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Abstract

Forward and inverse spectral problems concerning Sturm-Liouville operators without discontinu-
ities have been studied extensively. By comparison, there has been limited work tackling the case
where the eigenfunctions have discontinuities at interior points, a case which appears naturally
in physical applications. We refer to such discontinuity conditions as transmission conditions.
We consider Sturm-Liouville problems with transmission conditions rationally dependent on the
spectral parameter. We show that our problem admits geometrically double eigenvalues, neces-
sitating a new analysis. We develop the forward theory associated with this problem and also
consider a related inverse problem. In particular, we prove a uniqueness result analogous to that
of H. Hochstadt on the determination of the potential from two sequences of eigenvalues. In ad-
dition, we consider the problem of extending Sturm’s oscillation theorem, regarding the number
of zeroes of eigenfunctions, from the classical setting to discontinuous problems with general
constant coefficient transmission conditions.
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Chapter 1

Introduction

Boundary value problems involving Sturm-Liouville equations have a rich and diverse history.
Such problems appear in areas including quantum mechanics, nuclear physics, electronics, geo-
physics and other branches of the natural sciences. Even though the equations are only of second
order, the spectral theory associated with such problems is deep, encouraging study purely for
mathematical interest. Despite being almost 200 years old, Sturm-Liouville theory remains a
highly active area of research, attracting interest from mathematicians, physicists and engineers
alike.

In recent years there has been growing interest in problems involving Sturm-Liouville equations
in which the eigenfunctions have discontinuities at interior points of the underlying interval. We
refer to such discontinuity conditions as transmission conditions. In the physical context such
problems are associated with a change in medium, and arise naturally in a varied assortment
of physical transfer problems, including heat and mass transfer. Of particular interest are cases
where the spectral parameter enters not only in the differential equation but also in the boundary
conditions and/or transmission conditions.

Our aim is to extend some of the results of classical Sturm-Liouville theory to discontinuous
problems of the above type. We consider Sturm-Liouville equations

ty == —(py) +qy = Ary, (1.1)
n (—a,0) U (0,b), a,b > 0. We impose separated boundary conditions

y(—a)cosa = (py')(—a)sina, « € [0,n), (1.2)
y(b) cos B = (py')(b)sin B, B € (0,7, (1.3)

and transmission conditions of the form

mi1(N)y(07) + maz(A)(py)(07) + maz(N)y(07) + mua(N)(py')(07) =0,  (1.4)
ma1(N)y(07) + maa(A) (py')(07) + maz(N)y(0T) + mas(N) (py')(0T) = 0. (1.5)

Here y(0%) = lim, y(x), (py')(0%F) = lim, py'(z). In particular, we are interested in two
z—0 x—0
cases. We study Sturm-Liouville problems with transmission conditions rationally dependent on

the spectral parameter A\. We also consider the case where m;; € R,7 = 1,2, j = 1,2, 3,4 with

— — mi11Mm22—MM12M21
miq = Moz =0 and 324 > 0.

Precise definitions of the above two types of transmission conditions are given in Chapter 2. Here,
we also present background for discontinuous Sturm-Liouville problems, in particular, focussing
on transmission conditions of the form (1.4), (1.5) above. We give a brief overview of recent
activity in the area. More detailed literature reviews are contained in subsequent chapters.



In Chapters 3 and 4 we study Sturm-Liouville problems with transmission conditions rationally
dependent on the eigenparameter. So far, investigations into discontinuous Sturm-Liouville prob-
lems with eigenvalue dependent transmission conditions have been limited to the affine case,
although transmission conditions with a polynomial dependence on the spectral parameter have
been considered for the Dirac operator (see for example [41]). To the best of our knowledge, this
is the first time spectral theory has been developed for discontinuous problems where the trans-
mission conditions have a rational dependence on the spectral parameter. In addition to the added
complexity caused by the discontinuity in the eigenfunctions, we show that our problem admits
geometrically double eigenvalues. This necessitates a new analysis. In Chapter 3 we develop
the “forward” theory associated with this problem. This work forms the foundation for a related
inverse problem which is studied in Chapter 4. Here, we consider a uniqueness problem of deter-
mining the potential ¢ from given spectral data. In particular, we extend the theory developed by
H. Hochstadt in [39] to the case of discontinuous Sturm-Liouville equations of the type discussed
above.

In Chapter 5 we develop oscillation theory for generalized Sturm-Liouville equations of the form
(1.1) with constant coefficient transmission conditions. Very little work has been done to extend
classical Sturmian oscillation theory to the case of discontinuous problems. Our aim is to adapt
existing Priifer methods to analyse transmission conditions of the type known commonly in the
physics literature as “one-dimensional point interactions”. Essentially, transmission conditions of
this type describe a linear relationship between the solution and its derivative on either side of
the discontinuity. We consider general non-singular 2 x 2 transfer matrices. We study the effect
of the transfer on the oscillation counts of eigenfunctions, and consider the problem of indexing
eigenvalues by the oscillation count of the associated eigenfunction.

Finally, we conclude the thesis with a discussion of future work in Chapter 6.



Chapter 2

Background

2.1 Discontinuous Sturm-Liouville eigenvalue problems

In the 1830’s Charles Sturm and Joseph Liouville published a series of papers ([75], [76], [77])
on second order linear differential equations of the form

& <p<x>j$y<x>) +a@)ye) = Mr(@)y(r), —a<z<b @D

This work laid the foundation for what is known today as “forward” or “direct” spectral theory
in differential equations. Before this time investigations into differential equations were mostly
limited to finding analytic solutions to equations. Sturm and Liouville were among the first to seek
properties of solutions directly from the equations, even when no analytic solution was possible.
Due to the significance of their work, boundary value problems involving differential equations
of the form (2.1) became known as Sturm-Liouville problems.

Sturm-Liouville problems in which the eigenfunctions have a discontinuity at an interior point
arise naturally in a host of physical applications. Elementary examples include vibrating strings
loaded in assorted configurations with point masses ([8], [79], [87]), as well as certain problems
for heat transfer ([80], [87]). The inverse problem of reconstructing the material properties of
a medium from external data is a problem of central importance in physics and engineering.
Here the so called data consists usually of a combination of the natural frequencies of vibration
(eigenvalues), vibrational amplitudes (norming constants) and positions of zero wave amplitude
(nodal positions), all of which can be observed externally by disturbing the medium in some
way. Because the assumption of a homogeneous medium is often an over-simplification, any
change in medium results in a discontinuous inverse problem. Such problems occur for example in
electromagnetism, where spectral data can be used to reconstruct the conductivity and permittivity
profiles of a medium with discontinuities ([47], [48]).

Forward and inverse spectral theory for Sturm-Liouville equations with discontinuities has been
gaining traction in recent years. However, studies seem to be largely limited to very specific types
of discontinuity conditions. Common examples are simple jump discontinuities, whereby either
the discontinuity in y is independent of the discontinuity in 3/, or cases where y is continuous
and the change in 3/ is assumed to be proportional to y. By comparison, more general constant
coefficient transmission conditions involving both y and 3/’ have received very little attention. In
particular, there is much work to be done in extending classical oscillation theorems to discon-
tinuous problems with minimally restrictive transmission conditions of constant coefficient type.
Problems where the spectral parameter enters into the transmission conditions have been consid-
ered, although again, there is much room for growth. Discontinuous Sturm-Liouville problems



where the transmission conditions are dependent on the spectral parameter have thus far been lim-
ited to affine case ([2], [65], [66], [85]). In comparison, continuous problems have been studied
where the boundary conditions have polynomial or rational dependence on the eigenparameter
(see for example [11], [12], [28]), yielding interesting spectral structure.

Our aim in this thesis is to target some of these deficient areas. In particular, we are interested
in studying the oscillatory properties of eigenfunctions corresponding to Sturm-Liouville equa-
tions with general constant coefficient transmission conditions. We also aim to develop theory for
discontinuous Sturm-Liouville problems where the transmission conditions have a rational depen-
dence on the spectral parameter. Exact definitions of these two particular types of transmission
conditions are given in Sections 2.2 and 2.3 below.

2.2 Transmission conditions dependent on the spectral parameter

Boundary value problems where the spectral parameter appears not only in the differential equa-
tion but also in the boundary conditions and/or transmission conditions are of particular interest
both mathematically and in physical applications (see [8], [79], [87]).

Transmission conditions of the form

{ 5/((%?) ] - [ h(CA) c91 } [ yyf((%—)) } ) 2.2)

where ¢ € R™ and h is affine in A, constitute the vast majority of cases of “eigenvalue dependent
transmission conditions”. We refer the reader to [66], [86] and the references therein for examples.
Recently, the discontinuity condition

(][ L[], 03

y2(07) | (\) y2(07)
with ¢ € R™ and h a polynomial in A was considered in [41] for the Dirac operator
0 11dY [ p) q=) Y1
_ Y=)Y Y= 24
[—1 O}dﬁ_q(x) r() ’ p | @4

with boundary conditions also polynomially dependent on the spectral parameter. !

To the best of our knowledge, this is the first time spectral theory has been presented for trans-
mission conditions with rational dependence on the eigenparameter. In particular, our rationally-
dependent transmission conditions take the form

y(07) =r(N) [y'(07) =/ (07)], 2.5)
y'(07) = s(A) [y(0") —y(07)]. (2.6)
Here
-~ B I
r(A):—;)\_%, s(A):;A_éj, 2.7)

"Note that for reasons of notational simplicity we will state all problems in literature reviews on the interval (—a, b),
a, b > 0 with points of discontinuity at x = 0 (except in cases of multiple discontinuities). This is not necessarily the
setting chosen by the authors, but is equivalent by a simple change of variables.

4



where

<y <-- <IN, (2.8)
0 < 09 < -+ < Oy, 2.9)

and fj,a; > Ofori = 1,...,Nand j = 1,...,M. Itis easy to check that s(\), —r(A),

—ﬁ and le) are Herglotz-Nevanlinna functions. Recall that a function f : C — C is Herglotz-

Nevanlinna if f(Z) = f(z) and f maps the closed upper half plane to itself. Such functions have
real, simple poles.

Note that we impose the following interpretation at zeroes and poles of r and s. If r(\) = 0
then (2.5) reduces to the Dirichlet condition y(01) = 0 at A, while if ) is a pole of r then (2.5)
becomes y'(0") = ¢/(07). Similarly, if s(\) = 0 then (2.6) reduces to the Neumann condition
y'(07) = 0 at \, while if ) is a pole of s then (2.6) becomes y(0~) = y(0T).

2.3 Transmission conditions with constant coefficients

Here we consider the particular case where the coefficients of the transmission conditions (1.4),
(1.5) are real numbers with mi4 = mos = 0 and [m11may — miame1]| /mizmaos > 0. These
restrictions allow for (1.4), (1.5) to be written in the form

y(0F) ] _ [ tu ti y(07) (2.10)
(py')(0T) tar teo | | (py)(07) |” '
where T = [ ill ?2 ] is a real 2 x 2 matrix with det7 > 0. Transmission conditions of
21 122

this type yield self-adjoint problems (subject to suitable restrictions on the coefficients p, ¢ and
r). The case for det T" > 0 has been discussed in the recent paper, [81], expanding on the usual
theory which requires the transmission matrix to have determinant 1.

Discontinuity conditions of the form (2.10) are of central focus in the description of quantum me-
chanical systems. If » = p = 1 in (1.1) then £y = —y” + qy is the one dimensional Schrodinger
operator with potential ¢. In quantum mechanics discontinuity conditions of the form (2.10) are
called point interactions. Point interaction models occur also in solid state physics, atomic and nu-
clear physics, in the description of certain electromagnetic, chemical and biological phenomena,
as well as in the study of quantum chaotic systems ([3], [4]).

Of all one dimensional point interactions three types have a special significance in connection
. ) d2 . .
with the Schrédinger operator, —gz T q(z), with potential ¢ ([19]).

I The §-interaction or d-potential with intensity e is classified by the point transfer condition
y(O) | _[1 0] »(07)
on ] =1e VLo | ey

I The ¢’-interaction with intensity o has

EI R [P N



III The ¢’-potential with intensity ¢ is characterized by

EE R R [P
where 6 = 3¢,

Point interaction models of this type are studied in a variety of different settings. These include
descriptions as singular perturbations of the negative Laplacian in suitable L2-spaces ([4]); as
self-adjoint extensions of the minimal operator —j?, defined on functions belonging to the class

C5°((—00,0) U (0, 00)) for point interactions at z = 0 ([3], [4], [19]); and as definitions in terms
of Dirichlet forms ([5]).

Schrodinger operators with point interactions have received a lot of attention in recent years in
connection with nodal problems on graphs. Here, the oscillation counts of eigenfunctions corre-
spond to so called nodal counts. Nodal counting theory has been developed for graph problems
where the matching conditions are either standard Kirchhoff conditions or of so called §-type
([70], [71]). For graphs with a vertex of degree 2 at x = 0, these conditions correspond, re-
spectively, to full continuity conditions y(0~) = y(07), ¢/(07) = ¢'(0") (Kirchhoff), or -
interactions of type I above (J-type). Note that both conditions require the eigenfunctions to be
continuous at the vertices. Our aim is to extend this theory to transmission conditions permitting
discontinuities in both y and v/'.

We will employ a novel parametrization of the transfer matrix, 7, in order to the study oscillatory
properties of the Sturm-Liouville problem (1.1)-(1.3) with general transmission conditions of the
form (2.10). In particular, we make use of the Iwasawa decomposition of SL(2,R), which gives
each g € SL(2,R) a unique representation in the form

| cos¢ —sing v 0 1 9
g_[singb cos ¢ }{0 1/7][0 1]' (2.14)

Here v € R™, § € R and we restrict ¢ € [—m, 7). In particular, writing 7' = gv/det T' with
g = (1/vdetT)T € SL(2,R) it can be shown that ¢, v and § are determined uniquely by the
following formulae

t t
cos¢:$ sing = ——2 (2.15)

9 ¢ )
Vit + s Vi 5

[t2. + 12 tiqt tort
= 1+ 21’ 5= ;2+ ;1 22 (2.16)
detT 11, +t5;

We note that the three point interactions mentioned above have the following representations in
the Iwasawa decomposition as follows:

Icos(b:ﬁ,Sin(b:\/l:»j’fy:m,é:ﬁ,
I¢=0~v=1,0=o0,
I cos ¢ =sgn(d),y = 10|, = 0.



As a sample result, we prove that for transfer matrices T satisfying the condition tan ¢ = ~2§
(where ¢, v and ¢ are as in equations (2.15)-(2.16) above) the nth eigenfunction has total os-
cillation count n — 1 in (—a,b). Note that the J-interaction in I above satisfies this condition.
This result corresponds to known theory obtained for the nodal counts of quantum graphs with
d-interactions (see for example R. Band [9]). However, the above condition is also satisfied by
the ¢’-potential in III, yielding a new result. For a discussion of the oscillation counts permitted
by ¢’-interactions (type II) see Chapter 5.



Chapter 3

Sturm-Liouville eigenvalue problems
with transmission conditions Herglotz
dependent on the eigenparameter

3.1 Introduction

Recently, there has been growing interest in spectral problems involving differential operators
with discontinuity conditions. We refer to such conditions as transmission conditions (see also
[24], [60], [61], [62], [73], [82]), although they appear under the guise of many names. These
include point interactions in the physics literature, with important examples being the § and ¢’
interactions from quantum mechanics (see for example [3], [19], [25] and the references therein);
interface conditions ([46], [95], [96]); as well as matching conditions on graphs ([91], [94]). Also
related to this particular class of problems are the more general multi-point conditions, containing
both interior points of discontinuity and endpoints (see for example [45], [55], [59]). For an
interesting exposition of transmission condition problems that arise naturally in applications we
refer the reader to the book by A. N. Tikhonov and A. A. Samarskii, [79].

Direct and inverse problems for continuous Sturm-Liouville equations with eigenparameter de-
pendent boundary conditions have been studied extensively (see [10], [11], [12], [21], [29], [30],
[58], [72], [85] for a sample of the literature). Investigations into Sturm-Liouville equations with
discontinuity conditions depending on the spectral parameter have been thus far only limited to
the affine case (see [2], [65], [66], [85]). Although, this sometimes coupled with higher order
A-dependence in the boundary conditions. In [67], A. S. Ozkan studies Sturm-Liouville equa-
tions where the eigenparameter is rationally contained in the boundary conditions and an affine
dependence in the transmission conditions.

We consider the equation
ty=—y"+aqy=2Xxy 3.1

on the intervals (—a,0) and (0,b) with y|_, o) € W*?(—a,0) and y|p € W>2(0,b), where
a,b> 0and q € L?(—a, b) is a real-valued function. We impose boundary conditions

y(—a)cosa = y'(—a)sin a, (3.2)
y(b) cos B =y (b) sin 3, (3.3)

where a € [0,7) and 5 € (0, 7], and transmission conditions

y(0%) =r(N)AY (3.4)

8



y'(07) = s(A\)Ay. 3.5)

Here
Ay = y(0F) —y(07),
Ay = y(07) =y (07),
M2
_ J
s(\) = Z s (3.7)
7j=1
where
71 <7y < <IN, (3.3)
0 < g < -+ < O, 3.9

and B;,a; > Ofori =1,...,N,and j = 1,..., M. Then s()\), —r(}), _le) and le\) are
Herglotz-Nevanlinna functions, and consequently have real, simple poles.

Note that () = 0 reduces (3.4) at A to the condition y(0") = 0, while if X is a pole of 7 then
(3.4) becomes Ay’ = 0, i.e. ¥ (01) = ¢/(07). Similarly, if s(A\) = 0 then (3.5) at A becomes
y'(07) = 0, while if ) is a pole of s then (3.5) becomes Ay = 0, i.e. y(07) = y(0).

The remainder of the chapter is structured as follows. Eigenvalue multiplicities are considered
in Section 3.2. We show that the maximum geometric multiplicity of the eigenvalues of (3.1)-
(3.5) is 2, and that geometrically double eigenvalues can occur only at zeroes of r(\) or s(\).
All eigenvalues not at zeroes of () or s(\) are geometrically simple. Furthermore, we show
how to construct potentials ¢ for which (3.1)-(3.5) has precisely k£ double eigenvalues, where
0<k<N-+M-—2and N and M are defined in (3.6) and (3.7). In Section 3.3 we formulate
(3.1)-(3.5) as a self-adjoint operator eigenvalue problem with eigenvalues that agree up to multi-
plicity. We also determine the form of the corresponding eigenfunctions. In Section 3.4 we define
the characteristic determinant of (3.1)-(3.5). In Section 3.5 we construct the Green’s function
and resolvent operator corresponding to the self-adjoint operator eigenvalue problem. Lastly, in
Sections 3.6 and 3.7 we give asymptotic approximations for eigenvalues and solutions. From this
asymptotic approximations for eigenfunctions can be found using the observations of Section 3.3.

The results contained in this chapter provide the foundation for an associated inverse problem
discussed in Chapter 4.

3.2 Preliminaries

Lemma 3.2.1. All eigenvalues of (3.1)-(3.5) not at zeroes of r(\) or s(\) are geometrically
simple. In this case the transmission conditions (3.4)-(3.5) can be expressed as

[ y(07) } :T{ y(07) ] (3.10)

where



(i) T = 1if \is a pole of both r and s.

1

(i) T = (1) 5(1’\) ] if s(\) € C\{0} and X is a pole of r.

[ 1 0
(iii) T=1| 1 } ifr(\) € C\{0} and X is a pole of s.
L r(A)
U IR
i T=| 1| irsi) e o)
L ) r(N)s(2)

Proof. As T is invertible the imposing of (3.2) restricts the solution space of (3.1) to one dimen-
sion. O

Theorem 3.2.2. The maximum geometric multiplicity of an eigenvalue of (3.1)-(3.5) is 2 and such
eigenvalues can only occur at zeroes of r(\) or s(\). An eigenvalue \ has geometric multiplicity
2 if and only if r(A\) = 0 or s(\) = 0, A is an eigenvalue of (3.1) on (—a,0) with boundary
conditions (3.2) and y'(07) + s(\)y(07) = 0, and X is an eigenvalue of (3.1) on (0,b) with
boundary conditions y(0%) — r(\)y/(01) = 0 and (3.3).

Proof. The conclusion that these are only instances in which non-simple eigenvalues are possi-
ble follows from Lemma 3.2.1. That the multiplicity is 2 in the given circumstances is directly
evident. ]

Note that in the above theorem, if A is a pole of 7 then y(07) — (\)y/(0") = 0 is taken to mean
y'(0T) = 0, while if ) is a pole of s then 3/ (07) + s(\)y(0~) = 0 is taken to mean y(0~) = 0.

Note 3.2.3. Ifa; < by <az <by <:-- <bp_1 < ay, and

m—1
(bj = A)
g = 2
[Tt —»
k=1
then .
Cr
g(A) - TZI ay — )\
where
m—1
H (bj —ar)
j=1
Cp = "
H(ak —ay)
k#r

andc, >0forallr =1,...,m.

Theorem 3.2.4. For any N, M & N there are potentials ¢ € L*(—, ) and parameters v <
Yo < o <N, 01 < 0 < - < O, and By, > O0fori =1,...,N,andj =1,...,M

10



such that (3.1)-(3.5) with a = b = m has precisely N + M — 2 double eigenvalues (the maximum
number possible).!

Proof. Assume that N < M. We take boundary conditions y(£m) = 0 and set ¢(z) = 0 for
x € [0, 7] and

r(A) = ]}]—:[1 ((k_;)2_)\>.

Now 12/4,32/4,...,(2M — 3)%/4 are eigenvalues of (3.1) on [0, 7] with boundary conditions
y(m) = 0 = ¢/(0%), while 12,22, ..., (N — 1)? are eigenvalues of (3.1) on [0, 7] with boundary
conditions y(7) = 0 = y(0"). In particular, A = 12,22, ... (N — 1)? are eigenvalues of (3.1)
on [0, 7] with boundary conditions y(7) = 0 and y(0%) = r(\)y'(0") (when r(A\) = 0).

Letaj = (j —1/2)%forj = 1,...,N —landa; = pjforj = N,...,M — 1, where A =
UN < pin4+1 < - -+ < ppr—1 are eigenvalues of (3.1) on [0, 7] with boundary conditions y(7) = 0
and y(01) = r(\)y/(0") with A > (N — 1)%. Define b; = (j — 1)> for j = 1,..., N, and
bj = (aj+aj_1)/2f0rj:N+1,...,M—1andbM:aM,1+1. Let
M-1
H (aj = A)
_ =t
[T —»
k=1

We now take ¢ on [—7,0) to be an L? potential so that the eigenvalues of (3.1) on [—7,0) with
boundary condition y(—m) = 0 and y(0~) = 0 contains the set

{12,22,...,(N—1)2,,&]\[,...,,&]\4_1},

while the eigenvalues of (3.1) on [—7, 0) with boundary condition y(—7n) = 0 and 3/ (0~) = 0
contains the set
{12/4,8%/4,... (N —1)?/4} .

This is possible via the Gelfand-Levitan theory of inverse spectral problems (see for example
[27]). It is now easily verified that A = (25 — 1)?/4 for j = 1,...,2N — 2, as well as y;, for
7= N,..., M — 1 are double eigenvalues of the transmission problem with ¢, r, s as constructed
here with boundary conditions y(£7) = 0. O

We note that using similar methods to those of the above proof, it can be shown that any number
of eigenvalues between 0 and N + M — 2 can be constructed to be double. Due to notational
opacity we will only present a proof of the other extreme case, that of no double eigenvalues.

Theorem 3.2.5. For any N, M € N there are potentials ¢ € L*(—, ) and parameters v, <
Yo < s <N, 01 < 02 < - < Opp,and By, > 0fori=1,...,Nand j=1,..., M such
that (3.1)-(3.5) with a = b = 7 has no double eigenvalues.

'Since the number of zeroes of 7(\) is N — 1 and the number of zeroes of s(\) is M — 1, the maximal number
of N + M — 2 double eigenvalues is achieved when the zeroes of r are disjoint from those of s and at each zero the
conditions of Theorem 3.2.2 are satisfied.
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Proof. For no double eigenvalues we require that:

I. The boundary value problem consisting of the equation fy = Ay on (0, b), with boundary
conditions y(0") = 0 and (3.3) does not have an eigenvalue at a root of 7(\) = 0;
II. The boundary value problem consisting of fy = Ay on (—a,0), with boundary conditions

y'(07) = 0 and (3.2) does not have an eigenvalue at a root of s(\) = 0.

Fora =7 =b,a = /2 = 8 and ¢ = 0, the conditions I and II can be met by taking

N-—1
| (5> =)
r) = 2 .
1
((-3) )
and Mt ,
()
s = -1
H (k> =)
k=1

3.3 Hilbert space setting

We now formulate (3.1) with boundary conditions (3.2)-(3.3) and transmission conditions (3.4)-
(3.5) as a self-adjoint operator eigenvalue problem. Set

Ly Y
LY = | (uyi + B8, | Y= (W)L, |, (3.11)
(0597 + ayAy) L, (3L,

with domain

y‘(—a,O) € W272(_a’7 0)7
Ylop) € W>2(0,0),
Y y obeys (3.2) and (3.3)

_ — 1\N N
D(L) =qY:= Eyé)ﬁl _y(0+) _ Z 51%1 ) (3.12)
yj)j:l i=1

/ A 2
y'(07) = Zl @;Y;
‘]:

where W22 is the Sobolev space. Note that for notational simplicity we will write (y})¥, as
(y}), and similarly (y?)]]\il as (ng) These are still to be understood as vectors in C¥ and CM

respectively.
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Theorem 3.3.1. The eigenvalue problems LY = XY, and (3.1) with boundary conditions (3.2)-
(3.3) and transmission conditions (3.4)-(3.5) are equivalent in the sense that )\ is an eigenvalue
of LY = AY with eigenvector Y if and only if )\ is an eigenvalue with eigenfunction y of (3.1)
with boundary conditions (3.2)-(3.3) and transmission conditions (3.4)-(3.5). Here Y and y are
related by

Y
Y — ( o Ay’) (3.13)
(A%J‘Ay)
provided that X # ~;,6; foralli =1, N and j = 1, M. If \ = ~y, for some p € {1, ..., N} then
ot
Yy = —y(ﬁ ) and yi =0 Vk#np. (3.14)
2

Whereas, if X = 6,, for some p € {1,..., M} then

and y2=0 Vk# . (3.15)

The geometric multiplicity of A as an eigenvalue of L is the same as the geometric multiplicity of
A as an eigenvalue of (3.1)-(3.5).

Proof. Suppose that LY = AY. Then fy = Ay, where y|_.0) € W??(—a,0), ylop) €
W22(0,b) and, moreover,

= LAy if A #
1 / 1 Y ARy 1 # Y .
2wl BAY = Ml =— Vi , t=1,N,
’-)/Zyz ﬂi 4 yl {Aylzo lf )\:’y,b

2 _ 9 :

y: = Ay if XN#J; .
Sl +aAy = NZ=<{"7 A% . j=1,M,
sy sy Ui Ay =0 it A=s, 7

where
N M
—y(0") => B, Y(07) =) au}.
=1 7=1

Thus, we conclude that

Also,
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if A\ # 0; forall j =1, M, else if A\ = §,, for some p € {1,..., M} then

y'(0~
Ay=0, y,= i), i =0 Vk#pu.
I

Hence, the eigenvalues of L are eigenvalues of (3.1) with boundary conditions (3.2)-(3.3) and
transmission conditions (3.4)-(3.5) with corresponding eigenfunction y = [Y]O, the functional
component of Y.

For the converse, suppose that A is an eigenvalue, with corresponding eigenfunction y, of (3.1)
with boundary conditions (3.2)-(3.3) and transmission conditions (3.4)-(3.5). Then fy = Ay with
Yl(—a0) € W>2(—a,0) and y|op € W>2(0,b). Define Y as given in (3.13)-(3.15). Now, if
A # ~y; foralli =1, N then

N N 2
. 1 = e ! = — / = — +
Z;ﬁzy@ ; 1o A = Ay = —y(07),

1=

since y obeys (3.4). Whereas, if A = 7, for some p € {1,..., N}, then
N
> Byt = Byyp = —y(0%),
i=1
by (3.14). Similarly, if X # J; for all j € 1, M then
M
Dyt =s(N)Ay = y'(07),
j=1
since y obeys (3.5), while if A = ¢, for some ;v € {1,..., M} then by (3.15),

m
D ayi = auy; =y'(07).
j=1

Next we consider the correspondence of geometric multiplicities. If A is an eigenvalue of (3.1)-
(3.5) with linearly independent eigenfunctions y[l], ... 7y[k] then the vectors Y[I], cy Yy ag
given by (3.13)-(3.15) are linearly independent eigenvectors of L with eigenvalue A\. Hence, the
geometric multiplicity of A as an eigenvalue of L is at least as large as the geometric multiplicity
of )\ as an eigenvalue of (3.1)-(3.5).

If YIU, ... Y are linearly independent eigenvectors of L for the eigenvalue ) then it remains
only to show that the corresponding functional components [Y1]g, ..., [Y¥], are linearly inde-
pendent eigenfunctions of (3.1)-(3.5) for the eigenvalue \. That they are eigenfunctions of (3.1)-
(3.5) for the eigenvalue A follows from the first part of this theorem, it remains only to prove
independence. Supposing that [Y']g, ... [Y[¥]y are lineraly dependent, there are pi, ..., pi,
not all zero, such that

k k
0= an[Y[”]}o = [Z pn Y
n=0 n=0

The linear independence of Yol . YK gives that

0

k
0#£> puY =Y.
n=0
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Y

AsY := | (y}) | € D(L), fromy = 0 it follows that
(v3)
N M
0=> By and 0= ajy. (3.16)
i=1 j=1
But LY = MY, and again y = 0. Hence, \y; = vy} and \yj = J;y7 forall i = 1, N and
7 = 1, M. However, by (3.8) at most one of y%, .. ,y]lv is non-zero, so by (3.16) all are zero.
Similarly, by (3.9) at most one of 32, . .. ,y%/[ is non-zero, so by (3.16) all are zero. Thus we get
a contradiction to Y # 0. O

We conclude this section by showing that L is a self-adjoint operator.

Theorem 3.3.2. The operator L is self-adjoint in H = L?(—a,b) @ CM @ CV.

f
Proof. We begin by showing that D(L) is dense in 1. Let F' = | f' | € H, where f! = (f}),
f2
2 = (ff) For m > 2 let
M
(x+a)™
ma™—1 Zajsz’ <0 W,
Wy () = = then W,,= | f' | eD(L). (3.17)
—(b— )™ 9
OIS s f
i=1

As ¢ € L*(—a,b) it follows that (C§°(—a,0) P C5°(0,b)) P{0} P{0} C D(L). Here,
C§°(—a,0) @ C§°(0,b) is dense in L?(—a, b) so there is a sequence {g,,} C C5°(—a, 0) @ C5°(0,b)
with g, — f — w,, in norm. Here,

9n
Gn:=| 0 | eD(L)
0

and thus W,,, + G,, € D(L). Now, W,,, + G,, — F in norm as n — oo giving that D(L) is dense
inH.

We now show that L is symmetric. As ¢ € L?(—a,b), we have that if fli=a,0 f‘/(—a,O)’
Ufl(—a0) € L*(—a,0), then f|_, ¢y € C'(—a,0) with Fl{_a,0) absolutely continuous, and simi-
larly for f|( ). It is thus possible to impose the conditions (3.2) and (3.3) on such a function f.
Let F,G € D(L), then the functional components f and g of F' and G respectively obey

(¢f,9) = (f,lg) = (=f'g+ f3)(07) + (f'g— fg")(0"),
where (f,g) := ffa fgdx. Moreover, the vector components satisfy

<('Yif@'1 + 62Af/)’ (gzl)>N - <(le)7 (’Yigz‘l =+ BiAg/»N
= Af/ <(/BZ>7 (gzl)>N - Ag/ <(le)’ (/BZ)>N
= —Af'g(07) + Ag'f(07),
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where (-, -}y is the Euclidean inner product in CV, and

<(5jfj2+ajAf) (9)),, — (D), (8597 + a;Ag)),,
= AF (), (97)),, — AG {7, (),
=Afg(07) = Agf(07),

where (-, -}, is the Euclidean inner product in CM. Let
(F,G) = (f,9) + ((£1): (D)) 5y + {(F7), (9D)) 5
Then a direct computation gives
(f'g—=£3)(07) = (f'g— f3)(07) = AF'f(07) = Af'g(07) + Afg'(07) — Agf'(07).
Thus (LF,G) — (F, LG) = 0. So L is symmetric, giving D(L) C D(L*).

To show that L is self-adjoint it remains only to verify that D(L*) C D(L). Let G € D(L")
then (LF,G) = (F, L*G) for all F' € D(L), and the map F' — (F, L*G) defines a continuous
linear functional on H. Hence, the map F' — (LF,G) is a continuous linear functional on
H restricted to the dense subspace D(L). In particular, there is & > 0 so that for all F' €

(C5°(—a,0) @{0}) B0} @{0} we have that

0 x t
'/ 1" <—g+/ / qu7‘dt> dz| < k|| fllz, (3.18)
forall f € C3°(—a,0). Hence, see [1, Chapter 1 & 2],
x t
—/ / qgdrdt € H*(—a,0). (3.19)

We note here that qg € L*(—a,0), giving that fﬁa qgdr € L*(—a,0). Hence, g € H'(—a,0)
and differentiating (3.19) gives

g’—/ qgdr € H'(—a,0). (3.20)

—a

Thus ¢” exists as a weak derivative and is in L' (—a, 0). Applying the above in (3.18) gives

‘/ 7"+ q9) dz
—Qa

and hence (*g = (g exists in L?(—a,0).

< k| fll2, (3.21)

Similarly, we obtain g,¢’,¢*g = fg exists in L?(0,b). Thus g € H?(—a,0) @ H?(0,b) with
(*g = g € L*(—a,b). Hence,

b b b
fegda;z/ (tf)gdz = (LF,G) = (F,L*G) = | f[L*Glodax

—a —a

forall F' € (C§°(—a,0) @@ C3°(0,b)) {0} {0}, giving [L*G]y = Lg.
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Now, for each f! € CV and f2 € CM let W, be as in (3.17), then we have that

b
/_ twgdz + (i f! + Bidw,'), [G]") 5 + (67 + ajAwy), [G?)
= <LWTL7 G)
= (W,, L*G)

:/b wy (g dx + (£, [L*G]") , + (£, [L*GT?), -

Applying integration by parts to the pair of integrals in the above expression we have

(w,g)(0%) = (w,g)(07) + ((vif} + BidAwa), [G]") y + ((6,f] + a;Aw,), [GI*)
= (wag)(0%) = (wag)(07) + (£, [L*G]") , + (F2, [L*G]?),, -

Here
wp(07) = an”? <f2,a>M, wn(OJr) = — <f1,ﬁ>N,
w(07) = <f2,a>M, w! (01) = nb™! <f1,,6>N,
where o = (o;) and 3 = (b;). Thus we have
{8, B) 70) — (£, @), 5(07)
+ (£ (Gl y + b (. 8) y (8. (G y = (£% ), (B, [G])
+(f%, (5j[G]?)>M - <f17'6>N (e, [G]2>M —an™! (£, )y (e, [G]2>M
=—(f,8),7(0") —an " {f*,a),, 7(07)+ < ', [L*G]' >N + < £2,[L*G]* > .

