
 

 

 

 

 

 

 

MOLECULAR MODELLING 
AND DRUG SUSCEPTIBILITY 

OF THE L38↑N↑L HIV-1 
SUBTYPE C PROTEASE 

 
 

Alison Williams 
348481 

May 2018 

 

A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment 

of the requirements for the degree of Doctor of Philosophy. 

 

 

 

 

Supervisor: Professor Yasien Sayed 

Co-supervisor: Doctor Ikechukwu Achilonu  



i 
 

Declaration 
 

I, Alison Williams (Student number: 348481), am a student registered for the degree of Doctor of 

Philosophy (PhD) in the academic year 2018.  

I hereby declare the following: 

• I am aware that plagiarism (the use of someone else’s work without their permission and/or 

without acknowledging the original source) is wrong. 

• I confirm that all the work submitted for examination is my own unaided work except where 

I have explicitly indicated otherwise. 

• I have followed the required conventions in referencing the thoughts and ideas of others. 

• I understand that the University of the Witwatersrand may take disciplinary action against 

me if there is a belief that this is not my own unaided work or that I have failed to 

acknowledge the source of the ideas or words in my writing. 

  

 

Signature: _________________________  Date: 28 May 2018  



ii 
 

 

-For Michael and Elsabé Williams- 

 

 

 

 

 

 

 

 

 

“Success is not final, failure is not fatal: it is the courage to continue 

that counts.” 

-Winston Churchill 
  



iii 
 

Abstract 
Human Immunodeficiency Virus (HIV) is a global concern due to the 36 million people infected 

worldwide. HIV is genetically diverse consisting of nine subtypes. Subtype C infections predominate 

in sub-Saharan Africa and this subtype has been under-investigated in comparison to subtype B. 

Great advances have been made to combat this disease, particularly in South Africa, but drug 

resistance still remains a concern.  HIV protease cleaves the Gag and Gag-Pol polyproteins into their 

functional forms, making it indispensable to the production of infectious virions. It is, as such, a 

major drug target. The proteolytic enzyme accumulates mutations associated with drug resistance 

due to the high replication rate of the virus and the error prone reverse transcriptase. These include 

mutations in the active site and distal regions. Insertion mutations are rarely incorporated into the 

hinge region and because of that the effect of these insertions are poorly characterised. The variant 

protease in this study (L38↑N↑L) contains a double insertion of Asparagine and Leucine at position 

38, in the hinge region. For the first time L38↑N↑L protease was successfully overexpressed and 

purified using a thioredoxin-hexahistidine tag fusion system. Molecular dynamics simulations 

showed that the flap region of L38↑N↑L was less dynamic than that of a wild-type protease, 

suggesting a possible mechanism to evade drug binding. Induced-fit docking studies showed that the 

drugs lopinavir, atazanavir and darunavir do bind L38↑N↑L albeit with reduced hydrophobic 

contacts and hydrogen bonds.  In vitro inhibition studies confirmed that these drugs do bind and 

inhibit L38↑N↑L. The catalytic efficiency of L38↑N↑L was diminished compared to wild-type, 

which resulted in reduced replication capacity of the virus. Phenotypic assays showed that 

L38↑N↑L had reduced susceptibility to darunavir in the presence of a Gag sequence thus 

confirming that this region does contribute to drug resistance.   
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CHAPTER 1 
INTRODUCTION 

1.1. HIV and AIDS 

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), which is 

the extreme suppression of the immune system. Globally, in 2016, there were 36.7 million people 

living with HIV [1]. Worldwide, in 2016, there were 1.8 million new infections and 1.0 million people 

died from AIDS-related causes [1]. Since HIV was first identified in 1983 [2], 76.1 million people have 

become infected and 35 million people have died from AIDS-related illnesses. HIV is a particular 

problem in Africa because 69% of people living with HIV come from Africa [1]. Eastern and southern 

Africa account for 43% of the global total of new HIV infections. Sub-Saharan Africa is the epicentre 

of this epidemic as 51% of people infected with HIV reside here. It was estimated that 13% of the 

South African population in 2016 was living with HIV. However, there have been great 

improvements in treatment in Africa, particularly South Africa. In 2015 South Africa had 3.4 million 

people on treatment, more than any other country [3]. There are, however, still populations within 

South Africa that are at high risk of HIV infection; these include sex workers, people who inject 

drugs, transgender people, prisoners, gay men and men who have sex with men [3]. In 2015, these 

populations accounted for 20% of all new infections in sub-Saharan Africa [3] and it was seen that 

the prevalence of HIV among sex workers in Johannesburg was 71.8% [4].  

Human Immunodeficiency Virus (HIV), a highly mutable lentivirus, is the causative agent for 

Acquired Immunodeficiency Syndrome (AIDS). HIV is a member of the lentivirus genome and belongs 

to the Retroviridae family. HIV-1  is enveloped by a lipid bilayer that is derived from the membrane 

of the host cell [5]. The glycoprotein, gp120, is found on the surface of the membrane and is 

anchored in the membrane by gp41 [5]. The membrane is lined with matrix proteins (MA) [5]. At the 

centre of the virus is a cone-shaped capsid core [5]. The conical capsid consists of capsid protein (CA) 

monomers assembled predominately into hexamers as well as a few pentamers which facilitate the 

curvature at the top and the bottom, closing the capsid [6–8].  Within the capsid core  are two 

copies of unspliced viral RNA which is stabilised by the nucleocapsid protein (NC) [5]. The genome of 
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this virus consists of gag/pol/env genes which is typical of other retroviruses  [9]. Also contained 

within the capsid core are the virally-encoded enzymes; reverse transcriptase, integrase and 

protease. The virus also packages the accessory proteins Nef, Vif and Vpr [5].  

1.2. Subtypes 

HIV is genetically diverse and is one of the most variable human pathogens [10]. Within a patient, 

HIV exists as many highly related but non-identical genomes called quasispecies [10]. The genetic 

diversity of HIV is attributed to three factors. Firstly, viral replication is very rapid - an estimated 1010 

virions are produced a day [11]. Secondly, reverse transcriptase is error-prone and introduces on 

average 3.4x105 mutations per base pair per replication cycle [10, 12]. Thirdly, recombination 

between the two RNA molecules packaged into the virion occurs which generates a mosaic DNA 

genome occurring at a frequency of 7 to 30 per replication round [13]. This recombination is a major 

force in viral evolution both within a patient as well as globally [10]. 

HIV is made up of two types: HIV-1 and HIV-2 [14]. HIV-2 infections are very  rare and are limited to 

West Africa as it is believed to be less transmissible and pathogenic than HIV-1 [10]. HIV-1 is further 

divided into groups M, N, O and P [14]. Group M is the main group and groups O and N are very rare 

and limited to Cameroon in Central Africa  [15, 16]. Group M is divided into nine subtypes, A to H, J, 

K and L and many circulating recombinant forms (CRFs) [14]. CRFs are as a result of recombination 

between subtypes within a dually infected individual that is then transmitted to other people. A CRF 

is only classified if three or more people with no direct epidemiological linkage are infected with it 

[12]. Genetic variation between subtypes can be from 25 to 35% and within a subtype 15 to 20% 

[17]. The different subtypes occur in different regions of the world, for example subtype A is found 

in East Africa, Central Asia and Eastern Europe [10]. Subtype B, the most studied subtype, is found in 

America, Western Europe and Australia [14]. Subtype C is found predominately in southern Africa, 

the horn of Africa and India [10] and thus it is the subtype that infects most of the people living with 

HIV.  

 

1.3. Replication cycle 

The HIV replication cycle is divided into an early and a late phase. The early phase begins with the 

recognition of the target cell and ends with the integration of the viral genome. The late phase 
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begins with the expression of the proviral genome and ends with maturation.  The replication cycle 

is shown in Figure 1.  
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Figure 1: Replication cycle of HIV. The major targets for drug therapy are represented by the orange 

boxes. Nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase 

inhibitors (NNRTIs) target the reverse transcriptase enzyme. HIV-1 protease inhibitors (HIV-PIs) 

target the HIV-1 protease enzyme. Integrase inhibitors are newer targets for drug therapy. Image 

taken from Monini et al., (2004) [18].  
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1.3.1. Early Phase 

HIV-1 binds to the cells bearing the CD4 receptor via an interaction between gp120 and the amino-

terminal immunoglobulin domain of CD4 [5]. This interaction does not cause fusion; rather a 

secondary interaction with the chemokine receptors CXCRC or CCR5 is required [19]. Fusion releases 

the viral core into the cytoplasm and is followed by an uncoating event [5]. The RNA viral genome is 

then reverse transcribed to double-stranded DNA by reverse transcriptase. The viral cDNA genome 

forms part of a pre-integration complex consisting of integrase, matrix protein, reverse transcriptase 

and Vpr [20].  This complex interacts with various cellular transportins and nucleoporins to drive 

import into the nucleus [21]. Vpr directs nuclear localisation [22, 23] by connecting the complex to 

cellular nuclear import machinery [22, 24, 25]. Integrase and the cellular cofactor: lens epithelium-

derived growth factor,  then catalyse the integration of the viral DNA into the host genome [5, 26]. 

1.3.2. Late Phase 

The host cell machinery transcribes the integrated DNA (the provirus). This includes the full length 

and various spliced mRNAs encoding viral proteins. Spliced and unspliced mRNA is transported out 

of the nucleus for translation [5]. The export of unspliced mRNA (encoding Gag and Gag-Pol 

polyproteins) and singly-spliced mRNA (encoding Env, Vpu, Vif and Vpr) is mediated by the accessory 

protein Rev because unspliced cellular RNA molecules are ordinarily retained in the nucleus [5]. The 

highly spliced mRNA that contains Tat, Rev and Nef are able to leave the nucleus. The Env precursor 

gp160 is synthesised in the endoplasmic reticulum, the same location that CD4 molecules are 

synthesised [5]. To prevent premature binding of Env and CD4, the accessory protein Vpu binds to 

CD4 and signals their degradation [5]. The surface CD4 are degraded by endosomal degradation 

which is signalled by Nef [5, 26]. Env is glycosylated in the endoplasmic reticulum and Golgi 

apparatus and cleaved into gp120 and gp40. It is then transported to the plasma membrane for viral 

assembly.  

The Gag polyprotein is synthesised in ribosomes from unspliced mRNA. Gag-Pol is produced by a 

rare  -1 ribosomal frameshift  that takes place 5-10% of the time [27]. A “slippery” sequence near the 

5’-end of the p6 coding region is responsible for the frameshift [28]. This frameshift results in the 

translation of the coding regions for protease, reverse transcriptase and integrase.  Gag and Gag-Pol 

become localised to the cell membrane directed by the matrix protein [5]. RNA binds to Gag at the 

plasma membrane and promotes the multimerisation and assembly of the immature Gag lattice 

[29]. Approximately 2400 copies of Gag [30] and 120-240 copies of Gag-Pol [27] bud to form an 



6 
 
 

 

immature particle, which encapsidates two RNA copies of the unspliced viral RNA genome [5]. An 

immature virion buds from the plasma membrane and maturation of the virus is triggered by 

protease-mediated cleavage of Gag-Pol and Gag polyproteins. A dimerisation event of the Gag-Pol 

polyprotein activates the protease [31]. This dimer is extremely unstable [32] and exhibits much 

lower enzymatic activity than the free enzyme [33, 34]. This embedded dimer cleaves 

intramolecularly at first until it is free and then is able to cleave the Gag polyprotein intermolecularly 

[34–36]. Once cleaved, the structural proteins (matrix and capsid) rearrange to form an infectious 

virus particle [5]. The maturation event is critical for the infectivity and fusogenicity of the virus. 

Should maturation not occur the virus will not be able to infect cells and also the fusogenicity of Env 

glycoproteins will be reduced [37, 38]. 

 

1.4. Gag and Gag-Pol polyproteins 

HIV’s genome is divided into three open reading frames (ORFs); gag, pol and env. This is typical of 

other retroviruses [39]. Pol encodes the three essential retroviral enzymes: integrase, protease and 

reverse transcriptase. The env gene encodes the surface envelope proteins. Gag (group specific 

antigen) is the major structural protein of HIV and comprises approximately 50% of the mass of the 

viral particle [28]. Gag encodes the structural proteins that form the virus capsid, nucleocapsid and 

matrix. Gag is translated from the 9 kb fully unspliced mRNA which also encodes the Pol polyprotein. 

Gag is structurally divided into four domains; beginning at the N-terminus, matrix, capsid, 

nucleocapsid and p6 at the C-terminus (Figure 2). Flanking the nucleocapsid are two smaller “spacer” 

regions: p2 (N-terminus) and p1 (C- terminius) [28]. 

The order of cleavage of the Gag polyprotein is essential for proper assembly of the virus. The amino 

acids in the cleavage sites differ which explains the different cleavage rates; however, these cleavage 

sites are similar in 3-dimensional structure [40, 41]. The order of cleavage of the Gag polyprotein 

begins with the separation of the nucleocapsid from the capsid, which on the C-terminal end of the 

spacer peptide p2 [42]. The capsid protein is then separated from the matrix protein which remains 

associated with the virion membrane [42]. Almost simultaneously the C-terminal sequence of p6 is 

released, this is on the C-terminal end of the linker p1 between the nucleocapsid and p6 [42]. p1 and 

p2 are then trimmed from the nucleocapsid and the capsid, respectively [42]. p2 is important for 

maturation of the Gag and regulation of ordered cleavage [43, 44] and p1 is important for 

incorporation of Gag and Pol into the virus [28]. The natural substrates of the protease have a 
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variable and weaker interaction with the catalytic site compared to HIV-1 protease inhibitors [45]. 

This 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Gag and Gag-Pol polyproteins. The order of cleavage of Gag and Gag-Pol is indicated by 

the numbered cleavage sites 
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 phenomenon causes the ordered sequential cleavage of the polyproteins [45]. Resistance mutations 

that cause the enlargement of the active site would, therefore, have a greater effect on the protease 

inhibitors than on the cleavage of the Gag polyprotein [45]. 

1.5. HIV protease 

It was postulated by Ratner et al. (1985) that the protease present in the HIV virion was an aspartyl 

protease due to the presence of the characteristic active site amino acid triplet; Asp-Thr-Gly. This 

was confirmed by pepstatin inhibition of the protease [47–49], which is characteristic of enzymes in 

this class [50]. Further confirmation was the loss of enzymatic activity with the deletion of the 

catalytic residue Asp25 [49]. The first crystal structure of HIV-1 protease was solved in 1989 by Navia 

et al. [51]. This was followed by a crystal structure showing the side chain locations published by 

Wlodawer et al., (1989) [52]. 

1.5.1. Structure 

HIV-1 protease is a 22 kDa symmetrical homodimer with 99 amino acids per monomer. In order to 

function, HIV-1 protease must be in the dimeric form as the monomeric form is inactive [53]. This 

obligation to dimerise is an important regulatory function for proteolytic cleavage of the 

polyproteins. The subunits are noncovalently associated and the active site is formed at the dimer 

interface [52].The secondary structure consists mainly of β-sheets and contains only one α-helix per 

monomer. The dimer interface consists of four short anti-parallel β-strands, unlike other aspartyl 

proteases, which consist of six β-strands. It is formed by the N- and C-termini from each monomer 

consisting of residues 1-4 and 96-99, respectively (Figure 3).  

The active site is formed at the dimer interface and one Asp residue from each monomer (Asp25) is 

contributed. The active site loop is relatively rigid due to a network of hydrogen bonds called the 

fireman’s grip [54]. The active site consists of residues 23-30 of each monomer. Two β-turns known 

as the flap region (residues 43-58) cover the active site. These flaps are glycine rich and undergo 

major structural changes. The flaps exist in the open, semi-open and closed conformations 

depending on whether substrate or inhibitor is bound. The flap region plays a role in substrate 

binding because the flaps open to allow substrate to bind to the active site. The movement of the 

flaps is aided by the hinge region, made up of residues 35-42. The movement of the flaps can occur 

due to compensatory motions in residues 59-75, which act as a cantilever, the residues 11-22 act as 

the fulcrum to the  
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Figure 3: Structure of wild-type subtype C protease (PDB ID: 3U71). HIV-1 protease is a homodimer 

and contains mainly β-sheets and one α-helix per monomer. There are five regions defined within 

the structure: the flap region (blue), the hinge region (red), the fulcrum region (yellow), the 

cantilever region (magenta) and the dimer interface (cyan). The catalytic Asp25 residues are shown 

in the active site (orange). PyMOL was used to generate the figure (The PyMOL Molecular Graphics 

System, Version 1.8 Schrödinger, LLC).  
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cantilever [55].  During opening of the flaps the fulcrum region and the cantilever region assist by 

moving downwards [56]. 

 

1.5.2. Catalytic Mechanism of HIV-1 protease 

Proteases use one of two mechanisms to cleave peptides. This first makes use of an activated water 

molecule, which acts a nucleophile and attacks the amide bond carbonyl carbon of the substrate’s 

scissile bond. The water molecule can either be activated by a Zinc atom (Zinc metallo-proteinases) 

or by two aspartyl β-carboxylate groups at the active site (aspartyl proteases such as HIV-1 

protease). The second mechanism makes use of a nucleophilic atom of an amino acid side chain to 

hydrolyse the amide bond.  

The bond being hydrolysed on the substrate is called the scissile bond or cleavage site and is 

positioned between the P1 and P1’ site [57], Figure 4A. The flanking amino acids on the substrate, 

towards the N-terminus, are termed P1, P2, and P3 and towards the C-terminus the amino acids are 

designated P1’, P2’ and P3’ [58]. The protein subsites (designated S) that interact non-covalently 

with the corresponding side chains of the substrate are termed S1, S2, S3 and S1’, S2’, S3’ 

respectively. The S1 subsite (Arg8, Leu23, Asp25, Gly27, Gly48, Gly49, Ile50, Thr80, Thr81 and Val82) 

is highly hydrophobic with the exception of the active site aspartate residues [58]. The S2 subsite 

(Val23, Ala28, Asp29, Asp30, Ile47, Gly49, Ile50, Leu76, Ile84) is mostly hydrophobic with the 

exception of Asp29 and Asp30 [58]. This site is smaller than S1 and S3 and as a result is more specific 

as the size and type of residues at P2 is restricted. The S3 subsite is adjacent to S1 and is mostly 

hydrophobic. S3 has a broad specificity and will accept residues of different types and sizes [58]. Not 

much information is available about the S4 and S5 subsites due to the limited number available 

structures of retroviral proteases in complex with ligands that extend beyond P3. 

