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ABSTRACT 

 

The Organic Cation Transporter 2 (OCT2) gene is responsible for facilitating the transport of 

cationic compounds, which include both endogenous substrates and clinical drugs. Single 

nucleotide polymorphisms (SNPs) within this gene were extensively explored in the South 

African black population as little research has been conducted on these individuals so far. We 

sequenced the OCT2 promoter region of 10 DNA samples from the South African black 

population and identified four SNPs and one INDEL. We performed a luciferase assay to 

determine their effects on gene expression and we found two variants (rs59695691 and 

rs138765638) that showed a statistically significant change in luciferase expression 

suggesting that they may be associated with a change in OCT2 regulatory function. We also 

indentified thirteen SNPs and two INDELs within the OCT2 promoter region, and nine SNPs 

within the OCT2 coding region through analysing various South African population studies. 

These variations could affect both gene expression and protein function. These findings help 

contribute to filling the gap pertaining to OCT variation in South African populations. 
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1.  Introduction 

1.1  SLC22 Family of transporters 

Various endogenous compounds, drugs, toxins and environmental products are absorbed, 

distributed throughout and excreted from the human body by broad-specificity transporters 

that belong to the solute carrier superfamily 22 (SLC22) (Koepsell, Lips & Volk, 2007). 

This family includes transporters for organic cations (OCTs), organic anions (OATs) as well 

as organic cations and zwitterions (OCTNs) together, in which their main roles all occur in 

the kidney and the liver. The OCTs are members of the SLC22A family that contains the 

three subtypes of OCTs called OCT1 (SLC22A1), OCT2 (SLC22A2) and OCT3 (SLC22A3) 

(Koepsell, Lips & Volk, 2007).  

 

All OCT proteins have been predicted to share a 12-transmembrane domain (TMD) 

structure (Figure 1). Between TMD1 and TMD2 the structure comprises of a large 

extracellular hydrophilic loop which has glycosylation sites and is responsible for playing a 

role in oligomerisation (Brast et al., 2011; Keller et al., 2011). Between TMD6 and TMD7, 

the structure comprises of a large intracellular loop that has phosphorylation sites which are 

important for protein kinases to regulate the SLC22 transporters (Koepsell, Lips & Volk, 

2007).                     

          

Due to these conserved structural features, the OCTs share high sequence similarity. The 

cationic transporters from different species are between 551 and 557 amino acids in length 

and between OCT1 and OCT2 there are 285 (51 %) common amino acids; among OCT1, 2 

and 3 there are 188 (34 %) identical amino acids and between all OCTs and OCTNs there 

are 92 (17 %) conserved amino acids (Burckhardt & Wolff, 2000). Of these conserved 

amino acids there are 4 cysteines and 13 prolines, which likely contribute to the formation 

of the protein’s secondary structure (Burckhardt and Wolff, 2000). Maintaining the 

secondary structure may occur through the conserved charged amino acids either by the 

binding of charged substrates or through salt bridges. These include 3 aspartic acids, 6 

glutamic acids, and 7 arginines (Burckhardt & Wolff, 2000). 
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Figure 1: The 12-transmembrane domain (TMD) predicted structure of OCT proteins. 

Between TMD1 and TMD2 a large glycosylated extracellular loop is found, and between 

TMD6 and TMD7 a large intracellular loop that contains phosphorylation sites is found. The 

N- and C-terminus are located intracellularly. (Modified from Volk, 2014). 

 

1.2  OCT2 (SLC22A2)  

This study focuses on the human OCT2 gene that is encoded by SLC22A2, which is situated on 

the reverse strand of chromosome 6q26. The gene is 45 kilobases (kb) in length and consists of 

11 coding exons (Koehler et al., 1997; Gründemann & Schömig, 2000). The Ensembl genome 

browser (GRCh38.p5) shows that OCT2 has six transcripts: the longest transcript of 3737 bp 

produces a protein of 334 amino acids, the second longest transcript of 2597 bp produces the 

longest protein of 555 amino acids, which is used for this study, and the other four transcripts 

are not translated into proteins (Yates et al., 2015).  The expression of this transporter mainly 

occurs at the basolateral membrane in the renal proximal tubule cells of the kidney (Figure 2), 

but expression also occurs in the placenta, spleen, lung, inner ear, small intestine, thymus and 

the brain (Gorboulev et al., 1997; Motohashi et al., 2002; Koepsell, Schmitt & Gorboulev, 

2003). OCT2 facilitates the transport of numerous cationic drugs from the circulation of the 

body into the renal epithelial cells of the kidney, where they are finally excreted into the urine 

(Gorboulev et al., 1997; Motohashi et al., 2002). Transportation of organic cations occurs in 

both directions across the plasma membrane via substrate concentration gradients and the 

membrane potential (Koepsell, 2011). Examples of cationic compounds that are transported by 

OCT2 are shown in Table 1.  

N-terminus 

C-terminus 

1 2 3 4 5 6 7 8 9 10 11 12 
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Figure 2: The location of the different SLC22 transporters present in the human renal 

proximal tubule cell. OCT2 is expressed in the basolateral membrane. The difference in the 

line thickness with regards to OCT1 and OCT2 indicates the direction to which organic cation 

uptake is favoured. Abbreviations: DC, dicarboxylate; OA+, organic anion; OC−, organic 

cation; ZI, zwitterion. (Volk, 2014). 

 

Table 1: Examples of cationic compounds transported by the human OCT2 gene. 

Class Compound Drug category 

 

 

 

 

 

Drugs 

Metforminb Antidiabetic 

Phenforminc Antidiabetic 

Cisplatinb Anticancer 

Oxaliplatind Anticancer 

Quinineb Antimalarial 

Lamivudinea Antiretroviral 

Cimetidineb Antihistamine, histamine H2 receptor 

Amantadineb Antiparkinsonian agent, antiviral  

Acetylsalicylatec NSAIDs* 

Salicylatec NSAIDs* 

Creatinineb Metabolite 

 

 

 

Neurotransmitters 

Acetylcholineb Endogenous 

Dopamineb Endogenous 

Histamineb Endogenous 

Epinephrineb Endogenous 

Norepinephrineb Endogenous 

Seratoninb Endogenous 

Cholinec Endogenous, Dietary supplement 
a Jung et al., 2008. Reviewed in b Koepsell, Lips & Volk, 2007;  c Fujita et al., 2006; d Yonezawa et al., 2006. 

*Non-steroidal anti-inflammatory drugs 
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Orthologs of OCT2 have been cloned from human (Gorboulev et al., 1997), pig (Gründemann 

et al., 1997), mouse (Mooslehner & Allen, 1999) and rabbit (Zhang, Evans & Wright, 2003) 

since its original isolation from a rat renal library in 1996 (Okuda et al., 1996).  

 

1.3  OCT2 promoter and transcription factors 

A promoter, found upstream of the translation start codon (ATG), contributes to the regulation 

of gene expression and is the site to which ribonucleic acid (RNA) polymerase binds prior to 

the initiation of transcription. The promoter is usually classified as the region that is 1 kb from 

the transcription start site (TSS) (Zhang, 1998). Transcription factor binding sites, which can 

be either positive or negative regulators of gene expression, are located within this region and 

can enhance or diminish the expression of the gene. 

 

The upstream stimulatory factor 1 (USF-1), a member belonging to the family of basic helix-

loop-helix-leucine zipper transcription factors, is known to bind to the enhancer box (E-box) 

region of the OCT2 promoter (Corre & Galibert, 2005). The OCT2 promoter is furthermore 

known to contain a CCAAT box where a number of different transcription factors such as 

nuclear factor-Y (Mantovani, 1999) and CCAAT/enhancer-binding proteins can bind (Ramji & 

Foka, 2002). Figure 3 shows a graphical representation of the transcription factor binding 

region of the OCT2 promoter. It was observed in a study by Asaka et al. (2007) that an E-box 

mutation resulted in a decrease in the promoter activity of OCT2 while an overexpression of 

USF-1 resulted in enhanced promoter activity (Asaka et al., 2007). 

 

 

Figure 3: The transcription factor binding region of the OCT2 promoter spanning from   

-483 to -435. Numbering is relative to the translation start site. This sequence indicates the 

location of the CCAAT box and the E-box regions that are necessary for transcription 

initiation. USF-1 binds to the E-box. (Modified from Asaka et al., 2007). 
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Genetic imprinting regulates organ specific expression of OCT2. Aoki et al. (2008) showed in 

their study that deoxyribonucleic acid (DNA) methylation regulates the expression of OCT2 in 

the kidneys. Liver cells showed hypermethylated levels whereas kidney cells showed 

hypomethylated levels at all CpG sites in the promoter, and there was a low level of 

methylation at the CpG site present in the E-box. Methylation, in the OCT2 promoter or the   

E-box specifically, repressed the binding of USF-1 and hence reduced the transcriptional 

activity of OCT2 (Aoki et al., 2008). The study also established that although the methylation 

status of CpG sites is low in the kidneys, there were differences between different individuals 

observed in the promoter region.  

 

Posttranscriptional regulation and transport activity of OCT2 is controlled by several signalling 

pathways, which involve protein phosphorylation caused by protein kinase A, protein kinase C, 

phosphatidylinositol-3-kinase, and calcium/calmodulin complexes (Ciarimboli & Schlatter, 

2005; Koepsell, Lips & Volk, 2007). 

 

1.4  The role of OCT2 in the treatment of human diseases 

Since a number of the drugs administered for the treatment of various diseases (Table 1) rely 

on OCT2 transport, OCT2 is a target for the effective treatment of various human diseases 

some of which are cancer, type 2 diabetes and Parkinson’s disease. Mutations, deletions, and 

single nucleotide polymorphisms (SNPs) within the OCT2 gene may influence the way a 

person responds to treatment for various diseases (Houtsma, Guchelaar & Gelderblom, 2010). 

 

Cancer is a disease that globally affects both developed and developing countries including 

South Africa. Each year approximately 14 million people globally and more than 100 000 

South Africans are diagnosed with cancer (http://www.cansa.org.za/south-african-cancer-

statistics/ - accessed 15/03/2016). Cisplatin, a substrate of OCT2, is a platinum-based drug 

commonly used worldwide as an anticancer agent for various solid tumors (Ciarimboli et al., 

2005; Yonezawa et al., 2005) including: bladder, endometrial, ovarian, cervical, testicular, 

lung, as well as head and neck cancer (Perez, 1998; Go & Adjei, 1999; Zhang et al., 2006). 

One primary mechanism of action of cisplatin involves the formation of cisplatin-DNA 

adducts, which causes DNA damage within the rapidly proliferating cancer cells and results in 

apoptosis (Johnson et al., 1989). The involvement of OCT2 in the renal circulation leads to an 

accumulation of cisplatin within the kidney and unfortunately causes severe nephrotoxicity, 
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which is one of the major side effects of cisplatin therapy and therefore limits its clinical 

application despite its effectiveness (Yonezawa et al., 2005). 

 

Before the 1990s diabetes was considered a rare disease in Sub-Saharan Africa, however, it has 

now emerged that there has been a rise in the burden in Sub-Saharan Africa as well as globally 

(Mbanya et al., 2010; Levitt, 2008). Peer et al. (2012) demonstrated that there has been an 

increase in the prevalence of diabetes in urban black South Africans compared to 20 years ago 

and this was the first study to show the significant rise in diabetes in South Africa (Peer et al., 

2012). It has been shown that people who suffer from diabetes show a lower expression of 

OCT2 (Ciarimboli et al., 2005). Metformin, transported by OCT1 and OCT2, is one of the 

most commonly prescribed drugs used for the treatment of type 2 diabetes because it improves 

insulin sensitivity (Bailey & Turner, 1996; Kirpichnikov, McFarlane & Sowers, 2002). 

Metformin is also favoured because it has beneficial effects such as lowering lipid levels, and 

reduces hypoglycaemia and cardiovascular risks whilst displaying very few adverse side 

effects (Kirpichnikov, McFarlane & Sowers, 2002). 

 

Human OCT2 messenger RNA (mRNA) has also been identified in cells of the central nervous 

system (Gorboulev et al., 1997; Busch et al., 1998) and thus dopamine, a neurotransmitter that 

is transported in the brain, is another substrate of OCT2. Parkinson’s disease is associated with 

dopamine depletion and since amantadine, an anti-Parkinsonian drug, interacts with OCT2, it 

suggests that OCT2 may be a target to treat Parkinson’s disease (Busch et al., 1998). 

 

Genetic variation in the OCT2 gene may affect the transport of drugs administered for the 

treatment of different diseases and so it has been suggested that in the near future SNPs will be 

important genetic markers in individual-based diagnosis and treatment (Zienolddiny & Skaug, 

2012). Therefore, identifying genetic polymorphisms in different populations can lead to more 

specialised and effective medical treatments. 

 

1.5   Genetic polymorphisms in OCT2 

Genetic polymorphism is a term used to describe the stable coexistence of two or more distinct 

genotypes for a given trait in a population where the less common genotype has a frequency of 

at least 1 % in the population (Meyer, 2000). SNPs are the most common DNA sequence 

variations found within a population even though more than 99 % of the human DNA sequence 
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is the same. For every kb of DNA sequence present in the human genome there is 

approximately 1 SNP (Frazer et al., 2007). 

 

Genes encoding drug transporters, such as OCT2, in which genetic polymorphisms may occur, 

may contribute to the variation in the pharmacokinetic / pharmacodynamic profiles of 

clinically essential drugs (Takane et al., 2008). Genetic modifications to OCT2, either in the 

coding or non-coding regions, can change the expression level or activity of OCT2. As a result, 

an increase or decrease in the levels of drug substrates for this particular transporter could 

consequently affect drug disposition, efficacy and toxicity (Evans & Relling, 1999; Ieiri et al., 

2006). Clinical studies, in vitro and in vivo animal experiments, have shown that changes to 

OCT2 expression levels can contribute to the individual variation in pharmacokinetics.  

 

1.5.1   Coding region polymorphisms 

Genetic polymorphisms in the OCT2 gene coding region have been characterised in various 

ethnic populations including Caucasian, African-American and Japanese (Leabman et al., 

2002; Fukushima-Uesaka et al., 2004). Four nonsynonymous SNPs identified in the OCT2 

gene in the African-American population resulted in altered OCT2 transport function. The less 

frequent variants (M165I, R400C and K432Q) tended to result in more significant and 

deleterious functional changes of OCT2 transport, whereas the most frequent nonsynonymous 

variant (A270S) displayed more subtle effects on the functional transport of OCT2 (Leabman 

et al., 2002). Nonsynonymous SNPs that result in impaired OCT2 function may also 

potentially decrease the clearance of norepinephrine or serotonin, which are neurotransmitters 

transported by OCT2 and are released in the brain. This may lead to changes in mood related 

behaviour (Bacq et al., 2011). 

