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Abstract  

 

The research presented in this thesis conclusively shows that the most effective method to perform 

synchronous turbo-generator rotor Thermal Instability Testing is by utilising the current injection 

method of condition assessment. Analysis of the experiences of a local utility for well over a decade 

has uncovered a high number of rotors failing thermal instability testing in recent years. This trend 

has brought the current testing methodology into question. Two different assessment modes of 

testing have been found to be utilised internationally without preference, namely, current injection 

and friction/windage. By determining the method that is best suited to detect a thermally sensitive 

rotor a service provider can benefit by improved rotor reliability as well as cost saving. The 

evaluation is accomplished by utilising a scaled down experimental setup based on the model of a 

local testing facility as well as a 600 MW turbo-generator rotor. A direct thermal mapping technique 

has been devised utilising infrared thermography to capture the thermal distribution of the rotor 

surface under different test conditions. The results obtained have shown that the methods differ 

substantially with the friction method exhibiting a uniform surface distribution and the current-

injection method exhibiting areas of higher temperature concentration around the rotor pole faces. 

However, weaknesses do exist in present-day testing techniques in the form of inaccurate 

temperature measurements during testing as well as little consideration given to external factors such 

as the interaction between the slip-ring and brush-gear that have the potential to influence test 

outcomes. A presented augmented method of performing thermal sensitivity testing taking advantage 

of infrared thermography is found to improve testing accuracy and aid in fault detection and 

location. Current thermal instability testing coupled with the direct thermal mapping method has 

been demonstrated to be the most effective means for performing rotor thermal sensitivity testing. 
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Chapter 1 | General Introduction 

1.1 Overview 

Service providers utilise a wide range of condition-assessment techniques during the construction, 

repair and overhaul of large turbo-generator rotors. These techniques vary in purpose, complexity 

and economic considerations. Their fundamental purpose is to timeously identify problems during 

the overhaul/repair/construction process. This proactive approach reduces the possibility of the 

finally commissioned generating unit failing during operation, in other words, increasing the 

reliability of trouble free operation.  

 

Although many diagnostic techniques are used, these are generally specific to different components 

of the turbo-generator rotor, for example, tests that evaluate the insulation or detect inter-turn short-

circuits. A final proving test known as Thermal Instability Testing (TIT) is performed to evaluate the 

rotor functionality in its entirety. The test evaluates the rotor vibrational behaviour under simulated 

operating conditions at 3000 rpm within a specialised balancing facility. Although TITs potential 

capability and usefulness in evaluating a turbo-generator rotor have been recognised, two distinctly 

different testing modes can be employed. The rotor under test can be ‘excited’ using either current or 

friction/windage, referred to as Current Thermal Instability Testing (CTIT) and Friction Thermal 

Instability Testing (FTIT), respectively. The mode best suited to TIT has yet to be determined, a 

situation exacerbated by complexities surrounding the lack of international standards, unclear testing 

procedures, the limitations of testing facilities, and the high capital cost of required testing facilities 

as well as test interpretation [1], [2]. This is further compounded by the small community of service 

providers that perform such testing and who regard their experience as intellectual property, 

resulting in a lack of knowledge in the public domain. 

 

The research presented in this thesis aims to improve the understanding of turbo-generator rotor TIT. 

In particular, it seeks to determine the differences between FTIT and CTIT and thereby derive the 

most reliable method for the performance of TIT. In order to achieve this, the thermal behaviour of 

the rotor must be analysed under each test condition. An experimental approach using contemporary 

methods is used. This is achieved by constructing a novel experimental setup capable of directly 

mapping the thermal distribution of the surface of a generator rotor. Thereafter, a temperature map of 

the rotor under different scenarios of FTIT and CTIT is created. A comparison of these scenarios is 

assessed to determine the differences to ascertain which mode is better suited to performing TIT. 

Furthermore, the capability of the direct mapping method to detect a fault condition is evaluated to 

improve the localisation of thermal instability related failure.  
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1.2 Problem description 

The increased demand for energy globally has resulted in many utilities operating within diminished 

reserve margins. This demand has led to increased pressure on service providers to perform 

manufacturing and conduct overhauls and repairs to a high degree of reliability within constrained 

turn-around times to maximise plant availability. The foremost motivations for performing TIT are 

as follows: 

 

 Providing a mechanism for the early detection of turbo-generator rotor incipient problems.  

 Executing remedial action and retesting to assess outcomes. 

 Meeting the need for component reliability driven by lower reserve margins, aging 

generating units and high failure rates. 

 Avoiding economic loses that may have resulted from commissioning and subsequent 

failure of a thermally sensitive turbo-generator rotor.  

 

In order for the aforementioned motivations to have relevance, the chosen test procedure must be 

able to meet these requirements. The turbo-generator rotor is a critical component of the power 

generation infrastructure and is subjected to a stringent operating regime that can exacerbate 

weaknesses introduced during repair/overhaul/assembly activities that can lead to failure [3]. Doubts 

related to the effectiveness of the two testing modes and which of them to utilise can lead to 

compromises in reliability and loss of capital by service providers. The potential of utilising TIT to 

detect undesirable operation as a final proving test has been demonstrated in previous works 

including [4] and [5]. These works cover two different approaches to TIT: one as a final proving test 

within a testing facility and the other an online test while the unit is commissioned. No specific 

detail is given regarding the preferred technique, nor is there any detail covered regarding different 

techniques. Furthermore, the lack of detail presented in TIT-related publications is hampering 

progress in testing techniques and understanding. This lack is attributed to intellectual property 

limitations, as a number of publications originate from Original Equipment Manufacturers (OEMs). 

 

The limited experiences shared by different service providers have contributed to a better 

understanding of thermal sensitivity; however, there is still a significant absence of practical 

knowledge associated with TIT modes. Through consultation with service providers, utilities and 

practitioners, and the review of previous work, the following have been identified as major 

hindrances to the understanding of the different modes of TIT: 

 

 The lack of progress and improvement of testing methodologies. 

 Intellectual property limitations leading to limited readily available information and 

experience related to TIT. 
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 The absence of an international standard and acceptance criteria.  

 Differences in turbo-generator rotor designs can influence TIT methods and acceptance 

criteria but form part of the manufacturer’s intellectual property and are therefore not readily 

available to repairers/utilities. 

 TIT being a specialised testing technique requires a capital-intensive plant, which influences 

the preferred test technique i.e. CTIT requires higher capital investment than FTIT. 

1.3 Aims and objectives 

The presented research aims to utilise modern methods to comparatively analyse FTIT and CTIT 

with the goal of ultimately determining the most effective method for performing TIT.  

The main objectives of the research are as follows: 

 

 Develop a modern experimental framework to evaluate TIT by FTIT and CTIT. 

 Develop a method which suitably captures and displays the thermal behaviour of a rotor 

surface and as well as to directly capture the temperature of the winding. 

 Qualitatively and quantitatively investigate the merits of FTIT and CTIT. 

 Evaluate shortcomings of current frameworks and improvements to TIT. 

 Evaluate the experimental framework to aid in fault detection and location during TIT. 

 

Meeting the aforementioned objectives will considerably enhance TIT and yield a valuable 

contribution to the testing and maintenance of modern turbo-generator rotors. 

1.4 Thesis structure 

1.4.1 Thermal instability prominence 

Chapter 2 presents the fundamentals of turbo-generator rotor breakdown, refurbishment and testing. 

The chapter relates the experiences of a local repairer in regard to TIT. Details of an investigation 

into the testing history regarding TIT, of the local repairer, for an eight year period are presented. A 

global perspective of the different TIT modes is also presented. The adopted methodology for the 

local TIT process is described. 

1.4.2 Thermal sensitivity of turbo-generator rotors 

Chapter 3 presents a background into generator-rotor thermal sensitivity. The unique construction 

features that make a large turbo-generator rotor susceptible to thermal sensitivity are outlined. The 

causes of rotor vibration, both mechanically and electrically, are discussed. Furthermore, the types 

and causes of thermal sensitivity are presented. Online, off-line current and off-line friction methods 

utilised to detect latent thermal sensitivity are described, including an evaluation for suitability. 

Solutions to the problem of thermal sensitivity that have been used over the years as well as the 

history related to TIT are finally presented. 
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1.4.3 Development of a model to evaluate TIT techniques 

In Chapter 4, a practical framework for the development of a suitable experimental test setup and the 

construction thereof is presented. The developed framework is designed to address the shortcomings 

related to TIT testing techniques outlined in the previous chapter. Initially, the theoretical thermal 

parameters that govern TIT are described. Consideration was given to different approaches to 

simulate the different techniques namely analytical techniques as well as numerical methods. 

Finally, an experimental setup utilising a scaled model of the local balancing facility with a scale 

model of a 600 MW mini-rotor was developed. A direct thermal mapping method is developed and 

presented. The performance of the experimental setup is assessed to develop a temperature map of 

the surface of the mini-rotor. 

1.4.4 Thermal instability testing experimental results and analysis 

Chapter 5 presents the results of the experimental scenarios carried out utilising the direct thermal 

mapping method to evaluate FTIT and CTIT. The aim of the experiments were to be able to 

differentiable between FTIT and CTIT, thereby determining the best suited method for TIT. 

Utilising the direct thermal mapping method, temperature maps and associated temperature data are 

presented for FTIT and CTIT. Thereafter, the ability of the experimental setup to aid in fault finding 

is evaluated. This is followed by a quantitative and qualitative analysis of the experimental results.  

1.4.5 General conclusions 

Chapter 6 offers closing remarks on the presented research as well as future research suggestions. 

Refer to Figure 1.1 (below) for an overview of the research methodology.  

1.4.6 Appendices 

A number of Appendices are presented: Appendix A details the condition assessment of the mini-

rotor prior to testing. The experimental setup construction dimensions can be found in Appendix B. 

Datasheets and calibration certificates for the infrared (IR) camera and infrared pyrometer are 

detailed in Appendices C and D. Thermal data captured for the entire test duration for the three 

different scenarios: FTIT, FTIT – brushless and CTIT  are presented in Appendices E, F and G. 
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Figure 1.1: Summary of the research methodology adopted for the evaluation of TIT techniques 
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Chapter 2 | Thermal Instability Prominence 

2.1 Introduction 

The fundamental design of generating units utilised worldwide have not changed significantly since 

the inception of the turbo-generator. The horizontal mounted stator-rotor combination has become 

common place in the generating fleets of many utilities. The ever increasing demand for cheaper, 

more reliable power has given rise to supply shortages in many countries. Utilities are struggling to 

meet these demands. Most of the installed capacity is from older units, which are being driven harder 

than before, increasing the frequency for maintenance. 

 

Shrinking reserve margins require that any maintenance being performed must be done efficiently 

and to a high standard of reliability. Being a fixed component at the generating station, the stator 

undergoes all maintenance activities on site, while the generator rotor in many circumstances 

requires more specialised overhaul techniques and testing that can only be conducted at a facility that 

is remote to the generating station. The running life of a generator rotor tends to be shorter than that 

of the stator, and in many instances rewinds occur at intervals of around 10 to 15 years of operation 

[6]. 

 

Performing maintenance or refurbishment work on a generator rotor requires a thorough 

understanding of the failure modes, which will determine what corrective action must be taken. For 

example, an intern-turn fault would only require a partial rewind, while a cracked coil retaining ring 

would require replacement. During the refurbishment process, a number of condition-based tests are 

required to fault find and ensure quality. 

 

This chapter focuses on different aspects of generator rotor failure, refurbishment and testing. 

Section 2.2 briefly reviews rotor failure modes, while section 2.3 focuses on refurbishment 

techniques. Section 2.4 touches on basic rotor testing techniques. Sections 2.5 and 2.6 present the 

experiences of a local utility that performs a test known as Thermal Instability Testing. These 

experiences have highlighted the need for a detailed/further investigation into this particular test. 

2.2 Rotor failure  

The fundamental role of the rotor subjects it to a harsh operating regiment, operating at high thermal 

and centrifugal loads, although designed to withstand these tremendous forces. This regime 

contributes to its short lifespan. The major components of a generator rotor are delineated in Figure 

2.1 (below). The predominant causes of rotor failure are as follows: design weaknesses, defective 

materials, material yield and breakdown, contamination, component migration, and stray currents. 

These failure modes are manifested when breakdown occurs. The breakdown can affect the 
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insulation system, the winding or the rotor body. Depending on the degree of breakdown and effect 

on operation, some level of refurbishment may be required.  

 

 

Figure 2.1: Synchronous turbo-generator rotor schematic illustrating major components 

2.2.1 Insulation system 

Shorted turns are the most common failure experienced on rotor windings. These are caused when 

there is a breakdown in inter-turn insulation, creating a shorted turn. A number of inter-turn shorts in 

a coil are shown in Figure 2.2 (below). These lead to severe burning of the inter-turn insulation. 

Furthermore, the migration of insulation components can affect the flow of the cooling medium, 

resulting in thermal asymmetries along the rotor body. An earth fault occurs when the ground wall 

insulation breaks down, and this can cause severe damage to the windings, coil retaining rings and 

steel forging. An early sign of an inter-turn short burning through the ground wall insulation is 

depicted in Figure 2.2. Left undetected, this would have resulted in an earth fault occurring. 

 

 

Figure 2.2: Common turbo-generator rotor insulation system failures: inter-turn shorts 

2.2.2 Winding 

The low yield point of copper introduces a susceptibility to distortion owing to high mechanical 

stresses experienced during operation. The degree of coil distortion can result in either minor inter-

turn shorts or a major short of entire coils, creating undesired magnetic and electrical anomalies. 

Figure 2.3 (below) illustrates two cases of extreme coil distortion in the rotor overhang area. A more 

severe case can arise when a turn break occurs, as shown in Figure 2.3. During this occurrence, the 



Chapter 2 | Thermal Instability Prominence 

 

 

8 

 

current does not immediately stop, but an arc persists between the break generating intense heat. The 

heat generated can damage insulation, cause an earth fault or damage the coil retaining rings. A more 

unique problem called copper dusting, also depicted in Figure 2.3, affects only specific rotor designs 

and is experienced when the rotor operates at low barring speeds. The abrasive action between the 

coils and insulation result in copper dust being generated. This can lead to the contamination of the 

winding, resulting in electrical faults. 

 

 

Figure 2.3: Common turbo-generator rotor winding failures: distortion, turn-break, copper dusting 

2.2.3 Rotor body 

Depending on the material composition of the coil retaining ring (CRR) and the environment in 

which it operates, cracking can propagate, as seen in Figure 2.4 (below). If this condition continues 

undetected, the crack will propagate further until a catastrophic failure occurs. Loss of the entire 

generating unit and consequential plant damage is an expected result. Surface currents induced by 

incorrect operation can destroy wedges, the steel body and the coil retaining rings, as illustrated in 

Figure 2.4. Cracking of the forging may also be experienced owing to design weaknesses, incorrect 

operation or material yield [7] - [10]. 

 

Rotor failure is unavoidable and will affect a generating unit at some point within its lifecycle. When 

a failure is experienced, the outcome will necessitate a process of refurbishment, as detailed below. 
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Figure 2.4: Common turbo-generator rotor body failures: cracking, arcing 

2.3 Rotor refurbishment 

Rotor refurbishment methodology will differ with respect to design variations. A generic procedure 

is therefore not possible, but the basic principles of refurbishment do apply. Different refurbishment 

options exist based on the condition of the rotor. A rotor may either undergo component 

replacement, partial rewind or complete rewind. A generic process flow diagram for common 

maintenance tasks is illustrated in Figure 2.5 (below) and discussed briefly in sections 2.3.1 to 2.3.3.  

2.3.1 Component replacement 

Components may be replaced to improve material properties, fix defects related to design flaws or 

comply with routine maintenance. Coil retaining rings are replaced to improve material properties 

and enhance reliability, as newer materials are less susceptible to cracking and failure. Wedges may 

also be changed to improve material properties and adjust interference fits. Slip-ring assemblies as 

well as stalk bolts and main leads may also need to be replaced owing to failure or wear. 

2.3.2 Partial rotor rewind 

A partial rotor rewind refers to a small-scale but potentially very complex specialised repair on a 

specific area of concern on the rotor. It is performed to solve inter-turn faults, migrating insulation 

components, ground wall insulation breakdown, coil distortion and turn breaks. The repair procedure 

can range from replacing sections of insulation or replacing a number of copper turns or a whole coil 

(or number of coils) if necessary.  
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2.3.3 Complete rotor rewind 

A complete rotor rewind takes place when the rotor winding has reached its end of life or when the 

failure experienced cannot be repaired by performing a partial rewind or a component replacement. 

In the case where the rotor winding has reached the end of its design life, the copper winding can be 

evaluated and reused if still in a good condition, whereas the old insulation system is replaced [11].   

 

 

Figure 2.5: Generator rotor refurbishment flow diagram outlining common maintenance processes   

2.4 Testing and monitoring during rotor refurbishment 

The ongoing cycle of component failure, repair and maintenance must be managed adequately to 

ensure the security of a utility’s generating capacity. All refurbishment activities should not rely 

exclusively on the adroitness of personnel conducting the work. This needs to be supplemented with 

a testing regime that ensures the ultimate quality of the finished product. The ability to detect rotor 

faults during the refurbishment process goes a long way towards ensuring reliability when the unit is 

commissioned. A number of tests have been devised over the years to assist with rotor fault 

detection. 

2.4.1 Insulation resistance 

The insulation resistance test is probably the most common diagnostic tool used to determine 

problems with the insulation system. It also provides assurance that subsequent high voltage testing 

can proceed without fear of insulation breakdown. A high DC voltage is applied between two 
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conductors that are insulated from one another. This provides a measurement for the resistance of the 

insulation separating the conductors. The resistance for a perfect insulating material should be 

infinite, but in practice this is not the case as the perfect insulator does not exist. A low resistance 

value would indicate a problem with the insulation system. Wet, contaminated or damaged 

insulation would yield a low insulation resistance.   

2.4.2 Recurrent Surge Oscillograph  

The Recurrent Surge Oscillograph (RSO) test can be used to detect inter-turn shorts, earth faults and 

any high-resistance connections that may be present in the winding. The principal of operation is 

based on the fact that a healthy winding is electrically symmetrical viewed from its terminals. Any 

faults in the winding will result in an asymmetry. Detection is made possible by injecting a steep-

fronted step voltage at each terminal. The return signals, when compared, should be identical for a 

fault-free winding, while a difference would indicate a fault condition. The output waveforms of a 

RSO test are depicted in Figure 2.6 (below). Waveforms A and B represent the return signals of each 

respective winding terminal. Waveform M is a comparison of the two waveforms. A difference in 

symmetry can be observed in waveform M, thus waveforms A and B are not identical indicating an 

inter-turn fault. 

 

 

Figure 2.6: RSO Test results showing inter-turn fault condition 

2.4.3 Winding resistance 

The rotor’s total series copper winding resistance is measured. The test can detect inter-turn shorts, 

poor connections, incorrect connections and circuit discontinuities. The resistance value obtained is 

generally compared to a previously measured value for the same winding. 



Chapter 2 | Thermal Instability Prominence 

 

 

12 

 

2.4.4 High voltage testing 

AC, DC or very low frequency AC voltages can be applied to a rotor for high voltage (HV) testing. 

The purpose of the test is to determine if the winding assembly is capable of withstanding the rated 

operating voltage as well as any over-voltages and transients that may occur during operation. If the 

insulation does not break down during the test, the result is considered successful. 

2.4.5 Non-destructive testing 

The rotor steel body, wedges and coil retaining rings undergo a non-destructive examination to 

detect any material fatigue and cracking. A number of techniques are used: fluorescent dye 

penetrant, eddy current and ultrasonic testing. A fluorescent dye penetrant test exposing signs of 

crack initiation on a CRR is depicted in Figure 2.7 (below) [7] – [9].  

