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ABSTRACT 

The selection of an appropriate estimation method is one of the fundamental decisions in resource 

estimation. The effects of selecting an inappropriate estimation method can lead to ± 50% error in the 

estimate (Dominy et al., 2002). In selective mining, for example it is the mining block estimates that 

determine which of the ore blocks are to be mined and processed and which of the ore blocks are 

waste. The choice of the estimation method amongst others is based on the geology and complexity 

of grade distribution within the deposit. For example polygonal estimation methods are suitable for 

producing a volume weighted global mean grade, and in this estimation method there is one fixed and 

biased answer. The inverse distance method is unbiased but does not minimise the estimation 

variance, while kriging is subject to certain conditions, such as providing the best estimate possible by 

a linear combination of the available weighted data as well as minimising the error variance of the 

estimate. 

This dissertation presents a detailed study of the application of two linear geostatistical estimation 

techniques; Ordinary and Simple Kriging. Included in this study is a detailed discussion on 

variography and its necessity in resource estimation. The theory of kriging as well as the kriging 

equations is discussed in great detail. The differences between Ordinary and Simple Kriging 

estimation techniques are drawn from this study by the consideration of the kriging variance, kriging 

efficiency, kriged estimate, kriging neighbourhood as well as the block variance.  

The suitability of the application of both Ordinary and Simple Kriging estimation techniques is 

highlighted by this study. The two techniques are applied on a PGE (4E) deposit from an undisclosed 

locality due to confidentiality. This dissertation highlights the differences that are not discussed in 

most literature between Ordinary and Simple Kriging and the way that these techniques influence the 

outcomes of mineral resource estimation. 
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  Chapter 1: Introduction 1.

 Introduction 1.1

Geostatistics is the application of random functions to the description and estimation 

of natural phenomena (Journel and Huijbregts, 1978). Isaaks and Srivastava (1989) 

state that geostatistical methods describe spatial continuity of natural phenomena. In 

its origins, geostatistics was started in the mining industry with the aim of improving 

the estimation of mineral resources. For example when considering a region or 

mineral deposit with a particular grade distribution; geostatistics estimates and 

describes the spatial relationship existent between all locations within that region. A 

geostatistical approach to mineral resource estimation relies on some form of kriging, 

in which the weights given to each sample are derived from using the semi-

variogram model that expresses the continuity of grades in two or three dimensions. 

In geostatistics two categories of estimation methods exist, linear and non- linear 

methods. Linear methods provide an estimate which is a linear combination of data, 

while non- linear methods use non-linear functions to obtain conditional expectations 

(Vann and Guibal, 2001). This study discusses two of the linear methods namely 

Ordinary Kriging (OK) and Simple Kriging (SK). It focuses on the differences in the 

application of SK and OK, for mineral resource estimation.  

A number of studies have been conducted with the aim of comparing SK and OK. 

These studies were undertaken by Goovaerts (1997), Isaaks and Srivastava (1989), 

Armstrong (1998), Journel and Huijbregts (1978) as well as Clark (2000) just to 

mention a few. Some of the work by these authors is discussed in detail and adopted 

in this study. 

SK and OK techniques are generally based on classical statistics, which are affected 

by the distribution of the grade population underlying the data. Glacken and 

Snowden (2001) suggest that SK has a much stronger emphasis on the assumption 

of stationarity of the mean than OK, and that OK can be applied optimally for normal 

or Gaussian distributions. It is important to note that no single estimation technique is 

appropriate for all mineral resources (Isaaks and Srivastava, 1989). It is therefore 

imperative to fully understand the capabilities of each estimation technique before it 

is applied. 
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Goovaerts (1997) notes that the significant difference between SK and OK is in the 

constraints imposed during the variance minimisation. In OK there is a condition that 

the sum of the weights must be equal to one, which is not the case in SK.OK 

assumes that the mean is unknown whereas SK assumes that the mean is known 

and constant throughout the deposit. Armstrong (1998) suggests that OK accounts 

for the local fluctuations of the mean by limiting the area of stationarity of the mean 

to the local neighbourhood, which means that the mean may vary in the area and 

does not remain constant. She further notes that OK better estimates resources, 

where data sets have large areas with low values and large areas with high values. 

Local means appear more meaningful in a situation where the global mean is not 

constant.  

 Problem Statement 1.2

The growing number of technologically advanced geostatistical software packages, 

provides practitioners access to powerful algorithms. Two of the mineral resource 

estimation techniques developed by Krige in the early 1950s include Ordinary and 

Simple Kriging. The latter has been commonly used in the South African gold mining 

industry to estimate the local mean of the mineral resources. The aim of this study is 

to examine and highlight the differences between Ordinary Kriging and Simple 

Kriging, using a shallow dipping portion of the UG2 Reef in the Eastern Limb of the 

Bushveld Complex. Having examined the differences between the two techniques, 

the outcomes of this study are compared with the differences as well as similarities 

obtained by other eminent geostatisticians using the available literature. 
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 Plan and Layout of this study 1.3

This study aims to discuss the theory of SK and OK as estimation techniques, and 

offers insight into work done in the past using both SK and OK. The study also offers 

a concise discussion on the theory of semi-variograms and how they affect the 

estimation process. The study also shows the selection of the most appropriate 

semi-variogram parameters to be used in the estimation process  

Furthermore the study critically analyses whether other differences exist between SK 

and OK apart from those discussed by Goovaerts (1997). To investigate this, the 

study uses a PGE (4E) mining data set. This study also investigates the outcomes of 

applying SK and OK as well as compares the resultant differences between the two 

techniques. Before estimation, the statistical analysis of the PGE (4E) data is 

undertaken to investigate the data distribution and thereafter the differences between 

SK and OK are investigated by means of: 

a) A nine point support sample exercise on a 20 m x 20 m block V, applying SK 

and OK in order to observe the differences between them. In the exercise, kriging 

variance and the kriged estimate are outputs used to analyse the differences.  

b) Estimation of the PGE resource on a 250 m x 250 m x 10 m block size model 

in order to emphasize and examine the differences that exist between the two 

techniques. 

c) Observation of the behaviour of weights and the nugget effect for both SK and 

OK techniques. 

d) Observation of the mean squared error against the kriging neighbourhood for 

both SK and OK. 

This study will use mining data from, a Platinum Group Element (PGE 4E deposit) 

which occurs in the UG2 Chromitite Layer of the Eastern Limb, in the Bushveld 

Complex. The Platinum Group Elements 4E comprises platinum (Pt), palladium (Pd), 

rhodium (Rh) and gold (Au). All these elements have different uses, with platinum 

and palladium having the most applications of all the PGEs. Platinum is used in 

motor vehicles as catalytic converters and it is also used in jewellery, while palladium 



4 

 

is used in electronics, hydrogen purification, chemical applications and ground water 

purification (Cramer et al., 2004). In the UG2 Reef the platinum and palladium occur 

in amounts of 46% Pt and 30% Pd. Since 1923 South Africa has been the largest 

producer of platinum in the World. Until the 1970s most of the platinum came from 

the Merensky Reef in South Africa (Cawthorn, 1999). Lonmin began mining the UG2 

Reef in the 1980s because of its high grade followed by Anglo Platinum Ltd, which 

now reports that 40% of platinum produced comes from the UG2 Reef (Cawthorn, 

1999). 

 Justification for this study 1.4

The estimation of mineral resources provides the primary inputs for any decision 

making and financial forecasting of a mining project. Cash flow calculations often fail 

to incorporate the uncertainty associated with resource and reserve estimates 

(Morley et al., 1999). Reliable estimates of mineral resource grades and tonnages, 

with appropriate measures of uncertainty, are essential to mining operations in order 

to prevent financial losses. This also pertains to feasibility studies on new mining 

projects where data are sparse and the geological information is often uncertain. 

Dominy (2002a) reviewed the performance of resources and reserves of small to 

medium Australian gold operations. He found that most problems were related to 

grade estimation. A common trend he found on most operations was that more 

tonnes were produced (up to 15%) and less grade (up to -55%). Establishing 

accurate estimates of mineral resources provides confidence in mining for the 

purpose of a mine design. Kriging provides estimates that can be used in mine 

planning when selecting which mining blocks to be mined and in making future 

decisions about resource allocations.  

 Carras (2001) suggests that assumptions governing algorithms of the geostatistical 

estimation techniques are rarely understood, stated or questioned. The lack of a 

detailed understanding of such assumptions can result in wrong decisions being 

made with no profitability in mining. However the full understanding of the 

geostatistical techniques i.e. SK and OK will enable practitioners to select the most 

appropriate technique to use, for a particular context. Attention to detail is vital and 

can lead to recognition of important features. Dominy et al. (2002) suggests that the 

effects of unsuitable estimation methods could lead to errors of ± 50% in the 
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estimate. This study will assist mineral resource practitioners to obtain a clear 

overview of SK and OK, and the context in which they can be applied.  

 Description of the Study Area 1.5

Data for this study was provided by Anglo Platinum and comes from an exploration 

project on the Eastern Limb of the Bushveld Complex which hosts the world’s largest 

platinum resources. The study area is approximately 6000 ha, and occurs in the rural 

area of Steelpoort in the Limpopo Province (see Figure 1.1). Although the Merensky 

Reef and UG2 Chromitite Layer (UG2 Reef) occur in the area, this study will only 

consider the UG2 Reef, as the project plans to start mining the UG2 Reef first and at 

a later stage mine the Merensky Reef. The UG2 Reef is of high priority because of 

its high grade. 

 

Figure 1.1: Map of the Eastern Limb of the Bushveld Complex and the approximate location of the 

project area as well as actual and potential mines (Anglo Platinum, 2011) 
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 Research Overview 1.6

In this section the structure of the research report is described. The report is made 

up of seven chapters with supplementary material located at the end as an appendix. 

A description of the chapters is as follows: 

Chapter 1 is the introduction of the study where the importance of the study is 

highlighted. A brief project background and the basic concepts of SK and OK are 

discussed. The issues that the research aims to address are highlighted in this 

chapter. 

 

Chapter 2 is the presentation of selected information and fundamental concepts 

related to geostatistics and the mining industry. First the classical statistical theory is 

discussed in this chapter, followed by the theory of regionalised variables because it 

is the basis of geostatistics and it assists in fully understanding the geostatistical 

concepts. The concept of change of support is briefly discussed as one of the crucial 

concepts in this study as well as the theory of variography. 

The theory of kriging and kriging equations are discussed. A comprehensive 

discussion on the theory of SK and OK is undertaken in this chapter. Included is an 

example of the application of SK and OK adopted from the Geostatistical Evaluation 

Assignment Exercise, by C.E Dohm (2011).  

 

Chapter 3 discusses the effects of the nugget effect on SK and OK weights. This 

chapter also includes case studies by Goovaerts (1997) and Deutsch et al. (2014) on 

the application of SK and OK. The case studies include the description of the trend 

estimates and the use of the number of search data for both SK and OK. 

 

Chapter 4 first discusses the geology of the study area and that is followed by the 

Exploratory Data Analysis (EDA) where a full statistical analysis of the PGE (4E) 

data is undertaken. Included in the statistical analysis is the investigation of data 

integrity by data validation. These analyses are carried out to check for spurious 

data, because errors in the data can significantly affect and influence the estimation 

process.  

The construction of histograms as well as a probability plot to diagrammatically 

present the PGE (4E) deposit is undertaken in this chapter. 
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The PG2000 (Clark 2000), Excel 2010 and Surpac 6.2.1 are the software packages 

used in the statistical analysis. 

 

Chapter 5 is the application of variography to the PGE (4E) data. The two important 

assumptions that govern the theory of variograms are introduced here.  

A brief discussion on domaining and how it affects estimation of mineral resources is 

undertaken in this chapter. The investigation of distinct domains in the PGE deposit 

is also undertaken.  

A brief section on contour maps is undertaken to investigate whether any trends 

exist in the PGE (4E) grades.  

Variogram fans are constructed to further investigate preferred directions of 

maximum continuity of PGE (4E) grades.  

Towards the end of the chapter the construction of semi-variogram models and the 

selection of the appropriate semi-variogram parameters for the estimation of the 

PGE deposit conclude the chapter. Supervisor 8 software from Snowden is used 

specifically for the purpose of semi-variogram modelling.  

 

Chapter 6 considers the estimation of the PGE (4E) grades.SK and OK techniques 

are applied on the grade block model of 250 m x 250 m x 10 m block support size. 

Kriging estimators are used to investigate why SK and OK produce different results. 

To understand the difference between the two, a detailed analysis of the kriged 

estimate, kriging variance, block variance, and kriging efficiency is undertaken. The 

methods applied by Deutsch et al. (2014) and by Goovaerts (1997) are adopted to 

investigate further the differences between SK and OK using the PGE (4E) data. At 

the end of this chapter domaining is considered to investigate further OK and SK. 

Chapter 7 is the concluding remarks and recommendations of this study. 
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 Chapter 2: Literature Review 2.

This chapter presents selected information and fundamental concepts of 

geostatistics related to the mining industry. The classical statistical theory is 

discussed as it is effectively applied in geostatistics. The theory of regionalised 

variables is the basis of geostatistics and assists in fully understanding geostatistical 

concepts such as the theory of variography and kriging which are discussed in depth 

in this chapter. 

 Introduction 2.1

Geostatistics is suitable to be used in the mining industry, because of the spatial 

nature of mining sample data. Mining companies sample the mineral deposits they 

mine, the sample locations and other measurements of interest i.e. grade values are 

recorded and this constitutes the mining sample data. The sample data is thus used 

to estimate the quantity and quality of the mineral deposit in unmined areas. It was 

the problems encountered in the mining industry that led to the pioneer work by H.S 

Sichel and D.G. Krige and developments by G. Matheron in statistics and 

geostatistics. 

Geostatistics is of benefit to the mining operations as it provides estimates which 

assist in decision making and maintain profitability in a mine. Geostatistical 

techniques are advantageous because they provide a measure of accuracy of all its 

estimates. These techniques are also used to determine the optimal sampling 

pattern and can estimate contour maps of the mineral deposit. 

  Classical statistics theory 2.2

This study considers statistical theory applied in the mining industry. Statistics is the 

science of collecting and analysing numerical data in large quantities. Geostatistics 

requires extensive use of statistics for organising and interpreting data as well as 

drawing conclusions and making reasonable decisions. In mining, statistical theory 

includes the notion that a sample is a representative subset selected from the 

population. A good representative sample must capture the essential features of the 

population from which it is drawn. The population is made up of infinite collection of 

samples that form a mineral deposit. When a sample is considered representative, 

statistical inference can be undertaken, meaning that conclusions about the 
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population can be inferred. There is a certain level of uncertainty when inference is 

considered; therefore probabilities are used when stating conclusions.  

In mineral resource estimation statistics is applied for: 

a)  Improved viewing, validation and understanding of data and the mineral 

deposit. 

b) Ensuring data quality and condense information to make inferences as well as 

estimations. 

Geostatistical studies require a set of sample values taken at various locations within 

a spatial area. Statistics allows the analysis of samples without considering the 

location at which that sample was measured. Statistics also assist in understanding 

the behaviour and properties of samples by using tools such as the histograms, 

probability plots, coefficient of variation (CoV) as well as the measures of spread and 

central tendency. These tools are used for analysing the PGE (4E) data used in this 

study. The histogram provides insight into the possible distribution of the sample 

population. Once the histogram is constructed the data distribution is defined 

whether it is normal or lognormally distributed. The probability plot defines the 

different sample populations that exist in a data set. 

The normal distribution is used to model mineral deposits that display symmetric 

value distribution where the mean and median are the same. A lognormal distribution 

is commonly used to model mineral deposits that have skew value distributions. 

Probability plots also assist in checking distribution models, a straight line on a 

logarithmic scale suggests a lognormal distribution while on arithmetic scale 

suggests a normal distribution. 

This study assumes that the reader has a background in statistics and geostatistics, 

thus classical statistical theory such as the CoV, measures of central tendency 

(mean, mode and median) and measures of spread such as (variance, standard 

deviation and range) have not been extensively discussed here. However if the 

reader is interested, references such as Lapin (1983), Davis (1986) and Ripley 

(1987) discuss in depth the classical statistical theory. 
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 Theory of regionalised variables 2.3

Geostatistics is based on the theory of regionalised variables and provides a set of 

statistical tools for understanding spatial correlation of observations in data 

processing (Goovaerts, 1997). This section discusses this theory as well as the 

theory of variograms as they are essential tools required in the application of kriging. 

The theory of regionalised variables states that natural phenomena are 

characterised by a distribution in space of one or more variables. Sample grade, for 

example is a regionalised variable because it is distributed throughout a space 

(Journel and Huijbregts, 1978). Sample grade distribution characterises the 

mineralisation of a mineral deposit which can be quantified and estimated. There are 

two aspects considered when defining regionalised variables, the first one is local 

randomness and the second one is the structural pattern. The random aspect 

considers the variations from one point to another. Structural aspects reflect large-

scale tendencies of regionalised variables. The estimation of regionalised variables 

depends on both these characteristics. For example the error of estimation becomes 

greater when regionalised variables are irregular and not continuous in their spatial 

variations (Matheron, 1971).  

 

Let 𝑍(𝑥) be the random variable with its outcome 𝑧(𝑥), which is the observed value 

at each data point 𝑥. A random variable is a variable of which the values are 

randomly distributed in space. A set of random variables that have spatial locations 

and depend on each other are specified by a probabilistic mechanism called a 

random function i.e. 𝑍(𝑥1) , 𝑍(𝑥2 ) … 𝑍(𝑥𝑘  ) (Isaaks and Srivastava, 1989). 

Geostatistics is a method that allows one to estimate 𝑧(𝑥) at point 𝑥 where no data is 

available.  

When random variables are correlated their correlation depends on distance ℎ, 

separating points i.e. 𝑥𝑖 and 𝑥𝑖 + ℎ , direction and the nature of the variable 

considered (Journel and Huijbregts, 1978). The actual grade 𝑧(𝑥) at any point 𝑥 , is a 

realisation of a random variable 𝑍(𝑥𝑖), while a set of actual grades defining a deposit 

is a single realisation of the random function {𝑍(𝑥𝑖), ∀𝑥𝑖 ∈ 𝐷} . 
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The mathematical tool that is used to characterise the spatial variability of a 

regionalised variable 𝑧(𝑥)  is known as a variogram. Consider two values 

𝑧(𝑥) and 𝑧(𝑥 + ℎ) at point 𝑥 and  𝑥 + ℎ separated by a distance ℎ; the variability of the 

two values can be characterised by a variogram function. The variogram function is 

given by: 

𝛾(ℎ) = 0.5 𝑁 ∑ [𝑍(𝑥 + ℎ) − 𝑍(𝑥)]𝑛
𝑖=1

2   

where 𝑁 is the number of pairs [𝑧(𝑥𝑖 ), 𝑧(𝑥𝑖 + ℎ)] of data separated by the vector ℎ. 