 

1.5.2   Non-coding region polymorphisms 

Ogasawara et al. (2008) identified a functionally significant genetic polymorphism in the 

OCT2 promoter region in Japanese nephrectomised patients. The deletion of AAG at position  

-578 to -576 (-578_-576delAAG) was shown to significantly reduce the activity of the OCT2 

promoter and heterozygotes of this deletion were shown to have lower OCT2 mRNA levels, 

which were found to be insignificant (Ogasawara et al., 2008). This variation is annotated as  

(-318_-316delAAG) and has a dbSNP ID rs138765638 according to the Ensembl genome 

browser. Important to note is that there is a discrepancy between published data and the 
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Ensembl genome browser as to where the TSS begins for the OCT2 gene. Therefore for this 

study all the SNPs identified are numbered relative to the translation start site where the A 

from ATG is denoted as +1 and the nucleotide immediately upstream of the A is denoted as 

−1.  

 

One example, identified in the Chinese population is that of a SNP in the promoter region 

−1283 T > C, which was associated with decreased luciferase activity compared to the wild 

type (WT) indicating that the transcriptional activity of the OCT2 gene decreased. The 

presence of this SNP, however, showed no change in the renal clearance of metformin (Wang, 

2007). This may be due to the study being conducted in healthy subjects and therefore another 

study should be conducted in diabetic patients to compare results. 

 

SNPs found in both the 5′ flanking region and 5′ UTR may influence the binding and 

interaction of transcription factors that regulate transcription of the OCT2 gene (Hayashi, 

Watanabe & Kawajiri, 1991; Sharma, Mount & Karrow, 2008).  The USF-1 transcription 

factor as well as other transcription factors found in these regions within the promoter may 

have a stronger affinity for the promoter and therefore increase the binding of RNA 

polymerase to the transcription start site. This will enhance transcription of the OCT2 gene and 

consequently produce more protein. Alternatively, these transcription factors may have a 

weaker affinity for the promoter and therefore decrease the binding of RNA polymerase. This 

will reduce transcription of the OCT2 gene and consequently produce less protein. It is also 

possible that these SNPs may have no influence on transcription factor binding. 

 

The 5′ UTR SNPs may not just regulate transcription, but may also alter the translation 

efficiency and regulation of the OCT2 mRNA into protein. The 5′ UTR is found to have a high 

GC content, which allows secondary structural features to be formed. These structural features 

include hairpin loops (Kozak, 1991) and G-quadruplexes (Sen & Gilbert, 1988) which can 

control translation initiation and regulation by influencing the recruitment of ribosomes to the 

translation start site (Gingras, Raught & Sonenberg, 1999). Hairpin loops form stable structures 

when the average free energy is less than − 50 kcal/mol which enables these structures to 

inhibit translation (Araujo et al., 2012). If a SNP is found in this region, it may prevent the 

hairpin loop from forming or it may change the average free energy causing an unstable 

structure and therefore it may promote translation.  
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1.5.3  G-quadruplexes 

G-quadruplexes are not commonly found within the human genome but they do occur more 

often than expected in gene promoters (Huppert & Balasubramanian, 2007). G-quadruplexes 

are four-stranded helical structures rich in guanine nucleic acid sequences that are stabilised by 

G-quartets (Sen & Gilbert, 1988). These G-quartets are planar arrays of four guanines held 

together by Hoogsteen hydrogen bonds (Gellert, Lipsett & Davies, 1962). These structures are 

expected to occur more easily in RNA than in DNA because RNA is mostly single-stranded 

and therefore there is no competition for complementary base-pairing during the folding 

process compared to DNA which is double-stranded. 

 

Huppert et al. (2008) used bioinformatics approaches to determine that there are approximately 

2000 genes found in the human genome that have the potential to contain G-quadruplexes in 

the 5′ UTR which show an overrepresentation of G-quadruplex motifs at the 5′ end of the 5′ 

UTRs (Huppert et al., 2008). G-quadruplexes have been identified in the promoter regions of 

genes such as the chicken ß-Globin, the human BCL-2, the human VEGF, HIF-1R and the 

oncogenes c-myc and c-kit (Howell et al., 1995; Dai et al., 2006; Sun et al., 2005; de Armond 

et al., 2005; Siddiqui-Jain et al., 2002; Rankin et al., 2005). Both oncogenes have been shown 

to control the activity of transcription. It is possible that G-quadruplexes may form within the 

OCT2 promoter region. The formation of these G-quadruplexes could subsequently alter the 

level of transcription regulation as shown in Figure 4. 

 

                

Figure 4: A schematic diagram showing transcription regulation via formation of a G-

quadruplex in the promoter region of a gene. (Huppert & Balasubramanian, 2007). 
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Since G-quadruplexes can play such an important role in the genome it is very important to 

accurately predict the formation and location of G-quadruplexes in order to study their 

biological functions. If SNPs are identified within a G-quadruplex-forming sequence, it may 

disrupt the formation of the G-quadruplex structure in a gene and consequently affect its 

regulation of transcription or translation. Prediction of G-quadruplexes can be identified using 

software programs, such as QGRS Mapper, but since G-quadruplexes have only recently 

become a hot topic in research there are few resources available for one to use. QGRS Mapper 

can analyse both genomic and RNA sequences and uses a specific algorithm search sequence: 

Gx-Ny1-Gx-Ny2-Gx- Ny3-Gx, where x is ≥ 2 and corresponds to the number of guanine tetrads in 

the G-quadruplex; y1-y3 corresponds to the length of the loops connecting the guanine tetrads 

and N corresponds to any of the five bases (adenine, guanine, cytosine, thymine and uracil) 

(Kikin, D'Antonio & Bagga, 2006). 

 

1.6  African genetic diversity 

Due to the high level of genetic diversity within the African continent, there has been a 

continuous increase in research in this area (Tishkoff et al., 2009; Ramsay, 2012). The genetic 

diversity among the African populations is greater when compared to other populations such as 

the Caucasians or Asians (Rosenberg et al., 2002) and this diversity found among the African 

populations has been poorly studied in the past (Hardy et al., 2008; Tishkoff et al., 2009).  

 

Recent large-scale genome sequencing projects are gradually bridging this gap and providing a 

more comprehensive view of the African genomic diversity. The 1000 Genomes Project 

contains whole genome sequence data for more than 500 individuals from five African 

populations: Esan in Nigeria; Luhya in Webuye, Kenya; Gambian in Western Division, The 

Gambia; Mende in Sierra Leone and Yoruba in Ibadan, Nigeria (1000 Genome Project 

Consortium, 2015). In addition, it includes more than 150 genomes from two populations with 

African ancestry: Africans from southwest United States and Caribbean population in 

Barbados (1000 Genome Project Consortium, 2015). More information on these populations is 

shown in Table 5. Similarly, the African Genome Variation Project has generated 300 whole 

genome sequences from Eastern and Southern African populations (Gurdasani et al., 2014). 

More such data are expected from ongoing projects like the Southern African Human Genome 

Programme (Pepper, 2011), the H3Africa Project (http://h3africa.org/), and the TrypanoGEN 

study (http://www.trypanogen.net/).  These datasets are providing us with the opportunity to 
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estimate and compare genetic variation among African populations and to also study genomic 

regions of functional significance with greater precision. 

 

The southern Africa region (according to the United Nations Geoscheme) constitutes five 

countries: Botswana, Lesotho, Namibia, Swaziland and South Africa 

(http://millenniumindicators.un.org/unsd/methods/m49/m49regin.htm - accessed 17/08/2016). 

This region is the home to a predominant number of Bantu-speakers that expanded southwards 

from Nigeria and Cameroon nearly 5000 years ago (Blench, 2006; Campbell & Tishkoff, 

2010), reaching South Africa about 1500 years ago (Ehret, 1998).  

 

Statistics South Africa (Stats SA) estimates that the mid-year population of South Africa for 

2015 was nearly 55 million, where more than 44 million people (80.5 %) are from the African 

population; more than 4.8 million (8.8 %)  from the coloured population; more than 4.5 million 

(8.3 %) from the white population; and more than 1.3 million (2.4 %) from the Indian/Asian 

population (https://www.statssa.gov.za/ publications/P0302/P03022015.pdf -  accessed 

04/02/2016). The African Bantu-speaking population was the main focus of this study, and it 

includes the following ethnic groups: Zulu, Xhosa, Sotho, Venda, Tswana, Tsonga, Swazi and 

Ndebele. SNPs in the OCT2 gene promoter region have yet to be characterised well in the 

southern African populations to date and were therefore the main focus of this study. 

 

1.7  SNPs identified within the OCT2 promoter region in the South African black  

        population 

A preliminary study conducted in our laboratory identified three heterozygous SNPs within the 

OCT2 promoter region from sequencing of just 10 DNA samples (from South African black 

individuals). One SNP was found in the 5′ flanking sequence (−289 G/A) and two SNPs were 

found in the 5′ untranslated region (UTR) (−246 C/T and −195 G/A). The location of each SNP 

with regards to the transcription factor binding region of the OCT2 promoter region is shown in 

Figure 5.  

 

According to the Ensembl genome browser (GRCh38.p5) the OCT2 promoter region has 33         

5′ UTR variants of which 30 are classified as SNPs and there are 291 upstream gene variants of 

which 275 are SNPs (Yates et al., 2015). The study presented here involved investigating a 

longer OCT2 promoter region since data from Ensembl showed a great number of potentially 

https://www.statssa.gov.za/
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significant SNPs located further upstream from the transcription factor binding region of the 

OCT2 promoter. Therefore the genomic DNA from the 10 black South African individuals 

used in the preliminary study were sequenced again in this study to not only confirm the 

presence of the three SNPs already identified, but to also look for any new or novel SNPs 

within the expanded OCT2 promoter region. 

 

 -799  tctaggacacaaagatagtggcttggacacacctgcctgcatttacacttgacctgtctg        

 -739  cgacgtaaacactttcctctttccctccagatgggttaaggggaaggacacttcagggtt        

 -679  gaaacgcaggaataccagattggagcaaacactttttaaaagcagagttataaaatctgg        

 -619  acaacatcaaaacaagcagccccagcatgcatcccgacggctcttgttgttggttggaga        

 -559  atgagcccagcagtcaggcttgcaacccacttcgaatctggaccagggttctgacacgga        

 -499  tcctggttcacatcacgctgggccttgtggccaaacacgtgtgttttctccatagggcct        

 -439  tgaagaaaagctggcggtgcgcatgagataggagtatattaagttcctggctgctcgggg        

 -379  cactacgggaagattactgggctgtgatatgggccagcactcagattccctgcggtggga        

 -319  cacagagggcgggttgtttgtgctgctggcgtggagcaccgacaagcctgtggagaacca 

 -259  GTTATAATAAACACGACAGGCATCCTGGGAGTGAGCTCAGGGCATTTGGGAAGTGCAGAA        

 -199  GGACATGCACCCCCGCTGGAGGGGTGCACCTTTGAAGTCAGCTGGACCAAGGAAAGGCCC        

 -139  TGCCCTGAAGGCTGGTCACTTGCAGAGGTAAACTCCCCTCTTTGACTTCTGGCCAGGGTT        

  -79  TGTGCTGAGCTGGCTGCAGCCGCTCTCAGCCTCGCTCCGGGCACGTCGGGCAGCCTCGGG        

  -19  CCCTCCTGCCTGCAGGATCATGCCCACCACCGTGGACGATGTCCTGGAGCATGGAGGGGA 

 

              KEY: 
Primers    E-box        Translation start site   5′ Flanking sequence 

CCAAT box    SNPs         Translated sequence   5′ UTR  
 

 

Figure 5: The various elements located within the OCT2 gene sequence. The primers 

highlighted in yellow amplified a 693 bp product of the OCT2 promoter region. The bold and 

underlined text represents the transcription factor binding region of the OCT2 promoter region 

spanning from −483 to −435. The three SNPs highlighted in blue are those identified in the 

preliminary study at positions −289, −246 and −195, respectively. Numbering is relative to the 

translation start site. This sequence is located on the reverse strand. 

 

 

 

 

http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs139039970;vf=30419151
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs200254093;vf=54672028
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs267600884;vf=56715753
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1.8  In summary 

To date there is little information available regarding SNPs in the OCT2 gene and the effect of 

these SNPs on OCT2 gene expression in the South African population. Thus, the intention of 

this study was to identify these SNPs and determine the effect that they may have on OCT2 

gene expression. This was done by sequencing the promoter region of 10 DNA samples from 

the South African black population and using the luciferase reporter system to determine their 

effects on gene expression. Furthermore, data for the OCT2 promoter and coding regions was 

extracted from various South African sequencing studies that focused on the Bantu-speaking 

population. These results were compared to other African and non-African populations. 

Bioinformatic tools were then used to analyse the various SNPs identified, as well as to predict 

transcription factor binding sites and G-quadruplex formation in the OCT2 promoter region 

where SNPs were identified in order to determine whether the SNPs may impact OCT2 gene 

regulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

2.  AIM AND OBJECTIVES 

Aim 

To identify, functionally characterise and analyse SNPs located within the OCT2 gene in the 

South African black population. 

 

Objectives 

2.1   SNP identification and functional analysis 

   2.1.1   To sequence and identify SNPs within the OCT2 promoter region from 10 genomic   

              DNA samples. 

   2.1.2   To functionally characterise each SNP found within the 10 genomic DNA samples    

               using the luciferase reporter assay. 

 

2.2   Bioinformatic analysis 

   2.2.1   To identify SNPs found within the OCT2 promoter and coding regions.  

   2.2.2   To predict transcription factor binding sites within the OCT2 promoter region. 

   2.2.3   To predict the formation of G-quadruplexes within the OCT2 promoter region. 
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3.  MATERIALS AND METHODS 

 

The recipes for all the reagents used in this study can be found in Appendix A. 

 

3.1  SNP identification and functional analysis 

 

3.1.1   Subjects 

Genomic DNA that was extracted from blood samples of 10 unrelated black South Africans 

was donated by the National Health Laboratory Service (NHLS) for use in this study. The 

Human Research Ethics Committee of the University of the Witwatersrand approved this study 

(clearance certificate numbers: M10745 and M120640). 

 

3.1.2   Primer design  

Primers were designed to amplify across the OCT2 gene promoter and were checked for non-

target binding to other regions in the genome using the UCSC In-Silico PCR genome browser 

available at: https://genome.ucsc.edu/cgi-bin/hgPcr (Kent et al., 2002). Primer set one, 

designed with the aid of the OligoAnalyzer 3.1 tool from Integrated DNA Technologies, 

targeted a larger region of the OCT2 promoter compared to the preliminary study, which 

isolated a smaller region of the OCT2 promoter. The larger OCT2 promoter region was 

amplified from all human samples 1−10 (HS1−10). The promoter region was extended because 

the Ensembl genome browser showed a great number of SNPs upstream of the transcription 

factor binding region of the OCT2 promoter and these may have significance for OCT2 

expression.  

 

Primer set two was designed to incorporate two different restriction enzyme sites onto the 5′ 

ends of the primers in order to clone the OCT2 promoter region into a pGL4.10 luciferase 

reporter vector. The forward primer was designed to contain the NheI restriction site and the 

reverse primer was designed to contain the EcoRV (Eco321) restriction site. The NEBcutter 

V2.0 program was used to ensure that these two restriction sites were not present in the OCT2 

sequence amplified. Both PCR primer sets, listed in Table 2, were designed with similar GC 

contents and melting temperatures and were synthesised by Inqaba Biotechnical Industries 

(Pty) Ltd, South Africa. 
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Table 2: The different primer sets used to target the OCT2 promoter region. 

FWD: Forward, REV: Reverse.  