Allowing f' and f2 to vary throughout C"V and CM respectively gives

nb~' B (9(07) +([G1, B) y) = B (([G), @), — ¢'(07)) = [L*G]' — (%(GI})

and

a (9(07) +([GI". B) ) + an" e (([GP, @), — ¢'(07)) = (&[GI5) — [L*G)*.

Now allowing n to vary, we get

g(0") +([G]",B)y = O,
~B (G, e),, — g +>) = |
([G]?,a),, —g'(07) = 0,

a(g(07)+([G1,8)y) = (5[G)) - [L*GP*.

Thus
(0+) = <[G]176>Na
g07) = (G a),,
[L°G)" = (wlG) + BiAY),
[L*G)® = (5J[G]32‘+O‘JA9)

Hence, it follows that G € D(L) and L*G = LG.
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3.4 The characteristic determinant

Let u_(x; \) denote the solution of (3.1) on [—a, 0) satisfying the initial conditions
u_(—a;\) =sina and u' (—a;)\) = cosa, (3.22)

and v (z; \) denote the solution of (3.1) on (0, b] satisfying the terminal conditions
vp(b;A) =sinf and ! (b; \) = cos S. (3.23)
We note that u_(z; A) and vy (x; A) can be extended to solutions w4 (z; A) and v_(x; \) of (3.1)
defined on (0, b] and [—a, 0) respectively by imposing the transmission conditions (3.4) and (3.5).

At values of the eigenparameter not coinciding with a zero of 7(\) or s(A) this is achieved simply
by applying transfer matrix 7" defined in Lemma 3.2.1. That is, we define

[Zjiﬁiii } -7 [ Zgg_m (3.24)
" [ Zi§8—§§ ] =T [ ZIES:;; } (3.25)
and write

Uy (23 A) = up (07 N wi (23 A) + /(073 Nwa(z;A) for —a <z <0
v—(z; ) = v—(07; N)wy (x5 0) + 0 (073 Nwa(z;A)  for0 <z <b,

where w1 (z; A) and wy(z; A) are solutions of (3.1) on [—a, 0) U (0, b] satisfying

wi(0; ) =1, wa(0;\) =0 (3.26)
wi(0;0) =0, wh(0;\) = 1. (3.27)

At zeroes of () or s(\) we extend u and v_ by continuity, defining

up(x;\) = lirri [y (075 p)wn (25 ) + (01 pwao(z; p)]  for —a <z <0
s

v_(z; \) = lirri [0_(07; p)wi (z; ) + v (07 p)wa(a; )] for0 <z <b
=

if the limits exist. Define

(3 A) if —a <
u(w; \) = 4 8- @N) il —ase <0 (3.28)
uy(zA) f0<x<b
and
(z;A) if —a <
o(w ) = 4 V-@A) if —as e <0 (3.29)
vi(zy;A) if0<z<b
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M M N N
wN) = > "ad T a=a| D 8 I =) kO ) (0F) —u'(07)u(0")]

j=1  k=1,k#j i=1  k=1k#i
N [ M M i

+][O =) (D e I (A—6)| u(0)o(0")
i=1 =1 k=1k#j
M [ N N i

+ I =) D87 TI =) | w/(07)'(0%)
7=1 | =1 k=1,k#i ]
N M
H (A= H Jo(0F). (3.30)

Here, w(\) will be referred to as the characteristic determinant of (3.1)-(3.5). In the following
theorem we show that w has the properties expected of the characteristic determinant.

Theorem 3.4.1. The function w(\) is entire, has zeroes at precisely the eigenvalues of (3.1) -
(3.5) with the order of the zeroes of w(\) coinciding with the geometric multiplicity of X as an
eigenvalue of (3.1) - (3.5), and hence of L.

Proof. Let u_, vy be defined as in equations (3.22), (3.23). Then any function of the form

(23 1) = CNu—(z; ), if —a<z<0, (331)
A= D(N)vg(z;A), if0 <z <b, .

is a solution of (3.1) satisfying the end boundary conditions (3.2) and (3.3). For any function y
given by (3.31), above, we define the following forms,

N N

Ui(y:d) = ] =)(0") +262 II (—way, (332)
i=1 i=1  k=1k#i
M M M

Ua(y;\) = [JO=6)y'07)=> aF J[ (A=dAy. (3.33)
J=1 j=1  k=1k#j

Clearly, A is an eigenvalue of (3.1) with boundary conditions (3.2)-(3.3) and transmission condi-
tions (3.4)-(3.5) if and only if U (y; \) = Ua(y; A) = 0. That is, the eigenvalues of (3.1) - (3.5)
coincide with the zeroes of

w(X) = det [ Ur(u_iA) Ui(vg:\) }

Ua(u—;A) Ua(vg; A) (3.34)

where by U;(u_; \) (respectively U;(v4;\)) for i = 1,2 we mean U;(y; A) with C(\) = 1,
D()\) = 0 (respectively C(\) = 0, D(A) = 1). By expanding the right hand side of (3.34) it is
easy to check that this agrees with the right hand side of (3.30). It remains only to confirm that
the order of X\ as a zero of w coincides with the geometric multiplicity of A as an eigenvalue of

(3.1)-(3.5).

Suppose that A is an eigenvalue of (3.1)-(3.5) with (A) = 0 or s(A) = 0. We give details only for
the case of 7(\) = s(A) = 0, as the arguments for the remaining cases are similar. In this case,
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the transmission conditions reduce to y(07) = 0 and ¥/(0~) = 0 at . Since r(\) = s(\) = 0,
the main diagonal elements Uj (u_; \) and Ua(v4; A) are both automatically zero. Indeed

N N

U(ussN)=— D8 [ A=) |u(07), (3.35)
| i=1  k=1k#i ]
B M i

Us(vy; \) = — Zaf /\—5k) vy (07), (3.36)

both of which vanish as the terms in square brackets vanish. Next consider the off-diagonal
elements of the matrix in (3.34). Us(u—; ) and Uy (v4; ) are only zero if v/ (07) = 0 and
vy (0T) = 0, respectively, since

N [ N
U(vs; A) = [T = 70)ve (07) + Z (A =) | v (07), (3.37)
i=1 =1 k=lki
M [ M M
o(u_; A H )+ > af [ (A=dw)|u(07), (3.38)
j=1 =1 k=Lk#j

and the terms in square brackets vanish for (A) = s(\) = 0. By P. Binding, P. Browne and B.
A. Watson [11] Uy (v4; A) and Ua(u—; ) only have simple zeroes (Uz(u—; A) = 0 can be viewed
as the eigencondition for the boundary value problem: —y” + gy = Ay on (—a, 0) with boundary
conditions y(—a) cosa = y'(—a) sin wand y'(0) 4+ s(\)y(0) = 0, which is of the type considered
in [11], and similarly for Uy (v4; \)). For a geometrically double eigenvalue (refer to Theorem
3.2.2) we require both u/_(07) = 0 and v4.(0T) = 0 at A, which gives Us(u—; \) = Uy (v4; \) =
0 and results in a zero of order 2 for w. On the other hand, a geometrically simple eigenvalue
occurs when r(\) = s(A) if either:

L« (07) # 0and v4(07) = 0 (so X is not an eigenvalue of (3.1) on (—a, 0) with boundary
conditions (3.2) and y'(0~) = 0, but is an eigenvalue of (3.1) on (0,b) with boundary
conditions y(0") = 0 and (3.3)); or

Il v (07) = 0and v (0%) # 0 (so A is an eigenvalue of (3.1) on (—a,0) with boundary
conditions (3.2) and y'(0~) = 0, but is not an eigenvalue of (3.1) on (0, b) with boundary
conditions y(0") = 0 and (3.3)).

From (3.37)-(3.38), u/_(07) # 0 or v (0F) # 0 at A gives Ua(u—_; ) # or Up(vi;A) # 0
respectively, resulting in a zero of order 1 for w.

Finally, suppose that 7(\) # 0 and s(\) # 0, then we can rewrite (3.34) as

AR v, H v (0F) ug (0
S I c-wl > TI (- det[vigmg o

i=1  k=1k#i =1 k=1k#j Ut

+
Here, [ u/+58+§ } =T [ ,E 7 ] at A with T" defined as in Lemma 3.2.1, and u_ is extended
to a unique solution u (z; A) deﬁned for 0 < x < b by the note at the beginning of this section.
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Next, assume that A is an eigenvalue of (3.1)-(3.5), then by Lemma 3.2.1 X is geometrically sim-
ple. Since the solution space is one dimensional, u (z; \) and v (z, \) are linearly dependent,
hence there exists k # 0 such that vy = ku at \. We already know that w(A) = 0, implying that

v4(07)  ug(07)

E AT A

= Wv,u] = sin B’ (b; ) — cos Bu(b; \). (3.39)
Now suppose that w(\) = 0, where the dot indicates differentiation with respect to A. Differenti-
ating the above expression for w and using (3.39), we deduce that
0 = sin Bu)\ (b; \) — cos Buy(b; N).

Hence

[uu), — u'uy](b; X)) = %[vu& —v'uy](b; \)

= % [sin Buly (b X) — cos Buy (b; /\)] =0.
Using the fact that —u” + qu = Au and —u/} + quy = u + Auy we obtain
uuy — uul = u?,

and integrating by parts gives

/b w?(t; N)dt = [uu) — uw'up] (075 N) — [uuh — u'uy](07;5 ) (3.40)

—a

(clearly [uu, — w'uy](—a;\) = 0). We obtain a contradiction if the right hand side of (3.40) is
less than or equal to 0, which is proven in Lemma 3.4.2 below. So w has a zero of order 1 at A.

O
Lemma 3.4.2. Let \ be an eigenvalue of (3.1)-(3.5) with r(\) # 0 and s(\) # 0. Then

(i) if Xis a pole of both r and s, say, A = vy, = Oy for some 1 <n < N,1 <m < M,

u’(o-;A)r ~ [u(m;A)r,

Qo 571 ’

fuady, — u] (075 X) — [y — 'y (07 A) = — [

(ii) if s(\) € C\ {0} and X is a pole of r, say \ = 3, for some 1 <n < N,

(075 3) a0 = 503 [ MO O

(iii) if r(A) € C\ {0} and X is a pole of s, say, A = oy, for some 1 < m < M,

) (0%:2) = sy — (07 ) = [0 Y e g

Qm

(iv) ifr(\),s(\) € C\ {0},

W (0~ 2 w(0+: 2
[y, — ] (0% 0) = fuh — w'ux} (073 4) = $(3) [(OWA)] — () {M} :
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Proof. Suppose that (1), s(p1) € C\ {0}. The transmission conditions for y = u(z; ;1) can be
rewritten as follows

u(0F; 1)

Gy WO =07 ), (3.41)
w0 ) = LOT) o
(075 p) S00) +u(07; ). (3.42)

Differentiating with respect to x we obtain

u, (075 ) 7 ()u(0F; )

) 2 =y, (075 ) = —uy, (075 o), (3.43)
(0% 1) uui(zugu) B s‘(u);’((g)‘;u) (0 ). (A4

Multiplying corresponding sides of (3.41) and (3.44), and, similarly, multiplying (3.42) and
(3.43), and subtracting the results we get:
[unsy, — 0w, ) (075 ) — [ug, — u'uy (075 1)
7

() I N T R A () I SONCE
= 2 O gy O

Taking limits as ;x — \ yields the results stated in (i) — (iv). O

3.5 The Green’s function and resolvent operator

Let u(x; \) and v(z; \) be defined by (3.28) and (3.29) as in the previous section. Let ¢)(\) =
W u,v] denote the Wronskian of v and v. Clearly W [u, v] is independent of z on [—a,0) and
(0, b]. Because of the nature of the transmission conditions it is also easy to check that the value
of the Wronskian at 0~ and 0% is equal.

Theorem 3.5.1. The Green’s function of (3.1)-(3.5) is given by

;)\ t;)\
M, ifw <tandz,t € [-a,0)U(0,0],

) — (A
RS BICPVCY ift < xandz,t € [—a,0)U (0,b] o
W, i x and x, —a, ,b],
in the sense that if f € L*(—a,b) and X is not an eigenvalue of (3.1)-(3.5) then
b
g(xz; \) = Gz, t; ) f(t)dt := & f (3.46)

—a

is a solution of (A\—{)g = f on [—a,0) and (0, b], and, moreover, g obeys the boundary conditions
(3.2)-(3.3) and the transmission conditions (3.4)-(3.5).

Proof. From the above definition of G and g, we have
x

b
9 () = ulzs A) / ot M) F(£) b+ o(z; \) / u(t; N £ (1) dt. (3.47)

—a
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Differentiating g with respect to x gives

b T

g’(w;/\)w(A)ZU’(a?;A)/ v(t;A)f(t)dtJrv’(w;A)/ u(t; \) f(t) dt, (3.48)

and a further differentiation gives
b T
SN = W) [N o @) [ a0+ S )
= (q(z) = Ng(x; )p(A) + v\ f(x).
So (A — ¢)g = f. Further, for (3.47) and (3.48)
. . b . T
g Jeo = | e ] [ewnswars | S5 ] [ ue s a
from which it follows that
P . b
g o= wEN ] [ e s a
so (3.2) is obeyed as this condition is obeyed by u, and
) . b
3 o= [ 3 ] [
so (3.3) is obeyed as this condition is obeyed by v. Further, if A is not a zero of r or s then
+. +. b +. 0
IO o= wei) | [ ewnswans | S [ wtsnswa

so (3.4) and (3.5) are obeyed as these conditions are obeyed by u and v. If either (\) = 0 or
s(A) = 0 then more careful analysis is required. We present only the case of 7(\) = s(A) =0
as remaining cases are similar. In this case, the transmission conditions (3.4) and (3.5) reduce to
y(0T;A) = 0 and 3/ (07; \) = 0 respectively. Then v(0") # 0 and w/(07) # 0 at A, otherwise
choosing either y(z; A) = x(o,5v(2; A) or y(2; A) = X[—q,0)u(7; A) would give a solution of (3.1)
obeying (3.2)-(3.5) at A, contradicting A not an eigenvalue of (3.1)-(3.5). Using (3.24) and (3.25)
with X replaced by p, and taking limits as g — A we find that

r(p)s(p)u(z; p) — v (075 Nwa(z;A), 0<x<b,
r(p)s(p)v(z; ) = v(07; Nwy (23 0), —a<ax <0,

giving
r(p)s(p)p(p) = r(p)s(p) [u(0F; w)v' (055 1) — ' (0F; n)v(0F; )]
— —u (075 M) o(0F; N)

as 4 — A. Thus for —a < z < 0,

) = tm ey [ TUOSEER) (g r0so(E) [
g(x,)\)—g_”\[ ( ,u)/x R PEME ft)dt + sl / (t,u)f(t)dt]

u\x; 0
:_M/x wi(t N) f(£)dt — wi (23 \) /_U,(O_
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So ¢’(07; A) = 0. Similarly, for 0,z < b,

bou(t; v(x; r
otaih) = —un(a ) [ pode - SR [t s
giving g(0T; \) = 0. O

Theorem 3.5.2. Let A € C be different from the eigenvalues of (3.1)-(3.5) as well as the zeroes
and poles of r and s. Then the resolvent to L at X is given by (A — L)~ F =Y, where

S0 Gla, s N F()dt + AN)X a0y (@)u(w; ) + BO)x (o) ()0 (5 )

fLBiAy
Y(z; M) = A=Y ,
fi+a;Ay
pyrp
with N u
Z[ b ] fla 12[ ] Av] 2, (3.49)
) = A= (A = LA =9
1 M o
f+— J Au] 12, (3.50)

and G(x,t; \) as in Theorem 3.5.1.

Proof. Let X be different from all eigenvalues and zeroes and poles of r or s. Consider
(A\-L)Y =F. (3.51)
For the L? component, the general solution to the above equation is given by
y(x; A) = g(z; A) + AN X[—a,0)u(; A) + B(A)x (0,50 (5 A), (3.52)

for some A(\), B(A). Further, we require that

Myt — (viyt + BiAY) = £, i

My; — (6555 + oy Ay) = f7, j

[l
=

[l
S

Since Y € D(L),

—B(X)v(075A) — g(07;A) = —y(07)

Bivi

I
M) =

1

.
I

I
.512

N
I
—

— [+ By

o=

fi =) [BOYW (0% 2) = AN/ (0750) + Ag']

(2

— %

Il
.512

@
Il
—
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and

AN (0752) +¢'(0730) =/

j=1
So
[ —r(A)u'(07;A) r(A)v (075 0) —v(0F; N) ] [ A(N) ]
W' (075 A) + s(A)u(07; 0) —s(N)v(0T; ) B()\)
fﬁl 24905 0) —r(M)AY
%1 o f7+5(NAg —g' (075 )
=

The determinant of the above system is

1 S u(075A) | [ v(0%;5A)
—r(\)s(A) det ” R ] e ] e H = —r()sNBN),

giving
O+)\ N
AN (A [Z o f1+g (0%;0) = r(M)Ag
+[ (0" ““M] S )ag— g0
s(N) r(A) j:l)\
and

1n—. N )
BOWO) = - [u<o;A>+“(° > [Zf%fhg(oﬂn—rumg'

1

_ Mo
|:Z ! f2+s Agg’(O;)\)].

But (0%: )
V(075 0) =2/ (0750) — T()\’)

(0~ \) = (0 \) — 1 o (0F _ w05 )

070 =00~ o5 [0 = T
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and

U u' (075 )
(03 \) = u(0 ’)\)—i_is()\) ,
G0N = (0 1 w0 Ul(0_§>\)
050 =00+ a0+ .

Moreover, g(07;A) — 7(A)Ag’ = 0 and s(\)Ag — ¢'(0; \) = 0. Thus

N M

_ 1 Bi Joa, 1 o )
and
b\ &= [A = ) & A=, i :

giving (A — L)"'F = Y with

[ 2, Gl s N F(#)dt 4+ AN X(—a0yul@: X) + BO)x (o0 (w; A)
f}“"ﬁiAy,
Y(z;\) = A=
fi+a;Ay
=9,

&f + X[—a,0) WAV +X (0,5 VAU’ % Bif!t | X—a,0uAv+X (0,5 VAU M o f?
PN = A Pp(N) = A—0;
_ L 4+8iAy
_ CE . (3.55)
(f]?-‘rajAy
purp

Note, this solution can be extended to zeroes and poles of 7 or s (not coinciding with eigenvalues
of (3.1)-(3.5)) by using (3.24) and (3.25) and taking appropriate limits. ]

We will refer to the functional component, [Y]g, of the resolvent operator Y = (A — L)' F as
the Green’s operator corresponding to ¢. Note the relationship between the Green’s function and
the Green’s operator. The Green’s function is the kernel of the integration operator g(z; A), and g
together with a finite summation gives us the Green’s operator corresponding to /.

3.6 Eigenvalue asymptotics

The following result is a direct consequence of Theorem 3.7.1 (see the appendix of this chapter).

Theorem 3.6.1. Let ) = |Jm(v/\)| and let u(x; N), v(x; N) and w(\) be defined as in equations
(3.28), (3.29) and (3.30) respectively. Let q1(x) and q2(x) be defined as in Theorem 3.7.1. Then
as |\| — oo the following asymptotics are valid.
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Ifa=0and B =m,

in v/Ab
w)\) = MM g \/Xasm
¥ VA

NaM sinva 1 [0 sinvVA(2t + a) sin v A\b
+A + [ql((]) \/X +2/;a \/Xq(t)dt] \/X

N b
_ANFM-1 o6 N ”qg(O) + Z 63] cos VAb — % / cos VA(2t — b)q(t)dt]
i=1 0
+O()\N+M—3/2€n(a+b))'

(3.56)
Ifa#0and B =,

w(\) = _AN+MA1 sinasm Va sin Vb

VA VA

. N b

NEM g S Via [QQ(O) + Z B2 | cos VAb — % / cos VA(2t — b)q(t)dt]
i=1 0

VA
I in vVAb
+AVFM gin o {[ql(O) + cot a] cos VAa + 3 / cos VA(2t + a)q(t)dt} sin VA

VA
+OANFM =1 en(atb)y (3.57)
Ifao=0and 8 # m,
wA) = MF*Mgin g cos vVAacos Vb
N
in Vb
[q2<o> —cotB+ Y 53] Smf(
+AN*TM gin B cos Va i=1
1 [bsi 2t —
+/ sin v/ A\(2t b)q(t)dt
2 Jo VA
. 0 ..
ANV M gin g [% (0) sm\?a + % /a myao T ﬁ\ﬁ? *a) Q(t)dt] cos VAb
+OANFM—Lenlatb)y, (3.58)
Ifa# 0and § # m,
w = — sin a sin s cos
A )\N+M+1 BSIH \/Xa \/Xb
N :
n V3 [qQ(O) —cot B+ Z Bf] sm\/\?\b
—ANHEMFL in o sin /Bsm a =1
VA ! /b sinyAQE =)
2
0
+AVTM gin asin B {[ql(()) + cot ] cos VAa + % / cos VA(2t 4 a)q(t)dt| cos VXD
+O(/\N+M71/26n(a+b))'

(3.59)
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Theorem 3.6.2. Suppose that a and b in equations (3.2) and (3.3) are rationally related. That is,

% - 2, for some c,d € N, gcd(c,d) = 1.

Then there are constants K, k1, k2, Ng € N with Ny sufficiently large such that

{\/E:nZNg}: [j Ek,

k=Nop

where
sk = {\//\n:OSn—(k(c—ird)—irﬁ) §c+d—1}

and each ¥F is the disjoint union®
vk = ook
with
g’f: {s}l:ogn—(kﬁC—F/ﬂ) Sc—l},
ob ={s2:0<n—(kd+ky) <d—1},
and
1/2 0 0 2n+1 .
oo [ B2 g D, cos BEEG(0)dt + 0 (F5) e =0,
Py alOfcota 1 10 g 2nmt g (1) dt + O () if € (0,7),
N
nm ” (0)+i§:1 ﬂf 1 b 2nmt 1 .
2o Tt e Jocos Ha(dt + 0 (a) fh=m
n
q2(0)+3_ B —cot 3
- = b s .
”*%/2 + — + ﬁ Jo cos (2"+b1) tq(t)dt +0 (#) , ifBe(0,m).

Moreover, for each \/\,, € Yk we have

'\/E = Pkt 22421

- { (c +21a /) (d +21b /2)m } |

Proof. We prove in detail only the case for & = 0, = 7 as the remaining proofs are similar. In
this case, as |Jm(v/\)| = oo,
wA) = F) + g(A) + ONNFM=3Zenlert)),

where

sin v/ b
\/X )
sinvia 1 /0 sin vV A(2t + a)

FA) = AN M cosvVaa

L1 sin v/\b
VA 2J 4 VA VA

CANEMAL oo a ”@(O) + i\f: 52] cos Vb — 1/b cos VA(2t — b)q(t)dt
i=1 z 2

g(\) = AV [m(o) q(t)dt]

0

’In set theory, disjoint union is different from the usual union operation in that it does not identify the common
elements from different sets. An easy way to define the disjoint union of two sets A and B is to define AUB =
A x{0}U B x {1}. Thus each element of AUB is identified with an element either of A or of B and is labelled using
the notation of the set from which it comes.
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Then, for sufficiently large k, |g| < |f| for A € I}, =T, UTQ UT}, where

Ty ={(¢—i4r)*: ¢ €0, A4},
19 = {(Ar +i¢)% : ¢ € [~ Ar, Ak},
If = {(¢+iAp)?: C € [0, Ay},
and (]g-|-1c{2)c7r _ (k+ll{2)d7r’ if ¢ even, d odd,
A, = { min ((k:+1/22lc+3/4)7r ((k+1/23)d+1/4)7r . ifcodd, d odd,
min ((k+1/23lc+1/4) : ((k+1/2%)d+1/4)7r ife Odd, d even.

By Rouché’s Theorem w(A) and f(\) have the same number of zeroes inside I'y.

(1) If cis even and d is odd,

Ay A1
% D D - —D Fan % Re(vN)
1({2 \r (k+1/2)c+3/2)r  ((k+3/2)c—3/2)w \r k+3/2)c7r
((kt1/2) c+1/2)7r ((k+3/2 c—1/2) ;
(k+1/2)d7r T ((k+1/2)d+3/2)7 (k+1)dr ((k+3/2)d—3/2)w T (k+3Y2)dr
b b b b b
((k+1/2)d+1/2)7 ((k+3/2)d—1/2)n
b b
then by Rouché’s Theorem there are a total of
-2 d—1 d—-1
<k‘c—1—02+1> + <kd+2> —I—M+N:k(c+d)+c+T+M+N
zeroes of w(A) inside I'y,. Moreover, 'y 1 encloses an additional ¢ + d zeroes. Let
d—1
= {\/)\n:OSH—k(c+d)—C+2—M—NSc—i-d—l}

for k € N, k > Ny with Ny sufficiently large. Taking small loops about each zero of f(\)
for Me(v/)) large we see that ¥ can be decomposed into the disjoint union o¥Uc% where

={s;:0<n—(k+1/2)c<c—1},
={s2:0<n—[(k+1/2)d+1/2] <d-1}

for each k > Ny and the s, s2 are given asymptotically by

g (n+1/2)7r+0<1>7

si:m—f—O(l).
b n
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(ii)

Substituting these estimates into equation (3.56) and bootstrapping we obtain

0
PURCEST RO / cos@m;l)mq(t)dHO (le) (3.60)

" a nw  2nmw
RS
q2(0) + 51 b
9 N izl 1 2nmt 1
= — t)dt — . 3.61
Sn = = +2n7r/0 cos — q(t) +O(n2 (3.61)

Finally, we observe that for v/, € ¥, we have
dr 1 [(k+3/2)dr (k+1/2)dr A1 — Ay
)\/ k+1)d‘ = 9 - =

2b b b 2

where S%k-u)d = /A1) (c+d)+M+N—1 and as a result \ /A1) (cd)+m+N—1 1S given
asymptotically by

(k+1)dm 1
\//\(k+1)(c+d)+M+N—1 = b +0 rrl)

If both ¢ and d are odd,
Ak Ak7+1
(k+1/2)0‘7r ‘ k+1)c—1)7r T (k+1)cm T ((k+1)c+1)7r ‘ (k+3/2)a7r
[ ((il€+1/2)c+1/2) ((k+1)c—1/2)7 [ ((k+1)c+1/2)7 ((k+3/2)c 1/2)7 || 3
(k+1/2)dm T) ((k+1/2)d+3/2)7 (k+1)dm ((k+3/2)d—3/2)7 T) (k+3/2)dm
b b b b b
((k+1/2)d+1/2)7 ((k+3/2)d—1/2)7
b b

then I';. encloses

1 d—1 1
(kc—l—c+ >+(kd+2)+M+N: <k+2> (c+d)+M+N

2
zeroes of w(A) and clearly 'y 11 encloses an additional ¢ + d zeroes. Let
:{\/E:ogn—(k+1/2)(c+d)—M_N§c+d_1}
for k € N, k > Np. Then ¥¥ = oFUok with
={s;:0<n—[(k+1/2)c+1/2] <c—1},
={s2:0<n—[(k+1/2)d+1/2] <d—1}

and s’ given asymptotically by (3.60), (3.61). For v/, € ¥,

Vo d+1/2r c+1/27
‘ k+1 ‘<m1n % , R

2a

n?n

where S%k—i-l)d = /A1) (c+d)+ M+ N—1-
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(ii1) If cis odd and d is even,

Ay Ak+1
& : ‘ &S - P % D - OB ‘ rat = Re(VA)
(k+1/2 cr ‘ (k+1/2)c+1) \r (k+1)em f ((k+3/2)c—1)m ‘ (k+3/2)cﬂ' ‘
a((k+11/2)c+1/2) Y (Rt De—1/2)r F((kD)er1/Dr C(kr3/2)e— 1/2)7ra((k+3/2)c+1 /2)m
(h+1/2)dn ‘ (+1)Dd+1)r (iDdr (br3/Dd—T)r ‘ (k+3/2)d%
b b b
(4120412 (k+3/2)d—1/2)7
5 B T—
then I'y, encloses
1 1
<m+0;>+<M+Z>+M+N:k@+®+c+g+<+M+N

zeroes of w(A). Let

d+1
:{\/)\n:OSn—k(c—l—d)—c—i_Q—i——M—Ngc—i-d—l}

for k > No with Ny € N sufficiently large . Then ©* = o¥Uch where

1
Uf:{s}L:OSn—kC—C—; Sc—l},
d
ag—{ﬁ:ogn—kd—Q—lgd—l}

and s and s? are given asymptotically as above. Finally, for v/\, € ¥ we have

1/2 1/2
‘\/)\n_s%k-&-l)d‘ <min{d+ /W,C+ /W}

2b 2a
and
\F crdm
‘ k+1)c % - Tb’
where S%kﬂ = \/Ak+1)(c+d)+ M+ N1 and S(k+1 = /A1) (c+d)+ M+N
O
3.7 Appendix - Initial value solution asymptotics
Theorem 3.7.1. Let ) = |Im(v/\)| and define
I I
q(z) = B q(t)dt, qa(x) = 3 q(t)dt. (3.62)
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Then, as |\| — oo, the following asymptotics are valid.

If a = 0in (3.2) then

' B sinvVAz +a)  q(z)
u(z; A) = 5y — - cos VA(z + a)

v en(@+a)
+% /_a cos \f)\(x —a—2t)q(t)dt + O (77)\3/2> :
u'(z; ) cos VA(z +a)+q (x)M\/(;Fa)

T sin T —a— en(e+a)
_/_a ﬁgﬁ 2t)q(t)dt+0< n; >

if—a<z<O0elseif0 <x<b,

)2 . N
u(z; ) = ﬁ [cos \F)\asm\\ffa: - %Z@Q cos v/ Aa cos V Az
> a2 3 2 =
j=1 i=1
sinvz [ sin vVA(a + 1)
+ cos VM——"——q(t)dt
\/X —a \/X q( )
T gin v/t sin \A(a: — 1) en(@+a)
+COS\/XG/ tdt+ O | —=— | |,
o v oW ( e
32 N .
' (z;\) = i )\N [cos VAacos Vz + Z B2 cos Vaa 51n\?x
>0l 3 B i=1
j=1 " =1
0 .
+ cos VAz cos ﬁtwq(t)dt
“a vV
T sin \/Xt 677('73""@)
+ cos VA / V(2 — t)q(t)dt + O .
i [ 08 e ()
Whereas if o € (0, ) then
u(x;\) = sinacos ﬁ(az + a) + (sin aqi (z) + cos a) M\/(;\—Fa)
. T sinvVA(z —a— 2t) en(z+a)
+ t)dt + O ,
sma/_a 2\5 q( ) < 5

u(z;0) = —VAsinasin VA(z + a) + (sinagi (z) 4 cos @) cos VA(z + a)

—&-71 no ' VAz —a—2 dt 4+ O enrte)
i t)q(t)dt
5 si /acos (r—a )q(t) o
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if—a<z<O0elseif0 <x<b,

N VA VA

A3 sin o sin v/ \a sin vz
u(; A) = -

oy B}
j=1 7i=1

N ) )
1 5sin Va cot o sin vz
- 2 cos Vz — cos Va
P IRE ) VA

1sinvAz [©
A /_acosﬁtcosxf)\(a+t)qu)dt

sinva [ sinv/\tsinvVA(z — t) eh(az+a)
5| A = ﬂﬂﬁ+¢)<k2>],

3 . .
(@ 2) = A°sin v [sm Va cos vV
B2

M N ﬁ
IS
Jj=1 =1
N . .
+ Z 51-2 sm\?a sm\\ff:v — co)t\ @ cos Va cos V Az
i=1

0

_ % cos ﬁx/ cos VAt cos VA(a + t)q(t)dt

—a

sinva [® sin V)t en(@+a)
+ VU ) cos VA(z — t)q(t)dt + O ()\3/2 )] .
If B = mwin (3.3) then
12 . N
v(xz; \) = m )\N [sm\/\?b cos V Az — % Z ? cos Vb cos VA
3023 7 =
j=1 " i=1
b sin v/ At sin V(b — t)
+ cos VA t)dt
COsS VAT A 5y q(t)
sinvb [0 sin VA(t — z) )
+ \/X/x cos \F)\th(t)dt—i— 0] a7 ||
3 . . N .
V() = 5 lsm VASVAT 1§ g2 cog RSV
Sa2s gl VA VA AT VA
= st
n sin vz [P sin v\t sin V(D — t) o(t)dt
VA Jo VA VA
1sinvAb [© on(b—2)
+ N /x cos VAt cos VA(t — z)q(t)dt + O ()\2
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if—a<z<O0elseif0 <x<b,

v(z;\) = sin VA(D - z) _ e(@) cos VA(b — z)

vV A
1 [ en(b—z)
ﬁ cos VA2t — z — b)q(t)dt + O (}\:3/2) ,
"o e R xsinxf)\(b—x)
vi(z;A) = sVA(b - z) — g2 )—ﬁ
b sin -z — en(b=2)
+/x ﬁf\tﬂ b)q(t)dt—i—O( nA )
Whereas if B € (0, 7) then
v(z; \) = Mﬂ [cosfbcosfx—l— (Zﬁz— cot B) Sm\fbcosfx
Loy VA
+ cos V Az ; Sm\}ftcosxf(b—t) (t)dt
+ cos VAb /0 cos \f)\tsm\?\f()\t_m)q(t)dt +0 (en(l;\—x))] ,
o) — A3sin 3 sin \Fx 9 sin Vb sin vV Az
(’)\)_%oﬁ.%ﬁ?[ 0s V/Ab (ZB ) N
=1 Jizn "

sinvAz [P sin vVt
+ S b A cos VA(b — t)q(t)dt

. n(b—x)
+ %cos ﬁb/ cos VAt cos \f)\(t —x)q(t)dt + O <6)\3/2>]

if—a<z<O0elseif0 <x<b,

sin vVA(b — )
VA

—i—smﬂ/ Sln\f 2t )q(t)dt—i—O (w(;—ﬂ) |
V' (z; ) = VAsinBsinVA(b— 9:) + (cos 8 — sin Bqa(x)) cos VA(b — )

b (b—=)
—;sinﬂ/x cos VA(2t — a — b)g(t)dt + O <€7’\bﬂ )

v(z;A) = sinfcos VA(b — z) + (sin Bga(x) — cos )

Proof. Tt is easy to check that wq (x; \) and we(x; \) satisfy the following Volterra integral equa-
tions.
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If —a <z <0,

w1 (z; \) = cos V Az + /0 wq(t)wl(t; A)dt,

p VA
sin vV \x 0 sin —x
wala; N) = ﬁﬁ + fj(; ) oty (t; N,

andif 0 < x < b,

wi(x; ) = cos V Az + /I SiM\A¢_t)q(t)wl(t; A\)dt,

0 VA
yy _ sin Vz  sinvVA(z —t) _
wa(x; N) = 7 —i—/o Y q(t)wa(t; N)dt.

Whence we observe that the following approximations are valid as |A\| — oo

enlzl
w1 (3 \) = cos VAz + O ( ﬂ) ’
wh(z; ) = —VAsinVaz + 0",

' ulkd
walain) = S 4 (e ) ,

vV A
enlzl
wh(x; \) = —cos VAz 4+ O ( ﬁ) .

Substituting these approximations back into the Volterra identities yields the following refined
estimates. If —a < z < 0 then

wi(w: \) = cos vz — B /zoq(t)dt] Sm\?x + /: Sin\/;(j;—@q(t)dt 40 <e;z> ,

wales 3) = sm\/\?:gri B/xoq(t)dt] Cosﬁx_;)\/:cosﬁ(%—x) ()dt+0<e)\372>.

