
University of the Witwatersrand
JSE Matching Engine Simulator

Author: D. Sing 1133465
Supervisor: Prof. T. Gebbie

A dissertation submitted in fulfilment of the requirements
of the degree of Master of Science

in the
School of Computer Science and Applied Mathematics

June 11, 2017

1

2

Declaration
I declare that this dissertation is my own unaided work. It is being submitted for the
degree of Master of Science in the University of the Witwatersrand, Johannesburg. It
has not been submitted before for any degree or examination in any other university.

Dharmesh Sing

day of 2017 in

3

Abstract
The Johannesburg Stock Exchange (JSE) started High Frequency Trading when
their matching engine moved from London to Johannesburg in 2012. The study of
market microstructure at the JSE is not possible without access to their matching
engine. This dissertation investigates the challenges of studying market microstruc-
ture and describes the design and implementation of an open source matching engine.
CoinTossX was developed as an open source low latency high throughput stock ex-
change. The software was developed in Java and used open source libraries. The
software is tested using an 8-variate mutually-exciting Hawkes process to govern the
times of coupled liquidity demand and supply events, while trade and quote prices
and volumes are generated consistent with the event type. The testing showed that
CoinTossX is able to support multiple clients, stocks and matching algorithms.

4

Dedication
This masters is dedicated to my significant other, Melisha.

5

Acknowledgements
I would like to thank my supervisor Professor T. Gebbie for his guidance, advice
and his ability to accommodate my schedule during my masters. Also many thanks
to Professor T. Celik for initially contributing as a co-supervisor at the start of the
project. A special thanks to Dieter Hendricks, Diane Wilcox and the rest of the
QuERI lab team.

I also would like to thank my parents who made the sacrifices to ensure I could
achieve my goals.

CONTENTS 6

Contents

1 Introduction 19
1.1 Stock Exchange . 19
1.2 Limit Order Book . 19
1.3 Aim . 20
1.4 Delimitations . 20
1.5 Limitations . 20
1.6 Research Methodology . 20
1.7 Dissertation Outline . 21

2 Literature Review 22
2.1 Introduction . 22
2.2 What Is Market Microstructure ? . 22
2.3 Challenges In Studying Limit Order Books 22

2.3.1 Rational Traders VS Zero-Intelligence Traders 22
2.3.2 Order Flows . 22
2.3.3 Feedback And Coupling . 23
2.3.4 Priority . 23
2.3.5 Ice-berg and hidden orders 24
2.3.6 Dark Pools . 25
2.3.7 Volatility . 25
2.3.8 Resolution parameters . 25
2.3.9 Bilateral trade agreements . 25
2.3.10 Opening and closing auctions 25

2.4 Matching Engine . 26
2.5 High Frequency Trading (HFT) . 27
2.6 Regulation Impact In U.S And Europe 28

2.6.1 The Limit Order Display Rule 28
2.6.2 Regulation National Market System (Reg NMS) 29
2.6.3 Markets in Financial Instruments Directive (MiFID) 30

2.7 Technology Impact . 30
2.7.1 Hardware . 30
2.7.2 Message Protocols . 31

2.8 Johannesburg Stock Exchange . 32
2.9 Conclusion . 33

CONTENTS 7

3 Requirements 34
3.1 High Level Overview . 34
3.2 Scope . 34
3.3 Components . 34

3.3.1 Clients . 34
3.3.2 The Trading Gateway . 34
3.3.3 Matching Engine . 35
3.3.4 The Market Data Gateway 35
3.3.5 The Website . 35

3.4 Functional Requirements - Trading Gateway 35
3.4.1 Login . 35
3.4.2 Logout . 36
3.4.3 Order Request . 36
3.4.4 Change Trading Session . 36

3.5 Functional Requirements - Matching Engine 36
3.5.1 Trading Sessions . 37
3.5.2 Order Types . 37
3.5.3 Time In Force (TIF) . 39
3.5.4 Valid Combinations . 41
3.5.5 Price-Time Priority Algorithm 42
3.5.6 Passive Price Improvement Algorithm 48
3.5.7 Filter and Uncross Algorithm 48
3.5.8 Auction Algorithm . 54
3.5.9 Static And Dynamic Price . 56

3.6 Functional Requirements - Market Data Gateway 57
3.6.1 Market Data Update . 57

3.7 Functional Requirements - Website 57
3.7.1 Manage clients . 57
3.7.2 Manage stocks . 58
3.7.3 View Limit Order Books . 58
3.7.4 Configure Testing Framework 58
3.7.5 Run Testing Framework . 58

3.8 Deployment Requirements . 58

CONTENTS 8

4 Design 59
4.1 Introduction . 59
4.2 Architecture Overview . 59
4.3 Implementation Language . 60

4.3.1 Performance . 60
4.3.2 Portability . 61
4.3.3 Development time . 61
4.3.4 Open source libraries . 61

4.4 Message Protocol . 61
4.5 Communication . 62

4.5.1 TCP . 62
4.5.2 UDP . 63
4.5.3 JSE Communication . 63
4.5.4 ZeroMQ . 63
4.5.5 Aeron . 64

4.6 Limit Order Book Data Structure . 66
4.6.1 Execution and Storage Requirements 67
4.6.2 Efficient use of CPU cache . 68
4.6.3 Memory Access Patterns . 71
4.6.4 Data Structure . 71

4.7 Business Rules . 74
4.8 Website . 74
4.9 Web Event Listener . 75
4.10 Conclusion . 76

5 CoinTossX 77
5.1 Introduction . 77
5.2 Technical Documentation . 77
5.3 Website Screenshots . 77

5.3.1 Splash Screen . 77
5.3.2 Stocks . 78
5.3.3 Clients . 79
5.3.4 Limit Order Book . 79
5.3.5 Hawkes Configuration . 80
5.3.6 Run Simulation . 80

5.4 Conclusion . 81

CONTENTS 9

6 Testing Methodology 82
6.1 Introduction . 82
6.2 Hawkes Process . 82
6.3 Hawkes Process In Financial Modeling 83

6.3.1 Modeling A Stream Of Orders 84
6.4 Simulating A Hawkes Process . 86
6.5 Conclusion . 87

7 Hawkes Simulation 88
7.1 Hawkes Algorithm . 88
7.2 Algorithm for Price and Volume Generator 89
7.3 Initialization . 89
7.4 General Routine - Client . 90
7.5 General Routine - Client MarketData Subscriber 90
7.6 VWAP . 90
7.7 Aggressive Buy Trade (Type 1) . 91
7.8 Aggressive Sell Trade (Type 2) . 91
7.9 Aggressive Buy Quotes (Type 3) . 92
7.10 Aggressive Sell Quotes (Type 4) . 93
7.11 Passive Buy Trade (Type 5) . 93
7.12 Passive Sell Trade (Type 6) . 94
7.13 Passive Buy Quotes (Type 7) . 94
7.14 Passive Sell Quotes (Type 8) . 95
7.15 Intensity Charts . 96

8 Test Analysis 98
8.1 Introduction . 98
8.2 Unit Tests . 98
8.3 Java Microbenchmark Harness (JMH) 98
8.4 Performance Tests . 98

8.4.1 Scenario A: Throughput Testing 99
8.4.2 Scenario A: Latency Testing 99
8.4.3 Scenario A: Limit Order Book Storage Testing 100
8.4.4 Scenario B: Throughput Testing 102
8.4.5 Scenario B: Latency Testing 102

8.5 Analysis . 104

CONTENTS 10

9 Conclusion 106

9.1 Discussion . 106

9.2 Further Work . 106

A Appendix 115

A.1 Java vs Google Protocol Buffers Test 115

A.2 Aeron Performance Tests . 115

A.2.1 Aeron ThroughPut Performance Test 115

A.2.2 Aeron Latency Performance Test 117

B Appendix 118

B.1 Matching Engine Test Cases . 118

B.1.1 Market Order Test Case - Test 1 119

B.1.2 Market Order Test Case - Test 2 120

B.1.3 Market Order Test Case - Test 3 121

B.1.4 Market Order Test Case - Test 4 122

B.1.5 Market Order Test Case - Test 5 123

B.1.6 Market Order Test Case - Test 6 124

B.1.7 Limit Order Test Case - Test 1 125

B.1.8 Limit Order Test Case - Test 2 126

B.1.9 Limit Order Test Case - Test 3 127

B.1.10 Limit Order Test Case - Test 4 128

B.1.11 Limit Order Test Case - Test 5 129

B.1.12 Limit Order Test Case - Test 6 130

B.1.13 Limit Order Test Case - Test 7 131

B.1.14 Limit Order Test Case - Test 8 132

B.1.15 Limit Order Test Case - Test 9 133

B.1.16 Limit Order Test Case - Test 10 134

B.1.17 Limit Order Test Case - Test 11 135

B.1.18 Limit Order Test Case - Test 12 136

B.1.19 Hidden Order Test Case - Test 1 137

B.1.20 Hidden Order Test Case - Test 2 138

B.1.21 Hidden Order Test Case - Test 3 139

CONTENTS 11

B.1.22 Hidden Order Test Case - Test 4 140

B.1.23 Hidden Order Test Case - Test 5 141

B.1.24 Hidden Order Test Case - Test 6 142

B.1.25 Hidden Order Test Case - Test 7 143

B.1.26 Hidden Order Test Case - Test 8 144

B.1.27 Hidden Order Test Case - Test 9 145

B.1.28 Hidden Order Test Case - Test 10 146

B.1.29 Hidden Order Test Case - Test 11 147

B.1.30 Hidden Order Test Case - Test 12 148

B.1.31 Hidden Order Test Case - Test 13 149

B.1.32 Hidden Order Test Case - Test 14 150

B.1.33 Hidden Order Test Case - Test 15 151

B.1.34 Hidden Order Test Case - Test 16 152

B.1.35 Hidden Order Test Case - Test 17 153

B.1.36 Stop Order Test Case - Test 1 154

B.1.37 Stop Order Test Case - Test 2 155

B.1.38 Stop Order Test Case - Test 3 156

B.1.39 Stop Order Test Case - Test 4 157

B.1.40 Stop Order Test Case - Test 5 158

B.1.41 Stop Order Test Case - Test 6 159

B.1.42 Stop Order Test Case - Test 7 160

B.1.43 Stop Order Test Case - Test 8 161

B.1.44 Stop Order Test Case - Test 9 162

B.1.45 Stop Order Test Case - Test 10 163

B.1.46 Stop Order Test Case - Test 11 164

B.1.47 Stop Order Test Case - Test 12 165

B.1.48 Stop Limit Order Test Case - Test 1 166

B.1.49 Stop Limit Order Test Case - Test 2 167

B.1.50 Stop Limit Order Test Case - Test 3 168

B.1.51 Stop Limit Order Test Case - Test 4 169

B.1.52 Stop Limit Order Test Case - Test 5 170

B.1.53 Stop Limit Order Test Case - Test 6 171

CONTENTS 12

B.1.54 Stop Limit Order Test Case - Test 7 172

B.1.55 Stop Limit Order Test Case - Test 8 173

B.1.56 Stop Limit Order Test Case - Test 9 174

B.1.57 Stop Limit Order Test Case - Test 10 175

B.1.58 Stop Limit Order Test Case - Test 11 176

B.1.59 Stop Limit Order Test Case - Test 12 177

B.1.60 Filter And Uncross Test Case - Test 1 178

B.1.61 Filter And Uncross Test Case - Test 2 179

B.1.62 Filter And Uncross Test Case - Test 3 180

B.1.63 Filter And Uncross Test Case - Test 4 181

B.1.64 Auction Test Case - Test 1 182

B.1.65 Auction Test Case - Test 2 183

B.1.66 Auction Test Case - Test 3 184

B.1.67 Cancel Order Test Case - Test 1 185

B.1.68 Cancel Order Test Case - Test 2 186

B.1.69 Cancel Order Test Case - Test 3 187

B.1.70 Cancel Order Test Case - Test 4 188

B.1.71 Cancel Order Test Case - Test 5 189

B.1.72 Cancel Order Test Case - Test 6 190

B.1.73 Cancel Order Test Case - Test 7 191

B.1.74 Cancel Order Test Case - Test 8 192

B.1.75 Cancel Order Test Case - Test 9 193

B.1.76 Cancel Order Test Case - Test 10 194

B.1.77 Replace Order Test Case - Test 1 195

B.1.78 Replace Order Test Case - Test 2 196

B.1.79 Replace Order Test Case - Test 3 197

B.1.80 Replace Order Test Case - Test 4 198

B.1.81 Replace Order Test Case - Test 5 199

B.1.82 Replace Order Test Case - Test 6 200

B.1.83 Replace Order Test Case - Test 7 201

B.1.84 Replace Order Test Case - Test 8 202

B.1.85 Replace Order Test Case - Test 9 203

CONTENTS 13

B.1.86 Replace Order Test Case - Test 10 204

B.1.87 Replace Order Test Case - Test 11 205

B.1.88 Replace Order Test Case - Test 12 206

B.1.89 Replace Order Test Case - Test 13 207

B.1.90 Replace Order Test Case - Test 14 208

B.1.91 Replace Order Test Case - Test 15 209

B.1.92 Replace Order Test Case - Test 16 210

B.1.93 Replace Order Test Case - Test 17 211

B.1.94 Replace Order Test Case - Test 18 212

B.1.95 Replace Order Test Case - Test 19 213

B.1.96 Replace Order Test Case - Test 20 214

B.1.97 Replace Order Test Case - Test 21 215

B.1.98 Replace Order Test Case - Test 22 216

B.1.99 Replace Order Test Case - Test 23 217

B.1.100Replace Order Test Case - Test 24 218

B.1.101Replace Order Test Case - Test 25 219

B.1.102Replace Order Test Case - Test 26 220

B.1.103Replace Order Test Case - Test 27 221

B.1.104Replace Order Test Case - Test 28 222

B.1.105Replace Order Test Case - Test 29 223

B.1.106Replace Order Test Case - Test 30 224

B.1.107Replace Order Test Case - Test 31 225

B.1.108Replace Order Test Case - Test 32 226

B.1.109Replace Order Test Case - Test 33 227

B.1.110Replace Order Test Case - Test 34 228

B.1.111Replace Order Test Case - Test 35 229

B.1.112Replace Order Test Case - Test 36 230

C Appendix 231
C.1 Getting Started Guide . 231

C.1.1 Download Java . 231

C.1.2 Clone the repository . 231

C.1.3 Build the project . 231

CONTENTS 14

C.1.4 Location of configuration files 231

C.1.5 Location of connection files 231

C.1.6 Deploy . 232

C.1.7 Start the Gateways on the server 232

C.1.8 Simple client . 232

C.1.9 Send a new order to the Trading Gateway 233

LIST OF TABLES 15

List of Tables

1 Order book before matching . 23

2 Order book after matching . 23

3 Pro-Rata order book before matching 23

4 Pro-Rata order book after matching 24

5 Java vs Google Protocol Buffers . 61

6 SBE vs GPB [82] . 62

7 Scenario A: Throughput . 99

8 Scenario B: Intraday Auction Throughput 102

9 Java Test . 115

10 Google Protocol Buffer Test . 115

LIST OF FIGURES 16

List of Figures

1 HFT vs AT [26] . 27

2 HFT/AT Workflow [15] . 28

3 Order Spread Impact [91] . 29

4 Trading Gateway Use Case . 35

5 Matching Engine Use Case . 36

6 Trading Sessions [39] . 37

7 TIF Order Type Valid Combinations [39] 42

8 Trading Session TIF Order Type Valid Combinations [39] 42

9 Market Data Gateway Use Case . 57

10 Website Use Case . 57

11 High Level Architecture Diagram . 59

12 Cern MOM Libraries . 64

13 Aeron Architecture [81] . 65

14 Aeron Latency Test . 66

15 JSE orders [34] . 67

16 Snapshot of Apple LOB on NASDAQ at 8:43[12] 68

17 CPU cache . 69

18 Data Structure . 73

19 Order List . 74

20 Business Rules . 74

21 Splash Screen 1 . 77

22 Splash Screen 2 . 78

23 Splash Screen 3 . 78

24 Stocks . 79

25 Clients . 79

26 Limit Order Book . 80

27 Hawkes Configuration . 80

28 Hawkes Simulation . 81

29 Intensity Chart Type 1 - 4 . 96

30 Intensity Chart Type 5 - 8 . 97

31 Scenario A: Latency . 100

LIST OF FIGURES 17

32 Scenario A: Volume of Orders . 101

33 Scenario A: Count of Orders . 101

34 Scenario A: Trades Executed Count 102

35 Scenario B: Latency . 103

36 Scenario B: Trades Executed Count 104

LIST OF ALGORITHMS 18

List of Algorithms
1 Pro-Rata Algorithm . 24
2 Passive Price Improvement Algorithm 48
3 Filter Algorithm (Hill Climber Algorithm) - Step 1 49
4 Filter Algorithm (Hill Climber Algorithm) - Step 2 49
5 Filter Algorithm (Hill Climber Algorithm) - Step 3 50
6 Filter Algorithm (Hill Climber Algorithm) - Step 4 50
7 Filter Algorithm (Hill Climber Algorithm) - Step 5 51
8 Uncrossing Algorithm - Calculate the target price 51
9 Uncrossing Algorithm - Calculate maximum executable volumes at

each price level in the crossed region 51
10 Uncrossing Algorithm - Calculate the target trade price that maxi-

mizes the executable volume . 52
11 Uncrossing Algorithm - Agress Order Book 52
12 Auction Algorithm . 54
13 Step 1 - Initialization . 86
14 Step 2 - First event . 86
15 Step 3 - General routine . 87
16 Step 4 - Output . 87
17 General Routine - Client . 90
18 General Routine - Client MarketData Subscriber 90
19 Volume Weighted Average Price (VWAP) 90
20 Aggressive Buy Trade (Type 1) . 91
21 Aggressive Sell Trade (Type 2) . 91
22 Aggressive Buy Quotes (Type 3) . 92
23 Aggressive Sell Quotes (Type 4) . 93
24 Passive Buy Trade (Type 5) . 93
25 Passive Sell Trade (Type 6) . 94
26 Passive Buy Quotes (Type 7) . 94
27 Passive Sell Quotes (Type 8) . 95

19

1 Introduction

A high frequency low latency, high throughput, open research oriented matching
engine simulator for the Johannesburg Stock Exchange (JSE) does not exist. High
Frequency Trading (HFT) at the JSE was not possible until 2012 when the JSE
moved it’s matching engine from London to Johannesburg [38]. Roundtrip latency
has reduced from 300 milliseconds to 2400 microseconds and when a company moves
it’s servers to the co-location site, latency can reduce to 50 microseconds [40]. The
JSE has a propriety test environment, but this is only targeted at business users
and has not been made available for academic research.

This research investigates and discusses the challenges in designing, implementing
and testing a low latency, high throughput matching engine. The key research output
of the research project was the software system, the test harness (framework) and it’s
access via the CoinTossX web interfaces. This dissertation documents and discusses
these research outputs.

1.1 Stock Exchange

Stock exchanges allow traders to come together to trade securities. Buyers and
sellers find each other when they want to trade on a specific security, price, quantity
and urgency[58]. There are 2 types of markets: a dealer market and a limit order
market [58]. A dealer market uses dealers to speed up the search process by buying
or selling to traders. They quote a bid (buy) and an ask (sell) price for a security.
The spread is the difference between the bid and the ask price. Dealers make a profit
from the spread in exchange for providing liquidity to the market. Traders can only
buy or sell at the prices published by the dealers. A limit order market uses limit
order books for the search process. This market does not use dealers and this allows
traders to submit buy and sell orders at their desired price.

1.2 Limit Order Book

A limit order market maintains a limit order book (LOB) for each security at the
exchange [1]. When a new order is received a matching engine is used to match the
orders and create the trade. If the order is not matched it will remain active in the
limit order book. The order will be removed if it is matched with another incoming
order or the order is canceled[47]. Gould et al. [28] defines a LOB(t), as the set of
all active orders in a market at time t. The bid price at time t, bid(t) is the highest
active buy order price and the ask price at time t, ask(t) is the lowest active sell
order price. The mid price at time t, mid(t) is [bid(t) + ask(t)]/2. Orders to buy or
sell can be classified as limit orders or market orders [28]. A market order does not
specify a price an executes immediately matching against the best available price.
A limit order specifies a price and matches against orders better than or equal to
the specified price.

1.3 Aim 20

1.3 Aim

The aim of this research is to produce an open source high frequency matching
engine. The software has been designed to be reconfigurable to allow for different
market structures, matching algorithms and software components. It can be con-
figured for multiple clients, stocks and trading sessions e.g. the researcher has the
ability to simulate rolling 30 second auctions. The software has been configured to
replicate the rules and processes of the JSE. It will allow traders, organizations and
academic institutions to test market structure, fragility and dynamics without fi-
nancial loss. The software will provide a platform to study price formations in stock
exchanges and the interplay between regulators, market structure and dynamics.

1.4 Delimitations

The functionality of the software was tested using the test cases made available online
from the JSE. The requirements were taken from [39]. The JSE was not contacted
for more information. The software only implements one Trading and Market Data
Gateway. Testing of the trading sessions was restricted to the Continuous and
Intraday Auction trading sessions. Time In Force testing was restricted to DAY
orders.

1.5 Limitations

The matching engine was evaluated using unit tests and the Hawkes testing frame-
work. The outputs of these tests were not compared to the JSE or another exchange
as the data is not available by the industry. The JSE’s test environment is also
closed and does not provide realistic order-book dynamics. This research addresses
this by providing a framework that can be compared to recorded transaction data
arising from the actual market systems using the Hawkes processes.

1.6 Research Methodology

The design and creation research methodology approach was used for this disser-
tation. The matching engine, trading gateway, market data gateway, web console
and a testing framework were the artifacts produced. The software was design and
developed using test-driven development (TDD). TDD involves 3 steps[5]:

1. Write a unit test

2. Code the functionality

3. Refactor the design and code.

1.7 Dissertation Outline 21

This method was used as it allowed the code to change and become more efficient
while ensuring the implemented functionality continued to work. A Hawkes simula-
tion was implemented to send a large number of orders to the exchange to evaluate
the software.

1.7 Dissertation Outline

The rest of this dissertation is structured as follows:

Chapter 2 gives the literature review to my work. This includes the description
of market microstructure, the challenges of studying LOBs and the impact that
regulation and technology has had on stock exchanges and matching engines.

Chapter 3 presents the requirements for the software. It describes the matching
logic and algorithms required.

Chapter 4 explains the design decisions taken to implement the requirements from
Chapter 3. Each library and technology used is discussed with it’s test cases showing
the reasons why it was selected.

Chapter 5 presents CoinTossX.

Chapter 6 gives an overview of the Hawkes model..

Chapter 7 presents the Hawkes simulation that was used to test the software.

Chapter 8 discusses the testing scenarios and analyzes the results of the Hawkes
simulation.

Chapter 9 is the conclusion.

22

2 Literature Review

2.1 Introduction

Designing a matching engine requires understanding of how the broader context
influences the design and implementation of the software. There are various studies
related to market microstructure, algorithmic trading and price formation. The goal
of this chapter is to review the literature of the study of stock exchanges and how
the market, regulation and technology impact the design of matching engines. For
a more detailed discussion refer to [13, 66, 30].

2.2 What Is Market Microstructure ?

O’Hara [66] defines Market Microstructure as the study of the process and outcomes
of exchanging assets under explicit trading rules. Madhavan [54]defines it as the area
of finance that is concerned with the process by which investors’ latent demands are
ultimately translated into transactions. It provides a deeper understanding of how
prices are formed and change due to trading strategies, trading volumes, the rules
of an exchange and other factors. The rest of this section will describe these factors.

2.3 Challenges In Studying Limit Order Books

LOBs are difficult to study as there are various factors that influence the state of the
LOB. The remainder of this section will discuss the challenges in studying LOBs.

