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Abstract

Bioequivalence (BE) studies are conducted to demonstrate that two drug for-

mulations produce similar bioavalabilities or therapeutic effect and safety when

used. During this study, drug concentrations are obtained several times over

a given period of time and a concentration vs. time graph is constructed. For

a generic drug to be approved, this BE studies are conducted and the generic

drug must be demonstrated to be therapeutically equivalent to the innovator

drug.

This study utilised a standard 2× 2 crossover design to randomly assign sub-

jects to each of the two sequences. Statistical methods such as confidence in-

tervals, Schuirmann’s two one-sided and Wilcoxon-Mann-Whitney tests were

used to assess average bioequivalence (ABE). However, there are concerns that

the use of ABE alone is not appropriate for drugs with high intra-subject and

inter-subject variabilities. Under such a circumstance, population bioequiv-

alence (PBE) and individual bioequivalence (IBE) are proposed. This study

employs the PBE approach but not the IBE as it is not possible to perform

IBE on the available data. Results indicated that the generic drug is average

bioequivalent to the innovator drug although Cmax was outside the regulatory

range set by the Food and Drug Administration (FDA).

Most biological data are modelled using nonlinear fixed effect models. Popula-

tion pharmacokinetic (PK) modelling has been used in clinical pharmacology

to identify the sources of PK variability in the target population. This study

was conducted to determine the characteristics of the PK parameters of the

orally administered antibiotic given to pigs using a population approach. A

population PK model was developed using a nonlinear mixed effects model

(NLMEM) with a one-compartment model using different residuals. For the

NLMEM, the stochastic approximation expectation maximisation (SAEM) al-

gorithm was implemented in MONOLIX. The models were used to estimate
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the population PK parameters and diagnostic plots obtained for model eval-

uation. The results showed that the combined residual error model fitted the

data better than the constant error model.

In addition, this study sought to find optimal sampling times which will min-

imise the number of blood samples required for pharmacokinetic study. The

optimal sampling times were generated from a one compartment model and

implemented in MATLAB. The parameters used in the optimisation were es-

timated from the population PK model. These sampling times were generated

using the simulated annealing (SA) algorithm.

Keywords: Bioavailability, Bioequivalence, generic drugs, reference drugs,

average bioequivalence, population bioequivalence, individual bioequivalence,

pharmacokinetics, pharmacodynamics, therapeutic window, confidence inter-

val, nonlinear fixed effects model, two one-sided tests, maximum likelihood,

population parameters, optimal sampling design, concentration-time curve,

model evaluation, Visual predictive checks (VPC), Normalised prediction dis-

tribution errors (NPDE), Stochastic approximation expectation maximisation

(SAEM) algorithm.
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Chapter 1

Introduction

1.1 Background of the study

Some patients live most of their lives on drugs in order to control certain con-

ditions or cure illnesses. Some of these patients suffer from conditions such

as epilepsy or asthma which require regular use of drugs. These patients take

drugs to relieve pains which they feel most often. Whenever drugs are pre-

scribed by medical doctors and given by pharmacists to subjects, a schedule

of the quantity and time during which the drugs should be taken is prescribed

and generally referred to as dosage regimen. Dosage regimen refers to a sched-

ule of doses of a therapeutic agent per unit of time including the time between

doses, for example, every 2 hours or time the doses are to be taken, for exam-

ple, 9am and 5pm daily, or the amount of medicine, for example, number of

capsules, to be given at each specific time (Rowland and Tozer, 1995). The

duration of the drug therapy and the dosage regimen depends on the objective

which could be a prevention of the disease, cure or reduce the severity of the

disease.

Answers to therapeutic questions were obtained using a trial and error ap-

proach in the past (Rowland and Tozer, 1995). With the trial and error ap-

proach, the dose, the interval between the dose and the route of administration

are selected by the pharmacist. The medical doctor then follows the effect of
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the drug on the subject, takes note of the desired effects of the drug such as

pain relief and any complex issues arising from it. The dosage regimen may

then be adjusted until a suitable balance is obtained between the desired ef-

fects and the dose of the drug which may be harmful to the body. After a

substantial experimentation on a large number of subjects, a dosage regimen

which seems to be reasonable is established. In order to prevent the drugs

from being toxic to the body or being ineffective when taken when using the

trial and error approach, it is very important to examine what happens after

a drug is administered to a subject. In order to administer a drug optimally,

one needs to understand or have knowledge of the mechanisms of the drug

absorption, distribution, elimination and also the kinetics of these processes,

i.e. pharmacokinetics (Rowland and Tozer, 1995).

Drug administration can be divided into two phases, namely pharmacokinetic

phase and pharmacodynamic phase (Rowland and Tozer, 1995). In the phar-

macokinetic phase, dose, dosage form (tablet, capsule, solution, etc), frequency

and route of administration are related to drug level-time relationships in the

body and in the pharmacodynamic phase, concentration of drug at the site(s)

of action is related to the magnitude of the effect(s) produced (Rowland and

Tozer, 1995). Pharmacokinetics (PK) is the study of the time course of the

absorption, distribution, metabolism and excretion (ADME) of a drug after

its administration to the body (Bauer, 2008). PK deals with the movement

of the drug in a body after its administration while pharmacodynamics (PD)

is the study of the relationship between the concentration of a compound at

its site of action, where the therapeutic targets are located and the magnitude

of the pharmacological response (Fan and de Lannoy, 2014). In simple terms,

PK describes what the body does to the drug while PD describes what the

drug does to the body (Abel-Rahman and Kauffman, 2004).

After a drug is administered into the body, it normally undergoes four dif-

ferent stages before being eliminated from the body. These four stages are
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known as ADME: Absorption (process where the drug is taken by the body

through the mouth), distribution (the process where the drug is carried by

the body through blood to action site), metabolism (the breaking of the drug

substance into by-products), and elimination (dispersion of the drug product

by the body).

In PK studies, after a drug is administered, the subjects are monitored for a

period and a certain number of blood samples are drawn to measure the time-

course of the plasma drug concentration (Choi, Caffo and Rohde, 2007). An

approximation of the concentration-time curve (CTC) is constructed. PK pa-

rameters such as area under the curve (AUC), maximum concentration (Cmax)

and time to reach maximum concentration (Tmax), are then estimated using

the observed drug concentration profile for each person. Optimisation of the

sampling times increases the accuracy of the PK parameters and reduces the

number of blood samples which are drawn from the subjects (Asyali, 2010).

This enables an optimum number of blood samples to be taken, which may

give better results and prevent inconvenience on the part of the subject.

Since the basic concepts of PK are common to all drugs, information from

the PK of one drug can be used in anticipating or projecting the pharmacoki-

netics of another drug. Knowledge of the pharmacokinetics of a drug helps

the pharmacist to predict the optimal dosage regimen for individual patients

and also what happens when a dosage regimen is altered (Rowland and Tozer,

1995). Whenever a new drug is discovered, an appropriate dosage form must

be developed for the drug to be distributed efficiently to the body so that the

body can obtain beneficial results from the treatment (Chow and Liu, 2008).

Different dosage forms could be designed for a drug to serve a specific pur-

pose. For example, liquid dosage forms may be appropriate and convenient for

different categories of individuals such as children and elderly people. Gener-

ally, most drugs are administered orally which are often in solid forms. These

solid drugs have to be dissolved in the blood or the tissues in the body after
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administration of the drugs in order to be absorbed by the body.

1.2 Definition of Bioequivalence studies

Bioequivalence (BE) studies are conducted by a generic pharmaceutical indus-

try as well as pharmaceutical companies that seek access to market generic

drugs of brand formulations when their patent expires. The PK parameters of

the CTC are used to demonstrate the safety and efficacy of the generic drug

(bioequivalence) instead of performing a clinical trial which is usually more

expensive and time consuming. These studies are usually conducted to reveal

that two drugs are similar to each other in terms of safety (non-therapeutic

side effects) and efficacy (therapeutic benefit) and therefore very important in

drug development (Patterson, 2003). They are carried out to meet regulatory

standards that are set by bodies such as the Food and Drug Administration

(FDA), European Agency for the Evaluation of Medicinal Products (EMEA)

and the South African Medicine Control Council (SAMCC) and are the main

focus of this dissertation.

A bioequivalence study is performed on the test drug to assess the clinical or

psychological effect. The motivation for this study is to assess the expected

in vivo biological equivalence of two proprietary preparations of a drug. If

two products are bioequivalent, it means that they would expect to be, for all

intents and purposes, the same.

1.3 Statement of the Research problem

When the right to produce and sell a drug expires, the company that devel-

oped the original drug (a base measurement for others) may try to develop a

new formulation with the same active ingredients (Rebull, Sanchez, Pla and

Pla, 2008). During the development period of the new drug formulation, BE

studies is used to address the issue of high costs of drugs as this study produces
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drugs which cost less compared to the reference drug. This is mostly done to

reduce the price of the drugs in the market and thereby making it affordable

to the general public whilst serving the same purpose as the reference drug.

Other companies may also try to develop a generic drug that is comparable in

dosage form, quality and strength to the original drug.

A generic (test) drug is a drug which has more or less the same chemical com-

position and is as effective, after it has been administered to a patient, as the

original (reference). To obtain approval to produce the test drug, the FDA,

SAMCC and other agencies require proof of equivalence between the reference

and test drug. The test drug, however, ought to be identical to the reference

drug in terms of efficacy, safety and usage. For the test drug to be accepted

and sold in the market, it needs to meet standards set by the FDA and other

agencies.

This concept, which is termed BE, is used to describe two drugs with two dif-

ferent dosage forms, yet have similar bioavailability and are pharmaceutically

equivalent both in terms of efficacy and safety after administration (Chow

and Liu, 2008). BE attracts global attention particularly in the pharmaceuti-

cal industry but is also of major concern to government agencies, healthcare

providers and individuals. BE addresses a typical question: ”Can a test drug

be prescribed for a subject who previously has been receiving the reference

drug without any significant change in therapeutic effect”?

A BE study is performed on the test drug to assess the clinical or psycholog-

ical effect. This study is done to enable drug switching to reduce the cost of

the drugs and to compare the test drug’s performance to that of the reference

drug. The motivation for this study is based on the urgent need to address

drug affordability as well as to have test drugs that have the same therapeutic

effect as the reference drugs.
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The concept of bioavalability (BA) refers to the rate and extent by which the

drug is available at the site of action (Chow and Liu, 2008; Rebull et al.,

2008). BA is expressed by several parameters obtained from the curve of the

concentration-time graph of each subject after a single dose administration

of a drug. The main BA parameters are Tmax, Cmax, AUC0−t, and AUC0−∞

(Chow and Liu, 2008).

The problem can be addressed by designing a study to compare formulations

of a reference drug with a generic drug with respect to pharmacokinetic pa-

rameters such as AUC, Cmax and Tmax. It is also desirable to determine the

optimal times blood samples are collected from subjects for the purpose of hav-

ing a better and precise estimate of the PK parameters and possibly reduce

the cost of the study and the inconveniences brought upon the subjects in the

study. During the design phase of BE studies, blood samples are drawn over

time from subjects administered with drugs and PK parameters are estimated.

The pharmacokinetic parameters often estimated or measured are AUC, Cmax

and Tmax. Based on the values of the PK parameter estimates, the drug could

be accepted as the test drug for the reference drug or rejected. The main aim

of this study is to determine if bioequivalence can be obtained using different

classical approaches and to determine the optimal sampling times for such a

study. This helps to reduce the cost of the bioequivalence study and reduce the

inconveniences to the subjects on whom the study is conducted. The findings

will help pharmaceutical companies to manufacture test drugs which can be

used to treat the same or similar conditions the reference drugs could do but

being more cost effective.

In most cases, modelling biological data involves fitting nonlinear models to

the available data. In PK, a subject’s reaction to a drug is studied which

usually is a quick increase in the concentration after the drug is given and a

gradual nonlinear decrease as it moves through the body to the action site

and eventually eliminated from the body. There are a number of methods

6



and software which are used in modelling population PK but are not able to

diagnose the model fit properly. This is addressed in this dissertation through

developing different models using a one-compartment model and checking the

model assumptions and goodness of fits for the models and visualising the

model diagnostics. Parameter estimates were determined which were used

from the optimal sampling times to determine bioequivalence.

1.4 Significance of the study

The rate and extent of BA could be affected or influenced by any small change

in the contents of the formula and compaction of the drug into tablets (Patter-

son, 2003). The use of test drugs as substitutes for the reference drugs enables

the market to be provided with inexpensive, efficacious and safe drugs without

necessarily repeating the entire clinical development of the drug, which drives

the need to conduct BE studies.

The cost of healthcare has been increasing over the past decades and the price

of drugs was identified as the main cause (Chow and Liu, 2008; Midha and

McKay, 2009; Kamerow, 2011). According to Gray (2009), a commission of

inquiry was established in South Africa in 1961, 1978 and 1985 to investigate

the escalating costs of healthcare which included medicines. The recommen-

dations of the three commissions of inquiry, namely the Snyman, Steenkamp

and Browne commissions, stated that patent legislation was the main cause of

high prices of drugs in the South African pharmaceutical market and identified

test drugs as a way to save the cost of healthcare (Gray, 2009).

The reference and test drugs are both available in the market; however, the

reference drugs are more expensive than the test drugs. The availability of

the test drug in the market helps to create competition between the reference

and the test drug which eventually results in a significant drop in the price of

the drugs resulting in making the drug affordable. However, for the test drug
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to be accepted and sold in the market, it needs to meet regulatory standards

which are set by regulatory bodies such as FDA, MCC and others.

According to Henry and Lexchin (2002), lack of access to the most important

drugs is not only a problem that faces less developed countries but also people

in the developed countries. Some of the people, especially elderly people and

people without medical insurance, are not able to afford the drugs they need

due to the high prices of these drugs. The introduction of the test drug form of

Omeprazole, as stated by Henry and Lexchin (2002), in the Australian market

saw a significant drop of 43% in the price of the reference drug Losec within a

period of 2 years and also a 97% drop in the price of the test drug form of the

combination antiretroviral drugs after being marketed by a test drug producer.

These significant price drops in the prices of the two drugs are illustrated in

Table 1.1.

Table 1.1: Effect of test drugs on the prices of drugs.

Omeprazole(Australian) Antiretroviral Combination Therapy

Generic product Branded product Generic product Branded product

Date
Price

(US$)
Date

Price

(US$)
Date

Price

(US$)
Date

Price

(US$)

November

1998
N/A

November

1998
43.28

July

2000
230.59

September

2000
869.92

November

1999
30.86

November

1999
31.27

September

2000
66.67

October

2000
77.58

November

2000
30.01

November

2000
30.63

February

2001
29.17

March

2001
59.33

November

2001
24.10

November

2001
24.51

August

2001
24.58

August

2001
59.33

The motivation for this dissertation is based on the urgent need to address the

issue of drug affordability as well as to have test drugs with similar therapeutic
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effects as the reference drugs. The findings will help inform pharmaceutical

companies to manufacture test drugs which can be used to treat similar con-

ditions to those treated by the reference drug but at an affordable price.

According to Karim, Pillai, Ziqubu-Page, Cassimjee and Morar (1996), the

escalation in the health care cost in South Africa is partly due to the high

costs of drugs. They further stated that test drugs have been identified as

a mechanism for healthcare cost reduction. This has led the Pharmaceutical

Society of South Africa (PSSA) to introduce the Maximum Medical Aid Price

(MMAP) as a payment option in the private sector to encourage the use of

test drugs. The study reviewed 1570 prescriptions which had 4086 items and

found that 45.7% of the total prescriptions had at least an item with a test

drug equivalent. However, only 0.3% of the prescribers were against test drug

substitutions. The reference drugs’ prices were 9.9% greater than their test

drugs’ prices (Karim et al. 1996) as indicated in Table 1.2.

Table 1.2: Prices of prescription (in Rands) received by 10 Pharmacists on 4

selected days.

Price of all 1570

Prescriptions
Mean price

Reference drug 189042.56 120.49

Test drug 172038.68 109.65

1.5 Aims

The aims of the study are to:

• Determine the optimal times blood samples could be taken from subjects

after administration of test drug formulations in order to estimate PK

parameters such as AUC, Cmax and Tmax;
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• Establish bioequivalence between the reference (R) and test (T) drug for-

mulations for both the original measurement and the simulated results;

and

• Do population Pharmacokinetic modelling.

1.6 Objectives

The key objectives of the study are to:

• Test for carryover effect, period effect and direct drug effect;

• Perform Analysis of variance (ANOVA) and use the results from the

ANOVA in the confidence interval to determine if the two formulations

are bioequivalent;

• Perform a Schuirmann’s two one-sided t-test (TOST) to assess average

bioequivalence (ABE) between the two formulations for AUC and Cmax;

• Carry out a non-parametric test i.e Wilcoxon-Mann-Whitney test on the

Tmax;

• Perform population bioequivalence;

• Determine the power of Schuirmann’s TOST for the hypothesis of for-

mulation effects, determine the size effect of the TOST;

• Use the nonlinear mixed effect model to develop a population pharma-

cokinetic model using a one-compartment model and estimate population

pharmacokinetic parameters;

• Determine optimal sampling times using simulated annealing algorithm;

• Perform BE studies using the optimised sampling times and the concen-

trations; and

• Compare the results of the classical methods obtained from the original

data to the optimised data.
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1.7 Dissertation Organisation

This dissertation consists of five chapters. The next chapter (Literature Re-

view) provides details of the history of BE studies and some of the methods

used in the assessment of bioequivalence studies. A further background of op-

timisation techniques which are used to obtain optimal sampling times in BE

studies are reviewed in this chapter. The research methodology as well as the

optimisation method for estimating sampling times using simulated annealing

algorithm are explained in Chapter 3. The results of the methods described in

Chapter 3 are presented and discussed in Chapter 4. Chapter 5 discusses the

conclusion and provides recommendations.

1.8 Limitations of the study

In this dissertation, the 2×2 crossover design which is widely used was adapted

even though it is not optimal. Higher crossover designs usually give better re-

sults compared to the 2× 2 design as they test for within and between subject

variability. The higher crossover design was not available for the data used in

this dissertation. This therefore led to the inability of performing IBE which

requires the higher order design.

The cost of the reference and test drugs were also not known so comparison to

ascertain if the test drug is cheaper than the reference drug was not carried out.

Other characteristics of the subjects such as weight and gender were not avail-

able for the population modelling and hence these covariates were not included

in the modelling.
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Chapter 2

Literature review

2.1 Introduction

The theory of BA and BE have attracted so much attention from academia,

health authorities and pharmeceutical industries over the past 30 years due

to its importance and implementation to test drugs (Hauschke, Steinijans and

Pigeot, 2007). This research is necessary due to the high cost of healthcare

particularly the high cost of drugs. This has prompted regulatory bodies to

start formulating requirements that are necessary for approving test drugs as

substitutes for the reference drugs. In the early 1970s, BE was generally tested

using the 75/75 rule (Hauschke et al., 2007). This rule used the ratio of AUC

of the test drug formulation to the AUC of the reference drug formulation in

the BE study and states that it must be between 75 and 125 per cent in order

to declare that the two drugs are bioequivalent (Buehler and Director, 2010).

However, this approach of assessing the bioequivalence between two formula-

tions received a lot of criticism. It was therefore used together with the power

approach in the early 1980s. The power approach is a method of testing in-

terval hypothesis of no difference using a standard two-sided t test at the 0.05

level of significance (Schuirmann, 1987). If the null hypothesis of no difference

under the power approach is rejected, then µT and µR are not considered to be

equivalent and if the hypothesis of no difference is not rejected, the power of

the test is being questioned. The power should be at least 0.80 before failure
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to reject the hypothesis of no difference may be taken as evidence that µT and

µR are equivalent.

According to Midha and McKay (2009), the FDA started to research the BA

of new drugs which led to the formation of a BE study panel by the Office of

Technology Assessment (OTA). This office was mandated to study the thera-

peutic and chemical equivalence of two drug formulations. The United States

of America congress then enacted the Drug Price Competition and Patent Ter-

m Restoration Act of 1984 authorising the FDA to accept test drugs for use

when there is evidence of BA and BE studies (Midha and McKay, 2009). The

activities of the FDA are the examination, acceptance or rejection of the test

drugs application. A core objective of the act was to ensure that even though

less expensive test drugs are produced, the quality was not compromised so as

to ensure the safety and efficacy whenever it is taken by patients. The FDA

frequently publishes guidelines on how BA and BE studies can be conducted

on test drugs. These guidelines provide the different statistical methods that

are approved by the FDA and their acceptance criteria.

BE studies are important in assessing the efficacy, safety and clinical effect of

test drugs. They enable effective switchability between the reference and test

drugs thereby making the test drug affordable to most people. The ability to

collect blood samples from subjects at optimal times save cost of BE studies

and reduce the inconvenience caused to the subjects. The next section is a

review of literature on BE studies.

2.2 History of Bioequivalence

Clinical trials that are used to register drugs into the market place use small

samples of the total population of people who will eventually take the drugs.

Due to this, not all the patients will benefit from it and experience the same

level of safety while taking the drug. However, the risk should be minimised
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or held at an acceptable level with regards to the policies. When the patent

period of a drug expires, new formulations (test) could be marketed which

generate profit for the companies that produce them and offer benefits as well

to the general public (lower costs) (Strom, 1987). However, there were reports

of failures of some of the test drugs in the United States which received pub-

lic attention leading to establishing standards and requirements for test drugs

to be accepted into the market especially drugs which have a very narrow

therapeutic index (drugs which result in large change response with a small

change in dose) (Rheinstein, 1990; Calvert, 1996). There are other examples

of bioinequivalence for Carbamazephine as stated in Welty et al. (1992).

The FDA was then given the authority by the Drug Price Competition and

Patent Term Restoration Act of 1984 to generate a procedure of approving test

drugs which needed to be introduced into the marketplace. The FDA in 1985

approved one hundred and twenty two test drugs whose patent periods ex-

pired for marketing (Strom, 1987). According to Patterson (2003), crossover

designs were very important and of general interest in clinical trials in the

1960s through to the 1980s. In a crossover design there is a random allocation

of subjects to different sequences where each sequence receives different treat-

ments (Jones and Kenward, 2014). A further discussion on crossover design is

conducted in Chapter 3.

Jones and Kenward (2014) indicated that the history of BE studies started

in the 1960’s. Also, bioequivalence studies, according to Midha and McKay

(2009), have been ongoing for the past decades and are accepted as the mea-

sure of approval for test drugs to be marketed and sold at reduced costs. BE

studies are conducted to demonstrate that drug products are equal in rate and

their extent of absorption (Patterson, 2001). Patterson further stated that

bioequivalence studies dated back to the 1970’s through to the 1990’s with

average bioequivalence being the accepted standard for the approval of test

drugs. Chow and Liu (2008) also indicated that bioequivalence studies, which
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dated back to 1970’s, could be divided into four stages.

The first stage, which dates back from the early 1970’s to 1984, during which

the Drug price Competition and Patent Restoration Act was passed, gave the

authorization to the FDA to accept test drugs when there were BA and BE

studies available. The second phase began from 1984 to 1992 and provided

companies with guidance on how the data should be analysed and presented.

The third phase started in 1992 and addressed population and individual bioe-

quivalence concepts as well as statistical methods used for each. The fourth

phase started at the beginning of the twenty-first century. It was based on

research conducted in the past three decades in the twentieth century prompt-

ing the FDA to issue and implement guidelines for the statistical methods for

bioequivalence studies.

Test drugs in South Africa are controlled and regulated by the Medicines Con-

trol Council which was formed in the 1970s (MCC, 2003). It was constituted

under the Medicines and Related Substance Act 101 of 1965 to monitor and

regulate the manufacturing of test drugs. The MCC is mandated to ensure

that drugs that are marketed and used in South Africa are safe for public con-

sumption.

Kong and Gonin (2000) use an optimisation technique for calculating the opti-

mal time design for one compartment model. This was to select the sampling

times optimally in order to improve the accuracy of the AUC estimates in a BE

test. In the article they consider a compartment open model while assuming

that the drug follows a first order absorption. The compartmental model in

Equation 2.1 has the concentration-time curve given as

Ct =
DKa

V (Ka −Ke)
(e−Ket − e−Kat), (2.1)

where D, V , Ka and Ke are positive constants, 0 ≤ t ≤ ∞ where t is the

time the blood samples are drawn, D denotes the dose of the administered
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drug, the volume of drug distribution is denoted by V, and the absorption and

elimination rate constants of the drug are denoted as Ka and Ke, respectively.

The dose administered as well as the volume of distribution were considered

to be constants for healthy subjects, whereas the elimination rate constant de-

pended on the drug formulation and subjects, but was assumed to be constant

due to its low variability.

Kong and Gonin (2000) conducted simulation studies using different values of

Ka and Tf (final sampling time) and found that the proposed optimisation

technique improves the regular design. From the empirical results, the unex-

plained AUC mean percentage for the regular design is -1.1 with a standard

deviation of 1.5 while the unexplained AUC mean percentage for the optimal

design is 0.001 with a standard deviation of 0.9. The study suggested six to

eight sampling points to be the best number of sampling times in BE studies.

The proposed optimal design method which was used in the study induces

little bias in the estimation of the total AUC and the calculated AUC is more

reliable.

Choi et al. (2007) in their article investigated the appropriate time to choose

samples in order to evaluate the AUC. They explored the advantages of several

objective functions and suggested an objective function which addressed the

inadequacies of the existing objective functions. A simulated annealing algo-

rithm (SA) was used in this minimisation process. A new objective function

based on squared bias was used to estimate AUC as well as a Monte Carlo

integration approach which was used to simplify the calculations. They dis-

cussed two methods for defining the objective functions. The first uses the

mean squared error (MSE) for estimating AUC while the second uses MSE

for estimating the concentration time curve using linear interpolation to define
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the objective function. They proposed an objective function

ObjG(t; β) =
m+1∑
j=1

{[
E(Â

g(j−1)(1)
tj−1

)− Ag(j−1)(1)
tj−1

]2
+

nj∑
k=2

[
E(Â

g(j−1)(k)
g(j−1)(k−1))

− Ag(j−1)(k)
g(j−1)(k−1)

]2
+
[
E(Â

tj
g(j−1)(nj))− A

tj
g(j−1)(nj)

]2
}
.

(2.2)

which divides the number of divisions between the time intervals tj−1 and tj

equally based on the interval length. This makes it possible to estimate the

errors made in approximating the AUC and the true AUC for every division

after which the results are to be summed up.

Gibaldi and Perrier (1982) used a one-compartmental pharmacokinetic model

which has a first-order elimination kinetic and first-order absorption which is

similar to the one in Equation 2.1.

