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ABSTRACT

The theoretical and experimental investigation of electron spin-resonance relaxation to

deposit thermal energy into liquid gadolinium-based contrast agents for cancer hyper-

thermia treatment is presented. Previous works suggest that using protons in water are

inadequate, with a thermal deposition rate of approximately 1 ◦C per two years. A novel

component of this research relies on the use of gadolinium-chelated molecules, which are

currently used as contrast agents in clinical MRI scans. The chelating agents, or ligands,

investigated are Gadobenate (MultiHance R©), Gadopentetate (Magnevist R©), Gadoterate

(Dotarem R©) and Gadoteridol (ProHance R©). The gadolinium atom has seven unpaired

electrons in its inner f shell orbital and as a result has a 660 times stronger paramagnetic

response when placed in an external magnetic field. The research tests the hypothesis

that by using an appropriate external homogeneous DC magnetic field, together with a ra-

diofrequency excited resonator, that a measurable amount of thermal energy is deposited

into a liquid gadolinium-based contrast agent. The aim of this research is to ultimately

discover a new cancer hyperthermia treatment. The research theory suggests that a tem-

perature rate of 13.4 ◦C · s−1 can be achieved using the gadolinium-based contrast agents

under certain experimental conditions, and a maximum of 29.4 ◦C · s−1 under more opti-

mal conditions. The temperature rates are calculated using parameter values commonly

found in literature and practice. The simulation and design of the DC magnetic field coil

system is discussed, together with the simulation results and design parameters of the ra-

diofrequency loop-gap resonator. The experimental results and analysis indicate that the

selected contrast agents have varied responses based on their chemical nature and that

only two out of the four contrast agents, Dotarem and ProHance, show a measurable

effect albeit sufficiently small that statistical techniques were necessary to distinguish

the effect from background. A model fit to the data is performed in order to determine

the spin-lattice relaxation time of the contrast agents under the specified experimental

conditions. The model estimate is significantly smaller than the values found in literature

under similar conditions, with a spin-lattice relaxation time τ1e of approximately 0.2 ps

compared to the literature value of 0.1 ns. Although the observed electron spin resonance

heating rate is in the milli-Watt range it is still notably larger (167 000 times) compared

to the heating rate obtained using protons. The low temperature rates suggest that a

more suitable agent or molecule with a larger spin-relaxation time be used, in order to

achieve clinical useful temperature rates in the range of 14 ◦C · s−1.
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NOMENCLATURE

AC alternating current

CAD computer-aided design

DC direct current

EM electromagnetic

EMF electromotive force

EPR electron paramagnetic resonance

FBP filtered back projection

FEM finite element method

FID free-induction decay

LGR loop-gap resonator

MoM method of moments

MRI magnetic resonance imaging

NMR nuclear magnetic resonance

NRMSE normalised root-mean-square error

PTFE polytetrafluoroethylene

RF radiofrequency

SAR specific absorption rate

SE spin-echo

VEP volume equivalence principle

VSWR voltage standing wave ratio
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1 INTRODUCTION

1.1 Background

The various clinical treatments of neoplasms using energy sources such as electromag-

netic, ultrasound and radioactivity have been intensively studied over the last 50 years [1].

The side effects of chemotherapy and other chemical cancer treatments are well docu-

mented [1]. The use of non-invasive cancer therapy is aimed at reducing the adverse side

effects of chemotherapy and highly probable post-surgery complications.

1.1.1 Hyperthermia treatments

The rationale for using hyperthermia (40−44 ◦C) in cancer treatment is based on the fact

that tumour cells have insufficient blood perfusion [2]. The resulting low pO2 and low pH

environment of the tumour cells increases the cytotoxic effect at elevated temperatures [2].

The three main methods of hyperthermia include [2]:

• Local hyperthermia by external or internal power sources,

• Regional hyperthermia by heated fluid perfusion of organs, limbs or body cavity,

• Whole body hyperthermia.

In local hyperthermia the objective is primarily to increase the tumour temperature.

Electromagnetic or ultrasound energy is directed towards the treatment volume [2]. The

aim is to increase the tumour temperature as high as possible without compromising the

surrounding normal tissue and exceeding temperature tolerance limits [2].

A study of the complications encountered in clinical practice, using a percutaneous in-

ternally cooled radio-frequency (RF) ablation technique, showed that RF ablation is a

relatively low-risk procedure for the treatment of focal liver tumours [3]. The overall

response rates however due to these hyperthermia techniques is only about 13 % [2].

Superparamagnetic iron oxide nanoparticles

An interesting class of magnetic particles called superparamagnetic iron oxide nanopar-

ticles (SPIONs) show promising features as magnetic hyperthermia theragnostic agents

(both therapeutic and diagnostic). The particles exhibit unique magnetic properties and

remarkable biocompatibility [4].
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The conventional approach of SPION hyperthermia is to submit the patient to elec-

tromagnetic waves in the order of several hundred MHz [4]. Magnetic fluid or SPION

hyperthermia involves spreading magnetic particles across the target tissue followed by

applying an alternating current (AC) magnetic field with adequate strength and frequency

in order to generate heat by magnetic hysteresis losses and Néel relaxation [4].

Heat dissipation using magnetic particles is a result of the delay in the relaxation of the

magnetic moment through either the rotation inside the particle, called Néel relaxation,

or from the rotation of the whole particle, called Brownian relaxation, when exposed to

an alternating magnetic field with comparatively shorter reversal times [4]. The amount

of heat dissipated is given by

P = µ0χ′′fH2, (1)

where P is the thermal power, µ0 the magnetic permeability of free space, χ′′ the imag-

inary part of the AC magnetic susceptibility and H the AC magnetic field strength [4].

SPIONs as a therapeutic agent however remains a challenge due to the difficulty in par-

ticle concentration in the tumour tissue, which results in a relatively low-temperature

increase [4].

High-intensity focused ultrasound

High-intensity focused ultrasound (HIFU) relies on the same principles as conventional

ultrasound. If the ultrasound beam however is focused and has sufficient energy then it

is possible to cause tissue necrosis. The first real evidence that ultrasound could be used

therapeutically was introduced in 1942 [5]. Research into HIFU as a tool for neurosurgery

continued from the 1950s to 1960s but limitations in technology impeded progress [6]. A

typical set-up for lesion production using high intensity focused ultrasound is shown in

Figure 1.1.

SkinCurved Transducer

Target Tissue
e.g. liver

Tumour

Necrosis

Figure 1.1: Illustration of lesion production using high intensity focused ultrasound.
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Ultrasound is a mechanical vibration above that of human hearing (16 kHz), with diagnos-

tic ultrasound typically in the frequency range of 1− 20 MHz [6]. The ultrasound energy

causes tissue damage through two mechanisms, namely: mechanical-to-heat conversion

and cavitation. The former mechanism occurs as the ultrasound propagates through the

tissue, and if the rate of heating exceeds the rate of cooling a local temperature rise will

occur [6]. The latter mechanism occurs when the ultrasound energy creates bubbles that

implode, which generates excessive amounts of heat.

Coagulative necrosis occurs typically above a threshold of 56 ◦C, which causes cell

death [6]. The cooling effect of blood perfusion limits other forms of hyperthermia treat-

ments but is practically eliminated by HIFU, which currently can raise tissue tempera-

tures to 80 ◦C for exposure times under 3 s [6]. HIFU therefore serves as a benchmark

for this research with a temperature rate of 14.3 ◦C · s−1.

Using alternative energy sources to ablate tumours has become popular from these suc-

cessful hyperthermia technologies such as SPIONs and high-intensity focused ultrasound

(HIFU) [6]. It is interesting to note that ultrasound, which has been primarily viewed

as a diagnostic technology, can be altered to form a successful therapeutic technology.

The idea that a diagnostic technology could be transformed into a therapeutic technology

stimulated this research.

1.1.2 Spin-resonance heating

The central idea of this study is to use magnetic resonance imaging (MRI), or spin-

resonance, as a therapeutic hyperthermia treatment of neoplasms. The mechanism of

using spin resonance to deposit thermal energy into a paramagnetic substance is illus-

trated in Figure 1.2.

Source Spin System

HeatPhotons

(B1)

Lattice Surroundings

Sample

Heat

Figure 1.2: Thermal energy deposition using spin-resonance, with the heat capacity of the
spin-system being significantly smaller than that of the lattice. Adapted from Weil [7].
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A potential benefit of this technology is the increased confinement of heat deposition using

spatial frequency selective RF pulses to excite the spin-system. The inherent duality of

the technology also allows for thermal image acquisition during treatment which can be

used to monitor the heat distribution in the surrounding tissue.

An investigation into MRI localized tissue heating using the spin relaxation of protons

in water was performed in 1984 by Parker [8]. The Parker 1984 paper investigates the

feasibility of using magnetic resonance of nuclear spin particles as an alternative heating

modality. Parker showed using the power density at large (spin-saturated) rf magnetic

field strengths, that it would take approximately two years to raise a 1 ml sample of water

by one degree Celsius.

A derivation of the equations, as performed by Parker [8], is provided. The net-rate of

energy absorption into the nuclear spin-system is given by

Prf = ~ω0wpn, (2)

=
n0~ω0wp

1 + 2wpτ1

, (3)

where Prf is the energy density transfer rate from the spin system into the liquid sample,

~ = 1.0546×10−34 J · s is the reduced Planck’s constant, ω0 the Larmor frequency, wp the

proton RF stimulated emission and absorption probability, n0 the steady-state population

difference between the two spin-states and τ1 = 0.1 s the proton spin relaxation time.

The proton transition probability wp is proportional to square of the RF field. Using the

fact that ~γB0 << kT , the Boltzmann distribution reduces to

n0 =
N~γB0

2kT
, (4)

where the proton density N = 0.66× 1023 protons ·ml−1, the proton gyromagnetic ratio

γ = 2.6752 × 108 s−1 · T−1, B0 = 1 T is the clinical MRI direct current (DC) magnetic

field density, k = 1.38 × 10−23 J ·K−1 and the body temperature T = 310 K. Under

spin-saturation i.e. large RF excitation magnetic fields, Equation 3 is reduced to

Prf =
Nγ2

~
2B2

0

4kTτ1
, (5)

Prf
∼= 3× 10−9 B2

0

τ1
J · s−1 ·ml−1, (6)

The impractical heating rate using protons necessitates investigation for suitable spins.
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1.2 Thesis Structure

The hypothesis, layout and structure of the thesis is as follows:

1.2.1 Hypothesis

It is hypothesised that electron spin-resonance, instead of proton-spin resonance, can be

used to deposit a measurable amount of thermal energy into a liquid. The theoretical

calculations, simulations and measurements of the temperature rises in paramagnetic

gadolinium-based contrast agents due to electron spin-resonance, are the main contribu-

tions of this research.

1.2.2 Layout

Chapter 2 covers the review and details of the theories behind magnetism and spin-

resonance which are used in this research. The fundamental physics of spin-resonance

are covered with important parameters and terms discussed. The magnetic and spin-

resonance properties of gadolinium are presented in this chapter, in order to illustrate

gadolinium’s unique physical properties.

Chapter 3 outlines the application of spin-resonance theory to calculate the predicted

temperature rates in gadolinium-based contrast agents. The theory and estimated tem-

perature rates are used as a basis for the design and procedures which are carried out in

experimentation.

Chapter 4 describes the simulations and models used to characterise the performance of

the various components used in experimentation. The design and simulation results of

the DC coil system, resonator and sample-container are covered in this chapter.

Chapter 5 lists the various components that were custom-built and purchased for use

in the experiments. The characteristics of the components and their performance is

measured and presented in this chapter.

Chapter 6 presents and discusses the experimental results. The statistical and descriptive

analysis is discussed in this chapter. The interpretation of the results is covered.

Chapter 7 concludes and summarises the research findings based on the presented theory

and experimental procedures. The chapter also suggests future work and improvements

to be made in order for the research to become a practical and viable technology.
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2 BACKGROUND THEORY

A brief introduction to the physics of magnetism and the different types of magnetic

materials is presented. The spin-resonance phenomena of paramagnetic materials with

the focus on gadolinium is covered. The relaxation pathway involved with spin-phase

decoherence and energy exchange of the spin-lattice system is detailed.

2.1 Magnetism in Matter

When a magnetic substance is placed in an external magnetic field with intensity H ,

the internal microscopic magnetic moments of the material respond accordingly, with the

response given by

B = µ0 (H + M) , (7)

where µ0 is the magnetic permeability of free space and M is the internal volumetric

magnetic moment. The types of magnetic materials are classified according to their

susceptibility χ by the following equation

M = χH. (8)

2.1.1 Diamagnetism

Diamagnetic materials are those which have a negative susceptibility and repel the applied

magnetic field, with water being a notable diamagnetic material. The other common

type of magnetic materials are ferromagnet and ferrimagnet, which require no externally

applied field to remain magnetised [4].

2.1.2 Ferromagnetism

Ferromagnetic materials generally have a high magnetic susceptibility and noticeably

large residual magnetisation after the removal of the applied field [9]. The microscopic

magnetic domains characteristic of ferromagnetic substances like iron are created due to

long range ordering of the electron spins. The quantum mechanical interaction is able to

order magnetic moments of neighbouring atoms over a large number of atoms [9].
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2.1.3 Paramagnetism

Paramagnetic substances become magnetised only when there is an externally applied

magnetic field, with χ in the range of 10−6 − 10−1 [9]. In 1895 Curie showed that the

magnetic susceptibility, for a certain class of substance, is given by

χ =
C

T
, (9)

where T is the absolute temperature and C is called the Curie constant. Substances

which obey this law to a first approximation are termed normal paramagnets. This type

of susceptibility however is now recognised only for substances that contain permanent

magnetic dipoles, and in fact not all paramagnetic substances obey Curie’s law. An

example of the types of materials and their temperature dependence is shown in Fig-

ure 2.1 [10].

χ

Pauli Paramagnetism

T
Diamagnetism

χ−1

T

Ideal Paramagnetism

0

0

χ−1

T

Ferromagnetism

0
TC

M

(a)

(b)

(c)

Figure 2.1: Temperature dependence of magnetic susceptibility χ and magnetisation M
in different magnetic materials. Adapted from Buschow [10].

