
1 
 

 

 

COMPARISON OF OBJECT AND PIXEL-BASED CLASSIFICATIONS 

FOR LAND-USE AND LAND COVER MAPPING IN THE 

MOUNTAINOUS MOKHOTLONG DISTRICT OF LESOTHO USING 

HIGH SPATIAL RESOLUTION IMAGERY 

By 

Mpho Gegana (1257041) 

 

Research Report submitted in partial fulfilment for the degree of Master of 

Science (Geographical Information Systems and Remote Sensing)  

School of Geography, Archaeology and Environmental Studies, University 

of the Witwatersrand, Johannesburg 

 

Supervisor: Dr Elhadi Adam  

Co-supervisor: Prof Jasper Knight 

Dr Zama Eric Mashimbye - Agricultural Research Council 

 

August 2016 

 



i 
 

Declaration 

 

I Mpho Gegana (1257041) is a student registered for Master of Science Geographical 

Information Systems & Remote Sensing in the year 2015/16. I hereby declare the 

following: 

 I am aware that plagiarism (the use of someone else’s work without their permission 

and/or without acknowledging the original source) is wrong. 

 I confirm that ALL the work submitted for assessment for the above course is my own 

unaided work except where I have explicitly indicated otherwise. 

 I have followed the required conventions in referencing the thoughts and ideas of 

others. 

 I understand that the University of the Witwatersrand may take disciplinary action 

against me if there is a belief that this is not my own unaided work or that I have 

failed to acknowledge the source of the ideas or words in my writing. 

 

Signature:       Date 23
rd

 August 2016 

 

  



ii 
 

Abstract 

The thematic classification of land use and land cover (LULC) from remotely sensed imagery 

data is one of the most common research branches of applied remote sensing sciences. The 

performances of the pixel-based image analysis (PBIA) and object-based image analysis 

(OBIA) Support Vector Machine (SVM) learning algorithms were subjected to comparative 

assessment using WorldView-2 and SPOT-6 multispectral images of the Mokhotlong District 

in Lesotho covering approximately an area of 100 km2. For this purpose, four LULC 

classification models were developed using the combination of SVM –based image analysis 

approach (i.e. OBIA and/or PBIA) on high resolution images (WorldView-2 and/or SPOT-6) 

and the results were subjected to comparisons with one another. Of the four LULC models, 

the OBIA and WorldView-2 model (overall accuracy 93.2%) was found to be more 

appropriate and reliable for remote sensing application purposes in this environment. 

The OBIA-WorldView-2 LULC model was subjected to spatial overlay analysis with 

DEM derived topographic variables in order to evaluate the relationship between the spatial 

distribution of LULC types and topography, particularly for topographically-controlled 

patterns. It was discovered that although that there are traces of the relationship between the 

LULC types distributions and topography, it was significantly convoluted due to both natural 

and anthropogenic forces such that the topographic-induced patterns for most of the LULC 

types had been substantial disrupted. 
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1. INTRODUCTION 

1.1. Background 

Land use and land cover (LULC) information is desired by land managers, government 

agencies, municipalities, environmentalists and other professional practitioners to facilitate 

decision-making and also to equip the understanding of the interactions between humans and 

their surrounding environment (Prakasam, 2010; Yadav et al., 2010). LULC information is 

presently in great demand particularly due to the pressures of global population growth as it 

is necessary for the selection, forecasting and implementation of intervention efforts to meet 

the increasing demands of human needs and welfare (Yadav et al., 2012). Remote sensing 

and Geographical Information Systems (GIS) technologies provide operative and effective 

methods to collect such required information and create spatial representations in form of 

maps which are then used by those who require them (Chena et al., 2009). 

 Remotely sensed imagery data acquired from satellite- and air-borne sensors 

constitute a strong foundation for LULC mapping (Aguirre-Gutiérrez et al., 2012). The 

analysis of remotely sensed data incorporates the identification and/or quantification of target 

features from an imagery scene with the goal of extracting useful information. These 

interpretations of images may be done manually or digitally. Digital approaches are preferred 

over the manual approaches as they are considered to be more objective, time efficient, they 

utilize information from many bands that may not be observed by a naked eye, and can be 

easily implemented even in a large area with finer resolutions and multispectral data 

(Mararakanye and Le Roux, 2011; Rozenstein and Karnieli, 2011; Mararakanye and 

Nethengwe, 2012). 

Digital image classification may be performed through either pixel-based (PBIA) or 

object-based (OBIA) image analysis. PBIA uses individual pixels as basic processing units 

while OBIA uses multi-pixel image objects made from those pixels sharing some degree of 

spatial and spectral characteristics (Tehrany et al., 2014). Regardless of which of the two 

analysis approaches is applied, the information contained within and between the basic 

processing units, i.e. pixels or image objects are subjected to a variety of classification 

algorithms (Duro et al., 2012). 

Comparative studies on the performances of the PBIA and OBIA approaches LULC 

types extraction have been conducted for various types of landscapes. Such landscapes 

includes heterogeneous coastal landscapes using RapidEye imagery by Adam et al. (2014), 
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agricultural lands using SPOT-5 by Duro et al. (2012), coastal urban areas using SPOT-5 by 

Tehrany et al. (2014), and urban areas with Landsat ETM+ by Adepoju et al. (2015). A more 

comprehensive summary of the comparisons and the achieved performances is provided in 

the literature review section of this study. Although comparative studies of the two 

approaches have been done, it is evident that there have been limited studies done on 

mountainous landscapes. 

This study sought to conduct comparative evaluations on the performances of the 

supervised PBIA and OBIA classifications for LULC in a mountainous landscape. Previous 

comparative studies utilized multispectral datasets such as LANDSAT, ASTER and MODIS 

which provide both extensive coverage and relatively cheaper imagery datasets. However, the 

map products from these images, particularly at fine scale in heterogeneous areas, are 

characterised with salt-and-peppers effects due to the deficiency in spectral and spatial 

resolutions compared to the target LULC classes (Blaschke et al., 2006). Therefore, LULC 

maps produced from data from the above sensors are often regarded as of insufficient quality 

for operational application purposes, due to disparities between the reference dataset and 

predicted classes from the imagery used (Foody, 2002). 

Hyperspectral sensors have recently emerged as the alternative to multispectral 

sensors and have been utilised in the detection of land surface objects in plentiful and finer 

continuous spectral bands, which therefore allow for better differentiation amongst 

comparable target LULC classes in contrast to the more commonly known and used 

multispectral images (Petropoulos et al., 2012a). Findings from such studies show the 

potential for accurate LULC mapping and extraction using hyperspectral data from remote 

sensing (Pal, 2006; Pignatti et al., 2009; Petropoulos et al., 2012b). However, the use of 

hyperspectral datasets for any remote sensing applications comes with challenges, 

particularly prices, accessibility, processing requirements and dimensionalities (Mutanga et 

al., 2012). 

This study made use of SPOT-6 and WorldView-2 multispectral images for the 

extraction the LULC types. The two imagery packages used in this study are of “moderate 

resolutions” and are understood as a sense of balance between the advantages of multispectral 

and hyperspectral data (Mutanga et al., 2012). SPOT-6 data are freely available to 

government and academic institutions in South Africa and other African countries through 

the South African National Space Agency (SANSA) (van Zwieten, 2014), on the other hand 

the WorldView-2 is available at a price. Therefore this study also sought to understand if it is 
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advisable for LULC mappers to use the freely available SPOT data or to go on procuring 

higher resolution data such as WorldView-2, when seeking to map mountainous landscapes. 

 

1.2. Problem Statement 

Landscapes are heterogeneous and complex spatial units which have a potential to supersede 

the capabilities of remote sensing techniques of capturing these complexities (Blaschke et al., 

2006). LULC types as components of landscapes present some difficulties when being 

distinguished from a remote sensing perspective, particularly on an uneven terrain. The 

complexities characterising LULC dynamics on uneven terrains (mountainous landscapes) 

are due to the variations in terms of the rainfall and insolation as a result of the variations of 

landscape altitudes, slope and aspect leading to heterogeneity of vegetation and other 

components of ecosystems (Salman et al., 2002; Wondie et al., 2012). 

Numerous comparative studies of PBIA and OBIA have been conducted for various 

types of landscape and their complexities including urban, coastal and other areas. Generally, 

research has shown that the OBIA approach outclasses the PBIA in terms of their overall 

classification accuracies when using different imageries on different settings (Adepoju et al., 

2015). However, the outcomes may have been due to the fact that most of these comparison 

studies often relied on simple classification algorithms for an OBIA approach, and Gaussian-

based parametric algorithms for a PBIA approach (Duro et al., 2012). The use of parametric 

classifiers was discouraged for use in datasets that do not meet the assumptions of normality 

(Duro et al., 2012). 

In fact, the use of parametric classifiers is discouraged in the classification of complex 

spectral heterogeneous landscapes (Pradhan et al., 2014; Tehrany et al., 2014). The use of 

non-parametric classifiers such as Support Vector Machines (SVM), Neural Networks (NN) 

and Random Forest (RF) is encouraged due to the fact that they do not employ any 

assumption on the statistical relationship between the provided training dataset and also able 

to accommodate the addition of ancillary data that may be handful in the improvement of the 

overall accuracies (Pradhan et al., 2014; Tehrany et al., 2014). 

This study intends to fill the gaps that may have been left by previous comparative 

studies through the examination of performances of the relatively contemporary, vigorous 

and non-parametric supervised machine learning algorithms of SVM. This study was 

envisioned as a contribution for improving the understanding of mapping LULC on complex 

mountainous terrains of Mokhotlong District of Lesotho by attempting to identify the best 

combination of sensors’ images and landscape characteristics. 
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1.3. Research Objectives 

1.3.1. Research Aim 

The aim of this study is to compare the performance of pixel-based and object-based image 

analysis approaches for LULC classification on a mountainous landscape using different high 

resolution images. 

 

1.3.2. Research Objectives 

The primary objectives of this study are to: 

i. Compare SPOT-6 and WorldView-2 high resolution imagery for their suitability for 

mapping LULC in a mountainous landscape. 

ii. Evaluate the performance of PBIA and OBIA SVMs in mapping LULC on 

mountainous landscape from SPOT-6 and WorldView-2. 

iii. Assess the relationship between the extent and distribution of LULC classes with 

topographical variables (i.e. slope, altitude and aspect). 

 

1.3.3. Research Questions 

This study was guided by the following research questions: 

i. Does the difference in spatial and spectral resolutions between SPOT-6 and 

WorldView-2 high resolution imageries translate to significant difference in the 

performances for LULC mapping of mountainous landscape? 

ii.  Which between the OBIA and PBIA approaches has a better accuracy in mapping 

mountainous landscape than the other? 

iii. What is the relationship between the distribution of LULC and topography in the 

study area? 
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2. LITERATURE REVIEW 

2.1. The remote sensing of LULC 

Land use refers to the activity which human perform on a particular piece of land, whereas 

land cover refers to the definite material covering the surface such as vegetation, structural 

and others that may be as a result of dedicated use for that piece of land (Sohl et al., 2010). 

Land cover is made of patterns that occur due to a variety of natural and anthropogenic 

processes, whereas land use is largely due to by economics, social, political and historical 

factors (Rozenstein and Karnieli, 2011; Şatır and Berberoğlu, 2012). The increasing 

obtainability of images due to the prompt improvements of remote sensing technologies 

expanded the pool from which imagery products may be chosen (Xie et al., 2008).  

The use of remotely sensed images for the extraction of LULC targets has an 

extensive history, even prior the establishment of the initial Landsat platform in the early 

1970s (Sohl et al., 2010). Remote sensing sensors which serve as sources of the imagery 

datasets are known for their variances in spectral, spatial, radiometric and temporal qualities 

associated with those resolutions. Sohl et al. (2010) cautioned the use of imagery data alone 

for the mapping of land use, in contrast to land cover, which may be directly detected and 

examined from the imagery. In fact land use should be inferred through a combination of 

image interpretation, some field familiarity with the study area, and other supplementary 

information that may provide an enhanced correlation between land cover and land use (Sohl 

et al., 2010). 

Nanyam et al. (2011) acknowledged the challenge hampering automated successful 

LULC mapping as dependent on elements such as the complexity of site. Remote sensing and 

GIS offer an opportunity for the analysis of the relationship of LULC distribution with 

topography with respect to elevation, slope and aspect. Despite various ongoing efforts, gaps 

still exist on the understanding of the spatial distribution of land cover with respect to these 

topographic variables (Wondie et al., 2012). The characteristic spatiotemporal complexity of 

LULC classes in mountainous landscapes may hinder the accuracy scores of remote sensing 

data (Okubo et al., 2010; Li and Shao, 2014). The improvements and increase of sensors that 

provide imagery with higher spatial and spectral resolution assists in the production of more 

detailed mapping of LULC (Ramaswamy and Ranganathan, 2014). The heterogeneity of 

mountainous landscapes may lead to spectral distinction within the identical and spectral 

confusion amongst different categories at finer spatial resolution, hence yielding poorer 

classification performances (Ramaswamy and Ranganathan, 2014). The overall accuracy 
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levels of classifying LULC of complex, spectrally heterogeneous landscapes from high-

spatial resolution imagery can be enhanced by factoring in ancillary data such as a digital 

elevation model (DEM) and its derivatives, i.e. slope and aspect (Li and Shao, 2014). 

 

2.2. Mountainous landscapes: characteristics and LULC mapping 

The natural environments of mountainous landscapes can best be characterized by their 

diversity (Nagakura, 2010). The characteristic diversity of a mountainous landscape includes 

the wide range of altitudes, slopes and aspects which then influence the variation in 

temperatures, varying rates of erosion which leads to a variation of landforms (Bennie et al., 

2006; Nagakura, 2010, Tovar et al., 2013). The characteristic steep slopes, cold temperatures 

and snowfalls offer environmental constraints to life as these conditions make it difficult to 

sustain livelihoods in such regions (Nagakura, 2010). Mountain regions are generally 

characterised with rich biodiversity and are currently under threats of LULC changes due to 

climate change. Hence efficient observations are required to capture such changes (Tovar et 

al., 2013). 