 

Certain assumptions are considered when characterising the variability of random 

variables. Stationarity is assumed meaning that the mean of the random variable 

must be constant in any location. Matheron (1963) developed the “intrinsic 

hypothesis”, which assumes that the mean and variance of increments 𝑍(𝑥 + ℎ) −

𝑍(𝑥) exist and are independent of point  𝑥 . In reality this assumption is true if the 

mineralisation within a mineral deposit is homogeneous. Once a variogram of the 

random function is computed, kriging can be undertaken.  

2.3.1 The support of a regionalised variable 

In most situations a regionalised variable is measured as the average over a certain 

volume or surface rather than a point (Armstrong, 1998). The basic volume at which 

a regionalised variable is measured is called its support. The change in support 

changes the structural characteristics of the regionalised variable under study. For 

example the grades measured on a 50 mm diameter core have a higher variance 

than those measured on larger diameter cores or blocks. It is therefore imperative to 

know the relationship between the variables i.e. the grade of blocks and cores. The 

dispersion and variograms of both variables should be considered. 

Let 𝑍(𝑥) be a random variable of a point support and let 𝑍𝑉(𝑥) be a block support 

random function or a block support random variable, with blocks of volume  𝑉 . A 

block support random function over the spatial region Ω is defined as a set of random 

variables: 

{𝑍 𝑉(𝑥), 𝑥 ∈ Ω}  

where the random variable 𝑍𝑉(𝑥) represents the value of a block 𝑉 centred at 

point 𝑥.  
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 Variography 2.4

In order to perform SK and OK in any data set, variogram models should be 

constructed before the actual kriging process. Kriging outcomes can be significantly 

affected by variability and spatial structure of the data as well as the choice of the 

variogram model. A variogram according to Clark (2001) is a graph describing the 

expected difference in value between pairs of samples a distance apart with a 

relative orientation. Journel and Huijbregts (1978) define a variogram as a function 

that characterises the variability of samples, and which is an expectation of the 

random field [𝑍(𝑥) − 𝑍(𝑥 + ℎ)]2. 

Variograms characterise spatial continuity, by comparing samples in terms of 

distance and orientation as well as describing the way in which samples relate to one 

another in space. This information is used to create an expectation about grades in a 

deposit based on weighting the surrounding samples according to the variogram. 

The variogram indicates the difference in sample values as the distance increases in 

a fixed direction. Half of the variogram 𝛾(ℎ) is referred to as the semi-variogram. 

Semi-variograms summarise all the information pertaining to the spatial distribution 

of a variable considered. The variogram 2𝛾(ℎ) represents a vector |ℎ| which by 

definition starts at zero because it is impossible to take two samples closer than no 

distance apart (Clark, 2001) therefore  𝛾(0) = 0. In general, but not always, the 

variability between two samples at different positions increases as ℎ between them 

increases (Journel and Huijbregts, 1978). The manner in which the variogram 

increases over a distance (ℎ) characterises the spatial continuity of the variable. 

It is unlikely that the variability in mineralisation will be the same in every direction. 

For example in some deposits a variogram in the North-South direction may display 

stronger variability than in the East-West direction, which could suggest that there is 

maximum continuity in the East-West direction as opposed to the North-South 

direction. Variograms that display variability in different directions are known as 

anisotropic variograms, whereas the variograms that display the same variability in 

different directions are called isotropic. 
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2.4.1 Characteristics of variograms 

Variograms are characterised by a random component, a structured component and 

a variance component. The random component is called the nugget effect, and the 

structured component is located between the nugget effect and the sill (the variance 

component) (see Figure 2.1). 

The nugget effect is a vertical jump (on the y axis) from the origin to a variance at 

very small separation distances where 𝛾(ℎ) = 0. For example the nugget effect is 

observed when two halves of drilled core are analysed and different results in grade 

are obtained. This shows that no matter how close samples are, there will be 

differences in values between them (Clark, 2000). The nugget effect is a result of the 

error in the measurements and microvariability in mineralisation (Journel and 

Huijbregts, 1978). At zero separation distance which is the origin by definition, 

where 𝛾(0) = 0, sample values have no variability.  

 

 

Figure 2.1: A generic variogram model showing the sill, nugget effect and a range, for the commonly 

used spherical model (Geostatistical Class Exercise C.E Dohm, 2011) 
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The behaviour of semi-variograms near the origin reveals the continuity and spatial 

uniformity of a random function 𝑍(𝑥) (Armstrong, 1998). Journel and Huijbregts 

(1978) researched the common behaviours of semi- variograms near the origin (see 

Figure 2.2). They found that quadratic behaviours exist near the origin, which 

indicates highly continuous spatial data (see Figure 2.2 a)). Linear behaviours near 

the origin occur when the regionalised variable is continuous but not differentiable 

(see Figure 2.2 b)). Discontinuity at the origin occurs when 𝛾(ℎ)  does not tend 

towards zero when ℎ tends towards zero, the regionalised variable is not continuous 

in this case. The discontinuity at the origin is called the nugget effect (see Figure 2.2 

c) and d)) and most deposits have discontinuity at the origin. 

 

Figure 2.2: The behaviour of variograms near the origin. Quadratic shape a), linear b), nugget effect 

c) and pure nugget effect d) (Armstrong, 1998) 
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A typical variogram reaches a limit which is known as the sill (𝐶1) at a distance called 

the range (𝑎), (see Figure 2.1). Once a variogram reaches the sill the samples 𝑧(𝑥) 

and 𝑧(𝑥 + ℎ)   no longer depend on the vector ℎ between them and are no longer 

correlated. The sill represents the variance of the random field where:  

 𝛾(∞) = 𝑉𝑎𝑟{𝑍(𝑥)} = 𝐶1.  

The range (𝑎) corresponds to the “zone of influence”, which refers to the influence of 

one sample value on another sample value. When sample value 𝑧(𝑥) is correlated 

with any other sample value its influence on the other sample will decrease as the 

distance between the two samples increase (Journel and Huijbregts, 1978). 

2.4.2 Variogram models 

There are different types of variogram models such as the Spherical, Linear, 

Exponential, Gaussian and Power model (see Figure 2.3.). This study only discusses 

the Spherical variogram model as it is used to characterise spatial continuity of the 

PGE (4E) deposit in Chapter 5. The Spherical variogram model is one of the more 

commonly used models (see Figure 2.1). Its shape appropriately matches natural 

observations; first a linear growth up to a distance then stabilisation. Spherical 

variogram models reach a sill at a certain distance (the range), it therefore models 

minimal correlation at large distances beyond the range. 
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Figure 2.3: Variogram models, Power model a), Linear model b), Gaussian model c) and Exponential 

model d) (Clark, 2000). 

2.4.3 Analysing spatial continuity 

The nature and distribution of the mineral deposit determines which variogram type 

will be used to characterise its spatial continuity. Omnidirectional (isotropic) 

variograms are used for analysing data with the same degree of continuity in all 

directions such as some coal deposits. On the contrary when a deposit does not 

display the same degree of continuity in all directions, its spatial continuity can be 

characterised by anisotropic variograms. It is standard practise to investigate 

different directions when calculating variograms in order to identify the possible 

existence of anisotropy.  
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2.4.4 Construction of the Experimental Variogram 

The construction of variograms requires consideration of the azimuth, angle of 

tolerance; lag distance and band width (see Figure 2.4). Deposits are unique, 

therefore appropriate directions and angles for semi-variograms need to be 

investigated for each deposit. The azimuth, angle of tolerance, lag distance and 

band width are search parameters used to find the reasonable number of pairs to 

calculate semi-variograms. The lag distance defines the distances at which the 

experimental variogram pairs are calculated. The angle of tolerance assists in 

establishing distance bins for lag increments in order to accommodate unevenly 

spaced observations (Leuangthong et al., 2008). 

 

Figure 2.4: Schematic explanations of tolerance parameters (Leuangthong et al., 2008).  
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The tolerance parameters are significant when calculating semi-variograms, for 

instance if they are too small the variogram becomes too noisy (Leuangthong et al., 

2008). This occurs due to a lack of information, and having too few data pairs in a 

lag (see Figure 2.5 (a)). If the tolerance parameters are too large, the data pairs 

might look similar in all directions because the information will have been averaged 

out (see Figure 2.5 (b)).  

 

 b) 

Figure 2.5: (a) Example of a noisy variogram with a small lag of 14 m and (b) a variogram with a large 

lag parameter of 903 m (Supervisor 8, Snowden)  

a) 
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 Theory of Kriging 2.5

This section mainly discusses the theory of SK and OK and includes examples of the 

application of the two techniques. Furthermore this chapter emphasises the 

differences between SK and OK. 

2.5.1 Kriging 

Kriging is a method of obtaining the best (or minimum variance) linear unbiased 

estimates (B.L.U.E) of point values or of block averages (Armstrong, 1998). Kriging 

is an interpolation technique that considers both the distance and the degree of 

variation between known data points when estimating values in unknown areas. 

In its original formulation a kriged estimate at a locality is simply a linear sum or 

weighted average of the data in its neighbourhood. The weights are allocated to the 

sample data within the neighbourhood of the point or block support to be estimated 

in such a way to minimise the estimation variance, and the estimates are unbiased. 

2.5.2 The theory of Kriging 

Kriging estimates are the linear function of the random variable  𝑍 (𝑥), at one or more 

unsampled points or over large blocks, where there is 𝑁 data values available i.e. 

𝑍(𝑥1) … … … … 𝑍(𝑥𝑁). The data may be distributed in one, two or three dimensions, 

though applications in geology are usually in two or three-dimensions.  

Kriging is easy to apply; it is designed to give the minimum variance linear estimate 

(Armstrong, 1998). According to Armstrong (1998) the accuracy of the estimate 

depends on the following: 

a) The number of samples and quality of the data at each point 

b) The position of samples within a deposit 

c) The distance between samples and the point or block to be estimated 

d) The spatial continuity of the variable under consideration. It is easier to 

estimate the value of a fairly regular variable than an irregular one. 

 

Kriging has an advantage in that it is more reliable than other interpolation methods 

such as the inverse distance estimator and polygonal method. Kriging involves a 

selection of weights which depends on how the variable of interest varies in space 
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(Samui and Sitharam, 2011). The weights are based on the variogram model unlike 

the polygonal method where the same weights are used regardless of the variability.  

2.5.3 Equations of Kriging 

If 𝑍(𝑥) is the random function and is stationary at a point support level, with the 

expectation  𝐸{𝑍(𝑥)} = 𝑚, then 𝑍𝑉(𝑥) is a random function at a block support level 

(see section 2.3.1). In a similar way to the point support under the hypothesis of 

stationarity, the expectation of 𝑍𝑉(𝑥) is: 𝐸{𝑍𝑉} = 𝑚 for block support. 

A kriged estimate is a weighted linear combination of the surrounding data values 

given by equation 1. 

(ZV
* ) = ∑λi . Z (xi) ………………………………………………………………………. (1) 

where 𝜆𝑖 is the weight assigned to the 𝑖 𝑡ℎ data values. The asterisk represents an 

estimated value and not the actual value. The symbol 𝑉 could be the volume for the 

whole deposit or a mining block, or it could represent a point for a case of point 

estimation.  

Kriging has a system of equations which has to be solved to obtain the weights 

before the estimates can be calculated. The weights are calculated to ensure that 

the estimator is not biased and the estimation variance is minimal. The kriging error 

𝐸 is defined as the error between the actual value and the estimate (Leuangthong et 

al., 2008). The kriging error is needed to verify the condition of un-biasedness and is 

given by the following equation: 

𝐸 [𝑍𝑉
∗ − 𝑍𝑉]  = 0…………………………………………………………………..…...…(2)  

The variance is given by: 

𝜎2  =  𝐸 {[𝑍𝑉
∗ − 𝑍𝑉]2} …………………………………………………….………………(3) 

This variance should be a minimum. The estimation variance is a measure of 

uncertainty in the estimate at 𝑥𝑖. 

There are different types of kriging methods that can be used for estimation. These 

methods include SK, OK, Universal Kriging, Multi Gaussian Kriging, Lognormal 

Kriging, Co Kriging as well as Indicator Kriging (Journel and Huijbregts, 1978). In this 
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study SK and OK are explored because in actual fact all the different kriging types 

use the same principle of minimising the error variance. 

2.5.4 Simple Kriging 

The assumption that governs SK is the theory of stationarity. The theory states that 

the mean and variance remain constant and are known in all locations (Goovaerts, 

1997). SK is an estimation method where the condition that ∑𝜆𝑖  =  1 does not apply.  

Consider a random variable 𝑍(𝑥𝑖) where 𝑍 is at some location 𝑥 within a domain A 

𝑍(𝑥𝑖)  𝑥 ∈ 𝐴 

The assumption of stationarity in SK allows random functions to be defined as 

residuals by 𝑌(𝑥) = 𝑍(𝑥) − 𝑚 with a zero mean. 

The estimation of the random variable is thus given by: 

Y𝑉
* = ∑λ𝑖Y(𝑥𝑖) …………………………….……………………………………...........…(4) 

where: 𝑌𝑉
∗ is the weighted linear estimate at a point being estimated, 𝜆𝑖 are the 

weights at sample locations and 𝑌(𝑥𝑖) is the regionalised variable. 

SK must be unbiased and must have a minimum variance. The estimation error must 

have an expected value of zero to avoid bias:  

𝐸 [𝑌𝑉
∗ − 𝑌𝑉]  =  𝐸 [∑𝜆𝑖. 𝑌(𝑥𝑖) − 𝑌𝑉]  =  0……………………………….…………...…...(5) 

The mean of the estimation error is zero therefore the estimator is unbiased, and 

there is no constraint stated on the sum of weights. The variance of the estimation 

error is given by:  

𝑉𝑎𝑟 [𝑌𝑉
∗ − 𝑌𝑉]  =  𝐸 [ ∑𝜆𝑖. 𝑌(𝑥𝑖) − 𝑌𝑉]2…………………………...……………….....….(6) 

When the estimation variance is minimised it becomes the kriging variance which 

can be written in terms of the semi-variogram: 

 𝜎2 =  ∑∑𝜆𝑖. 𝜆𝑗  . 𝛾 (𝑥𝑖, 𝑥𝑗)  + 𝛾̅ (𝑉, 𝑉) − 2∑𝜆𝑖. 𝛾̅(𝑥𝑖, 𝑉)………………..………..……….(7) 
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There is no need for a Lagrange multiplier since there is no constraint that the sum 

of weights must be equal to one. After partially differentiating equation 7, the SK 

system therefore becomes:  

∑𝜆𝑖. 𝛾̅ (𝑥𝑖, 𝑥𝑗)  = 𝛾̅(𝑥𝑖, 𝑉) ……………………………………………………….…….….(8) 

This equation indicates that kriging weights are based on the spacing of samples 

relative to one another and to the point being estimated. The weights do not depend 

in anyway on the grade of samples at points used in the estimation. 

The SK variance is given by:  

𝜎𝑠𝑘
2 = ∑𝜆𝑖. 𝛾̅(𝑥𝑖, 𝑉) − 𝛾̅(𝑉, 𝑉) ………………………………………………...…...…..…(9) 

The SK estimator can also be written in terms of the weight of the mean by replacing 

𝑌(𝑥) with the 𝑍(𝑥) − 𝑚  expression: 

𝑍𝑠𝑘
∗  (𝑥𝑖) =  𝑌𝑉

∗ + 𝑚 =  ∑𝜆𝑖[𝑍 (𝑥𝑖) −  𝑚] + 𝑚……………………..……………………..…..(10) 

=∑ 𝜆𝑖  𝑍 (𝑥𝑖) + 𝑚[1 − ∑𝜆𝑖] 

= ∑𝜆𝑖 𝑍 (𝑥𝑖) +  𝜆𝑚 𝑚 

where the weight 𝜆𝑚 is the weight of the mean in SK.  

This weight is equal to 𝜆𝑚  =  1 − ∑𝜆𝑖……………………………………………..…..(11) 

The system of equations in SK can also be expressed and summarised by a matrix 

as indicated in equation 12: 

𝐾𝑠𝑘. 𝜆𝑠𝑘  =  𝑀𝑠𝑘 

[

𝛾(𝑥1, 𝑥1) 𝛾(𝑥1, 𝑥2) ⋯ 𝛾(𝑥1, 𝑥𝑛)1

𝛾(𝑥2, 𝑥1)𝛾(𝑥2, 𝑥2) ⋱ 𝛾(𝑥2, 𝑥𝑛)1

𝛾(𝑥𝑛, 𝑥1)𝛾(𝑥𝑛, 𝑥2) ⋯ 𝛾(𝑥𝑛, 𝑥𝑛)1
            

] [

𝜆1

𝜆2

𝜆𝑛

] = [

𝛾̅(𝑥1, 𝑉)

𝛾̅(𝑥2, 𝑉)

𝛾̅(𝑥𝑛, 𝑉)
] ............................................(12) 

To illustrate the practical application of SK, an example adopted from the 

Geostatistical Evaluation Assignment Exercise, by C.E Dohm (2011) is used. The 

mean of the samples is assumed to be known, and is equal to 16.67. 
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Suppose a 20 m x 20 m block V to be estimated by SK using a 9 point support 

sample, located on a regular 30 m grid (see Figure 2.6). 

 

Figure 2.6: Data location of the 9 samples and the 20 m x 20 m block to be estimated (Geostatistics 

Assignment C.E Dohm, 2011) 

 

The variogram of this block is a one-structure isotropic spherical semi-variogram with 

a sill of 1 and a range of 120 m (see Appendix A). The gamma values are 𝛾̅(𝑉, 𝑉) =

0.1063, 𝛾̅(𝑍𝑖, 𝑍𝑗) = 0.503, 𝛾̅(𝑧, 𝑉) = 0.402 

The 𝑍  values: 𝑍1 = 19, 𝑍2 = 25,  𝑍3 = 17,  𝑍4 = 13,   𝑍5 = 21, 𝑍6 = 8,  𝑍7 = 12, 𝑍8 =

15,  𝑍9 = 20 

  

V 
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The SK system of equations shown in equation 12 when applied to the layout of 

points in Figure 2.6 produces a matrix form indicated below in Table 2.1. The reader 

is referred to (Appendix A) for the full calculation of this matrix. 

