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Abstract 

South Africa, as one of the leaders in mining industry, due to the variety and 

quantity of minerals produced, has been and is still producing a number of mine 

tailings which are contaminated by heavy metals. Heavy metals are very harmful 

to plants and especially to human beings and animals due to their non-

biodegradable nature. The problem of environmental metal pollution could be 

combated by the establishment of Arbuscular Mycorrhiza (AM) vegetation on the 

surface of mine tailings. Besides the toxicity of the substrate, such areas usually 

lack essential nutrients (mainly N, P, and K) and organic matter. AM fungi 

contribute to soil structure by forming micro- and macro- soil aggregates within 

the net of external hyphae. Their presence may reduce stress caused by lack of 

nutrients or organic matter and increase plant resistance to pathogens, drought and 

heavy metals. Therefore, mycorrhizal fungi may become the key factor in 

successful plant revegetation of heavy-metal-polluted areas by promoting the 

success of plant establishment and increasing soil fertility and quality. 

 

The aim of this project was to identify AM fungi from a number of heavy metal 

sites in South Africa using both morphological and molecular techniques, 

followed by the evaluation of heavy metal distribution and localisation in 

mycorrhizal roots. Soil samples were collected from three different provinces, 

namely: Gauteng, Mpumalanga and North West provinces. The sites were 

selected based on their historical and current heavy metal contamination. 

Indigenous AM fungal isolates (which are adapted to local soil conditions) can 

stimulate plant growth better than non-indigenous isolates. AM fungal spores 

were isolated from 100g of representative soil sample by the wet sieving and 

decanting method, followed by assessment of spore numbers and infective 

propagules. The spores of a subset of the pot samples were mounted on 

microscope slides in polyvinyl lactic acid glycerol and identified by 

morphological characteristics to the level of genus or species. Most of the spores 

counted were observed in a 45 µm sieve. These spores were tiny and had different 

sizes, colours and shapes. The majority of the observed spores were small, brown 
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and oval in shape. For morphological identification, plant roots were stained and 

hyphae were found to be the most abundant in roots.  

 

For molecular identification, two sets of nested PCR primers, namely NS1 & NS4 

coupled with AML1 & AML2, were employed in this study due to their ability to 

amplify all subgroups of arbuscular mycorrhizal fungi (AM fungal, 

Glomeromycota), while excluding sequences from other organisms. Through both 

morphological characteristics and molecular identification, the following fungal 

genera were identified for the first time in the studied sites in South Africa. The 

study identified a total of 14 AM fungal genera and 55 AM fungal species, which 

are: Glomus (15), Acaulospora (11), Scutellospora (6), Gigaspora (6), 

Rhizophagus (3), Funneliformis (3), Archaeospora (2), Claroideoglomus (2), 

Ambispora (2), Sclerocystis (1), Fuscutata (1), Entrophospora (1), Diversispora 

(1), Paraglomus (1). Both Glomus and Acualospora have been observed to be the 

highest occurring genera in the analysed soil samples, followed by Scutellospora 

and Gigaspora and others mentioned.   

 

PIXE technique was successful in localising elemental concentration in both plant 

roots and AM fungal structures, as well as in indicating the large vesicles in root 

tissue. AM fungal structures in the outer cortex or outer epidermal layer of the 

root cross-sections were observable, as shown by the more significantly enriched 

Si in the vesicles and arbuscules. Distinctive elemental maps can be used to 

localise sites of colonisation and verification of the symbiotic nature of the tissue. 

This indicates that a range of metals can be sequestered in AM fungal structures 

above levels in surrounding host root tissue, and demonstrates the potential of 

Micro-PIXE to determine metal accumulation and elemental distribution in 

mycorrhizal plant roots and inter-and intracellular AM fungal structures. 

 

This research highlights the potential of AM fungi for inoculation of plants as a 

prerequisite for successful restoration of heavy metal contaminated soils. It also 

illustrates the importance of AM fungal diversity in selected high heavy metal 
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(HM) sites in RSA, particularly in the North West and the Gauteng gold mining 

slime dams. Therefore, phytoremediation of mine tailings by mycorrhizal plants 

seems to be one of the most promising lines of research on mine tailings 

contamination by heavy metals. The strategies which evolved during this project 

have great potential for phytoremediation of toxic mining sites, and thus can help 

mitigate the environmental problems, especially in the mining waste sites. 
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Abbreviation and Glossary: 

Background AM fungi plus additional mixture of indigenous AM fungal 

spore inoculum:  This is an experimental pot with slime soil samples that has 

been treated with Previcur® N aqueous fungicide (AgrEvo South Africa) and with 

the addition of indigenous AM fungal spore inoculum. 

Background arbuscular mycorrhizal fungi only: This is an experimental pot 

with slime soil samples that has been treated with the Previcur® N aqueous 

fungicide (AgrEvo South Africa) with no additional spores. 

Biogenic metals:  Substances produced by living organisms or biological 

processes. 

Bushveld Igneous Complex: The Bushveld Igneous Complex is a large layered 

igneous intrusion within the Earth's crust which has been tilted and eroded and 

now outcrops around what appears to be the edge of a great geological basin, the 

Transvaal Basin. 

Chalcophilic: Sulphur-Loving.  

Control 1 – Plants were grown in nutrient solution and Zeolite + Sand  

Control 2 – Plants were grown in nutrient solution and Zeolite + Sand and 

Mycoroot. 

Detrital bonds: Loose fragments or grains that have been worn away from the 

rock. 

Dolomite /ˈdɒləmaɪt/ is an anhydrous carbonate mineral composed of calcium 

magnesium carbonate, ideally CaMg(CO3)2. The word dolomite is also used to 

describe the sedimentary carbonate rock, which is composed predominantly of the 

mineral dolomite (also known as dolostone). 

DRDGOLD: It is a gold tailings retreatment company with a huge footprint. 

DRDGOLD Limited (DRDGOLD) is a medium-sized, unhedged gold producer 

with investments in South Africa and Australia. More gold ‘factory’ than mining 

company, a rising gold price and advances in technology over the years has made 

the extraction of smaller and smaller particles of gold viable. Until recently, 

DRDGOLD operated four metallurgical plants, two of which were approaching 

maturity. The flagship plant in Brakpan, possibly the largest in the world and with 
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the required treatment capacity, was well-positioned to take over but was located 

up to 50km from many of the slime dams and sand dumps in the west, earmarked 

for future retreatment. 

Environmental pollutant: It is a substance or energy introduced into the 

environment that has undesired effects, or adversely affects the usefulness of a 

resource. 

Exchangeable concentration of the element: is the process whereby elemental 

ions buffer the medium, solution or refers to elements that can be used 

interchangeable between the objects such as plants and fungi.  

Extractable concentration of the element: refers to elements that can be 

extracted or assimilated or absorbed by plants from the soil. It is an available 

concentration of the element to the plant. 

Gabbro: (Geology) A dark, coarse-grained igneous rock, consisting of the 

mineral calcium-feldspar and crystals of the pyroxene group (olivine may be 

present). It is the plutonic equivalent of basalt and dolerite.  

Heavy Metals (HM): The term heavy metal in the context of this thesis is 

appropriate and refers to any metallic chemical element that has a relatively high 

density and is toxic or poisonous at low concentrations. However, we are aware of 

the definition heavy metals given by Duffus (2002).  

INVAM: International Culture Collection of Arbuscular and (Vesicular) 

Arbuscular Mycorrhizal Fungi) website, which was created by Professor J. B. 

Morton of West Virginia University, USA (INVAM). This germplasm resource 

provides researchers with sets of voucher specimens, namely photographs, slides, 

vials of intact spores (Pfleger and Linderman, 1994) and this is particularly 

important for researchers that do not have the facilities or the time to carry out 

these analyses. As well as vouchers, INVAM maintains a large number of isolates, 

including those not described (INVAM). 

Lithophylic: Rock-loving.  

Live root pictures – Are pictures of roots taken by light microscope before 

treatment, either before the roots were dried or stained. 
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Mafic: (Geology) pertaining to ferromagnesium minerals (rich in iron and 

magnesium). It is often used to describe rocks rich in these minerals although, 

sticky, melanocratic is the correct term (Whitten & Brooks 1972). 

Monoxenically:  Relating to or being a culture in which one organism is grown or 

contaminated with only one other organism. 

Morphotypes - A group of different types of individuals of the same species in a 

population. 

Murographs: Illustrate organization of discrete morphological characters such as 

Spore wall (sw), first inner wall (iwl), germinal layer (gl), germ tube (gt), 

germination shield (gs). 

Mycoroot: A commercial inoculum of mycorrhizal seeds manufactured by 

Mycoroot (Pty.) Ltd. SA (http://www.mycoroot.com). 

Ontogeny (also ontogenesis or morphogenesis): is the origination and 

development of an organism, usually from the time of fertilization of the egg 

(Embryo) to the organism's mature form (adult). Yet, the term can be used to refer 

to the study of the entirety of an organism's lifespan.  

Previcur® N aqueous fungicide (AgrEvo South Africa): A commercial 

fungicide for removing non-AMF fungal contamination from the mixture. 

Previcur (active ingredient Propamocarb-HCl): Active against soil parasites such 

as Pythium but affects AMF minimally. 

Propagule: A portion of a plant or fungus, such as a seed or spore, from which a 

new individual may develop. It is any material that is used for the purpose of 

propagating an organism to the next stage in their life cycle, such as by dispersal. 

Serpentine:  (Geology) a group of ultramafic rocks (including Hartzburgite, 

peridotite, phonolite, gabbro and norite) characterized by high magnesium-to-

calcium ratios and often high concentration of heavy metals (nickel, chromium, 

copper). 

Siderophilic: Iron-loving.  

Ultramafic:  -  Ultramafic (also referred to as ultrabasic rocks, although the terms 

are not wholly equivalent) are igneous and meta-igneous rocks with a very low 

silica content (less than 45%), generally >18% MgO, high FeO, low potassium, 

http://en.wikipedia.org/wiki/Iron
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and are composed of usually greater than 90% mafic minerals  (dark coloured, 

high magnesium and iron content). The Earth's mantle is composed of ultramafic 

rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low 

silica content that may not be extremely enriched in Fe and Mg, such as 

carbonatites and ultrapotassic igneous rocks.  
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CHAPTER 1 

1 INTRODUCTION  

Ecosystems have been contaminated with heavy metals (HM)  and toxic metals, 

metalloids and radionuclides such as Arsenic (As), Cadmium (Cd), Chromium 

(Cr), Copper (Cu), Gold (Au), Lead (Pb), Nickel (Ni), Platinum (Pt), Radon (Ra), 

Titanium (Ti) Uranium (U), and Zinc (Zn), throughout the world largely by 

various anthropogenic activities. These metals are commonly called heavy metals, 

although this term strictly refers to metallic elements with a specific mass higher 

than 5 g cm
–3

; which is able to form sulphides (Suruchi and Khanna, 2011; 

Adriano, 1986). Heavy metals are very harmful to plants and especially to human 

beings and animals due to their non-biodegradable nature, long biological half 

lives and their potential to accumulate in different body parts since there is no 

proper mechanism for their elimination from the body (Suruchi and Khanna, 

2011). 

 

In non Heavy Metal (HM) contaminated soils, the concentrations of Zn, Cu, Pb, 

Ni, Cd and Cr range between 0.0001 and 0.065%, whereas Mn and Fe can reach 

0.002% and 10.0%, respectively. With the exception of iron, all heavy metals 

above a concentration of 0.1% in the soil become toxic to plants and therefore 

change the community structure of plants in a polluted habitat (Bothe et al., 2010). 

Soils that carry metallophytes (HM resistant plants) can be classified by the 

content of their main heavy metal. For example, serpentine soils are rich in Ni, 

seleniferous soils carry Se, calamine soils have Zn as major contaminant and soils 

of the African copper belt are rich in Cu, Co, Cr, Ni, and Zn (Alford et al., 2010). 

Some of these metals such as Zn, Cu, Iron (Fe), Manganese (Mn), Cobalt (Co) 

and Cr are essential elements for many plants, animals and man but at trace levels. 

At high concentrations, they are all potentially toxic (Nyriagu, 1988; Goyer, 

1996). Pb and Cd are generally regarded as toxic elements even at trace levels 

(Jarup, 2003; Goyer, 1996). Monitoring of these metals in the environment is 

therefore critical as it gives vital information as to whether exposure 

concentrations can cause adverse effects especially to humans (Odiyo et al., 

2005). 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=Heavy+metals
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The sources of metals in the soil are diverse, including burning of fossil fuels, 

mining and smelting of metalliferous ores, municipal wastes, fertilizers, 

pesticides, sewage sludge amendments, the use of pigments and batteries. A large 

number of these metals come from mining operations, industrial manufacturing 

facilities, recycling plants, and solid waste disposal sites. Military munitions are 

also major worldwide sources of groundwater and soil heavy metal contaminants, 

which wind or rain can sometimes disperse great distances from their point of use 

or disposal (Song et al., 2003).  

 

Heavy metals cannot be chemically degraded and need to be physically removed 

or be immobilized (Kroopnick, 1994). Traditional methods of removing heavy 

metals from soil and water are expensive and laborious, and often disrupt the 

environment. Remediation of heavy metal contaminated soils involves either on-

site management or excavation, and subsequent disposal to a landfill site (Parker, 

1994). However, this method of disposal merely shifts the contamination problem 

elsewhere along with the hazards associated with transportation of contaminated 

soil and migration of contaminants from landfill into an adjacent environment 

(Williams, 1998). Therefore, sustainable on-site techniques for remediation of 

heavy metal contaminated sites need to be developed. South Africa is a 

developing country with intensive mining and agricultural activities and the 

concomitant production of toxic wastes in the form of tailings and contaminated 

ground water. Hence legislation requires the rehabilitation of mine wastes 

primarily through revegetation (Fourie et al., 2008). 

 

The most effective suggested approach to reclaim the land contaminated by heavy 

metal concentrations is the use of vegetation for landscaping, stabilization and 

pollution control (Robinson et al., 2007; Bolan et al., 2011). An emerging 

technology that should be considered for remediation of contaminated sites 

because of its cost effectiveness, aesthetic advantages, and long-term applicability 

is phytoremediation (Kumar et al., 1995; Meier et al., 2011). Phytoremediation, 

the use of plants to remediate or clean-up contaminated soils can be used as a 
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promising method to remove and/or stabilize soils contaminated with heavy 

metals (Zak and Parkinson, 1982; Lone et al., 2008). Phytoremediation can be 

further developed by utilizing mycorrhizal fungi since they can bind metals and 

reduce their translocation to the shoots (Gohre and Paszkowski, 2006).  

 

Arbuscular mycorrhizal (AM) fungi occur in almost all habitats and form 

mycorrhizas with plant roots thereby contributing positively to plant growth. A 

number of research findings have been reported to demonstrate the potential use 

of AM fungi in improving agricultural yield and in the remediation of heavy metal 

contaminated mining sites. Wang et al. (2011) for instance, showed a promising 

potential of AM fungi for enhancing vegetable production and reducing 

organophosphorus pesticide residues in plant tissues and their growth media, as 

well as for the phytoremediation of organophosphorus pesticide-contaminated 

soils. Furthermore, the fungi can accelerate the revegetation of severely degraded 

lands such as coal mines or waste sites containing high levels of heavy metals 

(Marx and Altman, 1979; Meier et al., 2012). Their diversity and abundance is 

affected by heavy metal concentrations in soil, but they in turn influence the 

availability of metals in soil either directly by uptake or indirectly through their 

effect on plant growth, root exudation, and rhizosphere chemistry (Hetrick et al., 

1994). Moreover, the contribution of mycorrhizal symbionts to soil productivity 

and enhanced heavy metal uptake has not been seriously investigated in 

developing countries and there is a vast potential to utilize mycorrhizal plants to 

rehabilitate polluted sites.   

 

The present study is focused on the mechanisms of tolerance and accumulation of 

toxic and heavy metals/metalloids/radionuclides in roots of plants growing on 

mining waste sites. More specifically the study is looking at the ability of the AM 

fungi growing in the plant roots to tolerate and accumulate these metals. The 

study attempts to localise heavy metals such as Cr, Ti, Ni, U, Pt, Cu, Zn and other 

elements such as K, P, S, and Ca in plant root samples colonised by AM fungi by 

microanalytical techniques, and to identify the fungi from spore samples.  
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Methods of toxic and heavy metal remediation using plants 

Remediation is a process that is taking action to reduce, isolate, or remove 

contamination from an environment with the goal of preventing exposure to 

people, animals and plants (Mulligan et al., 2001). Examples include dredging to 

remove contaminated sediment, or capping to prevent contaminated sediment 

from contacting benthic (Sea or Lake Bottom) organisms. Most of the 

conventional remedial technologies such as leaching of pollutant, electrokinetical 

treatment (Gonzini et al., 2010), excavation and off-site treatment are expensive 

and technically limited to relatively small areas (Barceló and Poschenrieder, 

2003). Each of the conventional remediation technology has both benefits and 

limitations (EPA, 1997; MADEP, 1993). Bioremediation is one of the remediation 

processes which is difined as the use of living organisms such as micro-organism 

or plants for the recovery/ cleaning up of a contaminated medium like soil, 

sediment, air and water. The process of bioremediation might involve introduction 

of new organisms to a site, or the adjustment of environmental conditions to 

enhance degradation rates of indigenous species.  

 

Phytoremediation is the use of vegetation for in-situ treatment of contaminated 

soils, sediments, and water. It is best applied at sites with shallow contamination 

of organic, nutrient, or metal pollutants (Meier et al., 2011). It is an emerging 

technology that should be considered for remediation of contaminated sites 

because of its cost effectiveness, aesthetic advantages, and long-term applicability 

(Kumar et al., 1995). Phytoremediation makes use of the unique, selective and 

inherent capabilities of plant root systems, including the translocation, 

bioaccumulation and pollutant storage/degradation abilities of the entire plant 

body (Hooda et al., 2007).  

 

Some plants which grow on metalliferous soils have developed the ability to 

accumulate massive amounts of the indigenous metals in their tissues (shoots and 
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roots) without exhibiting symptoms of toxicity (Baker et al., 1991; Entry et al., 

1999). Chaney (1983) was the first to suggest using these "hyperaccumulators" for 

the phytoremediation of metal polluted sites. However, hyperaccumulators were 

later believed to have limited potential in this area because of their small size and 

slow growth, which limit the speed of metal removal (Cunningham et al., 1995).  

 

Phytoremediation is well-suited for use at very large field sites where other 

methods of remediation are not cost-effective or practicable (Das and Maiti, 2008) 

at sites with low concentrations of contaminants where only "polishing treatment" 

is required over long periods of time; and in conjunction with other technologies 

where vegetation is used as a final cap and closure of the site. There are 

limitations to the technology that need to be considered carefully before it is 

selected for site remediation. These include limited regulatory acceptance, long 

duration of time sometimes required for clean-up to below action levels, potential 

contamination of the vegetation and food chain, and difficulty establishing and 

maintaining vegetation at some toxic waste sites (Kumar et al., 1995). However, 

as phytoremediation is a slow process, improvement of efficiency and thus 

increased stabilization or removal of heavy metals (HM)s from soils is an 

important goal (Prasad and Freitas, 2003). Phytoremediation is a type of 

bioremediation that uses plants and is often proposed for bioaccumulation of 

metals, although there are many other different types. About four types of 

phytoremediation namely: Phytoextraction, Rhizofiltration, Phytostabilization and 

Phytotransformation are discussed below. 

 

2.1.1 Phytoextraction 

Phytoextraction is defined as the uptake and concentration of substances from the 

environment into the plant biomass. Phytoextraction is also known as 

phytoaccumulation, phytoabsorption and phytosequestration (Mukhopadhyay et 

al., 2010). It can be categorized into two types, namely continuous and induced 

phytoextraction (Salt et al., 1998). Continuous phytoextraction makes use of plant 

hyperaccumulators, which accumulate high levels of the toxic contaminants 
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throughout their lifetime, while induced phytoextraction is activated by the 

addition of chelators or accelerants to the soil which in turn enhances the toxin 

accumulation at a single time point (Mukhopadhyay et al., 2010).  

 

The objective of this approach is to use a metal-accumulating plant producing 

enough biomass in the field to remove metals from the soil (Evangelou et al., 

2007). Most of the wild metal accumulators belong to the family Brassicaceae, 

such as Thlaspi caerulescens, which are non-mycorrhizal plants. However, since 

these plants produce little biomass, other plants like Larix have been considered 

(Landberg and Greger, 1997). A good example is the use of the nickel 

hyperaccumulator Berkheya coddii to decontaminate land near the Rustenburg 

smelter (South Africa) in the late 1990s. The nickel uptake was 2-3% by mass of 

dried plant. Ashes of dried plants, containing about 15% by mass, were added to 

the bulk metal ore and returned to the smelter (Landberg and Greger, 1997).  

 

2.1.2 Rhizofiltration 

Rhizofiltration, also known as phytofiltration refers to the use of plant roots to 

absorb, concentrate, and precipitate toxic metals from contaminated groundwater 

(Ignatius et al., 2014). Initially, suitable plants with stable root systems are 

supplied with metal contaminated water to acclimate the plants. These plants are 

then transferred to the contaminated site to collect the contaminants, and once the 

roots are saturated, they are harvested (Salt et al., 1995). Rhizofiltration allows in-

situ treatment, minimizing disturbance to the environment (Raskin et al., 1994). 

Rhizofiltration has been reported to be cost-competitive technology in the 

treatment of surface water or groundwater containing low, but significant 

concentrations of heavy metals such as Cr, Pb, and Zn (Kumar et al., 1995b; 

Ensley, 2000), therefore making it a promising alternative amongst the 

conventional clean-up methods (Prasad and Freitas, 2003). 
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2.1.3 Phytostabilization 

Phytostabilization is a process which reduces the mobility of substances in the 

environment, for example by limiting the leaching of substances from the soil. 

The principle of the phytostabilization method is to promote plant growth to 

reduce or eliminate the bioavailability of metals, minimize wind and water 

erosion, improve soil quality (organic matter content in particular) and to reduce 

leaching of metals. Unlike other phytoremediative techniques, the goal of 

phytostabilization is not to remove metal contaminants from a site, but rather to 

stabilize them and reduce the risk to human health and the environment (Prasad 

and Freitas, 2003). Treatments include appropriate fertilization, either a reduction 

of metal availability using different amendments and/or using metal-tolerant plant 

species. Various grasses such as Agrostis tenuis and Festuca rubra have been 

used commercially (Salt et al., 1995; Van Tichelen et al., 1996). 

Phytostabilization is, however, a temporary solution, since the metals are not 

eliminated and there is a risk, increasing with time, of metal mobilization in the 

rhizosphere and of metal transfer from plants to animals. For these reasons, 

phytostabilizing plants should also immobilize metals in the roots and have low 

shoot accumulation (Berti and Cunningham, 2000). 

 

2.1.4 Phytotransformation 

Phytotransformation is defined as a chemical modification of environmental 

pollutants as a direct result of plant metabolism, often resulting in their 

inactivation, degradation (phytodegradation) or immobilization 

(phytostabilization) (Gao et al., 2000). In the case of organic pollutants, such as 

pesticides, explosives, solvents, industrial chemicals, and other xenobiotic 

substances, certain plants, such as Cannas, render these substances non-toxic by 

their metabolism. In other cases, microorganisms living in association with plant 

roots may metabolize these substances in soil or water (Nzengung et al., 1999). 
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2.2 Mycorrhizal fungi 

Mycorrhizal fungi are soil microorganisms that establish mutual symbioses with 

the majority of higher plants, providing a direct physical link between soil and 

plant roots (Barea and Jeffries, 1995). They establish an intimate association with 

the roots of most land plants in which the fungi supply mineral nutrients from the 

soil while acquiring carbon compounds from the photosynthetic host (Smith and 

Smith, 2011). About seven kinds of mycorrhiza are recognized in the scientific 

literature. The type of mycorrhiza formed can be influenced by the identity of 

both plant and fungus. For example, the same fungus can form arbutoid 

(monotropoid) and ectomycorrhizas, or ecto and ectondomycorrhizas, or ecto- and 

orchid mycorrhizas, depending on the identity of the plant associate, so that there 

is a plexus of behaviour amongst the species of plant and the septate fungi with 

regard to mycorrhizal structures that they produce (Izzo et al., 2005).  

 

A most familiar type of mycorrhiza is the ectomycorrhiza (ECM) in which the 

fungus penetrates the root but not the root cells. Ectomycorrhizas also called 

ectotrophic mycorrhizas are characteristic of mainly forest trees in the cooler parts 

of the world, such as, pines, spruces, firs, oaks, birches in the Northern 

Hemisphere and eucalypts in Australia and in South Africa (Roman et al., 2005). 

The fungi are commonly known to form mushrooms or truffles. 

Ectendomycorrhiza is one type that is closely related to ECM, in which the fungus 

enters the root cells. Ectendomycorrhizas usually possess a well-developed Hartig 

net with the sheath being reduced or absent, but hyphae penetrate into the cells of 

the plant (Read, 1998).  

 

Arbutoid mycorrhizas are formed in association with manzanita, madrone, and 

some other plants. Arbutoid mycorrhizas possess a sheath, external hyphae and 

usually, a well-developed Hartig net. In addition, there is extensive intracellular 

development of hyphal coils in the plant cells. These look like ECM and have 

similar fungi, but are technically endomycorrhizas. A separate but apparently 

related category is monotropoid, found on certain plants without chlorophyll. 
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While these traditionally have been called "saprophytic," it turns out that they 

share a mycorrhizal fungus with a nearby tree, and they are in effect parasites of 

the tree by way of the mycorrhizal fungus. The Ectomycorrhizas, 

Ectondomycorrhizas and Arbutoid mycorrhizas have several features in common 

(Smith and Read, 1997). 

 

Ericoid mycorrhizas are found in blueberries and in related plants. Many 

autotrophic members of the ericaceae and related families have no sheath formed 

but possess the hair-like roots enmeshed in an extensive weft of hyphae, which 

penetrate the root cells. The fungi identified as forming ericoid mycorrhizas are 

mainly ascomycetes while some are basidiomycetes and they probably evolved 

from saprotrophic fungi when organic matter began to accumulate in certain soils 

200 million years ago (Cairney, 2000). Many ericaceous species colonise as 

pioneer plants substrates ranging from arid sandy soils to moist or humus, in 

association with their mycorrhizal fungi. Due to the symbiosis with ericoid 

mycorrhizal fungi, ericaceous plants are also able to grow in highly polluted 

environments, where metal ions can reach toxic levels in the soil substrate 

(Perotto1 et al., 2002). 

 

Orchid mycorrhizas are unique in that they are required for seed germination. In 

the Orchidaceae, the plants are partially or wholly achlorophyllous for some part 

of their life. The Orchidaceae is one of the largest plant families, including almost 

10% of all flowering plant species (Jones, 2006). The orchid family’s unique 

characteristics and much of its diversity may be attributable to its distinctive 

relationship with mycorrhizal fungi (Benzing, 1981; Zettler et al., 2004). Some 

kinds of orchids never photosynthesize, but instead parasitize the mycorrhizal 

fungi. They form mycorrhizas with basidiomycetes of various affinities. Some of 

these are highly effective saprophytes or parasites of other plants which facilitate 

the transfer of organic C and minerals to orchids (Tao et al., 2008). There is 

increasing evidence that some orchids are dependent on fungi that are mycorrhizal 
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with autotrophic plants obtaining organic C from them, as well as mineral 

nutrients derived from the soil (McCormick et al., 2004).   

 

2.3 Arbuscular mycorrhizal (AM) fungi 

Arbuscular is the most common type of mycorrhiza which is named after its 

internal structures called arbuscules or vesicular-arbuscular. Arbuscular 

mycorrhiza possess both arbuscules and another structure called vesicles. This is 

also called an endomycorrhiza, because the fungus enters the cells of the root. AM 

fungi are found in almost all habitats and climates (Barea et al., 1997) such as on 

grasses, most crop plants, many trees, shrubs, flowers, and in about 80 to 95% of 

the world's plant species (Lanfranco and Young, 2012). Fossil records of AM 

fungi as proposed by Redecker et al. (2000) demonstrate that the AM fungal 

symbiosis points back to the Ordovician age, 460 million years ago. These fossils 

suggest that Glomeromycota-like fungi may have played a significant role in 

facilitating the colonisation of land by plants. The symbiosis is generally 

mutualistic and based on bi-directional nutrient transfer between the symbionts. 

AM fungi are obligate symbionts, thus they are not yet successfully cultured in the 

absence of plant root. However, the mycorrhizal association may vary along a 

symbiotic gradient ranging from strong mutualism to antagonism (Howeler et al., 

1987; Johnson et al., 1997).  

 

Arbuscular mycorrhizal fungi were previously classified in the phylum 

Zygomycota under the family Endogonaceae because of their resemblance with 

Endogone species. However this was later revised when it was discovered that 

AM fungi produced asexual spores instead of sexual spores like other Endogone 

species. The relationship between AM fungi and other fungi as detected by 

molecular analysis elevated the group to the phylum Glomeromycota (Koide and 

Mosse, 2004). The phylum Glomeromycota comprises approximately 150 

described species distributed among ten genera, defined primarily by spore 

development and morphology. DNA sequences have also been used recently to 

circumscribe taxa, although the latest molecular analyses indicate that the definite 
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number of AM fungal taxa may be much higher (Daniell et al., 2001; 

Vandenkoornhuyse et al., 2002). It has been reported that almost all members of 

the AM fungi are asexual and their vegetative mycelium and intraradical 

structures are aseptate and multinucleate. Spores may be formed singly, in clusters 

or in morphologically distinct "fruit bodies" called sporocarps. Glomeromycotan 

fungi produce relatively large spores which are between 40 and 800 μm in 

diameter depending on the species (Bécard and Pfeffer, 1993).  

 

2.3.1 Colonisation of plant roots by AM fungi 

There are three important components of the mycorrhizal root system namely, the 

root itself, the intraradical mycelium (the fungi within the root) and the 

extraradical mycelium (the fungi within the soil). Root colonisation by AM fungi 

can arise from spores, infected root fragments and/or hyphae. The spores are 

formed on the extraradical hyphae, but some species also may form spores inside 

the roots. Upon root colonisation, mycorrhizal fungi develop an external 

mycelium which is a bridge connecting the root with the surrounding soil (Toro et 

al., 1997). One of the most notable effects of colonisation by mycorrhizal fungi on 

the host plant is the increase in phosphorus (P) uptake mainly due to the capacity 

of the mycorrhizal fungi to absorb phosphate from soil and transfer it to the host 

roots (Asimi et al., 1980). As reported by Birhane et al. (2012) in their study, AM 

fungi can enhance photosynthesis, efficiency of water usage and growth of 

frankincense seedlings under pulsed water availability. Elias and Safir (1987) also 

reported that the growth and branching of mycelium growing from spores are 

stimulated by soluble exudates or extracts from the roots of host species, whereas 

the exudates from a nonhost had no effect (Gianinazzi-Pearson et al., 1989). 

Hyphal contact with the root is followed by adhesion and formation of swollen 

appressoria preceding the penetration (Giovannetti et al., 1993b). There is 

evidence that the host plant recognises the AM fungi already at this stage, which 

is indicated by regular occurrence of slight wall thickening on the epidermal cell 

adjacent to the penetrating hyphae (Garriock et al., 1989). The thickenings do not 
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contain either celullose or lignin and do not prevent the penetration of fungal 

hyphae through the walls (Harrison and Dixon, 1994). 

 

2.3.2 Two types of arbuscular mycorrhiza 

Arbuscular mycorrhizal (AM) fungi are the most widespread mycorrhiza in nature 

and form two morphologies according to the structures of the intraradical 

mycelium, the Arum-type and the Paris-type (Dickson, 2004). In the Arum-type 

the fungal symbiont spread in the root cortex via intercellular hyphae. The 

determining factors defining the two different morphologies are not well 

understood (Ahulu et al., 2004). The Arum-type is commonly described in fast 

growing root systems of crop plants, while the Paris-type morphology has been 

more often seen in plants of natural ecosystems such as those occurring in 

herbaceous layers in temperate broadleaf forests (Brundrett and Kendrick, 1990b), 

various trees (Kubota et al., 2001), and plants of semi-arid systems (McGee, 

1986). In the Paris-type, the hyphae develop intracellular coils and spread directly 

from cell to cell within the cortex. Arbuscules grow from these coils and are 

usually relatively short-lived. At least, in the Arum-type mycorrhiza, the hyphae 

are by comparison long-lived (Smith and Dickson, 1991).  

 

Co-occurrence of Arum- and Paris-type morphologies of AM fungi is usually 

observed in cucumber and tomato (Kubota et al., 2005). AM fungal 

morphological types were recognized in 14 families and were confirmed as 

follows: Arum-type in Rosaceae, Oleaceae, Lauraceae, Vitaceae and Compositae, 

Paris-type in Aquifoliaceae, Ulmaceae, Araliaceae, Theaceae, Magnoliaceae, 

Rubiaceae and Dioscoraceae, and both and/or intermediate types in Caprifoliaceae 

and Gramineae (Kubota et al., 2005). Plant families whose AM fungal 

morphological status was previously unknown were clarified as follows: 

Polygonaceae and Commelinaceae showed Arum-type morphology whereas, 

Celastraceae, Menispermaceae and Elaeagnaceae demonstrated Paris-type 

morphology. The Arum-type to Paris-type species proportion has been found to 

decrease in the following order: annuals > perennials > deciduous species > 
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evergreen species and pioneer group > early successional group > late 

successional group. It had been reported that evergreen plants had a higher 

tendency to form Paris-type AM fungi than annuals, perennials and deciduous 

plants. The AM fungal morphology seems to be strongly influenced by the 

identity of the plant, though control by the fungal genome cannot be ruled out 

(Ahulu et al., 2004). Thus the most common morphological type has been 

generally regarded as the Arum-type due to the fact that most experimental studies 

use crop plants. However, as per the suggestion by Brundrett & Kendrick (1990b) 

the Paris-type might be just as common in natural communities as the Arum-type. 

 

2.3.3 The use of AM fungi in phytoremediation 

AM fungi provide an attractive system to advance plant-based environmental 

clean-up (Gohre and Paszkowski, 2006). AM fungi can contribute to plant growth, 

particularly in disturbed or heavy metal contaminated sites, by improving mineral 

nutrition or increasing resistance or tolerance to biotic and abiotic stresses 

(Bhalerao, 2014). They also provide  an increased plant access to relatively 

immobile minerals such as P (Vivas et al., 2003; Yao et al., 2003), improving soil 

texture by binding soil particles into stable aggregates that resist wind and water 

erosion (Steinberg and Rillig, 2003), and by binding heavy metals into roots that 

restricts their translocation into shoot tissues (Kaldorf et al., 1999). They can alter 

plant productivity, because AMF can act as biofertilizers, bioprotectants, or 

biodegraders (Xavier and Boyetchko, 2002).  

 

Plants which appear spontaneously in disturbed ecosystem are frequently devoid 

of mycorrhizal symbiosis and are mostly characterized by poorly developed root 

and shoot biomass when heavy metals are present (Pawlowska et al., 1996). The 

lack of mycorrhiza can hamper the revegetation of the metal-contaminated mine 

spoil or other degraded sites. The introduction of an AM fungal inoculum into 

these areas could be a strategy for enhancing the establishment of mycorrhizal 

herbaceous species (Meier et al., 2011). AM fungal isolates differ in their effect 

on heavy metal uptake by plants (Leyval et al., 1997). Some reports indicate 
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higher concentrations of heavy metals in plants due to AM fungi (Joner and 

Leyval, 1997), whereas others have found a reduced plant concentration; for 

example, Zn and Cu in mycorrhizal plants (Heggo et al., 1990). Thus, selection of 

appropriate isolates could be of importance for a given phytoremediation strategy. 

AM fungal species can be isolated from areas which are either naturally enriched 

by heavy metals or old mine/industry waste sites in origin. Indigenous 

 

AM Fungal species could be able to stimulate plant growth better than non-

indigenous species. This is due to the fact that indigenous AM fungal ecotypes 

result from long-term adaptation to soils with extreme properties (Rahmanian et 

al., 2011). AM fungi are of importance as they play a vital role in metal tolerance 

(del Val et al., 1999) and accumulation (Jamal et al., 2002; Zhu et al., 2001). 

Their potential role in phytoremediation of heavy metal contaminated soils and 

water is also becoming evident (Jamal et al., 2002). 

 

External mycelium of AM fungi provides a wider exploration of soil volumes by 

spreading beyond the root exploration zone (Khan et al., 2000; Malcova et al., 

2003), thus providing access to greater volume of heavy metals present in the 

rhizosphere. A greater volume of metals is also stored in the mycorrhizal 

structures in the root and in spores. For example, concentrations of over 1200 mg 

kg
–1

 of Zn have been reported in fungal tissues of Glomus mosseae (currently 

known as Funneliformis mosseae) and over 600 mg kg
–1

 in Glomus versiforme 

(Chen et al., 2001). Another important feature of this symbiosis is that AM fungi 

can increase plant establishment and growth despite high levels of soil heavy 

metals (Enkhtuya et al., 2002), due to better nutrition (Feng et al., 2003), water 

availability (Auge, 2001) and soil aggregation properties (Rillig and Steinberg, 

2002) associated with this symbiosis. The AM fungus is thus significant in the 

ecological improvement of the rhizosphere (Medina, et al., 2003; Azcón-Aguilar 

et al., 2003).  
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Hetrick et al. (1994) studied the influence of mycorrhizal fungi on revegetation of 

chat piles from mine spoils, where plants had failed to establish naturally. They 

showed that mycorrhizal colonisation by a mixed AM fungal inoculum improved 

the growth of the obligate mycotrophic plant Andropogon gerardii, but Festuca 

arundinacea, a facultative mycotroph which grows well without mycorrhiza in 

non-contaminated soil, also benefited from mycorrhiza in chat piles. The results 

showed that mycorrhizas in combination with fertilizers will improve plant 

establishment on chat piles, and also on other severely disturbed sites such as 

mine spoils or overburdens (Hetrick et al., 1994). The benefit from mycorrhizal 

fungi could be associated with increased tolerance to heavy metals, but also with 

better plant nutrition, since chat piles are poor in nutrients and have a very low 

water-holding capacity.  