Remote sensing is of great use for the mapping of LULC in mountainous areas as 

accessibility is limited and land degradation is a great concern (Shrestha and Zinck, 

2001).Various algorithms for mapping LULC are available. Nonetheless they face challenges 

when employed in areas with strong topographic variations such as mountainous areas 

(Shrestha and Zinck, 2001). In these areas, results obtained by running classifications are 

deficient for mapping LULC with the main reasons being altitudinal and illumination 

variations, and influence of topographic shadow (Shrestha and Zinck, 2001). Variations in 

topography have an effect on microclimates, which may translate into variations in LULC 

patterns which then pose a challenge for spectral classifications. 

 

2.3. Comparisons of feature extraction or classification applications from 

images with various resolutions 

Novack et al. (2011) conducted a comparative assessment of pan-sharpened WorldView-2 

and QuickBird-2-simulated images with regards to their prospects of being utilised for 

object-based urban LULC mapping. The study found that the presence of four extra spectral 

bands and the spatial resolution of the WorldView-2 offers an enhanced opportunity for the 

extraction of LULC types in different types of landscapes. The performances of the 

WorldView-2 and Quickbird imageries were also assessed by Belgiu and Dragut (2014) for 
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supervised and unsupervised multi-resolution segmentation (MRS) approaches for extracting 

buildings. Belgiu and Dragut (2014) found that the two approaches produced extraordinarily 

comparable classification results, with overall accuracy scores ranging between 82 and 86%. 

Lu et al. (2005) compared the capabilities of Landsat TM, ASTER, and SPOT 

imagery data in LULC classification in the Amazon basin using pixel-based MLC. The study 

by Lu et al. (2005) found that different sensor data have their own merits for LULC 

classification and none of the images used produced best classification results for all the 

classes. The main conclusion from the above study is that the increase spatial resolution is 

useful for the enhancement of the overall accuracy scoring. Gao and Mas (2013) conducted a 

study which intended to determine the impact at which the spatial resolution influence the 

overall performances of object-based classifications. Gao and Mas (2013) used two images 

with four varying spatial resolutions and found that the OBIA performed better than the 

PBIA; with an increased spatial resolution, the range of the difference on the performance 

scoring was reduced. Gao and Mas (2003) concluded that the OBIA had an advantage over 

the PBIA, and in accuracy rating, the advantage was better represented by higher spatial 

resolution satellite images. 

Capolsini et al. (2014) conducted a comparative study of Landsat ETM+, SPOT 

HRV, IKONOS, ASTER, and MASTER data to map the habitats of coral reefs in the South 

Pacific Islands using a supervised MLC. The findings of Capolsini et al. (2014) in terms of 

accuracy revealed that the Landsat-7 ETM+ performed relatively well compared with images 

from sensors with better spatial and spectral resolutions (IKONOS and MASTER) in 

mapping low and moderate habitats, even though it is well known that the two sensor have 

significantly better spatial and spectral resolutions compared to Landsat. However, during the 

mapping of highly convoluted habitats, IKONOS imagery performed best, suggesting the 

significance of the high spatial resolutions; and for low and moderate complex mapping, 

MASTER performed best, signifying the importance of spectral resolutions. 

Ambinakudige et al. (2009) paralleled the performances of LANDSAT-7 and the 

Chinese Brazilian Earth Resource Satellite (CBERS) images for LULC mapping using an 

unsupervised classification algorithm. The two images are very similar in terms of quality 

and spectral band characteristics, but are significantly different in terms of spatial resolutions. 

The Landsat and CBERS have the spatial resolutions of 30 m and 20 m, respectively.  

Ambinakudinge et al. (2009) found that the two images produced similar trends in terms of 

their correlations with NDVI due to their spectral and image qualities, however the CBERS 
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outperformed the Landsat in terms of LULC mapping due to its better spatial resolution and 

was recommended for future use over LANDSAT. 

 

2.4. Algorithm comparisons using PBIA or OBIA classifications 

As aforementioned, image classification can be conducted through the “traditional” PBIA and 

the “modern” OBIA approaches (Tehrany et al., 2014). The PBIA approach is the more 

prevalent of the two and involves the use of spectral characteristics related to each individual 

pixel. It is used to distinguish between classes, as each feature type is made of unique 

combination of digital numbers or spectral signatures (Pradhan and Suleiman, 2009). The 

main limitation of the PBIA approach is that during the classification processes only the 

spectral aspect of a feature is used, discounting the spatial, textural and topological 

relationships of pixels (Matinfar et al., 2007; Bhaskaran et al., 2010). The other shortcoming 

of the PBIA, particularly when mapping complex spectrally heterogeneous settings to 

produce maps with unclassified pixels (Blaschke et al., 2006). 

These shortcomings of the PBIA led to the emergence of the OBIA approach as an 

alternative to pixel-based image processing (Myburgh and Van Niekerk, 2013). The OBIA 

approach delineates readily functional image objects from imagery while concurrently 

exploiting image processing and GIS functionalities in order to utilize spectral and spatial 

information in an integrative way (Blaschke, 2010). The OBIA approach offers satisfactory 

and automatic techniques for the analysis of high resolution imagery by describing the 

imaged reality using spectral, textural, spatial and topological characteristics (Lang, 2008). 

The OBIA offers a procedural framework for the explanation of complex categories arranged 

by their relative similarities in spectral, spatial and structural properties (Lang, 2008). 

 

2.5. Algorithm comparisons using PBIA or OBIA classifications 

The PBIA approach was applied in a LULC mapping study by Huang et al. (2002) using 

Landsat TM data with thematic mapping accuracies produced using SVM, Decision Trees 

(DT), NN and MLC classifications. The SVM-based classifications outperformed the rest of 

the used classifiers. In Pal (2005), the accuracies of SVMs and RF supervised classification 

algorithms were conducted using a Landsat ETM+ data for an urban land cover mapping and 

the performances were not statistically different. The selected RF algorithm was compared to 

the DTs using a PBIA and the RFs gave the best results for the classification of LULC using 

the Landsat Multispectral Scanner System (MSS) (Gislason et al., 2007). 
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Carreiras et al. (2006) studied the performances of pixel-based classifiers such as DT, 

Probability-Bagging Classification Trees (PBCT) and K-NN on SPOT4 data. The PBCT 

produced best overall classification accuracies (Carreiras et al., 2006). Brenning (2009) 

conducted a comprehensive comparison study of at least eleven classification algorithms 

using a PBIA on Landsat ETM+ imagery for the detection of rock glaciers, and the Poisson 

Linear Discriminant Analysis (PLDA) produced considerably improved results as compared 

to all other classifiers. Otukei and Blashcke (2010) conducted a land cover change assessment 

in which the performances of DT’s, SVMs and MLCs algorithms in PBIA approach using 

Landsat TM and ETM+ data, and found that the DT’s performed better than the other two 

classifiers. 

An OBIA approach was conducted by Laliberte et al. (2006) using Quickbird imagery 

comparing the K-NN and DT. The study found that DTs were better performers in terms of 

their overall classification accuracies. Duro et al. (2012) conducted a comparison of PBIA 

and OBIA approach using RFs, SVMs and DTs for the classification of farming landscapes 

using SPOT-5 imagery. Duro et al (2012) used an OBIA approach and found that there was 

statistically significant difference in the performances of DT when compared with both RF 

and SVM algorithms, while when PBIA was employed there was no significance in the 

differences at α>0.05 between overall performances of the classifiers. Adam et al. (2014) 

conducted a LULC classification study of a coastal landscape through the assessment of the 

performance of RF and SVM algorithms. The authors found that the performances of the two 

classifiers were not significantly different as had been found through the performance of a 

McNemar’s test. 

 

2.6. Algorithm comparisons between PBIA and OBIA classifications 

Comparative studies between the performances between the PBIA and OBIA have also been 

piloted. For example, Tehrany et al. (2014) compared the two approaches for mapping LULC 

using SPOT 5 imagery and found that the OBIA K-NN performed better than the PBIA DT 

classifiers and OBIA SVMs. A similar study was conducted by Yan (2006) who compared 

PBIA using MLC and OBIA on a ASTER imagery, and their study found that the accuracy of 

the K-NN classification significantly outdid the MLC (83.25% and 46.48%, respectively). 

Myint et al. (2011) used similar algorithms as Yan et al. (2006) but for the classification of 

urban LULC on Quickbird imagery, and found that the performances were the same as the 

OBIA approach significantly outperformed the PBIA approach.  
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Castillejo-González et al. (2009) compared the performances of PBIA and OBIA, 

seeking to find the best imagery and classification algorithms combination for LULC 

classification. Their study found that there was a small difference between the two 

approaches using a non-pansharpened imagery; however, the difference between these 

approaches amplified significantly when using a pan-sharpened product. K-NN and MLC 

were compared for both classification approaches on multispectral IKONOS imagery by Platt 

and Rapoza (2008) and the findings were that the K-NN performed better than MLC. 

Robertson and King (2011) conducted the study for classified LULC for a broad agricultural 

landscape over two time periods. The LULC maps produced using pixel based MLC and 

object-based K-NN algorithms were not statistically significantly different in terms of their 

overall accuracies. 

 

2.7. The role of topography in the distribution of LULC 

Vegetation communities are fixed and require specific environmental conditions; thus, the 

spatial structure of vegetation communities exists through specific habitat preferences or 

niches (Lowe et al., 2012). The combination of climate and other environmental factors, such 

as topography, are widely used to explain the spatial distribution of LULC types (Guisan and 

Zimmerman, 2000; Zhao et al., 2010; Lowe et al., 2012).Topography has a significant effect 

on the physical and environmental settings that affect patterns of LULC particularly 

vegetation (Franklin et al., 2000; Matsuura and Suzuki, 2013; Zhang et al., 2013). The 

understanding and explaining of the spatial distribution of LULC dynamics across landscapes 

is of paramount importance in natural resource management sciences (Guisan and 

Zimmerman, 2000; Coblentz and Keating, 2008). Variation in relief and topography (i.e. 

elevation, slope, and aspect) are considered to be main factors prompting LULC due to their 

effect on site-specific microclimatic dynamics (Coblentz and Keating, 2008; Zhao et al., 

2010, Wondie et al., 2012). Elevation or altitude refers to the positional height of a feature in 

relation to sea level; aspect is the compass direction that a slope faces; hence the slope angle 

is the measure of change in elevation with respect to distance (Bennie et al., 2006). 

The altitudinal position of an object affects temperature with locations higher relative 

to sea level being cooler than those on lower slopes (Bennie et al., 2006). As a result of the 

above described variations, the lower slopes of the landscapes tend to be characterised by 

primary productivity compared to those at higher elevations. Aspect regulates the quality and 

quantity of direct solar radiation received by a slope, which in turn influences temperature 

and shading from the sun (McCune and Kean, 2002; Bennie et al., 2008). Surfaces receiving 
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less insolation generally experience cooler and, therefore, moister microclimates, whereas 

surfaces receiving more incoming solar radiation generally experience warmer and 

congruently dryer conditions (McCune and Kean, 2002). In the southern hemisphere, slopes 

that are facing northwards are commonly exposed to direct sunlight than other slopes which 

are generally shaded and cooler, as are south-facing slopes in the northern hemisphere.  

Moreover, the slope angle of a feature impacts wind and water characteristics on a 

site, hence the steeper the slope the higher the velocity of wind and upward movement of the 

wind. The steepness of the slope also influences the speed of run-off, meaning that there is 

less period for infiltration into the soil and so be made accessible to plants, but 

correspondingly more likely to erode the soil on the slope, mostly when heavy rainfall occurs 

(Bennie et al., 2006; 2008). Furthermore, slope may act as an important input for 

microclimatic conditions affecting the growth and distribution of vegetation (Bennie et al., 

2008). Steeper slopes generally receive greater concentrations of incoming solar radiation 

and therefore experience warmer, dryer climates than slopes with decreased steepness 

(Bennie et al., 2008). Slope also affects soil moisture through downslope drainage, with 

greater rates of drainage occurring on steeper slopes (Maestre et al., 2003). 

These relationships between topographic variables and the distribution of LULC 

types are subject to complexities particularly on landscapes that have been altered (Hoersch 

et al., 2002). Landscapes may be altered due to natural disturbances (e.g., fires, drought), 

anthropogenic activities (e.g., agriculture, deforestation) or combinations of both. These 

alterations tend to lead to the disruption of topographic-induced patterns in terms of the 

distribution of LULC types across a landscape (Hoersch et al., 2002). Moreover, random 

distributions of LULC types like vegetation are possible, but there is evidence which 

suggests that in topographic variable landscapes such as mountains, particularly in the mid-

to-high latitudes, the distribution of vegetation can be correlated to topography (Hoersch et 

al., 2002; Coblentz and Riitters, 2004; Pérez et al., 2008; Lowe et al., 2012). 
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3. MATERIALS AND METHODS 

3.1. The study area 

The area of study is situated within the Mokhotlong District; north-eastern parts of the 

mountainous kingdom of Lesotho (Figure 3-1). It covers an elevation range of 2000 – 3000 

m, with an average of about 2300 m and encompasses just over 100 km
2
. Lesotho lies in the 

middle of the Drakensberg Mountains in southern Africa and is characterised by a tropical 

mountain climate with a seasonal rainfall from October to March, and a prominent dry season 

of limited rainfall around June and July (Sene et al., 1998; Nagakura, 2010). The north-

eastern parts of Lesotho where the study area is located receive more precipitation in summer 

than any other region in the country (Kobisi, 2005). Generally, as per the Kӧppen Climate 

Classification system, Lesotho is characterised by a maritime temperate climate (Nagakura, 

2010). 

 

Figure 3-1: The study area 

 



13 
 

The study area is situated within the undulating mountain plateau of eastern Lesotho 

and is restricted by the rocky obstruction of the High Drakensberg Mountains (Nagakura, 

2010). The study area, Mokhotlong District is situated in the mountainous (highlands) agro-

ecological zone (Moeletsi and Walker, 2013). The climate in the Mokhotlong District is 

temperate; is slightly suitable for crop agri-business due to unpredictable and spatially 

variable precipitation that ranges from 500 mm/year to ∼1200 mm/year in a few areas around 

Mokhotlong (Moeletsi and Walker, 2013). Monthly mean minimum temperatures in winter 

range between −6.3°C in the highlands to 5.1°C in the lowlands; freezing temperatures are 

common in the winter months (May to July) but may also occur during summer (Moeletsi 

and Walker, 2013). Monthly mean maximum temperatures occur between November and 

February (Moeletsi and Walker, 2013). The vegetation in the Mokhotlong District ranges 

sharply from the trees and scrublands bush of the slopes to the characteristic mountain 

grassland on plateau tops with high solar radiation, sturdy winds, basaltic soils, and low 

temperatures (Kobisi, 2005). These factors bound the growth of plants in terms of height; 

such that vegetation occurring in these areas tends to be very short excluding the shielded 

valleys where perennial green trees and shrubs grow well (Kobisi, 2005). 

