al., 2012; Lee et al., 2015). Literature shows that climate 

change in Africa is no longer a myth but a proven reality with most countries having 

experienced changes in both rainfall and temperature patterns (Kruger and Nxumalo, 2017; 

Kusangaya et al., 2014; Sibanda et al., 2017). Such changes are likely to affect abundance, 

distribution of species and the general functioning of the wetland ecosystems. Annual rainfall 

is decreasing in central Africa and northern Sahara while southern Africa is projected to 

experience declining rainfall with increased frequency of extreme events, likely to pose 

significant disturbances to wetland ecosystems (Barros and Albernaz, 2014).  

 

Zimbabwe is endowed with both perennial and seasonal wetlands (Matiza, 1992).These 

wetlands are very useful for both natural and human well-being, providing water for domestic 

and wild animals, especially during the drier seasons (Chikodzi and Mutowo, 2014). 

Wetlands also supply other materials such as reeds, grass and wood which are used for 

crafting and carving (Kabii, 1996; Gardner et al., 2015). A previous study by Ndhlovu (2009) 

has shown the impact of human activities on wetland integrity in Zimbabwe and climate 

variability and change have emerged as a new complex stressor on the already threatened 

wetland ecosystems. Thus, this thesis examines impacts of climate change and variability on 

the areal extent of wetlands in Mzingwane catchment of Zimbabwe, the catchment is situated 

in a semi-arid region which receives erratic rainfall, yet it still consists of perennial and 
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temporal wetlands. In addition, Mzingwane catchment also supplies neighbouring towns like 

Gwanda and Bulawayo with water throughout the year. It is acknowledged that human 

activities are one of the major drivers of wetland degradation; an attempt is made to establish 

how the two stressors (climate change and land use/land cover change) affect wetlands. The 

hypothesis is that climate change and variability together with human-induced LU/LC 

changes have a huge influence on wetland dynamics, which jeopardise wetland integrity. A 

number of studies have assessed the singular impacts of climate change and land use changes 

on wetlands globally (Barros and Albernaz, 2014; Fitchett and Grab, 2014; Meng et al., 

2016).The thesis, builds on the aforementioned studies, albeit focusing on impacts at 

catchment level which has not been studied in Zimbabwe, in particular, south-western 

Zimbabwe. 

 

1.2 Background to the study 

Global climate change is one of the major contemporary issues of concern and the changes 

are largely linked to anthropogenic greenhouse gas emission (WMO, 2017). According to the 

IPCC fourth assessment report (IPCC, 2014), the Earth is expected to warm by between 1.8 - 

4°C within the 21st century, which will cause an increase in the melting of ice and sea level 

rise of between 18 - 59cm. Such warming has promoted increased frequency and duration of 

extreme weather events such as droughts severe storms and floods (Asadi-Zarch et al., 2015). 

Ecologically, literature reveals that climate change and variations will result in biological 

diversity loss and subsequent species extinction. Such changes will obviously affect and alter 

essential life support systems such as biogeographic cycles which will result in compromised 

wetland ecosystem integrity (Finlayson et al., 2013). For instance, an increase in temperature 

modifies the thermal stratification of wetland water levels (Finlayson et al., 2013; Finlayson, 

2016). Recurrent extreme events associated with global warming also affect wetland 
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ecosystems through altered hydrologic patterns during droughts and flooding periods. Other 

potential impacts of climate change on wetlands include changes in the general ecosystem 

structure, habitats, ecological function and species composition. 

 

Projections for future climates derived from RCMs indicate a general increase in the global 

temperature with rainfall varying widely through space and time. Recurrence of extreme 

events are also worrying, particularly in semi-arid regions not only because of environmental 

consequences but also because of socio-economic impacts, mainly for developing countries. 

The probable impacts of climate change in Africa reach far and wide, partly because of its 

vulnerability and lack of capacity to adapt (WMO, 2017). Changes in wetland water balance 

under projected climate change could alter wetland area (van der Valk et al., 2015). Such 

changes in wetland area (loss and degradation) emanating from climate variations may also 

increase flood induced damages, habitat loss and fragmentation, and soil erosion. 

 

Apart from climatic perturbations, human activities also pose threats to the fragile wetland 

ecosystems through continuous LU/LC changes. Such catchments LU/LC changes pose both 

direct and indirect impacts on hydrology, which in turn influences wetland ecosystems in 

various ways. Direct impacts result from activities occurring in the wetland, such as forest 

removal, cultivation and water harvesting (Russo et al., 2016). Indirect impacts entail those 

activities outside the wetland, but which may eventually disturb the wetland functioning and 

service provision. These include upland activities that change run-off patterns, influx or 

reduction of surface run-off, and damming and upslope irrigation activities among other 

things (Esteves et al., 2008).  Thus, this study attempts to unravel the extent to which climate 

and land use/ land cover modify wetlands at a catchment level. 
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1.3 Problem statement 

Wetlands are important biodiversity hotspots in Zimbabwe that provide useful resources to 

sustain humans and wildlife. They are a source of water for drinking and agriculture, 

especially during the drier seasons. Wetland vegetation is an integral feature of wetland 

ecosystem, which constitutes the primary producers for the food chain. It is also a vital 

habitat for other species like phytoplankton, zooplankton vertebrates, and invertebrates. 

However, previous studies (Ndhlovu, 2009; Murungweni, 2013; Marambanyika and 

Beckedahl, 2016) have shown that wetland ecosystems are being degraded by human 

activities such as agriculture and urbanisation and Mzingwane catchment wetlands are no 

exception. The situation is further compounded by current climate variability and change, 

which has seen the catchment experiencing recurrent droughts and increased temperatures 

(Sibanda et al., 2017). Such climatic anomalies will no doubt affect the availability of water 

and modify wetland ecosystems. Literature shows that more than half of the world’s wetlands 

have been disturbed, transformed and degraded in the last 150 years (Gardner et al., 2015). 

 In response to this problem, the study sought to ascertain climate variability and change in 

Mzingwane catchment through the use of historic and current climatic trends in rainfall and 

temperature and modelling impacts of LU/LC changes on nested wetlands as well as through 

simulating future rainfall and extreme events and their implications on wetland dynamics. It 

is hoped that the results will help in the crafting of relevant and sustainable policies and 

strategies for the management of local level wetlands for the benefit of both humans and 

ecosystems. 

 

1.4 Significance of the study 

Wetlands are valuable ecosystems that need to be conserved for sustainability of our global 

ecosystems. Wetlands play a significant role in the nutrient cycling of carbon and nitrogen 
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(Mitsch and Gosselink, 2000) and their maintenance of environmental quality through the 

removal of excess nutrients and toxicants (Richardson, 1994). Monitoring wetlands and 

detecting changes over time is essential for a better understanding of the impacts of climatic 

change and long-term sustainability of these fragile environments. Conventional methods of 

assessing wetland ecosystems are costly and time-consuming (Adam et al., 2009; Klemas, 

2011; Ozesmi and Bauer, 2014), thus, remote sensing has emerged to be a novel tool for the 

monitoring and sustainable management of wetland ecosystems (Govender et al., 2007). 

Airborne and satellite multispectral and hyperspectral remote sensing are useful and efficient 

methods for identifying, classifying and mapping of wetland vegetation species composition 

(Schmidt and Skidmore, 2003; Akasheh et al., 2008 Adam et al., 2010). A number of studies 

have been undertaken to focus on the impact of changing climates on wetlands (Munyati, 

2000; Malan and Day, 2005; Rebelo et al., 2009; Landmann et al., 2010; Ozesmi and Bauer, 

2014; Chan and Xu, 2013).  

 

Wetland studies have been carried out in Zimbabwe. Mhlanga et al., (2014a) mapped the 

spatial extent of urban wetlands of Harare using Landsat and SPOT imagery. Murwira et al. 

(2004) used remote sensing to determine the role of riverine wetlands in mitigating flooding 

in areas downstream of their location Eastern Caprivi wetland in Zambezi catchment. Msipa 

(2009) and Murungweni (2013) investigated the impact of urbanisation on wetland water 

quality in Harare while Ndhlovu (2009) assessed the impact of land-use change on wetland 

health in Intunjambila.  Chikodzi and Mutowo (2014) analysed climate change signatures as a 

means of understanding drying up of Gutu wetlands. Other noted studies by McCartney et al. 

(2013) focused on the hydrologic aspects of wetlands, wetlands and agricultural development 

(Mharapara, 1998), wetland institutions (Sithole, 1999) and community participation for 

sustainable utilisation of wetlands in Zvishavane (Marambanyika et al., 2016). There is an 
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evident dearth of published knowledge regarding the combined impacts of changing land use 

patterns and climate on wetland areal extent. It is hoped that the present study results will 

also contribute to a better understanding of wetland ecosystem modification and complexities 

that arise due to the effects of climate variations and change. Such information is imperative 

for the sustainable management and monitoring of wetland ecosystems. The study hopes to 

inform policymakers and environmentalists in the design of relevant management strategies 

under an ever changing global environment. 

 

1.5 Main Aim  

This study aims at assessing and predicting combined impacts of land use/cover and climate 

changes on the areal extent of wetlands in Mzingwane catchment, Zimbabwe.  

 

1.5.1 Specific Objectives 

The specific objectives of this study were to; 

1.   Determine spatio-temporal temperature trends and extreme events in Mzingwane 

catchment. 

2.  Investigate long term rainfall trends in Mzingwane catchment for historic (1886-

1906) and contemporary periods (1920-2015). 

3.  Quantify spatio-temporal wetland areal changes in Shashe sub-catchment of 

Mzingwane catchment. 

4.  Model the impacts of land use/ cover changes on nested wetlands in Shashe sub-

catchment. 

5.  Simulate future rainfall and extreme events over Mzingwane catchment for 2016-

2100. 
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1.6 Methodological approach 

The catchment approach involved the ascertaining of climate variability and change, mapping 

wetlands and detecting changes over time as well as predicting future wetland area using CA-

Markov model. Impacts of catchment LU/LC changes on nested wetlands were modeled 

based on hydrologic modelling and GIS techniques and multivariate regression analysis 

determined the most influential land use/land cover on wetland area loss. Finally, RCMs were 

used to simulate future rainfall and extreme events. Climate assessments were done for the 

entire Mzingwane catchment for the purposes of using several stations required for statistical 

reasons while wetland change analysis using Landsat data and LU/LC modelling were done 

for the Shashe sub-catchment of Mzingwane catchment. 

 

1.7 Structure of the thesis 

Each thesis chapter (3-7) has its own aims, results and discussions in a paper format, their 

combined conclusions answer the broader aim of the study. The thesis has a total of eight 

substantive chapters including (this) introductory chapter, which outlines the background to 

the study, rationale and general aim of the study. Chapter 2 explores relevant literature on 

wetland ecosystems, climate change and LU/LCimpacts on wetland dynamics and future 

implications of the changes on future wetlands. Chapter 3 investigates spatio-temporal 

temperature trends and extreme events over the entire Mzingwane catchment. Chapter 4 

examines long-term rainfall characteristics in Mzingwane catchment through the analysis of 

annual and seasonal rainfall trends, the number of rainy days and their trends, rainy season 

start and end date analysis, as well as the determination of the changes in the length of the 

rainy season. Extreme rainfall events are established using the Standard Precipitation Index 

(SPI). Chapter 5 assesses spatio-temporal changes in wetland areal extent using remote 

sensing techniques. Chapter 6 models the impacts of LU/LC changes on nested wetlands 
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using a catchment approach. Chapter 7 simulates future changes in rainfall and extreme 

events and their implications on future wetlands. Finally, chapter 8 synthesises the findings, 

concludes the thesis and presents recommends for future studies in the area. 
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CHAPTER 2:  GENERAL LITERATURE REVIEW 

 

2.1 Introduction 

This chapter reviews theoretical perspectives of key concepts which guide the study, such as 

wetlands, climate change, and climate variability, land use/land cover changes  

 

2.2 Wetland Ecosystems and their sensitivity to environmental changes 

Wetland ecosystems are fragile environments where saturation and water determine the 

nature of the ecosystem (Cowardin et al., 1979). They are also defined as transitional lands 

between terrestrial and aquatic systems where the water table is always near or at the surface 

and the surface area is covered in the water (Mitsch and Gosselink, 2007). In Zimbabwe, 

wetlands are defined by the Environmental Management Act as land that is usually of 

permanent or seasonal flooding or those areas of subsurface water accumulation through 

seepage such as vleis or dambos. The sensitivity of wetlands to environmental change may 

arise from both surface and groundwater fluctuations, urbanisation, agricultural activities and 

related land reclamation within the catchment (Esteves et al., 2008; Mitchell, 2013). Issues of 

degradation through the incision, drying out of wetland surface water and the introduction of 

invasive species negatively impact on wetland hydrology and function (Ellery et al., 2016). 

 

2.2.1 General importance of wetlands 

Wetlands provide a number of ecosystem services which are essential for ecosystem integrity 

(Mitsch and Gossalink, 2000). These services can be further subdivided into regulatory, 

supporting, use function and cultural importance (Ellery et al., 2010). Wetland ecosystems 

contribute and support human survival through the provision of food resources such as fish, 

water purification, climate regulation, flood control, tourism opportunity and other materials 
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such as reeds and wood for art and craft  (Mitsch and Gosselink, 2000; Schuijt, 2002b). Most 

rural communities depend on wetlands for livelihood particularly during crop failure and 

drier seasons, providing productive land for crop production and resources for economic 

benefits such as fruits, fish, grass, and water. 

 

However, regardless of the aforementioned significance, wetland ecosystems are globally 

threatened by human activities that degrade their integrity and disturb their functions 

(International Institute of Sustainable Development, 2012). Human-related threats to 

wetlands include increased human population pressure which subsequently increases the 

demand for resources such as water, and land for urbanization (Rebelo et al., 2009; Mhlanga 

et al., 2014). Agricultural activities around wetlands have degraded the systems through over 

discharge, pollution, and the introduction of invasive species (Munyati, 2000; Ndhlovu, 2009; 

Murungweni, 2013). 

 

2.2.2 Wetland classification 

A comprehensive wetland classification system was developed by Cowardin et al. (1979). 

This system recognised two categories of wetlands; coastal and inland wetlands which were 

further broken down into subsystems. Coastal wetlands develop along the coastlines while 

inland wetlands are also referred to as fresh water wetlands, and include floodplains, 

depressions, fens and dambos. Marshes and wet meadows are also very common inland 

wetlands in Southern Africa and are often dominated by grasses and shrubs (Ollis et al., 

2015). 

 

In view of the challenges of using USA based wetland classification system, an attempt was 

made by  Dini and Cowan (2001); Ellery (2015); Ollis et al. (2015) to modify the Cowardin 
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system, and came up with a classification approach that suits southern Africa mainly focusing 

on inland wetlands. The modification by Ellery (2015) is spatially hierarchical in nature, with 

the first level consisting of marine, estuarine and inland wetlands. Other levels concentrate on 

inland wetlands using the following criterion; regional setting (level 2), landscape dynamics 

(level 3), hydro-geomorphic characteristics (level 4), hydrological regimes (level 5) and local 

biophysical properties (level 6).  

 

2.2.3 Methods of assessing and monitoring wetlands 

Traditionally, wetland assessment and monitoring comprised of labour intensive and time 

consuming field based methods which included the use of quadrats, line transects and field 

surveys to assess various wetland dynamics such as soil quality, vegetation types, water 

quality and areal extent. However, such methods have always been difficult, not only because 

of the time factor but also because of accessibility issues (Adam et al., 2009; Klemas, 2011). 

Thus, the advent of remote sensing technologies in the past five decades or so provided novel 

techniques for wetland studies. Remote sensing sensors are used to capture data and 

information about the Earth, necessary for the effective spatio-temporal analysis of Earth 

resources. Literature shows that in the last 3 to 5 decades remote sensing technology has been 

widely employed in wetland mapping, change detection, species discrimination, and in 

assessing changes in biophysical and biochemical parameters of wetland vegetation 

(Johansen and Phinn, 2006; Rebelo et al., 2009; Chan and Xu, 2013; Ghosh et al., 2016;). 

Remote sensing imagery can be obtained from aerial photographs, multispectral optical and 

microwave, and hyperspectral sensors. 
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2.3.4 Use of aerial photographs in wetland studies 

Aerial photographs were the first remote sensing technique to be used in wetland 

management during the 1970s (Edwards and Brown, 1960). The photographs offered high 

spatial resolution, although these lacked spectral accuracy. Based on its efficacy, a number of 

studies during the 1970s and 80s applied remote sensing data from aerial photos. For 

instance, Johannessen (1964) used aerial photos of Nehalem Bay to compare wetland marsh 

boundaries in the United States, while another study by Ibrahim and Hashim (1990) used 

aerial photographs to identify species of mangrove forest. 

 

Coarse spatial resolution data like Moderate Resolution Imaging Spectroradiometer (MODIS) 

have also been used in wetland studies (Landmann et al., 2010; Ibharim et al., 2015; Lee et 

al., 2015). Multispectral airborne and satellite remote sensors provide high spatial resolution 

data with a reasonable number of spectral bands and as such have been extensively applied in 

wetland management studies (Dong et al., 2014; Quinn and Epshtein, 2014; Bourgeau-

Chavez et al., 2015; Han et al., 2015). More recently, a number of studies employ the 

efficacy of hyperspectral data from sensors such as Hyperion and Hymap. Such data consist 

of hundreds of narrow bands and a continuous spectral profile for each pixel, which increases 

detail in terms of spectral and spatial resolution. Such detail is necessary in the study of 

submerged wetland vegetation species (Adam et al., 2009). Airborne, satellite and handheld 

sensors have been successfully applied in wetland mapping and species discrimination. For 

instance, Rosso et al. (2005) assessed the capability of hyperspectral data to study the 

structure of wetlands of San Bay, California and their results indicate that spectral mixture 

analysis is suitable for mapping marsh wetlands. While a study by Andrew and Ustin (2008) 

employed Hymap imagery with a 3m spatial resolution to map invasive plant species in 

Californian wetlands. The potential of high spectral remote sensing data in monitoring and 
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mapping salt marsh vegetation was assessed by Kumar and Sinha (2014) and most of the 

species were correctly identified and mapped. 

 

High spatial resolution optical data such as SPOT 5 and 6, RapidEye, WorldView-2 and 

GeoEye of less than 4 m resolution offer ideal high spatial resolution and more texture 

information which have greatly improved wetland mapping and monitoring (Davranche et 

al., 2010a, 2010b; Mutanga et al., 2012; Adam et al., 2014b). 

 

2.3.5 Wetland mapping using remote sensing 

During the last 3 decades, wetland mapping has widely applied remote sensing techniques 

because of its versatility and ability to integrate and analyse data within a GIS environment 

(Ozesmi and Bauer, 2014). Advancement in Earth observation provides opportunities for 

better and cheaper methods of mapping complex ecosystems like wetlands through space and 

time. Thus, a number of studies have mapped wetlands using remote sensing techniques. For 

instance, Rebelo et al. (2009) used remote sensing and GIS data to map and assess changes in 

wetlands of Srilanka. Mhlanga et al. (2014b) also employed Landsat and SPOT imager to 

map spatial extent of Borrowdale wetlands in Harare. Mwita et al. (2013) utilised Landsat 

imagery to map various types of wetlands in terms of size, use patterns and general spatial 

distribution using a hybrid classification system.  In addition, MODIS data were used to map 

wide area wetlands in semi-arid Africa (Landmann et al., 2010). 

 

Remote sensing is also useful for wetland change detection, mostly because of the availability 

of archival spatio-temporal data essential for monitoring changes over time. As such, studies 

by Vanderlinder et al. (2014) used remote sensing to assess changes in wetland plant 
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communities over time in the great salt lake of Utah. Other change detection studies are by 

Haack (1996); Teferi et al. (2010); Chen et al. (2014); Han et al. (2015); Feng et al. (2016b). 

 

The estimation of biophysical and biochemical parameters of wetland vegetation have also 

applied remote sensing techniques. For example, Ghosh et al. (2016) monitored long term 

biophysical characteristics of tidal wetlands in the northern Gulf of Mexico and used MODIS 

to map the leaf area index, biomass, chlorophyll content and vegetation fraction while Wang 

and Liao (2009) estimated wetland vegetation biomass in Poyang ae using Landsat data. In 

addition, hyperspectral indices were used to estimate standing biomass in papyrus swamps of 

iSimangaliso wetland park, South Africa by (Adam et al., 2010). However, regardless of the 

vast literature regarding the application of remote sensing in wetland management, 

Zimbabwe has lagged behind particularly for wetland ecosystems. Thus, this study is hoping 

to fill this gap of knowledge focusing at micro-level assessments. 

 

2.2.4 Anthropogenic drivers of wetland loss and degradation 

The drivers of wetland loss and degradation are both natural and human-induced, creating a 

very complex mixture of detrimental factors. Anthropogenic causes of wetland loss and 

degradation include damming, the introduction of invasive species, land reclamation, 

expansion of agricultural land, urbanisation, mining activities and over-exploitation of 

resources. For instance, damming improves water availability and supply to local 

communities but tend to alter natural hydrologic processes. Damming also block the 

movement of nutrients downstream which often affect deltas (Galatowitsch, 2016).  

 

Expansions of agricultural and urban lands are major drivers of wetland conversion. These 

result from increased population, which tend to increase demand for land resources for 
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economic development (Huu Nguyen et al., 2016). Agriculture causes downstream 

sedimentation through increased soil erosion and eutrophication from inorganic fertilisers. 

Agricultural biocides enter wetlands through overland flow causing negative effects to 

wetland biota in the form of direct and indirect impacts. Direct impact includes toxicity and 

compromises species survival while indirect effects comprise reducing primary production, 

which in turn affects faunal species up the food chain. Crop production also drains wetland 

water, which compromises wetland water balance with consequential effects on the overall 

wetland integrity (Borges et al., 2018). Agricultural activities in and around wetlands tend to 

increase wetland vulnerability to the invasion which is transported by runoff events that carry 

invasive species’ seeds into wetlands (Zedler and Kercher, 2004). These, in turn, disturb 

biochemical cycles and result in loss of wetland services and function. 

 

Urbanisation causes wetland water pollution through petrochemicals, salts and biocides, 

washed downstream via storm drains (Valtanen et al., 2014). Such influx of pollutants from 

urban environments negatively affects wetland biota and quality of water. Because of this, 

urbanization has always been linked to wetland biodiversity loss (McKinney, 2008). Timber 

harvesting of forested wetlands may cause habitat change and fragmentation and 

subsequently species migration (Sun et al., 2001). In addition, over-exploitation of resources 

necessitated by increased pressure from people seeking livelihood and for food security 

requirements is another significant impacting factor to wetland loss and degradation   

(Galatowitsch, 2016). Mining is another impacting factor in water pollution and acidification 

emanating from acid mine drains.  
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2.3 Climate Change in Africa  

According to the “IPCC - Intergovernmental Panel on Climate Change” (2007), climate 

change “refers to a change in the state of the climate that can be identified by changes in the 

mean or the variability of its properties that persists for extended periods”. Climate change 

may also refer to any changes recorded over time due to natural variability and human 

activity. Rahman (2013) defined climate change as the long-term changes in the statistical 

distribution of weather patterns over time of between 35-40 years. There is concrete evidence 

that climate has been changing which includes the current global warming, mainly resulting 

from the increased concentration of greenhouse gases (“IPCC - Intergovernmental Panel on 

Climate Change,” 2007; Barbee and Heather, 2008). The depletion of ozone layer estimated 

at 4% per decade is evident enough that climate is changing (Rahman, 2013). There is also 

tangible evidence displayed by the shrinking of ice sheets, and the rising of sea level of about 

17cm (Moser, 2010). In addition, the warming of global oceans is also evident of the 

changing climate with the top part of 700m of the oceans showing a 0.16 °C higher 

temperature since 1969 (Fauchereau et al., 2003). 

 

A study conducted by Root and Schneider (2002) has shown that the Earth’s climate has been 

changing for the past 100 million years. They noted that earlier changes were naturally 

induced; for example the Gondwana era. However, recent spasms are largely related to 

human activities that increase the greenhouse gases. These gases include carbon dioxide, 

methane and nitrous oxide. Coupled with this is the increase in dust, soot and sulphur dioxide 

from industries and mining activities that increase the absorption of terrestrial radiation, 

resulting in warming temperatures (Hulme et al., 2001). Studies have shown that surface 

temperatures of the Earth have increased by an average of 0.6 °C during the last 20th Century.  

Warming is continuing setting a new temperature record of 1.1 °C higher than the pre-
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industrial period and 0.06 °C higher than 2015 record (WMO, 2017). This warming is 

attributed to an increase in greenhouse gases emission. In this regard, carbon dioxide reached 

new levels at 400ppm in the atmosphere by the end of 2015. As the warming continues, there 

is a notable rise in global sea levels of approximately 20cm since the beginning of the 21st 

century due mostly to thermal expansion of oceans and melting of ice (WMO, 2017). The 

World Meteorological Organisation Global Atmospheric water programme shows that GHGs 

reached new levels in 2016 (Table 2.1). 