Else if 0 < z < b then

wi (3 \) = cos Vz + { / ] sin v Az + /Ox Sin\ﬁk(ézt)q(t)dt%— ) <€m¢) ,
1
A

V5N 2v/
sin\?m B/O o(t)d ]Cos\faH_Q)\/xcosxf/\(x—Qt)Q(t)dt%-O <;:;2>

wa(z; A) =

Writing

u(z; A) = w(07; Nwi (23 ) + ' (07; Nwa(z; A), —a <z <0,
v(x; A) = v(07; w23 A) + 0/ (075 Nwa(z;)), 0<z<b,

and inserting the definitions of v and v into the above equations we obtain

[ u(07;\) } _ [ wh(—a;A)  —wa(—a; A) ] [ sin o ] 7

u' (075 ) —wi(—a;\)  wi(—a; ) cos «
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v'(075 ) —wy(b;A)  wi(b;A) cos 3

from which the approximations stated for u(z;\), —a < z < 0 and v(z;A), 0 < = < b fol-
low. Moreover, for |\| large enough we can assume that u_ and v, are extended to solutions on

[—a,0) U (0, b] according to (3.24) and (3.25), from which the remaining approximations for u
and v are obtained. O

[ v(0T; ) } _ [ wh(bsA)  —wa(b; A) } [ sin 3 ]
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Chapter 4

Inverse Sturm-Liouville problems
with transmission conditions Herglotz
dependent on the eigenparameter

4.1 Introduction

In this chapter we prove a uniqueness result analogous to that of Hochstadt, [39], on the determi-
nation of the potential ¢ in the Sturm-Liouville equation

ty:=—y" +qy=Xy, z€[~a,0)U(0,b] 4.1)

from given spectral data. Here, as in Chapter 3, we assume that y|_q o), y!’(fa 0)° yl(—a) €
L?(—a,0) and y| o). Ylto.sy o) € L?(0,b), where a,b > 0 and ¢ € L?(—a,b). We impose
separated boundary conditions

y(—a)cosa =y (—a)sina, «€[0,7) 4.2)

y(b)cos B =y'(b)sinB, B € (0,7] (4.3)

and eigenparameter-dependent transmission conditions

y(07) = r(N)AY, 4.4)
y'(07) = s(\)Ay. 4.5)
Here
Ay' =y (07) —y'(07),
Ay =y(0%) —y(07),
T(A):—Zﬁ, Bi€RT,i=1,...,N, (4.6)
i=1 i
M Oz2-
s(A) = ! o €RTj=1,...,M, 4.7
L\,
7j=1
and

Y1 <72 <...<YN,
0 <o <...< .
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Again, we remind the reader of the interpretation of conditions (4.4), (4.5) at zeroes and poles of
r and s. With reference to the transmission condition (4.4), we note that (\) = 0 reduces (4.4) at
A to the condition y(0T) = 0, while if \ is a pole of r then (4.4) becomes Ay’ = 0. Similarly for
(4.5), if s(A\) = 0 then (4.5) at A becomes y'(0~) = 0, while if A is a pole of s then (4.5) becomes
Ay = 0.

A notable early contribution to the inverse spectral theory of Sturm-Liouville differential opera-
tors is the work [18] by G. Borg, where the spectral data consists of two sequences of eigenvalues:
the first being {\,, }2, the eigenvalues corresponding to the classical Sturm-Liouville problem
(3.1) on an interval of the form [—a, b] with boundary conditions of the form (4.2)-(4.3) above,
and a second sequence {5\“};’;0, obtained by changing the angle 3 in the boundary condition at
x = bto ¢, such that sin(3 — () # 0. Borg showed that these two spectra uniquely determine g(x)
almost everywhere on [—a, b]. In [54], N. Levinson suggested a different method to prove Borg’s
results, now commonly known as the contour integral method. A related inverse problem, which
is of particular interest for our purposes, was developed in the papers [38], [39] by H. Hochstadt.
There, Hochstadt proves a more general uniqueness result, demonstrating the amount of freedom
that ¢ has if {\,}5°, and all but finitely many of the :\n are specified. V.A. Marcenko [56] was
the first to apply the transformation operator method to the solution of the inverse Sturm-Liouville
problem. This approach was also used by I.M. Gelfand and B.M. Levitan in their seminal paper
[33]. A more modern class of inverse problems aim to reconstruct the potential g from so called
nodal data, where, instead of a combination of eigenvalues and norming constants, the spectral
data consists rather of the positions of the zeroes of the eigenfunctions (nodal positions). This
was initiated in the paper [57] by J. R. Mclaughlin. For further discussions of classical results on
inverse spectral problems we refer the reader to the book [27] by G. Freiling and V. Yurko.

In recent years there has been a steady increase in the literature on Sturm-Liouville operators
with transmission conditions (also known as multi-point conditions, point interactions or match-
ing conditions) at interior points. An early contribution of this type in the context of inverse
spectral theory is the paper by O. Hald, [37], which generalizes the result of H. Hochstadt and
B. Lieberman, [40], to show that if the potential is known on one half of the interval and one
boundary condition is given then the potential on the other half and the other boundary condition
is uniquely determined by the eigenvalues. Hald also shows that, under these assumptions, the
position of the discontinuity and jump in the eigenfunctions are uniquely determined. This result
was later extended to two interior discontinuities in the paper [90] by C. Willis. We also mention
the more recent paper [74] by C. Shieh and V. Yurko, which considers an inverse nodal problem
of recovering the potential and boundary conditions assuming the discontinuity conditions are
known.

Of special interest are those problems where the spectral parameter appears not only in the differ-
ential equation but also in the boundary conditions and/or transmission conditions. Discontinuous
inverse eigenvalue problems where the boundary conditions have either an affine or bilinear de-
pendence on the spectral parameter and the transmission conditions are either independent of the
spectral parameter or have an affine dependence have been studied in [6], [35], [36], [66], [68],
[85], [86]. In [66], A.S. Ozkan et al consider a double discontinuous eigenvalue problem with
eigenparameter appearing in both the boundary conditions and transmission conditions, and show
that all coefficients can be obtained using either the Weyl function or two spectra. Y. P. Wang,
[85] uses Weyl function techniques to recover the coefficients of the Sturm-Liouville operator
with an arbitrary number of interior discontinuities and boundary conditions depending on the
spectral parameter. In [86], Z. Wei and G. Wei obtain a uniqueness result using the Weyl function
technique for the non self-adjoint Dirac operator with boundary conditions and jump conditions
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dependent on the spectral parameter.

Inverse Sturm-Liouville problems with rational functions of the spectral parameter contained only
in the boundary conditions (and not in the transmission conditions for the case of discontinuous
problems) have been studied in [12], [15], [16], [22], [67]. Of the papers listed above only
[67] corresponds to an eigenvalue problem with transmission conditions. Here, A. S. Ozkan
extends the Hochstadt-Lieberman result, [40], to the case of a discontinuous Sturm-Liouville
problem with the spectral parameter rationally contained in the boundary conditions and with
affine dependence in the transmission conditions. Returning to the eigenvalue problem given by
(3.1)-(4.5), this is (to the best of our knowledge) the first time an inverse result for a discontinuous
Sturm-Liouville problem having rational functions contained in the transmission conditions has
been presented. We prove a generalized uniqueness result analogous to that of Hochstadt, [39]
(see Theorem 4.5.1). Due to notational complications we present only a sample special case here.

Let (4; c, B; 7, s) denote the eigenvalue problem ¢y = Ay with boundary conditions (4.2)-(4.3)
and transmission conditions (4.4)-(4.5) as above. Let (¢; «, (; 7, s) denote the above eigenvalue
problem, but with the boundary condition at = = b replaced by

y(b) cos ¢ = y//(b) sin,

where sin(8 — ¢) # 0. Define (g, a, B;r,s) and (57, a, (57, s) in an analogous manner but with
¢ replaced by 7, i.e. ¢ replaced by §. Finally, denote by M the subset of Ny for which \,, is
an eigenvalue of (¢; «, 5;7,s) with 7(\,) = 0 or s(\,) = 0. Then, in particular, we obtain the
following uniqueness result.

Theorem 4.1.1. Suppose that the problem ((; v, B;r, s) has eigenvalues {\,}," listed in in-
creasing order with repetition according to multiplicity. Suppose further that ((7, a, B;7,8) has
eigenvalues {S\H}ZOZO listed in a like manner. Then the results given in points 1. and 2. below are
independent.

1. If \y = Ay for all n € Ng and the eigenvalues of (¢; o, C;r, s) and (0; v, C; r, s) coincide
(up to multiplicity) then, almost everywhere
I ¢g=qon(0,b],
1L )
g=q— > calfutal (4.8)
neMo

on [—a,0). Here f, and f,, are suitably chosen eigenfunctions of (¢; v, B;r, s) and

(4; «, B; 7, 8) corresponding to the eigenvalues )\, and \, respectively, and ¢, € R.
2. If the boundary condition at x = —a is replaced by
y(—a)cose = y'(—a)sine

where sin(a — €) # 0 we obtain the eigenvalue problems ({;e, 3;r, s) and ((7, e, B;r,s)
respectively. If \,, = An for all n € Ny and, in addition, the eigenvalues of ({; e, 3;r, s)
and (17, g, B;r, s) coincide (with the same multiplicities) then ¢ = G almost everywhere on
[—a,0). Further, we can show that an identity similar to that of (4.8) holds on (0, b).

With the assumptions of points 1. and 2. combined we are able to show that ¢ = q almost
everywhere on [—a,0) U (0, b].
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The remainder of the chapter is structured as follows. In Section 4.2 we recall from Chapter 2
the definition of the Hilbert space operator eigenvalue problem whose eigenvalues are equivalent
to those of (4.1)-(4.5), and define additional structures needed for the statement of the inverse
problem under consideration. In Section 4.3, we define a decomposition of the eigenvalues of
(4.1)-(4.5) and prove a Mittag-Leffler expansion theorem relating to the functional component of
the resolvent operator of the corresponding Hilbert space operator eigenvalue problem. We define
Hochstadt’s transformation operator as it relates to our problem in Section 4.4. Ultimately, in
Section 4.5 we prove the generalized uniqueness result alluded to above.

4.2 Preliminaries

Suppose that 8;, ¢ = 1, N and «, j = 1, M in (4.6) and (4.7) are positive real numbers. Let
H = L?*(—a,b) ® CN @ CM. Then the boundary value problem (4.1)-(4.5) can be posed in H by
considering the operator

Ly Y
LY = | (myl +B:AyY) |, with Y= (y)) |, 4.9)
(0597 + a;Ay) (v3)

and domain
y|(—a,0)a y|,(—a7())) Ey‘(—a,O) € LQ(_aa 0), )
Yl Yl0p) los € L(0,0),

Yy
D(L)={Y = (yé) y obeys (4.2) and (4.3),
Y;

M N
y(07) =Y oyt —y(0) =D By}
j=1 i=1 )

We recall that fy := —y” + qy.

On H, we define a Hilbert space inner product,

/ g b
< (|| () >: fgda + (1), (91)) y + ((F7): (99) s (4.10)
(f7) (g7) -

where (-, ) and (-, -),, denote the Euclidean inner products in C* and CM respectively. Recall
that \ is an eigenvalue of (¢; «, 5; 7, s) (i.e.(4.1)-(4.5)) with eigenfunction y if and only if A is an
eigenvalue of L with corresponding eigenvector function

Y
Y — (A%Ay’) @.11)
()‘i%y Ay)
provided that A # ~;,d; foralli = 1, N and j = 1, M. Else if A = , for some p then Ay’ = 0,
which implies that
1_ y(07)

yp - /Bp

and y,i =0 VEk#p. (4.12)
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Whereas if A = §,, for some y then Ay = 0, giving

y'(07)
Qp

yi = and y,% =0 Vk#pu. (4.13)

By Theorem 3.3.2 in Chapter 3 the operator L is self-adjoint and densely defined on H. More-
over, by Theorem 3.3.1, the eigenvalues of (3.1) - (4.5) and the Hilbert space operator eigenvalue
problem LY = Y, with domain D(L), coincide. The eigenvalues are geometrically simple ex-
cept at zeroes of () or s(\). The maximum geometric multiplicity of the eigenvalues is 2 and
this occurs if and only if 7(A\) = 0 or s(A) = 0 and A is an eigenvalue of (3.1) on [—a, 0) with
boundary conditions (4.2) and y'(07) + s(A\)y(0~) = 0 and A is an eigenvalue of (3.1) on (0, b]
with boundary conditions y(0™) — r(A)y/(0") = 0 and (4.3). See Lemma 3.2.1 and Theorem
3.2.2.

Except at a zero of () or s(\), the transmission conditions can be expressed as

yot) 1 _| 1 o) y(07)
[y'w*)}‘[ﬁ&) 1+ op o) | 1

We note that at poles of r or s the transfer matrix in (4.14) above has the same interpretation as in
points (i)-(iii) of Lemma 3.2.1.

We denote by (L; «, 357, s) the Hilbert space operator eigenvalue problem defined above, and
by (I~/; a, B;7, s) the analogous problem with ¢ replaced by {. The eigenvalues of (L; o, 5;7, 5)
(i.e. the eigenvalues of (4.1)-(4.5)) will be listed in increasing order with repetition according to
multiplicity by

A< A L < o0, 4.15)

and the eigenvalues of (f); a, B;1,s) by

Mo <A <...< oo (4.16)

At an eigenvalue A\, of (L; «, 3; r, s) we write, for brevity,

fol) f (@ 2n)
Fux)=| (fl) | =] (i) | = F(z; M) (4.17)
(f3n) (f7(An))

if F(z;\,) is an eigenfunction of (L;a, 3;7,s) corresponding to \,. By assumption of the
Hochstadt inverse problem the eigenvalues of (L;a, 3;r,s) and of (L;a, 8;7,s) agree up to
multiplicity except on a finite set Ay (see Definition 4.3.1 in the next section). As a result we
employ the following notation. If A, is an eigenvalue of (L; o, B;7, 8) such that \,, = A for
some eigenvalue A, of (L a, B;1,s), where A\, and Am have equal multiplicities, then we write

~ fq(x) ]nga An) .
Fo(z)= | (fi) | =] (fFOw) | = Flas M) (4.18)
(f7n) (f7 ()

for any eigenfunction F corresponding to Am. In other words, F (z; A) is a solution of LF = \F
at A = \,.

41



We will employ certain “base solutions” to construct the eigenfunctions of (L;«, 5;7, s) and
(L; o, By, s). Firstly, we define fundamental solutions w1 (z; A) and wa(x; A) of (4.1) on [—a, b]
such that

wi(0;A) =1, wa(0;A) =0 (4.19)
wi(0;X) =0, wh(0;N) = 1. (4.20)

Next, let u_(z; A) denote the solution of (4.1) on [—a, 0) satisfying
u_(—a;\) =sina, u_(—a;)\) = cosa,
and let v (x; \) denote the solution of (3.1) on (0, b] satisfying
vp(b;A) =sinf, ) (b;\) = cos 3,
as defined in Section 3.4. At values of the eigenparameter not coinciding with zeroes of r(\) and

s(A) we extend u_(x; \) and vy (x; A) by functions uy (z; A) and v_(z; A) satisfying (4.1) on
(0, b] and [—a, 0) respectively, by imposing (4.14). That is, we define

1
ui (0% ) } 1 s [ u—(07; ) ]
e K 4.21)
{ u'y (075 ) oy Lt s | L el (075
and .
v (075 ) } 1 oy { vy (045 ) }
B — ) 4.22)
[ v (075) [ o s Vi (075 0)
giving

ug (23 A) = up (05 Nwr (25 A) + /(075 Nwa(z; N), for —a <z <0,
v—(z;N) = v_(07; Nwi (z; A) + 0 (075 Nwa(z;X), for0 <z < b,

provided that 7(\) # 0 and s(\) # 0. At zeroes of r(\) or s(\) we extend uy and v_ by
continuity, defining

Uy (2 A) := lim [ug (075 p)ws (25 p) 4+ o/ (075 pwe(a; p)],  for —a < <0,

n—A
v_(2;A) = }g& [0 (075 p)wy (a5 ) + 07 (075 pwa(as p)],  for0 <z < b,
if the limits exist. Note that extending solutions in this way will not necessarily straight away
yield eigenfunctions of (4.1)-(4.5) with eigenvalue A if #(A) or s(A) = 0. Such cases need to
be treated with care. The procedure for constructing eigenfunctions of (4.1)-(4.5) from u and v
is discussed in Note 4.2.1 at the end of this section. We define v and v in this way in order to
preserve analyticity, which is crucial for our analysis.

Let
_(z;N), if —a<z<0
a(ws ) = 4 - @A) i —a s 2 <0, (4.23)
ug(z; ), if0 <z <b,
and
(z;N), if —a< 0
o(z\) = v_(z; \), 1 a<xz<0, (4.24)
ve(z;A), if0<ax <b,



and define @(z; ) and ©(x; \) in an analogous manner by replacing ¢ with /.

Define
(X)) = u(b; \) cos B — u'(b; \) sin 3. (4.25)

Then ¢(\) = Wu, v](z) for z € [—a,0) U (0, b], where W[-, -] denotes the Wronskian.

We can formally write

M M N N
wN) = 1> af I a=6| D8 I 0—w)|v0, (4.26)
j=1  k=1k#j i=1  k=1k#i
where
M M N N
wN) = 1> af I = | [D_8 I =] @) ©0%) —u/'(07)w(0")]
=1  k=1k#j i=1  k=1k#i
[ M M
+ IO =) (Do T (A =d)| w(07)o(07)
i=1 j=1 k=1,k#j
M N N i
+II =) (D87 I A=) | w0 )'(0)
Jj=1 [i=1  k=1k#i ]
N M
H)\ Vi H )u(0F). (4.27)

is the characteristic determinant corresponding to (4.1)-(4.5). That is, w(\) has zeroes occurring
at the eigenvalues of (4.1)-(4.5) (correspondingly (L; «, 3; 1, s)). Moreover, the geometric multi-
plicity of the eigenvalues coincide with the algebraic multiplicity as zeroes of w(A). See Theorem
3.4.1. Define w( ) and @(\) in an analogous manner by replacing ¢ with l.

Let (L; o, (; 7, s) denote the operator L with boundary condition (4.3) replaced by
y(b;\) cos ¢ — ¢/ (b; \) sin¢ = 0, (4.28)
where we assume sin(3 — ¢) # 0. Define
v(A) = u(b; ) cos ¢ — u'(b; A) sin (. (4.29)

Similarly, define (L; o, (; 7, s) and () as above by replacing ¢ with /.

Note 4.2.1. Any solution of (4.1) obeying both boundary conditions (4.2) and (4.3) is necessarily
of the form
C(A A if—a<x<0
(22 = | CVul@ D) —a<w (4.30)
DMNv(x;A)  if0<x<b
for some C(X), D(\). Clearly, \ will be an eigenvalue of (¢; o, 3; 1, s) with corresponding eigen-
Sfunction y(x; \) of the form (4.30) if it also satisfies the transmission conditions (4.4) and (4.5)
for appropriate C(\) and D()). At zeroes of 7(X) or s(\) the question of multiplicity arises. In
particular,
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L ifr(\) = s(\) = 0 then the transmission conditions reduce to y(0T; \) = 0, ¢/(07; \) =
0. Thus X is an eigenvalue of geometric multiplicity 2 if and only if u/(07;\) = 0 and
v(0T;\) = 0. In that case, we observe from (4.26) that (\) € R\ {0}. If v/ (07;1) =0
and v(0T;\) # 0 or if v/ (075 \) # 0 and v(0T; \) = O then X has geometric multiplicity
1 and ¥ has a pole at \;

IL. if precisely one of r(\) and s(\) is zero then \ has geometric multiplicity 2 if and only if
P(A) = 0. If (X)) € R\ {0} then X will have geometric multiplicity 1.

4.3 Expansion theorems

Let z, t € [—a,0) U (0,b]. Recall that the Green’s function of ¢ can be written in the form

u(z; Av(t; A) fo <t

N YA ’
G(z,t;\) = s Nl A) " 4.31)

1 .

o) !

Note that the Green’s operator for ¢ (that is, the functional component of the resolvent operator for
L) involves both the integral operator g(x; \) = ffa G(x,t; \)dt, with kernel G(x,t; \), along
with a finite summation, see Section 3.5 in Chapter 3. Define

a(x; Nov(t; A)

ifx <t

Sy oy N
Gz, t;\) = w(t: N ) " (4.32)

_— 1 .

o) !

In the remainder of this work we refer to the following decomposition of the eigenvalues of
(Lo, B;m, ).
Definition 4.3.1. We denote by

1. A the set of eigenvalues A\, of (L; «, B; 71, s) such that either r(\,) # 0 and s(\,) # 0 or
An has geometric multiplicity 2 if r(Ay,) = 0 or if s(A\,) = 0;

2. A*, where A* C A, the set of eigenvalues \y, of (L; v, B;1, s) of geometric multiplicity 2
such that r(\,) = 0 and s(\,) = 0;

3. Ay the set of eigenvalues A\, of (L; «, B;r, s) of geometric multiplicity 1 with r(\,) = 0 or
s(An) =0;

4. Ao the set of eigenvalues N\, of (L;«, fB;71,s) such that either N, € o(L;a,p;r,s) \
o(L;a, By1,8), or Ay = A € U(f/; a, By, s) for some m and A\, and A have differ-
ent geometric multiplicities. Here, o(L;a, B;71,5) (respectively O'(E; a, B;1,8)) denotes
the spectrum of (L; o, B;1, s) (respectively (L; o, B;7,8)). By assumption of the inverse
problem, Ag is a finite set.
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To clarify the notation used in Definition 4.3.1, we remark that an element A\, of A, A*, Ay or
Ay is labelled with the subscript n corresponding to its position in the list (4.15). In particular,
if A, = A\n41, say, then either both \,, and A4 or neither A, nor A\, are elements of A, and
similarly for the sets A* and Ay.

A similar decomposition of the eigenvalues of (f); a, BT, s) can be found corresponding to points
1 to 3 in Definition 4.3.1 above. That is, we define A, A* and A; in an analogous manner.

Lemma 4.3.2. Let \,, be an eigenvalue of (L; o, B; 1, s).

1. If r(An) # 0 and s(A\,) # 0 then A, has geometric multiplicity 1 and both U, (x) and
V() are eigenfunctions of (L; o, B;1, ) corresponding to \y,. Consequently there exists
kn € R\ {0} such that V,, = k,U,.

2. If \y, € Awithr(N\,) = 0or s(\,) = 0 then we can find a pair of linearly independent
eigenfunctions ZT(LI), ZT(L2) of (L; «, B;r, 8) corresponding to \y,.

Furthermore, if A, € A\ A* then both U, (x) = U(x;\,) and V,(z) = V(x; \y,) are
eigenfunctions corresponding to \,. Writing

Un(a) = UD(@) + UP (@), Vale) = VD (@) + V2 (@)

(where A (x) and 1749 (x) are multiples onT(f)(az) fori =1,2)we can find constants kY
and k:,(f) such that ‘ o
VO(z) = kDU (z), i=1,2 (4.33)

n
If A € A* then neither u(x; \,) nor v(z; \,) are eigenfunctions of (¢; o, B;7,s) corre-
sponding to \y,.

3. If \n € A1 then precisely one of X[—_q,0yu(; An) 0r X(040(T; An) is an eigenfunction of
(4; e, B, 8) corresponding to \,,. The corresponding eigenfunction of (L; «, B;r,s) can
we constructed using the results of Section 4.2 and will be denoted by Z,,.

Proof. 1. See Lemma 3.2.1.

2. From Definition 4.3.1 ), is a geometrically double eigenvalue. The existence of ZT(LZ),
1 = 1, 2 follows from Theorem 3.2.2. The general form of Z,(Li), 1 = 1,2 is determined by
equations (4.11)-(4.13) (see Theorem 3.3.1 for the derivation). In particular we can make
the following choices.

() Ifr(An) = 5(An) = 0 let

X[-a,0)W1(2; An)

ZW () = w(075 M) (0) : (4.34)
X (0,6)w2(2; An)
ZP@ =o' 050 | (52) | (4.35)

(0)
Note that, in this case, Zfll) and ZT(ZZ) as defined above are not only linearly indepen-
dent but also orthogonal with respect to the Hilbert space inner product (4.10).
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(ii) If r(A,) = 0 and )\, is a pole of s(\), say A, = §,, for some p € {1,..., M}, let

X[—a,o)w§($; An) X(O,b]wQ(x; An)
ZW(z) = - )\n_Z%) . Z@(2) = (%) . (436)
(ééj,u) (0)

Then
Un(@) = u),(07)ZM (2) + C ZP) (2),

Vo(z) = Do ZW (@) + 0 (07) Z2) ().

Here, we can apply Green’s formula (or integrate W{u_(z; Ay,), u—(z; \)]" and take
the limit as A\ — ;) to obtain

_up(07) 0 2. i 1
C” - T(/\n) I:/—a wQ(Ta )\n)dT + T(/\n) + Oél%:| s (4.37)
and similarly
U%(Oﬂ b 2 )
Dy = T()\n) /0 wQ(T; )\n)dT + T(/\n> . (4.38)

Due to the choice of the functional component of ZS) being identically zero on (0, b]

and that of Z7(l2) being identically zero on [—a,0) an expression of the form (4.33)
holds. A straightforward evaluation of the functional components at 0F gives

D ,UI (O+)
W= (2) = n 4
(iii) If r(\,) = 0 and s(\,) € R\ {0} let
X[~a,0) [wg(m;)\n) _ %}
Z,(ll)(x) = (_ )\nﬁi%) ’ .40,

1l %
s(An) An—0;

X (0,5 W2 (75 An)

ZP) (z) = ( N ) . (4.41)
(0)
Then
Un(x) = u),(07)Z (2) + CnZP) (2),
V(@) = DpZ{D () + v}, (07) 2P ()
with
_ u, (07) 0 . w1 (7; An) 2 $(An) .
Cn = T()\n) [/_a |:1,U2(7',)\n) - 3()\n):| dr — 82()\n) +r()‘n) ) (442)
/ 0+ b
D, = U;((An)) [ /0 w2(7; \p)dr + f(An)] : (4.43)
D, v), (0T)
1 _ _&n (2 — n
ky’' = u%(o_), k'’ = o 4.44)



(iv) If s(A\,) = 0 and A, is a pole of (), say A, =y, forsome p € {1,..., N}, let

X[=a,0)W1 (25 An) X (0,5 W1 (75 An)
ZW(z) = (0) . ZP(z) = (—i&,p) . (4.45)
(_,\njzs) </\na—jéj>
Then
Up () = un(07)ZV (2) + CL 2P (2),
Vo (z) = D Z () + v, (07) Z2) (2)
with .
n(07 )
v, (07F) b i 1
Dy, Un(0+)
(1) — (2 _
N = un(O*)7 k,; c (4.48)

(v) If s(A\p,) =0and r(\,) € R\ {0} let

X[~a,0)W1 (75 An)

Ze) = © , (4.49)
(_ Ana—](sj>
S —
Z7(L2) = <T(>1‘") Anﬁi%‘) . (4.50)
Anajgj
Then
Un(z) = un(07) 20 (2) + C, 2P (2)
Valw) = DuZ(@) + 0,(09) 2 ()
with 0
n(0™ .
o _US’((M)) U_a wi (73 An)dr — S(An)] , (4.51)
_ Un(0+) b ‘ w2(7'; )\n) 2 r()\n) '
Dp = — 5(An) /0 [wl(T,)\n) + W] dr + 200 s()|, 4.52)
= D e - va(0F) (4.53)

u,(0°) " Gy,

3. By Definition 4.3.1 \,, is geometrically simple. Since X|_q,0)%(7; An) and x (g 5v(2; An)
are linearly independent at most one of x[_q,0)u(Z; A ) and X (o0 (7; Ar) can be an eigen-
function corresponding to \,,. To conclude we need to examine what happens at 0. Con-
sider the case when 7(\,) = s(A,) = 0. Then the transmission conditions reduce to
y(0F) = 0and ¢/ (07) = O at A,. If /(075 An) = 0 then x[_q 0yu(z; Ap) satisfies (4.1)-
(4.5) and is thus an eigenfunction corresponding to A,. If u/(07;\,,) # O then in order
to obey both (4.2) and 3/(0~) at \,, the eigenfunction must be identically zero on [—a, 0).
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This implies that v(07; \,) = 0, making x(o.4jv(2; An) an eigenfunction corresponding to
An, else only the function which is identically zero on both [—a,0) and (0, b] can satisfy
the two boundary conditions at z = —a and x = b, as well as y(0") = 0, 3/(07) = 0. The
remaining cases can be argued in a like manner.

O]

Note 4.3.3. 1. We denote by A the subset of Ay consisting of eigenvalues \,, for which
X[—a,0)U(T; An) is an eigenfunction of ({;a, B; 1, s) corresponding to A, (see point 3. of
Lemma 4.3.2). Furthermore, we define A{ = Ay \ A]. Define AT, A as subsets of Ay in
an analogous manner.

II. Results analogous to that of Lemma 4.3.2 can be stated for the eigenfunctions of ([~/, a, B, 8).

Although, we recall that the shorthand notation used for the eigenfunctions of (L; o, 3; 1, s)
is different from that used for the eigenfunctions of (l~}, a, B; 1, s) (compare equations (4.17)
and (4.18)). For (L;a, B;7,s) we index eigenfunctions in reference to the correspond-
ing list of eigenvalues (4.15). Whereas, for (l~}, a, B; 7, s) the short hand notation is only
employed for functions whose eigenvalues coincide (up to multiplicity) with eigenvalues
of (L;«, B;r,s). In this case the eigenfunction is labelled using the shorthand notation
Fo(x) = F(x; \y) linking it to the corresponding element of (4.15). Thus, in order to keep
notation consistent with equations (4.17) and (4.18) we state the following partial result
for the eigenfunctions of ([~/, a, B; 1, 8), which is sufficient for our purposes.

Corollary 4.3.4. In the notation of (4.18), the following results are a consequence of Lemma
4.3.2.

1. If Ay € A\ Ag (so N, € A) with r()\,) # 0 and s(\,) # O then there exists k, € R\ {0}
such that . s
Vi = knUp.
2. If Ay € A\ Ag withr(\,) = 00r s(\,) = 0 then we can find a pair of linearly independent
eigenfunctions Z,(ll), 27(12) of(f/; a, B;1, s) corresponding to \y,.
Furthermore, if An € A\ (A" U Ag) (so A\, € A\ A*) then both U, (x) = Ul(x; \,) and

Vi(x) = V(x; \y) are eigenfunctions of (L; a, B; 1, s) with eigenvalue \,,. Writing
On(x) = U0 (@) + 0P (@), V() = V(@) + V2 (a)

(where Uqu) (x) and f/n(z) (x) are multiples on(f)(m) fori =1,2)we can find constants ]~€7(11)
and ];37(7,2) such that o o

VO (z)=kD0D(z), i=1,2
Here, for i = 1,2, Z(f) and l%ﬁf ) are chosen in an analogous manner to Zy(f) and lﬂ(f),
respectively, as in the proof of Lemma 4.3.2.
Whereas, if A, € A* \ Ap (s0 A\, € A*) then neither a(x; Ap) nor v(xz; Ay,) are eigenfunc-
tions of ({; av, B; 1, s) corresponding to \y,.

3. If Ay € AL\ Ag (s0 N\, € Ay) then precisely one of X[=a,0)%(T5 An) oF X(0,50(T; An) is
an eigenfunction of ((7 s, B51, 8) corresponding to A,. The corresponding eigenfunction of
(L; e, B;1, s) can we constructed using the results of Section 4.2 and will be denoted by

Zn,
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Theorem 4.3.5. Suppose that A # A,, n € Ng. Then the following expansions are valid and
converge uniformly for x,t € [—a,0) U (0,b], z # t.

Ifx <t
U )V (1) DDy O <x> 2 (1)
’ GZA:\A* e e ) ‘ZQ)HQ (A=A

()
FL G uz 2

Am €A1
and
Gatn= Y mmum()
AmeA“ANﬂm)(A__Am)w(Am)
by | @0 w0 V0t @)l 0
+. S0+ 2
v [ 28] 0T A (42
Zm (%) 2 (2) T Zm () 2m (1)
* Z 2 + Z 2
o O 12l 22 O A [
+ R(z,t; \),
where
U m / +; m .
y’gg_*;img {/;’E%_Jr;;m;’ lfT(Am) = 07 S(Am) = 0,
Zggfm gf&;izg, ifr(Am) = 0, A\, is a pole of s(\),
ﬂ(D’;/\m)-i-ﬁ/io_;: m) 0, .
T = (0~ A )+ “{iA}” ”EU*AWB ifr(Am) =0, 5(Am) € R\ {0},
@ (0~ An) v(0% A . .
u/((gf;’i\:z)) @Egi;img’ if s(Am) = 0, A\, is a pole of r(N),
a’ _;>\m v ,)\m .
u’ggf;kmg 658*;)\7,3’ lfS()\m) =0, T()\m) eR \ {O} )
and

1 if—a<z<0<t<bthen

R(z,t;\) =

2. if—a < x <t<O0then
(2 Am) 2 (1) (5 A ) (£)
3 -
AmEA*NA (A — A\pp) HZ,SPH AmE(A\AF)NAQ (/\ - )‘m)wo\m)
(x; Am) 2m (1)
+ .
Z ()‘_)‘m) HZm”2

AmEAT NAg

R(z,t;\) =
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3. if0<z<t<bthen
(0T X))V (0T A\) a2 A\ zg) t

Am €(A*NAGNAT) (A —Am) HZr(g H
o [T ) (8) + 55 M Jor( M)

A—Am
" Z = (2)

Am€(A*NANAT [ o, } §(z5 M) 2 (t)
A— Am, A—Am
( ;A )Um()

+ > sy

AmE(A\A®)NA]

m [GA(@5 Am )V () + (25 A ) U (£ Am)]
n A— A\
b, y 3)\m m (¢
e AmAO)\ + )\m] y(x)\ n ;1; (t)
(5 Am)v(

+

)\mg;ﬂ/\o (A= )¢( )

with §(z; ), (N), By, and By, as given in Proposition 4.6.2.

Else ift < z,

(2)
t)) N ACEAC

Gz, t; \) = Z um(t)vm(:c) + Z 3 2
Z[ o= |22

A €A\A* (A = Am) P (Am) Amer* | (A — Ay ’

+ Z 2m (%) z2m (t)

Aot A=) 1 Zil 1
and
G(x,t; \) Z U ()0 (2)
e e UAg) (A~ Am)¥(Am)
by (PO 07 ) @ (@) A e (1)
,(0_; Am) ﬁ(0_7 )‘m) (1) 2 (2)
AmEA*\Ag (A= Am) HZm H (A= Am) HZm H
Zm (@) 2m () T Zm(x) 2 (1)
+ Z 5 + Z .
amenting AT A 1Zml™ S Am) (1 Zm]
+ R(z,t; \),
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where

( U +;/\m u(07 5 Am

o S i) = 0, 5(\n) =0,
(e if7(Am) = 0, Ay is @ pole of s(N),
(0T m) v (073 m .