 

A number of biological and physical mechanisms have been proposed to explain 

metal tolerance of AM fungi and AM fungal contribution to metal tolerance of 

host plants. One of the mechanisms involves the immobilization of metals in the 

fungal biomass (Zhu et al., 2001). The research done by Lanfranco et al. (2002) 

implicates metallothionein-like polypeptides in Cd and Cu detoxification in AM 

fungal cells, since these polypeptides bind and sequester the toxic metals. An 

enhanced root/shoot Cd ratio in AM plants show a reduced transfer, which has 

been suggested as a barrier in metal transport (Joner et al., 2000b; Tullio et al., 

2003). This may occur due to intracellular precipitation of metallic cations with 

PO4
–
. However, AM fungal metal tolerance consists of adsorption onto plant or 

fungal cell walls present in plant tissues, or onto or into extraradical mycelium in 

soil (Joner et al., 2000a). It also includes the chelation by such compounds as 

siderophores and metallothionens released by fungi or other rhizosphere microbes, 

and sequestration by plant-derived compounds like phytochelatins or phytates 

(Joner and Leyval, 1997). Olsson et al. (1998) reported a few indirect mechanisms 

which consist of the effect of AM fungi on rhizosphere characteristics such as 

changes in pH, microbial communities and root-exudation patterns. 
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Although AM fungi are reported to contribute to plant growth, mainly in disturbed 

or heavy metal contaminated sites, soil degradation produces changes in the 

diversity and abundance of AM fungal populations (Koomen et al., 1990). Such 

elimination of AM fungi populations can lead to problems with plant 

establishment and survival (Pfleger et al., 1994; Haselwandter and Bowen, 1996). 

This causes a disturbance not only of the plant communities, but also of the fungi 

living in the soil (Bever, 2002).  

 

The number of spores and root colonisation of plants occurring at sites are often 

reduced by soil disturbance (Waaland and Allen, 1987). Thus, the host-specific 

differences in spore abundance reflect host-specific differences in relative rates of 

AM fungal population growth (Bever, 2002). However, AM fungal isolates 

adapted to local soil conditions can stimulate plant growth better than non-

indigenous isolates (Sylvia and Williams, 1992). Therefore, isolation of 

indigenous stress-adapted AM fungi can be a potential biotechnological tool for 

inoculation of plants in disturbed ecosystems (Gaur and Adholeya, 2004). Like 

ectomycorrhizal fungi, AM species have a potential which can be employed in 

biomonitoring programmes. The decline of AM fungal occurrence (propagule 

density) and infectivity in metal-polluted soils can be used as bioindicators of soil 

contamination (Leyval et al., 1995). Mycorrhizal colonisation of plant roots after 

soil remediation can be a sign that the metal concentration or bioavailability has 

decreased. Since metal tolerance evolves in some fungi from metal-contaminated 

soils, a sensitive AM fungus could be used and tested for its ability to colonise 

roots in any metal polluted soils, providing useful information about their metal 

toxicity (Meier et al., 2011).  

 

2.3.4 AM fungal status of mine tailings in South Africa 

 

Throughout the world, South Africa is a leader in mining industry due to the 

variety and quantity of minerals produced. The country has an abundance of 

mineral resources, accounting for a significant proportion of world production and 
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reserves, such as Au, Mn, V, chrome and Platinum Group Metals (PGM). The 

South African gold ore reserves, estimated at 40,000 tons, represent 40% of the 

global reserves. Over 80 % of the world’s platinum reserves are found in South 

Africa (Mining Weekly, 2015); AngloGold Ashanti Company, 2004).  

 

Despite the large economic benefits from the gold mining, there are 

environmental concerns as millions of tons of waste material are produced every 

year. Amongst the South African provinces, Gauteng region has major mining 

activities and as a result, the province produces a large number of slime dams, 

mine dumps and landfills in areas earmarked for low-cost housing projects. For 

every ton of gold produced about 200,000 tons of wastes are generated 

(AngloGold Ashanti Company, 2004). The production of such large-scale mining 

wastes poses serious socioeconomic and environment problems (Orłowska et al., 

2011). 

 

These mine dumps contain a large number of toxic elements such as U, As, Ra, 

Ni, Zn, and many other radioactive materials. Human exposure to these elements 

leads to various acute or chronic illnesses, such as cell mutation, cancer, 

respiratory diseases and many more (McGlasshan, 2004). Apart from health 

problems, they also cause injuries and pollution, such as destruction of buildings 

during floods or heavy rains, pollution of ground and surface water (Chen et al., 

2005; Suruchi and Khanna, 2011).  

 

The problem of environment metal pollution could be combated by establishment 

of AM vegetation on the surface of the mine tailings. Besides the toxicity of the 

substrate, such areas usually lack essential nutrients (mainly N, P, and K) and 

organic matter (Mendez and Maier, 2008b). AM fungi contribute to soil structure 

by forming micro- and macro- soil aggregates within the net of external hyphae 

(Miller and Jastrow, 2000). Their presence may reduce stress caused by lack of 

nutrients or organic matter and increase plant resistance to pathogens, drought, 

and heavy metals (Cardoso and Kuyper, 2006). Therefore, mycorrhizal fungi may 
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become the key factor in successful plant revegetation of industrially polluted 

areas by promoting the success of plant establishment and increasing soil fertility 

and quality. 

 

AM status has not been fully investigated in South Africa, until recently. Grassing 

of slime dams has been considered the most effective means of reducing wind-

caused erosion and protecting the surrounding environment. In the past, slime 

dams of the South African gold mining industry were grassed by using ‘high-

input’ methods that involve intensive leaching, liming, fertilization and irrigation 

prior to planting with a suite of pasture grass species. Although this process 

incurred a great cost to the gold industry, these methods had proven ecologically 

and economically unsustainable (Weiersbye et al., 2006). 

 

To investigate the AM status in South Africa, some surveys were conducted in 

Free State and North West regions. A survey of a chronosequence of slime dams 

conducted by Weiersbye et al. (2006) reported less than 5 percent of ruderal 

species that were introduced during grassing persisted once fertilization and 

irrigation ceased, although there was a high diversity of naturally-colonizing 

perennial plant species. A parallel survey of the arbuscular mycorrhiza status of 

plants on Au and U slime dams in the North West province was undertaken by 

Straker et al. (2007). In this survey root AM-colonisation parameters (total, 

hyphal, vesicular, arbuscular) and AM fungal spore status were assessed where 

samples of five indicator host plant species were taken from different sampling 

sites namely: Recently Vegetated (RV), Old Vegetated (OV) and Never Vegetated 

(NV) slime dams. The samples were also taken from different zones (the top, 

lower slopes, retaining wall and toe paddocks) as well as the surrounding natural 

soils (‘veld’). The study concluded that the flat, polluted soils around slime dams 

and the flatter areas of OV and NV slime dams were sources of more acid-tolerant 

AM fungal inoculum. Because the survey undertaken by Straker et al. (2007) 

represented a single observation of plant and substratum AM fungal status in late 

summer and did not provide a reliable indication of the inoculum potential (i.e. 
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infectivity) of the substrata, another AM fungal status study was conducted to 

substantiate the findings.  

 

The study performed infectivity assays on substrata from the same sites and along 

the same gradients, and in addition, to replicate the study in two different mining 

regions (Straker et al., 2008). Infectivity assays are a more accurate measure of 

the AM fungal inoculum potential of a substrate since they incorporate the 

infective ability of all propagules such as spores, soil mycelium, root fragments, 

auxiliary cells and sporocarps (Read et al., 1976). Substratum conductivity 

differed between zones in both regions, with minor interaction between region and 

zone was negatively correlated with pH, AM fungal infectivity and total spore 

numbers. The findings demonstrated that the ameliorant effects of liming and 

irrigation on substratum pH and conductivity are short-lived, but despite the 

physico-chemical constraints, a significant measurable AM fungal inoculum 

potential was found existing on all substrata. Amelioration of tailings with organic 

matter and use of acid and salt-tolerant AM fungal would be expected to 

contribute to more persistent AM fungal communities and vegetation on gold and 

uranium slime dams (Straker et al., 2008). In addition to enhancing nutrient 

acquisition, AM fungi may facilitate host growth in polluted soil substrata by 

contributing to pollutant immobilization, due to the presence of the vesicles and 

arbuscules of AM fungi in Cynodon dactlyon from South African Au and U 

tailings which have a higher affinity for radionuclides and heavy transition metals 

than the surrounding root tissues (Weiersbye et al., 1999). Orłowska et al., (2011) 

investigated the efficiency of mycorrhizal colonization in stimulation of plant 

growth and nutrient uptake in Non-sterilized seeds of B. coddii collected from 

Agnes Mine (Barberton area), Mpumalanga Province, South Africa. In their study, 

they found the highest shoot and root weight in plants inoculated with fungi 

originating from B. coddii rhizosphere, whilst the lowest weight was noted for 

plants inoculated with fungi originating from rhizosphere of another Ni 

hyperaccumulator, S. coronatus (Orłowska et al., 2011).  
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Thus successful rehabilitation of degraded and polluted substrata is dependent on 

an understanding of plant establishment and succession, factors which are strongly 

influenced by dynamic soil components such as organic matter and microbial 

communities. AM fungi are an essential component of the soil/plant community 

and many rehabilitation programs aim to accelerate the predominance of 

mycotrophic plant populations in order to create more stable communities (Smith 

and Read, 1997). Mycorrhizal inoculation of disturbed/degraded sites is important 

in promoting the dominance of mycotrophic species, which would lead to a more 

rapid rate of succession (Smith and Read, 2008). The inoculation of the plants 

with arbuscular mycorrhizal (AM) fungi enables the re-establishment of plant 

community in disturbed and polluted lands that are deficient in plant nutrients  

(Saito and Marumoto, 2002). Grass species are often introduced for rapid 

revegetation in devastated lands, due to their ability to quickly stabilize the fragile 

soil structure with their fibrous root systems; hence Erograstic curvula was used 

in this study. It was been reported that colonisation of E. curvula plants by AM 

fungi increases plant growth, and it may also increase the density of AM fungal 

propagules in the soils (Saito et al., 2011). This in turn, facilitates the 

development of subsequent vegetation (Greipsson and El-Mayas, 2000).  

 

2.4 Traditional versus DNA-based techniques for classification of AM fungi 

The identification of AM fungi is a very challenging process; however, it is a vital 

exercise since AM fungi form symbiotic relationships with a number of terrestrial 

plants. A great challenge with identification of AM fungi results from their 

hidden, biotrophic behaviour in the soil, few morphological characters, and the 

potential formation of dimorphic spores. This resulted in a large number of AM 

fungal species, phylogenetically belonging to different orders, being placed in one 

genus (Glomus) and, conversely, individual species forming different spore 

morphologies being described as members of different orders (Kruger et al., 

2009).  

 

http://www.tandfonline.com/doi/full/10.1080/00380768.2010.541869#CIT0015
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The phylum Glomeromycota comprises about 200 described morphospecies that 

traditionally have been distinguished by features of the spores, which are formed 

around or within root systems, and particularly the spore wall (Opik et al., 2010; 

Schüßler and Walker, 2010). The manner in which the spore is formed on the 

hyphae has been important to circumscribe genera and families, and the layered 

structure of the spore walls is used to distinguish species (Morton, 1988). Walker 

(1983) established the concept of ‘‘murographs’’ to describe and compare the 

layered structure of the spore walls more easily. Morton (1995) as well as Stürmer 

and Morton (1997, 1999a, b) and Stürmer (2012) included considerations of the 

spore development to group these wall components hierarchically into complexes 

linked by ontogeny (Redecker and Raab, 2006).  

 

However, assessing AM fungi diversity from morphological spore identification 

has some limitations as spore production may be highly dependent on 

physiological parameters of the AM fungi and on environmental conditions. 

Under certain conditions or during certain seasons of the year, some AM fungi 

may produce numerous spores and therefore appear to be dominant root 

colonisers, whereas under different conditions, they may not sporulate at all. This 

phenomenon has been appropriately demonstrated by Stutz et al. (2000) who 

showed that the perceived low AM fungal diversity of arid ecosystems was due to 

low levels of sporulation in the field and the true AM fungal diversity of the 

systems could be assessed from successive trap cultures which induced all species 

present to sporulate. Bouamri et al. (2006) reported that all the AM fungal species 

isolated from palm grove soil, with the exception of two Scutellospora species, 

were detected at the first trapping cycle. Scutellospora species only sporulated 

during the second trapping cycle probably due to spore dormancy, and late root 

colonisation followed by a delay in sporulation.  

 

Dalpé et al. (2005) also observed similar sporulation behaviour with 

Scutellospora species under pot-culture and under root-organ culture conditions. 

Moreover, the dynamics of spore production versus root colonisation may differ 
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among species (Bever et al., 1996, Spruyt et al., 2014). Another limitation of 

morphological identification is the fact that field-collected spores are often 

parasitized or degraded and therefore unidentifiable (Redecker et al., 2003). In 

nature, there can also be great variation in spore morphology even within an AM 

fungal species (Walker and Vestberg, 1998), and many AM fungi may reproduce 

only vegetatively without producing spores (Helgason et al., 2002). Non-

sporulating species may not be detected at all whereas prolific spore-producers 

dominate the views of AM fungal ecology, as has been seen in the case of 

Gigaspora and Archaeospora (Young, 2012).  

 

Molecular analysis provides a way around these limitations as it has the potential 

to identify actively growing fungi in field root samples and in spores isolated from 

soil samples independently of morphological criteria. The rRNA genes have been 

used in the majority of AM molecular ecology studies (Rosendahl and 

Stukenbrock, 2004), and these have generally agreed with classification based on 

spore morphology (Morton and Redecker, 2001; Schwarzott et al., 2001; Walker 

et al., 2004). Molecular markers have been successfully used to characterize the 

diversity of AM fungi in the field and have revealed an unexpectedly high 

diversity of phylotypes in some settings.  

 

Studies by Husband et al. (2002a) and Vandenkoornhuyse et al. (2002) signify 

that the number of 200 described morphospecies might be a strong 

underestimation of the true diversity of the Glomeromycota. Characterization of 

the large subunit region (LSU) of ribosomal RNA genes, in combination with 

nested PCR, has proven suitable for analyzing phylogenetic relationships 

(Vandenkoornhuyse et al., 2003) and developing molecular probes to detect AM 

fungal species colonizing plant roots and AM fungal spores in microcosm 

experiments (Kjøller and Rosendahl, 2000; Lee et al., 2008), in the field (Gollotte 

et al., 2004) or even in aquatic plants (Nielsen et al., 2004). The use of nested 

AML primer pair targeting a portion of the SSU rRNA region (Lee et al., 2008) 

provides a reliable identification of AM fungi to the genus level while screening 
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out non-AM fungal organisms (Krüger et al., 2012). The recent revisions and 

consolidations in the phylotaxonomy of AM fungi have broadened the scope of 

AM fungal taxonomy and allow the basis of investigation into the diversity of AM 

fungi from environmental samples (Redecker et al., 2013; Schüßler and Walker, 

2010).  

 

Molecular analysis has been critical in showing that the taxonomy of AM fungi 

was insufficient and needed a radical change which leads to assigning new names 

to the existing AM fungi (Young, 2012). There have been a number of discussions 

and studies revolving around the grouping of AM fungi. Schüßler et al. (2001) 

were the first to propose Glomeromycota as a monophyletic group raised to the 

taxonomic rank of a phylum based on SSU gene sequences. They also suggested 

that the Glomeromycota is a sister group of the Dikarya (Basidiomycota and 

Ascomycota) as did the six-gene phylogeny of James et al. (2006). However, the 

analysis of Liu et al. (2009), based on nucleus-encoded amino acid sequences, and 

that of Lee and Young (2009) on the mitochondrial genome of Glomus 

intraradices isolate 494 suggest a common ancestry of Glomeromycota with 

Mortierellales (Kruger et al., 2012). Hence Young (2012) recommended for more 

data from phylogenetically basal AM fungal to resolve immediate sister 

relationships to Glomeromycota, which are nonetheless clearly monophyletic and 

phylogenetically basal terrestrial fungi.  

 

The work done by Kruger et al. (2012) shows that there are a number of clades 

within the Glomeromycota that form the basis for orders and families (Fig. 2.1). 

This led to most species previously known as Glomus to be placed into new 

genera. For example, Glomus intraradices has now been changed to Rhizophagus 

irregularis (Young, 2012). The most recent classification of Glomeromycota is 

based on a consensus of regions spanning ribosomal RNA genes: 18S (SSU), 

ITS1-5.8S-ITS2 (ITS), and/or 28S (LSU) (Kruger et al,. 2012), but Redecker et 

al. (2013) have proposed an evidence-based consensus for the classification of 
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Glomeromycota and redefined the phylogenetic framework which should be used 

to resolve contradictions in the literature (Fig. 2.1).  

 

 

Fig. 2.1 Phylogeny of the Glomeromycota based on small sub-unit ribosomal RNA 

sequences, showing the relationships among the orders and genera. Families are indicated 

by distinct colours. Maximum Likelihood tree rooted with ascomycete outgroups, 

modified from a tree provided by A. Schüßler drawn with Fig Tree (Young 2012).  
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2.4.1  Molecular methods used in this study 

Several investigators have reported that individual spores of AM fungi, which are 

multinucleate containing thousands of nuclei per spore for certain species, may 

contain substantial heterogeneity among ribosomal ribonucleic acid (rRNA) gene 

copies (Sanders, 2002) and show a high level of genetic diversity in the internal 

transcribed spacer (ITS) region of the nuclear rRNA genes. Ribosomal-based 

deoxyribose nucleic acid (DNA) sequence analysis has revealed genetic variation 

both within and between AM fungal species. Furthermore, the genes of this region 

are available in high copy number and possess highly conserved as well as 

variable sectors, which facilitate differentiation of taxa at different levels 

(Sharmah et al., 2010). The nuclear SSU rDNA sequences (16S-like) evolve 

relatively slowly and are useful for studying distantly related organisms, whereas 

the mitochondrial rDNA genes evolve more rapidly and can be useful at the 

ordinal or family level. ITS are sequences located in eukaryotic rRNA genes 

between the 18S and 5.8S rRNA coding regions (ITS1) and between the 5.8S and 

28S rRNA coding regions (ITS2) (Fig. 2.2). Studies on restriction site variation in 

the ribosomal DNA (rDNA) in populations have shown that while coding regions 

are conserved, spacer regions are variable. These spacer sequences have high 

evolution rate and are present in all known nuclear rRNA genes of eukaryotes 

(Renker et al., 2006).  
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Fig. 2.2 Multicopy ribosomal genes carefully organised in the genome. Each 

ribosomal gene encodes for three subunits (18S [SSU], 5.8S and 28S [LSU]) separated 

from each other by an ITS. The genes themselves are separated from each other by an 

Inter Genic Spacer (IGS) (Dodd et al., 2001). 

 

A number of molecular taxonomy studies have been using ITS sequences 

(Redecker, 2000), although they are highly variable with AM fungal species and 

within the spores (Lloyd-Macgilp et al., 1996). This poses a great challenge in 

finding features that are commonly shared among AM fungi but absent in other 

organisms (Lee et al. 2008). This study used the small subunit rRNA (SSU rRNA) 

gene due to its lower variability when compared to ITS gene, and at the same time 

allows enough resolution down to the species level. A set of specific PCR primers 

(AML1 and AML2) for all AM fungi designed by Lee et al. (2008) was 

employed. This set of PCR primers which has an ability to amplify all subgroups 

of arbuscular mycorrhizal fungi (Glomeromycota), but exclude sequences from 

other organisms, was designed to facilitate rapid detection and identification 

directly from field-grown plant roots. Because the 3' region of a primer is critical 

for specific amplification, the distinctiveness of this region is used to discriminate 

against non-AM fungi sequences. In addition, the most variable region of the AM 

fungal SSU rRNA gene was selected in order to achieve high sequence resolution 

within the AM fungi (Lee et al., 2008). The primers (AML1 and AML2) target 

the small subunit rRNA gene because phylogenetic relationships among the 

Glomeromycota are well understood for this gene. Due to the sequence 
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comparisons done, these primers were reported to amplify all published AM 

fungal sequences except those from Archaeospora trappei. It was also reported 

that the AML1 and AML2 primers have much better specificity and coverage of 

all known AM fungal groups as compared to the established NS31 and AM1 

primer combination (Lee et al., 2008).  

 

2.4.1.1. Nested polymerase chain reaction (PCR) 

Nested PCR using taxon-specific primers for AM fungal species (morphotypes) is 

a highly sensitive method which allows detection of fungal hyphae present in 

roots as well as from soil (van Tuinen et al., 1998; Jacquot et al., 2000). The aim 

of the nested PCR reaction is to increase the specificity of the amplification 

reaction by performing two PCR amplifications one after the other. The first PCR 

reaction is performed as described below, but for the second reaction the 

amplification products obtained in the first amplification cycles are used as 

template using internal primers. In this way the specificity of the amplification is 

increased, since the target DNA to be amplified has acquired four primer binding 

sites. The efficiency of the amplification is increased as the number of cycles can 

be increased, without loss of specificity. 

 

Two pairs of PCR primers are used for a single locus (Fig. 2.3). The first pair 

amplifies the locus as seen in any PCR experiment. The second pair of primers 

(nested primers) bind within the first PCR product and produce a second PCR 

product that is shorter than the first one. The logic behind this strategy is that if 

the wrong locus is amplified by mistake, the probability is very low that it would 

also be amplified a second time by a second pair of primers.  
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Fig. 2.3 Nested PCR using two pairs of taxon-specific primers for AM fungal species 

(morphotypes) (White et al., 1990).  

 

2.5 The application of both bulk (ICP-MS) and micro-PIXE analytical 

methods in analysing the mechanisms of tolerance to metals and 

metalloids in arbuscular mycorrhizal fungi  

There are a number of different analytical methods developed to study trace 

elements in environmental and biomedical samples. These techniques are divided 

into bulk and micro-analytical methods. The techniques for micro-analysis using 

X-ray emission spectrometry are of growing importance, as is the knowledge of 

the precision and accuracy of different techniques in order to make comparable 

measurements (Gomez-Morilla et al., 2006). However, using highly sensitive 

techniques for bulk elemental analysis is usually the first, and often, the only step 

5'    . . GCAT . . . TTGG . . . . /  / . . . . GCGC . . . ATAT . .    3' 

   3'    . . CGTA . . . AACC . . . . /  / . . . . CGCG . . . TATA . .     5' 

The DNA sequences above and below denotes the nested PCR strategy, in which 

the segment of DNA with dots represents nondescript DNA sequence of 

unspecified length. The double lines represent a large distance between the 

portions of DNA illustrated in this figure. The portions of DNA shown with four 

bases in a row represent PCR primer binding sites, though real primers would be 

longer. 

5'    GCAT . . . TTGG . . . . .  . . . . GCGC . . . ATAT     3'       

                     cgcg 

   

  ttgg       

3'    CGTA . . . AACC . . . .   . . . . CGCG . . . TATA     5' 

Second pair of nested primers (with arrows) binds to the first PCR product. The 

binding sites for the second pair of primers are a few bases "internal" to the first 

primer binding sites.  

5'    TTGG . . . . /  / . . . . GCGC    3' 

   3'    AACC . . . . /  / . . . . CGCG     5' 

Final PCR product after second round of PCR. The length of the product is 

defined by the location of the internal primer binding sites. 
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in elemental analysis related to plant sciences. Some of these techniques such as 

Atomic Absorption Spectrometry (AAS), Atomic Emission Spectrometry (AES), 

Atomic Fluorescence Spectrometry (AFS), Inductively Coupled Plasma Atomic 

Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) have been successfully employed in various studies 

(Kaixuan et al., 2013).  

 

ICP-MS determines concentration levels in parts per billion and below, while 

ICP-AES can only determine levels in parts per million and higher. In other 

words, ICP-MS works best in samples that require the lowest detection limits and 

the greatest level of productivity when it comes to sensitivity, accuracy and 

precision (Richaud et al., 2000) and it is considered one of the most sensitive 

techniques for measuring a wide-range of elements and isotopes in a variety of 

sample matrices (Boss and Fredeen, 1997; Salt et al., 2008).  

 

The technique is relatively free from interferences and the interferences that do 

exist can often be reduced or removed through the use of a universal cell 

operating in either the collision mode or the reaction mode. In addition, ICP-MS 

technique measures most of the elements in the periodic table. In ICP-MS, the 

plasma is a means of generating individual atoms and ions which are then fed into 

the mass spectrometer and separated on the basis of their atomic weights. High-

resolution ICP-MS is able to detect ultra-low concentrations of multiple metals 

rapidly, often achieving detection limits in the high pictogram per kilogram (pg 

kg
-1

) range, so it is the technique of choice for initial screening.  

 

The utility of the ICP-MS technique in the determination of both trace and major 

elemental concentrations has been observed in many studies ranging from tissues 

in neurodegenerative disorders (Yonghwang Ha, et al., 2011) to plant (Salt et al., 

2008) and soil components. Ram et al. (1997) have reported ICP–MS as the 

method of choice among the present-day technologies for determining Boron 

concentration and a convenient method for Boron isotope determination in plant 
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and soil samples. ICP-MS was successfully used in the study conducted by Larsen 

et al. (2006), in garlic to show a tenfold increase of selenium (Se) concentration 

due to the addition of mycorrhizas to the natural soil. 

  

Methods for bulk elemental analysis are usually complemented by the use of 

micro analytical techniques such as Micro-Proton-Induced X-ray Emission 

(Micro-PIXE) (Mesjasz-Przybylowicz and Przybylowicz, 2002). Therefore, 

appropriate analytical methods for addressing particular questions of interest need 

to be carefully selected from among the broad array of analytical methods that are 

available. Micro-PIXE is one of the most modern, sensitive and reliable methods 

for the localisation and quantification of different elements in biological samples 

at the tissue and cellular levels (Vogel-Mikuš et al., 2010).  

 

2.5.1 Particle-Induced (Proton Induced) X-Ray Emission (PIXE) 

PIXE is a technique used in determining the elemental composition of a material 

or sample. When a material is exposed to an ion beam, atomic interactions occur 

that give off EM radiation of wavelengths in the X-ray part of the electromagnetic 

spectrum specific to an element. The spectrum of characteristic X-rays emitted 

from the target, yields both qualitative and quantitative information concerning 

the concentration of the element in the sample (Mando and Przybylowicz, 2009). 

PIXE is a powerful yet non-destructive elemental analysis technique, now used 

routinely by geologists, archaeologists, art conservators as well as biologists and 

others to help answer questions of provenience, and authenticity. 

 

The basic physical processes involved in this technique are at present well 

understood and can be modelled using readily available software codes that 

provide reliable results for a wide range of elements and the present refinement of 

data processing, using packages such as GeoPIXE-II opens up new frontiers in 

this type of application (Przybyłowicz et al., 2005). Extension of PIXE using 

tightly focused beams (down to 1 μm) gives an additional capability for 

microscopic analysis. This technique, called micro PIXE, can be used to 

http://www.reference.com/browse/wiki/Chemical_element
http://www.reference.com/browse/wiki/Ion
http://www.reference.com/browse/wiki/EM_radiation
http://www.reference.com/browse/wiki/Wavelength
http://www.reference.com/browse/wiki/X-ray
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determine the distribution of trace elements in a wide range of samples. Micro-

PIXE has been used in plant science applications since its early days of its 

discovery (Bosch et al., 1980; Legge et al., 1979).  

Although micro-PIXE is not an easy technique to operate due to many related 

technical problems, including the difficulty in preparation of plant specimen 

resulting from heterogeneity of plant tissues, it is an important tool for 

quantitative investigations of trace elements and their interactions with other 

elements (Mesjasz-Przybylowicz and Przybylowicz, 2002). Przybyłowicz et al. 

(2005) used the technique to observe the heavy metal distribution in mycorrhizal 

and non-mycorrhizal roots of Plantago lanceolata L. (Plantaginaceae), a common 

weed of cultivated land. Using Micro-PIXE, Orlowska et al. (2013) successfully 

demonstrated the significant influence of mycorrhizas on the concentration and 

distribution of elements in roots of Berkheya coddii.  

 

They discovered a significantly higher concentration of P, Ca, Zn, and Cu in 

mycorrhizal roots compared to the non-mycorrhizal roots. Pallon et al. (2007) 

have found in their studies that the nuclear microprobe (NMP) using PIXE for 

elemental analysis and Scanning Transmission Ion Microscopy (STIM) was 

successful in investigating possible interactions between minerals and 

ectomycorrhizal (ECM) mycelia that form symbiotic associations with forest 

trees. These studies confirm the usefulness of micro-PIXE in studies on 

microscale activity of mycorrhizal fungi. 

 

Witkowski and Weiersbye (1998) and Straker et al. (2007) reported a depletion of 

plant nutrients such as N and P in gold and uranium mine tailings of the 

Witwatersrand reef in South Africa. These tailings contain high concentrations of 

some metals and radionuclides such Fe, Ni, Cr, As, Y, Au, Pb, Th, Ra, and U, in 

which mostly, if not only, mycorrhizal plants species that colonise or survive in 

the tailings. Thus localisation and quantification of these toxic elements in plants 

and in mycorrhizal structures could assist in understanding the possible pathways 

of transport and mechanisms of detoxification and thereby suggest methods of 
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plant adaptations in adverse conditions. Weiersbye et al. (1999) used micro-PIXE 

to localise elements in mycorrhizal roots of Cynodon dactylon growing on mine 

tailings and the present study is intended to build on this preliminary work.  

 

2.6 Study aim   

The aim of this study was to identify AM fungi from a number of heavy 

metal sites in South Africa using both morphological and molecular 

techniques, followed by their evaluation of heavy metal localisation in 

mycorrhizal roots.  

 

2.7 Specific objectives  

1. To compare AM fungal diversity in selected heavy metal (HM) sites in 

the Republic of South Africa (RSA). 

2. To use a molecular technique such as nested PCR to identify the AM 

fungal species associated with these sites.  

3. To localise HM elements in plant roots and fungal structures using 

Particle Induced X-ray Emission (PIXE).   

4. To conduct a statistical comparison between elemental concentrations in 

roots and AM fungal colonisation levels of roots 
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CHAPTER 3 

3 MATERIALS AND METHODS 

3.1 Site descriptions 

Samples were collected from three different provinces namely Gauteng, 

Mpumalanga and North West provinces. The sites were selected based on their 

historical and current heavy metal contamination (Table 3.1). The overall 

topography of all three provinces is relatively flat with moderate undulating 

landscape. A diverse rainfall gradient is observed across the three provinces 

(Mucina and Rutherford, 2006). The estimated Mean Annual Precipitation (MAP) 

rainfall for North West (Vaal River, Lonmin) and Gauteng (West Wits, East 

Rand), ranges from 497 to 651 mm (South African Weather Service, 2006). 

Mpumalanga (Agnes Mine) is located in the high rainfall area of South Africa 

mainly occurring as thunderstorms and heavy showers with an overall MAP of 

1194 mm (Mucina and Rutherford, 2006).  

 

The three provinces are classified according to three dominant biomes namely 

grassland, savannah and azonal vegetation (Mucina and Rutherford, 2006). 

Vacant land is currently utilised for various uses including cattle ranching, game 

farming, agricultural crop farming such as maize and sunflower, but does not 

include commercial forestry plantations. Commercial forestry is unsuited to these 

areas, given the low annual rainfall and cold winter temperatures. However, some 

small stands, rows and isolated trees do exist along some water courses, farm 

boundaries and in areas adjacent to Tailings Storage Facilities (TSF)s through 

planting and natural establishment. Most of the Lonmin mine area is underlain by 

the mafic intrusive rocks of the Rustenburg layered suite of Bushveld Igneous 

Complex with rocks including gabbro, norite, pyroxenite and anorthosite. 

Predominant geological formations in Vaal River, East Rand, and West Wits 

study areas include dolomite and sand, chert-rich dolomite and shale, (AngloGold 

Ashanti, 2004) while Agnes serpentine mining site has its soil impacted by heavy 

metal contamination from a gold galvanising plant (Anhaeusser, 201 2). 
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3.2 Sites 

3.2.1 Site 1: Lonmin Mining site, Marikana Thornveld, North West  

3.2.1.1. Location 

Lonmin Platinum Mine is the third largest producer in South Africa. It is located 

near Rustenburg, in the North West province. Although the general terrain of the 

area is rather flat, the Marikana Base Metal Refinery (BMR) at Lonmin Platinum 

is situated on the top of a gentle hill-slope at the base of the Jakkalskop kopjie. 

The BMR is situated directly within the historic run-off area from the kopjie and 

upslope of the seasonal wetland area and stream. As a result the BMR site is 

expected to be leaky, with storm-water entering the site, overflowing pollution 

control measures (e.g. culverts and ponds), and relatively large volumes of run-off 

exiting the BMR site (Fourie et al., 2008). Its scope includes four major 

operations namely; Karee Mine, Western Platinum Mine, Eastern Platinum Mine 

in Marikana and Baobab shaft in Limpopo. The mine comprises fifteen tailings 

disposal facilities, approximately twenty rock dumps, twenty one open cast pits 

(some rehabilitated), four landfill sites, four large slag pile areas and several 

operational stockpile facilities. These mine wastes facilities cover more than 2500 

ha. (Fourie et al., 2008). The surface water run-off from the BMR site has been 

reported to be contaminated with sulphates and heavy metals. Present in the 

surface water run-off are: Sulphate (430 ppm), Ni (15 ppm), Cu (10 ppm), Co (1.3 

ppm), Mn (1.9 ppm), Al (72 ppb), Zn (224 ppb), and Pb (22 ppb). Cr was present 

at 3 ppb (i.e. < the target water quality), (Weiersbye and Cukrowska, 2007), 

clastic sediments and minor carbonates.  

 

A more accurate measure of elements immediately available to plants (i.e. not 

sorbed or bound) is the soil pore solution water. Elements reported to be present at 

elevated concentrations in the soil pore water are: sulphate (ranging from 500 – 

5000 ppm on crusted areas), Mo (0.03 ppm), Al (0.6 ppm), Co (0.2 ppm), Cr (0.05 

ppm), Cu (1 ppm), Mg (290 ppm), Mn (2 ppm), Na (115 ppm), Se (0.2 ppm), V 

(0.1 ppm), and Zn (0.4 ppm). These amounts could be taken up by plants but, 
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apart from Na, are well below plant toxicity levels. The soil pore water 

replenishes with ions on a seasonal basis, and under the influence of plant and 

micro-organism influences (Fourie et al., 2008). However, the results reported in 

this study, showed that some of these elements such as Cr, Cu, Mn, U, Ti to name 

but a few are above the acceptable limits for both plants and living organisms.  

 

3.2.1.2. Geology and Soils  

The mine is located on the basic rocks of the Merensky Reef and Chromitite layer 

of the Bushveld Igneous Complex. The soil is impacted by spillage from the base 

metal refinery (receives ore from the Merensky Reef and the UG2 Reef). The soils 

at the BMR site comprise Mispah formation around the BMR fence, with patches 

of deeper, sandier red soils around the granite outcrops. Most of the area is 

underlain by the mafic intrusive rocks of the Rustenburg layered suite of Bushveld 

Igneous Complex. Rocks include gabbro, norite, pyroxenite and anorthosite. Land 

types are mainly Ea, Ba and AE. Due to the type of soils below the BMR (black 

turf soils), significant amounts of the contaminants are sequestered in the topsoils. 

The resultant sink area is highly contaminated, although the high clay and organic 

content of the black turfs does limit leaching to groundwater. Unfortunately the 

seasonal swelling (wet season) and shrinking plus cracking (dry season) that 

occurs naturally in this self-mulching type of clay soil is steadily working the 

contaminants deeper into the soil profile and through the clay lens (Weiersbye and 

Cukrowska, 2007).  

 

It has its basic rocks as chromitite, ultramafic at study site, pockets of sheet 

granite outcrops with heavy metal contaminants as Al, Mg, Na, S, Co, Cr, Cu, Fe, 

Mn, Ni, Se, Bi, V, As, Zn, Cd, La, Pt, Ir, Rh, Gd, Th, Te, Pb. The metals are 

included in the study because their concentration is above the acceptable levels in 

the plant.  
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3.2.2 Site 2: Mpumalanga, Agnes Serpentine Mining (AGM) Site  

3.2.2.1. Location 

Agnes Mine is located around the Barberton town, in the eastern portion of the 

Mpumalanga Province, South Africa. It has fragmented patches on the exposed 

ultramafic substrates in a triangular region extending from Malelane in the east, to 

Badplaas, Barberton and East Swaziland in the South to West of Nelspruit in the 

north (Antunes, 2010). It is generally situated at high altitudes in the Barberton 

region, ranging from 760 m in the North to 1 640 m in the Southwest. Agnes gold 

mining centres, together with some other centres such as Sheba-Fairview, New 

Consort, form separate complexes of epigenic mesothermal ore shoots that are 

part of the Barberton Greenstone Belt (BGB) (Fig. 3.1 below).  