In the absence of substrate binding the active site in filled with water molecules. The catalytic 

aspartate residues (Asp25 and Asp25’) interact with a water molecule. These residues perform a 

general acid-base role and activate the water molecule to act as a nucleophile. When a substrate 

binds to the HIV-1 protease, it is converted to a gem-diol intermediate through nucleophilic attack 

by the activated water molecule. The covalent linkages are broken and two products are formed, 

which are released sequentially. Near atomic-resolution crystal structures have shown these vital 

steps in the reaction mechanism of HIV-1 protease [59] and confirm that this mechanism proceeds 

through a gem-diol intermediate [60]. The mechanism is represented in Figure 4B. 
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Figure 4: Active site nomenclature and reaction mechanism of HIV-1 protease. The nomenclature 

used for binding sites in the HIV-1 protease and residues on the substrate is shown in A. This was 

adapted from Wlodawer and Vrondasek, 1998 [58]. The reaction mechanism is shown in B, adapted 

from Shen et al., (2012) [59].  

A 

B 
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1.6. Antiretroviral Therapy 

In the absence of treatment, a patient can harbour the HI-virus for a decade or more without 

showing symptoms. As the CD4 T-cells are depleted to below 200 cells/cm3 opportunistic infection 

occurs [61]. Disease prevention through behavioural changes has played a significant part in 

controlling the spread of the pandemic as well as the international effort to develop therapies to 

prevent viral replication and restore immune function in patients  [62, 63]. The resulting drugs have 

significantly improved life expectancy for people with HIV-1 and reduced the capacity to transmit 

the virus [62].  

Antiretrovirals (ARVs) are divided into six different classes depending on the target: Nucleoside 

reverse transcriptase inhibitors (NRTIs), Non-nucleoside reverse transcriptase inhibitors (NNRTIs), 

HIV-1 protease inhibitors (PIs), Integrase inhibitors, Fusion inhibitors and Chemokine receptor 

antagonists. Currently, the recommended AIDS therapy uses a mixture of drugs from the different 

classes in highly active antiretroviral therapy (HAART). There are ten FDA approved HIV-1 protease 

inhibitors and the first one was introduced into clinical practice in 1995 [64]. The inclusion of HIV-1 

protease inhibitors in therapy has resulted in prolonged viral suppression, control, reduced 

morbidity and mortality for HIV infected people [64]. 

1.6.1. HIV-1 protease inhibitors 

HIV-1 protease was selected as a drug target due to its importance in the replication cycle of the 

virus. If the HIV-1 protease activity is altered it leads to defective viral particles and reduced 

infectivity [65, 66]. Inactivating the HIV-1 protease leads to virus particles that are not infective [67]. 

HIV-1 protease inhibitors were based on structure-based inhibitor design. The first generation of 

HIV-1 protease inhibitors were peptidomimetic molecules with non-cleavable isosteres presented to 

the active site [68]. These inhibitors were developed based on knowledge of renin and pepsin 

aspartyl proteases. First generation inhibitors mimic the transition state of the natural substrate and 

thus bind tightly to the enzyme [69]. First generation HIV-1 protease inhibitors were designed with 

polar groups that resemble those of the natural substrate peptide main chain and have a central 

hydroxyl that interacts with the catalytic aspartates and mimics the hydroxyl of a tetrahedral 

reaction intermediate [64]. These contain hydroxyethelene or hydroxyethylamine isosteres [68]. 

Saquinavir was the first drug to be approved and indinavir and ritonavir (RTV) soon followed. Other 

first generation inhibitors include nelfinavir and amprenavir (APV). First generation drugs suffered 
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short-comings due to their peptide-like structural features which resulted in poor bioavailability, low 

metabolic stability, heavy pill burden and debilitating side effects [70].  
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Once drug resistance towards HIV-1 protease inhibitors emerged, the drug design strategy changed 

to targeting drug resistant variants [64]. The aim was to increase the drug resistance barrier and 

cross-resistance profiles of inhibitors, improve bioavailability and reduce drug toxicity. Second 

generation drugs were designed with less peptide backbone features but retained the central 

hydroxyl group [71, 72]. The peptide-like carbonyl in the earlier HIV-1 protease inhibitors is replaced 

by sulfonamide [64]. Second generation drugs include lopinavir, atazanavir, tipranavir and darunavir. 

HAART therapies currently recommend the use of three HIV-1 protease inhibitors lopinavir, 

atazanvir and darunavir and thus these were focused on in this study (Figure 5).  

1.6.2. Lopinavir  

Lopinavir (LPV) is a second generation drug developed by Abbott [73]. LPV is the most widely used in 

drug naïve patients and is administered with the booster RTV [73]. RTV is used as a booster because 

it enhances pharmacokinetic properties of LPV [74, 75] by binding and inhibiting the CYP34A enzyme 

that is responsible for metabolism of certain PIs. The design of LPV was based on RTV but eliminates 

the P3 isopropylthiazolyl group of RTV [73]. This was done to remove the interaction with the V82 

residue, which is mutated to alanine in drug resistant HIV-1 proteases. Furthermore, the 

thiazolylmethoxycarbonyl moiety was replaced with the dimethylphenoxyacetyl group [73]. The P1-

P1’ positions are still occupied by the same hydroxyethylene peptidomimetic as RTV [73]. LPV/r is 

the first choice PI for an antiretroviral regimen because it has a high genetic barrier for resistance 

and exhibits long-term efficacy.  

1.6.3. Atazanvir 

Atazanavir (ATV) was developed by Bristol-Myers Squibb [76] and approved for use in 2003. It was 

approved as an alternative option for initial PI-based HAART. ATV was developed to have a higher 

genetic barrier for resistance and greater bioavailability than first generation drugs. ATV is a 2-

hydroxy-1,3-diaminopropane transition-state isostere with an aza-dipeptide core [77]. ATV has a 

high potency against wild-type protease with an inhibitory constant (Ki) of 10 pm [78]. The good 

bioavailability of ATV is due to the pyridylbenzyl moiety [76]. One advantage of ATV use for patients 

is it’s once-a-day dosing. 

1.6.4. Darunavir 

Darunavir (DRV) is the most recent PI to be approved for use in HAART. It was developed by Tibotec 

Inc. (now Johnson and Johnson) [79] and was approved for use in 2006. DRV design resulted from  
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Figure 5: Chemical structures of lopinavir atazanavir and darunavir. Images obtained from 

PubChem (https://pubchem.ncbi.nlm.nih.gov) 
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structure-based design approach, which focused on maximising interactions of the inhibitor with 

most conserved domains of the HIV-1 protease i.e. the backbone [80, 81]. DRV is chemically related 

to the first generation drug APV. The sulfonamide isostere of APV was replaced with chiral bicyclic 

bis-tetrahydrofuran (bis-THF). The bis-THF moiety was incorporated to introduce additional polar 

interactions with main-chain atoms on the HIV-1 protease dimer. DRV displays a high affinity for HIV-

1 protease and a high Ki (16 pM) [79]. DRV was designed to inhibit drug resistant strains and is 

indeed a broad-spectrum potent inhibitor against isolates containing multi-drug resistant strains 

[72].  In vitro selection of resistance appears to be slower and less frequent than other HIV-1 

protease inhibitors and HIV-1 protease inhibitor naïve viruses can escape drug pressure via an 

alternative Gag substrate-based resistance [82].  

1.7. Resistance 
During the asymptomatic phase in an individual infected with HIV, the viral loads in the plasma are 

104-105 copies/ml [83]. The viral half-life of free and cell-associated viruses are short meaning that 

there is a rapid turnover of the viral population. It has been estimated that ~109 new virions are 

synthesised each day [84]. Reverse transcription has a nucleotide mis-incorporation rate of 

~1:10 000 with no proof reading capacity [83]. The genome size (~10 kb) means that the mis-

incorporation rate allows one point mutation each time the HIV genome is transcribed [85] and 

combined with high viral turnover results in a high mutation rate. This leads to the existence of viral 

quasispecies. The most common of which would be the wild-type virus as it would be the most fit 

[86]. Under normal conditions, a quasispecies would be less fit than wild-type but under drug 

pressure the genetic flexibility allows the population to respond to the different selection pressure 

[82]. The population of infectious progeny harbouring mutations is, however, relatively small as the 

majority of mutations would produce non-infectious virions [87–89]. 

Mutations that occur are not a direct consequence of drug action but are due to viral replication. 

Antiviral drug resistance is selected through elimination of most drug susceptible viruses from the 

replicating pool leaving only the fittest viruses to survive in its presence [90]. In the absence of ARVs 

HIV shows genetic diversity, especially the HIV-1 protease gene [91]. There are extensive mutations 

that confer cross-resistance to HIV-1 protease inhibitors [92].  More mutations are selected by HIV-1 

protease inhibitors than by any other class of drug [64]. This is a particular problem because the drug 

resistance to a particular HIV-1  protease inhibitor may lead to cross resistance to other HIV-1 

protease inhibitors [64]. The degree of cross resistance depends on the mutations selected and the 

number of mutations [93].  
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1.7.1. Primary Mutations 

Mutations that affect amino acids directly involved in substrate binding are termed primary 

mutations. These mutations have an effect on drug susceptibility [84, 94]. Primary mutations occur 

in the binding site and do not involve residues involved in catalysis (e.g. Asp25) but do involve 

residues that have direct interactions with the HIV-1 protease inhibitors. These mutations cause 

conformational changes in the binding site [95], which affect the drug/target interface by loss of 

interactions or steric effects created by altered geometries [96, 97]. Primary mutations cause an 

enlargement of the catalytic active site which decreases binding to an inhibitor and, in parallel, the 

natural substrate which could decrease viral replication [98–100]. Primary mutations result in 

several fold (two to five) decrease in susceptibility to one or more HIV-1 protease inhibitors [101–

103] and generally initiate resistance to HIV-1 protease inhibitors [42]. Primary mutations are 

selected for early in the process of resistance mutation accumulation and tend to be specific for 

each compound [83]. The advantage of primary mutations is that they are able to confer drug 

resistance but are disadvantageous in that they have been known to impact enzyme function and 

viral fitness [42]. Primary mutations decrease enzyme activity [101] and impair viral replication in 

vitro [98, 103–105]. Primary mutations are not natural polymorphisms as they would not be 

advantageous to the virus in the absence of drug pressure. 

1.7.2. Secondary Mutations 

Mutations that occur distal to the substrate binding site are known as secondary mutations [95]. 

These mutations are natural polymorphisms and do not cause resistance individually [95, 103]. 

Secondary mutations occur after primary mutations and are compensatory [106]. These mutations 

individually have little effect on drug susceptibility and are generally accumulated to compensate for 

reduced viral fitness [83]. Secondary mutations help restore original viral fitness by increasing 

enzyme activity [42, 101, 102]. Mutations, in subtype B, such as L63P and N88D restore HIV-1 

protease activity, which is often diminished due to primary mutations [107]. However, secondary 

mutations are not able to fully restore the viral fitness as most high-level resistant viruses display 

various degrees of fitness loss [99, 100, 105, 108]. Secondary mutations are important for drug 

resistance because when they are accumulated they can cause a stepwise reduction in susceptibility 

[103]. The accumulation of secondary mutations (10-20) can be responsible for the loss of inhibitor 

potency, giving these mutations an additional role to compensation for loss of activity [106, 109].  In 

combination with primary mutations, secondary mutations are critical for high levels of resistance. 
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1.7.3. Insertion mutations 

Amino acid insertions in HIV-1 protease have been identified in patient-derived HIV strains near 

residues 18, 25, 36, 70 and 95 [110–112]. Most insertions appear to be due to duplications of the 

neighbouring genetic sequence [113]. This is caused by reverse transcriptase stalling and slippage 

[114, 115]. HIV-1 protease insertions are very rare, tenfold less common than insertions in reverse 

transcriptase [116].  The frequency of inserts between the years 1999 and 2001 was 0.1% [110, 111]. 

Insertions in HIV-1 protease are primarily located at externally exposed loops and turns, which 

would be more likely to accommodate the extra residues by extending the amino acids outwards 

from the molecule [113]. This also prevents extreme modification of the enzyme which would 

decrease or destroy enzyme function [113]. Recently, the frequency of insertions has increased, 

especially between residues 32 and 42, the hinge region [117]. Insertions have been associated with 

HIV-1 protease inhibitor resistance when in combination with other well-described HIV-1 protease 

inhibitor resistance mutations by imposing minor structural changes to the flap and substrate 

binding cleft [118]. Insertions not only occur as a result of HIV-1 protease inhibitor therapy, they can 

occur even in treatment naïve individuals [111, 116]. In the case of treatment-naïve individuals the 

presence of the insertion can persist for a long time, implying a selective advantage for the virus, and 

can be transmitted [116]. 

 

1.8. L38↑N↑L variant 

The variant used in this study was found in an infant in Johannesburg. The mother was part of the 

Prevention of Mother to Child Transmission programme [119]. The mother was HIV-1 protease 

inhibitor naïve but was exposed to reverse transcriptase inhibitors. The variant contained the 

following subset of mutations: K20R, E35D, R57K and V82I (Figure 6). The only active site mutation is 

the V82I. The prevalence of the mutations is shown in Table 1. The variant also contains a double 

insertion of Asn and Leu at position 38, which is in the hinge region of the protein. The prevalence of 

these specific insertion mutations is not known.  
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Figure 6: Homology model of L38↑N↑L protease and sequence data.  HIV-1 protease contains 

mainly β-sheets (green) and one α-helix per monomer (gold). The blue spheres on the structure and 

the blue boxes on the sequence represent the relative positions of the subset of mutations, K20R, 

E35D, R57K and V82I. The red spheres on the structure and the red box in the sequence alignment 

represent the double insertion of Leu and Asn. The homology model was generated using SWISS 

Model using data from the Protein Data Bank (PDB ID: 3U71). The figure was created using PyMol 

(The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). The sequence alignment was 

generated using the Clustal Omega tool (EMBL-EBI). 
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Table 1: Frequency of mutations within the L38↑N↑L protease as obtained from the Stanford 

University HIV Drug Resistance Database (https://hivdb.stanford.edu). 

 

 

 Frequency of mutation (%) 

Mutation Protease inhibitor naïve Protease inhibitor treated 

K20R 20 27 

E35D 25 29 

R57K 4.1 6.4 

V82I 6.7 6.7 
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1.9. Aim and objectives 

1.9.1. Aim 

Determine the impact of the L38↑N↑L insertion mutations as well as the subset of mutations 

(K20R, E35D, R57K and V82I) on the structure and function of HIV-1 protease subtype C. 

 

1.9.2. Objectives 

1. Express and purify both wild-type and L38↑N↑L protease using a Trx-6His tag 

2. Perform molecular dynamic simulations of wild-type and L38↑N↑L protease 

3. Determine the steady-state kinetic values (Vmax, KM, kcat, kcat/KM) of L38↑N↑L 

4. Determine the IC50 values of both enzymes with LPV, ATV, DRV 

5. Perform phenotypic assays in the presence of protease inhibitors 
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CHAPTER 2  
OVEREXPRESSION AND 
PURIFICATION USING  

TRX-HIS TAG 

Overexpression, purification and functional characterisation of HIV-1 subtype C protease and two 

variants using a novel thioredoxin and His-tag protein fusion system 

Jake Zondagh1, Alison Williams1, Ikechukwu Achilonu, Heini W. Dirr, Yasien Sayed. 

1Both authors contributed equally to this work. 

 

Protein Journal (accepted) 

 

In this publication the overexpression and purification of the wild-type and two variant HIV-1 

proteases (N37T↑V and L38↑N↑L) using a thioredoxin-hexahistidine fusion system is described. 

The thioredoxin moiety coupled with a hexahistidine tag successfully improved the overexpression 

of all three proteases. 
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Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

In recent years, various strategies have been used to overexpress and purify HIV-1 protease because 

it is an essential drug target in anti-retroviral therapy. Obtaining sufficient quantities of the enzyme, 

however, remains challenging. Overexpression of large quantities is prevented due to the enzyme’s 

autolytic nature and its inherent cytotoxicity in Escherichia coli cells. Here, we describe a novel HIV-1 

protease purification method using a thioredoxin-hexahistidine fusion system for the wild-type and 

two variant proteases. The fusion proteases were overexpressed in Escherichia coli and recovered by 

immobilised metal ion affinity chromatography. The proteases were cleaved from the fusion 

constructs using thrombin. When compared to the standard overexpression and purification 

protocol in use in our laboratory, the expression of the fusion-derived wild-type protease was 

increased from 0.83 to 2.5 mg/L of culture medium. The expression levels of the two variant 

proteases ranged from 1.5 to 2 mg/L of culture medium. The fusion wild-type and variant proteases 

were inactive before the cleavage of the thioredoxin-hexahistidine fusion tag as no enzymatic 

activity was observed. The proteases were, however, active after cleavage of the tag. The novel 

mailto:yasien.sayed@wits.ac.za
tel:0117176350
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thioredoxin-hexahistidine fusion system, therefore, enables the successful overexpression and 

purification of catalytically active HIV-1 proteases. 