OCT2pFWD2 and OCT2pREV2 = Primer set one with an amplicon size of 1698 bp. 

OCT2FNhe and OCT2REco = Primer set two with an amplicon size of 1718 bp. 

The underlined region is the recognition site for the respective restriction enzymes used. 

 

 

3.1.3   DNA extraction  

Primers were optimised on genomic DNA that was isolated from Human Embryonic Kidney 

(HEK293) cells using the phenol-chloroform DNA extraction protocol. HEK293 cells were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM):F12 in the ratio 3:1 with 10 % fetal 

bovine serum (FBS) at 37 °C in a humidified atmosphere. A confluent 100 mm dish of 

HEK293 cells was washed three times with 10 ml of cold 1 x PBS. The cells were scraped in   

4 ml of cold 1 x PBS and 1 ml transferred into four 1.5 ml microfuge tubes. The cells were 

centrifuged at 5 000 rpm for 5 min at 4 °C to pellet the cells and the PBS was removed from all 

four tubes. The cell pellet from one tube was re-suspended in 50 µl of cold 1 x PBS and the 

three remaining tubes were stored at −70 °C for future use. The cells were lysed and the RNA 

was removed by adding 450 μl of genomic DNA lysis buffer together with 1 μl of 10 mg/ml 

stock RNase A (20 µg/ml final concentration) and this was incubated for 1 h at 37 °C in a 

water-bath. The protein was removed by adding 2.37 µl of 21.2 mg/ml stock Proteinase-K   

(100 µg/ml final concentration) and incubated at 50 °C in a water-bath for a further 2 h with 

swirling every 20 min. Half the volume of buffered phenol was added to the tube, vortexed for 

3 s, then half the volume of chloroform: isoamyl alcohol (24:1) added, vortexed for 3 s and 

then this was centrifuged at 13 000 rpm for 25 min at RT. The upper aqueous phase was 

carefully removed and placed into a new tube and the previous step repeated on the aqueous 

phase. The new upper aqueous phase was transferred into a clean 1.5 ml microfuge tube and an 

equal volume of chloroform: isoamyl alcohol (24:1) was added, vortexed for 3 s and 

centrifuged at 13 000 rpm for 25 min at 4 °C. This step was repeated on the new upper aqueous 

phase in a clean 1.5 ml microfuge tube. A 0.1 volume of 3 M sodium acetate and 2 volumes of 

Primer name Sequence (5′ to 3′) Tm 

(°C) 

GC content 

(%) 

Length 

(bp) 

OCT2pFWD2 CCC CTG ATG TGT GAG AGC AG 64.50 60.00 20 

OCT2pREV2 CGT AGC GCC TAC ACT GTC TTG 64.52 57.14 21 

OCT2FNhe ATA AGC TAG CCC CCT GAT GTG 

TGA GAG CAG 

70.10 53.33 30 

OCT2REco GAG CGA TAT CCG TAG CGC CTA 

CAC TGT CTT G 

71.25 54.84 31 
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100 % ethanol was added to the final aqueous phase and the tube inverted 10 times to mix and 

then allowed to stand overnight at −20 °C. The DNA was collected into a pellet by 

centrifugation at 13 000 rpm for 15 min at 4 °C. The DNA pellet was then washed twice with 

70 % ethanol and collected by centrifugation at 13 000 rpm for 5 min at 4 °C. Excess ethanol 

was discarded and the pellet was air dried. The DNA pellet was re-suspended in 50 µl of 

autoclaved Milli-Q water. The quality and the yield of the DNA isolated was determined using 

a NanoDrop 1000 spectrophotometer and then DNA was stored at −20 °C. DNA was also 

resolved on a 1 % (Tris-Acetate-EDTA (TAE) buffer) agarose gel stained with 1 µl of 10 

mg/ml stock ethidium bromide (200 ng/ml final concentration) to look at integrity. 

 

3.1.4   Polymerase chain reaction (PCR)  

The primer sets were first tested on HEK293 genomic DNA using KAPA Thermus aquaticus 

(Taq) DNA polymerase from KAPA Biosystems in order to prevent wastage of the valuable 

human DNA samples and then optimised using KAPA high-fidelity (HiFi) DNA polymerase 

from KAPA Biosystems. KAPA HiFi DNA polymerase was preferred for amplifying OCT2 

from the genomic DNA from HS1−10 because it has a 3′→5′ exonuclease (proofreading) 

activity which KAPA Taq does not, and as such offers error rates approximately 100 times 

lower than Taq DNA polymerase. 

 

3.1.4.1  KAPA Taq DNA polymerase:  

The PCR reactions were performed in a 20 µl volume, containing 75−200 ng of genomic 

DNA, 1 x KAPA Taq ReadyMix and 0.4 µM of each primer. Cycling consisted of an initial     

2 min activation step at 95 °C, followed by a total of 35 cycles using the following conditions:  

95 °C denaturation for 30 s, primer annealing at 60 °C (primer set one) or 65 °C (primer set 

two) for 30 s, and primer extension at 72 °C for 2 min, and 2 min of final extension at 72 °C 

and a 4 °C holding step.  

 

3.1.4.2  KAPA HiFi DNA polymerase:  

The PCR reactions were performed in a 20 µl volume, containing 75 ng of genomic DNA from 

HS1−10, 1 x KAPA HiFi HotStart ReadyMix and 0.3 µM of each primer. Cycling consisted of 

an initial 3 min activation step at 95 °C, followed by a total of 30 cycles using the following 

conditions:  98 °C denaturation for 20 s, primer annealing at 62 °C (primer set one) or 72 °C 

(primer set two) for 15 s, and primer extension at 72 °C for 1 min 30 s, and 1 min 30 s of final 

extension at 72 °C and a 4 °C holding step.  
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In each PCR reaction a negative control, which contained no template DNA, was used to detect 

any possible non-specific amplification and contamination. All of the HS1−10 PCR products 

were separated by 1 % agarose gels (prepared as previously described) and consequently 

purified using the Thermo Scientific™ GeneJET PCR purification kit to remove any primers, 

dNTPs, unincorporated labelled nucleotides, enzymes and salts, prior to downstream uses. 

 

3.1.5   Preparation of chemically-competent cells 

Chemically-competent cells were made using ampicillin sensitive Escherichia coli (E. coli) 

JM109 bacteria because E. coli can be easily manipulated and are easy to grow in the 

laboratory. An E. coli colony was grown in 5 ml LB broth overnight at 37 °C with shaking at 

180 rpm. This 5 ml was then added to a 250 ml Erlenmeyer flask containing 50 ml LB broth 

and incubated at 37 °C with shaking at 180 rpm until an absorbance reading of 0.5−0.6 was 

observed on the NanoDrop 1000 spectrophotometer. All steps were performed on ice from this 

point onward. 15 ml of LB broth containing the bacteria was poured into a 50 ml tube and 

centrifuged at 3000 rpm (1630 g with swing-out rotor at 162 mm) for 5 min at 4 °C. The 

supernatant was discarded and another 15 ml was added and repeated as before. This was done 

until all the LB broth containing the bacteria was used. The bacterial pellet was resuspended 

gently in 15 ml of ice cold 0.1 M MgCl2 and incubated on ice for 30 min. The tube was then 

centrifuged for 5 min at 4 °C at 1630 g. The supernatant was discarded and the pellet was 

resuspended in 2 ml of 0.1 M CaCl2 with 15 % glycerol. The chemically-competent bacteria 

were aliquoted into pre-chilled 1.5 ml microfuge tubes and stored at −70 °C.  

 

3.1.6   Cloning of the OCT2 promoter into the pGL4.10 vector  

3.1.6.1   Preparing the pGL4.10[luc2] Vector 

The pGL4 Luciferase Reporter Vectors can provide a mechanism for evaluating regulation of 

mammalian gene expression. In this study the pGL4.10[luc2] Vector, as shown in Figure 6, 

was used. It encodes the luciferase reporter gene luc2 (Photinus pyralis) and is intended for 

high expression and reduced incongruous transcription. This vector contains an ampicillin 

resistance gene which acts as a selectable marker. It does not contain a promoter but it contains 

a multiple cloning region to allow for the cloning of a promoter of choice, in this study it will 

be the OCT2 promoter. This vector was chosen because it will allow for the functional 

characterisation of the SNP samples using the luciferase assay and therefore give an indication 

if SNPs found within the OCT2 promoter region affect the ability of the promoter to drive gene 

expression. 
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Figure 6: Features list and map for the pGL4.10[luc2] Vector 

 

A basic transformation protocol was followed as per the instructions provided with the KAPA 

Rapid Ligation System where 10 ng of the pGL4.10 vector DNA was transformed into 50 µl of 

competent cells. Briefly, 5µl of the DNA was incubated with the competent cells for 30 min on 

ice, followed by heat shock at 42 °C for 90 s, followed by an additional 2 min incubation on 

ice. Cells were then incubated at 37 °C on a shaker at 180 rpm for 1 h and then plated onto LB 

agar plates containing 100 µg/ml of ampicillin and left at 37 °C overnight. A negative control 

containing no DNA was used to detect any possible contamination and show that the E.coli are 

susceptible to the ampicillin. The next day, a colony was then picked, added to 3 ml of LB 

broth containing 100 µg/ml of ampicillin and incubated at 37 °C overnight on a shaker at 180 

rpm. The vector DNA was then isolated using the Zyppy™ plasmid miniprep kit (Zymo 

Research Inc) according to the manufacturer’s instructions to ensure that the pGL4.10 plasmid 

DNA was separated from E. coli DNA. The quality and the yield of the vector DNA isolated 

was checked using a NanoDrop 1000 spectrophotometer and then stored at −20 °C. The DNA 

was also resolved on a 1 % agarose gel and prepared as previously described. 
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3.1.6.2   Digestion of the pGL4.10 vector and the PCR products  

The purified pGL4.10 vector and the purified HS1−10 PCR products were digested using the 

NheI and EcoRV restriction endonucleases (Thermo Scientific™) so that the PCR products can 

be ligated and cloned into the pGL4.10 vector. NheI produces a sticky-end (G/CTAGC) DNA 

fragment while EcoRV produces a blunt-end (GAT/ATC) DNA fragment, thereby allowing for 

directional cloning. 

 

A single digestion of the purified pGL4.10 vector was first performed with each enzyme to 

ensure that the enzymes were in working order. A negative control containing no DNA was 

used to detect any contamination. 1 µl of either enzyme was used to restrict 1 µg of pGL4.10 

vector DNA in the buffer supplied with the enzyme. Once it was confirmed that the enzymes 

were working a double digestion was done on the pGL4.10 vector and the HS1−10 PCR 

products. 1 µl of both enzymes were used with 1 µg of pGL4.10 vector DNA or 1 µg of 

HS1−10 PCR product. Each tube was mixed gently, very briefly centrifuged and then 

incubated at 37 °C for 16 h. NheI was inactivated at 65 °C for 20 min and EcoRV was 

inactivated at 80 °C for 20 min. The digested samples were then separated by 1 % agarose gels 

prepared as previously described. 

 

The double-digested pGL4.10 vector DNA and HS1−10 PCR products were all purified using 

the Thermo Scientific™ GeneJET PCR purification kit according to the manufacturer’s 

instructions. The DNA samples were eluted in 30 µl of elution buffer and quantified using a 

NanoDrop 1000 spectrophotometer. 

 

3.1.6.3   Ligation 

The Thermo Scientific™ T4 DNA ligation protocol was followed where a 3:1 molar ratio of 

double-digested insert DNA (HS1−10) to double-digested vector DNA was used in a 20 µl 

reaction, and this was calculated to give 60.75 ng of insert DNA and 50 ng of vector DNA. A 

negative control containing only digested vector DNA was used to determine if there was any 

re-ligation of the vector or if any undigested vector remained following the restriction digest. 

Each sample was vortexed and centrifuged briefly before being incubated at 22 °C for 2 h and 

then left overnight at 4 °C for ligation of DNA to proceed. The OCT2 promoter from HS1−10 

was therefore ligated into the pGL4.10 vector and hence pGL4.10-OCT2 promoter 

recombinant vectors were created. 
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3.1.7   Transformation  

The basic transformation protocol was followed as per the KAPA rapid ligation system where 

5 µl of ligation mix was transformed into 50 µl of E. coli chemically-competent cells. The 

pGL4.10-OCT2 promoter recombinant vector as well as the negative control which contained 

no insert DNA was transformed into E.coli as previously described. A positive control, which 

contained 3 ng of undigested pGL4.10 vector and a negative control which contained only 

competent cells, were also included. These controls were used to ensure that the competent 

cells were still viable, no contamination had occurred and that cells were still susceptible to 

ampicillin. The antibiotic ampicillin was added to the LB agar plates to select only for E. coli 

cells that had been transformed with the pGL4.10 vectors.   

 

3.1.8    Isolating the pGL4.10-OCT2 promoter 

3.1.8.1   Colony PCR 

A colony PCR for each HS1−10 was done to determine which E. coli cells had been 

transformed with the pGL4.10-OCT2 promoter recombinant vectors and which cells had been 

transformed with the empty pGL4.10 vector. This involved selecting a colony from the plate 

and culturing it in 50 µl of LB broth with ampicillin at 37 °C for 1 h. 2 µl were then used in a 

colony PCR.  A third primer set, listed in Table 3, was designed to bind to either side of the 

multiple cloning region of the pGL4.10 vector. These primers were used for each colony PCR. 

If the vector was empty then the PCR would amplify a region of 243 bp. If the vector contained 

the OCT2 promoter DNA insert then the PCR would amplify a region of 243 bp plus the size 

of the OCT2 promoter fragment. Therefore since primer set two yielded a 1718 bp PCR 

product, a colony PCR should show a size of 1961 bp on the agarose gel. Multiple colonies per 

human DNA sample were analysed by colony PCR. 

 

The colony PCR reactions were performed in a 20 µl volume, containing 2 µl of the colony 

grown in 50 µl of LB broth for 1 h at 37 °C, 1 x KAPA Taq ReadyMix and 0.4 µM of each 

primer from primer set three. Cycling consisted of an initial 2 min activation step at 95 °C, 

followed by a total of 25 cycles using the following conditions:  95 °C denaturation for 30 s, 

primer annealing at 57 °C (primer set three), and primer extension at 72 °C for 2 min, and        

2 min of final extension at 72 °C and a 4 °C holding step. These were then resolved on 1% 

agarose gels prepared as previously described to identify which colonies contained the 

recombinant vectors. 
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Table 3: Primer set three used for a colony PCR. 

FWD: Forward, REV: Reverse.  

pGL4.10 FWD and pGL4.10 REV = Primer set three with an amplicon size of 1961 bp if the OCT2 promoter 

insert is present or 243 bp if it is not present. 