Table 2.1: SK matrix of the 9 point support sample 

 

Solving for the weights gave:  

𝑤1= 𝑤3 = 𝑤7 = 𝑤9 =  −0.005,  𝑤2 =  𝑤4 = 𝑤6 = 𝑤8 = 0.068, 𝑤5= 0.731 

The sum of weights was therefore: ∑ 𝑤𝑖  = 4(−0.005) + 4(0.068) + (0.731) 

     = 0.98 

Therefore the SK estimate is:  

    𝑍𝑠𝑘
∗ 𝑣 = ∑ 𝑤 ∗ 𝑧𝑖 + (1 − ∑ 𝑤𝑖) ∗ 𝑚 

𝑍𝑠𝑘
∗ 𝑣    =  −0.005 (19 + 17 + 12 + 20) + 0.731(21) + 0.068(25 + 13 + 8 + 15)

+  (1 − 0.98) ∗ 16.67 

              = 19.49 

The variance given by: 𝜎𝑠𝑘
2 = ∑𝑤𝑖. 𝛾̅(𝑥𝑖, 𝑉) − 𝛾̅(𝑉, 𝑉) 

                                           = (0.1700) − (0.1063) 

.                                          =  0.064 
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2.5.5 Ordinary Kriging 

OK is a linear geostatistical method which provides local estimation by interpolation. 

D Krige and G. Matheron introduced this linear estimation technique with the aim to 

reduce the volume variance effect. They decided on a linear technique because it is 

believed to provide the least amount of difference between the actual and estimated 

mine grades. OK assumes that regionalised variables are stationary where the mean 

(𝑚) is unknown (Armstrong, 1998). 

In OK, all the points with no sample values are assigned a value using a weighted 

linear combination of known neighbouring sample values.  

The estimated value can be presented by the following formula: 

 𝑍∗
𝑉𝑜𝑘 = ∑𝜆𝑖𝑍(𝑥𝑖).………………………………………………………………….……(13) 

To ensure that there is no bias, the OK error 𝐸 [𝑍𝑉
∗ − 𝑍𝑉]  = 0 and is estimated in 

terms of weights by substituting the estimate 𝑍𝑉
∗   with the ∑𝜆𝑖. 𝑉𝑖, therefore the error 

can be expressed as 

𝑟𝑖 =  ∑𝜆𝑖. 𝑉𝑖 − 𝑉𝑖……………………………...………………….………………….……(14) 

with 𝑍(𝑥𝑖) being represented by 𝑉𝑖 

The error made when estimating unknown values is an outcome of a random 

variable (Isaaks and Srivastava, 1989). The expected value of the error at any 

particular location is zero and that is verified by substituting the equation of the 

expected value on the estimation error equation. The expected value equation is  

𝐸(𝑟)  = 𝐸 {∑𝜆𝑖. 𝑉𝑖 − 𝑉𝑖} ………...……………………………………………….….….(15) 

This can be expressed as: 

𝐸𝑟 =  ∑𝜆𝑖. 𝐸𝑉𝑖 − 𝐸𝑉𝑖…………………………………...………………………………..(16) 

Isaaks and Srivastava (1989) state that the expected error is referred to as the bias. 

The expected value equation is set to zero and the resulting equation satisfies the 

condition of un-biasedness and is given by: 

𝐸(𝑟)  =  0 = ∑𝜆𝑖. 𝐸𝑉𝑖 − 𝐸𝑉𝑖………………......................………………………….…..(17) 
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𝐸 ∑𝜆𝑖. 𝑉𝑖  = 𝐸𝑉𝑖…………………………………………………………………..………..(18) 

meaning that: 

∑ 𝜆𝑖 = 1……………………….……..………………………….……………………...... (19)  

and thus  𝐸{𝑍𝑉
∗ } = 𝑚 ∑ 𝜆𝑖 = 𝑚 = 𝐸{𝑍𝑉}……..………….………………..…………..…(20) 

OK also ensures minimum estimation variance 𝐸 {[𝑍𝑉
∗ − 𝑍𝑉]2} which can be 

expressed by first obtaining the variance of the error: Isaaks and Srivastava (1989) 

suggest that this error is a random variable which can be expressed as: 

𝑉𝑎𝑟{∑ 𝜆𝑖. 𝑉} = ∑ ∑ 𝜆𝑖 𝜆𝑗 . 𝛾{𝑉𝑖, 𝑉𝑗}...............................................................................(21) 

Using [𝑍𝑉
∗ − 𝑍𝑉] and equation 21, the variance of the error can be expressed as: 

𝑉𝑎𝑟{𝐸(𝑟)} = 𝛾{𝑉∗(𝑥0)𝑉∗(𝑥0)} − 𝛾{𝑉∗(𝑥0)𝑉(𝑥0)} −  𝛾{𝑉(𝑥0)𝑉∗(𝑥0)} + 𝛾{𝑉(𝑥0)𝑉(𝑥0)}   

                  = 𝛾{𝑉∗(𝑥0)𝑉∗(𝑥0)} − 2𝛾{𝑉∗(𝑥0)𝑉(𝑥0)} +  𝛾{𝑉(𝑥0)𝑉(𝑥0).........................(22) 

The first term  𝛾{𝑉∗(𝑥0)𝑉∗(𝑥0)} is the variogram of 𝑉∗(𝑥0) with itself, which is equal to 

the variance of  𝑉∗(𝑥0): 

𝑉𝑎𝑟{𝑉∗(𝑥0)𝑉∗(𝑥0)} = 𝑉𝑎𝑟{∑ 𝜆𝑖. 𝑉} = ∑ ∑ 𝜆𝑖 𝜆𝑗𝛾̅𝑖𝑗......................................................(23) 

The third term in equation 22,𝛾{𝑉(𝑥0)𝑉(𝑥0)}, is the variogram of random variable 

𝑉(𝑥0) with itself and is equal to the variance of 𝑉(𝑥0). If the assumption that random 

variables have the same variance 𝜎2, then the third term can be expressed as: 

𝛾{𝑉(𝑥0)𝑉(𝑥0)} = 𝜎2.................................................................................................(24) 

The second term in equation 22, can be expressed as: 

2𝛾{𝑉∗(𝑥0)𝑉∗(𝑥0)} = 2{(∑ 𝜆𝑖. 𝑉)𝑉0} = 2𝐸{∑ 𝜆𝑖 𝑉. 𝑉0} − 2𝐸{∑ 𝜆𝑖 𝑉}. 𝐸{𝑉0} 

                                  = 2 ∑ 𝜆𝑖 𝛾{𝑉, 𝑉0}.................................................................(25) 

Combining the three terms we have the following expression: 

𝑉𝑎𝑟{𝐸(𝑟)} = 𝜎2 + ∑ ∑ 𝜆𝑖 𝜆𝑗𝛾̅𝑖𝑗 − 2 ∑ 𝜆𝑖 𝛾𝑖𝑗................................................................(26) 
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Equation 26 can also be expressed as: 

𝜎𝜀
2 = 2 ∑ 𝜆𝑖𝛾 ̅ (𝑉, 𝑥𝑖 )– ∑ ∑ 𝜆𝑖 𝜆𝑗  𝛾(𝑥𝑖 𝑥𝑗) − 𝛾̅(𝑉, 𝑉) ……………….….…….……….…(27) 

2.5.5.1 Introducing the Lagrange multiplier 

The Lagrange multiplier uses the equation for the error variance which is constrained 

by the requirement that the weights must add up to one namely, ∑ 𝜆𝑖 = 1 to minimise 

the estimation variance. Lagrange requires that the constraint be set equal to zero 

and multiplied by the Lagrange multiplier, 𝜇 to give: 

𝜇(∑ 𝜆𝑖 − 1) = 0 

This constraint is added to equation 27, but it does not change its value, giving: 

𝜎𝜀
2 = 2 ∑ 𝜆𝑖𝛾 ̅ (𝑉, 𝑥𝑖 )– ∑ ∑ 𝜆𝑖 𝜆𝑗  𝛾(𝑥𝑖 𝑥𝑗) − 𝛾̅(𝑉, 𝑉) +  𝜇(∑ 𝜆𝑖 − 1)……………….…..(28) 

This equation can be expanded as follows 

𝜎𝜀
2 =

2 𝜆1𝛾(𝑉, 𝑥1) + 2𝜆2𝛾(𝑉, 𝑥2) + 2𝜆3𝛾(𝑉, 𝑥3) −

{

𝛾 (𝑥1, 𝑥1)𝜆1𝜆1 + 𝛾(𝑥1, 𝑥2)𝜆1𝜆2 + 𝛾(𝑥1, 𝑥3)𝜆1𝜆3

𝛾(𝑥2, 𝑥1)𝜆2𝜆1 + 𝛾(𝑥2, 𝑥2)𝜆2𝜆2 + 𝛾(𝑥2, 𝑥3)𝜆2𝜆3

𝛾(𝑥3, 𝑥1)𝜆3𝜆1 + 𝛾(𝑥3, 𝑥2)𝜆3𝜆2 + 𝛾(𝑥3, 𝑥3)𝜆3𝜆3

} -[𝛾(𝑉, 𝑉) + 𝜇(𝜆1, 𝜆2, 𝜆3 − 1)] 

In order to minimise the error variance Equation 28 is partially differentiated with 

respect to the weights (𝜆𝑖) and the Lagrange multiplier (𝜇). These 4 equations with 4 

unknowns are set to zero and solved: 

𝜕𝜎𝜀
2

𝜕𝜆1
=  𝛾(𝑉, 𝑥1) − (𝜆1𝛾(𝑥1, 𝑥1) + 𝜆2𝛾(𝑥1, 𝑥2) + 𝜆3𝛾(𝑥1, 𝑥3) + 𝜇 = 0 

 
𝜕𝜎𝜀

2

𝜕𝜆2
=  𝛾(𝑉, 𝑥2) − (𝜆1𝛾(𝑥2, 𝑥1) + 𝜆2𝛾(𝑥2, 𝑥2) + 𝜆3𝛾(𝑥2, 𝑥3) + 𝜇 = 0 

 
𝜕𝜎𝜀

2

𝜕𝜆3
=  𝛾(𝑉, 𝑥3) − (𝜆1𝛾(𝑥3, 𝑥1) + 𝜆2𝛾(𝑥3, 𝑥2) + 𝜆3𝛾(𝑥3, 𝑥3) + 𝜇 = 0 

𝜕𝜎𝜀
2

𝜕𝜇
= 𝜆1 + 𝜆2 + 𝜆3 − 1 = 0 
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Differentiating with respect to the Lagrange multiplier gives: 

𝜆1 + 𝜆2 + 𝜆3 = 1 

The kriging system is then: 

∑ 𝜆𝑖 𝛾(𝑥𝑖𝑥𝑗) + 𝜇 = 𝛾̅(𝑥𝑖, 𝑉) 

The kriging variance in OK is given by:  

𝜎𝑜𝑘
2 =  ∑ 𝜆𝑖𝛾 ̅ (𝑥𝑖, 𝑉) −  𝛾̅(𝑉, 𝑉) + µ ……………………………………..…………..…. (29) 

where lambda µ the Lagrangian multiplier measures the bias. The Lagrange 

multiplier is the balancing factor that ensures the optimisation of weights calculated 

for the OK system of equations. Equation 29 states that kriging variance equals the 

sum of variogram for point to block distance multiplied by kriging 

weights ( ∑ 𝜆𝑖𝛾 ̅ (𝑥𝑖, 𝑉) minus average variogram between each and every 

discretisation point in a block (𝛾̅(𝑉, 𝑉) plus the Lagrange multiplier µ. 

The Lagrange multiplier is a reflection of the balances between the samples and the 

point being estimated and the relationship between the samples themselves. 

The relationships between the samples and the point to be estimated are 

∑ 𝜆𝑖 𝛾 (𝑉, 𝑥𝑖 ) and the relationships amongst the samples themselves are 

 ∑ ∑ 𝜆𝑖 𝜆𝑗  𝛾(𝑥𝑖 𝑥𝑗) 

 

The Lagrangian multiplier is therefore: 

𝜇 = 2 ∑ 𝜆𝑖𝛾 ̅ (𝑉, 𝑥𝑖 )– ∑ ∑ 𝜆𝑖 𝜆𝑗𝛾 (𝑥𝑖 𝑥𝑗)………………………………………………….(30) 

The first term of equation 30 increases the error variance and the second term 

decreases the error variance, but at half the rate of the first term. There is a balance 

between these two functions where the Lagrange multiplier is zero such that: 

2 ∑ 𝜆𝑖𝛾 ̅ (𝑉, 𝑥𝑖 ) = ∑ ∑ 𝜆𝑖 𝜆𝑗  𝛾(𝑥𝑖 𝑥𝑗)……………………………..………………………(31) 

The kriging variance measures the quality of the estimation. It depends on the 

structural models i.e. semi-variogram 𝛾(ℎ) as well as the exact data configuration. 

However the kriging variance does not depend on the actual values of the samples 
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used in the estimation. Equation 29 indicates that, the kriging variance takes into 

account the geometry of the domain 𝑉 to be estimated, expressed in the term 

 𝛾̅(𝑉, 𝑉). It also takes into account the distance between 𝑉 and 𝑥 expressed by 

𝛾̅(𝑥𝑖, 𝑉). 

The system of equations in OK can be expressed and summarised by a matrix as 

indicated in equation 32: 

𝐾𝑜𝑘. 𝜆𝑜𝑘 =  𝑀𝑜𝑘 

[

𝛾(𝑥1, 𝑥1) 𝛾(𝑥1, 𝑥2) ⋯ 𝛾(𝑥1, 𝑥𝑛)1

𝛾(𝑥2, 𝑥1) 𝛾(𝑥2, 𝑥2) ⋱ 𝛾(𝑥2, 𝑥𝑛)1

𝛾(𝑥𝑛, 𝑥1) 𝛾(𝑥𝑛, 𝑥2) ⋯ 𝛾(𝑥𝑛, 𝑥𝑛)1
            1               1 … … … … … 1         0

] ⌊

𝜆1

𝜆2

𝜆𝑛

𝜇

⌋ = [

𝛾̅(𝑥1, 𝑉)

𝛾̅(𝑥2, 𝑉)

𝛾̅(𝑥𝑛, 𝑉)
1

] ................................................(32) 

 

In Equation 32, the first matrix represents variogram values between each sample 

and all other samples. The symbol (𝛾) gamma represents the corresponding 

variogram between the points. The weights are represented by symbol (𝜆) are 

calculated and (𝜇) is the Langrage multiplier; the weights are multiplied with sample 

grades to produce an Ordinary kriged estimate. Armstrong (1998) suggests that the 

matrix 𝐾𝑜𝑘 will always be non-singular, provided that the point variogram model 𝛾 (ℎ) 

is valid and none of the available data points are situated at the exact same location. 

Non- singular matrix means that there is an existing inverse of that particular matrix. 

This will ensure existence and uniqueness of the solution to the OK system of 

equations and will also ensure that the OK variance is always positive (Journel & 

Huijbregts, 1978). 

In the same way that SK was applied to the layout of points in Figure 2.6 OK is now 

applied to the same layout. 

The variogram of this deposit is a one-structure isotropic spherical semi-variogram 

with a sill of 1 and a range of 120 m. The gamma values are 𝛾̅(𝑉, 𝑉) = 0.1063, 

𝛾̅(𝑍𝑖, 𝑍𝑗) = 0.503, 𝛾̅(𝑧, 𝑉) = 0.402 (see Appendix A). 

The z values are: 𝑍1 = 19, 𝑍2 = 25, 𝑍3 = 17, 𝑍4 = 13,   𝑍5 = 21, 𝑍6 = 8, 𝑍7 = 12, 

𝑍8 = 15, 𝑍9 = 20 
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The OK system of equations applied to the layout of points in Figure 2.6 produces a 

matrix form indicated in Table 2.2. The reader is referred to (Appendix A) for the full 

calculation of this matrix. 

Table 2.2: OK matrix of the 9 point support sample 

 

Solving for the weights gave: 

 𝑤1 = 𝑤3 = 𝑤7 = 𝑤9 =  −0.0006 ,𝑤5 = 0.7280, 𝑤2=𝑤4=𝑤6 = 𝑤8 =0.0687 

The sum of weights is ∑ 𝑤𝑖  = 4(−0.006) + (0.7280) + 4(0.0687) 

                                               ∑ 𝑤𝑖 = 1.00 

and the Lagrange multiplier: 𝜆 =  −0.0127 

Therefore the OK estimate is:  

𝑍𝑜𝑘
∗ 𝑣 = ∑ 𝑤𝑖. 𝑧(𝑣) 

=-0.0006(19 + 17 + 12 + 20) + 0.0687(25 + 13 + 8 + 15) +  0.7280(21) 

 = 19.51 

The variance given by: 𝜎𝑜𝑘
2 =  ∑ 𝑤𝑖𝛾 ̅ (𝑧, 𝑉) −  𝛾̅(𝑉, 𝑉) + µ  

= 0.17 − 0.1063 + (−0.0127) 

                                                        = 0.051 
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Table 2.3 below summarises the results obtained from the 9 point support samples 

estimated using SK and OK. 

Table 2.3: 9 point support sample kriging results 

Output SK OK 

Kriged estimate 19.49 19.51 

Kriging variance 0.064 0.051 

 

When comparing the results of SK and OK for the 9 point support sample example; 

the first difference is that the mean is known in SK and unknown in OK. When 

comparing the arithmetic mean value of 19.67 with the SK kriged estimate of 19.49, 

there is a significant difference between the two. The arithmetic mean of the data 

influences the SK estimate (see SK example section 2.5.4). The SK value of the 

kriged estimate is less than the OK kriged estimate of 19.51. The OK estimate is not 

influenced by the arithmetic mean of the data. The OK variance of 0.051 is smaller 

than the SK variance of 0.064; meaning that for this particular estimation OK 

minimises the variance better than SK. 