 

The samples were taken from an open field of Berkheya coddii, on serpentine soil, 

at the top of the hill above Agnes Mine. They were not taken on Agnes Mine 

itself, and not in receipt of any pollution from Agnes Mine. As a serpentine site, it 

is expected to be contaminated with Ni, Zn to name but a few. Berkheya coddii is 

Ni-hyperaccumulator and an endemic plant growing only on the soil containing 

high concentration of Ni. 

 

The BGB is the largest Achaean greenstone belt and is one of the oldest goldfields 

in South Africa. It is located in the south eastern part of South Africa’s 

Mpumalanga province, and is world renowned for its gold content (Antunes, 

2010). It comprises an area of 770ha on the farm Portion 3 and R/E of Rhineland 

330 JU (Mucina and Rutherford, 2006; Antunes, 2010). 
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Fig. 3.1 The Barberton Greenstone Belt showing goldfields that include Agnes Mine, 

Sheba-Fairview, New Consort, Bonanza and several others (Anhaeusser, 2012).  

 

3.2.2.2. Geology and Soil 

The Agnes Mining site is positioned in a moderately flat to gently sloping terrain 

on lower slopes of the Barberton Mountains. It is a serpentine mine site with soil 

impacted by heavy metal contamination from a gold galvanising plant, Katspruit 

and Dolomitic. Despite numerous types of nickel such as nickeliferous magnetite 

(trevorite) (Trevor, 1920) several new and rare nickel minerals in the deposit (De 

Waal, 1986) showings in ultramafic rocks found throughout the Barberton 

greenstone belt, no nickel mine has yet been established (Ward, 1999; 

Anhaeusser, 2012). 

 

Barberton Supergroup comprises of schists (metarmorphic rock which consists of 

layers of different minerals), gneiss, felspathic quartzites and various lavas of the 
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Figtree, Moodies and Onverwacht Formations (Mucina and Rutherford, 2006). 

New discoveries are still being made and old deposits are being re-investigated as 

techniques of mining and extraction improve. These developments and the recent 

discovery of a nickel-sulphide deposit associated with an old talc mine suggest 

that mining activities in the Barberton greenstone belt are set to continue well into 

the foreseeable future (Anhaeusser, 2012). 

 

Barberton Goldfields mining area is characterised by steep to very steep 

topography with slopes that vary from 5° to 35°. The upper reaches of the 

mountainous terrain are characterised by steep and narrow drainage lines, while 

the lower reaches are characterised by open and wide gently flowing streams. The 

flood plains are generally wide, and subject to occasional flooding (seasonal) with 

moderate to large catchment areas. The BGB is a north-east trending, isoclinally 

folded, metamorphosed volcano-sedimentary succession entirely surrounded by 

intrusive granitoid rocks (Antunes, 2010). It consists predominantly of an 

assortment of ultramafic and mafic submarine volcanic rocks, including a number 

of sill-like, layered ultramafic complexes. This group is overlain by turbiditic 

greywacke sandstones and associated mudstones and banded ferruginous shales of 

the fig tree group (Antunes, 2010).  

 

Host rocks to the gold mineralisation vary from greenstones to greywackes, 

shales, banded ferruginous shales, quartzites, and a variety of cherts. Wall-rock 

alteration associated with the mineralised fractures includes silicification, 

carbonatisation, sericitisation and sulphidation. The gold ores of this area are 

either free milling, moderately refractory or highly refractory depending on the 

extent to which the precious metal is occluded within the associated sulphides, 

commonly pyrite and arsenopyrite, or contained within arsenopyrite as 

submicroscopic gold. The lodes comprise mineralised gold (Antunes, 2010). 
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3.2.3 Site 3: Gauteng, East Rand (ER1) ERGO Brakpan slime dam 

footprint. 

3.2.3.1. Location 

Brakpan is situated on the East Rand of Gauteng, approximately 25km away from 

Oliver Tambo International Airport. The Brakpan tailings deposition site is part of 

DRDGold's Ergo gold recovery project called Ergo (ErgoGold). The quartzite 

rock is ground to fine sand and powder, deadly sodium cyanide is used to extract 

the gold, and the toxic waste sand is pumped to these great piles. The "lake" in the 

middle could pose a hazardous threat to both the environment and living 

organisms even for years after mining has stopped. Ergo’s flagship metallurgical 

plant, some 50km east of Johannesburg in Brakpan, and the Knights plant in 

Germiston together comprise what is arguably the world’s largest gold surface 

tailings retreatment facility. Together with the milling and pump station at Crown 

Mines and City Deep (both former plants), the new consolidated Ergo operation 

processes 2.0 - 2.1 million tonnes of gold-bearing material a month (GDACE, 

2008). 

 

Fig. 3.2a Ergo’s flagship metallurgical plant, together with the milling and pump 

station at Crown Mines and City Deep (GDACE, 2008). 
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Fig. 3.2b Ergo’s flagship metallurgical plant footprint, together with the milling 

and pump station at Crown Mines and City Deep (Integrated-report, 2013). 

 

3.2.3.2. Geology and Soil 

Gold in the Witwatersrand Supergroup and Black Reef Formation occurs in 

pyritic quartz pebble conglomerates, together with sub-economic to economic 

quantities of uranium as uraninite. The soil is impacted by Acid rock drainage 

(ARD) and slimes (i.e. footprint of the old Withok slime dam next to Brakpan 

slime dam), Katspruit and Dolomitic (chert poor). A number of other potentially 

hazardous metals occur together with the economic mineralisation (GDACE, 

2008). Dolomitic bedrock is a high potential aquifer due to its chemical 

characteristics that result in formation of solution cavities (Weiersbye and 

Witkowski, 2003). Collapse of near-surface cavities forms sinkholes that can 

conduct contaminated surface water into the groundwater aquifer. The area has a 

high rate of wind and water erosion that distribute mining residues into the 

surrounding soil. Removal of mine residues for reprocessing leaves “footprints”, 

where sand and tailings are mixed with soil. Leachates and other contaminated 

waters interact with natural soils, leaving hazardous precipitates, adsorbed metals 

and other contaminants (GDACE, 2008). 

http://drdgold.integrated-report.com/2013/business/business-model
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Fig. 3.3 Brakpan, Ergo mining site situated in Ekurhuleni Metropolitan Municipality 

containing parts of both Central and East Rand gold fields (Sutton, 2012, MSc Thesis, 

page 56).  

 

3.2.4 Site 4: North West (Vaal Reefs- VRS) (S) 

3.2.4.1. Location 

The Vaal River Operations are located at the boundary between the North-West 

and Free State provinces. The mine is shared between the two provinces. The 

northern portion of the mine lease is situated within the City of Matlosana Local 

Municipality and under jurisdiction of Southern District Municipality (DC40) in 

the North West province, and the southern part within the Moqhaka Local 

Municipality, and under the Jurisdiction of District Municipality of Fezile Dabi 

(DC20) in the Free State Province. The total mining lease area of the Vaal River 
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operations is approximately 23 876 hectares (ha). The Local Map for Vaal River 

Operations within the Reference to AGA is shown in Fig. 3.4 below (AngloGold 

Ashanti, 2009). 

 

The Vaal River Operations is surrounded by a number of following towns 

including Orkney which is surrounded by the Vaal River Operations; Klerksdorp 

that is located 18 km to the North-West; Potchefstroom which is located 50 km to 

the East; Bothaville which is located 45 km to the South; and Leeudoringstad that 

is located 56 km to the South–West (AngloGold Ashanti, 2009). 

 

Fig. 3.4 The Local Map for Vaal River and West Wits mining Operations within the 

Reference to AGA (AngloGold Ashanti, 2009). 

 

The Vaal River Operations comprises mainly of four (4) deep gold mines (Tau 

Lekoa Mine, Moab Khotsong Mine, Great Noligwa Mine and Kopanang Mine) 

and supporting infrastructure such as metallurgical plants (where gold, uranium 

and sulphuric acids are produced), a chemical laboratory, tailing storage facilities, 
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waste rock dumps and supporting services (land management, mine services, 

commercial services and sustainable development) (AngloGold Ashanti, 2009).  

 

3.2.4.2. Geology and Soil 

The Vaal Reef is usually 50 cm or less thick and well mineralized, with nodular 

and crystalline pyrite, gold, uraninite and carbonaceaous mater concentrated along 

the base of the conglomerate layer. The soil is impacted by acid rock drainage and 

slimes spillage (i.e. toepaddock soils next to slime dam). More than 50% of the 

main soil types are relatively shallow (50 -150 mm) and rocky, with dominant soil 

forms of Glenrosa & Mispah Dolomitic (chert-rich) (Mucina and Rutherford, 

2006). 

 

In general the conglomerate (reef) matrix consists micaceous minerals such as 

sericite, pyrophyllite, muscovite, chlorite and chloritoid (10-30%); pyrite (3-4%); 

other sulhides, e.g. pyrrhotite, chalcopyrite, pentlandite, galena, cobaltite, 

sphalerite, gersdorffite, linnacite and arsenopyrite (1-2%); grains of primary 

minerals such as chromite, rutile. garnet, zircon, xenotime, ilmenite and 

tourmaline, alteration products such as goethite and leaucoxene and secondary 

minerals such as anatase and skutterudite (1-2%). Gold and uranium 

(predominantly as uraninite (UO2)) are mainly found in the matrix (Suruchi and 

Khanna, 2011, Liebenberg, 1957). A naturally rocky ridge (Black Reef rocks) 

constitutes the northern boundary of the mine lease area. Other man-made 

structures such as headgears, TSF and waste rock dumps altering the topography 

of the landscape, also occur (AngloGold Ashanti, 2009). 

 

The main geological landscape in the Klerksdorp gold field includes the 

Witwatersrand, Transvaal, and Ventersdorp Supergroups as well as the Swazian 

Basement granites. Tailings from gold recovery still contain low concentrations of 

gold and may contain economically recoverable sulphur in the form of pyrites. 

Historically, low-grade (i.e. uneconomic) ore was sometimes disposed of on waste 

rock dumps (AngloGold Ashanti, 2009).  



 

 

44 

 

 

3.2.5 Site 5: West Witwatersrand Gauteng, (West Wits – WW) TSF.  

3.2.5.1. Location 

The West Wits Operations are situated approximately 75 kilometers (km) west of 

Johannesburg within the Gauteng Province. The site is approximately 7 km South 

of Carletonville, which is in North West Province. It is also surrounded by other 

neighbouring towns, namely Fochville and Potchefstroom, which are situated 12 

km and 50 km respectively to the South and West of the mine. West Wits has 

occupied approximately 4176 hectares of land which straddle the boundary 

between Gauteng and North West Provinces (Rex et al., 2009). Fig. 3.5 below 

shows a regional map and Fig. 3.6 shows an operation area occupied by West 

Wits. Witwatersrand also denotes the greater Johannesburg metropolitan area, 

which spans the length of the gold-bearing reef. The metropolitan area is oblong 

in shape and runs from the area of Randfontein and Carletonville in the west to 

Springs in the east. It includes the vast urban areas of the East and West Rand, and 

Soweto. 
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Fig. 3.5 Overview of the Witwatersrand Geological Formation (Source: West Wits 

Mining, 2008). 
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Fig. 3.6 An operation area occupied by West Wits (AngloGold Ashanti, 2009). 

 

3.2.5.2. Geology and Soil  

The Witwatersrand basin constitutes one of the great metalogenic provinces of the 

world when it comes to gold and uranium deposits. The Witwatersrand 

sedimentary basin has been deposited over an estimated time period of 360 

million years (Ma) in the Proterosoic time period between 3 074 and 2 714 Ma 

(Robb and Robb, 1998) on a granite greenstone basement known as the Kaapvaal 

Craton (McCarthy and Rubidge, 2005). Soil is impacted by acid rock drainage and 

slimes spillage (i.e. toepaddock soils are next to slime dams). Clovelly, Avalon. 

Timeball Hill shales. Gold tailing dams from the Witwatersrand Basin usually 

contain elevated amounts of heavy metals and radionuclides. Uranium, in the form 

of uraninite (UO2) and brannerite (UTi2O6) is normally associated with gold-

bearing ores in the basin.  
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As a result of acid mining drainage (AMD), uranium is released into groundwater 

and fluvial systems. Its transport and immobilisation depend strongly on the 

uranium species and prevailing geochemical conditions. Mining of South Africa 

gold, platinum and base metal resources has given rise, in the Gauteng Province 

alone, to approximately 150 tailings dams, covering an approximate 12,000 ha of 

land. Uranium is generally associated with the gold ores of the Witwatersrand, at 

times at concentrations which may be economically viable for extraction as a by-

product to the gold. Uranium and its radiogenic progeny are therefore found in 

many of the residues and waste produced in the mining and processing of 

Witwatersrand ores. Uranium has been an important by-product of gold mining.  

It occurs with gold and a host of other minerals in the Witwatersrand Basin and 

can be at the elevated concentrations of between 100 and 300 ppm (Cole, 1998; 

Fourie et al., 2008). West Wits Mines exploits the Carbon Leader Reef (CRF) and 

the Ventersdorp Contact Reef (VCR) gold bearing reefs, present in the 

Johannesburg and Turffontein subgroups, respectively. The Conglomerate (reef) 

Matrix generally consist of micaceous minerals such as sericite, pyrophyllite, 

muscovite, chlorite and chloritoid (10-30 percent): pyrite (3-4 percent): other 

sulphides (e.g. pyrrhotite, chalcopyrite, pentlandite, galena, cobaltite, sphalerite, 

gersdorffite, linnacite and arsenopyrite) (1-2 percent); grains of primary minerals 

such as chromite, rutile, garnet, zircon, xenotime, ilmenite and tourmaline, 

alteration products such as goethite and leucoxene and secondary minerals such as 

anatase and skutterudite (1-2 percent). Gold and uranium (predominantly as 

uraninite (UO2) are mainly found in the matrix (Suruchi and Khanna, 2011; 

Liebenberg, 1957). 

 

3.2.6 Site 6: Gauteng, East Rand (ER2A) ERGO Metallurgical Plant (MP), 

(A2+A5).  

3.2.6.1.  Location 

Soil impacted by emissions from the stack and spill. Hutton, Glenrosa. Dolomitic. 

Gauteng has an alternating climate between warm, moist summers and cool dry 
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winters. As mentioned in site 3 above, the mean daily temperatures vary between 

21.2°C in the summer and 9.8°C in the winter (Schulze, 1997). 

 

Fig. 3.7 The Gauteng grassland biomes (Schulze, 1997).  

 

3.2.6.2. Geology and Soil 

The host rock containing precious or industrial minerals is a critical aspect of any 

mining related development. The soil is contaminated with elements such as gold, 

and uranium. Apart from controlling the distribution and grade of mineral 

deposits, the rock structure, texture and mineralogy can impact the terrain 

morphology, drainage development and type of channels, groundwater flow and 

chemistry and the nature of solid, fluid or gaseous emanations that can affect the 

environment (GDACE, 2008).  

 

3.2.7 Site 7: Gauteng, East Rand (ER2D) ERGO Metallurgical Plant (MP), 

(D1). 

3.2.7.1. Location 

Soil impacted by emissions from the stack and spill. Hutton, Glenrosa. Dolomitic. 

Gauteng has an alternating climate between warm, moist summers and cool dry 
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winters. As mentioned above Mean daily temperatures vary between 21.2°C in the 

summer and 9.8°C in the winter (Schulze, 1997). See site 3 and 6 above.  

3.2.7.2. Geology and Soil 

It resembles similar geological features as site 3 and site 6 above. Its soil is 

impacted by emissions from the stack and spill. Hutton, Glenrosa, Dolomitic. For 

more details see site 3 and site 6 above.  

 

3.2.8 Site 8: North West - Vaal Reefs (M) (VRM). 

3.2.8.1. Location 

The Vaal River Operations are located at the boundary between the North-West 

and Free State provinces. The mine is shared between the two provinces. The total 

mining lease area of the Vaal River operations is approximately 23 876 hectares 

(ha). (AngloGold Ashanti, 2009). The Vaal River operation is surrounded by a 

number of towns including Orkney; Klerksdorp; Potchefstroom; Bothaville; and 

Leeudoringstad (AngloGold Ashanti, 2009). For more details see site 3 and 6 

above.  

 

3.2.8.2. Geology and Soil 

Vaal River Operations is largely situated on dolomitic substrata which are 

subjected to the formation of sinkholes. Dolomite is a calcium-magnesium 

carbonate rock with a distinctive “elephant skin” texture. This kind of rock is 

susceptible to dissolution from the percolation of rainwater and the flow of sub-

surface water, which results in the formation of underground cavities and caves. 

The process of weathering also results in the formation of a complex residual soil 

mantle known as “wad”, overlaying the dolomite bedrock. Wad is low density, 

weak material that is easily eroded and highly compressible, thus unsuitable for 

foundations. The host rock containing precious or industrial minerals is a critical 

aspect of any mining related development. Apart from controlling the distribution 

and grade of mineral deposits, the rock structure, texture and mineralogy can 
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impact the terrain morphology, drainage development and type of channels, 

groundwater flow and chemistry and the nature of solid, fluid or gaseous 

emanations that can affect the environment (GDACE, 2005). The soil is impacted 

by acid rock drainage and slimes spillage (i.e. toepaddock soils next to slime 

dams). Glenrosa & Mispah. Dolomitic (chert-rich). See site 4 above.  
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Table 3.1 Localities and the substratum characteristics of the sample sites 

 

Sites Mining Sites 

 

Substratum Characteristics Soil Class Surface Geology GPS Co-

ordinates 

Contaminants of 

concern:   

Site 1 North West Rustenburg 

Lonmin (L) Platinum Base 

Metal Refinery spill. 

 

 

 

Soil impacted by spillage 

from the base metal refinery 

(receives ore from the 

Merensky Reef and the UG2 

Reef). 

Mispah, & 

black turfs 

(vertisols), and 

Arcadia 

(deeper, red 

soils). 

Basic rocks - 

chromitite, 

ultramafic at 

study site, pockets 

of sheet granite 

outcrops. 

Not 

Recorded. 

Al, Mg, Na, S, 

Co, Cr, Cu, Fe, 

Mn, Ni, Se, Bi, 

V, As, Zn, Cd, 

La, Pt, Ir, Rh, Gd, 

Th, Te, Pb, 

Site 2 Agnes Serpentine Mine 

(AGM), Mpumalanga.  

 

 

Soil impacted by HCl and 

metal contamination from a 

Zn galvanising plant. site is 

an open field of Berkheya 

coddii, on serpentine soil, at 

the top of the hill above 

Agnes Mine 

Katspruit. 

 

Dolomitic. Not  

Recorded. 

Al, Mg, Na, Cl, 

As, Se, Ni, Mn, 

Fe, V, Zn, Pb, 

Co, Cu, Cr, Cd, 

B, Mo. 

Site 3 Gauteng, East Rand (ER1) 

ERGO Brakpan slime dam  

Soil impacted by ARD and 

slimes (i.e. footprint of the 

Katspruit. Dolomitic (chert 

poor). 

S -

26.2209  

Al, Mg, Na, S, 

Ni, Mn, Fe, V, 
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footprint. 

 

old Withok slime dam next to 

Brakpan slime dam). 

E 28.1846 

 

Zn, As, Se, Co, 

Cu, Cr, Cd, Au, 

Bi, Pb, Hg, U. 

Site 4 North West (Vaal Reefs- 

VRS)  

 

 

Soil impacted by acid rock 

drainage and slimes spillage 

(i.e. toepaddock soils next to 

slime dam). 

Glenrosa & 

Mispah. 

 

Dolomitic (chert-

rich). 

 

S -

26.94672  

E 26.6727 

Al, Mg, Na, S, 

Ni, Mn, Fe, V, 

Zn, Co, Cu, Cr, 

Cd, Au, Bi, Pb, 

Hg, U.  

Site 5 Gauteng, (West Wits – 

WW) TSF. 

 

 

Soil impacted by acid rock 

drainage and slimes spillage 

(i.e. toepaddock soils next to 

slime dam). 

Clovelly, 

Avalon. 

Timeball Hill 

shales. 

S -

26.26566 

E 

27.20901 

Al, Mg, Na, S, 

Ni, Mn, Fe, V, 

Zn, Co, Cu, Cr, 

Cd, Au, Bi, Pb, 

Hg, U. 

Site 6 Gauteng, East Rand 

(ER2A) ERGO 

Metallurgical Plant (MP), 

(A2+A5). 

Soil impacted by emissions 

from the stack and spill. 

 

Hutton, 

Glenrosa. 

Dolomitic. Not  

Recorded. 

Al, S, Ni, Mn, Fe, 

V, Zn, As, Co, 

Cu, Cr, Cd, Pb, 

Hg, U 
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Site 7 Gauteng, East Rand 

(ER2D) ERGO 

Metallurgical Plant (MP), 

(D1). 

Soil impacted by emissions 

from the stack and spill. 

Hutton, 

Glenrosa. 

Dolomitic. Not  

Recorded. 

Al, S, Ni, Mn, Fe, 

V, Zn, As, Co, 

Cu, Cr, Cd, Pb, 

Hg, U 

Site 8 North West - Vaal Reefs 

(VRM). 

 

 

Soil impacted by acid rock 

drainage and slimes spillage 

(i.e. toepaddock soils next to 

slime dam). 

Glenrosa & 

Mispah. 

 

Dolomitic (chert-

rich) 

 

S -

26.55443  

E 

26.46901 

Al, Mg, Na, S, 

Ni, Mn, Fe, V, 

Zn, Co, Cu, Cr, 

Cd, Au, Bi, Pb, 

Hg, U 

Contr

ol 1 

Grown Nu + Zeolite 

 

Plants were grown in nutrient 

solution and zeolite + Sand 

N/A N/A N/A N/A 

Contr

ol 2 

Control Nu + Zeo + 

Mycoroot.  

 

Plants were grown in nutrient 

solution and zeolite + Sand 

and Mycoroot (a commercial 

mycorrhizal inoculum) 

N/A N/A N/A N/A 
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3.3 Propagation of AM fungi  

3.3.1 Soil sampling and spore extraction 

Soil and mine tailing samples were collected from rhizospheres of various plants 

including Erograstic Curvula; Phragmites Australistrees; Eragrostis 

Lanchnantha; Berkheya Radula; Tamarix; Asporagus; and  Exotic Acacia caffras 

growing in heavy metal rich sites in South Africa (Gauteng, and North West 

provinces) (Section 3.1). A minimum of 5 samples were taken with a soil drill that 

was pushed down to 30 cm in the soil profiles. All soil samples were analysed for 

their AM fungal spore count, by modification of the methods for wet sieving 

(Gerdemann and Nicolson, 1963) and centrifugation (Walker et al., 1982). The 

endo-mycorrhizal spores/sporocarps used were collected from both the field mine 

tailing soils and pot cultured soils.  

 

Air-dry soil (100 g) was placed in an Erlenmeyer flask (2000 ml volume) and 

1000 ml of tap water was added. The mixture was shaken vigorously using a 

stirring bar or spatula for 5 - 10 min. The flask was removed from the shaker and 

the soil suspension was allowed to sediment or settles for few minutes. The slurry 

was decanted or poured through a stack or series of sieves (1000 μm (top), 212 

μm (middle), followed by 125 μm and 45 μm (bottom) placed on a wet sieve 

shaker and washed under continuous running water until water was clear. The 

content of the 1000 m sieve was discarded since it contains mainly the organic 

debris. With a jet of water, the material collected on each sieve was rinsed so as to 

catch smaller particles on the sieve below. After the contents of the remaining 

sieves had been washed, they were transferred into three separate centrifuge tubes 

and centrifuged at 3000 rpm for 3 - 5 min. The supernatant was discarded since it 

contains substantial amounts of organic debris. After the supernatant had been 

discarded, 50% sucrose was added to each test tube and mixed thoroughly with a 

spatula (NB: the sucrose was used to balance the tubes for further centrifugation) 

before being centrifuged at 3000 rpm for 3 - 5 minutes. Sucrose was utilized here 

because it separates spores from denser soil components.  
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Immediately after the sucrose centrifugation, the supernatant was collected from 

each tube and transferred or poured back into each sieve according to its 

respective sieve width size. The supernatant was then rinsed and thoroughly 

washed with a jet of water to remove sucrose. Lines were drawn on the filter 

paper to create grids (parallel lines were approximately 1cm apart to separate 

microscope fields for spore counting). Spores were transferred into pre-wetted 

graded filter paper in a Buchner funnel before the suction filtrate was performed. 

Filter papers were dried and stored at 4/25C in Petri dishes for further 

microscopic observation (Gerdemann and Nicolson, 1963).  

 

3.3.2 Trap pots 

To obtain sufficient AM fungi for the greenhouse experiment the AM fungal 

populations from selected samples were multiplied using Eragrostis curvula (E. 

curvula) as a trap plant, under greenhouse conditions. A total of 8 sites were 

sampled. In each site, 3 replicate pots were used for both experimental pots and 

controls. About 8 plants in each sample site were used for analysis including 

morphological and micro-PIXE analysis. Cores of field soil or soil samples were 

placed or sandwiched in between the 2 h autoclaved sand/silt mixture. Each pot 

represented a particular site. Eragrostis curvula seeds were washed/cleaned by 

water bubbled in compressed air for about three days to remove the fungicide until 

they germinated. Germinating seeds were transferred and spread over an 

autoclaved damped paper towel in a plastic tray. The seedlings were watered by 

autoclaved distilled water until they produced a cotyledon, which takes about five 

days depending on the temperature of the room. The seedlings with cotyledon 

were then planted in pots containing field soil samples sandwiched in autoclaved 

sand for about 3 to 4 months. The planted pot plants were irrigated three times a 

week. At maturity, after 4 months, the plants were harvested and new seeds were 

sown. The cultures were confirmed for root colonisation, and propagule numbers 

at regular intervals.  
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3.4 Visualisation of root colonisation  

3.4.1 Root staining 

For AM fungal colonisation observation, the roots were prepared by the method 

of  Koske and Gemma (1989). Roots were preserved in 50% ethanol for several 

days, then cut after they had been thoroughly rinsed in tap water and in 50% 

ethanol. The rinsed roots were heated in 2.5% KOH for 10 to 15 min and rinsed 

three times in tap water. They were soaked in 20-50 vol of 1% HCl for 24 h and 

then stained in acidic glycerol/Trypan Blue for 15 min at 90C. The roots were 

destained and stored in acid glycerol (50% v/v glycerol and 1% HCl). No 

bleaching step was performed as the roots were not highly pigmented.  

 

3.4.2 Magnified intersections method for colonisation assessment 

The method of McGonigle et al. (1990) was used for assessment of root 

colonisation. This technique involves the estimation of vesicular arbuscular 

mycorrhizal colonisation on an objective scale of measurement, involving 

inspection of intersections between the microscope eyepiece crosshair and roots at 

magnification x 200. This is referred to as the magnified intersections method. 

Whether the vertical eyepiece crosshair crosses one or more arbuscules is noted at 

each intersection. The estimate of colonisation is the proportion of root length 

containing arbuscules, called the arbuscular colonisation (AC). The magnified 

intersections method also determines the proportion of root length containing 

vesicles, the vesicular colonisation (VC), and the proportion of root length 

containing hyphae, the hyphal colonisation (HC). However, VC and HC are 

interpreted with caution as vesicles and hyphae, unlike arbuscules, can be 

produced in roots by non-mycorrhizal fungi.  

 

3.5 Methods for morphological identification 

Morphological identification was done, where spores were mounted in polyvinyl 

lactic acid glycerol (PVLG) (Appendix 8) for observation under compound 

microscope. AM fungal species were identified by spore colour, size, wall 
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structure, and other morphological characteristics using the manual by Schenck 

and Perez (1990). All the permanent slides were stored as digital images using a 

digital camera and subjected to image analysis, as follows. The phase contrast 

images of broken or whole mounts of a spore were taken with a point-and-shoot 

digital camera (Nikon CoolPix 990) on a microscope with the eyepiece left in 

place. The lens of the camera was put in direct contact with the eyepiece, both the 

camera and the computer were maneuvered until a good image was obtained and 

the picture was shot. Since the light paths in the camera and the microscope were 

aligned, there was enough light coming through the lens such that the shutter 

speed was less than 1/60
th

 of a second. The zoom feature on the computer was 

also used to get a more detailed view of the specimen’s area of interest.  

 

3.6 Methods for molecular analysis  

3.6.1 Sample preparation 

A known number of spores were stored frozen in small aliquots of sterile distilled 

water. Clean and shiny AM fungal spores (10-80) of the same morphotype 

according to spore size, shape and colour were collected with forceps from the 

Whatman filter paper in Petri dishes under a binocular microscope and transferred 

into 1.5 ml sterile microcentrifuge tubes containing 10 l sterile deionised water. 

Prior to deoxyribose nucleic acid (DNA) extraction the spores were washed twice 

in sterile deionised water by vortexing and then centrifugation at 11 000 g for 1 

min (Manian et al., 2001).  

 

3.6.2 Preparation of nucleic acids (DNA) 

Nucleic Acids (DNA) were prepared in two ways, namely, manual extraction and 

direct PCR amplification from crushed spores.  
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3.6.3 Manual DNA extraction 

The spores were frozen in liquid nitrogen in 0.5 ml tubes and liquid nitrogen was 

allowed to evaporate. This step was repeated three times before the spores were 

crushed thoroughly using a sterile disposable micropestle or a glass Pasteur 

pipette in 50 l 2 % CTAB extraction buffer. The extraction buffer was then 

added to the test tube up to volume of 500 l. An amount of 15 l of Proteinase K 

(20 mg/ml) which was stored at - 20C was also added to the sample tube which 

was incubated at 65C for an hour to allow for cell protein digestion (Mello et al., 

1996). To ensure mechanical disruption, about 5 sterile glass beads (1 mm in 

diameter) were placed into the micro centrifuge tubes and vortexed for 1 min 

before being centrifuged at 13 000 rpm for 2 min.  

 

The supernatant was transferred to a new sterile micro centrifuge tube. Because 

the DNA is in the supernatant, care was taken so as to avoid getting any debris 

from the pellet into the separated supernatant. The debris was also frozen and kept 

as a backup of the sample. Proteins were denatured and removed from the sample 

by adding 500 l cold phenol: chloroform: isoamyl alcohol (25:24:1 v/v/v). The 

samples were vortexed and centrifuged at 13 000 rpm for 2 min. The upper 

aqueous layer containing nucleic acids was removed and placed in a new sterile 

micro centrifuge tube. About 500 l cold chloroform: isoamyl alcohol in a ratio of 

24:1 was added to the micro centrifuge tube containing the nucleic acids to purify 

the DNA. The micro centrifuge was vortexed and centrifuged at 13 000 rpm for 2 

min. The upper aqueous layer containing DNA was removed and placed in new 

sterile micro centrifuge tubes. An amount of 50 l (3 M, pH 5.2) sodium acetate 

was added into the test tube and filled with 96% ethanol to precipitate out DNA.  

The precipitated DNA was incubated at -20C overnight. On the 2
nd

 day, the 

sample tubes were removed and mixed gently before pelleting out the DNA by 

centrifugation at 13 000 rpm for 25 min at 4°C. The supernatant was gently 

removed and poured off. The pellets were air dried to remove all alcohol by 

placing the tubes upside down on Kleenex or left opened in rack. The pellet was 
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resuspended by pipetting up and down in the tube for few minutes in 50 l sterile 

milli-Q water and stored at -20C until required for PCR reactions (Manian   et 

al., 2001).  

 

3.6.4 DNA amplification from crushed spores  

DNA from single AM fungal spores was also amplified by crushing about 5 to 10 

spores directly in a PCR tube using a needle. Spores were transferred into 1.5 ml 

sterile microcentrifuge tubes containing 10 l sterile deionised water. Prior to 

amplification the spores were washed twice in sterile deionised water by vortexing 

and then centrifugation at 11 000 g for 1 min (Manian et al., 2001). The crushed 

spores were used directly as template for PCR (White et al., 1990).  

 

3.6.5 PCR amplification  

PCR amplification was performed using two separate sets of primers; firstly the 

known universal primers, namely, ITS1 & ITS4 or NS31 & AM1; and secondly, 

the nested primers, NS1 & NS4 coupled with AML1 & AML2 in a MyCycler
TM

 

Thermal Cycler (Bio-Rad, U.S.A).  

 

3.6.5.1. The use of known universal primers 

The first PCR amplification attempt was done using universal primers, ITS1 & 

ITS4 or NS31 & AM1. In both these sets of universal primers the same PCR 

parameters/conditions were used as follows. Polymerase Chain Reaction was 

carried out using 0.1mM dNTPs, 10 pmol of each primer, 5 U of Taq DNA 

polymerase and the supplied reaction buffer in total volume of 25 l as follows: 

initial denaturation at 95°C for 5 min, followed by 45 cycles at 95°C for 30 sec, 

50°C for 30 sec, 72°C for 2 min, followed by a final extension period at 72°C for 

10 min. In some instances, the first PCR product from the ITS1 & ITS4 

amplification was diluted 1/100 with 1 x Tris-EDTA (TE) buffer.  
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The dilutions were used as template DNA in a second PCR reaction performed 

using universal primers, NS31 and AM1 (Helgason et al., 1998; Alguacil et al., 

2009a) as follows: 3 min initial denaturation at 95 °C, followed by 10 cycles of 30 

sec denaturation at 95 °C, 45 sec primer annealing at 48 °C and 2 min extension at 

72°C, followed by 35 cycles of 30 sec denaturation at 95 °C, 30 sec primer 

annealing at 50 °C and 2 min extension at 72°C followed by a final extension 

period of 10 min at 72 °C and storage temperature of 4°C before the PCR 

products were removed. Many of these amplifications were unsuccessful, 

whereafter the nested primers, NS1 and NS4 coupled with AML1 and AML2 

designed by Lee et al. (2008) were used.  

3.6.5.2. The use of AML1 and AML 2 nested primers 

Polymerase Chain Reaction was carried out using 0.1 mM dNTPs, 10 pmol of 

each primer (AML1 and AML 2), 5 U of Taq DNA polymerase and the supplied 

reaction buffer in total volume of 25 l as follows: initial denaturation at 94°C for 

3min, followed by 30 cycles at 94°C for 30s, 40°C for 1min, 72°C for 1min, 

followed by a final extension period at 72°C for 10 min. The first PCR product 

was diluted 1/100 with 1 x Tris-EDTA (TE) buffer. The dilutions were used as 

template DNA in a second PCR reaction performed using primers designed by 

Lee et al. (2008), AML1 (5'-ATC AAC TTT CGA TGG TAG GAT AGA-3´) and 

AML2 (5´-GAA CCC AAA CAC TTT GGT TTC C-3´) as follows: 3 min initial 

denaturation at 94 °C, followed by 30 cycles of 1 min denaturation at 94 °C, 1 min 

primer annealing at 50 °C and 1 min extension at 72°C, followed by a final 

extension period of 10 min at 72 °C. PCR products from AM fungal spores were 

not purified but instead were directly sent for sequencing, some to Inqaba Biotech, 

Pretoria, South Africa (SA) and some to the University of Stellenbosch, Central 

Analytical Facility, South Africa. The Inqaba Biotech used ABI 3130 XL Genetic 

Analyzer while Stellenbosch used 3730XL DNA Analyzer, Applied Biosystems.  
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3.6.6 DNA cloning 

PCR, DNA cloning and sequencing of the results, reported in Fig. 5.2 were 

performed at Inqaba Biotech, Pretoria, South Africa. PCR was performed directly 

from spores extracted from 2 samples (WW05) site 5 and (ER7.3) site 3 using 

different set of primers (ITS1 & ITS4 or NS31 & AM1). About 1 l of WW05 

spore sample containing 10 crushed spores was used for PCR out of 10 l spore 

dilution which contained about 104 crushed spores. Similarly about 1 l of ER7.3 

spore sample which contained about 10 spores was also used for PCR out of 10 l 

spore dilution which contained about 165 spores.  

 

In cloning procedures, a specific DNA fragment is integrated into a rapidly 

replicating genetic element (plasmid or bacteriophage) so that it can be amplified 

in bacteria or yeast cells. A clone JET™ PCR Cloning Kit #K1231, #K1232 from 

Fermentas life science (www.fermentas.com/reviewer) was used. Out of the two 

types of DNA cloning procedures, namely, Blunt-End cloning and Sticky-End 

cloning, Blunt-end reaction was used and the blunting reaction was set up as 

follows:  

 

Ten l of 2x reaction buffer followed by 2 l PCR product, 5 l Nuclease –free 

water and 1 l of DNA blunting enzyme were transferred into 1.5 ml sterile 

microcentrifuge tubes. The mixture was briefly vortexed and centrifuged for 3-5 

sec before being incubated at 70 °C for 5 min. The mixture was briefly chilled on 

ice and the legation reaction was set up before the following blunting reaction 

mixture, 1 l pJet 1.2/blunt cloning vector (50ng/5 l) and 1 l T4 DNA ligase 

(5u/ l) were added to make up a total volume of 20 l. It was again briefly vortex 

and centrifuged for 3 to 5 min before being incubated at room temperature (22°C) 

for 5 min. It should be noted that incubation time can be extended up to 30 min if 

the maximal number of transformants is required. The legation mixture was used 

directly for bacterial transformation as indicated in Appendix 7.  