 

Keywords 

HIV-1; protease; Escherichia coli; metal ion affinity chromatography; fusion protein; hexahistidine 

tag 

 

Abbreviations 

HIV-1:   Human Immunodeficiency Virus type 1 

PR:  Protease 

TRX:  Thioredoxin 

6His:  Hexahistidine 

TCS:  Thrombin cleavage site 

N37T↑V: HIV-1 subtype C protease containing asparagine 37 mutated to threonine; the 

upward arrow indicates an insertion of valine at position 37 

L38↑N↑L: HIV-1 subtype C protease containing leucine at position 38 followed by a double 

insertion of asparagine and leucine  

IMAC:  Immobilised Metal Ion Affinity Chromatography 

 

1. Introduction 

Human Immunodeficiency Virus (HIV) is the etiological agent of Acquired Immunodeficiency 

Syndrome (AIDS). Globally, 35 million people are HIV positive, and 1.9 million people are infected 

each year [1]. HIV is problematic in sub-Saharan Africa because it is estimated that one in twenty 

adults is living with the virus and this accounts for 69% of the total global statistic [1]. 

The HI virus was first isolated in 1983 [2] and, since then, it has been studied extensively. HIV-1 is the 

most common form of HIV and is further divided into groups and subtypes [3, 4]. Subtype B, the 

most studied of the subtypes, is found in America, Western Europe and Australia [5]. Subtype C, of 

interest to this study, is found predominantly in southern Africa, the horn of Africa and India [6, 7]. 
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The homodimeric aspartyl protease, one of three enzymes produced by the HI virus, is essential for 

the production of mature virions [8, 9], and is an important drug target. HIV-1 protease is expressed 

as a Gag-Pol precursor from which it can free itself by autocatalysis after dimerisation [10]. The 

catalytically mature enzyme then processes the Gag and Pol polyproteins to produce viral structural 

proteins and reverse transcriptase and integrase enzymes [11, 12].  

In-depth biochemical studies require sufficient amounts of protein. HIV-1 protease has previously 

been synthesised chemically [13] and expressed in heterologous systems using recombinant DNA 

technology [14]. Recombinant DNA technology permits the successful production of clinically 

significant proteins in large quantities and is, therefore, of major importance [15]. However, many 

expression systems do not yield adequate amounts of product necessary for specific downstream 

analyses such as isothermal titration calorimetry.  

It is challenging to obtain HIV-1 protease in large quantities due to its cytotoxic effects when 

overexpressed. Bacterial and mammalian cells are primarily affected by the cytotoxic nature of HIV-1 

protease [16]. In the past, various strategies have been investigated to acquire greater yields. 

Purification strategies include production by autocatalytic processing of a larger precursor (Gag-Pol 

region), recovery by refolding of E. coli inclusion bodies, purification of a His-tagged recombinant 

protein, and the use of fusion proteins such as β-lactamase, glutathione transferase and maltose 

binding protein [14, 17–20].  

This study aimed to improve the expression of the wild-type HIV-1 subtype C protease by using a 

thioredoxin-fusion protein system. Additionally, this method was tested on two variant proteases 

under investigation in our laboratory. The amino acid insertions and background mutations in these 

variant proteases were found in protease inhibitor-naïve (PI-naïve) patients and are not prevalent in 

patients receiving PI therapy or failing PI therapy.   

We, therefore, aimed to overexpress and purify four separate proteases; namely, a Gag-Pol derived 

wild-type protease as a non-fusion control (referred to as the “control wild-type”), a thioredoxin-

fusion derived wild-type protease (referred to as the “fusion wild-type”), and two thioredoxin-fusion 

derived variants (i.e. N37T↑V and L38↑N↑L) (Fig. 1A, B). The N37T↑V protease indicates that 

asparagine at position 37 was mutated to threonine and the upward arrow indicates a valine amino 

acid was inserted. The L38↑N↑L protease represents a double insertion (asparagine and leucine) 

after position 38. 
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Fig. 1 A Homology models of the (a) N37T↑V and (b) L38↑N↑L proteases. The secondary structural 

elements of the homology models are rendered as ribbons. The relative positions of the amino acid 

insertions (red spheres) are indicated by arrows. Yellow spheres without arrows represent 

background mutations present in each variant. The N37T↑V variant has the following mutations: 

I13V, G16E, I36T, P39S, D60E, Q61E, I62V, L63P, V77I and M89L. The background mutations in 

L38↑N↑L include K20R, E35D, R57K and V82I. The homology models were generated with the 

molecular visualisation software programme PyMOL, using data from the Protein Data Bank (PDB ID: 

3U71). B The sequence alignment data shows the positions of the mutations. The wild-type subtype 

C protease sequence is included as a reference. The alignment was performed using the Clustal 

Omega tool (EMBL-EBI). 
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This system has not been used on HIV-1 protease before but has been used successfully with other 

human proteins [22]. In this paper, we demonstrate the successful overexpression and purification 

of catalytically active wild-type subtype C protease and two variants using a thioredoxin-

hexahistidine fusion system. 

 

2. Materials and Methods 

2.1 Construction of the fusion plasmids 

The genes coding for the fusion wild-type, N37T↑V and L38↑N↑L proteases were synthesised by 

GenScript (Hong Kong) and cloned into three separate pET-11a expression vectors. The sequences 

for the variant proteases were obtained from Professor Lynn Morris (Head of the AIDS Research 

Unit) at the National Institute for Communicable Diseases (NICD, South Africa). Wild-type subtype C 

protease was generated previously in our laboratory and contained the following polymorphisms: 

T12S, I15V, L19I, M36I, R41K, H69K, L89M, and I93L [21]. Fusion protein sequences were confirmed 

by Sanger DNA sequencing (Inqaba Biotech, South Africa). The protease sequences were aligned 

using the Clustal Omega tool (EMBL-EBI) [22]. Homology models were generated with the molecular 

visualisation software programme PyMOL, using data from the Protein Data Bank (PDB ID: 3U71) 

[23]. 

2.2 Expression and purification 

The control wild-type protease was purified using a standard protease purification system routinely 

used in our laboratory [23]. Briefly, E.coli BL21 (DE3) pLysS cells were transformed with a pET-11b 

vector encoding the control wild-type protease gene. The cells were induced for four hours with 1 

mM IPTG, and the protease was recovered from inclusion bodies after cell disruption. Recovery 

buffer contained 8 M urea, 10 mM Tris-HCl and 2 mM DTT (pH 9). The sample was incubated for one 

hour in the urea buffer before recovery by centrifugation, 23 000xg for 30 minutes at 20 ℃. The 

sample was dialysed (and refolded) against 10 mM sodium acetate (pH 5) and purified using CM-

Sepharose ion exchange chromatography with a 0-1 M NaCl gradient. The control protease was 

included to measure the success of the new purification strategy.  
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The three thioredoxin fusion proteases; namely, fusion wild-type, N37T↑V and L38↑N↑L, were 

expressed by separately transforming E. coli BL21 (DE3) pLysS cells with a pET-11a expression vector 

encoding each of the constructs. The fusion wild-type and N37T↑V fusion proteases were expressed 

in six litres of LB media at 37 °C for four hours using 1 mM isopropyl β-D-thiogalactoside (IPTG), and 

expression was induced when the culture media reached an OD600 of 0.5. Cells were harvested by 

centrifugation at 5000×g, resuspended in lysis buffer (20 mM Tris-HCl, 1 mM lysozyme, 150 mM 

NaCl, pH 7.5) and sonicated at 10 V for 10 cycles of 30 s.  

The samples were separated into soluble and insoluble fractions by centrifugation at 24 000×g. The 

insoluble pellets were washed twice with 20 mM Tris-HCl buffer, pH 7.4, containing 1% (v/v) Triton 

X-100. The proteins in the insoluble fraction were unfolded using 8 M urea, and the cell debris was 

collected by centrifugation at 24 000×g. The urea concentration was decreased to 4 M by overnight 

dialysis against 20 mM Tris-HCl buffer (pH 7.4). Fusion wild-type and N37T↑V proteases were bound 

to a 5 ml IMAC column charged with Ni2+ and eluted with an imidazole gradient (0-500 mM).  

Fractions containing the fusion wild-type and N37T↑V proteases were dialysed against refolding 

buffer (20 mM Tris-HCl, 10% (v/v) glycerol, 150 mM NaCl, pH 7.4). The thioredoxin-hexahistidine tag 

was cleaved from the protease using thrombin (1 U/ml of sample, overnight at 20 °C). Untagged 

protease was collected and thrombin removed by passing the sample over a 5 ml benzamidine 

column (to which thrombin binds) connected in series to a 5 ml IMAC column (to which the cleaved 

tag and any uncleaved proteins bind). The flow-through, containing the untagged protease, was 

incubated in 25 mM formic acid for one hour and dialysed against 10 mM formic acid at 4 °C for 4 

hours to precipitate any unwanted protein present. The pure protease sample was dialysed against 

10 mM sodium acetate buffer (pH 5.0) at 4 °C overnight and stored at -80 ℃ until needed.  

The L38↑N↑L fusion protease was overexpressed in six litres of LB media at 20 °C overnight using 

1 mM IPTG. The cells were resuspended in 40 ml of 20 mM Tris-HCl buffer (pH 7.4). The cells were 

sonicated as described earlier and the soluble fraction was isolated by centrifugation at 24 000×g. 

The protease was purified from the soluble fraction using a 5 ml IMAC column and eluted using an 

imidazole gradient (0-500 mM).  Following thrombin cleavage (as described earlier), and 10 mM 

formic acid precipitation, the sample was dialysed against 10 mM sodium acetate buffer (pH 5). The 

sample was passed through a CM-Sepharose column to remove any unwanted protein. The protease 

was eluted using a 0-1 M NaCl gradient and dialysed against 10 mM sodium acetate buffer (pH 5) at 

4 °C overnight to remove any residual NaCl. The absence of the salt decreases autolysis (the ability 
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to undergo autoproteolysis in solution). The purity of the protease was evaluated by a 16% tricine-

SDS-PAGE [24,25]. The final concentration of pure protease was determined using the absorbance 

value at 280 nm and the extinction coefficient of the protein according to the Beer-Lambert 

equation. The extinction coefficients used were: 25 480 M-1.cm-1 for wild-type, 24 980 M-1.cm-1 for 

N37T↑V and 25 230 M -1.cm-1 for L38↑N↑L. Molar extinction coefficients were calculated using the 

following equation [26]: 

𝜀 = 550 ∗∑𝑇𝑟𝑝 + 1340 ∗∑𝑇𝑦𝑟 + 150 ∗∑𝐶𝑦𝑠 

2.3 Structural characterisation 

HIV-1 protease is functional in its homodimeric form and, therefore, it was essential to determine 

the quaternary structure of all the proteases. Verification of size was determined by size-exclusion 

high-performance liquid chromatography (SE-HPLC) using a TSKgel SuperSW2000 column 

equilibrated with 10 mM sodium acetate buffer (pH 5) containing 150 mM NaCl. 

2.4 Functional characterisation 

HIV-1 protease is prone to autolysis and, for this reason, it is important to quantify the concentration 

of active enzyme in a purified sample. The percentage active protease was determined by 

performing isothermal titration calorimetry (ITC) active site titration experiments using a VP-ITC 

Microcalorimeter (MicroCal Inc., Malvern Instruments, Malvern, Worcestershire, UK). Briefly, 200 

µM acetyl pepstatin, a competitive inhibitor of HIV-1 protease, was titrated (6 µl injections) into a 

solution of 10 to 13 µM protease at 293.15 K. The percentage active protease in each sample was 

determined from the binding stoichiometry (N-value) after subtracting the heats of dilution and 

correcting baseline errors from the calorimetric data using the Origin 7.0 software package 

(OriginLab Corporation, Northampton, MA, USA). The N-value is, therefore, used as a correction 

factor for the concentration of active protease in a purified sample. The ITC data were fitted using an 

algorithm for one set of binding sites because acetyl pepstatin binds to protease in a 1:1 ratio. An N-

value of 1 is theoretically representative of 100% active enzyme in sample preparations, i.e. all the 

protease molecules are in their active form and no self-cleavage has occurred.  

An enzyme assay was conducted during thrombin cleavage to determine whether the protease was 

catalytically active. The increase in fluorescence intensity attributed to the cleavage of the 

fluorogenic substrate: Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2 was measured. The sample was 



31 
 
 

 

excited at 337 nm and the fluorescence emission monitored at 425 nm. The assay was performed on 

a Jasco FP-6300 Spectrofluorometer. 

3. Results 

3.1 Construction of fusion plasmids 

The fusion construct (THX-6His-TCS-PR) contained a thioredoxin (TRX) moiety followed by a 

hexahistidine tag (6His), thrombin cleavage site (TCS) and protease (PR) (Fig. 2). A Q7K mutation, 

known to decrease autolysis, was incorporated into the protease coding region of all three fusion 

constructs [12].  

3.2 Overexpression of fusion proteases 

Figure 3 represents the whole-cell lysates. The gel shows the improved expression profile of the 

fusion wild-type (Fig. 3, lane 2, ~25 kDa) compared to that of the control wild-type protease (Fig 3, 

lane 1, ~11 kDa). This is seen by a thicker band at ~25 kDa in lane 2 compared to the band at ~11 kDa 

in lane 1, indicated by the arrows. Samples were normalised before electrophoresis to ensure that 

equal amounts of cell lysate were loaded onto each gel. The size of the fusion-product corresponds 

to the predicted size of the reduced, monomeric fusion protein 25.1 kDa (Figure 2, ProtParam tool, 

http://www.expasy.ch/tools/protparam.html) [27].  

3.3 Protease purification  

The control wild-type was overexpressed and purified by ion exchange chromatography as 

previously described by Naicker et al. (2014) [28]. The three fusion proteases were purified by 

immobilised metal ion affinity chromatography (IMAC). The steps involved in the purification of the 

fusion wild-type, N37T↑V and L38↑N↑L proteases are shown in Figure 4A, B and C, respectively. 

The last lane in each gel (IMAC 2 peak) shows the pure cleaved protein. The amount of protein was 

not normalised. 

The insoluble cell fractions used in this study were incubated in buffer containing 8 M urea, 10 mM 

Tris-HCl and 2 mM DTT (pH 9). The cell debris was collected by centrifugation, and the resultant 

supernatant was diluted to a final concentration of 4 M urea before the first IMAC step. The dilution 

was performed to prevent spontaneous crystallisation of the urea. The L38↑N↑L fusion construct 

was purified from the soluble fraction by metal ion affinity chromatography. The first 

chromatographic step yielded high concentrations of all three fusion proteases. The final yield of 



32 
 
 

 

free protease is represented in milligrams per litre of culture. The data are represented in Figure 5. 

The yield of fusion wild-type increased 3-fold compared to the control wild-type. The N37T↑V 

expression yielded 2 mg/L culture and L38↑N↑L yielded 1.5 mg/L culture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Plasmid construct of TRX-6His-TCS-PR. The abbreviation TRX-6His-TCS-PR denotes the 

thioredoxin-like moiety (TRX), hexahistidine (6His) tag and protease (PR) enzyme. A thrombin 

cleavage site (TCS) is present between the hexahistidine tag and the protease. The size of each 

constituent is shown and is represented in kilodalton. The entire construct is ~25.1 kDa. The figure 

was adapted from a figure in SnapGene® (GSL Biotech; available at snapgene.com). 
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Fig. 3 Schagger Tris-Tricine SDS-PAGE (16%) gel showing the overexpression of control wild-type and 

fusion wild-type. Whole lysates are shown. Transformed BL21 (DE3) pLysS E. coli cells were grown to 

early exponential phase and induced for six hours with 1 mM IPTG. MW: molecular weight marker, 

lane 1: control wild-type protease overexpression, lane 2: fusion wild-type overexpression. The 

positions of the fusion wild-type protease (lane 2, ~25 kDa) and the control wild-type protease (lane 

1, ~11 kDa) are indicated by arrows  
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Fig. 4 Overexpression profiles of fusion wild-type and variant proteases from IPTG-induced cell 

lysates. The purification steps, from cell lysis to final product, are shown from left to right. MW: 

molecular weight marker. A Fusion wild-type purification profile. B N37T↑V fusion purification 

profile. C L38↑N↑L fusion purification profile. Samples were stained with 0.25% Coomassie Blue R-

250 and analysed by 16% SDS polyacrylamide gel electrophoresis. The last lane in each gel confirms 

the presence of pure protease for fusion wild-type, N37T↑V variant and L38↑N↑L variant 

proteases, respectively  
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Fig. 5 Quantity of fusion-derived HIV-1 protease produced per litre of culture media compared to an 

ion exchange purification method. Bar (a) 0.83 mg/L control wild-type protease, (b) 2.5 mg/L fusion-

derived wild-type protease, (c) 2 mg/L N37T↑V protease, and (d) 1.5 mg/L L38↑N↑L protease. 
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3.4 In vitro fusion protease processing  

Thrombin cleavage trials were conducted on the TRX-6His-TCS-PR construct to determine the 

optimal time, temperature and amount of thrombin required for optimal cleavage (Fig. 6A). We 

found that ideal cleavage occurred overnight at 20 °C with 1 U/ml thrombin. As thrombin cleavage 

progressed, protease activity (Fig. 6B) was measured by conducting enzyme assays which followed 

the cleavage of Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2. This peptide mimics the cleavage site 

between the capsid and p2 proteins of the Gag-Pol polyprotein. To assess whether the protease 

samples possessed functional activity, we monitored the activity of the proteases using linear 

progress curves. The fluorescence intensity increased with time as the fusion protein was cleaved 

(Fig 6A) as seen by the linear progress curve in Fig 6B. The progress curve was expected to be linear 

as the substrate was in saturating concentration.  

3.5 Structural analysis  

The quaternary structures of the cleaved fusion proteases were analysed using high-performance 

liquid chromatography (refer to supplementary figures). The size of fusion wild-type, N37T↑V and 

L38↑N↑L proteases are indicated by an X in supplementary Figure 1. The results indicate that the 

dimeric sizes of the proteins were: 22 kDa, 23 kDa and 22 kDa for the fusion wild-type, N37T↑V and 

L38↑N↑L proteases, respectively. These sizes correspond with the expected sizes of the fully folded 

homodimeric molecule.  