2.5.6 Differences between SK and OK 

The difference between the two kriging types are the constraints imposed during the 

variance minimisation. OK involves the condition that the sum of the weights must be 

equal to one while in SK that condition does not apply. This condition of having 

weights summing up to one has a Langrage factor 𝜇 accompanying it and SK does 

not have that parameter (see Table 2.4). 
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Table 2.4: A table of comparison between SK and OK  

Ordinary Kriging (OK) Simple Kriging (SK) 

Sum of weights is equal to one ∑𝜆𝑖 = 1 Sum of the weights is not equal to one,  

Assumes that the mean is unknown and can fluctuate over 

the deposit. 

Assumes that the mean is known and remains constant 

throughout the deposit 

OK estimator is : 𝑍𝑜𝑘
∗ (𝑣) = ∑𝜆𝑖𝑍(𝑥) SK estimator is : 𝑍𝑠𝑘

∗ (𝑣)  = ∑𝜆𝑖𝑍(𝑥𝑖) + [1 − ∑𝜆𝑖]𝑚 

Stationary OK adapts well to trends since the mean does not 

remain constant 

Stationary SK does not adapt well to trends since the mean 

is assumed to be constant 

OK has a Lagrange parameter associated with the condition 

that ∑𝜆𝑖 = 1 

 

Does not have the Lagrange parameter associated with the 

weights and therefore has no condition on the sum of 

weights. 

  

Kriging variance for OK 

  

Kriging variance for SK 

Block variance for OK:   Block variance for SK:  

  

Kriging efficiency for OK 

  

Kriging efficiency for SK 

 

OK assumes that the mean is unknown whereas SK assumes that the mean is 

known and constant throughout the deposit (Goovaerts, 1997). OK accounts for the 

local fluctuations of the mean by limiting the area of stationarity of the mean to the 

local neighbourhood (Goovaerts, 1997), which means that the mean may vary in the 

study area and does not remain constant. The local mean in OK is not the same as 

the global mean; therefore in low grade areas in a deposit the OK estimate will be 

lower than the SK estimate since the local mean is smaller than the global mean. In 

high grade areas the OK estimate is larger than the SK estimate because the local 

mean is larger than the global mean (see Table 2.4). SK emphasises strong 

stationarity, where the mean value remains constant throughout the deposit. 
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 Chapter 3: Research Methods 3.

In this chapter the statistical approach used in this study for analysis of PGE (4E) 

data is briefly described. The assumptions made regarding the data are stated, and 

the key statistical tools applied are described. Thereafter, the methods employed by 

Dohm (2011), Goovaerts (1997) and Deutsch et al. (2014) are discussed in this 

chapter as they are adopted by this study. These methods include the application of 

SK and OK in mining of various mineral deposits. 

 Statistical approach 3.1

In this study statistics is applied to describe the PGE (4E) data, giving all essential 

population parameters as well as relevant and meaningful diagrammatic 

presentations of the data. 

The PGE (4E) sample data is used to draw conclusions about the underlying 

population. The geology of the study area is first understood before the attempt of 

the statistical study. The geological study is undertaken to understand the geological 

controls, and making decisions of how to group the data see Chapter 4. 

To view, analyse and understand the PGE data, the descriptive statistics is 

undertaken. In descriptive statistics a few concepts are considered i.e. the measures 

of central tendency, measures of variability and the measures of symmetry. To 

further describe the PGE (4E) data, diagrammatic presentations are also used i.e. 

histograms, probability plot and grade sample location plots. 

3.1.1 Descriptive statistics 

The measures of central tendency include the following: 

a) Mean which is the arithmetic average of the data set 

b) Median which is the middle or central value of the whole data set 

c) Mode is the most frequently occurring value or common value in a data set 
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The measures of central variability include the following: 

a)  Range measures spread, the difference between the smallest and largest 

value in a data set. 

b) Variance which is the spread of data values around the mean. This is an 

important measure of deviance. 

c) Coefficient of variation provides an estimate of the variability of the data i.e. 

grade variability of the orebody. 

The measures of symmetry considered in this study are skewness and kurtosis. 

Most natural data distributions are skewed; this skew measures the extent to which a 

distribution departs from symmetry. Symmetrical distributions are mirror images of 

one another i.e. normal distribution (bell shape). Kurtosis refers to the shape of the 

distribution, how peaked a distribution is. 

The diagrammatic presentations i.e. the histogram and probability plot were 

discussed in Chapter 2 and will not be discussed here. There are certain 

assumptions made regarding the sample data in statistics. These assumptions are 

applied to the sample data to be analysed, and they state the following: 

a) Data values are precise 

b) Data values are accurate 

c) Data values are random and independent 

d) Samples are very small proportion of the population. 

These assumptions are applied also for the PGE (4E) data set used in this study. 

3.1.2 Spatial data analysis 

This section describes the tools used for spatial analysis. The spatial analysis is 

undertaken to confirm and validate the information supplied in the statistical analysis. 

In this study as a tool of spatial analysis the colour coded sample location plots are 

produced as well as the two dimensional grade contour maps. The grade contour 

maps are constructed at different grade intervals see Chapter 5 and are used for 

understanding grade trends. The colour coded sample locations plots provide 

assessment of the continuity of high and low grade see Chapter 4. To characterise 

the continuity of the PGE (4E) data the application of variography is undertaken in 
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Chapter 5. The variogram maps are produced as well the semi-variogram models, in 

order to further analyse the spatial chacteristics of the PGE (4E) data. 

 The Kriging weights for OK and SK 3.2

This section is the continuation of the example discussed in Chapter 2 of the 9 point 

support sample values and has been slightly modified from work done by C.E Dohm 

(2011). This section discusses in detail what occurs to the kriging weights as the 

nugget effect increases for both OK and SK. This section is undertaken as a view of 

what technologically advanced software packages do, such as Surpac 6.2.1 used in 

this study see Chapter 6. 

For both SK and OK the kriging weights can be calculated by means of matrix 

algebra as shown earlier in Chapter 2 (equation 12 and 32) respectively. According 

to Goovaerts (1997), the kriging weighting system accounts for: 

a). the relationship of the data to the location being estimated through the semi-

variogram. 

b). data redundancy through the data semi-variogram matrix. 

 

Isaaks and Srivastava (1989) mention that the kriging weights depend on the 

following: 

a) The spatial correlation of the available samples with respect to each other. 

b) The spatial location of the available samples with respect to the block being 

estimated 

c) The spatial continuity and structure of the deposit under study, this is 

presented by the semi-variogram function (nugget effect, anisotropy and 

range). 

 

To observe the behaviour of kriging weights for both SK and OK, the data outline 

shown in Figure 2.6 is used. In each case to be discussed an isotropic semi-

variogram model is assumed at a various number of nugget values. The nugget 

effect is set at 0.1 increments until 1 for each range of influence and a sill of 1. The 

ranges used are 30 m, 90 m and 120 m respectively. 
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Considering the data configuration in Figure 2.6 and assuming an isotropic semi-

variogram model at a range of 30 m, the OK and SK weights compared with the 

nugget effect appear as illustrated in Figure 3.1 

 

Figure 3.1: Impact of the nugget effect on the OK and SK weights at a 30 m range 

 

For OK, what is observed is that the weights decrease as the nugget effect increases 

at sample point Z5, where block V being estimated is situated. The same is observed 

for SK weights, sample point Z5 has the highest weight because it is located close to 

the block V being estimated. The sample at points Z1, Z3, Z7 and Z9 have equal 

weights and behave the same both in OK and SK. These sample points are 

assigned the same weights because they are located at the same distance from the 

point being estimated and an isotropic semi-variogram is assumed which only 

considers the sample distances regardless of the direction. Similarly the sample 

points Z2, Z4, Z6 and Z8 have equal weights and behave the same. The samples 

located around the block being estimated have their weights increasing with the 

nugget effect. What is observed at this range is that the SK weights are slightly 

larger than the OK weights (see Appendix B). This is due to the difference in the OK 

matrix and SK matrix, the OK matrix includes the Lagrange multiplier which ensures 

that the weights sum up to 1 and SK matrix does not. 
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Figure 3.2: Impact of the nugget effect on the OK and SK weights at a 90 m range 

 

At a range of 90 m, the weights at sample point Z5 decreases with the increase in 

the nugget effect which is similar to what is observed in the range of 30 m. The 

weights of the points surrounding the block V estimated increase as nugget effect 

increases (see Figure 3.2). According to Goovaerts (1997) the increase in the nugget 

effect reduces the impact of distance of the data locations to the point or block being 

estimated. 

 

Figure 3.3: Impact of the nugget effect on the OK and SK weights at a 120 m range 

  

At a 120 m range an introdcution of negative weights is observed at sample point Z1, 

Z3, Z7 and Z9 at zero nugget effect. These sample points are screened by the closer 

samples Z2, Z4, Z6 and Z8, hence they obtain negative weights.The furthest 

samples at zero nugget effect have negative weights in SK, which is not observed in 

OK . Nagative weights are undesirable as they can result in negative kriged 

estimates. Goovaerts (1997) notes that the increase in the nugget effect reduces the 
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screening effect. Hence what is observed in all ranges is that at pure nugget effect 

(Co = 1) all samples are assigned equal weights and are positive (see Appendix B).  

Nugget effects indicate the variability of samples over short distances. In Chapter 2 it 

is mentioned that the behaviour of the semi-variogram near the origin has 

implications on the kriging results and their stability. A common feature of the semi-

variogram is the discontinuity at the origin, given by the nugget effect. The increase 

in the nugget effect allows for the kriging weights of points far away from the block 

being estimated, to be assigned similar weights as the points closer to the block (see 

Appendix B). This causes great averaging of the kriging process and a smooth 

appearance of the kriged grades. In mining this means that waste can be mistaken 

for ore if a very high nugget effect is used and this can lead to misinterpretation and 

financial loss. 

3.2.1 Differences in the application of OK and SK weights 

As the range increased, negative weights were obtained in SK and the Lagrange 

multiplier in OK also started being negative. At all ranges some of the SK weights 

are larger than the OK weights and all weights converge as the nugget effect 

increases. For all ranges in both OK and SK the weights at sample point Z5 

decreased as the nugget effect increased. The change of the range seems to have 

minor effects on the weights for OK. The sample points surrounding block V being 

estimated has weights increasing as the nugget effect increases for both OK and SK, 

hence the convergence of weights at pure nugget effect. It can be concluded that the 

higher the nugget effect the higher the degree of smoothing. When the nugget effect 

is high samples are more evenly weighted and the block estimate is derived from all 

available sample data. Conversely when the nugget effect is low the block estimate 

is derived from the closest samples within the range of influence. The real major 

difference observed here between OK and SK is in the computation of the matrices 

of the two techniques. For OK there is a Lagrange multiplier ensuring that the 

weights sum up to 1 and there is no Lagrange multiplier in SK. Overall similar 

behaviours on the weights are observed for both OK and SK, since the same 

isotropic variogram is assumed for both. 
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 Kriging performance measures 3.3

A number of decisions are required to make an appropriate kriging estimate, such as 

the kriging type .i.e. SK or OK, search parameters and data selection. This section 

discusses some of the performance measures used to assess a kriging estimate. A 

case study from Deutsch et al. (2014) is discussed and the methods used in his case 

study are adopted for this study. 

3.3.1 Number of search data 

The number of search data is part of the decision made to make an appropriate 

kriging estimate. A number of authors have studied in detail the impacts that the 

number of search data has on the kriged estimate, and found that OK performs 

better than SK when a large number of search data is used in most cases. 

According to Deutsch et al. (2014), Rivoirard (1987) and Boyle (2010) a restricted 

search is considered when kriging is used as an estimation method. This restricted 

search is considered to reduce the reliance on the hypothesis of a stationary mean 

for OK and to reduce the presence of negative weights for SK and therefore reducing 

the weight assigned to the mean (Rivoirard, 1987). The search in kriging refers to the 

process of finding the sufficient samples to represent a local distribution function and 

to minimise conditional bias. The search parameters include: 

a) a maximum range around the location being estimated to search for local data 

b) maximum number of local samples to consider 

c) maximum number of data to be used from each borehole and the maximum 

number of data to use from each octant or quadrant searches. Together all 

these parameters are referred to as the kriging neighbourhood (Deutsch and 

Journel, 1998). A detailed explanation about the Kriging neighbourhood is 

found in Rivoirard (1987), Boyle (2010) and Vann et al. (2003).According to 

Boyle (2010) the testing of the number of search data in kriging can be 

referred to as the kriging neighbourhood analysis (KNA). 

 

According to Vann et al. (2003) the fact that kriging is a minimum variance estimator 

is true when the neighbourhood is properly defined. He also suggests that kriging 

neighbourhood can assist with block size selection, choice of discretisation and 

mineral resource classification decisions.  
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Rivoirard (1987) suggests two parameters to assess, when investigating the 

appropriate number of search data. The two parameters are the weight of the mean, 

which shows how kriging depends on the number of search data as well as the slope 

of regression, which shows if the number of search data used is sufficient or not. The 

mathematics behind the kriging weight of the mean as well as the slope of 

regression is covered in detail in Rivoirard (1987). This study assumes the reader 

has an understanding of linear geostatistics. 

According to Boyle (2010) in SK where the mean is known, the weight of the mean 

shows the dependency of kriging on local samples rather than the whole deposit and 

samples further away. He explains that, if the weight assigned to the mean is low 

then mainly local samples are used to estimate the grade and the assumption of 

stationarity is relaxed. Conversely if the weight assigned to the mean is large then 

that suggests that the local sample information is limited, therefore the global mean 

and stationarity are more important. 

In OK the mean is not known, and the weights are assigned to the local samples and 

to the local mean, kriged from local close samples. Rivoirard (1987) suggests that if 

the weight of the mean in SK is greater than 20% of the original mean, the estimate 

of the local mean becomes more important for OK. This estimation of the local mean 

involves samples that are further away if the samples close by are insufficient to 

estimate the data. (Boyle, 2010). 

Rivoirard (1987) suggests that if the slope of regression is less than 1 it means that 

true grades estimated to have high grade values are most likely lower than 

estimated. The variance of estimated grades is normally greater than the variance of 

true/original grades; this suggests a highly restricted neighbourhood search. 

Conversely if the slope of regression is greater than 1, then over smoothing of 

estimated grades exists. 

Krige (1996) suggests that if there is insufficient number of data there is no way to 

avoid smoothing and conditional bias. The number of search data should be 

increased to obtain a slope of regression close to 1, improving estimation accuracy 

as well minimising conditional bias. 
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3.3.2 Number of search data analysis (KNA) 

Deutsch et al. (2014), adopted case studies from different authors which made use 

of the kriging neighbourhood to assess the kriging estimate. The case studies 

considered both SK and OK which is what is also considered with this PGE (4E) 

data. The studies investigated the effects of the number of search data against the 

mean squared error between the estimates and true values (𝑍𝑉
∗ − 𝑍𝑉)2. 

Three case studies were considered where between 5 and 100 local data was used 

to produce each estimate. The first case study was of a low grade porphyry copper 

deposit with 134 drill holes (see Figure 3.4 a)). The second case study was of 

bitumen data (oil sands) with 280 drill holes (see Figure 3.4 b)). The final case study 

was of a zinc deposit with 367 drill holes (see Figure 3.4 c)). The results from the 

three studies are shown in Figure 3.4. 

 

Figure 3.4: The effect of the number of search data on OK and SK (Deutsch et al., 2014).  
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In the first case study of the low grade porphyry copper with 134 drill holes, the 

average drill hole spacing is 100 m. This porphyry copper deposit was composited 

into 3 m sections. The porphyry copper assays are moderately skewed with a mean 

of 0.25% and standard deviation of 0.27%. The variogram model for this deposit is 

isotropic and has a nugget effect of 20% of the total sill (Deutsch et al., 2014). 

In this low grade porphyry copper deposit the mean squared error decreases as the 

number of search data increases, improving the kriging estimate. Figure 3.4 a) 

shows the effects of the number of search data on SK and OK using the low grade 

porphyry copper .For a low number of search data SK performed better than OK. 

Conversely for a large number of search data OK was the better estimator. 

In the second case study of the bitumen data with 280 drill holes, the data was 

composited into 3 m sections. The bitumen deposit is stratified and the deposit 

displays strong vertical to horizontal anisotropy at ratio 150:1.For this deposit the 

histogram displays a normal distribution with a mean of 7.7%.A similar case to the 

porphyry copper was observed, where OK performed better when a large number of 

search data was used (see Figure 3.4 b)). 

The third case study of the zinc deposit with 367 drill holes, where the zinc assays 

are skewed and have a moderate anisotropy between horizontal and vertical 

directions. For this deposit, the mean squared error for both OK and SK with a large 

number of search data performed in the same manner. 

Increasing the number of search data decreases the mean squared error for both OK 

and SK. For OK increasing the number of search data increases the accuracy of the 

estimate of the local mean since the mean squared error was decreased drastically 

when the search data increased. The conclusions that were made in these case 

studies was that, SK will always result in a lower mean squared error compared to 

OK when few number of data are used, provided the mean in that deposit is not 

globally stationary. When more number of data is used OK performs better than SK. 
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 Trend estimates 3.4

The analysis of trend estimates in a mineral deposit assist in the evaluation of local 

mean departures from the overall mean value, thus providing an overview picture of 

global trends of that deposit. This section discusses work done by Goovaerts (1997) 

on the application of SK and OK in trend estimates. The methods employed by 

Goovaerts (1997) are adopted and used by this study in order to evaluate the 

differences in the application of SK and OK. 

3.4.1 Cadmium trend estimates 

An example of a study undertaken by Goovaerts (1997) is discussed to further show 

the differences in the application of SK and OK. Cadmium (Cd) local mean was 

estimated using SK and OK along a NE-SW direction or orientation of the data. 

Figure 3.5 a) shows ten Cd concentrations at locations u1 to u10.The local mean was 

estimated every 50 m using the 5 closest data values; Figure 3.5 b) and c) show the 

results from the estimation. The OK estimate of the mean is different from one 

segment to another depending on the neighbouring data retained. It is however 

identical at locations where the same neighbouring data are involved in the 

estimation. The OK estimate therefore results in a trend estimate that follows the 

general increase of Cd values which increases with an increase in distance. The 

mean of the 10 data values of Cd is 1.49 ppm presented by a horizontal dashed line 

in the third graph (see Figure 3.5 c)). The horizontal line overestimates the lower left 

Cd local mean and underestimates the local mean on the right. 
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Figure 3.5: SK and OK trend estimates of Cadmium (Goovaerts, 1997) 

 

The third graph shows the results obtained from both SK and OK. The estimates 

from OK are smaller than the estimates from SK in the left part of the graph (see 

third graph Figure 3.5 c)), where the local mean is smaller than the global mean of 

1.49 ppm. 