 

Table 2.1: 2016 levels of GHGs 

GHG Level % Change from 1750 levels  

CO2 400.00 ± 0.1 parts/million 144 

CH4 1845 ± 2 parts/billion  256 

N2O 328.0 ± 0.1parts/billion  121 

Source: Wold Meteorological Organisation 2016 

 

There is a noticeable increase in the amount of GHGs in the atmosphere and the NOAA 

annual GHG Index shows that from 1990-2015, radiative forcing from the GHGs increased 

by 37% with carbon dioxide accounting for 80% of the increase (Brown and Caldeira, 2017).  

 

 

In Africa, future climate projections suggest accelerated changes in climatic conditions, 

which are expected to pose profound environmental impacts. Climate Models project a 1.5°C 

rise by 2040, which is approximated to cost Africa about 1.7% of its GDP. Thus, as the 

temperature continues to rise so does the economic cost. For instance, a predicted 4.1°C rise 

by the end of the century will result in a 10% decline in the continent’s GDP (IPCC, 2014). 

Such changes in climate exert pressure on ecological ecosystems such as wetlands and it 
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often affects the photosynthesis, respiration, growth, reproduction and general use of water 

(Finlayson et al., 2013; Gates, 1993,). Gates also noted the significant influence of climate 

variations on the plant physiology. 

 

2.4 Climate change and variability in Zimbabwe 

Zimbabwe’s rainfall is unimodal and normally begins in October and ends in March, but 

varies widely through space and time (Therrell et al., 2006; Manatsa and Mukwada, 2012). 

The rainy season is largely dependent on the movement of the Inter-Tropical Convergence 

Zone (ITCZ) and upper westerly waves from the mid-latitudes, which determine the intensity 

of the rains during the rainy season (Buckle, 1996). Notably, much of the rainfall variability 

in Zimbabwe is also associated with El Niño Southern Oscillation (ENSO) phases (Reason et 

al., 2005; Manatsa and Matarira, 2009; Jury, 2013; Mamombe et al., 2016). Extreme weather 

events are occurring more frequent during the 21st century than before (Sibanda et al., 2017), 

thus exposing communities to more food-insecure conditions. Apart from the large-scale 

atmospheric thermodynamics, rainfall patterns in Zimbabwe are also influenced by micro-

level dynamics such as relief, elevation and land cover (Sanchez-Moreno et al., 2014).  

 

Investigations on historic and future climatic trends in Zimbabwe have suggested 

significantly reduced rainfall patterns and increased temperatures which seem to be closely 

related to climate variability (Sango and Godwell, 2015; Unganai, 1996a). The warming 

spasm observed in southern Africa has also been statistically proven in Zimbabwe and 

temperature trends are significantly increasing (Sibanda et al., 2017), which is strongly 

associated with recurrent extreme events.  A rainfall reconstruction based on tree rings has 

indicated a long-term (1800 to 2000) rainfall trend, that past severe droughts correspond to El 

Niño and with high rainfall variability over time (Therrell et al., 2006). Significant changes in 
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the start and cessation dates of the rain season are detrimental to ‘normal’ crop production 

(Mushore et al., 2017), as such changes may pose a risk of the occurrence of dry spells within 

the rain season, and which impacts negatively on crop growth and yields (Moyo et al., 2017). 

Past work has suggested that annual rainfall trends for all of  Zimbabwe as being statistically 

insignificant, but rather that it is the intensity, timing and duration that has shifted  

(Mazvimavi, 2010; Muchuru et al., 2016). However, these findings varied broadly across the 

entire country; as such more detailed studies are required at sub-catchment level. To this end, 

the current study aims to assess inter-annual and seasonal rainfall variability and change at 

the micro-spatial scale (i.e. Mzingwane sub-catchment) and then compare these to those of 

past studies that have worked at a national scale. It is hoped that such information enables 

better catchment-scale management for future water needs and wetland sustainability. 

 

 2.4 Hydrologic models used for catchment assessment 

Rainfall-runoff models can be grouped under two main classes which are the lumped 

conceptual models and the distributed physically based models. Lumped conceptual models 

use mathematical descriptions to explain processes such as runoff within a given hydrologic 

system (Clarke et al., 2015). Spatial variations of processes are spatially regionally (Wood, 

1995). Whereas physically based models use a number of equations to explain temporal and 

spatial variations of hydrologic processes.  

 

Hydrologic processes are said to be irregular both in space and time (Pilgrim, 1982). 

Conceptual models tend to perform better than physically based models. Therefore, this study 

preferred Pitman rainfall- runoff model for the extrapolating parameters from gauged 

stations. Pitman has been widely used to analyse monthly hydrology for a number of 

catchments in southern Africa (Hughes, 1995;Wagener et al., 2004; Hughes et al., 2006a; 
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Kapangaziwiri, 2011) and is said to be sensitive to land use changes because it has 

parameters that control interception (PT), infiltration (AI, ZMIN, ZA VE and ZMAX) and 

actual evapotranspiration (R and FF) (Hughes, 1997). 

 Its simplicity provides fewer challenges emanating from parameter uncertainty which 

normally limits the potential to regionalise the model. This potential to regionalise the model 

in Zimbabwe was highlighted by Hughes (1997). It is usually quite easier to calibrate and 

Pitman (1973) provides some guidelines for initial parameter setting. 

 

 Like most conceptual models, the Pitman model consists of functions representing important 

hydrologic processes in a given catchment (Hughes et al., 2006b). The Pitman model is a 

mathematical model that is used to simulate the movement of water through interlinked 

systems of catchments, river reaches, reservoirs, irrigation areas and wetlands (Pitman, 1973).  

 

Conclusions 

Literature has shown the importance of wetland services and goods for both human and 

natural environments. It has also been widely established that the wetland ecosystems are 

shrinking in size and in some cases disappearing due to both natural and human causes. 

Therefore, a number of studies at a global, regional and national scale have been carried out 

to assess and monitor wetland ecosystems using field based and remotely base techniques. A 

cursory analysis of the contemporary literature has extensively utilised remote sensing 

technologies for mapping wetlands, performing change detection, wetland species 

discrimination and future predictions for sustainable wetland management. Notable drivers of 

wetland degradation and loss are agricultural activities, urbanisation, damming, over 

exploitation and population growth. Climate change has emerged as an additional stressor 

emanating from global warming and related variations in temperature and rainfall patterns as 
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well as the acceleration of extreme events. Although a several studies have investigated 

wetlands in relation to changes in land uses and climate, not much has been done in 

Zimbabwe, specifically in Mzingwane catchment a gap this study intends to bridge.    
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CHAPTER 3: SPATIO-TEMPORAL TEMPERATURE TRENDS AND EXTREME   

HYDRO-CLIMATIC EVENTS IN SOUTHERN ZIMBABWE 

 

Abstract 

Atmospheric warming and extreme weather events have increasingly become major 

contemporary issues of global concern, yet relatively few studies have investigated recent 

decadal-scale climate change and variability in Zimbabwe. This study investigates spatio-

temporal temperature (T) and extreme weather events in Mzingwane catchment of southern 

Zimbabwe for the period 1967-2015. This is achieved by using the Non-parametric Modified 

Mann-Kendal trend test, while magnitudes of trends are estimated using Sen’s slope 

estimator. Temporal and spatial trends for extreme dryness and wetness are established by 

using the Standard Precipitation and Evapotranspiration Index (SPEI). The results of annual 

anomalies show a strong positive anomaly (0.44°C warmer) at all five stations for the 

summer months, while winter months recorded cool anomaly averaging -0.28°C. Trends in 

annual Tmax significantly increased (p<0.05) at an average of 0.16 °C decade-1 in 4 stations 

excluding Matopos, which decreased significantly at 0.29°C decade-1. Between 1970 and 

2000 the annual average Tmax was 0.2°C cooler than the historic annual average (1897-1904), 

with Tmin recording a negative anomaly of -0.3°C. Results of extreme events indicate a 

significant increase (p <0.05) in the occurrence of extreme dry periods since the 1980s. The 

findings are important for developing appropriate sustainable and adaptive strategies as 

climate changes. 

Keywords: climate warming, temperature trends, extreme dryness and extreme 

wetness, SPIE 

1This chapter is based on: Sibanda S, Grab S.W and Ahmed F (2017). Spatio-temporal 

temperature trends and extreme hydro-climatic events in southern Zimbabwe. South African 

Geographical Journal, DOI:10.1080/03736245.2017.1397541 
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3.1 Introduction 

Atmospheric warming and extreme weather events have increasingly become major 

contemporary issues of global concern. Analysis of observed sea and land surface 

temperatures show that the Earth’s mean surface temperature has risen by ~0.3 - 0.6 °C over 

the last century (Change, 2013; Pachauri et al., 2015). Surface air temperatures over Africa 

have been warming since the 1960’s (Lakhraj-Govender et al., 2016; New et al., 2006; 

Osbahr et al., 2010; Tadross et al., 2005a), with rates ranging between 0.01 °C and 0.17 °C 

year-1 (Dai, 2011). Long-term air temperature trends in southern Africa have increased both 

in Tmax and Tmin, averaging between 0.02 and 0.4 °C per decade (Kruger and Shongwe, 

2004a; Kusangaya et al., 2014; New et al., 2006; Tshiala et al., 2011). Such warming is also 

pertinent to Zimbabwe, where temperature increases of 0.8 °C decade-1 have been reported 

for the eastern regions over the past three decades (Unganai, 1996a; Sanogo et al., 2015).  

 

Linked to atmospheric warming is the intensification and recurrence of extreme weather 

events such as heat waves, droughts and severe storms. Studies regularly advocate an 

increased occurrence of global extreme weather events (Dai, 2011; Change, 2013; Sheffield 

et al., 2014) with heat-related extremes notably occurring more frequently than cold 

extremes. In the African context, tropospheric warming has also yielded increased frequency 

and intensity of extreme weather events such as droughts (Mirza, 2003; Reason and Keibel, 

2004; Dai, 2011). In particular, there has been a significant increase in heat extremes over 

South Africa during the past 60 years, but this has varied regionally in terms of magnitude 

(Kruger and Sekele, 2013a). For instance, recently homogenized long-term temperature 

trends for the Western Cape, South Africa, reported a statistically significant increasing 

temperature trend for the period 1916-2013 (0.13 °C decade-1), with the exception of Cape St 

Blaize, where Tmax trends insignificantly decreased at -0.03°C decade-1 (Lakhraj-Govender et 
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al., 2016). Trends of rapid warming are of particular concern considering that the African 

continent is vulnerable to changing climates, with its economies heavily reliant on rain-fed 

agriculture and limited in their adaptive capacity to changing climates (FAO, 2013). 

Investigations on historic and future climatic trends in Zimbabwe have suggested 

significantly reduced rainfall patterns and increased temperatures which seem to be closely 

related to climate variability (Sango and Godwell, 2015; Unganai, 1996a). Based on the 

Standard Precipitation Index for the period 1901 to 2004, drought occurrence is homogenous 

over much of Zimbabwe (Manatsa et al., 2010a).  

 

Detailed assessments of sub-regional climate change and variability are still lacking for 

Zimbabwe and hence the aim of the chapter is to contribute to this knowledge gap. Although, 

these aforementioned studies focused on large spatial-scale (country-wide) climate trends, 

there is a necessity to downscale to sub-regional (catchment) scales, especially given that 

finer spatial scales exhibit unique topography, which influences local weather and long-term 

climate change in ways that may not necessarily be uniform across larger spatial scales 

(Diodato, 2005; Bennie et al., 2008). The aim of this paper is thus to test temporal and spatial 

air temperature trends and extreme weather events over the Mzingwane catchment (~63 

000km2) in south-western Zimbabwe using both historic and more contemporary weather 

records. The catchment is a major water source for the city of Bulawayo and other towns 

such as Gwanda and Beitbridge. Notwithstanding the semi-arid nature of the catchment, it is 

endowed with the most extensive alluvial aquifers in the Limpopo basin (Görgens and 

Boroto, 1997; Moyce et al., 2006) and wetlands which provide water for domestic, 

commercial irrigation, market gardening and wildlife, particularly during dry seasons 

(Ndiweni and Gwate, 2014). Such a catchment-based assessment of climate variability is 
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important for purposes of designing spatially relevant and sustainable adaptive strategies for 

water resources and disaster risk management. 

 

3.2 Materials and Methods 

3.2.1 Study region 

Zimbabwe is divided into seven catchment management regions as indicated in Figure 3.1. 

This paper fuses on the most southerly of these catchment regions, namely the Mzingwane 

catchment, which is located between 19.8o and 22.4oS and 27.7o and 32.0o E. The catchment 

includes four sub-catchments (Shashe, Lower Mzingwane, Upper Mzingwane and Mwenezi) 

covering an area of ~63000 km2 (Figure 3.1). The northern part of the catchment is composed 

of granitic rocks associated with the greenstone belt, which is rich in gold deposits. Granite 

terrains form large inselbergs (dome-shaped mountain ranges) between which wetlands occur 

(perennial dams, vleis, swamps or marshes). The Mzingwane catchment hosts five major 

rivers (Shashe, Umzingwane, Mwenezi, Bubi, and Marico) that feed into the Limpopo River 

(Görgens and Boroto, 1997).  



27 
 

 

Figure 3.1: Figure 3.1: Mzingwane Catchment showing Shashe, Upper Mzingwane, Lower 

Mzingwane and Mwenezi sub-catchments 

 

The climate of Mzingwane catchment is semi-arid to arid, but rainfall distribution varies 

across the catchment, such that the northern regions receive higher mean rainfall (~450 - 600 

mm pa) than the southern regions (~200-450 mm pa) (Görgens and Boroto, 1997; Chenje et 

al., 1998). The wet season typically starts in late October and ends in March, with the highest 

rainfall occurring between December and February (Unganai and Mason, 2002).  Rainfall 

seasonality is largely influenced by the Inter-Tropical Convergence Zone (ITCZ) which 

moves southwards during the austral summer, and inter-annually by the El Niño Southern 

Oscillation (ENSO) which is associated with periods of lower (El Niño) and higher (La Niña) 

rainfall (Manatsa et al., 2008).  The average daily Tmax for the catchment varies between 27 – 

34 °C during summer and 22 – 26 °C in winter (Love et al., 2010), while average Tmin range 
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between 18 - 22°C during summer and 5 - 10°C in winter (FAO, 2010). Owing to the 

relatively low and erratic rainfall, agricultural activities in the catchment are mainly focussed 

on livestock rearing, as this is the most viable.   

 

3.1.2 Data acquisition and processing 

Monthly air temperature data from five meteorological stations (Kezi, West Nicholson, 

Beitbridge, Matopos, and Bulawayo) in the Mzingwane catchment were used to establish 

temperature characteristics for the period 1967 - 2015 (Table 3.1). Monthly rainfall data for 

the same period were used to compute the drought index. Both temperature and rainfall data 

were obtained from the Zimbabwe Department of Meteorological Services and the National 

oceanic and Atmospheric Administration (NOAA).   

 

Table 3.1: Monthly air temperature and rainfall data  

Station name Latitude Longitude Elevation Period covered 

Bulawayo ( Goetz) -20.13 28.63 1334 
1897-1904  

1967-2015 

Kezi -20.93 28.47 1000 1967-2015 

Matopos -20.56 28.47 1385 1967-2015 

West Nicholson -21.03 28.94 956 1967-2015 

Beitbridge -22.22 30 486 1967-2015 

 

A primary concern is the limited availability of long-term and good quality weather records 

for southern Zimbabwe; hence records are spatially limited and confined to only a few 

reliable stations. Although historic 19th and 20th century data were obtained for Bulawayo, 

only eight years of temperature data are available for the earliest period (1897-1904), and 

continuous recording only began in 1967. 
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Data values were visually inspected to identify outliers and typographic errors on monthly 

temperature series, while AnClim software was used for automated identification of data 

errors and outliers at station level (Stepanek et al., 2011). Homogeneity testing employed a 

number of different tests (Alexanderson SNHT, Mann-Whitney Pettit test, and bivariate test 

and Buish Hands test) because utilising several methods for assessing homogeneity yields 

more reliable results than a single test (Stepanek et al., 2011). The Zimbabwean 

Meteorological Bureau provided some station metadata (nature of data collection, instrument 

changes among other things) which helped identify potential change points. Inhomogeneities 

were adjusted by creating reference series of correlated data from neighbour stations using 

ProClimDB software (Stepanek et al., 2011). 

 

Based on Alexanderson SNHT, the Mann-Whitney Pettit test, Bush Hand test and Bivariate 

test (Stepanek et al., 2011), a number of inhomogeneities were detected. In cases where the 

detection using various tests was highlighted, adjustments were made using a low-pass filter 

for adjustment statistics in AnClim software. Methods of observation changed from manual 

to automatic in the early 1980s and some stations were relocated during the same period. 

Notably, all identified change points (significant change years) coincided with ENSO events.  

 

3.1.3 Spatial distribution of temperature anomalies 

Temperature anomalies were calculated as the difference between observed temperature and 

the mean reference value for the period 1970-2000, which is the so-called ‘climate normal’ 

period (Arguez and Vose, 2011). Using anomalies also curtails errors related to station 

location, elevation effects and missing data (Rapp, 2014).   
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3.1.4 Trend analysis 

A non-parametric Modified Mann-Kendall test (1998) was used to detect seasonal and inter-

annual trends in adjusted time series of temperature data and Standard Precipitation and 

Evapotranspiration Index (SPEI). The null hypothesis states that data are independent and 

randomly ordered. The test statistic S is computed as: 

     (1) 

Where the sequential data values, n is the length of the dataset  

 

When the statistic S is approximately normally distributed with the mean  

 

    (2) 

Where m is the number of tied groups and  is the size of the ith tied group. The standard test 

statistics Z is computed as: 

      (3) 

 

3.1.5 Seasonal trends in temperature and extreme wet and dry events 

Sensitivity to seasonal variations in temperature and extreme wet and dry events are tested 

using the seasonal Kendall test.  This was selected given its sensitivity to seasonal variations 

in climatic time series data. The null hypothesis states that X is a sample of independent 

random variables ( ) and that  is a subsample of identical independent random variables. 
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And  

The test statistic  is defined as: 

     (4) 

 

3.1.6 Magnitude of trends in temperature and extreme wet and dry events 

The magnitudes of trends were estimated using Sen’s estimator (1968).The slope  

was calculated as: 

 

Where  and  are data values at time j and k (j>k) respectively.  The median of the slope 

trend is given as the Sen’s estimator of the slope computed as: 

  (5) 

 

3.1.7 Standard Precipitation and Evapotranspiration Index (SPEI) 

The classification of rainfall extremity was based on the SPEI (McKee et al., 1993) as shown 

in Table 3.2. SPEI was computed in R using station based mean monthly temperature and 

rainfall data for the period 1967-2015. SPEI is a modification of the original Standard 

Precipitation Index (SPI) by Vicente-Serrano et al., (2010). Calculations of the SPEI are 

based on mean monthly temperature and precipitation data established from 12 month and 1-

month timescales. The index is derived from the difference between observed precipitation 

and potential evapotranspiration (PET) using Thornthwaite (1948) in R to arrive at the 

monthly index for a given station. Potential Evapotranspiration (PET; after Thornthwaite, 

1948) is a monthly estimation based on monthly temperature (T), heat index calculated as the 
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sum of monthly indices (I) and the coefficient (M) dependent on the heat index. PET is 

calculated as: 

 

      (6) 

Where T=monthly mean temperature 

 I=Heat index calculated as the sum of monthly indices 

 M=Coefficient dependent on I 

 K is a correction coefficient computed from latitude and month 

SPEI uses the monthly difference between precipitation and PET and symbolises water 

balance at different time scales (1month, 6 months and 12 months) as follows: 

        (7) 

Where Di=climatic water balance 

 Pi= Monthly precipitation 

 PET=Potential Evapotranspiration for a given month 

The computed Di values are summed up at different time scales. 

SPEI standardise a variable using a log-logistic distribution function which transforms it to a 

standard Gaussian variate with a mean of zero and standard deviation of one. 

 

3.1.8 Link between extremes, temperature and ENSO events 

To establish the impacts of ENSO on air temperature and extreme events, the NINO 4 SST 

anomaly index dataset was downloaded from NOAA. To correlate SPEI-1, NINO4 index, 

Tmax, Tmin and Tmean, non-parametric Spearman’s correlation coefficient was computed using 

Principal Component Analysis (PCA) in XLSTAT (2016) software.  
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Table 3.2: Classification of rainfall extremity based on SPEI (McKee et al., 1993) 

Category SPEI value 

2.0+ Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1,49 Moderately wet 

0 to .99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

 

 

3.2 Results  

3.2.1 Annual maximum and minimum air temperature between 1897 and 1904 

Monthly historic data were compared to 1970-2000 mean for Bulawayo. The mean Tmax for 

the period (1897-1904) is 26.4°C, which is 0.7°C and 1.7°C cooler than the reference average 

and 2000-2015 average respectively, while historic Tmin is 0.3°C and 2.1°C cooler (Table 

3.3). The highest temperatures recorded were 33.2°C for the period 1897-1904 and 33.2°C 

for the period 1970-2000. 

 

3.2.2 Spatial distribution of temperature anomaly 

Annual temperature anomalies were investigated relative to the 1970-2000 average. These 

results show a strong positive anomaly averaging 2.4°C warmer for the period 1967 to 2015 

at all stations from September to March. A cool anomaly averaging -2.8°C is presented for all 

winter months (Figure 3.2). The period 1967-2015 experienced approximately 1°C warmer 

temperatures than the reference average (1970-2000). 
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Table 3.3: Mean annual air temperatures for Bulawayo (1897-1904) 

Year Mean Tmax Mean Tmin 

Highest 

Temperature 

Lowest 

temperature 

1897 25.7 12.7 30.1 8.7 

1898 25.8 12.7 30.1 8.8 

1899 26.5 13.1 33 9.7 

1900 27.5 12.8 33.2 9.8 

1901 26.2 12.9 31.7 8.9 

1902 26.3 12.8 31.9 8.3 

1903 26.6 12.7 31.9 8.3 

1904 25.1 12.1 30.1 7.1 

Mean(1897-1904) 26.4 12.8 33.2 7.1 

Mean(1970-2000) 27.1 13.1 32.1 12.2 

Mean(2000-2015) 28.1 14.9 35.9 13.4 
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Figure 3.2: Annual air temperature anomaly per station with 5 years moving average for the 

period 1967-2015 

 

The distribution of Tmean and the magnitude of Mann-Kendall trends for the period 1967-2015 

is shown in Figure 3.3. Three stations (Bulawayo, West Nicholson, and Beitbridge) show 

significant warming trends with a Sen’s slope of 0.056, 0.032 and 0,045 respectively, while 

Kezi measured an insignificant increasing trend with a Sen’s slope of 0.015. In contrast, 

Matopos significantly cooled by -0.0059 per year. 

 

3.2.3 Spatio-temporal distribution of seasonal air temperature anomalies 

Wet season Tmax for the period (1897-2015) recorded an average warm anomaly of 0.44°C 

for all stations when compared to the reference average (1970-2000), with West Nicholson 

and Matopos measuring highest anomalies of 0.45°C  and 0.5°C respectively (Figure 3.5). In 

contrast, during the wet season, Tmin varied spatially, with Beitbridge and Kezi recording cool 

anomalies of -0.25°C and -0.5°C respectively. Matopos and West Nicholson exhibited a 

positive anomaly of 0.1°C and 0.6°C correspondingly, while Bulawayo measured no change. 

Overall, wet season Tmin indicates a negative deviation relative to the 1970 - 2000 average. 

Dry season Tmax positively deviated from the reference average for all stations having an 

average of 0.36°C (Figure 3.3). These results show that winter Tmax is increasing while Tmin 

is cooling for Kezi and Beitbridge. Tmin for Matopos, Bulawayo and West Nicholson were 0.1 
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to 0.5°C warmer than the 1970 - 2000 average. Our results indicate a Tmax warming tendency 

for both wet and dry seasons, while minimum temperatures are cooling at 60% of stations. 

The catchment wet season Tmax recorded the highest positive anomaly in 2015 (3.3°C), while 

that for the dry season was 3.9°C in 2013 (Figure 3.3).   