 

3.2. Materials  

The high spatial resolution imagery that were used in this study are SPOT-6 and WorldView-

2. An orthorectified WorldView-2 imagery captured on the 11
th 

November 2014 was sourced 

from Digital Globe through Southern Mapping. The WorldView-2 imagery package included 

panchromatic and multispectral images; on the other hand a level 1A SPOT-6 imagery 

package of the same date was sourced from the SANSA’s Earth Observation Directorate 

(refer to Table 3-1 below for their specifications).  A DEM from the Shuttle Radar 

Topography Mission (SRTM) programme with a grid spacing of 30 m was used for the geo-

referencing the SPOT-6 imagery and also for the derivation of the three topographic variables 

that were then used in the study of the relationship between LULC types and topography. 

The SRTM DEM mosaic for the entire SADC region was obtained from the 2015’s SANSA 

Earth Observation FUNDISA disc. 

 

3.3. LULC mapping 

The three standard steps of image classification for LULC mapping followed in this study: 

pre-processing, classifications and accuracy assessment are discussed below: 
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3.3.1. Image pre-processing 

Image pre-processing is essential prior to the extraction of information from the imagery as 

it ensures that the image is of similar radiant energy and spatial characteristics as when the 

image was captured. Pre-processing is comprised of mandatory steps: geometric correction 

or image registration, atmospheric correction and radiometric calibration, and some 

additional processes such as topographic correction and noise reduction that are also applied 

when necessary (Şatır and Berberoğlu, 2012; Iqbal and Khan, 2014). Topographic 

corrections are only necessary on imagery of irregular topography such mountain ranges and 

noise removal is performed when pixel values do not reflect the true intensities of the real 

scene. 

 

Table 3-1: SPOT-6 and Worldview-2 satellites and HRG instruments details 

Satellite/Sensor 

properties 

SPOT-6 WorldView-2 

Orbit  Sun synchronous Sun synchronous 

Equator crossing time 10:00 am local time 10:30 am local time 

Spectral bands and 

spatial resolutions 

(HRG) 

4 multispectral bands at 6.0 m 

resolution (blue, green, red, 

near infrared (NIR)) 

 

Single panchromatic band at 50 cm resolution 

8 multispectral bands at 2.0 m spatial resolution 

(Coastal, Red, Blue, Red Edge, Green, NIR1, 

Yellow, NIR 2) 

Spectral range (HRG) Panchromatic(450 – 745 nm) 

Multispectral  

Blue (455 – 525 nm) 

Green (530 – 590 nm) 

Red (625 – 695 nm) 

NIR (760 – 890 nm) 

Panchromatic (450 – 800 nm) 

Multispectral 

Coastal (400-450 nm), Red (630-690 nm),Blue 

(450-510 nm), Red Edge (705-745 nm), Green 

(510-580 nm), NIR1 (770- 895 nm),Yellow (585-

625 nm)& NIR2 (860-1040 nm) 

Data quantisation 12-bits per pixel 11-bits per pixel 

Imaging swath 60 km at nadir 16.4 km at nadir 

 

The pre-processing stage was only necessary on the SPOT imagery and was conducted on an 

ERDAS 2014 Imagine® environment. The SPOT imagery bands were subjected to 

atmospheric and topographic corrections, and orthorectification. The atmospheric and 

topographic corrections were completed with the Atmospheric and a Topographic Correction 

(ATCOR) 3 module as it was designed for applications on the uneven and mountainous 

terrains. Orthorectication was applied using a nearest neighbour algorithm using the 

parameters shown on Table 3-2. 
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Table 3-2: Orthorectification projection parameters for the SPOT 6 Imagery package 

Projection type Universal Transverse Mercator 

Spheroid WGS 1984 

Datum WGS 1984 

Scale factor at central meridian 0.9996 

Longitude of central meridian 27 E 

Latitude of origin projection 0 

False easting 500000 meters 

False northing -10000000 meters 

 

3.3.2. LULC class definition and sampling 

The initial classification was comprised of 18 spectral classes generated from the pan 

sharpened product of 0.5 meters panchromatic Worldview-2 and the 8 multispectral bands of 

WorldView-2 using the ISO Cluster Unsupervised Classification technique on ArcMap 

10.3®. The 18 spectral classes achieved from the ISO clustering technique were regrouped 

into 9 broad LULC classes listed and described on Table 3-3, which were then used in this 

study.  

 

Table 3-3: LULC classes and descriptions 

CLASS DESCRIPTION  

Water bodies All areas of open water 

Bare soil 

Non-vegetated barren areas dominated by loose soil and sand, does not include those 

used for agricultural purposes  

Cultivated Large-scale area with soil tilled for agricultural purposes.  

Green 

vegetation 

Green, tall trees and bush dominated areas, typically with higher canopy heights and 

more compact canopy densities 

Shadows  

Surfaces at which the sunlight was obstructed by the opaque surrounding such that the 

sensor couldn’t capture the true LULC type   

Burnt areas 

Surface characterised with dark/black ashes showing signs of having had experienced 

fires recently 

Scrubland 

Grass and shrubs which did not particularly look green in colour. Most looked dry and 

may have survived the  recent fire outbreaks 

Rock 

outcrops  Non-vegetated areas dominated by protruding rock fragments 

Built-up 

areas 

Rooftops of man-made structures typically made from shiny corrugated iron sheets 

and other materials 

 

The generalised ISO Clustering classification of the pan-sharpened WorldView-2 was then 

converted into polygon based maps using the class value as the basis for the conversion. 
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Stratified random sample pixels within each LULC types were performed. The collected 

samples were then used as ground reference data, as contemporary field-collected samples 

were not available from the selected study area. A stratified sampling frame was employed 

in the collection of reference samples with no consideration of how prominent they seem to 

have occurred judging from the unsupervised classification. Equal numbers of samples per 

class was collected (Duro et al., 2012). A total of 774 pixels were selected (86 per LULC 

class). The reference data were then allocated randomly into training and validation 

/datasets (Table 3-4) using the 70/30 rule for each class by generating a list of 60 random 

unique numbers within a range of 1 to 86 on Microsoft Excel 2013®. The samples whose 

number corresponded with random unique numbers generated on Excel were used to train 

the classification algorithm and the remaining 26 were used for validations. 

 

Table 3-4: Training and validation data set for the LULC classes 

LULC Classes Training # pixels Validation # Pixels TOTAL # of pixels 

Water bodies 60 26 86 

Bare soil 60 26 86 

Cultivated 60 26 86 

Green vegetation 60 26 86 

Shadows 60 26 86 

Burnt areas 60 26 86 

Dry vegetation 60 26 86 

Rock outcrops 60 26 86 

Built-up areas 60 26 86 

TOTAL 540 234 774 

 

3.3.3. Support Vector Machine Classification Algorithms 

For classification purposes, the pixel-based and object-based SVM algorithms were used. The 

SVMs are cluster of supposedly superior machine learning algorithms which are found to be 

uncertain with the best available in categorizing high-dimensional datasets (Huang et al., 

2002). The success of the classification accuracies of the SVMs depends on: how well the 

training was conducted, the kernel used, tune parameters chosen to fit the kernel and the 

method used to produce the SVM (Huang et al., 2002; Otukei and Blascke, 2010). The SVM 

algorithms calculate the optimal separating hyper-plane between classes using the support 

vectors (training data) placed at the edges of class descriptors (Tzotsos, 2006). 
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There are four kernel types used in SVM classification, i.e. linear, polynomial, radial 

basis function (RBF) and sigmoid. The RBF kernel used for this study, with the rest having 

had been considered. The RBF kernel was a preferable choice over others because it 

nonlinearly maps the provided support vectors into higher dimensional spaces (Hsu et al., 

2010). The tuning parameters for the SVM models utilising the RBF kernel are Gamma 

Kernel Function (GKF) and the penalty parameter. The increasing in the GKF was kept at the 

default 0.125 and the penalty parameter at 100.0. 

 

3.3.4. PBIA 

The PBIA approach is essential for the recognition of spectral patterns across the study area. 

This approach was exclusively applied in an ENVI 5.2® environment for both images. The 

workflow of the applied PBIA methodology is shown in Figure 3-2. 

 

Figure 3-2: Main stages of LULC mapping through PBIA approach of both SPOT-6 and 

WorldView-2 
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3.3.5. OBIA 

This OBIA approach is essential for the recognition of spatial patterns across the study area 

as it integrates spectral and spatial characteristics for its classifications. The OBIA 

classification process is generally preceded by segmentation 

 

3.3.5.1. Segmentation 

Segmentation serves an initial step of OBIA and generally involves the creation of image-

objects that represent meaningful entities by assembling neighbouring pixels with similar 

characteristics (Cleve et al., 2008). This study made use of the Multi-resolution (MRS) and 

spectral differencing segmentation (SDS) image segmentation algorithms found in the 64-bit 

version of eCognition Developer 9® environment (Trimble, 2014). 

The MRS algorithm is a bottom-up approach which is based on the pairwise region 

merging technique which, for a given number of image objects, lessens the average 

heterogeneity and maximizes their respective homogeneity (Trimble, 2014). The MRS 

process commences with pixel-sized objects which are then iteratively established through 

pair-wise amalgamation of adjacent objects based on several predefined scale, colour, shape, 

smoothness and compactness parameters (Duro et al., 2012). These parameters are the 

subjected to relative weighting in order to define the homogeneity measure, and a “stopping 

threshold” of within-object homogeneity based on underlying input layers, and thus can 

explain the size and shape of resultant image objects (Duro et al., 2012; Trimble, 2014). 

The scale parameter is considered as the most crucial of the MRS process as it 

controls the relative size of the image object, which directly affects the overall accuracy of 

classifications (Benz et al., 2004; Pakale and Gupta, 2010; Myint, et al. 2011; Trimble, 

2014). The shape and compactness factors use weights ranging between 0 and 1 to control the 

homogeneity of the image objects at different scales (Pakale and Gupta, 2010). The shape 

factor regulates spectral homogeneity versus the shape of objects, while the balance between 

compactness and smoothness controls the shape between smooth boundaries and compact 

edges (Pakale and Gupta, 2010; Myint et al., 2011). The smoothness factor is directly linked 

to the compactness and their sum equals to one, and are only effective when the shape factor 

is larger than zero (Myint et al., 2011; Trimble, 2014) 

The SDS allows for the image objects to be merged, provided that their mean spectral 

intensities are less than or equal to the value given as the mean maximum spectral difference 

parameter (Trimble, 2014). The SDS is also a bottom-up segmentation approach, as it was 

designed to in order to refine the existing segmentation results by merging spectrally similar 
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image objects produced by previous segmentations, and cannot be used to develop image 

object based on the pixel level (Trimble, 2014). For the purpose of this study, the same 

segmentation rules and parameters were applied at 3 m scale so that small features such as the 

built-up structures are captured during the segmentation. All the image layers were given an 

equal weight of 1 except for the NIR1 weight value which was doubled on both images. The 

parameters used for the segmentation on both imageries are as shown in Table 3-5: 

 

Table 3-5: Parameters for the segmentations for the imagery scenes 

  

  

Level 1 

  

  

  

  

  

Scale Parameter 3 

Color 0,7 

MRS 

  

Composition Of  Homogeneity Criterion 

  

  

  

Shape 0,3 

Smoothness 0,9 

  

Level 2 

  Compactness 0,1 

SDS Maximum Spectral Difference 10 

 

During training of the OBIA approach a class hierarchy is developed which involves the 

selection of representative of different LULC types. The description of classes is achieved 

through the combination of mean, standard deviations, and ratio of imagery bands (Volker, 

2003). The steps followed for the OBIA approach is shown on Figure 3-3. 
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Figure 3-3: Main stages for Object-based SVM classification 

 

3.3.6. Accuracy assessment 

An accuracy statement is an important accompaniment to any thematic map derived from 

remote sensing, and it is generally accepted that no classification is complete until its 

accuracy has been thoroughly evaluated (Foody, 2002). The accuracy of a classification 

refers to the extent of correspondence between the remotely sensed imagery data and 

reference data (Iqbal and Khan, 2014). Accuracy assessment in remote sensing LULC 

mapping studies is essential to assess remote sensing final product. The purpose of 

assessment is vital to gain a warranty of classification quality and to inform the confidence of 

the user on the resultant product (Hasmadi et al., 2009). 

Accuracy assessment for classifications was done through the application of typical 

procedures for image classifications using confusion matrices. The overall accuracies, error 

producer’s accuracies, user’s accuracies and kappa indices for all produces maps were then 

evaluated. The accuracies are expressed as proportions, with the overall accuracy 



21 
 

representing the probability that a randomly selected point is classified correctly on the map 

(Foody, 2002; Adam et al., 2014). The producer’s accuracy is indicative of the probability 

that the classifier has correctly labelled in an image pixel, whereas the user’s accuracy 

indicating the probability of this classification (Adam et al., 2014). The kappa coefficient 

measures the difference between the actual agreement between reference data and the 

classifier used to perform the classification versus the likelihood of agreement between the 

reference data and a random classifier (Foody, 2002; Adam et al., 2014). For each 

classification, a confusion matrix is presented, along with its kappa coefficient overall, user’s 

and producer’s accuracies. Although there is no recognized standard for accuracy assessment, 

a commonly suggested accuracy level is 85% (Foody, 2002). 

 

3.4. Comparison of imagery and analysis approach performances 

3.4.1. Qualitative comparison 

The initial qualitative comparison was based on visual observation of the produced maps with 

special emphasis on the relative spatial distribution of the classes across the scene. The visual 

comparison was accompanied by comparison of the confusion matrices where the overall 

accuracies, kappa coefficients, producer’s accuracies and the user’s accuracies are included. 

The qualitative comparisons were then subjected to inference of the superiority of LULC 

maps generated with the different image classification approaches and imagery packages, and 

the statistical dependence test for the dependence of pair error matrices. The number of 

correctly and the incorrectly validation samples for any combination of alternatives were 

cross-tabulated as in Table 3-6 (de Leeuw et al., 2006). 

