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Abstract

A topological group is called resolvable (ω-resolvable) if it can be partitioned

into two (into ω) dense subsets and absolutely resolvable (absolutely ω-resolvable)

if it can be partitioned into two (into ω) subsets dense in every nondiscrete group

topology. These notions have been intensively studied over the past 20 years. In this

dissertation some major results in the field are presented. In particular, it is shown

that (a) every countable nondiscrete topological group containing no open Boolean

subgroup is ω-resolvable, and (b) every infinite Abelian group containing no infinite

Boolean subgroup is absolutely ω-resolvable.
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Chapter 1

Introduction

Topological groups can be thought of as an abstraction of continuous groups of trans-

formations. A topological group is a set which has two structures; one is a group and

the other a topological space. These structures are linked in such a manner that the

algebraic properties of the group have an effect on the topological properties of the

space, and vice versa. This marriage of the axioms of topological spaces and groups

provides an excellent foundation for an abstract theory and is a powerful concept that

unifies diverse mathematical areas. The study of topological groups is thus ideal for

exploring the interaction between algebraic and topological ideas.

Our main interest in this dissertation is the resolvability of topological groups.

The notion of resolvability was introduced by Edwin Hewitt [17]. He defined a topo-

logical space (X, τ) to be resolvable if there exists a subset D of X for which D as

well as its complement X \ D are dense with respect to τ in X, that is, if X can

be partitioned into two disjoint dense subsets. Ceder [5] then generalized this notion

to higher cardinals as follows: given a cardinal number κ, the topological space X

is said to be κ-resolvable if there exists a family of κ-many pairwise disjoint dense

subsets of X and given the first infinite ordinal ω with cardinality ℵ0, the space X is

ω-resolvable if it can be partitioned into countably many disjoint dense subsets. The
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notion of resolvability has proved itself fertile ground for study on topological groups

as evidenced by the vast literature around the subject. The study of resolvability

in the context of topological groups was initiated by W. W. Comfort and Jan van

Mill [9] wherein it was shown that every nondiscrete irresolvable Abelian topological

group contains an infinite Boolean subgroup. It was later established in [32] and

[44] that every nondiscrete ω-irresolvable Abelian topological group contains an open

Boolean subgroup. This result in particular is significant because the investigation

of nondicrete ω-irresolvable group topologies on Abelian groups is, in some manner,

reduced to their investigation on a countable Boolean group. Under Martin’s axiom

there are nondicrete irresolvable topological groups [23], however, it is not possible

to show that such groups exist in ZFC, i.e Zermelo-Fraenkel set theory with the ax-

iom of choice which is the standard form of axiomatic set theory. In [31], Protasov

showed that there are models of ZFC for which any nondiscrete topological group is

ω-resolvable. The question of characterizing absolutely resolvable groups was raised

in [9] wherein it was also mentioned that the groups Z and Z(p∞) for any prime p are

absolutely resolvable. The purpose of this dissertation is to give self contained proofs

of the main results from [43], [46] and [45].

This dissertation is arranged as follows. In Chapter 2 we give an introduction

to the theory of topological groups in which we recall basic notions and results.

We go on to discuss the existence of nondiscrete Hausdorff group topologies. We

also show that all infinite Abelian groups admit a totally bounded group topology

and we characterize when a countably infinite group admits a nondiscrete Hausdorff

group topology. We conclude Chapter 2 with Illanes’ theorem which states that

ω-irresolvable topological spaces are finitely irresolvable.

In Chapter 3 we study the Stone-Čech compactification of a discrete space. To

this end, we give basic facts about ultrafilters and show that the Stone-Čech compact-

ification of a discrete space is the set of ultrafilters on that space. We take the point
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of that space to be identified with the principal ultrafilters. We give El’kin’s theorem

which states that a space is irresolvable if and only if there exists a converging open

filter on it. Given that D is a discrete space, we show that βD is extremally discon-

nected and |βD| = 22
κ

. We then extend the operation of a discrete semigroup to its

Stone-Čech compactification in such a way that βS becomes a right topological semi-

group. Given a semigroup endowed with a left invariant topology T , we proceed to

define the ultrafilter semigroup, Ult(T ), to be the set of all ultrafilters on that semi-

group that converge to its identity in T . We obtain that it is a closed subsemigroup

of βS. We conclude Chapter 3 with a brief exposition of Martin’s axiom.

In Chapter 4 we consider the resolvability of topological groups. We present two

proofs for the first of our two main theorems, that every countably infinite nondiscrete

topological group containing no open Boolean subgroup is ω-resolvable. In Section

4.1 we explore the notions of a local left topological group, a local homomorphism,

and a local automorphism upon which the two proofs of the major theorem of the

chapter are based. In Section 4.2 we present the first of the two proofs. This proof

relies on the structure of a local automorphism of finite order and the fact that the

inversion map is a local automorphism. In Section 4.3 we present the second of the

two proofs. This proof, shorter and more transparent than the first, is based on a

structure theorem for a large family of homeomorphisms of finite order on countably

infinite regular spaces.

In Chapter 5 we consider the absolute resolvability of topological groups. Using

the Finite Sums Theorem, we give a proof showing that every infinite Abelian group

which does not contain an infinite Boolean subgroup is absolutely resolvable. We

consider an Abelian group G and C = {y ∈ G : 2y 6= 0} to be infinite. Using the

notation of finite sums with inverses, FSI, we construct a partition {Cr : r < ω} of

C such that whenever (yn)n<ω is a one-to-one sequence in C, h ∈ G and r < ω, we

have

(h+ FSI((yn)n<ω)) ∩ Cr 6= ∅,
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where

FSI((yn)n<ω) = {
∑

n∈E

εEn yn : E ∈ Pf (ω) and ε
E
n ∈ {1,−1} for all n ∈ E}

and Pf (ω) is the set consisting of the nonempty finite subsets of ω. From this we

deduce the second of our main theorems, that every infinite Abelian group which does

not contain an infinite Boolean subgroup is absolutely ω-resolvable, and as a result,

they can be partitioned into infinitely many subsets such that every coset modulo

infinite subgroup meets each subset of the partition.
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Chapter 2

Preliminaries

2.1 Basic notions: Definitions and Properties

Definition 2.1.1. A group G endowed with a topology T is a topological group if

the multiplication

µ : G×G ∋ (g, h) 7→ gh ∈ G

and the inversion

ι : G ∋ g 7→ g−1 ∈ G

are continuous mappings, where G×G has the product topology. If a topology makes

a group into a topological group, we call it a group topology.

Topological groups have a topological structure as well as a group structure. The

group structure allows us to perform algebraic operations and the topological struc-

ture allows us to speak of continuous functions. [10] and [6] have a great deal of

information about topological groups.

Below we give a few examples of topological groups.

Example 2.1.2. 1. Any group G can become a topological group if we endow it

with the discrete topology. We call these groups discrete.
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2. The real line R as well as the complex plane C under addition are topological

groups when taken with their usual topologies.

3. The topological groups considered in 1. and 2. above are all abelian. For exam-

ples of more interesting non-abelian topological groups we consider the General

Linear group, GLn(R), of non-singular n×n real matrices as well as the Special

Linear group, SLn(R), of n×n real matrices which have determinant 1. We can

view these groups as topological groups with the topology defined by the subspace

topology if we embed them in Rn×n.

Combining the multiplication and inversion in Definition 2.1.1 gives the continuity

of the function

µ
′

: (g, h) 7→ gh−1.

The continuity of µ
′
means whenever a, b ∈ G and U is a neighbourhood of ab, there

are neighbourhoods V and W of a and b respectively, such that VW−1 ⊆ U. It

follows that whenever a1, . . . , an ∈ G, k1, . . . , kn ∈ Z and U is a neighbourhood of

ak11 · · · aknn ∈ G, there are neighbourhoods V1, . . . , Vn of a1, . . . an, respectively, such

that V k1
1 · · ·V kn

n ⊆ U.

Definition 2.1.3. If G1 and G2 are topological groups and ψ : G1 → G2 is a contin-

uous homomorphism, then ψ is a topological isomorphism if it is simultaneously

an isomorphism and a homeomorphism.

Next we consider the homogeneity of topological groups. Recall that a topological

space X is homogeneous if and only if, given distinct points x, y ∈ X, there is a

homeomorphism ϕ : X → X for which ϕ(x) = y. To begin we note that a topological

group G acts on itself by certain canonical homeomorphisms, for example, the inver-

sion of G and the left or right translation of G by a fixed element. To verify that

these are in fact homeomorphisms, let a ∈ G, then the left translation

λa : G ∋ g 7→ ag ∈ G
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and the right translation

ρa : G ∋ g 7→ ga ∈ G

are clearly continuous mappings, for each a ∈ G, as they are merely restrictions of

the multiplication in Definition 2.1.1. The inversion ι is also continuous by defini-

tion. From well-known properties of the group operation, we have that λa, ρa, and

ι are one-to-one and onto in G. As ι is continuous in G and ι−1 = ι, we have that

ι is a homeomorphism. Finally from (λa)
−1 = λa−1 and (ρa)

−1 = ρa−1 , we obtain

that λa and ρa are homeomorphisms. Now let a, b ∈ G, there is a homeomorphism

G ∋ g 7→ ba−1g ∈ G that maps a to b. Thus we can conclude that the space of any

topological group is homogeneous.

The next topic we consider is that of the separation axioms on topological groups.

The separation axioms all say, in different ways, that elements that can be distin-

guished or separated in some weak sense must also be distinguishable or separated

in some stronger sense. However, to prove the results we wish to prove about the

separation axioms and many others that will follow, we must first introduce a few

more important concepts.

Definition 2.1.4. Consider a topological space X with x ∈ X. Then a neighbour-

hood of x is a subset U of X for which there exists and open set V that satisfies

x ∈ V ⊆ U . Equivalently, we say U is a neighbourhood of x if its interior contains

x.

Definition 2.1.5. A filter on a nonempty set X is a family F of subsets of X such

that:

1. ∅ /∈ F and X ∈ F ,

2. if C,E ∈ F , then C ∩ E ∈ F , and
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3. if C ∈ F and C ⊆ E ⊆ X, then E ∈ F .

The canonical example of a filter, and one we will use frequently, is the set Nx of

all topological neighbourhoods of x ∈ X called the neighbourhood filter for the point

x. The neighbourhood system of X is the system {Nx : x ∈ X} of all neighbourhood

filters on X.

If F = {A ⊆ X : E ⊂ C for some E ∈ E } is a filter, then the family E of subsets

of X is a base for F . A base for a neighbourhood filter of a point x ∈ X is called a

neighbourhood base at x.

A neighbourhood U of the identity element of a topological group is symmetric

if U = U−1. Now let U be an arbitrary neighbourhood of the identity element

in a topological group G and let V = U ∩ U−1. Then plainly V = V −1, V is a

neighbourhood of the identity, and V ⊆ U hence every neighbourhood of the identity

contains a symmetric one.

Theorem 2.1.6 ([47]). Consider the topological space X with the neighbourhood sys-

tem {Nx : x ∈ X}. Then

1. for each x ∈ X and U ∈ Nx, x ∈ U , and

2. for each x ∈ X and U ∈ Nx, {y ∈ X : U ∈ Ny} ∈ Nx.

Conversely, given a set X and a system {Nx : x ∈ X} of filters on X that satisfies 1-

2, there exists a unique topology T on X such that {Nx : x ∈ X} is the neighbourhood

system.

Proof. It is clear that the neighbourhood system {Nx : x ∈ X} of a space X satisfies

1-2. To prove the converse we must first define the operator int on the subsets of X.

For each A ⊆ X,

int(C) = {x ∈ X : C ∈ Nx}

The existence of a unique topology T on X for which int is the interior operator for

(X,T ), follows from the following conditions that the int operator must satisfy.
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1. int(X) = X. For each x ∈ X, we have X ∈ Nx, thus x ∈ int(X), and so 1

holds.

2. int(C) ⊆ C. If x ∈ int(C), then C ∈ Nx and by 1, we have x ∈ C.

3. int(int(C)) = int(C). Let x ∈ int(C), then C ∈ Nx. By 2, int(C) ∈ Nx which

gives x ∈ int(int(C)). Hence int(C) ⊆ int(int(C)), the converse inclusion from

2.

4. int(C ∩ E) = (int(C)) ∩ (int(E)).

Let x ∈ (int(C)) ∩ (int(E)), then x ∈ int(C) and int(E). We then have that

C ∈ Nx and E ∈ Nx, so C ∩ E ∈ Nx It follows that x ∈ (int(C)) ∩ (int(E)).

Therefore (int(C)) ∩ (int(E)) ⊆ int(C ∩ E).

Conversely, let x ∈ int(C ∩ E), then C ∩ E ∈ Nx which means C ∈ Nx and

E ∈ Nx. It follows that x ∈ (int(C)) ∩ (int(E)). Therefore int(C ∩ E) ⊆

(int(C)) ∩ (int(E)).

We now have that a subset U ⊆ X is a neighbourhood of a point x ∈ X if and only

if x is in the interior of U , and so if and only if U ∈ Nx. Therefore {Nx : x ∈ X} is

a neighbourhood for (X,T ).

We are now ready to give a few important separation results.

Lemma 2.1.7. Every T0 topological group is regular and hence Hausdorff.

Proof. Suppose the topological group G satisfies the T0 separation property. For each

g ∈ G \ {e}, there exists a neighbourhood U of the identity that does not contain

g. As G is homogeneous, it is T1. By the T0 axiom imposed on G in the beginning,

there is an open set U that contains either of the points e and g, but not the other.

Now suppose e ∈ U , then g /∈ U . Otherwise gU−1 is a neighbourhood of e that

does not contain g. Next, we choose a neighbourhood V of the identity such that

V V −1 ⊆ U . Then for each g ∈ G\U , we have gV ∩U = ∅. Otherwise ga = b for some
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a, b ∈ V , giving g = ba−1 ∈ V V −1 ⊆ U which is a contradiction. Hence cl(V ) ⊆ U .

Thus for every neighbourhood U of the identity, there is a closed neighbourhood of

the identity contained in U .

With significantly more work, we can show that more is true. The following

result is a stronger statement than Lemma 2.1.7 and is considered the best general

separation result.

Theorem 2.1.8. Every Hausdorff topological group G is completely regular.

Proof. See [ [29], Theorem 10].

As with Urysohn’s lemma, the introduction of continuous functions in this con-

text is rather surprising. In fact, separation by a continuous function is an extremely

strong condition to impose on a space.

A topological space X is called zero-dimensional if it has a base of clopen sets,

that is, the sets are both open and closed. It is important to note that if a space is

T0 and zero-dimensional, then it is completely regular. We now give a result that is

an improvement over Theorem 2.1.8 for countable topological groups.

Proposition 2.1.9 ([47]). Every countable regular space is normal and zero-dimensional.

Proof. Let X be a countable regular space. First we want to show that X is normal

which we will achieve by proving that every pair of disjoint closed subsets of X will

have neighbourhoods that are disjoint. Let C and E be disjoint closed subsets of X

and enumerate them as follows:

C = {an : n < ω} and E = {bn : n < ω}.

Using induction, we choose neighbourhoods Un and Vn of an and bn respectively, for

each n < ω such that

1. cl(Un) ∩ E = ∅ and C ∩ cl(Vn) = ∅,
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2. Un ∩ (
⋃

i≤n Vi) = ∅ and (
⋃

i≤n Ui) ∩ Vn = ∅, and

3. Un ∩ Vn = ∅.

We require 1 to satisfy 2 while combining 2 and 3 gives

(
⋃

i<n

Ui) ∩ (
⋃

i<n

Vi) = ∅.

We can now see that U =
⋃

n<ω Un and V =
⋃

n<ω where U and V are disjoint

neighbourhoods of C and E, respectively. Thus X is normal.

All that remains is to show that the space X has dimension zero. We suppose

U is an open neighbourhood of x ∈ X. We may assume, without loss of generality

that U is not the whole space. By Urysohn’s lemma, there is a continuous function

ϕ : X → [0, 1] such that ϕ(x) = {0} and ϕ(X \ U) = {1}. As X is countable, there

exists s ∈ [0, 1] \ϕ(X). Thus ϕ−1([0, s)) = ϕ−1([0, s]) is a clopen neighbourhood of x

contained in U .

From Lemma 2.1.7 and Proposition 2.1.9 above, it follows that every countable

Hausdorff topological group is normal and zero-dimensional.

A neighbourhood base at x ∈ X is countable if there exists a sequence of neigh-

bourhoods Um of x such that for every neighbourhood U of x, there exists some m

for which Um ⊆ U . If each point in X has a countable neighbourhood base, then X

is said to be first countable.

We now give a topological characterization of when a topological group is metrizable.

Theorem 2.1.10. A Hausdorff topological group G is metrizable if and only if it is

first countable.

Proof. See [ [18], Theorem 8.3].

It is a well known fact that every metric space is normal. Combining this fact with

Theorem 2.1.10 immediately gives that every first countable Hausdorff topological

group is also normal.
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The natural question to ask at this point is; given a topological group G, is it

possible to form new topological groups from G? The answer to this question is yes

and it prompts us to investigate some methods to achieve this.

Given a topological group G, a subgroup H of G (with the subspace topology) is a

topological group. It is easy to see that the mapping

(g, h) 7→ gh−1 of H × H onto H is continuous as it is merely a restriction of the

corresponding mapping of G×G and G.

Before we continue in this direction we must take a small detour to address a

potential concern. Consider a topological group (G,T ) and a subgroup H of G.

One might be tempted to want a stronger topology O on G. For example, one

might define H and each of its left translates to be open with respect to O, that

is, O = {gH ∩ U : g ∈ G,U ∈ T } hoping that (G,O) will be a topological group.

However there is no guarantee that the function

µ
′

: (g, h) 7→ gh−1

will be continuous with respect to O. It is therefore a good idea to introduce an

axiomatization of the topology of a topological group. The two results that follow will

serve to address this issue by characterizing the neighbourhood filter of the identity

of a topological group.

Theorem 2.1.11 ([37]). Let (G,T ) be a topological group and let Ne be the neigh-

bourhood filter of the identity element e. Then

1. U ∈ Ne implies the existence of V ∈ Ne such that V · V ⊆ U ;

2. U ∈ Ne implies U−1 ∈ Ne;

3. for every U ∈ Ne, and g ∈ G, gUg−1 ∈ Ne

Furthermore, for every g ∈ G, the neighbourhood filter Ng is given by

Ng = {Ug : U ∈ Ne} = {gU : U ∈ Ne}

12



Proof. Since µ(e, e) = e and µ is continuous, there exist, for given U ∈ Ne, neigh-

bourhoods of the identity W and W ∗ such that µ(W,W ∗) ⊆ U . Setting V = W ∩W ∗

and noting that V V ⊆ WW ∗ = µ(W,W ∗) proves 1. Next, we have ι(e) = e and ι is

a homeomorphism. Hence, given U ∈ Ne, the set ι(U) = U−1 is a neighbourhood of

e. Therefore 2 is proved.

Finally, we let g ∈ G. Then for every U ∈ Ne, we have gUg−1 = λg ◦ ρ
−1
g (U). We

have gUg−1 ∈ Ne. This follows from the fact that λg and ρ−1
g are homeomorphisms

and that λg ◦ρ
−1
g (e) = e. Let V be an arbitrary element of Ne and the set U = g−1V g.

Then U ∈ Ne and gUg
−1 = V. Hence, Ne = {gUg−1 : U ∈ Ne}. Since λg and ρg are

homeomorphisms that map e onto g, it follows that for every g ∈ G

gN = {gU : U ∈ Ne} = {Ug : U ∈ Ne} = N g

is a neighbourhood filter of g.

Theorem 2.1.12 ([37]). Let G be a group and the let N be a filter satisfying 1, 2,

and 3 of Theorem 2.1.11. Then there is a unique topology T on G such that Ne is

the neighbourhood filter of the identity element e ∈ G. The topology T is Hausdorff

if and only if
⋂

Ne = {e}

Proof. Given the neighbourhood system {gN : g ∈ G}, we must show that it satisfies

the conditions of Theorem 2.1.6. If we suppose that g ∈ G and U is a neighbourhood

of the identity, then from 1-2, it follows that there exists a neighbourhood of the

identity V such that V V −1 ⊆ U. Then gV V −1 ⊆ gU and 1 is satisfied. To verify 2,

we let g ∈ G and U be a neighbourhood of the identity. Then from 1, it follows that

there exists a neighbourhood of the identity V such that V V ⊆ U. For each h ∈ gV,

we have hV ⊆ gV V ⊆ gU, so gV ⊆ {h ∈ G : gU ∈ hN }. Thus {h ∈ G : gU ∈ hN }.

Theorem 2.1.6 guarantees the existence of a unique topology T on G such that

gN is the neighbourhood filter of g, for every g ∈ G. This means the neighbourhoods

of g are of the form gU, where U ∈ Ne. All that remains is to show that T is a group
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topology. To do this, let g, h ∈ G and U ∈ Ne. Using 1-2, we choose V ∈ Ne for

which hV V −1h−1 ⊆ U. Then

gV (hV )−1 = gV V h−1 = gh−1hV V −1h−1 ⊆ gh−1U.

We have shown that T is a group topology. It is thus Hausdorff if and only if it is

T1, and is T1 if and only if
⋂

Ne = {e}.

Theorem 2.1.11 also showed that the neighbourhood system of a topological group

is completely determined by the neighbourhood filter of the identity.

We can now return to our study of subgroups.

Theorem 2.1.13 ([18]). Let H be a subgroup of a topological group G. Then H is

open if and only if it has a nonempty interior. Every open subgroup H of G is closed.

Proof. Let g be an interior point of H. Then there exists a neighbourhood U of

the identity in G such that gU ⊆ H. This means that for each h ∈ H, we have

hU = hg−1gU ⊆ hg−1H = H, so H is open. Since H is open, every point of H is, by

definition an interior point. Now suppose that H is an open subgroup of G, then we

can write the complement, Hc, of H as Hc =
⋃

{gH : g /∈ H}. We know that each

set gH is open, hence Hc is open. Consequently, H is closed.

Next we show that it is possible to generate open and closed subgroups from

neighbourhoods of the identity.

Theorem 2.1.14 ([18]). Let U be any symmetric neighbourhood of the identity in a

topological group G. Then the set K =
⋃

n<ω U
n is an open and closed subgroup of G.

Proof. Let g ∈ U r and h ∈ U s. Then gh ∈ U r+s and g−1 ∈ (U−1)r so K is a subgroup

of G. Finally, we have by Theorem 2.1.13, that K is open and closed.

Theorem 2.1.15 ([18]). Suppose that H is a subgroup of a topological group G. Then

H is discrete if and only if it has an isolated point.
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Proof. Let g ∈ H and suppose that g is isolated (in the subspace topology). In other

words, there exists a neighbourhood U of the identity in G such that (gU)∩H = {g}.

Then for an arbitrary point h ∈ H, we have

(hU) ∩H = (hU) ∩ (hg−1H) = hg−1((gU) ∩H) = {h}.

Thus every point of H is isolated, which confirms that H is discrete. Now if we

assume that H is discrete, all of its points are, by definition isolated.

Now letH be a normal subgroup of a topological groupG and consider the quotient

G/H with the quotient topology T (G/H), in particular, the strongest topology on

G/H for which the natural mapping π : G → G/H is continuous. Let the open sets

in G/H be of the form {uH : u ∈ U} where U is an open subset of G, thus T (G/H)

consists of all sets that have the form {uH : u ∈ U} where U is open.

2.2 Topologizing a Group

It was noted earlier that when considered with the discrete topology, any group can

be trivially made to be a topological group. The question we must now ask ourselves

is, which groups admit a nondiscrete Hausdorff group topology? It was in 1945 that

A. Markov [26] posed his now famous question. He posed it as follows: Does every

infinite group admit a nondiscrete Hausdorff group topology? Of particular interest

to us, for the purpose of this dissertation, are countably infinite groups and infinite

Abelian groups.

In this section we will give a characterization of when a countable group admits

a nondiscrete Hausdorff group topology, we will prove that every countable infinite

Abelian group admits a totally bounded group topology and we will briefly describe

the definitive solution to Markov’s problem.
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First and foremost we must define exactly what we mean when we say a given

group G is topologizable.

Definition 2.2.1. A group G is topologizable if it admits a nondiscrete Hausdorff

group topology.

Definition 2.2.2. We call a topological group G totally bounded if it is Hausdorff

and for every nonempty open subset U of G there is a finite subset A of G such that

AU = G.

Theorem 2.2.3. A topological group G is totally bounded if and only if it can be

topologically and algebraically embedded into a compact Hausdorff topological group.

Many mathematicians posed variations of Markov’s question. If G is an infinite

group, is it possible to endow it with a nondiscrete group topology which is metrizable?

What about one which is totally bounded? In 1953 Kertész and Szele [22] showed that

every infinite Abelian group admits a nondiscrete group topology which is metrizable.