 

http://www.fermentas.com/reviewer
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3.6.6.1. Transformation steps (PCR-Smart
tm

 Cloning Kit) 

A 1.5 ml tube was placed on ice for few minutes. A 2 l of the 20 l samples 

ligation reaction mixture was added into the 1.5ml tube that was placed on ice. 

About 20 l of the chemically competent cells were also added into 1.5 ml tube. 

The tube was placed on ice for 30 min after which it was removed and placed at 

42°C for 45s and returned back to ice for 2 min. A total volume of 480 l 

recovering medium was added to the test tube. This solution was incubated in the 

shaking incubator for an hour at a speed of 250 rpm. The contents were placed on 

LB
AMP

 in the following plates; 50 l was placed in plate 1 while the rest of the 

solution was added to plate 2. The 2 plates were incubated overnight at 37 °C in a 

non-shaking incubator.  

 

PCR was performed using P Jet 1, 2 reverse and forward primers. PCR products 

were sequenced, at Inqaba Biotech, Pretoria South Africa using ABI 3130 XL 

Genetic Analyzer.  

 

3.6.7 Visualisation of fungal genomic extracts  

Nucleic acids were visualized using agarose gel electrophoresis. A 1% agarose gel 

was prepared consisting of 1g molecular grade agarose (Hispanagar, H0901031) 

in 100ml 0.5 X TAE buffer diluted from 50 X TAE buffer stock (BioRad, 161-

0773). The mixture was boiled until the agarose was completely dissolved and 

allowed to cool to approximately 40°C. On cooling, 3 to 5l of 500mg/ml 

Ethidium Bromide was added to the agarose. The agarose was poured into a gel 

mould and a comb placed into the gel before it was allowed to set. Once set, the 

gel was placed in a gel tank filled with 0.5 X Tris-borate-EDTA (TBE) buffer.  

When loading the gel, 2 l of extracted genomic DNA was mixed with 10 l 

DNA loading buffer (dye) before loaded into a well in the gel. Simultaneously, 10 

l of Pst1 molecular marker was loaded into the gel to determine the molecular 

weights of the bands obtained on the gel. The gel tank was connected to a BioRad 
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Power Pac 300 and electrophoresed for 30 to 45 minutes at 100 volts (V). Gels 

were visualized using a UVP BioDoc-It Transilluminator System.  

 

3.6.8 Phylogenetic analysis 

The phylogenetic tree is made up of fungal sequences used in this experiment. 

The branch lengths are proportional to genetic distance, which is indicated by the 

bar. The sequence electropherograms were analysed using Chromas Lite and 

BioEdit; and manual adjustments were made where necessary for the consensus 

sequences. Following this, a BLAST was used on the sequence data using the 

megablast algorithm (Zhang et al., 2000) and both the NCBI BLAST databases 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and MaarjAM database 

(http://maarjam.botany.ut.ee) (Öpik et al., 2010). The mycorrhizal sequences 

representing different gene regions of fungal isolates obtained from different 

mining sites were subjected to a multiple sequence alignment using MAFFT 

version 6 and phylogenetic analysis was performed using MEGA 5 to generate a 

bootstrapped neighbour-joining tree of the multiple sequence alignment which 

was visualised using TreeExplorer (Spruyt et al., 2014).  

 

3.7 Methods for ICP-MS and PIXE 

3.7.1 Pot study design for synthesis of AM fungal roots 

The design of the study included two treatments for each substratum type (see 

Chapter 3, Section 3.1 for descriptions of sites and Table 3.1) (background 

arbuscular mycorrhizal fungi only; background AM fungi plus additional mixture 

of indigenous AM fungal spore inoculum) and two controls (zeolite as growing 

medium with addition of commercial AM fungal inoculum; zeolite as growing 

medium without any AM fungi). The commercial inoculum was manufactured by 

Mycoroot (Pty.) Ltd. SA (http://www.mycoroot.com) and the zeolite was in the 

form of 1-3 mm granules (Pratley (Pty) Ltd., SA). Treatment pots (10 cm) were 

filled with slime/soil samples mixed with zeolite at a ratio of 3:1 (3 slime: 1 

zeolite). Zeolite was used to increase the porosity of the soil. All treatment pots 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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were then treated with Previcur® N aqueous fungicide (AgrEvo South Africa) 

according to manufacturer’s instructions and allowed to rest for a week to remove 

non-AM fungal contamination from the mixture. Previcur (active ingredient 

Propamocarb-HCl) is active against soil parasites such as Pythium but affects AM 

fungal minimally 

(http://www.pestmanagement.rutgers.edu/njinpas/postings/Previcurlabel.pdf). 

After a week, treatment pots were planted with commercial uncoated Eragrostis 

curvula cv Ermelo seeds (AGRICOL Seed Company, Pretoria, South Africa) and 

 500 AM fungal spores extracted from the respective slime soil samples were 

added to the one set of treatments to increase the likelihood of root colonisation. 

The pots were placed in the greenhouse conditions between a temperature range 

of 20°C to 25°C and were allowed to grow for sixteen weeks, watered at a rate of 

50% volumetric field capacity every third day and the controls fertilised once a 

week with 10 ml to 20 ml of a commercial multinutrient solution (Appendix 4) 

(Multifeed Classic, Plaaskem). 

http://www.pestmanagement.rutgers.edu/njinpas/postings/Previcurlabel.pdf
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3.7.2  Soil analyses (pH, P, extractable cations & organic C) 

It is important to determine the (a) total and (b) exchangeable, and (c) extractable 

concentrations (by various extractants with biological relevance to plants – such 

as the BCR sequential extraction methods), as well as (d) the natural levels of 

these elements in polluted metalliferous soils. This information assists in setting 

realistic and technically achievable end-points for site decontamination. The 

original slime soil samples were analysed by Bemlab (Appendix 6). Thus soil 

samples for chemical analyses were taken from the 0-30 cm layer with an auger. 

The soil was air dried, sieved through a 2 mm sieve for determination of stone 

fraction (weight/weight basis) and analysed for pH (1.0 M KCl), P (Bray II) and 

total extractable cations, namely K, Ca, Mg and Na (extracted at pH = 7 with 0.2 

M ammonium acetate) and organic matter by means of the Walkley-Black method 

(The Non-affiliated Soil Analyses Work Committee, 1990). Micro-elements (Zn, 

Mn, Cu & Fe) were extracted with Di-ammonium EDTA (0.02 M) and boron (B) 

using a 1:2 hot water ratio (The Non-affiliated Soil Analyses Work Committee, 

1990). The extracted solutions were analysed with a Varian ICP-OES optical 

emission spectrometer. Salinity was determined by measuring the resistance of 

saturated paste in an electrode cup according to the method described by The 

Non-affiliated Soil Analyses Work Committee (1990). Extractable acidity was 

extracted with 1M KCl and determined through titration with 0.05 M NaOH (The 

Non-affiliated Soil Analyses Work Committee, 1990). 

 

3.7.2.1. Exchangeable acidity 

Exchangeable acidity of the soil was expressed as the total OH
-
 that is neutralised 

by Al
3+

 and H
+
 that occurs on the exchange sites. Both Al

3+
 and H

+
 were extracted 

with 1N KCl and titrated to the end-point with NaOH (0.01M). The acidity is 

expressed as an equivalent of H
+
 in cmol(+)/dm

3
 soil (Soil Analyses Work 

Committee, 1990). 
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3.7.2.2. Total Phosphorus (P) in soil 

Total P in soil was determined by a method adapted from that described by 

Sommers & Nelson (1972). The P was extracted from soil through acid digestion 

using a 1:1 mixture of 1 N nitric acid and hydrochloric acid at 80oC for 30 

minutes. The P concentration in the extract was then determined with a Varian 

ICP-OES optical emission spectrometer. 

 

3.7.2.3. Total Carbon (C) and Nitrogen (N) in soil 

Both total C and N content of soil were determined through total combustion 

using a Leco Truspec® CN N analyser.   

 

3.7.2.4. Total NH4
+
 and NO3

-
 concentration in soil 

Ammonia and nitrate are extracted from the soil with 1N KCl. Its concentration in 

the extract is then determined colorimetrically on a SEAL AutoAnalyzer 3.  

 

3.7.2.5. Cation exchange capacity (CEC) of soil 

The soil’s CEC was determined using 0.2 M ammonium acetate (pH=7 as 

extractant of exchangeable cations) method as described by The Non-affiliated 

Soil Analyses Work Committee (1990), where after the soil is leached with 0.2 M 

K2SO4. The total NH4
+
 is then extracted with 1N KCl and determined 

colorimetrically as indication of CEC on a SEAL AutoAnalyzer 3 with a 15 mm 

flow cell and 520 nm filter.  

 

3.7.2.6. Soil texture (% clay, silt & sand) and water holding capacity 

Chemical dispersion was done using sodium hexametaphosphate (calgon) while 

three sand fractions were determined through sieving as described in the Non-

affiliated Soil Analyses Work Committee (1990). Silt and clay were then 

determined using sedimentation rates at 20
o
C, in a ASTM E100 (152H-TP) 

hydrometer. The soil water holding capacity is determined mathematically from 
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the soil texture using a calculation model adapted from that of Saxton et al. 

(2006).  

 

3.7.2.7. Soil moisture 

The gravimetric soil water content was determined on a mass/mass basis by 

drying the soil over night at 101
o
C. 

 

3.7.2.8.  Bulk density 

Bulk density of sieved soil was determined by weighing 60 cm
3
 soil at 20

o
C and 

expressing it as kg/m
3
. 

 

3.7.2.9. Total chloride in soil 

Using the method described by Chapman & Pratt (1961), chloride concentration 

in soil was determined volumetrically through titration of a soil extract (0.1M 

KNO3) with 0.043 M AgNO3 using potassium dichromate (K2CrO4) as indicator. 

Titration is done up to the point when the extract changes colour from orange to 

brown-red.  

 

3.7.3 ICP-MS analysis of roots 

ICP-MS analysis was first performed on samples of the roots for the elements Cr, 

Fe, Ni, P, K, Pt, Ti, Mn, Cu, Zn, and U as baseline data for setting parameters 

during  PIXE analysis (Appendix 9). The roots were processed as follows:  

Five plants from each sample site were washed under running tap water until all 

the soil was removed, inserted into brown paper bag and oven dried at 70°C for 24 

h. The dried plants were ground into powder using a pestle and mortar. A sample 

mass of 0.1 g was dissolved in 10 ml of a digestion solution (8 ml HNO3 and 2 ml 

H2O2) before it was run into a Liners Teflon for 30 min at 600 Watts. The liquid 

was transferred into a 10 ml volumetric flask. Where the sample had lost 1 to 2 ml 

through evaporation, the volumetric flask was filled up with deionized water. The 
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ICP-MS was then run using a multiwave 3000 (Anton Paar GmbH) solvent also 

known as microwave digestion. The results are recorded in Appendix 9.  

 

3.7.4 Preparation of plants for Micro-PIXE analysis. 

Plants were washed under running tap water until all the soil ran out of the roots. 

The root length was measured and root samples from 2 to 3 plants were observed 

under phase contrast light microscopy to ascertain and document the extent of root 

colonisation so as to select the appropriate parts of the roots for cryopreparation 

(Fig. 4.1).  

 

3.7.5 Cryofixation  

Cryofixation is a low temperature method used to preserve the distribution and 

structure of all components in a biological system and aims at the ultra-rapid 

freezing of the specimen during which the intracellular movements are arrested in 

milliseconds (Hayat, 1989). A suitable cryogen is liquid propane, which has a 

much higher cooling rate than liquid nitrogen. Eight plants from each sample site 

were used for cryopreparation. Roots were thoroughly washed in deionized water 

and sections showing mycorrhizal colonisation were excised and transferred into 

gelatin capsules. The cryofixation process was performed in a clean environment 

using the Leica EM CPC cryo-workstation. The roots were quenched in liquid 

propane (-185°C) which was cooled by liquid nitrogen (-196°C).   

 

3.7.6 Freeze drying 

The frozen root samples were freeze-dried in a Leica EM SFD Cryosorption 

Freeze Dryer following a 48 h programmed cycle starting at - 80°C, and ending at 

ambient temperature. The chamber was cooled by a thermal junction connected 

with a Dewar filled with liquid nitrogen. After the termination of the freeze-drying 

process, the chamber was slowly heated up to room temperature to prevent water 

condensation on the samples. Both the root cross-section and the long root 

sections of the free-dried root samples were obtained by hand-sectioning under a 
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stereo-microscope using a stainless steel razor blade, and mounted between two 

layers of 1% (w/v) Formvar film with Araldite glue (Figs. 3.8 and 3.9). To prevent 

charge build-up during measurements, the Formvar membrane facing the proton 

beam was coated with a thin layer of carbon. Light micrographs of each specimen 

were taken before and after proton irradiation. In order to evaluate elemental 

distribution in various root tissues, only intact root cross-sections and long root 

sections were used in the micro-PIXE analysis.  

 

  

  

Fig. 3.8  Specimen holders with root cross-sections photographed under a SMZ 1500 

Nikon light microscope. 

100 µm 

71 µm 

71 µm 

71 µm 
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Fig. 3.9 Specimen holders with long roots photographed under a SMZ 1500 Nikon 

light microscope. 

 

3.7.7 Instrumentation and analytical method 

Microanalyses were performed using a nuclear microprobe (Fig. 3.10) at the 

Materials Research Department, iThemba LABS, South Africa as previously 

described (Prozesky et al., 1995; Przybyłowicz  et al., 1999; Przybyłowicz  et al., 

2005). A proton beam of 3 MeV energy, provided by the 6 MV single-ended Van 

de Graaff accelerator, was focused to a 3 x 3 μm
2
 spot and raster scanned over the 

areas of interest (dwell time 10 ms), using square or rectangular scan patterns with 

a variable number of pixels (up to 128 x 128). Vacuum inside the chamber was of 

the order of 5.5x10
-5

 mbar during analysis and currents below 120 pA were used, 

to minimize beam damage of the specimens. Particle-induced x-ray emission 

(PIXE) and proton backscattering (BS) were used simultaneously. PIXE spectra 

were registered with a Si(Li) detector manufactured by PGT (30 mm
2
 active area 

100 µm 100 µm 

100 µm 
100 µm 
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and 8.5 m Be window) with an additional 125 m Be layer as an external 

absorber.  

 

The effective energy resolution of the PIXE system (for the Mn K line) was 160 

eV, measured for individual spectra. The detector was positioned at a take-off 

angle of 135
o
 and a working distance of 25 mm. The X-ray energy range was set 

between 1 and 36 keV. BS spectra were recorded with an annular Silicon (Si) 

surface barrier detector (100 μm thick) positioned at an average angle of 176°. 

Data were acquired in the event-by-event mode. The normalization of results was 

done using the integrated beam charge, collected simultaneously from a Faraday 

cup located behind the specimen and from the insulated specimen holder. The 

total accumulated charge per scan varied from 221 nC to 3546 nC.  

 

 

Fig. 3.10 Nuclear Microprobe (NMP) 
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Quantitative results were obtained by a standardless method using GeoPIXE II 

software package (Ryan et al., 1990a; Ryan et al., 1990b; Ryan, 2000). The error 

estimates were extracted from the error matrix generated in the fit, and the 

minimum detection limits (MDL) were calculated using the Currie equation 

(Currie, 1968). The detailed calibration of detector efficiency, the thickness of the 

selectable X-ray attenuating filters and studies on the accuracy and precision of 

the PIXE analyses using the nuclear microprobe (Fig. 3.10) at iThemba LABS 

have been reported by van Achterbergh et al. (1995).  

 

The procedures reported were used for each new detector or added filter. Before 

each series of measurements, the calibration of the system was tested by a few 

measurements on pure elements, and synthetic glasses with known quantities of 

selected minor elements (internal standards), the X-ray peaks of which cover 

practically the whole measurable energy range. Such quality control helps in 

identifying potential problems related mostly to charge measurements and, 

occasionally, change of the specimen–detector distance (Przybyłowicz et al., 

2005). Quantitative elemental mapping was performed using the Dynamic 

Analysis method (Ryan and Jamieson, 1993; Ryan et al., 1995; Ryan, 2000). This 

method generates elemental images which are (i) overlap-resolved, (ii) with 

subtracted background and (iii) quantitative, i.e. accumulated in mg kg
-1

 dry 

weight units. Maps were complemented by data extracted from arbitrarily selected 

microareas of roots.   

 

These microareas were: (1) areas covering whole-root sections and (2) areas 

selected on the basis of root morphology, showing possible colonisation by 

mycorrhizal fungal structures (vesicles, hyphae and arbuscules), thus 

complementing the results from images. PIXE and BS spectra were employed to 

obtain average concentrations from these microareas using a full nonlinear 

deconvolution procedure to fit PIXE spectra (Ryan et al., 1990a; Ryan et al., 

1990b), with matrix corrections based on thickness and matrix composition 

obtained from the corresponding BS spectra, fitted with a RUMP simulation 

package (Doolittle 1986) with non-Rutherford cross-sections for Carbon (C), 
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Oxygen (O), Nitrogen (N). Matrix corrections done on the basis of BS 

spectrometry results were essential due to the highly variable thickness of 

analyzed specimens (the area density range was between 0.21 mg/cm
2 

and about 5 

mg/cm
2
). Above 5 mg/cm

2
, the specimen was classified as “infinitely thick” for 

the purpose of PIXE analysis. Elemental concentrations from these areas are also 

reported in mg kg
-1

 dry weight.  

 

3.8 Statistical Analysis 

To determine the significance of concentration differences between the different 

sample sites and the controls, a Principal Component Analysis (PCA) was been 

used. PCA is a useful statistical technique that has found application in fields such 

as face recognition and image compression, and is a common technique for 

finding patterns in data of high dimension. It covers standard deviation, 

covariance, eigenvectors and eigenvalues. PCA is a mathematical procedure that 

uses a set of orthogonal transformations to convert a set of observations of 

possible correlated variables into a set of values of linearly uncorrelated variables 

called principal components.  

 

Prior to running the analysis with Statistical Package for the Social Sciences 

(SPSS), the data was screened by examining descriptive statistics on each item, 

correlation matrix and possible univariate and multivariate assumption violation. 

SPSS is a computer program used for statistical analysis to create classification 

and decision trees for identifying groups and predicting behaviour. 

 

3.8.1 Working with factor analysis  

In factor analysis, the aim is to discover which variables in a data set form 

coherent subgroups that are relatively independent of one another. The more 

factors one permits, the better the fit and the greater the percent of variance in the 

data explained by the factor solution. The selection of the number of factors is 

probably critical. Eigenvalues represent variance; therefore any factor with an 
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eigenvalue less than 1 is not as important. The number of factors with eigenvalues 

greater than 1 is an estimate of the maximum number of factors. 

 

3.8.1.1. Tests for factor analysis 

Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity produce the KMO 

measure of the sampling adequacy of how the correlations are for factor analysis. 

Kaiser (1970 and 1974) indicated that a value of 0.70 or above is considered 

adequate while Bartlett’s test provides a test of the following hypotheses: 

H0: the variables are not correlated: versus:  

H1: the variables are correlated. 

Reject H0 if p-value < 0.05 level of significance to proceed with the factor 

analysis. 

The Scree plot provides the information to determine the number of factors or 

components.  
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CHAPTER 4 

4 RESULTS AND DISCUSSION: Morphological Identification of AM 

fungal spores. 

This chapter is divided into results and discussion of root colonisation, spore 

counts and identification of AM fungi from spore morphology. The results will 

only focus on the description of the findings while the discussion will focus on the 

explanation of the results. 

 

4.1 Results 

The data in this chapter represents observations and measurements from the pot 

studies reported in Chapter 3. 

 

4.1.1 Observation and assessment of root colonisation 

Some characteristic morphological features of glomeromycotan fungi namely, 

hyphae, arbuscules, vesicles and spores were observed in roots of E. curvula plant 

under the phase contrast and light microscope (Fig. 4.1). Root colonisation from 

a) to d) are live roots with no stain, which have extensive hyphae, vesicles and 

young spores and e) to j) were stained with Trypan Blue. They show proliferation 

of intracellular arbuscules (e & f), an extensive intraradical vesicles prolification 

(g) while (h) shows an intraradical storage vesicle and attached hyphae as well as 

i) & j) showing light micrograph of hyphal colonisation.  
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a)                                                                b) 

c)  d)                                                                      

e)   f)  

Fig. 4.1  Light micrograph of colonisation structures. a) and b) Extraradical hyphal 

networks and intercellular vesicles from live roots (site 3); c) and d): Intraradical 

hyphae from live roots (site 5). e) and f) Intracellular arbuscules (site 1, and 8).   
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g) h)  

i)   j)  

Fig. 4.1g) and h) Intercellular vesicles (site 1). i) and j) Intracellular hyphal coils (Site 8).  

 

Stained roots from the pot plants samples were mounted in the microscope slides 

and observed under a binocular microscope. Arbuscules, vesicles and hyphae 

were observed in roots. Hyphae were found to be the most abundant in roots and 

were followed by vesicles then arbuscules (Fig. 4.2(a-b)). In all the mining sites 

shown in Fig. 4.2(a-b), the Eastern Reef site 6 showed higher total mycorrhizal 

root colonisation, followed by West Wits site 5, then site 7, 1, 3, 4, 2, 8 then 

control 2 and 1 respectively (Fig. 4.2(a-b)).  Fig. 4.2b shows accumulative AM 

fungal colonisation results with the P-value of 0.8013, which is considered not 

significant as it is greater than 0.05.  
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Fig. 4.2a Mycorrhizal colonisation levels in Eragrostis curvula (cv. Ermelo) 

inoculated with indigenous arbuscular mycorrhizal fungi and grown in substrata from 

various heavy metal sites (site 1 – 8, see Table 3.1). Values are means ± Standard Error of 

the Mean (SEM) from three replicate pots. VC is vesicular colonisation, AC is arbuscular 

colonisation and HC is hyphal colonisation.  

 

Fig. 4.2b Total mycorrhizal colonisation levels in Eragrostis curvula (cv. Ermelo) 

inoculated with indigenous arbuscular mycorrhizal fungi and grown in substrata from 

various high heavy metal sites (site 1 – 8, see table 3.1). Fig. 4.2b shows Accumulative 

AM fungal colonisation results.  
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4.1.2 Total spore counts 

The graph in Fig. 4.3 is made up of the total number of spores isolated or 

extracted using three different sieve sizes namely, 212 µm, 125 µm and 45 µm. 

Most of the spores counted were observed in 45 µm sieve, these spores were tiny 

and had different sizes, colours and shapes. In almost all the samples, 125 µm 

sieve had more spore count as compared to 212 µm sieve. There was no 

significant difference on the overall spore count results as shown by a P value of 

0.9356 which is greater than 0.05. However Anova showed a significant 

difference between sites 4 and most of the sites including sites 1, 3, 5, 6, 7, and 8 

except site 2. A higher number of spores were extracted from mining site 4 

followed by site 5 & 8, then site 3, followed by site 2; 7; 1 and lastly site 6 

respectively (Fig. 4.3).  

 

 

Fig. 4.3 Total spore counts from pots with substrata of various heavy metal sites (Site 

1 – 8 as described in Table 3.1). Values are the means ± SEM of three replicate pots. 

There was a significant difference in some sites and it is shown by letters which are used 

for comparison between sites.  
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4.1.3 Morphological identification and AM fungal diversity  

For spore identification, whole and crushed spores extracted from soil samples 

have been mounted on slides and identified according to their shape, colour, size 

and wall structure. The study identified a total of 14 AM fungal genera and 55 

AM fungal species and these are Glomus (15), Acaulospora (11), Scutellospora 

(6), Gigaspora (6), Rhizophagus (3), Funneliformis (3), Archaeospora (2), 

Claroideoglomus (2), Ambispora (2), Sclerocystis (1), Fuscutata (1), 

Entrophospora (1), Diversispora (1), Paraglomus (1) (Table 4.1 to 4.4). These are 

arranged according to the highest number of species obtained during identification 

or microscope observation, Glomus being the highest identified genus followed by 

Acaulospora, Scutellospora, Gigaspora. High Shannon Weaver  (H) Index was 

reported with a value of more than 1 which indicates the high number of different 

species in the studied sites (Table 4.1 to 4.4). AM fungal diversity is very crucial 

to the maintenance and sustainability of the ecosystem. Table 4.1 to 4.4 below 

summarizes mycorrhizal community pattern expressed as percentage of 

occurrence with calculated Shannon-Weaver Index (H) and evenness (e) of 8 

mining sites from three provinces namely, Gauteng, Mpumalanga and North 

West, South Africa.  
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Table 4.1 Summarized mycorrhizal community pattern expressed as percentage of occurrence with calculated Shannon-Weaver Index (H) and 

evenness (e) from Lonmin Mine (site 1), North West and Eastern Reef (site 3), Johannesburg, Gauteng South Africa. 

_________________________________________________________________________________________________________ 

Mycorrhizal species    North West Lonmin Mine  Eastern Reef Gold Slime Dam  

        __________________________________      ___________________________________ 

      Number of isolates (Site 1)     %  Number of isolates (Site 3)    % 

___________________________________________________________________________________________________________ 

1. Acaulospora colombiana    2               14.29  0   0.00 

2. Acaulospora delicata   0  0.00  7            14.00 

3. Acaulospora dilatata   0  0.00  1   2.00 

4. Acaulospora lacunosa    0  0.00  1   2.00 

5. Acaulospora mellea   1  7.14    0   0.00 

6. Archaeospora trappei   2               14.29  4   8.00 

7. Claroideoglomus etunicatum   0  0.00  2   4.00 

8. Entrophospora infrequens   1  7.14  1   2.00 

9. Funneliformis mosseae   1  7.14  0   0.00 

10. Gigaspora decipiens   0  0.00  1   2.00 

11. Gigaspora rosea   0  0.00  2   4.00 

12. Glomus albidum   1  7.14  12            24.00 

13. Glomus claroides   1  7.14  0   0.00 

14. Glomus fistulosum   0  0.00  1   2.00 
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15. Glomus globiferum   0  0.00  1   2.00 

16. Glomus heterosporum   0  0.00  1   2.00 

17. Glomus hoi   0  0.00  5            10.00 

18. Glomus microcarpum   0  0.00  1   2.00 

19. Glomus radiatum   2               14.29  0   0.00 

20. Glomus tenebrosum   0  0.00  1   2.00 

21. Glomus warcupii   0  0.00  1   2.00 

22. Paraglomus occultum   0  0.00  1   2.00 

23. Sclerocystis rubiformis   2               14.29  3   2.86 

24. Scutellospora dipurpurescens   1  7.14  1   2.00 

25. Scutellospora pellucida   0  0.00  3   6.00 

________________________________________________________________________________________________________ 

 

Total number of isolates (N or S)    14              100.00  50           100.00 

Total number of species 10                 71.43                       20    40.00  

Average (Nj/N)        0.56        2.00 

Shannon-Weaver Index (H) _        1.40        1.40 

Evenness (e)        1.22          0.82 

_________________________________________________________________________________________________________ 
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Table 4.2 Summarized mycorrhizal community pattern expressed as percentage of occurrence with calculated Shannon-Weaver Index (H) and 

evenness (e) from Agnes Serpentine Mine (AGM) (site 2), Mpumalanga and Vaal Reefs (site 4), North West, South Africa 

_________________________________________________________________________________________________________ 

Mycorrhizal species    Agnes Mine Mpumalanga   Vaal Reefs Slime Dam  

        __________________________________      ___________________________________ 

      Number of isolates (Site 2)     %  Number of isolates (Site 4)    % 

___________________________________________________________________________________________________________ 

1. Acaulospora colombiana   3  6.52    0   0.00 

2. Acaulospora delicata   0  0.00  3   9.09 

3. Acaulospora mellea   0  0.00  1   3.03 

4. Acaulospora taiwania   1  2.17  0   0.00 

5. Acaulospora undulata   1  2.17    0   0.00 

6. Ambispora jimgerdemannii    1  2.17  0   0.00 

7. Ambispora leptoticha   0  0.00    5            15.15 

8. Archaeospora trappei   1  2.17  1   3.03 

9. Claroideoglomus etunicatum   0  0.00  1   3.03 

10. Funneliformis fragilistratum   1  2.17  0   0.00 

11. Fuscutata heterogama   1  2.17    0   0.00 

12. Gigaspora albida   0  0.00  2   6.06 

13. Gigaspora decipiens   0  0.00  1   3.03 
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14. Gigaspora margarita   1  2.17    0   0.00 

15. Gigaspora margaspora   1  2.17  0   0.00 

16. Gigaspora rosea   1  2.17  1   3.03 

17. Glomus albidum   2  4.35  0   0.00 

18. Glomus dimorphicum   3  6.52  2   6.06 

19. Glomus globiferum   1  2.17  0   0.00 

20. Glomus heterosporum   1  2.17  0   0.00 

21. Glomus hoi   3  6.52  1   3.03 

22. Glomus magnicaule   2  4.35  0   0.00 

23. Glomus microcarpum   2  4.35  0   0.00 

24. Glomus pansihalos   0  0.00  6            18.18 

25. Glomus tenebrosum   1                                       2.17                           0   0.00 

26. Rhizophagus irregularis   0  0.00  2   6.06 

27. Rhizophagus manihotis   1  2.17  1   3.03 

28. Sclerocystis rubiformis   8               17.39  5            15.15 

29. Scutellospora armeniaca   1  2.17  0   0.00 

30. Scutellospora dipurpurescens   1  2.17  0   0.00 

31. Scutellospora nigra   2  4.35  0   0.00 

32. Scutellospora spp.   6               13.04  1   3.03 
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________________________________________________________________________________________________________ 

Total number of isolates    46              100.00  33           100.00 

 Total number of species 24                 52.17  15             45.45 

 Average (Nj/N)       1.44           1.03 

Shannon-Weaver Index (H) _         1.51          1.51 

 Evenness (e)        0.91         0.99 

_________________________________________________________________________________________________________ 
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Table 4.3 Summarized mycorrhizal community pattern expressed as percentage of occurrence with calculated Shannon-Weaver Index (H) and 

evenness (e) from West Wits (site 5), and East Rand (site 6), Johannesburg, Gauteng South Africa 

_________________________________________________________________________________________________________ 

Mycorrhizal species    West Wits     East Rand Slime Dam  

        __________________________________      ___________________________________ 

      Number of isolates (Site 5)     %  Number of isolates (Site 6)    % 

___________________________________________________________________________________________________________ 

1. Acaulospora colombiana   5               16.13    3            15.00 

2. Acaulospora dialtata   0  0.00  1   5.00 

3. Acaulospora gdanskensis   0  0.00    1   5.00 

4. Acaulospora mellea   4               12.90  0   0.00 

5. Acaulospora morrowiae   0  0.00  2            10.00 

6. Acaulospora scrobiculata.   0  0.00  1   5.00 

7. Archaeospora trappei   1  3.23  1   5.00 

8. Archaeospora schenckii   1                                   3.23                0      0.00 

9. Claroideoglomus claroideum   1  3.23  0   0.00 

10. Entrophospora infrequens   1  3.23  1   5.00 

11. Funneliformis caledonium   0  0.00  1   5.00 

12. Fuscutata heterogama   0  0.00    2            10.00 

13. Gigaspora rosea   1  3.23  0   0.00 
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14. Gigaspora spp.   2  6.45  0   0.00 

15. Glomus albidum   1  3.23  0   0.00 

16. Glomus claroides   1  3.23  0   0.00 

17. Glomus dimorphicum   1  3.23  0   0.00 

18. Glomus intraradix.    0  0.00  1   5.00 

19. Glomus flavisporum   0  0.00  1   5.00 

20. Glomus tenebrosum   1                                       3.23                           0   0.00 

21. Sclerocystis rubiformis   1                 3.23  1             5.00 

22. Scutellospora dipurpurescens   1  3.23  4            20.00 

23. Scutellospora spp.   9               29.03  0   0.00 

_______________________________________________________________________________________________________ 

Total number of isolates    31              100.00 20           100.00 

 Total number of species 15                48.39  13             65.00 

 Average (Nj/N)       1.35          0.87 

Shannon-Weaver Index (H) _         1.36        1.35 

 Evenness (e)        0.91        1.05 

_________________________________________________________________________________________________________ 
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Table 4.4 Summarized mycorrhizal community pattern expressed as percentage of occurrence with calculated Shannon-Weaver Index (H) and 

evenness (e) from East Rand (ER D2) (site 7), Gauteng and Vaal Reefs (VRM) (site 8), North West, South Africa 

_________________________________________________________________________________________________________ 

Mycorrhizal species    East Rand Slime Dam  Vaal Reefs Slime Dam  

        __________________________________      ___________________________________ 

      Number of isolates (Site 7)     %  Number of isolates (Site 8)    % 

___________________________________________________________________________________________________________ 

24. Acaulospora colombiana   2               10.53    5             7.94 

25. Acaulospora gdanskensis   2               10.53  0   0.00 

26. Acaulospora mellea   0  0.00  2   3.17 

27. Acaulospora rugosa   1  5.26    0   0.00 

28. Archaeospora trappei   0  0.00  2   3.17 

29. Diversispora spurca   1  5.26  0   0.00 

30. Entrophospora infrequens   0  0.00  2   3.17 

31. Funneliformis caledonium   0  0.00  1   1.59 

32. Funneliformis mosseae   0  0.00  1   1.59 

33. Fuscutata heterogama   4               21.05    0   0.00 

34. Gigaspora decipiens   0  0.00  1   1.59 

35. Glomus albidum   0  0.00  2   3.17 

36. Glomus claroides   0  0.00  2   3.17 

37. Glomus hoi   0  0.00  3   4.76 
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38. Glomus microcarpum   0  0.00  2   3.17 

39. Glomus pansihalos   0  0.00  2             3.17 

40. Glomus radiatum   0  0.00  2   3.17 

41. Glomus tenebrosum   1                                       5.26                         2   3.17 

42. Rhizophagus fasciculatus   1  5.26  2   3.17 

43. Sclerocystis rubiformis   6               31.58  23            36.51 

44. Scutellospora calospora   0  0.00  1   1.59 

45. Scutellospora dipurpurescens   0  0.00  2   3.17 

46. Scutellospora pellucida   0  0.00    1   1.59 

47. Scutellospora scutata   0  0.00  2   3.17 

48. Scutellospora spinosissima   1  5.26  1   1.59 

49. Scutellospora spp.   0                                   0.00                          2      3.17 

________________________________________________________________________________________________________ 

Total number of isolates    19              100.00  63           100.00 

Total number of species 10                52.63  22   34.92 

Average (Nj/N)       0.70           2.33 

Shannon-Weaver Index (H) _         1.43         1.43 

 Evenness (e)        1.12         0.80 

________________________________________________________________________________________________________
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4.1.4  Representative light micrographs showing a morphological 

identifications of AM fungi from whole and crushed spore mounts 

extracted from pots with E. curvula growing in substrata from 

different HM sites  

A Acaulospora dilatata: Spores are formed singly in the soil, borne laterally on 

hyphae, each ending in a globose to subglobose hyphal terminus with 105 – 142 

μm spore diameter. It has three layers (L1, L2, and L3), the outer continuous layer 

with the wall of the neck of the parent sporiferous saccule and the latter being 

synthesized with development of the spore. It has a thin, hyaline outer layer of 

spore wall (swL1); with laminated inner layers of spore wall (swL2 and swL3). It 

also consists of two flexible hyaline germinal inner walls (gw1 and gw2) which 

are readily separated from each other and from the spore wall. First bilayered 

hyaline germinal inner wall (gw1); outer layer of inner wall one (gw1L1); inner 

layer of inner wall one (gw1L2); second hyaline inner wall (gw2); outer layer of 

second inner wall (gw2L1)  with beads; inner layer of second inner wall (gw2L2)  

staining red-purple in Melzer’s reagent and measurable in PVLG, (Fig. 4.4A; 

INVAM; Schenck and Péres, 1990).  

 

B Glomus magnicaule: Spores form singly and brown in soil with varying 

amounts of adhering debris, globose to subglobose, 125–175 μm diameter. Spore 

wall consists of two layers, outer brown and finely laminated layer of spore wall 

(swL1); laminated inner layers of spore wall (swL2), with colourless to light 

brown. Subtending hyphae (h)  often slightly pinched in at the point of 

attachment, Plug (p) of the wall-like material gradually built up on inner wall of 

subtending hypha till pore occluded completely at maturity with germination 

shield (gs)  in the centre of the spore (Fig. 4.4B; Schenck and Péres, 1990).  

 

C Scutellospora pellucida: Spores formed singly in the soil or in roots; borne 

terminally on a bulbous subtending hypha; glistering with oil droplets, hyaline to 

pale grey, globose, ellipsoid, or irregular; 58-183(-250) x 58-241(-410) µm diam. 

Permanent, smooth, hyaline outer layer of spore wall (swL1); laminated, hyaline 

inner layers of spore wall (swL2). Subtending hyphae (h) often slightly pinched in 



 

 
91 

at the point of attachment. First bilayered hyaline germinal inner wall (gw1); outer 

layer of flexible, hyaline inner wall one (gw1L1); inner layer of flexible, hyaline 

inner wall one (gw1L2); second hyaline inner wall (gw2); outer layer of flexible, 

coriaceous, hyaline, second inner wall with beads (gw2L1); inner layer of second 

plastic, hyaline, inner wall (gw2L2)  staining beetroot-purple in Melzer’s reagent 

and measurable in PVLG, (Fig. 4.4C; INVAM; Schenck and Péres, 1990).  