 

3.2.4 Annual Tmax and Tmin trends (1967-2015) 

Annual Tmax trends significantly increased (p <0.05) for Bulawayo (0.24 °C decade-1), 

Beitbridge (0.25°C decade-1), West Nicholson (0.14°C decade-1) and Kezi (0.13°C decade-1), 

and average 0.16°C decade-1 for the region over the period 1967-2015 (Table 4). In contrast, 

an insignificant decreasing trend in annual Tmax (at p=0.188) was measured for Matopos (-

0.29°C decade-1). Trends in annual Tmin were insignificant, ranging from -0.05°C decade-1 

(Beitbridge) to -0.04°C decade (West Nicholson), while Matopos and Kezi had statistically 

significant decreasing trends (-0.24°C decade-1 and -0.13°C decade-1 respectively).  
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Figure 3.3: Trends in Tmean per station (Matopos, Bulawayo, and Kezi) for the period 1967 to 

2015 
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Figure 3.4: Trends in Tmean per station (Matopos, Bulawayo, and Kezi) for the period 1967 to 

2015 

 

In Bulawayo, Tmin has significantly increased (0.24°C decade-1) between 1967 and 2015 

(Table 3.5). The catchment has experienced increasing Tmax and decreasing Tmin trends, 

resulting in the diurnal temperature range (DTR) increasing by 0.03°C Contrary to other 

stations, Bulawayo has experienced significantly increasing Tmin values, possibly a 

consequence, at least in part, to an urban heat Island effect.   
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Figure 3.5: Seasonal air temperature anomalies for Mzingwane catchment with a 5-year 

moving average (1967-2015) 

 

Table 3.4: Tmax annual and seasonal Mann-Kendall trend analysis (1967-2015) 

Station Tmax 

Annual MK 
Seasonal 

Kendall 
Sen’ slope Sen’ slope 

P-value P- value Per  Year Per Decade 

Bulawayo <0.0001 <0.0001 0.05 0.24 

Beitbridge 0.038 0.048 0.053 0.25 

West Nicholson 0.051 0.001 0.03 0.14 

Kezi 0.0159 0 0.028 0.13 

Matopos 0.188 <0.0001 -0.061 -0.29 
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Table 3.5: Tmin annual and seasonal Mann-Kendall trend analysis (1967-2015) 

Station Tmin Annual  

Mann-Kendall  

P-value 

Seasonal Kendall  

P- value 

Sen’ slope 

Per Year 

Sen’ slope 

Per Decade 

Bulawayo <0.0001 <0.0001 0.050 0.24 

Beitbridge 0.385 0.003 -0.011 -0.05 

West Nicholson 0.264 0.001 -0.009 -0.04 

Kezi 0.003 <0.0001 -0.027 -0.13 

Matopos 0.001 <0.001 -0.050 -0.24 

 

 

3.2.5 Wet and Dry Season air temperature trends 

The wet season (October - March) Tmax trends for Bulawayo, Beitbridge, West Nicholson and 

Kezi show significant warming trends at an average of 0.33°C decade-1. In contrast, Matopos 

Tmax trends significantly decreased by -0.12°C year-1 (Table 3.6). These results indicate that 

the rainy season temperatures are generally increasing except for Matopos. Tmin trends for the 

wet season measured statistically significant negative trends for Beitbridge, West Nicholson, 

Kezi, and Matopos, decreasing at an average of 0.4°C decade-1.  

 

Dry season (April-September) Tmax trends varied spatially but increased at 60% of stations, 

with Bulawayo recording a significantly positive trend (0.45°C decade-1), while Beitbridge, 

West Nicholson, and Kezi warmed at 0.04°C decade-1, 0.08°C decade-1 and 0.32°C decade-1 

respectively. Matopos (-0.50°C decade-1) measured a negative trend for the annual Mann-

Kendall test but values were statistically significant for the seasonal Kendall test at p < 0.05 

(Table 3.7). Dry season Tmin trends increased significantly for Bulawayo (0.38°C decade-1), 

while West Nicholson and Beitbridge also recorded positive trends, although statistically 

insignificant. Northern region stations (Kezi and Matopos) had significantly decreasing Tmin 

trends (-0.28°C decade-1 and -0.04°C decade-1 respectively). Wet season Tmax trends indicate 

a warming trend, while that for Tmin had decreased. 
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Table 3.6: Wet season air temperature MK trend analysis for 1967 to 2015 

Station   Mann Kendall  

P-value 

Seasonal Kendall 

P- value 

Sen’ slope 

Per Year 

Sen’ slope 

Per Decade 

Bulawayo Tmax <0.0001 <0.0001 0.098 0.47 

 Tmin <0.0001 <0.0001 0.032 0.15 

Beitbridge Tmax 0.001 0.019 0.023 0.11 

 Tmin <0.0001 <0.0001 -0.083 -0.63 

West Nicholson Tmax 0.001 <0.0001 0.154 0.7 

 Tmin 0.001 <0.0001 -0.059 -0.28 

Kezi Tmax 0.506 0.376 0.009 0.04 

 Tmin 0.001 <0.0001 -0.061 -0.29 

Matopos Tmax 0.114 <0.001 -0.122 -0.58 

 Tmin <0.0001 <0.0001 -0.096 -0.46 

 

 

Table 3.7: Dry season air temperature Mann-Kendall (MK) trend analysis (1967-2015) 

Station   Mann Kendall  

P-value 

Seasonal 

Kendall 

P- value 

Sen’ slope 

Per Year 

Sen’ slope 

Per Decade 

Bulawayo Tmax <0.0001 <0.0001 0.093 0.45 

 Tmin 0.000 <0.0001 0.08 -0.38 

Beitbridge Tmax 0.148 <0.0001 0.083 0.04 

 Tmin 0.100 <0.0001 0.087 0.42 

West Nicholson Tmax 0.692 0.647 0.017 0.08 

 Tmin 0.213 0.581 0.011 0.05 

Kezi Tmax 0.000 0.000 0.066 0.32 

 Tmin 0.028 <0.001 -0.059 -0.28 

Matopos Tmax 0.226 <0.0001 -0.105 -0.50 

 Tmin <0.0001 <0.0001 -0.008 -0.04 

 

 

 

3.2.6 Temporal trends in catchment wetness and dryness 

Results indicate a significant increase (p < 0.05) in the occurrence of extreme dryness during 

the last three decades (Figure 3.6). The 1-month SPEI identified numerous episodes of 

extreme dryness and wetness across the entire catchment.  The most severe dryness (SPEI ≤-

1 and ≤-1.4) was identified in 1992 and 2012, while the most extreme wetness (events with 

SPEI greater than 2) was recorded in 1978 and 2000. Flooding conditions (SPEI ≥1and 
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≤1.49) occurred in 1972, 1974-1976, 1981, 1997 and 2000. Findings show an increasing 

tendency toward severe to extreme dryness in the catchment and these events coincided with 

El Niño events. Catchment SPEI significantly decreased at -1.05decade-1  (p = 0.001), which 

shows that the entire catchment has been tending towards increasingly dry conditions.  

 

3.2.7 Spatial variation of trends in extremely dry and wet events (1967 to 2015)  

Station based SPEI-1 trend analysis indicates varied levels of significance for different 

months. Bulawayo has a significant (p < 0.05) drying trend from May to October, from 

November to March also drying, but insignificantly (p < 0.05) (Table 3.8). Kezi records a 

significant (p = 0.024) wetting trend for July, while the period January to June indicates an 

insignificant (p < 0.05) increasing SPEI. Only September recorded a significant (p = 0.006) 

drying trend for Kezi. Beitbridge exhibits a general drying trend throughout the year, with 

50% of months recording significant drying trends (Table 3.8). Matopos has become 

significantly (p < 0.05) wetter from April to July, and in December, while September to 

November has become significantly drier (p = 0.045; p = 0.013; p = 0.041). West Nicholson 

records drying trends (p<0.05) for February and May to November, while December to April 

shows an insignificant drying trend (Table 3.9).  
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Figure 3.6: Time series of SPEI per station (1967-2015) 
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Figure 3.6: Time series of SPEI per station (1967-2015) 
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Table 3.8: Mann-Kendall trend test for SPEI (1967-2015) per given station 

Station Jan Feb March April May June July Aug Sept O ct Nov Dec

Bulawayo Kendall tau -0.04 -0.12 -0.05 -0.18 -0.2 -0.2 -0.2 -0.4 -0.2 -0.5 -0.3 -0.03

P-Value 0.725 0.226 0.589 0.066 0.04* 0.012* 0.039* 0.000* <0.0001* <0.0001* 0.006 0.777

Kezi Kendall tau 0.11 -0.06 0.1 0.02 0.18 0.15 0.23 0.04 -0.28 -0.09 -0.08 0.16

P-Value 0.291 0.554 0.299 0.844 0.079 0.136 0.024* 0.73 0.006* 0.358 0.129 0.281

Beitbridge Kendall tau -0.08 -0.19 -0.17 -0.3 -0.28 -0.22 -0.17 -0.36 -0.49 -0.39 -0.22 -0.04

P-Value 0.137 0.086 0.093 0.004* 0.005* 0.027* 0.093 0.000* <0.001* <0.0001* 0.141 0.674

Matopos Kendall tau 0.12 0.07 0.1 0.11 0.23 0.5 0.38 0.13 -0.2 -0.24 -0.2 0.21

P-Value 0.232 0.487 0.299 0.044* 0.021* 0.000* 0.000* 0.19 0.045* 0.013* 0.041* 0.03*

West 

Nicholson
Kendall tau -0.19 -0.22 -0.09 -0.26 -0.33 -0.24 -0.18 -0.44 -0.53 -0.43 -0.25 -0.09

P-Value 0.061 0.023* 0.352 0.009 0.001* 0.017* 0.073* 0.000* <0.0001* <0.0001* 0.010* 0.396  

 

3.2.8 Decadal distribution of extreme weather events 

The spatial distribution of the number of extremely dry conditions (Figure 3.7 and 3.8) shows 

that the southern part of the catchment had fewer droughts (0-5monthsdecade-1) during the 

period 1966-1976 than during the period 2006-2015 (36-55 monthsdecade-1) (Figure 3.7 and 

3.8).The northern parts recorded a greater number of drought months during the period 1966-

1975 than a most recent decade (2006-2015). The whole catchment received 69 months of 

moderate to extreme wetness and 46 months moderate to extreme dryness for the first two 

decades. Decades 1986-1995, 1996-2005 and 2006-2015 experienced a total of 55 months of 

wetness and 62 months of moderate to extreme dryness (Figure 3.5). Generally, the first two 

decades (1966-75 and 1976-1985) experienced 4.8% extreme wetness, 13% severe wetness 

and 21% moderate wetness.  In contrast, decades 1996-2005 and 2006-2015 had 6% extreme 

dryness, 16% severe dryness and 20% moderate dryness (Figure 3.5).  

 

3.2.9 Inter-correlations of Temperature, ENSO, and SPEI 

Principal Component Analysis (PCA) was computed to measure the strength of association 

between climate variables (temperature and rainfall), NINO4 index and SPEI (Figure 3.9). 
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Findings show a strong positive correlation between Tmax and Tmin with NINO4 index (Table 

3.10) having loadings of 0.79 and 0.96 respectively. SPEI-1 had a weak negative correlation 

with Tmax (-0.172) while Tmin exhibited a stronger positive correlation with SPEI-1 (0.65 

loadings; Table 3.10).  

 

Figure 3.7: Decadal severity of extremes (moderate, severe and extreme dryness and wetness) 

in Kezi, Bulawayo and Beitbridge for the decades 1966-1975, 1976-1985, 1986-1995, 1996-

2005, and 2006-2015 
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Figure 3.8: Decadal severity of extremes (moderate, severe and extreme dryness and wetness) 

in Matopos, West Nicholson and Mzingwane catchment for the decades between 1966 and 

2015 
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Table 3.9: PCA loadings for extreme indices ( SPEI-1 and NINO4) temperature (T) 

 

 

 

 

 

 

 

 

The SPEI-1 and NINO4 Index showed a strong negative correlation of -0.617 loadings (Table 

3.9). The Spearman correlation matrix shows that the correlations between variables are 

weak, as most of them have a coefficient of around 0.1 (Table 10). 

 

 

Figure 3.9: PCA variable correlations for extreme indices represented by nino4 and SPEI and 

temperature (Tmin, Tmax and Tmean)  

 

 

  F1 F2 F3 F4 F5  

SPEI-1 -0.289 -0.617 -0.342 0.647 0.001  

NINO4 0.322 0.226 0.754 0.527 0.003  

TMAX 0.793 0.359 -0.433 0.201 -0.118  

TMIN 0.959 -0.180 -0.165 -0.014 0.141  

TMEAN -0.476 0.761 -0.336 0.270 0.089  
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Table 3.9: Correlation matrix among temperature and extreme indices  

Variables SPEI-1 NINO4 TMAX TMIN TMEAN 

SPEI-1 1.000 -0.149 -0.172 -0.119 -0.042 

NINO4 -0.149 1.000 0.116 0.137 -0.092 

TMAX -0.172 0.116 1.000 0.748 0.084 

TMIN -0.119 0.137 0.748 1.000 -0.530 

TMEAN -0.042 -0.092 0.084 -0.530 1.000 

Values in bold are different from 0 with a significance level alpha = 0.05 

 

3.3 Discussion 

3.3.1Temperature trends 

This study has presented spatio-temporal trends for air temperature and extreme climatic 

events in the Mzingwane catchment of south-western Zimbabwe, using both historic and 

more contemporary instrumental weather records. The period 1967-2015 experienced 

approximately 1°C warmer conditions than the reference period 1970-2000. Annual Tmax 

warmed on average by 0.16°C decade-1 and compares favourably with trends for the 

Limpopo Province of South Africa (0.12°C decade-1),  although the magnitude of change 

varied spatially across these regions (Tshiala et al., 2011). Of the 30 catchments studied by 

Tshiala et al. (2011), 13% showed negative trends, while 87% exhibited positive trends in 

mean annual temperature. The trends for Limpopo Province are important to this study 

because the Mzingwane catchment forms part of the northern Limpopo basin.  

 

In this study, annual Tmin decreased for 60 % of the stations with values of -0.04°C to -0.13°C 

decade-1. These results are contrary to most previous findings in southern and eastern Africa, 

which have emphasised the general increase in Tmin (Kruger and Shongwe, 2004; Mengistu et 
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al., 2014; Lakhraj-Govender et al., 2016; Kruger and Nxumalo, 2017). Increasing annual Tmin 

trends have varied from  0.15°C decade-1 in Ethiopia (Mengistu et al., 2014) to a mean of 

0.14°C decade-1 for most of South Africa to 0.12°C for the southwestern Cape region in 

particular  (Lakhraj-Govender et al., 2016). A combination of increasing Tmax and decreasing 

Tmin resulted in increasing diurnal temperature range (DTR) by an average of 0.03°C. The 

results are in agreement with findings by New et al. (2006) who reported an increasing 

diurnal range of temperature for southern Zimbabwe in the period 1961-2000. This pattern 

could be as a result of differences in topography and localised climate systems (Barry, 1992; 

Stahl et al., 2006). An increased diurnal temperature range may indicate a changing climate 

(Karl et al., 1993; Qu et al., 2014), but can also result from localised factors such as 

urbanisation (Wang et al., 2012), land use/cover changes (Gallo et al., 1999) and changes in 

cloud cover (Dai et al., 1999). 

 

3.3.2 Seasonal air temperature trends  

The findings show positive wet season (October-March) Tmax trends while Tmin has 

decreased. A number of studies in South Africa reported warming Tmax for all seasons, but 

varying in magnitude (MacKellar et al., 2014; Lakhraj-Govender et al., 2016; Kruger and 

Nxumalo, 2017). However, Kruger and Nxumalo (2017) also highlighted regional disparities 

in air temperature trends but still noticed largest positive trends in summer (0.018 °C decade-

1). In addition, some studies have reported increasing temperatures corresponding with low 

precipitation (Brunsell et al., 2009). Although this relationship is outside the scope of this 

study, it becomes very pertinent to farmers in the Mzingwane catchment who rely heavily on 

rain-fed agriculture for their livelihoods. A combination of high temperatures and dry 

conditions often result in substantial crop failures and livestock diseases/mortality, which 
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compromise food security. The sub-regional discrepancies concerning Tmin trends could be a 

product of sub-regional influences on mesoscale thermodynamics (Mueller et al., 2016).  

 

3.3.3 Spatiotemporal trends in extreme events 

SPEI has been used in this study to determine extreme wet and dry periods (Figure 4). The 

study showed that there is a general increase in occurrence and frequency of dry extremes 

which are strongly linked to ENSO in the last two decades. This result is consistent with 

global circulation model projections (“IPCC - Intergovernmental Panel on Climate Change,” 

2007) which emphasise an increase in precipitation extremes under anthropogenic global 

warming. Similar results were reported by Manatsa et al. (2010b), suggesting drying 

conditions with more frequent intense agricultural droughts in semi-arid Zimbabwe. Current 

findings have shown that for south-western Zimbabwe, the first two decades (1966-75 and 

1976-85) were wetter than the last two decades (1996-2005 and 2006-2015), with the latter 

period having to experience more extreme dryness (Figure 5). These results are consistent 

with those from previous southern African work, which have also expressed the tendency 

toward dryness and a higher frequency of droughts (Jury et al., 2007; Sheffield et al., 2009; 

Manatsa et al., 2010a; Masih et al., 2014; Spinoni et al., 2014). 

 

The results show a strong relationship between ENSO and extreme events, as also previously 

noted by Mamombe et al. (2016). The association between warming temperature and ENSO 

events is particularly strong in the case of a global and regional scale super ENSO event 

(Lean and Rind, 2009). More recently, Manatsa and Reason (2017) reported a positive 

correlation between ENSO and air temperature and explain the significance of large-scale 

climate systems on local weather. Increased extreme dry conditions have huge repercussions 

on catchment hydrology, which impact on general water availability. This is of great concern 
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because the Mzingwane catchment provides water to surrounding urban areas such as 

Bulawayo. Water shortages have been experienced in the last 10 years in Bulawayo, which 

has resulted in massive water rationing schemes as supply dams regularly dry up in the 

Mzingwane catchment.   

 

This and a previous study (Mugandani et al., 2012) raise concern regarding recurrent extreme 

drought conditions in semi-arid regions of Zimbabwe. Such shifts towards drier and warmer 

conditions are detrimental to not only agriculture but also biodiversity, which may cause 

species to migrate and/or become regionally extinct (Masters et al., 2010).  This may also 

promote the spread of specific invasive species, particularly those which are more adaptive to 

hot and dry conditions (Masters et al., 2010). In addition, fragile ecosystems such as wetlands 

found in the study region, are likely to be negatively affected by a lowering water table 

during recurrent extreme dry conditions, and may possibly lead to their complete demise. 

Further research is required to investigate the relationship between atmospheric warming and 

precipitation trends at the mesoscale, particularly for the more mountainous regions. 

 

3.4. Conclusions  

The study concludes that there has been a significant increase in maximum temperatures at 

p<0.005 for 60% of the Mzingwane catchment while the catchment minimum temperatures 

show an insignificant decreasing trend, extreme dryness has increased in frequency during 

the past two decades. Significant drying trends are noted for the summer rainy months, with 

consequential agricultural drought, while a tendency towards wet months is noted during 

winter months in mountainous regions. Notably, extreme events are recurring with longer 

duration during the current decade than the 20th century.  There is a strong positive 

correlation between temperature and the NINO4 index, while SPEI-1 has a weak negative 
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correlation with Tmax but is strongly correlated with Tmin. The SPEI-1 and NINO4 indices 

significantly correlate, which is confirmed by the correspondence of dry years with ENSO 

events. The findings are important for developing appropriate sustainable and adaptive 

strategies at the sub-regional scale, as climate changes. 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

CHAPTER 4: LONG-TERM RAINFALL CHARACTERISTICS IN THE 

MZINGWANE CATCHMENT OF SOUTHWESTERN ZIMBABWE 

 

Abstract 

Rainfall characteristics during the annual rainy season are explored for the Mzingwane 

catchment of southwestern Zimbabwe, for both historic period (1886-1906) and more recent 

times (1950-2015), based on available daily and monthly precipitation series. Annual and 

seasonal rainfall trends are determined using the Modified Mann-Kendall test, Magnitude of 

Trends test and Sen’s slope estimator. Rainfall variability is quantified using the coefficient 

of variation (CV), Precipitation Concentration Index (PCI) and Standard Precipitation Index 

(SPI).  Results suggest that contemporary mean annual rainfall may not have changed from 

that measured during the historic period of 1886-1906. However, the number of rainy days 

(>=1mm) has decreased by 34%, thus suggesting much more concentrated and increased 

rainfall intensity. A notable shift in both the onset and cessation dates of the rainy season is 

recorded, particularly during the 21st century, which has resulted in a significantly reduced 

(p<0.05) in the length of the rainy season. The combination of a reduced number of rainy 

days (>=1mm) and a shortened rainy season, suggests that long intra-season dry spells have 

become more common through time and have considerable negative consequences for 

agriculture and wetland ecosystem in the region. In addition, high spatio-temporal rainfall 

variability and seasonal PCI values indicate strong seasonality in the rainy season. Based on 

the SPI results, the El Niño Southern Oscillation (ENSO) strongly influences rainfall 

variability. The results further suggest high uncertainty in rain season characteristics, which 

requires effective planning for water needs.  

  

Keywords: rainfall variability, trends, rainy days, rain season length, rainfall indices 
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2This chapter is based on: Sibanda S, Grab S.W and Ahmed F. long-term rainfall characteristics in the 

Mzingwane catchment of southwestern Zimbabwe. In submission; Theoretical and Applied 

Climatology Journal.   

 

 

4.1 Introduction 

Climate change is one of the major contemporary concerns of humanity in the 21st century 

and has not only influenced the quantity of rainfall received, but also other important 

characteristics, such as rainfall intensity, length of the rain season, rainfall onset and cessation 

dates, trends and number of rainy days in a given season (Recha et al., 2012; Mushore et al., 

2017; Reason, 2017). Given that much of southern Africa, including the Mzingwane sub-

catchment of southwestern Zimbabwe is semi-arid, such changes in rainfall characteristics 

have significant implications for livelihoods, especially given the widespread subsistence 

agricultural economy. The situation is further compounded by the fact that most rural 

communities heavily rely on rain-fed agriculture for their staple food requirements and lack 

irrigation infrastructure. In addition, most ecosystems in the region (e.g. wetlands) are very 

sensitive to potential changes in rainfall characteristics and may lead to botanical changes 

over time or enhanced erosion/degradation.  

 

Zimbabwe’s rainfall is unimodal and normally begins in October and ends in March, but 

varies widely through space and time (Therrell et al., 2006; Manatsa and Mukwada, 2012). 

The rain season is largely dependent on the movement of the Inter-Tropical Convergence 

Zone (ITCZ) and upper westerly waves from the mid-latitudes, which determine the intensity 

of the rains during the rainy season (Buckle, 1996). Notably, much of the rainfall variability 

in Zimbabwe is also associated with El Niño Southern Oscillation (ENSO) phases (Reason et 

al., 2005; Manatsa and Matarira, 2009; Jury, 2013; Mamombe et al., 2016). Apart from the 

large scale atmospheric thermodynamics, rainfall patterns in Zimbabwe are also influenced 
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by micro-level dynamics such as relief, elevation and land cover (Sanchez-Moreno et al., 

2014). 

 

Globally, rainfall variability and change has been extensively studied, and downscaled to sub-

regions. Several of these studies have noted high spatio-temporal variability in inter and intra 

rain seasons (e.g. Camberlin et al., 2001; Afzal et al., 2015; Bisht et al., 2017; Gajbhiye et 

al., 2016; Reason, 2017).  Given the predominance of subsistence agriculture which is 

heavily dependent on rain for its direct moisture supply, there has been much attention on 

rainfall characteristics (variability, length of the rain season, trends) for many parts of sub-

Saharan Africa (e.g. Ngongondo et al., 2011; Recha et al., 2012; Weldon and Reason, 2014;  

Nnaji et al., 2016; Randriamahefasoa and Reason, 2017). A general outcome from such 

studies has been the expressed concern over recent trends of increased inter and intra seasonal 

rainfall variability, and shortening rain seasons. For instance, the number of rainy days in 

semi-arid Botswana are reported to have decreased on average by -1.38mm year-1 between 

1975 and 2005, and is also accompanied by increased rainfall variability (Batisani and 

Yarnal, 2010). In East Africa, rainfall onset dates have varied more strongly than cessation 

dates due mostly to changes in pressure and sea surface temperatures which modify Indian 

and Atlantic ocean temperatures. The cooler Indian ocean and the warmer Atlantic ocean are 

related to high sea level variability, which promotes a conducive environment for enhanced 

equatorial easterlies and surface divergence over East Africa (Camberlin and Okoola, 2003). 

Such conditions tend to draw the ITCZ further to the west, resulting in the delayed onset of 

rains. In part, global warming associated with higher sea surface temperatures and stronger 

ENSO events has been identified as the primary factor for such African rainfall trends 

(Mamombe et al., 2016).  
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In the context of Zimbabwe, past investigations on historic and future climate change have 

indicated a decline in annual rainfall linked to ENSO events (Unganai, 1996b) and the Indian 

ocean Dipole Zonal mode (Manatsa and Matarira, 2009). A rainfall reconstruction based on 

tree rings has indicated a long-term (1800 to 2000) rainfall trend, that past severe droughts 

correspond to El Niño and with high rainfall variability over time (Therrell et al., 2006). 

Significant changes in the start and cessation dates of the rain season are detrimental to 

‘normal’ crop production (Mushore et al., 2017), as such changes may pose a risk of the 

occurrence of dry spells within the rain season, and which impacts negatively on crop growth 

and yields (Moyo et al., 2017). Past work has suggested that annual rainfall trends for all of  

Zimbabwe as being statistically insignificant, but rather that it is the intensity, timing and 

duration that has shifted  (Mazvimavi, 2010; Muchuru et al., 2016). However, these findings 

varied broadly across the entire country; as such more detailed studies are required at sub-

catchment level. To this end, the current study aims to assess inter-annual and seasonal 

rainfall variability and change at the micro-spatial scale (i.e. Mzingwane sub-catchment) and 

then compare these to those of past studies that have worked at a national scale. It is hoped 

that such information enables better catchment-scale management for future water needs and 

wetland sustainability. 

