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“Education is the most powerful weapon which you can use to change the world.”

Nelson Mandela

“If people did not do silly things, nothing intelligent would ever get done.”

Ludwig Wittgenstein



Abstract

Plagiarism is a serious problem in academia. It is prevalent in the computing disci-

pline where students are expected to submit source code assignments as part of their

assessment; hence, there is every likelihood of copying. Ideally, students can collabo-

rate with each other to perform a programming task, but it is expected that each student

submit his/her own solution for the programming task. More so, one might conclude

that the interaction would make them learn programming. Unfortunately, that may not

always be the case. In undergraduate courses, especially in the computer sciences, if a

given class is large, it would be unfeasible for an instructor to manually check each and

every assignment for probable plagiarism. Even if the class size were smaller, it is still

impractical to inspect every assignment for likely plagiarism because some potentially

plagiarised content could still be missed by humans. Therefore, automatically checking

the source code programs for likely plagiarism is essential.

There have been many proposed methods that attempt to detect source code plagia-

rism in undergraduate source code assignments but, an ideal system should be able to

differentiate actual cases of plagiarism from coincidental similarities that usually oc-

cur in source code plagiarism. Some of the existing source code plagiarism detection

systems are either not scalable, or performed better when programs are modified with

a number of insertions and deletions to obfuscate plagiarism. To address this issue, a

graph-based model which considers structural similarities of programs is introduced to

address cases of plagiarism in programming assignments.

This research study proposes an approach to measuring cases of similarities in pro-

gramming assignments using an existing plagiarism detection system to find similar-

ities in programs, and a graph-based model to annotate the programs. We describe

experiments with data sets of undergraduate Java programs to inspect the programs

for plagiarism and evaluate the graph-model with good precision. An evaluation of

the graph-based model reveals a high rate of plagiarism in the programs and resilience

to many obfuscation techniques, while false detection (coincident similarity) rarely oc-

curred. If this detection method is adopted into use, it will aid an instructor to carry

out the detection process conscientiously.

Keywords: Plagiarism, Source code plagiarism, Programming assignments, Plagia-

rism graph, Graph model.
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Chapter 1

Introduction

1.1 Introduction

In the twentieth century, the advent of the Internet, computers and search engines

have made it easier for students to cheat in their assignments. The retrieval of so-

lutions for assignments on the internet requires little or no effort. The traditional ways

of copying solutions for assignments from books are becoming obsolete and less likely

than the retrieval of solutions from electronic sources [Selwyn, 2008].

The issue of students submitting assignments that they haven’t produced has gen-

erated many controversies, especially in academia. A recent survey conducted by Mc-

Cabe [2005] reported that 70% of students admitted to plagiarism, out of which 40%

of the students admitted to using the “cut-and-paste” approach and about half were

found guilty, and liable to a punishable offence. These indications are that plagiarism

is commonplace, even though students are aware that the practice is impermissible.

The term “Plagiarism” as defined by Encyclopaedia Britannica [Britannica, 2005] is

“the motive of using someone else’s work and passing them off as one’s work”. Plagiarism

implies taking someone’s ideas by copying (stealing) and using it without appropri-

ate credit to the original source. The word “Plagiarism” was also defined by Barn-

hart [1988], in the Dictionary of Etymology, meaning “literary theft”, derived from the

English word “plagiary”(‘an individual who unjustly copies another person’s ideas or

words’), originated from the Latin word “plagarius” (‘kidnapper, seducer’) and from

the noun “plaga”, meaning “net”. In the early years, Ben Johnson, the popular English

playwright, was the first individual to use the word “plagiary” to connote “literary

theft” in the 17th century [Mallon, 1988].

1
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Recent studies on plagiarism [Atkins and Nelson, 2001; Young, 2001; DeVoss and

Rosati, 2002; Marshall and Garry, 2005; Howard, 2007] affirmed that the Internet is the

primary source of plagiarism. The ubiquitous nature of the Internet has intensified

plagiarism in two ways. First, the usage of the Internet has made documents easily

accessible for plagiarism. Student assignments can be easily retrieved from the pool

of information available on the Internet and these have contributed immensely to the

spread of plagiarism. Secondly, it makes the copying process easier because, contents

retrieved on the Internet could be processed on word-processing software and easily

edited. The rise of online discussion forums has also contributed to the spread of pla-

giarism [Olt, 2009]. The questions for an assignment could be easily posted in these fo-

rums and feedback for them can be generated in good time. Whilst this process serves

as a learning aid, it could provide a leeway for plagiarism. Goffe and Sosin [2005] at-

tributed electronic cheating as “Cyber-cheating”, since the ease of cheating promotes a

lazy approach of using the “cut and paste” method of copying electronic sources of in-

formation without the need to typeset an assignment. The students who participated in

the work of Introna et al. [2003] reckoned that the information on the Internet was in the

“public domain”. Thus, they argued that the contents gathered from the Internet is for

the public consumption. Therefore, they believed it was not an offence to download,

edit and print contents from a website, and further claimed the information retrieved

was their own content.

Owunwanne et al. [2010] argued that if preventative measures were lax in an aca-

demic institution, plagiarism would be on a meteoric rise. If a student plagiarises and

gets away with it once, there is likelihood for them to plagiarise even more, since no

disciplinary proceedings were taken in the first place. In most universities, it is an of-

fence to plagiarise. An excerpt from the WITS University Plagiarism Policy1 considers

“allegations of plagiarism brought to its attention by academics, while serious or repeated pla-

giarism will be handled as a disciplinary offence”. If an academic institution does not accept

they have a problem with plagiarism and deal with perpetrators, they might be deny-

ing themselves quality academic standards and independent learning among students.

However, the unfairness will be towards those students who choose not to plagiarise.

Unfortunately, the problem of plagiarism in academic institutions is increasing rapidly

with the rate of students admitted each year.

1http://libguides.wits.ac.za
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1.2 Motivation

Informal assertions show that in the computing sciences, especially in programming,

students plagiarise their programming assignments [Ahmadzadeh et al., 2011]. Stu-

dents are able to modify a source code that they perhaps obtained from their peers,

submit it as their own, and hope their instructor will not discover whether or not the

code was copied. If the plagiarised code is not discovered by the instructor, it may be

unnoticed until after exams have been marked. An instructor might realise that there

are a few students who have not received enough grades in their exams to pass a course,

but achieved a higher score in their assignment exercises. In some circumstances, the

differences between these two marks are relatively high and can be attributed to anxi-

ety during the examination.

Students who are fond of plagiarising, often find it very difficult to learn program-

ming when they copy each other’s assignments, so detecting and discouraging plagia-

rism is a very serious issue [Chunhui et al., 2013].

However, checking for plagiarism is labour intensive work. Instructors are required

to scrutinise all source code submitted by students to verify their authenticity in the

early stages of the course. In practice, this is impossible. The number of enrolled stu-

dents in a university is often very high and this does not enable one to be observant

for checking each and every assignment for plagiarism. Automatic detectors are, there-

fore, of huge importance. Several tools exist to detect similarities between pairs of

programs, but an instructor should bear in mind that, the selected tool must be able to

explore actual plagiarism, not coincidental similarities which are common in program-

ming courses. In exploring the idea of actual plagiarism, we introduce the concept of

graphs and graph theory to source code plagiarism. Figure 1.1 shows a graph structure

used to describe student programs and similarity relationships between the programs

in a programming class.

In Figure 1.1, student labels represent each submitted program and the lines between

each program represent the degree of similarity. For example, the degree of similarity

between the programs submitted by “Student L” and “Student Y” is 99. A high de-

gree of similarity between pairs of programs is indicative of plagiarism. By choosing

some threshold above which these similarities are displayed, a graph structure (such

as that in Figure 1.1) can aid an instructor in identifying groups of plagiarists. If an

instructor decides to use a higher threshold value (for example, a threshold value of

80) as an indication that pairs of programs were plagiarised, the graph structure will

assist the instructor in carrying out the detection easily. Imagine a programming class

of 100 students and with 250 pairwise similarities above the selected threshold, a graph
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FIGURE 1.1: Application of graphs to source code plagiarism

visualisation aids the instructor in carrying out the detection effortlessly. This is pos-

sible because graphs make the relationships between submissions easier to visualise

and understand in a way that is intuitive to humans and accessible to mathematical

algorithms.

Graphs are abstract objects and have been applied successfully in research related

to similarity and matching problems [Conte et al., 2003]. In this research, students’

source codes and the strength of similarities between them are represented in the form

of graphs. This is useful to show relations of the copied work which will aid us to

investigate actual plagiarism from coincidental similarities.

1.3 Problem Description

In programming courses, students work on the same problem in the same environ-

ment, while being taught to code by the same instructor using a specific style. This

all increases the possibility of finding coincidental similarities even when students are

not actually copying. On the other hand, when plagiarising, it is a common practice

by students to make certain cosmetic modifications without affecting the output of a

program. A plagiarised source code can also be a combination of various portions of

different sources: the Internet, colleagues (others) or oneself (self-plagiarism). These

modifications reduce the chances of identifying probable plagiarism. For an instructor

to carry out the classification of source code similarities effectively, it would require the
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instructor to understand what constitutes plagiarism (discussed in the literature of this

work), use an automatic detection tool, apply a benchmark (threshold) to adjudicate

plagiarism, and to check the history of a plagiarist across a number of programming

assignments.

A number of problems are considered and addressed in this work under the cate-

gories:

1.3.1 Acceptable threshold to indicate plagiarism

A number of source code plagiarism detection tools exist to assist instructors in investi-

gating plagiarism in programming assignments. However, instructors struggle with an

acceptable benchmark that indicates programs that constitute plagiarism in program-

ming assignments. This leaves one with the question: At what threshold is it sufficient

to indicate that a program has been plagiarised? Prechelt et al. [2002] proposed an auto-

matic plagiarism detection system, JPlag, and considered a fixed cut-off threshold as a

sufficient criterion to distinguish plagiarised programs from non-plagiarised programs

with near-optimal recall and good precision. Pawelczak [2013] describes a threshold

as the level of alternation which represents the maximum allowed similarities between

two programs. Hence, one way of considering a threshold that indicates plagiarism in

this work, is to perform a ground truth analysis (presented in Chapter 7) to manually

identify true instances of plagiarism and try to find a suitable threshold. That is, we

perform a thorough evaluation at different thresholds of similarities by manually investigating

the source code fragments.

1.3.2 Constructing and analysing student program plagiarism

A plagiarism detection method is a key element in uncovering plagiarism in program-

ming assignments. While one can imagine a number of modifications students use to

obfuscate plagiarism, an instructor is faced with an arduous task of finding an appro-

priate method of detecting plagiarism in programming assignments. Noynaert [2006]

conducted a critical examination of the manual and automatic plagiarism detection

methods. The author stressed that both manual and automatic approaches comple-

ment each other, but that most instructors would have to use manual methods in veri-

fying the plagiarism report after the automated methods have been used. Furthermore,

automated methods are rarely definitive, hence, the need to verify the authenticity of

the plagiarism report. Given the complexity of this problem, we are faced with these

questions:
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1. does the detection tool assist instructors in correctly identifying plagiarism?

2. does the graph-based approach highlight useful structural information within the class to

help instructors understand detected program similarity?

Given the problems above, we propose an automatic plagiarism detection and analysis tool to

detect and represent student relationships as graphs. That is, we build software prototypes

and carry out manual investigation on the source code programs in a bid to uncover

plagiarism.

1.3.3 Plagiarism analysis across multiple assignments

Programming assignments are an essential element of computer science education and

can help students become familiar with, and understand how the principles can be

applied in a real-world scenario. In spite of the effort by instructors to ensure students

understand the concept of a programming language by providing them with multiple

assignments, there are still students who still engage in plagiarism across their multiple

assignments. Given this problem, we are faced with the challenging question: Can we

identify culprits/plagiarists across multiple assignments of the same course?

In a bid to counteract plagiarism, Wagner [2004] suggested that students should do

more than one assignment as this ensures plagiarism to be more conspicuous. Whilst

this approach seems plausible, identifying students who plagiarise across multiple as-

signments should provide instructors with conclusive evidence that students are really

engaging in plagiarism. This problem was addressed in this research.

1.4 Research Context

1.4.1 Aims and Objectives

The main aim of this research is to make it easier to determine which cases of measured

similarity might be plagiarism. Cases of plagiarism, either coincidental or actual are

common in programming assignments. In this research, the primary focus is to ensure

these issues are addressed. The objectives that make up the aim are to:

1. find better ways of investigating plagiarism in programming assignments using

a graph-based approach.
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2. combine the use of structure similarity detection and graph-based techniques and

design a combined approach, which can be used to detect plagiarism in source

codes.

3. derive an efficient method for detecting plagiarism in programs.

4. resolve the anomalies of cases in programs. Resolution is done by the manual

evaluation of the plagiarism report.

1.4.2 Questions

Specifically, the following questions have been answered during the course of under-

taking this research.

1. At what threshold is it sufficient to indicate that a program has been plagiarised? This

question is addressed in this research. During the evaluation of the plagiarism

report, Chapter 7, we realised that even at a lower threshold, programs can still

be investigated for plagiarism.

2. Does the graph-based approach highlight useful structural information to help instructors

understand detected program similarity? Yes, it does. We noticed that the structure

of graphs comprises useful indicators to uncovering plagiarism. We were able to

distinguish between different components in the structure of graphs presented.

More details are presented in Chapter 6.

3. Can we identify culprits/plagiarists across multiple assignments of the same course? Yes,

this was achieved. We noticed that, inspecting plagiarism across multiple assign-

ments reduced the occurrence of coincidental plagiarism and a number of stu-

dents were found to have plagiarised each other in multiple assignments. Details

of this finding are presented in Chapter 7.

1.5 Methodology

In order to accomplish the objectives of this research, a plagiarism detection tool was

built and integrated into an LMS2. The proposed tool aims at detecting and analysing

plagiarism in programming assignments. The methodology of this research was con-

ducted in three phases:

2Learning Management System
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1. pairwise program similarity check: A plugin already existed for the Moodle LMS

that sends student submissions for plagiarism checking by MOSS [Aiken, 1994].

2. graph visualisation of programs: Graph visualisation is vital in identifying pairs of

the student programs. The visualisation provides additional information when

investigating plagiarism. Hence, a popular choice was the Graph visualisation

package.

3. manual classification of the result: In this phase, the submissions flagged by MOSS

were manually assessed for coincidental or actual plagiarism. This involved group-

ing the responses as false positive, false negative, true positive and true negative.

1.6 Contribution of the Study

This study describes our effort to make it easier to determine which cases of similarities

in programs may be plagiarism, using a graph-based plagiarism detection approach

and addressing the alarming issues of source code plagiarism. This study offers a num-

ber of contributions:

1. easy detection: The detection process was straightforward. With the click of a but-

ton, an instructor can scan a number of programs in an assignment for plagiarism.

A more detailed discussion is presented in Chapter 5.

2. reporting features: The plagiarism detection tool provided a number of features

for presenting the plagiarism report. The tool presented a number of options

(histogram, graphs and side-by-side comparison) for investigating plagiarism in

a collection of programs (Chapter 5).

3. long-term storage: MOSS maintains a database that stores the similarity report,

which automatically deletes after 14 days from the MOSS server. Our plagiarism

detection system retains reports of previous scans, which is readily available for

an instructor at any time (Chapter 5).

4. enhanced functionality: The graph-based approach considered in this work pos-

sesses features which make it less laborious to investigate program similarities.

The graph metrics and parameters (threshold, colours, line count, thickness and

percentage) ensured that it was easier to investigate program similarities, rather

than on MOSS only, which just gives pairwise similarities in a collection of pro-

grams (Chapter 6).
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5. robust visualisation: Good visualisation can help an instructor understand and

make informed decisions based on the data being presented. Ideally, the graph

visualisation makes it easy for an instructor to identify patterns in the program-

ming class, especially if the given class size was large and pairwise comparison

does not provide enough information to carry out sound judgement (Chapter 6).

6. decision making: Effective decision-making is key to an instructor following up on

source code plagiarism. The plagiarism detection tool has provided a leeway for

making informed decision (Chapter 7).