The rare earth 4f transition ions when placed in solution usually form a close approx-

imation to the ideal paramagnetism [9]. The rare earth ions when in solution are also

likely to behave as if they were approximately free, usually termed quasi-free ions [9].
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Curie’s law

A brief derivation of Curie’s law is provided in order to illustrate the properties of para-

magnetic substances and also to obtain the Curie constant C. The derivation follows

that of which is provided by Morrish [9]. The model supposes that there is a volume of

gas with N paramagnetic atoms per unit volume, with each atom having a permanent

moment µ.

The thermal motion of the atoms ensures that on average the net magnetic moment of the

gas is zero. When an external magnetic field is applied the dipoles will tend to align with

the field but this alignment will also be opposed by thermal agitation. It is also assumed

that no other interaction between the atomic dipoles exists, such that each dipole only

responds to the external field.

Using this model together with Boltzmann statistics the net magnetisation per unit vol-

ume is calculated. The first case to consider is for wide multiplets compared to kT

i.e. EJ ′ − EJ ≫ kT , which is equivalent to assuming that all of the atoms are in their

ground state given by J . According to quantum mechanics the permanent atomic mag-

netic moments can only have discrete components mJgµB in the field direction, where

mJ = J, (J − 1) , ...,− (J − 1) ,−J . The potential energy of the dipole in this field is

∆E = −mJgµBB0, (10)

which when substituted into the Boltzmann factor gives e
mJ gµB B0

kT . The net magnetisation

is therefore given by

M = N

+J
∑

−J

mJgµBe

(

mJ gµB B0
kT

)

+J
∑

−J

e

(

mJ gµBB0
kT

) , (11)

The exponential ex is approximated as ex ≈ 1 + x if x ≪ 1. Under normal laboratory

conditions this is valid since mJgµBB0 ≪ kT . Equation 11 can therefore be approximated

as

M ≈ NgµB

+J
∑

−J

mJ

(

1 +
mJgµBB0

kT

)

+J
∑

−J

(

1 +
mJgµBB0

kT

)

, (12)
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with the terms of the form
∑+J

−J mJ equal to zero, and

+J
∑

−J

1 = 2J + 1, (13)

+J
∑

−J

m2
J =

J (J + 1) (2J + 1)

3
. (14)

The result of which is

M =
Ng2J (J + 1) µ2

BB0

3kT
, (15)

with the molar susceptibility given by

χ =
Ng2J (J + 1) µ2

Bµ0

3kT
, (16)

and the following expression for the Curie constant

C =
Ng2J (J + 1) µ2

Bµ0

3k
. (17)

There is good agreement between theory and experimental results particularly for the

rare earth ions both in solution and salt form at room temperature. An example is the

gadolinium ion Gd3+ which has an effective Bohr magneton number peff = 7.94 [9]. The

effective number for the ground state of gadolinium can obtained by substituting J = 7
2

and g = 2 into the defining equation

peff = g [J (J + 1)]
1
2 , (18)

which results in

peff ≈ 7.94. (19)

The experimental result for gadolinium is peff = 8.0, which shows that there is sat-

isfactory agreement between theory and experiment. In fact, when corrections for the

multiplet structure are taken into account the value obtained, by Van Vleck and Frank,

is also peff = 7.94 [9].
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Super-paramagnetism

In nano-sized (5 − 20 nm) ferromagnetic and ferrimagnetic particles there exists a form

of magnetism called super-paramagnetism. A super-paramagnetic substance differs from

ferromagnetic and ferrimagnetic materials, as it is able to transition from a paramagnetic

state well below the Curie temperature [4]. The particles are much smaller than the

single-domain limit; a limit in which the domain walls remain absent [4].

The super-paramagnetic nanoparticles have two main types of relaxation processes, Néel

and Brownian relaxation [4]. The Néel relaxation time characterises the magnetisation

return time to equilibrium after a perturbation. The Brownian relaxation time char-

acterises the viscous rotation of entire particles [4]. Néel relaxation is preferred as the

heat dissipation mechanism as it does not depend on the viscosity of the local environ-

ment [4]. The particles also exhibit an optimum relaxation time to achieve a maximum

specific absorption rate [4].

2.2 Magnetic Resonance

2.2.1 Paramagnetic resonance

Precession of a magnetic dipole

To achieve a conceptual understanding of resonance and the two relaxation effects in

paramagnetic substances, it is useful to consider a system of dipoles in an applied static

magnetic field B0. If a dipole of moment µ has an intrinsic angular momentum J , then

the moment will precess about the applied field B0, as illustrated in Figure 2.2.

J

θ

J′

|J| sin θ

ωp

B0

∆J

Figure 2.2: Illustration of a dipole moment µ precessing about a static magnetic field B0.
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The magnetic dipole moment is related to the intrinsic angular momentum by

µ = ge

qe

2me
J = γJ, (20)

The precession angular velocity ωp, which is commonly known as the Larmor frequency,

is derived using the torque τ associated with the change in angular momentum, as shown

by the following:

∆J = Jωp∆tsinθ,

τ =
dJ

dt
= ωpJsinθ,

τ = µB0sinθ,

⇒ ωp =
µ

J
B0 = γB0. (21)

Zeeman energies

The Zeeman energies are the observed spectral line shifts of a particle in an applied

external static magnetic field. The energy shifts occur due to the interaction between

dipole moment µ of the particle and the applied external magnetic field B0. The angular

momentum, and therefore magnetic moment of an electron, is quantised which leads to

a quantisation of energy levels U given by

U = geµBmSB0, (22)

where ge is the free-electron g-factor, µB the Bohr magneton and mS the secondary spin

quantum number. A single unpaired electron has only two mS values, +1
2

and −1
2
, which

results in only two magnetic moment components about the z-axis µz = ±geµB [7].

Transitions between the Zeeman energy levels can be induced by an alternating magnetic

field, usually called the nutation field, B1 which has the same precession frequency as

the magnetic moment. Using the relationship between energy and frequency, the Larmor

precession is:

∆U = ~ω0 = geµBB0, (23)

ω0 = γB0, (24)

where γ is the gyromagnetic ratio and ω0 the Larmor frequency. A selection rule, |∆mS| =
1, is also associated with the type of transitions that can occur, even for systems with
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S > 1
2
. The selection rule comes from the fact that photons have only one unit of angular

momentum and must abide to the conservation of angular momentum [7].

2.2.2 Ferromagnetic resonance

A patent describing the use of ferromagnetic resonance on gadolinium doped yttrium

iron garnet (YIG) nanoparticles as intracellular hyperthermia agents is of particular in-

terest [11], as it illustrates the optimization problem between linewidth of the sample

and saturation power. That is, the smaller the linewidth the more spatial resolution is

obtained at the cost of lower power levels in order to avoid spin population saturation.

The particles described in the patent are about 20 − 50 nm in size, and exhibit a self

regulating phenomena when excited with rf pulsed radiation power. There are many

benefits of this technology as shown in the patent by performing a calculation using a

YIG nanopowder. The research presented however is focused on the novel use of electron

spin resonance in paramagnetic substances and their associated spin heating properties.

2.3 Electron Energy Levels of Gadolinium

Gadolinium has some remarkable properties which make it an applicable substance for

hyperthermia treatments. Gadolinium has an exceptionally large magnetic moment and

a Curie temperature around 300 K. These magnetic and thermal properties of gadolinium

are explained in detail.

2.3.1 Term symbol

A brief explanation on Hund’s rules is provided so as to explain the ground state magnetic

moment of Gadolinium. Hund arrived at three rules for predicting the magnetic moment

of free atoms, or ions, in their ground states [9]. The term symbol, or Russell-Saunders

term symbol, is an abbreviated description of the angular momentum quantum numbers

for a many electron atom. There exist term symbols for each energy level of an atoms

given electron configuration. The generic term symbol is given by

2S+1LJ , (25)

where S is the total spin quantum number, L is the total orbital angular momentum

number and J is the total angular momentum number. The Hund’s rules are stated as
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1. The term symbol with maximal multiplicity lies lowest in energy,

2. Given a multiplicity, the term with the largest L lies in the lowest energy,

3. For atoms with less (more) than half-filled shells, the lowest (highest) J lies in the

lowest energy.

The first rule follows from Pauli’s exclusion principle in that when the electrons are close

together (opposite spins) they shield each other more effectively from the nucleus which

leads to a higher energy state. Thus, when the spins are parallel (higher multiplicity) the

electrons will be further apart due to antisymmetry in space which leads to less shielding

and a lower, more bound, energy state.

The second rule is permitted by rule 1 and from the basis that for electrons orbiting in

the same direction they interact less often than when moving in the opposite direction.

The reduced interaction between the electrons moving in the same direction leads to a

lower, more bound, energy state.

The third rule is formulated from the spin-orbit coupling, which is that when the spin

momentum S and angular momentum L are in opposite direction the interaction energy

L · S is negative and a minimum.

There exists good agreement between experiment and theory for the rare earth ions,

which is mainly due to the insensitivity of the 4f shell electrons to the neighbouring

atoms caused by the shielding of the outer valence electrons. Gd3+ has been shown to

follow Curie’s law [9].

Using Hund’s rules one can find the term symbol for Gadolinium in its ground state

1. S = 7× 1
2

= 7
2
,

2. L = 3 + 2 + 1 + 0− 1− 2− 3 = 0

3. J = L + S = 7
2

Which leads to the following term symbol 8S 7
2

Landé formula

The Landé formula for the splitting factor is given by

g = 1 +
J (J + 1) + S (S + 1)− L (L + 1)

2J (J + 1)
. (26)
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A derivation is provided in order to help understand Equation 26. The Landé g-factor

arises from the geometry of the vectorial magnetic moments and their consequential

interaction energies. The magnetic interaction energy between a moment and external

field B0 is

∆E = −µ ·B0. (27)

The orbital and spin magnetic moment is given by

µorbital = − qe

2m
L, (28)

µspin = −ge

qe

2m
S, (29)

where the electron spin g-factor has value of approximately 2. The spin magnetic moment

is thus approximately twice that of the angular magnetic moment. The interaction energy

can therefore be written as

∆E =
qe

2m
(L + 2S) ·B0, (30)

The vector model of the angular momentums is shown in Figure 2.3.

J

B

L

S

mj~

Figure 2.3: Vector model of precessing magnetic moments.

The scalar product in Equation 30 is evaluated by taking the total angular momentum

J as the coordinate axis. The spin and angular momentum are projected onto the J axis

∆E =
qe

2m

(L + 2S) · J
J

· J ·B0

J
. (31)
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Evaluating the dot products in Equation 31 leads to the following expression

∆E =
qe

2m

(L2 + 2S2 + 3L · S) mJ~B0

J2
, (32)

Given the law of cosines the remaining dot product in the above equation can be written

as

3L · S =
3

2

(

J2 − L2 − S2
)

, (33)

which when substituted into Equation 32 leads to

∆E =
qe

2m

(3J2 − L2 + S2) mJB0

2J2
= gLmJµBB0, (34)

where µB is the Bohr magneton and gL is the Landé g-factor. The Landé g-factor is

simplified to

gL = 1 +
J (J + 1) + S (S + 1)− L (L + 1)

2J (J + 1)
. (35)

Using the term symbol for gadolinium with the above equation, the Landé g-factor is 2.

2.3.2 Zero-field splitting

Paramagnetic ions are by no means isolated, they are surrounded by an agglomeration

of diamagnetic ions, with distances of order 0.2− 0.3 nm [12]. The charged ‘ligand’ ions

produce a strong electrostatic field (‘ligand’ field), which interacts with the paramagnetic

ions. The interaction may exceed the spin-orbit interaction in some circumstances. The

problem of modelling this field is complex and is usually regarded in the ‘crystal field’

approach as an additional electrostatic potential which reflects the symmetry of the ions

and their surroundings [12]. The result of this field is to split the levels, which leaves the

groups with relatively small degeneracy.

Gadolinium zero-field splitting

The crystalline field effect on paramagnetic ions in solution is an important phenomena

which can lead to splitting of the degenerate energy levels. The inhomogeneous electric

fields are created by the diamagnetic neighbours of the paramagnetic ions. At the more

ordinary temperatures however the effect on the rare earth ions is so small as to be
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assumed negligible in most cases [9]. Gadolinium has a 4f orbital filled with seven

electrons which are well shielded by the outer electrons. The 4f electrons also have a

small average radius which tends to reduce the crystalline field effect. The effect of the

crystalline field on the splitting of the degenerate levels therefore remains negligible.

2.4 Spin Relaxation

Many experiments have been performed on paramagnetic ions belonging to the 3d group

and Gd of the 4f group. These ions have magnetic dipole moments which are only a

result of the electron spin [9]. There are two different time related effects involved in

electron spin relaxation. The one type of relaxation involves the interaction between the

spins in the spin system, and the other type involves the interaction between the spins

and the vibrations of the surrounding medium, commonly termed the lattice.

The difference between the spin system and the lattice temperature depends on the

thermal contact between the two systems, and ultimately depends on the spin-lattice

interaction [9]. The spin system interacts with the lattice via thermal vibrations, which

are called Debye waves or phonons.

2.4.1 Spin-spin relaxation

The measure of interaction between spins is termed the spin-spin relaxation time τ2 [7].

An example is τ2 =∞ which implies the spins are completely isolated from one another,

a rare case to encounter in practice. The opposite case is τ2 = 0 which implies a strong

connection between the spins and as a result no local variation in spin temperature [7].

The latter case is also not encountered often as it has to do with strongly coupled systems

such as ferromagnetic or anti-ferromagnetic systems [7].

The spins can interact via magnetic dipolar coupling which will not cause an overall

energy change in the system as a result of mutual spin flips. The mutual spin flips do

however affect the lifetime τ1 of each spin [7]. The movement or propagation of the flips

through the lattice is termed spin diffusion, which results in equilibration of the spin

temperature throughout the spin system [7]. The spin-spin relaxation time is therefore a

measure of this equilibration rate.
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2.4.2 Spin-lattice relaxation

The mechanisms by which energy is exchanged between the paramagnetic ions (spin

system) with the electromagnetic thermal reservoir and the phonon radiation bath (lattice

vibrations) are explained. A simplified diagram of the energy flow as shown in Figure 1.2,

adapted from Weil [7], is repeated in Figure 2.4 for clarity.

Source Spin System

HeatPhotons

(B1)

Lattice Surroundings

Sample

Heat

Figure 2.4: Energy flow during a magnetic resonance experiment with the absorbed spin
energy lost as heat to the lattice at an exponential rate. Adapted from Weil [7].

The first reservoir to consider is that of the electromagnetic thermal reservoir. The rate

at which thermal energy is exchanged between the two systems depends on their thermal

capacitances. The following derivation of the spin-lattice relaxation time τ1 follows that

given by Abragam [12].