We tackle the problem of a totally bounded group topology on infinite Abelian groups.

Theorem 2.2.4 ([19]). Consider an Abelian group G with identity e and the circle

group T = {z ∈ C : |z| = 1}. For every g ∈ G \ {e}, there is a homomorphism

ϕ : G→ T such that ϕ(g) 6= 1.

Proof. Suppose that 〈g〉 = {gn : n ∈ Z} is the cyclic group generated by g. Define

ϕ on 〈g〉 by stating that ϕ(gn) = exp(in) if 〈g〉 is infinite. If 〈g〉 is of order k, we

define ϕ on 〈g〉 by ϕ(gn) = exp(2nπi
k

). It will be shown that ϕ can be extended to G.

Consider the set of all pairs (h,H), where H is a subgroup of G, 〈g〉 ⊆ H, h : H → T

is a homeomorphism, and ϕ ⊆ h. This set is ordered by

(h1, H1) ≤ (h2, H2) if and only if H1 ⊆ H2 and h2|H1
= h1.

By Zorn’s lemma, we obtain a maximal member (h,H). We claim that H = G.

Suppose for contradiction that there exists some a ∈ G \ H. Let H ′ = {anb : n ∈
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Z and b ∈ H}. Then H ′ is a subgroup of G and H ⊂ H ′. We show that H can

be extended to a homomorphism h′ : H ′ → G, which contradicts the maximality of

(h,H). Begin by assuming that there is no n ∈ Z \ {0} such that an ∈ H. Recall that

the members of H ′ have a unique expression of the form anb with n ∈ Z and b ∈ H.

So we may define a homomorphism h′ on H ′ by h′(anb) = h(b). Otherwise, choose

m to be the first positive integer for which am ∈ H and choose θ ∈ R such that

exp(iθ) = h(am). Notice that for any n ∈ Z, we have an ∈ H if and only if n = mp

for some p ∈ Z. To extend h to h′, we simply state that h′(anb) = exp(niθ
m
)h(b).

Theorem 2.2.5 ([47]). Every infinite Abelian group G admits a nondiscrete totally

bounded group topology.

Proof. Suppose that G is an infinite Abelian group. By Theorem 2.2.4, for every

g ∈ G \ {0}, there is a homomorphism ϕg : G → T with ϕg(g) 6= e. Now let H =
∏

g∈G\{0} Tg where Tg = T. Let ϕ : G → H be defined by (ϕ(x))g = ϕg(x). We

see that ϕ is an injective homomorphism. From the fact that it is a subgroup of a

compact group, we have that ϕ(G) is totally bounded. Hence, the topology on the

infinite Abelian group G which consists of the subsets ϕ−1(U), where U runs over

open subsets of ϕ(G), is as desired.

It can be shown that every infinite Abelian group G admits 22
|G|

totally bounded

group topologies. It is also known from a result of Taimanov [36] that all large

subgroups of a permutation group and free topological groups are nontrivially topol-

ogizable. This settles the first task we have set for the section.

We now direct our focus to the problem of characterizing when a countably infinite

group admits a nondiscrete Hausdorff group topology. First recall the notion of a filter

from Definition 2.1.5. Now for every filter F on a group G, we denote by T (F ), the

largest group topology on G for which the filter F converges to the identity element.

For every filter F on a group G, we can also define a filter with a base that consists
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of subsets having the form

⋃

g∈G

g(Fg ∪ Fg
−1 ∪ {e})g−1,

where Fg ∈ F for each g ∈ G. We denote this filter by F̃ .

It would serve us well to take a deeper look at the topology T (F ). We do this

with the aid of the following theorem which gives a description of T (F ). Precedently,

let Sn denote the group of all permutations on {1, . . . , n} for each n ∈ N.

Theorem 2.2.6 ([42]). For every filter F on a group G, the neighbourhood filter of

the identity element in T (F ) has a base that consists of subsets having the form

∞
⋃

n=1

⋃

π∈Sn

n
∏

i=1

Kπ(i),

where (Kn)
∞
n=1 is a sequence of members of F̃ .

Proof. See [ [47], Theorem 1.17].

In each of the definitions that follow, G is a countably infinite group which we

enumerate as {gn : n < ω} such that there are no repetitions and g0 = e.

Definition 2.2.7 ([42]). We define, for each infinite sequence in G, the set U((an)
∞
n=1)

of G as follows:

U((an)
∞
n=1) =

∞
⋃

n=1

⋃

π∈Sn

n
∏

i=1

Kπ(i),

where

Ki =
∞
⋃

j=0

gj{e, a
±1
i+j, a

±1
i+j+1, . . .}g

−1
j .

Definition 2.2.8 ([42]). We define, for each infinite sequence a1, . . . , an in G, the

set U(a1, . . . , an) of G as follows:

U(a1, . . . , an) =
⋃

π∈Sn

n
∏

i=1

Kn
π(i),
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where

Kn
i =

n−i
⋃

j=0

gj{e, a
±1
i+j, a

±1
i+j+1, . . .}g

−1
j .

From Definition 2.2.8 we can see that the elements of U(a1, . . . , an) are all those

having the form

gj1b1g
−1
j1

· · · gjnbng
−1
jn
,

where ji ∈ {0, . . . , n − π(i)} and bi ∈ {e, a±1
π(i)+ji

, . . . , a±1
n } for each 1 ≤ i ≤ n and

π ∈ Sn. Particularly, we have U(∅) = {e} and U(a1) = {e, a±1
1 }.

Definition 2.2.9 ([42]). For every finite sequence a1, . . . , an−1 in G, let F (a1, . . . , an−1, x)

be the set of group words φ(x) in the alphabet G ∪ {x} which has the variable x and

which the words are of the form

φ(x) = gj1b1g
−1
j1

· · · gjnbng
−1
jn
,

where ji ∈ {0, . . . , n− π(i)} and bi ∈ {e, a±1
π(i)+ji

, . . . , a±1
n+1, x} for each 1 ≤ i ≤ n and

π ∈ Sn. In particular, F (x) consists of two group words x and x−1.

It is worth noting that when the group G is Abelian, the definitions above look

far less complex.

The following result is of profound significance as it gives us a way to make a

countably infinite group admit a nondiscrete Hausdorff group topology.

Theorem 2.2.10 ([42]). For every infinite sequence in a countable group G, the

following statements hold:

1. U((an)
∞
n=1) is a neighbourhood of the identity element in T ((an)

∞
n=1),

2. U((an)
∞
n=1) =

⋃∞
n=1 U(a1, . . . , an),

3. U(a1, . . . , an) = U(a1, . . . , an−1) ∪ {φ(an) : φ(x) ∈ F (a1, . . . , an, x)} for each

n ∈ N, and
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4. for every n ∈ N and φ(x) ∈ F (a1, . . . , an−1, x), φ(e) ∈ U(a1, . . . , an−1).

As promised earlier we illustrate Theorem 2.2.10 with a special result, called

Markov’s Criterion, but first we have to define the notion of an inequality over a

group.

Definition 2.2.11 ([42]). Let G be a group. An inequality over G is any expression

that has the form ϕ(x) 6= c, where ϕ(x) is a group word in the alphabet G ∪ {x} and

c ∈ G.

Theorem 2.2.12 ([42]). (Markov’s Criterion) Let G be a countable group. Then G

is topologizable if and only if every finite system of inequalities over G that has a

solution also has another solution.

Proof. Necessity. Given that T is a nondiscrete Hausdorff group topology on G,

consider any finite system of inequalities over G, say ϕi(x) 6= ci, where i = 1, . . . , n,

which have a solution, say b ∈ G, that is ϕi(b) 6= ci for each i = 1, . . . , n. Recall that

T is a Hausdorff group topology. Then there exists a neighbourhood U ∈ T of b for

which ci /∈ ϕi(U) for each i = 1, . . . , n. It follows that every element of U is a solution

of the system. Furthermore, since T is nondiscrete, U \ {b} 6= ∅.

Sufficiency. The proof is based on Theorem 2.2.10. It suffices to construct a

sequence (bn)
∞
n=1 in G \ {e} for which gi /∈ U(bi, bi+1, . . . , bn) for each n ∈ N and i =

1, . . . , n. This implies that gi /∈ U((bn)
∞
n=1) for which each i ∈ N making the topology

T ((bn)
∞
n=1) nondiscrete and Hausdorff. Begin by picking any b1 ∈ G \ {e, g±1

1 }, then

g1 /∈ U(b1) = {e, b±1
1 }. Next, fix n ∈ N and assume that we have chosen the elements

b1, . . . , bn ∈ G in such a way that gi /∈ U(bi, bi+1, . . . , bn) for each i = 1, . . . , n.We need

to find bn+1 ∈ G \ {e} such that gi /∈ U(bi, bi+1, . . . , bn, bn+1) for each i = 1, . . . , n+1.

Since

U(bi, bi+1, . . . , bn, bn+1) = U(bi, bi+1, . . . , bn) ∪ {ϕ(bn+1) : ϕ(x) ∈ T (bi, bi+1, . . . , bn, x)},

it follows that gi /∈ U(bi, bi+1, . . . , bn, bn+1) for each i = 1, . . . , n + 1 if and only if

the system of inequalities ϕ(x) 6= gi has a solution bn+1, where i = 1, . . . , n + 1 and
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ϕ(x) ∈ T (bi, bi+1, . . . , bn, x). Since ϕ(e) ∈ U(bi, bi+1, . . . , bn) for each i = 1, . . . , n + 1

and ϕ(x) ∈ T (bi, bi+1, . . . , bn, x), we have that e is a solution of this system. Hence

there exists a solution bn+1 6= e.

We conclude this section with a short discussion on the definitive solution to

Markov’s problem which was eventually resolved in the negative after having remained

open for over three decades. The first example of a nontopologizable group was given

by S. Shelah [33]. Shelah’s construction relies on the use of the continuum hypothesis

and is of a group G having cardinality ℵ1 such that the only topologies that G admits

are the two trivial ones, that is, the discrete and indiscrete topologies. This group

satisfies the following conditions:

1. there is some r ∈ N such that Ar = G for every A ⊆ G with the cardinalities of

A and G equal;

2. for every subgroup H of G with the cardinality of H being strictly less than

that of G, there is some n ∈ N and g1, . . . , gn ∈ G such that the intersection
⋂n

i=1 g
−1
i Hgi is finite.

In 1 above, r can be chosen to be 10000 and in 2 above, we can take n = 2. G.

Hesse showed, in [16] that we need not assume the continuum hypothesis to construct

such a nontopologizable group.

We now give a brief sketch of a nontopologizable group constructed by Ol’shanskii [28]

that falls within the framework of ZFC.

The reader should note that if every element of a group G except the identity has

infinite order, then G is called a torsion-free group. If every element of G has finite

order then we say G is a torsion-group.

Example 2.2.13. Let r and n be odd integers with r ≥ 2 and n ≥ 665, and let A(r, n)

be the Adian group. This group has the following properties:
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1. A(r, n) is generated by r elements;

2. A(r, n) is torsion-free;

3. the center of A(r, n) is an infinite cyclic group 〈c〉;

4. the quotient A(r, n)/ 〈c〉 is an infinite group and has period n.

The quotient A(r, n)/ 〈c〉 is, in fact the Burnside group B(r, n) which is the largest

group on r generators that satisfy the identity xn = e. By 1, the Adian group is

countable. If x ∈ A(r, n) \ 〈c〉 then xn ∈ 〈c〉 by virtue of A(r, n)/ 〈c〉 having period n.

We want to show that xn /∈ 〈cn〉 so we assume the contrary. Then xn = (cn)k =

(ck)n for some integer k. If z = xc−k, then z /∈ 〈c〉 and zn = xnc−kn = e, as 〈c〉 is the

center but this contradicts that the Adian group is torsion-free.

Now suppose that G = A(r, n)/ 〈cn〉 and let D = 〈c〉 / 〈cn〉. We have that G is an

infinite group, D = {e, d1, . . . , dn−1} is a proper subset of G and for each x ∈ G \D,

we have xn = {d1, . . . , dn−1}. It follows that for every T1-topology on G in which the

identity element is not an isolated point, the mapping x 7→ xn is not continuous at e.

Hence the group G does not admit a nondiscrete Hausdorff group topology.

2.3 Resolvability and Irresolvability in Topological

Spaces

Definition 2.3.1. A topological space X is said to be resolvable if it can be par-

titioned into two dense subsets. More generally, given a cardinal κ ≥ 2, the space

X is κ-resolvable if it can be partitioned into κ-many dense subsets. If X is not

resolvable (or κ-resolvable) then we say it is irresolvable (or κ-irresolvable).

Based on this definition, it is evident that the usage of the term “resolvable”

coincides with “2-resolvable”. This implies that whether or not a space is resolvable,
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it must be 1-resolvable. Also observe that for every cardinal number κ ≥ 1, the empty

space ∅ is κ-resolvable.

Example 2.3.2. The set of real numbers is a resolvable topological space. This is

because the sets of rational and irrational numbers are disjoint dense subsets of R.

Definition 2.3.3 ([47]). A topological space X is called hereditarily κ-irresolvable

if every nonempty subsets of X is κ-irresolvable and open hereditarily κ-irresolvable

if every nonempty open subset of X is κ-irresolvable.

Here we give a short survey of some of the more general results concerning the

resolvability and irresolvability of topological spaces and groups. It is useful to point

out that every resolvable space X is dense-in-itself, in other words, there does not

exist a point of X that is isolated in X.

Lemma 2.3.4 ([41]). A space with a resolvable subspace is itself resolvable.

Proof. Given that X is a topological space, suppose that Z0 is a resolvable subspace

of X and that {C0, E0} is a partition of Z0 into dense subsets. Let P be the family

of all pairs {C,E} of disjoint subsets of X such that C0 ⊆ C, E0 ⊆ E, C ⊆ cl(E) and

E ⊆ cl(C). Because {C0, E0} ∈ P, we have that P is nonempty. Now let the order

on P be defined by

{C1, E1} ≤ {C2, E2} if and only if C1 ⊆ C2 and E1 ⊆ E2.

Every chain ({Ci, Ei})i∈I in P has an upper bound {
⋃

i∈I Ci,
⋃

i∈I Ei}. By Zorn’s

lemma, there exists a maximal element {C,E} ∈ P. It remains to show that {C,E}

is a partition of X into dense subsets. For this, it is suffient to check that C ∪E = X.

Obviously, Z = C ∪ E is closed. Suppose Z 6= X. Then pick x ∈ X \ Z and z ∈ Z.

Next, suppose that ϕ : X → X is a homeomorphism with ϕ(z) = x and choose an

open neighbourhood U of z ∈ Z such that ϕ(U) ∩ Z = ∅. Put C1 = C ∪ ϕ(U ∩ C)

and E1 = E ∪ ϕ(U ∩ E). Then (C1, E1) ∈ P and {C,E} < {C1, E1} which is a

contradiction.
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Lemma 2.3.5 ([7]). Consider a topological space X. If Y is a κ-resolvable subspace

of X, then the closure of Y in X, denoted clX(Y ), is κ-resolvable.

Proof. The relation ”is dense in itself” is transitive.

If a topological space X is of the form X =
⋃

i∈I Xi where {Xi : i ∈ I} is a

pairwise disjoint family such that each Xi is resolvable, then X is itself resolvable. To

see this, notice that for each i ∈ I there is a subset Di of Xi such that Di as well as

its complement Xi \Di are dense in Xi. It follows that
⋃

i∈I Di and X \
⋃

i∈I Di are

both dense in X. Thus X is resolvable. The following theorem generalizes this fact.

Theorem 2.3.6 ([7]). The union of a family of κ-resolvable subsets of a space is

κ-resolvable.

Proof. Let X be a topological space. Given the maximal family R of pairwise disjoint

κ-resolvable subsets of X, let Y =
⋃

R. Now let U := X \ clX(Y ) be an open set. If

U is nonempty then there exists some i ∈ I for which U ∩Xi 6= ∅.

An open subspace of a κ-resolvable space is κ-resolvable, hence the family R∪{U∩

Xi} is pairwise disjoint and has κ-resolvable members, contradicting the maximality

of R. If we choose, for C ∈ R, a pairwise disjoint nonempty family {Aγ : γ < κ} of

dense subsets of C and then define Pγ =
⋃

C∈R
Cγ for γ < κ, we have that {Pγ : γ < κ}

is a family of κ-many pairwise disjoint dense subsets of X. We can conclude that X

is κ-resolvable.

The reader should note that the intersection of a family of κ-resolvable spaces may

not be κ-resolvable. For instance, the singleton is irresolvable. Theorem 2.3.6 is of

great significance as it arms one with a powerful tool to give very efficient proofs for

numerous other results that would otherwise require indirect and obscure arguments

to prove. We illustrate this fact with the following results whose proofs all follow

from the one above.

Lemma 2.3.7 ([9]). Let G be a topological group and H a subgroup of G.
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1. If H is a proper dense subgroup of G, then G is resolvable.

2. If H is nonclosed, then G is resolvable.

3. If H is closed and nowhere dense with G/H resolvable (in the quotient topology),

then G is resolvable.

Proof. 1. Evidently H and G \H are dense in G.

2. It follows from part 1 that cl(H) is resolvable. Now by Theorem 2.3.6, G is

resolvable.

3. We first define the natural map φ : G → G/H and then let D and (G/H) \D

be complementary dense subsets of G/H. As φ is an open map, φ−1(D) and

G \ φ−1(D) are dense in G. Thus G is resolvable.

Corollary 2.3.8 ([47]). Let X be a topological space and κ ≥ 2. Let

Rκ(X) :=
⋃

{Y : Y ⊆ X, Y is resolvable},

that is, Rκ(X) is the union of all κ-resolvable subsets of X. Then

1. Rκ(X) is the largest κ-resolvable subset of X,

2. Rκ(X) is closed,

3. X is κ-resolvable if and only if Rκ(X) = X, and

4. If X is κ-irresolvable, then Iκ(X) = X \ Rκ(X) is hereditarily κ-irresolvable.

It has become conventional to represent a space X as a disjoint union X = R∪I

where R = R2(X) is closed and resolvable, and I = I2(X) = X \ R is open

hereditarily irresolvable. In this case, X is resolvable if and only if I = ∅, and

hereditarily irresolvable if and only if R = ∅. This convention is attributed to Edwin

Hewitt.
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The following characterization of a homogeneous κ-irresolvable space is a conse-

quence of the properties of Rκ(X).

Corollary 2.3.9 ([47]). If X is a homogeneous space then it is κ-irresolvable if and

only if it is hereditarily κ-irresolvable.

Proof. Consider a homogeneous κ-resolvable spaceX and suppose that it is not hered-

itarily κ-irresolvable. Then Rκ(X) is a proper subset of X. If we choose x ∈ Rκ(X)

and y ∈ X \ Rκ(X) and let ϕ : X → X be a homeomorphism with ϕ(x) = y,

we obtain that ϕ(Rκ(X)) is a subset of X which is κ-resolvable and also that

ϕ(Rκ(X)) \ Rκ(X) 6= ∅. This is a contradiction so X must be hereditarily κ-

irresolvable.

In what remains of this section, we will explore one of the most fundamental

results of the theory of resolvability (or irresolvability) in topological spaces. This

result, attributed to A. Illanes, says spaces that are ω-irresolvable are in fact finitely

irresolvable. Recall that a space is ω-resolvable if it can be partitioned into countably

many dense subsets.

The proof of Illanes’ theorem requires the use of two results that we shall present

as lemmas.

Lemma 2.3.10 ([20]). Consider a topological space X and let Q = Q(X) be the

union of every open set in X that contains a hereditarily irresolvable dense subset.

Then

1. Q is the largest open set in X that contains an open-hereditarily irresolvable

dense subset, and

2. every dense subset of X \ cl(Q) is resolvable, and thus ω-resolvable.

Proof. Let U be a maximal family of pairwise disjoint open subsets of X that contain

a hereditarily irresolvable dense subset. Also note that
⋃

U is dense in Q. Now
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for each U ∈ U , let Du be a dense hereditarily irresolvable subset of U and let

D0 =
⋃

{Du : U ∈ U }. We have that D0 is an open-hereditarily dense subset of Q.

We now wish to show that every dense subset of X \ cl(Q) is resolvable. To do

this, consider a dense subset A of X \ cl(Q). Now suppose, on the contrary, that A is

irresolvable. It follows from Corollary 2.3.8 that there exists a nonempty, hereditarily

irresolvable open subset V of A. Now let U1 ⊆ X be open with U1 = V ∩ A and

V ⊆ X\cl(Q). Then U1 is dense in V, giving V ∈ U which contradicts the maximality

of U . Thus X \ cl(Q) is resolvable.

All that remains is to show that X \ cl(Q) is ω-resolvable. Since X \ cl(Q) is

resolvable, there exist disjoint dense subsets A1 and B1 of X \ cl(Q). Repeating this

process we obtain that there exist disjoint dense subsets A2 and B2 of B1 such that

B1 = A2 ∪B2. If we proceed in this manner we can construct sequences (An)n<ω and

(Bn)n<ω such that for each n < ω, An+1 and Bn+1 are disjoint dense subsets of Bn

with Bn = An+1 ∪ Bn+1. Then

X \ cl(Q) = (A1 ∪ (X \ cl(Q)) \
⋃

{An : n ≥ 2}) ∪ A2 ∪ A3 ∪ . . .

This union is made up of pairwise disjoint dense subsets of X \cl(Q). Hence X \cl(Q)

is ω-resolvable.

Lemma 2.3.11 ([20]). Let X be a topological space and let D be an open-hereditarily

irresolvable subset of a space X. If X is (n+ 1)-resolvable for some n then X \D is

dense in X and n-resolvable.

Proof. Suppose that U is a nonempty open subset of X. We now need to show that

U \D contains a nonempty n-resolvable set. We may suppose that D ∩ U 6= ∅ and

let X = A1 ∪A2 ∪ . . . ∪An+1 where each Ai is dense for i = {1, . . . , n+ 1}. Then we

can write D ∩ U as follows:

(A1 ∩D ∩ U) ∪ (A2 ∩D ∩ U) ∪ . . . ∪ (An+1 ∩D ∩ U).

There exists no space that can be partitioned into finitely many nowhere dense sub-

sets, so at least one of these sets, take An+1 ∩ D ∩ U for example, is not nowhere
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dense in D ∩ U. Then there must exist an open subset U0 of U such that

∅ 6= D ∩ U0 ⊆ clD∩U(An+1 ∩D ∩ U).

Then An+1 ∩D ∩ U0 is dense in U0 but as D ∩ U0 is irresolvable, we must have that

(D ∩ U0) \ An+1 is not dense in D ∩ U0. Thus there exists an open subset U1 of U0

such that ∅ 6= D ∩ U1 ⊆ An+1 ∩D ∩ U0 which means ∅ 6= D ∩ U1 ⊆ An+1 ∩D ∩ U1.

Consequently A1 ∩ U1, . . . , An ∩ U1 are pairwise disjoint dense subsets of U1 \D.

We now possess all the required tools to prove this fundamental result in the

theory of resolvable topological spaces.

Theorem 2.3.12 ([20]). (Illanes) If a topological space X is n-resolvable for every

n < ω, then it is ω-resolvable.

Proof. By Corollary 2.3.8, all we need to show is that every open subset X0 of X

contains a nonempty ω-resolvable subset. For each n, X0 is n-resolvable as it is an

open subset of X. Let Q(X0) be a subset of X0 as given in Lemma 2.3.10. If Q(X0)

is not dense, then X0 \ cl(Q(X0)) is ω-resolvable. Otherwise let D1 be a dense open-

hereditarily irresolvable proper subset of Q(X0) and letX1 = Q(X0)\D1. Since Q(X0)

is an open subset of X0, it is n-resolvable for each n. Then applying Lemma 2.3.11

gives that X1 is n-resolvable for each n.

Now let Q(X1) be a subset of X1 as given in Lemma 2.3.10. If Q(X1) is not dense,

then X1 \ cl(Q(X1)) is ω-resolvable. Otherwise let D2 be a dense open-hereditarily

irresolvable proper subset of Q(X1) and let X2 = Q(X1)\D2. Since Q(X1) is an open

subset of X1, it is n-resolvable for each n. Then by Lemma 2.3.11, we have that X2

is n-resolvable for each n.

Proceeding in this way, if at some m, the subset Q(Xm) of Xm is not dense, then

Xm \ cl(Q(Xm)) a nonempty ω-resolvable subset of X0 as required. Otherwise let

(Dm)
∞
m=1 be an infinite sequence of pairwise disjoint dense subsets of X0, then X0

itself is ω-resolvable.
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It is worth noting that while Illanes’ theorem is attributed to Alejandro Illanes,

it is believed to have been proved first by Eric van Douwen but was never published.