3.6 Enzyme activity determination  

An active site titration was performed on each purified protease sample using a VP-ITC 

Microcalorimeter (data not shown). It is important to assess the percentage active protease in a 

sample preparation because HIV-1 protease possesses autolytic activity [12]. This procedure, 

therefore, allows the experimenter to correct the concentration of active protease in a sample. 

Obtaining the concentration via absorbance spectroscopy at 280 nm and applying the Beer-Lambert 

equation is insufficient. Acetyl pepstatin is a naturally occurring weak inhibitor, and it was titrated 

against each protease sample. Since the stoichiometry of acetyl pepstatin binding to HIV-1 protease 

is known (1:1), it is possible to determine the concentration of active protease in a sample as a 

function of the total measured protease concentration [29, 30]. Upon titration, the percentage of 

each protease in the active conformation was; 13% fusion wild-type, 32% N37T↑V and 9% 

L38↑N↑L.  
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Fig. 6 A time-course thrombin cleavage assay of fusion wild-type protease. B Fusion wild-type 

protease activity over time. Protease activity was monitored during thrombin (1 U/ml) cleavage by 

following fluorogenic substrate (Abz-Arg-Val-Nle/Phe(NO2)-Glu-Ala-Nle-NH2) processing at a 

wavelength of 425 nm. 
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4 Discussion 

HIV-1 protease represents a major drug target in the treatment of HIV/AIDS. To study this enzyme, it 

is important to obtain sufficient quantities for use in biochemical and biophysical studies. 

Heterologous overexpression of the viral enzyme does not occur readily. In fact, HIV-1 protease 

exhibits cytotoxic effects when expressed in a variety of host cells, including bacteria, yeast and 

mammalian cells. Due to the cytotoxic nature of HIV-1 protease, it is difficult to obtain large 

quantities of the enzyme. In this paper, we describe the overexpression and purification of the wild-

type and two variant HIV-1 proteases using a thioredoxin-hexahistidine fusion system. A thioredoxin 

moiety coupled with a hexahistidine tag successfully improved the overexpression of all three 

proteases.  

Plasmid inserts were designed to express each protease (wild-type and two variant proteases) as a 

fusion protease to reduce cytotoxic effects during host cell overexpression of the proteases. The 

fusion construct contained a thioredoxin (TRX) moiety for enhanced expression by reducing 

cytotoxicity [21]. This moiety was followed by a hexahistidine (6His) tag for ease of purification. A 

thrombin cleavage site (TCS) was included after the His-tag to allow excision of the protease 

molecule from the TRX-6His-TCS-PR construct. 

Immobilised metal ion affinity chromatography was used to purify the fusion proteases from crude 

cell lysates created from each clone. Human plasma thrombin was used to cleave the TRX-6His tag 

from the protease, and this permitted the homodimeric assembly of the HIV-1 protease molecules. 

The acquisition of untagged protease from the TRX-6His tag by thrombin cleavage yielded improved 

amounts of pure protease. Gel analysis indicated that no autolytic activity occurred before the final 

thrombin cleavage step. As the thrombin cleavage assay progressed, an increasing amount of 

fluorogenic substrate was cleaved indicating that the dimeric protease species was active. 

The fusion wild-type protease was expressed in the insoluble fraction whereas the L38↑N↑L variant 

was expressed in the soluble fraction of the cell lysate. Interestingly, the N37T↑V variant was 

expressed in roughly equal amounts in the soluble and insoluble cell fractions. It would be beneficial 

to transfer the expression of N37T↑V into the insoluble cell fraction completely by altering the 

overexpression conditions. Altering the expression profile may be achieved by varying the IPTG 

concentration, induction time or temperature of the induction experiment [31].  

The overexpression of the fusion proteases was notably greater than that of the control wild-type 

protease, which was purified using ion exchange chromatography. Conventionally, a large volume of 
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culture media (6-8 L) is required to generate a yield of 0.83 mg/L of culture. In this paper, we 

demonstrated that one litre of culture could produce 2.5 mg/L of fusion wild-type, 2 mg/L of 

N37T↑V and 1.5 mg of L38↑N↑L. Our novel HIV protease fusion purification method, therefore, 

produced significantly higher yields of pure protease than our control method (Gag-Pol derived 

protease). 

The quaternary structure of each protease was analysed by determining the relative hydrodynamic 

volume using high-performance liquid chromatography. An online tool was also used to predict the 

sizes of the dimeric proteases for comparison. The predicted sizes of all the fusion proteases were 

22 kDa (ProtParam tool) [27]. HIV-1 protease is an obligate homodimer and must be 

conformationally stable to function correctly. The experimentally determined sizes of the proteases 

were as follows: fusion wild-type, 22 kDa; N37T↑V, 23 kDa and L38↑N↑L, 22 kDa. The sizes 

correspond to the homodimeric size of the HIV-1 protease.  

HIV-1 protease is autolytic. Therefore, it is crucial to determine the percentage of active enzyme in a 

prepared sample. Active site titrations, determined using ITC, showed the percentage of active 

enzyme in each protease sample and also verified that all the enzymes possessed enzyme activity 

[32]. Thirteen percent of the fusion wild-type enzyme sample was active and available to the natural 

ligand; whereas, N37T↑V and L38↑N↑L had 32% and 9% of active proteases in these samples, 

respectively. The low percentage of active proteases in the samples could be explained by high levels 

of autolytic activity that often occurs when proteases are incubated for an extended period (e.g. 

thrombin cleavage). The observed autolytic activity is particularly interesting because these 

proteases contain a Q7K mutation that should minimise autolysis [33]. L38↑N↑L was expressed in 

the soluble fraction thus indicating that it was most likely active and able to undergo autolysis which 

could have contributed to the lower percentage of active protease in this sample. It is not clear 

whether the low percentage active sites can be attributed to increased autolysis due to the 

mutations present in each protease or if it is due to other factors. 

Other groups have investigated the effectiveness of different HIV-1 protease fusion expression 

systems. In those systems, autocatalysis occurred despite the presence of the tags [34]. In our study, 

we postulate that the relative size of the TRX-6His-TCS moiety does not interfere with protease 

dimer formation – dimerisation is essential for autocatalytic activity (removal of itself from the Gag-

Pol polyprotein). The thioredoxin moiety, however, sufficiently mimics the structure of the Gag 

protein from which HIV-1 protease cleaves itself. Here, autocatalysis (autoexcision from the Gag-Pol 
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precursor) must not be confused with autolysis - which is the ability of a protease to undergo 

autoproteolytic activity in solution. Our results are, therefore, different to the studies from others 

[34]. In our case, we postulate that the TRX-6His-TCS moiety and the protease form higher order 

oligomeric states where steric hindrance effects inhibit the autocatalytic activity of the protease. 

This postulation is demonstrated by the observed increase substrate cleavage as a function of 

thrombin cleavage time as the protease is released from the TRX-6His tag (Fig. 5). The presence of 

higher order oligomeric states could be determined using size exclusion chromatography, analytical 

ultracentrifugation and static light scattering. 

To prevent autolysis after cleavage of the thioredoxin tag, the protease could be incubated in a 

suitable concentration of inhibitor. Protease misfolding could also contribute to the presence of non-

functional enzymes. Unfolding the fusion proteases in 8 M urea, before refolding in an appropriate 

buffer, would be expected to increase the percentage of active proteases in a prepared sample.  

 

5 Conclusion  

The procedure described in this study highlights a quick and easy method of HIV-1 protease 

purification. In addition to the smaller volume of culture media needed, the total wild-type protease 

yield from this fusion system exceeds our control purification method by 250%. Because the fusion 

proteases are autolytic, a suitable method of inhibition could be included during the purification 

step so that higher yields of active protease are obtained. Although a subtype C protease was used 

for this study, the system could also be applied to HIV-1 proteases from other subtypes.  
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Supplementary Fig. 1: Size exclusion-HPLC retention times of fusion wild-type, N37T↑V and L38↑N↑L 

proteases. The molecular standards consisted of blue dextran (2000 kDa), serum albumin (66 kDa), 

carbonic anhydrase (29 kDa), cytochrome C (12.4 kDa) and aprotinin (6.5 kDa). The retention time of 

each protease is indicated. The relative molecular weight of each protease was calculated from the 

standard curve. The elution of fusion wild-type and L38↑N↑L was 0.25 ml/min and the elution of 

N37T↑V was 0.20 ml/min. 
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CHAPTER 3 
MOLECULAR DYNAMICS  

Molecular dynamic simulations of L38↑N↑L HIV-1 protease shows reduced flap dynamics 

Alison Williams, Vijayakumar Balakrishnan, Ikechukwu Achilonu, Heini Dirr and Yasien Sayed 

 

Molecular Simulation (Under review) 

 

In this publication the dynamics of an HIV-1 protease containing a double insertion in the hinge 

region was analysed. The flap region of L38↑N↑L protease was not as dynamic as the wild-type and 

is stabilised by a number of salt bridges. Induced-fit docking of Lopinavir and Darunavir to L38↑N↑L 

showed reduced hydrophobic contacts and docking Atazanavir showed reduced hydrogen bonding. 
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Abstract 

HIV-1 infects 37 million people and most infections are due to the subtype C virus, the subtype of 

interest in this study. The enzyme HIV-1 protease is essential for maturation of the virus and is an 

important drug target. The variant studied here, L38↑N↑L, contains insertions of Asn and Leu in the 

hinge region. Molecular dynamics simulations were conducted on the wild-type subtype C HIV-1 

protease and L38↑N↑L using GROMACS. The flap region, two anti-parallel β-sheets, covers the 

active site. These flaps curl and open to allow substrate to bind to the active site and then close 

upon substrate binding. The results showed that the flaps in L38↑N↑L were not as dynamic as the 

wild-type and this is attributed to the presence of the stabilising salt bridges: Asp30-Lys47, Asp62-

Lys45 and Asp35-Arg20 in L38↑N↑L. We propose that reduced flap dynamics is part of a 

mechanism to evade the binding of HIV-1 protease inhibitors in this protease. The HIV-1 protease 

inhibitors lopinavir, atazanavir and darunavir were docked to L38↑N↑L using Schrödinger Glide. 

Lopinavir and Darunavir showed reduced hydrophobic contacts while Atazanavir showed reduced 

hydrogen bonding to L38↑N↑L. The reduction in the number of hydrophobic contacts could be an 

indication of reduced susceptibility to the HIV-1 protease inhibitors. 

Key words 

HIV-1, subtype C, protease, hinge region, flap dynamics, molecular dynamics 

  

1.1 Introduction 

Human Immunodeficiency Virus (HIV) is a global health problem with 37 million people infected 

worldwide [1]. HIV infection is associated with acquired immunodeficiency syndrome (AIDS), which 

is the extreme suppression of the immune system. HIV-1 is genetically diverse and is divided into 
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three groups [2]. The main group, group M, is divided into nine subtypes and a number of CRFs [2]. 

Subtype C is the most prevalent subtype occurring in sub-Saharan Africa, the region with the highest 

rate of HIV-1 infections world-wide [3,4]. Subtype C is of interest for this study because the variant is 

of subtype C origin. 

HIV utilises three enzymes in its replication cycle; integrase, reverse transcriptase and protease. HIV-

1 protease is important for the maturation of the virus as it cleaves the Gag and Gag-Pol 

polyproteins into their functional forms resulting in mature, infectious virions. Inhibition of this 

enzyme results in immature non-infectious virions [5] making it an ideal drug target. HIV-1 protease 

is a dimeric protease consisting of two subunits, 99 amino acids each, which are noncovalently 

associated [6]. It is an obligate homodimer and is inactive as a monomer[7]. It is an aspartyl protease 

and the active site, formed at the dimer interface, consists of the characteristic Asp-Thr-Gly 

sequence (catalytic triad). One catalytic triad from each monomer is contributed. 

HIV-1 protease is composed predominately of β sheets. The active site is covered by two glycine-rich 

β-hairpin structures (residues 43-58), termed the flaps [8]. Residues within the flap region form 

numerous interactions with the substrate and thus the flap region plays an important role in 

substrate binding [9]. This region is highly flexible and can undergo large conformational changes 

during substrate binding and release [10]. It has been shown by NMR that the flaps are highly mobile 

and exist in open, semi-open and closed conformations [11]. In the apo-form the flaps exist in an 

open conformation 12-14 Å apart. Upon substrate binding, these flaps close to approximately 5.9 Å 

apart [12]. Naicker, et al., [12] showed that the flaps of wild-type subtype C protease are more 

dynamic than those of wild-type subtype B protease.  The flap tips, residues 46-54, are dynamic but 

move on a smaller time scale when compared to the entire flap [11]. The flap tips are glycine-rich 

and this accounts for the increased mobility [11]. The flap tips have been shown to curl inward, 

towards the active site, before the flaps open [13]. This curling motion allows the peptide chain 

enough space to access the active site. The movement and stability of the flaps is aided by the 

presence of loops extending from residues 35 to 42 and are termed the hinge region.  

The use of HIV-1 protease inhibitors in antiretroviral therapy has caused mutations to occur in the 

HIV-1 protease gene. The HIV-1 protease inhibitors approved by the FDA for use in patients are 

targeted towards subtype B. This is problematic as many of the polymorphisms found in the subtype 

C protease have been shown to cause drug resistance. The wild-type subtype C protease has a 

reduced affinity toward HIV-1 protease inhibitors [14]. Primary mutations mainly occur in the active 
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site and directly affect substrate binding thus decreasing the affinity for the drug. These mutations 

are selected early and can be inhibitor specific [15]. Primary mutations decrease the efficiency of the 

HIV-1 protease and render high levels of drug resistance. Secondary mutations are usually distal 

from the active site and occur to compensate for the loss of efficiency. Rarely ,1-6 amino acids are 

inserted in the region of residues 35-42, the hinge region. This is the region that contains many of 

the naturally occurring polymorphisms in subtype C such as E35D, M36I, S37N, R41K and R57K [16].  

The hinge region aids the flaps to close upon substrate or inhibitor binding. Mutations in this region, 

therefore, may contribute towards reduced binding free energy  [16]. Some studies have suggested 

a role for amino acid insertions in the drug resistance to HIV-1 protease inhibitors [17–19]. Due to 

the rarity of these insertions the effect on the dynamics of the protein have not been studied 

extensively. 

The variant protease in the current study contains an insertion of Asn and Leu at postion 38 resulting 

in a monomer of 101 amino acids. We have a developed a nomenclature to indicate the insertion 

with the use of upward arrows in the nomenclature L38↑N↑L (Yasien Sayed and Ikechukwu 

Achilonu, Protein Structure-Function Research Unit, University of the Witwatersrand, South Africa). 

The variant also contains the following subset of polymorphisms K20R, E35D, R57K and V82I. This 

study deals with the altered flap dynamics of L38↑N↑L and docking of the drugs LPV, ATV and DRV 

to L38↑N↑L.   

1.2 Methods 

1.2.1 Molecular dynamics simulation 

A homology model of L38↑N↑L was created using SWISS-model. The South African subtype C 

protease structure (PDB code 3U71, resolved at a 2.7 Å resolution [12]) was used as a template due 

to its high homology. This template was chosen over other subtype C structures because the variant 

in this study is of South African origin and contains the correct polymorphisms. The homology model 

was validated using PROCHECK [20,21]. The simulations were carried out using GROMACS version 

5.07 [22,23] on an Intel core i7 5960x extreme edition (3.3 GHz, 20 M cache 16x cores) equipped 

with GTX 750Ti graphics card, 32 GB DDR4-2133 MHz memory on a MSI X99 motherboard. The 

AMBER99sb force field was used for both models [24,25]. The simulations were conducted with 

explicit solvent in a cubic box universe. The long-range electrostatics were handled by the particle-

mesh Ewald (PME) method [26]. The solvated systems were relaxed with energy minimisation to less 

than 100 kJ/mol/nm followed by 5 ns of MD simulation under the NPT ensemble (constant number 
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of particles (N), constant pressure (P) and constant temperature (T)). The temperature was 

increased linearly from 10-300 degrees Kelvin. The positional restraints were calculated and the 

original values annealed to relax the models and ensure stable temperature. The temperature-stable 

models were subjected to 5 ns of simulation under the NVT ensemble (constant number of particles 

(N), constant volume (V) and constant temperature (T)) where the pressure of each system was 

equilibrated. After equilibration the MD simulations were performed for 20 ns under a constant 

temperature of 300 K with a Berendsen thermostat and an average pressure of 1 atm maintained by 

Parrinello-Rahman barostat algorithm [27]. Analysis of the trajectories was carried out using the 

script-based utilities in GROMACS version 5.07, Visual Molecular Dynamics [28] and the Chimera 

package from the Computer Graphics Laboratory, University of California, San Francisco (supported 

by NIH P41 RR-01081) [29]. Molecular graphics were generated using Chimera and PyMoL (The 

PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). 

1.2.2 Induced fit docking 

Ligand binding to an active site causes side-chain or backbone (or both) conformational changes in 

proteins. These conformational changes allow the active site in the protein to conform closely to the 

shape of the ligand. This process is known as flexible docking (IFD) and uses the Glide and Prime 

modules (Schrödinger LLC, 2009, USA). The Glide software was used to perform induced fit docking 

and calculate binding free energies. The docking simulations were carried out on a CentOS EL-5 

workstation. The Schrodinger modules Glide, Prime, QSite, Liaison and MacroModel were used for 

protein preparation. Each model was modified by correcting bond orders while ionisable residues 

were assigned a charge corresponding to a solution at pH 5 (experimentally determined optimal pH). 

Models were subjected to energy minimisation until the average RMSD reached 0.3 Å. The three 

HIV-1 protease inhibitors used in HAART in South Africa; Lopinavir (LPV), Atazanavir (ATV) and 

Darunavir (DRV) were obtained from PubChem Compound database. Ligand energy minimisation 

was done using the Ligprep tool (Schrödinger LLC, 2009, USA). Ligprep converted 2D structures to 3D 

structures, added hydrogens, bond angles and lengths, chose correct chirality and performed energy 

minimisation. The Epik too was used to choose the lowest energy tautomers and ring structures.  