1.7 Document Outline

The rest of this research is organised as follows:

• Chapter 2 Background and related work: This chapter presents an introduction to

source code plagiarism, and a number of reasons why students plagiarise in their

assignments are discussed. Furthermore, previous plagiarism detection systems

used for measuring similarities in programs are elaborated upon. An overview

of the MOSS engine is discussed and the algorithms used by plagiarism detection

systems are presented. A number of graph-based methods used for detecting

plagiarism in programs are discussed. These methods are compared to the de-

tection method used in this work. Lastly, the classification scheme used in the

classification of plagiarism cases is presented. This is useful in the evaluation of

the plagiarism detection method applied in this work.

• Chapter 3 Graph theory concepts: In this chapter, basic definitions on the concepts

of graphs are discussed. The different graph metrics are examined in relation

to source code plagiarism detection, and a number of examples to support this

concept are presented.

• Chapter 4 Research questions and methods: This chapter introduces the motivation

behind this research. A number of clear focused questions are posed, and the

methodology to answer them is outlined.

• Chapter 5 Design and implementation: This chapter presents the methods used in

this work. A number of methods are undertaken to create an efficient plagiarism

detection system. The plagiarism detection system presents a number of options

for detecting plagiarism in the student programs.
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• Chapter 6 Graph structures: In this chapter, a number of structures from the im-

plemented plagiarism detection system are analysed. The analysis is useful in

evaluating the plagiarism detection system.

• Chapter 7 Evaluation: This chapter provides details on the results of the experi-

ment carried out in this research. A number of experiments are performed on a

repository of source code programs. The result from the experiment presented

a number of indications which clearly show that the students are really copying

each other.

• Chapter 8 Conclusion, Limitations, Contribution and Future Work: This chapter con-

cludes the research, provides the limitations of the study, presents future work,

and outlines contribution of the research study.



Chapter 2

Background and Related Work

2.1 Introduction

This chapter discusses work related to the background of source code plagiarism de-

tection and presents the approach for carrying out this research. In particular, Section

2.2 introduces the idea of source code plagiarism; its conceptual definition and the dif-

ferent modifications students make to obfuscate plagiarism. Section 2.3 highlights the

reasons why students engage in plagiarism. Section 2.4 introduces the different plagia-

rism detection systems. Section 2.5 introduces MOSS, the plagiarism detection engine

used for this work. Section 2.6 introduces the algorithms used in plagiarism detec-

tion. Section 2.7 discusses other graph-based plagiarism detection systems. Section 2.8

introduces the classification scheme. Section 2.9 concludes the chapter.

2.2 Source Code Plagiarism

Source code plagiarism as defined by Parker and Hamblen [1989] “is a program which

has been reproduced with a small number of routine transformations.” It is a significant

issue in academia. It is literally the reusing of programs rather than copying of essays.

Source code can be reused in different forms from copying and pasting small chunks

of a program source code to copying large chunks of a source code and masking these

copies with creative techniques to conceal the original copied program [Grier, 1981;

Sraka and Kaučič, 2009].

In source code plagiarism, a student who reuses the code of another student, mod-

ifies and submits the code as if he/she solely produced it. During the examinations,

this can impinge on their performance because they have not engaged with the work

11
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personally. Informal evidence presented by Ahmadzadeh et al. [2011] showed that stu-

dents who often plagiarise, perform badly during the examination since they cheated

during an assignment exercise just to attain good marks. Inspecting each and every

program manually is often time-consuming particularly if the class size for a program-

ming course is large. An instructor determines that students passed during an assign-

ment exercise with higher grades compared to their examination scores which are con-

siderably lower, and this is attributed to the reuse of source codes during assignments.

These create an imbalance between the two different scores. Hence, an imbalance be-

tween the assignment and exam grades is often attributed to plagiarism. Given the

complexity of the issues above, the need to automatically check source code is impera-

tive.

While most plagiarism detection tools for essays search for consecutive words in

a large pool of text to identify plagiarism, source code plagiarism detectors consider

modifications exhibited by students to deceive their instructors. Several modifications

exhibited by students in source code plagiarism as enumerated by Faidhi and Robinson

[1987] and Seo-Young et al. [2006] are:

Level 1 - Changes in indentation and comments of a program: At this level, suf-

ficient knowledge to actually produce a program is not demonstrated. This involves

essentially changing the comments of a program. Two students may reproduce each

other’s programs but may use entirely different comments to describe their source

code. Two student sample Java code is presented in Listing 2.1 and Listing 2.2:

1 // A Java code: "I love wits"

2 public class Lovewits {

3 public static void main(String[] args)

4 {

5 System.out.println("I love wits");

6 }

7 }

LISTING 2.1: Learner A

1 /* Sample program to show "I love wits" */

2 public class Lovewits {

3 public static void main(String[] args)

4 {

5 System.out.println("I love wits");

6 }

7 }

LISTING 2.2: Learner B

The programs produce the same output but the comments used by each students are

entirely different. In the above programs, Learner A (Listing 2.1) used a distinct Java

description and comment style “// A Java code :“I love wits”” to illustrate the simple Java

program, Learner B (Listing 2.2) used a separate description and comment style “/*

Sample program to show “I love wits” */ ”. At Level 1, the comments in the two programs

are different but the programs are practically identical - it is extremely likely that the

two programs have been plagiarised. We may conclusively determine at Level 1 that

the programs may have been plagiarised.
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Level 2 - Changes in Level 1 and changes in program identifiers: At Level 2, slight

changes in the comment of a program as presented in Level 1, and changes in program

identifiers may be used to hide plagiarism. If pairs of programs yielded the same re-

sults, different identifiers may have been used in the programs to achieve them. Sample

Java programs are illustrated in Listing 2.3 and Listing 2.4:

1 // A Java code: "I love wits"

2 public class Lovewits {

3 public static void main(String[] args)

4 {

5 string A;

6 A = "I love wits";

7 System.out.println(A);

8 }

9 }

LISTING 2.3: Learner A

1 /* A sample program to show "I love wits" */

2 public class Lovewits {

3 public static void main(String[] args)

4 {

5 string Z;

6 Z = "I love wits";

7 System.out.println(Z);

8 }

9 }

LISTING 2.4: Learner B

We can deduce that the above pair of source codes are identical, but the two students

used different program identifiers. Learner A used the identifier (A) as shown in List-

ing 2.3 while, Learner B used a separate identifier (Z) in Listing 2.4. If we investigate

the pair of programs as copied programs based on the identifiers, this does not provide

sufficient information to inspect the source codes as suspicious cases of plagiarism.

They may have presented the programs the way the instructor had taught them in the

programming class.

Level 3 - Changes in Level 2 and changes in variable position: At Level 3, the vari-

ables expressed in the following programs in Listing 2.5 and Listing 2.6 may have been

plagiarised. If pairs of programs show a slight change in the position of the variable

of a program, it may have been plagiarised. Students may deceive their instructors by

altering the position of the variable, they may have yielded the same result but struc-

turally it may differ in presentation. Sample programs to show Level 3 are indicated in

Listing 2.5 and Listing 2.6.

1 // Sample code "I love wits"

2 public class Lovewits {

3 public static void main(String[] args)

4 {

5 string A = "I love wits";

6 System.out.println(A);

7 }

8 }

LISTING 2.5: Learner A

1 /* Program to show "I love wits" */

2 public class Lovewits {

3 public static void main(String[] args)

4 {

5 string Z;

6 Z = "I love wits";

7 System.out.println(Z);

8 }

9 }

LISTING 2.6: Learner B



Chapter 2. Background and Related Work 14

The program modifications as shown in Level 3 may constitute plagiarism. At Level

3, Learner A declared the variable (String A=“I love wits”) and its value on the same line

as seen in Listing 2.5. Contrary, Learner B applied the identifier, the variable declaration

and the value on separate lines as seen in Listing 2.6. Significant programming skill is

not required to plagiarise a source code at this level.

Level 4 - Changes in Level 3 and changes in procedure combinations: At Level 4,

programs may have been plagiarised. Pairs of programs to demonstrate Level 4 are

illustrated in Listing 2.7 and Listing 2.8.

In the pair of programs that follow, we can conclude that two programs may have

been plagiarised as seen in Listing 2.7 and Listing 2.8. If we inspect the code, we may

conclude that they are similar with regard to the program modules used in the pro-

gram, but the students may have changed the variable identifiers.

1 package acceptinput;

2 import java.util.Scanner;

3 // Sample code to get input text

4 public class Acceptinput {

5 public static void main(String[] args)

6 {

7 int Y = in.nextInt();

8 int Z = in.nextInt();

9 System.out.println(Y);

10 System.out.println(Z);

11 }

12 }

LISTING 2.7: Learner A

1 package receiveinput;

2 import java.util.Scanner;

3 public class Receiveinput {

4 /* Receive inputs from users */

5 public static void main(String[] args)

6 {

7 int num1, num2;

8 num1 = in.nextInt( );

9 num2 = in.nextInt();

10 System.out.println(num1);

11 System.out.println(num2);

12 }

13 }

LISTING 2.8: Learner B

Level 5 - Changes in Level 4 and changes in the statements of programs: We can

stipulate a case of source code plagiarism at Level 5 as presented in Listing 2.9 and

Listing 2.10. Students may possess excellent programming skills to produce a source

code at this level. If we have pairs of programs as shown next, we can clearly examine

the source code and observe cases of plagiarism at this stage.

If we thoroughly examine the pairs of programs displayed in Listing 2.9 and Listing

2.10, we can clearly investigate that the two programs may have been plagiarised.
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1 package acceptinput;

2 import java.util.Scanner;

3 public class Acceptinput {

4 // Sample code to get input text

5 public static void main(String[] args)

6 {

7 int Y = in.nextInt();

8 int Z = in.nextInt();

9 if (Y>Z)

10 System.out.println("Y is greater");

11 else

12 System.out.println("Z is greater");

13 }

14 }

LISTING 2.9: Learner A

1 package receiveinput;

2 import java.util.Scanner;

3 /* Receive inputs from users */

4 public class Receiveinput {

5 public static void main(String[] args)

6 {

7 int num1, num2;

8 num1 = in.nextInt( );

9 num2 = in.nextInt();

10 if (num1>num2)

11 System.out.println("num1 is greater");

12 else

13 System.out.println("num2 is greater");

14 }

15 }

LISTING 2.10: Learner B

Level 6 - Changes in Level 5 and changes in the control logic: This is the last stage

where we can conclusively infer that pairs of programs may have been plagiarised.

Students may possess excellent programming skills to produce a source code at this

level. An example of Level 6 plagiarism is illustrated in Listing 2.11 and Listing 2.12.

1 import java.util.Scanner;

2 public class TimesDrill {

3 public static void main(String[] args) {

4 int a, b; // times operands

5 int ansR; // right answer

6 int ansU; // user’s answer

7 int score; // user’s score

8 String s; // output string

9

10 Scanner scanner = new Scanner( System.in );

11 System.out.println("Practice multiplication");

12 System.out.println("To quit, enter -1");

13 score = 0; // initialise score

14 do

15 { // generate question

16 a = (int)( Math.random( )*11 );

17 b = (int)( Math.random( )*11 );

18 s = a + " X " + b + " = ";

19 System.out.print( s + "? " );

20 ansR = a * b; // compute right answer

21 ansU = scanner.nextInt( ); // get user’s answer

22 if ( ansU == -1 ) // user wants to quit

23 {

24 System.out.println( "Goodbye" );

25 break; // quit

26 }

27 if ( ansU != ansR ) // user answered wrong

28 {

29 System.out.print( "Sorry, you failed!!, " + s + ansR );

30 break; // quit

31 }
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32 // user entered a correct answer so add one to

33 // score and encourage continuing

34 score++;

35 System.out.println(score+" right. Keep going!");

36 } while ( true );

37 }

38 }

LISTING 2.11: Learner A

1 import java.io.BufferedReader;

2 import java.io.IOException;

3 import java.io.InputStreamReader;

4 import java.util.Random;

5

6 public class TimesDrill {

7

8 public static void main(String[] args) {

9 int a = 0;

10 int b = 0; // times operands

11 int ansR = 0; // right answer

12 int ansU = 0; // user’s answer

13 int score = 0; // user’s score

14 String question; // output string

15

16 System.out.println("Practice multiplication");

17 System.out.println("To quit, enter -1");

18 score = 0; // initialise score

19 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

20 do {

21 // generate question

22 Random rand = new Random();

23 a = rand.nextInt(12 - 1 + 1) + 1;

24 b = rand.nextInt(12 - 1 + 1) + 1;

25 question = a + " X " + b + " = ";

26 ansR = a * b; // compute right answer

27

28 while(true){

29 try{

30 System.out.print(question);

31 ansU = Integer.parseInt(in.readLine()); // get user’s answer

32 break;

33 }catch(IOException | NumberFormatException e){

34 // if ans invalid show message

35 System.out.println("Please enter a number !");

36 }

37 }

38

39 if (ansU == -1) // user wants to quit

40 {

41 System.out.println("Goodbye");

42 break; // quit

43 }

44 if (ansU != ansR) // user answered wrong

45 {
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46 System.out.print("Sorry, you failed!!, " + question + ansR);

47 break; // quit

48 }

49 // user entered a correct answer so add one to

50 // score and encourage continuing

51 score++;

52 System.out.println(score + " right. Keep going!");

53

54 }while(true);

55 }

56

57 }

LISTING 2.12: Learner B

We can decisively concede at Level 6 that the programs may have been plagiarised.

The six source code modifications that can constitute source code plagiarism are pre-

sented in Figure 2.1. Source code programs at L1 require no programming skills to

produce a program. If we proceed up to the highest level, L6, we are able to estab-

lish that excellent programming skills is required at Level 6 to produce a program.

Other source code modifications carried out by students were mentioned in the work

of Joy and Luck [1999]; Jones [2001]; Dick et al. [2002]; Prechelt et al. [2002]; Sheard

et al. [2003]; Mozgovoy [2006]; Roy and Cordy [2007]. In conclusion, checking pairs of

plagiarised source code using the Faidhi and Robinson [1987] categorisation of source

code modification, is plausible.

FIGURE 2.1: The different modifications in source codes [Parker and Hamblen, 1989].
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2.3 Reasons why students plagiarise source codes

There are several reasons highlighted by Hattingh et al. [2013] regarding the cause of

students engaging in source code plagiarism;

• Poor knowledge of a programming language: Inadequate knowledge of pro-

gramming can affect academic performances. Students who detest programming

usually perform poorly hence, they engage in cheating in order to achieve better

grades.

• Academic pressure: Taking multiple courses can compel a student to cheat. The

“fear of failure” would often make a student indulge in plagiarism. Academic

pressure is invariably “self-perpetuating”, and students would resort to any means

of copying just to attain good grades.

• Poor time management: There are a lot of extra-curricular activities that stu-

dents devote time to, which further diminishes the interest to learn programming.

Hence, poor time management contributes to students plagiarising each other.

• Self-plagiarism: Self-plagiarism happens when a student reuses pieces of code

between assignments to carry out programming tasks. The effect of this will lead

to a significant issue when the source codes are compared for plagiarism.

Bennett [2005] gave a different opinion on factors associated with student plagiarism.

The author listed means and opportunity (using the internet resource), personal traits

(desire to achieve a high grade) and individual circumstances (high volume of aca-

demic workloads) as contributory factors to student plagiarism. Students’ desire to

cheat would escalate even further if appropriate mechanisms are not enforced to curb

the menace. Mann and Frew [2006] highlighted a number of reasons why students

plagiarise in the programming assignments. The reasons provided by Mann and Frew

[2006] are that students have zero knowledge of what programs are, students have been

taught by the same instructor, hence, they are introduced to a particular coding style.

Students are made to work in a group, hence, there is likelihood of submitting the same

answers. They acquire external help to write their assignments early on in the course,

which increases their desire to cheat when the need arises. Furthermore, Vogts [2009]

opined that the main reasons why students plagiarise in their source code assignments,

were due to a lack of knowledge about the programming language and largely as a last

resort, to pass in most cases. All these factors mentioned by these authors contribute a

great deal to reasons why students plagiarise in their assignments.
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In the next section, we categorise the different plagiarism detection systems and their

application to detecting plagiarism.