The initial step is to assume that the thermal capacitance of the surrounding system is

much larger than that of the spin system. The spin system is assumed to be in thermal

equilibrium with the surroundings which are at a definite temperature T0.

An atomic system exchanges energy through transitions between two levels, assuming

there are only two levels (S = 1
2
), the energy difference is written as

∆E = E2 −E1 = ~ω, (36)

The electron can exist in a degenerate state which is lifted once an external field is applied.

Let the number of atoms in the lower and upper energy eigenstates at any given instant

be denoted by n1 and n2 respectively. The lower and upper level states will transition at

a rate proportional to their respective numbers, as shown

−dn1

dt
=

dn2

dt
, (37)

= w↑n1 − w↓n2, (38)
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where w↑ and w↓ are the rate constants at which the lower and upper states transition

respectively. At thermal equilibrium the populations will be at their steady-state values

N1 and N2, which is illustrated by

0 = w↑N1 − w↓N2, (39)

and simplified to

N1

N2

=
w↓

w↑
, (40)

with the transition rate constants given by the Einstein coefficients [7],

w↑ = Bρem, (41)

w↓ = A + Bρem = Bρeme
~ω

kT0 , (42)

where ρem is the radiation density, A the coefficient of spontaneous emission and B the

coefficient of stimulated absorption and emission. The transition rates are substituted

into Equation 40 to give the Boltzmann population ratio

N1

N2
=

(A + Bρem)

Bρem
= e

~ω
kT0 . (43)

The situation when the spin system is not in equilibrium with the radiation bath can be

analysed by using Equation 38

d (n1 − n2)

dt
= −2 (w↑n1 − w↓n2) , (44)

= (w↓ + w↑) {(N1 −N2)− (n1 − n2)}, (45)

which comes from the fact that n1 + n2 = N1 + N2 = N and by using Equation 40. The

solution of Equation 45 is

(n1 − n2) = (N1 −N2) + {(n1 − n2)0 − (N1 −N2)}e− t
τ1 , (46)

where (n1 − n2)0 is the population difference at t = 0, and τ1 is given by

1

τ1
= (w↓ + w↑) , (47)
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expanding the above equation leads to

1

τ1
= A + 2Bρem = Bρem

(

e
~ω

kT0 + 1
)

. (48)

Substituting the electromagnetic radiation density ρem with the Planck’s black body

radiation formula

ρemdω =
~ω3

π2c3

dω
(

e
~ω

kT0 − 1
) , (49)

leads to the well known expression for A and B

1

τ1
=

~ω3

π2c3
B coth

(

~ω

2kT0

)

= A coth

(

~ω

2kT0

)

. (50)

An example is calculated for when ω = 2π×800×106 rad · s−1, and substituted in Equa-

tion 50 results in the ratio A/B of order 10−32. The result illustrates that the spontaneous

emission of radiation is highly unlikely and is dominated by that of stimulated emission.

If ~ω ≪ kT0 then Equation 47 can be written as τ−1
1 = 2w. It is also noted for this range

and given that the coefficient B is not temperature dependent that τ−1
1 varies linearly

against T0.

The second reservoir is considered using the derivation of the spin-lattice relaxation time

τ1 for a two level spin system (S = 1
2
), as provided by Weil [7]. It is shown that for this

two level system that the relaxation time is expressed as

1

τ1

= (Aul + 2Bulρν + w↓ + w↑), (51)

where Aul is the Einstein coefficient for spontaneous photon emission, Bul is the Ein-

stein coefficient for stimulated emission, w↓ and w↑ are the upper and lower transition

probability rates induced by the lattice respectively. Generally under normal labora-

tory conditions, i.e. no power saturation, the transition probability terms w dominate in

Eq. (51).

The relaxation of the spin-system occurs primarily through electron-spin flips induced by

dynamic interactions with the surrounding environment, known as the ‘lattice’ [7]. The

approach of τ1 to zero implies an instantaneous energy exchange between the electromag-

netic reservoir and the lattice via the spin system.
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Considering a two level system with energy levels ~ω = gγB0, the bulk magnetisation M

is written as

M =
1

2
gγ (n1 − n2) , (52)

M0 =
1

2
gγ (N1 −N2) , (53)

which when substituted into Equation 45 leads to

dM

dt
=

1

τ1
(M0 −M) . (54)

The spin-lattice time τ1 also therefore describes the interval it takes the magnetisation

to return to its thermal equilibrium value. A different equation for τ1 is obtained using

a classical thermodynamics approach, as performed by Abragam [12], which solves for τ1

in terms of the specific heat CB of the spin system at a constant field B.

Using the assumption in this approach, which is that the rate of energy transfer between

the two systems is proportional to their temperature difference with constant α, one

obtains the following result

τ1 =
CB

α
. (55)

The equation shows that if the specific heat capacity CB is small and there is good thermal

contact between the systems, α ≫ 1, the result is that τ1 will be small with the system

having a relatively fast spin-relaxation process.

A spin temperature can also be defined for a many level spin system provided that the

population ratio is given by the usual Boltzmann relationship e
~ω

kTs , the condition of which

is met if the spin system is internally equilibrated. The spin-spin interaction achieves this

equilibrium state provided it is fast enough i.e. τ2 ≪ τ1.

There are generally three common types of spin-lattice relaxation mechanisms, namely

the direct, the Raman and the Orbach processes, shown in Figure 2.5. In the direct

process the electron spin is flipped by the absorption or emission of a single phonon with

the same Larmor frequency.
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Figure 2.5: Schematic illustration of the three spin-phonon relaxation processes, where
(i-ii) direct process, (iii-iv) Raman process and (v) Orbach process. (i-ii) A phonon with
frequency ν is absorbed and emitted by spin system respectively. (iii-iv) A phonon with
frequency ωp

2π
±ν is scattered by the spin system respectively. (v) Phonons with frequencies

corresponding to ∆, ∆ − hν energies are absorbed or emitted by direct processes which
cause transitions 1←→3 and 2←→3 respectively. Adapted from Abragam [12].

The Raman process involves the absorption of one phonon followed later by an emitted

phonon, the difference in energy of the phonons being equal to the energy of the spin

transition. The Orbach process also consists of two phonons, however the absorbed

phonon has enough energy to lift the spin to a much higher electronic level such that the

emitted phonon energy corresponds to the difference between the spin and the ground

state [12].
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3 CONTRIBUTING THEORY

The theory describing how electron spin resonance and the spin-lattice relaxation mech-

anism can be used to deposit thermal energy into a contrast agent is presented. The

contrast agent used in the calculations is Dotarem, with a brief section describing how

the chemical properties of the substance contribute to spin-lattice thermal energy depo-

sition. The temperature rates for relatively small and large magnetic RF excitation fields

are calculated.

3.1 Electron Spin Resonance Hyperthermia

Focusing energy in order to locally heat damaged or diseased tissue is typically performed

using magnetic fluids, radiofrequency, ultrasound and nanoparticles [13–15]. High inten-

sity radiofrequency or ultrasound energy is focused using curved transmitters or phased

arrays [16–18]. In magnetic resonance the focusing could be achieved using linear mag-

netic gradients (commonly known as gradient coils) or by focusing the DC external mag-

netic field. The first question however is can a substance under magnetic resonance

conditions achieve a measurable rise in temperature.

The thermal losses and sensitivity of MRI have been well documented with the effects

modelled with high precision [19]. The research field of magnetic resonance imaging has

therefore been focusing mainly on the spectroscopy aspects of the technology. The only

published theoretical investigation into whether or not magnetic resonance of protons can

induce thermal rise in a sample was demonstrated by Parker [8].

As explained by Parker the rate of heat absorption depends on two separate interaction

rates, namely the interaction rate of the rf with the local magnetic moments, and the

rate at which the magnetic moments exchange thermal energy with their surrounding

environment.

Parker derived and showed that the proton thermal energy transfer rate for 1 g of water

in tissue is

dQh

dt
≈ 3× 10−9 B2

0

τ1
, (56)

and using clinical nuclear magnetic resonance (NMR) parameters τ1 = 0.1 s, B0 = 1 T,
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with a heat capacity for water 4.2 J · g−1 ·K−1, results in

dT

dt
≈ 0.7× 10−8 K · s−1, (57)

which approximates to under 1 ◦C every two years. The resultant temperature rise is

clearly not practical even when B0 is increased by an order of magnitude. Also, as B0

increases the rf frequency increases, due to the Larmor precession relationship, which

results in surface heating due to conventional rf absorption [8]. Recently however large

fields of 7 T, at frequencies as high as 300 MHz, have been used for imaging with no

noticeable heating due to the rf surface absorption [20].

The Italian National Research Council and their institute for Applied Physics compiled

an online database for the electromagnetic properties of body tissues from 10 Hz to

10 GHz [21]. The electromagnetic skin depth of fat tissue is halved in the frequency

range from 46 MHz (commonly used in MRI) to 800 MHz. The loss tangent of blood

and fat tissue interestingly decreases by an order of magnitude for the same range of

increasing frequencies.

A natural question arises as to whether or not a different spin resonant particle could

be used, such as an electron, which has a larger magnetic moment and a significantly

smaller τ1 relaxation time compared to that of a proton. The electron has a magnetic

moment which is approximately one thousand times larger than that of a proton, with a

spin-lattice relaxation time, in certain compounds and conditions, approximately a billion

times smaller [9, 22, 23].

The electron has a gyromagnetic ratio γ which is three orders of magnitude larger than

that of a proton. The difference in magnitude is a result of the mass of the particles [29].

The electron being much less massive than a proton results in a much larger gyromagnetic

ratio, and hence a larger magnetic dipole moment. There are also a greater number of

electrons, at an arbitrary external magnetic field strength B0, in a lower energy state

compared to that of protons [12], as shown for the steady-state population ratio given by

N1

N2
= e

~γB0
kT0 . (58)

3.1.1 Electron spin-lattice relaxation time

The mechanism whereby the nuclear spins obtain thermal equilibrium with the surround-

ing bulk material, known as the lattice, is called spin-lattice relaxation. A spin system is
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said to be “informed” of the temperature of the lattice [24]. A steady-state description of

a spin resonance experiment can be thought of as two competing processes, one process

being the establishment of Boltzmann distribution and the other process the disruption

of the spin populations caused by the driving electromagnetic field [25].

At thermal equilibrium there are more particles in a spin-down configuration than a

spin-up configuration, and given that the probability to transition from each state is the

same, it results in a net absorption of energy. Eventually, as the rf power continues to

increase the spin system will saturate resulting in no further energy absorption. Electrons

however, having a much smaller spin-relaxation time, allow for more rf power to be applied

before saturation is reached.

The other advantage of using electrons is that they are significantly smaller, in fact

they are considered point particles, which allows for τ2 ≈ τ1, and results in the energy

absorbed by the electron spin system to be immediately distributed and deposited into

the lattice [26].

3.1.2 Characteristics of Dotarem R©

The DOTA ligand has unique properties compared to other ligands such as DTPA, which

is used in Magnevist. The symmetry and rigidity of the DOTA ligand results in a six-

times longer electronic τ1 time, commonly expressed as τ1e, compared to other linear

structured contrast agents [27]. The longer relaxation time, as shown by the calculations

in this section, increases the effect under investigation. ProHance is a contrast agent which

has a similar structure, and therefore electron spin properties, to that of Dotarem [28].

3.1.3 Continuous-wave excitation

The concern about whether pulsed or continuous irradiation of the sample should be

used is addressed by a paragraph from John A. Weil’s book on electron paramagnetic

resonance [7]:

“Note that with B1 turned off, the photon density ρν is essentially zero, so

that no induced transitions take place. However, the spontaneous photon

emission is enhanced when the spin magnetic moments are in phase (super-

radiant system), that is, while FID is appreciable. [In cw EPR, the spins are

not correlated. Hence most of the energy is lost from the spins goes to the

‘lattice’ of atoms and only some (usually a negligible amount) goes back to

B1 (via incoherent spontaneous emission).]”
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3.1.4 RF power absorbed by a spin-system

The rf power Prf absorbed by a spin-system is derived by Slichter [29], which is

Prf = n0~ω
we

1 + 2weτ1e
, (59)

where we is the induced electronic transition probability and is defined as a function of

frequency given by

we(ω0) =
π

2
γ2B2

1(S + mS)(S −mS + 1)g(ω0), (60)

The secondary spin quantum number mS ranges from −S to S in unit intervals with

g(ω0) representing the Lorentzian line-shape function normalised to unit area [29]. At

the resonant angular frequency ω0 the lineshape function is

g(ω0) =
τ2e

π
. (61)

The parameter τ2e is the spin-spin relaxation time constant and represents the lifetime of

the phase coherence among the spins. Given that the macroscopic electronic transition

probability equation is applicable to substances where all the transitions occur at the

same frequency [12], the states can be summed over all transitions using the following

relation

S
∑

−(S−1)

(S + mS)(S −mS + 1) =
2

3
S(S + 1)(2S + 1), (62)

we(ω0) =
1

3
γ2B2

1S(S + 1)(2S + 1)τ2e. (63)

The steady-state population difference n0 between two spin-states, mS and mS + 1, is

given by

n0 =
2NS(S + 1)~γB0

3kT
. (64)

Substituting Equations 63 - 64 into Equation 59 results in the rf power absorbed by the

spin-system per unit volume as

Prf =
2Nγ2

~
2S(S + 1)B2

0we

3kT (1 + 2weτ1e)
. (65)
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The parameter values for the variables described in Equation 65 are shown in Table 3.1.

Table 3.1: List of parameters used to calculate rf power and temperature rise, with the
electronic spin relaxation times τ1e and τ2e obtained from Rast and Atsarkin [22, 23].

Parameter Value Units

γ 1.7608592× 1011 rad · s−1 · T−1

N 3.011× 1020 number of Gd atoms per ml

~ 1.0545717× 10−34 J · s · rad−1

S 7/2 resultant spin angular momentum

mS 1/2 secondary spin quantum number

B0 30.6 mT

k 1.3806503× 10−23 J ·K−1

T 310.15 K

τ1e,2e 0.1 ns

B1 1.5 mT

we(ω0) 2.93× 108 s−1

The number of spins and relaxation time values are estimated for the Dotarem R© solution,

which has a concentration of 0.5 mmol ·ml−1 and a density of ρv = 1.1753 g ·ml−1.