 

Table 3-6: Cross tabulation of number of correct and incorrectly classified pixels for the alternative 

classifiers/imageries 

  Classifier/imagery 2   

Classifier/imagery 1 Incorrect Correct 

Incorrect f11 f12 

Correct f21 f22 

 

In Table 3-6, f12 represents the number of samples misclassified by the first classification 

process but correctly classified by the second, with f21 representing the number of samples 

that are correctly classified by the first classification algorithm but misclassified by the 

second classification algorithm (Foody, 2002; Adam et al.,2014). The chi-square test was 
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conducted in order to test the independency (Ho) of the classifications and the alternative 

hypothesis (Ha) of the dependency of the two classifications. 

 

The chi-square distribution is represented by: 

X2=
(f12-f21)

2

f12+f21

 

 

and follows a z-distribution with 1 degree of freedom (Foody, 2002; de Leeuw et al., 2006). 

The McNemar’s test was used to measure: whether a statistically significant difference exists 

between classifications performances on the same image package using different approaches 

and whether a statistically significant difference exists between classifications performances 

on the different image package using same approaches. The McNemar’s test is based on the 

standardized normal test expressed as by: 

Z=
f12 -f21

√f12 +f21

 

 

The difference in accuracy between the two error matrices of the classification is statistically 

significant (α ≤ 0.05) if the Z value is more than 1.96 (Foody, 2002; de Leeuw et al., 2006; 

Adam et al., 2014). 

 

3.4.2. Quantitative comparisons 

The quantitative comparisons involved the evaluation of the differences in terms of the area 

and proportions covered by each class of each classification outputs. The area in this study is 

expressed in hectares (ha) and proportion in percentages. The area was calculated as product 

of pixel counts and the spatial resolution of that particular image, i.e. pixel counts were 

multiplied by 36 m
2
 for SPOT-6 and 4 m

2
 for the WorldView-2, and then converted into 

hectares and proportion for each class being expressed as a percentage (%). 

 

3.5. Analysis of the relationship between topographical variables and 

LULC 

The distribution of LULC classes across the topographic variables was determined by 

thematic overlay analysis. For this purpose, the LULC map with the best accuracy (i.e. map 

produced from Object-based SVM on the WorldView-2) was resampled using the 30m 
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SRTM DEM so that its spatial resolution was 30 x 30 m. The resampled LULC map and the 

derived topographical variables were subjected to three separate overlay analyses. The 

product of these overlay analyses are presented as tables which show the occurrence of 

LULC types as a function of altitude, slope and aspect. 

The altitude in the study area ranges between 2092 and 3036 m asl. For the LULC 

types and the elevation overlay analysis, the altitude was categorised into 5 classes with an 

interval of ~200 m. The aspect map was generated from the same SRTM with eight 

categories, namely: north (337.5 – 22.5°), northeast (22.5 – 67.5°), east (67.5 – 112.5°), 

southeast (112.5 – 157.5°), south (157.5 – 202.5°), southwest (202.5 – 247.5°), west (247.5 – 

292.5°) and northwest (292.5 – 337.5°) (Wondie et al., 2012). The slope map was categorised 

into five classes using natural jenks: 0 – 15.40°, 15.41 - 27.10°, 27.11 - 39.14°, 39.15 - 

53.73° and > 53.73°. 

The overlay analysis was conducted on an ArcMap 10.3 Desktop® environment (see 

workflow on Figure 3.4) using Raster Calculator. Each topographic variable relationship with 

the distribution of the LULC classes was analysed separately so that three tables depicting 

the distribution of each LULC classes across the different categories aspect, altitude and 

slope. The tables were populated with the area (ha) and proportions (%) at each category of 

the topographic variable which are then subjected to descriptive analysis of the trends 

displayed by the relationships. The descriptive analysis was conducted in order to evaluate if 

there has been significant conservation of topographic induced patterns in terms of the 

distribution of LULC types across the study area. 
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Figure 3-4: Workflow for the evaluation of the relationship between topography and LULC 
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4. RESULTS 

4.1. Comparisons of imagery and analysis approach performances 

In order to illustrate the results, a series of LULC maps is presented below i.e. Figure 4-1 to 

4-4. A total of 4 maps was produced for the Mokhothlong District of Lesotho, using the 

combinations of the two images (WorldView-2 and SPOT-6) and the analysis approaches 

(PBA and OBIA) demonstrating the 9 main LULC types. The differences on the thematic 

maps were evaluated using three different techniques, i.e. visual examination, comparison of 

the quantities of each class in each map, and also the accuracy achieved by each classification 

as per the confusion error matrices. The statistical significance of the differences from 

different classification combinations was evaluated using the McNemar’s tests. 

 

4.1.1. Visual examination differences on LULC thematic maps 

In general, all four maps LULC maps presented reasonably accurate visual depiction of the 

broad LULC types of interest in the study area. All 9 LULC types or classes were represented 

in each map and no pixel was left unclassified. 

 

4.1.1.1. Comparison of image packages: SPOT-6 and WorldView-2 

The first visually notable difference when comparing the imagery packages is that the SPOT-

6 maps are characterised with more misclassifications compared to WorldView-2. The 

disparity in terms of the abundance of the misclassifications can be attributed to the 

difference in the imagery resolutions. SPOT-6 has relatively coarser spatial and broader 

spectral resolutions compared to WorldView-2 (see Table 3-1). This therefore meant that 

there was less detail to use during the classification of SPOT-6 than WorldView-2, which 

then offers a greater probability for misclassifications and class confusion on the former 

imagery package. The above observations are consistent with the findings of Lu et al. (2005) 

that higher spatial resolution offer better chances for classification accuracies and also 

emphasizing the significance of short-wave infrared bands in LULC classifications. 

In addition to misclassifications, it is also observable that the thematic maps that 

involved SPOT-6 image were characterised with stronger speckle or salt-and-pepper effects 

which gave them “blurred” appearances compared to their WorldView-2 counterparts. The 

WorldView-2 thematic maps achieved relatively similar LULC types’ distributions as that of 

the ISO Unsupervised Clustering classification on the 0.5 m pansharpened WorldView-2 
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used for sampling compared to SPOT-6. The above was not very surprising as the image used 

for sampling shares the same spectral characteristics as the WorldView-2. 

The SPOT-6 faced difficulties in terms of capturing the small features and those in 

heterogeneous surrounding such as by the rivers where there are alternating occurrences of 

waterbodies, shadows, vegetation, rock outcrops and bare soil. The above problem was 

however was significantly overcome by the WorldView-2 due to its higher spatial and 

spectral resolutions. 
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Figure 4-1: Pixel-Based SVM LULC Map of Mokhotlong District Extracted from a SPOT-6 Multispectral Image 
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Figure 4-2: Pixel-Based SVM LULC Map of Mokhotlong District Extracted from a WorldView-2 Multispectral Image 
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Figure 4-3: Object-Based SVM LULC Map of Mokhotlong District Extracted from a SPOT-6 Multispectral Image 
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Figure 4-4: Object-Based SVM LULC Map of Mokhotlong District Extracted from a WorldView-2 Multispectral Image
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4.1.1.2. Comparison of image analysis approaches: PBIA and OBIA 

While both approaches produced aggregations of LULC types in the study area, the most 

prominent difference between the PBIA and OBIA classified thematic maps from visual 

inspections is that the OBIA features have more pronounced boundaries and have 

significantly less salt-and-pepper effects compared to those achieved from PBIA 

classifications. This difference can be attributed to the fact that the OBIA features are 

comprised on multi-pixel units and were classified as such, whereas the PBIA ones were 

classified as per-pixel level. Classifications at per-pixel level are more susceptible to 

misclassifications and confusions in PBIA than OBIA because of the fact that they only base 

their grouping on spectral characteristics. The above problem is more pronounced when 

classifying the heterogeneous regions on the imagery scene. This observation is consistent 

with the findings of Blaschke et al. (2006), Matinfar et al. (2007) and Bhaskaran et al., 

(2010). 

 The OBIA classification approach has an advantage over PBIA by offering the 

opportunity to integrate spatial and spectral information into the classification which 

enhanced the accuracy of the thematic maps. The OBIA classification approach proved to be 

a very effective tool for producing LULC thematic maps of heterogeneous mountains from 

high resolution multispectral imageries that can visually interpreted with relative ease 

compared to those achieved from the PBIA approach. 

 

4.1.2. Comparison of differences in quantities of LULC types on the different 

thematic maps 

4.1.2.1. Comparison of SPOT-6 and WorldView-2 

The quantitative evidence of the above visual observations is provided in Table 4-1 and Table 

4-2, which depicts the areas (ha), proportions (%), and the differences (WorldView2 – 

SPOT6) of LULC achieved from the two images from the same classification approach. 

As illustrated in Table 4-1, the evaluation of the differences in quantities of the LULC 

types revealed there are, but minor inconsistencies in terms of the relative proportions of the 

classes in the two images when the same PBIA SVM algorithm and training data were used. 

The differences are all within the confines of 2%, however when inspecting the differences in 

terms of area, one can notice that there had been some significant differences in classes such 

as the burnt areas (~165.4 ha) and cultivated area (~97.01 ha). It is worth a mention that in 

none of the 9 LULC types used for this study, the two images achieved the equal area as the 

other and that although these differences may seem minimal when looking at the area in 
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hectares and proportions, these differences are very significant if one is inspecting them at m
2
 

which defines the spatial resolutions of the used images. 

 

Table 4-1: Areas and proportions of LULC types of WorldView-2 and SPOT-6 achieved through the PBIA SVM 

Classification 

 WorldView-2 SPOT-6  differences  

        

LULC Classes Area (ha) Proportions (%) Area (ha) Proportions (%) Area (ha)  Proportions (%) 

Water Bodies 74.08 0.714 77.02 0.726 -2.94  -0.0127 

Cultivated Land 2620.70 25.245 2717.71 25.626 -97.01  -0.3813 

Shadows 55.14 0.531 54.19 0.511 0.95  0.0202 

Rock Outcrops 181.09 1.744 155.61 1.467 25.48  0.2771 

Built-Up Area 6.91 0.067 5.47 0.052 1.44  0.0150 

Green Vegetation 36.24 0.349 32.96 0.311 3.28  0.0383 

Scrubland 4080.10 39.303 4099.52 38.655 -19.42  0.6473 

Bare Soil 2833.07 27.290 2803.57 26.435 29.50  0.8548 

Burnt Areas 493.93 4.758 659.29 6.217 -165.36  -1.4587 

 10381.24 100.000 10605.33 100.000    

 

These differences may be attributed to the fact that the analyses used for this study are 

susceptible to salt-and-pepper effects which then can lead to misclassifications and confusion 

in heterogeneous parts of the scene. These class confusions and misclassifications are then 

translated to the differences in the resultant areas and proportions. The two above phenomena 

may not necessarily occur at the same sets of pixels and for the same LULC classes, because 

if that was the case, there would not necessarily be any difference in the areas as the errors 

would just cancel each other out. Here even though the same set of training samples and 

classification algorithms were used, the images are characterised with different spatial and 

spectral resolutions (Table 3-1) which therefore reveals that the differences in both 

resolutions characterising the images has an effect on the results. 
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Table 4-2: Areas and proportions of LULC types of WorldView-2 and SPOT-6 achieved through the OBIA SVM 

Classification 

 WorldView-2 SPOT-6  differences  

        

LULC Classes Area (ha) Proportions (%) Area (ha) Proportions (%) Area (ha)  Proportions (%) 

Water Bodies 80.12 0.772 80.41 0.774 -0.29  -0.0028 

Cultivated Land 2645.94 25.482 2646.40 25.486 -0.46  -0.0043 

Shadows 59.06 0.569 59.08 0.569 -0.02  -0.0002 

Rock Outcrops 220.14 2.120 219.11 2.110 1.03  0.0100 

Built-Up Area 9.39 0.090 9.26 0.089 0.13  0.0013 

Green Vegetation 40.37 0.389 40.47 0.390 -0.10  -0.0010 

Scrubland 4042.46 38.932 4042.65 38.933 -0.19  -0.0016 

Bare Soil 2764.94 26.628 2765.58 26.634 -0.64  -0.0060 

Burnt Areas 521.08 5.018 520.62 5.014 0.47  0.0045 

TOTALS 10383.51 100.000 10383.58 100.000    

 

Table 4-2 presents the results of the evaluation of the differences in quantities of the 

LULC types on WorldView-2 and SPOT-6 images when the same sets of training data and 

object-based SVM classifier were used. The table shows that there had been substantial 

reductions in terms of the differences compared to when the same images were used in the 

PBIA approach. This may be attributed to the fact that pixels were grouped into image 

objects during the two segmentation techniques, as per their similar spatial and spectral 

characteristics, such that chances for confusions and misclassification had been considerably 

reduced. 

 

4.1.2.2. Comparison of image analysis approaches: PBIA and OBIA 

Largely, both classification approaches enabled a reasonably similar visual depiction of broad 

LULC types of interest in the study area on both images, although there were some visually 

observed differences particularly those to do with the abundance of the salt-and-pepper 

effects. The quantitative evidence of the above visual observations is provided in Table 4-3 

and Table 4-4, which depict the areas (ha), proportions (%), and the differences (PBIA – 

OBIA) of LULC achieved from the two images from the different classification approaches. 
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Table 4-3: Areas and proportions results achieved from OBIA and PBIA approaches on SPOT-6 imagery 

 OBIA  PBIA  differences  

        

LULC Classes Area (ha) Proportions (%) Area (ha) Proportions (%) Area (ha)  Proportions 

Water Bodies 77.02 0.726 80.41 0.774 -3.39  -0.048 

Cultivated Land 2717.71 25.626 2646.40 25.486 71.31  0.139 

Shadows 54.19 0.511 59.08 0.569 -4.89  -0.058 

Rock Outcrops 155.61 1.467 219.11 2.110 -63.50  -0.643 

Built-Up Area 5.47 0.052 9.26 0.089 -3.79  -0.038 

Green Vegetation 32.96 0.311 40.47 0.390 -7.52  -0.079 

Scrubland 4099.52 38.655 4042.65 38.933 56.87  -0.278 

Bare Soil 2803.57 26.435 2765.58 26.634 37.99  -0.199 

Burnt Areas 659.29 6.217 520.62 5.014 138.67  1.203 

 10605.33 100.000 10383.58 100.000    

 

Table 4-3 presents the evaluation of the differences in the quantities of the 9 LULC 

classes used as classified using the OBIA and PBIA analysis approaches on the same SPOT-

6 multispectral image. The differences in the two are similar to those when the different 

images were compared using the same classifications. The differences were all below 1% 

except for the burnt area class where the difference was just above 1.2%. As in the previous 

comparisons, the use of the proportional difference can be deceiving, the differences in the 

areas in ha shows that there were differences for classes such as burnt areas (~138.7 ha), 

cultivated areas (71.3 ha), rock outcrops (~63.5 ha) and scrubland (~56.9 ha). These 

differences may look negligible when just looking at them in hectares and percentages but 

are quite significant at the units of the spatial resolutions of the images. 