2.4 Plagiarism Detection Systems

Students are aware of various modes of cheating to disguise plagiarism detection tools.

They carry out plagiarism effortlessly with some creative techniques. To them, plagia-

rism is seen more as a rewarding exercise. One obvious attempt at cheating in a pro-

gramming assignment would be to obtain a copy of a working program and change

the comments, rename the variable names and rearrange the statements of the pro-

gram. A manual inspection of the copied program can reveal traces of plagiarism,

this is however impossible if the class size were large. Plagiarism detection systems

for programming assignments are of paramount importance, because they can identify

traces of plagiarism in a large class size. Lancaster and Culwin [2005] defined plagia-

rism detection systems as “the software programs that compare student programs with each

other or with other potential sources for plagiarism”. The algorithms employed by source

code plagiarism detection systems are able to detect plagiarism at the different levels

of program modifications carried out by students.

In evaluating plagiarism detection systems, we will examine two important systems

in measuring similarities in a program, which are: the attribute counting system and

the structure counting systems.

2.4.1 Attribute Counting System

Early automated plagiarism detection systems for student-generated programs em-

ployed the attribute counting system for detecting plagiarism in FORTRAN programs

[Ottenstein, 1976]. The attribute counting system relied on Halstead software metrics

in detecting plagiarism in student-generated programs by counting the number of op-

erators and operands. Halstead [1977] suggested the following metrics for measuring

the level of similarities:

1. η1 - The number of unique operators: The η1 is the total number of unique op-

erators in a program. The operators in a program can be mathematical, rela-

tional, logical, assignment and a bitwise operators. They perform a function on

an operand.

Example: A + B - C

The unique operators are “+” and “-”. Hence, the value of η1 = 2.
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2. η2 - The number of unique operands: The η2 is the total number of unique operands

in a program. The operands are the entity upon which the operators act.

Example: A + B - C + D

The unique operands are “A”, “B”,“C”, and “D”. Hence, the value of η2 = 4

3. N1 - The total number of occurrences of unique operators: The N1 is the total

number of times an operator occurs in a program.

Example: A + B - C + D

The unique operators are “+”, which occurs twice in the above example, and “-”,

which occurs once. Hence, the value of N1 = 3.

4. N2 - The total number of occurrences of unique operands: The N2 is the total

number of times an operand occurs in a program.

Example: A + B - C + D

The unique operators are “A”, “B”,“C”, and “D”, and they occur once in each of

the examples presented. Hence, the value of N2 = 4.

The system employed by Ottenstein [1976] indicated that if corresponding values of

η1, η2,N1 andN2 for pairs of student-generated programs have the identical values, the

programs should be inspected for plagiarism.

The attribute counting system led to the introduction of other systems using metrics

like counting the number of loops and number of procedures [Grier, 1981; Verco and

Wise, 1996; Bandara and Wijayarathna, 2011]. These systems were effective in detect-

ing plagiarism because they applied essential features to the attribute of a program to

find similarities in programs. The Grier [1981] system was called the “Accuse” sys-

tem and was intended for Pascal programs. The system used the following parameters

for detecting plagiarism in Pascal programs in different combinations to find the most

effective combination:

1. The number of unique operators in a program

2. The number of unique operands in a program

3. Total operators in a program

4. Total operands in a program

5. The code lines (excluding comments lines) in a program

6. The used and declared variables

7. Total control statements
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The Accuse system [Grier, 1981] applied more sophisticated metrics in detecting source

code plagiarism compared to those used by Halstead [1977] in measuring similarities

in source codes.

Another application of the attribute counting system was the system introduced

by Faidhi and Robinson [1987] for finding similarities in student-generated programs.

Their system employed the counts of control flow structures in a program. In the set of

metrics employed by them, they argued that it was difficult for a novice programmer to

alter a program. They argued their method was more effective in detecting plagiarism

than the other plagiarism detection systems, because their system was less prone to

false results generated (false positives) due to some hidden measures employed by the

set of metrics used by their system. It is important to note that if two programs have

the same number of variables used, counts of loops, counts of methods and counts of

conditional statements might be marked as suspicious programs if an attribute count-

ing system were used for finding similarities. Obviously, this might not clearly indicate

that the two programs are similar. It is worth further inspection into the programs. Al-

though attribute counting systems are effective, they do not consider the structure of a

program when finding similarities in programs. Hence, attribute counting systems are

limited in detecting plagiarism in source codes [Burrows et al., 2007]. Another limita-

tion of the attribute counting system is that they are only effective in finding similarities

with shorter programs. It is difficult to find similarities in larger programs [Verco and

Wise, 1996].

In the next section, we will examine the structure counting system in measuring a

level of similarity in a program.

2.4.2 Structure Counting System

The structure counting system compares the representations of programs’ structures

[Ottenstein, 1976; Chen et al., 2004]. The representation can be a program’s string, data

flows, work flows and parse trees [Tresnawati et al., 2012]. The structure counting sys-

tem does not compare exact matches as in the case of the attribute counting system,

but checks for the similarity of a program’s token string for suspicious plagiarism. Bur-

rows et al. [2007] argued that in a structure counting system, comments, whitespaces,

and variable names are discarded because they are easily customisable. It only changes

the structure of programs and compares them for plagiarism. Recent detection systems

as indicated by Verco and Wise [1996] used the structure counting system in detecting

plagiarism in programs. Arwin and Tahaghoghi [2006] introduced a novel approach,
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XPlag, into structure counting systems to detecting plagiarism across programs writ-

ten in different programming languages. XPlag detects interlingual plagiarism, where

source code is copied from one programming language to another by using a compiler

suite to convert the programs. The reason for this, is because, programs have the same

structure, hence, it is easy to plagiarise a source code written and converted from one

programming language to another. Moreso, a code written in C, may be converted into

Java. Hence, their plagiarism detection system explores detecting programs converted

from one programming language to another to mask plagiarism. Another example of

a structure counting system is the Student Submissions Integrity Diagnosis (SSID) de-

veloped by Poon et al. [2012]. Their detection system ensured a three-step pipeline in

finding similarities in programs. The steps are the tokenisation of the program struc-

ture, pairwise similarities of the program pair and considering plagiarism clusters,

which use a similarity threshold to assign each submission to groups. Ganguly and

Jones [2014] extended the structure counting system by introducing an Information Re-

trieval (IR) approach. The information retrieval approach considers each document as

a pseudo-query and retrieves a list of programs in a decreasing order of their similarity

values. Other systems that apply the structure counting system approaches are Mea-

sure of Software Similarity (MOSS), Software Similarity Tester (SIM), JPlag, Plague, and

Yet Another Plague (YAP). MOSS is considered in depth in the following section and is

used as the back-end to generate pairwise similarity scores of programs.

2.5 Plagiarism Detection using MOSS

Aiken [1994] presented MOSS (Measure of Software Similarity) as an automated system

for determining the similarity of programs. Presently, the main contribution of MOSS

has been in detecting plagiarism in source codes. Since its introduction in 1994, MOSS

has been very effective in detecting plagiarism for educators around the world. MOSS

generates fingerprints for different aspects of a document. The MOSS similarity output

is the number of matching fingerprints in pairs of programs. Additionally, MOSS sorts

these results and shows the highest percentage matches to the user. MOSS supports C,

C++, Python, Visual Basic, Javascript, FORTRAN, ML, Haskell, Lisp, Scheme, Pascal,

Modula2, Ada, Perl, TCL, Matlab, VHDL, Verilog, Spice, MIPS assembly, x86 assembly

and HCL2.

MOSS is a free, online service [Aiken, 1994] that performs a pairwise comparison on

a large collection of student submissions, assigns each pair a percentage, and the per-

centage indicates a measure of similarity between two or more student-generated pro-

grams. MOSS compares programs by dividing programs into a certain length, k-grams,
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where each k-gram is hashed and MOSS selects the hash values as the fingerprint of the

program [Schleimer et al., 2003]. Two programs’ similarity is determined by the num-

ber of fingerprints shared by the program. In other words, the more fingerprints they

share, the more similar the programs are.

Before programs are converted into hashes, MOSS pre-processes source code files,

calculates a numeric fingerprint for each file, and then performs the longest common

sequence search on the two fingerprints [Schleimer et al., 2003]. At the preprocessing

stage, MOSS replaces all function and variable names with a single token, and removes

all comments and whitespace from the source code. Bowyer and Hall [1999] gave a

succinct explanation on the usage of MOSS in checking for similarities in programs. To

use MOSS, it would require a user to send an email to moss@moss.stanford.edu. A mail

sent to this address would result in a reply email which contains a perl script, which

can be downloaded into the instructor’s computer.

Assignments to be submitted to MOSS can be in a subdirectory or a directory from

which the MOSS script is to be executed. An instructor can also upload an instructor-

supplied template alongside the assignments to be checked for plagiarism. Hence, when

the instructor-supplied code is supplied, lines of codes that also appear in the students’

programs, are not counted as plagiarism. Hage et al. [2010] explained that the instructor-

supplied code improves the result by eliminating a number of false positives, but this is

not usually necessary to include when checking programs for plagiarism. The instructor-

supplied code might be a partial solution, a code snippet or a program outline that the

students are expected to adhere to. After sending the programs to MOSS, the result is

available as a web page. The report shows the pairwise similarity of each of the pro-

gram pairs. Figure 2.2 shows an example of a MOSS results page for some program

pairs. Bowyer and Hall [1999] added that to view the plagiarism report, an instructor

needs to click the link displayed in the report. Assessing the link, shows the section at

which the two programs appear similar. Figure 2.3 shows the side-by-side comparison

of the similarity report.

In the result shown in Figure 2.3, we can clearly see that MOSS ignores a program’s

comments and variable declaration. This is seen between line number 8 - 199 in the

first program and 9 - 200 in the second program, shown in red. The colour in both

programs shows the sections at which the two students plagiarised each other. We

observed that MOSS reported a higher similarity value of 90 for both programs, which

is an indication that the two programs are similar. Hence, the two students’ programs in

Figure 2.3 were plagiarised. MOSS uses the winnowing algorithm to measure similarities

in programs [Schleimer et al., 2003].
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FIGURE 2.2: A pairwise similarity of the programs

We will examine the winnowing algorithm in the next section to better understand

how MOSS uses the algorithm to check similarities in programs.

2.6 Algorithms used in Plagiarism Detection

In this section, we look at some of the algorithms used in plagiarism detection and

understand how they perform their operations.

2.6.1 The Winnowing Algorithm

The winnowing algorithm is one of the similarity matching algorithms used for iden-

tifying similar documents [Schleimer et al., 2003]. Sorokina et al. [2006] identified the

winnowing algorithm as an instance of the fingerprinting algorithm used for finding

duplicates of smaller chunks of a document in a larger document collection. MOSS em-

ploys the winnowing algorithm concepts for measuring similarities in programs [Chen

et al., 2004; Smith and Horwitz, 2009; Al Jarrah et al., 2011; Djuric and Gasevic, 2012].

The winnowing algorithm identifies similarities in programs by dividing them into

k-grams, converting the k-grams into hashes, selecting subsets of the hashes as finger-

prints and comparing the fingerprints as the similarities between two documents. A

k-gram is the simplest approach used by fingerprinting algorithms to identify similari-

ties [Wolpers et al., 2010]. Ohmann [2013] explained that the idea of using k-grams is to
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create a list of all sub-elements that appear in a particular document. Hence, a k-gram

is a contiguous substring of length k, generated by a string of length N in a program,

where N is the number of characters and k is the contiguous substring, N-(k-1). Figure

2.4 illustrates the k-gram generation process, where N = 22, K = 5. Hence, N-(k-1) = 18.

for (int i = 0; i <10; i++){}
(a) A program statement

for(inti=0;i<10;i++){}
(b) The irrelevant features removed

for(i, or(in, r(int, (inti, inti=, nti=0, ti=0;, i=0;i,
=0;i<, 0;i<1, ;i<10, i<10;, <10;i, 10;i+, 0;i++, ;i++),
i++){, ++){}

(c) The unique 18-grams generated.

FIGURE 2.4: The k-gram generation process [Ohmann, 2013]

The winnowing algorithm is used for source code plagiarism in order to select fin-

gerprints from hashes of k-grams of programs and to make a comparison of the finger-

prints of each program for measuring similarities [Marinescu et al., 2013]. Purwitasari

et al. [2011] gave a succinct explanation to the calculation of the winnowing algorithm

by creating a hash value of each ASCII character using the rolling hash equation. By

comparing the fingerprint values of each document; the window size, basis and k-gram

values were being experimented to indicate source code plagiarism. Huston [2008] em-

phasised that the main purpose of using the hashing technique in the winnowing algo-

rithm is that it usually converts k-grams which are represented as strings, into numbers

for easy comparison.

The winnowing algorithm is insensitive to whitespaces (ignores spaces in a pro-

gram), discards unnecessary noise (suppresses the appearance of common keywords,

like ”print”) and is independent of the position (re-ordering part of a program portion)

of a document [Schleimer et al., 2003; Zdziarski et al., 2006]. The steps in the winnow-

ing algorithm are shown in Figure 2.5. As we move along the stages of the winnowing

algorithm, we are able to generate the similarity value of each of the fingerprint of the

documents. The similarity of each fingerprint gives us an idea of plagiarism in a set

of documents. Using the winnowing algorithm on each level of source code modifica-

tions as shown in Figure 2.1 would provide a more interesting approach. From Level

1 - Level 3, we may not apply the winnowing algorithm to identify similarities in pro-

grams. Since, comments, keywords and the position of variables are not essential in

identifying similarities, we may choose to ignore the use of the winnowing algorithm.

On the other hand, if comments in a program are the same, then it probably indicates
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Stage 3:
Sequences of the hash of the
K-grams.

Stage 4:
Fingerprints selection of the
sets of hashes.

Stage 1:
Whitespaces and irrelevant fea-
tures are removed.

Stage 2:
Create a K-grams of the pro-
gram sequences.

Stage 5:
Comparison of the fingerprints
for similarities.

Learner A prog

Learner B prog

FIGURE 2.5: Steps in the Winnowing Algorithm [Schleimer et al., 2003]

copying. Level 4 - Level 6 would provide a better usage of the winnowing algorithm

to identify similarities.

2.6.2 Levenshtein Distance

The Levenshtein distance also known as edit distance provides a similarity measure be-

tween two strings [Ristad and Yianilos, 1998; Bilenko and Mooney, 2003]. The algo-

rithm was first considered by Vladimir Levenshtein to measure the distance between

strings in a larger document collection [Biswas and Paul, 2010]. Plagiarism detection

using the Levenshtein distance has been feasible with texts, but is less plausible in the

application of the algorithm to source code plagiarism due to comparison issues. This

is as a result of whitespaces, characters or strings in programs, and the presence of dif-

ferent variable names that exist in source codes to be able to match similarities [Siregar,

2015].

Su et al. [2008] highlighted that a minimum number of operations such as insertion,

deletion and substitution occur when applying the Levenshtein distance algorithm to

transform one string into another string. To calculate the edit distance between two

strings ”Universe” and ”University”, the edit distance would be 3 as shown in Table

2.1. We would have to substitute the last e for i, add t and add y. The steps of the

Levenshtein algorithm would apply three operations (insertion, deletion and substitu-

tion) when transforming the first string into the other string. Applying the Levenshtein

distance algorithm to the modification steps highlighted in Figure 2.1 is not convincing

enough to detect plagiarism, because its operation (insertion, deletion and substitution)

can be easily altered by even an inexperienced programmer to deceive an instructor.
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TABLE 2.1: Levenshtein Distance between two Strings (Universe and University)

U n i v e r s i t y
0 1 2 3 4 5 6 7 8 9 10

U 1 0 1 2 3 4 5 6 7 8 9
n 2 1 0 1 2 3 4 5 6 7 8
i 3 2 1 0 1 2 3 4 5 6 7
v 4 3 2 1 0 1 2 3 4 5 6
e 5 4 3 2 1 0 1 2 3 4 5
r 6 5 4 3 2 1 0 1 2 3 4
s 7 6 5 4 3 2 1 0 1 2 3
e 8 7 6 5 4 3 2 1 1 2 3

A similarity value for measuring the similarity of two strings holds if the following

conditions apply [Siregar, 2015]:

1. The similarity value for entirely two different strings should be 0 : This condition holds

if the two strings are completely different.