 

3.1.8.2   pGL4.10-OCT2 promoter isolation 

The pGL4.10 vectors which contained the OCT2 promoter DNA insert from HS1−10 were 

isolated using the alkaline lysis treatment method in order to separate the vector DNA from    

E. coli DNA. 

 

After identification of the colonies of interest by PCR, the remainder of 50 µl was used to 

inoculate 3 ml of LB broth containing 100 µg/ml of ampicillin and incubated at 37 °C 

overnight on a shaker at 180 rpm. The next day the bacteria was harvested by centrifuging 2 ml 

of the bacterial culture in a clean 2 ml microfuge tube at 12 000 rpm for 1 min. The remaining 

1 ml was made into a glycerol stock. After centrifugation, the supernatant was discarded and 

the bacterial pellet was resuspended and vortexed in 110 µl of 25 mM Tris-HCl (pH 8.0) and 

10 mM EDTA, to which 100 µl of 0.4 M NaOH and 2 % SDS was added and mixed gently by 

inverting a couple of times at RT. 120 µl of cold 5 M potassium acetate (pH 5.5) was added 

and mixed thoroughly by inverting. This mixture was then incubated at RT for 3 min and then 

centrifuged at 12 000 rpm for 4 min. The supernatant was transferred into a new 1.5 ml 

microfuge tube and 200 µl of isopropanol was added and mixed thoroughly by inverting a 

couple of times. The mixture was then incubated at RT for 1 min and then centrifuged at        

13 000 rpm for 1 min. The isopropanol was then removed from the DNA pellet that remained 

behind and 500 µl of cold 70 % ethanol was added and mixed by inverting a couple of times. 

This mixture was then centrifuged at 13 000 rpm for 1 min, the excess ethanol was discarded 

and the DNA pellet air dried for 10 min to evaporate any residual ethanol. The DNA pellet was 

re-suspended in 50 µl of autoclaved Milli-Q water and the quality and the yield of the DNA 

isolated were checked using a NanoDrop 1000 spectrophotometer. The DNA was then resolved 

on a 1 % agarose gel, prepared as previously described, and DNA stored at −20 °C. The 

purified vector for each HS1−10 was sent for sequencing. 

 

Primer name Sequence (5′ to 3′) Tm 

(°C) 

GC content 

(%) 

Length 

(bp) 

pGL4.10 FWD CTA GCA AAA TAG GCT GTC CC 60.40 50.00 20 

pGL4.10 REV TTC ATG GCT TTG TGC AGC T 58.01 47.37 19 
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3.1.9   Sequencing and data analysis 

The OCT2 promoter within the pGL4.10 vector for each HS1−10 was sequenced at Inqaba 

Biotechnical Industries (Pty) Ltd. The Sanger DNA sequencing method was performed on 

these samples using the BigDye® Terminator v3.1 Cycle Sequencing on an ABI 3500XL 

sequencer. The sequencing used the pGL4.10FWD (listed in Table 3) and OCT2pREV2 (listed 

in Table 2) primers and the results returned were analysed using the FinchTV software. SNPs 

in the OCT2 promoter region were identified and the SNPs identified in the preliminary study 

were confirmed. The identification of SNPs was done through a multiple sequence alignment 

(MSA) on Clustal Omega available at: https://www.ebi.ac.uk/Tools/msa/clustalo/ where a 

comparison was made to the WT OCT2 sequence that was obtained through the Ensembl 

database (Yates et al., 2015). Since the SNPs identified in the preliminary study were 

heterozygous, either the WT or the mutant strand could be cloned into the vector. For HS7 and 

HS9 the cloning of the WT occurred and therefore a site-directed mutagenesis was performed 

on these two samples to introduce the SNP of interest. For all other SNP containing samples, 

the SNP-containing allele was successfully cloned into the pGL4.10 vector.   

 

3.1.10   Site-directed mutagenesis 

Site-directed mutagenesis was performed on a pGL4.10 vector that contained the WT OCT2 

promoter, in order to introduce the SNP of interest as found in the HS7 and HS9 samples. 

Primers, listed in Table 4, were designed directly adjacent to each other on opposite strands of 

the vector DNA so that the entire plasmid of nearly 6 kb could be amplified. The forward 

primer was designed to include the SNP of interest, which was introduced at the 5′ end of the 

primer by substitution of the WT nucleotide for the mutant nucleotide. Site-directed 

mutagenesis was followed as per the instructions on the KAPA HiFi DNA polymerase site-

directed mutagenesis protocol. 

 

Briefly, primers were first 5′ phosphorylated using T4 polynucleotide kinase (New England 

Biolabs (NEB)) to allow for subsequent ligation of the PCR products following amplification. 

The PCR amplification generates large numbers of linear duplex molecules, which 

significantly outnumber the original WT template. The mutagenesis PCR reactions were 

performed in a 50 µl volume, containing 1 ng of the vector containing the WT OCT2 promoter 

DNA insert, 1 x KAPA HiFi HotStart ReadyMix and 0.3 µM of each primer. PCR mixtures 

consisting of only the primers and nuclease free water were incubated at 95 °C for 10 min to 

melt any secondary structures that may form between the primers. Cycling consisted of an 

initial 3 min activation step at 95 °C, followed by a total of 16 cycles using the following 
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conditions: 98 °C denaturation for 20 s, primer annealing at 66 °C for HS7 and 65 °C for HS9 

for 15 s, and primer extension at 72 °C for 3 min, and 5 min of final extension at 72 °C and a   

4 °C holding step. A negative control without KAPA HiFi DNA polymerase was included to 

detect whether there was any parental DNA that was carried over to the next step. All of the 

PCR products were separated by 1 % agarose gels, prepared as previously described. The 

residual methylated template and any hemi-methylated DNA was digested using the 

methylation-specific DpnI restriction endonuclease (NEB). T4 DNA ligase (Thermo 

Scientific™) was then used to circularise the linear mutated DNA and then the ligation mixture 

was used to transform competent  E. coli cells. A colony PCR was then performed using 

primer set three (listed in Table 3) where multiple colonies from the mutated HS7 and HS9 

DNA samples were analysed. Colonies with positive bands of 5960 bp were incubated 

overnight at 37 °C in LB broth containing 100 µg/ml of ampicillin. Alkaline lysis was 

performed and the OCT2 promoter within the vector was sequenced at Inqaba Biotechnical 

Industries (Pty) Ltd using the pGL4.10FWD (Table 3) and OCT2pREV2 (Table 2) primers. 

The SNPs of interest were confirmed through the analysis of the sequences. We successfully 

incorporated the SNPs found in HS7 and HS9, however, unfortunately, despite many attempts 

including temperature modifications and primer optimisation for HS7, a secondary mutation 

occurred at the beginning of where the forward primer binds. Therefore we were unable to 

functionally characterise the SNP identified in this sample. 

 

Table 4: The different primers designed for site-directed mutagenesis. 

FWD: Forward, REV: Reverse  

The underlined nucleotide is the mutant nucleotide that was substituted into the sample. 

 

3.1.11   Functional characterisation of each SNP using the luciferase reporter assay 

3.1.11.1   Luciferase activity measurement  

The luciferase reporter assay was employed in the Medical Research Council cell strain 5 

(MRC-5), a human fetal lung fibroblast cell line that is easily transfectable. This cell line was 

maintained in a humidified atmosphere of 5 % CO2 and 95 % air at 37 °C and cultured in 

Primer 

name 

Sequence (5′ to 3′) Tm 

(°C) 

GC content 

(%) 

Length 

(bp) 

HS7FWD ATA AAC ATG ACA GGC ATC CTG GG 62.77 47.83 23 

HS7REV TAT AAC TGG TTC TCC ACA GGC TTG 62.86 45.83 24 

HS9FWD AGA AGG ACG TGC ACC CCC G 66.64 68.42 19 

HS9REV GCA CTT CCC AAA TGC CCT GAG CTC 67.98 58.33 24 
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DMEM supplemented with 10 % FBS with a 1 % penicillin-streptomycin antibiotic. After the 

culture had reached 70 % confluence, the cells were trypsinised and seeded onto 96-well 

culture plates at a density of 12 000 cells per well. After 24 h when the wells had reached 

approximately 80 % confluency, 200 ng of the vectors containing the different SNPs, were 

transfected into the MRC-5 cells in quadruplicate using the Turbofect transfection reagent by 

Thermo Scientific™. An empty (promoterless) pGL4.10 vector was used as a negative control. 

After transfection, the cells were incubated for 24 h at 37 °C. After 24 h the cell culture plates 

were left to stand at RT for 15 min and then the luciferase assay was performed by adding 100 

µl of the Steady Glo® luciferase assay substrate (Promega) to each well. After 5 min at RT the 

samples in each well were transferred onto a 96-well white plate. The luciferase activity, in the 

form of light, was measured three times using the Glomax 96 microplate luminometer 

(Promega) to ensure accuracy and validity. The expression of luciferase was determined for 

each vector and these were compared to the WT OCT2 promoter. Statistical significance was 

analysed using a paired t-test and p < 0.05 was considered to be statistically significant. 

Therefore, the effect that these SNPs may have on OCT2 gene expression in the South African 

black population can be inferred from these results. 

 

3.2   Bioinformatic analysis           

3.2.1   Identification of SNPs within the OCT2 promoter and coding regions 

SNPs were identified within the OCT2 promoter and coding regions in various studies, as listed 

in Table 5, and compared to data obtained from the 1000 Genomes Project. These studies were 

conducted on individuals within the South African black population and can also be classified 

as Bantu-speaker individuals. Where the ethnic group of the individuals in the studies was 

known it has been stated. The different ethnic groups included Zulu, Sotho and Xhosa. SNPs 

were analysed using various bioinformatic tools available online. 

 

With the assistance of my co-supervisor, Dr Ananyo Choudhury, data from studies which have 

not been made available to the public as yet, and included individuals from different ethnic 

groups within the South African black population, were made available for use in this study. 

These studies included data from 40 Bantu-speaking individuals (Carstens, N., et al. 2016, 

personal communication) and 15 Xhosa, Zulu and Sotho individuals (Ramsay, M., et al. 2016, 

personal communication). Data which included sequencing the whole genomes of 100 Zulu 

individuals (Gurdasani et al., 2014) has been published, however the three studies do not 
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specifically analyse the OCT2 gene. Raw data in various file formats that was specific to the 

chromosome locations of the OCT2 gene promoter and coding regions was made available for 

analysis. The information in the files was combined into one and analysed using bioinformatic 

tools that are available online. These tools included the wANNOVAR tool available at: 

http://wannovar.usc.edu/ (Wang, Li & Hakonarson, 2010; Chang & Wang, 2012), the Ensembl 

Genome Browser available at: http://www.ensembl.org/, and the National Center for 

Biotechnology Information (NCBI) dbSNP database available at: 

http://www.ncbi.nlm.nih.gov/projects/SNP/. SNPs were identified through the results obtained 

and these were summarised in tables listed in the results section. A study by Jacobs et al. had 

already identified SNPs in 96 Xhosa individuals within the OCT2 gene, so therefore this data 

was added to the tables with the results from the other studies (Jacobs et al., 2015). 

 

The OCT2 promoter region analysis compared minor allele frequencies (MAF) values from the 

SNPs identified in the four studies mentioned as well as from this study of the 10 South 

African black individuals. The OCT2 coding region only compared MAF values from the 

SNPs identified in the four studies since this study did not sequence the OCT2 coding regions. 

These MAF values from the different studies were then compared to the MAF values obtained 

from the 1000 Genomes Project, which included the African population and overall MAF 

values. The overall MAF values excluding the African population was calculated to determine 

the frequencies within the non-African populations (European, American, South Asian and 

East Asian). This allowed us to determine how similar or dissimilar the South African black 

population is in comparison to others. 
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Table 5: The studies used for the analysis and comparison of the SNPs identified in the 

OCT2 promoter and coding regions. 

Source 

 

Population Description n Type of 

sequencing 

Reference 

 

Present study 

South African 

black 

population 

 

South African 

 

10 

1700 bp 

Promoter 

(Sanger) 

 

 

Carstens and 

colleagues 

 

Bantu-

speaking 

 

South African 

 

40 

 

Exome 

(HC) 

Carstens et al., 2016 

(Personal 

communication) 
 

Ramsay and 

colleagues 

 

Xhosa, Zulu 

and Sotho 

 

South African 

 

15 

 

WGS 

(HC) 

Ramsay et al., 2016 

(Personal 

communication) 

Gurdasani and 

colleagues 

 

Zulu 

 

South African 

 

100 
WGS 

(LC) 

Gurdasani et al., 

2014 

 

Jacobs and 

colleagues 

 

Xhosa 

 

South African 

 

96 

500 bp 

Promoter 

and WGS 

(Sanger) 

 

Jacobs et al., 2015 

1000 Genomes 

Project – Phase 

3 

 

AFR 

 

African 

 

661 

 

WGS 

(LC) 

1000 Genomes 

Project Consortium, 

2015 

  

ACB 
African Caribbean in 

Barbados 

 

96 
  

  

ASW 
African Ancestry in 

Southwest US 

 

61 
  

 ESN Esan in Nigeria 99   

  

LWK 
Luhya in Webuye, 

Kenya 

 

99 
  

  

GWD 
Gambian in Western 

Division, The Gambia 

 

113 
  

  

MSL 
Mende in Sierra Leone  

85 
  

  

YRI 
Yoruba in Ibadan, 

Nigeria 

 

108 
  

 

n – number of subjects; WGS – Whole genome sequencing; LC – Low coverage; HC – High coverage. 

 

The possible effect of the OCT2 promoter SNPs on OCT2 regulation were predicted using the 

RegulomeDB database version 1.1. available at: http://www.regulomedb.org/ (Boyle et al., 

2012). This database uses a total of 962 experimental data sets from the ENCODE project, 

published literature, and public datasets, as well as manual annotations and computational 

predictions to annotate SNPs and identify their presumed regulatory potential in the human 

genome (Boyle et al., 2012). The SNPs we identified were submitted to the database, using the 

dbSNP IDs or the chromosome co-ordinates for novel SNPs. A RegulomeDB score ranking 

from 1 to 6 was given; the numbers represent the supporting datatypes, such as DNase 
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sensitivity and chromatin states, that the SNP has been identified to contain. The lower the 

score the higher the chance that there is a possible regulatory effect for that particular SNP. 

 

The amino acid substitution consequences for any missense SNPs identified within the OCT2 

coding region were predicted using the Variant Effect Predictor (VEP) tool available from 

Ensembl at: http://www.ensembl.org/Tools/VEP. The Sorting Intolerant From Tolerant (SIFT) 

and Polymorphism Phenotyping version 2 (PolyPhen-2) prediction scores from the VEP tool 

were noted and it was from these scores that the predicted consequence of each missense SNP 

was made. The SIFT program uses sequence homology to assign a score; scores less than 0.05 

are predicted to be damaging or deleterious and scores greater than 0.05 are predicted to be 

tolerated (Ng & Henikoff, 2003). The PolyPhen-2 tool uses protein structure to predict the 

consequence of each missense SNP where a score of 0 indicates that the SNP is probably 

damaging, 1 indicates possibly damaging, 2 indicates benign and 3 indicates unknown 

(Adzhubei et al., 2013). 

 

3.2.2   Prediction of transcription factor binding sites within the OCT2 promoter region 

The potential transcription factor binding sites within the OCT2 promoter were predicted using 

the ALGGEN PROMO program version 3.0.2 available at: http://alggen.lsi.upc.es/ 

cgibin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3 (Messeguer et al., 2002; Farré et al., 

2003). This program uses data from version 8.3 of the TRANSFAC database. Homo sapiens 

were chosen for the current factor species and the current site species. The WT or the mutant 

allele with a 15 bp flanking sequence added onto each side was submitted as the query 

sequence and a 5 % maximum matrix dissimilarity rate (95 % similarity rate) was used. Both 

the forward and reverse strands can be searched for matches although we submitted sequences 

that were on the reverse strand. This program allowed us to identify whether the putative 

transcription factor binding sites would be affected by the presence of SNPs or INDELs. 