TT; = 358:/\771; u’gg:;)\mg lfT(Am) =0, S<)‘m) €R \ {O} )
Z,Eggm Z%&}% if s(Am) = 0, A\, is a pole of r(N),
T (0F A )— 20 Am) oy _
o e 0y i 50m) =0, 7(0m) € R\ {0},

r(Am)

and

1 if—a<t<0<zx<bthen

Um(t)f)(x; )‘m)
R(z,t;\) = _ _
Ame(/%;*)mo (A= Am)Y(Am)

2. if—a <t <x<O0then

7 (073 Am)w(075 M) 1 (3 M) 2527 (2)
Z ’L)/(O_;)\m) ()\—)\m HZT%)HQ
Do |9 (x3 M)z (8) 4§ M Jun (85 M)
A— A\
* 2 (1)
Am€(A*NA)\AT [
um (t)0(; )
* Z (A=)

Am€( A\A*)mA*

R(z,t;\) =
Am€A*NAT

m [IA(T5 Am ) um () + §(25 Am)unx (8 A
+ A— )\m
/\me AOAO \(A*UA+) A ?T;m] y(x’)\A:n))\’ljnm(t)
u(t; Am) 3 (@3 Am)
+
Z (/\ - >\m)¢()‘m)

)\mEAlﬂAO
with §j(z; \), (N), @, and ®,,, as given in Proposition 4.6.2.

3. if0<t<axz<bthen

T UL LYY M SRR PNGLGEY

Ameho (A — Am) HZWHZ i Toymng A= Am)d(Am)
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Moreover, if —a < x < 0 then fori =1, N,

L ()

BiAv u(x; \) Z vy,
(A —

A= P(A)

O

1 w(x; Am)

Bi AV a(x; N) Ui m
)\mEZA\A* ()‘ - Am)ﬂ)()‘m)

A= (N

and for j =1, M,

m ()

a;Av u(z; ) Z ]zm
amemons A= dm)$0m) 5 (A, HZﬁi)Hz

A—0; Pp(N)

zimzm(a:)

AmEAT

o Av afz; A) Z U]m

Z ()‘ - >\m) ||Zm||27

(w5 Am)

:B)\)

2

Am EA_

Similarly, if 0 < x < b then fori =1, N,

) | Zml*

U ()

Bidu v(x; N) ullm
= 2 G T (=) |22

A= ¥(Y) Amenias (A
zmzm()
D
Am, €A+ H m”
(x5 Am)

BiAu' v(x; \) _ Z uil,m
A EA\A* ()‘ - AT)’L)w()\m) Am EA* ()\ _ )\m) HZm H
o(x; Am)

A= P(A)

1
Zi,m

Am€EAT

and for j =1, M,

Z ()‘ - )\m) ”Zm”Q,

U ()

a;jAu v(z; N) Z u

g
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P(Am) i

>

AmEAT

>

Am€AT

2.

AmEAT

Zil,mzm(x)

(A= ) | Zu|**

Z}’mﬂ(:ﬂ; Am)

(A= 2n) | Zum| "

L2 W)y

Zim #m

2
2 (x; )

]7m

AmeA\A*(A__A"J¢%Am) AmeA*(A——Am)HZﬁgwr

@' 2

Zim #m (T)

2(2) (x5 Am)

,m

zj%mzm(x)

A=) 1 Z])*



a;jAu O(z; N) Uim@(% Am) 232' (@5 Am)
= : + .
N 00 2 B A 2 B ) [P
Lastly, for x € [—a,0) U (0, b],
[Du — av](x; \) _ Z [Om U, — U U ()

AmEA\(A*UAg)

Zm (2) 2m ()

(A= ) | ZulI”

Zm () zm ()

(A= ) | ZulI*

LY

Am€AT\Ag

)

[1 T tm
where T, T,j; are defined above, and

1. if —a < x <0, then
R(x;\)

> |

AmEA*NAT

,5/

D)
(

(073 A u(
(07 A

“) )
0)’ )wl(m;km) —a(w; A

!/

)]

ai(;

(A -

m)

Zm

‘I)mﬂ(fv, >\m) + (I)mﬂ)\(l'; >\m) -

_l’_

2.

AmE(A*NA)\AT w(w; Am)

el |

Qg (x5 M)

i) +
[Du — @] (xv Am)
()‘ - )\m)w(Am)

|

— Am

_l’_

D

Am €(A\A*)NAT

7

A—Am

|:(I)mg(1:a )\m) + (I)mgk(‘r; )‘m) -
+

2.

u(z; Am)

Am E(A*NA)\AT

LY

Am EA; NAg

+|:U)\($;)\m) S\

|

]

?]('952 Am) .
(Am)

w(x; Am)
1 Zml|”

Zm ()

A—Am

_l’_
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AmEATNAY

u(x; )\ m)y (x Am)
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2. if0 <z <b, then

R(z; \)
N (0T )V (075 ) 22z
= Z (x5 Am) — ( u(O")')E ) )w2(x? )‘m)} (@) @12
AmE(A*NAGNAT) rom (A= Am) HZm H
By )
o(x; A, . - Zm (@
(72) — ©5,3(7; Am) — P (25 Am) @)
|25 S
+ > ~ m
Am€(A*NA)\AT _ v(x; Am) | Pond(z; Am)
Py [@; —fv](:_t;im)
AmE(A\A®)NAT (A= Am)3p(Am)
1 o(z; Ay - . Um (T
[k ( ) — my(.%', )\m) - CI)my)\(x, )\m>:| Y ()\)
+ Z m P(Am) T am
Am€(ANAQ)\(A*UAT) — loa(z; Am) + 0@ Am) | (i Am)
m et 1 R L W Y R g

(s Ay y(x; Am Zm, g(x; Am)v(t; A
- [( )yl )] (t) > y(( Jo(t; Am)

2 . A_A - . )
AmEATAAG 1Zm ¢(Am) " AmeAT NAg

with §(x; \), ¢(N), By, and Oy, as given in Proposition 4.6.2.

Proof. From the eigenvalue asymptotics in Theorem 4.6.1 of the appendix we deduce that there
exists a sequence (Ay),,> y, . for some Ny € N sufficiently large,

(—OO,ANO), [ANO,ANO+1), ceay [A'mAn—i-l)v

is a partition of the real line of the v/ \-plane with 3,, C (A, Apt1), where {\/)\n in > No} =

[e.9]

U Xk, and Xy is defined explicitly in Theorem 4.6.1. We refer the interested reader to the proof
k=Nog
of Theorem 3.6.2 in Chapter 3 for details of the construction of the A,,. For our purposes it is

sufficient to note that A, = O(n) for large n. Let ', = {(Anew)2 9 e -3, g]} n > Np.

Then T',, is a path in C which encloses precisely n(p + q) + « eigenvalues of (L; «, §; 7, s) (again
see Theorem 4.6.1).
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Let A € T',, and 7 = |Jm(+/\)|. Then, it follows from the approximations of Theorem 4.6.1 that

,

P

sinh nasinhnb + O(n2e”@t)) ifa =0, g =,

Mz
£,
=

<.
Il
—
0
e o~
=
o "

sinhnasinhnb + O(n?e”*t0))  ifa € (0,7), f =,

Mz
2, |5
M=
5

s
Il
—

IOV =R ST
ATLS . . 3 b .
sinh npasinhnb + O(n3e"@t0))  ifa =0, 8 € (0,7),

M N
3 a2 3 g2
7=1 =1
A5
]c[sm aj\?mﬂsmhna sinhnb + O(n e”(“+b))7 if o, B € (0,m),
> a? > 512
[ j=1 " i=1
if n £ 0, else
O(n’), ifa=0,8=m,
O(n'), ifae(0,m),B=m,
Y(A) = ( 4) : o)
O(n )7 lf()[ZO,,BG(O,Tr),
O(n®), ifa, B € (0,7).

Moreover, if —a <t <z <0or0 <t < x <bthen

O(nPentatt=le=th) - ifa = 0, 8 =,

O(nden(atb=lz=th)y = if o € (0,7), B =,

O(n3entatb=lz=ty = if o =0, B € (0, 7),
( )

, ifa, € (0,m),

u(t; Nv(z; ) =

On en(aer |z—t|

and similarly for u(z; N)v(t; N\) if —a <z <t <0or0 <z <t <b.
Whereas, if —a <t < 0 < z < bthen

at+b—|x—t .
O ((enert ezt , ifa=0,=m

n2

n(a+b—|z—t|) .
u(t; No(z; A) = O(———), ifac(0,7),B=m,
O (erettlzmy ifa=0,8¢(0,7),

n

O(enatb=lz=th) = if o, B € (0,7),
and similarly for u(z; N)v(t; A) if —a <z <0<t <h.

In addition, if —a < x < 0 then

O(=2),  ifa=0,8=r
BA oy = JO(N D) ifae (Om), B=m 1y
X — i O (enatbta)) - ifa =0, B € (0,7),

O (ne"®*¥t0) . if a, § € (0,7)
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O(e"‘”b*x) ifa=0, 8 =m,

. n(a+b+zx) if 0 —
a]Avu(m;)\): O(n ), ?OzE(,ﬂ'),ﬁ T, i =T
A —0; O (ne" “‘HH“”), ifa=0, g€ (0,n),

O (n?e" “+b+‘”)) ifa, B €(0,7),

Whereas, if 0 < x < b then
O (ne" (a+b+z) ) ifa=0, 8 =m,
2 n(a+b+z) if 0 —_

Bi A’ o) = O (n°e ), %CXG(,W),B T, i =TV,
A= O (n%e" a+b+x)) ifa=0,8¢€(0,n),

@) (n3e” (a+b+z) ) ifa, B €(0,7),

O <en<a+b+z>> ifa=0, 6=m,
ajAuv(x;)\)Z O(e"““’“”), ifa e (0,7), 8=m, = T30
A —0; 0(677 “+b+x) ifa=0,8¢€(0,n),

O (nenetb+2)) - if a, B € (0,7),

Let 1 € C such that y avoids all Ag, A, . ... Choose n so large that || << A,%. Then we
conclude by the Residue Theorem and the above bounds that

n(p+q)+r—1
' G(z,t; \) 1 Gz, t;\) . 1
G($,t,ﬂ) -+ mEZO Res ()\_LL, )\m) = 27‘(‘/]/ /n )\ — d)\ = O n y

and similarly for G(x, t; ). Here the residues are calculated in Theorem 4.6.3 and given explicitly
in the final statement of this theorem. Likewise,

TS e (e <

()

Moreover, forall i =1, N and j = 1, M, if —a < x < 0 then

[ou — w](@; p)

Y(u)

[Ou — av](x; \)

Gy P

n(p+q)+r—1

BiAvV' () u(x; p) 1 BiAY(Nu(x; N)
W= b 3% Rﬁ(A—u<A—%wu>’M9
_ L[ L pAviny,
2mi Jr, A= (A= 7)(N)
1
oft)
ajAv(,u)u(m;,u) g st (1 aAuu(z; A
o T R‘(A—u<A—@wu>’m>
1 aJAv Au(z; N)
T ATTOV I

i
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BiAv () G(wsp)

and similarly for and 2280 U@ \Whereas if 0 < x < b then

b= P(u) n—=0;  ¥(u)
n(p+q)+r—1
Bidu' () v(w; ) < 1 BiAu'(Nv(x; A) >
R Am
W o) Z% ST ey
1 1 BiAu’()\)v(x;)\)d/\

T2 Jo, A= (A=) (N)

o)

BiAu! (p) v(w;p) and % Au(p) (x;m) ‘

and similarly for =227 2505 TR

O

Theorem 4.3.6. Suppose that the eigenvalues of (L; «, (;r, s) and (f); a, (5T, 8) coincide up to
multiplicity. Suppose further that each eigenvalue An of (L; o, B; 7, 8) coincides with an eigen-

value of (L; c, B;r, s), up to multiplicity, except if A, € Ao, where A is a finite set.

1. Let Ay, € A\ (A" U Ao). If (M) # 0and s(\,) # 0 then k,, = k,,, else ifr(\,) = 0or
_ 7.2

s(An) = 0 then EY = k2.

2. If \, € A"\ Ag then
(015 A)0" (075 A)
w(0F; Ap)0'(0F; A\y)

=1
3. If \p € AT\ Ao then T, = 1, where T, is defined in Theorem 4.3.5.

Proof. 1. For an eigenvalue A\, € A\ A* we have

e 2wl [l - Lon]

Solving the above linear system gives

v(An)

sin(f8 — ()

where sin 3 = v,,(b) and cos 8 = v/, (b).

un(b) = sin 3, w,(b) = V(An) )cosﬁ,

~sin(B—¢

(4.54)

(4.55)

If 7(A\,) # 0 and s()\,) # 0 then v, = ky,u, and since u,(b) and u/,(b) cannot both be

zero, we conclude that
L _snB-0)
mn — = /1 ~ -
v(An)
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On the other hand, if either 7(\,,) = 0 or s(\,,) = 0 then according to the proof of Lemma
432
un(z) = uP(z), va(z) = 0@ (2) = kDu@(2)

for 0 < x < b. Since uf)(b) and ug)/(b) cannot both be zero, we conclude from (4.55)

above that

(2) _ sin(B—¢)
k'’ = 7}/()\71) . 4.57)

Similarly, sin(8 - O
n = W (4.58)

if r(\,) # 0 and s(\,) # 0, and

j(2) _ S8 —0) (4.59)

! (An)

A

if (Ap) =0ors(\,) =0.

Using the results of Theorem 4.6.1 in the appendix, we deduce that as |A\| — oo,

( ;\ N COS ﬁasmi\f\()\b + O(Aeeth)), ifa=0,(=m
j=1 ] ;1
AZ; 12na§6/\ sm\\rfa sin\\rfb + ()()\3/2677((1-%-17))7 ifae (O,F),C =,

j
V()\) = jzlslnéi21 3/2 b 1

S o5 v/Aa cos VD 4+ O(A3/2en(@td))if o= 0,¢ € (0, 7),
Sty 6
J=
—smaslnfx\ slnfa COS \/>b+ O()\Qeﬁ(a—i-b)) ifa,( € (0,7T),
Z ixp

and similarly for o(\). Here v and © are of order 1/2. Now v(\) and 7(\) are mero-
morphic functions with zeroes occurring at eigenvalues of (L; «, (57, s) and (I~/; a,C;ry8)
respectively, and poles occurring when 7 () or s(\) is zero. A result by R. Nevanlinna
states that a meromorphic function of finite order can be represented as the quotient of two
Weierstrass canonical products in terms of its zeroes and poles (see page 220 of [64]). This
is the meromorphic analogue of Hadamard’s factorization theorem for entire functions (see
B. Ja. Levin [49, Chapter 1]). Since the eigenvalues of (L; v, (;r,s) and (L; o, C; 7, 5)
coincide and the zeroes of () and s(\) are fixed, we deduce from Nevanlinna’s result that

v(A) = CN"'D(N)
for some constant C' and integer m. The asymptotics given above show that
- 1
v(AN)/p(A) =140 </\> ,

giving that v = i. Hence, forall \,, € A\ (A*UAg), ky, = ky, if 7(\,) # 0 and s(\,,) # 0,
and k2 = &2 if r(A,) = 0 or s(A,) = 0.
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2. Let y(z; A) denote the solution of (4.1) satisfying
y(b; \) =sin¢, y'(b;\) = cos¢ VA
Then, from the definitions

() = u(b; \) cos B — u'(b; \) sin 3

and
v(A) = u(b; ) cos ¢ — u'(b; \) sin ¢
we obtain
w0t ) | 1 —y(075 ) w075 A) | [ ()
o | =g | oy v | Loy | 4o

Here, sin(3 — ¢) = W{v,y](b) = W/v,y](0T).

Suppose that A,, € A*. Then r(\,) = s(\,) = 0 and \,, has geometric multiplicity 2.
Hence, v/(07; A\,) = 0 and v(07; \,,) = 0 (see Note 4.2.1). From (4.21) we deduce that

r()W (075 0) = u(0T50,)  as A — \,.
Moreover,

P(A) = w0 X))V (075 A,)

0 .
_ [u(()_;)\n) [1 _ f—awj&’l;")m” [v'(0+;)\n)

fbwz(r;)\n)dT
T ”

(which is finite) as A — \,. Hence, by multiplying the second equation in (4.60) by r(\)
and taking the limit as A\ — \,, we obtain

/\lgf\ln r(A)r(A)

Similarly, provided that Am € A*, we get

lim r(\)P(\)
)A—Mm

a0 Ap) =0/ (0F N\, ) 20—
(075 Am) =0 sin(p — )
Since v = v we conclude that

a(0t5 ) w0t \,)
(0 N,) V(05 A,)

if Ay = A

3. Let A\, € Af. Then X(o,b}U(l'; An) is an eigenfunction of (4.1)-(4.5) to the eigenvalue \,,.
We give details only for the case of r(\,;) = s(\,,) = 0. Here, the transmission conditions
result in v(07; \,,) = 0 and v/ (07; \,,) # 0. By definition,

r(A)s(\)u (0750) = 4/ (073 0,)  as A — A\,
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(see (4.22)). Moreover,

Jim s()() = /(073 A)e/ (05 )

1+

féj wg.(T; )\n)dT]

(which is finite). Thus, by multiplying the second equation in (4.60), above, it follows that
)\lirgl r(A)s(A)v(N)

(075 M) = 0/ (0F; ) 222

U( ) n) U( I TL) sin(ﬂ—()

Similarly, if \,, € A} and r(\,,) = s(A;) = 0 then

i lim r)s()p()

O ) =T 05 ) =

Hence,as v = v,
a'(07;\n) B u'(075\,)

(0T ) V(0F; )

it Ap = A

If the boundary condition at z = —a is replaced by
y(—a; \) cose — ¢ (—a; \) sine = 0,

where sin(a — ¢) # 0 then we obtain the eigenvalue problems (L; e, 8;r, s) and (L; e, 8; 7, s).

Theorem 4.3.7. Suppose that the eigenvalues of (L; e, 3;r, s) and (I~/; g, B;r, s) coincide up to
multiplicity. Suppose further that each eigenvalue An of (L; o, B; 7, 8) coincides with an eigen-
value of (L; «, B, s), up to multiplicity, except if A, € Ao, where A is a finite set.

1. Let My € A\ (A*U Ag). If r(A\n) # 0and s(\,) # O then ky, = ky, else if r(\,) = 0 or
s(An) = 0 then B = &Y.

2. If A, € A"\ Ag then

v'(075 )\n)a(o_§ )\n)

3. If \y, € AT \ Ag then T, = 1, where T, is defined in Theorem 4.3.5.

Proof. Similar to the proof of Theorem 4.3.6. O

60



4.4 A transformation operator

Throughout this section we assume that each eigenvalue \,, of (L;a, 3;7,s) coincides with an
eigenvalue of (L; cv, 8;7, s), up to multiplicity, except if A, € Ag, where Ay is a finite set. We
also assume that k,, = k,, forall \,, € A \ Ap with 7(\,) # 0 and s(\,,) # O (this is true by the
assumptions of either Theorem 4.3.6 or Theorem 4.3.7).

Define
£ 1| Fa=U0 or By =UPif A, € Agn A\ A*
Ho=H \span { F = | (fi,n) Fp=2WUor F, = ZDif A, € Ag N A*
(f7m) Fy = Zyif Ay € Ao N Ay
where H denotes the Hilbert space defined in Section 4.2. Define 7, in an analogous manner.

Since L is self-adjoint with compact resolvent the eigenvectors to L are complete, so we can
define the operator H : Hy — Hg as follows:

1. HU, = U, if A, € A\ (A* U Ag),
2. HZV = 2V, 122 = Z2 if A, € A*\ A,
3. HZy = Zy if Ay € A1\ A,

and extended by linearity to the linear span of the eigenspace, which is dense in H.

Proposition 4.4.1. (i) The operator H : Hy — 7:[0 is bounded.
(ii) On Ho,

HAN-L)'=W\-L)'H
for X # An, An, 1 € No.

Proof. (i) Recall from Theorem 3.6.2 that for n € N large the eigenvalues \,, of (L; o, 357, s)

o0
satisfy {v/A, : n > No} = |J XF, where each X* is the disjoint union of sets 0% =
k=No
{s :0<n—(kc+ K1) <c—1}and02 {s :0<n— (kd+ k2) <d—1}f0rsome

constants K1, K2, C, d.

Now, for n large enough we can assume that r(\,) # 0 and s(\,) # 0. So V,, = kU,
and V,, = k,U, by Lemma 4.3.2 and Corollary 4.3.4 respectlvely Also ky, = ky by as-

sumption. Hence, either \,, = [s},]* with Uy, (z) = U (x; [s},/]? )and Uy, (z) = U(2; ) =
Ul(a;[s),]%), giving
~ 2 ~ 2
AT ) iGN El @)
1l Tl U3 (552 '

or A\, = [s2,]? with V,,(z) = V (z; [s2,]?) and ffn(a:) =V (2;\m) = V(23 [s2,]?), giving

U AL EER
[ [ A

(4.62)
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for some n/, m’ depending on n, m respectively, where n and m are related by \,, = A
By the approximations in Lemma 4.6.1 we have

- 2 2
o (x;[5,,
Ll fotm. wa—o,
20151 2) o((m"®), ifa € (0,7),
J( m’
and
u (s [s)]%) 2
éuﬁ([Si/]Q)g
u?([sp]%)
] n
(bt m)Osin? [P 4 5 2 008 ETR= g (n')?) if o =0
2 5 g ,
2a8 21 oc?- Z B2
> =1 T
- b(n'm)8 sin? o sin? am a 2” Tt o (1) dt
(n') o 1O +2Méf_ a(t) ]+0((n')5), e (0,
2t £t £
N j=1 " =1
together with
o (x;[32 )2 2
(~(.1([£2”7];)§ _ {0((m’)4), if 8=,
7 m = N .
(#2(2,%) O((m')?), if B e (0,m)
and
(o2 12 2
v (z;[s2]%)
(vi ([s2]%))
(v3(21%)
( ( / )6 |:q2(0)+2 52"!‘7 fob 2néﬂ'tq(t)dt
a( %™ ) sin T
b2 +0((n")3), if 8 =m,
2 S a? ]XV: ﬂ?
> = 7t
N (ﬁ)él in? B sin? q2(0 +.g1622 cot B+4 beOSMblmsq(t)dt
b "’Tﬂ' / |
M N 7 +0(n'), ifpe(0,m).
2 L;l a? igl 53}

Since Ay is a finite set the difference between n and m, and consequently n’ and m/’, i
bounded. Hence, the result follows by (4.61), (4.62) and the approximations above.

(ii) Suppose that A, € o(L;a,B;r,s) \ Ao. Let Fy,(z) = F(x;\,) and Fp(z) = F(gc;)\n)

denote eigenfunctions of (L; «v, B;7, s) and (L; v, B; 7, s) respectively, where A\, = A, for

some m. In particular,

1. if A, € A\ (A* U Ag) then F, = Uy, F, = Uy,

2. if Ay € A\ Agthen F, = ZY or F, = ZP with £, = Z\" or F, = Z
respectively,
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3. if A, € A1\ Ag then F, = Z,,, F,, = Z,.

Then
- 1
(A= L)"'F,(x) A_AnHFn(:v), A# An

:)\15\ N”(x)v )\n::\mv)‘#j‘m

:ijp@AM,An:&uA¢%l
= (A= L) 'F(z; Am)
— A=D)7'Eu(x), An=Am
= (A= L) 'HE,(z).

Hence, the result follows as the vectors F}, form a complete set in H.

Lemma 4.4.2. Let
f

(f7)
Let A\ £ Ay, n € Ng, A FE v, i =1, Nand A\ # 0;, j =1, M. Let

b A)\ﬂ(zﬁ\)’ if —a<z<0,
naen) = [ Gl n gy LN gy T mese
Ca B\ Gay,  if0<z<b,
with G defined by equation (4.32),
N i B; ] M [ o
A=) fl A P A
) Zz;fz _)\_'Yi v_+jz;fj _)‘_5]' U:|,
N r Bi ] M [
B\ =) fl|v——Ad Jl—=A
()\) ;fz _A_’Yz u_+]§::1f] _)\_6] u:|7

and R(z,t; \) as defined in Theorem 4.3.5. Denote by [Y|o denotes the L*> component of Y .
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1. If —a < x <0 then

- o (K, — K] 7 up fdt _
[(A ) HF}O = h(z; ) + AnEA\%UA*) 00 fin ()

IR =

B v (075An)8(075An)

+ o2 nl) T
An€A*\Ag (A= An) HZfl )H
[1—T,] [, 2nfdt
+ 5 Zn()
. %A A=) 1 Zu?
n 1 0

M
0] oo

—/b R\ fdt— 3 L:1

—a An€AonA* (A= Ap)

zM ‘2

N1 22| ~
.Zlvi’nfi + Zlvjfj a(z; An)
1= J:

- AWEAOZM\A* A= A)t(An)
N M
[z NS Z?,nff] (23 M)
i=1 =1

(4.63)

2.

2
AnEAgnAT (A =2n) (1 Zn]]

Here, for A, € A\ (Ag UA¥), K,, = ky, and K, = ky ifr(\n) # 0 and s(\,) # 0, else
K, = k:ﬁll) and f(n = l;:g).
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2. If0<z<b,

o (K, — K] [P unfdt
AN—L)'HF| =h(z;)\) + z Un ()
i|0 )\nGA\(ZAouA*) (A - )‘n)w()‘n)

a(0F;2)0" (07520 b (2)
- Seaetea | L
" Z @112 Zy ()
D
" Z | 5~ 2n(T)
Ziay, A Aa) 120l
An€AT\Ao

N 1
22 f&} (2 An)
=1

—/bR(:c,t;)\)fdt— > [

—a An€ANA* (A — Ap)

z ‘2

R BT - gy g
Zlumfz + .Zlujfj (25 \p)
1= J=

__AHEQEQA\A* (A= A)tb(An)
N M
i=1 =1

2.

An€Ag ﬁ/\l+

(4.64)
(A=) 1 Zal?

Here, for A, € A\ (Ag UA¥), K,, = ky, and K, = ky ifr(\n) # 0 and s(\,) # 0, else
K, = k:g) and f(n = l%ﬁf).

Proof. Let A # X\, forn € No, A # ~; fori =1, N, A # §; for j = 1, M, and

f
F = ! (le)
(/)

Recall from Section 3.5 in Chapter 3 that (A — L)™' F =Y with

ANXa0yu(@; A) + B xpv(x:A) + [°, Gla, t; N) f(t)dt
fi1+BiAyl)
Y = A=

, (4.65)
ijJFajAy)

3=3;

where A(\), B()) are as in the statement of this Lemma.

1. Suppose that —a < x < 0. Then, using the expansions of Theorem 4.3.5 we have
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H\-L)'F

F 2z
) DEEERLLONE AN I (r2) 20
g | e AR ameht (A=) || Z
B2
" Zf (A= \n) |]Zn||22”(x)
. An€A] )
[f fvndt+z i ”l+z J Jn -
_ .
AneAgA:*qu) (A=) (\n) ()
z ¢ (1) ffz dt+0+2 2(1)
+ Z JZ, fan dt L pa o

amerride | (A= An)

()\ - )\n)

’ ff%dt—&—Z lZn Z j]n
+ Y Safzdt o

2
An€AT\Ag ()\ - )\n) HZn” ( _ n) HZnH

where we have used the fact that (F,V,,) = 0 for A, € AN Ag\ A*, <F, ZT(Li)> = 0 for
An € A* N Ag, and (F, Z,,) = 0 for \,, € A1 N Ag, by definition of F' € H,.
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On the other hand,
h(z; \)

b N , M -
_ ~ . GiAv" 4 a;jAv 5| a(x;N)

()

—a )

- N M
Ky [ upfdt + ff vpfdt + 3 Uilvnfl-l + > ’U?nf]Q]
2 A— A '1;1 = in ()
An€A\(A*UAg) (A = An)¥(An)
o . 0_(1) A2 4
’U/(O A )u(0730) far; Z(l)fdt f:L' Zn fdt + 0 + Z Zj,n f]
vl(o_V\n)a(O_?)‘n) —a " j=1 ~(1)
> Ol 1|2 ()
AneAm\ Ao A=) || 28 ’ A=) || 28 ’

N M
0
dt 1 rl 2 2
I ffa znfdt fx ol +;:1 Zini +j; Z]mf]

+ + Zn(x)
WZI\AO A=) [1Za? A=) [1Za]?
N T e
/ CR@eNfods Y SR (23 An)
+ R(z,t; t)dt + - u(z; Ap
—a An€AQNA\A* ()\ - )\n)d}()‘n)
W2 N, L, o
O+J;1z.7n 7 ;Zi,nfi —I-J; 2501
+ - w(x; M) + = — u(x; Ap).
2 M| (%5 3n) 2 A=) [1Zal® ()

Zn

AnehonAs (A — ) ’ An€MoNAT

where, for A, € A\ (A* U Ay), K, = ky if r(An) # 0 and s(\,,) # 0, else K, = 157(11).
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2. Similarly, if 0 < z < b then

H\-L)'F
F Z(Q) )
F,U, , Zn,
> eSS <A .>A KoUn(x) + ) < ?2) - 23 ()
" AneA\A*( = An)¥(An) e (A= Ap) || Zn ‘
(F, Zn)
+ — T Z(x)
MZAT A=) 1Z0]1?
b dt N 1,1 A 2,2
fia fun +z; + tom +J§1 i tm -
= > : KU, (z)
An €A\ (A*UA) (A = An)¥(An)
o paldt+ S A0 e,
> o e 20 (@)
@ |? @ "
AeAr\Ag (A — ) || 26 ’ (A=A || 26 ’
T ol 1.1 M 2.2
ffafzndt_k Z izi,n+ Z ij,n b
+ Y = = I S L
(A=) [1Z0]1? (A=) [1Z0]1? ’

A €A\ Ao
where, for A, € A\ A*, K, = ky, if r(\,,) # 0 and s(\,) # 0, else K, = k:7(l2). Also, we

have used the fact that (F, Uy,) = 0 for Ay € ANAg\ A%, <F fo)> = 0for Ay € A*N Ao,
and (F, Z,) = 0 for \,, € A1 N Ay, by definition of F' € H,.
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Whereas,

h(z; A)
b M .
ﬁZAu a;jAu o(x; N)
= x,t; ) fdt + _|_
/a ot 0] Z — X3 7 ey
K | [, unfdt + 5 ul f} + 5 ul f2| 4 K [ un fat
An€A\(A*UA) (A= An)¥(An)
N 1
z (2) (2)" £1 _
Zno fdt+ ),z fi £00 @05 (0F:2)
f() d zgl d uEO‘*‘;)\n ’EO‘*’ A g f fdt =(2)
T Zy (@)
An€AT\Ag A=) || 28 A=\ || 28
nfdt + '+ 2
fOZ f Zz@nfz Z nf] T;fmbznfdt ~
+ 2 + 5| Znl@)
e CEPSIPAT O =) 10l
Mo 2 2
b ;ul,nfi + Z:luj,n j
+/ Rz, ) f(®)dt+ Y = = Bz Ap)
@ AnEAGNA\A* (A = An)(An)
N M
> 5 fL+0 DD
+ = S+ Y = L b A,
An€EAgNA* ()\ A ) Z(2) ‘ )\nGAoﬁA+ ()‘ /\n) |ZnH

where, for A,, € A\ (A* U Ay), K, = k, if r(An) # 0 and s(\,,) # 0, else K, = 157(12).

Using Proposition 4.4.1 and comparing the final expressions for h(z; \) with the L? component
of H(A — L)~ F gives the result. O

Remark Full expansions of [()\ — f/)_lH F } o are given in Note 4.6.4 of the appendix to this

chapter. This includes an expansion of the error term ffa R(x,t; \) fdt obtained from Theorem
435.

Theorem 4.4.3. Let
f
F= (le> € Ho.
(f?)

Then, in the notation of Definitions 4.3.1 and 4.6.2, we have
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[HF],

Z (K, K n(w)f Uy fdt
An€A\(A*UA) ¥(An)
(07 ;A0 )u(0~ An] fdt

1_
n Z [ v (0~ )xn)u(O An

)\nEA*\Ao ‘ (
(1 =T, 2n(x) [*, 2afdt
+ ) 5
An€AT\Ag 1Z]
n g

[—ﬁ/(o;i?o )u)(\(i) An )wl — u] (x; A )f mfdt

An€A*NAT ‘

‘Pn?](x, )\n) + (I)nﬂk(xQ >\n)
s ) / 2 fay

(1) 2 —a

zM ‘2

-

An€(A*NAG)\AT

+0,9(x; Ay /uAtA ) fdt

[ - /\ )f unfdt
/\ne(A%x:*)m[\“r ()\ )

(I)n:g(qja )\n) + (I)ngk(x; )\n) z
B Ent(x; Ay) Up fdt
- > D) -
An€(ANAQ)\(A*UAT) z
PR i) [ (A fi

—a

RE I

An€ATNAg
g(z; An) ffa u(t; Ap) fdt
2 30w

\ An€ATNAY
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if —a < x <0, whereas if 0 < x < b then

[HF],
S (K — Kplin () [P up fdt
An €A\ (A*UAg) ¥ (An)
@(0T2)0" (0750) | 2 b
|:]. — 4u58+;§n;1~}128+;§7§i| 222) (.’13) fx Zf(lz)fdt
to2 @]
An€A*\Ag Zy, ’
1—-THz,(x bzn dt
Loy BoTHaG) [
1 Zn||
An€AF\Ag "
> (AR O 2 3y — 5] (25 00) 2 A7t
B 2
A €(A*NAGNAT) ’ Zr(L2) ‘
(I)ng(-r? )‘n) + q)ng)\(x§ )\n) b
_0(z3 ) / 2@ fat
2 xT
- ¥ 72
=f+ An€(A*NANAT b
g [ oalti ) s

An€(ANAQ)\(A*UAT)

T

[0 — knt] (25 ) [2 wp folt

+ ) X
An€(A\A*)PAT Y(An)
<I>n§($7 )\n) + (I)ngh(l‘; )\n) b
B 17(33; )\n) vp fdt
- > kit (M) :

b
+P,9(x; \p) / o (t; An) fdt

g(z; \n) ﬁ(x;)\n)] b
B ' - W fdt
Aﬁ%rmo[ ¢(/\”) HZnHQ /q; ?
_ Z §(x5 An) ffv(t; ) fdt
An€A1NAQ QS()\n)

Proof. Using the results of Lemma 4.4.2 we obtain
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[(A - E)_IHF];

b N ; M a;
O (z; A) [T ufdt+ @ (@A) | [ ufdt+ Y f] [AE—’%AUI} + > fj2 [)\_J&Av}
i=1 j=1 !

P(A)

)
An €A\ (AQUA®) (A=A (An)
| 0 (0 A

(0= A)a(0= 3 n) | ~ (1Y v
by O 000 ) + (@) [ A sal
AEA A (A — An) || Zn

b Y Al a@a@f @)+ ) [

2
e A=A 1] -
al 1 r1 A 22| ~1 A M2 2] ~
Z;Ui,nfi +]§1%‘fa’ @' (23 An) ];Zj,n i@ (@A)
Z i o 2
An€AoNA\A* (A = An)¥(An) An€AoNA* (A= Ap) zV
Nl X, -
1= j:
2 TESSIPAL (00
An€AgNAT A

if —a < x < 0, where, for A\, € A\ (Ag UA*), K,, =k, and K, = ky if r(An) # 0 and
s(An) # Oelse K, = kY and K, = &V,
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Similarly, if 0 < z < b we have

— /

[()\ ) HF} )

(23 \) [f”ta ufdt + % fi [/\f—i%Au’} + +a/(x; \) ff vfdt+
i=1 j

P(A

o) — a% [/_ Rix, t: \) (1)t + /:R(x,t; )\)f(t)dt]

. 12 [x 0]
)

(A
> (K — K] [~ in(@)un (@) f(2)dt + () [ un flt]
+ .
An€A\(AgUA*) (A= An)tp(An)
1— ﬂ(0+§)‘n)v/(0+§>\n) b
u(0H;20)07 (05, - (9
by ORI [ 0P e + Y @) [ o]
An€A*\ Ao ()\ - )\n) Zn ‘ r

1-T7F _ . b
L Bl e e [
N M
[Z U fi + 2 U?ff] V(3 An)

i=1 j=1

_ _ L:1 ;

An€ANA\A* An€honA* (A= Ap)

N 1 1 A 2 2| ~
1= j=

()‘ - )‘n) HZn||2

by

An€AoNAT

: (4.67)

where, for \,, € A\ (Ag UA¥), K,, = k,, and K, = ky if r(An) # 0 and s(A\,) # O else
K, = k,(f) and f(n = 12:7(12).
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Now, from the expansions of Theorem 4.3.5 we obtain

[ou — @] (23 A) ) { .

ey flx) = o

b
Rz, t; \) f dt—l—/th)\ dt]
Ox .