Illanes’ theorem can naturally be generalized to arbitrary cardinal numbers of count-

able cofinality as was shown by Bhaskara Rao [3].
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Chapter 3

Stone-Čech Compactification

3.1 Ultrafilters

In a nutshell, an ultrafilter is a method of convergence to infinity. The concept of an

ultrafilter was first introduced by Riesz in 1909 but only gained wide use two decades

later after a paper by Ulam. A great deal of information about ultrafilters can be

found in [8]. [19] and [2] are also useful sources in this regard.

Recall the definition of a filter, Definition 2.1.5.

Example 3.1.1. 1. Let F = {X}. Clearly F is a filter, known as the trivial

filter.

2. Given x ∈ X and F = {F ⊆ X : x ∈ F}. We call F a principal filter

generated by the element x ∈ X.

3. Let X be an infinite set and F = {F ⊆ X : X \ F is finite}. The filter F is

called the cofinite filter.

Filters that are not principal filters are called nonprincipal filters.

Definition 3.1.2. An ultrafilter on a nonempty set X is a maximal filter on X,

that is, a filter which is not properly contained in any other filter on X.
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Definition 3.1.3. A family A of subsets of X has the finite intersection property

if for any finite subfamily B of A ,
⋂

B 6= ∅.

Notice that if F is a filter, ∅ /∈ F and F is closed under finite intersections. This

implies that F is a filter base so any filter F has the finite intersection property. If

x ∈ X, we can see that U = {U ⊆ X : x ∈ U} is an ultrafilter and since all principal

filters are of this form, any principal filter is an ultrafilter. The ultrafilter U is called

the principal ultrafilter defined by x.

Principal ultrafilters are the only ultrafilters whose members we can define explic-

itly. The natural question to ask is: do nonprincipal ultrafilters exist? The answer

to this question is yes, but not within the framework of Zermelo-Fraenkel set theory.

To show the existence of nonprincipal ultrafilters, we are forced to use the axiom of

choice.

Theorem 3.1.4 ([30]). Every filter on a set X can be extended to an ultrafilter on

X.

Proof. Suppose that F0 is any filter on a set X and that P is a partially ordered set

of all filters on X that contain F0. Now let γ = {Fi : i ∈ I} be a chain of all filters in

P. From Definition 2.1.5 we have that
⋃

i∈I Fi is an upper bound of γ in P. It follows

from Zorn’s lemma that P has a maximal element, say F ∈ P. Then F is a maximal

filter, consequently, an ultrafilter that contains F0.

Consider the cofinite filter F = {F ⊆ X : X \ F is finite}. Since F is a filter,

the above application of Zorn’s lemma gives that F is contained in an ultrafilter,

say U . For any x ∈ X, U cannot be the principal ultrafilter generated by x as

X \ {a} ∈ F ⊆ U . It follows that there are indeed nonprincipal ultrafilters on any

infinite set.

We now characterize when a filter on a set is an ultrafilter.

Theorem 3.1.5 ([30]). Let X be set and let F be a filter on X. Then F is an

ultrafilter if and only if either F ∈ F or X \ F ∈ F , for all F ⊆ X.
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Proof. Suppose that F is a filter and F ⊆ X. If there exists A ∈ F such that

A ∩ F = ∅ then X \ F ∈ F . If A ∩ F 6= ∅ for every A ∈ F then

F
′ = {B ⊆ X : A ∩ F ⊆ B for some A ∈ F}

is a filter. We have that F ∈ F ′, F ⊆ F ′ and as F is an ultrafilter, F = F ′.

Therefore F ∈ F .

Conversely, suppose that F is a filter for which either F ∈ F or X \ F ∈ F

for any subset F of X. Suppose the filter F is properly contained in a filter F ′.

If F 6= F ′, there is a F ∈ F for which F /∈ F ′. However, F ∩ (X \ F ) = ∅, a

contradiction of the definition of a filter. Thus F = F ′ and F is an ultrafilter.

Let U be an ultrafilter on a set X. If there exists an element x ∈
⋂

U , then

U ⊆ {F ⊆ X : x ∈ F}. From the fact that U is a maximal filter, we have U =

{F ⊆ X : x ∈ F}, a principal ultrafilter. If F ∈ F is finite, then there exists some

x ∈ F such that {x} ∈ U . Consequently U = {F ⊆ X : x ∈ F}. Thus U is a

nonprincipal ultrafilter if and only if
⋂

U = ∅.

Definition 3.1.6. A topological space X is called compact if and only if every open

cover contains a finite subcover.

We illustrate the fact that filter convergence is ideal when considering ultrafilters

on compact Hausdorff spaces with the following theorem.

Theorem 3.1.7. 1. A topological space X is Hausdorff if and only if every ultra-

filter F on X converges to at most one point.

2. A topological X is compact if and only if every ultrafilter F on X converges to

at least one point.

Proof. 1. Necessity. Let F be a filter on a Hausdorff space X. Assume, on the

contrary, that F converges to distinct points a, b ∈ X. Now let U, V ∈ F be

disjoint neighbourhoods of a and b respectively. Then U ∩ V = ∅ since X is
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Hausdorff, but this contradicts the definition of a filter. So F must converge

to at most one point.

Sufficiency. Assume for contradiction, that every filter F on X converges to at

most one point but X is not Hausdorff. Then there are distinct points a, b ∈ X

for which any open neighboughood U of a intersects any open neighbourhood V

of b. The family {U ∈ F : a ∈ U}
⋃

{V ∈ F : b ∈ V } has the finite intersection

property. Extend F to an ultrafilter containing this family. Then F converges

to the distinct points a and b, contradicting the hypothesis.

2. Necessity. Assume, on the contrary, that the space X is compact but the

ultrafilter U on X has no limit points. This means for each x ∈ X, there is

some open neighbourhood U of x for which U /∈ U . SoX =
⋃

{U /∈ U : x ∈ U},

and since X is compact, X =
⋃n

i=1 Ui. However X ∈ U , so there must be some

Ui ∈ U , a contradiction.

Sufficiency. Assume that X is not compact. Then there exists an open X =
⋃n

i=1 Ui with no finite subcover. So
⋂n

i=1(X \ Ui) = ∅, but there are no empty

finite subintersections so {X \ Ui}
n
i=1 has the finite intersection property. This

allows us to pick an ultrafilter U that contains {X \ Ui}
n
i=1. Now any point

x ∈ X is contained in some Ui and since X \ Ui ∈ U , we have that Ui /∈ U .

Thus x is not a limit point of U .

Theorem 3.1.8. The product of compact topological spaces is compact.

Proof. Suppose that X =
∏

i∈I Xi and that each Xi is compact. We wish to show

that X is compact. To this end, for each i0 ∈ I, define the projection πi0 : X → Xi0

of X onto Xi0 to be πi0((xi)) = xi0 and suppose that U is an ultrafilter on X. Then

for each i ∈ I, πi(U ) = {A ∈ Xi : π
−1
i (A) ∈ U } is an ultrafilter on Xi. It follows

that since Xi is compact, πi(U ) converges to some point ai ∈ Xi. Now suppose that

W =
∏

i∈I Ui is a canonical open neighbourhood of a and I0 = {i ∈ I : Wi 6= Xi}.
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Then U =
⋂

i∈I0
π−1
i (Wi). Consequently, since I0 is finite and π

−1
i (Wi) ∈ U , we have

that W ∈ U .

We conclude this section with another result in the theory of resolvability on

topogical spaces that is considered “fundamental”. El’kin’s criterion of topological

irresolvability, roughly stated says a topological space X = (X, τ) is irresolvable if

and only if the topology τ contains a base of some ultrafilter on X.

To arrive at El’kin’s criteion, we need to first give a few results.

Proposition 3.1.9 ([11]). If X is a topological space, it is open-hereditarily irresolv-

able if and only if for every (converging) maximal open filter F on X, |F | < n.

Theorem 3.1.10 ([11]). A topological space X is n-irresolvable if and only if there

is a (converging) open filter F on X with |F | < n.

Proof. To prove necessity, let In(X) = X \ Rn(X) be a subspace of X. From

Corollary 2.3.8, we get that In(X) is open and hereditarily n-irresolvable. Now choose

a converging maximal open filter F onX for which In(X) ∈ F . By Proposition 3.1.9,

we have |F | < n.

For sufficiency, suppose Ai is a partition of X into n dense sets, where i < n.

Then there exists j < n such that
⋃

j 6=i<nAi belongs to the filter F . As F is open

we have that Aj is not dense which contradicts the density of the subsets of X. Thus

X is n-irresolvable.

Corollary 3.1.11 ([11]). (El’kin’s Criterion) Let X be a topological space. Then X

is irresolvable if and only if there is a (converging) open ultrafilter on X.

3.2 The Stone-Čech Compactification

The Stone-Čech compactification was obtained independently by M. H. Stone [35] and

E. Čech [4] in 1937. The approach used by M. H. Stone was to treat the relations of
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topology and algebra through the applications of Boolean rings. On the other hand,

E. Čech demonstrated the existence of the Stone-Čech compactification of a space

and used it to investigate properties of that space by embedding it in a product of

lines. The method we choose to define the Stone-Čech compactification of a discrete

space is close to the one used by H. Wallman [40] and the approach we adopt for

discrete spaces follows the treatment in [14].

When mathematicians speak of a compactification they are referring to the pro-

cess wherein a topological space is made to be a compact space. There are numerous

methods of compactification such as the one-point compactification given by Alexan-

droff [1] which we can illustrate by considering the real line R with its usual topology.

The space R is not compact but it can be made to be compact using the one-point

compactification by adding a point ∞, which we call the point at infinity, not belong-

ing to R.

The advantage of the one-point compactification is that it is not difficult to de-

scribe, however, it is in some ways inadequate. The space of continuous functions on

the one-point compactification often differs a great deal to the space of bounded con-

tinuous functions on the underlying topological space. Every continuous real function

on the one-point compactification of a topological space X defines a bounded contin-

uous real function on that space but there are some bounded continuous functions on

X that do not extend to a continuous function on the one-point compactification ofX.

Completely regular Hausdorff spaces have a compactification that is free of this

imperfection. This special type of compactification, called the Stone-Čech compact-

ification and denoted by βX, first appeared in the literature implicitly in 1930 in

a paper by Tychonoff [38], wherein he classified completely regular spaces as those

spaces that can be embedded into a product of copies of the closed unit interval I.
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Definition 3.2.1. An embedding of a topological space X into a topological space

Y is a function φ : X → Y which defines a homeomorphism from X onto φ(X).

Definition 3.2.2 ([39]). Let F be a family of functions on a space X. If for every

pair of points x, y ∈ X with x 6= y, there is a function ϕ ∈ F for which ϕ(x) 6= ϕ(y),

we say the family F distinguishes points. If for every closed set F ∈ X and every

point x /∈ F, there is some function ϕ ∈ F for which ϕ(x) misses cl(ϕ(F )), then we

say F distinguishes points and closed sets.

Now suppose that F is a family of mappings for which each ϕ ∈ F maps the

space X to a space Yϕ. For each x ∈ X define the evaluation mapping ε : X →
∏

Yϕ

by ε(x)ϕ = ϕ(x). Since πϕ ◦ ε = ϕ, that is, the composition of ε with each projection

is continuous, we have that ε is continuous. If the family ǫ distinguishes closed sets,

ε is an open open mapping onto ε(X). To see this, suppose U is an open neighbour-

hood of x ∈ X. Pick a function ϕ ∈ F for which ϕ(x) /∈ cl(ϕ(X \ U)). Then the

set of every y ∈ ε(X) for which yϕ /∈ cl(ϕ(X \ U)) is a neighbourhood of ε(x) and is

contained in ϕ(U). Thus, ϕ(U) is open in ε(X). Obviously, if F distinguishes points,

ε is one-to-one. It follows that if F distinguishes points and also distinguishes points

and closed sets, ε is an embedding.

The characterization of the complete regularity given by Tychonoff shows that no

larger class of spaces can be studied by means of embeddings into compact Hausdorff

spaces.

Unlike the one point compactification, the Stone-Čech compactification is difficult

to describe.

Consider a completely regular Hausdorff space X and define the mapping ε : X →

C∗(X), where C∗(X) is the space of real bounded continuous functions on X, by

ε(x) = ex,
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which associates to each x, the evaluation functional at x. We endow C∗(X) with the

product topology. The mapping ε is one-to-one and is an embedding. Thus if we

identify the space X with ε(X), we can view it as a topological subspace of C∗(X).

For each bounded continuous function γ, we choose a real number Mγ > 0. This

real number Mγ must satisfy |γ(x)| ≤Mγ for each x ∈ X. We can see then that

ε(X) ⊆
∏

γ

[−Mγ ,Mγ ] := Q.

The set Q is a compact subset of the space of bounded continuous functions by the

Tychonoff Product Theorem. Therefore the closure cl(ε(X)) of ε(X) is also a compact

subset of C∗(X). In other words, cl(ε(X)) is a compactification of X, the Stone-Čech

compactification.

3.3 Stone-Čech Compactification of a Discrete Space

We give a construction of the Stone-Čech compactification of a discrete space. It

is important to note that any discrete topological space D is metrizable using the

discrete metric, and as we know, this means it is Hausdorff and completely regular.

Thus the space D has a Stone-Čech compactification βD.

It turns out that if D is discrete, βD can be constructed as the set of all ultrafilters

on D. The topology on βD is called the Stone topology. The first step is to consider

a nonempty set D and define a topology on the set of all ultrafilters on D.

Definition 3.3.1 ([19]). Consider a discrete topological space D. Let βD denote the

set of all ultrafilters on D. Given A ⊆ D, we define A ⊆ βD by

A = {p ∈ βD : A ∈ p}.

Lower case letters will denote ultrafilters on D, since we will be thinking of ultra-

filters as points in a topological space. Now suppose a ∈ D. Then ε(a) = {A ⊆ D :

a ∈ A}. Thus for each element a of D, we can think of ε(a) as the principal ultrafilter
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corresponding to a.

For every subset A of D and p ∈ βD, p ∈ A if and only if A ∈ p. Thus p ∈ A ∩ B

if and only if A ∩B ∈ p and this holds if and only if A ∈ p and B ∈ p which in turn,

hold if and only if p ∈ A ∩ B. Hence A ∩ B = A∩B for A,B ⊆ D. similarly, it can be

shown that A ∪ B = A ∪ B. Consequently, the family {A : A ⊆ D} forms a base for

the topology on βD, therefore we should define the topology of βD as the topology

having these sets as a basis.

The reader should also make note of the following facts: A = ∅ if and only if

A = ∅. This is evident from the fact that A ∈ p if and only if A is nonempty,

by definition. So A = ∅. Using this, we can show that D \ A = ∅ if and only if

D \ A = ∅. This holds if and only if βD \ A = ∅ which in turn, holds if and only if

βD = A. Thus A = βD if and only if A = D.

We now give a few important properties of the space βD.

Theorem 3.3.2 ([19]). Given any set D, βD is a compact Hausdorff space.

Proof. Let p and q be distinct elements of βD. If A ∈ p \ q, then D \ A ∈ q so A

and D \ A are disjoint open subsets of βD with p ∈ A and q ∈ D \ A. Hence, the

topological space βD is Hausdorff.

It remains to show that the space βD is compact. To do this, let U be an open

cover of the space βD. Recall that each open subset of βD is the union of sets of the

form A, then without loss of generality, one may assume that U = {A : A ∈ F},

where F is a family of subsets of D. Now let

F
′ = {D \ A : A ∈ F}

and suppose that F ′ has the finite intersection property. Then F ′ must be contained

in some ultrafilter p. As U is a cover of βD, there is some A ∈ F such that p ∈ A.

On the other hand, D \ A ∈ p. Since A ∈ p, it follows that D \ A ∈ p, however this

contradicts the fact that p is a filter. Therefore, we must have that the family F ′
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does not have the finite intersection property. Now pick subsets A1, A2, . . . , An ∈ F

such that

(D \ A1) ∩ (D \ A2) ∩ . . . ∩ (D \ An) = ∅.

Then A1 ∪ A2 ∪ . . . ∪ An = D and A1 ∪ A2 ∪ . . . ∪ An = βD. Thus {A1, A2, . . . , An}

is a finite subcover of U .

It is useful to point out that for every subset A of D, the set A is open and closed.

To see this, let p ∈ A. Then A ∈ p and, consequently, the set A is a neighbourhood

of each of its points, thus A is open. We claim that βD \A = D \ A. This is clear as

p ∈ D \ A if and only if D \ A ∈ p, which holds if and only if A /∈ p, which in turn,

holds if and only if p ∈ βD \ A. Thus the set A is closed as the complement of an

open set.

Theorem 3.3.3 ([19]). Given the set D, the sets of the form A are the clopen subsets

of βD.

Proof. As we have mentioned above, each set A is open and closed. Now suppose

that C is any clopen subset of βD and A = {A : A ⊆ D and A ⊆ C}. As C is open,

we have that A is an open cover of C and as C is also closed, we have that it is

compact by Theorem 3.3.2. So if we choose a finite family F of subsets of D such

that C =
⋃

{A : A ∈ F}, the C =
⋃

F as sets of the form A are closed under finite

unions.

Theorem 3.3.4 ([19]). Given a set D,

1. For every subset A of D, A = clβD(ε(A)).

2. For any subset A of D and any ultrafilter p ∈ βD, p ∈ clβD(ε(A)) if and only if

A ∈ p.

Proof. 1. For each a ∈ A, ε(a) ∈ A and therefore clβD(ε(A)) ⊆ A. Now let p ∈ A,

if B is a neighbourhood of p, then A ∈ p and B ∈ p and so the intersection
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A∩B is nonempty. Now pick any a ∈ A∩B, since ε(a) ∈ ε(A)∩B is nonempty

and thus p ∈ clβD(ǫ(A)).

2. By 1 and the definition of A, we have that p ∈ clβD(ε(A)) if and only if p ∈ A

which is true if and only if A ∈ p.

We have almost all the pieces in place to show that βD is the Stone-Čech com-

pactification of a discrete space.

Definition 3.3.5. Let D be a discrete space. The Stone-Čech compactification

of D is a compact Hausdorff space Y that contains D as a dense subspace. If K is

any compact Hausdorff space, then every mapping ϕ : D → K can be extended to a

continuous mapping ϕ : Y → K.

Definition 3.3.6. Consider a filter F on a nonempty set X. If A ⊆ X and A∩F 6= ∅

for any F ∈ F , then F |A = {A ∩ F : F ∈ F} is a filter on A and we call it the

trace of F on A. If ϕ : X → C, then ϕ(F ) = {ϕ(F ) : F ∈ F} is a filter base on C

and we call it the image of F with respect to ϕ.

We need one more result before we tackle the main problem of the section. The

reader should note that if ϕ is a continuous mapping from a completely regular Haus-

dorff space X into a compact space Y, then ϕ will denote the continuous mapping

from βX to Y which extends ϕ. Let us consider the follwing general situation.

Let X be a dense subset of a space Y, let K be a Hausdorff space and ϕ : X → K

be a mapping from X into K. For every p ∈ Y, let Fp denote the trace of the

neighbourhood filter of p ∈ Y on X and let limx→p ϕ(x), where x ∈ X, be the limit

of the filter base ϕ(Fp) in K, if the limit exists. We see that if ϕ has a continuous

extension ϕ : Y → K, then it is unique as any two extensions agree on a dense

subspace and

ϕ(p) = lim
x→p

ϕ(x), x ∈ X
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for every p ∈ Y.

Lemma 3.3.7 ([19]). Let K be a regular space and suppose that for every p ∈ Y,

there is limx→p ϕ(x), x ∈ X. Define ϕ : Y → K by

ϕ(p) = lim
x→p

ϕ(x), x ∈ X.

Then ϕ is the continuous extension of ϕ.

Proof. We claim that for every subset A of X,

ϕ(clY (A)) ⊆ clZ(ϕ(A)).

To see this, we use the definition of ϕ. Let q ∈ clY (A) and let W be a neighbourhood

of ϕ(q) ∈ K. Since ϕ(q) = limx→q ϕ(x), there B ∈ Fq such that ϕ(B) ⊆ W. We have

that the intersection B∩A is nonempty and ϕ(B∩A) ⊆ W. Hence, ϕ(q) ∈ clZ(ϕ(A))

as required.

All that remains is to show that ϕ is continuous. To do this, suppose that p ∈ Y

and U is a neighbourhood of ϕ(p) ∈ K. SinceK is a regular space, we may assume that

U is closed. We can choose some A ∈ Fp such that ϕ(A) ⊆ U and put V = clY (A).

Then V is a neighbourhood of p ∈ Y and ϕ(V ) ⊆ U. Thus ϕ is continuous.

At last we have everything in place to arrive at the main result for this section.

Theorem 3.3.8 ([47]). Given a discrete space D, βD is the Stone-Čech compactifi-

cation of D.

Proof. We have already shown that the space βD is a compact Hausdorff space. Now

suppose that ϕ : D → K is any function that maps the discrete space D into K,

where K is any compact Hausdorff space and let p ∈ βD. For every p ∈ βD, the

trace of the neighbourhood filter of p ∈ βD on D is the ultrafilter p. The ultrafilter

base ϕ(p) ∈ K is convergent because K is compact. This means limx→p ϕ(x), where

x ∈ D, exists. Hence, by Lemma 3.3.7,

ϕ : βD ∋ p 7→ lim
x→p

ϕ(x) ∈ K
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is the continuous extension of ϕ. We can thus conclude that βD is the Stone-Čech

compactification of D.

The construction we have given of βD is a special case of a more general construc-

tion. We can describe the Stone-Čech compactification of a general completely regular

Hausdorff space in terms of z-ultrafilters. A z-set is a set of the form {x : ϕ(x) = 0}

where ϕ is a bounded continuous function. In other words, it is the zero set of a

bounded continuous function. Every set in a discrete space is a z-set. We call a

family of z-sets that satisfy the definition of a filter where only z-sets are allowed a

z-filter. A z-ultrafilter is a maximal z-filter. For details about the construction of

the Stone-Čech compactification of a general completely regular Hausdorff space, the

reader is referred to [39].

It is important to note that whenever we deal with βD, it is customary to identify

the points ofD with the principal ultrafilters generated by those points. After we have

identified d ∈ D with ε(d) ∈ βD, we will assume D ⊆ βD and then D∗ = βD \ ε[D]

will become D∗ = βD \D.

Over the remainder of this section we will explore a few interesting facts about

the space βD.

Definition 3.3.9. A topological space X is extremally disconnected if the closure

of every open subset is open.

Theorem 3.3.10 ([19]). The space βD is extremally disconnected.

Proof. Suppose that U is an open subset of βD. Since clβD(A) is an open subset

of βD, the set clβD(U ∩ D) is an open subset of βD. If x ∈ clβD(U) and V is an

open neighbourhood of x, then the intersection V ∩ U is nonempty, so V ∩ U ∩D is

nonempty, or x ∈ clβD(U ∩D). Therefore clβD(U) = clβD(U ∩D), which means that

clβD(U) is open.
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Extremally disconnected spaces have wonderful properties. For example, any con-

tinuous function that maps a dense subspace of an extremally disconnected space into

a compact space, has a continuous extension to the entire space [14]. We should show

some caution here. We have shown that the space βD is extremally disconnected,

however, as shown in [14], D∗ is not extremally disconnected.

An exposition of the space βD would not be complete if we do not mention its

cardinality. We show here that for any infinite set D, |βD| = 22
|D|
. Given any infinite

set D, denote by U(D), the subset of βD that consists of uniform ultrafilters.

We define the density of a space X to be the smallest cardinal number of a dense

subset A of X, denoted by d(X).

Theorem 3.3.11 ([12]). Hewitt-Maeczewski-Pondiczery Theorem. If d(Xs) ≤ m ≥

ℵ0 for every s ∈ S and |S| ≤ 2m,then d(
∏

s∈S Xs) ≤ m.

Proof. See [12], Theorem 2.3.15

Theorem 3.3.12 ([47]). Consider an infinite set D with cardinality κ. Then

|Uκ(D)| = |βD| = 22
κ

.

Proof. Note that every ultrafilter is a member of P(P(D)). In other words, βD ⊆

P(P(D)), and so |Uκ(D)| ≤ |βD| ≤ 22
κ

.

Let U = Uκ(D). To show that |U | ≥ 22
κ

, we must construct a mapping of U onto

a set with cardinality 22
κ

. Let I be the product of 2κ copies of the discrete space

{0, 1}. Then |I| = 22
κ

. By Theorem 3.3.11, I has a dense subset A such that |A| = κ.

We define A to be {qα : α < κ}. Now we consider a partition {Cα : α < κ} of D

into subsets of cardinality κ. There exists some pα ∈ U for each α < κ with Cα ∈ p.

There exists a continuous injection ϕ : D → A which we define by ϕ(Cα) = {qα}.

Now extend ϕ to ϕ : βD → A. Then ϕ(pα) = qα. As U ⊆ βD is closed, it follows

that ϕ(U) is a compact subset of I that contains A and since βD is compact, ϕ is
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a continuous surjection from compact space to a Hausdorff space. Hence ϕ(U) = I.