 

 

Figure 2.7: Fluorescent dye penetrant test detecting CRR crack initiation 

2.4.6 Thermal Instability Testing  

A thermal instability test also known as thermal sensitivity testing is performed as the final proving 

test prior to the rotor being dispatched to the generating station. All the above-mentioned rotor tests 

in sections 2.4.2 to 2.4.5 target specific areas of the rotor but do not prove that the rotor can function 

as a whole. All the different components must be able to function homogenously during operation to 

be considered refurbished and reliable. In essence, thermal instability occurs when a change in the 

field current causes a corresponding change in vibration levels. A rotor that is both mechanically and 

electrically balanced is stable and fit for service. Conversely, if a rotor is unbalanced, the resulting 

uneven loading will lead to bowing of the rotor shaft and increased vibrations. High vibrations result 

in the rotor being unfit for service and a process of fault finding needs to be followed, as the causes 

of thermal instability are difficult to pinpoint. 

 

Thermal sensitivity/instability can be commonly caused by the following conditions: shorted turns, 

coil movement, blocked ventilation slots or inadequate cooling, non-uniform winding, distance 

blocking variations, ill fitted body wedges, and tight rotor slots. Refer to Chapter 3, section 3.4, for a 

detailed description of thermal sensitivity. 
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2.5   Local utility experience of TIT 

The utility having experienced a number of TIT-related failures, an analysis is performed to 

determine the impact and magnitude of test outcomes on the business. The results of a total of 60 

thermal instability tests performed on generator rotors are investigated. The time period ranges from 

the year 2007 to 2014. The rotors are rated from 200 MW to 900 MW and are aged between 20 to 30 

years old. Figure 2.8 (below) summarises the test outcomes of the rotors per year. Of the 60 rotors 

tested during this period, 35 rotors passed and 25 rotors failed, reflecting a high failure rate of 42%.  

 

 

Figure 2.8: Trending of TIT experience of repairer for the period 2007-2014 

Figure 2.9 (below) identifies the most prevalent mechanisms of failure for the entire period. Thermal 

sensitivity constituted the bulk of failures at 88%, inter-turn shorts made up 8%, and earth faults 

came in at 4%. Most rotors failed due to a combination of coil movement, non-uniform windings, 

distance blocking variations, ill-fitting body wedges and tight rotor slots. Owing to the uncertainty in 

distinguishing between these failure mechanisms, thermal sensitivity failure mechanism is used to 

represent this category. An earth fault is not identified as one of the mechanisms but was 

experienced.  

 

Analysis of the data indicates an increase in thermal instability failures, which severely affects 

generating capacity and prolongs the return to service of generating units. This brings the testing 

methodology into question: Is the testing procedure that has been used for the past 20 years still 

valid or effective? Global TIT trends and practices have to be determined in order to improve or 

validate the currently accepted methodology. 
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           Figure 2.9: TIT failure mechanisms experienced in relation to generator rating 

2.6   TIT process 

Testing at the local service provider is performed in a specialized 300 t balancing facility designed to 

accommodate brushless as well as brushed rotors. Different sizes of Faraday cages are also used 

depending on the rotor length. In brief, the test is conducted by exciting the rotor at different current 

levels from 400 A to 1500 A, depending on the rotor design. A soaking period is observed for every 

incremental current. Vibration level, phase and temperature are recorded every five minutes. A rotor 

that exhibits vibration levels outside prescribed design limits fails the thermal instability test and is 

not fit for service [12]. Data gathered regarding global TIT preferences is displayed in Figure 2.10 

(below) [13] – [21]. 

 

 

           Figure 2.10: Global TIT preferences for current and windage methods for TIT 

The data is gathered from OEM and non-OEM service providers that are willing to share 

information. From the data, it appears that different balancing facilities around the world prefer to 

use different methods for TIT owing to their own proprietary reasons. Two methods exist: a current 

injection method used by the local utility and a windage/friction method. There is an even 

distribution between the two methods of TIT. This lack of a specific preference globally also 
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indicates that a more detailed investigation into which method is better suited to determine rotor 

thermal instability is required. 

2.7   Conclusion 

In this chapter, some fundamentals of turbo-generator rotor breakdown, refurbishment and testing 

are presented. Further to this, TIT is introduced and some experiences regarding TIT are discussed. 

This information is intended to help the reader understand the purpose of the research and the 

outcomes presented in further chapters. 

 

Generator rotors operate under harsh conditions and are susceptible to failure. Breakdown can affect 

the insulation system, the winding or the rotor body. A number of techniques are available to repair 

such failures based on severity. These techniques can range from simple component replacement to 

partial or full rotor rewind. To ensure quality and reliability, a condition assessment regime is used 

throughout the refurbishment process to ensure that faults are detected prior to site commissioning. 

Techniques utilised generally target specific areas of the rotor construction, while TIT is generally 

utilised to evaluate the entire rotor under simulated operational conditions. 

 

A number of rotors at a local utility have experienced thermally induced vibrations. This has led to 

an analysis of the utility’s experience of performing such testing for the past 20 years. The result of 

this analysis is presented and highlights the high failure rate being experienced while performing 

TIT. This occurrence has brought the test methodology into question. A global perspective related to 

the test methodology was sought and it was found that two methods of TIT exist: direct current 

injection and windage/friction. The high failure rate experienced by the utility coupled with the 

failure to determine a preference in testing methodology has prompted the need for further 

evaluation and investigation. The disparity in available knowledge related to TIT make the 

evaluation of the different modes of testing challenging. The current state of knowledge will be 

examined in the following chapter. 
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Chapter 3 | Thermal Sensitivity of Turbo-Generator Rotors 

3.1 Introduction 

The role and impact of performing TIT has been established in Chapter 2. An evaluation into the 

process and knowledge surrounding TIT is necessary in contributing to a better understanding of the 

phenomena thereby enabling a process to be formulated for the evaluation of the different modes of 

TIT. This evaluation will be conducted in the subsequent chapter.  

 

Large-scale turbo-generator plants are commonly fossil and nuclear fuel generation facilities [10]. 

Global energy demand is forecast to grow by one-third from 2011 to 2035, as outlined in energy 

policies in [22]. At the end of 2010, coal-fired plants had an installed capacity of 1600 GW with a 

growth forecast of an additional 1000 GW by 2035 [23].  At the end of 2013, nuclear installed 

capacity was at 392 GW, with a forecast growth to 624 GW by 2040 [24]. By the year 2040, turbo-

generators will be responsible for the generation of an excess of 3000 GW for both nuclear and coal-

fired generation. The significance of the turbo-generator is illustrated by these facts.  The demand for 

energy is ever increasing, and the turbo-generator will always form part of core generating capacity 

alongside other means of energy conversion.  

 

The reliable operation and maintenance of these high-value assets hinge on the ability to effectively 

test a generator rotor once repaired/overhauled. Specific condition assessment carried out throughout 

the different stages of repair/assembly will not guarantee trouble-free operation of the entire 

assembled unit once commissioned. For example, an Insulation Resistance Test will only verify the 

integrity of the insulation while the rotor is at a standstill and will not take into account the 

centrifugal and heating effects during operation that may expose weaknesses in the insulation and 

possible failure. Although regular condition assessment during repair/overhaul is essential, in many 

instances it is only possible to detect faults specific to that particular testing methodology and not at 

steady-state behaviour [7]. A more definitive test for evaluating the generator rotor as a whole is 

necessary. This chapter focuses on the different aspects that relate to the thermal sensitivity of the 

generator rotor. Section 3.2 briefly reviews the design aspects of the rotor, while the vibration 

behaviour related to this unique design is outlined in section 3.3. The types and causes of thermally 

induced vibration are introduced in section 3.4. Three different methods for detecting latent thermal 

instability within a generator rotor are considered in section 3.5. Section 3.6 presents background 

information related to thermal sensitivity. 

3.2 Review of generator rotor design 

Cylindrical rotors are mainly used for applications requiring speeds in excess of 1000 rpm. Electrical 

networks commonly operate at 50 or 60 Hz; the former will result in the rotor rotating at 3000 rpm 

and the latter 3600 rpm. The rotor carries the excitation winding and transfers the torque from the 
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turbine to the electromagnetic reaction at the air-gap [25]. Units have been constructed in excess of 

1800 MW, with dimensions ranging from 10 m in length and 5m in diameter [26]. Such generators 

are typically horizontally mounted and hydrogen cooled. The main components of the rotor are as 

follows: rotor forging, shaft body, rotor winding and excitation assembly. 

3.2.1 Rotor forging 

A turbine generator rotor is commonly constructed from a single forging consisting of highly 

permeable magnetic steel, as illustrated in Figure 3.1 (below). The forging is the basic structure from 

which the rotor is manufactured. The shaft, rotor body and slots are machined from the blank 

forging, which must possess excellent mechanical properties and electro-magnetic characteristics. 

The forging must withstand the centrifugal forces of the rotor operating at rated speed and provide a 

low reluctance path for the winding flux.   

 

 

Figure 3.1: Generator rotor rough machined mono-block steel forging  

3.2.2 Shaft body 

The shaft has two main functions: an electromagnetic function of generating a rotating field and a 

mechanical function of transferring torque. The shaft is the central structure of the rotor, made of a 

single forging whose ingot is made in an electric furnace and then vacuum cast. Towards each end, it 

has a machined journal on which it rotates in the bearings, as well as seal landing areas if the 

generator is hydrogen cooled, a main coupling to connect the rotor to the turbine on what is referred 

to as the Drive End (DE) of the rotor, and possibly a smaller coupling on the Non Drive End (NDE) 

to connect an exciter rotor in certain designs. The NDE may also have slip-rings fitted, through 

which the DC field current is supplied to the rotor winding.  

 

The body of the rotor has the winding slots milled into what is commonly known as the active zone, 

with the pole faces in between. In order to equalise the stiffness of the rotor in all planes, radial slits 

called inertia slits are cut into the pole pace at intervals. A bore hole is often machined in the centre 

of the forging through its full axial length. The bore hole serves two purposes, firstly to remove 

material defects (impurities and porosity in the forgings which tend to concentrate at the centre), and 

secondly to provide access for performing boresonic (ultra-sonic) inspections of the rotor forging 

from the bore to the surface.  
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The slots milled into the rotor body are separated by what are known as the slot teeth, which are 

designed to bear the centrifugal load of the copper coils. Dovetail grooves machined into the top of 

the slots contain the wedges that transmit the radial centrifugal load of the coils to the teeth. A rotor 

body with milled slots is depicted in Figure 3.2 (below). The wedges are of a complex design and are 

highly stressed components. Adding to the complexity of the design, the wedges include radial 

ventilation holes for cooling gas to enter or escape the copper winding in the slot below.  

 

 

Figure 3.2: Generator rotor body with final machined winding and cooling slots 

The magnetic flux is carried by the rotor in the main body, and is DC in nature. There are two areas 

which carry the main flux: the solid forging under the winding slots, and the magnetic poles. 

Leakage flux flows between the rotor teeth and links in the air-gap above each slot.   

 

The shaft design of the rotor is critical in relation to its vibration characteristics. Shaft diameter and 

length greatly affect the stiffness and consequently the critical speeds and sensitivity of the rotor. 

The smooth surface of a cylindrical rotor has significantly lower friction in air than salient pole 

rotors: consequently the losses at the surface of the rotor, known as windage losses, are lower. They 

are not, however, negligible, and these losses can generate significant heat at the surface of the rotor. 

The cylindrical shape also results in a more robust structure able to withstand higher centrifugal 

forces. 

 

As mentioned above, the DE of the rotor has a forged coupling plate bolted to the coupling of the 

turbine, allowing for the transfer of the torque from the turbine shaft train to the generator rotor. It 

also facilitates the alignment of the rotors. The coupling has holes machined into it to accommodate 

the coupling bolts as well as separating holes which allow coupling plate separation during 

dismantling. The opposite end (NDE) is coupled to an auxiliary machine, depending on the design of 

the generator. The auxiliary machine may be an exciter, oil pump or starting pony motor. 
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On each end of the rotor is an axial fan with individual blades mounted on a support ring. The fans 

create the necessary pressure to ensure the circulation of the cooling medium through the rotor and 

stator circuits [27]. 

3.2.3 Rotor winding 

The field winding of the rotor is installed in the slots machined into the body. The winding is 

distributed around the pole faces of the rotor. The winding itself is made up of a number of series-

connected concentric coils. There are two main sections of the winding: the winding within the slot 

area called the slot section, and the winding that protrudes from the ends of the slots, known as the 

overhang. The winding is insulated from the rotor body; depending on the design, the material 

properties may vary. Each coil consists of a number of turns, separated by thin layers of insulation. 

This insulation, despite being relatively thin, must be able to serve its intended insulating purpose 

and also be able to withstand the mechanical and thermal cycling duty imposed by the rotational 

forces and thermal variations during operation. 

 

A number of designs are employed to remove the heat produced in the copper turns of the field 

winding during operation. The copper winding is either cooled directly through contact with the 

cooling medium, or indirectly in the cases where the heat needs to transfer across the insulation to 

the rotor body, where it is removed by the cooling medium. In the direct method, cooling ducts are 

machined into the copper turns, with corresponding holes punched into the insulation, and the 

cooling gas passes through these ducts to dissipate the heat produced. A key feature of any cooling 

system design is to slow down the passage of the cooling gas sufficiently to allow the heat time to 

transfer into the gas and be removed. There are three main cooling designs: axial, radial and air-gap 

pickup. Combinations of designs are also utilized by many manufacturers as illustrated in Figure 3.3 

(below). In an axially cooled winding, the gas is forced axially by the fan along ducts in the 

conductors. The gas enters the ducts in the overhang section and is then exhausted to the air-gap 

either at the axial centre of the rotor or in stages along the length of the rotor. In a radially cooled 

winding, the fans force the gas into sub-slots machined beneath the slots of the rotor at the bottom of 

each slot. Centrifugal force then forces the gas up radially aligned vent ducts in the winding, to 

exhaust into the air-gap. In the air-gap pickup method, the wedges are designed in such a way that 

the surface acts like a scoop, collecting the gas as the rotor rotates and passing it down specially 

designed ducts in the coils to exhaust through the rear of the wedge. 

 

The rotor windings are supported in the slot section by the slot wedges, but the overhang windings 

are held in place against centrifugal forces by Coil Retaining Rings (CRRs). The CRRs are 

composed of high strength non-magnetic steel.  Non-magnetic CRRs are used to minimise eddy 

current formation in the CRRs themselves, and occasionally to better shape the magnetic field 

produced by the rotor.  The CRRs are generally the highest mechanically stressed component in the 
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generator.  They are fitted by heating the CRR until it expands sufficiently to pass over the overhang 

of the rotor and onto what is known as the landing area of the rotor body. They are designed to have 

a small interference fit with the landing, and so experience complex stresses both at standstill and 

during operation, where the centrifugal force can exceed 6000 g.  A locking mechanism, typically a 

snap ring or plungers, or a ‘bayonet’ type fit, is employed to restrain the CRRs against axial forces 

due to the expansion of the field winding in service [9].  

 

 

Figure 3.3: Generator rotor winding direct and indirect cooling designs 

3.2.4 Exciter assembly 

DC current to the field winding is supplied by a number of methods. In the first, current is generated 

in an auxiliary generator known as an exciter and conducted to the rotor field winding through a slip- 

ring or collector that consists of two stainless steel rings (one for each polarity of the DC current) 

mounted on the rotor shaft. The current is transferred from the excitation source to the slip-rings via 

graphite brushes. In another method, the exciter ‘stator’ is mounted onto the main generator rotor 

shaft and rotates, while its ‘rotor’ is stationary. This produces a poly-phase AC output from the 

winding on its rotating element, which is rectified by a series of rotor-mounted diodes. This output 

of the diode assembly is a direct current connected to the winding directly without the need for a 

slip-ring. This is commonly referred to as a brushless excitation system. Lastly, static excitation is a 

process where poly phase external power, via an excitation transformer, is rectified utilising solid 

state devices to produce a DC excitation current. The produced current is supplied to the rotor via the 

slip-ring brush-gear assembly [28]. 
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3.2.5 Generator rotor losses 

Rotor losses are generated in the form of heat. Losses are due to electromagnetic and mechanical 

sources. Rotors experience primarily copper and frictional losses during operation. Copper losses are 

due to current flow and can be easily calculated. Frictional losses are constituted of bearing and 

windage losses. Bearing losses occur due to the friction between the rotating shaft and bearing 

housing. Windage losses occur during the interaction of the surrounding medium and the rotor body. 

The ineffective dissipation of the heat generated during these mechanisms can directly influence the 

thermal sensitivity of a rotor. Heat that is not distributed symmetrically can result in thermal 

instability. The manner in which these losses are monitored can aid in better understanding the 

mechanism of thermal instability as well as aid in trouble shooting once a rotor has failed TIT. Refer 

to section 4.3 for greater detail regarding rotor losses. 

3.3 Generator rotor vibration 

The basic design of a generator rotor is discussed in the previous section. The analysis of rotor 

vibration characteristics is an invaluable tool for the detection of rotor operational anomalies or 

breakdown. The vibration behaviour of a rotor is largely influenced by these design considerations. 

 

A vibration can be described as oscillations about an equilibrium point, which are characterised by 

an amplitude and frequency. Vibration magnitude can be determined by either measuring the shaft or 

bearing oscillation. Vibration is measured in terms of displacement and expressed in micro meters 

peak to peak. Vibration can be measured by a number of instruments – displacement transducer, 

velocity transducer or acceleration transducer. Vibration behaviour is generally captured using a 

Bode Plot to plot the phase and magnitude [29]. Acceptable generator rotor vibration limits during 

operation are specified by the manufacturer based on design constraints. High vibrations can lead to 

machine shutdown or component damage. Generator rotors can experience two kinds of vibration: 

one caused by mechanical effects and the other by electrical effects.  

3.3.1 Mechanically induced imbalance 

The initial sources of rotor mechanical vibration are physical dissymmetries when manufactured, 

resulting in a varying mass distribution around the geometric axis. Generator rotors are generally 

balanced in a high-speed balancing facility after manufacture or a major overhaul. The 

dissymmetries that the rotor may possess due to the manufacturing/overhaul process are offset 

balanced during this process [30]. 

 

Mechanical unbalance vibrations are not dependant on excitation and will not vary with excitation 

levels. However, the magnitude may vary with rotor angular speed. A number of conditions can lead 

to generator rotor mechanical imbalance: mass loss/redistribution, misalignment, rubs, oil whirl and 

shaft cracks [31]. 
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3.3.1.1 Mass loss/redistribution 

An unbalanced condition occurs when the centre of mass of the rotor does not coincide with its 

centre of rotation. Mass loss can be confined to the following areas: balance weights, cooling fan 

blades, locking components and coupling bolts/nuts.  

 

Thermally shrunk-on components such as fan hubs, couplings, slip-rings and CRRs can move or 

reseat during operation. CRRs are the most highly stressed component on the generator rotor, 

experiencing high hoop stresses. A loose or cracked CRR that moves causes a continuously 

changing unbalance. 

 

A mass redistribution, on the other hand, involves the migration of non-fastened rotor components. 

For example, the windings and insulation system may migrate under high centrifugal forces. The 

mass of the copper coils is sufficient to cause an imbalance with just a slight movement [32], [33]. 

3.3.1.2 Misalignment 

Variations in alignment of the generator rotor coupling in relation to the turbine coupling may result 

in external forces being applied to the rotor shaft. This can affect the rotor rigidity and the overall 

system-dynamic response. Two types of misalignment can be experienced between the generator 

rotor and turbine rotor couplings, namely angular misalignment and parallel misalignment, as 

illustrated in Figure 3.4 (below). Angular misalignment occurs when the mating faces of the 

coupling are not perpendicular to the central axes of both rotors. Parallel misalignment occurs when 

the central axes of both rotors are parallel to each other but offset. Severe misalignment can cause 

bearings and seals to deteriorate and, more seriously, to transfer enough force to the rotor resulting in 

a bend or crack. Vibrations can be exacerbated by bearing supports that are incorrectly shimmed and 

fastened [34].  