2. The similarity value for identical strings should be 1: This condition holds if the two

strings are completely identical.

3. The similarity value for two strings should be between 0 and 1: This condition holds

for any similarity value for two strings.

2.7 Graph-based Plagiarism Detection

Over the years, a number of graph-based plagiarism detection tools have been devel-

oped to address the issues of source code plagiarism. In the next sections, we describe

the contributions of these tools. The drawbacks posed by these tools are also compared

to the plagiarism detection system designed in this work.

2.7.1 Program Dependency Graph

Ferrante et al. [1987] introduced the Program Dependency Graph (PDG), a directed graph,

that provides a unifying framework for program optimisation. Horwitz and Reps

[1992] defined the PDG for a program as a directed graph, whose vertices are connected

by several sets of edges. Krinke [2001] proposed the use of the PDG approach in identi-

fying similarities in programs. The approach considers the syntactic structures and data

flows within programs to measure plagiarism. In PDGs, basic statements such as proce-

dure calls, variable declarations and assignments, are represented by program vertices
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[Liu et al., 2006]. The vertices represent program statements and the control predicates

that occur in a program. The directed edges represent the dependencies given by the

data flow in the program.

Komondoor and Horwitz [2001] proposed the use of PDGs and program slicing to

identify similarities in programs. Although the approach was successful in finding

similarities in programs in which statements were reordered and the programs inter-

twined to deceive an instructor, the running time was considerable. For example, it

took 3 hours to analyse 250 programs, which is much slower compared to the plagia-

rism detection tool chosen for this work. Another PDG tool by Krinke [2001] suffered

the same problems. Figure 2.6a and 2.6b represent the program and its dependency

graph.

1 public class Testloop {
2 public static void main(String[] args) {
3 int value = 1;
4 while (value < 11) {
5 System.out.println(value);
6 value++;
7 }
8 }
9 }

(A) A sample program
(B) A program dependency graph of the pro-

gram

FIGURE 2.6: An example of a program with its program dependency graph. The arrows show
the control information between the statements of the program and the dotted lines represent

the flow of information in the program.

2.7.2 Control Flow Graph

A control flow graph, CFG1, is a directed graph, whose nodes are the basic blocks of a pro-

gram represented by two additional nodes, Entry and Exit [Cytron et al., 1991]. Further-

more, an edge connects the basic statements of the program from the Entry to the Exit.

CFG has been successfully applied to data mining and artificial intelligence approaches

to analyse smartphone malware samples and categorise them into families based on

code structures presented by CFG [Jiang and Tan, 2005; Cesare and Xiang, 2010; Grace

et al., 2012; Suarez-Tangil et al., 2014]. Their approaches ensure the investigation of

similarities between malware samples. Chae et al. [2013] proposed a plagiarism de-

tection system using an Application programming interface (API) labelled CFG (A-CFG).

The A-CFG was used to abstract the functionality of a program which hardly changes

1Control Flow Graph



Chapter 2. Background and Related Work 30

1 int main( )
2 {
3 while (C1)
4 {
5 S1;
6 if(C2)
7 S2;
8 S3;
9 }

10 S4;
11 }
12

(A) A sample program (B) Control flow graph of the program

FIGURE 2.7: An example of a Java program with its control flow graph. C1 and C2 are the
predicate nodes which represent boolean expressions. The regular statements are represented

by S1 to S4.

by semantic-preserving transformation attacks in programs. Another CFG approach

for detecting source code plagiarism was proposed by Chan and Collberg [2014]. The

method considered CFGs of known edit distances to measure plagiarism in programs.

Figure 2.7a and Figure 2.7b illustrate a control flow graph with its dependencies.

A number of flaws were reported in the system developed by Chan and Collberg

[2014]. First, CFGs are arbitrarily expensive and complex to implement. The nodes are

usually bounded with two or more nodes (represented by exceptions) which consist of

exception handling and lots of goto statements. The CFG relies heavily on basic block

contents (instructions) to compute the similarity score between programs. A slight

change in a program’s basic block would manipulate CFG easily. This is a limitation

CFG possesses over our plagiarism detection system. Our plagiarism detection system

is not easily manipulated because it considers the structural information of programs,

rather than just a number of basic statements.

2.7.3 Data Flow Graph

Another graph considered in detecting plagiarism in source code is the Data Flow Graph

(DFG). Li et al. [2016] proposed the use of the DFG in measuring similarities in pro-

grams. The authors highlighted that DFGs are frequently used in program analysis

and compiler organisation as they capture the flow of data. Zhang et al. [2012] asserted

that a DFG is similar to a CFG, since it represents the data flows between the basic blocks

in a CFG.

Figure 2.8a and 2.8b shows the program and its data flow diagram. Lutz and Diehl

[2014] developed an interactive model for comparing plagiarism using the DFG. The

model leverages visual dataflow to allow users to implement comparison strategies
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1 int fact (int x ) {
2 int y = 1;
3 while (x > 0){
4 y *= x--;
5 }
6 return y;
7 }
8
9 }

10

(A) A sample java program (B) Data flow diagram of the program

FIGURE 2.8: An example of a Java program with its data flow diagram. The variables used
in this example are x and y. The program calculates a number factorial. The instruction in
the program are represented by the rectangle. The line around the instructions shows the data

flows.

for source code plagiarism. Beyond that, the model reported a number of flaws. A

basic block splitting can disrupt the plagiarism result. That is, a slight modification

of program statements can affect the similarity score disproportionately. It would also

require a lot of zooming and panning to investigate plagiarism, especially for large

program analysis. The DFD possesses a significant flaw compared to the plagiarism

detection tool chosen for this work.

2.7.4 Abstract Syntax Tree

Kontogiannis et al. [1996] proposed an Abstract Syntax Tree (AST) representation of a

program for measuring similarities in programs. An AST representation was used be-

cause, it maintains all necessary information (control or data flow) about programs.

Mayrand et al. [1996] defined an AST as a tree-based representation of tokens con-

tained in programs. The AST is an exact replication of a program. Baxter et al. [1998]

proposed a clone detection approach using the AST for the detection of exact or near

miss clones for arbitrary fragments of programs. Figure 2.9a and 2.9b show an example

of a program and its AST used for the detection of clones.

Although the approach used the AST for detecting similarities in the clones and also

considered program structures in its metrics, clones can be easily factored out of the

original source using a number of conventional methods to obfuscate plagiarism. Their
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1 void y( )
2 {
3 a = 10;
4 b = 30;
5 c = 20;
6 e = 15;
7 d = 16;
8 }
9

(A) A program statement (B) An Abstract syntax tree of the program

FIGURE 2.9: An example of a program statements with its abstract syntax tree. The variables
used in this example are represented by a, b, c, d and e. [Baxter et al., 1998]

method was straightforward, easy to implement for large scale program comprehen-

sion and abstraction, it however suffers a great deal of false positives because of the

usage of the tree method in detecting similar clones.

2.7.5 Dotplots and Duploc

Dotplots were proposed by Church and Helfman [1993] for visualising similar codes

by converting the source codes into lines. For visualising the output of the program,

the output can be represented in scatter plots which show the number of times each line

occurs in matching sections of code. The technique allows interactive manipulation

of the scatter plots to compare programs. Grozea et al. [2009] developed the encoplot,

shown in Figure 2.10, which is an alternative to dotplot and compares similarities in

programs. The encoplot uses a linear time sequence matching technique. Another ap-

proach considered in this section is the Duploc. Ducasse et al. [1999] introduced Duploc

which uses the scatter plots visualisation for finding similarities in programs. Dotplots

and Duploc use the scatter plots visualisations for finding similarities in programs. One

flaw noticed in both approaches is that they can only detect identical source code pairs,

and are intolerant to renaming of program statements. This is a substantial flaw which

makes these systems vulnerable to even low level plagiarism obfuscation techniques.
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FIGURE 2.10: An encoplot used to compare similarities in programs [Grozea et al.,
2009].

2.7.6 Call Graph

Gascon et al. [2013] proposed the idea of using call graphs in detecting malware in the

Android operating system. The technique was based on using the structural features

of call graphs to detect malware. For plagiarism detection, Choi et al. [2007] applied call

graphs to detect software clones, identify software ownership and similarity of binary

executables. The credibility of call graphs was tested with other techniques; functions

and API calls. The result revealed a success when investigating the techniques for sim-

ilarities. Kammer et al. [2011] extended the use of call graphs in detecting plagiarism in

Haskell programs. As described by Kammer et al. [2011], a call graph is a directed, labelled

graph that can be cyclic if the program contains self-recursive functions or call circles of

two or more functions. In a call graph, each edge represents a function calling another

function. Figure 2.11a and Figure 2.11b show an example of an Haskell program and

its call graph.

Song et al. [2015] proposed a novel approach of using call graphs and parse trees to find

similarities in programs written in Java, C, C++ and Python. The approach considered

the structural representation of programs using parse trees and the dependencies among

function calls within programs, represented as call graphs. Although the approaches

detected plagiarism easily, the structure is altered easily with a number of insertions

and deletions.
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1 module Main where
2 main = sum [1..4]
3 sum = foldr (+) 0
4 multL = foldr (*) 1
5 maxL [a] = a
6 maxL (a:as) = max a (maxL as)
7

(A) A sample Haskell program (B) Call graph of the program

FIGURE 2.11: An example of an Haskell program and its call graph. The sum and foldr func-
tions are part of the haskell prelude functions. The edges are directed to each of the functions

[Kammer et al., 2011]

2.8 Classification Scheme

Classification of program pairs is important to adjudicate actual and coincidental sim-

ilarities in programs. This is a common machine learning problem. In this section, we

take an holistic view on the confusion matrix concept to measure the performance of the

plagiarism detection system. In this work, we are faced with the challenging issue of

classifying which cases of plagiarism are true or false.

2.8.1 Confusion Matrix Concept

A Confusion Matrix contains information about predicted and actual cases carried out

by a classification system [Provost et al., 1998]. The confusion matrix concept has a size

n x n, for a classifier for representing actual (columns) and predicted (rows) classifica-

tion labels, where n is the number of the different classes. In the confusion matrix for a

classifier, there are four metrics used to classify cases. The metrics are True positive, True

Negative, False Negative and False Positive.

TABLE 2.2: The confusion matrix for a classifier model [Hamel, 2009]

Observed cases
True False

Predicted cases True
True Positive

(TP)
False Positive

(FN)

False
False Negative

(FN)
True Negative

(FN)

Table 2.2 shows the confusion matrix of a classifier. In Table 2.2, the metrics that

appear along the diagonal of the Table are the correct classifications. The metrics are
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True Positive and True Negative. The metrics with incorrect or erroneous classification is

False Positive and False Negative. For a model with 100% accuracy, the False positive and

False negative would both be equal to zero.

Each metric is now described in the context of plagiarism detection.

• True Positive: The program pair was classified as plagiarised and was actually an

instance of plagiarism.

• True Negative: The program pair was classified as unplagiarised and was actually

not an instance of plagiarism.

• False Negative: The program pair was classified as unplagiarised and was actually

an instance of plagiarism.

• False Positive: The program pair was classified as plagiarised and was actually not

an instance of plagiarism.

Given the above metrics, a number of performance evaluation metrics can be derived

for a classification system. The performance metrics are Precision, Recall and Accuracy

as defined by Powers [2011], are presented:

• Precision comprises the proportion of predicted positive cases that are classified cor-

rectly (true positives).

Precision
(
P
)
=

TP

TP + FP
(2.1)

• Recall comprises the proportion of positive cases in the classification system that

were identified.

Recall
(
R
)
=

TP

TP + FN
(2.2)

• Accuracy comprises the total number of predicted cases that were identified cor-

rectly.

Accuracy
(
ACC

)
=

TP + TN

TP + TN + FP + FN
(2.3)

We can see from the metrics that they evaluate a system performance and are impor-

tant in evaluating a plagiarism detection system. Furthermore, a confusion matrix can

be used to construct a Precision-Recall (PR) curve [Davis and Goadrich, 2006]. In a PR

curve, the recall is plotted on the x-axis and the Precision is plotted on the y-axis of the PR

curve graph. The PR curve is an evaluation tool used for binary classification that al-

lows the visualisation of the performance of a classification system at a range of thresh-

olds and is commonly used in the analysis of the classifier [Boyd et al., 2013]. Besides
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the visual representation, it is generally used as a general measure of performance, irre-

spective of any range of thresholds [Moussiades and Vakali, 2005; Goadrich et al., 2006;

Liu and Shriberg, 2007; Awad and Elseuofi, 2011; Soliman and Girdzijauskas, 2016].

Figure 2.12 represents a PR curve used to compare the performance of two methods.

From the graph in Figure 2.12, the thresholds are represented on the x-axis and y-axis

of the graph. When a classifier uses a threshold, the PR Curve shows the trade-off be-

tween false negatives and false positives as one move along the PR curve. A typical

example is JPlag [Prechelt et al., 2002]. If the threshold is set to 0, then everything the

JPlag system identifies is classified as plagiarism. Therefore, this yields 0 False nega-

tives because, there are no negatives predicted, hence, more false positive exists. As

the threshold increases, the false negatives increases than the false positives that exists.

The PR curve helps to illustrate this trade-off.

FIGURE 2.12: An example of a PR curve used in evaluating the performance of JPlag
over data set of Java submissions [Prechelt et al., 2002].

A threshold is needed when accessing the classifier’s performance using the metrics

provided in the confusion matrix [Manel et al., 2001]. It is a key component to transform

the data into performance components. Hence, this transformation of the data will be

useful to evaluate our model.

2.9 Conclusion

In this chapter, we have presented the background related to this research. The idea

behind source code plagiarism was presented. A number of techniques that students

use to transform and obfuscate source code to avoid being caught were also discussed
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along with some reasons why students plagiarise their assignments. The reasons gen-

erally include poor knowledge of a programming language, academic pressure, poor time man-

agement and self-plagiarism. Other reasons were highlighted regarding the cause of stu-

dents plagiarising their assignments; a lack of knowledge of a programming language,

and largely as a last resort when failing a class, are contributory factors as to why

students plagiarise. The plagiarism detection methods used to uncover plagiarism in

source code were presented. A number of algorithms the plagiarism detection systems

considered for detecting plagiarism were presented to unravel plagiarism in students

source code assignments. The algorithms considered are the Levenshtein Distance and

the Winnowing algorithm. A number of graph-based plagiarism detection tools were

discussed: Program Dependency Graph, Control Flow Graph, Abstract Syntax Tree, Data

Flow Graph, Call Graph, Dotplots and Duploc. These are all methods of direct plagiarism

detection based on the source code itself. This work differs from the methods presented

in that, it provides a graph-based analysis of the generated similarity scores. None of

the methods surveyed provided this information or looked at the structure of similar-

ities across the class. These methods rather considered pairwise comparisons of the

submitted codes.

Lastly, the classification scheme metrics were introduced to better evaluate our model

and the visualisation was presented using the Precision-Recall curve. The next chapter

presents graph theory concept definitions and metrics applied in the area of source

code plagiarism.



Chapter 3

Graph Theory Concepts

3.1 Introduction

In the previous chapter, background relating to plagiarism detection was discussed.

This chapter is focused on graph theory concepts and relates them to the idea of a pla-

giarism graph. Section 3.2 introduces the concept of graphs and their application to

plagiarism analysis. Section 3.3 is focused on the size and order of graphs. Section

3.4 considers adjacent and incident vertices. Section 3.5 presents the concept of neigh-

bourhoods and vertex degree. Section 3.6 discusses connected components. Section 3.7

is focused on articulation points. Section 3.8 discusses the union and intersection of

graphs. Section 3.9 concludes the chapter.

3.2 Concept of Graphs

Graphs provide a convenient way of representing many real-world situations [Bondy

and Murty, 1976]. In this section, the result generated by MOSS is expressed as a graph

to visually and accurately represent program similarity.