  

a) 

b) 

c) 
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The OK estimate is larger than the SK estimate in the right part of the graph (see 

Figure 3.5 b)), where the local mean is larger than the global mean of 1.49 ppm. The 

OK estimates better follow the data fluctuations with smaller values in the left part 

and larger values in the right part of the graph. OK better estimates the Cd data 

since it follows the Cd trend better than the SK estimate. 

Goovaerts (1997) notes that the use of stationary mean yields SK estimates that are 

close to that mean value (1.49 ppm) away from the data values (see the right edge 

of Figure 3.5 c)). In contrast, local estimation of the mean within search 

neighbourhoods yields OK estimates that better follow the data fluctuations as seen 

in Figure 3.5 c); small values in the left part and large values in the right part of the 

graph. Table 3.1 summarises the differences between SK and OK obtained by 

Goovaerts (1997). 

Table 3.1: Comparison between OK and SK (Goovaerts, 1997) 

Ordinary Kriging (OK) Simple Kriging (SK) 

Sum of weights is equal to one ∑𝜆𝑖 = 1 Sum of the weights does not have to be equal to one 

Does not require knowledge or stationarity of the mean 

over the entire deposit 

The mean can fluctuate over the deposit. 

Assumes that the mean is known and remains constant throughout the 

deposit.  

Emphasises strong stationarity. 

OK estimator is : 𝑍𝑜𝑘
∗ (𝑣) = ∑𝜆𝑖𝑍(𝑥) 

It estimates the local mean at each location with data 

specific to the neighbourhood 

SK estimator is : 𝑍𝑠𝑘
∗ (𝑣)  = ∑𝜆𝑖𝑍(𝑥𝑖) + [1 − ∑𝜆𝑖]𝑚 

Assumes a stationary mean 

OK adapts well to trends since the mean does not remain 

constant 

Stationary SK does not adapt well to trends since the mean is assumed 

to be constant 
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 Chapter 4: Geological Setting and Exploratory Data Analysis  4.

Without the knowledge of geology of the orebody, the grade estimates obtained 

would be poor; therefore a brief overview of the geology of the study area is 

discussed in this chapter. To fully understand the main characteristics of the PGE 

(4E) data, Exploratory Data Analysis (EDA) is also undertaken in this chapter. EDA 

involves classical statistics, which provides an idea about the distribution of grades in 

a mineral deposit.  

 Project background 4.1

This research project is based on a new platinum development owned by Anglo 

Platinum Plc; the data was supplied by the company. To preserve confidentiality of 

the site location, Anglo Platinum has translated and rotated the data (Anglo 

Platinum, 2011). No mining has occurred in the study area, except in the surrounding 

mines. The project only considers the UG2 Reef as was mentioned in Chapter 1. 

 Geological Setting 4.2

4.2.1 Regional Geology 

As mentioned in Chapter 1 the project area is located in the Eastern Limb of the 

Bushveld Complex, which extends from the north in Lebowagomu and to the south in 

Roossenekal. It is divided into northern, central and southern sectors and hosts the 

Rustenburg Layered Suite (RLS). The RLS contains Ni-Cu-PGE mineralisation and 

is subdivided into the following zones: 

-Marginal Zone 

-Lower Zone 

-Critical Zone 

-Main Zone and  

-Upper Zone 

The Critical Zone (CZ) is the most important as it contains the world’s largest 

reserves of PGEs and chrome hosted in the Merensky, UG2, MG and LG6 Reefs 

(see Figure 4.1). 
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Figure 4.1: Stratigraphic column of the Merensky, Bastard and UG2 Reef (Anglo Platinum, 2011) 

4.2.2 Local Geology 

UG2 refers to the Upper Group 2 Chromitite Layer in the upper Critical Zone of the 

RLS. The UG2 occurs at 15 – 400 m below the Merensky Reef. Based on the 

borehole data analysed the layer is 0.5-1 m thick with a feldspathic pyroxenite base 

or footwall and feldspathic pyroxenite hanging wall. There are usually two to three 

chromitite stringers 10 to 15 cm above UG2 Reef stratigraphy (see Figure 4.2). 
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Figure 4.2: Stratigraphic column of the UG2 Reef (Anglo Platinum, 2011) 

 

There is about 60-90% chromite with an average Cr: Fe ratio of 1.26 to 1.4 and 43% 

Cr2O3. The PGEs occur between the chromite cubic grains (interstitial). Lee, (1996) 

measured the concentration of the PGEs and gold within the UG2 up to 10 ppm with 

a platinum content of 3.6 ppm, 3.81 ppm palladium, 0.3 ppm rhodium with copper 

and nickel being low at 0.05%. The Pt: Pd ratio varies with geographical location.  

Mineralisation is from the top stringer through the chromitite layer down to the 

feldspathic pyroxenite. The formation of PGE mineralisation is a result of magmatic 

pulses that have been subjected to later remobilisation.  

The prominent structural features associated with the UG2 Reef are potholes, dykes, 

faults and Iron Rich Ultramafic Pegmatites (IRUPs) (see Figure 4.3). 

  

UG2 Stratigraphy 
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Figure 4.3: Geological structural features through the UG2 Reef (Anglo Platinum, 2011) 

 

A major fault separates the north of the deposit from the south and it throws the 

South block down by 35 m, (see Figure 4.3) orange coloured fault (Anglo platinum, 

2011). Several shear zones were also inferred from the drill holes as well as 

prominent dykes. Dykes vary in thickness from 1 m to 10 m. Both dolerite and 

lamprophyre dykes occur in the area.   
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 Exploratory Data Analysis 4.3

In statistics EDA is used to analyse data sets with the aim of summarising their main 

characteristics, often with visual methods.  

4.3.1 The Sample Data Set 

This project has a total of 570 drill holes with X, Y and Z coordinates and the variable 

considered, is the PGE grade measured in (g/t). The deposit strikes NW-SE and has 

an average dip of 9° to the south west.  

4.3.2 Data locations 

The boreholes in this data set are located as shown in Figure 4.4. The boreholes 

appear to be evenly distributed across the project area except towards the southern 

part, which is characterised by severe faulting. 

 

Figure 4.4: Location of the 570 borehole intersections of the UG2 reef 
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4.3.3 Data validation 

Initially when the data was received and validated 4 pairs of data had the same x 

and y coordinates with different grade PGE (g/t) and thickness (m) values (see Table 

4.1).  

Table 4.1: Showing duplicate boreholes from the data set

 

PG 2000 software was used to assess data duplication, Figure 4.5 shows the pairs 

duplicated in red, and pairs not duplicated, in blue. 

 

Figure 4.5: Location of pairs and the duplicate pairs presented by a red dot 

The data custodian from Anglo Platinum advised that the coordinates be increased 

by 0.001 to remove the effect of duplication. Therefore all sample values were used 

for analysis. 
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4.3.4 PGE (4E) Sample statistics  

The sample statistics for the PGE (UG2) grades are summarised in Table 4.2. 

 

Table 4.2: Descriptive statistics of PGE grades 

 

 

 

 

 

 

 

4.3.5 The PGE (4E) grades 

The histogram has an underlying distribution of the data that appears bimodal (see 

Figure 4.6). The bimodality of this data was further investigated by plotting a 

probability plot (see Figure 4.8).The histogram shows that the distribution of PGEs is 

non-normal. In mineral deposits several geological factors and processes contribute 

to the final sample values, such as the intrusion of magma and remobilisation. There 

is no obvious reason for this bimodality, but it could be explained by the intrusion of 

magma pulses and remobilisation known to have occurred in the Bushveld Complex. 

  

Statistic Value 

Mean 5.76 g/t 

Median 5.91 g/t 

Mode 4.42 g/t 

Standard Deviation 2.20 g/t 

Sample Variance 4.84 (g/t)
2
 

Kurtosis 3.44  

Skewness 0.20 

Range 13.75 g/t 

Minimum 1.12 g/t 

Maximum 14.87 g/t 

CoV 0.38 

N 570 
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Figure 4.6: Original PGE grades histogram with a class width of 0.6 

4.3.6 Colour coding the PGE grades 

In Figure 4.7 the PGE grades are colour coded according to grade location to try and 

observe if there is a clear distinction between areas of low and high grades. 

  

Figure 4.7: Location of low and high grade areas  
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The criterion to try and separate grades was derived from the histogram in Figure 

4.6. In Figure 4.7 the grades from 0 g/t to 4g/t represent the lower grade portion of 

the histogram and grades from 4g/t to 15g/t represent the higher grade portion of the 

histogram. It appears that there is a mixture of low and high grades throughout the 

deposit. There is however a grouping of low grades that stands out on the SE corner 

of the deposit (see Figure 4.7 circle). 

4.3.7 The Probability Plot 

The probability plot in Figure 4.8 suggests that the data has 3 population 

distributions instead of 2. The first distribution varies with grades from 0.0 g/t to 3.0 

g/t, while the second distribution of medium grade varies from 3.0 g/t to 7.0 g/t and 

the third distribution varies from 7.0 g/t to 15 g/t.  

 

Figure 4.8: Probability plot of the PGE (UG2) data 

The different populations displayed by the probability plot could be explained by the 

knowledge that the Bushveld Complex resulted from the intrusions of more than one 

phase of magma pulses and was subjected to later remobilisation. It is not certain 
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whether the hydrothermal effect played a major role in creating these different 

populations. 

 

Figure 4.9: Location of low and high grade areas 

 

In Figure 4.9 the PGE grades were also colour coded according to grade location to 

try and observe if there are any distinct populations as indicated by the probability 

plot. Similarly to Figure 4.7 there is no distinction of low and high grade areas, due to 

the mixture of grades observed also in Figure 4.9. What is also noted in this figure is 

the SE corner grouping of low grade PGE values. The SE portion of low grade PGE 

values is associated with cross cutting dykes as shown in Figure 4.3 

The coefficient of variation (CoV) is given by: 

𝐶𝑜𝑉 =  
𝜎

𝑍̅
 

where 𝜎 is the standard deviation and 𝑍̅ is the mean value of samples 

Coefficient of variation is a normalised measure of variation after the influence of the 

arithmetic mean has been removed (Isaaks and Srivastava, 1989). The larger the 

coefficient of variation the wider the dispersion of the data set.  
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According to Wellmer (1989) when a data set has a coefficient of variation less than 

0.33, that data set is symmetrical and has a normal distribution. The coefficient of 

variation for this PGE deposit is 0.38 which is evidence that this data is non-normal. 

To verify the observations made in Figure 4.7 and 4.9, PG2000 software is used to 

produce the overall grade sample location plot of PGE grades shown in Figure 4.10.  

 

Figure 4.10: Grade sample location plot 

 

In summary, there is an even distribution of low grade areas and high grade areas; 

there are no distinct areas of only low or high grade PGE values except for the small 

grouping of low grades in the SE corner. A mixture of both low and high grade PGE 

values is observed in the grade sample location plot in Figure 4.10 throughout the 

mineral deposit.   
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4.3.8 PGE composition 

To further investigate the bimodality of this 4E PGE deposit, the histograms and 

statistics of platinum (Pt.), palladium (Pd), rhodium (Rh) and gold (Au) were 

produced. The proportions of these elements also indicate which element influences 

the distribution of this deposit the most. The Pt contributes 56% of the total PGE (see 

Figure 4.11 c)) appears to have a normal distribution with the mean of 4.23 g/t and a 

median of 3.64 g/t. The Pd is slightly skewed with the mean of 2.65 ppm and a 

median of 2.25 ppm. The Pd contributes 46% of the total PGE (see Figure 4.11 b)). 

Similarly to the platinum the rhodium appears normal with a mean of 0.59 and 

median of 0.51. The Rh contributes 0.07% of the total PGE (see Figure 4.11 a)).The 

Au is positively skewed which is expected of the gold. It has a long tail to the right, 

with a mean of 0.02 and median of 0.01. The gold contributes 0.003% of the total 

PGE (see Figure 4.11 d)). 

 

Figure 4.11: Histograms of the 570 analyses of Rh, Pd, Pt and Au 
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It is quite clear that platinum contributes the most to this PGE deposit followed by 

palladium. The two elements have the most influence on this PGE deposit and are 

possibly responsible for the bimodality of this deposit since both elements have 

slightly different distributions (see Figure 4.11). 

Table 4.3: Descriptive statistical table for Pt, Pd, Rh and Au 

 

The PGE deposit has a mixture of the distributions with Pt, Rh being normal and Pd 

and Au being lognormal with CoVs greater than 0.33. The mixture of normal and 

lognormal distribution could explain why the combination of these elements (PGE) 

has a bimodal distribution. 

 Conclusion 4.4

The grade distribution of the PGEs is bimodal, it is non-normal. This suggests that 

there is more than one population that exists in this data set. However no concrete 

conclusions can be made about the formation of these populations at this stage. The 

probability plot also suggests that more than a single population exists in this data; it 

is possible that a trimodal distribution exists. The existence of a trimodal distribution 

is investigated further in Chapter 5. The probability plot is not a straight line, which 

supports the idea that this data is non-normal and that the parent population could 

be lognormally distributed. The PGE grade sample plots (see Figure 4.10, 4.9 and 

4.7) suggest that an even distribution of low and high grades exists, and that there is 

an overall mixture of low and high grade values throughout the deposit. A small 

distinct pocket of low grade PGE values is observed in the SE corner of these grade 

sample location plots. This pocket of low grade PGE values is small and seems not 

to affect the overall observation of the mixture of low and high grade values in this 

deposit, this will however be investigated further in the following chapter.  
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 Chapter 5: Application of Variography 5.

 Introduction 5.1

In preparation for variography the data statistics should be understood in order to 

identify the distribution of the underlying data and the existing populations. Not all 

data sets will have a single population distribution; this will depend on the style of 

mineralisation and the geological structural controls. In Chapter 4 first, the PGE data 

appeared to have at least two populations because the data has a bimodal 

distribution. Secondly, the log probability plot of the PGE data in Figure 4.8 

suggested that there could be at least three populations in this data and this confirms 

that the distribution of this data is non-normal.  

To further investigate the spatial characteristics of the data before variography, it 

must be determined whether it is possible to divide the data into domains or not. 

Domaining is a process that involves separating data according to common 

characteristics until a single population of the data exists (Coombes, 2008). A 

deposit can have more than one domain if the data has a number of preferred 

orientations for continuity and complex structural controls. Domains need to be 

defined concisely so that there is a good understanding and handle of a given data 

set to be used for estimation.  

 Domaining 5.2

Domaining should always be considered when preparing data for estimation. 

Glacken and Snowden (2001) define domains as areas or volumes with similar 

geological and mineralisation characteristics. Glacken and Snowden (2001) suggest 

that domains can be defined by cut-off grades, or by global and local statistical 

means. Duke and Hanna (2001) suggest that not all deposits contain mineralisation 

which has clearly defined domain boundaries. 

5.2.1 Domaining of PGE data 

The spatial distribution of PGE grades seems to show no strong trend in any 

particular direction or orientation, even though high and low grades are displayed, 

but the sections to follow investigate this idea further. The low and high grades 

appear to be evenly distributed which is evident in the colour-coded plots of the PGE 

grades in Figure 4.7, 4.9 and 4.10. There is a small cluster of low grades in the 
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South-Eastern corner of the mineral deposit but it does not have a significant effect 

on the overall distribution of grades in this deposit. There appears to be a mixture of 

low and high grade values and there are no clearly defined geological features to 

allow domaining.  

 Contouring 5.3

To further investigate whether there are any trends displayed by the data, grade 

contour maps were computed at different intervals on Surfer 7. The different colours 

indicate the PGE grades with their preferred direction of mineralisation. The contour 

maps a),b),c) and d) are drawn at 0.5 g/t, 0.7g/t, 1g/t and 2 g/t intervals respectively 

(see Figure 5.1). The different intervals are investigated so that there can be more 

than one view of the spatial distribution of the PGE grades and not to miss any 

trends that might exist in this mineral deposit. 

 

Figure 5.1: Contour maps of the PGE grades a) at 0.5 g/t interval b) at 0.7 g/t interval c) at 1 g/t 

interval and d) at 2 g/t interval 
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In Figure 5.1 no strong trend is visible in the contour maps; however the section on 

variograms will further investigate this. Low grades and high grades are for the most 

part, evenly distributed throughout the deposit. There is however a significant 

concentration of low grades in the eastern corner of the deposit. There seems to be 

no clear preferred orientation of the PGE grades in all the contour maps. 

The PGE grades ranging from 4 g/t to 10 g/t prove to be dominant and are evenly 

distributed in the contour maps (see Figure 5.1 b)) at a 0.7 g/t interval. There seems 

to be a weakly developed trend in the NW-SE direction in these contour maps. There 

is, however not enough evidence to support the idea that a trend exists in the NW-

SE direction. 

In all the contour maps, medium to high grade areas stand out. Some weak trends 

are developed and continue for a short distance in some areas. The mineral 

continuity in the NS direction seems to be equivalent to the mineral continuity in the 

EW direction. It is anticipated that the variogram nugget will be low and the range will 

extend to large lag distances as the variability of grades seems to be low. Low 

nugget is an indication of low variability between samples next to each other, so the 

probability of change is low, and the mineralisation is continuous. The long range 

shows strong spatial dependency or relationship between sample values over a long 

distance. 

 

 Variograms 5.4

In Chapter 1 it is mentioned that Supervisor 8 will be used for variogram analysis. 

The PGE data is imported to Supervisor 8 and a further investigation of what is 

indicated in section 5.2.1 of domaining is undertaken. The following assumptions are 

essential when computing semi- variograms: 

1) The sample grades are sourced from a single grade population i.e. only one 

domain and 

2) The difference in grade between pairs depends on their relative separation 

(Coombes, 2008). 
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In order to assess the existence of the direction of maximum continuity, the semi-

variogram fans and semi-variogram models are constructed. The semi-variograms 

are constructed in different directions and Figure 5.2 a) and b) show the horizontal 

continuity semi-variogram fans at lag 175 m and 500 m respectively. 