Solving Equation 65 using the parameter values in Table 3.1 with the unit volume in ml,

yields

Prf = 65.99 W ·ml−1.

Under adiabatic conditions the thermal input-power Pt is equated to the rf spin-power

Prf , with the temperature temporal gradient dT
dt

related by the following

∆Qh = mC∆T, (66)

dT

dt
=

Pt

ρvC
. (67)

Assuming the heat capacity of water C = 4.18 J · g−1 ·K−1 for the Dotarem solution, and

substituting the value into Equation 67, results in a temperature rate of

dT

dt
= 13.43 ◦C · s−1.
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The electron spin-relaxation time τ1e is a critical parameter in the spin-thermal system as

it effectively determines the efficiency at which the absorbed rf energy is converted into

thermal energy within the lattice. The statement that τ1e ≈ τ2e, which is only true for

frequencies below 5 GHz, is validated by Atsarkin et al. [23]. The article shows that for

DOTA type aqueous complexes τ1e varies between 0.1 ns and 1 ns for 100 MHz−10 GHz.

As a result of this range and the selected lower frequency a conservative value of τ1e is

used in Equation 65.

A maximum temperature rate can be obtained using the same parameters in Table 3.1,

as demonstrated in Figure 3.1.
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Figure 3.1: The temperature gradient of DOTA complex as a function of the spin-lattice
relaxation time τ1e.

The maximum temperature rate is significant for tumour ablation as it is comparable to

current non-invasive methods, such as HIFU, which can provide up to 14.3 ◦C · s−1 [6].

The τ1e relaxation time at which this maximum occurs however is nearly an order of

magnitude higher than the τ1e time of current contrast agents. The contrast agents will

therefore most likely need to be redesigned in order to achieve this optimal temperature

rate.
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3.1.5 RF power absorbed by a saturated spin-system

The rf power Prf absorbed by a spin-system, in a different form compared to Equation 59,

as derived by Abragam [24], is given by

Prf =
ω0γB2

1τ2M0

1 + (τ2∆ω)2 + γ2B2
1τ1eτ2e

, (68)

which for a saturated spin-system, i.e. γ2B2
1τ1eτ2e ≫ 1 (B1 ≈ 1 T), is reduced to:

Prf,sat =
B0M0

τ1e

. (69)

The bulk magnetisation M0 for a spin, integer or half integer S, system is given by

M0 =
Nγ2

~
2S (S + 1) B0

3kT
. (70)

The power absorbed by the saturated spin-system is therefore

Prf,sat =
Nγ2

~
2S (S + 1) B2

0

3kTτ1e

. (71)

Using the same parameters shown in Table 3.1, but with B1 substantially increased in

order to achieve saturation and solving Equation 71, yields

Prf,sat = 1192 W.

Once again assuming that the specific heat of the solution is similar to that of water

i.e. C = 4.18 J · g−1 ·K−1, and substituting the value into Equation 67, results in a

temperature temporal gradient of

dT

dt
= 242.6 ◦C · s−1.

Under these saturation conditions the result is significantly more effective compared to

current non-invasive ablation techniques. However, the SAR = 185 GW when using the

specific absorption rate (SAR) derived in section 5.3.2 with the dimensions of the test

capsule and parameters in Table 3.1, for a B1 = 1 T. Further, to achieve such a large B1

value in situ is also a difficult, if not an impossible, task.
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3.2 Aims of Research

The above contributing theory suggests that if the electron spin-system is excited under

the specified conditions that a resulting temperature rise of at least 13.43 ◦C · s−1 would

result.

The theory also suggests that for small spin-lattice relaxation times, τ1e < 1 ns, that the

resulting temperature rate is small and should be approximately linear against time. The

linear relationship is tested and compared to experimental results for further validation

of the theory presented.

It is therefore hypothesised, and tested using appropriate thermometry, that electron

spin-resonance in a clinical contrast agent can be used to deposit a measurable amount

of thermal energy in the substance.

The presented theory, calculations and measurements of the temperature rises in para-

magnetic gadolinium-based contrast agents, due to electron spin-resonance, are the aims

and contributions of this research.

Subsidiary aims

The research requires the design and measurement of the external electromagnetic con-

figuration. The investigation into whether these fields can be obtained practically is

performed. Specifically the magnitude and homogeneity of the DC magnetic field is sim-

ulated and tested, as well as the simulation and indirect measurement of the rf field

magnitude using the observed temperature change of the tested substances.
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4 COMPUTATIONAL SIMULATIONS

The experimental components used in the research are presented. The various designs

and selected parameters are detailed. Electromagnetic and thermal models of the sample

and fibre optic thermometer are compared to experimental data for parameter adjustment

and verification.

4.1 Outline of Experimental Design

The experiment will require the following three major components: external DC magnetic

field, rf excitation and contrast agent. The DC magnetic field is the stationary field

which determines the frequency at which the electrons resonate. The rf source emits

an orthogonal magnetic field, relative to the stationary field, oscillating at the Larmor

frequency. The rf field deposits energy into the contrast agent medium through the spin-

resonance relaxation effect. The thermal measurement of the contrast medium is recorded

using an appropriate thermometry technique.

4.2 DC Magnetic Field Coil System

The electrons in the spin sample have a resonance according to Larmor’s precession

theory, which simply states

ω0 = γB0, (72)

that is to say the electron will precess at a frequency that is directly proportional to the

local DC magnetic field strength. The reality however is that on an atomic scale the

electron is not isolated and is in the presence of other spin particles such as electrons

and nucleons, resulting in a local magnetic field strength which changes from point-to-

point. The distribution of resonant frequencies is thus not homogeneous over the sample

space. The inhomogeneities of the external DC magnetic field can also contribute to this

frequency distribution or what is commonly known as spectrum broadening.

It is therefore advantageous to minimise the inhomogeneity of the external DC magnetic

field as this will help narrow the spectrum and thus allow for the spin sample to resonate

at a single frequency and effectively absorb more power. The strength of the DC magnetic

field is required to be around 30 mT, which means that a relatively large current will

circulate in the coils. The DC coil system and its specifications are unique with no
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company available to supply such a custom apparatus. It was therefore decided that the

coil system be built and tested in-house using the Genmin laboratories at the University

of Witwatersrand.

The design requirement of the coil system is to produce a magnetic field that is practically

homogeneous in a reasonable volume of approximately 15×8×8 cm3. The magnetic flux

density required in this volume should be at least 30 mT, which is equivalent to an H-field

of 24.7 kA ·m−1. Various designs were considered including a spherical 4-coil, 6-coil and

8-coil system [30, 31], as well as a bi-planar 4-coil and 6-coil system [32, 33]. The final,

most effective, design was chosen to consist of eight circular coils placed horizontally with

a common axis so that they circumscribed a sphere as shown in Figure 4.1.

Figure 4.1: Spherical layout of coil-formers used to generate a homogeneous static mag-
netic field.

The chosen design has a superior magnetic field homogeneity compared to the other

designs, as well as a comparatively larger region of homogeneity [30]. The details of the

coils are shown in Table 4.1 with a mechanical drawing shown in Figure 4.2. The number

of turns used for each coil is such that the turns ratio is close to the optimal values

outlined by Pittman and Waidelich [30].

Table 4.1: DC coil specifications and dimensions.

Coil Number of Turns Radius (cm) Vertical Position (cm)

1 268 20.81 ±3.49

2 239 18.53 ±10.08

3 184 14.22 ±15.59

4 109 8.29 ±19.40
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Figure 4.2: Isometric, top, front and side view of the DC coil system (units in mm).

The homogeneity of the DC magnetic coil, which is simulated at 0.032196 %, in a spherical

volume with radius 10 cm, is shown in Figure 4.3. It is assumed that since the sample-

container size is smaller by approximately 0.0061 % than the simulated spherical volume,

that the homogeneity will be sufficient to achieve a desired effect.

Theta-Phi-R B-Field [mT]

31.22240

31.22806

Figure 4.3: Simulation intensity map illustrating the homogeneity of the 31 mT magnetic
field in a diameter of 160 mm.
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The homogeneity of the magnetic field represented as a line-graph is shown in Figure 4.4.
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Figure 4.4: Cartesian plot of the magnetic flux density within a 80 mm radius at 22.5◦

azimuthal increments.

4.3 RF Resonators

The constant rf excitation field B1, with a bandwidth in the order kHz compared to the

spin-system linewidth of MHz, is generated using a resonant cavity in which the sample

is situated. The homogeneity and magnitude of the magnetic field relative to the electric

field are of key importance. A initial design is presented with the final selected resonator

analysed and simulated.

4.3.1 Helical coil resonator

The constraints imposed by the physical dimensions of the test sample in order to obtain

a high DC magnetic field homogeneity, and the selected operational frequency of the

system, leads to a necessary design which uses a small rf cavity as opposed to using

discrete self-resonant components.

The first real design considered, in order to achieve the large magnetic field strengths,

was that of the helical resonator. The helical resonator is shown in Figure 4.5.
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Figure 4.5: FEKO design of the helical resonator.

Design equations

The design equations of the helical resonator, as first described by Zverev [34], are sum-

marised as follows

Z0 =
136 190

df0

, (73)

Nh =
2674

df0
, (74)

Q = 35.9d
√

f0, (75)

where Z0 is the characteristic impedance, d (unit cm) is the mean helix diameter, f0 is

the resonant frequency (unit MHz), Nh is the number of coil helices and Q the quality

factor. Using f0 = 800 MHz and calculating d, Nh and Q for a typical characteristic

impedance of 50 Ω, gives d = 3.4 cm, Nh = 0.98 and Q = 3 457.

The parameter values give some insight into the practical implementation of the device.

It was found after simulations that for a input power of 50 W the helical resonator is

unable to generate 3 mT. The 3 mT is double the amount provided in Table 3.1 due to the

linear polarisation of the helical coil resonator. The resonator also has poor homogeneity

and electric field properties in the sample space and thus another design is considered.
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4.3.2 Loop-gap resonator

A typical loop-gap resonator (LGR) is shown in Figure 4.6.

B1

E

Figure 4.6: Field lines of the loop-gap resonator without shielding.

A list of the advantages, as mentioned by Rinard [35], are

• Large filling factor

• Reasonable physical size for low frequencies

• Large B1 per square root Watt

• Fairly uniform B1 over sample

• Good separation of E and B fields

The experimental investigation into the rf magnetic field homogeneity of the loop-gap

resonator was performed by Ono et al [36]. The research performed by Ono et al, illus-

trates the loop-gap resonator performance in terms of the rf field homogeneity and how

the loop-gap resonator can be adjusted for further improvement.

Design equations

The design equations for the loop-gap resonator have been presented by Rinard [35]. The

inductance of the loop L and capacitance C of the gap are given as
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L =
µ0πr2

z + 0.9r
, (76)

C = ǫrǫ0
(w + t) (z + t)

ngt
. (77)

where r is the inside loop radius, z the length of the loop-gap resonator, ǫ0 the permittivity

of free-space, w gap width, t gap thickness and ng number of loop gaps. The resonant

frequency and resistance of the loop-gap resonator are given by

f0 =
1

2π
√

LC
, (78)

R = 2

√

µ0πf0

σ

(

πr + w
3

z

)

. (79)

The total root-mean-square B1t per square root Watt input power P is calculated using

the following methodology for a single loop

B1t =
φ

A
, (80)

φ = LI, (81)

where φ is the total loop magnetic flux and A the cross-sectional area of the loop. The

circulating current I is given by

I =

√

P

R
. (82)

Combining the set of equations leads to

B1t√
P

=
L

A
√

R
. (83)

The peak circular component of the total magnetic field is given by B1p = B1t√
2
, which

leads to

B1p√
P

=
L

A
√

2R
. (84)
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A proportionality relating the peak magnetic field strength to the loop-gap properties is

derived by Froncisz and Hyde [37],

B1p ∝
√

QP

f0r2z
. (85)

The equation describes how the power incident on the resonator, quality factor and

frequency each affect the magnetic field magnitude. The loop-gap radius r however has

a larger effect compared to the other parameters, and hence another reason for it to be

made small, approximately 10 mm.

The loop-gap resonator, excited via inductive coupling, was designed and simulated in

FEKO R© [38], as illustrated by the computer-aided design (CAD) diagram in Figure 4.7.

The loaded loop-gap resonator was also simulated in FEKO using the various tested

samples. In order to understand how the samples interact with the LGR a detailed

model of the samples is presented.

Shield

RF excitation feed

Sample

Loop-gap resonator

Gap

Figure 4.7: The loop-gap resonator as designed in FEKO.

4.4 Electromagnetic & Chemical Properties of the Sample

The electromagnetic properties of a material are given by the relative complex mag-

netic permeability µ̂r(ω) and the relative complex permittivity ǫ̂r(ω) [39]. The relative

permeability and permittivity can be expanded as

µ̂r(ω) = µ′
r(ω)− jµ′′

r(ω), (86)

ǫ̂r(ω) = ǫ′
r(ω)− jǫ′′

r(ω). (87)

The real part (′) represents the energy storage ability of the material, whereas the imagi-

nary part (′′) represents the energy loss associated with the material. The time averaged
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power density loss is derived using the Poynting relation [39], and is given by

Pd = −ω

2

∫

V
(µ0µ

′′
rH ·H∗ + ǫ0ǫ′′

rE · E∗) dv − 1

2

∫

V
σcE · E∗dv, (88)

which is further compacted into

Pd = −ω

2

∫

V
(µ0µ

′′
rH ·H∗) dv − 1

2

∫

V
σtE ·E∗dv. (89)

The conduction term is given by σt = σc + σd, with the term σd = ωǫ0ǫ
′′
r representing

the equivalent “conductivity” due to the dipole relaxation losses. The electromagnetic

properties, obtained from literature [39], of various liquid samples are shown in Table 4.2.

Table 4.2: Complex permittivity and permeability of various test substances with the
MRI contrast agents at 0.5 M vial concentration, sourced from [39].

Solution ǫ′
r σt|3GHz(S/m) σc (S/m) σd|3GHz(S/m) µ′

r µ′′
r

Water 77.76 2.098 0.0002 2.098 1.087 -0.0001

Saline∗ 75.25 3.456 1.4100 2.046 – –

Magnevist 49.75 3.320 0.568 2.752 1.474 0.0088

Dotarem 56.65 3.402 0.435 2.967 1.276 0.0029

ProHance 60.54 2.857 0.0504 2.807 1.690 0.02

The results show that the lowest conducting σc contrast agent is ProHance due to the

fact the other two contrast agents are known to be anionic compounds: Magnevist is

Gd[DTPA]2− and Dotarem Gd[DOTA]− [39]. The chelate of the compound is therefore

responsible for the increase in σc not the charge number of the gadolinium ion [39]. The

slight increase in σc of ProHance is a result of the small amount of excipients found in

the contrast agent medium [39]. It is therefore noted that Magnevist and Dotarem are

relatively weak electrolytes whereas ProHance is non-electrolytic.