              

3.2.3   Prediction of the formation of G-quadruplexes within the OCT2 promoter region   

G-quadruplex formation within the OCT2 promoter region was predicted using the QGRS 

Mapper software program available at: http://bioinformatics.ramapo.edu/QGRS/index.php 

(Kikin, D'Antonio & Bagga, 2006). The OCT2 promoter sequence with each SNP and INDEL 

separately was compared to the OCT2 promoter WT sequence to determine if there was a 

difference in the formation of G-quadruplexes. The default settings of this program were used 

for each SNP prediction: maximum QGRS length of 30, minimum G-Group size of 2, and the 
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loop size from 0 to 36. There was no information indicating which strand of DNA to use for 

the prediction so the reverse strand was used since the OCT2 transcript is found on this strand.  

 

4.  RESULTS 

4.1  SNP identification and functional analysis 

A genomic DNA extraction from HEK293 cells was carried out (Figure 7) because DNA was 

required to optimise the primers designed to amplify the OCT2 promoter region. A single high 

molecular weight band with no smearing of the DNA indicated that the DNA was intact and 

not fragmented or degraded. 

                                        MW         L1          

                                                         

              
Figure 7: Genomic DNA extractions from HEK293 cells. Molecular weight (MW) – 

GeneRuler™ 1kb DNA ladder; L1: 300 ng HEK293 genomic DNA. The single band found 

above 10 000 bp represents intact genomic DNA. A 1 % agarose gel electrophoresis is shown. 

 

Primer set one was optimised using KAPA HiFi DNA polymerase on HEK293 genomic DNA 

at annealing temperatures ranging from 60 – 64 °C as shown in Figure 8. Sharp bright bands 

were observed for all annealing temperatures at the expected size of 1698 bp indicating that the 

correct product was successfully amplified. It was decided that 62 °C would be the annealing 

temperature for amplifying the OCT2 promoter region in the human samples since non-specific 

amplication at approximately 500 bp was observed for 60 °C. Primer dimers were observed for 

all annealing temperatures and a therefore the Thermo Scientific™ GeneJET PCR purification 

kit was used in order to send a clean PCR product for sequencing (Figure 9).          

 1000  

 3000  

 10 000  

 250  

 bp 
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     MW      60 °C     62 °C      64 °C        

                                             

 

Figure 8: Primer set one optimisation on HEK293 genomic DNA. The 1698 bp OCT2 

promoter region was amplified at various annealing temperatures ranging from 60 – 64 °C.      

75 ng of genomic DNA was used in each reaction using KAPA HiFi DNA polymerase. A 1 % 

agarose gel electrophoresis is shown. Molecular weight (MW) – GeneRuler™ 1kb DNA ladder. 

Primer dimers can be seen towards the bottom of each lane. 

 

        (A)       MW        L1          L2                                (B)       MW        L1           

                                                             

Figure 9: PCR products of HS1 using primer set one. PCR with an annealing temperature of 

62 °C was used to amplify the 1698 bp OCT2 promoter region using KAPA HiFi DNA 

polymerase. (A) Before PCR purification. L1: 75 ng genomic DNA; L2: negative control. 

Primer dimers were observed in both lanes. (B) After PCR purification. L1: 75 ng genomic 

DNA. The primer dimers were removed during purification. A 1 % agarose gel electrophoresis 

is shown. Molecular weight (MW) – GeneRuler™ 1kb DNA ladder. 
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The purified PCR product of HS1 was sequenced using the OCT2pFWD2 and OCT2pREV2 

primers. The OCT2pREV2 primer returned good quality clear sequencing results whereas the 

OCT2pFWD2 primer did not. It was thus decided that the OCT2 promoter would be cloned 

into a pGL4.10 vector and the OCT2 insert within the vector would be sequenced using vector 

specific primers.   

 

A second primer set (OCT2FNhe and OCT2REco primers) was designed to contain two 

different restriction endonuclease sites at their 5′ ends respectively in order to clone the 

promoter into a pGL4.10 luciferase reporter vector. This primer set was optimised using Kapa 

Taq DNA polymerase using HEK293 genomic DNA. An annealing temperature of 65 °C was 

first tried and a successful PCR product of 1718 bp was observed using 200 ng of genomic 

DNA (Figure 10A). 

 

Since some of the human samples had low DNA concentrations, we also determined whether 

we could amplify the promoter region from lower DNA concentrations and we found that even 

with 75 ng of DNA a good amount of PCR product was obtained (Figure. 10B).  

 

Primer set two was then optimised using KAPA HiFi DNA polymerase at annealing 

temperatures ranging from 66 – 74 °C (Figure 11). PCR products were observed for annealing 

temperatures ranging from 70 – 74 °C and we decided that 72 °C would be the annealing 

temperature for amplifying the OCT2 promoter region in the human samples. 
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      (A)     MW     L1       (–)                (B)      MW       L2         L3         L4       (–) 

                                   
 

Figure 10: Different amounts of HEK293 genomic DNA amplified by PCR.  The OCT2 

promoter region was amplified using primer set two at an annealing temperature of 65 °C. 

KAPA Taq DNA polymerase was used. Molecular weight (MW) – GeneRuler™ 1kb DNA 

ladder; L1 and L2 – 200 ng genomic DNA; L3 – 100 ng genomic DNA; L4 – 75 ng genomic 

DNA; (–) indicates the negative control. A distinct bright band at 1718 bp was observed for all 

the different amounts of DNA used. 1 % agarose gel electrophoresis is shown. 

 

                            MW    66 °C   68 °C    70 °C   72 °C   74 °C     (–)    

                        

 

Figure 11: PCR optimisation of primer set two using HEK293 genomic DNA. The OCT2 

promoter region was amplified at various annealing temperatures ranging from 66 – 74 °C 

using KAPA HiFi DNA polymerase. Molecular weight (MW) – GeneRulerTM 1kb DNA 

ladder, (–) indicates the negative control. 1718 bp PCR products are clearly observed for 

annealing temperatures of 70 – 74 °C. A 1 % agarose gel electrophoresis is shown. 
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Following the optimisation of primer set two, each HS was amplified by PCR using 75 ng of 

genomic DNA at the chosen annealing temperature of 72 °C. HS1 was amplified first where at 

least three reactions per sample were performed to ensure enough DNA was recovered after the 

PCR purification step (Figure 12). The rest of the HS were also amplified and purified in the 

same way (gel images are not shown). 

 

 

                                 MW       L1          L2         L3          (–) 

                             

 

Figure 12: PCR amplicons of HS1 with primer set two.  The OCT2 promoter region was 

amplified using primer set two at an annealing temperature of 72 °C. KAPA HiFi DNA 

polymerase was used. Molecular weight (MW) – GeneRuler™ 1kb DNA ladder; L1 – L3: 75 ng 

of genomic DNA; (–) indicates the negative control. A distinct bright band at 1718 bp was 

observed for all the lanes. A 1 % agarose gel electrophoresis is shown.  

 

Single digestions on the circular pGL4.10 vector were done to confirm that each restriction 

endonuclease was in working order. Linear DNA fragments were observed for both NheI and 

EcoRV (Figure 13). Since each restriction enzyme was working and no contamination was 

observed for the negative control, a double digestion was done on both the circular pGL4.10 

vector and the PCR products of each HS1−10. A double digestion of HS1 was done first 

(Figure 14) and the rest of the double digestions are not shown. It was observed that the 6 kb 

undigested pGL4.10 vector migrated further in the gel compared to the digested linear 

pGL4.10 vector, as expected from the conformation of circular plasmids which causes them to 

migrate further. 
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                                     MW      N+       N–       E+       E–          

                                     

 

Figure 13: A single digestion of the purified pGL4.10 vector using NheI and EcoRV 

restriction endonucleases. Molecular weight (MW) – GeneRuler™ 1kb DNA ladder. N+: NheI 

positive control; N–: NheI no DNA negative control; E+: EcoRV positive control; E–: EcoRV 

no DNA negative control. Both positive controls show a distinct bright linear pGL4.10 vector 

fragment at 4242 bp indicating that each resrtriction enzyme is working. A 1 % agarose gel 

electrophoresis is shown. 

 

                                           MW       L1        L2        L3      

                                        

 

Figure 14: A double digestion of the purified pGL4.10 vector and HS1 PCR product 

using NheI and EcoRV restriction endonucleases. Molecular weight (MW) – GeneRuler™ 

1kb DNA ladder. L1: circular undigested pGL4.10 vector at approximately 2800 bp; L2: linear 

double digested pGL4.10 vector at approximately 4500 bp; L3: double digested PCR product 

of HS1 at 1706 bp. A 1 % agarose gel electrophoresis is shown. 
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The double digested vector and PCR products were purified, quantified and then ligated 

together using T4 DNA ligase. The ligation mixture was transformed into E. coli chemically-

competent cells and spread onto LB agar plates containing the ampicillin antibiotic. A few 

colonies were observed on the negative control which contained only digested vector DNA, 

indicating that there was either re-ligation of the vector or that some undigested vector 

remained following the restriction digest. The transformation was however successful because 

slightly more colonies were observed for HS1, HS7 and HS9 compared to the no insert DNA 

negative control (Figure 15). No contamination occurred as there were no colonies observed on 

the plate which contained no vector or insert DNA and this also showed the E.coli were 

susceptible to ampicillin. 
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Figure 15: E. coli JM109 competent cells transformed with the pGL4.10 vector that 

contain OCT2 promoter inserts from different samples. (A) HS1 transformed cells; (B) HS7 

transformed cells; (C) HS9 transformed cells; (D) Negative control which contains only 

digested pGL4.10 vector; (E) 3 ng of undigested pGL4.10 vector; (F) Negative control which 

contains no pGL4.10 vector and no DNA insert. 200 µl of cell suspension was spread onto 

each LB agar plate which contains 100 µg/ml of ampicillin antibiotic. 

 

Using primer set three, a colony PCR on HS1 (Figure 16) was done to differentiate between 

which E. coli colonies were transformed with the pGL4.10-OCT2 promoter recombinant vector 

and which colonies were transformed with the empty pGL4.10 vector. Colonies which 

contained the OCT2 promoter insert were expected to give a PCR product of 1961 bp and those 

colonies which were empty and had no OCT2 promoter insert were expected to give a band of 

(A) 

(C) (D) 

(B) 

(E) (F) 
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243 bp. A colony PCR was also done for the remaining samples but these results are not 

shown. 

 

               MW   (+)      1      2       3       4      5      6       7       8       9      10    (–) 

               

 

Figure 16: A colony PCR for HS1 using primer set three. Molecular weight (MW) – 

GeneRuler™ 1kb DNA ladder. (+): Positive control which contains the empty pGL4.10 vector; 

(–) indicates the negative control which contains no template DNA; 1–10: the number of 

colonies chosen for the colony PCR. Colonies 1, 3, 4, 6 – 10 show a bright distinct band at 

1961 bp indicating that these colonies contain the OCT2 promoter insert. Colonies 2 and 5 

were the same as the positive control which indicate that these colonies do not contain the 

OCT2 promoter insert at 243 bp. A 1 % agarose gel electrophoresis is shown. 

 

 

Colonies which contained the OCT2 inserts within the vector were sequenced using vector 

specific primers and SNPs were identified through a MSA on Clustal Omega where a 

comparison was made to the WT OCT2 sequence. Since we had previously identified that the 

SNPs found in HS1, HS7 and HS9 are all heterozygous, either the WT or the mutant OCT2 

promoter sequence could be cloned into the pGL4.10 vector. The mutant sequence for HS1 

was successfully cloned into the vector but the WT sequences for HS7 and HS9 were cloned, 

despite sequencing many different colonies, therefore a site-directed mutagenesis was 

performed on these two samples to introduce the SNP. 

 

The vector containing the WT OCT2 DNA insert from each sample was amplified by PCR, 

using the primers listed in Table 4, and then treated with the DpnI restriction endonuclease to 

remove any parental DNA from being carried over into the subsequent steps (Figure 17). No 
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parental DNA was carried over as no DNA bands were observed in the negative control lanes. 

The positive control lanes do not show bright DNA bands as low amounts of DNA was used to 

prevent the PCR from increasing the chance of any secondary mutations from occurring. An 

empty linear pGL4.10 vector is 4242 bp in size but the pGL4.10 vector containing the OCT2 

promoter insert of 1718 bp will have a total size of 5960 bp. 

 

                      HS7         PCR             DpnI        HS9      PCR             DpnI 

                     MW     (+)      (–)     (+)      (–)    MW   (+)    (–)      (+)      (–)     

                   
 

Figure 17: A site-directed mutagenesis PCR and DpnI treatment for HS7 and HS9. HS7 is 

on the left of the gel and HS9 is on the right side of the gel. Molecular weight (MW) – 

GeneRuler™ 1kb DNA ladder. (PCR+): Positive control; (PCR–): Negative control which 

contains no KAPA HiFi DNA polymerase; (DpnI +): Treatment of the PCR+ with DpnI 

endonuclease. (DpnI –): Treatment of the PCR– with DpnI endonuclease. Each PCR+  

produced a linear pGL4.10 vector containing the OCT2 promoter insert at 5960 bp. A 1 % 

agarose gel electrophoresis is shown. 

 

The transformation of E.coli with DNA modified by site-directed mutagenesis was successful 

because colonies were observed for the HS7 and HS9 plates and no colonies were observed on 

the negative control plates (Figure 18). No contamination occurred as there were no colonies 

observed on the plate which contained no vector or DNA insert. 
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Figure 18: E. coli JM109 competent cells transformed with the pGL4.10 vector 

containing OCT2 promoter inserts that have undergone site-directed mutagenesis.             

A) Mutated HS7 transformed cells; (B) Mutated HS9 transformed cells; (C) Mutated HS7 

negative control; (D) Mutated HS9 negative control; (E) 2.5 ng of undigested pGL4.10 vector; 

(F) Negative control which contains no pGL4.10 vector and no DNA insert. 200 µl of cell 

suspension was spread onto each LB agar plate which contains 100 µg/ml of ampicillin 

antibiotic. 

 

A few colonies from each transformation went through a colony PCR and those that contained 

the OCT2 promoter region had their vectors purified and then sequenced. The sequencing 

revealed that the site-directed mutagenesis was successful for HS9 but not for HS7. Therefore, 

the site-directed mutagenesis PCR annealing temperature for HS7 was optimised using 

temperatures ranging from 63−68 °C where the lower and higher temperatures resulted in 

(A) 

(C) (D) 

(B) 

(E) (F) 
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primer tandem repeats. At 66 °C the OCT2 promoter sequence with the SNP of interest was 

successfully identified, however there was always a missing adenine base at the start of where 

the forward primer would bind. This is shown in Figure 19 where TAAT is changed to TAT. 

This is possibly due to the primers used for the HS7 site-directed mutagenesis being too similar 

and therefore the functional characterisation of the rs55920607 SNP identified in HS7 was not 

possible in this study. 