 

Figure 5.2: Horizontal continuity variogram fans of the PGE grades a) at lag 175 m and b) at lag 500 

m 

 

A lag distance of 175 m is chosen, which equates to half the number of the average 

drill hole spacing of the deposit. It is chosen to capture a clear continuity of the 

deposit and indicate if there are any preferred directions of the PGE grades at this 

lag distance. A larger lag of 500 m is also investigated to observe the same (see 

Figure 5.2 b)). On both the variogram fans there is no clear preferred direction of 

maximum continuity. 

Figure 5.3 shows variograms for both 175 m and 500 m lags in a 160⁰ direction. The 

variograms obtained are not clear and for the 175 m lag the variogram is noisy (see 

Figure 5.3 a)). The variogram at 500 m lag does not give a good presentation of the 

mineral deposit; it has a very high nugget effect (see Figure 5.3 c)). A better 

variogram is obtained at 130⁰ (see Figure 5.3 b)) at lag 175 m. 
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Figure 5.3: a) Variogram at 160⁰ with a lag of 175 m and b) at 130⁰ which looks better than the a) and 

c) Variogram at 160⁰ with a lag of 500 m 

Further investigations on the across strike and dip plane variogram fans are 

analysed. The across strike variogram fan shows some continuity at 70⁰ which does 

not provide sufficient information about the continuity of the overall PGE grades (see 

Figure 5.4 a)). The dip plane variogram fan shows some unclear continuity at 9° (see 

Figure 5.4 b)). 
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Figure 5.4: a) Across Strike variogram fan and b) Dip plane variogram fan 

 

It can be concluded that, there is no clear preferred direction of maximum continuity 

in this PGE deposit. This conclusion is justified by the lack of anisotropy,displayed by 

the semi-variogram fans, the colour-coded plots in Figure 4.7,4.9, 4.10 and the 

contour grade maps in Figure 5.1 . 

 

 Experimental Variograms 5.5

In the absence of a clear or strong trend displayed by the PGE data, the 

omnidirectional semi-variogram was selected as a semi-variogram that best 

represents this data. 

A series of omnidirectional semi-variograms have been modelled (see section 5.5.1). 

In each omnidirectional semi-variogram, a spherical model was fitted and different 

lags were chosen to model these semi-variograms. 

5.5.1  Variogram modelling 

All the omnidirectional semi-variograms modelled are two structured with sill 

components 𝐶1 and 𝐶2. The first omnidirectional semi-variogram is modelled at lag 

70 m which is the smallest lag at which this PGE data is modelled (see Figure 5.5 

a)). The omnidirectional semi-variogram shows significant variability and when this 

semi-variogram was modelled, fitting a spherical semi-variogram was a challenge 

due to the erratic behaviour of this semi-variogram. The omnidirectional semi-
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variogram at a lag of 175 m is clearer than the omnidirectional semi-variogram at a 

lag of 70 m (see Figure 5.5 b)). 

 

 

Figure 5.5: a) Omnidirectional semi-variogram at lag 70 m b) and at lag 175 m 

 

Table 5.1: The parameters of the PGE semi-variograms at lag 70 m and 175 m 

Parameter PGE(4E) Lag of 70 m PGE(4E) Lag of 175 m 

Nugget Effect 0.26 0.26 

Type of variogram  Spherical Spherical 

No. of structures 2 2 

Sill of component 1 C1 0.72 0.67 

Sill of component 2 C2 0.02 0.08 

First range of influence 392 m 511 m 

Second range of 
influence 1543 m 2304 m 

Lag 70 m 175 m 

No. of Pairs 2466 5924 

 

The semi-variogram parameters are listed in Table 5.1 for the omnidirectional semi-

variograms at a lag of 70 m and 175 m respectively. Both the semi-variograms have 

a nugget effect of 0.26 but their sill components differ. The semi-variogram at a 70 m 

lag has fewer data pairs than the semi-variogram at a175 m lag. 
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Figure 5.6: a) Omnidirectional semivariogram at lag 300 m and b) at lag 310 m 

 

Figure 5.6 a) and b) shows omnidirectional semi-variograms at lag 300 m and 310 m 

respectively. Both semi-variograms appear smooth and show a lack of variability in 

the data, this does not appear to be representative of the behaviour of the original 

data. 

Table 5.2: The parameters of the PGE semivariogram at lag 300 m and 310 m 

Parameter PGE(4E) Lag of 300 m PGE(4E)Lag of 310 m 

Nugget Effect 0.29 0.25 

Type of variogram  Spherical Spherical 

No. of structures 2 2 

Sill of component 1 C1 0.37 0.41 

Sill of component 2 C2 0.34 0.34 

First range of influence 394 m 376 m 

Second range of influence 1874 m 1815 m 

Lag 300 310 

No. of Pairs 10404 10178 

 

Table 5.2 shows the semi-variogram parameters of these omnidirectional 

variograms. It is noted that the semi-variograms start to smooth out as the lag size 

increases. In Section 5.3 it is mentioned that a low nugget value is expected from 

this deposit as it appears to have low variability, therefore the semi-variogram with a 

nugget value of 0.25 may be more favorable than a semi-variogram with a nugget 

value of 0.29. 
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Figure 5.7: a) Omnidirectional semivariogram at lag 315 m and b) at lag 755 m 

 

Figure 5.7 a) and b) shows omnidirectional semi-variograms at lag 315 m and 755 m 

respectively. While the semi-variogram at lag 315 m displays the best results, it 

seems to not necessarily be representative of the deposit. The omnidirectional semi-

variogram at lag 755 m (the largest lag chosen to model these omnidirectional semi-

variograms) is too smooth and does not accurately represent the deposit.  

Table 5.3: The parameters of the PGE variogram at lag 315 m and 755 m 

Parameter/Variable PGE(4E) Lag of 315 m PGE(4E) Lag of 755 m 

Nugget Effect 0.27 0.33 

Type of variogram  Spherical Spherical 

No. of structures 2 2 

Sill of component 1 C1 0.46 0.46 

Sill of component 2 C2 0.27 0.21 

First range of influence 472 m 626 m 

Second range of influence 1995m 3000m 

Lag 315 755 

No. of Pairs 10494 24764 

 

Table 5.3 shows the semi-variogram parameters of the omnidirectional semi-

variograms at lag 315 m and 755 m. The omnidirectional semi-variogram at lag 755 

m has a relatively higher nugget effect of 0.33 (see Table 5.3) which further justifies 

the notion that this semi-variogram model is not representative of this PGE deposit. 
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 Conclusion 5.6

Larger lag tolerances accommodate many numbers of pairs for estimation; however 

some detail is lost in the semi-variogram (see Figure 5.7 b)). The semi-variogram in 

Figure 5.7 b) has 24764 pairs but appears smooth, it seems that some detail is 

averaged and lost; this is due to the fact that the semi-variogram is modelled at a 

large lag distance of 755 m and at a relatively high nugget value. The first range of 

influence in this semi-variogram is at 626 m which is larger than the average 

borehole spacing and there is minimal correlation of samples beyond this distance. 

The nugget effect of this semi-variogram is 0.33 (see Table 5.3) which is relatively 

high therefore it is concluded that the parameters of this semi-variogram are 

inappropriate to be used for the purpose of this estimation. 

High nugget values have a smoothing effect on the kriging results. At high nugget 

values sample points far away from the block estimated are assigned equal weights 

to the points closer to the block estimated.  

At a lag of 300 m the semi-variogram has a relatively high nugget effect of 0.29 (see 

Table 5.2).Even though the semi-variogram appears to be representative; its 

parameters cannot be used for the estimation process. At a lag of 315 m the nugget 

effect is high and the semi-variogram does not appear to be representative. The 

selection of the appropriate semi-variogram remains with the three semi-variograms 

from Figure 5.5 a), b) and 5.6 b). The three semi-variograms have low nugget 

effects; Figure 5.5 a) and 5.5 b) have semi-variograms with nugget effects of 0.26 

and which are at different lags. Figure 5.6 at a lag of 310 m has a semi-variogram 

with the smallest nugget effect of 0.25 (see Table 5.2). The semi-variogram model is 

however smooth.  

It has been a challenge to decide which semi-variogram to use for estimation 

between the semi-variogram at a lag of 70 m and 175 m. The reason being that the 

lag of 175 m clearly captures the behaviour of this PGE deposit, the semi-variogram 

shows some variability and seems to be representative (see Figure 5.5 b)).  

The semi-variogram at a lag of 70 m includes the smallest data pairs (see Table 5.1) 

but shows variability at a reasonable range of influence and has a small nugget 

effect. The semi-variogram at a lag of 70 m was chosen to be used for estimation.   



69 

 

 Chapter 6: Application of OK and SK  6.

This chapter focuses on the application of SK and OK to the PGE (4E) deposit. The 

grade block model, where both SK and OK are applied is created and the key 

differences between the two techniques are summarised. 

 The PGE Model 6.1

The PGE (4E) deposit was modelled using Surpac version 6.2.1 and Figure 6.1 

summarises the procedure followed to create the PGE (4E) block model. 

 

Figure 6.1: Block model creation procedure (Gemcom, 2012) 

A 250 m x 250 m x 10 m block size was chosen to model this PGE resource. This 

size was chosen because industry standards state that the block sizes must not be 

smaller than half the drill hole spacing when classifying measured resources 

(SAMREC, 2007). The average distance between drill holes was calculated to be 

350 m hence the 250 m x 250 m x 10 m block size was used to model this PGE 

resource. 
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The choice of an appropriate block size improves the reliability of the estimates such 

as large blocks with dimensions close to that of the average sample spacing. Very 

small blocks, lower than the calculated average drill hole spacing normally have high 

estimation variances and that is undesirable in mineral resource estimation. A high 

estimation variance is associated with smoothing of estimated values which can lead 

to overestimation of the mineral resource (Dominy et al., 2002). 

In Surpac 6.2.1 software the block model origin is defined using minimum X, Y and 

minimum Z (see Table 6.1). The 250 m x 250 m x 10 m block model generated about 

6103 blocks. 

 

Table 6.1: PGE block model parameters 

Description 250 m x 250 m x 10 m block model 

Origin X= 52000 m; Y= -18700 m, Z = 870 m 

Block size 250 m x 250 m x 10 m 

Number of blocks 6103 

SK and OK estimation techniques were applied on the model created and the 

estimation covers the whole deposit which is 35381009 m2 in extent (see Figure 6.2). 

Figure 6.2 shows the 250 m x 250 m x 10 m block model generated from Surpac 

version 6.2.1. 

 

Figure 6.2: PGE (4E) block model generated using Surpac Version 6.2.1 
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 Kriging 6.2

In Chapter 2, Kriging equations are discussed and those equations are used in 

Surpac 6.2.1 software. First, OK is applied to the data set after which SK is applied; 

for both OK and SK the same semi-variogram parameters are used (see Table 5.1). 

The outputs which Surpac produces are the kriging variance, block variance, kriging 

efficiency, and number of samples used; the kriged estimate as well as the Lagrange 

multiplier (see Table 6.2). 

According to Snowden (2001) a perfect estimation would give values of kriging 

variance = 0, kriging efficiency = 100% and a slope of regression =1 

Kriging variance equations for SK and OK are provided by equation 9 and 29 

respectively in Chapter 2. According to Snowden (2001), kriging variance highlights 

the relative confidence from block to block and also exposes areas which require 

more drilling.  

Kriging efficiency (KE) is defined as shown in equation 1: 

𝐾𝐸 =  
(𝐵𝑉 − 𝐾𝑉)

𝐵𝑉
 

𝐾𝐸 =
(𝜎𝐵

2 − 𝜎𝐾
2)

𝜎𝐵
2  

𝐾𝐸 =
𝛾̅(𝑉,𝑉)−𝜎𝐾

2

𝛾̅(𝑉,𝑉)
……...…………………………………………………………..………… (1) 

BV is the block variance (variance of actual block values)  

KV is the kriging variance. 

According to Coombes (2008), kriging efficiency estimates the percentage overlap 

expected between the estimated grades and the true grades. A 100 % kriging 

efficiency indicates a perfect match between the estimated and true grade 

distributions. Krige (1996) defines kriging efficiency as a measure of the efficiency of 

the estimation procedure. Negative kriging efficiency indicates sparse data or an 

extrapolation more than interpolation of data (Coombes, 2008). 
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Krige (1996) states that when a global estimate of blocks is practical, all blocks get 

assigned a global mean, the global estimate of all blocks is the only estimate made 

and KV = BV, therefore KE is:  

𝐾𝐸 =  
(𝐵𝑉−𝐵𝑉)

𝐵𝑉
= 0%  

He further suggests that this results to imperfect estimation. Deutsch et al. (2006) 

suggests that negative kriging efficiency results when KV> BV. This negative 

efficiency is normally observed when there is inadequate data per block (Deutsch et 

al., 2006). 

BV is the block variance, the error of block values, defined by: 

.............................................................................................. (2) 

Block variance is defined as the sample variance less the within block variance (the 

average variogram value inside the block) (Clark, 2000). 

6.2.1 Results and analysis 

Table 6.2 summarises the results from the OK and SK on the 250 m x 250 m x 10 m 

block model. 

Table 6.2: Summary results of the estimation using OK and SK of the 250 m x 250 x m 

10 m block model 

Attribute OK SK 

Kriging variance 1.31 (g/t)
2
 0.56 (g/t)

2
 

Std.dev 2.40 g/t 1.50 g/t 

Estimated grade 7.41 g/t 5.76 g/t 

Block variance 0.56 (g/t)
2
 0.56 (g/t)

2
 

Kriging efficiency -1.32 0.00 

CoV 0.15 0.13 

Lagrange Multiplier -0.91 - 

 

The OK variance is greater than the SK variance (see Table 6.2). When recalling the 

kriging variance equations for both OK and SK, the OK variance has the Lagrange 

factor added to it, which could explain why it is bigger than the SK variance which 

does not have the Lagrange factor added to it. This can also be explained by the 
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idea that the SK mean used in the estimation provides significant, useful and 

additional information (Assibey-Bonsu, 2014 personal communication). 

The OK average estimated PGE grade is greater than the SK estimated grade (see 

Table 6.2), this means the local mean is greater than the global mean. According to 

Boyle (2010) in SK, the weights are assigned both to local samples and to the global 

mean. So if more weights are assigned to the local samples, the global mean can be 

small.  

The block variance for both SK and OK is equal to 0.56 (g/t)2 (see Table 6.2), this 

could be explained by the fact that both SK and OK block variance equations are the 

same as well as the block support used for both is the same. The block variance is 

not helpful, when it comes to differentiating between SK and OK. 

The Lagrange multiplier is obtained from OK, but not from SK. Isobel Clark (personal 

communication, 2012), stated that when the Lagrange multiplier value is large and 

positive it means that the samples are too far from the point or block being 

estimated. On the contrary when the Lagrange multiplier is large and negative it 

means that samples are close to the point or block being estimated. The latter is 

observed in Table 6.2 where the Lagrange multiplier is negative meaning that the 

data values are spaced appropriately.  

There are insufficient interpretations to be made from just the tabulated results. To 

further interpret and compare SK and OK, the effects of the number of search data is 

considered for this PGE data for both techniques. 

 Number of search data for the PGE deposit 6.3

In the same way that Deutsch et al., (2014) used the three case studies to discuss 

the effects of the number of search data as shown in Chapter 3, this study also 

adopts the method of analysis to this PGE data. 

Three cases are considered: 

a) The first case considered between 3 and 20 local data. 

b) The second case considered between 3 and 200 local data 

c) The third case considered between 3 and 500 local data to be used to 

produce each estimate. 
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For all the three cases the same number of drill holes is used which are 570 and also 

the same semi-variogram model is used (see Figure 5.5). Strong stationarity of the 

mean is assumed for this deposit therefore the average global mean of 5.76 g/t is 

used as the known SK mean. 

6.3.1 Case 1 

 

Figure 6.3: Number of search data influence on OK and SK 

When local data between 3 and 20 samples is considered for this PGE deposit; as 

the number of search data increases the mean squared error decreases in the same 

manner for both OK and SK (see Figure 6.3). 

6.3.2 Case 2 

 

Figure 6.4: Number of search data influence on OK and SK 
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When local data between 3 and 200 is considered, a similar case is observed 

wherein as the number search data increases the mean squared error decreases for 

both SK and OK (see Figure 6.4). 

6.3.3 Case 3 

 

Figure 6.5: Number of search data influence on OK and SK 

When local data between 3 and 500 is considered, increasing the number of search 

data decreased the mean squared error for both OK and SK. For a low number of 

search data OK performed slightly better than SK, the OK has a lower mean squared 

error than SK (see Figure 6.5). This could be explained by the suggestion made by 

Rivoirard (1987), when he said if the weight applied to the mean in SK is small, then 

the local neighbourhood has a strong influence hence OK performs better. 

6.3.4 Analysis 

Increasing the number of search data decreased the mean squared error for both SK 

and OK. Increasing the number of search data for OK increases the accuracy in the 

estimate of the local mean. What can be noticed is that case1 where the local data is 

between 3 and 20, a very low mean squared error is observed which suggests that 

this search is more accurate and would result in more accurate estimates only if the 

assumption of a stationary mean is emphasised. OK and SK in this particular PGE 

deposit is little affected by the number of search data, hence in all three cases 
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investigated there is similar estimation accuracy. In OK the mean squared error 

average is 3 g/t and for SK the average is 4 g/t this is more evidence showing that 

there is a slight difference in the performance of OK and SK for this PGE deposit. 

To further investigate the differences in the performance of OK and SK, trend 

analysis is undertaken in section 6.4. This section is undertaken to confirm whether 

the observation made in section 6.3 of the similar performance in OK and SK is valid 

or not. 

 The PGE data trend estimates 6.4

In the same way that Goovaerts (1997) analysed the 10 cadmium samples as shown 

in Chapter 3, the PGE data of this study is analysed. 

Figure 6.2 shows the PGE block model produced from Surpac version 6.2.1. In the 

figure it is shown that the direction chosen for the analysis is E-W starting from 

56000 m to 65500 m displayed by the grid, this covers the whole deposit in this 

particular direction. Any direction could have been chosen for this analysis, since 

earlier in the study it was concluded that the grades are evenly distributed and the 

same level of spatial continuity is observed in all directions. For this analysis the 

grades were considered every 100 m (see Appendix C the data results). 