The values, besides that of σc, in Table 4.2 are only valid at 3 GHz, however assuming

a square dependence on frequency the values can be adjusted accordingly. The square

dependence is assumed from the statement by Ogunlade [39], which is that σd of water

is increased from 0.0024 S ·m−1 at 100 MHz, to 0.243 S ·m−1 at 1 GHz. The σd there-

fore of water, saline, Magnevist, Dotarem and ProHance is 0.181 S ·m−1, 0.176 S ·m−1,

0.237 S ·m−1, 0.255 S ·m−1 and 0.241 S ·m−1 at 880 MHz respectively.

∗Physiological saline 9 g · l−1 NaCl
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The total conductance σt therefore of water, saline, Magnevist, Dotarem and ProHance

is 0.1812 S ·m−1, 1.586 S ·m−1, 0.805 S ·m−1, 0.6903 S ·m−1 and 0.2914 S ·m−1 respec-

tively. The total conductance of saline for example is 1.586 S ·m−1 at 880 MHz, whereas

for blood is 1.529 S ·m−1 at 880 MHz [21], which further validates the assumption of

square-dependence.

4.4.1 Magnetic loss

The magnetic loss of the medium is represented by µ′′
r and as shown in Table 4.2 is

relatively small compared to the total conductive σt loss at 3 GHz. The reason, as

described by Ogunlade [39], is because the magnetic loss mechanisms are generally low

frequency phenomena in the range of kHz-MHz. The magnetic properties are therefore

not included in the modelling due to this fact and also given that the operating frequency

is in the range of MHz-GHz.

4.4.2 Sample permittivity

The relative permittivity ǫ′
r, although not explicitly given in Equation 88, has a significant

affect on the power loss. The 0.5 M contrast agents Magnevist, Dotarem and ProHance

contain 469 g, 376.8 g and 279.4 g of solute in 1 l of solvent respectively [39]. A higher

solute concentration results in a larger number of displaced water molecules for a given

volume. Together with the high permittivity of water, substances like ProHance and

Saline have a resulting larger ǫr.

The larger permittivity in ProHance and Saline will in effect reduce the electric field and

corresponding power loss. The conclusion is that substances like ProHance are better

suited for testing purposes as both its conductivity σc and permittivity ǫ′
r result in low

losses, both induction and electric.

4.4.3 Contrast agent structure

The development of contrast agents is both interesting and important in terms of their

chemical structure and properties. The following information with regard to ProHance,

compared to the other contrast agents, can be obtained from Tweedle [28]. The chelate

structures of the contrast agents used in experimentation are shown in Figure 4.8.
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Figure 4.8: Chelate structures of the contrast agents used in the study [28].

Compared to the other contrast agents ProHance is the only molecule having both non-

ionic and macrocyclic properties. The non-ionic property of ProHance allows for greater

osmotolerance, dosing and formulation flexibility. The macrocyclic property gives the

molecule greater thermodynamic stability. The relative chemical properties of the con-

trast agents are compared in Table 4.3. The extra NMG+ (N-methylglucammonium)

molecules used to neutralise the chelates of Dotarem and Magnevist results in a higher

solution conductivity, osmolality and viscosity.

Table 4.3: Contrast agent conductivity at 20 ◦C, molar osmolality and viscosity at 37 ◦C,
sourced from [28].

Agent Conductivity Osmolality Viscosity

(S · cm2/mmol) (Osmol/kg) (cP)

ProHance 1 0.63 1.3

Omniscan 5.5 0.65 1.4

Magnevist 117 1.96 2.9

Dotarem 54 1.35 2.0

MultiHance – 1.97 5.3
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4.5 Specific Absorption Rate Simulation

The specific absorption rate is simulated in the electromagnetic (EM) simulation soft-

ware FEKO [38]. FEKO has a hybrid finite element method (FEM)/method of moments

(MoM) technique which optimises the simulation performance when the modelled system

has a mixture of homogeneous metal structures (antennas, resonators etc) and inhomo-

geneous complex dielectric structures (humans, test samples etc). The SAR is defined

as

SAR =
∫

sample

σ(r)|E(r)|2
ρ(r)

dr, (90)

and has units of W · kg−1. An example is that mobile cell phones in Europe have a

SAR limited to 2.0 W · kg−1 averaged over 10 g of tissue. Equation 90 shows that if the

conductance is decreased then the SAR will decrease linearly.

The simulation results for the various test solutions, which are shielded with copper strips,

are shown in Table 4.4 using the MoM/multilevel fast multipole method (MLFMM) with

volume equivalence principle (VEP) solver, and Table 4.5 using the FEM solver. The

tabulated results are for a transmitted power of 50 W, with the source voltage standing

wave ratio (VSWR) given and the volume averaged SAR measured over the entire sample.

Table 4.4: Volume averaged SAR simulation results for shielded substances using the
MoM/MLFMM VEP dielectric setting with 50 W input power.

Solution f0 (MHz) VSWR E (kV/m) 2B1 (mT) SAR (W/kg)

Water 819.65 1.23 7.91 3.27 18,310

Saline 819.30 1.50 6.35 2.50 100,520

Magnevist 820.87 1.16 7.33 2.70 64,180

Dotarem 820.62 1.10 7.92 2.77 58,606

ProHance 818.19 1.12 9.45 3.10 31,740

Table 4.5: Volume averaged SAR simulation results for shielded substances using the
FEM dielectric setting with 50 W input power.

Solution f0 (MHz) VSWR E (kV/m) 2B1 (mT) SAR (W/kg)

Water 841.18 1.22 9.05 3.24 18,890

Saline 839.50 1.69 6.33 2.34 116,360

Magnevist 840.53 1.24 8.62 2.62 67,550

Dotarem 841.42 1.14 8.40 2.71 54,606

ProHance 838.55 1.10 9.56 3.07 33,900
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The input power levels irradiating the sample, shown in Table 4.6, are similar to those

used in experimentation. In the experimental results section the transmitted power is

measured using the forward and reverse power built-in detection system of the rf amplifier.

The temperature rise of each sample due to the SAR, assuming a specific heat value of

water C = 4.183 J · g−1 ·K−1, is presented in Table 4.6.

Table 4.6: Average of FEM and MoM SAR with resulting temperature rise for shielded
substances using power levels comparable to experimentation.

Solution P (W) 2B1 (mT) SAR (W/kg) ∆T
∆t

(◦C/s) ∆T
P ∆t

(◦C/s/W)

Water 1.75 0.607 853 0.204 0.117

Saline 2.01 0.464 4,200 1.01 0.502

Magnevist 1.91 0.516 1,610 0.384 0.201

Dotarem 1.91 0.536 2,162 0.517 0.271

ProHance 1.91 0.603 1,160 0.277 0.145

The results show that a reasonable magnetic flux density, B1 ≈ 0.3 mT in the samples

is obtained for low-input powers. Water being less conductive than the other substances

has a relatively low SAR value as compared to Saline. Although the SAR values are high

for each substance the effect could be minimised by using a pulsed rf input or by using

appropriate shielding around the patient.

It is noted that the purpose of this research is to demonstrate a measurable effect of

electron spin resonance heating in well-known paramagnetic liquid substances, with de-

velopments toward a practical technology left for future work.

4.5.1 T1 fibre optic thermometer model

A fibre optic thermometer is used in the experiments to measure the temperature rise

in the sample. The fibre optic thermometry allows for the temperature measurement to

be performed within a large rf field and high voltage environment as the probe contains

no metal elements [40]. The dimensions and materials of the fibre optic are shown in

Figure 4.9.

The probe dynamics are modelled and compared to measurement using a standard step

response. The step up and step down response is performed by clasping the last 5 mm

of the probe between the fingers until steady-state is reached and then released. The

fibre optic is modelled as a thermal circuit as shown in Figure 4.10. The subscripts of

the circuit elements relate to the probe materials (t-PTFE coating, p-polyimide), fingers

(s-skin) and the ambient conditions (a-air).
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PTFE

Polyimide

1.25 mm
0.35 mm

5 mm

Figure 4.9: Cross-sectional and side view of the Neoptix T1 fibre optic probe.

As shown in Figure 4.10 the resistor Rs, as well as the voltage source, is switched at a

later time during the experiment to achieve the ambient step down response when the

fingers release the probe.

Rs ↔ Ra Rt Rp

+

− Ct Cp
Ts ↔ Ta

Figure 4.10: Thermal circuit equivalent model of the Neoptix fibre optic thermometer T1
probe.

The thermal resistors in the circuit model are calculated using the following formulae

Rs =
ls

Asks
, (91)

Ra =
la

Aaka
, (92)

Rt =
lt

Atkt

, (93)

Rp =
lp

Apkp

, (94)

where l is the thermal conductor thickness, A is the cross-sectional area and k the thermal
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conductivity. The differential equations for the thermal system are as follows

Qt = mtCtTt, (95)

Qp = mpCpTp, (96)

Q̇t =
Ts − Tt

Rs + Rt
, for t ≤ 62 s, (97)

Q̇t =
Ta − Tt

Ra + Rt

, for t > 62 s, (98)

Q̇p =
Tt − Tp

Rp
, (99)

where Q represents the sensible heat stored in the respective material, C is the specific

heat capacity and m the mass of the substance.

The properties of the probe materials, skin and temperature sources are presented in

Table 4.7. The thickness of the skin ls and the air sleeve, via the process of adsorption,

la are assumed to be 2 mm and 1 mm respectively, with the thermal conductivity of

human skin obtained from Holmes [41]. The contact length for the probe is 5 mm with a

cylindrical radius given in Figure 4.9. The conductive area for the polytetrafluoroethylene

(PTFE) and polyimide materials is calculated by using the outer circumference and the

contact length.

Table 4.7: List of parameters used in the T1 probe circuit model.

Parameter Value Units

Rs 122.35 K ·W−1

Ra 1018.59 K ·W−1

Rt 35.65 K ·W−1

Rp 265.26 K ·W−1

mt 26 mg

mp 18 mg

Ct 1.005 J · g−1 ·K−1

Cp 1.09 J · g−1 ·K−1

Ts 31.2 ◦C

Ta 20 ◦C

The plot in Figure 4.11 shows good agreement, with a calculated normalised root-mean-

square error (NRMSE) of 3.66 %, between the model and the experimental results. Note

that only two parameters Ts and Ta have been adjusted accordingly.
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Figure 4.11: Model prediction and experimental step-response of the fibre optic probe.

4.5.2 Sample tube thermal model

The contrast agents are placed within a PTFE tube as shown in Figure 4.12. The thermal

and dielectric properties of the PTFE material made it a suitable choice for a container.

The dimensions are similar to that of the loop in the loop-gap resonator. The PTFE

tube is cut with both ends open. The ends of the tube were sealed initially using PTFE

tape and then later caped with PLA plastic. The one side of the container is drilled out

so that the polyimide fibre optic probe can be inserted securely.

Sample

PTFE
9 mm

1 mm
8 mm

Figure 4.12: Top and front view of the unshielded PTFE sample container.

The PTFE tube/container can contain a sample with a volume of approximately 0.25 ml.

A thermal circuit equivalent model of the tube with a liquid water sample inside is

illustrated in Figure 4.13.
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Rc Ra

+

−
Cw Ta

Figure 4.13: Circuit thermal model of sample tube containing water.

The model assumes that a 1 mm layer of air, which via adsorption surrounds the PTFE

container, which is a similar assumption used in the fibre optic thermometer model. The

subscripts in the thermal circuit model are: w-water, a-air and c-PTFE container. The

thermal resistors in the circuit model are calculated using the following formulae

Ra =
la

Aaka
, (100)

Rc =
lc

Ackc
. (101)

The differential equations for the thermal system, assuming the water sample is at a

higher temperature compared to the ambient temperature, are as follows

Qw = mwCwTw, (102)

Q̇w =
Tw − Ta

Rc + Ra
. (103)

The thermal properties of the water, container and initial conditions are presented in

Table 4.8.

Table 4.8: List of parameters used in the sample tube model.

Parameter Value Units

Rc 39.52 K ·W−1

Ra 163.75 K ·W−1

mw 254.5 mg

Cw 4.1813 J · g−1 ·K−1

Tw(0) 21 ◦C

Ta 17.1 ◦C
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The decay-response, i.e. no exciting source or input, from steady-state of liquid water

inside the sample tube is shown in Figure 4.14. The NRMSE for the model fit of the

water sample inside the container using the experimental data is 4.59 %.

10 20 30 40 500
19

19.5

20

20.5

21

21.5

22

Time (s)

T
em

p
er

at
u
re

(◦ C
)

Model Prediction

Experimental Result

Figure 4.14: Model prediction and experimental decay-response of the water sample inside
the container.

It should be noted that the temperature measurement is performed using the T1 tem-

perature probe [40], and an assumption is made that the 250 ms response time to reach

63 % of the final value of the probe does not affect the reading. Further, the fact that

the probe occupies a relatively small-volume (24.5 nl) compared to the container (254 µl)

results in the thermal dynamics of the container being accurately measured.

4.5.3 Thermal model of sample tube with realistic probe

Combining the fibre optic thermometer model with the sample tube model allows one to

determine certain unknown parameters. An important unknown parameter is the power

due to Ohmic loss (Q̇l) in the sample; that is to say the heating created by the influences

of magnetic and electric fields on the conductive sample. The second unknown parameter

which can be determined from the combined system model is the specific heat capacity

of the liquid, which is not stated in the literature for the contrast agents.
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The system equations for the combined model are given as

Q̇w = Q̇l −
Tw − Ta

Rc + Ra

− Tw − Tt

Rt

, for t ≤ 30 s, (104)

Q̇w = −Tw − Ta

Rc + Ra
− Tw − Tt

Rt
, for t > 30 s, (105)

Q̇t =
Tw − Tt

Rt
− Tt − Tp

Rp
, (106)

Q̇p =
Tt − Tp

Rp
. (107)

where Q̇l is the power due to the Ohmic losses in the liquid sample. It is assumed that

Q̇l stays constant during the 30 second irradiation of the sample, which is validated by

experimentation. The combined system step response of liquid water using a pulse input

of 3.88 W and duration of 30 seconds, is shown in Figure 4.15.
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Figure 4.15: Model prediction and experimental step response results of the combined
system with water sample.