 

 

Figure 3.4: Generator rotor coupling parallel and angular misalignment  
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3.3.1.3 Rub 

Rotor rub is an uncommon occurrence on large turbo-generators as a small number of components 

may rub during operation. A lack of clearances could cause contact between the cooling fans and 

shroud, the seals and shaft, and the rotor and stator. It is, however, highly unlikely for the rotor to 

rub against the stator due to the large air-gap. The most common rub that can take place is a 

hydrogen seal rub. Contact between the hydrogen seal or oil seal and the shaft influences the 

stiffness of the rotor. A higher stiffness of the rotor shaft causes the resonant frequency to increase. 

This condition will result in a change in vibration magnitude and phase angle [35], [36]. 

3.3.1.4 Oil whirl 

A generator rotor can experience a fluid-induced instability, commonly referred to as oil whirl or 

whip. This is a natural occurrence created when a cylinder rotates within a cylinder in the presence 

of a fluid, that is, the rotor shaft within a curved bearing using lubricating oil. The distance between 

the journal and bearing centres is referred to as the eccentricity. The likelihood of an oil whirl being 

experienced is governed by the eccentricity ratio, defined by dividing the eccentricity by the radial 

clearance between the journal and bearing. A low eccentricity ratio favours the development of a 

fluid instability. Oil whirl can only develop in one supporting bearing at a time and can be easily 

detected. Varying the oil temperature or supply pressure may help to reduce the instability. The key 

to avoiding oil whirl/whip is to ensure a high eccentricity ratio [37]. 

3.3.1.5 Shaft cracks 

Generator shafts subject to high levels of stress can experience crack propagation. Common areas 

affected are CRRs, rotor slot top teeth and dovetails. Cracking can create differences in rotor shaft 

stiffness, resulting in uneven flexure of the rotor as it operates [32].  

3.3.2 Electrically induced unbalance 

Electrically induced unbalance is typically manifested by the thermal behaviour of the rotor. As the 

rotor is excited by an increasing current, the copper winding will rise in temperature. The increasing 

temperature naturally causes the copper to expand within the slots and overhang area, but not in 

proportion to the expansion of the steel rotor forging, as the coefficient of expansion of copper is 

nearly twice that of steel. The expanding copper will exert axial forces on the other components of 

the rotor slot contents, body wedges, blocking and CRR assembly. The heat generated within the 

winding will also be conducted through the steel body and dissipated by the cooling medium. If this 

heat transfer process continues symmetrically along the body of the rotor, a thermal unbalance will 

not be experienced. However, if the heat transfer process or coil forces occur asymmetrically, an 

unbalance will be experienced, resulting in the bowing of the rotor body. The severity of the thermal 

bow will determine the amplitude of the vibration experienced at the bearings [38].  
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A thermal unbalance is characterised by a relationship between vibration and excitation. An increase 

in excitation results in an increase in vibration magnitude. Detailed causes of thermal imbalance are 

outlined in Section 3.4.4. 

3.3.3 Identifying causes of vibration 

Identifying the causes of vibration takes thorough knowledge of the machine’s behaviour during 

operation. Table 3.1 (below) summarises the vibrational response for the conditions discussed in 

Section 3.3 [39]. The values reflected apply to bearing vibrations. 

3.3.4 Generator rotor vibration evaluation 

Vibration monitoring and evaluation forms a critical aspect of rotor condition assessment during 

operation and testing. Vibration analysis was primarily utilised to evaluate the functionality of the 

bearing system where high vibrations indicated bearing failure. Vibration analysis has however 

evolved into a sophisticated method over recent years. Contemporary vibration assessment 

techniques can aid in the identification of numerous mechanical and electrical sources of vibration.  

There is however no accepted standard on vibration limits. There exist many guides to assist 

operators to determine what is suitable for their particular machine. Some adopt ISO 7919-2 

covering steam driven turbo-generators in excess of 50MW [40]. ISO 7919-4 encompasses the field 

of gas turbines [41]. The IRD Mechanalysis Vibration Severity Chart can also be consulted and sets 

down guidelines for vibrational limits [42]. Vibration analysis is a complex field that relies on the 

knowledge of machine design elements as well as operational behaviour which will not form part of 

the scope of this study. 

Table 3.1: Vibrational response summary of generator rotor unbalance conditions 

Cause of Vibration Amplitude Frequency  Phase 

Mass loss/redistribution Proportional to 

unbalance; largest 

in radial direction 

1 x rpm Single reference mark 

Misalignment 50% or more radial 

vibration; large in 

axial direction 

1 x rpm commonly 

2 or 3 x rpm possible 

Single, double and 

triple reference mark 

Rub 
- 

0 to 50% of 1 x, 1x, 

higher harmonics 

Erratic 

Oil whirl May change 

rapidly 

50 to 50% or 1 x rpm Unsteady 

Shaft cracks Variable during 

transients 

1, 2 x rpm Change in 1 x phase 

can occur 

Thermal unbalance Disappears when 

power is turned off 

1 x rpm or 1 or 2 x 

line frequency 

Single or rotating 

double mark 
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The mechanical causes of vibration have a regular and fixed pattern, facilitating the identification of 

the root cause. A well-established condition-monitoring system would be able to identify these 

causes through pre-programmed detection algorithms. The physical cause of the mechanical 

imbalance is also easily identifiable, for example, a misalignment may be detected by the condition 

monitoring equipment; the couplings can be easily checked for misalignment, while a cracked shaft 

can undergo non-destructive testing to locate the crack. 

 

Generator rotors are predisposed to thermal sensitivity owing to their complex design, material 

composition and operating requirements, as discussed in Section 1.3. Manufacturing/refurbishment 

techniques introduce component variation which cause most rotors to exhibit some level of thermal 

sensitivity and may require attention according to the degree of sensitivity. Thermally induced 

vibration in generator rotors is by far the most difficult to diagnose and treat. The symptoms may be 

a bowed shaft and a vibration signature linked to the excitation current, but the possible underlying 

causes are numerous. Difficulty arises when physically determining the cause of the thermal 

imbalance without excitation, making mechanically dynamic or electrical causes impossible to 

diagnose. A thorough inspection and methodical strip down of the rotor in search of anomalies will 

require the rotor to be removed from the stator. Since the exact conditions that cause the thermal 

unbalance are not acting on the rotor, physically identifying the anomaly becomes near impossible. 

This phenomenon is commonly referred to as a Thermal Instability/Sensitivity. Conventional 

balancing techniques are not suited to detect and correct such problems [43]. The experiences 

discussed in Chapter 2 and the sources of vibration discussed in Section 1.3 make it clear that this 

phenomenon calls for detailed evaluation and understanding. 

3.4 Rotor thermal sensitivity 

Generator rotor thermal sensitivity can be classified into two categories, linear or non-linear 

vibration. 

3.4.1 Linear vibration 

A linear condition is where the vibration of the rotor is proportional to the excitation current level. 

The graph depicted in Figure 3.5 (below) illustrates the typical behaviour of a rotor experiencing a 

reversible thermal sensitivity. When the current is increased the vibration level increases – from 

point A to D. When the current level decreases, the vibration level correspondingly decreases from 

point D to G.  
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Figure 3.5: Generator rotor experiencing linear vibration behaviour 

3.4.2 Non-linear vibration 

A non-linear rotor vibration condition is not proportional to the excitation current. The graph 

depicted in Figure 3.6 (below) illustrates that the vibration increases with current from points A to D 

but does not decrease with a reduction in current from points D to G. This type of thermal sensitivity 

is generally very severe and could lead to disassembly or rewind [44]. 

 

 

Figure 3.6: Generator rotor experiencing non-linear vibration behaviour 

3.4.3 Causes of linear and non-linear vibration  

There exist a number of possible causes of thermal linear and non-linear vibration, as shown in 

Table  3.2 (below) [6]. 
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Table 3.2: Causes of thermal sensitivity linear and non-linear vibration 

Linear Vibration Non-Linear Vibration 

Copper coils adhering to the slot liners Differences in  coefficients of friction – copper 

coil surfaces, inter-turn insulation, slot liners, 

overhang insulation, blocking surfaces 

Inter-turn shorts Wedge fit 

Asymmetric overhang blocking Wedge movement 

Asymmetric heat distribution Wedge yield 

Uneven paint thicknesses Overlapping inter-turn insulation 

Shifted slot liners or inter-turn insulation Overlapping overhang insulation 

Operating close to vibration critical Copper coils adhering to slot liners 

Blocking fit Uneven winding 

 End block movement 

 Broken turns 

 Coil movement 

 

The numerous causes of thermal sensitivity are complex and vary from design to design. It has been 

found that even subtle influences can create a thermal imbalance. For example, a rotor is cleaned 

differently on either end; this causes a difference in emissivity in the rotor surface finish resulting in 

a thermal unbalance during operation [45]. Rotor thermal sensitivity may be influenced by individual 

causes or a number of causes acting collectively to create a difficult fault-finding scenario. For 

example, in one instance, a unit exhibited unexplained high vibration levels during loading. Several 

theories were considered, including unstable foundation, misalignment, shorted turns and a cracked 

shaft. After much effort, it emerged during strip down that insulation blocks were not within 

tolerances, causing the top copper bar to deform during operation. After considering the rotor 

condition, it was deemed necessary to rewind [46]. A number of the major causes of thermal 

sensitivity are discussed in more detail in the next section. This will assist in understanding the 

complex interactions between components in the generator that cause thermal sensitivity problems.    

3.4.4 Common causes of generator rotor thermal instability 

The most common causes of thermal sensitivity are shorted turns, coil movement, blocked 

ventilation slots or inadequate cooling, non-uniform windings, distance blocking variations, ill-fitted 

body wedges and tight rotor slots. 

3.4.4.1 Shorted turns  

One of the most common failure mechanisms of a generator rotor is inter-turn shorts. In 2003, it was 

estimated that over 50% of installed generators in the United States ran with shorted turns. Shorted 

turns occur when there is a breakdown in the insulation between turns [47]. This can lead to 
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asymmetrical heating of the rotor body. Of particular significance are coils that are adjacent to rotor 

poles (smaller coils); imbalances in adjacent coils are more likely to cause a thermal bend. Inter-turn 

faults cause a reduction in the active coils of the generator rotor. A pole that has a number of shorted 

turns will operate at a lower resistance as compared to the opposite pole. This condition will have an 

effect on the thermal losses (I
2
R) of each pole; the lower resistance pole will operate at a lower 

temperature, while the opposite pole with a higher resistance will operate at a higher temperature. 

This effect will cause a thermal gradient along the rotor body resulting in a bow of the shaft and 

increased vibration, as illustrated in Figure 3.7 (below) [48]. A short in Pole A will result in the 

illustrated bow pattern. Hence current excitation will have an effect on the vibration levels. 

 

 

Figure 3.7: Generator rotor body thermal bow due to shorted turns 

Shorted turns are generally easy to detect before commissioning by performing either a RSO Test, as 

described in Chapter 2 Section 2.4.2, or during a Stray Flux Test in a balancing facility [49]. If a 

shorted-turn is experienced during operation, it can still be detected with a stray flux probe, and a 

load adjustment can be made to enable smooth operation. 

3.4.4.2 Coil movement  

During the heating cycle, coils may move to one side of the rotor, creating a ratcheting effect that 

leads to imbalance [45].  

3.4.4.3 Blocked ventilation slots or inadequate cooling  

Restrictions in cooling can severely affect the thermal balance of the rotor. Certain rotor designs are 

cooled by the winding being in direct contact with the cooling medium, as described in Section 

3.2.3. The introduction of foreign material (contamination) can block vent ducts. Vent ducts can also 

be blocked if inter-turn insulation migrates within the rotor slot. This results in an uneven 

temperature distribution along the length of the rotor. Localised heating in excess of 250 °C has been 

reported as a result of partial blockage [50]. An imbalance is experienced similar to that of an inter-

turn short. 

3.4.4.4 Non-uniform winding  

If a rotor is not wound uniformly from pole to pole with the same insulation dimensions and 

assembly of materials, differences in frictional forces may arise, leading to a restriction in expansion 
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of the copper coils. This may occur within the rotor slots or under the CRR. The asymmetrical 

expansion causes a varying force distribution on the rotor body, resulting in a bowing condition. A 

copper turn may also expand radially to a greater degree than other coils. A small displacement in 

the radial geometry of the rotor can result in a large unbalanced force (F), which is expressed as:   

 

                                        𝐹 = 𝑚𝑟𝑤2                                     (3.1) 

 

where m is the mass, r is the radius and w is the angular velocity of the rotor. It can be further seen 

that the unbalanced force is directly proportional to the radius of the rotor, making larger units more 

susceptible to a non-uniform winding. This can affect rotors that have been in operation for a long 

period and have experienced insulation breakdown, as well as newly assembled rotors that have been 

non-uniformly wound. This condition is best prevented by making sure that the rotor is wound to 

exact specifications and tolerances to maintain uniformity throughout the winding, as shown in 

Figure 3.8 (below). 

 

 

Figure 3. 8: Schematic of a uniformly wound rotor slot with coils, insulation and wedge 

3.4.4.5 Blocking  

Blocking used within the overhangs of the rotor must be spaced and fitted appropriately to ensure 

uniform expansion of the coils without restriction. Incorrectly fitted blocking can result in an uneven 

force distribution under the CRRs when the winding expands. The asymmetrical forces transfer 

through the CRRs and end disc, resulting in the rotor body bowing. A typical blocking arrangement 

is shown in Figure 3.9 (below). 
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Figure 3. 9: Typical blocking arrangement of a generator rotor overhang 

3.4.4.6 Wedge fit 

A rotor can suddenly experience thermal sensitivity following a partial re-wedge.  Wedges may be 

replaced owing to damage or improvements in design. Ill-fitting rotor body wedges that may be too 

loose or too tight create an uneven interference fit throughout the slot length. This can lead to the 

restriction of movement of copper coils in the axial and radial direction. Wedges with non-uniform 

tolerances at dimension A and B of Figure 3.10 (below) will result in the insulation material and top 

copper turn being squeezed into these gaps, creating a deformation that binds the copper in place. 

This prevents expansion and contraction [51].  

 

 

Figure 3.10: Thermal sensitivity rotor body wedge fit considerations  

3.4.4.7 Tight slots  

Rewound rotors may sometimes experience tight slots when the original copper is being reused, but 

this is not necessarily an exclusive relationship. After years of usage, the original copper may no 

longer be symmetrical and flat. Coils that have been bound within rotor slots due to friction cannot 

expand freely and begin to exert a force on the steel body. It has been reported that rotor coils can 

expand in length up to 40% more than the steel body [50]. Design clearances are then compromised, 

creating excessive radial forces within the slots, which in turn bring about thermal bowing of the 
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rotor. For example, in Figure 3.11 (below), pole A may experience a tight slot, whereas pole B 

remains unrestricted, resulting in the illustrated bow pattern when current is increased. 

 

 

Figure 3.11: Thermal bow due to tight rotor body slots 

3.5 Methods to detect thermal sensitivity/instability 

Determining whether a rotor is thermally sensitive is relatively straightforward, as the relationship 

between the current and vibration levels is sufficiently indicative. However, the methodology used to 

monitor this relationship is pertinent. The ability to create the specific operating conditions for the 

rotor to exhibit a latent thermal sensitivity problem is important. Three methods of TIT exist. The 

first test is an online test performed after the rotor has been commissioned. The remaining two tests 

occur within a balancing facility capable of performing either a Friction Thermal Instability Test or a 

Current Thermal Instability Test. Facilities that can perform a CTIT can also generally perform a 

FTIT as well, but not necessarily vice-versa. 

 

It should be noted that there is no international standard for the testing methodology or acceptance 

criteria for vibration limits when performing TIT. The methodologies that frame these tests remain 

undisclosed, as they form part of the intellectual property of the OEM /utility/repairer that performs 

the test [4]. The matter is further compounded by the large capital investment required to construct a 

balancing facility capable of performing TIT. This results in the subject matter not being widely 

published either, which makes testing and interpretation the prerogative of the OEM/utility/repairer. 

Interpretation and test methodology determine whether a rotor is fit for service or not. This can have 

significant consequences in terms of warranties and profitability when the rotor is 

refurbished/overhauled. As a final factory acceptance test may result in a rotor failing due to thermal 

sensitivity, the magnitude of consequences for the client or the OEM/utility/repairer cannot be 

underestimated. In the following section, the different types of thermal sensitivity testing will be 

discussed.  

3.5.1 Online thermal instability testing 

The following online TIT method is outlined in [52]. This is an OEM methodology with which a 

number of other references concur [53]. Initially, the rotor is tested for inter-turn shorts, as discussed 

in Section 3.4.4.1. The next step is to distinguish between the effects of real power and reactive 
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power loading, as vibration change arising from real power loading is indicative of bearing 

alignment shifts during operation. A three-phase diagnostic test is reported, as per Figure 3.12 

(below).  

 

The initial step is to supply the rotor with a constant current while varying the megawatt loading on 

the generator from 15% to 60%. This corresponds to points 1 through 4 in Figure 3.12 (below). 

Comprehensive vibration, voltage, current and temperature readings should be taken throughout this 

process. Any alarming parameters should be monitored.  

 

The second step is to apply a constant real power load of about 60% to 80% of rated power, followed 

by raising the field current to the maximum rated value. Each test level should be maintained until 

steady state operation is reached. This corresponds to points 5 through 8 in Figure 3.12 (below). If 

thermal vibrations are experienced before the maximum rated current is applied, the process should 

be repeated until the current level associated with an acceptable vibration level is reached. A 

thermally sensitive field will exhibit a significant change in vibration or phase, while the field 

current is increased at constant real power loading. At this time [9] suggests that the field current be 

reversed to be able to detect coil movement (Section 3.4.4.2). 

 

The final step is to decrease the current from the maximum level to the initial starting value. This 

corresponds to points 9 through 12 in Figure 3.12 (below). If the vibration and phase correspond to 

the initially measured values, the thermal vibration is classified as linear. Commonly, this sort of 

vibration can be solved with a compromise balance mass. If, however, the vibration level remains 

high and does not return to the originally measured values, the vibration is considered to be non-

linear and will require a detailed investigation. 

 

If a thermal sensitivity problem is detected while performing this test, a number of scenarios can 

unfold. The thermal sensitivity may be within vibration limits and the rotor fit for operation. 

However, if undesirable levels of vibration are experienced, a compromise balance mass may be 

required. The rotor will have to be decommissioned for this to take place. If a compromise balance 

mass does not solve the problem, the rotor will have to be returned to a repair facility to be 

evaluated. This method of testing may be the best to detect a thermal sensitivity issue, as it is done 

under operating conditions, but the time lost and capital spent to commission and decommission the 

unit makes it an undesirable option as a final proving test.  
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Figure 3.12: Machine capability diagram outlining rotor thermal sensitivity test procedure for online 

testing [5] 

3.5.2 Current thermal instability test 

CTIT is a specialised test requiring a balancing facility able to inject current into the rotor as well as 

having the required facilities to deal with the electrical field created. Very little is known about this 

test methodology. In [4], some details are shared regarding this type of test as performed by an 

OEM, which describes the procedure as a patented solution. Also referred to as a ‘heat run test’, 

current is injected into the rotor at rated speed. Temperature, pedestal and shaft vibrations are 

monitored and recorded throughout the test. The rotor is initially taken to rated speed, thereafter 

current is applied in increments until the targeted stabilized mean winding temperature (MWT) is 

reached. A three-phase process is then followed, as depicted in Figure 3.13 (below). Step one is the 

heating phase until the MWT is reached, corresponding to time t1. Thereafter, the MWT is 

maintained until time t2. This is referred to as the stabilisation phase. The final phase is the cooling 

phase that lasts till t3. During this phase, the current is turned off while being cooled at rated speed. 

No further detail is shared with regard to temperature value limits as these are critical to the test and 

may be considered proprietary information.  