Asyali (2010) used the cubic spline approximation approach to the concentration-

time curve and initiated a global optimality criterion whose main focus was to

determine how close all the PK parameter estimators were to their true values

simultaneously. He investigated a one compartmental model with a first order

absorption rate which is the same as the one in Equation 2.1. Asyali (2010)

proposed the global optimality criterion (GOC) which uses the euclidean norm

as a measure of closeness of the estimated values to the actual values to indicate

the accuracy of AUC0−24 (area under the concentration time curve from zero

to 24 hours), Cmax (peak drug concentration) and Tmax (time required to reach

peak drug concentration). The GOC is given as GOC(t1, t2, ...tN) =‖ θ̂−θ ‖2=(
ˆAUC0−24 − AUC0−24

)2

+(Ĉmax−Cmax)2 +(T̂max−Tmax)2. The optimal sam-

pling times are determined by minimising the GOC with respect to t1, t2, ...tN ,

where N is the last sampling time. In the study, he considered several ways

to enhance the spline approximation in order to obtain the optimal sampling

times by minimising the GOC using another optimisation technique known as

sequential quadratic programming (SQP). The SQP is a method for numerical

solution of constrained nonlinear optimisation problems. It is a conceptual
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method from which numerous specific algorithms have evolved and is backed

by a theoretical and a computational foundation. The SQP method finds an

approximate solution of a sequence of quadratic programming subproblems in

which a quadratic model of the objective function is minimized subject to the

linearised constraints. It is established that this approach gives more precise

estimates of PK parameters with a small number of samples.

Jones et al. (1999) described a method which is used to construct D-optimal

designs for a nonlinear mixed effect model (NLMEM) in crossover PK studies

based on a model which uses generalised least squares. The variables, such as

the parameter values as well as the design points, are specified in the model

while samples are simulated under the simulation approach. The performance

of the design is assessed using the estimated model parameters and their corre-

sponding variances. A nonlinear mixed model (NLMMs) in Equation 2.3 with

random and fixed effects was used to analyse the data,

yijq = f(tq, θij) + εijq, (2.3)

with yijq being the concentration for the ith subject in period j at time

q, f(tq, θij) is a nonlinear function representing the mean pharmacokinet-

ic response, the measurement time represented as tq, and θij represents a

vector of pharmacokinetic parameters for the ith subject in the jth period.

εijq ∼ N(0, σ2
e) is a random measurement error. The pharmacokinetic param-

eters were estimated using Equation 2.4:

θij = Xijβ + µi, (2.4)

where Xij = xij ⊗ Im, Im is an m ×m identity matrix, xij represents a 1 × l

covariate vector which constitutes the crossover design, ⊗ represents the Kro-

necker product, β represents an lm × 1 vector of coefficients for the period,

mean, and treatment effect and µi ∼ N(0, σ2) is a subject effect vector.

Jones et al. (1999) used the D-optimality criterion which makes the determi-
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nant of the information matrix to be as large as possible. The values for the

mean, period, treatment effect, and variability of the data are determined us-

ing Equation 2.3 to fit the within-subject model to each individual subject and

Equation 2.4 to estimate parameters. The optimal design criterion changed

significantly when period effects were included or excluded.

D’Argenio (1981) used a procedure which adopts a sequential estimation ap-

proach for the optimal selection of the sampling times to estimate the parame-

ters of the model. This technique used parameter estimates from previous sub-

jects to estimate the optimal times for the next subject in the group. Monte

Carlo simulations were used to compare the estimated parameters using the

optimal sequential estimation method for the parameter estimates versus using

the conventional method of choosing the sampling times. He assumed that the

kinetics of the drug can be represented by a first order ordinary differential

equation given in Equation 2.5:

ẋ = f(x, α∗, r, t), x(0) = g(α∗), (2.5)

where x is a vector representing compartmental concentration, r represents the

piecewise constant input vector, the independent variable is represented as t, α∗

denotes the true but unknown constant parameter vector, and x(0) represents

the initial condition vector which could be a function of the unknown parameter

as well. From the results obtained by D’Argenio(1981), the mean and standard

deviation of the optimal sampling experiment were smaller than that of the

conventional sampling type (sampling points chosen randomly) from empirical

results obtained. The optimal method produced smaller parameter estimate

standard deviations as compared to the conventional approach. The average

percentage bias was 18% for every parameter when using the optimal sampling

approach while it was 56.5% for both Kel (elimination rate constant) and

Kcp (central to peripheral rate constant) (D’Argenio, 1981). The conventional

method gave a larger average percentage bias compared to the optimal method.
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2.3 Bioavailability and Bioequivalence

2.3.1 Introduction

Bioavailability and bioequivalence are important to both the producer of the

reference drug and the test drug for marketing the drug. FDA approval of any

test drug requires proof of bioequivalence, usually ABE between the reference

and test drug.

2.3.2 Bioavailability(BA)

According to Chow and Liu (2008), BA is the amount of a substance that be-

comes available to an organism’s body for bioactivity when introduced through

ingestion, inhalation, injection or skin contact. Rate of bioavailability depends

on factors such as type of the substance, whether fat soluble or water soluble

and the composition of the diet. Whenever a drug is administered either orally

or through any other route, an adequate quantity of the administered drug is

absorbed over a period of time before its effect can be felt. The BA for oral

drugs that are delivered into the body system can be considered a measure

of both the rate and total amount of drugs reaching the general circulation

from an administered dosage form (Welling, 1984). This assesses the process

whereby the drug is delivered from the dosage form and moves to the part of

the body where the drug effects are expected and therefore the drug’s absorp-

tion, distribution, metabolism and the elimination processes can be determined

(Kimura and Higaki, 2002).

The major parameters measured in BA are (Terry et al., 1982):

• Cmax - the peak plasma drug concentration used to determine the rate

of drug BA;

• AUC - the area under the concentration time curve which is a measure

of the extent of drug BA; and

• Tmax - the time required to reach maximum drug concentration after the

administration of the drug.
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The extent and rate of oral absorption of a drug is vital in pharmacokinetics

as it is responsible for the physiological action of the drug and thus referred

to as drug bioavailability (Caccia and Garattini, 1990). A certain fraction of

the drug is metabolised while passing through the liver or other organs. Only

a portion of the consumed drug reaches the site of action and this can result

in ineffectiveness of the drug in treating the illness. A comparative BA study

compares the BA of different drug formulations of drugs which are similar

(Chow and Liu, 2008).

2.3.3 Bioequivalence (BE)

Two drugs are considered as pharmaceutically equivalent whenever they con-

tain interchangeable quantities of similar active ingredients but not necessarily

of the same amount or dosage (Chow and Liu, 2008). Comparing the thera-

peutic performance of two drug formulations is important to assess the chances

of using a similar drug product (test) as an alternative to another (reference).

These two drugs could either be produced by the same manufacturer or by

different manufacturers. The BE can be measured in at least three ways:

chemically, biologically, or therapeutically (Asyali, 2010).

The BE assessment is an issue which is of great concern to the biopharma-

ceutical industry (Metzler, 1974). A test drug may be used as a substitute

for the reference drug if it complies with regulatory requirements and meets

certain criteria in a particular country. The use of pharmacokinetic concepts

and parameters have made BA and BE studies now acceptable for expensive,

complicated and lengthy clinical trials.

There are three reasons for conducting BE studies. These are:

• when the dosage form that is proposed for the market is totally different

from the one used during the clinical trials;

• when there are important changes during the process of manufacturing
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a marketed formulation; or

• where a new test formulation is being tested against the reference for-

mulation (Chow and Liu, 2008).

Ghosh and Rosner (2007) explained that whenever the rate and degree of

absorption of the reference formulation and its test formulation show similar

drug concentration-time profiles, they exhibit similar therapeutic effects. Test

drugs need to show BE with the reference drugs, in vivo, in order to be ac-

cepted in the market as therapeutically effective. There are three kinds of

bioequivalence methods: average bioequivalence (ABE), population bioequiv-

alence (PBE) and individual bioequivalence (IBE) (Chow and Liu, 2008).

2.4 Decision Rules and Regulatory Aspects

2.4.1 Average Bioquivalence

The ABE is a recommended method by regulatory bodies including the FDA

for comparing BA measures in BE studies (FDA, 2001). It mainly compares

the population averages of a BE measure rather than the variances of the mea-

sure for the test (T) and reference (R) drugs (Chow and Liu, 2008). In order

to show that an R drug and the T drug are average bioequivalent, it becomes

necessary to prove that the Cmax and AUC for the T drug is not significantly

different from the Cmax and AUC of the R drug.

However, ABE does not consider the variability of the T drug and R drug.

The advantage of ABE is that it is easier to interpret to patients, pharmacists

and physicians (Ghosh and Rosner, 2007). In a BE trial, a T drug is compared

to an R drug in subjects who are healthy volunteers and have to meet certain

criteria such as being older than 18 years and have a body mass index (BMI)

in the range of 18.5 to 30 kg/m2. The most frequently used statistical design

for ABE comparison is the two sequence, two period crossover design (Chow

and Liu, 2008). In a standard 2×2 crossover design, each subject in the s-

22



tudy is randomly allocated to either sequence TR (test drug in the first period

followed by reference drug in the second period) or RT (reference drug in the

first period followed by test drug in the second period) separated by a sufficient

time period between each dosage for the drug which was administered in the

first period to be totally removed from the body (Jones and Kenward, 2014).

Normally at least five elimination half-lives are necessary to achieve this. A

half-life is the period required for the drug concentration in the body to be

reduced by one-half. Chow and Liu (2008) defined the washout period as a

time interval between treatments during which the effect of one treatment is

not carried over to the other. This, however, is dependent on the type of drug

and the half-life, which is usually the time in which half of the drug is removed

from the body. A drug formulation with a k -order carryover effect is one in

which the effects of a drug administered in the first period persists up to the

kth treatment period (Chow and Liu, 2008). A first-order carryover effect lasts

only one treatment period. In this research, a first-order carryover effect is

considered.

The ABE is determined by using the confidence interval approach or a two

one-sided test procedure (Schuirmann, 1987). The ABE considers equivalence

between the population means of the PK parameters for the R and T drugs.

The 75/75, 80/20, 20% and 80/125 rules were proposed by the FDA for testing

bioequivalence and are explained in the next sections (Purich, 1980).

2.4.1.1 75/75 Rule

Bioequivalence is declared for two drugs if at least 75% of the relative BA of

the T drug to the R drug formulation of each subject falls within (75%, 125%)

limits (Chow and Liu, 2008). The merits of the 75/75 rule, according to Chow

and Liu (2008), are its ability to compare the relative BA within a specific

subject, removal of heterogeneity of variability within subjects and applying it

is easy. This rule was heavily criticised by many researchers including Haynes

(1981) who revealed that the rule was responsive to certain drugs with huge
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intra-subject variabilities although the mean AUC for both the T and R drug

formulations may be exactly equal.

This rule may dismiss about 56.3% of the T drug as inadequate whenever the

variability of the inter-subject is substantial, according to Metzler and Huang

(1983). Cabana (1983) also indicated that the rule was not valid especially

whenever the inter-subject coefficient of variation (CV) of the subjects involved

is 60% and the intra-subject CV ranges from 20% to 30%. According to Cabana

(1983), this rule works best whenever the inter-subject CV is below 40% for

both the T and R drugs while the intra-subject CV is at a maximum of 30%.

Also, the 75/75 rule is no more a requirement for BE assessment because it is

not statistically meticulous.

2.4.1.2 80/20 Rule

A condition underlying this rule indicates that the study should be large to

be able to deliver a minimum of 80% of detecting correctly any difference of

20% in the average BA (Chow and Liu, 2008). This rule relies on testing an

assumption of equality for a single variable instead of testing for equivalence.

When there is no statistically significant difference in the means of the R and

T drugs and the power for any recognition of 20% difference of the R drug

average is 80%, one can conclude that the two drugs are bioequivalent (Chow

and Liu, 2008).

2.4.1.3 20% Rule

For bioequivalence to be concluded using this rule, the average BA of the T

drug formulation ought to be within ±20% of the R drug. A T drug could

exhibit about 20% of variability in average BA with an R drug using the ±

20% rule (Chow and Liu, 2008). However, according to Levy (1986), the ±

20% rule does not take into consideration the effect of safety and efficacy of

the drug. Interchangeability of the drug formulations can be problematic when

using this rule. Interchanging the T drug with the R drug can lead to a more
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than 20% difference from one subject to another (Chow and Liu, 2008).

2.4.1.4 80/125 Rule

For any drug formulations to be declared as bioequivalent using this rule, the

average BA of the T formulation should be within the FDA’s criterion of (80%,

125%) of the R drug, mostly at 90% confidence level (Chow and Liu, 2008). It is

advised that the logarithmic transformation of the AUC and Cmax parameters

should be used. However, EMEA and the World Health Organization (WHO)

accept a wider confidence interval of (75%, 133%) for the Cmax under certain

conditions. The SAMCC also accepts the same wider confidence interval for

the Cmax just as the EMEA and WHO do.

2.4.2 Population and Individual Bioequivalence

The ABE for drugs with a small therapeutic index (thus drugs for which a

small change in the dosage will be able to cause large changes in response to

treatment) becomes very complicated (Benet and Goyan, 1995). Drugs such

as Warfarin normally show very small within-subject variability (coefficients of

variation less than 10%) (Patterson, 2003). However, the sample size require-

ment for high variabilty drugs (coefficient of variation greater than 30%) is high

(greater than or equal to 30) in order to demonstrate 90% power of average

BE in a two period cross-over design (Phillips, 1990). A widened equivalence

limit, 0.7 to 1.43, as allowed by the EMEA, for Cmax has been suggested by

Midha, Rawson and Hubbard (1997) to allow such drugs access to the market

easily. The power to demonstrate average bioequivalence reduces whenever

the variability of the drug increases and it is therefore advisable to have a very

large sample size so that it is sufficient to demonstrate bioequivalence.

The ABE only considers the population means of the R and T drug formula-

tions where variation between subjects is not considered. It is therefore not

able to address the concept of switchability of the drugs and therefore did not

meet sufficient requirements for public consumption (Patterson, 2003). The
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ABE assesses the difference in the means of the formulations and does not

account for the variance of narrow therapeutic drugs and can not account

for subject-by-formulation relations. Hauck and Anderson (1992) and Wellek

(1993) argued that it is not enough to only show ABE in certain situations as

it does not indicate relevance to the individual subject and therefore proposed

the PBE and the IBE. The PBE addresses the question, “can I safely and

effectively start on the R or T drug?”. The IBE was introduced to answer the

question “can I safely and effectively switch between the R and T drug?”. For

a T drug to gain approval for access into the market, PBE is required while

IBE is required for switchability.
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Figure 2.1: Concentration profile for T

formulation in sequence 1.

0 10 20 30 40 50 60 70

0
2

4
6

8
10

Time (hours)

C
on

ce
nt

ra
tio

n(
m

g/
kg

)

Test

Figure 2.2: Concentration profile for T

formulation in sequence 2.
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Figure 2.3: Concentration profile for R

formulation in sequence 1.
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Figure 2.4: Concentration profile for R

formulation in sequence 2.

The T and R formulations in Figure 2.1 and Figure 2.3 show interchangeable

rates of absorption and variability while the T formulation in Figure 2.2 ex-

hibits more variability than the R formulation in Figure 2.4. According to

Hauschke et al. (2007), the two drugs in Figures 2.2 and 2.4 can be bioequiv-

alent though with high variability and thus can lead to different effects. ABE

has not been able to address this effect leading to a new concept known as

PBE which was introduced by Hauschke and Anderson (1992).

The PBE addresses the between-subject variability of the two formulations.

One other concept that ABE and PBE do not address is the safety and ef-

ficacy of subjects when they switch from one formulation to another. This

has to do with the subject-by-formulation interactions (Hauschke et al., 2007).

This concept is known as IBE and considers the subject-by-formulation inter-

actions. The PBE and IBE both consider the means and the variability of the

bioavailabilities of the subjects.
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One of the important issues which affect BE studies is whether patients who

are being treated with a T drug will experience similar results in terms of

safety and efficacy as patients who are using the R drug. In practise, each

subject responds differently to the same drug. Hence it becomes imperative

to compare the variability of bioavailability (Chow and Liu, 2008). The ex-

changeability between the two drugs is questionable whenever the variability

within the T drug is greater than the R drug even though the two drugs may

be equivalent in average bioavailability. This is a cause of concern for the T

drug. The PBE takes into account inter-subject variability (inter-subject vari-

ance) and hence solves the issue of interchangeability for subjects who need to

start either treatments. If PBE is satisfied, a patient who has not received any

of the formulations can be safely prescribed either the reference or test drug

formulations.

After a drug is marketed, the safety and efficacy might be discussed when

a drug substitution is made. This situation is related to interchangeability

or switchability. IBE considers intra-subject and subject-by-formulation vari-

ances which address changes in treatment whenever an R drug is substituted

by its T drug. IBE also allows for a precise evaluation of BE for drugs which

have very high PK variability and with narrow or large therapeutic range (En-

drenyi and Midha, 1998).

The IBE considers the possibility of switching a patient who is using the R drug

to the T drug or from the T drug to the R drug (Byron and Kenward, 2003).

It considers the within-subject variability of the subjects as well as subject-

by-formulation relations. Chow and Liu (2008) defined an assessment criteria

for PBE and IBE to be probability based and moment based as described in

the next section.
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2.4.2.1 Moment Based Criteria

This approach uses the loss of the expected squared error of the within subject

differences of BA for subjects who receive the T and R drug formulations as

well as the variability within each subject which is expressed as the loss of the

expected squared error of subjects who receive the R formulation at different

times (Chow and Liu, 2008). The moment based criterion consists of the ratio

between intra-subject variability of the R and the within subject variability of

the T drug, variability of the interaction between subject and drug formulation

and the distinction in average BA (Chow and Liu, 2008). The difference ratio

(DR) (Equation 2.6) was suggested by the FDA as a statistical approach for

establishing bioequivalence.

DR =
Difference between T and R formulations

Difference between two formulations
. (2.6)

2.4.2.2 Probability Based Criteria

This criterion assumes that the probability of the variability due to the within

subjects of BA in subjects that receive the T formulation and the R formulation

on different occasions is within a pre-determined limit (Chow and Liu, 2008).

However, this approach will not be considered in this research as it is not

recommended by the FDA (Hauschke et al., 2007).

2.4.3 Population Bioequivalence Using Moment-Based

Criteria

The creation of the benchmark for BE requires the comparison of BA endpoints

(AUC, Cmax); differences between the R and the T as well as R with itself

(Chow and Liu, 2008). Let YT , YR and Y
′
R represent bioavailabilities of the

T drug being administered once and the R drug administered twice. Also,

YT − YR and YT − Y
′
R refer to the between-subject differences when doing an

assessment for PBE with YT , YR and Y ‘
R being independent (Hauschke et al.,

2007). Taking the expected squared differences and comparing the discrepancy
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gives

E(YT − YR)2 = E(Y 2
T )− 2E(YTYR) + E(Y 2

R)

= (E(Y 2
T )− µ2

T ) + (E(Y 2
R)− µ2

R)− 2E(YTYR) + µ2
T + µ2

R

= σ2
BT + σ2

WT + σ2
BR + σ2

WR − 2µTµR + µ2
T + µ2

R

= (µT − µR)2 + σ2
T + σ2

R,

where µT − µR represents the difference between the means of the T and the

R drugs, σ2
BR + σ2

WR = σ2
R and σ2

BT + σ2
WT = σ2

T , E(YR − Y
′
R) = 2σ2

R, σ2
R and

σ2
T represent the total variability for the R formulation and T formulation,

respectively.

For a T drug and R drug to be declared as PBE, the equation below must be

satisfied:

Θpop =
(µT − µR)2 + σ2

T − σ2
R

max(σ2
0, σ

2
R)

< θpop, (2.7)

where θpop is the predetermined value used to determine PBE for the moment-

based criterion. The maximum variability difference that can exist between

the T and R formulation, i.e., σ2
T −σ2

R, is fixed at 0.02 by the FDA (1997) and

σ2
0 is fixed at 0.04.

The population difference ratio (PDR) is used to provide a motivation for the

choice of 0.04 as indicated below,

PDR =

√
E(YT − YR)2

E(YR − Y
′
R)2

=

√
(µT − µR)2 + σ2

T + σ2
R

2σ2
R

. (2.8)

θpop =
average bioequivalence limit+ variance allowance

scaled variance

=
[ln(1.25)]2 + 0.02

0.04

= 1.74483

PBE is therefore concluded if Θpop < θpop. However, if the assumption of

differences in the variance of the T and R formulations is not met, this criterion
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of assessment of the PBE reduces to ABE. That is, if σ2
T = σ2

R (
σ2
T

σ2
R

= 1), then

θpop is

θpop =
[ln(1.25)]2

0.04

= 1.24483,

which gives a linearized criterion of

(µT − µR)2 + σ2
T − σ2

R −max(σ2
o , σ

2
R)θpop < 0

(µT − µR)2 −max(σ2
o , σ

2
R)θpop < 0

(µT − µR)2 − 0.04
[ln(1.25)]2

0.04
< 0

(µT − µR)2 < [ln(1.25)]2

[− ln(1.25)] < (µT − µR) < [ln(1.25)]

0.8 <
exp(µT )

exp(µR)
< 1.25.

For any statistical assessment of PBE, the estimators of Θpop are derived using

ANOVA or the restricted maximum likelihood (REML) method using mixed

effects models. To solve the population bioequivalence problem, an appropriate

statistical approach has to be derived:

H0 : Θpop ≥ θpop

H1 : Θpop < θpop.
(2.9)

In order to conclude PBE or otherwise, a statistical approach is used where

PBE can be declared when the null hypothesis shown in Equation 2.9 is reject-

ed at the 5% level of significance. However, the FDA (1997) recommends the

two-sided 90% confidence interval method or the one-sided upper 95% confi-

dence interval method for Θpop.

The PBE looks at whether either the R or T drug can be prescribed for a

subject who is not on either of the two drugs (Jones et al., 1999). This can be
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assessed using the aggregate metric in Equation 2.10:

(µT − µR)2 + σ2
T − σ2

R

max(0.04, σ2
R)

, (2.10)

where σ2
T = σ2

WT + σ2
BT and σ2

R = σ2
WR + σ2

BR which tests the hypothesis in

Equation 2.11,

H0 : νPBE = σ2 + σ2
T − (1 + cFDA)σ2

R ≥ 0 for σ̂2
R > 0.04

H0 : νC.PBE = σ2 + σ2
T − σ2

R − (cFDA)0.04 ≥ 0 if σ̂2
R > 0.04,

(2.11)

where σ2
T and σ2

R represent the subject variances of the T and R drugs, re-

spectively. The aggregate statistic could be formulated using a mixed model

approach based on a two period crossover design.

If the upper bound of the 90% CI for the BA parameters of interest (AUC

or Cmax) is below a pre-determined regulatory value of 1.74, PBE can be

established for the metric under consideration.

2.4.4 Individual Bioequivalence Using Moment-Based

Criteria

In order to declare that the T and R formulations are individually bioequiva-

lent, the equation given below must be satisfied,

Θind =
(µT − µR)2 + σ2

D + σ2
WT − σ2

WR

max(σ2
W0, σ

2
WR)

< θind, (2.12)

where σ2
D = σ2

BT +σ2
BR−2ρσBRσBT and Θind denotes the predetermined bound

for the moment-based criterion for IBE assessment. However, YT , YR and Y ‘
R

are no longer independent since only a replicate COD is used in IBE.

Similarly,

E(YT − YR)2 = var(YT − YR) + E[(YT − YR)]2

= var(YT ) + var(YR)− 2Cov(YT , YR) + (µT − µR)2

= (µT − µR)2 + σ2
BT + σ2

WT + σ2
BR + σ2

WR − 2ρσBRσBT

= (µT − µR)2 + σ2
WT + σ2

WR + σ2
D,

32



and E(YT − Y
′
R)2 = 2σ2

WR.

Again, the FDA (1997) recommended 0.04 for σ2
W0, 0.02 being the maximum

difference for the within-variances of the T and R formulations, i.e σ2
WT −σ2

WR,

and a maximum value of 0.03 for interaction between subject and formulation,

i.e σ2
D. The value of σ2

W0 is dependent on the individual difference ratio (IDR).

The FDA guidance suggests the individual difference ratio (IDR) which is given

as:

IDR =

√
(µT − µR)2 + σ2

D + σ2
WT + σ2

WR

2σ2
WR

. (2.13)

The largest tolerable value of the IDR is given as 1.25 by the FDA. Assuming

the 80/125 rule with a certain probability, gives ln(1.25) as the upper bound

for µT − µR. This results in the value of θind:

θind =
average bioequivalence limit+ variance allowance

scaled variance

=
[ln(1.25)]2 + 0.03 + 0.02

0.04

= 2.49

The IBE is a statistical method which is used to decide whether a patient being

treated with the R drug can be switched to the T drug (Byron and Kenward,

2003). It takes into consideration the variability within each subject and the

subject-by-formulation interaction. The aggregate metric is an approach used

for the assessment of IBE (FDA, 1997):

(µt − µR)2 + σ2
D + σ2

WT − σ2
WR

max(0.04, σ2
WR)

, (2.14)

which is used to test the following linearised null hypotheses:

H0 : νIBE = σ2 + σ2
D + σ2

WT − (1 + cFDA)σ2
WR ≥ 0 if ˆσ2

WR > 0.04

H0 : νC.IBE = σ2 + σ2
D + σ2

WT − σ2
WR − 0.04(cFDA) ≥ 0 if ˆσ2

WR ≤ 0.04,

(2.15)

where σ2
WT and σ2

WR denote within-subject variability for the T and R drug for-

mulations, respectively, σ2
BR and σ2

BT denote the variabilities between subjects

for the R and T formulations, respectively, σ2
D = σ2

BT + σ2
BR − 2ρσBTσBR de-

notes the subject-by-formulation interaction with ρ being the between-subject
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correlation of the T and R drugs, and µT and µR denote the means of T and

R whilst δ = µT − µR denotes the difference between the means of the T and

the R drugs.

The metrics in Equation (2.15) are scaled using the within variance σ̂2
WR and a

constant value of 0.04. Whenever the metric is scaled using σ̂2
WR, it is referred

to as reference-scaled and it is called a constant scale when it is scaled using

0.04. The value of cFDA is the regulatory value of 2.49 which is set by the FDA.

The cFDA assumes a within-subject variance for R of 0.04 and is calculated as

follows:

cFDA =
[ln(1.25)]2 + 0.03 + 0.02

0.04
,

= 2.49,

which allows for a difference in means of ln(1.25) and a variance allowance of

0.03 for the subject-by-formulation interaction and an allowance of 0.02 for

the difference in within-subject variances (FDA, 1997).

If the upper bound of the 90% CI for the BA parameters of interest, either AUC

or Cmax, is below a pre-determined regulatory value of 2.49, bioequivalence can

be established for the metric under consideration.