2.3.1 Rational Traders VS Zero-Intelligence Traders

Traders that place orders on current information that they have are referred to as
rational traders. Traders that place orders based on the current order flow and
historical data are referred to as zero-intelligent traders [23]. Traders can use either
of these approaches or a combination to determine how they place their orders. The
state of the LOB will be affected based on the strategy the trader uses[28].

2.3.2 Order Flows

Order flows depend on the LOB at time t and on recent order flows. Rational
traders create their order flows based on the changing market conditions while zero-
intelligent traders create their orders based on the LOB(t) and recent history. More
understanding is required to determine what information traders use to make deci-
sions or to quantify the conditional structure of order flows. This is difficult to do
as the number of variables are large [28, 9, 13, 30].

2.3 Challenges In Studying Limit Order Books 23

2.3.3 Feedback And Coupling

The LOB(t) is based on trader’s actions and trader’s actions are based on the
LOB(t). This strong coupling makes modeling a LOB difficult [28].

2.3.4 Priority

In a LOB there can be more than one order at a particular price. A priority is
used when determining the order to use when performing the matching. The 3 most
popular algorithms are: price-time, pro-rata and price-size.

2.3.4.1 Price-time priority

The price-time algorithm is the most commonly used. In tables 1 and 2, a buy trade
B1 matches sell trades S1 and S2. Priority is given to the sell trade with the earliest
submission time [28]. Therefore B1 will match S1 and will be removed from the
LOB. This algorithm forces traders to submit limit orders.

Timestamp Buy/Sell Order Quantity Price
8:00 Sell S1 100 90.01
8:10 Sell S2 100 90.01
8:20 Buy B1 100 90.01

Table 1: Order book before matching

Timestamp Buy/Sell Order Quantity Price
8:10 Sell S2 100 90.01

Table 2: Order book after matching

2.3.4.2 Pro-rata priority

The pro-rata algorithm divides the incoming order B1 between the matching orders
S1 and S2. In tables 3 and 4, both the sell trades are reduced in quantity. Orders
S1 and S2 will fill a portion of order B1.

Timestamp Buy/Sell Order Quantity Price
8:00 Sell S1 100 90.01
8:10 Sell S2 400 90.01
8:20 Buy B1 300 90.01

Table 3: Pro-Rata order book before matching

2.3 Challenges In Studying Limit Order Books 24

Algorithm 1 Pro-Rata Algorithm
1: S1 = (100/500) ∗ 300 = 60
2: S2 = (400/500) ∗ 300 = 240

Timestamp Buy/Sell Order Quantity Price
8:00 Sell S1 60 90.01
8:10 Sell S2 240 90.01

Table 4: Pro-Rata order book after matching

2.3.4.3 Price-size priority

The price-size priority algorithm chooses between the matching orders by selecting
the active order of the largest size.

The priority algorithms change the way traders behave. Traders will submit orders
earlier if a price-time priority algorithm is used. Price-size and pro-rata priority will
encourage traders to place large limit orders. These large orders will provide greater
liquidity to the market [28].

2.3.5 Ice-berg and hidden orders

Ice-berg orders allow traders to submit a limit order with a portion of the order seen
by the market and the rest of the order is hidden from the market. The portion of
the order seen by the market is called the visible size of the order[28]. The rules for
these types of orders vary between exchanges. Examples include:

• If the visible size of the order matches an incoming order, then another quantity
equal to the visible size becomes visible. The visible size has the same priority
as non ice-berg orders.

• If the visible size of the order matches an incoming order, then the rest of the
order is cancelled. This allows iceberg orders to match incoming orders of a
very large size.

Some exchanges allow the order to be entirely hidden from the market. These orders
are called hidden orders. Hidden orders and the hidden portion of ice-berg orders
have a lower priority than all visible active orders. These orders allow traders to
hide their intentions from the market.

2.3 Challenges In Studying Limit Order Books 25

2.3.6 Dark Pools

Limit order books which hide all active orders are called dark pools. Some dark
pools match orders at the midpoint price of the asset using another non-dark pool
LOB. Other dark pools execute orders by their price and time priority. Exchanges
can implement dark pools in different ways [93, 28].

2.3.7 Volatility

Volatility is a measure of the variation of price of a stock. Stocks with higher
volatility have larger price changes compared to stocks with lower volatility. Traders
use volatility to determine the risk associated with a stock. They manage their
risk exposure by using volatility to select the instruments when constructing their
portfolios [28]. Studies have shown the link between LOBs and volatility by taking
the bid(t), ask(t) and the mid(t). Traders search for hidden liquidity in the market by
submitting orders and then immediately canceling the order. The bid(t) and ask(t)
fluctuate due to this and affects the volatility of the LOB. Measuring volatility of a
LOB is affected by these price movements.

2.3.8 Resolution parameters

A trader cannot place an order that is smaller than the LOBs tick size. The LOBs
tick size control’s the smallest order size. Traders that wish to submit large orders,
break up the orders into small chunks to minimize the impact on the market. The
tick size impacts these traders [28].

2.3.9 Bilateral trade agreements

Traders can block other traders from trading with them by maintaining a block list
at the exchange. Trader A cannot trade with Trader B if A is on B’s block list.
Trades can only execute if the traders have a bilateral trade agreement between
them. The exchange will send an update to each trader of their personal LOBs that
contain only the active orders owned by traders whom they are allowed to trade
with. These personal LOBs affect how market orders are executed. If trader A
submits a market order, it will try to match orders in trader’s A personal LOB and
not consider orders from traders on their block list. The orders from blocked traders
could have a higher priority but will be ignored in the matching process. Exchanges
with bilateral trade agreements can create markets with negative bid-ask spreads.
Modeling of a LOB becomes very difficult due to these factors [28].

2.3.10 Opening and closing auctions

An exchange has opening, continuous and closing sessions [66]. Limit and markets
orders submitted during a continuous trading session are matched immediately if

2.4 Matching Engine 26

possible. The exchange uses call auctions to match orders at the opening and closing
sessions. Limit and market orders submitted during a call auction are not matched
immediately. These orders are matched at the end of the call auction at a single
price using a price-discovery process. This process finds the price that will match
the most number or buy and sell orders. During the call auctions, traders can see
the value of the price.

2.4 Matching Engine

A matching engine is a component of an exchange that matches buy and sell orders
according to the rules of the exchange [27]. Nair[59] prototyped a simple matching
engine using a single stock. This work provided a simplified framework demonstrat-
ing the over-all principle of coupling a matching engine with agent based modeling
(ABM) of a stock market. This research is aimed at building a realistic matching
engine that can be used for large scale ABM simulation work as part of separate
future projects. The construction of the ABM components is outside of the scope
of this project given the complexity of first resolving the design constraints of a low
latency, high throughput matching engine for large scale market simulation.

The LMAX Exchange (London Multi Asset Exchange) is an FX exchange with a
ultra low latency matching engine. They are the only exchange that is known to
release their matching engine design. LMAX also used the following rules for high
performance computing [22]:

1. Have good mechanical sympathy. Martin Thompson used this term to mean
that a software developer should take the hardware into consideration when
building software [21].

2. Keep the working data in memory.

3. Write cache friendly code.

4. Write clean compact code.

5. Spend time to model your domain.

6. Do concurrency using the correct techniques.

The LMAX Gateways were not able to process events fast enough as the events
were received. The events needed to be stored until it could be processed. The
events could be stored in a queue which uses an array or a linked list. The problem
with this approach is that the linked-list could grow and increase the garbage in the
system and the array would need to be checked for its size and resized when required.
LMAX solved this problem by creating the Disruptor for inter-thread concurrency.
The Disruptor is a ring buffer that follows the design principles listed above. It
preallocates memory which is shared with the consumer. The system was developed
on the JVM and can process 6 million orders per second on a single thread [85].

2.5 High Frequency Trading (HFT) 27

“The Disruptor has significantly less write contention, a lower concurrency overhead
and is more cache friendly than comparable approaches, all of which results in greater
throughput with less jitter at lower latency. On processors at moderate clock rates
we have seen over 25 million messages per second and latencies lower than 50
nanoseconds. This performance is a significant improvement compared to any other
implementation that we have seen. This is very close to the theoretical limit of a
modern processor to exchange data between cores” [85]

2.5 High Frequency Trading (HFT)

Orders are placed manually by a human at a computer terminal or by computer
algorithms. Algorithmic trading (AT) is computer algorithms that generate orders
without any human intervention [26]. HFT is very similar to algorithmic trading
but there are features that are distinct to HFT. Gomber et al. [26] defines the
similarities and differences between HFT and AT in figure 1.

Figure 1: HFT vs AT [26]

2.6 Regulation Impact In U.S And Europe 28

The U.S Commodity Futures Trading Commission [15] defines a workflow to deter-
mine if the computer software is HFT or AT.

Figure 2: HFT/AT Workflow [15]

2.6 Regulation Impact In U.S And Europe

2.6.1 The Limit Order Display Rule

The U.S. Securities and Exchange Commission (SEC) has significantly impacted
how the trading systems are implemented. In 1997, the SEC changed the Order
Handling Rules [73]. Market Makers quote bid and ask prices to provide liquidity
to the market. They had to display all their outstanding limit orders when the SEC
introduced the Limit Order Display Rule.

A venue outside the public exchange was formed to trade large orders. If large orders
are placed on the exchange this will have a significant impact on the market. There-
fore, these alternative trading venues, also referred to as dark pools were formed.
You cannot see the orders in the dark pool. Only when orders are matched, the
trades are displayed publicly.

2.6 Regulation Impact In U.S And Europe 29

Figure 3: Order Spread Impact [91]

Figure 3 shows how after 1997 the order sizes decrease and the spread between bids
and offers also decreased. This was because traders did not want to display large
orders and to be competitive they had to use small orders with narrower spreads.
This type of trading is better suited to computers than humans.

2.6.2 Regulation National Market System (Reg NMS)

Reg NMS was introduced in 2005 in the U.S. The Trade-Through Rule, The Access
Rule, The Sub-Penny Pricing Rule and The Market Data Rules and Plans Rule were
implemented to assist the investors, but it had a greater impact on computer based
trading [73].

• Trade-Through Rule enforced that the best bids and offers be displayed and
a trader must trade using the best execution price. Trading systems across
all trading venues have to cancel orders that did not meet the best offer rule.
This has increased the use of computer systems across the exchanges.

• Access Rule stopped exchanges from executing trades that did not match the
best execution price at another exchange. It required the use of private linkages
to access quotes and set a limit on the access fees. Computer systems needed
to send more data between exchanges to update their quotes.

• Sub-Penny Rule stopped traders from gaining an advantage in priority by
changing the order by an insignificant amount i.e. less than a penny. This
rule did not apply to stocks less than a penny. This rule did not have a
significant impact on trading systems.

• Market Data Rule and Plans Rule changed the formula to allocated revenue
generated from market data feeds. Market Data feed revenue would go to

2.7 Technology Impact 30

the market centers that provide the best prices and largest orders. The rule
allowed market centers to provide their own quotes without fees. The aim of
the rule was to stop wash sales and shredding manipulation. A wash sale is
to sell a security at a loss and buy it back to create revenue from the reports.
Shredding breaks a large transaction into smaller ones to generate revenue
from market data reports. This rule increased the use of network activity
amongst the trading venues.

2.6.3 Markets in Financial Instruments Directive (MiFID)

Europe has done similar work and implemented MiFID to stop market manipula-
tion. MiFID I was put into effect in 2007 and its purpose was to improve investor
protection, increase competition, and assist in the creation of a single market for
financial services in the European Union. However the benefits did not flow to all
market participants and the benefits did not pass on to the investor. MiFID II was
established to regulate the market, make it more transparent and pay more attention
to over the counter products [89].

Reg NMS and MiFID I/II placed a greater demand on trading systems and network
activity. Systems needed to scale to handle the high volumes of data and analyze
the data. These rules affected software and hardware design.

2.7 Technology Impact

The markets have changed over time and technology has had a major role in these
changes. Computing power and software evolved; the need to reduce transaction
costs increased has led to important changes in market structure and market archi-
tecture [4]. These changes have supported the rise of electronic trading and high
frequency trading.

2.7.1 Hardware

Brokerage firms combine hardware and software to get as close to zero latency as
possible. The speed of light is seen as a constraint to traders. A fiber optic network
cable introduces 4.9 microseconds per kilometer [7]. Firms use co-location to reduce
the distance and latency between their servers and the exchange. Traders optimize
the hardware architecture and use different technologies to reduce the latency.

2.7.1.1 Field Programmable Gate Arrays (FPGA)

2.7 Technology Impact 31

FPGAs were developed for the defense and telecommunications industry. The chip
contains programmable logic blocks and interconnects that can be configured using a
hardware definition language. This allows the chip to perform functions that would
have been done in software [67]. FPGAs are used to process data as it arrives or
to execute algorithms. These chips are faster than CPUs as you can program the
chip to perform the exact function you want and the number of processing units are
higher than on a CPU. FPGAs have a high throughput and low latency, however
they are very difficult to program. This hardware is suitable for message gateways.

2.7.1.2 Graphical Processing Units (GPU)

GPUs were originally developed for game rendering but are now used in various
other sectors such as high frequency trading. A CPU has only a few cores while a
GPU has 100s of processing cores. This allows it to outperform a CPU in parallel
programming. A GPU is optimized for high throughput and is suited for large scale
offline calculations [62].

2.7.1.3 InfiniBand Architecture

HFT applications generally use a cluster of servers to perform computations. These
servers need to pass data to each other with low latency. The standard TCP/IP
protocol does not allow this as it has various layers of code that slow down the data
transfer. The InfiBand Architecture was created to transfer data using a low latency
link between the servers [29, 57].

2.7.2 Message Protocols

The financial industry has standardized communication between market participants
by using:

• FIX [24]

• FAST [33]

• ITCH [60]

• OUCH [61]

• Native protocols [41]

2.7.2.1 FIX (Financial Information eXchange)

2.8 Johannesburg Stock Exchange 32

FIX was invented by Salomon Brothers and Fidelity Investments in the 1990s to com-
municate security orders and their executions [33]. It has become the most widely
used protocol by trading organizations. FIX is an open standard non-propriety pro-
tocol that is used by buy and sell firms, trading platforms and regulators to transmit
trade data. The protocol allows organizations to easily communicate domestically
and internationally with each other. FIX was originally developed for equity trading
in the pre-trade environment but now it is also used in the foreign exchange, fixed
income and derivatives markets. FIX is maintained by the FIX Community Trading
member firms which maintain the various message specifications [24].

2.7.2.2 FAST (FIX Adapted for Streaming)

The popularity of FIX allowed more firms to trade and this increased the volume of
the market data. This increased the network latency and market participants did
not receive updates in an acceptable time. The Market Data Optimization Working
group created the FAST protocol to address this issue. The FAST protocol reduces
latency by encoding and compressing the data before transmission [33].

2.7.2.3 ITCH and OUCH

The ITCH and OUCH protocol was developed by The Nasdaq OMX Group. ITCH is
used to publish market data only. OUCH is used to place, amend and cancel orders.
The messages are fixed length without delimiters or tags. Prices are represented as
integers and not text [60, 61].

2.7.2.4 Native

Native protocols are custom built protocols. The simulator will use the JSE’s native
protocol specification as a base to exchange information with clients.

2.8 Johannesburg Stock Exchange

The Johannesburg Stock Exchange (JSE) was founded in 1887. The open outcry
system was used to trade stocks. The Johannesburg Equities Trading (JET) sys-
tem replaced the opened outcry system in 1996. SETS replaced JET in 2002. In
2007 TradeElect replaced SETS. This system was licensed from the London Stock
Exchange (LSE). The matching engine ran in London. In 2012 the matching engine
moved to Johannesburg which made high frequency trading possible at the JSE[40]
[8].

2.9 Conclusion 33

2.9 Conclusion

Studying market microstructure is challenging due to the various changes in the mar-
ket, regulation and technology. The current literature focuses on analyzing existing
exchanges and the building of agent based models. A low latency high throughput
matching engine does not exist for academics to further their understanding in this
field. The rest of this dissertation describes the requirements, design and testing of
a matching engine.

34

3 Requirements

3.1 High Level Overview

The simulator needs 3 main components:

1. The Trading Gateway

2. The Matching Engine

3. Market Data Gateway

Clients will send order events to the trading gateway. The trading gateway receives
the client request, validates the request and then sends it to the matching compo-
nent to be processed. The trading gateway sends updates to clients to indicate the
status of the requests. The market data gateway sends market data updates to all
connected clients. A website is required to monitor and configure the stocks and
clients.

3.2 Scope

The matching engine requirements were obtained from the JSE documentation on
their website i.e. https://www.jse.co.za/services/technologies. FIX and
ITCH gateways are out of scope. The documents used were:

1. Volume 00 - Trading and Information Overview v2.03 [39].

2. Volume 01 - Native Trading Gateway v2.02 [42].

3. Volume 05 - Market Data Feed (ITCH - UDP) v2.04 [43].

3.3 Components

3.3.1 Clients

The clients are computer algorithms that send order events to the simulator. The
software also listens for market data updates from the simulator.

3.3.2 The Trading Gateway

The Trading Gateway receives order events from clients. It forwards the request to
the matching engine component if it passes the initial validation. It sends updates
to the client to indicate if the status of the event.

3.4 Functional Requirements - Trading Gateway 35

3.3.3 Matching Engine

The Matching Engine component process the events from the Trading Gateway. It
manages one or more limit order books. If there is an update to the LOB, it sends
updates to the Market Data Gateway

3.3.4 The Market Data Gateway

The Market Data Gateway receives updates from the Matching Engine component.
It sends updates to all connected clients.

3.3.5 The Website

The website receives updates from the Market Data Gateway. It displays the LOBs
for each security and allows the user to configure the stocks and clients. The testing
framework is configured and started from the website.

3.4 Functional Requirements - Trading Gateway

Figure 4: Trading Gateway Use Case

3.4.1 Login

1. The client sends a login request message to the Trading Gateway.

2. The Trading Gateway validates the client.

(a) If the client is already logged in, the gateway responds with a Concur-
rentLoginLimitReached Reject Code message.

(b) If the username or password is invalid, the gateway responds with a In-
validCompIDOrPassword Reject Code message.

3.5 Functional Requirements - Matching Engine 36

3.4.2 Logout

1. The client sends a logout request message to the Trading Gateway.

(a) The Trading Gateway removes the client from its list of connected clients.
(b) The Trading Gateway sends a response to the client to indicate if the

logout was successful.

2. The Trading Gateway logouts the client when it shuts down.

3.4.3 Order Request

1. A client sends an Order Message to Trading Gateway.

2. The Trading Gateway validates the message.

3. If the message is valid, it sends the message to get matched.

3.4.4 Change Trading Session

1. When the trading session is required to change, the Website component sends
a message to the Trading Gateway.

2. The Trading Gateway sends the message to the Matching Engine.

3.5 Functional Requirements - Matching Engine

Figure 5: Matching Engine Use Case

The Trading Gateway sends order requests to the Matching Engine. Valid order
types are: market, limit, hidden limit, stop and stop limit. Each order has a Time
In Force (TIF) value that determines how long an order is active until it is executed,
deleted or expired. The TIF value of an order cannot be amended. The engine
matches the orders using matching algorithms based on the trading session. Market
data updates are sent to the Market Data Gateway to indicate changes in the LOB.
See Appendix B for test cases of the Matching Engine.

3.5 Functional Requirements - Matching Engine 37

3.5.1 Trading Sessions

Figure 6 shows the trading sessions from the JSE. The sessions are active during
different times of the day.

Figure 6: Trading Sessions [39]

3.5.2 Order Types

3.5.2.1 Market Order (MO)

1. A market order contains the quantity of shares to trade, but not the price.

2. It executes against existing orders in the LOB.

3. If the order is not filled, the remaining quantity expires.

4. Market orders submitted during an auction call session will remain in the LOB
until the uncrossing is done. Orders that are not filled will expire.

3.5.2.2 Limit Order (LO)

1. A limit order displays a quantity and the limit price.

2. A limit order may execute at prices equal to or better than its limit price. If
the order is not filled, the remainder will be added to the order book or expired
based on the TIF.

3.5 Functional Requirements - Matching Engine 38

3.5.2.3 Hidden Limit Order (HO)

1. A hidden limit order is a limit order that has a price and quantity that is not
visible to other market participants.

2. It can execute against other visible and hidden orders in the order book.

3. Minimum Reserve Size (MRS)

(a) MRS is the minimum order quantity for orders to qualify as hidden limit
orders.

(b) All hidden limit orders are validated against this parameter.

4. Minimum Execution Size (MES)

(a) Minimum Execution Size is the minimum quantity of the hidden limit
order which is permitted to execute.

(b) Every hidden limit order must contain a MES.
(c) It is a multiple of the instruments lot size.
(d) It is greater than or equal to the MRS.
(e) It is ignored during an auction call session.
(f) It can be amended on existing/unexecuted orders.
(g) If a hidden limit order aggresses the order book and has a MES that

cannot be satisfied, then the order will be added to the order book or
expired based on the TIF.

5. Hidden limit orders submitted during an auction call session are rejected.

6. During execution:

(a) If the quantity remaining on the order is < Minimum Reserve Size then
the order will be expired.

(b) If the quantity remaining on the order is ≥ Minimum Reserve Size but <
MES then the order will be expired.

(c) If the quantity remaining on the order is ≥ Minimum Reserve Size and≥
MES than the order will remain in the book or expired based on the TIF.

3.5.2.4 Stop Order (SO)

1. A stop order is a market order with a stop price.

2. Stop orders do not enter the order book until their stop price is reached.

3. When the stop price is reached, the stop order becomes a market order.

3.5 Functional Requirements - Matching Engine 39

3.5.2.5 Stop Limit Order (SL)

1. A stop limit order is a limit order with a stop price.

2. Stop limit orders do not enter the order book until their stop price is reached.

3. When the stop price is reached, the stop limit order becomes a limit order.

3.5.2.6 Stop Order and Stop Limit Order Election Rules

1. Stop and stop limit buy orders will be elected if the last traded price is equal
to or greater than the stop price.

2. Stop and stop limit sell orders will be elected if the last traded price is equal
or less than the stop price.

3. Incoming stop and stop limit orders will be elected if the stop price is already
reached.

4. Incoming stop and stop limit orders will be parked if the last traded price does
not exist.

5. A stop and stop limit order election occurs only after an aggressing order has
completed its execution.

3.5.2.7 Stop Order and Stop Limit Order Priority Rules

1. Buy or sell orders with the greatest difference between its stop price and the
auction price will be elected first.

2. If multiple orders are at the same difference (buy and sell), the oldest order
will be elected first.

3.5.3 Time In Force (TIF)

3.5.3.1 At the Opening (OPG)

1. OPG orders will only be accepted during the Opening Auction.

2. OPG orders that are not filled during the uncrossing will expire at the end of
the Opening Auction.

3.5.3.2 Good For Auction (GPA)

1. GFA orders submitted are parked until the next auction.

2. GFA orders are injected into the order book at the start of the auction.

3. GFA orders that are not filled during the uncrossing will be parked for the
next auction.

4. GFA orders are removed when filled or cancelled.

3.5 Functional Requirements - Matching Engine 40

3.5.3.3 Good For Intraday Auction (GFX)

1. GFX orders submitted are parked until the next Intraday auction.

2. GFX orders are injected into the order book at the start of the Intraday
auction.

3. GFX orders that are not filled during the uncrossing will expire at the end of
the Intraday Auction.

3.5.3.4 At the Close (ATC)

1. ATC orders submitted are parked until the next Closing auction.

2. ATC orders are injected into the order book at the start of the Closing auction.

3. ATC orders that are not filled during the uncrossing will expire at the end of
the Closing Auction.

3.5.3.5 Day (DAY)

1. DAY orders will expire at the end of the trading day.

2. If an order does not specify a TIF, it will default to DAY.

3.5.3.6 Immediate or Cancel (IOC)

1. IOC orders can be partially or fully filled.

2. The IOC order will be expired if there is a remaining quantity.

3. IOC orders will be rejected during auction call sessions.

4. Stop orders or stop limits orders with IOC time in force will be parked until
the stop price is reached.

3.5.3.7 Fill or Kill (FOK)

1. FOK orders are either fully filled or expired. Partial filled orders are not
allowed.

2. Stop orders or stop limits orders with FOK time in force will be parked until
the stop price is reached.

3.5 Functional Requirements - Matching Engine 41

3.5.3.8 Good till Cancel (GTC)

1. GTC orders can remain in the order book for a maximum of 90 calendar days.

2. GTC orders remain in the order book until the order is filled, cancelled or
expiration date is reached.

3. Expiration date is calculated from the date the order is submitted.

4. If the order is amended, the expiration date is not re-calculated.

3.5.3.9 Good till Date (GTD)

1. GTD orders remain in the order book until the order is filled, cancelled or the
expiration date specified is reached.

2. If an expiry time is specified for a GTD order, the order will be rejected.

3. GTD orders will expire when the 90 calendar day rule is reached.

3.5.3.10 Good till Time (GTT)

1. GTT orders remain in the order book until the specified expiry time is reached
for the trading day.

2. GTT orders that have not expired will expire at the start of the Post Close
Session.

3. GTT orders that have an expiry time during an auction ,will not expire. These
orders will expire after the uncrossing.