 



Chapter 3 | Thermal Sensitivity of Turbo-Generator Rotors  

 

 

34 

 

 

Figure 3.13: Graph depicting an OEM process for thermal sensitivity testing via CTIT 

3.5.3 Friction thermal instability test 

Reference material regarding FTIT is scarce. Chapter 2 Section 2.6 establishes that the test is a 

prominent methodology used globally to perform TIT. Local utility experience regarding this test 

involves the rotor being operated at rated speed where the frictional (windage) interaction between 

the rotor surface and surrounding air cause the rotor to heat. Rapid or controlled heating is not 

possible when using this method. Vibration and temperature values are monitored at all times. This 

test can be performed in any balancing facility as no specialised equipment is necessary. This is one 

of the probable reasons why it is has been found to be such a popular methodology. During this test, 

temperatures reached are typically the ambient temperature plus 55 °C to 75 °C [54]. 

 

A variation on the FTIT method is mentioned briefly in [4]. This process involves the blowing of 

heated air into the rotor winding enclosed within a ‘heat box’ at rated speed. This methodology 

would rely on both friction and an external heat source. It has, however, been found that similarly to 

FTIT, a significant temperature rise in the rotor winding cannot be achieved in a short period of 

time.  

3.5.4 Suitability of testing methodologies  

The current knowledge base regarding TIT raises the following key questions:  

 Is a simulated approach being performed in a balancing facility suitable for thermal 

sensitivity testing? 

 What procedure should be followed to perform the testing, CTIT or FTIT? 

 What acceptance criteria should be used? 
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Currently, the available information does not allow for conclusive answers to the above questions. It 

has already been stated that online thermal instability testing is the technique that best suits the 

detection of latent rotor thermal instability as it offers true steady-state operation conditions. Online 

thermal instability testing can, however, also be destructive, resulting in increased vibrations after  

test completion [53]. On-line thermal instability testing does not reassure the utility that a 

repaired/overhauled generator rotor is fit for service prior to commissioning. Any remedial action 

necessary comes at a high expense of decommissioning, fault finding, repair and retesting. This 

methodology is thus not suited for the testing of repaired/overhauled rotors but is best suited to 

vibration problems experienced during the rotor’s operational lifetime.  

 

It falls to CTIT and FTIT to determine reliably whether a rotor has a thermal sensitivity problem 

prior to the rotor being dispatched to site and commissioned. These tests are performed at the 

repairer’s facility where any remedial action can be performed in house and retested conveniently at 

a lower expense. Figure 3.14 (below) illustrates a typical testing scenario used by an OEM/utility 

when performing CTIT within a balancing facility. A rigorous testing process is followed with 

multiple thermal balances, frequent electrical testing and inspections. The process is concluded with 

a final thermal balance performed on-line after the rotor has been commissioned [55]. 

 

Once again the difficulty arises as to which method would be best suited to detect a thermal 

sensitivity problem. The answer to this question is not obvious, as the research related to these areas 

of study is either proprietary information or has not been explored as yet. The first step into trying to 

answer any of the above questions would be to determine the differences between CTIT and FTIT. 

The presented research focuses on determining the difference between CTIT and FTIT as testing 

models. As mentioned previously, as final proving techniques, these testing modes can adversely 

affect the manufacturer/repairer as well as the operator. The following sections present some 

background history of thermal sensitivity as well as previously conducted research. 

3.6 Solutions to rotor thermal sensitivity/instability 

A number of novel ideas have been proposed over the years to deal with rotor thermal sensitivity.  

The best form of prevention is in the design of a generator rotor. A rotor should be designed to 

minimise potential thermal sensitivity. Factors that contribute to design improvements are frictional 

coefficients between components, rotor slots, rotor wedges, cooling and rotor length. A compromise 

balance has already been mentioned in the section above, and is achieved by adjusting the rotor cold 

balance condition at rated speed so as to influence the balance behaviour under operating conditions. 

This method is suited to slight thermal vibrations that are linear in nature. 

 

The concept of thermal balancing of generator rotors is proposed in [56]. This process involves the 

insertion of an obstruction into the rotor axial ventilation ducts. The rotor vibration is monitored as 
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the temperature changes in order to determine where the obstruction should be inserted. The 

vibration data are captured on a polar plot, and the direction of the thermal vector is found to be the 

same as that of a static weight added to the warmer side of the rotor body. 

 

 

Figure 3.14: Process flow diagram for the thermal balancing of a generator rotor 

Consequently, the obstruction will correspond to the location of the weight. However, the magnitude 

of the correction is determined by a process of trial and error. Once the location and number of 

ventilation slots to be blocked are determined, blocking strips are inserted into the slots through the 

generator air-gap. Silicone rubber plugs have also been used for the same purpose [57]. This has 

been found to be a difficult and time-consuming process. In essence, this method modifies the 

rotor’s cooling arrangement to compensate for the thermal imbalance. The benefit of this method is 

that it can be performed in situ. However, the feasibility of this method has yet to be determined, as 

it has not been found to be an adopted technique. Different rotor designs may not allow access to the 

ventilation slots without removing the CRR. The method also results in the introduction of a foreign 

body within the rotor that may become dislodged and cause a malfunction during operation [58].   
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An online automatic rebalancing technique utilising mounted heater elements is proposed by [59]. In 

order to be able to thermally balance a rotor, dedicated heater elements are mounted on the 

circumference of the rotor and are actively controlled to maintain thermal balance. A control system 

is used to automatically adjust the heating element temperatures in real time to maintain thermal 

balance. This is, however, not the first time this method has been proposed, as General Electric 

patented a similar system in 1964 [60]. This method possesses a number of risks, including the 

introduction of foreign material, and has not been proved as a viable solution to thermal instability. 

3.7 Historical overview of thermal sensitivity/instability 

It was initially discovered that a rotor can experience a thermal imbalance attributable to the 

production of high vibrations by the asymmetrical heating or cooling of the rotor (an example of the 

earliest reports was published in 1947 by a manufacturer in [56]).  This development incited further 

research into the causes of thermal imbalance as well as efforts to mitigate the effects experienced. A 

number of factors including tolerances and dimensions of materials, cooling, contamination and 

paint thickness were found to contribute to thermal imbalances. Sensitivity to these factors increased 

with rotor size, as this problem was not evident in smaller units [57]. Further research uncovered that 

electrical effects caused by rotor winding inter-turn shorts can lead to thermal sensitivity  [61]. In the 

1960s, OEMs began to recognise the problem and proposed patented solutions to detect and solve 

thermal sensitivity failures. These included online automatic thermal balancing and the introduction 

of an in-house ‘heatrun’ at rated speed [4], [60].   

 

By the 1980s, generator rotors had gradually increased in size and rating. OEMs had started to 

recognise the importance of design considerations in relation to thermal sensitivity as well as 

introducing a thermal balancing procedure as part of their factory acceptance criteria [62]. 

Mainstream recognition was given to the phenomena of thermal sensitivity in the 1990s, with 

notable works such as [45], [52].  Reasons were given for the behaviour of rotors that experience 

thermal sensitivity as well as industrial experiences. A procedure for on-line thermal sensitivity 

testing was outlined for the first time. Recognition was given to thermal sensitivity, with the 

inclusion of a section on rotor vibration in an international standard [31].  

 

In the 2000s, thermal sensitivity testing was being adopted by a number of utilities, making it no 

longer exclusive to OEMs. During this period, many behavioural anomalies were found in relation to 

thermal sensitivity as well as means of combating the problem. There was a unique case where a 

rotor exhibited both linear and non-linear vibration [63], [64]. Figure 3.15 (below) illustrates a 

timeline of the milestones of developments in the area of rotor thermal sensitivity. During this 

period, the testing methodology presented for thermal sensitivity within the factory balancing facility 

was not accounted for. A methodology for on-line testing was presented in [52], but insufficient 

detail was presented for a ‘heatrun’ test mentioned in [4] (owing to proprietary information) as well 
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as a thermal balancing test in [55]. The suitability of these in-house testing methodologies to detect 

latent thermal sensitivity mechanisms is not apparent at present.  

 

 

Figure 3.15: Basic timeline of the understanding and detection of thermal sensitivity  

3.8 Conclusion 

In this chapter, the intricacies of generator rotor construction are presented. This information assists 

the reader to understand how these complexities can make a turbo-generator rotor susceptible to 

thermal sensitivity. Furthermore, the theory surrounding TIT is evaluated and its shortcomings 

exposed.  

 

The different components that form the structure of the generator rotor are reviewed: rotor forging, 

shaft, winding and exciter assembly. Modern generator rotors have grown in size and complexity 

over the years as the demand for energy increases. This development has resulted in varying designs 

that experience unique problems when all the different components come together to form the rotor 

assembly, with the expectation of homogenous operation. This chapter presents an overview of the 

vibration behaviour related to this unique design covering both mechanical and thermally induced 

vibrations. 

 

A framework for methods used to perform TIT is also presented, providing a systematic approach to 

how TIT is performed. Three methods are reviewed: online thermal instability testing, CTIT and 

FTIT. These testing methodologies are seen as the most critical final proving mechanisms to ensure 

that a rotor is fit for service. Neither the methodology for these tests (especially CTIT and FTIT)  nor 

which test is best suited for detecting latent thermal instability problems could be ascertained. 

Practices related to these testing methodologies can pose a major risk to utilities and OEMS in 

regard to financial losses and component reliability, especially since no international standard exists. 

Thus, it would seem that these practices and methodologies are preferred because they form part of 

patented solutions that do not belong to the general knowledge base.  
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Chapter 4 | Development of a model to evaluate TIT techniques 

4.1 Introduction 

The phenomenon of generator rotor thermal sensitivity was initially observed during the early 1900s. 

The scope of research and advancement in this field has subsequently ranged from strategies to 

reduce failures associated with thermal sensitivity to design improvements to reduce potential 

thermal sensitivity. Although TIT models have been offered during this period, no clear description 

is available to account for numerous aspects of this phenomenon. These shortcomings are 

particularly evident in in-house factory acceptance testing, in which the differentiation between FTIT 

and CTIT is unclear. Thermal Instability Testing is a technique accepted by many OEMs and 

utilities, but the testing framework adopted is regarded as a patented solution. The uncertainty 

surrounding in-house TIT methods is further compounded by the absence of an international 

standard. The performance of TIT is significant from both a reliability and fault-finding perspective. 

Previous works have shown that detecting thermal sensitivity issues prior to despatching generator 

rotors for commercial operation is essential. In-house testing also facilitates a quicker fault-finding 

process and subsequent re-test to verify any remedial action. However, an adequate framework to 

determine the differences between FTIT and CTIT has not yet been proposed. 

 

This chapter aims to address the aforementioned shortcomings, specifically with regards to the in-

house TIT methodologies widely used by many utilities, OEMs and repairers globally. This is 

achieved by developing a direct thermal mapping method capable of highlighting the differences 

between FTIT and CTIT. Details of the experimental setup are presented. The capability of the 

experimental setup to produce detailed heat maps of the rotor surface is validated. A number of 

testing scenarios are proposed to evaluate TIT and assist with fault finding.  

4.2 The importance of differentiating between FTIT and CTIT 

A limited amount of work has been conducted over the years, as described in Section 3.7. A 

definitive understanding of in-house TIT methods does not exist. The deficiency can be overcome by 

directly evaluating the manner in which CTIT and FTIT function as tools for thermal sensitivity 

detection. It can, however, be assumed that in terms of engineering principles, the test methodologies 

differ fundamentally, as CTIT uses current as an excitation method, while FTIT relies on 

friction/windage. The fact that a generator rotor operates under current excitation could suggest that 

this would be a preferred method to detect latent thermal unbalances. These inferences would be 

considered assumptions, needing to be tested and proven.  

 

Therefore, a methodology to assist in differentiating between the two techniques is imperative. The 

method should assist with determining the detailed thermal distribution of the entire surface of a 

turbo-generator rotor and account for the practical aspects of the rotor assembly and manufacture, 
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not just the ideal design condition. Furthermore, the possibility of utilising the test methodology as a 

fault-finding tool needs to be investigated. 

4.3 Thermal analysis of generator rotors undergoing TIT 

The detection of rotor thermal sensitivity does not rely on any thermal characteristics measured 

during testing but rather on vibration monitoring. A thermal bow associated with thermal sensitivity 

is detected via vibration data. However, data analysis seldom helps in locating the problem area. 

Solutions to the problem generally involve a compromise balance for minor imbalances or a full 

strip down for fault detection and repair for a major imbalance. Very little attention is given to the 

thermal characteristics of the rotor during testing. Rotor winding temperature may be determined 

using the following formula:  

 

 
𝑇𝐻𝑂𝑇 = {(

𝑅𝐻𝑂𝑇

𝑅𝐶𝑂𝐿𝐷
) (234.5 +  𝑇𝐶𝑂𝐿𝐷)} − 234.5 

 

(4.1) 

              

where RHOT is the winding resistance at the testing point,  RCOLD is the winding resistance at the 

reference temperature, TCOLD is the reference temperature value, and 234.5 is the thermal 

conductivity of copper. In solving this equation, it is necessary to be aware of sources of uncertainty. 

Uncertainty can be categorised as either epistemic or aleatory [65]. Aleatoric uncertainty is 

characterised by the lack of predictability or intrinsic randomness of a phenomenon; epistemic 

uncertainty is characterised by a deficit of knowledge. This approach requires that resistance and 

physical temperature measurements be known at a specific current and voltage level to obtain a 

reference value. Subsequent temperature rises can be calculated by utilising the rotor resistance 

measurement. The resistance measurement needs to be accurate and can be significantly affected by 

inaccuracies and errors in voltage and current readings [66]. This form of temperature monitoring is 

relatively basic, as it does not account for hot spots within the winding but rather the average rotor 

winding temperature. Furthermore, this method does not indicate the temperature of the rotor’s other 

extremities such as the shaft, CRRs, or rotor surface. This would be valuable information [67]. The 

uneven thermal profiles of all of these components can lead to thermal instability. This drawback 

undermines the reliability of this model as a means to determine rotor thermal characteristics. It best 

serves to indicate average temperature while performing TIT. Accurately determining the thermal 

characteristics of the entire generator rotor body would be invaluable in determining the differences 

between FTIT and CTIT through a practical method that is not influenced by epistemic uncertainty. 

The main thermal parameters that govern the heat transfer processes during TIT will be discussed in 

the next section. 
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4.4 Thermal parameters governing TIT 

Heat can be transferred by conduction, convection or radiation. The transfer of heat between the 

particles of a medium is referred to as conduction and applies mostly to solid bodies. Heat transfer 

within fluids and gases is known as convection. Radiation is the measure of photons that an object 

emits, which is determined by the emissivity, surface area and temperature of the object. The effects 

of radiation in an electrical machine are minimal and are therefore considered negligible [68]. Most 

thermal aspects of a machine can be accounted for by conduction and convection. Furthermore, 

contact resistance between the different materials of the generator rotor can lead to thermal 

variations that need to be accounted for. 

4.4.1 Conduction 

The discipline of conduction heat transfer was mathematically outlined by JB Fourier in an 1822 

publication. The observation of one-dimensional heat flow in a rod gave rise to Fourier’s Law of 

Conduction which stated “the time rate of heat transfer through a material is proportional to the 

negative gradient in the temperature and to the area [69].” The one-dimensional conduction equation 

is given by 

 

 
𝑞𝑥˝ =

𝑞𝑥

𝐴
= −𝑘

𝑑𝑇

𝑑𝑥
 

 

(4.2) 

 

where qx˝ is the rate of heat flux, qx is the heat rate, A is the cross-section area of the object, k is the 

thermal conductivity and T is the temperature [70].  Heat flows from an area of higher temperature to 

one of lower temperature, so a negative sign is used in the equation. The equation can also apply to a 

three-dimensional vector quantity T(x,y,z). 

 

 
𝑞˝ = 𝑘∇𝑇 = −𝑘 (𝑖

𝜕𝑇

𝜕𝑥
+ 𝑗

𝜕𝑇

𝜕𝑦
+ 𝑘

𝜕𝑇

𝜕𝑧
) 

 

(4.3) 

 

Furthermore, the heat transfer equation can be derived in the Cartesian coordinate system. 

 

 𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝑞̇ = 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

 

(4.4) 

 

where 𝑞̇ is the volumetric rate of heat generation, 𝜌 is the density and c is the specific heat of a 

medium. To enhance the thermal analysis of electrical machinery owing to their geometry 

specificity, the heat transfer equation can be further represented in the cylindrical coordinate system. 
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(4.5) 

 

The heat transfer equation defines the conduction characteristics of a generator rotor undergoing 

FTIT or CTIT. The following section will outline the convection mechanism of heat transfer. 

4.4.2 Convection 

Convective heat transfer occurs when a moving fluid and a solid surface interact at a dissimilar 

temperature. Convection heat transfer can be either natural or forced. Forced convention occurs 

when the fluid flow is induced by an external mechanism e.g. the fan arrangement of the generator 

rotor body (see Section 3.2.2.). Natural convection, also referred to as buoyancy-induced flow, relies 

on a natural process to create heat flow i.e. lower density (hotter) elements rise as high density 

(colder) elements flow downwards under the influence of gravity, creating a natural fluid flow. The 

convection heat transfer equation is stated as  

 

 𝑞𝑐𝑜𝑛𝑣 = ℎ𝐴(∆𝑇) = ℎ𝐴(𝑇𝑠 − 𝑇∞) (4.6) 

 

where h is the convection heat transfer coefficient, A is the surface area, Ts is the surface temperature 

and 𝑇∞ is the fluid temperature. The value of h is dependent on velocity; a higher velocity means a 

higher heat transfer coefficient value. Therefore, the value of h in forced convection exceeds that of 

natural convection. 

 

The ratio of convection to conduction is defined as the Nusselt number, which is a dimensionless 

value.  

 𝑁𝑢 =
𝑞𝑐𝑜𝑛𝑣

𝑞𝑐𝑜𝑛𝑑
 

 

(4.7) 

 

where  qconv is the convection heat transfer and qcond is the conduction heat transfer. A high-value 

Nusselt number indicates that convection heat transfer exceeds that of conduction. The convection 

heat transfer coefficient can thus be calculated by  

 

 
ℎ =

𝑁𝑢𝑘

𝐿
 

 

(4.8) 

 

Where k is the fluid conduction coefficient and L is the length. In the next section, forced convection 

will be discussed, as this is the conventional cooling method of large turbo-generators. 



Chapter 4 | Development of a model to evaluate TIT techniques 

 

 

43 

 

4.4.3 Forced convection 

Forced convection fluid flow within the air gap of a generator rotor can be classified as laminar, 

turbulent or a combination of both, i.e. vortex. Factors affecting the type of fluid flow are: flow 

velocity, rotor surface geometry, air gap width and type of fluid. The air gap is essentially situated 

between two cylinders, i.e. the rotor body and the stator bore or rotor body and balancing tunnel 

during TIT. Therefore, the flow characteristic between these cylinders can be defined for the Taylor 

number (Ta), calculated as  

 

 

𝑇𝑎 = 𝑅𝑒√
𝐿𝑔

𝑟𝑟
 

 

 

(4.9) 

 

where Re is the Reynolds number, Lg is the length of the airgap and rr is the rotor radius [71].  

The Nusselt number is calculated as follows depending on the value of Ta.  

 

 𝑁𝑢 = 2.2 (4.10) 

 

If Ta is less than 41, the above equation applies, characterising laminar flow. When Ta is greater than 

a 100, turbulent flow will be experienced and is  

 

 𝑁𝑢 = 0.23𝑇𝑎
0.63𝑃𝑟0.27 (4.11) 

 

where Pr is the Prandl number. A combination flow or vortex flow is when the value is between 41 

and a hundred, defined in equation 4.12. 

 

 𝑁𝑢 = 0.386𝑇𝑎
0.5𝑃𝑟0.27 (4.12) 

 

Forced convection is the favoured method of cooling in large turbo-generators. The method is 

efficient and allows for the construction of higher rated units that operate at lower temperatures. 