The model and experimental results show good agreement as presented in the plot. Using

this combined model one can determine the Ohmic loss and specific heat capacities of

the contrast agents.
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The model and experimental results for Saline, using an input of 3.07 W for a duration

of 27 seconds is shown in Figure 4.16.
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Figure 4.16: Model prediction and experimental step response results of the combined
system with Saline sample.

The model and experimental results for MultiHance, using an input of 3.47 W for a

duration of 25 seconds is shown in Figure 4.17.
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Figure 4.17: Model prediction and experimental step response results of the combined
system with MultiHance sample.

62



The model and experimental results for Magnevist, using an input of 3.16 W for a duration

of 25 seconds is shown in Figure 4.18.
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Figure 4.18: Model prediction and experimental step response results of the combined
system with Magnevist sample.

The model and experimental results for Dotarem, using an input of 3.67 W for a duration

of 26 seconds is shown in Figure 4.19.
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Figure 4.19: Model prediction and experimental step response results of the combined
system with Dotarem sample.
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The model and experimental results for ProHance, using an input of 3.62 W for a duration

of 25 seconds is shown in Figure 4.20.
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Figure 4.20: Model prediction and experimental step-response results of the combined
system with ProHance sample.

The model and experimental results of the decay-response from steady-state for water,

as shown in Figure 4.21.
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Figure 4.21: Model prediction and experimental decay-response results of the combined
system with water sample.
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The model and experimental results of the decay-response from steady-state for saline,

as shown in Figure 4.22.
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Figure 4.22: Model prediction and experimental decay-response results of the combined
system with saline sample.

The model and experimental results of the decay-response from steady-state for Multi-

Hance, as shown in Figure 4.23.
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Figure 4.23: Model prediction and experimental decay-response results of the combined
system with MultiHance sample.
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The model and experimental results of the decay-response from steady-state for Mag-

nevist, as shown in Figure 4.24.

0 10 20 30 40 50 60 70 80 90

24

26

28

30

32

34

36

38

40

Time (s)

T
em

p
er

at
u
re

(◦ C
)

Model Prediction
Experimental Result

Figure 4.24: Model prediction and experimental decay-response results of the combined
system with Magnevist sample.

The model and experimental results of the decay-response from steady-state for Dotarem,

as shown in Figure 4.25.
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Figure 4.25: Model prediction and experimental decay-response results of the combined
system with Dotarem sample.
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The model and experimental results of the decay-response from steady-state for Pro-

Hance, as shown in Figure 4.26.
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Figure 4.26: Model prediction and experimental decay-response results of the combined
system with ProHance sample.

It is evident from the step-response curves, Figures 4.15–4.20, that the RF exposure time

varies with an average of approximately 25 s. Each substance heated differently, and

care was taken to avoid temperature rises above 55 ◦C for fear of causing the capsule to

explode.

The model parameters are obtained by minimising the NRMSE of the model fit, for the

six substances, and are given in Table 4.9.

Table 4.9: List of estimated parameters: pulsed-response (C∆), decay-response (Cd) and
average response (C̄) with associated errors for the various substances used in the com-
bined thermal model.

Substance m (g) C∆ NRMSE % Cd NRMSE % C̄ (J · g−1 · K−1)

Water 0.25447 4.18 3.28 4.53 3.20 4.36

Saline 0.25447 1.35 5.83 2.63 1.86 1.99

MultiHance 0.3105 1.0 5.19 1.86 2.02 1.43

Magnevist 0.3041 1.7 3.60 1.59 1.65 1.65

Dotarem 0.2991 1.78 1.67 2.72 2.95 2.25

ProHance 0.28933 2.10 2.52 2.36 2.57 2.23
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The average between the pulsed-response (C∆) and decay-response (Cd) is used to deter-

mine the specific heat values of the substances. It is shown in Table 4.9 that the errors

for the model fits are relatively small and that the model predicts the responses of the

experiments fairly accurately.

It is interesting to note how the specific heat capacity between different substances varies.

Water has the highest specific heat due to the hydrogen bonding between the molecules

whilst the high solute concentration of the contrast agents tends to decrease their specific

heat capacity value.

4.5.4 Ohmic power loss

The combined model of the thermal properties of the sample tube and fibre optic ther-

mometer is used to determine the bulk ohmic losses of each sample. The Ohmic power

loss is presented in Table 4.10. The Ohmic loss is also normalised to the input power

used during each experiment and presented as the ‘Power Ratio’ in Table 4.10.

Table 4.10: Ohmic power loss and power ratio of each substance for a given input power
Pin as determined from the combined thermal model, and the experimental results.

Substance Pin (W) Ohmic Loss (W) Power Ratio (dB)

Water 3.88 0.219 -12.5

Saline 3.07 0.902 -5.3

MultiHance 3.47 0.972 -5.5

Magnevist 3.16 0.9 -5.5

Dotarem 3.67 0.765 -6.8

ProHance 3.62 0.646 -7.5

The results show that water has the lowest power ratio, due to its low conductivity

properties, as opposed to saline which has the highest. It is noted from the results that

although ProHance has a relatively low DC conductivity, it is the total conductivity that

significantly determines the Ohmic loss in the material.

4.5.5 Specific absorption rate prediction

Using the combined thermal model and the experimental results the SAR for each sub-

stance can be estimated. The results are compared to the SAR predictions using FEKO,
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as shown in Table 4.11. The results show that there is good agreement between the

modelled and experimental results which helps to validate the rf magnetic values B1 used

in the calculations.

Table 4.11: SAR predictions for unshielded samples using FEKO compared to the exper-
imental pulse-response results.

Substance Pin (W) f (MHz) FEKO SAR (W · kg−1) SAR (W · kg−1)

Water 3.88 855.9 861.4 861.3

Saline 3.07 860.4 3,795 3,408

MultiHance 3.47 859.5 – 3,131

Magnevist 3.16 857.1 2,873 2,960

Dotarem 3.67 857.3 2,527 2,558

ProHance 3.62 857.3 2,324 2,233

It should be noted that the frequencies listed in Table 4.11 are the experimental set values

determined by the resonance of the loaded LGR. The LGR resonant frequency depends

on the sample’s conductivity, permittivity and permeability which differ for each tested

substance. Comparing these results to Table 4.6 illustrates counter-intuitively that using

no copper strips for shielding the sample is beneficial and results in a lower SAR, as

described further in section 6.2.
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5 EXPERIMENTAL APPARATUS

The specifications and part numbers of the equipment used in the experiment are pre-

sented. The manufactured DC coil system is characterised in terms of its field strength

and homogeneity. A variety of configurations for the sample container are considered,

modelled and selected based on the dielectric and inductive losses.

5.1 Auxiliary Equipment

5.1.1 DC bench power supply

The supply for the DC coil system should have sufficient power to overcome the copper

wire resistance of the total coil length ≈ 1.7 km. The supply should be at least 1300 W

in order to drive 10 A through the total resistance of 13 Ω. The EA-PS 8360-15 DT

1500 W laboratory power supply was purchased based on these requirements [42].

5.1.2 RF amplifier

A solid-state personal communication power amplifier, with 500−900 MHz that can sup-

ply 0−50 W under continuous wave operation, was purchased from HD Communications

corporation (New York) in order to generate the large magnetic fields (0− 3 mT) in the

loop-gap resonator [43]. A photograph of the rf amplifier is shown in Figure 5.1.

RF Amplifier

DC Power Supply

LGR

Figure 5.1: Photograph of the rf amplifier with a sucroform coaxial feed to the loop-gap
resonator within the DC coil system, inside the anechoic chamber.
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5.1.3 General materials

Aluminium coil formers, 1.7 km of copper wire and other various components such as

brass screws were required to manufacture the DC coil system. The loop-gap resonator

required Rexolite_1422, a dielectric used in the gap section of the resonator, as well as

Sucroform_141 for the rf coaxial cable feed. The department has a number of compo-

nents and equipment available, such as oscilloscopes, multimeters etc. The department

also has the Terranova Earth Field MRI which is used to characterise and measure the

homogeneity of the spherical DC magnetic field coil system [44].

5.2 DC Magnetic Coil System

5.2.1 Setup

The DC coil system is shown in Figure 5.2, and was initially tested and characterised

outside the anechoic chamber using a Hall-sensor and Terranova MRI probe. The stability

of the power supply and relatively large inductance of the coil system (1.34 H) prevented

the magnetic field from fluctuating more than 0.1 mT for a period greater than 30 minutes.

The result of the coil resistance (12 Ω) and coil inductance is a 112 ms rise time.

Figure 5.2: Photograph of the DC coil system with the low-field Terranova unit placed
inside.
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The DC coil system was later placed in the anechoic chamber, as shown in Figure 5.3.

The anechoic chamber is designed to filter any spurious DC and AC signals.

Figure 5.3: Photograph of the experimental setup in the anechoic chamber. Right: the
Terranova is placed inside the coil system, Middle: power supply, Left: cooling fan and
laptop with installed Terranova software.

5.2.2 Characterisation

The free-induction-decay experimental results of a 500 ml water filled bottle placed in the

Terranova-EFNMR (Earth’s Field Nuclear Magnetic Resonance) apparatus are shown in

Figure 5.4 and Figure 5.5. A current of 15 − 20 mA is driven through the DC coils in

order to generate the 40− 70 µT, which is the lower and upper measurement limit of the

Terranova system [44].

The free induction decay (FID) signal of water is relatively short lived when compared

to the FID obtained under the earth’s magnetic field [44]. The spin-spin relaxation time

τ ∗
2 for this water bottle experiment is typically 1 s when using the homogeneous field of

the earth.
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Figure 5.4: Free induction decay signal of water using the Terranova pulse-collect exper-
iment in the anechoic chamber with no shimming.
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Figure 5.5: Free induction decay signal of water using the Terranova pulse-collect exper-
iment in the anechoic chamber with shimming.

The homogeneity of the DC field is calculated using the spin-spin relaxation times, as

shown in the following equation

∆B

B0

=
1

γB0

(

1

τ ∗
2

− 1

τ2

)

, (108)

which is simplified using the Larmor expression as

∆B

B0
=

1

ω0

(

1

τ ∗
2

− 1

τ2

)

. (109)
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The DC coil system homogeneity results for both the shimmed and non-shimmed exper-

iments, which is a feature of the Terranova system, are shown in Table 5.1.

Table 5.1: Coil system homogeneity results for shimmed and non-shimmed experiments.

Parameters Shimmed Non-Shimmed

Frequency (Hz) 2868 2860

τ ∗
2 (ms) 59 57

τ2 (ms) 1760 1760

Homogeneity (ppm) 909 945

The results show that there are no major homogeneity differences between the shimmed

and non-shimmed experiments. Of course, these results can be used to justify the absence

of shim coils in the final experimental setup. A further justification for the absence of

shim coils in the final setup is that the sample size used is 0.25 ml which is 2000 times

smaller than the 500 ml water bottle used in the Terranova.

A filtered back projection and spin-echo image of a double, water filled, tube phantom

are shown in Figure 5.6 and Figure 5.7 respectively.
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Figure 5.6: Filtered back projection image of the water filled two-tube phantom with
shimming.
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Figure 5.7: Spin-echo image of the water filled two-tube phantom with shimming.

The matrix size of the image is 32 with a field of view of 100 mm for each axis. A list of

parameters used for image acquisition is shown in Table 5.2, with an acquisition time of

approximately 15 minutes. The relatively good image quality indicates that the DC coil

system is capable of replacing the Earth’s magnetic field.

Table 5.2: Terranova parameters for the filtered back projection (FBP) and spin-echo
(SE) imaging techniques.

Parameters FBP Image SE Image

Frequency (Hz) 2867 2867

Bandwidth (Hz) 64 64

Number of scans 6 8

Phase gradient duration (ms) – 100

Pulse duration (ms) 5000 4500

Repetition time (s) 10 10

Phase cycle step 2 2

Completion time (min) 15 40

The DC coil system is therefore able to produce a homogeneous DC magnetic field,

approximately 0.5 ppm in the small sample volume of 0.254 cm3, which is comparable to

the industrial standards for NMR and EPR experimentation [45].
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5.3 Sample Properties & Losses

Theoretical and experimental evidence both suggest that the dielectric and inductive

losses in a conductive sample cannot simply be ignored. A photograph of the sample

container with the T1 optic thermometer is shown in Figure 5.8.

Figure 5.8: Photograph of the sample-container with a T1 optic thermometer placed
inside.

5.3.1 Dielectric loss

The dielectric loss is due to the electric lines of force passing through the sample as a

result of distributed capacitance in the resonator [46]. To distinguish the dielectric loss

from the inductive loss, the total electric field Ei is given by

Et = −∇V − ∂A

∂t
= Ec + Ei, (110)

where A is the magnetic vector potential, V the electric scalar potential, Ec is the con-

servative field component and Ei the induced non-conservative field component [47]. The

effect of Ei is given in the following section. The dielectric loss effect of Ec is modelled

as a resistor Rc [19], and is given by

Rc = τω3L2Cd, (111)

where τ is the power factor of the distributed capacity, ω0 the resonant angular frequency,

L the resonator inductance and Cd the distributed capacitance. It is interesting to note

that the distributed capacitance has unity exponent compared to the inductance and

resonant frequency.
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Shielding

The dielectric loss effects can be minimised using a copper foil shield placed alongside

the slot in the resonator, as first demonstrated by Ono et al [48]. The copper foil acts to

distribute the electric field lines closer to the slot and less so through the sample. The

adapted drawing of Ono’s patented design is shown in Figure 5.9.

Cu shield
Loop
Slot

Cd

a b

Figure 5.9: Effect of copper foil shielding used in a loop-gap resonator. a) no shield, b)
with shield. Adapted from Ono [48].

The second type of shielding involves using copper wires attached to the sample container

circumferentially, which in effect creates a Faraday shield, as shown in Figures 5.10 and

5.11. It is suggested by the research of Park et al [47], that eight copper strips can reduce

sample heating by 88 % for 0.2 S ·m−1 conductive samples.

0.5 mm

Cu wire

Sample

PTFE container

Figure 5.10: Copper wire used as shielding around sample.