 

              

              

Figure 19: HS7 site-directed mutagenesis chromatograms viewed on FinchTV. The WT is 

boxed in green and the deletion or SNP of interest is boxed in red.  

 

Through a MSA of HS1−10 (Appendix B) we identified four SNPs as well as one INDEL 

present in the 10 DNA samples investigated. These variations are listed in Table 6 and the 

chromatograms of these variations are shown in Figure 20. Their positions on the reverse 

strand of chromosome 6 are shown in Figure 21. Two SNPs were identified in the 5′ UTR and 

the other two SNPs as well as one INDEL were identified in the 5′ flanking region. It appeared 

in this study that we had identified a TTCA deletion (rs66512417) in all 10 DNA samples, 

however it was eventually determined that this deletion was actually WT and that the insertion 

of these bases is mutant, therefore none of the 10 samples had this INDEL present.  

 

Table 6: The SNPs and INDEL identified within the 10 individuals from the South 

African black population.  

dbSNP ID Position  

from 

TSS* 

Nucleotide 

change# 

HS 

1 

HS 

2 

HS 

3 

HS 

4 

HS 

5 

HS 

6 

HS 

7 

HS 

8 

HS 

9 

HS 

10 

rs138765638 -965 to 

-963 

AAG 

(del) 

 ✓  ✓  ✓     

rs183436020 -924 G>A  ✓    ✓     

rs113150889 -289 G>A ✓          

rs55920607 -246 C>T ✓      ✓    

rs59695691 -195 A>G ✓        ✓  

*TSS: Translation start site, # on reverse strand 
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      rs138765638 identified in HS2, HS4 & HS6    rs183436020 identified in HS2 & HS6 

              

              

             

          

              

        

           

           

       

          
 

          

Figure 20: Chromatograms viewed on FinchTV for the SNPs and INDEL identified in the 

10 DNA samples. The four SNPs and the INDEL are boxed in different colours: blue indicates 

the heterozygous SNPs identified in the preliminary study, green indicates WT, and red 

indicates mutant. 

R = G/A 

Y = C/T 

R = G/A 

rs113150889 identified in HS1 

rs55920607 identified in 

HS1 & HS7 

rs59695691 identified in 

HS1 & HS9 
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 -1459  cttgcatttagatgcaacaacatcatcctaaagagatgcccctgatgtgtgagagcagaa  

 -1399  aggggtgatccctttcttccttatcctaaggctcacggccaacacccctataacaaaaga 

 -1339  caggttaacaagagaaaagcatgacaaatttatttgatcacgttttacatgacacaggag  

 -1279  ccttcattcagaatgaagacccacagatacagggaaaactggatggcagtatagaactgt 

 -1219  agttggacaaaaagggcagcagcccatgttcgcaggctgaggggaaaacccagcaaggcc  

 -1159  tgtctgttcagatccgtcttggcccctctgtgcagcactccttcctccaggcaccgggga 

 -1099  caagactcctctggaatgcgggtctggatttctttacggcccactgttacacagaaaggc 

 -1039  agcggggaagttacagtggtatttctaggctttctggctggctttggggagaaaagagtc  

  -979  tggtttccacgagctgctttgaggaagaaggattctcagttctatggcttgccccggggg 

  -919  agaatgatgggtgagagaagagacaggagggcaggagaaggtcagagagagagactttgc 

  -859  ttctgaggcctccaccttggggcatggatttctgagccccaacagaccttgacagaaaaa 

  -799  tctaggacacaaagatagtggcttggacacacctgcctgcatttacacttgacctgtctg        

  -739  cgacgtaaacactttcctctttccctccagatgggttaaggggaaggacacttcagggtt        

  -679  gaaacgcaggaataccagattggagcaaacactttttaaaagcagagttataaaatctgg        

  -619  acaacatcaaaacaagcagccccagcatgcatcccgacggctcttgttgttggttggaga        

  -559  atgagcccagcagtcaggcttgcaacccacttcgaatctggaccagggttctgacacgga        

  -499  tcctggttcacatcacgctgggccttgtggccaaacacgtgtgttttctccatagggcct        

  -439  tgaagaaaagctggcggtgcgcatgagataggagtatattaagttcctggctgctcgggg        

  -379  cactacgggaagattactgggctgtgatatgggccagcactcagattccctgcggtggga        

  -319  cacagagggcgggttgtttgtgctgctggcgtggagcaccgacaagcctgtggagaacca 

  -259  GTTATAATAAACACGACAGGCATCCTGGGAGTGAGCTCAGGGCATTTGGGAAGTGCAGAA        

  -199  GGACATGCACCCCCGCTGGAGGGGTGCACCTTTGAAGTCAGCTGGACCAAGGAAAGGCCC        

  -139  TGCCCTGAAGGCTGGTCACTTGCAGAGGTAAACTCCCCTCTTTGACTTCTGGCCAGGGTT        

   -79  TGTGCTGAGCTGGCTGCAGCCGCTCTCAGCCTCGCTCCGGGCACGTCGGGCAGCCTCGGG        

   -19  CCCTCCTGCCTGCAGGATCATGCCCACCACCGTGGACGATGTCCTGGAGCATGGAGGGGA 

   +42  GTTTCACTTTTTCCAGAAGCAAATGTTTTTCCTCTTGGCTCTGCTCTCGGCTACCTTCGC 

  +102  GCCCATCTACGTGGGCATCGTCTTCCTGGGCTTCACCCCTGACCACCGCTGCCGGAGCCC  

  +162  CGGAGTGGCCGAGCTGAGTCTGCGCTGCGGCTGGAGTCCTGCAGAGGAACTGAACTACAC  

  +222  GGTGCCGGGCCCAGGACCTGCGGGCGAAGCCTCCCCAAGACAGTGTAGGCGCTACGAGGT  

 

              KEY: 
Primers    E-box        Translation start site   5′ Flanking sequence 

CCAAT box    SNPs         Translated sequence   5′ UTR  

Figure 21: The SNPs and INDEL identified in the upstream region of the OCT2 gene 

sequence. The primers amplify a 1698 bp product of the OCT2 promoter region. The bold and 

underlined text represents the transcription factor binding region of the OCT2 promoter 

spanning from −483 to −435. Numbering is relative to the translation start site. The SNPs and 

the INDEL highlighted in blue are those identified within the 10 South African black 

individuals used in this study, and are shown on the reverse strand of chromosome 6. 

 

 

http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs139039970;vf=30419151
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs200254093;vf=54672028
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs267600884;vf=56715753
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A luciferase assay was performed to determine whether the SNPs and INDEL may affect 

transcription from the OCT2 promoter (Figure 22). The sample which contained three SNPs    

(-195, -246 and -289) appeared to be associated with a decrease in luciferase activity in 

comparison to the WT. The sample containing both the -924 SNP and the AAG deletion 

appeared to show little change in luciferase activity in comparison to the WT. The luciferase 

activity of the sample containing only the AAG deletion was significantly increased whereas 

the sample with the -195 SNP was significantly decreased.  

 

 

Figure 22: Transcriptional activity of the OCT2 promoter inserts transfected in MRC-5 

cells. Each sample value represents the mean ± standard deviation of quadruplicate 

experiments. Four different samples within the pGL4.10 luciferase vector were compared to 

the wild type sample. A paired t-test with p < 0.05 was considered to be statistically significant. 
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4.2   Bioinformatic analysis          

4.2.1A   Identification of SNPs within the OCT2 promoter region 

A total of thirteen SNPs, including one novel SNP, and two INDELs were identified within the 

OCT2 promoter region from five studies conducted on individuals within the South African 

black population. These results are summarised in Table 7.   

 

We identified eight SNPs (rs59695691, rs55920607, rs60249401, rs80154852, rs146811048, 

rs148965379, rs316023, rs3127573) and two INDELs (rs138765638 and rs66512417) that 

commonly occurred between the African and South African black populations. These 

variations: rs59695691, rs55920607, rs80154852, rs138765638, rs146811048, rs148965379 

and rs3127573, showed notably higher allele frequencies in the South African black 

populations whereas rs316023 and rs66512417 showed notably higher allele frequencies in the 

non-African populations. Interestingly, we identified one SNP rs183436020 that had not been 

reported in any Southern African populations to date, yet we identified it to be present within 

the 10 DNA samples that we analysed in this study. Four SNPs (rs113150889, rs113384645, 

rs527961348 and 6:160680864) that were identified in the South African black populations 

have not been observed in any of the 1000 Genomes Project populations. 

 

The RegulomeDB database was used to predict the effect of the OCT2 promoter SNPs and 

INDELs on OCT2 regulation. All of the SNPs and INDELs identified in the OCT2 promoter 

region, except for rs3127573, gave a RegulomeDB score of 5. No data was found for the 

rs3127573 SNP. 
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Table 7: SNPs and INDELs identified within the OCT2 promoter region on the forward strand of chromosome 6  

 

a – Present study; b –  Bantu-speaking individuals, (Carstens, N., et al. 2016, personal communication); c – Xhosa, Zulu and Sotho individuals, (Ramsay, M., et al.2016, personal communication); 

d – Zulu individuals, (Gurdasani et al., 2014); e – Xhosa individuals, (Jacobs et al., 2015); f – African populations from the 1000 Genomes Project Phase 3; g − All individuals from the 1000 

Genomes Project Phase 3: African, American, East Asian, European and the South Asian. (−) indicates that either there is no information available or the variation could not be identified, n = 

number of individuals, WT = Wild type, MAF = Minor Allele Frequency. 

dbSNP ID WT 

allele 

Minor 

allele 

MAF 

Black
 a

 

SA 

 

n=10 

MAF 

SA
 b

 

Bantu 

 

n=40 

MAF 

SA
 c

  

Z,S,X 

 

n=15 

MAF 

SA
 d

 

Zulu 

 

n=100 

MAF 

SA
 e

 

Xhosa 

 

n=96 

MAF 

AFR 
 f

 

MAF 

all 

excl 

AFR 

MAF 

all 
 g

 

Nucleotide 

Position 

(GRCh38) 

Nucleotide 

Position 

(GRCh37) 

Position 

from 

ATG 

Location 

rs59695691 T C 0.20 0.025 0.087 0.085 0.263 0.023 < 0.01 0.006 160,258,952 160,679,984 -195 Upstream / 5′ UTR / intronic 

rs55920607 G A 0.20 0.063 0.065 0.09 0.084 0.045 < 0.01 0.014 160,259,003 160,680,035 -246 Upstream / 5′ UTR / intronic 

rs113150889 C T 0.10 0 0.022 0 − − − − 160,259,046 160,680,078 -289 Upstream / intronic 

rs60249401 C T 0 0.025 0 0.015 − 0.020 < 0.01 0.007 160,259,181 160,680,213 -424 Upstream / intronic 

rs183436020 C T 0.20 0 0 0 − 0.002 0 < 0.001 160,259,681 160,680,713 -924 Upstream /  5′ UTR 

rs138765638 CTT − 0.30 − − 0.21 − 0.138 0.084 0.1 160,259,707- 

160,259,709 

160,680,739- 

160,680,741 

-953 to 

 -955 

Upstream /  5′ UTR 

rs113384645 C T 0 0.032 0.065 0.045 − − − − 160,259,735 160,680,767 -978 Upstream /  5′ UTR  

Novel A G 0 0 0.021 0 − − − − 160,259,832 160,680,864 -1075 Upstream /  5′ UTR 

rs80154852 G A 0 0 0.065 0.095 − 0.057 < 0.01 0.016 160,259,902 160,680,934 -1146 Upstream /  5′ UTR 

rs146811048 G A 0 0.10 0.043 0.03 − 0.023 < 0.01 0.006 160,259,946 160,680,978 -1189 Upstream /  5′ UTR  

rs148965379 A T 0 0.091 0.043 0.03 − 0.023 < 0.01 0.006 160,259,979 160,681,011 -1222 Upstream /  5′ UTR  

rs66512417 − TGAA 0 − − 0.045 − 0.014 0.090 0.071 160,260,027- 

160,260,030 

160,681,059- 

160,681,062 

-1270 to  

-1273 

Upstream /  5′ UTR 

rs527961348 A G 0 0 0.021 0 − − − − 160,260,223 160,681,255 -1466 Upstream /  5′ UTR 

rs316023 T C 0 0.261 0.109 0.16 − 0.305 0.469 0.420 160,260,282 160,681,314 -1525 Upstream /  5′ UTR  

rs3127573 A G 0 0.44 0.174 0.21 − 0.138 0.086 0.101 160,260,361 160,681,393 -1604 Upstream /  5′ UTR 
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4.2.1B   Identification of SNPs within the OCT2 coding regions 

A total of nine SNPs were identified within the OCT2 coding region from four studies 

conducted on individuals within the South African black population. These results are 

summarised in Table 8. Four of the SNPs were non-synonymous missense SNPs (Ser270Ala, 

Arg400Cys, Lys432Gln and Ile552Asn) and five were synonymous SNPs (Val94Val, 

Thr130Thr, Ser133Ser, Gly370Gly and Val502Val). Two synonymous SNPs (Val94Val and 

Gly370Gly) that were identified in the South African black populations have not been observed 

in any of the 1000 Genomes Project populations. Three SNPs (Ser133Ser, Arg400Cys and 

Ile552Asn) commonly occurred between only the African and South African black populations 

whereas two SNPs (Thr130Thr and Val502Val) showed notably higher allele frequencies in 

the African population when compared to the South African black populations. 

 

The VEP tool was used to predict the possible functional consequences of the missense SNPs 

identified in the OCT2 coding region. Three of the four missense SNPs (Ser270Ala, 

Arg400Cys, Lys432Gln) were predicted to be deleterious or possibly damaging, and one SNP 

(Ile552Asn) was predicted to be tolerated and benign according to the SIFT and PolyPhen 

scores. 
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Table 8: SNPs identified within the OCT2 coding regions on the forward strand of chromosome 6  

dbSNP ID  WT  

allele  

Minor  

allele  

MAF 

SA
 a

 

Bantu 

 

n=40 

MAF  

SA
 b

  

Z,S,X 

 

n=15 

MAF 

SA
 c

 

Zulu 

 

n=100 

MAF  

SA
 d

 

Xhosa 

 

n=96 

MAF 

AFR 
 e

 

MAF 

all  

excl 

AFR 

MAF 

all 
 f

 

Position  

(GRCh38)  

Position  

(GRCh37)  

Functional 

consequence  

Amino Acid 

change 

rs772717144* C T 0 0 0.005 0.011 −  −  −  160,258,476 160,679,508 

 

synonymous Val94Val 

rs624249  C  A  0.188  0.152 0.11 0.128 0.266  0.264  0.264  160,258,368  160,679,400  synonymous  Thr130Thr 

rs112210325 

 

C A 0 0.043 0 0.012 0.002 0 0.001 160,258,359 

 

160,679,391 

 

synonymous Ser133Ser 

 

rs316019  C  A  0.20  0.043 0.09 0.149 0.185  0.118  0.137  160,249,250  160,670,282  missense  
Ser270Ala 

g

 

rs58264151  G  A  0.013  0 0.005 0 −  −  −  160,243,741  160,664,773  synonymous 

 

Gly370Gly 

rs8177516  G  A  0.013  0.022 0.045 0.052 0.013  0  < 0.01  160,243,653  160,664,685  missense  
Arg400Cys 

g

 

rs8177517  T  G  0.038  0 0.015 0.011 0.039  < 0.01  0.010  160,242,388  160,663,420  missense  
Lys432Gln 

g

 

rs316003  C  T  0.40  0.20 0.425 0.333 0.576  0.207  0.307  160,224,800  160,645,832  synonymous  Val502Val 

rs139045661  A  T  0.063  0.043 0.015 0.016 0.012  0  < 0.01  160,217,445  160,638,477  missense  Ile552Asn 

 

a –  Bantu-speaking individuals, (Carstens, N., et al. (2016) Personal communication); b – Xhosa, Zulu and Sotho individuals, (Ramsay, M., et al. (2016) Personal communication);  

c – Zulu individuals, (Gurdasani et al., 2014); d – Xhosa individuals, (Jacobs et al., 2015); e – African populations from the 1000 Genomes Project Phase 3; f − All individuals from 

 the 1000 Genomes Project Phase 3: African, American, East Asian, European and the South Asian; g − These missense SNPs have been functionally characterised by Leabman et al.,  

(2002),  and have also been predicted to be deleterious or damaging using the VEP tool; (−) indicates that there is no information available, n = number of individuals, WT = Wild type,  

MAF = Minor Allele Frequency, *The incorrect dbSNP ID was used in the Xhosa individuals study and it has been corrected in this study. 
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4.2.2   Prediction of transcription factor binding sites within the OCT2 promoter region 

The ALGGEN PROMO program was used to determine the potential transcription factor 

binding sites within the OCT2 promoter and to determine whether these sites might change 

should a SNP or INDEL be present. The results are summarised in Table 9.  