 

4.2 Methodology 

4.2.1 Study area 

Zimbabwe has seven catchment management regions as indicated in Figure 4.1. This paper 

focuses on the most southerly of these catchment regions, namely the Mzingwane catchment, 

which is located between 19.8o and 22.4oS and 27.7o and 32.0o E. The catchment includes 

four sub-catchments (Shashe, Lower Mzingwane, Upper Mzingwane and Mwenezi) covering 

an area of ~63000 km2 (Figure 4.1). The northern part of the catchment is composed of 
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granitic rocks associated with the greenstone belt, which is rich in gold deposits. Granite 

terrains form large inselbergs (dome-shaped mountain ranges), between which wetlands 

occur (perennial dams, vleis, swamps or marshes). The Mzingwane catchment hosts five 

major rivers (Shashe, Umzingwane, Mwenezi, Bubi and Marico) that feed into the Limpopo 

River (Görgens and Boroto, 1997). 

 

 

Figure 4.1: Mzingwane Catchment showing Shashe, Upper Mzingwane, Lower Mzingwane 

and Mwenezi sub-catchments 

 

The climate of Mzingwane catchment is semi-arid to arid, but rainfall distribution varies 

across the catchment, such that the northern regions receive ~450-600 mm per annum and the 

southern regions ~200-450 mm pa (Görgens and Boroto, 1997; Chenje et al., 1998). The wet 

season typically starts in late October and ends in March, with the highest rainfall occurring 
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between December and February (Unganai and Mason, 2002).  Rainfall seasonality is largely 

influenced by the Inter-Tropical Convergence Zone (ITCZ) which moves southwards during 

the austral summer, and inter-annually by the El Niño Southern Oscillation (ENSO) which is 

associated with periods of lower (El Niño) and higher (La Niña) rainfall (Manatsa et al., 

2008).  The average daily Tmax for the catchment varies between 27–34°C during summer and 

22–26°C in winter (Love et al., 2010), while average Tmin range between 18-22°C during 

summer and 5-10°C in winter (FAO, 2010; Sibanda et al., 2017). Owing to the relatively low 

and erratic rainfall, agricultural activities in the catchment mainly involve livestock rearing, 

as this is the most viable, however crop production is also practised but is concentrated 

around wetlands and flood plains. 

 

4.2.2 Rainfall Data  

Monthly rainfall data for 11 stations (Matopos, Kezi, Bulawayo, Gwanda, Filabusi, West 

Nicholson, Beitbridge, Mwenezi, Plumtree, Masvingo and Mberengwa) were acquired from 

the Department of Meteorological Services in Zimbabwe.  Although there is some variation 

in the lengths of station data sets, most cover ca. 65 years (Table 4.2). In addition, daily 

rainfall data are available for 8 stations (Bulawayo, Matopos, Mbalabala, Plumtree, Chiredzi, 

Hope Fountain, Mpandeni and Gwanda) (Table 4.1).  

 

 

Prior to trend analysis, quality control measures were undertaken which involved careful 

visual inspection of the data to identify missing values, outliers and typographic errors in the 

data series. Having inspected the data, homogeneity testing was computed based on the 

Standard Normal Homogeneity test (SNHT), Pettit’s test and the Buishand’s Range test (BR) 

at 5% significant level for individual stations using SNHT library of R statistical packages 
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version 3.3.3 (R Development Core Team, 2016). Homogeneity testing was for the purposes 

of identifying significant change points in the time series data, which normally emanate from 

changes in station location, or instrumentation, such as moving from manual to automated 

instruments. For the change to be considered significant, change detection was required by 

more than one test. 

 

Table 4.1: Daily rainfall data location, elevation and period covered  

Station Latitude  Longitude Elevation Start Year 
End 

Year 

      
Bulawayo -20.13 28.63 1334 1930 2015 

    

1896 1906  

Filabusi -20.54 29.28 1108 1920 2013 

Matopos -20.56 28.47 1385 1930 2015 

Mbalabala -20.45 29.04 1093 1930 2015 

Plumtree -20.50 27.80 1363 1963 2014 

Chiredzi -21.03 31.68 396 1965 2014 

Hope Fountain         -20.26 28.66 1446 1886 1906 

Mpandeni -20.70 27.91 1204 1896 1906 

Gwanda -20.95 29.03 999 1899 1906 

 

Table 4.2: Monthly rainfall data location, elevation and period covered for 11 stations within 

Mzingwane catchment  

Station Latitude  Longitude Elevation Start Year End Year 

Bulawayo -20.13 28.63 1334 1950 2015 

Gwanda -20.95 29.03 999 1950 2015 

Beitbridge -22.22 30.00 486 1950 2015 

Filabusi -20.54 29.28 1108 1950 2015 

Kezi -20.93 28.47 1000 1951 2015 

Matopos -20.56 28.47 1385 1950 2015 

West Nicholson  -21.03 28.94 956 1950 2015 

Chiredzi -21.03 31.68 396 1965 2013 

Mberengwa -20.48 29.92 1035 1950 2015 

Plumtree -20.50 27.80 1363 1950 2015 

Masvingo -20.07 30.83 1076 1950 2015 
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4.2.3 Trend detection   

The Mann-Kendall trend test is a widely used statistical analysis tool for hydro-

meteorological data because it is appropriate for non-normal data associated with climatic 

parameters. Its primary advantage is in its independence of the data and tolerance to outliers 

(Hamed and Rao, 1998). The Modified Mann-Kendall test was applied to monthly rainfall 

data for detecting statistically significant trends in rainfall series. The standard test statistic Z 

is computed as; 

 

Where, 

 

Sen’s Slope Estimator Test (1968) was used to determine the magnitude of the trends. The 

slope  was calculated as; 

 

 

4.2.4 Rain season characteristics 

To quantify the quality of the rain season, the number of rainy days, frequency, and trends in 

rainy days were established. Seasonal rainfall onset and termination dates, as well as the 

length of the rain season, were computed to determine variations in the rain season quality. 

The study applied the threshold procedure to define a rainy day based on the method by 

Marteau et al. (2011), as shown in Table 4.3. Dry days were taken to be days with less than 

1mm of rain. 
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Table 4.3: Rain day classification criteria by Marteau et al. (2011 

Day Rainfall threshold 

Rainy  >=1mm 

Heavy rain >=10 < 20mm 

Very Heavy rain >=20 < 30mm 

Extremely heavy rain >=30 mm 

 

The definition for the start of the rainy season varies widely depending on the climatic and 

geographic location to which it is applied. However, there seems to be some consensus that 

the first rains need not necessarily be the start of the rain season (Mazandarani et al., 2013). 

This study defines the start of the rainy season as a date when rainfall accumulation in 1 or 2 

days is 20mm within 3 dekads, but not followed by a period of more than 10 consecutive dry 

days in the next 3 dekads (Edoga, 2007). Determining the cessation of the rainy season is 

even more complex given the semi-arid nature of the sub-catchment. Mazandarani et al. 

(2013) define the end of the rainy season as the last date of precipitation in March of less than 

10mm, and followed by no fewer than 20 dry days. Here we adopt the proposal by Tadross et 

al. (2005) that the end of the rainy season is defined as 3 dekads with less than 20mm of rain 

followed by 2 dekads of dry days. The length of the rain season is thus determined by such 

start and end dates (Moyo et al., 2017; Mupangwa et al., 2011). 

 

4.2.5 Rainfall variability 

Several indices are computed to measure rainfall variability through space and time using R 

statistical packages version 3.3.2. The Coefficient of Variance (CV) was computed based on 

monthly data. This is a measure of how an individual datum varies around the mean value. It 

explains the deviation of the data series from its central tendency as a ratio of standard 

deviation to the mean. It is mathematically calculated as follows;  
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 *100     (1) 

 

Where Sx = standard deviation 

 x̅= mean 

A greater CV is an indicator of large spatial variability in rainfall. Previous studies by Recha 

et al. (2012) and Bari et al. (2017) also expressed that a CV >30% of rainfall data indicate 

great variability in quantity and distribution of precipitation.  

 

The Standard Precipitation Index (SPI) by McKee et al. (1993) is a normalised index which is 

based on the likely occurrence of the observed rainfall data. Negative values of the index 

show rainfall deficit while positive values denote rainfall surplus. The values around zero 

indicate close to normal rainfall (Table 4.4). 

 

Table 4.4: Classification of rainfall extremity based on SPEI (McKee et al., 1993) 

Category SPEI value 

2.0+ Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1,49 Moderately wet 

0 to .99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

 

The Precipitation Concentration Index (PCI), originally introduced by Oliver (1980), but later 

modified by Nsubuga et al. (2014), is calculated as follows;  

      (2) 
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Where Pi= rainfall amount of the ith month calculated for each station per year. PCI values 

below 10 indicate uniform rainfall distribution per year, while values of 11-20 disclose a 

seasonal rainfall distribution. Values above 20 depict substantial rainfall variability (Nel, 

2009; Ngongondo et al., 2011). 

 

4.3 Results and Discussion 

4.3.1 Data quality control 

Based on the Pettit’s, SNHT and Buishand’s tests, none of the stations had a significant 

change point, suggesting that the rainfall series were fairly homogenous (Table 4.5).  

Although the SNHT test detected a change point for Bulawayo in February 1950 and 

Mberengwa in March 2013 and West Nicholson in February (Buishand’s test), these were not 

considered significant as they were not detected by the other two tests (Stepanek et al., 2011). 

 

Table 4.5: Homogeneity using the Pettit’s, SNHT and Buishand’s tests 

 

Pettit’s test SNHT test Buishand's test 

Station K P-value T0 P-value Q P-value 

Bulawayo 11618 0.71 13.012 0.046* 26.695 0.304 

Gwanda 16617 0.125 3.605 0.750 18.459 0.748 

Beitbridge 10657 0.872 4.426 0.571 15.483 0.893 

Filabusi 9521 0.777 3.452 0.782 21.356 0.59 

Kezi 13925 0.314 4.594 0.586 19.915 0.655 

Chiredzi 9701 0.226 2.476 0.893 14.737 0.813 

Mberengwa 13252 0.322 19.525 0.018* 22.031 0.512 

Plumtree 8562 0.716 4.686 0.571 17.209 0.800 
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4.3.2 Time series decomposition 

The rainfall series were decomposed in R using packages “timeSeries” and “TTR” (Figure 

4.2). Time series decomposition employed an addictive model approach embedded in R 

software to assess the rate of change through decomposing time series into three main 

components- namely trend, seasonal and random components (Figure 4.2). The series shows 

that there is a regular seasonality in rainfall pattern in a given year. Overall, the time series 

plots indicate slightly, but not statistically significantly at p < 0.05, decreasing rainfall trends 

at most stations, averaging -0.0085mm/year. 

 

(a) 

(b) 
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(c) 

(d) 

(e) 
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(f) 

Figure 4.2: Monthly rainfall timeseries decomposition for: (a) Bulawayo, (b) Filabusi, (c) 

Beitbridge, (d) Gwanda, (e) Matopos and (f) Kezi for 1950-2015 

 

4.3.3 Annual rainfall trends 

Insignificant decreasing annual rainfall trends are measured for Bulawayo (-0.908mm year-1), 

Filabusi (-0.085mm year-1), Kezi (-2.056mm year-1), Matopos (-0.969mm year-1), West 

Nicholson (-0.091mm year-1), Masvingo (-2.319mm year-1) and Chiredzi (-1.333mm year-1) 

(Table 4.5). In contrast, insignificant increasing trends are recorded for Gwanda (0.124mm 

year-1), Mberengwa (0.014mm year-1) and Plumtree (0.063mm year-1), while at Beitbridge no 

trend is measured between 1950 and 2015 (Table 4.6). The results indicate that the catchment 

experienced statistically insignificant decreasing trends across 65% of the stations (Figure 

4.3). These findings are similar to those of Mazvimavi (2010), who noted insignificantly 

decreasing annual rainfall trends across 40 Zimbabwean stations between 1892 and 2000. 

Similarly, Muchuru et al. (2016) reported a comparable rainfall trend for Kariba catchment 

area of the Zambezi river basin, in which 11 of the 13 stations (the exception being 

Mhondoro) exhibited insignificant trends. These findings confirm that rainfall quantity over 

the past 65 years has not significantly changed despite global climate warming. Nonetheless, 

although not statistically significant, there is a noticeable reduction in rainfall amount, 
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consistent with climate change projections that anticipate a general decline in precipitation 

within the tropics (Change, 2013). 

 

Table 4.6: Annual MK trend test at 5% significance level 

 

 

 

 

 

 

 

 

 

4.3.4 Seasonal rainfall trends 

Rainfall trends during the rainy season (October-March) show a significant downward trend 

for Bulawayo (-1.81mm year-1; p=0.054) and Masvingo (-3.144mm year-1; p=0.022) (Table 

4.7). Insignificant negative trends are recorded for Gwanda (-0.900mm year-1; p=0.314), Kezi 

(-0.854 mm year-1; p=0.591), Matopos (-1.526 mm year-1; p=0.20), West Nicholson (-1.350 

mm year-1; p=0.22) and Chiredzi (-0.737; p=0.75) stations. In contrast, Filabusi (0.721 mm 

year-1; p=0.47), Mberengwa (0.342mm year-1; p=0.72), Plumtree (0.104 mm year-1; p=0.901), 

and Beitbridge (0.203 mm year-1; p=0.86) measured insignificantly increasing rainfall trends 

at p<0.05 (Table 4.8). Broadly across the catchment, the rain season has experienced a slight 

decline in rainfall across 64% of stations, while marginally increasing at the remaining 

stations. Such trends have hydrologic implications on wetland ecosystems. 

 

Station  Kendall's Tau P-value Sen's slope  

Bulawayo -0.14 0.097 -0.908 

Filabusi -0.083 0.327 -0.085 

Gwanda 0.094 0.265 0.124 

Kezi -0.029 0.738 -2.056 

Matopos -0.107 0.205 -0.969 

West Nicholson -0.086 0.316 -0.091 

Masvingo -0.155 0.071 -2.319 

Chiredzi -0.045 0.654 -1.333 

Mberengwa 0.014 0.871 0.188 

Plumtree 0.063 0.473 1.313 

Beitbridge 0.000 1.000* 0.000 

* no trend 
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Dry season (April to September) rainfall trends insignificantly increased for the majority 

(73%) of stations at an average of 0.267 mm year -1(Table 8), while Filabusi (-0.017 mm year 

-1; p=0.956), Chiredzi (-0.432 mm year -1; p=0.546) and Beitbridge (-0.104 mm year -1; 

p=0.698) recorded statistically insignificant negative trends (Table 4.8). Such an increase in 

trends of rainfall during the dry season may be signifying a shift in season, meaning that the 

rain season onset is delaying and stretching into the drier months, particularly April and early 

May.  Inter-annual variability of seasonal rains has largely been attributed to El Niño 

Southern Oscillation (ENSO) events (Mamombe et al., 2016a) which normally induce inter-

season dry spells resulting in widespread crop failure and food insecurity, particularly over 

semi-arid regions. 

 

Table 4.7: Rainy season MK trend test at 5% significance level for 1950-2015 

Station  Kendall's Tau P-value Sen's slope  

Bulawayo -0.15 0.054* -1.812 

Filabusi 0.063 0.465 0.721 

Gwanda -0.085 0.314 -0.900 

Kezi -0.046 0.591 -0.854 

Matopos -0.108 0.201 -1.526 

West Nicholson -0.104 0.221 -1.350 

Masvingo -0.197 0.022* -3.144 

Chiredzi -0.032 0.751 -0.737 

Mberengwa 0.031 0.719 0.342 

Plumtree 0.011 0.901 0.104 

Beitbridge 0.015 0.864 0.203 

* significant at p < 0.05 

   

 

 

 



70 
 

4.8: Dry season MK trend test at 5% significance level 

Station  Kendall's Tau P-value Sen's slope  

Bulawayo 0.02 0.816 0.068 

Filabusi -0.005 0.956 -0.017 

Gwanda 0.13 0.128 0.633 

Kezi 0.003 0.973 0.012 

Matopos 0.033 0.698 0.147 

West Nicholson 0.047 0.583 0.208 

Masvingo 0.051 0.555 0.378 

Chiredzi -0.06 0.546 -0.432 

Mberengwa 0.021 0.889 0.041 

Plumtree 0.114 0.190 0.646 

Beitbridge -0.033 0.698 -0.104 

 

4.3.5 Historic rainfall (1886-1906) 

Historic catchment rainfall between 1886 and 1906 is presented in Figure 4.3 for Bulawayo, 

Hope fountain, Mpandeni and Gwanda (values obtained from Wallace, 1907).  Interestingly, 

the mean annual rainfall recorded for Bulawayo between 1896 and 1906 (538.27mm) is 

identical to that during more recent times (1930 to 2015), for which the mean is 538.4mm. 

The longest and oldest rainfall record is for Hope fountain (1886 to 1906) which recorded a 

mean annual rainfall of 730.5mm. 

 

Historic daily rainfall data are only available for Bulawayo and the results show that most 

years started the rainy season during the first dekad and third dekad of October and ended in 

the second and third dekad of March, except for the 1900/01 season which ended during the 

first dekad of April (Table 4.9).  The mean duration of the rainy season was 156 days with a 

mean number of 74 rainy days >2.5mm, which is ca 34% more than that for the 1950-2015 

period (mean = 46 rainy days). Historic data for the period 1896-1906, indicate that the rainy 

season lasted on average 161 days, while that for the period 1950-2015 averaged 144 days 
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and that for the most recent 10 years (2005-2015) averaged 112 days. These results 

tentatively indicate that the rainy season length has significantly reduced by 30% in the last 

10 years and 13% (1950-2015) in comparison to the historic period (1896-1906). 

 

 

 

Figure 4.3: Historic mean annual rainfall (mm) per station for the period between 1886 and 

1906 

 

4.3.6 Variation in number of rainy days 

Bulawayo recorded the highest (49) average number of rainy days (≥1mm) per rain season 

between 1930 and 2015, while the lowest number is for Matopos (44 days) (Table 4.10). 

Heavy rainy days (10-30mm) average 10 to 15 days across the catchment, while very heavy 

rainy days typically occur on 3-5 occasions during the rainy season (Figures 4.4, 4.5; Table 

4.10). The Mann-Kendall trend results for the number of rainy days provide varied results. 

Bulawayo, Mbalabala and Plumtree measured insignificant decreasing trends (0.009 days 

decade -1, 0.004 days decade -1 and 0.013 days decade -1 respectively) in the number of rainy 
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days   ≥ 1mm while Matopos significantly decreased (0.02 days decade -1; p=0.003) (Table 

12). In contrast, the number of rainy days at Filabusi has increased, albeit statistically 

insignificant (0.009 days decade -1). 

 

Table 4.9: Duration of the rainy season for Bulawayo (1896-1906) 

Season Started Ended Duration (Days) Rainy Days 

1896-97 21-Oct 23-Mar 153 76 

1897-98 26-Oct 30-Mar 155 67 

1898-99 23-Oct 28-Apr 188 82 

1899-1900 05-Nov 18-Mar 133 80 

1900-1901 30-Oct 07-Apr 159 81 

1901-1902 30-Oct 21-Mar 142 84 

1902-1903 04-Oct 21-Mar 168 59 

1903-1904 10- Oct 20-Mar 161 81 

1904-1905 14-Oct 07-Mar 144 59 

1905-1906 09-Oct 14-Mar 156 73 

Mean     156 74 

 

Trends are similar for heavy rainy days, with that for Matopos still significantly decreasing (-

0.01 days decade -1; p=0.0000) (Table 4.11). Very heavy rainy days have increased 

insignificantly (0.0001 days decade -1; p = 0.455) at Plumtree, while both Bulawayo and 

Filabusi measured zero trends (p=0.587 and p=0.15 respectively) at p<0.05 (Table 4.11). 

Generally, the results indicate that the number of rainy days is decreasing in the catchment 

(Figure 4.4 & 4.5), which has important implications for soil and catchment hydrology, and 

consequently the duration of water availability to communities, wetlands and for agricultural 

production. The results are not dissimilar to those from neighbouring semi-arid Botswana 

where the number of rainy days has declined by an average of -1.31 days year -1 between 

1975 and 2005 (Batisani and Yarnal, 2010). Similar findings were also noted in Rwanda by 
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Muhire and Ahmed (2015) indicating a significant decrease in the number of rainy days over 

eastern and central plateau. 
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Figure 4.4: Number of rainy days of greater than 1mm day-1per station from 1960  to 2015 in Plumtree and 1920 to 2015 for Filabusi, Matopos, 

Mbalabala, and Bulawayo 
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Table 4.10: Number of rainy days per given class 

Station  

Number of rainy days 

(>1mm) 

Number of heavy 

rainy(>=10>30) 

Number of very heavy 

rainy days (>=30) 

  

65 

years Mean/season 

65 

years Mean/season 65 years Mean/season 

Bulawayo 4187 49 822 10 359 4 

Filabusi 4277 45 1322 14 266 3 

Matopos 3811 44 1197 14 384 5 

Plumtree 2399 45 821 15 235 4 

Mbalabala 4047 47 1323 15 407 4 

 

4.3.7 Onset and cessation of the rainy season 

Bulawayo rains are starting between the second and third dekad of October and second dekad 

of November, with cessation dates estimated on average in late March and the first dekad of 

April (Figure 4.6). The length of the rainy season in Bulawayo, ranged between 90 days 

(2006/07 season) and 208 days (1999/2000 season) (Figure 4.7a).  The longest rainy seasons 

coincided with La Niña events while the shortest seasons were associated with El Niño years. 

At Filabusi, onset dates were within the second and third dekad of October and the third 

dekad of November. Some exceptions are noted in the years 1935, 1974, 1992 and 1994, 

when onset dates occurred within the second and third dekad of December and were severe 

drought years associated with El Niño events (Figure 4.6). The length of the rainy season in 

Filabusi ranged from 94 days (1994/95 season) to 185 days (1955/56 season) (Figure 4.7c).  

At Matopos, the rain season starts within the second dekad of October and the second dekad 

of November, while cessation dates varied from the third dekad of February to first dekad of 

April (Figure 4.6). The length of the rainy season for Matopos ranged from 61 days 

(2011/2012 season) to 201 days (1976/77 season) (Figure 4.7b). Mbalabala and Plumtree 
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have similar onset dates estimated in the second and third dekad of October and the third 

dekad of November, while cessation dates fell between the third dekad of February and third 

dekad of April (Figure 4.6).  

 

Table 4.11: Mann-Kendall trend test for rainy days at 5% level of significance 

Station  >=1mm rainy day 

>=10>30mm     

heavy rainy day 

>=30 mm  

very heavy rainy days 

  Kendall tau P-value Kendall tau P-value Kendall tau P-value 

Bulawayo -0.124 0.096 -0.069 0.363 -0.042 0.587 

Filabusi 0.099 0.158 0.089 0.211 -0.107 0.15 

Matopos -0.222 0.003* -0.278 0.000* -0.159 0.041* 

Mbalabala -0.034 0.652 -0.056 0.456 -0.159 0.038* 

Plumtree -0.076 0.433 -0.024 0.811 0.075 0.455 

*Significant at 5% significant level 

 

 

The Mann-Kendall trend test for the length of the rainy season for all stations significantly 

decreased at p<0.05, implying that the catchment is experiencing shorter rainy seasons than 

before. However, a combination of reduced rainy days and shortened rainy seasons suggests a 

drier season of short duration which is detrimental to crop growth and water availability for 

livestock and general ecosystem functioning. Such short, dry rainy seasons has caused 

widespread crop failures in southern Africa, particularly semi-arid regions such as the 

Mzingwane catchment.  Previous studies have also raised concern for such long intra-season 

dry spells in parts of southern Africa (e.g. Cook et al., 2004; Usman and Reason, 2004). The 

inter-seasonal dry spells seem linked to the northward shift and the weakening of the ITCZ 

over southern Africa (Cook et al., 2004). It has been established that the dry spells frequency 
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over southern Africa is often highest during the ENSO events, associated with the shift in the 

location of tropical temperate trough systems central to rain production (Usman and Reason, 

2004). Similarly, the results of this study also noted that about half of the rainy season 

experiences dry spells. 

 

The Zimbabwean results indicate a major shift in the rainy season onset dates from October 

(1999 to 2015) to late November and in some instances even into the third dekad of 

December (2012 to 2015). These results are consistent with the IPCC climate change 

projections for southern Africa, which postulate a decline in rainfall and a decrease in the 

number of rainy days.  

 

4.3.8 Rainfall variability  

Different indices are used to assess rainfall variability in the Mzingwane catchment. The 

Coefficient of Variation (CV) was computed using monthly rainfall data per station and the 

results for all the stations are higher than 30% (Table 4.13), suggesting large temporal and 

spatial variation in rainfall amount and distribution.  A number of previous studies have 

reported similar high variability during the rainy season in southern Africa (e.g. Cook et al., 

2004; Reason et al., 2005; Reason and Jagadheesha, 2005; Tadross et al., 2009; Batisani and 

Yarnal, 2010; Muchuru et al., 2016 ).  