Energy minimised wild-type and L38↑N↑L protease complexed with either LPV, ATV or DRV was 

loaded into the workspace and the ligand was selected to specify the active site. van der Waals radii 

on non-polar atoms of the HIV-1 protease and the ligand were scaled by a factor of 0.50 and 20 

conformational poses were calculated (system default setting). The best conformation, based on 

docking score, Glide energy and Glide E-model, was chosen for further analysis. The hydrophobic 
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interactions and hydrogen bonds between the ligand and the HIV-1 protease were viewed using 

Ligplot+ [30].  

1.3 Results 

1.3.1 Molecular dynamics simulation 

The L38↑N↑L homology model was obtained using SWISS-model and validated using PROCHECK. 

Ramachandran analysis showed 93.2% of residues were in the most favoured regions, 6.8% were in 

the allowed regions and 0% were in the generously allowed regions and disallowed regions. 

Superimposing the variant model on the template (3U71) resulted in a root mean square deviation 

(RMSD) of 0.097 Å. Fig. 1 shows the superimposed structures and the region where the L38↑N↑L 

model deviated from the template is seen in the hinge region (circled in red).  

The root mean square fluctuations (RMSF) shows the fluctuations of each residue in the simulation, 

Fig. 2. The residues with the greatest fluctuations (35-61) are represented in the red boxes in Fig. 2. 

These residues correspond to the flap and hinge region of the HIV-1 protease as is seen in the 

structure in Fig. 2. The greatest difference in RMSF was seen in residues 35-44 of L38↑N↑L, which 

differed (at its maximum) from wild-type by 1.2 Å in chain A and 1.1 Å in chain B. 

The RMSD value during the simulation infers the overall dynamic motion of the Cα backbone 

structure. The RMSD remained stable for both wild-type (1.8 Å) and L38↑N↑L (2.4 Å) during the 

simulation (Fig. 3). The radius of gyration (Rg), which is an index if the compactness of the protein 

structure, shows that both proteins maintained compactness during the simulation. Wild-type began 

the simulation more compact (Rg of 1.74 nm) than L38↑N↑L and decreased in compactness until 

an Rg of 1.68 nm at 5.5 ns but increased to an average of 1.77 nm for the remainder of the 

simulation. L38↑N↑L began the simulation less compact than wild-type (Rg of 1.82 nm) and 

decreased to an average Rg of 1.74 nm for the remainder of the simulation (Fig. 3).  

The distance between the Ile50 residues were measured to determine when the flaps open during 

the simulation as these residues occur on the tips of the flaps. The distance between Ile52 residues 

in L38↑N↑L were measured as these are the residues corresponding to Ile50 in wild-type. The wild-

type protease is initially in the semi-closed conformation and then the flaps open, at 6 ns until 15 ns, 

and close at 15 ns, ending the simulation closed (Fig. 4). The L38↑N↑L protease began the 

simulation in an open conformation and then proceeded to the semi-closed position (2-8 ns). The 

flaps then adopted the closed conformation and remained  closed for the rest of the simulation (Fig. 



51 
 
 

 

4). To determine the distance between the flaps in the open and closed conformations the distance 

between Ile50 in each chain (Ile52 in L38↑N↑L) was measured. The flaps of L38↑N↑L opened 

wider (20.8 Å)  

 

 

 

 

 

 

Figure 1: Superimposition of template (blue) and L38↑N↑L (green) protease. The hinge region is 

circled in red and is the region where the model deviated from the template. The RMSD for the 

superimposition is 0.097 Å. Figure generated using PyMol (The PyMOL Molecular Graphics System, 

Version 1.8 Schrödinger, LLC). 
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Figure 2: The RMSF of wild-type and L38↑N↑L in chain A and chain B. The residues with the 

greatest fluctuations are boxed in red and represented in the structure in red. Molecular graphic 

generated using PyMol (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). 
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Figure 3: The RMSD and radius of gyration of both the wild-type and L38↑N↑L protease during the 

20 ns simulation. The RMSD remained stable for both proteins during the simulations. The radius of 

gyration showed that L38↑N↑L was more compact during the simulation compared to wild-type. 
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Figure 4: The different conformations of the wild-type and L38↑N↑L protease. The distance 

between the Ile50 residues (wild-type) and Ile52 residues (corresponding residue in L38↑N↑L) were 

measured shown (C). The open conformation (A) and closed conformation (B) are represented. 

Figure generated using Chimera (Pettersen, et al., 2004) [29]. 
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than the wild-type protease (15.4 Å) but in the closed positon the flaps were the same distance 

apart (4.3 Å). 

The curling of the flap tips triggers the flaps to open. The angles between three adjacent alpha 

carbon atoms (termed the Tri-Cα angles ) in the flap tip was measured to determine the degree of 

flap curling. The Tri-Cα angles in residues Gly48, Gly49 and Ile50 in wild-type, for both chains, were 

measured and the corresponding residues in L38↑N↑L, for both chains, were also measured (Gly50, 

Gly51 and Ile52). Wild-type showed greater fluctuations of curling in (~115°) and curling out (~145°) 

than the L38↑N↑L protease (Fig. 5C and D). Chain B of L38↑N↑L showed greater fluctuations of 

flap curling (100°-145°) than Chain A, which remained in the curled out conformation (~145°) Fig. 5C 

and D. 

1.3.2 Salt-bridges 

A salt-bridge is considered formed when the distance between the positively charged and negatively 

charged residue is 4 Å or less. Due to the insertions in the hinge region corresponding residues in 

L38↑N↑L will have a different number after residue 38. If the residue has a different number in 

L38↑N↑L it will be indicated after a forward slash. Several salt-bridges are found in the hinge 

region and the flap region of the two proteases. These include Asp30-Lys45/47 (47 indicates the 

position of the Lys in L38↑N↑L) which exists over a longer time period in the L38↑N↑L protease 

than the wild-type protease, shown in Fig. 6A. The Glu35-Arg57 (wild-type) or Asp35-Lys59 

(L38↑N↑L) salt-bridge, Fig. 6B, exists longer in the wild-type protease than the L38↑N↑L protease 

and exists in wild-type chain B almost throughout the entire simulation. The salt-bridge Asp60-Lys43 

(wild-type) or Asp62-Lys45 (L38↑N↑L) occurs transiently in chain B of both proteases but is 

maintained between 10 and 15 ns in chain A of L38↑N↑L, Fig. 6C. The Asp35-Arg20 salt bridge only 

forms in chain A of L38↑N↑L and only at 10 ns of the simulation and exists for 8 ns, Fig. 6D. The 

Glu34-Lys20 (wild-type) salt-bridge existed for the first 8 ns of the simulation in chain A but only 

exists transiently in chain B. The corresponding salt-bridge in L38↑N↑L (Glu34-Arg20) does not 

form in either chain.  

1.3.3 Induced-Fit docking 

The inhibitors currently in use in South Africa, LPV, ATV and DRV, were docked to both the wild-type 

and L38↑N↑L protease. The docking scores, Glide E-model and Glide scores are represented in 

Table 1. The interactions between the wild-type and L38↑N↑L protease and the HIV-1 protease 

inhibitors are represented in Fig. 7. The hydrophobic contact of the HIV-1 protease inhibitor made 



56 
 
 

 

with the protein are represented by half moon circles and the hydrogen bonds are represented by a 

dotted green line. A reduction in hydrophobic contacts was observed between LPV and L38↑N↑L; 

two 

 

 

 

 

 

 

Figure 5: The curled forms of wild-type (blue) and L38↑N↑L (green) protease. Figure 5A represents 

the curled out forms of wild-type and L38↑N↑L and B represents the curled in forms. The Tri-Cα 

angles of Gly48-Gly49-Ile50 of wild-type and the corresponding residues in L38↑N↑L were 

measured for the entire simulation for chain A (C) and Chain B (D). Molecular graphics generated 

using Chimera (Pettersen, et al., 2004) [29]. 
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Figure 6: Salt-bridges found within the hinge and flap region of chain A and B of wild-type and L38↑N↑L 

protease.  The first panel shows the salt-bridges formed within 4 Å in the L38↑N↑L protease. The 

second and third panels show the distances between the two residues in chain A and chain B of each 

protease respectively for the entire simulation. The residue after the forward slash represents the 

mutations or altered position in L38↑N↑L. Salt-bride graphic generated using Chimera (Pettersen, et 

al., 2004) [29]. 
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Table 1: The docking scores, Glide E-model, and Glide energy of LPV, ATV and DRV docked to wild-type 

and L38↑N↑L protease 

  

Inhibitor Docking Score (kcal/mol) Glide E-model (kcal/mol) Glide energy ( kcal/mol) 

 Wild-type L38↑N↑L Wild-type L38↑N↑L Wild-type L38↑N↑L 

LPV -12.286 -14.368 -135.386 -160.989 -84.988 -87.513 

ATV -11.589 -10.141 -84.815 -124.038 -140.329 -81.178 

DRV -10.187 -8.282 -108.784 -86.512 -70.780 -60.442 
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hydrophobic contacts were lost but there is an addition of hydrogen bonds between the side chains 

of Arg8, Asp29 and Asp30 and LPV. L38↑N↑L and ATV gained five hydrophobic contacts and lost 

hydrogen bonding between the side chains of Arg8 and Asp30. There was a loss of only one 

hydrophobic contact for L38↑N↑L and DRV and no loss of hydrogen bonding. No loss of interaction 

between the catalytic residues (Asp25) was observed in L38↑N↑L protease for any of the HIV-1 

protease inhibitors.  

1.4 Discussion 

1.4.1 Molecular dynamics simulation 

The hinge region of HIV-1 protease contains many of the naturally occurring polymorphisms in 

subtype C and mutations in this region may reduce binding free energy of HIV-1 protease inhibitors 

[16]. Sometimes amino acids are inserted in this region and this may play a role in drug resistance to 

HIV-1 protease inhibitors [17–19]. The dynamics of HIV-1 proteases containing these insertions have 

not been extensively studied. Here we modelled the L38↑N↑L protease containing an insertion of 

Asn and Leu at postion 38 as well as the following subset of mutations: K20R, E35D, R57K and V82I. 

A homology model was generated by SWISS-model using the subtype C template PDB: 3U71. This 

template was chosen because of its high homology to the variant. The template and the variant are 

both of subtype C origin and thus contain the polymorphisms present in the South African subtype C 

protease. Validation of the model showed that the residues were all in allowed conformations. 

Superimposition of the model and the template (Fig. 1) resulted in an RMSD of 0.097 Å, indicating a 

good fit. It shows that the subset of mutations did not affect the overall structure of the model. The 

region that deviated in postion was the hinge region; this is unsurprising as the insertion of two 

amino acids occurs here.  

The residues that showed the greatest RMS fluctuations were those that occur in the hinge and flap 

regions of the proteases (residues 35-45). This confirms that these regions are the most flexible 

within both enzymes. The RMSD values of both enzymes (wild-type: 1.8 Å and L38↑N↑L: 2.4 Å) 

remained stable throughout the simulation although more fluctuation was seen in the wild-type 

protease. This is due this structure being more dynamic in the simulation. The radius of gyration (Fig. 

3) of L38↑N↑L (1.74 nm) was smaller than that of the wild-type (1.77 nm). This is because the flaps 

of L38↑N↑L do not open as often as the wild-type protease (Fig. 4). In order for a substrate or 

inhibitor to bind to the HIV-1 protease the flaps need to open. The closure of the flaps in L38↑N↑L 
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may be a mechanism for HIV-1 protease to evade binding HIV-1 protease inhibitors. It has been 

shown that the flaps are  
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Figure 7: Interaction of LPV, ATV and DRV with both wild-type and L38↑N↑L protease. The half 

circles represent the hydrophobic contacts between the drug and the protease. Figure generated 

using Ligplot+ (Laskowski and Swindells, 2011) [30].  
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necessary for efficient catalytic activity of the HIV-1 protease [31]. The extended period of closure of 

the flaps would result in a reduction of the catalytic efficiency of the L38↑L↑L. We have 

demonstrated this to be true in vitro (manuscript in preparation). This finding contrasts Perryman et 

al., [32] who showed than mutations can cause a shift in equilibrium from closed to semi-open 

conformations, although these mutations did not occur in the hinge region. Zondagh et al., [33] 

showed that mutations in the hinge region can cause the rate of flap opening to increase and 

insertions in this region cause the flaps to open to a greater extent. This confirms the finding here 

that the flaps of the L38↑N↑L protease are further apart in the open conformation (20.8 Å) 

compared to wild-type (15.4 Å).  

Flap curling is an important process because it buries the conserved Ile50 residue, which ensures 

that opening of the flap is thermodynamically favourable. The residues of the flap tips (wild-type and 

L38↑N↑L) curl inward (~115°) just before the flap opens confirming observations made by Scott 

and Schiffer [13].  Curling that is more frequent would suggest more flap opening. The flap tip curling 

fluctuates more in the wild-type protease than the L38↑N↑L protease (Fig. 4) and this, too, is 

explained by the flaps in L38↑N↑L not opening as often as the wild-type protease. 

1.4.2 Salt-bridges 

The Asp30-Lys45/47 salt-bridge occurs between the hinge (Asp30) and the flap (Lys45/47) region of 

the HIV-1 protease. It exists transiently in both chains of the wild-type protease throughout the 

simulation (Fig. 6A). In L38↑N↑L protease, this salt-bridge exists transiently at the beginning of the 

simulation but is maintained in chain A between 8-18 ns and chain B 15-20 ns. This is the time scale 

when the flaps of L38↑N↑L protease are in the closed position, which indicates that this salt bridge 

may play a role in stabilising the closed structure. 

The Asp60/62-Lys43/45 (Fig. 6C) salt-bridge exists transiently during the closed stage of the 

L38↑N↑L protease and thus may also be a factor in stabilising the closed structure. This salt-bridge 

is only formed at the beginning of the simulation for wild-type and never forms again because this 

structure does not remain closed for most of the simulation.  

The Glu34-Lys20 salt-bridge seen in chain A of wild-type (Fig. 6E) is not present in the L38↑N↑L 

protease and may be disrupted by the K20R mutation within L38↑N↑L. K20R is part of the subset of 

mutations found within the variant. The K20R polymorphism occurs in 20% of drug naïve and 27% of 

drug treated patients infected with subtype C and is not associated with drug resistance 

(http://hivdb.stanford.edu/index.html). The Glu34-Lys20 salt-bridge is, however, replaced by the 
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salt-bridge Asp35-Arg20 (Fig. 6D) in chain A of L38↑N↑L. The salt-bridge is not present in wild-type 

and only forms in L38↑N↑L when the flaps are in the closed conformation. Therefore, it could 

possibly aid in maintaining the closed conformation. 

In the wild-type protease, the Glu35-Arg57 salt bridge is present in both chains. The E35D mutation 

found in L38↑N↑L is a common polymorphism in subtype C and occurs in 25% of drug naïve 

patients and 29% of drug treated patients infected with subtype C 

(http://hivdb.stanford.edu/index.html). The L38↑N↑L also contains an R57K mutation. These two 

mutations effectively knock-out the salt-bridge Glu35-Arg57 as can be seen in Fig. 6B. Liu et al., 

showed that the flap tips exhibited diminished motion due to the E35D mutation [34] which is also 

seen in the L38↑N↑L protease as it remains closed for most of the simulation (Fig. 4). We show 

here that the salt-bridge, Glu35-Arg57, is eliminated for most of the simulation, which is in 

agreement with Liu et al., [34]. It was proposed by Liu et al., that this elimination is compensated for 

by interactions between Asp35 and Pro79 and Gly48 and interactions between Lys57 with Val77 

[34]. 

1.4.3 Induced-Fit Docking   

Conventional rigid body docking assumes that the receptor is rigid when in reality receptors often 

alter their conformation to bind the ligand. Induced fit docking considers all the possible binding 

modes and associated conformational changes that occur between the ligand and protein upon 

ligand binding. This would more accurately predict the binding of a ligand to a receptor as it more 

closely mimics what would be occurring in vivo. The docking results (Table 1) show that the drugs 

LPV, ATV and DRV do all bind to L38↑N↑L. The Glide energy is an estimation of the free energy of 

binding and is composed of a combination of the posed ligand and receptor [35]. L38↑N↑L had a 

Glide energy score of -84.988 kcal/mol for LPV compared to -87.513 kcal/mol for wild-type. This 

difference, however, is not considered to be significant as it only differs by  3 kcal/mol. L38↑N↑L 

shows reduced binding free energy to ATV and DRV and this could be due to loss of hydrophobic 

contacts as seen in Fig. 7.  

The majority of the amino acids forming the substrate binding site are hydrophobic with the 

exception of Asp25 and Asp29 which form hydrogen bonds with the peptide main chain groups as 

well as Arg8, Asp30 and Lys45 which are able to interact with polar side chains [15]. Due to the 

active site being mainly hydrophobic the HIV-1 protease inhibitors are also mainly hydrophobic. A 

loss in hydrophobic contacts is seen in many drug resistant mutants [15] and so the reduction of 
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hydrophobic contacts seen with L38↑N↑L and LPV and DRV could be indicative of the beginning of 

reduced drug susceptibility but does not indicate drug resistance.  The L38↑N↑L variant does not 

contain any major drug resistant mutations as confirmed by the Stanford HIV database [36–38]. The 

variant, however, does contain the secondary mutation V82I [39]. The docking results show that all 

the drugs bind to the variant protease and so this minor mutation has no impact. This is not unusual 

because secondary mutations by themselves have very little effect on drug resistance and are 

selected for to compensate for viral fitness [40]. The ability of the variant protease to bind HIV-1 

protease inhibitors is unaffected by the insertion of amino acids at position 38. The L38↑N↑L 

protease remains susceptible to the inhibitors and will be inhibited. We will discuss, in a forthcoming 

manuscript, how drug binding of the variant protease is affected by the presence of the Gag and 

Gag-Pol regions. 