First the original data of the PGE grades was analysed over the distance between 

56000 m and 65500 m. The results obtained are shown in Figure 6.6, where low 

grade values appear to occupy the right most part of the graph as indicated with a 

circle. This corresponds with what has been observed of this PGE deposit where a 

small grouping of low grade PGEs occupies the SE corner of the deposit (see Figure 

5.1). 
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Figure 6.6: Original PGE grades trends 

 

Most of the high grade PGE values appear to occupy the left edge of the graph (see 

Figure 6.6), but in between at 58000 m and 62000 m is the general trend of a 

mixture of low and high grades. 

 

Figure 6.7: SK PGE estimates 
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The PGE SK estimates were also generated over the same distance of 56000 m and 

65500 m. The results obtained are shown in Figure 6.7, where a slightly different 

behaviour of the PGE grades is observed from that of the original data. Only a 

mixture of grades is observed throughout the investigated distance. What can be 

noted though is a small portion of grades less than 5.76 g/t between 61000 m and 

62000 m (see circle Figure 6.7). 

 

Figure 6.8: OK PGE estimates 

 

The results of the PGE OK estimates are shown in Figure 6.8. What can be noted 

from this graph is that the low grades appear to occupy the right most edge of the 

graph which is similar to the behaviour of the original PGE grades. The left most 

edge of the data appears to be occupied by high grades .What should be noted in 

this graph is that grade values are not scattered widely as seen in SK, and there is a 

clearly defined point of only high to low grades at 61000 m (see the circle in Figure 

6.8). 
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Figure 6.9: SK, OK estimates and the global mean 

The global mean of the PGE data is compared with the OK and SK estimates (see 

Figure 6.9). The overall SK estimates appear closer to the global mean. The OK 

estimates are larger than the global mean between 57000 m and 61000 m. This is 

explained by the fact that the local mean in this area is larger than the global mean 

(see Appendix C results). On the right edge of this graph the OK estimates are 

smaller than the global mean. This can also be explained by the fact that the local 

mean in this area is smaller than the global mean (see Appendix C results). 

In summary it appears that the OK estimate is smaller than the SK estimate in low- 

valued areas where the local mean is smaller than the global mean. In contrast, the 

OK estimate is larger than the SK estimate in high valued areas where the local 

mean is larger than the global mean. The discrepancy between the two estimates 

increases as the weight of the mean increases for example when the location being 

estimated moves further away from the data locations (the farthest edges in the 

graph) (Goovaerts, 1997). This means that in OK the weights are assigned to local 

samples and to locally varying mean whereas in SK weights are assigned to local 

samples and the global mean (Boyle, 2010). 
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Figure 6.10: SK, OK estimates, global mean and original PGE data 

 

The original PGE data is compared with the OK and SK estimates (see Figure 6.10). 

Most of the original data appears to be greater than the global mean in the left part of 

the graph between 57000 m and 61000 m and it appears to be less than the global 

mean in the right part of the graph (see Figure 6.10). The same is observed for the 

OK estimates meaning that the OK method better estimates this PGE data. The low 

grade values are observed between 61000 m and 64000 m for both OK estimates 

and the original data (see Appendix C the data results). The SK estimate almost 

remains constant between 61000 m and 65000 m, but follows the original data 

slightly better on left side of the graph (high grade area). 

In summary the SK estimates are closer to the global mean of 5.76 g/t whereas OK 

estimates are closer to the local mean which fluctuates. The SK estimate 

overestimates the PGE values between 61000 m and 64000 m (right part of the 

graph) where there are actually low grade PGE values. The SK estimates slightly 

underestimates the PGE grades between 57000 m and 61000 m the left part of the 

graph. In contrast OK estimates better follows the original PGE data with large 

values on the left part and small values on the right part of the graph. It can be 

concluded that, if the weight assigned to the mean is low (i.e. low grade areas), then 
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local samples are mostly used for estimating the grade and stationarity is ignored. 

However if the weight assigned to the mean is large (i.e. high grade areas), then 

local sample information is not relied upon and therefore the stationarity and global 

mean are considered. 

 

Figure 6.11: Actual and estimated PGE grades using OK and SK 

Figure 6.11 a) and b) compares the original PGE data with the OK and SK estimates 

respectively. A difference is observed from the two scatter plots, there is a wider 
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scatter of points in SK than in OK, more points lie in the 45° line in OK estimated 

values. OK has a higher correlation coefficient of 0.64 than SK. This means that 

there is less accuracy in the estimates from SK than in OK. The SK estimated high 

grades appear lower than the true high grades. Conversely, the estimated low 

grades are higher than the true low grade values. When comparing the OK estimates 

and the true PGE grades, the true low grades appear to be similar to the estimated 

low grade values. In the same way, the true high grade values appear to be similar 

to the estimated high grade values. This results in further support of the idea that the 

OK estimation method better estimates this PGE data.  

 Comparing estimated grade and the true grade 6.5

As a method of cross validation of the resource model, the comparison of original 

and estimated grade was undertaken. Table 6.3 shows a comparison of original and 

estimated grade values of both OK and SK for the 250 m x 250 m x 10 m block 

model. 

Table 6.3: Summary statistics of the estimated versus original PGE (UG2) data 

Attribute OK ( 250 m x 250 m) SK (250 m x 250 m) Original (PGE) 

Kriging variance 1.31 (g/t)
2
 0.56 (g/t)

2
 - 

Sample variance - - 4.84 (g/t)
2
 

Std.dev 2.4 g/t 1.5 g/t 2.2 g/t 

Estimated grade 7.41 g/t 5.76 g/t 5.76 g/t 

Block variance 0.56 (g/t)
2
 0.56 (g/t)

2
 - 

Kriging efficiency -1.32 0 - 

CoV 0.15 0.13 0.38 

Lagrange Multiplier -0.91 - - 

The difference between the original standard deviation and the OK estimated 

standard deviation is 0.2 g/t on the 250 m x 250 m x 10 m block model. The 

difference in grade between original and OK estimated grade is 1.65 g/t on the same 

block model. There is a significant difference in the OK estimated grade and the 

original grade values; this could be explained by the idea that OK uses the local 

neighbourhood to estimate its mean value as opposed to the global mean used for 

SK in this study. 

The difference between the original standard deviation and the SK estimated 

standard deviation is 0.7g/t on the 250 m x 250 m x 10 m block model. The 
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difference in grade between the original and estimated grade is 0 from SK on the 

250 m x 250 m x 10 m block model. This could be explained by the fact that in SK 

the mean is assumed to be known, even in this case the mean was assumed to be 

equal to 5.76 g/t the global mean hence the difference is zero. The difference 

between OK standard deviation and the original values is less than that of SK, 

meaning there will be lesser smoothing from OK estimated values. The block 

variance for OK and SK is smaller than the original sample variance; this can be 

explained by the fact that the original sample variance is computed from a point 

sample support and the OK and SK block variance is computed from a block 

support, 250 m x 250 m x 10 m. Table 6.4 summarises the overall observed 

differences between OK and SK. 

Table 6.4: The overall comparison of the OK and SK techniques 

 

Output 

 

 

OK 

 

 

SK 

 

 

Kriged estimate (z*k) 

 

7.41 g/t 

OK estimate is > SK estimate in high grade areas 

Condition, weights should sum up to 1 

Equation does not include 𝑚 (1 − ∑𝜆) 

5.76 g/t 

SK estimate is > OK estimate in low grade areas 

Weights do not necessarily have to sum up to 1 

Hence equation includes 𝑚(1 − ∑𝜆) 

 

Kriging variance (Sk
2
) 

 

 

1.31 (g/t)
2
 

The OK variance > SK kriging variance 

There is a Lagrange factor added to the OK  variance 

equation 

0.56 (g/t)
2
 

The SK kriging variance <OK variance 

There is no Lagrange factor added to the SK 

variance equation 

Block variance (sB) 

 

 

0.56 (g/t)
2
 

Block variance of OK = SK 

Verification is observed in the equation 

The same block size support is used for both OK and SK  

0.56 (g/t)
2
 

Block variance of SK = OK 

See block variance equation 

The same block size support is used  for OK and 

SK 

Kriging efficiency (KE) 

 

-1.32 

Negative Kriging efficiency 

Block variance < kriging variance 

0 

Is equal to zero  

Block variance and kriging variance are equal 

 

Lagrange multiplier 

(µ) 

 

-0.91 

Indicates that samples are relatively close to the blocks 

being estimated 

No Lagrange factor 
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 The identified major differences between OK and SK 6.6

The kriging variance for OK is higher than the kriging variance for SK. The OK 

variance equation (see Chapter 2 equation 29), has the Lagrange multiplier added to 

it which is the factor that ensures that the OK weights are optimal and add up to 1. 

On the contrary, SK variance does not have the Lagrange multiplier added and there 

is no condition on the weights.  

The value of the kriging efficiency is zero for SK since both the block variance and 

kriging variance are equal. A kriging efficiency of zero indicates that most blocks are 

assigned the value of the global mean, and that is actually the case in SK with the 

strong assumption of stationarity and known mean. The OK variance is not equal to 

the block variance in the 250 m x 250 m x 10 m block model. The block variance is 

less than the kriging variance, resulting in a negative average kriging efficiency of -

1.32 for OK (see Table 6.2). The negative kriging efficiency could be explained by 

the idea that in some blocks there is no sample data, which could increase the 

kriging variance. The block variance is the same for both OK and SK which is equal 

to 0.56 (g/t)2. When the same neighbourhood and block size support are used for OK 

and SK, the block variance obtained is equal, because their block variance equations 

are the same. The mean in SK is assumed to be known and was used in Surpac 

version 6.2.1 and in OK it is unknown. The mean of OK is local since it is estimated 

from the neighbouring data values in each block whereas the SK mean is a global 

mean. The OK mean estimated is larger than the global mean in the case of this 

PGE deposit, while the estimated SK mean is equal to the global mean of 5.76 g/t 

due to strong assumption of stationarity in this mineral deposit. 
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 Domaining 6.7

Upon the realisation from trend estimates that the PGE grades clearly display two 

distinct populations, domaining was taken into consideration. The PGE grade scatter 

plot in Figure 4.9 is used as a guide to separate the PGE grades into two populations 

thus this domaining is grade based. Domaining this PGE deposit should improve the 

estimation results and prevent over smoothing of estimated block grades across the 

different zones of mineralisation. There are two distinct zones of mineralisation 

identified as shown in Figure 6.12, the SE corner circled in green is the low grade 

zone called domain 1 and the rest of the deposit is named domain 2 which is high 

grade.  

  

Figure 6.12: PGE grades digitised into two domains 1 and 2 
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6.7.1 Domain1  

 

Figure 6.13: PGE low grades domain 1 

 

Domain 1 has PGE grades ranging from 0 to 3g/t and is classified as the low grade 

area (see Figure 6.13). 

6.7.2 Domain 2  

 

Figure 6.14: PGE high grades domain 2 
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Domain 2 has PGE grades ranging from 3 g/t to 15 g/t and is classified as the high 

grade area (see Figure 6.14). 

Ordinary and Simple Kriging were performed on both the domains and the results 

were compared (see Table 6.5). 

Table 6.5: Summary statistics of the domains; estimated versus original PGE data 

 

A number of interpretations are drawn from the estimation results. SK average 

estimated grade for domain 1 is the same as the original mean grade however for 

domain 2 it is slightly larger. For OK the average estimated grade for domain 1 

shows a slight difference from the original mean grade. In domain 2 there is a 

significant difference between the OK estimated average grade and the original 

mean grade. A possible explanation for this is that there are only few areas within 

domain 2 which consist of low grade PGEs; and this might be the cause of the 

notable increase in the estimated grade. 

When comparing Table 6.3 and Table 6.5 there is a considerable improvement in the 

various measures of kriging, for instance the kriging variance for both OK and SK 

decreased by 0.44 and 0.14 respectively in domain 1. In domain 2 the kriging 

variance for both OK and SK decreased by 0.1 and 0.14 respectively. Of note is that 

in domain 1 the low grade area, the OK and SK performance is similar. 

The block variance also followed the same pattern as the kriging variance; in the two 

domains the block variance for both OK and SK decreased by 0.14 in both domains. 

It can be drawn from the estimation results that domaining does improve the 

estimation of a mineral resource since the variance is minimised. In domain 1 the 

grade ranges from 0 to 3 g/t and a total of 177 drill holes formed part of the 

estimation while the grades in domain 2 ranges from 3 to 15 g/t and a total of 393 

drill holes formed part of the estimation process. Hence it is expected that the 
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estimated PGE grade values be not the same as the initial results produced in Table 

6.3 where all 570 drill holes were used in the estimation process. 

To conclude the domaining section it is quite clear that when there are a few data 

involved in the estimation process OK and SK behave almost the same however 

when more data is used there are significant differences observed between OK and 

SK estimated grades. 
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  Chapter 7: Concluding Remarks 7.

 Conclusion 7.1

In real geological sites there are large scale variations in structures and spatial 

continuity of grades. Studying the geology of the research area assisted in the 

understanding of the PGE grades distribution and spatial continuity. In the statistical 

analysis of the PGEs, grades were found to have a bimodal distribution. The reason 

for the bimodality could not be verified; but a possible reason is the injection of 

different magma pulses at different times and remobilisation that occurred in the 

Bushveld Complex. The mixture of the different PGE elements could also be another 

possible reason for the bimodality. In the grade sample location plots and contour 

maps (in Chapter 4 and Chapter 5 respectively); initially the low and high PGE 

grades appeared to be evenly distributed throughout the deposit, hence no domains 

were defined. The variogram fans further verified that there is no preferred direction 

of maximum continuity and therefore omnidirectional semi-variograms were 

modelled. 

The application of the estimation techniques SK and OK was undertaken on the PGE 

grades and the mean in SK was assumed to be known due to the strong assumption 

of stationarity while in OK it was unknown. OK does not strongly emphasise 

stationarity and it depends only on the local neighbourhood to estimate its value of 

the mean. 

SK would be misleading in a non-homogenous deposit, when estimating grades 

since it assumes a constant mean and variance across the deposit (theory of 

stationarity). In SK the PGE grades are averaged out, which is not representative of 

the true PGE grade values. The manner in which SK was applied for this PGE 

deposit can be misleading and that can cause great financial loss in a mining project 

because waste can be sometimes estimated as ore; due to the strong assumption of 

stationarity. 

In Figure 6.10 it is clearly shown that SK overestimates the PGE grades in the SW 

edge of this PGE deposit. SK can however be suitable in estimating deposits with 

few data because it does not heavily rely on the local neighbourhood for estimating 

values like OK does. Thus it can be concluded that if the mean is not globally 
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stationary in the mineral deposit, then using a local stationary mean with OK will 

result in better estimates. OK proves to be suitable for estimating deposits with 

fluctuating mean and variance (see Figure 6.10) which is what is common in reality. 

For this study the SK mean is global whereas the OK mean is local. In the case 

where the OK mean is greater than the SK mean; whether the support is increased 

or remains the same the kriging variance of OK is always greater than the kriging 

variance of SK, provided strong stationarity is assumed. This occurs because in the 

computation of OK variance there is a Lagrange multiplier which is the factor that 

ensures that there are optimum weights, whereas SK does not have that factor. This 

can also be explained by the idea that the SK mean used in the estimation provides 

significant, useful and additional information (Assibey-Bonsu, 2014 personal 

communication). When taking the kriged estimate results into consideration, it shows 

that OK better follows the original data than an SK estimate (this is evident in Figure 

6.9 and Figure 6.10). 

Towards the end of the study after doing the trend analysis it was clear that there are 

distinct low grade and high grade areas and therefore domaining was considered. 

The estimation results were significantly different as shown in Table 6.5. It was 

concluded that when there are a few data involved in the estimation process OK and 

SK behave almost the same however when more data is used there are significant 

differences observed between OK and SK estimated grades. This idea will be 

developed further in the future studies to be done. 

The mining industry is a high risk business. In some mining projects risks are 

escalated by a lack of data availability as the cost of acquiring data is sometimes 

high, resulting in high uncertainty. In other mining projects the risks can be 

exacerbated by the errors associated with the available data. Therefore appropriate 

use of mineral resource estimation techniques are needed to quantify the risk. The 

understanding of the application and suitability of these estimation techniques is of 

vital importance to accurately quantify, mitigate and minimise this risk. 
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 Recommendations 7.2

To improve the estimation results and the manner in which the estimation 

techniques were applied for this PGE resource the following are strongly 

recommended: 

  The domaining section should be developed further to properly 

investigate more differences of OK and SK as domaining has indicated 

improvements in the estimation results. 

 The PGE histogram, probability plot and trend analysis indicated mixed 

populations, therefore a method of separating the mixed populations 

should be employed in this data. 

 Instead of applying the average global mean as the known SK mean, the 

local SK mean should be applied as there are evident fluctuations in this 

PGE data. 

  Trend analysis should be done earlier in any study in fact it should be 

included immediately after the statistical analysis, to clearly identify trends 

that may exist in any dataset. 

  For this particular PGE data, the four PGE elements should be estimated 

separately and not mixed to avoid obtaining a bi-modal distribution, to also 

obtain a better view of the behaviour of SK and OK for each element. 

  The assumption of stationarity should also not be heavily relied upon 

specifically for this particular PGE data as it resulted in the poor 

performance of the SK technique; improvements in SK were only observed 

when domaining was considered. 

  Declustering should be considered for such data and unfortunately the 

software that was used in this study does not have a declustering function. 
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 APPENDICES 10.