Definition 3.1. A graph is a mathematical structure which comprises a finite set of

vertices V, and a finite set of edges E connecting the vertices [Gross and Yellen, 2005].

Examples of generic graphs are presented in Figure 3.1.

Graphs are undirected and directed. A graph is said to be an undirected graph, if there

is no direction in the edges that link the vertices in the graph. Figure 3.1a is an example

of an undirected graph, the set of vertices V or nodes and the set of edges E connecting the

vertices are given as:

38
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V = {A,B,C,D,E, F,G,H}
E = {{A,B}, {A,C}, {A,E}, {B,F}, {C,D}, {C,E}, {C,F}, {C,G}, {D,E}, {D,G}, {F, F}, {G,H}}

A graph is said to be a directed graph if there exists direction in the edges that link the

vertices in the graph. Figure 3.1b is an example of a directed graph, the set of vertices V

or nodes and the set of edges E connecting the vertices is given as:

V = {A,B,C,D,E, F,G,H, I}
E = {{A,B}, {A, I}, {B,E}, {C,D}, {C,G}, {D,F}, {E,H}, {F,E}, {F,G}, {G,E}, {G, I}}

A

B

F

C

G

E

D

H

(A) An undirected graph

I

A

G

C

D
F

B

E

H

(B) A directed graph

FIGURE 3.1: Types of graphs

Graphs can also be weighted or unweighted. In weighted graphs, such as that shown

in Figure 3.2, each edge is assigned a numerical value. The meaning depends upon

the interpretation of the graph. For example, if the graph represented roads and cities,

weighted edges may indicate the travel time, distance, or cost of traversing the road.
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81

99

15

33

18

FIGURE 3.2: A weighted graph
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In an unweighted graph, such as that presented in Figure 3.3, there is no numerical

value assigned to an edge. For example, if the graph represented a social network

where nodes represent individuals, the unweighted edges between them would indicate

if they are friends or not.

A

B

C

D

F

E

H

J

L

M

K

G

I

Z

P

SN

W

X

FIGURE 3.3: An unweighted graph

In this work, graphs are used as plagiarism graphs. A plagiarism graph is an undi-

rected, weighted graph, which represents the structure of plagiarism in the class. Sup-

pose that each node (A to Z) as depicted in Figure 3.2 represents a student submission.

An edge between the nodes indicates that the submissions are similar, while the nu-

merical weight of that edge indicates the level of similarity. For example, the level of

similarity between the “Student A” program and “Student E” program is 78. This rep-

resentation allows the intuitive visualisation of the structure of plagiarism in the class.

From the definition of graphs, many extensions to this basic definition exist from

which vertices of a graph and its edges have several attributes. Other concepts of graphs

and their application to source code plagiarism will be discussed holistically.

3.3 Size and Order

Definition 3.2. The size of a graph G, is defined as the number of vertices that exist in

the graph G. The order of a graph G, is defined as the number of edges that exist in the

graph G.

Mathematically, the size and order of a graph are given as:
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Size(G) = |V |
Order(G) = |E|

K

A

J

C

B

F

I

H

D

EG

FIGURE 3.4: An undirected graph: Size and Order

In the graph G shown in Figure 3.4, the number of vertices, denoted as |V | = 11, is the

size of the graph. The number of edges, denoted as |E| = 20, is the order of the graph.

In a plagiarism graph where the vertices correspond to the students’ programs and

edges correspond to the pairs of the copied programs above some similarity threshold,

we can infer that the number of students who participated in plagiarism is 11. Also, the

number of pairs of the copied students’ programs in the class is 20. We can establish

that a student program is similar to two or more students’ programs above the threshold.

In this section, the size and order of the graph have been used to establish relationships

between the students’ programs. In the next section, the adjacency and incident vertices

that exist in a graph are discussed.

3.4 Adjacency and Incidence

Definition 3.3. In a graph G, vertices are adjacent to each other if they share an edge.

A vertex, v, and an edge, e, are incident if one endpoint of e is v.

Mathematically, the adjacency and incidence of a graph are given as:

{v1,v2} are adjacent iff edges (v1, v2) ∈ E

e ∈ E is incident to a vertex v ∈ V iff v ∈ f (e)

From the graph G in Figure 3.5, the vertices, A and K are adjacent and the edge {B,E}
is incident to the vertex B and vertex E.
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K
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F
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FIGURE 3.5: An undirected graph: Adjacency and Incidence

In a plagiarism graph where the vertices correspond to the students’ programs and

edges correspond to the pairs of the copied students’ programs above some similar-

ity threshold, adjacency of the graph would indicate that the students’ programs are

similar above some similarity threshold and there is potential plagiarism. In addition,

incidence of the graph would indicate that the pairs of the students’ programs share a

relationship. In this section, the adjacency and incident vertices of a graph have been

presented. The next section discusses the neighbourhood and degree of a graph.

3.5 Neighbourhood and Degree

Definition 3.4. The neighbourhood of a vertex in a graph G is the set of vertices adjacent

to the vertex. The degree of a vertex in a graph is the number of incident edges or the

size of the neighbourhood of that vertex.

Mathematically, the neighbourhood and degree of a graph are given as:

Neighbourhood = {v ∈ V | edge(u,v) ∈ E}

degree = |Neighbourhood|

In the graph G presented in Figure 3.6, the neighbours of the vertex E are {F,D, J}.
The degree of the vertex E is 3. Table 3.1 shows the degree and neighbours of each

vertex in the graph illustrated in Figure 3.6.

In a plagiarism graph where the vertices correspond to the students’ programs and

edges correspond to the pairs of the copied students’ programs above some similarity
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FIGURE 3.6: An undirected graph: Neighbourhood and Degree

TABLE 3.1: Neighbours and Degree in the graph

Vertex Neighbours Degree
A B , J 2
B A , D 2
C D , H 2
D B , C , E 3
E D , F , J 3
F E , G , I 3
G F , H 2
H C , G 2
I F , J 2
J A , E , I 3

threshold, the neighbours of each program would indicate that the students are actually

copying each other. The degree would provide us with the total number of students’

programs that are similar to that specific program. The next section introduces con-

nected components in graphs.

3.6 Connected Components

Definition 3.5. For connected components in a graph, there is a path from one vertex to

every other vertex in the component.

Mathematically, the connected components of a graph are defined as:

C ⊆ V is a connected component if ∀ v ∈ C, ∀ w ∈ C, ∃ a path starting at v and ending

at w and all vertices in the path are in C.

In the graph presented in Figure 3.7, the connected components are {A,B,C,D} and

{F,G,H, I}
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FIGURE 3.7: An undirected graph: Connected Components

In a plagiarism graph, connected components will provide us with the groups of

students that are actually plagiarising each other. The next section introduces the artic-

ulation point in a graph.

3.7 Articulation Point

Definition 3.6. An articulation point in any plagiarism graph G is a set of vertices in

which, when a vertex in the graph is removed, it breaks the plagiarism graph into two

or more pieces (connected components). A graph without an articulation point is called

a biconnected graph.

Mathematically, the articulation points in a graph is given as:

A vertex v∈V is an articulation point of G if (G-v) has more connected components

than G. i.e. c(G-v) > c(G). Where c(G)= Number of connected components in G.

A
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D E

F

G

H

I

FIGURE 3.8: An undirected graph: Finding the articulation points

In the graph presented in Figure 3.8, to find the articulation points in the graph,

removing any of the vertices {D,E,G}, divides the graph. Removing the vertex E,

divides the graph into two biconnected graphs as depicted in Figure 3.9. If the set of

vertices, {D,E,G}, are removed from the graph, the articulation points of the graph

would be at C and I as presented in Figure 3.10.
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FIGURE 3.9: An undirected graph: Two biconnected graphs
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I

FIGURE 3.10: An undirected graph: Articulation points at C and I

In a plagiarism graph where the vertices correspond to the students’ programs and

edges correspond to the pairs of the copied students’ programs above some similarity

threshold, articulation points will provide us with students that are not connected but

are copying sections in a program.

3.8 Union and Intersection

Definition 3.7. The union of any three graphs is written asG1 = {V1,E1},G2 = {V2, E2}
and G3 = {V3, E3} which denotes a simple graph with the set of vertices {V1 ∪ V2 ∪ V3}
and the set of edges {E1∪E2∪E3}. For any three graphs, their union is {G1∪G2∪G3}.

Definition 3.8. The intersection of any three graphs written as G1 = {V1, E1}, G2 =

{V2, E2} and G3 = {V3, E3} denotes a simple graph with the set of vertices {V1∩V2∩V3}
and the set of edges {E1 ∩ E2 ∩ E3}. For any three graphs, the intersection between

them is {G1 ∩G2 ∩G3}.

Mathematically, the union and intersection of graphs is given as:

A graph G is said to be an intersection graph, if ∃ a subset of E = {E1, E2,...,En} with

a set of vertices {V1, V2,...,Vn} and a set of edges {Ei,Ej} for all i and j (i 6=j) with Ei∩Ej

6= ∅
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A graph G is said to be a union graph, if ∃ a subset of E = {E1, E2,...,En}with a set of

vertices {V1, V2,...,Vn} and a set of edges {Ei,Ej} for all i and j (i=j) with Ei∪Ej = ∅

A
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E

FIGURE 3.11: Graph G1: An undirected graph: Union and Intersection
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H

FIGURE 3.12: Graph G2: An undirected graph: Union and Intersection
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D
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H

FIGURE 3.13: Graph G3: An undirected graph: Union and Intersection
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To find the union of these graphs as presented in Figure 3.11, Figure 3.12 and Figure

3.13, we would make a combination of the three graphs and derive some relationships

amongst them.

The first graph, G1, with the set of vertices {A,B,C,D,E} and the set of edges are

{{A, B}, {B, C}, {B, E}, {C, D}, {C, E}, {D, E}}.

The second graph, G2, with the set of vertices {A,B, F,G,H} and the set of edges are

{{A, B}, {B, F}, {B, G}, {B, H}, {F, G}, {F, H}}.

The third graph, G3, with the set of vertices {A,B,D, F,H} and the set of edges are

{{A, B}, {A, D}, {B, D}, {B, F}, {B, H}, {D, H}}.

The union of the three graphs isG1∪G2∪G3 with the set of vertices {A,B,C,D,E, F,G,H}
and set of edges {{A, B}, {A, D}, {B, C}, {B, D}, {B, E}, {B, F}, {B, G}, {B, H}, {C, D},
{C, E}, {D, E}, {D, H}, {F, G}, {F, H}}.

To find the intersection in the graphs represented in Figure 3.11, Figure 3.12 and

Figure 3.13, we would make a combination of the three graphs and derive the relation-

ship between them. G1 ∩ G2 ∩ G3 is the intersection of the graph, we represent each

relationship as G1 ∩G2, G1 ∩G3 and G2 ∩G3.

The intersection of the two graphs, G1 ∩ G2, produces the vertex set {A,B} and the

edge set {A,B}. This shows that there is a relationship between the two graphs.

The intersection of the two graphs, G1 ∩ G3, produces a set of relationship between

the two graphs. The graph produces the vertex set {A,B,D} and the edge set {A,B}.

The intersection of the two graphs, G2 ∩ G3, produces the vertex set {A,B,H} and

the edge set {A, B}. This shows that there is a relationship between the two graphs.

The result of taking the union of multiple plagiarism graphs is a plagiarism graph

that indicates if two students have ever plagiarised each other over a number of as-

signments. For example, if “Student B” plagiarised “Student C” in the first assignment

and plagiarised “Student F” in the second assignment, then the union will have edges

connecting “Student B” with both of the other two students.

On the other hand, the intersection of plagiarism graphs over a number of assign-

ments indicates that the students have plagiarised each other in every assignment. This

is an extremely strong indication of plagiarism. For example, if “Student A” plagiarises

from “Student B” in the three assignments, then the students will be adjacent in the in-

tersection graph, and one can be confident that the similarities were not coincidental as

they occurred in every submission.
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3.9 Conclusion

In this chapter, we have presented the graph theory concepts and related them to the

analysis of source code plagiarism in a class. The definition of graphs was presented. A

number of graph metrics were provided. The definitions provided would be important

in this research, since this research is focused on using the idea of graphs to present

cases of plagiarism.

The next chapter introduces the questions for this research and the methods used to

carry the detection meticulously.



Chapter 4

Research Questions and Methods

4.1 Introduction

The previous chapters presented the background and related work in plagiarism de-

tection, and a number of graph definitions which are used to analyse the structure of

plagiarism within a class were discussed. The aim of this research is discussed in Sec-

tion 4.2. The questions for this research are formulated in Section 4.3. The methodology

for carrying out this research is outlined in Section 4.4. Section 4.5 concludes the chap-

ter.

4.2 Aims

This research aims to determine which cases of measured similarity might be plagia-

rism. In order to fulfil the aim of this research, we would have to carry out detec-

tion on the students’ programs, represent the measured programs in form of graphs,

and manually differentiate actual plagiarism from coincidental similarities. MOSS, dis-

cussed in the background of this work, Chapter 2, is to be implemented as a plugin,

integrated into graphs to check for plagiarism in source codes on a series of program-

ming languages taught at the University of the Witwatersrand, Johannesburg. Graphical

representation of source code similarities is very vital. This helps to identify the ac-

tual representation of corresponding nodes as discussed in Chapter 3, which is an area

yet to be explored in the area of source code plagiarism. Implementations should run

on the CSAM (Computer Science and Applied Mathematics) LMS1 of the University,

which must be easy to integrate and effortless to use.

1Learning Management System
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4.3 Research Questions

The following questions will be answered in this work to better understand the idea of

identifying cases of source code plagiarism.

1. At what threshold is it sufficient to indicate that a program has been plagiarised?

2. Does the graph-based approach highlight useful structural information to help instructors

understand detected program similarity?

3. Can we identify culprits/plagiarists across multiple assignments of the same course?

4.4 Methodology

Even though all of the tools discussed in the literature of this work have been effec-

tive in detecting plagiarism, it is understood that no detection system is fool-proof. The

methodology of this work was conducted and completed in a number of predefined

phases:

1. Pairwise program similarity check

2. Graph visualisation of programs

3. Manual classification of the result

At the pairwise program similarity check phase, a plugin for MOSS, which already ex-

isted but had some deprecated codes was used in this work. The MOSS plugin sends the

submissions to MOSS which extract programs into tokens, and generate a fingerprint

of the tokens as the similarity between programs. This was discussed in the literature

of this work, Chapter 2. The MOSS plugin aims to achieve the following:

• Detection of programs from a pool of programming assignments.

• Perform a pairwise comparison between two or more programs indicated by a similarity

value.

• Representation of the programs in histograms in order of precedence.

More details of this phase are provided in Chapter 5.



Chapter 4. Research Methodology 51

At the graph visualisation phase, the programs will be represented in the form of

graphs, and this is important to structurally analyse the copied programs. This as-

pect of the work was discussed in the introduction of the concept of graphs and their

application to plagiarism analysis, Chapter 3. Graphs can aid an instructor to grasp

the information that the detection conveys, although, the MOSS plugin represents a

number of similarities by means of pairwise comparison. With the aid of the graph, the

information conveyed by MOSS will be easily understood and will save an instructor

extra time in identifying actual plagiarism. At the graph visualisation phase, the aim is

to achieve the following:

• Representation of the information generated by MOSS in a compact way to convey the

information.

• Assist an instructor in effective decision-making.

• Ensure a comparative analysis of the students programs.

This phase is important in this work because our aim is to make it easier for an instruc-

tor to carry out the detection of source codes meticulously. More explanation of this

phase is provided in Chapter 6.

The manual classification of the result phase is important to make an accurate decision

of the detection and visualisation phases. The classification will be done at the ground

truth analysis phase. Our aim at this phase is to differentiate actual plagiarism from co-

incidental cases and to evaluate the plagiarism detection system. More details of this phase

are discussed in Chapter 7.

4.5 Conclusion

In this chapter, the aim of this research was discussed. The questions that will be an-

swered in this research were outlined and the methods for carrying out this research

were introduced. The idea of using the MOSS plagiarism detection system to check

for similarities in programs, was introduced. While this approach offered numerous

advantages, the idea of representing each source code pair as graphs, was introduced.

The graph visualisation will make it possible to trace section of the copied programs.