3.5.3.11 Closing Price Cross (CPX)

1. CPX orders submitted are parked until the Closing Price Cross session.

2. Unexecuted CPX orders are expired at the end of the Closing Price Cross
session.

3. Stop Order and Stop Limit Order with a TIF of CPX are rejected.

3.5.4 Valid Combinations

Figures 7 and 8 show the valid combinations of order types, time in force values and
trading sessions.

3.5 Functional Requirements - Matching Engine 42

Figure 7: TIF Order Type Valid Combinations [39]

Figure 8: Trading Session TIF Order Type Valid Combinations [39]

3.5.5 Price-Time Priority Algorithm

The Price-Time Priority algorithm is used during the Continuous Trading Session.
Each order type is processed differently based on the state of the LOB and the TIF.
The requirements listed for each order request type has a corresponding test case in
Appendix B that was used to evaluate the functionality. For example, the test case
B.1.1 in Appendix B implements the requirement 3.5.5.2 item 1.

3.5.5.1 Order is matched to an existing order

1. A new order is matched to an existing order in the LOB.

2. The existing order is removed from the LOB.

3.5 Functional Requirements - Matching Engine 43

3. The Matching Engine sends an update to the Trading Gateway to indicate the
status of the new order.

4. The Matching Engine sends an update to the MarketData Gateway to indicate
the trades that have been created.

5. The Matching Engine sends an update to the MarketData Gateway to indicate
the change in price.

6. If the new order is filled, then it is not added to the LOB.

7. If the new order is partially filled, then it is added to the LOB.

3.5.5.2 Market Order Request

1. Add bid market message to an empty LOB. Order expires.

2. Add offer market message to an empty LOB. Order expires.

3. Add bid market message to a non-empty LOB. The order is matched to an
existing order. The order is filled.

4. Add offer market message. The order is matched to an existing order. The
order is filled.

5. Add bid market message. Order is partially filled. Remaining order quantity
is expired.

6. Add offer market message. Order is partially filled. Remaining order quantity
is expired.

3.5.5.3 Limit Order Request

1. Add bid limit message to an empty LOB. The order is inserted into the LOB.

2. Add bid limit message with different bid price. The order is inserted into the
LOB.

3. Add bid limit message with existing bid price. The order is inserted into the
LOB.

4. Add bid limit message with existing offer price. The order is not matched.
The order is inserted into the LOB.

5. Add bid limit message with existing offer price. The order is matched.

6. Bid limit order matches offer limit order. Time-priority determines the match-
ing orders .

7. Add offer limit message to an empty lob. The order is inserted into the LOB.

3.5 Functional Requirements - Matching Engine 44

8. Add offer limit message with different offer price. The order is inserted into
the LOB.

9. Add offer limit message with existing offer price. The order is inserted into
the LOB.

10. Add offer limit message with existing bid price. The order is not matched.
The order is inserted into the LOB.

11. Add offer limit message with existing bid price. The order is matched. .

12. Offer LO matches Bid LO. Time-priority determines the matching orders.

3.5.5.4 Hidden Order Request

1. Incoming offer LO matches on contra side including HO. Visible LO takes
precedence over HO at same price point.MRS = 700

2. Incoming bid LO matches on contra side including HO. Visible LO takes prece-
dence over HO at same price point.MRS = 700

3. Incoming offer LO matches on contra side including HO. MES is used to exe-
cute HO.MRS = 700

4. Incoming offer LO matches on contra side including HO. HO is skipped due
to MES constraint.MRS = 700

5. Incoming offer HO matches on contra side including HO. Passive HO is skipped
due to MES constraint.MRS = 700

6. Executing a Sell Limit message with price improvement

7. Executing a Sell Order at aggressing message’s limit price

8. Not Executing a Sell Order due to aggressing message’s limit price breach

9. Executing a Sell Order based on Price-Visibility-Time Execution Priority

10. Executing a Buy Limit message with price improvement

11. Executing a Buy Order at the aggressing message’s limit price

12. Not Executing a Buy Order due to aggressing message’s limit price breach

13. Executing a Buy Order based on Price-Visibility-Time Execution Priority

14. Executing a Buy Order stepping over a Hidden Limit message due to a MES
constraint

15. Executing a Buy Market message with price improvement

16. Executing a Sell Market message with price improvement

3.5 Functional Requirements - Matching Engine 45

17. Executing a Sell Market message which creates sufficient quantity for the mes-
sage at the visible best offer to execute against a Hidden Limit message with
a MES constraint.

3.5.5.5 Stop Order Request

1. Add buy stop order to an empty lob

2. Add sell stop order to an empty lob

3. Buy stop order added. Last trade price does not exist. No executions

4. Sell stop order added. Last trade price does not exist. No executions

5. Buy order aggresses order book with buy stop order. Stop order executed

6. Sell order aggresses order book with sell stop order. Stop order executed

7. Buy stop order added. Last trade price exists. Stop order executed

8. Sell stop order added. Last trade price exists. Stop order executed

9. Buy stop orders with greatest difference between its stop price and the last
traded price will be elected first

10. Sell stop orders with greatest difference between its stop price and the last
traded price will be elected first

11. Multiple buy stop orders with the same difference between its stop price and
the last traded price. Oldest executed first

12. Multiple sell stop orders with the same difference between its stop price and
the last traded price. Oldest executed first

3.5.5.6 Stop Limit Order Request

1. Add buy stop limit message to an empty lob

2. Add sell stop limit message to an empty lob

3. Buy stop limit message added. Last trade price does not exist. No executions

4. Sell stop limit message added. Last trade price does not exist. No executions

5. Buy message aggresses message book with buy stop limit message. Stop mes-
sage executed

6. Sell message aggresses message book with sell stop limit message. Stop message
executed

7. Buy stop limit message added. Last trade price exists. Stop message executed

3.5 Functional Requirements - Matching Engine 46

8. Sell stop limit message added. Last trade price exists. Stop message executed

9. Buy stop limit orders with greatest difference between its stop price and the
last traded price will be elected first

10. Sell stop limit orders with greatest difference between its stop price and the
last traded price will be elected first

11. Multiple buy stop limit orders with the same difference between its stop price
and the last traded price. Oldest executed first

12. Multiple sell stop limit orders with the same difference between its stop price
and the last traded price. Oldest executed first

3.5.5.7 Cancel Order Request

1. Cancel limit order bid in empty order book. Cancel request rejected

2. Cancel limit order offer in empty order book. Cancel request rejected

3. Cancel limit order bid. Bid removed

4. Cancel limit order offer. Offer removed

5. Cancel stop order bid. Bid removed

6. Cancel stop order offer. Offer removed

7. Cancel stop limit order bid. Bid removed

8. Cancel stop limit order offer. Offer removed

9. Cancel hidden order bid. Bid removed

10. Cancel hidden limit order offer. Offer removed

3.5.5.8 Replace Order Request

1. Replace limit order bid in empty order book. Replace request rejected

2. Replace limit order offer in empty order book. Replace request rejected

3. Replace limit order bid quantity. Quantity replaced

4. Replace limit order bid GTD. GTD replaced

5. Replace limit order bid GTT. GTT replaced

6. Replace limit order offer quantity. Quantity replaced

7. Replace limit order offer GTD. GTD replaced

3.5 Functional Requirements - Matching Engine 47

8. Replace limit order offer GTT. GTT replaced

9. Replace limit order bid quantity. Quantity > existing quantity. Order re-
aggress the order book

10. Replace limit order offer quantity. Quantity < existing quantity. Order re-
aggress the order book

11. Replace limit order bid price. Order re-aggress the order book

12. Replace limit order offer price. Order re-aggress the order book

13. Replace HO order bid quantity. Quantity replaced

14. Replace HO order bid GTD. GTD replaced

15. Replace HO order bid GTT. GTT replaced

16. Replace HO order bid MES. MES replaced

17. Replace HO order offer quantity. Quantity replaced

18. Replace HO order offer GTD. GTD replaced

19. Replace HO order offer GTT. GTT replaced

20. Replace HO order offer MES. MES replaced

21. Replace HO order bid quantity. Quantity > existing quantity. Order re-aggress
the order book

22. Replace HO order offer quantity. Quantity < existing quantity. Order re-
aggress the order book

23. Replace HO order bid price. Order re-aggress the order book

24. Replace HO order offer price. Order re-aggress the order book

25. Replace Stop order bid limit price. Limit price replaced

26. Replace Stop order offer limit price. Limit price replaced

27. Replace Stop order bid quantity. Quantity replaced

28. Replace Stop order bid GTD. GTD replaced

29. Replace Stop order bid GTT. GTT replaced

30. Replace Stop order offer quantity. Quantity replaced

31. Replace Stop order offer GTD. GTD replaced

32. Replace Stop order offer GTT. GTT replaced

3.5 Functional Requirements - Matching Engine 48

33. Replace Stop order bid quantity. Quantity > existing quantity. Order re-
aggress the order book

34. Replace Stop order offer quantity. Quantity < existing quantity. Order re-
aggress the order book

35. Replace Stop order bid stop price. Order re-aggress the order book

36. Replace Stop order offer stop price. Order re-aggress the order book

3.5.6 Passive Price Improvement Algorithm

The Passive Price Improvement Algorithm executes each time an aggressive order
matches an existing order. The execution price is calculated using algorithm 2.

Algorithm 2 Passive Price Improvement Algorithm
1: if existing order is a buy order then
2: if execution price < best visible bid then
3: execution Price ← best visible bid + 0.5
4: else
5: execution price ← existing order price
6: end if
7: else
8: if execution price < best visible offer then
9: execution price ← best visible offer - 0.5

10: else
11: execution price ← existing order price
12: end if
13: end if

3.5.7 Filter and Uncross Algorithm

The Filter and Uncross algorithm runs each time the Best Bid Offer (BBO) changes
or every 30 seconds. The algorithm is split into 2 parts. A heuristic search (Hill
Climber Algorithm) is run to find the optimal volume of hidden limit orders that
can be executed. The Hill Climber algorithm is an optimization technique that
iteratively searches for the solution to a problem by changing one element in each
iteration [14]. The algorithm stops when one of the following criteria are met:

• No more improvements can be made.

• A fixed number of iterations have been completed.

• A goal point is attained.

3.5 Functional Requirements - Matching Engine 49

The search will filter out hidden limit orders with MES constraints that are not
eligible. After the filtering, rules are used to select the orders and price to executed
in the crossed region.

3.5.7.1 Filter Algorithm (Hill Climber Algorithm)

Algorithm 3 Filter Algorithm (Hill Climber Algorithm) - Step 1
• Calculate temporary executable volume for each order in the crossed region.

• The executable volume for a hidden order is the order quantity.

• The executable volume for a visible order is the order quantity.

Example 1.

Ex. Vol. ID. Type MES. Bid Size Price Type MES. Offer Size ID. Ex. Vol

68 LO 1 000 5

67 LO 500 6

66 HO 1 000 3 000 7

30 000 12 HO 25 000 30 000 65 HO 7 000 12 000 8 12 000

64 HO 5 000 10 000 9 10 000

10 000 11 HO 4 000 10 000 63 LO 3 500 10 + 13 3 500

4 HO 6 000 15 000 62

3 HO 1 000 3 000 61

2 LO 500 60

1 LO 1 000 59

Algorithm 4 Filter Algorithm (Hill Climber Algorithm) - Step 2
1. Calculate Total Bid Executable Volume.

2. Calculate Total Offer Executable Volume.

3. Start on the side that contains the maximum executable volume in the crossed
region.

Example 2.

• Total Bid Executable Volume= 30000 + 10000 = 40000

• Total Offer Executable Volume= 12000 + 10000 + 3500 = 25500

• Start on Bid side.

3.5 Functional Requirements - Matching Engine 50

Algorithm 5 Filter Algorithm (Hill Climber Algorithm) - Step 3
1. Start with the highest priority hidden limit order and go down the list i.e. Bid

side: highest price to lowest price. Offer side: lowest price to highest price.

2. Calculate the Volume Available and Volume Ahead for each order.

(a) Volume Available← the executable volume of eligible orders on the other
side of the book (including visible orders).

(b) Volume Ahead← the executable volume of eligible orders on the same
side of the book (including Visible Orders) at a higher priority.

3. If (Volume Available – Volume Ahead) ≥ MES then the executable volume for
the order = MIN((Volume Available – Volume Ahead), HO Order Quantity).

4. If (Volume Available – Volume Ahead) ≤ MES then the executable volume is
set to zero.

Example 3.

Ex. Vol. ID. Type MES. Bid Size Price Type MES. Offer Size ID. Ex. Vol.

68 LO 1 000 5

67 LO 500 6

66 HO 1 000 3 000 7

25 500 12 HO 25 000 30 000 65 HO 7 000 12 000 8 12 000

64 HO 5 000 10 000 9 10 000

0 11 HO 4 000 10 000 63 LO 3 500 10 + 13 3 500

4 HO 6 000 15 000 62

3 HO 1 000 3 000 61

2 LO 500 60

1 LO 1 000 59

Algorithm 6 Filter Algorithm (Hill Climber Algorithm) - Step 4
1. Process all hidden orders on the selected side of the order book.

2. Process the contra side of the order book when done with the selected side.

3.5 Functional Requirements - Matching Engine 51

Algorithm 7 Filter Algorithm (Hill Climber Algorithm) - Step 5
1. After the contra side of the order book is processed, check if the executable

volumes were updated.

2. If the executable volumes were not updated, then the filtering algorithm is
complete and the process moves to the uncrossing algorithm.

3. If the executable volumes were updated, then the process starts again from
Step 2.

3.5.7.2 Uncrossing Algorithm

Algorithm 8 Uncrossing Algorithm - Calculate the target price
1: if BestVisibleBid ̸= 0 and BestVisibleOffer ̸= 0 then
2: targetPrice ← MID(BestVisibleBid, BestVisibleOffer)
3: else if BestVisibleBid ̸= 0 and BestVisibleOffer = 0 then
4: targetPrice ← BestVisibleBid
5: else if BestVisibleBid= 0 and BestVisibleOffer ̸= 0 then
6: targetPrice ← BestVisibleOffer
7: else if lastAutomatedTradePrice ̸= 0 then
8: targetPrice ← lastAutomatedTradePrice
9: else if lastAutomatedTradePrice = 0 and previousDayClosingPrice ̸= 0 then

10: targetPrice ← previousDayClosingPrice
11: else
12: targetPrice ← referencePrice
13: end if

Algorithm 9 Uncrossing Algorithm - Calculate maximum executable volumes at
each price level in the crossed region

1: for each price level in crossed region do
2: if bid executable volume > offer executable volume then
3: maximum executable volume ← bid executable volume
4: else
5: maximum executable volume ← offer executable volume
6: end if
7: end for

3.5 Functional Requirements - Matching Engine 52

Example 4.

Price Executable Volume
65 25 500
64 13 500
63 3 500

Algorithm 10 Uncrossing Algorithm - Calculate the target trade price that maxi-
mizes the executable volume

1: Set MaxPV ← Maximum Volume Maximizing Price
2: Set MinPV ← Minimum Volume Maximizing Price
3:
4: if targetPrice ≥ MaxPV then
5: targetPrice ← MaxPV
6: else if targetPrice ≤ MinPV then
7: targetPrice ← MinPV
8: else
9: targetPrice ← targetPrice

10: end if

Example 5.

Mid of visible BBO(60 to 63) 61.50
Max. Volume Maximizing Price 65
Min. Volume Maximizing Price 65
Target Trade Price 65

Algorithm 11 Uncrossing Algorithm - Agress Order Book
1: if buy side executable volume < sell side executable volume then
2: buy side agresses the sell side using calculated target trade price
3: else if sell side executable volume < buy side executable volume then
4: sell side agresses the buy side using calculated target trade price
5: else
6: buy side agresses the sell side using calculated target trade price
7: end if

3.5 Functional Requirements - Matching Engine 53

Example 6.

Quantity Price Orders
1 000 65 Orders 12 and 10
2 500 65 Orders 12 and 13
10 000 65 Orders 12 and 9
12 000 65 Orders 12 and 8

3.5 Functional Requirements - Matching Engine 54

3.5.8 Auction Algorithm

The Volume Maximizing Auction Algorithm is used for all auctions. It calculates the
auction price for each stock at which the largest number or shares can be executed.
It finds the price at which the volume is maximized. Algorithm 12 shows the 4 rules.
It moves to the next rule if it is unable to obtain an auction price. The examples
shown are from [53].

Algorithm 12 Auction Algorithm
1. Maximum Execution: The highest executable volume for each possible

price.

2. Minimum Surplus: The lowest surplus for each possible price.

3. Market Pressure:

(a) If the buy executable volume > sell executable volume then the auction
price is the highest price.

(b) If the sell executable volume > buy executable volume then the auction
price is the lowest price.

4. Reference Price: The auction price will be the possible price closest to the
reference price.

Example 7. Initial limit order book

Buy
Size Price
10 000 105.5
5 600 104.5
200 104

Sell
Size Price
2 500 MO
6 900 103
1 000 104.5
200 106

3.5 Functional Requirements - Matching Engine 55

Example 8. Calculate the aggregated volume for each side.

Buy Price Sell
Aggregate Vol. Vol. at price Vol. at price Aggregate Vol.

0 MO 2 500
0 0 106 200 10 600

10 000 10 000 105.5 0 10 400
10 000 0 105 0 10 400
15 600 5 600 104.5 1 000 10 400
15 800 200 104 0 9 400
15 800 0 103.5 0 9 400
15 800 0 103 6 900 9 400

Example 9. Maximum Execution. Auction Price = 104.5

Price Agg. Vol. (Buy) Agg. Vol. (Sell) Auction Vol.
106 0 10 600 0
105.5 10 000 10 400 10 000
105 10 000 10 400 10 000
104.5 15 600 10 400 10 400
104 15 800 9 400 9 400
103.5 15 800 9 400 9 400
103 15 800 9 400 9 400

Example 10. Minimum Surplus. If there are multiple maximum executable vol-
umes, then the minimum surplus rule is used. The auction price = 104.5

Price Agg. Vol. (Buy) Agg. Vol. (Sell) Auction Vol. Auction Surplus
106 0 10 600 0 -10 600
105.5 10 000 10 400 10 000 -400
105 10 000 10 400 10 000 -400
104.5 15 600 10 400 10 400 5 200
104 15 800 10 400 10 400 5 400
103.5 15 800 9 400 9 400 6 400
103 15 800 9 400 9 400 6 400

3.5 Functional Requirements - Matching Engine 56

Example 11. Market Pressure. If there are multiple surpluses, then the market
pressure rule is used. Auction Price = 105

Price Agg. Vol. (Buy) Agg. Vol. (Sell) Auction Vol. Auction Surplus
106 0 10 600 0 -10 600
105.5 10 000 10 400 10 000 -400
105 15 600 10 400 10 400 5 200
104.5 15 600 10 400 10 400 5 200
104 16 800 10 400 10 400 6 200
103.5 16 600 9 400 9 400 7 200
103 16 600 9 400 9 400 7 200

Example 12. Reference Price. Auction Price = Price closest to last trade price (
104.5 or 104)

Price Agg. Vol. (Buy) Agg. Vol. (Sell) Auction Vol. Auction Surplus
105.5 0 14 000 0 -14 000
105 6 000 8 000 6 000 -2 000
104.5 7 000 8 000 7 000 -1 000
104 8 000 7 000 7 000 1 000
103.5 14 000 6 000 6 000 8 000
103 14 000 6 000 6 000 8 000

3.5.9 Static And Dynamic Price

Static Reference Price(SPR): At the beginning of the day the Static Reference
Price for an instrument will be its previous day’s closing price. The Static Refer-
ence Price will be updated after each auction (Opening, Re-Opening, Intraday or
Volatility)

Dynamic Reference Price(DPR): The Dynamic reference price applicable to
an instrument is updated continuously during the course of a day and serves as a
reference point when calculating the price of a share during either an Auction or
Continuous Trading Session. At the start of the day, the Dynamic Reference Price
for an instrument will be the previous day’s closing price.

3.6 Functional Requirements - Market Data Gateway 57

3.6 Functional Requirements - Market Data Gateway

Figure 9: Market Data Gateway Use Case

3.6.1 Market Data Update

1. All clients receive market data updates from the gateway.

2. The website receives market data updates and internal messages to monitor
the application.

3.7 Functional Requirements - Website

Figure 10: Website Use Case

3.7.1 Manage clients

A user can create, update and delete clients. Clients not configured will not be able
to send orders to the matching engine.

3.8 Deployment Requirements 58

3.7.2 Manage stocks

A user can create, update and delete stocks.

3.7.3 View Limit Order Books

A user can view the limit order book for each stock. A bar chart will be generated
to display the active orders. Tables will show the details of the bids, offers, trades
and all submitted orders.

3.7.4 Configure Testing Framework

A user can configure the parameters of the testing framework.

3.7.5 Run Testing Framework

A user can start and stop the testing framework.

3.8 Deployment Requirements

Each component must be able to run as a separate process. The software must be
able to be deployed and run on different operating systems. The components must
be able to be deployed on a single server or multiple servers.

59

4 Design

4.1 Introduction

The previous chapter listed the requirements for the simulator. The goal of this
chapter describes the design decisions made to implement the different components.
It covers the following:

1. The architecture.

2. The implementation programming language.

3. The message and communication protocols.

4. The limit order book data structure.

5. The open source libraries selected.

6. The design patterns selected to implement the business logic.

7. The saving and monitoring of events.

4.2 Architecture Overview

Figure 11: High Level Architecture Diagram

Flow

1. The order event will be created using the Simple Binary Encoding (SBE)[82]
library at the client.

4.3 Implementation Language 60

2. The Media Driver is a component of the Aeron library [84]. It is used to
communicate between all components. Each component has its own media
driver to shovel events to and from the component.

3. The SBE message will be sent to the Trading Gateway.

4. The Trading Gateway will send a response SBE message back to the client if
the message fails validation.

5. The Trading Gateway will forward the SBE message to the Matching Engine
if the message passes validation.

6. The Matching Engine will process the message. It will send a message back
to the Trading Gateway to indicate the status of the message. The Trading
Gateway will forward the message to the client.

7. The Matching Component will send an update to the Market Data Gateway
if there was a change in the limit order book.

8. The Market Data Gateway will forward the updates to all connected clients.
It will forward some of these events to the Web Event Listener.

9. The Web Event Listener saves each event to the file system using MapDB [45].

10. The Website reads and displays the data from the filesystem.

Alternate Flows

• The Website can send admin events to the Trading Gateway to control the
behaviour of the application i.e. start and stop a trading session. These
events flow through the different components.