Thus |βD| = 22
κ

.

Finally, we establish a characterization of the closed subsets of βD by showing a

one-to-one correspondence between the nonempty closed subsets of βD and the filters

on D.

Definition 3.3.13. Let A be a family of subsets of D. We define A ⊆ βD by

A =
⋃

A∈A

A.

Theorem 3.3.14 ([47]). Given a set D,

1. If F is a filter on D, then F is a closed subset of βD.

2. If ∅ 6= F ⊆ βD and F =
⋂

F, then F is a filter on D and F = cl(F ).

Proof. 1. Let p ∈ βD \F . If we choose B ∈ F \p, then D \B is a neighbourhood

of p which misses F .

2. F is a filter as it is the intersection of a set of filters. Further, for each p ∈ F,

F ⊆ p giving that F ⊆ F and thus by 1, cl(F ) ⊆ F .

To prove the reverse inclusion, we suppose that p ∈ F and B ∈ p. Next, suppose

B ∩ F = ∅. Then for each q ∈ F, we have that D \ B ∈ q so D \ B ∈ F ⊆ p

which is a contradiction.

3.4 Extending the Operation to βS

In this section we extend the operation of the discrete semigroup S to βS, its Stone-

Čech compactification.
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To aid us in this endeavor we introduce the notion of p-limit which first appeared in

literature in [13]. We want p− limd∈D xd = y to mean xd is “often” “near” y. As usual

in topology, the notion of nearness to a point y in a topological space is determined

by neighbourhoods of that point and “often” is determined by the members of the

ultrafilter p.

Definition 3.4.1 ([19]). Let D be a discrete space, let p be an ultrafilter in βD, let

〈xd〉d∈D be an indexed family in a topological space X, and let y be a point in X. Then

p− limd∈D xd = y if and only if for each neighbourhood V of y, {d ∈ D : xd ∈ V } ∈ p.

Let us consider the topological spaces X and Y, with a subset A of X and a func-

tion ϕ : A → Y. Also let x be in the closure of A in X and y be a point of the space

Y. We write lima→x ϕ(a) = y if and only if, for every neighbourhood V of y, there

exists a neeighbourhood U of x such that ϕ(A ∩ U) ⊆ V. Notice that if lima→x ϕ(a)

exists, it is unique.

We shall now show that for functions defined on βD, the notion of limit corre-

sponds to the notion of p-limit.

Theorem 3.4.2 ([19]). Let Y be a topological space, let D be a discrete space, let p

be an ultrafilter in βD and let y be a point of the space Y. If A is a member of p and

ϕ : A→ Y, then p− lima∈A ϕ(a) if and only if lima→p ϕ(a) = y.

Proof. Necessity. Suppose that p − lima∈A ϕ(a) = y. Then, if V is a neighbourhood

of y, ϕ−1(V ) ∈ p. Let B = ϕ−1(V ), then B is a neighbourhood of p by Theorem 3.3.4

and ϕ(B ∩ A) = ϕ(B) ⊆ V. Thus lima→p ϕ(a) = y.

Sufficiency. Suppose that lima→p ϕ(a) = y. Then, if V is a neighbourhood of y,

there is a neighbourhood U of p in βD such that ϕ(U ∩A) ⊆ V. Now U ∩A ∈ p and

since U ∩A ⊆ ϕ−1(V ), then it follows that ϕ−1(V ) ∈ p. Thus p− lima∈A ϕ(a) = y.

Theorem 3.4.3 ([19]). Let D be a discrete space, let p be an ultrafilter in βD, and let
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〈xd〉d∈D be an indexed family in a space X. If X is a compact space, then p− limd∈D xd

exists and is unique.

Proof. Let us assume that p − lim 〈xd〉d∈D does not exist and for each y ∈ X, we

pick an open neighbourhood Uy of y such that {d ∈ D : xd ∈ Uy} /∈ p. Then

{Uy : y ∈ X} is an open cover of X. Now we choose a finite subset F of X such

that X =
⋃

y∈F Uy. Then D = {d ∈ D : xd ∈ Uy} so we choose some y ∈ F for

which {d ∈ D : xd ∈ Uy} ∈ p which is a contradiction. Hence, p− lim 〈xd〉d∈D exists

whenever X is compact. Furthermore, it is obvious that this p-limit is unique.

Theorem 3.4.4 ([19]). Let D be a discrete space, let p be an ultrafilter in βD, let X

and Y be topological spaces, let 〈xd〉d∈D be an indexed family in X, and let ϕ : X → Y.

If ϕ is continuous and p− limd∈D xd exists, then

p− lim
d∈D

ϕ(xd) = ϕ(p− lim
d∈D

xd).

Proof. Suppose that U is a neighbourhood of ϕ(p − limd∈D xd) and then choose a

neighbourhood V of p−limd∈D xd such that ϕ(V ) ⊆ U. Now let A = {d ∈ D : xd ∈ V }.

Then A is a member of p and

A ⊆ {d ∈ D : ϕ(xd) ∈ U}.

If we view 〈d〉d∈D as an indexed family in βD, where D is a discrete space, then

we have p − limd∈D d = d, where p ∈ βD. If we consider this fact along with the

above theorem and let ϕ be a function that maps D into a compact space X, with

ϕ : βD → X as the continuous extension of ϕ, then it follows that

ϕ(p) = p− lim
d∈D

ϕ(d) for all p ∈ βD.
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We can now consider a semigroup S with the discrete topology and extend the

binary operation of this discrete semigroup to its Stone-Čech compactification. We

follow the convention of supposing that S ⊆ βS.

Theorem 3.4.5 ([19]). Consider the discrete space S and the binary operation, ·,

defined on S. There is a unique binary operation ∗ : βS × βS → βS for which the

follwing conditions hold:

1. For every s, t ∈ S, s ∗ t = s · t,

2. For each ultrafilter q ∈ βS, the mapping ρq : βS → βS is continuous, ρq(p) =

p ∗ q,

3. For each point s ∈ S, the mapping λs : βS → βS is continuous, where λs(q) =

s ∗ q.

Proof. We will establish the uniqueness and the existence of the binary operation ∗

simultaneously. The first step is to define ∗ as we are forced to define it, first by

defining it on S × βS and then by extending ∗ to the rest of βS × βS.

To define ∗ on S × βS, we consider any s ∈ S and define ηs : S → S ⊆ βS

by ηs(t) = s · t. Then there exists a continuous function λs : βS → βS for which

λs|S = ηs. For s ∈ S and q ∈ βS. we define s ∗ q = λs(q). From this we have that 3 is

satisfied and so is 1 since λs extends ηs. We also have that the extension λs is unique

as continuous functions that agree on a dense subspace are equal. So there can be no

other possible definition of ∗ that satisfies 1 and 3.

Now we extend ∗ to the rest of βS × βS. Given an ultrafilter q in βS, we define

ξq : S → βS by ξq(s) = s ∗ q. Then there is a continuous function ρq : βS → βS such

that ρq|S = ξq. For p ∈ βS \ S, we define p ∗ q = ρq(p). It should be noted that if

s ∈ βS, then ρq(s) = ξq(s) = s ∗ q so for every p ∈ βS, ρq(p) = p ∗ q. Therefore 2

is satisfied. Once more, by the uniqueness of the continuous extensions, there is no

other possible definition that would satisfy all three conditions.
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We wish to verify the associativity of the extended operation, however, it would

be prudent to better understand the operations. The opeartion on βS can be charac-

terized in terms of limits. We should keep in mind ρq is continuous for every q ∈ βS

and that λs is continuous for every member s of S. Now let · be a binary operation on

a discrete space S and let p, q ∈ βS. Whenever s ∈ S and q ∈ βS, s · q = limt→q s · t

and whenever p, q ∈ βS,

p · q = lim
s→p

(lim
t→q

s · t), where t ∈ S.

Furthermore, if P ∈ p and Q ∈ q, then

p · q = p− lim
s∈P

(q − lim
t∈Q

s · t).

Theorem 3.4.6 ([19]). Suppose that S is a semigroup. Then the extended operation

on βS is associative.

Proof. Let p, q, r ∈ βS and let x, y, z ∈ S.

(p · q) · r = (lim
x→p

x · q) · r by continuity of ρq

= (lim
x→p

lim
y→q

x · y) · r by continuity of λx

= lim
x→p

lim
y→q

(x · y) · r by continuity of ρr

= lim
x→p

lim
y→q

lim
z→r

(x · y) · z by continuity of ρx·y

= lim
x→p

lim
y→q

lim
z→r

x · y · z

and

p · (q · r) = lim
x→p

(x · (q · r)) by continuity of ρq·r

= lim
x→p

(x · lim
y→q

y · r) by continuity of ρr

= lim
x→p

(x · lim
y→q

lim
z→r

y · z) by continuity of λy

= lim
x→p

lim
y→q

lim
z→r

x · (y · z) by continuity of λx

= lim
x→p

lim
y→q

lim
z→r

x · y · z

so (p · q) · r = p · (q · r).
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As we have verified the associativity of the extended operation, we now know that

βS is a semigroup if S is a semigroup.

A semigroup S endowed with a topology is called a right topological semigroup

if for each a ∈ S, the right translation ρa : S ∋ x 7→ xa ∈ S is continuous. The

topological center of a right topological semigroup S, which we denote Λ(S), consists

of all b ∈ S such that the left translation λb : S ∋ x 7→ bx ∈ S is continuous. So it

follows from Theorem 3.4.5 and Theorem 3.4.6 that βS is a compact right topological

semigroup with S ⊆ Λ(βS).

Definition 3.4.7. Consider a semigroup S endowed with a topology and a compact

right topological semigroup T. A semigroup compactification of S is a pair (φ, T ),

where φ : S → T is a continuous homomorphism such that φ(S) is dense in T and

φ(S) ⊆ Λ(T ).

Theorem 3.4.8 ([19]). Consider the Hausdorff right topological semigroups T and

R. Suppose that S is a dense subsemigroup of T such that S ⊆ Λ(T ) and φ : T → R

is a continuous mapping such that φ(S) ⊆ Λ(R). If φ|S is a homomorphism, then φ

is also a homomorphism.

Proof. Let a, b ∈ S and let q ∈ T. Then

φ(aq) = φ(lim
b→q

ab) by continuity of λa

= lim
b→q

φ(ab) by continuity of φ

= lim
b→q

φ(a)φ(b) since φ|S is a homomorphism

= φ(a) lim
b→q

φ(b) by continuity of λφ(a)

= φ(a)φ(q).
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Now let p, q ∈ T. Then

φ(pq) = φ(lim
a→p

aq) by continuity of ρq

= lim
a→p

φ(aq) by continuity of φ

= lim
a→p

φ(a)φ(q)

= (lim
a→q

φ(a))φ(q) by continuity of ρφ(q)

= φ(p)φ(q).

Consider a semigroup S endowed with the discrete topology and any homomor-

phism φ of S into a compact Hausdorff right topological semigroup T such that

φ(S) ⊆ Λ(T ). If φ : βS → T is the continuous extension of φ, then applying The-

orem 3.4.8 gives that φ is a homomorphism. Thus the Stone-Čech compactification

βS of a discrete semigroup is the largest semigroup compactification of S. From this

point onwards, whenever we speak of βS, we will be referring to the Stone-Čech

compactification of of the discrete semigroup S.

It is possible to describe the operation of βS in terms of ultrafilters. This means

for ultrafilters p, q ∈ βS, we can characterize the subsets of S which are members of

the ultrafilters pq.

Note that given a given a semigroup S, B ⊆ S and s ∈ S,

s−1B = {a ∈ S : sa ∈ B} = λ−1
s (B).

The notation s−1B is an alternative notation for λ−1
s (B), and using it does not imply

that s has an inverse in B.

Theorem 3.4.9 ([19]). Consider the semigroup S, B ⊆ S, s ∈ S and the ultrafilters

p, q ∈ βS. Then

1. B ∈ s · q if and only if s−1B ∈ q, and
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2. B ∈ p · q if and only if {a ∈ S : a−1B ∈ q} ∈ p.

Proof. 1. Necessity. Suppose B ∈ s ·q. Then B is a neighbourhood of s ·q. Since λs

is continuous, there is some Q ∈ q such that s ·Q ⊆ B. It follows that sQ ⊆ B

and so s−1B ∈ q.

Sufficiency. Let s−1B ∈ q and assume on the contrary that B /∈ s · q. Then

S \ B ∈ s · q so ,by the necessity we have just established, s−1(S \ B) ∈ q. But

this is a contradiction since

(s−1B) ∩ (s−1(S \B)) = ∅.

2. Necessity. Suppose that B ∈ p · q. Since ρq is continuous, there is some P ∈ p

such that P · q ⊆ B. Then for every z ∈ P, B ∈ z · q and so by 1, z−1B ∈ q.

Hence, {z ∈ S : z−1B ∈ q} ∈ p.

Sufficiency. Let {z ∈ S : z−1B ∈ q} ∈ p and assume on the contrary, that

B /∈ p · q. Then, S \ B ∈ p · q so, by the necessity we have just established,

{z ∈ S : z−1(S \B) ∈ q} ∈ p. However

(z−1B) ∩ (z−1(S \B)) = ∅

for each z ∈ S. It follows that

{z ∈ S : z−1B ∈ q} ∩ {z ∈ S : z−1(S \B) ∈ q} = ∅,

which is a contradiction.

3.5 Ultrafilter Semigroups

Definition 3.5.1. A left topological semigroup is a semigroup S endowed with

a topology T such that for every c ∈ S, the left translation

λc : S ∋ c 7→ cs ∈ S
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is a continuous mapping of the space S to itself. The topology T on S is called a left

invariant topology.

Given a semigroup S, a topology T on S is left invariant if and only if for all

c ∈ S and U ∈ T ,

c−1U = λ−1
c (U) = {s ∈ S : cs ∈ U} ∈ T .

It is important to note that the left translations in a left topological group are

homeomorphisms. So if S is a group, we can determine a left invariant topology on S

completely by the neighbourhood filter of the identity. We can characterize topologies

having the property that for every c ∈ S, the neighbourhood filter of c is

cN = {cU : U ∈ Ne}

on semigroups as follows:

Lemma 3.5.2 ([47]). Given a semigroup S with identity, let T be a topology on S

and Ne the neighbourhood filter of the identity in T . Then the follwing statements

are equivalent.

1. For every c ∈ S, cN is a neighbourhood base at c,

2. For every c ∈ S, the left translation λc is continuous and open, and

3. For every c ∈ S and U ∈ T , both c−1U ∈ T and cU ∈ T .

Proof. (1 ⇒ 2). We have to show that λc is open and continuous. To show continu-

ity, suppose that c ∈ S and U is a neighbourhood of λc(b) = cb. Now choose a set

V ∈ Ne such that cbV ⊆ U. Then bV is a neighbouhood of b and λc(bV ) = cbV ⊆ U.

To show that λc is open, suppose that b ∈ S and U is a neighbourhood of b. Now

choose a set V ∈ Ne such that bV ⊆ U. Then abV is a neighbourhood of λc(b) and

λc(U) ⊇ λc(bV ) = cbV.
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(2 ⇒ 3). We know that λc is continuous, so c
−1U = λ−1

c (U) ∈ T . We also know

that λc is open, so cU = λc(U) ∈ T .

(3 ⇒ 1). If U is an open neighbourhood of the identity, then clearly c ∈ cU ∈

T , so cU is an open neighbourhood of c. Conversely, suppose that V is an open

neighbourhood of c and U = c−1V. Then U is an open neighbourhood of the identity

and cU ⊆ V.

Much like we did with the topological group G, we can also characterize the

neighbourhood filter of the identity of a left topological semigroup. The following

theorem achieves this.

Theorem 3.5.3 ([47]). Suppose that S is a left topological semigroup with identity

and Ne is the neighbourhood filter of the identity. Then

1. For every U ∈ Ne, e ∈ U, and

2. For every U ∈ Ne, {s ∈ S : s−1U ∈ Ne} ∈ Ne.

Conversely, if S is a semigroup with identity and a filter Ne on S that satisfies 1-2,

then there exists a left invariant topology on S in which for each c ∈ S, cN is a

neighbourhood base at c.

Proof. Let S be a left topological semigroup with identity and let U ∈ Ne. It is

obvious that e ∈ U and if we set V = int(U), we obtain that V ∈ Ne and for every

s ∈ V, s−1U ∈ Ne. So 1-2 are satisfied.

Conversely, let Ne be a filter on S that satisfies 1-2. For every s ∈ S, suppose that

Ns is a neighbourhood filter with a base sN .We now show that whenever s ∈ S and

U ∈ Ns, we have

(i) s ∈ U, and

(ii) {t ∈ S : U ∈ Nt} ∈ Ns.
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We obtain (i) from 1 and the definition of Ns. In order to arrive at (ii), we let

U0 = s−1U, V0 = {r ∈ S : U0 ∈ Nr}, and V = sV0. Notice that U0 ∈ Ne, so by 2, we

have V0 ∈ Ne, and as a result V ∈ Ns. We claim that for every t ∈ V, U ∈ Nt. To

verify this, we write t = sr for some r ∈ V0. Then s
−1U = U0 ∈ Nr = rN , and so

U ∈ srN = Nt. If we apply Theorem 2.1.6, we obtain that there is a topology T on

S such that {Ns : s ∈ S} is the neighbourhood system. Lemma 3.5.2 gives that T is

left invariant.

The following simple general fact will be useful down the line.

Lemma 3.5.4 ([47]). Let F be a filter on a semigroup S. If {s ∈ S : s−1F ∈ F} ∈ F

for every F ∈ F , then F̄ is a closed subsemigroup of βS.

Proof. As F is a closed subset of βS, all we need to do is show that F is a subsemi-

group. Suppose that p, q ∈ F and F ∈ F . We have to show that F ∈ pq. To do this,

begin by setting B = {s ∈ S : s−1F ∈ F}, and for every s ∈ B, let Cs = s−1F. Then

B ∈ F ⊆ p, Cs ∈ F ⊆ q, and
⋃

s∈B sBs ⊆ F. Hence, F ∈ pq.

Lemma 3.5.5 ([47]). Consider a left topological semigroup with identity (S,T ) and

let Ne be the neighbourhood filter of the identity. Then

1. Ne is a closed subsemigroup of βS,

2. For every open subset U, U · Ne ⊆ U, and

3. If T is a T1-topology, then

Ne \ {e} = {p ∈ S∗ : p converges to e in T }.

Proof. 1. This is a consequence of Theorem 3.5.3 and Lemma 3.5.4.

2. Suppose that p ∈ U and q ∈ Ne. The set U is open, so for every s ∈ U, there is

some Vs ∈ Ns such that sVs ⊆ U. Then
⋃

s∈U sVs ⊆ U. Since U ∈ p and Vs ∈ q,

we have that U ∈ pq. Thus pq ∈ U.
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3. Clearly, Ne \ {e} is a closed subset of βS. Since T satisfies the T1 separation

axiom,
⋂

Ne = {e}. Then N e \ {e} ⊆ S∗, hence

Ne \ {e} = {p ∈ S∗ : p converges to e in T }.

All that remains is to show that Ne\{e} is a subsemigroup. To do this, suppose

that p, q ∈ Ne \ {e}. We have to show that for every U ∈ Ne, p, q ∈ U \ {e}.

Obviously, we may assume that U is open. Then U \ {e} is also open, as T is

a T1-topology. Since p ∈ U \ {e}, we obtain by 2 that pq ∈ U \ {e} = U \ {e}.

Definition 3.5.6 ([47]). Given a T1 left topological semigroup with identity (S,T ),

define Ult(T ) ⊆ βS by

Ult(T ) = {p ∈ S∗ : p converges to e in T }.

We call Ult(T ) the ultrafilter semigroup of T .

If we combine Definition 3.5.6 and Lemma 3.5.5, we see that Ult(T ) is a closed

subsemigroup of βS if it is nonempty. Consequently, a general problem of investiga-

tion arises, that is, the interaction between the properties of the left invariant topology

T on a group or semigroup and the algebraic structure of the corresponding ultrafil-

ter semigroup Ult(T ). This has been a particularly fruitful endeavour with numerous

striking results having been obtained in this manner. Notably, that (i) there exists

a maximal regular left topological group within the framework of ZFC, (ii) every

nondiscrete left topological group is ω-resolvable, (iii) the existence of a maximal

topological group is impossible to establish in ZFC, etc.

Lemma 3.5.7 ([47]). Let F be a filter on a semigroup S and let X ∈ F . Suppose

that R is a compact Hausdorff right topological semigroup and ϕ : X → R. Assume

1. For every x ∈ X, there is some Ux ∈ F such that ϕ(xy) = ϕ(x)ϕ(y) for all

y ∈ Ux, and
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2. ϕ(X) ⊆ Λ(R).

Then for every p ∈ X and q ∈ F , we have ϕ(pq) = ϕ(p)ϕ(q), where

ϕ : X → R is the continuous extension of ϕ.

Proof. For every x ∈ X, we have

ϕ(xq) = ϕ(lim
y→q

xy), y ∈ Ux

= lim
y→q

ϕ(xy)

= lim
y→q

ϕ(x)ϕ(y) by 1

= ϕ(x) lim
y→q

ϕ(y) by 2

= ϕ(x)ϕ(q).

Then

ϕ(pq) = ϕ(lim
x→p

xq), x ∈ X

= lim
x→p

ϕ(xq)

= lim
x→p

ϕ(x)ϕ(q)

= (lim
x→p

ϕ(x))ϕ(q)

= ϕ(p)ϕ(q).

3.6 Martin’s Axiom

In the final section of this chapter, we give an elementary introduction to Martin’s

axiom. We must first recall a few basic notions from set theory.

If P is a nonempty set and the relation ≤ is a partial order, then the pair (P,≤)

is a partially ordered set. A nonempty subset G of P is a filter in P if; (i) for every
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a, b ∈ G, there exists some c ∈ G such that c ≤ a and c ≤ b, and (ii) for every a ∈ G

and b ∈ P, a ≤ b implies b ∈ G.

Let a, b ∈ P. The elements a and b are compatible if and only if there exists some

c ∈ P such that c ≤ a and c ≤ b. If there is no such c ∈ P, then a and b are

incompatible. Finally, a subset D of P is called dense if for every a ∈ P there is some

b ∈ D such that b ≤ a.

A subset of pairwise incompatible elements is called an antichain in P and if ev-

ery antichain in P is countable then it is said that P has the countable chain condition.

Martin’s axiom is a statement, introduced by D. A. Martin and R. M. Soloway

in 1970, that is independent of the usual axioms of ZFC. Stated informally, Martin’s

axiom tells us that all cardinals κ < c behave more or less like ℵ0.

Definition 3.6.1. Let κ be an infinite cardinal. Martin’s Axiom, denoted by MA(κ)

is the assertion that if P is a partial order that satisfies the countable chain condition

and D is a family of dense sets in P with |D | ≤ κ, then there is a filter G on P such

that G ∩D 6= ∅, for every D ∈ D .

It is a theorem of ZFC that MA(c) does not hold, where c is the cardinality of

the continuum. Martin’s axiom can thus be restated as follows:

Definition 3.6.2. For every cardinal κ, if ω ≤ κ < c, then MA(κ) is true.

We will conclude this short exposition of Martin’s axiom by showing that if follows

from the continuum hypothesis.

Theorem 3.6.3. The Continuum Hypothesis implies Martin’s Axiom.

Proof. Suppose the partially ordered set P has the countable chain condition. Now

let D = {Dn : n < ω} be a family of dense subsets of P. It follows from the continuum

hypothesis that D is countable. Pick (a1) ∈ D1. Now inductively construct a sequence

(an)n<ω in P such that an ∈ Dn and an+1 ≤ an. The filter G = {b ∈ P : an ≤

b for some n < ω} is generated by (an)n<ω as required.
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Chapter 4

Resolvability of Topological Groups

In this chapter, we relax our assumption that all topological spaces are Hausdorff.

4.1 Local Left Groups and Local Homomorphisms

Given a set X and some subset Y of X ×X, a function that maps Y to X is called a

partial multiplication on X. A partial semigroup is a set with a partial multiplication

such that (xy)z = x(yz) whenever x, y, z ∈ X and (xy)z, x(yz) are defined.

Definition 4.1.1 ([47]). Consider a topological space X satisfying the T1 separation

axiom and having a distinguished element e such that X is also a partial semigroup.

The T1-space X is a local left topological group if there exists some left topological

group G wherein X can be topologically embedded in such a way that the following

conditions hold:

1. e is the identity element of G,

2. the partial multiplication defined on X is the partial operation induced by the

multiplication of G,

3. for every a ∈ X, there exists a neighbourhood Ua of the identity e in X such

that aUa ⊆ X, and
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4. for every a ∈ X, aX ∩X is a neighbourhood of a in X.