The differences in the quantities of the classes achieved through the different 

classification approaches on the same imagery using the same classification algorithm and 

training data may be attributed to the fact that the analyses base the classification on different 

units. The OBIA approach clusters pixels prior classification on the basis of their similarities 

in terms of their spectral and spatial characteristics whereas the PBIA classify pixels at 

individual level, which makes them very vulnerable to misclassifications and class 

confusions during classifications (Blaschke et al., 2006). 
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Table 4-4: Areas and proportions results achieved from OBIA and PBIA approaches on WorldView-2 

imagery 

 OBIA  PBIA  differences  

        

LULC Classes Area (ha) Proportions (%) Area (ha) Proportions (%) Area (ha)  Proportions 

Water Bodies 74.08 0.714 80.12 0.772 -6.05  -0.058 

Cultivated Land 2620.70 25.245 2645.94 25.482 -25.24  -0.238 

Shadows 55.14 0.531 59.06 0.569 -3.92  -0.038 

Rock Outcrops 181.09 1.744 220.14 2.120 -39.05  -0.376 

Built-Up Area 6.91 0.067 9.39 0.090 -2.48  -0.024 

Green Vegetation 36.24 0.349 40.37 0.389 -4.14  -0.040 

Scrubland 4080.10 39.303 4042.46 38.932 37.64  0.371 

Bare Soil 2833.07 27.290 2764.94 26.628 68.13  0.662 

Burnt Areas 493.93 4.758 521.08 5.018 -27.16  -0.261 

 10381.24 100.000 10383.51 100.000    

 

Table 4-4 presents results of the OBIA and PBIA classifications on the WorldView-2 

multispectral images as well as their differences. The differences on the WorldView-2 had 

significantly reduced compared to those found during the comparisons using SPOT-6 (see 

Table 4-3). If inspecting the differences in terms of proportions (%), the notable ones 

includes bare soil (~0.662%), rock outcrops (~0.376%) and scrubland (~0.371%). These 

differences were all under 100 ha which is a similar difference compared to the differences in 

SPOT-6 (Table 4-3). 

The differences in the quantities of the classes achieved through the PBIA and OBIA 

classification approaches on the same image, training dataset and algorithm may be attributed 

to the fact that the analyses base the classification on different units. The OBIA approach 

groups pixels prior classification on the basis of their similarities in terms of their spectral 

and spatial characteristics whereas the PBIA classify pixels at individual level which makes 

them very vulnerable to misclassifications and class confusions during classifications. 

 

4.1.3. Comparison of the classification accuracies 

In order to illustrate the performances of each combination of imagery and analysis approach, 

a series of error matrices with the producer’s and user’s accuracies for the classifications is 

presented in Table 4-5 to 4-8. 
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Table 4-5: Confusion matrix for the LULC classification on a SPOT-6 image using a PBIA approach 

 Classification Data   
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Bare Soil 19 0 2 0 3 2 0 0 0 26 7 73.1 

Water Bodies 0 18 1 3 0 2 0 0 2 26 8 69.2 

Cultivated Land  0 0 23 0 0 0 0 3 0 26 3 88.5 

Shadows 0 2 0 23 0 0 0 0 1 26 3 88.5 

Rock Outcrops 3 0 3 0 20 0 0 0 0 26 6 76.9 

Built-Up Areas 1 0 0 0 2 23 0 0 0 26 3 88.5 

Green Vegetation 0 1 0 0 0 0 20 3 2 26 6 76.9 

Scrubland 1 0 4 0 0 0 2 19 0 26 7 73.1 

Burnt areas 0 0 3 0 0 0 0 2 21 26 5 80.8 

TOTALS 24 21 36 26 25 27 22 27 26 234 48  

 commissions 5 3 13 3 5 4 2 8 5 48   

 User’s accuracy (%) 79.2 85.7 63.9 88.5 80.0 85.2 90.9 70.4 80.8    

 

Table 4-5 presents a confusion matrix for the LULC classification of Mokhotlong 

District on SPOT-6 using a pixel-based SVM algorithm. Table 4-5 shows that of the 234 

validation samples used, 48 were misclassified or confused for a different class or the other. 

None of the 9 classes had all validation samples which were all classified for the in classes, 

but classes such as cultivated land, shadows and built-up areas were able to have 23/26 

samples correctly classified, which interpreted to a 88.5% producer’s accuracy. The water 

bodies class had the least number of validation samples correctly classified (18/26), with a 

producer’s accuracy of 69.2%. The green vegetation class achieved the highest user’s 

accuracy with 90.9% where it had 20 correctly classified samples and only 2 from the 

scrubland class. 

The confusion matrix revealed that the most confusion in the classification were with 

the water bodies followed by the bare soil and dry vegetation LULC classes. Water bodies 

were mostly confused for shadows and built-up areas whereas the bare soil had been 

misclassified for rock outcrops, built-up area and cultivated land, and the burnt vegetation 

being misclassified for cultivated land and scrubland. The confusion may be attributed to the 

fact that these classes occurred mostly in close proximity to one another and may have shared 

some degrees of spectral similarities, or may have fallen on different pixels due to the 

difference in the resolutions of the imagery used for sampling and classification. 
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Table 4-6: Confusion matrix for the LULC classification on a WorldView-2 image using a PBIA approach 
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Bare Soil 21 0 2 0 2 1 0 0 0 26 5 80.8 

Water Bodies 0 19 1 2 0 2 0 0 2 26 7 73.1 

Cultivated Land  0 0 24 0 0 0 0 2 0 26 2 92.3 

Shadows 0 2 0 23 0 0 0 0 1 26 3 88.5 

Rock Outcrops 3 0 1 0 22 0 0 0 0 26 4 84.6 

Built-Up Areas 1 0 0 0 2 23 0 0 0 26 3 88.5 

Green Vegetation 0 1 0 0 0 0 20 3 2 26 6 76.9 

scrubland 1 0 4 0 0 0 1 20 0 26 6 76.9 

Burnt areas 0 0 3 0 0 0 0 1 22 26 4 84.6 

TOTALS 26 22 35 25 26 26 21 26 27 234 40  

 commissions 5 3 11 2 4 3 1 6 5 40   

 User’s accuracy (%) 80.8 86.4 68.6 92.0 84.6 88.5 95.2 76.9 81.5    

 

Table 4-6 presents a confusion matrix for the LULC classification of Mokhotlong 

District on WorldView-2 using a pixel-based SVM learning algorithm. Table 4-6 reveals that 

40 out of 234 validation samples were incorrectly classified. The cultivated land class had the 

most validation samples correctly classified, i.e. 24/26, which is approximately ~92.3% of 

producer’s accuracy. The shadows and built-up areas achieved the same producer’s accuracy 

as on the previous SPOT-6 PBIA classification (~88.5%). The water bodies LULC class 

achieved the lowest producer’s accuracy at 19/26 (~73.1%) but was higher than that from the 

previous classification. The cultivated land had the lowest user’s accuracy at 68.6%, having 

at least 11 samples that had been mistaken for it. The green vegetation LULC type achieved 

the highest user’s accuracy at ~95.2%. 

The above confusions may be attributed to the close spacing of different samples. Due 

to the spectrally heterogeneous nature of the study area, those classes may have shared some 

degree of spectral similarities or may have fallen on different pixels due to the difference in 

the resolutions of the imagery used for sampling and classification. However, there had been 

some improvement in terms of classification accuracies on the WorldView-2 when compared 

to the same classification on SPOT-6. 
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Table 4-7: Confusion matrix for the LULC classification on a SPOT-6 image using an OBIA approach 
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Bare Soil 22 0 1 0 2 1 0 0 0 26 4 84.6 

Water Bodies 0 21 0 3 1 0 0 0 1 26 5 80.8 

Cultivated Land  0 0 24 0 0 0 0 2 0 26 2 92.3 

Shadows 0 1 0 25 0 0 0 0 0 26 1 96.2 

Rock Outcrop 1 0 1 0 24 0 0 0 0 26 2 92.3 

Built-Up Areas 0 0 0 0 1 25 0 0 0 26 1 96.2 

Green Vegetation 0 0 0 0 0 0 25 1 0 26 1 96.2 

Scrubland 0 0 4 0 0 0 1 21 0 26 5 80.8 

Burnt areas 0 0 2 0 0 0 0 1 23 26 3 88.5 

TOTALS 23 22 32 28 28 26 26 25 24 234 24  

 commissions 1 1 8 3 4 1 1 4 1 24   

 User’s accuracy (%) 95.7 95.5 75.0 89.3 85.7 96.2 96.2 84.0 95.8    

 

Table 4-7 presents a confusion matrix for the LULC classification of Mokhotlong 

District on SPOT-6 using an object-based SVM algorithm. The above confusion matrix 

reveals that 24/234 samples were incorrectly classified. Most misclassification in the water 

bodies and the scrubland classes where 21/26 samples had been correctly classified. The 

above LULC classes achieved the lowest producer’s accuracies at ~80.8%. The cultivated 

land like on the previous classification achieved the lowest user’s accuracy (75%) having had 

most number of the samples from other classes being confused with it. The highest user’s 

accuracy was scored by the built-up areas and green vegetation LULC class at ~96.2%. 

The object-based SVM classification of SPOT-6 improved the results when compared 

to the previous classifications presented in Table 4-5 and Table 4-6. These enhancements in 

classification accuracy confusions may be ascribed to the fact that OBIA classifications are 

conducted on multi-pixel segments rather than on individual rather as on the previous 

classifications. The use of multi-pixel segments image objects which share similar spectral 

and spatial characteristics rather than pixels as individual lessens the chances of 

misclassifications, as bigger and fewer units are in this case subjected to classification. 
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Table 4-8: Confusion matrix for the LULC classification on a WorldView-2 image using an OBIA approach 
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Bare Soil 23 0 1 0 1 1 0 0 0 26 3 88.5 

Water Bodies 0 24 0 2 0 0 0 0 0 26 2 92.3 

Cultivated Land  0 0 25 0 0 0 0 1 0 26 1 96.2 

Shadows 0 1 0 25 0 0 0 0 0 26 1 96.2 

Rock Outcrops 0 0 0 0 25 1 0 0 0 26 1 96.2 

Built-Up Areas 0 0 0 0 0 26 0 0 0 26 0 100 

Green Vegetation 0 0 0 0 0 0 25 1 0 26 1 96.2 

Low-lying Vegetation 0 0 2 0 0 0 1 23 0 26 3 88.5 

Burnt areas 0 0 2 0 0 0 0 2 22 26 4 84.3 

TOTALS 23 25 30 27 26 28 26 27 22 234 16  

 commissions 0 1 5 2 1 2 1 4 0 16   

 User’s accuracy (%) 100 96.0 83.3 92.6 96.2 92.7 96.2 85.2 100    

 

Table 4-8 presents the confusion matrix for the accuracy assessment of the object-based 

SVM LULC classification on WorldView-2 image. In this classification, 16 of the 234 

validations were only incorrectly classified. The built-up areas LULC classes achieved a 

26/26 (100%) producer’s accuracy, with other four LULC classes (cultivated land, shadows, 

green vegetation and rock outcrops) with just 1/26 sample being wrongly classified. The bare 

soil and burnt areas classes achieved 100% user’s accuracy. The increased spectral and 

spatial resolutions of WorldView-2 and the use of the OBIA approach for the above 

classifications can be stated as a reason for the improvements in classifications as compared 

to the previous classifications. 

 

4.1.3.1. Comparison of overall classifications and kappa statistics 

Table 4-9: Kappa and Overall accuracies values for the LULC classification models 

  PBIA  OBIA 

Overall accuracy statistics SPOT-6 WorldView-2 SPOT-6  WorldView-2 

Kappa Coefficient 0.776  0.813 0.888  0.925 

Accuracies 79.5  82.9 89.7  93.2 

 

Table 4-9 presents the overall accuracy assessment statistics for the four LULC 

classification models for a sample of 234 validation samples. The comparison of the overall 
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accuracies and kappa coefficients for the four models reveals that there are differences in the 

scores of the models. When comparing the overall accuracies of the models that used the 

same imageries but different analysis approaches, it is discovered that the difference was 

~10.2% and ~10.3% for SPOT-6 and WorldView-2, respectively. WorldView-2 enabled 

better classification accuracy compared to the SPOT-6 in both the PBIA and OBIA 

approaches. 

The comparison of the overall accuracy statistics for the same classification 

approaches using different images revealed that the difference was 3.4% and 3.5% for the 

PBIA and OBIA approaches, respectively. The OBIA approach enabled better classification 

accuracy compared to the PBIA in both images used for this study. If using the guidance of 

Foody (2002) that only overall accuracy of above 85% is acceptable for application purposes, 

only the object-based SVM LULC models met the required minimum standard. All the four 

models were able to score very good overall kappa statistics, as the lowest kappa value fell in 

the category which is considered as showing a good agreement, and the rest were in the very 

good agreement category. 

 

4.1.3.2. Evaluation of the statistical significance of the difference in classification 

accuracies 

Tables 4-10 to 4-13 are the cross-tables presenting the error matrices of the correctly and 

incorrectly pixels/objects in the conducted classification processes. 