APPENDIX A 

Ordinary Kriging (OK) 
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Calculation of weights using matrix algebra 

 

Co = 0.0

C1 = 1.0 a 1 = 120

C2 = 0.0 a 2 = 120

C = 1.0

Sample Sample coordinates Distance Sample i to Sample j = hij  = SQRT((Xi-Xj)
2+(Yi-Yj)

2)

Value No x y Distance Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

19 Z1 0 60 Z1 0 30.00 60.00 30.00 42.43 67.08 60.00 67.08 84.85

25 Z2 0 30 Z2 30 0 30.00 42.43 30.00 42.43 67.08 60.00 67.08

17 Z3 0 0 Z3 60 30 0 67.08 42.43 30.00 84.85 67.08 60.00

13 Z4 30 60 Z4 30 42 67 0 30.00 60.00 30.00 42.43 67.08

21 Z5 30 30 Z5 42 30 42 30 0 30.00 42.43 30.00 42.43

8 Z6 30 0 Z6 67 42 30 60 30 0 67.08 42.43 30.00

12 Z7 60 60 Z7 60 67 85 30 42 67 0 30.00 60.00

15 Z8 60 30 Z8 67 60 67 42 30 42 30 0 30.00

20 Z9 60 0 Z9 85 67 60 67 42 30 60 30 0

16.67

Average distance from sample to block for all blocks

x y Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

a 25.0 35.0 Aa 35 25 43 25 7 35 43 35 49.5

b 25.0 25.0 Ab 43 25 35 35 7 25 49 35 35.4

c 35.0 35.0 Ac 43 35 49 25 7 35 35 25 49.5

d 35.0 25.0 Ad 49 35 43 35 7 25 43 25 35.4

Average distance from sample to block 42.72 30.43 42.72 30.43 7.07 30.43 42.72 30.43 43.0

Variogram Model
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Variogram Model

Calculation of g(hij)

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 l RHS

Z1 0.0000 0.3672 0.6875 0.3672 0.5082 0.7512 0.6875 0.7512 0.8839 1.00 w1  = 0.5105 X w = y

Z2 0.3672 0.0000 0.3672 0.5082 0.3672 0.5082 0.7512 0.6875 0.7512 1.00 w2  = 0.3715

Z3 0.6875 0.3672 0.0000 0.7512 0.5082 0.3672 0.8839 0.7512 0.6875 1.00 w3  = 0.5105 X-1X w =X-1 y

Z4 0.3672 0.5082 0.7512 0.0000 0.3672 0.6875 0.3672 0.5082 0.7512 1.00 w4  = 0.3715

Z5 0.5082 0.3672 0.5082 0.3672 0.0000 0.3672 0.5082 0.3672 0.5082 1.00 w5  = 0.0883 I w =X-1 y

Z6 0.7512 0.5082 0.3672 0.6875 0.3672 0.0000 0.7512 0.5082 0.3672 1.00 w6  = 0.3715

Z7 0.6875 0.7512 0.8839 0.3672 0.5082 0.7512 0.0000 0.3672 0.6875 1.00 w7  = 0.5105 w =X-1 y

Z8 0.7512 0.6875 0.7512 0.5082 0.3672 0.5082 0.3672 0.0000 0.3672 1.00 w8  = 0.3715

Z9 0.8839 0.7512 0.6875 0.7512 0.5082 0.3672 0.6875 0.3672 0.0000 1.00 w9  = 0.5064

weights 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 l  = 1.0000

inverse matrix X-1 y

-2.098 1.117 0.019 1.117 -0.050 -0.111 0.019 -0.111 0.100 0.258 0.5105 X-1X w =X-1 y

1.117 -2.891 1.117 0.042 0.862 0.042 -0.111 -0.065 -0.111 0.033 0.3715

0.019 1.117 -2.098 -0.111 -0.050 1.117 0.100 -0.111 0.019 0.258 0.5105

1.117 0.042 -0.111 -2.891 0.862 -0.065 1.117 0.042 -0.111 0.033 0.3715

-0.050 0.862 -0.050 0.862 -3.248 0.862 -0.050 0.862 -0.050 -0.164 0.0883

-0.111 0.042 1.117 -0.065 0.862 -2.891 -0.111 0.042 1.117 0.033 0.3715

0.019 -0.111 0.100 1.117 -0.050 -0.111 -2.098 1.117 0.019 0.258 0.5105

-0.111 -0.065 -0.111 0.042 0.862 0.042 1.117 -2.891 1.117 0.033 0.3715

0.100 -0.111 0.019 -0.111 -0.050 1.117 0.019 1.117 -2.098 0.258 0.5064

0.258 0.033 0.258 0.033 -0.164 0.033 0.258 0.033 0.258 -0.573 1.0000

w1  = -0.0006 w =X-1 y

w2  = 0.0687

w3  = -0.0002

w4  = 0.0687

w5  = 0.7280

w6  = 0.0636

w7  = -0.0002

w8  = 0.0636

w9  = 0.0085

Swi must =1 1.00 l  = -0.0127
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Calculation of the g value for each discretisation point

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

Aa 0.4292 0.3139 0.5146 0.3139 0.0883 0.4292 0.5146 0.4292 0.5836

Ab 0.5146 0.3139 0.4292 0.4292 0.0883 0.3139 0.5836 0.4292 0.4292

Ac 0.5146 0.4292 0.5836 0.3139 0.0883 0.4292 0.4292 0.3139 0.5836

Ad 0.5836 0.4292 0.5146 0.4292 0.0883 0.3139 0.5146 0.3139 0.4292

RHS 0.5105 0.3715 0.5105 0.3715 0.0883 0.3715 0.5105 0.3715 0.5064

a b c d

a 0.00 10 10.00 14.14

b 10 0 14.14 10.00

c 10 14 0 10.00

d 14 10 10 0.00

a b c d

a 0.000 0.125 0.125 0.176

b 0.125 0.000 0.176 0.125

c 0.125 0.176 0.000 0.125

d 0.176 0.125 0.125 0.000

g bar(A,A) = 0.106

g bar(zi,zj) = 0.503

g bar (z,A) = 0.401

Variogram for discretisation points

Distance between discretisation points
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Simple Kriging (SK) 

 

 

Calculation of weights using matrix algebra 

 

Co = 0.00

C1 = 1.00 a 1 = 120

C2 = 0.00 a 2 = 120

C = 1.00

Sample Sample coordinates Distance Sample i to Sample j = hij  = SQRT((Xi-Xj)
2+(Yi-Yj)

2)

Value No x y Distance Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

19 Z1 0 60 Z1 0 30.00 60.00 30.00 42.43 67.08 60.00 67.08 84.85

25 Z2 0 30 Z2 30 0 30.00 42.43 30.00 42.43 67.08 60.00 67.08

17 Z3 0 0 Z3 60 30 0 67.08 42.43 30.00 84.85 67.08 60.00

13 Z4 30 60 Z4 30 42 67 0 30.00 60.00 30.00 42.43 67.08

21 Z5 30 30 Z5 42 30 42 30 0 30.00 42.43 30.00 42.43

8 Z6 30 0 Z6 67 42 30 60 30 0 67.08 42.43 30.00

12 Z7 60 60 Z7 60 67 85 30 42 67 0 30.00 60.00

15 Z8 60 30 Z8 67 60 67 42 30 42 30 0 30.00

20 Z9 60 0 Z9 85 67 60 67 42 30 60 30 0

Average 16.67

Average distance from sample to block for all blocks

x y Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

a 25.0 35.0 Aa 35.36 25.50 43.01 25.50 7.07 35.36 43.01 35.36 49.50

b 25.0 25.0 Ab 43.01 25.50 35.36 35.36 7.07 25.50 49.50 35.36 43.01

c 35.0 35.0 Ac 43.01 35.36 49.50 25.50 7.07 35.36 35.36 25.50 43.01

d 35.0 25.0 Ad 49.50 35.36 43.01 35.36 7.07 25.50 43.01 25.50 35.36

Variogram Model

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 50.00 100.00 150.00 200.00

V
a

ri
a

b
il

it
y 

g
(h

)

lag distance h

Variogram Model

Calculation of g(hij)

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 l RHS

Z1 0.000 0.367 0.688 0.367 0.508 0.751 0.688 0.751 0.884 w1  = 0.5105 X w = y

Z2 0.367 0.000 0.367 0.508 0.367 0.508 0.751 0.688 0.751 w2  = 0.3715

Z3 0.688 0.367 0.000 0.751 0.508 0.367 0.884 0.751 0.688 w3  = 0.5105 X-1X w =X-1 y

Z4 0.367 0.508 0.751 0.000 0.367 0.688 0.367 0.508 0.751 w4  = 0.3715

Z5 0.508 0.367 0.508 0.367 0.000 0.367 0.508 0.367 0.508 w5  = 0.0883 I w =X-1 y

Z6 0.751 0.508 0.367 0.688 0.367 0.000 0.751 0.508 0.367 w6  = 0.3715

Z7 0.688 0.751 0.884 0.367 0.508 0.751 0.000 0.367 0.688 w7  = 0.5105 w =X-1 y

Z8 0.751 0.688 0.751 0.508 0.367 0.508 0.367 0.000 0.367 w8  = 0.3715

Z9 0.884 0.751 0.688 0.751 0.508 0.367 0.688 0.367 0.000 w9  = 0.5105

weights

inverse matrix X-1 y

-1.982 1.131 0.135 1.131 -0.124 -0.096 0.135 -0.096 0.216 0.5105 X-1X w =X-1 y

1.131 -2.889 1.131 0.043 0.853 0.043 -0.096 -0.063 -0.096 0.3715

0.135 1.131 -1.982 -0.096 -0.124 1.131 0.216 -0.096 0.135 0.5105

1.131 0.043 -0.096 -2.889 0.853 -0.063 1.131 0.043 -0.096 0.3715

-0.124 0.853 -0.124 0.853 -3.201 0.853 -0.124 0.853 -0.124 0.0883

-0.096 0.043 1.131 -0.063 0.853 -2.889 -0.096 0.043 1.131 0.3715

0.135 -0.096 0.216 1.131 -0.124 -0.096 -1.982 1.131 0.135 0.5105

-0.096 -0.063 -0.096 0.043 0.853 0.043 1.131 -2.889 1.131 0.3715

0.216 -0.096 0.135 -0.096 -0.124 1.131 0.135 1.131 -1.982 0.5105

w1  = -0.0054 w =X-1 y

w2  = 0.0675

w3  = -0.0054

w4  = 0.0675

w5  = 0.7311

w6  = 0.0675

w7  = -0.0054

w8  = 0.0675

w9  = -0.0054

l  =
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Calculation of the g value for each discretisation point

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

Aa 0.429 0.314 0.515 0.314 0.088 0.429 0.515 0.429 0.584

Ab 0.515 0.314 0.429 0.429 0.088 0.314 0.584 0.429 0.515

Ac 0.515 0.429 0.584 0.314 0.088 0.429 0.429 0.314 0.515

Ad 0.584 0.429 0.515 0.429 0.088 0.314 0.515 0.314 0.429

RHS 0.5105 0.3715 0.5105 0.3715 0.0883 0.3715 0.5105 0.3715 0.5105

a b c d

a 0.00 10.00 10.00 14.14

b 10.00 0.00 14.14 10.00

c 10.00 14.14 0.00 10.00

d 14.14 10.00 10.00 0.00

a b c d

a 0.00 0.12 0.12 0.18

b 0.12 0.00 0.18 0.12

c 0.12 0.18 0.00 0.12

d 0.18 0.12 0.12 0.00

g bar(A,A) = 0.1063

g bar(zi,zj) = 0.5031

g bar (z,A) = 0.4018

Variogram for discretisation points

Distance between discretisation points

Z*K 19.4448

sK
2 0.0678

sB
2 0.8937

se
2 0.1942

slope 1.0000
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APPENDIX B 

 OK weights 30 m range 

 

OK weights 90 m range 

 

OK weights at 120 m 

 

  

Co w1 w2 w3 w4 w5 w6 w7 w8 w9 λ

0.00 0.00 0.07 0.00 0.07 0.73 0.06 0.00 0.06 0.01 -0.01

0.10 0.01 0.10 0.01 0.10 0.56 0.09 0.01 0.09 0.02 -0.02

0.20 0.03 0.11 0.03 0.11 0.45 0.10 0.03 0.10 0.04 -0.02

0.30 0.05 0.11 0.05 0.11 0.37 0.11 0.05 0.11 0.05 -0.01

0.40 0.06 0.11 0.06 0.11 0.31 0.11 0.06 0.11 0.06 0.00

0.50 0.07 0.11 0.07 0.11 0.26 0.11 0.07 0.11 0.07 0.02

0.60 0.08 0.11 0.08 0.11 0.22 0.11 0.08 0.11 0.08 0.03

0.70 0.09 0.11 0.09 0.11 0.19 0.11 0.09 0.11 0.09 0.05

0.80 0.10 0.11 0.10 0.11 0.16 0.11 0.10 0.11 0.10 0.07

0.90 0.11 0.11 0.11 0.11 0.13 0.11 0.11 0.11 0.11 0.09

1.00 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
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SK weights 30 m range 

 

 

SK weights 90 m range 

 

SK weights 120 m range 

 

 

 

  

Co w1 w2 w3 w4 w5 w6 w7 w8 w9 Co

0.00 0.04 0.05 0.04 0.05 0.69 0.05 0.04 0.05 0.04 0.00

0.10 0.04 0.06 0.04 0.06 0.63 0.06 0.04 0.06 0.04 0.10

0.20 0.05 0.07 0.05 0.07 0.58 0.07 0.05 0.07 0.05 0.20

0.30 0.06 0.07 0.06 0.07 0.52 0.07 0.06 0.07 0.06 0.30

0.40 0.07 0.08 0.07 0.08 0.46 0.08 0.07 0.08 0.07 0.40

0.50 0.08 0.09 0.08 0.09 0.41 0.09 0.08 0.09 0.08 0.50

0.60 0.09 0.10 0.09 0.10 0.35 0.10 0.09 0.10 0.09 0.60

0.70 0.10 0.10 0.10 0.10 0.29 0.10 0.10 0.10 0.10 0.70

0.80 0.11 0.11 0.11 0.11 0.24 0.11 0.11 0.11 0.11 0.80

0.90 0.12 0.12 0.12 0.12 0.18 0.12 0.12 0.12 0.12 0.90

1.00 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1.00

Co w1 w2 w3 w4 w5 w6 w7 w8 w9

0.00 -0.01 0.07 -0.01 0.07 0.73 0.07 -0.01 0.07 -0.01

0.10 0.00 0.09 0.00 0.09 0.60 0.09 0.00 0.09 0.00

0.20 0.02 0.10 0.02 0.10 0.50 0.10 0.02 0.10 0.02

0.30 0.03 0.11 0.03 0.11 0.42 0.11 0.03 0.11 0.03

0.40 0.05 0.11 0.05 0.11 0.36 0.11 0.05 0.11 0.05

0.50 0.06 0.12 0.06 0.12 0.30 0.12 0.06 0.12 0.06

0.60 0.08 0.12 0.08 0.12 0.25 0.12 0.08 0.12 0.08

0.70 0.09 0.12 0.09 0.12 0.22 0.12 0.09 0.12 0.09

0.80 0.10 0.12 0.10 0.12 0.18 0.12 0.10 0.12 0.10

0.90 0.11 0.12 0.11 0.12 0.15 0.12 0.11 0.12 0.11

1.00 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Co w1 w2 w3 w4 w5 w6 w7 w8 w9

0.00 -0.01 0.07 -0.01 0.07 0.73 0.07 -0.01 0.07 -0.01

0.10 0.01 0.09 0.01 0.09 0.56 0.09 0.01 0.09 0.01

0.20 0.03 0.10 0.03 0.10 0.45 0.10 0.03 0.10 0.03

0.30 0.05 0.11 0.05 0.11 0.37 0.11 0.05 0.11 0.05

0.40 0.06 0.11 0.06 0.11 0.31 0.11 0.06 0.11 0.06

0.50 0.08 0.12 0.08 0.12 0.26 0.12 0.08 0.12 0.08

0.60 0.09 0.12 0.09 0.12 0.22 0.12 0.09 0.12 0.09

0.70 0.10 0.12 0.10 0.12 0.19 0.12 0.10 0.12 0.10

0.80 0.11 0.12 0.11 0.12 0.16 0.12 0.11 0.12 0.11

0.90 0.12 0.12 0.12 0.12 0.14 0.12 0.12 0.12 0.12

1.00 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
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Appendix C 

Trend Estimate Data 

X (m) SK (g/t) OK (g/t) Original pge (g/t) 

56800 5.774 5.91 8 

56900 5.782 5.36 5.72 

57000 5.788 5.3 5.6 

57100 5.8 5.18 3.79 

57200 5.816 5.36 4 

57300 5.904 5.85 7.65 

57400 6.011 6.18 6.8 

57500 6.143 6.36 6.29 

57600 6.221 6.27 6.81 

57700 6.23 6.09 7.94 

57800 6.053 5.95 7.45 

57900 5.866 6.15 6.6 

58000 6.089 6.39 6.48 

58100 6.506 6.61 7.18 

58200 6.37 6.49 6.9 

58300 6.423 6.39 7.27 

58400 6.084 6.55 4.15 

58500 6.024 6.6 5.81 

58600 6.103 6.46 5.72 

58700 6.062 6.82 7.45 

58800 5.893 6.64 5.69 

58900 5.93 6.49 6.51 

59000 6.148 6.25 6.02 

59100 6.317 6.36 8.15 

59200 6.128 6.59 6.02 

59300 6.017 6.6 7.7 

59400 5.98 6.46 5.92 

59500 5.928 6.33 5 

59600 5.856 6.18 7.49 

59700 5.827 6.11 6.26 

59800 5.82 6.33 7.1 

59900 5.842 6.32 4.7 

60000 6.039 6.26 7.08 

60100 6.253 6.21 5.88 

60200 6.468 6.39 5.46 

60300 5.988 6.1 6.45 

60400 5.809 5.84 5.94 

60500 5.893 6.01 7.05 

60600 5.958 6.02 7.28 

60700 5.96 5.93 5.8 
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60800 5.828 5.8 6.12 

60900 5.957 5.94 8.72 

61000 5.985 5.71 5.9 

61100 5.876 5.43 5.62 

61200 5.768 5.21 5.79 

61300 5.744 5.24 5.18 

61400 5.761 5.15 5.74 

61500 5.769 5.06 6.17 

61600 5.759 5.13 5.48 

61700 5.741 5.18 4.77 

61800 5.684 4.94 5.95 

61900 5.701 4.77 5.37 

62000 5.738 4.58 3.84 

62100 5.76 4.56 4.04 

62200 5.784 4.69 4.02 

62300 5.834 4.65 3.78 

62400 5.991 4.48 4.45 

62500 6.059 4.39 6.09 

62600 5.977 4.28 4.17 

62700 5.998 4.19 4.34 

62800 6.121 3.92 4.57 

62900 6.127 3.88 3.98 

63000 6.324 4.09 3.43 

63100 6.134 4.15 4.23 

63200 5.944 4.42 3.5 

63300 5.898 4.51 5.82 

63400 5.786 4.31 3.06 

63500 5.766 4.26 6.88 

63600 5.767 4.46 2.04 

63700 5.78 4.67 4.33 

63800 5.78 5.06 3.44 

63900 5.784 5.62 3.25 
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Appendix D 
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