 

We identified four SNPs (rs60249401, rs527961348, rs316023, rs3127573) and one INDEL 

(rs138765638) that had no transcription factor binding site or had lost one or more 

transcription factor binding sites only when the mutant alleles were present and therefore fewer 

or no transcription factors were predicted to bind at these locations. Six SNPs (rs55920607, 

rs183436020, rs113384645, rs80154852, rs146811048, rs148965379) and one INDEL 

(rs66512417) were predicted to have transcription factor binding sites only when the mutant 

alleles were present and therefore transcription factors were predicted to bind at these 

locations. Two SNPs (rs59695691 and rs113150889) had different transcription factor binding 

sites present when the mutant alleles were present or not and therefore different transcription 

factors were predicted to bind at these locations.  

 

Two SNPs (rs527961348 and 6:160680864) were predicted to have different transcription 

factor binding sites when the mutant alleles were present, however the same transcription 

factors (IRF-1 and RXR-alpha) were still predicted to bind at these locations for their 

respective SNPs. One INDEL (rs138765638) was predicted to lose the STAT4 transcription 

factor when the deletion occurred, however the rest of the transcription factors (c-Ets-2, c-Ets-1 

and Elk-1) remained the same because the transcription factor binding sites remained the same. 
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Table 9: The putative transcription factor binding sites predicted within the OCT2 promoter region using the ALGGEN  

                PROMO program 

dbSNP ID Position 

from ATG 

Flanking sequence on reverse strand 

(5′−3′)* 

TF at Wild 

type 

Wild type TF 

binding site # 

TF at 

Mutant 

Mutant TF 

binding site # 

rs59695691 -195 gaagtgcagaaggacA/Gtgcacccccgctgga TFII-I GGACAT HIF-1 ACGTGCACC 

rs55920607 -246 cagttataataaacaC/Tgacaggcatcctggg − − XBP-1 ATGACA 

rs113150889 -289 gtttgtgctgctggcG/Atggagcaccgacaag ENKTF-1 

AhR:Arnt 

TGGCGTGG 

GCTGGCGTGG 

YY1 ATGG 

rs60249401 -424 tgaagaaaagctggcG/Agtgcgcatgagatag ENKTF-1 TGGCGGTG − − 

 

rs183436020 

 

-924 

 

tctatggcttgccccG/Aggggagaatgatggg 

 

− 
 

− 
PPAR-alpha:   

RXR-alpha 

EBF 

 

TTGCCCCAGGG 

GCCCCAGGGGA 

 

rs138765638 

 

-953 to -955 

 

cgagctgctttgaggAAG/-aaggattctcagttc 

 

c-Ets-2 

c-Ets-1 

Elk-1 

STAT4 

TTTGAGGAA 

GAGGAAG 

TTGAGGAAG 

GGAAGA 

c-Ets-2 

c-Ets-1 

Elk-1 

TTTGAGGAA 

GAGGAAG 

TTGAGGAAG 

rs113384645 -978 gggagaaaagagtctG/Agtttccacgagctgc − − NF-AT1 CTAGTTTCCA 

Novel -1075 tctggaatgcgggtcT/Cggatttctttacggc RXR-alpha GGGTCTG RXR-alpha GGGTCCG 

rs80154852 -1146 cctgtctgttcagatC/Tcgtcttggcccctct − − GR-beta AGATT 

rs146811048 -1189 gcagcagcccatgttC/Tgcaggctgaggggaa − − C/EBPbeta TTGC 
 

rs148965379 
 

-1222 
 

atggcagtatagaacT/Agtagttggacaaaaa 
 

− 
 

− 
PR B 

PR A 

AACAGTA 

AACAGTA 

rs66512417 -1270 to -1273 acacaggagccttca-/TTCAgaatgaagacccaca − − GR-beta TCATT 

 

rs527961348 

 

-1466 

 

gaaagacaaatttccT/Cgtttgtcttgcattt 

IRF-1 

c-Ets-1 

GR-alpha 

TTTCCTGTT 

TTTCCTG 

CCTGT 

IRF-1 TTTCCCGTT 

rs316023 -1525 caggccaccttctctA/Gcttggcaggatcacg - - − − 

 

rs3127573 

 

-1604 

 

ctgctgactatccaaT/Cagaaaaaagaaggag 

GR-beta 

TFIID 

NF-Y 

AATAG 

TAGAAAA 

TATCCAAT 

 

− 
 

− 

 

*Wild type/Mutant variation, #The bold and underlined regions indicate either the wild type or mutant sequence in the binding site, (-) indicates that no TF was predicted to  

bind to the OCT2 promoter when the specific allele was present, TF = Transcription factor. 

http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs59310119;vf=11649447
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs59695691;vf=11737856
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs55920607;vf=10793430
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs533481258;vf=66597270
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs113150889;vf=20430509
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs59705803;vf=11737241
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs59705803;vf=11737241
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs372823977;vf=55205902
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs543766525;vf=76875045
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs541201588;v=rs34545451;vf=74313875;vf=9387573
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs541201588;v=rs34545451;vf=74313875;vf=9387573
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs571838840;vf=104935037
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs372987939;vf=55354922
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs372987939;vf=55354922
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs558085633;vf=91183900
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs34129302;vf=9061349
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs138765638;vf=24603263
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs113384645;vf=20645902
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs558085633;vf=91183900
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs574071166;vf=107165695
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs564055037;vf=97154601
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs376214156;vf=58324710
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs376214156;vf=58324710
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs188939898;vf=43390953
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs80154852;vf=18513308
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs80154852;vf=18513308
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs146811048;vf=31344452
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs535063542;vf=68167306
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs569650397;vf=102763750
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs371135935;vf=53648350
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs148965379;vf=33139337
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs565405397;vf=98510511
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs142164532;vf=27455584
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs527961348;vf=61070270
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs9355797;vf=4953845
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs151196271;vf=35010419
http://www.ensembl.org/Homo_sapiens/ZMenu/TextSequence?db=core;factorytype=Location;g=ENSG00000112499;r=6:160171061-160277638;t=ENST00000366953;v=rs151196271;vf=35010419
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4.2.3   Prediction of the formation of G-quadruplexes within the OCT2 promoter region   

The formation of G-quadruplexes within the OCT2 promoter region was predicted using the 

QGRS Mapper software program. The OCT2 promoter WT sequence revealed that a predicted 

total number of 17 G-quadruplexes and 117 overlapping G-quadruplexes would form. The 

sequences of the G-quadruplexes predicted to form are listed in Table 10 and the locations 

within the OCT2 promoter region are shown in Figure 23.  

 

The G-scoring system determines the likelihood of a sequence of nucleotides to form a stable 

G-quadruplex. The higher G-scoring sequences make better candidates for G-quadruplexes. 

The shorter loops tend to be more common than the longer loops, and usually G-quadruplexes 

have loops that are roughly equal in size and become more stable with the a greater number of 

guanine tetrads (Kikin, D'Antonio & Bagga, 2006). 

 

Of the thirteen SNPs and two INDELs identified within the OCT2 promoter region, only three 

SNPs were located within a G-quadruplex sequence. The novel SNP occurred at position 625, 

one SNP (rs183436020) occurred at position 776, and the other SNP (rs59595691) occurred at 

position 1505 as shown in Figure 23. Of these three SNPs only one of them (rs183436020) 

decreased the number of G-quadruplexes including overlaps to 112. None of the other SNPs or 

INDELs revealed a change to the G-quadruplex predicted formation. 

 

Table 10: The G-quadruplex sequences found within the WT OCT2 promoter region. 

Position* Length G-Quadruplex sequence# G-Score 

108 29 GGAGAAGGAAAATCGGGTTAACTTTCTGG 15 

515 24 GGCTGAGGGGAAAACCCAGCAAGG 9 

613 27 GGAATGCGGGTCTGGATTTCTTTACGG 15 

678 30 GGTATTTCTAGGCTTTCTGGCTGGCTTTGG 19 

766 25 GGCTTGCCCCGGGGGAGAATGATGG 14 

806 16 GGAGGGCAGGAGAAGG 19 

847 21 GGCCTCCACCTTGGGGCATGG 11 

993 25 GGGTTAAGGGGAAGGACACTTCAGG 17 

1180 27 GGACCAGGGTTCTGACACGGATCCTGG 17 

1309 20 GGCTGCTCGGGGCACTACGG 15 

1374 19 GGTGGGACACAGAGGGCGG 16 

1501 24 GGACATGCACCCCCGCTGGAGGGG 6 

1544 28 GGACCAAGGAAAGGCCCTGCCCTGAAGG 12 

1726 14 GGAGCATGGAGGGG 16 

1921 23 GGTGCCGGGCCCAGGACCTGCGG 19 

1968 20 GGCGCTACGAGGTGGACTGG 14 

2057 22 GGCCCCTGCCGGGACGGCTGGG 16 
 

*Position in Figure 23, #Sequence on the reverse strand. 
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  0001 TTTTAAGAAA ATAAGAAGCC TGCAGCTGCG GCAAGGAGAA AGACCCCGTG GGTCGCTCCT TTTAGACTAC GCTATTACAC CTGCTGACTA TCCAATAGAA 

  0101 AAAAGAAGGA GAAGGAAAAT CGGGTTAACT TTCTGGTATT TAGTTTGCAG ATATGTCAGC AGGCCACCTT CTCTACTTGG CAGGATCACG ATGTATTAAG 

  0201 AATCCTTTTG TCCACCAGGA AAGACAAATT TCCTGTTTGT CTTGCATTTA GATGCAACAA CATCATCCTA AAGAGATGCC CCTGATGTGT GAGAGCAGAA 

  0301 AGGGGTGATC CCTTTCTTCC TTATCCTAAG GCTCACGGCC AACACCCCTA TAACAAAAGA CAGGTTAACA AGAGAAAAGC ATGACAAATT TATTTGATCA 

  0401 CGTTTTACAT GACACAGGAG CCTTCATTCA GAATGAAGAC CCACAGATAC AGGGAAAACT GGATGGCAGT ATAGAACTGT AGTTGGACAA AAAGGGCAGC 

  0501 AGCCCATGTT CGCAGGCTGA GGGGAAAACC CAGCAAGGCC TGTCTGTTCA GATCCGTCTT GGCCCCTCTG TGCAGCACTC CTTCCTCCAG GCACCGGGGA 

  0601 CAAGACTCCT CTGGAATGCG GGTCTGGATT TCTTTACGGC CCACTGTTAC ACAGAAAGGC AGCGGGGAAG TTACAGTGGT ATTTCTAGGC TTTCTGGCTG 

  0701 GCTTTGGGGA GAAAAGAGTC TGGTTTCCAC GAGCTGCTTT GAGGAAGAAG GATTCTCAGT TCTATGGCTT GCCCCGGGGG AGAATGATGG GTGAGAGAAG 

  0801 AGACAGGAGG GCAGGAGAAG GTCAGAGAGA GAGACTTTGC TTCTGAGGCC TCCACCTTGG GGCATGGATT TCTGAGCCCC AACAGACCTT GACAGAAAAA 

  0901 TCTAGGACAC AAAGATAGTG GCTTGGACAC ACCTGCCTGC ATTTACACTT GACCTGTCTG CGACGTAAAC ACTTTCCTCT TTCCCTCCAG ATGGGTTAAG 

  1001 GGGAAGGACA CTTCAGGGTT GAAACGCAGG AATACCAGAT TGGAGCAAAC ACTTTTTAAA AGCAGAGTTA TAAAATCTGG ACAACATCAA AACAAGCAGC 

  1101 CCCAGCATGC ATCCCGACGG CTCTTGTTGT TGGTTGGAGA ATGAGCCCAG CAGTCAGGCT TGCAACCCAC TTCGAATCTG GACCAGGGTT CTGACACGGA 

  1201 TCCTGGTTCA CATCACGCTG GGCCTTGTGG CCAAACACGT GTGTTTTCTC CATAGGGCCT TGAAGAAAAG CTGGCGGTGC GCATGAGATA GGAGTATATT 

  1301 AAGTTCCTGG CTGCTCGGGG CACTACGGGA AGATTACTGG GCTGTGATAT GGGCCAGCAC TCAGATTCCC TGCGGTGGGA CACAGAGGGC GGGTTGTTTG 

  1401 TGCTGCTGGC GTGGAGCACC GACAAGCCTG TGGAGAACCA GTTATAATAA ACACGACAGG CATCCTGGGA GTGAGCTCAG GGCATTTGGG AAGTGCAGAA 

  1501 GGACATGCAC CCCCGCTGGA GGGGTGCACC TTTGAAGTCA GCTGGACCAA GGAAAGGCCC TGCCCTGAAG GCTGGTCACT TGCAGAGGTA AACTCCCCTC 

  1601 TTTGACTTCT GGCCAGGGTT TGTGCTGAGC TGGCTGCAGC CGCTCTCAGC CTCGCTCCGG GCACGTCGGG CAGCCTCGGG CCCTCCTGCC TGCAGGATCA 

  1701 TGCCCACCAC CGTGGACGAT GTCCTGGAGC ATGGAGGGGA GTTTCACTTT TTCCAGAAGC AAATGTTTTT CCTCTTGGCT CTGCTCTCGG CTACCTTCGC 

  1801 GCCCATCTAC GTGGGCATCG TCTTCCTGGG CTTCACCCCT GACCACCGCT GCCGGAGCCC CGGAGTGGCC GAGCTGAGTC TGCGCTGCGG CTGGAGTCCT 

  1901 GCAGAGGAAC TGAACTACAC GGTGCCGGGC CCAGGACCTG CGGGCGAAGC CTCCCCAAGA CAGTGTAGGC GCTACGAGGT GGACTGGAAC CAGAGCACCT 

  2001 TCGACTGCGT GGACCCCCTG GCCAGCCTGG ACACCAACAG GAGCCGCCTG CCACTGGGCC CCTGCCGGGA CGGCTGGGTG TACGAGACGC CTGGCTCGTC 

  2101 CATCGTCACC GAG 

 

Figure 23: The OCT2 promoter region showing the location of the predicted G-quadruplex structures. The SNPs and INDELs are 

highlighted in green and the translation start site is highlighted in purple. The G-quadruplex sequences are highlighted in yellow. A total of  

17 G-quadruplexes were predicted in this region using the QGRS Mapper tool. Three SNPs (at positions 625, 776, and 1505) occur within a 

predicted G-quadruplex structure.
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5.   DISCUSSION 

 

5.1   SNP identification and functional analysis 

The results from the luciferase assay revealed that one SNP and one INDEL identified in the 

DNA samples investigated showed a significantly different ability to drive the expression of 

luciferase in comparison to the WT OCT2 promoter sequence. The INDEL, the AAG deletion 

(rs138765638), showed a statistically significant increase in luciferase expression whereas the 

sample that contained the SNP at position -195 relative to the translation start site 

(rs59695691) showed a statistically significant decrease in luciferase expression. This suggests 

that these two variants may be associated with a respective increase and decrease in OCT2 

regulatory function. This implies that they may therefore also affect the regulation and 

expression of the OCT2 protein. 