 

The Precipitation Concentration Index (PCI) is a powerful indicator of the temporal 

distribution of precipitation over time, which is applied to the Mzingwane catchment.  The 

summer PCI for all stations ranged between 10 and 15 (mean = 10), indicating strong 

seasonality in rainfall distribution (Figure 4.8). During autumn, the PCI ranged between 13 

and 18, with a mean value of 15.5 while during spring it ranged from 13 to 19, again 
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indicating strong rainfall seasonality.  In winter the PCI varied widely with some years 

having values of over 25, suggesting substantial variability and that rainfall is largely 

concentrated during a few months of the year (Figure 4.8). The seasons with the highest 

rainfall had the lowest PCI values and these results correspond to those by Ngongondo et al. 

(2011) and Nsubuga et al. (2014) who reported that stations with highest mean rainfall have 

the lowest PCI values, while high PCI values indicated higher variability in rainfall. The PCI 

trends for Filabusi (0.0227), Bulawayo (0.005), Gwanda (0.010) and Plumtree (0.017) show 

an overall positive trend, while that for Matopos decreased at a magnitude of -0.017 for the 

full time series. Such predominantly increasing trends in PCI indicate a more concentrated 

rainfall.  
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Figure 4.5: Seasonal Precipitation concentration Index for Mzingwane for 1950-2015
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Figure 4.6: Time series of a number of rainy days in a given class for which rainy (≥ 1mm day-1), heavy rainy (≥10>30 day-1  ) and (≥30mm day-

1 : (a) Bulawayo, (b) Filabusi, (c) Matopos, (d) Mbalabala and (e) Plumtree
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Figure 4.7: Estimated onset dates per station from dekad 24 to dekad 36 for the period 

between 1930 and 2015 for Bulawayo, Filabusi, Matopos and Mbalabala while Plumtree was 

analysed from 1960 to 2015. 

 

4.3.9 Rainfall anomalies based on the SPI 

The 1-month SPI is used to analyse monthly rainfall anomalies and results indicate that the 

Bulawayo rainy seasons are moderately wet, with occasional years of very wet conditions in 

1952, 1978, 2000, 2008 and 2014, which coincided with the ENSO La Niña phase. Dry 

season months (May to September) recorded moderate dryness with some years experiencing 

near normal conditions (Figure 4.10a). At Filabusi, the rainy season was predominantly 

within moderate wetness, but some years recording very wet to extremely wet conditions 

(1954, 1958, 1967, 1972, 1981, 1996 and 2000) (Figure 4.10b). 
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Figure 4.8: Length of the rainy season per given station for the period between 1930 and 

2015 for Bulawayo, Filabusi, Matopos and Mbalabala while Plumtree was analysed from 

1960 to 2015.
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Table 4.12: Rainy season coefficient of variation (CV) 

Station  

Rainy season rainfall 

amount (mm) CV 

Bulawayo 538.40 0.83 

Filabusi 493.39 0.86 

Gwanda 458.08 0.89 

Kezi 468.07 0.89 

Matopos 533.90 0.81 

West Nicholson 421.59 0.94 

Masvingo 525.50 0.96 

Chiredzi 548.33 0.97 

Mberengwa 300.70 0.93 

Plumtree 469.80 0.97 

Beitbridge 500.71 1.00 

 

 

Gwanda measured moderately to very wet conditions during the rainy season months 

(October-March), and dry months being near normal (Figure 4.10i). Beitbridge recorded wet 

conditions for the rainy months while the dry season ranged from moderately to severely dry. 

Plumtree rainfall anomalies were unusual, with the rainy months recording SPI values of -1 

to -1.49 (moderate dryness), while the dry months measured moderate to very wet conditions 

(Figure 4.10f). Kezi displays similar trends to Bulawayo (Figure 4.10c).The 1-month SPI for 

West Nicholson indicates that the rainy season months received moderate to normal wetness 

and isolated very wet conditions, notably in 1952, 1958, 1967, 1972, 1978, 2000 and 2014. In 

contrast, the dry season months became very dry with most years recording SPI values of 

between -1 and -2 (Figure 4.10d). Chiredzi measured normal rainfall for all rainy season 

months in the series, while the dry months had moderate to very wet conditions (Figure 

4.10h).  In Masvingo, the SPI values indicate normal to moderate wetness for the wet season, 

with isolated very wet conditions for January and February in the years 1954, 1964, 1978, 

1996 and year 2000.  The dry months recorded moderate to very dry conditions for the entire 
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series (Figure 4.10g). The results confirm that rainfall anomalies are closely associated with 

ENSO phases, with dry conditions (drought) coinciding with El Niño events and wet 

conditions with La Niña. Strong relationships between rainfall and ENSO indices have also 

been identified for historical times in Zimbabwe, before the 20th century (Therrell et al., 

2006).  
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Figure 4.9: Station based PCI time series from the period 1950 to 2015.
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Figure 4.10: SPI-3months per station: Bulawayo (a), Filabusi (b), Kezi (c), West Nicholson 

(d), Beitbridge (e), Plumtree (f), Masvingo (g), Chiredzi (h), and Gwanda (i). 
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Figure 4.10: (Continued) 
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Figure 4.10: (Continued) 
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 4.4 Conclusions 

The study quantified rainfall variability and changes in rain season characteristics in 

Mzingwane catchment. The results of the study show that mean annual rainfall has not 

changed from historic (1896-1906) to more recent times (1950-2015), but the number of 

rainy days (>=1mm) has decreased by almost 34%. In addition, the duration of the rain 

season has shortened, with longer intra-season dry spells which are detrimental to crop 

growth. The period of 1950 to 2015 experienced a decrease in the number of rainy days, 

which could be attributed to global warming and related to climate variation. Onset and 

cessation results indicate a shift in season onset from first and second dekad of October to the 

third dekad of November, and in some cases encroaches into the second dekad of December. 

Cessation dates have shifted into the second dekad of April. Thus, a combination of a reduced 

number of rainy days and shortened rainy season has substantial hydrologic implications for 

most natural ecosystems such as wetlands. The results based on variability indices indicate 

strong rainfall variability both in space and time. The seasonal PCI indicates seasonality for 

summer and autumn seasons while winter rainfall substantially varied. Based on the SPI 

results, it is apparent that ENSO events play a profound role in spatio-temporal rainfall 

variability. Notably, extreme events seem to be occurring more frequently in the current 

century than during the 20th century. Generally, the results for rain season characteristics 

show that this season is no longer reliable as a rainfall (water) producer, and as such poses 

high uncertainties to farmers which could be addressed through the provision of timely 

seasonal weather forecasts, which would then enable more effective planning and the 

organization of supplementary water supply through irrigation systems.  
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CHAPTER 5: QUANTIFYING SPATIO-TEMPORAL CHANGES OF NESTED   

WETLANDS IN THE SHASHE SUB-CATCHMENT, ZIMBABWE 

 

Abstract 

Wetlands are diverse and fragile ecosystems which are susceptible to anthropogenic and 

natural perturbations. Globally, wetlands provide several ecosystem goods and services, yet 

they are increasingly faced with numerous threats from human activities leading to their 

modification and loss. This chapter aims to assess changes in wetland spatial distribution and 

areal extent in the Shashe sub-catchment, Zimbabwe, over time. This was achieved through 

using archival Landsat imagery and Random Forest Image Classification Algorithm using R 

software.  This chapter compares advanced machine learning random forest classifier with 

traditional supervised Maximum Likelihood algorithm. The results for land change analysis 

show a decline in woodland and wetland cover, which may be due to both human and natural 

factors. Major conversions are from wetland cover to crop fields, suggesting agricultural 

encroachment onto wetland areas. Wetland area thus significantly decreased by 6% (236.52 

ha) in the last 30 years (p<0.05). CA-Markov model results for the years 2025, 2035 and 

2045 predicted an overall increase in crop fields at the expense of woodland and wetland 

areas. In particular, the total area of wetlands is expected to shrink by 46% by the year 2045 

(72.67 hectares). Quantifying such wetland changes over time is important, not only for pure-

scientific purposes, but also for appropriately developing locally relevant and sustainable 

management strategies. 

 

Key words: Wetland area, change detection, future prediction, random forest, land 

change analysis 

 
3This chapter is based on: Sibanda S, Grab S.W and Ahmed F. (In Preparation). Quantifying spatio-

temporal changes of nested   wetlands in the Shashe sub-catchment, Zimbabwe. 
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5.1 Introduction 

Wetlands are diverse and fragile ecosystems susceptible to anthropogenic and natural 

perturbations (Mitsch and Gosselink, 2000). Globally, wetlands account for about 6.2% of the 

Earth’s land (Ellery et al., 2010) and contain 12 % of the global carbon pool (Ferrati and 

Canziani, 2005). They are also recognised as important ecosystems supporting endemic and 

rare species of flora and fauna. Africa is endowed with wetlands of great importance which 

are amongst the most diverse in the world (Kabii, 1996), hosting some 2000 fish species, 

aquatic mammals such as dolphins, insects, reptiles and amphibians (Kabii, 1996). Wetlands 

provide essential ecosystem functions that range from flood attenuation, stream flow 

regulation, sediment trapping, phosphates and nitrogen removal, toxicant cleansing as well as 

carbon storage (Mitsch and Gossalink 2000; Ellery et al., 2010). Economically, wetlands 

offer food in the form of fish, water, natural gas, lumber and forest resources, tourism and 

raw materials for art and craft (Chaikumbung et al., 2016). 

 

Despite these vital services and products, wetlands are faced with numerous threats from 

human activities, resulting in their shrinking, modification and overall degradation (Schuijt, 

2002; Jogo and Hassan, 2010). Empirical evidence suggests a 60% loss in the global wetland 

area in the last 100 years (Burkett and Kusler, 2000; Junk et al., 2013). In Africa, 50% of  

wetland areas have been degraded owing to human interference, particularly in countries such 

as South Africa, Mozambique, Zimbabwe, Malawi and Guinea (Wetland International, 2009). 

Consequently, wetland loss has increasingly become a major threat to biological diversity 

emanating from human–environment interactions such as agriculture, urbanisation, damming, 

road construction, and human settlement, among other activities (Ellery et al., 2016). The 

situation is further compounded by accelerating changing climatic conditions which are likely 

to alter catchment hydrology, leading to the modification of wetland ecosystems (Finlayson, 
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2016). There is a growing consensus that climate change is an additional stressor, likely to 

modify wetland ecosystems, which not only includes the reduction of wetland area, but also 

changes in structure, vegetation cover, inundation patterns, habitat fragmentation, and 

reduced water levels (Erwin, 2009; Lee et al., 2015a). 

 

In part as a consequence to wetland losses, African greenhouse gas emissions are said to be 

increasing due to reduced carbon sinks on the continent. Emissions from African wetlands are 

reported d to have increased by 20% since 1990, amounting to 47-57 million tonnes of carbon 

dioxide per year (Wetland international, 2009). In Sub-Saharan Africa (excluding South 

Africa), greenhouse gas emissions resulting from the loss of organic wetland soils are equal 

to 25% of the fossil fuel emissions in the region (Wetland International, 2009). Under these 

circumstances, sustainable protection and management will require effective monitoring of 

wetland changes over time to ensure continued ecosystem provision. Remote sensing 

technology offers ideal repetitive and spatially explicit data, which is cost effective in 

mapping and monitoring inaccessible wetland ecosystems (Adam et al., 2009; Ozesmi and 

Bauer, 2014). 

 

Based on its versatility, a number of global studies have employed the efficacy of remote 

sensing in wetland mapping, monitoring and change detection (Davranche et al., 2010a; 

Szantoi et al., 2013; Chen et al., 2014; Singh et al., 2014; Vanderlinder et al., 2014; Dronova 

et al., 2015; Han et al., 2015; Lee et al., 2015; Feng et al., 2016b; Li et al., 2016; Liu et al., 

2016; Haque and Basak, 2017). Small wetlands in Kenya and Tanzania were also mapped 

using remote sensing by (Mwita et al., 2013). Remote sensing based wetland inventory 

mapping and change analysis were applied by Rebelo et al., (2009). Employing 250 m 

resolution MODIS time series data, Landmann et al. (2010) achieved high accuracy mapping 
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of wetlands in West Africa. Some studies have used remote sensing techniques to detect and 

evaluate changes in wetland features over time (Haack, 1996; Kashaigili et al., 2006; 

Munyati, 2000; Tolessa et al., 2017). 

 

In the context of Zimbabwe, wetland ecosystems are a critical source of water for both 

domestic and wild animals, particularly during the dry season (Chikodzi and Mutowo, 2014). 

Communities harvest raw materials such as reeds, grass and wood for crafting and carving 

(Ndhlovu, 2009). Some of the wetlands are also culturally preserved as sacred places of 

worship.  

 

Previous wetland studies in Zimbabwe include a study by Marambanyika et al. (2016) who 

assessed wetland utilisation patterns in semi-arid communal areas of Zimbabwe and noted an 

increase in the cultivation and general dependency on wetland ecosystems. While public 

perceptions regarding vulnerability of wetlands to climate change were studied by (Ndiweni 

and Gwate, 2014). The role of wetlands in flood mitigation was confirmed by (Murwira et 

al., 2004) and they noted a significant role played by wetlands in regulating river flow within 

the Zambezi catchment. 

 

Relatively few studies have attempted to apply remote sensing technology to wetland 

management in Zimbabwe. Landsat and SPOT imagery was used by (Mhlanga et al., 2014a) 

to map the spatial extent of Harare wetlands and observed a shrinking pattern over years due 

to urbanisation. In an earlier study, (Msipa, 2009) analysed the impact of land use/ cover 

changes on urban wetland in Harare and reported an increase in settlement and agriculture 

activities which contributed to urban wetland size shrinkage. A similar study was carried out 

by Ndhlovu (2009) at Intunjambila wetland and recorded a decline in wetland health owing to 
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human interference. Although wetlands have previously been mapped using remote sensing 

in Zimbabwe, such work has not yet attempted to establish wetland changes over time and 

future LU/LC prediction, using such technology – a research gap the study aims to address.  

The chapter compares the performance of advanced machine learning random forest classifier 

with that of the traditional maximum likelihood for mapping LU/LC change in a wetland 

ecosystem. Therefore, the aim of the chapter was to use historic and current Landsat data to 

establish changes in wetland area over time and to correlate changes in wetland size to 

population and climate trends in Shashe sub-catchment. Wetland change detection was done 

only for Shashe sub-catchment instead of the whole Mzingwane catchment mainly because 

wetlands are mostly located along the mountainous region of Shashe sub-catchment.  It is 

also within the scope of the study to predict future LU/LC based on past changes. Such 

analysis may provide valuable information for future wetland utilisation and management. 

 

5.2 Methodology 

5.2.1 Study area  

The Shashe sub-catchment is one of four sub-catchments of the Mzingwane catchment and 

extends from 27o to 29oE and 20o to 22oS. It has a surface area of 18991km2. The mean 

annual rainfall ranges between 450mm and 600mm per annum and the rain season begins in 

October and ends in April (Mugandani et al., 2012). Soils in the Shashe sub-catchment are 

generally shallow sandy loam soils which are derived from gneiss and kaolinitic sands and 

granitic rocks, as well as some isolated moderate clay patches formed from greenstone belts 

(Ashton et al., 2001).The southern part consists of Limpopo belt gneisses while the far south 

is composed of Karoo basalts. Land uses to the north of the sub-catchment are mainly 

commercial, private and resettled farmlands focusing on irrigated crop production and 

commercial livestock rearing, while the southern part consists of communal settlements and 
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agriculture limited to small livestock production. The Shashe sub-catchment is rich in both 

wild flora and fauna, specifically in the more protected Matopos National park which covers 

an area of about 44 500 hectares. 

 

 

Figure 5.1: Shashe sub-catchment with gauging stations and wetland location 

 

5.2.2 Remote sensed data  

Three scenes (170/75; 171/74 and 171/75) for June Landsat TM and OLI imagery were 

obtained from the USGS website  (Table 5.1) and were partially pre-processed, as such there 

was no need for image registration. 30m Digital Elevation Model (DEM) data from Shuttle 

Radar Topography Mission (SRTM) were sourced to aid classification, particularly because 

wetlands are usually located in low lying areas; therefore, a slope gradient image was created 
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from the DEM data. Ancillary data consist of soil maps, hydrologic maps, topographic maps 

and land use maps. All data were projected to the UTM zone 35S Datum WGS84, in meters. 

 

Table 5.1: Attributes of remote sensing imagery used in this study 

Year Date Sensor type 

Spatial resolution 

(M) 

1984 29/06/1984 MSS 60 

1995 21/06/1995 TM 30 

2005 07/06/2005 TM 30 

2015 19/06/2015 OLI 30 

 

 

5.2.3 Image pre-processing 

Landsat time series data for 1984, 1995, 2005 and 2015 were radiometrically corrected in 

ENVI 5.3 software (Exelis Visual Information Solutions, 2016). All images were calibrated 

using the Dark pixel subtraction algorithm (Hadjimitsis et al. 2010) for atmospheric 

correction. This was followed by the conversion of Digital Numbers (DN) to at-satellite 

reflectance using a radiometric calibration module in ENVI 5.3. Atmospheric correction 

employed the Fast-Line-of-sight Atmospheric Analysis of Spectral Hyper-cubes (FLAASH) 

model as was applied by Feng et al. (2016b). Because the Shashe sub-catchment is located in 

a mountainous region, the topographic correction was inevitable as all images were co-

registered to each other using an error of less than 1 pixel. Mosaicking of the three scenes 

was then done after pre-processing using seamless Mosaic module in ENVI. To correct 

sensor differences, Landsat MSS and TM were resampled to Landsat 8 (OLI) 30m resolution 

using the nearest neighbour resampling methods, as was applied by Han et al., (2015). 
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A total of 617polygon training sites were randomly collected from the field (300) and from 

google earth (317) using a stratified random sampling methodology which aided the 

separation of wetland cover types and non-wetland surfaces. Land cover class types were 

assigned in the field with other detailed class characteristics and aerial photographs were used 

aid the classification.  

 

5.2.4 Image classification  

Landsat images were analysed using supervised Random Forest (RF) algorithm embedded 

within the RStoolbox package in R program. Random Forest is a non-parametric machine 

learning algorithm which uses an ensemble of decision trees, randomly sampled subsets of 

the training data. Studies have shown that combinations of randomised multiple trees tend to 

improve classification accuracy (Jhonnerie et al., 2015). Random classification is based on 

ntree and mtry parameters which require optimisation for the best and accurate classification 

results. In this regard, prior to the classification process, the grid-search approach in caret, 

gbm and randomForest packages were used to tune random forest parameters in R software 

based on stochastic gradient boosting. There are two commonly used ensemble methods for 

random forest classifier, the boosting and bagging (Breiman, 1996). This study applied the 

superclass function embedded in the RStoolbox which ensured non-overlap between training 

and validation data, for the purposes of avoiding bias performance estimates. The training 

data were split through the trainPartition function which divides training data into training 

polygons and validation polygons which are extracted from the image using the PredValue 

function. Random forest classifiers have been scientifically proven to outperform single 

algorithms and are robust against overfitting and can handle high dimensional data with great 

accuracy (Breiman, 2001). Tree based learning algorithms also provide predictive models 

with high accuracy (Nan Liu and Wang, 2010).  
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  Maximum likelihood classifier is a parametric classification algorithm, which is widely used 

for LU/LC classification. It is based on a principle that the cells in each class sample of 

multidimensional space are normally distributed and also based on the Baye’s theorem for 

decision making (Foody et al., 1992). Maximum likelihood decision rule is based on 

probability, the probability of a pixel belonging to a defined class is calculated and the pixel 

is assigned the class with the highest probability.  

 

Post classification is an essential process for refining the classified image and reduces errors 

that may arise from similarities in spectral responses of certain classes. In this regard, 

majority filter analysis was employed for further refinement of the classification and used 90 

by 90 pixel size as the minimum mapping unit which is equivalent to a hectare. 

 

5.2.5 Wetland change analysis 

Changes in wetland over time were analysed through Change Vector Analysis (CVA). To 

achieve this, classified land cover maps were masked in R to show wetland cover only, and 

subsequently vectorised for change analysis. Vector maps were then used to compute changes 

in areal extent over time. 

 

5.2.6 Classification accuracy assessment 

 Accuracy assessment employed both qualitative and quantitative approaches. A confusion 

matrix proposed by Congalton, (1991) was used as a quantitative approach. A total of 150 

ground truthing training sites were obtained from the field in 2015 using a hand held 

Geographic Positioning System (GPS) for the validation of the 2015 imagery. For historic 

images for the years 1984, 1995 and 2005, accuracy assessment used historic land use maps 

for the corresponding years and was further aided by aerial photographs for 1975 and 1995, 
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as well as prior knowledge of the area. The confusion matrix was used to calculate Kappa 

coefficient.  

 

5.2.7 Future prediction of LU/LC changes using CA-Markov chain model 

Having classified LULC for the years 1984, 1995, 2005 and 2015, post classification land 

cover transitions and future predictions were analysed using coupled Cellular Automata- 

Markov model within TerrSet/IDRISI Geospatial Monitoring  and Modelling software, 

version 18.3 (Clark Labs, 2017). The Markov model considers the past land use/covers to 

predict how each LU/LC will change in future. It produces transition probability matrix, 

which shows the probability of each LU/LC to change to any other cover type given and is 

obtained by cross tabulation of the earlier and later LU/LC maps. A transition area map is 

also produced, and it contains the number of pixels that are likely to change to another class 

during the prediction period. Markov chain is acknowledged for its ability to quantify the 

states of conversion over time; however, it is unable to show the spatial distribution of the 

changes.  Thus, CA provided the spatial distribution and spatial transitions for the projected 

LULCs (Subedi et al., 2013). The change analysis module in Land Use Change Modeler 

module in IDRISI, allowed for the production of gains, losses, net change and transitions, 

both in graphs and maps for the earlier and latter maps, while the change abstraction tools 

were used to uncover complex trends in the transitions. This was followed by modelling the 

potential to change using past changes to develop a mathematical model and a GIS data layer 

of transition potential (Sang et al., 2011). Each transition was modelled through the Multi-

layer Perceptron neural network which produced a potential map for each transition. The CA-

Markov model was then used to model LULC changes based on 1984 and 2015. This coupled 

model provided a robust combination of spatio-temporal dynamic modelling and prediction 

which usually results in good simulations of LULC (Yang et al., 2014). The generated 



99 
 

transition maps were then used to predict LULC for 2025, 2035 and 2050 based on the main 

transitions between 1984 and 2015 LULC.  The 2015 LULC map was used as a base map for 

validation and the Kappa statistic was applied in the evaluation of the accuracy of the 

forecasted 2015 LULC map in comparison to the actual 2015 LULC map. A comparison of 

the random forest classified 2015 and projected 2015 LU/LC map were used to validate the 

model (Figure 5.13) employing the VALIDATE function in IDRISI Andes software. Kappa 

statistics (k) for similarity analysis was used to evaluate the agreement between the classified 

2015 LULC map and the simulated 2015 map. 

 

5.2.8 Factors influencing wetland area change 

Multi linear regression model in R software version 3.3.3 was used to establish a relationship 

between wetland area and explanatory variables such as rainfall, temperature trends obtained 

from chapter 3 and 4 were used while  population data for the periods 1984, 1995, 2005 and 

2015  were  sourced from Zimbabwe Statistics Office. 
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Figure 5.2: Workflow of the image analysis process starting with pre-processing, 

classification, post classification and future land cover prediction 
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5.3 Results and Discussion 

5.3.1 Parameter optimisation 

Ntree and tree depth were tested from 50-1500 at combinations of depth (1, 5 and 9) and (1, 2 

3) using the boosting approach. RF tuning at tree depth 1, 3 and 9 produced an overall 

accuracy of 84.6% (Figure 5.3a. As the number of trees increased, the rate of accuracy 

decreased. At depth 1 the maximum accuracy was around 80.5% from 50 trees. When the 

number of trees increased to 1500 at the same depth, accuracy dropped to 77.2% and this 

pattern was noted for all depths (Figure 5.3a). Meanwhile, a combination of 1, 2, 3 depths 

using the boosting approach produced much higher results with an average accuracy of 95% 

and a Kappa coefficient of 0.94 (Figure 5.3b). The highest accuracy of 95% and Kappa (0.94) 

was obtained from 150 trees at a depth value of 1 (Table 5.2), while the lowest accuracy of 

77% was produced from 1500 trees. The best parameters (mtry=1 and ntree=150) were used 

for supervised image classification using RF algorithm in “RStoolbox package” embedded in 

R software.  
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Figure 5.3a: RF parameter optimisation using boosting approach 

 

 

Figure 5.3b: Classification accuracy assessment using the Kappa coefficient at low depth of 

1, 2 and 3. 
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Table 5.2: Classification accuracy optimisation at depths 1, 2 and 3 

Interaction depth n.trees Accuracy Kappa 

1 50 0.93 0.91 

1 100 0.95 0.92 

1 150 0.95 0.94 

2 50 0.93 0.92 

2 100 0.94 0.93 

2 150 0.95 0.94 

3 50 0.93 0.92 

3 100 0.92 0.91 

3 150 0.93 0.91 

 

These results confirm the importance of parameter optimisation and the general influence of 

ntree and mtry changes on the overall accuracy. They are in agreement with previous studies 

(Adam et al., 2014a; Grimm et al., 2008) which reported that the default mtry produce the 

best results. 