4.4.4 Contact resistance 

Turbo-generators are constructed of numerous materials, as described in Section 3.2. The contact or 

interface between these materials can significantly affect the thermal distribution of the rotor. An 

appreciable temperature drop is experienced at a material interface point. This is dependent on the 

surface roughness/finish of the materials. At interface points that are peaks, good contact is made, 

while poor contact is made at valleys. The gaps created are generally filled by gas or fluid, 

depending on the manufacturing process or operation. The contact resistance created is difficult to 

analyse as conduction, convection and radiation heat transfer occur at the interface. Contact 
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resistance is a function of surface roughness, contact pressure, type of matter within the air-gap, 

material properties and air-gap temperature. Furthermore, the resistance value can be decreased by 

improving the surface finish, increasing the contact pressure and inserting a better thermal conductor 

within the air-gap [72]. 

 

The complex construction of the generator rotor gives rise to a number of areas of contact resistance 

e.g. coils and insulating material, steel shaft and insulating material, shrunk-on components, wedges 

and body, to name a few. The varied and complex interactions of the different materials make 

calculating the contact resistances within a generator rotor rather difficult [73].  

4.5 Turbo-generator rotor losses 

The symptom for losses in an electric machine is the generation of heat, an understanding of which 

is essential in determining thermal performance. The generated losses can be of electromagnetic or 

mechanical origin. The main sources of losses during turbo-generator TIT are copper and frictional 

losses. 

 

Copper losses in the turbo-generator are easily determined. The current source (I) of the rotor is DC 

in nature and passes through a copper conductor of resistance (R). The copper loss (Pc) is calculated 

using equation 4.13. 

 

 𝑃𝑐 = 𝐼2𝑅 (4.13) 

 

Frictional losses originate from two sources: bearing losses and windage losses. Both of these 

components are dependent on rotational speed. Bearing losses occur due to the friction between the 

rotating shaft and bearing housing. These losses are sensitive to type of lubrication fluid, bearing 

type and loading. Bearing loss (Pb) can be calculated using: 

 

 𝑃𝑏 = 0.5𝜔𝑘𝑓𝑟𝐹𝑑𝑏 (4.14) 

 

where kfr is the bearing coefficient of  friction, F is the bearing dynamic load and db is the bearing 

inner diameter. 

 

Windage losses occur during the interaction of the rotor body and the surrounding air medium (air is 

the medium surrounding the rotor during TIT). The velocity of the fluid flow of the air in the 

balancing tunnel is the same as the rotor velocity, except for the layer of air on the rotor surface, 

which is stationary. This condition results in a drag torque being created, leading to frictional losses. 

Windage loss (Pw) can be calculated using: 
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𝑃𝑤 =

1

32
𝑘𝑠𝐶𝑀𝜋𝜌𝑎𝜔3𝑑2𝐿 

(4.15) 

 

where ks is the surface roughness/finish coefficient, CM is the torque coefficient, 𝜌𝑎 is the density of 

air, d is the rotor outside diameter and L is the length [74]. 

4.6 TIT analysis approaches 

The previous section covers basic theory regarding heat transfer. As an initial step, taking into 

account the distinctive design of the generator rotor, thermal analysis can be conducted using 

modern methods such as a lumped-parameter thermal network (LPTN) or numerical methods such 

as finite-element analysis (FEA) or computational fluid dynamics (CFD) [75]. The suitability of 

these analytic techniques will be evaluated in this section.  

4.6.1 Lumped-parameter thermal network  

LPTN analysis or thermal resistance network analysis is the most conventional analytical approach 

to estimate the temperature rise of electric machines [76]. The fundamental theory is that thermal 

systems are analogous to electrical circuits. This relationship indicates that the defining criteria for 

one system can be used to describe another, i.e. circuit theory concepts apply to an equivalent 

thermal network. The derivations of the following equations can be achieved by solving the one-

dimension heat transfer equation. The thermal resistance (Rt-x) through a plain layer is  

 

 
𝑅𝑡−𝑥 =

∆𝑇

𝑞𝑥
=

𝐿

𝑘𝐴
 

 

(4.16) 

 

where L is the plain layer thickness, k is the conduction coefficient and A is the cross-sectional area. 

The radial thermal resistance through a cylindrical shell (Rt-r) is 

 

 

𝑅𝑡−𝑟 =
𝑙𝑛 (

𝑟2
𝑟1

)

2𝜋𝐿𝑘
 

 

 

(4.17) 

 

where r2 is the outer radius, r1 the inner radius and L the axial length. The axial thermal resistance 

through a cylindrical shell (Rt-a) is 

 

 
𝑇𝑡−𝑎 =

𝐿

𝜋𝑘(𝑟2
2 − 𝑟1

2)
 

 

(4.18) 

 

This method can be broadly divided into two sections of computation, according to the source, heat-

transfer and flow-network analysis [75]. Heat transfer analysis accounts for the thermal aspects, 
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while flow-network analysis accounts for the fluid dynamics aspects of the electrical network. The 

equivalences between common quantities are shown in Table 4.1 (below). 

Table 4.1: Quantity equivalences for lumped-parameter thermal model 

Thermal Quantities Electrical Quantities 

Temperature (°C) Voltage (V) 

Heat (Q) Current (I) 

Heat flux (q) Current density (J) 

Thermal resistance (Rth) Resistance (R) 

Thermal resistivity (ρth) Resistivity (ρ) 

Thermal capacitance (Cth) Capacitance (C) 

Thermal conductance (Gth) Conductance (G) 

Thermal conductivity (λ) Conductivity (σ) 

 

LPTN analysis has become prominent as a result of the work outlined in [77] related to totally 

enclosed fan-cooled electrical machines. The prevalence of this estimating method is due to the 

quick solution times it provides, requiring reduced computational effort. Furthermore, knowledge of 

electrical principles makes accessing and understanding the solving framework straightforward. The 

determination of thermal resistances, however, can be challenging and requires a great effort on the 

part of the user [78]. In the last decade, substantial innovation has taken place to improve LPTN 

methods and better account for the thermal parameters that are challenging to estimate [73], [79]- 

[84]. In recent years, the technique has been widely used, although analysis associated with large 

turbo-generators is not prevalent [73], [85] - [91]. As with all methods of analysis, a detailed 

knowledge of machine characteristics is essential to enable accurate analysis: inaccuracies in 

dimensional data, operating specifications and material thermal properties will result in unreliable 

results. Complex geometries are difficult to analyse using LPTN analysis e.g. stator windings and 

the rotor [92].  

4.6.2 Numerical method – FEA and CFD 

FEA and CFD are the two prominent numerical methods used to analyse heat transfer of electrical 

machines, providing a high degree of accuracy as compared to LPTN. However, these methods 

require significant computational effort, especially when intricate component geometries or non-

homogeneous components are analysed. 

 

FEA is a complex method defined by a system of partial differential equations [93], [94]. As with 

LPTN, detailed knowledge of the component being analysed is required to ensure that correct heat 

conduction information is utilised. Intricate models can be labour and time intensive to set up and 

configure. The most crucial limitation of FEA in regard to turbo-generator analysis is that it is 

incapable of analysing cooling flow [95]. 
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CFD is capable of analysing heat transfer as well as dynamic fluid flow. These capabilities make 

CDF a very powerful tool to evaluate both 2-D and 3-D models. Similar to FEA, CFD is defined by 

a system of partial differential equations referred to as the conservation equations. Mastering CFD 

requires specialised skills and knowledge of the CFD modelling software package. Accuracy can 

only be assured by improved modelling techniques where consideration is given to defining accurate 

boundary conditions, defining interface gaps, building precise geometries and utilising accurate 

machine specifications. The high computational processing power required by CFD creates long lead 

times to complete solutions. Setting up the framework for the solution is also time consuming and in 

some instances may take up to several months [96].  

4.6.3 Modelling methodology consideration 

In this section, LPTN, FEA and CFD will be evaluated to achieve the objectives outlined in Section 

4.2. All the analytical methods considered are dependent on input data for accurate results. The 

immediate challenge, from the perspective of a utility/non-OEM repairer, would be acquiring the 

information necessary to undertake the analysis. Information regarding design geometries and 

machine parameters is impossible to acquire from turbo-generator OEMs. If intellectual property is 

shared, the repercussions will compromise the OEM’s ability to be competitive, innovative and 

profitable within the power generation industry.  

 

Assuming readily available data, all of the analysis methods are well suited to the design evaluation 

of the thermal performance of a generator rotor, based on ideal parameters. Turbo-generator rotors 

are designed to produce a uniform thermal distribution along the rotor body, but in reality this is not 

the case [4]. The difficulty arises when specific tolerances and assembly differences develop during 

the repair or winding process of the rotor that cannot be accounted for by the design. Years of 

operation and maintenance alters the rotor components and tolerances from the initial design 

specifications. If these parameters could be determined, the resources required to perform 

simulations for every rotor design undergoing TIT would not be feasible. Hence, a practicable 

method that takes into account all the parameter variations is required to determine the thermal 

performance of the rotor. 

 

Furthermore, assuming that all the design variations could be modelled, LPTN will not be 

considered due to its limitations in regard to complex geometries and accuracy. FEA has been 

successfully utilised in the past for the analysis of heat flow in synchronous machines [97], [98]. Of 

particular interest is an analysis by [99] related to shorted turns, thermal unbalances and 

manufacturing non-conformities of a turbo-generator rotor. The complexity of the rotor, however, 

led to extensive discretisation of the model at the expense of accuracy. Furthermore, the inability of 
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FEA to analyse fluid flow makes it an unsuitable method, as turbo-generator rotors rely on fluid flow 

for the cooling circuit.  

 

CFD is well suited to the intended application, but the high computational processing power required 

to model a 3-D turbo-generator rotor at steady state renders the method practically and financially 

unfeasible [100]. Discretisation of the model can be considered to reduce the processing power 

required [97], [101]. However, simplification of the rotor model would lead to a loss of detail. For 

example, take the modelling of a turbo-generator rotor cooling circuit. Generator rotor winding 

designs vary considerably depending on the OEM. The cooling medium is in direct contact with the 

winding to facilitate the transfer of heat effectively and uniformly. To be able to model this process, 

a detailed understanding of the cooling design is necessary. The flow of the cooling medium is 

dependent on operational speed, rotor surface wedge configuration, rotor geometry and the cooling 

design. These complexities make the modelling process difficult and lead to a number of 

assumptions being made to reduce the detail of the model. Consequently, simulation accuracy will 

be inadequate and may not indicate the true thermal performance of the rotor. Furthermore, changes, 

errors or problems during refurbishment cannot be accounted for by CFD or FEA. 

 

In most scenarios where any type of modelling takes place, the completed solution needs to be 

verified. During the verification process, empirical data is required to calibrate analytical models to 

ensure accuracy [75]. An approach to directly map the thermal signature of a turbo-generator rotor is 

a feasible option. A practical method is required to be able to incorporate all design inconstancies 

and produce a true representation of the actual physical thermal signature of the methods utilised to 

detect thermal sensitivity. This approach will negate the need to perform any modelling process. 

4.7 Formulation of a physical testing method 

The previous section shows that modern thermal analysis techniques are unsuitable for the purpose 

of producing an accurate thermal analysis of the different types of TIT methods. A direct mapping 

method to physically determine the thermal distribution of a turbo-generator rotor body is presented 

in this section. This is achieved by devising an experimental setup capable of thermally mapping the 

rotor. This experimental technique will help to improve on associated shortcomings posed by 

contemporary testing methodologies, namely FTIT and CTIT. 

4.7.1 Use of infrared sensors 

Section 4.3 discusses the deficiencies of contemporary methods of thermal measurement. These 

shortcomings must be overcome to facilitate accurate temperature measurement of the experimental 

setup. Rotor telemetry systems have been devised to monitor rotor ground faults and temperature 

measurement; the technology has improved significantly within the past decade. Temperatures are 

monitored by installing resistance temperature detectors (RTDs) within the rotor winding slots and 
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under the CRRs. The connections are wired to an antenna mounted on the rotor body. The antenna 

transmits the digitised temperature values to a data acquisition unit external to the generator [102]. 

This method is dependent on the number of RTDs installed for accurate measurement of the thermal 

distribution of the rotor. Hot spot detection may still be a challenge depending on the RTD layout. 

Furthermore, the method requires significant modifications to the rotor insulation system to facilitate 

the installation of the RTDs and routing of the connections, which will involve substantial rotor 

disassembly. The invasive nature of the process would lead to further design variations that could 

affect rotor operation and thermal performance. Therefore, this method of temperature detection is 

ruled out for the experimental setup. 

 

The widespread use of infrared thermography within the electrical industry has been commonplace 

for a number of years [103] – [105]. This non-contact, non-invasive method produces reliable and 

accurate results for fault finding and trouble shooting. Temperature measurements are made possible 

by detecting the radiant flux of an object; a temperature output is calculated through a calibration 

algorithm. Also referred to as a radiation thermometer, many varieties are available on the market 

today, from thermal imaging cameras to singular probes. Devices are able to measure a wide variety 

of temperature ranges and can operate at high speeds, making this approach an ideal choice for the 

proposed experimental setup [106]. 

4.7.2 Heat map 

The preferred method of data capture is in the form of a matrix of temperature values corresponding 

to the physical mapping of the surface of the generator rotor. The method must transform these 

temperature measurements and physical coordinates into a 2-D heat map. Simply put, the direct 

thermal mapping method must present the 3-D temperature data (of the rotor surface) as a 2-D heat 

map. A heat map consists of a number of rectangular rows and columns that represent data values 

against a colour scale. This is a widely used method to display large matrices within many different 

fields such as natural sciences and biological science [107], [108]. Ultimately, the experimental 

setup required to map the temperature distribution of the rotor must be able to output data that can 

lead to the information being displayed as a heat map for easy interpretation to determine the 

differences between FTIT and CTIT.  

4.7.3 Experimental setup 

The use of a full scale turbo-generator rotor for the test setup is not feasible, as the availability of 

crucial generating and testing plant is reserved for commercial operation. Critical spares such as a 

large rotor cannot be made available for testing. The use of a balancing facility also comes at a great 

cost and associated operational risk. Thus, the experimental test setup is based on an appropriately 

scaled model for analysis. 
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4.7.3.1 Scaled 600 MW mini-rotor  

A mini-rotor rated at 20 kVA designed to mimic a 600 MW generator rotor is used for analysis, as 

TIT is most prevalent in larger units. The rotor is similar to a 600 MW rotor in the following aspects: 

• Two-pole 3000 rpm, 50 Hz 

• Distributed and concentric field windings 

• Damper bars 

• Shaft mounted slip-rings  

• Insulated bearings 

• Mono-block milled shaft with slots 

Table 4.2 (below) summarises the constructional details of both the mini-rotor as well as a typical 

600 MW generator rotor [109]. 

Table 4.2: Comparison of specifications of the mini-gen rotor and 600MW Turbo-generator rotor 

Parameter Mini-rotor 600 MW Generator rotor 

Rotor slots 32 32 

Damper bars 48 48 

Rotor diameter 178.5 mm 1165 mm 

Shaft length                            

(journal centres) 

885 mm 10990 mm 

Shaft diameter 67 mm 530 mm 

 

The mini-rotor is tested to diagnose any latent problems that may affect its operation and create 

inaccuracies in results obtained. An insulation resistance and an RSO test were conducted, and the 

mini-rotor was found to be in a serviceable condition. Refer to Appendix A for results of the test. 

4.7.3.2 Scaling of local balancing facility 

To reasonably reproduce conditions under which a conventional 600 MW rotor undergoes TIT, the 

experimental setup is scaled according to the local utility balancing facility. The scaling ratio is 

based on the length of the rotors. From Table 4.2, the shaft lengths are 885 mm and 10990 mm 

respectively; the mini-rotor is down-scaled approximately to the ratio 2:25. Thus, the enclosure is 

down-scaled to the same ratio. The enclosure scaling configuration is summarised in Table 4.3 

(below). 

Table 4.3: Scaling ratio of the mini-gen rotor and 600MW Turbo-generator rotor 

 Balancing facility 

dimensions  

Scaling ratio Enclosure dimensions 

Length (mm) 25748 2:25 2060 

Width (mm) 7840 2:25 627 

Height (mm) 7840 2:25 627 
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From Table 4.3, a 3-D model of the intended experimental setup is initially developed, as shown in 

Figure 4.1 (below). The enclosure is constructed out of 12 mm fibre board and insulated with a 

number of layers of styrofoam similar to the insulative properties of a full-scale balancing facility. 

At the drive end of the rotor, a face seal is constructed around the bearing housing to enable the shaft 

to rotate without any loss of air volume/heat within the enclosure. Rubber seals are also utilised at 

the base of the enclosure. The rotor is driven by an induction motor rated at 3000 rpm. The different 

aspects of the experimental setup construction are discussed in more detail in the following sections. 

Refer to Appendix B for the physical layout of the experimental setup. 

 

 

Figure 4. 1: Schematic of  scaled experimental configuration used for rotor thermal mapping 

4.7.3.3 Direct mapping with high-speed, high-resolution IR camera 

The experimental setup utilises a high-speed, high-resolution (382x288 pixels) 80 Hz infrared (IR) 

camera capable of capturing the surface data of the rotor, illustrated in Figure 4.2 (below). The 

spectral range of the camera is rated at 7.5 µm to 13 µm. The long wavelength range of the camera 

increases temperature accuracy and minimises atmospheric absorption. Furthermore, the IR camera 

is capable of discerning, in great detail, differences in temperature across large or small temperature 

scales. Refer to Appendix C for specifications of the IR Camera utilised. A viewing window is not 

utilised but rather an inspection aperture, as large discrepancies in temperature readings can result. 

Sources have reported errors in readings of up to 40% [110] – [112]. The camera lens mounts into 

the aperture via a rubber seal that prevents air/heat loss and enables accurate measurement.  
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Figure 4.2: Optris Pi450 compact high-speed, high-resolution IR Camera  

In essence, an IR camera detects radiation emitted from a body to determine the temperature. This is 

referred to as the emissivity of the material. Emissivity values range from 0 to 1. The higher the 

emissivity of the material, the greater the accuracy of the temperature measurement. A black body is 

referred to as a radiator as it radiates the maximum energy possible throughout the spectrum; an 

ideal radiator has an emissivity of 1. Therefore, the rotor body is painted with matt black paint to 

improve  the accuracy of the data captured by creating a measurement surface with a higher 

emissivity [106]. 

4.7.3.4 Direct winding temperature measurement 

The difficulties associated with determining the winding temperature of a generator rotor have 

already been mentioned. In brief, the measurement of an accurate average winding temperature 

depends on the capacity of the measuring instrumentation used as well as the method in which the 

voltage and current can be measured via the slip-rings without any interference. It should be 

highlighted that hot spot detection is not possible using this methodology [113]. 

 

 

Figure 4.3: Picture of focus area of laser-guided pyrometer to capture the rotor winding temperature 
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These difficulties are overcome by capturing the winding temperature with a laser-guided IR 

pyrometer and painting the copper windings black to improve accuracy, as illustrated in Figure 4.3 

(above). Hot spot detection is accomplished by the IR camera thermal map. The use of a laser-

guided pyrometer is significant as the area of analysis can be focused on with precision. The spectral 

range of the IR pyrometer is 7.5 µm to 13 µm with a high optical resolution of 75:1 and 9 ms 

response time. The error margin of the measurement is approximately within 1%. The speed and 

accuracy of this device suits the intended purpose of the experimental setup. The comparison of the 

winding temperature as well as the surface temperature will provide some insight into how heat 

diffuses from the windings. Furthermore, it will provide an indication of the internal temperature of 

the rotor. Refer to Appendix D for specifications of the laser-guided IR pyrometer. 

4.7.3.5 Rotor revolution tracking 

A keyphasor probe is utilised to determine the angular position of the mini-rotor. This is achieved 

with the aid of a fixed collar with a machined notch and a proximity probe. An output is received 

when the notch passes the proximity probe and indicates when one revolution has passed. Thanks to 

the once per-revolution event tracking, it will be possible to determine when a map of the entire rotor 

surface has been completed. This event further facilitates a point of reference that enables a fixed 

start and end point for the capturing of mapping data allowing for easy comparison of results 

obtained during different testing scenarios. This arrangement is illustrated in Figure 4.4 (below). 