2.5 Pharmacokinetic Parameters

The concentration time curve (CTC) is used to study the absorption and e-

limination rate of a drug in a blood sample in a comparative BA study (Chow

and Liu, 2008). At various time points, blood samples are taken after a drug is

administered. There are other pharmacokinetic metrics but they only provide

support information and are not used to approve the new formulation. It is

argued that AUC and Cmax are insufficient to provide evidence that a T drug

is bioequivalent to the R drug; however, regulatory bodies have depended on

and used the AUC and Cmax as the main metrics for bioequivalence approval

of drugs (Lacey et al., 1995; Steinijans et al., 1995; Rescigno and Powers,

1998). AUC is a PK parameter which determines the magnitude of absorp-
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tion of a drug, thus, the total quantity of the drug that is absorbed by the body.

The AUC is regarded as the best standard measure for extent of BA while the

Cmax as a measure of the rate of BA is criticized for not characterizing the

rate of BA appropriately (Cartwright, 1991; Herchuelz, 1996; El-Tahtawy et

al., 1998). The Cmax is heavily dependent on the sampling scheme and has

more variability than the AUC and therefore poses problems for assessment

of bioequivalence (Buice et al., 1996; Tsang et al., 1996; Patterson, 2003).

Despite these shortfalls of the Cmax, it is still used as one of the metrics of

bioequivalence studies because it performs better than other measures (Bois et

al., 1994). During bioequivalence studies, each of these endpoints are analysed

separately and are generally log-transformed (Westlake, 1979; Midha et al.,

1993). The normality of the AUC and Cmax are not tested after log transfor-

mation, as stated in FDA (1992) and statistical analysis is also not conducted

on the original metrics even if there is evidence that the data are not normally

distributed.

During the sampling stage, the plan outlined for taking the blood samples

should be designed properly for suitable evaluation of the pharmacokinetic

parameters for both rate and absorption. These pharmacokinetic parameters

are mostly determined either directly (model-based approach) or indirectly

(concentration-time profile approach). An example of the concentration - time

graph approach is illustrated in Figures 2.5 and 2.6. Methods for estimating

the AUC as suggested by Chow and Liu (2008) include linear interpolation

which uses the trapezium rule, a planimeter, spline and lagrange methods and

a physical method. However, the linear interpolation technique is the most

widely used. For the linear interpolation method using the trapezoidal rule,

let C0, C1, ...Ck be the blood concentrations obtained at times 0, t1, ...tk. Then

AUC0−tk is obtained using Equation 2.16,
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AUC0−tk =
k∑
i=2

(
Ci−1 + Ci

2

)
(ti − ti−1). (2.16)

Although the AUC is normally calculated from time zero to time t, Hauschke

et al., (2007), suggested that AUC from zero to infinity in a single-dose study

should be determined. Martinez and Jackson (1991) articulated that a fraction

of area under tk to infinity may be large, should the level of blood at tk be sig-

nificant. The AUC from time zero to infinity, which is represented as AUC0−∞,

is approximated using the equation shown in Equation 2.17 (Rowland, 1980;

Chow and Liu, 2008),

AUC0−∞ = AUC0−tk + (
Ck
λ

). (2.17)

This serves as the extent of absorption in single-dose studies. After the drug

is administered, Ck is the concentration of blood which occurs at the last

sampling time point, λ is the elimination rate constant and given as λ =

−2.303 × gradient of the terminal segment of the log concentration time curve

(Chow and Liu, 2008). The time interval for the calculation of each λ as

well as AUC0−t/AUC0−∞ is indicated in Table 2.1. According to Hauschke et

al. (2007), the percentage ratio of AUC0−t/AUC0−∞, as shown in Table 2.1,

should exceed 80% for each subject. This is important not to over extrapolate

the AUC0−∞. From Table 2.1, only one subject had the percentage ratio to

be 78% while the rest are above 80%. The values for the percentage ratio,

AUC0−t/AUC0−∞, therefore confirms that the choice of the ultimate section

of the logarithm concentration time curve used to calculate the lambda value

is consistent and accurate.
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However, there are challenges in estimating the terminal portion of the log-

linear plot for the concentration-time graph as indicated in the concentration

time graph (Figures 2.5 and 2.6).
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Figure 2.5: Concentration profile for

T and R formulations of subject 860

in sequence 1.
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Figure 2.6: Concentration profile for

T and R formulations of subject 861

in sequence 1.

The choice of the range of the terminal portion affects the estimation of the

extrapolated AUC to infinity. A very suitable range should be selected either

using a mathematical algorithm or by a clinical pharmacokineticist together

with the person who determined the concentrations of the subjects.

f.dose = clearance.AUC0−∞, 0 < f ≤ 1, (2.18)

From Equation 2.18, it can be established that the fraction, f, of a dose ab-

sorbed is proportional to the AUC0−∞ where clearance is a proportionality

factor. Clearance, as defined by Rowland and Tozer (1995), is the apparent

volume of blood that is completely removed of drug per unit of time.
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For a compartment model in Equation 2.19 with first-order absorption and

elimination kinetic, the rate of constant of absorption is estimated with the

residuals method (Gibaldi and Perrier, 1982),

Ct =

(
KaFDo

V (Ka −Ke)

)(
e−Ket − e−Kat

)
, (2.19)

where Ct represents the concentration, Ka represents the rate of constant of

absorption, Ke represents the rate of constant of elimination, Do represents

the quantity of the dose that is administered, F represents the proportion of

the dose that is absorbed or gets to the systemic circulation and V is the

distribution volume. Cmax, which is the maximum concentration, is defined

mathematically as Ĉmax = max(c0, c1, ..., ck). Tmax, in Equation 2.20, is the

time needed to attain maximum concentration and is defined as the estimated

time at which Cmax, in Equation 2.21, is observed.

Tmax =
2.303

(Ka −Ke)
log

(
Ka

Ke

)
(2.20)

Cmax =

(
KaFDo

V (Ka −Ke)

)
(e−Ketmax − e−Katmax) (2.21)

The half-life (t1/2) and the elimination rate constant (Ke) are often the param-

eters which are studied during the elimination phase of a drug, according to

Chen and Pelsor (1991) and Chow and Liu (2008). The elimination half-life of

a drug is explained by Chow and Liu (2008) as the time which it takes for the

concentration of the drug to reduce by one-half from the body. The t1/2 can

be derived with the assumption that the reduction in concentration of blood

is of first order, as shown in Equations 2.22, 2.23 and 2.24,

log(D) = log(Do)−
Ket

2.303
, (2.22)

where D represents the quantity of the drug in the body and is given asD =
Do

2
(t = t 1

2
),

log

(
1

2

)
=
−Ket 1

2

2.303
, (2.23)
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t 1
2

=
0.693

Ke

, (2.24)

where Ke = −2.303

(
dlogD

dt

)
.

Knowledge of half-life is necessary to determine the frequency of administration

of a drug so as to get the desired plasma concentration. It is independent of

the dose administered.

2.6 Power of a Test

When planning bioavailability analysis, it is very important to choose the right

sample size as this affects the power of the study (Wang and Bakhai, 2006).

The sample size, according to bioequivalence studies, is the total number of

subjects involved in the study. This number, as stated by Hauschke et al.

(2007), is determined by the amount of variability in the PK characteristic,

the power of the test, the level of significance and the expected deviation of

the T from the R formulation. A larger sample size has a better power and

has the ability to detect any treatment effect while a small sample size has

less power and could necessarily not be able to accurately detect a treatment

effect. That is, by taking larger samples, the ability to find a difference in

means of the two formulations, if they do exist, is improved. Also, the power

of the test decreases as the population variance reduces and as the difference

in the means increases, the power also increases.

The power of the test, according to Chow and Liu (2008) and Hauschke et

al. (2007), is defined as the likelihood of rejecting the null hypothesis of

bioinequivalence between an R and a T drug, while the alternative hypoth-

esis of bioequivalence is true.

H0 : bioinequivalence

H1 : bioequivalence.
(2.25)
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This implies that the power of a test is the likelihood of concluding correct-

ly that a drug is effective and bioequivalent when it is. According to Owen

(1965), power in BE studies is the likelihood of demonstrating that two drugs

are bioequivalent correctly when the two drug formulations are indeed bioe-

quivalent.

power = 1− β,

= P (reject H0 when H0 is false),

where β = P (type II error).

The power (1 − β) of the decision rule is the chance of correctly concluding

bioequivalence.

There are two types of errors that depend on the sample size and the power

of the test. The two types of errors are used when testing the null hypoth-

esis against the alternative hypothesis for average bioequivalence. In ABE,

there are chances of incorrectly establishing that two drug formulations are

bioequivalent when they are not. This phenomenom is referred to as making

a Type I error. A Type I error is perpetrated whenever the null hypothesis

(bioinequivalent) is rejected whilst it is indeed true and a Type II error occurs

when the null hypothesis is false but it is not rejected. The two types of errors

are shown in Table 2.2 (Chow and Liu, 2008).

Table 2.2: Type I and Type II errors for a hypothesis test.

The null hypothesis is

True False

Fail to reject

null hypothesis
Correct decision Type II error β

Reject null

hypothesis
Type I error α Correct decision

Usually the sample size used in bioequivalence studies, as stated by Chow and

Liu (2008), is chosen based on a power function which tests the null hypothesis
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of bioequivalence between the two formulations (µT = µR). In every BE study

it is important to choose the sample size while considering the Type I error rate

as well as the equivalence criteria, the power (normally 90%) and the intra-

subject variation (Patterson, 2003). Whenever the intra-subject coefficient of

variation (CV) increases beyond 30%, the sample size required for BE increases

as shown in Table 2.3 (Patterson, 2003).

Table 2.3: Sample sizes producing 90% power in BE for Two period crossover

design(COD).

CVw% Two period COD∗ Two period COD

30

40 50

54 60

112 124

45

84 90

112 120

230 244

60

140 146

184 194

384 404

75

200 206

264 276

554 574

Two period COD∗ assumes subject-by-formulation interaction is negligible.

Two period COD assumes subject-by-formulation interaction is non-negligible.

Patterson (2003) indicated that the number of samples needed for BE studies

reduces by half when using replicate designs with high intra-subject variabil-

ity. However, when the variability is low, a non-replicate two period COD is

preferred as the replicate design does not improve precision drastically.
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In order to test for bioequivalence between an R and a T drug, two types

of hypothesis approaches are used, namely direct and indirect bioequivalence

testing (Hauschke et al., 2007). The indirect bioequivalence testing uses the

hypothesis in Equation 2.26,

H0 : bioequivalence

H1 : bioinequivalence.
(2.26)

The major shortcoming of this indirect approach, according to Hauschke et al.

(2007), is the fact that the chances of judging bioinequivalence mistakenly is

regulated and therefore is not accepted by the regulatory authorities.

Table 2.4: Type I and Type II errors for indirect bioequivalence testing.

The null hypothesis of bioequivalence is

True False

Fail to reject

null hypothesis of bioequivalence
Correct decision Consumer risk β

Reject null hypothesis of

bioequivalence
Producer risk α Correct decision

The ultimate regulatory concern for regulatory bodies is to control consumer

risks, thus limiting the chances of concluding incorrectly bioequivalence (Hauschke

et al., 2007). Due to this, the direct approach is the approved method by the

regulatory bodies as in Equation 2.25.

The producer and consumer risks for the direct method of BE assessment are

illustrated in Table 2.5.

43



Table 2.5: Type I and Type II errors for direct bioequivalence testing.

The null hypothesis of bioinequivalence is

True False

Fail to reject

null hypothesis of bioinequivalence
Correct decision Producer risk β

Reject null hypothesis of

bioinequivalence
Consumer risk α Correct decision

In ABE, Type I error is defined as the likelihood of deciding that two drug

formulations are bioequivalent. This probability is also known as alpha, con-

fidence or regulatory risk.

The relationship between a Type I and a Type II error for a bioequivalence

study, as illustrated by Chow and Liu (2008), is shown in Table 2.6. The

power is determined based on a hypothesis and the outcome. There are four

possible outcomes with hypothesis testing, two of which are correct decisions

while the other two are incorrect, as shown in Table 2.6. The inferences which

are incorrect are the errors. The two types of errors, Type I and Type II, in

some cases, are referred to as consumer’s risk and producer’s risk, respectively,

as explained in Table 2.6 (Patterson, 2003).

Table 2.6: Type I and Type II errors.

True State H0

Bioinequivalent Bioequivalent

Bioinequivalent Right decision Type II error

Bioequivalent Type I error Right decision

The power of the test is not the main issue of this study but rather the com-

parison of the formulation means and shall not be investigated further.
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2.7 Simulated Annealing Algorithm

Many problems in computer science, engineering and manufacturing can be

modelled as minimisation or maximisation of a cost function or objective func-

tion over a finite set of discrete variables (Aarts and Korst, 1990). This class

of combinatorial optimisation problems has received attention over decades

and major achievements have been made in its analysis (Papadimitriou and

Steiglitz, 1998). Solving such combinatorial optimisation problems amount to

finding the optimal solution among a finite number of alternative solutions.

According to Aarts, Korst and Michiels (2005), combinatorial optimisation

problems are separated into subclasses. The first class contains problems that

can be solved efficiently using known algorithms (linear programming) and the

second class contains problems that are difficult to solve and are formally re-

ferred to as nondeterministic polynomial time (NP) hard. There is no known

algorithm that gives an optimal solution for an NP-hard problem. Many com-

binatorial optimisation problems belong to the NP-hard group. The travelling

salesman problem (TSP) is one of the well known combinatorial optimisation

problems. In a TSP, a salesman starts from his home city and must visit each

city once on a prescribed list of cities to be visited and return home while min-

imising the tour length and total cost of travelling (Aarts and Korst, 1990).

Solving combinatorial optimisation problems aim at finding the minimum or

maximum value of a function (cost or objective function).

Annealing is the physical process of heating up a solid until it melts followed

by cooling it down until it crystallises into a state with a perfect lattice (Aarts

and Korst, 1990). The atoms in the material have high energies at high tem-

peratures and have freedom to restructure themselves. The atomic energies

decrease until a state of minimum energy is obtained. Whenever the cooling

process is rapid (quenching), it results in defects in the crystal structure (Pham

and Karaboga, 2012). According to Aarts and Korst (1990), the cooling pro-

cess must be done cautiously in order not to get trapped in a local optimal
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solution. This process can be formulated in a combinatorial optimisation as

a problem of finding a solution with minimal cost among a potentially large

number of solutions. By creating a link between the cost function and the

free energy, and between the solutions and the physical states of the atoms, a

solution method in combinatorial optimisation based on the simulation of the

physical annealing process is used (Aarts and Korst, 1990). This method is

known as Simulated Annealing. The annealing concept in combinatorial op-

timisation was introduced in the early 1980’s (Kirkpatrick, Gelatt and Vecchi

,1983).

2.7.1 Metropolis Algorithm

Annealing is a thermal process for obtaining low energy states of a solid in

a heat bath (Aarts and Korst, 1990). The annealing process consists of the

following two steps (Kirkpatrick et al. 1983):

1. increase the temperature of the heat bath to a maximum value at which

the solid melts; and

2. decrease carefully the temperature of the heat bath until the particles

arrange themselves in the ground state of the solid.

Metropolis et al. (1953) introduced a simple algorithm that can be used to

provide an efficient simulation of a collection of atoms in equilibrium at a given

temperature. The algorithm is based on Monte Carlo techniques and generates

a sequence of states of the solid. Given a current state i with energy Ei, a

subsequent state j is generated by applying a perturbation mechanism which

transforms the current state into the next state. The energy of the state j is

denoted by Ej. If the difference in energy, Ej −Ei ≤ 0, the state j is accepted

as the current state. However, if Ej − Ei > 0, the state j is accepted with a

probability which is given as

exp(
Ei − Ej
kBT

),
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where T represents the temperature of the heat bath and kB is a physical

constant known as the Boltzmann constant. This acceptance rule is known as

the Metropolis criterion. When the temperature is sufficiently slowly lowered,

the solid can reach thermal equilibrium at each temperature (Aarts and Korst,

1990). This process is achieved in the Metropolis algorithm (MA) by gener-

ating a large number of transitions at a given temperature. The Boltzmann

distribution, which is a characteristic of thermal equilibrium, gives the proba-

bility of the solid being in a state i with energy Ei at temperature T, and is

represented by

PT{X = 1} =
1

Z(T )
exp

(
−Ei
kBT

)
,

where X denotes a stochastic variable representing the current state of the

solid and Z(T) represents the partition function which is defined as

Z(T ) = Σjexp

(
−Ej
kBT

)
,

where the summation extends over all possible states. The Boltzmann distri-

bution plays an important role in the SA algorithm analysis.

2.7.2 Simulated Annealing

The MA can be applied to create a sequence of solutions of a combinatorial

optimisation problem by assuming the following equivalences between a phys-

ical many-particle system and a combinatorial optimisation problem (Aarts

and Korst, 1990):

1. solutions in a combinatorial optimisation problem are equivalent to states

of the physical system; and

2. the cost of a solution is equivalent to the energy of a state.

Metropolis et al. (1953) suggested the MA for simulation of a solid in a heat

bath to simulate thermal equilibrium based on the Monte Carlo approach.

Each state has a distinct level of energy which is defined by the objective
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function. A difference between the new state and old state, ∆E = Ej − Ei,

is calculated and the new state is chosen with a likelihood of e
−∆E
KT . However,

should the new state have a lower energy than the current state (∆E < 0), the

new state is accepted as the starting point with a likelihood that is dependent

on the energy level difference as well as the current temperature shown in

Equation 2.27,

P (accept) =

1 if ∆E ≤ 0,

e
−∆E
KT if ∆E > 0,

(2.27)

where P represents the acceptance probability and T denotes the control pa-

rameter. The algorithm has the ability to escape the local minimum based

on the acceptance of the worst state. This acceptance is referred to as the

Metropolis criterion (Metropolis et al., 1953).

MA was applied in optimisation problems by Kirkpatrick et al. (1983) who

named it the Simulated Annealing (SA). SA is a stochastic global optimization

method which was described first by Metropolis et al. (1953) who developed a

Metropolis algorithm to simulate a collection of atoms at a given temperature.

Kirkpatrick et al. (1983) showed how the model for simulating the annealing

of solids, proposed by Metropolis et al. (1953), can be used for solving opti-

misation problems where the objective function to be optimised is similar to

the energy level of a solid. SA consists of two nested loops. The decremen-

t of the temperature from an initial high to a final low temperature is the

outermost loop which is also known as the cooling schedule. The innermost

loop repeats the process over a specified Monte Carlo simulation. The SA

algorithm initially begins with a high temperature where so many states are

accepted. However, as the temperature decreases, only few states are accepted.

The chances of accepting a bad state is done by comparing it with a random

number generated uniformly from [0,1]. The temperature is reduced when the

Metropolis iteration loop is completed and the process is repeated until the

stopping criterion is met.
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The MA starts from an initial energy level, x, and the system is disturbed at

random to a new energy level, y, in the neighbourhood of x. The value of

the objective function fy is calculated. If the change, ∆fxy = fy − fx, is a

reduction in the objective function value, the new state is accepted. However,

should the change be an increase in the value of the objective function, the

new state is accepted with a likelihood ∆fxy
T

with T being a control parameter.

The SA algorithm is seen as an iteration of MA which is evaluated at decreasing

values of the control parameter that takes on the role of temperature. The main

attributes of the SA algorithm are its general applicability (or usefulness) and

ability to obtain solutions without being trapped in a local minimum (Aarts

and Korst, 1990). This is done by not only accepting better solutions but also

worse solutions with a given probability. The SA algorithm has the ability

to find high-quality solutions which do not necessarily depend on the choice

of the initial solution and therefore is regarded as a very effective and robust

algorithm (Aarts and Korst, 1990).

The flowchart of SA is given in Figure 2.7.

Initial Parameter Set

Evaluate Solution

Accepted?

Update Current
Set

Change
Temperature

Generate New Set

Stop
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Y
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Figure 2.7: The SA Flowchart.
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If the current solution (fnew) has the value of the objective function lower

compared to that of the previous solution (fold), the current solution is accepted

(in a minimisation situation). The current solution may be accepted if the

Boltzmann distribution in Equation 2.28,

e
−fnew−fold

T , (2.28)

is greater than a uniform random number in [0,1], where T is the temperature

control parameter.

The annealing process consists of a number of steps which are described in the

section below.

2.7.2.1 Initial Population

At each iterative stage a definition of an initial guess for the parameter values is

required. SA does not require the use of several initial solutions. One approach

is to randomly select the initial parameter values given a set of appropriate

boundaries. The closer the initial estimate is to the global optimum, the

quicker the optimisation process.

2.7.2.2 Initial Temperature

The control parameter, T , should be defined with care as it controls the accep-

tance rule defined by Equation 2.28. T should be large to avoid being trapped

in a local minimum but small enough to move off a global minimum.

2.7.2.3 Perturbation Mechanism

This mechanism creates a new solution from the current solution by exploring

the neighbourhood of the current solution and making small changes to the

current solution. When the parameters are continuous variables, a solution

P is defined as a vector P = (x1, x2, ..., xn) which represents a point in the

search space. A new solution is generated using a vector ϕ = (ϕ1, .., ϕn)

of standard deviations to create perturbation from the current solution. A

neighbourhood solution is produced from the current solution by xi+1 = xi +
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N(0, σ2
i ) where N(0, σi) is a random Gaussian number with mean of zero and

standard deviation σi.

2.7.2.4 Objective Function

The objective function or the cost function relates to the parameter that needs

to be minimised or maximised. For example, there may be the need to minimise

the number of sampling times which eventually reduces the cost.

2.7.2.5 Initial Value of Temperature

A basic assumption which underlies the initial value calculations of the control

parameter T (temperature) is that it should be large for the movement between

different energy states to be accepted at this value. It is usually achieved

through generating trials m0 and requires that the initial acceptance ratio,

x = x(T0), is close to one, where x(T ) is the ratio between the number of

accepted transitions and the number of proposed transitions. The initial value

of T is obtained from the expression:

T0 = ∆f+

(
ln

m2

m2x0 + (1− x0)m1

)−1

, (2.29)

where m1 and m2 denote the number of trials (m1 +m2 = m0) with ∆fxy ≤ 0

and ∆fxy > 0 and, ∆f+ the average value of ∆fxy values for which ∆fxy > 0,

and x0 represents the initial configuration.

2.7.2.6 Decrement of the Control Parameter

The new value Tt+1, which is calculated from Tt, is obtained from the expression

Tt+1 = Tt(1 +
Ttln(1 + δ)

3σ(Tt)
), (2.30)

where σ(Tt) is the standard deviation of the cost function values at the points

in the Markov chain (MC) at Tt. The constant δ is the distance parameter

and determines the rate of decrease of the control parameter.
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2.7.2.7 Stopping Criterion

This is based on the idea that the average function value f(Tt) over an MC

decreases with Tt so that f(Tt) converges to the optimal solution as Tt →

approaches 0. The MC stops whenever there are no changes in f(Tt). The SA

algorithm is terminated if ∣∣∣∣df̄s(Tt)dTt

Tt
f̄(T0)

∣∣∣∣ < εs, (2.31)

where f̄(T0) is the mean value of f at the points in the initial Markov chain,

f̄s(Tt) is the smoothed value of f̄ over a number of chains so as to reduce

the fluctuation of f̄(Tt), and ε is a small positive number called the stopping

parameter.

The proposed SA algorithm steps used in this dissertation is adopted from

Choi et al. (2007):

1. The initial temperature T0, and the number of MC simulations at each

temperature P is set;

2. The initial sampling times t0 = (t1, t2, ..., tn) are set;

3. Generate the new sampling schedule tnew;

4. Estimate the energy of the current solution (Ecurrent) and new schedule

(Enew);

5. Check if the new schedule should be accepted using the acceptance cri-

terion;

6. Repeat the process from steps 3 to 5 for p number of times;

7. Calculate next temperature; and

8. Repeat the process until the stopping criteria is effected.
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2.8 Population PK

In a traditional non-compartmental approach of bioequivalence, the subjects

are recruited from a homogenous population which makes it difficult to make

an inference about the whole population. The solution to this is through

population pharmacokinetics (PopPK). This approach uses a nonlinear mixed

effects model by building a PK model with fixed effects, between-subject vari-

abilities and residual variabilities. The use of PopPK modelling has several

advantages such as investigating the characteristics of the PK parameters in a

model (Chow and Liu, 2008). The advantages and disadvantages of the PopP-

K method, as stated by Bonate and Steimer (2006), are summarised in Table

2.7.

Table 2.7: Advantages and disadvantages of PopPK method.

Advantages Disadvantages

Subgroups within the population

can be distinguished which may

not have been noticed.

It is very expensive.

Population method can analyse

thinly dispersed data.

It is time consuming.

Essential covariates are used and

may be able to interpret subject

variability.

The methods are not easy to com-

prehend.

The information that are ob-

tained could be used for predic-

tion of dose for individual sub-

jects.

Different PopPK analysts may

develop different models.

It is a model based on promoting

the use of prior knowledge, there-

by enhancing understanding and

statistical power.

Difficult to review.
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PopPK, as defined by Aarons (1991), studies the origins and the variation

in the concentration of drugs in individual subjects who are sampled from a

population and receive a quantity of the drug of interest at a particular time

period. That is, population PK studies the connection that exists between

the quantity of administered dose and concentration of the sampled subjects

as well as the population from which they were sampled. The population PK

parameters are evaluated by fitting a model. There are a number of meth-

ods used to estimate the parameters of the PopPK including the traditional

approach which uses the standard two-stage (STS) method and the nonlinear

mixed effects modelling approach (NLMEM) (Chow and Liu, 2008). These two

methods are discussed in the next section. In this dissertation, the NLMEM

approach is adopted because of its advantages that will be discussed in Section

2.10.

2.8.1 Traditional Two-stage

This approach of estimating the PopPK parameters has two stages, hence the

name: standard two-stage (STS) approach. The PopPK parameters are esti-

mated by fitting each individual subject’s data separately and later combining

the individual estimates (Chow and Liu, 2008).

For each subject, enough dosage is administered and sufficient blood concen-

trations are drawn so that the PK parameters are approximated accurately for

each subject. The estimates of the parameters are acquired using a determin-

istic PK model which could be a one or multi compartment model (Chow and

Liu, 2008).

From the PK parameter estimates which were derived individually from each

subject in the first stage, covariance model analysis is considered to avoid con-

founding effects as well as the interactions that may exist among the covariates

(demographics) and to study the treatment effect (dosage and route of admin-
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istration) and the variation between individuals (Chow and Liu, 2008).