 

Table 4-10: Frequency of correct and incorrectly classified pixels by PBIA on SPOT-6 and WorldView-2 

PBIA WORLDVIEW-2 

SPOT 6 Incorrect Correct Total 

Incorrect 32 16 48 

Correct 8 178 186 

Total 40 194 234 

 

Table 4-10 shows the number of pixels correctly and incorrectly classified on the 

PBIA classification on SPOT-6 (Table 4-5) and WorldView-2 (Table 4-6). The table 

indicates that the two classifications agreed on 210 pixels, with 178 correctly classified on 

both classifications and 32 incorrect on both classifications. The classifiers failed to agree on 

24 out of 234 pixels, as shown on the top right and bottom left diagonal. The chi-squared test 

was conducted in order to evaluate the independency of Table 4-5 and Table 4-6. The null 

hypothesis states of this test stated that that knowing the accuracy level of Table 4-5 cannot 
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help one to predict the level of Table 4-6 and vice-versa, i.e., the two matrices are 

independent. In simple form, the 

H0: Table 4-5 and Table 4-6 are independent. 

Ha: Table 4-5 and Table 4-6 are not independent 

α = 0.05 

The chi-square value of Table 4-10 equals to 104.71, with a p-value of >0000.1 at α = 

0.05. This reveals the lack of independence in the data represented in the matrix, rejecting the 

null hypothesis. Thus we can accept the alternative hypothesis, which states that the data 

presented on the two confusion matrices are dependent on one another. The McNemar’s test 

statistic of Table 4-10 is equal to 2.632 thus greater than 1.96. This therefore implies that the 

difference between the performances of SPOT-6 and WorldView-2 when PBIA statistically 

significant at 95% significance level. 

 

Table 4-11: Frequency of correct and incorrectly classified pixels by OBIA on SPOT-6 and WorldView-2 

OBIA WORLDVIEW-2 

SPOT 6 Incorrect Correct Total 

Incorrect 12 4 16 

Correct 12 206 218 

Total 24 210 234 

 

Table 4-11 shows the number of pixels correctly and incorrectly classified on the 

OBIA classification on SPOT-6 (Table 4-7) and WorldView-2 (Table 4-8). The table 

indicates that the two classifications agreed on 218 pixels, with 206 correctly classified on 

both classifications and 12 incorrect on both classifications. The classifiers failed to agree on 

16 out of 234 pixels, as shown on the top right and bottom left diagonal. The chi-squared test 

was conducted in order to evaluate the independency of Table 4-7 and Table 4-8. The null 

hypothesis states of this test stated that that knowing the accuracy level of Table 4-7 cannot 

help one to predict the level of Table 4-8 and vice-versa, i.e., the two matrices are 

independent. 

The chi-square value of Table 4-11 equals to 78.21, with a p-value of >0000.1 at α = 

0.05. This reveals the lack of independence in the data represented in the matrix. Hence, the 

null hypothesis is rejected and the alternative hypothesis is accepted, which states that the 

data presented on the two confusion matrices are dependent samples. The McNemar’s test 

statistic of the above matrix is 2 and is greater than 1.96. This therefore reveals that the 
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difference between the performances of SPOT-6 and WorldView-2 when SVM is applied 

through an OBIA approach is applied is statistically significant at 95% significance level. 

 

Table 4-12: Frequency of correct and incorrectly classified objects on SPOT-6 by PBIA and OBIA 

approaches 

SPOT-6 OBIA 

PBIA Incorrect Correct Total 

Incorrect 12 36 48 

Correct 12 174 186 

Total 24 210 234 

 

Table 4-12 presents the number of pixels correctly and incorrectly classified on the 

through the PBIA (Table 4-5) and OBIA (Table 4-7) on the SPOT-6 multispectral image. The 

above Table 4-12 stipulates that the two classifications processes agreed on 186 pixels of 

which 174 are correctly classified and 12 incorrectly classified. The classifiers failed to agree 

on 48 out of 234 pixels, as shown on the top right and bottom left diagonal. The chi-square 

value of Table 4-11 is 14.2611. The p-value is 0.000159. This result is significant at p < 0.05. 

This reveals the lack of independence in the data represented in the matrix. Thus reject the 

null hypothesis and accept the alternative hypothesis, which states that the data presented on 

the two confusion matrices are dependent samples. 

The McNemar’s test statistic of the above matrix is equal to 3.46 and is greater than 

1.96. This therefore reveals that the difference between the performances of the SVM 

classifier through the PBIA and OBIA on SPOT-6, are statically significantly at 95% 

significance level. 

 

Table 4-13: Frequency of correct and incorrectly classified objects on WorldView-2 by PBIA and OBIA 

approaches 

WorldView-2 OBIA 

PBIA Incorrect Correct Total 

Incorrect 
1

0 

3

0 
40 

Correct 6 
1

88 
194 

Total 16 218 234 
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Table 4-13 presents the number of pixels correctly and incorrectly classified on the 

through the PBIA (Table 4-6) and OBIA (Table 4-8) on the WorldView-2 multispectral 

image. The two classifiers agreed on 198 sample pixels and failed to agree on 36 out of 234 

pixels, as shown on the top right and bottom left diagonal. The chi-square statistic is 24.9848. 

The p-value is .000001. This result is significant at p < 0.05. This reveals the lack of 

independence in the data represented in the matrix, so the null hypothesis is rejected and 

accept the alternative hypothesis. The McNemar’s test statistic of the above matrix is equal to 

3.53 and is greater than 1.96. This therefore reveals that the difference between the 

performances of the SVM classifier through the PBIA and OBIA on SPOT-6, are statistically 

significantly at 95% significance level. 

 

4.2. The relationship between LULC distribution and topography in the 

study area 

The classification model involving the WorldView-2 and the object-based SVM learning 

algorithm achieved the highest overall accuracy statistics with an accuracy of 93.2% and 

kappa coefficient of 0.925. This therefore meant that the thematic map from the above 

classification model was to be used for the overlay analysis with the DEM derived 

topographic variable maps of elevation, slope and aspect in order to assess the relationship 

between LULC spatial distribution and topography. 

Figures 4-7 to 4-9 presents the elevation, slope and aspect maps of the study area 

derived from an SRTM DEM with the spatial resolution of 30 m. The LULC map was 

resampled to cell sizes of the topographical variable maps, so that they’re subjected to 

overlay analysis. This therefore meant that the spatial resolution of the LULC maps was 

decreased from 2 m to 30 m.   
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Figure 4-5: The elevation map of the study area at 30 m resolution 
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Figure 4-6: The aspect map of the study area at 30 m resolution 
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Figure 4-7: The slope map of the study area at 30 m resolution 
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4.2.1. LULC distribution and elevation 

Table 4-14: Extent of the altitudinal ranges across the study area and distribution of LULC classes within each altitudinal range 

   ALTITUDINAL RANGE (m asl)  TOTAL 

LULC Types  <2200 2200-2400 2400-2600 2600-2800 >2800  

Water Bodies Area (ha) 26.52 39.78 19.16 1.47 4.42 91.36 

 Proportion (%) 0.26 0.38 0.18 0.01 0.04 0.88 

Cultivated Land Area (ha) 372.05 1028.49 837.67 294.70 125.25 2658.15 

 Proportion (%) 3.58 9.90 8.07 2.84 1.21 25.60 

shadows Area (ha) 5.89 30.94 8.10 3.68 5.16 53.78 

 Proportion (%) 0.06 0.30 0.08 0.04 0.05 0.52 

Rock outcrops Area (ha) 25.79 123.04 59.68 18.42 0.74 227.65 

 Proportion (%) 0.25 1.18 0.57 0.18 0.01 2.19 

Built-up areas Area (ha) 2.95 6.63 1.47 0.00 0.00 11.05 

 Proportion (%) 0.03 0.06 0.01 0.00 0.00 0.11 

Green vegetation Area (ha) 5.89 10.31 4.42 5.16 3.68 29.47 

 Proportion (%) 0.06 0.10 0.04 0.05 0.04 0.28 

Scrubland Area (ha) 404.47 1226.67 1449.16 651.28 333.74 4065.32 

 Proportion (%) 3.90 11.81 13.96 6.27 3.21 39.15 

Bare Soil Area (ha) 433.94 1270.87 829.57 165.77 36.10 2736.24 

 Proportion (%) 4.18 12.24 7.99 1.60 0.35 26.35 

Burnt areas Area (ha) 55.26 193.03 201.87 41.26 19.16 510.56 

 Proportion (%) 0.53 1.86 1.94 0.40 0.18 4.92 

TOTAL Area (ha) 1345.06 3965.75 3442.00 1192.71 533.14 10478.66 

 Proportion (%) 12.84 37.85 32.85 11.38 5.09 100 
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Table 4-14 presents the areas and proportions of LULC types occurring in the study 

area across the defined elevation ranges. The elevation was categorised into 5 classes with 

ranges of ~200 m above sea level (asl). According to Wondie et al. (2012) elevation plays an 

important role in terms of the determination of life, particularly the distribution of primary 

productivity and is a typical characteristic of mountainous regions. The study area exists 

between the elevations of just below 2000 to just over 3000 m asl with an average of about 

2300 m asl (see Figure 4-5). The 2201 – 2400 m and 2401 – 2600 m asl ranges cover about 

37.851% and 32.85%, respectively to the total area. The three remaining elevation ranges 

cover the remaining balance, with the >2800 m class covering the least proportion of the 

study area (~533.14 ha). 

All LULC classes identified in this study existed in all of the 5 elevation categories 

except for the built-up areas which did not exist in the 2600-2800 and >2800 m asl 

categories. The absence of built-up areas in higher areas may be due to the fact that in those 

elevation ranges it might be too cold for human to settle as temperature is known to decrease 

with increasing altitude and also remoteness to water bodies, pastures and agricultural land. 

The general trend of the distribution of most LULC types with respect to elevation is that 

they increased with altitude from <2200 m asl to 2201 – 2400 m asl, and then declined from 

thereon except for the scrubland and burnt areas which only started their abrupt decline from 

the 2401 – 2600 m asl.  
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4.2.2. LULC distribution across slope 

Table 4-15: Spatial distribution of LULC types across slopes categories, their totals and percentage area coverages in the study area 

 Slope (degrees)       

LULC Types  0-15.40 15.41 - 27.10  27.11-39.16 39.15-53.73 >57.73 Total 

Water Bodies Area (ha) 25.05 22.84  14.00 14.73 14.73 91.36 

 Proportion (%) 0.24 0.22  0.13 0.14 0.14 0.88 

Cultivated Land Area (ha) 582.76 679.27  668.22 533.40 194.50 2658.15 

 Proportion (%) 5.61 6.54  6.44 5.14 1.87 25.60 

shadows Area (ha) 1.47 3.68  11.79 11.05 25.79 53.78 

 Proportion (%) 0.01 0.04  0.11 0.11 0.25 0.52 

Rock outcrops Area (ha) 80.30 78.83  53.05 13.26 2.21 227.65 

 Proportion (%) 0.77 0.76  0.51 0.13 0.02 2.19 

Built-up areas Area (ha) 4.42 5.16  1.47 0.00 0.00 11.05 

 Proportion (%) 0.04 0.05  0.01 0.00 0.00 0.11 

Green vegetation Area (ha) 10.31 9.58  5.16 3.68 0.74 29.47 

 Proportion (%) 0.10 0.09  0.05 0.04 0.01 0.28 

Scrubland Area (ha) 850.20 1049.11  1221.51 729.37 215.13 4065.32 

 Proportion (%) 8.19 10.10  11.76 7.02 2.07 39.15 

Bare Soil Area (ha) 865.67 744.11  596.02 265.23 265.23 2736.24 

 Proportion (%) 8.34 7.17  5.74 2.55 2.55 26.35 

Burnt areas Area (ha) 123.77 110.51  97.99 105.35 72.94 510.56 

 Proportion (%) 1.19 1.06  0.94 1.01 0.70 4.92 

TOTAL Area (ha) 2543.96 2703.09  2669.20 1676.08 791.26 10383.58 

 Proportion (%) 24.50 26.03  25.71 16.14 7.62 100.00 
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4.2.3. LULC distribution across aspect 

Table 4-16: Spatial distribution of LULC classes’ across the different aspects at the study area, their totals and percentage coverages 

             TOTAL  

      

ASPECT (facing-

direction)        

LULC TYPES  Flat North North East East  South East South South west West North West Area (ha)  Proportion (%)  

Water Bodies Area (ha) 6,29 0,70 4,19 9,79  10,49 26,56 18,87 3,50 6,99 80,39  0,84  

Cultivated Land Area (ha) 36,35 102,06 100,66 219,50  339,04 594,19 445,99 374,69 271,93 2212,47  23,93  

shadows Area (ha) 0,00 0,00 0,70 0,00  0,70 26,56 18,87 3,50 0,70 50,33  0,49  

Rock outcrops Area (ha) 53,83 29,36 51,03 27,26  13,98 8,39 10,49 13,98 37,05 208,31  2,36  

Built-up areas Area (ha) 2,10 0,70 1,40 0,00  0,70 0,70 1,40 1,40 2,80 8,39  0,11  

Green vegetation Area (ha) 4,89 4,89 2,80 3,50  2,80 5,59 2,80 2,80 2,80 30,06  0,32  

Scrubland Area (ha) 205,52 225,79 246,06 487,93  472,55 564,83 580,90 649,41 649,41 3433,00  39,32  

Bare Soil Area (ha) 596,98 311,07 373,29 296,39  136,31 133,52 153,79 262,14 634,73 2263,50  27,91  

Burnt areas Area (ha) 15,38 6,29 14,68 16,78  34,95 174,06 134,22 64,31 30,06 460,67  4,73  

Total 

Area (ha) 921,34 680,87 794,81 1061,15  1011,51 1534,40 1367,33 1375,72 1636,46 8747,12  100,00  

Proportion (%) 8,87 6,56 7,65 10,22 

 

9,74 14,78 13,17 13,25 15,76 100,00 
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Table 4-16 presents the distribution of LULC types across aspect. The north-west 

facing slopes were characterised with the highest occurrence of LULC types with a 

proportion of about 17.8% followed by the south facing slopes at ~14.9%. In the southern 

hemisphere, south facing slopes have little sunlight and tend to be cooler than those facing 

north, where they are predominately exposed to direct sunlight. Most green vegetation, 

scrubland, cultivated areas and built-up areas which would be expected to be occurring 

mostly on the north facing slopes occur most on the south facing slope. This is contrary to the 

popular logic that follows distribution as per the relative position to direct sunlight.  