 

 

Figure 4.4: Picture of keyphasor and proximity probe arrangement to determine once per revolution event 

4.7.3.6 Ambient and enclosure temperature monitoring 

A number of thermocouples monitor the ambient temperature as well as the temperature within the 

enclosure. Thermocouples are positioned on either side of the mini-rotor with pairs of thermocouples 

near the slip-ring, the centre of the body, and the drive end. A thermocouple is situated externally to 

determine the ambient temperature.  
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The fully commissioned experimental setup is illustrated in Figure 4.5 (below). Figure 4.6 (below) 

details the internal layout when the enclosure is removed. 

 

 

Figure 4.5: Picture of fully assembled and commissioned experimental setup 

 

 

Figure 4.6: Picture of internal layout of the experimental setup with the enclosure removed 



Chapter 4 | Development of a model to evaluate TIT techniques 

 

 

55 

 

4.7.4 Data capturing 

Data acquisition is facilitated in two streams. The data from the IR camera and proximity probe 

interface is captured via a data-acquisition unit linked to a computer utilising proprietary software 

from the IR camera manufacturer known as Optris PI Connect [114]. The winding, ambient, and 

enclosure temperatures are captured via a separate unit linked to a computer. All data is time 

stamped to facilitate data synchronisation. An overview of the experimental layout and data 

acquisition is shown in Figure 4.7 (below). 

 

 

Figure 4.7: Experimental layout with associated instrumentation to capture the thermal profile of the mini-

rotor 

4.7.5 Generating a thermal map of the rotor  

The initial step in constructing the heat map is to define the IR camera resolution pixel size that will 

correspond to the physical portion of the rotor to be measured. The distance of the IR camera from 

the test object (mini-rotor) determines the size of the measurement pixel and therefore the map 

resolution. The further away the IR camera is from the test object, the larger the pixel size. The pixel 

size is also dependant on the optical lens fitted to the IR Camera.  

 

For the experimental setup, a wide angle lens (62° x 49°) is used to enable full coverage of the mini-

rotor body while maintaining the smallest pixel size possible without compromising the capture of 



Chapter 4 | Development of a model to evaluate TIT techniques 

 

 

56 

 

significant details. The mini-rotor body is 500 mm in length with a diameter of 180 mm. The field of 

view of the camera is adjusted to be able to monitor the entire rotor body. This is accomplished by 

using the proprietary IR camera field of view calculation tool, illustrated in Figure 4.8 (below). A 

distance of 440 mm away from the rotor body is calculated to be the optimum field of view by virtue 

of yielding the following dimensions: the width or horizontal field of view (HFOV) is 527 mm, the 

height or vertical field of view (VFOV) is 396 mm and the diagonal or diagonal field of view 

(DFOV) is 659 mm. The instantaneous field of view (IFOV) is the geometric dimension of each 

pixel and is calculated to be 1.38 mm. For optimum measurement results, a 3x3 pixel measurement 

block known as the MFOV, or recommended smallest measured object size, is suggested by the 

source [114]. The MFOV is characterised by a group of pixels surrounding a central pixel. 

 

 

Figure 4.8: Field of view calculator used to determine camera pixel sample size for mini-rotor  

The IR camera is rated at 80 Hz i.e. the ability to capture 80 samples per second. The highest 

sampling accuracy to map the surface of the rotor is accomplished by operating the rotor at 1 Hz i.e. 

80 samples of the rotor body are taken during one revolution. Sampling of the IR camera in actuality 

is measured to be 77 Hz for the experimental setup. From the determined sampling rate, the optimum 

measurement pixel configuration is calculated as illustrated in Figure 4.9 (below). The rotor 

circumference is 565.5 mm: dividing this value by the sampling rate will produce the required pixel 

configuration size to map the rotor surface in the radial direction – 7.34 mm. The IFOV is 1.38 mm, 

thus the number of pixels required in the radial direction is calculated by dividing 7.34 mm by 1.38 

mm, yielding 5.31 pixels. Given that only whole pixels are utilised for measurement, 0.31 pixels 

corresponding to 0.44 mm of the rotor body will not be measured. This will result in approximately 

94% of the rotor body being mapped in the radial direction. The optimum number of pixels is the 

radial direction is thus 5 pixels.  
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In the axial direction, the optimal pixel number is chosen as 3, based on achieving a final pixel 

configuration closest to the optimum of 3x3. Thus, this final pixel configuration is a measuring 

cluster of 3x5 pixels. This hybrid cluster conforms to the 3x3 optimum measuring configuration as 

two central pixels are surrounded by adjacent pixels.  

 

The number of clusters required to map the rotor surface is calculated at approximately 120 (500 mm 

divided by 4.14 mm). The area not covered in the axial direction is measured to be 0.78 mm which is 

considered as negligible as the rotor body covering has an overhang which is larger than the winding 

i.e. the configuration is able to map the winding in its entirety, as it is smaller than that rotor body 

length.  

 

Figure 4.10 (below) illustrates the array used to generate the heat map. The output of the array is a 

matrix of temperature values that correspond to the rotor body. The data is processed and heat map 

generation is performed using Matlab. A high-resolution heat map is generated containing a matrix 

of 120x77 temperature values. 

 

 

Figure 4.9: Heat map sampling pixel arrangement base on the field of view of the infrared camera 
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Figure 4.10: Pixel cluster measurement array used to capture the thermal profile of the mini-rotor surface 

4.8 Verification of experimental setup for TIT method analysis 

A method to practically map the surface of a mini-rotor directly is presented. This method is able to 

take into consideration the non-uniformities of the mini-rotor construction as opposed to just the 

idealised design. The salient requirement of the experimental setup is to be able to detail the thermal 

distribution of the mini-rotor. This is facilitated by the use of a heat map containing temperature 

values that represent the physical thermal map of the rotor surface. The heat map will facilitate the 

practical evaluation of the two different methods of TIT. Furthermore, the heat map can be 

interpreted to assist in fault finding. By defining a methodology to scan an array of pixels on the 

rotor surface and utilising this data to form a matrix of temperature values, it is possible to create a 

heat map. A sample of a heat map created using the experimental setup is illustrated in Figure 4.11 

(below). 

 

The experimental setup is unable to determine the heat distribution within the rotor. This, however, 

is not the aim of the experimental setup and is not significant owing to the nature of heat diffusion 

within the rotor body. Heat is diffused from the coils, which are the heat source, to the surroundings. 

The surface covering of the rotor (fibre glass banding) is in close contact with coils, making heat 

diffusion easily detectible. The direct monitoring of the winding temperature, however, will give 

some indication as to the internal temperature of the rotor. To all intents and purposes, surface 

monitoring will practically and adequately determine the thermal distribution of the rotor. 

Furthermore, the 6% non-coverage error margin in the radial direction is found to be acceptable, as 

this does not represent a significant loss of area to prevent the accurate mapping of the rotor surface. 

The experimental setup is thus verified for the purpose of thermal mapping of the mini-rotor body 

surface. 

 

The challenges associated with the down scaled experimental setup are discussed in this section. 

During operation the cooling medium utilised is pressurised hydrogen. It is less dense than air 
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resulting in less windage and ventilation losses. Hydrogen gas also possesses greater efficiency at 

cooling the rotor having a higher thermal conductivity and surface heat transfer coefficient than that 

of air. TIT however is performed the world over in the absence of hydrogen. The cooling medium 

utilised is air and there are a number of reasons to support this practice but the primary reason being 

safety. During conventional TIT the slip-ring brush-gear assembly is housed within the testing 

facility in its entirety while during operation the assembly is housed outside the generator casing. 

This is done to prevent the ignition of hydrogen within the casing resulting in a catastrophic 

explosion and failure. This however does not make TIT testing in air invalid, the result being that the 

rotor will heat at a faster rate due to increased windage and decreased rotor surface heat transfer. 

This will have very little effect on the thermal behaviour of the rotor.  

 

Deep groove ball bearings are utilised in the experimental setup while half-moon white metal 

bearings are used in operation as well as in a conventional balancing facility. The thermal behaviour 

of these bearings differ as the ball bearing does not take advantage of jacking oil that is able to cool 

and lubricate the white metal bearings more efficiently creating less friction. TIT vibration analysis 

is largely dependent on bearing pedestal vibrations. The type of pedestal and bearing affect the 

measured output vibration. The vibration signature measured on a ball bearing and a half moon 

bearing will differ significantly making a comparison difficult. Furthermore, during operation the 

rotor is coupled to the turbine shaft which affects the stiffness of the rotor thereby changing the 

vibrational characteristics.   

 

The scaling factor utilised is based on the length of the local utility balancing facility as well as that 

of a 600 MW generator rotor. The length was used as it is the only constant that can be maintained in 

the scaling process. The mini-rotor diameter was influenced by the machine rating which determined 

the size of the armature required thus the form factor of the body, which did not scale 

proportionately to the diameter of the full scale rotor. The rotor body slots were machined according 

to this specification. The mini-rotor shaft diameter was determined in accordance to the rotor body 

and to facilitate an appropriate bearing system. Lastly, the scaling of the experimental rotor resulted 

in a shortened shaft of less mass and reduced rotor body diameter. This significantly increased the 

stiffness of the rotor as compared to a full scale rotor. The increased rotor stiffness results in a very 

stable rotor where a thermal bend will be improbable. This coupled with the bearing configuration 

produces a poor environment for vibrational analysis. The abovementioned variances are not 

considered critical, as the thermal behaviour of the rotor will not be affected to such an extent that 

the rotor thermal performance will not be adequately portrayed during testing. 
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Figure 4.11: Sample of a generated high resolution heat map  utilising the direct mapping method 

4.9 Conclusion 

In this chapter, thermal parameters that govern the heating behaviour of the rotor are defined. An 

extensive investigation into analytical as well as numerical methods to evaluate the different types of 

TIT is presented. LPTN methods are found to be best suited to quick and uncomplicated component 

analysis. Although FEA is well suited to complex geometries, it is unable to model fluid flow, which 

is imperative for the rotor cooling circuit. The complexities of CFD and the high analytical 

processing resources needed render this technique impractical. Furthermore, analytical and 

numerical techniques rely on accurate input data based on design specifications that may be 

proprietary information. These analysis techniques are also unable to cater for design variations in 

the final constructed component but rather rely on the ideal design details as input parameters. 

Therefore, modern analysis techniques are found to be unsuitable for the evaluation of TIT. 

 

A method to directly map the surface of a synchronous generator is presented. This is a practical 

approach, able to map the temperature profile of the rotor surface, accounting for all rotor design 

variations that may exist. The experimental setup is scaled according to the local balancing facility 

and is built, commissioned and validated to produce an accurate heat map of the rotor surface. Test 

scenarios are devised in the next chapter to evaluate CTIT, FTIT and the possibility of using the 

model to aid in fault detection. 
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Chapter 5 | TIT experimental results and analysis 

5.1 Introduction 

Chapter 2 highlights a local utility’s experience of a high rotor failure rate whilst undergoing TIT. 

This leads to the evaluation of the suitability of the test methodologies used to conduct TIT. It 

emerges that two TIT methodologies are utilised by utilities internationally, namely FTIT and CTIT, 

without preference. Additionally, it appears that there is neither preference for nor any well-

established grounds for selection of a particular method. Chapter 3 discusses how the unique design 

of the turbo-generator rotor makes it susceptible to thermally induced vibrations. Different methods 

used to perform TIT are evaluated for online and in-house testing. The methodologies utilised for in-

house testing, which are of particular interest, are difficult to evaluate owing to the lack of associated 

information, as these form part of  patented testing solutions offered by OEMs and service providers. 

Chapter 4 presents a framework to enable the thermal mapping of a generator rotor. The 

experimental setup is constructed and verified to thermally map the surface of a mini-rotor as well as 

to acquire a direct temperature measurement of the winding. Therefore, evaluation of the two types 

of testing methodologies is made possible through detailed analysis of the thermal behaviour of the 

mini-rotor under test conditions. 

 

The experimental results obtained from performing the FTIT and CTIT are presented in this chapter. 

Quantitative and qualitative analysis of the results from direct thermal mapping of the rotor under 

each test condition is carried out for the purposes of evaluation. Deficiencies of contemporary TIT 

modes are ascertained. Additionally, the fault detection capability of the direct thermal mapping 

method is presented.  

5.2 Overview of testing scenarios 

Different testing methodologies are considered to enable the effective utilisation of the experimental 

setup to evaluate the different aspects related to TIT. Three principle aspects are investigated: 

 Mapping the rotor under the effects of friction to evaluate FTIT. 

 Mapping the rotor under current excitation to evaluate CTIT. 

 Fault finding capability of the mapping method. 

 

FTIT is expected to take substantially longer to perform, as the primary source of heat generation is 

via the frictional interaction between the rotor surface and the surrounding air volume. Mapping of 

the rotor surface was performed at regular intervals to capture the thermal performance of the rotor. 

The winding temperature as well as the enclosure temperature were monitored. 
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CTIT was evaluated by injecting current into the mini-rotor winding at different levels. The current 

levels were maintained for a period of time, while thermal mapping was carried out at frequent 

intervals. The winding temperature as well as enclosure temperature was monitored.  

 

The fault-finding capability of the thermal mapping method was assessed by introducing a fault 

condition on the mini-rotor and thereafter attempting to identify and locate the fault area. 

5.3 Thermal map interpretation and physical orientation 

The physical representation of the thermal map presented in future sections is illustrated in Figure 

5.1 (below). All conventions were observed when viewing the rotor from the non-drive end. The 

thermal map orientation is of the rotor body with the non-drive end associated with the x-axis. The 

rotors’ angle of rotation is in the clockwise direction. The y-axis is associated with the length of the 

rotor. 

 

 

Figure 5.1: Schematic explaining thermal map display orientation showing x and y axes 
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5.3.1 Scenario 1: FTIT 

FTIT was performed under the influence of air friction/windage while the rotor was operated at 3000 

rpm. The test was run for eight hours and readings were taken every 30 minutes. A time-based 

evaluation approach was followed owing to the nature of the heating mechanism. During the 

temperature mapping process, the rotor speed was decreased via controlling the speed of prime 

mover (induction machine). Rotational speed was decreased to 60 rpm with consideration of the 

maximum sampling rate of the camera. Upon completion, the rotor was run-up to 3000 rpm. During 

this process, surface mapping, winding temperature, enclosure temperature and ambient temperature 

were recorded. 

 

The ambient temperature measured 20°C at a barometric pressure of 831.3 mbar at the time of 

testing and fluctuated to a small degree measuring 22°C at the conclusion of the rest. The average 

surface, enclosure and ambient temperatures are plotted in Figure 5.2 (below) for the eight-hour time 

duration. The average surface temperature, heating rate was observed to be higher for the first four 

hours of the test, being 7.3°C per hour. For the final four hours of the test, the average heating rate 

decreased to 2.55 °C per hour. This trend indicates that the rotor surface has reached thermal 

equilibrium and that the full spectrum of heating behaviour of the rotor was captured using the 

friction mechanism for the chosen time duration.   

 

 

Figure 5.2: Plot of FTIT average surface temperature over the 480 minute test duration 

Temperature recordings, at two-hour intervals, related to FTIT are presented in Figures 5.3 to 5.8 

(below). For the entire sequence of temperature data captured (every 30 minutes), refer to Appendix 

E. Each figure consists of a thermal map of the surface of the rotor at a specific time interval with 

associated data i.e. average rotor surface temperature, average temperature distribution along the 

vertical and horizontal planes, and a histogram consisting of all bin values recorded during the entire 

test duration. All further temperature data presented in this chapter follow the same format. 
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Figure 5.3: Temperature data analysis for FTIT at 0 minutes 
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Figure 5.4: Temperature data analysis for FTIT at 120 min 
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Figure 5.5: Temperature data analysis for FTIT at 240 minutes 
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Figure 5.6: Temperature data analysis for FTIT at 360 minutes 
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Figure 5.7: Large scale thermal map for FTIT at 480 minutes 
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Figure 5.8: Temperature data analysis for FTIT at 480 minutes 

Figure 5.3 (above) summarises the initial temperature distribution of the rotor surface prior to the 

commencement of the test, with an average surface temperature of 23.40 °C. The maximum average 

surface temperature achieved after eight hours was 62.89 °C. The surface temperature of the rotor 

does not follow a typical distribution. The histogram data for each testing interval captured is found 

to be positively skewed or skewed to the right. A trend is observed where the average horizontal 

temperature distribution showed that higher temperatures were experienced towards the non-drive 

end of the mini-rotor. The temperature gradient is clearly observed on the thermal maps and the 

trend is consistent throughout the test. A large-scale high-resolution thermal map is presented in 

Figure 5.7 (above) where the temperature distribution can be observed in detail. The drive-end of the 

mini-rotor was operated at a significantly lower temperature. The temperature difference between the 

drive and non-drive ends varied by up to 4°C throughout the testing procedure. This is significant, as 

even the slightest differences in temperature can lead to thermal sensitivity. The cause of this was 

suspected to be attributable either to bearing losses or rub at the non-drive end or heat generated by 

the slip-ring brush-gear interaction due to frictional losses. To determine the origin of the 

temperature gradient, the brush-gear assembly was removed and the test repeated. 
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The ambient temperature measured 21 °C at a barometric pressure of 841.3 mbar at the time of FTIT 

re-testing and fluctuated to a small degree measuring 22°C at the conclusion of the rest. The average 

surface, enclosure and ambient temperatures are plotted in Figure 5.9 (below) for the eight-hour time 

duration. The average surface temperature heating rate was observed to be higher for the first four 

hours of the test, being 3.0°C per hour. For the final four hours of the test, the average heating rate 

was 1.0°C per hour. This outcome differed drastically from the FTIT with the brush-gear fitted, 

where a higher heating rate was experienced, indicating that the brush-gear influenced the heating 

rate.   

 

Temperature recordings, at two-hour intervals, related to FTIT with the brushes removed are 

presented in Figures 5.10 to 5.15 (below). For the entire sequence of temperature data captured 

(every 30 minutes), refer to Appendix F. Figure 5.10 (below) summarises the initial temperature 

distribution of the rotor surface prior to the commencement of the test: an average surface 

temperature of 23.2°C. The maximum average surface temperature achieved after eight hours was 

39.4°C as compared to 62.8°C achieved in the previous testing scenario, indicating a drop of 23.4°C, 

quantifying the thermal influence of the brush-gear.  

 

 

Figure 5. 9: Plot of FTIT average surface temperature over 480 minutes with brush-gear removed 

The skewness of the histogram data plots were much closer to 0, i.e. a normal distribution of 

temperatures. No trend was observed where the average horizontal temperature distribution showed 

that higher temperatures were being experienced towards the non-drive end of the mini-rotor. A 

near-uniform temperature distribution could be clearly observed on the thermal maps, and the trend 

was consistent throughout the test. A large-scale high-resolution thermal map is presented in Figure 

5.14 (below) where the temperature distribution can be observed in detail. The results obtained 

showed that the brush-gear slip-ring interaction introduced an additional thermal component that 

affected the rotor surface thermal distribution. The thermal losses experienced by the brush-gear 

slip-ring interaction were able to heat the rotor body to a significantly higher temperature at a higher 

thermal rate per hour. The gradient observed was proven to be due to this interaction.  
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Figure 5.10: Temperature data analysis for FTIT with brushes removed at 0 minutes 
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Figure 5.11: Temperature data analysis for FTIT with brushes removed at 120 minutes 
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Figure 5.12: Temperature data analysis for FTIT with brushes removed at 240 minutes 
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Figure 5.13: Temperature data analysis for FTIT with brushes removed at 360 minutes 
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Figure 5.14: Large scale thermal map for FTIT at 480 minutes 
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Figure 5.15: Temperature data analysis for FTIT with brushes removed at 480 minutes 

 

This finding is of great significance, as during factory acceptance testing where FTIT is performed, 

the winding temperature is measured via the slip-ring connection. The phenomena experienced could 

negatively affect the outcome of the test by not proving to be a true reflection of the thermal 

performance of a rotor undergoing FTIT. By utilising the slip-ring assembly to determine the 

winding temperature an additional thermal component is introduced by the slip-ring brush-gear 

interaction influencing the rotor thermal distribution. This highlights a weakness in the current 

methodology surrounding TIT where this behaviour is not being taken into consideration. An 

asymmetrical distribution between the exciter and drive end of the rotor can result in the rotor being 

thermally sensitive which produces an inaccurate outcome of the test. Erroneous test outcomes can 

be expected using this methodology. 