2 mm

Cu Sheet

Sample

PTFE container

0.1 mm

Figure 5.11: Copper sheets used as shielding around sample.
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5.3.2 Inductive loss

Following the model by Hoult and Lauterbur [19], the inductive losses of a conductive

sample in a spherical volume can be derived, as shown in Figure 5.12.

B1

b

r

ρ

Figure 5.12: Spherical model used to derive inductive losses in a conductive sample,
adapted from Hoult [19].

The elemental conductance dG is given by

dG =
(b2 − r2) dr

πrρ
, (112)

where ρ is the specific resistivity of the sample. The induced electromotive force (EMF)

V is given by

V = −2πr2 ∂B1

∂t
= 2πr2ω0B1 sin (ω0t) . (113)

It must be noted that the magnetic field B1 is half the total magnetic field due to linear

polarisation of the RF resonator, hence the need for the factor 2 in Equation 113. The

time average of the voltage squared multiplied by the elemental conductance is integrated

for r ranging from 0 to b, with the resulting average power W given by

W =
4πω2

0B2
1b5

15ρ
. (114)

Using the non-optimal values in Table 3.1, a sample conductivity of 0.1 S ·m−1 and a

radius b = 3.93 mm, chosen such that the net sample volume is 0.254 ml, the calculated

value for the temperature rise due to inductive loss is

dT

dt
= 4.08 ◦C · s−1. (115)
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The induction loss is significant, as it is 30 % of the predicted loss due to the electron

spin resonant effect calculated in Section 3.1.4. The sample used in the experiment is in

fact cylindrical as shown with its dimensions in Figure 5.13,

B1
r

ρ

H = 9 mm

R
=

3
m

m

Figure 5.13: Cylindrical model used to calculate induction loss in experimental setup.

The elemental conductance of the cylindrical model is given by

dG =
Hdr

2πrρ
, (116)

which leads to the average power of

W =
Hπω2

0B2
1R4

4ρ
, (117)

using the parameter values in Figure 5.13 and a conductivity of 0.1 S ·m−1, the temper-

ature gradient is calculated as

dT

dt
= 3.00 ◦C · s−1. (118)

The inductive losses are smaller for a cylindrical container compared to a spherical con-

tainer of equal volume. The calculations also illustrate the necessity of a reduced sample

size, which results in an increased DC magnetic field homogeneity and a significant re-

duction of inductive loss.

The reduced inductive loss for a smaller sample size in effect lowers the thermal noise

floor which is also beneficial for experimental measurements. The large inductive loss

is of clinical concern, however the inductive loss could be reduced if a lower rms (i.e.

pulsed waveform) B1 source is used at the optimal spin-power resonance frequency and

τ1e value.
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6 EXPERIMENTAL RESULTS

The sample and container conductivity properties are characterised. The thermal drift

of the sample without a DC field and constant input RF power is measured. The heating

measurements due to electron paramagnetic resonance of the six substances are displayed.

A statistical and model analysis of the data is performed.

6.1 Electrical Conductivity

The electrical conductivity of the various liquid substances was measured using the

ECTestr11+ from EUTECH instruments [49]. The results of the DC conductivity mea-

surements are shown in Table 6.1. The literature results, abbreviated as Lit. in Table 6.1,

from Ogunlade are used for comparative purposes [39].

Table 6.1: Electrical conductivities of the liquid test substances, with MRI contrast agents
at 0.5 M vial concentration.

Substance Temp. (◦C) Meas. σc (S · m−1) Lit. [39] σc (S · m−1)

Distilled Water 21.3 0.78× 10−3 0.2× 10−3

Saline 21.2 1.453 1.4100

MultiHance 21.8 0.401 –

Magnevist 21.9 0.607 0.568

Dotarem 21.8 0.431 0.435

ProHance 21.2 0.0483 0.0504

The electrical conductivity proves to be a critical parameter in experimentation as a

sample with higher conductivity, with all other parameters set equal, shows a greater

increase in temperature due to eddy-current losses. The eddy-currents in the liquid also

shield the nutation field B1 to some degree.

The combined result is that the sample has less thermodynamic stability (i.e. the con-

tainer is likely to rupture and increase Gd-ligand dissociation), with the rf power absorbed

by the spins greatly reduced. The signal-to-noise ratio is effectively reduced and the mea-

surement of the temperature change which is due entirely to the investigated phenomena,

becomes challenging.
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6.2 Comparison of Shielded & Unshielded Samples

The consequences of electrical field shielding using copper strips attached to the PTFE

sample tube is demonstrated via experiment. The results in Table 6.2 show the temper-

ature rates for the various substances with each substance averaged over five 30 second

tests.

Table 6.2: Shielding effect of copper strips attached to PTFE sample tube.

Sample Container f (MHz) Thermal Response (◦C · s−1 · W−1)

Air
Unshielded 861.24 0.0058

Shielded 860.69 0.0798

Water
Unshielded 856.94 0.023

Shielded 855.88 0.130

Saline
Unshielded 856.34 0.336

Shielded 860.36 0.331

MultiHance
Unshielded 857.64 0.281

Shielded 859.46 0.203

Magnevist
Unshielded 857.14 0.236

Shielded 859.06 0.258

ProHance
Unshielded 857.26 0.128

Shielded 859.11 0.199

Dotarem
Unshielded 855.50 0.253

Shielded 859.50 0.274

The thermal response represents the temperature rate due to a rf step input with an

average duration of 30 seconds. The temperature rate is normalised with respect to

the rf input power (◦C · s−1 ·W−1), which enables a comparison between the different

experimental results.

As shown in Table 6.2 the tested substances are not shielded effectively by the copper

strips, and in some cases the shielded substances performed poorly compared to the un-

shielded samples. Given that the sample container length is comparable to the resonator

depth a possible mechanism which explains the findings in Table 6.2 is fringing which

couples to the copper strips on the sample. Based on these results the unshielded PTFE

capsule is used for the substances in the final experimental design.

It is interesting to note that the ‘shielded’ capsule has an inverse effect for the lower

conductive liquids such as Water and ProHance. The tabulated results illustrate that

shielding the sample container inside of a loop-gap resonator is more subtle and complex

than the suggestions made by Park et al [47].
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6.3 Thermal Drift

The thermal response of the substance in the loop-gap resonator with a constant rf

input, and without a DC magnetic field, is recorded in order to understand the thermal

deviations of that substance. The results illustrate that the temperature of each substance

in the loop-gap resonator drifts under constant input power conditions, as shown in

Figure 6.1. The absolute average thermal drift ranges from 0.8− 1.7 m◦C · s−1.
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Figure 6.1: Thermal drift of the substances averaged over five measurements recorded
during the DC-Off interval.
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The ambient temperature of the anechoic chamber was recorded before and after each

experiment, with an average experiment recording of 18 minutes. The ambient tempera-

ture of the anechoic chamber, due to the heating of the DC coil system, did not increase

by more than 1 − 2 ◦C. Initially, before each experiment recording started, the sample

was driven to approximately 37 ◦C and the temperature fluctuations maintained within

the 0.1 ◦C resolution of the fibre optic thermometer. The initialisation procedure insured

that an approximate steady-state was achieved prior to recording. Multiple repeated

measurements were carried out in order to improve the signal-to-noise ratio.

6.4 Spin Resonance Heating Results

The thermal-response of a substance due to the interaction with the DC magnetic field,

the rf loop-gap resonator and the spin-resonance phenomenon was investigated. It was

found during testing that the capsule was not thermally stable at temperatures above

50 ◦C as the capsule would leak and display an increase in thermal drift.

Given the undesirable thermal behaviour of the sample and capsule at high temperatures

the experiments were performed at a lower temperature, approximately 37 ◦C. The

steady-state temperature of 37 ◦C is approximately the human-core temperature and the

operating temperature of the tested contrast agents. A negative consequence however of

this relatively lower steady-state temperature is the reduced rf power injected into the

sample, which significantly reduces the investigated spin-resonance heating effect.

Each experiment involved ten, ninety second interval, measurements during which the

rf power was supplied continuously and the DC-field switched on or off for five of those

measurements. The procedure is listed as:

1. Switch on signal generator,

2. Raise sample temperature to steady-state value (≈ 37 ◦C),

3. Monitor transmitted power of amplifier,

4. Switch DC coil on and record for 90 s,

5. Monitor transmitted power of amplifier,

6. Switch DC coil off and record for 90 s,

7. 30 s delay to achieve approximate steady-state,

8. Repeat measurements from step 3.
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It was anticipated that the sample would heat faster for the five DC-On recorded condi-

tions and slower for the other five DC-Off recorded conditions. The approximate steady-

state temperature of the samples was 37 ± 2 ◦C with the final results normalised to

zero-offset. The normalisation process allows for the temperature change comparison be-

tween substances and conditions. The zero-offset is obtained by subtracting the initial

average temperature across each condition.

The results for the six substances are shown in Figure 6.2, where the red-lines represent

the DC-Off condition average measurements and the blue-lines the DC-On condition

average measurements.

The small sample of results in Figure 6.2 show that ProHance and Dotarem already

respond with a measurable difference in heating during the DC-On interval as opposed to

the DC-Off interval. All the substances were further measured and investigated in order

to reduce noise and statistically verify a reproducible phenomena.

In order to increase the signal-to-noise ratio an additional twenty five measurements were

performed. A thirty sample average of the temperature responses for the six substances,

with linear regression lines fitted, is shown in Figure 6.3. A control experiment for

Dotarem and ProHance was performed by connecting the bottom four coils of the DC

magnetic coil system in opposite direction to the upper four coils.

The reversed connection results in the same total coil current, and therefore heating of

the coil, but with an approximately zero magnetic field over the sample volume. The

control experiment therefore tests if the sample absorbs any heat emitted by the DC coil

system.

If the thermal drift discussed in section 6.3 is stochastic in nature then a further twenty-

five measurements should reduce the drift, for example ProHance should be reduced by

1.11 m◦C · s−1 ÷
√

25 = 0.222 m◦C · s−1. A reduced thermal drift for the additional

twenty-five control ProHance experiments, as shown in Figure 6.3, is approximately the

same as the predicted value. The measured reduction in variance therefore suggests that

the assumption of independence is valid, the thermal drift is stochastic and that the

precision of the results can be improved.

It is interesting to note that, except for the control substances, there exists a non-zero

slope for the DC-Off condition. A possible reason for this residual effect is likely due

to the switch delay of approximately 6 − 12 s, which is due to the inductance of the

DC coil system and data processing time. The spin system is therefore partially excited

during the recorded DC-Off interval. Future refinement of the experimental procedure is

therefore necessary to eliminate this residual effect.
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Figure 6.2: Zero-offset adjusted temperature results averaged over five measurements,
with DC-On (blue) and DC-Off (red).

It is seen from the control experiment results for Dotarem and ProHance that there are

no significant differences in temperature rates for when the DC-field state is switched.
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Figure 6.3: Average temperature rise over a ninety second interval for the six tested
substances, with each mean value obtained over thirty experiments and standard error
bars shown at every 8 s.

The means and standard errors of the four tested contrast agents are shown in Figure 6.4.

It is noted from Figure 6.4 that the error bars of the contrast agents overlap at a few

sample points. A statistical and descriptive analysis is performed in order to quantify

the amount of separation that exists between each substance.
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Figure 6.4: Magnified view of thirty sample average of the contrast agent data with a
standard error bar shown at every 4 s.

6.4.1 Regression analysis

Given that the temperature rate is small, as predicted by the theory for a small τ1e value,

a first-order polynomial regression model is fitted to the data, as shown in Figure 6.3 for

each substance and condition, with the linear model given by

y = c + bx + ε, (119)

where c is the intercept, b the slope and ε the error term associated with the model [50].

The error term quantifies the measurement device noise, human reproducibility, fluctu-

ations in environmental conditions, substance variability, etc. The classical unweighted

least-squares method is used to determine the parameters of the regression model.
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The residual variance, which is also known as the squared standard regression error, is

denoted s2
y/x. Two sets of data, each with sample size n1 and n2, can be compared using

their linear regression slopes (b1, b2) and their associated error.

The slope comparison of two regression lines tests the null hypothesis H0 : b1 = b2, and is

calculated using the Student’s t-test statistic [50]. The t-test statistic follows a tn1+n2−4

distribution, and is given by

t =
b1 − b2

√

√

√

√s2
(y/x),pool

(

1

Σ (xi,1 − x̄1)2 +
1

Σ (xi,2 − x̄2)2

)

, (120)

with

s2
(y/x),pool =

(n1 − 2) s2
(y/x)1 + (n2 − 2) s2

(y/x)2

n1 + n2 − 4
(121)

The slope values for the linear regression models and the p-value results of the comparison

of slopes, between the two different states, are shown in Table 6.3. The sample size for

each dataset is n1 = n2 = 451, which is a result of the 0.2 s sampling time of the fibre-

optic thermometer. The regression results show that the slopes are statistically the same

for the control substances, water and saline.

Table 6.3: Slope values b, with subscript definitions 1 = On/cOn and 2 = Off/cOff states,
and comparison results using the experimental data.

Substance Experiment b1 (µ◦C · s−1) b2 (µ◦C · s−1) p-value

Water On-Off∗ 9 14 0.788

Saline On-Off 66 48 0.475

MultiHance On-Off 692 796 < 0.01

Magnevist On-Off 820 295 < 0.01

Dotarem

On-Off 1607 951 < 0.01

On-cOn† 1607 1273 < 0.01

cOn-cOff 1273 1179 < 0.01

ProHance

On-Off 2011 1198 < 0.01

On-cOn 2011 646 < 0.01

cOn-cOff 646 315 < 0.01

∗On: Current flows in same direction for both coils, Off: No current.
†cOn: Current flows in opposite direction for top and bottom coils, cOff: No current.
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The results also indicate that the slopes are statistically different for the contrast agents

and the control experiments for Dotarem and ProHance. Although ProHance is shown

to be significantly different between the cOn-cOff states, the actual cOn state slope value

is three times smaller compared to the On state slope value.

The significance obtained for the control on-off experiments is mainly due to the large

number of samples, and therefore large degrees of freedom used in the comparison, as

illustrated by the almost identical, yet significant, slope values of the Dotarem control

results.

A qualitative interpretation of the slope values is that there exists reasonable separation,

between the On and Off states, for Magnevist, Dotarem and ProHance. A descriptive

analysis is therefore presented which quantifies the exact amount of separation between

the substances and provides a suitable physical interpretation for the datasets.