The areas covered by bare soil, water bodies and built-up areas peak in both the 

northwest and north aspects, whereas the other LULC types peak most at the south and 

southwest aspects including the cultivated and all the vegetation classes. The peaking of the 

built-up areas on the north-facing slopes is understandable as human being tend to settle in 

slopes that expose them to direct sunlight for warm temperatures. However the cultivated 

land and vegetation classes are mostly situated on the slopes that are not directly exposed to 

the sunlight.  

 

  



52 
 

5. DISCUSSION 

High resolution satellite images are increasingly becoming more available, thus making them 

an important resource to land management practitioners, analysts, researchers, planners and 

other professionals. It had been established that the conventional means of image 

interpretations are time- and labour- intensive, expensive, and subjective, making it difficult 

to fully exploit this valuable data, particularly over large geographic areas. Whilst the PBIA 

classification methods may offer satisfactory results for LULC mapping over large 

geographic areas, there had been some identified shortfalls in their ability in detailed mapping 

with high-resolution imagery. This saw the emergence of the OBIA classification techniques 

for use on high resolution images. 

This study sought to compare and evaluate the performances of the PBIA and OBIA 

approaches in terms of mapping a mountainous landscape using the medium to high-

resolution images: SPOT-6 and WorldView-2. In addition to the comparison of the two 

image analysis approaches, this study also compared the performances of two image datasets 

as to establish if it would be necessary to procure the WorldView-2 imagery or use the freely 

available SPOT-6 for similar studies in the future. In this study, the best of the four 

classification results was subjected to three separate overlay analyses in order to establish the 

relationship between the LULC and the three topographic variables of elevation, slope and 

aspect in the Mokhotlong District. 

 

5.1. Comparison of the classification performances 

Generally, all four classification outcomes yielded were able to generate, to some degree, 

relatively similar visual depictions of the broad LULC types that characterised the study area 

at the time when the images were captured. The LULC map achieved from the pixel-based 

SVM classification of SPOT-6 looked rather different from the other maps, the PBIA-

WorldView-2 LULC map seemed as a balance between the OBIA LULC maps and the 

PBIA-SPOT-6. The LULC maps achieved from the object-based SVM classification 

presented very similar depictions of the broad LULC types in the study area. The LULC 

maps achieved from the pixel-based SVM classification were characterised with the salt-and-

pepper effects, whereas the object-based counterparts were generally characterised with 

smoother appearances with well-defined boundaries between features. 

The overall accuracy of the four classification models ranged between 79.5% for the 

pixel based SVM on SPOT-6 to 93.2% on the object based SVM on WorldView-2, with a 
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kappa coefficient that ranged from 0.776 to 0.925. With an exception of the pixel based SVM 

classification on the SPOT-6 multispectral image, all other models achieved an overall 

accuracy greater than 80%. The OBIA models reached the overall accuracies of reached an 

89.7% and 93.2%, and kappa coefficients of 0.888 and 0.925 for SPOT-6 and WorldView-2, 

respectively. The pixel-based SVM classification of the WorldView-2 achieved the second 

lowest classification accuracy and kappa coefficient of 82.9% and 0.813, respectively. 

Even though there is no recognized standard for accuracy assessment, a commonly 

suggested accuracy is 85% (Foody, 2002). According to the guidelines regarding accuracy, 

only the OBIA SVM classifications surpassed the suggested accuracy scores with the PBIA 

classifications falling short. In addition, the OBIA models significantly reduced the salt-and-

pepper effects compared to the PBIA models. In this study, the OBIA approach was superior 

to the PBIA approach in terms of the extraction and mapping the LULC types on the 

mountainous study area, as it achieved better classification accuracy. These results are 

consistent with those achieved from other comparative studies of the two image analysis 

approaches on the other types of landscapes (e.g. Castillejo–Gonzalez et al., 2009; Chen et 

al., 2009; Robertson and King, 2011; Duro et al., 2012, Adejopu et al., 2015). 

When comparing the classification performances of the SPOT-6 and WorldView-2 for 

LULC types on a mountainous landscape using the SVM classifiers, the PBIA classifications, 

the SPOT-6 achieved the overall accuracy of 79.5% and the WorldView-2 achieved 82.9%. 

For the OBIA classifications the accuracies were 89.7% and 93.2%, respectively. The above 

classification accuracies revealed that the WorldView-2 had better performance compared to 

the SPOT-6 when the SVM classifiers were applied using both classification accuracies. The 

better performance of Worldview-2 compared to SPOT-6 is consistent with the findings of 

other comparative studies of the performances of images of different resolutions. The 

findings of the comparative studies were that the improved spatial and spectral resolutions 

tend to improve the classification performances. WorldView-2 has an advantage over the 

SPOT-6 in both its spatial and spectral resolutions (see Table 3-1) thus giving better 

performances. A number of studies are consistent with the present on include: (Lu et al., 

2005; Ambunakudige et al., 2009; Novack et al., 2011; Gao and Mas, 2013; Capolsini et al., 

2014). 

The evaluation of the performance using the McNemar’s test revealed that the 

difference between SPOT-6 and WorldView-2 when both the PBIA and OBIA approaches 

are used was statistically significant at 95% level. It was found that the comparison of the 
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difference in the performances of the individual images using the different approaches was 

also statistical significant at 95% level. 

 

5.2. The relationship between LULC distribution and topography 

The analyses of the distribution of LULC types in relation to topography (i.e. elevation, slope 

and aspect) is essential for the understanding the interaction of humans and their surrounding 

environment. Mountainous regions are characterised with high heterogeneity in terms of 

elevation, slope and aspect which in turn then influence variations in microclimate, flora and 

varying soil properties which then lead to a wide variety of landforms over short distances. 

The analysis of the relationship between the LULC types with respect to elevation 

revealed that that to some degree are topographically-controlled patterns of green vegetation, 

scrubland and built-up areas. Overlay analysis shows that topography (i.e. aspect, elevation 

and slope) influenced the spatial distribution of these classes those three LULC classes 

generally reduced in % area with increasing altitude and increasing steepness. Temperature 

may be a limiting factor. The rest of the LULC types used for the purpose of this study did 

not exhibit such strong evidence of the influence of elevation and this may be attributed to the 

fact that the landscape had been significantly altered by agricultural activities and fires.  

Generally, the occurrence of most LULC types such as water bodies, rock outcrops 

and cultivated areas exhibited trends that maybe directly linked with the degrees of slope 

steepness. The bare soil and burnt areas decreased with the increasing steepness of the slopes. 

In terms of the distribution of LULC types with respect to aspect, no significant trends. 

Mostly, the relationship between the distributions of LULC types with topography is to some 

degrees convoluted. Practices such as agriculture and fires contributed significantly in terms 

of disrupting the topographically-controlled patterns of LULC types. The prominence of 

cultivated and burnt areas may have obscured the exposure of defined trends of the 

relationship between the distribution LULC types and topography. An additional reason may 

be that the relationships were studied using a resampled LULC map which meant that there 

may information lost during resampling. The overlay analyses were conducted on a 30 m 

spatial resolution which left opportunities for LULC features covering an area smaller than 

that to be overlooked during the analyses. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

This study sought to compare performances of the PBIA and OBIA approaches for the 

classification of a mountainous landscape of the Mokhotlong District of Lesotho using the 

high resolution images. The study also evaluated the significance of the difference in 

classification performances on the WorldView-2 and SPOT-6 imagery. In addition to the 

above comparisons, the study used the best LULC map in terms of accuracy and the 

topographic variables (elevation, slope and aspect) derived from a SRTM DEM in order to 

facilitate understanding of the relationship between the spatial distribution of the LULC types 

and topography. 

The key findings of this study of this study were that: 

 WorldView-2 had better overall performances compared to SPOT-6 high resolution images in 

terms of LULC classifications using both the PBIA and OBIA approaches. The differences in 

the performances of the two imagery packages were statistical significant 95% confidence 

level. This means that the difference in the spatial and spectral resolutions of the WorldView-

2 and SPOT-6 has a significant difference in their performances in terms of mapping LULC 

in a mountainous landscape. 

 The OBIA approach for LULC classification of high resolution satellite data was shown to be 

the more effective tool for analysing LULC in mountainous landscapes compared to the PBIA 

approach. The OBIA SVM classifier performed better than its PBIA counterpart on both 

WorldView-2 and SPOT-6, and difference in the performances to be statistically significant at 

the 95% significance level. 

 The relationship between the distribution of LULC types and topography was found to have 

been seriously disturbed, particularly that of LULC types distribution and aspect. This is due 

to the fact that the landscape had been significantly altered by the occurrence of fire and 

deforestation for agricultural and settlement purposes. 

 

6.2. Recommendations 

 Collection of ground truth data is recommended in order to validate the accuracy of 

the classification results and to increase the confidence of the results. This would also 

help to determine whether the resolution of WorldView2 pan-sharpened imagery is 

appropriate for mapping for the collection of validation data or whether higher 

resolution imagery is needed in cases the field data are not available.  



56 
 

 A multi-temporal mapping of LULC in multiple seasons is recommended so that the 

areas that had lost their usual land covers to fires may be captured into these maps. 

Even if a multi-temporal study, it would desirable to conduct a LULC mapping study 

using imagery that had been captured in different season or when there had not been 

any fires.  

 LULC mapping using imagery captured during times that had none or very limited 

fire outbreaks, deforestation and limited soil tilling for agricultural purposes may also 

be beneficial in terms of understanding of the relationships between the distribution of 

LULC types and topographical variables.  

 The attainment of a finer scale DEM would also be very useful in terms of increasing 

the confidence on the results achieved from an overlay analysis of the relationship 

between LULC distribution and topography. 

 

  



57 
 

7. REFERENCES 

Adam, E., Mutanga, O., Odindi, J. and Abdel-Rahman, E. M. (2014), Land-use/cover 

classification in a heterogeneous coastal landscape using RapidEye imagery: 

evaluating the performance of random forest and support vector machines 

classifiers. International Journal of Remote Sensing, 35(10), 3440–3458.  

Adepoju, M. O., Sadiya, T. B., Mohammed, S. O., Halilu, S. A., Ibrahim, I. and Shar, J. T. 

(2015), Comparison and analysis of the pixel-based and object-oriented methods for 

land cover classification with ETM+ data. IOSR Journal of Environmental Science, 

Toxicology and Food Technology, 9(2), 48-53.  

Aguirre-Gutiérrez, J., Seijmonsbergen, A. C. and Duivenvoorden, J. F. (2012), Optimizing 

land cover classification accuracy for change detection, a combined pixel-based and 

object based approach in a mountainous area in Mexico. Applied Geography, 34, 

29-37.  

Ambinakudige, S., Choi, J. and Khanal, S., (2009), A comparative analysis of CBERS and 

Landsat data. Baltimore, Maryland, ASPRS Annual Conference.  

Belgiu, M. and Dragut, L. (2014), Comparing supervised and unsupervised multiresolution 

segmentation approaches for extracting buildings from very high resolution 

imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 67–75.  

Bennie, J., Hill, H. O., Baxter, R. and Huntley, B. (2006), Influence of slope and aspect on 

long-term vegetation change in British chalk grasslands. Journal of Ecology, 94, 

355-368.  

Bennie, J., Huntleya, B., Wiltshirea, A. and Hill, M. (2008), Slope, aspect and climate: 

Spatially explicit and implicit models of topographic microclimate in chalk 

grassland. Ecological Modelling, 216, 47-59.  

Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I. and Heynen, M. (2004), Multi-

resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready 

information. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239-258.  

Bhaskaran, S., Paramananda, S. and Ramnarayan, M. (2010), Per-pixel and objectoriented 

classification methods for mapping urban features using IKONOS satellite data. 

Applied Geography, 30(4), 650–665.  

Blaschke, T. (2010), Object based image analysis for remote sensing. ISPRS Journal of 

ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16.  



58 
 

Blaschke, T., Burnett, C. and Pekkarinen, A., (2006), Image segmentation methods for 

object based analysis and classification. In: S. M. Jong and F. D. Meer, eds. Remote 

Sensing Image Analysis: Including the spatial domain. Netherlands: Springer, 211-

236.  

Brenning, A., (2009). Benchmarking classifiers to optimally integrate terrain analysis and 

multispectral remote sensing in automatic rock glacier detection. Remote Sensing of 

Environment, 113(1), 239–247.  

Cairong, Y. and Rong, Z., (2011). A study on object-oriented classification of land use/land 

cover of remote sensing image. Southwest Forestry University, 1(1), 1-4.  

Capolsini, P., Andréfouët, S., Rion, C. and Payri, C., (2014). A comparison of Landsat 

ETM+, SPOT HRV, Ikonos, ASTER, and airborne MASTER data for coral reef 

habitat mapping in South Pacific islands. Canadian Journal of Remote Sensing, 

29(2), 187-200.  

Carreiras, J. M., Pereira, J. M., Campagnolo, M. L. and Shimabukuro, Y. E., (2006). 

Assessing the extent of agriculture/pasture and secondary succession forest in the 

Brazilian Legal Amazon using SPOT VEGETATION data. Remote Sensing of 

Environment, 101(3), 283–298.  

Castillejo-González, I. L., López-Granados, F., García-Ferrer, A., Peña-Barragán, J. M., 

Jurado-Expósito, M. and de la Orden., (2009). Object- and pixel-based analysis for 

mapping crops and their agro-environmental associated measures using Quickbird 

imagery. Computers and Electronics in Agriculture, 68(2), 207–215.  

Chena, M., Sua, W., Lia, L; Zhang, C., Yuea, A., Yuea, A. (2009). Comparison of pixel 

based and object-oriented knowledge-based classification methods using SPOT5 

imagery. WSEAS Transactions on Information Science and Applications, 3(6), 477- 

489.  

Cleve, C., Maggi, K., Kearns, F. R. and Moritz, M., 2008. Classification of the wildland– 

urban interface: A comparison of pixel- and object-based classifications using high-

resolution aerial photography. Computers, Environment and Urban Systems, 32, 

317-326.  

Coblentz, D. and Keating, P. L., (2008). Topographic controls on the distribution of tree 

islands in the high Andes of South-Western Ecuador. Journal of Biogeography, 35, 

2026-2038.  

Coblentz, D. and Riitters, K. H., (2004). Topographic controls on the regional-scale 

biodiversity of the south-western USA. Journal of Biogeography, 31, 11251138.  