—a

uo - 1] VA (@)

) Ry — Kolliun /() | D) o)
- Z + Z O 2 7(11) ‘2

A €A\ (A*UA) ()‘ A )w()‘ ) AnEA*\Ag (A= An)

T~ UEuzd](@)
el

PO A0 0 gt (s N, [, 20 fadt + @ (25 M) [° 250 fat

o Z v'(075An)

An€A*AAT (A= An)

. i 17 2 pdt
[q)ny/(fﬁ; An) + Pnh (; )\n):| B
@' (x5 \p) f A fdt

n)

-2

An€(A*NAQNAT (A= An)

(I)ng, Z; )\n) * . U(t; )\n)
+7>\_ N, /a |:U)\(t, )\n) + A=\, fdt
)

V(@5 Ap) [, un fdt + @ (25 M) Ky ff up fdt
(/\ - An)w()\n)

( . ~ ffa Uy fdt
[Cbny’(m; An) + @ndh (23 /\n)} .

~ 3 _i_a’(x;)\n)kn [P, fdt
An€(ANAQ)\(A*UAT) (A =AY (M)

J (@A) [2yznfdt @ (x5 0,) [2 2 fot
- +
An€§ﬂAo [ (>‘ - An)‘lﬁ()‘n) ()‘ - )‘n) HZn”2

§ (x5 M) [, ul(t; Ay) fdt
Z ()‘ - )\n)(ls(An)

(4.68)
An€ATNAY

if —a <z <0,elseif 0 < x < b then
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i i) 2 b

ey f(m)—% _aR(m,t; A)f(t)dt%—/x R({L‘,t;)\)f(t)dt]

@(0t;\,) v/ (0
[1 - 0T 2O (52282 ] ()

Ly R K@),y 2
M heung AT AP An€AT\Ag A=) || 2% ‘
[1 = T,1)[Zu(2) 20 f] (2)

MNP SR WA

An€AT\Ag n "

(w5 2n) fiy 0 folt + MO O g 5 0,) 222 fat

> @2

An€A*NAT (A=) ||Zn ‘

e

(B (3 ) + B ()| 2

(x5 M) [y zg)fdt
(A=) || 23

-2

An€(A*NAQ)\AT
n¥ (23 An) v(t; \n)
*m/r [ ME M)+ T }fd’f
-y T (25 00) [° i fdt + @ (3 M) kn [ un fdt
)\nG(A\A*)ﬂf\; ()‘ - )‘n)w(An)
£~ ~/ fb vp fdt
[0 (23 00) + D (0|
~/($§)\n) ff up fdt
- > 4o a
An€(ANAQ)\(A*UAT) o )()\;/\n)i/f()\n) .
O,7 (z; M) f (@ _ v(t; A\
o, /x [m(t,An) + )\J fdt)
7' (25 \n) f; onfdt ' (z; M) [y Znfdt
—_ 2 +
,\ne%;ry\o [ (A= An)o(An) (A=) 1Zal?
T b
. ¥ (@5 M) J o(ts An) flt )

(A = An)d(An)

)\nEAl_ﬂAQ
Here we have used the fact that for \,, € A*, 27(12)(1:) =0if —a <z < 0, and 27(11)(33) = 0if

0 < x <b. Also, if \,, € A then z,(z) = 0 for 0 < x < b, whereas if \,, € A]L then z,,(z) =0
for —a <z < 0.
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Substituting the above expressions, (4.68) and (4.69), into (4.66) and (4.67), respectively, gives

(- i)_lHFl)

b N
(@ N) [T ufdt+ @ (s N) | [ vfdt+ > f) [/\,(_317
i=1

/} + ]gl f]2 [%AU}

P(A)

(K, — Kl (z) [*, un fdt [1=T,1%,(x) [, zafdt
> = A i (M) D TS WIFAL
An €A\ (AQUA*) n n An€AT\Ag s

(075 20)u(07500) | ~(1) z (1)
L S | @) [ g
> Ol
A A \Ag (A=) || 28 ‘
S T ey 2 (s M) [, 2 fdt @ (2 ) [*, AV fat
An€A*NAT (A=) Z§
|60 (@3 0n) + oy (5 A0) | [, 28 b
A=A,
~r z (1)
Z a'(z;A) [, 20 fdt
An€(A*NAQ)\AT (A= An)
Bl (25 An) [, [uA(t An) + }fdt
.l =,
(x5 \n) ffa up fdt — ' (25 \p) ffa vp fdt

2.

An€(A\A*)NAT
(@0 (25 M) + @) (33 )| [7, un Sl \
X — Ao
_ 3 (z; n)f"” Op fdt
An€(ANAQ)\(A*UAT) (A =AY ( n)
) [, [UA (t; An) + 32 An} fdt
* A — Am
> [@7(@,; M) JZpzafdt (i) [2, it
_ ‘ B 2
aenrray L AT An)90) (A=) 1 Zall
> (@i hn) 2, ult; ) fat
An€ATNAG (A=) (An)

if —a <z <0,else
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[(A - ﬂ)_lHF}/

o' (w5 ) [fx ufdt+2f1[ Bi Au} + ZfQ[ < Au] -l—ﬂ’(ﬁ;)\)f::vfdt

()
Py (K, — Kl (2) [P un fdt Py [1— T (x) f;’z;fdt
An€A\(AgUA*) (A= An)d(An) meat\ng AT AR (12|
4(0F520)0" (0F500) | 2(2) b (2
Ly [1 W} 20 (@) [0 27 fat
2
AnEAT\Ao (A=) || 2@ ‘
f 22 fdt— Ww’ (x5 A\, sz,(f)fdt
+ ) ”(
An€A*NAT (A=) ||Z
[‘i)ngl(x; )\n) + @ng;(x; )\n)} ff 27(12)fdt
A— An
> (w5 M) [0 22 pdt
_ D
An€(A*NA)\AT (A= Xn) || Zn
0 (@5 M) 7 [o(t: An) + 5520 | fat
* A= A
(25 M0) [Lunfdt — @ (25 A ben, 7w folt
" 2 A= A)d(A
An€(A\A*)NAT (A= An)t(An)
([ B0 () + @udfy (w3 M) [L vafat
A=
B Z (x5 M) ff Uy fdt
An€(ANAQ)\(A*UAT) (A = A)(An)
~ b
a2 ) f(@) [} [oalts M) + 322 fat
* A— A

B Z [gj’(:c;)\n) f; onfdt (x5 ) f; zp fdt
R RO (e W PSS VAT,

- 7 (w5 M) [, v(t; An) it

)\nEAl_ﬁAO
if0 <z <b.

Since
[HF)o= (A=) |\ = D)'HF| .

differentiating a second time with respect to x and comparing with Lemma 4.4.2 we see that, for

77



—a <z <0,

[H Flo

(K, — K, [F unfdt
: a
Y(An)

D

An €A\ (A*UAQ)

>

An€AT\Ag

o' 07 52n)u(075Ap
UEO*;/\ g EO An ;] f

1

- Trj] ffa
1Z01?

zp fdt

n

gy .

=
> 70|

)\n GA*\AU n

[f/((r An)u(0730,) ~
v (073An)

wy — &] (x;

()

n

) fdt

Aa) [5 2

2.

An€A*NAT ‘

zM ‘2

>

An€(A*NAQ)\AT

(I)ng(xa An) + (I)ngk($§ )\n) -
+P,79(x; \p)

JE
) 2,

[0 — knu] (x

(x5 An)
HZfz” 2

(1)

n

fdt

€T
/Z
—a

o) fdt

Uy fdt

>

An€(A\AS)NAT

¥(An)

>

An€(ANAQ)\(A*UAT)

S [@(w;kn)_

An€ATNAG (An)

T

+@,9(; An)/

a(z; An)
12l
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[(i)ng(x§ )\n) + (I)ng)\(x; /\n) -

L ]/_Zznfdt— >

An€AT

o | Lo

ux(t; \p) fdt
Gl An) [, ult; Ay

d(An)

NAg




is equal to

[0'u — av](z; N)

oy
[Kn — Ka][t,un](2) [1 - T ] [Zh2] (2)
> - f@)+ > e f(w)
An €A\ (A*UAQ) ()‘ o )‘")w()‘") AnE€AT\Ag ()‘ - )‘n) ||Zn||
[1 _ 17’(0:;/\n)1f(0:;/\n)] [2(1)'2(1)} (z)
v (0752n)a(075An) n n
+ f(z)
)\n;\Ao (A= A || 280 H2
(075 20)u(07500) ~/ ~/ . (1)
- f()
Ane%:my (A=) || 2V ‘2
( £~/ ~/ ﬁ/(x; /\N> 27(11)(%)
D7 (25 M) + (I)ny)\(x; An) — B 2 [ N\ f(z)
Z n
Jo |
MEndo\A] T [ + 452 s
+on A=A\,
[0 — knpa] (25 A\p)un (2)
- > . f(=)
>\7,,€(A\A*)01~X1" (>\ - An)¢(An)
7 (0500) + i ) — P2 | S g
Z 71’0\%) n
o <1 ) un ()
An€(ANA)\(A*UAT) +<I>ny (&5 2n) {UA(?:\’;) " A*An] /(@)
J'(x30n) (x5 00)] 2n(z) ' (3 An)u(@; An)
S [y, _ . ] RS 22 ()
An€AT NAg (b(An) HZ"H A= An )\nG/\fﬁAo ()‘ - )\n)gb(/\n)
4.71)

Notice that the first expression is independent of A\. From Theorem 4.6.1 in the appendix to this

chapter we observe that

[0'u — @] (2 A) = p(A) + O (N),

A €ER.

Furthermore, in (4.71) all of the summations are finite as K,, = K’n for all but finitely many n
(corresponding to 7(\,) = 0 or 5(\,) = 0) for A, € A\ (A* U Ag), and because A*, AT and Ag
are finite sets. Hence, the expression in (4.71) is of the form

[14+0 X /¢N) +O01/N)] f(x),

AER

But comparing with (4.70), the expression in (4.71) must be independent of A. Setting A = A,,,
where A,,, m € N is defined in Theorem 3.6.2, and taking the limits as m — oo we see that

M) =0 (1/VX) = 0.
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If 0 < z < b then we have

[H Flo

[ T;f] [ onfit_

( (K — K [, fdt
2 (An) o)

>

An€A\(A*UAg) M €AT\Ao

(0F52n) 0" (0F50)

[1- Mstean] p P sar

Zn(z)
1 Za1?

22 (@)

n

7(2) ‘2

An€A*\Ag ‘

>

w(0FAn)

[HO* 20 2n) 5, 5] ()

7 ‘2

An€(A*NAGNAT) ‘

;

<I>n3]($, )\n) + (I)ngk(m; >\n) -

An€(A*NAQ)\AT

+g(ain) [

+

o (; )\nQ) /b z7(12)fdt
> 7] 1

b
[’U)\(t; )\n) +

b
/ -2 pa

o

20 (t)
A— A\

] fan

[0 — ko] (5 An) [° un fdt

An€(A\A)NAT

¥(An)

|:(I)ng($, )\n) + @ngb\(x; )\n) -

An€(ANAQ)\(A*UAT)
¢(An)

An€ATNAG

+@,9(; /\n)/

T

. ’D(xS)\n>:| b .
1P [ ot

2.
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b ot +

An€AINAQ

(4!

kiz(//\\z))] /: onfdt

Un (1)
= An] fdt

(i M) [20(t; Ay fdt
d(An)




equal to

[0'u — @'v](x; \)

(X

[Kn — K[t un)(2) [ - T, [Fnzn] (2)
2. D fa@) + Y n i ()
An €A\ (A*UAy) ()\ o A”)¢(A") An eA*\A ()‘ - )‘n) HZn”2

1_ ’LTL(O"' /\n) l(0+ )‘n) Z()Z(Q) ( )
w(0F;20)07 (0F50y,) n n
+ ) [ } ([) 5 } f(x)
An€A*\Ag A=) Z{? H
a(0;20)0" (0700 ~ ) (2)
R e
An€A*NAT (A= An)
. (2) )
. 5 o(x; A zn (T
o (7 00) + @i ho) - T2 | 2
IS |2 ”
An€(A*NA\AY 7' (5 Mn) [UA('r;)‘n) + L@in)}
P PYDY — (@) )

[0 — kn@] (25 Ap)un ()
> FESRITWEEAY

A E(A\AF)NAT
b il (e =1 _ V(@3 2n)] vn()
. 0 )+ B i)~ 5o | 5o
- o y i An i An +v(§)\n)
An€(ANAQ)\(A*UAT) +(I)ny (J; ) |:’U);\(£L'_)\ ) A—An }f(.’lf)
ﬂ/(x§/\n) 6I(x§)\n):| zn(w) g/(x§/\n>v(x§/\n)
- - - f(@) = ‘
HZA[ R P s P P DI S Wr(EW

and the result follows as per the previous case.

We are finally in a position to prove the main results.

4.5 Main theorems

f(z)

/

Let Ag < A1 < Ay < ... denote the eigenvalues of the Hilbert space operator eigenvalue problem

(L;a, B, 8) (i.e. the eigenvalues of fy = Ay with boundary conditions (4.2)-(4.3) and trans-

mission conditions (4.4)-(4.5)). Slmllarly, denote by )\0 < )\1 < )\2 < ... the eigenvalues of

(L; o, B; 7, s) with L replaced by L (i.e. £ replaced by #). Let (L; v, (; 7, s) and (L; av, C; 7, 5) de-

note the corresponding boundary value problems with the boundary condition at x = b replaced

by
y(b)cos¢ =y (b)sin¢, ¢ € (0,7,
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where sin( — () # 0. Let (L; e, 8; 7, s) and (I~/; g, B;r, s) denote the boundary value problems
with the boundary condition at x = —a replaced by

y(—a)cose = y/(—a)sine, €€ [0,7), (4.73)

where sin(a — ¢) # 0.

Theorem 4.5.1. Assume that each eigenvalue \y, of (L; o, B; 7, s) corresponds with an eigenvalue
of (L; «, B; 1, 8), up to multiplicity, except if \,, € Ao, where Ay is a finite set.

L. Ifthe eigenvalues of (L; o, C; 7, s) and (L; o, C; 7, s) coincide up to multiplicity then, almost

everywhere
1. on[—a,0),
lq — ()
B Z 2K, — Kp][uniin] (z)
An €A\ (A*UAg) b(An)
I [CEA(C)
- 1Z0]®
)\neA \A
7 (0~ A)u(0~ ) ] [L(1) =)
- 2[1 - Heseitoan] 474 @
()]|?
An€A*\Ag Ly,
([t o]
+ > 5
N (1)
An€A*NAT ‘Zn H
B /
2| | ®0f+ Pufin — 3 | (2 00)2{) (@)
+ D ‘Z}l
An€(A*NAQ)\AT
+20,, [Jur] (23 \n)
N Z 2[[v — knﬂ] (;, A )t ()]
An€(A\A*)NAF ¥(An)
2“@ §+ gy — —n8 }(m A (m)},
n nYx — = ; An))Un
+ > U(An)
R €(ANAQ)\( A*UA+) +2®,, [guy]' (23 \n)
e ’ T
An eA NAo H nl An€ATNAL $(An)

where for A, € A\ (AgUA"), ifr(An) = 0or s(\,) = 0 then Kn—Kp =k =k,
else K, — K,, =0,
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lq — ql(x)
(0t An ~ !
oy 2 [[HO2 O gy — ] (3 M) 27 (2)
An€EA*NAT 7(1
_ /
2 | @05+ Ppiin — ——5 | (23 0)28P (2)
_ Z ‘ fo) ‘
A €(A*NA)\AT - ,
+2(I)n [377»\] (x7)\7’l)
) D S et ’
An€(AMASNAT ¥ (An)
~ /
. v
2 [0+ @i - ] @A)
_ Z kntp(An)
An€(ANAQ)\(A*UAT) +2®,, [Jua] (25 \n)
~ . / ~ A
- Bl e
An€ATNAG " " An€ATNAG "

in the notation of Definition 4.3.1, Lemma 4.3.2 and Proposition 4.6.2.

IL. Ifthe eigenvalues of (L; e, B; 7, s) and (I~/, g, B;r, s) coincide up to multiplicity then, almost
everywhere

1. on[—a,0),
lqg — q(x)
( 7 (0~ An n 1 !
5 2 || HO el el g u} (25 A2 (@)
An€A*NAT ‘
/
. U
2 [ |85+ Cufn — ———5 | (@3 20)20(2)
+ D | 2¢
)\,LE(A*QAO)\Z\T

+2®,, [guyr]' (23 M)

= 2[[0 — knt] (23 An)un ()] ’
+ ) -
An€(A\A*)NAT ¥(An)
D, 7 i il A )Un (T ,
n Z 2 |:|:(I)ny+q>ny/\_ 1/}()\”):| ($>)\n) n( ):| }
n€(ANAQ)\( A*uA+> +20,, [Gus) (23 An)
(3 \n) / 2 [gu]’ (a3 An)
2 zZn(T B
- GA - H 12.1P ? e x%w #n)
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2. on (0,b),

lg — d](x)
5 2K, — K[t un] (z)

An€A\(A*UAg) 1/’()\71)

2[1 - Trﬂ [571271]/ (i)
p AL

9 [1 — EOT) '(omn)} [ggpzz}’ (@)

(07 ) (07 ) n
7

" ‘

2

a(0T;0)0" (015 Ay, !

- > 2| [H 2 — 0] (s ) )]

’ 2

A

An€A*NAT ‘

/

2| [ @pf+ Puiin — ——— | (2 M) 22 ()
> 72 ‘

An€(A*NAG)\AT ‘ ,
+20,, [yva]’ (x5 An)

2 ([0 — kntl] (5 An)vn (@)’
+ > .
An€(A\A*)NAT Y (An)

/
2 [0+ @~ ] @ida)unte)]
- Fad (M)
An€(ANAQ)\(A*UAT) +2®,, [gua] (25 An)

][ R B D S L

— - 2
An€ATNAY ¢(An) 12l An€Ay NAo

\

where for Ay € A\ (AgUA®), ifr(A\n) = 0 0r s(A\n) = 0 then K, — K, = kip) kS,
else K, — K,, =0,

in the notation of Definition 4.3.1, Lemma 4.3.2 and Proposition 4.6.2.
Proof. We start off assuming only that k,, = ky for A, € A \ Ap with r(\,,) # 0 and s(\,,) # 0.

This is a result of both Lemma 4.3.6 and Lemma 4.3.7. The final identities in I and I will follow

from the arguments below after applying the remaining conclusions of Lemmas 4.3.6 and 4.3.7
respectively. Let F' € D(L) N Hy.
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Suppose that —a < z < 0. Replacing I' by LI in the result of Theorem 4.4.3 we get

[HLF),
" +af

>

An€A\(A*UAg)

DY

(0
(0

)\nEA;\AO

T520)u(07500)
- ZAn)ﬁ((]i?)\n)

(K — K] [ fuly = Fim + Ao [, tin fdt}
(M)

-7 [ F2 = Fon+ A [ 2 fdt}
1 ZnI?

Un

Zn

| [ = a2, A0 pa m

+Z[

An EA*\AO

(075 20)u(07500) ~
’U/(Of ;)\n)

Zn

A%

|27

&] (3 An) {fzy(ll)l — f’zy(ll) + A\ ffa zgl)fdt]

w1 —

Z [

An€A*NAT

>

An €(A*NA\AT

D

An€(A\AH)NAT

>

An€(ANAQ)\(A*UAT)

\

Pny + Py —

z)

|2

(1 _
a fzn

‘2 (5 An) +)\n/w

o _
[fuy — flun] (@3 M)
+<I)ny($,)\n) +/$ [27(11) +)\nu)\(t;)\n)] fdt

[0 — k@] (25 M) [ f1ty = Flun + An [*, un fol]

\

2
2D fat

g5 An)

¥(An)
fuil - f/un

+)\n/ unfdt]

[fu = frun] (25 00)
A

(
- @;Mﬁ4

. 5 k
[%y + ®pfn — ——

“Juum[

¥(An

x

a(x; An) |

Sy

An GA; ﬂAo

o(n)
s An) [[fu, — flu] (23 M) + A ff:a u(t; An)fdt}

y(a;

[fzjl —f’zn+/\n/

_ znfdt}
1Za]* | a

An€ATNAY

where we have used the fact that
X
/.

(recall that if —a < z < 0, zf(Ll)(a:)

u(t; M) [=f" + g f1(t)dt

d(An)

T

= flx)u/ (x5 M) — f(x)u(x; \p) + )\n/ u(t; Ap) fdt

—a

= u(z; \p) for A, € A*, and 2, (z) = u(z; \y) for A, € A7),
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and also that

/x ux(t; An)[= " + afldt = f(@)uj (@3 An) — f(@)ur(@; An)

+ / [t M) + Awtia (8 A)] Felt

since u(—a;\) = sina and v/(—a;\) = cosa for all A by definition of u(x;\), and since
f(=a)cosa — f'(—a)sina = 0 as f must obey (4.2) by the domain condition.

Moreover, operating with —% + ¢(x) on [H F]y we obtain

[ZHF]
0
=—f"+af
g e Ro) [[~lund! + X 7, wnft] i — 20, f
An€A\(A*UA) ¥(An)
-7 H—[zn £+ M f7 2 fdt} z, — 22, fz,g}
> 1Zal?
An€AT \Ao n
1 * 1 ~(1
1_ 17/(07§>\n)7~1(07§>\n) |:_[er7, )f], —+ )\n - Z’SL )fdt:| Z’Sl)
v (073 n) (073 n) @
—22(1) pz(1)
> ]2
An€A*\Ag ‘ Zy ‘
( xT
70~ An)u(0~5An) [—[z}})f]’ + )\n/ Zq(ll)fdf} w1
v/ (07 5An) —a (;E; )\n)
—221 fab)
- X |20
+ An€A*NAT H_[zg)ﬂ, sy ffa Zgl)fdt] P 2zgl)fa,} (3 M)
_ ’ Z’,(]l) ‘2
X . @n B B ~
)\n/ Zr(zl)fdt [(I)n + /\:| g+ Ppyx — % (.CC; An)
: AT
N S e A I
2z, [Py + TN 3 (ZL’7 )\n)
|2
An€(A*NA\AT . i
_[Zr(zl)f]/ D,y + Ppyx — TN ('TQ )\n)
|27
#gta 0 [ [ st e st 17
L —2<I>ng]/(l‘; )\n)u)\(m§ An)f ),
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(continued from previous page)

\

D

An€(A\A*)NAT

2

An€(ANAQ)\(A*UAT)

by

An EAI_ NAg

>

H—[un F 4 A 7 fdt} [0 — ki) — 2unf [0 — kna]’} (3 An)

[l An) Y+ A 7, s M) ]

()

z . 0)) kot
)\n/ Unfdt|:|:q)n+n:|g+q)ng)\— —
_a An ()

} (@; An)

] (@5 An)

. kna
_2unf |:(I)ng/ + ‘I)nﬂ& -
P(An)

~funf) [@y b ;;ﬂ (22 )
#,3wi0) [N [ untid) it~ i) Y|
=27/ (5 Ap)ua (25 An) f )
(= ln 1+ A J% 2 f ] G ) = 20z F15 (5 A0)
$(An)
(=l )+ A 7, 2] s M) = 20z f 1 (23 0)
- 12,
G5 An) — 2u(; M) £ (25 M)

A €ATNAG

d(An)
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Similarly, if 0 < = < b, we have

HLF),
=—f"+qf
> (R~ Kol [~ [t f — n )+ A f2 un fit]
. i,
AnEA\(AUAo) ¥(An)
- T [—[ £l = 0]+ An [ 2 fdt}
+ PR Zn
An€AT\Ao 1Z]
_ a0V 0 A | [ 1,2 g (2) b _(2)
g L e,
AnEA*\AU ’V(L
H(0+ Ao/ (0FAn) —1f23 = 2D
Y 3An)U WV 5An) om0 ‘A b
{ W0 ) W2 v] (5 An) +)\n/ 2@ fat
> 3 -
An€(A*NAGNAT) ‘ A% ‘
) — |12 = D)
3 + P iy — % (75 An) b
> +An / 22 fdt
+ An€(A*NA\AT fv& — f'ua] (25 An)
+0,5(x; \pn)
z @) 4 Ao (A )] Fdt
) fv — flon] + M fjvnfdt}
o
An€(A\A*)NAT ( n)
( ~ _[fU;z - f,Un]
Qny + Pny ] x5 A b
[ o nwun) R I / onfdt
_ Z / / ‘ x
An€(ANAQ)\(A*UAT) - [f”A —f “A} (25 An)
+(I)ng(x§ /\n) b
—I-/ [Un + Anun(t; Ap)] fdt
S - b
_ Z [ 7(x; An) B v(x,/\g)] _[fzil_f/zn]—l—An/ znfdt]
AneAT Ao ¢(An) 1Znll” 1L e
Z 7(x; An) [—[fv’ — fo)(z; An) + A fa?fu t )\n)fdt}
An€AT NAQ $(An)

where we have used the fact that

b
[ v a) s+ afl e =

@ (@A) — £ @0 An)] + A /

b

v(t; Ay fdt

xT
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and

b
/ oa(t: )= " + qf)(£)dt

since v(b; A\) = sin 3 and v’ (b;
(

x = b, giving

b
/ un()[~ " + qf)(1)dt

@)@ An) — F(@)oa (@ M) + /

’ [V(t; An) + Apoa(t; A\n)] fdt

T

A) = cos 3 for all A, and f(b)cos 3 — f'(b)sin 8 = 0 as f must
obey (4.3). Moreover, as u,(x) as an eigenfunction must also obey the boundary condition at

b
fun ' — el (&) + A / ot M) ft.

Again, operating with —% + ¢(z) on [H F we obtain

[ZHF]
0
=—f"+qf
Z [Kn - Kn] H[unf]/ + )‘n fzb unfdt} Up, + 2anunf}
An€A\(A*UAo) ¥(An)
[1— T H[zn F 42 [ fdt} Z+ 27 2, f}
_l’_
A €AT\Ao ”Z"||2
2) ¢]’ o 2
{1 B a(o+;An)u'(o+;An)} “ZT(L )f} + )‘n/ 2 )fdt] 7P
w(0F;2,)07(0F5Mn) o /35 @
+22,7 2, f
+ T Z @12
)\nEA*\Ao ‘ Zn ‘
b
(020 )0 (0 M) {[27(12)fy + An/ sz)fdt] Wa(T; An)
w(0F;An) z
+222) fish(w; \n)
oy =
An€(A*NANAT)
o o(x; A\p) [[27(12)]’]’ + A ff 27(12)fdt} + 20 (x5 )\n)z,(f)f
_ ‘ ZTSZ) ‘2
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(continued from previous page)

2

’ (2) ; Dy, | _ 0
An zp fdt | | P + N y+ Ppyx — T 2 (‘73§ )\n)
- 5 v
+[Z7(12),ﬂ/ Q.9 + Ppyx — ’2)2 (73 An)
22|
An€(A*NA\AT . i o
+2Za(12)f q)ny/ + (I)nyg\ - ‘Z(Q)‘z (x; )‘n)

b
i A) {m(:c; w4 [ An)fdt]
+2(I)n:‘7(x§ )‘n)UA($§ )‘n)f
[ 1 X 2w ) 16 = Foi] + 2un f [ — il | (23 00)

DY

An€(A\A*)NAT ¢(A")
b 7 A
+ ST B S .
)\n/x U fdt H@n—i— )\n} 7+ Ppin k‘nw(kn)] (25 An)
. 0
n ! n~ n~ I — 7)\n
+[vn f] [‘D 7+ i kw(/\n)} (z; An)
- ) [ oo _} .
An€(ANAQ)\(A*UAT) TS| Puf + Pad Fent) (An) (%3 2]
b
#2030 [+ [ oae g
L +2<I>ngj’(x; An)ua(x; Ap) f

9@ M) [zl + A [} znfdt] + 29/ (05 00) 20 f
S (M)
AnEAT A (x5 M) [[znf]/ + An fzb znfdt} + 20" (x5 M) zn f
) AL
35 An) [ M) 1+ Au [ 0(E An) ft] + 207 (23 M o(: M) f

-2 $(An)

An€AT NAg y,

Applying part (ii) of Proposition 4.4.1 to the elements of D(L) N Hy we obtain HL = LH.
Comparing [H LF]o with [LH F]y above, and observing that F' can be chosen so that [F]o = f is
non-zero a.e. in [—a, 0), the results for —a < z < 0 in I and 17 follow after applying the conclu-
sions of Lemma 4.3.6 and Lemma 4.3.7, respectively. In particular, we get simplified expressions
incaseIfor0 < x < b. Assuming that the eigenvalues of (L; o, (; , s) and (ﬂ; a, (5, s) coincide
fully, this is achieved by applying the following results of Lemma 4.3.6: if \,, € A\ (A* U Ap)
and 7(\,) = 0 or s(\,) = 0 then ED = kBP0 A, € A \ Ao then % =1
if A\, € Af \ Ap then T} = 1. Similarly, a simplified expression is obtained in case II for
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—a < x < 0. Assuming that the eigenvalues of (L;¢, 8;r, s) and (f/;a,ﬂ;r, s) coincide fully,
we can apply the following results of Lemma 4.3.7: if \,, € A\ (A* U Ag) and r(\,,) = 0 or
s(An) = 0 then kg) = 12:7(11); if A, € A*\ Ag then % = 1;if A\, € A7 \ Ap then
o =1. | O

Remark Note that, w1 (z; ), W2(2; An), @(x; An), 0(2; An) together with §(z; A,) as in Theo-
rem 4.5.1 above are merely solutions of Ey = A\n¥, not eigenfunctions.

Corollary 4.5.2. Suppose that the eigenvalues of (L; o, (; 7, s) and (L; o, C; 7, 8) coincide up to
multiplicity. If A\, = A\, for all n € Ng then, almost everywhere

1. on (0,b], ¢ = qand
,0),

2. on[—a

)\nEA\A* w()‘n)

21 - S auutanl] 0] @)

2 [1 - T{] [ann]/(x)
ps AL

An€AT

in the notation of Definition 4.3.1 and Lemma 4.3.2, where for A, € A\ A*, if r(\,) =0
or s(\p) = 0 then K,, — K, =&Y — kWY, else K, — K,, = 0.

Corollary 4.5.3. Suppose that the eigenvalues of (L; e, B;r, s) and (i, g, B;r, s) coincide up to
multiplicity. If Ay, = A\, for all n € Ng then, almost everywhere

1. on|—a,0), q=Gand

2. on [(0,],

2K, — Kp[tnt,]
AEA:\ A+ P(An)

+ Z znzn] (v)

)\ €A+ ||Z H

in the notation of Definition 4.3.1 and Lemma 4.3.2, where for \,, € A\ A*, if r(\,) =0
or s(A\,) = 0 then K, - K, = 15512) — kg), else K, — K,, = 0.
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4.6 Appendix

The following lemma summarises the asymptotic approximations required for Sections 4.3 and
4.4. For details, we refer the reader to Sections 3.7 and 3.6 of Chapter 3.

Lemma 4.6.1. Let ) = |Jm(v/)\)| then as |\| — oo the following approximations are valid.

If—a<x<0
( )\) sin \Q(J:—&-a) +0 ( "(QC_HL)) ifOé =0
U\x; == z+a
sin o cos VA(z + a) + O (em - )> ifa € (0,m)
e 0 () o
w(x;A) =
_/\Slnam\f% +0 (")) ifa e (0,7)
( _ O;/\% p sin\/xgb cos VAz + O ()\en(bf:v)) if=m
o) = 4T
—Xsing cos VAbcos VAz + O (A3/2ent=2)) if B € (0, )
> of 2 Bf
Jj=1 i=1
3 in in T —x 1
v(zy\) = Flksj = \f :
ATSIE o \fbsm AL O (N2en®=2)) if B € (0,m)
2§ 2
j=1 =1
Ifo<x<b
'ﬁ cos fasmfm +O (M) ifa =0
Yaiyp
’LL(SC; A) = j:1/\3 sm:olz sin v/a sin vz 3/2 n(z+a) |
SRR T O W) ifae (0.m)
Z Z
=&
'7A cos vV acos Vz + O ()\3/26"(I+a)) fa=0
Z Z B?
u'(z;\) = /\5 = I 9 .
- su;lva smﬁ @ tos \/Xl‘ L0 ()\ en(x—i—a)) ifa € (O,ﬂ')
2 2
2 aj 3 B
\ j=1 =1
'U(x' A) - sin \\f)\fg\bf:r) +0 (eﬂ(l;:o:) lfﬁ =7
’ sin 3 cos \A(b —z)+0 (e"ibf;x)> ifB e (0,m)
en(b

Asinﬁmff(" ””) 40 (

) lfﬁEOﬂ"
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)‘72 cos fasmfb + O(Ae(atb)y ifa=0,3=m,
z P
—sina)®  sinv)a sin ]
5 a2 %Ag.z e siny3b . ()3 2en(e ) ifae(0,m), f=m,
PO =9 T
Msmiﬁ/\cos VAacos VAb+ O(X32en@th)) ifa =0, B € (0,7),
Zla? 2152'2
j=1 "=
_Ailnaslnﬁk sm\/\/xiz COS \/>b_'_0()\2677(a+b)) ifa, B € (0,7’(‘).
21 Z B;
i=

(o]
Furthermore, the eigenvalues \y, of (L; «, B;r, s) satisfy {\/)\n in > No} = U X*for some
k=Ng

Ny € N sufficiently large, where
= {\/An:OSn—(k(chd)Jrn) < c+d—1}

and each Y is the disjoint union o¥ o with

={s5:0<n—(ke+r1)<c—1}
={s2:0<n— (kd+ks) <d—1}

for some constants k, k1, ko € N and, moreover,

g (n+2/2) + (h + 2mr f M q(t)dt + O (%) ifao=0
n % + QI(O)+COtO¢ + 27%7( f 2n7rt ( )dt—|— O( ) lfOé c (0,77)
q2(0 )+Z B2 - ) .
531 = % + nmw + 2n7r fO cos ﬂ (t)dt + O (n72) lfﬁ =7
q2(0 )+E B2 —cot 3
/A = + 5z Jy cos BT (1)t + 0 () if B € (0,7)
where
1 [® 1 /b
q(r) = 3 q(t)dt, qo(x) = 5 q(t)dt
a x

Then

b(nm)6 sin aq1(0) a (2n+1)7rt Ddt

()0 sin? [ 220 o f0 os ()]+O(n3) —

b M
2a8| Y a2 3 B2
2/ _.1.112 _ j=1 i=1
/u (T’ [Sn] )dT o b(nm)8 sin? a sin? J;qu(oi:rmta+22ﬁ f_Oa cos Qzﬂtq(t)dt]
2o i +OW)  ifae (0,
2t 02 82 7
j=1 7i=1

Bilhu! ([s)]%) {0<n> ifa =0
O(n?) ifac(0,7)

o Au(lsif’) {O(i) ifor=0
O(n) ifa € (0,7)



and

N
2O+ 2 B2+ J§ cos 287t g(t)dt
=

(/L(”T”)Gsin2 |: e

M N 2
TEa i
j=1 7 i=1

N
q2(0)+ _21 Bizfcot [1‘+% f(l)) cos 7(2’”-;1)7”
i=

+0(n?)

q(t)dt

a(n—bﬁ)‘l sin? B sin?