Finally, the report of the detection system will be classified in a number of groups with

some specified characteristics. This is important to differentiate actual plagiarism from

coincidental cases.
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Chapter 5 is concerned with the design and implementation of the plagiarism detec-

tion system.



Chapter 5

Design and Implementation

5.1 Introduction

The previous chapter outlines the aims, questions to be answered and methods of this

research. This chapter is focused on the design and implementation of the plagiarism

detection system. Section 5.2 introduces the overview of the plagiarism detection sys-

tem. Section 5.3 is focused on the development of the MOSS Plugin. Section 5.4 is

focused on the graph visualisation tool. Section 5.5 discusses the inclusion of these

tools into the VLE1. Section 5.6 concludes the chapter.

5.2 System Overview

A plugin was developed which uses MOSS [Aiken, 1994] to check for similarities in

programs and expose techniques students use to obfuscate plagiarism in programs.

The plugin adapted several features of the native MOSS system for checking similari-

ties in programs. The features of the plugin include; authenticating a user, uploading

different program files with an instructor-supplied code to ignore lines of code that may

appear suspicious, and the pairwise comparison of the source code pairs. A portion of

the implementation of the MOSS plugin was adapted from the work of Le Nguyen et al.

[2013]. The following additions/changes were made to the MOSS plugin developed by

Le Nguyen et al. [2013]:

1. Most of the PHP library functions were deprecated: The MOSS plugin by Le Nguyen

et al. [2013] was designed to work on the old Moodle’s VLE which only supported

1Virtual Learning Environment
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Algorithm 1 : Increase size of MOSS

1: Input: A set of student programming assignments
2: Output: The plagiarism report of the student programs
3: while the user clicks the button to scan for plagiarism do
4: generate the plagiarism report and display similarities
5: from MOSS according to n-size
6: if n-size ≤ 5000 then
7: generate the plagiarism report and show all matching
8: similarities within the similar files up to 5000
9: else

10: display the plagiarism report and show the matched
11: similarity up to the default MOSS size of 250
12: end if
13: end while

older PHP library functions. To work for the current version of Moodle, the PHP

library functions were replaced to support the current version of Moodle. For

example, $HTTP COOKIES VAR was replaced by $ COOKIES.

2. The plugin performed better for a small class size: The work of Le Nguyen et al.

[2013] performed better for a small class size but not suitable for a larger class

size. The MOSS plugin was optimised to work better for a large class size. The

pseudocode of this changes is included in Algorithm 1 displaying changes made

to the plugin.

3. The graph code was added to the MOSS plugin to visually annotate the program

similarities: The Graphviz code was added to the MOSS plugin to visually repre-

sent the program similarities. More details about the Graphviz code is presented

in Section 5.4.

The implemented plagiarism detection system consists of two parts as shown in Fig-

ure 5.1; the development of a MOSS plugin to check for plagiarised pairs of programs,

and a graph tool to visually annotate the pairs of the copied programs. Graph visuali-

sation is vital, this shows the structural information of the source code plagiarism.

The next sections explain the development of the MOSS plugin, the graph visualisa-

tion, Graphviz tool, to annotate the student programs, and the inclusion of these tools

into the VLE.
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FIGURE 5.1: The plagiarism detection engine

5.3 The Development of a MOSS Plugin

To expose copied programs, a MOSS plugin already existed for the Moodle VLE, de-

veloped by Le Nguyen et al. [2013], and was added into the VLE. The plugin was de-

veloped based on Moodle’s plagiarism Application programming interface (API) by the

Moodle Developer, Dan Marsden, for developing new plagiarism plugin instances. The

Moodle plagiarism API is a core set of functions that Moodle uses to send users’ gener-

ated contents to external plagiarism detection systems. The plugin employed features

of the native MOSS system which requires an instructor to be authenticated before

creating and submitting the source code assignments for plagiarism, as presented in

Figure 5.1. At first instance of using the plugin, it would require an instructor to obtain

a MOSS user ID by sending a request to moss@moss.stanford.edu. In sending an email to

the MOSS server, the body of the message must contain the following:

registeruser

mail username@domain

The username@domain is your email address. An auto-generated response is sent from

the MOSS server in a Perl script, which contains the MOSS user ID. The MOSS user ID

from MOSS authenticates a user whenever a request for a similarity measure for source

codes is required from the MOSS server. The authentication activity was embedded in

the MOSS plugin, presented in Figure 5.2. Before using the MOSS plugin, a user can

copy the entire text generated from the MOSS server or copy the MOSS user ID gen-

erated from the Perl script into the textbox as shown in Figure 5.2. The MOSS user ID
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is then available to all assignments in the course or even site wide, depending on the

choice of the instructor. After authentication, a plagiarism instance is triggered under

FIGURE 5.2: The authentication stage of MOSS

the assignment module set by an instructor. The assignment module allows instructors

to collect assignments from students, check for plagiarism in their assignments and pro-

vide feedback, as well as for grading purposes. Recent versions of Moodle presented in

Figure 5.3 ensured two file submission types; the online text type (copy/pasting source

codes) and the file submissions type (uploading source code attachments). Students are

expected to upload their assignments for plagiarism via the assignment module.

Event handlers are triggered and processed by the plagiarism plugin based on the

Moodle API, which contains the details about the student, the module (course) and the

submissions that have been carried out. The report of the plagiarism detection is sent

to the instructor and a URL for displaying the report is available. One key feature of the

MOSS plugin is the similarity rate distribution. The MOSS plugin presents connected

pairs of programs and groups them according to a range of similarity thresholds. The

similarity rate distribution feature, presented in Figure 5.4 would assist in identifying

connected students’ programs which fall within a certain threshold, and relationships

can be easily established from that distribution.
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FIGURE 5.3: The assignment activity module of Moodle

FIGURE 5.4: The similarity rate distribution of the MOSS plugin
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5.4 The Graph Visualisation, Graphviz tool

Another tool that was explored during the implementation was the Graphviz tool, de-

veloped at the AT&T Research Labs. The Graphviz tool was added to the MOSS plugin

developed by Le Nguyen et al. [2013] to visually annotate program similarities. The

Graphviz tool is an open source collection of graph drawing tools, specified in the DOT

language for drawing graphs (objects are composed of vertices and edges) [Conte et al.,

2003]. The graph visualisation provides a visual representation of structural informa-

tion such as networks, diagrams and abstract graphs. It has wider application in soft-

ware engineering, databases, distances between locations, bioinformatics and visual

systems. The DOT language is a simple text language from which the graph tool can

produce diagrams in useful formats such as images and SVG2 formats for web pages, in

PDF or Postscripts for inclusion into documents, or presenting in an interactive graph

browser.

Graphviz provides several features for presenting graphs. The features include op-

tions for colours, hyper links, fonts, pen width, label, line width and custom shapes. To

render graphs in our implementation, the data file which contains the report generated

from MOSS was parsed and the graph was generated. See Algorithm 2 on the imple-

mentation of the graph visualisation tool. The generated graphs are stored in a local

cache as DOT files, which are easily downloadable to derive useful information. The

Graphviz image is generated and displayed within the plugin as seen in Figure 5.5.

FIGURE 5.5: The plagiarism graph visualisation

2Scalable Vector Graphics
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Algorithm 2 : Render the graph

1: Input: The student programs
2: Output: The plagiarism graph
3: while the user clicks the button to scan for plagiarism do
4: generate the plagiarism report and display similarities
5: from MOSS according to n-size
6: if n-size ≤ 5000 then
7: generate the plagiarism report and shows all matching
8: similarities within the similar files up to 5000
9: else

10: display the plagiarism report and show the matched
11: similarity up to the default MOSS size of 250
12: for each n-size generated from MOSS do
13: plot a graph with a node connected
14: by a number of edges from the
15: similarities generated from MOSS
16: end for
17: end if
18: end while

Within the plugin, the Graphviz tool possessed different properties which include

cutlines, colours, line counts and percentage. The terminologies are explained next.

Cutlines: Cutlines are a property which is used to prune the plagiarism graph. In the

plagiarism graph, when a threshold is set, cutlines delete the nodes and edges that

appear below the set threshold. Cutlines are important in plagiarism graphs to show

the structure of a graph within a set threshold. For example, if an instructor wants to

investigate programs with a higher plagiarism scores of 80 and above, the instructor

can determine the plagiarised pairs by setting a threshold score. An illustration of the

example is shown in Figure 5.6.

In Figure 5.6, if the threshold is set to 80, the selection will include the students’

programs and plagiarism scores that have endpoints attached to that selection.

Colours: The colour attribute specifies colours as hexadecimal values in the RGB-

Red, Green and Blue format. Graphviz uses colours to identify the edges in the graph.

In the plagiarism detection system, if no colour is set, the default colour “black” is

enabled. When a colour property is set, the graph shows the colour of each copied

program of the class. The colour used in the graph was specified within a certain

threshold range. The colour “red” was used to identify a threshold range between

70-100, “green” for a threshold 50-69 and “blue” for a threshold between 0-49. Figure

5.7 shows the colour attribute specified to show the paired portion of the class. For ex-

ample, an instructor can determine plagiarism in a pool of assignments by setting the

colour property of the plugin to “enabled”. This makes it easy to identify each program

pairs, rather than manually inspecting every program pairs for plagiarism.
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FIGURE 5.6: The structure from a set threshold of the plagiarism graph

FIGURE 5.7: Colours of the graph structure of a class

Line counts: The line counts of any graph show the number of edges in the graph.

The line counts property of a graph was implemented in the plagiarism detection sys-

tem. If set to “enabled”, it shows the number of lines that appeared in the graph. Oth-

erwise, if the line counts property is set to “disabled”, the corresponding lines of the

graph disappears. An example of the line counts property adapted from the plagiarism

graph in the plagiarism detection system is presented in Figure 5.8.

Thickness: The thickness property of the graph is a property of the edges which

specifies the borderline of the line weight of the edge. The thickness property of the

graph works along with threshold values in the plagiarism detection system. A higher

threshold yields the thickness of the edges, while a lower threshold reduces the thick-

ness of the lines in the graph. If set to “enabled”, the line of the edges thickens. With the
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FIGURE 5.8: The line count feature of the plagiarism graph

thickness property, we can investigate programs whose thresholds are higher and in-

vestigate the program pairs for plagiarism. A sample graph which shows the thickness

of a graph is showed in Figure 5.9.

FIGURE 5.9: The thickness of the edges of the plagiarism graph (adapted from the
plugin)

Percentage: The percentage property specifies the weight/threshold of the edge in a

graph. In the graph, the heavier the weight of the graph, the closer the edge line is to

another node. Invariably, the higher the weight of the graph, the shorter the line of the
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graph. In the plagiarism graph, the weight corresponds to the similarity index between

the two programs. If the percentage property is set to “enabled”, the weight appears

on the graph. The red circled illustrations are the weight of the graph as illustrated in

Figure 5.10. The weights of this graph are 88 and 99.

FIGURE 5.10: The weight of the plagiarism graph (adapted from the plugin)

Using the configuration option provided, we can potentially show portions of pla-

giarised contents of the plagiarism graph.

5.5 Inclusion of these tools into the VLE

The plugin was developed in PHP. Experiments were carried out on the undergraduate

students’ Java program lab work. An instructor-supplied code was added to eliminate

matches that one expects to be copied, thereby eliminating coincidental similarities that

may arise from the experiment. The inclusion of these tools into the VLE offered nu-

merous features; the plugin showed side-by-side comparison of the plagiarism report,

presented in Figure 5.11.

One key attribute offered by the system is that it is easy to show the overall structure

of the class, rather than just the pairwise similarities presented in Figure 5.12. In addi-

tion, the structure of the class represented in form of a plagiarism graph would aid an

instructor to differentiate actual cases of plagiarism from coincidental similarities in a
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FIGURE 5.11: A pairwise comparison of the plagiarism report

FIGURE 5.12: Structure of a plagiarism graph (adapted from the plugin)

programming class. The usefulness of the graph structure is its ability to show the rela-

tions amongst multiple students presented in Figure 5.13. Hence, connected students’

programs were found to show that they engaged with each other to carry out the pro-

gramming task. The connected student programs are presented according to the range

of thresholds. Figure 5.13 shows the connected pairs at a threshold of 90. At different

thresholds, the system shows groups of connected programs.
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FIGURE 5.13: The connected pairs of the similar programs

5.6 Conclusion

This chapter described the method for this research. We presented the different ap-

proaches to creating an efficient plagiarism detection system. At first instance, the

MOSS plagiarism detection system was integrated into the VLE. Using MOSS would

also require an instructor to obtain a MOSS user ID and plagiarism instances will be

triggered for the entire course. MOSS offered numerous features in presenting a pla-

giarism report. The features include; pairwise similarities of each source codes and a

side-by-side comparison of a plagiarism report.

Secondly, the Graphviz tool was added into the MOSS plugin to visually show the

pairs of the source codes. The Graphviz tool possesses features for customising the

generated graph. The features include cutlines, colours, line count, thickness and per-

centage. The Graphviz features ensured easy identification of the plagiarism report.

It was also found that the inclusion of these tools would make the detection process

effortless to explore.

The next chapter focuses on the structures of graphs and the different operations

carried out on plagiarism graphs.
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Graph Structures

6.1 Introduction

The previous chapter outlines the design and implementation of the plagiarism detec-

tion system. This chapter is focused on the graph data structures. Section 6.2 discusses

structures of graphs. Section 6.3 explains connected components in plagiarism graphs.

Section 6.4 discusses the intersection across multiple graphs. Section 6.5 concludes the

chapter.

6.2 Graph Data Structures

Based on the ideas of graphs discussed in the concept of graphs and their application

to plagiarism analysis, presented in Chapter 3, graph data structures are introduced,

especially for program representation.

The application of source code plagiarism to graph data structure is the representa-

tion of the structural information of the programs. One key advantage of representing

programs as graphs is that they allow keeping the structural information of the pro-

grams. The specifics of the representation of programs as graphs depend on the infor-

mation needed to unravel from the structure of the graph. For example, the generated

graph of the plagiarism detection system is represented as an undirected graph, which

represents all nodes in the graph as the programs and connecting edges as the copies.

This structural representation of the programs may be suited for determining if two

plagiarists engage with each other to produce the same program. In this chapter, the

graph metrics used in this work will be discussed holistically.

65
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6.3 Connected Components

In a graph, a node can connect to any other node in a graph by means of a path if and

only if the graph is a connected graph. Taking this into account, we can infer that a

graph is connected if for each and every node in the graph, a path exists. Although, there

are some instances of graphs which are not connected. For example, a social network

graph shows individuals which may not be connected. For these, we can not construct

a path between them to establish relationships.

A

D

C Y

Z

B B

C

D

A

Y

Z

FIGURE 6.1: A graph that is connected, and a graph that consists of two connected
components

Connected components in a graph are a subset of the nodes of a graph such that:

(i) every node has a path to every other node in the graph; and (ii) the subset is not a

member in the larger set with the property that every node can reach every other node

in the set. Dividing a graph into connected components is a first step in describing its

structure. The graph showed in Figure 6.1 shows a graph with extracted connected

components in the graph. From the example in Figure 6.1, the six nodes in the graph

represent the students’ programs {A, B, C, D, Y, Z}with the pairs of programs indicated

by {A,D}, {A,Y}, {A,Z}, {B,C}, {B,Y}, {C,D}, {D,Z}, {Y,Z}. We can extract the student

programs{Y,Z} from the graph and the connected pairs from the extracted graph. From

the generated graph of the plagiarism detection system, we can derive useful informa-

tion from connected components. An image extracted from a larger image from the

plagiarism detection system is presented in Figure 6.2. The image is scaled to show

networks of students copying each other in a programming class. The connected com-

ponents in the graph are indicated with the red circled region of students engaging

with each other to produce the programs. The components showed smaller units of

programs, medium-sized components and larger components.
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FIGURE 6.2: The connected components of the plagiarism graph

In smaller components of two program pairs, the pair may have copied each other and

this would have educational benefit to the two students. Hence, the two students may

have engaged with each other to produce the program only so, this is less of a problem

for the instructor to investigate the two programs to find plagiarism. The instructor

simply has to look at the program pairs and judge the programs as plagiarised pairs.