 

The sequences that contained more than one variant, as shown in Table 6, showed no 

statistically significant change in luciferase expression. The sequences containing both the -924 

SNP (rs183436020) and the AAG deletion (rs138765638) showed no statistically significant 

difference in luciferase expression, which could possibly be because one variant may have a 

positive effect and the other variant a negative effect on luciferase expression thereby causing 

no overall change to occur. It is also possible that when combinations of variants occur 

together in a sample, such as (rs59695691, rs55920607 and rs113150889), that no change in 

luciferase expression is observed or that the individual variants in general do not effect 

luciferase expression. This highlights the importance of functionally characterising each 

individual variant and in the combinations that they appear in human DNA. 

 

For the luciferase assay experiments, it is possible and likely that different cell types have a 

different array of transcription factors available, and these could affect the transcriptional 

regulation of OCT2. Since OCT2 gene control is not well understood, different factors could be 

controlling expression in different tissue types so our results indicate a general trend in change 

in expression but we cannot say with certainty if this will be seen in every cell type that the 

OCT2 gene is expressed in. 
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Since the two variants identified may be associated with a respective change in the regulation 

or expression of the OCT2 protein, they can subsequently alter drug uptake or transport in the 

body which can influence a person’s response to treatment for various diseases.  

 

When a person’s genetic make-up enhances expression of a particular gene such as OCT2, a 

higher dose of medication may be required for effective treatment because the person’s body 

may process the medication quicker compared to somebody who has a different genetic make-

up. Conversely, a lower dose may be required if it is found that it is transported into cells more 

efficiently.  

 

Alternatively, when a person’s genetic make-up reduces expression of a particular gene such as 

OCT2, a lower dose of medication may be required for effective treatment. This may be due to 

the person’s body processing the medication at a slower rate, which can cause the medication 

to remain in the bloodstream for longer periods and therefore may cause unpleasant side 

effects. Conversely, a higher dose may be required to increase the amount of drug transported 

into cells. 

 

Since one of the SNPs (rs59695691) was identified to be heterozygous, the effect that it may 

have on OCT2 gene expression and consequently protein expression, drug uptake and drug 

transport may not be as great as if it were a homozygous mutant SNP because one WT allele is 

still present for the OCT2 gene. If the SNP was homozygous mutant then the effect may be 

greater for OCT2 gene expression because no WT alleles are present. Nevertheless, it may still 

have an effect on gene expression. The preliminary study was able to genotype the three SNPs 

identified because the PCR products were sequenced. The genotypes of the additional 

variations (rs183436020 and rs138765638) identified in the longer OCT2 promoter region were 

not determined in this study because the OCT2 promoter insert within the vector was 

sequenced. This however was not important because one cannot determine the effect of a 

heterozygous SNP in a luciferase assay since only one of the two strands of DNA is cloned into 

the vector. The effect of heterozygous SNPs versus homozygous mutant SNPs on OCT2 

expression can be determined using mRNA studies. 
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5.2   Bioinformatic analysis 

5.2.1   Identification of SNPs within the OCT2 promoter and coding regions 

Although most of the SNPs and INDELs commonly occurred between the African and South 

African populations (except for the four promoter and two synonymous SNPs that were not 

observed within the 1000 Genomes Project populations), the allele frequencies were found to 

vary notably between these two populations, which highlights the importance of Southern 

Africa centric evaluation of genetic variants that may show potential phenotypic significance. 

 

We performed Sanger sequencing in 10 DNA samples, and whilst the possibility of finding a 

rare allele in this small sample number is extremely low, however, our findings from the other 

studies with sample numbers of 15, 40 and 100, increases the chance of finding a rare allele. 

We could therefore compare results from all the studies to find alleles that are most common to 

the South African black population and those alleles that may be less common or rare to this 

population. This can clearly be seen for the rs772717144 SNP that was found in the Xhosa and 

Zulu population studies, which had sample numbers of 96 and100. The small sample number 

of 10 should be increased to at least 100 in future studies. 

 

A RegulomeDB score of 5 indicates that there is minimal binding evidence and that the 

variations with this score can possibly affect transcription factor binding or the DNase peak 

within a regulatory region. The only SNP that did not have a score, rs3127573, was due to 

there not being a common SNP in the uploaded genomic region. Since all of the other SNPs 

and INDELs were predicted to have a RegulomeDB score of 5, it suggests that rs3127573 

would also most likely have a score of 5 and may possibly also affect OCT2 regulation. 

 

The VEP tool was used to predict the possible functional consequences of the missense SNPs 

identified in the OCT2 coding region. The three missense SNPs (Ser270Ala, Arg400Cys, 

Lys432Gln) that were predicted to be deleterious or possibly damaging have already been 

characterised by Leabman et al in the African-American population to alter OCT2 transporter 

function (Leabman et al., 2002). The other missense SNP (Ile552Asn) was predicted to be 

tolerated and benign and this suggests that there is no possible functional consequence on 

OCT2 transport, however, since this SNP was only observed within the African and South 

African black population studies, the functional characterisation of this SNP must still be 

determined. Since these four missense SNPs commonly occur within the South African black 
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population, their significance and characterisation should be investigated further within this 

population to determine their effect on OCT2 transport and drug uptake. 

 

Another mechanism that could alter gene regulation, as previously mentioned, is DNA 

methylation, which has been found to modulate the expression of OCT2 in the kidneys. In the 

OCT2 promoter region, the methylation status of CpG sites is low but differences in the 

methylation status between different individuals has been observed (Aoki et al., 2008). The 

presence of CpG sites occurring within the OCT2 promoter region was not examined in this 

study. It is possible that these CpG sites could be modified by the presence of SNPs which 

could affect the regulation of the expression of the OCT2 gene and therefore should be 

investigated in future studies. 

 

5.2.2   Prediction of transcription factor binding sites within the OCT2 promoter region 

Whilst transcription factor binding sites may only bind one or two proteins, the transcription 

factors are often complexed to other proteins in order to be active, therefore if a SNP occurs 

within a transcription factor binding site then it may be possible that the particular transcription 

factor will not bind. This may cause any other proteins that are complexed with the 

transcription factor to not be activated and this can subsequently cause downstream effects on 

transcriptional regulation. On the contrary, a different transcription factor may bind when a 

SNP is present and therefore the different proteins that might be complexed with it can cause 

different downstream pathways to be regulated. It is also possible that the same transcription 

factor will bind to its site regardless of presence of polymorphisms and therefore no regulatory 

change would occur. 

 

The ALGGEN PROMO program was used to determine the potential transcription factor 

binding sites within the OCT2 promoter and to determine whether these sites might change 

should a SNP or INDEL be present. Most of the SNPs identified within the OCT2 promoter 

region were predicted to change the transcription factor binding sites and thus resulted in a 

loss, gain or change in the transcription factors that were predicted to bind at OCT2 promoter. 

These variations may therefore have a possible effect on OCT2 regulation and OCT2 protein 

expression and therefore should be investigated further. A few variations had the same 

transcription factors predicted to bind to the OCT2 promoter when the mutant alleles were 

present or not and this suggests that they may have no possible effect on OCT2 regulation. 
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5.2.3   Prediction of the formation of G-quadruplexes within the OCT2 promoter region   

The formation of G-quadruplexes within the OCT2 promoter region was predicted using the 

QGRS Mapper software program. Of the three SNPs that were shown to occur within a          

G-quadruplex predicted structure, only the one SNP (rs183436020) changed the overlapping 

G-quadruplex number from 117 to 112, which suggests that should the G-quadruplexes that are 

affected from forming be involved in controlling the activity of transcription, then the level of 

transcription may be altered. This SNP may therefore also control translation initiation and 

regulation because G-quadruplexes can influence the recruitment of ribosomes to the 

translation start site. This SNP should therefore be further investigated. 

 

5.3   Study limitations and future studies 

The sample size of this study was very small when compared to the other studies analysed and 

that of the 1000 Genomes Project so therefore it would be better to use a larger sample size in 

future studies. The promoter of the OCT2 gene was the only region sequenced in the 10 

samples analysed in this study and it would be beneficial in future studies to analyse the coding 

regions or the full genome sequences as well to give a complete picture and more precise 

account of the genetic variation that occurs within the South African black populations. It 

would also be of great interest in future studies to functionally characterise the other promoter 

SNPs that were identified as unique in the South African black population. 
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6.   CONCLUSION 

 

In this study we identified thirteen SNPs and two INDELs within the OCT2 promoter region, 

and nine SNPs within the OCT2 coding region through analysing various South African 

population studies. These variations could affect both gene expression and protein function. 

Many of the SNPs and INDELs, which commonly occurred between the South African black 

populations and African populations, were found to have allele frequencies that varied notably 

between the two populations. These observations highlight the importance of Southern Africa 

centric evaluation of genetic variants that may show potential phenotypic significance. 

 

We also identified four SNPs and one INDEL within the OCT2 promoter region from 

sequencing just 10 DNA samples where one SNP (rs59695691) and one INDEL (rs138765638) 

showed a statistically significant decrease and increase in luciferase expression. These variants 

should therefore be further investigated. Should these variants be found to be clinically 

functionally significant then this may enable the use of alternative or the development of new 

drug treatments since OCT2 transports cationic drugs used in the treatment of diseases such as 

cancer, type 2 diabetes & Parkinson's disease. These treatments can then target the specific 

SNPs or INDELs and can lead to the design of more efficient clinical trials for black South 

Africans suffering from various diseases in the future. The findings of this study therefore 

contribute to filling the gap pertaining to OCT variation in South African populations, and may 

impact greatly on healthcare provided across Africa. 
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APPENDIX A 

Reagent recipes              

 

1 X PBS pH 7.2 (1 L): 

8 g NaCl 

0.2 g KCl 

2.90 g Na2HPO4·12H2O 

0.24 g KH2PO4 

The volume was adjusted to 1 L using distilled water and then autoclaved. 

 

0.5 M EDTA pH 8.0 (100 ml): 

18.2 g Na2EDTA 

Adjusted to pH 8.0 using NaOH pellets 

The volume was adjusted to 100 ml using distilled water and then autoclaved. 

 

50 X TAE buffer (100 ml): 

24.2 g Trizma base  

5.71 ml glacial acetic acid 

10 ml 0.5 M EDTA at pH 8.0 

The volume was adjusted to 100 ml using distilled water and then autoclaved. 

This 50 X TAE buffer was diluted to make 1 X TAE buffer using distilled water. 

 

Lysis buffer (50 ml): 

10 mM Tris – 0.061 g Trizma base 

100 mM EDTA – 1.46 g Na2EDTA 

2 % Sodium dodecyl sulphate (SDS) – 1.0 g SDS 

The volume was adjusted to 50 ml using distilled water and then autoclaved.  

 

1 % Agarose gel:       

0.5 g agarose powder dissolved in 50 ml of 1 X TAE buffer    

1 μl of 10 mg/ml stock Ethidium bromide (200 ng/ml final concentration).  
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6 X DNA loading dye:           

3 ml glycerol             

25 mg bromophenol blue            

The volume was adjusted to 10 ml using distilled water.        

 

DNA ladder mixture (100 µl): 

50 µl of GeneRulerTM 1kb DNA ladder 

16.7 µl of 6 X DNA loading dye 

33.3 µl autoclaved Milli-Q water 

 

25 mM Tris-HCl, pH 8.0 and 10 mM EDTA (10 ml): 

100 mM Tris (pH 8.0) – 0.12 g Trizma Base where the pH was adjusted using HCl. The 

volume was adjusted to 10 ml using distilled water and then autoclaved.  

40 mM EDTA – 0.5 M EDTA was diluted using distilled water. 

Equal volumes (2.5 ml) of each and double the volume (5 ml) of distilled water were mixed 

together to achieve the final concentration required. 

 

0.4 M NaOH and 2 % SDS (12 ml): 

0.8 M NaOH – 0.192 g NaOH, volume was adjusted to 6 ml using distilled water and then 

autoclaved. 

4 % SDS – 0.32 g SDS, volume was adjusted to 6 ml using distilled water. 

Equal volumes of each were mixed together to achieve the final concentration required. 

 

3 M sodium acetate (10 ml): 

2.46 g NaC2H3O2, volume was adjusted to 10 ml using distilled water and then autoclaved. 

 

5 M Potassium Acetate (pH 5.5) (10 ml): 

2.941 g potassium acetate, volume was adjusted to 6 ml using distilled water. 

1.15 ml of glacial acetic acid was added to the 6 ml above and the solution was adjusted to pH 

5.5. Once the pH was achieved the volume was adjusted to 10 ml using distilled water and then 

autoclaved. 
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70 % ethanol (10 ml): 

7 ml of 100 % ethanol mixed with 3 ml of distilled water. 

 

LB Agar (50 ml): 

1.75 g LB agar powder was dissolved in 50 ml of distilled water and then autoclaved. 

 

LB Broth (50 ml): 

1.0 g LB broth powder was dissolved in 50 ml of distilled water and then autoclaved. 

 

SOC Broth (50 ml): 

49.25 ml of autoclaved LB broth, 0.5 ml of 250 mM KCl and 0.25 ml of 2 M MgCl2. 

 

1 M KCl (10 ml): 

0.74 g KCl salt was dissolved in 10 ml of distilled water and then autoclaved. 

This stock solution was diluted using distilled water to make 250 mM KCl. 

 

2 M MgCl2 (10 ml): 

1.90 g MgCl2 powder was dissolved in 10 ml of distilled water and then autoclaved. 

This stock solution was diluted using distilled water to make 0.1 M MgCl2. 

 

1 M CaCl2 (10 ml): 

1.11 g CaCl2 salt was dissolved in 10 ml of distilled water and then autoclaved. 

This stock solution was diluted using distilled water to make 0.1 M CaCl2. 
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The complete MSA for HS1-10                            APPENDIX B 
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