• The clients and Website can send events to the Gateways to query the limit
order books.

4.3 Implementation Language

C++ [35] and Java [69] were considered for this project and Java was selected as the
implementation language. The decision was based on 4 key factors: performance,
portability, development time and open source libraries.

4.3.1 Performance

The performance gap between Java and C++ is closing [55]. The matching engine
needs the capability to implement changes with predicable behavior across different
hardware. Java’s “write once, run anywhere” capability out weighs the benefit of
C++ performance gains.

4.4 Message Protocol 61

4.3.2 Portability

The matching engine and/or it’s components will be deployed using different hard-
ware configurations to determine the optimal setup. The code will not need to be
recompiled each time and will give similar behavior using Java.

4.3.3 Development time

The software needs the capability to change the business rules to test various as-
sumptions. The turn around time of each implementation needs to be quick. Java
will allow developers to make these changes quicker than in C++. An application
spends 90% of its time in 10% of the code and Java will allow the developers to focus
on this 10% [50].

4.3.4 Open source libraries

There are various Java open source libraries that can be used to implement the
software.

4.4 Message Protocol

The JSE uses text messages between the clients and their matching engine. This
is inefficient as characters take up more memory and they are slower to transmit
across the network. These messages do not need to be human readable and should
be in binary format. Java serialization, Google Protocol Buffers (GPB) and Simple
Binary Encoding (SBE) were tested and SBE was selected as the message protocol.

Java serialization was compared to GPB and GPB was fastest in serialization and
deserialization. The size of the GPB object was smaller than the Java object. The
test was executed 10 times and the averages are shown in table 5. The test was run
1 million times to test the speed of the 2 approaches (Appendix A.1).

Java Google Protocol Buffers
Size of 1 object (bytes) 460 45

Serialize Time (ms) 4846 121.8
Deserialize Time (ms) 27578 309.2

Table 5: Java vs Google Protocol Buffers

GPB was better than standard Java serialization, however it does not use the design
decisions of SBE. The test in table 6 from Martin Thompson [82] shows that SBE
has approximately 16-25 times greater throughput than GPB.

4.5 Communication 62

Test Protocol Buffers (msg/ms) SBE (msg/ms) Ratio
Car Encode 619.467 10436.476 16.85
Car Decode 433.711 11657.190 26.88
Market Data Encode 2088.998 34078.646 16.31
Market Data Decode 1316.123 29193.600 22.18

Table 6: SBE vs GPB [82]

The simulator uses the Simple Binary Encoding (SBE) library to encode and decode
messages. “SBE is an OSI layer 6 presentation for encoding/decoding messages in
binary format to support low-latency applications” [82]. The library is being used to
implement a new FIX technical standard [25].

SBE design principles are:

1. Copy-Free: It does not use an intermediate buffer when encoding or decoding
messages.

2. Native Type Mapping: It maps the data to native types in the underlying
buffer.

3. Allocation Free: The flyweight pattern is used to avoid unnecessary allocation.

4. Streaming Access: Best performance is achieved by reading a message only
forward.

5. Word Aligned Access: The message is framed with 8 byte boundaries. Fields
in the messages are sorted by type and size in descending order.

6. Backwards Compatible: The messages are versioned and are backward com-
patible.

4.5 Communication

Transmission Control Protocol (TCP) and User Datagram Protocol(UDP) are two
common Internet Protocol(IP) that is used to transmit data over a network.

4.5.1 TCP

TCP [70] requires a connection to be set up between two applications before data
can be transmitted. TCP is called a connection-orientated protocol. TCP is reliable
because if a message is not received, it will try multiple times to deliver the message.
A message can be retransmitted if requested. TCP will drop the connection if there
are multiple timeouts. The messages that are received will always be in the order
that it is sent. TCP is heavyweight protocol because it requires three packets to set
up a connection. Data is read as a byte stream [43].

4.5 Communication 63

4.5.2 UDP

UDP [70] does not require a connection to be setup before data is transmitted. UDP
is called a connectionless protocol. Data is transmitted irrespective if the receiver is
ready to receive the message. UDP is unreliable because the sender does not know
if the message was delivered. The messages that are received may not be in the
same order that it is sent. UDP is a lightweight protocol because it does not check
the connection or order of messages. Packets that are sent have boundaries and are
checked for integrity if received [43].

4.5.3 JSE Communication

The JSE uses TCP for their Trading Gateway and UDP for their Market Data
Gateway. The performance requirement of the simulator requires a low latency high
throughput socket library. The technology to communicate between the compo-
nents needs to support different transport protocols and easily adapt to a change in
infrastructure. ZeroMQ[32] and Aeron libraries were tested and Aeron was selected
as the communication protocol.

4.5.4 ZeroMQ

ZeroMQ is a message-oriented middleware library. The library is written in C but it
has bindings for various other languages including Java (using JNI). There is a pure
Java implementation called JeroMQ [37]. It gives you access to a low level socket API
and supports various transports like in-process, interprocess, TCP and multicast. It
implements different communication patterns e.g. request-reply, publish-subscribe,
workload distribution, etc. Changing between the different communication protocols
is straight forward. The library is fully documented on its website. The library was
originally created for stock trading systems and therefore it is built for speed. Figure
12 shows the results of the tests conducted by CERN that compared ZeroMQ to
several other MOM libraries and scored ZeroMQ the highest [19].

4.5 Communication 64

Figure 12: Cern MOM Libraries

ZeroMQ is implemented in C++ and it needs to be wrapped in a JNI layer to be
used in Java code. It has to be recompiled for each operating system type which
went against my design principles. It also had internal queues to store messages in
case the subscriber could not keep up with the publisher. If the system went down,
these messages would have been lost.

4.5.5 Aeron

Most trading systems use TCP because it has built in reliability. However this
reliability comes at a cost, as it slow. Aeron is an efficient reliable UDP unicast,
multicast, and IPC message transport. Performance is the key focus. Aeron is
designed to be the highest throughput with the lowest and most predictable latency
possible of any messaging system.

Aeron’s design principles [83]:

1. Garbage free: Object allocation is upfront and it does not contribute to GC
pauses.

2. Smart batching: When there is a burst of traffic, they use an algorithm to send
the messages in batches and fill network packets to the optimal size.

3. Lock free algorithms: No threads are blocked.

4.5 Communication 65

4. Non-Blocking I/O: I/O is not blocked.

5. No exceptional cases: The code paths are simple and predictable for the pro-
cessor.

6. Singe writer principle: Only 1 writer will write to a resource.

7. Prefer unshared state: State is not shared between threads. Each thread will
have a copy of the state and messages are used between threads to update the
state. This works with the single writer principle.

8. Avoid unnecessary data copies: Data is only copied when required.

Figure 13: Aeron Architecture [81]

Figure 13 shows the architecture of Aeron with 2 clients. For further information
refer to [81]. The simulator uses a separate media driver for each of the components.
This will allow the media driver threads to focus on sending and receiving messages
and the components to execute it’s logic. If the client(s) are on the same server it can
use the same media driver. The performance test done used Aeron’s performance
testing tools. The buffer size was set to the same size of my order messages which
is 120 bytes and I sent 500 million messages between a publisher and subscriber on
my laptop Mac Air (1.7 GHz Intel Core i7, 8 GB 1600 MHz DDR3). The publisher
sent messages at a faster rate and there was only 20% CPU usage and only 1 GC
event recorded.

4.6 Limit Order Book Data Structure 66

Latency is important as it measures how fast a message is processed. However
reliable low latency is also required. A High Dynamic Range (HDR) Histogram
library was used to record and graph the latency. “HDR is a Histogram that supports
recording and analyzing sampled data value counts across a configurable integer value
range with configurable value precision within the range. HDR Histogram is designed
for recoding histograms of value measurements in latency and performance sensitive
applications. Measurements show value recording times as low as 3-6 nanoseconds
on modern (circa 2014) Intel CPUs” [79]

The Histogram graph in figure 14 shows that the latency is 755 ns at the 99%
percentile.

0 10 20 30 40 50 60 70 80 90 99
0

200

400

600

800

1,000

Percentile

La
te

nc
y

(n
s)

Latency by Percentile Distribution

Latency

Figure 14: A High Dynamic Range (HDR) Histogram graph. It shows the latency
percentile of Aeron’s PingPong test.

4.6 Limit Order Book Data Structure

The matching engine component stores the active orders in memory. The active
orders are not stored on disk as this would increase the I/O and reduce performance.

4.6 Limit Order Book Data Structure 67

The LOB data structure was implemented using a B+Tree. There are 4 trees:

• Bid and offer trees for the active orders.

• Parked bid and parked offer trees for the parked orders.

The ObjectLayout library implementation of the B+Tree is used. The key nodes
represent the prices and the leaf nodes represent the orders at each price. The leaf
nodes are a custom list data structure.

The data structure was selected based on 3 requirements:

1. Execution and storage requirements.

2. Efficient use of CPU cache.

3. Memory access patterns.

4.6.1 Execution and Storage Requirements

The graph in figure 15 shows the daily totals of orders entered, amended, deleted
and executed on the JSE from April 2007 to June 2012 [34]. The orders stored in the
limit order book was always higher than the executions. The orders entered have
increased significantly when compared to the number of executions. The number of
executions have remained in the same range from 2007 to 2012. This indicates that
more orders will be stored in the LOB without being executed. Therefore the LOB
data structure needs to have a low memory overhead. The data structure needs to
be efficient in searching, updating and deleting orders.

Figure 15: JSE orders [34]

4.6 Limit Order Book Data Structure 68

The graph in figure 16 is a snapshot of the Apple Limit Order Book on the Nasdaq
at 8:43. The largest number of orders are 5000 at a single price point. The data
structure needs to store different quantity of orders at each price point.

Figure 16: Snapshot of Apple LOB on NASDAQ at 8:43[12]

4.6.2 Efficient use of CPU cache

A software program runs in the operating system’s main memory [6, 18]. The
operating system increases the available main memory by using virtual memory.
Therefore the size of memory available appears more than there is actually available.
The virtual memory is space on the hard disk. If a program requires data that is not
in the main memory, it fetches it from the virtual memory into the main memory
and moves data from the main memory to virtual memory according to the policy
configured. The time to fetch data from virtual memory is very slow. The simulator
uses only main memory to achieve its low latency.

The latency is reduced between main memory and the CPU by using caches [46].
The caches contain copies of frequently used data from main memory. A cache
contains cache lines. When a cache fetches data from main memory it fetches data
to fill the entire line. If the CPU finds data in the cache, this is called a cache hit.

4.6 Limit Order Book Data Structure 69

When it does not find data, this is called a cache miss. Reducing the cache misses
will reduce the latency.

Figure 17 shows the memory layout, cache sizes and the time to retrieve data from
each cache. There are 3 caches. An L1, L2 and L3 cache [44]. The L1 cache contains
a data cache and an instruction cache. The usual size of the L1, L2 and L3 caches
are 64kKB 512KB and 2MB respectively. The time to fetch data from the L1 cache
is aprrox. 1 ns while going to main memory is 65 ns.

Figure 17: CPU cache

A data structure can be cache aware or cache oblivious [11, 46]. A cache aware data
structure is designed to fit the sizes of the cache on the machine it is running. If the
application runs on a different machine, it needs to be tuned for that machine. A
cache oblivious data structure works on any type of hardware to efficiently use each
cache. The simulator is cache aware. Listings 1 and Listing 2 show the cache sizes
on the server that the software was tested on.

4.6 Limit Order Book Data Structure 70

−bash−4.1$ l s cpu
Arch i t e c tu r e : x86_64
CPU op−mode(s) : 32−bit , 64−b i t
Byte Order : L i t t l e Endian
CPU(s) : 16
On−l i n e CPU(s) l i s t : 0−15
Thread (s) per core : 1
Core (s) per socke t : 4
Socket (s) : 4
NUMA node (s) : 4
Vendor ID : AuthenticAMD
CPU fami ly : 16
Model : 2
Stepping : 3
CPU MHz: 2300.058
BogoMIPS : 4601.33
V i r t u a l i z a t i o n : AMD−V
L1d cache : 64K
L1i cache : 64K
L2 cache : 512K
L3 cache : 2048K
NUMA node0 CPU(s) : 0−3
NUMA node1 CPU(s) : 4−7
NUMA node2 CPU(s) : 8−11
NUMA node3 CPU(s) : 12−15

Listing 1: CPU Cache on Server

4.6 Limit Order Book Data Structure 71

−bash−4.1$ ge t con f −a | grep CACHE
LEVEL1_ICACHE_SIZE 65536
LEVEL1_ICACHE_ASSOC 2
LEVEL1_ICACHE_LINESIZE 64
LEVEL1_DCACHE_SIZE 65536
LEVEL1_DCACHE_ASSOC 2
LEVEL1_DCACHE_LINESIZE 64
LEVEL2_CACHE_SIZE 524288
LEVEL2_CACHE_ASSOC 16
LEVEL2_CACHE_LINESIZE 64
LEVEL3_CACHE_SIZE 2097152
LEVEL3_CACHE_ASSOC 32
LEVEL3_CACHE_LINESIZE 64
LEVEL4_CACHE_SIZE 0
LEVEL4_CACHE_ASSOC 0
LEVEL4_CACHE_LINESIZE 0
−bash−4.1$

Listing 2: CPU Cache on Server

4.6.3 Memory Access Patterns

To reduce cache misses, memory in the caches need to be used more efficiently. The
higher the cache misses, the more time a program will spend fetching data from
main memory. Caches reduce latency by the following 3 properties [44]:

1. Temporal: Memory accessed recently will likely be required again soon.

2. Spatial: Adjacent memory is likely to be required soon.

3. Striding: Memory access is likely to follow a predictable pattern.

The data structure should utilize these 3 properties to be more efficient. Temporal
and Spatial are referred to as locality.

4.6.4 Data Structure

Lists, Hash Tables and Trees [48] were considers to represent the limit order book.
An array was not considered as this is bounded.

4.6.4.1 Lists

Lists have many pointers and large lists do not generally fit into the cache and result
in a large number of cache misses [74].

4.6 Limit Order Book Data Structure 72

4.6.4.2 Hash Tables

Hash Tables do not have good locality because accessing keys that are logically next
to each other, will usually not be next to each other in memory [74].

4.6.4.3 Trees

Trees have good locality, but only for the top elements. The remaining elements
result in a large number of cache misses [74].

4.6.4.4 B-Tree

A B-Tree is the best data structure that has good locality and uses the cache most
efficiently. A B-Tree stores the elements in the tree and this would result in not
being able to store many elements in the cache [16, 72].

4.6.4.5 B+Tree

A B+Tree only stores the keys in the root or internal nodes, and the leaf nodes store
the actual data. Therefore more keys can be stored in the cache. The B+Tree can
also be cache friendly if its key size is the same size as the cache line [16, 72]. For a
more detailed discussion, refer to [56].

Definition 13. B+Tree [75, 56]

• B+Tree of order n

– The leaves store all the data items
– The root node is either a leaf node or has between 2 and n children
– All internal nodes store up to n− 1 keys
– All internal nodes have between [n/2] and n children
– All leaf nodes have the same depth
– All leaf nodes have between [l/2] and l data items

• O(log n) - insert, delete, find

• O(n) - space

4.6 Limit Order Book Data Structure 73

The ObjectLayout library B+Tree is used for LOB [80]. It was enhanced to iterate
over the elements more efficiently. This library created new data structures that
were designed to optimally use the memory layout and to match the speed benefits
of similar data structures in most C-style languages. Figure 18 shows the B+Tree
with the leaf nodes storing the orders of the LOB at each price point.

Figure 18: Data Structure

The leaf nodes contain a custom list class called OrderList. The OrderList class
contains OrderEntry objects. The OrderEntry objects are created and managed
outside the heap. The OrderEntry is implemented using the Java unsafe package.
The time spent garbage collecting had to be reduced. Therefore the unsafe package
was used as it allows memory to be managed outside the Java heap. The OrderList
data structure creates a list of objects in memory and I used the flyweight pattern
to access each object. The unsafe package is planned to be removed from Java and
be replaced with variable handles in future versions [20]. Most applications use the
unsafe package to achieve their performance. The prices are stored as cents and not
floating point numbers. Figure 19 shows the OrderEntry objects and it’s access via
a flyweight object.

4.7 Business Rules 74

Figure 19: Order List

4.7 Business Rules

When clients send events to the matching engine, the event needs to validated and/or
manipulated before applying the matching logic. The event may trigger further logic
after the event is matched or added to the limit order book. The Intercepting Filter
design pattern was chosen to implement the business rules. The Intercepting Filter
intercepts and manipulates a request and a response before and after the request is
processed [2]. This pattern was selected because the complex matching and trading
session rules could be separated into it’s own classes. This will allow for easier unit
testing and adding or removing logic.

Figure 20: Business Rules

4.8 Website

Managing and monitoring the software is as important as implementing the matching
logic. The trading session execution times and monitoring was not implemented in
the components as this would reduce the throughput and increase the latency which
is against my design goals. A website was developed to implement this type of logic.
It reads all events from the file system. The trading session scheduled times generate
events which are sent to the simulator. Users can view the limit order book and
configure the clients and stocks in the system. The website was developed using
Spring Boot and Apache Wicket.

4.9 Web Event Listener 75

“Spring Boot makes it easy to create stand-alone, production-grade Spring based
Applications that you can ”just run”. We take an opinionated view of the Spring
platform and third-party libraries so you can get started with minimum fuss. Most
Spring Boot applications need very little Spring configuration” [78].

“Apache Wicket is a component oriented framework that differs from classic web
frameworks in that it builds a model of requested page on the server side and the
HTML sent back to the client is generated according to this model. With this kind of
framework the web pages and their HTML components (forms, input controls, links,
etc…), are pure class instances. Since pages are class instances they live inside the
JVM heap and it is handled like any other Java class” [90]

4.9 Web Event Listener

The original design had the event listener and website in the same Java process.
When the website was used or paused because of garbage collection, it affected
the receiving and saving of events. Therefore this logic was split into a separate
component.

The listener could keep the received events in memory or save it to the file system.
Saving the data in memory would be fast, but would require an unknown maximum
memory setting. Therefore the data needs to be saved to the file system. The Web
Event Listener would have read/write access and the website would have only read
access. The single writer principle would improve performance of both components.

I used an off heap hashmap to save the events to memory mapped files. An off heap
hashmap stores data outside the Java heap space and is not affected by garbage
collection. Off heap data is suited for storing data larger than the current memory
and allows sharing of data between JVMs [51]. Memory mapped files allow Java
programs to read and write files using only memory while the operating system
reads and writes to the file system. This significantly improves performance. The
entire file or a part of the file can be loaded into memory. The values in memory
will still be written to the file system even if the JVM crashes [71].

I used the MapDB library to store the events. “MapDB is an open-source (Apache
2.0 licensed), embedded Java database engine and collection framework. It provides
Maps, Sets, Lists, Queues, Bitmaps with range queries, expiration, compression,
off-heap storage and streaming” [45]. MapDB can store data off heap in memory or
using memory mapped files.

The Web Event Listener receives events faster than it can save it to file. I used the
Disruptor to resolve this problem. One thread receives the events and stores in the
the Disruptor and another thread saves it to the file system.

4.10 Conclusion 76

4.10 Conclusion

Creating a matching engine requires a detailed understanding of a broad range of
topics to achieve its low latency and high throughput. This chapter highlighted
the design decisions for each area. The next chapter shows the software that was
created.

77

5 CoinTossX

5.1 Introduction

The requirements and design decisions discussed in the previous chapters were im-
plemented to create CoinTossX. This is a low latency high throughput exchange
that allows clients to send orders and receive market data updates. This chapter
gives a brief overview of CoinTossX.

5.2 Technical Documentation

The technical documentation that describes the architecture, Java modules, class,
use case and deployment diagrams is covered in the Operational Concept Description
document [76]. This document also describes how to use and maintain the software.

5.3 Website Screenshots

5.3.1 Splash Screen

Users can access the CoinTossX website to view and maintain the configuration of
the software. The splash screen is the first page the users will see. It is split across
three images.

Figure 21: Splash Screen 1

5.3 Website Screenshots 78

Figure 22: Splash Screen 2

Figure 23: Splash Screen 3

5.3.2 Stocks

The stock screen shows the stocks configured, the trading session that is active for
each stock and a button to view the limit order book of the stock.

5.3 Website Screenshots 79

Figure 24: Stocks

5.3.3 Clients

The client screen shows the clients that are configured. It allows users to add or edit
clients.

Figure 25: Clients

5.3.4 Limit Order Book

The limit order book screen shows the graph of the bid and offers in the LOB. It
lists the details of the bids, offers, orders submitted and trades in separate tables.
The data in the tables can be exported.

5.3 Website Screenshots 80

Figure 26: Limit Order Book

5.3.5 Hawkes Configuration

The Hawkes configuration page allows the user to change the values of the Hawkes
input data before running the simulation testing.

Figure 27: Hawkes Configuration

5.3.6 Run Simulation

The Simulation page allows the user to stop and start the warmup process and
the Hawkes simulation. It shows the status of each client and the active trading
session.

5.4 Conclusion 81

Figure 28: Hawkes Simulation

5.4 Conclusion

CoinTossX was built to process millions of orders and store data to be analyzed by
the users. The next chapter describes the Hawkes testing methodology used to test
the software.

82

6 Testing Methodology

6.1 Introduction

To test the software’s performance and functionality, orders need to be sent to the
Trading Gateway and the Market Data Gateway needs to publish updates from the
exchange. A Hawkes simulation is used to generate the orders. This chapter gives a
review of Hawkes processes and its use in modeling financial data.

6.2 Hawkes Process

Hawkes [31] introduced a new point process model in 1971 to model the frequency of
earthquakes called the Hawkes process. He considers a linear “self-exciting” process
with an exponential decay kernel. This means that as events arrive the rate of future
events increase for a specific time period. The rate at which this effect decays is
defined by the decay function. A Hawkes process can be defined using a Poisson
cluster process with a particular branching structure or as a conditional intensity
function. It can be further defined as univariate or multivariate and marked or un-
marked. A mark is some additional value associated with each point. This counting
process was first used by Ogata [65] in seismology and since then it has been used
across many fields such as eismology, epidemiology, neurophysiology and network
modeling [17]. Toke [87, 86] provides the following definitions:

Definition 14. Point Process [87, 86]
Let (ti)iϵN∗ be a sequence of non-negative random variables on some probability space
(Ω,F ,P) such that ∀iϵN∗, ti < ti + 1. The sequence (ti)iϵN∗ is called a simple point
process on R+.

In this research the point process will represent the arrival of orders to the limit
order book.

Definition 15. Linear self-exciting process [87, 86]
Let N(t) be a point process with a Filtration 𝟋t, t ≥ 0 . Then a Linear self exciting
process has the intensity

λ(t) = λ0(t) +

ˆ t

∞
ν(t− s)dNs = λ0(t) +

∑
ti<t

ν(t− ti) (1)

where:

1. λ0 : R→ R+ is the base intensity

2. ν : R→ R+ expresses the positive influence of the past events ti on the current
value of the intensity process.

3. dNs represents the difference in arrival times of the events.

6.3 Hawkes Process In Financial Modeling 83

This self excitation process generates a new intensity based on the past intensity.

Definition 16. Mutually Exciting Hawkes Process [87, 86]

Let
{
(tmi)i

}
m=1...M

be a M-dimensional point process and
(
N1

t ...N
M
t

)
be the associated

counting process. Then a linear multi-dimensional Hawkes process has intensities
λm,m = 1, ...,M given by

λm(t) = λm
0 (t) +

M∑
n=1

ˆ t

0

P∑
j=1

αmn
j e−β

mn(t−s)
j dNn

s (2)

where:

1. λ0 is the deterministic base intensity.