However, this approach has cost and ethical issues as stated by Sheiner et

al. (1977) and also has disadvantages from a statistical point of view. The

variation of each individual is not considered whenever the estimates obtained

from the deterministic model in the first stage are used. It becomes diffi-

cult to obtain reliable and accurate approximations of the PK parameters for

each subject whenever the sampling of the subjects is sporadic (Chow and Liu,

2008). The traditional approach is incapable of describing the attributes of the

population where a number of demographic-, physiological- and behavioural at-

tributes are documented for each individual subject including their age, weight,

sex, and other variables (Chow and Liu, 2008).

2.8.2 Nonlinear Mixed Effects Modelling Approach

The traditional two-stage method described in section 2.9 has several setbacks

and therefore an alternative method, the NLMEM approach, is proposed and

comes highly recommended by the FDA. This method is a nonlinear regres-

sion model which accounts for random and fixed effects. NLME models are

quite similar to the linear mixed effect models (LMEM) but the function in

NLMEM is nonlinear (Bonate and Steimer, 2006). PopPK studies the phar-

macokinetics in a population and it models the data from every individual

subject concurrently, but it is also able to account for within-subject variabil-

ity, between-subject variability and residual variability (Bonate and Steimer,

2006). This method was introduced by Sheiner and Beal (1985) and is the most

widely used method for population studies. During NLMEM the attributes of

the population constitute the mean of the population which is obtained from

fixed effect parameters, the variation, which is within the population, as well

as the variability from the random effect parameters (Bonate and Steimer,

2006).

One objective of a PopPK is to develop a model which connects the concentra-
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tion to the administered dose and other covariates as well as to obtain estimates

of the PK parameters (Bonate and Steimer, 2006). These NLME parameters

are derived using a maximum likelihood estimation (MLE) method. Because

of the nonlinear dependence of the observations it becomes demanding to cal-

culate the likelihood of the data. Hence, two algorithms are widely used: the

first-order (FO) approximation and the stochastic approximation expectation-

maximisation (SAEM). The NLME does not require the data to be necessarily

frequent and does not follow a structured sampling time schedule (Bonate and

Steimer, 2006).

2.8.3 Pharmacokinetic Models

The use of PK modelling in drug development has received much attention

(Sheiner and Steimer, 2000). Teorell (1937) first introduced the PK models

to describe drug absorption, distribution and elimination. He suggested that

organs and tissues be separated into different compartments and are only con-

nected by kinetic rate. In this dissertation, the focus is on compartmental

models even though there are different types of models, including physiologi-

cal models and empirical models, as stated by Shargel et al. (2004).

Consider a single one-compartment model which is a bolus (administration of

a discrete quantity of a drug so as to raise its concentration to an effective

level) intravenous injection (IV), as described by Welling (1997), and given in

Figure 2.8.

D
Ka Ke

A(t)

Figure 2.8: One compartment model with bolus IV.
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Here, A represents the amount of the drug in the body calculated as A = C ×

V, where C is the concentration of the drug in the body and V is the volume of

distribution. Ke represents the elimination rate constant and Ka represents the

absorption rate constant. Using a differential equation, the following equation

is obtained:
dA

dt
= −KeA, (2.32)

with t being the time. After performing integration Equation 2.32 becomes:

C = C0e
−Ket. (2.33)

lnA− lnA0 = −KeA

e
ln(
A

A0

)

= e−Ket

A = A0e
−Ket

The amount of drug A can be expressed as the concentration simply by dividing

it by the volume of distribution, V, of the drug.

2.9 Summary

Bioequivalence studies started in the early 1960s to 1970s to meet the needs

of consumers in having access to inexpensive and efficacious drug products.

The origin of bioequivalence studies was purely for economic reasons and was

driven by legislation across different countries. Therapeutic failures prompted

extensive research in the area of bioequivalence studies and led to the estab-

lishment of techniques and regulations for assessing whether two drug products

were bioequivalent based on the extent of BA between different formulations.

ABE was then introduced as a measure of assessing two drug products and

was adopted by the FDA and other bodies such as SAMCC. ABE, although it

protected the health of the public since it was adopted, could only compare the
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mean rate and extent of BA and does not compare between- or within-subject

variability between the drug formulations. This led to further research on PBE

and IBE.

The literature presented in this Chapter shows that research on bioequivalence

studies employed ABE, PBE and IBE to show that two drug products were

indeed bioequivalent. However, very little is done using IBE since that requires

a higher order COD and most of the designs used are limited to 2× 2 COD.

Population PK studies is one area of research which is gradually coming to the

fore. This method focuses on investigating the population characteristics of

the PK parameters using a modelling technique. Available literature indicates

that different methods, such as the traditional approach, nonlinear mixed ef-

fect modelling technique and others, have been used to model the population

parameters. However, nonlinear mixed effect modelling is widely used and

recommended by the FDA.

The techniques which were discussed in this section form the basis of the

methodology which is discussed in the next Chapter and used in the disserta-

tion.
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Chapter 3

Methodology

3.1 Introduction

For a T drug to be approved as a replacement for the R drug and be marketed,

regulatory bodies, including the FDA, WHO and SAMCC, demand that ABE

between the T and R drugs should be provided (FDA 2001). BE is measured

using Cmax and AUC which measure the extent and the rate of drug absorption,

correspondingly. The scope of this research is to perform statistical analysis

on the PK parameters using the available data, estimate the population- and

individual absorption rate, clearance and volume of distribution of the drug

using a model and also optimise (minimise) the samples of blood taken from

each subject. The 2 × 2 crossover design will be used for this dissertation as

well as the TOST. ANOVA will also be carried out and the results will be used

in the CI approach. A confidence interval approach will be used to determine

bioequivalence using the results obtained from the ANOVA analysis. An SA

algorithm will be used to optimise the blood sampling times taken from the

subjects.

Bioequivalence assessment between the T and R drugs can be assessed through

four main ways (FDA, 2003):

• In vitro studies;
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• Pharmacodynamic studies;

• Comparative clinical studies; and

• Pharmacokinetic studies.

These methods can be used singly or as a combination depending on the type

of treatment formulation or the method of administration of the drugs. Ac-

cording to the FDA, pharmacokinetic studies are the preferred method for

bioequivalence studies. This choice of bioequivalence studies as the preferred

method for bioequivalence studies was supported by Wang and Bakhai (2006).

Pharmacodynamic studies and comparative studies are most recommended

whenever pharmacokinetic studies cannot be applied. In vitro studies are gen-

erally recommended for immediate release (IR) of drugs that are taken orally

and are in a solid form (FDA, 2003).

3.2 Experimental Design

Before BA studies are conducted the type of design to be used, subject se-

lection criteria, the dosing schedules as well as the statistical methods to be

used, are considered (Chow and Liu, 2008). The types of statistical analyses

to be performed depend on the type of design that is used. For example, when

one wants to conduct IBE, the most appropriate design according to the FDA

(2001), is the repeated measures design (preferably two sequence, four period

design) as this enables easy computations of the within and between subject

variabilities and the subject-formulation relations. In general, meaningful sta-

tistical inferences can be drawn from data only when appropriate designs are

used.

When ABE and PBE are the only chosen methods for BE comparisons, a non-

replicate standard two-formulation, two-period, two-sequence COD is used s-

ince using a replicated design will be more expensive and time consuming

(FDA, 2001). During BE studies the study should be properly designed so as
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to distinguish the drug effect from all other effects. Also, there should be an

adequate washout period to avoid carryover effects. Usually a 2 × 2 COD is

used for BE studies. However, other designs such as repeated COD, parallel

design, etc. could be used depending on the study objective. Generally a sin-

gle dose study is preferred with steady-state studies used at certain times only.

A randomised, single-dose, two-period, two sequence COD was used for this

study. The T and R drugs were administered under fasting conditions (subjects

are not allowed to eat 24 hours before drug administration) to the subjects with

a sufficient washout period separating the two treatments. The study was done

at two separate periods. In the first period of the first sequence every subject

was administered a single dose (10 mg of drug) of the R drug and samples of

blood were drawn at times 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 12, 24, 30, 48

and 72 hours. The choice of the sampling times are influenced by the half-

life of the drug and other pharmacokinetic parameters of the drug such as

the absorption and elimination rates. In the second period each of the same

subjects received another single dose (10 mg of drug) of the T drug and a new

series of blood samples were drawn. Similarly, in the first period of the second

sequence every subject in the second group received the T formulation first

and in the second period, they received the R formulation second. In each of

the periods for both sequences, samples of blood are drawn at the same times

after the administration of the drug (Chow and Liu, 2008).

3.3 Research Data

Blood samples obtained through a 2× 2 crossover design from pigs were used

as the data for this dissertation. The 16 pigs were allocated to two different

sequences. The pigs in sequence 1 were dosed with the T drug first and then

with the R drug. The drugs were administered intramuscularly. The pigs in

the second sequence were dosed with the R drug first and then with the T

drug after the washout period. The data were obtained from Onderstepoort
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Veterinary School. The study at Onderstepoort was executed to obtain BE

between the T and R drugs which were both antibiotics for marketing purposes.

The dose of the drugs for the pig data is 15 mg/kg. The raw data comprise of

the variables listed in Table 3.1.

Table 3.1: A list of the variables in the raw data.

Variable Description

Time Time at which samples are collected (hours).

Sequence The sequence to which each subject belongs.

Period The period to which a subject belongs.

Concentration A measure of the concentration at a particular time.

Treatment An R and T formulation.
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Table 3.2 summarises the data used in this dissertation.

Table 3.2: Data from a Two Period COD with T and R formulations.

Subject Sequence
AUC

Test

AUC

Ref

AUC

T:R

Cmax

Test

Cmax

Ref

Cmax

T:R

1 RT 53.378 62.4935 0.85 4.68 3.3 1.42

2 RT 63.4214 60.244 1.05 2.68 3.16 0.85

3 RT 78.4096 65.0565 1.21 3.32 2.08 1.60

4 RT 56.0545 50.333 1.11 3.24 3.67 0.88

5 RT 38.5985 49.2165 0.78 1.82 2.06 0.88

6 RT 78.99 60.549 1.30 2.99 1.89 1.58

7 RT 71.838 57.7215 1.24 2.15 3.69 0.58

8 RT 54.3085 49.312 1.10 3.88 2.86 1.36

9 TR 56.264 55.291 1.02 5.8 1.95 2.97

10 TR 61.1015 73.1955 0.83 3.02 3.95 0.76

11 TR 59.2165 72.3501 0.82 2.12 3.26 0.65

12 TR 60.798 66.7527 0.91 3.1 10.2 0.30

13 TR 68.9234 85.6995 0.80 9.72 4.39 2.21

14 TR 67.7175 77.544 0.87 9.78 3.32 2.95

15 TR 66.153 59.1085 1.12 2.51 1.86 1.35

16 TR 58.9715 67.0836 0.88 2.37 3.69 0.64

R=Reference, T=Test

The AUC and Cmax data were estimated using a non-compartmental PK

method and analysed using Statistical Analysis System (SAS) version 9.4,

R software version 3.2.2, matrix laboratory (MATLAB) version 8 and Mono-

lix version 2016R1. From the data, some of the observations (concentrations)

were missing but were not imputed since they were only few and not likely to

impact the results significantly. There was no demographic information (age,

weight, height) available for the subjects in the data. There was an equal

number of subjects (8 subjects per sequence) in each of the sequences which
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makes it a balanced design.

3.4 Sample size

The number of subjects to be used in a BE study to establish bioequivalence

between the T and R drugs within meaningful limits is determined by various

factors (Chow and Liu, 2008):

• the level of significance desired;

• the required power; and

• the expected deviation from the R drug which is compatible with bioe-

quivalence.

The analytical and clinical standards required may also determine the total

number of subjects to be used. However, the minimum number of subjects

used for BE is 12. An adequate number of subjects are required to be used

to accommodate for any dropouts since replacing subjects during the study

could complicate the statistical model and analysis. In addition, the number

of subjects should also be adequate to ensure that statistically meaningful

analyses and results are obtained. Table 3.3 shows the minimum sample size

requirements for selected countries.
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Table 3.3: The minimum samples required in some selected countries.

Regulatory

Authority

Minimum Number Sample size specification

South Africa 12 or more subjects for im-

mediate release and 20 for

modified release oral dosage

forms.

The number of subjects

should be justified on basis

of providing 80% power.

USA 12. The number of subjects

needs to provide sufficient

power to conclude bioequiv-

alence.

Europe 12 or more. The number of subjects

should depend on appropri-

ate sample size calculations.

3.4.1 Subject Selection

In BE studies, subjects must be chosen with the aim to minimise variation

and also to allow for easy identification of the differences between the T and R

formulations (Chow and Liu, 2008). The study, however, is usually performed

using healthy subjects. Subjects which are selected for bioequivalence studies:

• are healthy subjects of either sex in the range of 18 to 55 years;

• are subjects with no history of drug or alcohol abuse;

• are of normal weight (weight corresponds to height as determined by

BMI); and

• are subjects that have gone through thorough medical screening before

selection (FDA, 2003).

However, the subject selection normally differs from one country to the next

as indicated in Table 3.4.
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Table 3.4: Subject selection criteria in selected countries.

Regulatory

Authority

Age Gender BMI

South Africa 18 to 55 years. Male or female. Recommended

BMI or usually

within 15% of

the body mass.

USA 18 years or older. Male or female. Not specified.

Europe 18 years or older. Male or female. 18.5 to

30kg/mˆ2.

When animals are used in BE studies they must be healthy and chosen from

a homogeneous population. Thus, they need to have the same weight, be of

the same breed, same age and same sex. However, when it is difficult to get a

homogeneous group of animals, it is acceptable to use animals from different

populations provided age, sex and weight are controlled (EMEA, 2001).

3.4.2 Standardisation of the study

The subjects involved in the BE studies should preferably fast at least the

night before the administration of the drugs or formulations. The time of the

day where the subjects ingest the drug should be stated. Subjects should not

be permitted to take any other drug before and during the study period.

3.5 Research Design

3.5.1 2 x 2 Crossover Design

A COD is a redesigned, randomized block in which every block receives d-

ifferent formulations of the drug at different periods (Chow and Liu, 2008).

Crossover trials are designed in a way such that subjects receive a sequence of
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treatments in a specified order for a pre-specified length of time with a washout

period between each treatment where no treatments are dispensed (Wang and

Bakhai, 2006). A crossover study should be designed such that the formulation

effect could be separated from other types of effects (Hauschke et al., 2007).

In a COD two or more treatments are compared where a subject switches to

another treatment upon completion of one. This is one advantage a COD trial

has over the parallel design in that subjects become their own controls thereby

requiring fewer subjects to evaluate the effect of different therapies. Subjects

are assumed to have stable conditions which should not vary between the first

and second dosing periods. This assumption must be satisfied for a COD to

be implemented successfully. In addition to this, a COD is favourable for BE

studies because:

• every subject serves as its own control thereby enabling each formulation

to be compared within each subject and evaluating the within subject

formulation;

• inter-subject variability is accounted for; and

• a good and unbiased estimate of the differences between the two formu-

lations is obtained when the subjects are properly randomised.

A COD has the advantage of comparing the individual effects of the treat-

ment and not the sequences. It allows for identifying the individual reactions

of the various formulations as each subject receives each of the formulations

(Senn, 2008). Depending upon the different number of treatments, the aim of

the study and the number of sequences, there could be many sets of possible

sequences which could be utilised in the design.

However, the two-period, two-treatment COD, where every subject is admin-

istered either the T or the R drug formulation first and the alternative as the

second treatment, remains the simplest design. It is not compulsory that the

number of periods should be the same as the number of formulations. The
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treatment is randomly administered to the subjects. Most often, half the sub-

jects receive one treatment while the other half receives the second treatment

at the same time. For example, in a 2 × 2 COD, each subject is assigned

arbitrarily to either treatment sequence RT or TR at different dosing periods.

Subjects in the COD are administered the R and T formulations in both pe-

riods 1 and 2, respectively, in the first sequence whereas the second group of

subjects also receive the T and R formulations in periods 1 and 2, respectively,

in the second sequence. That is, subjects in the RT sequence receive R for

the first dose and T as the second dose separated by a washout period, while

subjects in the TR sequence receive T for the first dose and R as the second

dose.

The main advantage of a COD trial is the comparison of treatments within

subjects (Jones and Kenward, 2014). In this study, for example, each subjec-

t provides two measurements in R and T, separately. A repeated measures

design has a lot of advantages and a potential disadvantage as well, but it

is not considered in this dissertation. The disadvantage of a repeated design

(carryover or residual effect) is the chance of a treatment effect in a period to

be still present during the start of the next period. This disadvantage, howev-

er, can be reduced when the appropriate design and analysis are used (Jones

and Kenward, 2014). To eliminate this carryover or residual effect a washout

period of sufficient length is usually allowed.

Differences between treatments in one period could also be different from a lat-

er period because of treatment-by-period relations. However, in a well planned

design, the chances of treatment-by-period effect will be minimal. A suitable

design, which allows any such interaction to be easily detected and determine

whether it was as a result of carryover or not, could be used as well (Jones and

Kenward, 2014).
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A 2× 2 crossover design is shown in Figure 3.1 below.

Subject

Sequence 1 Test Reference

Sequence 2 Reference

Period 1

Test

Period 2

R
an

do
m

iz
at

io
n

W
as

ho
ut

Figure 3.1: A standard two-sequence, two-period crossover design.

Generally, a clinical trial with a sequences of treatments delivered over b dif-

ferent periods is referred to as an a× b COD. In a COD, treatment differences

are based on within-subject comparison which results in a low variability with-

in the subjects as compared to a parallel design where treatment differences

are based on between-subject variability resulting in high variability between

subjects.

COD, however, poses a lot of inconvenience to subjects such as pain if it is

intravenous as they have to take multiple treatments which involves a longer

period of observation. This could result in high drop out rates resulting in

an unequal number of subjects completing the trial. One of the challenges of

a COD is the carryover effect (Jones and Kenward, 2014). Carryover effect

is the tenacity of a treatment which is given in one treatment stage of the

study to the next treatment stage or the effect of a drug that remains after the

dosing period is over (Senn, 2008; Chow and Liu, 2008). The carryover effects

(residual effect) and washout should be established in a COD as the existence

of a carryover effect normally affects the inferences that are made about the

BA between the drug formulations (Chow and Liu, 2008). Carryover effects

may lead to biased estimation of the PK parameters.

The washout period should be long enough for the drug formulations to be

completely eliminated from the subjects’ system to avoid carryover effects.

Washout periods normally depend on the type of drug being used in the BE

studies. A first-order carryover effect lasts for one treatment period. The
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period effect is another potential drawback of the COD. The effect of either

the T or R treatment could be affected if it is administered either in the first

or second period. The period effect could be minimised by assigning an equal

number of subjects to each sequence and then adjusted statistically (Jones and

Kenward, 2014).

3.5.2 Statistical Model

The two sequences, two periods COD is mostly recommended for bioequiva-

lence assessment using PK studies. A 2 × 2 crossover model, as presented by

Chow and Liu (2008), is given as follows:

Yijk = µ+ Sik + Pj + Fj,k + Cj−1,k + eijk, (3.1)

where µ represents the overall mean; Sik represents the random effect for each

subject i in the kth sequence, where i=1,2...nk, k=1,2; Pj represents the fixed

effect of the jth period with j=1,...,p and ΣPj = 0; Fj,k is the fixed effect of the

drug formulations in the kth sequence dispensed during the jth period while

ΣFj,k = 0; Cj−1,k is the fixed carryover effect of the formulations in the kth

sequence dispensed at the (j − 1)th period where Co,k = 0 and ΣCj−1,k = 0;

eijk is the within-subject random error; and Yijk is the PK parameter of the

ith subject for each sequence k at each period j.

The assumption is that Sik should be independently and identically distributed

with a mean of zero and variance σ2
s , and eijk should be independently dis-

tributed with a mean of zero and variance σ2
t , where t = 1, 2, ..., l (the number

of drug formulations). Carryover effects, period effects and direct drug effects

are usually the preliminary tests that are performed before assessing bioequiv-

alence between the T and R formulations.

70



All the methods which are used in this study for BE assessment are derived

using the model in Equation 3.2,

Yijk = µ+ Sik + Fj,k + Pj + eijk, (3.2)

where Yijk, µ, Sik, Fj,k, Pj and eijk are defined in Equation 3.1.

3.5.3 Washout and Carryover Effect

Despite the advantage of each subject serving as its own control, COD still

has a disadvantage. This potential problem arises when the first treatment ef-

fect from the first time period is still existing in the next period and therefore

misrepresents the effect of the second treatment. According to Senn (2001) a

carryover effect arises whenever the drug treatment administered in one period

continues to affect subjects in the second period thereby biasing the amount

of drug in the blood sample of a subject. One potential cause of a carryover

effect is the short time between periods before administering the second drug

formulation. The short time between the periods is referred to as a washout

period. Carryover effect could also be as a result of some drugs having longer

half-lives or some subjects having very weak metabolism rates. Washout and

carryover effects (residual effects) need to be addressed in a COD because the

carryover effect affects statistical inference of BA between formulations (Chow

and Liu, 2008).

Whenever the carryover effect is present, the estimate (µT − µR) would be

biased as the effect of the drug which is dispensed in the first period is still

present. A washout period is the resting period between drugs dispensed in the

first period and second period during which the impact of a drug formulation

given at one period does not extend to the next treatment period (Chow and

Liu, 2008).

The duration of the washout period is determined depending on the type of

drug and half-life of the drug. For drugs with a long half-life, their effect may
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still be present even after washout is introduced at the termination of a dosing

period. If this happens it becomes important to differentiate the direct drug

effect from the carryover effect. A direct drug effect can be interpreted as

the effect of the drug being present in the period in which it was dispensed

while carryover effect is the drug effect after the termination of a dosing period

(Chow and Liu, 2008).

In the absence of carryover effects due to adequate washout period, the general

crossover model given in Equation 3.1 reduces to the model in Equation 3.2.

3.5.4 Period Effect

It is preferred that the subjects’ condition and ability to respond to the formu-

lations remain unchanged between the two dosing periods. This is not always

the case as some subjects improve on average or deteriorate before taking the

second treatment. This can cause a problem which affects COD, generally re-

ferred to as the period effect (treatment by period interaction). The effect of R

and T can be influenced depending on the period they were administered. This

could be as a result of physiological and environmental changes which occur

in the subjects. A significant period effect could be as a result of timing and

amount of physical activity and/or the hotness or coldness of the water used

at both periods (Lockyer, Al-Dgither, Al-Gaai, Yousuf and Hammami, 2005).

However, a significant period effect does not influence the BE assessment.

3.6 Outliers

One of the challenges encountered in BA and BE studies is that the data

set sometimes contains either extremely small or extremely large observations

which are referred to as outliers. An outlier is a data point that does not fit

the model correctly. These extremely small or extremely large observations

tend to influence any decisions reached about the bioequivalence of the two

drugs. There are four types of outliers as identified by (Chow and Liu, 2008):

• unexpected observations which appear in the CTC;
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• very small or large observations in a given formulation type;

• subjects unusually having either extremely low or extremely high BA

with respect to R form; and/or

• unusual subjects having extreme BA in both formulations.

Chow and Tse (1991) argued that the decision on bioequivalence is heavily

influenced by the presence of any outliers. When BA studies are conducted

with the inclusion of subjects which are potential outliers, Westlake (1981) and

Schuirmann (1987) stated that this may lead to bioinequivalence whereas the

formulations are indeed bioequivalent. It is therefore very important to iden-

tify any possible outliers in the data and conduct the bioequivalence studies

with and without these outliers.

By doing so it makes it easy to conclude if the possible outlier does have any

effect. Rodda (1986) suggested that outliers (unexpected observations) should

be included in the analysis as they have little effect on the calculation of the

AUC and, consequently, have little effect on BA comparison. It only suggests

that the subjects respond to the formulations differently either due to external

or internal factors. The FDA also believes that outliers should not be excluded

from the analysis (FDA, 2001).

3.6.1 Outlier Detection

The study of the detection of potential outliers in a data set has received much

attention in past decades (Dixon, 1953; Cook, 1977; Draper and John, 1981).

Various methods have been developed to handle outliers in linear regression

problems. However, the data used in BA studies can not be accommodated in

a linear regression framework. The inclusion or deletion of potential outliers

in the BA analysis affects the results obtained and as such need to be consid-

ered. A number of possible techniques have been proposed for the detection of

outliers in BA and BE studies. Cook and Weisberg (1982) proposed the Like-

lihood Distance (LD) approach for identifying outliers while Chow and Tse
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(1990) developed an approach known as the Estimates Distance (ED) method.

Another approach, the Hotelling T 2 statistic (HT), was introduced by Liu and

Weng (1991) to detect outliers.

3.6.1.1 Likelihood Distance and Estimates Distance

The LD and the ED procedures which were proposed to detect an outlier as-

sume no period effect and no formulation effect. In the absence of formulation

and period effects, the model in Equation 3.1 is reduced to Equation 3.3:

Yij = µ+ Si + eij j = 1, ..., n; i = 1, ..., k, (3.3)

where n is the number of formulations, k is the number of subjects and Yij

expresses the measurement value for the ith subject, jth formulation. The

parameters which are of interest include µ, σ2
e and σ2

s . Let θ̂ = (θ1, θ2, θ3)T

where θ1 = µ, θ2 = σ2
e and θ3 = σ2

e + nσ2
a. The log-likelihood function L(θ) for

Equation 3.3 is given as:

L(θ) =
−kn

2
log2π−k

2
log(θ2θ

n−1
3 )− 1

2θ3

k∑
i=1

n∑
j=1

(Yij − θ1)2−n
2

( 1

θ2

− 1

θ3

) k∑
i=1

(Ȳi−θ1)2.

(3.4)

The maximum likelihood estimator (MLE) θ̂, of θ is obtained through max-

imisation of L(θ) in Equation 3.4 with respect to θ given that θ3 ≥ θ2. The

MLE θ̂ = (θ̂1, θ̂2, θ̂3)T of θ is then,

θ̂1 = Ȳ =
1

nk

k∑
i=1

n∑
j=1

Yij,

θ̂2 = m1,

θ̂3 =
(k − 1)m2

k
,

where

m1 =
1

k(n− 1)

k∑
i=1

n∑
j=1

(Yij − Ȳi)2,
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and

m2 =
n

k − 1

k∑
i=1

(Ȳi − Ȳ )2.

However, if θ̂3 < θ̂2, the MLE of θ2 and θ3 becomes

θ̂2 = θ̂3 =
1

nk

k∑
i=1

n∑
j=1

(Yij − Ȳ )2,

which is obtained by maximising L(θ) under the condition that θ2 = θ3.