In summary, the L38↑N↑L protease shows reduced flap dynamics when compared to the wild-type 

subtype C protease. This is due to the existence of Asp30-Lys47, Asp62-Lys45 and Asp35-Arg20 salt-

bridges, which stabilise the closed flap postion in L38↑N↑L. We propose that the reduced flap 

dynamics is a possible mechanism in which this enzyme can evade binding to HIV-1 protease 

inhibitors. LPV, ATV and DRV were successfully docked to L38↑N↑L. The negative Glide scores 

indicated that binding occurs. There were, however, reduced hydrophobic contacts made to LPV and 

DRV, which could be indicative of the beginning of reduced drug susceptibility. The insertion of the 

amino acids in the hinge region do not appear to affect drug binding but as a result of these 

insertions multiple salt-bridges form which hinder the movement of the flap region resulting in 

reduced flap dynamics of this variant protease.  Further studies, to be investigated in our laboratory, 

include crystallising this variant to determine if it resembles the homology model. As well as 

crystallising the variant in the presence the HIV-1 protease inhibitors.  
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Abstract 

The use of combined antiretroviral therapy has made a significant contribution to increasing the life 

expectancy and quality of life in people living with HIV. HIV-1 protease is essential for processing the 

Gag polyprotein to produce infectious virions and is a major target in antiretroviral therapy. 

However, due to the error prone reverse transcriptase, resistance-associated mutations can 

accumulate in the HIV-1 protease. We have identified an unusual HIV-1 subtype C variant protease 

that contains insertions of leucine and asparagine (L38↑N↑L) in the hinge region of protease at 

position 38. Isothermal titration calorimetry showed that the L38↑N↑L protease had diminished 

activity (80%) compared to wild-type subtype C protease (90%), with ±50% reduction in KM and kcat. 

There was a 42% reduction of specific activity for the variant using the substrate Abz-Arg-Val-Nle-

Phe(NO2)-Glu-Ala-Nle-NH2. Although the Vmax of L38↑N↑L and wild-type were similar, the variant 

showed a 10-fold reduction in catalytic efficiency (kcat/KM). An in vitro phenotypic drug susceptibility 

assay to determine the phenotypic consequences of amino acid changes in Gag and HIV-1 protease 

was conducted. It showed the L38↑N↑L protease to be susceptible to lopinavir, atazanavir and 

darunavir in the presence of a wild-type subtype C Gag. However, in the presence of the related Gag, 

L38↑N↑L showed reduced susceptibility to darunavir while remaining susceptible to lopinavir and 

atazanavir. Furthermore, a reduction in viral replication capacity was observed in combination with 

the related Gag. The reduced susceptibility to darunavir and decrease replication capacity may be 

due a duplication of the proline rich domain within p6 that is responsible for recruiting Tsg101, 

PTAPP, in the related Gag. 
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Introduction 

HIV remains a global health problem with 36.7 million people living with HIV globally [1]. HIV is 

particularly a problem in Africa as 52% of people living with HIV are from southern Africa and 45% of 

all new infections occur in this region [1]. It was estimated that 13% of the South African population 

in 2016 was living with HIV. However, there have been great improvements in treatment in Africa, 

particularly South Africa. In 2015 South Africa had 3.4 million people on treatment, more than any 

other country. There are, however, still populations within South Africa that are at a high risk of HIV 

infection; these include sex workers, people who inject drugs, transgender people, prisoners, gay 

men and men who have sex with men. In 2015 these populations accounted for 20% of all new 

infections in sub-Saharan Africa [1]. 

HIV is divided into two types HIV-1 and HIV-2 with HIV-1 being the main type. HIV-1 is divided into 

groups M, N, O and P. Group M is the main group and is further divided into subtypes A, B, C, D, F, G, 

H, J, and K [2]. Subtype C is found in sub-Saharan Africa, India, Brazil and China [2] and accounts for 

approximately 50% of global infections [3]. The variant in this study is of subtype C origin. The great 

diversity among HIV is attributed to the high replication rate as well as the low fidelity of reverse 

transcriptase [4].  

HIV-1 protease, a homodimeric aspartyl protease, cleaves the Gag and Gag-Pol polyproteins to 

produce three enzymes (reverse transcriptase, integrase and protease) and the structural proteins 

(capsid, matrix, nucleocapsid, p6, gp120 and gp41) needed for capsid assembly [5]. The secondary 

structure of HIV-1 protease consists mainly of β-sheets and one α-helix per monomer. The active site 

contains the characteristic Asp-Gly-Thr sequence of an aspartyl protease [6]. The structure of HIV-1 

protease and the position of the Asp25 residues are shown in Figure 1. The hydrophobic active site is 

covered by two β-turns, termed the flap region, which open up to allow substrate to bind to the 

active site and then close upon substrate binding. The movement of the flaps is aided by the hinge 

region (residues 32-42) of the protein, a region known to contain several polymorphisms in subtype 

C. 

HIV-1 protease plays a critical role in viral replication since failure to cleave the Gag and Gag-Pol 

polyproteins results in immature virions that are non-infectious [7]. This vital step is one of the drug 

targets of second-line antiretroviral therapy (ART) that makes use of a ritonavir (RTV)-boosted HIV-1 

protease inhibitors (PIs) backbone of lopinavir (LPV), atazanavir (ATV) or darunavir (DRV), in addition 

to two nucleot(s)ide inhibitors (NRTIs)  [8]. HIV is notorious for the development of drug resistance 
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to the antiretrovirals (ARVs). Resistance to PIs is no exception. Resistance to PIs is a result of amino 

acid substitutions in the substrate-binding sites as well as distal sites [9].  These substitutions directly 

or indirectly alter the interactions between the inhibitors and the HIV-1 protease, which reduces the 

affinity for the enzyme [10]. Rarely, amino acid insertions in the HIV-1 protease gene are selected for 

during antiretroviral therapy. Insertion mutations are not unusual in reverse transcriptase [11] but 

are rare in HIV-1 protease (approximately 0.1%) [12]. Most insertions arise due to duplications of 

neighbouring DNA sequences due to primer/template slippage during reverse transcription. 

Resistance mutations in HIV-1 protease have been well characterised [13]. However, little is known 

about the effect of amino acid insertions in the hinge region on drug binding.  

The HIV-1 protease variant in this study (Figure 1) was isolated from an infant whose mother was 

part of the Prevention of Mother to Child Transmission programme in South Africa [14] and was HIV-

1 protease inhibitor naïve. This sequence is a subtype C sequence and the variant contains the 

following subset of polymorphisms; K20R, E35D, R57K and V82I as well as a double insertion of 

leucine and asparagine at position 38. The variant will be referred to as L38↑N↑L - the upward 

arrows indicate the insertion of two amino acids at position 38. The present study shows a 

comparison of the drug susceptibility of the L38↑N↑L protease with its accompanying Gag 

sequence and the wild type protease with Gag to LPV, ATV and DRV.  

Methods 

Expression and Purification  

The wild-type subtype C and L38↑N↑L protease sequence data were obtained from Prof Lynn 

Morris (AIDS Virus research Unit, NICD of Johannesburg, South Africa). The pET-11b plasmid 

encoding the HIV-1 wild-type subtype C protease was previously generated in our laboratory [15]. 

The pET-11a plasmid containing the L38↑N↑L gene was purchased from GenScript (HongKong). The 

plasmids containing the wild-type and L38↑N↑L sequence were used to transform Escherichia coli 

BL21 (DE3) pLysS and Escherichia coli RosettaTM cells, respectively. The proteases were 

overexpressed by the addition of 1 mM IPTG at mid-log phase (A600nm = 0.6). Overexpression was 

allowed to continue for 4 hours for wild-type and 6 hours for L38↑N↑L at 37 ℃. The cells were 

pelleted by centrifugation at 5 000xg and resuspended in Buffer A (10 mM Tris, 5 mM EDTA, pH 8). 

The bacterial cell membranes were disrupted by sonication, 12 V for 10x 30 s intervals. The cell 

lysates were centrifuged at 23 000xg for 40 min to separate the soluble and insoluble fractions. The 
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insoluble fractions were resuspended in buffer A+ (10 mM Tris, 2 mM EDTA and 2% Triton X-100 at 

pH 8). This was centrifuged at 23 000xg 
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Figure 1. Homology model of L38↑N↑L protease and sequence data.  

HIV-1 protease is a homodimer and contains mainly β-sheets and one α-helix per monomer. There are 

five regions defined within the structure: the flap region (green), the hinge region (red), the fulcrum 

region (cyan), the cantilever region (violet) and the dimer interface (orange). The catalytic Asp25 residues 

are shown in the active site (blue). The yellow spheres and the yellow boxes on the sequence represent 

the relative positions of the subset of mutations, K20R, E35D, R57K and V82I. The red spheres on the 

structure and the red box in the sequence alignment represent the double insertion of Leu and Asn. 

PyMOL was used to generate the homology model using data from the Protein Data Bank (PDB ID: 3U71). 

The sequence alignment was generated using the Clustal Omega tool (EMBL-EBI). 
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for 30 min and the process was repeated. The proteases were recovered from inclusion bodies by re-

suspending the pellet in buffer B (8 M urea, 10 mM Tris, 2 mM DTT, pH 8) and incubating at 20 ℃ for 

an hour. The unfolded proteases were centrifuged at 23 000xg and refolded by dialysing against 

10 mM formic acid containing 10% glycerol (v/v) for 4 hours at 4 ℃. The proteases were then 

dialysed against Buffer D (10 mM sodium acetate, 2 mM DTT pH 5) overnight and purified using a 

CM-Sepharose column. Elution was performed using a salt gradient of 0-1 M NaCl. Finally, the 

protease was dialysed against 10 mM sodium acetate (pH 5), and the purity assessed using a 16% 

Tricine gel [16]. The concentration of the proteases was determined using the molar extinction co-

efficient 25480 M-1.cm-1 from absorbance spectra obtained on a Jasco V-630 spectrophotometer. The 

purified proteases were aliquoted and store at -80 Cͦ until used. 

Active site titration 

To assess the percentage activity of the proteases, isothermal titration calorimetry (ITC) was 

performed. Acetyl pepstatin (200 µM), an inhibitor of aspartyl proteases, was titrated against 17 µM 

wild-type protease and 18 µM L38↑N↑L protease in 10 µL injections at 293.8 K using a Nano-ITC 

instrument (TA Instruments, Delaware USA). The heat due to the dilution of acetyl pepstatin was 

subtracted from the data set and the baseline adjusted using NITPIC [17]. The changes in heats were 

integrated and fitted using ITCsy [17]. The percentage of active sites was determined from the 

stoichiometry value, with a value of 1 indicating activity of 100%. 

Steady-state and Inhibition Kinetics 

The kinetic parameters KM, kcat, kcat/KM and the specific activity were determined in separate 

experiments. KM and Vmax were determined using a hyperbolic plot, linear plots were used to 

determine kcat, kcat/KM and the specific activity. All plots were fitted using SigmaPlot (Systat Software, 

San Jose, CA). The hydrolysis of the HIV-1 protease fluorogenic substrate Abz-Arg-Val-Nle-Phe(NO2)-

Glu-Ala-Nle-NH2 was monitored. The substrate used represents a conserved cleavage site capsid/p2 

within Gag.  For all kinetic measurements, an excitation wavelength of 337 nm and an emission 

wavelength of 425 nm were used at 1 min measurement intervals during steady-state. All activity 

assays were performed in 50 mM sodium acetate buffer containing 1 M sodium chloride (pH 5.0) at 

20 ℃. All kinetic experiments were performed in triplicate using a Jasco FP-6300 spectrofluorometer 

(Easton, MD, USA). 

An active enzyme concentration of 50 nM and substrate concentrations ranging from 5-200 µM was 

used to determine the KM. To determine the kcat/KM, a substrate concentration ranging from 1-10 µM 
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was used and an active enzyme concentration of 50 nM. The specific activity and the kcat were 

determined using active enzyme amounts ranging from 1-10 pmol and a constant substrate 

concentration of 50 µM. The FDA-approved drugs (LPV, ATV and DRV) competitively inhibit HIV-1 

protease with dissociation constants in the nanomolar range [18]. The inhibition constants (𝐾𝑖) for 

LPV, ATV and DRV were determined using the equation for tight-binding inhibitors [19]: 

=
(𝐼𝐶50 −

[𝐸]
2
)

(
[𝑆]
𝐾𝑀

+ 1)
 

E  - active enzyme concentration (50 nM),  

S  - substrate concentration (50 µM)  

IC50  - concentration of inhibitor at which there is half-maximal activity of the HIV-1 protease. IC50 

values were determined using inhibitor concentrations ranging from 0-200 µM.  A final 

concentration of 2% (v/v) dimethylsulfoxide was used during IC50 determinations for inhibitor 

solubility. 

Construction of expression vectors 

The vector p8.9NSX containing the wild-type subtype C Gag and protease gene (p8.9MJ4GP) was 

digested using Not I (cleavage site upstream of Gag) and Xho I (Cleavage site downstream of HIV-1 

protease gene). The reaction mixture was incubated at 37 ℃ for two hours and heat inactivated at 

65 ℃ for 15 minutes. Successful restriction was confirmed by 0.7% agarose gel electrophoresis at 

100 V for 1.5 hours. An uncut control plasmid was included. The restricted p8.9MJ4GP was purified 

from the agarose gel using PureLink Quick Gel Extraction Kit (Life Technologies, Germany) according 

to the manufacturer’s protocol. The Gag and HIV-1 protease gene to be inserted into p8.9MJ4GP 

was previously isolated from RNA and reverse transcribed into cDNA. The insert was ligated into 

p8.9MJ4GP and the vector dephosphorylated using the Rapid DNA Dephos and Ligation Kit (Roche, 

Basel, Switzerland).  This resulted in a vector encoding mutated Gag and L38↑N↑L protease. The 

resultant pseudovirion was termed L38NL. A schematic of this process is shown in Figure 2. The 

vector encoding wild-type subtype C Gag was created by restricting p8.9MJ4GP with Apa I (upstream 

of protease) and Xho I. The L38↑N↑L gene was ligated into the restricted p8.9MJ4GP vector using 

the Rapid DNA Dephos and Ligation Kit (Roche, Basel, Switzerland). This resulted in a vector 

encoding wild-type Gag and L38↑N↑L (Figure 2). The resultant pseudovirion was termed WTGAG 

L38NL.  
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Figure 2: Cloning of the gag and protease genes into the p8.9MJ4GP expression vector. Restriction enzymes (Not I 

and Xho I) were used to digest p8.9MJ4GP and allow for cloning of the mutated Gag and L38↑N↑L gene resulting 

in the p8.9 L38NL expression vector. Restriction enzymes (Apa I and Xho I) were used to digest p8.9MJ4GP and 

allow for cloning of the L38↑N↑L gene resulting in the p8.9 WTGAG L38NL expression vector. 
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Phenotypic assessment of protease inhibitor susceptibility 

A phenotypic assay using a single infection event per virion was conducted as previously described 

[20]. Briefly, HEK293T cells were transfected with 300 ng of plasmid pMDG (encodes for vesicular 

stomatitis virus G protein for entry), 500 ng of plasmid pCSFLW (encodes for firefly luciferase for 

quantification) and 300 ng of the HIV expression vector (encodes HIV-1 gag-pol: p8.9MJ4GP, p8.9 

L38NL, p8.9 WTGAG L38NL) using 3.3 µg polyethylenimine (PEI, Polysciences, Inc., Warrington, PA, 

USA). The transfected cells were harvested after 18 hours and seeded in the presence of serially 

diluted LPV (60 nM – 3 pM), ATV (40 nM – 2 pM) and DRV (60 nM – 3 pM). The supernatants were 

transferred to corresponding 96-well culture plates that contained fresh HEK293T cells after 24 

hours. The degree of infection was determined 48 hours later by measuring the expression of firefly 

luciferase using a BrightGlo luciferase assay system (Promega, Madison, USA) on the Victor3 multi-

label plate reader (PerkinElmer, Waltham, USA). For each drug-pseudovirus combination, the IC50 

was calculated using Microsoft Excel (Microsoft, Redmond, USA). A pseudovirus is only able to infect 

in a single round. The phenotypic susceptibility was expressed as the fold change in the IC50 relative 

to that of the wild-type pseudovirus (wild-type subtype C Gag and protease). The assay specific fold 

change cut-off value for each drug was determined using the 99th percentile of the average IC50 for 

the wild-type pseudovirus assessed in multiple repeat screens for each drug. Two-way analysis of 

variance (ANOVA) and Bonferroni’s post-test were used to identify significant differences in IC50 

values between wild-type (wild-type subtype C Gag and protease), L38NL (mutated Gag and 

L38↑N↑L protease) and WTGAG L38NL (wild-type subtype C Gag and L38↑N↑L  protease) 

pseudoviruses. The p8.MJ4GP wild-type pseudovirus contained the gag-pol of an HIV-1 subtype C 

reference isolate while the p8.L38NL contained the gag-protease from L38↑N↑L. The WTGAG 

L38NL pseudovirus contained the MJ4 gag-L38↑N↑L protease. The drug resistant control consisted 

of an insert of a Gag and protease sequence found within a patient failing therapy and contained 

many drug resistance mutations (all protease mutations present: L10I, K20R, E35D, M46I, 

I54V,Q61H, I62V, L63P, T74S and V82A).  

Replication capacity  

To assess the replication capacity (RC) of each of the pseudovirions, a p24 enzyme-linked 

immunosorbent assay (ELISA) was used according to Aalto Bioreagents (Dublin, Ireland). A 96 well 

plate was coated with p24 antibody and incubated overnight. The plate was blocked with 2% BSA for 

1 hour and washed with TBS. Cells containing pseudovirions generated in the absence of HIV-1 
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protease inhibitors were disrupted using 2% Empigen in TBS. Supernatants were submitted in 

triplicate for p24 ELISA and incubated for 3 hours. The plate was washed three times with TBS and 

the conjugate (EH12AP, 20% sheep serum, 0.05% Tween) was applied. The plate was washed with 

TROPIX buffer and TROPIX Sapphire Substrate was added. The plate was incubated for 45 minutes 

and the ratio of relative light units (RLU)-to-p24 was calculated. The percent replication capacity 

(%RC) was calculated relative to the wild-type control. 