 

5.3.2 Classification accuracy 

Accuracy assessment for random forest classifier for the years 1984, 1995, 2005 and 2015 

were relatively higher than those for maximum likelihood (Table 5.3). The average accuracy 

for RF is 85.7% and 78.7% for maximum likelihood algorithm. Random forest outperformed 

maximum likelihood classification by 7.05% accuracy. Minor grassland cover was 

misclassified as crop field because most of the crop field had been left fallow for more than 

five years owing to recurrent droughts, hence successive grass species have emerged within 

crop fields. Visual analysis of the land cover maps was done to evaluate whether the 

classification was consistent with prior knowledge of the area and the results from random 

forest classifier were satisfactory. 
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Table 5.3: Accuracy and Kappa coefficient computed from Random Forest (RF) and 

Maximum Likelihood (ML)  

Year RF ML 

 Overall Accuracy (%)                Kappa Overall Accuracy 

(%) 

Kappa 

1984 84.3 0.81 78 0.76 

1995 84.2 0.82 79.2 0.77 

2005 90.0 0.89 79.7 0.77 

2015 85.3 0.83 78 0.76 

 

5.3.3 Classification results 

Figure 5.4 shows land use/cover classification maps. The Shashe sub-catchment was 

classified into eight major land classes: water, rock outcrop, mountain vegetation, wetland, 

bare crop field, riverine vegetation, woodland and grassland. Figure 5.5 displays land change 

modeler results in terms of losses and gains. The net change results (Figure 5.6) show that 

grassland, woodland, mountain vegetation and wetland covers were reduced in size during 

1984-2015, losing by -4%, -5.2%,-2% and -6% change respectively. Meanwhile, riverine 

vegetation, crop field and rock outcrop gained by about 0.5%, 4% and 10.2% respectively. 

Transition results indicate a considerable change from woodland to crop fields for 

agricultural production. Similar findings were echoed by (Mwita et al., 2013) who also 

observed a significant increase in cropping area due to population demand for land and food.  
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Random forest algorithm     Maximum Likelihood  
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Figure 5.4: Comparison of LU/LC maps produced using random forest and Maximum 

likelihood classification algorithms 

 

 

 

Figure 5.5: LU/LC percentage gains and losses by individual land cover classchanges  

 

 

 

Figure 5.6: Net percentage change among land cover classes for the period between 1984 and 

2015.  Positive change means a percentage gain while negative means a percentage loss 
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5.3.4 Wetland area change between 1984 and 2015 

Figure 5.8 displays spatial distribution of wetland cover over time. The results show a decline 

in wetland areal extent between 1984 and 2015 by 237.12 hectares. The wetland areal extent 

for the years 1984, 1995, 2005 and 2015 is 393.12, 397.80, 272.25 and 156 hectares 

respectively. The period between 1984 and 1995 saw an increase of 4.68 hectares (ha) in 

wetland area (Table 5.4). A dramatic wetland area decline was noted between 1995 and 2005, 

losing about 125.55 ha. This could be attributed to documented El Niño Southern Oscillation 

droughts of 1995, 1998, 2002 and 2005 (Sithole and Murewi, 2009). The results show a 

further decline in wetland area between 2005 and 2015 (by 115.65 ha), probably because of 

the intense El Niño droughts experienced in the catchment for five consecutive years (Sango 

and Godwell, 2015). From the wetland vector maps (Figure 5.8), there is a statistically 

significant decline in wetland area over the past 31 years at p<0.05 (Figure 5.10). Land 

change analysis reveals that changes in the crop field and rock out crop and soil exposure 

contributed more to changes in wetland area owing to the influence of human activities and 

climate variations (Figure 5.9).  

 

Table 5.4: Wetland area coverage between 1984 and 2015 

Year Wetland area(ha) Change in area (ha) 

1984 393.12 

 1995 397.8 4.68 

2005 272.25 -125.55 

2015 156.6 -236.52 

2025 133.11 -23.49 

2035 129.12 -3.99 

2045 83.93 -45.19 
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Figure 5.7: Changes in areal coverage of the different land covers  

 

 

Figure 5.8: Spatial distribution of wetlands for the years 1984, 1995, 2005, and 2015 
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Figure 5.9:  Contributions to wetland changes by other LU/LCs for the period between 1984 

and 2015 

 

 

Figure 5.10: Wetland area coverage in hectares for the years 1984, 1995, 2005, and 2015 

 

5.3.5 Modelling land use/ land cover changes  

The transition matrix (Table 5.5) and change transition map (Figure 5.11) were generated and 

used as inputs for future modelling of the LULC changes for the years 2025, 2035 and 2045. 

The Markov chain modelling was aided by influential variables such as rainfall for 1984 and 

2015, Digital Elevation Model (DEM), elevation and population growth. Trends in the 

chosen variables are used by the model to predict future changes.  From the transition 
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probability maps, major changes involved the transformation of woodland and wetland to 

cropfield, which suggest agricultural disturbance and were considered for the prediction of 

future changes (Figure 5.11). 

 

5.3.6 Future land use/ cover change prediction results 

Figure 5.12 shows the predicted land use/ land cover changes for the next 30 years. From the 

three predictions, it is apparent that recent past and present trends in LU/LC changes are 

likely to continue into the future (2045). The 2025 model predictions show that wetland and 

woodland land types will decrease by 15% and 11% respectively. Conversely, an increase is 

observed for crop fields (7%) and mountain vegetation (6%). However, water, riverine 

vegetation, and grassland land types remained unchanged (Table 5.6). LULC predictions for 

2035 projected an increase in the cropfield land type (36%) and grassland (2%) while a 

decrease is expected for mountain vegetation (-12%), wetland (-3%) and woodland (-47%). 

Water, rock outcrop and riverine areal coverage will remain unchanged. The 2045 predictions 

suggest that water, rock outcrop and riverine vegetation continue unchanged while woodland 

is projected to gain 23% of the land area and mountain vegetation to increase by 15%. Unlike 

the 2035 prediction period, cropfield coverage is expected to experience -17% decrease in the 

land area, wetland land type will continue to decrease (-35%). Overall, the LU/LC prediction 

results suggest that crop fields will continue to expand in future while woodland and wetland 

areas shrink. 
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Table 5.5: Transition probability matrix for 2025 to 2045 

  water cropfield 

Mt 

vegetation wetland 

riverine 

vegetation 

rock 

outcrop woodland grassland 

water 0.48 0.25 0.24 0.02 0.02 0.00 0.00 0.00 

cropfield 0.03 0.43 0.09 0.05 0.01 0.11 0.23 0.04 

Mt 

vegetation 0.08 0.19 0.51 0.04 0.02 0.00 0.11 0.04 

wetland 0.00 0.28 0.05 0.19 0.14 0.11 0.17 0.06 

riverine  0.55 0.29 0.05 0.02 0.07 0.02 0.00 0.00 

rock  0.07 0.26 0.00 0.05 0.19 0.33 0.09 0.00 

woodland 0.00 0.17 0.20 0.16 0.02 0.06 0.30 0.08 

grassland 0.08 0.34 0.28 0.08 0.04 0.00 0.11 0.08 

 

 

 

Table 5.6: Predicted LU/LC change for the years 2025, 2035, and 2045 

  Percentage Change  

LULC type 2025 2035 2045 

water 0 0 0 

cropfield 7 36 -17 

Mt vegetation 6 -12 15 

wetland -15 -3 35 

riverine vegetation 0 0 0 

rock outcrop 0 0 0 

woodland -11 -47 23 

grassland 0 3 12 
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Figure 5.11: Potential changes in land cover between 1984 and 2015 

 

5.3.7 Validation of the model results 

A comparison of the random forest classified 2015 and projected 2015 LU/LC map were used 

to validate the model (Figure 5.13) employing the VALIDATE function in IDRISI Andes 

software. Kappa statistics (k) for similarity analysis was used to evaluate the agreement 

between the classified 2015 LULC map and the simulated 2015 map. Following k statistics 

were obtained; kstandard =84.12%, kno=87.72% and klocality=85.30. kno is used to evaluate the 

overall accuracy of the model while klocality indicates the model’s ability to identify correct 

locations. The kstandard statistic combines location error and quantification error (Hagen, 

2002). These results indicate that the coupled CA-Markov model was able to simulate well 

future LULC changes within the sub-catchment. 

 



113 
 

5.3.8 Future wetland area change 

CA-Markov model predictions suggest a decrease in wetland area of 23.49 hectares (ha) by 

2025, resulting in a total area of 133.11ha, down from 156.6 in 2015 ( Figure . In 2035, 

wetland area is expected to continue decreasing, this time with a very low percentage of 3%, 

amounting to a total area of 129.2 ha by 2035. The 2045 simulation results demonstrate a 

further shrink in wetland area by a substantial percentage (35%), leaving the total wetland 

area at 83.92 ha. Statistical analysis of wetland loss shows that by 2045, the sub-catchment 

will have lost a total of 309.2 ha, which is equivalent to 79%. Such substantial wetland area 

loss has adverse implications on socio-economic and natural environments (e.g. wetlands). 
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Figure 5.12: Predicted LU/LC for the period 2025, 2035 and 2045  
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Figure 5.13: A comparison of the classified and projected 2015 LU/LC maps 

 

 

 

Figure 5.14: Historic, current and future wetland area changes 

 

5.4 Factors influencing wetland area change 

Population is one of the variables that influence wetland area. Table 5.7 shows that 

population had a strong negative correlation with wetland area. This means that the size of 

wetland reduced as the population increased. Mean temperature also strongly correlated with 
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wetland area (R2=-0.92) while rainfall measured a strong positive correlation with wetland 

area (Figure 5.14). 

 

Table 5.7: Variable changes over time 

Year Population 

Wetland 

Area(ha) Tmean 

Total Annual 

Rainfall 

1984 177,795 393.12 22.2 473.4 

1995 209,170 397.8 22.5 545.2 

2005 232,929 272.3 22.8 481.5 

2015 245,188 156.6 25.4 161.3 

 

 

5.5 Discussion 

5.5.1Trends in LULC 

The Shashe LULC trends showed that the area experienced notable transitions in three 

decades under study. Major land covers such as woodland, grassland, mountain vegetation 

and wetland shrunk in size during 1984-2015 periods. This could be attributed to an increase 

in population in the sub-catchment where population for 1984 was 177,795 and 245,188 for 

2015, amounting to an increase of 67393 (ZIMSTAT, 2016). Such an increase in the number 

of people could have instigated high demand for land resources resulting in unprecedented 

deforestation which reduced woodland and grassland cover (Ibarrola-Rivas et al., 2017). 

Another possible explanation could be the intensification and extensification of agriculture; 

this is much so because communities in Shashe sub-catchment rely on agriculture for 

livelihood hence the crop field cover gained 10.2% at the expense of other land covers such 

as wetland. Similar results were reported by Scharsich et al. (2017) who observed increase in 

common agricultural lands owing to a fast track land reform programme of the year 2000 in 

Matobo district. 
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Figure 5.14: Regression analysis results for factors influencing wetland change  
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The results showed that the wetland area significantly decreased at p < 0.05, although the 

period between 1984 -1995 recorded an increase of about 4.68 hectares, which could be 

attributed to good rainfall during that period. However, there are several drivers that could be 

used to explain or account for wetland loss and these can be grouped under climatic, 

demographic, economic and technological and political factors. Overall percentage drop in 

wetland area between 1984 and 2015 amount to 60.16% which is quite a substantial loss.  

 

Climate patterns could have contributed to wetland loss, not only through influencing water 

levels and fluctuations in the water table, but also through increasing water harvesting 

demand for both animals and human use during drought periods (Feng et al., 2012, 2016b). 

The Shashe sub-catchment has been experiencing a warming trend with a decreasing rainfall 

trend (Sibanda et al., 2017) (Table 5.5). Regressing wetland area and rainfall showed a 

significant correlation at p < 0.005 (Table 5.6). In this regard, variations in rainfall patterns 

coupled with prolonged El Niño Southern Oscillation related droughts could have jeopardised 

wetlands and made them more vulnerable to LULC changes. Naturally, wetland area will 

diminish during low rainfall periods, partly because of reduced runoff, and also due to the 

fact that wetlands remain the only source of water, and thus threatened with over harvesting/ 

water extraction. If such climate extremes recur more frequently, wetland ecosystems may 

eventually disappear (Change, 2013). Furthermore, climate variations will not only modify 

the wetland hydrology but may influence floral and faunal species. As observed by Ricaurte 

et al. (2017); Rodríguez et al. (2017), variations in climate variables have a propensity of 

shifting the distribution and abundance of wetland organisms. 

 

Economically, wetland area loss may arise from damming, diversions and irrigation activities 

(Verhoeven et al., 2006). In Zimbabwe for instance, a number of dams and irrigation systems 

https://www.livescience.com/topics/el-nino-la-nina/
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were constructed after independence under the community empowerment programme. This 

means that during low rainfall, and no flooding years, the dams capture most of the water 

leading to the shrinking of wetlands. In the context of Matobo district, people have always 

relied on these wetlands for both material and spiritual gains. People harvest goods and plant 

vegetables in and around the wetlands throughout the year to supply neighbouring towns like 

Bulawayo. As the economic meltdown intensifies in Zimbabwe, market gardening remains 

one of the available livelihood options for the unemployed, which further exacerbate pressure 

on wetlands. The preference to cultivate near and in the wetland is necessitated by the need 

for fertile soils and adequate soil moisture during dry periods. However, such activities do not 

only disturb the watershed, but also modify wetland vegetation and structure and in some 

instances can lead to the total disappearance of the wetland (Wagner et al., 2013). Such 

agricultural encroachment on wetlands result in wetland fragmentation which undoubtedly 

compromises overall wetland integrity (Madebwe and Madebwe, 2005; Marambanyika et al., 

2016). 

 

Population dynamics coupled with policies of land tenure are also important drivers of 

wetland change, as the population increases so do the demand for natural resources such as 

water and land (Madebwe and Madebwe, 2005). For example, following fast track land 

reform of the year 2000, the population of Shashe increased by approximately 38%, which 

subsequently increased the demand for land. The regression model for wetland area and 

population proved this true by having a coefficient of determination of 0.756 (Figure 5.10). 

 

5.5.2 Implications of future land use/ land cover changes on wetlands 

The study depicts the utility of remote sensing in monitoring wetland area under climatic 

change. It was from classified Landsat imagery that change analysis over time was performed 
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for 1984-2015. The CA-Markov model successfully predicted future LU/LC with overall 

Kappa coefficient of 87%.   

 

The shrinking of wetland area reported in this study is of great environmental concern and 

partly, and more attributed to increases in population, continuous LU/LC changes and climate 

change and variations. Population growth increases the demand for productive land resources 

forcing communities to encroach into wetland area during dry periods in search of water for 

crop production. Wetland areal extent is a function of catchment hydrology, which is usually 

influenced by LU/LC in the catchment. Future loss of the wetland area could result in the 

modification of wetland ecosystem structure and habitats, which will subsequently affect 

species distribution and diversity in a number of ways such as reproduction and food chain 

(Lamsal et al., 2017). In addition, wetland loss increases the amount of carbon dioxide lost 

into the atmosphere as studies show that wetlands are a significant carbon sink with the 

amount of carbon stored equivalent to that of the atmosphere (Ricaurte et al., 2017). 

Similarly, the loss of future wetlands will increase methane gas emission as most of it is 

trapped in wetlands which will increase greenhouse gases in the atmosphere and subsequently 

increase global warming. 

 

5.6 Conclusions 

The chapter results confirm the need for RF parameter optimisation for accurate classification 

results. The results for land change analysis show a decline in woodland and wetland cover, 

which could be attributed to both human and climatic influences. Major conversions were 

from wetland cover to crop field, suggesting agricultural encroachment on wetland area 

which results in lowering the water table and consequently reduced wetland area. Wetland 

area decreased by 60.16% in the last 30 years, which amounts to 115.6 hectares loss. Future 
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LULC prediction suggests a decrease in wetland area by about 53% by 2045 which is 

equivalent to 72.68 hectares. Therefore, the study concludes that the total wetland area in 

Shashe sub-catchment is decreasing due to cumulative anthropogenic and natural impacts. 

Quantifying wetland changes over time provides scientific bases for wetland protection, thus, 

further research is required to determine the significance of various factors for the purposes 

of designing locally relevant, sustainable monitoring and conservation strategies. 
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CHAPTER 6: MODELLING THE IMPACTS OF LAND USE/ LAND COVER 

CHANGES ON NESTED WETLAND CATCHMENTS IN THE SHASHE SUB-

CATCHMENT, SOUTHWESTERN ZIMBABWE. 

 

Abstract 

Catchment LU/LC changes pose direct and indirect impacts on wetland hydrology, which in 

turn influences wetland ecosystems in various ways. This chapter describes a method for 

modelling impacts of LU/LC at wetland catchment level. The Pitman hydrologic model 

together with catchment delineation using Arc-Hydro extension for ArcGIS (v. 10.3) was 

used to model the impact of LU/LC changes for 25 wetlands in Shashe sub-catchment. The 

results show that LU/LC changes modify wetland hydrology, which consequently influences 

wetland areal extent evident by a significant decrease in a total wetland area between 1984 

and 2015. This corresponded to a similar decrease in catchment runoff for the same period. 

Cropfield cover, which represents crop production, is one of the decisive variables in wetland 

extent, even though other factors such as climate variability, runoff and population growth 

have some influence. Thus, there is an urgent need to design catchment level strategies for 

the sustainability of wetland services. 

 

Key words: wetland catchments, land use/land cover, catchment hydrology, hydrologic 

modelling  

 

 

4This chapter is based on: Sibanda S, Grab S.W and Ahmed F. (In Preparation). Modelling the 
impacts of land use/ land cover changes on nested wetland catchments in the Shashe sub-

catchment, southwestern Zimbabwe. 
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6.1 Introduction 

Catchment land use/land cover (LU/LC) has become a popular research interest in global 

hydrological studies, partly because catchments are so hydrologically defined, hence any 

changes in LU/LC in a given catchment will undoubtedly impact on wetland dynamics (Poff 

et al., 1997; Hayashi et al., 2016; Wu and Lane, 2017). The accelerated rate of population 

growth and increased demand for productive agricultural land, coupled with increasingly 

varying weather and climate patterns, have accounted for considerable changes in LU/LC in 

many catchments of the World (Cuo et al., 2013; Lee et al., 2015b; McCauley et al., 2015). 

Such catchment LU/LC changes pose both direct and indirect impacts on hydrology, which in 

turn influences wetland ecosystems in various ways. Direct impacts result from activities 

occurring in the wetland, such as forest removal, cultivation and water harvesting (Russo et 

al., 2016). Indirect impacts entail those activities outside the wetland, but which may 

eventually disturb the wetland functioning and service provision. These include upland 

activities that change run-off patterns, influx or reduction of surface run-off, and damming 

and upslope irrigation activities among other things (Esteves et al., 2008). 

 

 

It has been observed that wetland ecosystem and catchment hydrology play a complementary 

role in a given catchment. Wetland ecosystem regulates water balance, retains flood waters 

for use during drier periods, slowly recharges ground water and provides fresh water for 

various uses  (Moore and Garratt, 2006), while catchment hydrology provides water for the 

survival of the wetland ecosystem. Therefore, studies of factors influencing wetland 

catchments and hydrology are invaluable for the sustainability of fragile wetland ecosystems. 

Hydrologic models have been widely applied to study the influence of climate factors on 

wetland hydrology (Lee et al., 2015b; Martin et al., 2017). These models range from simple 
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regression models to more complex distributed mathematical models such as SWAT, MIKE-

SHE, SCS-CN, which have been implemented to simulate both climatic and LU/LC impacts 

at catchment level. 

 

Previous studies have noted detrimental effects of LU/LC changes on catchment hydrology, 

manifested through the modification of ground water levels, surface flows and general 

catchment hydrology, which subsequently modify wetland ecology. Changes in LU/LC can 

also increase the number of nutrients, degradation and contamination of waters through 

biochemical pollution (Mander et al., 2000; Ramachandra et al., 2013). There is documented 

global evidence of the hydrologic impacts of LU/LC at catchment level. A study by Esteve et 

al. (2008) noted hydrologic modification of Marmenor wetlands in south-eastern Spain owing 

to the intensification of agriculture and tourism activities. Run-off patterns are said to be 

vulnerable to LU/LC changes and this was revealed by McCauley et al. (2015), who reported 

wetland drainage as being the most significant factor controlling wetland hydrology. LU/LC 

transformations also lead to a decline in total wetland area (Guofu and Shengyan, 2004) and 

alter their physical, biological and chemical integrity which is essential for the survival of 

wetland species (Ramachandra et al., 2013). Thus, as a consequence of LU/LC 

transformations, key wetland vegetation species are reported to have disappeared (Houlahan 

et al., 2006; De Cauwer and Reheul, 2009). Hydrologic modelling of LU/LC changes has 

shown that wetland water levels are significantly modified in various ways under human 

intervention (Voldseth et al., 2007). A study by Camacho et al. (2016) also highlighted 

LU/LC changes as the most influential driver responsible for 40% of wetland loss, either 

directly or indirectly.  
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A number of studies in sub Saharan Africa have investigated the impacts of LULC changes 

on wetland ecosystems at catchment level.  For instance, the study by Walters et al. (2006) 

reported the influence of land tenure systems on the structure and composition of wetlands in 

the southern Drakensburg of South Africa, while a large decline in wildlife numbers has been 

reported from Kimana wetland in Kenya due to human interference (Nyamasyo and Kihima, 

2014). It has also been established that increases in degraded areas and agricultural activities 

resulting from LU/LC changes, have a tendency to enhance annual and seasonal stream flow 

and sediment yield (Welde and Gebremariam, 2017). Apart from human induced LU/LC 

changes, natural factors also impact on wetland ecosystems in various ways; for example sea 

level rise has a potential not only to increase the wetland acreage by periodically flooding 

gentle terrain, but also through a general increase in surface run-off and water depth within a 

wetland ecosystem (Glick et al., 2013). Wetland hydrology is significantly affected by 

climate variability (Voldseth et al., 2007), with greatest impacts on those in tropical, semi-

arid and arid regions (House et al., 2016).  In addition, studies have shown that changing 

climates increase the risk of flooding and soil erosion (Field, 1995; Cuo et al., 2013). 

Associated with climate change, are the recurrences of weather extremes which have been 

reported to disturb the overall integrity of wetland ecosystems (Lee et al., 2015b). For 

instance, the projected frequency of droughts affects wetland ecology and habitats, which 

may eventually lead to loss of wetland floral and faunal species (Rashford et al., 2016). Thus, 

LU/LC changes are primary human-induced transformations that disturb wetland ecosystem 

services and large-scale biodiversity loss ( Voldseth et al., 2007; Cousins et al., 2015).  

 

There has been an absence of work in Zimbabwe attempting to model the effects of 

catchment LU/LC changes on wetland dynamics. This chapter aims to address this research 

gap by investigating temporal variations in wetland areal extent in response to LU/LC 
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changes in southwestern Zimbabwe which utilised classified images from chapter 5 (Figure 

5.4). A further aim is to quantify and model the impacts of LU/LC on nested wetlands in the 

Shashe sub-catchment, which is made possible through combining GIS and remote sensing 

with hydrologic modelling. In this case, the Pitman model is used to quantify wetland sub-

catchments hydrologic responses to different LU/LC dynamics. 

 

6.2 Methodology 

6.2.1 Data   

Spatial data include Shashe LU/LC maps from 1984, 1995, 2005 and 2015, which were 

classified from Landsat imagery using procedures employed in chapter 5. A soil map of 

Zimbabwe and 30m resolution Digital Elevation Model were downloaded from STRM for 

catchment delineation. Meteorological data include daily rainfall records from four stations in 

the sub-catchment. These rainfall records cover 31 years (1984-2015) and were provided by 

the Department of Meteorology, Zimbabwe. Hydrological data from three gauging stations 

(Maleme, Mpopoma and Ove) were obtained from the Zimbabwe Water Authority (ZINWA), 

and cover the same period as the meteorological data.   

 

6.2.2 Study Area 

The Shashe sub-catchment is one of the four sub-catchments of the Mzingwane catchment 

(Figure 6.1) and extends from 27o to 29oE and 20o to 22oS, covering an area of 18 991km2. 

The mean annual rainfall ranges between 450mm and 600mm, with the rain season beginning 

in October and ending in April (Mugandani et al., 2012). Soils are generally shallow sandy 

loam soils which are derived from gneiss and kaolinitic sands and granitic rocks, as well as 

some isolated moderate clay patches formed from greenstone belts (Ashton et al., 2001). The 

southern part of the catchment consists of Limpopo belt gneisses, while the far south is 
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composed of Karoo basalts. Land use to the north of the sub-catchment is mainly 

commercial, private and resettled farmlands focusing on irrigated crop production and 

commercial livestock rearing, while the southern part consists of communal settlements and 

agriculture limited to small livestock production. The Shashe sub-catchment is rich in both 

wild flora and fauna, specifically in the more protected Matopos National park which covers 

an area of about 44 500 hectares. 