 

D Paraglomus occultum: Chlamydospores borne singly or in loose clusters in the 

soil, or in compact clusters in the cortex of roots, often broader than long, avoid to 

abovoid to irregular, frequently globose to subglobose, with 15 – 100 x 20-120 

µm diam, hyaline to white in colour (INVAM). The spore consists of three layers 

(L1, L2, and L3). Outer layer of spore wall (swL1) is generally a sloughing layer, 

often separating and degrading to form a granular layer. Spores then appear to 

have a thin coating of organic debris on their surface and can look “dirty”. No 

reaction in Melzer’s reagent. Permanent inner layers of spore wall (swL2 and 

swL3) continuing into the wall of the subtending hypha (h); produces a light 

yellow (0-0-10-0) reaction in Melzer’s reagent (Fig. 4.4D; Schenck and Péres, 

1990; Redecker et al., 2013). 

 

E Scutellospora dipurpurescens: Spores formed singly in the soil; borne 

terminally on a bulbous suspensor-like cell; usually globose to subglobose, with 

(152)-197(-250) µm diam., but occasionally ellipsoid 144 – 216 x 176-224 µm 

diam., shiny smooth, yellow to greenish-yellow, turning yellow-brown after 

storage for more than 2 months in formalin or lactophenol. It has two layers (L1 

and L2) that are adherent that in juvenile spores are of equal thickness, with the 

laminate layer thickening as the spore wall is differentiated (Schenck and Péres, 

1990). Outer permanent rigid layer (swL1), smooth, pale yellow and so tightly 

adherent to L2 and (swL2) A laminate layer consisting of very fine adherent 

sublayers (= laminations). The innermost sublayers separate slightly and produce 

undulations that can be mistaken for an inner flexible wall with germination shield 

(gs). Iw1, one hyaline layer, often adherent to L2 (laminae) of the spore wall, It 

stains a light pink (0-20-20-0) in Melzer’s reagent. iw2, two hyaline layers (L1 
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and L2) that almost always are adherent. Iw2L1 often produces a weak pink 

reaction (0-10-20-0) in Melzer’s reagent that is detected only when it breaks away 

from the spore wall. Iw2L2 is hyaline and exhibits enough plasticity in acidic 

mountants to have been described as amorphous (INVAM). Thickness varies in 

PVLG-based mountants, depending on the degree of pressure applied to it while 

breaking the spore (Fig. 4.4E; Redecker et al., 2013). 

 

F Archaeospora (Acaulospora) trappei: Spores formed singly in the soil or 

occasionally within the roots, sessile, borne laterally on shiny smooth, unbranched 

hyphal cell that terminates nearby in a subglobose to ellipsoid or to obovoid 

vesicle 50 – 82 x 42-72 µm diam, colourless, containing rounded to polyhedral oil 

globules, (Fig. 4.4F; Schenck and Péres, 1990). It consists of three hyaline layers 

(L1, L2 and L3), all of which exhibit some flexibility when broken with applied 

pressure in a slide mountant. Thin, hyaline outer layer of spore wall (swL1); thin, 

hyaline inner layer layers of spore wall (swL2); and a thicker hyaline layer (swL3) 

than either L1 or L2, ranging from 1.3-4 µm thick near attachment (Fig. 4.4F; 

Morton and Redecker, 2001).  

 

G and H Glomus heterosporum: Sporacarps light to dark brown, globose to 

subglobose, 242-726 x 242 -641 µm diam., consisting of a single, ordered layer of 

chlamydospores originating from central core of thick interwoven hyphae. It has 

three walls of sporocarp hyaline spore (L1, L2 and L3). Chlamydospore with 

multiple hyphal (h) attachment. Smooth, thin, hyaline outer layer of spore wall 

(swL1); laminated brown membranous inner layers of spore wall (swL2 and 

(swL3). The inner content of the third inner wall staining red-purple in Melzer’s 

reagent and measurable in PVLG with inner flexible germination shield (gs). 

Colour: light to dark brown, globose to subglobose, (Fig. 4.4G, H; Schenck and 

Péres, 1990). 

 

I Glomus globiferum: Spores formed singly, or in pairs or triplets adhering to 

each other by common peridial hyphae; orange brown to rich red-brown, to 

(rarely) fuscous black, globose to subglobose 150 – 260 x150-270 µm diam, 

http://invam.wvu.edu/the-fungi/concepts-term/conventional-character-definitions
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colourless, containing rounded to polyhedral oil globule. Spore with vesiculate 

swellings (V) of peridial hyphae. It has three to four walls of hyaline spore (L1, 

L2 and L3). Hyaline to pale yellow-brown outer layer (swL1) of spore wall; 

laminated orange-brown to red-brown second layer (swL2) of spore wall. Hyaline, 

membranous inner layer (swL3) of spore wall, with approximately 1 µm thick 

attached to each other by a thin, amorphous cement-like layer, (Fig. 4.4I; Schenck 

and Péres, 1990).  

 

J Glomus microcarpum: Chlamydospores borne free in soil in loose aggregations 

in small compact clusters unenclosed in a peridium or in sporocarps with a 

peridium. Spores are globose or subglobose, (30 -45) x (30-40) µm diam. Spore 

wall is smooth and composed of a single layer, 4-6 µm thick, hyaline, light yellow 

or yellow-brown, that may have numerous laminations. Subtending hypha (h) 

with a width of 4-8.5 µm thick at the point of the attachment to the spore (p). The 

pore of the subtending hypha either remains open, or is partially or completely 

occluded by thickening of the spore wall (Fig. 4.4J; Schenck and Péres, 1990). 

     

A Acaulospora dilatata        B Glomus magnicaule 
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C Scutellospora pellucida                  D Paraglomus occultum 

      

E  Scutellospora dipurpurescens        F Archaeospora trappei  

      
G Glomus heterosporum           H Glomus heterosporum, 

     

I Glomus globiferum         J Glomus microcarpum 

Fig. 4.4 Spores of mycorrhizal species isolated from Eastern Reef slime dams (Site 

3). (A-J) subtending hypha (h); spore wall (sw); outer layer (swL1) one of spore wall; 

inner layer two (swL2)of spore wall; inner layer three (swL3)  of spore wall; spore with 

vesiculate swellings (V) of peridial hyphae; first germinal inner wall (gw1); outer layer of 

inner wall one (gw1L1); inner layer of inner wall one (gw1L2); second hyaline inner wall 
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(gw2); outer layer of second inner wall (gw2L1) with beads; inner layer of second inner 

wall (gw2L2) usually staining red-purple in Melzer’s reagent and measurable in PVLG. 

One hyaline layer (iw1), Two hyaline layers (1w2) (L1 and L2) that almost always are 

adherent. Thickness varies in PVLG-based mountants, depending on the degree of 

pressure applied to it while breaking the spore. 

 

A Glomus tenebrosum: The spores are globose or subglobose, (200 – 270) x (205 

-270) µm diam. Spore wall (sw) composed of a single layer, 13-26 µm thick, 

yellow to a very dark brown. The outer surface of the spore (swL1) is smooth or 

may be flattened tubercules. Open-pored subtending hypha (h) with a hyaline and 

inner wall with germination shield (gs). The outer surface of the spore is smooth 

or may bear flattened tubercules (Fig. 4.5A; Berch and Fortin, 1983; Schenck and 

Péres, 1990; Schüßler and Walker, 2010).  

 

B Scutellospora armeniaca: Spores formed singly in the soil or in roots; borne 

terminally or laterally on a bulbous sporogenous cell; apricot yellow (5B6) to 

yellowish brown (5E8); globose to subglobose; (140-) 196 (-240) µm diam; 

sometimes ovoid; 140-200 x 220-250 µm. Spore wall composed of three layers 

(swL1-3). Spore wall Layer 1 (swL1) is permanent, greyish orange (5B5), usually 

tightly adherent to layer 2. Spore wall Layer 2 (swL2), laminate, apricot yellow to 

yellowish brown, usually staining garnet red in Melzer’s reagent. Spore wall 

Layer 3 (swL3) flexible, hyaline, easily separating from layer 2. A germinal wall 

(gw1) contains two layers (gw1L1 and 2). Flexible, hyaline germinal wall 1 

(gw1L1); flexible, hyaline, germinal wall 2 (gw1L2) staining pinkish white in 

Melzer’s reagent, measurable in PVLG (Fig. 4.5B, INVAM; Blaszkowski, 1992).  
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A Glomus tenebrosum         B Scutellospora armeniaca 

Fig. 4.5 Spores of mycorrhizal species isolated from Agnes Mine (AGM) Serpentine 

slime dams (site 2). (A-B), Spores wall (sw); The outer surface of the spore (swL1);  

Open-pored Subtending hypha (h) with a hyaline; outer spore wall Layer one (swL1). 

Inner spore wall Layer two (swL2); spore wall Layer three (swL3). Germinal wall 1 

contains two layers (gw1L1 and 2). Flexible, hyaline germinal wall 1 (gw1L1) while 

flexible, hyaline, germinal wall 2 (gw1L2) staining pinkish white in Melzer’s reagent.  

 

A-B Acaulospora delicata: Spores borne singly in the soil laterally on the neck of 

a sporifererous saccule; hyaline to pale yellowish-cream, sparkling from the 

nature of the spore contents; globose to subglobose (rarely ovoid to obvoid), 80-

125(-150) x 80-110 (-140) µm. Occasionally spores occurring in the cortical cells 

of senescent roots. A.delicata has two spore wall layers (L1 and L2), the outer 

spore wall layer (swL1): Hyaline, degrading to form a granular coating or 

sloughing completely. (swL2): A layer consisting of very fine and adherent 

sublayers (or laminae) that often are difficult to discern; very pale yellow (0-0-10-

0) in colour, at maturity, the spore detaches from the sporiferous saccule (sac) and 

is sessile. The germinal wall has two hyaline flexible inner walls layers (gw1L1 

and gw1L2) which are formed sequentially in spores after the spore wall has 

completed differentiation and the spore has ceased expansion. First bilayered 

hyaline germinal inner wall (gw1); outer layer of inner wall one (gw1L1); inner 

layer of inner wall one (gw1L2). The inner layer of the inner wall staining red-

purple in Melzer’s reagent (Fig. 4.6A, B, Walker et al., 1986; Schenck and Péres, 

1990).  
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C Rhizophagus (Glomus) irregularis: Chlamydospore formed singly or in 

clusters in the root, rarely formed outside the root. Spores are predominately 

globose and sometimes subglobose, irregular with many spores elliptical 

(especially those extracted within mycorrhizal roots). It has three layers (L1, L2 

and L3), with only the first layer present in juvenile spores and subtending hyphal 

wall (so they are colourless); subtending hypha (h); spore wall (sw); outermost 

layer one of spore wall (swL1), hyaline, mucilaginous, staining pinkish red to pale 

purple in Melzer’s reagent when intact in juvenile spores. With age, this layer 

almost always degrades and decomposes naturally and from the action of 

microorganisms, after which it appears granular and may accumulate some debris; 

layer two of spore wall (swL2); hyaline. With age, this layer degrades 

concomitant with L1 and also acquires a granular appearance or sloughs in 

patches. Mature spores often lack both L1 and L2 or they are present together as 

rough patches. Layer three of spore wall (swL3); consists of pale yellow-brown 

sublayers (or laminae) that either remains adherent or separate with applied 

pressure. This layer forms simultaneously in the wall of the subtending hypha (h) 

(Fig. 4.6C, INVAM).  

 

D Claroideoglomus (Glomus) etunicatum: Chlamydospore formed singly in soil 

and dead roots, globose to subglobose 68-144 (162) µm diameter smooth or 

roughened from decomposition of outer wall and adherent debris. Spore wall (sw) 

consists of two layers, L1 and L2 (Fig. 4.6D). Outer spore wall Layer one (swL1) 

is the outer mucilaginous layer (showing some plasticity and an uneven outer 

surface); 2.5 μm thick which may degrade as the spore ages to develop a granular 

appearance. SwL2 consists of thin adherent sub-layers (laminae), light orange-

brown to red-brown in colour but thickening in the region of the subtending 

hypha. An occlusion between the innermost sub-layer of the laminate layer of the 

spore wall is present which resembles a septum(s) (Fig. 4.6D; Straker et al., 2010; 

Schenck and Péres, 1990). 
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A Acaulospora delicata     B Acaulospora delicata 

      

  C Rhizophagus irregularis    D Claroideoglomus etunicatum:  

Fig. 4.6 Spores of mycorrhizal species isolated from Vaal Reefs slime dams (site 4). 

(A-D), Spores wall (sw); The outer surface of the spore wall (swL1);  Open-pored 

subtending hypha (h) with a hyaline; outer spore wall Layer one (swL1). Inner spore wall 

Layer two (swL2); inner spore wall Layer three (swL3); sporiferous saccule (sac); hypha 

(h); septum (s). Outer layer of germinal inner wall one (gwL1); inner layer of germinal 

inner wall two (gwL2);  

 

A Acaulospora colombiana (previously called Kuklospora and Entrophospora 

colombiana): Azyspores produced singly in soil and occasionally in roots. Spores 

developing within a slightly tapering hypha. Azyspores at first are subhyaline to 

white becoming pale yellow to light golden brown at maturity and globose to 

subglobose with 75 – 135 µm in diameter. It has three layers (L1, L2, and L3). 

thin, hyaline outer layer of spore wall (swL1) of the saccule neck; laminated 

second inner layer of spore wall (swL2); and a third single inner layer of spore 
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wall (swL3), with 0.5-0.6 µm thick, probably concolorous (difficult to determine 

due to thinness); The three germinal inner walls, gw1, gw2 and gw3 tend to 

separate much more in PVLG with Melzer’s reagent than in PVLG. first flexible 

hyaline germinal inner wall (gw1); second and third flexible hyaline inner wall 

(gw2 and gw3) which most of the time appears as one wall due to their thinness to 

resolve adherence (Fig. 4.7A; INVAM; Schenck and Péres, 1990). 

 

B Archaeospora schenckii, previously called Entrophospora schenckii:  

Archaeospora schenckii differs from Acaulospora species due to their unique 

spore subcellular structure. It has no flexible inner walls; hence germination 

occurs through the spore wall. Interestingly, this same subcellular structure is the 

phenotype of Ar. trappei spores (Schüßler and Walker (2010). The whole spore is 

mostly globose, subglobose, but also ellipsoid to ovoid in shape, with size ranging 

from 50-80 µm, mean = 64. The spore wall consists of three hyaline layers (L1, 

L2 and L3), all of which exhibit some flexibility in broken section. As a result, the 

spore wall contains numerous folds from any or all of the layers. SwL1 has a thin 

hyaline layer of 1 µm thick, which is continuous with the wall of the neck of the 

sporiferous saccule. SwL2 also consists of a thin hyaline layer, with 1 µm thick, 

which usually is adherent to the innermost layer (swL3). While swL3 has a thicker 

hyaline layer than either swL1 or swL2, ranging from 1.3-4 µm thick, which 

together with swL2 form an endospore which encloses the spore contents (Fig. 

4.7B; INVAM; Schüßler and Walker, 2010). 

 

C–D Acaulospora mellea: Spores formed singly in soil; borne laterally on haphae 

appearing sparkling from the nature of the spore contents; globose to subglobose 

(rarely ovoid to obvoid), 80-125 (-150) x 80-110 (-140) µm. Spore wall (sw) 

consists of three layers, swL1, swL2 and swL3. SwL1 is thin and hyaline and 

sloughs on many spores; swL2 consists of laminae with a smooth surface if outer 

layer has sloughed; swL3 is yellow-brown and also consists of laminae which can 

separate from each other but generally merge to be part of the spore wall. There 

are two flexible hyaline germinal inner walls that that separate from each other 

and the spore wall. Germinal inner wall 1 (gw1) is a bilayered hyaline wall which 
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separates clearly from the spore wall but the two layers do not often separate from 

each other. Outer layer of germinal inner wall one (gw1L1); inner layer of 

germinal inner wall one (gw1L2); Germinal inner wall 2 (gw2) consists of two 

adherent hyaline layers with gw2L1 showing granular excrescences or “beads” 

and gw2L2 staining red-purple in Melzer's reagent (Fig. 4.7D). A cicatrix (scar 

showing region of contact between spore and saccule neck during spore synthesis 

is circular to oval-shaped, (Fig. 4.7C, D; Straker et al., 2010; Schenck and Péres, 

1990). 

 

(E-F) Acaulospora tuberculate: Spores formed singly in soil; sessile, borne 

laterally on a light yellow thick-walled, with, globose to subglobose, 255–327x 

255- 340 μm. Spore wall consists of three layers (L1, L2, L3) (Fig. 4.7E, F). L1 is 

hyaline, 1.2 μm thick that remains after tubercles on L2 have formed. L2 thickens 

by formation of yellow-brown sub-layers (laminae) (Fig. 4.7E, D) and forms 

polygonal spines or tubercles. L3 is yellow-brown to red-brown in colour and 

mostly appears to be an inner sub-layer of L2 (Fig. 4.7E, F). Two flexible, hyaline 

inner walls (iw1 and iw2) are present. Two layers of near equal thickness 

comprise iw1 (L1 and L2) (Fig. 4.7F). Similarly, iw2 comprises two adherent 

hyaline layers (L1 and L2) and L2 stains pinkish red to red-brown in Melzer's 

reagent (Fig. 4.7E, F; Straker et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
101 

     
A Acaulospora colombiana            B Archaeospora (Entrophospora) 

schenckii  

  

C Acaulospora mellea         D Acaulospora mellea  

  

E Acaulospora tuberculata        F Acaulospora tuberculata 

Fig. 4.7 Spores of mycorrhizal species isolated from West Wits, slime dams (site 5), 

(A-F) (sw) spore wall; hyaline outer layer of spore wall (swL1); middle layer of spore 

wall (swL2) with tubercles (t); inner sublayer (swL3) of swL2; outer layer of first hyaline 

inner wall (iw1L1); inner layer of inner wall one (iw1L2); outer layer of innermost inner 

wall two (iw2L1); inner layer of inner wall two (iw2L2);  first bilayered hyaline germinal 
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inner wall (gw1); outer layer of germinal inner wall one (gw1L1); inner layer of germinal 

inner wall two (gw1L2); second hyaline inner wall (gw2); outer layer of second inner 

wall layer one (gw2L1); germinal inner layer two of second inner wall (gw2L2) staining 

red-purple in Melzer’s reagent (Straker et al., 2010), (Schenck and Péres, 1990). 

 

A Rhizophagus (Glomus) irregularis: Chlamydospore formed singly or in 

clusters in the root, rarely formed outside the root. Spores are predominately 

globose and sometimes subglobose, irregular with many spores elliptical 

(especially those extracted within mycorrhizal roots). It has three layers (L1, L2 

and L3), with only the first layer present in juvenile spores and subtending hyphal 

wall (so they are colourless); subtending hypha (h); spore wall (sw); spore wall 

(sw); hyaline and mucilaginous outer layer of spore wall (swL1); middle layer of 

spore wall (swL2) with tubercles (t). Mature spores often lack both L1 and L2 or 

they are present together as rough patches; pale yellow-brown inner sublayer 

(swL3) or laminae; subtending hypha (h). The spore shape is globose, subglobose, 

irregular, with many spores elliptical (especially those extracted from within 

mycorrhizal roots) (Fig. 4.8A; INVAM).  

 

B Funneliformis geosporum previously known as Glomus geosporum: 

Chlamydospores formed singly in soil, clusters in the root, globose or broadly 

ellipsoid, 110 – 290 μm, smooth and shiny, roughened from adherent debris; with 

light yellow brown and transparent to translucent when young, becoming dark 

yellow to dark red brown at maturity. It forms spore content (sc) of uniform oil 

droplets when young becoming increasingly granular in appearance at maturity. 

Whole spore with subtending hypha (h); spore wall (sw); hyaline outer spore wall 

(swL1); yellow-brown to orange-brown laminated middle wall (swL2); yellow to 

orange light-brown inner spore wall (swL3) (Fig. 4.8B; INVAM; Schenck and 

Péres, 1990). 

 

C Scutellospora dipurpurescens: Spores formed singly in the soil; borne 

terminally on a bulbous suspensor-like cell; usually globose to subglobose, with 

(152)-197(-250) µm diam but occasionally ellipsoid   144 – 216 x 176-224 µm 
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diam, shiny smooth, yellow to greenish-yellow, turning yellow-brown after 

storage for more than 2 months in formalin or lactophenol. Germination shield 

(gs); plug (p); spore wall (sw) constituting an outer wall (swL1) forming an outer 

permanent rigid layer, smooth, pale yellow with a green tint and laminated inner 

layers of spore wall (swL2). The spore also has two flexible hyaline inner walls 

(iw1 and iw2) that are formed, first hyaline germinal inner wall (iw1);  outer 

hyaline layer of second inner wall (iw2L1); inner hyaline wall 2 (iw2L2), 

amorphous  layer of second inner wall staining red-purple dark red-purple in 

Melzer’s reagent (Fig. 4.8C; INVAM; Schenck and Péres, 1990). 

 

D Acaulospora colombiana, Azyspores produced singly in soil and occasionally 

in roots. Spores developing within a slightly tapering hypha. Azyspores at first are 

subhyaline to white becoming pale yellow to light golden brown at maturity and 

globose to subglobose with 75 – 135 µm in diameter. It has three layers (L1, L2, 

and L3). Thin, hyaline outer layer of spore wall (swL1) of the saccule neck; 

(swL2) laminated second inner layer of spore wall; and a third single inner layer 

of spore wall (swL3), with 0.5-0.6 µm thick, probably concolorous (difficult to 

determine due to thinness); the three germinal inner walls, gw1, gw2 and gw3 

tend to separate much more in PVLG with Melzer’s reagent than in PVLG. First 

flexible hyaline germinal inner wall (gw1); second and third flexible hyaline inner 

wall (gw2 and gw3) which most of the time appears as one wall due to their 

thinness to resolve adherence (Fig. 4.8D; INVAM; Schenck and Péres, 1990). 
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A Rhizophagus irregularis    B Funneliformis geosporum     

    

C Scutellospora dipurpurescens        D Acaulospora colombiana,  

Fig. 4.8 Spores of mycorrhizal species isolated from West Wits, slime dam (site 6). 

(A-D) Thin, hyaline outer layer of spore wall (swL1); laminated inner layers of spore wall 

(swL2 and swL3); subtending hypha (h); germination shield (gs); plug (p); spore content 

(sc); outer layer of first hyaline inner wall (iw1L1); inner layer of inner wall one (iw1L2); 

outer layer of innermost inner wall two (iw2L1); inner layer of inner wall two (iw2L2)  

(INVAM). 

 

A-B Fuscutata heterogama formerly called Scutellispora heterogama: Spores 

formed singly in the soil; borne terminally, or subterminally, or laterally on a 

bulbous suspensor-like cell; usually globose to subglobose or irregular, with 150 - 

120 µm diam; pale yellow-brown to red - brown to yellow-brown. It has three 

layers (L1, L2, and L3) with the middle layer (L2) undergoing a dramatic 

transformation from the juvenile to the mature state. This transformation is 

expressed in the transition in spore colour. SwL1 has an outer permanent rigid 

layer of spore wall (sw) with pale brown in colour. SwL2 and swL3 have very 

thin hyaline flexible inner layers of spore wall (Fig. 4.9A); first bilayered hyaline 
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germinal inner wall (gw1); outer layer of inner wall one (gw1L1); inner layer of 

inner wall one (gw1L2) with the germination shield (gs); second hyaline inner 

wall (gw2); (outer layer of second inner wall gw2L1) with beads; inner layer of 

second inner wall (gw2L2) staining pinkish-purple to slightly darker purple in 

Melzer’s reagent (Fig. 4.9B; INVAM; Schenck and Péres, 1990). 

 

C Acaulospora gdanskensis: Azygospores formed singly in the soil; pale yellow 

to yellow brown, globose to subglobose, with 55 - 75 µm in diam; sessile on a 

hypha tapering to a globose to subglobose swollen hyphal terminus contents 

hyaline. It has three layers (L1, L2 and L3), thin, hyaline, sloughing,  outer layer 

of spore wall (swL1) of the saccule neck; laminated inner layer of spore wall 

(swL2); and a single inner layer of spore wall (swL3), with yellow to pale brown; 

subtending hypha (h) (Fig. 4.9C; Schenck and Péres, 1990). 

 

D Acaulospora colombiana previously called Kuklospora and Entrophospora 

colombiana: Azyspores produced singly in soil and occasionally in roots. Spores 

developing within a slightly tapering hypha. Azyspores at first are subhyaline to 

white becoming pale yellow to light golden brown at maturity and globose to 

subglobose with 75 – 135 µm in diameter. It has three layers (L1, L2, and L3). 

Thin, hyaline outer layer of spore wall (swL1) of the saccule neck; laminated 

second inner layer (swL2) of spore wall; and a third single inner layer (swL3) of 

spore wall, with 0.5-0.6 µm thick, probably concolorous (difficult to determine 

due to thinness); the three germinal inner walls, gw1, gw2 and gw3 tend to 

separate much more in PVLG with Melzer’s reagent than in PVLG. First flexible 

hyaline germinal inner wall (gw1); second and third flexible hyaline inner wall 

(gw2 and gw3) which most of the time appears as one wall due to their thinness to 

resolve adherence (Fig. 4.9D; INVAM; Schenck and Péres, 1990). 

 

E-F Scutellospora spinosissima: Spores formed singly in the soil. Pale pinkish 

cream when immature; ochraceous to fulvous or rust when mature, appearing matt 

from surface ornamentation, globose to subglobose to broadly ellipsoid (rarely 

ovoid or irregular), (121 - 230) μm, with a terminal or laterally-attached bulbous 
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base produced from a septate subtending hypha. Bulbous spore base ochraceous to 

sienna (8±11), 19±32 μm, wide, with or without one or more peg-like projections. 

It has three layers (L1, L2, and L3) with the middle layer (L2) undergoing a 

dramatic transformation from the juvenile to the mature state. This transformation 

is expressed in the transition in spore colour. SwL1 has an outer permanent rigid 

layer of spore wall (sw) with pale to brown in colour. SwL2 and swL3 have a 

hyaline flexible inner layers of spore wall; with the multiple germination shield 

(gs); first bilayered hyaline germinal inner wall (gw1); outer layer of inner wall 

one (gw1L1); inner layer of inner wall one (gw1L2); second hyaline inner wall 

(gw2); outer layer of second inner wall (gw2L1) with beads; inner layer of second 

inner wall (gw2L2)  staining dark brown in Melzer’s reagent, (Fig. 4.9F; INVAM; 

Walker et al., 1998).  

 

G-H Rhizophagus fasciculatus Formerly: Glomus fasciculatum: Consisting of 

three layers (L1, L2, and L3) which form sequentially, based on the pattern of 

spore wall differentiation observed in all other Glomus species. SwL1 has an outer 

hyaline layer of spore wall (sw) producing a pinkish-red reaction in Melzer’s 

reagent; adherent to L2. SwL2 is composed of a layer consisting of thin adherent 

sublayers (or laminae), light yellow-brown. All sublayers form a dark red to 

slightly purplish red colour in Melzer’s reagent. SwL3 has a thin flexible inner 

spore layer; it forms a component part of the spore wall and appears to form a 

fragile septum. Multiple germination shield (gs) showing the complex infolding 

and subtending hyphae (h). (Fig. 4.9G, H; INVAM; Schenck and Péres, 1990; 

Walker and Koske, 1987).  
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A Fuscutata heterogama        B   Fuscutata heterogama 

         

C Acaulospora gdanskensis            D Acaulospora colombiana  

  

E Scutellospora spinosissima        F Scutellospora spinosissima 

    

G Rhizophagus fasciculatus       H Rhizophagus fasciculatus  

Fig. 4.9 Spores of mycorrhizal species isolated from East Rand slime dam (site 7). 

spore wall (sw); hyaline outer layer (swL1) of spore wall; middle layer of spore wall 

(swL2); inner sublayer (swL3)  of swL2; sporiferous saccule (sac); subtending hypha (h); 

septum (s); germination shield (gs); first bilayered hyaline germinal inner wall (gw1); 

outer layer of germinal inner wall one (gw1L1); inner layer of germinal inner wall one 
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(gw1L2); second hyaline inner wall (gw2); outer layer of second inner wall layer one 

(gw2L1); germination inner layer two of second inner wall (gw2L2) staining red-purple 

in Melzer’s reagent (INVAM; Schenck and Péres, 1990; Straker et al., 2010),  

 

A Entrophospora infrequens: Azygospores produced singly in soil by expansion 

within a smooth, unbranched hyphal cell that terminates in a globose or 

subglobose to ellipsoid or obovoid vesicle, 126-214 x 157 μm, diam.; vesicle 

contents dense white, emptying as the spore develops, Spore white at first, 

becoming dull orange to brown, 69 -183 (-225) x 69-164 μm, diam.; subglobose 

or ellipsoid. There are four layers (L1, L2, L3 and iw1), with L1-L3 continuous 

with the wall of the neck of the parent sporiferous saccule and inner wall (iw1) 

forming de novo. thin, hyaline outer layer of spore wall (swL1) continuous with 

outer layer of the saccule, degrading and sloughing as the spore ages; A hyaline 

spore wall layer (swL2), that is initially solid with shallow indentations on the 

inner surface and which later has imbedded in it the projections (or spines) of L3 

and then eventually degrades and sloughs; it is very thin (< 0.5 µm) in the saccule 

wall and thus is difficult or impossible to see. SwL3 is made up of the formation 

of spines with five sides (pentagonal) and central depression layers of the spore 

wall. Inner wall (iw) thins, hyaline, semi-flexible inner wall; sporiferous saccule 

(sac) (Fig. 4.10A; INVAM; Schenck and Péres, 1990).  

 

B Sclerocystis rubiformis: Sporocarps are yellow brown to dark brown, 

subglobose or obovoid to ellipsoid, (180 x 180-375x675) μm, diam., consisting of 

a single layer of chlamydospores with laminate spore wall (sw) and a small pore 

(p) opening into a thick-walled central plexus subtending hypha (h) and with 

perforated projections (pp) on inner surface (Fig. 4.10B). The outer wall is 

hyaline, but frequently absent in mature spores (Fig. 4.10B; INVAM; Schenck 

and Péres, 1990). 

 

C Scutellospora calospora: Spores formed singly in the soil; borne terminally on 

a bulbous suspensor-like cell; transluscent, hyaline to pale greenish-yellow; 

globose, ellipsoidal or cylindrical, occasionally broader than long; 114-285(-511) 
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x 110 -412 (-511) μm, diam.; whole spore (s); sporogenous cell (sc); spore wall 

distinctly bi-layered with outer spore wall (osw); laminate inner spore wall (isw) 

of equal thickness; One flexible inner wall with darker-coloured germination 

shield (gs) is present, inner wall (iw) (Fig. 4.10C; Straker et al., 2010; Schenck 

and Péres, 1990).  

 

D Gigaspora decipiens: Spores are orange-brown to dark-brown in colour, 

globose to sub-globose and even ellipsoid, 310 μm–500 μm. Spores are borne 

terminally on a bulbous suspensor-like sporogenous cell, 60 μm at widest point. It 

consists of three layers (L1, L2, and L3), The first two layers are adherent and of 

equal thickness in juvenile spores, with L2 thickening as the spore wall is 

differentiated; L3 differentiates as a prelude to germ tube formation, an outer 

permanent rigid layer (swL1), smooth, adherent to sublayers of L2, 2.5-3.2 µm 

thick, often hard to see in relation to L2. A second layer (swL2) consisting of 

hyaline sublayers (or laminae) that increase in number with thickness, are rigid, 

exhibit some plasticity when broken, pale yellow turning to darker brownish 

yellow with age and storage. Sublayers stain dark red-purple (almost black) in 

Melzer’s reagent. A “germinal” layer (swL3) that is concolorous and adherent 

with the laminate layer. sporogenous cell (sc), germination shield (gs). Spores 

dark red-brown in colour, globose to subglobose, (Fig. 4.10D). Spores turn orange 

brown in Melzer’s reagent with no distinctive difference in colouration of spore 

wall (Fig. 4.10D; INVAM; Straker et al., 2010, Schenck and Péres, 1990). 
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A Entrophospora infrequens             B Sclerocystis rubiformis 

     

C Scutellospora calospora        D Gigaspora decipiens    

Fig. 4.10 Spores of mycorrhizal species isolated from West Wits, slime dam (site 8). (A-

D) Thin, hyaline outer layer (swL1) of spore wall; laminated inner layers of spore wall 

(swL2 and swL3); subtending hypha (h). germination shield (gs); plug (p); sporogenous 

cell (sc); pore (p); perforated projection (pp); sporiferous saccule (sac); whole spore (s); 

outer spore wall (osw); inner spore wall (isw); inner wall (iw), outer layer of first hyaline 

inner wall (iw1L1); inner layer of inner wall one (iw1L2); outer layer of innermost inner 

wall two (iw2L1); inner layer of inner wall two (iw2L2). One hyaline layer (iw1), Two 

hyaline layers (L1 and L2) of inner wall (iw2) that almost always are adherent. Thickness 

varies in PVLG-based mountants, depending on the degree of pressure applied to it while 

breaking the spore. 

 

4.2 Discussion 

Spores have been successfully used in the past for the identification and 

classification of AM fungi. Spores are resistant to damage and are able to survive 

adverse conditions for an extended period of time while remaining dormant. They 
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have the capacity to be dispersed by different modes of transport such as animals, 

wind, and water (Smith and Read, 2008). The degree to which the AM fungi 

sporulate varies between species (Pearson and Schweiger, 1993) and it is 

influenced by a number of factors such as environmental conditions (Vestbery, 

1995), soil nutrient levels, host colonisation level, to name but a few (Stutz and 

Morton, 1996). Some AM fungi have been reported to produce large quantities of 

spores in certain seasons of the year and under specific conditions thus appearing 

as dominant root colonisers, but under alternative conditions, AM fungi may 

produce little or no spores at all (Redecker et al., 2003). Some AM fungi sporulate 

in late spring while others sporulate at the end of summer, which indicates that 

AM fungi have their preference seasons (Schultz et al., 1999). This might explain 

the fact that most of the spores counted in this study were observed in 45 µm 

sieve, compared to 125 µm sieve, and 212 µm sieve. These spores were tiny and 

had different sizes, colour and shapes. The spores were identified according to the 

broad guidelines found in the Manual for the identification of VA Mycorrhizal 

Fungi, (Schenck and Péres, 1990) and INVAM as well as using the recently 

published articles (Schüßler & Walker, 2010; Straker et al., 2010; Kruger et al., 

2012).  

 

This study identified Glomus and Acaulospora as the most common genera 

followed by Scutellospora, then Gigaspora. This tallies with the findings by 

Daniell et al. (2001) who found that Glomus species were predominant in roots at 

various arable sites, and suggested one reason for this may be the ability of the 

Glomaceae (unlike the Gigasporaceae) to recolonise roots from mycelial 

fragments, coupled with the ability of Glomus species, unlike Gigaspora or 

Scutellospora, which are able to establish anastomoses between separate mycelia. 

Gunwal et al. (2014) also reported Glomus as the most abundant species amongst 

the AM fungal species isolated in their study. In addition, Glomus species have 

been reported for various ecosystems such as tropical forests (Husband et al. 

2002b), agricultural sites (Alguacil et al., 2008; Hijri et al., 2006), wetland soils 

(Wirsel, 2004), gypsum soil (Alguacil et al., 2009b), or polluted soils (Vallino, et 

al., 2006). The possible reasons for the predominance of Glomus spp. are that 
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spores of Glomus species have different temperature and pH preferences for 

germination (Wang et al., 1997) and Acaulospora species are often associated 

with acidic soils (Abbott and Robson 1991; Morton 1986). These two species 

may, therefore, be particularly well adapted to recolonise roots following 

disruption of the soil mycelium. The North West, Mpumalanga and Gauteng sites 

are regularly affected by flooding, presumably causing major soil disturbance, and 

this could be another factor contributing to the predominance of both Glomus and 

Acaulospora species at these sites. 

 

Straker et al. (2010) reported a very low AM fungal species diversity of the 

original field soil samples with only two species from each locality being isolated 

in South Africa as compared with some other studies from Africa which have 

shown higher levels, especially in tropical ecosystems. This low diversity is not 

unusual as spores isolated directly from a field soil sample may represent only 

those AM fungi with sufficient root colonizing activity and biomass to trigger 

sporulation, and in arid sites it is found that little or no sporulation occurs but 

roots are clearly colonised (Morton et al., 1993). This accords with Daniell et al. 

(2001) who also reported a very low AM fungal species diversity at the arable 

sites, with just two Glomus species dominating colonisation in a range of crops. 

To combat this low AM fungal species diversity, trap pots were used which were 

able to stimulate spore germination of additional species from the studied soil 

samples (Straker et al., 2010).  