2. αmn
j e−β

mn(t−s)
j is the exponential kernel proposed by Hawkes.

3. α increases the intensity of arrival of events.

4. β is the rate at which the intensity decreases back to the base intensity.

5. P allows for multiple kernels to be included but in this paper, we assume the
simplest form, P = 1.

6. M allows for different types of events within a point process with each event
having its own base intensity.

This mutually exciting process generates a new intensity based on the past intensity
of all events.

6.3 Hawkes Process In Financial Modeling

Hawkes process have become popular in high frequency finance [3]. Bowsher[10] used
the Hawkes model to develop a continuous time econometric modeling framework
for multivariate market event data. The Hawkes model was also used to model
arrival times of orders and clustering of events in a limit order book [49, 87]. More
applications of the Hawkes processes in finance can be found in [3] in which they
describe how it has been used in estimating the volatility at the transaction data
level, estimating the stability of the market, understanding systemic risk models the
contagion effect, creating optimal execution strategies or recording the behaviour
of the order book. Toke and Pomponio [88] show how a bivariate Hawkes process
fit their empirical observations of trades-through i.e. the transactions that were
processed extended to the 2nd level of the order book.

6.3 Hawkes Process In Financial Modeling 84

6.3.1 Modeling A Stream Of Orders

As mention earlier, Large [49] streamed orders into a limit order book. He measured
the resiliency of the LOB. A LOB is resilient if it can go back to its initial state or
replenish itself after a large order has removed liquidity from it. He measure the
time it takes for orders to be added back into the LOB after the execution of the
large order. He identified 10 different types of orders:

6.3.1.1 Type 1

An aggressive market buy order that affects the best ask level of the LOB. It changes
the best ask price of the LOB by removing the price from the LOB. This may affect
other ask levels.

6.3.1.2 Type 2

An aggressive market sell order that affects the best bid level of the LOB. It changes
the best bid price of the LOB by removing the price from the LOB. This may affect
other bid levels.

6.3.1.3 Type 3

An aggressive limit buy order that affects the best bid level of the LOB. It increases
the best bid price of the LOB by adding a new price to the LOB.

6.3.1.4 Type 4

An aggressive limit sell order that affects the best ask level of the LOB. It decreases
the best ask price of the LOB by adding a new price to the LOB.

6.3.1.5 Type 5

A passive market buy order that affects the best ask level of the LOB. It adds an
order to the LOB that is at the best ask price. The best ask price does not change
as the volume is not consumed.

6.3.1.6 Type 6

6.3 Hawkes Process In Financial Modeling 85

A passive market sell order that affects the best bid level of the LOB. It adds an
order to the LOB that is at the best bid price. The best bid price does not change
as the volume is not consumed.

6.3.1.7 Type 7

A passive limit buy order that does not affect the best bid level of the LOB. It adds
an order to the LOB below the best bid price.

6.3.1.8 Type 8

A passive limit sell order that does not affect the best ask level of the LOB. It adds
an order to the LOB above the best ask price

6.3.1.9 Type 9

A cancel order that cancels a bid order.

6.3.1.10 Type 10

A cancel order that cancels an ask order.

The types of orders mentioned above have a relationship with each other. As one
type of order is sent, it affects the the occurrence of the next order. Toke [87] made
the following conclusions about the relationship of the orders:

• Passive limit orders can be seen as “background noise”

• Aggressive limit orders are first influenced by aggressive market orders, then
by passive market orders and lastly by aggressive limit orders.

• Aggressive market orders are first influenced by passive market orders, then
by aggressive market orders and lastly by aggressive limit orders.

• Passive market orders are influenced by passive and aggressive market orders.
These orders are not influenced by limit orders

6.4 Simulating A Hawkes Process 86

6.4 Simulating A Hawkes Process

The most popular way to simulate a Hawkes process is to use the intensity-based
thinning method that was introduced by Lewis [52] and later modified by Ogata [64].
The Ogata modified thinning algorithm simulates a homogeneous Poisson process
using a conditional intensity function. The algorithm generates high intensities and
then thins out the points.

Theorem 17. The Basic Thinning Theorem [52]

Consider a one-dimensional non-homogeneous Poisson process N∗(t)t≥0 with rate
function λ∗(t), so that the number of points N∗(T0) in a fixed interval (0, T0] has
a Poisson distribution with parameter µ∗

0 =
´ T0

0 λ∗(s)ds. Let t∗1, t
∗
2, ..., t

∗
N∗(T0)

be the
points of the process in the interval (0, T0]. Suppose that for 0 ≤ t ≤ T0, λ(t) ≤ λ∗(t).

For i = 1, 2, ..., N∗(T0), delete the points t∗i with probability 1 − λ(t∗i)
λ∗(t∗i)

. Then
the remaining points form a non-homogeneous Poisson process N(t)t≥0 with rate
function λ(t) in the interval (0, T0].

Toke [87] defined the thinning algorithm as:

Let U[0,1] denote the uniform distribution on the interval [0, 1] and [0, T] the time
interval on which the Hawkes process defined by equation 2 is to be simulated. We
define IK(t) =

∑K
n=1 λ

n(t) the sum of the intensities of the first K components of
the multivariate process. The algorithm is written as follows.

Algorithm 13 Step 1 - Initialization
1: Set i← 1, i1 ← 1, . . . , iM ← 1 and
2: I∗ ← IM (0) =

∑M
n=i λ

i
0(0)

Algorithm 14 Step 2 - First event
1: Generate U ∼ U[0,1] and set s← − 1

λ∗ lnU
2:
3: if s > T then
4: go to step 4
5: end if
6:
7: Attribution Test: Generate D ∼ U[0,1] and
8: set t

n0
1 ← s where n0 is such that In0−1(0)

I∗ < D ≤ In0 (0)
I∗

9:
10: Set t1 ← t

n0
1

6.5 Conclusion 87

Algorithm 15 Step 3 - General routine
1: Set in0 ← in0 + 1 and i← i+ 1
2: Update maximum intensity: Set I∗ ← IM (ti−1) +

∑M
n=1

∑P
j=1 α

nn0
j

3:
4: New event: Generate U ∼ U[0,1] and s← s− 1

I∗ lnU
5:
6: if s > T then
7: go to step 4
8: end if
9:

10: Attribution-Rejection test: Generate D ∼ U[0,1]

11: if D ≤ IM (s)
I∗ then

12: set t
n0
in0 ← s where n0 is such that In0−1(s)

I∗ < D ≤ In0 (s)
I∗ , and ti ← t

n0
in0 and go

through the general routine again
13: else
14: update I∗ ← IM (s) and try a new date at step (b) of the general rou-

tine
15: end if

Algorithm 16 Step 4 - Output
1: Retrieve the simulated process ({tni } i)n=1,...,M on [0, T]

Nchab [63] used the above algorithm to simulate an 8-variate mutually-exciting
Hawkes process. He generated the first 8 order types mentioned by Large with the
corresponding arrival times.

6.5 Conclusion

The literature shows that the Hawkes model has been used to simulate a realistic
order flow using different order types. These orders have not been sent in real time
to an exchange. This dissertation is able to use CoinTossx to configure the Hawkes
simulation and process the orders. For a more detailed discussion on this simulation
refer to [77]. The next chapter describes the algorithm used to simulate orders to
CoinTossX.

88

7 Hawkes Simulation

A simulation was developed to test a synchronous stream of limit order book events.
An 8-variate mutually-exciting Hawkes process is used to govern the times of coupled
liquidity demand and supply events, while trade and quote prices and volumes are
generated consistent with the event type. This provides a flexible framework to
simulate a market data feed with varying throughput, with full control over the
trade and quote conditional intensities.

7.1 Hawkes Algorithm

The Hawkes algorithm was ported from the Hawkes R package to Java [92]. This
allows the simulation to be portable across different hardware. The code connected
to the Trading and Market Data Gateways. The Hawkes simulation generated the
times to send the orders. To simulate the intensity, the generated times was used to
delay the current thread. The shorter the delay, the higher the intensity. The input
to the Hawkes process was used from [63].

u =
[
0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.2

]
(3)

α =

0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1

(4)

β =

4.00 2.10 2.20 2.30 2.4 2.5 2.6 2.7
2.10 3.50 2.20 2.30 2.4 2.5 2.6 2.7
2.10 2.20 3.00 2.30 2.4 2.5 2.6 2.7
2.10 2.20 2.30 3.50 2.4 2.5 2.6 2.7
2.10 2.20 2.30 2.40 3.0 2.5 2.6 2.7
2.10 2.20 2.30 2.40 2.5 3.5 2.6 2.7
2.10 2.20 2.30 2.40 2.5 2.6 3.0 2.7
2.10 2.20 2.30 2.40 2.5 2.6 2.7 3.5

(5)

7.2 Algorithm for Price and Volume Generator 89

7.2 Algorithm for Price and Volume Generator

A client application connects to the Trading and MarketData Gateways of the sim-
ulator. Orders are sent to the Trading Gateway and the client subscribes to market
data events from the MarketData Gateway. The generated Hawkes times are used
to pause the application to simulated the intensity or orders sent. A new order is
sent to the simulator when it receives a market data update. A mutex is used by
the client application and it’s market data subscriber guarantee this behavior. The
order type, price and volume is generated based on the type of event.

1. Let L(t) represent all active orders in a LOB at time t

2. Let b(t) and a(t) be the highest bid and lowest ask price at time t

3. Let bv(t) and av(t) be the volume at the highest bid and lowest ask price at
time t

4. Let x = (px, tx, vx) be an order with price px at time txwith volume vx

5. Let N[µ,σ] denote the normal distribution over the interval [mean,std]

6. Let M be the maximum LOB depth level permitted.

7.3 Initialization

1. M = 10

2. Subscribe to Trading Gateway (TG).

3. Subscribe to Market Data Gateway (MDG).

4. Login to Trading Gateway.

5. Initialize the LOB by sending a limit buy and sell order to the simulator.

(a) Ib ← 25034 where Ib is the initial limit buy order price
(b) Is ← 25057 where Is is the initial limit sell order price
(c) Lb ← 25000 where Lb is the lowest buy price that will be generated by

the simulator
(d) Hs ← 25057 where Hs is the highest sell price that will be generated by

the simulator

6. Wait for a bid and ask update from the MDG.

7.4 General Routine - Client 90

7.4 General Routine - Client

Algorithm 17 General Routine - Client
1: timeArray = hawkes simulation time array
2: for i = 0 to size(timeArray) -1 do
3: acquire mutex
4: pause for duration(time[i+1] - time[i])
5: generate order x
6: send order x to TG
7: if order x is not sent to TG then
8: release mutex
9: end if

10: end for

7.5 General Routine - Client MarketData Subscriber

Algorithm 18 General Routine - Client MarketData Subscriber
1: subscribe to market data events
2: if event arrives then
3: update b(t), bv(t), a(t) and av(t)
4: release mutex
5: end if

7.6 VWAP

Algorithm 19 Volume Weighted Average Price (VWAP)

1: VWAP ←
∑k

i=1 Pricei ∗ V olumei∑k
i=1 V olumei

where k is the highest level affected by the

aggressive trade

Volume Weighted Average Price (VWAP) is used to calculate the price for an ag-
gressive buy/sell trade.

7.7 Aggressive Buy Trade (Type 1) 91

7.7 Aggressive Buy Trade (Type 1)

Algorithm 20 Aggressive Buy Trade (Type 1)
1: p(t)← VWAP
2: v(t) ∼ N[av(t),1000] with v(t) ≥ av(t) and v(t)% 100 = 0
3:
4: if p(t) > 0 and v(t) > 0 then
5: return A buy market order with price p(t) and volume v(t) at time t
6: else
7: return null {Order is not sent to TG}
8: end if

An aggressive buy trade is an order submitted that affects the best ask level of the
LOB. It changes the best ask price of the LOB by removing the price from the LOB.
The generated order has a price obtained using VWAP and a volume that is ≥ av(t).
The volume generated is divisible by 100 to create orders with large volumes.

7.8 Aggressive Sell Trade (Type 2)

Algorithm 21 Aggressive Sell Trade (Type 2)
1: p(t)← VWAP
2: v(t) ∼ N[bv(t),1000] with v(t) ≥ bv(t) and v(t)% 100 = 0
3:
4: if p(t) > 0 and v(t) > 0 then
5: return A sell market order with price p(t) and volume v(t) at time t
6: else
7: return null {Order is not sent to TG}
8: end if

An aggressive sell trade is an order submitted that affects the best bid level of the
LOB. It changes the best bid price of the LOB by removing the price from the LOB.
The generated order has a price that is obtained using VWAP and a volume that
is ≥ bv(t). The volume generated is divisible by 100 to create orders with large
volumes.

7.9 Aggressive Buy Quotes (Type 3) 92

7.9 Aggressive Buy Quotes (Type 3)

Algorithm 22 Aggressive Buy Quotes (Type 3)
1: if b(t) ̸= 0 and a(t) ̸= 0 then
2: p(t) ∼ N[b(t),200] where a(t) ≥ p(t) > b(t) and p(t) ≥ Lb

3:
4: else if b(t)

.
= 0 and a(t) ̸= 0 then

5: p(t) ∼ N[a(t),200] where a(t) ≥ p(t) > b(t) and p(t) ≥ Lb

6:
7: else if b(t) ̸= 0 then
8: p(t) ∼ N[b(t),200] where p(t) > b(t) and p(t) ≥ Lb

9:
10: else
11: p(t) ∼ N[Ib,200] where p(t) > b(t) and p(t) ≥ Lb

12:
13: end if
14:
15: v(t) ∼ N[bv(t),1000] with v(t) ≥ bv(t) and v(t)% 100 = 0
16:
17: if p(t) > 0 and v(t) > 0 then
18: return A buy limit order with price p(t) and volume v(t) at time t
19: else
20: return null {Order is not sent to TG}
21: end if

An aggressive buy quote is an order submitted that affects the best bid level of the
LOB. It increases the best bid price of the LOB by adding a new price to the LOB.
If the new price increases the LOB depth to be greater than N, than the new price
is not added to the LOB. The price is generated based on b(t) and a(t). If the LOB
is empty, then the price is generated using Ib.

7.10 Aggressive Sell Quotes (Type 4) 93

7.10 Aggressive Sell Quotes (Type 4)

Algorithm 23 Aggressive Sell Quotes (Type 4)
1: if b(t) ̸= 0 and a(t) ̸= 0 then
2: p(t) ∼ N[a(t),200] where a(t) > p(t) ≥ b(t) and p(t) ≤ Hs

3:
4: else if b(t) ̸= 0 then
5: p(t) ∼ N[b(t),200] where p(t) ≥ b(t) and p(t) ≤ Hs

6:
7: else
8: p(t) ∼ N[Is,200] where p(t) ≥ b(t) and p(t) ≤ Hs

9:
10: end if
11:
12: v(t) ∼ N[av(t),1000] with v(t) ≥ bv(t) and v(t)% 100 = 0
13:
14: if p(t) > 0 and v(t) > 0 then
15: return A sell limit order with price p(t) and volume v(t) at time t
16: else
17: return null {Order is not sent to TG}
18: end if

An aggressive sell quote is an order submitted that affects the best ask level of the
LOB. It decreases the best ask price of the LOB by adding a new price to the LOB.
If the new price increases the LOB depth to be greater than N, than the new price
is not added to the LOB. The price is generated based on b(t) and a(t). If the LOB
is empty, then the price is generated using Is.

7.11 Passive Buy Trade (Type 5)

Algorithm 24 Passive Buy Trade (Type 5)
1: p(t)← a(t)
2: v(t) ∼ N[av(t),1000] with 0 < v(t) < av(t) and v(t)% 100 = 0
3:
4: if p(t) > 0 and v(t) > 0 then
5: return A buy market order with price p(t) and volume v(t) at time t
6: else
7: return null {Order is not sent to TG}
8: end if

A passive buy trade is an order submitted that affects the best ask level of the LOB.
It adds an order to the LOB that is at the best ask price. The generated order has
a price that matches a(t) and a volume that is < av(t). The volume generated is
divisible by 100 to create orders with large volumes.

7.12 Passive Sell Trade (Type 6) 94

7.12 Passive Sell Trade (Type 6)

Algorithm 25 Passive Sell Trade (Type 6)
1: p(t)← b(t)
2: v(t) ∼ N[bv(t),1000] with v(t) < bv(t) and v(t)% 100 = 0
3:
4: if p(t) > 0 and v(t) > 0 then
5: return A sell market order with price p(t) and volume v(t) at time t
6: else
7: return null {Order is not sent to TG}
8: end if

A passive sell trade is an order submitted that affects the best bid level of the LOB.
It adds an order to the LOB that is at the best bid price.. The generated order has
a price that matches b(t) and a volume that is < bv(t). The volume generated is
divisible by 100 to create orders with large volumes.

7.13 Passive Buy Quotes (Type 7)

Algorithm 26 Passive Buy Quotes (Type 7)
1: if b(t) ̸= 0 and a(t) ̸= 0 then
2: p(t) ∼ N[b(t),200] where a(t) ≥ p(t) > b(t) and p(t) ≥ Lb

3:
4: else if b(t)

.
= 0 and a(t) ̸= 0 then

5: p(t) ∼ N[a(t),200] where a(t) ≥ p(t) and p(t) ≥ Lb

6:
7: else if b(t) ̸= 0 then
8: p(t) ∼ N[b(t),200] where p(t) < b(t) and p(t) ≥ Lb

9:
10: else
11: p(t) ∼ N[Ib,200] where Hs ≥ p(t) ≥ Lb

12:
13: end if
14:
15: v(t) ∼ N[bv(t),1000] with v(t) ≥ bv(t) and v(t)% 100 = 0
16:
17: if p(t) > 0 and v(t) > 0 then
18: return A buy limit order with price p(t) and volume v(t) at time t
19: else
20: return null {Order is not sent to TG}
21: end if

A passive buy quote is an order submitted that does not affect the best bid level of
the LOB. It adds an order to the LOB below the best bid price. If the new price

7.14 Passive Sell Quotes (Type 8) 95

increases the LOB depth to be greater than N, than the new price is not added to
the LOB. The price is generated based on b(t) and a(t). If the LOB is empty, then
the price is generated using Ib.

7.14 Passive Sell Quotes (Type 8)

Algorithm 27 Passive Sell Quotes (Type 8)
1: if b(t) ̸= 0 and a(t) ̸= 0 then
2: p(t) ∼ N[a(t),200] where p(t) > a(t) and p(t) ≤ Hs

3:
4: else if b(t) ̸= 0 then
5: p(t) ∼ N[b(t),200] where p(t) > b(t) and p(t) ≤ Hs

6:
7: else
8: p(t) ∼ N[Is,200] where Lb ≤ p(t) ≤ Hs

9:
10: end if
11:
12: v(t) ∼ N[av(t),1000] with v(t) ≥ bv(t) and v(t)% 100 = 0
13:
14: if p(t) > 0 and v(t) > 0 then
15: return A sell limit order with price p(t) and volume v(t) at time t
16: else
17: return null {Order is not sent to TG}
18: end if

A passive sell quote is an order submitted that does not affect the best ask level of
the LOB. It adds an order to the LOB above the best ask price. If the new price
increases the LOB depth to be greater than N, than the new price is not added to
the LOB. The price is generated based on b(t) and a(t). If the LOB is empty, then
the price is generated using Is.

7.15 Intensity Charts 96

7.15 Intensity Charts

0 2 4 6 8 10
0

10

20

30

40

50

Time (seconds)

λ

Intensity Chart Type 1 - 4

Type 1 Type 2 Type 3 Type 4

Figure 29: Intenisty of Hawkes process for type 1 - 4 event types and using the
paramters from equations 3,4,5

7.15 Intensity Charts 97

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

Time (seconds)

λ

Intensity Chart Type 5 - 8

Type 5 Type 6 Type 7 Type 8

Figure 30: Intenisty of Hawkes process for type 5 - 8 event types and using the
paramters from equations 3,4,5

98

8 Test Analysis

8.1 Introduction

This chapter describes the functional and performance tests that were run to evaluate
the software. It covers the unit tests and the Hawkes testing scenarios using the
algorithms from the previous chapter.

8.2 Unit Tests

Unit tests were created for most of the classes in the software. The unit tests for the
matching engine is cover in Appendix B. These are detailed test cases for each of
the requirements in Chapter 3. The remaining units tests can be accessed from the
source code. These tests show the impact on the LOB when an order is processed.
It lists the following details:

1. The stock configuration

2. The initial state of the LOB

3. The aggressive order

4. The final state of the LOB

5. The trades executed

8.3 Java Microbenchmark Harness (JMH)

Performance testing of individual methods is required to implement efficient algo-
rithms and logic. This type of performance testing is difficult to do as the method
requires to be warmed up before the actual test can be run and it needs to cater
for the behaviour of the JVM [36]. The software used the Java Microbenchmark
Harness (JMH) to test methods that had performance problems. “JMH is a Java
harness for building, running, and analysing nano/micro/milli/macro benchmarks
written in Java and other languages targetting the JVM”[68].

8.4 Performance Tests

The matching engine has been designed for multiple clients and stocks. The match-
ing algorithms are determined by the trading sessions. Test scenarios were created
to test the performance of the software by combing these features.

1. Scenario A: This scenario tests the impact of multiple clients and stocks.
Each client sends orders to a single stock. Each run increased the number of
clients and stocks. The Continuous Trading session was the only session used
during the test.

8.4 Performance Tests 99

2. Scenario B: This scenario tests the impact of the different trading sessions.
A one minute Intraday Auction Trading session was executed during the test.
The Continuous Trading session was used before and after the Intraday Auc-
tion Trading session.

8.4.1 Scenario A: Throughput Testing

Table 7 shows the throughput per second (TPS) test results. Each client waits
for market data updates before calculating the next order to send. The client also
waits a few nano seconds as part of the Hawkes simulation. These delays reduced
the throughput of orders sent. As the number of clients and stocks increase, the
throughput decreases. The most significant decrease in throughput is when more
than 1 client and stock is used.

Client Stock Start Time End Time Duration Orders TPS
A1 1 1 01:25:00.516 01:25:49.336 00:00:48.820 111646 2287
A2 2 2 01:30:32.741 01:34:56.722 00:04:23.981 224562 850
A3 4 4 04:12:43.498 04:24:45.702 00:12:02.204 448774 621
A4 6 6 04:31:57.914 04:47:10.300 00:15:12.386 669331 733
A5 8 8 04:56:01.288 05:16:28.298 00:20:27.010 895080 729
A6 10 10 05:21:48.718 05:40:41.007 00:18:52.289 1120514 989

Table 7: Scenario A: Throughput

8.4.2 Scenario A: Latency Testing

The latency was tested using the HdrHistogram library. Figure 31 shows the latency
using the test runs from table 7. The different lines show the percentile latency of
each run. The latency increases as the number of clients and stocks increase. The
min and max latency is 99 ns and 353 ns at the 90th percentile. This means that the
matching engine keeps a low latency below 360 ns as the number of orders submitted
increases.

8.4 Performance Tests 100

0 10 20 30 40 50 60 70 80 90 99
0

100

200

300

400

500

600

Percentile

La
te

nc
y

(n
s)

Latency by Percentile Distribution

1 2 4 6 8 10

Figure 31: A High Dynamic Range (HDR) Histogram graph. It shows the latency
percentile of the matching engine. It compares the latency across mutiple test runs
using a different number of clients and stocks.

8.4.3 Scenario A: Limit Order Book Storage Testing

The figures shown in 32 and 33 show the view of the STKJ stock from Test A6. The
limit order book is able to store thousands of orders at each price point. The design
of the LOB is allows orders to be added and removed easily.

Figure 34 shows the number of trades executed in 1 minute buckets. The matching
engine is able to hold and publish thousands of trades to the Market Data Gateway.