6.4.2 Descriptive analysis

Multiple repeated experiments were performed in order to extract the signal from the

noise. A signal-to-noise ratio between each condition is calculated by comparing the

means using the independent sample t-test, as shown by the following

t =
(x1 − x2)− (µ1 − µ2)

spool

√

1

n1

+
1

n2

, (122)

with

s2
pool =

(n1 − 1) s2
1 + (n2 − 1) s2

2

n1 + n2 − 2
(123)

where spool is the pooled sample standard deviation. In the presented case x1 represents

the DC field-On condition and x2 the DC field-Off condition. The number of repeated

measurements is n1 = n2 = 30 with the hypothesised difference in means given by µ1−µ2.

The tail for the t-test is right sided (µ1−µ2 > 0) due to the expectation that the DC field

on state would increase the temperature more so than the DC field off state. The control

substances and control conditions are expected to show no increase in temperature for

either DC field state.

It was discovered during experimentation that there exists a reasonable delay, 6 − 12 s,

between switching on the DC field and observing a temperature change. The switch time

of the DC coil power supply, the inductance of the coils, the thermal properties of the
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sample-probe system and the data transmission time contribute to this delay.

As a consequence of this time delay the t-test is applied to the data after 30 s. The delay

compensation also allows for the signal, if present, to rise above the measurement noise

floor. It should be noted that the t-test does not evaluate the means across the entire

time range of 90 s but rather the means are calculated at the time samples, every 0.2 s,

for each condition. The assumption therefore of independent samples, which is usually

tested using autocorrelation, is not necessary [51].

A 5 % significance level was selected for each independent t-test performed at a given

time sample. The result of multiple independent t-tests is a collection of p-values. The

average of the p-values is calculated over a total number of 301 sample points.

The averaging procedure of p-values is similar to that explained by Andrade [50]. The

average p-value evaluates and quantifies the amount of separation in data between the

different conditions, with the results of the average p-values shown in Table 6.4.

Table 6.4: Average p-values using the t-test with a 5 % significance level.

Substance Experiment p̄-value

Water On-Off 0.584

Saline On-Off 0.437

MultiHance On-Off 0.277

Magnevist On-Off 0.173

Dotarem

On-Off 0.0325

On-cOn 0.0414

cOn-cOff 0.671

ProHance

On-Off 0.0297

On-cOn 0.000751

cOn-cOff 0.372

The results in Table 6.4 show that ProHance is significantly different, with relatively

low p-values (p < 0.05), between the treatment-on and treatment-off conditions, as well

as between the treatment-on and control-on condition. The thermal responses however

of MultiHance and Magnevist are significantly smaller in magnitude, which results in

higher p-values (p > 0.1) compared to Dotarem and ProHance. The difference in thermal

response is most likely due to their linear molecular arrangement leading to a shorter τ1e

and hence inefficient spin-power properties.
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The p-value for Magnevist is high (p > 0.1), although the means appear to be separated,

the resulting p-value is a consequence of the relatively wide-spread of values about the

mean. The relatively small temperature change, 0.1 ◦C over 90 s, of MultiHance and

Magnevist excludes the substances from a further detailed system model analysis. The

results also show, as expected, that the control substances, water and saline, fail to reject

the null hypothesis.

6.4.3 Model analysis

It is noted from the regression analysis results that the net temperature rate for Dotarem

and ProHance, obtained from the difference in slope values of the linear regression model

for the treatment DC-On and control DC-On, is 334.1 × 10−6 ◦C · s−1 and 1, 364 ×
10−6 ◦C · s−1 respectively. The experimental temperature rates are significantly lower

than the theoretical prediction of 1.8 ◦C · s−1, which is obtained from Eq. (67) when

using similar parameters to experimentation i.e. B1 = 0.54 mT and f = 857 MHz.

As a result of this discrepancy, between theoretical and experimental values of the spin-

lattice relaxation time, further modelling under these specific conditions is performed in

order to estimate the value correctly. A thermal model, adapted from section 4.5.3, of

the sample, sample tube and fibre-optic probe system is given by

Q̇a = Q̇l + Q̇s −
Tw − Ta

Rc + Ra
− Tw − Tt

Rt
, (124)

Q̇t =
Tw − Tt

Rt
− Tt − Tp

Rp
, (125)

Q̇p =
Tt − Tp

Rp
, (126)

where Q̇a is the net-thermal power in the contrast agent, Q̇l is the liquid Ohmic-power

loss, Q̇s is the spin-power, Tw is the temperature of water, Ta is the ambient temperature,

R is the thermal resistance (subscript a-1 mm air sleeve, c-PTFE sample container, t-

PTFE outer fibre optic probe coating and p-polyimide inner fibre optic probe coating).

The constant model parameters, other than the specific heat, were determined using a rf

pulse-response for water, since water has a well-known specific heat value.

The specific heat capacity of each contrast agent is then estimated, as performed in

section 4.5.3, using the average of the model parameters for a rf pulse-response and

a negative-edge (on-off) step-response, an example of which is shown for ProHance in

Figure 6.5.
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Figure 6.5: Experimental and model estimate for the specific heat capacity of ProHance
using the average of the pulse (C∆) and decay (Cd) response.

The minimum of the normalised root-mean-square error (NRMSE) is used to determine

the best model estimate of the specific heat capacity value for each response, as shown

in Table 6.5.

Table 6.5: Specific heat capacity of Dotarem and ProHance using pulse and decay mod-
elled data.

Substance C∆ NRMSE (%) Cd NRMSE (%) C̄ (J · g−1 · K−1)

Dotarem 1.78 1.67 2.72 2.95 2.25

ProHance 2.1 2.52 2.36 2.57 2.23

Using the estimated parameters of the container and substances, the Ohmic-loss and

spin-power are estimated for the treatment-on and control-on conditions for Dotarem

and ProHance, with the model fits shown in Figure 6.6.

The heating rates were adjusted in order to minimise the normalised root-mean-square

error, with the results shown in Table 6.6. The spin-lattice relaxation time τ1e is estimated

from the model of spin-power heating rates, experimental values for B1 and Eq. (65), with

the results shown in Table 6.6.

Table 6.6: Model estimate of total-power, Ohmic loss, spin-power and spin-lattice relax-
ation time τ1e for Dotarem and ProHance.

Substance Q̇T (W) Err. (%) Q̇l (W) Err. (%) Q̇s (W) τ1e (ps)

Dotarem 0.1135 8.18 0.1081 7.36 0.005375 0.26

ProHance 0.1076 4.56 0.1032 9.97 0.004400 0.15
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Figure 6.6: Model estimates for Dotarem and ProHance treatment-control condition
responses.

It is noted from Table 6.6 that the estimated relaxation times are approximately three

orders of magnitude smaller than the theoretical estimate of 0.1 ns. A reason for the

discrepancy is most likely due to the high concentration effects which increase the dipole-

dipole relaxation processes.

Another possible reason for the discrepancy is the fast molecular tumbling rates and

the low resonant Larmor frequency, which significantly decreases the electronic spin-

relaxation time [52]. The 300−500 ps rotational and 1−2 ps vibrational correlation times

tend to broaden the spectral density function which enhances the relaxation processes [53].

The spin-relaxation parameters are also not well-known in the low-frequency ranges at

relatively high temperatures.

The experiment therefore provides an alternative procedure for measuring the spin-

relaxation time. Under similar experimental conditions a molecule with a slower spin-

lattice relaxation time would result in larger spin-power and temperature rates.

In the current operating region the spin-power effect is approximately linear against

relaxation time, as seen from Eq. 65 for τ1e,2e ≪ 0.1 ns. The consequence of this linearity

is that an order of magnitude increase in τ1e will result in an order of magnitude increase

in spin-power.
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6.5 Summary of Results

The six substances were tested in a 0.254 ml unshielded PTFE capsule. The initial

thermal drift after 5 measurments was measured at approximately 1.11 m◦C · s−1 for

ProHance and after an additional 25 measurements was averaged to 0.222 m◦C · s−1.

Dotarem and ProHance showed the most significant temperature increase to electron

spin resonance heating.

The statistical analysis illustrates that the lack of DC on-off separation for the control

substances is statistically significant. The apparent statistical significance of the DC

on-off separation for the Dotarem and ProHance control experiments is due to the large

number of data points used in the analysis.

The model analysis of the Dotarem and ProHance results show that a spin-power of

4−5 mW is necessary in order to achieve the observed heating rate. Using this spin-power

value, it is estimated that the spin-lattice relaxation time is three orders-of-magnitude

smaller than the theoretical presented value of 0.1 ns.

A reason for this discrepancy is that the spin-relaxation parameters are generally not well

known at frequencies below 9 GHz. Assuming the theoretical value is accurate, then the

causes of the observed increase in relaxation processes could be due to the fast vibrational

correlation times and high solution concentrations which both increase the dipole-dipole

interactions.

Although the observed heating rate is much smaller than the calculated value, the rate it is

still 167 000 times larger than the temperature rate calculated using protons. The results

therefore suggest that this effect is real and measurable, and can be further increased by

using a substance with a longer spin-lattice relaxation time τ1e.
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7 CONCLUSION

A summary of the research findings and results, obtained from both theory and experi-

mentation, is presented. A discussion on the mechanisms and reasons behind the research

results is provided. Recommendations for future work, and use of other potential hyper-

thermia agents are detailed.

7.1 Overview

The use of paramagnetic gadolinium-based contrast agents as possible hyperthermia

agents is explored in the thesis. The literature shows that many different types of hyper-

thermia agents and techniques have been explored as cancer hyperthermia treatments.

Non-invasive modalities, such as high-intensity focused ultrasound, show a promising al-

ternative to current surgical procedures and treatments of neoplasms. The use of magnetic

resonance as a potential hyperthermia technique or clinical modality has been explored

both theoretically and experimentally in this research.

The first step however in achieving a viable hyperthermia agent is to test whether or not

the agent, in this case a gadolinium-based contrast agent, can absorb thermal energy and

produce a measurable temperature rise. The experimental design and setup enables the

testing of this initial phase. The relatively simple loop-gap resonator and spherical DC

coil array allowed for the hypothesis to be tested.

The sample container was modelled and selected based on the dielectric and inductive

losses. The fibre optic thermometer allowed for the measurement of the sample temper-

ature without any electromagnetic interference when placed inside the resonator. The

calibration, characterisation and testing of equipment ensured the results would be mea-

sured precisely.

The six substances (four contrast agents and two control liquids) were investigated using

the experimental apparatus. Experimental results of the loop-gap resonator, sample-tube

and the DC coils helped to verify the simulations.

The six substances were tested experimentally using a pulsed signal (step-on and step-off)

in order to characterise the thermal properties of the sample container. Using the theo-

retical model of spin-power together with the thermal properties of the sample-container,

a comparison between the model and experimental results was made.
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The need for a more effective material, by possible modification of current contrast agents,

has become evident from this research. Substances that contain longer relaxation time

parameters are likely to significantly increase the efficiency of spin resonance heating.

7.2 Discussion

The designed DC magnetic coil system is able to lift the energy level degeneracy of protons

in a low-field nuclear magnetic resonance system with satisfactory results, confirming its

suitability in the experimental setup. The magnetic field of the loop-gap resonator is

measured indirectly by observing the SAR of the six substances and then compared to

the finite-element model. The thermal properties and behaviours of the six substance

were accurately modelled.

The thermal characteristics of the six substances as measured in the loop-gap resonator

with constant RF input power, and without an applied DC magnetic field, displayed a

random thermal drift component. The precise reason for the thermal drift behaviour of

the contrast agents is unclear, but may be caused by the fluctuating temperature of the

substance which in turn affects the resonance frequency of the loop-gap resonator. The

DC field tests illustrate that only two out of the four contrast agent substances have a

measurable effect due to the spin-resonance heating phenomenon.

The spin-lattice relaxation time is not well-known in the literature for the experimental

conditions used. It is seen from the literature that multiple parameters affect the spin-

lattice relaxation time of gadolinium-based contrast agents. The theoretical model and

predictions were based on an estimate of τ1e, by extrapolation of the results of models

developed previously. The experimental results described in this thesis show that in the

low-frequency domain and using high substance concentration, the spin-relaxation time

in contrast agents is much smaller than originally estimated.

The thermal power generated by spin-resonance relaxation in Dotarem and ProHance

was found to be relatively small, in the range of mW. However a temperature rise was

measured and verified statistically through multiple repeated treatment and control ex-

periments. The main result or conclusion based on this research is that the spin-relaxation

time plays a significant role in determining the efficiency in spin-resonance heating.
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7.3 Future Work

In order to improve this technology, and to amplify or enhance this effect, a different

molecule is required. The use of carbon nanotubes is a popular approach to hyperthermia

treatment [54]. In order to slow down the relaxation process, a more rigid molecular

structure to attach the gadolinium ions is hypothesised. Increasing the electron spin-

relaxation time of gadolinium ions by attaching them to ultra-short carbon nanotubes

could be a possible solution. The increased spin-lattice relaxation time would increase

the spin-power properties of the substance significantly.

7.3.1 Gadonanotubes

Gadonanotubes have been shown to be 100 times more efficient contrast agents compared

to current clinical contrast agents [55]. Gadonanotubes are composed of ultra-short car-

bon nanotubes, which were shown to be best suited for cellular uptake [55]. The aquated

gadolinium ions form clusters within the framework of the nanotubes. Studies have re-

vealed that the gadonanotubes act as superparamagnetic molecular magnets [56].

The applications of gadonanotubes are many with the main focus being that of con-

trast imaging. Other applications include the use of gadonanotubes as guided-therapy

probes [56]. The results of generating heat in gadonanotubes using conventional rf meth-

ods have shown a relatively small effect [54]. The use of superparamagnetic particles

however is favoured as they have been shown to produce more heat at safer (lower)

alternating magnetic fields compared to ferromagnetic materials [55].

It is hypothesised by the author that a more efficient thermal response can be generated

using the electron paramagnetic resonance of the gadonanotubes. The stereochemical

rigidity of the carbon nanotube framework together with the concentrated yet separated

clusters of Gd3+ ions could lead to a more efficient transfer of spin-energy into the lattice.

7.3.2 Focusing spin-power

In order to achieve thermal ablation of tumour tissue, a significant amount of thermal

energy needs to be deposited in the treatment region. The treatment region selection,

using conventional MRI techniques [57, 58], is hypothesised as a possible modality. The

increase in cellular uptake of the thermal agent, by attaching appropriate molecules such

as antibodies, is another hypothesised modality in which the focusing of spin-power could

be achieved.
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