59 
 

de Leeuw, J., Jia, H., Schmidt, K., Skidmore, A.K, and Liu, X., (2006). Comparing 

accuracy assesments to infer superiority of image classification methods.  

International Journal of Remote Sensing, 27(1), 223-232.  

Duro, D. C., Franklin, S. E. and Dubé, M. G., (2012). A comparison of pixel-based and 

object-based image analysis with selected machine learning algorithms for the 

classification of agricultural landscapes using SPOT-5 HRG imagery. Remote 

Sensing of Environment, 118, 259–272.  

Foody, G. M., (2002). Status of land cover classification accuracy assessment. Remote 

Sensing of Environment, 80, 185-201.  

Forsyth, A. T., Gibson, L. A. and Turner, A. A., (2014). Assessment of SPOT 6 imagery for 

mapping the invasive alien plant species Pinus spp. in a mountainous area of the 

Western Cape. AfriGEO, 1(1), 1-12.  

Franklin, J., McCullough, P. and Gray, C., (2000) Terrain variables used for predictive 

mapping of vegetation communities in Southern California. In: J. P. Wilson and J. 

C. Gallant, eds. Terrain analysis— principles and applications. New York: Wiley, 

331–353.  

Gao, Y. and Mas, J. F., (2013). A comparison of the performance of pixel-based and object-

based classifications over images with various spatial resolutions. ISPRS, 1-6.  

Gislason, P. O., Benediktsson, J. A. and Sveinsson, J. R., (2007). Random Forests for land 

cover classification. Pattern Recognition Letters, 27, 294–300.  

Guisan, A. and Zimmerman, N. E., (2000). Predictive habitat distribution models in 

ecology. Ecological Modelling, 135, 147.  

Hasmadi, I. M., Pakhriazad, H. Z. and Shahrin, M. F., (2009). Evaluating supervised and 

unsupervised techniques for land cover mapping using remote sensing data. 

Malaysian Journal of Society and Space, 5(1), 1-10.  

Hoersch, B., Braun, G. and Schmidt, U., (2002). Relation between landform and vegetation 

in alpine regions of Wallis, Switzerland. A multiscale remote sensing and GIS 

approach. Computers, Environment and Urban Systems, 26, 113-139.  

Hsu, C., Chang, C. and Lin, C., (2010). A Practical Guide to Support Vector Classification. 

National Taiwan University, 1 (1), 1-16.  

Huang, C., Davis, L. S. and Townshend, J. R., (2002). An assessment of support vector 

machines for land cover classification. International Journal of Remote Sensing, 

23(4), 725-749.  



60 
 

Iqbal, M. F. and Khan, I. A., (2014). Spatiotemporal Land Use Land Cover change analysis 

and erosion risk mapping of Azad Jammu and Kashmir, Pakistan. The Egyptian 

Journal of Remote Sensing and Space Sciences, 17, 209–229.  

Ivits, E. and Koch, B., (2002). Object-oriented remote sensing tools for biodiversity 

assessment. Prague, Czech Republic, Rotterdam, Netherlands: Millpress Science 

Publishers.  

Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A., (2004). kernlab - An S4 Package 

for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20. Kobisi, K., 

(2005). Preliminary checklist of the plants of Lesotho, Pretoria and Roma: 

SABONET.  

Laliberte, A. S., Fredrickson, E. L. and Rango, A., (2007). Combining decision trees with 

hierarchical object-oriented image analysis for mapping arid rangelands. 

Photogrammetric Engineering and Remote Sensing, 73(2), 197–207.  

Lang, S., (2008). Object-based image analysis applications: modelling complexities. In: T. 

Blaschke, S. Lang and J. G. Hay, eds. Object-Based Image Analysis. Salzburg, 

Austria: Springer Berlin Heidelberg, 3-27.  

Li, X. and Shao, G., (2014). Object-based land-cover mapping with high resolution aerial 

photography at a country scale in Midwestern USA. Remote Sensing, 6, 11372-

11390.  

Lowe, S., Guo, X. and Henderson, D., (2012). Landscape spatial structure for predicting 

suitable habitat: The case of Dalea Villosa in Saskatchewan. Open Journal of 

Ecology, 2(2), 60-73.  

Lu, D., Batistella, M. and de Moran, E. E., (2005). A comparative study of Terra ASTER, 

Landsat TM, and SPOT HRG data for land cover classification in the Brazilian 

Amazon. The 9th World Multi-Conference on Systematics and Informatics, 411-416.  

Maestre, F. T., Cortina, J., Bautista, S., Bellot, J. and Vallejo, R., (2003). Small-scale 

environmental heterogeneity and spatiotemporal dynamics of seedling establishment 

in a semiarid degraded ecosystem. Ecosystems, 6, 630-643.  

Mararakanye, N. and Le Roux, J. J., (2011). Manual digitising of gully erosion in South 

Africa using high resolution SPOT 5 satellite imagery at 1: 10 000 scale, Pretoria: 

South Africa's Department of Agriculture, Forestry and Fisheries.  

Mararakanye, N. and Nethengwe, N. S., (2012). Gully features extraction using remote 

sensing techniques. South African Journal of Geomatics, 1(2), 109118.  



61 
 

Matinfar, H. R., Sarmadian, F., Alavi-Panah, S. K. and Heck, R. J., (2007). Comparison of 

object-oriented and pixel-based classification of land use/land cover types based on 

Lansadsat7, ETM+ spectral bands (Case Study: Arid Region of Iran).. American-

Eurasian Journal Agricultural and Environmental sciences, 2(4), 448-456.  

Matsuura, T. and Suzuki, W., (2013). Analysis of topography and vegetation distribution 

using a digital elevation model: case study of a snowy mountain basin in 

northeastern Japan. Landscape Ecology Engineering, 9, 143–155.  

McCune, B. and Kean, D., (2002). Equations for potential annual direct incident radiation 

and heat load. Journal of Vegetation Science, 13, 603-606.  

Moeletsi, M. E. and Walker, S., (2013). Agroclimatological suitability mapping for dryland 

maize production in Lesotho. Theoretical and Applied Climatology, 114, 227-236.  

Mutanga, O., Aam, E. and Cho, M. A., (2012). High density biomass estimation for 

wetland vegetation using WorldView-2 imagery and random forest regression 

algorithm. International Journal of Applied Earth Observation and Geoinformation, 

18, 399-406.  

Myburgh, G. and Van Niekerk, A., (2013). Effect of feature dimensionality on objectbased 

land cover classification: a comparison of three classifiers. South African Journal of 

Geomatics, 2(1), 13-27.  

Myint, S. W., Gorber, P., Brazel, A., Grossman-Clarke, S. and Weng, Q., (2011). Per-pixel 

vs. object-based classification of urban land cover extraction using high spatial 

resolution imagery. Remote Sensing of Environment, 115, 1145–1161. 

Nagakura, M., (2010). The natural environment and the livelihoods of people living in a 

mountainous region of Lesotho. African Study Monographs, 40, 179-194.  

Nanyam, Y., Pandiripalli, S., Telagarapu, P. and Kota, S., (2011). Land use and land cover 

classification using remotely sensed image. MIPSCCON, 1(1), 14-17.  

Novack, T., Esch, T., Kux, H. and Stilla, U., (2011). Machine learning comparison between 

WorldView-2 and QuickBird-2-Simulated imagery regarding objectbased urban 

land cover classification. Remote Sensing, 3, 2263-2282.  

Otukei, J. R. and Blascke, T., (2010). Land cover change assessment using decision trees, 

support vector machines and maximum likelihood classification algorithms. 

International Journal of Applied Earth Observation and Geoinformation, 12s, s27-

s31.  



62 
 

Pal, M., (2006). Support vector machine-based feature selection for land cover 

classification: a case study with DAIS hyperspectral data. International Journal of 

Remote Sensing, 27, 2877-2894.  

Pérez, A., Mas, J. F., Velazquez, A. and Vazquez, L., (2008). Modeling vegetation diversity 

types in Mexico based upon topographic features. Inverciencia, 33(2), 88-95.  

Petropoulos, G. P., Arvanitis, K. and Sigrimis, N., (2012a). Hyperion hyperspectral imagery 

analysis combined with machine learning classifiers for land use/cover mapping. 

Expert Systems with Applications, 39, 3800-3809.  

Petropoulos, G. P., Kalaitzidis, C. and Vadrevu, P. K., (2012b). Support vector machines 

and object-based classification for obtaining land-use/cover cartography from 

Hyperion hyperspectral imagery. Computers and amp; Geosciences, 41, 99-107.  

Pignatti, S., Cavalli, R M; Cuomo, V; Fusilli, L; Pascucci, S; Poscolieri, M; Santini, F., 

(2009). Evaluating Hyperion capability for land cover mapping in a fragmented 

ecosystem: Pollino National Park, Italy. Remote Sensing of Environment, 113, 622-

634.  

Platt, R. V. and Rapoza, L., (2008). An evaluation of an object-oriented paradigm for land 

use/land cover classification. The Professional Geographer, 60(1), 87.  

Pradhan, B. and Suleiman, Z., (2009). Land cover mapping and spectral analysis using 

multi-sensor. Journal of Geomatics, 3(2), 71-78.  

Pradhan, T., Walia, V., Kapoor, R. and Saran, S., (2014). Optimizing land use classification 

using decision tree approaches. IEEE, 1(1), 1-15.  

Prakasam, C., (2010), Land use and land cover change detection through remote sensing 

approach: A case study of Kodaikanal Taluk, Tamil Nadu. International Journal of 

Geomatics and Geosciences, 1, 150-158.  

Rahman, R. and Saha, S. K., (2008). Multi-resolution segmentation for object-based 

classification and accuracy assessment of land use/land cover classification using 

remotely sensed data. Journal Indian Society of Remote Sensing, 36, 189-201.  

Ramaswamy, S. K. and Ranganathan, M. B., (2014). Land use land cover classification 

using local multiple patterns from very high resolution satellite imagery. The 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, XL (8), 971-976.  

Robertson, L. D. and King, D. J., (2011). Comparison of pixel- and object-based 

classification in land cover change mapping. International Journal of Remote 

Sensing, 32(6), 1505–1529.  



63 
 

Rozenstein, O. and Karnieli, A., (2011). Comparison of methods for land-use classification 

incorporating remote sensing and GIS inputs. Applied Geography, 31, 533-544.  

Salehi, B., Zhang, Y., Zhong, M. and Dey, V., (2012). Object-based classification of urban 

areas using VHR imagery and height points ancillary data. Remote Sensing, 4, 2256-

2276.  

Salman, A., Crossing, K. and Nadeem, Q., (2002). Integration of DEMs, satellite imagery 

and field data for Alpine vegetation mapping. San Diego, Carlifonia, ESRI press. 1-

10. 

Şatır, O. and Berberoğlu, S., (2012). Land use/cover classification techniques using optical 

remotely sensed data in landscape planning. In: M. Ozyavuz, ed. Landscape 

Planning. Rijeka, Croatia: InTech, 21-54.  

Schowengerdt, A., (2007). Remote sensing, models, and methods for image processing. 3rd 

ed. San Diego, California: Elsevier, Academic Press.  

Sene, K. J., Jones, D. A., Meigh, J. R. and Farquharso, F. A., (1998). Rainfall and flow 

variations in the Lesotho highlands. International Journal of Climatology, 18, 329-

345.  

Shresta, D. P. and Zinck, J. A., (2001). Land use classification in mountainous areas: 

integration of image processing, digital elevation data and field knowledge 

(application to Nepal). Journal of Applied Geography, 3(1), 78-85.  

Sohl, T. L. Sleeter, B. M., Zhu, Z., Sayler, K. L., Bennett, K. L., Bouchard, M., Hawbaker, 

T., Wein, A., Liu, S., Kanengieter, R. and Acevedo, W., (2010). A land-use and 

land-cover modelling strategy to support a national assessment of carbon stocks and 

fluxes. Applied Geography, 34, 111- 124.  

Tehrany, M. S., Pradhan, B. and Jebuv, M. N., (2014). A comparative assessment between 

object and pixel-based classification approaches for land use/land cover mapping 

using SPOT 5 imagery. Geocarto International, 29(4), 351369.  

Tovar, C., Seijmonsbergen, A. C. and Duivenvoorden, J. F., (2013). Monitoring land use 

and land cover change in mountain regions: An example in the Jalca grasslands of 

the Peruvian Andes. Landscape and Urban Planning, 112, 40–49.  

Trimble, (2014). eCognition Developer 9.0 Reference Book, Munich, Germany: Trimble 

Germany GmbH.  

Tzotsos, A., (2006). A support vector machine approach for object based image analysis, 

s.l.: Commission IV, WG IV/4 – Commission VIII, WG VIII/1.  



64 
 

Van Zwieten, (2014). Unlocking the promise that space holds for sustainable development. 

[Online] Available at: http://www.ee.co.za/article/unlocking-promise-space-holds-

sustainabledevelopment-economic-growth.html [Accessed 14 April 2015].  

Volker, W., (2003). Object-based classification of remote sensing data for change detection. 

ISPR Journal of Photogrammetry and Remote Sensing, 58, 225238.  

Wondie, M., Teketay, D., Melesse, A. M. and Schneider, W., (2012). Relationship between 

topographic variables and land cover in the Simen Mountains National Park, a 

World Heritage Site in Northern Ethiopia. International Journal of Remote Sensing 

Applications, 2, 36-43.  

Xie, Y., Sha, Z. and Yu, M., (2008). Remote sensing imagery in vegetation mapping: a 

review. Journal of Plant Ecology, 1(1), 9–23.  

Yadav, P. K., Kapoor, M. and Sarma, K., (2010). Land use land cover mapping, change 

detection and conflict analysis of Nagzira-Navegaon Corridor, Central India using 

geospatial technology. International Journal of Remote Sensing and GIS, 1(2), 90-

98.  

Yan, G. Mas , J. F., Maathuis, B. H., Xiangmin, Z., and Van Dijk, P. M., (2007). 

Comparison of pixel-based and object-oriented image classification approaches-A 

case study in a Coal Fire Area, Wuda, Inner Mongolia, China. International Journal 

of Remote Sensing, 27, 4039–4055.  

Zhao, N., Yang, Y. and Zhou, X., (2010). Application of geographically weighted 

regression in estimating the effect of climate and site conditions on vegetation 

distribution in Haihe catchment, China. Plant Ecology, 209, 349-359.  

 