5.3.2 Scenario 2: CTIT 

CTIT by definition requires the testing to be conducted utilising current injection. The mini-rotor 

was operated at 3000 rpm and excitation applied at different levels, as per conventional thermal 
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instability testing, as outlined in sections 3.5.1 and 3.5.2, based on the rating of the mini-rotor: 5 A, 

10 A, 20 A and 35 A. A dwell time of one hour was observed at each current level, and mapping was 

performed every ten minutes. Sampling was carried out more frequently as opposed to FTIT, as 

heating of the rotor was anticipated to occur at a higher rate under current injection. Mapping and 

parameter recordings were obtained in the same manner as that of Scenario 1. 

 

The ambient temperature measured 21°C at a barometric pressure of 838.9 mbar at the time of 

testing and fluctuated to a small degree measuring 20°C at the conclusion of the rest. The average 

surface, ambient and enclosure temperatures are plotted in Figure 5.16 (below) for the 210 minute 

duration. The average surface temperature heating rate varied based on the current level. A higher 

current level resulted in a higher surface temperature and an increased rate of temperature rise. This 

differs from FTIT (both scenarios), where surface temperature values stabilise as observed, whereas 

for CTIT, an equilibrium point is not reached, as a steady state operation is never achieved during 

this test method. The final temperature achieved for FTIT is influenced largely by the ambient 

temperature and component interactions, in which a state is reached where heat losses equal heat 

generated, i.e. equilibrium. The heating rate and achieved temperature can be controlled for CTIT as 

opposed to FTIT. 

 

 

Figure 5.16: Plot of CTIT average surface temperature over the 210 minute test duration  

Temperature recordings related to CTIT are presented in Figures 5.17 to 5.22 (below). For the entire 

sequence of temperature data captured (every 10 minutes), refer to Appendix G. Figure 5.17 (below) 

summarises the initial temperature distribution of the rotor surface prior to the commencement of the 

test: an average surface temperature of 23.7°C. The maximum average surface temperature achieved 

after three and a half hours was 81.2°C.  
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Figure 5.17: Temperature data analysis for CTIT at 0 A, 0 minutes 
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Figure 5.18: Temperature data analysis for CTIT at 5 A, 30 minutes 
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Figure 5.19: Temperature data analysis for CTIT at 10 A, 90 minutes 



Chapter 5 | TIT experimental results and analysis 

 

 

 

81 

 

 

Figure 5.20: Temperature data analysis for CTIT at 20 A, 150 minutes 
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Figure 5.21: Large scale thermal map for CTIT at 35 A, 210 minutes 
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Figure 5.22: Temperature data analysis for CTIT at 35 A, 210 minutes 

The histogram data for each testing interval captured was found to be positively skewed or skewed 

to the right for the first two and a half hours of the test. The trend changed to being negatively 

skewed or skewed to the left for the remaining duration of the test. A wide distribution of surface 

temperatures was observed. For example, at the completion of the test, the final data contained in 

Figure 5.22 (below) the surface temperature varied from a minimum of 70.2°C to a maximum of 

87.2°C.  

 

The effects of the collector assembly are also observed during CTIT, where the average horizontal 

temperature distribution shows that higher temperatures were experienced towards the non-drive end 

of the mini-rotor. The temperature gradient can be clearly observed on the thermal maps, and the 

trend is consistent until the application of higher current levels leading to higher temperatures than 

those of the collector assembly losses. Of particular interest is the average vertical temperature 

distribution, which exhibited a double peak in temperature distribution throughout the testing period.  



Chapter 5 | TIT experimental results and analysis 

 

 

84 

 

A rectangular symmetrical area of a higher temperature could be observed on all the thermal maps 

throughout the test. These areas of high temperature were identified as the pole faces and associated 

coils. A large-scale high-resolution thermal map is presented in Figure 5.21 (above), where the 

temperature distribution can be observed in detail. The observations from the temperature maps are 

also correlated in the average vertical temperature distribution, as illustrated in Figure 5.22 (above). 

The higher temperatures of the poles can be clearly observed with a double-peaked horizontal 

distribution. The inter-pole areas are represented as the valleys of the distribution at lower 

temperatures. This observation differs greatly from that of FTIT. This is attributed to the manner in 

which heat is distributed, as the rotor winding is acting as the heat source. Because a rotor requires 

current during operation, it can be concluded that the thermal behaviour observed under CTIT is 

more representative of actual operating conditions.  

5.4 Analysis of thermal sensitivity testing techniques 

The presented experimental results for CTIT and FTIT show significant differences in the thermal 

behaviour of the mini-rotor during the different testing modes. Table 5.1 (below) summarises the 

experimental results obtained for FTIT, including and excluding the brush-gear effects, as well as for  

Table 5.1: Statistical analysis summary of FTIT and CTIT testing scenarios  

Time 

(min) 

Current 

(A) 

Mean 

(°C)  

Median 

(°C)  

Mode 

(°C)  

Min 

(°C)  

Max 

(°C)  

Difference 

(°C)  

Skewness 

 

Kurtosis 

 

Friction thermal instability testing 

0 0 23.40 23.4 23.5 22.70 23.80 1.10 -0.66 -0.12 

30 0 27.01 26.8 26.4 25.90 30.00 4.10 1.33 1.26 

60 0 32.05 31.8 31.3 30.70 35.60 4.90 1.37 1.27 

90 0 36.82 36.5 36 35.60 40.60 5.00 1.39 1.34 

120 0 40.97 40.60 40.20 39.70 44.60 4.90 1.42 1.24 

150 0 44.47 44.00 43.80 43.30 48.00 4.70 1.32 0.87 

180 0 47.44 46.70 46.70 46.20 50.90 4.70 1.23 0.60 

210 0 50.38 49.90 49.60 49.30 53.70 4.40 1.15 0.38 

240 0 52.68 52.30 51.90 51.60 55.70 4.10 1.08 0.26 

270 0 54.57 54.20 53.70 53.30 57.40 4.10 0.90 -0.09 

300 0 56.22 56.00 55.70 58.10 59.00 0.90 0.81 -0.17 

330 0 57.90 57.60 56.80 56.30 60.70 4.40 0.71 -0.34 

360 0 59.15 58.90 58.50 57.30 62.10 4.80 0.56 -0.47 

390 0 60.55 60.30 59.80 58.60 63.50 4.90 0.51 -0.63 

420 0 61.35 61.10 60.70 59.30 64.20 4.90 0.43 -0.63 

450 0 62.20 62.00 61.70 60.00 65.00 5.00 0.28 -0.73 

480 0 62.89 62.70 62.30 60.70 65.50 4.80 0.19 -0.77 

Friction thermal instability testing excluding brush-gear 

0 0 23.27 23.30 23.40 22.5 23.7 1.20 -0.81 0.51 

30 0 23.42 23.30 23.20 22.80 24.80 2.00 0.88 0.18 

60 0 25.76 25.60 25.50 25.10 27.30 2.20 0.86 -0.01 

90 0 28.20 28.10 28.00 27.60 29.60 2.00 0.99 0.48 
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Time 

(min) 

Current 

(A) 

Mean 

(°C) 

Median 

(°C) 

Mode 

(°C) 

Min 

(°C) 

Max 

(°C) 

Difference 

(°C) 

Skewness 

 

Kurtosis 

 

120 0 30.13 30.10 30.00 29.70 31.40 1.70 1.00 0.87 

150 0 31.90 31.90 31.80 31.50 33.00 1.50 1.05 1.48 

180 0 33.38 33.40 33.30 32.90 34.40 1.50 0.95 1.45 

210 0 34.56 34.50 34.50 34.20 35.50 1.30 1.02 2.11 

240 0 35.43 35.40 35.40 35.10 35.90 0.80 0.49 0.53 

270 0 36.40 36.40 36.40 36.10 37.00 0.90 0.48 0.33 

300 0 37.03 37.00 37.00 36.60 37.60 1.00 0.31 0.04 

330 0 37.63 37.60 37.60 37.20 38.20 1.00 0.17 -0.26 

360 0 38.28 38.30 38.30 37.80 38.80 1.00 0.02 -0.42 

390 0 38.44 38.40 38.50 38.00 38.90 0.90 -0.27 -0.29 

420 0 38.75 38.80 38.70 38.30 39.20 0.90 -0.16 -0.33 

450 0 39.13 30.10 39.20 38.70 39.50 0.80 -0.30 -0.35 

480 0 39.45 39.40 39.40 39.10 39.90 0.80 0.26 -0.09 

Current thermal instability testing 

0 0 23.74 23.8 23.8 23.30 24.10 0.80 -0.28 -0.10 

10 5 25.18 25.10 24.90 24.40 26.80 2.40 1.29 1.32 

20 5 26.58 26.40 26.20 25.60 28.90 3.30 1.21 1.05 

30 5 28.11 27.90 27.60 27.00 30.90 3.90 1.31 1.11 

40 5 29.73 29.50 29.10 28.60 32.70 4.10 1.35 1.25 

50 5 31.09 30.90 30.40 29.90 34.20 4.30 1.31 1.11 

60 5 32.53 32.30 31.90 31.30 35.60 4.30 1.35 1.17 

70 10 34.84 34.60 34.60 33.50 37.90 4.40 1.24 1.14 

80 10 36.41 36.10 35.90 35.10 39.40 4.30 1.28 1.08 

90 10 38.24 37.90 37.80 37.00 41.00 4.00 1.24 0.89 

100 10 39.73 39.40 39.30 38.60 42.40 3.80 1.21 0.78 

110 10 41.27 41.00 40.70 40.20 43.90 3.70 1.13 0.54 

120 10 42.74 42.40 42.00 41.50 45.40 3.90 1.05 0.33 

130 20 46.16 46.10 46.30 44.30 49.70 5.40 0.57 -0.08 

140 20 49.32 49.40 49.70 46.60 52.40 5.80 0.14 -0.74 

150 20 52.24 52.30 52.70 48.80 54.90 6.10 -0.26 -0.84 

160 20 54.69 55.00 55.50 50.60 56.90 6.30 -0.58 -0.61 

170 20 56.91 57.20 57.60 52.50 59.10 6.60 -0.73 -0.35 

180 20 59.12 59.50 59.80 54.30 61.50 7.20 -0.87 -0.11 

190 35 67.07 67.50 69.30 60.70 71.90 11.20 -0.20 -1.16 

200 35 74.72 74.80 73.40 65.80 80.20 14.40 -0.25 -0.89 

210 35 81.29 81.10 80.50 70.20 87.20 17.00 -0.37 -0.68 

 

CTIT. The elements of the table comprise: time; current; mean surface temperature; median, mode, 

minimum (min) temperature of the rotor surface; maximum (max) temperature of the rotor surface; 

the difference between the min and max; histogram skewness; and kurtosis. The skewness indicates 

the asymmetry of the temperature distribution. A value of 0 indicates a symmetrical distribution. A 

positive value indicates skewness to the right and a negative value to the left. Kurtosis is a measure 

of the shape of the distribution i.e. the measure of the ‘tailedness’ of a distribution as compared to a 
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normal distribution. A normal distribution has a kurtosis of 0; high values indicate heavy tails or the 

presence of outliers, while lower values indicate light tails or the absence of outliers in a data set 

[115], [116]. The analysis of the results will be approached from two perspectives: quantitative and 

qualitative. The quantitative approach will focus on the statistical significance of the data, while the 

qualitative analysis will elaborate on how these outcomes affect the practical performance of TIT in 

the mainstream. 

5.4.1 Quantitative analysis of TIT results 

The distribution of the FTIT scenario indicates that the mean, median and mode are close to 

resembling a normal distribution, being equal. For example, at 180 minutes, the values are 47.44, 

46.70 and 46.70; at 360 minutes the values are 59.15, 58.90 and 58.50. Upon further analysis of the 

initial four hours of FTIT, the distribution was skewed to the right, with positive kurtosis values 

indicating a leptokurtic distribution, i.e. a peaked distribution with outliers. This shift from a normal 

distribution indicates the heating phase of the mini-rotor surface during the test. The influences of 

the slip-ring brush-gear interaction, as observed within the thermal maps, contribute to this trend. As 

the effects of the slip-ring brush-gear interaction normalise during the concluding four hours of the 

test, the skewness of the distribution tends to become closer to a normal distribution (0), while the 

kurtosis becomes negative or platykurtic, indicating a flattening out of the distribution. Large 

differences of up to 5°C could be observed between the hottest and coolest part of the mini-rotor 

surface. From these observations, it can be inferred that this method of performing thermal 

sensitivity testing produces a slow, uncontrolled, uniform temperature distribution on the surface of 

the mini-rotor. 

 

Once the brush-gear was removed, the resultant distributions indicated a uniform distribution, with 

the mean, median and mode being virtually identical throughout the testing period. A positive 

skewness was observed for a large duration of the test, later approaching 0 then proceeding to be 

slightly negatively skewed. The kurtosis values were close to zero, indicating a mesokurtic 

distribution, i.e. normality with no outliers. The effects of the removal of the brush-gear are quite 

significant, as this test did not reach the high temperatures experienced in scenario 1. Smaller 

differences could be observed between the hottest and coolest part of the mini-rotor rotor surface. A 

close to normal distribution of temperature along the surface of the mini-rotor can be expected for 

this mode of testing. 

 

For the CTIT scenario, the mean, median and mode throughout the test are close to being equal or 

representing a normal distribution. As the test progressed and the current values increased, the 

skewness changed from being highly skewed to the right to approaching 0 and then proceeding to 

become highly skewed to the left. The kurtosis followed the same trend, initially being leptokurtic 

then mesokurtic and finally platykurtic. The kurtosis values indicate the presence of significant 
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outliers throughout the test. This behaviour can be attributed to the effect of a changing current 

source. Large differences of up to 17°C could be observed between the hottest and coolest part of the 

mini-rotor rotor surface. These observations show that as a heat source, the winding produces 

temperature profiles that are not homogenous throughout the mini-rotor surface. The non-

homogenous (heterogenous) thermal nature of the rotor is due to the various materials constituting 

its construction; when excited, the materials undergo heat transfer at different rates. An overall 

higher mean temperature is achieved during CTIT as compared to the previous scenarios. The TIT 

data is summarised as a series of box plots in Figure 5.23 (below). FTIT shows a contracted 

distribution with the absence of significant outliers. A further contraction is observed once the brush-

gear is removed, showing a normal distribution. CTIT, on the other hand, shows a large distribution 

of values with significant outliers.  

 

A distinct difference in distribution patterns has been noted. A uniform distribution characterised the 

friction heating of the rotor. The evaluation of the distribution trend also highlights the effect of the 

slip-ring assembly during testing. The gradient created by the slip-ring brush-gear interaction was 

observable. The analysis disclosed that FTIT is characterised by a normal distribution that indicates 

a slow and uncontrolled process. On the other hand the distributions observed during CTIT were not 

uniform but started off as initially being leptokurtic then mesokurtic and finally platykurtic. This can 

be attributed to the changing current source. The differences in distributions indicate the 

dissimilarities between CTIT and FTIT. Where CTIT exhibits a number of outliers that are 

indicative of what may be the true thermal performance of a machine as opposed to FTIT which 

produces the ideal machine characteristic of a homogenous thermal distribution. 

 

 

Figure 5.23: Pertinent box plots of thermal instability testing scenarios 
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5.4.2 Qualitative analysis of TIT results 

These results indicate that the mode in which TIT is being performed globally requires a re-

evaluation. The effects of the slip-ring brush-gear interaction for the friction scenario created an 

additional heating component, leading to asymmetries in the thermal distribution. A discernible 

thermal gradient was created, with the exciter end operating at a higher temperature. The effect of 

the collector assembly was quantified by executing the test with the brush-gear removed. During 

conventional FTIT, the winding temperature is determined by measuring the rotor winding 

resistance, as outlined in Chapter 4 Section 4.3. This can only be achieved via the collector 

assembly. The collector assembly has been found to be a major contributor to rotor heating as 

compared to friction alone. Furthermore, heating via friction was found to be slow, uniform and 

uncontrolled. If the heating rate was required to be increased to resemble the preferred online testing 

mode outlined in Chapter 3 Section 3.5.4, this would not be possible. FTIT is greatly influenced by 

ambient temperature and the interaction with the experimental setup. This influences at what point 

the equilibrium or maximum temperature is reached, which is significantly lower than that of CTIT. 

In essence, FTIT supports the assumption that a generator rotor, during operation, heats up 

uniformly and is able to provide that heating mechanism. This method, instead of evaluating the 

actual thermal behaviour of the rotor, is able to create the ideal heating conditions for rotor thermal 

behaviour. The FTIT scenario does not present the actual thermal behaviour of a rotor during 

operation and cannot be effectively used for generator rotor thermal sensitivity evaluation. 

 

The results observed for CTIT differed in contrast to those for FTIT. The influence of the collector 

assembly was also apparent in the CTIT scenario but was immaterial, as CTIT depends on there 

being a pathway to inject current into the rotor. The temperature rise for CTIT is achieved via 

current injection: thus, the winding temperature initially rises and heat is dissipated from the winding 

outward. The composition of the rotor greatly affects the manner in which heat is distributed, i.e. the 

heat is distributed through the different materials at different rates. This is more representative of a 

rotor during operation. The manner in which the winding temperature is determined remains the 

same as per Chapter 4 Section 4.3. The winding temperature is ascertained utilising a numerical 

calculation reliant on accurately measuring the physical winding temperature, current, voltage and 

winding resistance at a reference instant. The subsequent temperature value can be calculated by 

utilising the rotor resistance measurement at any given time and current level. However, the winding 

is not physically exposed for the temperature measurement to be taken: thus, the rotor body 

temperature is sampled in several areas and then averaged on the assumption that the winding is at 

the same temperature. This is not a particularly sophisticated procedure to determine the winding 

temperature, especially for a test that requires a high degree of accuracy to evaluate thermal 

sensitivity.  

 



Chapter 5 | TIT experimental results and analysis 

 

 

89 

 

This shortcoming is evident as the results for CTIT show a wide range of temperatures being 

experienced on the rotor surface during testing. To assume a normal distribution and then iterate 

temperature values for subsequent current levels introduces an inaccuracy of the actual temperature 

of the winding as well as the temperature distribution of the mini-rotor surface. Differences between 

the winding temperatures as compared to the mini-rotor average surface temperature are illustrated 

in Figure 5.24 (below). The winding temperature displayed was captured directly from the winding 

surface. The relationship between the average surface temperature and direct winding temperature 

support the narrative that current CTIT modes are not being conducted accurately. The winding and 

surface temperature can differ by up to 11°C. This is a phenomenon that is also prevalent for FTIT, 

as illustrated in Figure 5.25 (below). 

 

 

Figure 5.24: Direct winding and average mini-rotor surface temperature for CTIT 

 

 

Figure 5. 25: Direct winding and average mini-rotor surface temperature for FTIT 
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The results observed for CTIT were indicative of the manner in which a rotor would behave during 

operation. Contemporary CTIT modes need to be augmented with the direct mapping method to 

ensure an accurate approach to thermal sensitivity testing. The analysis conducted strongly supports 

an augmented CTIT as a preferred method to test for rotor thermal sensitivity. 