8.4 Performance Tests 101

25000
25003

25006
25015

25020
25021

25023
25034

25035
25036

25037
25040

25048
25076

25097
25098

25099100

101

102

103

104

105

106

107

108

Price (cents)

Vo
lu

m
e

Volume of Orders (STKJ LOB)

Bids Offers

Figure 32: Limit Order Book of stock STKJ. It shows the volume of the bids to buy
and offeres to sell at each price point

25000
25003

25006
25015

25020
25021

25023
25034

25035
25036

25037
25040

25048
25076

25097
25098

25099100

101

102

103

104

105

Price (cents)

C
ou

nt

Count of Orders (STKJ LOB)

Bids Offers

Figure 33: Limit Order Book of stock STKJ. It shows the count of orders stored at
each price point

8.4 Performance Tests 102

05:21
05:22

05:23
05:24

05:25
05:26

05:27
05:28

05:29
05:30

05:31
05:32

05:33
05:34

05:35
05:36

05:37
05:38

05:39
0

1,000

2,000

3,000

4,000

Time

Tr
ad

e
co

un
t

Trades Executed Count (STKJ)

Trades

Figure 34: Count of trades executed for stock STKJ. It shows the count of trades
executed per minute during the test run

8.4.4 Scenario B: Throughput Testing

Table 8 shows the throughput per second test results using an Intraday Auction.
As in Scenario A the throughput is reduced by the delays in the Hawkes simulator.
The throughput is further reduced by the one minute Intraday Auction.

Client Stock Start Time End Time Duration Orders TPS
B1 10 10 08:20:25.424 08:45:06.178 00:24:40.754 1119864 756

Table 8: Scenario B: Intraday Auction Throughput

8.4.5 Scenario B: Latency Testing

Figure 35 shows the latency using the data from test B1. The latency is 406 ns
at the 90% percentile. This increase was due to the one minute Intraday Auction.
Figure 36 shows the number of trades executed in 1 minute intervals for a single
stock. The missing bar in the graph represents the one minute auction. The trades
are created at the end of the auction when the order book is crossed.

8.4 Performance Tests 103

0 10 20 30 40 50 60 70 80 90 99
0

100

200

300

400

500

600

700

Percentile

La
te

nc
y

(n
s)

Latency by Percentile Distribution

Latency

Figure 35: A High Dynamic Range (HDR) Histogram graph. It shows the latency
percentile of the matching engine with an Intraday Auction.

8.5 Analysis 104

08:20
08:21

08:22
08:23

08:24
08:25

08:26
08:27

08:28
08:29

08:30
08:31

08:32
08:33

08:34
08:35

08:36
08:37

08:38
08:39

08:40
08:41

08:42
08:43

08:44
0

1,000

2,000

3,000

4,000

5,000

6,000

Time

Tr
ad

e
co

un
t

Trades Executed Count (STKJ)

Trades

Figure 36: Count of trades executed for stock STKJ. It shows the count of trades
executed per minute during the test run

8.5 Analysis

The unit tests cover the testing of the functional requirements of the software. These
test provide a safety net to allow changes to be made to the code without breaking
existing functionality. The software has unit tests that cover a majority of the
application. The tests assisted when developing the logic of the matching algorithms.
JMH testing was used to test the performance of individual methods.

The performance testing of the software showed that it is has a low latency. The JSE
has a latency of 50 microseconds. The tests show that the latency is between 99-353
ns at the 90th percentile. This is a consistent low latency. The latency increased
when the Volatility Auction executed. This is expected behavior as the matching
engine performs more work at the end of the auction.

The throughput was affected by the delays in the Hawkes clients. The Hawkes testing
provides a more realistic simulation but does not push the system. A streaming client
test case would give the true value of the throughput of the software.

The software is able to store all active orders in the order book across multiple
stocks. The order book depth was limited to 10 for bids to buy and offers to

8.5 Analysis 105

sell. This limitation is required for the Hawkes process to be more accurate but
restricts the orders stored in the order book. Removing the limitation would test
the software’s true limit order book capacity.

The software was deployed and tested on a single server. This may have had an
impact on the performance. Further testing is required to test on multiple servers
and using different deployment configurations i.e. splitting the stocks across multiple
matching engines.

106

9 Conclusion

9.1 Discussion

CoinTossX is a low latency high throughput stock exchange. It is configurable and
allows users to view the limit order book in real time. The software allows mul-
tiple clients to connect and send orders to the exchange. The exchange supports
multiple stocks and a variety of different trading session logic i.e. Continuous Trad-
ing, Intraday Auction Trading and various combinations of these, including rolling
session auctions. The Hawkes processes provides a realistic client simulator for the
exchange.

Creating the software required designing and testing each class and component. The
software was designed and developed in iterations. Unit and performance testing
was done in each iteration and had a significant impact on the architecture. The
architecture was designed so that all components worked together optimally with
high software cohesion and relatively low coupling. If a single process was faster or
slower, this would have an impact on the overall software. The main challenges were
working on the storage of the data in the limit order book, maintaining the correct
flow control of messages and ensuring the hardware and software were configured
correctly. If the deployment or hardware changes, the performance needs to be
tested again.

This dissertation describes the design, implementation and testing required to build
a matching engine for high frequency trading. As of this writing, such a soft-
ware does not exist for traders, organizations and academic institutions to test
their agent based models and further their understanding of market microstruc-
ture. The software will be open sourced and available at https://bitbucket.org/
dharmeshsing/jsematchingengine

The software and Hawkes client processes were deployed on one server which affected
the performance of all components. The logic for the different trading sessions were
implemented, but not all trading sessions were verified. The DAY Time In Force
was only used for the Hawkes testing.

9.2 Further Work

The software was designed such that different matching logic algorithms are in sep-
arate Java classes. This allows the logic to be changed to test any variations of the
matching logic. Further work can be done on deployments to different hardware
architecture layouts. The CoinTossX website can be enhanced to analyze the data
that is processed. The exchange will provide a platform for agent based models to
be tested using software that is closer to reality than any simple academic matching
engine. Additional work can be done to change the matching rules on the engine to

9.2 Further Work 107

test its impact on the limit order book. For example, introducing new order types
and simulating their impact. In addition the design of the LOB could be refactored
to support new technologies such as the blockchain. Also, since the components
are de-coupled, their implementation language can be changed to support the latest
frameworks.

REFERENCES 108

References
[1] Abergel, F., Chakraborti, A., Anane, M., Jedidi, A., and Toke, I. M. (2016).

Limit order books. Cambridge University Press.

[2] Alur, D., Crupi, J., and Malks, D. (2003). Core J2EE Patterns. Prentice Hall
PTR.

[3] Bacry, E., Mastromatteo, I., and Muzy, J.-F. (2015). Hawkes processes in finance.
arXiv preprint arXiv:1502.04592.

[4] Baker, H. K. and Kiymaz, H. (2013). Trends in Market Microstructure. Retrieved
from http://www.europeanfinancialreview.com/?p=827.

[5] Beck, K. (2003). Test Driven Development. By Example. Addison Wesley.

[6] Bhatt, P. C. P. (2014). An Introduction to Operating Systems: Concepts and
Practice (GNU/LINUX). Prentice Hall of India.

[7] Bobrovs, V., Spolitis, S., and Ivanovs, G. (2013). Latency causes and reduction
in optical metro networks. In SPIE OPTO, pages 90080C–90080C. International
Society for Optics and Photonics.

[8] Borkum, H. (2012). JSE prepares for transition to new
technology. Retrieved from https://www.jse.co.za/news/
jse-prepares-for-transition-to-new-technology.

[9] Bouchaud, J.-P., Mézard, M., Potters, M., et al. (2002). Statistical properties of
stock order books: empirical results and models. Quantitative Finance, 2(4):251–
256.

[10] Bowsher, C. G. (2007). Modelling Security Market Events in Continuous Time:
Intensity Based, Multivariate Point Process Models. Journal of Econometrics,
141(2):876–912.

[11] Brodal, G. S. (2004). Cache-Oblivious Algorithms and Data Structures. In
Algorithm Theory - SWAT 2004. Springer.

[12] Carmona, R. (2013). Limit Order Books. Retrieved from https:
//www.princeton.edu/~rcarmona/download/short_courses/Princeton_
June2013/RTG1.pdf.

[13] Cartea, Á., Jaimungal, S., and Penalva, J. (2015). Algorithmic and high-
frequency trading. Cambridge University Press.

[14] Castro, L. N. D. (2006). Fundamentals of Natural Computing: Basic Concepts,
Algorithms, and Applications. Chapman & Hall/CRC.

[15] CFTC (2012). Sub-Committee on Automated and High Frequency Trading
Working Group 1. Retrieved from http://www.cftc.gov/ucm/groups/public/
@newsroom/documents/file/tac103012_wg1.pdf.

REFERENCES 109

[16] Comer, D. (1979). Ubiquitous B-Tree. Computing Surveys, 11(2):121–137.

[17] Daley, D. and Vere-Jones, D. (2003). An Introduction to the Theory of Point
Processes. Springer-Verlag, 2nd edition.

[18] Drepper, U. (2007). What Every Programmer Should Know About Mem-
ory. Retrieved from https://people.freebsd.org/~lstewart/articles/
cpumemory.pdf.

[19] Dworak, A., Charrue, P., Ehm, F., Sliwinski, W., and Sobczak, M. (2011).
Middleware trends and market leaders 2011. volume 111010, No. CERN-ATS-
2011-196, p. FRBHMULT05, pages 1334–1338.

[20] Engelbert, C. (2015). A Post-Apocalyptic sun.misc.Unsafe World. Re-
trieved from https://www.infoq.com/articles/A-Post-Apocalyptic-sun.
misc.Unsafe-World.

[21] Farley, D. (2015). Mechanical Sympathy: Understanding the Hardware
Makes You a Better Developer. Retrieved from https://dzone.com/articles/
mechanical-sympathy.

[22] Farley, D. and Thompson, M. (2012). Lmax Disruptor: 100K TPS at Less
than 1ms Latency. Retrieved from http://www.infoq.com/presentations/
LMAX-Disruptor-100K-TPS-at-Less-than-1ms-Latency.

[23] Farmer, J. D., Patelli, P., and Zovko, I. I. (2005). The predictive power of zero
intelligence in financial markets. Proceedings of the National Academy of Sciences,
102(6):2254–2259.

[24] FIX Trading Community (2014). What is FIX? Retrieved from http://www.
fixtradingcommunity.org/pg/main/what-is-fix.

[25] FIX Trading Community (2015). FIX Trading Community announces
new open technical resource to facilitate software development - Press Release.
Retrieved from http://www.fixtradingcommunity.org/pg/blog/fplpo/read/
2891183/.

[26] Gomber, P., Arndt, B., Lutat, M., and Uhle, T. E. (2011). High-Frequency
Trading. SSRN Electronic Journal. Available from: http://ssrn.com/abstract=
1858626.

[27] Gorham, M. and Singh, N. (2009). Electronic Exchanges: The Global Transfor-
mation from Pits to Bits. Elsevier and IIT Stuart Center for Financial Markets
Press. Elsevier Science.

[28] Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., and
Howison, S. D. (2013). Limit Order Books. Quantitative Finance, 13(11):1709–
1742.

REFERENCES 110

[29] Grant, R. E., Balaji, P., and Afsahi, A. (2010). A study of hardware assisted
IP over InfiniBand and its impact on enterprise data center performance. In
Performance Analysis of Systems & Software (ISPASS), 2010 IEEE International
Symposium on, pages 144–153. IEEE.

[30] Hasbrouck, J. (2007). Empirical Market Microstructure: The Institutions, Eco-
nomics, and Econometrics of Securities Trading. Oxford University Press.

[31] Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58(1):83–90.

[32] Hintjens, P. (2014). OMQ - The Guide. Retrieved from http://zguide.
zeromq.org/page:all.

[33] Houstoun, K. (2006). FIX Adapted for STreaming - FAST Protocol Technical
Overview. Retrieved from http://www.fixtradingcommunity.org/mod/file/
view.php?file_guid=42876.

[34] Hughes, L. (2012). JSE High Frequency Trading A discussion document to en-
tice market engagement and consultation. Technical report, Johannesburg Stock
Exchange Pty (Ltd).

[35] ISO/IEC (2014). ISO International Standard ISO/IEC 14882:2014(E) -
Programming Language C++. Retrieved from https://isocpp.org/std/
the-standard.

[36] Jenkov, J. (2015). JMH - Java Microbenchmark Harness. Retrieved from http:
//tutorials.jenkov.com/java-performance/jmh.html.

[37] JeroMQ (2016). Pure Java ZeroMQ. Retrieved from https://github.com/
zeromq/jeromq.

[38] JSE (2012). JSE’s new Equity Trading Platform in SA after Decade in
London. Retrieved from http://ir.jse.co.za/phoenix.zhtml?c=198120&p=
irol-newsArticle_print&ID=1713058.

[39] JSE (2013). New Equity Market Trading and Information Solution
JSE Specification Document Volume 00 Trading and Information Overview.
2.03. Retrieved from https://www.jse.co.za/services/technologies/
equity-market-trading-and-information-technology-change.

[40] JSE (2014a). The lowest-latency connection to JSE markets. Tech-
nical report. Available from: https://www.jse.co.za/content/
JSETechnologyDocumentItems/3.%20JSE%20Colocation%20Brochure%202015.
pdf.

[41] JSE (2014b). New Equity Market Trading and Information Solution JSE Speci-
fication Document Native Trading Gateway. Retrieved from http://ir.jse.co.
za/phoenix.zhtml?c=198120&p=irol-newsArticle_print&ID=1713058.

REFERENCES 111

[42] JSE (2014c). New Equity Market Trading and Information Solu-
tion JSE Specification Document Volume 01 Native Trading Gateway.
2.02. Retrieved from https://www.jse.co.za/services/technologies/
equity-market-trading-and-information-technology-change.

[43] JSE (2014d). New Equity Market Trading and Information Solu-
tion JSE Specification Document Volume 05 Market Data Gateway (ITCH
UDP). 2.04. Retrieved from https://www.jse.co.za/services/technologies/
equity-market-trading-and-information-technology-change.

[44] Khan, M. A. (2009). Optimization Study for Multicores. Master’s thesis, Up-
psala University, Department of Information Technology.

[45] Kotek, J. (2017). MapDB. Retrieved from https://www.gitbook.com/book/
jankotek/mapdb/details.

[46] Kowarschik, M. and Weiß, C. (2003). An Overview of Cache Optimization
Techniques and Cache-Aware Numerical Algorithms. In Algorithms for Memory
Hierarchies, chapter 10, pages 213–232. Springer Nature.

[47] Kukanov, A. (2013). Stochastic Models of Limit Order Markets. PhD thesis,
Columbia University.

[48] Lafore, R. (2002). Data Structures and Algorithms in Java. Pearson Education
(US).

[49] Large, J. (2007). Measuring the resiliency of an electronic limit order book.
Journal of Financial Markets, 10(1):1–25.

[50] Lawrey, P. (2013). Writing and Testing High Frequency Trading System. Re-
trieved from http://java.dzone.com/articles/writing-and-testing-high.

[51] Lawrey, P. (2015). On Heap vs Off Heap Memory Usage. Retrieved from
https://dzone.com/articles/heap-vs-heap-memory-usage.

[52] Lewis, P. A. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous
poisson processes by thinning. Naval Research Logistics Quarterly, 26(3):403–
413.

[53] LSE (2000). London Stock Exchange market enhancements release 3.1
worked examples. Retrieved from https://www.londonstockexchange.com/
products-and-services/technical-library/technical-guidance-notes/
technicalguidancenotesarchive/release.pdf.

[54] Madhavan, A. (2000). Market microstructure: A survey. Journal of Financial
Markets, 3:205–258.

[55] Mangione, C. (1998). Performance tests show Java as fast as
C++. Retrieved from http://www.javaworld.com/article/2076593/
performance-tests-show-java-as-fast-as-c--.html.

REFERENCES 112

[56] Mehta, D. P. and Sahni, S. (2004). Handbook of Data Structures and Applica-
tions. Taylor & Francis Inc.

[57] Morgan, T. P. (2014). Wall Street Wants Tech To Trade Smarter
And Faster. Retrieved from https://www.enterprisetech.com/2014/04/09/
wall-street-wants-tech-trade-smarter-faster/.

[58] Naes, R. and Skjeltorp, J. (2006). Is the market microstructure of stock markets
important? Norges Bank Economic Bulletin, 77:123.

[59] Nair, P. (2014). Agent based modelling of a single-stock market on the JSE.
Msc thesis, University of the Witwatersrand.

[60] NasdaqTrader (2014). NASDAQ TotalView-ITCH 4.0. Retrieved from http:
//www.nasdaqtrader.com/content/technicalsupport/specifications/
dataproducts/tvitch-v4.pdf.

[61] NasdaqTrader (2016). Ouch 4.2. Retrieved from http://www.nasdaqtrader.
com/content/technicalsupport/specifications/TradingProducts/OUCH4.
2.pdf.

[62] Navarro, C. A., Hitschfeld-Kahler, N., and Mateu, L. (2014). A Survey on
Parallel Computing and its Applications in Data-Parallel Problems Using GPU
Architectures. Communications in Computational Physics, 15(02):285–329.

[63] Nchaba, L. P. (2015). Simulation of Realistic Market using the Hawkes Process.
University of the Witwatersrand.

[64] Ogata, Y. (1981). On Lewis’ Simulation Method for Point Processes. IEEE
Transactions On Information Theory, 27:23–31.

[65] Ogata, Y. (1988). Statistical Models for Earthquake Occurrences and Residual
Analysis for Point Processes. Journal of the American Statistical Association,
83:9–27.

[66] O’Hara, M. (1995). Market Microstructure Theory. Blackwell Publishers.

[67] O’Hara, M. (2012). FPGA & Hardware Accelerated Trad-
ing, Part One - Who, What, Where and Why? Retrieved
from http://www.thetradingmesh.com/pg/blog/mike/read/55950/
fpga-hardware-accelerated-trading-part-one-who-what-where-and-why.

[68] Oracle (2016). Code Tools: jmh. Retrieved from http://openjdk.java.net/
projects/code-tools/jmh/.

[69] Oracle (2017). Retrieved from www.oracle.com/technetwork/java/index.
html.

[70] Parziale, L., Britt, D. T., Davis, C., Forrester, J., Liu, W., Matthews, C., and
Rosselot, N. (2006). TCP/IP Tutorial and Technical Overview. Available from:
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf.

REFERENCES 113

[71] Paul, J. (2012). Why use Memory Mapped File or MapppedByteBuffer
in Java. Retrieved from http://javarevisited.blogspot.com.au/2012/01/
memorymapped-file-and-io-in-java.html.

[72] Rao, J. and Ross, K. A. (2000). Making B+- trees cache conscious in main
memory. ACM SIGMOD Record, 29(2):475–486.

[73] SEC (2004). Regulation NMS. (File No. S7-10-04). Available from: http:
//www.sec.gov/rules/proposed/34-50870.pdf.

[74] Shasha, D. and Bonnet, P. (2002). Database Tuning: Principles, Experiments,
and Troubleshooting Techniques. Morgan Kaufmann Publishers.

[75] Silberschatz, A., Korth, H. F., and Sudarshan, S. (2010). Database System
Concepts. McGraw-Hill Higher Education.

[76] Sing, D. (2017). Operational Concept Description for JSE Matching Engine
Simulator. Working Technical Document. University of the Witwatersrand.

[77] Sing, D., Hendricks, D., and Gebbie, T. (2017). The simulation of a realis-
tic market data feed using mutually-exciting hawkes processes. Working Paper.
University of the Witwatersrand.

[78] Spring (2016). Spring Boot. Retrieved from https://projects.spring.io/
spring-boot/.

[79] Tene, G. (2016). HdrHistogram: A High Dynamic Range Histogram. Retrieved
from https://hdrhistogram.github.io/HdrHistogram/.

[80] Tene, G. and Thompson, M. (2017). org.ObjectLayout: A layout-optimized
Java data structure package. Retrieved from http://objectlayout.github.io/
ObjectLayout/.

[81] Thompson, M. (2014a). Design Overview. Retrieved from https://github.
com/real-logic/Aeron/wiki/Design-Overview.

[82] Thompson, M. (2014b). Simple Binary Encoding. Retrieved from http://
mechanical-sympathy.blogspot.com.au/2014/05/simple-binary-encoding.
html.

[83] Thompson, M. (2015). Design principles. Retrieved from: https://github.
com/real-logic/Aeron/wiki/Design-Principles.

[84] Thompson, M. (2016). Aeron: The Next Generation in High-performance Mes-
saging. Retrieved from https://www.infoq.com/presentations/aeron.

[85] Thompson, M., Farley, D., Barker, M., Gee, P., and Stewart, A. (2011). Dis-
ruptor: High performance alternative to bounded queues for exchanging data
between concurrent threads. Retrieved from http://lmax-exchange.github.
io/disruptor/files/Disruptor-1.0.pdf.

REFERENCES 114

[86] Toke, I. M. (2011a). An Introduction to Hawkes Processes with Applications
to Finance. Lectures Notes from Ecole Centrale Paris, BNP Paribas Chair
of Quantitative Finance. Retrieved from http://lamp.ecp.fr/MAS/fiQuant/
ioane_files/HawkesCourseSlides.pdf.

[87] Toke, I. M. (2011b). Some Applications of Hawkes Processes for Order
Book Modelling. First Unconventional Workshop on Quantitative Finance and
Economics. Available from: http://lamp.ecp.fr/MAS/fiQuant/ioane_files/
20110223-QFWTokyoSlides.pdf.

[88] Toke, I. M. and Pomponio, F. (2012). Modelling Trades-Through in a Limit
Order Book Using Hawkes Processes. Economics discussion paper, 6.

[89] Union, E. (2004). Directive 2004/39/EC of the European Parliament and
of the Council of 21 April 2004 on markets in financial instruments amend-
ing Council Directives 85/611/EEC and 93/6/EEC and Directive 2000/12/EC
of the European Parliament and of the Council and repealing Council Direc-
tive 93/22/EEC. Official Journal of the European Union, 47. Available from:
http://eur-lex.europa.eu/eli/dir/2004/39/2011-01-04.

[90] Wicket (2016). Wicket 8.x Reference Guide. Retrieved from https://ci.
apache.org/projects/wicket/guide/8.x/single.html.

[91] Yasenchak, R. and Arendell, S. (2014). The Trading Series Part 1:The Evolution
of Trading - From Quarters to Pennies and Beyond. Available from: https:
//www.intechjanus.com/intech/insight-and-research.

[92] Zaatour, R. (2015). Hawkes process simulation and calibration toolkit. Retrieved
from https://cran.r-project.org/web/packages/hawkes/hawkes.pdf.

[93] Zhu, H. (2013). Do Dark Pools Harm Price Discovery? SSRN Electronic
Journal.

115

A Appendix

A.1 Java vs Google Protocol Buffers Test

This test simulates an order message and captures the size, serialization and deseri-
alization times using Java and the Google Protocol Buffer library. A warmup phase
is run first before the actual test to ensure that the JVM has optimized the code.
The warmup phase runs 10 times, serializing and deserializing 10 000 objects. The
actual test runs 10 times, serializing and deserializing 1 million objects. The tables
below show the results of the tests.