Concerning local left topological groups, whenever we write a ·b it will be assumed

that b ∈ Ua and whenever we write a ·U, where U is a neighbourhood of the identity,

it will be assumed that U ⊆ Ua. If the T1-space X can be embedded in a Hausdorff

zero-dimensional left topological group G such that the above conditions are satisfied,

then we call X a regular local left topological group.

A basic example of a local left topological group is an open neighbourhood of the

identity e of a left topological group satisfying the T1 separation axiom. We can see

this by taking an open subset V of G such that a ∈ V ⊆ X for every a ∈ X and

then take Ua = a−1V ∩X. Furthermore, in any local left topological group, we may

suppose that Ue = X.

Let us suppose that Y is a local left topological group and denote by Yd, the

partial semigroup Y reendowed with the discrete topology. As we have shown in the

case of βS, we can extend the partial operation of Yd in a natural way, to βYd. This

extension is given by

lim
y→p

lim
z→q

yz,

where y, z ∈ Y, making βYd a right topological partial semigroup.

The product pq is defined if and only if

{y ∈ Y : {z ∈ Y : yz is defined} ∈ q} ∈ p.

This can be seen by first supposing that pq is defined. As pq is a filter on Y, we have

Y ∈ pq. The definition of pq gives that Y ∈ pq if and only if {y ∈ Y : y−1Y ∈ q} ∈ p

which holds if and only if {y ∈ Y : {z ∈ Y : yz is defined} ∈ q} ∈ p. Conversely, we

can suppose {y ∈ Y : {z ∈ Y : yz is defined} ∈ q} ∈ p. Define the family

F = {A ⊆ Y : {y ∈ Y : y−1A ∈ q} ∈ p}.
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Obviously ∅ ∈ F . The assumption that {y ∈ Y : {z ∈ Y : yz is defined} ∈ q} ∈ p,

along with the equality y−1Y = {z ∈ Y : yz is defined} implies that Y ∈ F . Now

let A,B ∈ F . Since y−1(A ∩ B) = y−1A ∩ y−1B for any y ∈ Y, we have A ∩ B ∈ F .

Finally, for any a ∈ F and any subset B of Y with A ⊆ B, we see that y−1A ⊆ y−1B

and as p is a filter, we have that B ∈ F . Thus the family F is a filter. Hence, pq is

defined.

Definition 4.1.2 ([47]). Let Y be a local left topological group,

Ult(Y ) = {p ∈ Y ∗
d : p converges to e in Y }.

In other words, Ult(Y ) is the set of all nonprincipal ultrafilters on Y converging to

the identity.

Suppose that p ∈ βYd and q ∈ Ult(Y ). For every a ∈ Y, we have Ua ∈ q and as

ab is defined for b ∈ Ua, we have Ua ⊆ {b ∈ Y : ab is defined}. Therefore {b ∈ Y :

ab is defined} ∈ q. Consequently, {a ∈ Y : {b ∈ Y : ab is defined} ∈ q} = Y ∈ p.

Hence pq is defined. We can conclude that Ult(Y ) is a closed subsemigroup of Y ∗
d .

Given a set Y and a nonempty subset Z of Y, consider the bijection

F 7→ F ∩ Z := {F ∩ Z : F ∈ F}

and

F
′ 7→ F

′′ := {F ⊂ Y : E ⊆ F for some E ∈ F
′},

where F ranges over filters on Y that contain Z and F ′ ranges over filters on Z.

Notice that ultrafilters and principal ultrafilters are sent to ultrafilters and principal

ultrafilters respectively. Additionally, we let G be a local left topological group with

topology T and suppose that Y is an open neighbourhood of the identity in G. We

also suppose that p ∈ Ult(T ), then Y ∈ p. Consequently, for every neighbourhoodW

of the identity inG, Y ∩W ∈ p.We see that the set Y ∩W, whereW is a neighbourhood
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of the identity in Y. It follows that p ∩ Y := {B ∩ Y : B ∈ p} ∈ Ult(Y ), so we can

identify Ult(Y ) with Ult(T ).

Definition 4.1.3 ([47]). Consider the local left topological groups Y and Z. A mapping

ϕ : Y → Z is a topological local homomorphism if ϕ(eY ) = eZ and for all

y ∈ Y \ {e}, there exists a neighbourhood U of the identity e in Y such that ϕ(yz) =

ϕ(y)ϕ(z) for every z ∈ U. If ϕ : Y → Z is simultaneously a local homomorphism and

homeomorphism then we call ϕ a local isomorphism.

It is important to note that if ϕ : Y → Z is a local isomorphism, then ϕ−1 : Z → Y

is also a local isomorphism.

Theorem 4.1.4 ([34]). Suppose that Y and Z are local left topological groups and

that ϕ : Y → Z is a topological local isomorphism. Then, ϕ(Ult(Y )) = Ult(Z) and

ϕ∗ := ϕ|Ult(Y ) : Ult(Y ) → Ult(Z)

is a topological isomorphism.

Proof. Suppose p ∈ Ult(Y ) and that W is a neighbourhood of eZ . The continuity

of ϕ and the fact that ϕ(eY ) = eZ gives that ϕ−1(W ) is a neighbourhood of eY

and, therefore, ϕ−1(W ) ∈ p. Hence W ∈ ϕ(p). Then ϕ(p) ∈ Ult(Z) and, therefore,

ϕ(Ult(Y )) ⊆ Ult(Z).

Conversely, suppose that q ∈ Ult(Z). As ϕ is surjective, q = ϕ(p) for some p ∈ βYd.

Now suppose that V is a neighbourhood of eY . Since ϕ(V ) is a neighbourhood of eZ ,

ϕ(V ) ∈ q, giving U = ϕ−1(ϕ(V )) ∈ q. Hence p ∈ Ult(Y ). Therefore, Ult(Z) ⊆

ϕ(Ult(Y )). Thus ϕ(Ult(Y )) = Ult(Z).

It remains to show that ϕ∗ is a homeomorphism. Since ϕ is a bijection, ϕ∗ is also

a bijection. Now suppose that A ⊆ βYd and B ⊆ βZd are open. Then,

ϕ∗(Ult(Y ) ∩ A) = ϕ(Ult(Y ) ∩ A) = ϕ(Ult(Y )) ∩ ϕ(A) = Ult(Z) ∩ ϕ(A)

is an open subset of Ult(Z) and

ϕ∗−1(Ult(Z) ∩B) = ϕ−1(Ult(Z)) ∩ ϕ(B) = Ult(Y ) ∩ ϕ−1(B)
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is an open subset of Ult(Y ). Therefore, ϕ∗ is a homeomorphism.

Definition 4.1.5 ([47]). Given a local left topological group Y and a semigroup S, a

mapping ϕ : Y → S is a local homomorphism if for every y ∈ Y \{e}, there exists

a neighbourhood U of the identity such that ϕ(yz) = ϕ(y)ϕ(z) for all z ∈ U \ {e}.

Theorem 4.1.6 ([47]). Suppose that ϕ : Y → R is a local homomorphism from a

local left topological group Y into a compact right right topological semigroup R such

that ϕ(Y ) ⊆ Λ(R) and that ϕ : βYd → R is the continuous extension of ϕ. Now define

ϕ : Ult(Y ) → R by ϕ∗ = ϕ|Ult(Y ). Then ϕ
∗ is a continuous homomorphism and if, in

addition, ϕ(U \ {e}) is dense in R for every neighbourhood U of the identity e in Y,

then ϕ∗ is surjective.

Proof. It follows from Lemma 3.5.7 that ϕ∗ is a homomorphism. Now suppose for

every neighbourhood U of the identity ein Y, ϕ(U \ {e}) is dense in R and let r ∈

R. Then for each neighbourhood V of r ∈ R, there exists a ∈ U \ {e} such that

ϕ(a) ∈ V. This implies that there exists p ∈ Ult(T ) such that ϕ(p) = r. Hence ϕ∗ is

surjective.

Since a finite discrete semigroup is a compact right topological semigroup which is

equal to its topological center, then ϕ∗ = ϕ|Ult(Y ) : Ult(Y ) → R is a homomorphism

where Y is a local left topological group, R is a finite discrete semigroup, ϕ : Y → R

is a local homomorphism and ϕ : βYd → R is the continuous extension of ϕ.

If a homomorphism of an ultrafilter semigroup can be induced by a local ho-

momorphism, then it is called proper. Therefore the induced homomorphisms ϕ∗ :

Ult(Y ) → R and ϕ∗ : Ult(Y ) → Ult(Z) are proper.

Definition 4.1.7 ([47]). Suppose that B =
⊕

ω Z2 is the countable Boolean group.

Equip B =
⊕

ω Z2 with the topology obtained by taking as a neighbourhood base at

zero the subgroups Hα = {y ∈ B : supp(y) ∩ α = ∅}, where α < ω. Note that for
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any c = (cn) ∈ B, supp(c) = {n < ω : an 6= 0}. An element c ∈ B is called basic

if supp(c) is a nonempty interval in ω. Each nonzero element c ∈ B can be uniquely

represented in the form c = c0 + c1 + · · ·+ cl, where

1. for every i ≤ l, ci is basic, and

2. for every i ≤ l − 1, max supp(ci) + 2 ≤ min supp(ci+1).

This decomposition is called canonical.

We can extend a mapping ϕ0 from the set of basic elements of B into a semigroup

T to the mapping ϕ : B → T by ϕ(c) = ϕ(c0)ϕ(c1) · · ·ϕ(cl), where c = c0 + c1 +

· · · + cl is the canonical decomposition of c. Now suppose that y, z ∈ B such that

max supp(y) + 1 < min supp(z) and that y = y0 + y1 + · · · + yl is the canonical

decomposition of y and z = z0 + z1 + · · ·+ zm is the canonical decomposition of z. It

follows that y+z = y0+y1+ · · ·+yl+z0+z1+ · · ·+zm is the canonical decomposition

of y + z. Therefore

ϕ(y + z) = ϕ(y0 + y1 + · · ·+ yl + z0 + z1 + · · ·+ zm)

= ϕ(y0)ϕ(y1) · · ·ϕ(yl)ϕ(z0)ϕ(z1) · · ·ϕ(zm)

= [ϕ(y0)ϕ(y1) · · ·ϕ(yl)][ϕ(z0)ϕ(z1) · · ·ϕ(zm)]

= ϕ(y)ϕ(z)

Thus ϕ is a local homomorphism.

Definition 4.1.8 ([47]). Consider the set L of all words w on the alphabet Zm, where

m ≥ 2. Also suppose that L includes the empty word ∅. Denote by |w| the length of

a word w for each w ∈ L. If all nonzero letters in w form a final subword we say the

nonempty word w ∈ L is basic. Particularly, all nonempty zero words, that is, words

in which every letter is zero, are basic. For each u, w ∈ L for which |u|+2 ≤ |w| and

the first |u|+1 letters are zero, let u+w ∈ L be defined as the resulting of substituting

u for the initial subword having length |u| in w. Each nonempty word w ∈ L can be

uniquely represented as w = w0 + w1 + · · ·+ wl where
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1. for every i ≤ l, wi is basic, and

2. for every i < l, wi is nonzero.

This decomposition is called canonical.

We now give a theorem describing the structure of a local homomorphism. In

addition to the main operation ⌢, we will also utilise the partial operation + on L.

Theorem 4.1.9 ([47]). Suppose that Y is a countably infinite regular local left topo-

logical group and that {Uy : y ∈ Y \ {e}} is a family of neighbourhoods of the identity

e in Y. Then there exists a continuous bijection ψ : Y → B with ψ(e) = 0 such that

1. ψ−1(Hα) ⊆ Uy whenever max supp(ψ(y)) + 2 ≤ n, and

2. ψ(yz) = ψ(y) + ψ(z) whenever max supp(ψ(y)) + 2 ≤ min supp(ψ(z)).

Proof. Suppose that L = L(Z2) is the set of all words on the alphabet Z2 including

the empty word ∅ and since Y is countably infinite, enumerate Y without repetitions

as {e, y1, y2, . . .}. To each word w in L, we shall assign a point y(w) in Y and a clopen

neighbourhood Y (w) of y(w) such that

(a) y(0n) = e, Y (∅) = Y, and Y (0n) ⊆ Uy(u) for all u ∈ L with |u| ≤ n− 2,

(b) Y (w⌢0) ∩ Y (w⌢1) = ∅ and Y (w⌢0) ∪ Y (w⌢1) = Y (w),

(c) y(w) = y(w0)y(w1) · · · y(wl) and Y (w) = y(w0)y(w1) · · · y(wl−1)Y (wl) where w =

w0 + w1 + · · ·+ wl is the canonical decomposition of w, and

(d) yn ∈ {y(u) : u ∈ L and |u| = n}.

We choose Y (0) to be a clopen neighbourhood of the identity e such that y1 /∈

Y (0). Next, we put Y (1) = Y \ Y (0), y(0) = e and y(1) = y1. Now fix n ≥ 2 and

assume that Y (w) and y(w) have been constructed for each word w with |w| < n such

that conditions (a) − (d) are satisfied. We point out that the subsets Y (w), where
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|w| = n − 1, form a partition of Y, so one of these subsets, say Y (v), contains yn.

Now suppose that v = v0+ v1+ · · ·+ vk is the canonical decomposition. Then we can

write Y (v) = y(v0)y(v1) · · · y(vk−1)Y (vk) and yn = y(v0)y(v1) · · · y(vk−1)zn for some

zn ∈ Y (vk).

In the case that zn = y(vk), we choose Y (0n) to be a clopen neighbourhood of

the identity e such that Y (0n) ⊆ Uy(w) for every word w in L with |w| = n − 1, we

have Y (w) \ y(w)Y (0n) 6= ∅. Now for every basic word w with |w| = n − 1, we put

Y (w⌢1) = Y (w) \ Y (w⌢0) where y(w⌢0) = y(w) and Y (w⌢0) = y(w)Y (0n). We

also choose y(w⌢1) to be any element of Y (w⌢1). We also put y(0n) = e and in the

case that zn 6= y(vk), we pick Y (0n) in addition so that zn /∈ y(vk)Y (0n), and put

y(v⌢k 1) = zn. For every nonbasic nonzero word w with |w| = n, we let Y (w) and y(w)

be defined by condition (c). Then

y(w) = y(w1)y(w2) · · · y(wl) ∈ y(w0)y(w1) · · · y(wl−1)Y (wl) = Y (w)

and if yn /∈ {y(w) : |w| = n− 1}, we have

yn = y(v0)y(v1) · · · y(vk−1)y(v
⌢
k 1) = y(v⌢1) ∈ {y(w) : |w| = n}.

In order to check condition (b), we let |w| = n − 1. In the case that the word w

is basic, we have Y (w⌢0) = y(w)Y (0n) ⊂ Y (w) and Y (w⌢1) = Y (w) \ y(w)Y (0n).

Now assume that the word w is nonbasic and let the canonical representation of w

be w = w0 +w1 + · · ·+wl. If wl is zero, then w
⌢0 = w0 +w1 + · · ·+wl−1 + 0n is the

canonical decomposition of w⌢0. It follows that

Y (w⌢0) = y(w0)y(w1) · · · y(wl−1)Y (0n) = y(w0)y(w1) · · · y(wl−1)Y (w⌢l 0).

Otherwise the canonical decomposition is w⌢0 = w0 + w1 + · · ·wl−1 + wl + 0n, and

then

Y (w⌢0) = y(w0)y(w1) · · · y(wl−1)y(wl)Y (0n) = y(w0)y(w1) · · · y(wl−1)Y (w⌢l 0).

In any event,

Y (w⌢0) = y(w0)y(w1) · · · y(wl−1)y(wl)Y (0n) = y(w0)y(w1) · · · y(wl−1)Y (w⌢l 0).
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Now, since w⌢1 = W0 + w1 + · · · + wl−1 + w⌢l 1 is the canonical decomposition of

w⌢1, we have

Y (w⌢1) = y(w0)y(w1) · · · y(wl−1)y(wl)Y (0n) = y(w0)y(w1) · · · y(wl−1)Y (w⌢l 1).

Consequently,

Y (w⌢0) ∪ Y (w⌢1) = y(w0)y(w1) · · · y(wl−1)[Y (w⌢l 0) ∪ Y (w⌢l−11)]

= y(w0)y(w1) · · · y(wl−1)Y (wl)

= Y (w)

and clearly Y (w⌢0) ∩ Y (w⌢1) = ∅.

Finally, for each y ∈ Y, there exists a word w in L having a nonzero last letter

such that y = y(w), so {u ∈ L : y = y(u)} = {w⌢0n : n < ω}. Therefore ψ : Y → B

can be defined by setting for each w = b0b1 · · · bn ∈ L,

ψ(y(w)) = w = (b0, b1, . . . , bn, 0, 0, . . .) (∗)

It is obvious that ψ is a bijection and that ψ(0) = e so ψ is continuous since for

each w = b0b1 · · · bn ∈ L, Y (w) consists of all elements y ∈ Y such that ψ(y) =

(b0, b1 . . . , bn, . . .). And as ψ−1(Hα) = Y (0n) ⊆ Uy(w) for every w ∈ L with |w| ≤ n−2,

and so 1. is satisfied.

All that remains is to check 2. To do this, we suppose max supp(ψ(y)) + 2 ≤

min supp(ψ(z)). Now choose the words w, u ∈ L having nonzero last letters such that

y = y(w) and z = y(u). (∗∗)

Additionally, consider w = w0 + w1 + · · · + wl and u = u0 + u1 + · · · + ur to be

the canonical decompositions of w and u rspectively. We have z ∈ Y (0|w|+1), so the

canonical decomposition of w + u is w + u = w0 +w1 + · · ·+wl + u0 + u1 + · · ·+ ur.

and by (∗∗)

yz = y(w0)y(w1) · · · y(wl)y(u0)y(u1) · · · y(ur) = y(w + u). (∗ ∗ ∗)
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By (∗) and (∗ ∗ ∗), it follows that

ψ(yz) = ψ(y(w + u)) = w + u = w + u = ψ(y(w)) + ψ(y(u)) = ψ(y) + ψ(z),

so 2. is satisfied.

Given the countable nondiscrete regular local left topological groups Y and Z,

consider the bijections ψ : Y → B and ξ : Z → B that are guaranteed by Theo-

rem 4.1.9. Then there is a bijection ϕ := ξ−1 ◦ ψ : Y → Z such that both ϕ and ϕ−1

are local homomorphisms.

4.2 Resolving by Local Automorphisms of Finite

Order

Definition 4.2.1. Given a local left topological group Y, a local automorphism of

Y is a local isomorphism of Y onto itself. If a local automorphism is the identity map

of some neighbourhood of the identity, it is called trivial.

Definition 4.2.2. A group G is Boolean if every element of G, other than the

identity, has order 2. A Boolean part of a group G is the subset

B(G) = {g ∈ G : g2 = e}.

If a group G is Boolean, then for each a, b ∈ G, we have ab = (ab)−1 = b−1a−1 = ba

since for each a ∈ G with a 6= e, we have a2 = e if and only if a · a = e which is true

if and only if a = a−1. Then every Boolean group G is Abelian.

Consider a topology T on a group G such that all shifts are continuous. For

every element h ∈ G, h-conjugation g 7→ h−1gh on G is an example of a topological

automorphism. It is a trivial local automorphism if and only if the centralizer of h is

open. If hn = e, then h-conjugation is of order ≤ n. Now let G be Abelian and suppose
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that the topology T on G is such that all shifts and inversions are continuous. An

inversion on G is a topological automorphism and has order ≤ 2. It is a trivial local

automorphism if and only if there exists an open Boolean subgroup in G.

In the general case, when G is not Abelian, inversion on G is not a local auto-

morphism. Now let h ∈ G. For each h, there exists a neighbourhood of e ∈ G such

that hg = gh for all g ∈ U. Consequently, g−1h−1 = h−1h−1 and then (hg)−1 =

g−1h−1 = h−1h−1. Therefore if each conjugation on G is trivial, inversion is a lo-

cal automorphism. An inversion on G is trivial if and only if there exists an open

Boolean subgroup in G. This can be seen by picking a neighbourhood U of e such

that U2 ⊆ B(G). This means for any g, k ∈ U, (gk)2 = gkkg = e. Consequently,

gk = kg. Hence, 〈U〉 , a subgroup generated by U is contained in B(G).

Definition 4.2.3. Consider a bijection ϕ on a set Y. If ϕn = idY and n is the smallest

integer that satisfies this property then we say ϕ has finite order n.

Definition 4.2.4. Let ϕ be a mapping of a set Y into itself. A subset Z ⊆ Y is said

to be invariant with respect to ϕ if ϕ(Z) ⊆ Y. A family A of subsets of Y is said to

be invariant if for each Z ∈ A , ϕ(Z) ∈ A . For each y ∈ Y, define the orbit with

respect to ϕ of the element y by O(ϕ, y) = {ϕn(y) : n < ω}.

Notice that if |O(ϕ, y)| = ω, then for any pair of distinct n,m ∈ N such that

n,m < ω, ϕn(y) 6= ϕm(y) and if |O(ϕ, y)| = n, then ϕn(y) = y.

Lemma 4.2.5 ([43]). Given a space Y, suppose that ϕ : Y → Y is a homeomorphism.

Let y ∈ Y with |O(ϕ, y)| = k for some k ∈ N and let U be a neighbourhood of y

for which the family {ϕj(U) : j < k} is disjoint. If there exists n ∈ N such that

ϕn|U = idU , then there exists an open neighbourhood W ⊆ U of y for which the family

ϕj(W ) : j < k} is invariant. If Y is zero dimensional, then W can be chosen to be

clopen.

Proof. Notice that n = kl for some l ∈ N. Now pick an open neighbourhood V of y

for which ϕj+ik(V ) ⊆ ϕj(U) for every j < k and i < l. Particularly, ϕik(V ) ⊆ U for
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each i < l. We can do this because ϕk(y) = y which is true because |O(ϕ, y)| = k.

We can put W =
⋃

i<l ϕ
ik(V ). Then W ⊆ U is an open neighbourhood of y and

ϕk(W ) =
⋃

i<l ϕ
(i+l)k(V ). Since ϕkl = ϕ0, it follows that

ϕk(W ) =
⋃

i<l

ϕik(V ) = W.

Consequently, the family {ϕj(W ) : j < k} is invariant.

Given a space Y with a distinguished point e ∈ Y and a homeomorphism ϕ : Y →

Y with ϕ(e) = e, it follows from lemma 4.2.5 that one of the following two possibilities

must hold: Either (1) for every neighbourhood U of e ∈ Y and every n ∈ N, there

exists some y ∈ U with |O(ϕ, y)| > n, or (2) there exists an open invariant(with

respect to ϕ) neighbourhood U of e ∈ Y for which ϕ|U is of finite order, is true.

Definition 4.2.6 ([43]). Suppose that Y is a space with a distinguished point e ∈ Y

and that ϕ : Y → Y is a homeomorphism of finite order with ϕ(e) = e. A spectrum

of ϕ is the set spec(ϕ) = {|O(ϕ, y)| : y ∈ Y, y 6= e}, and more generally, for any subset

Z ⊆ Y, a spectrum of ϕ on Z is the set spec(ϕ,Z) = {|O(ϕ, y)| : y ∈ Z, y 6= e}. If

for each neighbourhood U of e ∈ Y, spec(ϕ,U) = spec(ϕ), then ϕ is called spectrally

irreducible. Finally, a neighbourhood U of a point y ∈ Y is called spectrally

minimal if for any neighbourhood W ⊆ U of y, spec(ϕ,W ) = spec(ϕ,U).

Given a space Y with a distinguished point e ∈ Y and a homeomorphism of finite

order ϕ : Y → Y with ϕ(e) = e, it follows from Lemma 4.2.5 that there exists an

open invariant(with repect to ϕ) neighbourhood U of e ∈ Y for which ϕ|U is spectrally

irreducible. This means that whenever we study homeomorphisms of finite order in

a neighbourhood of a fixed point, our investigation can be restricted to considering

only the homeomorphisms that are spectrally irreducible.

Lemma 4.2.7 ([43]). Suppose that Y is a local left topological group, ϕ is a spectrally

irreducible local automorphism of finite order on Y, e 6= y0 ∈ Y with |O(ϕ, y)| = t,
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and U is a spectrally minimal neighbourhood of y0. Then

spec(ϕ,U) = {lcm(k, r) : r ∈ {e} ∪ spec(ϕ)},

where lcm(t, r) is the least common multiple of t and r.

Proof. For every y ∈ O(ϕ, y0), suppose that Wy is a neighbourhood of the identity e

for which

(a) ϕ(yz) = ϕ(y)ϕ(z) for each z ∈ Wy, and

(b) z 7→ yz is a homeomorphism, where z ∈ Wy and yz ∈ yWy.