 

 

Figure 6.1: Shashe sub-catchment with gauging stations and wetland locations 

 

6.2.3 Methods 

A catchment approach is employed to model the impacts of catchment LU/LCchanges on 

nested wetlands in the Shashe sub-catchment. This method was chosen due to its strength in 

identifying and attributing major influential LU/LC to a given wetland catchment which is 
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distinct from other catchments (McCauley and Anteau, 2014). The approach is shown in 

Figure 6.2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Workflow diagram to quantify the impacts of LU/LC changes on wetland area  
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6.2.4 Delineation of wetland catchments  

A wetland catchment is defined as an area in which surface water drains into a given wetland, 

which may include other wetlands resulting in a nested concept. Catchments for 25 wetlands 

were delineated and these vary between 1.5 to 55 hectares in size. Delineation of wetland 

catchments helps establish the landscape that directly influences a given wetland. Following a 

procedure of catchment generation as suggested by McCauley and Anteau (2014), the 

boundaries of the wetland catchments were delineated using Arc-Hydro extension for ArcGIS 

v. 10.3 (ESRI, 2016), together with a 30m STRM Digital Elevation Model (DEM). This 

procedure involves modelling water bodies and flow direction which are created from the 

DEM for the purpose of establishing discrete boundaries of the area draining into each 

wetland. A number of hydrologic terrain attributes were derived from the DEM, which 

include flow path, flow direction, flow length, flow accumulation and catchment boundaries. 

Flow direction is important for computing flow accumulation, and for the purpose of this 

study, the Eight Direction Flow Model in Arc-Hydro software was utilized. Flow 

accumulation helped to locate interfluves (ridgelines) and delineate the catchment boundary. 

 

Each wetland was selected and the watershed command used in ArcGIS to identify 

catchments for individual wetlands. The wetland exit points were used as pour points for the 

delineation of the wetland catchment. Individual catchments were then merged using ArcGIS 

Model Builder, thereby creating discrete and nested wetland catchments. Nesting was only 

done to those overlapping catchments.  

 

6.2.5 Estimating runoff per wetland catchment 

Surface run-off per given wetland catchment was simulated for the years 1984, 1995, 2005 

and 2015 using the Pitman monthly rainfall-runoff Model for ungauged locations. Like most 
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conceptual models, the Pitman model consists of functions representing important hydrologic 

processes in a given catchment (Hughes et al., 2006b). The Pitman model is a mathematical 

model that is used to simulate the movement of water through interlinked systems of 

catchments, river reaches, reservoirs, irrigation areas and wetlands (Pitman, 1973) (Figure 

6.3). WRSM2000 software was used to simulate runoff per wetland catchment based on 

runoff, reservoir and channel modules linked by routes, which are lines through which water 

flows. WRSM2000/Pitman has been widely used to analyse monthly hydrology for a number 

of catchments in southern Africa (Wagener et al., 2004; Hughes et al., 2006a; Kapangaziwiri, 

2011) and is said to be sensitive to land use changes because it has parameters that control 

interception (PT), infiltration (AI, ZMIN, ZA VE and ZMAX) and actual evapotranspiration 

(R and FF) (Hughes, 1997).  Inputs to the model were monthly precipitation and mean 

monthly potential evapotranspiration and wetland catchment boundaries (Table 6.1). The 

interception function is controlled by interception parameters (PIV and PIF) for open and 

afforested conditions (Table 6.1). Runoff data for Maleme and Mpopoma gauging stations 

were used to calibrate the Pitman model in order to generate runoff for all ungauged wetland 

catchments. This means that calibrated model parameters from Maleme and Mpopoma River 

catchments were used to generate flows for ungauged wetland catchments. The validation 

was based on a comparison of observed and simulated runoff using regression analysis. 

Runoff trend analysis was also computed to determine changes over time, with values then 

correlated with rainfall and wetland cover change. 

 

LU/LC maps classified from Landsat images were overlayed for each period on delineated 

wetland catchments to determine individual and nested wetland catchment LU/LC. Extracted 

percentage and area of each LU/LC together with the simulated runoff and rainfall were used 
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to compute multivariate analysis, regressed to establish the most influential variable in 

wetland areal change.  

 

 

Table 6.1: Pitman model parameters (Hughes et al., 2006a)  

Parameter  Units Description 

PIV, PIF  mm 

Interception storage parameters for natural grassland and forest 

cover 

AL % Impervious part of the sub-catchment  

Z 

 

Three parameters defining the asymmetric triangular frequency 

distribution of catchment absorption rates: 

ZMIN mm month-1 Minimum 

ZAVE mm month-1 Average  

ZMAX mm month-1 Maximum moisture storage capacity  

ST mm Maximum moisture storage capacity  

FT mm month-1 Runoff from moisture storage at full capacity (ST) 

FF 

 

Ratio of forest/grassland potential evapotranspiration 

R 

 

Evaporation-moisture storage relationship parameter 

POW   Power of the (runoff-soil moisture) curve  
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Figure 6.3: Flow diagram for runoff simulation 

 

Multiple regression model procedures were used for the purposes of obtaining a parsimonious 

model with the most significant variables and the best statistical performance. Prior to 

multiple regression modelling, correlation analysis was applied and tested for 

multicollinearity of variables, which used the Variable Inflation Factor (VIF) to decide 

whether the variables are collinear. Where the VIF1 signified no correlation between 

independent variables, a VIF value of less than 5 meant that variables were not correlated 

significantly enough to affect the regression model, while VIF values of > 5 were not 

considered fit for the multiple regression analysis, signifying high multicollinearity.  

 

6.3 Results  

6.3.1 Delineation of wetland catchments 

A total of 11 individual and nested catchments were delineated (Table 6.2) using Arc-Hydro 

extension for ArcGIS version 10.3 (Figure 6.4). Only catchments from permanent and semi-

permanent wetlands were modelled using a 30m DEM. 

 

Table 6.2: Delineated wetland catchments from nested wetlands  

wetland catchment 

Nested 

wetlands 

1 0, 2 

2 3 

3 1,5,6,7,8 

4 9,13,15 

5 4,12,14 

6 10,11 

7 16,18 

8 19,20 

9 17,21,22,23 

10 24,26,27 

11 25 
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6.3.2 Geospatial statistics for individual LULC per given catchment 

 Time series of areal coverage according to each land cover type indicates that 1984 has the 

highest wetland area (393.12 ha), followed by 1995 (397.8 ha), 2005 (272.25 ha) and 2015 

(156.6 ha), demonstrating a dramatic decline through time (Figure 6.5). Crop fields had 

increased significantly by 2015 (from 21.85ha  in 1984 to over 283.25 ha in 2015), likely due 

to accelerating population growth and the associated greater demand for agricultural land 

(Berakhi et al., 2015). In part, this may be the result of the Fast Track Land Reform 

programme which was introduced in 2000 and apparently led to an approximately 38% 

increase in the population (ZIMSTAT, 2016).  

 

 

In 1984 wetland cover dominated and covered some 44% of the area while crop fields only 

constituted about 4% of land cover (Figure 6.6a). In 1995 wetland cover remained the highest 

cover type (38%), followed by woodlands (26%) and crop fields (6%) (Figure 6.6b). By 2005 

wetland areas had been reduced to 25% (a 13% drop) while woodlands had decreased to only 

11%. In contrast, crop fields had increased to 9% of total cover by 2005 (Figure 6.6c). In 

2015, wetland area covered only 12% and by then crop fields had increased most 

dramatically to 47% of the total areal cover, other covers constituted the following 

percentages; water (10%), grassland (8%), riverine (5%), mountain vegetation (6), rock out 

crop (9) and water (3).  
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Figure 6.4: Spatial distribution of wetland catchments delineated from combining of wetlands 

that share catchments forming what are called nested catchments 
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These results are consistent with results by Mwita (2013) who also reported a 35% increase 

in cropland cover in Kenya and Tanzania at the expense of wetland area. The results are also 

similar to those from east African region in Kagera river basin, which too observed the 

substantial expansion of agricultural land at the expense of wetland areas (Berakhi et al., 

2015). The trend across much of East and southern Africa is one of rapid population growth 

which increases the demand for natural resources and crop land (i.e. food), hence the recent 

decadal changes in LU/LC changes (Ibarrola-Rivas et al., 2017). Changing climate could also 

account for some of the observed LU/LC changes through modifying catchment hydrology as 

well as increasing wetland water harvesting during recurrent drier periods (Feng et al., 2012, 

2016a). Incidentally, the Shashe community relies on market gardening near and within the 

wetland for their livelihoods throughout the year, and hence water extraction would have 

increased with time. The situation has been further exacerbated by the economic meltdown in 

Zimbabwe which saw the rate of employment rising beyond 85% in 2016, and as such, 

unemployed youths now engage on market gardening within the wetlands as a form of self-

employment.  

 

 

Figure 6.5: Land use / cover for the Shashe sub-catchment (1984, 1995, 2005 and 2015) 
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The general absence of reliable and recent LU/LC data at catchment level is a major 

challenge for sustainable wetland management because such information is essential for 

monitoring trends in LU/LC and ultimately for safeguarding the regions’ natural resources. 

The Zimbabwean government has put in place policies in line with the Ramsar convention to 

curb wetland loss and promote their sustainability, as well as to ensure that set regulations are 

adhered to, through the Environmental Management Agency (EMA).  The effectiveness of 

these strategies is heavily marred by recurrent extreme weather conditions making the 

wetlands the only available source of water for domestic and agricultural use.  
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Figure 6.6: Spatio-temporal variation in land use/cover area per wetland catchment (1984, 

1995, 2005 and 2015)  
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6.3.3 Comparison of observed and simulated runoff time series  

The comparison between observed and simulated runoff data is shown in Figures 6.7 and 6.8. 

Validation using the linear regression model was very good with an R2 value of 0.90 and the 

model parameters were then used to compute runoff for the ungauged wetland catchments 

(Figure 6.7). Generally, the high flows and low flows were estimated fairly well (Figure 6.7), 

although there were a few cases of under estimation, such as in 1992 and 2000, while over 

estimation was recorded for the years 1975, 1995 and 1996. These discrepancies may 

emanate from landscape uncertainties which could not be accounted for during the simulation 

process. The highest runoff is measured for wetland catchment WC2 followed by WC9, 

while WC1 recorded close to zero million cubic metres runoff for all periods (Figures 6.9 and 

6.10).  This might be attributed to catchment size differences (Pilgrim et al., 1982). Studies 

have shown the influence of catchment size on runoff, where it is argued that larger 

catchments tend to yield higher runoff compared to smaller catchments because of 

differences in their hydrologic responses (Pilgrim et al., 1982). For the periods studied, 1995 

recorded the highest river flow (4401.5 Mm3), followed by 2005 (3974.9 Mm3). In contrast, 

2015 recorded the lowest flows (3327.5 Mm3), probably attributed partly to the dry period 

during the year 2015. Similarly, a study in Lake Urmia basin of Iran, also reported a 

significant decline in runoff with time owing to changes and variations in rainfall patterns 

(Sanikhani et al., 2017).  
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Figure 6.7: Observed versus simulated runoff for Maleme gauging station (B39) for the 

period 1967 to 2015 
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Figure 6.8: Scatter plot of simulated and observed runoff for Mpopoma (B39) gauging station 
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Figure 6.9: A comparison of runoff per wetland catchment for the periods 1984, 1995, 2005, 

and 2015 

 

Results in Figure 6.10 show that wetland catchment 2 and 9 recorded the highest runoff of 

617.77Mm3 and 425.04Mm3 respectively for the period 1967 to 2015. The result shows that 

the bigger the catchment size the lower the rate of runoff (Figure 6.11). 
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Figure 6.10: Variation in runoff per given catchment for the period 1967-2015.  

 

Figure 6.11: Regresion of wetland catchment runoff and catchment area in square meters (m2) 

 

 

Figure 6.12: Annual runoff and mean rainfall for Maleme gauging station 

 

Drought years (low rainfall mean) 1972, 1982, 1992, 1994, 2002, 2012, 2014 and 2015 

recorded low runoff while high rainfall years measured higher runoff totals (Figure 6.12). 

The results confirm the contribution of rainfall amount on catchment runoff.  
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6.3.4 Variables impacting wetland aerial changes  

Multiple regression was computed for the purposes of identifying the most influential 

variables in wetland loss at wetland catchment level. Specifically, backward variable 

elimination procedure was employed. This method starts with all the predictors and applies a 

step wise elimination based on the smallest F-statistic to remove the variable from the model 

until the remaining variables’ removal makes no difference. In this case, the model began 

with 8 variables and remained with 5 significant ones which recorded an R2 of 0.65, meaning 

that 65% of wetland change may be explained by 4 independent variables, riverine 

vegetation, grassland, wood land and crop field (Table 6.3 and Figure 6.13). However, the F-

statistic computed by ANOVA shows that the model was significant at p < 0.05 (Table 6.4). 

From the model, it is clear that based on the Type 111 sum of square, crop field land cover is 

the most influential factor contributing to changes in wetland extent (Table 6.5).  

 

Table 6.3: Multiple regression results 

Regression Statistics 

Multiple R 0.807920782 

R Square 0.65273599 

Adjusted R Square 0.607043358 

Standard Error 14.2934447 

Observations 44 

 

  Coefficients 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 0.443197656 0.122071 3.630668 0.000708 0.197482 0.688913 0.197482 0.688913 

Observed 1.382265157 0.19727 7.006986 8.89E-09 0.985182 1.779348 0.985182 1.779348 
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Table 6.4: Analysis of variance (wetland) 

Source DF 
Sum of 

squares 

Mean 

squares 
F Pr > F 

Model 5 12398.32 2479.664 9.463 < 0.0001 

Error 38 9957.862 262.049 

  Corrected Total 43 22356.18       

Computed against model Y=Mean(Y) 

    

 

Table 6.5: Type III Sum of Squares analysis (Wetland): 

Source DF Sum of squares 
Mean 

squares 
F Pr > F 

Riverine vegetation 1 309.651 309.651 1.182 0.284 

Grassland 1 45.542 45.542 0.174 0.679 

Woodland 1 234.336 234.336 0.894 0.35 

Cropfield 1 1902.569 1902.569 7.26 0.01 

 

 

 

 

Figure 6.13: Predicted versus observed wetland area 

 

These results substantiate the belief that agriculture is one of the major human factors that 

impact on wetlands (Sica et al., 2016). Studies by Madebwe and Madebwe (2005) also 
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observed similar trends in Shurungwi, Zimbabwe, and reported declining wetland areas due 

to agricultural encroachment. Sub-regionally, the trends may differ somewhat as Al-Hamdan 

et al. (2017) report net forest and crop expansion for eastern and southern Africa.  Malawi 

recorded net deforestation and crop production, but wetland decline. 

 

Runoff correlated well with rainfall and wetland area giving a coefficient of 0.932, which 

shows that it is an important variable in wetland hydrological change (Table 6.7 and 6.8).  

 

Table 6.7: Correlation for rainfall, wetland area and runoff 

  

Rainfall 

(mm) 

Wetland 

area(ha) 

Runoff 

(Mm3) 

Rainfall (mm) 1 0.878 0.956 

Wetland area (ha) 0.878 1 0.774 

Runoff (Mm3) 0.956 0.774 1 

 

 

Table 6.8: Regression between mean monthly runoff and mean monthly rainfall 

 

Regression of variable Runoff (Mm3) and rainfall 

Observations 4 

Sum of weights 4 

DF 1 

R² 0.932 

Adjusted R² 0.797 

 

 

6.4 Conclusions 

This chapter describes a method for modelling impacts of LU/LC at wetland catchment level, 

and the study found that understanding individual wetland disturbances at catchment level 
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provides a better understanding of direct human impacts on wetland ecosystems (McCartney 

et al., 2013). Such LU/LC impacts will also be influenced by other catchment characteristics 

such as the catchment size and amount of rainfall. The multiple regression model identified 

major LU/LC factors influencing wetland area in the Shashe sub-catchment. However, from 

the results it is clear that LU/LC changes could not wholly explain the variation in wetland 

area over time. It is concluded that: 

 LU/LC changes in wetland catchments modify hydrology and influence wetland areal 

extent. 

 Crop field cover, which represents crop production, is one of the decisive variables in 

wetland extent, even though other factors such as climate variability, runoff and 

population growth have some influence. 

 Total wetland area significantly decreased between 1984 and 2015, and a similar 

trend was also observed for runoff. 

 The application of the Pitman model allowed for accurate runoff simulation. 

 Multiple regression analysis showed that four variables (riverine vegetation, 

woodland, crop field and grassland) account for 65% of the observed wetland areal 

changes, with crop fields making the most significant contribution (p<0.05). 

Although wetlands contribute to household food and livelihood security in the short term, 

long-term sustainability under such utilization is very questionable. Thus, there is a need to 

design catchment level strategies for the sustainability of wetland services. 
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CHAPTER 7: AN EVALUATION OF THE CORDEX REGIONAL CLIMATE 

MODELS IN SIMULATING FUTURE RAINFALL AND EXTREME EVENTS OVER 

MZINGWANE CATCHMENT, ZIMBABWE. 

 

Abstract 

The study evaluated CORDEX-RCMs’ ability to project future rainfall and extreme events in 

the Mzingwane catchment using an ensemble average of three RCMs (RCA4, REMO2009 

AND CRCM5). Model validation employed the statistical mean and Pearson correlation 

while trends in projected rainfall and number of rainy days were computed using the Mann-

Kendall trend test and the magnitudes of trends were determined by the Sen’s slope 

estimator. Temporal and spatial distribution of future extreme dryness and wetness were 

established by using the Standard Precipitation Index (SPI). The results show that RCMs 

adequately represented annual and inter-annual rainfall variability and the ensemble average 

outperformed individual models. Trend results for projected rainfall suggest a significant 

decreasing trend in future rainfall (2016-2100) for all stations at p<0.05. In addition, a 

general decreasing trend in the number of rainy days is projected for future climate, although 

the significance and magnitude varied with station location. Model results suggest an 

increased occurrence of future extreme events, particularly towards the end of the century. 

The findings are important for developing proactive sustainable strategies for future climate 

change adaption and mitigation.   

 

Key words: CORDEX, Regional Climate Models, future rainfall, projected extremes, 

rainy days 

5This chapter is based on: Sibanda S, Grab S.W and Ahmed F. (In submission). An evaluation of the 

CORDEX regional climate models in simulating future rainfall and extreme events over Mzingwane 

catchment, Zimbabwe.  Theoretical and Applied Climatology Journal.   
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7.1 Introduction 

Anthropogenic global climate change is no longer a myth but a proven reality in Africa 

(Change, 2013). Evidence of changing climates has been witnessed and experienced by 

Africa as a whole, and include, variations in temperature and rainfall, as well as the 

recurrence of extreme weather events (Hulme et al., 2001; Kruger and Shongwe, 2004; 

Reason et al., 2005; Kruger and Sekele, 2013; Kruger and Nxumalo, 2017; Sibanda et al., 

2017). The World Meteorological Organisation (WMO, 2017) reported continuing global 

warming which has set a new temperature record of 1.1°C increase above the pre-industrial 

period which is 0.06°C higher than the 2015 record. This global warming is largely attributed 

to anthropogenic greenhouse gas emissions (GHGS), chiefly being carbon dioxide whose 

levels had reached 400.00 ppm in the atmosphere by 2015 (WMO, 2017). The sea levels have 

risen by 20mm since the start of the twenty first century due to the looming global warming 

spasm.  

 

 A cursory review of the climate change projection literature in Africa and southern Africa in 

particular suggests accelerated current and future changes in climatic conditions under the 

‘business as usual’ scenario (Carson et al., 2016; Hansen et al., 2016). Such changes are 

projected to continue into the end of the century and IPCC (2014) the fifth report suggests 

that Africa will be the most vulnerable to these future changes in climatic conditions which 

are expected to cause detrimental socio-economic consequences. For instance, it is predicted 

that a 4.1°C rise in temperature by the end of the century will result in 10% loss of the 

African GDP (WMO, 2017).  Thus, there is a pressing need to simulate future climatic 

conditions as a way of minimising uncertainties and to proactively develop sustainable 

adaptive and mitigative strategies for the future. Although developed countries have 

committed to reducing GHGs emission by at least 15% by 2020, warming is set to continue, 
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which will see temperatures rising by close to 4°C by 2060. Such warming is and will be 

detrimental to natural ecosystems functioning particularly to the fragile wetland ecosystems 

which are heavily dependent on rain water for their survival. For instance, wetland hydrology 

is strongly influenced by changes in the amount of rainfall and runoff; therefore, any 

alterations of the normal climatic patterns are likely to affect wetland ecosystems. A 

projected decline in rainfall may also result in the decrease of the wetland area which may 

subsequently cause a decline in endemic floral and faunal species (Barros and Albernaz, 

2014). In addition, an increase in rainfall would also affect and disturb wetland ecosystems 

through the elimination of species with low tolerance levels. 

 

Linked to global warming is the recurrence of extreme droughts, notably in southern and 

eastern Africa where several millions of people have been faced with extreme food insecurity 

during the last two decades (Bremner, 2017; WMO, 2017). Previous studies have shown that 

droughts disturb wetland ecosystems resulting in the drying of the wetland (Burkett and 

Kusler, 2000). 

 

A number of studies have simulated future climatic conditions based on Global Circulation 

Models (GCMs) and these GCMs are extensively used in the assessment of past and future 

climatic conditions based on different scenarios of concentrations (Nikulin et al., 2012). 

However, their direct application in impact studies is limited by their coarse spatial 

resolutions (100-300km) which provides inadequate information at regional and local scales 

(Ramirez-Villegas and Jarvis, 2010). Downscaling of the GCMs is thus used to obtain data 

required for regional and local level variability and change. Downscaling can either be 

empirical (statistical), which relates large scale circulation models to a local variable of 

interest. The relationships are used to estimate local level values by means of Regional 
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Climate Models (RCMs) (Ramirez-Villegas and Jarvis, 2010). These RCMs are run at 

between 10 to 50km horizontal resolutions over a specified area for example Regional model 

(REMO).  

 

CORDEX-AFRICA is a collaborative project aimed at generating high resolution climate 

simulations for Africa, funded by the World Climate Research Program (WCRP), providing 

regional data for all continents, Africa included. It is with this focus that CORDEX-AFRICA 

has provided huge sums of data for use in climatic studies in Africa, which has been utilised 

by a number of studies. For instance, Nikulin et al. (2012) were amongst the first to employ 

CORDEX data in southern Africa. They analysed the ability of 10 RCMs to simulate 

precipitation over Africa. They found that the present set of CORDEX AFRICA RCMs 

provided meaningful information on climate projections over Africa. Akinsanola et al. (2015) 

used CORDEX RCMs to simulate rainfall patterns in the West African summer monsoon. 

Their results showed that RCMs in the CORDEX framework simulated the main features of 

the rainfall climatology well. Similarities between GCM and RCM temperatures were 

reported by Dosio and Panitz (2016). Shongwe et al. (2015) evaluated the ability of 

CORDEX RCMs to simulate monthly rainfall variation over southern Africa. They noticed 

that the RCMs adequately revealed precipitation probability density function although a few 

showed bias towards excessive light rainfall events. 

 

 A study by Pinto et al. (2016) examined extreme events in the CORDEX data models and 

showed that simulations are able to capture observed climatology of spatial and temporal 

extreme precipitation. Kalognomou et al. (2013) analysed 10 RCMs and simulated 

precipitation over southern Africa within CORDEX framework and observed that all spatio-

temporal characteristics of the rainfall patterns were reasonably well captured by all RCMs, 
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although individual models presented biases in the wet and dry conditions for some regions. 

A strong link between projected SPEI and ENSO over southern Africa was confirmed by 

Meque and Abiodun (2015). Recently, Mutayoba and Kashaigili (2017) evaluated the 

performance of CORDEX downscaling RCMs to simulate rainfall patterns for Mbarali 

catchment in Tanzania; their results indicated that RCMs from CORDEX reproduce rainfall 

characteristics better and reproduced inter-annual variability of rainfall fairly well. Although 

some work has utilised CORDEX-AFRICA data in Africa and some parts of southern Africa, 

there is no published study that has attempted to employ the same data in Zimbabwe.   Thus, 

this chapter seeks to analyse and evaluate the ability of CORDEX RCMs to simulate future 

rainfall trends, extreme events and their probable implications on future wetlands over 

Mzingwane catchment. This work is premised on the understanding that future climatic 

conditions are critical for the sustainable conservation and management of future ecosystems 

like wetlands, and is paramount in the development of future adaptive and mitigative 

strategies towards climate change consequences. 