 

The present study was able to isolate a high number of AM fungal species using 

trap plants grown in pot soil samples from slime dams (Tables 4.2 to 4.5). Thus 

the use of trapping in both Straker et al. (2010) and in this study to establish a 

conducive environment for effective root colonisation and sporulation of all 

indigenous species present was very successful. The study isolated 14 AM fungal 

genera and 55 AM fungal species from mine tailings (Tables 4.2 to 4.5), 

compared to Musoko et al. (1994) who isolated only 11 species or species 

aggregates from undisturbed moist forest in Cameroon and Mason et al. (1992) 

who identified 17 species from Cameroonian Terminalia plantations with a strong 
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overlap between those identifications and the ones from the present study. Wilson 

et al. (1992) identified 41 species in Côte d'Ivoire; Jefwa et al. (2006) isolated 12 

species in Malawi; but Dalpé et al. (2000) found only five species associated with 

the legume, Faidherbia albida, in Senegal. Although 55 AM fungal species were 

identified, only 31 species which were identified in large quantities were 

described. 

 

Furthermore, the high Shannon-Weaver index (H) reported in this study is the 

indication of high diversity and presence of the mycorrhizal species in slime dams 

(Tables 4.2 to 4.5). A Shannon-Weaver index (H) of zero indicates no species 

diversity, i.e. there is only one species type in the dataset, a Shannon-Weaver 

index (H) close to zero indicates a very low species diversity and Shannon-

Weaver index (H) closer to and above one indicates high species diversity 

(Magurran 2004). The higher species diversity in the studied samples may be 

indirectly related to lower fertilizer-derived nutrient levels in these soils. Low 

external availability of P for N sufficient plants, for example, can lead to an 

increased root colonisation by AM fungi (Smith and Read, 1997) and P uptake 

characteristics by external hyphae can vary greatly between fungi (Smith et al., 

2000) such that these soils may be selecting only for high P-tolerant strains (Table 

6.1). Hence, AM fungal diversity is very crucial to the maintenance and 

sustainability of the ecosystem. Effects of AM fungi on plant species diversity 

(mostly evenness) range from positive to negative. The direction and magnitude 

of the effect is hypothesized to be related to the relative mycorrhizal dependency 

of the dominant and subordinate plant species of a community (Urcelay & Diaz 

2003). 

 

Amongst the number of species identified in this study, Claroideoglomus 

etunicatum formerly known as Glomus etunicatum has been reported to be an 

extremely widespread species with many ecotypes, and has been found associated 

with cassava in Brazil (De Souza et al., 1999). This species has been reported in a 

number of countries in the African continent. It was identified in undisturbed 

secondary semi-deciduous moist forest in Cameroon (Mason et al. 1992; Musoko 
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et al., 1994). Wilson et al., 1992 identified it in Terminalia plantations in Côte 

d'Ivoire, while in Malawi it was found in farming systems (Jefwa et al., 2006). In 

South Africa, the species has been found associated with a number of plants, such 

as the wild fruit tree, Vangueria infausta (Gaur et al., 1999), rhizosphere of plants 

(Stutz et al., 2000), cassava and soil samples (Straker et al., 2010). Spruyt et al. 

(2014) found that Claroideoglomus species were typically associated with the T. 

usneoides plant host at different mining sites such as ABB Zinc, Impala Platinum, 

and Northern Cape sites. Claroideoglomus etunicatum also appears to be a 

cosmopolitan species found in many soil types (Khade, 2008), which may explain 

its commonality to some of our studied sites such as site 2, 3 and 6. 

 

 Acaulospora mellea has been reported in 4 sample sites in the present study, 

namely site 1, 4, 5 and 8. Its spores have been vastly reported in the literature in 

different sample types in a number of countries. They were reported in sandy soils 

(Schenck and Perez 1990). In Poland, they were found in wild and cultivated 

plants growing in forest nurseries, uncultivated and cultivated soils (Blaszkowski, 

1993a), as well as in maritime (Blaszkowski, 1993b, 1994) and inland 

(Blaszkowski et al., 2002) sand dunes of Poland. While in Florida, Massachusetts, 

North Carolina, and Rhode Island, USA, the species was found in cultivated and 

uncultivated soils (Douds and Schenck, 1990; Koske and Gemma, 1997), Brazil 

(Schenck et al., 1984; Grandi and Trufem, 1991), Mexico (Estrada-Torres et al., 

1992), Colombia (Dodd et al., 1990), China (Mei-ging and You-shan, 1992). The 

species has also been reported in a number of African countries such as Cameroon 

in Terminalia and undisturbed semi-deciduous moist forests (Musoko et al., 

1994), Western Kenya in low input farm, forest and grassland soils (Shepherd et 

al., 1996). Acaulospora species are considered facultative symbionts and reported 

to adapt to a wide range of soils and host species, appearing in soils of widely 

differing pH and nutrient availability (Sieverding, 1991; Shepherd et al., 1996; 

Gunwal et al., 2014) which may account for the presence of A. mellea in 4 out of 

8 of the present sample sites.  
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In addition to Glomus and Acaulospora which have been identified as the highest 

species in the study, it is pleasing to indicate that it is the first time Acaulospora 

colombiana has been identified in the studied or sampled sites in South Africa and 

it was identified in almost all the sites. This species was also confirmed by 

molecular identification (chapter 5).  

 

The Acaulospora colombiana was formerly known as Entrophospora colombiana 

which was organised into Kuklospora colombiana. The Acaulospora colombiana 

is currently placed into the family of the Acaulosporaceae (Sieverding and Oehl, 

2006; Krüger et al., 2012; Redecker et al., 2013). It was first isolated as 

Kuklospora colombiana from various locations in Colombia (Schenck et al., 

1984). It was also reported from several States in Brazil (Caproni et al., 2003; Dos 

Anjos et al., 2010); India (Mehrotra, 1998; Selvam and Mahadevan, 2002) and the 

Philippines (Oba et al., 2004) and in trap cultures inoculated with tropical soils 

from Benin showed the presence of Acaulospora colombiana (Sieverding and 

Oehl, 2006). Sieverding and Oehl, (2006) have been infrequently finding it in 

grasslands of lowlands and at mountainous elevations in Southern Germany and 

Switzerland. Previous studies reported Acaulospora species to be associated with 

acidic soils (Abbott and Robson 1991; Morton 1986). In Germany, A. colombiana 

was also isolated from an acidic sandy soil near Berlin (Baltruschat, pers. com) 

(Sieverding and Oehl, 2006). Thus this explains the reason why for the first time 

in South Africa, we have identified it in the heavy metal contaminated sites with 

predominantly acidic soil. Similarly to Glomus species, Acaulospora colombiana 

has the ability to better adapt in various ecosystems including the disturbed 

environments such as heavy metal mining sites (Gunwal et al., 2014).   

 

In conclusion, this study provides a valuable contribution to the database of the 

Glomeromycota in general, especially to that which is found in both South 

African and African soils. This shows the potential of using mycorrhizas to 

remediate the soil contaminated with toxic heavy metals. To our knowledge, this 

is the first time these genera have been discovered in heavy metal contaminated 

sites in South Africa and especially the species Acaulospora colombiana. The 
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morphological studies perfomed by Straker et al. (2010) and the molecular 

identification studies performed by Spruyt et al. (2014) found Glomus etunicatum 

(now Claroideoglomus etunicatum), the genera Gigaspora, Scutellospora and 

Acaulospora mellea species typically associated with the T. usneoides plant host 

at different mining sites such as ABB Zinc, Impala Platinum, and Northern Cape 

sites. In addition, this study identified about 6 more AM fungal species such as 

Rhizophagus, Funneliformis, Archaeospora, Ambispora, Fuscutata, and 

Paraglomus (Tables 4.2 to 4.5). This suggests that both Glomus species and 

Acaulospora colombiana, are the AM fungal isolates responsible for the survival 

of plants growing in heavy metal sites and thus it could be useful to solve the 

heavy metal contamination of the mine dumps. Most of the fungal strains 

identified by morphological analysis were also confirmed by molecular analysis 

(Chapter 5). The study also highlights that AM fungal diversity is crucial to the 

maintenance and sustainability of the ecosystem.  
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CHAPTER 5 

5 RESULTS AND DISCUSSION FOR MOLECULAR 

IDENTIFICATION OF AM FUNGAL DIVERSITY IN MINES OF 

SOUTH AFRICA 

 

5.1 Results 

Different primer sets were employed in this study for PCR amplification. DNA 

samples were amplified using universal primers, ITS1 & ITS4 or NS31 & AM1. 

Fig. 5.1 shows that only amplification of extracted spore DNA with ITS1/ITS4 

primers produced positive results (lanes 4 and 10 - Site 2 - Agnes Mine, lane 11 - 

Site 4 - Vaal Reefs (S)). Amplification of extracted spore DNA with NS31/ AM1 

primers from the following sites was unsuccessful:  

Lane 7 & 9: Site 1 – Lonmin mine. 

Lane 12: Site 3 - ERGO Brakpan. 

Lane 6: Site 5 –West Wits TSF. 

Lane 2: Site 7 – ERGO Metallurgical Plant.   

Lane 3:  Site 8 - Vaal Reefs (M).   

However, using cloned DNA, NS31 and AM1 produced a very good band from a 

site 5 sample (West Wits) in lane 3 while ITS1 and ITS4 primers also produced a 

good band from a site 3 sample (ERGO Brakpan) in lane 7 (Fig. 5.2). The faint 

bands observed at the bottom of each lane are primer dimers or fragments.  
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Fig. 5.1 Amplicons from spore DNA amplification using ITS1 & ITS4 or NS31 & 

AM1 primers. Lanes 1 & 14: molecular size markers, 1kb ladder; Lane 2: site 7; Lane 3:  

site 8; Lane 4: site 2; Lane 5: site 4; Lane 6: site 5; Lane 7: site 1; Lane 8: site 1; Lane 9: 

site 1; Lane 10:  site 2; Lane 11: site 4; Lane 12: site 3; Lane 13: H2O control with no 

DNA template.  

 

Fig. 5.2  Amplicons from PCR amplification of cloned DNA using ITS1 & ITS4 or NS31 

& AM1 primer pairs. Lane 1: molecular size marker, 1kb ladder, Lane 2: H2O control 

with no DNA template, Lane 3: site 5; Lane 4:  site 3; Lane 5: H2O control with no DNA 

template; Lane 6: site 5; Lane 7:  site 3. Lanes 3 and 4 are products from NS31/AM1 
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amplification and lanes 6 and 7 are products from ITS1/ITS4 amplification. Initial PCR 

was performed directly from spores. 

The majority of the samples were amplified using primers designed by Lee et al. 

(2008) namely NS1 and NS4 coupled with AML1 and AML2. Figs. 5.3 and 5.4 

demonstrate representative gels showing examples of successful amplifications 

from primers, NS1 and NS4 coupled with AML1 and AML2.  

 

Fig. 5.3 shows that amplification directly from spores only occurred successfully 

for samples from site 2 (Agnes Mine) in lanes 9 and 10, whereas no amplification 

occurred for samples from site 4 (Vaal Reefs (S)). However, amplification from 

spore DNA extracts occurred successfully for samples from site 2 (Agnes mine), 

site 3 (ERGO Metallurgical), site 4 (Vaal Reefs (S)) and site 8 (Vaal Reefs (M)) 

(Fig. 5.4). Altogether, the nested PCR approach yielded at least one amplicon 

from each site and these were sequenced for subsequent BLAST analysis.  

 

 

Fig. 5.3 Amplicons from direct PCR amplification of spores using the nested 

primers, NS1 & NS4 coupled with AML1 & AML2. Lane 1 & 6: molecular size marker, 

1kb ladder; Lane 2: site 4; Lane 3: site 4; Lane 4: site 4; Lane 5: site 4; Lane 7: H2O 

control with no DNA template; Lane 8: H2O control with no DNA template; Lane 9: site 

2; Lane 10: site 2. 
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Fig. 5.4 Amplicons from spore DNA amplification using the nested PCR primers, 

NS1 & NS4 coupled with AML1 & AML2. Lane 1: molecular size marker, 1kb ladder; 

Lane 2: site 8; Lane 3: site 8; Lane 4: site 2; Lane 5: site 2; Lane 6:  site 4; Lane 7: site 4; 

Lane 8: site 3; Lane 9: site 3; Lane 10: site 3; Lane 11: site 3; Lane 12: site 8; Lane 13: 

site 4; Lane 14: site 4; Lane 15: site 4.  

 

This study, targeting the SSU rRNA gene sequences and using a combination of 

NCBI and MaarjAM databases has identified species from seven AM fungal 

genera, namely, Acaulospora, Ambispora, Claroideoglomus, Diversispora, 

Glomus, Rhizophagus  and Scutellospora, using a nested PCR from spores 

isolated from metal contaminated mining sites. Three genera were identified by 

blasting in the NCBI website (Table 5.1, Fig. 5.6), and four additional genera 

were identified when blasting in the MaarjAM website 

(http://maarjam.botany.ut.ee). (Table 5.1, Fig. 5.5). Furthermore new taxa names 

were identified from MaarjAM website replacing the old names. For example, 

both Entrophospora and Kuklospora were replaced by Acaulospora.  
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Acaulospora colombiana would appear to be the most common species on these 

sites, being identified from Agnes Mine, Vaal Reefs (S & M), West Wits and East 

Rand (ER2A) (Table 5.1). The Lonmin site also yielded a Glomus and a 

Scutellospora sp. and the same Scutellospora sp. identification appeared in Vaal 

Reefs (S) together with Acaulospora sp. 2. The Agnes Mine site was the only site 

to yield   Diversispora torrecillas, whereas East Rand (ER1) yielded Rhizophagus 

irregularis, Ambispora appendicular, Glomus clarum and Acaulospora sp. 1 

(Table 5.1). Acaulospora sp. 3 was identified from East Rand (ER2A) whereas 

Acaulospora sp. 4, Glomus kohout, Scutellospora sp. 2 and Claroideoglomus 

claroideum were identified from East Rand (ER2D) (Table 5.1). Together, 

therefore, the East Rand sites showed the richest diversity.  
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Table 5.1 Spore morphotypes and origins used for PCR amplification and showing the new AM fungal species identified using MaarjAM 

Genbank Blast (http://maarjam.botany.ut.ee) and NCBI Genbank Blast. (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

Site Morphotype Number of 

Spores 

E-Value % Identity Accession No. Fungal species 

Site 1  Lonmin Mine(NWL) Oval Black 20 0 91 HQ258983 Scutellospora sp. 

Site 2  Agnes Mine(AGM) Oval Light Brown 9 1.9 100 AY236236 Glomus sp. 

             MaarjAM Oval Light Brown 9 0.29 90 HE615058 Diversispora torrecillas 

 Oval Light Brown 9 0.0 98 AB220170.1 Acaulospora colombiana
1
 

              NCBI Oval Light Brown 9 0.0 99 AB220170.1 Acaulospora colombiana
2
 

Site 3 East Rand (ER1) –  Oval Light Brown 11 0.28 100 FM865581.1 Rhizophagus irregularis 

             (Brakpan) Oval Light Brown 11 0.0 99 GQ140615 Acaulospora sp. 

             MaarjAM Oval Brown 11 0.0 100 FN547526 Ambispora appendicular 

 Oval Light Brown 11 1.9 99 FR773148 Glomus clarum 

             NCBI Oval Light Brown 11 0.0 99 AJ852597.1 Glomus clarum 

 Oval Light Brown 11 0.0 99 GQ140615.1 Acaulospora clone sp. 

Site  4 Vaal Reefs (VRS) Oval Brown 9 0.0 91 HQ258983 Scutellospora sp. 

              MaarjAM Oval Brown 9 0.0 98 AB220170.1 Acaulospora colombiana
3
 

 Oval Brown 10 0.0 100 AY394664 Acaulospora sp. 

              NCBI Oval Brown 9 0.0 91 HQ258983 Scutellospora sp. 

 Oval Brown 9 0.0 99 AB220170.1 Acaulospora colombiana 

 Oval Brown 10 0.0 93 AY394664 Acaulospora sp. 

Site 5 West Wits (WW) Oval Light Brown 104 0.0 99 AB220170.1 Acaulospora colombiana 

             NCBI    Oval Light Brown 104 0.0 99 AB220170.1 Acaulospora colombiana 

Site 6  East Rand (ER2A) MP Oval Light Brown 9 0.07 100 AM420373.1 Acaulospora sp. 

             MaarjAM  Oval Light Brown 29 0.0 99 AB220170.1 Acaulospora colombiana 

                                                 

1
 Acaulospora sp (AB220170.1) from MaarjAM is the same as Entrophospora colombiana (AB220170.1) from NCBI. 

2
 Entrophospora colombiana (AB220170.1) from NCBI is the same as Acaulospora sp (AB220170.1) from MaarjAM. 

3
 Kuklospora sp from MaarjAM is the same as Acaulospora colombiana.  

http://maarjam.botany.ut.ee/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/nuccore/?term=HQ258983
http://www.ncbi.nlm.nih.gov/nuccore/?term=AY236236
http://www.ncbi.nlm.nih.gov/nuccore/?term=HE615058
http://www.ncbi.nlm.nih.gov/nucleotide/70721021?report=genbank&log$=nucltop&blast_rank=1&RID=VZ89HE74015
http://www.ncbi.nlm.nih.gov/nuccore/?term=FM865581
http://www.ncbi.nlm.nih.gov/nuccore/?term=GQ140615
http://www.ncbi.nlm.nih.gov/nuccore/?term=FN547526
http://www.ncbi.nlm.nih.gov/nuccore/?term=FR773148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=84617234&dopt=GenBank&RID=G4NKV66C01S&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/nucleotide/261599499?report=genbank&log$=nucltop&blast_rank=1&RID=VZ9FPYXH014
http://www.ncbi.nlm.nih.gov/nuccore/?term=HQ258983
http://www.ncbi.nlm.nih.gov/nuccore/?term=AY394664
http://www.ncbi.nlm.nih.gov/nuccore/?term=HQ258983
http://www.ncbi.nlm.nih.gov/nuccore/?term=AY394664
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              NCBI    Oval Light Brown 29 0.0 99 AB220170.1 Acaulospora colombiana 

Site 7    East Rand (ER2D) Oval White 29 0.0 93 AJ276079.2 Claroideoglomus 

claroideum. 

              MaarjAM Oval White 29 1.2 100 JN581962 Glomus kohout 

 Oval White 29 0.0 100 AJ276079.2 Acaulospora sp. 

 Oval White 29 0.0 100 EU332722 Scutellospora sp. 

              NCBI Oval Brown 29 0.0 96 EU332722 Scutellospora sp. 
Site 8 Vaal Reefs (VRM) Oval Light Brown 81 0.0 99 AB220170.1 Acaulospora colombiana

4
 

              NCBI
5
    Oval Light Brown 81 0.0 99 AB220170.1 Acaulospora colombiana

6
 

                                                 

4
 Acaulospora sp (AB220170.1) from MaarjAM is the same as Entrophospora colombiana from NCBI. 

5
 Bold font represents NCBI Blast while normal font represents MaarjAM Blast. 

6
 Entrophospora colombiana (AB220170.1) from NCBI is the same as Acaulospora sp from MaarjAM. 

http://www.ncbi.nlm.nih.gov/nuccore/?term=JN581962
http://www.ncbi.nlm.nih.gov/nucleotide/14270349?report=genbank&log$=nucltop&blast_rank=1&RID=VY9HGJBY01R
http://www.ncbi.nlm.nih.gov/nuccore/?term=EU332722
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There were inconsistencies with the grouping in the phylogram, for instance, the 

Acaulospora (Kuklospara) sp (AB220170.1) data sequences did not all group 

together nor did the Glomus clarum (FR773148) with the Glomus kohout 12 

OTU37 (JN581962), equivalent match, group together separately from the other 

Glomus sequences, instead Glomus grouped with the Scutellospora and 

Ambispora appendicular (Fig. 5.5). Similarly, in Fig. 5.6 the grouping in the 

phylogram had inconsistencies, but not as bad as in Fig. 5.5. Most of Acaulospora 

colombiana data sequences grouped together, with the exception of Glomus 

clarum (AJ852597.1) which grouped with some Acaulospora colombiana 

(AB220170). 

  

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=84617234&dopt=GenBank&RID=G4NKV66C01S&log$=nucltop&blast_rank=1
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 Site 3: Acaulospora sp. (GQ140615)      

 Site 4: Acaulospora sp. (AY394664) 

Site 7: Claroideoglomus claroideum (AJ276079.2) 

Site 3  : Glomus clarum (FR773148) 

 Site 2 : Diversispora torrecillas12b Div3 (HE615058) 

 Site 5 :  Acaulospora sp. (AB220170.1) 

 Site 2 : Acaulospora sp. (AB220170.1) 

 Site 2 : Acaulospora sp. (AB220170.1) 

Site 4 : Acaulospora sp. (AB220170.1) 

Site 2: Acaulospora sp. (AB220170.1) 

Site 6 : Acaulospora sp.  (AB220170.1) 

Site 7 : Glomus kohout12 OTU37 (JN581962) 

 Site 3 : Rhizophagus irregularis (FM865581.1) 

Site 6 : Acaulospora sp. (AM420373.1) 

 Site  4 : Scutellospora sp. (HQ258983) 

 Site 6 : Acaulospora sp. (AB220170) 

 Site 8 :  Acaulospora sp. (AB220170.1) 

 Site 8 : Acaulospora sp. (AB220170.1) 

 Site 2 : Glomus wubet04 Glom9 (AY236236.1) 

 Site  1 : Scutellospora sp. (HQ258983) 

(HQ258983) 

 Site 3 : Ambispora appendicular (FN547526) 

(FN547526) 

75 

100 

99 

98 

98 

42 

91 

68 

34 

33 

32 

21 

13 

4 

2 

14 

0.0 0.5 1.0 1.5 2.0 

 gi|1163894|gb|U23724.1|ABU23724 Agaricus bisporus small  

       Subunit rRNA gene partial  

Fig. 5.5  Rooted neighbour-joining tree based on SSU rDNA from AM fungal spores using MaarjAM   

Genbank database (http://maarjam.botany.ut.ee). Bootstrap values (based on 1000 replicates) 

are shown at the nodes and Agaricus bisporus served as the outgroup. Acaulospora sp. in the 

fig represents Acaulospora colombiana (http://maarjam.botany.ut.ee). 

http://www.ncbi.nlm.nih.gov/nuccore/?term=GQ140615
http://www.ncbi.nlm.nih.gov/nuccore/?term=AY394664
http://www.ncbi.nlm.nih.gov/nuccore/?term=FR773148
http://www.ncbi.nlm.nih.gov/nuccore/?term=HE615058
http://www.ncbi.nlm.nih.gov/nuccore/?term=JN581962
http://www.ncbi.nlm.nih.gov/nuccore/?term=FM865581
http://www.ncbi.nlm.nih.gov/nuccore/?term=HQ258983
http://www.ncbi.nlm.nih.gov/nuccore/?term=FN547526
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Site 6: Uncultured fungal Clone R_001_G12 (EF431155) 
Site 6: Claroideoglomus claroideum (AJ301852) 

 
Site 4: Uncultured Acaulospora clone K35-1 (AY394664) 

Site 4: Uncultured Acaulospora clone K35-1 (AY394664) 

 
Site 3: Acaulospora colombiana gene (AB220170.1) 

 

99 

Site 3: Acaulospora colombiana gene (AB220170.1) 

 

65 

100 

100 

Site 7: Uncultured fungus clone. (EU174257.1) 

 

100 

Site 8: Acaulospora colombiana (AB220170) 

Site 3: Glomus clarum (AJ852597.1) 

 

100 

100 

Site2: Acaulospora colombiana (AB220170) 

 

51 

99 

Site 7: Scutellospora sp. 0911-4 (EU332722) 

 

100 

 Site 5: Acaulospora colombiana (AB220170) 

 
Site 6: Acaulospora colombiana (AB220170 

90 

 Site 3: Acaulospora colombiana (AB220170 

Site 2: Acaulospora colombiana (AB220170) 99 

60 

Site 8: Acaulospora colombiana (AB220170) 

Site2: Acaulospora colombiana (AB220170) 

100 

Site 4: Acaulospora colombiana (AB220170) 
51 

0.05 

   

  

 

 

 

 

 

 

 

 

 

  ) 

  ) 

  

  

 

 

Fig. 5.6 Rooted neighbour-joining tree based on SSU rDNA from AM fungal spores using NCBI Genbank database 

  (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=70721021&dopt=GenBank&RID=G5CM8RY101S&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=70721021&dopt=GenBank&RID=G5CM8RY101S&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=84617234&dopt=GenBank&RID=G4NKV66C01S&log$=nucltop&blast_rank=1
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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The sequence identity percentages of NCBI Genbank Blast differed from that of 

MaarjAM Genbank Blast. NCBI had lowest sequence identity percentages ranging 

from 84% to 99% for each sequence, while MaarjAM Genbank Blast had 

sequence identity percentages ranging from 90%, to 100% for each sequence 

(Table 5.1).  

 

5.2 Discussion 

Molecular analysis is crucial for accurate AM fungal identification as some 

species exhibit more than one morphology and several cryptic taxa exist which 

can only be revealed or disclosed by molecular biological analyses (Schüßler et 

al., 2011). AM fungal identification, only by the ‘classical’ characterization based 

on spore appearance may be inconsistent because of limited morphological 

differentiation. Thus, it is very important to always complement the 

morphological identification with molecular analysis (Krüger et al., 2012).  

 

The two sets of nested PCR primers namely NS1 & NS4 coupled with AML1 & 

AML2 employed in this study have been reported to amplify all subgroups of 

arbuscular mycorrhizal fungi, but exclude sequences from other organisms. They 

were designed to facilitate rapid detection and identification directly from field-

grown plant roots and mycorrhizal spores (Lee et al., 2008). These primers 

(AML1 and AML2) were constructed to target the small subunit rRNA gene 

because phylogenetic relationships among the Glomeromycota are well 

understood for this gene. Sequence comparisons had shown that the two primers 

mentioned above could amplify all published AM fungal sequences except those 

from Archaeospora trappei as it has been seen in our study. Molecular 

identification was able to confirm most of the genera identified by morphological 

identification which revealed AM fungal species diversity of thirteen genera 

namely, Glomus, Acaulospora, Gigaspora, Archaeospora, Scutellospora, 

Rhizophagus, Claroideoglomus, Ambispora, Sclerocystis, Fuscutata, 

(Dentiscutata Scutellospora, heterogama), Entrophospora, Paraglomus and 

Diversispora, (Table 4.1 to 4.4) as mentioned above, except Gigaspora and 

Archaeospora.  
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The molecular identification results do not only assist in revealing the AM fungal 

diversity of HM polluted mine tailing environments but also contribute to our 

knowledge of their diversity in South Africa. This is vital since in Africa for 

instance, there is a lack of understanding of the distribution of AM fungi 

geographically due to low levels of molecular data from some areas (Öpik et al., 

2010).  

 

The most abundant AM fungal species identified by molecular analysis using 

NCBI Genbank Blast in Fig. 5.6, starting with the highest species were 

Acaulospora colombiana (13) followed by Glomus (2), and Scutellospora (1) 

species. The most abundant AM fungal species identified by molecular analysis 

using MaarjAM Genbank Blast (Fig. 5.5), starting with the highest species were 

Acaulospora (12) followed by Glomus (3), Scutellospora sp. (2), 

Claroideoglomus claroideum (1) Diversispora (1) and Ambispora appendicular 

(1) species. This suggests that Acaulospora colombiana is an AM fungal 

ubiquitous species able to withstand a range of heavy metal sites.  

 

About 18 Acaulospora spp. with smooth spore surfaces and 15 Acaulospora spp. 

with ornamentation of the outer wall are known (Sieverding and Oehl, 2006). As 

indicated in Chapter 4, Acaulospora colombiana has been reported in a number of 

countries including Colombia, Brazil (Dos Anjos et al., 2010), Philippines (Oba et 

al., 2004), Germany and Switzerland (Sieverding and Oehl, 2006). However none 

of the above studies reported it on heavy metal contaminated tailings. Germany 

for example reported it on an acidic sandy soil near Berlin (Baltruschat, pers. 

com) (Sieverding and Oehl, 2006).  

  

Consequently, identified AM fungi can be compared to previous AM fungal 

community investigations that used either morphological or molecular 

identification methods. In addition to the AM fungal species namely, Glomus 

etunicatum (now Claroideoglomus etunicatum), Glomus rubiforme (now 

Sclerocystis rubiformis), three species from the Acaulospora genus and the genera 

Gigaspora and Scutellospora identified in the study performed by both Straker et 
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al. (2010) and Spruyt et al., (2014), this study identified about 9 more AM fungal 

species such as Rhizophagus, Funneliformis, Archaeospora, Claroideoglomus, 

Ambispora, Sclerocystis, Fuscutata, Diversispora, Paraglomus (Tables 4.2 to 

4.5). Due to the higher number of species identified in this study, the overlap of 

AM fungal species identified in these various investigations appears to be 

moderate, which suggests that the previous analyses may underestimate AM 

fungal diversity. As previous analyses were performed on spores, the AM fungal 

community in South Africa may be even more diverse than has been revealed in 

this study. Future research in this field would be to analyse the AM fungal 

diversity using both spores and colonised roots of plant species at different 

environmental conditions such as mine tailings, HM metal polluted sites and 

undisturbed environments.  

 

The recent revisions and consolidations in the phylotaxonomy of AM fungi have 

provided the necessary basis for comprehensive investigation into the diversity of 

AM fungi from environmental samples (Krüger et al., 2012; Redecker et al., 

2013; Schüßler and Walker, 2010). The lack of consensus in the system of 

nomenclature to be applied to AM fungi identified by molecular data in the past, 

has greatly affected the investigation of AM fungal communities (Krüger et al., 

2012; Öpik et al., 2010; Redecker et al., 2013). Since the classification of AM 

fungi as an independent phylum within the fungal kingdom in 2001 (Schüßler et 

al., 2001), several taxonomic restructurings have been proposed by different 

groups (Stürmer, 2012). This has brought some confusion when identifying these 

fungi, where the same phylogroups of AM fungi are identified with different 

names in different studies (Öpik et al., 2010). Similar to the study by Spruyt et al. 

(2014), this study used the phylogenetic reference data describing interspecific 

genetic variability of described Glomeromycota species which has recently been 

made possible by Krüger et al., (2012). This allows the relationship or comparison 

for new analyses of the molecular diversity of AM fungal communities. The low 

levels of molecular data from certain regions, especially in Africa and  particularly 

in South Africa, is a great challenge when it comes to the current understanding of 

the geographical distribution of AM fungi (Öpik et al., 2010, Spruyt et al., 2014). 
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Although this study has provided an increased knowledge of AM fungal species 

diversity in South Africa, there is still more to be discovered about the diversity 

and distribution of AM fungi in South Africa (Spruyt et al., 2014). 

 

To our knowledge, this is the first time Acaulospora colombiana species has been 

discovered in heavy metal contaminated sites in South Africa. The molecular 

identification studies performed by Spruyt et al. (2014) found Claroideoglomus 

etunicatum species and Acaulospora mellea species typically associated with the 

T. usneoides plant host at different mining sites such as ABB Zinc, Impala 

Platinum, and Northern Cape sites. This suggest that both Acaulospora 

colombiana and, Glomus species identified in this study are the AM fungal 

isolates responsible for the survival of plants growing in heavy metal sites and 

thus it could be useful to solve the heavy metal contamination of the mine tailings.  
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CHAPTER 6 

6 RESULTS AND DISCUSSION:  MICROANALYSIS 

6.1 ICP-MS and Micro-PIXE analysis of total values 

ICP-MS analysis was performed in roots of E. curvula plant to determine 

concentration levels as baseline data for setting parameters for the Micro-PIXE 

analysis. Al, Br, Ca, Cl, Pt, S, Si, and V could not be detected at all by the ICP-

MS technique while they were all detected by Micro-PIXE except Pt which was 

not localised by PIXE. All the elements were also present in controls but in lower 

concentration than experimental samples except for few elements such as K, Cu, 

Zn and Mn which were detected at high concentration in control 2 with Mycoroot. 

The presence of elements in the controls was due to the elements from the nutrient 

solution (Appendix 4) while the high concentration of elements in control 2 was 

due to the presence of Mycoroot (Appendix 9 and Table 6.1). The pattern in Table 

6.1 shows that in all sites but site 7 (ER2D, MP) Si has a highest concentration. 

The average concentrations of elements in root both longitudinal and root cross-

sections as well as limit of detection were recorded and presented in Appendix 3 

and Table 6.1. Values are the means of PIXE measurements of 3 to 7 replicates 

SEM which indicates that in some samples there were three replicates while 

others were 5 or 7 replicates. 

 

There was a significant difference between some elemental concentrations 

amongst sites (Table 6.1). The concentration of Al was found to be highest site 3 

and lowest in site 5 with significant difference as shown by alphabetic letters “a” 

and “b”, while Si was highest in site 6 and lowest in site 7 and control 2, however 

their differences were not significant as shown by alphabetic letters “ab” (Table 

6.1). There were no significant differences in P except in control 2. S 

concentration was highest in site 7 and lowest in site 3 with no significant 

difference amongst the sites. There was no significant difference in Cl 

concentration amongst the sites although its highest concentration was observed in 

site 3 except control 1 which showed a significant difference. Both Ca and K had 

highest concentrations in site 3 and lowest concentration in control 1. There was a 
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significant difference  in K between site 3 and other sites except for control 1; 

while Ca concentration was recorded highest in site 3 followed by Site 6 then site 

7 with no significant difference  amongst the sites (Table 6.1).  

 

Similarly both Mn and Ti had highest concentration in site 3 and 4 while the 

lowest for Mn was observed in site 5 and Ti in site 8. Statistics could not be done 

for Ti due to insufficient replication. Highest concentration for Fe has been 

observed in site 3, 2 and 4 and lowest in site 8 with no significant difference 

between the sites. Ni had a highest concentration in site 2 (AGM Serpentine) as 

compared to other sites, while both Cu and Zn had highest concentrations in site 4 

and 6 (Table 6.1). The high concentration of Ni in site 2 is due to the fact that this 

site is a serpentine site with a pronounced concentration of Zn, Fe to name but a 

few. The concentration of Ti, V, Cr, Mn, Ni, Cu, Zn, and Br were lower and the 

concentrations of As, Se, Sr, Ba, Pb and U were generally very low, often below 

the respective limits of detection (Appendix 3, and Table 6.1
7
). Although U was 

detected at a very low concentration by both techniques (ICP-MS and Micro-

PIXE), a pronounced concentration of U was observed in site 4 (VRS) and site 5 

(WW) which are high in gold and uranium (Fig. 6.21k). Although high Pt 

concentration was observed in the soil (Fig. 6.21b), surprisingly it could not be 

detected at all in plants by both ICP-MS and Micro-PIXE, from all the sampling 

sites including the Lonmin Platinum Mine site. Roots from plants growing from 

the East Rand Brakpan site 3 showed up to 5 fold increase in aluminum compared 

to other sites. Phosphorus is observed to be in the same range in almost all the 

sites except control 2 which is higher than other sites (Table 6.1). Both techniques 

                                                 

 7
 Replicates represent PIXE measurements with values representing the means of a number of 

random (or selected) point measurements made over the area being probed by the beam in a 

single root sample.  

 Au, U Pt and Cd were measured but they were less than the detection limit thus they could not 

be included in table 6.1. 
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detected P, K, and Cu at higher concentration in control 2 and lowest 

concentration in control 1 (Appendix 9 and Table 6.1).  

 

Generally phosphorus was detected at higher concentration in all the sites 

especially when ICP-MS was used (Appendix 9). In general both techniques 

showed agreement in the detection of the elements.  

Other elements such as Ti, Mn, Fe, Zn, were detected at high concentration at 

different sites. Thus there were some inconsistencies between the two techniques. 

For instance, Micro-PIXE detected Fe at high concentration in site 3 (ER1 BP) 

while ICP-MS showed high concentration of Fe in site 2 (AGM). Similarly to Mn, 

which was detected by ICP-MS at high concentration in control 2 while PIXE 

showed high concentration of Mn in site 3 (ER1 BP). In overall, both the ICP-MS 

and PIXE had similar or common elemental concentrations.  
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Table 6.1 Elemental totals in roots of E. curvula growing in substrata from different metal sites inoculated with mixture of spores extracted from 

the substrata. Values are the means of PIXE measurements of 3 to 7 replicates SEM. Concentrations are reported in ppm (mg/kg
-1

). 