Since the log-likelihood function gives a summary of the information concerning

θ for a given data set, it becomes possible to compute the impact of the ith

case based on the difference of the log-likelihood between θ̂ and θ̂i, where θ̂i

represents the MLE of θ when the ith subject is deleted. The difference is

given as

L(θ̂)− L(θ̂i), (3.5)

which measures the impact of the ith subject. If the contrast in Equation 3.5

is large (could influence bioequivalence decision), the ith subject is considered

an outlier.

The LD statistic, which is based on the log-likelihood distance, is given by

LDi(θ̂) = 2[L(θ̂)− L(θ̂i)],

where θ̂i is the MLE of θ when the ith subject is deleted. LDi(θ̂) can be

shown to be asymptotically chi-square distributed with 3 degrees of freedom

(df ) as k (number of subjects) approaches infinity. An ith subject is therefore

considered an outlier if

LDi(θ̂) > χ2
3(α),

where χ2
3(α) is the upper α percentile of a central chi-square distribution with

3 df.
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Alternatively, the impact of an individual subject could be studied by delet-

ing that subject and taking note of the changes (Chow and Tse, 1990). The

comparison is then based on the difference θ̂i − θ̂. A squared distance from θ̂i

to θ̂, which is referred to as Cook’s distance, and is similar to that of linear

regression, was derived by Cook and Weisberg (1982).

The estimates distance can then be defined as

EDi(θ̂) = k2(θ̂i − θ̂)Σ̂−1(θ̂i − θ̂),

where Σ̂ is the estimate of

∑
=


θ3

n
0 0

0
2θ2

2

n− 1
0

0 0 2θ2
3

 , (3.6)

obtained by replacing θ by its MLE θ̂. EDi(θ̂) can be shown to have a chi-

square distribution with 3 df. Therefore, an ith subject is regarded as an

outlier if

EDi(α̂) > χ2
3(α),

where χ2
3(α) is the α percentage point of a χ2

3 distribution.

3.7 Interval Hypothesis Approach

In reality, no two drug formulations can ever have the same bioavailability

profiles as their profiles would differ by a clinically meaningful limit (Chow

and Liu, 2008). Even though the two drug formulations may not have exactly

the same profiles, they could be considered as equivalent if they differ by a

clinically accepted limit. Due to this, another approach for assessing average

bioequivalence, the interval hypothesis method, was introduced by Schuirmann

(1987). The hypothesis for average bioequivalence is given as

H0 : µT − µR ≤ θL or H0 : µT − µR ≥ θU ,

H1 : θL < µT − µR < θU ,
(3.7)
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where µT and µR are the average bioavailability of the test product and refer-

ence product, respectively, θU and θL are clinically meaningful limits which are

both given as 20% of the unknown reference mean (µR). The null hypothesis

states that µT and µR are not equivalent while the alternative hypothesis states

that they are equivalent. Bioequivalence is concluded if both null hypotheses

are rejected. However, when the natural logarithm of the PK responses is used,

the hypothesis in Equation 3.7 becomes:

H0 : µT/µR ≤ δL or H0 : µT/µR ≥ δU ,

H1 : δL < µT/µR < δU ,
(3.8)

where δL = exp(θL) and δU = exp(θU).

Given that θL=−0.2µR and θU=0.2µR, the interval hypotheses can be rephrased

as

H0 : µT − µR ≤ −0.2µR or H0 : µT − µR ≥ 0.20µR,

H1 : −0.2µR < µT − µR < 0.20µR,
(3.9)

which, if µR > 0, may be changed to

H0 : µT/µR ≤ 0.80 or H0 : µT/µR ≥ 1.20,

H1 : 0.80 < µT/µR < 1.20.
(3.10)

The statistical assumptions of normality and homogeneity of variance are

deemed to be satisfied for the logarithmically transformed bioavailability vari-

ables (Hauck and Anderson, 1984). If the statistical assumptions are true on

the logarithmic scale, the interval hypotheses can be changed to

H0 : ηT − ηR ≤ log(0.80) or H0 : ηT − ηR ≥ log(1.20),

H1 : log(0.80) < ηT − ηR < log(1.20),
(3.11)

where ηT and ηR are the true test and reference means, respectively, of the

logarithmically transformed parameters.

Equation 3.7 can be decomposed into:

H01 : µT − µR ≤ θL versus Ha1 : µT − µR > θL,

H02 : µT − µR ≥ θU versus Ha2 : µT − µR < θU .
(3.12)
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The initial set of hypotheses in Equation 3.12 are used to determine if average

bioavalibality of the T drug is not too low while the second batch tests if the

average bioavailability is not too high (Chow and Liu, 2008). Whenever the

average BA of the T drug formulation is too low, there is an issue of efficacy

and an issue of safety when it is too high. Rejecting H0 in Equation 3.7 is

similar to rejecting H01 and H02 in Equation 3.12 which eventually leads to an

average bioequivalence conclusion.

Thus, when θL < µT − µR and µT − µR < θU , it can be concluded that

θL < µT − µR < θU ,

µT and µR are considered to be bioequivalent.

3.7.1 Two One-Sided Test (TOST)

The logic of hypothesis testing requires that the hypothesis to be demonstrat-

ed be the alternative hypothesis. This, however, implies that the equivalence

hypothesis should be the alternative and not the null hypothesis as demonstrat-

ed in Equation 3.7. Schuirmann (1987) introduced the Two One-Sided Test

(TOST) procedure which consists of decomposing the interval hypotheses in

Equation 3.7 into two sets of one-sided hypotheses,

H01 : µT − µR ≤ θL versus Ha1 : µT − µR > θL,

H02 : µT − µR ≥ θU versus Ha2 : µT − µR < θU .
(3.13)

The TOST procedure consists of rejecting the null hypothesis in the interval

hypothesis (Equation 3.13) and concluding equivalence of µT and µR, if and

only if both null hypotheses (H01 and H02) are rejected at a specified α level of

significance. Under normality assumptions, the two sets of one-sided hypothe-

ses in Equation 3.13 can be tested with ordinary one-sided t tests. Thus, BE

is concluded if
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TL =

(ȲT − ȲR)− θL

σ̂d

√
1

n1

+
1

n2

 > t(α, n1 + n2 − 2),

TU =

(ȲT − ȲR)− θU

σ̂d

√
1

n1

+
1

n2

 < −t(α, n1 + n2 − 2),

(3.14)

where ȲT and ȲR are the observed average bioavailabilities of the T and R for-

mulations, respectively, θL and θU are lower and upper bioequivalent limits, σ̂d

is the pooled standard deviation of period difference from the two sequences,

n1 and n2 are the number of samples in each sequence and α is the level of

significance. The TOST procedure turns out to be operationally identical to

the procedure of declaring bioequivalence only if the (1 − 2α)× 100% CI for

µT − µR is contained in the interval [θL, θU ], where (1− 2α)× 100% CI is the

90% classical confidence interval.

However, regulatory agencies such as the FDA were not necessarily concerned

with the power of bioequivalence but rather with the confidence interval with

which bioequivalence is concluded (Patterson, 2003). According to FDA (1992),

the significance level under the Schiurman’s TOST procedure is set at 5% per

test. The assumptions for bioequivalence assessment using the TOST proce-

dure are as follows:

• Samples should be randomised;

• Homogeneity of variances;

• Addition of the statistical model; and

• Normality and independence of residuals.

The FDA demands that subjects used for the bioequivalence studies must

be allocated at random to a sequence and the model will be fitted to a log

transformed AUC and Cmax. The within- and between-subjects variances are
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assumed to be homogeneous for both formulations while the Cmax and AUC

data are presumed to be log-normally distributed. The goodness-of-fit of the

log-transformed data is assessed using the residuals versus predicted values as

well as normality probability plots (Jones and Kenward, 2014).

3.7.2 Analysis of Variance (ANOVA)

ANOVA has been used as an assessment of bioequivalence in the past, accord-

ing to Pabst and Jaeger (1990), to test a simple hypothesis of the means of

the characteristics of the CTC being equal or not (Westlake, 1981). The null

hypothesis states that the T drug has the same consequence as the R drug.

Rejecting the null hypothesis implies that the T and the R have different effects

whenever they are taken. The hypothesis is given as follows:

H0 : µi − µ = 0 for all i = 1, 2, ..k

H1 : at least two µi − µ are different,
(3.15)

where µi represents the population mean for level i. Quite a handful of re-

searchers have criticised the use of the ANOVA as a method of bioequivalence

assessment (Hauck and Anderson, 1984). However, the ANOVA is needed, as

stated by Rani and Pargal (2004), to estimate the least squares means and the

error variance, σ2. The use of ANOVA enables the researcher to comprehend

the variation within the data through separating the total sum of squares (SS)

into random errors and fixed effects (Chow and Liu, 2008). The model used

in the ANOVA, given by Chow and Liu (2008), is given in Equation 3.16

SSTotal =
2∑

k=1

2∑
j=1

nk∑
i=1

(Yijk − Ȳ...)2

=
2∑

k=1

2∑
j=1

nk∑
i=1

(Yijk − Ȳi.k + Ȳi.k − Ȳ...)2

=
2∑

k=1

2∑
j=1

nk∑
i=1

(Yijk − Ȳi.k)2 + 2
2∑

k=1

nk∑
i=1

(Yi.k − Ȳ...)2

= SSwithin + SSbetween,

(3.16)
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where

Ȳi.k =
1

2

2∑
j=1

Yijk,

where Ȳi.k is the average of Yijk for each sequence, Ȳ... is the grand mean,

SSwithin denotes the sum of squares for within subjects and SSbetween is the

sum of squares between the subjects. The number of subjects in sequences

1 and 2 are denoted as n1 and n2, respectively. The total sum of squares

(SStotal) has 2(n1 + n2) − 1 df, the SSwithin has n1 + n2 df and the SSbetween

has n1 + n2− 1 df. The SSbetween is sub-divided into two parts with one being

the carryover effect and the other the inter-subject error. Thus,

SSbetween = SScarry + SSinter, (3.17)

with SScarry being the carryover effects with 1 df and SSinter the inter-subject

error with n1 + n2 − 2 df. SScarry and SSinter are defined below,

SScarry =
2n1n2

n1 + n2

{(Ȳ.12 + Ȳ.22)− (Ȳ.11 + Ȳ.21)}2, and

SSinter =
2∑

k=1

nk∑
i=1

Y 2
i.k

2
−

2∑
k=1

Y 2
..k

2nk
,

The mean squares (MS) is derived by dividing the sum of squares by its df.

To test the carryover effect hypothesis, the test statistic is given by

Fc =
MScarry
MSinter

∼ F (1, n1 + n2 − 2).

If Fc < F (α, 1, n1+n2−2), the null hypothesis is rejected with F (α, 1, n1+n2−

2) being the upper αth percentile for the F distribution with 1 and n1 +n2−2

df (Chow and Liu, 2008).

However, the test statistic Fc is similar to Tc > t(α/2, n1+n2−2) since Fc = T 2
c .

In the same way, SSwithin can be written as:

SSwithin = SSdrug + SSperiod + SSintra,
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where

SSdrug =
2n1n2

n1 + n2

{1

2
[(Ȳ.21 − Ȳ.11)− (Ȳ.22 − Ȳ.12)]}2,

SSperiod =
2n1n2

n1 + n2

{1

2
[(Ȳ.21 − Ȳ.11)− (Ȳ.12 − Ȳ.22)]}2,

SSintra =
2∑

k=1

2∑
j=1

nk∑
i=1

Y 2
ijk −

2∑
k=1

nk∑
i=1

Y 2
i.k

2
−

2∑
k=1

2∑
j=1

Y 2
.jk

nk
+

2∑
k=1

Y 2
..k

2nk
,

with 1 df for each of SSdrug and SSperiod and n1 + n2 − 2 df for SSintra.

Whenever the null hypothesis for the carryover effect is not rejected, thus

CR = CT , the null hypothesis for the drug effect testing for no drug effect can

be tested using the statistic

Fd =
MSdrug
MSintra

∼ F (1, n1 + n2 − 2).

The null hypothesis is rejected if Fd > F (α, 1, n1 + n2 − 2). The test statistic

Fd is similar to

Td =
F̂

σ̂d

√
1

n1

+
1

n2

,

since Fd = T 2
d .

The test statistic below is considered for testing the null hypothesis in a period

effect:

Fp =
MSperiod
MSintra

∼ F (1, n1 + n2 − 2).

The null hypothesis is then rejected if Fp > F (α, 1, n1 + n2 − 2). It could be

shown that

Fp = T0 =
P̂

σ̂d

√
1

n1

+
1

n2

.

An ANOVA table for the 2× 2 COD is provided in Table 3.5.
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However, to test for inter-subject variability (σ2
s), the following hypothesis is

considered:

H0 : σ2
s = 0,

H0 : σ2
s > 0.

(3.18)

The test statistic for testing the inter-subject variability is

Fv =
MSinter
MSintra

∼ F (1, n1 + n2 − 2, n1 + n2 − 2).

If Fv > F (α, n1 + n2 − 2, n1 + n2 − 2), the null hypothesis of no inter-subject

variation is rejected.

3.7.3 Wilcoxon-Mann-Whitney Test

A distribution-free rank sum test can sometimes be used on a TOST, according

to Hauschke et al. (2007), with a 2 × 2 COD (Chow and Liu, 2008). This

distribution-free rank sum test is known as a Wilcoxon-Mann-Whitney TOST

(Chow and Liu, 2008). This is a non-parametric approach to the parametric

approach by Schuirmann (1987). When µT − µR in the hypothesis stated in

Equation 3.13 is replaced by θ, the two sets of hypotheses are re-written as:

H01 : θ∗L ≤ 0 versus Ha1 : θ∗L > 0

H02 : θ∗U ≥ 0 versus Ha2 : θ∗U < 0,
(3.19)

where θ∗L = θ − θL and θ∗U = θ − θU .

Given that i = 1, 2, ..., nk and k = 1, 2, the approximations of θ∗L and θ∗U are

acquired as a linear function of the differences in the period dik. Let:

bhik =

dik − θh, h = U,L, for the subjects in sequence 1,

dik, for subjects in sequence 2,

(3.20)

where dik = 1
2
(Yi2k − Yi1k). In the absence of any carryover effect, the expec-

tation of bhik is given as:

E(bhik) =


1
2
[(P2 − P1) + (θ − 2θh)], for k=1,

1
2
[(P2 − P1)− θ], for k=2,

(3.21)
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with h = L,U , i = 1, 2, ..., nk and k = 1, 2. The variance is given by V (bhik) =

V (dik) = σ2
d = σ2

e

2
. It, however, implies that E(bhi1)−E(bhi2) = (θ − θh) = θ∗h.

Let RL represent the rank sum of the responses for subjects in the sequence 1,

RL =
n1∑
i=1

R(bLi1). (3.22)

The test statistic for H01 is given by:

WL = RL −
n1(n1 + 1)

2
. (3.23)

If WL > W (1− α), the null hypothesis (H01) is rejected. W (1− α) represents

the (1 − α)th quantile for the distribution of WL. Similarly, for the second

batch of hypotheses in Equation 3.19, H02 is rejected if:

WU = RU −
n1(n1 + 1)

2
< W (α), (3.24)

where RU represents the sum of ranks of bUik for the subjects in the first

sequence. When both sets of hypotheses H01 and H02 are rejected, thus

WL > W (1− α) and WU < W (α), (3.25)

the two drugs are considered to be average bioequivalent. Whenever there are

no ties among the observations, the expectation and variances of WL and WU ,

under the null hypotheses H01 and H02, gives

E(WL) = E(WU) =
n1n2

2
,

V (WL) = V (WU) =
1

12
(n1 + n2 + 1).

(3.26)

However, when there are ties, the WL and WU are calculated by assigning

average ranks. The expected value and variances of WL and WU thus become

E(WL) = E(WU) =
n1n2

2
, (3.27)

and

V (WL) = V (WU) =
1

12
(n1 + n2 + 1−Q), (3.28)

with

Q =
1

(n1 + n2)(n1 + n2 − 1)

q∑
v=1

R(r3
v − rv),
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where q represents the frequency of groups that are semantic while rv denotes

the size of the groups that have the same association v.

It could be concluded that W (1 − α) = n1n2 −W (α) since WL and WU are

symmetric about their means, n1n2/2. For a large total number of subjects

(i.e n1 + n2 > 40) and with the ratio of n1 to n2 close to 1/2, Equation

3.25 can be approximated for ABE with a large sample approximation which

uses the standard normal distribution. Bioequivalence could be established if

ZL > Z(α) and ZU < −Z(α) with Z(α) being the αth quantile of the standard

normal distribution and

ZL =
WL − E(WL)√

V (WL)
=

RL −
[
n1(n1 + n2 + 1)

2

]
√

1

12
n1n2(n1 + n2 + 1)

,

ZU =
WU − E(WU)√

V (WU)
=

RU −
[
n1(n1 + n2 + 1)

2

]
√

1

12
n1n2(n1 + n2 + 1)

.

(3.29)

The variances in ZL and ZU are replaced with the one given in Equation 3.28

which assumes no ties.

Statistical methods for assessing average BE between the R and T drugs are

derived with the assumption that Sik as well as eijk are normally distributed

with means of 0 and variances σ2
s and σ2

e . In practise, the challenge faced

when comparing two drugs is the assumption of normality. Whenever the

assumption of normality is violated for both the raw or log-transformed data,

a distribution-free (non-parametric) method is applied. The non-parametric

version of TOST, which is the Wilcoxon-Mann-Whitney TOST, would be used

to test for a difference between Tmax for the R and the T drugs. The statistical

inferences discussed above assumed that the data follow a normal distribution.

The parametric test can then be replaced by Wilcoxon rank-sum tests or the

Mann-Whitney U-test. The non-parametric analysis for a 2 × 2 COD was

described first by Koch (1972) and illustrated later by Cornell (1990). In order
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to use this approach, the subjects must be randomly selected from a population

of healthy subjects, the observations within a sample must be independent of

one another and the two subjects must be independent of one another.

3.7.4 Confidence Interval

For some years, BE studies have been simply done using ANOVA, where a

simple hypothesis of no difference in the means of the R drug and T drug

was tested (Westlake, 1981). The use of the theory of classical statistical hy-

pothesis testing of the equality of any two formulations has been criticised by

many researchers, such as Westlake (1972) and Metzler (1974), as not being

the appropriate statistical method. Both of them suggested that the right ap-

proach is the confidence interval (CI) method for the assessment of average BE.

Westlake (1972) further argued that the hypothesis approach was not relevant

to assess bioequivalence and proposed an alternative method which is based

on the confidence interval. Also, it is not sufficient to say the two drugs are

interchangeable, but that an amount of assurance should be given that the

average quantity of the drug eliminated from the T drug is adequately close to

the quantity eliminated by the R drug. The hypothesis method, however, is

not able to provide this assurance. Metzler (1974) as well stated that it is not

enough to prove that Br 6= Bt (Br is the bioavailability of the R drug and Bt

is the bioavailability of the T drug) but that the difference Br −Bt should be

assessed instead and conclude it is acceptably small and thus non-significant.

Classical hypotheses testing are sometimes not appropriate for BE studies.

The classical hypothesis testing only tests whether the two drug formulations

are identical. Hypothesis testing, however, does not provide this assurance.

The confidence interval approach provides this assurance which is needed to

declare bioequivalence between the R and T drug.

To establish ABE between the R and T formulation, a 90% confidence interval

is constructed on either the natural logarithm or logarithm to base 10 of the
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AUC and Cmax. The two drugs can then be said to be bioequivalent if a classic

(1− 2α)× 100% CI for the ratio of the means of the T to the R drug µT/µR

or the difference between the mean of the T drug and the mean of the R drug

(µT − µR) is within the recommended limits set by the FDA and acceptable

limits of other regulatory bodies (Westlake, 1981). The acceptable limits for

the ratio of µT/µR, according to the FDA (2001), are [0.8,1.25] .

Metzler (1974) and Westlake (1976) stated that the classic CI method is the

most suitable approach for the assessment of ABE. Kirkwood and Westlake

(1981) suggested that when the (1− 2α)× 100% CI for (µT − µR) lies within

the approved limits approved by the FDA and other regulatory agencies, a

conclusion could be made indicating that the T drug is bioequivalent to the

R drug. However, when this condition is not satisfied, the T drug cannot be

said to be bioequivalent to the R drug.

The two CI approaches which will be used in this thesis are the classic CI and

Westlake’s Symmetric CI approaches.

3.7.4.1 Classic Confidence Interval

Given that ȲR and ȲT represent the least squares means ( the average means of

each formulation in both periods) of the R and T drugs, respectively, acquired

from the sequence-by-period means, the classic (1− 2α)× 100% CI is deduced

using the t-statistics in Equation 3.30,

T =
(ȲT − ȲR)− (µT − µR)

σ̂d

√
1

n1

+
1

n2

∼ t(n1 + n2 − 2), (3.30)

where the total number of subjects in sequence 1 and sequence 2 are given by

n1 and n2, respectively, and σ̂d denotes the pooled standard deviation of the

sample according to the Student t-distribution with (n1 + n2 − 2) df (Chow

and Liu, 2008). A classic (1−2α)×100% CI for the mean difference, µT −µR,

has limits
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L1 = (ȲT − ȲR)− t(α, (n1 + n2 − 2))σ̂d

√
1

n1

+
1

n2

,

U1 = (ȲT − ȲR) + t(α, (n1 + n2 − 2))σ̂d

√
1

n1

+
1

n2

.

(3.31)

Equation 3.31 could be converted to a classic (1− 2α)× 100% approximate CI

for the mean ratio, µT/µR, which results in Equation 3.32,

L2 =

(
L1

ȲR
+ 1

)
× 100%,

U2 =

(
U1

ȲR
+ 1

)
× 100%.

(3.32)

Given that θU and θL are, respectively, the upper and lower equivalence limits

for the difference, and δU and δL are the upper and lower equivalence limits

for the ratio, bioequivalence is concluded if

(L1, U1) ∈ (θL, θU),

(L2, U2) ∈ (δL, δU),
(3.33)

where:

• θL = −0.2µR;

• θU = 0.2µR;

• δL = 80%; and

• δU = 120% for the ±20 rule.

The classic (1− 2α)× 100% CI for the mean difference, µT − µR, is a random

interval and the confidence limits which are associated with it are random

variables. The classic (1−2α)×100% CI for µT −µR has a basic concept that,

should the same study be performed a number of times, say n times, then

(1− 2α)× 100% times of the n randomly constructed intervals will normally

cover µT − µR range (Peter and Kjell, 2001).
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However, there is no guarantee that the probability of the classic (1 − 2α) ×

100% CI within the limits of the equivalence limits is at least 1 − 2α (Chow

and Liu, 2008). Thus, the probability,

P [(L1, U1) ∈ (θL, θU)],

cannot be automatically more than or equal to 1− 2α.

3.7.4.2 Westlake’s Symmetric Confidence Interval

The classic (1 − 2α) × 100% CI for the difference in the means of the T and

R drugs, µT − µR, from Equation 3.31, is symmetric around ȲT − ȲR but not

around zero (Chow and Liu, 2008). Similarly, Chow and Liu (2008) stated

that, from Equation 3.32, the CI for the mean ratio of the T and R drugs,

µT/µR, is symmetric around ȲT/ȲR but not around 1. The classic CI derived

from an unpaired two sample t statistic in Equation 3.30 is

|T | < k or − k < T < k,

where k is the upper αth percentile of a central t distribution with n1 +n2− 2

degrees of freedom. The classic (1 − 2α) × 100% CI for the difference in the

means of the T and R drugs, µT − µR, could be given as:

k1 < T < k2, (3.34)

where k1 and k2 are selected such that the chance from k1 to k2, which is

dependent on a central t-distribution with n1 + n2 − 2 df, is equivalent to

(1− 2α). That is, ∫ k2

k1

Tdt = 1− 2α.

Equation 3.34 reduces to the classic CI Equation 3.31 whenever k1 = −k2.

Westlake (1976) argued that the classic CI needs to be modified so that it is

symmetric around 0 for the mean difference since confidence limits are mostly

stated in a symmetric form and also to make it easier for non-statisticians to

understand.

The CI for µT − µR is given as:
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−∆ < µT − µR < ∆. (3.35)

where ∆ represents Westlake’s symmetric confidence interval.

It is similar to establishing a CI for the T drug formulation (µT ) being sym-

metric about the R mean (µR), thus :

µR −∆ < µT < µR + ∆, (3.36)

where ∆ = −k1σ̂d

√
1

n1

+
1

n2

+ (ȲR − ȲT ).

This suggests that

(k1 + k2)σ̂d

√
1

n1

+
1

n2

= 2(ȲR − ȲT ). (3.37)

The T drug can be considered to be average bioequivalent to the R drug

according to the ±20 rule if |∆| < 0.2µR. The values of k1 and k2 could be

obtained by solving Equation 3.38,∫ k2

k1

Tdt = 1− 2α, (3.38)

for k1 and k2 under the constraint conditions in Equation 3.37.

3.7.5 Simulated Annealing Algorithm

Estimation of the AUC after the administration of a drug is one of the chal-

lenges encountered in PK studies. During the design phase of bioequivalence

studies, it is important to arrange the times of observations in order to estimate

accurately the AUC (Westlake, 1979). The choice of the study design affects

the efficiency of the PK studies as well as the precision with estimating the

parameters. According to Katz and D’Argenio (1983), the observation times

should be selected in order to get a minimal expected value of the squared

difference between the quadrature approximation and the exact value of the

integral. The process of finding the best suitable way of arranging the obser-

vation times is a combinatorial optimisation problem which can be achieved

91



using several optimisation algorithms like simulated annealing, tabu search,

genetic algorithm, and others (Choi et al., 2007).

A MATLAB program was written to estimate the times, t1, t2, ..., tm, that will

minimise the objective function using the Simulated Annealing algorithm. The

first and last sampling times were fixed and only the interior times were op-

timised. The process starts by fixing the first and the last sampling points

with an iteration process exploring the neighbourhood for the best solution.

The best solution with the least objective function value gives the best op-

timised estimate value of AUC. During the process other parameters of the

drug, such as the volume of distribution, fraction of the absorbed dose which

is administered, the absorption rate, the elimination rate and the dose that is

administered, are also considered. The algorithm stops whenever there are no

improved solutions.

The Simulated Annealing recipe:

1. Select the starting value and initial parameter values;

2. Randomly select a new point in the neighbourhood of the original start-

ing value;

3. Compare the two points using the metropolis criterion;

4. Repeat steps 2 and 3 until the system reaches the equilibrium state; and

5. Stop when system reaches optimal solution.
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3.8 Population Pharmacokinetics(PopPK)

Models

The PopPK model, according to Sheiner et al. (1972, 1977), is an addition to

the PK model but this time integrates the individual variations. This model

is able to quantify the dose response connection using few concentration mea-

surements from each subject in the research as well as other data including

weight, age and sex. Bauer et al. (2007) stated that new algorithms including

NLMEM, the STS and Bayesian hierarchical models have been developed and

used for PopPK modelling. The NLMEM is used in this dissertation.