Sequencing of Gag and Protease genes 

Sequencing was performed using BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, 

California, USA). The primers used for the HIV-1 gag and protease genes are shown in Table 1 and 

Figure 3. The sequence reaction was plated in a MicroAmp Optical 96-well Reaction Plate (Applied 

Biosystems, China) sealed with Microseal plate covers (Bio-Rad, UK). The reaction was performed 

using a GeneAmp 9700 thermal cycler (Applied Biosystems, Carlsbad, CA). The following programme 

was used, initial denaturation for 1 minute at 96 ℃, 35 cycles of 10 s at 96 ℃ for denaturation, 5 s at 

50 ℃ for annealing, 4 minutes at 60 ℃ for extension and a final hold at 4 ℃.  

 

Results 

Expression and Purification  

The wild-type subtype C and the L38↑N↑L proteases were successfully purified from the insoluble 

fraction as shown in Figure 4. Both proteases were purified to >95% purity and a yield 2.7 mg per 

28 g of wet cell weight of E.coli was obtained for L38↑N↑L protease. 

Steady-state and Inhibition Kinetics 

HIV-1 protease has the ability to autolyse. The peptides produced contribute towards the 

concentration determined spectroscopically but are not catalytically active. Therefore, to determine 

the percentage activity of each of the proteases, isothermal titration calorimetery (ITC) was 

conducted. Acetyl pepstatin was titrated against each protease. The stoichiometry of binding was 

used to determine the percentage active sites. Since a binding ratio of 1:1 is expected, a 

stoichiometry of 1 would represent a sample that is 100% active. The percentage of active protein in 

each sample preparation was 90% and 80% for wild-type and L38↑N↑L, respectively. This 

percentage was used to adjust the concentrations obtained spectroscopically.  
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Table 1: Primers used to sequence the gag and protease genes 

Primer name Sequence (5’-3’) 

GagNot GCGGCGGCCGCAAGGAGAGAGATGGGTGCG 

Gag1F TTAGACAAGATAGAGGAAGA 

Gag1.5F TCTATCCCATTCTGCAGC 

Gag2F ATGATGACAGCATGTCAGGG 

DuGagIn2 ACATGGGTATTAGCTCTGGGCT 

ProXhoR2 CTGGTACAGTCTCGAGRGGACTRATKGG 

Gag5F CTTTAAGAGCTGAACAAGCT 

Gag6R AAAATGGTCTTACAATCTGG 

 

  

Figure 3: Diagram of positions of the primers used for sequencing. Forward primers shown in orange 

and reverse primes shown in purple 
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Figure 4: SDS PAGE showing the purification profile of (A) wild-type protease and (B) L38↑N↑L protease. 

The molecular weight is shown in the first lane of each gel. The purification steps, from cell lysis to final 

product, are shown from left to right. 
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Using a fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2) that mimics the capsid/p2 

cleavage site, the steady-state kinetics of each protease was determined (Table 2). The KM, specific 

activity and kcat for L38↑N↑L was approximately half that of the wild-type while the Vmax was similar 

between the two enzymes. The catalytic efficiency (kcat/KM) of the L38↑N↑L protease is 12-fold less 

than that of the wild-type protease. The L38↑N↑L specific activity is approximately 2-fold lower 

than that of the wild-type. IC50 values were used to calculate the inhibition constants for each drug 

(Table 3). The Ki for L38↑N↑L for LPV was 10-fold less than the wild-type protease and 3-fold less 

for DRV. The Ki for ATV was, however, three-fold higher for L38↑N↑L than for the wild-type 

protease. 

 

Phenotypic Susceptibility and Replication Capacity 

A phenotypic viral assay was conducted to determine the susceptibility of L38↑N↑L to protease 

inhibitors in the presence of a Gag sequence. It was found that the L38↑N↑L protease was 

susceptible to LPV (L38NL: 4.0 ± 0.8 nM and WTGAG L38NL: 4.4 ± 1.2 nM) and ATV (L38NL: 4.2 ± 

0.7 nM and WTGAG L38NL: 4.4 ± 0.4 nM) with either the mutated or wild-type subtype C Gag 

sequences. This was due to the IC50 not being 2.9-fold greater than the wild-type (LPV and ATV: 1.4 ± 

0.5 nM) (Figure 5). The L38↑N↑L protease showed reduced susceptibility to DRV with both wild-

type and mutated Gag (Figure 5). In the presence of the mutated Gag L38↑N↑L protease was less 

susceptible to DRV than when in the presence of the wild-type subtype C Gag. The DRV IC50 for 

L38NL (1.6 ± 0.2 nM) was 5-fold higher than wild-type (0.3 ± 0.05 nM), above the 1.3-fold cut off. 

WTGAG L38NL IC50 for DRV (1.0 ± 0.2 nM) was 3-fold higher than wild-type. The resistant control 

showed high-level resistance (FC>10) for all three PIs. An analysis of the RC (Figure 6) showed the 

L38NL pseudovirion to have a reduced RC (24%) while the WTGAG L38NL pseudovirion showed an 

increased RC (120%) when compared to the wild-type sample. The drug resistant control showed the 

lowest RC (13%). 

Analysis of L38↑N↑L Gag 

The accompanying Gag of L38↑N↑L was sequenced to determine if there were any drug resistance 

mutations present. The following mutations were found in the cleavage sites: T370A, M374V, R376G 

in the p2/NC cleavage site, E424G in the NC/p1 cleavage site and N448S in the p1/p6 cleavage site. A 

duplication of the PTAPP motif, was seen downstream of p1/p6 cleavage site. Multiple 

polymorphisms were also observed in the non-cleavage site regions as seen in Figure 7. 
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Table 2: The steady-state kinetic parameters determined for wild-type and L38↑N↑L protease 

 

 

 

 

 

 

 

 

Table 3: The Ki (nM) values obtained for wild-type and L38↑N↑L protease against the drugs LPV, ATV 

and DRV 

 

 

  

Parameter Wild-type PR L38↑N↑L 

KM  (µM) 14 ±1.7 7 ±0.9 

Vmax (µmol.min-1) 0.01 ± 0.0003 0.01 ± 0.0003 

Specific activity 

(µmol.min-1.mg-1) 

21.0 ± 1.1 12.1 ± 1.1 

kcat (s-1) 7.7±0.4 4.5 ± 0.4 

kcat/KM (s-1.µM-1) 12.2 ± 0.48 1.0 ± 0.004 

  

Protease LPV ATV DRV 

Wild-type 2.1 ± 0.2 1.2 ± 0.1 1.4 ± 0.2 

L38↑N↑L 0.2 ± 0.02 3.5 ± 0.7 0.4 ± 0.02 
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Figure 5: Phenotypic susceptibility of pseudoviruses to approved protease inhibitors. 

The phenotypic susceptibility of the wild-type control, L38NL sample with the L38↑N↑L protease and the 

accompanying Gag sequence (L38NL), the L38↑N↑L protease with a wild-type subtype C Gag (WTGAG 

L38NL) and drug resistant control (protease mutations: L10I, K20R, E35D, M46I, I54V,Q61H, I62V, L63P, 

T74S and V82A ) is shown. ***p<0.001, ****p<0.0001, ns = not significant. 
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Figure 6: Relative replication capacity (RC) of the pseudovirions. 

The relative replication capacity of each pseudovirus was compared to the wild-type. The L38NL 

pseudovirus showed a reduction in replication capacity of 76% while WTGAG L38NL showed an 

increase of 20%. The drug resistant control had a replication capacity of 13%. 
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Wild-type      MGARASILRG GKLDKWEKIR LRPGGKKHYM LKHLVWASRE LERFALNPGL LETSEGCKQI 
L38↑N↑L      MGARASILRG EKLDKWEKIR LRPGGKKHYM LKHLVWASRE LERFALNPSL LETAEGCEQI 
              **********  ********* ********** ********** ********.* ***:***:** 

 

Wild-type      IKQLQPALQT GTEELRSLYN TVATLYCVHE KIEVRDTKEA LDKIEEEQNK SQQKTQQAKA 
L38↑N↑L      MKQLQPALQT GTEELRSLFN TVATLYCVHK GIDVRDTKEA LDRIEEEQNK SQQKTQPAKA 
              :********* ********:* *********:  *:******* **:******* ****** *** 

      MA/CA  

Wild-type      ADGKVSQNYP IVQNLQGQMV HQAISPRTLN AWVKVIEEKA FSPEVIPMFT ALSEGATPQD 
L38↑N↑L      ADEKVSQNYP IVQNAQGQMI HQAISPRTLN AWVKVVEEKA FSPEVIPMFT ALSEGATPSD 
              ** ******* **** ****: ********** *****:**** ********** ********.* 

 

Wild-type      LNTMLNTVGG HQAAMQMLKD TINEEAAEWD RLHPVHAGPI APGQMREPRG SDIAGTTSTL 
L38↑N↑L      LNTMLNTVGG HQAAMQMLKE TINEEAAEWD RLHPVHAGPV APGQLREPRG SDMAGTTSTL 
              ********** *********: ********** *********: ****:***** **:******* 

 

Wild-type      QEQIAWMTSN PPIPVGDIYK RWIILGLNKI VRMYSPVSIL DIKQGPKEPF RDYVDRFFKT 
L38↑N↑L      QEQIAWMTAN PPIPVGDIYK RWIILGLNKI VRMYSPVSIL DIKQGPKEPF RDYVDRFYKT 
              ********:* ********** ********** ********** ********** *******:** 

               CA/p2 

Wild-type      LRAEQATQDV KNWMTDTLLV QNANPDCKTI LRALGPGATL EEMMTACQGV GGPSHKARVL 
L38↑N↑L      LRAEQCTQDV KNWMTDTLLV QNANPDCKII LKGLGPGASL EEMMTACQGV GGPSHKARVL 
              *****.**** ********** ******** * *:.*****:* ********** ********** 

         p2/NC 

Wild-type      AEAMSQANNT NIMMQRSNFK GPKRIVKCFN CGKEGHIARN CRAPRKKGCW KCGKEGHQMK 
L38↑N↑L      AEAMSQANNA NIMVQGSNFK GPRRIVKCYN CGKEGHIAKN CRAPRKKGCW KCGKEGHQMK 
              *********: ***:* **** **:*****:* ********:* ********** ********** 

      NC/p1            p1/p6 

Wild-type      DCTERQANFL GKIWPSH--G RPGNFLQNRP EPTAPPAE-- -----SFRFE ETTPAPKQEP 
L38↑N↑L      DCDGRQANFL GKIWPSHKGG RPGNFLQSRP EPTAPPAEPT APPAESFRFE EATTAQRQEQ 
              **  ****** *******  * *******.** ********        ***** *:* * :**  

 

Wild-type      KDR-EPLTSL KSLFGSDPLS Q 
L38↑N↑L      KEREQPLISL KSLFGSDPFQ K 
              *:* :** ** ********:. :                                        

Figure 7: Alignment of Gag sequences of wild-type Subtype C and the L38↑N↑L variant. The 

cleavage sites are indicated in red and PTATPPAE insertion indicated in blue. The sequence 

alignment was generated using the Clustal Omega tool (EMBL-EBI). 
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Discussion 

Use of HIV-1 protease inhibitors has greatly improved the response to ARV regimes. However, 

resistance to HIV-1 protease inhibitors is a problem. Mutations occur rapidly due to reverse 

transcriptase lacking proof reading capabilities. Mutations occurring in HIV-1 protease may be major 

(occurring at the active site), minor (occurring in regions distal to the active site) or may be 

insertions of 1 – 6 amino acids. Insertion mutations occur rarely and thus have not been well 

characterised, especially in subtype C viruses. Here we show the drug susceptibility of a subtype C 

protease containing a double insertion. 

The L38↑N↑L and wild-type proteases were expressed and purified from inclusion bodies, with an 

80% and 90% activity, respectively. An analysis of the KM indicated that the L38↑N↑L variant had an 

increased affinity for the substrate mimicking the CA/p2 cleavage site. Although the maximum 

velocity (Vmax) was approximately the same as that of the wild-type protease, the turnover number 

was approximately 2-fold less. This indicates that L38↑N↑L cleaves 2-fold less substrate per second 

than wild-type. The catalytic efficiency (kcat/KM) of L38↑N↑L was 10-fold less than that of wild-type 

and shows a smaller proportion of substrate being converted to product when compared to wild-

type. This confirms the findings of Kozísek et al. (2008) [12], who showed that amino acid insertions 

in the hinge region of HIV-1 protease reduce the catalytic efficiency. A mechanistic reason for the 

reduced efficiency could be due to the flap region remaining closed for a longer period than the 

wild-type, as shown by molecular dynamics simulations studies (manuscript under review). This, in 

turn, would hinder substrate binding and result in decreased product formation. The reduced 

specific activity of the L38↑N↑L confirms that the catalytic efficacy of L38↑N↑L was reduced 

compared to wild-type. The affinities of LPV and DRV were increased for L38↑N↑L as displayed by 

the decrease in inhibitory constant (Ki). However, in the presence of ATV, a 3-fold decrease in affinity 

was observed for the L38↑N↑L, although this was not large enough to indicate resistance. This 

indicates that these HIV-1 protease inhibitors would inhibit variant protease without a Gag region 

present. 

Resistance to PIs occurs with the accumulation of mutations in the HIV-1 protease, which may lead 

to a reduced replication capacity of the virus as the affinity for its natural substrate has decreased [9, 

20, 21]. There are, however, mutations that occur in Gag that will partially restore the replicative 

capacity of the virus and thus Gag mutates to compensate for mutations in HIV-1 protease [20, 22]. 

These mutations can occur in cleavage sites or elsewhere [20]. Resistance to HIV-1 protease 

inhibitors is not only due to the HIV-1 protease itself but also due to amino acid substitutions in the 



90 
 
 

 

Gag cleavage sites [20, 23]. However, when patients are failing therapy, drug resistance mutations in 

Gag are typically not considered. 

A phenotypic assay was conducted to determine the effect of the L38↑N↑L insertion mutation on 

the in vitro drug susceptibility to PIs. This was performed in conjunction with an unrelated wild-type 

control Gag, as well as the related Gag, to assess the phenotypic impact of Gag on drug susceptibility 

in the context of the L38↑N↑L insertion mutation. For LPV and ATV, no significant reduction in drug 

susceptibility was observed for either Gag-containing version of the L38↑N↑L protease. However, 

for DRV, both Gag-containing version of L38↑N↑L protease showed a small but significant decrease 

in DRV susceptibility relative to the wild-type. A reduced susceptibility to DRV for an insertion 

mutation at position 35 was also observed [12]. Furthermore, the decrease in DRV susceptibility was 

significantly greater for the related Gag-containing L38↑N↑L protease than for the unrelated Gag-

containing L38↑N↑L protease, implicating Gag as a contributor towards drug resistance in the 

context of the L38↑N↑L insertion mutation. This underlines the importance of including the Gag 

region in PI resistance screening, as was also shown by Giandhari et al. [24]. 

Mutations in Gag cleavage sites have been linked to drug resistance [23] and several cleavage site 

mutations were observed in the related Gag sequence, including mutations in the p2/NC, NC/p1 and 

p1/p6 cleavage sites. Mutations in the non-cleavage site regions of Gag have also been linked to 

drug resistance; these include H219Q and R409K [25] and K437V and K436E [26]. The mutations 

reported here, to our knowledge, have not been reported to be linked with drug resistance. The 

PTAPP motif within p6-gag is a proline rich domain that is responsible for recruiting Tsg101, a cellular 

factor involved in budding of the virus. The PTAPP duplication, a common polymorphism in Gag, is 

more common in subtype C viruses [27]. This could be due to the absence of the Alix-binding YPXnL 

motif in p6-gag, which aids in budding and so a duplication of the PTAPP is a compensatory 

mechanism for viral budding [28]. The Alix motif is mutated in more than 95% of subtype C viruses 

[29]. PTAPP duplications are selected for in viral isolates from HAART treatment [30] and PTAPP 

duplications accumulate in subtype C isolates with a smaller number of HIV-1 protease inhibitor 

resistance mutations as compared to subtype B [28]. It has been suggested that PTAPP duplications 

may play a role in subtype C virus susceptibility to HIV-1 protease inhibitors due to its position close 

to the cleavage site as it may be responsible for an important secondary structure conferred by 

proline residues [28]. The PTAPP duplication has been linked to poor virological response to the PI 

amprenavir (APV) [31]. The loss of susceptibility to PIs, or any ARV drug, may be due to enhanced 

budding in the presence of drugs [31].  
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The reduction in viral fitness is not uncommon in viruses that are evolving to escape drug pressure 

[21, 32].  The selection for drug resistance mutations in HIV-1 protease often results in a loss of 

replication capacity, which is then compensated for by the selection of additional compensatory 

mutations in Gag [33]. We have observed a reduction in the relative replicative capacity of the 

L38↑N↑L protease in the context of its related Gag. Kozísek et al., (2008) [12] also showed that a 

HIV-1 protease containing amino acid insertions in the hinge region display reduced replicative 

capacity in the presence of a mutated Gag. It is unclear whether the mutations/polymorphisms 

observed in the related Gag were selected for as a consequence of the L38↑N↑L insertion mutation 

in the HIV-1 protease, especially since our RC studies have shown a debilitating effect of the related 

Gag on the replication capacity of the L38↑N↑L protease. However, the possibility exists that 

changes in the related Gag occurred independent of the L38↑N↑L insertion mutation. In fact, it has 

been shown that mutations can develop in Gag without any mutations being present in the HIV-1 

protease [26].  