BiAV([si]?) _ JOQ) ifB=m
[s3]% — i O(n) ifB e (0,7)

ajAu([sp]?) _ JO() ifp=m
[s2]? = 9; O(n) ifB e (0,7)

+O0(n)

ifp=m

if B € (0,m)

Proposition 4.6.2. With reference to items 1-5 below, we can find ¢ > 0 such that the func-

tions y1(z; N, . ..
Ji, ..

L ys(x; ), and g1 (M), ...

forhe J;, j=1,...,5.

1. For each n € Ng with r(\,) =

s(An) = 0, let J}' =

A € Jy == UJ define

with

B Aa) = Hm g (es),

—An
d1(An) = lim @1 (N).

A—An

if —a<z<0,
ifo<z <,

, 05(\) are continuous with respect to A on the sets

., Js, respectively. Define, §(x; \) and ¢(\) such that §(x; N) = gj(x; A) and p(X) = ¢;(N)

M — €, +6)\ {\.}. For

2. For eachn € Ng withr(\,) = 0 and —A— = 0, let J} = Ay — €, Ay +€) \ {\n}. For
A € Jo := UJY define

with

5(An)

$2(A) = rA)p(A) = r(MWu, o],

ga(x; Ap) = )\lim ga(x; N),

—An

A= An
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3. Foreachn € Ng withr(\,) = 0and s(\,) € R\ {0}, let J = (A, — €, Ay +€) \ {0}
For \ € J3 := UJ3 define

)

s (23 \) = r(ANo(z;A), if —a<z <0,
ys(x; o ?”()\)ﬂ(:z:;)\)7 if0 < x <b,

¢3(A) = r(NYA) = r(A)Wlu, v],

with
ys(z; Ap) = i ys(z; A),
73(z; An) N g3(z; A)
d3(An) = /\lig\ln #3(A).

4. For each n € Ng with s(\,) = 0 and ﬁ =0, let J} = (A — €, A\ +€) \ {\n}. For
A € Jy := UJ} define

s(AN)o(z; A), if —a<z <0,

Zj4($;)\): {s(/\)ﬁ(.%';)\)y ifo<z <,

¢4(A) = s(NY(A) = s(\)Wu, v,

with
Ja(z: ) = lm ga(z; N,
Ga(w; An) = lim ga(z; A)
¢a(An) = Aligln Pa(A).

5. For eachn € Ng with s(A\,) = 0and r(\,) € R\ {0}, let J! = (A, — €, Ay +€) \ {0}
For \ € Js5 := UJg define

s (23 1) = s(No(z;A),  if —a <z <0,
AT s(Aa(z; N),  f0<z<b,

¢5(A) = s(NY(A) = s(\)Wu, v,

with
s (253 An) = Jim Js (w3 A),
¢5(An) = /\lig\ln ¢5(A).
Furthermore, the following limits exist.
L If\, € ANAy,
o (A=)?
q)n =1 ’
o 6N
. ) d (A=\,)?
®, = lim —————,
A AN B(N)
oy e G ) — g An)
y)\(l‘, )\n) = /\lirg\ln N )\n .
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IL. If A, € A1 N Ay,

b = tim KA =)

A—An A— A\

Proof. To prove the first assertion, consider case 1. Let \,, be an eigenvalue of (L; «, 5; r, s) with
r(An) = s(A,) = 0. For A close to A, we have

a0t ) =a(07;\) + LiL'(O_; A)

s(A)
@075 N) + A/ (075 N)
ﬂ/ +. :a/ —. s(A)
(075 N) (075 N) + =
and
~10— \) — (0T Lo+,
7073 0) = (07;0) — r()\)v(0+,)\)
NP - ﬁ,(OJr?/\) o )77(0+ )\)
(075 0) =0(0T;0) — S
Hence, for —a < x <0
r(N)s(N)3(z;A) = 7(N)s(A)D(07; N (a3 A) + 7(N)s(A)' (075 Nz (2 A)
— 0(07; A\p) w1 (25 M)

as A — \y,. Similarly, for 0 < x < b,

r(A)s(N)a(a; A) = r(X)s(A)a(0; N (3 A) + r(X)s(A)@ (075 X (z; A)
— ﬂ/(()i; )\n)wQ(l‘Q )\n)
as A — \,. Moreover,
w(0F; M) (015 0) — /(075 A)w(07; \)]
u(07; ) + /' (075 0)] /(075 )

[r )s(A)' (075 A) + s(A)u(075A) + /(075 2)] v(0F5 \)
— = (075 M)v(075 \,,) (4.74)

<
—~
>
—
V)
—~
>~
\_/
/—\
v
/-\
>
N
»
—~
>
—
 —

as A — \,. Here we note that v/(07; \), @ (07; ), v(0T;\), 9(0"; \) are entire functions,
hence the above limits exist. Choosing €; > 0 small enough so that (\) and s(\) are bounded on
[An — €1, A +€1] for all eigenvalues \,, with r(\,,) = s(\,,), we conclude that g1 (x; ) and ¢ (\)
are continuous for all A € (A, — €1, \, + €1) for all A, with 7(\,) = s()\,,). Similar arguments

can be made for the remaining cases, yielding values €9, ..., e5 > 0. Choosing ¢ = nllin S the
J=L5
result follows.

Lastly, to prove the final claim we again consider only case 1, as remaining cases are similar.
Recall that the transmission conditions reduce to y(07) = 3/(07) = 0 at A\, if r(\,) = s(\p) =
0.

L. If \,, € ANAg then \,, has geometric multiplicity 2. Thus u/(07; \,) = 0and v(0T; \,,) =
0, resulting in a double zero of ¢(\) at A = \,, (see (4.74) above). Since each meromorphic
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function admits a factorization in terms of its zeroes and poles (see [64], page 220) we
deduce that ®,, exists. ®,, is the residue of ¢! at \,,. Moreover, if —a < z < 0 then

g 9050~ 51(zi)
A—=An —
S(A) [r(N)V' (075 A) — (075 A)] da(as A)
A=A
i ] TV SO0R0F ) — (0 N (5 )
A= An

A—A

(075 Ny (23 A) — 0(0F; A\ (3 \n)
A—A
)

= [=(A)0' (0% 00) + 02 (075 An)] @1 (25 An) + 0(0T; Ap)0ia (23 An),
whereas if 0 < x < b then

lim g1(x; A) — 71(z;5 An)

A= An A=A
(V) [s(N)a(0—3 ) + @' (075 M)] w23 A)
A=A
i ]SOV PO Y) (05 A) (s
)\—>>\ A— A\
a/(oi; )‘)w2 (3?; )‘) — ’&'/(073 )\n)w2(x§ /\n)
A=

= [s()\n)ﬂ(o_; >\n) + al)\(o_; An)] @2(1‘; An) + ﬂ,(o_; An)wQ)\(x; An)

Il. If A\, € A1 N Ag then, in particular, \,, has geometric multiplicity 1. From equation (4.26)
we deduce that ¢)(\) has a simple pole at A = A,,. Hence, ¢(A) = r(A)s(A)y(A) has a zero
of order 1 at A = \,,, which implies that ¢(A\,,) # 0. In particular,

(i) if A, € A7, then /(075 \,,) = 0and v(07; \,,) # 0. Observe that

rA)B(N) — — {u(()_; An) + W] 0(0F;5 An)
as A — \,. Thus,
N =o)L s(N)
/\lgg\ln A=A - /\lgg\ln A— A r(Vw (V)]
= —$(\n) [U(O_; An) + W] v(0T5 \).
(ii) if A, € A7, then «/(07; \,,) # 0 and v(0™; \,) = 0. In this case,

s 40 V(0 . UA(0+§ An)

BO) = /(073 w) |o/(0%5 ) — )]

as A — \,. Hence,

o =60 _ ()
A

n A=A A — A

[s(A)p (V)]

v +. "
— f“(/\n)u’(()*; )\n) |:v/(0+; )\n) _ W] |
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O]

Theorem 4.6.3. Suppose that \,, is an eigenvalue of (L; o, B; 1, s) coinciding with a zero of ()
or s(\). Let u € Cwith p # A\, for all m € Ny.

1. If \, € N* then

X[=a,0)W1(T5 An) X(0,5/W2(T; An)
ZW(7) = u(07; An) (0) L ZPm=v0ta | (55)
—x5) (0

are a pair of linearly independent eigenfunctions of (L; ., 3; r, 8) corresponding to \y,.

Moreover

0, if —a<z<0<t<h,

S<W,A:An): P @R 0 g <o <t<,

- 1272
A= wp) AT

An—i H27(12)||2 ’

if0<z<t<b,

a(x; Nv(t; A)
ke (it A=)

(0, if —a<xz<0<t<b,

1 a@n)z (1) if —a<
pwey HZS)‘Q , if —a<z<t<,

1 a(0T50)  Wa(z;An)wa (M) . e ~_
An=p u(0F500) [Y 02 (7300 )T+ (An) | fO<z<t<b A €A UA,

@ [ 2) 20 (6) + 5 Mo (s M)

An = , ifO<z<t<b A &A*UAT,
P R FCEE N0
" An — 1 An — 1 ’

Res (Y A=)

(A= m)¥p(A)
0, if —a<t<0<z<b,

1 (0 50n)  W1(mAn)wi(tAn) . ~ . i
)‘n_/J' ’U/(Oi;)\n) fEa w%(T;An)dT—S.(An)’ Uc a S t < r < 0, U(O 7An) B 0,

_ )\n_/-L

Pn _ _
[0 M) (5 M) + 200 (£)7 (3 )|
A\ if—a<t<z<0 00"\, #0,

P RO E
" An — I An — 1 ’
L2 (i) if0<t<az<b.

e

If —a <z <O0then

1 BiAV u(z; \) > ( 1 BAY a(x; N) >
Res , A=A, ) =0, Res ,A=An | =0;
()\—M)\—%’ PY(A) A=pA =7 P\
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12 _(1)
Res( 1 «ojAv u(a:;)\)7 _ n) 1 zn iz (2)

A—pr—7; o - ‘Zﬁf)]f ’
1 ajAv iz 1 D%
Res< a; vu(:n,)7 :n): n U@ An)
A_ﬂ)‘_r}/j 1/)0\) )\n_ﬂ ‘Zr(zl)r
If0 < x < bthen
1
Res< 1 BiAY v(z; N) _ > 1 zg)izg)(x)
A—puX—7 P\’ " An — [ ’27(12)”2 ’

A (e @z
Res( 1 BiAu o(x; N) A= )\n> N ) Zv(:n,;\n);
)‘_M)‘—% ﬂJ()\) An_/‘ HZT(?)H

1 ajAuv(z;N) > < 1 a;jAu o(z;N) )
Res J A=A, ] =0, Res J , A=A, | =0.
(A—uA—djwu> N—uA—3; vV

2. If \p, € A\ A* then both

o
(u],n)
are eigenfunctions of (L; o, B;71, s) corresponding to \y,.

Moreover,

I ou(z No(t;A) 1 up(@)un(t)
R (T R A =) = 5

forall z,t € [—a,0) U (0,b], x < t;

Res< 1 a(z; Nv(tA) A= )\n)

A=—p YN
1 (@ n)vn(t) if —a<z<0<t<d
At (M) or —a<z<t<0,
Aﬁ%? ~ ifO<z<t<bAe(RUAD),
= Pn [Or (5 An)vn(t) + Gz An)oa(t; An)]
Ap — 1 . O
|:. o, :| f&(x;)\n)vn(t) fo<z<t<y, )\ng(AUAI ),
+ ®n - 5
\ >‘Tb —H )‘n — M
1 u(t; N)o(x; M) )
Res s A= Ap
(A —pn ()
1 Uvz(t)ﬁ($§>\n) UC —a S t<0<z S b
An=p Pp(An) or0<t<uxz<b,
,\nl,u u"(fz(v/\(:;/\”), f—a<t<xz<0 A\ €(AU Af)
- ¢y [uk(t; /\n)gj(m, >\n) + un(t)g)\(xQ )‘n)]
An — . P
_ & T (135 M) if—a<t<wz<0 X\ &(AUA).
+ ¢n - 5
An — An —
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If —a < x <0 then

Res( 1 BiAY ux)\ ’)\:)\n): v} Un(l‘)’
/\—M Yi Ap — [ w n)
Bi A’ ux/\ 0f (5 An)
7>\:)\n = ;
A— ;M Yi A= h(Ny)
( a]Av u(z; )\ A= )\n) _ v un(x)’
A=pA=7 An = 1/1 n)
< 1 a]Avu:L")\ ’)\:)\n) U u(xA)
A= BA—; (An)
If0 < x < bthen
( @Auvx)\ )\:)\n>: U Un(ﬂU)7
A= pA="i An — [ 1/1 n)
An
< B'LAU 'UCC)\ )\:)\n>: (:1: )’
A= A= ()\n)
< 1 ojAu v(z; )\ > _ u 2 Un()
A—pA—=30; (A An — [ 1/; W)

1 A 1 u?, o(m A,
Re< < “”(QM) )\:/\>: 0 0n)
A=pA=0; ¥(A) ' An =1 ()
3. If A € AY then x(_q,0)u(; A\n) is an eigenfunction of (¢; o, 3; 7, s) and the corresponding
eigenfunction of (L; v, B; 1, 5) is found by extending X|_q 0)u(z; An) to L*(—a,b)oCN @
CM using the rules of Section 4.2, we denote this eigenfunction by Z,(x).

Moreover;

1 u(z; No(t; A) 1 zp(x)zn(t)
Res<k—u oy T A) A=t || 2|

forall z,t € [—a,0)U (0,b], z < t;

) 0, if —a<xz<0<t<b,
Res( ! u(x;)\)v(t;)\)’/\_)\n> = Anlfl‘L%, frasz<t<o,
A=p PN 1@t e L <b
A=t ) fo<z<tsb
L e 0, if —a<t<0<z<b,
w(t; \)o(x; 1 u(tAng(z32n) ;
R A=\, | = . , —a<t<z<O,
¢ (A TEEETOVI ) e Y oester
0, fo<t<az<b.

If —a < x <0 then
1 BiAY u(z; 1 !
Res( BiAv" u(x; \) A= n) _ Zn; Zn(§)>
A=pA=7 ¥ An = HZ I
Res( 1 AV a(xs X)) | ) 1 zpta(w; Ay)
A—pX—7 ¥(A) ) A—n || Za)?

7
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2
Res ( 1 ajAv u(z; )\)7)\: n) 1 znjzn(;c)7
A=pd =7 ¥ An—u|wn
Res< 1 «ojAv u(:v;)\)’ _ n) 1 Zn] u(w; A )
N=pA—7 vV M=t | Za]?

If0 < x < bthen

1 BiAu v(x; N) > < 1 BiAd o(z; ) >
Res , A=A, ] =0, Res ,A=An ) =0
(A—M)\—% ¥(A) A=pA=" PN

1 ajAuv(z;N) > ( 1 a;jAu o(z;N) )
Res J ,A=M ) =0, Res J A=) =0
<A Wx—o; (V) X—HA—d; (N

. If Ay € AT then X(0,5)0(%; An) is an eigenfunction of (¢; v, B;7, s) and the corresponding
eigenfunction of (L; «, B; 1, s) is found by extending x (¢ yv(; An) to L? @ CN o CM using
the rules of Section 4.2, we denote this eigenfunction by Z,, ().

Moreover,

1 u(z; Aot A) 1 zp(x)zn(t)
Res<A—u oy T A) M=t Zal?

forallz,t € [—a,0) U (0,b], x < t;

N 0, if —a<x<0<t<hb,
Res</\iMU(x;122:)(t;)\)’/\_)‘”>_ 0’1 B | ifoa<z<t<,
i (0, if —a<t<0<az<b,
/\n—uW’ fo<t<xz<bh.

If —a < x <0 then

1 BiAVY u(x; ) > ( 1 BiAV a(x; \) >
Res , A=A, ) =0, Res ,A=An | =0;
<A—MA—7i¢Q) A=p A= PN

1 ajAvu(x ) | B I ojAv a(a;N) |
s (5 A=) =0 e (G )

If0 < x < bthen

0.

Res< 1 BiAu v(x; )\ A= )\n> an Zn(;l?)7
A= pHA=" \Z [
< ﬁlAuvx)\ >\:>\n>: 2t (:13)\)7
A= A= An =t || 2|
< 1 oz]Au v(x; )\ A= An> _ anzn(j)’
A=A =7 HZ |
1 a]Auvx)\ Zny (x5 Ap)
A=Ay ) =
A= pA =" A=t || Zn?
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Proof. The only new results contained in this theorem are the residues, and the only interesting
cases occur when an eigenvalue coincides with a zero of r or s as these cases can yield double
poles. We consider only one case as the calculations are similar in the remaining cases.

We begin by recalling the following fundamental results from Sturm-Liouville theory. Let u(z; A)
and v(z; A) be solutions of (3.1) as defined at the beginning of Section 3.2. Let \,, denote an
eigenvalue of (L; o, 3; r, s) or correspondingly (¢; cv, 5; 7, s). Then for —a < 7 < 0,

% [u(T; N/ (75 00) — 0/ (75 w3 M) | = (A = An)u(r; Nu(T; An),

which if integrated from —a to 0~ yields

/0 w(T; Nu(r; A )dr = w075 ) (075 An) = /(075 A)uf07 A"), A£ N, (475)

a )\*)\n
Similarly,
b +. 'O+ 10+ +.
0 M)V (075 M) — (075 A)w(07; Ay
/U(T;A)U(T;An)dT:_”( LILACM A) ;( PO -y s, @ae)
0 - \n

Now suppose that \,, denotes an eigenvalue (L; «, 3; 7, s) coinciding with a zero of () or s(\).
Then A, has geometric multiplicity equal to either 1 or 2 corresponding to the algebraic multiplic-
ity of w(A) at A = A, (see Theorem 3.4.1 in Chapter 3). We give details only for the case when
7(An) = s(A) = 0, as the calculations for the remaining cases are similar. Recall that at such an
eigenvalue the transmission conditions give y(07) = 0, ¢/(0~) = 0. So either «/(0~; \,) = 0 or
v(0T;N,) =0

For A close to \,:

w(OF; ) = u(073 A) + ——u/ (073 )

s(A)
vt =wo 4 A()) w05
and
V(075 A) = o (0F5A) - T(l)\)v(oﬂ N
0+ \) — L .
0(0730) = w(0F;\) — S 8(;<)A>”<0+’ N

If /(075 A\p) = O then, as A — \,,,
ul)\(()i; )\n)

- L. -
w0 N) = u(075 ) + ——u/ (073 0) = u(07;0,) + O]

s(A)
where 5()\,) = Z ()\ o5z < 0and uj (073 An) = —u(O_;An)fEa w1 (T; \n)2d7 by equa-
tion (4.75). Thus, as )\ — )\n,

ff)a w1 (75 A\ )2dT
o d0w)

u(07; \)

= — *o0.

(0% 2) = u(075 M) #0, w/(070) = w073 0)+
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If /(075 A\y) # O thenas A — Ay,
w(0; 0), 4/ (075 ) — Fo0.

Ifv(0T; \,) = 0, then as A — A,

_ 1 (05 \,)
/ ,/\:/+‘)\_ +.)\ /+.)\n_ ?
N
where #(An) = 3 5 6_’?7_)2 > 0 and vy (075 \,) = —0/(0T5\,) fé) w3(7; Ay )dT by equation
i=1"" "
(4.76). So
P w3 (75 A)dr V(073 )
(073 A 075 M,) |1 Jowa(ms M) TA) =00t ) - ——2 £
as A — A\,
If v(0; \,) # 0, then
V(075 0),0(07;\) — fooas A — \y,.
Now, for A close to A,
"(07; A
Wl 0](07) = a0 0 (0750) = (0754) o073 - Y

u'(07;))
s(\)
= w(07; 00" (075 0) — /(07 M)w(075N),

= [u(07; ) + ] V(075 0) — /(073 \)v (05 N)

likewise
Wiu, 0](07) = u(0; A) [U’(o—, N+ “(f& A)] W (0% A)p(0 A)
— (0T N (0 \) — _u(075 ) 2070 | w0t
(075 N0 (075 0) [ O +u'(0 ,)\)] (075 N)
=u(0T; )0 (075 0) —/(07; \)v(0F; N).
Hence

P(A) = W, v](b) = Wlu, v](07) = Wlu,v)(07).

If /(075 \) = v(0F; A\y) = 0 (i.e. A\, has geometric multiplicity 2) then as A — A\,
P(A) = w05 )0 (073 0) — /(075 X)w(0F; N)
fga wi(7; Ay )dT - fé) w3 (75 Ay )dT 40
$(An) 7(An) '

Whereas, if v/ (07;\,) = 0and v(0"; \,) # 0orif u/(07;\,) # 0and v(0T; \,) = 0 (i.e. A\
has geometric multiplicity 1) then !

PY(A) = oo as A —= A\,

= u(07; )0 (075 0,) [1

"Note that this applies only to this particular case of 7(\,) = s(\,) = 0. If precisely one of 7(\,) and s(\,,)
is zero then () will have a zero at \,, in the case of a geometrically double eigenvalue, whereas for geometrically
simple eigenvalues ¢ () will have a finite non-zero limit as A\ — A,,. This can be deduced from equation (4.26).

103



Since u(z;A) and v(t; A) (respectively @(z;A) and 9(¢; A)) are entire for z < O and ¢t > 0
respectively, G(x, t; \) (respectively G(x, t; \)) will have no poles for —a < x < 0 < ¢t < b and
similarly for —a <t <0 <z <b.

Let p # \,. Here we give the calculations of the residues of Ltu)‘) and G(%Z’\) at )\, for the
case of r(\,) = s(\,) = 0 under consideration. Remaining calculations are similar and are
omitted.

I. Suppose that u’'(07; \,,) = v(0T; \,) =0

o If —a <x <t<O0then

. @A)t A)
iy A“(A W)
A— A

u(z; A)
li 1 Av(t; A
)\ — A= S(A )\i}ﬁ)\lﬂ »(N) )\ig\ln[s( Ju(t; )]

)
1 1 wi(x; Ap)w (E5 An)

_)\n — H (é()\n) 1 B f—a u)l ’T,)\n)d'r
5(An)
1 wi(x; A\p) w1 (t; An)

A — o fEa ’UJ%(T; An)dT — é()\n)’

and similarly

lim (A — A,)

A=A

a(x; Nv(t; A) _ 1 w(x; \p) w1 (t; A\n)
(A — ) (A) An — pu(073An) ffa wi(7; Ay )dr — s()\n)
o If —a <t <z <O0then

) o uB Mo 1 w1 (6 A\p)wi (x5 An)
)\lig\ln()\ M) A=) A —p fEa w3 (75 An)dT — $(\n)

as above. Moreover, if 0(07; \,,) = 0 (i.e. A\, € A* U Af) then @(:c, t; A) will have
a simple pole at \,,, giving

. u(t; \)o(z; A)
AT )
1 A=A\, u(t; ) .
S — Algg\ln A) ,\lgg\ln P(N) Alg{\ln[s()\)v(x,)\)]
1 v (075 M) [ An)dT + 7(Ap )} @ (23 A )w (£ M)

)‘n_'uv(()*;)\ [fosz)\)dT-i-?“ }f w (73 An)dr = 5(\)

If 5(07; \n) # 0 (so A\, € Ag) then G(x,¢; \) will have a double pole at \,. Let
g(z; A), ¢(\) be as defined in Proposition 4.6.2. Then

i O | (A=\)?Gla, ;N i A= X)) 2wt N \)
n ON A—p T A 6)\ (N A —p
_ e, - D, ] ult; An)y(x; Ap)
An — b An — f
‘o, u (t; M) G(; Aq;\) + u(t; An) G (3 )\n)7
n— M



where

w(0=: A ) (0% M) [f_oawf(f An)dT — 5(\ ] [fo w3 (73 Ap)dr + 7(An)

and
. . . d (>\_>\n)
Pn = s e
S(A _ . u' (073
_ AESQ 5&A< L0 0) + 30)un(07 A) + lim O
u2(0~; \n) [f wi(7; Ap)dr — $(A ] [fosz/\)dT‘i‘T()‘ )}

: d r(\) : d v(0F;))
B )(VMWAHMJHJEWM%

w(07; Ap)v2(0H5 \y) [f w3 (75 A )dT — $(A } [fo w3 (75 Ap)dT + 7 (A, )}

3"

e f0<az<t<d

) u(z; Mv(t;A) 1 A=\ . . . vt N)
R Ak e s vl werie . dms v S UG R I Moy
1 wa (3 An)w2(t; An)

A — () + fé) w%(T; )\n)dT.

Moreover, if @' (07; \,) = 0 (ie. A\, € A* U /~\1_) then G‘(w, t; A) will have a simple
pole at A = \,, giving

. a(x; N)v(t; A)
A AT A0
. A=A - v(t; \)
A — ,\lig\ln r(\) /\lgl/r\ln[r()\)u(x ML e (V)

1 w075, [f W12 (75 M) dT — (A )} s (23 AW (£ M)
A= B (00 [ [0, Wi AT = 5(0)] FO) + Jg w3 (s An)dr

whereas if @'(07; \,) 7é 0 (so A\, € Ap) then é(x, t; \) has a double pole at A = \,,.
Let g(z; A), ¢(N), @p, Dy, be as defined in Proposition 4.6.2. Then

i [ (=) 2G(x,t; ) i 3 (A = 2)2 9z Mot \)
A=An OA A—p T oA 0 d(A) A—p
(i) _ o, gj(a:, An)”(t )‘n)
Ap — Ap —
+ q)n g/\(xa )\n)v(tv A'r;) + g(wv An)’l))\(ty )\n)
n— H
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o If0 <t <x<bthen

(O — u(t; Nv(z; A) _ 1 wa (t; Ap)wa (x5 Ap)
/\1—>/\n()\ An) A=wv(A) A=A, + fé) w3 (75 A\ )dT
and
u(t; A)o(x; N)
R A YEY
1 A (A
T e —n ,\lin\n r(N) /\ligln[r()\)u(t’ M ,\lig\ln h(N)
1 wa(t; Ap) (x5 An)

R fob w3 (75 A )dT + 7 (\y) v'(0F5N,)
I. (i) Suppose v(0T;\,) # 0and v/ (075 \,) =0

o If —a <x <t <O0then

and similarly

@AY 1 ) wn(ti An)
6V W T 3 Wy U s )

o If —a <t < x<O0then

) o uB Mo 1 w1 (t; A\p)wi (x5 An)
/\lig\ln()\ M) A =wp(N) A —p fEa w3 (73 Ap)dT — é()\n)7

(as above) and, moreover,

. u(t; \)o(x;A) 1 A= L u(z A)[s(N)r(N)o(t; M)
m A= M) S ey T g Sy O W u, 0]
1 w(t; \p)wr(z; An)  0(075\,)
A fo w3 (73 Ap)dT — 5(\,) v(0F; An)
e If0 <z <t <bthen
: @ At ) L i O oy rNuz Miv(tA)
A M) T e R AT ey

Similarly, if @ (07; A,) = 0 (i.e. A, € A} U A*) then

A A=A ey T
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Whereas, if @'(07; A,) # 0 (so A, € Ag) then

: u(w; Mv(t; A)
NP SISy
_ L gla; Ap)o(t; M)

An = d’()‘n)
1 @' (075 A\p)v(t; An)

= Ap — I u(o—; )\n)v(0+; )\n) [f_oa ’LU%(T; )\n)d’r — S()\n) .

(see Proposition 4.6.2)

e If0 <t < x<bthen
. u(t; Av(z; A)
Im (A —Ap)———~——-2=0
A A A0

(as above). Similarly,

u(t; A\)o(z; A)

lim (A —Ap)————+-—==0.
A, A= A e
IL. (ii) Suppose that u'(07; \,) # 0 and v(07; \,,) = 0.
o If —a <x <t<O0then
) u(x; N)v(t; A) 1 . u(z; N)[s(A)v(t; A)]
lim (A — Ay - lim (A — A, _o,
i ( eV e il ) = Ol v] 0
and similarly,
. u(@; A)v(t; A)
lim (A — X\, = 0.
A, A= A ey
o If —a <t <ax < 0then
lim () — o) LEAV@N

A= An (A= w)v(N)
as above, and similarly, if 9(07; \;) = 0 (i.e. A, € /~\ir U A*) then

. u(t; \)o(a; A)
AR ey

If9(0%; \y) # 0 (so A\, € Ag) then

. u(t; A)o(x; A)
Py
_ L ult; \)g(; An)

An = p ‘1‘5()\71)
1 u(t; M) 0(0F5 N )1 (25 M)

T —p w/ (0= Ap) v’ (05 A [f(f w3 (73 An)dr + f(An)} |

(see Proposition 4.6.2)

e If0 <z <t <bthen

lim (A o) MENEN) L A A s ula: ot A)
A= An A=) A= aoa. (A Ao, s(AN)Wlu, v]




and similarly,

lim (A — Ap)

. n
= lim lim
A= An

(

A=) PN Ay — g aode (A A5, s(A)Wu, v]
1 w0750 (@ A)wa(t An)

S A = (073 An) [P w7 A dr + (M)

(

z; Nvu(t; N) 1 A=A o [sN)rN)a(z; N)]o(t; A)
)

e If0 <t < x<bthen

A= An A=v(A) A= (N, + Jo w3 (s An)dr
as above, and similarly,
) u(t; \)o(z; A) 1 wa(t; A\pn) (x5 An)
lim (A — A, = .
RO CTU00) T R = i P ud(m e £ 7O Y0 A

O]

Note 4.6.4. Let F, h be defined as in Lemma 4.4.2. Let A\ # A, n € No, A # ~;, @ = 1, N and
A #£ 6, =1, M. Then, in particular,
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1 if-a<z<0

[()\ _ i)—lHF]O
[Kn - Rn] ffa Unfdt
= h(x; A -
AR I W

(075 An)u(075An) (1)
{1_m} J7 ) fdt

Up ()

50 (@)

2
An€A*\Ag A=) fo) ‘
[1 - T??] ff Zp fdt
T - Zn(x)
n 1 0

AR )u (075 A, ~ . S
W] @y (23 M) — (23 An) /x 0 fas

2
AmeANAT A=) || 28V ‘
. 4 . dt
> Py An
TR i) 0
dt
\ A [ )\ An /
Z f unfdt —a(z; A\p) f vy fdt
An€(A\AT)NAT A=A (An)
. N ko n)] JZ un fdt
- X [t + ) - BT S
3 Qny(z; M) [* ¢
An€(ANAQ)\(A*UAT) +);y(_x)\n) /a [UA(t§/\n) )\U ()\) ] fdt
S [g«z;An) B a(z;An)] JE
d(An) 1Za]> ] A= An

An€AT NAg
B (x5 An) ffa u(t; Ap) fdt

)

An€ATNAY

where for A, € A\ (Ao UA*), K,, = ky and K,, = ky, if r(\n) # 0 and s(\,) # 0 else
n—kg)andKn—k‘( )
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2. if0<z<b

[()\ - i)_lHF}O

= h(w;A) +

An€(A*NAGNAT) A=)

An€

+

An€(A\ASNAT

2

(A*NAo\AT ©nG (@A) [°
2 [ |

D

2.

An €A\ (AUA*) (A= An)Y(An)

> (K = Kol ], unfdtﬁn(:c)

n

_ a0F )V (05 A) | b (2)
[l w(0F A )7 (0F ,n)}f fdt
(

1= T;f] [ 2n fdt

22 ()

A=) || 2%

[

TESRITALE

a0t )V (0550 |~ /o
|05 2| s

) — 0(x; \p) /b )it

f zn fdt

(t)
An fdt

yt\z

o(z; \p) f; up fdt —a(x; ) fw v fdt
(/\ - An)"/}<)\n)

o(a;

|:(I)ng($7)\n)+¢)ng)\($,An) ( )):| f Unfdt

An€(ANA)\(A*UAT) ﬂW?An)/ [ LAy 4 () ]fdt

DY

An€ATNAQ

2.

AmE€AINAg

where for A\, € A\ (Ao UA*), K,, = ky and K,, = ky, if r(\) # 0 and s(\,) # 0 else
and K, = k.

K, = kP

A=Ay

[6(96;)\n) B g(x;An)] [Pz, fdt
1Za* () 1 A=

A=Ay

G Am) [2 (5 Am) folt

)

(A = Am)d(Am)
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Chapter 5

Oscillation theory for Sturm-Liouville
operators with point transfer conditions

5.1 Introduction

In this chapter we consider the problem of extending Sturm’s oscillation theorem, regarding
the number of zeroes of eigenfunctions, to the case of discontinuous Sturm-Liouville problems
with constant coefficient transmission conditions. In particular, we study the generalized Sturm-
Liouville equation

—(py") + q(x)y = Ary, (5.1

with 2 € [—a,0) U (0, b], subject to separated boundary conditions
y(—a)cosa = (py')(—a)sina, « € [0,7), (5.2)
y(b)cos B = (py')(b)sinB, B € (0,7], (5.3)

and a point transfer condition

[ (pg/g;)(g)*) } N [ 21 22 } [ (ﬁégg)(o)—) ] ' (5.4)

o1 t2
function, and p(x), r(z) > 0 for all z € [—a, b].

Here, T = [ bt } has t;; € Rand det T > 0. We assume that p, ¢, € L*(—a, b), g is real

In the case where T is the identity matrix, the boundary value problem (5.1)-(5.4) reduces to
the classical setting, without discontinuity. Classical Sturmian oscillation theory is well known.
Topics studied include the number of zeroes of eigenfunctions, positions of such zeroes, and
perturbation of the positions of zeroes when the coefficients p, ¢, and/or the parameter \ are
changed. See E. A. Coddington and N. Levinson [23] for an introductory account. These prob-
lems are usually treated under smoothness assumptions on the coefficients. For example, p,p’, ¢, 7
continuous with p,r > 0 on [—a, b]. The results can be generalized when less stringent conditions
on the coefficients are enforced. In [26], W. N. Everitt, M K. Kwong and A. Zettl consider (5.1)
under minimal restrictions on the coefficients, and assume that the weight function r is allowed
to vanish on a subset of [—a, b] of positive measure (in the Lebesgue sense). This generalization
has a significant effect on the oscillatory properties of the eigenfunctions. In particular, they show
that the eigenfunction corresponding to the smallest eigenvalue can have one or more zeroes in
(—a,b), contrasting with the classical case when r > 0. This result was later generalized by P.
Binding and H. Volkmer in [17], where they deduced the minimal oscillation number associated
with the eigenfunctions. For other semi-definite generalizations see F. V. Atkinson [8].
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A certain discontinuous problem was studied by P. A. Binding, P. J. Browne and B. A. Watson in
[14], [13]. In [14] the authors considered asymptotics for the case where r is allowed to change
sign at some interior point ¢ € (—a,b), such that r|(_q ¢), —7|(c;5) > O with finite discontinuity
at c. There, the main aim was to investigate how r(—a™), r(c¢™), r(c") and r(b™~) determine the
values of C' and & in

SVAp=nr+C+0n"), k>0 5.5

for positive eigenvalues \,,, where ¢ = ffa \/rdz. A similar relation holds for the negative eigen-
values, this time depending on negative values of r. These results were generalized to multiple
turning points in [13]. In comparison, the following approximation holds for classical eigenvalues
(when r is smooth and of one sign):

DX, = (n+ E)?n% 4+ F 4 o(1). (5.6)

Here D, E, F' can be determined explicitly from the coefficients in the differential equation and
the boundary conditions (see for example [39]).