Run Serialize (ms) Deserialize (ms) Size (bytes)
1 4789 28972 460
2 4903 28178 460
3 4924 28001 460
4 4926 27580 460
5 4879 26760 460
6 4710 27034 460
7 4773 26154 460
8 4820 29223 460
9 5136 27333 460
10 4657 26545 460

Average 4846 27578 460

Table 9: Java Test

Run Serialize (ms) Deserialize (ms) Size (bytes)
1 126 323 45
2 122 349 45
3 118 290 45
4 119 304 45
5 121 293 45
6 115 307 45
7 117 296 45
8 128 339 45
9 128 339 45
10 124 252 45

Average 121.8 309.2 45

Table 10: Google Protocol Buffer Test

A.2 Aeron Performance Tests

A.2.1 Aeron ThroughPut Performance Test

A.2 Aeron Performance Tests 116

j a va
−cp
aeron−samples / b u i l d / l i b s / samples . j a r
−XX:+UnlockDiagnost icVMOptions
−XX: G u a r a n t e e d S a f e p o i n t I n t e r v a l =300000
−XX: B iasedLock ingSta r tupDe lay=0
−Daeron . mtu . l eng th =16384
−Daeron . socke t . so_sndbuf =2097152
−Daeron . socke t . so_rcvbuf =2097152
−Daeron . r cv . b u f f e r . l e ng th =16384
−Daeron . r cv . i n i t i a l . window . l eng th =2097152
−Dagrona . d i s a b l e . bounds . checks=true
−XX:+ UnlockCommerc ia lFeatures
−XX:+ F l i g h t R e c o r d e r
uk . co . r e a l _ l o g i c . aeron . samples . LowLatencyMediaDriver

j ava
−cp
aeron−samples / b u i l d / l i b s / samples . j a r
−XX:+UnlockDiagnost icVMOptions
−XX: G u a r a n t e e d S a f e p o i n t I n t e r v a l =300000
−Daeron . sample . messageLength=120
−Daeron . sample . messages =500000000
−Dagrona . d i s a b l e . bounds . checks=true
−XX:+ UnlockCommerc ia lFeatures
−XX:+ F l i g h t R e c o r d e r
uk . co . r e a l _ l o g i c . aeron . samples . S t r eamingPub l i she r

j ava
−cp
aeron−samples / b u i l d / l i b s / samples . j a r
−XX:+UnlockDiagnost icVMOptions
−XX: G u a r a n t e e d S a f e p o i n t I n t e r v a l =300000
−Dagrona . d i s a b l e . bounds . checks=true
−Daeron . sample . f rameCountLimit=256
−XX:+ UnlockCommerc ia lFeatures
−XX:+ F l i g h t R e c o r d e r
uk . co . r e a l _ l o g i c . aeron . samples . Ra teSubsc r i be r

Listing 3: Aeron Performance Test

• Subscriber

– 1.3e+06 msgs/sec, 1.6e+08 bytes/sec, totals 500 000 000 messages 57 220
MB

• Publisher

– 7.9e+05 msgs/sec, 9.4e+07 bytes/sec, totals 500 000 000 messages 57 220
MB

• 20% CPU Usage

• 1 GC Event

A.2 Aeron Performance Tests 117

A.2.2 Aeron Latency Performance Test

j a va
−cp
aeron−samples / b u i l d / l i b s / samples . j a r
−XX:+UnlockDiagnost icVMOptions
−XX: G u a r a n t e e d S a f e p o i n t I n t e r v a l =300000
−Daeron . sample . messages=100000
−Daeron . sample . messageLength=120
−Dagrona . d i s a b l e . bounds . checks=true
−XX:+ UnlockCommerc ia lFeatures
−XX:+ F l i g h t R e c o r d e r

uk . co . r e a l _ l o g i c . aeron . samples . Ping

j ava
−cp
aeron−samples / b u i l d / l i b s / samples . j a r
−XX:+UnlockDiagnost icVMOptions
−XX: G u a r a n t e e d S a f e p o i n t I n t e r v a l =300000
−Dagrona . d i s a b l e . bounds . checks=true
−XX:+ UnlockCommerc ia lFeatures
−XX:+ F l i g h t R e c o r d e r
uk . co . r e a l _ l o g i c . aeron . samples . Pong

Listing 4: Aeron Latency Test

118

B Appendix

B.1 Matching Engine Test Cases

This section lists the matching engine unit test cases that was used to test the
functionality of the matching logic. The test cases are separated into the following
sections:

1. Market Order Test Case

2. Limit Order Test Case

3. Hidden Order Test Case

4. Stop Order Test Case

5. Stop Limit Order Test Case

6. Filter And Uncross Test Case

7. Auction Test Case

8. Cancel Order Test Case

9. Replace Order Test Case

Each test case shows the changes to the limit order book as an aggressive order is
processed i.e. the initial and final state of the lob. The aggressive order and trades
executed are also shown. The Auction test case does not have aggressive orders.

Abbreviations Used:

• MO - Market Order

• LO - Limit Order

• HO - Hidden Order

• SO - Stop Order

• SL - Stop Limit Order

• MES - Minimum Execution Size

• MRS - Minimum Reserve Size

The default MRS is 15000.

B.1 Matching Engine Test Cases 119

B.1.1 Market Order Test Case - Test 1

Add bid market message to an empty lob. Order expires

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 MO 0 10:00 1000 0.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 120

B.1.2 Market Order Test Case - Test 2

Add offer market message to an empty lob. Order expires

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 1000 10:00 0 MO 1

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 121

B.1.3 Market Order Test Case - Test 3

Add bid market message. Order is filled

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

50.0 200 11:10 0 LO 3
80.0 500 11:00 0 LO 2
100.0 1000 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 MO 0 12:00 1000 0.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 700 10:00 0 LO 1

Final State

Trade Id Price Quanity
1 50.0 200
2 80.0 500
3 100.0 300

Trades

B.1 Matching Engine Test Cases 122

B.1.4 Market Order Test Case - Test 4

Add offer market message. Order is filled

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 LO 0 11:10 200 50.0
2 LO 0 11:00 500 80.0
1 LO 0 10:00 1000 100.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 1000 12:00 0 MO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 LO 0 11:10 200 50.0
2 LO 0 11:00 500 80.0

Final State

Trade Id Price Quanity
1 100.0 1000

Trades

B.1 Matching Engine Test Cases 123

B.1.5 Market Order Test Case - Test 5

Add bid market message. Order is partially filled. Order is expired

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

80.0 500 11:00 0 LO 2
100.0 500 10:00 0 LO 1
110.0 2000 11:10 1000 HO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 MO 0 12:00 1200 0.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

110.0 2000 11:10 1000 HO 3

Final State

Trade Id Price Quanity
1 80.0 500
2 100.0 500

Trades

B.1 Matching Engine Test Cases 124

B.1.6 Market Order Test Case - Test 6

Add offer market message. Order is partially filled. Order is expired

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 HO 1000 11:00 2000 70.0
2 LO 0 10:10 500 80.0
1 LO 0 10:00 500 100.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 1200 12:00 0 MO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 HO 1000 11:00 2000 70.0

Final State

Trade Id Price Quanity
1 100.0 500
2 80.0 500

Trades

B.1 Matching Engine Test Cases 125

B.1.7 Limit Order Test Case - Test 1

Add bid limit message to an empty lob

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 126

B.1.8 Limit Order Test Case - Test 2

Add bid limit message with different bid price

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 500 200.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 500 200.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 127

B.1.9 Limit Order Test Case - Test 3

Add bid limit message with existing bid price

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0
1 LO 0 10:00 1000 100.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 128

B.1.10 Limit Order Test Case - Test 4

Add bid limit message with existing offer price. No Match

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 50.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 50.0

100.0 1000 10:00 0 LO 1

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 129

B.1.11 Limit Order Test Case - Test 5

Add bid limit message with existing offer price. Match

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

50.0 200 11:10 0 LO 3
80.0 500 11:00 0 LO 2
100.0 1000 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 1000 80.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 300 80.0

100.0 1000 10:00 0 LO 1

Final State

Trade Id Price Quanity
1 50.0 200
2 80.0 500

Trades

B.1 Matching Engine Test Cases 130

B.1.12 Limit Order Test Case - Test 6

Bid LO matches Offer LO. Time-priority determines the matching orders

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

20.0 200 12:00 0 LO 4
50.0 300 11:00 0 LO 2
50.0 300 11:10 0 LO 3
100.0 1000 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
5 LO 0 12:00 500 50.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

50.0 300 11:10 0 LO 3
100.0 1000 10:00 0 LO 1

Final State

Trade Id Price Quanity
1 20.0 200
2 50.0 300

Trades

B.1 Matching Engine Test Cases 131

B.1.13 Limit Order Test Case - Test 7

Add offer limit message to an empty lob

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 132

B.1.14 Limit Order Test Case - Test 8

Add offer limit message with different offer price

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

200.0 500 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
200.0 500 11:00 0 LO 2

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 133

B.1.15 Limit Order Test Case - Test 9

Add offer limit message with existing offer price

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
100.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 134

B.1.16 Limit Order Test Case - Test 10

Add offer limit message with existing bid price. No Match

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 50.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 50.0

100.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 135

B.1.17 Limit Order Test Case - Test 11

Add offer limit message with existing bid price. Match

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 LO 0 11:10 200 50.0
2 LO 0 11:00 200 80.0
1 LO 0 10:00 500 100.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

80.0 1000 12:00 0 LO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 LO 0 11:10 200 50.0

80.0 300 12:00 0 LO 4

Final State

Trade Id Price Quanity
1 100.0 500
2 80.0 200

Trades

B.1 Matching Engine Test Cases 136

B.1.18 Limit Order Test Case - Test 12

Offer LO matches Bid LO. Time-priority determines the matching orders

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
2 LO 0 11:00 300 50.0
3 LO 0 11:10 300 50.0
1 LO 0 10:00 700 100.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

50.0 1000 12:00 0 LO 5

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 LO 0 11:10 300 50.0

Final State

Trade Id Price Quanity
1 100.0 700
2 50.0 300

Trades

B.1 Matching Engine Test Cases 137

B.1.19 Hidden Order Test Case - Test 1

Incoming offer LO matches on contra side including HO. Visible LO takes precedence
over HO at same price point.MRS = 700

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 HO 500 11:10 500 50.0
6 LO 0 11:05 800 50.0
5 LO 0 13:00 200 60.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

40.0 1000 12:00 0 LO 7

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 HO 500 11:10 500 50.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Final State

Trade Id Price Quanity
1 60.0 200
2 50.0 800

Trades

B.1 Matching Engine Test Cases 138

B.1.20 Hidden Order Test Case - Test 2

Incoming bid LO matches on contra side including HO. Visible LO takes precedence
over HO at same price point.MRS = 700

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 300 20.0
1 LO 0 10:00 700 40.0

50.0 200 12:00 0 LO 4
80.0 500 11:10 500 HO 3
80.0 800 11:05 0 LO 6
100.0 200 13:00 0 LO 5

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
7 LO 0 14:00 1000 90.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 300 20.0
1 LO 0 10:00 700 40.0

80.0 500 11:10 500 HO 3
100.0 200 13:00 0 LO 5

Final State

Trade Id Price Quanity
1 50.0 200
2 80.0 800

Trades

B.1 Matching Engine Test Cases 139

B.1.21 Hidden Order Test Case - Test 3

Incoming offer LO matches on contra side including HO. MES is used to execute
HO.MRS = 700

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 LO 0 11:10 500 45.0
6 HO 700 11:05 1400 50.0
5 LO 0 13:00 200 60.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

40.0 1000 12:00 0 LO 7

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 LO 0 11:10 500 45.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Final State

Trade Id Price Quanity
1 60.0 200
2 50.0 800

Trades

B.1 Matching Engine Test Cases 140

B.1.22 Hidden Order Test Case - Test 4

Incoming offer LO matches on contra side including HO. HO is skipped due to MES
constraint.MRS = 700

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 LO 0 11:10 500 45.0
6 HO 700 11:05 1400 50.0
5 LO 0 13:00 500 60.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

40.0 600 12:00 0 LO 7

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 LO 0 11:10 400 45.0
6 HO 700 11:05 1400 50.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Final State

Trade Id Price Quanity
1 60.0 500
2 45.0 100

Trades

B.1 Matching Engine Test Cases 141

B.1.23 Hidden Order Test Case - Test 5

Incoming offer HO matches on contra side including HO. Passive HO is skipped due
to MES constraint.MRS = 700

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 LO 0 11:10 500 45.0
6 HO 700 11:05 1400 50.0
5 LO 0 13:00 500 60.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

40.0 600 12:00 100 HO 7

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 12:00 200 20.0
3 LO 0 11:10 400 45.0
6 HO 700 11:05 1400 50.0

80.0 300 11:00 0 LO 2
100.0 700 10:00 0 LO 1

Final State

Trade Id Price Quanity
1 60.0 500
2 45.0 100

Trades

B.1 Matching Engine Test Cases 142

B.1.24 Hidden Order Test Case - Test 6

Executing a Sell Limit message with price improvement

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

105.0 1000 12:00 0 LO 3
1 HO 15000 10:00 15000 106.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

104.0 15000 13:00 0 LO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

105.0 1000 12:00 0 LO 3

Final State

Trade Id Price Quanity
1 104.5 15000

Trades

B.1 Matching Engine Test Cases 143

B.1.25 Hidden Order Test Case - Test 7

Executing a Sell Order at aggressing message’s limit price

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

105.0 1000 12:00 0 LO 3
1 HO 15000 10:00 15000 106.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 15000 13:00 0 LO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

105.0 1000 13:00 0 LO 4

Final State

Trade Id Price Quanity
1 105.0 1000
2 105.0 14000

Trades

B.1 Matching Engine Test Cases 144

B.1.26 Hidden Order Test Case - Test 8

Not Executing a Sell Order due to aggressing message’s limit price breach

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

105.0 1000 12:00 0 LO 3
1 HO 15000 10:00 15000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

106.0 15000 13:00 0 LO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

105.0 1000 12:00 0 LO 3
106.0 15000 13:00 0 LO 4

1 HO 15000 10:00 15000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 145

B.1.27 Hidden Order Test Case - Test 9

Executing a Sell Order based on Price-Visibility-Time Execution Priority

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0
1 HO 15000 10:00 15000 106.0

107.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

104.0 15000 13:00 0 LO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0

107.0 1000 12:00 0 LO 3

Final State

Trade Id Price Quanity
1 106.0 15000

Trades

B.1 Matching Engine Test Cases 146

B.1.28 Hidden Order Test Case - Test 10

Executing a Buy Limit message with price improvement

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 15000 12:00 15000 HO 3
1 LO 0 10:00 1000 106.0

107.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 13:00 15000 107.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 106.0

107.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 106.5 15000

Trades

B.1 Matching Engine Test Cases 147

B.1.29 Hidden Order Test Case - Test 11

Executing a Buy Order at the aggressing message’s limit price

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 15000 12:00 15000 HO 3
1 LO 0 10:00 1000 106.0

107.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 13:00 15000 106.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 13:00 1000 106.0

107.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 106.0 1000
2 106.0 14000

Trades

B.1 Matching Engine Test Cases 148

B.1.30 Hidden Order Test Case - Test 12

Not Executing a Buy Order due to aggressing message’s limit price breach

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 15000 12:00 15000 HO 3
1 LO 0 10:00 1000 107.0

108.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 13:00 15000 106.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 15000 12:00 15000 HO 3
4 LO 0 13:00 15000 106.0
1 LO 0 10:00 1000 107.0

108.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 149

B.1.31 Hidden Order Test Case - Test 13

Executing a Buy Order based on Price-Visibility-Time Execution Priority

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 103.0

105.0 15000 12:00 15000 HO 3
107.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 13:00 15000 106.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 103.0

107.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 105.0 15000

Trades

B.1 Matching Engine Test Cases 150

B.1.32 Hidden Order Test Case - Test 14

Executing a Buy Order stepping over a Hidden Limit message due to a MES con-
straint

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1000 100.0
1 HO 15000 10:00 15000 106.0

107.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 13:00 0 LO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 HO 15000 10:00 15000 106.0

107.0 1000 12:00 0 LO 3

Final State

Trade Id Price Quanity
1 100.0 1000

Trades

B.1 Matching Engine Test Cases 151

B.1.33 Hidden Order Test Case - Test 15

Executing a Buy Market message with price improvement

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 100000 12:00 100000 HO 3
1 LO 0 10:00 1000 106.0

107.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 MO 0 13:00 100000 0.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 106.0

107.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 106.5 100000

Trades

B.1 Matching Engine Test Cases 152

B.1.34 Hidden Order Test Case - Test 16

Executing a Sell Market message with price improvement

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 100000 100.0

101.0 80000 11:00 0 LO 2
3 HO 100000 12:00 100000 102.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 100000 13:00 0 MO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 100000 100.0

101.0 80000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 100.5 100000

Trades

B.1 Matching Engine Test Cases 153

B.1.35 Hidden Order Test Case - Test 17

Executing a Sell Market message which creates sufficient quantity for the message
at the visible best offer to execute against a Hidden Limit message with a MES
constraint

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 100000 100.0

101.0 80000 11:00 0 LO 2
3 HO 100000 12:00 100000 102.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 200000 13:00 0 MO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

101.0 80000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 100.5 100000
2 100.0 100000

Trades

B.1 Matching Engine Test Cases 154

B.1.36 Stop Order Test Case - Test 1

Add buy stop order to an empty lob

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SO 0 12:00 1000 90.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SO 0 12:00 1000 90.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 155

B.1.37 Stop Order Test Case - Test 2

Add sell stop order to an empty lob

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

90.0 1000 12:00 0 SO 1

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

90.0 1000 12:00 0 SO 1

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 156

B.1.38 Stop Order Test Case - Test 3

Buy stop order added. Last trade price does not exist. No executions

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

90.0 1000 10:00 0 LO 12
92.0 2000 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
10 SO 0 13:00 1000 90.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
10 SO 0 13:00 1000 90.0 1000 10:00 0 LO 12

92.0 2000 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 157

B.1.39 Stop Order Test Case - Test 4

Sell stop order added. Last trade price does not exist. No executions

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0
13 LO 0 11:00 2000 92.0
14 LO 0 12:00 1000 94.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

90.0 1000 13:00 0 SO 10

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0 1000 13:00 0 SO 10
13 LO 0 11:00 2000 92.0
14 LO 0 12:00 1000 94.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 158

B.1.40 Stop Order Test Case - Test 5

Buy order agresses order book with buy stop order. Stop order executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
10 SO 0 13:00 1000 90.0 1000 10:00 0 LO 12

92.0 2000 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
11 LO 0 14:00 2000 93.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
14 LO 0 12:00 1000 94.0

Final State

Trade Id Price Quanity
1 90.0 1000
2 92.0 1000
3 92.0 1000

Trades

B.1 Matching Engine Test Cases 159

B.1.41 Stop Order Test Case - Test 6

Sell order agresses order book with sell stop order. Stop order executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0
13 LO 0 11:00 2000 92.0
14 LO 0 12:00 1000 94.0 1000 13:00 0 SO 10

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

91.0 2000 14:00 0 LO 11

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0

Final State

Trade Id Price Quanity
1 94.0 1000
2 92.0 1000
3 92.0 1000

Trades

B.1 Matching Engine Test Cases 160

B.1.42 Stop Order Test Case - Test 7

Buy stop order added. Last trade price exists. Stop order executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
15 LO 0 13:00 1000 90.0 1000 10:00 0 LO 12

92.0 2000 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
16 SO 0 14:00 2000 80.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

94.0 1000 12:00 0 LO 14

Final State

Trade Id Price Quanity
1 90.0 1000
2 92.0 2000

Trades

B.1 Matching Engine Test Cases 161

B.1.43 Stop Order Test Case - Test 8

Sell stop order added. Last trade price exists. Stop order executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0
13 LO 0 11:00 2000 92.0
14 LO 0 12:00 1000 94.0 1000 13:00 0 LO 15

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

95.0 2000 14:00 0 SO 16

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0

Final State

Trade Id Price Quanity
1 94.0 1000
2 92.0 2000

Trades

B.1 Matching Engine Test Cases 162

B.1.44 Stop Order Test Case - Test 9

Buy stop orders with greatest difference between its stop price and the last traded
price will be elected first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
16 SO 0 14:10 500 70.0
15 SO 0 14:00 1000 80.0

90.0 1000 10:00 0 LO 12
92.0 2000 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
17 LO 0 15:00 1000 90.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

92.0 500 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Final State

Trade Id Price Quanity
1 90.0 1000
2 92.0 500
3 92.0 1000

Trades

B.1 Matching Engine Test Cases 163

B.1.45 Stop Order Test Case - Test 10

Sell stop orders with greatest difference between its stop price and the last traded
price will be elected first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0
13 LO 0 11:00 2000 92.0
14 LO 0 12:00 1000 94.0

95.0 1000 14:00 0 SO 15
100.0 500 14:10 0 SO 16

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

94.0 1000 15:00 0 LO 15

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0
13 LO 0 11:00 500 92.0

Final State

Trade Id Price Quanity
1 94.0 1000
2 92.0 500
3 92.0 1000

Trades

B.1 Matching Engine Test Cases 164

B.1.46 Stop Order Test Case - Test 11

Multiple buy stop orders with the same difference between its stop price and the
last traded price. Oldest executed first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
15 SO 0 14:00 1000 80.0
16 SO 0 14:10 500 80.0

90.0 1000 10:00 0 LO 12
92.0 2000 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
17 LO 0 15:00 1000 90.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

92.0 500 11:00 0 LO 13
94.0 1000 12:00 0 LO 14

Final State

Trade Id Price Quanity
1 90.0 1000
2 92.0 1000
3 92.0 500

Trades

B.1 Matching Engine Test Cases 165

B.1.47 Stop Order Test Case - Test 12

Multiple sell stop orders with the same difference between its stop price and the last
traded price. Oldest executed first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0
13 LO 0 11:00 2000 92.0
14 LO 0 12:00 1000 94.0

95.0 1000 14:00 0 SO 15
95.0 500 14:10 0 SO 16

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

94.0 1000 15:00 0 LO 15

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 LO 0 10:00 1000 90.0
13 LO 0 11:00 500 92.0

Final State

Trade Id Price Quanity
1 94.0 1000
2 92.0 1000
3 92.0 500

Trades

B.1 Matching Engine Test Cases 166

B.1.48 Stop Limit Order Test Case - Test 1

Add buy stop limit message to an empty lob

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 12:00 12000 106.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 12:00 12000 106.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 167

B.1.49 Stop Limit Order Test Case - Test 2

Add sell stop limit message to an empty lob

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

106.0 12000 12:00 0 SL 1

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

106.0 12000 12:00 0 SL 1

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 168

B.1.50 Stop Limit Order Test Case - Test 3

Buy stop limit message added. Last trade price does not exist. No executions

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 104.0

107.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 SL 0 12:00 12000 107.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 104.0
3 SL 0 12:00 12000 107.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 169

B.1.51 Stop Limit Order Test Case - Test 4

Sell stop limit message added. Last trade price does not exist. No executions

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 104.0

107.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

104.0 12000 12:00 0 SL 3

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 104.0 12000 12:00 0 SL 3

107.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 170

B.1.52 Stop Limit Order Test Case - Test 5

Buy message agresses message book with buy stop limit message. Stop message
executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 105.0
3 LO 0 12:00 15000 106.0 15000 13:00 0 SL 4

109.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
6 MO 0 14:00 1000 0.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 105.0

Final State

Trade Id Price Quanity
1 109.0 1000
2 106.0 15000

Trades

B.1 Matching Engine Test Cases 171

B.1.53 Stop Limit Order Test Case - Test 6

Sell message agresses message book with sell stop limit message. Stop message
executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0

108.0 15000 12:00 0 LO 3
109.0 1000 11:00 0 LO 2

4 SL 0 13:00 15000 110.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 1000 14:00 0 MO 6

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

109.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 107.0 1000
2 108.0 15000

Trades

B.1 Matching Engine Test Cases 172

B.1.54 Stop Limit Order Test Case - Test 7

Buy stop limit message added. Last trade price exists. Stop message executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 MO 0 14:00 1000 0.0
1 LO 0 10:00 1000 107.0
3 LO 0 12:00 15000 108.0

109.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

108.0 15000 13:00 0 SL 5

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0

Final State

Trade Id Price Quanity
1 109.0 1000
2 108.0 15000

Trades

B.1 Matching Engine Test Cases 173

B.1.55 Stop Limit Order Test Case - Test 8

Sell stop limit message added. Last trade price exists. Stop message executed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 1000 14:00 0 MO 4
1 LO 0 10:00 1000 107.0