In summary, catalytically active L38↑N↑L variant protease was successfully purified and found to 

have reduced efficiency when compared to wild-type protease. L38↑N↑L protease is susceptible to 

LPV, ATV and DRV without a Gag sequence present. Phenotypic assays with a Gag sequence showed 

that the L38↑N↑L variant has reduced susceptibility to DRV. The L38↑N↑L protease was less 

susceptible to DRV when the mutated Gag was present indicating that Gag plays a role in drug 

susceptibility here. The duplication of the PTAPP motif may play a role. The mutated Gag lowered 

the replication capacity indicating mutations may have occurred in this region before the HIV-1 

protease insertion mutations, possibly implicating an alternative mechanism for drug resistance 

developing in this patient. 
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CHAPTER 5 
GENERAL DISCUSSION 

5.1 Overexpression and purification of HIV-1 protease using Trx-His 
tag 
The use of protein and peptide tags are very popular for purifying recombinant proteins. Affinity tags 

have the following features; a one-step adsorption purification, minimal effect on tertiary structure 

and biological activity of the recombinant protein and easy and specific removal of the tag [120]. A 

tag can be a small peptide such as poly-Arg-, FLAG-, poly-His-, c-myc-, S-, or Strep II-tag. The 

advantage of the small peptide tag is that under certain conditions it is not necessary to remove the 

tag.  

A polyhistidine tag (His-tag) is widely used in the purification of recombinant proteins. Immobilised 

metal affinity chromatography (IMAC) is used to purify the His-tagged protein. IMAC is based on the 

interaction between a transition metal (commonly Co2+, Ni2+) immobilised on a matrix and the 

histidine side chain as it exhibits the strongest interaction. The electron donor groups of the histidine 

ring form coordination bonds with the immobilised transition metal. Once bound to the immobilised 

transition metal, the tagged recombinant protein can be eluted with the use of imidazole. A 

disadvantage of using imidazole is that it can influence NMR experiments, competition studies, 

crystallographic trials and its presence may cause protein aggregation [121]. The placement of the 

His-tag, on the N- or C-terminus, is dependent on the function of protein and can be placed at either 

end. The success of this tag is seen in the multiple expression systems it has been used with, which 

include; bacteria, yeast, mammalian cells, baculovirus-infected insect cells [120].  

In cases where solubility is a problem, as with HIV-1 protease, a fusion protein may be used to 

improve solubility. These include maltose binding protein [122], thioredoxin (Trx) [123] or 

glutathione S-transferase [124]. It is unclear how these proteins enhance solubility but several 

hypotheses have been proposed [125]. These include the fusion protein acting as an electrostatic 

shield and reducing aggregation by electrostatic repulsion between highly charged soluble 

polypeptide extensions [126]. It has been proposed that the fusion proteins are chaperone magnets 

and that solubility results from interactions with endogenous chaperones [127]. Solubility enhancers 
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may also have an innate, passive chaperone-like quality that manifests itself by intramolecular 

binding to the fusion partner in a manner that prevents their self-association and aggregation [128–

131]. The present study used a Trx fusion protein to improve solubility and reduce toxicity of the 

HIV-1 protease. Both improvement in the solubility and a reduction in toxicity, as observed by 

increased expression, were seen for L38↑N↑L, which was expressed in the soluble fraction. Overall, 

a reduction in toxicity was observed as there was a great improvement in expression from the 

previous expression system, which involved expression of the HIV-1 protease as part of a gag-pol 

construct and purification using ion exchange chromatography. The amount of wild-type protease 

purified was increased from 0.83 to 2.5 mg/L of culture medium and 1.5 mg/L of L38↑N↑L was 

obtained.  

Commonly, fusion tags need to be removed to carry out down-stream processes such as 

crystallography. The most common proteases that are used for cleavage of the tag are enterokinase, 

tobacco etch virus, thrombin, and factor Xa. The protease utilised in this study was thrombin. 

Thrombin cleavage can be carried out between 20-37 °C. Thrombin cleavage results in the retention 

of two amino acids on the C-terminal side of the cleavage site of the recombinant protein. The 

thrombin can be removed from the target protein by affinity chromatography using Benzamidine 

SepharoseTM. A minimum concentration of 150 mM NaCl is required to prevent non-specific binding 

of the HIV-1 protease to the Benzamidine SepharoseTM, which proved problematic for this study. 

HIV-1 protease activity is increased with increased ionic strength [132–134]. Polgár et al. (1994) 

showed that the activity of HIV-1 protease significantly increased (4-fold) from 0-1 M NaCl [132] and 

Hyland et al., (1991) showed that this effect with NaCl is not saturable [60]. This increased activity of 

the HIV-1 protease may be attributed to the increased stability that the NaCl provides the enzyme 

[133, 134]. Therefore, incubation of the fusion protease with thrombin in a buffer containing 

150 mM NaCl resulted in enhanced autolytic activity due to the presence of the NaCl.   

Determining the concentration of HIV-1 protease active sites by isothermal titration calorimetry 

showed that the proteases purified using the fusion method had a low percentage of active sites, 9% 

for L38↑N↑L and 13% for wild-type. This is attributed to the overnight incubation in 150 mM NaCl 

during thrombin cleavage, which would increase HIV-1 protease activity and, therefore, increase 

autolytic activity. Although a Q7K mutation was included to reduce autolytic activity [135], it does 

not entirely knock this process out. A possible solution is to include the following substitutions in the 

HIV-1 protease; L33I and L63I. These have shown to reduce autolytic activity while still maintaining 

the functionality of the HIV-1 protease [136]. Mildner et al., showed that after incubation of the 
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Q7K/L33I/L63I mutant at room temperature for 11 days at pH 5.5 (a pH at which the HIV-1 protease 

is most active) there was no loss of activity and minimal loss of protein due to autolysis as opposed 

to wild-type which lost 40% of its activity [136].  

 

5.2 Molecular Dynamics and Induced-fit docking 
Molecular dynamics simulations have been vital in our understanding of proteins as dynamic 

structures rather than rigid structures. The first molecular simulation of a protein was published in 

1977 [137] and in the last 40 years the technique has advanced greatly due to the increase in 

computing power. Molecular dynamics simulations have become an important tool in studying 

proteins. Regions of proteins that may be difficult to view using crystallography, such as loops can be 

modelled using molecular dynamics. The movement of proteins in solution can be modelled and the 

movement of flexible regions for example the flap region in HIV-1 protease can be viewed. 

Molecular dynamics, however, cannot replace in vitro studies and it is important to confirm results 

found in silico, in vitro. 

The dynamics of many proteins have been studied using simulations and HIV-1 protease is no 

exception. The flap region has been of particular interest [138–142] due to its importance in 

substrate binding: the flaps open to allow substrates to bind and close upon substrate binding [139]. 

In the apo-form the flaps can exist in three conformations; open, semi-open and closed [140]. The 

dominant conformation in solution is thought to be the semi-open [140]. There are different ways of 

measuring the opening and closing of the flap region: the distance between two Ile50 residues (one 

in each flap tip) can be measured and the distance between the catalytic residue (Asp25) and Ile50 

[141]. 

The distance between Ile50 residues [141] in the flap tips is measured to determine whether the 

flaps are in the open or closed conformation. This residue is chosen because it is highly conserved 

and occurs on the tip of the flap. The distance between the Asp25 and Ile50 can be chosen instead of 

the distance between Ile50 residues due to flap curling that occurs [141]. A comparison of the 

difference between these two approaches is seen in Figure 7A (distance between Ile50 residues) and 

Figure 7B (distance between Asp25 and Ile50). The flaps need to curl in order to open. Curling, 

however, does not have to occur symmetrically and one flap may curl more than the other. This can 

be seen in Figure 7C. The flap of chain B in both wild-type and L38↑N↑L curls inward (~115°) more 
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than the chain A flap and so the distances between Ile50 and Asp25 in chain B are more varied than 

that of Chain A.  
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Figure 7: Comparison of methods to determine flap conformation. The distance between Ile50 residues 

in each monomer was measured in (A). The distance between Ile50 and Asp25 was measured for each 

chain in (B). The flap curling for each chain was measured in (C). Structures were generated in PyMol (The 

PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). 
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For this reason, the distances between Ile50 residues in each residue was chosen to determine when 

the flaps are in the open and closed conformations. 

The flap region of L38↑N↑L was found to be less dynamic than that of the wild-type protease and 

remained in the closed conformation (4 Å apart) for most of the simulation. It has long been thought 

that the flap regions of HIV-1 protease remain in the semi open conformation in solution when not 

bound to an inhibitor. Upon inhibitor binding the flap region adopts and remains in the closed 

conformation. This closed conformation is maintained due to the high energy barrier the HIV-1 

protease would have to overcome to open the flaps [143]. Recently, it has been shown using NMR 

studies that inhibitor-free HIV-1 protease can adopt a closed conformation in solution [144], 

confirming the finding shown here by molecular simulation. 

Docking ligands to protein active sites is an important technique in drug discovery. It aids in the 

identification of novel compounds that may possibly bind to the target without the expense of in 

vitro testing. However, it cannot be used in isolation and in vitro testing must still occur. It is 

advantageous in that it will minimise the number of compounds that need to be tested and so only 

the best hits are used. Traditionally, docking was performed using a flexible ligand that is positioned 

into a rigid binding site. The main reason for the rigid protein is due to computational feasibility. This 

method of docking is representative of the lock-and-key model of ligand binding to a protein 

suggested by Emil Fischer in 1890. This, however, is not a true representation of what occurs in vitro. 

Proteins and ligands are dynamic in solution and have to be modelled as such. It has become clear 

that protein flexibility is crucial to the receptor-ligand complex formation and must be considered in 

silico [145, 146]. Induced-fit docking has the benefit of including the motions of both the protein and 

ligand. This is representative of the induced-fit model of ligand binding to a protein. Induced-fit 

docking is more representative of what is occurring in vitro and thus is a preferred method of 

docking drugs to a protein. Docking of the drugs LPV, ATV and DRV to L38↑N↑L showed a reduction 

in the number of hydrogen bonds formed and hydrophobic contacts made. Two hydrophobic 

contacts were lost between LPV and L38↑N↑L but there was an addition of hydrogen bonds 

between the side chains of Arg8, Asp29 and Asp30 and LPV. L38↑N↑L and ATV gained five 

hydrophobic contacts and lost hydrogen bonding between the side chains of Arg8 and Asp30. There 

was a loss of only one hydrophobic contact for L38↑N↑L and DRV and no loss of hydrogen bonding. 

The pattern of hydrogen bonding is shown in Figure 8. 
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Figure 8: Hydrogen bonds formed between wild-type and L38↑N↑L protease and LPV, ATV and DRV. 

LPV binding to L38↑N↑L results in the loss of the hydrogen bond between Ile50 and LPV but new 

hydrogen bonds between Arg8, Asp29 and Asp30 and LPV are formed. ATV binding to L38NL resulted in a 

loose of hydrogen bonds between ATV and Asp30’ and Arg8’. The hydrogen bonds between DRV and 

L38↑N↑L are maintained. Image generated using PyMol (The PyMOL Molecular Graphics System, 

Version 1.8 Schrödinger, LLC).  

Wild-type L38↑N↑L 
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Future work resulting from these in silico experiments would be using ITC to determine the 

thermodynamic parameters and dissociation constant for each of the drugs to L38↑N↑L. To 

confirm the flap dynamics observed, hydrogen-deuterium exchange mass spectrometry can be used 

as was done previously in our laboratory [147]. NMR studies can be performed such as Louis and 

Roche (2016) [143], who showed that binding of HIV-1 protease inhibitors traps the enzyme in an 

energy minimum of the closed postion . Importantly, a crystal structure of the variant needs to be 

obtained in the apo- and drug-bound forms.  

 

5.3. Drug susceptibility 

The challenge faced by treatment of HIV and AIDS is the occurrence of drug resistance [148]. WHO 

estimates that half of the people infected with HIV are on therapy [149] and this means many more 

people will be faced with resistance to drugs than in the past. There are two ways of determining 

drug resistance, genotyping and with phenotypic assays. The phenotypic assay is expensive and time 

consuming as it involves measuring replication of the virus (with clinically-derived RNA) in the 

presence of different drugs. Genotyping, which is more efficient, involves sequencing the viral 

genome and identifying mutations that have been associated with drug resistance. A list of all 

mutations that cause drug resistance has been compiled and is regularly updated [150].  Databases, 

such as the Stanford University HIV Drug Resistance Database, are usual tools for identifying 

whether a given sequence contains a drug resistance mutation [151–153]. Upon analysing the 

protein sequencing of L38↑N↑L, using the HIV Drug Resistance Database, it was found that there 

were no drug resistant mutations present. This database, however, does not include any amino acid 

insertions for HIV-1 protease and so it is important to determine what effect the presence of these 

insertions may have on drug resistance phenotypically.  

The functionality of L38↑N↑L was analysed using Michaelis-Menten steady-state enzyme kinetics. 

L38↑N↑L displayed a lower KM, which normally would be indicative of a greater catalytic efficiency 

but this was not the case. The catalytic efficiency of L38↑N↑L was 12-fold lower than the wild-type 

protease. This confirms the findings of Kozísek et al., (2008) [118] and Sasková et al., (2014) [154] 

and also explains the reduced replicative capacity of the pseudovirus as a less efficient enzyme 

would result in reduced infectivity of the virus. If the variant protease is not as efficient as the wild-

type protease the virus will not be able to replicate as efficiently as a wild-type virus. The low 
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catalytic efficiency could be attributed to the reduced flap dynamics seen by L38↑N↑L. If the flap 

regions remain predominantly in the closed conformation the HIV-1 protease will not be able to bind 

the substrate. The inhibitory constant for L38↑N↑L in the presence of LPV, ATV and DRV was 

determined and it was found that these drugs would inhibit L38↑N↑L.  

Using phenotypic assays, it was shown that a virus containing the L38↑N↑L protease was 

susceptible to LPV and ATV with or without a mutated Gag. The L38↑N↑L  IC50 values for LPV and 

ATV were both increased from wild-type IC50 values but were not significantly different to indicate a 

reduced susceptibility. The virus containing L38↑N↑L showed reduced susceptibility to DRV, which 

was not expected because of the Ki value determined in the absence of a Gag sequence. This finding 

implies that the Gag region may play a role in reduced DRV susceptibility that was seen. 

The importance of the Gag region to drug susceptibility was highlighted by the small but significant 

increase in DRV IC50 when the mutated Gag (IC50 =1.6 ± 0.2 nM, 5-fold higher than wild-type), as 

opposed to the wild-type Gag (IC50= 1.0 ± 0.2 nM, 3-fold higher than wild-type), was present. 

Mutations in Gag cleavage sites [42] and non-cleavage site positions  [155, 156] can contribute to 

HIV-1 protease inhibitor resistance. Upon evaluation of the variant Gag sequence, it was found not 

to include any mutations in the cleavage sites, and elsewhere, that are known to cause drug 

resistance. It does, however, contain a duplicated PTAPP region.  The PTAPP motif is within p6 and is 

responsible for recruiting Tsg101, a cellular factor involved in budding of the virus. This region has 

been contentious in the drug resistance debate. Some suggest that this region does contribute to 

drug resistance [157–161] while others report that this is a common polymorphism in different 

subtypes [162–164]. PTAPP duplication is common to subtype C viruses and this is attributed to the 

deletion of the Alix-binding YPXnL motif in p6, which aids in budding [159, 165]. Poor virological 

response to APV has been linked to the PTAPP duplication [158]. It cannot be discounted as the 

reason for the decreased susceptibility to DRV seen here but neither can it be confirmed. The PTAPP 

motif may result in a loss of susceptibility to HIV-1 protease inhibitors due to enhanced budding in 

the presence of drugs [158]. 

Replicative capacity of the pseudovirus containing L38↑N↑L and its associated Gag was greatly 

diminished. Kozísek et al., (2008) [118] also showed that a HIV-1 protease containing amino acid 

insertions reduced replicative capacity in the presence of a mutated Gag. However, it was not shown 

what the effect of this HIV-1 protease alone had on replicative capacity by using a wild-type Gag 

sequence. The present study showed that replicative capacity was restored when the wild-type Gag 
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was present. This finding makes it difficult to suggest that HIV-1 protease acquired mutations before 

Gag and that the mutations found in Gag occurred to compensate for mutations in HIV-1 protease. 

However, it does suggest that Gag may have acquired mutations before HIV-1 protease and that 

HIV-1 protease mutated to compensate. This is not unusual as it has been shown that Gag can 

acquire mutations without any mutations being present in HIV-1 protease [156]. 

Genotypic analysis of a HIV-1 protease sequence is not enough to determine if the virus is resistant 

or displays reduced susceptibility to HIV-1 protease inhibitors. This is because it does not consider 

mutations in regions other than reverse transcriptase, integrase and HIV-1 protease. The importance 

of considering the Gag region when looking at drug resistance is not only highlighted in this study 

but also by Giandhari et al. [166].  Future work would include phenotypic analysis of the mutated 

Gag sequence with a wild-type HIV-1 protease to determine whether the reduced DRV susceptibility 

observed is solely due to the Gag sequence. 
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CONCLUSIONS 

L38↑N↑L and wild-type protease were both successfully overexpressed and purified using a Trx-His tag 

fusion system. This fusion system reduced cytotoxicity during overexpression and improved yield during 

purification. Molecular dynamics showed that the flap region of L38↑N↑L was less dynamic than that of 

wild-type protease. This reduced movement could be a possible mechanism to evade drug binding. 

Induced-fit docking showed that the drugs LPV, ATV and DRV would bind L38↑N↑L albeit with a 

reduction in hydrogen bonds and hydrophobic contacts. This finding was confirmed by determining the Ki 

of each drug binding to L38↑N↑L, which indicated that all drugs would inhibit L38↑N↑L. Catalytic 

efficiency of this variant was reduced and may be attributed to the extended time the flap region of this 

HIV-1 protease spends in the closed conformation as shown by molecular dynamics. The associated Gag 

region of L38↑N↑L possibly contributes to reduced DRV susceptibility seen in phenotypic assays. The 

replication capacity of a pseudovirus containing L38↑N↑L and its associated Gag was greatly reduced. 

Upon replacement of the Gag with a wild-type Gag, replication capacity was restored. This implicates Gag 

as having mutated first and then the HIV-1 protease mutating to compensate for the mutated Gag 

substrate.  
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