In medium-sized components, a student may have produced a program and distributed

it to the rest of the class. It is worth noting that the code may be redistributed by an-

other student, and this may have gotten into a few other hands. It is worth trying for

the instructor to investigate the source of where the code was copied from.

In larger components, the code may have been copied from sources on the Internet.

This is much easier to explore the origin of the copied code, and the culprits who were

found to have copied from that source. It is also clearer that the instructor needs to

take precautions when setting assignments, and should endeavour to set a question for

which no answer can be found on the Internet.

6.4 Intersection

Graphs are useful tools to model problems of any area of specialisation, especially in

the application to source code plagiarism. We introduce intersections across multiple

graphs to unravel plagiarism across multiple students’ programming assignments. A
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graph is said to be an intersection graph if it contains a family of a non-empty set F, in

which each set in F is represented by a node, and connected by two nodes with an edge if

and only if their corresponding sets intersect [Golumbic et al., 1983]. In other words, an

intersection number in a graph is the subset of vertices (cliques) of the graph that covers

all the edges of the graph. Across two or more graphs, A(VA, EA) and B(VB, EB), the

intersection represents the union of their node sets and intersection of their edges sets of

the graphs. The intersection across the two graphs would meanA∩B= VA∪VB, EA∩EB .

In source code plagiarism, an intersection graph is derived from two or more pla-

giarism graphs with the aim to uncover historical plagiarism across multiple program-

ming assignments. A typical example of intersection across multiple graphs is shown in

Figure 6.3.

FIGURE 6.3: The intersection across multiple plagiarism graphs

Given two graphs A and B, Graph A with sets of nodes {A, B, C, D, E, and F} and sets

of edges represented by {A,B}, {A,E}, {A,F}, {B,C}, {B,E}, {C,D}, {C,E}, {D,E}, {D,F},
{E,F} and Graph B with sets of nodes (A, B, C, D, E, and F) and sets of edges represented

by {A,E}, {B,E}, {C,E}, {D,E}, {E,F}. Hence, the intersection across the two graphs is

given by: A ∩B = {A,E}, {B,E}, {C,E}, {D,E}, {E,F}. The intersection of the two graphs

is represented by the red colour circled graph. The five edges represent the intersection

sets of the two graphs.

Taking the intersection of the three graphs, it was found that there were unlikely false

positives generated from the report. These results strongly suggest that the students

were actually copying each other. Hence, repeated plagiarism is an indication that the

students were actually copying each other in the assignments.
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6.5 Conclusion

This chapter described the structures of graphs and their application to plagiarism de-

tection. The basic definition of graphs was highlighted and a number of operations

on graphs were discussed. The different graph structures were introduced. Connected

components in graphs were explored in this chapter. In connected components, we

derive a number of components that comprise a graph. The components are small,

medium-sized and large components. The intersection across multiple graphs was also

discussed in this chapter. The explanation of the structures would be useful in evaluat-

ing the graph model.

Chapter 7 is concerned with evaluating the performance of the plagiarism detection

system.



Chapter 7

Evaluation

7.1 Introduction

In the previous chapter, the structure of the graph was discussed. This chapter is fo-

cused on the evaluation thereof. Section 7.2 introduces the data set used for our ex-

periment. Section 7.3 is focused on the ground truth data set taken on the system.

Section 7.4 is focused on evaluating the system’s metrics. Section 7.5 discusses the per-

formance metrics of the system. Section 7.6 discusses the results and discussions from

the experiment. Section 7.7 is focused on performing the intersection across multiple

assignments. Section 7.8 concludes the chapter.

7.2 Data Set

The training data set used for our initial experiment was sufficient to analyse system

performance. This is significantly better than our prior work [Obaido et al., 2016]. The

data set was collected with arbitrary usernames from “1892 to 1980”. For the sake of

confidentiality, the student identities were replaced with arbitrary names “Student 1”,

“Student 2”,..., “Student 80”. For the experiments, a number of 240 second-year under-

graduate Java programs that had an average of 71 lines of code per programmer were

taken from the three different lab work submissions. In each of the course’s activities

(MC Lab 6 512, MC Lab 5 509 and MC Lab 3f 506), there were 80 programs in each of

the lab work. The data set allowed us to test the idea of working with multiple graphs

as they contained the same students performing multiple course activities. Table 7.1

shows the summary of the data set used in the experiment.

70
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TABLE 7.1: Summary of the data set used in the evaluation of the Plagiarism Detection
System.

Assignments
Number
of Programs

Counts of
lines of code

Counts of
Tokens streams

Counts of
Detections

MC Lab 6 512 80 7447 167643 2864
MC Lab 5 509 80 6662 135874 1642
MC Lab 3f 506 80 3024 48615 1429

Total 240 17133 352132 5935

In the data set of 240 student submissions written in Java, each of the program’s

token strings and lines of code were counted. A number of 17,133 lines of code and

352,132 number of token streams were realised from the data set. In the data set, there

were 3 programs which had similar token strings and lines of codes. To carry out the

experiment, the data set was manually entered into the Virtual Learning Environment

(VLE), and the programs were scanned for plagiarism. The plagiarism detection sys-

tem reported the 3 programs which had similar lines of code and token streams as

plagiarised sets of programs. The findings of the report are indexed in Appendix B.

7.3 Ground Truth Data

The key to choosing an effective source code plagiarism detection system is to obtain

a ground truth. Ground truthing ensures the calibration of the plagiarism detection

system report. To establish the ground truth for the collection of programs, each of the

programs was examined manually to find patterns of plagiarism. In the collection of

240 programs in the three assignments, the plagiarism detection system reported 5935

distinct pairs of programs. The ground truth work was carried out in two phases:

TABLE 7.2: Summary of the Ground Truth Data Work

Assignments Programs
Threshold
Value

Counts of
Program Pairs

Counts of
Detection

MC Lab 6 512 80 30% - 50% 655 225
MC Lab 5 509 80 30% - 50% 166 68
MC Lab 3f 506 80 30% - 50% 189 81
Total 240 - 1010 374

Phase 1: The plagiarism detection system was used to inspect the programs for pla-

giarism and the programs were manually classified as suspicious/coincidental simi-

larities. At the initial phase of the ground truth work, pairs of programs between the

threshold of 30% and 50% were manually investigated to find plagiarism. There were

1010 pairs of programs between the threshold of 30% and 50% in the collection. Out
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of the 1010 pairs of programs in the collection, 374 program pairs were judged to have

been plagiarised. Programs between the threshold of 50% and 100% were also investi-

gated for plagiarism. Between the threshold of 50% and 100%, 3408 pairs were judged

to have been plagiarised. At this phase, we were able to establish plagiarism by manu-

ally inspecting the pairs of programs.

Phase 2: At the second phase, a number of techniques used by students to hide

plagiarism were found. The techniques mentioned in the work of Faidhi and Robin-

son [1987] and Seo-Young et al. [2006] outlined in the background of this research

were found in the collection; reconstructed comments, variable declarations and output

statements. The program constructs were interchanged, if/else swapped to switch/case,

and a number of function definitions were reordered. These types of plagiarism were

difficult to trace, especially if examining all pairs of source codes manually. There were

a few cases of plagiarism which was easy to detect, and this showed similar usage

of comments, identical variables/constants declarations, similar function definitions and

identical program constructs. Table 7.2 shows the summary of the ground truth work.

7.4 Evaluation Metrics

In automatic plagiarism detection systems, a number of false positives/false negatives

usually occur. Hence, an inaccurate report or missing plagiarism that does exist, usu-

ally produces misleading results. Several factors are responsible for this; shorter lines

of codes, students working in teams and the absence of an instructor-supplied code

given to students by an instructor [Granzer et al., 2013]. In source code plagiarism,

a false positive (FP) results when a plagiarism detector reports pairs of programs as

plagiarised when in actual fact, they were not plagiarised. A false negative (FN) re-

sults when a plagiarism detector reports pairs of programs as unplagiarised when in

actual fact, they were plagiarised code pairs. Alternatively, a true positive (TP) shows

the actual plagiarised pairs of programs, while a true negative (TN) indicates pairs of

programs that were not plagiarised [Prechelt et al., 2002].

In evaluating the plagiarism detection system, each of the program pairs was man-

ually classified as positives/negatives. Out of the 5935 pairs of programs reported by

the plagiarism detection system, 3782 of the pairs of programs were judged to have

truly engaged in plagiarism. A number of 2760 of the report were found to be falsely

reported by the system. A number of false negatives/false positives errors were also

encountered. For instance, some programs were found suspicious due to similar pro-

gram identifiers and control structures used. These cases do not provide convincing
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TABLE 7.3: Summary of metrics reported during evaluation of the system

Assignments Threshold
False
Positive

False
Negative

True
Positive

True
Negative

MC Lab 6 512 0% - 99% 1165 1066 1798 1698
MC Lab 5 509 0% - 99% 443 564 1078 1199
MC Lab 3f 506 0% - 99% 1152 523 906 277

Total 2760 2153 3782 3174

proof that the programs were plagiarised. The students may have adopted the instruc-

tor’s coding style to write their code, but the plagiarism detection system flagged the

programs as plagiarised pairs. Table 7.3 shows the summary of metrics reported during

the evaluation of the system. The next section is focused on the plagiarism detection

system’s performance.

7.5 System Performance Metrics

The reliability measure of our plagiarism detection system is based upon precision and

recall as discussed in the literature of this work, Chapter 2. Taking into perspective

that our plagiarism detection system detects source code programs in pairs, assigns

a numerical similarity value to the pairs represented as highest similarity rate with a

specified cut-off threshold, and displays the similar program pairs as graphs, Prechelt

et al. [2002] stipulated that

• Precision constitutes the number of actual plagiarised pairs that have been de-

tected in the entire sets of program pairs detected altogether.

• Recall constitutes the number of actual plagiarised pairs that have been detected

in the entire sets of program pairs that have truly engaged in plagiarism.

From our dataset collection of 240 programs of the three assignments, to evaluate

the system to find the precision and recall in our given dataset, we identified the pairs

of programs as positives and negatives. Each pair from our system is classified as

False positive (FP), True Positive (TP), True negative (TN), False negatives (FN), and the

accuracy (ACC) of the system has been determined from the computation as follows:

Recall
(
R
)
=

TP

TP + FN
(7.1)

Precision
(
P
)
=

TP

TP + FP
(7.2)
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Given the above metrics, we derive the accuracy of the system as follows:

Accuracy
(
ACC

)
=

TP + TN

TP + TN + FP + FN
(7.3)

7.6 Results and Discussion

To evaluate the effectiveness of our system over the three assignments, as presented in

Table 7.3 of the generated metrics, the precision and recall of the system evaluated on

the three assignments are presented in Figure 7.1, 7.2 and 7.3 respectively.

Table 7.4, shows how the Precision/Recall curve was generated against the threshold

of similarities in the plagiarism detection system.

TABLE 7.4: Summary of the evaluation metrics of the system

Assignment 1 Assignment 2 Assignment 3

Threshold Precision Recall Precision Recall Precision Recall

90 - 99% 1 0.0432106 1 0 1 0.134045403
80 - 89% 0.888889 0.2212834 0.869565 0.123244 0.857143 0.222345433
70 - 79% 0.906627 0.3892348 0.808314 0.234432 0.736842 0.440537344
60 - 69% 0.625571 0.4392453 0.690789 0.394843 0.642857 0.639485543
50 - 59% 0.540872 0.4839213 0.635701 0.520588 0.635417 0.537243943
40 - 49 % 0.551769 0.539403 0.626506 0.658228 0.554622 0.684845747
30 - 39% 0.491272 0.723483 0.628205 0.687754 0.50365 0.634849324
20 - 29% 0 0.723483 0 0.648148 0.024324 0.734212334
10 - 19% 0 0.824745 0 0.777738 1 0.89327332
0 - 9% 0 1 0 0 1 1

Accuracy = 84% Accuracy = 79% Accuracy = 52%

During the first assignment in Figure 7.1, we presented an interpolated Precision-

Recall graph over the first assignment. We discovered that there was a high precision

rate and a few false positives were found in the assignment. The system accuracy at

the first assignment showed an 84%. Hence, we can deduce that the system reported a

number of false positives in the first assignment. We believe there is room for improve-

ment.

The system’s evaluation report of the second assignment, Figure 7.2, was better com-

pared to the first case. The system reported an accuracy of 79%. Although a number of

false positives were found, the result fared better than in the first case.

Finally, the third assignment in Figure 7.3 reported a huge number of false positives

with an accuracy of 52%. We found that the absence of an instructor-supplied code and
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FIGURE 7.1: Assignment 1: Precision-Recall curve of the first assignment

FIGURE 7.2: Assignment 2: Precision-Recall curve of the second assignment

the length of the programs, contributed to the low accuracy of the report. Hence, the

accuracy of the third assignment performed poorly compared to the first and second

assignments respectively.

7.7 Intersection Across Multiple Assignments

During the final experiments, a Python script was used to prune the graph and find

similar occurrences in the data set. Seven occurrences of historical plagiarism were

identified from the experiment indicated by the number of edges across the three graphs.
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FIGURE 7.3: Assignment 3: Precision-Recall curve of the third assignment

The image on Figure 7.4 shows the historical plagiarists who engaged in plagiarism

over the three assignments. The images were regenerated into four different images to

view the structure of the class. The images were regrouped into a number of connected

components. Figure 7.4 shows the connected components of the intersection plagiarism

graph of the three assignments.

FIGURE 7.4: The connected components of the intersection graph.



Chapter 7. Evaluation 77

In Group 1, there are three plagiarised programs. The “Student 8” and “Student 11”

programs are connected to the “Student 5” program, but are not connected to each

other. It can be ascertained that both students copied from “Student 5”. Group 2 shows

four plagiarised programs. The programs are weakly connected to each other. In the

Group 2 graph, the “Student 9” and “Student 24” programs are adjacent over the “Stu-

dent 19” program. The students may have collaborated to produce the plagiarised

program. Group 3 and Group 4 are strongly connected graphs. In other words, the

students may have collaborated to produce the set of plagiarised programs. In Figure

7.4, Group 1 and Group 2 are weakly connected. Each source code is not connected to

every other source codes in the graph. So it is possible that a student can copy from one

or two other students’ assignment, but not to every other member of the group. Group

3 and Group 4 are strongly connected to each other. Invariably, two or more students

can copy from each other to write their source codes. It was discovered that the pairs of

programs (connected components) appeared in the three assignments, hence, we can

conclude that if a set of students are adjacent over a number of different submissions,

it shows that they are really copying each other.

Manual verification of the edges in the intersection graph indicated that the pro-

grams were truly plagiarised pairs. Hence, this reduces the rate of false positives in the

result to zero.

7.8 Conclusion

This chapter presents an evaluation of the investigation component of the plagiarism

detection tool. The basic idea of the graph tool was to annotate the source code pairs as

graphs, rather than pairwise similarities of source codes. Experiments were performed

on the source codes and a number of similarities were found. We found out that a

number of errors; false positive, false negative, true negative and true positive usually

occur in detecting plagiarism in source codes. A comparison of the result gathered dur-

ing the analysis of the system with human judgement, also revealed a high correlation.

The plagiarism detection system has shown to report a higher number of plagiarism

cases than what a human judgement would have been able to achieve.

To conclude the experiment, we introduced the idea of taking the intersection across

a number of assignments. This reduces the number of false positives to zero. We can

conclusively establish those students who are really plagiarising in their assignments.

From the evaluation report, we also found that source code plagiarism is a serious

issue and supporting evidence that consists of more than just a pairwise comparison of
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source codes can be helpful to academics with regards to making sound judgement on

cases of plagiarism.

The next chapter draws conclusion, provides the limitation of the research, discusses

the contribution and provides future work pertaining to this research.