Common alphabetic letters indicate no significant difference between sites for each element (p ≤ 0.05). The statistics could not be done 

for elements V, Cr, Ni, and Br, due to insufficient replication. Acronym “nd” indicates not detected. 
Sites Code Al Si P S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn Br 

Site 1 

NW 

(L) 

1542  

 ± 358
ab

  

6950 ± 

1525
a
  

219 ± 

49
a
 

4925 

±1535
a
 

1051 

±303
ab 

747 

±522
b 

641 

±336a 10 ±5 2  13 22 ±10
a 

272 

±143
a
 38  

50±25

ab 

23 

±10
ab 

18 

Site 2 ABB 

2452  

± 1312
ab

  

12754 ± 

2956
a
 

294 ± 

53
a 

4861 

±1134
a
 

1279 

±187
ab 

1519 

±318
b 

726 

±140
a
 

45 

±33  nd 14 17 ±4
a 

1589 

±1140
a
 74  

40 

±19ab 

19 

±6
ab 

2 

Site 3 

ER1 

(BP) 

4388  

± 179
a
 

8030 ± 

1093
a
 

367 ± 

11
a 

996 ±65
a
 

1427 

±70
ab 

2348±

253
a 

1333±

429
a
 

75 

±15 8 5 

150 

±58
b 

2092 

±405
a
 7  

35±11

ab 

64 

±10
ab 

10 

Site 4 VRS 

3609  

± 1251
ab 

12138 ± 

714
a
 

269 ± 

23
a 

2077 

±262
a
 

753 

±103
b 

1579 

±465
b
 

816 

±174
a
 

65 

±46 7 6 

111 

±47
bc 

1584 

±979
a
 5  

81 

±39ab 

121 

±46
ab 

11 

Site 5 WW 

917  

± 166
b
 

6817 ± 

1498
a
 

163 ± 

17
a 

3310 

±1067
a
 

1356 

±192
ab 

322 

±71
b 

542 

±83
a
 16 ±3 2 4 7 ±1

a 
185±34

a
 3 16 ±2a 

32 

±3
ab 

8 

Site 6 

ER2A 

(MP) 

1248  

± 220
ab 

13951 ± 

2076
a
  

352 ± 

67
a 

4990 

±2701
a
 

1216 

±348
ab 

239 

±74
b 

909 

±425
a
 

28 

±10 2 5 15 ±6
a 

366 

±195
a
 2  

86 

±29b 

178 

±80
b 

7 

Site 7 

ER2D 

(MP) 

1316 

 ± 520
ab 

6451 ± 

950
a
 

248 ± 

36
a 

8736 

±1718
a
 

825 

±170
b 

539 

±116
b 

862 

±445
a
 23±11 8 6 37 ±19

ac 

331 

±148
a
   24±9a 

77 

±43
ab 

9 

Site 8 VRM 

835  

± 133
b 

6860 

±1723
a
  

303 

±199
a 

3718 

±1391
a
 

1219 

±478
ab 

269 

±71
b 

538 

±138
a
 7 ±2 1  nd 15 ±4

a 
55 ±7

a
  Nd 

14 

±4
ab

 

19 

±4
ab 

3 

Contr

ol 1 CTR1 

926  

± 137
b 

6540 ± 

1229
a
 

120 ± 

16
a
 

2434 

±819
a
 

1243 

±213
ab 

217 

±63
b 

100 

±23
a
 11±4 4 10 23 ±8

a 
81 ±29

a
 4 

23 

±7ab 12 ±3
a 

0 

Contr

ol 2 CTR2 

1636  ± 

444
ab 

5408 ± 

2068a 

785 ± 

167
b 

5016 

±1558
a
 

2329 

±390
a 

4077 

±934
a
 

888 

±145
a
 23±7 nd   nd 50 ±8

a 

320 

±79
a
 16 

99±12

b 

44 

±7
ab 

7 
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6.2 Microscopic observations of colonisation 

The highest percentage of mycorrhizal root colonisation observed in almost all the 

sites was caused by hyphae followed by vesicles and then arbuscules. An 

exception was site 5, 6, 8 and control 1 where the arbuscule % colonisation was 

higher than that of vesicles (Table 6.2). Control 1 showed the lowest percentage of 

root colonisation as expected. However it is a surprise to observe some root 

colonisation; this might be due to the cross contamination. Control 2 was 

inoculated with a Mycoroot, a commercial mycorrhiza; hence the percentage of 

root colonisation is higher than that of control 1 (Table 6.2). However it has been 

noted that root colonization of control 2 by Mycoroot, was lower that the 

colonization by indigenous mycorrhiza fungi. This might be due to the high 

concentration of some elements in the commercial multi – nutrient solution that 

was used in the control pots. Since the commercial Mycoroot was preserved for 

long time, it might take time to be restored. Lastly, the fungicide used to coat the 

Eragrastis curvula seeds might play a part in the delayed colonization in Control 

2.  

. 

   



 

136 

 

Table 6.2 Mean (%) of mycorrhizal root colonisation, Hyphal Colonisation (HC); Arbuscular Colonisation (AC) and Vesicular Colonisation 

(VC).

Sites  Code Sites  HC (%) AC (%)  VC (%) 

Lonmin Mine (L) NW (L) Site 1 55.88 15.80 32.66 

Agnes Serpentine Mine (AGM), Mpumalanga AGM Site 2 79.65 31.20 45.06 

Eastern Reef (Brakpan) (1.2; 4.1) ER1(BP) Site 3 81.03 29.06 50.03 

North West (Vaal Reefs - S)  VRS Site 4 64.53 20.39 42.90 

West Wits (WW)  WW Site 5 35.04 16.72 13.31 

East Rand (Metallurgical Plant - MP) (A2+5)  ER2A (MP) Site 6 59.96 41.61 14.73 

East Rand (Metallurgical Plant - MP) (D1,)  ER2D (MP) Site 7 58.00 4.00 27.00 

North West (Vaal Reefs -M)  VRM Site 8 93.08 40.71 21.95 

Control 1 (Nu + Zeolite) CTR1 Control 1 0.91 0.50 0.20 

Control 2 (Nu + Zeo + Mycoroot ) CTR2 Control 2 23.21 1.12 13.84 
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6.3 Elemental maps of colonised roots  

6.3.1 Elemental concentration and distribution 

Elemental maps of both the whole root and root cross-sections are presented on 

Fig. 6.1 to Fig. 6.19 below. Due to a large data of elemental maps produced, only 

maps that showed some colonisation are reported. The rest of the maps are 

reported in Appendix 1 (in a CD). Elemental distribution maps showed that Al, Si, 

P, S, Cl, K, Ca and Fe were localised and detected at maximum concentration in 

both the longitudinal and root cross sections in all the sampling sites. 

 

a b  

 

c d  

 

Extraradical Hyphae 
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208 µm 

 

1 182 

µm 
 

208 µm 
 

12 500 

µm Hyphae 
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e f  

Fig. 6.1  Whole colonised root segment of E. curvula plants growing in substratum from 

North West (Rustenburg) Lonmin Platinum Mine, site 1. a) and c): Light 

micrograph of fresh colonised root segment. b), d), e), f): Elemental PIXE maps 

of colonised root segments. 
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a b  

c d  

e f  

Fig. 6.2 Colonised cross-sections of E. curvula roots growing in substratum from 

North West (Rustenburg) Lonmin Platinum Mine, site 1. a) and c): Light micrograph of 

colonised root segment; b), d), e) and f): Elemental PIXE maps of colonised root 

segments. 
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Low magnification maps of colonised roots from plants grown in soils from 

Lonmin platinum mine showing both external and intraradical hyphae prior to 

fixation (Fig. 6.1a, c), were observed to accumulate relatively high concentrations 

of Fe, Al, P and S mainly in the cortical areas of the roots. The maps are also 

showing high localised concentrations in an area which may be that of secondary 

root initiation or dense external hyphal activity (Fig. 6.1b, d, e, f). Cross section 

maps showed Si to accumulate in a continuous band in the cortical area (Fig. 

6.2b). Ca and K show a similar distribution, although not as continuous, with 

some localised pockets of high concentration (Fig. 6.2d, f) and small scattered 

deposits of low concentration in other parts of the root, whereas Ti appeared as 

less numerous discrete deposits in the cortex (Fig. 6.2e). 
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Fig. 6.3 Colonised root cross-sections of E. curvula plants growing in substratum 

from North West (Rustenburg) Lonmin Platinum Mine, site 1. a) and c): Light 

micrograph of colonised root segment; b), d), e) f), g), and h): Elemental PIXE maps of 

root segments. 

 

Cross-sections of another root from the same site, with extraradical hyphae (Fig. 

6.3a, c), revealed a similar wide distribution of P and Cl in the cortex (Fig. 6.3d, 

e), and high concentrations of Al and Fe in localised discrete cortical sites and 

considerable commonality in the localisation of Al, Cl, Cu, Zn and Fe in these 

sites (Fig. 6.3b, e, f, g, h).   
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Fig. 6.4 Whole colonised root segment of E. curvula plants growing in substratum 

from site 2. a) and c): Light micrograph of colonised root segment; b), d): Elemental 

PIXE maps of root segments.  

 

Roots of plants grown in high zinc soils from site 2 (AGM) serpentine mine (Fig. 

6.4a, c) revealed a continuous band of accumulation of Fe in the distal 

cortex/epidermis with other discrete deposits scattered in the root (Fig. 6.4b), 

whereas Ca was observed to be concentrated in discrete bodies in the cortical 

areas, but also more generally dispersed in low concentrations in the vascular 

cylinder (Fig. 6.4d). Cross sections of the root (Fig. 6.5c) confirmed the 

localisation of Fe in the outer zones in bodies of high concentration (Fig. 6.5b) 

and Ti accumulated in localised areas in the cortex/epidermis but also scattered in 

low concentrations in the root interior (Fig. 6.5d). 
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Fig. 6.5 Colonised root cross-sections of E. curvula plants growing in substratum 

from Agnes Mine, site 2. a) and c): Light micrograph of colonised root segment; b) and 

d): Elemental PIXE maps of root segments. 
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Fig. 6.6 Whole colonised root segment of E. curvula plants growing in substratum 

from East Rand, site 3. a) and c): Light micrograph of colonised root segment; b), d) e), 

f), g) and h): Elemental PIXE maps of root segments. 

 

An intensely colonised root with a dense presence of extraradical hyphae and 

spores, from another East Rand site (Fig. 6.6a, c) was probed to reveal an 

apparently widespread distribution of Ca throughout the root, excepting the 
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epidermis (Fig. 6.6b) with Fe and Ti following a similar distribution patterns but 

largely in the cortical regions (Fig. 6.6d, f). P and Cl showed a similar distribution 

pattern concentrated in the inner cortex but on the opposite side of the root (Fig. 6. 

6g, h), whereas a discrete pocket of Al was observed at the junction with a side 

root (Fig. 6.6e). 
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Fig. 6.7 Whole colonised root segments of E. curvula plants growing in substratum 

from North West, Vaal Reefs site 4. a) and c): Light micrograph of colonised root 

segment; b), d), e) and f): Elemental PIXE maps of root segments. 

 

Light micrographs of colonised roots from plants growing in acidic toepaddock 

substrata of Vaal Reefs gold and uranium mining site (Fig. 6.7a, c), showed low 

concentrations of Al and Ca, apparently accumulated in fungal structures such as 

vesicles/spores and hyphae with Fe widely dispersed in the cortex of the root (Fig. 

6.7b, d, f). A wide scattering of P in low concentration is observed across the root 

(Fig. 6.7e).  
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Fig. 6.8 Whole colonised root of E. curvula plants growing in substratum from West 

Wits, site 5. a) and c): Light micrograph of colonised root segment; b), d), e), f), g) and 

h): Elemental PIXE maps of root segments. 

 

Light micrographs of roots from the toepaddocks of the West Wits gold and 

uranium TSF showed intracellular hyphal colonisation and external hyphae (Fig. 

6.8a, c) and elemental maps indicated the heavy concentration of Ca and K 

throughout the vascular cylinder (Fig. 6.8d, e) with Fe and Ti in localised pockets 

in the cortical areas and Ti also present in external hyphae (Fig. 6.8b, f). The 

distribution of P is not well resolved, but Si shows heavy accumulation in the 

outer cortex/epidermis (Fig. 6.8g, h). Higher magnification maps of Fe and Ti 

sites (Fig. 6.9b, d) illustrate discrete deposits in shapes reminiscent of AM fungal 

vesicles which are resolved at different planes of focus and Fe is more enriched 

than Ti. Cross-sections (Fig. 6.10c) derived from a whole colonised fresh root 

showing intraradical hyphae (Fig. 6.10a) confirm the localisation of Fe deposits in 

the outer cortex overlapping with those of Cr (Fig. 6.10b, d) indicating identical 

sites of accumulation for both metals although Fe is more  concentrated than Cr.  
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Fig. 6.9 Whole colonised root of E. curvula plants growing in substratum from West 

Wits site 5. a) and c): Light micrograph of colonised root segment; a) and d): Elemental 

PIXE maps of root segments.  
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Fig. 6.10 Cross-section of colonised root segment of E. curvula plants growing in 

substratum from West Wits site 5. a) and c): Light micrograph of colonised root segment; 

a) and d): Elemental PIXE maps of root segments.  
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Fig. 6.11 Whole colonised root segment of E. curvula plants growing in substratum 

from East Rand metallurgical plant, site 6. a) and c): Light micrograph of colonised root 

segment; b), d), e), f), g) and h): Elemental PIXE maps of root segments. 

 

Heavily colonised roots from the substratum from another East Rand site 

contaminated with gold and uranium mine tailings (Fig. 6.11a, c), showed a 

widespread distribution of Ca, Cl and Si with highest concentrations in the 

cortical regions (Fig. 6.11d, e, h). High concentrations of Fe were localised in 

discrete bodies in the cortex with one of the deposits corresponding with a high 

localised concentration of Ti (Fig. 6.11b, f). Fe, Ti and P were also sparsely 

distributed in other parts of the roots in low concentrations. Cross sections of 

these roots (Fig. 6.12a, c) showed discrete deposits of high concentrations of Fe in 

the cortical regions (Fig. 6.12b) with overlap between some of these deposits and 

those of Cr and Ni (Fig. 6.12e, f). K was concentrated in high concentrations in a 

discrete deposit in the cortical area on the distal side of the root and more 

generally distributed in lower concentrations in other parts of the root (Fig. 

6.12d). 
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Fig. 6.12 Colonised root cross sections of E. curvula plants growing in substratum 

from East Rand metallurgical plant, site 7. a) and c): Light micrograph of colonised root 

segment; b), d), e), f):  Elemental PIXE maps of root segments. 
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Fig. 6.13 Whole colonised root segment of E. curvula plants growing in substratum 

from East Rand) metallurgical plant site 7. a) and c): Light micrographs of colonised root 

segment; b), d), e) and f): Elemental PIXE maps of root segments.  
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High magnification elemental maps derived from colonised roots of plant growing 

in the East Rand metallurgical plant soil, contaminated with gold and uranium 

TSF slimes (Fig. 6.13a, c), show discrete sites of accumulation of  Ca and Si, once 

again in vesicular shapes, with Ti more sparsely distributed in lower 

concentrations (Fig. 6.13d, e, f). Cross sections of these roots (Fig. 6.14a, c) were 

mapped to show Ca distributed in both central and cortical areas of the root, with 

discrete vesicular-shaped sites of accumulation in the cortex (Fig. 6.14b). Discrete 

sites of Fe accumulation were also localised in the cortical and central regions 

(Fig. 6.14d), whereas localised sites of Cr and Ti accumulation were less 

numerous and in lower concentrations (Fig. 6.14e, f). 
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Fig. 6.14 Cross-section of colonised root segment of E. curvula plants growing in 

substratum from East Rand metallurgical plant site 7; a) and c): Light micrograph of 

colonised root segment. b), d), e) and f): Elemental PIXE maps of root segments. 
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Fig. 6.15 Whole colonised root segment of E. curvula plants growing in substratum 

from Vaal Reefs site 8. a) and c): Light micrograph of colonised root segment site 8 M1 

VR - f x 120; b), d), e) and f): Elemental PIXE maps of root segments. 
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Elemental maps of colonised roots from plants growing in acidic toepaddock 

substrata of Vaal Reefs gold and uranium TSFs (Fig. 6.15a, c), showed high 

concentrations of Ca, apparently widely dispersed in all regions of the root (Fig. 

6.15d) with Si and Fe enriched in what appear to be intraradical AM fungal 

hyphae and structures (Fig. 6.15b, e). Si and Zn are also concentrated in 

extraradical hyphae (Fig. 6.15b, f). Cross sections of these roots (Fig. 6.16a, c) 

reveal a constant band of high levels of Si in the cortical area (Fig. 6.16b), with Fe 

and Ca in more localised cortical deposits (Fig. 6.16d, e) overlapping with more 

sparse accumulations of Ti (Fig. 6.16f). The cross section maps confirm the 

accumulation of elements in the cortical region rather than throughout the root.  
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Fig. 6.16 Cross-section of colonised root segment of E. curvula plants growing in 

substratum from Vaal Reefs site 8; a) and c): Light micrograph of colonised root. a), d), 

e) and f): Elemental PIXE maps of root segments. 
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Fig. 6.17 Control 1, uninoculated control root segment of E. curvula plants growing in 

zeolite. a) and c): Light micrograph of colonised root segment; b) and d): Elemental PIXE 

maps of root segment.  

 

Although the control consisted of uninoculated plants fertilised with a defined 

nutrient medium evidence of colonisation was observed (Fig. 6.17a), probably due 

to cross contamination from mycorrhizal pots. However, elemental maps of Ca 

and Cl revealed only small localised areas of accumulation in low concentrations 

Fig. 6.17b, d).  
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Fig. 6.18 Control 2, whole colonised root segments of E. curvula plants inoculated 

with commercial inoculum and grown in zeolite; a) and c): Light micrograph of colonised 

root segment; b), d), e) and f): Elemental PIXE maps of root segments. 

 

Whole roots inoculated with a commercial inoculum (Fig. 6.18a-f) showed the 

accumulation of Fe in localised sites (Fig. 6.18b) and an apparently wider 

distribution of K in the central portion of the root, although the map may just be 

reflecting the depth of beam penetration into the cortex overlying the vascular 

cylinder (Fig. 6.18d). Once again, there are common sites of accumulation of P 

and Si (Fig. 6.18e, f), suggesting deposits in fungal structures. Cross-sections of 

the root confirmed the presence of high concentrations of Fe in discrete deposits 

(Fig. 6.19b) but a more widespread distribution of Ti (Fig. 6.19d).  



 

165 

a b  

c d  

Fig. 6.19 Control 2, cross-sections of root of E. curvula plant colonised with a 

commercial inoculum and grown in zeolite; a) and c): Light micrograph of colonised root 

segment; b), and d): Elemental PIXE maps of root segments.  

 

In summary, the conclusions which can be drawn from the elemental maps 

generated from micro-PIXE analysis are the following:  

The highest concentration of elements was either localised in the plant root or in 

fungal structures. In site 1, Ti, Al, Fe including Cl and Zn were localised in the 

plant root (Fig. 6.1 - 6.3). While in site 5, Cr, Fe and Ti concentrations were 

pronounced in AM fungal structures (Fig. 6.8 – 6.10). In both site 1 and 8, Si, Fe 

was more pronounced in AM fungal structures including hyphae and in the same 

sites Fe, Cu and Ti were observed to be highest in the cortex (Fig. 6.15 – 6.16). In 

site 4, pronounced concentration of Al, and Ca was observed in AM fungal 
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structures (Fig. 6.7). In site 3, a widespread distribution of Ca, P and Cl 

throughout the root, with Fe and Ti following a similar distribution patterns but 

largely in the cortical regions whereas a discrete pocket of Al was observed at the 

junction with a side root (Fig. 6.6). In site 7, Ca, Si, Fe, Cr, and Ti were localised 

in the AM fungal structures more specifically in the vesicles (Fig. 6.12 – 6.14). 

Similarly, in site 6, Fe, Ti, and Si were localised in the AM fungal structures (Fig. 

6.11). In site 2 Fe was mostly localised in the cortex, surprisingly a very low 

concentration of Zn was observed, such that the map could not be included (Fig. 

6.4 – 6.5). In control 1, elemental maps of Ca and Cl revealed only small localised 

areas of accumulation of the plant root, while control 2 showed the pronounced 

accumulation of Fe, P and Si localised in both plant root and AM fungal structures 

(Fig. 6.1 – 6.19).  

 

AM fungal structures are mostly located in the outer cortex or outer epidermal 

layer of the root, as shown by the more significantly enriched Si in the vesicles 

and arbuscules (Fig. 6.2). The maps also demonstrate that most elements are 

accumulated in vesicles (Fig. 6.1 – 6.19). Control 1 showed no or very little 

mycorrhizal colonisation as expected, with low elemental concentration which 

resulted from the nutrient solution. It is always advantageous to analyse both 

longitudinal and root cross-section as they give details of both the AM fungal 

colonisation and elemental concentration in different dimensions. Although live 

root showed AM fungal colonisation such as hyphae, arbuscules, the PIXE 

analysed root only showed roots colonised by vesicles with very few roots that 

showed hyphae.  

 

6.4 Results of Statistical Analysis  

6.4.1 Statistical comparison between elemental concentrations in roots and 

colonisation levels of roots. 

An exploratory factor analysis, using a principal component extraction method 

and a Varimax rotation of sixteen items was conducted. Prior to running the 

analysis with SPSS, the data was screened by examining descriptive statistics on 
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each item, correlation matrix and possible univariate and multivariate assumption 

violation. The Bartlett’s test of sphericity was significant (P-value < 0.05), 

indicating sufficient correlation between the variables to proceed with analysis.  

Using the Kaiser-Guttman criterion of Eigenvalues greater than 1.0, from the two 

distributions used:  the first had two -factor solution accounted about 92% of the 

total variance in the final average in sample sites and the second had five - factor 

solution accounted about 95% of the total variance in the concentration of 

elements in roots from different metal sites (Appendix 2). The present two- factor 

and five –factor models were deemed the best solution because of its conceptual 

clarity and case of interpretability. 

 

6.4.2 Part 1. Elemental analysis between sites and elements:  

Part1 is made up of two parts, namely, Part 1A and Part1B. Part 1A comprises the 

correlation tables of both the final average of elements in sample sites and the 

total concentration of elements in roots from different metal sites (Appendix 11). 

 

6.4.3 Part 1 A: Final average in sample sites 

6.4.3.1. Descriptive statistics tables 

 

Table 6.3 Extraction Method: Principal Component Analysis. Rotation Method: 

Varimax with Kaiser Normalization. 

 

Component Transformation Matrix 

Component 1 2 

Dimension  
1 .908 .420 

2 -.420 .908 

 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax 

with Kaiser Normalization.  
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There are only two components that could be considered in the study as indicated 

in Table 6.3 above. Because - 0.420 is less than 0.5 in both component 1 and 2 is 

not considered, thus only 0.908 is considered in each component.  

 

6.4.4 Part 2: Factor analysis 

In factor analysis as indicated above, the aim is to discover which variables in a 

data set form coherent subgroups that are relatively independent of one another.  

The more factors one permits, the better the fit and the greater the percent of 

variance in the data explained by the factor solution. The selection of the number 

of factors is probably critical. Eigenvalues represent variance; therefore any factor 

with an eigenvalue less than 1 is not as important. The number of factors with 

eigenvalues greater than 1 is an estimate of the maximum number of factors. 

 

6.4.5 Working with factor analysis 

6.4.5.1. Principal component analysis (PCA) solution 

The assessment of the KMO and Bartlett’s test of sphericity in Table 6.4 below 

shows positive results. This means that the KMO value is near than the heuristic 

of 0.70; indicating that the correlations matrix is adequate for factor analysis and 

principal component analysis. Likewise, a significant Bartlett’s test enables us to 

reject the null hypothesis Ho of the lack of sufficient correlation between the 

variables. This Bartlett’s test outcome gives us confidence to proceed with the 

analysis.  

 

Table 6.4 The assessment of the results of the KMO and Bartlett’s test of sphericity 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.622 

Bartlett's Test of Sphericity Approx. Chi-Square 494.232 

Df 45 

Sig. 0.000 
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The communalities below currently indicate the degree to which each variable is 

participating or contributing to the component solution. The results in the tables in 

Appendix 10 show that there is no variable that appears to be particularly low for 

removal except Br, from both analyses (the final average of elements in sample 

sites and the total concentration of elements in roots from different metal sites) 

and the analysis is therefore continued.  

 

6.4.6 Part 3: Mycorrhizal fungal colonisation 

Part 3: comprises the correlation between elemental concentrations versus 

arbuscular mycorrhizal fungal colonisation in plants. Part 3 also comprises the 

tables of both the final averages of AM fungal accumulation and their graphical 

bar charts.  

 

6.4.7 Data analysis 

Tables and figures below display the correlation of the sample sites averages of 

elements. The findings are all significant as P-value is less than 0.05 levels (Table 

6.6 and 6.7). This indicates that there is a relationship between the two variables 

examined. For example, in site 1, Al and Si were mostly concentrated in hyphae 

with concentrations of 9 and 42 respectively. Si has the highest normalised 

concentration percentage of 42% followed by Sulphur with 30%. Only site 1 that 

is reported here as an example, results of other sites are reported in Appendix 5. 

Almost all the figures below (Fig. 6.20) indicate that most elements are 

accumulated in vesicles followed by hyphae then arbuscules. This applies to all 

the sites examined. Some elements like Si appear in all the fungal structures 

(Hyphae, Arbuscule and Vesicle) while some only appear in one or two of the AM 

fungal structures (Table 6.5 and Appendix 5). For example Ca, appears only in 

VC not in HC and AC because its concentration after normalisation was too low 

to be included in both the table and figures. 
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Table 6.5 The correlation of the sample sites averages of elements versus mycorrhizal 

colonisation. Elemental concentration was converted to a total of 100.  
Count 

 Site 1 elements Total 

Al  Si P S Cl K Ca Fe 

Site 1 

Mycorrhizal 

HC 9 42 1 1 0 0 0 0 53 

AC 0 0 0 15 0 0 0 0 15 

VC 0 0 0 14 7 5 4 2 32 

Total 9 42 1 30 7 5 4 2 100 

 

 Chi-Square tests on table 6.6 below indicate the results for P -value. Similarly, 

the Test of Coefficient of Correlation (Table 6.7) which shows similar results as 

Chi-Square Test also depicts the results for P Value which is less than 0.05 (see 

last column of Table 6.6 and 6.7).  

 

Table 6.6 Chi-Square Tests which indicate the results for P value of 0 (see the last 

column) depicts a significant difference as P value is less than 0.05 
Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 124.843a 14 .000 

Likelihood Ratio 148.198 14 .000 

Linear-by-Linear Association 63.356 1 .000 

N of Valid Cases 100   

a. 19 cells (79.2%) have expected count less than 5. The minimum expected count is.15. 

 

Test of Coefficient of Correlation  

 

Table 6.7 Test of Coefficient of Correlation which shows similar results as Chi-Square 

Test that indicate the results for P value of 0 (see last column) also depicts a significant 

difference as P value is less than 0.05. 
Symmetric Measures 

 Value Asymp. Std. 

Errora 

Approx. Tb Approx. Sig. 

Interval by Interval Pearson's R .800 .040 13.198 .000c 

Ordinal by Ordinal Spearman Correlation .909 .013 21.590 .000c 

N of Valid Cases 100    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 

c. Based on normal approximation. 
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A B  

Fig. 6.20 The percentage of elemental concentration in A) North West, Platinum Mine 

(L) (Site 1). B) Mpumalanga, Agnes Serpentine Mine (AGM), site (Site 2). 

C D   

E F   
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G H  

 

I J  

Fig. 6.20 The percentage of elemental concentration in C) Gauteng East Rand, ERGO 

Brakpan (ER1- BP) mine site (Site 3). D) North West, Vaal Reefs (VRS mine site (Site 

4). E) Gauteng, TSF, (West Wits Au and U) (Site 5). F) Gauteng, East Rand (ER2A) 

ERGO - Metallurgical Plant (MP) mine site (Site 6). G) Gauteng, East Rand (ER2D) 

ERGO Metallurgical Plant (MP),) mine site, (site 7). H) North West (Vaal Reefs VRM) 

mining site (site 8). I) Control 1 that was without the Mycoroot. J) Control 2 that was 

with Mycoroot grown in nutrient solution and zeolite (Ctr Nu + Mycoroot). 

 

The figure also displays the correlation of the sample sites averages of elements 

versus mycorrhizal colonisation. Elemental concentration was converted to a total 

of 100 while a mycorrhizal colonisation was calculated as a percentage (%) of 

mycorrhizal root colonisation of E. curvula plant species growing in substrata 

from sites (site 1 - 8) inoculated with a mixture of spores extracted from the 

substrata. Values are means of 3 to 10 replicates Standard Error of the Mean (+/- 
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SEM) (Fig. 6.20). The graphs in the figure indicate that most elements are 

accumulated in vesicles followed by hyphae then arbuscules. This applies to all 

the sites and agrees with the elemental maps.  

 

All the elements in all the mining sites (site 1 to 8) have their concentration above 

the normal level required for plants (Table 6.8), except Al in site 1 which has a 

normal concentration (Kabata, 2011). In site 1 (Fig. 6.20a) for instance, Al and Si 

have highest concentration in Hyphal Colonisation (HC), followed by S in 

Arbuscular Colonisation (AC) and  Vesicular Colonisation (VC); Fe and P are 

observed in VC while Al is observed in HC (Table 6.5). In Site 2, Si has a high 

accumulation in HC and AC with S pronounced in both AC and VC while Fe and 

AL are pronounced in VC and HC respectively. In site 3 a high concentration of 

Si was observed in both HC and VC while Al and S were high in HC and AC 

respectively.  

 

Similarly Fe and P were high on VC and AC respectively. In site 4, high 

colonisation of Si was observed in HC and AC same in VC as well. Al was more 

pronounced in HC while P, Fe, Mn, Zn and S were highest in VC. Site 5 had 

highest concentration of Si in HC same in AC and VC with low concentration of 

Al in HC. Highest concentration of Si, and P were observed in AC while Fe and 

Zn were highest in VC. In site 6, S and P are highest in AC and Fe and Zn are 

highest in VC. In site 7, S was highest in HC, AC, VC while P and Fe ware 

highest in HC and VC respectively. In site 8, S is more pronounced in HC and 

AC, with Cl appearing in both AC and VC. Si and Al were observed only in HC. 

Control 1 showed a high concentration of Al and Si in the HC while all other 

elements such as P, S, Cl, K, and Ca localised in AC. Similarly control 2, reveal 

high concentration of elements such as Al, Si, S and P in HC with low 

concentration of Al and P in AC. A number of elements including K, Ca, Cl, Fe 

and Cu were localised in VC.  
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6.4.8 Soil chemistry results  

6.4.8.1. Statistical comparison between elemental concentrations of roots and 

soil substrata 

High heavy metal concentration derived from both the soil total and extractable 

heavy metal content and plant elemental accumulation (PIXE) from eight different 

mining sites and control (Fig. 6.21(a-k), show a high concentration of heavy metal 

total content as compared to both extractable and PIXE analysis. However, a 

higher concentration of elements has been observed in some elements where PIXE 

heavy metal concentration was more than the total soil content (Fig. 6.21h). It 

should be noted that during PIXE elemental analysis, some of the elements such 

as Pt, Ag, Cd, Hg, Pb, Au, and U were measured but they were detected at a very 

low concentration, often below the respective limits of detection as reported in 

this figure hence some figures do not have PIXE graphs. Al (Fig. 6.21g) followed 

by Pt (Fig. 6.21d) shows a high heavy metal concentration in almost all the sites.  

 

Common alphabetic letters indicate no significant difference between sites for 

each element; similarly different letters depicts a significant difference between 

sites for each element (p ≤ 0.05). High Pt concentration in site 2 has been 

observed compared to other sites reported in this study, whereas such high 

concentration of Pt was expected on site 1 as a Pt mining site. Ti showed a highest 

Total Heavy Metal (HM) concentration in sites, 2, 3, 5 and 7 with much lower 

extractable concentration in these sites. Letters are not included in Ti for PIXE 

because the P value was greater than 0.05 thus anova did not calculate the post 

tests. Similarly letters for Ni were not included in the figure because there were 

not enough values in the columns. PIXE showed a higher elemental concentration 

in sites 3, 4 and 6 than extractable. There was a significant difference between, 

site Cr and Ni showed higher concentration only in site 2 while Pt concentration 

was also high in site 2 but not detected by PIXE. Both Cd and Hg showed high 

concentration in site 6 for both total HM and extractable with no PIXE results as 

these elements were not detected by PIXE. Tables of the graphs in Fig. 6.21 are 

presented in Appendix 6.  
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s) 

Fig. 6.21 
8
(a – s) The elemental concentration results for Total Heavy Metal Content Vs 

Extractable Heavy Metal concentration & PIXE across eight sites including a control with 

a) Ti. b) Cr. c) Ni, d) Pt, e) Cd f) Hg, g) Al, h) Si, i) Pb. j) Au, k) U, l) P, m) S, n) K, o) 

Ca, p) Mg, q) Fe, r) Cu and s) Zn. Common alphabetic letters indicate no significant 

difference between sites for each element (p ≤ 0.05). 

 

                                                 

8
  Pt, Ag, Cd, Hg, Pb, Au and U were measured but they were less than the detection limit thus 

they could not be included in both table 6.1 and Fig.21 (a – s). 
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6.5 Discussion 

Elemental distribution maps showed that Si, S, Cl and K were localised and 

detected at maximum concentration in the epi/exodermal-outer cortical root 

tissues of almost all treatments. Elemental distribution maps also showed that Al, 

Si, P, S, Cl, K, Ca and Fe were localised and detected at maximum concentration 

in both the longitudinal and root cross-sections from all the sampling sites (Fig. 

6.1 – Fig. 6.19). Ti, V, Cr, Mn, Ni, Cu, Zn, and Br were detected in lower 

concentrations with As, Se, Sr, Ba, Pb and U present in very low quantities in 

roots from all the sites often below the detection limit (Table 6.1, Fig. 6.21k, 

Appendix 3).  

 

The accumulation pattern of all the detected elements in the epi/exodermal-outer 

cortical root tissues of mycorrhizal plants was not homogeneously distributed 

(Fig. 6.3 & Fig. 6.8). This is also true for site 3 and control plants in Fig. 6.6, Fig. 

6.17, Fig. 6.18 and Fig. 6.19. The accumulation patterns of Al, Si, P, S, Cl, K, Ca 

and Fe in the epi/exodermal-outer cortical root tissues of control plants were also 

not homogeneous. This agrees with the studies by Weiersbye et al. (1999) and 

Orlowska et al. (2013). Strong accumulation of elements such as Al, Ti, K, Cr, Si, 

Fe, and Ca within the epi/exodermal-outer cortical layer of mycorrhizal roots and 

in the selected AM fungi structures (vesicles and hyphae) suggest that fungal 

structures are the major deposition sites of these elements and are instrumental in 

plants’ detoxification (Orlowska et al., 2011; Orlowska et al., 2013). The spatial 

distribution of these elements as shown by Micro-PIXE experiments tends to be 

most concentrated on the edge of the root (epidermis), perhaps reflecting the 

precipitation of these elements in this location (Fig. 6.2, Fig. 6.11, Fig. 6.12, Fig. 

6.13, Fig. 6.14 and Fig. 6.16).  

 

This pattern also indicates that a range of metals and radionuclides can be 

sequestered in putative AM fungal structures above levels in surrounding host 

root tissue and demonstrates the potential of PIXE for the resolution of inter-and 

intracellular AM fungal structures. Thus, distinctive elemental maps have been 

successfully used to localise sites of colonisation and verification of the symbiotic 
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nature of the mycorrhizal plant (Weiersbye et al., 1999; Orlowska et al., 2013). 

This elemental map also indicates that AM fungal structures especially vesicles 

are most localised on the outer cortex or outer epidermal layer of the root cross-

sections, as shown by higher concentration of Si in the vesicles and arbuscules 

(Fig. 6.2b). Since  heavy-metal-enriched soils are often not only toxic to plants but 

also nutrient deficient (Shetty et al., 1994), it is depicted that AM fungi plays a 

critical role in the early development of plants in such environments by both 

supplying nutrients as well as protecting the plant from toxicity of heavy metals.  

 

Although at trace levels, some of these metals such as Zn, Cu, Fe, Mn, Co and Cr 

are essential elements for many plants, animals and human beings, at high 

concentrations, they are all potentially toxic (Nyriagu, 1988; Goyer, 1996). An 

excessive Fe uptake for example can produce toxic effects in plants growing on 

soil rich in mobile Fe fractions. Plant injury due to Fe toxicity is most likely to 

occur on strongly acid soils (Ultisols, Oxisols), on acid sulfate soils, flooded soils, 

and heavy metal contaminated mine dumps. A high concentration of Fe in the soil 

solution is almost always related to Fe toxicity. This toxicity is also often 

associated with salinity and a low phosphorus or base status of soils. This might 

explain the low phosphorus concentration observed in the Micro-PIXE maps (Fig. 

6.1 to Fig. 6.19). Fe is highly available in most mining areas especially in the 

Witwatersrand tailings due to the oxidation of pyrite (Witkowski and Weiersbye, 

1998). Although an indispensable micronutrient, Fe is highly toxic to cells at 

elevated concentrations and therefore most organisms have sophisticated Fe 

acquisition and sequestration mechanisms (Gadd, 1993). Vesicle, hyphae and 

putative arbuscular regions of mycorrhizal roots from almost all the mine tailings 

examined in this study contained higher concentrations of Fe, than the 

surrounding host cells. This pattern may be linked to the highly efficient Fe 

acquisition and sequestration mechanisms characteristic of Glomeromycota fungi.  

 

The higher elemental concentration shown by PIXE at some sites, such as sites 3, 

4 and 6 as compared to that of  extractable suggests accumulation in the roots. In 

some cases, some elements such as Pt, Cd, Hg, Pb, Au and U could not be 
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detected by PIXE. This might indicate that these elements were not assimilated to 

the root or AM fungal structures. 

 

6.5.1  Statistical interpretation 

The correlation between elements and mycorrhizal structures was also conducted 

using Principal Component Analysis (PCA). According to the results of statistical 

analysis, large amounts of elements are accumulated in vesicles followed by the 

arbuscules then hyphae (Fig. 6.20a-j). This agrees with the elemental maps which 

showed accumulation of elements in the vesicular structures and hyphae 

especially heavy metals such as Fe, Cu, Mn, Ti, Zn, and alkali metals such as Ca, 

(Fig. 6.1– Fig. 6.19).  