Now pick a neighbourhood W of e for which W ⊆
⋂

y∈O(ϕ,y0)
Wy, y0W ⊆ U, and the

family of subsets yW with y ∈ O(ϕ, y0) is disjoint. Suppose that ϕ has order n and

pick a neighbourhood V of e for which ϕi(V ) ⊆ W for 0 ≤ i ≤ n− 1. This inclusion

holds for i < ω. We now show that for all z ∈ V, ϕi(y0z) = ϕi(y0)ϕ
i(z). The case

i = 0 is trivial. We obtain, inductively, that

ϕi(y0z) = ϕϕi−1(y0z) = ϕ[ϕi−1(y0)ϕ
i−1(z)] = ϕi(y0)ϕ

i(z).

We now suppose z ∈ V, |O(ϕ, z)| = r, s = lcm(t, r) and claim that |O(ϕ, y0z)| = s.

Indeed,

ϕs(y0z) = ϕs(y0)ϕ
s(z) = y0z.

Next, if ϕi(y0z) = y0z for some i, then ϕi(y0)ϕ
i(z) = y0z. It follows from the fact

that the family yW with y ∈ O(ϕ, y0) is disjoint, that ϕ
i(y0) = y0. It is also true that

ϕi(z) = z so r|i. Hence s|i.

Given that ϕ is a spectrally irreducible local automorphism of finite order, Lemma 4.2.7

tells us that the spectrum of ϕ is a finite subset of N that contains the least common

multiple of any pair of elements of the spectrum of ϕ, that is, closed with respect to

taking the least common multiple. Next, consider any finite subset of N that is closed

under the least common multiple. We now endevour to give a spectrally irreducible

local automorphism of the corresponding spectrum.
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Example 4.2.8. Suppose that σ is any finite subset of N closed under the least

common multiple, σ = {t1, t2, . . . , tk}, t1 < t2 < · · · < tk, m = 1 +
∑

t∈σ t and
⊕

ω Zm is the direct sum of ω copies of the group Zm. Let
⊕

ω Zm be endowed with

the topology obtained by taking as a neighbourhood base at zero the subgroups

Hα = {y ∈
⊕

ω

Zm : y(i) = 0 for all i < α},

where α < ω. We also let π be the coordinatewise permutation on the local left topo-

logical group
⊕

ω Zm induced by the product of disjoint cycles

π0 = (1, . . . , t1)(t1 + 1, . . . , t1 + t2) · · · (t1 + · · ·+ tk−1 + 1, . . . , t1 + · · ·+ tk).

Then π is a homeomorphism with π(0) = 0, spec(π,Hα) = σ for all α < ω, and π(y+

z) = π(y)+π(z) whenevermax supp(y) < min supp(z). Consequently, π is a spectrally

irreducible local automorphism on
⊕

ω Zm of spectrum σ. It is called standard.

We now wish to give a theorem describing the structure of a local automorphism.

However, to prove this theorem, we will require the following result.

Lemma 4.2.9 ([43]). Suppose that Y is a countable nondiscrete regular space having

a distinguished point e ∈ Y, ϕ : Y → Y is a homeomorphism of finite order with

ϕ(e) = e, V ⊆ Y is clopen invariant, H ⊆ V is finite invariant, and P is a clopen

invariant partition of V such that for each I ∈ P, spec(ϕ,H ∩ I) = spec(ϕ, I). Then

there exists a clopen invariant partition {V (y) : y ∈ H} of V inscribed into P such

that for each y ∈ H, V (y) is a spectrally minimal neighbourhood of y.

Proof. Let V = {yn : n < ω} with y0 ∈ H. For each y ∈ H, we construct an increasing

sequence (Vn(y))n<ω of clopen spectrally minimal neighbourhoods of y such that for

every n < ω, the family {Vn(y) : y ∈ H} is disjoint, inscribed into P and invariant,

and yn ∈ Vn =
⋃

y∈H Vn(y). The subsets V (y) =
⋃

n<ω Vn(y), y ∈ H, will then be

as desired. Now we proceed inductively on n. Let zi, for i < l, represent the orbits

in H and let |O(ϕ, zi)| = ki. For each i < l, we pick a neighbourhood Ui of zi for
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which ϕj(Ui) is a spectrally minimal neighbourhood of ϕj(zi) for every j < ki, and the

family {ϕj(Ui) : i < l, j < ki} is disjoint and inscribed into P. By Lemma 4.2.5, There

exists a clopen neighbourhood Wi ⊆ Ui of zi for which the family {ϕj(Wi) : j < ki}

is invariant. Put V0(ϕ
j(zi)) = ϕj(Wi). Now fix n > 0 and we assume that Vn−1(y),

y ∈ H has been constructed as required. Without loss of generality we may assume

that yn /∈ Vn−1. Let |O(ϕ, yn)| = k and let yn ∈ In ∈ P. Using lemma 4.2.5 again, we

pick a clopen neighbourhoodWn of yn such that for each j < k, ϕj(Wn) is a spectrally

minimal neighbourhood of ϕj(yn), and the family

{ϕj(Wi) : j < k} ∪ {Vn−1(y) : y ∈ H}

is disjoint, inscribed into P and invariant. Pick cn ∈ H ∩ In with |O(ϕ, cn)| = k and

for each j < k, we put Vn(ϕ
j(xn)) = Vn−1(ϕ

j(xn))∪ϕ
j(Wn). For each y ∈ H\O(ϕ, xn),

put Vn(y) = Vn−1(y).

Theorem 4.2.10 ([43]). Given a countable nondiscrete regular local left topological

group Y, suppose that ϕ : Y → Y is a spectrally irreducible local automorphism of

finite order, σ = spec(ϕ), and m = 1+
∑

t∈σ t. Let π be the standard permutation on

the local left topological group
⊕

ω Zm of spectrum σ. Then there exists a continuous

bijection ψ : Y →
⊕

ω Zm with ψ(e) = 0 such that

1. ϕ : ψ−1 ◦ π ◦ ψ, and

2. ψ(yz) = ψ(y) + ψ(z) whenever max supp(ψ(y)) + 2 ≤ min supp(ψ(z)).

If Y is first countable, then ψ can be chosen to be a homeomorphism.

Proof. Suppose that L = L(Zm) is the set of all words on the alphabet Zm including

the empty word ∅ and since Y is countably infinite, enumerate Y without repetitions

as {e, y1, y2, . . .}. The permutation π0 on Zm, which induces the standard permutation

π on
⊕

ω Zm, also induces the permutation π1 on L. If w = γ0γ1 · · · γn, then π1(w) =

π0(γ0)π0(γ1) · · · π0(γn). Instead of writing π0 and π1, it is convenient to just write π.
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To each word w ∈ L, we assign a point y(w) ∈ Y and a clopen spectrally minimal

neighbourhood Y (w) of y(w) such that

(a) y(0n) = e and Y (∅) = Y,

(b) {Y (w⌢γ) : γ ∈ Zm} is a partition of Y (w),

(c) y(w) = y(w0)y(w1) · · · y(wl−1)y(wl) and Y (w) = y(w0)y(w1) · · · y(wl−1)Y (wl)

where w = w0 + w1 + · · ·+ wl is the canonical decomposition of w,

(d) ϕ(y(w)) = y(π(w)) and ϕ(Y (w)) = Y (π(w)), and

(e) yn ∈ {y(u) : u ∈ L and |u| = n}.

Now let σ = {t1, t2, . . . , tk}, t1 < t2 < · · · < tk. We choose, for each i = 1, . . . , k, a

representative λi of the orbit in Zm\{0} of lengths ti. Now using Lemma 4.2.9, we pick

a clopen invariant neighbourhood V1 of e ∈ Y for which y1 /∈ V1 and spec(ϕ, Y \V1) =

spec(ϕ) and put y(0) = e, Y (0) = V1. Then pick the points bi ∈ Y \V1, for 1 ≤ i ≤ k,

with pairwise disjoint orbits of lengths ti for which y1 ∈
⋃k

i=1O(ϕ, bi). Now we put,

for each 1 ≤ i ≤ k and j < ti, y(π
j(λi)) = ϕj(bi).

Next, using Lemma 4.2.9, there exists an invariant partition {Y (γ) : γ ∈ Zm\{0}}

of Y \ V1 for which Y (γ) is a clopen spectrally minimal neighbourhood of y(γ). Fix

n > 1 and assume that we have constructed Y (w) and y(w) for every w ∈ L with

|w| < n in such a way that conditions (a)-(e) are satisfied. Notice that the subsets

Y (w) with |w| = n − 1, form a partition of Y so one of these subsets, say Y (v),

contains yn. Now let v have the canonical decomposition v = v1 + v2 + · · · + vq.

Then Y (v) = y(v0)y(v1) · · · y(vq−1)Y (vq) and yn = y(v0)y(v1) · · · y(vq−1)zn for some

zn ∈ Y (vq). Next, we pick a clopen invariant neighbourhood Vn of e ∈ Y such that

for all basic words w with |w| = n− 1,

(i) y(w)Vn ⊂ Y (w),

(ii) ϕ(yz) = ϕ(y)ϕ(z) for all z ∈ Vn, and
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(iii) spec(ϕ, Y (w) \ y(w)Vn) = spec(Y (w)).

If zn 6= y(vq), we choose Vn in addition so that (iv) zn /∈ y(vq)Vn. Put y(0
n) = e and

Y (0n) = Vn.

Let w ∈ L be an arbitrary nonzero basic word with |w| = n− 1 and let O(ϕ,w) =

{wj : j < t}, where wj+1 = π(wj) for j < t − 1 and π(wt−1) = w0. Put Zj =

Y (wj) \ y(wj)Vn. Using Lemma 4.2.7, we pick points ci ∈ Z0 for 1 ≤ i ≤ k, with

pairwise disjoint orbits of lengths lcm(ti, t). If vq ∈ O(ϕ,w), we choose ci in addition so

that zn ∈
⋃k

n=1O(ϕ, ci). For each 1 ≤ i ≤ k and j < ti, we have y(π
j(w⌢γi)) = ϕj(ci).

Then by Lemma 4.2.9, we inscribe an invariant partition

{Y (u⌢γ) : u ∈ O(ϕ,w), γ ∈ Zm \ {0}}

into the partition {Zi : j < t} such that Y (u⌢γ) is a clopen spectrally minimal

neighbourhood of y(u⌢γ). If w is a nonbasic word in L with |w| = n, we define y(w)

and Y (w) by condition (c).

We now wish to check conditions (b) and (d). To do this, we let |w| = n− 1 and

w have the canonical decomposition w = w0 + w1 + · · ·+ wl. Then

Y (w⌢0) = y(w0)y(w1) · · · y(wl)Y (0n) = y(w0)y(w1) · · · y(wl−1)y(wl)Y (0n)

and

Y (w⌢γ) = y(w0)y(w1) · · · y(wl−1)Y (w⌢l γ),

so (b) is satisfied. Next,

ϕ(y(w)) = ϕ(y(w0)y(w1) · · · y(wl−1)y(wl))

= ϕ(y(w0))ϕ(y(w1)y(w2) · · · y(wl−1)y(wl))

= ϕ(y(w0))ϕ(y(w1))ϕ(y(w2)y(w3) · · · y(wl−1)y(wl))
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Proceeding in this manner, we have that

ϕ(y(w)) = ϕ(y(w0))ϕ(y(w1)) · · ·ϕ(y(wl−1))ϕ(y(wl))

= y(π(w0))y(π(w1)) · · · y(π(wl−1))y(π(wl))

= y(π(w0)π(w1) · · · π(wl−1)π(wl))

= y(π(w)),

so (d) is satisfied.

To check (e), we let yn /∈ {y(w) : |w| = n− 1}. Then

yn = y(v0)y(v1) · · · y(vq−1)zn

= y(v0)y(v1) · · · y(vq−1)y(v
⌢
q γ)

= y(v⌢γ).

Now, for each y ∈ Y, there exists a word w ∈ L with a nonzero last letter such

that y = y(w), so {u ∈ L : y = (u)} = {w⌢0n : n < ω}. Hence, we can define

ψ : Y →
⊕

ω Zm by setting for all w = γ0γ1 · · · γn ∈ L,

ψ(y(w)) = w = (γ0, γ1, . . . , γn, 0, 0, . . .).

Notice that ψ is a bijection, ψ(e) = 0 and since for every x = (γi)i<ω ∈
⊕

ω Zm,

ψ−1(x + Hα) = Y (γ0γ1 · · · γn−1), we have that ψ is continuous. Now let y = y(w).

Then

ψ(ϕ(y(w))) = ψ(y(π(w)))

= π(w)

= π(w)

= π(ψ(y(w))).

Therefore part 1 is satisfied.

Next, let y = y(w), w = w0 + w1 + · · · + wl and n = max supp(ψ(y)) + 2. Let

z ∈ ψ−1(Hα), z = y(u) and u = u0 + u1 + · · ·+ up. Then
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ψ(yz) = ψ(y(w0)y(w1) · · · y(wl)y(u0)y(u1) · · · y(up))

= ψ(y(w + u))

= w + u

= w + u

= ψ(y(w)) + ψ(y(u))

= ψ(y) + ψ(z).

Finally, if Y is first countable, {Y (0n) : n < ω} can be chosen as a neighbourhood

base at e. In that case ψ is a homeomorphism.

Theorem 4.2.11 ([43]). Suppose that T0 is a topology on a countable nondiscrete

regular local left topological group Y, ϕ is a nontrivial spectrally irreducible local auto-

morphism on (Y,T0) of finite order and t is the least number of spec(ϕ)\{e}. Then we

can can partition Y into countably many subsets which are dense in any nondiscrete

topology T on Y such that

1. (Y,T ) is a local left topological group,

2. ϕ is a homeomorphism on (Y,T ), and

3. For any neighbourhoods U,W of the identities in the topologies T ,T0 respec-

tively, we have t ∈ spec(ϕ,U ∩W ).

Proof. Suppose that ψ : (Y,T0) →
⊕

ω Zm is a continuous local isomorphism obtained

from Theorem 4.2.10 and that T is a t-element orbit with respect to π in Zm. Given

an arbitrary point y ∈ Y, we let ψ(y) be a sequence of coordinates that belong to

T. Next, we let the first element of the sequence be denoted by L(y) and the last

element of the sequence be denoted by R(y). Also suppose that υ(y) is the number of

pairs of neighbouring distinct elements in ψ(y). Notice that if |O(ϕ, y)| = t, then ψ(y)
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has coordinates from T and υ(y) = υ(ϕ(y)). If y, z ∈ Y and max supp(ψ(y)) + 2 <

min supp(ψ(z)), then

υ(yz) =







υ(y) + υ(z) if R(y) = L(y),

υ(y) + υ(z) + 2 if R(y) 6= L(z).

Furthermore, if |O(ϕ, y)| = |O(ϕ, z)| = t, then there exists some i < t such that

υ(y · ϕi(z)) = υ(y) + υ(z), υ(y · ϕi+1(z)) = υ(y) + υ(z) + 2.

Now enumerate Yn = {y ∈ Y : min supp(υ(y)) = n} for n < ω. That the family Yn

for n < ω is disjoint, is trivial. It remains to show that Yn is dense in (Y,T ). To do

this, we let y ∈ Y and U be a neighbourhood of the identity of (Y,T ). We can put

k = 2n+1 and choose elements y1, y2, . . . , yk in U such that

(a) |O(ϕ, yj)| = k,

(b) max supp(ψ(y))+2 < min supp(ψ(y1)),max supp(ψ(yj))+2 < min supp(ψ(yj+1)),

and

(c) z1 · · · zk ∈ U for any zi ∈ O(ϕ, yj).

Consequently, there exists an element of Yn among the elements y · z1 · · · zk ∈ yU

where zj ∈ O(ϕ, yj).

From Theorem 4.2.11, we see that a countably infinite regular local left topological

group with a nontrivial local automorphism of finite order is ω-resolvable. Also, if

we endow a countably infinite group with a regular ω-irresolvable group topology

wherein all shifts are continuous, then the centralizer of any element of finite order is

open.

Theorem 4.2.12 ([43]). Suppose that T0 is a nondiscrete regular topology on a count-

able group G with continuous shifts and inversion and that the Boolean part B(G) is

not a neighbourhood of the identity of (G,T0). Now suppose that B = B(G)\{e} and

Y is an open symmetric neighbourhood of the identity of (G,T0) that satisfies one of

the following conditions:
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1. Y ∩B = ∅,

2. e ∈ cl(B) and the centralizer of each element of B ∩ Y is open.

Then there is a partial operation + on Y such that for every topology T containing

T0 on G with continuous shifts and inversion, (Y,T |Y ,+) is a local left topological

group and the inversion on (Y,T |Y ,+) is a local automorphism.

Proof. We look at Case 2. We will apply the concepts of “spectrally minimal neigh-

bourhood” and “invariant partition” to the inversion.

Suppose that Y is a semigroup of words on the alphabet Z4. Since Y is countable,

we enumerate it as {yn : n < ω} with y0 = e and Y (∅) = Y.

For each n ∈ N, we define {Y (w) : w ∈ L and |w| = n} to be a clopen partition

of Y, {y(w) ∈ Y (w) : w ∈ L and |w| = n} to be a subset and y(w) + z with w ∈ L,

|w| = n−1, z ∈ Y (0n) to be a partial operation on L such that the following conditions

are satisfied:

(a) {Y (w⌢γ) : γ ∈ Z4} is a partition of Y (w), y(w⌢0) = y(w), w ∈ L and |w| = n−1,

(b) Y (w) is a spectrally minimal neighbourhood of y(w), for basic words w with

|w| = n, Y (0n) is contained in the centralizer of each element of order 2 from the

set {y(w) : w is basic and |w| = n− 1},

(c) for all basic words with |w| = n, (Y (w))−1 = Y (w−1) and (y(w))−1 = y(w−1),

(d) for any basic word w with |w| = n−1 and z ∈ Y (0n), we have y(w)+z = z ·y(w)

if the last letter from the set {1, 3} in the word w is 3, y(w) + z = y(w) · z,

otherwise,

(e) if w ∈ L, |w| = n− 1, and z ∈ Y (0n), y(w)+ z = y(w1+ · · ·+wl−1)+ (y(wl)+ z),

(f) Y (w) = y(w1 + · · ·+wl−1) + Y (wl) and y(w) = y(w1 + · · ·+wl−1) + y(wl) where

w ∈ L and |w| = n,
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(g) yn ∈ {y(w) : w ∈ L and |w| = n.

We choose as Y (0), a clopen symmetric neighbourhood of e such that the set

U = Y \ Y (0) contains elements of order 2 and y1 /∈ Y (0). Put y(0) = e and pick

the elements y(1), y(2), y(3) in U such that (y(1))−1 = y(3), (y(2))−1 = y(2), and

y1 ∈ {y(γ) : γ = 1, 2, 3}. Then we choose a clopen invariant parition {Y (γ) : 1, 2, 3}

of U such Y (γ) is a spectrally minimal neighbourhood of y(γ).

Assume that the partition {Y (w) : w ∈ L and |w| = n}, the subset

{y(w) ∈ Y (w) : w ∈ L and |w| = n} and the partial operation y(w) + z, with

w ∈ L, |w| = n and z ∈ Y (0n), have already been defined. One of these partitions,

say Y (v), contains yn+1 ∈ Y (vq). Since Y (v) = y(v1 + · · · + vq−1) + Y (vq), we have

yn+1 = y(v1+· · ·+vq−1)+zn+1 for some zn+1 ∈ Y (vq).We choose as Y (0n+1), a clopen

symmetric neighbourhood of e such that after we have defined (d) for the case n+1,

Y (w⌢0) = y(w) + Y (0n+1) ⊂ Y (w), σ(Y (w) \ Y (w⌢0)) = σ(Y (w)), for basic words

w with |w| = n, Y (0n) is contained in the centralizer of each element of order 2 from

the set {y(w) : w is basic and |w| = n and zn+1 /∈ Y (v⌢q 0), if, of course, zn+1 6= y(vq).

For each basic w with |w| = n, put y(w⌢0) = y(w).

Let w be a nonzero basic word in L with |w| = n and w−1 = w. Pick the elements

y(w⌢γ), where γ = 1, 2, 3 in the set U = Y (w) \ Y (w⌢0) such that

(y(w⌢1))−1 = y(w⌢3), (y(w⌢2))−1 = y(w⌢2) and zn+1 ∈ {y(w⌢γ) : γ ∈ Z4}, if

w = vq. Then we choose a clopen invariant partition {Y (w⌢γ) : γ = 1, 2, 3} of the

set U such that Y (w⌢γ) is a spectrally minimal neighbourhood of y(w⌢γ).

Let w be a nonzero basic word in L with |w| = n and w−1 6= w. Put U1 =

Y (w)\Y (w⌢0), U2 = Y (w−1)\Y (w−1⌢0), U = U1∪U2. Since Y (0n+1) is symmetric,

U−1 = U2. Now pick the distinct elements y(w⌢γ) ∈ U1, y(w
−1⌢γ) ∈ U2, γ = 1, 2, 3

such that (y(w⌢γ))−1 = y(w−1⌢γ) and zn+1 ∈ {y(w⌢γ), y(w−1γ) : γ ∈ Z4}, if vq ∈

{w,w−1}. Then we inscribe the clopen invariant partition {Y (u⌢γ) : u = w,w−1, γ =

1, 2, 3} into the partition {U1, U2} of U such that Y (u⌢γ) is a spectrally minimal

neighbourhood of y(u⌢γ).
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Once we have defined Y (w), y(w) and y(w) + z fr all basic words w with |w| =

n + 1, we shall define them for nonbasic words w with |w| = n + 1 by conditions

(e) and (f) for the case n + 1. Once this process is complete, we shall obtain the

bijection L′ ∋ w 7→ y(w) ∈ Y and the partial operation y(w) + z where w ∈ L′

and z ∈ Y (0|w|+1). Trivially, the operation y(w) + z, where z ∈ Y (0|w|+1) maps

homeomorphically the neighbourhood Y (0|w|+1) of e onto the neighbourhood Y (w⌢0)

of y(w). Furthermore, this is valid for any topology T ⊇ T0 with continuous shifts.

To see that y(v + u) = y(v) + y(u), if max supp(v) + 2 < min supp(u), we use the

induction in the length of the canonical decomposition of u.

We have

y(v + u) = y(v + u1 + u2 + · · ·+ up)

= y(v + u1 + u2 + · · · up−1) + y(up)

= y(v + u1 + u2 + · · ·+ up−2) + (y(up−1) + y(up))

= y(v + u1 + u2 + · · ·+ up−2) + y(up−1 + up)

= y(v) + y(u).

Consequently, the partial operation + is associative. Ifmax supp(v)+2 < min supp(u)

and max supp(u) + 2 < min supp(w), then

(y(v) + y(u)) + y(w) = y(v + u) + y(w)

= y(v + u+ w)

= y(v) + y(u+ w)

= y(v) + (y(u) + y(w)).

Therefore YT is a local left topological group. We check that the inversion on YT is

a local automorphism. Let w be a word in a subsemigroup L′ of L and z ∈ Y (0|w|+1).
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If w is a nonzero basic word and w = w−1 then

(y(w) + y)−1 = (y(w) · z)−1

= (z · y(w))−1

= (y(w))−1 · z−1

= (y(w))−1 + z−1.

If w is a nonzero basic word, w = w−1 and the last letter of w from the set {1, 3} is,

say 3, then the last letter of w−1 from the set {1, 3} is 1 and we have

(y(w) + z)−1 = (z · y(w))−1

= (y(w))−1 · z−1

= y(w−1) · z−1

= y(w−1) + z−1

= (y(w))−1 + z−1.

In the general case, we use the induction in the length of the canonical decomposition

of w :

(y(w) + z)−1 = (y(w1 + · · ·+ wl−1) + (y(wl)) + z)−1

= (y(w1 + · · ·+ wl−1))
−1 + (y(wl) + z)−1

= (y(w1 + · · ·+ wl−1))
−1 + ((y(wl))

−1 + z−1)

= y(w−1
1 + · · ·+ w−1

l−1) + (y(w−1
l ) + z−1)

= y(w−1) + z−1

= (y(w))−1 + z−1.

We can consider Case 1 analogously by taking a semigroup L to be a semigroup of

words on the alphabet Z3.

We now give the main result of this section.
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Theorem 4.2.13 ([43]). Let T be a regular ω-resolvable topology on a countable group

G with continuous shifts and inversion. Then a Boolean part is a neighbourhood of

the identity.

Proof. Consider a countable group G. Endow G with a regular topology with con-

tinuous shifts and inversion. Suppose the Boolean part B(G) is not a neighbour-

hood of the identity. We have to show that G is ω-resolvable. To do this, suppose

B = B(G) \ {e}. Since we know that the centralizer of any element of finite order

in a countable group with a regular ω-irresolvable topology with continuous shifts is

open, it follows that if there exists some element in B such that the centralizer of this

element is not open in G, then G is ω-resolvable. Hence, suppose the centralizer of

each element of B is open in G. If e ∈ cl(B), we put Y = G, otherwise Y becomes

an open symmetric neighbourhood of the identity of G disjoint with B. We obtain

from Theorem 4.2.12, that there exists a partial operation + on Y for which (Y,+)

is a local left topological group and the inversion on (Y,+) is a local automorphism.