3.9 The Pharmacokinetic Model

The general pharmacokinetic model is:

yij = f(tij, φi) + g(tij, φi, ξi)εij 1 ≤ i ≤ N, 1 ≤ j ≤ ni, (3.39)

where φi represents the parameter vector of the structural model, f, for each

individual i, N is the number of subjects, and ni is the observation for indi-

vidual i. The residual error model is given by g which could be dependent

on the additional parameter vector ξi. For simplicity in the notation, given

that ψi = (φi, ξi), where ψi are the individual parameters of subject i grouped

together, Equation 3.39 can be written as:

yij = f(tij, ψi) + g(tij, ψi)εij 1 ≤ i ≤ N, 1 ≤ j ≤ ni. (3.40)

The residual errors (εij) have a mean of zero and standard deviation of one.

From Equation 3.39, f(tij, φi) and g(tij, φi, ξi) are the conditional mean and

standard deviation of yij.

That is:

E(yij|ψi) = f(tij, φi),

sd(yij|ψi) = g(tij, φi, ξi).

93



3.9.1 The Structural Model

The first step in a PopPK model development is to discover the structural mod-

el that normally describes the data obtained. The structural model is denoted

by f in Equation 3.39. For any subject i and the individual vector parameters

ψ = (φi, ξi), f(tij, φi) gives the observed variable prediction at time tij. As-

suming that there are no errors (εij=0), it is the value that is measured at time

tij. This model predicts the concentration of the drug as a function of time.

The most commonly used structural models include 1-, 2- or 3-compartment

models with different absorption models (Sun, 2010). This model is usually di-

agnosed by plotting the predicted values versus the concentration conditioned

on time, predicted values for random effects versus concentration conditioned

on time, weighted residuals versus time, weighted residuals versus predicted

value, predicted value versus concentration conditioned on covariates, and pre-

dicted values for random effects versus concentration conditioned on covariates

(Sun, 2010). The model could be chosen from literature as a starting point

for the modelling process. However, if there is no known structural model

to start with, one could start with 1-, 2- and 3-compartment models with d-

ifferent elimination and absorption models and choose the best model using

different selection criteria including the Akaike information criterion (AIC),

the likelihood ratio test (LRT), the Bayesian information criterion (BIC) and

diagnostic plots. A basic structural model is usually one without covariates.

The structural model explains the underlying patterns in the data set. In this

dissertation, a one-compartment PK model with a first order absorption rate

and first order elimination rate is provided in Equation 3.41:

C(t, φ) =
DKa

V Ka − Cl
(e−(Cl/V )t − e−Kat), (3.41)

with the PK parameters φ=(Ka, V, Cl). The observed concentration is as-

sumed to be normally distributed with a constant error model given as:

yij|ψi ∼ N(c(tij, φi), a
2),

where ψi=(φi,a). The PK parameters (Kai, Vi, Cli) are log-normally distribut-

ed. This model will be used to demonstrate the estimation methods discussed
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in Section 3.12 and the model evaluation methods discussed in Section 3.16.

3.9.2 The Residual Error Model

Although the main aim is to estimate the mean of the population parameters,

the variability of the parameters among the different subjects in the population

should also be observed (Bonate and Steimer, 2006). That is, the study is inter-

ested in how much the value of the obtained parameters vary from one subject

to another in the population. According to Bonate and Steimer (2006), ran-

dom effects are necessary in a NLME model not just because they quantify the

population variation but also determine a subject’s empirical Bayes estimate

(EBE) for parameters. The nature of the data often determines the type of

error model which is appropriate for the data. For any stated structural model

f, the conditional probability distribution of the observation (yij) is given by

the residual error model. In other words, it is given by the probability dis-

tribution of the residual errors (εij) and the standard deviation g((tij, φi, ξi)).

There are different types of residual error models. These include:

• Constant error model: This model assumes that g(tij, φi, ξi) = ai. Then,

ξi = ai and the model in Equation 3.40 becomes

yij = f(tij, φi) + aiεij. (3.42)

• Proportional error model: This model assumes that the standard error

of the residual error is proportional to the prediction, i.e., g(tij, φi, ξi) =

bif(tij, φi). Then ξi = bi and the model in Equation 3.40 becomes

yij = f(tij, φi)(1 + biεij). (3.43)

• Combined error model: This model combines a constant and a propor-

tional model with the assumption that g(tij, φi, ξi) = ai + bif(tij, φi),

ξi = (ai, bi) and

yij = f(tij, φi) + (ai + bif(tij, φi))εij. (3.44)
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3.9.3 The Covariate Model

A covariate can be described as any variable that is distinct to a subject and

could impact how the drug affects the body (Bonate and Steimer, 2006). The

covariates of a subject could be categorised as intrinsic factors (genetically de-

termined) such as weight, age, race or extrinsic factors such as dose or smoking

status (Bonate and Steimer, 2006). These covariates could be continuous or

categorical.

3.10 Parameter Estimation

3.10.1 The Maximum Likelihood Estimation of Popula-

tion Parameters

This is an approach which is used for estimating the population parameters

based on a probability distribution such as the maximum likelihood (ML)

estimation (Lavielle, 2014). The ML estimation of the population parametric

vector, θ is made up of maximising, with respect to θ, the observed likelihood

function which is defined by:

Ly(θ) = p(y; θ) =

∫
p(y,ψ; θ)dψ. (3.45)

Given a parameter vector θ∗ where observations were generated by the mod-

el parametrised by θ∗. According to Lehmann and Casella (2006), the ML

estimation under normal conditions has several attractive properties as the

number of individuals in the study increases. These include:

• consistency: the ML estimates converge to the true parameter values;

• asymptotic normality: as the number of subjects in the study increases,

the ML estimate distribution approaches the normal distribution with

mean θ∗ and covariance matrix equal to the inverse of the Fisher infor-

mation matrix; and
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• efficiency: when the sample size approaches infinity, it achieves the

Cramer-Rao lower bound implying that no estimator has a lower asymp-

totic mean squared error than the ML estimator.

One objective in a population modelling method is the estimation of the dis-

tribution of the individual parameters p(ψi, θ). For instance, if the vector ψi

is normally distributed, ψi ∼ N(ψpop,Ω), the population parameter vector

ψpop as well as the variance-covariance matrix, Ω need to be estimated.

In order to calculate the ML estimate, it requires an algorithm to maximise∫
p(y,ψ; θ)dψ with respect to θ. One algorithm, the stochastic approximation

expectation maximisation (SAEM), is used for the estimation. This algorithm

has been proven to be efficient and converges well (Kuhn and Lavielle, 2005;

Allassonniere et al., 2010).

3.10.2 Expectation Maximisation (EM) Algorithm

An estimator could be determined by maximising the joint distribution p(y, ψ, θ)

if the individual parameters were obtained. According to Dempster et al.

(1977), since the individual parameters are not observed, the EM algorithm

takes the place of ψ by its conditional expectation. An iteration k updates

θEMk−1 to θEMk when initial conditions θ0 are provided in the following two steps:

1. E step: QEM
k (θ) = E(logp(y,ψ; θ)|y; θEMk−1); and

2. M step: θEMk = arg max QEM
k (θ).

The EM sequence has the ability to converge under mild conditions to a point of

the observed likelihood (Wu, 1983). The relationship between the observation y

and the parameter ψ is usually nonlinear which makes the first step not explicit

for a nonlinear mixed effect model (Lavielle, 2014). This can be addressed by

using the SAEM algorithm as a stochastic approximation which depends on

the simulation of ψ (Delyon et al., 1999).
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3.10.3 Stochastic Approximation of EM (SAEM)

Algorithm

The SAEM algorithm is a stochastic algorithm which is used to estimate the

ML estimates (Lavielle, 2014). This algorithm is implemented in a number of

softwares including Monolix, NONMEM, MATLAB and R. This is an algo-

rithm based on iterations and requires an initial guess of the PK parameters.

The iteration k of SAEM comprises of three stages:

1. the simulation stage:

for i=1,2,...,N, draw ψki from the conditional distribution P (ψi|yi; θk−1);.

2. stochastic approximation:

Update Qk−1(θ) according to Qk(θ) = Qk−1(θ) + γk(logp(y,ψ
k; θ) −

Qk−1(θ)), where γk represents a sequence of decreasing positive numbers

with γ1 = 1; and

3. maximisation step:

Update θk−1 as stated by θk = argmax Qk(θ).

For the SAEM algorithm to converge, the requirement is that
∑∞

k=1 γk = ∞

and
∑∞

k=1 γ
2
k < ∞ (Delyon et al., 1999). This condition is satisfied if, for

instance, γk decreases as 1/k. In order for SAEM to converge, the choice of

step-size (γk) is very important. Choosing smaller step-sizes ensure there is

almost a guarantee of convergence of the algorithm to the ML estimates.

3.11 Model Evaluation

It is very important to evaluate the performance of any model that is developed.

In this, the model should be able to explain a phenomenon and the data used in

the modelling process. Model evaluation, therefore, is concerned with whether

the model best describes the observed data satisfactorily, whether the model

is simple enough for extrapolation and whether the model could be used for
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the reason it has been developed (Comets et al., 2010). It is essential to

check whether the data are in agreement with the model and also if the model

explains the data well (Lavielle, 2014). To be able to do this effectively, model

diagnostics are used to choose the model that best describes the data and

eliminate the models that are not able to reproduce the data (Comets et al.,

2010). These diagnostic plots are able to explain whether the model addresses

every relevant aspect of the data or if the model needs any further attention.

It is also important to be able to conclude if the data best describe a one- or

two-compartment model. A model selection process should be developed to

select the best model. Whenever several models are valid, it is often desirable

to select the model with the simplest assumptions. This selection process is

often done using model diagnostics. Another process could be using selection

tools to compute a criterion for comparing the models with one another. Some

of the criteria which would be used include Akaike information criteria (AIC)

and the Bayesian information criteria (BIC).

3.12 Model Diagnostics

The study examines several diagnostic plots and applies them to the data used

in this dissertation. These model diagnostics plots would be used to select the

best model among the different models which are used. The diagnostic plots

which are used in this dissertation are discussed below.

3.12.1 Spaghetti Plot

This is a plot of the concentration time curve for all subjects plotted on the

same panel. It is a plot that shows the effects of drugs on subjects after

the administration of the drug. This plot can be used to track results of

drugs amongst subjects. Spaghetti plot shows variability between individual

concentration data at a given time. It gives a better picture of the variability

between the individuals in the study. It is easy to select individuals who deviate

from the central tendency with respect to half-life, absorption, distribution,
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clearance,etc. using this plot.

3.12.2 Individual Fits

For the model defined in Equation 3.40, estimating the individual (ψi) and

population parameters ψpop enables the computation for each individual, the

predicted profile which is given by the estimated population model (f(t, ψ̂pop)),

and the predicted profile which is given by the estimated individual model,

where ψ̂i is an estimate of ψi (Lavielle, 2014).

3.12.3 Observation vs Prediction

The population and individual models enable the calculation of the predic-

tions f(tij; ψ̂pop) for the population and f(tij; ψ̂) for each individual at the

observation times tij.

3.12.4 Residuals

There are a number of residuals but two of them are used in this disserta-

tion. The individual weighted residuals (IWRES) and normalised prediction

distribution errors (NPDE).

• IWRES are the estimates of the standardised residual (εij) which is based

on individual predictions:

IWRESij =
yij − f(tij; ψ̂)

g(tij; ψ̂)
.

Whenever the residuals are assumed to be correlated, it can be decorre-

lated by multiplying each individual vector IWRESi = (IWRESij, 1 ≤

j ≤ ni) by
ˆ

R
−1/2
i , where R̂i represents the estimated correlation matrix

of the vector of residuals (Lavielle, 2014).

• Population weighted residuals (PWRES) are defined as the normalised

difference between observations and their mean. Let yi = (yij, 1 ≤

j ≤ ni) represent the vector of observations for subject i. Then the
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mean of yi is the vector E(yi) = (E(f(tij;ψi), 1 ≤ j ≤ ni). Let Vi

be the ni × ni variance-covariance matrix of yi. Then the ith vector of

population weighted residuals PWRESi = (PWRESij, 1 ≤ j ≤ ni)

is therefore defined as:

PWRESi = V
−1/2
i (yi − E(yi)).

E(yi) and Vi are unknown but can be estimated by a Monte Carlo sim-

ulation.

• NPDE are a non parametric category of PWRES which depends on rank

statistics (Lavielle, 2014). For any (i, j), let Fij = FPWRESij(PWRESij)

where FPWRESij is the cumulative distribution function (cdf) of PWRESij.

The NPDE are defined as the empirical estimates of Φ−1(Fij) where the

Fij are obtained using Monte Carlo simulation: a large number of repli-

cates y1,y2, ...,yk, of the original data yobs are drawn under the model

and Fij estimated by:

F̂ij =
1

K

K∑
k=1

1ykij≤yobsij
.

The NPDE are then defined as the empirical estimation of Φ−1(Fij), that is,

NPDEij=Φ−1(F̂ij).

3.12.5 Visual Predictive Checks

This is a diagnostic tool which is used for continuous data which summaris-

es the structural models in the same plot by calculating several quantiles of

the empirical distribution of the data used (Lavielle, 2014). Ideally, the vi-

sual predictive check (VPC) diagnoses both the fixed and random effects in

a mixed-effects model. This is done by comparing different percentiles of the

observed data to percentiles of simulated data (Bergstrand et al., 2011). This

is often achieved by grouping the data into bins over a range of intervals. The

VPC is used to compare different models, suggests if the model needs an im-

provement and can also be used to support the appropriateness of a model
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(Karlsson and Holford, 2008). The prediction intervals for the quantiles are

then estimated using the Monte Carlo approach. The model is used to make

repeated simulations of the observations using the original design of the da-

ta. The percentiles of the simulated data are then plotted versus time from

when the treatment started. The same percentiles are then plotted for the

observed data to assist in comparing predictions with the observations. The

percentiles which are often chosen are the 10th, 50th and 90th percentiles. The

percentages of outliers which are outside the prediction interval are estimated

to show that the trends in the prediction interval could be used to identify

model misspecification (Wilkins et al., 2006).

3.12.6 Model Selection

The statistical tools which are often used to select the best model include the

information criteria such as the AIC and the BIC. The AIC and BIC, which

are used together with other diagnostic plots were implemented in MONOLIX

4.4.0 and are represented by

AIC = −2LLy(θ) + 2P, (3.46)

and

BIC = −2LLy(θ) + log(N)P, (3.47)

where P represents the total number of parameters to be estimated while N

is the number of subjects. In selecting the best model between two different

models, the model which has the smallest AIC or BIC is chosen as the most

appropriate one.

According to Lavielle (2014), when comparing two models, the LRT uses the

test statistic

LRT = 2(LLy(θ̂1)− LLy(θ̂0)),

where θ̂0 and θ̂1 represent the ML estimates of two models. The distribution

of the LRT could either be a χ2 distribution or a mixture of χ2 and Dirac delta

102



(δ) distributions (Lavielle, 2014).

In order to perform the LRTs and compute the information criteria for the

models used, it requires the computation of the log-likelihood

LLy(θ̂1) = log(Ly(θ̂1)) = log(p(y; θ̂)),

where θ̂ represents the vector of population parameter estimates for the mod-

el. The log-likelihood can be estimated for the data using the Monte Carlo

approach based on importance sampling. This method provides an unbiased

estimate of the log-likelihood whose variance is controlled by the Monte Carlo

size. Importance sampling is a sampling tool used for Monte Carlo computing.

It refers to a collection of Monte Carlo methods where a mathematical ex-

pectation with respect to a target distribution is approximated by a weighted

average of random draws from another distribution (Tokdar and Kass, 2010).

3.12.7 Model Validation

Model validation is done to examine whether the final model is a good descrip-

tion of the validation data in terms of the proposed application (FDA, 1999).

This can be interpreted as the assessment of the predictability of the developed

model to a validation data set. The data which are not used for building the

model and parameter estimation is referred to as the validation data. Two

model validation types which are often used include external validation and

internal validation.

3.12.7.1 External Validation

This is the application of the final developed model on a different dataset which

is usually from another study.

3.12.7.2 Internal Validation

This technique involves resampling methods (cross-validation and bootstrap-

ping) and data-splitting (FDA,1999). Data splitting is a convenient and use-
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ful internal validation method used to check the predictive performance of a

developed model when it is difficult to collect new data to be used for the

validation process. Another internal validation method is re-sampling. This

process involves cross-validation and bootstrapping. Cross-validation is the

use of repeated data-splitting and is very useful because the size of the model

development data could be larger than in other validation methods and vari-

ability is reduced.

Bootstrapping is another method that is used whenever the sample size is

small. It is used for evaluating the performance of a model when there is no

validation data set.

3.13 Summary

The Chapter provided a detailed description of the data and the variables

that were used in the PopPK model development as identified from previous

research. The steps that were taken in building the PopPK model were dis-

cussed including the data preparation, discussion of the structural and residual

error model as well as the parameter estimation methods. Different model e-

valuation methods were discussed including the AIC, BIC, individual plots,

observation versus prediction plots, plots of residuals, visual predictive checks

plots,etc.
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Chapter 4

Analysis and Results

4.1 Introduction

As discussed in earlier chapters, bioequivalence studies play an important role

in drug development and are conducted primarily by pharmaceutical compa-

nies who want market access for their drugs. This chapter discusses the results

obtained from the various methods recommended by the FDA and other bod-

ies for bioequivalence studies. The techniques that have been used include

ANOVA, CI, TOST, Wilcoxon-Mann-Whitney test and the results from these

methods are presented and discussed in this chapter. Results from ABE and

PBE are presented and discussed comprehensively.

In addition, this chapter discusses the results of the PopPK model and reviews

the model diagnostics generated from the best fitting model. The primary ob-

jective is to get the best model that describes the data adequately. The tech-

niques that have been used to assess the different models developed include

the AIC, BIC and other diagnostic plots which are illustrated in Figures 4.3

to 4.10. The model validation results together with statistical and diagnostic

plots are also provided.

The chapter also presents the results of the SA algorithm which are used to

obtain the optimal sampling times for the blood samples to be drawn from the
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subjects in the study. The optimised sampling times are then used to gener-

ate new concentrations for each subject and bioequivalence testing methods

applied to the optimised data.

4.2 ANOVA Results

In a randomised, single-dose, two-period, two sequence COD, it is assumed

that the within-subject variances are independent of the formulations result-

ing in the ANOVA table. The problem of the 2 × 2 COD concerns unbiased

estimation of the formulation differences in the presence of different carryover

effects. A failure to detect such an effect may lead to a biased estimate of

the formulation difference. Chow and Liu (2008) suggested performing a pre-

liminary test for the presence of different carryover effects before comparing

the formulations. Carryover effects are confounded with sequence effects and

formulation-by-period interaction. Different sequence effects may not bias the

analysis but a difference in carryover effects and a formulation-by-period effect

may lead to a serious problem. In bioequivalence studies, carryover effects

seldom occur if there is an adequate washout period between the periods. Al-

so, since healthy volunteers are recruited, their physical condition is unlikely

to change from one period to another. The pharmacokinetic parameters are

subjected to ANOVA in which the variance is partitioned into components due

to subjects, periods and formulations. The summary of the results from the

log-transformed parameters using ANOVA are presented in Table 4.1:
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Table 4.1: ANOVA table for log-transformed AUC0−t.

Source of Variation DF SS MS F statistics P-value

Between:Subject

Sequence 1 0.1053 0.1053 2.86 0.1129

Subject(Sequence) 14 0.5156 0.0368 3.25 0.0176

Within:Within

Formulation 1 0.0028 0.0028 0.25 0.6260

Period 1 0.0572 0.0572 5.04 0.0415

Residuals 14 0.1589 0.01135

Total 31 0.8398

From Table 4.1, the results indicate no significant effect in the sequence (p-

value=0.1129) but has significant subject effect (p-value=0.0176) at the 5%

level of significance. The significant subject effect therefore suggests that there

are inter-subject dissimilarity in clearance and also in the AUC0−t as well. In

addition, the period effect is also significant (p-value=0.0415) and the formu-

lation effect (p-value=0.6260) is not significant at the 5% level of significance.

This suggests that there are no statistically significant carryover effect or for-

mulation effects in this bioequivalence study. A significant period effect does

not suggest bioinequivalence. The formulation effect test is a secondary test

for the equality of the predicted means against the expected mean difference.

That is:

H0 : exp(µT ) = exp(µR) vs. H1 : exp(µT ) 6= exp(µR).

It is therefore not appropriate to use the formulation effect test for bioequiva-

lence assessment even if it is significant.

The residual variance estimate σ̂2
W = MSwithin = 0.011348. This variability

is better expressed as a coefficient of variation (CV) for easy interpretation.

The residual variance estimate for the AUC0−t is 0.011348 (σ̂2
W = 0.011348)
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and is proportionate to the within-subject CV of 10.7% assuming that the

formulation variances for the within-subject are equal. Similarly, the between-

subject CV is 11.3%.

Table 4.2: ANOVA table for log-transformed AUC0−∞.

Source of Variation DF SS MS F statistics P-value

Between:Subject

Sequence 1 0.0615 0.0615 2.12 0.1673

Subject(Sequence) 14 0.4060 0.0290 2.06 0.0938

Within:Within

Formulation 1 0.0149 0.0149 1.06 0.3199

Period 1 0.0407 0.0407 2.90 0.1108

Residuals 14 0.1967 0.0140

Total 31 0.7198

Table 4.2 provides the results for the ANOVA of the log-transformed extrapo-

lated AUC (AUC0−∞). The result indicates no significant effect in the sequence

(p-value=0.1673) and also no significant subject effect (p-value=0.0938) at the

5% level of significance. The non-significant subject effect therefore suggests

that there are no inter-subject differences in the AUC0−∞ and the clearance.

In addition, the period effect is not significant (p-value=0.1108) and the for-

mulation effect (p-value=0.3199) as well is not significant at the 5% level of

significance. This suggests that there are no statistically significant carryover

effect, period effect or formulation effects in this bioequivalence study.

The residual variance estimate σ̂2
W = MSwithin = 0.014049. This variability

is better expressed as a CV for easy interpretation. The residual variance

approximation for AUC0−∞ is 0.014049 (σ̂2
W = 0.014049) and this is equivalent

to the within-subject CV of 11.9% assuming that the formulation variances for

the within-subject are equal. Similarly, the between-subject CV is 8.7%.

Table 4.3 provides the results for the ANOVA of the log-transformed Cmax.

108



Table 4.3: ANOVA table for log-transformed Cmax.

Source of Variation DF SS MS F statistics P-value

Between:Subject

Sequence 1 0.6110 0.6110 2.84 0.1140

Subject(Sequence) 14 3.0108 0.2151 1.04 0.4706

Within:Within

Formulation 1 0.0760 0.0760 0.37 0.5538

Period 1 0.0029 0.0029 0.01 0.9072

Residuals 14 2.8924 0.2066

Total 31 6.5932

The results indicate no significant effect in the sequence (p-value= 0.1140)

and the subject effect is also not significant (p-value= 0.4706) at a 5% level

of significance. The non-significant subject effect therefore suggests that there

are no inter-subject contrasts in clearance and in the Cmax as well. To add,

there is a non-significant period effect (p-value= 0.9072) while the formulation

effect is also not significant (p-value=0.5538). This suggests that there are no

statistically significant carryover effect, period effect or formulation effects in

this bioequivalence study.

The residual variance estimate σ̂2
W = MSwithin = 0.2066. This variability

is better expressed as a CV for easy interpretation. The residual variance

evaluation for Cmax is 0.014049 (σ̂2
W = 0.014049) and this is comparable to the

within-subject CV of 47.9% assuming that the formulation variances for the

within-subject are equal. Similarly, the between-subject CV is 6.5%.
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4.3 Statistical Methods for Average Bioequiv-

alence

4.3.1 Confidence Interval Method

The common approach for bioequivalence testing as stated by the FDA is to

construct a 90% CI for the mean difference of the log-transformed responses

of the PK parameters; AUC0−t, AUC0−∞ and Cmax. In order to conclude

that the R and T drugs are bioequivalent, the requirement states that the

confidence interval must be within the range [0.8-1.25].

4.3.1.1 The Classic Confidence Interval

Table 4.4: The mean of the different log-transformed pharmacokinetic param-

eters.

Mean

Parameter Test Reference

AUC0−t 4.115988 4.134758

AUC0−∞ 4.197142 4.240359

Cmax 1.237731 1.140246

Table 4.5: Confidence Interval for the different pharmacokinetic parameters.

AUC0−t AUC0−∞ Cmax

Interval Limits

Lower Upper Lower Upper Lower Upper

Shortest 98.32 100.77 97.65 100.31 89.59 127.51

Table 4.4 presents the mean of the different log-transformed R and T treatment

for each of the pharmacokinetic parameters. Table 4.5 provides the confidence

intervals for the different log-transformed pharmacokinetic parameters.
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The mean AUC0−t values were 4.115988 and 4.134758 for the T and R drugs,

respectively. The mean AUC0−∞ for the T and R drugs were 4.197142 and

4.240359, respectively. The mean Cmax values were 1.237731 and 1.140246 for

the T and R drugs, respectively. The mean AUC0−t and AUC0−∞ for the

R drug is higher than the T drug mean for the same parameters. However,

the mean Cmax for the T drug is higher than that of the R drug. The 90%

confidence interval for AUC0−t and AUC0−∞ were within the 80-125% limit

set by FDA and other regulatory bodies. However, the 90% confidence interval

for the Cmax was not within the 80-125% limit.

Table 4.6 presents the 90% confidence limits and the decisions reached about

bioequivalence between the R and T drugs.

Table 4.6: Confidence Interval and the decision about bioequivalence.

Interval Limits

Parameter Lower Upper Decision

AUC0−t 98.32 100.77 ABE claimed

AUC0−∞ 97.65 100.31 ABE claimed

Cmax 89.59 127.51 ABE not claimed

The 90% confidence interval for the log-transformed AUC0−t is presented as

(98.321,100.771). This confidence interval is within the (80-125) range accord-

ing to the FDA guidelines. Therefore the R drug and the T drug are declared

as average bioequivalent with regards to the AUC0−t.

The associated 90% confidence interval for the AUC0−∞ as presented in Ta-

ble 4.6 is (97.65,100.31) and is well within the interval (80-125) range. The

T and R formulations are therefore average bioequivalent with regards to the

AUC0−∞.

The associated 90% confidence interval for Cmax is (89.59,127.51) which is

not contained within the (80-125) range as per the FDA guidelines. Average
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bioequivalence cannot be concluded as required by the FDA guideliness as the

upper confidence limit exceeds the required upper limit as per FDA guidelines.