We will determine asymptotics for the eigenvalues of (5.1)-(5.4) in terms of generalized oscilla-
tion counts of the corresponding eigenfunctions. In particular, we show that

gw)\N’M:(N+M)7T+C+O(N—|1—M>’ (57)

where £ = fﬁa (r/ p)l/ 2 dx and A ~,m denotes the eigenvalue of (5.1)-(5.4) whose corresponding
eigenfunction has IV zeroes in (—a, 0] and M zeroes in [0, b), with special treatment at the point
of discontinuity, x = 0 (see Theorem 5.5.2). We will show that the constant C' is determined
solely by the angles «, 3 in the boundary conditions, and that the form of the transmission matrix
T effects the possible counts N, M.

We note that oscillation theory for discontinuous problems of the type (5.1)-(5.4) considered
here is not entirely new. Some partial results have been obtained for Schrodinger operators on
graph domains (see [9], [70], [71]). There, the transmission conditions are replaced by matching
conditions at the interior vertices of the graph. For vertices of degree 2 these matching conditions
are equivalent to transmission conditions of the form (5.4). However, it is important to note that
in order to obtain nodal counts (that is, oscillation counts) such graph problems have required
the continuity of the eigenfunction, y, at the vertices, only allowing for discontinuities in y’. By
contrast, we will obtain results for general non-singular 2 x 2 transfer matrices.

To study the oscillatory properties of the boundary value problem (5.1)-(5.4) we make use of a
novel parametrization of the transfer matrix 7". In particular, we use the Iwasawa decomposition
of SL(2,R), which gives each g € SL(2,R) a unique representation in the form

_ | cos¢ —sing || v O 19
g_[singb cos ¢ ][0 1/7][0 1]' (5.8)

Here v € R™, § € R and we restrict ¢ € [—m, 7). In particular, writing 7' = gv/det T' with
g = (1/vdetT)T € SL(2,R) it can be shown that ¢, v and § are determined uniquely by the
following formulae

t11 ) to1

M sing=—2 (5.9)
Vit + 5 Vi + 15

t3 + 3, ti1t1o + tortos
=yt s iz hata 5.10
7 det T 2, + 13 ©-10)
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Our plan is as follows: We make use of two base solutions of (5.1), namely u(z; A) (defined for
x € [—a,0)) and v(x; \) (defined for = € (0, b]) which satisfy the boundary conditions at z = —a
and x = b respectively. We use standard Priifer transformations to convert u and v into angles
0(x; A) and p(z; ), defined for x € [—a,0) and = € (0, b] respectively. The eigencondition takes
the form of a matching condition for the angles 6(0; A) and ¢(0; A), which is deduced from the
transmission condition (5.4). The eigencondition in question is given by

tan (¢(0; \) + ¢) = v* [tan 8(0; ) + 9] . (5.11)

Here, ¢, v and § are given by equations (5.9)-(5.10) above. This is derived in Section 5.2. In this
preliminary section, we also introduce certain modifying functions © and A (borrowed from [14]
and [13]) which we use to simplify lengthy calculations later on.

In Section 5.3 we introduce modifications of the Priifer angles of 6(xz; \) and ¢(z; \), which
will play a central role in our analysis. Using the functions © and A introduced in Section 5.2
we separately analyse the effect of each matrix in the Iwasawa decomposition on the modified
Priifer angles corresponding 1to u and v. Here, the strategy is apply the inverse of the rotation
matrix, [ Z?Si _(jcs)lsnf ] , to [ pz;s(()(;z) }, and the shear matrix, [ (1) (15 } to [ pZE?O_)) ],
and thereby obtain translated modified Priifer angles. These results are derived in Section 5.4.

The inner factor, [ ] , in (5.8) produces only a scaling effect and thus will not change os-

v 0
0 1/y
cillation counts. It will be combined into the final matching condition for the translated modified
Priifer angles (see Theorem 5.5.1).

Finally, in Section 5.5 we are able prove the main oscillation theorems. These include formulae
for asymptotics of eigenvalues in terms of generalized oscillation counts of eigenfunctions (The-
orem 5.5.2). We also consider the problem of indexing eigenvalues in terms of oscillation counts
(Theorems 5.5.4 and 5.5.5).

5.2 Preliminary considerations

For —a < x < 0, let u(x; A) denote the solution to (5.1) satisfying
u(—a;\) =sina, p(—a)u'(—a;\) =cosa, VIER, (5.12)

and let 0(x; \) denote the Priifer angle associated with u (i.e. cot § = pu’/u, see Coddington and
Levinson [23, Chapter 8]). Then 6 satisfies the initial condition #(—a; A) = « for all A € R.

For 0 < = < b, let v(z; \) denote the solution to (5.1) satisfying
v(b;A) =sin B, p(b)v'(b;\) =cosB, VAER, (5.13)

and let ¢(x; \) denote the Priifer angle associated with v (i.e. cot ¢ = pv’/v). Then ¢ satisfies
the terminal condition p(b; \) = /5 forall A € R.

We note that y(x; ) is an eigenfunction to the eigenvalue \ if and only if y is of the form

y(z, ) = {A()\)u(x;)\), if —a<z<0, (5.14)

BNv(z; A), if0 <z <b,
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for some A(X), B(A) € R\ {0}, and (5.4) is satisfied. The corresponding eigen-condition can be
written in terms of (0, A) and (0, \) as follows,

tan ((0; \) + ¢) = ¥* [tan §(0; ) + 9] . (5.15)

We will make use of a modified Priifer angle (see Definition 5.3.1 below). In order to describe the
effects of the transfer condition on this angle in an efficient manner we make use of the following
functions. These functions were introduced in the papers [14] and [13] by P. A. Binding, P. J.
Browne and B. A. Watson.

Definition 5.2.1. Let O(w; k), k > 0 denote the angle depending continuously on w such that
©(0;k) = 0 and tan ©O(w; k) = k tan w.

Definition 5.2.2. Let A(w; k), k € (=7, T) denote the angle depending continuously on w such
that L
tan A(w; k) = sin(w — k) and A(0;k) = —k.
cos(w + k)

We will make use of the following results from [14], [13].
Lemma 5.2.3. (i) O(w+ mm; k) = O(w; k) + mmw forallm € Z.
(i) ©("F; k) = " forallm € Z.

(iii) w € [%@} if and only if © (w; ) € [% <m;1>7r}
(iv) O(O(w; k);1) = O(w; kl) and B(w; 1) =

(
(v) O(w; k) is C* with respect to both w and k.
(vi) Alw + mm; k) = A(w; k) + mn forallm € Z.
(

(vii) A(w;0) =

Lastly, with reference to (5.1), we define positive quantities

= (rp)*(—a), er = (rp)*(b),
o_ = (rp)*(07), oy = (rp)/*(07),

0 b
T = r(x x 1/2 T an = r(x x 1/2 x.
s—/u)/p()) dr and € /0<<>/p<>> d

—a

5.3 A modified Priifer angle

We define a modified Priifer angle similar to the one used in [14] and [13] as follows.

Definition 5.3.1. Let Q(x, s; x,w) be the angle depending continuously on x such that
sy(x)
(py')(x)

for x,x € [~a,0) or x,x € (0,b], where s = \/X\ and y is the solution to (5.1) (on either [—a, 0)
or (0,b]) satisfying y(x) = sinw, (py')(x) = s cosw.

tan Q(zx, s; x,w) = and Q(x, s; X, w) = w
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In particular, for z € [—a,0) we make use of the modified Priifer angle corresponding to u(z; A),
namely Q(z, s; —a, O(a; s)) = ©(0(x; \); s). For z € (0, b] we make use of the modified Priifer
angle corresponding to v(x; ), namely Q(z, s;b, 0(5; s)) = O(p(z; N); 5).

In general, the modified Priifer angle has the following properties in common with the usual Priifer
angle.

Lemma 5.3.2. 1. Q(z,s;x,w+ mn) = Q(x, s; x,w) + mmx forallm € Z.

2. Q(z, s; x,w) is monotonically increasing in w.

Proposition 5.3.3. Let y be any non-zero solution of (5.1). Let s = VA € R. Then as s =— o0,

y(07) “cosés  —L—sinés 1 y(—a)
! (py)(07) ] = [! —€ o Sing_s Z;Cosf_s +0 (5)] [ (py’)(—a) (5.16)

y(0T) tcos¢ts  ——L—sinéTs 1 y(b)
[@y’)m*) = || erossingts %gosé"’s +O(3 whe) |- G1D

S S

and

Proof. We refer the reader to [39]. The formulae above can be derived using a similar approach
to that used by Hochstadt in the appendix of [39].

Lemma534. (a) If —a <z <0, thenas s — o

Q07 ,s;—a,Q_4) =0 (f_s + @(Q_a,e_2), 12> +0 (i) ) (5.18)
(o
(b) If 0 < x < b, thenas s — >
+ 2y et L 1
Q(O ,S;b, Qb) =0 @(Qb,€+ ) —f S, 5 + 0 g . (519)
g1

Proof. Let y be as in Definition 5.3.1. Substituting y(—a) = sinQ_,, (py')(—a) = scosQ_,
into equation (5.16) gives

y(07) | = coséssinQ_q + —=—siné scos Qg
% | —e—o_sing ssinQ_, 4+ Z=cos& scos Qg

o [ U% (sinf‘s cos Q_, + cos & s(€? sin Q_a))

€_

cosscos g —sinés(e2 sinQ_,)

1
+o(3).

s
from which the first equation follows. Substituting y(b) = sin ), and (py’)(b) = scos 2, into
equation (5.17), yields the second equation after similar manipulation. O

o % sin (s 4+ O(Q_q,€2))
e | cos (£ s+ O0(0g,€%))

€_
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5.4 Effect of the transfer condition on modified Priifer angles

From this point onwards, let
Q) =Qx,8,—a,0(;8) =O0(x,\);s), —a<z<0 (5.20)
denote the modified Priifer angle corresponding to u(z; A) and let
QF == Q(z,5;0,0(8,5)) = O(¢(x,N\);5), 0<x<b (5.21)
denote the modified Priifer angle corresponding to v(x; \).

Using the decomposition of the transfer matrix given by equations (5.9) and (5.10) in Section 3.2,
we restructure the transfer condition in the following way,

[ Y | R AT R

Before enforcing this modified transfer condition, we examine the effect of the shear matrix,
L0 , on () and the effect of the rotation matrix, o8 ¢ sing , on f individually.
01 —sing cos¢

These results are summarised in Lemmas 5.4.1 and 5.4.2 below. We assume throughout that

tan~! yields values in [—7/2, 7/2) and that cot~! yields values in (0, 7].

Lemma 5.4.1. Let S~ denote the angle obtained after applying the shear matrix to
[u(0°), (pu') (0], then

Q=06 (A (QO + %tan_1 0s, —% tan™? 65) ,sectan”! 55> ) (5.23)
Moreover, if ;€ [(n — %) m, (n + %) Tr), n € N then
(i) Q€ [mr, (n + %) 71') if 6 + % >0, ie Q € [mr —tan~! Js, (n + %) Tr).
(ii) € [(n — %) 7r,n7r) if o + % <0, ie Qy € [(n - %) T, nT —tan” ! 58).

Proof. First of all, writing w(07) = p, sin Qg , (pu’)(07) = p, scos ), and applying the shear
matrix gives

e [sinQ5™ ] 1 s sin Q
Po cos (5~ — o 0 1 cos

_ [ sec(tan™! ds)sin(Qy + tan~! ds) }

I cos {1y
[ sec(tan™! §s)sin ((Qy + 3 tan™!8s) + 5 tan~! 6s)
= o I coS ((Qg + %tarf1 53) — %tarf1 58) ’

from which it follows that

1 1
Q=0 <A <Qg + 3 tan~! ds, —3 tan ™! (53) ,sectan ! 58) + 2km
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for some k£ € Z. By Lemma 5.2.3 parts (i) and (vi) we can write the above line as
1 1
Q=0 (A ((Qg + 2k7r) + 5 tan~! s, —3 tan 65> ,sectan™! (55) ,

which amounts to first shifting {2 by 2k7 and then applying the shear matrix. The shift by 2k
is therefore independent of this transformation. Thus it follows by definition of ;™ that & = 0.

Next, let 0 € ((n— 1) 7, (n + 1) 7) for some n € N. Observe that

_sin (Qa +tan~! 63)
B cos €2
= costan! ds [tan Qy + 58] ,

1 1
tan A <Qa + 3 tan~! ds, —3 tan™* 58)

which for brevity will be denoted tan A. Since cos tan~! ds > 0, tan A is, for fixed J, a contin-
uous function of s with exactly one intercept which occurs when tan )y + ds = 0 - i.e. when

% + 0 = 0. Hence, the range of values of A must occupy only one period of the tan

graph. Since for Qy = nm, Qy +tan~1ds € (nm — 7/2,nm + 7/2), A must occupy a range
s 1 1 . (07) 1

of values w1th1n7((n — 5) , (n + 5) 77). Soif § + (:DZ’)W > 0then A € [mr, (n + 5) 77)

and if § + % < Othen A € ((n— %) nm). Moreover, tanA — —oco as Q —

(n — %) m. Thus by Lemma 5.2.3 (4), we conclude that, for ), € [(n — %) m, (n + %) 7'('),

0+ (pzsg)(;)),) > 0 implies that Q5™ € [nm, (n+ $)7) and & + (127;(/())7(70)7) < 0 implies that

Q€ [(n — %) 7T,n7r). O

Lemma 5.4.2. Let QSJF denote the angle obtained after applying the rotation matrix to
(0(0%), (pv)(01))", then

1
Q=0 (¢ +0 (Qg, 8) ,s> . (5.24)
Moreover, if m € Z and if

(i) ¢ € [—m,—7%) then

OF € [(m—l)w—i—@(g—qﬁ,s),(m—%;) 7r> U [<m+;> 7T,m7r+@(—¢,s)>

= OGte Km - ;) 7T,m7r> , with cot ¢ < (;JE;)(;L) or (;jg?&){r)

< —tan ¢;

OF € [mm + O(=6,5), (m + 1)) U [(m 1), mr 4+ O (g — 6, s))

v(0T)

(o) (07) <O

1
= Q(’;Jr c [mﬂ, (m—i— 2) 7T) , with — tan ¢ <

(ii) ¢ € [=5,0) then

Qf € [(m - +0O (E — o, 3) ,mw) U [mm,mm + ©(—¢, s))

2
v(0T)

" 1 ,
= Ot e {(m—2) 7T,m7r> , with cot ¢ < W < —tan ¢;
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Qd € [m7r—|— O(—¢,s), <m+ ;) 7[') u [<m+ ;) T, mm + O (g — ¢>,s>>
v(07) v(07) < cot ¢;

* 1 .
= QO+ € [mﬂ, <m+ 2) w) , with —tan ¢ < ) (0) or o) (07)

(i) ¢ € [0, %) then

Qi [(m—l)ﬂ+@<;—¢,s>,(m—;> 7r> U Km—;) 7T,m7r+@(—q5,s)>

a mf1 m,mm |, with co v(07) or v(07) — tan ¢;
= 05t (mog ) mmn ) with coto < LSRG or UG <~ tane

Qf € [mm + O(—¢,s), mm) U [mﬂ, mm + © (g — ¢, s))
= e |mr m+1 T with—tan¢<ﬂ<cot¢)'
o e mmmre)T) = Gjon <
(iv) ¢ € [g,w) then

Qd € {(m - 1)m+0 (g — o, s) , (m — 1)77) U[(m — 1)m,mr + O(—¢,s))
v(07) < —tan ¢;

1
Qrt — = ith < — 7
= 0 € [(m 2> 7T,m7r> , with cot ¢ < o) (01

Of € [mﬂ +O(—¢,5), <m - ;) 7r> U Km - ;) mmr 4 O (g - ¢,s)>
v(0) U0 ot

* 1 .
= Wte [mw, <m+ 2> 7r> , with — tan ¢ < ) (09) or ) (09

Proof. Writing v(0%) = pf sinQF, (pv')(07) = pdscosf and applying the rotation matrix

gives
er | Sin Q5T L | cos¢p ssing sin QF
Po | cos @it | PO | “lging coso cos QF
0 s 0
L | s (Sin ¢ cos Qar + cos qb% sin Qar)
= Po + _aindblanOF
cos ¢ cos () — sin ¢ sin
_ Py [ ssin (¢ + (0, 1)) ]
Vs2sin ¢ + cosZp | €08 (@ + »(0,A))
B pg_\/SQ sin?(¢ + @) + cos2(¢ + ) [ sin©(¢ + (0, A), s) ]
V/s2sin? ¢ + cos? ¢ cos O(¢ +¢(0,A),s) |’
where ) o
sin Qd = sin O(p(0, \), s) = s5in (0, 4) )
V/s2sin? ¢ + cos? o
and
cos p(0,\)

cos Q' = cos O(p(0,\), s) = ,
0 V/s2sin? ¢ + cos? ¢
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by definition of ©. Since O(Q, 1) = ¢(0, A) by Lemma 5.2.3, 5, it follows from the above that
Q5T =0 (¢ + ¢(0,N),s) + 2kr

=@<¢+@<Qg,i>,s> + 2k,

for some k € Z. But k = 0 by definition of Q7.

For the angle decompositions, we only give the proof for ¢ € [—Tr, —g), as the other cases are
similar. Consider

s (tan¢ + %)

1 — tan qb%

o _
tan Q)" =

Zeroes of tan Q51 occur when ¢(0; \) = mm — ¢, for some m € Z (i.e. when tanp(0;)\) =
— tan ¢). Poles occur when ¢(0; ) = (m—1/2)m— ¢, for some m € Z (i.e. when tan ¢(0; \) =
cot ¢). We consider four separate cases determined by the relative geometry of the graphs of
y=tanp(0;\), y = —tan¢, y = 0 and y = cot ¢. If ¢ = 7 then case II below dissolves.

L If % < —tan ¢ then (0, \) € [(m + 1/2)7,mm — ¢) for some m € Z,

= ¢+90,N)e[(m+1/2)r+¢,mm) C [(m—1/2)7,mm).

II. If —tan¢ < )(O)Jr) < 0 then ¢(0,\) € [mm — ¢, (m + 1)) for some m € Z,

= o+ 90,N) € [mm,(m+ )7+ ¢) C [mm, (m+1/2))

L. If0 < (pf]E‘))(*OL) < cot ¢ then p(0,A) € [(m + 1)mr, (m + 1/2)7 — ¢) for some m € Z,

= ¢o+¢(0,N) €l(m+Dr+ 6, (m+1/2)m) C [mm, (m +1/2)m).

IV. If cot ¢ < W then (0, A) € [(m — 1/2)m — ¢, (m + 1/2)x] for some m € Z,

= o+p0,N)e[(m—1/2)r,(m+1/2)7+¢) C [(m —1/2)7, mm).

5.5 Generalized oscillation counts and asymptotics of eigenvalues

This section contains our main results. Here, we determine generalized oscillation counts of
eigenfunctions, taking into account the effect of the transmission condition at z = 0. By “gen-
eralized oscillation count” of an eigenfunction we mean the sum of the number of zeroes of the
eigenfunction in (—a, 0) U (0, b) together with so called “half zeroes” at x = 0. These half zeroes
occur when either u(07; A) = 0 or v(07; \) = 0 at an eigenvalue ), and each contribute 1/2 to
the total count. Furthermore, we consider the problem of indexing eigenvalues in terms of gen-
eralized oscillation counts. We give asymptotics for eigenvalues up to order 1/(N + M), where
N + M is the value of the generalized oscillation count of the corresponding eigenvalue.
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Theorem 5.5.1. Let Q™ and Q" be defined as in Lemmas 5.4.1 and 5.4.2. Then the eigen-
condition (5.15) written in terms of the modified Priifer angles is

*+ 1 *— ’72
(- ]=01Q);— | —km. (5.25)
s s
Moreover, there is precisely one solution to (5.25) for each k € N, large enough.

Proof. The first claim follows directly from equations (5.23) and (5.24) after straightforward
manipulation.

To prove the second assertion, we need the following results concerning the usual Priifer angles
0 and . Derivations of equations (5.26) and (5.27) can be found in [8], Theorem 8.4.2, while
(5.28) and (5.29) can be proved in a similar manner.

It p(07)u'(075 ) # 0,

0
a% tan 0(0; A) = [p(07)u/ (073 A)] / r(t) [u(t; N)]? dt, (5.26)
while if u(07; \) # 0,
0 _ o (° 2
2 cot(0; 3) = — [u(07; V)] /_ r(t) [u(t; V]2 dt. (527)
If p(07)0' (075 A) # 0,
b
% tan (0; A) = — [p(01)v'(0F; /\)]_2 / r(t) [v(t; V)]? dt, (5.28)
0
while if v(0T; \) # 0,
0 ) — +.3)] 2 ’ S \)]2
3y ot @(0; ) = [v(0T; N)] r(t) [v(t; \)]° dt. (5.29)
0
From tan © (QS_; 78—2) = 2 [tan 0(0; \) + §], we obtain
2 2
%@ <QE§_; 1) = cos’ O <QE‘)_; 1) 2572% tan6(0; \) > 0, (5.30)

if p(07)u/(07;\) # 0. Note that cos © (Q;;—; ﬁ) — 0 if and only if cos§(0; \) = 0, so the

above expression is indeed non-zero. Whereas, if u(07; A) # 0 then

2 —sin? O (5 %
99 (Q(’;—ﬂ) - ( ° )2238 cot 0(0; \). (5.31)
Js s Y21+ dcotB(0;N)]° OA

From (5.31), we are only interested in the case where p(0~)u/(07; ) = 0. Setting cos #(0; \) = 0

S

in (5.31) and observing that sin © (QE‘;_; ﬁ) # 0 we obtain the desired result. Hence, %@ (QS_ ;-

is positive for all s.
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On the other hand, differentiating © (2573 1) = (¢ + ¢(0; X)) gives

d 1 0
836< 0 ’s) scos cp(O,)\)aAtango(O,)\)<O, (5.32)
if p(01)v/ (015 \) # 0, else
0 wr 1 . 0
$® <QO+; S) = —2ssin (0; )\)a cot p(0; \) <0, (5.33)

if u(0F;\) # 0.

From standard properties of the Priifer angle we know that (0; \) — 0 as A — —oo, and
that 6(0; A) is monotonically increasing in A, with 6(0; A\) — oo as A — oo. See for example
[8, Section 8.4]. From these results we deduce that for each n € N, large there is Ai\f( ) >0

such A € [)\i\f(;), Ao implies that (0; \) € [(n—1/2) 7, (n+ 1/2) 7). From part (iii)

(n+1))
of Lemma 5.2.3 we have Q; = ©(0(0;\);s) € [(n—1/2) 7w, (n+1/2)7) for s = VA €

[\/)\i\f(;), \/)\fj\f(gﬂ)) . Finally, Lemma 5.4.1 combined with part (iii) of Lemma 5.2.3 shows that
© (QS_; 7;) >(n—1/2)rfors >,/ O]Y(;) So © (QS_; 7;) — 00 as § — 00.

Since ¢(x; \) is initialized by ¢(b; \) = 8, with 8 € (0, ], at the right-endpoint of the inter-
val (0, b), standard Priifer theory can be adapted to show that ¢(0; A\) — 7 as A — —oo, and
that ¢(0; \) is monotonically decreasing in A, with ¢(0; A\) — —oo as A — oo. To show that
© (*;2) — —oco as s — oo we consider only the case when ¢ € [—,7/2) as the remain-

D+ N+
7(m)? Ar(m41) > 0 such

that \ € ( D AN H)} implies that p(0; \) € [(m + 1/2)x, (m + 1)7). By part (iii) of
Lemma 5.2.3 we have QF € [(m + 1/2)7, (m + 1)) for s = VA € <\//\£)(Tn), \/)\iv(;H)J.
By applying Lemma 5.4.2 together with part (iii) of Lemma 5.2.3 we see that © (Q(’T; %) €

[(m — 1/2)m, (m + 1/2)7) for s € (\/AD+), VANE ] Note, if QF = (m + 1) then

T(m

ing cases are similar. For each m € Z, with —m large, there are A

ot =0 (qﬁ + (m+D)m; NPT ) € [mm, (m + 1/2)m). Thus, in particular, we have shown

(m)

that s > )\f(j;) implies that © (Q4; 1) < (m + 1/2)m.

. o2\ . . : . 2 .
Since © (QS ,%) is monotonically increasing with © (QS ,%) — 00 as A — oo, whilst

© (*; 1) is monotonically decreasing with © (257; 1) — —o0 as A — oo, the result follows.
O

The next theorem gives asymptotics for the eigenvalues of (5.1)-(5.4) in terms of the number of
zeroes of the eigenfunctions in (—a, b), with special treatment at z = 0 as follows: if u(07; \) =
0 for the eigenvalue \ then this counts as half a zero, likewise v(07; \) = 0 counts as half a zero.
If tan ¢ = ~26, an eigenfunction will have either two half zeroes at 2 = 0 or no half zeroes
(since u(07;\) = 0 if and only if v(0"; \) = 0 in this case). Otherwise, if tan¢ # 25, an
eigenfunction will have at most one half zero at z = 0.

Theorem 5.5.2. Let £ = £ + £T, where £ and £V are defined at the end of section 5.2. Let
S?WM = An,m denote an eigenvalue of (5.1)-(5.4) with oscillation count N in (—a, 0] (including

a possible half zero when w(0~) = 0) and M in [0,b) (including a possible half zero when
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v(07) = 0). Here 2N,2M € Ng. Then

(N+M)r+C 1
= 5.34
SN,M € +0 N1/ (5.34)
where the constant C'is given in the table below.
’ C HBE(O,?T)‘,B:W‘
a=0 /2 T
ae (0,m) 0 /2

Proof. Let k € N, large. From Theorem 5.5.1 we have that
*= 1 *— 72
(-] =019y — | —kmn, (5.35)
S s

has a unique solution for some s = /), where \ is an eigenvalue of (5.1)-(5.4). At the point
of intersection assume that 2~ € [(n — 1/2), (n + 1/2)7), for some n € N, and that Q" €
[(m —1/2)m, (m + 1/2)), for some m € Z. Then

2 1
ng—(n—m)]ﬂ:‘e) (Q(*)_—mr,’l) —@(QS+—mW;S>‘§g,

since © (QS_ —nm, é) ,0 (Q5" —mm; 1) € [-Z,Z) and have the same sign, implying that

n—m=Ek.

Using Lemmas 5.4.1 and 5.4.2 and considering the relative geometry of the graphs of y =
tan (©(0;\) + ¢) and y = ~2 (tan@(0; \) + &) at the point of intersection \, we show how
the counts NV and M are related to n and m above. Knowing this, asymptotics for the eigenvalue
is easily determined from Lemma 5.3.4. This is shown only for the case of ¢ € [~7,—F), as all
other cases are similar.

Since Q™ € [(n — 1/2)7, (n + 1/2)m) by the above assumption, it follows from Lemma 5.4.1
that Qy € [(n — )7, (n+ 3)7).

Case I: tan ¢ < 2§

(a) Suppose that Q™ € [(n—3)m,nm) and Q5" € [(m—3)m, mm). Then <(ng§)(;))_) + 5) <0

by Lemma 5.4.1. There are two sub-cases:

(i) —cotp < 2 ((ngg)(_o)*) + (5) < 0. For an intersection we need #(Jro)ﬂ < —tan¢ by
Lemma 5.4.2, in which case Qf € [(m+ 3)m,mm + ©O(—¢,5)) C [(m+ 1)7, (m+ 1)n).
Moreover, Qg € [(n—1/2)m,nm—tan~! §s) C [(n—1/2)7, nm) by Lemma 5.4.1. Notice
that the total oscillation count (i.e. the oscillation count in (—a,b) = (—a,0] U [0,b)) is

(n—1)—m=k—1.
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Thus

£ s=0(Q,0%) —O(a,e5) + O (i)

u(07) 2> 2 <1>
=nm+arctan | s—————0° | = O(a,e“s)+ O | -
Cr (=) O
B mr—%—i—O(%), ifaa =0,
-2 -2+ 0()), ifac(0,m),

and
£s=0(5.ds) - 0(0).03) +0 1)
=0(B,eLs) — {(m + 1)7 + arctan (s%ai)} +0 (i)
f—mw—f—l—O(%), if € (0,m),
mr—%+0(3), ifp=m.
Hence,
(n—l—m)w+0<n m> ifa, € (0,7),
€St m=4(n—1—m)T+m+0 (n 1 m) C ifa=008=m, (5.36)

(n=1-m)r+%+0 <m> ,  otherwise.

(i) 72 (% + 5) — cot ¢, in which case cot ¢ < % and

Qf € [(m—1Dr+0(5 — ¢,s),(m+ 3)7) C (mm, (m + 3)7) by Lemma 5.4.2 and,
again, )y € [(n— 1)m, nr). Here the total oscillation count is again (n—1)—m=Fk—1.

Then,
£ s=0(Q),0%) — O(a, €2 5) + O <1)
s

= n7 + arctan <3(p1;$§)(_0)_)0'2> _0(a,25)+0 (i)

B nw—%+0(%), ifaa =0,
B nr—%-24+0(%), ifaec(0,m),

(as before) and

s =6(8. ) - 0(0f.02) +0 ()

= 0(8,¢15) - {mﬂ + arctan (sm(ﬁ)} Lo (i)

_[5-mr-5+0(;), iffe(Om),
\r-mr-Z+0(Y), ifp=m

In this case we get the same asymptotics as (5.36), above.
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(b) On the other hand, if Qf~ € [nm, (n + 3)7) and Q5" € [mm, (m + 1)) for some m € Z

(ng?(;))_) + 5) > 0 by Lemma 5.4.1. In this instance there are five

with k& = n—mthen72<
possible subcases:

(i) 0 <~? (% + 5) < tan ¢, in which case — tan ¢ < (;;s())%
Qf € [mm+6(—¢,s), (m+ 1)) C ((m+ 3)m, (m + 1)7) by Lemma 5.4.2. From this

we get that
2 u(07)

Y _
(pu’)(07)
giving Qy € [nm—tan~!ds,nm) C ((n—1/2)m, nm).Thus, we deduce that the oscillation
countisn —1—m =%k — 1.

< 0and

< tang — 25 < 0,

Then
1
€5 =6(0,0%) - Bla,5) + 0 1)
u(07) 2> 2 <1>
=nnm+arctan | s—————0° | = O(a,e“s)+ O | -
Cre (=) O
B nﬂ'—%—i—O(%), ifaa =0,
-2 -24+0(Y), ifae(0,m),
and
1
§+3_(x5¢1@-@ap;ai)+CJ<S>

=0O(B, €} 5) — {(m + 1)7 + arctan <Smai>} +0 C)
:{s—m—sw(;), it 5 < (0,7),
T—mr—3+0(1), ifg=nm

As before we get,

1

n—1

m), if a, 8 € (0,7),

(n—l—m)w—i—O(
» ifa=0,8=m,

ESp—1,-m = (n—l—m)w+7r+0<
(n—l—m)w—}—%—}—O(

n—1l—m

n—l—m) , otherwise.

(pu)(07)
and Q€ [nm — tan™! §s,nw) C ((n — 3)m, nw) as in (b)(i) above. Here, the total count
is(n—1)—(m+1)+1/2 = (k— 1) — 1/2, corresponding to usual oscillation counts
(n—1)and —(m + 1) in (—a,0) and (0, b) respectively, together with an extra half-zero

atxz = 0.

Then

(ii) ~2 ( u(©) 5) = tan ¢. In this case v(0") = 0ie. Qf = (m + 1)7 by Lemma 5.4.2

s = mr—g—i—O(%), if « =0,
B nr—2-24+0(%), ifae(0,n),
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and

€5 =0(5.c5) - 00 .03) + 0 ;)

S

— 0(8,2s) — (m+ D+ 0 <1>

_ +D)r+0(L), ifpe(0n),
B +)r+0(3), ifs=m,
giving
§Sn—1,—(m+1)+1/2
(n—l—(m—|—1)+1/2)7r—|—0(n fm) ifa, 8 € (0,7),
= (n—l—(m—i—1)+1/2)7r+7r+0<n11m>, ita=0,0=m, (5.37)

n—=1-(m+1)+1/2)7n+5+0 (m> , otherwise.

(iii) tan¢ <~ <(pu()(0) y + 5) < ~26, in which case 0 < o ()(O)Jr) < cot ¢ and

Qf € (m+1)m,mr+60(3—¢,s)) C ((m+1)m, (m+3)r) by Lemma 5.4.2. Moreover,
Qg € (nm —tan~tds,nw) C ((n — 1/2),n). This case is different from previous cases
without half-zeroes in that the total oscillation countis n —m — 2 = k — 2.

Moreover,

es = nr—2+0(1), ifa=0,
-2 -2 4+0(Y), ifae(0,m),

and

s = 0(8,2s) — O(OF.0%) + 0 (1)

= 0O(B,€%s) — {(m—i— 1)m 4 arctan <S(];}2)E§):())ﬂai>} +0 <i>
{g—mw—gg—i—O(i), if € (0,m),
W—mﬁ—%—FO(%), if B =m.

Hence,
(n—1—m—1)7r+o(n;n2) if o, 8 € (0,7),
Esntmo1 =4 (n=1=m-Dr+7+0 (7)), ifa=08=m,
m—1-m-Lm+7% +O(n71n2), otherwise.
(iv) v ((pug)(o) ) +5) =26 = u(0~) = 0 and Q; = nm by Lemma 5.4.1. In this case, we

still have 0 < + ”(;(O) ~oy < cot ¢ and Qf € ((m+1)m, mn+0(%—¢, s)) asin case (b), (iii)
above. Here, the total countis (n —1)+1/2— (m+1) = (k— 1) — 1/2, corresponding to
usual oscillation counts (n — 1) and —(m + 1) in (—a,0) and (0, b) respectively together

with an extra half-zero at z = 0.
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Then

£ s=nm—0(a,es)+0 <1>

S

nr+0 (1), if a =0,
nﬂ'—%—i—O(%), ifa € (0,7),

and (as above)

So

fs(n—1)+1/2,—(m+1)
[(n—1)+1/2— (m+]r+0 (n_;_2) , if o, B € (0,7),
-1 +1/2—(m+Dr+7+0 (m) , ifa=0,8=m (5398
1

(n—=1)+1/2—(m+1)]r+5+0 (n7m72) , otherwise.