5.4.3 Scenario 3: Fault-finding capability 

This final scenario is proposed for two principle reasons: first, the ability of the experimental setup 

to detect a fault condition; secondly, the use of the method to locate an area of concern on the rotor 

body, e.g. locating the slot where an anomaly is occurring, resulting in uneven heating. This will 

determine if the direct thermal mapping method can be an effective fault-finding tool once a thermal 

sensitivity problem is experienced and negate unnecessary expenses related to large turbo-generator 

rotor fault finding and disassembly. 

 

An inter-turn short was induced between turns six and seven on coil eight of the A-pole of the mini-

rotor with excitation applied at 20 A, as illustrated in Figure 5.26 (below). The rotor was then 

mapped after 30 seconds to determine whether the hot spot created was detected and if it can be 

successfully located. After 30 seconds, the thermal map was able to clearly identify an area 

exhibiting a higher temperature on the A-pole. The area is encircled in Figure 5.27 (below). The area 

of concern was located at approximately 100 radians on the diameter of the mini-rotor at the non-

drive end. This is also correlated in Figure 5.28 (below) in the average horizontal distribution plot, 

where a slight peak is observed and outlined. This was then verified physically on the mini-rotor, 

which corresponded to the location of the induced inter-turn short. Furthermore, the fault condition 

was detected within 30 seconds of operation. The speed and accuracy of the experimental setup to 

detect and identify the location of the fault condition makes it suited to accurate faulting finding. The 

strength of this technique lies in its ability to detect faults that other condition assessment tests may 

not, as well as to quickly and efficiently aid in fault location. This result further indicates the need to 

modernise current TIT methods with the proposed augmented CTIT method. 

5.5 Conclusion 

In this chapter, the results obtained for the evaluation of FTIT and CTIT are presented. Thermal 

maps and associated data have been used to differentiate between FTIT and CTIT. The results 

conclusively depict appreciable differences between the testing methods. FTIT is found to embody a 

test method that assumes that a generator rotor experiences a uniform thermal distribution during 

operation. The distributions analysed were fairly uniform regardless of the effects of the collector 

assembly. The inability to control the rate at which the rotor was heated is also identified as a 

shortcoming, as this does not conform to real-life operation. FTIT therefore cannot be effectively 

used as a method to conduct rotor thermal sensitivity testing. 

 



Chapter 5 | TIT experimental results and analysis 

 

 

91 

 

 

Figure 5.26: Inter-turn short induced between coils six and seven to evaluate fault analysis 

 

On the other hand, CTIT illustrated an entirely different distribution where the pole faces of the rotor 

operating at higher temperature do not follow a uniform distribution. Injecting current at different  

levels into the rotor in a manner akin to the preferred method of online testing produced a constant 

rotor temperature shift. The thermal behaviour exhibited was congruent to that of a rotor under 

operating conditions.  

 

Shortcomings identified related to the method in which the rotor temperature was evaluated during 

TIT. The calculation of the rotor winding temperature introduces inaccuracies, as the winding 

temperature does not match the surface temperature during the test. An augmented CTIT is proposed 

to improve the performance of TIT. Additionally, the ability of the direct thermal mapping method 

to identify areas of concern during TIT has been evaluated. The speed and accuracy of the method is 

significant in identifying and physically locating the area of concern. 

 

The high-accuracy augmented CTIT method utilising direct thermal mapping makes it well suited to 

perform TIT. The ability of the method to closely mimic operating conditions as well as to aid in 

fault detection and location can considerably reduce the time taken to perform TIT as well as fault 

finding. Furthermore, these advances in TIT could potentially drastically reduce monetary losses 

associated with failed tests and fault finding, as well as overcoming problems associated with 

second-guessing results and methodologies.   

 

 



Chapter 5 | TIT experimental results and analysis 

 

 

92 

 

 

Figure 5.27: Thermal map of fault inducted condition clearly showing an area of high temperature 
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Figure 5.28: Temperature data analysis for fault finding: 30 seconds, 20 A 
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Chapter 6 | General Conclusions 

6.1 Research overview 

This chapter summarises the research undertaken by presenting an overview as well as conclusions 

reached. The principle objective of the research is to differentiate between two generator rotor 

thermal sensitivity testing techniques, i.e. FTIT and CTIT. 

 

A review of the current state of the art regarding thermal sensitivity testing has revealed that the 

practice is utilised by many utilities, repairers and OEMs globally. Analysis of TIT-related testing at 

a local utility has highlighted a high failure rate of rotors over the past eight years. This occurrence 

has raised concerns into the efficacy of the mode in which TIT is being conducted. An insight into 

global trends regarding TIT has shown that no clear preference exists. Furthermore, the importance 

of a final proving test after the maintenance, repair, rewind or manufacture of large turbo-generator 

rotors to determine thermal sensitivity and hence suitability for service has been recognised. 

However, limitations in the understanding of the different testing processes exist. This has been 

exacerbated by the lack of an international standard, minimal knowledge within the public domain 

and differences in testing facilities and the small group of entities performing the test. The results of 

and manner in which the test is performed can have severe financial implications should a rotor fail 

thermal sensitivity testing. This undesirable result can lead to the entity performing the test changing 

testing parameters or acceptance criteria to limit financial losses, at the expense of rotor reliability. 

 

The principle objectives of the research are outlined in Chapter 1 with an ultimate goal to determine 

the best suited mode for TIT. In the response to these objectives the following summary is offered: 

 

 An experimental framework was designed, developed and tested based on a scale model of a 

600 MW turbo-generator rotor. The mini-rotor mirrored the major characteristics of a large 

600 MW turbo-generator rotor in the following aspects: two pole; 50 Hz; concentric flat bar 

field windings; damper bars; shaft mounted slip-rings; insulated bearings; and a slot milled 

mono-block steel forging. The testing enclosure was also scaled based on the mini-rotor 

dimensions and that of a local balancing and testing facility. The accurate scaling of the 

experimental setup provided an adequate platform to determine the thermal behaviour of the 

mini-rotor within reasonable tolerances to make conclusions that can relate to large turbo-

generator rotors. 

 

 Infrared technology was utilised to capture the thermal behaviour of the surface of the mini-

rotor as well as to determine the temperature of the winding. A direct thermal mapping 

method was devised. A sampling array was developed to measure in detail the thermal 
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profile of the mini-rotor surface. A laser-guided pyrometer was utilised to directly acquire 

the winding temperature. The direct thermal mapping data was then found to be best 

represented as a temperature map. A high resolution temperature map of the mini-rotor 

surface with a 120x77 measuring point resolution was constructed and presented during 

different test conditions. 

 

 The definitive results obtained from the direct thermal mapping method enabled a 

quantitative and qualitative analysis of FTIT and CTIT. Factors that affected the testing 

scenarios were uncovered. The results revealed that the rotor thermal behaviour is 

significantly different. This enables/aides in identifying a preferred technique for TIT: CTIT. 

 

 The major shortcomings of both testing methodologies were identified. Of prominence was 

the manner in which the temperature information is captured during conventional TIT. The 

temperature profiles of the rotor surface as compared to the rotor winding were found to be 

different, which nullified conventional thermal monitoring. The direct thermal mapping 

technique can be utilised to improve TIT and ensure accurate thermal mapping and 

measurements. 

 

 The direct thermal mapping method was evaluated for the purpose of rotor fault finding and 

trouble shooting. The method was able to identify an induced inter-turn short within 30 

seconds of operation. With the aid of the temperature map, it was further possible to locate 

the fault area. 

 

 An experimental framework was designed, implemented and validated to enable the analysis 

of the thermal profile of the surface of a rotor and winding. CTIT was identified as the 

method best suited to the purposes of thermal instability testing. The method can, however, 

be improved with the introduction of the direct thermal mapping method, which has 

potential applications in the domain of rotor fault finding. 

6.2 Conclusions and significance of research 

The fundamental differences between FTIT and CTIT as techniques to identify generator rotor 

thermal sensitivity have been ascertained. The use of an accurately scaled experimental setup as well 

as the development of the direct thermal mapping technique aided in this undertaking. The outcomes 

are as follows: 

 FTIT created a scenario that allowed the rotor to heat up at a steady rate, creating a 

uniform surface temperature distribution. This mode supports the assumption that a 

generator rotor heats up uniformly during operation. In other words, FTIT is able to 

create the ideal heating conditions for rotor thermal behaviour. This, however, does not 
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present a true reflection of the behaviour of a rotor during operation (current injection) 

as illustrated by CTIT. Furthermore, the heating rate for FTIT is uncontrolled, i.e. the 

friction mechanism determined the temperature rise and could not be controlled during 

the test.     

 

 The losses experienced by the collector ring assembly introduced a thermal component 

that affected the thermal distribution of the rotor. The heat generated by this interaction 

considerably increased the temperature of the non-drive end of the rotor. A thermal 

gradient was introduced that skewed the thermal performance of the rotor. During FTIT, 

this mechanism was prevalent; the rotor was able to reach a much higher temperature 

with the brush-gear installed as compared to when it was removed. This influence was 

also experienced during CTIT during lower current levels but became less pronounced at 

higher current levels. The effects of the thermal component created by the collector ring 

assembly can result in a thermal sensitivity problem being manifested. The outcome can 

create false test results, as the collector ring assembly, during operation, is situated 

externally to the main rotor body that operates within the generator casing. By virtue of 

the brush-gear assembly being situated externally to the main rotor body, the effects may 

not be as pronounced. 

 

 CTIT differed significantly in contrast to FTIT. The current injection resulted in a 

heterogeneous distribution of temperatures along the rotor surface as opposed to the 

homogenous distribution in FTIT. A noticeable symmetrical region of higher 

temperature was observed along the pole face region. Furthermore, the heating rate 

could be controlled via the change in current applied during the test.  

 

 The manner in which the rotor winding temperature is calculated while performing 

contemporary FTIT and CTIT is one of the main shortcomings that are evident. The use 

of a sampled, averaged body temperature to determine the winding temperature is not 

indicative of the actual winding temperature. Results indicate that the rotor surface 

temperature and winding temperature differ considerably. The assumption that the rotor 

surface temperature and the winding temperature are equal is incorrect and should not be 

used as a basis to calculate the winding temperature during testing. 

 

 The direct thermal mapping method is capable of accurate and timeous fault detection. 

An area of concern can be located with high accuracy, enabling easier fault detection. 

The accuracy offered by the method will improve the trouble shooting aspect of a failed 

test, which has been found to be difficult when utilising current methods. The direct 
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thermal mapping method will go a long way in saving time and cost associated with 

returning a rotor to service. 

 

The results observed from CTIT were indicative of the manner in which a rotor would behave during 

operation. FTIT, on the other hand, does not accurately portray the thermal behaviour of a rotor 

during operation, which makes it an ineffective method for TIT. CTIT is the preferred technique to 

perform TIT, but considering the shortcomings of the contemporary methodology, an augmented 

methodology needs to be considered. This can be achieved by incorporating the direct thermal 

mapping method to ensure accurate thermal mapping and monitoring of the rotor. The findings 

indicate very clearly that the outcomes are applicable to larger turbo-generators in general. The 

outcome dispels the uncertainties in respect to what technique should be utilised for TIT. This does 

not only benefit service providers but also customers who can request that TIT be performed via 

CTIT to ensure reliability, resulting in considerable capital savings in the long run. Furthermore, this 

could lead to the power industry adopting CTIT as the foremost technique for the testing of turbo-

generator rotor thermal sensitivity. This definitive result could aid in the establishment of an 

international standard for the testing procedure as well as interpretation and acceptance criteria that 

will govern and standardise the practice of TIT. 

6.3 Further research 

The completed research has presented a number of opportunities for furthering this particular field of 

study. The following aspects will contribute to the better understanding and utilisation of TIT. 

6.3.1 Adopting an augmented approach to TIT 

The shortcomings of contemporary methods of TIT have been highlighted in Chapter 5. The 

inability to accurately determine the rotor surface as well as the winding temperature profile 

produces unreliable testing results. The direct thermal mapping method is capable of accurately 

determining the thermal profile of the rotor surface. This capability can improve the manner in 

which contemporary TIT is performed. The method has been successfully proven on an accurately 

scaled experimental setup. Therefore it is recommended that the augmented TIT utilising the direct 

thermal mapping method be implemented at a large-scale balancing facility. Furthermore, a diverse 

number of turbo-generator rotors of different designs may be evaluated. The direct thermal mapping 

method can also be evaluated to assist in fault detection and trouble shooting of larger generator 

rotors. Additionally, the ability to detect a wider range of faults as compared to those presented in 

Chapter 5 (inter-turn short) can be evaluated. 

6.3.2 Influence of the collector ring assembly on TIT 

During the evaluation of FTIT in Chapter 5, it was observed that the rotor collector ring assembly 

losses affected the thermal distribution of the rotor. This was found to be true for both CTIT and 

FTIT. This was quantified by comparing the results of the thermal maps obtained with the brush-
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gear present and absent during testing. The phenomenon needs to be further evaluated on a large-

scale rotor within a balancing facility. During conventional testing, the collector assembly is always 

connected to the rotor. This is also true during periods where the collector ring is not being utilised, 

i.e. during the barring process used to straighten rotors prior to testing. This period can last for a 

number of hours where the effects of the collector assembly are not considered. This warrants further 

investigation.  
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Appendix A | Mini-rotor condition assessment 
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Appendix A | Mini-rotor condition assessment 

 

An insulation resistance and an RSO Test were carried out on the mini-rotor to detect any latent 

defects that may influence the results acquired from the experimental setup. The rotor was found to 

be in a serviceable condition. 

 

The insulation resistance was tested at 500 V yielding a value 581.8 MΩ. According to IEEE 43-

2000 Recommended Practice for Testing Insulation Resistance of Rotating Machinery, this value is 

satisfactory and shows that the mini-rotor insulation system is not compromised. 

 

The RSO results showed no indication of inter-turn shorts, as illustrated in Figure A.1 (below) 

  

 

Figure A.1: RSO plot for mini-rotor 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B | Experimental setup dimensions and layout 
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Appendix B | Experimental setup dimensions and layout 

 

 

 

Figure B. 1: Experimental setup dimensions and layout 
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Figure B.2: Sectional views of experimental setup 

 

 

 

 

 



Appendix C | Infrared camera - Optris PI400 
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Appendix C | Infrared camera - Optris PI400 

C.1 Optris PI400 infrared camera datasheet 

 

 

 

 

 

 

 

 

 

 

 



Appendix C | Infrared camera - Optris PI400 
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C.2 Calibration certificate 

 

 

 

 



Appendix C | Infrared camera - Optris PI400 
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Appendix D | Laser guided pyrometer – Optris CT laser   
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Appendix D | Laser-guided pyrometer – Optris CT laser   

 

D.1 Optris CT laser datasheet 

 

 

 

 



Appendix D | Laser guided pyrometer – Optris CT laser   
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D.2 Calibration certificate 
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Appendix E | FTIT temperature data analysis 

 

 

 

Figure E.1: Temperature data analysis for FTIT at 0 minutes 

 

 

Figure E.2: Temperature data analysis for FTIT at 30 minutes 
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Figure E.3: Temperature data analysis for FTIT at 60 minutes 

 

 

Figure E.4: Temperature data analysis for FTIT at 90 minutes 
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Figure E.5: Temperature data analysis for FTIT at 120 minutes 

 

 

Figure E.6: Temperature data analysis for FTIT at 150 minutes 

 

 

 



Appendix E | FTIT temperature data analysis 
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Figure E.7: Temperature data analysis for FTIT at 180 minutes 

 

 

Figure E.8: Temperature data analysis for FTIT at 210 minutes 
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Figure E.9: Temperature data analysis for FTIT at 240 minutes 

 

 

Figure E.10: Temperature data analysis for FTIT at 270 minutes 
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Figure E.11: Temperature data analysis for FTIT at 300 minutes 

 

 

Figure E.12: Temperature data analysis for FTIT at 330 minutes 
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Figure E.13: Temperature data analysis for FTIT at 360 minutes 

 

 

Figure E.14: Temperature data analysis for FTIT at 390 minutes 
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Figure E.15: Temperature data analysis for FTIT at 420 minutes 

 

 

Figure E.16: Temperature data analysis for FTIT at 450 minutes 

 

 

 



Appendix E | FTIT temperature data analysis 
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Figure E.17: Temperature data analysis for FTIT at 480 minutes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix F | FTIT temperature data analysis with brushes removed 
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Appendix F | FTIT temperature data analysis with brushes removed 

 

 

 

Figure F.1: Temperature data analysis for FTIT with brushes removed at 0 minutes 

 

 

Figure F.2: Temperature data analysis for FTIT with brushes removed at 30 minutes 
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Figure F.3: Temperature data analysis for FTIT with brushes removed at 60 minutes 

 

 

Figure F.4: Temperature data analysis for FTIT with brushes removed at 90 minutes 
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Figure F.5: Temperature data analysis for FTIT with brushes removed at 120 minutes 

 

 

Figure F.6: Temperature data analysis for FTIT with brushes removed at 150 minutes 
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Figure F.7: Temperature data analysis for FTIT with brushes removed at 180 minutes 

 

 

Figure F.8: Temperature data analysis for FTIT with brushes removed at 210 minutes 
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Figure F.9: Temperature data analysis for FTIT with brushes removed at 240 minutes 

 

 

Figure F.10: Temperature data analysis for FTIT with brushes removed at 270 minutes 
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Figure F.11: Temperature data analysis for FTIT with brushes removed at 300 minutes 

 

 

Figure F.12: Temperature data analysis for FTIT with brushes removed at 330 minutes 
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Figure F.13: Temperature data analysis for FTIT with brushes removed at 360 minutes 

 

 

Figure F.14: Temperature data analysis for FTIT with brushes removed at 390 minutes 
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Figure F.15: Temperature data analysis for FTIT with brushes removed at 420 minutes 

 

 

Figure F.16: Temperature data analysis for FTIT with brushes removed at 450 minutes 
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Figure F.17: Temperature data analysis for FTIT with brushes removed at 480 minutes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix G | CTIT temperature data analysis 
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Appendix G | CTIT temperature data analysis 

 

 

 

Figure G.1: Temperature data analysis for CTIT at 0 A, 0 minutes 

 

 

Figure G.2: Temperature data analysis for CTIT at 5 A, 10 minutes 
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Figure G.3: Temperature data analysis for CTIT at 5 A, 20 minutes 

 

 

Figure G.4: Temperature data analysis for CTIT at 5 A, 30 minutes 
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Figure G.5: Temperature data analysis for CTIT at 5 A, 40 minutes 

 

 

Figure G.6: Temperature data analysis for CTIT at 5 A, 50 minutes 
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Figure G.7: Temperature data analysis for CTIT at 5 A, 60 minutes 

 

 

Figure G.8: Temperature data analysis for CTIT at 10 A, 70 minutes 
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Figure G.9: Temperature data analysis for CTIT at 10 A, 80 minutes 

 

 

Figure G.10: Temperature data analysis for CTIT at 10 A, 90 minutes 
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Figure G.11: Temperature data analysis for CTIT at 10 A, 100 minutes 

 

 

Figure G.12: Temperature data analysis for CTIT at 10 A, 110 minutes 
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Figure G.13: Temperature data analysis for CTIT at 10 A, 120 minutes 

 

 

Figure G.14: Temperature data analysis for CTIT at 20 A, 130 minutes 
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Figure G.15: Temperature data analysis for CTIT at 20 A, 140 minutes 

 

 

Figure G.16: Temperature data analysis for CTIT at 20 A, 150 minutes 
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Figure G.17: Temperature data analysis for CTIT at 20 A, 160 minutes 

 

 

Figure G.18: Temperature data analysis for CTIT at 20 A, 170 minutes 
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Figure G.19: Temperature data analysis for CTIT at 20 A, 180 minutes 

 

 

Figure G.20: Temperature data analysis for CTIT at 35 A, 190 minutes 
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Figure G.21: Temperature data analysis for CTIT at 35 A, 200 minutes 

 

 

Figure G.22: Temperature data analysis for CTIT at 35 A, 210 minutes 