However, for Cmax, the WHO, the SAMCC and the EMEA adopt a more

relaxed equivalence interval of (70-133) for Cmax. By virtue of this relaxed

margin used by these organisations, bioequivalence can be claimed.

4.3.1.2 Westlake’s Symmetric Confidence Interval

For any two formulations to be declared as average bioequivalent using the

Westlake symmetric confidence interval, ∆ should be less than 0.2µR, where

∆ is defined in Equation 3.36. From Table 4.7, the ∆ values for AUC0−t

and AUC0−∞ are less than 0.2µR while the ∆ value for Cmax is greater than

0.2µR. Therefore, average bioequivalence is concluded in terms of AUC0−t and

AUC0−∞ but not Cmax.

Table 4.7: Westlake’s CI results for log-transformed AUC0−t, AUC0−∞ and

Cmax.

Parameter Westlake’s ∆ value 0.2µR

AUC0−t 0.07307435 0.8269516

AUC0−∞ 0.1001362 0.8480718

Cmax 0.3242763 0.228048

4.3.1.3 Schuirmann’s TOST Approach

The TOST procedure was introduced by Schuirmann (1987) and is based on

Equation 3.13. Two formulations are considered as bioequivalent if H01 and

H02 from Equation 3.13 are both rejected at a significance level which is pre-

determined.

The TOST results for the following log-transformed PK parameters AUC0−t,

AUC0−∞ and Cmax are presented in Table 4.8.
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Table 4.8: The Schuirmann’s TOST results.

TL TU t(α, n1 + n2 − 2)

AUC0−t 21.458 -22.455 1.761

AUC0−∞ 19.206 -21.269 1.761

Cmax 2.026 -0.812 1.761

From the results, |TL| and |TU | for AUC0−t and AUC0−∞ are both greater

than t(0.05, 14) = 1.761 . Since these values are greater than 1.761, the null

hypotheses (H01 and H02) in Equation 3.13 are both rejected at 5% level of

significance. Bioequivalence can be concluded according to the ±20 rule for

both AUC0−t and AUC0−∞. However, for Cmax, |TL| is greater than 1.761 but

|TU | is less than 1.761. Bioequivalence cannot be claimed using the Cmax.

4.3.2 Non-Parametric TOST Method

4.3.2.1 Wilcoxon-Mann-Whitney Two One-Sided Test for Tmax

Table 4.9 lists the ranks of bhik.

113



T
ab

le
4.

9:
R

an
k
s

of
b h
ik

fo
r

d
at

a.

S
eq

u
en

ce
F

or
m

u
la

ti
on

S
u
b

je
ct

P
er

io
d
1

P
er

io
d
2

S
u
b

je
ct

T
ot

al
P

D
2
×
b L
ik

R
(b
L
ik

)
2
×
b U

ik
R

(b
U
ik

)

1
R

T
84

2
62

.4
93

5
53

.3
78

11
5.

87
15

-9
.1

15
5

16
.1

83
28

9
-3

4.
41

43
2

1
R

T
85

8
60

.2
44

63
.4

21
4

12
3.

66
54

3.
17

74
28

.4
76

18
11

-2
2.

12
14

3

1
R

T
86

0
65

.0
56

5
78

.4
09

6
14

3.
46

61
13

.3
53

1
38

.6
51

88
14

-1
1.

94
57

6

1
R

T
86

1
50

.3
33

56
.0

54
5

10
6.

38
75

5.
72

15
31

.0
20

28
13

-1
9.

57
73

5

1
R

T
86

2
49

.2
16

5
38

.5
98

5
87

.8
15

-1
0.

61
8

14
.6

80
78

8
-3

5.
91

68
1

1
R

T
86

4
60

.5
49

78
.9

9
13

9.
53

9
18

.4
41

43
.7

39
78

16
-6

.8
57

77
9

1
R

T
86

9
57

.7
21

5
71

.8
38

12
9.

55
95

14
.1

16
5

39
.4

15
28

15
-1

1.
18

23
7

1
R

T
87

0
49

.3
12

54
.3

08
5

10
3.

62
05

4.
99

65
30

.2
95

28
12

-2
0.

30
23

4

2
T

R
82

7
56

.2
64

55
.2

91
11

1.
55

5
-0

.9
73

-0
.9

73
2

-0
.9

73
10

2
T

R
84

3
61

.1
01

5
73

.1
95

5
13

4.
29

7
12

.0
94

12
.0

94
6

12
.0

94
14

2
T

R
84

4
59

.2
16

5
72

.3
50

1
13

1.
56

66
13

.1
33

6
13

.1
33

6
7

13
.1

33
6

15

2
T

R
85

7
60

.7
98

66
.7

52
7

12
7.

55
07

5.
95

47
5.

95
47

3
5.

95
47

11

2
T

R
85

9
68

.9
23

4
85

.6
99

5
15

4.
62

29
16

.7
76

1
16

.7
76

1
10

16
.7

76
1

16

2
T

R
86

3
67

.7
17

5
77

.5
44

14
5.

26
15

9.
82

65
9.

82
65

5
9.

82
65

13

2
T

R
86

6
66

.1
53

59
.1

08
5

12
5.

26
15

-7
.0

44
5

-7
.0

44
5

1
-7

.0
44

5
8

2
T

R
98

5
58

.9
71

5
67

.0
83

6
12

6.
05

51
8.

11
21

8.
11

21
4

8.
11

21
12

114



From Table 4.9, the value of RL and RU are found to be 98 and 37, respectively.

WL = RL −
n1(n1 + 1)

2
,

= 98− 8(8 + 1)

2
,

= 62,

and

WU = RU −
n1(n1 + 1)

2
,

= 37− 8(8 + 1)

2
,

= 1.

Therefore W (0.95) = 8(8) − 16 = 48 and W (0.05) = 16. Since WL = 62 is

greater than W (0.95) = 48 and WU = 1 is less than W (0.05) = 16, both two

one-sided null hypotheses in Equation 3.19 are rejected at 5% level of signif-

icance. Average bioequivalence can then be concluded for both formulations

using the Tmax.

4.3.3 Power and Sample Size Determination

Bioequivalence studies should be designed properly such that the correct num-

ber of subjects are used to address the objective of the study. When designing

clinical trials, a power of at least 80% is required. The required number of

samples is determined from the design phase for a specific power. The em-

pirical power estimates for specific sample sizes and their associated CVs are

presented in Table 4.10. It is evident that, for any sample size, the power

of TOST increases as the CV decreases and the power decreases as the CV

increases.
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Table 4.10: Values for the index of sensitivity.

Coefficient of variation

N 10 15 20 25 30

8 0.916 0.600 0.300 0.133 0.059

10 0.969 0.742 0.442 0.216 0.096

12 0.988 0.831 0.565 0.314 0.151

14 0.996 0.887 0.664 0.417 0.217

16 0.999 0.926 0.737 0.506 0.293

Figures 4.1 and 4.2 present a graphical representation of the sample size and

power of the TOST used in bioequivalence studies. The graphs indicate that,

as the sample size increases, so does the power of the TOST.
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Figure 4.1: The power of the TOST

with corresponding number of samples.
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Figure 4.2: The power of the TOST

with corresponding number of samples.
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4.4 Population Bioequivalence

For population bioequivalence to be established, Θpop in Equation 2.7 must be

less than the regulatory set value of 1.74483 for the log-transformed AUC0−t,

AUC0−∞ and Cmax. Table 4.11 presents the results of the PBE for three PK

parameters.

Table 4.11: PBE results for logAUC0−t, logAUC0−∞ and logCmax.

Parameter Θpop Decision

AUC0−t 1.107772 PBE claimed

AUC0−∞ 1.010149 PBE claimed

Cmax 1.523058 PBE claimed

From Table 4.11, the Θpop values for all the PK parameters are less than

the 1.74 as per the FDA guidelines. This indicates that the two drugs are

population bioequivalent, implying that a patient can have the option to be

prescribed either the R or the T drug if they have not been using either of the

two.

4.5 Individual Bioequivalence

As stated by various researchers including Jones et al. (1999), IBE is on-

ly conducted for a replicated design so that the within- and between-subject

variability is estimated. IBE enables patients to easily switch from one formu-

lation to another formulation without any therapeutic effects. It is therefore

impossible to perform IBE in this research as the data are a 2× 2 COD.
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4.6 Population Pharmacokinetics

A randomised, single dose, two sequences, two periods crossover study was

performed on the subjects to compare the PK parameters of the T and the

R drug. The treatment periods were well separated and therefore there is no

evidence of carryover effect. The data were analysed with a NLMEM using

the SAEM algorithm which is implemented in MONOLIX 4.4.0. The NLMEM

parameters were estimated using the SAEM algorithm implemented in MONO-

LIX. Two different one-compartment models with first order absorption and

first order elimination were used to describe the data. Different residual er-

ror models were used together with the structural model and the models were

compared using BIC, AIC and VPC to determine the best model fit. The

ideal statistical model corresponds to the one with the smallest BIC and AIC

and also one with a VPC which best represents the data. After fitting the

model to the data, different graphs such as individual fits graphs, observation

versus predictions graphs, normalised prediction distribution errors (NPDE)

graphs, VPC, distribution of the individual parameter graphs, random effects

joint distribution graphs and the SAEM convergence graphs were obtained for

each of the different models. The best model based, on the criteria mentioned

previously, is presented with the model diagnostics and analysed. The VPC

graphs were evaluated using the prediction intervals (PI) for each model.

The best statistical model for the data is the combined error model with two

parameters a for the additive and b for the proportional part together with

the structural model with PK parameters Ka, V and Cl. The model used

has no covariates and the period or sequence effects are also not incorporated.

Table 4.12 displays parameter estimates with their standard errors and root

square errors. Figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 present the spaghetti

plot, the individual and population fits, the prediction vs observation plot, the

residuals, the VPC plots, the parameter distribution plot, the random effect

joint distribution plot and the SAEM convergence plot.
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The pharmacokinetic population modelling was done with MONOLIX version

4.4.0. The parameters of the population were estimated using the SAEM

algorithm and reported in Table 4.12. These parameter values are considered

to be the EBE because they were obtained at the maximum. The relative

standard error (r.s.e) percentage for the parameters Ka, V and Cl are 19%,

10% and 5%, respectively. The residual variability was modelled using different

error models (constant and combined error model). The best error model was

the combined error model for the residual variability using model diagnostics.

The AIC, BIC and log-likelihood of the best model are presented in Table

4.13. The interindividual variability (IIV) for the random effects ωKa , ωV and

ωCl are 39%, 28% and 13%, respectively. The individual parameters follow a

log-normal distribution and are independent as illustrated below:

Cli = 0.234× exp(ηi,Cl) with ηi,Cl ∼ N(0, 0.1362), (4.1)

Vi = 5.97× exp(ηi,V ) with ηi,V ∼ N(0, 0.2812), (4.2)

(Ka)i = 2.76× exp(ηi,Ka) with ηi,Ka ∼ N(0, 0.3912). (4.3)

Table 4.12: Parameter estimates using the combined error model.

Parameter Estimate s.e (stochastic

approximation)

r.s.e (%)

Ka 2.76 0.52 19

V 5.97 0.61 10

Cl 0.234 0.013 5

Omega Ka 0.391 0.18 46

Omega V 0.281 0.073 26

Omega Cl 0.136 0.043 32

a 0.0336 0.0089 27

b 0.164 0.014 9
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Table 4.13: Statistical tools for model selection.

AIC BIC -2 × log-likelihood

33.28 33.92 17.28

Figure 4.3: Spaghetti plot with parameters Ka, V and Cl.

Figure 4.3 shows the concentration time graph (spaghetti plot) for the R drug

with 8 subjects. It is a plot of the concentration time curve for all subjects

plotted on the same panel. This graph represents the distribution of drug ab-

sorption, distribution and elimination for the subjects that received the same

dose of the drug at the same sampling times. From the graph, it is concluded

that almost all the subjects exhibited similar drug kinetics (absorption, dis-

tribution, metabolism, elimination). It can also be concluded from the plot

that the data do not contain experimental errors and no large inter-individual

differences exist with respect to the peak.
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Figure 4.4: The Individual and the population fits for the subjects are plotted

simultaneously on each of these four plots.

Figure 4.4 shows the individual fits and the population fits for subjects with

their estimated individual parameters (lighter line) and the estimated popu-

lation parameters (darker line). Also, the estimated individual parameters for

each subject are indicated. The data are displayed using the crosses. The

population fits is the estimation of the model on each subject based on the

population parameters and the individual fits is the estimation on each subject

based on the individual parameters. The individual parameters are estimated

from the conditional mode or the conditional mean. The individual fits graphs

fit the data well and therefore the proposed PK model is accepted since the

fits seem acceptable. These fits are acceptable for the one-compartment model

which was proposed since the data fit the model.
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Figure 4.5: Observations versus predictions graphs using the population mod-

el(left) and individual model (right).

Figure 4.5 shows the observation versus prediction using the proposed popula-

tion model (left) with population parameters and the individual model (right)

with the individual parameters. The observation versus individual predic-

tion graph indicates that there is no misspecification in the model but the

observation versus population prediction graph indicates a slight model mis-

specification. The data are nicely distributed around the identity line for the

individual predictions. There is a slight deviation away from the line for the

population prediction as indicated in Figure 4.5. It is also evident from the

population prediction graph that there is an inter-individual variability and

residual variability since not all the data points lie on the identity line. How-

ever, the inter-individual variability is small. There is no nonzero prediction

which corresponds to a zero concentration observation which indicates that

there is no delay between the time when the drug was administered and the

time during which it was absorbed. In other words, there is no lag-time. The

amplitude of the residual errors also seem to increase along the predicted con-

centration for both graphs. This indicates that a constant error model is not

the most appropriate model for this type of data.
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Figure 4.6: The IWRES and the NPDE.

From Figure 4.6, the graphs for the IWRES and the NPDE with respect to

time are presented in the top row and the graphs for the IWRES and NPDE

with respect to the prediction are in the middle row as well as the graphs for

presenting the comparison of the empirical and theoretical probability density

function (pdf) of the IWRES and the NPDE are at the bottom. The prediction

intervals are also added on each of the graphs. The IWRES and the NPDE

are expected to be independent standardised normal random variables. The

IWRES and the NPDE histograms also suggest normality for both residuals.

From Figure 4.6, both the IWRES and the NPDE suggest that there is a slight

model misspecification as indicated by the residuals which are outside the

prediction intervals although generally the model is acceptable. The IWRES

are centered around the zero mean line indicating that the one compartment

structural model is the appropriate model for this data. The variance of the

IWRES is constant which also indicates that the error model is appropriate.

The IWRES can then be said to be normally distributed with a mean of zero

and a constant variance. The amplitude of the residuals are not too large.

The 10th, 50th and 90th percentiles which are displayed in Figure 4.6 indicate

a slight misspecification although generally the model predicts the data quite

well. The plot of the NPDE versus predictions tends to disperse the data quite
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well over the range of predictions.

Figure 4.7: Visual predictive check.

From Figure 4.7, there is an indication that the structural model is good except

for between 10 to 19 hours where the model underestimates or under predicts.

In the 10% prediction intervals, the 10th empirical percentile deviates from

the theoretical percentile slightly between 9 to 30 hours although it does not

indicate model misspecification. The 90% prediction interval fits the data quite

well.
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Figure 4.8: Estimated population distributions of the individual parameters

(solid line) and the empirical distributions of the individual parameters simu-

lated with their conditional distributions (histogram).

Figure 4.8 indicates the probability density function which was obtained for

each individual parameter in the model from the estimated population param-

eters as well as the empirical distribution which is indicated by the histogram

of the individual parameters. Each of the individual parameters was simulated

with its own conditional distribution. From Figure 4.8 and from the plots for

Ka, V and Cl, it is clear that that the individual parameters are log-normally

distributed and the shrinkage which was estimated using the simulated param-

eters, is a random variable with a mean of zero and variance close to 1/N . The

shrinkage values (-10%, -5% and 8%) as shown in Figure 4.8 are significantly

different from zero.
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Figure 4.9: Joint distribution of the random effects.

The graphs in Figure 4.9 represent a plot of each pair of simulated random ef-

fects against each other. Regression and spline interpolations are also displayed

to assist in determining the correlation between the random effects. From the

three plots, it is evident that the points are randomly scattered and indicate no

trend. This indicates that there is no correlation between the random effects

which indicates that there is a diagonal variance-covariance matrix. Therefore

Ka, V and Cl are independent of each other.
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Figure 4.10: SAEM convergence for each of the parameters Ka, V andCl.

Figure 4.10 shows the parameter estimates which were computed after each

iteration of SAEM. It shows the convergence of the estimated parameters.

The parameters of the one-compartment model with first-order absorption

and linear elimination are estimated. The vertical lines on each graph indicate

where the algorithm switches from the first phase to the second phase. The

SAEM algorithm converges quite well to the global maximum of the likelihood

for each of the parameters.
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4.7 Model Validation

The fitting of the PopPK model on a portion of the data as well as the estimat-

ed parameters and model diagnostics were discussed in the previous section.

Even though the model diagnostics suggested that the one compartment mod-

el which was fitted on the data described it well, it does not suggest that the

model is highly significant. The developed model has to be validated. The

validation of the final PopPK model was based on statistical and graphical

methods. The parameter estimates are presented in Table 4.14 and the AIC

and BIC values of the validated model are shown in Table 4.15. The model

diagnostics plots are also presented in Appendix B.

Table 4.14: Validation model parameter estimates using the combined error

model.

Parameter Estimate s.e (stochastic

approximation)

r.s.e (%)

Ka 1.96 0.24 12

V 3.33 0.8 24

Cl 0.227 0.0058 3

Omega Ka 0.303 0.098 32

Omega V 0.675 0.17 25

Omega Cl 0.0614 0.021 34

a 0.0424 0.01 24

b 0.0859 0.0082 10

Table 4.15: Statistical tools for model selection.

AIC BIC -2 × log-likelihood

20.53 21.17 4.53

The AIC and BIC values of the validation model in Table 4.15 suggest that

the one compartment model fits the validation data well. The diagnostic plots
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in Figures B.2, B.3, B.4, B.5, B.6, B.7 and B.8 which are shown in Appendix

B also confirm that the model fits the data.

4.8 Simulated Annealing

In certain cases, the individual PK parameters are either not available or

cannot be determined directly. In such situations, the PK parameters are

estimated using modelling. The PK parameters which were estimated with

modelling are used in the simulated annealing algorithm to generate opti-

mised sampling times. The optimisation approach used in the dissertation

uses a one-compartment model with first order absorption as illustrated in E-

quation 2.19. Mostly, the Ka, Ke and V are random variables that change

for every subject but the dose is a fixed and known value. The optimal

sampling times which were obtained from the one-compartment model are

t=(0,0.5,0.71,1.3,1.44,2.10,5.13,5.16,5.36,7.15,8,19.44,24,33.62,34.53,48,72) and

shown in Figure 4.11.

0 10 20 30 40 50 60 70

Dotplot of optimised sampling times

time (hours)

Figure 4.11: Dot plot of optimised sampling times.

These sampling times were obtained from a one-compartment model with

population pharmacokinetic parameters Ka = 0.0393, Ke = 2.71, D = 15,
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V = 0.0863 and F = 1. The parameters have been defined in Equation 2.1.

The concentrations for each subject, the AUC0−t, the AUC0−∞ were obtained

and are presented in Tables 4.16 and 4.17.
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Table 4.16: Log-transformed AUC for the T and R formulations after optimi-

sation.

Subject Sequence Period Formulation AUC0−t AUC0−∞ Cmax

842 1 1 R 67.43587 79.30902 2.002654

858 1 1 R 64.62041 66.45337 2.990088

860 1 1 R 63.25278 72.97602 1.908576

861 1 1 R 53.91614 54.42014 3.205287

862 1 1 R 51.74834 56.07939 1.860115

864 1 1 R 62.15424 75.20628 1.732339

869 1 1 R 60.51894 61.10355 3.475313

870 1 1 R 51.95971 53.83509 2.322062

842 1 2 T 65.86338 69.09776 2.66777

858 1 2 T 61.14068 64.37372 2.43851

860 1 2 T 71.41448 73.86414 3.13272

861 1 2 T 58.21259 59.55591 2.813054

862 1 2 T 44.36431 48.88173 1.519091

864 1 2 T 72.333 77.75346 2.631034

869 1 2 T 63.45344 73.11628 1.922489

870 1 2 T 63.17753 67.89929 2.312708

827 2 1 T 58.80359 58.81331 5.714009

843 2 1 T 60.86652 62.05818 3.003115

844 2 1 T 61.41677 69.94059 1.919448

857 2 1 T 65.92797 68.02171 2.953064

859 2 1 T 67.94529 67.94547 8.545359

863 2 1 T 68.45833 68.45838 9.849732

866 2 1 T 66.2853 71.80288 2.366139
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Table 4.17: Log-transformed AUC for the T and R formulations after optimi-

sation.

Subject Sequence Period Formulation AUC0−t AUC0−∞ Cmax

985 2 1 T 65.02689 70.92395 2.270761

827 2 2 R 58.21236 71.60807 1.565088

843 2 2 R 72.3221 73.32932 3.794461

844 2 2 R 70.19283 72.04327 3.239377

857 2 2 R 71.18192 71.18194 10.3222

859 2 2 R 88.02288 93.19436 3.379288

863 2 2 R 73.97729 81.16862 3.126044

866 2 2 R 61.17458 75.12056 1.647895

985 2 2 R 66.62649 70.44845 2.580378

The AUC data obtained after the optimisation is used to test for BE stud-

ies and the results are presented. The summary of the results from the log-

transformed parameters using ANOVA are presented in Table 4.18.

Table 4.18: ANOVA table for the log-transformed AUC0−t.

Source of Variation DF SS MS F statistics P-value

Between:Subject

Sequence 1 0.0812 0.0812 3.98 0.0659

Subject(Sequence) 14 0.2855 0.02039 3.25 0.0174

Within:Within

Formulation 1 0.00269 0.00269 0.43 0.5230

Period 1 0.0320 0.0320 5.11 0.0402

Residuals 14 0.0878 0.0063

Total 31 0.4892
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From 4.18, the results indicate no significant effect in the sequence (p-value

= 0.0659) but has significant subject effect (p-value=0.0174) at the 5% level

of significance. The significant subject effect therefore suggests that there are

inter-subject dissimilarity in clearance and also in the AUC0−t as well. In ad-

dition,the period effect is also significant (p-value=0.0402) and the formulation

effect (p-value=0.5230) is not significant at the 5% level of significance. This

suggests that there are no statistically significant carryover effect, period effect

or formulation effects in this bioequivalence study. The formulation effect test

is a secondary test for the equality of the predicted means against the expected

mean difference. That is,

H0 : exp(µT ) = exp(µR) vs. H1 : exp(µT ) 6= exp(µR).

It is therefore not appropriate to use the formulation effect test for bioequiva-

lence assessment even if it is significant.

The residual variance estimate σ̂2
W = MSwithin = 0.0063. This variability

is better expressed as a CV for easy interpretation. The residual variance

estimate for the AUC0−t is 0.0063 (σ̂2
W = 0.0063) and is proportionate to the

within-subject CV of 7.92% assuming that the formulation variances for the

within-subject are equal. Similarly, the between-subject CV is 6.6%.
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Table 4.19: ANOVA table for the log-transformed AUC0−∞.

Source of Variation DF SS MS F statistics P-value

Between:Subject

Sequence 1 0.0630 0.0630 2.83 0.1149

Subject(Sequence) 14 0.312 0.022 2.95 0.0260

Within:Within

Formulation 1 0.0163 0.0163 2.16 0.1634

Period 1 0.0453 0.0453 5.99 0.0282

Residuals 14 0.1058 0.00756

Total 31 0.5424

Table 4.19 gives the ANOVA results of the log-transformed AUC0−∞.

The results indicate no significant effect in the sequence (p-value=0.1149) and

also a significant subject effect (p-value=0.0260) at the 5% level of signif-

icance. The significant subject effect therefore suggests that there are inter-

subject dissimilarity in clearance and also in the AUC0−∞ as well. In addition,

the period effect is significant (p-value=0.0282) and the formulation effect (p-

value=0.1634) is not significant at the 5% level of significance.This suggests

that there are no statistically significant carryover effect, period effect or for-

mulation effects in this bioequivalence study.

The residual variance estimate σ̂2
W = MSwithin = 0.00756. This variability

is better expressed as a CV for easy interpretation. The residual variance

approximation for AUC0−∞ is 0.00756 (σ̂2
W = 0.00756) and this is equivalent

to the within-subject CV of 8.7% assuming that the formulation variances for

the within-subject are equal. Similarly, the between-subject CV is 11.5%.
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Table 4.20: ANOVA table for the log-transformed Cmax.

Source of Variation DF SS MS F statistics P-value

Between:Subject

Sequence 1 1.126 1.126 5.17 0.0393

Subject(Sequence) 14 2.8362 0.2026 0.87 0.6021

Within:Within

Formulation 1 0.0864 0.0864 0.37 0.5525

Period 1 0.0730 0.0730 0.31 0.5847

Residuals 14 3.265 0.233

Total 31 7.3867

Table 4.20 gives the ANOVA of the log-transformed Cmax. The result in-

dicates a significant effect in the sequence (p-value=0.0393) and the subject

effect is also not significant (p-value=0.6021) at a 5% level of significance. The

non-significant subject effect therefore suggests that there are no inter-subject

contrast in clearance and in the Cmax as well. In addition, there is a non-

significant period effect (p-value=0.5847) while the formulation effect is also

not significant (p-value=0.5525). This suggests that there are no statistically

significant carryover effect, period effect or formulation effects in this bioequiv-

alence study.

The residual variance estimate σ̂2
W = MSwithin = 0.233. This variability is bet-

ter expressed as a CV for easy interpretation. The residual variance evaluation

for Cmax is 0.233 (σ̂2
W = 0.233) and this is comparable to the within-subject

CV of 48.3% assuming that the formulation variances for the within-subject

are equal. Similarly, the between-subject CV is 3.9%.
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4.8.1 The Classic Confidence Interval

Table 4.21: The mean of the log-transformed pharmacokinetic parameters.

Mean

Parameter Test Reference

AUC0−t 4.1441 4.1625

AUC0−∞ 4.1995 4.2448

Cmax 1.1011 0.9972

Table 4.21 presents the mean for the R and the T treatment for each of the

pharmacokinetic parameters. Table 4.22 provides the 90% confidence intervals

for the different pharmacokinetic parameters. The mean AUC0−t values were

4.1441 and 4.1625 for the T and R drugs, respectively. The mean AUC0−∞

for the T and R drugs were 4.1995 and 4.2448, respectively. The mean Cmax

values were 1.1011 and 0.9972 for the T and R drugs, respectively. The mean

AUC0−t and AUC0−∞ for the T drug is lower than the R drug mean for the

same parameters. However, the mean Cmax for the T drug is higher than that

of the R drug. The 90% confidence interval for AUC0−t and AUC0−∞ were

within the 80-125% limit set by FDA and other regulatory bodies. However,

the 90% confidence interval for the Cmax was not within the 80-125% limit.