(v) ~2 <ing())(0)) +5) > ~2§, so 42 (ng())(:)),) > 0ie. Q € (nm, (n+ 3)m). Again, 0 <
v(0F)

< cot¢ and Qf € ((m + 1)m,mm + O(% — ¢, s)) as above. Then the total

(pv)(0F)
oscillation countisn — (m+1) =k — 1.
Thus
1
£ s=0(Q,0%) —O(a,e25) + O (s)
u(07) 2> 2 <1)
=nm+arctan | s—————0° | —O(a,e“s)+ O | -
e @O
B nﬂ'—f—%—f—O(%), ifa=0,
B mr—l—%—%—i—O(%), ifa € (0,7),
o= T—mr—34+0(%), ifBe(0,n),
T — mﬂ—%—l—O(%), if B =,

giving

(n—(m+1))7r+0( 1 1), if o, B € (0,7),
1

ESn,—(mt1) = (n—(m+1))7r—|—7r+0<nm1), ifa=0,f=m
(n—(m+1)r+72 +o( 1 )

, otherwise.

Case II: tan ¢ = 2§
(a) Suppose that 5~ € [(n — )7, nm) and Q4 € [(m — )7, mm). Then by Lemma 5.4.1,

72 (pz(())( ) 5 < —72§ = —tan ¢ < 0. Lemma 5.4.2 give us two possible subcases:
D) 5y Eg)( )+) > cot¢ > 0, in which case Qf € [(m — 1)7 + O(% — ¢, ), (m + 3)7) and
Qq € [(n— 3)m, nm) by above. Then the total oscillation countis (n — 1) —m =k — 1.
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Moreover,

- nﬂ—g—l—O(%), if a =0,
S =
nw—g—lﬂ-O(%), ifa € (0,7),
and
1
€5 =0(5.c5) - 00 .03) + 0 1)
B v(0T) 1
_@5,6+ s) — {m7r+arctan<s(pvl)(0+)o+ +0 .
f—mw—g—i—O(%), if g€ (0,m),
mr—%+0(1), ifg=m.
This gives
(n—l—m)w—i—O(n m) ifa, g € (0,7),
ESp—1,—m = (n—l—m)w+7r+0<n 11 m), ifa=0,=mn
(n—=1-m)r+5+0 (nflfm) ,  otherwise.

(ii) pf)()) —tan¢ < 0, in which case Qf € [(m + 1/2)m,mm + O(—¢, s)). Again,
Qo [(n — L)m,nm) by above. In this case the oscillation counts are the same as in
(a), (i) above.

Here,
- mr—%—i—O(i), if a =0,
S =
nr—2-24+0(%), ifae(0,n),
and
1
£ts=0(8,e85) —O(QF,01) + O <S>
+ 1
= 0(B,€%s) — {(m + 1)m + arctan <s(pvvgg)(0)+)ai> } +0 <S>

B g—mw—g+0(%), if € (0,m),

B W—mw—%—l—O(%), if g =,
giving

(nflfm)wnLO( 1 ), ifa, 8 € (0,7),
ESn—1—m = (n—l—m)w—i—w—FO(ﬁ), ifao=0,0=m,
(n—l—m)ﬂ—i—g—i—O(_ll_ ), otherwise.

n m

(b) On the other hand, if Q5™ € [n7, (n + 2)7) and Q5T € [mm, (m + 1)) then there are three
possible sub-cases:

(i) —tang < % < 0, in which case Qf € [m7 + ©(—¢,s), (m + 1)) by Lemma
5.4.2 and

o u(07) oy (Lt tan® 6)
G0 1 o

)

<0
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so Qy € [nm — tan™! 5s,n7r) C ((n — 1/2)m,nmw) by Lemma 5.4.1. Thus the total
oscillation countisn —1 —m =k —

Moreover,

s = -24+0(3), if o = 0,
B nﬂ—g—ﬂ—l—O(%), ifa € (0,7),

and

£ts=0(8,é85) —O(QF,01) + 0O <1>

s
= @(ﬁ,eis) {(m + 1) + arctan ( %gi)} +0 (i)
B %—mw—ngO(%) if g € (0,7),
“le-mm-g+o(). its-m
giving
(n—l—m)w—i—O(n m) if a, 3 € (0,7),
1

ESp—1,-m = (n—l—m)w+7r+0(n1m), ifa=0,8=m
(n—1-m)m+ 35 +O(m), otherwise.

(i) v(07) =050 = (m + 1)w by Lemma 5.4.1. This forces u(0~) = 0 => Qg = nr by
Lemma 5.4.1, giving a total oscillation count of (n — 1) +1/2 — (m+1)+1/2 =k — 1,
corresponding to usual oscillation counts (n — 1) and —(m + 1) in (—a,0) and (0,b)
respectively and two half zeroes at x = 0.

Hence,
s = n77+0(%), if =0,
-3 +0(%), ifac(0m),
ctg— JE-mIDT+O(5), ifBe(0m),
7T—(’I’)’L+1)7T+O(%)7 lfﬁ_ﬂ-v
and

ES(n—1)+1/2,—(m+1)+1/2
[(n—1)+1/2—(m—|—1)—|—1/2]7r—|—0( L 1) if o, B € (0,7),
1

n

- [(n—1)+1/2—(m+1)+1/27r+7r+07znm1), ifa=0,4=mn,
(7=1)

(n—=1)+1/2—(m+1)+1/2xn+5+0

—n—1), Otherwise.

(5.39)

(i) 0 < % < cot ¢, in which case Qf € ((m + 1)m, mnm + O(5 — ¢,s)) by Lemma
.2, giving
- O (1 4 tan? ¢)
2 u07) _ )on) >0

T pu)(0- o(0F)

s0 €}y € (n, (n + 1)m). Then the total oscillation countis n —m — 1 = k — 1.
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Moreover,
_ - 2 2 1
§s=0(Qp,02) —O(a,es)+ 0 (s)

u(07) 2> 2 <1)
=nm+arctan | s—————0“ | = O(a,e"s)+ O | -
Cre e+ o,
B mr—l—g—i—O(%), ifa =0,
S+ E -2+ 0(Y), ifac(0,m),

and
1
€5 =0(5.c5) - 00 .03) +0 1)
v(0T) 1
= 1 - e
(B, €eLs) — {(m—i— )7r+arctan<s(pvl)(0+)a+ +0 .
Z-mr—34+0(%), ifBe(0,m),
7T—m7r——+0(§), if B =m,
giving
(n—m —1)7r+0<n71l 1) ifa, B € (0,7),
En-miny =4 (n—m—Dr+7+0 (;=L), ifa=08=m,
m—m-)mr+73 +O(n 711 1), otherwise.

Case III: tan ¢ > 726
Again we consider only ¢ € [—m, —m/2). Throughout we have to consider three possibilities: 1)
0 <726 < tang, 2) —cot ¢ < 7?6 < 0and 3) 426 < — cot ¢.

(a) Suppose that 5~ € [(n— 3) m,nm) and Q3 € [(m — ) m,mn) with k = n — m. Then
Qy €[(n— %)77, nm — tan~! ds) by Lemma 5.4.1 and Lemma 5.4.2 gives us two possible sub-
cases:

(i) cot < A0 e Of € [(m— 1) + O(5 — ,5), (m + L)), which implies that
u(07)
(pu)(07)

So if (1), § > 0 or (2), —cot¢ < 25 < 0then Q; € [(n — 3)m, nn) at the point of
intersection. Then the total oscillation countisn — 1 —m = k — 1.

725+ 42 < —cot ¢.

Moreover,
. u®07) 2 1
€ s = nm + arctan <s (pu’)(O_)O_> O(a,e2s) + 0O .
B nﬂ'—%—f—O(%), ifa=0,
Cnr-2-2+0(), ifae(0,m),
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and

tts=0(8,¢) - {mﬂ + arctan <smgi> } ) <i>

from above, giving

(n—l—m)w—i—O(n_ll_m), ifa, g € (0,7),

{Sn—L_m: (n—1—m)7r—i—7r+0(n_ll_m>7 ifa=0,8=m,
(n—l—m)w+%+0< 1 ), otherwise.

n—1l—m

Whereas if (3), 728 < — cot ¢ then there are three possibilities. Either

u(07)

2 2 2
YO+ Y < Y7,
(pu)(07)
in which case the total oscillation count is againn — 1 —m =k — 1, and
es— mr—%%—O(%), if a =0,
nr—%-2+0(%), ifaec(0,m),
giving
(n=1-m)7+0 (7). if a, 8 € (0, 7),
ESp—1,—m = n—1—-m)r+7+0 (nilim) , ifa=0,8=m,
n—=1-m)r+5+0 (n_l_m) , otherwise,
as above. Or

2 o uw(07)
O )~ T

so {, = nm, giving a total oscillation count of (n — 1) +1/2 —m = k — 1/2. Moreover,
_ ) 1
& s=nm—0(a,e2s5)+ 0 | -
s

B mr—l—O(%), if « =0,
-2 +0(Y), ifae(0,m),

which yields
((n—l)—i-%—m)w—i—O(n_ll_m), ifa, B € (0,7),
53(n_1)+%7_m =¢((n—1)+ % —m)r+7+0 (nfllfm) , ifa=0,8=m,
(n-1)+3-mr+Z+0 (n_ll_m) , otherwise.
Or )
2 2 2 u(0”
YO < Y0+ — < —cot ¢,
(pu')(07)



(ii)

in which case the total oscillation count is n — m = k and

Es=nm+ z_ O(a, €25) + O <1>

2 S
_{nw+g+0(i), ifa=0,
mT—l—%—%—l—O(%), ifa € (0,7),
giving
(n—m)r+ O (n_lm), ifa, B € (0,7),
ESp—m = (n—m)ﬂ—i—ﬂ—i—O(n_lm), ifa=0,08=m,

(n=—m)mr+5+0 ( 1 ) , otherwise.

n—m

if % < —tang,ie. Qf € [(m+ %) 7, mm + O(—¢, s)) then at the point of inter-
section )
u(0™
—cotp <425+ 42—~ < 0.
(pu')(07)

Soif (1), § > 0 then Qy € ((n — 3)m,nw — tan~' §s) and the total oscillation count is
n — 1 —m. Moreover,

s = nr—Z2+0 (1), ifa=0,
-2 -2 4+0(Y), ifac(0,7),

and
£ts=0(8,eds) — {(m + 1)7 + arctan (s%ai)} +0 (i)
fEr-m+Dr+Z+0(%), ifBe(0,m),
B W—(m+1)w+%+0(%), if 8=,
giving

(nflfm)ﬂ'qLO(ﬁ), ifa, B € (0,7),
Esp—1,—m = (n—1-m)r+7+0 (n—ll—m> , ifa=0,6=m,
(n=1-m)r+%+0 ( 1 ) , otherwise.

n—1l—m

Else if (2), — cot ¢ < 72§ < 0 then there are three possibilities. Either

u(07) 2
—cot p < 420+ 7 ——— < A2,
(pu)(07)
in which case the total oscillation countisn — 1 —m =k — 1, and

s = nﬂ—g—l—O(%), if « =0,
nw—%—%%—O(%), ifa € (0,7),

giving
(n—1-m)7+0 (=) if o, 8 € (0,7),
ESp—1,-m = (n—l—m)w+7r+0(n_1_m> , fa=0,8=m,
(n=1-m)r+35+0 <n7117m) ,  otherwise.
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oo w0
O o) ~ T

which gives at total oscillation count of (n — 1) +1/2 — m = k — 1/2. Moreover,

es = n7r+0(%), ifaa =0,
nt—3+0(1), ifae(0,m),

and

+i-mr+0 (). if o, B € (0,7),
E(natm = (=D +F—mr+7+0 (=), ifa=08=m
—I—% m )

, otherwise.

Else

9 U
(pu')(07)

in which case the total oscillation count is n — m = k, and

g_s_{mr—i—g—i—O(i), if « =0,
nr+2-24+0(%), ifae(0,n),
giving
(n—m)w—i—O(n_lm), ifa, 8 € (0,7),
ESp—m = (n—m)ﬂ—i—ﬂ—i—O(n_lm), ifa=0,8=mn
(n—m)m+5+0 (n}m) ,  otherwise.
Lastly if (3), v26 < —cot ¢ then Q5 € (nm,nm — tan~! §s), giving a total oscillation
count of n — m = k. Moreover,
5_8_{n7r+g+0(i), if o =0,
nr+2-24+0(%), ifae(0,n),
giving
(n—m)ﬁ—l—O(n_lm), ifa, B € (0,7),
E8p—m = (n—m)w—i—w—i—O(n_lm), ifa=0,8=m,

(n=—m)mr+5+0 (n_lm) , otherwise.

(b) On the other hand, if Q™ € [nm, (n+ 3) ) and Q5" € [mm, (m + 3) 7) then we must
consider three possibilities: (1) 0 < 72§ < tan ¢, (2) — cot ¢ < 725 < 0 and (3) v26 < — cot ¢.
Furthermore, as above, Lemma 5.4.2 gives us two possible subcases:

(i) Qf € [mm+O(=¢,s),(m+ 1)), ie —tang < v(0 ) < 0. This implies that

Po)(07)
u(07)
(pu')(07)
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If (1), 0 < 72 < tan ¢ then there are three possibilities. Either

2 o u(07)
0 <~A'—~— <0,
70T ) (07)
in which case the total oscillation countis n — 1 — m = k — 1. Moreover,
- u(07) 2 1
& s = nm 4+ arctan <30> —O(a,e25)+0 | -
() (07) (@045
_ nw—%+0(%), ifaa =0,
nw—%—%+0(%), ifa € (0,7),
and
O+
tts=0(8,és) — <(m + 1) + arctan <8(1;)1)(’)(())ﬂ03>>
5 -m+D)r+3+0(L), ifpe(0,m)
T—(m+r+3+0(1), ifp=m,
giving
(n—m—l)w—i—O(%), ifa, B € (0,7),
ESp—1,—m = (n—m—1)7r+7r+0(%), ifa=0,68=m,
n—-m-1)r+Z2+0(L), otherwise.

Else (ng())(;))*) = 0. Then 2; = nr and the total oscillation count is (n — 1) +1/2 —m =

k —1/2. Also,
5_S_{mr—i—O(i), ifa =0,
nrZ+0 (1), ifae(0,m),
giving
(n—l—}—%—m)ﬂ'—FO(%), ifa, B € (0,7),
€ il m=(n—1+5-m)r+a+0(3), ifa=05=m,
(n—1+3-m)nZ+0(%), otherwise.

Otherwise, 0 < (pzst))(z)),) < tan ¢ — 2§ and the total oscillation count is n — m = k. Then

- nr+2+0 (1), if =0,
S =
nr+2-2+0(%), ifae(0,n),
giving
(n—m)r+0 (1), ifa, g € (0,7),
gsn,—m: (n—m)ﬂ'—’—'ﬂ'—f—O(), ifa:o)ﬁ:ﬂ"
), otherwise.

(ii) Qar € [(m + 1)m,mr+© (g — @, s)) ie. 0 < % < cot ¢. Then

5 u(07)
T ) (07)
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and

s = mr—l—g—i—O(%), if « =0,
nr+2-24+0(1), ifae(0,n).

If v(0™) = 0 then the total oscillation countisn — (m + 1) +1/2 =k —1/2, and

ys_Agﬁm+Uﬂ+O@% if 5 € (0,7),
B T—(m+1)r+0 (L), ifp=m,
so that
(n—-m-1+1/2)r+0 (1), if o, B € (0, 7),

ESp—m—1412=q(n—m—-14+1/2)7r + 714+ O (
(n-m-14+1/2)r+3+0(

), ifa=0,8=m,

1
S
l) , otherwise.
S

Elseif 0 < % < cot ¢ then the total oscillation countisn —m — 1 =%k — 1, and
+ 1
£ts=0(B,€els) — ((m + 1)7 + arctan (8(;}2}E§)(O)+)Ui>> +0 <8)

giving
(n—m—l)w+0(l), ifa, B € (0,7),
), ifa=03=m,

) , otherwise.
O

Note 5.5.3. In Theorem 5.5.1 we showed that for each k € N, large enough, we obtain precisely
one eigenvalue of (5.1)-(5.4). In Theorem 5.5.2, we determined that the oscillation count of each
eigenvalue is dependent on the value of k and possibly the values of the incident angles €}y and
Qg prior to the applications of the sheer and rotation matrices respectively. In particular, for the
case of ¢ € [—71', —%) (presented in the proof of Theorem 5.5.2), we observe that the oscillation
count of the eigenvalue corresponding to k is always k — 1 if tan ¢ = v26; is equal to k — 1,
k—3/20rk—2iftan¢ < v26; and equals k — 1, k — 1/2 or k if tan¢ > ~26. Thus, in
particular for the case of tan ¢ = ~2§ we have precisely one eigenvalue corresponding to each
integer oscillation count, and the oscillation count is always integer valued since u(0~; \) = 0 if
and only if v(07; \) = 0. However; in the two cases where tan ¢ # 26 it is possible to have at
two adjacent eigenvalues with the same oscillation counts.

The final results link the oscillation count of an eigenvalue with its position in the list of eigenval-
ues, labelled according to increasing magnitude. We consider separately the cases of tan ¢ = 26
and tan ¢ # 726.
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Let = [Jm(v/)\)|, A € C. It can be shown that as v/A — oo,

_ €_sina _ cosa siné~ VA ené™
A= = A4
u(075 A) ———cosg ﬁ+6_0_ 7 +0( 3 ) (5.40)
in&™ ng~
p(07)u'(075A) = —Ae_o™ sinasmfﬁﬁ + U‘fosa cos&VA+0 (eﬁ ) ;o (541
: . +
by B ey cosBsin€tVA (e "
v(0T;A) = - cos ETVA cor +0 ) (5.42)

VA €+ VA

The above approximations reduce to those stated in Proposition 5.3.3 if A € R. For the proof we
again refer the reader to Hochstadt, [39].

. + n£+
P(OF) (07 \) = Aes ot sin gE0E VA | oxcosf eVA+0 <e> . (5.43)

Let

o =dee| [ 5 V]| o || S wont | Loy ] 6

1
5

Then the zeroes of w(\) coincide with the eigenvalues of (5.1)-(5.4), making w(\) a characteristic
determinant for (5.1)-(5.4). Let

A< A< A<... <0 (5.45)
denote the list of eigenvalues of (5.1)-(5.4).

Consider
—(py) +qy=Ary, x€[—a,0) (5.46)

with boundary condition at 2 = —a given by (5.2). We denote by AP, n = 0,1,2,... the
eigenvalues of the boundary value problem consisting of (5.46), (5.2) with Dirichlet boundary

condition y(0~) = 0. Setting A’ = —oc0, we note that if \ € ()\D_ )\D*} then y(z; \)

n—1""'n
satisfying (5.46), (5.2) has n zeroes in (—a, 0). Denote by AN=, n = 0,1,2, ... the eigenvalues
of the boundary value problem consisting of (5.46), (5.2) with Neumann boundary condition
y'(07) = 0. Here \)'~ € ()\5:1, )\,?_).
Similarly, considering
—(py)' +ay=Ary, € (0,0] (5.47)

with boundary condition at x = b given by (5.3), we denote by /\5 T,n=0,1,2,... the eigenval-
ues of the boundary value problem consisting of (5.47), (5.3) with Dirichlet boundary condition

y(0F) = 0. Set \Pf = —o0. If ) € (AD+ ADﬂ then y(x; \) satisfying (5.47), (5.3) has n

n—1"'n
zeroes in (0,b). Let the eigenvalues of the boundary value problem (5.47), (5.3) with Neumann
boundary condition 3’ (0") = 0 be denoted by A+, where \V* € ()\D AP +).

n—1"n

Theorem 5.5.4. Suppose that tan ¢ = 2. Let Ay pr = (sN7M)2 be the eigenvalue of (5.1)-(5.4)
whose eigenfunction has oscillation count N in (—a, 0] and M in [0, ), with zeroes at 0~ and 0"
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counting 1/2 each. Then either N, M € Ng or both N and M are odd-integer multiples of 1/2,
and, moreover,

AN = ANl (5.48)
That is, Ay ar is the (N + M + 1)th eigenvalue in the list (5.45).

Proof. Expanding the right hand side of equation (5.44), we observe that

w(N) ~w(07)pd'(0T) / 1262 4 pu tan(;S
cos /7102 +1 \/7252 + L 72 /262 +

2

(5.49)
where we have used the fact that vd cos ¢ — % sin ¢ = 0, since tan ¢ = ~2J. Let
0+
Ay(N) = w0 )pv(0) —\/7?0% + qu
/ 7262 4 LQ
Notice that
-1 0
2524 L - . +
Ar(\) =det | | VT2 [ “EOO_) } : [ ”EOOQ ] . (5.50)
0 7252_,_712 pu'(07) pv'(07)

Comparing (5.50) and (5.44) we observe that the zeroes of Aj()\) correspond to the eigenvalues
of (5.1)-(5.3) with transfer condition

[ (p?zgg)(}) } B f[ <pyy§§)(o)—) } : (5.51)

Here T = gV det T, with

- cosg?) —sinquS ¥ 0 16
9= sing  cos¢ 0 1/% 0 11}’

and y = W 0 = 0 and ¢ = 0 (see equations (5.8)-(5.10)). Thus the zeroes of Aj()\) can
be found by solvmg
1
tan (0; ) = m tan 6(0; A)

(see equation (5.15) with v, § and ¢ replaced with 7, 6 and qg as above). If the graphs of
y = tang(0; \) and y = tan#(0; \) have a common vertical asymptote then such a value of
A corresponds to a zero of A1 () with «/(07;A) = 0 and v'(0T; \) = 0.

On the other hand, intersections of the graphs of y = tan ¢(0; A) and y = tan #(0; \) correspond
to eigenvalues of the classical Sturm Liouville problem, consisting of

—(y) +aqu=Xry, [-a,b] (5.52)

with boundary conditions (5.2), (5.3). Note that this eigenvalue problem can be recast as an
eigenvalue problem of the form (5.1) - (5.4) with transfer matrix M given by the identity. In this
way, zeroes at = 0 are counted as two half zeroes corresponding to y(0~) = 0 and y(0") = 0.
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Let A7, k = 0,1,2,... denote the eigenvalues of (5.52), (5.2), (5.3). Applying Theorem 5.5.2,
with k = N + M being the total count in (—a, b) (including zeroes at = 0), we obtain

kr+Z+0(L) ifa=08%n,
5 e — k7r+7r+0(%) ifOé:O,ﬂ:W, (553)
F ]{37['—1—0(%) ifa#£ 0,8 # m, .

kr+3+0(3) ifa#0,8=m.

Note that the results of Theorem 5.5.2 apply to any transfer matrix, not specifically the original
M. In (5.53), the subscript % in A} labels the oscillation count, but from classical Sturm-Lioville
theory we know that the eigenfunction of the (k + 1)th eigenvalue of (5.52), (5.2), (5.3) has k
zeroes in (—a, b).

y = tand(0,\)

_ tan6(0,\)
7262+A’%

tan 6(0,\)
7252+WL2 :

Figure 1: Example graphs of y = tan (0, \), y = tan (0, \) and y =

tan 6(0,\)
7262_;’_,\/%
a one to one correspondence between eigenvalues of (5.1)-(5.3), (5.51) and the eigenvalues of
(5.52), (5.2), (5.3) according to oscillation count. That is, if the graphs of y = tan (0, A) and

Now, since the zeroes and poles of tan #(0, \) and coincide, we observe that there is

Yy = tg;ﬁfﬁ intersect for some \ € ()\7?__1, AN *], say, then the graphs of y = tan (0, \) and
72

y = tan@(0, \) will also intersect in the interval ()\7?:1, AN _}, giving respective eigenvalues
whose corresponding eigenfunctions have n zeroes in (—a,0). Such intersections must corre-
spond to intersections in an interval of the form [A%*, /\,’?ﬁ) for some m. Hence, the respective
eigenfunctions will have m zeroes in (0, b), giving total oscillation counts of n +m in (—a,b). A
similar argument can be made for intersections below the line y = 0. The case of intersections at
Dirichlet eigenvalues, )‘7?—_1 equal to A2+ say, is trivial. Since the oscillation count of an eigen-
value determines its asymptotic form according to Theorem 5.5.2, not only do the corresponding
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eigenvalues of (5.1)-(5.3), (5.51) and of (5.52), (5.2), (5.3) have the same oscillation counts, but
also the same asymptotic form. Using this information we can conclude that the (k + 1)th eigen-
value of (5.1)-(5.3), (5.51) must have a total oscillation count of k in (—a,b). Simply put, we
can count the zeroes of A1(\) by counting the intersections of the graphs of y = tan (0, \) and
y = tan #(0, \) which is done by identifying oscillation counts.

We now consider the eigenvalues of (5.1)-(5.4).

y =72 [tan 6(0, \) + 4]

y = tan p(0, \)
A
niy v = tan6(0,))

y = tan (p(0,A) + ¢)

Figure 2: Comparison of intersections of y = tan ((0, \) + ¢) and y = v2 [tan (0, \) + J]
with intersections of y = tan (0, \) and y = tan 6(0, )\)

In Figure 2 we have labelled intersections of the graphs of y = tan (p(0,\) + ¢) and y =
72 [tan 6(0, \) + 6] with arabic numbers 1,2,...,6, and intersections of the graphs of y =
tanp(0,\) and y = tan€(0,A) by roman numerals 4,1, ...,vi. Comparing to the vertical
asymptotes and A-intercepts of y = tan(0,\) and y = tan (0, \) respectively, we deduce
that the intersections as labelled above are (1) A = Ay . (2) A = Apsri,ms 3) A = Ab1,mt1s
DX = Mg2mt1. (B) A = Ag2mt2, (6) X = A\pj3m42 (in the notation of Theorem 5.5.2)
and () A = A0, i)\ = Al 1) 4m (i) A = At 1) (mt1)° (iv) XA = At 2) 4 (mt1)°

(V) A= XS (Vi) A = A¢ (in the notation of (5.53)).

(n+2)+(m+2)° (n+3)+(m+2)
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Let[; = {)\ = [Akem}2 9 € [—F, %) ¢ where Ay, is chosen to satisfy

——

km ifa=0,5#m,
(k+1/2)7 ifa=0,5=m,
(k—1/2)7 ifa#0,5#m,
km ifa#0,5=m.

AL =

Then for large &, I', encloses AG, . .., Af_; (see equation (5.53)) and hence k zeroes of A;(\) by
the discussion above. Since

tan ¢

/7262 + fy%

in equation (5.49) for A € I'y, we conclude by Rouché’s Theorem that w(\) also has k zeroes
inside I'j,. Now form (5.53) we have that

[A1(A)] > u(07)v(0")

kﬂ—%—l—O(ﬁ) ifa=0,8+#m,

kn+ 0O (= ifa=0,08=mn,
e/, = 1) N (5.54)
(k—1)w+o(m) ifa#0,8%m,
br-3+0(5y) ifat08=m
On the other hand,
N+M)7r+g+o(N+1M) ifa=0,0%m,
N+M+1)7+0 ifa=0,8=m,
Esnm = <N M ) (5.55)

(
(
(N + M)7+ 0 (55 ) ifo#0,8%#m,
\(N+M)w+g+0(N+M) ifa#0,8=m,

by Theorem 5.5.2. Comparing the above approximations, (5.54) and (5.55), we conclude that the
kth zero of w(\) (i.e. the kth largest eigenvalue of (5.1)-(5.4)) must have total oscillation count
of (N + M) equal to k — 1. Thus we can conclude that Ay rr = [sn, M]2, which has oscillation
count N + M, is the (N + M + 1)th largest eigenvalue of (5.1)-(5.4). That is

ANM = AN+M-

O]

Theorem 5.5.5. Suppose that tan ¢ # v25. Let Ay pr = (SN,M)Q be an eigenvalue of (5.1)-(5.4)
whose eigenfunction has oscillation count N in (—a, 0] and M in [0, b), with a zero at . = 0~ or
x = 07 contributing 1 /2. Then, in the notation of (5.45),

(i) either N + M is an odd-integer multiple of 1/2 and A v = AIN4+M]

(ii) or N,M S N() and either )\N,M = )\N—f—M or /\N,M = /\N+M+1-

Here, [t] denotes the smallest integer greater than or equal to t.
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Proof. We observe that the characteristic determinant (5.44) can be written in the form
w(A) = Ag(X) + f(N), (5.56)
with )
Ag(N) = [75 cos ¢ — 5 sin qb} pu/(07)pv’(07) (5.57)

and

f(\) = ycospu(07)pv'(07) — [76 sin ¢ + ’17(308 gb] pu’ (07)w(0T)

— ysin ¢u(07)v(07). (5.58)

Here, the zeroes of Ay(\) are the Neumann eigenvalues )\,];7 ~ (corresponding to (5.46), (5.2) with
y'(07) = 0) and AN (corresponding to (5.47), (5.3) with ¢/(07) = 0). By methods similar to
those used in the proof of Theorem 5.5.2, we can show that

e/ AN = n7r+g+0(%), ifa =0, (5.59)
" nr+0 (1), ifa € (0,7),

1 .
" /)\%Jr _ m7r+0(a), if 8 € (0,7), 5 60
: {mw+g+0(7}1), if 6 =m. (5.:60)

Here, the subscripts n and m in AY~ and AN respectively, denote Neumann eigenvalues of
oscillation count n in (—a, 0) and m in (0, b) respectively. To compare, the Dirichlet eigenvalues
)\5 ~ (corresponding to (5.46), (5.2) with y(0~) = 0) and )\E T (corresponding to (5.47), (5.3)
with y(0) = 0) have the following approximations:

l 1 pr—
- )\5)_: TZT['—|—7T—|-O(7I), %foz 0, (5.61)
mr+§+0(ﬁ), ifa € (0,7),
s 1 :
n //\2+: mr+5+0(%), ifpe(0,m), 560
¢ {m7r+7r+0(71n), if 8 =m. (5.62)

Now, let Ay s be an eigenvalue of (5.1)-(5.4) with corresponding oscillation count N in (—a, 0]
and M in [0,b), with N, M large. Then the oscillation count includes at most one half-zero at
z=0.

(i) Suppose that the oscillation count includes one half-zero at z = 0. We present only one
case, say, N = n and M = m + 1/2 where n,m € N. Then Ay s = AP+ and we know

from Theorem 5.5.2 that £~ {« /ANM — V )\nN_} =0 (ﬁ) Let

max (”+§1!4)W7 (m—zlfl)ﬂ , ifa=0,5#m,
max (”+51f4)ﬂa (mz-iM)ﬁ , ifa=0F=m,

A = (n=1/4)m (m+1/4) oo
’ max & o er S, ifa#0, B
e (nf£17/4)71" (mzi/‘l)” , ifa#0,8=m,



and

( min ("+£3,/4)7r, (mi}/ll)ﬂ , ifa=0,3#m,
. [ (n43/0)7  (m+5/4)7 e .
s min i , ifa=0,5=m, 5.64)
n,m min (n+517/4)7r, (mzi/‘l)ﬂ' , if o # 0’ B # T,
min (n+£1_/4)7r, (m+£€1/4)7r , ifa#0,8=mr.
iAf
! %e(ﬁ)
0 A A
—iAY
5 .
LetDppm= U Thmand T}, =T2,  UTS UL, UTS . where
j=1
Dho = { (¢ = iAf,0)" 1 C € 0,451}
P2 = {(C—iaf,0)" € (A Al b
T8 = { (A Q)% 1 C € [~ A7 AT}
Th o = { (C+iAf,0)" 5 C€ (A Al b
. 2 —
o = { (CH+i45,)"  Ce 0,451},
08 = { (A +1Q)° : C € = AL, AL}

Then [A2(A)| > [f(N)]if A € T}, ,, orif X € [ ;. By Rouché’s Theorem we conclude
that Ay, 11172 = Antm+1 (U contains precisely n + m + 2 zeroes of Az (A)).

(i1) Suppose that N = n, M = m with n,mm € N. We know from Note 5.5.3 that there
could possibly be a second eigenvalue with the same oscillation count, and hence the
same asymptotic form by Theorem 5.5.2. Further, we know from Theorem 5.5.2 that

& [\/W— \/)WLT} =0 (ﬁ) and, likewise, £ [\/m— \/W} =0 (nim>

Define
max (”_51!4)W7 (m—§3+/4)7r , ifa=0,5#m,
(n=1/4)m (m—1/4)= if @ = =
max L) , ifa=0,p=m,
A (n753/4) . 55/4) (5.65)
’ max I =, I S, ifa#0,8#m,
max (n7§3—/4)ﬂ-7 (m2£/4)ﬂ ’ lfOé 7& 07 ﬁ =,
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and

(min { (1347 md3/0m L i =0, 5,
s min (”25,/4)”, (m—’;ﬂl)w , ifa=0,p=m, (5.66)
o min (n+53,/4)7r, (mzi/zl)ﬂ , ifa#0,5#m, '
min (n+£3_/4)”, (mzi/4)ﬂ , ifa#0,p5=m.

LetI', ,, and Ffl,m be defined as in case (i) above but with Aﬂim as defined here. Consider-
ing A € I'}, ., we have [Aa(A)| > [f(A)] with precisely 2 zeroes of Ay contained in Iy, ..
By Rouché’s Theorem we conclude that w(\) must have 2 zeroes inside Fj‘hm. Oneis Ay,
the second eigenvalue can have maximum generalized oscillation count n + m + 2 and
minimum generalized oscillation count n + m — 2 (in (—a, 0] U [0,b)). Now considering
A € Iy, we again have |Ag(A)| > |f(A)|. Moreover, there are a total of n + m + 2
zeroes of Ay inside I';, ,,, thus we conclude from Rouché’s Theorem that A, ,, is either the
(n 4+ m + 2)th or the (n + m + 1)th largest zero of w(\). That is, either Ay, ,;, = A\yym1
or \ym = Antm-
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Chapter 6

Further work

In this thesis we have presented new work on discontinuous Sturm-Liouville problems involving
two particular classes of transmission conditions. We extended Sturm’s oscillation theorem to
the case of discontinuous problems with constant coefficient transmission conditions. Our meth-
ods enabled us to analyse general real non-singular 2 x 2 transfer matrices. Up to now, nodal
counts have been studied only for very specific types of transfer matrices. Furthermore, the work
presented in Chapters 3 and 4 is the first to deal with transmission conditions having a rational
dependence on the spectral parameter. Here, we showed that the double geometric multiplicity
of certain eigenvalues combined with the discontinuity in the eigenfunctions introduced some
interesting challenges with regards to the analysis. However, there is still much more to consider.

We have begun investigations into an interesting inverse problem pertaining to transmission con-
ditions of the form discussed in Chapter 5. A well-studied inverse problem for continuous Sturm-
Liouville operators deals with the question of determining the coefficients of the Sturm-Liouville
equation from two spectra. The first spectrum consists of eigenvalues associated with the bound-
ary value problem under consideration, and the second spectrum is obtained by changing one
of the two end conditions. We propose the following alteration. Consider the Sturm-Liouville
problem:

Y +qy=2Xy, x€(-a,0)U(0,b), 6.1

with boundary conditions
y(—a)cosa = (py')(—a)sina, « € [0,n), (6.2)
y(b) cos B = (py')(b)sin B, B € (0,n], (6.3)

and transmission conditions

[ y(0T) } _ [tn t12 ] [ yI(O_) ] (6.4)

y'(01) to1 122

t t .. . .
where T' = [ tll t12 } has ¢;; € Rand detT" > 0. We ask, is it possible to determine ¢ from
21 tog

two spectra, where the second spectrum is obtained not by changing one of the end boundary
conditions, but rather by changing the coefficients of the transfer matrix 7'? The question arises
whether the second spectrum gives us enough information to solve the inverse problem or if
additional data is needed.

We have also made initial investigations into developing oscillation theory for Sturm-Liouville
equations with rationally dependent transmission conditions of the type considered in Chapters 3
and 4. The possibility also exists to extend the results of Chapter 5 to the case of finitely many
transmission conditions, and to the case of det T < 0.
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