Since B(G) is not a neighbourhood of the identity of G, the inversion on Y is not a

trivial local automorphism. It follows from the fact that a countable regular local left

topological group with a nontrivial local automorphism of finite order is ω-resolvable,

that Y is ω-resolvable. Consequently, G is also ω-resolvable.

To conclude this section we give the following result.

Theorem 4.2.14 ([43]). Suppose that a countably infinite group having a finite

Boolean part that can be embedded into a compact topological group. Then it can

be partitioned into countably many subsets dense in any nondiscrete topology with

continuous shifts and inversion.

Proof. Suppose that G is a countably infinite group with a finite Boolean part that

can be embedded into a compact topological group, T0, is a totally bounded group

topology on G, Y is a local left topological group obtained from (G,T0) by removing

elements of order 2, + is a partial operation on Y guaranteed by Theorem 4.2.12, and
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{Yn : n < ω} is a partition of a local left topological group (Y,+) by the inversion

guaranteed by Theorem 4.2.11. We show that every Yn is dense in many nondiscrete

topology T onG with continuous shifts and inversion. Now suppose that T1 = T0∨T

is the supremum of T0 and T . The topology T1 has as neighbourhoods of the identity,

subsets of the form U ∩ W, where U,W are neighbourhoods of the identity in the

topologies T0 and T . The shifts and inversion in T1 are continuous. Because T0 is

totally bounded, we have that T1 is nondiscrete. It follows T1 ⊇ T0, Y with the

topology T1|Y and operation + is a nondiscrete local left topological group and the

inversion is a nontrivial local automorphism on Y. Therefore, Yn is dense in T1 and,

consequently, Yn is dense in T .

4.3 Resolving by Regular Homeomorphisms of Fi-

nite Order

In this section we assume that all spaces are Hausdorff.

Definition 4.3.1 ([46]). Suppose that Y is a topological space with a distinguished

point e ∈ Y, ϕ : Y → Y is a homeomorphism with ϕ(e) = e. The homeomorphism ϕ is

regular if for every y ∈ Y \{e}, there exists a homeomorphism ϑy of a neighbourhood

of the identity e onto a neighbourhood of y such that ϕϑy|U = ϑϕ(y)ϕ|U for some

neighbourhood U of e.

Suppose that the topological space Y admits a regular homeomorphism. This

means that for any pair of points y, z ∈ Y, there exists a homeomorphism ϑ of a

neighbourhood of y onto a neighbourhood of z with ϑ(y) = z. Furthermore, if we

take the space Y to be zero-dimensional and Hausdorff, then we can choose ϑ to be

a homeomorphism of Y onto itself. Therefore, a countably infinite zero-dimensional

space that admits a regular homeomorphism is homogeneous.

Now we claim that a local automorphism is regular. To see this, we suppose that

83



Y is a local left topological group and ϕ : Y → Y is a local automorphism. For

each y ∈ Y \ {e}, we pick a neighbourhood Uy of e for which yz is defined for every

z ∈ Uy, yUy is a neighbourhood of y and λy : y 7→ yz is a homeomorphism where

y ∈ Uy and yz ∈ yUy. Now we put ϑy = λy. We have that ϑy(e) = y. Next, we pick

a neighbourhood Wy of e such that Wy ⊆ Uy, ϕ(Wy) ⊆ Uϕ(y) and ϕ(yz) = ϕ(y)ϕ(z)

for every y ∈ Wy. Then for every z ∈ Wy, ϕϑy(z) = ϕ(yz) = ϕ(y)ϕ(z) = ϑϕ(y)ϕ(z).

It follows that the concept of a regular homeomorphism is a generalization of the

concept of a local automorphism on a local left topological group.

Lemma 4.3.2 ([46]). Suppose that Y is a Hausdorff space with a distinguished point

e ∈ Y, ϕ : Y → Y is a spectrally irreducible regular homeomorphism of finite order,

e 6= y0 ∈ Y with |O(ϕ,U)| = t and U is a spectrally minimal neighbourhood of y0.

Then

spec(ϕ,U) = {lcm(t, r) : r ∈ {e} ∪ spec(ϕ)}

Proof. For every y ∈ O(ϕ, y0), suppose that ϑy is a homeomorphism of a neigh-

bourhood Uy of e onto a neighbourhood of y such that ϕϑy|Wy
= ϑϕ(y)ϕ|Wy

for

some neighbourhood Wy ⊆ Uy of e. Now pick a neighbourhood W of e for which

W ⊆
⋂

y∈O(ϕ,y0)
Wy, ϑy0(W ) ⊆ U, and the subsets ϑy(W ), where y ∈ O(ϕ, y0), are

pairwise disjoint. Suppose that ϕ has order n and pick a neighbourhood V of e for

which ϕi(V ) ⊆ W for 0 ≤ i ≤ n−1. This inclusion holds for i < ω.We now show that

for all z ∈ V, ϕiϑy0(z) = ϑϕi(y0)ϕ
i(z). The case i = 0 is trivial. We obtain, inductively,

that

ϕiϑy0(z) = ϕϕi−1ϑy0(z) = ϕϑϕi−1(y0)ϕ
i−1(z) = ϑϕi(y0)ϕ

i(z).

We now suppose z ∈ V, |O(ϕ, z)| = r and s = lcm(t, r) and claim that |O(ϕ, ϑy0(z))| =

s. Indeed,

ϕs(ϑy0(z)) = ϑϕs(y0)(ϕ
s(z)) = ϑy0(z).

Next, if ϕi(ϑy0(z)) = ϑy0(z) for some i, then ϑϕi(y0)(ϕ
i(z)) = ϑy0(z). It follows from the

fact that the subsets ϑy(W ) with y ∈ O(ϕ, y0) are pairwise disjoint, that ϕ
i(y0) = y0,

so t|i. It is also true that ϕi(z) = z since ϑy0 is an injection, and so r|i. Hence s|i.
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Similar to what we did with local automorphisms, Lemma 4.3.2 shows that the

spectrum of a spectrally irreducible regular homeomorphism of finite order is a finite

subset of N closed with respect to taking the least common multiple.

We now give a theorem describing the structure of a large family of homeomor-

phisms of finite order on countable regular spaces. As an application of this structure

theorem, we will prove that every countable nondiscrete topological group which con-

tains no open Boolean subgroup is ω-resolvable. Using this structure theorem, the

desired result will be more apparent than in Section 4.3. In truth we will have proved

a more general theorem.

The following notation regarding the group
⊕

ω Zm will be useful. For every

y ∈
⊕

ω Zm, let µy denote the shift in
⊕

ω Zm by y, that is, we define µy :
⊕

ω Zm →
⊕

ω Zm by µy(z) = y + z.

Theorem 4.3.3 ([46]). Suppose that Y is a countably infinite nondiscrete regular

space with a distinguished point e ∈ Y, ϕ : Y → Y is a spectrally irreducible regular

homeomorphism of finite order, σ = spec(ϕ), and m = 1 +
∑

t∈σ t. Suppose that π

is the standard permutation on
⊕

ω Zm of spectrum σ, and for all b ∈
⊕

ω Zm, let

µb :
⊕

ω Zm →
⊕

ω Zm be defined by µb(y) = b + y. Then there exists a continuous

bijection ψ : Y →
⊕

ω Zm with ψ(e) = 0 such that

1. ϕ = ψ−1πψ, and

2. for every y ∈ Y, λy = ψ−1µψ(y)ψ is a homeomorphism of Y onto itself.

Moreover, if Y is a local left topological group and ϕ is a local automorphism, then

we can choose ψ so that

3. λy(z) = yz, whenever max supp(ψ(y)) + 1 < min supp(ψ(z)).

Proof. Suppose that L = L(Zm) is the set of all words on the alphabet Zm including

the empty word ∅. The permutation π0, which induces the standard permutation π

85



on
⊕

ω Zm, also induces the permutation π1 on L. If w = γ0γ1 · · · γn, then π1(w) =

π0(γ0)π0(γ1) · · · π0(γn). Instead of writing π0 and π1, it is convenient to just write π.

For each y ∈ Y \ {e}, we choose a homeomorphism ϑy of a neighbourhood of e onto a

neighbourhood of y with ϑy(e) = y such that ϕϑy = ϑϕ(y)ϕ|U for some neighbourhood

U of e. We also put ϑ1 = idY . If Y is a local left topological group and ϕ is a local

automorphism, we choose ϑy in such a way that ϑy(z) = yz and since Y is countably

infinite, we enumerate Y as {yn : n < ω} with y0 = e.

To each word w ∈ L, we assign a point y(w) ∈ Y and a clopen spectrally minimal

neighbourhood Y (w) of y(w) such that

(a) y(0n) = e and Y (∅) = Y,

(b) {Y (w⌢γ) : γ ∈ Zm} is a partition of Y (w),

(c) y(w) = ϑy(w0)ϑy(w1) · · ·ϑy(wl−1)(y(wl)) and Y (w) = ϑy(w0)ϑy(w1) · · ·ϑy(wl−1)(Y (wl)),

where w has the canonical decomposition w = w0 + w1 + · · ·+ wl,

(d) ϕ(y(w)) = y(π(w)) and ϕ(Y (w)) = Y (π(w)),

(e) yn ∈ {y(u) : u ∈ L and |u| = n}.

Now let σ = {t1, t2, . . . , tk}, t1 < t2 < · · · < tk. We choose, for each i = 1, . . . , k,

a representative λi of the orbit in Zm \ {0} of length ti. We pick a clopen invariant

neighbourhood V1 of e such that y1 /∈ V1 and spec(ϕ, Y \ V1) = spec(ϕ) and put

y(0) = e and Y (0) = V1. Then pick the points bi ∈ Y \ V1, for 1 ≤ i ≤ k, with

pairwise disjoint orbits of lengths ti for which y1 ∈
⋃k

i=1O(ϕ, bi). Now we put, for

each 1 ≤ i ≤ k and j < ti, y(π
j(λi)) = ϕj(bi).

Next, using Lemma 4.2.9, there exists an invariant partition {Y (γ) : γ ∈ Zm \

{0}} of Y \ V1 for which Y (γ) is a clopen spectrally minimal neighbourhood of y(γ).

Fix n > 1 and assume that we have constructed Y (w) and y(w) for every w ∈ L

with |w| < n in such a way that conditions (a)-(e) are satisfied. Notice that the

subsets Y (w) with |w|n− 1, form a partition of Y so one of these subsets, say Y (v),
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contains yn. Now let v have the canonical decomposition v = v0 + v1 + · · ·+ vq. Then

Y (w) = ϑy(v0)ϑy(v1) · · ·ϑy(vq−1)(Y (vq)) and yn = ϑy(v0)ϑy(v1) · · ·ϑy(vq−1)(zn) for

some zn ∈ Y (vq).

Next, we pick a clopen invariant neighbourhood Vn of e ∈ Y such that for all basic

words w with |w| = n− 1,

(i) ϑy(w)(Vn) ⊂ Y (w),

(ii) ϕϑy(w)|Vn = ϑϕ(y(w))ϕ|Vn , and

(iii) spec(ϕ, Y (w) \ ϑy(w)(Vn)) = spec(Y (w)).

If zn 6= y(vq), we choose Vn in addition so that (iv) zn /∈ ϑy(vq)(Vn). Put y(0) = e and

Y (0n) = Vn.

Let w ∈ L be an arbitrary nonzero basic word with |w| = n− 1 and let O(ϕ,w) =

{wj : j < t}, where wj+1 = π(wj) for j < t − 1 and π(wt−1) = w0. Put Zj =

Y (wj) \ ϑy(wj)(Vn). Using Lemma 4.3.2, we pick points ci ∈ Z0 for 1 ≤ i ≤ k, with

pairwise disjoint orbits of lengths lcm(ti, t). If vq ∈ O(ϕ,w), we choose ci in addition so

that zn ∈
⋃k

i=1O(ϕ, ci). For each 1 ≤ i ≤ k and j < ti, we put y(πj(w⌢γi)) = ϕj(ci).

Then by Lemma 4.2.9, we inscribe an invariant partition

{Y (u⌢γ) : u ∈ O(ϕ,w), γ ∈ Zm \ {0}}

into the partition {Zj : j < t} such that Y (u⌢γ) is a clopen spectrally minimal

neighbourhood of y(u⌢γ). If w is a nonbasic word in L with |w| = n, we define y(w)

and Y (w) by condition (c).

We now wish to check conditions (b) and (d). To do this, we let |w| = n− 1 and

let w = w0 + w1 + · · ·+ wl. Then

Y (w⌢0) = ϑy(w0)ϑy(w1) · · ·ϑy(wl)(Y (0n)) = ϑy(w0)ϑy(w1) · · ·ϑwl−1
(ϑy(wl)(Y (0n)))

and

Y (w⌢γ) = ϑy(w0)ϑy(w1) · · ·ϑy(wl−1)(Y (w⌢l γ)),
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so (b) is satisfied. Next,

ϕ(y(w)) = ϕϑy(w0)ϑy(w1) · · ·ϑy(wl−1)(y(wl))

= ϑϕ(y(w0))ϕϑy(w1)ϑy(w2) · · ·ϑy(wl−1)(y(wl))

= ϑϕ(y(w0))ϑϕ(y(w1))ϕϑy(w2)ϑy(w3) · · ·ϑy(wl−1)(y(wl))

Proceeding in this manner, we obtain

ϕ(y(w)) = ϑϕ(y(w0))ϑϕ(y(w1)) · · ·ϑϕ(y(wl−1))ϕ(y(wl))

= ϑy(π(w0))ϑy(π(w1)) · · ·ϑy(π(wl−1))(y(π(wl)))

= y(π(w0)π(w1) · · · π(wl−1)π(wl))

= y(π(w)),

so (d) is also satisfied.

To check (e), we let yn /∈ {y(w) : |w| = n− 1}. Then

yn = ϑy(v0)ϑy(v1) · · ·ϑy(vq−1)(zn)

= ϑy(v0)ϑy(v1) · · ·ϑy(vq−1)(v
⌢
q γ)

= y(v⌢γ).

Now, for every y ∈ Y, there exists a word w ∈ L with a nonzero last letter such that

y = y(w), so

{u ∈ L : y = y(u)} = {w⌢0n : n < ω}.

Hence, we can define ψ : Y →
⊕

ω Zm by setting for all w = γ0γ1 · · · γn ∈ L,

ψ(y(w)) = w = (γ0, γ1, . . . , γn, 0, 0, . . .).

Notice that ψ is a bijection, ψ(e) = 0 and since for every x = (γi)i<ω ∈
⊕

ω Zm,

ψ−1(x+Hα) = Y (γ0γ1 · · · γn), we have that ψ is continuous. Now let y = y(w). Then

ψ(ϕ(y(w))) = ψ(y(π(w)))

= π(w)

= π(w)

= π(ψ(y(w))).
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Therefore part 1 is satisfied.

Next, let y = y(w), w = w0 + w1 + · · · + wl and n = max supp(ψ(y)) + 1. We

begin by showing that λy|ψ−1(Hα) = ϑy(w0)ϑy(w1) · · ·ϑy(wl)|ψ−1(Hα). Let z ∈ ψ−1(Hα),

z = y(u) and u = u0 + u1 + · · ·+ uk. Then

ϕϑy(w0)ϑy(w1) · · ·ϑy(wl)(z) = ϕϑy(w0)ϑy(w1) · · ·ϑy(wl)ϑy(u0)ϑy(u1) · · ·ϑy(uk−1)(y(uk))

= ψ(y(w + u))

= w + u

= w + u

= ψ(y(w)) + ψ(y(u))

= µψ(y)ψ(z).

It follows from (c) that ϑy(w0)ϑy(w1) · · ·ϑy(wl) homeomorphically maps Y (0n), a neigh-

bourhood of e, onto Y (y⌢0), a neighbourhood of y, and so does λy. In order to see

that λy homeomorphically maps a neighbourhood of an arbitrary point z ∈ Y onto a

neighbourhood x = λy(z), it will be sufficient to check that λy = λx(λz)
−1. Indeed,

x = ψ−1µψ(y)ψ(z) = ψ−1(ψ(y) + ψ(z)) and then

λx(λz)
−1 = ψ−1µψ(y)+ψ(z)ψ(ψ

−1µψ(z)ψ)
−1

= ψ−1µψ(y)+ψ(z)ψψ
−1(µψ(z))

−1ψ

= ψ−1µψ(y)+ψ(z)µ−ψ(z)ψ

= ψ−1µψ(y)ψ

= λy

Therefore part 2 is satisfied.

Finally, let y = y(w) and w = w0+w1+ · · ·+wl. If l = 0, then λy(z) = ψy(z) = yz.
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We proceed, by induction on l, to obtain

λy(z) = ψy(w0)ψy(w1) · · ·ψy(wl)(z)

= ψy(w0)ψy(w1) · · ·ψy(wl−1)(y(wl) · z)

= y(w0 + w1 + · · ·+ wl−1) · (y(wl) · z)

= [y(w0 + w1 + · · ·+ wl−1) · y(wl)] · z

= [ψy(w0)ψy(w1) · · ·ψy(wl−1)(y(wl))] · z

= y(w) · z.

Condition 3 in Theorem 4.3.3, where Y is a local left topological group and ϕ is a

local automorphism, is essentially Theorem 4.2.10. If we put ϕ = idY , the first part

of Theorem 4.3.3 tells us that every countable homogeneous regular space admits a

Boolean group operation with continuous translations.

The purpose of Theorem 4.3.3 is to characterize spectrally irreducible regular

homeomorphisms of finite order on countable regular spaces. Recall that to generate

the topology of
⊕

ω Zm, we take as a base at zero the subgroups Hα = {y ∈
⊕

ω Zm :

y(i) = 0 for all i < α} where α < ω. Let ϕ : Y → Y be a spectrally irreducible

homeomorphism of finite order. If there exists, for some m, a continuous bijection

ψ : Y →
⊕

ω Zm with ψ(e) = 0 such that

1. ψϕψ−1 is a coordinatewise permutation on
⊕

ω Zm, and

2. for every y ∈ Y, ψ−1µψ(y)ψ : Y → Y is a homeomorphism, then ϕ is regular.

This can be seen as follows. Suppose π = ψϕψ−1. Additionally, for every y ∈ Y \{e},

suppose α(y) = max supp(ψ(y)) + 1, Uy = ψ−1(Hα(y)) and ϑy = ψ−1µψ(y)ψ|Uy
. Then
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for every z ∈ Uy, ϕ(z) ∈ Uy = Uϕ(y) and

ϕϑy(z) = ψ−1πψψ−1µψ(y)ψ(z)

= ψ−1πµψ(y)ψ(z)

= ψ−1π(ψ(y) + ψ(z))

= ψ−1(π(ψ(y)) + π(ψ(z)))

= ψ−1(ψ(ϕ(y)) + ψ(ϕ(z)))

= ψ−1µψ(ϕ(y))ψ(ϕ(z))

= ϑϕ(y)ϕ(z).

Definition 4.3.4. Given a topological space Y with a distinguished point e ∈ Y, let

ϕ : Y → Y be a homeomorphism with ϕ(e) = e. It is said that ϕ is nontrivial if

every neighbourhood of e contains a nonfixed point.

Theorem 4.3.5 ([46]). A countably infinite regular space which admits a nontrivial

regular homeomorphism of finite order is ω-resolvable.

Proof. Suppose that Y is a countable regular space with a distinguished point e ∈ Y,

ϕ : Y → Y is a nontrivial regular homeomorphism of finite order. We know from

Lemma 2.3.4 that a homogeneous space which contains an ω-resolvable subspace is

itself also ω-resolvable. Therefore, we may assume that ϕ is spectrally irreducible.

Consider a bijection ψ : Y →
⊕

ω Zm guaranteed by Theorem 4.3.3 and let C denote

an orbit in Zm(with respect to π0) of the least possible length t > 1. Now let

Z = {y ∈ Y : there exists a coordinate of ψ(y) belonging to C}.

Notice that every y ∈ Y with |O(ϕ, y)| = t belongs to Y. For every y ∈ Y, consider the

sequence of coordinates of ψ(y) which belong to C and let η(x) be defined to be the

number of pairs of distict neighbouring elements in the sequence. Additionally, if the

sequence is nonempty, denote the first and last elements in the sequence by β(y) and
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ξ(y) respectively. Then whenever y, z ∈ Z andmax supp(ψ(y))+1 < min supp(ψ(z)),

η(λy(z)) =







η(y) + η(z) if ξ(y) = β(z),

η(y) + η(z) + 1 otherwise.

Let the partition {Zn : n < ω} of Z be defined by

Zn = {y ∈ Z : η(y) ≡ 2n(mod 2n+1)},

that is, Zn consists of all y ∈ Z such that the index of the nonzero digit that is

furthest to the left in the binary expansion of η(y) is n.

We now wish to show that every Zn is dense in Y. To do this, suppose that y ∈ Y

and U is an open neighbourhood of e. We have to show that λy(U)∩Zn 6= ∅. We put

k = 2n+1 and then we choose by induction y1, . . . , yk ∈ U such that

(a) |O(ϕ, y)| = t,

(b) max supp(ψ(yj)) + 1 < min supp(ψ(yj+1)), and if y 6= 0, then

max supp(ψ(y)) + 1 < min supp(ψ(y1)),

(c) λz1λz2 · · ·λzk(e) ∈ U whenever zj ∈ O(ϕ, yj).

Without loss of generality, we may assume that ξ(yj) = β(yj+1), and that if y ∈ Z,

then ξ(y) = β(y1). Foe every l = 0, 1, . . . , k − 1, let xl ∈ U be defined by

zl = λy1λϕ(y2) · · ·λϕl(yl+1)λϕl(yl+2) · · ·λϕl(yk)(e)

(Particularly, x0 = λy1λy2 · · ·λyk(e).) Then

ψ(λy(xl)) = ψ(y) + ψ(y1) + πψ(y2) + · · ·+ πlψ(yl+1)π
lψ(yl+2) + · · ·+ πlψ(yk).

Consequently, η(λy(x0)) = η(y)+η(y1)+ · · ·+η(yk) and η(λy(x0)) = η(x0)+ l. Hence,

for some l, η(λy(zl)) ≡ 2n(mod 2n+1), so λy(xl) ∈ Zn.
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Lemma 4.3.6 ([46]). Suppose that Y is a homogeneous topological space with a dis-

tinguished point e ∈ Y and ϕ : Y → Y is a local homeomorphism of finite order n

with ϕ(e) = e. If for every y ∈ Y \ {e} with |O(ϕ, y)| = t < n, there exists a home-

omorphism ϑy of a neighbourhood U of e onto a neighbourhood of y with ϑy(e) = y

such that ϕtϑy(z) = ϑyϕ
t(z) for all z ∈ U, then ϕ is regular. Particularly, if for every

y ∈ Y \ {e}, |O(ϕ, y)| = n, then ϕ is regular.

Proof. Consider an arbitrary orbit in Y distinct from {e} and enumerate this orbit

as {yi : i < t}, where yi+1 = ϕ(yi) for i = 0, . . . , t − 2 and ϕ(yt−1) = y0. If t = n, we

choose as ϑy0 any homeomorphism of a neighbourhood U of e onto a neighbourhood

y0 with ϑy0(e) = y0. If t < n, we choose ϑy0 with the additional condition that

ϕtϑy0(z) = ϑy0ϕ
t(z) for all z ∈ U. For every i = 1, . . . , t− 1, we put ϑyi = ϕiϑy0ϕ

−i|U .

Then for every i = 1, . . . , t− 1 and z ∈ U,

ϕϑyi(z) = ϕϕiϑy0ϕ
−i(z) = ϕi+1ϑy0ϕ

−(i+1)ϕ(z).

If i < t − 1, then ϕi+1ϑy0ϕ
−(i+1)ϕ(z) = ϑyi+1

ϕ(z), so ϕϑyi(z) = ϑyi+1
ϕ(z). Hence, all

that remains is to check that ϕϑyt−1
(z) = ϑy0ϕ(z). If t = n, then

ϕϑyt−1
(z) = ϕtϑy0ϕ

−tϕ(z) = idY ϕ(z) = ϑy0ϕ(z).

If t < n, then

ϕϑyt−1
(z) = ϕtϑy0ϕ

−tϕ(z) = ϑy0ϕ
tϕ−tϕ(z) = ϑy0ϕ(z).

We now give a proposition which tells us that every nondiscrete topological group

which contains no open Boolean subgroup admits a nontrivial regular homeomorphism

of order 2.