Table 4.22: 90% CI for the different pharmacokinetic parameters.

AUC0−t AUC0−∞ Cmax

Interval Limits

Lower Upper Lower Upper Lower Upper

Shortest 98.65 100.46 97.96 99.91 87.49 133.00
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Table 4.23: 90% CI and the decision about bioequivalence.

Interval Limits

Parameter Lower Upper Decision

AUC0−t 98.65 100.46 ABE claimed

AUC0−∞ 97.96 99.91 ABE claimed

Cmax 87.49 133.00 ABE not claimed

The 90% CI for the log-transformed AUC0−t is given as (98.65,100.46). This

CI is within the (80-125) range as per the FDA guidelines. Therefore the R

drug and the T drug are declared as average bioequivalent with respect to the

AUC0−t.

The associated 90% CI for theAUC0−∞ as indicated in Table 4.23 is (97.96,99.91)

and is well within the interval (80-125). The T and R formulations are there-

fore average bioequivalent for the AUC0−∞.

The associated 90% CI for Cmax is (87.49,133) which is not contained within

the (80-125) range as per the FDA guidelines. ABE cannot be concluded

as required by the FDA guidelines as the upper confidence limit is above the

required upper limit as per the FDA guidelines. However, for Cmax, the WHO,

the SAMCC and the EMEA adopt a more relaxed equivalence interval of (70-

133) for Cmax. By virtue of this relaxed range used by these organisations,

average bioequivalence can be claimed.

4.8.2 Westlake’s Symmetric Confidence Interval

For any two formulations to be declared as average bioequivalent using the

Westlake symmetric CI, ∆ should be less than 0.2µR where ∆ is defined in

Equation 3.36.
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Table 4.24: Westlake’s CI results for log-transformed AUC0−t, AUC0−∞ and

Cmax.

Parameter Westlake’s ∆ value 0.2µR

AUC0−t 0.05754786 0.8325

AUC0−∞ 0.0866167 0.84896

Cmax 0.3448097 0.19944

From Table 4.24, the ∆ values for the PK parameters AUC0−t and AUC0−∞ are

less than 0.2µR. However, the ∆ value for Cmax is greater than 0.2µR. There-

fore, average bioequivalence is concluded in terms of AUC0−t and AUC0−∞

but not Cmax.

4.8.3 Schuirmann’s TOST Approach

The TOST procedure was introduced by Schuirmann (1987) and was based

on Equation 3.13. Two formulations are considered as bioequivalent if H01

and H02 from Equation 3.13 are both rejected at a significance level which is

predetermined.

Table 4.25: The Schuirmann’s TOST results for log-transformed PK parame-

ters.

TL TU t(α, n1 + n2 − 2)

AUC0−t 29.08393 -37.82908 1.761

AUC0−∞ 26.15258 -36.00039 1.761

Cmax 1.776692 -0.8514206 1.761

The Schuirmann’s TOST results are shown in Table 4.25 for the following PK

parameters AUC0−t, AUC0−∞ and Cmax. From the results, |TL| and |TU | for

AUC0−t and AUC0−∞ are both greater than t(0.05, 14) = 1.761 . Since these

values are greater than 1.761, the null hypotheses (H01 and H02) in Equation

3.13 are both rejected at 5% level of significance. We can conclude bioequiva-

139



lence according to the ±20 rule for both AUC0−t and AUC0−∞. However, for

Cmax, |TL| is greater than 1.761 but |TU | is less than 1.761. Bioequivalence

cannot be claimed using the Cmax.

4.9 Comparing optimal and regular design

During the sampling times, the general rule of thumb is to collect more blood

samples during the absorption phase and peak phase and collect less during

the elimination phase. However, the number of samples and the time intervals

are generally chosen by the pharmacokineticist and not based on any rule.

The regular design of sampling is done without any recognised algorithm and

not taking the characteristics of the drug into consideration while the optimal

design considers the various characteristics of the drug and uses an algorithm

to compute the different times the blood samples are to be collected.

It is very important to verify the quantity of AUC0−t that is missed when the

trapezoidal method is used to calculate the AUC0−t using the regular design.

The AUC0−t for the regular design and optimal design are presented in Tables

4.26 and 4.27. The second column in Tables 4.26 and 4.27 report the AUC0−t

from time 0 to 72 hours for the regular design while column 3 reports the

AUC0−t from time 0 to 72 hours for the optimal design. The AUC0−t for the

regular design was obtained using the linear interpolation method as explained

in Section 2.5 while the AUC0−t for the optimal design was obtained using

Equation 2.16 after optimising the sampling times. Column 4 presents the

percentage of the unexplained AUC0−t when using the regular design.
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Table 4.26: AUC0−t for regular and optimal design.

Subject AUC0−t(Regular) AUC0−t(Optimal) % difference

842 62.4935 67.43587 7.328993

858 60.244 64.62041 6.772489

860 65.0565 63.25278 -2.85161

861 50.333 53.91614 6.645765

862 49.2165 51.74834 4.892601

864 60.549 62.15424 2.582672

869 57.7215 60.51894 4.622421

870 49.312 51.95971 5.095698

842 53.378 65.86338 18.95648

858 63.4214 61.14068 -3.73028

860 78.4096 71.41448 -9.7951

861 56.0545 58.21259 3.707256

862 38.5985 44.36431 12.99651

864 78.99 72.333 -9.20327

869 71.838 63.45344 -13.2137

870 54.3085 63.17753 14.03827

827 56.264 58.80359 4.318767

843 61.1015 60.86652 -0.38606

844 59.2165 61.41677 3.582523

857 60.798 65.92797 7.781174

859 68.9234 67.94529 -1.43956

863 67.7175 68.45833 1.082162

866 66.153 66.2853 0.199592
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Table 4.27: AUC0−t for regular and optimal design.

Subject AUC (Regular) AUC (Optimal) % difference

985 58.9715 65.02689 9.312132

827 55.291 58.21236 5.018453

843 73.1955 72.3221 -1.20765

844 72.3501 70.19283 -3.07335

857 66.7527 71.18192 6.222395

859 85.6995 88.02288 2.639518

863 77.544 73.97729 -4.82136

866 59.1085 61.17458 3.377351

985 67.0836 66.62649 -0.68608

The mean percentage of the unexplained AUC0−t while using the regular de-

sign is 2.523912 % and a standard deviation of 6.79962 %. The range of the

percentage difference is [-13.21372%, 18.95648 %]. The results show that the

trapezoidal approximation of the AUC0−t from time 0 to 72 hours for the opti-

mal design is an improvement over the regular design which was used originally.

However, there were a few exceptions where the regular design performed bet-

ter than the optimal design for the subjects. This is an indication that the

optimal design could still be improved.

4.10 Summary

This Chapter provided results for the ANOVA, CI, TOST, SA, Wilcoxon-

Mann-Whitney test and PopPK model for the blood concentrations which

were collected from pigs. The results as discussed in the Chapter indicated

that the T drug formulation is average bioequivalent and population bioequiv-

alent to the R drug formulation using the three metrics AUC0−t, AUC0−∞

and Cmax. The results of the Wilcoxon-Mann-Whitney test on the Tmax also

indicated bioequivalence between the T and R drug formulations.
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The second part of the Chapter discussed the development of the PopPK mod-

el using a one compartment model with first-order absorption and first-order

elimination rate. The model was built using the SAEM algorithm which, ac-

cording to literature, performs very well. Empirical results and the model di-

agnostics indicate that the PopPK model is a better fitting model for the data.

The third part of the Chapter discussed the SA algorithm which used the

parameter estimates from the PopPK model to obtain optimal sampling times.

The empirical results show that the optimal sampling points on average were

better than the regular design method of collecting the blood concentrations.
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Chapter 5

Conclusion and

Recommendations

5.1 Conclusion

The procedures for assessment of bioequivalence testing have been in existence

for the past decades. The methods of bioequivalence assessment have been

constantly updated over the years to provide an efficient assessment. These

procedures are very important to the pharmaceutical industry as well as the

regulatory bodies so that the T drugs could be approved as a replacement for

the R drugs which are generally quite expensive. Advances in biopharmaceuti-

cal studies made it possible to develop improved drug formulations to enhance

efficacy while improving safety and also to create inexpensive drug products

which can be marketed once the patent on the R drug product expires. The

T drugs have become so important because they are cost effective and help to

reduce the medical costs for governments and private consumers.

This dissertation explores several avenues in bioequivalence studies such as

the design of the study, different methods of assessment of bioequivalence and

where such methods are implemented in drug development. The science of

biopharmaceutical studies focuses on differentiating between drug products in

order to provide new and improved treatments for the benefit of the public.

144



Statistical techniques namely the TOST, Westlake’s CI, classic CI approach

and the Wilcoxon-Mann-Whitney TOST were used to determine ABE between

the T and the R drugs. Also, PBE was used to determine if the two drug prod-

ucts were bioequivalent.

In this dissertation, ABE was established between the T and R drug formula-

tions using the AUC since the 90% CI was within the FDA range of acceptance.

ABE could not be established under the FDA regulations using the Cmax since

the upper limit of the 90% CI exceeded the FDA CI limits. However, using the

regulatory requirements of the EMEA and the SMCC, ABE was established

between the T and the R drug formulations since they have a wider CI for

the Cmax. The results of the Wilcoxon-Mann-Whitney TOST using the Tmax

demonstrated ABE between the R and the T drug formulations.

From the hypothesis in Equation 2.9, the null hypothesis is rejected thereby

confirming the R and the T drug formulations are population bioequivalent us-

ing both the AUC and Cmax. From the findings in this dissertation, it can be

concluded that BE studies play a very important role in health care especially

in the developing countries and for those who cannot afford the R drugs. If

this concept is embraced and the relevant bodies instituted, the cost of health

care will reduce drastically as shown in the literature. The regulatory bodies

play a vital role to ensure that even though the T drugs are less expensive

and could reduce health care cost as discussed in Chapter 2, T drugs are also

as safe and effective as their R drug counterparts in curing their respective

illness. This ensures cheap and quality T drugs to be marketed.

However, from the literature, there are limitations to the use of ABE as the

sole measure of assessment. It has been stated that it is not enough to prove

that two drugs are average bioequivalent but also to use other approaches such

as the PBE and IBE to address the limitations of ABE.
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5.2 Recommendations

It is recommended that a replicate design study should be used for drugs

which are highly variable (intra-subject coefficient of variation greater than

30%) in demonstrating ABE. The use of a replicate design reduces the sample

size needed. Also, during the design phase of BE studies, the nature of the

drug product should be taken into consideration and should also consider the

inter-subject variance homogeneity assumption. The subject-by-formulation

interaction variance is assumed to be null during the design stage of the study.

However, the variance may not be null. The replicate design offers a benefit

that this variance may be separated from intra-subject variation which leads

to better understanding of the study outcome.

The pharmacokinetic properties of the drugs should be carefully considered

when selecting subjects for the study. Clinical practice should be standardised

and conducted in accordance with good practice (time of meals, time of drug

administration, etc.).

Also, information on some demographic factors should be provided since they

may differ between populations and affect the results. When these assump-

tions are violated, the power to demonstrate BE would be reduced (Patterson,

2003). BE studies are mostly faced with lack of resources and therefore a s-

mall sample of subjects is advised as well as a two-period COD. However, to

make a meaningful statistical inference which could lead to a definitive study,

a replicate design is preferred which will result in IBE.

Covariate modelling should also be considered as one of the modelling ap-

proaches in PopPK modelling, which makes the design of the BE important

to include the covariates in the design of the BE study.
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Appendix A

The CTC for the subjects and

data for calculating AUC0−∞
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file for T and R formulation in
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0 10 20 30 40 50 60 70

0
1

2
3

4
5

Subject 862

Time (hours)

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

Reference

Test
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file for T and R formulation in
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file for T and R formulation in
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file for T and R formulation in
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Figure A.9: Concentration pro-

file for T and R formulation in

sequence 2
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profile for T and R formulation

in sequence 2
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profile for T and R formulation

in sequence 2

163



0 10 20 30 40 50 60 70

0
1

2
3

4
5

Subject 866

Time (hours)

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

Reference

Test

Figure A.15: Concentration

profile for T and R formulation

in sequence 2

0 10 20 30 40 50 60 70

0
1

2
3

4
5

Subject 985

Time (hours)

C
on

ce
nt

ra
tio

n 
(m

g/
kg

)

Reference

Test

Figure A.16: Concentration

profile for T and R formulation

in sequence 2

164



T
ab

le
A

.1
:

D
at

a
fo

r
ca

lc
u
la

ti
n
g
A
U
C

0
−
∞

S
u
b

je
ct

n
u
m

b
er

In
te

rv
al

fo
r
k
e

es
ti

m
at

io
n

(λ
)

λ
t 1
/
2

C
t

A
U
C

0
−
t

A
U
C

0
−
∞

84
2

6-
72

0.
01

88
84

6
36

.7
0

0.
34

9
62

.4
93

5
80

.9
74

2

85
8

4
−

48
0.

05
24

2
13
.2

2
0.

32
4

60
.2

44
66

.4
24

8

86
0

5
−

72
0.

03
14

45
22
.0

4
0.

16
7

65
.0

56
5

70
.3

67
36

86
1

6-
72

0.
04

03
67

17
.1

7
0.

14
5

50
.3

33
53

.9
25

04

86
2

6
−

72
0.

02
98

45
23
.2

2
0.

18
3

49
.2

16
5

55
.3

48
18

86
4

6
−

72
0.

02
05

61
33
.7

1
0.

37
1

60
.5

49
78

.5
92

87

86
9

6
−

48
0.

06
38

76
10
.8

5
0.

20
6

57
.7

21
5

60
.9

46
50

87
0

6
−

72
0.

03
73

87
18

.8
5

0.
13

2
49

.3
12

52
.8

42
64

82
7

8
−

72
0.

01
88

3
36
.8

1
0.

34
1

55
.2

91
73

.4
00

4

84
3

5-
72

0.
06

07
0

11
.4

2
0.

05
8

73
.1

95
5

74
.1

51
0

84
4

5-
72

0.
05

23
9

13
.2

3
0.

08
28

72
.3

50
1

73
.9

50
6

85
7

3-
24

0.
21

98
97

3.
15

0.
09

42
66

.7
52

7
67

.1
81

1

85
9

4-
72

0.
03

92
62

17
.6

5
0.

25
3

85
.6

99
5

92
.1

43
4

86
3

6-
72

0.
05

33
95

12
.9

8
0.

06
45

77
.5

44
78

.7
52

0

86
6

5-
72

0.
02

19
01

31
.6

5
0.

35
9

59
.1

08
5

75
.5

00
4

98
5

6-
72

0.
04

55
2

15
.2

3
0.

08
28

67
.0

83
6

68
.9

02
6

165



T
ab

le
A

.2
:

D
at

a
fo

r
ca

lc
u
la

ti
n
g
A
U
C

0
−
∞

S
u
b

je
ct

N
u
m

b
er

In
te

rv
al

la
m

b
d
a

h
al

f-
li
fe

C
A

u
C

A
U

C
in

fi
ty

84
2

4-
72

0.
03

13
85

22
.0

9
0.

16
8

53
.3

78
58

.7
30

9

85
8

6-
72

0.
04

47
6

15
.4

9
0.

09
12

63
.4

21
4

65
.4

58
9

86
0

6-
72

0.
05

27
37

13
.1

4
0.

08
83

78
.4

09
6

80
.0

83
95

86
1

8-
72

0.
06

37
79

10
.8

7
0.

17
6

56
.0

54
5

58
.8

14
0

86
2

6-
72

0.
02

90
50

23
.8

6
0.

17
0

38
.5

98
3

44
.4

49
9

86
4

12
-7

2
0.

03
73

20
18

.5
7

0.
17

9
78

.9
9

83
.7

86
36

86
9

8-
72

0.
03

51
8

19
.7

0
0.

15
4

71
.8

38
76

.2
15

49

87
0

4-
48

0.
03

01
58

22
.9

8
0.

46
3

54
.3

08
5

69
.6

60
98

82
7

4-
30

0.
12

39
5

5.
59

0.
15

1
56

.2
64

57
.4

82
2

84
3

6-
48

0.
07

16
81

9.
67

0.
11

2
61

.1
01

5
62

.6
64

0

84
4

8-
72

0.
02

56
2

27
.0

5
0.

27
5

59
.2

16
5

69
.9

50
3

85
7

4-
48

0.
05

03
6

13
.7

6
0.

33
0

60
.7

98
67

.3
50

8

85
9

3-
30

0.
18

58
4

3.
73

0.
05

13
68

.9
23

4
69

.1
99

4

86
3

3-
24

0.
21

02
0

3.
30

0.
10

5
67

.7
17

5
68

.2
17

0

86
6

6-
72

0.
03

48
55

19
.8

9
0.

17
7

66
.1

53
71

.2
31

9

98
5

4-
48

0.
03

54
6

19
.5

5
0.

44
5

59
.9

71
5

72
.5

20
9

166



Appendix B

Diagnostic plots from

population Pharmacokinetic

Modelling

Figure B.1: Spaghetti plot with parameters Ka, V and Cl
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Figure B.2: Individual and population fits for subjects

Figure B.3: Observation versus predictions
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Figure B.4: Individual weighted residuals and NPDE

Figure B.5: Visual predictive check
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Figure B.6: Population distribution of the estimated individual parameters

and the empirical distributions of the individual parameters simulated with

conditional distributions

Figure B.7: Joint distribution of the random effects
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Figure B.8: SAEM convergence
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Appendix C

R and MATLAB codes

R code f o r ABE and PBE

chow$Sequence<−as . f a c t o r ( chow$Sequence )

chow$Period<−as . f a c t o r ( chow$Period )

chow$Subject<−as . f a c t o r ( chow$Subject )

###conver t ing AUC and Conc to natura l l og in chow−−−−#

f o r ( i in 1 : nrow ( chow )){

chow$lnAUCT [ i ]<−( l og (chow$AUCT[ i ] ) )

}

f o r ( i in 1 : nrow ( chow )){

chow$lnAUCINF [ i ]<−( l og (chow$AUCINF [ i ] ) )

}

f o r ( i in 1 : nrow ( chow )){

chow$lnCMAX [ i ]<−( l og (chow$CMAX[ i ] ) )

}

c l c

c l e a r a l l
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format long g

t =[0 0 .5 1 1 .5 2 2 .5 3 4 5 6 8 12 24 24 30 48 7 2 ] ;

ka =0.0393; k =2.71; D=15; V=0.0868;F=1;

c=ka∗F∗D/(V∗( ka−k ) ) ;

f=@( t ) c . ∗ ( exp(−k .∗ t)−exp(−ka .∗ t ) ) ;

T=20;

[ a , b]= s i z e ( t ) ;

m=b−2;

f o r i =2:24

omega=f ( t ) ;

T=T/ log ( i ) ;

k1=randi ( [ 2 ,m] , 1 ) ;

tnew1=[ t ( k1−1) , t ( k1 +1) ] ;

r=un i f rnd ( t ( k1−1) , t ( k1 +1)) ;

tnew=t ;

tnew ( k1)=r ;

sigma=f ( tnew ) ;

p=min ( [ exp(−(sigma−omega ) . /T) , 1 ] ) ;

u=rand ;

i f u<=p

t=tnew ;

e l s e

end

end

d i sp l ay ( t ’ )

p l o t ( t , f ( t ) )

x l a b e l ( ’ time ( hours ) ’ )

y l a b e l ( ’ concent ra t i on (mg/kg ) ’ )

g r i d on

c l c

173



c l e a r a l l

format long g

ka =0.0393; k =2.71; D=15; V=0.0868;F=1;

c=ka∗F∗D/(V∗( ka−k ) ) ;

f=@( t ) c . ∗ ( exp(−k .∗ t)−exp(−ka .∗ t ) ) ;

proc glm

data=WORK.DATA1;

c l a s s Formulation Period Sequence Subject ;

model lnAUC= Sequence Subject ( Sequence ) Period Formulation ;

random Subject / t e s t ;

lsmeans Formulation / p d i f f c l alpha =0.1 ;

run ;

proc mixed

data=WORK.DATA1;

c l a s s Subject Sequence Period Formulation ;

model lnAUC=Sequence Period Formulation ;

random Subject ( Sequence ) ;

lsmeans Formulation / p d i f f c l alpha =0.1 ;

e s t imate ’T/R’ Formulation 1 2 / c l alpha =0.1 ;

run ;

setwd (”C:\\ Users \\Administrator \\Desktop\\ opt im i sa t i on ”)

chow= read . csv (”C:\\ Users \\Administrator \\Desktop\\ opt im i sa t i on \\chow . csv ”)

chow$Sequence<−as . f a c t o r ( chow$Sequence )

chow$Period<−as . f a c t o r ( chow$Period )

chow$Subject<−as . f a c t o r ( chow$Subject )

###conver t ing AUC and Conc to natura l l og in chow−−−−#
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f o r ( i in 1 : nrow ( chow )){

chow$lnAUCT [ i ]<−( l og (chow$AUCT[ i ] ) )

}

f o r ( i in 1 : nrow ( chow )){

chow$lnAUCINF [ i ]<−( l og (chow$AUCINF [ i ] ) )

}

f o r ( i in 1 : nrow ( chow )){

chow$lnCMAX [ i ]<−( l og (chow$CMAX[ i ] ) )

}

tab . n<−aggregate (chow$lnAUCT , l i s t ( Sequence=chow$Sequence , Per iod=chow$Period ) , l ength )

n1<−tab . n [ tab . n$Sequence==1 & tab . n$Period ==1,]$x

n2<−tab . n [ tab . n$Sequence==2 & tab . n$Period ==1,]$x

n<−n1+n2

####−−−−−car ryove r e f f e c t−−−−−−−−−##

uik<−aggregate (chow$lnAUCT , l i s t ( Sequence=chow$Sequence , Subject=chow$Subject ) , sum)

colnames ( uik)<−c (” Sequence ” ,” Subject ” ,” uik ”)

muk<−aggregate ( uik$uik , l i s t ( Sequence=uik$Sequence ) , mean)

colnames (muk)<−c (” Sequence ” ,”muk”)

p r i n t (muk)

hatc<−muk[2 ,2 ]−muk [ 1 , 2 ]

hatc

du<−merge ( uik ,muk)

s igu2<−sum ( ( du$uik−du$muk)ˆ2/( n1+n2−2))

se . s igu<−s q r t ( s i gu2 ∗ ( (1/ n1)+(1/n2 ) ) )

TC<−hatc / se . s i gu
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TC

pc<−2∗(1−pt ( abs (TC) , n1+n2−2))

pc

###−−−f o rmulat ion e f f e c t−−−−###

dik<−aggregate (chow$lnAUCT , l i s t ( Subject=chow$Subject , Sequence=chow$Sequence ) , d i f f )

dik$x<−dik$x /2

colnames ( dik)<−c (” sub j e c t ” ,” Sequence ” ,” dik ”)

mdk<−aggregate ( dik$dik , l i s t ( Sequence=dik$Sequence ) , mean)

colnames (mdk)<−c (” Sequence ” ,”mdk”)

hatF<−mdk[1 ,2 ]−mdk [ 2 , 2 ]

dF=merge ( dik ,mdk)

s igd2<−sum ( ( dF$dik−dF$mdk)ˆ2 )/ ( n1+n2−2)

s i gd2

se . s igd<−s q r t ( s i gd2 ∗ ( (1/ n1)+(1/n2 ) ) )

TF<−hatF/ se . s i gd

TF

pf<−2∗(1−pt ( abs (TF) , n1+n2−2))

pf

mdrug<−tapply (chow$lnAUCT , l i s t ( Formulation=chow$Formulation ) , mean)

ybarT<−mdrug [ ”T” ]

ybarR<−mdrug [ ”R” ]

##−−−−−Confidence i n t e r v a l−−−−##

alphaCI<−0.1

qt . alpha<−qt(1−alphaCI , n1+n2−2)

#sigd2<−anova (mdlnAUCT) [ 5 , 3 ] / 2

low1<−(ybarT−ybarR)−qt . alpha∗ s q r t ( s i gd2 )∗ s q r t ( ( ( 1/ n1)+(1/n2 ) ) )
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up1<−(ybarT−ybarR)+qt . alpha∗ s q r t ( s i gd2 )∗ s q r t ( ( ( 1/ n1)+(1/n2 ) ) )

cat (”The c l a s s i c a l CI1=(” , round ( low1 , 6 ) , ” , ” , round ( up1 , 6 ) , ” ) ” , sep =”” ,”\n\n”)

low2<−((low1/ybarR)+1)∗100

up2<−((up1/ybarR)+1)∗100

cat (”The Ratio CI2=(” , round ( low2 , 5 ) , ” , ” , round ( up2 , 5 ) , ” ) ” , sep =”” ,”\n\n”)

##−−−west lake−−−##

mdrug<−tapply (chow$lnAUCT , l i s t ( Formulation=chow$Formulation ) , mean)

ybarT<−mdrug [ ”T” ]

ybarR<−mdrug [ ”R” ]

k12<−2∗(ybarR−ybarT )/ s q r t ( s i gd2 ∗ ( ( (1/ n1)+(1/n2 ) ) ) )

k2<−un i roo t ( func t i on ( k2 ) pt ( k12−k2 , n1+n2−2)−pt ( k2 , n1+n2−2)−(1−alphaCI ) , lower=−10,upper =10, t o l =0.0001) $root

k1<−k12−k2

cat (” the west lake k1=”,k1 , ” and k2=”,k2 , sep =”” ,”\n\n”)

low . west<−k2∗ s q r t ( s i gd2 ∗(1/ n1+1/n2))−(ybarR−ybarT )

up . west<−k1∗ s q r t ( s i gd2 ∗(1/ n1+1/n2))−(ybarR−ybarT )

cat (”The west lake CI f o r mu T−Mu A i s (” , low . west , ” , ” , up . west , ” , ” , sep =”” ,”\n\n”)

##−−two 0ne−s ided−−−##

theta . L<− −0.2∗ybarR

theta .U<− 0 .25∗ ybarR

#theta .U<− 0 .25∗ ybarR

TL<−(ybarT−ybarR−theta . L)/ s q r t ( s i gd2 ∗ ( (1/ n1)+(1/n2 ) ) )

TU<−(ybarT−ybarR−theta .U)/ s q r t ( s i gd2 ∗ ( (1/ n1)+(1/n2 ) ) )
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