 

Elemental maps of the root cross-sections demonstrated that AM fungal structures 

are mostly localised in the outer cortex or outer epidermal layer of the root, as 

shown by the more significantly enriched Si in the vesicles and arbuscules (Fig. 

6.2). Since the roots were freeze dried during sample preparation for the PIXE 

technique, hyphae could not be visible and as a result, very few elemental maps 

were obtained in which hyphae and arbuscules were visible. However before 

freeze drying, the roots were observed for AM fungal colonisation under the light 

phase microscope and a lot of mycorrhizal structures including hyphae, 

arbuscules, and vesicles were observed (Fig. 4.1, Fig. 6.5a, 6.6a).  

 

The overall PIXE results demonstrate that most elements are accumulated in 

vesicles followed by hyphae then arbuscule (Fig. 6.20a to Fig. 6.20j). All the 

elements observed through PIXE technique in the examined sites have their 

concentrations above the normal standard required for plants while Al in most 

sites falls within the normal elemental concentration range required by plants 

(Table 6.8). Table 6.8 shows standard elements for both above and below the 

ground (Alloway, 1995; Kabata, 2011; Suruchi and Khanna, 2011). Suruchi and 

Khanna, (2011) reported high levels of copper and zinc, lead and cadmium 

ranging from 0.32 to 35.72 mgkg
-1

 for Cu and 0.4 to 63.63 mgkg
-1

 for Zn and 

0.018 to 2.57 mgkg
-1

 for both Pb and Cd in various vegetables studies carried out 
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by different researchers in countries such as Egypt India, Pakistan, Tanzania, 

Nigeria and Greece. The high concentration range also indicates that the mining 

sites have higher concentration of elements, thus revealing the high heavy metal 

contamination of the mining sites and the ability of AM fungi to accumulate and 

clean up the metal contamination.  
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Table 6.8 Concentration of heavy metals in soils and plants in mg kg
-1 

both below 

and above ground. Data are given for the range that can be observed frequently; 

according to Alloway (1995), Bowen (1979), Adriano (2001), Kabata-Pendias (2000), 

and own analyses. 

No. Element Symbol Soil (mg kg
-1

) Plant (mg kg
-1

) 

        

Low- 

High High 

Normal 

(AVR) 

1 Antimony In 0.1 - 2.0 0.01 0.1 0.055 

2 Arsenic As 1.0 – 10 0.1 0.5 0.3 

3 Barium Ba 100 – 1000 10 100 55 

4 Berylium Be 0.1 – 10 0.01 0.1 0.055 

5 Boron B 2.0 – 100 3 90 46.5 

6 Cadmium Cd 0.05 - 1.0 0.05 0.5 0.275 

7 Chromium Cr 10 – 50 0.1 0.5 0.3 

8 Cobalt Co 1.0 – 10 0.02 0.5 0.26 

9 Copper Cu 10 – 40 3 12 7.5 

10 Fluorine F 100 – 500 1 10 5.5 

11 Iron Fe 10000 - 50000 50 200 125 

12 Lead Pb 10 – 30 0.1 0.5 0.3 

13 Manganese Mn 300 – 1000 20 400 210 

14 Mercury Hg 0.05 - 0.5 0.005 0.05 0.0275 

15 Molybdenum Mo 0.5 – 2 0.1 4 2.05 

16 Nickel Ni 10 – 50 0.2 2 1.1 

17 Selenium Se 0.1 - 2.0 0.01 0.5 0.255 

18 Thallium Tl 0.02 – 05 0.005 0.05 0.0275 

19 Tin Sn 0.1 – 10 0.1 1 0.55 

20 Vanadium V 30 – 150 0.2 1 0.6 

21 Zinc Zn 20 -200 20 100 60 

 

Distribution of these metals in the roots and mycorrhizal structures suggests that 

mycorrhizal plants are able to tolerate high level of heavy metals in contaminated 

sites. The observed concentrations exceeded the average values for plants grown 

in non-polluted areas as reported by Markert (1992). The high accumulation 
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patterns characteristic of E. curvula plant has been confirmed in this study. High 

concentrations of these metals observed in the roots of E. curvula species from 

different metal sites corroborate the findings by Wislocka et al. (2006). There 

were relatively low concentrations of Mn noted in the plant roots ranging from 7 

to 150 mg/kg from almost all the sample sites. Similarly for Br, low average 

concentrations ranging from 0 to 18 mg/kg were also recorded in almost all the 

sites. 

 

The high concentration of heavy metals observed in the plants is an indication of 

elevated levels of heavy metals in the soil. High concentration of Fe, Al, Mn, Ti 

and the presence of U in plants as shown from this study is a useful indicator of 

soil contamination (Grath, 2000). High concentration of Si, Al and Fe found in 

this study tallies with the findings indicating Si, as the most abundant element in 

the earth’s crust followed by aluminum and iron. It has also been reported that the 

relative proportions of metals to aluminum and iron in crustal material are fairly 

constant (Taylor, 1964; Taylor and Mclennan, 1981). Aluminum, a major 

component of clay minerals, is usually associated with fine-grained 

aluminosilicate minerals. These high levels of heavy metals in the soil are toxic to 

plants, animals and human beings. Thus a serious attention is needed and this 

research suggests the use of mycorrhizal plants to remediate the toxic metals from 

the soil mine dumps.  

 

6.5.2 Antagonistic behaviour of each element with other elements 

In most elements, an antagonistic relationship was observed where the excess of 

one element affects the absorption of the other element by plant roots. An 

example is lower level of copper concentration observed in roots which is 

attributed to the antagonistic relationship with other trace metals such as Fe, Al 

and P. Although Cu concentration exceeded the standard concentration levels 

required by plants, its concentration was very low as compared to the 

concentration of Fe, Al and P. This then displays the fact that high levels of Fe, Al 

and P observed in this study lead to the reduced mycorrhizal absorption of Cu 
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from the soil. In other words the high levels of Fe, Al and P inhibited the 

absorption of Cu by the mycorrhizas (Reilly and Reilly, 1973).  

 

Furthermore, high levels of Fe concentration recorded in roots are attributed to the 

antagonistic behaviour of iron with other elements like Ni and Mn. High 

concentration of Fe in roots inhibits the absorption of other elements such as Ni, 

and Mn as has been the case in this study. Low levels of Ni and Mn concentration 

have been observed. The concentration of elements in the sample sites ranged 

from 0 to 15 000 ppm. Most elemental concentration has been observed to fall 

between 0 – 1000 mg/kg, with some between 1000 – 4000 mg/kg, and very few 

with a concentration above 4000 mg/kg (Table 6.1).  

 

Although this concentration seems to be low, most elements had concentrations 

above the standard limit required for plants. In addition, some of the elements like 

Gold (Au), Uranium (U), Cobalt (Co), and Platinum (Pt) that were expected to be 

detected by both ICP-MS and Micro-PIXE could not be measured, as some were 

far below the detection limit and some were not even detected. This could be 

attributed to the fact that the pot soil samples were prepared from the soil taken 

from the rhizosphere of the original plants that were growing on the sample sites. 

Thus, in the rhizosphere of another plant the nutrients could be limiting and some 

of the metals available for uptake by  E. curvula roots could also be quite low as 

they may be depleted &/or bound by the original plant (Weiersbye et al., 1999).  

 

This study has demonstrated that mycorrhizal fungi have the ability to help plants 

absorb and tolerate excess amounts of heavy metals in contaminated mine tailings 

. This emanates from the fact that all the elemental concentrations measured in 

this study far exceeded the average concentrations levels required by plants (Table 

6.8). As indicated above, mycorrhizal structures such as vesicles, hyphae and 

putative arbuscular regions of mycorrhizal roots from almost all the mine tailings 

examined had higher elemental concentrations than the surrounding host cells. A 

mechanism by which AM fungi may prevent metal or radionuclide toxicity to its 

phytobiont is by sequestering toxic elements in fungal structures (Turnau et al., 
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1993). Therefore Micro-PIXE has successfully localised HM concentration or 

accumulation in plant roots and AM fungal structures. This indicates the ability of 

mycorrhizal plants to be used to remediate contaminated mining sites. 
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CHAPTER 7 

7 General Summary and Conclusions 

The study has been able to highlight the potential of AM fungi for inoculation of 

plants as a prerequisite for successful restoration of heavy metal contaminated 

soils. It has successfully investigated AM fungal diversity in selected heavy metal 

(HM) sites in the RSA particularly North West (NW), Mpumalanga and Gauteng 

(Johannesburg) mining slime dams. Accurate identification of spores from field 

samples is a complicated process since spores are often old, parasitized, degraded 

or modified enough in subtle ways that lead to misinterpretations of subcellular 

characters for species-level identification (Fernández et al., 2011). Thus a bait or 

trap pot cultures of indigenous fungi is recommended which facilitate the isolation 

and accurate identification of newly formed AM fungal spores (Oehl et al., 2009). 

Spores extracted from bait cultures are much more uniform in their morphologies, 

and are abundant enough to provide a large sample size to examine the full range 

of morphological variation in spores (Pfleger and Linderman, 1992).  

 

Through morphological characteristics the following fungal genera were 

identified for the first time in the studied sites in South Africa. The study 

identified a total of 14 AM fungal genera and 55 AM fungal species and these are, 

Glomus (15), Acaulospora (11), Scutellospora (6), Gigaspora (6), Rhizophagus 

(3), Funneliformis (3), Archaeospora (2), Claroideoglomus (2), Ambispora (2), 

Sclerocystis (1), Fuscutata (1), Entrophospora (1), Diversispora (1), Paraglomus 

(1) (Table 4.1 to 4.4). Glomus has been observed to be the highest occurring 

genera in the analysed soil samples followed by Acaulospora, Scutellospora and 

Gigaspora. This agrees with the study conducted by Camprubí et al. (2010), who 

found Glomus spores as the most abundant species in the direct soil extraction 

samples. Gunwal et al. (2014) also reported Glomus as the most abundant species 

amongst the AM species isolated in their study.  

 

Few studies on AM fungal morphological identification have been conducted in 

South Africa. Straker et al., (2010), in their study on an investigation of AM fungi 
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associated with cassava in the Limpopo and Mpumalanga provinces identified 

Acaulospora mellea which was also identified in the current study. Five other AM 

fungal species were identified, including Claroideoglomus etunicatum (formerly 

known as Glomus etunicatum) also found in the present study. In another study by 

Meyer et al. (2005), the AM community associated with grapevines in the 

Western Cape was investigated where in which about 18 AM fungal species were 

identified including Sclerocystis sinuosa (formerly Glomus sinuosum). The 

overlap of AM species identified in these various investigations appears to be 

small, suggesting that diversity and community composition vary significantly 

between regions, a trend which has been observed by Öpik et al. (2010) from their 

construction of a SSU rRNA gene virtual taxa database.  

 

The high number of AM fungal spores isolated from all the mining areas sampled 

is an indication of potential AM fungi to be used to remediate contaminated 

mining sites. North West Uranium and gold mines (sites 4, 5 and 8) were found to 

have the highest number of spore counts compared to other areas. Most of the 

spores counted were observed in 45 µm sieve, these spores were tiny and had 

different sizes, colour and shapes. Majority of the observed spores were small, 

brown and oval in shape. Hyphae in root staining were found to be the most 

abundant in roots followed by vesicles (Fig. 4.1, 4.3 and 4.4). This high 

mycorrhizal colonisation in almost all the sites is due to the fact that most sites are 

highly contaminated with various heavy metals such Au, Ti, Al, Fe and U. (Fig. 

6.21) and therefore, AM fungi had to multiply in order to survive in these sites. 

This concurs with the findings by Whitfield et al. (2004) and Turnau et al. (1996), 

who noted greater AM vesicle numbers in the roots of Oxalis acetosella plants 

from woodland plots experimentally contaminated with Cd and Zn, compared 

with control plots. 

 

 A high number of AM fungal species were isolated from slime dams and a high 

Shannon-Weaver index (H) which shows high diversity and presence of the 

mycorrhizal species in slime dams was recorded (Tables 4.2 - 4.5). The high 

diversity indicated in Tables 4.2 – 4.5; illustrate the high potential of using AM 
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fungi to bioremediate toxic heavy metal slime dams in South Africa particularly 

North West, Mpumalanga and Gauteng gold mining slime dams which are the 

most mining areas in the RSA. AM fungi diversity is critical to any rhizosphere 

studies as it provides essential variety link between plants and the soil 

environments (Timonen and Marschner, 2005). Mycorrhiza formation has been 

reported to modify the root system metabolism by changing the chemical and 

mineral composition of root exudates that are released into the soil (Timonen and 

Marschner, 2005; Azcón-Aguilar and Barea, 1992). Therefore mycorrhizal fungi 

form a unique part of the rhizosphere and contribute positively to both the plant 

growth and soil environmental dynamics (Fillion et al., 1999). Orlowska et al. 

(2011) also reported in their study that inoculation of Berkheya coddii  with 

arbuscular mycorrhizal fungi, especially with the indigenous strains, significantly 

enhanced plant growth. Some of the positive beneficial effects of AM fungi on 

plant growth and survival in heavy metal contaminated site include an increased 

transfer of nutrients such as P which increase plant photosynthesis; an increased 

uptake of elements to counteract toxicity of some elements such as Ni, Cu, Zn and 

U; and lastly an increased capture of potentially toxic elements within roots, 

possibly due to the presence of fungal mycelium and its ability to chelate excess 

of metals within the mycelium (Turnau et al., 2010). 

 

This study has also successfully identified more than three AM fungal genera, 

through molecular characterisation namely Acaulospora (14), Glomus (3), and 

Scutellospora (2) using a nested PCR from spores isolated from metal 

contaminated mining sites. For accurate AM fungal identification, it is very 

critical to always complement the morphological identification with molecular 

analysis (Krüger et al., 2012). Almost all the AM fungal genera identified by 

morphological identification were also confirmed using molecular identification 

except Gigaspora, Archaeospora, Funneliformis, Fuscutata and Sclerocystis 

which were not confirmed by molecular analysis (Fig. 5.5, table 5.1). Both NCBI 

Genbank Blast and MaarjAM Genbank Blast identified Acaulospora colombiana 

(14) followed by Glomus (3), and Scutellospora (2) species as the most abundant 

species found in the used AM fungal spores. The molecular identification results 
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do not only assist in revealing the AM fungal diversity of HM polluted mine 

tailing environments but also contributes to our knowledge of their diversity in 

South Africa. This is very vital since in Africa for instance, there is a lack of the 

understanding of the distribution of AM fungi geographically due to low levels of 

molecular data from some areas (Öpik et al., 2010). Furthermore, new species 

were identified from MaarjAM website replacing the old species, for example, 

both Entrophospora and Kuklospora, were replaced by Acaulospora (Schüßler 

and Walker, 2010). 

 

This study further provides a valuable contribution to the database of the 

Glomeromycota in general especially to that which is found in both South African 

and African soils. This shows the potential of using mycorrhizas to remediate the 

toxic heavy metal contaminated sites. To our knowledge, this is the first time 

these genera have been discovered in heavy metal contaminated sites in South 

Africa especially Acaulospora colombiana. This suggests that both Glomus 

species and Acaulospora colombiana are the AM fungal isolates  responsible for 

the survival of plants growing in heavy metal sites and thus they could be useful 

to solve the heavy metal contamination of the mine dumps (Table 5.1). The study 

also highlights that AM fungal diversity is very crucial to the maintenance and 

sustainability of the ecosystem. In addition different primers were employed in 

this study for PCR application. Some DNA samples were amplified using normal 

known universal primers, namely, ITS1 & ITS4 or NS31 & AM1. However, the 

majority of the samples were amplified using primers designed by Lee et al. 

(2008) namely NS1 and NS4 coupled by AML1 and AML2.  

 

PIXE technique was successful in localising elemental concentration in both plant 

roots and AM fungal structures as well as in indicating the dimensions of large 

vesicles in root tissue. However, it was less successful in showing areas of both 

hyphal and arbuscular formations. Although the concentration levels of heavy 

metals reported in Fig. 6.21(a-k) seem to be low, however, they are far above the 

acceptable limits required by plants (Table 6.8) (Suruchi and Khanna, 2011; 

Kabata-Pendias, 2000; Adriano, 2001; and Kabata, 2011). Plant tolerance 
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response to heavy metal toxicity, is highly variable among genotypes and plant 

species. It was interesting to observe most AM fungal structures in the outer 

cortex or outer epidermal layer of the root cross-sections, as shown by the more 

significantly enriched Si in the vesicles and arbuscules (Fig. 6.2; Fig. 6.3). 

Previous  studies conducted on micro elemental analysis of both mycorrhizal and 

non-mycorrhizal plants  (Weiersbye et al., 1999; Alford et al., 2010; Turnau and 

Mesjasz-Przybylowicz, 2003; Vogel-Mikuš et al., 2006; Wu et al., 2007, 2009; 

Orlowska et al., 2011; Orlowska et al., 2013), also show that the Micro-PIXE is 

able to localise the HM concentration in both plant roots and AM fungal 

structures as well as in indicating the vesicles in root tissues as it is done in this 

study.  

 

Thus, distinctive elemental maps can be used to localise sites of colonisation and 

verification of the symbiotic nature of the tissue. This indicates that a range of 

metals can be sequestered in AM fungal structures above levels in surrounding 

host root tissue and demonstrates the potential of Micro-PIXE to determine metal 

accumulation and elemental distribution in mycorrhizal plant roots and inter-and 

intracellular AM fungal structures. The analysis of soil elemental chemistry 

compared to plant elemental chemistry (PIXE) showed a high concentration of 

heavy metal total content as compared to both extractable and PIXE analysis (Fig. 

6.21(a-s). However, PIXE showed a higher elemental concentration in some sites 

such as sites 3, 4 and 6 than extractable, which suggests accumulation in the roots. 

The lower concentrations of extractable elemental analysis might indicate that 

mycorrhiza could protect its host plant from the phytotoxicity of excessive metals 

by changing the speciation from bio-available to the non-bio-available form 

(Orlowska et al., 2011). The high concentration of heavy metal total content in the 

soil is the indication of the presence of the heavy metals in the soil above the 

required amounts.   

 

Although phytoremediation requires a long-term commitment as the process is 

dependent on plant growth, tolerance to toxicity and bioaccumulation capacity 

(Suruchi and Khanna, 2011), it has proven to be a good method for cleaning up 
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soils that have low or intermediate contamination of heavy metals. This is due to 

its cheapness in comparison with many in-situ methods. Therefore, 

phytoremediation of mine tailings by mycorrhizal plants seems to be one of the 

most promising lines of research on mine dumps contamination by heavy metals. 

The strategies evolved in this project have great potential for phytoremediation of 

toxic mining sites and thus can help mitigate the environmental problems 

especially in the mining wastes sites. 

 

Although this study has managed to localise elemental concentration in both plant 

roots and AM fungal structures in root tissue and also identify both Glomus 

species and Acaulospora colombiana species, as the AM fungal isolates  

responsible for the survival of plants growing in Heavy Metal sites; however, it is 

highly recommended to further investigate the mechanisms of tolerance and 

hyperaccumulation of toxic and heavy metals / metalloids / radionuclides in both 

mycorrhizal structures (HC, AC and VC) and roots of plants growing in the 

mining waste sites. Thereby investigating how the AM fungi protect the plant 

from HM toxicity and how the toxic state of the element is reduced to a non toxic 

state.  
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 APPENDICES 

Appendix 1 : Elemental Maps presented as HTML. 

See it in the attached CD. 

 

Appendix 2: Variance in the concentration of elements in roots from 

different metal sites. 

Table 9.1 below indicates first, for final average in sample sites that five factors 

accounted for about 92 % of the total variance. The second group for total 

concentration of elements in roots from different metal sites accounted for about 

95% of the total variance. In practice, a robust solution should account for at least 

50% of the variance (Tabachnick & Fidell, 2001b).  
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Table 9.1a Final average in sample sites that five factors accounted for about 92% of the total variance. Total Variance Explained 

 

Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total 

% of 

Variance Cumulative % Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

Dimension0 

1 5.589 34.934 34.934 5.589 34.934 34.934 4.897 30.609 30.609 

2 3.165 19.779 54.714 3.165 19.779 54.714 3.068 19.177 49.786 

3 2.449 15.309 70.022 2.449 15.309 70.022 2.851 17.821 67.607 

4 2.017 12.603 82.626 2.017 12.603 82.626 2.189 13.679 81.285 

5 1.462 9.136 91.761 1.462 9.136 91.761 1.676 10.476 91.761 

6 .986 6.161 97.922       

7 .194 1.210 99.132       

8 .099 .620 99.752       

9 .040 .248 100.000       

1

0 

2.995E-16 1.872E-15 100.000 
      

1

1 

2.140E-16 1.338E-15 100.000 
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1

2 

7.277E-17 4.548E-16 100.000 
      

1

3 

-3.235E-

18 

-2.022E-17 100.000 
      

1

4 

-8.665E-

17 

-5.416E-16 100.000 
      

1

5 

-1.344E-

16 

-8.399E-16 100.000 
      

1

6 

-2.352E-

16 

-1.470E-15 100.000 
      

Extraction Method: Principal Component Analysis. 
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Table 9.1b Total concentration of elements in roots from different metal sites accounted for about 95% of the total variance. 

 

Total Variance Explained 

Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % 

Dimension0 

1 8.117 81.167 81.167 8.117 81.167 81.167 6.932 69.315 69.315 

2 1.395 13.951 95.118 1.395 13.951 95.118 2.580 25.803 95.118 

3 .296 2.964 98.082       

4 .135 1.350 99.432       

5 .042 .420 99.852       

6 .012 .123 99.975       

7 .002 .022 99.996       

8 .000 .003 100.000       

9 1.657E-5 .000 100.000       

10 5.515E-6 5.515E-5 100.000       

Extraction Method: Principal Component Analysis. 
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Appendix 3: Limits of detection Table 1-WP-18 Aug 2012 (06 July 13).  

See it in the attached CD. 

 

Appendix 4:  Nutrient Solution 

 

Table 9.2. Nutrient supplements for pot cultures grown in fertile sandy soil using clover 

or sorghum as host plants 

Compound Added to pot (mg/kg soil) 

Cover
1
             Sorghum

2
 

Stock solution for 

sorghum 

(g/L)
3
                         No. 

 

KH2PO4 36 36 10.8 A  

K2SO4 71 150 45 A  

NH4NO3/2weeks   50 15 A  

CaCl2.2H2O 94 150 45 B  

MgSO4.7H2O 20 20 6 C  

MnSO4.7H2O 10 10 3 C  

ZnSO4.7H2O 5 10 3 C  

CuSO4.7H2O  2.1 5 1.5 C  

H3BO3 0.8 0.8 0.24 C  

CoSO4.7H2O 0.36 0.4 0.12 C  

NH4MO7(Na2Mo

O4.2H2O) 

0.18 0.3 0.09 C  

Total 239.44 432.5 129.75   

Source: M.C. Brundrett & G. Murase, unpublished data 

Notes: 

1. P Level adjusted to provide 60% of maximum clover growth, while other 

nutrients are optimal for a very infertile sandy soil (Gazey et al., 1992). 

Clover seedlings are inoculated with an appropriate strain of rhizobium so 

they do not require nitrogen supplements. 

2. Based on the nutrition requirements of cereals grown in a very infertile 

sandy soil (Snowball & Robson 1984). This P level has been adjusted to 

limit plant growth. While promoting VAM fungus formation and 
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sporulation. Fe EDTA (25mg/kg – Fe EDTA 0.09g/L Stock) may be 

required for some soils. 

3. These nutrients are dissolved in water to form stock solutions (A, B, C) 

which are further diluted into a nutrient solution (by adding 33 mL of each 

stock/L final volume). This solution is applied to soil by watering it to 

field capacity (i.e. add 100 mL solution/kg of dry sand to get 10% water 

content). The values have to be adjusted for soils with other field 

capacities. This method of applying fertilizers works very well for sandy 

soils that have a limited capacity to fix nutrients. For other soils, nutrients 

may have to be applied in a dry form and mixed through the soil (see 

section 6.2).  

Commercial Multi – nutrient 

Dilution of multi- Nutrient Medium for Plants. 

About 10 – 20 ml of the multi-nutrient was added to the 100g of soil every week 

until the control plants were harvested. Conversion of units was done as follows: 

 

P 82g/kg  = 0.082g/g 

= 82 mg/g 

= 82 000 µg/g 

 

5g/2L – weekly 

1g/400ml 

 

Change units from ppm = µg/g 

82000 = µg/g 

205 = µg/g 

 205 µg/g 

0.5g per 2L 

Add 10 – 20 ml 
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Appendix 5: Mthuthu Stats Correction last data analysis (26 Jan 15) final. 

See it in the attached CD. 

Appendix 6: Analysis of Bemlab results (Total HM Vs Extractable HV & 

PIXE) 

See it in the attached CD. 

Appendix 7: The ligation for bacterial transformation (DNA). 

A. Transformation of competent E.coli cells prepared with TransformAid™ 

Bacterial Transformation Kit (#K2710) 

1. Prepare LB-ampicillin agar plates (see p.11 ). Pre-warm the plates at 

37°C for at least 20 min. 

2. Prepare competent E.coli cells as described in the protocol provided 

with the 

3. TransformAid™ Bacterial Transformation Kit. 

4. Transfer 2.5 μl of the ligation mixture into a new microcentrifuge 

tube. Chill 2 min on ice. 

5. Add 50 μl of the prepared competent E.coli cells. Incubate on ice for 

5 min. 

6. Plate immediately on pre-warmed LB-ampicillin agar plates. 

Incubate overnight at 37°C. 

B. P 11 

Reagents 

a. Ampicillin stock solution (50 mg/ml) 

b. Dissolve 2.5 g ampicillin sodium salt in 50 ml of deionized water. 

Filter sterilize and store in aliquots at 4°C. 

c. LB-ampicillin plates 

d. Prepare LB-agar Medium (1 liter), weigh out: 

e. Bacto Tryptone® 10 g, 

f. Bacto Yeast extract® 5 g, 

g. NaCl 5 g. 
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h. Dissolve in 800 ml of water, adjust pH to 7.0 with NaOH and 

adjust the volume with water to 1000 ml. Add 15 g of agar and 

autoclave. 

i. Before pouring LB-ampicillin agar plates, allow the medium to 

cool to 55°C. Add 2 ml ofampicillin stock solution (50 mg/ml) to a 

final concentration of 100 μg/ml. Mix gently and pour plates. 

j. For fast and easy preparation of LB medium and LB agar plates 

supplemented with ampicillin, use pre-mixed and pre-sterilized 

microwaveable FastMedia™ LB Liquid Amp (#M0011) 

 

Appendix 8: Mycorrhiza Manual mounting PVLG. 

Making a permanent slide mount for reference or beg registration 

a. After extracting spores from a fresh pot culture. Isolate a minimum of 10-20 

spores.  

b. On two clean microscope slides place one drop each of the mountant PVLG 

(Polyvinyllactoglycerol) and Melzer's PVLG see annex 2. Transfer half the spores 

to the first drop of mountant and the second half to the second drop using fine tip 

forceps (e.g. VOMM forceps No. 999220: HWC 118-10 Hammacher Instruments, 

P. O. Box 120209, D-42677 Solingen, Germany) 
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c. Try to orientate the spores so that distinguishing features will be apparent once 

the coverslip is added. 

d. Carefully place a clean coverslip over each drop, making sure to lower the 

coverslip at an angle to prevent air bubbles being trapped. 

e. Gently apply a pressure to the coverslips of one of the slides to break open the 

spores. Wait 30 seconds and then apply gentle pressure in a circular motion with a 

soft (B) pencil to break spore walls open further (The pressure will depend on the 

species of AM fungi). This should be done under a stereomicroscope. 

f. If using PVLG, remember to allow the mountant to polymerise and top it up as 

necessary before sealing with clear nail varnish or white/silver car paint.  

g. Label the slide at one end with the species name and reference code, date, your 

name, and the mountant used. 

 

Annex 2 Reagents 

Polyvinyl-Lacto-Glycerol (PVLG) 
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PVLG is used to permanently mount whole or broken spores on glass slides. For 

best results, mounted specimens should not be studied for 2-3 days after they were 

mounted to give time for spore contents to clear. Whole spores will change colour, 

generally darkening to varying degrees, and shrink or collapse with plasmolysis of 

spore contents. Discrete layers of the spore wall or flexible inner walls of broken 

spores will swell to varying degrees and appear fused after long storage in some 

instances. 

 

Ingredient Quantity 

Distilled water 100 ml 

Lactic acid 100 ml 

Polyvinyl alcohol (PVA) 16.6 g 

It is most important to mix all ingredients in a dark bottle BEFORE adding 

polyvinyl alcohol. The PVA should have the following properties: 50 - 75% 

hydrolyside, and a viscosity of 20 - 25 centipoise in a 4% aqueous solution at 20 

C. The PVA is added as a powder to the other mixed ingredients and then placed 

in a hot water bath to dissolve (70 - 80 C), which takes between 4-6 hours. PVLG 

stores well in dark bottles for approximately one year. 

 

Melzer's Reagent 

Ingredient Quantity 

Chloral hydrate 100 g 

Distilled water 100 ml 

Iodine 1.5 g 

Potassium iodide 5.0 g 

Melzer's reagent can be used alone to mount spores and look for diagnostic iodine 

staining reactions (to hydrophobic regions of structures), but the mounts are 

temporary and subject to drying out within 1-2 years of storage. For permanence, 

Melzer's reagent is mixed in equal proportions with PVLG in a separate dark 

bottle. There is no diminishing of a staining reaction with the 1:1 dilution. 

However, the reaction will fade (or disappear in lightly staining structures) in 

prepared slides after a year or longer of storage. 
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Sodium Azide 

Sodium azide is a respiratory inhibitor and therefore should be handled with care 

(wearing gloves) in the preparation of stock solutions (2.5 g in 50 ml of distilled 

water). A one ml aliquot of the stock is added to 90 ml of distilled water for a 

0.05% working solution. For vial vouchers, spores are collected and added to 2 ml 

vials in a minimum of water. The vial is then filled with the sodium azide working 

solution and labelled. Solutions and vials are stored at 4 C as an added precaution 

to optimise safety of the workplace. 

Spores will darken and contents become cloudy after long term storage, but 

subcellular structural properties retain their integrity to a great extent. Other 

preservative solutions such as FAA (Formalin + Acetic Acid + Alcohol) and 

lactophenol (lactic acid + phenol) have been used extensively in the past, but 

evidence from type specimens indicates they can cause major changes or 

degradation of subcellular structure of spores. 
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Appendix 9: Table 9.3, ICP-MS analysis performed on root samples for bulk elemental concentration. 

 

Table 9.3 ICP-MS analysis performed on root samples for bulk elemental concentration. Values are the means of 3 technical replicates ± SD. Results 

for site 3, 4 and 6 could not be obtained because the root sample mass was less than the required amount for ICP-MS analysis.   
Sites 

 

Concentrations of elements (mg kg
-1

) 

Cr  Fe  Ni  P  K  Pt Ti  Mn Cu Zn U 

Site 1 NW (L) 26.1 ± 1.7 850.0 ± 0.9 30.7 ± 1.6 1685.0 ± 0.4 3750.0 ± 0.5 nd 28.8 ± 2.9 57.9 ± 0.4 57.4 ± 1.7 55.8 ± 1.8 nd 

Site 2 AGM 69.1 ±2.5 2450.0 ± 0.5 87.2 ± 1.0 1710.0 ± 0.7 3490.0 ± 1.5 nd 55.5 ± 6.8 79.9 ± 4.9 15.9 ± 3.9 59.4 ± 1.3 nd 

Site 5 

WW 22.1 ±1.4 1640.0 ± 0.9 19.6 ± 1.3 1920.0 ± 0.9 4770.0 ± 1.7 nd 50.9 ± 3.4 129 ± 2.9 35.7 ± 1.2 

105.9 ± 

1.5 nd 

Site 7 ER2 D, 

MP 21.7 ± 1.2 1900.0 ± 1.6 21.3 ± 1.6 2130.0 ± 3.1 5700.0 ± 1.9 nd 

110.1 ± 

6.8 85.8 ± 1.9 22.8 ± 1.0 

140.7 ± 

0.2 nd 

Site 8 VRM 15.2 ± 2.2 835.0 ± 0.5 14.5 ± 1.8 1840.0 ± 0.3 3995.0 ± 1.8 nd 30.4 ± 5.0 109.7 ± 0.2 14.7 ± 2.5 66.9 ± 2.7 nd 

Control 1 CTRL 1 

& Nu 14.8 ± 1.1 490.0 ± 0.4 11.1 ± 1.5 1705.0 ± 0.2 3170.0 ± 1.3 nd 40.1 ± 1.3 94.5 ± 0.3 32.9 ± 1.8 78.4 ± 1.5 nd 

Control 2 CTRL 2 

& Myco 22.2 ± 0.9 510.0 ± 0.5 13.2 ± 0.2 1950.0 ± 0.8 6020.0 ± 0.5 nd 43.5 ± 2.8 192.9 ± 2.1 82.1 ± 0.7 

146.6 ± 

2.3 nd 

 nd : Not detected      
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Appendix 10: Communalities. 

 

Table 9.4 (b) Displays communalities indicating the degree to which each variable  

 

 

 

 

 

 

 

 

 

 

Communalities 

 Initial Extraction 

Al 1.000 .970 

Si 1.000 .990 

P 1.000 .968 

S 1.000 .985 

Cl 1.000 .907 

K 1.000 .971 

Ca 1.000 .918 

Ti 1.000 .990 

V 1.000 .930 

Cr 1.000 .890 

Mn 1.000 .980 

Fe 1.000 .980 

Ni 1.000 .975 

Cu 1.000 .751 

Zn 1.000 .984 

Br 1.000 .493 

Extraction Method: Principal 

Component Analysis. 

 

Communalities 

 Initial Extraction 

Gauteng WW (West Wits) Au+ U 1.000 .980 

North West, Vaal reefs (VRS), 1.000 .983 

North West, Vaal reefs (VRM) 1.000 .974 

North West Lonmin Platinum Mine 

(L) 

1.000 .967 

East Rand, Metallurgical plant 

(ER2D MP) 

1.000 .958 

East Rand, Brakpan (ER1), 1.000 .846 

East Rand, Metallurgical plant 

(MP)(ER2A ) 

1.000 .973 

Agnes Serpentine Mine (AGM), 

Mpumalanga  (AGM) 

1.000 .994 

Grown in Zeolite Ctr + MyCo 8 R1 

(Control 2) 

1.000 .857 

Grown in Zeolite Ctr + NuR2 

(Control 1) 

1.000 .980 

Extraction Method: Principal Component Analysis. 
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Appendix 11: Correlation in part 1, The total concentration of elements in 

roots from different metals sites. 

Correlation in part 1: The total concentration of elements in roots from 

different metal sites 

The mechanisms of tolerance to metals associations between total elements in 

roots from different metals could be seen related to concentrations of biogenic 

metals (Substances produced by living organisms or biological processes). It can 

also be defined as substances necessary for the maintenance of life processes such 

as trace elements in plants as presented in Table 9.5 below. The highest 

correlation could be attributed to the highest concentration of the elements which 

were detected in almost all the sites. A good example of metal association is 

demonstrated by the following elements namely, iron (Fe), manganese (Mn), 

Vanadium (V), and Zinc (Zn). There is a strong correlation between, Fe and Al 

(R= 0.94), Fe and Ti (R = 0.95), Fe and V (R = 0.77) and Fe and Mn (R = 0.72) 

(Table 9.5). The effects of certain metals are seen pinpointing certain 

circumstances where particular elements were concentrated at higher levels when 

correlated with other elements. Iron (Fe), showed a strong relationship or 

correlation with aluminium (Al), Ti, V and Mn. This indicates that high 

proportions of detrital bonds (loose fragments or grains that have been worn away 

from the rock) are assumed. Correlation relationships for Fe and Ti showed very 

high correlation coefficients (R,) of 0.95 for concentration in plants.  

 

There is also a strong correlation between, the following elements,  Cl and P (R= 

0.80), K and P (R = 0.86), K and Cl (R = 0.68), Ca and S ( R = 0.57); Ti and Al 

(R = 0.92); V and Al (R= 0.72); V and Ca (R = 0.69); V = Ti (R =0.87); Mn and 

Al (R =0.75), Mn and Ca (R = 0.68)  Mn and Ti (R = 0.84); Mn and V (R = 0.94); 

Ni and Cr (R= 0.83); Cu and P (R = 0.67); Cu and K (R = 56) lastly, Zn and S (R 

= 0.53), Zn and Ca (R = 0.83), Zn  and V (R = 0.54) and Zn and Mn (R = 0.52) 

(Table 9.5).  
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Table 9.5. Shows the correlation matrix of element association between elements 

examined in roots from different metal sites. 

 Al Si P S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn 

 Al 1.00               

Si  1.00              

P   1.00             

S -0.51   1.00            

Cl  -0.52 0.80  1.00           

K   0.86  0.68 1.00          

Ca    0.57   1.00         

Ti 0.92       1.00        

V 0.72      0.69 0.87 1.00       

Cr          1.00      

Mn 0.75      0.68 0.84 0.94  1.00     

Fe 0.94       0.95 0.77  0.72 1.00    

Ni          0.83   1.00   

Cu   0.67   0.56        1.00  

Zn    0.53   0.83  0.54  0.52    1.00 

This matrix is not positive definite. 
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