Proposition 4.3.7 ([46]). Given a nondiscrete topological group G which does not

contain an open Boolean subgroup, suppose that for every g ∈ G of order 2, the

conjugation G ∋ h 7→ ghg−1 ∈ G is a trivial local automorphism. Then the inversion

G ∋ h 7→ h−1 ∈ G is a nontrivial regular homeomorphism.
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Proof. Denote the inversion by ϕ and let B = B(G). We have that ϕ is a homeomor-

phism of order ≤ 2. We also know that B is the set of fixed points of ϕ, in particular,

ϕ(e) = e. Since a group contains an open Boolean subgroup whenever the Boolean

part of that group is a neighbourhood of e, we have that B is not a neighbourhood

of e as G does not contain an open Boolean subgroup. So ϕ is nontrivial.

We now show that ϕ is regular. Let g ∈ G \ {e} and |O(ϕ, g)| < 2, then g ∈ B.

But then there exists a neighbourhood U of e such that ghg−1 = h for all h ∈ U, that

is, gh = hg. Now we define ϑg : U → gU by ϑg(h) = gh. We have that

ϕϑg(h) = (gh)−1 = (hg)−1 = g−1h−1 = gh−1 = ϑgϕ(h).

Hence, by Lemma 4.3.6, ϕ is regular.

Finally, by combining Theorem 4.3.6 and Proposition 4.3.7, we arrive at our cov-

eted result.

Theorem 4.3.8 ([46]). Let G be a countable nondiscrete topological group not con-

taining an open Boolean subgroup. Then G is ω-resolvable.

It is worth noting to the reader that if we consider G in Theorem 4.3.8 to be

Abelian, we could simplify the proof of Theorem 4.3.8 a great deal. Notice that if a

topological group is Abelian, then the inversion is a local automorphism. This means

we do not need the added heavy machinery of Theorem 4.3.8. It is sufficient to just

use Theorem 4.2.10. The case where G is Abelian also makes it unnecessary to restict

G to being countably infinite.

Finally, if there exists a countably infinite nondiscrete ω-irresolvable topological

group then there exists a P -point in ω∗. This means that it is impossible to establish

the existence of a countably infinite nondiscrete ω-irresolvable topological group in

ZFC. For a proof of this see [ [47], Theorem 12.13].
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Chapter 5

Absolute Resolvability

5.1 The Finite Sums Theorem

Definition 5.1.1. Given a set Y, Pf (Y ) = {E : ∅ 6= E ⊆ Y and E is finite}.

Definition 5.1.2 ([19]). 1. Given an infinite sequence (yn)
∞
n=1 in a semigroup (S, ·),

the set of finite products of the sequence is defined by

FP ((yn)
∞
n=1) = {

∏

n∈E

yn : E ∈ Pf (N)}.

Given a finite sequence (yn)
m
n=1 in a semigroup (S, ·), the set of finite products

of the sequence is given by

FP ((yn)
m
n=1) = {

∏

n∈E

yn : E ∈ Pf ({1, 2, 3, . . . ,m})}.

2. Given an infinite sequence (yn)
∞
n=1 in a semigroup (S,+), the set of finite sums

of the sequence is given by

FS((yn)
∞
n=1) = {

∑

n∈E

yn : E ∈ Pf (N)}.

Given a finite sequence (yn)
m
n=1 in a semigroup (S,+), the set of finite sums of

the sequence is given by

FS((yn)
m
n=1) = {

∑

n∈E

yn : E ∈ Pf ({1, 2, 3, . . . ,m})}.
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Theorem 5.1.3. (Finite Sums) Let G be an infinite group and suppose it is parti-

tioned into a finite number of cells. Then there exists a one-to-one sequence (yn)n<ω

in G with FS((yn)n<ω) contained in one cell.

5.2 Partitions and Sums with inverses in Abelian

groups

Definition 5.2.1. Given a group G, a subset A of G is absolutely dense if it

is dense in every nondiscrete group topology on G. Given a cardinal κ ≥ 2, if G

can be partitioned into κ-many absolutely dense subsets, we say G is absolutely

κ-resolvable.

Recall Theorem 4.2.14 from Section 4.2. From Theorem 4.2.14, we obtain

Corollary 5.2.2 ([43]). Let G be a countably infinite group with finitely many ele-

ments of order 2 that can be embedded in a compact topological group. Then G is

absolutely ω-resolvable.

Theorem 5.2.3 ([45]). Every infinite Abelian group G which contains no infinite

Boolean subgroup is absolutely resolvable.

Proof. Suppose that {C0, C1} is an absolutely dense subset of G. Now suppose for

contradiction that G contains an infinite Boolean subgroup B. Put Ii = Ci ∩ B for

each i < 2. By Theorem 5.1.3, there exists a one-to-one sequence (yn)n<ω in B with

FS((yn)n<ω) contained in one cell, suppose I0. Now letB0 = FS((yn)1≤<ω)∪{0}. Since

B is Boolean, we have that B0 is an infnite subgroup, and y0+B0 ⊆ FS((yn)n<ω) ⊆ I0.

Next, suppose that T is any nondiscrete group topology on G in which B is open.

Then y0 +B is open. Since y0 +B ⊆ I0, we have that (y0 +B) ∩C1 = ∅. Hence, C1

is not dense in T , contradicting the hypothesis.
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Definition 5.2.4 ([19]). Consider an additive group G. Given a sequence (yn)n<ω in

G, the set of finite sums with inverses of the sequence is defined by

FSI((yn)n<ω) = {
∑

n∈E

εEn yn : E ∈ Pf (ω) and ε
E
n ∈ {1,−1} for all n ∈ E}.

Consider an Abelian group G. Notice that G can only be absolutely κ-resolvable

whenever κ ≤ ω. We have seen, from Theorem 5.2.3, the answer of the absolute

resolvability question for all Abelian groups and κ = 2. The solution for countable

Abelian groups can be found in [44]. The following theorem settles the matter for

all Abelian groups.

Theorem 5.2.5 ([45]). Suppose that G is an Abelian group and C = G \ B(G) is

infinite. Then there exists a disjoint partition {Cr : r < ω} of C such that when

(yn)n<ω is a one-to-one sequence in C, h ∈ G and r < ω, we have

(h+ FSI((yn)n<ω)) ∩ Cr 6= ∅.

The proof of Theorem 5.2.5 involves a great deal of work. We will first have to

prove the case where the group G is not necessarily Abelian, but is a direct sum of fi-

nite groups and then extend the proof to the general case. The proof of Theorem 5.2.5

for direct sums of finite groups relies on the following facts:

Lemma 5.2.6 ([45]). Consider an increasing sequence (an)n<ω in N such that a0 = 1

and an+1 − an tends to infinity. Then there exists a mapping ν : N → [N]<ω having

the following properties:

1. if b ∈ [an, an+1), then ν(b) = {b0, b1, . . . , bn−1}, where bl ∈ [al, al+1) for all

l 6= n− 1 (in particular, if b ∈ [a0, a1), then ν(b) = ∅,) and

2. for every c ∈ N, there exists some a ∈ N such that whenever b, d ∈ N, 0 <

|b− d| ≤ c, u ∈ ν(b), v ∈ ν(c) and u, v ≥ a, one has |u− v| > c.

[N]<ω is the set of finite subsets of N.
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Proof. We can assume without loss of generality that an+1 − an ≥ 5 for n < ω. For

each n < ω, we choose cn ≥ 2 such that c2n + cn − 1 ≤ an+1 − an and cn → ∞. We

now wish to define ν. To do this, suppose l < ω, b ≥ al+1 and choose the largest

integer k ≥ 0 such that al+1 + kc2l ≤ b. Then choose the largest integer i ≥ 0 such

that al+1 + kc2l + icl ≤ b, and then put j = b − al+1 − kc2l − icl. By these means we

can represent a in the form b = al+1 + kc2l + icl + j, where k is a nonnegative integer

and i, j ∈ {0, 1, . . . , cl − 1}. Put bl = al + jcl + i. Since bl ∈ [al, al + c2l ), the mapping

ν as we have defined it satisfies condition 1.

We now check condition 2. Given c ∈ N, choose n0 < ω such that cn ≥ c + 2 for

all n ≥ n0 and put a = an0
. Now let b, d ∈ N, 0 < |b− d| ≤ c, u ∈ ν(b), v ∈ ν(d) and

u, v ≥ a. Since

al+1 − bl = al+1 − al − jcl − i ≥ c2l + cl − 1− jcl − i ≥ cl,

one may assume that u = bl and v = dl for some l ≥ n0. Let

b = al+1 + kc2l + icl + j, d = al+1 + k′c2l + i′cl + j′.

Then bl = jcl + i, dl = j′cl + i′. Thus we have that

(a) b− d = [(k − k′)cl + (i− i′)]cl + (j − j′),

(b) bl − dl = (j − j′)cl + (i− i′).

Notice that |i − i′| < cl and |j − j′| < cl. It follows from (b) that if |j − j′| > 1,

|bl − dl| > cl so we may assume that |j − j′| ≤ 1. But then (a) gives that b − d is

different from a multiple of cl by 1,−1 or 0. Since |b− d| ≤ c ≤ cl − 2, this multiple

of cl has to be 0, so (k − k′)cl + (i − i′) = 0, giving that k = k′ and i = i′. Hence,

|j − j′| = 1, and we obtain that |bl − dl| = cl.

Definition 5.2.7 ([45]). Given a sequence (yn)n<ω in a group G, the sequence (zn)n<ω

in G is a sum subsystem of (yn)n<ω if there exists a sequence (Hn)n<ω in Pf (ω)

for which maxHn < minHn+1 and zn =
∑

i∈Hn
yi for every n < ω.
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We can restate the Finite Sums Theorem in terms of the notion of a sum subsystem

[19].

Proposition 5.2.8 ([45]). Consider a sequence (yn)n<ω in a group G. Then when G

is partitioned into finitely many cells, there exists a sum subsystem (zn)n<ω of (yn)n<ω

with FS((zn)n<ω) contained in one cell.

Proposition 5.2.9 ([45]). Let (yn)n<ω be a sequence in a totally bounded topological

group G. Then for every neighbourhood V of 0 ∈ G,

FS((yn)n<ω) ∩ V 6= ∅.

Proof. Suppose the group G has the completion G. Now pick an open neighbourhood

W0 of 0 ∈ G for which W0 ∩ G ⊆ V and for every y ∈ G \ W0, pick an open

neighbourhood Wy of y ∈ G for which (Wy +Wy) ∩Wy = ∅. The sets Wy, where

y ∈ (G \W0) ∪ {0}, make an open cover of G and because G is compact, there is

a finite subcover {Wy : y ∈ E}, where E is a finite subset of (G \ W ) ∪ {0}. By

Proposition 5.2.8, there exist y ∈ E and a sum subsystem (zn)n<ω of (yn)n<ω such

that FS((zn)n<ω) ⊆ Vy. Consequently, z0, z1, z0 + z1 ∈ Wy gives that y = 0, and so

z0 ∈ W0 ∩G ⊆ V. Thus FS((yn)n<ω) ∩ V 6= ∅.

Corollary 5.2.10 ([45]). Let (yn)n<ω be a sequence in a totally bounded topological

group G. Then when V and Vy, y ∈ V, are neighbourhoods of 0 ∈ G, there exists a sum

subsystem (zn)n<ω of (yn)n<ω such that z0 ∈ V and for every n < ω, zn+1 ∈
⋂

i≤n Vzi .

Proof. By Proposition 5.2.9, there exists z0 ∈ FS((yn)n<ω) ∩ V. Fix l < ω and take

for granted that we have constructed a sum subsystem (zn)n≤l such that z0 ∈ V and

for every n < l, zn+1 ∈
⋂

i≤n Vzi . Let zl =
∑

n∈Hl
yn and let nl+1 = maxHl + 1. By

Proposition 5.2.9, there exists

zl+1 ∈ FS((yn)nl+1≤n<ω) ∩
⋂

i≤l

Vzi .

The constructed sequence is as required.
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The following is a restatement of Theorem 5.2.5 with G being a direct sum of

finite groups, not necessarily Abelian.

Theorem 5.2.11 ([45]). Given κ ≥ ω, suppose, for each γ < κ, that Gγ is a finite

group under addition. Additionally, suppose that G =
⊕

γ<κGγ and C = G \ B(G)

is infinite. Then there exists a disjoint partition {Cr : r < ω} of C such that when

(yn)n<ω is a one-to-one sequence in C, h ∈ G and r < ω, we have

(h+ FSI((yn)n<ω)) ∩ Cr 6= ∅.

Proof. Given an infinite cardinal number κ, consider the group G =
⊕

γ<κ . For each

γ < κ, Gγ is a finite group, not necessarily Abelian. For every y ∈ G, put

supp(y) = {γ < κ : y(γ) 6= 0γ} and supp0(y) = {γ < κ : y(γ) /∈ B(Gγ)}.

Since B(G) =
⊕

γ<κB(Gγ), we have that y ∈ C if and only if supp0(y) 6= ∅. For

every γ < κ, Gγ \ B(Gγ) is a disjoint union of subsets with two elements having the

form {z,−z}. Then we set sgn(z) = 1 and sgn(−z) = −1. As a result, every y ∈ C

has a finite sequence sgn(y(γ)), where γ ∈ supp0(y), assigned to it.

The pivotal idea of the construction can be seen in Lemma 5.2.6.

Now suppose that ν : N → [N]<ω is a function assured by Lemma 5.2.6. For

every y ∈ C, let the subset suppν(y) ⊆ supp0(y) and the nonnegative integer η(y)

be defined as follows. Let |supp(y)| = k and let k ∈ [an, an+1). Then |supp(y)| =

{γ0, γ1, . . . , γk−1} for some γ0 < γ1 < · · · < γk−1 < κ and ν(k) = {k0, k1, . . . , kn−1}

for some kl ∈ [an, al+1), l ≤ n − 1. Put suppν(y) = {γk0 , γk1 , . . . , γkn−1
} and let η(y)

be defined as the number of pairs of distinct neighbouring elements in the sequence

sgn(y(γk0)), sgn(y(γk1)), . . . , sgn(y(γkn−1
)).

Notice that if k ∈ [a0, a1), then ν(k) = ∅, and then suppν(y) = ∅ and η(y) = 0.

Next, let the partition {Cr : r < ω} of C by

Cr = {y ∈ C : η(y) ≡ 2r(mod 2r+1)}.
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Equivalently, Cr is made up of all y ∈ C for which the nonzero digit that is farthest

to the left in the binary expansion of η(y) has the index r. Now suppose that (yn)n<ω

is a one-to-one sequence in C, h ∈ G and r < ω. It shall be shown that (h +

FSI((yn)n<ω)) ∩ Cr 6= ∅. Note that if (zn)n<ω is a sum subsystem of (yn)n<ω, then

FSI((zn)n<ω) ⊆ FSI((yn)n<ω).

By Corollary 5.2.10, we may assume that

supp(h) ∩ supp(yi) = ∅ and supp(yi) ∩ supp(yj) = ∅

for all i < j < ω. Furthermore, we may assume that (min supp0(yn))n<ω is an in-

creasing sequence. Let

ξ = sup{min supp0(yn) : n < ω}.

We can write every y ∈ G uniquely in the form y = y′ + y′′, where y′, y′′ ∈ G,

supp(y′) = supp(y) ∩ ξ and supp(y′′) = supp(y) \ supp(y′).

Put l = 2r+1 − 1. We pick a sum subsystem (zn)n<l of (yn)n<ω by induction in such a

way that

(a) max supp0(h
′) < min supp0(z

′
0) and max supp0(z

′
i) < min supp0(z

′
i+1) for

i < l − 1, and

(b) each of the intervals (|supp(h′)|, |supp(h′ + z′0)|] and

(|supp(h′ + z′0 + z′1 + · · ·+ z′i)|, |supp(h
′ + z′0 + z′1 + · · ·+ z′i + z′i+1)|],

where i < l − 1, contains some interval [an, an+1).

Let g = h+ z0 + z1 + · · ·+ zl−1, zl−1 =
∑

n∈H yn and n0 = maxH +1. We claim that

there is zl ∈ FS((yn)n0≤n<ω) such that

(i) max supp0(g
′) < min supp0(zl),
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(ii) the interval (|supp(g′)|, |supp(g + zl)|] contains some [an, an+1), and

(iii) suppν(g + zl) ∩ supp0(g
′′) = ∅.

We assume the contrary. By Proposition 5.2.8, there exist δ ∈ supp0(g
′′) and a sum

subsystem (xn)n<ω of (yn)n0≤n<ω such that max supp0(g
′) < min supp0(xn) and

δ ∈ suppν(g+x) for every z ∈ FS((xn)n<ω). Put c = |supp(g+x0)| and suppose that

a is a constant assured by Lemma 5.2.6. Next, we choose x ∈ FS((yn)1≤n<ω) such

that max supp0(g
′ + x′0) < min supp0(x) and |supp(g′ + x′)| ≥ a. Now let

b = |supp0(g + x0 + x)| and d = |supp0(g + x0)|. Then

0 < b− d = |supp0(x0)| ≤ |supp0(g + x0)| = c.

Let u = |supp0(g + x0 + x) ∩ δ|, v = |supp0(g + x) ∩ δ|, w = |supp0(g + x0) ∩ δ| and

s = |supp0(g) ∩ δ|. Then u = v + w − s. It follows that u − v = w − s. This is a

contradiction since u ∈ ν(b), v ∈ ν(d), u, v ≥ a and w − s ≤ w ≤ c. Let us consider

the element h0 = h+z0+z1+ · · ·+zl. By the construction, suppν(h0)∩supp0(zi) 6= ∅

and for each i ≤ l−1, ∅ 6= suppν(h0)∩supp0(zi) ⊆ supp0(z
′
i). Therefore we have that

β0 < γ1 ≤ β1 < γ2 ≤ β2 < γ3 ≤ β3 < · · · < γl−1 ≤ βl−1 < γl,

where γi = min(suppν(h0)∩supp0(zi)), βi = max(suppν(h0)∩supp0(zi)). Put ε0 = 1.

By induction on i = 1, 2, . . . , l, we pick εi ∈ {1,−1} so that

εi−1zi−1(βi−1) = εizi(γi).

One may assume, without loss of generality, that εi = 1, so that h0 = h + z0 + z1 +

· · ·+ zl. For each i ≤ l, put

hi = h+ z0 − z1 + · · ·+ (−1)izi + (−1)izi+1 + · · ·+ (−1)izl.

Then η(hi) = η(h0) + i. Hence, there exists j ≤ l such that η(hi) ≡ 2r(mod 2r+1). It

follows that hj ∈ Cr.
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The following proposition is a consequence of Theorem 4.2.10.

Proposition 5.2.12 ([45]). Given a countably infinite Abelian topological group G,

let B(G) be neither open nor discrete. Then there exists a continuous bijection

ϕ : G→
⊕

ω Z4 such that

(a) ϕ(−y) = −ϕ(y) for every y ∈ G,

(b) ϕ(y + z) = ϕ(y) + ϕ(z) for y, z ∈ G \ {0} with

max supp(ϕ(y)) + 2 ≤ min supp(ϕ(z)).

We now deduce from Proposition 5.2.12, the result we need to extend Theo-

rem 5.2.11 to Theorem 5.2.5.

Theorem 5.2.13 ([45]). Consider an infinite Abelian group G. Endow G with the

largest totally bounded group topology and let |G| = κ. Then there exists a continuous

injection ϕ : G→
⊕

κ Z4 such that

1. ϕ(−y) = −ϕ(y) for all y ∈ G,

2. ϕ(y + z) = ϕ(y) + ϕ(z) for all y, z ∈ G with S(ϕ(y)) ∩ S(ϕ(z)) = ∅, where for

each b ∈
⊕

κ Z4, S(b) = supp(b) ∪ (supp(b) + 1).

The topology on
⊕

κ Z4 is the one induced by the product topology on
∏

κ Z4.

What Theorem 5.2.13 actually does is allow us to identify an arbitrary Abelian group

G of cardinality κ with a subset of
⊕

κ Z4 so that

(i) for every y ∈ G, −y ∈
⊕

κ Z4 is the inverse of y in G,

(ii) for every y, z ∈ G with S(y) ∩ S(z) = ∅, y + z ∈
⊕

κ Z4 is the sum of y and z

in G, and

(iii) the largest totally bounded group topology on G is stronger than that induced

from
⊕

κ Z4.
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Proof. It is well known in group theory that every Abelian group can be embedded

into a direct sum of groups isomorphic to Z(p∞) or Q. Therefore, without loss of

generality we may assume that

G =
⊕

γ<κ

Gγ ,

where for each γ < κ,

|Gγ| = |B(Gγ)| = |Gγ : B(Gγ)| = ω.

For each γ < κ, endow Gγ with a totally bounded group topology and suppose that

ϕγ : Gγ →
⊕

ω

Z4

is a continuous bijection guaranteed by Proposition 5.2.12. Now define

ϕ : G→
⊕

γ<κ

⊕

[γ,γ+ω)

Z4.

by

ϕ =
⊕

γ<κ

ϕγ .

Having proved Theorem 5.2.5 in the general case, we obtain from it, the main

result of this chapter.

Corollary 5.2.14 ([45]). Suppose that G is an infinite Abelian group which contains

no infinite Boolean subgroup, then G is absolutely ω-resolvable.

Proof. Consider a partition {Cr : r < ω} of C = G \B(G) assured by Theorem 5.2.5

and a nondiscrete group topology T on G. We claim that each Cr is absolutely

dense in T . Suppose that h ∈ G and V is an open neighbourhood of 0 ∈ G. By

the assumption, B(G) is finite, so we pick y0 ∈ V \ B(G) with −y0 ∈ V. Fix l < ω

and assume that we have constructed a one-to-one sequence (yn)n≤l in V \ B(G)

with FSI((yn)n≤l) ⊆ U. Next, let Hl = FSI((yn)n≤l) ∪ {0} and pick yl+1 ∈ V \
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(B(G) ∪ {yn : n ≤ l}) such that Hl + εyl+1 ⊆ V for each ε ∈ {1,−1}. Consequently,

we get a one-to-one sequence (yn)n<ω in V \ B(G) with FSI((yn)n<ω) ⊆ V. Since

(h+ FSI((yn)n<ω)) ∩ Cr 6= ∅, we have that (h+ V ) ∩ Cr 6= ∅ as well.

We obtain another corollary from Theorem 5.2.5. This result is related to the

Graham-Rothschild Theorem [15] which we can state as follows: If an infinite Abelian

group having finite exponent is partitioned into finitely many subsets, then there exist

arbitrarily large finite cosets contained in one subset of the partition.

Corollary 5.2.15 ([45]). For every infinite Abelian group G which contains no infi-

nite Boolean subgroup, there exists a partition {Cr : r < ω} of G such that for every

infinite subgroup H of G, h ∈ G and r < ω, we have (h+H) ∩ Cr 6= ∅.

It is important to mention that the cardinal number ω in Theorem 5.2.5, Corol-

lary 5.2.14 and Corollary 5.2.15 is maximally possible.
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Chapter 6

Conclusion

We have given a theorem describing the structure of a local automorphism of finite

order and used it to show that a countably infinite nondiscrete regular local left

topological group Y can be partitioned into countably many dense subsets in any

nondiscrete topology T on Y such that (i) (Y,T ) is a local left topological group;

(ii) the nontrivial spectrally irreducible local automorphism of finite order, ϕ, on

(Y,T0) is a homeomorphism on (Y,T ); and (iii) given that t is the least number of

spec(ϕ) \ {e}, t ∈ spec(ϕ,U ∩ W ) for any neighbourhoods U,W of the identity in

the topologies T ,T0. From this, it was obtained that (i) a countable regular local

left topological group having a nontrivial local automorphism of finite order is ω-

resolvable, and (ii) given a countable group endowed with a regular ω-irresolvable

topology with continuous shifts and inversion, the centralizer of any element of finite

order is open. It was also shown that there is a partial operation + on an open

symmetric neighbourhood, Y, of the identity of a countable group endowed with a

nondiscrete regular topology having continuous shifts and inversion such that (Y,+)

is a local left topological group and inversion on it is a local automorphism. Using all

of this, it was shown that every countably infinite nondiscrete topological group which

contains no open Boolean subgroup is ω-resolvable. The same result was then proved

with the aid of a theorem describing the structure of a large family of homeomorphisms
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of finite order on countably infinite regular spaces. Therefore it is true that every

countably infinite nondiscrete ω-irresolvable topological group contains a countably

infinite open Boolean subgroup, however, this problem in the case of uncountable

topological groups remains open.

Finally, the problem of absolute resolvability for all Abelian groups was resolved.

It was shown that there is a partititon {Cr : r < ω} of C = G \ B(G) where G is an

Abelian group and C is infinite such that when (yn)n<ω is one-to-one sequence in C,

h ∈ G and r < ω, we have (h + FSI((yn)n<ω)) ∩ Cr 6= ∅. This was shown first by

considering G as a direct sum of finite groups and then extending it to the general

case. We then deduced from this that every infinite Abelian group which contains no

infinite Boolean subgroup is absolutely ω-resolvable.
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