 

7.2 Methodology 

7.2.1 Study area 

Zimbabwe has seven catchment management regions as indicated in Figure 7.1. This chapter 

focuses on the most southerly of these catchment regions, namely the Mzingwane catchment, 

which is located between 19.8o and 22.4oS and 27.7o and 32.0o E. The catchment includes 

four sub-catchments (Shashe, Lower Mzingwane, Upper Mzingwane and Mwenezi) covering 

an area of ~63000 km2 (Figure 7.1). The northern part of the catchment is composed of 

granitic rocks associated with the greenstone belt, which is rich in gold deposits. Granite 

terrains form large inselbergs (dome-shaped mountain ranges), between which wetlands 

occur (perennial dams, vleis, swamps or marshes). The Mzingwane catchment hosts five 
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major rivers (Shashe, Umzingwane, Mwenezi, Bubi and Marico) that feed into the Limpopo 

River (Görgens and Boroto, 1997). 

 

 

Figure 7.1: Mzingwane catchment showing four sub-catchments (Shashe, Upper Mzingwane, 

Lower Mzingwane and Mwenezi)     

 

The climate of Mzingwane catchment is semi-arid to arid, but rainfall distribution varies 

across the catchment, such that the northern regions receive higher mean rainfall (~450 - 600 

mm pa) than the southern regions (~200-450 mm pa) (Görgens and Boroto, 1997; Chenje et 

al., 1998). The wet season typically starts in late October and ends in March, with the highest 

rainfall occurring between December and February (Unganai and Mason, 2002).  Rainfall 

seasonality is largely influenced by the Inter-Tropical Convergence Zone (ITCZ) which 

moves southwards during the austral summer, and inter-annually by the El Niño Southern 
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Oscillation (ENSO) which is associated with periods of lower (El Niño) and higher (La Niña) 

rainfall (Manatsa et al., 2008). The average daily Tmax for the catchment varies between 27 – 

34 °C during summer and 22 – 26 °C in winter (Love et al., 2010), while average Tmin range 

between 18 - 22°C during summer and 5 - 10°C in winter (FAO, 2010). Owing to the 

relatively low and erratic rainfall, agricultural activities in the catchment mainly involve 

livestock rearing, as this is the most viable. 

 

7.2.2 Data and Methods 

Monthly and daily rainfall data for the period 1950 to 2100 simulated by three regional 

climate models in the Coordinated Regional Climate Downscaling Experiment (CORDEX) 

database are used. The data are set to 0.44o by 0.44o spatial resolution, equivalent to 50km by 

50km and are quality controlled by the CORDEX-AFICA and may be used based on terms of 

use provided by http://wcrp-cordex.ipsl.jussieu.fr/. An advanced quality checker was 

developed by CORDEX using DKRZ (Hamburg), which targeted missing values, time steps, 

errors in units, suspicious values and many other aspects. The Regional Climate Models 

(RCMs) included the Max Planck Institute Regional model (REMO), the Sveriges 

Meteorogiska Och Hydrologiska institute (SMHI), Rossby Centre Regional Atmospheric 

Climate Model, version 4 (RCA4), and the Canadian Regional Climate Model, version 5 

(CRCM5) (Table 7.1). The observed monthly and daily rainfall and temperature data for the 

period between 1950 and 2015 were used to validate CORDEX RCMs datasets and this 

employed Root mean Square error (RMSE) and Pearson correlation. To test the model’s 

ability to simulate present and future extremes and rainfall trends, linear regression was 

computed for the observed and projected future data.  

 

 

http://wcrp-cordex.ipsl.jussieu.fr/
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Table 7.1: CORDEX RCMs data used  

Domain 

Regional 

Climate Model 

Driving Global 

Climate Model 

AFR-44 RCA4 ICHEC-EC-EARTH 

AFR-44 REMO2009 ICHEC-EC-EARTH 

AFR-44 CRCM5 MPI-M-MPI-ESM-LR 

 

Trend analysis of the projected (2016-2100) monthly rainfall data were computed using 

Mann-Kendall (MK) trend test while the Sen’s slope estimator was used to estimate the 

gradient of the trends for the remaining part of the century. The Sen’s slope estimator is more 

robust than the least squares because it takes into account the outliers and the extreme values 

into consideration, typical of the climate data (Hamed and Rao, 1998). The number of rainy 

days for the same period was also calculated and their trends computed again based on MK 

trend test. A detailed description of mathematical formula for MK test and Sen’s slope 

estimator is shown below:  

 

Where, 

 

Sen’s Slope Estimator Test (1968) was used to determine the magnitude of the trends. The 

slope  was calculated as; 
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The study computed the Standard Precipitation Index (SPI) based on the projected rainfall to 

identify future extremes. SPI compares the total precipitation received at a given location 

with the long-term rainfall distribution for the same period of time at that location. It can be 

computed on 1, 3, 6 and 12 month time scales.  Table 7.2 shows drought categories as 

defined by McKee et al. (1993). 

 

Table 7.2: Extreme rainfall categories as defined by McKee et al. (1993) 

Category SPEI value 

2.0+ Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1,49 Moderately wet 

0 to .99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 

 

7.3 Results and Discussion 

7.3.1 Validation of simulated data 

Simulated mean monthly rainfall data for 1950-2015 were evaluated against observed data 

for the same period. The results indicate a very strong correlation for the ensemble average, 

obtaining a correlation coefficient of 0.975 (Figure 2) which is a clear indication that 

CORDEX RCMs can adequately represent rainfall characteristics.  

 

7.3.2 Simulation of rainfall 

All RCMs adequately simulated the mean annual cycles and the spatial variations, albeit 

individual models showed varying biases in different stations. Figure 3 shows how RCMs 

managed to simulate the annual cycle of rainfall pattern of Mzingwane catchment. 
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REMO2009 performed much better followed by AQAM-CRCM5, while SMHI-RCA4 over 

estimates the amount of rainfall. The ensemble average outperformed individual models due 

mostly as a result of the removal of oppositely signed biases across the models. The 

correlation between individual RCM and observed rainfall data indicate that AQAM-CRCM5 

represented the annual cycle much better than the two RCMs because the model employed 

the Kain-Fritsch scheme which is believed to exhibit a much better representation (Nikulin et 

al., 2012). Previous studies in southern Africa have shown that CORDEX RCMs are able to 

sufficiently capture the main characteristics of precipitation within the region (Nikulin et al, 

2012; Shongwe et al., 2015; Luhunga et al., 2016; Mutayoba and Kashaigili, 2017). All the 

models were also able to represent the inter-annual variability of rainfall (Figure 4) with the 

ensemble performing well. UQAM-CRCM5 presented accurate annual averages while 

SMHI-RCA4 over estimates the annual averages for the catchment, with some years reaching 

an average of 1200mm per year. 
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Figure 7.2: Correlation between observed and simulated mean monthly rainfall for 

Mzingwane catchment computed for the period 1950 to 2015. 

 

 

Figure 7.3: Average annual cycle for rainfall over Mzingwane catchment 
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Figure 7.4: Annual average RCMs and the ensemble average for Mzingwane catchment 

 

7.3.3 Trends in projected future rainfall (2016-2100) 

An ensemble of the three RCMs (RCA4, REMO2009 and CRCM5) was used to compute 

trends for future rainfall (2016-2100). The simulated trend results indicate a significant 

spatial decrease in rainfall for all the stations at p < 0.05 (Table 7.3). Rainfall amount is 

projected to decrease significantly over the catchment during the mid and end of the century, 

with a high likelihood of variability in space and time. The magnitude of change is apparently 

high for all stations, with Sen’s slope ranging between 1.4 and 5 for the period under study 

(Table 7.3). A decrease in rainfall was also projected by “IPCC - Intergovernmental Panel on 

Climate Change” (2007) for some areas in tropical regions. 

 

7.3.4 Quantifying projected rainy days  

The projected number of rainy days for the period 2016-2100 significantly decreased for 

Gwanda, Matopos and Beitbridge at a magnitude of -0.292, -0.18 and -0.121mm respectively 

for the entire period of study (Table 7.4). Other stations, such as Bulawayo (-0.109 year-1), 
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Kezi (-0.143 year-1), Filabusi (-0.158 year-1), Plumtree (-0.0085 year-1) and West Nicholson (-

0.118 year-1) exhibit a downward trend, albeit statistically insignificant. The projected 

number of rainy days accurately represents the spatial climatology of the stations. 

 

Table 7.3: Mann-Kendall (MK) trend test for daily rainfall 

Station Kendall's tau P-value Sen's slope 

      In 84 years Per decade 

Bulawayo -0.04 <0.0001 3.6 0.4 

Gwanda -0.03 <0.001 5.0 0.6 

Kezi -0.04 <0.0001 1.4 0.2 

Matopos -0.03 <0.0001 4.2 0.5 

Filabusi -0.12 <0.0001 5.0 0.6 

Beitbridge -0.04 <0.0001 4.5 0.5 

Plumtree -0.04 <0.0001 2.8 0.3 

West Nicholson -0.03 <0.0001 3.3 0.4 

 

For instance, Beitbridge and Plumtree are the driest in the region and RCMs projected similar 

trends. On the contrary, there is a noticeable bias towards wetter conditions in West 

Nicholson, Filabusi and Gwanda. Overall, an ensemble of RCMs projected a general decrease 

in the number of rainy days for the future. However, a cursory temporary assessment of the 

results indicates that, although the number of rainy days is reduced, more extreme wetness 

and dryness are expected through space and time (Figure 7.4). These results conform to 

findings by Pohl et al. (2017) who also noted a decrease in the number of rainy days with 

more extreme rainfall by the end of the 21st century in southern Africa. 

 

The foregoing observation is likely to modify the quality of the rainy season as a result of 

enhanced episodes of droughts and floods to the detriment of a number of bio-geographic 

cycles and wetland ecosystems in particular. For instance, literature shows that extreme 

rainfall affects wetlands in various ways; drought lowers water table through reduced ground 

water recharge, modifies runoff patterns, and affect the general wetland catchment hydrology 
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which in turn, may reduce wetland area and consequently force wetland floral and faunal 

species to migrate and in extreme cases be driven to extinction. In addition, flooding 

conditions also affect those endemic plant species with low tolerance levels (Pecl et al., 

2017). 

 

7.3.5 Projected future precipitation extremes 

The ensemble of RCM (RCA4, REMO2009 AND CRCM5) projected rainfall for the mid 

(2016-2069) and end of the century (2070-2100) were used to compute a Standard 

Precipitation Index on a 3-month scale for the identification of probable future years likely to 

experience extreme precipitation events. Figure 5 represents a projected temporary time 

series of extreme events in Mzingwane catchment for the mid-century (Figure 7.5a) and end 

of the century (Figure 7.5b). Projections for the mid-century suggest less extreme dryness for 

the decade 2020-2030 than the extreme wet conditions, meaning that the decade is likely to 

experience more flooding conditions. Severe dryness (SPI ≤-1≤-1.49) are projected to occur 

during following years; 2032, 2040, 2042, 2044, 2048, 2050, 2056, 2062, 2065 and 2068 

(Figure 7.5a). While the probable years for extreme dryness (SPI ≤2) include 2038, 2034, 

2054 and 2066. Notably, the last decade of the mid-century has more extreme dryness with 

only one extreme wet condition, suggesting recurrent droughts with great implications on 

food security, water availability and general ecosystem function, particularly the fragile 

wetland ecosystems. 

 

 

 

 

Table 7.4: Mann-Kendall (MK) trends in number of projected rainy days 
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Station 

Mean annual No. 

of rainy days 

Kendall's 

tau P-value 

Sen's 

slope 

Bulawayo 79 -0.083 0.266 -0.109 

Gwanda 83 -0.282 0.000* -0.292 

Kezi 73 -0.133 0.074 -0.143 

Matopos 73 -0.158 0.034* -0.18 

Filabusi 95 -0.130 0.081 -0.158 

Beitbridge 53 -0.155 0.038* -0.121 

Plumtree 57 -0.116 0.121 -0.085 

West Nicholson 83 -0.111 0.135 -0.118 

*significant at p<0.05 

 

Model projections for the future extreme wetness indicate only three years of moderate wet 

conditions (2033,2035 and 2061) shown in Figure 5a, but suggest more years of very wet 

conditions which include; 2030, 2034, 2041, 2046, 2048, 2051, 2051 and 2068. In addition, 

extreme wetness is projected for 2018, 2023, 2024, 2028, 2047 and 2058 (Figure 7.5a). 

 

 



161 
 

 

Figure 7.5: Projected number of rainy days for the period 2016-2100 per station  
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Generally, model projections suggest more extreme wetness conditions with high flooding 

risks and related consequences. These results suggest a high risk of flooding within the 

catchment, particularly during the mid-century period except the period 2060-2070 which is 

expected to experience recurrent droughts. 

 

Projected extreme events for the end of the century (2070-2100) are shown in Figure 5b. 

Results show that only 2073 and 2098 are likely to experience moderate dryness while severe 

droughts are expected in 2071, 2078, 2079, 2080, 2081, 2085, 2088, 2091, 2092 and 2096 

and seem to be having 2 years duration pattern during the end of century period. Only one 

extreme dry condition was identified in 2077. On the other hand, moderate extreme wet 

conditions (SPI ≥1.0≤1.49) are projected for 2073, 2074, 2083, 2084, 2088, 2089 and 2094. 

Very wet conditions are likely to be experienced in 2076, 2094, 2095, 2097 and 2098, while 

extreme wetness is projected for 2072, 2082 and 2093 with a noticeable 10 year cycle (Figure 

7.5b). Such extreme wetness conditions will certainly pose flooding risks and disaster in the 

catchment, causing substantial threats to the environment and socio-economic well-being of 

the society in and around the catchment. The foregoing results are consistent with global 

circulation model results (IPCC, 2007) which projected an increase in precipitation extremes 

under global warming. Similar findings were reported by Pinto et al. (2016), who also noted a 

decrease in annual precipitation accompanied by an increase in the occurrence of projected 

extreme precipitation events over southern Africa. Extreme dry conditions (droughts) have 

huge implications on water availability in the catchment. In addition, if such extreme events 

recur, wetland ecosystems are likely to suffer not only from hydrologic modifications, but 

also from over harvesting by communities during dry periods leading to their shrinking and in 

some instances disappearance. 
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 (a) 

 

 (b) 

 
Figure 7.6: Projected extreme precipitation (a) for the mid-century 2016-2069 (b) end of 

century period 2070-2100 

 

7.4 Implications of future rainfall on wetlands 

Wetlands are highly susceptible to climate changes and variations and are likely to be 

affected by the changes in hydrologic regimes at catchment level, changes in precipitation 

patterns, increase in temperature and recurrent extreme weather events (Burkett and Kusler, 
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2000). Model projections suggest a decrease in precipitation and number of rainy days, with 

an increase in extreme events. Such changes will influence wetlands in various ways, such as 

the modification of the structure, pattern and general function of wetland ecosystems 

resulting from modified hydrology and biochemical cycles. A decrease in rainfall, coupled 

with increased evaporation related to high temperatures, will also reduce soil water and 

increase soil salinity which might subsequently reduce primary productivity and species 

diversity (Carrington et al., 2001; Lamsal et al., 2017). The projected future climate is likely 

to influence wetland area due to changes in hydrologic regimes. Figure 6 shows the 

relationship between wetland area and total rainfall and reveals that wetland area tends to 

increase with an increase in rainfall while the reverse is true, as the rainfall decreases, the 

wetland area shrinks in size. Such a trend has significant implications on the future of 

wetlands.  Habitats will be modified, affecting species survival and reproduction which could 

either force species to migrate or be naturally eliminated if they fail to adapt (Barros and 

Albernaz, 2014). 

 

Reduced rainfall and frequent dry extremes could result in low water levels which may also 

contribute to reduced wetland area. Projected future climates are likely to affect communities 

depending on the wetland ecosystem for water and economic livelihoods. It is noteworthy 

that future climate change impacts on wetlands will be exacerbated by anthropogenic land 

use/ land cover changes in wetland catchments. Therefore, sustainable future wetland 

conservation will require appropriate management of anthropogenic modifications so as to 

minimise climate change impacts.  
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Figure 7.7: Correlation between predicted wetland area and projected rainfall for the periods 

2015, 2025, 2035, and 2045 which gave four data points. 

  

7.5 Conclusions 

The study evaluated the ability of CORDEX RCMs to simulate future rainfall trends and 

extreme events for the period 2016-2100. RCMs sufficiently captured annual rainfall cycles 

and spatial distribution and all models managed to represent inter-annual rainfall variability 

and the ensemble of RCMs outperformed individual models. The results indicate a significant 

decrease in future rainfall for all stations at p < 0.05. A general decreasing trend in the 

number of rainy days is projected for the remainder of the century, although the magnitude of 

trend varied with locations. In addition, extreme events are expected to increase in occurrence 

in future, particularly towards the end of the century. Such continued climatic changes are a 

huge threat to wetland species survival and general natural systems functioning. The findings 

are imperative for future conservation and proactive development of sustainable adaptive and 

mitigative strategies essential for the protection of wetlands. 
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CHAPTER 8: SYNTHESIS, CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Synthesis and general conclusions 

This final chapter presents an overview of the key findings and conclusions of the thesis as 

well as recommendations for future studies. Literature shows that wetlands are diverse and 

useful ecosystems to both humans and natural systems, yet they are seriously threatened by 

human related activities and natural perturbations, which compromise their integrity and 

service provision. This study thus aimed to assess and predict the impacts of land use/cover 

and climate changes on the areal extent of wetlands, premised on the accelerated global 

wetland degradation and loss. Chapter two of the study reviewed relevant literature which 

helped reveal the gap of knowledge of concern. To achieve the broader aim and the specific 

objectives of the study, the third chapter of the study investigated spatio-temporal 

temperature and extreme weather events in the entire Mzingwane catchment for the period 

1967 to 2015, using observed monthly temperature data. This was followed by chapter four 

which gave an in-depth analysis of the long-term rainfall characteristics (such as rainfall 

intensity, length of the rain season, rainfall onset and cessation dates, trends and number of 

rainy days in a given season) for the Mzingwane catchment of south-western Zimbabwe, for 

both historic period (1886-1906) and more recent times (1950-2015), based on available daily 

and monthly precipitation series. Having analysed climatic trends, the spatio-temporal 

changes in wetland distribution and areal extent over time were quantified using remote 

sensing techniques for 1984 to 2045 in chapter five and were correlated with climatic trends 

obtained from the third and fourth chapter. Chapter six of the thesis modelled the impacts of 

LU/LC changes on nested wetlands based on hydrologic modelling and GIS approach based 

on the wetland classification results obtained in chapter five. The last substantive  chapter 7, 
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evaluated rainfall and extreme events based on projections from CORDEX-AFRICA data. 

This methodology helped to accomplish the aim and the objectives of the study.  

 

The study concludes that there has been a significant increase in maximum temperatures at 

p<0.005 for 60% of the Mzingwane catchment, while the catchment minimum temperatures 

show an insignificant decreasing trend, extreme dryness has increased in frequency during 

the past two decades. Significant drying trends were noted for the summer rainy months, with 

consequential agricultural drought, while a tendency towards wet months was noted during 

winter months in mountainous regions. Notably, extreme events are recurring with longer 

duration during the current decade than the 20th century.  There is apparently a strong positive 

correlation between temperature and the NINO4 index, while SPEI-1 has a weak negative 

correlation with Tmax but is strongly correlated with Tmin. The SPEI-1 and NINO4 indices 

significantly correlate, which is confirmed by the correspondence of dry years with ENSO 

events. With regards to rainfall variation, the study concludes that the mean annual rainfall 

has not changed from historic (1896-1906) to contemporary times (1950-2015), but the 

number of rainy days (>=1mm) has decreased by almost 34%. The duration of the rain season 

has shortened, with longer intra-season dry spells which are detrimental to crop growth. 

There is a notable decrease in the number of rainy days for the period 1950-2015, which 

might be, in part, attributed to global warming and related climate variation. Results indicate 

a shift in the onset and cessation dates for rainy season. Onset date has moved from first and 

second dekad of October to the third dekad of November and in some cases encroaching into 

the second dekad of December. Cessation dates have shifted into the second dekad of April. 

Thus, a combination of a reduced number of rainy days and shortened rainy season has huge 

hydrologic implications for most natural ecosystems like wetlands. The results based on 

variability indices indicate strong rainfall variability, both in space and time. Seasonal PCI 



168 
 

indicated seasonality for summer and autumn seasons while winter rainfall substantially 

varied. Based on the SPI results, it is apparent that ENSO events play a profound role in 

spatio-temporal rainfall variability. Notably, extreme events seem to be occurring more 

frequent in the current century than during the 20th century. Generally, the results for rainy 

season characteristics show that the rain season is no longer reliable and as such poses high 

uncertainties to farmers which could be addressed through the provision of timely weather 

forecasts for effective planning and supplementary water through irrigation systems.  

 

The study employed remote sensing packages in R program to map and detect changes in 

wetland and land use/cover in the Shashe sub-catchment and results confirm the need for RF 

parameter optimisation for accurate classification results. The results for land change analysis 

show a decline in woodland and wetland cover, which could be attributed to both human and 

climatic influences. Major conversions were from wetland cover to crop field, suggesting 

agricultural encroachment on wetland area which results in lowering the water table and 

consequently reduced wetland area. Wetland area is reported to have decreased by 6% in the 

last 30 years, which amounts to 115.6 hectares loss. Future LULC prediction suggests a 

decrease in wetland area by about 53% by 2045, which is equivalent to 72.68 hectares. 

Therefore, the study concludes that the total wetland area in Shashe sub-catchment is 

decreasing due to cumulative anthropogenic and natural impacts. 

 

In terms of projecting future climatic conditions, Regional Climate Models from CORDEX-

AFRICA data were examined. It was found that RCMs sufficiently captured annual rainfall 

cycles and spatial distribution and all models managed to represent inter-annual rainfall 

variability and the ensemble of RCMs outperformed individual models. The results indicated 

a significant decrease in future rainfall for all stations at p < 0.05, coupled with a general 
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decreasing trend in the number of rainy days, projected for the remainder of the century, 

although the magnitude of trend varied with locations. In addition, extreme events are 

expected to increase in occurrence in future, particularly at the end of the century. Such 

continued climatic changes are a huge threat to wetland species survival and general natural 

systems functioning. This highlights the need to develop relevant sustainable adaptive and 

mitigative strategies for the future. 

 

In summary, temperatures are on a warming trend in Mzingwane catchment while extreme 

events are recurring more frequently during the 21st century. Contemporary mean annual 

rainfall has not changed from that during the historic period 1886-1906. However, the 

number of rainy days has decreased by 34%, suggesting a more concentrated and intense 

rainfall. The onset and cessation dates of the rainy season have shifted during the 21st 

century, resulting in a reduced length of the rainy season. Rainfall variability is strongly 

linked to ENSO phases. Wetlands in the Shashe sub-catchment have significantly decreased 

areal extents in the last 30 years (1984-2015) and are predicted to continue shrinking up to 

2045. LU/LC changes modify wetland hydrology which consequently influences wetland 

area. Downscaled RCM projections suggest a decreasing trend in both future rainfall and 

number of rainy days, while future extremes are expected to increase in occurrence, although 

the severity will vary in space and time. Therefore, further work should be done on the 

impacts of climate and anthropogenic changes on other wetland dynamics such as wetland 

vegetation, water levels, wetland pollution and invasive species. 

 

The study was buttressed by the combination of two major wetland stressors; climate and 

land use/land cover. The catchment approach was most appropriate for catchment level 

modelling while the prediction of both future climates and land cover provided a strong 



170 
 

foundation for the development of future proactive adaptation and mitigation strategies. 

However, the study was limited by inadequate spatial distribution of meteorological station 

particularly for temperature; the study relied on only four complete station data. The other 

limitation was low spatial and spectral resolutions for Landsat imagery of which better results 

could be obtained with high spatial and spectral resolution imagery. 

 

8.2 Recommendations 

Based on the foregoing conclusions, there is a pressing need to develop holistic catchment 

level strategies to address long- and short-term impacts of climate variations and land use 

changes on wetland ecosystems. Such measures will go a long way in curbing further wetland 

degradation and loss under the global environmental change spasm. The study thus 

recommends the following pre-emptive strategies;  

 Adoption of community-based wetland management systems to promote 

proprietorship and encourage sustainable utilisation. This community-based approach 

may entail community level adaptation planning, utilisation of traditional skills, 

knowledge and practices to sustainable wetland management. 

 To scale up wetland rehabilitation and conservation efforts with tighter regulations on 

wetland resource use. 

 Enactment of wetland and land use policies that will foster sustainable utilisation and 

reduce destructive human activities in and around the wetlands.  

 Improving rain water harvesting and storage facilities for the storage of erratic and 

intense rain water for use during the drier period so as to reduce pressure on wetlands 

which will help communities to adapt to changes in climate. 
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 There is also a need to design overreaching climate change policies and programmes 

focusing on poverty alleviation and sustainable development, which will promote 

general socio-economic development and in turn, reduce pressure on fragile wetlands. 

 Any future efforts towards protection of the remaining wetlands should be combined 

with developing a sustainable relationship between social and ecological systems 

which will enable communities to adapt to the effects of changing climates.  
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Plate 1: Wetland Photos (a-d) taken in different parts of Shashe sub-catchment during the 

winter season (May 2015)  

 

Plate 2: Wetland Photos (a-d) taken in different parts of Shashe sub-catchment during the 

summer season (February 2015)  
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