108.0 15000 12:00 0 LO 3
109.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
5 SL 0 13:00 15000 110.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

109.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 107.0 1000
2 108.0 15000

Trades

B.1 Matching Engine Test Cases 174

B.1.56 Stop Limit Order Test Case - Test 9

Buy stop limit orders with greatest difference between its stop price and the last
traded price will be elected first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0

108.0 2000 12:00 0 LO 3
109.0 1000 11:00 0 LO 2

5 SL 0 13:00 1000 110.0
5 SL 0 14:00 500 110.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 1000 15:00 0 MO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

108.0 500 12:00 0 LO 3
109.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 107.0 1000
2 108.0 1000
3 108.0 500

Trades

B.1 Matching Engine Test Cases 175

B.1.57 Stop Limit Order Test Case - Test 10

Sell stop limit orders with greatest difference between its stop price and the last
traded price will be elected first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0
3 LO 0 12:00 2000 108.0 1000 13:00 0 SL 4

108.0 500 14:00 0 SL 5
109.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
6 MO 0 15:00 1000 0.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0
3 LO 0 12:00 500 108.0

Final State

Trade Id Price Quanity
1 109.0 1000
2 108.0 1000
3 108.0 500

Trades

B.1 Matching Engine Test Cases 176

B.1.58 Stop Limit Order Test Case - Test 11

Multiple buy stop limit orders with the same difference between its stop price and
the last traded price. Oldest executed first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0

108.0 2000 12:00 0 LO 3
109.0 1000 11:00 0 LO 2

5 SL 0 13:00 1000 110.0
5 SL 0 14:00 500 110.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 1000 15:00 0 MO 4

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

108.0 500 12:00 0 LO 3
109.0 1000 11:00 0 LO 2

Final State

Trade Id Price Quanity
1 107.0 1000
2 108.0 1000
3 108.0 500

Trades

B.1 Matching Engine Test Cases 177

B.1.59 Stop Limit Order Test Case - Test 12

Multiple sell stop limit orders with the same difference between its stop price and
the last traded price. Oldest executed first

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0
3 LO 0 12:00 2000 108.0 500 13:00 0 SL 4

108.0 1000 14:00 0 SL 5
109.0 1000 11:00 0 LO 2

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
6 MO 0 15:00 1000 0.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 107.0
3 LO 0 12:00 500 108.0

Final State

Trade Id Price Quanity
1 109.0 1000
2 108.0 500
3 108.0 1000

Trades

B.1 Matching Engine Test Cases 178

B.1.60 Filter And Uncross Test Case - Test 1

Example13. Filtering Algorithm. No Executions. Order 11 MES not satisfied

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 1000 09:00 3000 61.0
4 HO 6000 09:30 15000 62.0

63.0 1000 12:30 0 LO 10
64.0 10000 12:00 5000 HO 9
65.0 12000 11:30 7000 HO 8
66.0 3000 11:00 1000 HO 7
67.0 500 10:30 0 LO 6
68.0 1000 10:00 0 LO 5

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
11 HO 4000 13:00 10000 63.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 1000 09:00 3000 61.0
4 HO 6000 09:30 15000 62.0
11 HO 4000 13:00 10000 63.0 1000 12:30 0 LO 10

64.0 10000 12:00 5000 HO 9
65.0 12000 11:30 7000 HO 8
66.0 3000 11:00 1000 HO 7
67.0 500 10:30 0 LO 6
68.0 1000 10:00 0 LO 5

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 179

B.1.61 Filter And Uncross Test Case - Test 2

Example14. Filtering Algorithm. No Executions possible

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 1000 09:00 3000 61.0
4 HO 6000 09:30 15000 62.0
11 HO 4000 13:00 10000 63.0 1000 12:30 0 LO 10

64.0 10000 12:00 5000 HO 9
65.0 12000 11:30 7000 HO 8
66.0 3000 11:00 1000 HO 7
67.0 500 10:30 0 LO 6
68.0 1000 10:00 0 LO 5

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
12 HO 25000 13:30 30000 65.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 1000 09:00 3000 61.0
4 HO 6000 09:30 15000 62.0
11 HO 4000 13:00 10000 63.0 1000 12:30 0 LO 10

64.0 10000 12:00 5000 HO 9
12 HO 25000 13:30 30000 65.0 12000 11:30 7000 HO 8

66.0 3000 11:00 1000 HO 7
67.0 500 10:30 0 LO 6
68.0 1000 10:00 0 LO 5

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 180

B.1.62 Filter And Uncross Test Case - Test 3

Example15. Filtering and uncrossing. 4 trades created

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 1000 09:00 3000 61.0
4 HO 6000 09:30 15000 62.0
11 HO 4000 13:00 10000 63.0 1000 12:30 0 LO 10

64.0 10000 12:00 5000 HO 9
12 HO 25000 13:30 30000 65.0 12000 11:30 7000 HO 8

66.0 3000 11:00 1000 HO 7
67.0 500 10:30 0 LO 6
68.0 1000 10:00 0 LO 5

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

63.0 2500 14:00 0 LO 13

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 1000 09:00 3000 61.0
4 HO 6000 09:30 15000 62.0
11 HO 4000 13:00 10000 63.0

66.0 3000 11:00 1000 HO 7
67.0 500 10:30 0 LO 6
68.0 1000 10:00 0 LO 5

Final State

Trade Id Price Quanity
1 65.0 1000
2 65.0 2500
3 65.0 10000
4 65.0 12000

Trades

B.1 Matching Engine Test Cases 181

B.1.63 Filter And Uncross Test Case - Test 4

Example16. Filtering and uncrossing. 4 trades created

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 2500 09:00 3000 61.0 2000 11:30 0 LO 12
4 HO 4500 09:30 15000 62.0 11000 12:00 0 LO 13
11 HO 5000 10:00 10000 63.0 12000 12:30 0 LO 14

67.0 500 11:00 0 LO 6
68.0 1000 10:30 0 LO 5

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

60.0 2000 13:00 1000 HO 15

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 08:00 1000 59.0
2 LO 0 08:30 500 60.0
3 HO 2500 09:00 3000 61.0
4 HO 4500 09:30 10000 62.0

63.0 12000 12:30 0 LO 14
67.0 500 11:00 0 LO 6
68.0 1000 10:30 0 LO 5

Final State

Trade Id Price Quanity
1 62.0 2000
2 62.0 2000
3 62.0 6000
4 62.0 5000

Trades

B.1 Matching Engine Test Cases 182

B.1.64 Auction Test Case - Test 1

Auction. One max volume

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 2500 11:00 0 MO 7
103.0 6900 09:30 0 LO 4

3 LO 0 09:00 200 104.0
2 LO 0 08:30 5600 104.5 1000 10:00 0 LO 5
1 LO 0 08:00 10000 105.5

106.0 200 10:30 0 LO 6

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 LO 0 09:00 200 104.0
2 LO 0 08:30 5200 104.5

106.0 200 10:30 0 LO 6

Final State

Trade Id Price Quanity
1 104.5 6900
2 104.5 2500
3 104.5 600
4 104.5 400

Trades

B.1 Matching Engine Test Cases 183

B.1.65 Auction Test Case - Test 2

Auction. Two max volume. Min surplus selected

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 2500 11:00 0 MO 7
103.0 6900 09:30 0 LO 4

3 LO 0 09:00 200 104.0 1000 10:00 0 LO 5
2 LO 0 08:30 5600 104.5
1 LO 0 08:00 10000 105.5

106.0 200 10:30 0 LO 6

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 LO 0 09:00 200 104.0
2 LO 0 08:30 5200 104.5

106.0 200 10:30 0 LO 6

Final State

Trade Id Price Quanity
1 104.5 6900
2 104.5 2500
3 104.5 600
4 104.5 400

Trades

B.1 Matching Engine Test Cases 184

B.1.66 Auction Test Case - Test 3

Auction. Two max volume. Same surplus. Max price selected

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

0.0 2500 11:00 0 MO 7
103.0 6900 09:30 0 LO 4

3 LO 0 09:00 1000 104.0 1000 10:00 0 LO 5
2 LO 0 08:30 5600 105.0
1 LO 0 08:00 10000 105.5

106.0 200 10:30 0 LO 6

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
3 LO 0 09:00 1000 104.0
2 LO 0 08:30 5200 105.0

106.0 200 10:30 0 LO 6

Final State

Trade Id Price Quanity
1 105.0 6900
2 105.0 2500
3 105.0 600
4 105.0 400

Trades

B.1 Matching Engine Test Cases 185

B.1.67 Cancel Order Test Case - Test 1

Cancel limit order bid in empty order book. Cancel request rejected

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 0 100.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 186

B.1.68 Cancel Order Test Case - Test 2

Cancel limit order offer in empty order book. Cancel request rejected

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 0 10:00 0 LO 1

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 187

B.1.69 Cancel Order Test Case - Test 3

Cancel limit order bid. Bid removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 10:00 0 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 188

B.1.70 Cancel Order Test Case - Test 4

Cancel limit order offer. Offer removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 LO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 0 10:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 189

B.1.71 Cancel Order Test Case - Test 5

Cancel stop order bid. Bid removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 SO 0 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SO 0 10:00 0 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 190

B.1.72 Cancel Order Test Case - Test 6

Cancel stop order offer. Offer removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 SO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 0 10:00 0 SO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 191

B.1.73 Cancel Order Test Case - Test 7

Cancel stop limit order bid. Bid removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 SL 0 12:00 12000 106.0
3 LO 0 13:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 10:00 0 106.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 13:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 192

B.1.74 Cancel Order Test Case - Test 8

Cancel stop limit order offer. Offer removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
106.0 12000 12:00 0 SL 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

107.0 0 10:00 0 SL 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 193

B.1.75 Cancel Order Test Case - Test 9

Cancel hidden order bid. Bid removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 500 11:10 500 50.0
1 LO 0 10:00 1000 100.0
3 LO 0 13:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 0 10:00 0 50.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 13:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 194

B.1.76 Cancel Order Test Case - Test 10

Cancel hidden limit order offer. Offer removed

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
106.0 500 11:10 500 HO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

106.0 0 10:00 0 HO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 195

B.1.77 Replace Order Test Case - Test 1

Replace limit order bid in empty order book. Replace request rejected

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 196

B.1.78 Replace Order Test Case - Test 2

Replace limit order offer in empty order book. Replace request rejected

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 197

B.1.79 Replace Order Test Case - Test 3

Replace limit order bid quantity. Quantity replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 1500 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 1500 105.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 198

B.1.80 Replace Order Test Case - Test 4

Replace limit order bid GTD. GTD replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 2000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 199

B.1.81 Replace Order Test Case - Test 5

Replace limit order bid GTT. GTT replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 2000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 200

B.1.82 Replace Order Test Case - Test 6

Replace limit order offer quantity. Quantity replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 LO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 1500 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 1500 11:00 0 LO 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 201

B.1.83 Replace Order Test Case - Test 7

Replace limit order offer GTD. GTD replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 LO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2000 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 LO 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 202

B.1.84 Replace Order Test Case - Test 8

Replace limit order offer GTT. GTT replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 LO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2000 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 LO 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 203

B.1.85 Replace Order Test Case - Test 9

Replace limit order bid quantity. Quantity > existing quantity. Order re-aggress
the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0 2500 13:00 2500 HO 4
3 LO 0 12:00 1000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 2500 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 12:00 1000 107.0

Final State

Trade Id Price Quanity
1 105.0 2500

Trades

B.1 Matching Engine Test Cases 204

B.1.86 Replace Order Test Case - Test 10

Replace limit order offer quantity. Quantity < existing quantity. Order re-aggress
the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
4 HO 2500 13:00 2500 105.0 2000 11:00 0 LO 2

107.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2500 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 1000 12:00 0 LO 3

Final State

Trade Id Price Quanity
1 105.0 2500

Trades

B.1 Matching Engine Test Cases 205

B.1.87 Replace Order Test Case - Test 11

Replace limit order bid price. Order re-aggress the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 LO 0 11:00 2000 105.0
3 LO 0 12:00 1000 107.0

108.0 2000 13:00 0 LO 4

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 LO 0 11:00 2000 108.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 12:00 1000 107.0

Final State

Trade Id Price Quanity
1 108.0 2000

Trades

B.1 Matching Engine Test Cases 206

B.1.88 Replace Order Test Case - Test 12

Replace limit order offer price. Order re-aggress the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 13:00 2000 90.0

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 0 LO 2
107.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

90.0 2000 11:00 0 LO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 1000 12:00 0 LO 3

Final State

Trade Id Price Quanity
1 90.0 2000

Trades

B.1 Matching Engine Test Cases 207

B.1.89 Replace Order Test Case - Test 13

Replace HO order bid quantity. Quantity replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 2000 11:00 4000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 4000 105.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 208

B.1.90 Replace Order Test Case - Test 14

Replace HO order bid GTD. GTD replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 2000 11:00 2000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 209

B.1.91 Replace Order Test Case - Test 15

Replace HO order bid GTT. GTT replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 2000 11:00 2000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 210

B.1.92 Replace Order Test Case - Test 16

Replace HO order bid MES. MES replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 1000 11:00 2000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 1000 11:00 2000 105.0
3 LO 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 211

B.1.93 Replace Order Test Case - Test 17

Replace HO order offer quantity. Quantity replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 1000 HO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 1500 11:00 1000 HO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 1500 11:00 1000 HO 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 212

B.1.94 Replace Order Test Case - Test 18

Replace HO order offer GTD. GTD replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 2000 HO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2000 11:00 2000 HO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 2000 HO 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 213

B.1.95 Replace Order Test Case - Test 19

Replace HO order offer GTT. GTT replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 2000 HO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2000 11:00 2000 HO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 2000 HO 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 214

B.1.96 Replace Order Test Case - Test 20

Replace HO order offer MES. MES replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 2000 HO 2
107.0 3000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2000 11:00 1000 HO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 1000 HO 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 215

B.1.97 Replace Order Test Case - Test 21

Replace HO order bid quantity. Quantity > existing quantity. Order re-aggress the
order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0 2500 13:00 2500 HO 4
3 LO 0 12:00 1000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 2500 11:00 2500 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 12:00 1000 107.0

Final State

Trade Id Price Quanity
1 105.0 2500

Trades

B.1 Matching Engine Test Cases 216

B.1.98 Replace Order Test Case - Test 22

Replace HO order offer quantity. Quantity < existing quantity. Order re-aggress
the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
4 HO 2500 13:00 2500 105.0 2000 11:00 2000 HO 2

107.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2500 11:00 2500 HO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 1000 12:00 0 LO 3

Final State

Trade Id Price Quanity
1 105.0 2500

Trades

B.1 Matching Engine Test Cases 217

B.1.99 Replace Order Test Case - Test 23

Replace HO order bid price. Order re-aggress the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
2 HO 2000 11:00 2000 105.0
3 LO 0 12:00 1000 107.0

108.0 2000 13:00 0 LO 4

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 HO 2000 11:00 2000 108.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 LO 0 10:00 1000 100.0
3 LO 0 12:00 1000 107.0

Final State

Trade Id Price Quanity
1 108.0 2000

Trades

B.1 Matching Engine Test Cases 218

B.1.100 Replace Order Test Case - Test 24

Replace HO order offer price. Order re-aggress the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
4 LO 0 13:00 2000 90.0

100.0 1000 10:00 0 LO 1
105.0 2000 11:00 2000 HO 2
107.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

90.0 2000 11:00 2000 HO 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 LO 1
107.0 1000 12:00 0 LO 3

Final State

Trade Id Price Quanity
1 90.0 2000

Trades

B.1 Matching Engine Test Cases 219

B.1.101 Replace Order Test Case - Test 25

Replace Stop order bid limit price. Limit price replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 10:00 1000 100.0
2 SL 0 11:00 2000 105.0
3 SL 0 12:00 3000 105.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 2000 107.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 10:00 1000 100.0
3 SL 0 12:00 3000 105.0
2 SL 0 11:00 2000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 220

B.1.102 Replace Order Test Case - Test 26

Replace Stop order offer limit price. Limit price replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
107.0 2000 11:00 0 SL 2
107.0 3000 12:00 0 SL 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

107.0 1500 11:00 0 SL 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
107.0 1500 11:00 0 SL 2
107.0 3000 12:00 0 SL 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 221

B.1.103 Replace Order Test Case - Test 27

Replace Stop order bid quantity. Quantity replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 10:00 1000 100.0
2 SL 0 11:00 2000 105.0
3 SL 0 12:00 3000 105.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 1500 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 10:00 1000 100.0
2 SL 0 11:00 1500 105.0
3 SL 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 222

B.1.104 Replace Order Test Case - Test 28

Replace Stop order bid GTD. GTD replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 2000 105.0
1 SL 0 10:00 1000 107.0
3 SL 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 2000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 10:00 1000 100.0
2 SL 0 11:00 2000 105.0
3 SL 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 223

B.1.105 Replace Order Test Case - Test 29

Replace Stop order bid GTT. GTT replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 10:00 1000 100.0
2 SL 0 11:00 2000 105.0
3 SL 0 12:00 3000 107.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 2000 105.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
1 SL 0 10:00 1000 100.0
2 SL 0 11:00 2000 105.0
3 SL 0 12:00 3000 107.0

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 224

B.1.106 Replace Order Test Case - Test 30

Replace Stop order offer quantity. Quantity replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
105.0 2000 11:00 0 SL 2
107.0 3000 12:00 0 SL 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 1500 11:00 0 SL 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
105.0 1500 11:00 0 SL 2
107.0 3000 12:00 0 SL 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 225

B.1.107 Replace Order Test Case - Test 31

Replace Stop order offer GTD. GTD replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
105.0 2000 11:00 0 SL 2
107.0 3000 12:00 0 SL 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2000 11:00 0 SL 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
105.0 2000 11:00 0 SL 2
107.0 3000 12:00 0 LO 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 226

B.1.108 Replace Order Test Case - Test 32

Replace Stop order offer GTT. GTT replaced

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
105.0 2000 11:00 0 SL 2
107.0 3000 12:00 0 SL 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

105.0 2000 11:00 0 SL 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

100.0 1000 10:00 0 SL 1
105.0 2000 11:00 0 SL 2
107.0 3000 12:00 0 SL 3

Final State

Trade Id Price Quanity
Zero trades executed

Trades

B.1 Matching Engine Test Cases 227

B.1.109 Replace Order Test Case - Test 33

Replace Stop order bid quantity. Quantity > existing quantity. Order re-aggress
the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 2000 90.0 1000 13:00 0 LO 4
1 LO 0 10:00 1000 100.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 1000 90.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
1 100.0 1000
2 90.0 1000

Trades

B.1 Matching Engine Test Cases 228

B.1.110 Replace Order Test Case - Test 34

Replace Stop order offer quantity. Quantity < existing quantity. Order re-aggress
the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

80.0 2000 11:00 0 SL 2
3 LO 0 12:00 1000 90.0 1000 10:00 0 LO 1
4 LO 0 13:00 1000 90.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

80.0 1000 11:00 0 SL 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
1 90.0 1000

Trades

B.1 Matching Engine Test Cases 229

B.1.111 Replace Order Test Case - Test 35

Replace Stop order bid stop price. Order re-aggress the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 2000 90.0 1000 13:00 0 LO 4
1 LO 0 10:00 1000 100.0 1000 12:00 0 LO 3

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
2 SL 0 11:00 2000 90.0

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
1 100.0 1000
2 90.0 1000

Trades

B.1 Matching Engine Test Cases 230

B.1.112 Replace Order Test Case - Test 36

Replace Stop order offer stop price. Order re-aggress the order book

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

80.0 2000 11:00 0 SL 2
3 LO 0 12:00 1000 90.0 1000 10:00 0 LO 1
4 LO 0 13:00 1000 90.0

Initial State

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order

80.0 2000 11:00 0 SL 2

Aggressive Order

Buy Sell
Order Type MES Time Size Price Size Time MES Type Order
Empty LOB

Final State

Trade Id Price Quanity
1 90.0 1000
2 90.0 1000

Trades

231

C Appendix

C.1 Getting Started Guide

C.1.1 Download Java

The Java version should be version 8+. Check the Java version on the server
$ java −vers ion
java vers ion ” 1 . 8 . 0 _60”

C.1.2 Clone the repository

g i t clone https : //dharmeshsing@bitbucket . org/dharmeshsing/jsematchingengine . g i t

C.1.3 Build the project

gradle bui ld −x t e s t

C.1.4 Location of configuration files

The configuration files are located in the data directory. It contains the following
files:

• clientData.csv: The client details.

• hawkesData.properties: The Hawkes input data.

• Stock.csv: The stock details.

• Trader.csv: The trader details.

• tradingSessionCron.properties: The cron expressions for the trading ses-
sions.

The start and stop scripts are located in the scripts directory.

C.1.5 Location of connection files

The connection files contain the directory paths to store files and the UDP details
for each module. The files are:

• local.properties: Connection details for testing on your laptop/desktop.

C.1 Getting Started Guide 232

• witsServer.properties: Connection details for deploying on the university’s
Linux server.

• windows.properties: Connection details for deploying on the university’s
Windows server.

C.1.6 Deploy

gradle −PenvProp=l o c a l . p rope r t i e s −PsoftwarePath=/tmp clean i n s t a l l D i s t
bootRepackage copyResourcesToInstal lDir copyToDeploy deleteDeployZip
deployZip deployToWitsServer

C.1.7 Start the Gateways on the server

Go to the deployed software path scripts directory i.e. /tmp/scripts.
. / s t a r t A l l . sh

C.1.8 Simple client

The client login details must be defined in the clientData.csv file.
//These va lues should be s to red and r e t r e v i e d from the c l i en tData . csv f i l e
St r ing u r l = udp : // l o c a l h o s t :5000
i n t streamId = 10
i n t compId = 1
St r ing password = test111111

//Connect to the Trading Gateway
GatewayCl ientImpl tradingGatewayPub = new GatewayCl ientImpl () ;
tradingGatewayPub . connect Input (ur l , streamId) ;

//Login to the Trading Gateway
LogonBui lder logonBu i lde r = new LogonBui lder () ;
D i r ec tBu f f e r b u f f e r = logonBu i lde r . compID(compId)
. password (password . getBytes ())
. newPassword (password . getBytes ())
. b u i l d () ;

tradingGatewayPub . send (b u f f e r) ;

C.1 Getting Started Guide 233

C.1.9 Send a new order to the Trading Gateway

pub l i c Di rec tBu f f e r createNewOrder (long volume ,
long pr i ce ,
SideEnum side ,
OrdTypeEnum orderType){

NewOrderBuilder newOrderBuilder = new NewOrderBuilder () ;

D i r ec tBu f f e r d i r e c t B u f f e r = newOrderBuilder . compID(c l i en tData . getCompID ())
. c l i e n t O r d e r I d (”1234” . getBytes ())
. account (”account123” . getBytes ())
. capac i ty (CapacityEnum . Agency)
. cancelOnDisconnect (CancelOnDisconnectEnum . DoNotCancel)
. orderBook (OrderBookEnum . Regular)
. s e c u r i t y I d (s e c u r i t y I d)
. traderMnemonic (”John” . getBytes ())
. orderType (orderType)
. t imeInForce (TimeInForceEnum . Day)
. expireTime (”20150813−23:00:00” . getBytes ())
. s i d e (s i d e)
. orderQuant i ty ((i n t) volume)
. d i sp layQuant i t y ((i n t) volume)
. minQuantity (0)
. l i m i t P r i c e (p r i c e)
. s topPr i ce (0)
. b u i l d () ;

return d i r e c t B u f f e r ;
}

//Send new order to Trading Gateway
tradingGatewayPub . send (createNewOrder (1200 , 25034 , SideEnum . Buy , OrdTypeEnum . Limit

)) ;