Chapter 8

Conclusion, Limitations,

Contribution and Future Work

8.1 Conclusion

The ubiquitous cases of source code plagiarism in programming assignments are in-

creasing rapidly [Ohno and Murao, 2011]. The problem has been on the rise and stu-

dents are devising new techniques in deceiving their instructors. Hence, the reduction

of source code plagiarism is the primary goal of source code plagiarism detection sys-

tems. A number of suspicious cases of source code plagiarism can be easily missed

by humans, especially if the class size is large and the means of checking plagiarism

in programming assignments is the side-by-side comparison of each individual source

code against another. In this research, we applied graph-based approaches in detecting

suspicious cases of source code plagiarism in programming assignments.

The first approach undertaken in this research in detecting plagiarism in program-

ming assignments, was using the MOSS system to extract and compare the represen-

tation of the program structure and measure similarities in the programs. Whilst this

approach seems like a good option, there were traces of false positives. These are how-

ever also evident in most source plagiarism detection systems. An informal approach

was to manually look up each source code programs to inspect false positive/false nega-

tive in the similarity report.

The second approach undertaken was the application of the graph-based approach

to convert programs to nodes, the relationship between the programs as a set of edges,

79
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and the degree of copies as the weight specified in the graph model. Other graphs met-

rics (intersections of graphs from multiple assignments) were applied to convincingly

prove that students are really copying from each other.

It was found that, at a lower threshold of 30%, programs have to be investigated

for plagiarism. It was also easily shown that the ground truth work proved to show

a knowledge of plagiarism and was effective to prune the plagiarism graph. We also

investigated that taking the intersection of multiple plagiarism graphs, reduces false

positives/false negatives. It was easily proved that if a student plagiarises in the first,

second and third assignments, there is a likelihood for them to even plagiarise more in

many circumstances.

Although, the source code plagiarism detection process was easily carried out, the

result should not be used as a final benchmark to indicate whether or not a student

has plagiarised. The result should be used as a suggestion to aid instructors carrying

out manual investigation meticulously. By applying this tool for detecting similarities

in source code, assessment of source codes for plagiarism will become more efficient

and worthwhile. Using this tool for large programs also works better than for smaller

programs. The result might not be accurate for shorter programs due to the presence of

more coincident similarities in shorter programs, which may lead to a greater number

of false positives. By using this automatic source code plagiarism detection, we hope that

students will be discouraged from plagiarism, as they will be aware we are watching

them conscientiously. Hence, it will encourage them to work independently and exert

much effort in writing their program assignments themselves, which will increase their

understanding of programming and contribute effectively to their academic achieve-

ments.

8.2 Limitations of the Study

One major limitation of this research was that we could not test all programming lan-

guages supported by MOSS. The only programming language tested in this research

was Java. This limited the scope of our research somewhat; however, in this case, we

only considered the programming language taught at the university. Few of the data

sets provided also had shorter lines of code. We discovered that shorter programs con-

tributed to a high false positive rate, which produces unreliable results. To avoid this

issue, we had to carefully select the three lab works to find programs with reasonable

program lengths to perform the experiment.
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8.3 Contributions and Future Work

This work has contributed a new extension to plagiarism detection that allows the rep-

resentation of programs as graphs. The inclusion of the graph-based approach to the

structure representation of programs shows a major contribution. This part of the re-

search has been published in Obaido et al. [2016].

Other contributions of this work are the detection of the programs, long-term storage of

the similarity report, enhanced functionality of the plagiarism detection engine compared

to other plagiarism detection tools, real-time analysis by both tools, other plagiarism

detection engines takes considerable number of hours to detect programs, an example

is the program dependency graph tool and effective decision-making for instructors, with

the features offered by the graph-based approach.

There are still unexplored areas relating to graph-based techniques in detecting source

code plagiarism. Given the results obtained from the experiments carried out using the

plagiarism detection tool, it will be interesting to explore more graph operations on

the graph model. One unexplored area that would be interesting in this research is

modeling the graph tool to find the shortest possible path.

Applying this technique would be interesting to deduce if the shortest possible path

is best suited to indicate plagiarism. Another area of continued research would be to

find plagiarism across multiple courses to investigate historical plagiarism. It would

be worthwhile to check the history of a known plagiarist in a class amongst multiple

courses. Achieving this would assist in minimising the spread of plagiarism across

multiple programming courses.
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Appendix A

Evaluation

The table shows the evaluation information of the system.

TABLE A.1: Summary of the evaluation metrics of the system

Assignment 1 Assignment 2 Assignment 3

Threshold Precision Recall Precision Recall Precision Recall

90 - 99% 1 0.0432106 1 0 1 0.134045403
80 - 89% 0.888889 0.2212834 0.869565 0.123244 0.857143 0.222345433
70 - 79% 0.906627 0.3892348 0.808314 0.234432 0.736842 0.440537344
60 - 69% 0.625571 0.4392453 0.690789 0.394843 0.642857 0.639485543
50 - 59% 0.540872 0.4839213 0.635701 0.520588 0.635417 0.537243943
40 - 49 % 0.551769 0.539403 0.626506 0.658228 0.554622 0.684845747
30 - 39% 0.491272 0.723483 0.628205 0.687754 0.50365 0.634849324
20 - 29% 0 0.723483 0 0.648148 0.024324 0.734212334
10 - 19% 0 0.824745 0 0.777738 1 0.89327332
0 - 9% 0 1 0 0 1 1

Accuracy = 84% Accuracy = 79% Accuracy = 52%
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Ground Truth Work

The graph structure of the Historical plagiarism found during the intersection of the

multiple assignments.

1 Graph{

2 student8_student8--student5_student5;

3 student9_student9--student14_student14;

4 student17_student17--student3_student3;

5 student19_student19--student24_student24;

6 student11_student11--student5_student5;

7 student30_student30--student20_student20;

8 student19_student19--student9_student9;

9 }

LISTING B.1: The graph code of the historical plagiarists

FIGURE B.1: The generated graph of the historical plagiarists.
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TABLE B.1: The similar pairs during the manual inspection of the source code pro-
grams.

Assignments
Source code
programs

Counts of
Lines of Code

Counts of
Tokens

MC Lab 6 512
Student8, Student10

Student11
87 2030

MC Lab 3f 506 Student8, Student11 28 574

Assignment 1: Student8 Program

1 package com.example.animationgame;

2 import java.util.ArrayList;

3 import java.util.Random;

4 import android.annotation.SuppressLint;

5 import android.app.Activity;

6 import android.graphics.Canvas;

7 import android.graphics.Paint;

8 import android.os.Bundle;

9 import android.view.Display;

10 import android.view.MotionEvent;

11 import android.view.View;

12 import android.view.View.OnTouchListener;

13 import android.view.Window;

14 import android.view.WindowManager;

15

16 public class MainActivity extends Activity implements OnTouchListener{

17 ArrayList <Ball> balls = new ArrayList<Ball>();

18 DrawView drawView;

19 Ball b1;

20 Ball b2;

21 Ball b3;

22 int width;

23 int height;

24 int yup =0;

25 int zup=0;

26 Random r = new Random();

27 @SuppressWarnings("deprecation")

28 @SuppressLint("ClickableViewAccessibility") @Override

29 public void onCreate(Bundle savedInstanceState) {

30 super.onCreate(savedInstanceState);

31 // Set full screen view

32 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

33 WindowManager.LayoutParams.FLAG_FULLSCREEN);

34 requestWindowFeature(Window.FEATURE_NO_TITLE);

35 drawView = new DrawView(this);

36 setContentView(drawView);

37 drawView.requestFocus();

38 drawView.setOnTouchListener((OnTouchListener) this); //Add this line when doing touch

events

39 Display display = getWindowManager().getDefaultDisplay();

40 width = display.getWidth();

41 height = display.getHeight();

42 balls.add(new Ball(100, 100, 2, 0, (Integer) width, height));
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43 balls.add(new Ball(200, 200, 3, 0, (Integer) width, height));

44 balls.add(new Ball(300, 180, 1, 0, (Integer) width, height));

45 }

46

47 public void doDraw(Canvas canvas, Paint paint) {

48

49 for(int i =0; i < balls.size(); i++)

50 {

51 Ball ball = balls.get(i);

52 canvas.drawCircle((int) ball.x, (int) ball.y, 5, paint);

53 ball.update(0.5);

54 }

55 }

56 @Override

57 public boolean onTouch(View arg0, MotionEvent arg1) {

58 // TODO Auto-generated method stub

59 Display display = getWindowManager().getDefaultDisplay();

60 width = display.getWidth();

61 height = display.getHeight();

62 int action = arg1.getAction();

63 int newx = r.nextInt(width-width/2-1);

64 int newy = r.nextInt(height- height/2);

65 yup = (int) arg1.getY();

66 zup = (int) arg1.getX();

67 if(action==MotionEvent.ACTION_DOWN){

68 int x= (int)arg1.getX();

69

70 if(x<=width*0.5){

71 balls.add(new Ball(newx, newy, 2, 0, width, height));

72 }

73 else

74 balls.clear();

75 }

76 return false;

77 }

78 }

79

LISTING B.2: Student8 Program

Assignment 1: Student10 Program

1 package com.example.animationgame;

2 import java.util.ArrayList;

3 import java.util.Random;

4 import android.annotation.SuppressLint;

5 import android.app.Activity;

6 import android.graphics.Canvas;

7 import android.graphics.Paint;

8 import android.os.Bundle;

9 import android.view.Display;

10 import android.view.MotionEvent;

11 import android.view.View;

12 import android.view.View.OnTouchListener;

13 import android.view.Window;
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14 import android.view.WindowManager;

15

16 public class MainActivity extends Activity implements OnTouchListener{

17 ArrayList <Ball> balls = new ArrayList<Ball>();

18 DrawView drawView;

19 Ball b1;

20 Ball b2;

21 Ball b3;

22 int width;

23 int height;

24 int yup =0;

25 int zup=0;

26 Random r = new Random();

27 @SuppressWarnings("deprecation")

28 @SuppressLint("ClickableViewAccessibility") @Override

29 public void onCreate(Bundle savedInstanceState) {

30 super.onCreate(savedInstanceState);

31 // Set full screen view

32 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

33 WindowManager.LayoutParams.FLAG_FULLSCREEN);

34 requestWindowFeature(Window.FEATURE_NO_TITLE);

35 drawView = new DrawView(this);

36 setContentView(drawView);

37 drawView.requestFocus();

38 drawView.setOnTouchListener((OnTouchListener) this); //Add this line

when doing touch events

39 Display display = getWindowManager().getDefaultDisplay();

40 width = display.getWidth();

41 height = display.getHeight();

42 balls.add(new Ball(100, 100, 2, 0, (Integer) width, height));

43 balls.add(new Ball(200, 200, 3, 0, (Integer) width, height));

44 balls.add(new Ball(300, 180, 1, 0, (Integer) width, height));

45 }

46

47

48 public void doDraw(Canvas canvas, Paint paint) {

49

50 for(int i =0; i < balls.size(); i++)

51 {

52 Ball ball = balls.get(i);

53 canvas.drawCircle((int) ball.x, (int) ball.y, 5, paint);

54 ball.update(0.5);

55 }

56 }

57 @Override

58 public boolean onTouch(View arg0, MotionEvent arg1) {

59 // TODO Auto-generated method stub

60 Display display = getWindowManager().getDefaultDisplay();

61 width = display.getWidth();

62 height = display.getHeight();

63 int action = arg1.getAction();

64 int newx = r.nextInt(width-width/2-1);

65 int newy = r.nextInt(height- height/2);

66 yup = (int) arg1.getY();

67 zup = (int) arg1.getX();
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68 if(action==MotionEvent.ACTION_DOWN){

69 int x= (int)arg1.getX();

70

71 if(x<=width*0.5){

72 balls.add(new Ball(newx, newy, 2, 0, width, height));

73 }

74 else

75 balls.clear();

76 }

77

78 return false;

79 }

80 }

81

LISTING B.3: Student10 Program

Assignment 1: Student11 Program

1 package com.example.animationgame;

2 import java.util.ArrayList;

3 import java.util.Random;

4 import android.annotation.SuppressLint;

5 import android.app.Activity;

6 import android.graphics.Canvas;

7 import android.graphics.Paint;

8 import android.os.Bundle;

9 import android.view.Display;

10 import android.view.MotionEvent;

11 import android.view.View;

12 import android.view.View.OnTouchListener;

13 import android.view.Window;

14 import android.view.WindowManager;

15

16 public class MainActivity extends Activity implements OnTouchListener{

17 ArrayList <Ball> balls = new ArrayList<Ball>();

18 DrawView drawView;

19 Ball b1;

20 Ball b2;

21 Ball b3;

22 int width;

23 int height;

24 int yup =0;

25 int zup=0;

26 Random r = new Random();

27 @SuppressWarnings("deprecation")

28 @SuppressLint("ClickableViewAccessibility") @Override

29 public void onCreate(Bundle savedInstanceState) {

30 super.onCreate(savedInstanceState);

31 // Set full screen view

32 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

33 WindowManager.LayoutParams.FLAG_FULLSCREEN);

34 requestWindowFeature(Window.FEATURE_NO_TITLE);

35 drawView = new DrawView(this);

36 setContentView(drawView);
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37 drawView.requestFocus();

38 drawView.setOnTouchListener((OnTouchListener) this); //Add this line

when doing touch events

39 Display display = getWindowManager().getDefaultDisplay();

40 width = display.getWidth();

41 height = display.getHeight();

42 balls.add(new Ball(100, 100, 2, 0, (Integer) width, height));

43 balls.add(new Ball(200, 200, 3, 0, (Integer) width, height));

44 balls.add(new Ball(300, 180, 1, 0, (Integer) width, height));

45 }

46 public void doDraw(Canvas canvas, Paint paint) {

47 for(int i =0; i < balls.size(); i++)

48 {

49 Ball ball = balls.get(i);

50 canvas.drawCircle((int) ball.x, (int) ball.y, 5, paint);

51 ball.update(0.5);

52 }

53 }

54 @Override

55 public boolean onTouch(View arg0, MotionEvent arg1) {

56 // TODO Auto-generated method stub

57 Display display = getWindowManager().getDefaultDisplay();

58 width = display.getWidth();

59 height = display.getHeight();

60 int action = arg1.getAction();

61 int newx = r.nextInt(width-width/2-1);

62 int newy = r.nextInt(height- height/2);

63 yup = (int) arg1.getY();

64 zup = (int) arg1.getX();

65 if(action==MotionEvent.ACTION_DOWN){

66 int x= (int)arg1.getX();

67

68 if(x<=width*0.5){

69 balls.add(new Ball(newx, newy, 2, 0, width, height));

70 }

71 else

72 balls.clear();

73 }

74 return false;

75 }

76 }

LISTING B.4: Student11 Program

Assignment 3: Student8 Program

1 import java.util.*;

2 import java.util.Scanner;

3 public class Program{

4

5 public static void main(String args[]){

6 Scanner in = new Scanner(System.in);

7 ArrayList<Rating> allratings = new ArrayList<Rating>();

8 String input = in.nextLine();

9 while (!input.equals("-1")){
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10 String str = input;

11 String[] vals = str.split(";");

12 allratings.add(new Rating(vals[0],Integer.parseInt(vals[1])));

13 input = in.nextLine();

14 }

15 System.out.println(getAverage(allratings));

16 }

17 public static double getAverage(ArrayList<Rating> v){

18 double average =0, total=0;

19 for(int i = 0;i<v.size();i++){

20 total = total +v.get(i).getScore();

21 }

22 average = total/v.size();

23 return average;

24 }

25 }

LISTING B.5: Student8 Program

Assignment 3: Student11 Program

1 import java.util.*;

2 import java.util.Scanner;

3 public class Program{

4

5 public static void main(String args[]){

6 Scanner in = new Scanner(System.in);

7 ArrayList<Rating> allratings = new ArrayList<Rating>();

8 String input = in.nextLine();

9 while (!input.equals("-1")){

10 String str = input;

11 String[] vals = str.split(";");

12 allratings.add(new Rating(vals[0],Integer.parseInt(vals[1])));

13 input = in.nextLine();

14 }

15 System.out.println(getAverage(allratings));

16 }

17 public static double getAverage(ArrayList<Rating> v){

18 double average =0, total=0;

19 for(int i = 0;i<v.size();i++){

20 total = total +v.get(i).getScore();

21 }

22 average = total/v.size();

23 return average;

24 }

25 }

LISTING B.6: Student11 Program
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